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ITepirndm

H NevpoemotAun yuehetd tov avipndnivo eyxEQaio, TO VEURIXO GUCTNUN XAl TG OUTO AEL-
ToupYel xou opyavevetal. Auth 1 uerétn eoTidleTon xUple GTOV aVP®TIVO EYXEPIAO XAl TIWS
autog xadopiler TV cLVEBNON Xou TNV cLUUTERLPOREd Tou. Eve 010 mapehdov Ta oyeTIXd TEL-
EAUOTOL EXTEAOUVTAY OF EQYUC THELN UE X0 dpldUd VELPWVGY 1) TOV (810 TOV eYXEQPUAO, CHUERY
Ol VEUPOETIG TAUOVES YLENOLLOTOL00V UTOAOYLOTES YO VO TROGOUOLWCOUY BiXTUA VEUPWVMY UE
UEY AN axpifBeta, ToAumhoxdtnTa xou péyedog. Emmiéov, autd to mewpduota toug Bonddve va
ToEOXOAOLVOUY TIEPLOGOTERES UETUBANTES 0L TOUG TOREYOUY TNV BUVATOTNTO VO OTTIXOTOLOVY
ueydha dixtua, Pondoviag Toug TEEUTERL OTNV EPELVA TOUG.

To 6ho xou mo cOvieta xou YeydAo BixTUN VELPMVKY TTOU VENOLY VO TROGOUOWOGOUY OL
VEUROETUO TAUOVES ONULOVRYNOAY TNV ovVEayXT] YL ETULTEYUVOT] TOUG OE OLAPORES TAATPOPUES
XL OPYITEXTOVIXES. Evey uTtdipyouv Bitdpopot yevixol TeocouotwTéS Tou xaAUTTOLY TS Pactxég
OVAYHES TWV ETUC TNHOVLY, OL TEQIGGOTEROL amd aUTOUG OeV elvan BEATIo TOTTOINUEVOL Yia ToL GUY-
YPOVOL UTOAOYLO TiXS GUC TAUATO XAl ETOUEVWS BEV TETUYUVOUY TNV XAADTERT BUVATY AmdBOsT)
UE ATMOTEAECUA OL TOOGOUOLWOELS VoL YPELILOVTOL (PES 1) oXOUoL X0 HEPEC VLol VoL OAOXANEW 0LV,
#xJUC TEPWVTAG TNV EQEUVAL

H Simhwpatiny autr) mpoorodel vor xoahOer tnv ovdyxn Yo ETLTUYUVOUEVEC TEOCOUOL-
(OOELC YPNOOTOWWVTUS TNV Thatgoépua Mnyavov Porig Acdouévwy tng Maxeler yio va emi-
TayOVeL po tpocouolwor evog Hpocapuootixol Exdetinol povtéhou Nevphva Yuodpeuong-
xau-TTupoddtnone oe éva dixtuo pe IhacTixdtnTo e€optduevn and Tic ypovinés otiyuéc Iupo-
06tnong twv Neupovwy. H mpocouoiwon apyind yetagppdotnxe and tov mpocouowwty| Brian
o€ €va TPOYPOUMN YROUUEVO OTN YAWooo Tpoypoupatiopod C xau otn cuvéyelo e€eilydnxe
v i Mnyavée Porig Aedopévev. H mhatpopua tng Maxeler Baciletar oc FPGA xon yen-
owonolel Evay Ypdpo pofe BEBOUEVKDVY YLo Vo ETEEERYUOTEL Tal BEBOPEVA, AMOCUVBEOVTC TNV
Aoyuxr) amd TNV pviun mou Beloxovton To dedopéva. Lt Mnyoavée Porig Aedouévwy o ypdvog
TWV UTOAOYLOU®Y UETATEETETOL GE UTOAOYLOUOUEC GTOV YWEO.

Avuth n vAomolnon xaTd@epe Vo ETLITOUVEL TNV TPOGOUOIWOT) UEYEL Xt 8 POREC GE GYEDT) UE
Tov Ilpocopointh Brian xou etvor icovi| var tpocopolaoet dixtua de mve omd 20000 vevpwveg,
XPUTOVTAC TNV (Blar AELToUEYOTNTA TV Luvdewy ue Tov Brian. Ytic petprioeic Twv npoco-
HOLOOEWY TapatneiUn oy Ueydheg PETOBoAEC 0TOUS AGYOUC TNG emTdyLVONS Twv Mryoavoy
Poov Aedopévwy oe oyéon ue tnv npocouoiwon oe C eCantiog Tng e€apT®UEVNE amd YEYOVOTA
PLOMNC TNS TEOGOUOIWONE XAl TOU VIETEQUVIG TV YeoVou extéheong Tou amartoly ta FPGA.
Autéd 10 yeyovog amotedel onueio WaiTEPOL EVOLAPEPOVTOC X0t AVOAUETOL TEQIOCOTEQD OTNV

OLTTAWMOLTIXY).
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Abstract

Neuroscience studies the human brain, the nervous system and how it functions and
organizes itself. The main focus of these studies are the human brain and how it defines
each person’s consciousness and behavior. While in the past most of the experiments were
done in labs studying small amounts of neurons or the brain itself, nowadays neuroscientists
use computers to simulate neuronal networks in great detail, complexity and size. Those
simulations also help them keep track of more variables and grant them the ability to
visualize large networks, aiding them further in their research.

The ever more complex and large neuron networks that neuroscientists want to simulate
has generated a need to accelerate neuron simulations in different platforms and architec-
tures. While there are a lot of universal simulators that cover neuroscientists’ basic needs,
most of them are not optimized for modern computer systems and consequently don’t
achieve the best performance possible, causing the simulations to demand hours or days in
execution time, delaying research.

This diploma thesis attempts to appease the need for accelerated simulation by utilizing
the Maxeler Data Flow Engine platform to accelerate an Adaptive Exponential Integrate-
and-Fire neuron model with Spike-timing Dependent Plasticity which is widely used by
neuroscientists. The simulation was firstly imported from Brian Simulator to C programing
language and then developed for the DFEs. Maxeler DFE platform is built with FPGAs
and uses a dataflow graph to process data, decoupling logic from memory. In the DFEs the
computation in time is transformed into a computation in space.

This implementation was able to accelerate neuron simulation up to x8 times in compar-
ison to the Brian Simulator and is able to simulate networks of more than 20000 neurons,
while keeping the same functionality of synapses with the Brian Simulator. However, there
was observed a variation in the acceleration rates of the DFEs in comparison to the C and
Brian Simulator due to the event-driven architecture of the simulation and the deterministic
runtime of the FPGAs. This fact constitutes a point of interest and is investigated further
in this diploma thesis.

Keywords

Maxeler, DFE, Dataflow Programming, Neuron Simulation, Brian, FPGA, paralleliza-
tion, Adaptive Exponential Integrate-and-Fire model, STDP, in-silico experiment
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Euyapiotieg

Oa el vor euyELOTACK TOV EMBAETOVTA XNy NTYH x. MoLVTEN Yid OAEC TIC YVOOELS
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OLTAWMATIXAG oU EpYaciag.
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Kohoyedpyn xon tov %x. ZepPdum yio Tnv mtohdTyun Borideta Toug.
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Extetauevn llepiindmn

Eicaywy™

H Simhopatiny epyacta autd mpoéxule amd to evdtagépov pou yia Ty Nevpoemio thAun xou
v Eniotiun tov Troloyiotev. Ot 800 autég EMOTHUES XATUAPEOVOLY VoL GUYOUACTOVY GTOV
Touéa e TrohoyloTixrc Nevpoemotiung, o omolog ta TeAeuTaiol ypodvior oY yEEToL (0 TOA-
Mg qopeg pe autov v NevpoemothAung. Ilohhol veupoemoTHuoveS, Tépal omd Tol TELOGUOTA
UE QUOOUE VEURMVES in-vitro 7 in-vivo yenowonoloby nelpduata in-silico. Autd onpatvel ot
YPNOYLOTOL0UV TOUC UTOAOYIGTES YLOL VOL AVATHPC THCOLY TEWRAUATA Tt 0Ttolo AGY e TOAUTAO-
AOTNTAC X TNG WLdTEPNS PUOTE TOUS BEV UToPOLY Va Yivouv 6Tny mpaypatixdTnTa. To cuve-
YOUEVAL X0l TO TOAUTAOXAL AU TS TELPSUATA OE GUVOUNOUO UE TNV TOANITAOXT| DoMUY TOU VEUELXOU
OUC TAUATOS GUVIOTOUV IBLITERPOL AMOUTNTIXG TELRAUATA A6 ATOYT UTOAOYLIO TIXWY TOPMY. Y€
auT6 ToV TouEn TpooTadel va fonifioel TNV E0EUVIL TV VEUROETIG TNOVGY oUTH) 1) OLTAGUOTLXY.

Méow tng yerone tng mhatgodpuac tng Maxeler yiveton mpoondlela emtdyuvong wag
Tpocouolwone veupwvwy evog Tlpocupuostinol Extdetinod Yuoowpeuone-xou-1Tupoddtnong
(Adaptive Exponential Integrate-and-fire, ev cuvtopia AdEx) povtéhou oe éva dixtuo pe
Moo tixomta e€aptduevn and Tic oTiypés Tupodotnone twv Nevpdvov (Spike-timing De-
pendent Plasticity). To TEMTO XOPUATL TN OLTAWUOTIXNG UPIEWVETOL GTNY TOQOYWYY| HLOG
Tpocouolwong ot yAwooo mpoypauuationol C ue Bdorn plag Tpocouownong autod Tou Uo-
vTélou Tou €yel yivel 6Tov TpocopowwTy| Brian. Ytn cuvéyela, agou Eyel napaydel 1 tpocouo-
{won oe C, yiveton emtdyuvon tne péow twv Mnyavov Pofic Aedouévov (DataFlow Engines)
¢ Maxeler, ot onoieg eivon viomomuévee ue FPGAs.

Neupoemothun

‘Evoc péooc eyxégarog evnhixou Luyilet nepinou 1.4 xhd, mou wwoduvopel ye 10 2% Ttou
Bdpoug tou atdpov. £26TOCO, XATUAVAAGVEL TO 20% TNG CUYOMXTC EVERYELUS TIOU XATUVUAGDVEL
TO OOUA TOL O Wi Pépa Yahdpwone. Emmicov ebvar To mo moAlnAoxo dpyavo Tou veupxol
ouvothuatog Tou avdpwmou ue 100 dioexatoupdota vevpd xOtTapa xar 100 Tploexatouudeta
veupixég ouvdipelg, Ta omola €youv eCely Vel TNV ONUEEIVY TOUC XATACTAOT amd TNV dEYT| TNG
Cwhc. H NevpoemotAun elvor piar emotiun 1 onola GUVOUALEL TOAES GANES ETUGTAUES OTWS
Touelc tne Brohoylag 6mwe 1 guctoroyia, 1 avatopla, 1 poptoxr| xou e€ehixtixt| Bloroylo xat 1
XxUTTOPOAOY L, TNV MTaToTixy, To pordnuatixd o touelc tne latpuic dmweg 1 uyoroyio. H
Nevpoemotun Yeetd Tov avilp®dmivo VEURIXSG GUCTNUA, TS DOUAEVEL, WS Eival 0pYAVOUEVO
xan g avoartuooeton. O Bacuol otdyol e Nevpoemotrung etvon:



o H xoatavénom tou avilp®dmivou eyxe@dhou xaL ToU Twe BOUAEVEL

o H xotavonon xow 1 meEpLypay| TOU TWE TO XEVIPIXO VELPIXO GOOTNUN OVUTTUCOETOL,
opeLdlel xat dtnpeeiton

o H avdhuon xou 1 xatavonon TV VEURIXMY Xot PUYOAOYIXDY BLOTAURUY OV XoMC XL 1)
ehpeoT TEOTWY anotpong xat Yepamelag

‘Ol ToL Y eOVLOL ERELVAY VI TOV AVIPMTIVO EYUEPUAD €YOLY XATUANEEL OTO OTL O EYREPANOG
elvol To XEVTEWO 6pYOVO TOU ovlp@TIVOU VELEXOD GUGTAUNTOS Xt Mol UE TNV OTOVOUAXT
oThHAN amoTeAODY TO xeVTEXO VEURIXd cloTnua. O eyxégarog Vo umopoloe Vo TapahAnAloTel
ue wo Kevrowy Movddo Enelepyaciag oe évav vnoloyioth. Malelel dhec Tic mAnpogopieg
omod Ti¢ awoVoEg xon ol vedpa amd Oho TO oY, Ti¢ emeCepydlETon Xou TopVEL ATOPUOELS Ot
omoleg GTEAVOVTUL GTO ATATOVUEVO PEPOG TOU COUTOS. Ot amogdoels auTég avdAoYo UE TO TL
€y 0LV Vo xdvouv TakpvovTan xou o€ EEYWELoTO Pépog Tou eyxepdiou. ‘Etot, o eyxépahog elvor
YWPLOPEVOS OE DLUPORETINEG TEQLOYES, TOV XUQPLO EYXEPUAO, TO EYXEPUAIXO OTEAEYOG XL TNV
TOEEYHEPAUALDL.

__eynegulinog
Aot

supiwg

eyndpudog

— - pecorofio

.
L \\
rogepusoohiSy «—— 1 \\\E'Yngquh)u'j

aTEley0g
Yyfua 1: Opydvewon Avpddmvou Eyxegdiou

O x0plog eyxépahog etvar T0 PEYUADITEQO XOUUATL Tou avipnTvou eyxepdiov. O eyxega-
AMXOC PAOLOG HUAUTTEL TO UEYUADTEQO XOPPATL TOU xUPIKG EYXEPIAOL, Elvar TO To EEWTERIXO
XOUUATL TOU EYXEPAAOU xou €yel par eEwTeEXT) xdhudn amd yxpeila OAN mou amoteheiton amd
VEUPWVIXO LOTO X0 TEPLEYEL TOL COUNTA VEUROVIXGY XxUTTdpwy. Erlong ywelletu ot apiotepd
xou Ol EYAEPAUAXE NULOPALLO TTOU EVAOVOVTOL UE TO UEGOAOPI0, TO oTtolo elvor Lol TuX VY BEoUN
VEURUEOVWY OV ETUTEETEL TNV AVTOAAXYY| TANEOPORLOY UETAED TV 000 nuoapiwy. Ta dbo
nuogotplor SlatpolvToL TEQUTERW OF UETWTIALO, BEEYHATING, xPOTuPIxd Xot ioxd hof36. Kdne
ULaL oo QUTEG TIC TEQLOYES TOU EYXEQPAAOU ETUXEVTPMVETAL OF ULdl CUYXEXQUEVT AetTovpyiaL.

‘Oloc T pépn tou eyxe@dhou anotehobvtal amd dvo Baoixd xiTTapa. Toug vevphveg xo
T veupoyhotaxd xOttopa. To dedtepa ebvon un-veupind xOTtapa pe mouxiAo oyfuata to onola
oUUBEANOUY GTNY BITAENOT TNG OUOLOCTUONG XAl TOREYOUV GTARLEN X0l TEOCTUGIN GTOUC
VEURWVEG TOU EYXEPSNOL.

Nevpdvoe

O vevp®vog amotehel To SoUIXd XUTTOEO X0l T1) AELTOLEYIXY| LOVADN TOU VEURLXOU GUC THUA-

T0¢. O vevpwveg yopaxtnellovton and To xUTTUPXO GWUN TOU TEQIEYEL TOV TUPNVOL X0 €Val



ueydro aprdud opyovidimy. Ilépa and autdy €youv Bidpopous TOTOUC XAABLWY 1) xou xorddAou,
Toe omola yprowwonoolvtal cav elcodog 1 é€odog oTo xUTTopo. To xhadd to omola yenot-
uomotolvTaL Yl elcodo ovoudlovtal BeVOpiTEC. XTOUC TEQIGOOTEPOUS VEURPMVES OAOXATPO TO
owpa Toug etvan pépog umodoyrig. Ta xAadLd o omola ypnotuonotolvTon cay €€000¢ ovoudlovTo
dEoveg xan TEOEEEYOLY amd To cwUa 1} xdmolov devdpitn. To oruata mouv cTéhvouv cuvidwg
eZ€pyovTon amd TNV dxeT Tou dEova.

Tldpo ano

Elg

AgvBpiTEC KuTtapikd N£u§q§omxéq
|

KouBot EAUTpO  KiTtapa
Muprivag Ranvier HueAlvng Schwann

Lyfuor 2: Nevpoyvag

Or vevp®Vveg €youv Lo HEYEAT Towthiot NAEXTEOPUGLOAOYIXGY WBOTHTWY Tou TpooTilevTo
0TO UEYAAO OET amd NAEXTEWES WOLOTNTES Xat To €ldn Acttovpyiag Toug. H Poour Asttovpyia
TWV VEUPOVLY £V 1) GUYXEVTEMGT) VELEODLIPBIBAUCTMY XAl 1) TUEAYWYT] NAEXTEIXMV TOAUDY.
[Tépa amd autd ehdytoteg wLdTrTeS €youv Tpootelel, 6mwe 1 IThacTindTnTa TOL EXEAleTan Ty
Moxponpdieoun Ioapdtaon veupixwy moduwy o v Maxponpdieoun Katdntworn veupixwy
TNV,

Yuvdieig

Ol veupmveg emoVmVOUY HETHED TOUC UECW TwV MUVAPEDY TOU TOUS GUVOEOLY Xl UETO-
(PEQOLY NAEXTELXA 1) Y NS OTUAUTO OTO VEURKOVY GTOYO 1) OE XUTOL0 A0 X)TTUPO-0TOY 0. Y€
wior aOvaen, 1 mhaouatixs LEUBpdvn Tou Tyaiou VEURKVOL (TPOCUVATTIXGG) E0YETOL OE XOVTIVY
Topddeon Ue TNV UEUBEEVY TOU GTOYEUUEVOLU XUTTAPOU (UETUCUVATTIXOD).

Nezvpoduxfipaomic
Fuvemrmko
KLOTL5L0
Avthia

enovecSoxms Nezupatovix
) amoinn
Aloudog
Suvauxol
Ca**

N ’ YmoSoxéag
MzetaouvamTixy ! Tuvamtixd
TUKVGTTE - / } yoow
Azvépimg

Yo 3: Xiovadn

Ov ouvaeig ywpllovton oe 8U0 XaTNYOoplES. LTI YNUXES, OTOU 1) NAEXTEIXY| BEAC TNELOTNTA



OTOV TROCUVATTIXG VEURMVI UETATEETETOL UEGK TWY EAEYYOUEVWY ATO DUVOUIXO TTUAGDY xahiou
o€ amEAEUVEQMOT VELEOOLIPBBUC TWY TOU CUVOEOVTAL UE TOUG DEXTES TOL Pploxovtol 6NV UeY-
Bedvn TOU UETACUVITTIXOU XUTTAEOU X0l OTIC NAEXTEIXES, OTIOU OL TEO- X0l UETO CUVOTTIXEC
UeUPBedveg cUVBEOVTAL UE EWBXE XOVIALL TTOU OVOUALOVTOL YUOUATOCUVOECELS ol EIVOL LXOVES
VOL HETABMGOLY €VOL NAEXTEIXO PEVUN UTO TO TEO- GTO UETE- GLVATTIXG XOTTUQO.

Boduidec twv Aentoyepeiyv Movteronoinone Nevpwvev

To 3 Pacind HOVTENX YloL TNV AVATUEEOTACT] VEUROVWY Efva:

o To povtéha ye Bdon v drywywotnta: Hepiéyouy ueydho Badud Aemtouepetdy xodng
TPOCOUOLWVOUY TNV BOUY| TV VEUROVWY UECK TOAATAGY, SLUCUVOESEUEVKDY TUNUATWY
ToL TO XV CUUTERLPEPETOL GOV VoL Efvol NAEXTEXE cuUTAYES

e To povieha Yuoonpeuorg-xot-ITupoddtnong: Hpdxeiton yia To apnENUEVO HOVTENO VEL-
ewVLY and To TeKTo. T var tupodotnloly meénel To Buvauxd To omolo uTohoyileTo
UEow VS GUUBOAXOU LOVTENOU VoL Vol UEYOADTERD AT TO XUTOPAL TOUG. ATAOTOOUY
el TNV YEWUETPIA TWY XUTTARWY

o To yovtéha Luyvotnrac Exxévoong: Hpdxeiton yia o mo agnenuévo povtéro, €yoviag
War GUVEY NS TWAG, METUPBUANOUEVNC UE TOV YPOVO TIAS Yior TNV Buyvotnta Exxévewong
NG €CH00U TV VEURWVGY

Hpoypappatlopevee Luotoryiec [Tuhav oe Iedio (FPGA)

To FPGA etvar ohoxhnpouéva xuxhduota ota onolo ot AoYxég TOAEG oL Ol GUVOEGELS
ueta€h Toug mpoypauuatiCovton and tov yerotn. Io var yivel autd o TEOYEUUUATICTAC YeTN-
owornotel wo I'hdooo Heprypogprc TAol (Hardware Description Language, HDL) n onoio
UETOPEACETOL 0TO UAIXO UECW TV UETAYAWTTIOTMV TOU THEEYOLY Ol £TaLRluC TPy WY S TwV
FPGA. Méow tne meprypogpric mou €yel 8woeL o yenotng pe o yAwooa HDL, etvor Suvatov va
oploel axpBic Tov akydetiuo mou VEAEL Vo UAOTIOLACEL, VoL ONULOVEYHOEL VAL OYEDLO GWAN V-
ong xou var EAEYEEL Ue axpifelal TNV yeOoVOBEOUOAOYTOT| TOU UG THUNTOS LIS X0 TOOXELTOL YidL
oUyyeova xuxiouata. Ta FPGA anoteholvtoan and ntohhd Aoyixd Turuato vAixol, ta onola
aroterolvtar and Look-Up Tables, hoyweg mhhec xou Kotoywentée, Xxhned Turuato vhixol
TOU €lval OYEBIGUEVDL Yiol Vo ETLTENOUY CUYXEXPUEVES TRAEELS xan €va Pooind POAGL 1) xou
TRV TEPLPERELOXd PONOYL. To TEQLOPLOUEVO UAXO TOU UTHEYEL OE EVaL OAOXANEWUEVO
Toun meptoptlel To oy €D TOL UToEOLY VoL LAOTIOY0UY GE AUTO Yo Yio AUTO TEOTEVOVTAL GUV-
deopoloyieg mou evevouy ToAAG Totr pall vl TV Snuioupyion VO EXOVIXS OAOXANEWUEVOU
xuxhouatoc. Iépa and autd Tov TEpLoPIoUs, YEEWLETOL YVOOT TNE EWBXAC YAMOGCUS TEOYPo-
HOTIOMOU Yol VoL YRUPTEL Xdmolo TEOYRUUUA O AUTY TNV TAATPOOUN AAAGL XL UEXETY| (AL Yid
vo. YiVEL 1) HETOYA®TTION £VOC Tpoyedupatoc yia FPGA. Yruespa undpyouy apxetéc mpotdoeic
yioe TV Bertioon autdv Tov Yepdtwy xadog T FPGA Adyw tng ueyding anédoong toug, tng
AGQAAELAS TOUC Xoll TNG YAUUNATC EVERYELIC TOU XATAVUAGVOUY €Y 0LV TANIOEA EPUPUOYDY GTO
OL8C TN, OF AUTOXIVITA, GOV ETUTAYUVTES OAAY XaL TAATQPOPUES TEWTOTUTOTOINOTG.

Maxeler

H dSimhopoter auth €yet Poaociotel oty mhatgpopua twv Mnyovev Tedgonv Acdouévey

¢ Maxeler. Mio Mryavy Poric Aedopévwy vhonoteitoan ye v yerjon FPGA. To povtého



TEOYEUUMUATIONOU ToU UAOTIOLEL aUTY| 1) TAATQOPUO AmonTel TOV Ol WELOUO TNG AOYIXAG amtd
T Oedopéva. Mia Mnyov Poric Aedouévwy ovolaotind dnuovpyel évav I'pdgpo Acdouévwy,
o omofog Tpo@odoTelToL UE BEBOPEV amd TNV UV N oTNv omola lvon amoUnxeuuéva To 5E00-
ueva o xde 'Tix’ Tou POROYIOU TNG TAATPOPUASC Xou ToEAYEL To avTioToLy o DEDOUEVA TNV
€€obo o xdle 'T’. Méoa o autév ToV Ypdpw emlone SNUIOLEYELTOL QUTOUNTA AT TOV [E-
TUPEOC TH TNS TAATPOQUOC Lol COANVWOT WOTE Vol ALEAvETOL 0 PUUUOS ToPAYWYHS YENOWNG
e€6dou amd Tov Ypedpo. Ot uviueg Tic onoleg yenowonotel wio Mnyovh Poric Acbouévwy eivon
woe Meyddn MvAun (LMEM) 7 onofa anoteheiton andé DDR3 Ram Dimms ta onola etvo
ouVOESEUEVIL TOAD xoVTd e To ohoxAnewuévo FPGA xau wo uixpdteen (FMEM) 1 onola
ouctaoTixd ebvan péoa oto FPGA xau elvon 1o BRAMSs T omolar untdipyouv péoa oe autéd. H
ThaT@opua auTh Pornidel TOAD TOV TEOYPUUUITIONS AOY® TV YAKWOCKOY UPNAoU ETTESOL TOU
YETNOWOTOLOUVTOL, ATOXEUTTOVTOG ETOL TIC ODUOXOMES Xl AETTOUEQELES TIPOYQUUMUATIOUO) TWV
FPGA, evey umopolv axdua va alotomnmdolv ta mheovexthipata 1wv FPGA énwe o peydhog
eLOu6C €€600L YEHOWMY BEBOPEVGDY ahAS Xou 1) UEYAAT TopoAAnioroinor. To mpoypoupoti-
OTIXO UOVTEND TNG TAUTPOPUAS ATOTEAELTAL amd €V XOUUATL HGOXO TTOU TEEYEL GTOV XAAGIXO
enelepyaoTh NG TAUTQOpUaS xou ebvor uebuvo va xohel Tov TTuprvar xan vor apyxomolel Ty
Mnyavr) Pofic AcSopévwy, and tov Iuprva tou amotehel To TUAUL TOU XOOIXA TOL TERLYEAPEL
Tov oyedlaoud tne Mnyovic Poric Acdouévey xon évay Mavayep mou elvon utediuvog yior tny
METAYAOTTION o To oetdploua tne Mnyavic Poric Aedopévev xon TV TEQLPEQELaxdY NS
OTWS BLdPopeg PLIKICELC TNE X TOV XAVOPLOUO TWV POWY BEBOUEVKY TNG UTO XU TIC UVAUES
1 Tov eneepyao T

Yxetxo 'Eeyo otnv Emtayvuvouevn T moloylioTtixw
Nevgoemiothun

H Troloyiotnr) Neupoemio thun etvon €vag xhddog tng Neupoemo thUNG mou yenoylomnolel
pordnuaTd LOVTEADL, aVEAUGT) VEMENUATLY XAl APUEECELS TOU EYXEPSNOU YLOL VO XUTOVOTOEL
TIC Py € ToL BLETMOLY TNV eEEMET, TNV Bour|, TNV Quatohoyio xou Ti¢ SLncINTIXES IXAVOTNTES
ToU VeUpxoU cucTHuaTOC. ‘Onwe avagéotnxe xot TeonyouuEveme, ol NEVpOETIG TAUOVES €Y oLV
AVTIXATAC TYOEL TOAAY in-vivo xau in-vitro nelpduorta pe in-silico nelpduata, dnAwdY| ue TEOGO-
UOLOOELS XOPPATIOY TOU EYXEQIAOU ot utoloyioTég. To xoupdtior autd umopel va etvor amd
UEG BIXTUO VEUROVWY UEYEL OMOXATIOES TEQLOYEC TOU EYXEQPIAOU UE TELOOLAC TUTY LOPYOAO-
yio Dot qUTEG TIC TPOGOUOMOELS YENOLOTOOUVTOL XUPE XdToL EVEEWS dEdOPEVA TAdLCLYL
TPOGOUOLWCEWY 6Twe To Neuron, To Nest, to Brian, To Moose xou to Genesis. ' v npoco-
HOo{wOT) UXEEOY BIXTUGY XL TNV 0oXtuY) DLUPOE®Y HOVTEAWY YenotuoToleltal eiong xatd x6pov
xat To Matlab. To mhadolo autd €youv o xohd 6Tt ebvan dxoAa T Yprion Xt UTEEYEL MEYSAN
BBaoypapio Baclouévn o autd, WGTOGO BEV EXUETAMAEVOVTOL TIC DUVATOTNTES TWV GUYYEO-
VOV UTOAOYLO TIXWY CUCTNUATLY OTwe oL tohhamAiol enelepyactés, Tor mohhamhd Nruato, ot
Kdpteg Encéepyaoiog Ipagpudv I'evinod Yxomo, ta FPGA, uncpunohoyiotéc xou dopuég oo
YOVVEQO.

Eww avagopd ofiler oto Brainframe, and 1o onolo mpoéxude auty| 1 Simhwpotixy. To



Brainframe eivon pla ovitve mAat@opua ETLTEYLVOTNC 1) OTolo TREYEL Ta TELRAUAUTO GE ETEPOYEVT
ouo Tidota mou amotehovvton and Intel Xeon-Phi CPUs, NVidia GP-GPUs xa. Maxeler Mrn-
yavéc Porjc Aedopévwy mpoc@épovtag Oyt HOVO ETLTAYLYOT AR Xt UXEOTERT] XATAVAIAWGT)
evépyelog. To peydho mheovéxtnua g ebvan 1 euxolla yerong xodog elvar TEOGUQUOGUEVT
oto mhaioto g PyNN xou yenowonotel tnv yhwooo npoypopuatiopol Python, to onola etvan
eUpEwe BLadedopéva o YVemoTéd otoug veupoemo thovee. [GS17; APDY09)

Iepiypop?) TpoBAApatog

H npocopoiwon g dimhwpatinic epyaciog Baotleton oe éva [lpocapuoctind Exdetind
Movtélo Evoowpeuonc-xa-ITupodétone (Adaptive Exponential Integrate-and-Fire, AdEx)
oe éva oixtuo pe IMoactxdmnro eCopTtduevn amd Tic oTypéC TUEOBOTNONG TwV Neupdvwy
(Spike-timing Dependent Plasticity). I'wot va ulontoindel auth 1 tpocopoiwon otnv mhotpdpua
¢ Maxeler ypewdotnxe npwta 1 yetdgppaorn tne and Python nou yenowonotet o Ilpocouoiw-
¢ Brian oe €va mpdypaupo C. XN cuvEYELR, aUTO TO TREOYEAUUUN YEEIOTNXE Vo avamTuy Vel
yenowonowwvtac Ty apyttextovixr xou Ty Atenagn [poypauuatiopod Egapuoyov tne Max-
eler.

To Ipocupuoctind Exdetind Movtého Yuoonpeuong-xa-ITupoddtnong povieho vevpmva
ebvon éva povtého veupava Iupoddtnone pe 6Vo petoPAntéc. H mpdtn ediowon meplypdpet tnv
duva Tng TiavoTNTUC TNG UEPPEAVNC TOU VELpGVA Xou TEQIEYEL EVay 60 EVEQYOTONOTG
Tou vevp®va. To duvouxd eloépyetar oc uia delTepn e€lowon Tou TEPLYPAPEL TNV TEOCUPUO-
ototnTa. O axpelc Spopinés ediomoelg pumopolv va Peedolyv oto ayyAixd xouudtt tng
OLTAWMUATIXAC.

H IMhaoctixdtnta eapt®duevn amd Tic oTLYUES Tupodotnone twv Neupdvwy eltvar pio un
OLUPETEWT Lop@n Tng pdinong tou Hebbian nou e€uptdton amd tov ypdvo xou xou Wbwitepa
UE TIC YEOVXEC OTIYMES UETOED TNG TUPOBOTNONG TWV TEO- XL UETO-CUVITTIXWY VEURMVOV.
Ocwpeiton mwg pall ye dhheg wopgés Ihaotindtntog, evdivetar yio TNy uddnomn xou Ty ano-
UXEVOT) TANPOPOELOY GTOV EYUEPUNO xAIME XaL TNV aVETTUEN Xa TNV BEATIWOT TV VEURXOY
HUXAWUETWY XUTE TNV oVATTUEN TOU EYXEPAAOU. LT CUYXEXQUEVT TPOGOUOIKGT] ooy ONOVUa-
OTE Xl UE TIC 000 UOPPES EXPEACTS TNG, ONAAOT) GE GYEDT) UE TOV TRO- XOL TOV UETO-CUVITTIXG
veupova. Ou axpifeic Slopopinéc Tng e€lo®oElS QaivovTol GTO oy YAXO XOUUATL TOU XEWEVOU.
ITpocououwnthc Brian xou petatpont| tng npocopoiwong oe C

O Brian elvon €vag TEOGOUOIWTHS VEUROVWY TOAGY. XTOYO0C TOU TEOGOUOIWTY| auTo) €-
tvan vor amoxpUel Tig Aemtopépeleg TG ulomoinong g Abong Tng mpooopolnong amd Toug
VEUQOETIO TAOVES, (OTE VO UTOPOUV VoL APOCIUOUY UOVO GToL LOVTEAN TWV VEURWVKY TOU
yenowomowlyv. o autd tov Adyo yenowonotel v yAdooo tpoypopuatiopol Iptnov xau
vnoctneilel v dietagr) Tng PyNN mou yenowonoteiton eupéng yior Tov xadoplopd twv [o-
VTEAWV.

H yetatpornn tng doouévng mpocouolwong and Brian oe C €ywve oe cuvepyaola ye Evay
oudgoltnTy| ot TAdiolo TG BtmAwuaTxrc Tou epyaoiog eniong. o v avamapdotacT tou
VELPIXOL OXTUOU oUUYWVH PE Tov Brian ypeldotnxe o oplonog TELOY DOUMY BEDOUEVGLY Ol



omolol avanaplotdviar 6to Brian. Autéc ebvar ot Nevpdvee Eiobdou, ol onolol dev diémovan
Ao AATOLO LOVTERD TOEd LOVO DNULOURYOLUY TUAUOUE GOUPWYIL UE ULaL YEVVATELX GUVEETNOT), OL
mpaypotixol AdEx veupdvee xou or Luvddelc. O Nevpiyveg Eicddou otny C avanopiotavion
ue évav mivaxa amd axcpooug aptipolg. o xdie Nevpova Ewoddou umdpyet o uetoaBAnts
oTov Tivoxa auTHY Tou av efvar 1 TOTE oNUUlVEL OTL GTO GUYXEXPIEVO B TG TEOCOUOIWONG
ToEdyInxe and auTéV TOV VELupGVa €vag TaAUoC xou av eivon 0 dev mopdydnxe. Ov AdEx
VEURMVEG AVOTUPLOTMVTAL oIt €Vay TV e LG EWXTG DOPTG OEDOUEVY TIOU OVOUSCUUE
Nevpov xan mepiéyel Oheg Tic petoBAntéc xde vevpwva. O Yuvdipeic avamaptotdvTton and évay
OlodldoTaTo Tvoxa yeltvioong, omou xdle oTolyelo Tou avagépetar ot oV peTald 0o
VELUPAOVWY. Ol VELP®VES TOU VEWEOUVTOL GOV TRy WYOL AVTIGTOLYOLY GTIC YRAUUUES TOU Tivoa
EV() Ol VEUPWOVES TOL YewpolvTal oTdY oL avTLoTolyolV oTIC oThAeS Tou Tivaxa. H npocouolwon
oe C elvan ovy| var TpocopoL)GeL 800 TUTOUS TROCOUOWMCEWY OVIAOY A UE TNV CUVDEGUOLOYi
v AdEx vevpwvov. O mpdtoc timog eivan 1 NxM mpocouolwon émou Nevpwvee Eicddou
omhd cuvdéovtar ye Nevpwvee AdEx o €var veupixd dixtuo dUo emmédwy. O Bedtepoc TOTOC
ebvor 1 MxM npocouoiwor, 6mou éva chvoro and AdExX veupdveg cuvdéeton Pe BLdpopoug
TeoTOoUC e dAhouc AdEx veupwvec tou (Blou cuvorou, oynuatilovtag éva 6ixTuo eVog EmTEDOU
UE OLIOLVOETELC.

e xde Briya tne mpocouolnaong yeetdleton va exTeAecToLY 4 Baoéc Aettovpyieg Ue TNV
oelpd pe Ty omola Yo avapepoiv, Aoyw petalld toug e€apthoelc. H mpdtn ebvon 1) cuvdptnon
SolveNeurons, 1 omolo evnuep@vet Tic uetaBAntéc Twv AdEx Nevpdvwv. H dedtepn elvon 1) ou-
viptnon InitializeSpikeArray mou unoioy(let mowol anéd Toug Neupiveg Eioodou ypetdletan var
ToEdYouV Evay TG 0TO CUYXEXEWEVO Brua Tne Tpocouoiwons. H tpltn elvor 1 cuvdptnon
UpdateSynapses_pre 1 omolo evAUEPOVEL TIC TWES TV LUVAPEWY avdAOYA UE TNV OpAC TN
ELOTNTAL TWY VEUP®VWY Tou elvan tpocuvantixol (Ewwédou ¥ AdEx). H tekeutala cuvdptnon
etvor 1 UpdateSynapses_post 1 onola evruep®vel Ti¢ TWES TV Muvdpewy avdhoyo e TNV
0pC TNELOTNTOL TOV PETUCUVITTIXWY VELPOVWLY. AUTEC Ol GUVIPTNACELS, GTNY TROYUATIXOTNTA
QUTO TOU XEVOUV £Vl Var ETLAVOUY TIC BLaPORIXES EELCMOOELC TV UOVTEAWY TwV Neupvwy xal
TV LUVAPEnY.

YAoroinon o DFE

Agol éyve 1 viomoinon oe C tng mpocouoinong axohoulel 1 mpoomdiela emTdyUVOTS
¢ oe Maxeler DFE. I'ta va yivel autd, 10 mpwto medyua mou meémel var ahhder ebvon n
AVATUEIOTAOY) TWVY DOUMY DEBOUEVWY, WOTE TO BLYPacuo Toug var YIVETOL PE amodOTXO TEOTO
ond v DFE. Apywd o mivoxag twv AdEx veupdvwy petatpénetar o €vay povodldoToto
Thvoxa am6 PETABANTES xVNTHC UTOBLIOTOARC 6Tou xdie 6 oTolyelol TOL AVTITPOCWTEVOUY Evay
veup®va (5 mporypatixée petaBntée, 1 yia toddvy ). Me awtdy tov tpdno ot xdie "1’ tng DFE
otav ypeewdleton vo draBacTel Evay vevpwvoag, ouctaoTixd dlfdlovtoun 6 oTtotyela Tou Tivoxa
v AdEx vevpovwy. Kdtt avtiotowyo yiveton xan pe tov mivaxa yertviaong twv cuvddewy.
Kdde oOvodm avoraplotdveton and 12 petafintéc xvntic unodiouotorfc (11 mpayuotnée, 1
vt padding). Enlong ylvetow avtiotpodr) TV 6TNAOY PE TIC YEOUMES TOU XUl ETOL OL YOOUUES



AVTIOTOLYOUV GTOUS VEUPWVEC-GTOYOUS EVE OL GTHAEC OTOUC VELPWVEC-TNYESC. AUTOC 0 Tivorrag
elvon enfong povodidotatog adrd dievdutodoTeitar cav BLOBIAOTATOS WOTE VA XPATACEL TNV
puolx tou unéotaon. O mivoxag twv Hohuwy Ewwddou petatpéneton o évay mivoxa amd
uetoPhntéc 8 bit(1 byte) yio eZowovounon ydeou oty uviun. ‘Olot awtol ot tivoxeg Aoy
Tou Ueydhou Toug peyédoug owlovtar oty Meydin MvAun twv DFE nou €yel uéyedoc 48
I'B. Metd and unoloyiopolg GYeTinolg Ue aUTA, Yid TNV TROGOUOIWOT) OTIOU YENOULOTOLOUVTAL
UETUBANTES XvnTAS Do TOARG Hovig axpiBeiag o ueyioTtog aptiudg vevpwvey eivon 20352.
Apyrtextoviny| Huprva

[o Ty €0peoT) TNE O AmOBOTIXG APYITEXTOVIXNAS Yio TNV ETLALCT) TN TRocoUolwoTG do-
XWEoTNXOY TOMES EXDOOEIC X0l BLUPORETIXEC AUCEIC OOTE Vo UTEREEL xout EEOXEIWTT UE TNV
mhat@opua g Maxeler. Ot SiapopeTinég exdOCEC TEQAGUPBAVAY TNV PORTMCT) DLUPORETIXY
TUEAVLY Yl TNV ADOT) TNG TEOCOUOIWOTG avTl Yo EVOS, YENOT) DLUPORETIXGY TUTLY DEQOUEVKY
xau mopolAnhornolnon tne mpocouoinonc. Autd mou yiveton oe Ghoug Toug TURPHVES ebval 6Tt
T 8edopéva Twv Nevpdvwy xon tomv Muvadeny dwBdlovton and tnv Meydin Mviun tng DFE
X0l OL AVAVEWUEVES TWES TOUS YpdpovTon oTIC (Bleg Yéoeic.

ITohhamAol ITupriveg

H viomoinon pe t ypron tohhaniov Iuphvey éyive oe avtiotowyla pe v C. Kdie doxpitr
oLVAETNOT ToU XWAWA o€ C UETUTEATNUE GE TUPHVOL UE GTOYO VO POPTOVETAUL O e Briua
¢ mpocoyuoiwong n DFE ye 6houg toug Tuprveg e tny (dia oglpd mou xahovvton otny C. T
ONOUS TOUC TUPHVES Yenotdomolunxay apriuol xivntrg utodlacTolrg dihig axpifeloc.

O nuprvac tne SolveNeurons etvor uedduvog yior v evnuéowon tov AdEX veupdvmy.
Yuyxexpwéva oe xde T’ tou DFE Swfdleton évac veupovag and tnv Meydin Mvrun
(LMem) o EVNUEPGVOVTAL Ol TIES Tou Tapdyoviag €€odo ot xde 'Tu’. H Pehtiotonoinon
oUTOU TOU TUENVAL EYEL Vo XAVEL UE TNV Tapalknhoroinon o eninedo veupvwy. AuTo GNULVEL
OTL o xde T EMADOVTAL 2 VEUPMVES TUUTOYEOVA, UEWWVOVTUS TA OTOUTOUMEVY 'TXS OTO
woo. Puod xan ywpeic TV TapuAinlonolnor o eTinEdO VELpOVWY UTdPYEL TapUAANLoTOiNCT
TWY TEAEEWY GTO LAXO Aol SLoPopeTIES TRAEELS Yivovtar Tautdypova. o Tov mupriva auté
omouTOVVTAY omd TOV EMECEPYAUOTH Vo Ypdhel oTn UVAUN TOV VX0 TV VEURKVOY Xol Vo
TEPAGEL GTOV TUPNVAL TIC TORAUUETPOUS TV DLIPORIXDY EEICMOEWY TV VEUPWVW®Y.

H ocuvdptnon UpdateSynapses_pre eivon umedduvn yia v eniivon twv dlapopxdy &L-
OWOEMY TOV OLVAPEWY UE BAoT TNV BEACTNELOTNTA TV TEOCUVITTIXMY VEURMOVKY. L€ AUTOV
Tov TUEYvaL BLoBalETon apyLXd EVOC VEURWVIC-0TOY0G Xal 0Tr) cLVEYELa SlaBdlovTon oL GLUVAPELS
TOU OVTIOTOLYOUV OE QUTOV ol YLol XGUE Wiot omd oUTEG OLoBACETOn %ol O TPOCUVATTIXOG VEU-
ewvaC. AV xdmolog and ToUg TPOCUVATTIXO0UE VEURMVES EYEL TURAEEL TUAUO, TOTE aUTH 1) cUvadn
EVNUEPOVETAL BACT) TV BLapopixtv eELOMOEWY Tou BiéTouy TNV cuurepipopd tne. H Beitioto-
Tolnon o aUTOHY ToV TUEY VAL EYEL VO XAVEL UE TNV ATOUAXEUCT) TWY VELPGYWY Tou SdlovTo
TOMEC Qopéc oty Yeryoen wxet| uviun tou FPGA. H rapahinhonoinon dev Htov duvath
oEyWd Aoy un EMALPEVLY e€apTACEWY PETAE) DEBOUEVLY. ATO ToV eneepyao T amanteiton
va ypduper oty LMem toug mivaxeg twv AdEX veupdvev, Tov mivaxo Twv Muvaewmy xon Tov



mivoxa Twv Nevpovwy Ewsdoou.

H cuvdptnon UpdateSynapses_post ypetdotnxe nEpoGOTEPES BOXES XAl EXDOCELS VLol VL
Beevel n mo anodotixr eloutiag Tou OTL Empene va tepac Tel 500 PoEEC 0 Tivaxag TWV CUVAPEWY.
2170 TEOTO TEPACHA YVOTAY 1) ETLAUGCT] XATOLDY BLUPORIXKY KOl O UTONOYIOUOS EVOS UEGOU GPOU
BdoEL TV TYWOV TWY CLVAPEWY TOU EVIUEPWYOVTOUCHY Xal GTO GEUTERO MEPAUCHO ETLAUGVTOU-
oav dlopopés e€lowoels Bdoel autol Tou Yécou dpou. I va yivouv autd tor BV TepdopoTa
doxaudo Trray Teelg exdooels. H mpdtn éxdoon Atav 1 podptwon and tov enelepyaoTr 6U0 Olo-
POPETIXWY TUPNVWY PECK TOU WO ToU ENeLepYao T Xt 1) 0cUTERY Péow Tou Manager tng
A®E. H tehevtaio xou mo amodotiny| éxdoor tng cuvdptnorg UpdateSypapses_post PooiCe-
Tow O €vay Lovadixd Tue Vel 0 0Tolog HEGL POROYIMY ONULOURYEL Uiol ECWTEPLXTY ETAVAANYN
2 Brudtey. XTo TeKTo Brua YIVETL To Te®To TépAoua TwvV cLVapEwy, utoloyilovtoul doeg
ueTaBANTEC ypeetdlovTon xoL 0To GEUTERPO EMAVOVTOL Ol OLUPOPIXES BACEL QUTOY TwV UETOPBAN-
V. 207600 Yo va Yivel péoa oTov (Blo Tupriva To SdBacuo xaL To YeAPIo GTNY Uviun d0o
POPES o Var YIVOUY 0pUTES Ol OAAXYEC Xon TIC DO QopEg amauthinxe 1 dnuovpyia Ewdixwmy
Pocyv Evtohev yio tny Mvrun. Autéc ol eviohéc mpogpydvToucay and Tov (Blo Tov Tuprvar xal
apopolicay Tig Sleutiveelg Tou SlBdlovTay xon YeaUPOVTOUGHY GTNV UVHUN xS Xt OE TOLEG
Yeovég oTiypés. Autéc ol Ewdweg Poée duwe emégepay xaducteprioelc oto didBaoua xaL to
Yedhulo ot uvAUn UE amoTEREOUA Va YpElao Tel Vo uTtdplouy TEpaTépw enavahbelg uéoa oTov
Tuehva auTov. O TEOTOC UE TOV OTO{0 AVAVEWVOVTAL Ol LUVAEC O aUTOY TOV TUPTVAL XL OTa
oVo mepdopata etvar o e€ic. Kdde xdmoto toantd "ting’ SwoBdleton €vag VEUPMVIC-0TOYOS XAl
avéAoYa UE TO av Exel Tapay Vel amd auTOV Evag TOAUOS TOTE EVIUELMVOVTOL Ol TWES OAWY TWV
Luvdewy pe TIc onoleg CUVBEETOL UE TNV OELRA.

Movadixde Huprvog

O povaddg muprvag ouctaoTind extelel OTL oxEIB3® o oL Tohhamhol Tuprveg, ot o-
molol cuvdudlovTtar oe aUTOV UE TNV YeNon UeTeNnTY. Me autdv tov TpdTo dnutoupyolvTo
Telo Bridato og auTéY TOV TupAva. XTo TE®TO Yivetaw 1) enihucT TV dlapopixey Twv Neu-
ewvov. To ddBaopoa xou 0 yeddo otn pviun yiveton mdvto ue 1 yeron Ewixodv Podvy
Evtolov yioo ty Mvrun. Adyw autol undpyouv xoducTERHOELS Xt ETOL EVAUERMVETAL 1) TUUT
evog veupmva xde 2 tix’. Mto deltepo Brjua exteAeltan 1 ouvdptnon UpdateSynapses_pre
woll e to mpoTo TMépaoua oTov Tivoxa Twv cuvddewy tne UpdateSynapses_post. TErou yia
auTo To (e ypeedleTon évar TEPACHN OTOV TVOXA TV CLUVAPEWY oAAd xdie clvalm yeet-
dleton 16 "tixg’ yuo va umoloyiotel, Adyw Tou umohoyiopol evég adpolopatoc xvnTAC U-
TOOLG TOANC ToU YIVETOL YLt TOV UTOAOYLONO Tou pEcou Gpou. To tpito Brua mepthaudver
TNV EXTEAEDT] TWV BLPOPXKY TIou amouévouy and tnv cuvdptnor UpdateSynapses_post xou
yeerdlovTon Tov U€co 6po mou umoroyileton 6To TEoNYoUUEVO BYua. Xe autd To Bhuc uTo-
hoyiCeton par oOvahn avd 4 'Tixg’. O ouvolixog apriuog 'tixg’ mou ypeewdletan ebvon: Num-
ber_of STDP _variables + timesteps™(2*N_Group_T + 16*(N_S+N_Group_S)*N_Group_T +
4*(N_S+N_Group-S)*N_Group_T). Autéc o muprivac xotohadBaver UeTd and Ty HETOADTTL-
on 10 96.14% tnc hoywrc tou FPGA xou étol 8ev ebvon Suvartr) xdmota napodinionoinon oe



enimedo vevp®VmY 1 cuVAEY yiatl auTd Yo GHUNIVE TNV YEY|OT TEPLOCOTERNC AOYIXNS Yol TNV
TUUTOY POV ETLAUGCT| TRV TEAEEWY.

Metd and olyxpion pe v €xdoom PE TOUC TOAATAOUS TUPHVES, BLUmOTGUNXE OTL Yo
NV (Bl tpocopolnaon 1 éxdoor pe Toug ToAhoUg Tuprves Ypeldletal oyYedOV 9.5 BeuTEpORETTA
YO TNV QORTOOTN XAl TNV EXPORTWOT Twv tupivwy oty DFE, tou ypeewdleton va yivouv o
xdde Pripa Tng mpocouolwong xal €Tol Bev elvar amodotixy|. Emniéov o povadixde muprivog
YEEWoTNXE AYOTEQO YPOVO Yior TNV enthuct Tng (Blag Tpocopoiwong, deo xou 0 OYEBIAONOS
Tou elval To amodoTiXdC.

H BeAtiotonoinorn autol tou muprva Poacileton oty yeromn aprdumy xvnTig UTodSoTOMS
uovic axplBetac, medypa o onolo 0dnyel oty yerion Aydtepne Aoy Yo Tov {610 adyoprduo
XU XOUT EMEXTUOT TNV TopaAANAOTOlNoT o€ eNinedo Luvdewy. Auty| 1 odhoy ) woTOC0 EMpEEL
NV Umopén amoxAloewmy 0Tl TYWES mou urohoyilovtal, oL OTolEC WOTOCO Eivol AEXETE UiXEES
wote v Yewpnioly achuavtes. Apyixd yia Ty yeHon aetiu®dy xivnTric UToBIOTOAAC UOVAC
oxplfBetag ypewdotnxe amhd va tedel 0 xatdAANAOg TOTOC GTNV 0EY T TOU XMOOXA TOL TUEY|VA,
®oTe OAeg oL yetafBAnTéc mou tilevton pe Bdoet autd var yivouv povig oxelfBetag. Xtn cuvéyela
Yoo voo Tapadinhonotdoly ol utoloylopol Twv cuvadeny yeewdleton vo dwBdlovton dYo 1
Topamdve cuvidelg uall oTo BeUTEPO Xt TEiTo Briuct Tou TUEHVEL LT CUVEYEL TEETEL VL
Audel 1 e€dptnon mou mpoxUntel eCoutiog Tou apolopatoc yia Tov péco 6po. To mEdBANua
awtd NoUnxe pe TV dnuoupyla evog dévtpou adpoloT®Y (XEVoVTaC TO AEYOUEVO PESUCLVY)
ToL XATAAYouV 0T0 TEAXO dipotopa. Me autév 1OV TOTO GTOUS (Bloug Yedvoug Yo xdie
Bruo pe tov muprva pe apriuols dimhng axpiBeiag, yivovton ot SitAdoleg mpdéele Yo Podud
Tapolnhonoinong dvo. H yerion tne hoywrc pe yeron Paduol tapadinhonoinong dbo €yive:
Tehu Xerion Thwol
Katavéhwon Aoyic: 252278 / 262400 (96.14%)

Hewtevovta FFs: 364674 / 524800 (69.49%)
Aeutepetovto FFs: 67155 / 524800 (12.80%)
IHoMamhaotaotée (18218): 776 / 3926 (19.77%)
Koutid DSP: 388 / 1963 (19.77%)

Koyudtioa MvAunc (M20K): 1440 / 2567 (56.10%)

Hapatneolue mwe umdpyet Sladéotuog Yweog xou £TOL BOXWACTNXE Xol ToRUAANAoTONGCT
Borduol téooepa. 2oT6G0 0WTH 00NYNoE GE Yerion T Aoywhc oto 114% nepinou xou étol Sev
Aoy eQuety| 1 oyedlaon tou muprva oto FPGA. Emniéov ol cuyvéc mpoofdoeic otn pviun
elyav ¢ amoTEAEOUA TNV YPNOT LEYOAUTERWY xoduoTepoewy yia xdie Brua Tou Tuprva xal
CUVETIOG OEV TPOEXUTTE Pelwor oTov apriud Twv "Tixg’ yia o omolo TEEYEL 0 TUEYVAC.

To anoteAéopata TN EMTAYLVONG GE OYECT UE TOV TPVl TOU Yenotuorotel aptiuoic
XVNTAC LTOBIGTOAYG OLTATig axp{Belag gaivovtar oTov mopaxdte mivax:

Téhog, Yyl vo umopel 1 Tpocouolworn va Teédel yia méve and pa opea oe DFE, ypeidletan
VOl OTIAGEL 1) TROGOPOIWOT O xoppdTior Tng Wiag wpeag. Etol o x®dixag Tou enclepyaoTt| Soupel
TNV TpocoUolwat ot Bruata Kote xdde mapdiupo Brudtmy va TEEYEL Yo AYOTEQO Ao Lol (OEA
xa TENXS Vo lvor EQIXTY| 1) TROGOUOIWOT) UEYHAWY DIXTUMY o BLopxel Téve amd UL e
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Hivoxag 1: Emtdyyuvon pe apriuolc xivntrig umodlaoToA g Ue povr axpifeia oe oyeon ue

OLTAN
[elpapo 1.1 1.2 1.3 2.1 2.2 2.3 3 4
Neuvpivee Eio680u 384 | 384 | 384 | 384 | 384 | 384 0 0
ABSEZ Neupwvee Inyéc 0 0 0 0 0 0| 384 | 1152
ABSEZ Neupwveg Xtoyol 384 | 384 | 384 | 1152 | 1152 | 1152 | 384 | 1152
Awothparta petolld Hohuody Ewobdou (Bruoto) 1 2 5 1 2 5 - -
Xpovog EneZepyoaoty (s) 2381124056 | 783 | 456 | 2.24 | 410 | 52.21
Xpbvoc DFE Movhc Axpifetog (s) 2.34 1234|234 | 6.98 | 6.98 | 6.98 | 2.54 | 22.70
Emtdyuvon Movric AxpiBeloc vs CPU 1.02 1053024 1.12| 0.65 | 0.32 | 1.61 | 2.30
Xpévoc DFE Awthic Axpifetog (s) 3.0213.0213.02| 9.03| 9.02| 9.02 | 3.47 | 31.07
Emtdyuvon Awmhrc Axpifeoc vs CPU 0791041 ]0.19| 0.87| 050 | 0.25 | 1.18 | 1.68
Emtdyuvon Movrc vs Aumiric Axp(Betog 1291129 (129 1.29| 1.29 | 1.29 | 1.37 | 1.37

4
AmoteAEécpoTa

[t TNV GUAROYT| TV PETEHCEWY XAl TNV TURUTARNOT TNG EMTAYUVOTNS TNG TEOCOUOIK-
onec yenowomotinxe n DFE pe 6voua MAIA, 1 omola amotereiton and éva FPGA toum tne
Altera, tOmou Stratix V, o omolo mepiéyel 262400 npocupuoctind hoyixd xouudtior Uniig
amodoorg, 3926 DSP xivntrc umodiuctorric xon 2567 M20K umiox uviung. Erlong éyel 48
GB DDR3 pvAun péyet 933 MHz. I 6ha 1o tepdpota o DFE yonowonow(dnxe o povéce
Tuprvag Ue tapahiniomoinom xou aprdpoig xvnthg utodtao TohAg pnovig oxplBetag. O muprvag
Yenowlomoinoe to apyixd pohdt twv 150 MHz, ye tnv pvAun va ettovpyet oto 400 MHz. O
enelepyaocthg mou yenowomotfinxe eivon évag Intel Xeon E5-2658A v3 ye 12 nupriveg xon 24
viuota, ouyvotnta Aertoupyiog 2.2 GHz pe Turbo Xuyvétnta 2.9 GHz xaw 30 MB Smart-
Cache. O unohoyiotrc elye enione 128 GB DDR4 Ram. ‘O)a ta netpdpata otov enelepyas T
TEEYOLY OE Evay TUEY|VAL.

O x@dwog Yoo Ty AMdn twv yetproswy Beloxeta oto e&rc GitHub repository:
https://github.com/iomaganaris/AdexSimMaxeler

Ov mapdetpol tng mpooouolwong mou emAgyUnxoy vo uetoffdhhovar etva:

e O oprduodc twv Nevpwvov Ewoddou xau twv AdEx Nevpodvwy wote vo dlamiotodel ov
UTdEYEL UETABOAT) GTNY EMTEYLVOT OE GYEon Ue To Uéyedog Tou BixTOoU

o H cuyvétnta twv toApey tou tapdyouy ot Nevphvee Eicodou kote va nopatnerniodv
OL BLUPOPES OTNY ETUTAYLVOT AVIAOY X UE TNV OPUCTNELOTNTA TOU BIXTOOU

e H cUvdeon twv Nevpdvwy yio va tapoatnerdody oL Bla@opée oTny ETTAYUVET| avahoyo
UE TO TOCOGTO TWV CLVOECEWY TwV NeuphVLY

e O apriudg tov Brudtwy tng mpocouoiwong wote va dwmotwdel ov ueTofdAieTon 1
ETUTAYLVOT) UE TO UEYEVOC TNG TPOGOUOIWOT

NxM Ilgocopoiwon
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https://github.com/iomaganaris/AdexSimMaxeler

Y aUTOV ToV TUTO TPOCOUOIKONE OTWS avapépUnue xou vopltepa, cuvoéovtor Nevpwveg
€L0600V, TIOU TOEAYOLY UOVO TAAUOUE BEBOUEVNE UG CUVEETNONG TapaywY NS Toug, ue Neu-
cwvec AdEx oe éva 8ixtuo 600 emmédmy. Mo eixdvo Tou Sixthou auTol Qaiveton amd xdtw:
Aprdudc Nevpwvov Ewcddou: 2
Apiuoc AdEx Nevpovov cav TInyéc: 0
Apriudc AdEx Nevpdvwv cav Xtoyou: 3
Yuvdeowpdtnta: 100%

Aptiuoe Xuvddewv: 6

AdEx Neuron

AdEx Neuron

AdEx Neuron

Yyfua 4: NxM Atxtuo Nevpdvwy

Ou umie xOxhol avamaplotdvouy Toug Neup®veg €l06d0u, ol toptoxahol Toug AdEx xou ol
euleleg ypauuéc Tic Yuvaels.

Mo xérde mefpopor autod Tou TOTOL oL VELP®VES apyLxoToWdnXay Bdoel Tou dpdpou 6To ono-
fo Baototnxe n dimhowpotd. o Ty apyixonoinom twv Luvddeny petaBhRinxay ot (dieg Tyég
ot omoleg etyav apyoroindel xar 670 dpdpo ahhd ue Evay adlovta apriud Tou enavohouBdve-
Ton UETE amd To 16777216 mou elvan o peyahdtepog apLiudc mou Unopoly Vo avamapedo THoOoLY
ot oprduol xivnThAg uTodLIC TOATG HoViS axp(Betag ywelc va €youv mapaheider xdmolov mponyo-
OUEVO.

Apyind yiveton par olyxpion avdueoa o OAeg Tig VAomoloels. Ot YeToffAnTtég mou xpoatodvTo
otadepéc etvou:

Brjuata mpocouoiwong: 1000

Brjua tpocopoiwong: 1ms

Auvdotrua petadd maiuey Nevpwvov Eweodou: 1 Bua

Yuvdeowpdtnta: 100%

To amoTeAEoPATA TOPIC TEVOVTOL GTO TURUXATE OLdypouua. Y auTtéd o apriudc Twv Nevpovov
Eiwédou etvar (Bloc pe tov aprdud Nevpdvwv ASEE xou mopiotdveton omd tov oplloviio dlova.
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Emutdyuvon petafd DFE, C ko Brian

6.00 '\_,_ —»
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ApBuoc Neupuviuw
—a— Emirdyuvon DFEvs C —a— Ertirdgyuvon DFE s Brian
Yyfua 5: Emtdryyuvon petoald DFE, C xou Brian
Mo v ouyxptvoupe xahOtepa To amoteréopata uetach C xou DFE, yiveton dhho éva melpoua

ue Tig Beg uetaPAntéc ue to mponyoluevo, 6mou woTtoco o opriuds twv Nevpwvov AdEx
TapaéveEL oTtoepoc oto 4992.

Ermutdyuvon DFE vs CPU
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Yo 6: Emtdyuvon DFE vs CPU pe otodepd apriud Nevpovev AdEx
IpocEtovTag 0TI Tapamdve UETEYOELS, UETEYOELS YLt UEYUALTERA HEYEDT) DIXTUMY To OTO-

for dpwe €youv TEE€et yior 100 Briyata tpocouoiwong Aoyw Tou 6Tl BlapopeTixd Y eIl OVTOUGY
unEEBOAXE TOAD YE6Vo Yo Vo TeéZouy (Uépeq).
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Ermitéyuvon DFEvs C
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ApiBuoc Neupuwuww

Eyfuoe 7: Emtdyuvon DFE vs CPU vy yeydia dixtua

Eavd o apriuoc Nevpdvwy Eicédou xoaw AdEx eivon o (Blog xou gatveton 0to 0pll6vtio dEova.
2T CUVEYELL €YOUUE TO TELOYUOTA OYETIXY UE TO TOCOGTO GUVOEGOTNTIC TV LUVAPENV.
[t auTég Tig YeTEY|OELC Yenotonouinxay ot (Bleg PETUBANTEG UE TO TEMOTO OLAYQOUUA UE HOVT|
0LopoEd TO TOGOGTH TWV GUVOECEWY Xt PETEIETOL 1) emiTdyuvon o DFE oe olyxplon ye tov
enelepyaoTh.

Emitdyuvon DFE vs C OXETIKN LE TNV

ZuvbeopuotnTa
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Eyfue 8: Emtdyuvon DFE vs CPU eloptdpevn and tny Xuvdeoyotnta

Téhog Brénouye Tov poho Tou maklel 1 BEACTNELOTNTA TV TUAUMY TOU Toedyouy ot Neu-
ewveg Elobdou oTtny emtdyuvor TN Teocopoinong.
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Emitdyuvon DFE vs C OXETIKN WE TNV
Spaoctnplotnta twv Neupwvwy Eladdou
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AvoorApora wetoty Modpow Twv Neupwvwy Eloobou (BApora)

Eyua 9: Emtdyuvon DFE vs CPU eoptaduevn and to dtaothiota xotd to omolo ot Neuptveg
Ews660u otéhvouy IThopolc

Ané o mporyoluEVa YRUPHUTO THQUTNEOVKUE OTL 1) UEYLO TN ETLTAYUVOT) BeV elvor oLodTeRL
UEYAAN ot oyéon Ue TNV vhonoinon o C, dvtog mepinou 2 gopéc. Autd oupfaivel Aoyw Tou
ot ot DFE ypeetdleton vo e€etactodv Ao Tor EVOEYOUEVY TAAUMDY xou e€ouTiog auTOU VoL xo-
TavohwUel yedvog yior TNV eTiAUCT) TV BLUPOPIXGMY XUl TNG TEOCULVATTIXNG EXPEUOTG XL TNG
UETAOLVATTXAC. AUTO OUOE AOYR TWV BAXAADOOEWY GTNY POT) EXTENECT|C TOU TROYEAUUUUTOS
e C péow Twy if-statements yAutdvel mpdéelc xon ypdvo amd tov enelepyoaoth. Lty NxM
TpoCOoUOlWoT EluacTE GlyoupoL POV YIaL TNV BEUC TNPLOTNTA TWY TEOCUVITTIXMY VEURMOVGDY Xl
UETE amd TopatneNoelc BAETouUE OTL BEV UTdEY 0LV TOMNOL TIoEOY WUEVOL TUAUOL Ad TOUC PETO-
ouvantixolg e€atiog Tou povtélou touc. 'Etol extelolvton neploodtepec npdiec oto FPGA
Ywelc amapaitnTo vou yeetdlovTal, apod EXTEAOUVTOL Ol TEAEELS oL TN UETACUVATTIXAC EXPEO-
orng Yy xdde evdeyouevo, oe avtideon ye tnv C. I tov (Blo Adyo umdpyet dloaxdyoavon oTnv
ETUTAYLVOT] XAl OTIC TEQITTOOELC UETHBOMAC TNG CLUVBECWOTNTOC XAl TNG DPACTNELOTNTIC TWV
TpoouvanTixwy Neuphvwy Eicddou.

Aroxhloeic

Téhog dmwe avapépdnre TEONYOUUEVKS, AOY® NS YeHoNS deLIU®Y xvNTAC UTOBLIC TOAG
wovric axpifelag ot DFE avtl yio dimAric otov Brian xaw ot C, undpyouv xdmoteg anoxiloelg
oTig TWég mou uroroyiCovtar. ‘Eva yapoxtneio Tixd mopdderypo Tpogpyeton and TNV UEYUROTE-
o1 meocouoiwon mou €tpede yio 1000 Bruora xon 4992 Nevpwvee Eicodou xon 4992 Neupiveg
AdEx. Ye auto to melpoya, ol diapopéc ota amoteléopota NTay Tdve ané 100000 pxpedtepeg
oo TIC TYWES TV PETUBANTGY, dpo avaraic¥nTes xow AoHUAVTES.

MxM Ilpocopoiwon

Y auTdV Tov TOTO TPOCOUOLHOEWY deV uTdpyouv Nevpwvee Eioddou cuvdedeuévol Ue to
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oixtuo. To dixtuo amoteheltan wévo and AdEx Nevpwveg cuvdedeuévoug petall toug. Mia
AVUTUEYO TUCT) TOU OLXTUOU PAVETOL ToQOXETE:

Apriude Nevpwvev Ewséoou: 0

Apiude Nevpwvov AdEx ooy Tnyée: 2

Apriude Nevpwvov AdEx cav Ntdyou: 2

Yuvdeowdtnra: 100%

Apriuoe Yuvadenv: 4

e AdEx Neuron

AdEx Neuron

Yyfua 10: MxM Aixtuo Neupdvev

Ou ypopuéc avomoplotoly Tic ouvadels. Ot yxpL YeoUUES BeV €YUV GUOLXT OTuACTa UdA-
AoV apol avamaplo ToLY cLVAELS TEog Tov (Blo veuphva. e TNy apyxonoinom twv Nevpdhvewy
AdEx yenowonouinxay o idieg Tyéc pe v NxM npocouoiwon, extég and tnv YeTaBAnTh
Toug Vm, 1 onofo Tédnxe SmV néve and tnv Vi, hote 0To mpmTo Brida vor mopdyouy mokuoig
XL XUT' ETEXTACT] VO XEVOLY TUAUOUG OE %ddE Ypovixr) oTiyun.

Arnoteléopata

Apyind yiveton o oUyxplon avdueoa o Oheg Tig Lhomooels. Ot otolepés TV PETENOEWY
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Chapter 1

Introduction

The motivation for this Diploma Thesis has been the need of neuroscientists to run
simulation of neuronal networks fast. Like in many disciplines of science, modern research
in Neuroscience is also based on computer modelling and simulation. The vast complexity
of the brain, the organization and the behaviour of the neurons leads to huge simulations
that take a lot of time to run, delaying research. The goal of the thesis is to try and find the
optimal way to accelerate a particular Neuron Model that is widely used in neuroscientific
experiments and simulations. This model is called Adaptive Exponential Integrate-and-fire
model. The particular simulation implemented encapsulates also the phenomenon of Spike-
timing-dependent plasticity of the connections of Neurons.

The faster execution of the simulation was made possible by using a plethora of methods.
Initially, the model was imported by the BRIAN Simulator, an open source and widespread
solver for neuron simulations that runs on Python. The step towards accelerating the sim-
ulator was achieved by importing the simulation in C, which has a better performance
than Python, which is a higher level programming language. Afterwards, the simulation
was imported in Maxeler DFEs, implemented with FPGAs, to use the Maxeler Dataflow
Programming model to accelerate it.

1.1 Neuroscience

An average adult brain weighs almost 1.4 kilos[Har94], which accounts for 2% of the
person’s weight, however it consumes 20% of the sum of energy its body uses throughout a
relaxing day, without activities. Moreover, it is the most complicated organ of the neuronal
system of the human, with 100 billion nerve cells and 100 trillion neural synapses which have
evolved from the start of life to their current state[Giol4]. It is a safe to conclude that the
science that studies the brain and the whole nervous system will have a similar evolution.
This science is called Neuroscience and it is supposed to be a subcategory of Biology, which
combines other branches of Biology, like physiology, anatomy, molecular and developmental
biology and cytology, but not only. It also needs statistics, math and branches of medicine
like psychology.
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More precisely, Neuroscience studies the human nerve system, how it works, how it
is organized and how it develops. The biggest effort of neuroscientists is focused on the
study of the brain and how it deflects on the consciousness and the behavior of the person.
However, Neuroscience research is not only focused in the normal operation, but it also
tries to interpret brain damage and how it operates on people with neuronal problems
or psychological disorders. The development of Neuroscience has produced solutions for
patients with brain damage, problems in their spinal cord and psychological disorders.

The main targets of Neuroscience are:

e Understanding the human brain and how it functions

e Understanding and describing how the central nerve system develops, matures and
maintains itself.

e Analysis and understanding of the neuronal and psychological disorders and finding
ways of prevention and treatment.

1.1.1 History

The first records for the study of human brain come from Ancient Egypt and of course
through the years has made huge steps forward. The Edwin Smith papyrus, which dates back
to 17th century BC, describes the symptoms, diagnosis and prognosis of two patients which
have fragmented parts of their skull. This battlefield doctor’s papyrus contains descriptions
of the brain and the symptoms of the patients. This was also the first record with logical
conclusions and observation, as in the past people lacked complete understanding of how
the brain works and were based on myths and superstition. [ERKJ81; AG87]

During the second millennium BC in Ancient Greece people started to occupy themselves
with the study of brain, expressing different opinions. However, due to the fact that human
body was considered sacred, hippocratic doctors didn’t operate on bodies to study the nerve
systems and therefore, didn’t use anatomy. The first that conceived that the mind is in the
brain was Alcmaeon of Croton (6th and 5th century BC). More precisely, he stated that
the brain is what distinguishes human from animals. That people can understand through
the brain what in the same time animals just feel. The brain for him was the center of the
senses and after anatomic studies discovered the sensory nerves and named them pores.
He stated that with those pores, the human brain absorbed the information that it takes
through the senses and that is how cognition, which supports studying, phantasy, memory
and crisis, is created. In the 4th century BC, Hippocrates believed that brain is also the
seat of intelligence based on the knowledge produced by Alecmeon. Contrasting these views,
in 4th century BC, Aristoteles stated that heart is responsible for intelligence in the human
beings and that brain cooled the blood and was the part that added to people more reason
than animals, which had smaller brain.

Egyptians, in contrast with Greeks who believed that human body was sacred, embalmed
their dead for centuries and consequently studied systematically the human body. During the
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hellenistic period, Herophilus of Chalcedon (330-250 BC) and Erasistratus of Ceos (304-250
BC) contributed vastly, not only in the study of human brain, the nervous system, anatomy
and physiology, but in numerous other branches of biology. Herophilus defined the differences
between the cerebrum and the cerebellum. In addition, he gave the first detailed description
of ventricles. Erasistratus experimented on living brains. The original works of both of
them were not saved and all these information come through secondary sources. During
the Roman Empire, the Greek anatomist Galen did detailed dissections of the brains of
sheeps, monkeys and dogs. He concluded that the cerebellum was more dense than the brain
that it must be responsible for muscle control, while the brain was processing the senses.
Furthermore, he described seven of the cranial nerves and defined by running experiments
the operation of most of them. He discovered that specific specific spinal nerves controlled
specific muscles and conceived the idea of reciprocal action of muscles.[AG87] Living during
the Middle Ages, an Arab surgeon named Abul-Qasim Al-Zahrawi [NRARJLF84] made a
significant contribution to neuroscience. His efforts focused on neurosurgery. He not only
described neurosurgical diagnosis and treatment related to injuries and skull fractures, spinal
injuries and dislocations, hydrocephalus and subdural effusions, headache and many other
medical afflictions, but also the tools needed such as cranial drills that avoided puncture of
the dura mater. In the 11th century, Ibn Sina also contributed to neurosurgery. It was up
until the 13th to 14th century that Europe started recording the knowledge about anatomy
and the brain. Andreas Vesalius wrote books about anatomy in general and consequently
for the brain. He studied the peripheral nervous system and concluded that there are seven
pairs of brain-nerves. [VL93] René Descartes was a philosopher and developed the theory
of dualism. He believed that the pineal gland was what connected the mind with the body.
[Zall7] Thomas Willis contributed to the study of the brain, the nerves and behavior to
develop neurologic treatments.

In the 18th century Luigi Galvani discovered the function of electricity in dissected
frogs. Marie Jean Pierre Flourens in 1820s was the founder of experimental brain science
and developed anesthesia. He was the one that shattered the belief that the mind is in
heart, with scientific evidence. The study concerning the function served by electricity in
the brain continued in rabbits and monkeys by Richard Canton. Then the discovery of the
microscope brought a revolution in the study of the brain. Camillo Golgi in the 1890s was
able to picture with detail the structure of a single neuron applying a silver chromate salt to
them. This enabled Santiago Ramén y Cajal to imagine that the functional unit of the brain
is the neuron in the hypothesis of neuron doctrine. Emil du Bois-Reymond, Johannes Peter
Miiller and Hermann von Helmholtz presented in the 19th century the fact that neurons
were electrically excitable and their activity affected their neighbor neurons. Paul Broca,
occupying himself with brain-damaged patients supported that particular parts of the brain
were responsible for certain actions. John Hughlings Jackson contributed in the diagnosis
and understanding of epilepsy and by his observations in the focal motors, he supported
the Broca’s hypothesis. On this topic, Carl Wernicke focused on research of brain diseases
on speech and language, based on Broca’s previous work. From the 20th century, up until
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now, Korbinian Brodmann’s cytoarchitectonic anatomical definitions stand up, presenting
the activation of distinct areas of the cortex for specific tasks. [ERKJS8]]

During the 20th century, Neuroscience has started to be recognised as a distinct aca-
demic discipline and not as part of other sciences. David Rioch was a research scientist and
neuroanatomist, pioneering brain research and leading the interdisciplinary neuropsychiatry
division at the Walter Reed Army Institute of Research in the 1950s. This program helped
the establishment of the neuroscience. At that time, Francis O. Schmitt created a neuro-
science research program in the Biology Department of MIT, combining many disciplines
of Science. James L. McGaugh founded the first distinct neuroscience department, that
was firstly called Psychobiology, in 1964 in the University of California, Irvine. [ERKJ81;
Cow00]

All these years of research where did they end up? It follows an overview on the basic
anatomy of the human brain and what we know up until now for its operation. To begin
with, the human brain is the central organ of the human nervous system and with the spinal
cord makes up the central nervous system. The brain can be very easily compared to a CPU,
talking with computer science terms. It gathers all the information coming from the senses
and the nerves across the body, processes them and takes decisions that are transferred to
the corresponding part of the body. These decisions are taken in different parts of the brain,
based on what function they are related to. Consequently, the brain has been divided in
three different areas. It consists of the cerebrum, the brainstem and the cerebellum.

' .
/ © Cerebellum
Brainstem

Figure 1.1: Human Brain Organization

[GSJ13]

The cerebrum is the biggest part of the human brain. The cerebral cortex covers the
largest region of the cerebrum, is the most anterior brain region and has an outer layer
of gray matter, which is a neural tissue that contains neuronal cell bodies. The cerebral
cortex is divided into the left and right cerebral hemispheres that are interconnected by
commissural nerve tracts, which are groups of nerve fibers (axons), the largest being the
corpus callosum. These two hemispheres are further divided into the frontal, temporal,
parietal and occipital lobes. [Dav1l]
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Figure 1.2: Hemisphere Divisions
[Seb12]

The frontal lobe undertakes the tasks related to self-control, planning, reasoning and
abstract thought. The temporal lobe corresponds to visual memory, language comprehen-
sion and emotion association. The parietal lobe combines information coming from different
sensor centers, like spatial sense and navigation, sense of touch and the dorsal stream of
the visual system. The occipital lobe focuses on processing vision. The two hemispheres
share similar shape and function, however each one is focused in different functions. The
left in language and the right in visual-spatial ability. The brainstem is used to connect
the cerebrum to the spinal cord. It includes the midbrain, the pons and the medulla ob-
longata. Its responsibilities are controlling the actions and sensations of the face and neck
via the cranial nerves, helping regulate the cardiac and respiratory function, regulates the
central nervous system and the sleep cycle. It is also decisive in maintaining consciousness.
Moreover, through the brainstem pass all the nerve connections for the motor and sensory
systems of the main part of the brain to the rest of the body.

The cerebellum is mainly responsible for motor control but it also takes part in cognitive
functions like attention, language, regulating fear and pleasure responses. The cerebellum
in people, doesn’t initiate the moves but it help with coordination, precision and accurate
timing, receiving input from sensory systems of the spinal cord and other parts of the brain
and integrating these inputs to fine-tune motor activity.

All these parts of the brain consist of two basic cells. The neuron and the supportive glial
cells. The latter ones are non-neuronal cells in the central and peripheral nervous system.
Their responsibilities are maintaining homeostasis, forming myelin and providing support
and protection for the neurons. More precisely, they surround neurons and keep them in
place, the supply nutrients and oxygen to them, insulate one from another and destroy
pathogens and remove dead neurons. [Jes80]

1.1.2 Neuron

Neurons are the principal cellular elements that defines the function of the whole nervous
system and its parts:the brain, spinal cord, peripheral sensory systems and enteric nervous
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system. The neuron is characterized by its central cell body (soma) that comes in different
variations in shape. The central body encapsulates the cell nucleus and most of the genomic
expression and synthetic machinery that elaborates the proteins, lipids and sugars that
contribute to the cytoplasm and membranes. The bounds of the soma are defined by the
membranous system that also defines intracellular compartments. [L1i08]

The different functions of the nerve cells (voltage and ligand activated ionic channels,
ionic pumps, non-gated “leakage” channels) and the processes of taking up and replacing the
molecular modules that constitute the cell’s functional matrix are ordered by transmem-
brane macromolecules that are associated with the plasmalemma and other intracellular
elements. Neurons can be conceived as a two port element. They have an input and an
output, however in the past there were thought that there are neuron cells that didn’t have
any plasmalemmal extensions that we know now as receptor cells. Neurons in general can
have many types of branching or no branching. Most of them include however include an
input and an output pole.

The receiving or input pole is called dendrites, from the word “dendro” in Greek which
means tree, due to its tree-like branches extensions of the soma membrane. In most neurons
the whole body is a receiving site. In vertebrate neurons the dendrites come directly from the
soma and in invertebrate neurons most commonly come from the axon. The output pole is
called axon is a single structure that arises from the some or a dendrite. It sends propagating
electrochemical signals called action potentials outside of the soma. These signals are most
commonly initiated at the axon hillock. In some neurons the dendrites can function as
outputs.

neuron cell body

axon of
previous axon
neuron

neuron cell body

nucleus .
/ axon dendrites of
/ tips next newron
e — .l-l""’
electrical
signal

dendrites

Figure 1.3: Neurons Organization
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The neuron has a huge variety of electrophysiological properties that adds to it a vast
set of electrical properties and functional styles. The voltage and ligand dependent ionic
conductances that generate and modulate such excitability can implement autorhythmic
properties as single cell oscillators or resonators that ultimately dictate network oscillatory
properties. The study of motoneurons concluded that the basic function of neurons in inte-
grate and fire. From then up until now only few parameters have been added to the neuron,
such as Plasticity which is expressed as Long Term Potentiation and Long Term Depression
and intrinsic electrical properties.

The four main functional properties that characterize the neurons are:

e Electrical Excitability
e Secretion

e Molecular Synthesis

e Growth and Plasticity

The main of them that concerns us most is Electrical Excitability and has numerous prop-
erties.

The passive electrical properties are related to the capacity and resistance of the the
neuronal membranes and the resistance of the cytoplasm and the extracellular milieu. The
combination of these properties forms an electrical resemblance between the neuronal pro-
cesses and the axons and dendrites of the neuron with the electrical properties of cables.
Selective ion pumps dictate the electric field and the voltage difference of the membrane.
The membrane potential is not uniformly distributed throughout the membrane and it is
related to the density of the ionic conductances which again are not uniformly distributed.
However, for simplification the membrane potential is assumed to have a resting value uni-
formly distributed, called resting potential. The value of the electrical field (mV) is related
to the driving force (emf) for each of the ionic species that can move across the membrane
and the magnitude of the conductance for each ionic species. The membrane potential is
passively conducted on the membrane processes as the result of currents that flow through
the longitudinal resistance or across the plasmalemmal membrane as resistive or capacitive
current.

The active electrical properties are related to the activation of voltage, ligand or sec-
ond messenger gated transmembrane ionic channels that have as a result variation of the
electrical potentials across the plasma membrane. The electric field across the membrane
acts on the voltage sensors of the transmembrane ionic channels. Specifically on voltage-
gated channels, the inflow of sodium or calcium ions depolarizes the plasma membrane. The
opening of the voltage-gated channels results in current flow that repolarizes the plasma
membrane. In general, the conductance of voltage-gated channels is increased by membrane
depolarization. However, there are some channels that increase their conductance when the
membrane is hyperpolarized. Another active electrical property is related to the ligand-gated
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ionic conductance, where the binding of a neurotransmitter will gate ionic conductances al-
lowing the generation of excitatory or inhibitory synaptic potentials. Moreover, there are
subthreshold oscillations, meaning that the excitability of the cell is gated in such a way
that the membrane potential is not uniform but follows a continuous fluctuation.

The superposition of passive and active electrical properties in an active cell result the
possibility to allow the cell to sum the transmembrane potential linearly or nonlinearly and
reach depolarization levels sufficiently high to trigger action potentials. These are conducted
either along the axon or the dendritic tree, in an all-or-none continuous manner, in saltatory
fashion or in decremental mode.

Neurons have only one axon that can start from the some or the dendrite of the neuron.
Axons branch collaterally along their length or at their terminal (telodendrion). They are
the presynaptic connections of the synapses that connects the neuron with another neuron,
muscles or glands. Axons send very similar spike sequences to all their branches because the
start from a single segment. However, due to spike failure at branch connections or changes
in conduction velocity and changes in axonal diameter after branching can alter conduction
patterns and conduction time.

Apart from axons, action potentials in axons, regenerative events can also come from
dendrites. These potential in general decrement with distance, but it is not impossible
to reach the most distant dendritic branches. The actions can move toward the soma or
propagate away of the soma depending on the dendritic morphology and the distribution
and density of voltage gated ionic channels over the dendritic tree.

In addition to action potentials and synaptic transmission there is also electrical activity
generated autonomously by the neurons. Most of the time, the autonomous intrinsic activ-
ity leads to modulation of the resting potential and consequently the state of the whole
neuron, in the sense not only of synaptic modulation or the modulation produced by pep-
tidergic, hormonal and metabolic activity, but also of other parameters such as pH and free
radical activity modulation. Apart from modulation, the most relevant parameter that de-
fines intrinsic activity, other than resting potential, is the types and distribution of plasma
membrane channels and second messenger modulation of channels.

Finally, the electrical signature of neurons is defined by two factors. The first one is the
passive integrative properties of the dendrites and soma. The second one is the non-linear
electrical properties superimposed by the presence of voltage, ligand, second messenger, and
metabotropic conductances supported by specialized ionic plasma membrane bound chan-
nels. These modulate excitability by their number, functional phenotype, and distribution
over the dendritic, somatic and axonal neuronal segments.

While certain characteristic properties can be assigned to given cellular phenotypes, the
fact is that every neuron is unique both in its individually detailed shape and its connectivity.
Perhaps it is the diversity of such parameters that allow the CNS to be as reliable as it
actually is. It was von Neumann who first realized the genesis of reliability from unreliable
elements as one of the central character of “neuron-ness”.
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1.1.3 Synapses

A synapse is a structure that enables a neuron to transmit an electrical or chemical signal
to another neuron or to the target effector cell. In a synapse, the plasma membrane of the
signal source neuron (presynaptic neuron) comes into close apposition with the membrane
of the target (postsynaptic) cell. The sites of presynaptic and post postsynaptic neurons
that are connected have extensive arrays of molecular machinery that connect the two
membranes together and carry out the signalling process. In most cases the presynaptic
site is located in the axon, while the postsynaptic in the dendrites. Glia also exchange
information with the synaptic neurons, having an impact in neurotransmission. Chemical
synapses are kept in place by synaptic adhesion molecules projecting from pre- and post-
synaptic neurons, connecting the overlapping part, while playing a part in the generation
and function of synapses. [Fos97; Eli06; Sch11]

Neurotransmitter
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density Dendrite

Figure 1.4: Synapse
[Spl15]

The synapses are divided into two categories, chemical and electrical synapses. In the
chemical synapses electrical activity in the presynaptic neuron is converted via the activa-
tion of voltage-gated calcium channels into the release of a chemical called neurotransmitter
that binds to the receptors located in the plasma membrane of the postsynaptic cell. There
is a probability that the neurotransmitter initiates an electrical response or secondary mes-
senger pathway that excites or inhibits the postsynaptic neuron. Chemical synapses are
further classified based on the neurotransmitter released. There are glutamatergic (often
excitatory), GABAergic (often inhibitory), cholinergic (e.g. vertebrate neuromuscular junc-
tion), and adrenergic (releasing norepinephrine). Because of the complexity of receptor
signal transduction, chemical synapses can have complex effects on the postsynaptic cell.
In the electrical synapses, pre- and post-synaptic cell membranes are connected by special
channels called gap junctions or synaptic cleft that are capable of passing an electric current,
causing voltage changes in the presynaptic cell to induce voltage changes in the postsynap-
tic cell. The main advantage of the electrical synapses is the rapid transfer of signals to
the neighbor cell. Synaptic communication is distinct from an ephaptic coupling, in which
communication between neurons occurs via indirect electric fields. An autapse is a chemical
or electrical synapse that forms when the axon of one neuron synapses into dendrites of the
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same neurorl.

1.1.4 Levels of Analysis in Neural Modeling

The qualitative and quantitative models that represent natural phenomena in Neuro-
science are as important as other scientific fields. For neuroscience however, this task is
even more difficult, as these models serve two functions. Firstly, to represent the experi-
mental data and secondly, to interpret the underlying computations that are processed in
the brain. Neuroscientists have to understand the neural models, how they are connected
to the experimental data and how to use them in practice. [Day06]

Brain modelling has four different levels of organization. The first one is scientific re-
duction, meaning the description of observations with qualitative and quantitative detail
and explaining them by describing them in lower and less abstract levels. The second one
is based on the duality of the first one. It is the implementation of systems for a particular
purpose. Many times this is possible by dividing the problem into smaller ones that are
easier to be solved. The third level is the algorithmical one, which means that the pro-
cesses on the brain are described by algorithms and then there is a implementational level
which describes how these algorithms are implemented by neurons. The final one is about
processing as a way to manipulate and extract information from the input.

1.1.5 Types of Neural Modeling

1.1.5.1 Conventional reductive models

The idea of reductive modeling is applied to neurons too. The practical benefit of this ap-
proach is the ability to describe the phenomena and provide the means to reductive explain
them, by appealing to the mechanisms that might actually be responsible for the generation
of these phenomena. This modelling technique is also most of the time recursive, as most of
these models are described by models too. To be able to have the required accuracy on the
quantitative representation of a model, usually there are needed mathematical models. Of
course, there are different levels of a model that correspond to different levels of reduction
of a phenomenon. Especially in neuroscience, the difference is dictated by the anatomical
detail that is contained in every model. The descriptive models of a level encapsulate only
the behavior without any substrate, while explanatory models encapsulate the behavior by
unraveling it in lower levels. The combination of those two approaches generate the quanti-
tative models that allow proof, in the form of numerical demonstration, that the behaviour
that is represented by a model is truly a description of the real phenomenon that it tries to
explain. The models of a certain level almost always are more abstract than the models of
lower levels, that encapsulate more details of the phenomenon they represent.
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1.1.5.2 Computational interpretive models

These models are based on the idea that the brain does computations to perform various
tasks. These computations involve parts of the the visual and the motor systems of the brain,
that based on the input it has, previous behavior and experience, computes the best way
to perform the task it needs. Computational modeling is about imputing and interpreting
the overall operations of the neural systems of the brain to perform a specific action. The
key aspects of computations are representation, storage and transformation or algorithmic
manipulation. Computational modeling tries to interpret how neural systems represent and
store information that take as input and how they process them to create new ones that
help the completion of a given task. Similarly to standard computers, the semantics of the
computation are implemented by the syntax of the physical substrate.

Computational and Conventional models have a lot of things in common. To begin with,
there are for both of them different levels of abstraction. Furthermore, there are descriptive
and explanatory computation models. Finally, for an single task of the same abstraction
level, there can be many interpretations and representations for the same computation.
The analysis of neural systems needs the combination of computational and conventional
modelling. At a single level, the computational model is able to represent exactly the the
experimental phenomena that the conventional reductive model has interpreted. The re-
ductions on the complexity of the natural phenomenon comprises the lower level of the
conventional model and it must comprise also the implentational plane of the lower level of
the computational model. The algorithmic and computational planes of the computational
level should be consistent with those of the conventional level. And they must be consis-
tent throughout all the levels of abstraction. This only will enable us to have a complete
understanding and representation of the operation of the human brain.

1.1.6 Degrees of Modeling Detail of Neurons

Based on the level of abstraction and based on the data that come from the same level
of abstraction, there are three main classes of quantitative models in common use.

1.1.6.1 Conductance-based models

These models encapsulate a high level of detail, giving emphasis in a small number
of neurons. They approximate structure of a neuron by multiple, interconnected, compart-
ments, each of which is treated as being electrically compact. The whole set of compartments
is designed to be faithful to the geometry of the neuron, including facets as branching points
of dendrites and the diameters and lengths of different parts. To be make the computations
of this model quick enough, usually a complex neuron with multiple compartments is repre-
sents by only one compartment. In standard conductance-based models, each compartment
is given an assortment of active channels, such as voltage sensitive or synaptic channels.
They are ideal for explaining phenomena related with spikes and threshold for initiating
spikes, the precise effects of synaptic input, bursting, spike adaption, spikes that propagate

29



backwards up the dendritic tree and the like. The main issue with these models is that
in order to have faithful results they need numerous variables that are very difficult to be
calculated accurately by experiments.

1.1.6.2 Integrate-and-fire models

These models lie an abstraction level higher than conductance-based models. They make
an approximation for action potentials using a symbolic model of spike generation coupled
with a leaky integrator model of a cell that initiates a spike when the voltage is above a
threshold. The also radically simplify the geometry of cells, elimination the compartmental-
ization. They are ideal for simulating large and recurrently connected networks of neurons.
Their usage has helped with exploration of many mathematical issues about networks, such
as the synchronization and desynchronization of spiking across the whole population and
the effects of different sorts and sources of noise. The details of such phenomena as synaptic
plasticity are dependent on such phenomena as precise time differences between pre-synaptic
and post-synaptic activity. The integrate-and-fire is the simplest form that output spikes
and can be used to address such issues.

1.1.6.3 Firing-rate models

This is the most abstract model of neuron representation, abandoning neuron firing and
instead having a continuous-valued, timing varying firing rate for neuron output. It can
become an abstraction of the integrate-and-fire model with some assumptions about the
time-constants of processes inside cells. Networks of this model can be constructed, where
the influence of a neuron to another is given by the product of the pre-synaptic neuron firing
rate and the synaptic strength of the connection. The main advantages of this model is its
empirical and analytical tractability. Firing-rate models involve a mild non-linearity, turning
an internal continuous variable, like somatic voltage or current, into a (positive) firing rate.
Consequently, networks of these neurons can be treated as coupled, non-linear differential
equations that can be shown to exhibit dynamical behaviors. The regularities that are
implied by attractor and oscillatory dynamical behaviors make them ideal as substrates
on which to hang analysis of network computation. Most work on computational analyses
was made using firing-rate models, due to the simplicity of the analysis of non-recurrent,
feedforward network models.

1.2 FPGA

The term FPGA derives from the initial letters of the words Field Programmable Gate
Array. As this phrase suggest, FPGA is an integrated circuit that its connections and
configuration are programmable by the user. To describe this configuration the user has to
use a hardware description language (HDL), which describes with high detail how exactly
the algorithm, all the operations and operators, the pipeline and the whole timing of a
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program design should be run. Due to the fact that this is quite complex for a non-expert
developer, various higher level compilers and IDEs have been proposed to write programs
in more high level languages but still be translated to HDL and run on FPGAs. The term
Gate Array indicates that FPGAs contain a structured set of programmable logic blocks
and a hierarchy of reconfigurable interconnects that allow particular blocks to connect with
others. The logic blocks contain Look-Up-Tables that are connected with other elements like
Full Adders, Multiplexers, simple logic gates, Flip-Flops, etc to implement from complex
functions to simple logic gates like AND and XOR.

Logic Blocks

An example Logic Block (or Logic Cell) of a Xilinx FPGA is:
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Figure 1.5: Logic Block
[Soul7]

The LUTs are configured in such way that they can implement whatever function. In
each configuration, a Table of Truth is saved on them, so for a given input there is a given
output. This makes the delay of calculation of a function irrelevant of the function that
is implemented. The use of memory to implement complex functions to gain efficiency is
a typical methodology in Digital Design. In the above example, two 4 input LUTs are
connected with configured Multiplexers that combine them to create an 8bit input Logic
Block to execute the function needed. The storage elements are configured as edge-triggered
D-Type flip-flops or level-sensitive laches. [Xil08; Soul7]

Hard Blocks

On top of the Logic blocks described above, modern FPGAs include also Hard Blocks
that are designed to perform a specific action and are not configurable by the user. Those
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blocks are usually multipliers, generic DSP blocks, embedded processors, high speed 1/0
logic and embedded memories. The fact that are embedded and not configurable enables
them to require less space in the chip and increased speed, compared to the same blocks
designed by the user.

Clock

As seen in the picture above there is a clock needed, as most of the parts of the FPGA
are digital and need to be synchronous. In most FPGAs on top of the global clock there are
local clocks that are used to drive regional networks for clock and reset to have a minimal
skew. Complex designs can have more that one clock to serve different operations such as
RAM.

Area

The functions that can be implemented in a FPGA are constrained by the logic available
on the FPGA. So, the FPGA vendors try to create more space by new techniques such as
3D Integrated Circuits, where different FPGA chips are stacked to create a bigger chip
[Wulb] , FPGA chips combination [Sab12] and implementing chips with smaller transistors
(7Tnm and less) to stack more of them in a single chip.

Programming

There are two ways for the user to program or define the design that will be implemented
on the FPGA. The first one in Hardware Description Languages, such as Verilog and VHDL
and the second one the schematic design. However, due to the fact that programmers want
to make development easier, the schematic design is nearly obsolete as it is very difficult to
draw on paper the number of transistors or gates needed to implement a complex design.
Schematic design is only used for verification and design understanding and is automatically
produced after the HDL development. The workflow for the implementation of a program
in FPGAs consists of 4 steps. To begin with, the developer must develop the program on
a HDL or a higher level language that then generates a technology-mapped netlist by an
electronic design automation. This netlist is then fitted into the FPGA by a process called
place-and-route that uses most of the time a FPGA company’s proprietary place-and-route
software. In this step there must be defined the model of the FPGA. Next, the user can
evaluate the results of the place-and-route based on the timing analysis, simulation or other
verification techniques. If and when this process is completed and verified, there is generated
a binary file, which then is transferred to the FPGA via a serial interface or to an external
memory device and is used to configure the FPGA. To make the program development more
efficient, as it is the biggest drawback of the FPGA technology, there are many libraries
of predefined complex functions and circuits, which have been verified for speed. These
circuits are called IP Cores and are available from FPGA vendors and other third-party IP
suppliers. Moreover, there are IDEs that are mostly developed by FPGA vendors that the
programmer can use a higher level language to use a more abstract program design and
make the development simpler. [Xill8] Finally, Amazon has created a marketplace, where
a developer can subscribe, use Xilinx’s high level development tools to run programs on
Amazon’s FPGAs or rent IP Cores or FPGA Programs for specific tasks and time and pay
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in relevance to the time he uses the FPGAs. [Amal§|

1.2.1 History

FPGAs were a development of programmable read-only memory (PROM) and pro-
grammable logic devices (PLDs) which where programmed in batches in factory or in the
field as the connections between their elements where hard-wired. [Cral5] The first FPGA
was created in 1983 at Burroughs ASG and patented. [DWP83; Pag83] Altera delivered the
first reprogrammable logic device in 1984 called the EP300. This device was programmed
by shining in its die which had an quartz window an ultraviolet light that erased the needed
EPROM cells and configured the device. [YFCW09] In 1992, Steve Casselman developed a
computer that could implement 600.000 reprogrammable gates. After the implementation
of FPGAs from Altera, which was acquired by Intel in 2015, and Xilinx, these companies
continued to thrive and became the biggest FPGA vendors in the market. In 1990s there
was a rapid growth in the FPGA industry and back then these devices were mostly used
in telecommunication and networking applications, while in the end of the decade the were
introduced to a wider set of applications such as consumer automotive and industrial appli-
cations. In parallel with hardware, hardware description languages were developed. Verilog,
the first modern HDL was introduced in 1985 by the Gateway Design Automation. In 1987,
VHDL was introduced by the U.S. department of Defense and was based on the Ada pro-
gramming language. Those two languages were used in the beginning to document and
simulate circuit designs that were already defined in other forms, such as schematic files.
The HDL simulation enabled engineers to work in a higher level that schematic simulations
and increased the design capacity of transistors at least a level of gratitude.

1.2.2 Applications

FPGAs due to their versatility, latency, performance, connectivity, engineering cost and
energy efficiency are used in numerous sectors and for various reasons. Examples of the
sectors that use FPGAs are Aerospace and Defense, Consumer Electronics, Industrial Elec-
tronics, etc. There are particular sectors such as military, space and astronomy applications
that FPGAs are the best solution for low latency. The other main FPGA application is
prototyping and testing a design before it is implemented in an ASIC which will be more
energy efficient and less expensive to fabricate. The latest years there have been created
new ways to utilize the FPGA’s advantages. Those contain embedded systems, high per-
formance computing and AI/ML applications. The usage of FPGAs has a steady increase
the latest years but the FPGA market is expected to grow in its highest level due to the
introduction of Heterogeneous FPGA systems for acceleration of enterprise workloads. The
energy efficiency, the improvements in performance, as well as, the special demands of some
applications for fixed point operations make FPGAs a very competitive solution to GPUs
for computing. [res18; vdP18; Kat18§]
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1.3 Maxeler

The solution proposed by this thesis utilizes the Maxeler products and the Multiscale
Dataflow Programing model that is introduced by the company. Maxeler is a company based
in UK and has created products that utilize FPGA and specific interconnection between
FPGA chips to create the platform that is used for accelerating applications in multiple
sectors, such as Finance, Government, Science, Health Engineering and Security.

Maxeler’s Multiscale Dataflow Computing combines the traditional synchronous dataflow
with vector and array processors. Loop level parallelism is exploited in a spatial, pipelined
way, where large streams of data flow through multiple arithmetic units, connected in such
way to compute a specified task.

1.3.1 Dataflow Engines (DFEs)

On the Maxeler architecture, the Memory is decoupled from the logic. The part that
is responsible for the computations is called Dataflow Engine. Dataflow Engines are in
fact FPGAs that are programed by the program the developer designs and implement the
dataflow data graph described in the kernel. DFEs consist of multiple Dataflow Cores which
are basically blocks that perform certain computations. The data that are fed to the DFE
by memory data streams pass through these Cores to create the stream of output data
produced by the DFE.

Figure 1.6 attempts to depict the architecture of a DFE, as well as the flow of a program
running on a DFE, an an illustrative manner.
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Data

Figure 1.6: Dataflow program in action
[TeclT]

DFEs have two types of memory to use. The first one is a big one is called LMEM and is
a DDR3 off-chip RAM close to the FPGA chip with gigabytes class of storage. The second
one is called FMEM and is a small on-chip memory that consists from FPGA BRAMs with
size of some megabytes and terabytes/second access bandwidth. The FMEM is a key factor
that enables the Maxeler Dataflow Architecture to achieve great performance as there is a
big versatility on how it can be used, either for pipelining or for saving data that are used
multiple times inside a kernel. This hierarchy has a lot similarities with computer RAM
and CPU caches. Furthermore, it is possible to connect multiple DFEs in a supercomputing
system with MaxRing interconnect. The MaxRing interconnect allows applications to scale
linearly with multiple DFEs in the system while supporting full overlap of communication
and computation.
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Figure 1.7: Maxeler Dataflow System Architecture
[Tecl7]

1.3.2 Maxeler Dataflow Programing

When creating a Dataflow program it is needed to have in mind that what is basically
created is a graph that has as input data, does computations based on them and creates
data as output based on the inputs. This design has a lot of differences with the classical
computer architecture where there is a list of instructions that should be serial executed (or
almost serial executed) and some of them may not executed also based on the inputs of the
program, which can be randomly accessed in the multiple level of memory in the computer
(caches, RAM, disks, etc). In DFEs the computing in time is transformed to a computation
in space. All the data that need processing are fed into the DFE in every tick (not exactly
every clock cycle) and results are created by the DFE in every tick, being processed in a
pipeline that is created by the graph generated by the design of the program. This means
that there is no need for instruction decode logic, so all the logic inside the FPGA is utilized
for data processing. An example kernel and the produced kernel graph is shown below:
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14 class MovingAverageSimplelermnel extends Kemel {

15

16 MovingAverageSimplekemnel(KemelParameters parameters) {

17 super(parameters);

18

19 DFEVar x = lo.input(™x”, dfeFloat(8, 24));

20

21 DFEVar prev = stream offsel(x, —1);

22 DFEVar naxt = stream.offset(x, 1); O
23 DFEVar sum = prev + x + next; ——

24 DFEVar result = sum [ 3;

25 \
26 lo.output{“y~, result, dieFloat (8, 24)); ‘-a_%_h
27 } \

28}

Figure 1.8: Moving Average Kernel
[Tecl7]

The pipeline of this kernel is visualised in the next image.
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Figure 1.9: Moving Average Kernel Pipelining
[Tecl7]

A Maxeler program consists of a CPU Code which runs on the cpu (C, MATLAB,
Python, R), a Manager and the Kernel (Maxeler Java API). The CPU Code is responsible
to loading the dataflow implementations via the SLiC (Simple Live CPU) interface. The
SLiC is automatically generated to the corresponding dataflow program. The Manager is
related to a given Kernel and defines the inputs and outputs of this kernel, as well as, the
methods of the SLiC interface and the DFE characteristics such like optimizations, clock
and memory frequency. The Kernel is the design which is translated into FPGA Design.
The Kernel is written in a Java-like API created by Maxeler. The code in this high level
language is then translated to code that can be used as input to the High Level Synthesis
tool of the vendor of the FPGA chip that is used to configure the FPGA. In this way, the
development time is decreased a lot as a lot of details of Verilog and VHDL are encrypted
and automatically generated by the MaxCompiler.
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Chapter 2

Related Work on Accelerated
Computational Neuroscience

Computational Neuroscience is a branch of Neuroscience which uses mathematical mod-
els, theoretical analysis and abstractions of the brain to understand the principles that gov-
ern the development, structure, physiology and cognitive abilities of the nervous system.
Due to the fact that many of the theorems, experiments and scientific hypotheses cannot
be confirmed and checked through in vivo or in vitro experiments, many experiments are
needed to run in silico, meaning simulations that run in computers.

As it was mentioned before, the brain and in general the nervous system is very com-
plex and contains hundreds of billions of cells that are organized in various ways in three
dimensions. These facts, in addition to the complexity of the description of their activity
lead to very computationally heavy simulations. As the neuroscience domain develops and
new, more detailed neuron models are being designed, these simulations become more and
more heavy. This means that the research in neuroscience that is based in silico experi-
ments is constrained by the computational power and the simulation tools available to the
researchers.

The high computational demands and the simulation tools lead to close cooperation
of neuroscience research groups with computer scientists, as the first ones need the ex-
pertise of the latter ones to be able to run the experiments they want and continue their
research in more detailed and complex networks and neuron models. A lack of a general-
ized or unified simulation tool creates a vast variety of simulation tools and architectures
that support different models, contain more or less details about the connections between
neurons, and analyse different neuron’s behavior. The urge for high performance tools and
simulation techniques has widen the range of the available tools, frameworks and technolo-
gies of simulations. There are numerous improvements suggested for existing simulators or
new ones with acceleration done utilizing multiple CPUs, threads, GPGPUs and even more
specialized systems like ASICs and FPGAs.

To address the needs of neuroscientists to have easy to use simulators and not depend
on computer engineers to run their experiments, there have been developed versatile frame-
works that are able to simulate numerous neuron models and with different connections
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between them. The big advantage in the usage of these simulator frameworks is that they
need little programming knowledge, as they encrypt a lot of implementational details, they
can run to every personal computer or workstation and they have a universal way to define
the parameters of more or less detail neuron models, as well as their connections and the
input to their network. This enables neuroscientists to get used to a specific framework and
accelerate the time needed to setup their experiments. The drawbacks of this type of simu-
lators is that due to the huge variety of supported neurons and networks, they do not have
the optimal performance for every type of neuron network and they are not optimized for
particular high performance computer architectures in their standard distributions. Some
of the most famous neuron simulator frameworks are: NEURON, NEST, BRIAN, MOOSE
and GENESIS. On top of them small experiments or new experimental models are simulated
in general programing tools such like MATLAB.

Due to the high computational needs of large neuron networks some of those simulators,
such as NEURON and NEST, have been extended to utilize multiprocessor architectures
or GPUs to accelerate the simulations run on them, while they keep all the advantages of
standardization of the frameworks that neuroscientists currently work on.

Furthermore, the latest years there are more examples of specific HPC cloud services
that are used by neuroscientists to run their experiments on. These services serve specific
neuron models and networks simulations and are based on their own frameworks. However,
this means that each one of them runs optimized simulations based on the hardware that
they utilize.

2.1 FPGA Simulators

To address the needs of further acceleration as the simulations of neuron networks be-
come more complex, there are initiatives to try and utilize more specialized platforms to
extract from them greater performance. A promising technology that is used for specified
simulations and in which this thesis focuses on is FPGAs, that Maxeler DFEs utilize. Some
examples of usage of FPGAs for accelerated simulations are referenced below.

The Artificial Intelligence and Machine Learning development have generated a need
for accelerated Spiking Neural Networks (SNNs) which are used in AI/ML algorithms. A
team consisting from people from the key Laboratory of OptoElectronic Science and Tech-
nology for Medicine of Ministry of Education and the College of Photonic and Electronic
Engineering of the Fujian Normal University has developed an FPGA toolbox which is used
as a library in the MATLAB environment that can implement different types of synaptic
plasticity, Neuron Integrate-and-fire models, Dynamic threshold functions, Encoding blocks
and Learning rule blocks to be used in SNN simulations. All those capabilities can be uti-
lized in a simulation by importing them from a library as black boxes. These black boxes
are then translated by the Xilinx System Generator to HDL Code and then implemented
into the FPGAs. [QWJC15]

A team consisted by the Department of Electrical and Computer Engineering of Sungky-
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unkwan University of Suwon, Korea and the DMC RD Center of Samsung Electronics in
Suwon, Korea has built a simulator for 1000 spiking Neurons and 1 million synaptic con-
nections in real time. The great achievement of this simulator is that it uses the Izhikevich
Neuron model, which is almost as accurate as the Hodgkin-Huxley model which can bio-
logically represent every type of biological neurons. However, the Izhikevich model needs
less hardware to be utilized due to the simpler differential equations that is defined by.
The results of this simulator had shown that a large level Izhikevich model simulation is
possible. [JCK15]

Another large-scale simulation with conductance-based spiking neural networks using
a real-time digital neuromorphic system has also been developed. This system utilizes a
scalable 3-D network-on-chip topology with six Altera Stratix III FPGA chips to simu-
late 1 million neurons of a detailed large-scale cortico-basal ganglia-thalamocortical loop.
The novel router architecture and the cost-efficient conductance based neuron model that
has saved a large amount of HW resources is what enabled this system to outperform other
state of the art systems, using CPUs, GPUs or other neuromorphic systems. The advantages
of this proposal to the others is higher computational speed, better scalability and supe-
rior biological accuracy and reconfigurability in contrast to other neuromorphic systems.
[SYKAL17]

Neuromorphic systems using FPGA have a potential of very high efficiency and compu-
tational power. Another suggestion was made for an FPGA-Based Massively Parallel Neuro-
morphic Cortex Simulation with a neuromorphic architecture that is based on the structural
connectivity of neocortex to store all the required connections and parameters in on-chip
memory using minicolumns and hypercolumns. This simulator can be easily reconfigured
to simulate different neural networks and using the Altera Stratix V FPGA chips it could
simulate 20 million to 2.6 billion leaky-integrate-and-fire neurons in real time.[RMWS18]

Apart from straight FPGA implementations, there have also been made implementations
of different neuron models and simulations in Maxeler DFEs.

One of them is a simulation of the Inferior-Olivary nucleus brain region. Due to the
complexity of these neurons, simulations can become rapidly intractable when there are
biophysically plausible models and meaningful network sizes. A suggestion to address this
problem is the usage of a Maxeler Dataflow Computing Machine. To achieve great perfor-
mance the FMEM of the system is used to store the values of the Neurons and also there is
parallelization in the level of neurons. This system has enabled the simulation in real-time
speed of a 330-cell network and an acceleration of x92-107 in comparison to a Xeon proces-
sor and x2-8 to a pure Virtex-7 FPGA implementation due to the high memory bandwidth
and max throughput of 24.7 GFLOPS. Moreover, due to the fact that multiple DFEs can
be interconnected, the acceleration in comparison with a single FPGA can be even greater.
Furthermore, in this particular real-time simulation the neuron network was x3.4 larger
than the FPGA port of the simulation. [GS14]

Another simulator that uses Maxeler Dataflow Engines is Neuroflow. This simulator
uses Izhikevich model for neurons and STDP. It also uses a PyNN interface to configure
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the processor. The results of this simulator is simulating a 600k network and achieving an
acceleration of x33.6 in comparison with an 8-core processor and x2.83 in comparison with

GPU. All the spikes, the neuronal parameters and the synaptic weights are read and written
to the LMEM of the DFE. [KCL16]

2.2 BrainFrame

This thesis was generated due to my interest in Computational Neuroscience and my
initiative to help with the Brainframe project. Brainframe is a node-level accelerator plat-
form for neuron simulations. The more and more complex neuron models and the bigger
and bigger neuron networks make simulations require a lot of time and computational
power. To cover these demands, the Brainframe utilizes an Intel Xeon-Phi CPU, a NVidia
GP-GPU and a Maxeler Dataflow Engine to accelerate neuron simulation workloads. More
precisely, the platform chooses between them, which one is the most efficient platform to
run a simulation defined by neuroscientists. This accelerates simulations while keeping the
energy footprint as low as possible. Moreover, the unification of the definition of the simula-
tions’ parameters through PyNN makes the platform usage very familiar to neuroscientists
and accelerates further the process of deploying a simulation in the platform. PyNN is a
simulator-independent language for building network models. In other words, a developer
or neuroscientist can write the code for a model once using the PyNN API and the Python
programming language and then run it without any modification on not only in Brainframe
but also in numerous other simulators, such as NEURON, NEST and Brian. Last but not
least, Brainframe is a platform on development to include more neuron models, platforms
and features to improve its usability by neuroscientists. [GS17; APDY09]
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Chapter 3

Problem Statement

In the process of enriching Brainframe with new neuron models, there was a need to
import an Adaptive Exponential Integrate-and-fire (AdEx) neuron model in a network with
Spike-timing Dependent Plasticity (STDP). The models of AdEx neurons and STDP where
imported by a paper about the ability of synapses to memorize a specific behaviour and
quickly recall said behaviour if similar spikes activate them. [RPC15] This paper has used
the Brian Simulator and the PyNN interface to define the models of the neurons and the
synapses and to simulate this system. To use this model to Brainframe and to have some
acceleration, it was needed in the beginning to import the simulation with these particular
models to a custom C program. To do this me and a fellow student have decoded how
the Brian Simulator, which is based in Python, worked and designed a simulator on C
to solve this particular type of simulation. After creating the C program, then it was my
responsibility to try and accelerate it using Maxeler DFEs. During this process there where
various architectures tried that will be analyzed later. First, the models of AdEx Neurons
and STDP should be defined, as well as, how the Brian simulation was translated into a C
program.

3.1 Adaptive Exponential Integrate-and-fire (AdEx)
Neuron Model

The Adaptive exponential integrate-and-fire model, also called AdEx, is a spiking neu-
ron model with two variables. The first equation describes the dynamics of the membrane
potential and includes an activation term with an exponential voltage dependence. Voltage
is coupled to a second equation which describes adaptation. Both variables are reset if an
action potential has been triggered. The combination of adaptation and exponential volt-
age dependence gives rise to the name Adaptive Exponential Integrate-and-Fire model. The
adaptive exponential integrate-and-fire model is capable of describing known neuronal firing
patterns, e.g., adapting, bursting, delayed spike initiation, initial bursting, fast spiking, and
regular spiking. Introduced by Brette and Gerstner in 2005, [BG05] the Adaptive exponen-
tial integrate-and-fire model AdEx builds on features of the exponential integrate-and-fire
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model [NFTBO03| and the 2-variable model of Izhikevich [Izh03]. The differential equations
describing the AdEx model are:

AV 9L(EL — Vi) + grApexp(Y2 L) + 1 — o

dt C

dVT VT - VTrest

dt TVr

dv  o(Vm —Ep) —w
dt Tw

Vim: Membrane potential
x: Adaptation Variable
I: Input Current
C': Membrane Capacitance
gr: Leak Conductance
FEr: Leak Reversal Potential
V. Threshold
Ar: Slope Factor
c: Adaptation Coupling Parameter

Tw: Adaptation Time

3.2 Spike-Timing Dependent Plasticity (STDP)

Spike-Timing Dependent Plasticity (STDP) is a temporally asymmetric form of Hebbian
learning induced by tight temporal correlations between the spikes of pre- and postsynaptic
neurons. As with other forms of synaptic plasticity, it is widely believed that it underlies
learning and information storage in the brain, as well as the development and refinement of
neuronal circuits during brain development. [BP01; SP08] The neural substrate of learning
is believed to be long-term synaptic plasticity and after years of research and debate, it has
become more clear that it can be expressed as pre- or postsynaptic or both. The functional
consequences of the division between pre- and postsynaptic plasticity are yet to be studied
and the paper in which this thesis is based on tries to do exactly that. To be more pre-
cise, there was developed a biologically tuned spike-timing dependent plasticity model that
involves both parts of the stdp expression. [RPC15]

Inspired by earlier work, this phenomenological model relies on exponentially decaying
traces of the pre- and postsynaptic trains, X and Y.
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weight = pre factor x post factor
P q

Figure 3.1: STDP weight model
[RPC15]

The synaptic weight is the product of a presynaptic factor P and a postsynaptic factor q.
The presynaptic trace xy tracks past presynaptic activity, for example, glutamate binding
to postsynaptic NMDA receptors. When presynaptic activity x; is rapidly followed by post-
synaptic spikes, unblocking NMDA receptors, postsynaptically expressed long-term poten-
tiation (LTP) is triggered and increases the postsynaptic factor q, which can be interpreted
as the quantal amplitude. Conversely, the postsynaptic trace y; represents prior postsy-
naptic activity, for example, retrograde nitric oxide (NO) signalling, which when paired
with presynaptic spikes leads to presynaptically expressed LTP. Finally, the trace y_ tracks
postsynaptic activity such as endocannabinoid (eCB) retrograde release and elicits presy-
naptically expressed long-term depression (LTD) when coincident with presynaptic spikes.
Presynaptically expressed plasticity is conveyed by long-term changes in the presynaptic
factor P, which can be interpreted as the presynaptic release probability. The differential
equations that describe this model are divided into Short- and Long-term plasticity. The
equations of the Short-term plasticity are the following:

dr(t) _ 1 —r(t)

= 5~ POr)X ()
dgzlgt) _P —Fp(t) +P[L— p(1)]X (1)
X(t) =0t — tyre)
tpre

r: (Normalized) Number of Vesicles
p: Presynaptic Factor

D: Depression Time Constant
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P: Baseline Presynaptic Factor
F: Facilitation Constant

The equations for the Long-term plasticity model are:

dy_(t)) _ —y-(1)

- — ()
dy, (1)) _ —y+ (1))

L= T; +Y(t)
dzy(t))  —xi(t))

;t = T; + X (t)

Y+, y—: Postsynaptic Traces
x4: Presynaptic Traces

The postsynaptic factor q is modified with every postsynaptic spike Y according to:
Aq = oy (Hy—(t— Y ()
The presynaptic factor p is modified with every presynaptic spike X according to:
AP = —d_y_(t)ys ()X (1) + i (t — Oy (DX (1)
The total synaptic strength is a product of both pre- and postsynaptic factors

w(t) = qp(t)r(t)
For a synapse that has not stimulated recently this simplifies to

w = Pq

3.3 Brian Simulator

Brian is a free, open source simulator for spiking neural networks. The goal of this sim-
ulator is to encrypt the details of the implementation of a simulation from neuroscientists,
so that they can focus on the details of the models of neurons and synapses that are used
in a simulation. The simulator is written in Python and this makes it even more friendly to
entry level researchers or students that occupy themselves with computational neuroscience.
To run a simulation in Brian, all they have to do is define using the Brian API the input
of the network, the network of Neurons, the differential equations that describe them in
mathematical form, how the neurons are interconnected (synapses) and what differential
equations govern the behavior of synapses, and finally what variables of the system the want
to plot, if needed. It also uses vector-based computation for efficient simulations. Further-
more, it supports the PyNN interface to keep a unified interface with other neuroscientific
simulations and models. [GB09]
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3.4 Import to C program from Python

To further accelerate the simulation but also to add it to the brainframe platform there
was a need to create a C program that produced the exact same results with the Brian
simulation. For this part of the thesis, we cooperated with a fellow student to understand
how Brian simulator handles the network and solves the differential equations that describe
the parts of the network.

3.4.1 Brian Architecture

The main parts of the Brian simulation are the definition of the Input Neurons which
only produce spikes and don’t follow a specific physical model, the definition of the Neurons
that needed studying and the Synapses that connect those two.

Input Neurons

To define the Input Neurons of the simulation there have been studied two classes. The
first one is PoissonGroup and is a Neuron Group class. This class is used to create the
network of input neurons that spike in random moments based on a poisson distribution.
The parameters for instantiating this class were:

e N : (int) Number of Input Neurons

e rates : (Quantity) Single rate, array of rates of length N, or a string expression eval-
uating to a rate

The second class used was SpikeGenerator which produces a network of input neurons
that spike based on an array given as input that defines specifically which input neurons
create spikes and exactly when. The parameters for instantiating this Neuron Group class
are:

e N : (int) Number of Input Neurons

e spiketimes : array of (int, int) Array of tuples that contain in the first part the ID of
a neuron and in the second the timestep that it produces a spike

Neurons
The class that creates the instances of Neurons that follow a specific model is called
NeuronGroup and is a Neuron Group class. The parameters that is called with are:

e N : (int) Number of Neurons

e model : (Equations/string/StateUpdater) This parameter states the model that de-
fines the behavior of the neurons that are created by this class initializer. It can be
either an Equations object that has created by a string of mathematical equations
given in a particular form, a string of equations or a State Updater class
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e threshold : (Threshold object /function/scalar quantity/string) This parameter defines
the state of the neuron that when it becomes true there is a spike generated by a
particular neuron

e reset : (Reset object/function/scalar quantity/string) This parameter defines what
happens when a neuron spikes

o freeze : (True/False) If True, parameters are replaced by their values at the time of
initialization
Synapses
The Synapses class is used to set the synapses between two neuron groups and is able
to encapsulate the plasticity phenomena. The way this class works is that connects two
Neuron Groups based on the parameters that are given to it. Then, during the simulation,

it updates the values of the produced Synapses based on the activity of the two Neuron
Groups. The parameters that this class is instantiated with are:

e source : (Neuron Group) The source Neuron Group
e target : (Neuron Group) The target Neuron Group

e model : (Equations object/string) The equations that defined the synaptic variables.
Same syntax as the Neuron Group

e pre : (list/tuple of strings) The code executed when presynaptic spikes arrive at the
synapses

e post : (list/tuple of strings) The code executed when postsynaptic spikes arrive at the
synapses

Concluding, the code needed to run the simulation in Brian is:

99 99 99

egs_neuron =
dvin/dt=(gL* (EL—vm)+gLxDeltaT*exp ((vin—vt )/ DeltaT)+I1-x)/C : volt
dvt/dt=—(vt—vtrest)/tauvt : volt

dx/dt=(c*(vin—EL)—x)/tauw : amp #In the standard formulation x is w
I : amp
7 neurons = NeuronGroup (M, model=eqs_neuron, threshold="vim>vt’,
reset="vin=Vr;x+=b; vt=VTmax”, freeze = True)

InitializeNeurons (neurons)
my_input = SpikeGeneratorGroup (N, spiketimes)
model="""w : 1
FFp : 1
FBp : 1
FBn : 1
R :
u
U :
A1
dFFp/dt=FFp/tau_FFp : 1 (event—driven)

—_ = =
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dFBp/dt=FBp/tau_FBp : 1 (event—driven)

dFBn/dt=FBn/tau_FBn : 1 (event—driven)

dR/dt=(1-R)/tau_r 1 (event—driven)
du/dt=(U-u)/tau_u : 1 (event—driven)

5 syn = Synapses(my_input, neurons, model,
pre="""I=s*AxRxu;
U=clip (U+etaUx*(—AFBu«FBnxFBp + AFBp*FBp«FFp) , Umin, Umax ) ;
w=UxA;

FFp+=1; R—=Rxu; ut=Ux(l—-u)’’’,
post="""A=AtetaA x (AFFp+«FFp+FBn) ;

A=A—etaA x0.5+*mean (AFFp+FFp+FBn ) ;

A=clip (A, Amin, Amax) ;

w=UxA;

FBp+=1.;FBn+=1.""")
InitializeSynapses (syn)
run (stime)
After creating and initializing the network, the simulator solves automatically the differ-
ential equations of the models that define synapses and neurons and creates the code that
needs running in every timestep or every time an event is generated and keeps it as a string
in every class. Then this code is run for every part of the class has to based on the model of
each one. The Neuron Group class keeps all the IDs and the variables of neurons in addition
to the code that solves its DEs. The same is happening with Synapses. Furthermore, the
Neuron Group Classes keep the neurons that have spiked and need to be propagated to the

synapses class to update the needed synapses.

3.4.2 C Program Architecture

To begin with, there must be made some declarations that will help understanding the
next chapters. The simulation coming from the ModelDB project that was given to us
for learning the AdEx model and the specific STDP model to use was a simulation that
connected N Input-Dummy Neurons (Neurons that produce only spikes in specific times,
given by the user) with M AdEx Neurons (Neurons that are governed by the AdEx model
equations). From now on, when number N is referred, it means the Input Neurons and
when number M is referred, it will mean the AdEx Neurons. Furthermore, we have added
to this type of simulation (NxM) the ability to run an experiment connecting M AdEx
Neurons to M AdEx Neurons. These two type of simulations are different and the selection
of which one of the will run is done by the inputs given by the user. The user has to define
3 variables that have to do with the number of Neurons:

e N_S: Number of Input Neurons
e N_Group_S: Number of AdEx Neurons used as source (presynaptic)

e N_Group_T: Number of AdEx Neurons used as target (postsynaptic)

So, the NxM simulation is a N_SxN_Group_T simulation (N_Group_S = 0) and the
MxM simulation is a N_Group_SxN_Group_T (N_S = 0) simulation.
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From the study of how the Brian simulator works, we came up with 3 functions that are
run in every timestep and each one represents a different action-phenomenon of the AdEx
model and the STDP.

To be able to show the specific code of each function in C, we will have to mention first
the data structures that keep all the data of the Neurons and the Synapses.

e Input Neurons are saved as an array of ints with length IN which represent if the Input
Neuron i produced a spike in the timestep t.

e AdEx Neurons are saved as an array of structs Neuron with length M. The struct
Neuron consists of all the variables an AdEx Neuron has, based on our model.

1 typedef struct {

2 double vt; /*x< Voltage threshold. =/

3 double vm; /*%< Membrane potential. * /

! double I; /*x< Neuron input current. x/

5 double x; /*#x< Adaption variable (w). x/

6 int Spike; /*x< Variable to show if the neuron has spiked in a
specific moment. x/

7 } Neuron;

e Synapses are saved in an adjacency array of size NxM or MxM, depending on the
type of simulation, of structs Synapse that consists of all the variables of a Synapse.
This means that the Neurons that represent the lines are connected with the Neurons
representing the columns. If a connection between these two doesn’t exist, the variable
conn is zero. The connections are read by an input file and the initialization of all the
variables is done accordingly.

1 typedef struct {

2 int conn; /+x< Variable that expresses if a given synapse

between two neurons exists. x/

3 double w; /*x< Weight of a synapse. (Was present in BRIAN but
never used for the ADEX with STDP simulation.) x/

4 double FFp; /#x< FFp variable of a synapse. (x+) x/

5 double FBp; /*%< FBp variable of a synapse. (y+) */

6 double FBn; /*%< FBn variable of a synapse. (y—) x*/

7 double R; /*x< R value of a synapse. (r) =/

8 double u; /*¥< u value of a synapse. (p) x/

9 double Uj; /#x< U value of a synapse. (P) x/

10 double A; /*x< A value of a synapse. (q) #/

11 double lastupdate; /*%< Last time a synapse was updated * /

12 double target_-I; /#x< The I value for the postsynaptic neuron.
/

13 } Synapse;

The first function of the simulation is responsible for the update of the values of AdEx
Neurons only, by solving their differential equations.

1 void SolveNeurons(Neuron* neurons, int N, int *xSpikeArray)
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The second function of the simulation is responsible for updating the values of the
synapses based on the differential equations describing the presynaptic expression of STDP
and the value of the current of the postsynaptic neuron.

void UpdateSynapses_pre(Synapsexx Synapses, Neuronx neurons, int N_.S, int
N_Group-S, int N_Group.-T, intx SpikeArray, double t)

In this function there are two nested for-loops. This is due to data dependencies, as the
way the 2d array of synapses is accessed(by rows) is different of the way the neuron values
are updated(by columns). In the DFE implementation however, this issue is solved due to
a different access to the synapses array. A more abstract view of this function is described
like this: For every Input/Source Neuron (i) that has generated a spike, the Synapses that
start from it and the Neuron (j) that these Synapses end on are updated.
The third function of the simulation is responsible for updating the values of the synapses
based on the differential equations describing the postsynaptic expression of STDP.
void UpdateSynapses_post (Synapsesx Synapses, int N.S, int N_Group-S, int
N_Group_T, int*x SpikeArray, double t)
Here there are three nested for-loops. The first has to calculate the values FFp and FBn,
before the value mean is calculated that is used to calculate the value A that later is used
to calculate other values in the final nested loop. A more abstract view of this function is
described like that: For every Target Neuron (i) that has generated a spike, the Synapses
that end to it are updated.
The loop of the simulation looks like that:
for(int t = 0; t < timesteps; t++){
SolveNeurons (neurons, N_Group_-T, SpikeArray);
InitializeSpikeArray (SpikeArray, N_S);
UpdateSynapses_pre(syn, neurons, N_.S, N_Group.S, N_Group.T, SpikeArray, t
xdefaultclock_dt);

UpdateSynapses_post (syn, N_.S, N_Group-S, N_Group-T, SpikeArray, tx
defaultclock_dt);

}
Data Dependencies

For every function above I have mentioned the data dependencies and why there are
different loops in each one of them. Moreover, the values of AdEx neurons should be calcu-
lated first to get the neurons that generate a spike. Then the spikes of the Input neurons
should be calculated to get the input spikes, used by the UpdateSynapses functions.
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Chapter 4

Implementation on DFEs

After having implemented the simulation in C, the next step was developing the sim-
ulation to run on DFEs and checking the performance gains of this implementation. As
stated earlier, the Maxeler kernel generation is based in a creation of a Kernel Graph by the
Kernel the programmer designs. This means that the Kernel Graph is seeded with data that
pass through the operators defined in the Kernel and in every tick (different to clock cycle),
there is an output produced by the Kernel. To make this possible, the Graph implements a
pipeline, so that in every tick, new data are seeded into the pipeline and generated in the
output. This special architecture means that the data structures that have been used in the
C program must be altered a bit to be able to address the DFE architecture and feed the
kernel graph with data.

4.1 Data Structures in DFE

This architecture demands an alternate representation of our data in the memory to
be able to efficiently feed the kernel with data. To do this, we have to access the array of
Synapses by rows, exactly as it is saved in the memory by the C language. This means that
in the case of the UpdateSynapses_pre function, the first nested for should access memory
not by columns but by rows, the same way with the UpdateSynapses_post function. However
to do this, it is needed a change between the columns and the rows of the synapses array.

When in C the representation was the following with access by rows:
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N_Group_T
] — — — — — — — — — —
1 — — — — — — — — — — —
2 — — — — — — — — — — —
3 — — — — — — — — — — —
4 — — — — — — — — — — —
5 — — — — — — — — — — —
8 — — — — — — — — — — —
T — — — — — — — — — — —
8 — — — — —F —* — — — — —
g — — — — — — — — — — —

Figure 4.1: C Synapses Array Access

in the DFE implementation, we have to save to the DFE LMEM the synapses data as
it is shown below

0] 1 2 3 4 5 6 7 8 9
N _S/N Group 5

0 — — — — — — — — — —
1 — — — — — — — — — — —
2 — — — — — — — — — — —
3 — — — — — — — — — — —
4 — — — — — — — — — — —
5 — — — — — — — — — — —
6 — — — — — — — — — — —
T — — — — — — — — — — —
8 — — — — — — — — — — —
9 — — — — — — — — — — —

Figure 4.2: DFE Synapses Array Access

Furthermore, due to the difficulty of passing structs in the DFE the struct of AdEx
Neurons was alternated to a vector of 6 variables, that however is still an array of dou-
bles/floats.

For example:

If we have 2 AdEx Neurons and we want to access the v variable of the 2nd one we would
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have:

C implementation pseudocode:

struct Neuron Neurons|[2];
double vm2nd = Neurons[1].vm;

DFE implementation pseudocode:

double Neurons[2%6];
double vm2nd = Neurons[1%6+1];

The indexing of the new array organization is based on the order of variables in the
Neuron struct. The vector is abstractly defined by the way we access the variables in the
program. The number 6 is used for word alignment in the DFE, even if the variables of
the Neuron Struct are 5 and are all doubles or floats, depending on the implementation.
The difference in C and DFE Implementation for the organization of Neuron data is shown

below:

DFE

The same representation of the struct Synapses was used in the Synapses array. Every
Synapse Struct is transformed in an array of 12 doubles/floats, again to be word aligned,

N_Group_T
0 1 2 3 4 5 4] 7 8 9

struct struct struct  struct  struct  struct  struct  struct  struct  struct
Neuron Meuron Neuron Meuron Neuron Meuron Neuron Neuron Neuron Meuron

array[B] array[B] array[6] array[6] array[B] array[6] array[6] array[B] array[G] array[6]

Figure 4.3: Neuron Representation in C and DFE

even if they are 11 variables in each struct.

C:

Size: N_S*N_Group_T*sizeof(struct Synapse)
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N_Group_T

0 1 2 3 4 5 B 7 8 9
struct| struct| struct| struct| struct| struct| struct| struct| struct| struct
Synap| Synap| Synap| Synap| Synap| Synap| Synap| Synap| Synap| Synap

se se se se se se se se se se
struct| struct| struct| struct| struct| struct| struct| struct| struct| struct
Synap| Synap| Synap| Synap| Synap| Synap| Synap| Synap| Synap| Synap

se se se se se se se se se se
struct| struct| struct| struct| struct| struct| struct| struct| struct| struct
Synap| Synap| Synap| Synap| Synap| Synap| Synap| Synap| Synap| Synap
se se se se se se se se se se
struct| struct| struct| struct| struct| struct| struct| struct| struct| struct
Synap| Synap| Synap| Synap| Synap| Synap| Synap| Synap| Synap| Synap
se se se se se se se se se se
struct| struct| struct| struct| struct| struct| struct| struct| struct| struct
Synap| Synap| Synap| Synap| Synap| Synap| Synap| Synap| Synap| Synap
se se se se se se se se se se
struct| struct| struct| struct| struct| struct| struct| struct| struct| struct
Synap| Synap| Synap| Synap| Synap| Synap| Synap| Synap| Synap| Synap
se se se se se se se se se se
struct| struct| struct| struct| struct| struct| struct| struct| struct| struct
Synap| Synap| Synap| Synap| Synap| Synap| Synap| Synap| Synap| Synap
se se se se se se se se se se
struct| struct| struct| struct| struct| struct| struct| struct| struct| struct
Synap| Synap| Synap| Synap| Synap| Synap| Synap| Synap| Synap| Synap
se se se se se se se se se se
struct| struct| struct| struct| struct| struct| struct| struct| struct| struct
Synap| Synap| Synap| Synap| Synap| Synap| Synap| Synap| Synap| Synap
se se se se se se se se se se
struct| struct| struct| struct| struct| struct| struct| struct| struct| struct
Synap| Synap| Synap| Synap| Synap| Synap| Synap| Synap| Synap| Synap
se se se se se se se se se se
Figure 4.4: Representation of Synapses in C

DFE Implementation:

Size: N_Group_T*N_S*12*sizeof(double or float)
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o 1 2 3 4 5 -] T ] 9

N_S/N_Group 5

amray[12] | amay[12] | amay[12] | amay[12] | aray[12] | array[12] | amay[12] | amay[12] | amay[12] | amay[12]

array[12] | array[12] | amay[12] | amay[12] | amay[12] | amay[12] | aray[12] | amay[12] | amay[12] | amay[12]

array[12] | aray[12] | amay[12] | amay[12] | amay[12] | amay[12] | aray[12] | amay[12] | amay[12] | amay[12]

amay[12] | amay[12] | amay[12] | amay[12] | amay[12] | amay[12] | amay[12] | amay[12] | amay[12] | amay[12]

amay[12] | amay[12] | amay[12] | amay[12] | amay[12] | amay[12] | amay[12] | amay[12] | amay[12] | amay[12]

amay[12] | amay[12] | amay[12] | amay[12] | amay[12] | amay[12] | amay[12] | amay[12] | amay[12] | amay[12]

amray[12] | amay[12] | amay[12] | armay[12] | amay[12] | aray[12] | amray[12] | amay[12] | amray[12] | amay[12]

array[12] | array[12] | aray[12] | amay[12] | amay[12] | amay[12] | aray[12] | amay[12] | amay[12] | amay[12]

array[12] | aray[12] | amay[12] | amay[12] | amay[12] | amay[12] | aray[12] | amay[12] | amay[12] | amay[12]

amay[12] | array[12] | amay[12] | amay[12] | amay[12] | aray[12] | aray[12] | amay[12] | amay[12] | amay[12]

Figure 4.5: Representation of Synapses in DFE

The array for the Input Neurons is transformed to an array of length N*timesteps, which
has a byte in each element and if it is 1 then that means that the input neuron has generated
a spike a particular timestep. This array is generated in the beginning of the simulation in
the CPU Code for the whole simulation. If for example we want to see if Input Neuron 5
generates a Spike in the 2nd timestep we have to access the element SpikeArray[1*N_S+4].
Finally, the DFE has 2 types of memory. A big one (DDR3 RAM) in the MAX4 with 48GB
called LMEM and a small one that is in the FPGA chip (BRAMs) which has a size of some
megabytes only. In the DFE, all the arrays are saved in the LMEM in the begging of the
CPU Code and fed from the LMEM to the Kernel due to their large size. To save time, the
Input Neuron array is saved when needed in the FMEM, to be faster accessed. Moreover,
the fixed variables of the STDP and AdEx differential equations are saved in the FMEM in
the beginning of the kernel.

There were more thought about how the network could be represented in the memory,
however for the given sizes and the functionality needed, this is the most efficient in terms
of performance and memory footprint. An improvement would be saving the AdEx Neurons
to the DFE FMEM. However, this would make the network of AdEx neurons a lot smaller
and the gains would only come from faster access to them from the Kernel, with the same
representation for the Synapses.

4.2 Kernel Architecture

The most important part of the thesis is the Kernel design. For the Kernel, there have
been various considerations regarding the design of the whole simulation and what is possible
due to all the dependencies that are imposed by the model of the Neurons and the Synapses
and the connectivity of the network. All the design choices were made having in mind the
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best functionality of the program, meaning that it would be able to simulate a large Neuron
network and all the possible connections between them and the Input Neurons. Furthermore,
the kernel design was done in such way that takes advantage of the DFE architecture and
the parallelization that is possible in the simulation. Taking into consideration all these, the
main design choices were between using one kernel or multiple kernels that would be loaded
and unloaded in each step, similarly to the C program and the usage of float variables for
all the data of the Neurons and Synapses or double variables, as the C program and the
Python simulator.

4.2.1 Multiple Kernels

The first step to start creating a working simulation on DFEs was to develop three
different kernels that implement the 3 distinct functions of the CPU Code that are executed
in every timestep. This means that the whole simulation in the DFEs would have the
same design as in the CPU Code but instead of the calls to the functions SolveNeurons,
UpdateSynapses_pre and UpdateSynapses_post, there would be calls to the corresponding
kernels and some data transfers to the main memory between these calls. While it was
known that this probably wouldn’t be the most efficient solution, it was a good begging to
get familiar with the Maxeler tools and Dataflow Programming before trying to create a
kernel that would run the whole simulation.

The development started with creating a kernel for each function to better understand
the way DFEs work and get familiar with MaxCompiler and Maxeler Dataflow Programing.
The first attempts were about just calculating the correct values and find the best ways to
pass data into the dataflow graphs that are defined by the kernels. After finding the most
efficient way to do all the calculations inside the kernel and checking the kernels for errors,
then the main program that instrumentates the whole simulation should be developed. The
flowchart of the simulation, in this implementation, follows:
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In this chapter I will elaborate on the kernel’s design and the optimizations that were
tried in each of them. For every kernel I will mention the needed code for setting up the
Manager and the key points of the Kernel. The Manager provides a predictable input and
output streams interface to the Kernel. Manager provides a Java API for configuring con-
nectivity between Kernels and external I/ and controls the build process.

SolveNeurons Kernel

As the name suggests, this kernel is responsible for updating the values of the neurons’
variables. This kernel is executed in every timestep, before any other function. As in the
C function, in the first implementation of this Kernel, all the Neurons are passed into the
created Kernel Graph from the LMEM, one by one, and their updated values are created
and saved back again to the LMEM.

Manager

For this implementation there was used a Standard Manager. Standard Manager sup-
ports only one Kernel. In the beginning, there is created a Kernel Block that includes the
Kernel, which is instantiated by the the Engine Parameters the developer has defined. These
parameters have to do with the Kernel configuration.

SolveNeuronsEngineParameters params = new SolveNeuronsEngineParameters(args);
Manager manager = new Manager (params) ;

s Kernel kernel = new SolveNeuronsKernel(manager. makeKernelParameters (

w N

s_kernelName) ) ;
manager . setKernel (kernel) ;

Then the streams that the Kernel utilizes are set. More precisely, the Stream names and
their destination is set. There are some standard Destinations such as, IODestination.CPU,
which creates a stream from/to the CPU Code, IODestination. LMEM_LINEAR_1D, which
creates a stream to the LMEM. In this particular Kernel, there are used 4 streams. Two
streams from the CPU that provide the Kernel with the AdEx model parameters and the
STDP model parameters. This is the snipper of this part of the code:

manager . setTO (
link ("adex_params”, IODestination .CPU),
link (”stdp_params”, IODestination .CPU) ,
link ("x”, IODestination .LMEM LINEAR 1D) ,
link ("x-0”, IODestination .LMEM LINEAR_1D) ) ;

Then, the SLiC Interface of the manager is set. The SLiC Interface contains the definitions
of the functions that are present in the CPU Code. Basically, it creates the API needed
to call the Kernel from the CPU Code or make specific calls to write to or read from the
LMEM.

manager . createSLiCinterface (interfaceDefault ());
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The interfaceDefault defines all the parameters that are passed from the CPU Code to the
Kernel or from the Manager to the Kernel. In the beginning there must be created a new
Enginelnterface with the Enginelnterface() constructor.

To add a new parameter in the interface there is a standard call engine_interface.addParam(”name”,

VariableType) that adds the parameter named “name” of type VariableType to the en-
gine_interface and consequently to the Kernel call. Manager provide a set of predefined
variable types that can be used. Those are defined by the CPUTypes class and can be
INTs of 8,16,32 or 64 bits, UINTS 8,16, 32 or 64 bits, FLOATs, DOUBLEs or VOID. The
call of the addParam function creates an InterfaceParam object. This object apart from
a parameter that comes from the CPU Code, it can be a constant that is created with
the function addConstanstant of the enginelnterface class or simply an operation on other
InterfaceParam objects.

To pass the variables from the Manager to the Kernel, there must be used the en-
gine_interface.setScalar(s_kernelName, ”"Name”, interfaceParameter) function. This passes
a single variable to the Kernel that must be in the Kernel read in a similar way. To
connect the Kernel to a CPU Stream there is the function setStream(”stream name”,
CPUTypes.Type,size_of stream_in_Bytes). This stream is unidirectional and the direction
is defined later in the Kernel.

To read or write to the LMem there are numerous functions that read the LMem in differ-
ent ways. The function setLMemLinear(“name”, start_addr, size_in_Bytes) uses a simple lin-

ear pattern to access the LMem for writing or reading. The function setLMemWrapped(“name”,

start_addr, arr_size, whole_size, offset) wraps around the LMem starting from start_addr and
continues for arr_size, before returning back to start_addr+offset until whole_size bytes are
read from the LMem. The function setLMemBlocked is a more detailed function and is
called to access in a 3D way the memory. To access a Memory as a 2D array there is the
function setLMemStrided(“name”, start_addr, size_Fast, size_Slow, stride_Mode). For this
implementation the functions that were used to read and write to the LMem the Neuron
data are:

engine_interface .setLMemLinear ("x”, zero, M x 6 x size);

engine_interface .setLMemLinear ("x_0”, zero, M x 6 x size);

and for the Adex and Stdp variables:

engine_interface .setStream (” adex_params”, CPUTypes.DOUBLE, N_adex * CPUTypes.

DOUBLE. sizeInBytes () );
engine_interface .setStream (”stdp_params” , CPUTypes.DOUBLE, N_stdp * CPUTypes.

DOUBLE. sizeInBytes () ) ;

These functions are standard and they take care of when all the data are written or read
from the data and how to create interrupts to notify every needed system.

To define the number of ticks a kernel runs for, the function setTicks(“name”, ticks); is
used. Finally, there is a function used in the Enginelnterface that is used to ignore on the
Kernel call from the CPU Code every other variable defined by the interface apart from the
ones we defined ourselves.

After the creation of the SLiC interface there are some definitions that need to be done

to configure the Kernel build.
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configBuild (manager, params);
manager . build () ;

For this implementation there were defined the stream status debugger as false, the number
of cables run to create the executable, the parallelism in the build process and the parameter
for retrying near cable misses. The API for these operations is:

manager . setEnableStreamStatusBlocks (false ) ;

BuildConfig buildConfig = manager. getBuildConfig () ;

buildConfig.setMPPRCostTableSearchRange (params . getMPPRStartCT () , params.
getMPPREndCT () ) ;

buildConfig.setMPPRParallelism ( params . getMPPRThreads () ) ;

buildConfig.setMPPRRetryNearMissesThreshold (params. getMPPRRetryThreshold () ) ;

The setEnableStreamStatusBlocks lets the kernel keep debugging data for the kernel if it

is true. All the other parameters take their values from the KernelNameEngineParameters

class object.
Kernel

To begin with, as described before, it is needed to define the datatype of the Neuron
data. This is a 6 double variable array.

DFEVectorType<DFEVar> vectorVars =
new DFEVectorType<DFEVar>(dfeFloat (11,53), 6);

dfeFloat(exponent, mantissa) is used to define a particular floating point variable.

After this definition, a counter is created to address the FMEM which keeps the variables
of the AdEx and the STDP model that are read from the CPU and are of Double type.
The AdEx variables are in reality 14, however for byte alignment when passing them from
the CPU Code to the DFE, we have to create a stream of 16*sizeofdouble size. The same
applies for the STDP variables. Instead of 24, the stream size is 32*sizeofdouble. The first
16 ticks of the kernel one variable of the AdEx model and one variable of the STDP model
are read, while for the next 16, the remaining STDP model variables are read and saved to
the FMEM. After the wrap of this counter, the stream of Neuron data are passed to the
kernel. The 6 variables of a Neuron are read in each tick, their differential equations are
solved and then the updated values are written back to the LMem in the same address that
they were read from.

The code responsible for solving the DEs of the AdEx model is the following:

DFEVar -vm, _vt, _x;
-vin = (gL*(EL—vm)+gLxDeltaT«KernelMath.exp ((vin—vt)/DeltaT )+I—x_var) /C;

vt = —(vt—vtrest)/tauvt;
_vt.simWatch (" vt_c”);
x = (cx(vin—EL)—x_var) /tauw;

DFEVar vim_.o = vim + _-vm % defaultclock_dt;

7 DFEVar vt_o = vt + _vt % defaultclock_dt;

DFEVar x_.0o = x_var + _x * defaultclock_dt;
DFEVar I_.o = I; // I must be read from memory in every timestep
DFEVar Spike_o = Spike;
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DFEVar control vm_o > vt_o;

vm_o = control ? Vr : vm_o;

x_o = control ? x.0o + b : x_0;

vt_o = control ? vtmax : vt_o;

Spike_o = control ? constant.var(l).cast(double_type) : constant.var(0).cast(

double_type);

All these operations are translated to a data flow graph by the MaxCompiler and the Max-
Compiler creates automatically a pipeline for every one of these variables, so that in each
tick the 6 variables of the neuron enter the pipeline and in every tick the 6 updated variables
are produced. All the calculations are done in parallel on the hardware and this is one of
the reasons why the FPGA throughput is high.

CPU Code

To run the simulation there is also needed a CPU Code which is written in C. This code
runs on the CPU of the Maxeler platform and is responsible for all the initializations of the
data structures that are passed to the Kernel, as well as, loading and unloading the DFE
and calling the Kernel.

To run this particular Kernel, the needed code is:

x = InitializeNeurons(N); // Initializatin of Neurons array (x) with size N
SolveNeurons_writeLMem (0, NeuronSizeBytes, x); // Writing the Neuron array
to LMEM

3 SolveNeurons (M, N, adex_param_size, stdp_param _size, steps, adex_params,

stdp_params); // Kernel call
SolveNeurons_readLMem (0, NeuronSizeBytes, x); // Reading the updated values
of the Neurons

As it is implied from all the above, this call solves the neuron differential equation for a
single timestep. This means that this Kernel must be called in every timestep to solve this
part of the simulation.

Optimization

The optimization introduced to this Kernel was parallelization in the level of Neurons.
This means that in every tick, there where 2 or more Neurons processed by the Kernel. As
a result, the Kernel ticks where divided by the Unroll Factor used and less time was needed
for the same simulation.

For an Unroll Factor=2, it is needed to read in the beginning of each tick the variables
for two neurons, instead of one, and then do the calculations for both of them in parallel
in hardware. Of course, this is only possible when there is hardware in the FPGA of the
DFE available. For checking if this optimization was possible, it was needed to check the
hardware utilization of the simple kernel.

FINAL RESOURCE USAGE
Logic utilization: 99743 / 262400 (38.01%)

62



9
10
11
12
13
14
15
16
17
18
19
20
21

22

3
24

Primary FFs: 156000 / 524800 (29.73%)
Secondary FFs: 6772 / 524800 (1.29%)
Multipliers (18x18): 100 / 3926 (2.55%)
DSP blocks: 50 / 1963 (2.55%)
Block memory (M20K): 596 / 2567 (23.22%)
As seen from the resource usage report from the compilation of the Kernel, there is room
for at least an Unroll Factor of 2. The report for HW usage from this Kernel is:
FINAL RESOURCE USAGE
Logic utilization: 148481 / 262400 (56.59%)
Primary FFs: 231194 / 524800 (44.05%)
Secondary FFs: 10328 / 524800 (1.97%)
Multipliers (18x18): 200 / 3926 (5.09%)
DSP blocks: 100 / 1963 (5.09%)
Block memory (M20K): 772 / 2567 (30.07%)
While it seem like there is room for an Unroll Factor of 4, when tried the HW usage was
almost 100% and even if the Kernel compiled, the performance was worse than that of
Unroll Factor 2.
This meant that the optimal Kernel for this function calculated two Neurons per tick.
The transformation of the part of the code that calculate the differential equations of Neu-
rons is:

DFEVectorType<DFEVar> VarVector =
new DFEVectorType<DFEVar>(dfeFloat (11,53), UnrollFactor);

DFEVector<DFEVar> _-vin = VarVector.newlnstance (this

)
5 DFEVector<DFEVar> _vt = VarVector.newlInstance(this);

DFEVector<DFEVar> _x = VarVector.newlInstance (this);
for(int i = 0; i < UnrollFactor; i++){
vm[i] <= (gL*(EL-vm][i])+gL«DeltaT«KernelMath.exp ((vm[i]—vt[i])/DeltaT)+I[i

|—x_var[i]) /C;
vt [i] <= —(vt[i]—vtrest)/tauvt;
x[i] <= (c*(vm[i]-EL)—x_var[i]) /tauw;

}

DFEVector<DFEVar> vm_o = VarVector.newlInstance (this);
DFEVector<DFEVar> vt_o = VarVector.newlInstance (this);
DFEVector<DFEVar> x_o = VarVector.newlnstance (this);
DFEVector<DFEVar> I_o = VarVector.newlInstance (this);
DFEVector<DFEVar> Spike_o = VarVector.newlInstance (this);
for(int i = 0; i < UnrollFactor; i++){

vmo[i] <= vm[i] + -vm[i] % defaultclock_dt;

vt_o[i] <= vt[i] + _vt[i] % defaultclock_dt;

x0[i] <= x_var[i] + _x[i] * defaultclock_dt;

Io[i] <= I[i];

Spike_o[i] <= Spike[i];

}

21 DFEVector<DFEVar> control = VarVector_int.newlnstance (this);

5 for(int 1 = 0; i < UnrollFactor; i++){

26

27

control [i] <== vm.oo[i] > vt_o[i];

}
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DFEVector<DFEVar> vm_o_res = VarVector.newlnstance (this);
DFEVector<DFEVar> x_o_res = VarVector.newlInstance (this);
DFEVector<DFEVar> vt_o_res = VarVector.newlnstance (this);
DFEVector<DFEVar> Spike_o_res = VarVector.newlnstance(this);

> for(int i = 0; i < UnrollFactor; i++){

vm_o_res[i] <= control[i] ? Vr : vm.o[i];

x_o_res[i] <= control[i] ? x.0o[i] + b : x_0o[i];

vt_o.res[i] <= control[i] ? vtmax : vt_o[i];

Spike_o_res[i] <== control[i] ? constant.var(l).cast(double_type)

constant.var (0).cast (double_type);

Apart from the input and output this is the only part of the kernel that needs changes.
In general, what changes is that instead of applying a computation in a single variable,
computations are applied in an array of variables of length Unroll Factor. This is also why
the resource usage in Unroll Factor = 2 is not exactly double from the simple Kernel.

The difference of performance between these two versions may not be substantial but it
is measurable for even a very small number of neurons (384):
Simple Kernel: 0.0199640 s
Unroll Factor = 2: 0.0195800 s

UpdateSynapses_pre Kernel

This Kernel implements the UpdateSynapses_pre function that is written in the CPU
Code. This Kernel has to read and update not only the Synapses, but also the AdEx Neu-
rons. In addition, the Kernel should run for both the NxM and the MxM simulations. This
means that there should be a way to choose if it has to read the values of Input Spikes or
the AdEx neurons. All these features impose a big complexity in the development of the
Kernel.

Manager

The differences from the previous kernel is that this one uses a Custom Manager. The
use of the Custom Manager is to link manually all the streams to the Kernel and to be
able to create new interfaces of the SLiC interface to read and write particular parts of the
memory that store different data types.

As before, there are used LMemLinear Streams to read the array of Synapses and the
neurons that correspond to every row of the Synapses’ array. Apart from them, there is used
another LMemLinear Stream to read the Input Spikes array from the LMem. Furthermore,
to read the AdEx Neurons multiple times to check their spikes in the MxM simulation,
there is used another LMemWrapped stream that reads multiple times the address where
the Neurons are saved in the LMem.

The sizes of the streams that are read and if it is needed to stream the Neurons for the
MxM simulation or the Input Spikes for the NxM array is defined by the number of input
neurons and the number of AdEx neurons that are passed from the CPU Code. If one of
them is zero, the streams don’t pass any data to the Kernel, and the Kernel is designed not
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to read anything from the related stream.
Kernel

The Kernel processes one Synapses at each step of the kernel. One step of the Kernel
is calculated by the stream.makeOffset AutoLoop(”loopLength”) function, which automati-
cally calculates the ticks needed to do all the calculations inside the Kernel and update the
needed values to produce outputs at every tick. The reason why this offset in this Kernel is
greater than 1 is the update of the AdEx Neuron that needs to be read, updated and saved
again to the FMEM. During the runtime, the array of synapses is accessed by rows. Each
row corresponds to a Target (Postsynaptic) AdEx Neuron which is read in the beginning
of the row and is kept to the FMem by an internal stream that is produced to update its
I value. For this feature, there was used a function stream.offset(x_o,-loopLength), to read
the value of the Neuron loopLength ticks earlier, which is the value needed to be updated.
Another, way to do the same thing is to save the needed to value to a specific address of
the FMEM and then to read it from there, change it and save the new one to the same
address, to be updated in the same way again if needed. However, this was was checked to
be slower, as the loopLength was greater and this meant that each step of the Kernel would
take more time. To synchronize all the streams of the Kernel there is used a chain counter
with two variables. The slow one is the number of Target AdEx Neurons (the number of
rows of the Synapses array) and the fast one (the number of columns of the Synapses array)
is the number of the Input Neurons for the NxM simulation or the number of AdEx Source
(Presynaptic) Neurons. These variables are used to choose which one of the streams should
be read. Furthermore, to try and make less accesses to the slower LMem, the Input Spikes
which are represented by an Int variable which is 1 if there is a spike and 0 else, are saved
when they are first read from the LMEM to the FMEM to be quickly read when needed.
The Synapses, as stated before, are represented by an array of 12 doubles, which are read
in every step of the kernel.

CPU Code

As this Kernel needs different types of data, there must be distinct functions to write
data to the LMem. To be more precise, there is a new function writeLmemlInt that writes
the Input Spikes to the LMem. In general, the Neurons’ array, the Synapses’ array and the
Input Spikes’ array are written in continuous addresses of the LMem, starting from 0.
Optimization

In this Kernel there weren’t any more optimizations possible, as while loop unrolling
was possible as there were FPGA resources available, then the Kernel needed a bigger
loopLength, as the streams could not be synchronized and some of them stalled and stopped
the kernel run, which made the unrolling less efficient.

UpdateSynapses_post Kernel
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This Kernel is responsible to make the computations of the UpdateSynapses_post func-
tion of the C program. This is the most time consuming part of the whole simulation, as
this Kernel reads the whole Synapses Array 2 times. The first one to update some of the
values of Synapses and calculate a mean of an expression based on some of the Synapses’
variables and the second one to update the values of the Synapses based on this mean.
Due to the complexity and the importance of this Kernel there were multiple architectures
tries to find the optimal implementation. The exploration of multiple architectures was not
only done to check the most optimal one, but also to try different techniques and get more
familiar with Maxeler Dataflow Programming and DFEs.

Version 1

The first version is probably the less efficient. It is based on the thought of having two
Kernels which would be serially loaded and run in the DFE. The first one would make all the
computations needed in the first pass of the Synapses’ array, including calculating the mean
and updating the values of the Synapses. The second one would have as input the mean
that was previously calculated and would use it to do all the remaining calculations on the
Synapses. The two Kernels were distinctly developed and were later joined to implement
the UpdateSynapses_post function.

The first Kernel uses a Standard Manager. The Neurons, Input Spikes and Synapses are
read from the LMem in the same way as the UpdateSynapses_pre Kernel. This Kernel has
also got a loop due to the sums that are calculated and needed for the final calculation of
the mean variable. The loopLength is again calculated automatically by the MaxCompiler.
This means, that there is a Synapse processed every loopLength ticks. The addition on the
sum and num variables is done like before, using the stream offset architecture.

DFEVar carriedSum = double_type.newlnstance(this);
DFEVar carriedNum = double_type.newlnstance(this);

carriedNum <= stream . offset

3 DFEVar sum_t =m —=—— 0 & n ——= 0 ? constant.var(0) : carriedSum;
DFEVar num t =m —=——= 0 & n == 0 ? constant.var(0) : carriedNum;
sum_t = x[4] == 1 & syn.0[0] == 1 ? sum_t + AFFp x FFp % FBn : sum_t;
num-t = x[4] == 1 & syn.0[0] == 1 ? num-t + 1 : num-t;
carriedSum <== stream. offset (sum-t, —loopLength);
(

num_t, —loopLength);

carriedSum and carriedNum are two variables saved inside the FPGA and this code
creates a pipeline of length loopLength that is used to keep the corresponding values of
these two variables. Due to the fact that these variables are of floating type, there is no
other way to make the needed additions (there is an accumulator API but supports only
fixed point variables and ints and does all the calculations in only 1 tick). Floating Point
additions need 16 ticks, so the loopLength is 16 ticks. The variable mean is calculated
in every tick and passed as a stream to the CPU Code. The last value of this stream is
the correct one. The second Kernel uses again a Standard Manager and the Input Spikes,
Neurons and Synapses are read in the same way as the first Kernel. This Kernel also takes
as input a single scalar double value from the CPU Code, which is the mean that was
calculated from the first Kernel. This Kernel doesn’t have any loop, so each Synapse take
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only one tick to be updated.

The interesting part of this version is how to load both of these Kernels to the DFE from
the single CPU Code. To do this, the following steps must be followed to build the exe-
cutable: Let’s say that UpdateSynapses_post_1 is the name of the project for the first Kernel,
UpdateSynapses_post_2 is the name of the project for the second Kernel and UpdateSy-
napses_post is the name of the combined project that implements the UpdateSynapses_post
C function.

1. Build for DFE both Kernels
2. Create a new project in MaxIDE for the UpdateSynapses_post function

3. Copy all the files from UpdateSynapses_post_1_kernel/RunRules/DFE /maxfiles and
UpdateSynapses_post_2_kernel /RunRules/DFE /maxfiles to UpdateSynapses_post/RunRules/max

4. Edit the UpdateSynapses_post/RunRules/Makefile.settings file, so that the following
values are defined as below:

1 RUNRULE MAXFILES := UpdateSynapses_post_1.max
UpdateSynapses_post_2 .max

2 RUNRULE MAXFILESH := UpdateSynapses_post_-1.h UpdateSynapses_post_2
.h

5. Copy UpdateSynapses_post_1/RunRules/DFE/include/UpdateSynapses_post_1.h and
UpdateSynapses_post_2/RunRules/DFE /include /UpdateSynapses_post_2.h to UpdateSy-

napses_post /RunRules/DFE /include and include those two header files in UpdateSy-
napses_post/RunRules/DFE/include/Maxfiles.h

6. Include Maxfiles.h file in CPU Code

7. Run the following commands in terminal:

1 cd UpdateSynapses_post/CPUCode
2 source ’’{$MaxCompilerDirectory}/settings.sh\’’
make RUNRULE=’"DFE’’

Apart from those steps, the Kernels should be distinctively loaded and unloaded to and
from the DFE. To do this, there are some functions that need to be called from the CPU
Code.

1 // Initialization of DFE

2 max_engine_t *myDFE;

3 // Initialization of UpdateSynapses_post_1_Kernel

1+ max_file_t *PostlKernelMaxFile = UpdateSynapses_post_1_init () ;

5 // Load UpdateSynapses_post_-1 Max File to the DFE

¢ myDFE = max_load (Post1KernelMaxFile ,”*” ) ;

7 // Creation of an actions object as stated in the UpdateSynapses_post_1
header file for writing to the LMem

s UpdateSynapses_post_1_writeLMem _actions_t uspl_wL_Action;
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9 uspl_wL_Action.param_address = 0;

uspl_wL_Action.param_nbytes = sizeBytes_d_var;

11 uspl_wL_Action.instream_cpu_to_lmem = x;

12 // Write to LMem the data stated in the actions object defined above
15 UpdateSynapses_post_1_writeLMem_run (myDFE, &uspl_-wL_Action);

14 // Do the same for other data

-

15 uspl_wL_Action.param_address = sizeBytes_d_var;

16 uspl_wL_Action.param_nbytes = syn_size;

17 uspl_wL_Action.instream_cpu_to_lmem = syn;

1s UpdateSynapses_post_1_writeLMem_run (myDFE, &uspl_-wL_Action);
19 uspl_wL_Action.param_address = sizeBytes_d_var 4+ syn_size;
20 uspl_wL_Action.param_nbytes = InputSpikes_size;

21 uspl_wL_Action.instream_cpu_to_lmem = InputSpikes;

22 UpdateSynapses_post_1_writeLMem _run (myDFE, &uspl_wL_Action);

23 // In the same way definition of action object for running the
UpdateSynapses_post_1 Kernel

2« UpdateSynapses_post_1_actions_t usplAction;

25 usplAction.param_M_S = N_Group_S;

26 usplAction.param M_T = N_Group_T;

27 usplAction.param_ N = N;

28 usplAction.param_N_adex = adex_param_size;

20 usplAction.param_N_stdp = stdp_param _size;

30 usplAction.param_Steps = steps;

31 usplAction.instream_adex_params = adex_params;
32 usplAction.instream_stdp_params = stdp_params;
33 usplAction.outstream_mean = mean;

34 // Running the action object for running the UpdateSynapses_post_-1 Kernel

35 UpdateSynapses_post_1_run (myDFE, &usplAction);

s6 // Creation of an actions object as stated in the UpdateSynapses_post_1
header file for reading from the LMem

37 pdateSynapses_post_1_readLMem_actions_t uspl_rL_Action;

3s uspl_rL_Action.param_address = 0;
30 uspl_rL_Action.param_nbytes = sizeBytes_d_var;
10 uspl_rL_Action.outstream_lmem_to_cpu = x;

41 // Running the reading from memory action object
> UpdateSynapses_post_1_readLMem _run (myDFE, &uspl_rL_Action);
i3 // Do the same for other data

v uspl_rL_Action.param_address = sizeBytes_d_var;
15 uspl_rL_Action.param_nbytes = syn_size;
16 uspl_rL_Action.outstream_lmem_to_cpu = syn;

17 UpdateSynapses_post_1_readLMem _run (myDFE, &uspl_rL_Action);

s // Unloading the UpdateSynapses_post-1 Kernel Max File from the DFE to load a
new one

v max_unload (myDFE) ;

50 // The same process is followed to load the DFE with the
UpdateSynapses_post_2 Kernel, read and write to the LMem with the
functions defined in its header file, run the UpdateSynapses_post_-2 Kernel
and unload it from the DFE

51 max_file_t *Post2KernelMaxFile = UpdateSynapses_post_2_init () ;

52 myDFE = max_load (Post2KernelMaxFile ,”*”);

53 UpdateSynapses_post_2_writeLMem _actions_t usp2_wL_Action;

1

52 usp2_wL_Action.param_address = 0;
55 usp2_wL_Action.param_nbytes = sizeBytes_d_var;
56 usp2_wL_Action.instream_cpu_to_lmem = x;

57 UpdateSynapses_post_2_writeLMem _run (myDFE, &usp2_wL_Action);
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UpdateSynapses_post_2_actions_t usp2Action;

usp2Action

usp2Action.param_M_S = N_Group.S;
usp2Action.param M_T = N_Group_T;
usp2Action.param_ N = N;
usp2Action.param_N_adex = adex_param_size;
usp2Action.param_N_stdp = stdp_param _size;
usp2Action.param_Steps = steps;

5 usp2Action.instream_adex_params = adex_params;
usp2Action.instream_stdp_params = stdp_params;

.param_mean = mean_fin;

UpdateSynapses_post_2_run (myDFE, &usp2Action);
usp2_wL_Action.param_address sizeBytes_d_var;
usp2_wL_Action.param_nbytes syn_size ;
usp2_wL_Action.instream_cpu_to_lmem syn ;
UpdateSynapses_post_2_writeLMem_run (myDFE, &usp2_wL_Action);
usp2_wL_Action.param_address sizeBytes_d_var 4+ syn_size;
usp2_wL_Action.param_nbytes InputSpikes_size;
usp2_wL_Action.instream_cpu_to_lmem InputSpikes;
UpdateSynapses_post_2_writeLMem _run (myDFE, &usp2_wL_Action);
UpdateSynapses_post_2_actions_t usp2Action;

usp2Action.param_M_S = N_Group-S;
usp2Action.param_ M_T = N_Group_T;
usp2Action.param_ N = N;
usp2Action.param_N_adex = adex_param _size;
usp2Action.param_N_stdp = stdp_param_size;

; usp2Action.param_Steps = steps;
usp2Action.instream_adex_params = adex_params;

5 usp2Action.instream_stdp_params = stdp_params;
usp2Action.param_mean = mean_fin;

s usp2_rL_Action.param_address

UpdateSynapses_post_2_run (myDFE, &usp2Action);
UpdateSynapses_post_2_readLMem _actions_t usp2_rL_Action;
usp2_rL_Action.param_address = 0;
usp2_rL_Action.param_nbytes sizeBytes_d_var;
usp2_rL_Action.outstream_Imem_to_cpu = x;
UpdateSynapses_post_2_readLMem _run (myDFE, &usp2_rL_Action);
sizeBytes_d_var;
syn_size ;

usp2_rL_Action.param_nbytes

95 usp2_-rL_Action.outstream_lmem _to_cpu = syn;
; UpdateSynapses_post_2_readLMem _run (myDFE, &usp2_rL_Action);
o7 max_unload (myDFE) ;

The timing results of this code when run on DFE for a 384x384 network for a single tiemstep
are: DFE Runtime = 1.3056500 seconds
Kernel 1 init Time = 0.0015750 seconds
Kernel 1 load Time = 0.1491460 seconds
Write LMem Time = 0.0255410 seconds
Kernel 1 Time = 0.0455760 seconds

Read LMem Time = 0.0193310 seconds
Kernel 1 unload Time = 0.4137920 seconds
Kernel 2 init Time = 0.0014230 seconds
Kernel 2 load Time = 0.1474960 seconds
Write LMem Time = 0.0264010 seconds
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Kernel 2 Time = 0.0190920 seconds
Read LMem Time = 0.0197460 seconds
Kernel 2 unload Time = 0.4363570 seconds
Sum Kernel Time = 0.0646680 seconds
Time for loading and unloading kernels = 1.149789 seconds

It is obvious that the time needed for loading and unloading the DFEs is much greater
than the time that DFEs do computations. Due to the fact that loading and unloading
the DFEs takes almost 1 second for only 2 Kernels suggest that this would not be a good
solution for the final simulation, where there are 3 Kernels and the Simulation runs for
thousands of timesteps.

Version 2

This version is based again in two Kernels, almost the same as before. However, in
this version they are not loaded and unloaded from the CPU Code but they are working
in parallel in the DFE. The only change in the Kernels is in the second Kernel, where the
streams start to input data to the Kernel after the first Kernel has finished its computations.
The connection between the two Kernel is done by a Custom Manager. The Custom Manager
enables the creation of two Kernel Blocks that include the two Kernels mentioned above.
This is done through the following API:

KernelBlock k1 = addKernel(
new UpdateSynapses_post_1Kernel (makeKernelParameters(”
UpdateSynapses_post_1Kernel”)));
KernelBlock k2 = addKernel(
new UpdateSynapses_post_2Kernel (makeKernelParameters (”

UpdateSynapses_post_2Kernel”)));

Then all the streams are manually connected to the kernel blocks. The Memory Streams
in both Kernels point to the same LMem address. There is one additional stream for the
mean that is calculated in the first Kernel to the second Kernel.

While this would be an interesting solution, it never worked for these two Kernels, as
some streams stalled during runtime. However, this type of connection between Kernels was
successful in other, less complex cases of Kernels.

Version 3

This version combines the two Kernels previously used in a single one. This saves time
from loading and unloading kernels and is the most efficient solution. There is still the need
to do a first pass of the Synapses array to update their values and calculate the mean and
then pass the array again to update again the values of Synapses. This means that the
Kernel contains a bigger loop were, in the first step the computations of the first Kernel
are done and in the second step there are done the computations of the second Kernel. To
do this and update the values two times from the same Kernel, the LMemWrapped type
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of memory access sounded well. However, there were problem with that standard memory
access patterns and the data that were read in the second loop were not updated from
the first loop. This lead to using the Custom Memory Command Stream, which let the
developer precisely choose which address of the LMem will be accessed.

Custom Memory Command Streams are command streams generated by the Kernel and
passed to the Memory controller. They are responsible for addressing the LMem and the
interrupts generated by the Memory Controller. The Memory Controller can read or write
from or to the LMem in Bursts. Each DFE model has a particular Burst Size in Bytes.
This also means that all the data in the LMem must be burst alligned. This burst size is
passed to the Manager of the Kernel by the CPU Code. To define the Burst Size and be
able to run an executable in various DFEs, there is an SLiC function called by the CPU.
After the initialization of the Max File of the Kernel for running, the function that returns
the Burst Size is max_get_burst_size(maxfile, NULL). The first argument is the specified
Max File and the second is the number of the DFE. If it is NULL this means that it takes
the value of the default DFE, as defined by the system variables. For the MAIA DFE that
is used, the Burst Size is 384 Bytes. The Manager is also responsible for calculating the
total number of bursts for accessing a part of the LMem, as well as, the number of words
of a specified data type that can be represented in a single burst. These values will be used
in the kernel to create the counters to synchronize the whole implementation, the Custom
Command Memory Streams and the inputs and outputs. For example, the values that are
passed to the Kernel for reading the Synapses and AdEx Neurons respectively are:

engine_interface.setScalar (s_kernelName , ”"totalBurstsSyn”, (12+«M.Tx(M_SHN) *(
double_size))/burstSize);

engine_interface.setScalar (s_kernelName, "wordsPerBurstSyn”, burstSize /(
double_sizex*12));

engine_interface.setScalar (s_kernelName, ”"totalBurstsX”, M Tx6«xdouble_size/
burstSize ) ;

engine_interface.setScalar (s_kernelName, ”wordsPerBurstX”, burstSize /(

double_size x6)) ;

In addition to this, to read the Synapses for example, it is needed to create a counter
that will provide the Custom Memory Command Stream for the stream of the synapses
with addresses.

CounterChain chain = control.count.makeCounterChain () ;
DFEVar burstCount = chain.addCounter (totalBurstsSyn ,1) ;

s DFEVar wordCount = chain.addCounter (wordsPerBurstSyn ,1) ;

This counter chain is used to read a single Synapse array in every tick. Every wordsPer-
BurstSyn ticks, there is issued a Memory Command by the Custom Memory Command
Generator that is passed to the Memory controller and returns to the Kernel buffer a burst
of 384 bytes, coming from the Synapses data. The data in this way are accessed linearly,
which is the most efficient pattern in the Maxeler architecture. After writing a burst of
data to the Kernel buffer, then for wordsPerBurstSyn ticks, the data that are read from the
Synapses stream are read from there. One Synapse array each tick.

The API of the Custom Command Generator to read the stream of the Synapses (Input
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stream) is the following:

LMemCommandStream . makeKernelOutput (7 SynIncmdStream” |

control | // control
burstCount , // address

constant.var (dfeUlInt (8), 1), /] size
constant .var (dfeUInt (1), 0), // inc
constant .var (dfeUInt (1), 0), // stream
constant . var(false));

The Command Stream generates a command when the control variable is true. The control
variable is defined in such way to be true when the wordCount is 0.
For example:

DFEVar control = wordCount.eq(0);

The burstCount attribute of the makeKernelOutput function is the address of the LMem
that the Memory Controller reads.

The stream to input the real data to the Kernel is similar with before. For example, for
reading the Synapses’ array:

DFEVectorType<DFEVar> SynapsesVector =
new DFEVectorType<DFEVar>(dfeFloat (11,53), 12);

s DFEVector<DFEVar> syn = io.input(”Synln”, SynapsesVector, streamControl);

N

To correlate the data stream with the stream that is controlled by the corresponding
Custom Memory Command Stream it is needed to define the connection in the Manager
Interface.

KernelBlock k = addKernel(new UpdateSynapses_postKernel(makeKernelParameters(

s_kernelName) ) ) ;
LMemlInterface iface = addLMemlInterface () ;

s DFELink SynIn = iface .addStreamFromLMem (” SynIn” ,k.getOutput (” SynlncmdStream”)

k. ggt,Input (”SynIn”) <= Synln;

The same things stand when there is need for writing to the LMem. The only thing
that changes is the io.output for the data and the last attribute of the makeKernelOutput
function, which generates an interrupt to the CPU Code, when all the bursts are read or
written to the LMem.

AdEx Neurons are read from the LMem in the same way.

Of course, due to the complexity of the Kernel, the synchronization of the Data Streams
and the Custom Memory Command Streams need more complex counters. Furthermore,
due to time needed to access the LMem there was introduced in the second part of this
Kernel which corresponds to the second Kernel of Version 1 a delay in the form of a loop.
After experimenting, it was needed a loop of 4 ticks, between reading Synapses. To achieve
this, there is a new set of counters introduced, that runs on the second part of the Kernel
runtime and has different wrap points from the first counters which are used in the first
part of the Kernel runtime that makes the computations of the first Kernel of the Version 1
implementation. The final runtime of the Kernel is: N_stdp + loopLength*(N-+M_S)*M_T
+ loop2Length*(N+M_S)*M_T ticks.
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N}

This was the Version of the UpdateSynapses_post Kernel that was used in this imple-
mentation.

CPU Code of Multiple Kernels Implementation

After creating and building all the Kernels mentioned above, copying the produced files
as described earlier to create a project that can call them all, it is time to work on the
CPU Code that calls the kernels and controls the LMem reads and writes to implement the
simulation. The pseudocode for the CPU Code is:

1 SolveNeurons_init () ;
2> UpdateSynapses_pre_init () ;
s UpdateSynpases_post_init () ;
for (timesteps){
load (SolveNeuronsMaxFile) ;
writeToLMem (Neurons) ;

7 SolveNeurons () ;

s readFromLMem ( Neurons) ;

o unload (SolveNeuronsMaxFile) ;
10 load (UpdateSynapses_preMaxFile) ;
writeToLMem ( Neurons) ;
12 writeToLMem ( Synapses) ;
: writeToLMem (InputSpikes) ;
1« UpdateSynapses_pre () ;

5 readFromLMem ( Neurons) ;
readFromLMem ( Synapses ) ;
17 unload (UpdateSynapses_preMaxFile) ;
18 load (UpdateSynapses_postMaxFile) ;
19 writeToLMem (Neurons) ;
20 writeToLMem ( Synapses) ;
writeToLMem (InputSpikes ) ;
2> UpdateSynapses_post () ;
readFromLMem ( Synapses) ;
) unload (UpdateSynapses_postMaxFile) ;

CEEN )
1

Of course, all the loads and unloads of the DFE, the writes to the LMem and the calls of
the Kernels are done with the API shown above.

4.2.2 Single Kernel

To begin with, the Kernel has 3 different sections that need to be run sequentially in
every timestep of the simulation due to data dependencies. I will distinguish each section
in the C code and the DFE kernel by commenting where it starts and ends with a special
colour to be able to understand more clearly the corresponding parts. In each section there
is only one neuron or synapse read and updated.

Sections:

1. Reads the AdEx Neuron array, one neuron at a time, solves their differential equations
and updates their values in the same addresses of memory that were read from. To do
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this update in the same memory addresses, it is needed to create a Custom Memory
Command Generator that generates the commands that are passed to the read/write
commands of the kernel (io.input/io.output) for when to read/write something and
in what address it should read/write from/to. This operation cannot be executed in
a single tick, as the kernel stalls, so after experiments I have found out it needs 2
ticks. This means that the kernel should wait for 2 ticks in a loop, to be able to send
and receive all the memory commands and to read and write the data. This section
could be parallelized in the level of neurons, however this is not possible, due to high
hardware utilization of the whole kernel that uses doubles. The whole length of this
section in a single timestep is: N_Group_T*2 ticks, because data are read and written
every 2 ticks.

2. Reads an AdEx neuron from the Neuron Array one by one, the Synapses array one by
one and the Input Neurons array one by one and solves the differential equations of
the UpdateSynapses_pre and a part of the UpdateSynapses_post function. To be more
precise, in this section in the first tick of each row there are read a Neuron, a Synapse
and the corresponding Input Neuron Spike or another Source AdEx Neuron. For the
next N_S or N_Group_S loops of this section, the whole row of the Synapses’ array
that corresponds to the AdEx Neuron that was read in the beginning is processed.
The process of this section contains not only the UpdateSynapses_pre function, but
also a part of the UpdateSynapses_post function. If there is a Spike from an Input
Neuron or an AdEx neuron that is used as source in the MxM simulation(presynaptic
neuron) then the UpdateSynapses_pre is executed. Then, if the Target Neuron has
generated a Spike, the UpdateSynapses_post part is also executed. This section takes
16 ticks for every Synapse because it needs to calculate a double or float accumulator
that is used to calculate the mean variable of the UpdateSynapses_post function. In
the beginning of each row, the Input Neuron spikes are saved in the FMEM;, so that
they can be used in the following part of the section. This section takes the most
time in the Simulation and to be precise: (N_S + N_Group_S)*N_Group_T*16 ticks.
This section cannot be parallelized in terms of Synapses due to the update of the
accumulator.

3. Reads the array of Synapses again in the same way as the second section and executes
the last part of the UpdateSynapses_post function. This section needs 4 ticks for every
Synapse, to read, execute the calculations and write the data back to the LMEM. This
section could be parallelized in terms of Synapses, but it isn’t possible due to high
utilization of HW in the kernel using doubles. This section takes N_Group_T*2 ticks.

This sections are run in every timestep. It becomes clear that all the elements of the 2d
array of synapses must be run in every timestep to check which synapses and neurons need to
be updated. The ticks needed to run the whole simulation are: Number_of STDP variables +
timesteps™(2*N_Group_T+16*(N_S+N_Group_S)*N_Group_-T+4*(N_S+N_Group_S)*N_Group_T).
The Number_of STDP _variables ticks are used to save to the FMEM the fixed variables
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of the STDP and AdEx models’ differential equations.

To synchronize which section runs and which address of the memory to read or write,
there are used a set of counters. There is a counter called worldCounter that wrapps in
2*N_Group_T+16*(N_S+N_Group_S)*N_Group_T+4*(N_S+N_Group_S)*N_Group_T ticks
that is used to control the different sections and keep track in which section the kernel
is by checking if the counter is less than Section 1 ticks, Section 2 ticks or Section 3 ticks.
The distinct counters for this purpose are needed due to the fact that a counter cannot
change wrap point dynamically and each one of them wraps to the corresponding Section’s
length. The representation of the kernel in a graph is the following:

Reading AdEx
and STDP
variables

unloading

Figure 4.7: Single Kernel Flowchart

Due to the complexity of this Kernel the resource usage of this Kernel was very high.
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To be more precise:

FINAL RESOURCE USAGE

Logic utilization: 252278 / 262400 (96.14%)
Primary FFs: 364674 / 524800 (69.49%)
Secondary FFs: 67155 / 524800 (12.80%)
Multipliers (18x18): 776 / 3926 (19.77%)
DSP blocks: 388 / 1963 (19.77%)

Block memory (M20K): 1440 / 2567 (56.10%)

The High Resource usage imposes a big difficulty to the synthesis tool of the FPGA.
Especially the one related to the Logic Utilization. To try and build successively the Kernel
there was needed an exploration of the optimization parameters of the MaxCompiler.

To begin with, to accelerate the build process, there was used parallelization in the level
of the cables that run. To do this in the Engine Parameters of the Simulation, there were
defined the values i_startMPPRCT, i_endMPPRCT and i MPPRThreads as:

declareParam (i_start MPPRCT , DataType.INT, 1);
declareParam (i.endMPPRCT, DataType.INT, 4);

s declareParam (i.MPPRThreads, DataType.INT, 4);

Then, in the configuration of the Manager these values were used in the functions

buildConfig.setMPPRCostTableSearchRange (params . getMPPRStart () , params.
getMPPREnd () ) ;
buildConfig.setMPPRParallelism ( params . getMPPRNumThreads () ) ;

The first one sets the number of cables of the build process, or to state it better, the
number of tries to build the Kernel.

The second one defines the parallelism of the build process. For a parallelization of four,
all the cables are run simultaneously.

Furthermore, there are two other parameters in the configuration of the kernel: buildCon-
fig.setBuildEffort(Effort. VERY _HIGH) This one tries the best to build the Kernel. The other
is buildConfig.setOptimizationGoal(OptimizationGoal. AREA) and optimize the building of
the Kernel to use less Area on the FPGA, as this is the big problem of this Kernel.

All this optimizations however were not enough to build the Kernel. To do it, there was
needed a decrease in the frequency of the FPGA. The FPGA clock frequency is defined
again in the Manager by creating a clock using the Manager API:

ManagerClock myClk = generateStreamClock ("myClk” , 145)
Then this clock is connected to the Kernel needed building:

s KernelBlock k = addKernel(new SimulationKernel (makeKernelParameters (

s_kernelName)) ) ;
k.setClock (myClk) ;

The optimal frequency of the clock was selected after many tries of different frequencies.
The bigger the frequency, the biggest the timing error of the kernel was. To reach a timing
error of 0, there was needed to set the Frequency to 145MHz.
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4.2.3 Comparison between Multiple and Single Kernels

The main focus on the comparison between the two implementations will be the load
and unload times of the DFE. To check them, there will be some experiments with a small
amount of Neurons, so that the DFE runtime is not very big.

Test Parameters
Simulation: NxM

N_Group S =10
N_Group_ T = 384
N.S = 384

Timesteps = 1
Spike Interval = 1 step

Multiple Kernels:
init_time = 0.006994 s
load_time = 8.250590 s
unload_time = 1.262563 s
memory_reads = 0.045017 s
memory_writes = 0.066136 s
DFE_time = 0.123352 s

Single Kernel:
memory_reads = 0.020573 s
memory_writes = 0.028627 s
DFE_time = 0.079686 s
load _time = 4.864762 s
unload_time = 0.370028 s

This is a representative test of the timings for loading and unloading DFEs. These
timing show that the Multiple Kernel architecture is not feasible for many timesteps, as
they impose a huge delay in every timestep. For example for simulating 1 second with a step
of 1ms, there would be needed 8000 seconds only for loading and unloading the Kernels, a
lot more than the DFE Time.

In the Single Kernel there is a big loading time too. However, the loading of this Kernel
happens only one time, in the beggining of the Simulation, so it doesn’t matter in the final
runtime.

Furthermore, it is seen that the DFE Time for the Single Kernel is less than the sum of
the time that the Multiple Kernels run, so not only the Single Kernel Simulation is faster
due to less loading time, but also the runtime is a lot less.
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4.2.4 Double vs Float Data Type

Up until this point, the design of the Kernel was based on zero error from the C program.
However, this means that in the Kernel all the data were doubles, which are represented
in 64 bits. Consequently, they take more space in the LMem, but more importantly, their
computations take almost double the hardware resources of the FPGA. An optimization
on those factors is to used float type floating point variables, which are represented in 32
bits and take half the LMem space and a lot less resources (not exactly half). Furthermore,
the high HW utilization of the Single Kernel with double type variables has as a result the
need to lower the default Clock Frequency of the FPGA and the suboptimal performance of
the FPGA. Moreover, the lower HW utilization by the Kernel with Float variables, makes
able the parallelization of the processing of Synapses, gaining a lot more performance with
that. The only drawback of this implementation is some errors that are being imposed to
the results of the Simulation. There will be a more detailed reference to this problem later.

Float Kernel with parallelization

The only changes from the Single Kernel with doubles is that the variables of the Kernel
are represented as floats, when there was only one Synapse processed in every step now
there are two Synapses processed simultaneously and there are only double variables for
the calculation of the mean, to avoid overflow of float variables. The update of the Neuron
variables stayed as before due to complexity problems in building the kernel. To begin with,
to change the variables from double to float it was a very easy job. In the beginning of the
kernel there is a definition for the double type.

private static final DFEType double_type = dfeFloat (11,53);

After that, all the variables and the arrays are based on this type. By changing this type
to dfeFloat(8,24) which represent a float variable, all the variables inside the Kernel were
transformed to floats. The only variables that are represented as double variables are the
ones related to the accumulation of the results needed to calculate the mean in the second
section of the Kernel.

The second most important change of the Kernel is the parallelization in the level of
Synapses. While it would be very easy to parallelize the kernel if there was no summation
between values of two Synapses, now this task becomes more difficult. To solve this problem,
there was suggested a type of reduce tree. As stated before, at every tick there are two
Synapses processed. The values of these two Synapses that need to be calculated are added
together and this sum is then added to the general sum. In this way, the delay for the
Section 2 stays the same, while there are two Synapses calculated in the same tick.

A data flow of this computation in the Section 2 of the Kernel is visualised below:
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Figure 4.8: Synapses’ Parallel Computation

The calculations on the Synapses include not only solving their differential equations
but also create for each one the part that need to be accumulated to the global sum. If
a postsynaptic Neuron has produced a spike, the a value that is calculated based on the
values of the synapses must be added to the sum. Due to the fact that there must be always
a number summed to the carried sum, if the Synapse value must be added then it is and if
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not only zero is added to the sum. The same thing is happening in the calculation of the
added Synapses to calculate the mean.
The Resource usage of this Kernel is show below:
FINAL RESOURCE USAGE
Logic utilization: 181875 / 262400 (69.31%)
Primary FFs: 323784 / 524800 (61.70%)
Secondary FFs: 12602 / 524800 (2.40%)
Multipliers (18x18): 393 / 3926 (10.01%)
DSP blocks: 207 / 1963 (10.55%)
Block memory (M20K): 1012 / 2567 (39.42%)

While it may seem that there could be a greater Unroll Factor, in reality an Unroll
Factor of 4 was not possible, as the HW utilization was a lot bigger and the Kernel could
not be compiled.

PRELIMINARY RESOURCE USAGE

Logic utilization: 300843 / 262400 (114.65%)
Multipliers (18x18): 681 / 3926 (17.35%)

Block memory (bits): 9954694 / 52572160 (18.94%)

Furthermore, the ticks needed for the sections 2 and 3 of the Kernel due to the delays
of accessing the LMem were greatly increased, so an Unroll Factor greater than 2 was not
feasible.

Acceleration Results

The results of the acceleration achieved by the float kernel is shown below:

Table 4.1: Acceleration Float with Unrolling vs Doubles

Run 1.1 12| 1.3 2.1 2.2 2.3 3 4
Source Neurons 384 | 384 | 384 | 384 | 384 | 384 0 0
Source AdEx Neurons 0 0 0 0 0 0] 384 | 1152
Target AdEx Neurons 384 | 384 | 384 | 1152 | 1152 | 1152 | 384 | 1152
Source Neurons Spike Interval (timesteps) 1 2 5 1 2 5 - -
CPU Time (s) 2.38 | 1.24 | 0.56 | 7.83 | 4.56 | 2.24 | 4.10 | 52.21
DFE Run Time Float (s) 2341234234 698 | 6.98| 6.98 | 2.54 | 22.70
Acceleration Float vs CPU 1.02 0531024 | 1.12 ] 065 | 0.32| 1.61 | 2.30
DFE Run Time Double (s) 3.023.02|3.02| 9.03| 9.02 | 9.02 | 3.47 | 31.07
Acceleration Double vs CPU 0.79 10.41 10.19 | 0.87 | 0.50 | 0.25| 1.18 | 1.68
Acceleration Float vs Double 129 1129129 1.29 | 1.29 | 1.29 | 1.37 | 1.37

It is obvious from this small networks that the float kernel achieves an average x1.8
acceleration in comparison with the double kernel. This is the reason why this Kernel was
the one used to show the final acceleration in the DFEs.
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Finally, due to the fact that there is no way to run a kernel for more than 1 hour in
the DFE, there was needed a tiny tweak to the Kernel to be able to run the simulation for
more than 1 hour, as needed in big networks. The tweak in the Kernel was passing a start
time, which was added to the steps that run for, so that it would be instantiated in different
time steps. To break the runs in timestep, there was implemented an algorithm in the CPU
Code, which calculated how many 1 hour time frames the kernel needed to run and then
called the Kernel for every one of them, breaking the simulation into steps.
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Chapter 5

Experimental Results and Analysis

In this chapter there is going to be a presentation of the results of the DFE Implementa-
tion and the acceleration versus the Brian Simulator and the C Simulation. There are going
to be discussed the reasons why certain parameters of the simulations were chosen and how
their impact on the acceleration. The most interesting part of this chapter is the reasons
why the acceleration of the DFE implementation follows the patterns described below.

The Maxeler model that was used to implement the DFE design was MAIA. The MATA
DFE is implemented with an Altera Stratix V FPGA. The FPGA chip, contains 262400
High-Performance Adaptive Logic Moduls, 3926 Variable-Precision DSP Blocks (18x18),
2567 M20K memory blocks and supports 14.1 Gbps transceivers. Furthermore, it supports
up to 6 x72bit DIMM DDR3 memory interfaces up to 933Mhz. The Kernel used for taking
the timing report was running on the default 150MHz clock and 400MHz DDR3 memory
clock. The MAIA DFE had available a 48 GB LMem. The CPU that was used to run the
Brian Simulator and the C Simulation was an Intel Xeon E5-2658A v3. Its architecture is
based on the Haswell family of products, following a 22nm Lithography process and was
launched on the 1st quarter of 2015. It has 12 cores and supports HyperThreading (24
Threads) and has a frequency of 2.20 Ghz and a Turbo Frequency of 2.90 Ghz. Moreover,
it has a 30 MB SmartCache and 128 GB of DDR4 RAM.

The source code of the executable used for the following runs is on this GitHub repository:
https://github.com/iomaganaris/AdexSimMaxeler

The variables of the runs are:

e Number of Input and AdEx Neurons: The number of Input and AdEx Neurons changes
the overall runtime of the simulation. These two variables are also sweeped to check
if there is any difference in acceleration in relation to the size of the problem, while
keeping the other variables stable

e Input Neurons Spike Frequency: In the NxM simulation, where there are only Input
Neurons connected to the AdEx Neurons, it is very important to check the differences
in runtime based on the activity of Input Neurons

e Neuron Connectivity: It is also important to see the differences in run time due to
connectivity variation
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e Timesteps: The simulation steps

5.1 NxM Simulation

This is the type of Simulation were Input Neurons, that only produce spikes based on a
given distribution by the user, are connected with “real” neurons, described by the AdEx
Model. A graphical representation of such a network is given below:

NS=2
N_GroupS =0
N_Group T = 3

Connectivity = 100%
Number of Synapses = 6

Figure 5.1: NxM Simulation Network

The straight lines represent Synapses

For every experiment of this type, the initialization of the AdEx Neurons were the same
and similar to the paper that the thesis is based on. To be more precise:
vtrest = -45 mV
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EL =-70.6 mV
Neuron.vt = vtrest
Neuron.vim = EL
Neuron.I =0
Neuron.x = 0
Neuron.Spike = 0

The initialization of Synapses was based again on the paper. The same variables (FBp,
FBn, R, U, A) were changed but the values on the synapses was based on an ascending
number that wrapped around 16777216. This number was chosen because float numbers
can represent all integers up until it. Different numbers on the synapses also meant that
there would be different values on the variables of the synapses and neurons. This way, the
debugging was easier and more sure and also there was a good amount of Spikes on the
AdEx Neurons produced. The experiments that was run for the performance measurements,
don’t contain any artificial spikes on AdEx Neurons to keep the faithfulness.

5.1.1 Results

Brian vs C vs DFE

The following table shows the acceleration between the different implementations. The
range of Neurons is 384 which is the smallest network simulated by the DFE, and 4992, as
networks bigger, took a lot of time to be calculated (> 10h on Brian). The same conclusions

from the given runs can be reached for bigger networks. The variables that are kept stable
are:

Timesteps of the simulation: 1000

Simulation step: 1 ms

Input Spike Interval: 1 step (Spiking frequency: 1 kHz)

Connectivity: 100%
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Table 5.1: Acceleration DFE vs C CPU vs Brian

N_S 384 1152 4992
N_Group_S 0 0 0
N_Group_T 384 1152 4992
Input Spike Interval 1 1 1
Connecticity (%) 100 100 100
CPU Time (s) 52.48 | 539.41 | 9694.05
LMEM Read Time (s) 0.02 0.06 1.07
LMEM Write Time (s) 0.45 0.23 4.39
DFE Time (s) 33.11 | 297.59 | 5685.43
Acceleration DFE vs CPU 1.58 1.81 1.71
Brian Time (s) 215.56 | 1719.79 | 32700.92
Acceleration DFE vs Brian 6.51 5.78 5.75

Acceleration DFE vs C CPU vs Brian
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Figure 5.2: Acceleration DFE vs C CPU vs Brian

From the diagram, it is obvious that there is a stable acceleration for experiments con-
taining more that 1152 Neurons. While the acceleration between DFE and Brian is quite
large, around 6 times, the acceleration in relation with the C Simulation is not great. This
is due to the architecture of the C program running in a CPU and the DFE architecture. In
the NxM simulation, in every timestep the Input Neurons produce a spike. This means that
all the Synapses should be updated based on the pre-synaptic STDP expression. However,
due to the fact that there is not a huge activity in the post-synaptic (AdEx) Neurons, the
Synapses should not be updated based on the post-synaptic STDP expression. This creates
a difference in the time needed for the calculations of a single Synapse in the CPU and in
the DFE program. Due to the deterministic definition of the FPGA runtime, there is no
way to avoid checking if a synapse has pre- or post-synaptic activity, and if not pass clock
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cycles and thus make the simulation faster. However, this is what happens in the CPU with
the branches of if statements. In general, this is the biggest difference between the CPU
instruction flow architecture and the FPGA data flow architecture. This difference has an
impact on this simulation due to the fact that it is event-driven and there is no deterministic
way to compute the steps or runtime needed to solve the simulation beforehand. So, the
FPGA must be programmed to do all the calculations needed and always runs for the worst
scenario, which in our case is activity in every Neuron of the network (Input or AdEx) for
every timestep.

To check better how Input activity and Network size impacts performance, there were
some more tests run with the C Simulation and the DFE implementation. Brian was not
measured due to very high run times. In this experiment the Number of AdEx Neurons was
kept stable.

Table 5.2: Acceleration DFE vs C
N_S 384 1152 2304 3840 4992
N_Group_S 0 0 0 0 0
N_Group_T 4992 4992 4992 4992 4992
Input Spike Interval 1 1 1 1 1
Connecticity (%) 100 100 100 100 100
CPU Time (s) 721.03 | 2179.19 | 4438.31 | 7418.39 | 9694.05
LMEM Read Time (s) 0.09 0.24 0.48 0.78 1.07
LMEM Write Time (s) 3.65 0.38 0.68 0.99 4.39
DFE Time (s) 416.32 | 1248.03 | 2495.64 | 4159.15 | 5685.43
Acceleration DFE vs CPU 1.73 1.75 1.78 1.78 1.71
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Figure 5.3: Acceleration DFE vs CPU
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It is obvious that the bigger the Network, the most acceleration is achieved from the
DFE. The smaller acceleration in the biggest network size is probably random and related
to CPU traffic probably, as the absolute differences between the acceleration rates is again
small. Another useful graph from this simulation is Runtime scaling of both of the archi-
tectures.

Time Scaling vs Network Size
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Figure 5.4: Acceleration DFE vs CPU

As we can see the run times is scaling almost linearly, as expected, as the network size
is growing linearly too.

Large Number of Neurons

To simulate large networks in smaller time, there were done experiments for less timesteps
but same everything else. The maximum number of Neurons simulated by the DFE Simu-
lation is 20352.

Timesteps of the simulation: 100

Simulation step: 1 ms

Input Spike Interval: 1 step (Spiking frequency: 1 kHz)
Connectivity: 100%
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Table 5.3: NxM Large Networks Acceleration DFE vs C

Timesteps 1000 1000 1000 100 100 100
N_S 384 1152 4992 10368 15360 20352
N_Group_S 0 0 0 0 0 0
N_Group_T 384 1152 4992 10368 15360 20352
Input Spike Interval 1 1 1 1 1 1
Connecticity (%) 100 100 100 100 100 100
CPU Time (s) 52.48 | 539.41 | 9694.05 | 4261.53 | 9726.64 | 16839.28
LMEM Read Time (s) 0.02 0.06 1.07 4.19 9.22 16.59
LMEM Write Time (s) 0.45 0.23 4.39 4.74 12.19 18.76
DFE Time (s) 33.11 | 297.59 | 5685.43 | 2380.65 | 5224.94 | 9449.30
Acceleration 1.58 1.81 1.71 1.79 1.86 1.78
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Figure 5.5: Acceleration DFE vs CPU

In addition to the larger size experiments there are shown the smaller experiments run
for more timesteps. It is obvious that acceleration grows bigger as the network size becomes
bigger but the average acceleration for large size experiments is x1.81. Similar acceleration
rates were observed for every size between them, so they didn’t need to be attached.

Connectivity

To check the impact of connectivity, there was simulated a network with 50% connec-
tivity apart from 100%. This means that an Input Neuron is connected with half the AdEx
Neurons. If the ID of an Input Neuron is odd then this Neuron is connected only with odd
AdEx Neurons and the similar connection is happening with even ID Neurons.
Timesteps of the simulation: 1000
Simulation step: 1 ms
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Input Spike Interval: 1 step (Spiking frequency: 1 kHz)

Table 5.4: Acceleration based on Network Connectivity
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Figure 5.6: Acceleration DFE vs CPU
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N_S 384 384 1152 1152 4992 4992
N_Group_S 0 0 0 0 0 0
N_Group_T 384 384 1152 1152 4992 4992
Input Spike Interval 1 1 1 1 1 1
Connecticity (%) 100 50 100 50 100 50
CPU Time (s) 52.48 | 25.35 | 539.41 | 284.32 | 9694.05 | 5875.74
LMEM Read Time (s) 0.02 | 0.02 0.06 0.06 1.07 0.99
LMEM Write Time (s) | 0.45 | 3.18 0.23 0.23 4.39 1.18
DFE Time (s) 33.11 | 32.70 | 297.59 | 293.99 | 5685.43 | 5519.11
Acceleration 1.58 | 0.78 1.81 0.97 1.71 1.06
Acceleration related to Connectivity
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Figure 5.7: Runtime Scaling of 100 vs 50% Connectivity

From the graphs it is obvious that due to less connections between the Neurons the
acceleration rate falls. The reasons behind this difference is again due to the CPU program
instruction run flow. While traversing the 2D adjacency matrix of Synapses, if the con-
nection flag is zero in one of them, then there are no calculations done for this Synapse.
However, in the DFE simulation, when traversing this array, the same time must be passed
to process a single synapses, whether it is connected or not in the Neuron Network. The
smaller than 2 ratio in the bigger experiments is due to higher efficiency of the FPGA when
reading big amounts of data. The acceleration is greater when the problem size gets greater.

Input Spiking Frequency

The following experiments were run to check the impact of Input Spiking Frequency to
the simulation run time. Input Neurons are programed to generate Spikes every 1,2 or 4
simulation steps (1 kHz, 0.5 kHz, 0.25 kHz).

Timesteps of the simulation: 1000
Simulation step: 1 ms
Connectivity: 100%
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Table 5.5: Acceleration based on Network Input Activity

N_S 384 | 384 | 384 | 1152 1152 1152 4992 4992 4992
N_Group_-S 0 0 0 0 0 0 0 0 0
N_Group_T 384 | 384 | 384 | 1152 1152 1152 4992 4992 4992
Input Spike Interval 1 2 4 1 2 4 1 2 4
CPU Time (s) 52.48 | 25.38 | 14.15 | 539.41 | 287.17 | 182.27 | 9694.05 | 5832.15 | 3712.92

LMEM Read Time (s) 0.02 | 0.02| 0.02 0.06 0.07 0.07 1.07 1.08 1.05
LMEM Write Time (s) | 0.45| 3.54 | 0.49 0.23 3.40 0.54 4.39 4.46 4.39
DFE Time (s) 33.11 | 33.70 | 33.70 | 297.59 | 297.69 | 302.90 | 5685.43 | 5685.43 | 5685.43
Acceleration 1.58 | 0.75| 0.42 1.81 0.96 0.60 1.71 1.03 0.65
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Figure 5.8: Acceleration DFE vs CPU

In this experiment, the difference between the CPU and the DFE architecture is again
visible. The more activity there is on the network, the more acceleration there is in the
DFEs. To make this more clear I will make a comparison between the traversing of the 2D
Adjacency Matrix in the CPU and the DFE.

C Architecture
for (int i = 0; 1 < N_Group_T; i++){
if (SpikeArray[i] > 0){ // if there is Presynaptic activity for the
Presynaptic STDP expression
for (int j = 0; j < N.S + N_Group_S; j++){
if (Synapses[j][i].conn){ // if the Synapse is connected
// Do computations on the Synapse
}

DFE Architecture
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Figure 5.9: Dataflow Synapses Processing

”Compute” and ”Pass same value” boxes have to take the same time, due to the deter-
ministic run time of the FPGA.

5.1.2 Error

As stated in the DFE Implementation chapter, the float data type used for the DFE
implementation is different to the double data type used by the C program and the Brian
simulation. This means that there will be slight differences in the values that are calculated
by the DFE Implementation. However, these errors are very small and don’t intervene with
the simulation run. The reason why they exist, is the smaller accuracy of floats from doubles.
To check these errors there were introduced 2 measures.

The first one is the Average Error of an array of data. This means that all the errors
between the corresponding values of the CPU and DFE simulation are summed and then
divided by the number of Synapses or Neurons, depending on the array of values that is
checked. The second one is the Relative Average Error of an array of data. This variable
is the division between the Average Error and the Average of the values of the data that
we want to check. This is the most important error measure, as it shows if the error is big
enough to concern us, based on the range of values of the Neuron’s or Synapse’s variable.

In general, the errors in all the simulations run were very similar. I will include in this
section the errors of the greatest simulation run, which is:
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Type of Simulation: NxM
Timesteps = 100

N_S = 20352

N_GroupS =0
N_Group_T = 20352
Spike Interval = 1
Connectivity = 100%

The relative error for the x variable might be 1 but the average error is very small, not

Table 5.6: Neuron Variables’ Errors

Neuron Variable | Average Error | Relative Average Error
Vit 0.00E4-00
Vm 5.21E-09 -7.38E-08
I 0.00E+00
X 1.00E-17 1.00E4-00

representable by floats.

Table 5.7: Synapses Variables’ Errors

Synapse Variable | Average Error | Relative Average Error
w 9.55E-08 3.72E-06
FFp 1.52E-06 2.91E-08
FBp 8.19E-01 1.51E-07
FBn -4.16E-01 -1.03E-06
R -2.14E+4-01 -4.23E-06
u 1.03E-10 1.86E-06
U 1.03E-10 1.86E-06
A 0.00E+00

And for the biggest with most timesteps simulation:

Type of Simulation: NxM
Timesteps = 1000

N_S = 4992

N_GroupS =10
N_Group_T = 4992

Spike Interval = 1 Connectivity = 100%
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Table 5.8: Neuron Variables’ Errors

Neuron Variable | Average Error | Relative Average Error
Vit 0.00E+00

Vm 1.62E-08 -2.39E-07
I 6.69E-15 6.71E-05
X 9.38E-17 7.19E-06

Table 5.9: Synapses Variables’ Errors

Synapse Variable | Average Error | Relative Average Error
w 3.78E-07 4.78E-07
FFp -6.06E-05 -1.80E-06
FBp -2.38E-01 -5.85E-06
FBn -5.16E-12 -2.85E-05
R 0.00E+00
u 0.00E+00
U 0.00E+00
A 3.78E-07 4.78E-07

5.2 MxM Simulation

In this type of Simulation there is no Input Spikes connected to the Network. The Net-
work only contains AdEx Neurons connected to each other. A representation of this Network
is shown below:

NS=0
N_Group S = 2
N_Group. T = 2

Connectivity = 100%
Number of Synapses = 4
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Figure 5.10: MxM Simulation Network

The gray lines are Synapses that don’t have much physical meaning but can be repre-
sented in the Adjacency Matrix.

This initialization of Neurons in this type of experiments was done in such way that
the AdEx Neurons spiked in every timestep. This was done, not only because there was
no physical way to produce specific spikes in the AdEx Neurons in given intervals and
to see the acceleration of the DFE when processing the same data with exactly the same
computations with the CPU.

Neuron Initialization:

vtrest = -45 mV

Neuron.vt = vtrest
Neuron.vm = vtrest + 5mV
Neuron.I =0

Neuron.x = 0

Neuron.Spike = 0

Synapses were initialized in the same way as before, apart from the u variable, which
was set to 1 from 0 in all the Synapses.
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5.2.1 Results

Brian vs C vs DFE
In this part, there will be a comparison between the different architectures. The range

of networks will be 384 to 4992, as for the Brian simulator bigger networks require more
than 15 hours to run. The key observation in this chapter is the efficiency of the FPGAs,
when running exactly the same computations with the C program and the Python Brian
Simulator. The variables of the simulation kept stable are:

Timesteps of the simulation: 1000

Simulation step: 1 ms

Connectivity: 100%

Table 5.10: Acceleration DFE vs C vs Brian

N_S 0 0 0
N_Group_S 384 1152 4992
N_Group_ T 384 1152 4992
CPU Time (s) 83.28 | 1073.47 | 24797.61
LMEM Read Time (s) 0.02 0.06 1.01
LMEM Write Time (s) 0.19 0.44 4.69
DFE Time (s) 37.24 | 334.83 | 6337.73
Acceleration DFE vs CPU 2.24 3.21 3.91
Brian Time (s) 306.09 | 2898.11 | 53330.79
Acceleration DFE vs Brian 8.22 8.66 8.41
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Figure 5.11: Acceleration DFE vs C CPU vs Brian

It is pretty obvious that there is a huge jump in the acceleration rate from the NxM
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Simulation, which is very reasonable, as there are almost double the computations done in
this experiment in the C Simulation but also Brian, due to both Pre- and Post-synaptic
activity in the network, as when an AdEx Neuron Spikes this means that all the synapses
that begin from it must be updated based on the presynaptic STDP expression, but other
synapses must also be updated based on the postsynaptic STDP expression. Consequently,
in every timestep, all the synapses are updated based on all their STDP expressions. The
greatest acceleration ratio between Brian and DFE is x8.65. As the network grows bigger,
this is very important, as Simulations that could take days when using the Brian Simulator,
may take only a working day in DFEs.

Large Number of Neurons

To simulate large networks in smaller time, there were done experiments for less timesteps
but same everything else. The maximum number of Neurons simulated by the DFE Simu-
lation is 20352.

Timesteps of the simulation: 100
Simulation step: 1 ms
Connectivity: 100%

Table 5.11: Acceleration DFE vs C
Timesteps 1000 1000 1000 100 100 100
N_S 0 0 0 0 0 0
N_Group_S 384 1152 4992 10368 15360 20352
N_Group_T 384 1152 4992 10368 15360 20352
CPU Time (s) 83.28 | 1073.47 | 24797.61 | 12033.40 | 12033.40 | 41129.04
LMEM Read Time (s) 0.02 0.06 1.01 4.18 9.30 16.09
LMEM Write Time (S) 0.19 0.44 4.69 7.50 12.54 17.01
DFE Time (s) 37.24 | 334.83 | 6337.73 | 2642.48 | 5799.60 | 10186.02
Acceleration 2.24 3.21 3.91 4.55 2.07 4.04
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Figure 5.12: Acceleration DFE vs CPU

As seen in the graph the acceleration is almost double than the corresponding experi-
ment in the NxM simulation, reaching up to x4.5. The big drop in the acceleration in the
15360 simulation is due to not producing spikes in some of the AdEx neurons, due to the
initialization used in the Synapses. Similar acceleration rates were observed for every size
between them, so they didn’t need to be attached.

Connectivity

To check the impact of connectivity, there was simulated a network with 50% connec-
tivity apart from 100%. This means that an Input Neuron is connected with half the AdEx
Neurons. If the ID of an Input Neuron is odd then this Neuron is connected only with odd
AdEx Neurons and the similar connection is happening with even ID Neurons. This type
of connection between neurons in the MxM simulations is the only reason why the CPU
code does less computations, and this is why the acceleration is not as great as the fully
connected network.
Timesteps of the simulation: 1000
Simulation step: 1 ms
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Table 5.12: Acceleration DFE vs C related to Connectivity

N_S 0 0 0 0 0 0
N_Group_S 384 384 1152 1152 4992 4992
N_Group_T 384 384 1152 1152 4992 4992
Connectivity (%) 100 50 100 50 100 50
CPU Time (s) 83.28 | 41.80 | 1073.47 | 636.93 | 24797.61 | 14421.14
LMEM Read Time (s) 0.02 | 0.02 0.06 0.06 1.01 1.00
LMEM Write Time (s) | 0.19 | 0.21 0.44 0.24 4.69 1.17
DFE Time (s) 37.24 | 36.29 | 334.83 | 326.31 | 6337.73 | 6126.04
Acceleration 2241 1.15 3.21 1.95 3.91 2.35
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Figure 5.13: Acceleration DFE vs CPU
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Figure 5.14: Runtime Scaling of 100 vs 50% Connectivity

Due to less less active connections in the simulation, the acceleration decreases for the
same reasons as the NxM Simulations. The ratio of difference between the 100% and 50%
connectivity is due to the efficiency of passing data to the DFE.

5.2.2 Error

As stated in the NxM simulation, the errors in the MxM Simulation was again irrelevant.
The errors for the greatest Network simulation are:
Simulation Type: MxM
Timesteps = 100
NS=0
N_Group_S = 20352
N_Group_T = 20352
Connectivity = 100%

Table 5.13: Neuron Variables’ Errors

Neuron Variable | Average Error | Relative Average Error
Vit 0.00E+00
Vm 0.00E+00
I 3.10E-02 7.20E-06
X -2.76E-15 -4.74E-07
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Table 5.14: Synapses Variables’ Errors

Synapse Variable

Average Error

Relative Average Error

w 0.00E+00

FFp -1.23E-06 -2.35E-08
FBp 6.56E-01 1.21E-07
FBn -5.01E-01 -1.24E-06
R 3.40E-07 1.27E-05
u -0.27TE-07 -3.82E-06
U 4.15E-11 2.38E-06
A 2.83E-08 1.89E-08

And for the biggest with most timesteps simulation:

Simulation Type: MxM
Timesteps = 1000
NS=0

N_Group_S = 4992
N_Group. T = 4992
Connectivity = 100%

Table 5.15: Neurons Va

riables’ Errors

Neuron Variable | Average Error | Relative Average Error
Vit 0.00E+00
Vm 0.00E4-00
I 3.35E-01 6.71E-05
X -8.25E-15 -7.12E-07

Table 5.16: Synapses Variables’ Errors

Synapse Variable

Average Error

Relative Average Error

w 0.00E+00
FFp -1.21E-04 -1.80E-06
FBp -5.33E-01 -5.84E-06
FBn -6.72E-05 -2.02E-06
R 0.00E+00
u 0.00E+00
U 0.00E+00
A 0.00E+00
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Chapter 6

Conclusion

6.1 Remarks

Modern Neuroscience research is significantly dependent on computer simulations. From
my occupation with Computational Neuroscience through this diploma thesis, I have found
out that the complexity of the problems that Neuroscientists face are huge and the Sim-
ulations needed to push Brain Research further are a big burden. This Diploma Thesis
tried to ease this setback by suggesting an efficient solution to the problem of big network
simulations. The first step towards this goal was done with accelerating the simulation of
the Brian Simulator for the AdEx Model with STDP by implementing it using the C pro-
gramming language. This lead to an acceleration of x2. Furthermore, the acceleration using
the Maxeler Dataflow Architecture was able to accelerate the simulation an additional x4
times, reaching an over 8 times acceleration in comparison to the Brian Simulator.

Maxeler Dataflow Programming is for sure a very interesting platform that can out-
perform other architectures for given applications. On top of that, the encryption of many
implementation details of the FPGA platform from the developer is able to accelerate a
lot the development of the program, while having same or even better results when the
Maxeler DFE architecture is fully utilized. The Dataflow architecture is greatly assisted by
the LMem and FMem features of the DFE that help a lot of program architectures to be
accelerated on that platform. Furthermore, another big problem of FPGAs, the fast recon-
figuration of the chip, is also solved, as the DFE can be loaded and unloaded in a matter of
seconds. Unfortunately, the problem of slow compilation still exists, however the simulation
tools and the MaxCompiler Manager help a lot with the synthesis process.

As described in the thesis, the acceleration results were not exactly what was anticipated,
based on other Maxeler applications. However, there was a great effort put into trying to
understand the reasons why this happened in detail. The simulation was event-driven due to
the fact that the AdEx model is a spiking neuron model. This meant that the runtime and
run flow of the program could not be predicted beforehand to save any time or optimize any
aspect of the simulation without losing accuracy of the results. The event-drive simulation
could not be accelerated in the DFEs, due to the deterministic runtime of the FPGAs that
always run for the same time as the worst case scenario. In C however, due to the branches
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in the run flow, there are a lot of computations omitted if there is no need to be run, so
a lot of time is gained there. Apart from this, the biggest problem that arise was the lack
of ability to widely parallelize the calculation of multiple Synapses or Neurons due to the
complex differential equation models that described the very detailed STDP model that
was used.

Concluding, the Maxeler platform advantages were not able to be shown in all the simu-
lation scenarios, as the high memory bandwidth and the FPGA throughput wasn’t possible
to be achieved due to occasional waste of precious clock cycles that network inactivity im-
posed. However, all the accelerators are not appropriate for every problem and this diploma
thesis was able to investigate DFE’s most fertile field of applications.

6.2 Future work

The two main aspects that could be further explored based on this implementation is the
usage of more modern Maxeler DFE platforms and the integration of the DFE executable
in Brian.

Maxeler has recently introduced its new MAX5 DFEs that provide a lot more hardware
resources and faster clock due to the utilization of more modern FPGA chips. This means
that not only there will be existing more space for greater loop unrolling but also higher
running clocks of the FPGAs would ensure higher throughput.

Furthermore, this DFE executable could be integrated to the Brian simulator, making
it natively accelerated. This could accelerate research of Neuroscientists even further, as
they wouldn’t need to learn a new framework to run the accelerated simulation. The ease
of usage of a simulator is a very important factor for the Neuroscientists.
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