EONIKO METTOBIO ITOAYTEXNEIO

Y XOAH HAEKTPOAOTON MHXANIKON KAI MHXANIKON YTTIOAOTIZTON
TOMEAY TEXNOAOTIAY [TAHPO®OPIKHE KAI YTIOAOTIETON
EPrastHPIO MIKPOYOAOIIESTON KAI WHIIAKON L YSTHMATON

Arithmetic-Aware Approximation Techniques for

Energy-Efficient Inexact Circuits

AIIAOMATIKH EPrAsIA

ToL

KONYXTANTINOY AXHMAKOIIOYAOY

EnBArénwv: Texueotls Kuopdh
Kodnyntic E.M.IL

EPrasTHPIO MIKPOYTIOAOTIETON KAI WHSIAKON L TSTHMATON
Adrva, NoéuBetog 2018

Edvixé Metodfio Iloauteyvelo
Eyoh) Hihextpohdywv Mnyavixwy xou Mnyovixodv YTroloyiotoy
Touéag Teyvoroyiog [IAnpogpopurc xa Troloyiotdy

Epyaotfpio Muxpobnoloyiotadv xar Ungoxwmy LucTnudtey

Arithmetic-Aware Approximation Techniques for

Energy-Efficient Inexact Circuits

AIIIAOMATIKH EPrAsIA

TOoL

KONYXTANTINOY AXHMAKOIIOYAOY

EnBArénwv: Texueotlh Kuopdh
Kodnyntic E.M.IL

Eyxpldnxe and tnv teiuerr eCetaotinr emtpony| tny 1n Noeufplou 2018.

(Yroypagn) (Ymoypagr)) (Yroypagn)
expeotln Kioudh Anurteloc Xolvteng Feddpyioc I'volpac
Kodnyntic E.M.IL Avaminpowtic Kodnyntic E.ML.IL Enixovpoc Kadnyntric E.M.II

Adrva, NoéuBetog 2018

(Troypaeri)

KONITANTINOEY ASHMAKOIIOTAOX
Amhopotovyog Hiextoohdyoc Mnyovinde xouw Mnyovixde Troroyotov E.M.IL
(©) 2018 — All rights reserved

Edvixé Metodfio Iloauteyvelo
Eyoh) Hihextpohdywv Mnyavixwy xou Mnyovixodv YTroloyiotoy
Touéag Teyvoroyiog [IAnpogpopurc xa Troloyiotdy

Epyaotfpio Muxpobnoloyiotadv xar Ungoxwmy LucTnudtey

Copyright (©)—All rights reserved Kwvotavtivoc Aonuoxdérouroc, 2018.

Me empOhaln novtdg SLXaOUATOS.

Anayopebeton 1 avTiypapr, amodixeuon xou Slovouy| Tng topoloos epyactiog, €€ oAoxApou
1) TWAUATOC QUTHC, Yia EUTopX6 oxomo. Emtpéneton 1 avatinwor, anodrixeuon xat dioavour
Yot OXOTO U] XEEOOOKOTINO, EXTUOEUTIXAC 1) EQELVITIXAC PUONE, UTO TNV TpolnddeoT va
AVOPERETOL 1) TNYT) TEOEAEUOTC o VoL BlaTneeitan To mopdy urvupa. EpwtAuata tou apopodv

N XeMon TNS EpYUCLAS VLol XEPOOOXOTIXO OXOTO TEETEL VoL aneudivVOVTaL TEOS TOV GUYYROPEX.

Euyapiotieg

Apywd Oa ek va euyopiotiow tov emBrénovta xadnynt Hexuyeotln Kioudh yio tnv
guxouplol TOL You EBWAaE VoL Aoy oYK Pe Eva TOC0 eVOLapEpOY VEua.

Eniong euyaplot wiaitepa Tov unodriglo diddxtopoa Aéovta Bastieto yio tny xadodhynon,
TIg YeNowes ouuBoukéc Tou xou TNV TeY VXY Borlela Tou pou mapelye 6Tote TN YpEldoTNXAL.

Téhog Va Hleha Vo eLyaEIOTACL TNV OLXOYEVELL PoU Yiot TNV oTAREN TNg xadohn TN
Oudpxeta Tne goltnone pov oto Edvind Metodfio [Toluteyvelo.

HeptAngm

Ta tedeutala yedvio Ue TNV parydola AVETTUEN TV EVOOUXTWHUEV®Y CUCTNUATWY EYEL O1-
woupyndel 1 avdyxn yior UPNAY amOBOCT GE CUVBUAOUO UE YOUNAT) XATAVAAWCT) EVEQYELOC.
‘Etol éxave v egpdvior; Tou o npooeyylotxds unohoyiouds (Approximate Computing)

o omolog aglonolel To YEYOVOC OTL XAMOLES EQPUPUOYES €youv avoyY oTo opdiua. Tétoleg
epappoyég umopel var mepthapBdvouv media processing, machine learning, data mining xou
statistics..

Yy nopoloa Bimhwpatiny epyacio mporyatonoeiton avaliTnon VEWY TEYVIXOY TEOCEY-
Yo TO0 UTOAOYIOUOU UE GXOTO TN UEOT) TNG XATAVIAWONG EVEQYELNS X0l TURIAANAL TNV
vhnin anddoon. Emnopévwe, avamtiydnxov 5 texVixéc TOU TEUYUATOTOUY TEOCEYYIoE
OTOV TEOTO UE TOV 0Tolo exTEAEiTOL 0 TOAATAACIACUOC. Aol uhomollnxay oL TEYVIXES OTT|
v oo Verilog €yvav TpoCOUOLOCELS UE OXOTO TOV UTOAOYIGUO TNG XATAVIAWOTG EVEQYELAS
xa Tou opdhapatog xdie teyvinric. O yetprioel autée mpaypoatorotfinxay ue tnv Bordeia
Twv gpyoheiwy, Synopsys Design Compiler, Mentor Graphics ModelSim xou Matlab. Te-
AXOC, Yo TNV oUYXELOT TRV TEXYVIXOY Onuovpyhunxay diayedupato Pareto 80o edwyv. To
TEMTO ElYE WE TUPAUETEOUS TNV XATAVIANGCT) EVEQYELNS X0 OTO GPIAU EVE TO OEUTERO TOV

ATOUTOVUEVO Y WPO XU TO GPAAUAL.

Agleic KAewod

ITpooeyyioTdg UTOROYIOUOS, oELduNTXd xuxhGuota, oyediaon ASIC, avoyn ota opdi-

HOLTOL, XATOVIAWOT] EVEQYELNS

Abstract

In recent years, the embedded and mobile nature of modern computing systems has
led to an increased need for high performance and energy efficiency. As a result, energy
dissipation has become a first class concern in the design of integrated circuits. Towards
this direction, approximate (or inexact) computing appears as an emerging and promising
solution for energy-efficient systems design, exploiting the inherent error/noise resilience
of various applications involving media processing, machine learning, data mining and
statistics.

In this diploma thesis an exploration of new techniques of approximate computing is
performed. Therefore, 5 techniques were developed with the purpose of energy dissipation
and high accuracy. After the implementation of the techniques in Verilog code, several
simulations were ran in order to compute the energy consumption and error. The tools used
to perform these simulations were Synopsys Design Compiler, Mentor Graphics ModelSim
and Matlab. Lastly, the comparison between the techniques was possible with the help of
Pareto diagrams. Two types were presented. The first type is an Energy-Error diagram

and the second an Area-Error diagram.

Keywords

Approximate Computing, Arithmetic Circuits, ASIC Design, Error Tolerance, Energy
Efficiency

Contents

Evyopiotieg 1
ITepiindm 3
Abstract 5
Contents 7
List of Figures 9
List of Tables 11
Extetapévn Ilepiindn 13
1 Introduction-Motivation 29
2 Theoretical Background 31
2.1 Introduction L 31
2.2 Binary Numeral System 31
2.2.1 Two’s complement notation 31

2.2.2 Mathematical operation-Addition 32

2.2.3 Carry-Save notation 34

2.3 Booth algorithms o 34
2.3.1 Booth’s multiplication Algorithm 34

2.3.2 Modified Booth algorithm, 36

24 Adders. 37
2.4.1 Half Adder (HA) 37

242 Full Adder(FA) 38

2.4.3 Serial Adder 39

2.4.4 Ripple-Carry Adder(RCA) 39

2.4.5 Carry-Save Adder(CSA) L Lo 40

2.4.6 Carry-Look ahead Adder(CLA) 41

2.5 Multiplication 42

8 Contents
2.5.1 Parallel Multiplier with Carry Propagation 43

2.5.2 Parallel multiplier with Carry Save Adders 45

2.5.3 Wallace Tree Multiplier 47

2.5.4 Modified Booth Algorithm using Wallace Tree 48

3 Prior Work in the Field of Approximate Computing 53
3.1 Introduction L 53
3.2 Elimination/Pruning o L 54
3.2.1 Optimal Slope Ranking 54

3.2.2 Partial Product Perforation (PPP) 55

3.3 Radix Encoding 56
3.3.1 Approximate Hybrid High Radix Multipliers 56

3.3.2 Other worth mentioning techniques 58

3.4 Rounding/Correction Terms 59
3.4.1 Truncation method oL 59

3.4.2 Hybrid Partial Product Perforation-Rounding 61

3.5 Dynamic Scaling L 62

4 Proposed Approximate Techniques 65
4.1 Introduction L 65
4.2 Designs 65
4.2.1 Double High Radix Encoding 65

4.2.2 Double High Radix with Perforation 69

4.2.3 High Radix with Correction 70

4.2.4 Perforation with Correction 71

4.2.5 Asymmetric Perforation and Rounding 72

4.3 Tools and Experimental Setup, 74
4.4 Error Analysis 76
4.5 Experimental Results o o 76

5 Conclusion and Future Work 85

Bibliography 87

List of Figures

© 00 N O Ot == W NN

2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18

3.1
3.2
3.3
3.4

One, Two xou 8 LAUOTA o o oot 14
Mepuxd yivopgeva xou 1op0wTinde 6pog 15
Movdda Hapayowyhc Mepwyv Iivouéverv .. o 0000000000 16
IHoaomhaowothic Tomov Modified Booth 17
RADC|6478 24
PERFOC|38 '« « v v v oo e e 25
Hivoxog Mepiddv ywvopévey tou APR|z10 - . o . o o oo oo oo 26
AZLoAoYNOoT TV TEYVIXOV OE UEYLOTN ouyvoTNnTa Acttoupylog. 26
AZIoAOYNOT TWV TEYVIXOY OE Xx0WY| cuyvoTNTa Aettovpylog. 27
Half Adder(HA) 38
Full Adder(FA) o 38
Serial Adder L 39
Ripple-Carry Adder 40
Carry-Save Adder 40
Carry-Look ahead Adder.o 42
Multiplication of two unsigned number 43
Circuit of FA* 44
Parallel Multiplier with Carry Propagation 44
Circuit of FA®* 45
Parallel Multiplier using CS logic 46
Parallel Multiplier using CS logic-Efficient Way 46
Bits division of a 8x8 Wallace Tree Multiplier 47
Rows division of a 8x8 Wallace Tree Multiplier 48
One,Two and s signals L oo 49
Partial products and Correction Term 50
Partial Product Generator Unit 51
Modified Booth Multiplier L. 52
Categorization of the arithmetic-aware approximation techniques 54
Applying PPP on a 8 x 8 multiplier using MBE 55
Applying radix-4 and radix-256 on a 16 x 16 multiplier 58
Multiplication Matrix of two n-bit numbers 59

9

10 List of Figures
3.5 Truncated Multiplication Matrix of two n-bit numbers 60
3.6 PRlza . . . o 62
3.7 A general example of the approximate process. (a) Original number, (b)

Number after unbiasing, (¢) Final approximated input. 63
41 DRADI256256 - - « -« v o e e e 69
4.2 DRADP[256256 - - - « v« oo 70
43 RADCpag - - - o v o oo 71
44 PERFOC|38 « « o o v vt ettt e e e e e e e 72
4.5 Partial Product Matrix of APR|310 oL 73
4.6 Flow chart of the followed procedure 75
4.7 Evaluation of the proposed approximate multipliers in Pareto diagrams,

when synthesized and operating at their critical path delay. 81
4.8 Evaluation of the proposed approximate multipliers in Pareto diagrams,

when synthesized and operating at a relaxed clock. 82
4.9 MRED variation w.r.t. approximation configuration parameters of 16 x 16

bit multipliers: (a) Double High Radiz (b) Double High Radix with Perfo-
ration (c¢) High Radiz with Correction (d) Perforation with Correction (e)

Asymmetric Perforation and Rounding 83

List of Tables

ITivaxog xwdixonoinong Modified Booth 14

AxpiBic Kwdwonoinon Radix-4 0000 19

Hpooeyyotnr) Kwdwonoinon Radix-2F 20
2.1 Counting from 0 to 15 in binary numeral system 32
2.2 Booth encoding and Meaning L L. 35
2.3 Example of multiplication of two numbers using the booth algorithm 35
2.4 Radix-4encoding L 37
2.5 Example of multiplication of two numbers using the modified booth algorithm 37
2.6 Truth Table of HA 38
2.7 Truth Table of FA 39
2.8 Modified Booth Encoding Table 49
3.1 Accurate Radix-4 Encoding Table. 57
3.2 Approximate Radix-2" Encoding Table 58
4.1 Total Results of DRAD|ym ox in Critical Path Delay 76
4.2 Total Results of DRADP|ym ox in Critical Path Delay 7
4.3 Total Results of RADC|q ; in Critical Path Delay 7
4.4 Total Results of PERFOC]|;; in Critical Path Delay 78
4.5 Total Results of APR|;; in Critical Path Delay 78
4.6 Total Results of DRAD|ym or in Relaxed Clock 79
4.7 Total Results of DRADP|[ym ox in Realxed Clock 79
4.8 Total Results of RADC|qk ; in Relaxed Clock 79
4.9 Total Results of PERFOC|;; in Relaxed Clock 80
4.10 Total Results of APR|;; in Relaxed Clock 80

11

Extetopevn Ilepiindmn

Ewcoaywyn

To teheutala Ypovia Ye TNV porySolor avETTUEY TV EVOWUATWUEVLY CUCTNUATWY €YEL BT
wovpynUel 1 avdyxn yior UPNAT amdBoCY GE GUVBUNGUO UE YOUNAT) XATOVAAWGT EVEQYELIS.
Axohovddvtac auth Ty xatedduvon o TpoceY Yo xS unohoyopds (Approximate Com-
puting) eivon pla ToAAG unooydpevn Moo, H 3éa aut Pacileton oto yeyovée 6t mohd
oLV T LB amoTteAéopaTa Oev ebvan avaryxaio o OAeC TIC egapuoyEc. TEToleg epapuoyég
unopel vo tepthopfdvouv media processing, machine learning, data mining and statistics.

Avuty) n avoyn doov agopd TNV oxp{Belol OPEINETAL OTOUSC TUPUXYTE TOPAYOVTES:
1. Iepopiopévn avdpmivny avtiindn
2. H mohumhoxdtnTo Tou amontelTon yYior TNV TopoywYr) axeiB3mV AmoTEAECUATODY
3. T neprttd 6edbueva 1/xan ta dedouéva e BopuBo otny elcobo
4. H ueovotntar Tng EQopUOoYHS VoL Aopeo Qe Tl GHAANIATI
5. Ou mdavotixol/otatiotinol unohoyiopol
6. H Bextixotnta Tou YenoTn 68 YUUNAHC TOLONTOC ATOTEAECUOTA

AZomouwvTag To TapAmdvVe GE aUTH TN SITAWUATIXT epyacio avamTtOyInxoy 5 TEYVIXES Yio TOV
UTIOAOYLOUO TOU AMOTEAECUATOS TNG TRAENS TOU TOAAATAAGLOHOU, 1 xGVE uiot Ue OLopopeTIES

TPOCEYYIOELC XOU UE GXOTO TN YUUNAOTERT) XATAVAAWOT) EVEQYELOC.

Y0Ovtopo Oeswpentixd YTroBadpo

Kwbduxonroion, Modified Booth

‘Eotw 8o apuyol A, B ce cuumipwpa g tpog 6Vo. To B biveton amo tnv oyéon:
n/2-1
B = Z b;-w B4i. Yrov enduevo mivoxa 1 goiveton TS SIop@ivovToL To GRUAT XUTd TOV
j=0
Tponontotnuévo ahybderduo tou Booth (radix-4 encoding).

13

Avadixd Uneia Urnpio Modified| Kwdixorowmuévo ¥nepio bJMB
baji1 ba; bs;j_1 | Booth sign = s; | x1 = onej | x2 = two;

0 0 0 0 0 0 0

0 0 1 +1 0 1 0

0 1 0 +1 0 1 0

0 1 1 +2 0 0 1

1 0 0 -2 1 0 1

1 0 1 -1 1 1 0

1 1 0 -1 1 1 0

1 1 1 0 140 0 0

ITivacag 1: ITivaxoc xwdixornoinone Modified Booth

Ot hoyrég €€lodoelc Tou TEOXVOTTOUY amd TOV ToEATve Tivoxa etvo:

onej = bgj_1 D ij (0'1)
two; = (ij-i-l &, bgj) - One; (0.2)
5j = bajt1 (0'3)

Y10 enduevo oyfuo 1 gaivetan To xUxhouo Tou uvloroiel Tic Teoavagepdeioes e€lowaoelg:

Sj

boj.1—
two]-

by —

) I

SxAwa 1: One, Two xou s Yfjuota

ba;j.1

YN ouvéyeta Yo TopoucLacTEL 0 TEOTOC UE TOV OTOO ToEAYOVTOL TO UEPLXA YIVOUEVAL.

n/2-1 n/2-1
P=A-B=)Y AP 2% =ct+y Pp;-2% (0.4)
Jj=0 j=0

omou ct elvon 0 BlopYwTIXog dpog xan PPj to Uepxd YVoUeEvaL

O Bopdntinde bpoc (ct) elvon avayxoiog yior Ty e€aymYr 00OTOV AMOTEAECUATOS XAl
OTNY TEPITTWOT TOL XAToLL UEEIXE Yvoueva efvan apvnTxol apriuol. 310 Tapaxdte oyfud 2

qatvovTon Ta friwato Tou oynyoLy 6Tov SloplwTind dpo ct.

o Ilpcdto Brua: To yxpr xUXAdXL AVTITEOCWTEVOLY To Ynplo TNC EMEXTUONG TEOGHUOU

yioe Ty nepintwon mov 1o A nolhamhactdleton Ye tov aprdud dvo (two; = 1)

14

Aeltepo PAuo: To MSB xdde uyepixol yivouévou €yetl opvnuixd Bdpog xar yi' autd
yenotponoteitar 1 oyéon p+p = 1. Ta yxpt xuxhdxio avtixodiotavton pe to padpo (p)

xou emnhéov npootieton o mopdyoviae —1 (—p =p —1).

Teito Brpo: To podnuatind xéhno (2 — 1) = 1 ypnowonoteiton xou npoxdnter —1 =
-2+ 1

Téropto Brua: Hpoyyoartonotodvar oL agupécelc Tou tpoéxuay and to Telto Briua.

[Téunto Priua: Ilpootidevton tar UTAE xUXAEXIL TTOU AVTITEOCKTEVOLY Tol BLOEUVMTIXG
dmepla (n5). Av 10 xwdixomomuévo xatd Modified Booth {ngio éyel apvntind Bdpog
(béwB = —1,-2 e s; = 1), 161 10 doplwtxd Pnglo malpver v Ty éva étol
OOTE v YIVEL 1) UETAB0OT Ao TO CUUTANPWUN WS TEOS EVAL OTO CUUTANPWHN WS TEOS
oVo. Av duwc To Bdpog elvon Vetind, 16TE TO SlopUwTiXd Ynplo €yel TNV TWH UNoEV.
Autde o unyaviopog Yo e€nyndel nepantépw, 6Tay ToEouclacTEL 0 TEOTOE YE TOV OTolo

TOEAY OVTOL TOL UEEIXYL YIVOUEVAL.

@ O O OO O O O 0O
@ O OO O O O 0 O0
@ O OO0 O O O O
®@ O OO0 O 0 O O
-
4 ® O OO O O O O O
® O O O O O O O O
4 ;OOOOOOOO
® O O OO O 0O O O
1
11 @ OO O O O O 0O O
11 ®@ O OO O OO0 OO0
i1 @ O OO O O O O O
1 ®@ O O OO O O O O
1
T @ O OO O O O O O
1 ® OO0 O O OO0 O
1 @ O OO0 O O O OO0
1 ® O O OO O O O O
1
T @ O OO O O O O O
1 ® O OO O OO OO0 [}
1 @ O O O O O O O O [
1 ® O O O O O O O O []
[}

Sy 2: Mepixd ywvopeva xou dlopdwtixds dpog

15

O droptwtinde dpog ct unohoyileton and TN enduevr e&icwon:
3
ct = (F;25) + {2+ 213 + 21 4+ 29 1+ 95 4 1320 4 g2t 4 022 + 1p2°)
j=0
OTOU Pj g AVTITPOCWTEVEL TNV EMEXTUACT] TROCY|LOU

H enéxtaom npochiuou cuUTERIAAUBEVETAUL OTNV TOQXYWY T TWV UERIXOY YIVOUEVGLY. Emouévac,
o dpdwtixde dpog ct diveton amd TNV endpevn elowon, 6mou ct Peloxeton oe cuUTATiELUA

we Tpog dvo:

n/2-1 n/2-2
ct=Y (n;-2%) + 2"(1 + Y (@Yt -2 (0.5)
j=0 j=0

To yepind yvoueva vtoloyiCovton Ue yerion TV onudtey onej, two; xo sj HECW TWV

EMOUEVWY EELGMOEMV:

PPy = 2 S (2 0.6
pii = ((a; @ sj)~0ne]3 + ((aji—1 @ sj) - twoy) (0.7)
pio = ((ap ® s;5)-onej) + (s5-twoy) (0.8)
Pin = ((an-1 @ sj)-one;) + ((an—1 & s;) - twoy)) (0.9)

Axoloutdel o Tivoxag pepxadv Yivouévmy poll te Tov SlopdnTind 6po Yo Evay TOANITAAGIAGTY
8 x 8.

9l5 9ld 913 912 oll 910 99 98 97 96 o5 ob 93 92 9l o0
1
1 DPog Po7 DPo6 DPos Po4 DPo3 Po2 Poi Do
1 P1g P17 DPL6é P15 P14 P13 P2 P11 PLo no
1 DPag P27 D26 D25 P24 D23 D22 P21 D20 ny
1 Psg P37 D36 P35 P34 D33 D32 P31 P30 2
ng

Y10 oy 3 TapouctdleTon TO XOXAWU TTOU UAOTOIEL TNV TOQXYWYT) UERXOY YIVOUEVGLV.

two;

a'iq

Pji

one;

aj

Sj

Yyxnpo 3: Movdda Hapaywyhc Mepixdv Iivopévewy
Tehxd, oto oyfua 4 mapouctdlovtar Ao To dopxd oToLyEld EVOC TOMMATAACIAOTY To

omofo elva oL YEVWATplEC TopaywyNg Yvopévewy, o MB xwdixonomnthc, to CSA Wallace

0évTpo xou o ypryopog CLA adpolotrc.

16

Clhigh l
{ PP, }4 — by
[PPy }4 g «<— b1
[PP, }4 § :
(=
- w
. Cliow m
- W = an-1
[e)
Y i A4
Text
CSA Tree
C S
Fast CLA Adder
P=A*B

Syxhue 4: Ioloamhaowothic Torouv Modified Booth

Y AP OVOES TEYVIXES OTOV TPOCEYYLO TIXO TOAAXTAACL-

/4

(o] ¥1¢

Ou mpooeyyloelc, Tou UTopoLY Vo EPUPUOGTOVY GE €vay TOAATAACLIOTH, ywelloviou ot
oLo xatnyoplec. H mpdytn xatnyopla nepthauPdvel npoceyyioelg mou egapudlovial 6To GTAdL0
Tou Wallace 6évtpou elte avtioTolywy povidnmy Tou TeaylatoTololy TNV dUpoloT) TV UERIXMY
ywvopévwy. Me autrh v xatnyopla 6ev acyolelton 1 mopoloo dimAwuoatixy. H dedtepn
xatnyoplo mepthauBdvel mpoceyyloeic Tou e@opudlovTal 0TO GTABIO TUPAYWYNS TWV UEPIXWY
yYwopévwy 1) 610 otddlo e MB xwdwonoinong. Ou teyvixéc mou avixouy oe auTyh TNV

xatnyoplor umopoly Ue TN GEd TOUG VAl YweLoToUV Gt 4 OpddeES:
o Anodowpry/Kovpepa (Elimination/Pruning)
o Kwdwonotioec Radix (Radix Encoding)
e Ytpoyyvhonoinon/Awpdwtixol ‘Opot (Rounding/Correction Terms)

o Auvouxh Khwdxwon (Dynamic Scaling)

Anaroipy)/Kolbpepo (Elimination/Pruning)

Mio amd Tig oNpavTIXOTERES TEYVIXES QUTYC TNG OUADOS EVOL 1) ATTAAOLPY| UERLXEY YIVOUEVWY

(partial product perforation), 6mwe avantOydnxe and toug Zervakis xou dAhoug [30].

17

‘Eotw 6Vo apuiuol twv n dngiov A,B. To anotélecyo Tou TOAATAAGIACHO) TOUS TEO-
XOTTEL YETE TNV Glpolon OAwY TV Pep@Y Yivopéuny Ab; , 6mou b; elvor o i-cTo dngio Tou

B. Etou e€dyetan 1 e€lowon:

n—1
AxB=>Y Ab2' b e{0,1}. (0.10)

=0

H mpotewvopevn teyvint| epapudlet amoholpr| k SLaboyxdy UEPXDY YIVOUEVKY, To ontolo BEV
ouunep auBdvovtor 6To dévtpo unoloylopol (accumulation tree), xou étor amaholpovton xou
n miheeic adpootéc(FA). Egopudélovtog Aowmdy auth tnv teyvixh mopdyeton 1 eNOUEVT €-

Clowon:

n—1

A X Bl = Z Ab;2', b; € {0,1}. (0.11)

i=0,
i¢[5,5+k)

[Tpéner va onpewwdel 6t j € [0,n — 1] xau k € [1, min(n — j,n — 1)].
Avtiotoya v xwdonoinon Modified Booth to xatd mpooéyyion anotéieoua diveton
an6 TNy e&lowon:
n/2-1

AxBljp= Y Ab}MPa’ MB € {0, 41, 2}, (0.12)

i=0,
i¢[j,5+k)

Kwdwxorowioeig Radix (Radix Encoding)

'Onwe TeonyouUEveS €TOL Xt O AUTY| TNV OUAOA OL TEYVIXES OO YOUV OE UELWUEVO apliUo
UEQLXMY YIVOUEVWY UE T1) Blapopd OTL auTh| 1) pelwor Bev ogelleTtar o amAr) anololpt| ahhd o€
aAoyEC OTNY AWdoToNo).

Mio onuavties uédodoc authc e ouddog avartiydnxe and toug ouyypapeic Tou [13] mou
v ovopaocav Hybrid High Radix Encoding. Eotw A xaw B 800 oprduol twv n dneiomv.
O B ywelletan oc dVo pépn: To MSB xoyudtt mou anoteheiton and n — k ¢nepla, xou to
LSB xoypdtt twv k dnelwv. To my mapdueteo k woybouv: k > 4, k =2m : m € Z, ue
m > 2. Yto MSB pépog epapudleton n radix-4 xwdwonoinorn. And tnv dhhn mieupd oto
LSB pépoc epapudleton n high radix-2F xwdixonoinon. O mivaxac 2 tapoucidlet Ty radix-4

xwdixomoinon. To B unopel va exppactel we e€hc:

n—2 n/2-2
B=—by 12"+ b2l =Yyl 4y (0.13)
i=0 i=k/2,
k>4
oTou
1 — _92by; bajba; 14
Y = 2j+1 + b25b25-1 (0.14)
Nl
gl = okl ok o 420y + by (0.15)

18

Eicoboc R4 ¥neplo "EEZod0c¢
b2j+1 bgj bgj_l yJR‘l signj ><2j ><1j
0 0 0 0 0 0 0
0 0 1 1 0 0 1
0 1 0 1 0 0 1
0 1 1 2 0 1 0
1 0 0 -2 1 1 0
1 0 1 -1 1 0 1
1 1 0 -1 1 0 1
1 1 1 0 1 0 0

ITivaxacg 2: Axp3rc Kwdwonoinon Radix-4

H radix-4 xwdwonoinon nepthaufBdavel (n — k)/2 dmepla yj% € {0,£1,£2}, eved o0 yémk €
{0,41, 42,43, ..., £2F1 1 42811 qvtistowyel otny radix-2F xwdixonoinon. Suvokxd to

B xwdwornoeita oe (n —k)/2 4+ 1 nola.

Avutr 1 high radix xwdwonoinom yapaxtneileton and avgnuévn tolurthoxdtnta Aoyw Ot

TEETEL VoL UTOAOYLOTOUY TWES TOU OEV Elvol BUVAHELS TOU 2, Xou YL oUTO TO0 AOYO TROTAUNXE

and touc ouyypagelc tou [13] wa npooeyyloTxh pédodoc. Xto MSB pépoc epapudleta,

Omwe mponyoupévwe 1 radix-4 xwdwornoinorn. ‘Ouwg, To LSB uépog xwdxonotelton xatd

TEOGEYYLOTN. LUYXEXPWEVA OAEC Ol TWES TTou OeV efval SuVAUELS Tou BUOo xadwg xou ol k — 4

UXEOTEPES BUVAPELS TOL 000 Yo 6TEOYYLAOTONIOUY TNV XOVTVOTERT TUY| EX TWYV TEGCURWY

4 4 4 e 7 7, Z
peyahUTEpwY BuVdueny Tou 2 1 to 0. To ddpoloyc GAWY TWV TYWOV TOV XWOXOTONUEVLY

Ineplwv g)émk elvon undév. 'Etol 1o B mpooeyyiletan w¢ e€ng:

n/2-2

n—2
B=—b,12" 4+ b2l = Y yltiad 4 gt
=0

i=k/2,
k>4

OTOU

yf e {0,£1,+2}

pdeis
G2y =€ {0, £271, £2F73, £ok2 4ok

7 7 4 4
Ané Tov mivaxa 2 e€dyovtan Tor orjpaTo:

sign; =baji1

le :sz_l @ bgj

x2j =(baj41 @ baj) - (b2j—1 ® baj) = (bajt1 ® bay) - X1

(0.16)

(0.17)

(0.18)

(0.19)
(0.20)
(0.21)

O mivoxag 3 mopouctdlel TV TEOCEYYIOTXH LAOTOMON NG radix-2F xwdwornolnong. Ot

L . , [/ . ; ~R2k
MOYIHEC EEIOMOELC TWY XOIXOTOMNUEVKY OTUdTeY, Tou 0pllouy 1o radix-2% Pneio §E2", etvou:

19

sign = bg_1 (0.22)
%284 = (bp_o - bp—g - br—a + b2 - bp—3 - b_4)
+ (bp—4 ® bp—s) (0.23)
x 2873 = by bp_o - (br—3 - be—a - bp—s + b—3 - bp—4)
+ br—1 - bg—2 - (bg—3 - bp—a - by—5 + b—3 - by—_a)

(0.24)

x2M2 = Dy - b3 - (bp—1 + bg—4)
+ bp_o - bp_3 - (bp—1 + bp_4) (0.25)
)28 = by g bp_g bz + bg—1 - bp—2 - b3 (0.26)

R2k Tnepio "E€o80¢

yémk Qémk sign x2F 1 x2k-2 9k-3 gk-4
[0, 2F-3) 0 o 0 0 0 0
[2k-5 k-4 9k-5) 2410 0 0 0 1
[2k-42k-5 gk-3 ok-dyl ok3 \ g 0 0 1 0
[2k-3p2k-4 gk-249k3) ok2 } 0 0 1 0 0
[2k-242k-3 gk-1) 210 1 0 0 0
[-2k-1) _2k-2_9k-3) 21 1 0 000
[2k 2 219 3 2k-3_2kz-4) _2k-2 1 0 1 0 0
[2k 3 2k 4 2k—4_2k—5) _2k—3 1 0 0 1 0
[-2k-4_2k- 5 -2k-5) 241 0 0 001
[-2F-5.0) 0 1 0 0 0 0

Iivaxag 3: Ipoosyyiotnd Kwdonoinon Radix-2%

Ytpoyyvlornoinon/Awpdwtixol ‘Opol (Rounding/Correction Terms)

H teyvin) mou emAéytnxe va topouclocTel etvor exelvr mou avamtUydInxe omo Toug cuy-
yoopelc Tou [14] xou anotekel yapoxtnploTind mopdderypo authc g opddoc. H teyvixd auth
ovoudotnxe Hybrid Partial Product Perforation-Rounding.

Partial Product Perforation

H pédodog autr etvor cuvBuaoude dvo emuépouc teyvixwy. H mpodtn nopcovcidotnxe
oe mponyoluevn oudda. Xto [14] yenowonofdnxe o e€hc. Eotw A xouu B 8o aprdyol
TV n Pnelov oe cuumipwu kg Teog dvo. To k mpdto cuveydueva uepxd Yvoueva oma-

holgnoav. Etol ta k£ Arydtepo onuoavtind xwoduonownuéva xatd Modified Booth {nepla dev

20

nopdyovton. ‘Apa to 2k LSBs tou B(cuunepthopfovouévou tou b_1) meptttedouy xaL ETouE-
vog amohoipovtat. Tehixd to ywouevo A X B unohoy(letal TROoEYYIOTIXG and TNV ETOUEVT

e&lowon:
n/2-1

AxBly=) A} 4 (0.27)

=k

Partial Product Rounding

To 8ebtepo xopudtt awThC TN Yedod0L efvor AUTO TOL TNV XATATACCEL GE AUTY| TNV OUAOA.
H 8éa elvon n un yenowonoinon twv m — 1 LSBs tou A, xou 1 mpootixn tou ¢molov am—1

0TO UTOAOLTIO TUO OMUAVTIXG XOUPSTL (Ap,),0TwC QalveTol TopaxdTe.
Ay + am—1 = (an—1,0n—2- .. Gm)yg + Gm-1 (0.28)

To “xoutcolpeya” Twv m — 1 LSBs Yo 0dnyoloe oe onuavtind ogpdipata. [Tpoxewévou
va aogevy el autd, to teheutaio LSB (am,—1) tpootidetan 610 Ay, XN cuvéyela napouct-
dlovtan ot 600 TEPLTTOOELS YLOL TIC DLPORETIXEC TWES TOU App—1-

AV a1 = 0, 61 T %018 Tpocéyyion pepind ywoueva (Pj) unohoyiloviow amd v
oyéon:]5] = (4, +0)- bé»\/[B =A,- bé”B

Edv apm—1 = 1 xou yenowonowwvtog ™ oyéon Ay, +1 = — Ay, T Xxatd Tpocéyyion ueptxd
ywéyeva (P;) urohoyilovia ané v e&icwon;

P; = (Am—i—l)-béwB = (—Zm)-b;v[B = Zm-(—bj-\/[B), 6mou (—bé-\/[B) = (—1)%-(2-twoj+one;).

Xenowonowvtag) oyéon Ay, = Ay @ am—1 Tpoxewévou va oynuatiotel 10 A,y 1
10 Ay, 0L 800 TEPIMTACELC PTopoly Vo SUYYwVEUTOLY. Emmhéov ypnowwonoeito 1 oyéon
pB

[

J
ywopeva dpoppmveton wg e&hg: P = A7, - b;-\/[B*, OTEPE b;-VIB* = (—1)% - (2 - twoj + one;).

5% = 8 @ am—_1 YL VoL OYNUATICTEL TO 0 —b;-WB. ‘Etol 1 oyéon mou vnoloyilel ta yepid
Ta 800 mpoavagepVévta xoupdtiar cuVBUALovTaL xou oY NUATILOLY TNV TEPLYPUPOUEVT| TE-

Yvix| Tou [14] dnuioveydvtag Ty eZiowon:

n/2-1 n/2-1
AxB=>Y P-4l =) A5, b5 47 wnepe k€ [0,n/2—1) avd m € [0,n—1) (0.29)
j=k =k

O BopdwTindg 6pog ct oTNY MERITTWOT AUTY €YEL EAXPEMS BLapOoRETIXG SlopBwTixd Ynepla
yioe v emtevydel 1) yetdBoom and To CUUTANPWHN WS TEOS EVAL GTO GUUTATIPOUN WS TEOE BLO
xou T divovTon amd TNV TapaxdTe eElonman:

=t

7 = c; - (onej + twoy)

Avvapixry Khpdxworn (Dynamic Scaling)

Y1y nopodoo SITAOUATIXY 6V Yenotdonoteitor 00TE avamTOOCETOL XATOLX TEYVLXY| TOU VOl
undyeton oe outh TNV xatnyopio. AZilel ouwe va avapepdolyv dUo Bacixéc TEXVIXEC AUTAC

e opddoc. H mpdtn avamtdydnxe and toug Narayanamoorthy xou dhhoug oto [22], ol

21

omoiol TEATEVAY €VoY TOAATAACIAGTY) TOU Yenotdonolel m dlaboyxd ¢melo cav TUNUoTIXY
eloodo. T vo methyouv xhipoxoluevn oxplBelo elofyayoy uio L€Yodo, TNV amoxohoVUeVT
static segment method, n omola Slahéyel TNV apy” TOLU TUAUATOC TOU YENOWOTOLELTAUL Gy
eloodo. H deltepn mpotdinxe and toug ouyypageic tou [6], ot onolot a&tonoincay to yeyovoe
oTL xdmotar Yneplo ebvan mo onpovtind and dhha. Etol npdtewvay ula ey Vi mou evtonilel
U€om TOu O ONUAVTIXOU GO0 XAl GTN CUVEYELL O dOCOC XOL TO ETOUEVA kK — 2 Bladoyixd
nepla, avdhoyo pe tnv emduunth oxpBeia, yenotwomoolvTal yio Tov todarhaclaoud. o to
XOUUATL TOU amopplnTeEToL EQapUOlEToL Ylal TROGEYYLOT CUUPWVOL UE TNV OUOLOUORPT XATAVOUT),

OoTe Vo uewwdel To opdiuo.

ITcotewobueveg Teyvixég

Yy nopoloo SIMAOUOTIXY avamTOYInxay 5 TEYVIXES Yol TOV TEOCEYYICTIXO TOANUTA-
oloud Ye oxomo v uhnih axeBela xou TN pelwon e xatavdiwone. Ou Teyvixéc mou

avomtOyInxay etvon:

e Double High Radix Encoding

Double High Radix with Perforation

High Radix with Correction

Perforation with Correction

Asymmetric Perforation and Rounding

Double High Radix Encoding

H 16€a yu owth) Ty teyviny| mporihde amd tnv mponyoupéveg avagepdeioa teyviny, hybrid
high radix encoding. Ilpoxtixd 1 xwdixonoinon mou eqopudotnne cto B otnv mopoloo
ey emextelveton xan epopudletar xou oto A. Tat Ty xolbtepn xatovonon napouctdlovTton

oL TTapax 3T EEIGHOOELS:

n—2
A = capa27) a2t = Ayl (0.30)
=0
n—2
6mov Ay = —a, 1271 4+ Zaﬂi Fap_12m ! (0.31)
i
wou i =22 a1+ 2" 20, 0 + ...+ ag (0.32)
Aj etvan 0 MSB pépoc tou A xaou 1o 25" € {0, +1, +2, 43, ..., +(271-1), -2 1} avtiotouyel

otny high radix-2™ xwdwonolnon.

22

n—2

B = b2) b2 =By 1y (0.33)
1=0
n/2-1
6mov B; = ny%j (0.34)
j=k/2
k>4
R4 _ . . .
nu Yy, = _2b2]+1 + b2j + bZ]—l (035)
nou yé%zk = 2" 1+ 2572 o4 L 4 Dy (0.36)

Yto MSB pépoc tou B epapudletor 1 radix-4 xwdixonoinom, evé oto LSB 7 high radix-2*
AWOXOTOMOT. LT CUVEYELX YIVETOL O TOAATAACLICUOG UE TOV TEOTO oL BEl) VEL 1) TAUEAUX AT
e&lowan.
Ax B = (A +af™) - (Bi+yg™)
= (A +28") - B+ (A + ") -y
= Ay By + By -al?" + A yf (0.37)

‘Onwg €xel Hon avagepiel Aoyw auinuévne Tohumioxdtntog yivetow 1 €€ TEOGEYYIoN:

A=A+ (0.38)
B =B+ (0.39)
6mou #2" € {0, x2m-1, p2m=3 gom-2 jom-1y (0.40)
o gE2 € {0, £284, Lok Lok-2 iok-1y (0.41)

Telxd to YWOUEVO SlopoppmveTol OTwe delyvel 1 endpevn eglowon:

AxB=A B +B- 2" + A5 (0.42)

Ot xwdxonooeic radix-4 xou radix-2F gofvoton oToug Tivoxeg 2 xou 3 avtiototya. O (Bleg
hoywég e€ionoeic 0.19-0.26 €axohovdolv va e@apuélovTol yia TNV VAOTOINCT TV X0OLXO0-

TOLNOEWY.

Double High Radix with Perforation

H teyviny) auty) ebvan dueco anotéhecpa tng mpooavagepieloag teyvixfic , Double High

Radix Encoding, €dv anoiewpiel o dpog Ag§2k. ‘Etou 1 e€lowon mou tnv neprypdpet bvou:

AxB=A, B +B;-if*" (0.43)

23

High Radix with Correction

Avut) 1 teyvixn anotelel cuvbvaouo 0o uedodwy. H mpdtn elvon 1 hybrid high radix
encoding, 6nwe €yEL TOPOUCLACTEL TRPONYOLUEVWLS Xt 6To [13]. Xougwva pe auTy T YIVOUEVO

olvetan amd tnv oyéon:
AxB=A-(By + i)Y =A4.B, + At (0.44)

YN ouvéyeta 1 deltepn pédodog allomolel To yeyovog OTL xdmola Ynpla eivon o onuavTixd
amo xdmota Ghha. "ETol 6Tov Tivaxo TV HERIXDY YIVOUEVKY ToL TapdyeTatl and Tov 6po A- By
epdpuoletar auTh) 1) wEYodog. Luyxexpléva, o Tivaxag yweiletar oe 500 oxé€hn, oTo axplBég
wépoc (exact part-EP) xou oto xatd npooéyyion pépoc (approximate part-AP). To AP
npooeyyiletan we e€hc: H avauevouevn Ty Liog oUotOUopeng XoTovoung 6To BIAGTNUO TwV
aprdudv 0,28 — 1] etvan 2871, Auth 1 mpocéyyion dev epapudleTon 6T0 UepIXd YIVOUEVO TOU
TapdyeTon and Tov 6po A - ;ﬁémk. Y10 oyfua 5 galvetan TKg @apuolETon QUTH 1) TEXVIXY Yidl
évay toAamhactoo Tt 16 X 16. OL avouevOUEVES THIES TNS OUOLOUOPYPNC XUTAVOURC ATodBoVToL

amd TNV hoyixy e&lowan:
Z/é = X1+ x2uei=1.4 (0.45)

O emnpocietog docog 6Tov SLoptwTnd GPO EIGAYETAL YId TEPAUTERW UEWTT) TOU GOIAUITOC,

xadwg ertovpyel oav €va eldog otpoyyLhoToiNoNE TEOC Ta TAVE.

P AP

1
" 0000000000 oo0oDO0DoOooDoDooooag
1@ 0000000000 O0O0OO0O0OO0O0 | |
1000000000000 O0OO0O0O0 []
® OO0 00000000 O0OO0O0OO0OO0O0 L]
1@ 00000000000 O0CO0OO0O0OO0 L]
© 00000000000 O0OO0OO0O0O0 .
L]
After the
uuuuuuuuuu . a
1
L + 0 0D ooo0oo0oOooDoOooooooooooao
1@ OO0 O0O0OO0OO0O0Oo L]
© 00 0000000 O0O0
1@ 00O O0OO0OO0OO0O0O0O0OO0OO0O0OOo
19 0000000000000 O0OO0
© 0000000000000 O0OO0O0
L)

YxAuna 5: RADClgss

Perforation with Correction

H 18éa tlow amd auty) Ty teyvixt elvon (Blor ue auTy| TG TEoNYOUUEVNS UE TNV Blagopd. Ot
dev epopudletor radix-2F xwdixonolnon ohhd amohoiph uepdv yvopévewy (Partial Product
Perforation) 6mwe mopovotdotnxe napomdve o oto [30]. 1o oyfua 6 mapovotdleton 1)
EQUPUOYT aUTHC TNG TEYVXNE o évay 16 X 16 molhamiaciaotd. H avauevouevn twr tng

OUOLOUOPYPNG XAUTAUVOURC amodideTal and TNy Aoyixy| e€lowon:
y; = x1; + X2;yet=3...7 (046)

24

O emnpdoletoc docog oTov SlopUwTXO OPO ELCAYETOL XaL TOAL Yior TEpATéPW UElwor Tou

OQINUOTOC, XIS Aeltoupyel ooy éva el00¢ GTEOYYUAOTOIMONE TEOS Tl V.

EP ap

|
Hlo o000 0000000 00000
Hlio oo 000000000 00 0 0 0 L)
Hle oo0oo00000 000000 000 []
19000000000 O00O0O0OO0O0O0 e
1@ 00 000000000000 O0O0 (o)
1 @0 OO0 0000000000000)
1 ©0 00000000000 O0CO0OO0Oo o
1 @0 0O0OO0O0ODO0ODO0ODOO0OCOOODODOO]
L]
e petoraton
EP A
1
1@ OO0 00000 O0O0
1@ OO O O0OO0OO0O0OO0O0O0OO0
1 ©0 0000000000 O0O0
® 0O 0O0O0OO0O00OO0OO0O0O0OO0O0OO0OO0o
1@ OO0 0000000000 O0OO0O0O0
e 1

Yyhuro 6: PERFOC|;3 8

Asymmetric Perforation and Rounding

H teyvixry Asymmetric Perforation and Rounding eivon plo mapohhoryd) tng teyvixic
hybrid partial product perforation-rounding, n onoto avantdydnxe oto [14]. H amodowpy
TWY PEPIXMY YIVOUEVWY EQapUOlETon OTIwS xou 0Ty Tponyoluevn texvixy (perforation with
correction). H Siapopd authc tne teyvixrc xou exeivne mou teptypdgnxe oo [14] eivan o tpdmog
ue Tov omolo epopudleTtal 1) oTEOYYUAOTOINoT. Suyxexpléva egapudletol oTpoyyulonolnon
oto dngio e Véong t; oc xdde pepixd ywodpevo (6mou i madpvel T TWES TOU TEDTOU uUn
AMUAOLPOUEVOL PEPXOU Yvouévou Ewe Tou TeAeutaiou). Emnouévwe, ta t; — 1 LSBs tou A
0ev yenowonoolvton xat o Ynplo a;,—1 mpootidetor oTo LTOAOLTO XoPudTL, OTWS delyvel 1
Topoxdtw e&lowon:

Ay 4 ag,—1 = (an—1,an-2... Q4;)org + a;—1 (0.47)

Sy nepintwon mou ag,—1 = 0 T %ot mpocéyyion pepd yépeva (P;) urohoyilovia oc
e&ng:

Py = (Ay, +0)yft = Ay (0.48)

6TOoL yfu unohoyiletar otny (0.35)

Sty meplnteon mou a1 = 1 xou ypnownonoldviag T oyéon Ay, +1 = — Ay, o pepind,

ywoueva urtohoyilovton and tnyv e&lowon:
Pj = (Ati + 1)y;%4 = (_Ati)yfu = Ati(_y;‘%)) (0'49)

omou —yit = (=1)% (225 + z1;)

Or 800 mepintidoelg cuvdudlovton pe TNy Pordeta Twv oyéoewy
* 4 z 1 * .
Af, = Ay, ® a1 v Tov oynpatiopd Tou Ay, 1 tou — Ay, xon s§ = s & ag,—1 Yo Tov oY1

HaToud Tou yﬁ‘l 1) Tou —y]R‘l. 'Etou to yepind ywoueva utohoyilovton and tny e€iowon: P =

25

R4

TN ETABAOT omo TO CUUTAHEWUO WS TR0 VA GTO CUUTANEWUA WS TEog BU0 Loy UeL:

OToU —yfm = (—1)%(22j + 21;). ‘Oco yi o Sopdwtxd Pnplar Tou TEaryUaTOTOL VY

cj = sj N (22 V xly)

Y10 oyfua 7 tapoucidletan Eva mapdderypa auTrhg Tng Teyvixrc. H acupuetela tou galvetan
07O Oyfua aUTO OelheTon O0TO YEYOVOS OTL 1) GTEUYYUAOTolnon O umopel Vo €QopUOCTEL
EVIEADS xdeTa Ywpelc TapdAAnia vo au&nlel to fddog Tou BEVTPOU UTOAOYIOUO) TWV UERLXWY

ywopévwyv (accumulation tree). I't autd 10 Adyo epapudletar 660 o xdieta elvon SuVUTOV.

|
Hle o000 000 000000 00 0
HEle o000 000000000 000 °
Hle ooco0eo0o0eo0eo0o0o00 000 L]
1 @0 OO0 0000000000000 L]
1 ®© 000000000000 O0OO0O0O0)
® OO0 0000000000 0000 (o]
L] 0000000000000 0O]
1@ 00 0O O0O0OO0OO0OO0O0OO0O0OO0OCO0OeTPe =]
()
and e paioraion
1
L 1 ®©0 00 00 0O
1 ® OO0 0OOOO0OO0OO0OOo
© 0000000 O0O0O0
10 OOOOOOOOOOOj
1@ OO0 OOOOOOOOOOiE

Iivoxag Mepddv yivopévwy tou APR

ITeipopoatind AnoteAéopata

3,10

Y10 xepdhoto 4 nopouciolovton avoluTixd Ta anoteAéopota xdde uiog and Tic 5 TEyVIXEC,

OTw¢ anotunwvovTal otoug mivaxeg 4.1-4.10. Ye autolc Tou TVUXES avoryPdPovToL OAES OL
UETENOELS, OGOV APORA TNV XATAVIAWCT| EVEQYELAS XU TOV ATOUTOUUEVO Y WO, GT1 UEYIG T OU-
X VOTNToL Aettoupyiog ahhd xan o€ Piot XOWY) CUYVOTATAL. 2ITOL TOEAUXETE Oy HUATA TUPOLCLALETOL

1 a&Lohoynon xdde Teyvinrc oe darypduuato Pareto.

+ + RAD[13]

< PR[14]
« DRAD
o DRADP

RADC
+ PERFOC
° APR

o
0

%
o
-

1550 o * o

1250 ° »

. L . . .)
12 15 18
MRED (%)

(B’) Area-Error

L L
12 15
MRED (%)

(") Energy-Error

Exhpa 8: AZOAOYNOT TV TEXVIXWY OE UEYLOTH CUYVOTNTO Aettoupylog.

26

Energy (u11ns)

2450

2150

1850

1550

1250

PR—

o

o +

RAD [13]
PR [14]
DRAD
DRADP
RADC
PERFOC
APR

. . .
12 15 1.8
MRED (%)

Area (jm?)

1900+

1600~

13001

1000+

+ RAD[13]
PR[14]

« DRAD

o DRADP
RADC

+ PERFOC

o APR

12 15
NIRRT (70

(o) Energy-Error (B") Area-Error

IxApa 9: AZohdynon TV TEXVIXGY oE X0y cuyvoTTa Asttoupyiag.

Bdioel tov mapamdve oynudtoy 8 xa 9, uropel xavelc ebxoha vor cuvarydyel 6Tl To XOADTEQY
amOTEAECUOTA TIEOEPYOVTAL amd TNV Tey VXY asymmetric perforation and rounding xou 6T
1 0elTeEn xahbTeEn TeY VT €lvon 1) perforation with correction. ¥e moAAéc 6 nepnt®oelg
€pyeTa TOAD xovTd pe Ty Te@Tr. Ot umdhoineg Teyvinég Bploxovtan apxetd paxpLd amd Tig 6Uo
XAAUTEPEC AOY® TOU YEYOVOTOC OTL Ol TPOCEYYIOEIC TOU EYIVaY TROXGAETUY UEYSAT OTWAELX
oTtny axplfBela ywplc Vo eMPEPOLY aVIAOYT| UEIWST) OTNV XATAVAIAWOT] EVEQYELNS.

Téhog, plo pedovtiny| epyacia Yo urmopoloe va amotehécel 1 LAOTOMNOT OAWY TWV Ta-
QUTAV® TEYVIXWY Yol UEYUADTERO 1| ixpdTERO aptdud Ynpiwy. Mio emmiéov duvatodTnTa Yo
peAovTIXY epyaota Yo urtopoloe va elvor 1 uhomtolnon piog teyvixhc mou Yo eivon pla mopahha-
v tn¢ high radix with correction, ye t Sopopd ott Yo epopuoleton 1 o TELYYUAOTOMOT TOU
yenowonowyinxe otnv asymmetric perforation and rounding.. Ot cuvduacuol Tou uropolv
VoL TEOXVPOUV YENOWOTOLWVTOG TG TEYVIXES amd TIC Tpoavagepleioee xatrnyopieg lvan Torhol
X0l 1) TEPOUTEPW UEAETN AUTWOV UTOPEl Vo EMIPEREL X OUA XUNDTEPA AMOTEAEGHATO Ad ToL O

UTAEY OV TAL.

27

Chapter 1

Introduction-Motivation

In recent years, the embedded and mobile nature of modern computing systems has
led to an increased need for high performance and energy efficiency. As a result, since the
failure of Dennard scaling, energy dissipation has become a first class concern in the design
of integrated circuits. Towards this direction, approximate (or inexact) computing appears
as an emerging and promising solution for energy-efficient systems design [5], exploiting
the inherent error/noise resilience of various applications. More explicitly, perfect answers
are often unnecessary (or do not exist) in a large number of application domains involving
media processing, machine learning, data mining and statistics [2]. This relaxation in the

requirements for exactness is favored due to several factors [1]:
1. The limited human perception

2. The complexity of defining/producing exact results

w

. The noisy and/or redundant input data

4. The application’s capability to self-heal and absorb the errors
5. the probabilistic/statistical calculations

6. the user’s intention to accept results of lower quality

Interestingly, benefiting from the aforementioned factors, error is considered as a com-
modity that can be traded for significant gains in performance, area, power, energy, etc.
[16].

Targeting to take advantage of the error tolerance, massive research has been reported
in the field of approximate computing at multiple layers of software and hardware [20, 29].
At software level, multiple abstractions have been proposed: approximation-aware pro-
gramming languages that let the programmer define the accuracy of the results [25] and
approximation-aware compilers that change the semantics of the programs to trade the
accuracy of the results [19]. At hardware level, the main targets are the adders [7] and the
multipliers [14], i.e., the core units of hardware accelerators. The approximations are ap-

plied at various design layers of abstraction, i.e., the application, algorithmic, architecture,

29

30 Chapter 1. Introduction-Motivation

gate and transistor layers [4]. Extensive research has also been conducted in approximate
processors, using neural networks [3], quality programmable vectors [28] and approximate
custom instructions [11].

Approximate methods have been extensively applied in the design of inexact circuits,
due to delivering lower dynamic and leakage power consumption. Circuit approximations
can be introduced through voltage over-scaling (VOS) [23], over clocking (OC) [10], and
logic simplification [7]. The main focus of this diploma thesis is approximations applied in
arithmetic circuits, and specifically the hardware multipliers, the most energy-hungry com-
ponents of accelerators involving computationally intensive kernels (DSP, neural networks,
etc.). The majority of existing works on inexact multipliers explores approximations ei-
ther on the partial product generation [14, 30, 13] or the partial product accumulation
[21, 24, 17]. These approximation targets are synergistic and can be applied in collabora-
tion, increasing the total energy/area savings [8, 18].

Past research activities on approximate multipliers have shown that the direct appli-
cation of inexact adders in the partial product accumulation is not very efficient in terms
of accuracy, hardware complexity and other performance metrics [21]. On the other hand,
approximations on the partial product generation deliver simpler partial product arrays,
and thus, there is significant reduction in the critical paths and the total accumulation
complexity. Inspired from the promising results of lossy partial product generation [14], in
this work new approximate encodings for inaccurate yet energy-friendly hardware multipli-
ers are explored. More specifically, 5 approximate design families, that can be configured
to adjust the error-energy trade-off w.r.t. the acceptable accuracy loss, are proposed and

implemented.

Chapter 2

Theoretical Background

2.1 Introduction

In this chapter all the techniques and algorithms required for the understanding of
this diploma thesis will be extensively analyzed. Specifically the binary numeral system,

booth algorithms etc will be explained.

2.2 Binary Numeral System

The binary numeral system is the most important number system in computer science.
The basic idea behind it, is that every number is presented using only two digits {0, 1},
which are referred to as bits. The binary numeral system has as base the number 2 and

every number can be written in it using the following equation:

n—1

A(1o) = ZQi ; = Ap_10n_2...4g (2) (2.2.0.1)
1=0
where n is the total number of bits

For example the number 11 in the binary numeral system is 1011. Using the equation
(2.2.0.1) the binary number 1011 corresponds to:
1-204+1.21 +0-22 +1-23 = 11 .The total number of bits of a binary number (n)
defines the maximum decimal number that can be displayed by the binary number. The
maximum value is 2"-1 and not 2" because zero is included. Each digit is multiplied
with a power of two which results in some bits being more significant than others. In the
aforementioned example the bit multiplied with 23 is the most significant (MSB) and in
all cases the bit multiplied with 2° is the least significant bit(LSB). In the table 2.1 some

examples of numbers in both numerical systems are presented.

2.2.1 Two’s complement notation

Binary numbers as defined so far can represent only positive values. In order to repre-

sent both positive and negative values, the two’s complement notation is used, modifying

31

32 Chapter 2. Theoretical Background

Decimal Binary
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

Table 2.1: Counting from 0 to 15 in binary numeral system

the equation (2.2.0.1) as follows:

n—2

A(lO) = 7an712n—1 + ZQi a; = Qp_10n_2..-00 (2) (2.2.1.1)
1=0

As it is shown in this equation (2.2.1.1) the MSB has negative weight and as a result all
binary numbers whose MSB is '1’ are negative. Consequently, the MSB is often called
the sign bit. To get the additive inverse of a binary number, the two’s complement of
the absolute value is used.For instance using the number 0110(3) = 6(10), first the ones’
complement is computed. This is achieved by inverting the bits of the number thus getting
0110 — 1001. To get from ones’ complement to two’s complement the only step required
is to add 1. The result in the above example is 1010. To find which decimal number 1010
is the equation (2.2.1.1) is used resulting in 1010(9) = —1-2°+0-224+1-2' +0-2° = —64).

The interval of values that can represent a n-bit number is [-27-2 27-2 — 1].
2.2.2 Mathematical operation-Addition

The addition of two positive binary numbers is similar to the addition of decimal
numbers. We will analyze the addition of binary numbers in all possible cases.

Addition of two positive numbers

If the MSB of both numbers is zero and the MSB of the result is also zero, it is certain

that an overflow condition doesn’t exist. For instance:

2.2 Binary Numeral System 33

0010 2
40100 +4
0110 6

Next an example is displayed, where overflow condition exists and the result is incor-

rect.
0011 3
+0101 +5
3 1000 —8

The solution to the overflow condition is called sign extension. Two numbers can be
added without overflow if both of them are sign-extended before the addition happens.
This means that their total number of bits is increased from n to n + 1 by copying the

MSB. Specifically: a,,—1 ap—2 ... ag — ap—1 Apn—1 Gp—2 ... ag. T

Addition of a negative and a positive number

In this case it is impossible that the operation leads to an overflow condition. Two

examples are presented for both negative and positive results. First for the positive result:

1011 -5
+0111 +7
0010 2
And second for the negative:
0011 3
+1001 -7
1100 —4

Addition of two negative numbers

Similarly to the addition of two positive numbers the operation can also lead to overflow
condition. The solution is the same as before, sign extension is applied. Two examples,

one for correct and one for incorrect results, will be presented.First for the correct result:

1011 -5
+1110 -2
1001 -7

And second for the incorrect due to overflow:

1001 -7
+1011)
0100 4

34 Chapter 2. Theoretical Background

2.2.3 Carry-Save notation

Carry-save(CS) notation belongs to the category of Redundant Arithmetic Systems.
There are more than one carry-save notation that can implement the same decimal number.
The relation describing CS notation is z* = x* + 2. So the value of a decimal number is
written as the sum of two numbers. The advantage of this notation is the quick execution
of the operation of addition and subtraction because of the lack of the carry propagation.
The downside is that for a n—bit number in two’s complement notation 2n bits are needed

to describe him.

2.3 Booth algorithms

The Booth’s multiplication algorithm was developed about four decades ago in order
to perform the multiplication of two signed numbers in an efficient way. Since then it is

widely used with various modifications.

2.3.1 Booth’s multiplication Algorithm

In this subsection the Booth’s multiplication algorithm will be examined. Let A,B be
two n—bit signed numbers, which produce 2n— bit product P. The 2’s complement A,B

and P can be expressed as:

n—2
A =y 127 1) g2 (2.3.1.1)
1=0
n—2
B = b, 12"+ ZbiQi (2.3.1.2)
=0
2n—2
P = _py, 12271 Zpﬂi (2.3.1.3)
i=0

Using a simple mathematical trick B can be written: B = 2B — B. Thus, Z is formed:

2B= —bp-1 bp—2 b3 ... b 0
—B = 0 bp—1 —bp—2 ... —=bi —bo
7 = Zn—1 Zn—2 21 20

The bits of Z are: zo =0—by, 21 =bg—b1, ... , zn_1 = —2bp_1+by_9+by_1=0b,_0—b,_1

As a result the next equation is produced:
zi=bj_1—0b; ,wherei=0,1,...n—1and b_1 =0 (2.3.1.4)

Thus B can be computed as follows:

n—1
B=Y) z2 (2.3.1.5)
1=0

2.3 Booth algorithms 35

According to Booth’s multiplication algorithm and using the previous equation (2.3.1.5)

the next equation is formed:
n—1 n—1
P=A-B=Y Az 2= A (biy-b) 2 (2.3.1.6)
1=0 =0

It’s easy to conclude that in each step of the algorithm (i = 0,1,...,n — 1) the number
A will be multiplied with one of the next set of numbers: {-1,0,1}. These are the three
possible results of the equation (2.3.1.4). In the table 2.2, where PP is the partial product
and initially PP = 0, the booth encoded digits are displayed as well as their meaning.
The process of encoding begins from the right and continues to the left (Starting at i =0

and at the beginning of each step i =i+ 1).

B; Bi_1 Encoded digits Meaning
(Bi—1 — Bj)

0 0 0 Add 0 to PP and arithmetic shift
PP a single place to the right

0 1 1 Add A to PP and arithmetic
shift PP a single place to the
right

1 0 -1 Add —A to PP and arithmetic
shift PP a single place to the
right

1 1 0 Add 0 to PP and arithmetic shift
PP a single place to the right

Table 2.2: Booth encoding and Meaning

To clarify, an example is presented in table 2.3 .The two operands are A = (0110)9 =
(6)10 and B = (0111)9 = (7)10. In each step 2°X, where X = —Aor X = Aor X =0
depending on the value of z;, is added to the PP as concluded from the equation (2.3.1.6).

The arithmetic shift to the right is used to avoid overflow and it’s equivalent to sign-

extension.

1 PP 2 Comments
0 0000 -1 Add —2°- 4
0 1010 —1 | Arithmetic shift
1| 11010 | 0 Add 2.0

1 11010 0 | Arithmetic shift
2 | 111010 | © Add 2%2-0

2 | 111010 0 | Arithmetic shift
31111010 | 1 Add 23- A

31 0101010 | 1 Final result 42

Table 2.3: Example of multiplication of two numbers using the booth algorithm

36 Chapter 2. Theoretical Background

Comparing the booth’s multiplication algorithm to the conventional multiplication

there are some great advantages:

1. The algorithm is the same for signed and unsigned numbers, thus it’s independent

from the sign of each number.

2. The conventional multiplication generates a partial product for every ”1” of B
whereas, the booth’s multiplication algorithm generates a partial product for every
change from ”1” to 70" and vice versa, in the sequence of B. If there are consecutive
"ones” (71s”) the encoded digit z; is zero, so there is only an arithmetic shift to
the right occurring to the PP. However, in some cases the booth’s algorithm is less
efficient than the conventional multiplication algorithm. This happens when more

partial products are generated than in the conventional method.

3. Every encoded digit is independent from the previous digits, so the partial products

can be generated immediately and then trough carry-save adders computed.

2.3.2 Modified Booth algorithm

The Modified booth algorithm is a variation of the previously presented booth’s mul-
tiplication algorithm. The set of encoded digits is expanded to the set of numbers
{-2,-1,0,1,2}. Thus, the equation (2.3.1.5) is modified as follows:

n—1 n/2-1
B = Zzﬂi = Z 22j22j + 22j+122n+1

i=0 j=0
n/2-1

=) (byjo1-b2j)2% 4 (byj-bjp1)2H (2.3.2.1)
=0
n/2-1 n/2-1

=) (=2byjpn + by + b)) = Y bMBA
=0 j=0

In the table 2.4 the modified booth or radix-4 encoding is displayed.The bit b_1 is
considered zero(b_; = 0).

To better understand the modified booth algorithm an example is presented. Two 8-
bits numbers are multiplied, A = (01010101)s = (85)10 and B = (10000111)2 = (—121)1p.
According to the radix-4 encoding, B is modified to B = 2021. This means that the
numbers 24 = 010101010, 24 = 101010110 and A = 110101011 are needed for the
execution of the algorithm. In the table 2.5 every step of the algorithm is displayed.
In the case of the modified booth algorithm, an arithmetic shift by two places is required.
Moreover the equation (2.3.2.1) shows, that each product is multiplied by 2% = 47, This
means that before bé-w B . A is added to PP a two place shift to the left is occurred.

2.4 Adders 37

baj.1 baj bgj 1 | Modified booth encoded digit (bJMB)
0 0 0 0
0 0 1 +1
0 1 0 +1
0 1 1 +2
1 0 0 —2
1 0 1 -1
1 1 0 -1
1 1 1 0

Table 2.4: Radix-4 encoding

j PP bé-WB Comments

0 000000000 -1 Add —2°- A

0 110101011 -1 Arithmetic shift
1 11110101011 +2 Add 22 .24

1 01001010011 +2 Arithmetic shift
2 0001001010011 0 Add 2*-0

2 | 0001001010011 0 Arithmetic shift
3 | 000001001010011 | —2 Add -26-24

3| 101011111010011 | —2 | Final result 10.285

Table 2.5: Example of multiplication of two numbers using the modified booth algorithm

Modified booth algorithm shares the same advantages as the booth’s multiplication
algorithm. Furthermore radix-4 encoding makes sure,that the number of partial products
is reduced, which leads to reduced delay and area of the circuits. However, the computation
of —2A, 42A and —A increases the complexity of the circuit. In most applications the

modified booth algorithm is used for the exact multiplication of two numbers.

2.4 Adders

Addition is one of the most important operations of every arithmetic circuit. Their
importance is connected with the fact that they are used in other operations, such as
multiplication. Numerous types of adders and subtractors have been developed over the
years. In this section the basic units of those adders and the adders themselves are being

analyzed.

2.4.1 Half Adder (HA)

The simplest digital circuit of addition is a half adder (HA). HA receives two bits as
input, it adds them, and it produces the sum (s) and the carry (c) as output. A half adder

38 Chapter 2. Theoretical Background

is displayed in the figure 2.1. s and c are given from the logical equations: s = a ® b,

. G et
o

c=a-b

c

S

(a) Half Adder(HA) as Black Box (b) Half Adder(HA) Circuit

Figure 2.1: Half Adder(HA)

The truth table of the HA is presented in the table 2.6 .

el el =N ==]
—lol~|lo|T

O|l=|—=|O|®w
oo 6

Table 2.6: Truth Table of HA

2.4.2 Full Adder(FA)

The full adder(FA) (Figure 2.2) is similar to the half adder with the difference that
the input consist of three bits, a,b and ¢;;. The logical equations describing the FA
are: s = a@b®d ¢y and cour = (@-b) + (a-cp) + (b-cin) or s = a®b D ¢, and
Cout = (a-b) + (cin - (a®b)). The second aforementioned set of logical equations is used
for the generation of the circuit,which is displayed in figure 2.2b and consists of two half

adders.

II b) *‘

Cin

Cout FA Cin ‘
l out
(a) Half Adder(HA) as Black Box (b) Full Adder(FA) Circuit

Figure 2.2: Full Adder(FA)

The truth table of a FA is featured in table 2.7 .

2.4 Adders 39

a b Cin S Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Table 2.7: Truth Table of FA

2.4.3 Serial Adder

The serial adder is able to add two n-bit numbers using just one full adder and one
D flip-flop. It also needs two shift registers, one for the first number (a) and one for the
second (b). The result is stored in the first register,where a was initially stored. In each
clock cycle two bits of the numbers a and b are added, the first shift register gives away a
bit of a and it stores a bit of the sum (s). In figure 2.3 a serial adder is displayed. The

shift registers are not shown and i takes the values {0,1,2,..,n — 1}.

Ci+1

FA [« Ci
Clock
\'4 X l
Reset D Sj
—0
Flip Flop
Q' Q

Figure 2.3: Serial Adder

2.4.4 Ripple-Carry Adder(RCA)

The ripple-carry adder(RCA) is also used for the addition of two n-bit numbers just
as the serial adder. The difference is that the RCA consists of n full adders and doesn’t
use any D flip-flop. Figure 2.4 displays this type of adder.

40 Chapter 2. Theoretical Background

A S
Cn-1) €1
FA (- FA FA [« o
cn Sp-1 e $1 So

Figure 2.4: Ripple-Carry Adder

It is considered that ¢g is zero and ¢, can be interpreted as the most significant bit
(MSB) of the sum or as an overflow bit. The disadvantage of the RCA is, that the result
is computed after all the carries are propagated. The function of RCA and serial adder
is the same with the difference of the D flip-flop and the one FA. Therefore, the problem
remains the same. The total delay of an RCA is (2n + 1)7. At the first level, the delay
until the generation of ¢; is 37 because of the xor-,and- and or-gate. At the next level the
co is generated after additional 27 and in each following level 27 are added to the total
delay. Therefore, the n — 1 last levels produce a delay 2(n — 1)7 and the first level 37.
Thus, the total delay is (2n + 1)1

2.4.5 Carry-Save Adder(CSA)

The carry-save adder (CSA) is used for the addition of three or more n-bit numbers.
As output it produces a number in carry-save notation as explained in subsection 2.2.3. In
figure 2.5 a CSA, which has as input three n-bit numbers, is displayed. The three numbers

are x, y and z. The numbers s (sum) and ¢ (carry) are the output.

T I
JodL S A

Figure 2.5: Carry-Save Adder

The carry-save adder has the advantage that the result is immediately ready in just
one clock cycle. The downside is that the information is stored in two numbers and isn’t
in 2’s complement notation. So if 2’s complement is needed then the s (sum) and ¢ (carry)

are added with the help of a ripple-carry adder.

2.4 Adders 41

2.4.6 Carry-Look ahead Adder(CLA)

The aforementioned problem with the ripple-carry adder is that all the carries must
be propagated in order to compute the whole result. Explicitly, for two n-bit numbers
the total delay is (2n + 1)7. To reduce the delay a widely used approach employs the
principal of carry look-ahead, which calculates the carry signals in advance, based on the
input signals. In figure 2.2b the circuit of a half adder is presented and the next signals

are defined.

P, =a;,®b;, wherei=0,1,2,....n—1 (2.4.6.1)

Gi =a;-b;, wherei=0,1,2,....n— 1 (2.4.6.2)
The output sum and carry can be defined as:

s; = P, ®c¢;, where i =0,1,2,....,n—1 (2.4.6.3)

ciy1=G;+ P;-¢;, where i =0,1,2,....n— 1 (2.4.6.4)

G; is known as the carry Generate signal since a carry (¢; 1) is generated whenever G; = 1,
regardless of the input carry (¢;). P; is known as the carry propagate signal since whenever
P; =1, the input carry is propagated to the output carry: ¢;11 = ¢; (note that whenever
P, = 1,G; = 0). The values of P; and G; can be computed immediately as they depend
only on the input operand bits (a;,b;). Computed values of all P;’s and G;’s are valid after
one XOR-gate delay and AND-gate delay,respectively, after the operands are made valid.

The Boolean expression of the carry outputs of various stages can be written as follows:

a=Go+ P - o

co=G1+ P -Go+P,-Py-cp

c3=Go+ Py -G1+P,-P-Gog+Py-P-FPy- ¢
c4=G3+P3-Go+P3-P-G1+P3-P-P-Go+FP3-P-P1-FPy-cp

The general Boolean expression of the carry output of the n'* stage is:

cny1 =Gn+ Py -Gu1+Py P Gpot..+ Py Py1..P- Py -Go+ Py—1...P>- P - Py - ¢
(2.4.6.5)
In figure 2.6 a 4-bit carry-look ahead adder is displayed. The carry look ahead block

is implemented in two-level circuits and this two-level implementation of the carry signals

has a propagation delay of 2 gates (27).

42 Chapter 2. Theoretical Background

co

ag Po Po s
bo
c1

b1

by

D
c3
1) S R%___I;)I>f 3

b3
J———— G3 4 ————— c4

Carry look ahead
block

Figure 2.6: Carry-Look ahead Adder

The 4-bit carry-look ahead adder consists of three levels of logic:

e First level: It consists of four half adders and generates all the P and G signals.

Output signals of this level will be valid after total delay of 17.

e Second level: The carry look ahead logic block generated the four carry signals
(co,c1,c2 and c3) as defined by the above Boolean expressions. These output carry

signals will be valid after a total delay of 3.

e Third level: This level consists of four XOR-gates which generate the four sum

signals (sg, s1, s2 and s3)

On one hand, the carry-look ahead adder generates the result after a total delay of 47. On
the other hand, the ripple-carry adder performs the addition with total delay (2n 4 1)7.
In the case of a 4-bit RCA, it translates to 97. Thus there is a significant decrease of delay

when using the carry-look ahead adder.

2.5 Multiplication

Multiplication is another very significant operation. In order to be performed some of

the aforementioned adders must be used. In this section some types of multipliers will be

2.5 Multiplication 43

analyzed and then it will be explained how the modified booth algorithm is implemented

into circuits.

Let A,B be two unsigned m-,n-bit numbers, respectively. The operation of multipli-

cation is analyzed as follows:

n—1
A-B=A-) 2 (2.5.0.1)
1=0
In figure 2.7 the multiplication is performed.
| m bits | 2%pA
| m bits | 2'b;A
| m bits | 22b,A
+ | m bits 2™1bn-1A
| m+n bits | AB

Figure 2.7: Multiplication of two unsigned number

The multiplication of two signed numbers in two’s complement notation, is the same as
the multiplication already described, with the sole difference that the MSB of each partial

product has a negative weight.

The types of multipliers that will be analyzed can be applied for unsigned numbers.
To extend to signed numbers in two’s complement, small modifications are needed or some
correction terms must be added. In general a parallel multiplier is based on the fact that
the partial products can be simultaneously generated. For the unsigned numbers the result

is expressed (P) as follows:

m—1 n—1 m—1n-1 m4n—1
P=A-B=Y a2) ;2 =) (aib;))2* = Y p2" (2.5.0.2)
i=0 =0 i=0 7=0 k=0

2.5.1 Parallel Multiplier with Carry Propagation

The parallel multiplier with carry propagation consists of AND-gates and full adders.
The AND-gates are needed for the computation of the bits of the partial products (a;b;)
and the FAs are used for the addition of the partial products. In this case the full adders

form a ripple-carry adder. In figure 2.8 the basic component of the multiplier is displayed

44 Chapter 2. Theoretical Background

Sin aj
FA*
bj
Y
Cout <€ FA < Cin
v
Sout

Figure 2.8: Circuit of FA*

The parallel multiplier with carry propagation consists of rows with these FA* units.
In figure 2.9 an example of 4x4 parallel multiplier is displayed. The delay of the multiplier
is dependent of the path that is created through the gray cells of FA*s. In this critical
path the only AND-gate included is the one of the top right cell. That is because all the
AND-gates produce their results simultaneously. In the critical path there are 3 (n — 1)
FA* cells on the top horizontal line, 4 (m) FA* cells on the vertical line and 3 (n —1) FA*
cells on the bottom horizontal line (the common cells are included in the vertical line),
so the total delay is T' = 10 - Tpa + Tanp. In general for A, B two m-,n-bit numbers,
respectively, the total delay is "= (2n +m — 2)Tra + Tanp. In every other path chosen
the total delay is equal to or less than T'.

as az a ap

l«—o
le—o
l—

le—o

— — — bg
FA* FA* FA* FA*
le—— le—— le—— l— 0
[— | —— by
FA* FA* FA* FA*
le—— le—— le— l— o
] | I b2
FA* FA* FA* FA*
le— fe—— le—— l— o
| | | b3
FA* FA* FA* FA*
le—— le—— le—— l— 0
l l l l v \ v
P7 Pe Ps Pa P3 P2 P1 Po

Figure 2.9: Parallel Multiplier with Carry Propagation

2.5 Multiplication 45

2.5.2 Parallel multiplier with Carry Save Adders

This type of multiplier is very similar to the previously described multiplier. The
notable difference is that every row of full adders forms a carry-save adder instead of a
ripple-carry adder. That means that the carry signals don’t propagate inside the same
level (row), but they are forwarded to the next level. In figure 2.10 the basic component

of this type of multiplier is presented.

F**

b;

A

Cout
Sout

Figure 2.10: Circuit of FA**

The cell FA** is practically the same as the FA* the only difference being, that it
receives the input carry signal from the previous level and gives the output carry signal
to the next level. To better understand the differences, figure 2.11 features a 4x4 parallel
multiplier using CS logic. The four most significant bits are given in CS notation so there
is a 4-bit adder (last level), which modifies the result to a binary number. The total
delay of this multiplier is closely depended on the type of adder used in the last level.
When a ripple-carry adder is used the delay is T'= (n +m)Tra + Tanp. If a carry-look
ahead adder is used, the delay is T'= (2 + logon)Tra + Tanp. In the example of the 4x4
multiplier the delays are equal, so the use of a carry-look ahead adder gives better results

for greater n.

The way the parallel multiplier with carry-save adders is shown in figure 2.11 lacks
efficiency. There is a better way to implement the 4x4 multiplier. Figure 2.12 exhibits
this way and it is apparent that some FA** cells can be excluded. Instead of giving as
input signals zeros some levels can be merged. With this implementation the total delay
isT=(m—2+n)Tpa+TAND as long as a carry ripple adder is used in the last level
and the AND-gates are executed simultaneously. In case of a carry-look ahead adder in
the last level, the delay is T'= (m —2+2+1ogon)Tra +Tanp = (m+1logoyn)Tra+Tanp

46

Chapter 2. Theoretical Background

ag

!

!

aq

ag

[[[bo
— F *k I F *% I F *k | I F *%k H——— o0
- L L by
— FA* [| FA™ | | FA* [| FA* <
- L L by
— FA** le! F *% le! F *% le! F *k le!
- L L bs
FA** FA** FA** FA**
=l = s =S
i oy v
HA «— FA [« FA <«— HA
f J J J J
Ps P7 Ps Ps Pa P3 P2 P1 Po
Figure 2.11: Parallel Multiplier using CS logic
a3 bg az by aq bg agp bp
a3 bq as by ay by ap by
a; by az b, ay by ag b
0
FA FA FA HA
a3 bz ax b ay b3 ag bz
FA FA FA HA
FA FA FA HA
i l i l v v v
p7 Pe Ps Pa P3 P2 P1 Po

Figure 2.12: Parallel Multiplier using CS logic-Efficient Way

2.5 Multiplication 47

2.5.3 Wallace Tree Multiplier

The Wallace tree multiplier takes a different approach than the previously described
multipliers. It uses the ability of the full adders to add three bits and give as output
signals two bits (carry and sum). Thus the bits of the partial products are divided into
groups of three and then again and again until the information is stored in carry-save
notation. In figure 2.13 this division of a 8x8 Wallace tree multiplier is displayed. In this
implementation only full adders are used. The delay is equal to the number of steps until
the result is in carry-save notation. The total delay is just the delay of the steps plus the
delay of the AND-gate and the delay of the carry-look ahead adder. So for this example
T =TTra+ Tanp + (2 + logy15)Tr 4

O O
@]

o o
® O
o e
[ONN]
O\:
(O3]
[]
[]
[]
[]
o O
O

o o
® O
o e
[ORN]
o e
[}
e
[]
[J
[]
[}
[}
o O
O

OO...;/'......OO
O & 6 00 [©] @]

Figure 2.13: Bits division of a 8x8 Wallace Tree Multiplier

The steps of the figure 2.13 can be reduced if both full adders and half adders are used

in the process. In the previous example the bits of the partial products were divided into

48 Chapter 2. Theoretical Background

groups of three as much it was allowed. Now by inserting of the half adders the algorithm

is:

The rows of partial products are divided into groups of three

The result of each set of three rows is a set of two rows

The resulting two rows consists of a row for the sum and a row for the carry.

If there are remaining rows that cannot form a group of three, they are left alone.

In figure 2.14 an example of this method is featured. With the use of half adders and
the alteration of the algorithm, the number of steps is reduced to 4 for an 8x8 multiplier.
However, a 16x16 carry-look ahead adder is needed. So the total delay is T" = 4Tr4 +
TAnD + (2 +10g916)TF 4

@]

Figure 2.14: Rows division of a 8x8 Wallace Tree Multiplier

2.5.4 Modified Booth Algorithm using Wallace Tree

In subsection 2.3.2 the modified booth algorithm was described. In this subsection the

implementation of the algorithm into circuit will be analyzed. Let A, B be two signed n-bit
n/2-1

numbers in two’s complement. As shown in the equation (2.3.2.1) B = Z bé-\/[B4j. In ta-
=0
ble 2.4 the radix-4 encoding was presented, but how are these encoded digits implemented

into circuits? That’s exactly what the table 2.8 shows.

2.5 Multiplication 49

Binary bits Modified Encoded Digit b'"
baji1 bo; baj_1 | Booth’s Digit sign = s; | X1 = one;j | x2 = two;
0 0 0 0 0 0 0
0 0 1 +1 0 1 0
0 1 0 +1 0 1 0
0 1 1 +2 0 0 1
1 0 0 -2 1 0 1
1 0 1 -1 1 1 0
1 1 0 -1 1 1 0
1 1 1 0 lor0 0 0

Table 2.8: Modified Booth Encoding Table

The logical equations that describe the table 2.8 are:

one; = b2j—1 D bgj (2.5.4.1)
twoj = (baj11 © byj) - onE; (2.5.4.2)
S; = bgj+1 (2.5.4.3)

The circuit that implements these logic equations is shown in figure 2.15.

Sj

boj,1—¢
tWOi

boj —
)) onej

Figure 2.15: One,Two and s signals

boj

So now that is clear how the modified booth encoding is implemented, the partial

product generation will be explained.

n/2-1 n/2-1
P=A-B=Y A-0MP.2%=ct+ Y Pp;.2% (2.5.4.4)
j=0 j=0

where ct is a correction term and PP; the partial products

The correction term (ct) is needed for the correct implementation of the modified booth
algorithm. In the figure 2.16 the steps of how the ct of an 8-bit multiplier is formed are

shown.

e First step: The grey circles are the extra bit used for the case where A is multiplied

by two (two; = 1)

50

Chapter 2. Theoretical Background

Second step: The MSB of each partial product has a negative weight, so the relation
p+ p =11is used. The grey circles are replaced with the black (p) and a factor —1
is added (—p=p—1)

Third step: The mathematical trick (2 —1) =1 is used, so —1 = =2 + 1.
Fourth step: The subtractions created after the third step are performed

Fifth step: Lastly, the blue circles that present the correction bits(n;) are added. If
the modified booth’s digit has a negative weight (b;-WB = —1,-2 jie. s; = 1), the
correction bit is one in order to get to the 2’s complement from the 1’s complement.
The correction bit is zero in case of positive weight. This will become more clear

after the explanation of how the partial products are generated

@ O OO0 OO O O 0
®@ O O OO0 O O O O
@ O OO O O o0 O O
@ O O 0O O O O O 0O

-
P ® O OO O O O O0O0
y ® O OO O O O O O
1 ® O O 0O O O O O O
® O O O O O O O O
1
i 1 € O O O O O O 0 O
i1 @ O OO0 O O O O O
i1 @ OO O O O O O O
1 ® O O O O O O O O
1
1 @ O OO O O O O O
1 @ O OO O O O OO0
1T @ O OO O O O O O
1 ® O O O O O O O O
1
1 ® O OO OO O 0 O
1 @ O OO0 O O O OO0 ®
T @ O OO O O O O O [}
1 ® O O O O O O 0O O []
[}

Figure 2.16: Partial products and Correction Term

Now negative weights are no longer an issue. The correction term is computed through

2.5 Multiplication

o1

the equation:

3

ct = (F;s2) + {219+ 2" + 211 4+ 2° 4+ 95 4 1g20 4 mp2* + 22 + 027}

Jj=0

where p; g is the sign extension performed at the first step

Including the computation of the sign extension in the partial product generation, ct is

given by the next equation, where The ct is in two’s complement notation:

n/2—1

n/2—2

=) (n;-29) + 2"(1 + Y (2T -2

§=0

The partial products are computed using the signals onej,two; and s; via the next

equations:

n—1

PPJ — T)j’n . 2n+2J + Z(p],l X 2i+2j)

=0

§=0

pji = ((ai @ sj)-onej) + ((ai-1 @ s5) - twoy)

pio = ((ao ® sj)-onej) + (s;-twoy)

Din = H((an-1 ® s;)-onej) + ((an—1 & sj) - twoy))

In the next example a partial product matrix with the correction term of a 8x8 multiplier

using all the above is presented.

(2.5.4.5)

(2.5.4.6)

(2.5.4.7)
(2.5.4.8)
(2.5.4.9)

9l5 9ld 913 912 oll 910 99 98 9T 96 95 od 93 92 9l 90
1
1 Pog P07 DPo6 Pos Po4 P03 P02 Po1 D00
1 Pigs P17 P16 P15 P14 P13 Pr2 P11 PLo no
1 Dag P27 P26 D25 P24 P23 D22 P21 P20 niy
1 DP3g P37 P36 D35 P34 P33 D32 P31 P30 n2
ns

In figure 2.17 the logical equation (2.5.4.7) is implemented and it is produced the

featured circuit.

one;

Sj

alj

Pii

Figure 2.17: Partial Product Generator Unit

Lastly, in figure 2.18 all the components of the multiplier are being displayed. The
multiplier consists of the partial products generators, the MB encoder, the CSA Wallace

tree and the fast CLA adder.

52 Chapter 2. Theoretical Background

Clhigh l

1

[PPy e — by

[PP, I 4; b1

—
k]
N
[}
[}
3
2
18
)
-
L
MB Encoding

Cliow
< |~')n-1

Text

CSA Tree

Fast CLA Adder

P=A*B

Figure 2.18: Modified Booth Multiplier

Chapter 3

Prior Work in the Field of
Approximate Computing

3.1 Introduction

In the previous chapter we explained the basic theory that is needed to understand the
approximation techniques developed in this diploma thesis. In this chapter the related,
prior work that has been conducted in the field of approximate multipliers will be analyzed.
The approximations that can be applied on a multiplier can be divided into two categories.
The first category consists of approximations that are applied on the stage of accumulation
(i.e. in the CSA Tree or other units that perform accumulation). Such approximation
include approximate carry-save adders or approximate 4:2 compressors. In this diploma
thesis the developed techniques are not of this category and therefore, no approximate
adders and compressors will be analyzed. The second category consists of approximations
that are applied in the stage of the partial products generation and the MB encoder.
The stages were made clear in the previous chapter in figure 2.18. We further divide the
approximation techniques of this category into four groups as it is shown in figure 3.1. In
this chapter we will mention prior developed techniques belonging into these groups and
some of them will be extended or combined with others to form the techniques that were

developed during the research of this diploma thesis.

53

54 Chapter 3. Prior Work in the Field of Approximate Computing

Elimination/Pruning

Radix Encoding

Rounding/Correction Terms

Dynamic Scaling

Figure 3.1: Categorization of the arithmetic-aware approximation techniques

3.2 Elimination/Pruning

In this section a new metric system and a technique based on elimination of some

partial products will be presented.

3.2.1 Optimal Slope Ranking

A new design, approximate efficiency (AE), was introduced by Zhang et al. [32].
This new metric was used for the evaluation of the impact of each circuit node on its
energy-delay-product (EDP). Taking advantage of this calculated AE a systematic ap-
proach named as optimal slope ranking (OSR) was produced. OSR prunes the nodes with
a ranking list of AE. More specifically, the equations that present AE and EDP are:

EDP = f(Error) (3.2.1.1)
Thus, the EDP of the circuits before and after pruning are shown as follows:
EDPbefore = f(ErTOTbefore) (3212)

EDPyfier = f(Errorafier) (3.2.1.3)

If two pruned nodes result in the same error, the node that leads to more reduction on
EDP should be pruned first. AE is defined in equation (3.2.1.4)

EDPafter - EDPbefore _ AEDP
Errorgfier — Errorpefore AErTTOT

AE = (3.2.1.4)

3.2 Elimination/Pruning 55

At last the EDP reduction at error threshold can be expressed as follows:

AEDP;,; = ZAEDPnOde = ZAEnodeAErrornode (3.2.1.5)

3.2.2 Partial Product Perforation (PPP)

The partial product perforation method was proposed by Zervakis et al. [30]. In this
technique, partial products are omitted, and thus, the depth of the accumulation tree is
reduced. One possible downside is that error is increased exponentially while more partial
products are excluded.

Let A,B be two n-bit numbers. The result of their multiplication is obtained after
summing all the partial products Ab; , where b; is the ith bit of B. Thus

n—1
AxB=>Y Ab2', b € {0,1}. (3.2.2.1)
=0
The partial product perforation method omits the generation of k successive partial prod-
ucts starting from the jth one. The perforated partial products are not included in the
accumulation tree, and hence n full adders can be eliminated. Applying the partial product
perforation on the multiplication, the approximate result is produced:

n—1

AxBljp= Y Ab2', b €{0,1}. (3.2.2.2)

i=0,
i¢[4,g+k)

It should be noted that j € [0,n — 1] and k € [1, min(n — j,n — 1)].
Respectively, when modified booth encoding (MBE) is used for partial product gener-
ation, the result of the approximate multiplication can be expressed:
n/2-1

AxBljp= Y Ab)Pa’ pMP € {0,+1,£2}. (3.2.2.3)

i3 10
In the figure 3.2 an example is presented. The red circles are the bits that are not inserted
in the accumulation tree. The equation (3.2.2.3) is used because of the modified booth
encoding. For the example it was selected 7 = 0 and k& = 2. The black circles represent

the sign factors and the grey circles the inverted MSBs of the partial products.

@ ®© @ © © @ 0 0 O
1 ® © © © © @ @ 0 O @
1 O O O O O O O O O (]
1 O OO0 O O O O O O [
[]

Figure 3.2: Applying PPP on a 8 x 8 multiplier using MBE

56 Chapter 3. Prior Work in the Field of Approximate Computing

3.3 Radix Encoding

A wide range of approximations are based on radix encoding. These techniques lead to
partial product reduction and therefore to energy efficient designs. The difference from the
previous group (Elimination/Pruning) is that the partial products are not just eliminated
but through approximations used on the stage of the encoding the number of the partial
products generated is reduced. In this section such approximations techniques will be

presented.

3.3.1 Approximate Hybrid High Radix Multipliers

High radix encodings lead to smaller accumulation trees. However high radix encodings
require complex encoding and partial product genration trees. So the hybrid high radix
encoding proposed by [13] and the performed approximations simplify the complexity of

the aforementioned circuits.

Hybrid High Radix Encoding

Consider two n-bit numbers A and B. B is divided into two parts: The MSB part of
n — k bits and the LSB part of k bits. The configuration parameter, k > 4, is an even
number, namely, k = 2m : m € Z, with m > 2. The MSB part is encoded using the radix-
4(modified Booth) encoding. On the other hand the LSB part is encoded with the high
radix-2* encoding. The table 2.8 of the previous chapter features the radix-4 encoding.

So B can be expressed as follows:

n—2 n/2-2
B=—b, 12"+ b2 = Yyl 4y (3.3.1.1)
=0 i=k/2,
k>4
where
ij4 = —2b2j+1 + szbgj,1 (3.3.1.2)
and
g2t = _ok=lp 4ok o4 421y + by (3.3.1.3)

As already mentioned the radix-4 encoding includes (n — k)/2 digits y]R4 € {0,+1,£2},
while yéﬂk € {0,41,42, 43, ..., £2F1 — 1 4+25=11 corresponds to the radix-2* encoding.
Overall, B is encoded with (n — k)/2 + 1 digits.

This high radix encoding is characterized by increased complexity, due to the high radix
values of yé:m that are not power of two, and thus, an approximate version was proposed
by the authors of [13]. The MSB part will still be performed accurately using the radix-4
encoding. However, the LSB part will be approximately encoded. In particular all the
values that are not power of two and the k — 4 smallest powers of two will be rounded to

the nearest of the four largest powers of two or zero, so that the sum of all the values of

3.3 Radix Encoding 57

the approximate digit %22’“ is zero. Therefore B is approximated as follows:

n—2 n/2-2
B=—b,12" 4+ b2l = ylthad 4 gt (3.3.1.4)
i=0 j;l;/f,
where
yf e {0, +1, +2} (3.3.1.5)
and
gi2" € {0, 22k £ok—8 k2 yok-1y (3.3.1.6)
From table 3.1 we extract the signals:
signj :b2j+1 (3.3.1.7)
le :bgj_l D bgj (3318)
x2j =(baj1 © ba;) - (b1 ® bay) = (b1 B bay) - X1 (3.3.1.9)
Input R4 Digit Output
bojt1 b boja yJR4 signj x2; x1j
0 0 0 0 0 0 0
0 0 1 1 0 0 1
0 1 0 1 0 0 1
0 1 1 2 0 1 0
1 0 0 -2 1 1 0
1 0 1 -1 1 0 1
1 1 0 -1 1 0 1
1 1 1 0 1 0 0

Table 3.1: Accurate Radix-4 Encoding Table

Table 3.2 presents the approximate radix-2¥ encoding. As for the encoded signals that

define the radix-2* digit @[})22’“7 their Boolean equations are:

sign = bg_1 (3.3.1.10)
x 284 = (bj_g - b3 - bp—a + b—2 - by_3 - b_a)
- (bp—g D br_s) (3.3.1.11)

x 2873 = b1 - bp—o - (bp—g - by—a - bp—s + b3 - b—a)
+ b—1 - bi—2 - (br—3 - by—a - by—5 + bp—3 - bp_a)
(3.3.1.12)
X282 = b5 by_g - (by—1 + br—_a)
+ b2 - br—3 - (bp—1+ br—4) (3.3.1.13)
)28V = by by_g bz + bp_1 - by—2 - b3 (3.3.1.14)

58 Chapter 3. Prior Work in the Field of Approximate Computing

R2k Digit Output

yb2t GEZE | sign <2k x2k-2 (ok-3 , gh-
[0, 2F-3) 0 0O 0 0 0 0
[2k-5) 2k-44 2k-5) 241 0 0 0 0 1
[Qk 4+2k 5 Qk 3+2k 4) 2k-3 0 0 0 1 0
[2k-34ok-4 ok-240k3)l o2 1 g 0 1 0 0
[2k-2 4 2k-3 ok-1) 2110 1 0 0 0
[-2k-1 _9k-2_9k-3) 21 1 0 00 0
[Qk 2 2k 3 2k-3_2k-4> _Qk-2 1 0 1 0 0
[2k 3 2k 4 2k-4_2k-5) _2k-3 1 0 0 1 0
[-2k-4_2k- 5 -2k-5) 211 0 0 0 1
255 0) 0 1 0 0 0 0

Table 3.2: Approximate Radix-2* Encoding Table

In figure 3.3 an example is displayed, where the approximate radix-256 is applied on
16 x 16 multiplier. The circles represent the partial products from radix-4 encoding and the
squares the partial product from the radix-256 encoding. Moreover the white circles and
squares are the inverted MSBs of the partial products. There has been a sign extension
seven times because the largest value of y£?%% is 128 = 27. Lastly, the black circles and

squares stand for the sign factors.

Ooooooooaoaod

1 O
i1 © O O
10 O OO0 O

o O O 0O
® O O O O
@]

]

o 0 O O u
o
[]

o o O =
o o0 O O
o o0 O o =~
0 o oo Oo-=
o o o o d
O o O o O
o 0O O O O»
O 0 O O O
O O O O O
o 0 O O O»
o o O o O
® O O OO0 O

Figure 3.3: Applying radix-4 and radix-256 on a 16 x 16 multiplier

3.3.2 Other worth mentioning techniques

There are more techniques developed, that can’t be presented all of them extensively
as the hybrid high radix encoding was in the previous subsection. However there are more
techniques that are worth mentioning.

Such a case is an approximate radix-8 booth multipliers, that uses an approximate
adder for producing +3A, as suggested by Jiang et al. [8]. Liu et al. [18] designed
approximate modified Booth encoders by transforming its K-Map, and also combined them
with an approximate compressor. Recently Venkatachalam et al.[27] proposed an idea to
alter the K-Map of partial product generation in order to simplify and make more parallel
the circuit needed. The number of partial products remained the same. Through further
approximation using OR-gates they managed to avoid the extra line of correction terms.

Eventually the accumulation was implemented through OR-gates for the least significant

3.4 Rounding/Correction Terms 59

part and exact full adders, half adders and 4-2 compressors for the most significant part.

3.4 Rounding/Correction Terms

The techniques belonging to this group reduce the number of the bits, that are inserted
into the accumulation tree. They target usually the least significant bits of each partial

product.

3.4.1 Truncation method

The truncation method was developed by Schulte and Swartzlander [26]. Consider two
n-bit numbers A and B. The multiplication matrix is shown in figure 3.4. The truncation
method or, as they named it, truncated multiplication uses only the n+ k most significant
columns of the matrix.

Pon-1 Pon-z ... Po,1 Poo

?1,n—1 P1_;,"'2 e Fi1,1 F{Lo

Pn-2n-1 Pn-2n-2 . Pn21 Pna2o

Pn-1,n-1 Pn-1p2 o Pn-1,1 Pn-1,0

Figure 3.4: Multiplication Matrix of two n-bit numbers

Truncated multiplication leads to two sources of error: reduction error and rounding er-
ror. Reduction error occurs because the n—k least significant columns of the multiplication
matrix are excluded from the computation of the product. Rounding error occurs because
the product is rounded to n bits. To compensate for these two sources of error a correc-
tion constant is added to the n + k most significant columns of the multiplication matrix.
Figure 3.5 features a truncated multiplication matrix, where Cy11_1,Crig—2,-..,C1,Co

is the correction constant. The value of the computed new product Pis:
P =P+ Erequet + Eround + C (3.4.1.1)

where P is the exact product, F,eguct the reduction error, E;.o,nq the rounding error and C
the correction constant. To minimize the the average error of the truncated multiplication,
the correction is selected to be as close as possible to the additive inverse of the expected
value of the sum of the two sources of error. Since the reduction and rounding error
are both negative, the correction constant should be positive. For the estimation of the
expected value of the reduction error it is considered that the probability of any bit a; or
b; being one is 0.5. The positional weight of partial product bit p;; is 27245+ and Dji is
equal to 1 if and only if a; and b; are both one. Therefore, the expected value of p;; is:

9—2n-+j+i

I (3.4.1.2)

Expect[pji| = pji = —

60 Chapter 3. Prior Work in the Field of Approximate Computing

Cnsk-1 Chik-2 C1 Co
Pon-1 Pon2 . Po,n-k+1 Po,n-k

e1,n-1 E1,n-2 JERCE P1{n-k P1!’."k'1
P, nTk,1 P, n-k,0

Pnks1,0

P, n-2,n-1 P, n-2,n-2 «eeeee Pn-2,1 P n-2,0
Pn-1,n-1 Pn-ip2 e Pn-1,1 Pn-1,0

Figure 3.5: Truncated Multiplication Matrix of two n-bit numbers

Since all partial products bits in column ¢ indices j + ¢ = ¢, and there are g + 1 partial
products bits in column ¢, the expected value of the reduction error is:

n—k—1

1 —2n
Ereduct = _Z Z ((q + 1)2 2 +q) (3413)

q=0
To estimate the expected value of the rounding error, it is assumed that the probability
of any product bit r; being one is 0.5. If the products bits p,,_ to p,_1 are truncated, the
expected value of the rounding error is:
1 n—k—1
Eround = —= » 2720 = gn=1(1 o7k 414
round 22 () (3.4.1.4)
The expected value of the total error is the sum of the aforementioned errors
n—k—1
Broat == — 3 ((g+1)27240) — 71 (1 - 27¥) (3.4.1.5)
q=0
The correction constant consists of n+ k bits. Thus, it is computed by the next equation:

7‘0und(2”+'C - Eiotal)

C=- 2n+k

(3.4.1.6)

where round(z) indicates x is rounded to the nearest integer. Nevertheless this correction
constant produces a non-zero component. An improvement to this method was introduced
by King and Schwartzland [12] ,who came up with an idea to change between different
correction constants in order to get rid of the non-zero component. A possible negative
effect is the introduced delay due to the ”decision” which correction constant should be
used.

Another worth mentioning technique, which uses truncation, was developed by Zhang
and He [31]. They proposed an approximate multiplier, where the partial product matrix
is divided into two parts: a main part (MP) for an accurate accumulation and a truncated
part (TP). The TP is further partitioned into TPpajor and T Ppinor. T Pmajor is the
most significant column of TP and T P,,;n0r is the part that is being estimated through a

probabilistic approach.

3.4 Rounding/Correction Terms 61

3.4.2 Hybrid Partial Product Perforation-Rounding

The authors in [14] proposed a hybrid technique combining the partial product perfo-

ration of [30] with a truncation/rounding method.

Partial Product Perforation

The partial product perforation (PPP) technique was presented in a previous section,
that featured the group of techniques about elimination or pruning. In [14] they used it as
follows. Let A and B be two n-bit 2’s complement binary numbers. They dismissed the
generation of k successive partial products starting from the least significant ones. There-
fore the k least significant modified Booth digits are not generated; namely, the 2k LSBs
of B(including b_;) are discarded. Thus, the product A x B is calculated approximately

by the next equation:
n/2-1

AxBl=Y A} 4 (3.4.2.1)

Jj=k

Partial Product Rounding

The idea is to discard the m — 1 LSBs of A, and add a,,_1 with the most significant

remaing part (A,,), as follows:
Am 4 @m—1 = (Gn-1,0p—2. .. Gm)oyg + Am—1 (3.4.2.2)

The truncation of m — 1 LSBs would lead to significant errors in the calculation.
Therefore, the last remaining LSB (a,,—1) is added to A,,. The partial products with
modified booth encoding are produced combining two cases.

In the case of a,,—1 = 0, the inexact partial products (lf’j) are calculated by
Pj=(Am+0) - b}B = A, - b}1B

In the case of a,,—1 = 1, and using the relation A,, + 1 = —A4,,, the inexact partial
products (P;) are calculated by
Py =(Ap+1)-0MB = (—4,,) - bMB = 4, - (—b}5), where
(—bé-\/[B) = (—1)% - (2 - two; + one;). Using the relation A%, = A, @ ay,—1 to form A,

or A,, the two cases are combined, Similarly s; = 5j @ ay—1 is used to form either b;w B

or —b;wB . Therefore, the partial products are computed by]5J = A - bé-WB*, where
bj»\/[B* = (=1)% - (2 - two; + one;).

Partial product perforation and partial product rounding are combined to form the
proposed technique called hybrid partial product perforation-rounding. The next equation

describes this technique:

n/2-1 n/2-1

AXB = Z[f’j-llj = ZA;’;-b;-V[B*Aj, where k € [0,n/2—1) and m € [0,n—1) (3.4.2.3)
=k =k

62 Chapter 3. Prior Work in the Field of Approximate Computing

The correction term (ct), which was presented in the section ”Modified Booth Multi-

plier” of chapter 2 , includes the '1’s and the slightly different sign factors:

C*:S*.

7 = sj - (onej + twoy)

In the example displayed in figure 3.6 £k = 3 and m = 4 are chosen.

1
N EEEEEEEREENRENENENENNNX)
1 ®® ®0® 000000000 0O OO0 ®
1 © 0 0 00000000000 0 0 O °
1 @00 0000000000 e®® o e ®
1T @0 00000000000 e®ae e °
1 @0 00000000000 e®®® o °
1000000000000 eO® e e °
1000000000000 0e®® e o °
°
1
1@ 00000000000 o0
1 0000000000000 @ i
1 @0 000000000 OO0 ® O raibEEmis
10 0000000000 O ® ® truncated bits
1©@0 0000000000 O0 ® [am-1
[] @® sign factors
.newsign

factors

Figure 3.6: PR3 4

3.5 Dynamic Scaling

In this diploma thesis the techniques, that were developed, have more to do with the
previously analyzed groups. Therefore, in this section two important techniques of this
group will be mentioned.

The first was developed by Narayanamoorthy et al. [22]. They proposed an approx-
imate multiplier that uses m sequential bits in an operand as segmented inputs. In [22]
the authors introduce the static segment method (SSM) in order to fix the start point
of a segment and by doing so they achieve scalable accuracy. A limitation of the above
technique is the difficulty in scaling to higher inputs widths. As a result its benefits reduce
respectably as the input size grows. Base on the fact that there more important bits than
others Hashemi et al. [6] proposed to carefully select the range of bits for each operand
of the multipliers. The bit selection is based on the use of two leading one detector(LOD)
circuit blocks to locate the most significant ’one’ in each operand (for example position
t). Then depending on the accuracy required the following k — 2 consecutive bits are
selected. As for the rest an approximation is made using the expected value of a uniform
distribution for values between [O,Qt_k+2 — 1], which is 2t=k+1 Therefore, k bits are used
and the rest are truncated. A general example of the approximation process is presented

in figure 3.7.

3.5 Dynamic Scaling 63

Approximated
<«— k-1 bits

Yo
\

(a) 0 et 0 1 X X e X
Unbiasing < K bits > Truncated .
v >
(b) 1 1 0 s (]
Truncation
< k bits >
(c) 1 1

Figure 3.7: A general example of the approximate process. (a) Original number, (b) Number
after unbiasing, (c¢) Final approximated input.

The aforementioned truncation technique belongs to the group of the truncation/rounding.
A similar to this technique will be used in this diploma thesis in the next chapter, where

all the developed multipliers will be presented.

Chapter 4

Proposed Approximate Techniques

4.1 Introduction

In this chapter all the work, that has been conducted in this diploma thesis, will be

presented. There were developed five techniques:
1. Double High Radix Encoding
2. Double High Radix with perforation
3. High Radix with Correction
4. Perforation with Correction
5. Asymmetric Perforation and Rounding

After the theoretical part of each technique is presented, there will be a quick reference to
the tools used for the simulations. In the end, the results, alongside with the conclusions,

will be displayed.

4.2 Designs

As mentioned before, in this section the theory behind each technique will be analyzed.

4.2.1 Double High Radix Encoding

This technique is an extension of the previously presented hybrid high radix encoding,
developed by the authors of [13].

In the proposed double high radix encoding, each operand is divided in two parts: the
MSB part and the LSB part. For A the MSB part consists of n-m bits and the LSB part
of m bits. Similarly, the MSB part of B comprises n-k bits and the LSB part k£ bits. The

configuration parameters, k, m >4, are even numbers, namely k,m = 2l: [€ Z, with [> 2.

65

66 Chapter 4. Proposed Approximate Techniques

A is divided into A7 and $0R2m:

n—2
A= a2 0 a2t = Ay 4 2" (4.2.1.1)
1=0
n—2
where A = —a,_ 12" + Zaﬂi Fapm_12™ ! (4.2.1.2)
i
and zf*" = 2™ g, 1 + 2™ 20, 0 + ... +ag (4.2.1.3)

Ay is the MSB part of A and z%" € {0, +1, +2, +3, ..., +(2™1-1), -2™"1} corresponds
to the radix-2"" encoding.

The MSB part of B is encoded using the radix-4 (modified Booth) encoding, while its
LSB part is encoded with the high radix-2* encoding.

n—2
B= b2 1Y b2t =By 4y (4.2.1.4)
1=0
n/2-1
where By =) yf14] (4.2.1.5)
j=k/2
k>4
and ij4 = —2bgj1 + byj + bz 1 (4.2.1.6)
and yi2' = 28 1y + 282 5 4 L 4 by (4.2.1.7)

The radix-4 encoding includes (n-k)/2 digits y/** € {0, +1, £2}, while yb2t e {0, +1,
£2, 43, ..., £(2%1-1), 2511 corresponds to the radix-2* encoding. Overall, B is encoded
with (n-k)/2 + 1 digits.

Next, the multiplication A x B is performed:

Ax B= (A +a2f?") - (B + yf)
m m k
= (A1 + ") By + (A + 262") - g
=A-B1+ B ‘xénm +Ay§2k (4218)

The above double high radix technique is characterized by increased logic complexity,
due to the high radix values of xé‘mm and yé%k that are not power of two, and thus, an
approximate version is proposed. However, in order to retain high accuracy, the radix-4
encoding of the MSB of B is performed accurately. In particular, in the approximate
encoding, all the values that are not power of two and the m-4 and k-4 smallest powers
of two, respectively, are rounded to the nearest of the 4 largest powers of two or 0, so
that the sum of all the values of the approximate digits 5" and @éﬂk are 0. Only the
4 largest powers of two are kept, so that the radix-2* /radix-2™ encoding circuit requires
only about the double area in comparison with the accurate radix-4 encoder. Therefore,

A and B are approximated as follows:

4.2 Designs 67

A=Ay + i (4.2.1.9)
B =B+ (4.2.1.10)
where #52" € {0, £2m4, £om=3 Lom-2 yom-1} (4.2.1.11)
and 2" € {0, +2F1, 12F3 1ok-2 Lok-1y (4.2.1.12)

As a result the (4.2.1.8) is modified as follows:

Ax B

Ay By+ By -3l + A 9B (4.2.1.13)

The logical equations of the radix-4 encoding, which is applied only to the MSB part

of B are:

signj = b2j+1 (42114)
le = bgj_l @bgj (42115)
><2j = (sz+1 EBij) . (bgj,l EBij) (4.2.1.16)

The accurate radix-4 encoding is displayed in the next table, which was also presented it

the previous chapter and is the table 3.1

Input R4 Digit Output
b2j+1 ij b2j—1 ij4 signj ><2j ><1j
0 0 0 0 0 0 0
0 0 1 1 0 0 1
0 1 0 1 0 0 1
0 1 1 2 0 1 0
1 0 0 -2 1 1 0
1 0 1 -1 1 0 1
1 1 0 -1 1 0 1
1 1 1 0 1 0 0

ACCURATE RADIX-4 ENCODING TABLE

~ k
32" are:

The logic equations of the encoding signals that define the radix-2* digit 7

68 Chapter 4. Proposed Approximate Techniques

sign = bp_1 (4.2.1.17)

x284 = (bg_o - b_3 - bp_a + br_2 - br_3 - b_4)
- (bg_a®bg_5) (4.2.1.18)

x283 = by 1 bp_o (b3 bp_a- by 5+ bp_3-b_4)

+ bk_l . bk_g . (bk_g -Bk_4 'Bk_5 + Bk_g . bk_4) (4.2.1.19)

X252 =By o b3 (bp_1 + bp_4)

+ bi_o -Ek,g . (Ekfl + Bk,4) (4.2.1.20)

X2kl = by 1 by 9-br_3+ bp_1-bgp_o-br_3 (4.2.1.21)

The above equations apply also for the radix-2™ digit iéﬂk. The LSB part of both
A and B is encoded in the same way. The only difference is that they have separate
configuration parameters. Therefore, the same encoding is applied to both of them. Thus,
the notation radix-2* is used for this type of encoding. The next table is the table 3.2,

which was presented in the previous chapter, and shows the radix-2* encoding.

R2k Digit Output

yéﬂk ﬁéﬂk sign x2k-1 k-2 ok-3 ok-4
[0, 2-3) 0 0O 0 0 0 0
[2k-5) 2k-44 2k-5) 241 0 0 0 0 1
[2k-44ok-5 ok-34ok4yl ok3 1 g0 0 1 0
[2k-3 4 ok-4 ok-249k3)) 2k2 1 90 0 1 0 0
[2k-2 . 2k-3 gk-1) 2110 1 0 0 0
[-2k-1) _2k-2_9k-3) 21 1 0 00 0
[-2k-2.0k-3 _gk-3_gk-1) | ok-2 1 0 1 0 0
[_Qk—3_2k-4’ _2k—4_2k-5) _9k-3 1 0 0 1 0
[-2k-4.2k-5 " _9k-5) 2411 0 0 0 1
[-255.0) 0 1 0 0 0 0

APPROXIMATE RADIX-2 ENcODING TABLE

It should be noted that the notation DRAD|ym or is used to describe this technique.
In the following example, presented in figure 4.1, £k = 8 and m = 8 are chosen. The color
grey indicates the sign extensions, the color black the sign factors and the color white the
generated bits of the partial products. The circles represent the partial products generated
by the factor A; - By, the squares the partial product generated by the factor A - g](}f?k and

the triangles the partial product generated by the factor B - :fvf)mm.

4.2 Designs 69

o -
]
]
]
]
]
]

ooboooooobooobooogoad

1 |
1A AAAAAAANANANANANANANA
1 O O OO O O O O O A
1 © O O O O O O O O [J
1 © OO0 O O O 0O 0 O [J
i O O OO O O O O O [J
[J
comection torm
ooo0ooDooOoUoo0DoDUoUUgoUoUooDooooDooooao
i A AAAAAAANNANAANANANANAA |
1 ®© OO0 OO O OO0 A
1 © OO0 0O O O O O O °
i © OO0 O OO0 O O °
1 ®© OO0 O OO O O [J
°

Figure 4.1: DRAD|256 256

4.2.2 Double High Radix with Perforation

This technique is a follow up of the aforementioned double high radix encoding with
just one modification. A certain factor of the equation (4.2.1.13) is eliminated, specifically

A@(?Qk. So Double High Radix with Perforation can be described by the following equation:

AxB=A, B, +B;-if*" (4.2.2.1)

The equations (4.2.1.14), (4.2.1.15) and (4.2.1.16) are still used for the radix-4 encoding
of the MSB of B. As for ﬁ;éﬁm continues to be computed through the equations (4.2.1.17),
(4.2.1.18), (4.2.1.19), (4.2.1.20) and (4.2.1.21) The notation DRADP|ym o is used to
describe this technique. In figure 4.2 the previously displayed example in figure 4.1 is
presented, but this time the partial product generated by the factor Ay}})mk is eliminated.
As before, the circles stand for the partial products generated by the factor A; - By and
the triangles for the partial product generated by the factor B - i‘éﬂm. The color grey
indicates the sign extensions, the color black the sign factors, the color white the generated
bits of the partial products and the newly used color purple the inverse bit of the sign

extension. The relation 1 + ¢ = c¢ was used to form the final correction term.

70 Chapter 4. Proposed Approximate Techniques

1
« A AAAAAAANAANANARADA
1 ©000000O0O0 A
{0 0000000 ®
i, @0 0000000 e
1 @0 0000000 e
°
comraction term
[F1A A A AAAAAAAANAARADA
1 ©000000O0O0 A
i @0 0000000 ®
i, @0 0000000 e
1 @0 0000000 e
e O

Figure 4.2: DRADP)|256 256

4.2.3 High Radix with Correction

Taking into consideration the double high radix encoding, High Radix with Correction
was developed. The equations (4.2.1.4), (4.2.1.5),(4.2.1.6) and (4.2.1.7) are still being
used for the encoding of B, but A isn’t divided to MSB part and LSB part as before.

Therefore A x B is computed as follows:
AxB=A-(By + jf2)=A4.B, + A" (4.2.3.1)

The partial product matrix generated by AB; is divided into the exact part (EP) and
the approximate part (AP). (AP) is truncated, after an approximation is occured. Figure
4.3 shows the partial product matrix of 16 x 16 bit multipliers when k = 6, so a radix-64
encoding is applied to B. AP will be approximated as follows: The expected value of
a uniform distribution for numbers in the interval [0,2! — 1] is 281, The AP is directly
combined with the selection of ¢t. In the example of figure 4.3 we choose t; = 8, to =6, t3 =
4, ty = 2. There isn’t a ty because this approximation isn’t applied to the partial product
generated by the factor Agjémk of the equation (4.2.3.1). In figure 4.3 is also displayed the
result of this approximation and truncation. The expected value is implemented with the

logic equation:
yr= x1;+ x2; withi=1.4 (4.2.3.2)

x1; and x2; are computed with the equations (4.2.1.15) and (4.2.1.16). The extra ”1”

as a correction term is used as a form of rounding in order to reduce the total error.

It should be noted that the notation RADC|4 4, where t is the equal to t;.

4.2 Designs 71

Oooooooaoao
o O |

o
O
O
o o o =
O O O o
o o o o -
O O O O o
o O O O O =
o o o o oo -
O O O O O0Om
O O O O ob
O O O O om
O o0 O O om
O O O O oo
® O O 0O O o0
O O O oO
® O O O oO
O O oQd
® O O OO
o O
e O OO

1@ O O OO

After the
truncation

L

Oooooooooooaoao

o

@]

O
o o o =
o O O ©
o O o O =
O O O O o
o O o O O =
o oo oom -~
O O O O om
o O O O omO
O O O O om
o O 0O 0O oO
O O O O o0

® O O O O oOd
O O O oO

1

Figure 4.3: RADC|g4s

In figure 4.3 the color grey indicates the sign extensions, the color black the sign
factors and the color white the generated bits of the partial products, exactly as they did
in previous examples. The extra color yellow stands for the bits y,. The circles represent
the partial products generated by the factor A - B; and the squares the partial product
generated by the factor A - @§2k.

4.2.4 Perforation with Correction

The first idea was to to exclude the factor A@[])D“Qk from the equation (4.2.3.1), which
describes the previous technique (High Radix with Correction). This would equivalent of
eliminating at least the first 2 successive partial products because of the requirements:
k = 2] and £k > 4. So finally this technique is a combination of Partial Product Per-
foration(PPP) as described in [30] and the previously described truncation method. In
figure 4.4 a typical example is displayed, where the first 3 consecutive partial products are
excluded and t3 = 8 (Regarding the truncation method, the value of ¢; for just the first
partial product included in the matrix is given). The expected value is still computed via

the logic equation:
yi= x1; + x2; with i =3...7 (4.2.4.1)

x1; and x2; are still implemented with the equations (4.2.1.15) and (4.2.1.16). The
partial product matrix is still divided into two parts: the AP part and the EP part. The
extra 717 as a correction term is used as a form of rounding up in order to decrease the
total error. The notation PERFOC]|y ; is used to describe this technique ; ¢ is equal to ¢;,

where ¢ is the number of the first non perforated partial product.

72 Chapter 4. Proposed Approximate Techniques

EP AP
|
e o000 000 006 00 00 0 0 o0
Hle o0 00 006 000600 00 0 0 o [
e o000 00 00 0600 00 0 0 O [
1 ® OO0 00O OO0 o 06 o600 0090 [
1 ® OO0 0 0OO0O0O0OO0OO0OO0CO60 OO0 o000)
1 ®© OO 0O O0OO0O0OO0OO0OO0OO0OO0OO0OOeO oo o0 (€]
10 OO0 0O O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OOoO OO O (€]
10 OO0 O O0OO0OOO0OO0OO0OO0OO0OO0OOOoOO0oOOo o
[]
and e peroraion
EP AP
1
L 1 ® OO O O OO0 O O O
1@ OO0 OO0 OO OO0 OO0 Oo
10 OO0 OO 0000 OO0 O0 OoOOo
i1 ®© OO0 O0OO0OOO0OO0OO0OO0OO0OO0oOOoOOoOOo
10 OO0 OO0 0O O0OO0OO0OO0OO0OO0OO0OO0OO0OOoOOo
e 1

Figure 4.4: PERFOC]|;3 5

In figure 4.4 the color grey represents the sign extensions, the color black the sign
factors and the color white the generated bits of the partial products, exactly as they did
in the previous example. Furthermore, the color yellow indicates the bits y;, the color
green the bits, which are being truncated, and the color red the partial products, that are

being perforated.

4.2.5 Asymmetric Perforation and Rounding

The Asymmetric Perforation and Rounding technique is a variation of the hybrid par-
tial product perforation-rounding technique, which was developed in [14]. The perforation
of partial products is still applied as in the perforation with correction technique. The
difference between this method and the described in [14] is the way the rounding is ap-
plied. Specifically, rounding is applied to the ¢;-bit of each partial product (where i takes
the value from the number of the first not perforated partial product to the number of the
last partial product). Therefore, the t; — 1 LSBs of A are truncated, and a¢,—; is added

to the most significant remaining part as the next equation shows:
Ay, + ag—1 = (An—1,an—2... t,)9rg + az;—1 (4.2.5.1)

In the case of a;,—1 = 0, the approximated partial products (Pj) are computed by the next

equation

Pj — (1415Z + 0>y]R4 = Atiy]R4 (4252)

where yJR4 is calculated in (4.2.1.6)

In case of a;;,—1 = 1, and using the relation 4;, +1 = —Ati, the approximated partial

4.2 Designs 73

products are calculated by the next equation

Py = (Ay, +)yl = (A,)yf* = A4, (—yf) | (4.2.5.3)
where —y[** = (=1)% (x2; + x1;)

s; is equivalent to sign;, and sign;, x1; and x2; are calculated by the equations (4.2.1.14),
(4.2.1.15) and (4.2.1.16),respectively.
The two cases are combined through the relation

§ = Ay, ®ay,—1 to form either Ay, or —A;, ,depending on the value of a;,_;. Similarly
* R4

J
are computed by P = Afiij‘L* where —yf“ = (=1)%(x2; + x1;). As for the sign factors,

the relation, s 5j @ ag;—1, is used to form either or —yJR4. So the partial products

the next logic equation is used to describe them.

C; = 8; A (><2j vV le)

The asymmetry is shown in figure 4.5, where an example of this technique is presented.
The logic behind the asymmetry is that the rounding can’t be applied vertically without
increasing the depth of the accumulation tree. Thus, it is applied as vertically as possible.

The notation APR|;; is used to describe this technique ; ¢ is equal to the value, that
t; would have gotten in the case of a perfectly vertical application of rounding, and ¢ is

the number of the first non perforated partial product.

]
Hlieo o000 0000000000000
Hlieoooco0ooc0o0o00000 0000 @ °
Hlio o006 0000000000 000 ®
1T @0 0000000000 0000 e °
1T @0 0000000000000 O0o0 °)
1 @0 000000000000 O6O0 0 ¢)
1 @00 0000000000006 e)
1000000000000 O0O0 e e o
1S}
and the pertoration
1
L 1t @0 00O0O0O0O0
1@ 00 00O0O0O0O0O0
1@ 00 0000O0O0O0O0
‘oooooooooooooj
‘ooooooooooooooiE

Figure 4.5: Partial Product Matrix of APR|3 19

In figure 4.5 the color grey represents the sign extensions and the color white the
generated bits of the partial products,exactly as they did in previous examples. Further-
more, the color blue stands for the newly formed sign factors ¢}, the color green for the
bits, which are being truncated, and the color red for the partial products, that are being

eliminated.

74 Chapter 4. Proposed Approximate Techniques

4.3 Tools and Experimental Setup

All the multipliers to be compared, are implemented in Verilog HDL, synthesized using
Synopsys Design Compiler and the TSMC' 65-nm standard cell library, and simulated with
Mentor Graphics ModelSim. The critical path delay and the area are reported by Synopsys
Design Compiler, while the power consumption is measured with Synopsys PrimeTime-
PX tool and the use of all the possible input combinations. All the designs are synthesized
and simulated at 1V, i.e., the nominal supply voltage. The procedure, that was followed,

consists of the next steps:
1. The project is created via the command: $create_project
2. The Verilog code and the testbench are prepared.

3. The syntax of the source code and the testbench are checked via the commads $make

check_vlog and $make check_tb,respectively.

4. In this step the rtl simulation is occurred via the command $make rtl_sim.Mentor
Graphics ModelSim opens and the simulation begins. After that, with the help of
matlab the functional correctness of the design is verified. Specifically, matlab and
rtl simulation generate an output file of the results of 131070 multiplications. The

two output files are compared and if they are identical, then the design is correct.

5. Firstly, all the parameters of the synthesis are set. One important parameter is
the value of the clock period. Next, via the command $make dcsyn the design
synthesis happens. This step is repeated until the critical path (smallest delay) is
found. The command $make dcsyn uses the tool Synopsys Design Compiler and the
TSMC 65-nm standard cell library in order to find out if the time constrains are

violated and also computes the total area needed for the given parameters.

6. The command $make sta defines the clock period of the testbench to be the same
with the clock period, which was used in the design synthesis. Furthermore, the
Static Time Analysis(STA) provides a more accurate answer of whether the time
constrains are met. Next, the command $make gate_sim is performed and a gate
level simulation is occurred. Lastly, the command $make power computes the

power consumption with the help of the Synopsys PrimeTime-PX tool.

7. The final step is to compute the error of the approximate multiplier. To achieve
this, matlab is used, where the comparison of the exact and the approximate result

leads to the computation of the average error.

Simulations were made for both, critical path delay and a more relaxed clock. In figure

4.6 the steps of the followed procedure are presented.

4.3 Tools and Experimental Setup

—> Verilog code and testbench

Not
ok

Y

— Syntax check

Ok

Y

RTL simulation and design verification

Y

—> Design Synthesis and critical path delay

Violated

Time
constrains

Met

Y

Total Area

Y

Gate-level simulation

A 4

Power consumption

A 4

Error Computation

Figure 4.6: Flow chart of the followed procedure

76 Chapter 4. Proposed Approximate Techniques

4.4 FError Analysis

A critical issue in approximate computing designs is the error imposed due to the
approximations and how it affects the final results. In [15], an error evaluation metric
is proposed, being called mean relative error distance (MRED). RED is defined as the
arithmetic difference between the accurate and the approximate product divided by the

227 are all

accurate product, while MRED is the average of REDs for a set of inputs (
the possible input combinations for a n x n multiplier). The possibility of having RED
smaller than 2% (PRED) is another important metric used in [9] and [18] for evaluating
approximate radix multipliers.

Considering the multiplication of two n-bit numbers, A and B, with the P being the

approximate product and P the accurate, the RED is calculated by:

PP
REDAp = ——+—
1P|
MRED is calculated by:
> REDagp
MRED = —/——
N
where N the number of inputs.
PRED is given by:
pos
PRED = —
N

where pos the total sum of REDs being smaller than 2%.

4.5 Experimental Results

This section includes the evaluation of the developed techniques of this diploma thesis
in terms of accuracy(error) and hardware (delay,area,power, and energy). All the simula-
tions were made for a 16 x 16 multiplier (n = 16). Firstly, in table 4.1 all results of the
double high radix encoding technique in critical path delay are displayed.

Multiplier Delay(ns) | Power(uW) | Area(um?) | Energy(uW -ns) | MRED(%) | PRED%
DRAD|e4,64 0.72 3376 2660 2430.72 0.15 99.19
DRAD|g4,256 0.68 3500 2585 2380 0.34 97.98
DRAD|64,1024 0.64 3329 2302 2130.56 0.97 92.87
DRAD)|256 64 0.69 3488 2574 2406.72 0.33 97.91
DRADIa256,256 0.66 3457 2470 2281.62 0.5 96.69
DRAD)|256,1024 0.64 3029 2110 1938.56 1.11 91.62
DRAD1024,64 0.67 3467 2475 2322.89 0.98 92.91
DRAD|1024,256 0.65 3106 2165 2018.9 1.12 91.70
DRAD1024,1024 0.61 3022 1960 1843.42 1.65 86.75

Table 4.1: Total Results of DRAD

gm ok in Critical Path Delay

4.5 Experimental Results 77

In the next table 4.2 all results of the double high radix with perforation technique in
critical path delay are displayed.

Multiplier Delay(ns) | Power(uW) | Area(um?) | Energy(uW -ns) | MRED(%) | PRED%
DRADP|g464 0.68 3063 2335 2082.84 0.49 97.21
DRADP 64,256 0.63 2693 1975 1696.59 1.52 89.84
DRADP |4 1024 0.60 2468 1828 1480.80 4.84 60.68
DRADP|56 64 0.64 3005 2173 1923.2 0.65 95.93
DRADP |56 256 0.63 2251 1644 1418.13 1.65 88.59

DRADP |256,1024 0.57 2252 1643 1283.64 4.93 59.68
DRADP] 102464 0.64 2404 1802 1538.56 1.25 90.96
DRADP|1024,256 0.58 2472 1734 1433.76 2.16 83.69
DRADP|1024,1024 0.55 1840 1333 1012 5.31 56.11

Table 4.2: Total Results of DRADP|ym o« in Critical Path Delay

In the table 4.3 all results of the high radix with correction technique in critical path

delay are presented.

Multiplier | Delay(ns) | Power(uWW) | Area(um?) | Energy(uW - ns) | MRED(%) | PRED%

RADClg4,6 0.72 3449 2748 2483.28 0.1 99.54

RADCles 8 0.71 3429 2716 2434.59 0.15 99.35
RADCle4,10 0.68 3325 2523 2261 0.38 98.61
RADC)|256,6 0.66 3494 2604 2306.04 0.33 98.21
RADC]256,8 0.64 3305 2418 2115.2 0.52 97.62
RADC|a56,10 0.64 2893 2116 1832.32 1.45 95.49
RADCli024,6 0.61 3380 2535 2061.8 1.13 92.77
RADC|1024,8 0.59 3260 2309 1923.4 1.94 91.21
RADC]1024,10 0.58 3031 2024 1757.98 5.57 85.47

Table 4.3: Total Results of RADC]|yx ; in Critical Path Delay

In the next table 4.4 all results of the perforation with correction technique in critical
path delay are displayed. Lastly, in the table 4.5 all results of the asymmetric perforation

and rounding technique in critical path delay are presented.

78 Chapter 4. Proposed Approximate Techniques
Multiplier | Delay(ns) | Power(uW) | Area(um?) | Energy(uW -ns) | MRED(%) | PRED%
PERFOC]| ¢ 0.73 4011 3329 2928.03 0.04 99.82
PERFOC]; g 0.73 3535 2939 2580.55 0.04 99.81
PERFOC]y,10 0.71 3803 3101 2700.13 0.05 99.76
PERFOC]i 12 0.72 2979 2466 2144.88 0.11 99.53
PERFOC]; 14 0.69 2669 2174 1841.61 0.38 98.58
PERFOC]|26 0.69 3534 2786 2438.46 0.14 99.39
PERFOC], g 0.71 3096 2544 2198.16 0.15 99.35
PERFOC]3 10 0.68 3028 2478 2059.04 0.21 99.18
PERFOC]3 12 0.66 2754 2160 1817.64 0.48 98.41
PERFOC|3,14 | 0.66 3126 2342 2063.16 1.72 95.71
PERFOC]3¢ 0.66 3005 2367 1983.3 0.45 95.57
PERFOC]3 g 0.66 2635 2129 1739.1 0.49 97.44
PERFOC]|3 10 0.64 2428 1910 1553.92 0.68 96.88
PERFOC]3 12 0.63 1965 1519 1237.95 1.62 94.83
PERFOC]|46 0.62 3158 2414 1957.96 1.52 90.14
PERFOC]|4g 0.60 2673 2114 1603.8 1.67 89.79
PERFOC]|4 10 0.59 2241 1721 1322.19 2.47 88.37

Table 4.4: Total Results of PERFOC|;; in Critical Path Delay
Multiplier | Delay(ns) | Power(uW) | Area(um?) | Energy(uW - ns) | MRED(%) | PRED%
APR|1 8 0.75 3675 3188 2756.26 0.04 99.82
APR|110 0.73 3527 3021 2574.71 0.04 99.79
APRJ1,12 0.73 3198 2756 2334.54 0.05 99.74
APR|; 14 0.7 3140 2548 2198 0.12 99.37
APRJ1,15 0.69 2775 2281 1914.75 0.19 98.91
APR|28 0.71 3260 2703 2314.6 0.13 99.37
APRJ2,10 0.7 3058 2606 2140.6 0.14 99.33
APR|2.12 0.69 2687 2197 1854.03 0.19 99.02
APRJ213 0.68 2635 2142 1791.8 0.25 98.6
APR|2.14 0.68 2254 1836 1532.72 0.38 97.77
APR|215 0.66 2170 1712 1432.2 0.62 96.19
APRJ36 0.68 2890 2436 1965.2 0.44 97.58
APR|3g 0.67 3058 2519 2048.86 0.45 97.54
APR|3,10 0.65 2746 2183 1784.9 0.49 97.26
APRJ3,12 0.64 2266 1787 1450.24 0.63 96.21
APRJ313 0.64 1993 1590 1275.52 0.82 94.89
APR|3 14 0.63 1843 1385 1161.09 1.24 92.17
APRJ315 0.60 2161 1694 1296.6 1.96 87.13
APR|46 0.64 2483 2019 1589.12 1.49 90.19
APR|4g 0.61 2480 1949 1512.8 1.52 89.97
APR|4.10 0.61 1991 1574 1214.51 1.62 89.17
APRJ412 0.59 1958 1575 1155.22 2.07 86.12

Table 4.5: Total Results of APR|; ¢ in Critical Path Delay

4.5 Experimental Results

79

In the next tables 4.6,4.7,4.8,4.9 and 4.10 the results of each technique in a relaxed

clock are presented. The chosen delay is 0.8ns

Multiplier Delay(ns) | Power(uW) | Area(um?) | Energy(uW -ns) | MRED(%) | PRED%
DRAD|¢4,64 0.80 2474 2252 1979.2 0.15 99.19
DRAD|64,256 0.80 2180 1087 1744 0.34 97.98
DRAD|64,1024 0.80 1860 1651 1488 0.97 92.87
DRAD|256 64 0.80 2371 2075 1896.8 0.33 97.91
DRAD256,256 0.80 2024 1770 1619.2 0.5 96.69
DRAD)|256,1024 0.80 1788 1549 1430 1.11 91.62
DRAD|1024,64 0.80 2105 1850 1684 0.98 92.91
DRAD|1024,256 0.80 1899 1648 1519.2 1.12 91.70
DRAD1024,1024 0.80 1666 1471 1332.8 1.65 86.75

Table 4.6: Total Results of DRAD|3m o« in Relaxed Clock

Multiplier Delay(ns) | Power(uW) | Area(um?) | Energy(uW - ns) | MRED(%) | PRED%
DRADP|64,64 0.80 1928 1738 1542.4 0.49 97.21
DRADP 64,256 0.80 1540 1440 1232 1.52 89.84
DRADP/|64,1024 0.80 1269 1177 1015.2 4.84 60.68
DRADP|256 64 0.80 1659 1532 1327.2 0.65 95.93
DRADP| 256 256 0.80 1350 1267 1080 1.65 88.59
DRADP|256,1024 0.80 1092 1067 873.6 4.93 59.68
DRADP|1024,64 0.80 1409 1315 1127.2 1.25 90.96
DRADP|1024,256 0.80 1145 1114 916 2.16 83.69
DRADP]1024,1024 0.80 914 851 731.2 5.31 56.11

Table 4.7: Total Results of DRADP|ym o« in Realxed Clock

Multiplier | Delay(ns) | Power(uW) | Area(um?) | Energy(uW - ns) | MRED(%) | PRED%
RADC|64,6 0.80 2589 2290 2071.2 0.1 99.54
RADClp4,8 0.80 2486 2126 1988.8 0.15 99.35
RADCle4,10 0.80 2217 1930 1773.6 0.38 98.61
RADC|256,6 0.80 2116 1901 1692 0.33 98.21
RADC]256,8 0.80 1970 1742 1576 0.52 97.62
RADC]|256,10 0.80 1823 1602 1458.4 1.45 95.49
RADCl1024,6 0.80 1653 1573 1322.4 1.13 92.77
RADC]1024,8 0.80 1615 1462 1292 1.94 91.21
RADC]|1024,10 0.80 error is too big 5.57 85.47

Table 4.8: Total Results of RADC|yk ; in Relaxed Clock

80 Chapter 4. Proposed Approximate Techniques
Multiplier | Delay(ns) | Power(uW) | Area(um?) | Energy(uW -ns) | MRED(%) | PRED%
PERFOC]| ¢ 0.80 2818 2557 2254.4 0.04 99.82
PERFOC]; g 0.80 2593 2380 2074.4 0.04 99.81
PERFOC]y,10 0.80 2486 2225 1988.8 0.05 99.76
PERFOC]i 12 0.80 2058 1892 1646.4 0.11 99.53
PERFOC]; 14 0.80 1789 1632 1431.2 0.38 98.58
PERFOC]|26 0.80 2264 2117 1811.2 0.14 99.39
PERFOC], g 0.80 2097 1942 1677.6 0.15 99.35
PERFOC]3 10 0.80 1871 1707 1496.8 0.21 99.18
PERFOC]3 12 0.80 1661 1490 1328.8 0.48 98.41
PERFOC]3 14 0.80 1667 1550 1333.6 1.72 95.71
PERFOC]3¢ 0.80 1856 1701 1484.8 0.45 95.57
PERFOC]3 g 0.80 1684 1533 1347.2 0.49 97.44
PERFOC]3 19 0.80 1448 1342 1158.4 0.68 96.88
PERFOC]3 12 0.80 1221 1129 976.8 1.62 94.83
PERFOC]|46 0.80 1654 1506 1323.2 1.52 90.14
PERFOC]|4g 0.80 1413 1323 1130.4 1.67 89.79
PERFOC]4,10 0.80 1092 1094 873.6 2.47 88.37

Table 4.9: Total Results of PERFOC]|; in Relaxed Clock
Multiplier | Delay(ns) | Power(uW) | Area(um?) | Energy(uW - ns) | MRED(%) | PRED%
APR|1 8 0.80 2915 2611 2332 0.04 99.82
APR|110 0.80 2555 2354 2044 0.04 99.79
APRJ1 12 0.80 2441 2214 1952.8 0.05 99.74
APR|; 14 0.80 2069 1885 1655.2 0.12 99.37
APRJ1,15 0.80 1882 1738 1505.6 0.19 98.91
APR|28 0.80 2276 2068 1820.8 0.13 99.37
APRJ2,10 0.80 2099 1927 1679.2 0.14 99.33
APR|2.12 0.80 1782 1659 1425.6 0.19 99.02
APRJ213 0.80 1708 1537 1366.4 0.25 98.6
APR|2.14 0.80 1505 1395 1204 0.38 97.77
APR|215 0.80 1351 1250 1080.8 0.62 96.19
APRJ36 0.80 1887 1804 1509.6 0.44 97.58
APR|3g 0.80 1823 1711 1458.4 0.45 97.54
APRJ3,10 0.80 1567 1487 1253.6 0.49 97.26
APRJ3,12 0.80 1348 1271 1078.4 0.63 96.21
APRJ313 0.80 1227 1154 981.6 0.82 94.89
APR|3 14 0.80 1108 1045 886.4 1.24 92.17
APRJ315 0.80 1114 1094 891.2 1.96 87.13
APR|46 0.80 1551 1478 1240 1.49 90.19
APR|4g 0.80 1332 1298 1065.6 1.52 89.97
APR|410 0.80 1159 1117 927.2 1.62 89.17
APR|412 0.80 981 1022 784.8 2.07 86.12

Table 4.10: Total Results of APR|; in Relaxed Clock

4.5 Experimental Results

81

Combining the results in the tables 4.1, 4.2, 4.3, 4.4 and 4.5, the Pareto diagrams in

the figure 4.7 are produced.

3350
+ + RAD[13]
3050 « PR [14]
N + DRAD
o DRADP
27501 RADC
@ * + PERFOC
9 2450 Va4 +% APR
= o q *
= W X *
B oF b +
— 2150 & *
] * ol
o & #
E 8 x d * *
5 1850+ o Qx *
pal
o) *
1550 o * o -
& X o [n]
*
1250 o &
o x o
X
950 | | | | | | | | |
0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 24 2.7
MRED (%)
(a) Energy-Error
3600~
+ + RAD[13]
33001 « PR [14]
" DRAD
5‘* o DRADP
3000 3 % RADC
ook o+ + PERFOC
_ 27001 “F x . APR
& o* *s 0
= * ¥ o* *
= 2400} o *
o X o *
= 21001 o £ iy . *
X
18001 o o o
a *
o 2 o
1500 Q X %
o
1200 | | | | | | | | |
0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 24 2.7

MRED (%)
(b) Area-Error

Figure 4.7: Evaluation of the proposed approximate multipliers in Pareto diagrams, when syn-

thesized and operating at their critical path delay.

Respectively, combining the results in the tables 4.6, 4.7, 4.8, 4.9 and 4.10 the Pareto

diagrams in the figure 4.8 are produced.

82 Chapter 4. Proposed Approximate Techniques

2450

o + RAD [13]
i « PR [14]
+
2150+ DRAD
& o DRADP
5 % RADC
18501 * + PERFOC
0 s, o APR
= & .
C1sso- %n o, o
%" o *
5 o X% o + %
1250 0 © . o
@ * m] ox D*
o *
950
o O x o o %
o
x
650 | | | | | | | | |
0 0.3 0.6 0.9 12 15 1.8 2.1 2.4 2.7
MRED (%)
(a) Energy-Error
2800
+ RAD[13]
% ~ PR[14]
2500 * + DRAD
x o DRADP
o 's RADC
2200 : + PERFOC
a o+ © APR
—_ x ¥
41000 F .
= %Ky
o gk @ +* *
_% 1600+ 5 % . y
& &
o . x
1300} 9 o o*
o i) b3 o [m] %
1000} @ o
x
700 | | | | | | | | |
0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7

MRET (970

(b) Area-Error

Figure 4.8: Evaluation of the proposed approximate multipliers in Pareto diagrams, when syn-

thesized and operating at a relaxed clock.

Based on the above figures 4.7 and 4.8, it’s easy to conclude that the best developed
technique is the asymmetric perforation and rounding technique. It thrives in all categories
(Energy and Area). The second best technique is the perforation with correction. In some
cases, it is very close or even better than the APR technique. The others developed
techniques are far behind due to lots of reasons. It seems that the approximations made,

have an effect of high loss in accuracy without gaining much energy efficiency.

4.5 Experimental Results 83

In the next figures 4.9 the diagrams present the changes in error when different values

of the configurations parameters of each technique are applied.

(a) DRAD|2k72m (b) DRADP|2k72m (C) RADC|2k7t

(d) PERFOC|;, (e) APR|p;

Figure 4.9: MRED variation w.r.t. approximation configuration parameters of 16x16 bit multipli-
ers: (a) Double High Radiz (b) Double High Radiz with Perforation (c) High Radiz with Correction

(d) Perforation with Correction (e) Asymmetric Perforation and Rounding

Chapter 5

Conclusion and Future Work

The embedded and mobile nature of modern computing systems has led to an in-
creased need for high performance and energy efficiency. As a result, since the failure
of Dennard scaling, energy dissipation has become a first class concern in the design of
integrated circuits. Towards this direction, approximate (or inexact) computing appears
as an emerging and promising solution for energy-efficient systems design [5], exploiting
the inherent error/noise resilience of various applications. More explicitly, perfect answers
are often unnecessary (or do not exist) in a large number of application domains involving
media processing, machine learning, data mining and statistics [2].

The topic of this diploma thesis was the exploration of new inexact techniques for
energy-efficient approximate multiplication circuits. Therefore, five new methods of ap-
proximate multiplication were developed. The implementation of these methods was made
in Verilog code. Next, the simulations for the configuration of the power consumption and
error of each technique were performed with the help of Synopsys Design Compiler, Men-
tor Graphics ModelSim and Matlab. After all results were ready, the evaluation of the
proposed multipliers was performed with the help of Energy-Error and Area-Error Pareto
diagrams. The comparison between the multipliers was made, when they were synthesized
and operating at their critical path delay. A second comparison between them was per-
formed, when synthesized and operating at a relaxed clock. Finally, five diagrams were
presented, where the error depending on the configuration parameters of each technique
was displayed.

In this diploma thesis all the implementations were performed for a 16 x 16 multiplier.
Future work could include the implementation of the developed techniques in order to
form a 24 x 24 or a 32 x 32 multiplier. Generally, the implementation of these methods for
a greater or lesser number of bits than 16 is pending. Another idea for future work could
be the development of a technique similar to the one of high radix with correction. But
instead of the used correction digits ¥, the rounding method of the asymmetric perforation

and rounding technique could be applied.

85

Bibliography

[1]

2]

S. T. Chakradhar and A. Raghunathan. Best-effort computing: Re-thinking parallel

software and hardware. In Design Automation Conference, pages 865-870, June 2010.

V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan. Analysis and char-
acterization of inherent application resilience for approximate computing. In Design

Automation Conference, pages 1-9, May 2013.

H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neural acceleration for
general-purpose approximate programs. In IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 449460, Dec 2012.

V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy. Low-power digital signal
processing using approximate adders. IEEE Transactions on Computer-Aided Design
of Integrated Clircuits and Systems, 32(1):124-137, Jan 2013.

J. Han and M. Orshansky. Approximate computing: An emerging paradigm for
energy-efficient design. In IEEE European Test Symposium (ETS), pages 1-6, May
2013.

S. Hashemi, R. I. Bahar, and S. Reda. DRUM: A dynamic range unbiased multiplier
for approximate applications. In IEEE/ACM International Conference on Computer-
Aided Design, pages 418-425, Nov 2015.

H. Jiang, J. Han, and F. Lombardi. A comparative review and evaluation of approx-
imate adders. In Great Lakes Symposium on VLSI, pages 343-348, May 2015.

H. Jiang, J. Han, F. Qiao, and F. Lombardi. Approximate radix-8 booth multipliers
for low-power and high-performance operation. IFEFE Transactions on Computers,
65(8):2638-2644, Aug 2016.

H. Jiang, J. Han, F. Qiao, and F. Lombardi. Approximate radix-8 booth multipliers
for low-power and high-performance operation. IEEFE Transactions on Computers,
65(8):2638-2644, Aug 2016.

X. Jiao, Y. Jiang, A. Rahimi, and R. K. Gupta. Slot: A supervised learning model to
predict dynamic timing errors of functional units. In Design, Automation and Test
i Furope, pages 1183—1188, March 2017.

87

88

Bibliography

[11]

[13]

[14]

[16]

[22]

M. Kamal, A. Ghasemazar, A. Afzali-Kusha, and M. Pedram. Improving efficiency
of extensible processors by using approximate custom instructions. In Design, Au-

tomation and Test in Furope, pages 1-4, March 2014.

E. J. King and E. E. Swartzlander. Data-dependent truncation scheme for parallel
multipliers. In Asilomar Conference on Signals, Systems and Computers, pages 1178—
1182, Nov 1997.

V. Leon, G. Zervakis, D. Soudris, and K. Pekmestzi. Approximate hybrid high radix
encoding for energy-efficient inexact multipliers. IFEFE Transactions on Very Large
Scale Integration (VLSI) Systems, 26(3):421-430, March 2018.

V. Leon, G. Zervakis, S. Xydis, D. Soudris, and K. Pekmestzi. Walking through the
energy-error pareto frontier of approximate multipliers. IEEE Micro, 38(4):40-49,
Jul-Aug 2018.

J. Liang, J. Han, and F. Lombardi. New metrics for the reliability of approximate
and probabilistic adders. IEEE Transactions on Computers, 62(9):1760-1771, Sept
2013.

A. Lingamneni, C. Enz, K. Palem, and C. Piguet. Highly energy-efficient and quality-
tunable inexact FFT accelerators. In IEEE Custom Integrated Clircuits Conference,
pages 1-4, Sept 2014.

C. Liu, J. Han, and F. Lombardi. A low-power, high-performance approximate mul-
tiplier with configurable partial error recovery. In Design, Automation and Test in
FEurope, pages 1-4, March 2014.

W. Liu, L. Qian, C. Wang, H. Jiang, J. Han, and F. Lombardi. Design of approxi-
mate radix-4 booth multipliers for error-tolerant computing. IEEE Transactions on
Computers, PP, 2017.

S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard. Quality of service profiling.
In ACM/IEEFE International Conference on Software Engineering, pages 25-34, May
2010.

S. Mittal. A survey of techniques for approximate computing. ACM Computing
Surveys, 48(4), May 2016.

A. Momeni, J. Han, P. Montuschi, and F. Lombardi. Design and analysis of approx-
imate compressors for multiplication. IEEE Transactions on Computers, 64(4):984—
994, Apr 2015.

S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, T. Park, and N. S. Kim. Energy-
efficient approximate multiplication for digital signal processing and classification ap-
plications. IEEE Transactions on Very Large Scale Integration Systems, 23(6):1180—
1184, June 2015.

23]

[24]

[28]

[31]

[32]

R. Ragavan, B. Barrois, C. Killian, and O. Sentieys. Pushing the limits of voltage over-
scaling for error-resilient applications. In Design, Automation and Test in Europe,
pages 476-481, March 2017.

K. M. Reddy, Y. B. N. Kumar, D. Sharma, and M. H. Vasantha. Low power, high
speed error tolerant multiplier using approximate adders. In International Symposium
on VLSI Design and Test, pages 1-6, June 2015.

A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Grossman.
Enerj: Approximate data types for safe and general low-power computation. In ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages
164-174, June 2011.

M. J. Schulte and E. E. Swartzlander. Truncated multiplication with correction
constant. In IEEE Workshop on VLSI Signal Processing, pages 388-396, Oct 1993.

S. Venkatachalam, H. J. Lee, and S. Ko. Power efficient approximate booth multiplier.
In 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pages 1-4,
May 2018.

S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan.
Quality programmable vector processors for approximate computing. In IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 1-12, Dec 2013.

Q. Xu, T. Mytkowicz, and N. S. Kim. Approximate computing: A survey. [IFEFE
Design Test, 33(1):8-22, Feb 2016.

G. Zervakis, K. Tsoumanis, S. Xydis, D. Soudris, and K. Pekmestzi. Design-efficient
approximate multiplication circuits through partial product perforation. IEEE Trans-
actions on Very Large Scale Integration Systems, 24(10):3105-3117, Oct 2016.

Z. Zhang and Y. He. A low-error energy-efficient fixed-width booth multiplier with
sign-digit-based conditional probability estimation. IEEE Transactions on Circuits
and Systems II: Express Briefs, pages 236-240, Feb 2018.

7. Zhang, Y. He, J. He, X. Yi, Q. Li, and B. Zhang. Optimal slope ranking: An
approximate computing approach for circuit pruning. In 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1-4, May 2018.

