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Ywtrprog I'. ITavayintou
Amhopotovyog Portntic Tou Edvixod Metodfiou Hohuteyvelou

Copyright © 2018 Edvix6é Metodfio Ilohuteyvelo. All rights reserved. Anoryopebeton 1 avtiypopt,
amo¥xeuan xou dtorvour| Tng Tapovoug pyactiog, €€ OAOXAHEOU 1) TUAUITOS AUTAS, YL EUTOPIXO GXOTO.
Emtpéneton 1 oavatimwor), anodfixeucy) xal Slavour) Yl OXOTO UN XEEOOOXOTIXG, EXTOUSEUTIXAS 1|
EEELYNTXNG PUOTG, LTO TNV TEOUTOVEST] Vo OVUPERETOL 1) TINYT) TROEAEUOTC Xl VoL dLaTneelton To
TopoY urvude. Epwtiuato mou agopody Tn yehon Tng epyasias yio Xx€pB0OX0OTIXO OXOTO TEETEL VoL
ameLdOVOVTOL TEOG TOV GUYYQRUPEA.

O andelg xou o CUUTERAOUATA TIOU TEQLEYOVTAL OE UTO TO €YYRUPO EXPEAlOLY TOV CLYYEU-
péa xan Oev TEETEL v epunveudel OTL avTimpoowrebouy Tic enlonueg Véoelc Tou Edvixol Metodfiou
IToAuteyvelou.



[epiindn

H vevpoemotiun elvor 0 emotnuovixd tedlo mou acyoheiton Ue Tn Aettoupyla TOU VEUEIXOY
ocuothuatog. H mpdodog o1r VELpOETIOTAUY €YEl WPEAACEL TOUG TEPLOOOTEPOUS TOWELS TNG
Totpurig o €yet Bpet EQupUOYEC O VEUROEVERYE (pdpuoal, BUatoddTeS XaPOLAS XaL DLETAPES
eyxe@dhov-unyovic. M onuavtiny tpocdnixn otny metpouaTix?] UEYodo yior T1 VEUROAOYIXT
€pEUVA EIVAL OL TPOGOUOUMGCELS OE UTOAOYLOTY, XodM¢ TPOCPEQOUY UEYUAT Otxovouio o yprud
XU YEOVO, QUENUEVY) OMOBOTIXOTNTO OTA TELRHUATA Xl OLEQELYNOWOTNTA CLVINXOY ToU OE
uTopoLY var UEAETNOUY TELpaOTIXL.

H ouyun) tng €peuvag otnv veLpoemoTAUN ivon 1) HEAETN TNG CUUTEQLPORAS TTOAL UEYIAWY
veupX®Y OxtlwY. To bplo oto péyedoc dixtbou Tou umopel va Tpocouolwlel BlaopPmVETL
oo TNV Ao TOU UTOAOYLO X0 GUGTHUATOS oy Yenotuornoteiton. H avdmtuln Aoylopxo-
U 0 GUOTHUATO UEYAANG XAlpoXaS, OUwS, TepthauBdvel Teyvixd {nTAuaTa TopoAAnAotolnong
TWYV UTOAOYIOUOY X0 QOENTOTNTAS TOL Aoyilouxou. TlpoxinTel hoimdy n avdyxn yia Evay mpo-
COUOWWTY VEURIXOY OXTOWY Tou Yo BtayetplleTon autdpaTo Xan amodotixd Toug Slrdéouuoug
Topoug, Yo puropel vo uetapepiel dueca ot TOWIAEC UTOAOYLO TIXEC UTOBOMES, Xou Vol ETULTEETEL
€0X0AO YEIPIOUO, DLUAELTOURYIXOTNTA XAl OLEPEUVNOT] VEWY UTOAOYLO TIXMY UOVTEADY OTE VA
EVOUVAUWOEL TN VEUPOROYXT| EPELVAL

Ipog auth v xatedduvor, 1 mapoloa epyacia agopd TNV avdnTuln evog VEOu TPOCo-
HOLOTH MEYSAWY VEURIXWY BIXTOWY, TOU DEYETOL TEQLYPUPES VEURIXMY UOVTEAWY 0T BlOAOYIXT
uop®t) Tou Eivol OIXElN OTOUC VEUROETIGTAUOVES, ETUTEETEL TN CUVUECT] VEURLXMY UOVTEAWY
TOU TEPLAAUPBAVOUV VEX PAVOUEVOL XAl PUOLONOYIXES DLUOWUGIES, XAl UETAPEPETUL OF VEEG UTIO-
AOYIGTIXEC UTIODOPES EXUETUMAEVOUEVO AMOBOTIXG TOUC UTERYOVTES TOPOUS, OAaL Ywplc eldLxn
TOEUUETEOTOINGT oo unyovixd utohoytotomv. O mpocopolwtAg yel enlong oyediactel Kote
vo puropet var yenowonomniel o ouvepyaoio e LTdEYOVTA AOYIOUIXE TNG EQEELVITIXYC DladL-
xaotag. o emPefalwon TV YopaxTNEICTIXGY TOU TEOCOUOIWTY, EXTEAEGTNXE GE UTOOOUY
UTOAOYLO OV VEQPOUS TAHDOC TPOCOUOIOOEWY oy eEETALOLY TNV UTOAOYLO TXT| ETLBOGCT Yia
evat €0p0G TOANUTTAOXOTNTAS VEURIXWY DLUGUVOEGEWY, TOAUTAOXOTNTOC VEVPLXNG DOUNG %ol OLo-
Véouwy emelepyao TV Hovadwy. Eniong oyedidotnxe hoyiouxd Sienagnc Yo 6UVOEST] TOU
TPOCOUOLWTY| TNG EQYACLUC UE TN YEVIXT] TAUTQOPUA VEURIXWY TEOCOHOLOoEWY BrainkFrame.

A€leic KAelolk

Amazon AWS, urnoloyiotn) upniic enldoong, containerization, OpenMP, »Aaxwot-
MOTNTA, VEVPOETLOTAUY, NAexTpouUatohoyia, in silico watpixr, PyNN



Abstract

Neuroscience is the scientific field studying the functions of nervous systems. Advances
in neuroscience have benefited most fields of medicine and have enabled applications such
as new neuroactive drugs, heart pacemakers and brain-machine interfaces. In neuroscience
research, live experiments are complemented by computer simulations, which deliver major
cost and time savings, enhance effectiveness of wet lab experiments and provide the ability
to investigate conditions that cannot be reproduced experimentally.

The cutting edge of neuroscience research is concerned with the emergent behaviours
of large-scale neural nets. The size and complexity of simulated neural nets is limited by
the scale of the computational system in use. Software development targeting large-scale
computers, though, entails technical issues regarding parallelization of computations and
software portability. Thus, the need arises for a neural net simulator that utilizes avail-
able resources automatically and efficiently, is readily portable to various high-performance
computational systems, and facilitates system usage, interoperability and exploration of
new computational models, in order to boost neuroscience research.

Toward this direction, the present thesis involved development of a new neural net simu-
lator, that supports neural models in the physiological form used by neuroscientists, enables
design of neural models that include new model and biological processes, and is portable
to different computational infrastructure without custom modifications by computer engi-
neers. The simulator has also been designed to be interoperable with established research
software.

In order to confirm the simulator’s features, the simulator was deployed on cloud infras-
tructure and a set of simulation runs was performed, exploring computational performance
over a range of neural connectivity complexity, neural structure complexity and available
processors. In addition, interface software was designed to plug the simulator into the Brain-
Frame general neural net simulation platform.

Keywords

Amazon AWS, high performance computing, containerization, OpenMP, scalability, neu-
roscience, electrophysiology, in silico medicine, PyNN
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Euyapiotieg

H dumhopotindg epyacio auth mpoyuatonotidnxe oto Epyaothpio Mixpolmohoyiotov xau
Ungloxedv Yuotnudtey, Tou Edvixod Metcdfou Iloauteyveiou uro tny enifiedn tou Kodn-
YNt Anunteiou Xoéuvten.

Kotopyrv o Hieha va suyopiotion tov Kod. Anurteio Lodvten yio tny euxaiplo oy
Hou €dwoe Vo BoUAEDW otV TE®TN Yeuuur Tng Troloyiotxrc TPniodv Emdécewy xon tnv
xododynot| tou, xadie xar tov Ap. Xapdhoumo Xidnpeonoulo xat Tov utodriplo SLlodxTopa
I'ewpyio Xatlnxwvotavt tou Epyaotnelou, yio Tic oupfBouléc xau Ty utooThellr Toug, xal
TOV YPOVO TIOU OV UPLEEWOAY XUTE TN EXTIOVNOT] TNG OLTAWUATIXG oL epyaciag, xot Tov Ko,
Xpfoto Xtp0dn, Tov unodrigio diddxtopa I'ewpyio Mudpaydo xar tov En.Kod. Mario Negrello
Tou Erasmus Medical Center Rotterdam yio tic oupBouicc Toug oTNY TPOCOUOIKCT) VEURXKY
A(UTTAPWY, ot Tov TTLYLaxd @ortnth Rene Miedema tou TU Delft yio tnyv opy s €xdoor tou
TEOCOUOLWTY| VEVPWVGY T EALOC.

Oa ko oxoun vo evyeloThHow Tov Ap. Xptotépopo Kdyern yio tny unoothplly| Tou, xou
Toug mopoug Cloud Computing mou TapoyOENOE YLl TNY EXTEAECT) TWV TELRUUATWY ETIBOOTC.

Enfong, Yo Adeha va euyapiotriow tov x. Kwvotavtivo Katoavtovn yua tn Borded tou
OTNV EVOWUATWOT TOU TEOCOUOIWTT 6NV Thatgopua BrainFrame.

Axoun, Yo Hdeho va evyaplotiow amd T Lyolh) Tov Avamhnewty| Kodnyntd Nixdroo Ia-
TooTVpou xat Tov Enixovpo Kadnynth Anuiteio ®otdn yia ty mohdtiun didooxaiio Toug
oto avtixelyevo Twv Alyoplduwy, v Kodnyrtelr Kwvotavtivo Nuoito xow tov Kodnynt
I'ewpyio Moatodnoulo mou pou xahhiEpynoay to evdtagpépov Yo Ty TrohoyloTixr Bioloyia,
Toug Kadnyntéc xou Bontolc tou Epyactnplov TroloyloTiney YuoTnudtey yio Ty o1do-
oxaAiol TOUG yiot To UG X Aoylouxd LPnirc emidoong, xaddg xar toug Aaoxdhoug mou
elya 070 oyohelo, moL pou xivnoay xar o€ YeYdAo Padud UTOCTHELEAY TO EVOLAPEROY YO TIC
Octinéc Emothueg xou v IIAnpogopud.

Téhog, o Ydehar vor eLYAPIGTHOW TNV OLXOYEVELX XAl TOUG PIAOUG OV, VIO TNV XUTOVOTOT)
X0 TNV UTOOTARIEN IOV UOU €YOUY TPOGPEREL OO AUTE TOL YEOVLAL.
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Extetauevn llepiindmn

Eicaywy™

H vevpoemiotiun eivon T0 emotnuovind edlo mou acyoheltar e tn Asttoupyio Tou VeLupLXOUL
CUCTANATOC TOV EUPLwY opyaviouny. H mpdodog ot VEUpoETIoTAUN €YEL GUVELTQEREL dUEC T
éupeca otoug TEploobTepous Touelc TNe Tatpurc xon €xel Peet egapuoyéc dmwe VeupoeveERYd
PlpUoxaL, BNUATOBOTES XUEOLAC XA DLETAPES EYHEPIAOU-UNYAVAS.

Mt onuavtiny tpocdrixn otny melpopotiny uédodo yio T veupohoyixy| épeuva efval ol Tpo-
COUOLWOELS OE UTOAOYLOTY|, Xad®¢ €TOL UmopolY VoL B0XUC TOOY OE TEWTO OTABL0 TELRAUATA,
Ywelg ToV x0T0, TO YPOVO XUl TO XOGTOS TNG N Vivo EPUPUOYHC, divovTag TN owo T xatediuv-
on vy to o0 a{lel va ecTidoouy Tor meoryaTd metpduara. Topdhhnha, ol Tpocouounoelg
UTOPOUY VO BOCOLY TEOCEY YO TIXT) EOVAL YLOL POVOUEVO TTOL OE UTOPOLY Vo EETACTOUV GTO
£pYAOTHPLO, OTLC ETEUBATIXG in vivo TELRduaTa Ywelc avauoinoia, ecmxuTTopixéc cuvirxee,
omavieg modoelg o {NTodPeveES BpdoEls Yia Tig ontoleg avalnteltan axdun péoo.

O »\ddog €QuEUOY®Y UTOAOYLOT®Y TOU EXTEAOLY UTOAOYIOTIXESG €pyaoieg o cuoTAUATA
UEYEANG xh{poxag ovoudleTon UTOROYIOTIXY UEYIANG XA{ponag.”

H vroloyiotinr| peydhng xhipoxag unopel va ywetotel oe 500 emuépoug Topelc: Tov TouLa
UTIEQUTIOAOYLO TGV, XUk TOV TOPEN UTOAOYLO TIX0U VEQOUS. O TOPENS UTEPUTIOAOYLO TV Y PNOULO-
ToLEl GUC TAPUTA XoPLPALAS ETBOOTE AEPLIUNTIXGY TEAEEWY, TEOCUVITOMOUEVY O ETLC TNHO-
VIXEC EQUPUOYES, CUVOEDEUEVO UETOEY TOUC UE €O UAXO BlacUVOESTC HETAE) TV XOUBwY,
UE OTOYO VO EXTEAEGOUY UEUOVOUEVES EQupUOYES axpatag xhltoxag. O Topgag uTohoYIoTIXOD
VEQOUS YPNOWOTOLEL XOWVO, EUTOPXE TORUYOUEVO UALXO (OTE VO TOREYEL UTOAOYIO TIXT| Loy 0
(¢ EUTOPEVUAUTOTONUEYY) UTNEEGIN OE TAELEOA YENO TWOVY, GTOYEVOVTIS OTO YoUNAG XOGTOC TNG
UTOAOYLO TG Lo 00 XAl GTNY TUTOTO(NGT) ToU UTOAOYLo TV TepBdihovTog. Adyw dung Tng
auEnuévne {ATNoNE Yiol UTOAOYLO TIXT| €VTOOT), €YEL 0pY(OEL VO TPOCHERETAL X0t UAXO LPNAGDY
EMOOOEWY TOL UTOREl Var xoAUeL emo TNHOVIXOUS YEYOTEC.

Bdoel twv napandve, utdpyet Tpéyouca tpoomdieln Yio oUYRMOT TV 000 TOUEWY MOTE Vi
GLYOLAGTOVY To TAEOVEXTAUATE TouC. TI€pa amd 1 oTPOPN TV TaUEdY WV UTOAOYIOTIXO) VEQOUG
TIOU TEQLYEAPNUE THEATAVG, TEOTEVOVTUL CUCTAULATA-TEAXTORES ToL Aaudvouy pyacieg Tpog
eXTEAEOT) AT TOUG YPNOTES XAl TIC AVOIETOUY GE ETEPOYEVE(C ToROYOUC UTOAOYLOTIXY|C Loy VOC,
Tpo¢ BeATIoTOTOMNOY YPOVOU EXTEAEOTC, EXHETIAAELOTIS UAXOD, 1) XATUVIAWONC EVEQYELIS.



Yndeyov oyeTixo €pyo

‘Onwe avapépinue Topamdve, Eva apyixd oTAOI0 Yio Th BIEPELYNOT) TWV AELTOLEYLOY TOU
VELEIXOU LoTOU Elval 0 TELROUATIONOS O VewpnTIXd LoVTEAN. LuVHUwe oL EpELVNTIXES EQYUTIES
ovamTOGGOLY ML TOUTE AOYIOUIXO TEOGOUOIKOTS, EOTIALOVTOC OTO CUYXEXQWEVO TEOBANUA
TIOL ATAOYOAEL TOUC EPELVNTES 0L TIC CUYXEXPUIEVES TapauéTeoug Tou e&etdlouy. Autd odnyel
OE ONUAVTIXO TEYVIXO XOTO TOU AMOOTE TOUG EQEUVNTES amd TOUG apytxolg Toug 6Toyous. T
AOoT o€ aUTO TO TEOBANUA ETLYELROLY VO BOOOLY TEOGOUOWWTES YEVXTS YPHONS, TOU £YOLV
S 0TOYO0 VoL XOADPOUY TOL TTO XOLVE VEUPOROYIX YOO TNEICTIXG UTO HEAETT) X0 TIG TIO XOLVES
TEYVIXEC avdhLUGTC TTIOU EQoEUOLOVTaL.

Kodoe 1 taydtnta oyedioone melpopdtemy xou tpocouolnaotic Toug etvat xplotua 6tov x0xAo
NG €peuvag, amoutelton 1 ouvepyaoia PeTald EWBMY TG VEUPOhOYIaG xoL TNS TEYVoloYlag u-
rohoytoTov. [lpocdtng To evilapépoy oTnV €peuva el GTEUPEL OTa VEUPLXS BiXTUN UEYIANG
xh{poncag, xodog TopoLoLdlouy Un TETPWUPEVES, EUQUEIC AelToupYleg xal Teplypdpouy TIC DOUES
ToL eYXEPAIoL e peyahitepn axplBela. H undpyouca teyvohoyia teptoptlel Ty tohumhoxdtn-
TOL TWV TPOGOUOLOVUEVLY HOVTEAWY, OTOTE €Y 0UV TEOTAE! XOUVOTOUN GUC THUATO UTOAOYIGUOU
TEOC AUENCT TN TOAUTAOXOTNTOC XAk O TOTNTOE TEOCOUOIWOTC.

H molumhoxdtnta Twv veupay dixtiny Beioxetar 6to TAloc Twv cuvihewy YTl TwV
VEUROVWY, TOU AVTIGTOLYOLY GE POEC TANPOPORLKY EVIOE Tou dxThou. Mia tpocéyyilon yia va
%xohu o0V aUTESC oL POEC UOLEALEL GUOTADES VELPMVLY GE BLAPOREOUS UTOAOYIGTIXOUS XOUBoug.
Avtol o x6pfol emxovemvoiy PeTad ) ToUg, UE TOTOAOYIA EUTVEUGUEVT) OO TA (PUOLXE VEURWVIX
olxtuo. Me autéd o xataveunuévo clotnua anogedyetal o Tepopilodde von Neumann. Ou
Teploptolol TNe Totohoylag SXTUMGOTNC, OUWS, TERLoEioUY aVTIoTOLY ! TIC LBLOTNTES TCWY BUVATHOV
i silico StOWY.

YTIC UEPEC YOG, 1) UTOAOYIG TIXT) VEVROETIULO TAUY OVAAUEL LOVTEAD VELRIXWY DIXTUMY OF Tela
eninedo: TO EMIMEDO OTOU Ol VELPWVES EIVOL ATAOTIOWUEVO QUTOUOTO TOU AVIUAAGGOUY OLo-
%ELTE EVUOOUNTA, TO ETITESO OTOU Tl QPUCLONOYIXY OVAUTOULXS YUQUXTNELO TIXY TWY XUTTAQMVY
AopPdvovtar Loy dueca OANG WG ABEES DOUES, Xou TO ETETEDO TOU TEOGOUOWBVOVTOL TOL Ui-
AEOPUCLONOY XY YAPUXTNELC TS TNG UeUBpdvng Twv veupnvwy. H tapolou epyaoia acyoleiton
UE TNV otvEAUGT) TOU TUEATEVE omd AUTE T ETETEDAL.

Y10 adpd QUOLOAOYWO ETTEDO avdAUOTG, 1 IAMNAETBpUOT UETAUEY VEUPWVKY CUUPLVEL OF
oLVEY T YPOVO, OTOTE ALEAVOVTAL BEOPATIXG Ol AT TACELS PUIOU Xl VO TEENONG GTNY ETUXOVG-
viot ueTald VeupWvwy, oe oy€oT U o amAd LovTéra. TTOAOYIO TIXG GUC THUATO TPOCOUOIGTG
o€ auTO To eTINEDO €youv Llomoindel oe avahoyixolc xat Ynpraxolc uTohoyIoTEC.

‘Eva avahoyixd oAoxhnpwuévo xOxhwud Tou ECOUOLOVEL VEURWVES UE XAUGIXE. XAUVEALOL VO
Tplou xou xahiov, Ye TEOYPUUUATIOIT GUVBECLOTNTA UETAEY TWV VEURKOVWY ELYE XUTAGKEVAG TE
0 2006[FGHO6]. "Eyet enione npotodel pa yevixeupévn teyvixr e£opolewons xovahloy 16vTemy
ané MOSFET mpoc vhomnoinon dixtdwy oe ueydhn xhipoxo[HBOT]. Axéun, o mpocoupouwwsthc
BrainScaleS[SFMO08] npocoyotdver dixtua pe mAfipwe avahoyixr dioclvdear, oe eninedo ye-
wovwpévng gneidac. Ot ehheldelg evehllag Tou TeMxol Tupttiou xa 1 uTeEBoAr xaTavdhwon
EVEQYELOC Vit ETXOWVWVio HETAZ) BlapopeTix®y meidwy, dung, €xet emPBdiiel Tn Yngronoinon
1) xou OLaXELTOTONGT) TNG ETUXOVWVING OE VAOTIOLAGELS HEYSANG xA{ponag.



M o evéhixtn Aoom elvor 1 OAOXAHEWGOT TwV GUVATKY BLAPOELXMY EEIGMOEWY ToU Xado-
eiCouv autd Tor povTéda oE mn@Loxd LTOAOYIGTH, OF BLoxEltd yeovxd Bruata. H npocouoiwon
NG E0WTEPUAC PUOLOAOYIAC TWY XUTTAPWY YEeeldleTan UPNAT Yeovixy| avdiuot, Tou augdvel
oXOUY| TEPLOGOTERO TN POY| DEBOUEVLY ETXOVGVING UeTal) Twv vevp@vwy. TToAéc nhextpo-
(PUCLONOYIXEC TIPOCOUOLOOELS EYOUV TEEZEL OE YEVIXTC YPHOMG UTEPUTOAOYIOTES oelpde Blue
Gene, pe yerion e TopdAANANG exBoyic TOL AoYIoUX00 NEURON|[Mar06], 1) TOL AOYLoUX00
UC4[Bre+16]. Miot uhomoinomn HEWOVEL TO POETO TOU UAIXOU UE ETXOVGVIN TYLOY Tdomg HeTaED
VEUROVWY OE YOUNAOTERT AVAALGT), X0 TNAEGHOTILXY ONOXAHOWOT] TNG SUVOLXTC TWV VEURWVOY
oe neepla. Auth 1 vhonoinon éyet teTlyeL xakd anoteréopata oc UAx6 GPU[Sma+16]. Mo e-
TEQOYEVY|C TPOGEYYLON EEETAGE TNV UTOAOYLO TLXY ETidOCT emiTayLYVTHOY TUTOL manycore CPU,
GPU, xau dataflow engine w¢ mpoc mapauétpouc GUVOECIUOTNTAS, ETAEYOVTOS QUTOUOTOL T1)
BEATIOTN CEYLTEXTOVIXY|, UE EVOELXTIXT| EQUPUOYT) OE LOVTEAD XUTTAPWY %4t eAalag TOU EYXE-
(pAaNOL.

Mia evodhontinn meoo€yyion o TIdleL 6T0 PEYUAUTERO BUVATE EVEOS LUTOG TNELLOUEVKY [O-
VTEAWY, avTl yio T0 PEYLOTO apLiud veup@vwy 1 cuvddewy. Auth 1 Tpocéyylor elvon e€oupeTIXd
YPNOWT Yol ToUG EPELVNTES Tou avalNToUV VEX LOVTER TPOoGOoUOiwoNg, xadig O yeeldleTon Vo
ovamTOEoUY Aoylouxd and to undév. Evdemtind moxéta eivon to NEURON, NEST, BRIAN,
MOOSE, xou GENESIS. Ta mo moAld moxéta, Ouwe, €youv oyedlacTel Ylo TRocwmixols
UTOAOYLOTES, TepLopllovTag avTloTOLYO TNV TOAUTAOXOTNTO TWV UEAETACIIWY HOVTEAWY.

Or meplopiopol TV TEOCHTIXWY UTOAOYLE TGV OINoUY TOUS EpELVNTES Vo TEECouV in silico
TELRAUATH O UTEEUTIOAOYIOTEC. TTOYOUV OUWE EUTODLN OE TEYVIXO Kol BLAdLXAC TIXO ETUTEDO.
[t Ty extéleot) Tou hoylouixoV-0Tdy oL O TETOL CUG THUNTA, Yeetdletar BondnTinde auto-
UOTIOUOC oL YpeEldleTal EWOWES YVWOELS, xat TEETel vo avartuydel and tnv apyr yio xdde
EVOAAAXTIXT) UTODOUT| TIOU Y enoyomoLeltat. Axourn, 1 Sladacior Tapoydenong UTOAOYLO TIXO-
U Ypovou €yel TOAG oTadLoL XL GUY VA TEQLAAUPAVEL ETULTEOTY €YXQELONE YA TO GUYXEXQUEVO
¢pyo. H eapuoyr 1wV mpoxTixey UTOAOYIO TIXNG VEQOUS UTOREL OULS Vo BEATIOOEL TN YeT-
oTXOTNTA Xt TNV EVENEIN TWV GUG TNUATWY UTEQUTOAOYLO TV, OPULEMVTIC TIG ECELOIXEUPEVES
TEYVIXEC AETTOUEQELEC.

Mia mhatpdpua Baciouévn TNy UTOAOYLOTIXT] VEQOUC, TOU TOREYEL OUWS UTNEEsieg un-
AMc entldoong otV LTOAOYLOTIXY| VEVRPOETIOTAUY, eivan 1 BrainFrame. O otdyoc tne eivon va
TOEEYEL Wit EVYENO T DLETAPY| OYEDIAUOTC LOVTEAWY XU TELRAUUATCY OTOUG EPELVNTES, UECWL TNG
omolag autol Yo umopolv Vo UTopoly Vo EXTEAEGOLY TELRdUaTa 6 UAXG LmAYc emldoong ue
TEWTOYVWET| AVEST).

ITepurypapr, mpoBArjuatog

H unoloyiotiny| veupoemo THur eivan 1 HEAETY TV UTOAOYIC TIXODV WBIOTHTWY TWY VEURIXMY
OTOY. AuTh 1 UEAETT YENOLLOTIOLEL LOVTER BLOPOPWY HALUAXWY AETTOUERELNS, UE OTMTEQO
0TOY0 VoL dWoeL xAJOMKES AMAVTACELS Yol TN AELTOURYIA TWV EYXEPIAWY, TOU EVOL OL TLO TTO-
AOTAOXEC, IXAVES X AVEETYNTES VEUPIXEC DOUES TTOL UTIERYOLY, X0l TWY OTOIWY Ol BUVITOTNTES
EemepVOUY LaXEdY TNV UTEEY0UCA UTOAOYIG TIXT TEY VOAOYia.



H €peuva 61 veupohoyio TpooQeQeL BLOERME VEES PUCLOAOYIXES XL VU TOUIXES TTANPO(OpIES
YL TOV EYXEPAALXO LOTO, YECK TOMGY TUPSAANAWY DIEVVMY EQELYNTIXGY TEOYEUUUATOY. T
TIC %©0pLOL XEVTEA TOU EYXEPANOL, EYOUV XATAYPUPEl OL TNYES oL OL TEOOPLOHOL OO XAl TEOG
T omolar SradidovTon Ta dieyepThplar orjuata. Néot puatohoyixol unyaviopol mou ennpedlouy
CUUTIEQLPORE TWV VEURMVOY BLIEXME ATOXUAITTOVTOL Xl avohDOVTAL, EVE® GAAES TpooTdeleg
OVAXATUOXEUELOLY TOV TAYPY) CUVATTIXG dTAN EYXEPIAWY, UE YeNoT uxpoTouomy. Kadng ot
Cwvtavol eyxépahol etvar TOAD eualcVnTa Gpyova, To i Vivo TELRHUATA UTOPOVY VO 6LCOLY
UOVO Lot TOAD ETUPAVELOXT] EXOVOL TWV ECWTERIXMY DLERYACLOY TOU Aoufdvouy Uépoc.

ot var €youv vonua Tar UTOAOYLOTIXG HOVTEND, TA ATOTEAECUNTS TOUG TEETEL Vo elvol dUECH
oLYxE{CLUN UE TELPOUATIXG BEDOUEVL, OTIWS NAEXTROEYHEPUNOYPAUPAUATA, UETENOELS ELOTYUEVWY
NAEXTEODIWY, Xou AOLEG TEYVIXES TElpoudTwy in vitro. Etol unopel va extiundel n axplBeid
TOug o Vo emorovdoly Ta onueta Tou emdgyovton Bedtiwon o auTd.

YT0 TEWUUATIXG GYEDLIOUO Bev elvon TdvTa oTadepéc OAEC Ol EAEYYOUEVES TUPAUETEOL-
XAmOLEG YooY av UeToBdAAovTaL avd Telpaquar OTE vor PEAETNUEL 1) SLdTod ) 0TO €0POC AUTEY
TV TopopéTewy. Tétoleg elvar, evdextind, o TOmog xat 1) €vtaoT TNe eEWTEPXAC OLEYEPONC, N
TEOVGIAL VEUROTEOTILY OUCLMY, XAl 1) TOAUTAOXOTNTA X0 HUEAVWOT) TWV VELPIXGOY BIXTOWY.

H napotoo epyacio acyoleiton Ue TNV EQPUEUOYT TNG UTOAOYIOTIXAS VEQOUS ot LYMALY
EMUOOCEWY, GTY) TPOCOUOIWOT] GE YUOLOAOYLXO ETUTEDO PEYAAWY ETEQOYEVY VEURLXMY BIXTUMY,
Ue dLemapy| Tou Vo untopel va yenotuonondel and VEupoemoTAUOVES Ywpic eduxn exudidnorn. Mia
TETOLOL EQPUQUOYT| TEETEL VAL AVTATOXPIVETAL OTIC AVAYXES TWV YENOTOY, TNS EQUpUOLOUEVNC
TEYVOhOYlaC, oL TV EQYUAEIWY UE Tar oTtola TEETEL Vor GLUVEEYALETAL.

Ol VEUPOETIO THUOVEG UEAETOUY UOVTERD TOU TS T VEURIXY XVTTORA AELTOURYOUY Ko Oh-
Anhemidpoly, Kote va teptypdhouy Tn Aettoupyior TOU VEUEIXO) UG TAUNTOC. AUTH To LOVTERX
OLOEXMG AVAVEDYOVTAL, WOTE CUYVE EETEEVOLY TIC BUVATOTNTES TWV UTAPYOVIWY TEOCOUOL-
V. Toutdypova 0 UTOAOYIOTIXOS POETOC TWV UEYIAWY BIXTUWY ETBAAAEL TN YEYION TEYVO-
hoylog uvdnirc enidoong, 1 onola elodyel ToAdmAoxa TEYViXd {NTHUTA.

H taybtnta e in silico epeuvnuinic Swduactog e€aptdtor and o emovolouBovoueva
CUCTATIXG OTABLAL XATAGKEVNC 1 Silico TELRAUOTOS, TEOGOUOIWOYC TOU Xou ECUYWYHC ATOTEAE-
oudtewy. To tpwto otddo unopel va emtoyuviel ye amodotind epyaheio oyedloong poviéiou
X0l TELRAUAUTOS, TO OEVTEPO GTADLO UE PEATIOCELS OTO UAXO X0 AOYLOUIXO TTROCOUOILGNE XAl TO
TpiTo UE auTouuTOTOMGN TNG CLAAOYTC ATOTEAEOUATMY, EVOIIUEOTC AVEAUCTIC XOL OTTIXOTON-
of¢ TOUC PE TOV TEOTO ToU oL EEELVNTEC VEAOUY Vo eEETACOLY Xdde Popd. Xe Olo T oTadL
elvol oMUAVTIXG VoL UTIEEYEL ELYENO TIX TWY UTOAOYIO TIXDY GUC TNUTWY.

H vevpoemio trovixy épeuva avalntel Tpémoug vor povtelomoinoly QuGLohoYIxd Qouvoue-
va, mou 0ev e&nyolvton amd Tor umdpyovto Yovtéda. Ou epeuvntéc utoléTouy VEX UOVTERX
TIOU EVOEYOUEVC TEQLYPAPOUY oUTS Tl POUVOUEVA Xou Ta ETahiebouy avTimapoBdAlovTag TNV
TPOCOUOIWGT| TOUC UE TIC TRaYUUTIXES UeTNoELS. ‘Ouwe, Ta TEPIoGOTERA UTIEOY OVTA AOYLOULXS
Toyelag avamTLENG LOVTENOL ETITEETOLY TIg oAAAYES oTa e€eTalOUeva OVTEAN, ahAS Elvan oy e-
OLOOUE VAL VLol LXEE BIXTUA %ol TPOGWTXOVC UTOROYIGTES, 1| YEEIGLOVTOL AUy ORELTIXG XOTIO Yol
TEYVXEC YVWOELS Yo GuUEDT) YeYon amd Veupoemo THUOVES. Ol UTdpyovTES YeNno Txol TPoco-
MO TES MEYEANG xA{oncag, amd TNy GAAT), GUYVE AVAUTUEEYOLY EVa DEBOUEVO LOVTEAD VEURKVY



1 TAEY U SixTOmoNg, ondTe TeplopiCouv avTioTolya TO YAoUA TWV VEURIXWY OIXTUMY TOU UTo-
e0UV Vo TEOGOUOLVOUY.

Kodog auddveton 1 TOAUTAOXOTNTO TOV VEWY HOVTEAWY, AUEAVETAUL TURIAANAL XOL O UTO-
hoyioTndg gopTog mou amoutoly. Kodog 1 dwadwacta gpeuvag amantel Sladpao TixdTnTa, To
amoteréopato meEmel var ebvan Stodéotua oe eVAoYO ypovixd ddotnua. Enopévee, 1 yeron
TEOCPATWY LOVTEAWY 0ONYEL O avdyxn YL TEPLOGOTERY UTOAOYIOTIXH Loy 0. AdYw TEXVIXGY
TEPLOPLOUMY, OUWG, YL VoL EXUETOAAEVIEL 1) TEOGVETY UTOAOYLO TIXN LoY UG, TEETEL TO AOYLOUIXO
TEOCOUOIWONE Vo €YEL OYEDLACTEL XUTIAANAAL.

Tnv tehevtola eixoooetio, 0 PUILOS EXTEAEOTS 0XOAOUTIOXWY TEOYPUUUATOY AUEGVETOL UE
ONUOVTXE PELWPEVO puIUS. Toautdypova, 1 TUXVOTNTA UTOAOYLO TIXMY UNYOVICUOY avd ONO-
XANEOUEVO xO¥Awua ouveyilel v auddveton pe apeinTo puiud, ue arnotéleopa v Byouv 6To
TPOOXAVIO GUOXEVEC TpdhANANG emelepyaolag, 0 UAOTOACES TOAUTORNV®Y EMEEEQY AT TV
YEVIXHC YPHONS UE OLOUVUOUATIXES AEITOVPYIES, BLOUVUOUATIXOY EMEEEQYACTOVY, X0 EMAVAUCUV-
0éowung hoyiig, o€ 6ho TO QACUA TNG UTOAOYIC TIXY G LPNA®Y emdocEwy. Enouévng v va
expeTahheVdel OAN 1 Slrdéotun voloyloTiny| oy 0g, oL akydoriuol TeEneL va oavaALYolY K¢
TEOC T1) POY| OEBOUEVWV (OTE VoL EXTEAOUVTOL TOUTOYEOVO OROL OL AvVEEJOTNTOL UTOAOYIGUOL.

Méypet mpoTIvOg, Yot TOUG TERIGGOTEPOUS YPNOTES, 1] TOAUTTAOXOTNTO TWYV TEOCOUOLICEWY
TepLoptlOTaY amd TNV UTHEY VO ETEVBUGT| TOUC OE UTOAOYLOTIXO UAXO. Tlpdogata, unoloyi-
OTIXG XEVTEA 0L ETULYELONOELS BPYLOAY VO TROCPEPOLY UTOROYLO TIXOUS TTOPOUS (G UTNEEGT0-
mpotov. O enelepyaoTéc, 1 VAU, 1 oLYOEST dxTUOU XL Aotmol TOEOL EVOC UTOAOYIG TIXOU
x0UfBou SoueptlovTon GE EXOVIXG UNYOVUATO TOU YENOLIOTIO0VTOL antd TOV TEAXO YENOT
W€ GUVOEOTC BXTUOU.

Kodoe ol mdpoyol UTOROYIGTIXGDY UTNRECLOY UTOPOVY VoL EGTIACOUY GTNV TOEOY 1) UTOAO-
YO TG LY YOS, UTOPOVY VO XAUTEYOLY GUC TAUATO UEYUADTERNC LXAVOTNTAS U OTL OL YENOTES,
xo Vo T a€loTooUY TILO ATMOBOTIXG, TEOCPEEOVTUS UEYUAVTEONS XAUUXOC XL YOUNAOTEROU
%x60T0UG LTOAOYIOTIXEG BuvatoTnTeg. H mpdodog ot oyeTinr) unodour| 00 yNoe 6Ny TUTOTO-
{No™M TV TEOCPEPOUEVLY EXOVIXWY UNYAVNUATODY, TOU ETITEETEL OL EQUOUOYES VoL UETAUPEPOVTAL
QUECO OE OTOLAONTOTE GYETIXY] UTOOOUT.

Abyw TNg EXTAONE TNE XOWVOTNTAS VEUROETILO TNUOVWY TOU YENOWOTOL00V ToL UTEQY OVTOL AO-
YIOUXE TEOCOUOIONE Xo TN ATOBEBELYUEVNE TOUC ATOTEAEOUATIXOTNTUC, EVU VEO AOYIOUXO
TPOCOUOIWONE TEETEL VoL UTOREL Var GLVBUAG TEL e aTd T Epyaheior xal UE TIC TPOUTERY OUCES
mpoxTég €peuvoac. Kodig to medio €peuvag etvan oyavy|, xavotoua xat dlacUVOEDEUEVA, TRETEL
VoL EQUPUOG TOVUY avedpTnTol LETOEY TOUG EQYOAELDL, TTOU VoL AV TOUAAIGOLY QUTOUTA TANEOPORLES
(6mwe mepapatind Yovtéla xou anoteléoparta) YeTol Toug. Xpetdletal To anoTeEAEGUOTO TWY
TPOGOUOWCEWY X0k TWV TEWRAUATWY Vol £Y0UV eViakd, X0Wd UTOGTNEILOUEVY] HOPYT| OOTE Vol
yivovtan dueceg ouYxploElg xaL ETaVOYENOWOTOINGCT TV BEBOUEVKY amd A LOEUUATO TEOG
UEYOADTEQO EPELYNTIXO OYEAOC. Axdur), TEETEL Vol UTdpyEL eviaio LOp@T) TEQLYPUPTC TV UO-
VTEAWY, WOTE VoL 50XYLALOVTOL TPOTOTOLCELS TOL LTOC TNEIlovVTaL amd CUYXEXPLUEVOUS TPOCO-
HOLWOTES %o VoL UTopoUV VoL Yenotlomotndoly To UTEEy ovTo OVTEAN omd GAOUS TOUG ERELVNTES
Ywelg %610 %o xvouvo AoV oTr) UETAPOPA.



YAoroinon Adong

Me Bdon tic mapamdvey Tpodtaypagés, avamtiyUnxe EVag TEOCOUOWWTHAG TOU BEYETAL [O-
VTEAA OE YAWMOOU PUMXT| TR0 TO YEHOTN Xl EPUPUOLEL TUPUAANAIOUS Yior Vo mTUYEL LPNAES
emdooelg. Me mpooieteg enextdoelg, Unopel Vo TEEYEL AUTOVOUN ¢ ol UTNEESia VEQOUS, xal
Vo evowuatwiel oty mAat@opua Brainkrame.

O mpocououwthc uhornotel T dwopeptopatint| woviehomoinon Hodgkin-Huxley. ‘Etot, o veu-
ELXOC Lo TOC OmOTEAELTOL UG VEURHVES IOV AMOTEAOUVTOL oTt6 BLAUERIGUATA, OUOLOMORPPA (G TPOS
™ YN xatdotaor. Kdde duépiopa tepLeyel evooxuTtdplo UYed, xou HEUEdvn Tou dlayw-
eilel To xOTTaPO Amd TO TEEIBAANOV, XoU TEQIEYEL GUUTAEYUATO TRMTENVGDY TOU ETULTEETOUY TNV
ETUAEXTIXT| UETAPORE NAEXTEOVILY, LOVTWY X0 AOLTMY OUCLWOY U0 X0l TEOG TO ECWTERXO TOU
XUTTAEOL. LUANOYIXE To bota GUUTAEYUaTo ovopdlovTon xovdite. Ot mpwTelveg mou to anote-
AoOV umopoly va efvan EVERYEC 1| avEVERYES BACEL GTOY UG TIXWY OLABIXACLAY, EVEQYOTOLOVTOC
ovTIG TOLY oL T XOVAALOL OTaL 0TI AVAXOUY, o GUAAOY WS ovoudlovTton TUAEC EvepyoToinong
WV XAVOALOY 1OvTwy. Tehnd 1 Suvouxr tng nhextpoynuxic xatdotaone xodoplleton omd
oVoTnua cuVALY dopxdy edlonoewy. Kdlde veuphvag oto povtého umopel va €yel evte-
MGG BLUPORETIXT| DoY) XOU TURUUETEOUG.

Or veupwveg cuvdéovtal PETOCD Toug UE aupidpopes NAEXTEIXEC cuVAeLS, ue oTadepr mi-
Yavétnro xdde mdovh olvan vo undpyer (dedouévn tuxvotnro dixtvov). H eomtepixt| ava-
Topdo Toor propel var xohOder xdle ueAhovtind povtéio.

Interstitial Potassium Open Passive m gate
fluid channel channels leak
h gate

R YAV -

SectiT bilayer

Cytopl
ytoplasm channels

Yyuo 1: Evepyd xon mardnuind xavdhior otny xutTopiny YepBedive, xat 1) enidpaot) Twy TUAMY
evepyomoinorg.

O mpocopontrc unooTnellel BIEYEPOT TWV VEUROVWY UE TETPAYWVIXO TOAUO EEOUATOS
oToug 0evdplteg, Tou omolou 1 evtaorn unopel vo peTofAniel g TEPLOOIXY cuVdETNON Tou
aO&ovTtog aptiuol Tou xdie xuTTdPOU.

Aol goptwiel T0 povtého and TOV TPOGOUOIWTH, 1 CUUBONXT| LOPYT| UETUTEENETOL OF
OOUES DEDOMEVWV THO XUTIAANAES Yia Tov Tuphva Tpocopoinong. Ou mapdustpol Tou xdie



Yy 2: To anhomonuévo ahucldnTd UOVTEAD BLIUERLOUAT®WY TIou LToGTNEI(ETaL amd ToV
TPOCOUOLWTH.

Compartment lon channel Gap junction
properties properties sparse matrix
Comp.# C E_ G .. Gate# p Vi Gion @ 6 .. Cell# Connections
- 1 L1 1 | |
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Lyuor 3: O mvaxeg TOpUUETEWY TOU YENOWOTOLOUVTOL UTO TOV TUPTVO TROGCOUOIWOTC.

Olopepioyatog Teplypdpovion o dour| Tivoxa, UE xdie OElpd Vo EYEL TIC TUPUUETPOUS TOU O-
vtiototyou dapepioyatog. Tapouolwe, o mivaxog TUpUUETEWY XAVIAGY LOVTIWY avVIADETOL OF
OUVEYOUEVES OELREC avd TUAT), UE TIC TANPOQORIEC Tou (Blou Tou XavoAtol vo amoUnxedovTal
otn oed tng TeruTaiog Tou TOANG. H dour| v Swueptopdtomy xat twy TuAey atoxadiotota
ue amholg mivoxeg atpoto ol Thnducpon. Ot ueTofBANTEC XUTACTACTC TWV OLUUEPLOUATOVY XAl
TWY XOVAUALOY LOVTOVY amodnxedovtoal ot dlavIoUATa-OTANES ToEOUOLIG BouNg UE TOUG TiVaXES
ToEoUETEWY. Ot ToRdUETEOL TV GUVAPEWY anoUnxedovTon GE Evay oEoLd TVOXOL TIOU XQEUTAEL
yioo x&de VELPGOVA, TIC CUVAPELS TOU TOV GUVBEOUV PE dAAOUS xat yior xdde cOvadr, oprdud
TPOCUVITITIXOU VEVEMVOL XAl GUVATTIXG 3dp0C.

211 OLVEYELYL, O UAYOELIUOC UTOAOYIGUOU TWV VEWY THIMY XATAGTACTC TWV VEUROVLY oVE
ToL ETAEYUEVAL YEOVIXG Biuata, PETE OAOXAHRWONS TV BLUPOPIXMY EEIOMCEWY TOL TEPLY AP
X0y TaEAmAvVe amd Tov ahyopriuo Euler, exteleiton emavoknmmind péypel va ohoxhnpwiel to
YPOVix6 ot TN mpocouoiwong. Ot Tyée xatdotaong avd Bripata exxadopilovton me-
ELOOLXGL OO VOl TPOCKPEVO YWEO UVAUNG, OOTE Vo OYNUATIOTEL To TAfjpeg apyceio e€6Bou TNng



TEOGOUOILOTS.

O mpooopoiwtrc avantOydnxe Yo enelepyacTég YeEVXAS YeNong. AuTh 1 apylTexTovix)
ebvon 1 xatoAAnhoTeEn B16TL LToo TNEIETaL Amd GAOUC TOUC TAPOYOUS UTNEECLMY VEPOUC, XAl
umopel v yelptotel omolovdrtote TOTO YOVTEROU GUECH Xou amod0TXd, ot avtidcon e eEeldL-
AEUPEVO LAIXO.

Ytov alyopripo BAUNTOS TNG TEOCOUOIWONG TOU TEQLYPAPNXE TUQUTAVW™, TEOC TEVT XY
odnylec OpenMP, hote va expetodeudel 0 TUPUAANALOUOS TV TOAETEEERYAUC TIXDY CUC T
udtwyv. O noparAniiopog teolnolétel ot Oev UTdpYEL ducon e€dpTNoN UETAED TWV TUPGAANAWY
UEPOY, %ot OTL Tal TUEEAANALL PEET) Vo OEXETE ULXEd VLot VO LOLRAG TEL O POETOS OUOLOUOPYY,
XL UEXETEL UEYAIAN (OOTE VoL UnV efval onuavTixy 1 xoduG TERNOT) GUY Y POVIOUOU.

Kodoeg tar peahloTind povtélo oUVBEGIUOTNTAUC VEUPWVGY EYOUV ECOURETIXG. UixpET) OLpE-
TPO, BEV EYEL VOTUA 1) YAUAEEMOT TOU TUEUAANALONO) WE TEOS TO YpOVo. Axoun 1 un yeou-
WX, YOOTIXH BUYVAULIXY| TV UOVTEAWY VEUROVWY OTOXAElEL TNV €QupUOYT Tou aAyopiluou
Parareal[Bed+16]. Enopévwe emhéynxe oelplax extéheon twv empépouc Brudtwy ypévou.

Kodog og xdie Brjua yedvou, ol endueveg TYES mou mpofBiénel o ohoxinewthc Euler uropo-
OV Vo TapahANMG ToUY aveldoTnTa, 0 TUPUAANALONOS UTOREL Vol EQUEUOGTEL OTOV UTOAOYLONO
e xodeplog ywetotd. Eméydnxe oung moupahAniiopds o eminedo vevp®va, apol €161 ot
uTo-epYaoleC elvol UEYSAES GAAG oXOUT) OUOLOMOPYES, XUl 1) ETUIXOVWVIA HETAEY TWV EQYAUCLDY
eCopTdTon UOVO amd TIC CUVAEIS TwV VELp®VwY. Mio oxéun epyacio etvar 1 exxarddpion tng
UVAUNG TROCQATOS UTOAOYICUEVGLY BNUdTtey, ot BOUOROYETOL TUEIAANAC UE TOUC UTOAOYL-
OUOUC TV VEVPWVOY.

O mpocouolnthg, Tépa amd TN YENHOT TOU WS AUTOVOUO TEOYLUUMUO TEOCKTIXOU UTONOYL-
oY), umopel ebxoha va Tpé€el oe ouo THUNTA LUPMANG ETBooNE, UTOAOYIOTINO) VEQOUG XL OF
UTdEY0VoES O TOBEC AOYIOUIXOU €QEUVOC OE Uop®T) covTawvep. AUTH 1) HOPPY| UTOUOVHVEL TO
ATOUTOUPEVO OO TO AOYIoUXO TERYBAAAOY, (OOTE Vo UNV ETNEEALEL TNV UTERY OV EYXIUTAC To-
on. To mepBdidov Tou covtawvep meprypdpeTon amd Eva apyixd GTLYULOTUTO OEBOUEVLY, TTOU
avamopdyeTol (dlo oe xdie covtouvep mou exxvelton oe xdde eyxatdotaor. EmAéydnxe n mhot-
popua Aocxep, TOU avohouBAvEL AUTOUATA TNV ATOUOVWUEVY EXTEAEDT), exxivnor, OLorypapr),
emavexxivno, xhwvorolnom xat Aotég SLoyElplo TIXES AELTOURYIEC TV COVTUVERC.

[t UETUTEOT TOU TEOGOUOLWTY| GE AUTOVOUT UTNEECIN TOU CUVOEETAUL YOohoQES UE GAAX
TEOYEUUMOTA, TEOCTEUNKE EVUC UNYAVICHOS ATOUOVOUEVNS EXTEAEONC TROYQUUUATODY XL €-
Eaywyrc apyelwy €£6dou, mou avantOyUnxe and To epyacthplo Mixpolmoroyiotidy xar Y-
PLOXOY LUoTNUATWY. AUTOS O UNYAVIoNOS avahouBdvel vor ueTapépet Tar apyceia Elo6d0u GTOo
TEPYBAANOY TOU TIPOCOUOLTY, Vo TEEEEL TO TPOCOUOLWTN o Vo GTelAeL Tor apyelar e€600L 6T
diepyooio-terdtr, e yerion WebSockets wote apxel pévo pio TCP obvoeon yio yerion tou
covtouvep. ‘Etol oynuatiCeton pior unnpesta oudETepn o8 TEPUBIALOY EYXATACTACTC XAt EUXOAN
xoL EVENXTY 0TN) Yprion amd e€WTERIXO AOYLOUXO.

To mepiBdAlov Tou COVTOUVER TPOCOUOWWTY TEPLEYEL TO eXTEAEOLUO dpyeio xaddg xou Tig
BuBAo0rxec Tou Yenoulomolel 0 TEOCOUOWWTAS, XAUVMOS XL Ulal EAAPEOS TOUQUUETOOTONUEVN
exdoon tng unnpeeotoc.

H uné avdntuin mhatpopua BrainFrame €yel otéy0 va mapéyel GTOUC VEUPOETUGTAULOVES
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Yo 4: To dudrypopua pofic TOL TUREAANAOL TURTVA TEOGOUOIWOTNG.

OLVITOTNTA TEOGOUOIWONE TEWTOTUTIWY UOVTEAWY OF UTOOOUEC LPNAAC enidoong, WoTE va
UTOPOUY VoL TadyouY EPELVA TEWTNG YEUUUNAS ATOBOTIXG Xt YWEIS Yol TOUC ATAGYOAOUY TA
TEY VNG {NTAMOTA TOU EXGOTOTE LToAOYLoTIXOU cuoThuatos. O yerfotng apxel vo xadoploel
TO HOVTEAO %O TIC TUEUUETEOUS TNG TEOCOUOIONG, Xt 1) TAUTQOPUN EXTEAEL AUTOUATA TNV
TEOCOUOIWOT OTY BEATIOTN AQYLTEXTOVIXT] UALXOU Xl TOEADIDEL TO UMOTEAEOUATA OTO YPNOTY.
AuwgpopeTixol mpocouoiwtés utootnelloviar oto cbotnua Yéow tne BiBaodixne PyNN mou
TPEYEL TNV XOWVY| DIETUPT) OE AUTOUC.

Mo véa duvatdtnta mou mpootideton oty mAaT@opua BrainFrame eivar ) vAonoinorn twv
ETUUEQPOUS AELTOLRYIXWY UEPMY TNG TAATPOQHIS, WG TEUXTOPES TOU UAOTOOVY Tal avTloToLya
AELTOLEYIXG UEQRT Xal EYOLY 000 TOUG UTOAOYLo TIX0US Topoug. Tupandve and Evag mednto-
eac umopel vor LAOTIOLEL Eval BEBOUEVO AELTOURYIXO UEEOC, OTIOTE O UTOAOYLOTIXOS PORTOC Yid
xdde Aettovpylo umopel vor polpaoTel YETag) TwV avtioTolywy Teoxtépwy. Me autd tov Tpdmo,
1 TAATPOPUO VO UTIOREL Vo EXHETUAAELTEL TIC UTHPYOVOES UTOBOUES UTOAOYIG TOU VEQOUS |
%o Vo OECUEVEL TOUG TTOPOUC Tou YpeeldlovTon xdde oTiyur| yiar Voo xoAugUolY oL avayXeS TeV
XENO TOV.

O mpocouowwthc g epyaciog urnopel vo evowuatodel v mhatgopua BrainFrame yéow
tou PyNN, npoc@épovtag euEMx TN TEOCOUOIwoT) HOVTEAWY OTO ENINEDO TUAWY XAVOAMY L-
ovTov. Tt dienagy| emextelvovton undpyouoeg xhdoelg avtixeuévwy tou PyNN, xou tpo-
otidevior eVIEA®S VEEC TOU exPEAloLY TIC AETTOUEQPEIEC TOU UOVTEAOU TIOU UOVO OUTOC XO-



Aomtel. T va exteleotel 1 mpocopoiwor), 1o Yoviérlo mou meprypdgetar oto PYNN teludd
uetagedleton otn wopery JSON mou unoctneilel 0 TPOCOUOIWTAC OE TEOCWEWS dpyEio Xou
UETH EXTEAE(TOL TO TEOY QUM TEOCOUOLWTN UE ETLAOYT) TOU TOEAUTAVL opyElou amd TN YouuuT
EVTOAOV.

PyNN interface
N\ O)

[ pynn.brian j [pynn.brainframej e pynn.parmodhh
[ Brian j [ PyHet j

PYNN plugin pynn.neuron

)

Python plugin nrnpy

N

ParModHH JSON
config format

Native Simulator NEURON Heterogeneous ParModHH
H/W kernels

VX

Script files HOC

0
(0[]

Yyfuo 5: H mpotewvouevn enéxtacy tTou moocouoinTy|, ot Topdieon Ue TI¢ UTdpYOUoES ETe-
xtdoelg Tou PyNN.

AnoteAEécpoTa

Iar var e€etaoTel 1 XAYOXOOWOTNTA TOU TEOCOUOUWTY|, EXTEAECTNXE WULOL GELRA DOXUUWY
enidoone Tou mpocopolwth oty unodour] Amazon Elastic Cloud. Xenowwonowlnxe 1 oelpd
cb exovixwy pnyavey tou Amazon Elastic Cloud. Auth 1 oeipd €yel 6edouévn Uixpoapyt-
TEXTOVIXT| EMEEERYOUO T TOU EXTEAEL TO AOYIOUIXO TV ELXOVIXMY UN)YAVEY, OTO QUOLXO ETime-
00. To «uey€dny eixovixdv unyavey mou yenowonotdnxay oy cb.xlarge, cb.2xlarge,
cb5.4xlarge, c5.9xlarge, c5.18xlarge, nou éyouv 4, 8, 16, 36, 72 dwadéoec vOCPUs a-
vtiototya. To yovtého enelepyac 1 Tou yenoyonoiinxe oc xdde nepintwon fray Intel Xeon
Platinum 8124M, pe ovopoactixt| cuyvotnta Aettovpylag 3.0 GHz. Ilpénel va onuewwiel ot
yenowomoteitan 1 teyvoroylo HyperThreading, onéte xde vCPU avtiotolyel o éva uno-
v xdie Tupriva.

Ye xdde SoXACTINY EXTEAEDT] TOU TPOCOUOLWTY, 0 BeixTng enldoong HTav o ypdvog yiu
extéheon 10.000 ypovixwv Brudtwy tne mpocopoiwonc.H €€odog dedouévmv mpocouoiwong
TOV AMEVEQYOTIOMNUEVT], XL 1) ECWTEQPLXY| AVUTORAC TUOT) TOU VoA GUVOECWUOTNTOG 0ploTnxE
OE oEOLY|, YLl JUECT) CUYXELOWOTNTA TNG ohyoptduxrc enidoone Yo xdde cuvBuaoUS ToEo-
uétpwyv extéreons. I e€étaon ng enldoong TOU TEOCOUOIWTY S TEOS TNV TOAUTAOXOTNTA
ToU xddE VEupOVA, XATAOXEVAC TNXaY cuvieTnd wovtéha 1, 2, 4, 8 xou 16 Soueptopdtwy avd
veupwva xot 1, 2, 4 xou 8 TUADY XAVUALWDY LOVIWY AVH OLUUEQLOUAL.

M tpocopolwon €tpele yio xdle cuvduaoud TapopéTewy and Ta e€Xg evpn: 4, 8, 16,
36, 72 diordéoyo viuata, 1.000, 2.000, 4.000, 8.000, 16.000 veuptvee 6To dixTuO, TUXVOTHTA
ouvdhewv 0%, 25%, 50%, 100% ohov twy mdavody, 1, 2, 4, 8, 16 dwueplopoto avd veupovor
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xon 1, 2, 4, 8 mOheg xovoAl®dV LOVTOY avd dlopéploua. Luvolxd €tpeloay 2.000 doxiuaoTixd
TELRAATOL VLol VoL XoAUouY Toug ouvdLaopoUS TapauéTewy. Ta anotehéopata tapovotdlovto
OTOUC TAPOXETE TVOXES X0l OYAUOTA, YIo UEYIOTY) ECWTERLXT TOAUTAOXOTINTO VEURMVOL (Xardde
auTh ebvon 1 xorredduvon mou xwvelton 1 LEAETN Broloyixdy veupixov dixtiwy). Enione nopou-
olalEToL EVOELXTIXG 1) ETUBOCT] WC GUVAETNOT TOU UEIIUOU VNUATOV Yiol UEYIOTO TAIUOUS, xou
¢ oLVEETNOT TOL dELUOD BlapepLoUdTKY VELPWVKY Yo 8.000 VEUPMVES %ot 25% TUXVOTNTAL.

Iivaxag 1: Xpdvog exteheonc yiot 4 VAUATA, OE BEVTEPOAETTAL.

ITAnduoude vevpwvev
1000 2000 4000 8000 16000

0% | 240 478 955 190.5  380.6
25% | 30.5 74.0 198.0 684.5 3296.6
50% | 36.4 96.6 292.8 994.1 5292.3

100% | 46.5 137.9 4582 1567.3 8822.3

ITuxvotnTa dixthou

Hivoxag 2: Xpdvog extéheonc Yo 8 vAUATO, O OEUTEPORETTA.

ITAnduoude vevpwvev
1000 2000 4000 8000 16000

0% | 11.8 238 474 954  191.3
25% | 149 359 955 349.3 1695.8
50% | 17.7 47.8 141.2 507.0 2682.0

100% | 22.7 67.2 2199 786.0 4432.8

[Tuxvétnta dixtdou

ivoxag 3: Xpdvog extéheong i 16 vAuata, o SeuTEpOAETTA.

ITAnduoude vevpwvev
1000 2000 4000 8000 16000

0% | 6.0 123 24.6 48.0 95.9
25% | 7.6 187 49,5 1739  831.0
50% | 9.2 246 726 246.4 1317.8

100% | 11.8 35.3 114.2 393.0 2212.7

Tuxvétnta dixtdou

Hopoatneolue 0Tt 0 TEOCOUOIWTHS TUEOUGIALEL WAVIXY) 1o)UY XAUAXOOWOTNTA OE OAO TO
e0pog TUPAUUETEWY ToU ECETAGTNXE. AUTO ONUAiVEL OTL TO UTOAOYIOTXO QopTio UOldo TNXE
EVIEAMS OUOLOUOPQPO OTAL VAT EMECEQYASING XAl O YPOVOS UM TORSAANAWY UTONOYIOU®MY,
xxiynong TV VNUATWY Xot oLy Yeoviouol oto Téhog xdle emavdindne Atav aueAntéog. Ilo-
EAUTNEOVUE axbOUT OTL O YPOVOG EXTEAEOTG Elvol YRUUUIXOS WS TR0 TOV TANYUCUOS Yl amoucia
OLUVAPEWY, 0L TETEAYWVIXOS WS TEOS TO TANGUCUO %ot YROUUIXOC W TEOC TNV TUXVOTNTA
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Hivoxag 4: Xpdvog extéheong Yo 36 vAuaTa, 0 OEUTEPOAETTAL.

ITAnduouog vevpwvwy
1000 2000 4000 8000 16000

0% | 2.7 54 11.2 222 44.2
25% | 3.4 85 223 828  389.7
50% | 4.1 11.4 324 117.1 6175

100% | 5.3 159 50.6 182.4 1006.7

[Tuxvétnta dixthou

ivoxag 5: Xpdvog extéheong Yo 72 VAUAT, O OEUTEPOAETTA.

ITAnduoude vevpwvev
1000 2000 4000 8000 16000

0% 1.5 29 57 119 25.9
25% | 24 44 119 424 195.8
50% | 3.1 6.2 176 57.8  300.7

100% | 3.2 81 264 94.1 509.4

HTuxvétnta dixtdou

—0— 0% muKvoTNTA

—8— 25% mukvéTtnTa
50% mukvéTNTA

—8— 100% mnukvéTnTa

8000

6000 -

4000 -

Xpdvog(devtepOAenTa)

2000 A

—
o 4

0- v ¢

2000 4000 6000 8000 10000 12000 14000 16000
Nevpwveg

Yo 6: Xpdvog extéheong ya 4 viuato, cuvVapTAoel Tou TANHUGUOD VEURWVGY.

AANOS, 6T TEOPBAETEL Ula AoUUTTWTIXY avdhuon Tou oetptonol ahyopiduou. (O(N * k) uro-
hoytopol avd vevpovae, O(N?) cuvédelc yio poviéro otadepiic mdavéTntoc cuviewy)

12



—8— 0% TMuKveTNTA
—8— 25% mnukvéTnTa
~0— 50% nukvéTnTa
—8— 100% mnukvéTnTa

4000 -

3000

2000 A

Xpdvog(devtepdAenTa)

1000 1

—
4

Py
@

2000 4000 6000 8000 10000 12000 14000 16000
Nevpwveg

Yo 7: Xpdvog extéheong yia 8 VAUATY, GUVAPTACEL TOU TANHUGUO) VEURWVGY.
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Yyfuo 8: Xpdvog extéheonc vy 16 viuarta, cuvapticel Tou TANHUGHO) VEURHVGY.
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Yo 9: Xpdvog extéheone yia 6 viuata, cuvapTAcEL ToU TANHUGUOD VEURWVGY.
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Eyfuo 10: Xpdvog extéheonc yia 72 vAuaTo, cLVIETACEL TOU TANYUGHOD VEURKOVMY.

14



—8— 0% mukvéTnTA
o .
8000 - —— 25% I'[UK\)(?TI’]T(X
—®— 50% mnukvoTnTA
—8— 100% nukvétnTa
£ 6000 1
w
<
5]
Q
w
P
=)
&S 4000 -
ks
o
>
0
Q
3
2000 -
0 B
4
NrjpaTa
Yyfuor 11: Xpdvog extéheone ya dixtuo 16000 veup®vov.
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ZUVOALKEC TIOAEG avd veELPLWIVA

Yyfuo 12: Xpbvog extéleone yio dixtuo 8000 vevpdvwy ovd 25% tng péylotne muxvotnTog,
yior 8 TOAES LOVTWY avE BLAUEQIOUN, WS GLUVEETNOT TOU UEtIUO) BLUUEPLOUATOY.
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Chapter 1

Introduction

Neuroscience is the scientific field studying the properties of the nervous systems of
living beings. Advances in neurology have led to remarkable advances into most fields of
medicine, especially cardiology, neurology and psychology, and allowed achievements such as
brain mapping, diagnosis through electrocardiography and electroenchephalography, heart
and brain pacemakers and deep brain stimulation.

In addition, the study of neural net functions has led to insights in the computer science
field, inspiring artificial neural network models and their applications in machine learning
and next generation expert systems.

A core tool in modern neuroscience research is computer simulation, providing result
estimations for planned experiments|CCT11]. These estimations allow refinement of experi-
mentation plans, by predictively outlining the area of interest in the experimentation space.
Using these predictions, researchers can concentrate experimentation on more informative
cases, improving value per experiment done[Sil+17] and increasing the efficiency of the
research process.

Some neural regions cannot be directly observed, due to practical reasons such as their
physical dimensions and the side effects of sedation in in vivo studies]AB17]. In this case,
computer simulation can still provide qualitative predictions about the behaviour of these
systems. Enhancement of the biology research process through computer simulation is called
“in silico medicine” and has been widely applied in various fields such as pharmacology,
radiology, microbiology and regenerative medicine.

Another recent development, in the computer chip technology field, is the end of Den-
nard scaling[Boh07], which means that sequential algorithms, the traditional way to develop
general purpose software, can no longer be accelerated at the explosive rate of the previous
decades of improvement in chip technology. In order to fully use the capabilities of newer
computers, simulation algorithms must specify all calculations that can be performed inde-
pendently to the processor, so they can be computed simultaneously whenever possible by
the parallel processing machinery available. Due to the non-trivial problem of determining
computation dependencies for an arbitrary program, in practice a human expert has to
explicitly add parallel programming constructs to a computer program, to effectively utilize
available parallel processing features. As a result, as the neural net models under exam-

16



ination grow larger in complexity, the corresponding computational load of a simulation
requires expert work to be fully accelerated on modern computing hardware.
This thesis covers:

e developing a simulator of biological neural nets, at the extended Hodgkin-Huxley
level of modelling, with configurable multi-compartment structure and ion channel
dynamics, and arbitrary synaptic connectivity

e implementing code parallelism so simulation speed scales with available computational
resources

e running performance tests on Amazon Elastic Cloud compute-intensive nodes, for
various CPU core counts and types of simulation complexity

e packaging the simulation software into a cloud-ready containerized microservice, and
integrating the simulator functionality into an existing neural simulation heteroge-
neous acceleration platform.

This chapter describes the purpose of this thesis and presents a high-level introduction to
the concepts of large-scale computing and simulation on life sciences, and more specifically
computational neuroscience. The second chapter lists recent innovative neural simulation
technologies, along with their underlying philosophies. The third chapter describes in further
detail considerations of combining high-performance and cloud computing to aid physiologi-
cal research of large, heterogeneous neural nets, which is the the specific use case concerning
this thesis. The fourth chapter describes the technical approach and details of the simula-
tion software developed. The fifth chapter presents and interprets performance metrics of
the simulator, measured over various degrees of multiprocessing and model complexity fac-
tors. Finally, the sixth chapter recapitulates the author’s conclusions and suggests further
extensions to the present work.

1.1 Tools and Techniques in Large-scale Computing

Large-scale computing is a term describing applications that conduct one or more compu-
tational tasks, using a large-scale computer system. These tasks can belong to a coordinated
effort, or they can be completely independent. Modern large-scale computing applications
can be loosely grouped in two, not entirely distinct groups, according to the kind of tasks
they conduct, or the kind of computations they perform: the cloud computing group and the
high-performance computing group. In the following sections, the differences and similari-
ties between the approaches defining these two groups are described, and the applicability
factors of each approach, as well as hybrid attempts attempting to bridge the gap between
the two groups, are discussed.
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1.1.1 Cloud computing

The large-scale production of general-purpose computers, combined with rapid develop-
ment of Internet infrastructure in the last decades, enabled enterprises centered around high-
throughput processing, such as online marketplaces and search engines. These enterprises
required a large investment in computer hardware to handle peak load conditions. Since
peak load conditions are not frequent, a large part of available capacity stayed unutilized.
Efforts there thus made to commercialize surplus computational power, through encapsu-
lation of the underlying hardware into a common model, and development of the necessary
usage metering and quality-of-service mechanisms to provide this capacity as a product to
end users. As the online computational capacity market matured, common standards were
proposed and implemented by vendors globally, with respect to the virtual computational
environment exposed to user software, such as virtual machines, networking and clustering
facilities[Doc; Kub; Cor; Lin; Opea; Opec|. As a result, a client can now implement soft-
ware services, hosted entirely on interchangeable, vendor-independent, dynamically-sized
infrastructure. This service implementation paradigm is collectively called “cloud comput-
ing”.[MG+09]

Hosting private data and code in shared underlying resources, and dynamic horizon-
tal scaling of the provided service work load through replication of server node instances
are central ideas in cloud computing implementations and applications. Since computa-
tional power is treated as a commodity provided by interchangeable physical computers,
service-providing computational nodes are allocated ephemerally, so that available capacity
can track computational demand for each deployed service. This is a paradigm shift from
traditional on-premises systems administration, in search of more flexible computational
capacity and operating costs across peaks and trenches of application load.

Under traditional on-premises administration, each application is installed on specific
physical machines, which are specially configured to support the applications it runs. Thus,
a change in application software or available hardware requires changing the deployment
per machine plan, and manually undertaken installation and configuration of new software
on the target machines. Although this technique allows for optimal configuration of IT
resources, it also demands significant system administration work. As computational load
shifts across application, new hardware must be introduced to and removed from the local
deployments, inducing continuous deployment and maintenance costs. In contrast, cloud
computing vendors outsource the infrastructure-level management costs of all hosted appli-
cations, allowing the client’s IT personnel to focus on application-level management.

In order to develop a new application for, or migrate an existing application to, cloud
computing infrastructure, software engineering effort must be undertaken to match the way
various resources (such as networking and storage) are used by the application, with the
standardized way these are exposed in cloud environments. Another consideration, of special
importance to large-scale applications, is that multiple instances of the application software,
running on separate nodes, must be able to cooperate, in order to share the increasing load
of inbound requests. This requirement is much more difficult to implement, since it requires
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technical know-how in distributed systems, and assessing the corresponding, non-trivial de-
sign decisions during software development. However, this necessary technical investment
can also be applied to a possible migration as well, retaining the benefits of smooth instal-
lation, automated deployment and reduced day-to-day management costs achieved through
cloud environment standards.

1.1.2 High performance computing

Historically, electronic computers were first applied in generation of large numeric ta-
bles, through repetitive arithmetic operations on a massive scale. This mode of computing
focuses on the amount of arithmetic operations that can be performed in a given time du-
ration, under predetermined, non-interactive computational tasks, and its manifestations
are collectively named “high-performance computing”. Top-tier high-performance comput-
ing machines are conventionally called supercomputers. The operating features of high-
performance computing are extremely common in scientific research, in the form of techni-
cal computing; numerically simulating phenomena present in mechanics, electromagnetism,
meteorology, ecology and medicine, through approximate models of the specimens under
study.

The architecture of high-performance computing systems is quite different from a typical
general-purpose computer (though they may incorporate general-purpose computers as sub-
modules). In order to perform arithmetic calculations on a massive scale, they comprise of
hundreds or thousands of spatially distinct computational nodes that can operate simultane-
ously. These computational nodes typically are a combination of special intercommunication
hardware, local high-speed memory and one or more general-purpose processors, and often
include highly specialized accelerators, greatly enhancing performance of specific commonly
used operations, such as signal processing and linear algebra algorithms. A characteristic
common, flexible and mass-produced accelerator option present on top-performance super-
computers is GPGPUs.

In practice, when the computational load for simulating a single model is shared among
a supercomputer’s nodes, these nodes need to communicate with each other to calculate
results. The type and scale of the communication load a supercomputer’s node interconnec-
tion network can sustain is a major factor in the type and size of tasks it can efficiently run,
while a high degree of connectivity is limited by technological, size and energy constraints.
Therefore, supercomputer implementations arrange computing nodes in an interconnected
structure that better fits the applications planned for it. For example, a two-dimensional
regular connectivity grid is used for simulation of flat two-dimensional models, such as those
encountered in meteorology and geology; since a simulated spot in these models interacts
only with physically adjacent regions, a mapping of simulated regions to respective points in
the node grid means these nodes only need to communicate with adjacent nodes in the grid,
achieving minimal communication delays. For the same reasons, a three-dimensional grid is
a natural fit for three-dimensional, dense models. Often, multi-dimensional torus[ASS09],
crossbar[Art+15] and fat tree[Lia+14; Ari] network topologies are employed, in a compro-
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mise between general task performance and physical limitations.

Due to the important technical decisions and uniqueness of existing implementations,
applications targeting a supercomputer must be compatible with the supercomputer’s spe-
cific architecture, assumptions and limitations, and they also have to be fully optimized
against each of its particular capabilities, in order to extract the most computational effi-
ciency possible.

Supercomputer infrastructure is rare, and available run time is scarce due to demand.
At the same time, porting a scientific application to a supercomputer’s architecture re-
quires significant development effort. As a result, research teams frequently seek to cover
their scientific computing needs through alternative solutions , which are more flexible and
easy to work with, yet still present high-performance computing characteristics. Typical ap-
proaches are using a networked cluster of general-purpose computers, available on-premises
or through cloud services vendors, utilizing a specialized accelerator module that best fits
the application’s processing load, and designing a custom setup combining a workstation or
server with multiple, possibly different accelerators, essentially forming a small-scale, ad-
hoc high-performance computer. During the last years, cloud services vendors specifically
target the high-performance client base with offers that combine physical GPGPUs and
reconfigurable logic with the conventional virtual server[Aws; Azua].

1.1.3 Tradeoffs and Platform Selection

Present supercomputers enable scientists to simulate various models, at complexity
scales and run speeds not possible through other types of solutions. These capabilities are
enabled by their extremely powerful node interconnect networks, and the massive amount
of specialized accelerator hardware they incorporate. However, in practice their availability
is limited; access is typically granted after a formal time-grant procedure concludes, and
the combination of occupancy limits and high demand means available time and alloca-
tion slots are very limited. As a result, using such systems introduces scheduling delays
which directly impact the original goal’s progress, regardless of the system’s actual run
time performance. A second problem with supercomputer practice is the need to fully tailor
user software and the underlying computation algorithms to the specific machine in use,
increasing non-reusable effort and slowing down the development and research cycles. In
conclusion, supercomputers are the best fit for the specific niche of ultimate performance
in single complex tasks, when the problem size and complexity exceed what commonly
available hardware can practically support.

Cloud computing solutions offer computer facilities as a standard commodity. The ap-
plication programming interface, such as operating system environment and resource access
protocols, are uniform across all vendors. As a result, vendors are largely interchangeable,
the pool of available offers greatly widens, and application development, deployment and
migration are all made much easier. Important benefits over high-performance computing
services are also present. For example, cloud computing can support functionality for an
entire interactive system, whereas HPC services offer executions of non-interactive batch
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jobs only. Containerized, cloud native applications can be very easily migrated to different
vendors and on-premises dedicated setups, whereas migrating an application to a different
HPC platform often requires a near-total rewrite to keep system utilization high.

However, traditional cloud services also present significant weaknesses to scientific com-
puting. Analysis of large-scale models, requiring intense communication traffic among com-
putation nodes, are dramatically impacted by mainstream datacenter networking hardware,
especially in terms of communication latency which is critical for iterative, synchronous al-
gorithms. Therefore, the high-performance tasks most popular on cloud infrastructure are
those that can be distributed to many worker units with minimal cross-communication,
such as data analytics, image and video processing, or parameter exploration on large grids.
In addition, dynamic worker replication features common in cloud deployments may offer
elasticity in allocated computational power, but they require distributed systems knowledge
to properly apply.

A direct comparison between the computational power of datacenters and supercomput-
ers needs to account for the different facets of system performance which relevant to each
type of application. High interconnect performance requirements, combined with present
technology limits, restrict the physical dimensions of typical sized supercomputers. The
above, combined with present chip technology limits in computational power per volume
and cooling technology limits in thermal power density, put a restriction to total raw compu-
tational capacity available. In contrast, datacenter installations can house computer hard-
ware over a much wider system area, since they run diverse, largely unrelated, tasks and
communication traffic requirements are subsequently greatly diminished. As a result, while
cloud computing infrastructure cannot deliver single-task computation capabilities any-
where close to a supercomputer, it may deliver larger total computational power over a
many-task workload, and thereby perform better in distributed computing workloads.

Per the previous arguments, both traditional high-performance computing as well as
traditional cloud computing approaches present different advantages and drawbacks in the
domain of scientific applications. Therefore, a case can be made for an integrated solution
utilizing both cloud and HPC functionality, combining the strengths and minimizing the
weaknesses of both paradigms. Already, various cloud vendors offer virtual machines en-
hanced with acceleration hardware, lowering the level of entry for smaller organizations
that would not be able to afford such systems otherwise. At the same time, efforts are being
made to port the container paradigm to traditional HPC environments[Ger+17; KSB17].
Since a large part of commonly used scientific software packages is typically available on
most supercomputing platforms, another possible approach could be a broker service, re-
ceiving computational tasks using those packages from users, and automatically directing
them to one out of multiple cloud or HPC services available, in order to minimize expected
completion time, system load, or energy consumption. Similar projects have already been
launched in the specific field of grid computing, where federation of multiple computational
grids has been achieved[Gag04]. A future HPC-oriented solution could also expand the grid
computing semantics to include software acceleration in diverse hardware platforms.
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1.2 Computer Simulation in Life Science - Challenges
And Methods

A major, diverse and constantly expanding field of natural science is concerned with
the functions of living organisms, from the most fundamental details of metabolism to sys-
tem studies of the entire bodies of humans and mammals. Aside from the productivity
and efficiency benefits simulation can offer, it also allows to investigate many important
mechanisms whose properties cannot be isolated in experiments, or even observed directly.
Through simulation, the parameters of proposed models can be optimized or implicitly dis-
covered, applying repeated comparisons of available measurement data to model response
for each prospective parameter set. As available computational power increases geometri-
cally over time, computer models and techniques are increasingly being introduced into all
aspects of life science.

1.2.1 Applications

Biomedical applications of computer modelling and simulation revolve around propos-
ing new models, validating proposed models against experimental data, and using verified
models to enhance clinical practice.

Tissue modelling has been applied to study the macroscopic mechanical properties of
connective tissue, skin and internal organs. Mechanical simulation of large tissue struc-
tures has allowed for durability estimation of bones from CT scans, aided the design of
aerosol pharmaceutical delivery devices[KZD08], and non-invasive detection of neurodegen-
erative diseases, as well as computer simulation of surgical operations[Sut+06]. Modelling
of less predictable physiological properties, has enabled techniques for prediction of wound
and bone fracture healing[Gerl14], performance and compatibility of prosthetic and engi-
neered tissue implants[TM16], and sepsis dynamics and prognosis]ANV12]. Computational
fluid and soft tissue modelling has produced insights in details of the cardiovascular sys-
tem[Mor+16].

Molecular dynamics simulations studying the parameters affecting reactivity between
pairs of substances were initially developed in general chemistry research. They have been
successfully used to model the chemical behaviour of biological structures, such as receptor
proteins and ion gates present in the membranes of cells. Such models are crucial to cellular
physiological modelling and drug research, and their use allows high-throughput virtual
screening of pharmaceutical lead compounds[Jac+07].

In the oncology field, diffusion and absorption models of ionizing radiation allow radio-
therapy practitioners to maximize effectiveness and minimize harm[vBa+08]. Available cell
models of cancer cells can be macroscopically simulated, providing models that better de-
scribe the growth and kinetics of malignant tumours, and aid the refinement of intervention
plans[SG17].

Another example of major breakthroughs possible only thorough simulation is the rapid
development of advanced artificial pancreas controllers]Man+14]. The introduction of the
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FDA-approved UVA/Padova Type 1 diabetes mellitus model has enabled researchers to
explore novel blood sugar control laws through insulin injection, evaluating their perfor-
mance in silico instead of running slow, impractical and susceptible to variation tests on
non-rodent mammals that were previously required[Pat+09].

1.2.2 Requirements

For a simulation system to be of use in research and clinical practice, a set of standards
and features must be present. In all cases, accuracy of generated results and compatibility
with methods, processes and information systems in use are mandatory, since clinical users
have to trust medical-grade equipment, research users have to be sure their hypotheses are
not misled by subtle inaccuracies, and in both cases a new simulation system is a new part of
an already established process and cannot be used effectively if it is unable to interoperate
with the other parts of the process. Usage and simulation speed is also an important factor,
since it accelerates the workflow in use and enhanced speed may allow higher simulation
quality at the same given run time.

In research use, simulation software must be easily extensible, in order to support new
proposed model types and new available hardware, as these two factors are in continuous
development, along with the constant progress in research and technology. When the object
of study is conception of new models or extension of cutting-edge models, rapid prototyping
of model types is critical for research to proceed.

In clinical applications, model modification is not necessary, since medical practice fol-
lows already established and proven approaches and protocols. Instead of flexibility, the
main productivity factor is velocity in completion of day-to-day routine tasks. A hard re-
quirement for clinical users, that is often unaccounted for in research use, is system and
service reliability. A short span of downtime is a minor inconvenience to researchers, but it
can have a much more severe impact in a healthcare setting.

1.2.3 Approaches

Computer simulations require experimental data on which models can be based, and
software that can estimate results for the scenarios under consideration. As a result, the
range of available simulations is limited by available data and software packages, and de-
mand for new simulation approaches translates to respective demand for acquisition of new
data and development of new software that will make these approaches possible. Glob-
ally coordinated projects attempt to standardize production of physiological datasets, and
formalize modelling of living organisms, aiming to assemble the entire physiome of each
organism[Bas00; Suz+09]. The diversity of medical science has given rise to many different
kinds of approaches in simulation, matching the various stages of research progress and
clinical adoption.

Under certain models, in both research and clinical use, parameters cannot be esti-
mated from measurement data through a direct analytical algorithm. In these cases, model
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parameters are fine-tuned to represent available data, through iterative estimation of model
response and parameter optimization to best reproduce the natural response.

In basic research, when entirely new features of physiological activity are being discov-
ered and validated, new models are being developed, either to document new principles
being proposed, or attempting to replicate an observed phenomenon. In these cases, the
simulator’s purpose is to visualize the behaviour under study, and to provide a basis from
which more accurate and integrated models will later be developed, as the models are further
enriched and validated.

An additional object of basic as well as applied research is modelling and simulation
of the various factors degrading measurement data produced by technical systems. For
example, metal implants severely impact the results acquired from CT and imagers[Bro+12],
and natural brain structures distort magnetic resonance elastography results|McG+].

Another simulation technique is testing new types (or administration protocols) of treat-
ments n silico , on current models. This technique examines the results of the simulated
experiments, in order to assess their effectiveness and determine which treatments are ac-
ceptable for further clinical investigation. A variant of this technique studies the effect of
genetic features on the effectiveness of present treatments, combining models describing
the interaction of treatments with certain physiological features (such as metabolic path-
ways[Aro05]), and models correlating genomic data with effects on those features[Jel415].
Such studies aim to provide drug regimens optimally matching each individual patient. Yet
another variant simulates the behaviour of an ensemble of virtual patients under the same
virtual experiment, in order to extract macroscopic population models or to get a coarse
but wider picture of rare diseases[Car+18].

1.3 Computational Neuroscience

Computational neuroscience is the study of the computational functions of neural struc-
tures. The focus of this study can be the abstract emergent qualities present in nets of
simple functional units, the quantitative physiological function of biological neural tissue,
or the high-level features of simpler yet functionally similar approximations of biological
models. The various levels of model refinement seek for answers to different questions about
functions observed in brains, the most complex, powerful and unexplained neural structures
known, and whose capabilities remain outside the reach of present computer technology.

Neurology research is constantly supplying new detailed physiological and anatomic
information about the brain. At the time, multiple concurrent research programs all over the
world aim to gather physiological data about the human brain’s structure and microscopic
principles|[Amu+16; Jor+15; Jor+15; mPo+16]. For the entire brain and its main regions,
the sources from which stimuli arrive and the destinations toward which responses are
propagated are documented. New physiological mechanisms affecting neural cell activity
are being discovered, and connectomics efforts attempt to provide complete connectivity
atlases of entire human brains, down to the synapse level. Using this information, accurate
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models can be constructed, representing the brain structures under study. Since living brains
are large, compact and fragile structures, in vivo measurements can only cover a superficial
layer of the whole set of underlying activities taking place.

1.3.1 Types of in silico experimentation

For computer models to be meaningful, their results must be directly comparable to ob-
served experimental data. Neurological observations can be acquired through experiments
in vivo , such as EEG scans, measurements regarding involuntary reflexes, and invasive
neural potential recording, and experiments in vitro, measuring the electrochemical be-
haviour of single cells, collections of disassociated cells, and neuronal networks cultivated in
dishes[PPM15]. Consequently, efforts to improve and extend existing models, test the effec-
tiveness of experimental plans in silico and confidently reuse simulation results as instances
of ideal physiological functionality, all need to match simulation output variables with the
set of experimentally observable variables, so the models in use can be validated.

Much like with physical experiments, instances of in silico experiments are not always
identical; certain parameters may be purposely varied between experiments, in order to
study how each parameter affects the experiment’s outcome. Parameters commonly ex-
plored in physical, as well as virtual experiments, are the types of stimuli applied on the
neurons(voltage, current, light and their patterns and intensities), the physiological effects
of well-known bioactive substances, and structural parameters of the neural net like popula-
tion size, the density and regularity of synapses, and myelination. In silico experimentation
also allows researchers to estimate the results of conditions not possible or practical to con-
trol on living specimens, such as rare or critical medical conditions, directly altering the
internal chemistry of cells and applying other desirable changes lacking a known way to
apply, and the effects of lead compounds on cells.

1.3.2 Types of simulation models

The most abstract type of neural modelling is activation models, replacing spiking ac-
tivity with an aggregate spiking rate. This type of neuron requires the least computational
effort to simulate, and is thus used in the largest scales of simulation conducted, and in
practical applications of artificial neural networks. These neuron models are often called
perceptrons.

A more detailed class of neuron models focuses on the characteristic feature of neuron ac-
tivity, action potentials(also called spikes in literature), modelling each as a separate discrete
event defined by time of occurrence and intensity. The internal mechanism causing spikes is
described through deterministic continuous-time, discrete-time or stochastic models, that
typically involve a number of internal state variables. These models can describe timing-
sensitive behaviours(such as refractory period), causality between activation of different
network regions(as observed among functional brain centers), and steady-stare oscillating
modes(as those prevalent in deep sleep), while still requiring relatively low computational
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resources.

The lowest level of modelling is concerned with the explicit physiological mechanisms at
work beneath the neuron’s function. These models describe the neuron’s state as a set of
variables directly mapping to chemical quantities. Each neuron is modelled as one or more
physical components comprising the cell, and the continuous-time differential equations
prescribing each variable’s dynamics are integrated over time. These models expose the
most detail and all modelled physiological features to biologists, and are the most accurate
way to investigate a natural neuron’s behaviour. However, they present a much greater
challenge to simulate on present computer hardware, since communication between neurons
occurs on each timestep for all neurons, instead of occurring only when action potentials are
transmitted. When only the electrical behaviour of cells is required, simplified equivalent
voltage models such as the Izhikevich, FitzHugh and Hindmarsch-Rose model can instead
be applied with greatly reduced computational effort.

1.3.3 Levels of model complexity

Due to their inherent high level of detail, neural structures are being studied in multiple
scales of net complexity. Analysis may concern a single neural cell, or even a part of a
cell. This level of analysis delves into the way action potentials are propagated through
dendritic structures and transmitted across cells, and the ways a cell’s internal biochemical
mechanisms modulate its electrical state and responses to stimuli over time. Small structures
of a few interconnected cells may also be considered, focusing on how a single cell’s responses
to stimuli are circulated across the cells in the system, how a single neuron’s response can be
a quite complex function of the other neurons’ responses, the formation of stable oscillators
and other more complex systemic properties, and how synaptic properties may change
over time, as a result of intercommunication patterns|PPM15]. Simulation of massive cell
populations causes yet more complex behaviours to manifest and is used to provide insights
into the purpose and function of existing brain structures.
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Chapter 2

Prior Art In Computational
Neuroscience

In order to test assumptions about the internal functions of neural tissue, theoretical
models have been explored computationally. Typically, each research work uses custom-
made simulation tools, targeting the specific problem and questions each group of researchers
is currently investigating. Consequently, reusing those tools for further work requires signif-
icant technical effort, distracting field researchers from their primary goals. This problem
motivated development of general purpose neural simulators, aiming to cover the most
common neural features under investigation and most common analysis techniques in use.

Since speed in model and experiment configuration, as well as model simulation, are key
to the research cycle, effective research requires collaboration between researchers from both
the biomedical and computer engineering disciplines. A recent approach to neuroscientific
research is investigation and modelling of large populations of interconnected neurons, since
the increased complexity of such nets enables non-trivial emergent behaviours in nature and
better describes existing brain structures under study. As the complexity of simulated neural
nets increases, computational load to simulate these models increases respectively. Thus,
the scale of models that can be explored is limited by existing technology. As a result, novel
computer architectures and systems have been devised and applied to enable simulation of
more complex, higher quality neural models.

2.1 Present neural net simulation methods

The main challenge in neural net simulation is the steep increase in complexity as the
cell population increases. Many prior attempts to simulate large nets assign sets of adjacent
cells to computational nodes, which then communicate with each other, with interconnec-
tion networks inspired from connectivity between cells in various brain regions. This type
of neuromorphic hardware essentially avoids the von Neumann barrier|Bac78], forming a
distributed computing system. A challenge in simulating existing brain structures stems
from the fact that for small regions of brain tissue, about half of the synapses involved orig-
inate from cells external to the region, so these models cannot realistically mimic the same
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structures in vivo [KHOOQ9]. In addition, as the number of distinct computational nodes
increases exceeding the amount of synapses of neurons in the model, each neuron tends to
require communication with a different node for each of its synapses|Kun+14].

2.1.1 Spike message passing implementations

The immense complexity of brain structures has pushed research of high-level func-
tions to use simplified discrete-spike models, in order to get meaningful results for the
largest neural nets possible. Implementations have been made on GPU-accelerated desktop
computers, on server clusters, on current top-tier supercomputers and on specialized neuro-
morphic computers, in accordance with the multiple useful levels of network analysis. The
all-or-none principle prescribes that all action potentials are functionally equivalent. Thus,
a spike’s effect to a postsynaptic neuron is determined only by that neuron and proper-
ties of the synapse. This means that during simulation, a neuron only needs to be notified
about spikes produced by its presynaptic cells, when the spikes occur. As a result, the in-
ternal model of each neuron can be improved in fidelity, with total communication traffic
remaining practically the same.

2.1.1.1 Custom designs

The massively parallel nature of neural tissue inspired analogous distributed computing
designs, approximating their form as well as their function. Since practical performance
requirements mandate extremely fast interaction between simulated neurons, these designs
had to be implemented on bespoke, low-latency interconnection hardware.

The SpiNNaker project[Kun-+14] has developed a mass-scale ASIC-based neuromorphic
architecture, comprising of tens of thousands of identical chips, each containing 18 acceler-
ated ARM CPU cores. Chips on the same component board communicate with each other
through a novel network operating on asynchronous digital logic, providing quick, broad
and energy efficient exchange of spike event messages. Portions of the entire computer are
allocated for execution of individual experiments. Recent software improvements have en-
abled experiments spanning multiple 768-core boards. The ARM cores can be programmed
for a wide range of spiking neural network applications, both realistic and artificial.

Another class of ASIC implementations combines analog operation of single neuron
models with exchange of discrete spike events, forming a mixed-signal approach. An early
endeavour implemented a network of integrate-and-fire neurons, connected with synapses
presenting spike-timing-dependent plasticity[Vog+02]. A recent large-scale implementation
models analog adaptive exponential integrate and fire neurons, with direct electrical con-
nections between neurons in the same die and spike message passing between dies on the
same wafer through digital high-throughput lanes[SFMO08].

An alternative approach retaining the degree of customization and dramatically de-
creasing development cost is using FPGAs. A recent attempt models each cell as a clas-
sical Hodgkin-Huxley neuron on a three-dimensional FPGA chip and exploits its on-cell
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network for high-volume, low-latency spike traffic, while entirely eliminating multiplier
blocks[Yan+18]. Another claims a record amount of neurons simulated in real time, by
using the simple leaky integrate-and-fire models, forgoing flexible connectivity models by
adopting a cortex-approximating hierarchical structure of neural columns, and completing
processing of a different portion of the cell population on each clock cycle, while pipelining
the processing stages|WTS18].

2.1.1.2 Conventional computing infrastructure

Another approach to massive-scale spiking neural network simulation utilizes the versa-
tile, mass-produced capabilities of more common hardware used in modern supercomputers
as well as consumer computer units. Parallel versions of the highly popular NEURON and
NEST neural simulation packages, as well as the C2 simulator, have been used to evaluate
pilot models of entire brain structures, on the K computer and Blue Gene series super-
computers[Jor+18; Ana+09]. Algorithms distributing portions of the connectivity matrix
among relevant nodes containing the pre-synaptic and post-synaptic neurons achieve linear
total memory usage and constant MPI buffer sizes, as the cell population increases with a
fixed connectivity degree[Kun+14]. A Beowulf cluster of commodity general purpose com-
puters has been used for simulations based on anatomical data, from slice scans of rat,
cat and human brain tissue, containing 22 different types of cells as they are laminated
on cortical columns, and spontaneously expressing behavioural regimes of normal brain ac-
tivity[Ana+09]. In the desktop computer scale, a highly efficient GPU-based simulator is
available for Izhikevich neuron models with plastic synapses[Nag+09].

2.1.2 Electrophysiological implementations: Compartmental mod-
els

Some cases of neuronal network simulation focus on getting results on the underlying
physiological features of neural activity, such as in silico experiments involving neuromod-
ulators or other neuroactive compounds. These compounds indirectly affect the neuron’s
chemistry, so their precise chemical effects are an object of deeper investigation. In addi-
tion, new electrochemical properties of the cell membrane and its differentiated regions are
constantly being discovered[SBS12]. A coarse formulation of these features splits the cell
into singular points (also called point neurons) or geometrically separated lumped compart-
ments, whose biophysical state is modelled after ordinary differential equations. A significant
challenge at this scale is that the interaction between neurons happens on continuous time,
instead of discrete spike events. This means that communication between neurons has much
tighter requirements, either in analog or digital simulation.

2.1.2.1 Equivalent electronic circuit implementations

An experimental network chip, implementing analog sodium-potassium cell dynamics
and interconnection with programmable synaptic densities was implemented in [FGHO06]. A
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generic ion channel simulation mechanism using analog MOSFETSs was proposed in order
to fabricate large populations of realistic cell models in silicon[HB07]. However, the inflexi-
bilities inherent in the medium and the excessive power required for analog interconnection
between neurons in neighbouring chips[SFMO08] has directed most subsequent large-scale
efforts to mixed-signal approaches, communicating through digitized spikes, as mentioned
above.

2.1.2.2 Discretized integration implementations

The digital nature of computers lends itself to approximating the ODEs of compart-
mental neuron models, through sequential progression of the system state over small time
deltas. Due to continuous interaction between connected neurons, which is necessary to in-
vestigate subthreshold neuronal activity and resulting synchronization features in brain sec-
tions[Cho+10], communication of updated state values also has to occur constantly among
neurons, whether action potentials are generated or not, greatly increasing intercommuni-
cation traffic. Unlike spiking models, an increase in model time resolution directly impacts
total data exchanged between neurons. In addition, the differential equations describing
biophysically accurate models are much stiffer than those used in spiking models, so they
require higher time resolution to simulate, further worsening runtime performance.

The Blue Brain project|Mar06] has used the NEURON package to simulate biophysically
accurate models of neocortical neurons on Blue Gene series computers (soon to be super-
seded by Blue Brain 5, based on Hewlett Packard Enterprise SGI 8600 nodes|[Ent]). The
impact of increased time resolution was mitigated through a slow rate of voltage updates
between neurons, and accelerating resting-state neuron simulation through telescopic pro-
jective integration, combining small transient timesteps with longer ones, in a GPU imple-
mentation|Wan+11]. The general UC4 simulation package combined with model generation
and visualisation software into an integrated simulation platform, allowing investigation of
heterogeneous structures of neurons with custom properties and ion channels, with diverse
morphologies, at supercomputer scale[Bre+16]. Simulation performance of Inferior Olive
model cells with arbitrary gap junction connectivity has been investigated on Xeon Phi
manycore processors, clusters of Xeon Phi-accelerated computers, GPUs and reconfigurable
dataflow engines[Sma+16]. Finally, the simulator developed for this thesis also follows the
compartmental model ODE integration approach.

2.1.3 Electrophysiological implementations: Membrane and volume-
based models

The biophysical aspect of neuroscience is concerned with the effects occurring across the
cell’s membrane surface and cytoplasm volume, such as ion diffusion, molecular dynamics
and the propagation of action potentials. Such models are described in terms of partial
differential equations (or, in the case of molecular dynamics, stochastic processes), which
then are approximately solved through finite element analysis, applying discretization in
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space and time and solving for the average state of approximate lumps in discrete time
steps.

This type of analysis allows for spatially coherent slices of the simulation’s volume or
surface to be straightforwardly assigned to separate computational nodes on a grid, reducing
communication to between nodes of adjacent slices and minimizing its total volume, which
makes it a better fit for grid supercomputer architectures. Such models, though, are typically
much stiffer on the spatial dimensions, so multiple steps reconciling state values across the
model have to be run between time steps. Tissue simulators segmenting neurons in tubular
compartments are also included in this section, due to their computational load similarity
with finite-element microscopic approaches.

Compartmental volume-based approaches include splitting single neurons into multiple
tree-based compartments, implicitly solving the whole neuron’s state and reducing spatial
integration stiffnessfHMS08], and segmenting whole neurons across spatial block borders.
The last approach has achieved scaling for up to 10 billion synapses in the Blue Gene/P ar-
chitecture][KW11]. In small-scale membrane dynamics, a space- and time- parallel approach
has been proposed, parallelizing time through the Parareal algorithm[Bed+16]. In the molec-
ular dynamics level, random walk-based ligand diffusion models are parallelized with the
spatial grid’s nodes exchanging ligands that wander between their assigned zones[Bal-+04].

2.2 Flexible neural simulation platforms

Another approach, which is particularly useful in simulation of heterogeneous nets, is
extremely parametrizable, general purpose neural simulation software. Simulators of this
type do not follow the behaviour of a single class of neural net models. Instead, they provide
simulation capability for an as diverse as possible range of neural models, from coarse
functionality-oriented models to the most detailed molecular biology-oriented models. For
each type of model, the aim is to allow users to modify any parameter that could be
defined for that type. Under this approach, researchers can run simulations on the most
detailed and highest quality neural models available, as well as discover new extensions
to the existing types of models, without the need to create a new software or hardware
application from scratch. Simulation speed and model complexity can be enhanced using
large-scale computing infrastructure, which provides the necessary computing capacity.

2.2.1 Wide-range model simulators on personal computers

The demands of neuroscientific research have given rise to a numerous family of neural
simulation packages, such as NEURON, NEST, BRIAN, MOOSE, and GENESIS. In ad-
dition, general purpose scientific tools such as MATLAB and Mathematica have also been
applied to try out novel model types and as a following stage of results processing. Most
of these rapid prototyping tools are designed for simple, consumer-grade general-purpose
computers and are thus limited to the capabilities of a single desktop computer or work-
station. As analysis of large neural nets has been gaining increasing traction over the last
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decade, though, popular simulators such as NEURON and NEST have been extended to
support large-scale computer systems, although computation is still typically performed on
CPUs only, without use of accelerators.

2.2.2 Wide-range model simulators on cloud platforms

The limited performance of desktop computers has led researchers to apply high-performance
computing platforms on in silico experiments, using simulation packages supporting these
platforms or custom, model-specific programs. These platforms serve multiple research
groups concurrently, assigning a fraction of available hardware to each computational task
request. Submitting a task for processing on each platform involves creating an auxiliary
automation program that interacts with the platform’s queueing mechanism and task exe-
cution environment. However, getting access to such systems typically goes through a peer-
reviewed grant process, introducing a significant delay to service availability. Also, switching
between computing platforms requires many small changes to the “glue” automation, which
need effort and technical expertise, reducing productivity and eventually hampering inte-
gration of high-performance computing in biomedical research practice. Applying cloud
computing principles to existing HPC infrastructure can improve usability and extend the
range of available platforms by presenting the computational service in an uniform manner,
eliminating friction with platform technicalities.

2.2.2.1 Simulation Platform

The Simulation Platform cloud-based online simulation environment[Yam+11] applies
commonly used TaaS[MG+09] and remote desktop technology in use, to provide a desk-
top environment where commonly used neuroscientific and auxiliary software packages are
already preconfigured and available. Many science-oriented Linux distributions have been
developed to offer such an environment in lab computer deployments, but Simulation Plat-
form requires just a web browser and modest resources on each client terminal in order to
access the desktop environment. This approach leverages the experience users have using
existing scientific software, presents the same environment they are familiar with on desktop
computers, and enables a fully interactive work process while running on cloud resources.
However, model scale and computation performance are limited due to the system’s lack of
support for cluster parallelism and hardware acceleration.

2.2.2.2 Neuroscience Gateway

The Neuroscience Gateway[Car+14] provides high-performance neural simulation ca-
pabilities to end users through a web-based platform. Users can upload simulator-specific
experiment definition files to online storage, and then order a simulation run based on these
files. The system then undertakes all technical details involved with running the simulation
on HPC infrastructure, such as interfacing with each platform’s job submission mechanism,
optimally configuring simulator software for each platform, and management and transfers
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of input and output files. When the simulation run finishes, the user can retrieve the output
data from online storage, through the same user interface. A REST API is also available so
simulation tasks can be submitted through alternate interfaces.

However, the non-interactive nature of HPC infrastructure means the user has no in-
formation feedback as the simulation progresses, and has to wait for the whole simulation
run to finish instead. In addition, the interface is not integrated with the rest of the tools
researchers use, and even minor edits to the simulation definition require the user to up-
load the new respective file versions before using them on the platform. Since the platform
accepts only simulator-specific files, switching between simulator packages requires creat-
ing entirely new simulation definition files. Although the supported PyNN library offers a
degree of flexibility in this aspect, the platform’s workflow precludes automatic simulation
software selection and requires intimate knowledge of the simulation software used.

2.2.2.3 BrainFrame

BrainFrame[Sma+17] is a proposed heterogeneous acceleration platform under develop-
ment, employing general purpose CPUs as well as various accelerator modules. It aims to
provide neuroscientists with a user-friendly model and experiment design interface, through
which they can easily run model simulations on the technology that fits each model’s com-
putational requirements best, in order to productively match high-performance computing
with field research. The radical differences between acceleration hardware platforms enforce
the use of different simulation software compatible with each platform. Therefore, a common
model definition format, covering the range of in silico experiments supported, is required
in order to dynamically run the same in silico experiments on different technologies.

The BrainFrame platform extends the PyNN framework[BS09] with a frontend plugin
that automates conversion between PyNN models and the form each backend simulator
requires, and can select the optimal simulator platform for the properties of each given
model. Interaction with end users is performed through a user-friendly web interface, pro-
viding live information for each simulation run’s progress. The technical details of each
underlying technology are fully handled by the platform, and backend resources can be
dynamically adjusted to user demand using existing cloud infrastructure.
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Chapter 3

Problem Statement

This thesis examines the application of cloud and high-performance computing in phys-
iological simulation of large heterogeneous neural nets, through an interface usable by field
practitioners without special training. In order to be effective, such an application must
present a diverse range of features, in the domains of end-user usability, technical capabili-
ties, and meaningful compatibility with processes and software in present use.

3.1 Neuroscientific research requirements

In current practice, neuroscientists explore different models of how neural cells operate
and interact, in order to better describe the functionality located in various brain areas.
These models can be practically explored only through computer simulation, due to their
non-linear[HH52] dynamics. Often, these models are being explored for the first time or are
not in common use, so they are not readily simulated by existing software.

In addition, large-scale models require a computational load too large to be run on a
researcher’s personal computer or workstation, and have to run on high-performance infras-
tructure instead. Running scientific applications on high-performance platforms, though,
requires computer engineering expertise to conduct, in terms of necessary modifications to
simulator software as well as appropriate system configuration to match the application’s
load profile. Technical limitations often force end users to make technical decisions outside
their field of expertise, distracting them from the task at hand and reducing productivity.

A major factor of researcher productivity is the turnover time between testing hypotheses
and obtaining results, which is defined by the required time to simulate hypotheses, time
to extract conclusions, and time to plan new in silico experiments.

3.1.1 Ease of use and research workflow facilitation

As simulation became ubiquitous in neuroscience research, the need arose for a commonly-
used language describing anatomic, as well as biophysical properties of neural cells and nets.
Such a format amplifies the effectiveness of both simulation and neural imaging efforts, as it
provides a common input and output method respectively to the two research communities.
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This way, imaging and connectomics projects can offer their results to the same pool of
commonly understood physical models, and model researchers can pick any model from the
common pool to work on and eventually refine.

A convenient starting point to modelling the cell type under study is to download a
similar, already defined neuron model from research databases such as [Hin+04], [Neua).
These models are described in commonly used formats, which can be directly imported into
simulation software[Neub].

Frequently, in accordance with widespread demand, high performance computing infras-
tructure is physically located in individual computing centres, separately from the organiza-
tions using the resources. Thus users access the machines through remote access solutions,
such as text terminals, graphical windowing environments, client applications offloading
computation requests to the infrastructure, and web portals, allowing users to remotely run
computation tasks using interactive web pages. The productivity gain from using such solu-
tions is determined by how directly users can perform desired actions (for example, editing
model parameters through an interactive form, compared to manually editing multiple text
files).

In research, the measure of utility of a tool is the increase in productivity it offers to
researchers. A useful toolset in neuroscience research allows users to work productively,
by bridging the semantic gap between the physiological aspect of examined models and
technical implementation aspect of the underlying tools, and accelerating the workflows in
use. The simulation software has to present itself in terms familiar to neurologists, and allow
easy completion of common tasks.

The whole in silico research process can be accelerated in the experiment input, sim-
ulation run and feedback stages; the experiment input stage can be sped up by effective
model and experiment design tools, the simulation run stage can be sped up by hardware
and software improvements in the simulation engines in use, and the feedback stage can
be sped up through automation in compiling the generated results, applying intermediate
processing and displaying final results according to the precise way researchers want to
examine. Along the entire work cycle, productivity can also be increased through reduced
effort and delays in day-to-day usage of computer systems, in each of the above stages.

3.1.2 Flexibility in exploring novel cell structures and nets

Neural model researchers explore ways to model in vivo or in vitro measurement data,
that is not yet explained by existing models, through close investigation of the discrepancies
between physically measured data and predictions of current models. The aim is to minimize
those discrepancies by application of new models. To that end, researchers hypothesise
new mechanisms that could explain the unmodelled behaviour, then they put them to
the test, initially using in silico simulation and subsequently performing more accurate
live experiments, and eventually produce new, more realistic models. Literature examples
of extending baseline models to better capture observed features of neuron behaviour are
[Des+98] and [DG+12].
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The process of neuroscience research involves formulating novel neural net models, be-
yond what is currently codified and standardized by the scientific community.

Present flexible, rapid model development software packages allow for quick exploration
of altered models, but they often are not designed to effectively support large scale net
simulation. Large net simulation can pose a problem as the underlying algorithms may not
scale for large sets of neurons, or the simulators may not support acceleration features of
available hardware that could mitigate the increasing computational load.

Existing simulators of large neuron populations, on the other hand, often overcome
technical limitations by adopting alternative system architectures, and shaping the com-
putational system in ways mimicking the form of the neural nets to be modelled, in a
process named neuromorphic computing[Mea90]. Assumptions made about the simulated
neural net’s form, though, restrict the range of connectivity and neuron models that can be
mapped on the hardware, to specific architectural decisions (such as no support for hetero-
geneous cell populations in uniform-architecture implementations, restricted or fixed model
parameter values in analog implementations). Thus, such simulators offer limited flexibility
in modelling of neurons and synapses, and restricts exploration of new models to specific
narrow classes, supported by each large-scale simulator.

3.2 Scalability of simulation computational load

As the complexity of cutting-edge models increases, so does their computational load.
Since research is an interactive process, simulation results need to be available in a practi-
cal timeframe. Thus, effective simulation of more complex models requires more available
computational power. Due to existing technological limitations, design changes often need
to be made to existing simulation software, in order to properly utilize extra computational
power.

3.2.1 Simulation acceleration through hardware utilization

Since the turn of the century, sequential-instruction program execution speed has been
increasing at a greatly diminished rate. Meanwhile, the density of computational machinery
density on chips has not stopped increasing. The result is that available computational power
is increasingly becoming more than a sequential operation program can utilize. This effect
led to a resurgence of parallel-processing devices, through implementations of multiple CPU
cores, vector operations, vector processors, and reconfigurable logic devices, to the forefront
of general-purpose high-end computing.

For the increase of available computing power to effect an increase in simulation power,
therefore, simulation algorithms have to break out of the sequential execution paradigm
and exploit the capabilities of increasingly parallel modern computers. The required soft-
ware changes include a study of interdependence in calculations under each algorithm, so
that independent calculations can run simultaneously. In some cases, an optimized serial
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algorithm may be replaced by a less theoretically efficient, but more effective in practice,
parallel alternative.

3.2.2 Dynamic allocation and sharing of computational resources

The complexity of a simulation run is, both in time and scale, limited by computational
hardware available to the researchers. Available computational capacity is typically limited
by each institution’s capital investment in computer hardware.

Recently, supercomputing facilities as well as various commercial enterprises offer sur-
plus computational resources to end users, converted to a computational service prod-
uct. Through mature, widely-supported virtualization middleware, the processors, random-
access memory, non-volatile storage, network transfer throughput and other resources of
a physical computer node are securely partitioned into smaller allocation units. A process
running on such a partition cannot access or otherwise affect processes running on other
allocation units on the same node. As each end user requests a specific type of allocation
unit, a free instance is quickly assigned to that user and they get control of its partitioned
resources for the requested time duration. Each partition is presented to its assigned end
user as a virtual machine, accessed through a secure remote connection.

The end users can, thus, run arbitrary desired software, as long as it is compatible with
the virtual machine environment. Users are billed by time using the partition, or by actual
resource utilization[Ama; Azub], according to service plan selected. The service provided
by such vendors is called “ Infrastructure as a Service”, as per NIST definition[MG+09],
and is one of the service models in the larger domain of cloud computing.

As demand for such services - and specifically for computational power - increased, the
range of processors available widened from general-purpose CPUs, to more specialized GPUs
and reconfigurable logic, which are often more suited to high-performance computing tasks
such as machine learning, large-scale data analytics and image processing, photorealistic
graphics rendering and computer-aided design. Also, the focus of IaaS providers on high-
end hardware allows them to commission and lease much higher-capacity systems than
other organizations could themselves afford. Commodification of computational power and
resources can thus lead to more efficient, more expansive and cheaper scientific computing.

Applying Infrastructure as a Service on numeric simulation trades the finer degree of
control and possible custom options(such as application-specific hardware) of on-premises
infrastructure for a much higher ceiling on peak resource usage(also called hyperscale com-
puting[Pral5]), reduced system maintenance costs, and a possible reduction on total oper-
ational costs by paying only for active computation time.

Due to the IaaS market expanding and the corresponding technologies maturing, in-
dustry standards have emerged for the virtualized environments available, such as Linux
containers|Lin]. Thus, proper porting effort to run simulation software on laaS platforms
can be re-used to run the same software on most other cloud vendors, or an on-premises
setup, moving forward.
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3.3 Interoperability with existing simulation workflows

Due to the popularity of present simulation packages in the neuroscience community and
their proven effectiveness, a new simulator must be able to work along the existing software
stacks and the established research workflows and processes. A central part of a software
package’s interoperability is the ability to present its features and functions through terms
and concepts already known to research personnel (neural net analysis and experimentation
techniques, cell modelling through biological factors, masking unnecessary computer science
details), and its ability to exchange information with the rest of the software tools currently
in use (such as neural net generators and visualization utilities). These features are necessary
for a smooth and effective introduction of a new simulation solution.

3.3.1 Incorporating existing software functionality

The neuroscientific research process comprises of many individual tools that work to-
gether to provide the final result. Since the field is vast, interdisciplinary and innovative, no
integrated solution can cover the entire spectrum of research procedures involved. There-
fore, a new tool introduced in a research process must be able to cooperate with the rest
of the tools in use. Effective cooperation consists of minimal effort in exchanging data, and
enhancement of the whole process through the specific capabilities the tool offers. For ex-
ample, a model simulation kernel can expand the set of models supported by the simulation
frontend, and a model definition processor can allow the end user to describe the desired
model in more efficient ways.

3.3.2 Simulation data format compatibility

Computer simulators provide the calculated results in the form of data files. Presen-
tation, and comparison between experimental results and model-based estimations, form
a major part of the research process. A single simulator cannot always process all models
under examination, and simulation results must have the same form that genuine experi-
mental data are available in, to allow for comparative study. Thus, the results files produced
by simulators and experimental data acquisition all have to be convertible into a common
form that is suitable for further analysis tools. In addition, simulation data files need to be
available in a specific uniform, commonly understood format, so they can be immediately
used by other research laboratories all over the world and exert a drastically greater impact
on scientific progress.

3.3.3 Simulation model schema compatibility

An important factor in in silico neuroscience is having a common way to represent
experiments to be simulated. The development process of new models usually starts from a
commonly known model, on which different variations are proposed and examined. When
these variations need to be tested on different simulators and no common representation
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format is available, the initial model has to be manually converted to the form each simulator
recognises, leading to unnecessary, tedious effort and harbours the risk of introducing errors
into the model descriptions.

The use of a common representation format also allows researchers to exchange proposed
models and effortlessly apply them, accelerating their work and allowing them to survey
models under study and development in laboratories worldwide. A standard model, paired
with its simulation results, can also be used in order to test a new simulation setup for
correctness. This case is very useful for researchers configuring a new simulation setup, or
developing a new simulation algorithm or middleware.

Another capability enabled by a common model representation is fully automatic exe-
cution of an experiment model on different simulation systems, directly or by converting
the representation to each system’s native format. This approach has been applied in the
BrainFrame platform[Sma+17], so that a specific model of human Inferior Olive neurons
can be simulated on different computer architectures. Depending on requested model pa-
rameters such as population size and connection density, the platform can automatically
select the fastest architecture to simulate the model, achieving significant run time reduction
compared to employing a single architecture.

3.4 Present work

This thesis proposes a neural net simulator solution on the compartmental extended
Hodgkin-Huxley level of analysis, covering the requirements described in this chapter in
terms of:

e Flexibility; simulated cells can be defined at a high degree of detail, with regard to
cell structure and electro-chemical mechanisms. Each cell can be modelled entirely in-
dependently of other cells. Each single cell can be modelled by an arbitrary amount of
cell compartments, and an arbitrary amount of ion channels(and respective gates) for
each compartment. Synaptic connectivity among the simulated cells can an arbitrary
structure.

e Large-scale model support; along with the flexible neural net modelling capabilities
described above, the simulator can utilize high-performance resources to reduce model
run time for large cell populations, using the OpenMP[Opeb]| parallel programming
interface. Parallelization scalability is proven as the number of compute cores in-
creases(along a representative range of multiprocessing), through performance tests
conducted on compute-intensive cloud-computing nodes.

e Easy model and experiment configuration; the neuron model is directly input in com-
partmental physiological analysis terms, without the need for specialized training or
programming skills. The declarative configuration format facilitates a possible future
extension, allowing graphical model input.
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e Support for integration with existing workflows; Cell, net and experiment models
are all described through the industry-standard, both machine- and human-readable,
JSON format. The simulator can run as an independent program on the user’s ma-
chine, or as a containerized microservice providing a WebSockets API, so it can readily
interoperate with other parts in a research process. As a proof of concept, the simula-
tor microservice was designed to be integrated with the BrainFrame project, providing
an alternate simulation backend.
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Chapter 4

Proposed Solution

In this chapter, the software developed in the scope of this thesis is presented and the
technical details and decisions regarding the implementation are discussed. The central
part of the software is a neural net simulator. Based on a non-parallel prototype developed
in Neurasmus B.V. additions have been made to produce a new physiologically accurate,
general purpose biological neural net simulator, which provides a user-friendly modelling
language and utilizes multiprocessor platforms efficiently through code parallelism. Ad-
ditional components allow the simulator to run as a cloud-native application, and as a
component in the BrainFrame platform developed by MicroLab. The simulator will referred
to as ParModHH from now on, for brevity and clarity.

4.1 Neuron electrophysiological compartmental model

The ParModHH simulator assumes the compartmental level of neuron modelling. This
level assumes that neural tissue consists of individual cells, and these cells are made up
of distinct anatomical features(called compartments), across which the cell matter varies
little. Some anatomical features may be lumped into single model compartments, as long
as simulation results remain accurate, to simplify analysis. The dynamics of the internal
state of each compartment are then defined directly through mathematical equations. In
the case of coarse or lumped compartments, the equations are extracted through directly
fitting their parameters to data, while in finer decompositions, the tubular parts of neurons
are simulated through the cable equation|Tra+91].

In specific, neuron compartments are described following the extended Hodgkin-Huxley
model[Lew66]. Each compartment is made up of intracellular space that contains neuroac-
tive substances affecting its behaviour, in various concentrations, and cell membrane that
contains protein complexes that selectively allow certain types of ions to move in and out
of the cell, under certain conditions.

Macroscopically, each collection of such similarly-behaving complexes in a compartment
or whole neuron is collectively named as an ion channel. Each ion channel complex is mod-
elled as a chain of specific components, so that all components must be activated for ions to
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Figure 4.1: A compartmental neuron decomposition example. A fine segmentation is denoted
by the thin lines inside the neuron body, while the coarser parts of the neuron are coloured
differently.

pass through the channel. The probability each ion channel component is activated or deac-
tivated may depend on membrane voltage, the local concentration of particular ions and the
population of identical components that are currently active. Macroscopically, each distinct
component type of an ion channel is called a gate of the ion channel, and its percentage of
active components is called a gate variable. Since all components must be active for a chan-
nel complex to be open, and the probabilities each component is activated are independent,
the channel’s total ion transfer rate is proportional to each participating gate variable mul-
tiplied. Since a channel may contain two or more instances of the same component type,
ion transfer rate may be proportional to the respective power of the corresponding gate
variable.

Aside from active ion channel functionality, the electro-chemical state of cell compart-
ments is affected by various sources. Electrical charge and chemical substances diffuse across
the cells, travelling between compartments. The membrane contains electrical connections
and selective ion channels with outside the cell, transferring electrical charge and specific
ions in both directions. Interaction with other neurons occurs in the form of electrical
synapses, where electrons directly travel across the membranes, and chemical synapses,
where the release of neurotransmitters from the presynaptic neuron temporarily opens the
post synaptic membrane’s ion channels near the synapse.

Each compartment’s state is modelled as a set of scalar variables; its intracellular electri-
cal potential, the concentrations of ions and other molecules that affect the cell’s dynamics,
and the gate variables of each ion channel. Electrical flux through the cell’s membrane
passes through passive leaks, ion channels, and electrical synapses:

e Passive leaks behave equivalently to an ohmic leak between the membrane’s two sides,
in series with a voltage difference caused by the connection’s molecular properties and
polarity.

e Jon channels are modelled after a voltage difference in series with a linear, time-varying
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Figure 4.2: Active and passive channels on a cell membrane and the effect of gates.

resistor. Effective ion channel conductance is then a maximum conductance constant,
multiplied by gate variables as previously described.

e Electrical synapse current is an antisymmetric, non-linear function of the local voltage
difference between the connected cells. Since the cell membrane functions as an elec-
trical insulator for the most part, trans-membrane current and the rate of membrane
potential change are linked through each compartment’s effective capacitance.
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Figure 4.3: The electrical circuit equivalent of the classic Hodgkin-Huxley model.
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4.2 Proposed simulation software

The ParModHH simulator is implemented as a non-interactive program, reading input
configuration files and producing data files containing the results of the specified simulation.
Input files provide the model of the neural net to be simulated, the model’s initial state,
the model of stimulus to be applied to the net during the simulation, experiment duration
and timestep used for simulation, and auxiliary simulator configuration such as input and
output file redirection, performance hints for the simulator core, etc. Output files contain
the model’s state variables for each simulated timestep, and meta-information about the
simulation, such as run time and memory usage.

4.2.1 Experiment setup model

The experiment under simulation is defined by the neurons present and their initial state,
the synapses connecting the neurons to each other, and the stimulation each neuron receives
externally. All parameters of the model are defined through human- and machine- readable
JSON[Jso] files, whose structure follows the well known to field experts Hodgkin-Huxley
formulation. Each part is modelled as follows:

4.2.1.1 Neuron model

The neural net model consists of a population of interconnected neurons. Each neuron
is identified by a serial number for the scope of he simulation, that is used to differentiate
between neurons in the experimental setup. The network’s neurons may all share the same
neuron model, or each neuron can be modelled differently. In the latter case, the population
is described by a list of models and the serial numbers assigned to each neuron corresponds
to its position in the neuron model list.

Each neuron is currently modelled in the simulator as a linear chain of interconnected
cell compartments, each representing a portion of the cell. For example, dendritic tubes of
a similar diameter are often lumped together, flattening the dendritic tree to a cylinder
chain[RAL62|. Another example is the commonly used ball-and-stick neuron model, that
segments a neuron into the soma part, where most complex chemical processes take place,
and the dendrites part, which roughly models the kinetics of all stimuli received and emitted
by the cell. Interaction with probes or other neurons is assumed to be made through contact
among dendrites. Currently, all parts of the cell containing dendrite endpoints and synapses
are assumed to be lumped into the first compartment on the chain.

Each compartment is modelled through the electrotonic features connecting it with ad-
jacent compartments and the cell’s exterior. Electrical charge is modelled to spread across
compartments as if they are ohmically connected, while ion diffusion across the compart-
ments is assumed to be negligible. The membrane’s passive leak channel and ion channels
are modelled after conductors in series with voltage sources(also called reversal potentials).
Reversal potentials and passive leak conductance are assumed to be constant through time,
while each ion channel’s conductance is equal to its maximum conductance, multiplied by
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its gate variables, each raised to its effective power. The electrical currents crossing the
membrane are modelled in current density units, and membrane capacitance and chan-
nel conductance are likewise modelled in per-area units. As a result, electrical leaks be-
tween compartments have to be scaled by the ratio of membrane areas of the two com-
partments, so the same total current is correctly transferred between the compartments:
lieak = Jl,leak * Areay = _J2,leak * Areas .

Figure 4.4: A simplified catenary neuron model, supported by the simulator.

Each ion channel gate has a set of parameters describing the behaviour of its activation
variable. A gate variable may be a function of instant membrane potential (called static
further on, since it displays no memory effect), or the variable’s rate of change is a func-
tion of the variable’s value and the compartment’s membrane potential, and also calcium
concentration, in calcium activated ion channels.

Gate variable dynamics are commonly described in terms of functions a and (3, which
govern the rate of the respective chemical gate structure opening and closing. In the classical
Hodgkin-Huxley model, the o and [ values are functions of membrane potential. In the
case of ion-activated ion channels, the o function is a function of concentration of that
ion instead, and active ion concentration is modelled as a leaky bucket whose fill and leak
rates are specified. An alternative dynamical behaviour considers the activation variable
change rate to be proportional to the difference between the « function and gate variable,
and inversely proportional to the [ variable. For all dynamic gates, the initial state of the
variables is defined in the model.

Experiments run with uniform models can vary the initial membrane potential of the
compartments of each neuron. (In the case each neuron is modelled differently, initial state
is already for each cell.) For each compartment, voltage can be set to model default, or it
can be a cyclic linear variation (i.e. sawtooth function) with regard to cell serial number.
Variation period can be different for each compartment type.
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4.2.1.2 Connectivity model

The simulator supports connectivity between neurons, in the form of electrical gap
junctions between lumped dendritic compartments. Gap junctions are modelled as non-
linear resistors, whose conductance is a base parameter(also called weight) multiplied by
a symmetric function of voltage difference(in mV) between the compartments: g(AV) =
Jo - (0.86_0'01'AV2 +0.2) . Since the compartments containing the synapses are lumped and
gap junctions work symmetrically, gap junction connectivity between each pair of cells can
be described as a symmetric connectivity matrix W, with each element representing total
gap junction base conductance between each pair of cells. (No connectivity between a pair
of cells is equivalent to zero base conductivity.)

The simulator internally supports any arbitrary connectivity matrix, but for file size
technical reasons, three implicit connectivity models are currently supported: the null con-
nectivity model, where each neuron is separate from the others, the all-to-all uniform con-
nectivity model, where every single pair of neurons is connected by the same gap junction
weight, and the fixed probability binary connectivity model, where each possible connection
between a pair of cells has the same stochastic probability of existing, and all existing pair
connections have the same weight (formally put, all elements of W are Bernoulli random
variables of specified magnitude and probability). Stochastic models are evaluated using
a random number generator, whose seed can be specified so experiments are reproducible
within the simulator version.

4.2.1.3 Stimulus model

The simulator supports applying external stimuli to neurons in the simulated net, in the
form of immediate electrical current injection. Current is assumed to be injected to the first
compartment of each neuron. Currently, the only stimulus type supported is DC current
pulse stimulus, that has a specified time of onset and duration, and may vary in intensity
among cells. Like the voltage initialization option, pulse intensity can be a sawtooth function
of neuron serial number.

In conjunction with an unconnected cell population (null connectivity model) and vary-
ing compartment voltage initialization, by selecting the proper repetition periods, an entire
parameter combination grid of single cell experiments can be performed in a single sim-
ulation run. For example, by selecting null connectivity, initial voltage variation periods
of 2 and 3 in an 2-compartment model and a variation period of 5 for stimulus intensity,
30 cells can be instantiated with the same model, with voltage initialization out of a grid
of 2 different initial voltages for the first compartment and 3 different initial voltages for
the second compartment, all under 5 different stimulus intensities. This technique has the
limitation that grid dimensions must be co-prime; future work will support more general
parameter grids.
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4.2.2 Internal model data representation

Before simulation starts, the symbolic form used to describe the experiment model is
converted to a more direct, raw binary representation that can be efficiently processed by
the simulator engine.

The complex neuron modelling schema described above is converted to a more general,
tabular form.

The model properties for the compartments of each neuron are stored in a matrix, where
each row represents a single compartment and contains all physical parameters, along with
the DC pulse stimulus parameters, for that compartment. The compartments belonging to
the same neuron are represented by continuous rows, and each neuron’s set of rows is added
to the matrix in serial number order. The amount of compartments used for each neuron
is represented through an auxiliary vector holding the cumulative compartment count per
neuron.

Similarly, the properties for all gate variables present in a compartment are represented
in consecutive matrix rows, grouped by ion channel. The distinction of which gates belong
to which channels is resolved by extending the gate properties row with the ion channel
properties, and zeroing channel properties in the rows of all gates, except for the last gate
belonging to that channel. The constants defining each gate’s kinetics formula are stored in
the same space on the row, and a formula type integers are used to interpret these constants
during simulation. Calcium-controlled ion channels are also implemented on this matrix
through the use of pseudo-gate rows, which represent calcium concentration kinetics, and
consecutive ion channel rows representing the calcium-activated ion channels. The amount
of gates controlling each compartment are represented through an auxiliary cumulative
count vector.

Finally, the system’s state, comprising of compartment voltages and gate(and pseudo-
gate) variables, is stored in vectors in the same order that the compartment and gate
constant matrix rows are stored. As a result, static gates also have corresponding dummy
state variables, which take unspecified values and should not be used.

Compartment lon channel Gap junction
properties properties sparse matrix
Comp.# C E_ G .. Gate# p Vi Gion @ 6 .. Cell# Connections
- 1 L1 1 | |
8 c
o 2 —| ® 2 2
3 g 3 3 |
o S~
3 4 1l 4 4
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-
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7 g _{_:2 i 7 7
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Figure 4.5: The parameter matrices internally used by the simulator.
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The gap junction base conductivity between each pair of neurons can be represented
as a matrix, as discussed previously. As the neural net’s population increases, this matrix
becomes progressively sparser. When the matrix is sparse enough, run time and memory
usage can both be reduced by replacing the full matrix with a sparse representation. The
simulator supports a sparse representation of the gap junction conductivity matrix, and
can automatically select the most efficient representation form for each model. The sparse
conductivity matrix is implemented as a list of lists. For each neuron, an associated pair
of index and value lists is maintained. The index list contains the serial numbers of the
neurons the associated neuron is connected to, and the value list contains the respective
gap junction conductivity values.

Cell # Connections
Target # 3 4 6 8 13 25
' Weight | 0.20 0.05 0.30 | 0.01 0.05 0.14
Target # 3 24
2 Weight | 0.11 | 0.66
Target # 1 2 7 42
> Weight | 0.20 0.11 0.08 | 0.03
Target # 1 5 9
* Weight | 0.05 0.02 0.09

Figure 4.6: Structure of the gap junction matrix.

4.2.3 Profile of a ParModHH simulation run

Initially, the program reads the JSON configuration files that describe the experiment to
be simulated, whose filenames are passed through command line parameters. Configuration
files describe one or more core facets of the simulation run, such as cell population, connec-
tivity model, stimulus model, and duration of the experiment, as well as engine options such
as the time delta used to approximately integrate the neuron dynamics, and performance
tuning options not affecting simulation results, and meta-configuration, such as result data
output options.

Configuration files can be composed, with the facets in each new configuration file added
superseding previous definitions of the same facets. This functionality enables a wide variety
of external tool and experimentation workflows, allowing different tools to separately export
their part of the experiment to the simulator, and allows researchers to mix, match and
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extend existing experiment definition component files, without the need to process and
generate a new combined file.

After the configuration files are processed to form the final simulation setup, the simula-
tor constructs the data structures used by the high-performance simulation core, such as the
compartment and ion channel property, and cell connectivity matrices described previously;
the parameters of each compartment are listed in the compartment properties matrix, the
ion channel and gate variable parameters and kinetics formulae are decoded into the com-
bined ion channel and gate variable property matrix, and the connectivity matrix is set to
empty in the null connectivity case, full in the all-to-all connectivity case, and filled with
the contents of Bernoulli trials for each possible synapse, in the fixed probability case. The
amount and type of state variables in the neural net model have been determined at this
point.

Since the trajectory of all state variables may not fit in memory for the whole duration
of the experiment, a smaller memory buffer containing a limited amount of state variable
snapshots is allocated to calculate successive steps of the simulation. Whenever this buffer
fills, its contents are added to the output data file and only the previous steps required by
the dynamics integration algorithm are kept for the following iterations.

Once the internal simulation data structures are constructed, the behaviour of the simu-
lated model over time is calculated over successive discrete timesteps. The evolution of the
model state throughout each timestep is approximated using ordinary differential equation
integration algorithms, given the dynamics of the neural mechanisms present in the sys-
tem. Currently, the Forward Euler integration algorithm is supported by the simulator. The
simulator core (also called kernel) is the computation-heavy algorithm that is repeated to
calculate each timestep. The computations involved are rate of change calculations, subse-
quent calculations to accurately predict the effect of those rates, and management of possible
transient auxiliary data structures (such as the results buffer used to conserve memory in
this implementation).

The factors affecting the rate of change of each state variable in the system are the cur-
rents travelling between neurons through electrical synapses, the currents diffusing across
adjacent compartments in each neuron, the currents and specific ions entering and exiting
each neuron compartment through ion channels and passive leaks, and the rate each ion
channel gate opens and closes, which is explicitly described in the Hodgkin-Huxley formu-
lation.

For each compartment, the cross-compartment, passive and ion channel leaks are sum-
mated using their respective model equations, to calculate total current influx and, through
the membrane capacitance value, convert it to that compartment’s rate of change of voltage.
In the case of the special lumped dendrite compartment (or point neurons), the currents
of this neuron’s gap junctions to other neurons are added to total current influx. The rate
membrane voltage changes on each compartment is the total current influx, divided by its
membrane’s capacitance. The influxes of ions interacting with specific mechanisms are also
calculated, along with the current of the respective ion channels. Ton concentrations natu-
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rally decay proportionally to their magnitude, adding another factor to each concentration’s
rate of change.

Finally, the rate of change for each gate activation variable is calculated, using its corre-
sponding row in the gate property matrix described previously. Since the kinetics formula
varies radically from gate to gate, a collection of parametric formulae is supported by the
simulator. Integers in the gate property row select the type of the o and g functions, their
specific role in gate variable dynamics, and their dependencies on other state variables such
as compartment voltage and ion concentrations. Then, the reals in the gate property row
fill in the selected formulae and the final rate of change value is computed through just a
few conditional blocks.

Given the current value and the rate of change for each state variable in the present
timestep, their values for the next timestep are estimated. The Forward Euler algorithm
adds the present value, and the rate of change multiplied by the timestep duration, to
estimate the value of the next timestep. Since the values in the next timestep depend on
already computed values in the present timestep, calculations for the next timestep for each
state variable can take place in parallel. More sophisticated and accurate techniques, such
as the Runge-Kutta methods, could be added in a future expansion.

After the previously described simulation steps are completed, the data output files are
finalized by writing the remaining steps in the temporary snapshot buffer. An additional
JSON file can be output, containing performance metrics such as the wall time taken to
process the input files, construct the simulation core data structures, and run the simulation
over the specified experiment duration, and maximum memory usage.

4.3 Simulation code parallelization

The ParModHH simulator was developed targeting general purpose CPUs. This com-
putation architecture is a natural fit for the simulator since:

e General purpose CPUs are supported by all cloud and high performance computing
vendors, and most vendors offer support for containerized implementations

e CPUs can simulate any type of model, while neuromorphic hardware have restrictions
in model type, due to the assumptions made in their neuromorphic design

e General-purpose architectures can easily handle code variability between cells in het-
erogeneous networks, while vector architectures incur severe penalties in such a sce-
nario

e The flexibility of CPUs makes running program interpreters and complex logic possi-
ble. Such features are required for a simulator that allows users to highly customize the
mechanisms and structure of neuron models, without altering the simulator’s internal
code themselves, and with minimal delay between simulating entirely different mod-
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Figure 4.7: The entire simulator core flowchart.
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els. Such flexible simulators enable rapid model development and evaluation, greatly
empowering the research process.

The ParModHH workflow described above was enhanced with OpenMP directives, in
order to utilize the parallel processing ability of multiprocessor systems. For two or more
blocks of calculations to be simultaneously performed on separate processors, the calcula-
tions in each block must not depend on the other’s results in any way. Each separate block
of calculations assigned to be performed in parallel with others incurs computational and
synchronization cost to ensure proper scheduling. Therefore, these blocks must be many
enough for all processors to be busy, and few enough to not stress the OpenMP scheduler.
For example, when a loop is parallelized, the OpenMP scheduler may assign whole contigu-
ous blocks of iterations, as single tasks, to processors. This will maximize system efficiency,
as long as the iterations take roughly the same time.

Due to the conductance-based, continuous-time modelling of electrical synapses, each
neuron must communicate its voltage state to all the neurons it is connected to, in every
single timestep. The high connectivity density of neural nets means their diameter is ex-
tremely small; typically exactly 2 for fixed-probability connectivity models supported by
the simulator, and double logarithmic on average, at most logarithmic to population size
for more realistic|[BS09] fixed-expected-degree models[CL02]. As a result, no performance
gains are expected from splitting neurons into clusters, and marking the data dependencies
between clusters based on the connectivity of their neurons, in shared memory architectures.
In addition, the Hodgkin-Huxley dynamics are highly non-linear and chaotic, therefore the
model is unsuitable for the Parareal algorithm[LMTO01] thst could make progress in multiple
timesteps. Therefore, all computations per timestep are interlocked with a global synchro-
nization step in this implementation.

Since the next values of the state variables can be computed independently in the For-
ward Euler integration scheme, parallelization could be applied to the level of each state vari-
able. This approach, though, was considered problematic for multiple reasons. The subtasks
resulting from a state-variable decomposition are too small and too many, while synaptic
current computations for the lumped dendrite compartments, affecting compartment mem-
brane voltage, require disproportionate computational work, presenting problems for effi-
cient task scheduling. Aside from gap junctions, state calculations for each cell involve state
variables of the same cell, so if different processors compute parts of the same cell, these
variables will occupy both cache memory modules, diluting cache efficiency. In addition, the
flexibility-oriented functional approach of the simulator means more complex mechanisms
may be added to the model, increasing interaction between state variables and making a
full decomposition of state variable calculations more convoluted. Finally, metrics gathered
from conducted performance tests indicate memory traffic for gap junction computations
dominates execution time for large network sizes, making the simulation performance of
intracellular dynamics less important.

For these reasons, parallelization was performed across simulation of entire neurons in
the net. This analysis is expected to be efficient since only the lumped dendrite compartment
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voltages need to be communicated between neuron simulation tasks, the computational load
for each neuron relative to task overhead is much larger than with finer approaches, yet small
enough for work to be distributed evenly among processors. This parallelization approach
is specified through the #pragma omp for directive, applied to a loop that iterates through
simulation of the new state variable values for each neuron.

In case the simulation results buffer is about to fill, the operation flushing the results
to the file can be performed in parallel with the new timestep. This operation is specified
as an independent sibling task to simulation of all neurons, in order to mitigate possible
I/O and file system delays. This property is specified through the #pragma omp single
OpenMP directive applied to the data output statement block, the addition of the nowait
clause to both the data output and neuron simulation loop directives, and the scoping of
the #pragma omp parallel directive to the entire body of the timestep loop.

For each timestep

Parallel task
assignment

(sim buffer full)

( Data \ ﬁeuron #1 task \ ﬂst neuron task \

output
Calculate gap junction Calculate gap junction
current from synapses current from synapses

task
For each compartment

Flush sim buffer
to file

\_/ - J I\ J

v

Parallel task
synchronization

For each compartment

Calculate dynamics
in compartment

Calculate dynamics
in compartment

Figure 4.8: The parallelized version of the simulator core.

Performance metrics showed that for useful simulation durations, single threaded initial-
ization takes an insignificant portion of run time. Therefore, no parallelization was applied
to the file input and data structure initialization stages. Since future net connectivity mod-
els may alter this proportion, preparatory work was performed on the sparse gap junction
matrix initialization algorithm; the random number generator is initialized with a different
seed at the start of each row, so that successive random variable evaluations for each row
can also run in parallel.
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4.4 Cloud-native application considerations

The ParModHH simulator was initially designed as a standalone program that can be
locally run on a personal computer. However, its usefulness and capabilities can be enhanced
if it is deployed on a high-performance computational node, as an alternate option among
other simulation backends, or integrated into a full research software solution.

4.4.1 Containers and the Docker architecture

A software application format that offers easy adaptation to different environments and
system architectures is the application container. Originally designed to cover the needs of
cloud computing, the resulting format and support infrastructure also provide the means
to create fully modular software blocks, that make it possible to integrate the functional-
ity of various software packages, without the difficulties of setting them up in a common
installation.

The flexibility provided by the container format, combined with the low porting effort
required to run this type application on diverse platforms and runtime environments, mo-
tivated development of a containerized version of the ParModHH simulator. The Docker
platform[Doc| and container standard was selected as the development target, since it cur-
rently is the most prevalent standard in the container ecosystem, is supported by nearly all
cloud-computing vendors offering container hosting, allows vertical scaling through efficient
multicore execution of the ParModHH simulation software, and allows horizontal scaling
through automatic orchestration of a group of simulator instances running multiple models
concurrently.

The Docker platform consists of tools that handle the technicalities of container ini-
tialization, isolated execution, communication and resource use, and the orchestration of
deployment and interconnection of multiple containers, which run together to implement a
complex application that works under any underlying infrastructure, without special con-
figuration by the application developer.

Containers are managed by a Docker daemon local to each host machine, through Linux
namespaces and cgroups features, so that containers run the same Linux kernel as the host,
each on a secure, isolated environment. The sets of file contents each container is created
with are the same for containers doing the same work. These commonly used sets of contents
are called images. Each image represents the software the container is supposed to run, and
all images used in a project are stored in a database called a Docker image registry.

Beside spawning and managing containers, the Docker daemon can also read a de-
scription of how containers provide services and connect to each other to form a whole
application, in order to manage that application. For example, it makes sure applications
are responsive, by replacing the containers whose software has stopped working with new
containers running the same image, and replicating containers running the same service
to balance increasing load. One or more machines running the Docker daemon can also
cooperate, so that the containers used by an application can be distributed among multiple
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machines, further increasing deployment scalability.

4.4.2 Porting the simulator to the container architecture

In order to run the simulator under the Docker environment, a Docker container image
must be built. An executable file is first generated from the C++ source, selecting x86-64
CPU architecture and static linkage for all libraries, in a development machine, and then
added to the Docker image to be built. This executable file can run by itself with no other
software additions to the Docker container. In case some libraries cannot be linked statically
(e.g. OpenMP runtime for the Intel compiler), the necessary shared library files should also
be added to the image, in the default shared library paths, or along with the executable by
manipulating the LD_LIBRARY _PATH shell variable.

The Docker community typically develops script-based applications that run on an inter-
preted environment (such as Apache, NodeJS, Python, etc.) without specifically targeting a
CPU architecture. However, since the Docker security model exposes only the host system’s
kernel and no system files, no portable script can be directly run on a Docker image. Instead,
the shell, and other middleware that interpret scripts, must themselves be installed on the
Docker image as executable binaries, adding a specific dependence to host architecture for
every image built. Currently, the x86-64 architecture dominates the share of available im-
ages, and host installations. In case Docker is, for example, installed on a host with an ARM
CPU, that host can only run Docker images specifically built for the ARM architecture. As
a result, adding compiled binaries to Docker images may be an uncommon practice, but in
itself it adds no new limitations to their execution on Docker hosts.

A way to present the ParModHH simulation functionality as a modular service to other
software components is the generic isolated program execution and data output module
called Communicator, developed in MicroLab. This module allows the transfer of input
data to an isolated execution environment, invocation of the program to be executed, and
retrieval of the files produced by the program. The whole process is mediated through a
WebSockets connection, so the module can interface with software tools outside the Docker
platform. The module is installed in the same container as the ParModHH simulator, and
configured to use it as the execution target.

The ParModHH simulator, combined with the Communicator module, offers a modular
simulator service that follows cloud application best practices|Wig|, implementing a tradi-
tionally HPC workload while maintaining flexible connectivity with the other parts of the
application stack and allowing quick, effortless deployment to any server infrastructure?
Since it is a backend service, it does not depend to other services to function. Clients of
this service are visible as inbound TCP connections, so any external tool or middleware
can connect to the service seamlessly, regardless of runtime environment. All software re-
quired to build the image from a local ParModHH development machine is a set of layers
of available Docker images and final ParModHH binaries, documented in a Dockerfile. The
automatic image build and rollover and container instantiation process eliminate the need
to modify the functionality of containers in use. The containerized implementation can be
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effortlessly launched and connected to a testing application instance, that is similar to how
the application runs in the production stage.

4.5 BrainFrame platform connectivity considerations

The BrainFrame platform is a project in active development, aiming to provide neurosci-
entists with an easy to use biological neural net simulation platform, incorporating various
hardware acceleration architectures, in order to provide high simulation performance over
a wide variety of neural nets. BrainFrame provides a web user interface that allows neuro-
scientists to run simulations on high-performance hardware, without the assistance of an
acceleration engineer.

A core component the BrainFrame platform is the PyNN interface[BS09], receiving com-
monly accepted neural experiment definitions and implementing the required glue logic to
invoke different simulator packages on these models. BrainFrame implements an alterna-
tive PyNN simulator backend plugin, that connects to different simulation backends to the
common interface.

BrainFrame users select the simulator package, neural net model and relevant physio-
logical parameters to be used, and describe the experiment to be performed, through the
web user interface. When the whole experiment definition is complete and submitted to
the system for processing, it is input into the PyNN system, which can run common model
types in various simulators. Each supported simulator package can be used through the
corresponding PyNN backend plugin. The BrainkFrame platform includes a PyNN plugin
that analyses the specified neural net model’s structure and offloads computation to the
most efficientacceleration hardware platform for the given net.

4.5.1 Interface between ParModHH simulator and BrainFrame
platform

PyNN interface
(- O)

[ pynn.brian j [pynn.brainframej ¢ e pynn.parmodhh
[ Brian ] [ PyHet j

PyNN plugin pynn.neuron
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Figure 4.9: The proposed ParModHH plugin, in the context of the PyNN architecture.
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The ParModHH simulator can be added to the existing BrainFrame software stack as
an additional PyNN module, providing flexible ion gate-level model simulation capabilities.
Since this level of neuron detail is at the time not supported through the generic PyNN cell
types, the neuron models native to this simulator can be defined through the ModularHH,
Compartment, IonChannel and Gate classes of the module.

The ModularHH class is a specialized subclass of PyNN multicompartmental neuron
model base class, and the neuron’s structure is composed from the other component classes.
The population, connectivity and synapse model objects are extended from the existing base
PyNN counterparts, implementing the standard ElectricalSynapse, FixedProbabilityCon-
nector, AllToAllConnector objects of the common interface, and the Classical HH standard
neuron model object by expressing it as a ParModHH model.

After the full experiment model is constructed, simulation can commence. The plugin
generates JSON configuration files which describe the simulation setup to the ParModHH
simulator in a temporary directory, and invokes the simulator executable to run on the
generated files. The result files are then collected by the BrainFrame backend. In a future
extension, the Recorder class will be properly extended so the result data are directly
available from the PyNN plugin.
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Chapter 5

Results

5.1 Experimental setup

An important design requirement for the ParModHH simulator was the effective sim-
ulation of large, irregular neural net models. For simulation to be effective, run time has
to be minimized through clever algorithms, as well as optimal utilization of computational
resources. Modern scientific computing hardware focuses on multi-processor systems and
code and data parallelism to achieve high computational performance. Therefore, a set of
runtime performance tests was run on multi-processor, virtual machine instances, allocated
from the Amazon Elastic Cloud infrastructure[Bar18].

Allocations were made on the c5 tier of instances. The specific tier guarantees the class
of CPU architecture physically running the virtual machine. The allocation sizes used were
cb.xlarge, c5.2xlarge, c5.4xlarge, c5.9xlarge, c5.18xlarge instances, each with 4, 8,
16, 36, 72 available vCPUs respectively. The physical CPUs used for the simulations were
Intel Xeon Platinum 8124M @ 3.0 GHz (18 cores, 36 threads each). It should be noted
that these CPUs have HyperThreading technology enabled, so each vCPU corresponds to
a processor hyperthread. All simulations were run to utilize all available vCPUs on each
instance.

In all cases, performance was measured through the wall time required to run 10,000 sim-
ulation steps of the simulation. (Preliminary tests showed that data structure initialization
had an insignificant impact on total run time.) Data output was disabled, and the internal
matrix representation was set to sparse in all experiments, so that algorithmic performance
could be directly compared. In order to investigate neural structure processing performance,
synthetic truncated models were generated for the given compartments/neuron and ion
channel gates/compartment parameters. A simulation was run and timed for each combi-
nation of the vCPU count, neuron population count, net density, compartments per neuron,
gates per neuron parameters specified below :

e The simulation timestep was selected at 10 microseconds, to ensure model stability.
e Simulation time was 100 milliseconds (10,000 simulation steps) for all runs.
e The vCPU count is: 4, 8, 16, 36, 72 vCPUs running in parallel.
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Neuron counts considered are: 1000, 2000, 4000, 8000, 16000 neurons.
Neuron connectivity densities considered are: 0%, 25%, 50%, 100% of total possible
synapses.

Neuron compartment counts considered are: 1, 2, 4, 8, 16 compartments per neuron.
Compartment gate counts considered are: 1, 2, 4, 8 gates per compartment.

In total, 2000 simulation runs were performed to cover the explored parameter grid.

5.2 Results presentation and discussion

For brevity, and since the simulator’s core use caseis large population sizes and increasing
complexity of intra-neuron modelling, only the experimental data for runs modelling 16
compartments per neuron and 8 gates per compartment (total 128 gates and 144 state
variables per neuron) are displayed below :

Table 5.1: Run time for 4 vCPUs, in seconds.

Neuron population size
1000 2000 4000 8000 16000

0% | 24.0 478 95,5 190.5  380.6
25% | 30.5 74.0 198.0 684.5 3296.6
50% | 36.4 96.6 292.8 994.1 5292.3

100% | 46.5 137.9 4582 1567.3 8822.3

Net Density

Table 5.2: Run time for 8 vCPUs, in seconds.

Neuron population size
1000 2000 4000 8000 16000

0% | 11.8 238 474 954  191.3
25% | 149 359 955 349.3 1695.8
50% | 17.7 47.8 141.2 507.0 2682.0

100% | 22.7 67.2 219.9 786.0 4432.8

Net Density

Performance tests were designed to investigate the simulator’s strong scaling perfor-
mance, as well as the effect of neuron and network complexity on performance.

Strong scaling is defined by the increase in performance as an increasing population of
processors works in parallel to solve a problem instance with a fixed computational load.
Strong scaling tests expose the algorithm’s capability to distribute the problem’s compu-
tational load across cooperating processors, minimizing processor idle time and redundant
computations. Idle time may present through the natural data dependencies of the algo-
rithm, or saturation of the processor interconnection fabric’s channels. In addition, some
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Table 5.3: Run time for 16 vCPUs, in seconds.

Neuron population size
1000 2000 4000 8000 16000

0% | 6.0 123 246 48.0 95.9
25% | 7.6 18.7 495 1739  831.0
50% | 9.2 24.6 726 2464 1317.8

100% | 11.8 353 114.2 393.0 2212.7

Net Density

Table 5.4: Run time for 36 vCPUs, in seconds.

Neuron population size
1000 2000 4000 8000 16000

0% | 2.7 54 11.2 222 44.2
25% | 34 85 223 828  389.7
50% | 4.1 114 324 117.1 6175

100% | 5.3 159 50.6 1824 1006.7

Net Density
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Figure 5.1: Run time for 4 vCPUs, as a function of population size.

computations may need to be replicated across processors (for example, boundary condi-
tions and time-varying parameters).

An alternative metric in use is weak scaling, where the problem size remains fixed per
processor, performance is measured by total problem size and the performance challenge is
presented by the stress the total concurrent computation rate applies to the infrastructure.

It is clear from the data that run time increases linearly with connection density and
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Table 5.5: Run time for 72 vCPUs, in seconds.

Neuron population size
1000 2000 4000 8000 16000

0% 1.5 29 57 119 25.9
25% | 24 44 119 424 195.8
50% | 3.1 6.2 176 57.8  300.7

100% | 3.2 81 264 94.1 509.4
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Figure 5.2: Run time for 8 vCPUs, as a function of population size.

quadratically with population size, as would be predicted by a naive analysis of the simula-
tion algorithm. Under this type of analysis, which is also used in computational complexity
and worst-case analysis, any fundamental calculation step takes constant time, regardless
of the code path taken, cache misses, out-of-execution functional unit utilization, or other
instruction execution context.

For a given population size N, the number of possible synapses is N %_1) = O(N 2.
The number of realized synapses, under the fixed probability model, is a fraction of total pos-
sible synapses. Computations for each neuron’s internal dynamics need to be performed for
each neuron independently from each other’s state. Internal neuron complexity is given by
the model definition and, for phenomomenological compartment decomposition, is indepen-
dent from neural net size. Consequently computational load for internal neuron dynamics
calculations scales with O(N) for increasing net size N. Therefore the total computational
load scales with O(N?) for large neuron populations.

For an unconnected population, run time was measured to be linear to population size.
That is also consistent with the type of analysis mentioned above, since in that case there
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Figure 5.4: Run time for 36 vCPUs, as a function of population size.

are zero synapses, and computation is performed regarding each neuron’s internal dynamics
only.

For larger population sizes, measured run time is inversely proportional to the number
of vCPUs used, modulo a very small constant factor (typically less than 50 seconds, no
correlation to model size or complexity). This means the simulator displays ideal strong
scalability, up to the maximum problem size and number of processors tested.

Ideal scalability under the per-neuron parallelization implemented in the ParModHH
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Figure 5.5: Run time for 72 vCPUs, as a function of population size.

simulator requires that for each simulation timestep, the computational load of neurons is
evenly distributed among the processors, so that all processors finish their assigned work
at the same time and no time is wasted in processor idling. The even distribution of work
per neuron is an effect of the fixed probability neuron model, which statistically ensures all
neurons have the same connectivity degree due to the law of large numbers. In addition,
the delay between start of a timestep and start of parallel processing (due to per-timestep
result buffer management and OpenMP parallel section initiation) and the delay of the
synchronization process have to be negligible.

Beside parallel distribution of work, another potential source of speedup is the distri-
bution of working memory. Processing for each neuron refers to specific slots in the state
variables vector and a specific row in the post-synaptic connectivity matrix. Thus a smaller
set of neurons per processor corresponds to a smaller amount of memory each processor
needs to access exclusively, and those data may reside in a smaller, faster cache hierarchy
level as a result.

Figure 4.1 shows how parallelization on a problem with maximum net population size
scales ideally across the multiprocessing degrees tested.

Analysis of the experimental results showed that the relative effect of additional intra-
neuron complexity on run time is an additive factor that is linear on the number of state
variables added per cell. This is expected, since currently each variable depends on at most
one other state variable for dynamics computations. Total run time remains inversely pro-
portional to number of processors used. This is also expected, since the previous figures
already show perfect distribution of per-neuron load, and no additional neuron interactions
exist in the intra-neuron mechanisms. Figure 4.1 shows this linear scaling, for a representa-
tive neural net with maximum number of gates per compartment and varying the number
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Figure 5.7: Run time for 8000 neurons and 25% density, over total amounts of gates, for 8
gates per compartment.
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Chapter 6

Conclusion

6.1 Remarks

The aim of this thesis is to develop a biological neural net simulator supporting a wide
range of neural models and large neural net population sizes, capable of utilizing existing
high-performance and cloud computing infrastructure. The result is the ParModHH simu-
lator, which is can simulate individually-modelled neurons under the multi-compartmental
extended Hodgkin-Huxley model, supporting a wide array of ion channel models.

The simulator expresses neuron models in structural terms neuroscientists are familiar
with, allowing them to directly describe a new ion channel, gate or activation condition,
instead of having to learn a complex specialized programming language and deal with
system administration technicalities (like when using, for example, Neuron NMODL files).
As a proof of concept, a modern model for Inferior Olive neurons[DG+12] was captured
into the simulator’s model format.

This simulator was run on Amazon EC2 compute nodes, which belong to the higher
end of consumer hardware performance and whose scale is similar single nodes in current
HPC setups. It presented excellent strong scalability across the entire parameter space of
population size, network density and single-neuron complexity. The simulator was deployed
on the EC2 instances as a standalone container, accessed through the WebSockets interface
by a local client to run the performance experiments. The simulator was also packaged into
a PyNN plugin option for use by the BrainFrame simulation platform.

In conclusion, the ParModHH simulator achieves the initial model quality, high perfor-
mance and deployment flexibility targets, and the underlying system can easily expand to
include new capabilities and runtime platforms.

6.2 Future work

The ParModHH simulator, in its present state, can be directly extended in three direc-
tions: towards an extended gamut of neuronal and synaptic models, toward acceleration on
alternative computational systems, and toward complete product functionality.
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The neuron model’s compartment connectivity model could be expanded from a catenary
topology to a general graph, to include different pre- and post-synaptic compartments and
self-synapses. The calcium- activated ion channel model could be generalized to a ligand-
activated ion channel model, enabling physiological chemical synapse models and more ion
channel models. A further generalization could even include the ion channels activated by
external stimuli such as light, mechanical stress[RSP15], and pH[KWO06].

The simulator kernel could be ported to different processor architectures such as GPUs
and reconfigurable logic. The single-kernel requirements of GPU architectures could be
mitigated through clever use of conditional instructions, by padding internal neuron data
structures to equalize memory stride, and by dynamic construction of GPU compute ker-
nels. Reconfigurable architectures could support the neuron-internal computations with an
arithmetic unit that matches the simulator’s model format, and with a high-bandwidth core
parallelizing the processing of in-memory synaptic data.

The existing simulator could also be enhanced with features making it ready for produc-
tion use, such as live simulation results streaming, simulation snapshotting for robustness,
and a graphical interface for researchers to design neuron models in.
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