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ATayopeveTal 1 avTLYpapt], 0ToBNKeEVoT Kol SlovouUn TG TOPOVGAS EPYCiog, €5 OAOKANPOL M
TUAUATOG AVTAG, Yo epmoptkd okomd. Emtpémeton n avatdmmon, amobkevon Kot Stavoun yio
OKOTO LN KEPOOOKOTIKO, EKTALOEVLTIKNG 1 EPEVVNTIKNG PVONC, VIO TNV TPOLTOBEST VAL AvaPEPETAL
n YN Tpoérevong Kot va dratnpeital To mapov upvopa. Epotiuate mov agopolv T ypnon g
£PYOCI0G Yo KEPOOGKOMIKO GKOMO MPETEL VO, AmeLHVHVOVTOL TPOG TOV GLYYPAPEQL.

Ot omdyelg Kol To GUUTEPACUATO TOV TEPLEYOVIOL GE OLTO TO EYypapo ekepalovv Tov
oLYYPAPEN KOl OV TPEMEL VO, EpUNVELDEL OTL avTimpocmmedovy Tig emionueg Béoeic tov EOvikon
Metodprov [Torvteyveiov.



Abstract

Modern energy policies drive the electricity market towards a liberalized framework. As a
result, concepts from other commodity markets are becoming increasingly relevant in the context
of the electricity market. However, there are certain specialties that characterize electricity. Such
a specialty is the requirement of constant balance between supply and demand; otherwise the
stability of the underlying physical grid is compromised. The traditional approach has been to
only control the supply, so that it follows the demand at all times. However, high penetration of
non-dispatchable renewable energy sources and load electrification (e.g. electric vehicles) have
highlighted the need to also utilize the elasticity that there is at the demand side, by applying
Demand Side Management (DSM). The main objective of DSM is to achieve an aggregated
consumption pattern that is efficient in terms of energy cost reduction, welfare maximization
and/or satisfaction of network constraints. This is generally envisaged by encouraging electricity
use at low-peak times.

In this dissertation, we model a set of smart devices at the side of residential electricity
consumers and a home energy management system that is able to make decisions about home
electricity consumption by taking into account the user’s preferences, the dynamic electricity
pricing signals as well as the operational constraints of devices. We envisage an electricity
service provider that is responsible for incentivizing users to shape their consumption patterns in
line with the needs of the electricity system. We study and develop techniques for two general use
cases of DSM: online algorithms for real-time consumption curtailment and offline algorithms for
day-ahead load scheduling. We considered an intelligent agent at the user’s home energy
management system able to make strategic decisions. In this setting we formulated a game where
each agent tries to optimize its own objective. We formulated the problem of designing online
auction mechanisms that are able to bring the system to a Nash equilibrium. Also, the final
allocation needs to exhibit attractive properties in terms of the key performance indicators set by
the state-of-the-art literature. In order to achieve these goals we drew on concepts of algorithmic
game theory and mechanism design.

Specifically, for the real-time demand response case, we designed two online auction schemes
for two specific business models. The first is based on Ausubel’s clinching auction and achieves
the majority of the standard requirements of mechanism design theory. Namely the proposed
scheme, achieves economic efficiency, incentive compatibility (in the sense of making it a
dominant strategy for each user to act truthfully according to his/her preferences and leaving no
room for cheating), scalability, privacy-preservation and individual rationality in contrast to
studies in the current literature that achieve only a subset of the aforementioned properties.
Furthermore, it is shown to maximize the service provider’s profits among all efficient
allocations. The second business model refers to cases such as energy cooperatives where the
issue of fairness of the allocation is important. We designed a novel mechanism that significantly
improves fairness in comparison to the state-of-the-art.

For the day-ahead load scheduling case, we designed and evaluated a novel DSM scheme that
addresses several issues that were not jointly addressed before. Specifically, the proposed DSM
scheme preserves the economic efficiency, individual rationality and budget-balance properties. It
is also able to satisfy coupling, system-wide constraints. The proposed scheme is theoretically
proven to always bring the system to the Nash equilibrium. Finally, we studied the problem of
jointly considering a day-ahead load scheduling and a real-time DSM scheme that balances
unexpected deviations from the agreed schedule. We proposed a differentiated pricing based on a
spread, and studied its effect on the users’ strategies.

Keywords : Smart Grid, Demand Response, Game Theory, Mechanism Design






Summary in Greek language

Méxpr Tn dekaeTia Tou '80, Ta CUCTAPATA NAEKTPIKAG EVEPYEIOG BewpouvTav
QUOIKA POVOTTWAIO KAl Opyavwonkav wg KPATIKEG [ WG KPATIKA puBUICONEVES
emxeipnoels. O1 KupidTepeg kateuBuvaoelg ou divel n EE kateuBuvovTtal TTpog tnv
augnon g digicduong TWV AVAVEWOIYWY TTNYWV EVEPYEIOG Kal TNV TTpowbnon
TNG €AeuBépwaong Tng ayopdg evépyeiag [DIREOY]. Mia onuavtikf ouvéTtTeia
QUTWV TwV €€eNiCEWV gival OTI N NAEKTPIKA evépyela Bewpeital TTAéoV TTPOIdV Kal
AyoPATTWAEITAI AVOAOYWG, TTPAYUA TTOU ONUaivel 0TI O AEITOUPYIEG KAl O APXEG
atro TIG EAEUBEPEG QYOPEG KAl TNV OIKOVOUIK Bewpia kabioTtavral OOKIPES Kal
oTnNV guTTOPia NAEKTPIKAG evEépyelag. QOTO0O0, 01 AyopEG NAEKTPIKAG EVEPYEIOG KAl
Ol JNXavIopoi dIaTTpayudTeuong TTPETTEN VO dIEPEUVNOOUV Kal va oXeBIAOTOUV £TOI
WOTE va gival TTIPOCAPPOOUEVESG OTIG CUYKEKPIYEVEG IDIAITEPOTNTEG TNG NAEKTPIKAG
evépyelag. To o onuavtikd ival 0TI OAEG O CUVOAAQYEG NAEKTPIKNG EVEPYEING
TIPETTEI VA UAOTTOINBOUV 0€ €va NAEKTPIKO BikTUO. AUTO Onuaivel OTI OI TTEPIOPICHOI
Kal o1 1010TNTEG TOU OIKTUOU TIPETTEl VA AQuBAvovTal UTTOWn TTPOKEINEVOU VO
dlac@aAIoTEl KaTd TTOOO €ival UAOTTOIACIKO TO ATTOTEAEOUA TNG AyOopds KaBWG Kal
n ota@epdTNTA TOU BIKTUOU KaI N A0PAAELIA TNG TTAPOXNS NAEKTPIKNG EVEPYEIQG.

Mia BeueAilydng 1BIAITEPOTNTA TOU NAEKTPIKOU BIKTUOU €ival OTI n diavoun
TTPAYUATOTTOIEITAI QUTOCTIYUEI, KAl n Trapaywyr TTPETTEl va gival ion PE TNV
KatavadAwon ava TTaoa oTiyhn (TTPAYHA TO OTT0I0 OXETICETAI E TNV EUOTABEIO TOU
OIKTUOU). H TTapadooiakry TTpooéyyion yia Tn dlaThpnon QuTAg NG 1I00pPOTTIaG
gival 6T n TTapaywyr eAEyxeTal WOTE va akoAouBei Tn (Un eAeyxdpevn) ZATNoN.
Qo1600, n dicioduon Twv AlNE @épvel ohoéva Kal TTEPICOOTEPO PN €AEYEIUN
TTapaywyr otnv TAEUPA TNG TIPOCPOPAG, E€VW O POVADEG TTAPAYWYNG ME
ypriyopn atmokpion BewpouvTtal datravnpEG TO00 aTTd OIKOVOMIKY AtTown 600 Kal
amd TIG eKTTOUTTEG Ologideiou Tou AvOpaka. AuTEC ol eCeAigeig odriynoav oTn
OUuCATNON OXETIKA PE TN XPNOIYOTTOINON TWV OUVATOTATWY EUENIGIOG OTNV TTAEUPA
TNG CATNONG, TTPOKEIMEVOU VA KOTOOTEI ATTOTEAEOUATIKOTEPN N AEITOUpPYia TOU
dIkTUoU. H 16€a TnG aglotroinong Tng eueMigiag TNG ¢NTNONG NAEKTPIKAG EVEPYEING
ava@épeTal yevika wg Alaxeipion Zntnong (AZ) - Demand Response (DR).

Texvikég dlaxeipions ¢Ntnong

H vevikn 18€a Tng diaxeipiong ¢Atnong €ival va d00ouv KivnTpa oToug XPHOTEG
va dIOPOPPWOOUV TNV KATAVAAWON NAEKTPIKNG EVEPYEIOG avaAoya PE TO TI gival
MO atrodoTIKO atmd TNV TTAeUPpd TOU OIKTUOU nNAEKTPIKNG EVEPYEIDG. AUTO OfF
YEVIKEG YPAUUEG VOEITAI WG PETAKIVNON QOPTIWV OTTO TIG WPEG AIXUAG O WPEG
XaunAng ¢Atnong. O AGYog gival OTI N KATavAAwOoN NAEKTPIKOU PEUPATOG TEIVEI va
@TAavel 01O CeViO KATA TIG ATTOYEUPATIVEG WPES. AUTO KABIOTA avATTOTEAECUATIKA
TNV €EUTINPETNON TNG TNONG atrd AtTown KOOTOUG, OIOTI TTPETTEl VA KAAoUVTal
MovAdeg TTapaywyng Taxeiag amokpiong, WoTe va KaAu®Oei n aixuni Tng ¢AThong
KAl Ol MOVAdEG aUTEG OHWG £XOUV AKPIBO oplokd KOOTOG TTapaywyrg.
XPNOIYOTTOIWVTAG TNV TTAPOAKATW EIKOVA WG TTAPAdEIYUA, Yia TRV idla OUVOAIKN
KaravaAwaon evépyelag, €ival 1o atmmodoTIKA OIKOVOUIKA N ETTTEUEN MIAG TTIO



ETTITTEDNG, OUOIOUOPPA KATAVEUNMUEVNG KAPTTUANG (UTTAE) Kal OXI MIOG KAPTTUANG
ME KOPUPEG Kal KOINADEG (YKPI).
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2yxnua: MNapddeiypa TUTTIKAG KAPTTUANG KATAVAAWONG NAEKTPIKAG EVEPYEIAG
KATa Tn OIAPKEIQ YIAG NUEPOAG

‘Exouv TTpoTaBEi DIOPOPETIKEG TTPOCEYYIOEIG yIa TNV ££0pUEN TNG EUENIGIOG TNG
KATAVAAWONG EVEPYEING, OTTWG:

a) ZUPPBAOEIG TTOU TTAPEXOUV OTOV DIAXEIPIOTH TOU OIKTUOU TOV APECO £AEYXO
TOU NAEKTPIKOU QOPTIOU

H trepitrTwon autr) Bpiokel Epappoyr KUpiwg o€ BIounXavikoug 1} EUTTOPIKOUG
KatavaAwTég. O KatavaAwTnG €xeEl ouvaAyel oUPPacn HPE TNV €TAIPEIA KOIVAG
woeAeiag, n otroia eMTPETTEI OTAV TEAEUTAIA VA HPEIWOEI HEPOG TNG EVEPYEIAKNG
KATAvVAAWONG TOU TTPWTOU O€ TTPAYUATIKO XPOVO.

B) Zxnuarta evnuépwong / ekTraideuong

AUTI N TTPOCEYYION AVAPEPETAl OTNV EKTTAIOEUON TWV KOTAVOAWTWY (KUPIWg
KATOIKIWV) O€ BEPATA OXETIKA JE TNV EVEPYEIAKT ATTODOOT TTOU ATTOOKOTTOUV OTNV
METABOAR TNG EVEPYEIOKNG CUPTTEPIPOPAS KAl OTNV OIKOAOYIKI KaTtavaAwaon.

Y) ZXAPata avratrodoong Kal EIKOVIKA TTaiyvia

O1 TexvIKEG auTéG BaaoifovTal OTIG €VVOIEG TNG CUUTTEPIPOPIKIG OIKOVOUIag, Kal
OKOTTO €XOUV Vva TIAPOAKIVIOOUV TOUG KATAVAAWTEG VA TPOTTOTTOINOOUV  TO
TTPOTUTTA KATAVAAWONG EVEPYEIAG PECW TNG XPHONG CUCTNUATWY aVTAUOIBAG Kal
OUCTNUATWY OUAAOYNG TTOVTWV.

0) Alaxeipion ZATnong PAoel TINAG



AuTi} n TTpocEyyion OXETICeTal PE TN Bewpia TNG OIKOVOUIag (economics) Kal
NG xpnoigotTnTag (utility theory). O katavaAwTig BewpeiTal wg évag opBOAOYIKOG
TTAIKTNG TIOU OTTOKOWICEl MIO OUYKEKPIYEVN agia / Xpnolyotnta amd  tnv
KatavadAwon evépyelag Tou. 'ET01, 0 KatavaAwTtig Oa TTpoxwproel eBeAOVTIKA
OTnNV TPOTIOTTOINON TOU TIPOTUTTIOU KOTAVAAWONG TOU WG OTTOKpIon OE MId
XPNMATIKR arrolnuiwon.

2€ auti TN dIaTpIB ETTIKEVIPWVOUOOTE OTAV TEAEUTAIA KATNyopia, n oTroia
BagoiCeTal otn AZ Baocel TipoAoyIoKAG TTONITIKAG, OTTOU oI XpRoTEG BewpouvTal OT
OIAPOPPWVOUV TNV EVEPYEIAKT TOUG KATAVAAWON HE BAON TNV TIUA TNG EVEPYEIQG
o€ TTPAYMATIKO XpOVo. AUTA N TTPOCEYYION TTAPAKIVEN TN MEAETN TWV PMNXAVIOUWY
ayopdg NAEKTPIKAG EVEPYEIOG TIOU TTAPEXOUV  TTPONYUEVEG OUVATOTNTEG KOl
I010TNTEG TTPOCAPPOCPEVES OTIG IBIAITEPOTATEG KABE TTEPITITWONG.

2e autr) mn diaTpIPr}, €¢et@loupe €va TTEPIBAANOV OTTOU KABE KATAVOAWTAG
NAEKTPIKNG eVEPYEIOG BIOBETEI WIa OEIpd €CUTTVWV OUOKEUWYV, Ol OTTOIEG €ival
OUOKEUEG TTOU  UTTOOTNPICOUV TNV TTPOYPOUMATIOPEVN KAl EAEYXOUEVN
KatavaAwon NAEKTPIKAG eVEPYEIOG KOBWGS Kal TIG dUVATOTNTEG ETTIKOIVWVIOG OTO
TTAQiolo Tou d1adIKTUOU TwV TTpayhaTwy (internet of things). Etriong, utroB€Toupe
éva AOyIOMIKOU oOTnv TTAeupd TOou KABe XprioTn, €va ouoTnua dlaxeipiong
evépyelag oikiag (HEMS), To otroio cival o€ B€on va AauBavel:

Q) TIG TTPOTIMACEIG TOU XPHOTN YIA TNV KATAVAAWON NAEKTPIKAG EVEPYEIOG PEOW
JIETTAPNG XPAOTN
) TOuG evepPYEIOKOUG TTEPIOPICHUOUG TwV EEUTTVWV OUCKEUWV

Y) OuVOUIKA oApaTa TIHOAGYNONG NAEKTPIKNG EVEPYEIAG

Kal va Aaupdavel ommo@AcEl €K PEPOUG TOU XPNOTN OXETIKA HE TOV
TTPOYPOUUATIONG TNG KATAVAAWONG NAEKTPIKNG €VEPYEIOG YIO KABE €gutrvn
OUOKeur. TEAOG, uTtoBéTouuEe €va OIKTUO ETTIKOIVWVIWV TTOU Eival XTIOPEVO
EMTTAéOV TOU OIKTUOU €EVEPYEIAG KOl OIEUKOAUVEI TNV aviaAAayr UNVUPATWY
METALU TwV XPNOTWV PE TO oUOTAPA BIAXEIPIONG EVEPYEIOG KAl UIO OUVTOVIOTIKI)
ovTOTNTA, TNV OTI0Id AVAQPEPOUPE WG TOV TIAPOXO UTINPEECIWV NAEKTPIKAG
evépyelag (ESP). To mapakdtw oxnua OgiXvel TV apXITEKTOVIKI TOU CUCTAUATOG.
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2xNUa: APXITEKTOVIKI) TOU OUCTIUATOG

2¢ auty TN dIaTpIfr}, KABe xpPnRoTng (kaTavaAwTtng) Bewpeitar évag
opBoAoYIKOG, OTPATNYIKOG TTAIKTNG TTOU ETTIAEYEI TIG EVEPYEIEG TOU PE OKOTTO TN
BeAtioTtotroinon Tou OIKOU TOUu OTOXOU (ueyloToTTOiNONn TOou KEPOOoug /
IKOVOTTOINONAG TOU). Z€ AYOPEG TTOU TTEPIEXOUV PEYAAO QPIOPO CUPMPETEXOVTWY, Ol
EVEPYEIEG EVOG MEMOVWMPEVOU XPNOTN E€ival OUCIOOTIKA QCNUAVTEG, OnAadn n
EVEPYEIOKI CUPTTEPIPOPA EVOG PEUOVWHEVOU XPNOTN €ival auEANTEEG, €TTEION DEV
€XOUV ONUAVTIKO AVTIKTUTTO OTIG IDIOTNTEG TOU OUCTHAPATOG. 2TO TTAQIOIO QUTO,
auTh n TTpooéyyion Bewpei éva PovTEAO OTTOU oI ATTOPACEIS EVOG PENOVWPEVOU
XPNoTn OgvV UTTOPOUV va ETTNPEACOUV TIG TINEG TNG Ayopds. AuTtr n TTapadoxn
ovopaletal eup€wg "price-taking" kai Aépe 611 0 XpoTng €xel BewpnOei wg “price-
taker”.

QoT1600, oTnV TTAPOUCa dIaTPIRA £€XOUME XOAAPWOEl QUTAV TNV UTTOBECN Kal O
MEMOVWUEVOG XPNoTnG Bewpeital wg évag "price-anticipator”, dnAadr o xprioTng
YVWPICEI TOV UNXAVIOPO TNG ayOpdg KAl CUPTTEPIPEPETAI OTPATNYIKA PUE OKOTIO TN
geyioTotroinon Tng OIKAG Tou avtapoIfng. AuTr n puBuion @épvel Ta ¢NTHUATA
TTou €€eTAdovTal oTNV TTapouca dlaTpIBA oTn o@aipa TG Bewpiag Traryviwv. ‘ETol,
Ba XPNOIMOTIOINCOUNE KUPIWG BewpnTIKEG KAl OAYOPIOUIKEG TEXVIKEG ATTO TN
Bewpia TTaIyViwv TTPOKEINEVOU va avaAUCOUUE Ta JovTEAQ TTou Ba £¢eTACOULE.

O ouvroviopdg NG ¢NTNONG, TTPOKEINEVOU VA KATAOTEI ATTOTEAECUATIKOTEPO TO
OIKTUO NAEKTPIKNG EVEPYEIAG, ATTOTEAEI KOIVWVIKO 0TOX0. QO0T600, 0 0TOXOG KAOE
MEMOVWHEVOU XPNOTN WTTOPEI va pnv euBuypapuideTal TTAVTA PE TOV KOIVWVIKO
OTOX0. 2€ €va TETOIO TTEPIBAAAOV KAl YIO VO OXEDIGOOUNE PNXAVIOPOUG ayopdg
TTOU TTapouciagouv eTmBuunTéG 1010TNTEG, Ba PBaocioToupe o peydAo PBabud oe
€VVOIEG €VOG OUYKEKPIMEVOU PEUNATOC TNG Bewpiag Tralyviwv TTou ovouddleTal
2¥e0100MOG MnyaviouwV.

H palnuaTtiki BeATioTotroinon €ival 1o gpyaAeio yia Tn BeATIOTOTTOINON MIOG
QVTIKEIMEVIKNG ouvAPTNONG O€ MIa OEIpd atrd PETABANTEG atmopaong. Mepikeég



QOPEG OPWG, QUTEG Ol PETABANTEG dev eAéyyovtal atmmd Tov OXedIAOTH TOU
OUOTAPATOG. AVTIOETWG, TIG €AEyXOUV aveEAPTNTOI TTPAKTOPEG, TTOU O KABEvag
TTpooTIadei va BeATIoTOTTOINOEI TO OIKO TOU OTOXO, O OTTOI0G UTTOPEI VO PNV €ival
O€ CUPQWVia PE Tov oTOXOo Tou oxedlaoTh. H Bewpia TTaiyviwyv gival 1o Tedio TTOU
MEAETA POBNUATIKA MOVTEAQ TTOU MEAETOUV OTPATNYIKEG AVTAYWVIOTIKWVY N
OUVEPYATIKWY, 0POOAOYIKWYV TTAIKTWY Kal Tn 81adpaacTIKr) cupTTEPIPopd autwy. O
2Xe0IA0NOG Mnyaviopwy €ival ouoIaoTIKA €va €pYOAEio yia TO OXEDIOONO
KAvOVWV YIa CUCTAPATA PE OTPATNYIKOUG OUPPETEXOVTEG TTOU KATEXOUV IOIWTIKEG
TTANPOPOPIEG, £TOI WOTE TO CUCTAMA VA €XEI KOAEG £YYUNOEIG aTTOd00NG (TTAPOAO
TTOU 0 OXedIAOTNG Oev eAEyXEl Aueoa TIG ETABANTEG atrdéacng). Mapadeiyuata
MNXaviopwy  amé TNV kalnuepivly  Cwry  TrepIAauBavouv  TTpoBAnuaTa
OpopoAdynong BIKTUWV (08IKWV BIKTUWV R OIKTUWV UTTOAOYIOTWYV) KaBWS Kal
ONUOTIPACIEG OTTOIOUDNTTOTE €idOUG.

ANG 11 KAvel €vav OUYKEKPIMEVO MPNXaVIOUO KOAUTEPO aTTO €évav  AAAo;
YTTAPYXOUV OPIOUEVEG YEVIKWG ETTIBUPNTEG IOIOTNTEG YIA Evav OEQOUEVO UNXAVIOUO:

1) loxup€ég €yyunoeIg KIVATPWY: OI KAVOVEG €ival TETOIOI WWOTE VA UTTOPOUNE va
UTTOAOYIOOUME TNV Kupiapxn oOTpatnyik KABE CUMPPETEXOVTOG, TIPpAyua TTou
ouoIaoTIKG onuaivel 0TI, av uTToBécoupue 0pBOAOYIKOUG CUNUETEXOVTEG, WTTOPOUUE
va TTPOBAEYOUUE OTTOTEAECUATIKA TO OTTOTEAEOPA TTAPOAO TTOU Oev €ipacTe
ekeivol TTou AauBdavouy TIG aTTOPATEIG,

2) loxupég eyyunoeig atrddoong: ol KAVOVEG gival TETOIOI WOTE O ATTOPAOCEIG
TWV OTPATNYIKWY CUMHPETEXOVTWYV Va BEATIOTOTTOIOUV TO OTOXO TOU OXEDIQOTH,

3) Eyyunoeig ouykAiong: o1 KaAvoveg €ival TETOIOI WOTE Ol JIOdPACTIKEG
OUUTTEPIPOPEG TWV OUMMETEXOVTWY va UTTOPOUV va PTACOUV O€ I00PPOTTIa O€
atTOdOEKTO XPOVO,

Kal evOEXOUEVWG HIa OEIpd TTPO0OETWY €TTIOUUNTWY IBIOTATWY, avaAoya PE TO
000€v eTIXeEIPNUATIKO povTéNo. MNapadeiypaTta TepIAAPBAVOUV EYYUACEIG yiA: TA
€0000 OPICUEVWY CUUMETEXOVTWV (TT.X. Ol ETTEVOUTEG), N aTOMIKA opBoAoyIKOTNTA
(individual rationality) (dnAadr), OTI KABE OCUMPMPETEXWV OUPUETEXEI €BEAOVTIKA
KaBwg €xel HOVO OQEAOG aTTO TN CUMMETOXN TOU Kal TTOTE Cnuia), €yyunoeig
dIkaloouvng, TIPOCTACIA TwV TIPOCWTIIKWY Oedouévwy KA. H oxediaon
Mnxaviopywyv €101 WOTE  va  TTAPOUCIACOUV  OUYKEKPIUEVEG  1D10TNTEG
TIPOCOPHUOCMEVEG KABE POopa O0TO BOBEV eTTIXEIPNPATIKO POVTEAO €ival Eva avoixTod
Kal oNUavTIKO €pEUVNTIKO BEuQ.

2710 TTAQiOI0 Tou €EUTTVOU OIKTUOU, Ol TTAPAYWYOI, Ol POPEIG EKPETAAAEUONG, Ol
EUTTOPOI KAl OI PUBUIOTIKEG apPXEG €ival OANOI CUMPUETEXOVTEG HE OIAPOPETIKOUG
OTOXOUG O€ £va oUOTNUaA OTTOU N atmo®acn Tou evOg £TTNPEACEI TNV aTTOPACH TOU
GANoU. ZT0 KeiueEVO TTOU aKoAoUBEi Ba KaBoPICOUPE KATTOIEG TTEPITITWOEIG XPAONGS
(use cases) TTOU €geTACovtal o€ AUTh TN dIATPIRR Kal TIG TTPOKANCEIS TOug. Oa
TTEPIYPAWYOUUE ETTIONG TIG €MOUUNTEG IBIOTNTEG TOU HPNXAVIOUOU EIBIKA YIA TIG
TTEPITITWOEIG XPONG TTou €geTAlovTal Kal Ba e¢aydyoupe Toug PBaoiKoUg OEIKTEG
ammodoong (KPIs). TéANog, Ba TTapoucIGOOUE TIG TEAEUTAIEG HEAETEG VIO QUTEG TIG
TTEPITITWOEIG XPNONG.



Amraithioeic Kai Bacikoi OEiKkTeG arrédoons

H 1TTapadooiokr TTpooEyyion 0TV EUTTOPIA NAEKTPIKNG EVEPYEIQG ATTO TTAEUPAG
¢NTNONG €ival eKEivn OTNV OTTOIA Ol XPHOTEG XPEWVOVTAI JE PIa OTABEPH TIUA ava
Movdada katavaAwong evépyelag. Or TINEG XOVOPIKNG, WOTOCO, UTTOKEIVIAI OTOUG
KAVOVEG TTPOOPOPAG Kal ATNONG TNG AyopAag NAEKTPIKNG evEpyelag. EIdIkOTEPQ, Ol
TTAPAYWYOi dNAWVOUV TO OPIOKO KOOTOG TTAPAYwWYNS TOUG OTO JIAXEIPIOTA TNG
ayopdg Kal n TIPA yia OAOUG TOU CUPUETEXOVTEG KaBopileTal atrd Tov TeAEuTaio
(opiakd) TTapaywyo Tou Ba XpelaoTei va KANBei va Asitoupynoel. EIdIKa oTig
ayopég Pe peyaAn dicioduon ATE, o1 TINEG TNG XOVOPIKNG ayopdg UTTOPED va gival
QPKETA aoTabeig, dedouévou OTI N TTapaywyn atmd AlMNE dev ytropei va puBuioTei
KaBwg e¢aptaTal ato TIG KAIPIKEG TUVONKEG.

2TNV TTaPadOOCIaK TTPOCEYYION TTOU TTEPIYPAPETAI TTAPATTAVW, N TTAEUPA TNG
¢NTNong dev AauPaver uttown TIG TIMEG TNG XOVOPIKAG AyOopds Kal YEVIKOTEPA TO
KOOTOG EVEPYEIOG O€ TIPAYUATIKO XPOvo. AUTO £XEl TTPOKOAECEl MIO EKTEVA
oulATNON MPETALU TOOO TNG AKAdNUAIKAG KOIvOTNTAG 000 KOl TNG Blodnxaviag
OXETIKA PE TIG TTONITIKEG AIAVIKAG TINOAGYNONG TTou Ba avTIKATOTITPICOUV TIG TIUEG
XOVOPIKAG ayopdg OTIG TIANPWMEG TwV TEAIKWV Xpnotwv. 'Exouv TtrpoTaBei
OIAQOPOI PNXAVIOPOI yia TNV €TTTEUEN QUTOU TOU OTOXOU, KaBévag atrd Toug
OTTOIOUG ETTIKEVTPWVETAI O€ WIa OIOPOPETIKY TITUXH Tou TTpoAruartos. EidikéTepa,
0l OUXPOVOI UNXAVIOUOoi ayopds NAEKTPIKAG EVEPYEIOG UTTOPOUV va agloAoynBouv
ME Baon £€1 OEIKTEG:

1. BeAtiototroinon / otroTeAeOUATIKOTNTA: TO OUVOAIKO KEPOOG OAWV TWV
OUMUETEXOVTWY OTNV ayopd.

2. Eyyunoeig kivATpwyv / TIpooTacia ammd oTpATNYIKA Ouptrepipopd: H
QAVOEKTIKOTNTA TOU OUCTHMATOG O€ XPNOTEG TTOU TTw@eAoUvTal atrd Tn dHAwon
Weudwv TTPOTINACEWY. Me AANa Adyia, Aépe OTI €vag INXAVIOWOGS gival avOeKTIKOG
o€ OTPATNYIKA CUMTTEPIPOPA, OTAV Ol XPNOTEG OEV UTTOPOUV VA ETTWPEANBOUV
atré TNV €€aTTATNON TOU.

3. [lpooTtacia TTPOCWTIKWY Oedouévwy: H TTO00OTATA TTANPOPOPIWY TTOU
atraIteital amd Tov XpnoTn.

4. ZuykANion / duvatotnta KAIpakwong: H Taxutnta ouykAIong TG EQAPPOYNAG
TOU PNXavIoPoU Kal N duvatotnTa KAINAKWONG Tou (e@apuoyr o€ peydAo apiBud
XPNOTWV).

5. Aikaioouvn: H TTONITIKR} yIia TNV KOTAVOWPN TOU EVEPYEIAKOU KOOTOUG OTOUG
KATOVOAWTEG EVEPYEIQG.

6. E€¢looppotTnuévo k6oTog ouvaAdaywy (budget-balance): Otav 10 cuvoAiko
00O TWV XPNHATIKWY OUVOAAQYwWV atrd OAOUG TOUG CUMMETEXOVTEG OTNV ayopd
(oupTrepIAQUBAVOUEVWV TWV KATAVAAWTWY OTnV TTAeUpd TNG CATNONG Kal OAwV
TWV OUPMETEXOVTWYV OTNV TTAEUPA TNG TTPOCYOPAG gival iIcoppoTTnuévo. Me GAAa
AOyYIa, 0 OXEDIAOTAG PNXAVIOUOU gV XPEIAZETAI VA ETTIXOPNYNOEI TO EUTTOPIO, OUTE
va e¢ayel TTAedvaopa atrd auTo.



TéNOG onuelwvoupe OTI avaloya Pe KABE OUYKEKPIPEVN TTEPITITWON XPAONG,
eMTTAéOV 1I010TNTEG TOU PNXQVIOWOU eVOEXETAI Vva  €ival OonUAVTIKEG  (TT.X.
duvatoTNTA  IKAVOTTOINONG TTEPIOPIOUWY, OTTAOTATA  yId TOUG XPNOTEG VA
KATAVONOOUV TOV UNXAVIOUO K.ATT.). ZTnV €TTOMEVN UTTOEVOTNTA avVAAUOUUE KABE
KPI pe 1TepIocdTEPEG AETITOPEPEIEG KAl TTAPOUCIACOUNE TOV TPOTTO PE TOV OTIOIO
avTIgeETWTTICETaI oTNV TTPdoPaTn BiBAIoypagia Tng AZ.

BiBAioypagia

H BEATIOTN aglotmoinon / atrodoTIKOTNTA €XEl WEYAAN onuacia, 18iwg yia Toug
Qopeig Xapagng TTONITIKAG KAl TOUG QOPEIG pUBNIONG TG ayopdg. AvagépeTal oTnv
eCaAelwn Twv atrotuxiwy ayopdgs. Otav uttdpxouv PépN Kal OTIG U0 TTAEUPES TNG
ayopdg TTou Ba oupwvouoav OTO EUTTIOPIO O MIa Oedopévn Tiuh, aAAG TO
EMTTOPIO Oev cuUMPaivel yia KATTOI0 AOYO, AEue OTI UTTAPXEI MI ATTOTUXIO ayOpdc.
O1 eTitredeg TINEG NIAVIKAG KOBWG KAl Ol OTATIKEG XPOVIKA dIAQOPOTTOINUEVEG TINEG
ONMIOUPYOUV ATTOTUXIEG AyOPAG, OEDOUEVOU OTI TO TTPAYUATIKO KOOTOG KAl Ol TIUEG
TNG Qayopdg €ival OUCIaOTIKA aoparteg oTnv TTAeupd TnG (ntnong. ‘Etol, n
TIWOAGYNON O€ TTPAyUATIKO XpOvo (real time pricing) ATav n TTPWTN KOTEULBUVON
TPOG TNV oTroia KivABnke n akadnuaikr PiBAIoypagia TToU OXETICETAl ME
TTPONYHEVA Kal auTodaToTToIiNuéva cuoTApaTa AZ. Zuykekpiuéva, n neAETn [LI10]
TIPOTEIVE Evav BEATIOTO PINXAVIOPO ayopds (UTTO OPIOUEVEG UTTOBECEIG OXETIKA ME
TIG TTPOTIUACEIS TWV XPNOTWV KAl TNV KATAVAAWTIKI) CUPTTEPIPOPG). YTTd TOv
TTEPIOPIOPO OTI N N TTPOCPOPA Kal N {TNON TTPETTEI VA I00UVTAlI O KABE XPOVIKA
oTiyurj, Olapgopewbnke n Lagrangian ouvdptnon Tou TTPORAAPATOSC Kal Ol
TToAaTTAaociaoTéG Lagrange yia 1o dual mpoBAnua epunvelTnkav wg TIMEG
Alavikng ayopdg. ‘Evag eTavaAnTTikog aAyopiBuog ouyKAivel OTIG BEATIOTEG TIMEG.
QoTo600, o1 uttoAoritrol deikTeg KPI dev egeTdoTnKAv.

O1 gyyunoeig KIVATpWY avagépovtal oto Béua TG mOavig €¢amdrnong Tou
pnxaviopou. Mo ouykekpigéva, ol peAéreg [LI10], [SAMA10], [GATZ10]
utToB£TOUV OTI OI XPrOoTEG gival price-takers (To QOPTIO TOU ATOMOU Egival TTOAU
MIKPO O€ OUYKPION ME TO XOPTOQUAAKIO TOu Aggregator Kal OUVETTWG N
OupTTEPIPOPG TOU TTpWTOU Oev eTTNPEddel TIG TINEG). Map '6Aa auTd, uTTGpyouv
OPKETEG  TTEPITITWOEIG OTIG OTI0IEG QUTH N uTTOBeon €ival  adoKIiun  Kal
adIKaIoAGYNTN, CUPTTEPIAAUBAVONEVWY TWV TTEPITITWOEWY OTTOU EXOUE:

i) peydAoug Brounxavikoug KaTavoAwTEG,

i) XPOTEG TTOU CUMPMETEXOUV OTO UNXAVIOUO OE IO OUYKEKPIYEVN YEWYPOPIKN
TTEPIOYN OTTOU eP@avidovTal TTPORARUATA CUPPOPNONG,

iii) MIKpO-BikTUQ TTOU oXNUaTICoVTal O€ TOTTIKO ETTITTESO

Q¢ ammoTéAEONA, Ol XPAOTEG AVAPEVETAI VO CUPTTEPIPEPOVTAI OTPATNYIKA KOl N
OTPOTNYIKA CUMTTEPIPOPA PTTOPEI va BEoel o€ KivOUVO TNV OTTOTEAECHATIKOTATA
TOU Mnxaviopou. 21 peAéTn  [SAMA12], 10 CATANO  TNG OTPATNYIKAG
OUMTTEPIPOPAC  avTIeETWTTIOTNKE  TTpoTeivovTag evav  Vickrey-Clarke-Groves
(VCG) yia 1n ANiavikr) eptropia nAekTpIKAG evépyelag. O pnxaviopog VCG
BewpeiTal eUpEWG 0 akpoywviaiog AiBog Tou Zxedlaopou Mnxaviopwy, Kabwg



gival atrodedelypEva o povadikdg BEATIOTOG pnxaviopogs (1o KPI) evw Tautdxpova
TTaPEXEN TNV 1I0XUPOTEPN duvaTth eyyunon kivATpwyv (20 KPI) [SHOHO09]. Qotdoo,
o0 unxaviouog VCG tmapoucialel ooBapd PEIOVEKTAMATA O OXEOOV OAOUG TOUG
uTTOAOITTOUG OEiKTEG. TO TTIO ONUAVTIKO €ival OTI OTTAITEI ATTO TOUG XPNOTEG va
dnAwoouv OAn TN ouvapTNON TWV TTPOTIUACEWY TOUG YIa KABE OUOKEUN TOUG OTOV
TTAPOXO UTTNPECIWYV. To yeyovog autd KabioTd aduvartn TNV TTPAKTIKI £QAPHOYA
TOU, AOYw TOOO TNG IBIWTIKOTATAG 000 Kal TWV {NTNHATWY KWAIKOTIoINONG TWV
TIPOTIMACEWY TOU XPAOTN. Ta {nTAPATA KWOIKOTTOINONG ava@épovTal 0To (ATNUA
TTOU O€AEl TOUG XPNOTEG VA EKPPACOUV TIG TTPOTIMNOEIS TOUG OE OVAAUTIKEG
MOBNUATIKEG CUVOPTAOEIG, WOTE va d0B¢ei N duvaTtdTNTA OTOV TTAPOXO UTTNPECIWV
va Auoel va TTpoBAnpa BeATioToTToinong.

Ocov agopd Tnv TTpooTaCia TwV TTPOCWTTIKWY O0edOUEVWY TOU XPrOTn, OTN
MEAETN  [BAHA14] Trapouoidletal  €vag  KATAVEUNUEVOG  UNXAVIOWOG  OTToU
TIPOTEIVETAI €va TTPWTOKOAAO ETTIKOIVWVIAG yia Tn diadikacia AZ, yia 1nv
uAoTToinoNn Twv AvTaAAQYWV UNVUPATWY XWPIG va ATTOKAAUTITOVTOI Ol TOTTIKEG
TTANPOQOpPIES Tou XpnoTn. QOTO00, UTTAPXOUV APKETES IOXUPEG UTTOBECEIG OXETIKA
ME TIG TIPOTIUACEIG TOU XPNOTN. ZUYKEKPIMEVA, Ol XProTeG Bewpouvtal OTl
EVOIA@EPOVTAl JOVO YIA TNV OAOKAAPWON HIOG OUYKEKPIPEVNG EpyaOiag YEoa o€
€va OUYKEKPIMEVO XpoVIKO OIdoTnua Kal N OAOKANPpwONn TnG €pyaoiag €xel
MovTeAoTTOINBEl WG TTEPIOPIONOG, TIPAYUO TTOU onuaivel o1 N gpyacia Ba
TTPAYPATOTTOINBEI aveEAPTNTA ATTO TO KOOTOG.

H mapamdvw oulnTnon ETTIKEVIPWVETAI KUPIWG OTIG TTEPITITWOEIS OXETIKA
MIKPWYV KOIVOTATWY XpNoTwv. Mia dIa@opeTIKy KATeUBuvon €peuvag PEAETA TO
¢NTNua xpnon Tng duvatdtnTag KAipakwong (scalability). Ta mTpoBAAuaTa civai
KUpiwg N KAINAKWON TG EQAPUOYNS TOU PNXAVIOUOU KaBwg Kai n dikaioouvn o€
EMITTEDO PEPOVWHEVWY XpNOoTwV. Mia paBnuaTikr) TTpootyyion yia 1o TTPpoRANua
NG KAIpdkwong Trpoteivetal otn PEAETN [MHAN16], Otmou QU0  TEXVIKEG
e€oudAuvong e@apuofovTal oTnV AVTIKEIMEVIKA ouvdapTnon Tou TTPORAAUATOC
BeATioTOTTOINONG TTPOKEINEVOU va  OIEUKOAUVOEI n  ypriyopn ouykAion. Mia
OIaQOPETIKA TTpoCcEyyion Trpoteivetal oTn  PeAéTn [STEP15] &6mmou opddeg
XPNOTWV HE TTapOOIa XAPAKTNPIOTIKA, OpadOoTToloUuvTal Kal BewpouvTtal OT
OUUMETEXOUV OUYKVTPWTIKA WG povada. MNapdAo 1Tou n TpocEyyion auTr) JTTopEi
va XAaoel o€ oxéon HE TO PBEATIOTO, HEIWVEI WOTOOO OPACTIKA TOV XPOVO
OUYKAIONG.

‘Evag  dla@opeTikdg o0T1OXO0G €€etaleTal ot PeAETn [BAHA13], O1TOU n
TTpoTEPAIOTNTA QideTal 0T dikaun METAXEIpION Kal Ol OoTnV ATTodOoTIKOTNTA.
2UYKEKPIYEVA, N MEAETN KATODEIKVUEI OTI UTTAPXEI £va trade-off peTagu autwyv Twv
ovo KPIs. H miyy Shapley [SHAPS53] amd 1n ouvepyaTiki Bewpia TTaryviwv
XPNOIMOTIOIEITAI VIO VA OPIOTEl £€vaG OEIKTNG dIKAIOOUVNG KAl O PUNXAVIOPOG €XEI
oXedIaoTEI £TO1 WOTE va PeYIOTOTTOINOEI N dIKAIOoUVN TV TEAIKWYV TIMWV.

TéNog, n 1816TNTa Tou budget-balance oculnteital otn peAETn [MA14], 610U OI
ouyypa@eig TrpoTeivouv €vav unxavioud AGV (Arrow-d'Aspremont-Gerard-Varet)
Yl TOV OUVTOVIOUO TNG KATAVAAWONG TwVv XpnoTwv. QoT600, oI pnxaviopoi AGV
e€akoAouBouv va gival £€vag PNXaviopog aueong atmokdAuywng 6mmws o VCG (ol



XPNOTEG TTPETTEI VA ONAWOOUV TO GUVOAO TwV TTPOTIUACEWY TOUG), TTPAYUA TTOU
onpaivel 0TI UTTOPEPEI €TTIONG ATTO TTPORANKATA IDIWTIKAOTNTAG KAl KWAIKOTTOINONG.

Mpétrer va onuelwdei o1 o1 €¢I deikteg KPI tTou TTeprypagnkayv, av Kal TTOoAU
ONMOAVTIKOi, €ival APKETA YEVIKOI Kal €VOEXETAI VA PNV ETTAPKOUV OE OAEG TIG
TEPITTTWOEIG. O1 unxaviopoi TTPETTEl va AapBavouv uttoywn TiG €I0IKEG ATTAITAOEIG
KABe TrepITTTWONG Kal Tn onuacia k&Be ataitnong. lMNa va eipaoTe TTI0
OUYKEKPIPEVOI, TTapouaialoupue Ta dUo akdAouBa TTapadeiypaTa.

Mrtropei va xpelaoTei va IKavoTroinBouv TTEPIOPICHOI O€ TTITTED0 CUOTHUATOG.
270 TIAQICIO MIOG EVEPYEIOKAG KOIVOTNTAG, QUTOU TOU €idOUG OI TTEPIOPIOUOI
amaItolv éva oplohévo PaBud ouvToviopoU MHETAEU Twv XpnoTtwv. H peAETn
[DENG14] T1apoucidlel  yia  poBnuatikrp — TEXVIK  Baciopévn  OTOUG
TToAAaTTAaOI00TEG Lagrange, O1Tou o1 TTOAAQTTAQCIOOTEG EVAPEPWVOVTAI QUVAUIKA
KAl KATAVEPNUEVA WOTE VA XPNOIMEUOUV WG OUATA OUVTOVIOHOU.

‘Eva &GN\ TTapddeiypa  €I0IKWV  ATTAITAOEWY a@opd TNV atmAdTNTA  TOU
MNXaviopgou  (eUKoAn  uloBétnon atrd  Toug  Xpnoteg). Or  peAéTeg  TTOU
TTOPOUCIACTNKAV TTAPATTAVW TTAPEXOUV OPICHEVES IO0XUPES BEWPNTIKESG EYYUNOEIG
uttO oplopéveg uttoBéoelg. Mia kevtpiky TTapadoxn €ivar 0 opBoAoyiouog TnG
OUNTTEPIPOPAG Tou TEAIKOU XproTn. QoTéo0, oTNV TTPAELN Kal €18IK& 60OV apopd
TN OUPUETOXN TWV OIKIOKWVY XPNOTWV, OEV PTTOPOUNE VA TTEPIMEVOUUE OTTO TOUG
XPNOTEC va ouptrepiPépovTal  TTavia opBoAoyikd péoa o€ TTEPITTAOKOUG
MNXaviopoug Tou dev KataAafaivouv. ‘ETol, pia OXETIKA ATTaiTnon a@opd Tnv
ammAdTNTA TOU pnxaviopou. Mia PEAETN yia TRV ATTAGTNTA, TTAPOUCIAZETAl OTO
[BITA17], Ttpoocapuoocuévn  OTNV  TIHOAGYNON  YIO  QOPTION  NAEKTPIKWV
QUTOKIVATWYV. EIBIKOTEPA, N TaXUTEPN POPTION XPEWVETAI akpIBoTEPa. O xprotng
AauBavel évav KAT@AoOyo TIMWV ATTO TOV OTTOIO PTTOPEI va €TTIAEGEI, OTTOU N KABE
TIUA QVTIOTOIX] Of€ £va OUYKEKPIUEVO QAVAPEVOPEVO XPOVO OAOKAAPWONG TNG

POPTIONG.

YTapxouv OUO TIEPITITWOEIS YEVIKNG XPNong MoviéAwv AZ: poviéAa TTou
XPNOIUOTTOIoUV ATTOKPION O€ TTPAYUATIKO XPOVO KOl PMOVTEAQ TTOU ETTITUYXAVOUV
TTPOYPOUUATIONG TNG KATavAAwOoNG atrdé Tnv TTponyoupevn pépa (day-ahead).
2TV TIPWTN TIEPITITWON, Ol XPAOTEG KAAOUvVTAl va TPOTIOTIOINOOUV TNV
KATavaAwaoTr TOUG OE TTPAYMATIKO XPOvo, €TOI WOTE va QAVTATIOKPIvOvTal O€
avatTAvieEXeEG  avaykeg  Tou  DIKTUOU. Mapadeiypara  mepIAapBavouv
BpaxutrpdBeoun TTPORAEWN cuPPOPNONG BIKTUOU I OTTOTUXIOG KATTOIOG Movadag
TTapaywyng. Amo v aAAn TTAeupd, katd Tov day-ahead Trpoypapuatiopd, n
KATavAAWON NAEKTPIKAG EVEPYEIAG TTPOYPAUMATICETAI YIa Evav OEDOUEVO opidovTa
TTPOYPOUUATIONOU Kal SIANOPPWVOVTAl TA TTPOPIA KATAVAAWONG EVEPYEIAG TWV
XPNOTWV.

MNa mapadeiypa, otn PeAETn [GATZ13] mporteivetal évag atmAdg punxaviouog
KaBopIoPoU Twv TIHWV Yia AZ o€ TTPAyUOTIKO XPOVO PE OKOTIO Tn MEIwWON TOU
@opTiou. AutOé Ba pTTOopoUCE va OIEUKOAUVEI TOUG XPNOTEG VO OUCXETICOUV TNV
KATAVOAWTIKA TOUG CUUTTEPIPOPA E OIKOVOUIKA OPEAN.



AvtiBeta, otn peAétn [RAD10], o TIpOTEIVOUEVOG pNXAVIOPOG €EAyeEl pia
KATAVOUN QOPTIWV YIA £VO OUYKEKPIMEVO XPOVIKO opidovia TTPOoypPauuaTIoNoU,
TTou OBupilel T0 yvwoTd aAyopiBuikd TTPOBANUA TOU TTPOYPOUUATIOPOU TWV
EPYQOIWV OTIG unxavég. QoTdo0, €1dIKA yia AUTAV TNV TTEPITITWON Ol XPAOTEG
EVOEXETAI VO OUUPWVAOOUV OE JIO CUYKEKPIPEVN KANTTUAN KAaTtavaAwaong yia tnv
ETTOMEVN NMEPQ, OGAAG OTnV TTPAYMATIKOTATA VO TNV Trapafidocouv Katd Tn
dIdpKeIa TNG NUEPAG.

‘Eva xapaktnpioTik® Trapadeiyya eivar 1o ¢ATnua tou bid-parking. To bid-
parking ava@épetal 01O @QAIVOPEVO OTTOU €vag XPHOTNG TTPOYPAPUATICEl €va
WYeUOWG PEYAANO QopTio O€ Pia dedouEVN OTIYUN OTO PEAAOV, £€TO1I WOTE N TIPA YId
ekivn TNV wpa va augnBei. AutO 00nyei TOUG AANOUG XPAOTEG VO
TIPOYPAPMATIOOUV Ta OIKA TOUG @OPTIO HAKPIA aTrd €KEiv TNV wpa  Kal
EVOEXOUEVWG OE TTPOYEVVEOTEPEG WPES. ETol, étav @Bdaocel n ev Adyw wpa, o
ApXIKOG XPAOTNG MEIWVEI TO TIPOYPAMUATIONEVO QOPTIO OTO TIPAYMATIKO TOU
QOPTIO KaI ETTWEEAEITAI ATTO PIA PEIWPEVN TIPA, AOyw Tou yeyovoTog OTI O GAAOI
XPNOTeG €xouv ueTa@épel  (kar Ndn €EUTTNPETACEN) Ta @OPTiA TOUG OF
TIPONYOUMEVEG XPOVIKEG OTIYUEG. Mia TTpdtacn yia TNV QAVTIMETWTIION TOU
@aivouévou bid-parking, vyivetar otn peAétn [CHAP17]. Ze auti Tn MEAETN
TTPOTAONKE MIa clock-proxy dnuoTTpacia TToU AOXOAEiITal PE TO CNTNUA TWV
OTPATNYIKWY XPNOTWYV TToU Ba utropoucav va EQapuOCouV Pia TETOIQ OTPATNYIKA.

Q¢ ouptépacpa amd TNV TTApPATTAVW oOulnTNOoN TIAPOTNPOUPE OTI £XOUV
TTpoTabEi diIdpopa POVTEAA YIO TV EVOWMPATWON TWV PNXAVIOPMWY TG ayopdg
oTn Alavikr) ayopd nNAEKTPIKAG evépyelag. QOTO00, £6akoAouBoUV va UTTAPYXOUV
OUO ONUOVTIKEG  EPEUVNTIKEG  KATEUBUVOEIC TTOU  TTAPOUEVOUV  OXETIKA
avegepEUVNTEG. H TTpWwTN a@opd TOV OXEDIACOUO PNXAVIOPWY TToU £EETACOUV ATTO
KOIVOU TTavw atro €va 1 dUo atrd Toug Trpoava@epouevoug KPI kai emituyxavouv
éva eAKUOTIKO ouvOUAOMO PETAEU TTOAWV 1 6Awv autwyv. To deUTEPO apopd
MNXaviIOgoUG  OXeOIAOPOU  TTOU  TTAPOUCIACOUV  OUYKEKPIPEVEG  1D10TNTEG
TIPOCOPUOCMEVEG OE KABE OUYKEKPIYEVN TTEPITITWON. MNapakdTw TTapoucidloupe
KAtrola {nTripaTa TTou dev £CeTACOVTAI OTIG PEXPI TWPO MEAETEG KAl AVOPEPOULE TN
oupdBOoAn auTAg TNG dIaTPIRAG.

2UVEIOPOPES Kal O1apBpwan TS TTapouoac epyaciac

H oulntnon yia 1n BiBAoypagia otn AZ atmmokAAUWe QvOIKTA €PEUVNTIKA
Béuara, pepika atmd Ta otroia Ba oulnTnBouv d1eCOdIK& OTO KEIPNEVO. ZUPPWVA UE
TNV KATAYOPIOTTOINON TOU TTPONYOUUEVOU £DAQPIOU, TASIVOUOUUE TIG OUVEICPOPEG
Mog o€ U0 TopEi: ANyOpIBuoug yia AZ o€ TTpayuatikd xpovo kai AAyOpIOuoug
yla day-ahead xpovoTTpOyPAUNATIONO POPTIiWV.

2XETIKA PE TN AZ o€ TTPAYUATIKO XPOVO, TO TTPWTO oNPAvTIKO RTnPa €ival n
artroucia PHEAETNG TTOU va €geTACElI TauTOXpova Kal Ta TEooepa TTpwTa KPIs. Auto
TO ¢NTNMA €ival TTOAU ONUAVTIKO, €I0IKA ETTEION TTOANEG HEAETEG UEAETOUV TO TTPWTO
KPIl xwpi¢ va Aaupdavouv uttowiv 10 deuTepo. QOTOO0O0, TTAPOAEITTOVTAG VA
QvTINETWTTIOEI Kaveig To deutepo KPI, utropei eUkoAa va B€oel o€ Kivduvo Tnv
ammodoon Tou unxaviopgou kalr oto TpwTto KPIL. Ztnv Tapouca diaTpifn



eCetalovral o PABOG Ta BEPATA QUTA KAl TTPOTEIVETAI €vag PNXAVIOUOG TTOU
QVTIMETWTTICEl AQUTA Ta TTPORARKATA.

To deUTEPO ONPAVTIKO CATNPA OXETIKA PE TN AZ o€ TTpayuatiko Xpovo eival 1a
KPIs tTou oxeTtiCovTal ye dikaloouvn (fairness) kai budget-balance. A6 1n pia
TIAEUPA, O AiyeG PEANETEG TTOU PEAETNOAV T DIKAIOOUVN KAVOUV PAAAOV 10XUPEG
UTTOBE0EIGC OXETIKA WE TO MOVTEAO TwV XPNOoTwv. ATO Tnv AAAN TTAgupd, ol
MNXaviopoi TTou BETouv w¢g TTpoTEPAIOTNTA TRV atrodoTikoTnTa (efficiency),
onAadr VCG, AGV kal aAAol, dev gival budget-balanced. H onpacia autwv Twv
OUo ID1I0TATWYV oudnTEITal AETTTOUEPWG KAl TTPOTEIVETAI £vag VEOG OAYOPIBUOG
TIMOAOYNONG YIA TV AVTIUETWTTION QUTWYV TWV {NTNUATWV.

AkOua, oTo deUTEPO PEPOG TNG OIATPIRAG, AOXOAOUUACTE PE TNV TTEPITITWON
day-ahead ypovotrpoypauuaTIONoOU @OPTiwY, OTTOU N MEYAAN TTAEIOWN®Ia TWV
OXETIKWV MEAETWV €iTE UI0BeTEl TNV “price-taker” utrdéBeon, eite KAvel 10XUPEG
UTTOB€0EIC OTA POVTEAQ TWV XPNOTWV. TNV TTapouca diatpifr] avaAUouue TO
(NTNUa  Kal oudnToupE €TTioNG TNV €I0IKN TTEPITITWON OTTOU  ATTAITEITAI N
IKavoTToinon  Treplopiopwy.  lapouoiddetar  upia  apxITeKToviky AZ  Ot1Tou
XOAQpwvovTal Ol TTapatTavw UtrtoB€oelg oT1o  Poviédo. O TTpoTeEIvOPEVOG
MNXavIOPOG €yyudtal Tn oUykAiIon Trpog Tnv IooppoTria Nash. EmimAéov, ol
TTEpIOPIoPOi dlao@aAifovral OTI TTANPoUVTAl KATA TNV TEAIKA KATAVOUN, €VW O
MNxaviouog diatnpei eriong Tnv 1010TNTA budget-balance.

TéNog, e¢eTtaleTal miong 10 {TNUA Tou bid-parking. H puBuion 1Tou Bewpoupe
TTOPaKIVEI o€ avamTuén peer to peer ayopwv eVEPYEIOG, O OTTOIEG ATTOTEAOUV
Tedio eKTETANEVNG oUlATNONG OTA CUYXPOVA CUCTAMOTA NAEKTPIKAG EVEPYEIQG.
Alegdyoupe avadAuon OXeTIKA pe Tnv aia Twv peer to peer ayopwyv, €vw Ol
TIPOCOPOIWOEIS  EMPRERAIWVOUV  OTI N OUOXETION Twv  TIPOPIA  {RATNONG
OIOPOPETIKWY XPNOTWV TTaiCeEl ONUAVTIKO POAO.
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Chapter 1

INTRODUCTION

1.1 Modern Power Systems and Demand Side Management

1.1.1 Introduction, Evolution and Challenges

Until the 1980s, electricity systems were considered natural monopolies and were

organized under cost-of-service regulation. The major directions favored by the EU
are headed towards increasing penetration of Renewable Energy Sources (RES) and
promoting the liberalization of the energy market (directive 200/72/EC [DIRE09]). A
major consequence of these developments is that electricity is envisaged as a commodity
and traded accordingly, which means that functionalities and principles from markets and
economics are becoming relevant in electricity trading as well. However, electricity
markets and trading mechanisms need to be researched and designed, so that they are
tailored to the specific specialties of electricity. Most importantly, all electricity trading is
made on top of an electricity grid. This means that the network constraints and properties
must be taken into account in order to ensure the feasibility of the market outcome, the
network stability and the security of supply.

A fundamental specialty of electricity as a commodity is that delivery is made instantly
and supply must equal demand at all times (which relates to the network’s stability). The
traditional approach to maintaining this balance is that generation is controlled to follow
the intermittent demand. However, RES penetration is increasingly introducing non-
dispatchable generation in the supply side, while fast-responsive generation units are
considered costly both in financial terms and in CO2 emissions. These developments
have triggered the discussion of utilizing flexibility capabilities on the demand side, in
order to make network operation more efficient. The idea of leveraging the flexibility of
electricity demand is generally referred to as Demand Response (DR) or Demand Side
Management (DSM).

1.1.2 Demand Response techniques

The general idea of Demand Response is to incentivize users to shape their electricity
consumption according to what is more efficient in terms of the electricity network. This
is generally envisaged as moving loads from peak-demand times to low-demand times.
The reason is that electricity consumption tends to form a peak during evening hours.
This makes it inefficient for the network to serve, because fast-response, higher cost



generation units need to be called in order to cover for the peak demand. Using the
following figure as an example, for the same total energy consumption, it is more
efficient to achieve a more flat, uniformly distributed curve (blue) rather than a curve

with peaks and valleys (grey).
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Figure 1.1.f1. Example of a typical electricity consumption curve in a day

There have been proposed different approaches for extracting the flexibility of energy
consumption, including:

a)

b)

d)

Contracts that facilitate direct load control

This case is mainly applicable to industrial or commercial consumers. The
consumer has a contract with the utility company, which allows the latter to
curtail part of the former’s energy consumption in real time.

Behavioral/motivational/educational schemes

This approach refers to educating consumers (mainly residential) towards energy
efficiency, behavioral change and environmentally friendly consuming behavior.

Reward schemes and gamefication

These techniques draw on the concepts of behavioral economics, in order to
motivate consumers to modify their energy consumption patterns through the use
of point systems and reward schemes

Price-based demand response

This approach relates to economics and utility theory. The consumer is envisaged
as a rational agent that derives a particular value/utility from his/her energy



consumption. Thus, the consumer would voluntarily proceed to the modification
of his/her consumption pattern in response to a monetary compensation.

In this thesis we focus on the last category, which is price-based DR, where users are
considered to shape their consumption patterns in response to monetary incentives. This
approach motivates the study of market mechanisms that implement electricity trading
featuring advanced capabilities and properties tailored to the specialties of each particular
use case.

1.1.3 System Architecture

In this dissertation, we envisage a setting where each electricity consumer possesses a
number of smart devices which are devices that support schedulable and controllable
electricity consumption as well as communication capabilities in the context of the
internet of things. Also, we assume a software component at each user’s side, a home
energy management system (HEMS), which is able to receive

a) the user’s preferences on electricity consumption through a user interface
b) the smart devices’ operational constraints
¢) dynamic electricity pricing signals

and make decisions on behalf of the user concerning the scheduling of the electricity
consumption for each smart device. Finally, we assume a communication network built
on top of the power network that facilitates message exchange between the users’ home
energy management system and a coordinating entity, to which we refer as the Electricity
Service Provider (ESP). The following figure demonstrates the system’s architecture.
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Figure 1.1.f2. System Architecture



1.1.4 Strategic users

In this thesis, each user (consumer) is considered to be a rational, strategic player who
chooses his/her actions with the purpose of optimizing his’/her own objective
(maximizing his/her payoff/utility). When dealing with markets that contain a large
number of participants, an individual user’s actions are virtually insignificant i.e. a sole
user’s market actions (taken alone) are negligible since they do not have a significant
impact on the system’s properties. In our context, this approach considers a model where
an individual user’s decisions cannot affect the market’s prices. This assumption is
widely called “price-taking”, and we say that the user is modeled as a price-taker.

Nevertheless, in the present thesis we have relaxed this assumption and the individual
user is considered to be a “price-anticipator” i.e. the user is aware of the market
mechanism and behaves strategically with the purpose of maximizing his/her own payoff.
This setting brings the issues considered in this thesis in the realm of game theory and we
will mainly leverage game-theoretic concepts, in order to analyze the use case that we
will consider.

Coordinating the demand, so as to make the electricity network operate more efficiently
constitutes a social objective. However, each individual user’s objective may or may not
be aligned with the social objective. In such an environment and in order to design
market mechanisms that exhibit desired properties, we will largely draw on concepts of a
particular stream of game theory called mechanism design.

1.2 Mechanism Design Preliminaries

Mathematical optimization is the tool for optimizing an objective over a number of
decision variables. Sometimes though, these decision variables are not under the control
of the system designer. Rather, they are in control of independent agents, each one trying
to optimize its own objective, which may or may not be in line with the designer’s
objective (or with the social objective for that matter). Game theory is the field that
studies mathematical models that involve competing or cooperative, rational agents and
their interactive behavior. Mechanism design is essentially the tool for designing rules for
systems with strategic participants holding private information, such that the system has
good performance guarantees (even though the designer does not directly control the
decision variables). Examples of mechanisms from everyday life include routing
problems of (transportation or computer) networks as well as auctions of any kind.

So, what makes a particular mechanism better than another? There are a number of
generally desired properties that a mechanism ideally exhibits:



1) Strong incentive guarantees: the rules are such that we can reason about each
participant’s dominant strategy, which essentially means that, assuming rational
participants, we can effectively predict the outcome even though we are not the ones
making the decisions.

2) Strong performance guarantees: the rules are such that the decisions of the
strategic participants optimize the designer’s objective.

3) Tractability guarantees: the rules are such that the participant’s interactive
behaviors can reach an equilibrium in acceptable time.

and possibly a number of additional desired properties, depending on the particular
business model. Examples include guarantees on: some participant’s revenue (e.g. the
investor’s), individual rationality (that is that every participant is better off participating
rather than not participating), fairness guarantees, privacy preserving, communication
overhead etc. Designing mechanisms that exhibit specific properties tailored to each
specific business model is an open and important research topic.

In the context of the Smart Grid, producers, consumers operators, traders and regulators
are all participants with different objectives in a system where the decision of one affects
the decision of another. In the following subsection we will define the use cases
considered in this thesis and their challenges. We will also describe the mechanism’s
desired properties specifically for the use cases considered, and extract the key
performance indicators (KPIs). Finally, we will present the state-of-the-art approaches in
these use cases before proceeding to the mathematical formulations and the proposed
solutions.

1.3 Mechanism Design for Demand Side Management

1.3.1 Requirements and Key Performance Indicators

The traditional approach to demand-side electricity trading is the one where users are
charged with a fixed per-unit price. The wholesale prices on the other hand, are subject to
the producers’ bids. In particular, producers bid their marginal cost of production in the
wholesale market where the marginal producer defines the per-unit payment of all
participating producers. Especially in markets with high RES penetration, the wholesale
market prices can be quite volatile, since RES production is non-dispatchable and
depends on weather conditions.

In the traditional approach described above, the demand side is oblivious of the wholesale
market prices and more generally of real-time energy costs. This has provoked an
extensive discussion among both the academia and the industry on retail policies that will
reflect the wholesale market prices to the end-users payments. There have been proposed



several mechanisms to achieve this goal, each one focusing on a different aspect of the
problem. In particular, market mechanisms for electricity retail can be generally
evaluated by six KPIs

1. Optimality/efficiency: The aggregated payoff of all market participants. This is
formally defined in economics as the Social Welfare.

2. Incentive Guarantees/Strategy proof: The resilience of the system to users who
benefit from declaring false preferences. In other words, we say that a mechanism is
Incentive Compatible when users cannot benefit from cheating.

3. Privacy protecting: The quantity of information that is required from the user.

4. Convergence/scalability: The speed of convergence of the mechanism’s
implementation and its scalability with respect to the number of users.

5. Fairness: The policy towards the distribution of the energy costs to energy consumers

6. Budget-Balanced: When the total sum of monetary transactions from all market
participants (including consumers in the demand side and all participants on the
supply side i.e. producers, retailers, operators etc) is balanced. In other words, the
mechanism designer does not need to subsidize the trade, nor extracts a surplus from
it.

Finally we note that depending on each particular use case, other positive/negative

outcomes of the mechanism might be relevant (e.g. controllability in order to satisfy

system-wide constraints, simplicity for users to understand the mechanism, etc.). In the
next subsection we analyze each KPI in more detail and present how it is treated in the
recent DSM literature.

1.3.2 Related work

Optimality/efficiency in terms of Social Welfare is of great importance, especially for
policy makers and market operators. It refers to eliminating market inefficiencies. When
there are parties on both sides of the market that would agree to trade at a given price, but
the trade does not happen for any reason, we say that a market inefficiency occurs. Flat
retail prices as well as static time-differentiated prices create market inefficiencies since
the real-time costs and prices of the market are essentially invisible to the demand side.
Thus, real-time pricing was also the first to be considered in the academic literature for
advanced and automated DSM schemes. In particular, [LI10] proposed a market
mechanism where the social welfare was optimized (under certain assumptions on user
preferences and consumption behavior including the price-taking assumption). Under the
constraint that demand must equal supply at all times, the Lagrangian function was
formulated and the Lagrange multipliers for the dual problem were interpreted as the
retail market prices. An iterative algorithm converges to the prices that maximize the
social welfare, assuming that the end-user appliances registered to the market mechanism



are automatic in the sense that they can modify their consumption in response to price
signals, given the user’s programmable set of preferences. However, the rest of the KPIs
were not considered.

Incentive Guarantees/Strategy proof refers to the issue of cheating the mechanism. More
specifically, the studies in [LI10], [SAMA10], [GATZ10] assume that users are price-
takers (an individual user’s load is very small compared to the Aggregator’s portfolio and
thus its behavior does not affect the prices). Nevertheless there are several use cases in
which the assumption of price-taking behavior is rather strong and unjustified, including
but not limited to:

1) large industrial consumers,

i1) users that participate in DSM in a particular geographic location where
congestion problems occur,

ii1) islanded micro grids formed at neighborhood level

As a result, users are better expected to behave strategically and strategic behavior may
compromise the mechanism’s efficiency. In [SAMA12], the issue of strategic behavior
was tackled by proposing a Vickrey-Clarke-Groves (VCG) approach for retail electricity
trading. The VCG mechanism is widely considered as the cornerstone of mechanism
design as it is provably the unique mechanism that achieves the optimal social welfare
(1st KPI) while also provides the strongest incentive guarantee (2nd KPI) which is
Dominant-Strategy-Incentive-Compatibility (DSIC) [SHOHO09]. However, the VCG
mechanism comes with serious disadvantages in almost all the rest of the KPIs. Most
importantly, it requires from the users to declare their whole set of consumption
preferences for each of their appliances to the service provider. This fact is clearly a deal-
breaker in practice because of both privacy as well as representation issues.
Representation issues refer to the request from the users to capture their preferences in
closed form mathematical functions, so as to make it possible for the service provider to
solve a large and most probably intractable optimization problem.

Regarding user’s privacy protection, a distributed mechanism is proposed in [BAHA14],
where a communication protocol was proposed for the DSM procedure, to implement the
message exchanges without revealing the user’s local information. However, there is a
number of strong assumptions regarding user’s preferences. More specifically, users are
considered to only be interested in completing a certain task within a certain time interval
and the task’s completion is modeled as a hard constraint, which means that the task will
be performed no matter the cost.

The above discussion mainly focuses on the use cases of relatively small communities of
users, where user incentives and strategies come into play. A different research direction
is studying the use case of large scale aggregation. The problems there are mainly the
scalability of the mechanism implementation as well as the fairness at the individual



user’s level. A mathematical approach towards a solution for the scalability problem is
proposed in [MHANI16], where smoothing techniques are applied to the objective
function of the optimization problem in order to facilitate fast convergence. A different
approach is taken in [STEP15] where groups of users with similar characteristics are
considered as an aggregated participation. While this approach might create minor
inefficiencies, it drastically reduces the convergence time.

A different objective is considered in [BAHA13], where the social welfare efficiency is
partially relaxed for the sake of fairness. In particular, the study demonstrates that there is
a trade-off between these two KPIs. The Shapley value [SHAPS53] from cooperative
game theory is leveraged to define a fairness index and the mechanism is accordingly
designed, so as to maximize fairness.

Finally, the budget-balanced property is discussed in [MA14], where the authors propose
an AGV (Arrow-d’ Aspremont-Gerard-Varet) mechanism is proposed to coordinate load
scheduling while keeping the system incentive compatible and budget-balanced.
However, AGV mechanisms is still a direct-revelation mechanism like VCG (users are
required to declare their whole set of preferences), which means that it also suffers from
privacy and representation problems.

It should be noted, that the six KPIs described, although very important, are quite general
and might not be enough in all use cases. Mechanisms should take into account the
specific requirements of each use case and the importance of each requirement. The
special properties required in each use case, are categorized under the “umbrella” term of
mechanism externalities. For the cause of being more specific, we present the two
following examples.

System-wide constraints on users consumptions might need to be satisfied. In the context
of an energy community, this kind of constraints requires a certain amount of
coordination among users. The study in [DENG14] presents a mathematical technique
based on Lagrange multipliers, where the multipliers are dynamically and in a distributed
fashion updated so as to serve as coordination signals. However, the study is not oriented
in coordination among users, but rather in keeping an individual user’s daily load fixed
i.e. apply only temporal rescheduling and not load shedding.

Another example of special requirement relates to the mechanism’s simplicity (easy user
adoption). The studies presented above provide some strong theoretical guarantees under
certain assumptions. A central assumption is the rationality of the end user behavior.
However, in practice and especially when it comes to residential user participation, we
cannot expect the users to always behave rationally within complicated mechanisms that
they don’t understand. Thus, a relevant requirement relates to the mechanism’s plain
simplicity. A study towards simplicity, is presented in [BITA17], tailored to EV charging.
In particular, faster EV charging comes with a higher price. However, the proposed PM



opts for simplicity and the user is provided with a list of prices to choose from, each one
with its own expected time of job completion.

1.3.3 Real-time Demand Response and Period-Ahead Scheduling

In the previous section we provided a description of how each KPI is treated in the recent
research literature. A first categorization of the DSM studies follows directly by
recognizing the KPIs considered in each study.

In this section we further categorize the state of the art studies with respect to the DR use
case that they consider. More specifically, there are two general use cases that relate to
the temporality of the DR model: real-time DR and Period-Ahead demand scheduling. In
real-time DR, the users are asked to modify their consumption in real-time, so as to meet
sudden network needs. Examples include a short-term forecast of network congestion or
RES failure. On the other hand, in Period-Ahead scheduling, electricity consumption is
scheduled for a given scheduling horizon and the users’ energy consumption profiles are
shaped.

For example in [GATZ13], a plain and simple flat-pricing mechanism is proposed with
the niche of applying DSM with real-time reward for load curtailment on top of the flat-
pricing scheme. This might make it easier for users to relate their consumption behavior
to financial benefits or at the very least give user the opportunity to not participate in the
mechanism if they don’t feel they understand it.

On the contrary, in [RAD10], the proposed mechanism outputs an allocation of loads for
a given scheduling horizon ahead, reminiscent of the well-known algorithmic problem of
scheduling jobs to machines. Especially for this case, there is an issue of keeping the
users accountable to the allocation in which they agreed ahead of time. In other words,
the users might agree on a certain consumption pattern for the following day, but actually
violate it through the day.

A characteristic example is the issue of bid-parking. Bid-parking refers to the
phenomenon where a user schedules a falsely large load at a given time in the future, so
that the price at that time rises. This drives other users to schedule their own loads away
from that time and possibly at earlier times. So, upon delivery time, the focal user reduces
the scheduled load to the actual amount and benefits from a reduced price due to other
users’ having rescheduled (and already served) their loads to earlier times. A case for
counteracting bid-parking strategies, is made in [CHAP17]. In this study, a clock-proxy
auction was proposed that tackles the issue of strategic users who might apply such a
strategy.

As a conclusion to the above discussion, we observe that there have been proposed very
elegant models towards the integration of market mechanisms in the retail electricity



market. However, there still two major research directions that remain relatively
unexplored. The first refers to the design of mechanisms that jointly consider more than
one or two of the KPIs presented above and achieve an attractive trade-off among many
or all of them. The second refers to designing mechanisms that exhibit specific properties
tailored to each specific use case and business model. The following subsection discusses
issues not addressed in the state of the art studies and states the contributions of this
dissertation.

1.3.4 Contributions and Structure of this Thesis

The discussion on the DR literature revealed open research topics, some of which will be
thoroughly discussed in the rest of this text. In accordance with the categorization of the
previous subsection, we categorize our contributions in two fields: real-time DR and
period-ahead scheduling games.

The first major issue in real-time DR is the absence of a DR mechanism that
simultaneously considers the first four KPIs (Efficiency, Incentive Compatibility, Privacy
Protection and Scalability). This issue is very important, especially because many studies
consider the first KPI without the second. However, failing to address the second KPI,
can readily compromise the mechanism’s performance also in the first KPI. Section 2.1
discusses these issues in depth and proposes an indirect mechanism that addresses these
problems.

The second major issue in real-time DR is the widely overlooked KPIs of Fairness and
Budget-Balance. On the one hand, the few studies that studied Fairness make rather
strong assumptions regarding the user model. On the other hand, the protagonist
mechanisms with efficiency and/or incentive guarantees (namely VCG, AGV and others)
are inherently not budget-balanced. The importance of these two properties is discussed
in detail in section 2.2 and a novel pricing scheme is proposed to address these issues.

In Section 3 we take on the period-ahead scheduling use case where the vast majority of
the relevant studies either adopts the price-taking assumption or imposes strong
assumptions on user models. In section 3.1 we analyze the issue and also discuss the
special use case of satisfying system-wide constraints which is quite challenging from a
technical perspective. A DSM architecture is presented where the above assumptions on
usr model are relaxed. The proposed mechanism is guaranteed to converge to the Nash
Equilibrium. Moreover, the constraints are guaranteed to be satisfied at the final
allocation, while the mechanism also preserves the budget-balance property.

Finally, the issue of violations on the period-ahead schedules is discussed in section 3.2.
A spread policy is considered and analyzed. The setting that we consider motivates the
development of transactive energy markets which is a field of extensive discussion in
modern electricity systems. We conduct an analysis on the value of transactive trade,
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while simulations confirm that the correlation of the different users’ demand profiles is of
great importance.
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Chapter 2
REAL-TIME DEMAND RESPONSE

2.1 Truthful, practical and privacy-aware demand response via an
optimal and distributed mechanism

Serving the energy demand in peak demand times might be quite expensive for the grid
operator, because of the need to constantly maintain costly energy reserves. Also, in
regions with high penetration of Renewable Energy Sources (RES), adjusting the demand
to meet the intermittent generation can enhance the efficiency and economic viability of
the system. As a result, the idea of offering monetary incentives (rewards) to consumers
in order to decrease their consumption at peak demand times is getting a great deal of
attention both from the research community and the Industry. More specifically, when
there is a need for reducing energy consumption in real-time, an ad-hoc market is created
where the operator offers to buy consumption reduction from the users. Users participate
in such a DR event by offering their consumption flexibility in exchange for monetary
compensation.

In the modern smart grid, each user (consumer) has a smart meter that measures his/her
consumption at all times. The grid operator can assess the aggregated consumption of
users at a particular part of the grid in real-time. Users are interested in their own payoff,
which results from the reward they receive and the discomfort they experience from
reducing their energy consumption. On the other hand, the operator is interested in the
reduction of the aggregated consumption at peak times. Assuming strategic user
behavior, the above setting turns into a game, since each user’s payoff is dependent on
the actions of other users. In more detail, discomfort could be modeled through a local
function, so that it is expressed in monetary terms. However, users are usually not
capable of capturing their preferences in a closed form mathematical function and even if
they were, they are reluctant to reveal their preferences. Rather, it is more natural for the
users to simply take actions (e.g. turn appliances on/off, or adjust power consumption) in
response to price signals.

An intermediate entity is assumed to resolve the formulated game and clear the ad-hoc
flexibility market described above. We refer to this entity as the Electricity Service
Provider (ESP). The ESP is assumed to be an independent entity with the objective of
coordinating the flexibility trading in the most efficient way. Formally, in economics, the
“most efficient way” is characterized by the concept of maximizing the social welfare,
defined as the aggregated payoff of all market participants. However, the users’ local
functions (related to their flexibility/comfort levels and consumption habits) are private to
each user. This makes the task of the ESP quite challenging, especially when we consider
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users who act strategically and might misrepresent their local function if that makes them
better-off.

In this section, we propose a DR architecture through which ESPs will be able to
optimally resolve the aforementioned game. In particular, we draw on concepts of
mechanism design theory in order to define an iterative, auction-based mechanism,
consisting of an allocation rule and a payment rule. The allocation rule refers to the way
that the ESP decides upon how much consumption reduction will be allocated to each
user according to the feedback obtained through the auction process. The payment rule
refers to the way the ESP decides upon the reward of each user for his/her allocation,
provided that the user makes the corresponding contribution. Through the auction
procedure, the ESP exchanges messages with the users in the form of queries. A query in
our case is a price signal communicated from the ESP to the user, to which the latter
responds with his/her preferred action (i.e. consumption reduction) according to this
signal. Note that a user may respond untruthfully if he/she finds that to be in his/her
interest.

A mechanism is generally evaluated by: 1) its performance in terms of social welfare, i.e.
efficiency, i1) the tractability of the outcome, and 1iii) its incentive guarantees. The first
two are commonly addressed in the literature and point to the allocation’s efficiency and
the mechanism’s convergence time and consequent scalability. In contrast, the third
requirement (that points to truthful participation) is widely overlooked in the DR
literature. In the few cases where truthfulness is addressed, it comes with a sacrifice of
practical implementation ability and user privacy. In the rest of this section we analyze
what the third requirement is about and how it is handled in the state-of-the-art DR
studies.

User strategies in games such as the one described above are subject to thorough study
and discussion. Mechanism design theory classifies a mechanism’s incentive guarantees
with respect to how users are expected to act when participating in it. The strongest
guarantee is called Dominant Strategy Incentive Compatibility (DSIC). We say that a
mechanism is DSIC when it is at each user’s best interest to truthfully implement his/her
true preferences at any query, regardless of what other users do.

Surprisingly, the vast majority of studies in the DR literature do not provide any
guarantees as we will analyze shortly. This drawback is typically rationalized by
assuming that an individual user’s load is very small compared to the whole system’s
aggregated load and thus the user can be approximated as a price taker (his/her actions,
taken alone, have no effect on the system’s dynamics). Under this assumption, each user
implements his/her most favorable action (consumption decision), assuming the actions
of other users to be constant. This process is repeated until an equilibrium is reached. The
users are typically modeled to iteratively implement their best-response every time they
are asked a query, i.e., they decide upon their preferred consumption upon receiving a
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price signal. This strategy updating procedure is called best-response dynamics. As
analyzed in [NISS07], such myopic “local rationality”” does not necessarily imply “global
rationality”, i.e., given an iterative mechanism, it is not always to the user’s best interest
to repeatedly best-respond. Rather, a user might be better-off by submitting false bids
through the process.

Best-response dynamics converges to an efficient allocation under the price-taking
assumption described above. Nevertheless there are several use cases in which the
assumption of price-taking behavior is rather strong and unjustified. For example, a large
industrial consumer’s actions may have a significant effect on the system. Also, when it
comes to DR-events, the users called to participate are often required to be in a particular
geographic location where congestion problems arise, in which case the relevant user
population is not large. Another example includes islanded micro grids formed at
neighborhood level, especially ones with high RES penetration. In such use cases, the
number of users in the formulated game is drastically reduced. This means that a single
user’s actions may no longer be insignificant and a mechanism implemented in best-
response strategies fails to capture user incentives. As a result, users are better expected
to behave strategically, and strategic behavior may compromise the mechanism’s
efficiency [JOHAOS]. In this chapter we also address the third requirement, defined as the
capability of the mechanism to provoke strategic users to act truthfully in accordance
with their preferences, which is overlooked in most of the DR literature. Moreover, we do
so via an indirect and practical mechanism, which allows for distributed and privacy-
preserving implementation, in contrast to the few studies that consider incentive
guarantees that do not exhibit these characteristics.

The rest of this chapter is organized as follows. In Section 2.1.1, we present a literature
review of DR studies from the perspective of incentive guarantees. In Section 2.1.2, we
present the model assumed. In Section 2.1.3, we present the problem formulation. In
Section 2.1.4, we present and analyze the proposed auction mechanism and prove that it
has the desired properties. In Section 2.1.5, we demonstrate the performance and verify
the properties of the proposed system. Finally, in Section 2.1.6 we describe a privacy-
preserving communication protocol that can implement the proposed mechanism.

2.1.1. Related Work

In the DR architectures/frameworks that have appeared in the literature, the end user is
typically modeled as a selfish player who participates in the mechanism with the purpose
of maximizing his/her own payoff. The user’s preferences are widely modeled as a
convex function (e.g. [SAMA10], [LI10], [GKAT13]) in accordance with microeconomic
theory [PERL15]. However, studies differ on the way they model the behavior and the
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strategy of the users participating in the game. More specifically, there are three levels of
behavior modeling, in increasing order of user rationality:

A) “naive”, de-facto truthful users, assumed to always truthfully report their preferences

B) locally rational users, assumed to apply a myopic best-response process (maximizing
their payoff at each iteration of the mechanism as if it were the last iteration)

C) strategic, globally rational users, who are aware of the mechanism’s structure and
apply a strategy that maximizes their final payoff (possibly by submitting false
responses).

Several studies either assume naive users of category A ([ALTHI15], [TUSHI15],
[WANG17], [ZHAOI13], [AHMAIS5], [ERDI15], [STERI18]) or assume no user
preferences and perform central optimization for the scheduling problem (e.g. [BASI17],
[TANG14]).

The majority of DR works assume “price-taking users” which translates to category B,
i.e., locally rational users. Static-pricing approaches (e.g. [NGUY 14]), as well as typical
dual decomposition approaches (including [SAMAI10], [LI10], [GATZ13] and
[QIAN13], [MOHSI10], [MHAN16], [SLI16], [JACQ17], [BITA17]), assume users of
category B. Under the price-taking assumption, the solution concept is that of a
competitive equilibrium. A market-clearing pricing approach brings the system to
competitive equilibrium via an iterative best-response process, and the final allocation
maximizes the social welfare. However, as described above, in many use cases (such as
emerging local energy communities [MAKR18], [MAMO18] islanded micro-grids, etc)
the price-taking assumption no longer holds and the efficiency of these mechanisms is
compromised [JOHAOS5]. In mechanism design terms, the mechanisms of the first two
categories are not incentive compatible, because a strategic user can benefit by
manipulating his/her responses.

Few works consider user incentives. When considering strategic users (of category C),
the mechanism designer is confronted with a trade-off: the Vickrey-Clarke-Groves
(VCG) mechanism is the unique welfare maximizing mechanism implemented in
dominant (and not best-response) strategies, meaning that either a VCG-based approach
is taken [SAMA12], [NEKO15] or welfare maximization is compromised [YAAGIS5],
[MA14], [CHAP17], [TSAO16], [STER1S].

The main problem with the VCG approaches is that they require users to reveal their
whole set of preferences to the ESP, while the latter makes all the calculations and
decides the allocation and the rewards. This is clearly impractical, since real users
generally can’t express their preferences in closed-form mathematical functions and even
when they can, they are not happy to compromise their privacy by sharing their whole set
of preferences with the ESP. In this chapter, we opt for a VCG-like approach, so as to
achieve social welfare maximization, but we omit the direct-revelation approach of the
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typical VCG mechanism. Instead, we design an iterative auction mechanism based on
Ausubel’s clinching auction, in which users are only required to make decisions
regarding their consumption in the presence of price signals. By adopting this approach,
we implement the efficient VCG outcome but also allow for a distributed implementation
and a privacy-preserving communication protocol.

Summarizing the above, our proposed DR architecture: i) is suitable for a distributed
implementation (unlike [SAMA12], [NEKO15]), ii) achieves the VCG outcome and does
not sacrifice efficiency (unlike [YAAGI1S5], [MA14]), and iii) is incentive compatible
(unlike studies that assume users of categories A and B).

2.1.2 System Model

We consider a flexibility market comprised of an ESP and aset N £ {1,2,...,n} of n self-
interested consumers, hereinafter referred to as users. We also consider a discrete
representation of time, where continuous time is divided into timeslots t € T of equal
duration s, where set T £ {1,2,...,m} represents the scheduling horizon. Each user
possesses a number of controllable appliances, with each appliance bearing an energy
demand. Since demands of different appliances are assumed independent and are not
coupled, we can consider one appliance per user for ease of presentation and without loss
of generality. We denote by the set of appliances.

User & appliance modeling

An appliance requires an amount of energy for operation. For example, if an appliance’s
operating power is 1Watt, and s = 1 hour, then the energy that the appliance consumes
in one timeslot of operation is 1Wh. This energy consumption is measurable in real-time
and can be shed if the user wishes. In particular, we consider controllable loads, meaning
that the user can modify consumption upon request, in exchange for monetary
compensation. Such a request for consumption modification is called a DR-event. Upon a
DR-event asking for reduction of the real-time consumption in timeslot ¢, user i can
respond by reducing his/her consumption by a quantity gf, assumed to be positive
(qf = 0), without loss of generality.

Also, qf is characterized by its feasible set Q; (defined by a set of constraints on gf) and
the discomfort function d;(q}) of user i. The discomfort function is private to each user
and expresses the minimum compensation in monetary units ($) that a user requires, in
order to reduce his/her consumption by the corresponding amount. The discomfort as a
function of gf can take various forms, depending on the appliance. We make the
following assumptions on the form of function d;(g}):

Assumption 2.1.1. Zero consumption reduction, brings zero discomfort to the user:
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di(0)=0
Assumption 2.1.2. The discomfort function is non-decreasing in q;:

aia 2 qiz © di(qi) = di(qp)
Assumption 2.1.2 says that consuming more does not make the user less comfortable.

Assumption 2.1.3: The discomfort function is upward sloping, meaning that additional
increase of gf brings increasing discomfort to the user:

qia=qly © di(qia+€) — di(qly +€) =di(qf) —di(qlg), Ve qlaqls > 0.

In order to incentivize users to reduce their consumption, the ESP offers a reward 7;(q}).
A user’s utility is defined as the difference between his/her discomfort for the
consumption reduction realized and the reward he/she received for this reduction is

Ui = Yeerlri(af) — di(gf)] (2.1.1)

In order to offer the rewards 7;(qf), the ESP draws on the reward offered by the operator
who requests the reduction as described in the following subsection.

DR-event and the ESP

Let L' denote the aggregated consumption of all users in N, as seen by the operator,
within a certain time interval t. Upon a DR-event, the operator (e.g. the DSO that
operates the smart grid) asks for a reduction of the users’ aggregated consumption during
a certain time interval and offers monetary incentives to the ESP towards its realization.
Let Dt denote the reduction in the aggregated consumption at t. The incentive (reward) is
implemented as a per-unit compensation for the electricity units of reduced consumption.
The cost of serving the aggregated energy consumption is typically modeled with
quadratic functions ([SAMA10], [LI10], [GATZ13], [QIAN13], [MOHS10], [MHAN16],
[SLI16], [JACQ17], [BITA17] as explained in [KOTHO3]. In this chapter, we adopt the
same approach and in direct analogy we assume that the compensation that is offered to
the ESP by the operator, can be modeled as a concave function of D¢. For the purpose of
being specific, we adopt here a polynomial function RY(D?) of a specific form

RY(DY) = a-Dt —b-(DY)? D€ |0,L] (2.1.2)

where a, b are positive parameters with a = 2bL*. The proposed DR architecture is open
to any other choice of R*(D?), provided it is a concave function. Thus, we assume that
upon a DR-event, the operator offers a marginal per-unit reward

A= ds(—ff;)) 2.13)

for a consumption reduction of D* units.
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The ESP is responsible for aggregating the users’ participation in the DR-event,
coordinating their actions, and dividing the compensation profits (rewards) among the
users. We assume a communication network, built on top of the electricity grid, through
which the ESP can monitor each user’s consumption and exchange messages with the
users.

2.1.3 Problem Formulation

With respect to the system described above, we would like to facilitate the allocation of
consumption reduction among the users so as to maximize social welfare. Social welfare
is defined as the difference between the revenues R¢(D?) that the ESP receives from the
operator for the consumption curtailment D¢ and the sum of the discomfort that this
curtailment causes to its users. This problem can be formulated from Egs. (2.1.4) and
(2.1.4a) below:

maxgceq, ien (R (DY) = Yienldi (gD} (2.1.4)
s.t. D' = Yien q; (2.1.4a)

The problem defined by Egs. (2.1.4) and (2.1.4a) is a convex optimization problem and
could be solved efficiently if the local functions d;(qf) were known (or truthfully
disclosed). However, d;(qf) of each user is not known and thus, problem (2.1.4) is
typically solved via dual decomposition in the DR literature. This approach, however, is
not incentive compatible as we will analyze shortly. In particular, the final allocation of
the dual decomposition approach is identical to that obtained through the ascending
English auction (see algorithm 2 of [SAMAI10]), which halts when supply equals
demand. More specifically, in the system model described and in case of an English
auction, the ESP would iteratively increase a per-unit reward A asking the users their
consumption reduction g (1) at each per-unit reward 2 (auction query). At each iteration,
each user i responds with his/her preferred g (1). A truthful (locally optimal) response by
user i, denoted as c}vf(/l), is one that maximizes i’s utility for reward A. This is
mathematically formulated as the solution to maximization problem (2.1.5):

gt (A) = argmax req en{d - af — di(g))} (2.1.5)

Clearly, c}vf(/l) is non-decreasing in A, since g > 0. The auction terminates when A
reaches a value for which ¥;cy qf(1) = DY(A). The final price is commonly called the
market-clearing price and it is denoted here as A,,.. The allocation at A,,. is efficient if
the users truthfully report their gf at each ESP query. However, truthful report may not
be the best strategy for every user. To illustrate this, we present the following example:

Hllustrative example

18



Consider two users and a given timeslot 7. User 1 operates a load with power
consumption 10 kW while user 2 operates a 50 kW load. Now suppose they participate in
a DR event and their discomfort function is d;(qf) = w; - (¢f)?, i € {1,2}, where their
true flexibility parameters are w; = w, = 0.1. The reward function is R‘(ALY) =5 -
(ALY) . Should they act according to their true discomfort function parameters, their
utilities (given from Eq. (1)) at equilibrium would be U; = U, = 4.875 units. In case

User 2 acts untruthfully according to a)ér ke — 0.2, his utility at equilibrium will be
U, = 7. Therefore, the best strategy of User 2 is to be untruthful. ]

The previous example demonstrates how the market-clearing approach builds on the
assumption that users behave myopically, by truthfully maximizing their utility at each
iteration. However, a DR-event will involve smart players (e.g. industrial consumers,
aggregators) and it will not take long before users realize that they can benefit from
engineering untruthful responses. The problem is that if we relax the truthfulness
assumption and consider strategic users, market-clearing methods (e.g., the English
auction presented above) no longer result in efficient allocations. For this reason it is very
important to design a mechanism that is not only efficient but also incentive compatible.

In order to facilitate the description of the proposed mechanism, we first present the
Vickrey-Clarke-Groves (VCG) mechanism, which is the unique mechanism that makes it
a dominant strategy (DSIC as analyzed in the introduction) for each user, to act truthfully,
i.e. in accordance with his/her real discomfort function [KRIS02]. Let N_;, denote the set
of users, excluding user i. The VCG payment rule is the so called “Clarke pivot rule”,
which calculates a reward r; equal to i’s “externality”. In other words, it rewards each
user i with an amount equal to the difference that i’s presence makes in the social welfare
of other users j € N_; :

ri(af) = R"(Zjen_, 45) — Zjen_, 4(q}) — R (Zjen_, @) + jen_, 4(a}) (2.1.6)
where q]t- denotes the vector allocated to user j when problem (2.1.4) is solved with user i

included in the system, and qA]t denotes the vector allocated to user j when the same
problem is solved without user i’s participation.

In the direct VCG mechanism, users are asked to declare their local functions d;(q}) to
the ESP. Because of the Clarke pivot rule, it is a dominant strategy for each user to make
a truthful declaration [KRIS02]. Thus, the efficient allocation that corresponds to the
social welfare maximization problem can be calculated at the ESP side. In order to
calculate the VCG rewards from Eq. (2.1.6), problem (2.1.4) is solved |[N| + 1 times (one
time with each user in N absent to calculate the payments, plus one time with all users
present to calculate the allocation). The major drawback of the direct VCG mechanism is
the requirement that the users disclose their discomfort functions d;(g}) to the ESP. This
raises important issues such as a) Lack of privacy in case where users are reluctant to
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reveal local information (their discomfort function) and b) Difficulty in implementation
in cases where users are unable to express their preferences (i.e., their discomfort
function) in a closed form function.

In the next subsection, we propose a modification of Ausubel’s Clinching auction
[AUSUO04], which allows for a distributed implementation of VCG as described in
section VII, designed to tackle these issues. In particular, we opt for an iterative auction
that:

1) facilitates user bids via auction queries, thus making the proposed architecture more
easily implementable in practice

i1) engages users in the market and allocates consumption reduction gradually along the
way, so that price discovery is facilitated on the users’ side

iil) protects user’s privacy via a properly designed communication protocol.
2.1.4. Ausubel’s Clinching Auction for DR-event participation

The Clinching Auction (CA) is a well-known ascending price auction (similar in fashion
to English Auction) that halts when demand equals supply. However, in contrast to most
auctions (including the English auction), allocation and rewards are not cleared
exclusively at the final iteration. Rather, the goods (consumption reduction in our
context) are progressively allocated as the auction proceeds and payments are also
progressively built, while the auction design guarantees that the final allocation and
payments coincide with the ones obtained through VCG. Thus, both allocation efficiency
and incentive compatibility are achieved, while the aforementioned privacy and
implementation drawbacks of the direct-VCG mechanism are effectively addressed.

In order for the CA to work in our setting, we need to reverse the price trajectory. In the
proposed Modified Clinching Auction (MCA), the ESP begins with a per-unit reward
A = Ajnax Which gradually decreases at each iteration. By Eq. (2.1.3), reward 4,4, 1S
dR*(0)
daLt
is concave. Users respond by bidding their preferred consumption reduction gf(1) for

= a, which, as analyzed in section 2.1.3, is the highest value possible given that R*

each A. We represent the user’s response at A as the solution to the user utility
maximization problem (which is formally defined in Eq. (2.1.5) of the previous section).

The user’s objective function is concave in qf, since A-qf is linearly increasing and
d;(q}) is convex by Assumption 2.1.3. Also, the solution ¢ is increasing in A, which
means that the user’s response é:t gradually decreases as A decreases. Note that in the
extreme and trivial case where Apax * Xien(qt (Amax)) < RE(DY) the users would shut
down everything and proportionally share the reward R*(D?).
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In MCA, the initial price is A,,4, and in each iteration k the price A* is reduced by a
small positive number €. The size of ¢ adjusts the discretization level of MCA. For the
decreasing reward auction that we propose, we relax constraint (2.1.4a) to the inequality

D' > Yyt 2.1.7)

Consider an arbitrary iteration k of the MCA and let D(A*) denote the operator’s desired
reduction for per-unit reward A*. The central idea of the MCA is the following: if there is
aset N7 c N for which we have

DEA) = B jens (45(29)) > 0 (2.1.8)

then we allocate a reduction equal to {f = Dt(1%) — ¥ jeni (CE (/1")) to each user i € N7

at a per-unit reward A¥. We then say that user i “clinched” ¢} units. The MCA auction
terminates when set N7 that satisfies condition (2.1.8) and set N, are equal, that is,
constraint (2.1.7) is satisfied. After that, it allocates the remaining Df(A¥"1)
proportionally to the users that bid in the second-to-last iteration.

The critical advantage of the Clinching auction is that it allocates different amounts of
units at different rewards, and the units that a user clinches do not depend on his/her
own bid but only on the other users’ bids. The algorithm that implements MCA is
presented in Table 2.1.t1.

Table 2.1.t1. The MCA algorithm
1. Initialize 2° = Amax» 45 Aimax)> DS Aimax), k = 0
2. while D!(2%) < Yien(qf(2"))
3. if there exists N7: ZjEN;(cE(Ak)) < DA%

4. clinch units ¢¥ = D*(A%) — ZjeNf(CE(lk)) for

alli ¢ N7 at per-unit reward A*

5. else
6. set At =2k —cand k =k + 1
7. ask each user a reduction query for A* and

collect the responses g (1)
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8. ask the operator for the desired total
reduction Dt(A%) at per-unit-reward A*

9. End while

10.  Clinch units

G = (b - Bhzbel) )

ien qf (AF1)

at per-unit reward (1*~1), for each i € N

We are now in a position to prove the optimality of MCA in terms of social welfare
performance:

Theorem 2.1.1: The social welfare loss at the final allocation of MCA is within
(€% 4+ Apax * €)/2b of the maximum possible.

Proof: The value of A at which D¢ = ¥;cy(q?) is defined as A,,,c, which gives
D (Ame) = Tiew (4F Ame) ) (2.1.9)
Let £ denote the number of iterations until the auction halts, that is,
£y = |Pme—tme| (2.1.10)
where [-], denotes the rounding to the nearest integer above. We have
|[fmatme] < g < 1 4 [Fmex—tne] Q2.1.11)

After the last clinchings (line 10 of the algorithm) we have efficiently allocated Dt(ﬂ“l)
reduction units to the users. The remaining D¢(A,,.) — Dt(ﬂ“l) are not allocated and
this causes the loss of welfare (W;,ss) that is depicted as the grey area in Figure 2.1.f1,
where the red line represents Df(A) and the blue line represents Y.;cy c’ff Q).
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Figure 2.1.f1. Dt(4) and ZieN(ﬁ(Ak)) as a function of 4

Since we remain agnostic of the closed form of Ziezv(é:t (/’lk)), we assume the worst case

and calculate an upper bound on the sum of the grey plus the yellow area of Figure
2.1.11:

1
Wioss < Ame (Dt(/lmc) - Df(ﬂ“l)) +3 AT = o) (Dt(/lmc) - Dt(ﬂ“l))
By substituting D*(1) = == from Eq. (2.1.3), we get

2
Amc(ll&_l_lmc) + Ak_l(ll&_l_lmc) < (Aﬁ_l) _()me)2
4b 4b - 4b

Wloss <

By further substituting A*~! = A, —&(#£ —1) and also substituting £ from
inequalities (2.1.11), using the left inequality when £ appears with a minus sign and the
right inequality when it appears with a plus sign, we finally obtain
€2+ Apax " €
Wloss = +
completing the proof. [
In practice, for the relevant use cases of price-anticipating users (described in the
introduction), the computational complexity of the MCA is small, which allows for a

very small choice of €. To emphasize this, it is useful to state the following corollary to
Theorem 2.1.1:

Corollary 2.1.1: for € < 1 the welfare loss grows linearly with €.
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Because the MCA includes a price-sensitive response also at the operator’s side, we have
to verify that the properties of efficiency and incentive compatibility still hold. This is
proved in the following Propositions.

Proposition 2.1.1: Truthful bidding is a dominant strategy in MCA.

Proof: Fix an iteration k and suppose that i bids qf 45, (1%) # gt (A*) in that iteration.

From step 4 of MCA, we see that (ik does not depend on g but only on the other users’
bids q]t-, J # i. Thus, user i’s bid can affect i’s allocation only by changing the A at which

the termination condition holds. This means that a false bid qit, false(ﬂ'k) will make a
difference to i, only if k is the last iteration. However, by definition of c’ff(/lk) (see Eq.
(2.1.5)), any bid qf r4150(A%) # qE(A*) brings strictly lower utility to user i at any
iteration k. Thus, truthful bidding brings the highest utility to user i. [

Furthermore, the following properties of the VCG mechanism hold also for the
MCA:

Proposition 2.1.2: MCA 1is individually rational, weakly budget-balanced, and
achieves the maximum revenue for the ESP among all efficient mechanisms.

Proof: The MCA auction is welfare maximizing (by Theorem 2.1.1, for € small enough)
and DSIC (by Proposition 2.1.1). However, the class of VCG mechanisms is the unique
class that simultaneously achieves these two properties [SHOH09]. Thus, MCA
terminates with the VCG allocation and payments, and it inherits the property of
individual rationality. For the weak budget balance property, it suffices to show that our
setting exhibits the no single-agent effect [SHOHO09]. An environment exhibits no single-
agent effect if the aggregated utility of n — 1 users doesn’t improve by adding a n'™ user
to the system. This property holds in single-sided auctions with monotonous preferences
[SHOHO09], since dropping a user only reduces the competition for the remaining users,

thus making them better-off.

Moreover by [KRIS02], the VCG mechanism maximizes the auctioneer’s utility, which
means that the ESP buys flexibility units from the users at the lowest possible price
(among all efficient and individually rational mechanisms). ]

2.1.5. Performance Demonstration

In this section, we use simulations to demonstrate the advantages of the MCA and verify
its properties. As a benchmark for comparison, we use the typical market-clearing pricing
where all users receive a per-unit reward of 4,,.. Over a time horizon of 24 timeslots, we
simulated two DR events, in timeslots 11 and 17 where there was a peak in the
aggregated consumption. Parameters a and b of the reward function were set to a = 3
and b = 0.02 for both timeslots.
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We used a simple model for the user’s discomfort function:

di(a) = w; - (q)?,
where parameter w! expresses the user’s inelasticity in timeslot t. In order to obtain
results for a wide range of parameters w;, we pick w! from a random uniform
distribution in [0.5 - wf, 1.5 wf] for t = 11 and in [0.05 - wf, 1.5 wf] for t =17,
where parameter w; will vary in our experiments. We set the step € = 107> in the MCA
algorithm (Table 2.1.t1). Figure 2.1.f2 depicts the aggregated consumption along all 24

timeslots for wy = 1, which shows the reductions in consumption corresponding to the
DR events.
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Figure 2.1.f2. Aggregated consumption as a function of time with and without DR
events in timeslots 11 and 17

In order to verify the truthfulness property and that a user can only lose by not being
truthful, we assume that one user acts untruthfully by manipulating his/her w; for timeslot

17, while all other users act truthfully. The untruthful user is indexed by ch (for cheater).

fake,x

The cheater’s utility Uy, i1s maximized for a certain choice of w.p, denoted as w,,

Figure 2.1.f3 shows Uy, as a function of w,p, (for ws = 5).

25



20 —— X:0.05 T T T

Y:15.9 |
e Marginal Cost
15F a T MCA T

- X:0.0631 s |

10F S —
/ / Y:13.13 —

0 0.02 “oal 0.08 0.12 0.16 0.20

w

ch
Figure 2.1.13. Focal user's utility as a function of his/her choice of w

The black vertical line represents the focal user’s actual (real) w, denoted as w,.q;. For
the MCA, the user’s optimal choice of w coincides with his/her real w, that is w{,f kex =

Wreql> thus verifying Proposition 2.1.1.

Next, we investigated the effect that cheating has on the ESP’s profits, denoted by
[1t7Wthful for the case where users act truthfully and by IT€"¢%¢ for the case where they act
according to what brings them the highest utility. Figure 2.1.f4 shows that the ratio
[1¢heat yptruthful js maximized and is equal to 1 for the MCA, verifying our theoretical
results. We also observe that the ESP’s profit loss due to untruthfulness rises with wy (i.e.
when users are less elastic), indicating that our scheme’s truthfulness property becomes
more important in markets where participants are not particularly flexible.
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Finally, we simulated the DR-event for timeslot 17 for different values of &, measuring
the proportional welfare loss

Wopt - WMCA

Wioss =
W,
pt

where W, is the optimal welfare and Wy ¢4 is the welfare achieved by the MCA. The

simulation results in Figure 2.1.f5 verify Corollary 2.1.1, which states that for small
values of € the upper bound on the welfare loss grows linearly with €.
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2.1.6 Privacy-preserving distributed implementation

A major drawback of the direct VCG mechanism is that it requires each user to know and
disclose his/her discomfort function to a central entity, e.g., the ESP. The MCA auction
implements the VCG allocation and payments via an indirect mechanism. In this way
users are only required to respond to ESP queries, instead of being required to
communicate their discomfort function. This allows a distributed implementation of an
efficient and truthful DR architecture. In what follows we present a distributed
communication protocol that preserves privacy while simultaneously ensuring an
efficient allocation.

The proposed DR architecture exploits [ZYSKI15] in order to execute MCA in a
distributed fashion. In this way, the ESP does not have to learn the answers to the queries,
which are instead acquired only by users in N in a distributed fashion. Thus, the proposed
DR architecture acts as a substrate that offers a service over which participating users
cooperate in order to protect their personal data (i.e. their discomfort functions d;(*))
from the ESP. In order to achieve this, [ZYSK15] uses the scheme proposed by Kademlia
[MAYMO2] in which each node (i.e., end user/energy consumer) is identified by a
number (nodeID) in a specific virtual space. The nodelDs do not serve only as
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identification, but they are also used by the Kademlia algorithm to store and locate
values/data hashes (i.e., the answers to the ESP queries). This process is realized through
a peer to peer routing service (implemented in the network application layer) that
Kademlia offers. Towards this end, participating nodes create and dynamically maintain
routing tables in a bottom up organized way. In fact, the nodeID provides a direct map to
these data hashes by storing information on where to obtain them. The proposed
algorithm is executed in three steps:

1. Data insertion: At each iteration k of the algorithm, each user (node) i stores its bid
(?f (Ax) in another random node w through the use of the aforementioned [MAYMO02]
system. It is highlighted that w is different for each i and k (as it is derived from the
output of the hash function that Kademlia uses), and in this way collusion of two users
(which is a requirement that [BAHA14] sets), or even collusion of a relatively small
number of users to acquire data, will fail.

2. Calculation of {f(A,): Kademlia organizes the participating nodes in a tree like
structure. The proposed system exploits this structure in order to calculate the sum
Yien @E(A5). To do so in a distributed way, node j waits until all nodes with lower
nodeID from it, inform j on possible data values they have to send to j. This process
continues recursively until the node with the highest id acquires the desirable data and
then it calculates the sum. At this point, this node also receives Dt (A¥) from the ESP and
checks the termination condition. If it doesn’t hold, the node proceeds by broadcasting
Yien GE(AF) and DE(A%) to all nodes through the use of Kademlia tree [MAYMO02]. Thus,
each node j calculates (¥ (1%) by subtracting the qf (1) value that is stored in it (which is

not its own gt (1¥) value, and it doesn’t know whose it is).

3. Final allocation and payments calculation: at the next iteration k + 1, a different
instance of Kademlia tree is created, so that {ik“(/lk“) is stored at a new node g, other
than j. Thus, even in the case that a node is malicious, data privacy is not compromised.
The tuple 4; = { XK _, J™"(A™), 3K _.[¢"(A™) - A7™]}, which contains the allocation
and payments of user { up until iteration k, is passed from user j to g. At the final
iteration, the tuples A; are communicated to the ESP. Note that the ESP receives only the
final allocation and payments for each user, i.e., only the sum of {¥(A*) and not all the
intermediate values {/"(A™). This means that the ESP (and any other node for that
matter) does not have the data to construct the entire local discomfort function d;(-) of
user i.

Note that the analysis above assumes that the service provider is honest-but-curious. By
this we mean that the ESP is curious to know the discomfort functions of end users, but is
also honest and will never attack the system in order to acquire them. In case of malicious
ESP (i.e. with no hesitations to break the law), more strict privacy assumptions are
needed, but this case is outside the scope of the present work.
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2.2 Personalized real time pricing for efficient and fair demand
response in energy cooperatives

The electricity market is moving from a market where energy is produced in a centralized
fashion from traditional and often environmentally harmful sources to a
liberalized/competitive and possibly distributed market that exploits renewable energy
sources (RES) [REGUL]. A major challenge in this new environment is the alignment
between the varying and to large extent unpredictable energy supply (e.g. RES) and the
ad-hoc energy demand of the end users. In addition, innovative concepts such as
flexibility markets, energy poverty and energy efficiency are continuously emerging in
the energy sector. Towards this goal, the research community focuses on the development
of pricing mechanisms, which are able to affect the energy consumption by enabling a
dynamic and sophisticated interaction between the pricing of energy (incentives) and the
way end users consume it (scheduling). Studies under this premise develop algorithms
that belong to the generic family of demand side management (DSM) algorithms. This is
a promising approach that aims to affect energy consumption and create an additional
tool in the optimization and the stability of energy systems.

As analyzed in [GATZ13] residential participation in DSM is commonly envisaged via
aggregated participation because of implementation and scalability issues.

Along with these technical and socio-economic changes, there is a rise of innovative
business models for aggregating the DSM participation of a set of users. In particular,
collective DSM participation can be undertaken by a non-profit organization representing
the interests of its portfolio of users [RESCOOP], a public (regulated) entity or a private
company. In this section, we assume that the aggregating entity only passes the energy
costs to the consumers without extracting profit [CHAP17]. This use case represents the
cases where:

1) the private aggregating company operates in a highly competitive environment.
2) the profit margins of the private aggregating company are regulated

3) users form a cooperative organization to represent their interests

4) the aggregating company is a public and non-profit entity.

Throughout this section, we will refer to the aggregating entity with electricity service
provider (ESP) and cover all four use cases.

In [MAKRI18], we try to facilitate the easy, rich and deep communication between energy
efficiency stakeholders and end users, allowing them to discover each other, educate
themselves so as to understand the difficulties and challenges each one faces, interact and
trade with each other.
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Under this perspective, we focus on the development of pricing mechanisms that give to
the end users the opportunity to derive direct financial benefits from the actions they
undertake regarding their energy consumption. In more detail, through community
pricing [STER18] or personalized pricing mechanisms that we developed, we avoid the
well-known problem of the tragedy of the commons [MANI13]. This is a phenomenon,
where users do not change their behavior (energy consumption in this case) due to the
low impact that this change would have on their bill. In contrast, a personalized pricing
mechanism is able to treat different users in different ways, according to their flexibility,
and thus achieve a specific behavioral change efficiently.

More specifically, in this section we refer to “system efficiency” as the maximization of
Social Welfare, which is defined as the aggregated users’ welfare (AUW) and relates to
the difference between the users’ satisfaction from electricity consumption and the users’
bills.

The challenge lies in the fact that each user’s satisfaction function is private and not
known to the ESP, while users are generally considered as selfish, which means that each
one opts for maximizing her own welfare, which is not necessarily aligned with the
system’s objective.

Moreover, for the use cases of the ESP that we consider, it is very important that a DSM
algorithm also exhibits two positive externalities apart from efficiency. Those are:

1) Reduction of the system’s cost, which relates to systems with: higher energy
efficiency, more stable and sustainable networks, lower capital expenditure in
overprovisioned grid facilities, lower CO2 emissions etc.

2) Fair allocation of the system’s resources among the users. This is particularly
important for the business cases considered, because all users will remain
under the ESP, only if they know that they get a fair percentage of the benefits
that they have incurred in the first place. In our case, we want to allocate the
system’s energy savings to the users that provoke those savings.

In such an environment, it is the job of the ESP to set the rules of energy trading in a
smart way, such that: the system possesses the budget-balance property; selfish users’
actions bring the system to an equilibrium; and their deliberate choices bring the system
to an outcome with desirable properties namely high users’ welfare (KPI-2.2.1), low
system’s cost (KPI-2.2.2), fairness (KPI-2.2.3).

Designing such rules is studied by a special sector of game theory, called ‘mechanism
design’. The desirable properties above constitute the mechanism’s key performance
indicators (KPIs) and they are generally adopted widely in the literature.

A brief overview of energy pricing models for DSM started with the enhancement of the
traditional flat electricity tariff (fixed price per consumed unit of energy and identical at
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all time instances) with inclining block rates (IBRs) [MOHS10], [PALEI11]. In IBR, the
price of each unit depends on the total amount of energy a customer consumes. IBR was
the first simple solution to incentivize energy curtailments, usually during a large time
interval. A more sophisticated approach is time-of-use (ToU) pricing where prices are
predetermined based on prediction of the relationship between aggregate production and
consumption. However, TOU is insensitive to the users’ response to the prices and often
creates reverse peaks. Finally, real time pricing (RTP) mechanisms create the price per
energy unit depending on the total cost of energy production and the total consumption.

2.2.1 Related Work

Liberalized electricity markets, smart grids and high penetration of RES led to the
development of novel markets whose objective is the harmonization between production
and demand (i.e. flexibility markets). This necessitates the development of novel pricing
schemes able to allow ESPs to exploit flexibility in the energy consumption curves of
their consumers.

The general idea described above has been approached in different ways in the literature,
including ex-post [MHAN16] & ex-ante pricing methods [LI10], [SAMA10],
[SAMA12], [CHAIl4], [QIANI13], [SOLI14], [RADI0], [MA14], [DENGI14],
[BAHA13], [BAHA14], [VUPP11], [YAAGI15]. Many pricing mechanisms [GATZ13],
[LI10], [SAMA10], [SAMA12], [CHAI14] opt for system efficiency (KPI-2.2.1), but at a
risk of either running a deficit or extracting a large surplus from the users as explained in
[CHAP17] and are not compatible with the emerging environments described. In
particular, the authors in [LI10] [SAMAI10], achieve an efficient allocation, but the
system does not possess the budget-balance property described in the introduction.
Moreover, users are considered to be price-takers, that is, they do not consider the effect
that their choices have on the price. In [SAMA12], the users are considered as price-
anticipators and the efficient Vickrey-Clarke-Groves (VCG) mechanism is applied, which
is inherently not budget-balanced and additionally requires a simple and well-defined
form of the user’s utility function in order to remain tractable.

Another class of DSM algorithms [CHAP17], [MOHSI10], [QIAN13], [SOLI14],
[RADI10], [MA14], [DENG14] have been designed to guide the users’ behavior towards
more desirable demand profiles. This class of algorithms possesses the budget-balance
property. In particular, in [MOHS10], [SOLI14], [RAD10], [DENG14], the authors opt
for minimizing the system’s cost (KPI-2.2.2), under the constraint that each load will be
fully satisfied within its defined interval. The efficiency of the system is defined as the
minimization of system’s cost. In this class of studies, the users’ dissatisfaction from
deviation from their desired consumption profile is not modeled. In [CHAP17], [MA14],
where budget-balanced mechanisms are also proposed, the model does not capture load
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curtailments, but only load shifting. Moreover, none of the above works considers the
property of fairness.

Finally, a third class of studies [BAHA13], [BAHA14], [VUPP11], [YAAG15], opts for
enhancing the system’s fairness (KPI-2.2.3). In particular, the authors in [BAHA13]
propose a pricing model based on the principle that each user should be billed according
to her contribution to the system’s cost. The Shapley value from cooperative game theory
is used to express this contribution. The same authors in their later work [BAHA14]
argue that the model of [BAHAI13] sacrifices efficiency to achieve fairness. In
[BAHA14] the trade-off between fairness and cost minimization in the design of pricing
mechanisms is assessed. However, the users are assumed to distribute evenly their load
throughout the eligible timeslots and the user’s satisfaction is again disregarded.

Thus, through the study of the literature, one can confirm that the generally desired KPIs
in the design of a pricing mechanism are the ones that we presented in the previous
section and adopt in this section’s context.

As analyzed in the previous paragraphs, the models proposed so far in the literature cope
only with one or two of the above KPIs. To the best of our knowledge, there is no prior
work that directly assesses the issue of designing a pricing mechanism that achieves an
attractive trade-off among all three of the above KPIs. Our approach for the design of
such a pricing mechanism is to adopt the concept of personalized—real time pricing (P-
RTP).

Motivated from the above, the major contributions of this section are:

1) A P-RTP algorithm that reduces the energy cost without sacrificing at all the
aggregated users’ welfare. Moreover, the proposed scheme achieves a fair
allocation of the energy cost savings among the users.

2) An analysis on the proposed algorithm’s convergence properties.

3) A comparison of the proposed P-RTP with the existing RTP mechanisms that
testifies its superiority according to the aforementioned perspectives.

4) An analysis on the findings with useful guidelines towards the design of pricing
mechanisms in open and competitive markets.

2.2.2 System Model & Problem Formulation

In this section, we describe prerequisites that will facilitate the presentation of our pricing
mechanism and existing widely accepted models (i.e. user model, energy cost model) that
will act as the test bed in order to objectively evaluate and compare the proposed pricing
mechanism.
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We consider a set (community) N = {1, 2, ...,n} of n energy consumers (users). Each
user is equipped with a smart meter, tracking his/her consumption at all time instances
and an energy management system that schedules his/her consumption. We consider a
finite time horizon, which is divided into h time slots H = {1, 2, ..., h} of equal duration.
An ESP, in coordination with the distribution system operator (DSO), installs the
necessary equipment to each user and is responsible for the possible failures and
upgrades. Various parties, such as Utilities and DSOs, may act as ESPs, depending on the
legislation of each country. A communication network lies on top of the electric grid and
all parties are able to exchange messages with each other.

The consumption of user i in timeslot ¢ is denoted as xf, where t € H and i € N. The
comfort of user i at a time-slot t is expressed by a utility function uf (xf, ), where w! is
an appropriate elasticity parameter. The utility function expresses, in monetary units, how
much user i values the consumption x} at time z. To better characterize the properties of
the utility function, the DSM literature draws on two concepts from microeconomics
[MAS95]. The first concept is that of diminishing returns, which, in our context, means
that:

1) The more a user consumes, the more utility he/she gains (u(xf, w!) is increasing
with xf).

2) The more a user consumes, the less the added utility (uf(xf, w!) is concave).

The second concept relates to demand elasticity, defined as the rate of change of the
utility function with respect to small changes in the consumption quantity. This is
expressed through parameter w’, where low values of w! correspond to elastic demand
(very responsive to price), whereas higher values of w! correspond to inelastic demand
(less responsive to price). The dependence of ! on i and ¢ captures the fact that different
users, at different times, value consumption differently.

In what follows, we will sometimes use the shorthand notation df , with the dot notating
that it is a function. In the evaluation of the results, we show that the performance of the
proposed mechanism is not affected by the particular choice of df as long as it is based
on the two concepts presented above.

By the concavity of uf , it is clear that there is a saturation point beyond which utility no
longer increases with xf. This is regarded as the user’s maximum desired consumption
and is denoted it as Ef The respective uf (Ef, wf) is denoted as u~f In this section, we
assume that the user’s Ef is known to the ESP (e.g. through statistical data and machine
learning) but the particular form of the user’s utility function as well as the user’s
elasticity parameter w!, remain private . The model can also be extended to model the
comfort derived from the consumption of each electric appliance, in which case the total
comfort of the user would be the sum of concave functions for the different appliances
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that the user possesses, and would again be concave. For the scope of the current work
and without loss of generality (as in [GATZ13], [MOHSI10], [SAMAI10], [SAMA12],
[BAHA13], [BAHA14], we assume only one continuous, dispatchable and positive load
xf > 0 for user i, representing the sum of the consumptions of all his/her electric
appliances.

The supply side is usually modeled either as a game (e.g. a market that admits to a Nash
equilibrium [CHAI13], [CLI17]) or (more simplistically) as a cost function that
approximately relates the aggregate demand with the cost of the energy supplied. In this
work, we adopt the latter approach, in which the system’s cost (denoted as Gf) depends
on the total load Y;cy x} of the users in set N at timeslot t € H through an increasing
convex function:

Gy = G(Xien X{) 2.2.1)

The cost function is commonly approximated by a quadratic cost function in the
literature:

Gy = cCien X{)? (2.2.2)

where c is a cost parameter. Equation (2.2.2) represents the cost for the ESP to buy an
amount of energy equal to the total demand. As described in the introduction, the system
needs to be budget-balanced (the sum of the bills of the participating users needs to be
equal with the total system’s cost). The aforementioned function offers a fair test-bed in
order to evaluate and compare pricing mechanisms and for this reason it is widely
accepted.

The objective at each timeslot ¢ is to find the users’ consumptions X}, Vie N that
maximize the system’s efficiency (maximize the user comfort and minimize the energy
cost):

max ey { Tien[uf] — G} (2.2.3)

s.t. Yienlpixf] = Gf (2.2.4)

Constraint (2.2.4) expresses the budget-balanced (non-profit) property. We present a
model that deals only with load curtailments, implying a memoryless system. This means
that the scheduling problem can be solved for the time horizon H, by solving for each
timeslot independently. In order to solve (2.2.3), it is required from all users in N to
disclose their comfort functions to the ESP and also accept a direct ESP control over their
loads. Since these requirements are not generally met in practice, the research community
focuses on iterative pricing mechanisms that converge to equilibrium (set of prices) that
satisfy the KPIs analyzed in the introduction. Considering (2.2.4), the prices set by the
ESP, are meant to efficiently distribute the energy cost to the users and thus inherently
depend on Gf.
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At the user’s side, we consider selfish users that choose their x{, so as to maximize their
own welfare under the ESP’s pricing:

xf = argmax ¢ { uf —ptxt} (2.2.5)

Equation (2.2.5) implies a price-taking user. This models a user that either is very small
compared to the aggregated system’s consumption and therefore his/her choice of xf
does not affect the price p* or does not understand/consider the effect of his/her choice of
x} at price pt. In that case, (2.2.3) can be solved via dual decomposition, where the ESP
applies an efficient algorithm for finding the optimal set of prices by exchanging
messages with each user (as presented in [SAMA10]). In contrast, we consider price-
anticipating users, who further consider the effect of their x} on the price. Thus, user’s
problem (2.2.5), is converted into:

xf = argmax ; {uf — p(et, 2 x{ ) 226)

where the expression to be maximized is referred to as the user’s welfare. Moreover,
vector x°; denotes the consumptions of users other than i. This, latter co-relation
essentially motivates a game I" where game participants are users i € N; a user’s strategy
is his/her choice of x}; a user’s payoff is his/her welfare.

Notice that the VCG mechanism is proved to converge to the unique allocation X} that
optimizes (2.2.3). However, constraint (2.2.4) excludes VCG from consideration, as
argued in the related work.

Moreover, efficient allocations in general, require disclosure of the users’ utility
functions to the ESP. Such an assumption would make the model convenient for
analytical analysis. It is however a strong assumption and it doesn’t properly capture the
intricacies of household energy usage, while also raising privacy as well as representation
issues. In contrast, we chose to remain agnostic to the particular form of the user’s utility
function. Because of this latter property, the efficiency of equilibria cannot be justified
for the general case. Nonetheless, we focus on designing a pricing mechanism, such that:

1) Game I' converges to a Nash equilibrium (NE).

2) The system at equilibrium, achieves an attractive trade-off among efficiency, low-
cost and fairness.

2.2.3 The state of the art approach

We start the description of our personalized pricing mechanism by first presenting the
existing RTP approach.
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For timeslot t € H, at the ESP-level, the users’ scheduled energy consumptions x are
taken as input and the price p* of timeslot ¢ (electricity per unit price, which under RTP is
common for all users 7) is calculated according to:

(2.2.7)

Equation (2.2.7) leads to a user’s bill which is proportional to the user’s consumption

t
(Z adl o G,f,), which ensures that the system is budget-balanced (the users’ bills equals the
ieN X

total energy cost).

At user-level, users sequentially choose their x} from (2.2.6). During this calculation, x*;
is considered fixed. Notice that although, user i might be agnostic of pf(x}, x%,), he/she
can however detect the pricing trend by exchanging messages with the ESP. More
specifically, by trying different x{ and receiving the respective p‘, the user can detect
pt(xf, xt,),by applying some polynomial fitting algorithm. This approach allows for a
distributed implementation, which is in line with state of the art requirements [BAHA14],
[LIU17], [STEP15].

After a limited number of sequential iterations (calculations) of each user’s updated xf,
the system converges to the equilibrium price where no user wishes to further modify
his/her xf. A user’s final x{ at equilibrium is denoted as J?l-t’RTP , VieN . The procedure

is described in Algorithm 2.2.1 (where k denotes the algorithm’s iterations):

Algorithm 2.2.1 RTP

Initialization:

tk t . t GI(I
Setk=1,x;”" = x;,VieNandp =5
iEN X{

Repeat

foreachieN
repeat

Calculate pt from (7)
Calculate xit *+1 by solving (5)

until convergence

end for
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Calculate divergence A = max{|x/**" — x/*|}

Set k = k+1
until A < ¢ (desired accuracy)

End

2.2.4 Personalized Real-Time Pricing approach

In this section we propose the concept of P-RTP, meaning that the price will no longer be
a scalar p* (same for all users i € N) but each user will receive a different price p}.

From the class of all possible P-RTP mechanisms, we formulate a particular mechanism
that is designed to perform well, in the three KPIs that described. The proposed
mechanism allocates lower prices to those users who consume a lower percentage of their
desired consumption (xf), compared to users who consume a higher percentage of their
desired consumption. In particular, for a user i and a timeslot t we allocate the price
p! according to the degree to which the user curtails his consumption. Elastic users
receive lower prices and inelastic users receive higher prices. It is highlighted that P-RTP
assumes the knowledge of the desired energy consumption (xf). In case that we allow for
a user to declare a fake (larger) desired consumption, P-RTP would favor him. Thus, this
pricing mechanism is suitable for automated environments (through ICT systems) where
user do not manually declare their consumption. On the other hand the exploitation of the
desired energy consumption leads to very effective pricing mechanisms. In this section,
we present a pricing model for the use case of automated environments.

In order to achieve prices with a discount proportional to the percentage of curtailments,
we set:

f—pD) /pt= (xf— xD) /xf (2.2.8)

where pt is introduced in order to tune the prices, so that constraint (2.2.4) holds. Let us
denote as y! the percentage of the curtailment of user i at time instant #:

vi=(xf—xD/xf (2.2.9)
Thus, (2.2.8) through the use of (2.2.9) becomes:
pi=pr(L+v) (2.2.10)

Now through the use of (2.2.4) we have:

o GK,
p_

= Sienx a1 (2.2.11)
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If we now combine (2.2.10) and (2.2.11) we have:

pi = (L+y)Gy/ Yienlxf (1 +v] (2.2.12)

In the proposed mechanism, we iteratively solve (2.2.6) and calculate the prices from
(2.2.12). The process is described in Algorithm 2.2.2.

Algorithm 2.2.2 P-RTP

Initialization: set i=1, xit k= Ef, VieN
Repeat
foreachi e N

repeat
Calculate p{ from (12)
Calculate xit ket by solving (6)
until convergence

end for

tk+1 tk
- X; |}

Calculate divergence A = max{|x;

Set k = k+1
until A < ¢ (desired accuracy)

End

Theorem 2.2.1: Algorithm 2.2.2 converges to a NE after a finite number of iterations via
best response dynamics.

Proof: the strategy for the proof of the convergence of P-RTP is to find a function that is
bounded from above and increases in every iteration of P-RTP. We consider the AUW
according to (2.2.13).

AUW = Yien(ut — pixf) (2.2.13)

AUW is bounded from above (the theoretical maximum is in the case in which every user
consumes all the energy that (s)he needs and the price is zero). It remains now to prove
that AUW increases in every iteration of P-RTP. Note that we cannot study the

39



monotonicity of AUW by exploiting its derivative, because no assumption is made on the
differentiability of uc.

Consider an arbitrary instance of game I” where it is user i’s turn. User i’s state is x{ and
the state of users’ other than i is fixed. We denote the latter as x wherejeN,j # i..

Holding x]‘? fixed, suppose i deviates to x£. The calculation of the change in AUW breaks

down in the calculation of the welfare of user i (2.2.6) and the welfare of users in set j.
According to (2.2.13) and the recent notation in order to prove that AUW increases in
every iteration of P-RTP it must be proven that:

U(xlt)_xlpl(xl' ])+Z]¢1U(xt) Z];:l (xl, ])>U(xt)—x plt(xl’ J)+
ZjiiU(xj)_Zjii pi(xf, x; (2.2.14)

Best response dynamics means that each user at any instance selects a strategy that
maximizes her/his own welfare. So, since user i deviates, it holds by definition:

U(xE) — xtpf(xf, xf) > U(x)) — xfpf (xf, xt (2.2.15)
From (2.2.13) and (2.2.14), it suffices to prove that:
% e ) (xf %)) > Xy xf ) (F, %) (2.2.16)

We present here the case for Ef > xf. The exact same proof holds symmetrically for

xf < xf. Since we have xf > x! without harm of generality:

Gh(Tjwixf +xF) > Gh(Tjwix} +xf) (2.2.17)
which means that the system cost has increased by:

AG = GY(Zjwixf +xF) = G (T jwixf + xF) (2.2.18)
In addition the bill of user 7 has increased by:

AB; = xIp(xf, xt) — xtp(xf, xf (2.2.19)

We will study now the relation between AB; and AG. In case it is AB; > AG it means that
user [ pays more than the cost difference that she/he creates and thus the new bills of
other users are lower in the new state which means that (2.2.16) holds. In more formality,
because of the budget-balance property of P-RTP, it is:

AB; + A(X+i Bj) = AG (2.2.20)
which means that (2.2.15) holds for:

AB; —AG >0 (2.2.21)
By replacing (2.2.12) in (2.2.21) it is:
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_ Aok (Sjaixal) i)k (Sjaixfexl) L, L xf
AB; — AG = ien|xf(1+7)) T Sl ()] ~ (B ) ¢

Gh(Zjeixf +xf)  (2222)

After replacing y{ from (2.2.9) and doing some calculus, we have:

AB; — AG = Gy (X s xf + x{ )k

(e )

xf) l\;f (2,;# (Z; + g ) - 1/| (2.2.23)

Observe that (2.2.23) can be written in the form AB; — AG = ¢>(x ) — ®(xf) with:

2>_ 1 |_ GIEI(Zj;&ix]t +

®(2) = Gy(Twixt +72)| it)z —1 | (2.2.24)
Since it is xf > x}, it suffices to show that
LB >0 (22.25)

After replacing (2.2.2) and (2.2.23) in (2.2.24) and differentiating we have:

22]$L<( 2 > (Z‘l'zj:m )<(Z]¢L ) (Z]il(%i))g>
X : 2 J >0
(L)

)7 \| =
Zj::i((’]g >lxlt
xj
T (2.2.27)
*1 J

(2.2.26)

which reduces to

z>

t

Observe that = < 1 (since the denominator is by definition the upper limit of the
X

nominator). We have that:
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|
Thus, because of (2.2.28) there is a feasible region of x! E| (E t) , xt
j#iXj

which condition (2.2.16) holds.
2.2.5 Performance Evaluation and Comparisons

In this section we present simulation results to demonstrate the proposed P-RTP
mechanism’s performance in the KPIs sought. In order to have a benchmark for
comparisons, we compare with the simple RTP mechanism (Algorithm 2.2.1). The
evaluation considers scenarios under a variety of assumptions for the values of the
parameters in the two models.

In order to evaluate mechanisms, the research community usually models end users as
follows: a concave and increasing function of x} and w! with a constant maximum value
after a saturation point, has been widely adopted:

— —_—2 —_—
ul —wf(xf— xf)" 0<xf<xf

uf(xf, wb) = (2.2.29)

t
ut xt > «xt
L L l

The utility function’s general form is assumed to be the same for all i and t. In what
follows, we present simulations for a representative set of 100 users. Moreover, the
optimization problem can be solved for each timeslot independently. Thus, without loss
of generality, we run the simulation for one timeslot (h = 1) and present the results.

Parameter uf expresses the user’s maximum utility (i.e.utility at x{ > xf) and was set to

~ ~\ 2 . o eye
ut = wf (xf) . Unless stated otherwise, parameter ¢ was set to ¢ = 0.02. The flexibility

parameter w} for each user i was selected randomly in the interval [0.1, 5]. These choices
are in line with the literature [LI10], [SAMA10], [SAMA12], [CHAIl14].

In correspondence with the three KPIs, we define four index metrics for the evaluation:

1) Aggregated users’ welfare (AUW) is a straightforward index for system
efficiency (KPI-2.2.1).

AUW = Yien(uf — pf x) (2.2.30)

2) The allocation’s cost G is also a straightforward index metric of system cost
KPI-2.2.2.
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G = c(Cien[x{1)? (2.2.31)

We evaluate P-RTP and simple RTP with respect to these two KPIs for different values
of ¢ and w! in order to show that the performance of our mechanism does not depend on
the parameters of the system. KPI-2.2.1 and KPI-2.2.2 are generally mutually-conflicting;
for example, a low system’s cost can lead to lower users’ welfare (because of lower
consumption) unless we reward the users with lower prices to compensate for the users’
welfare. We define behavioral reciprocity (BR) as a metric that captures this trade-off:

3) Behavioral Reciprocity BR; of user i is the degree of correlation between the
behavioral change of 7 and the reward that i gets for it:

DA
BR; =2 VieN (22.32)
where
l G i= l
= (xf - xf) (2t 1’3)7 s (22.33)

lel

represents the discount achieved, i.e. the system cost reduction, for which user iis
responsible and:

R ot (Zivlpvr) tqt
Di = X W_ X Di (2234)
represents the discount received, i.e. the difference between the user’s bill with the

original system’s state (xf = Ef) and the actual user’s bill (after applying RTP or P-
RTP). Values of BR; close to 1 indicate a better trade-off between AUW and G, and thus
a more fair pricing mechanism.

4) User i welfare deviation (UWD)) is defined to capture the degree of the
deviation of user i from the average user’s welfare:

t ) _AUW
UWD; = (G pjw;v) ] vien (2.2.35)

n

Its scope is to depict that a mechanism’s performance, does not come with the expense of
treating a subset of users unfairly. A low UWD means that there are no users with very
high welfare and users with very low welfare (which means that they will leave the ESP
in case of competition or they will be very unhappy in case of monopoly). Thus, the
objective here is to keep UWD low.

Having defined the metrics of interest, we now proceed to the presentation of the results
obtained. In all figures we normalize the metric by dividing with the highest metric value.
Figure 2.2.f1 compares the energy costs (G) with RTP and P-RTP pricing under various
values of parameter c.
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Figure 2.2.f1 Energy costs G as a function of cost parameter ¢

As is obvious from Figure 2.2.f1, the proposed P-RTP reduces the cost of energy for
every value of ¢, thus showing that P-RTP indeed manages to achieve a lower system
cost, regardless of the cost function we use. This is because P-RTP leads to smaller load
level than RTP. In order to show that the results are not affected by the elasticity
parameter we use, we multiply w} by a factor (omega factor) wy in [0.1,3]. According to
these, Figure 2.2.f2 compares the energy costs (G) with RTP and P-RTP pricing as a
function of wy. From Figure 2.2.f2 we observe that P-RTP always brings a reduction in
the energy cost. Thus, its performance is consistent and significant for any choice of the
flexibility parameter for the participating users.
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Figure 2.2.f2 Energy costs (G) of P-RTP and RTP as a function of omega factor (wy)

The reason behind the reduction of the energy costs is clarified through Fig. 3, where we
present the cumulative distribution function (CDF) of the BR; metric exhibited by the
users i in N. The dotted vertical lines represent the average UWD of all users. As is
depicted in Figure 2.2.f3, under P-RTP, users obtain benefits (discounts received)
according to their behavioral change (discount achieved). In more detail, we observe that
P-RTP not only offers a better trade-off between AUW and G (the average BR for P-RTP
is closer to 1 than the average BR for RTP) but also results into a much narrower
distribution of users around the average. This means that the behavioral change that the
users offer is better and more fairly reciprocated. In other words, with the proposed P-
RTP, inflexible users do not benefit from the actions of flexible users. This implies that,
with P-RTP, flexible users have stronger motives to adapt their behavior, as they know
that they will benefit from such an adaptation, while non adaptive users will not receive
benefits.
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Figure 2.2.f3 CDF of metric BR; among participating users under RTP and P-RTP
pricing
The following figures show that the reduction in the energy cost is achieved without

sacrificing at all the user’s welfare. In more detail, Figures 2.2.f4 and 2.2.f5 present
metric AUW, for the RTP and the P-RTP mechanism, as a function of ¢ and wr

respectively.
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Figure 2.2.f4 Aggregated users’ welfare AUW under P-RTP and RTP as a function of
cost parameter ¢
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Figure 2.2.f5 Aggregated users’ welfare AUW under P-RTP and RTP as a function of the
omega factor (wy)

By comparing Figures 2.2.f1 and 2.2.f4, one can see that, the system’s cost has been
reduced and the system’s fairness has been enhanced, without loss on users’ aggregated
welfare, that is without sacrificing efficiency. This is rationalized by the fact that P-RTP
allocates financial savings to the users that provoke the cost reduction and not to the
inflexible ones. In comparison with the simple RTP model, this leads to an increase in the
flexible users welfare and a decrease in the inflexible users’ welfare, thus the total AUW
remains the same.

Though the AUW metric is no better with RTP, we also want to make sure that this
benefit does not come with a sacrifice of welfare from a particular subset of users. In
Figure 2.2.t6, we present the CDF for UWD;. The dotted vertical lines represent the
average UWD of all users in the set N. The averages coincide with each other while the
distribution with P-RTP is insignificantly narrower.
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Figure 2.2.f6 CDF of metric UWD in P-RTP and RTP

2.3 Conclusions and Future Work

In this chapter, we took on the case of providing real-time demand response services. We
proposed two schemes, each suitable for a particular business model. In the first
subsection, we showcased the inefficiency of previous state-of-the-art approaches, which
either do not consider user incentives, or adopt a direct-revelation approach, respectively
leading to either lack of truthfulness and consequent inefficiency, or to lack of privacy
and scalability. To overcome these shortcomings, we presented a novel iterative auction
mechanism based on Ausubel’s clinching auction, that implements the truthful and
efficient VCG outcome but also allows for a distributed implementation and a privacy-
preserving communication protocol. Our theoretical and simulation results verified that
the proposed scheme combines the desired properties with very good performance and
small overhead. Future work can further extend user rationality to also anticipate future
DR-events based on local information and learning techniques.

In the second subsection, we considered a business model of a budget-balanced
aggregating entity serving as ESP for its registered users. We proposed a P-RTP
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mechanism and evaluated its performance against that of the classic RTP mechanism in
terms, of the most well established KPIs derived in the literature. In order to focus on the
merits of the main idea, we kept the system model simple so as not to harm the generality
of the results. Future research can extend the results to more advanced system models
that include: a) the possibility of load shifting in addition to load curtailment; b) RES and
energy storage systems (ESS).

In addition, the user’s utility function and the way the user makes decisions is still an
open area for research. Distinct models for different devices could be considered and
applied under the P-RTP paradigm. Moreover, in electricity markets, different pricing
mechanisms (P-RTP, RTP, flat-price, etc) are to be offered to real users as an option,
making the co-existence of different pricing mechanisms for different users in a given
market an interesting problem. Finally, the new prospects of electricity pricing offered by
P-RTP will impact, if adopted, the sizing (investment cost) of RES and ESSs. We believe
that the integration of RES and ESS sizing with P-RTP mechanism design may give rise
to new capabilities for self-sufficient micro-grids and advanced demand side
management.
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Chapter 3

PERIOD-AHEAD PRICING AND LOAD SCHEDULING

In this chapter we turn our attention to problems of the Period-Ahead scheduling use
case. In this use case we consider a scheduling horizon ahead, and take on the problem of
designing efficient mechanisms that achieve an efficient scheduling of the users’ profiles.
In particular, section 3.1 presents a near optimal mechanism for satisfying coupling
constraints in an environment where users act strategically. Section 3.2 studies the
problem of committing to the agreed schedule in delivery time.

3.1 Near-optimal demand side management in electricity markets with
coupling constraints

Residential participation in DSM is commonly envisaged via aggregated participation
because of implementation and scalability issues. An Electricity Service Provider (ESP)
is considered for the role of aggregating and coordinating the users’ actions. Applying
direct control over the end-users’ loads is not an attractive option since it comes with
massive consumer dissatisfaction and arbitrary load prioritization, which leads to loss of
social welfare. Along with the trend of liberalization of the electricity market, principles
of economics that are already applied in most markets are now becoming more relevant
to the electricity market as well. Thus, the state of the art approach to DSM is to motivate
electricity consumers towards economically efficient consumption patterns by providing
monetary incentives. That is, consumers are expected to modify their consumption
patterns voluntarily in response to pricing signals.

Nevertheless, each user is typically trying to optimize his/her own objective, which may
or may not be in line with the social objective. A particular stream of game theory called
mechanism design is essentially the tool for designing rules (namely, an allocation rule
through which end users determine their consumption pattern, and a billing rule through
which their bills are determined) for systems with strategic participants holding private
information, such that the system at equilibrium has good performance guarantees.

Modern ESPs in the era of the smart grid have to embed DSM in their business models. A
DSM architecture includes the mechanism (allocation rule and billing rule) through
which the DSM participants (namely, the users and the ESP) interact as well as the local
algorithm through which each participant decided his/her actions. Through a carefully
designed DSM architecture, we can hopefully bring the system to an efficient state, even
though the designer does not directly control the decision variables. According to our
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requirement analysis [SED6.1], a DSM architecture has to fulfill three properties,
described in the following subsections.

A. Welfare Maximization

The first property is the maximization of the welfare (i.e. the aggregated users’ utility).
The utility of a user/energy consumer is defined as the difference between: i) a metric
(noted here as valuation function) that quantifies how much the user valuates/appreciates
a specific energy consumption profile/pattern and ii) the bill that the user has to pay for it.

Maximizing the welfare through mechanism design can be relatively easy or really
challenging, depending on the assumptions made about the actual users’ behavior and
preferences. Making strong assumptions on the form of user’s preferences makes the
system conducive to theoretically strong results but the validity of these assumptions is
often questionable [CHAP13]. Also, a common assumption regarding the user’s behavior
refers to the user being modeled as a price-taker, which means not considering the effect
of his/her own decisions on the electricity price. While this might be relevant for large
systems, in emerging energy communities and decentralized systems this assumption no
longer holds and the user might be a price-anticipator. The latter user model only makes
things more complicated when it comes to welfare maximization and it is avoided in most
of the literature (see [SAMA12] and references therein). In contrast, in the present section
users are price anticipators.

Finally, the aggregated users’ utility alone is not enough. A typically desired property is
the property of individual rationality. A mechanism is called individually rational if each
and every user benefits from participating in it. In other words, at equilibrium, each user
is better-off participating in the DSM, rather than not participating.

B. Budget-balance

We consider a benevolent ESP that acts on behalf of the users and not against them. The
ESP is not a profit maximizing entity but a representative of the users and their interests.
Budget-balance refers to the fact that the mechanism is not required to subsidize the DSM
participation nor does it extract a surplus from the users, but only divides the system’s
energy cost among users. Indicative use cases of this business model are: i) the case of
energy cooperatives [RESCOOP], ii) public companies [ECOPOWER] around public
authorities acting as ESPs, iii) private monopolistic companies with regulated profit
margins, iv) virtual associations of users [VIMSEN] v) islanded energy communities and
vi) any other use case in which the ESP’s primary interest is the welfare of the users in its
portfolio.

C. Constraint Satisfaction

The third property is the coordination of the aggregated users’ consumption in order to
satisfy system-wide constraints. Such constraints indicatively aim to
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Case a) keep the aggregated consumption below a certain threshold at all times or
Case b) keep the system’s overall cost within certain margins.

The necessity of satisfying such constraints is met in many use cases in modern smart
grids which include:

1) Enhancing the self-sufficiency of the community
2) Keeping islanded microgrids economically viable [STAD16]

3) Mitigate suppliers’ exercise of market power by taking coordinated action to
reduce the demand in the face of such situations [BOREQ0]

4) Meeting the physical network’s constraints by implementing the DSO’s orders
5) Enhancing the community’s participation in flexibility markets [USEF], [DNV]

6) Reducing CO2 emissions and respecting modern legal frameworks towards
energy cost reduction [DIREC12]

7 Enhancing RES penetration by adapting demand to the intermittent generation
[POLICY]

From a technical point of view, satisfying a system-wide constraint can be a challenge. In
particular, constraint satisfaction typically depends on the aggregated consumption
profile of end users. This couples the system’s decision variables that are controlled by
different users, which brings a fair amount of complications in the underlying n-person
game [LI14]. The proposed DSM architecture can be used for both cases a) and b) of
constraints described above. In this section, we present a theoretical analysis for case a),
which is the most difficult of the two but in the evaluation section we present simulations
for both cases.

Further requirements might apply depending on the context and the particular business
model of the system. Designing a DSM architecture that exhibits specific properties
tailored to each specific business model is an open research topic.

Summarizing the above, the contribution of this section is the design of a DSM
architecture that is able to meet system-wide constraints (e.g. energy cost reduction) and
at the same time achieve users’ welfare very close to optimal. The proposed scheme also
preserves both the budget-balance and the individual rationality properties.

3.1.1 Related Work

In the DSM context described above, we set three main requirements for the proposed
mechanism. We need a DSM architecture that: a) achieves close to optimal users’
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welfare, b) preserves the budget-balance property, and c) provides the ESP with the
ability to control the overall consumption cost (satisfaction of a system constraint).

The welfare-maximizing requirement is highly dependent on user modeling. That is, a
theoretically optimal allocation can be achieved, only under certain assumptions on the
users’ preferences representation. DSM studies can be categorized into three main
branches with respect to how they model user preferences.

The first branch includes many works (e.g. [MHANI16], [TUSH15], [XCHEN13],
[SOLI14], [BAHRI14], [MA14], [BAHA17], [ZHAOI13], [SAMAI13], [RADI10],
[BAHA13]) that consider users who exhibit no preference towards the consumption
pattern, as long as their whole load is satisfied within a defined time interval. In simple
words, users set constraints on their consumption but there are no preferences among the
time intervals as long as the consumption constraints are met.

The second branch of the literature (e.g. [GATZ13], [YAAGIS5], [WANG17], [QIAN13],
[LI10], [MOHS10], [SAMA10] and [DENG14]), considers user preferences and price
sensitive consumption patterns. The study in [YAAGI15], approaches the solution with a
regret-based algorithm, [QIAN13] with Simulated Annealing, and the rest of the works
typically formulate a convex optimization problem and reach the optimal solution by
solving its dual problem. During this process, the ESP and the users solve their local
problems and exchange messages. Under the assumption of price-taking users, the final
allocation is welfare-maximizing.

In the third branch (e.g. [SAMA12], [NEKOL15]) this assumption has been relaxed and
users are considered as price-anticipators, that is, they consider the effect of their actions
on the prices. In this case, the dual approach no longer achieves welfare maximization, as
analyzed in [JOHAOQ7, chapter 21]. So, the studies in this third branch opt for a Vickrey-
Clarke-Groves (VCG) mechanism. However, the practical applicability of the VCG
mechanism is highly debated because it is a direct mechanism (requires users to reveal

their preferences to the ESP), which raises not only privacy but also representation issues
(see [CHAP17] for a more detailed analysis).

From the above three user model research branches, only the first one preserves the
budget-balance property. The convex optimization approach typically ends up with the
market-clearing prices and extracts a big surplus from the users, especially when the
latter are price-takers. Also, the VCG mechanism is inherently not budget-balanced.

Finally, constraint satisfaction complicates things when it comes to indirect mechanisms.
This is because typical market-clearing approaches are often not suitable for constraint
satisfaction, especially when the constraints couple the optimization variables. Thus, the
works that induce some kind of controllability, either relax the welfare-maximization
requirement [ALTH15], or the user preferences modeling [ XCHEN13], or adopt a central
optimization approach [ERDI17], [TANGI14] with a consequent assumption of direct
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control on user loads. Also, dual optimization approaches can apply some control on the
consumption patterns by manipulating the prices, but that comes at the expense of high
user dissatisfaction.

In this work we present a DSM architecture for price-anticipating users that: i) achieves
near optimal welfare (reaches 91%-99% of the optimal value), ii) is theoretically proven
to preserve the budget balance and the individual rationality properties, iii) provides the
ESP with controllability over the overall system’s cost (which is a coupling and quadratic
constraint). To the best of our knowledge, this is the first work to satisfy all three of the
requirements described above.

3.1.2 System Model

We consider an electricity market comprised of an Electricity Service Provider (ESP) and
a set N 2 {1,2,...,n} of self-interested consumers, hereinafter referred to as users. We
also consider a discrete representation of time, where continuous time is divided into
timeslots t € H, of equal duration s, where H £ {1,2, ..., m} represents the scheduling
horizon. A user possesses a number of controllable appliances where each appliance
bears an energy demand. We consider each appliance as one user, for ease of presentation
and without loss of generality. Thus, we will use the terms “user” and “appliance”
interchangeably throughout.

User & Appliance modeling

An appliance i requires an amount of energy for operation. For example, if an appliance’s
operating power is 1W, and s = 1h, then the energy that the appliance consumes in one
timeslot of operation is 1Wh. This energy consumption is controllable via a decision
variable xf, which denotes the amount of energy consumed by appliance i € N, at
timeslot t € H. Throughout this section we assume x; > 0. Each appliance i is
characterized by

i) a feasible consumption set, defined by a set of constraints on x|, which is presented
below and

i1) a valuation function of the energy that i consumes throughout H.

The aforementioned set of constraints includes upper and lower consumption bounds,
restrictions on consumption timeslots and a coupling constraint. More specifically,
appliance i cannot consume more than an upper bound x;, that is,

0<xf<x; (3.1.1)

An appliance i also bears a set of timeslots h; € H, in which its operation is feasible
(e.g., an electric vehicle can be plugged in only at timeslots during which its owner is
home):
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xf=0, te¢h (3.1.2)

We denote an appliance’s feasible consumption profile, as a vector

x; = {x},x?,...,x"} € X;, where x| satisfies (3.1.1), (3.1.2) and X; € R™ denotes the
feasible set for i’s consumption profile:

X; = {x; | xf such that (3.1.1),(3.1.2) hold},i € N (3.1.3)

Finally, the n X m matrix containing all users’ consumptions at all timeslots is denoted as

X ={x1,%X3, ..., Xp} € X where X = {X};ey denotes the Cartesian product of the X;’s.

The valuation function is expressed in monetary units ($), and it is private (the user does
not share it with the ESP or other users). It is generally a function of x; and expresses the
maximum amount of money that a user is willing to pay for the operation profile x;. The
valuation function v;(x;) can take various forms, depending on the appliance. Let 0™
denote the m-vector with all of its elements equal to zero. We adopt some common
assumptions based on microeconomics theory on the form of v; (x;):

Assumption 3.1.1: Zero consumption brings zero value to the user:
v;(0™) =0 (3.1.4a)

Assumption 3.1.2: Consuming more does not make the user less happy. That is, for two
arbitrary vectors X;4 , X;jg, we have:

vi(xi0) S vi(x34 + Xi8), YV Xin,Xip (3.1.4b)

Assumption 3.1.3: (concavity) for two arbitrary vectors x;4 , x;p and for any scalar
0<a<1i:

av;(xig) + (1 — a)v;(xip) < vi(a-xip + (1 —a) - x;p) (3.1.4¢)

Finally, the user’s utility is defined as the difference between the user’s valuation for
his/her consumption profile and the bill he/she has to pay for it:

Ui(x) = vi(x;) — bi(xy) (3.1.5)
System Cost & Electricity Billing

The ESP is responsible for purchasing energy from the grid and delivering it to the users.
We assume that the ESP faces a per-timeslot cost that is a strictly increasing function
Ct() of the aggregated consumption Y;ey xf. In particular, quadratic or piecewise linear
functions are widely used in the literature, to model the generation cost of marginal units.
We present the case for quadratic cost:

C'Qien xzt) =c* Qien xit)z (3.1.6)

As explained in the introduction, we consider a use case where the ESP needs to be able
to control the system’s cost so as to keep it below a certain threshold C;..r. Moreover, we
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consider a benevolent ESP that acts on behalf of the users and not against them. We
assume that, for the scheduling horizon, the ESP collects the financial cost C which is:

C=Yen C' Cienx{) (3.1.7)
by applying a billing rule b(x;) to each user. We state some requirements for b(x;):

Requirement 1: The sum of the users’ bills should add up to the system’s cost:

Zienb(x) = C*Zien x{) (3.1.8)
Eq. (3.1.8) captures the budget balance property analyzed in the introduction.
Requirement 2: At equilibrium, each user should have weakly positive utility.

This is equivalent to stating that each user should be better-off participating in the
mechanism rather than not participating. This is equivalent to the individual rationality

property.
ESP-user interaction & implementation

We assume a communication network, built on top of the power grid, allowing the ESP
and the users to exchange messages. In particular, in order for an indirect mechanism to
be implemented, we assume that the users can respond to demand queries. That is, the
ESP provides the user with the necessary billing data and the user is expected to respond
with his/her demand, that is, with the desired consumption vector x; that maximizes the
user’s utility U;(x;) given from Eq. (3.1.5).

Since an efficient allocation involves a certain degree of coordination among users, it
may take a number of message exchanges between the ESP and each user to converge to
equilibrium. For this reason, we expect the user to respond to each demand query in a
reasonable amount of time. A commonly accepted response time in computer science is a
time that is, in the worst case, polynomial in bits of precision required. For the latter
property to hold, the billing rule should be simple enough. A sufficient condition that
fulfills this property is captured in a third requirement, which is:

Requirement 3: The user’s bill b(x;), is convex in X;.

To justify the sufficiency of Requirement 3, recall the definition of the user’s utility from
Eq. (3.1.5). The first term is concave by Assumption 3. A convex b(x;) makes the user’s
utility U;(x;) concave in x;. Thus, the user’s response to a demand query becomes a
convex optimization problem, which is tractable.

3.1.3 Problem Formulation

In this section, we formalize the problem to be solved, which is maximizing the
aggregated users’ utility (Eq. 3.1.9):
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max  Yien(vi(x;) — b(x;)) (3.1.9)

xi€Xj,iEN

while keeping the system’s cost below a predefined threshold C,..r. By using Eq. (3.1.8)
in Eq. (3.1.9) we have:

maXxiexi,ieN{ZieN[vi(xi)] — YtenlC' Cien xlt)]} (3.1.10)
s.t. ZtEH[Ct(ZiEint)] < Cref) (3.1.10a)

Constraint (3.1.10a) couples the variables xf across both i € N and t € T. We will
demonstrate that this is a standard convex optimization problem where a concave
function is maximized over a convex set X € R™™ that is defined by the inequality
constraints (3.1.1), (3.1.10a) and the equality constraint (3.1.2).

Lemma 3.1.1: The problem defined by Eq. (3.1.10) under constraints (3.1.1), (3.1.2) and
(3.1.10a) is a convex optimization problem. In particular:

i) The objective function f(X) = Yien[vi(x)] — TienlCtCien xf)] is concave in
XeX.

i1) Inequality constraint functions (3.1.1), (3.1.10a) are convex in X € X
ii1) Equality constraint functions (3.1.2) are affine in X € X’
Proof:

i) Since Y ;en[v;(x;)] is a sum of concave functions in subspaces of X, it is concave in X.
Let 1,, be the all-ones n-dimensional vector and 1,,,, the all-ones n X n dimensional
matrix. Let also xf 2 (xf,xi,..,xt)T be the vector containing all the users’
consumptions in timeslot t. Then

ct <Z xf) =cC- ((1n)T _xt)Z =cC- (xt)Tlnxnxt

iEN

is convex because it is a quadratic function and 1,,,,, is positive semi-definite. Therefore,
— YtenlC Qien x1)]

is concave in X', as a sum of concave functions in subspaces of X and (i) is true because

f is a sum of concave functions.

i1) Constraint (3.1.1) is trivially convex and (3.1.10a) is also convex as shown in the
second term of f.

ii1) Constraint (3.1.2) is trivially affine, for all { € N, in a subspace of X, and so it is also
affine in X. ]

Thus, problem (3.1.10) is convex and has a global optimal solution. If valuations
v;(x;) 2 v;(xf;t € H) were known, it could be solved through the use of an interior
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point method. However, v;(x;) is private. Moreover, we assume strategic users who opt
for maximizing their own utility, that is,

x; = argmax{v;(x;) — b(x;)} (3.1.11)

XiEX;

The latter objective is not necessarily aligned with the social objective and depends on
the billing rule b(x;). Since the cost function couples the users’ variables x;, i E N , a
user’s utility depends not only on her/his own profile but also on the other users’
consumption choices. This latter fact brings problem (3.1.10) in the realm of game
theory. In order to bring the system to an equilibrium that optimizes (3.1.10), we will
draw on the concepts of mechanism design.

We consider a game-theoretic framework, where the ESP announces the billing rule and
users iteratively select their preferred allocations, thus formulating the following game I.

Definition of game I':
e Players: users in N
e Strategies: each user selects her/his x;, according to (3.1.11)
e Payoffs: a user’s payoff is his/her utility as defined in (3.1.5)

Since problem (3.1.10) naturally prioritizes users with higher valuation for energy
allocation, we need to prevent users from faking a high v;(x;). This is the role of the
billing rule. The Vickrey-Clarke-Groves (VCG) mechanism has been proven to be the
unique welfare-maximizing mechanism that makes it a dominant strategy for each user,
to truthfully declare his/her local valuation. Unfortunately, VCG-like mechanisms are not
useful here since they violate the budget-balance property (Requirement 2) and also come
with a number of other problems as explained in the introduction. In what follows, we opt
for designing a DSM architecture which includes:

a)an indirect and individually rational mechanism, including a budget-balanced billing
rule, implemented in best-response strategies. Although we have to relax the welfare-
maximization property, we are actually able to reach a near-optimal solution.

b)an algorithm at the ESP side, which iteratively decides a parameter of the billing rule,
thus providing the ESP with online controllability over the system’s cost, so that
constraint (10a) is satisfied at equilibrium.

3.1.4 Proposed DSM Architecture

In this section, we present the proposed DSM architecture that fulfills the aforementioned
requirements. The presentation is complemented with the presentation of the theorems
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that prove analytically that the requirements we have set are fulfilled. In more detail, we
developed a DSM architecture such that:

a) game /" admits to a Nash Equilibrium (NE)
b) users’ actions converge to NE via best-response dynamics

c) the DSM mechanism provides the ESP with controllability over the system’s cost,
which means that the ESP brings the system to an equilibrium that respects constraint
(3.1.10a), in case that it is possible.

d) the allocation at equilibrium is as close as possible to the optimal value of problem
(3.1.10).

A. The billing rule

Best-response dynamics means that, at each iteration, each user chooses his/her strategy
assuming the strategies x_; of other users to be constant. Thus, from a user’s perspective,
at a certain iteration, his/her bill only depends on his/her own choice of x;. The following
equation presents the proposed billing rule:

b(x;) = Zl ¢ (ZJEN l . z xit'Z(xjt) _ZjEN[ZteH(Jj'Zk:jxﬁ)]

x
teH Ljen teH T

(3.1.12)

The first term of the sum is identical to existing billing rules. The second term has the
purpose to reward/penalize flexibility/inflexibility (ability of user i to modify energy
consumption profile). The value of y is iteratively updated by the ESP. The rationale of
Eq. (3.1.12) is that it penalizes users for synchronizing their loads with others and uses
the penalties for rewarding users who counter-balance the aggregated consumption by
consuming their load at off-peak timeslots. With respect to the billing rule, we state the
following lemma:

Lemma 3.1.2: For constant values of x_;, the bill b(x;), given by Eq. (3.1.12), is strictly
convex in X;.

Proof:

We denote by H'? the Hessian matrix of function b(x;), defined in Eq. (3.1.12). We have
to show that H is positive definite. By substituting Eq. (3.1.6) in Eq. (3.1.12), we have

a3t (S | v [ Sen| - 3[3 (or T

teH JEN teH jEi jEN | teH k%)
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e (B [ S| A S g

teH jen teH j#i j#i |ten k%)

By taking the derivatives:

P :chj1+ cx;t+y - Z(le)—Eijl

i JEN i j#i
and
b _M_{Zc,tlztz
fafz = dx;20x;* L0t # 1
Thus, H? = diag(2c) is positive definite. |

The user communicates his/her demand profile x; to the ESP and receives the respective
bill b(x;). Since problem (3.1.11) is convex (by Lemma 3.1.1 and Assumption 3.1.3) the
user can apply a gradient projection method to compute his/her best response. Next, we
analyze the properties of game I':

Theorem 3.1.1: A Nash Equilibrium for game I'" exists and is unique. Furthermore, best-
response dynamics converges to the Nash Equilibrium strategy vector.

Proof:

a) The user’s payoff is his/her utility given by eq. (3.1.5). The first term is concave in x;
by Assumption 3.1.3. The second term is strictly convex in x; by Lemma 3.1.1. Hence, for
x!f >0, U;(x;) is strictly concave in x;. Since this holds for every user, we have that I' is
a strictly concave n-person game. Thus, by [ROSEG65, th.1], we have that a NE exists.

b) By [MONDO96], it suffices to show that I" is an exact potential game with a concave
potential function. Indeed, consider the function:

rX) = Z vi (x;)

ieN
- Z % (2 xf)z + Z[(xit)z] + _)/(RZ; 2) : Z xf Z(x]-t)

teEH iEN iEN iEN J#i
Function p(X) has the property of potential:
V(X)) =V, Ui(x), VieEN

Moreover, Y.;en Vi(X;) is concave in X (concave in x; by Assumption 3.1.3 and zero in
x;j,Vj # i). Thus, it suffices to prove that the term
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A DD R

teH iEN > iEN iEN J#i
is also concave, or equivalently that —p, is convex.
Itis V,,(—p,) = Vy,b;(x;) which yields
Vi, (—p,) = Va,bi(x) = HP
which by Lemma 3.1.1 is positive definite. Hence, p, is also concave in X, since its
Hessian

H#2 = Vip, = blkdiag({HPI-,)

is a block diagonal positive definite matrix. Hence p is concave in X = (xq, ..., Xj, .., Xp)
as a sum of concave functions in X.

c) Since the potential function is concave and players maximize, it directly follows that
best-response dynamics converges to the unique NE. [

The second term of the sum in (3.1.12) introduces a price-discrimination component
among users with different levels of flexibility. The ESP can control the magnitude of
this discrimination by adjusting parameter y, as will be analyzed in subsection B. of this
section. Thus, by increasing y, users are increasingly incentivized to modify their
consumption patterns. Note that y does not increase the bills in general but only controls
the way that the system’s cost is shared among users. This provides an intuition on the
way (3.1.12) keeps the system budget balanced, and is proved formally below.

Theorem 3.1.2: The billing rule b(x;), given by Eq. (3.1.12), satisfies the budget balance
property.

Proof:

It suffices to show that

-3l (3

iEN teH iEN

By substituting b(x;) from Eq. (3.1.12), we have

PEEDRN Z,;Vt[x] e[ Yt ||+

iEN iEN \ teH JjEN
. z xit . Z(x}g) _ ZjEN[ZteH(fljt : Zk;&j x;i)]
teEH Jj#i
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PPN = ) EORAD X

teT iEN JEN iEN teH j#i

[Z;ezv ZtEH(x " Lkj xk)]
iEN

n

REIDACHIC] WA LA

[Ct ( >
teT iEN iEN teH Jj#i JEN teH k+j

23]

which completes the proof. ]

Furthermore, for the proposed billing rule given by Eq. (3.1.12), we also verify
Requirement 2.

Theorem 3.1.3: Game I', in equilibrium, satisfies the individual rationality property.
Proof:

The root vector x7°° & {x["°°'},t € H, for which b(x}°°*) = 0, is derived by solving
from Eq. (3.1.12):
|
xtroot | Z(xt) (n(c + 1) Yy — 1)

L ch|_

l Jj#EL

2 ]
Z(xjt) (nlc+1)—y—-1)| + 4cynJ|
=i

Setting ¥ X - (n(c + 1) —y — 1) = a and 4cyn = B, we get

xltroot ch[_ _m]

which means that there is always exactly one xl-t T > 0. By Assumptions 3.1.1 and
3.1.2, we have v;(x/7°°") > 0. Thus, from Eq. (3.1.5) we get that U;(x}°°") > 0. This
means that each user’s utility is weakly positive, which completes the proof. ]

B. The ESP’s algorithm for constraint satisfaction

While the users are concerned with maximizing their utility, the ESP is responsible for
satisfying constraint (3.1.10a). As discussed earlier, the ESP controls the system’s cost
via parameter y. A low value of y would lead to high energy cost, while a large value of
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y would have a negative impact on the welfare. Thus, the proposed DSM architecture
also needs an algorithm for the ESP to identify the appropriate choice of y, which brings
the system to an allocation that respects constraint (3.1.10a) with the least possible
sacrifice on the users’ utility. Since the ESP is agnostic of the users’ valuation functions,
determining the appropriate y calls for a global optimization approach. We opt for a
Simulated Annealing (SA) method for determining y. The entire DSM procedure is
depicted in Table 3.1.t1.

Table 3.1.t1 The proposed DSM procedure

1 set xf =%, Vi€ N, k=0,Ty, yo, 4o

2 Repeat

3 Repeat

4 fori €N

5 i calculates best-response x;(yy) from (3.1.11)
6 until Nash Equilibrium

7 ESP calculates cost at NE (Cy)

8 4y = (Ck - Cref)2 - (Ck—l - Cref)z

9 k=k+1

10 | T, =T,-0.95*

11 | ESP determines next y; as a function of Ty, 41, V-1

k
12| Untit Zizseoe <

500 -

Parameter T, is the so called “temperature” of the SA algorithm. In line 11, the SA
algorithm determines the next value of y, based on a probabilistic calculation, which is
not presented here due to space limitations.

3.1.5 Performance Evaluation
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In this section, we demonstrate the performance of the proposed architecture. In our
simulation setup, we consider 24 hourly intervals H = {1,2, ..., 24} and n = 50 users. For

each user i, the upper bound x_f on consumption is chosen randomly from the set
{1.5,4,5.5,7.5}. The feasible set h; is modeled as a continuous set of timeslots starting at
timeslot ¢t; and ending at timeslot tlf . Parameter t; was picked from a random uniform
distribution. In order to model the afternoon peak demand, for half the users, parameter
t; was picked in the interval [1,17] and for the other half in the interval [18,21].
Parameter tlf was modeled as tlf = min((t] + d;), 24), where d; was chosen randomly
in the set {3,4,5,6,7}. Finally, parameter c of the cost function was set to ¢ = 0.02.

We tested the proposed architecture for three different user models (valuation functions)
that satisfy assumptions 1-3: Model A is taken from [GATZ13] and [SAMA10], model B
from [SAMA12] and [LI10] and model C from [MOHS10]. Parameter w relates to the
user’s inelasticity/inflexibility.

—_ 2
: _ ot St ot
User model A: v;(X;) = Va0 — @i (xi xl-)

— 2
where Vi = ;- (xf) . This model captures the use case where a user’s valuation

function is temporally decoupled. Parameter w; was randomly selected in the interval [1,
2].

max H t\2 H t

v —w; - (B — Yo xi) L x; < E;
User model B: v;(x;))=4 "' ' > ey .

vl ] t=1xi 2 El

where E; is the user’s desired energy to complete a task, randomly chosen from
{4.5,16,22,30}. This model captures the use case where the user is interested only in
his/her total consumption at the end of the day and not at the particular timeslots of
consumption, i.e. shiftable loads. Parameter w; was randomly selected in the interval
[0.25, 1.25], while we have set v"** = w; - (E;)?.

User model C:
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f
( H 2 t;
max _ E — t] _ 5t_tz¢es t
U; w; i Xi Xi ),
t=1 t=t3eS+1
H
for Z x! < E;
_ t=1
vi(xi) = 9 f
&
des
max t—t; t
vl B Z (5l xl ’
t=t3eS4+1
H
for Z xf > E;
\ t=1

where the last term expresses the user’s discomfort from postponing consumption to later
timeslots: § is an elasticity/flexibility parameter randomly selected in the interval [1, 1.2]
and t%° =t +E;/ x_f is the desired timeslot for task completion. Naturally, it is
tl-des < tlf . Parameter w; was randomly selected in the range [0.25, 1.25].

For Figure 3.1.f1 we used user model B. Figure 3.1.f1 shows the aggregated consumption

of the users throughout the time horizon H, in the cases of a) no DSM, b) DSM with
Cres = 8008$ and c) DSM with C,..; = 600$.
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Figure 3.1.f1 Aggregated Users’ Energy Consumption Curve — Cost Constraint

In Figures 3.1.f2 and 3.1.f3 we evaluate the performance of our scheme for all three user

models, in terms of the Aggregated Users’ Utility (AUU) which is defined as AUU =

Y.ien U;. In particular, we depict the ratio of the AUU achieved with the proposed system

over the AUU of the central (optimal) solution which would be reached if the users’

valuations were known (AUU,,;). Figure 3.1.f2 depicts our scheme’s performance as a

function of the constraint on the system cost, whereas in Figure 3.1.f3 we depict the use
case where the constraint is not posed on the system’s cost but on the aggregated

consumption at each timeslot. That is, there is a cap Y4 such that Yen xf < Yigs

Vt € H.
1 T T E——
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c)Figure 3.1.f2 Ratio between AUU and optimal AUU as a function of Cy.¢
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Figure 3.1.f3 Ratio between AUU and optimal AUU as a function of Y;,, 4,

We observe that the AUU achieved by the proposed system reaches up to 97%-99% that
of the optimal solution. In extreme cases (for excessively low cap Yyq4x), AUU is still
within 90% of the optimal solution.

A user’s bill is affected by his/her inelasticity parameter w. In particular, b;/bgy,,
expresses the ratio of i’s bill to his/her bill for the supremum w;, denoted as bg,,. In
Figure 3.1.f4 we show how the ratio b;/bs,, is affected by i’s inelasticity w; (User
Model B and C,.r = 600). The user’s bill is increasing with respect to his/her inelasticity
parameter.
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3.2 Penalizing Volatility and motivating transactive Energy Markets:
the Value of Aggregation, Flexibility, and Correlation

As RES are being developed and used ever more extensively, a large degree of volatility
and unpredictability is added to the grid, necessitating a radical revision of the traditional
Grid and of the Market Model. Volatility constitutes a negative externality caused by
certain (especially RES) market participants but affecting all participants, and in order to
minimize it, the ones causing it should be appropriately penalized. Holding those who
cause market volatility financially responsible for it, is increasingly important as the
penetration of RES producers increases. With current market rules, producers or
consumers with high volatility get a free ride, and the rest of the market pays the price for
1t.

Distributed generation of electricity has been the principal trigger for developing the
concept of the Smart Grid. Currently, RES are less (economically) competitive than
traditional fossil fuel sources, while also causing extra costs to the system [STRA16],
partly due to their unpredictability, making it very challenging to satisfy demands for
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both cleaner and cheaper energy. This challenge has opened up new domains of research,
including the development of new business models to facilitate the incorporation of more
RES in the grid [MOLO09], by internalizing both positive (e.g. environmental and location
benefits) bit also negative (e.g. volatility) externalities. As a result of the changes in the
Electricity Market, medium and small energy prosumers (i.e. producers and consumers at
the same time) are emerging at the center of interest in the new liberalized energy market.
Extensive recent and ongoing research focuses on DR techniques [PALE11] as well as on
integrating DR in the economic and optimization models [FEU14]. A great deal of work
also focuses on managing distributed RES in local electricity markets [AMP14],
[ILIC12], [MENNO09], [HVEO06].

The new business and market models need effective information exchange in a
distributed context, thus creating new challenges for the Information and Communication
Technologies (ICT) field [YAN13]. As ICT is introduced in the energy network, the
concept of virtualization of energy resources also becomes feasible. A big energy
prosumer is no longer necessarily formed through heavy investing on big prosumption
facilities. Multiple small prosumers can organize themselves in bigger associations that
participate as a single entity in the market, thus forming a virtual big energy prosumer,
called a Virtual Micro Grid Association (VMGA) [MAMO16], [VERGI15]. The VMGAs
increase the market negotiation power of small prosumers, their combined reliability (and
thus their ability to make Service Level Agreements - SLAs) and also decrease
complexity and book-keeping for the DSO who needs to deal with a smaller set of
players. VMGs form the central idea in the ongoing Virtual Micro Grids for Smart
Energy Networks (VIMSEN) project [VIMSEN], the architecture of which is assumed in
our present work. In compliance with the VIMSEN architecture, the prosumers will be
called VIMSEN Prosumers (VPs). The concepts described above, open up new
possibilities in the way electricity is traded. Small market participants become more
active through the VIMSEN platform, and are represented by a new actor, the VMG
Association. A VMG Association has similarities but also differences from traditional
Virtual Power Plants (VPP) and Flexibility Aggregators, as explained in the following
section. Thus, electricity trading/delivery cease to be strictly bounded to big beneficiaries.
As a result, the electricity market is in need of new policies to embrace the emerging
functionalities, address volatility issues and satisfy the new demands.

In the present work, we assume that the VIMSEN architecture, described in Section
3.2.2.1, is used as the marketplace for electricity trading. In this market setting, the MO
makes Service Level Agreements (SLA) for the delivery of a certain amount of
production or a certain amount of flexibility (consumption reduction) at specific time
intervals with VMG Associations, which in turn make SLAs with their constituent
individual VPs. Volatile/unpredictable prosumers (or VMG Associations of prosumers)
are defined as those that make an SLA with a VMG Association (or with the MO,
respectively) but cannot keep it and are forced to violate it. Volatility causes significant

70



costs to market participants, which should be shouldered by those creating it, both for the
sake of fairness but also in order to (have incentives) to minimize it. In Section 3.2.2.2 we
introduce electricity market procedures based on a spread between buy and sell price in a
BRP market, that can be used to penalize volatile participants, including prosumers and
VMG Associations of prosumers. This proposed spread-based policy is general and can
either be used by the MO to penalize the volatility/undpredictability/SLA non-
conformance exhibited by VMG Associations in order to make them behave more
responsibly, or be used by a VMG Association in order to make its constituent members
do so (or be used in both situations). In the former case, it is a market policy (and may be
subject to regulation) used in MO-to-VMG interactions, while in the latter case it is an
internal policy of the VMG Association used in VMG-to-VP interactions. For the sake of
being specific, we assume in our description the latter case, where the policy is used to
penalize SLA violations between a VMGA and its constituent VPs. Starting with Section
3.2.3.1, we take the perspective of the VP. We analyze and compare two different
strategies (an Active and a Passive one)), first introduced in [KOK13], for strategic load
rescheduling and give the conditions under which each strategy should be used. We also
propose a novel, hybrid strategy that combines the benefits of the two approaches and
show that it always achieves better profits than Active and Passive. We study the penalty
savings obtained by a VP who uses the optimal rescheduling strategy as a function of the
proposed per-unit penalty and the VP’s flexibility. We also give insights on the effects
that the size of the penalty has and the way it can be employed by the VMGA (or the
MO) in motivating VPs (or VMG Associations, respectively) to function more or less
conservatively, according to the VMG’s (or the System Operator’s)needs, thus providing
important insights regarding the parameters of future pricing policies.

We also study the value of the VPs’ flexibility, by quantifying the payback for being
flexible and the degree to which it is worth investing in storage facilities or sacrificing the
user’s comfort in DR operations. The insights obtained can be used as input in storage
sizing studies [BAYR11] and training algorithms that try to achieve a tradeoff between
user’s comfort and user’s financial savings. They also help in describing a step-by-step
procedure for defining the VP’s flexibility based on the user’s desires, which can be used
as a reference point for developing future policies for exploiting and compensating a
prosumer’s flexibility.

In Section 3.2.3.2, we take the perspective of the VMGA by studying the value of
cooperation between VPs belonging to the same VMG Association. We assess the
concept of correlation between the production patterns of the cooperating VPs and study
the revenues that the VPs enjoy from their cooperation as a function of the number of the
VPs in a coalition and also as a function of their correlation. We show that the revenues
gained by a VP are increased through cooperation with others, especially when the
cooperating VPs have negatively-correlated forecasting errors. A somewhat surprising
result is that there is value in the cooperation even for positively-correlated VPs. The
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results imply that a production investment is more profitable with respect to flexibility
compensations when placed close to negatively correlated prosumers. Future investment
subsidy policies can take these insights into account in order to motivate small production
units to be developed in areas, where they would be more efficient. In Section 3.2.4, we
present the simulation model and the data used, which is then employed in Section 3.2.5,
to present performance evaluation results and comparisons between different strategies
and cooperation cases. Specifically, we obtain results on the effect different parameters
have on appropriately defined Value of Strategy, Value of Flexibility and Value of
Cooperation metrics. Finally, in Section 3.2.6, we present our conclusions and the policy
implications derived from our study.

3.2.1 Background and Literature Review

A typical wholesale electricity market in European countries is further divided in
derivatives markets depending on the time of the trade as presented in Figure 3.2.f1
[RUSKI11].

: . Day-ahead Intra-day \\ Balancing \\ Imbalance
R U Kkt market market market settlement
Years, months, weeks and days Day before Delivery Operating
before delivery delivery day hour
T T T Time
Day-ahead Intra-day Time of
market gate market gate delivery
closure closure

Figure 3.2.f1- Wholesale electricity markets [RUSK11]

While single VPs are quite small market players, VMGAs can actually have the critical
size required to participate in the wholesale electricity market. The market participation,
decisions and general management of the associated VPs is materialized by through the
VMG Association they belong to. The Association deals with the efficient integration of
variable RES production and consumption loads’ flexibility in the market, which is
accomplished via sophisticated management of the resources with the use of ICT tools
and algorithms [DAMS15]. Multiple RES production sites can also jointly participate in
the market through the concept of a Virtual Power Plant (VPP) [NIKOI12], while
consumers with DR flexibility can participate in the market through the concept of
Aggregators [GATZ13]. The differences between the VPP, the Flexibility Aggregator,
and the VMG Association concept proposed in the present section are described in
[VERGI16] & [DOULI17], and are summarized in the following. A VMG aggregating
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producers resembles a Virtual Power Plant (VPP), except that the former consists of a
dynamic group of producers chosen so as to optimize different criteria at a time. A VMG
combining consumers resembles a Flexibility Aggregators, with the important difference
that a VMG is not necessarily a profit seeking market entity as a Flexibility Aggregator
is. The VMG concept resembles the software platform of cell phones store markets,
which act as distributors of apps developed and do not specify the price of an app or the
Point Of Sales (POS), thus serving as an interface between customers and retailers. For
example, a VMG’s profit does not depend on the difference between the price offered to
the market and that obtained from its constituent prosumers (in which case it would seek
to minimize the latter, acting against them) but on (for example) the contracts made, that
is, the number of registered prosumers in the VMG platform. This means a VMG
Association’s benefits can be perfectly aligned with those of its constituent prosumers,
which is not the case with the usual concept of Flexibility Aggregators or of VPPs who
are profit-seeking entities, with their own interests and strategies. It should be noted that
the research problem studied in this section covers all types of aggregators that currently
exist in the electricity markets.

Forward trading opens up new possibilities for the market players, offering advantages
for both suppliers and consumers. An analysis of the effects of the strategic use of
forward trading in electricity markets is presented in [VAZQI12]. A day-ahead market
takes place one day before delivery. By taking into account the forecasts for the next day,
different parties can trade their expected demand or supply, and subsequently the Market
Operator (MO) is able to make a more informed scheduling for the next day when trying
to match supply with demand.

Accurate forecasts of the VMGA’s prosumption form an important asset for the
Association to be able to efficiently bid in the day-ahead market. The MO runs all the
supply and demand bids through a clearing process, which ultimately defines the
electricity price, in order to match supply with demand. A review of forecasting models
for electricity prices is presented in [WER14]. Put simply, the price is set where the
(expected) curves for sell and buy quantities meet each other [NORD]. A state of the art
market clearing model applied in the Power Matching City project is described in
[KOK13]. Based on the output of the process, the Association forms the Service Level
Agreement (SLA) with the MO, for the next day, specifying how much energy it will
produce/consume at each hour of the following day. The grouping of VPs in the VMGA
affects the forecasting accuracy, as analyzed in [SILV14]. Since both RES production
(mainly) and the users’ electricity consumption are subject to abrupt, real-time changes,
presumption deviations from the SLA will always occur. These deviations cause
undesired volatility and should be subject to financial penalties that can be imposed in
various ways [BITA12], [ZUGN13]. The users can attempt to avoid these charges by
rescheduling their prosumption profile using unit commitment techniques, such as DR,
making use of the prosumers’ DR flexibility [CEC11]. Numerous works, including
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[LOG12], [RADI10], [MOHS10], [SAMAI10], [QIAN13], have provided optimal
solutions to VP scheduling. However, the above studies assume either day-ahead
scheduling or real-time scheduling without formerly-agreed SLAs and do not consider
compensating for the deviations between a day-ahead SLA and a deviated profile.

Cooperation among prosumers of the same geographical area has been considered in
order to tackle a variety of issues, such as power losses’ minimization [SAAD11] and
market profits maximization [WOO14]. The role of the correlation factor among the
prosumption patterns of the cooperating prosumers has been investigated in [TSAO16].
Other studies adopt data-driven approaches, where the cluster of prosumers optimize their
bid to the wholesale market and a bi-level optimization problem is formed but without
treating the price as a control variable [GALL16]. In the work presented in [FEUE16],
different scenarios for DR integration were compared in terms of profit maximization.
“Scenario A” of [FEUE16] represents an active approach, whereas “scenario C”
represents a passive one.

In our study, we take on the case where there are deviations from the day-ahead agreed
SLA, making the demand curves of the prosumers different and also the prices of the
balancing market different from the day-ahead prices. We apply load rescheduling in
order to reduce exposure to market losses resulting from the different prices and also
from the spread that is introduced between buy and sell price. We assume to have
forecast/prediction algorithms for energy prosumers’ participation in balancing markets
and the respective forecasts for the Balancing Market prices. The way those forecasts are
derived, as well as their accuracy, is out of the scope of the current work and it is
extensively discussed in [WER14], [DIMO16].

We adopt Active and Passive approaches and evaluate them in the case described. A
Hybrid strategy is also proposed and is proved to be optimal for any value of the spread
parameter used to penalize SLA violations. Our main contributions lie in that we also
consider 1) a spread between buy and sell price of electricity, 2) the prosumers
correlation (in terms of profiles deviations) when aggregating them in a cluster. We study
the effects of the two factors and argue that they should be taken into account when
applying demand side management algorithms. Finally, 3) we propose a novel “hybrid”
scheduling strategy for near-real-time participation in balancing markets.

3.2.2 Market Participation Framework

3.2.2.1 Architecture, basic VMG Association role and responsibilities

The actors of a typical Smart Grid architecture and the connections among them, as
adopted by the VIMSEN project as well as by other research projects, are illustrated in
Figure 3.2.f2. The main inter-relations/responsibilities in which the new actors are
engaged are identified as follows:
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Each VP is associated with a specific VMGA under contract by an SLA. Sole VPs
that are not part of a VMGA are not considered in our framework.

The VMGA is responsible for the negotiations -on behalf of its own VPs- with other
VMGAs and/or Balance Responsible Parties (BRPs), or the biddings to the energy
market (technically, through a VIMSEN portal), in order to sell the surplus energy
(aggregate energy from prosumers) to BRPs or on the energy market, or to buy
energy from the same, while maximizing profits.

The VMGA can strategically motivate its VPs to apply smart rescheduling in order
to improve its market position.

The Telecom Provider (TP) will be responsible for the reliable, on-time exchange of
energy specific messages among VIMSEN actors.

We assume that the trading above, satisfies any physical constraints, in the sense that
the DSO makes sure that the energy can be bought/sold by the actors involved at
their specific locations.

We also assume that the VPs are price-takers, in the sense that they are part of a
much bigger system and their own deviations are not directly reflected in the
balancing market prices.

Market Operator

Balancing market Wholesale energy
| market
(= power exchange)

Congestion
management

- - - - -- -

prosumers

SR T
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Figure 3.2.f2 - VIMSEN Architecture [LYB14]
3.2.2.2 Market Procedures and Penalty Policy
Day-ahead market

Producers and retailers make their bids (bidding curves) according to their forecasts for
the next day. Based on these bids, the MO matches supply with demand and creates a set
of hourly prices for the day-ahead market. These are extracted using market clearing
techniques (commonly a bidding process with bidding curves) as is already applied from
many market operating parties worldwide. The result of market clearing is that the price
is higher for peak demand hours and lower for low demand hours. Wholesale suppliers
and consumers (or, more generally, sellers and buyers) make contracts to buy/sell
electricity for the next day, for a certain control area (that is the VMGA’s portfolio).
Considering hourly time blocks, the contract defines the quantity of electricity to be
bought/sold at each hour of each day at a specific price, which is generally different for
each hour. According to its portfolio’s forecasted daily electricity needs, the VMGA can
adjust its bids to better serve its clients and its own interests. After the day-ahead market
gate closure, the SLA is formed. The SLA for a certain day is in the form of a curve
representing agreed energy prosumption versus time.

Balancing Market

According to its real-time needs, a VP might need more/less energy than that agreed in
the SLA. These SLA violations are the quantities to be traded in the balancing market.
The usual procedure is that it participates in the balancing market through bidding. Upon
delivery, further deviations that occur, are compensated from the System Operator and
charged a-posteriori to the VP (see Imbalance Settlement of Figure 3.2.f1) directly from
the MO or via the BRP, depending on the architecture (it differs in some countries). Also,
concerning the Balancing Market, the VMGA can undertake the role of the BRP for its
own portfolio, or provide services to the corresponding BRP. Within the scope of our
present work, we are only interested in the prices at which the VMGA and the VP buys
and sells electricity in the Balancing Market, so our study applies to either of the above
mentioned use cases.

The prices of the balancing market also differ from one hour to another. Compensating
the VPs’ imbalances from their SLAs bears additional costs, such as unexpected lines’
congestion, need for reserves and need for fast-response, low-efficiency units (e.g. fuel-
based) to be utilized. For this reason, it is justified to penalize the VPs who deviate from
their SLA. In our model, instead of a fixed penalty, we propose that the penalty is
incorporated in the balancing market prices. So, the VP that needs more energy than its
SLA has to buy it at a higher per-unit price (balancing market price plus penalty) and a
VP which needs to sell more energy, sells it in a lower price (balancing market price
minus penalty). This means that there is a spread between the price that the VP receives
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for selling and the price that the VP pays for buying. So, if the market price for a certain
hour of the balancing market is p, the VP receives two prices:

e (p + spread) for selling electricity
e (p —spread) for buying electricity

The concept of spread is thought to be used on top of existing balancing markets by
applying the spread to the balancing prices.

The effect of the spread on the price of a certain hour is presented in Figure 3.2.13, where
the blue line represents the day-ahead market prices and the red line represents the
balancing market prices.
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Figure 3.2.f3- Prices after apply of spread

Note that now in the balancing market, the VP receives generally less beneficial prices
than in the day-ahead market because of the spread. The choice of the spread parameter is
discussed later in this work, but it should be pointed out that it is also subject to
regulation. We only study the effect of the spread in the scheduling strategies. A spread
policy can be used to penalize violations either in the SLA between a VMG and its
constituent VPs, or between the MO and the VMG Associations (in each case, combined
with any other penalty policy for the other case of violation), or it can be used as a
unified policy in both situations.

Within the framework described, the VP can apply scheduling strategies (like load
shifting) that reduce its exposure to violations. By applying the above, a procedure for
defining each VP’s flexibility and applying the scheduling is described:

1) VMGA receives forecasts for the day-ahead from VPs and communicates bids to the
MO.

2) MO defines the day-ahead market prices and clears the day-ahead market. The SLAs
are formed.
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3) After the day-ahead market gate closure and before the time of delivery, more
accurate forecasts show the violations to be expected.

4) The forecasts of the market-clearing prices (balancing market-prices before applying
the spread) are created.

5) VMGA decides the spread value depending on statistical data of flexibility and on its
own goals (see Theorem 1 of the mathematical model).

6) Based on 4) and 5), VMGA extracts the function for the value of flexibility, which is
the cost for a VP subject to the flexibility it is willing to offer.

7) The curve is communicated to each VP and the VP chooses its flexibility according to
the user’s desires (e.g. if the curve’s slope is high, user might be willing to sacrifice
comfort for revenue).

8) The scheduling algorithms for the VP are applied, subject to the flexibility value
chosen and extract the load shifts to be made.

9) Any deviations left are cleared in the balancing market.

Later, we provide specific insights on the way the spread of step 5 is defined and also the
function of step 7 is derived.

3.2.3 Methodology and Problem Formulation

Considering a scheduling horizon h(e.g., #=24 hours), let us denote the VP’s
prosumption forecast (from the previous day) as an array of 24 elements, each
representing the prosumption forecast for a given time unit (e.g hour) of the day ahead:

X =X4LX%..,X"
where X! expresses the energy that the VP consumes minus the energy it produces in
hour i. The variable X! is expresed in kWhs and can also be negative when the VP

produces more energy than it consumes. The actual per hour prosumption (which is
generally different from X) is denoted as

Y = (Yiv? .., vh
and the difference between the two is the violations array (i.e. VP’s SLA violations)
V=Y—-X=X'-VvLX%2-Y?% . X"-Yh)

where in the preceding vector subtraction is interpreted componentwise. An entry V' can
be negative if the VP consumes less energy or produces more energy than expected
during hour i.
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At time close to delivery time, the MO takes into account updated, more accurate,
forecasts that become available, and broadcasts to the VMGAs the expected pricing curve
for the balancing market (red curve of Figure 3). Mathematically, this would be
expressed as a h-element array

P = (P, P%..,P")

where P! denotes the market price (€ per kWh) at each of the h time intervals (hours).
Vector P is extracted by market-clearing processes, according to the aggregated
violations. Note that we refer to the balancing market prices. The day-ahead market
prices do not concern our study, since we only focus on the trading after the day-ahead
market gate closure. The more accurate the forecasts, the more similar P would be to the
day-ahead market prices. To embed the implementation of penalties in the prices, a
spread factor s is applied to P, as explained in the previous section (adding s to the prices
for quantities that are bought and subtracting s from the prices for quantities that are sold)
thus creating the Balancing Market Prices (M) as denoted in Eq. (3.2.1). Again, by M, we
refer to the expected prices for the balancing market, which may differ from the final
ones, if further deviations occur:

M = (M, M?, ..., M?*)

Pi+s Vi>0

whereMiz{ . ; )
P'—s, V<O

(3.2.1)

Instead of waiting for the imbalance to happen, the VMGA can turn to its own portfolio
VPs and give incentives for load rescheduling, in the form of load shifting or storage in
batteries, in order to compensate for the violations before they occur.

3.2.3.1 Load scheduling at the VP layer

The goal of load scheduling is to form a more beneficial prosumption curve ¥ and
consequently violation curve ¥ than the ones expected (i.e., Y and ¥, respectively), so at
to avoid costly transactions in the Balancing Market. Note that the physical network
constraints are not implemented in this study; thus, the output should be evaluated by the
System Operator before applied.

Active & Passive Strategies and the spread

The resulting curve can be made to more beneficial using two different Strategies,
similarly to those described in [KOK13].

Passive Strategy: Tries to minimize its SLA violations at all times /, which we
symbolically denote as

Vi - 0,foralliin [1,A]

Thus, the passive strategy tries to move loads/production from hours with demand/supply
surplus to hours with supply/demand surplus in order to minimize SLA violation (recall
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that a violation needs to be traded in the balancing market, in a generally non-beneficial
price due to the spread). This strategy is referred to as passive, when the VP tries to meet
its SLA.

Active Strategy: The VP tries to counteract the overall system’s imbalance. Given the
application of market clearing processes by MO, a high price for a certain hour means
that in this hour, there is extra demand for electricity. This Strategy tries to help the
system to counteract its deviations from the aggregated SLAs (and benefit from that) by
moving loads/production from the high/low price hours to the low/high ones.

min{V*} for i where P' = high
max{V‘} for i where P! = low

where the terms high and low are defined by corresponding threshold values that are
under our proposed system’s control. Note that in the Active Strategy, the scheduling is
planned regardless of the VP’s own imbalance. Furthermore, let us consider a case where
for a certain hour, the VP’s SLA violation is opposite to the overall system’s imbalance
(e.g., has less demand than agreed in the SLA, while the overall system has extra demand
than expected). In this case the VP makes profit from his SLA violation, because being
opposite to the system’s overall imbalance, this violation actually helps the system. This
strategy 1is referred to as active, when the VP tries to counteract the overall system’s
imbalance, without caring for its own SLA. In a nutshell, the passive strategy’s objective
is to minimize SLA violations whereas the active strategy’s objective is to provoke SLA
violations, opposite to the system’s imbalance.

The degree of freedom for the VP’s load shifting is constrained by the VPs’ flexibility.
For example, it is not acceptable for a VP’s lights to be turned off at night and
compensate for this by turning them on during daytime, so it is not a flexible load.
However, a washing machine, or a PHEV can provide more flexibility. A VP’s flexibility
is expressed as a percentage f of flexible loads, such that the VP’s prosumption Y* at
hour i (after applying load rescheduling for the flexible loads) becomes ¥

A=-fF)Yi<Vi<@+f)- V!

With the nomenclature cleared, we can express the original optimization problem as the
minimization of the VP’s 24 hours cost for electricity defined as:

24
min VP = Z[Mi C(Fi— XD =M= (¥ — X) (3.2.2a)
s i=1
24 24
subject to Yi= ) vt (3.2.2b)
i=1 i=1
A-F-Vi<Vi<@+f) Y, (3.2.20)
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where * denotes vector inner product. That is, by moving flexible loads among hours
with different prices, the VP is trying to minimize the overall 24h cost. Equation (3.2.2b)
expresses the fact that we do not deal with load shedding, but only with load
rescheduling, so that the overall VP’s 24h prosumption in the scheduling horizon
remains the same.

For spread s > 0, the Active Strategy is exposed to non-beneficial decisions (note that
Strategies are performed based on vector P and not BMP). This is validated by the fact
that s can cause the following effect: Given a case where we have P* > P/ for a pair of
hours 7 and j, the Active Strategy would make a load shift from i to j. But s can be high
enough to cause BMP' < BMP/, thus rendering the load shift non-beneficial. The higher
the value of s, the larger the number of pairs i,j for which this may be true, and the higher
the cost of the Active Strategy.

With respect to problem (3.2.2) we state the following lemma:
Lemma 3.2.1: Active Strategy is optimal when spread s = 0.

Proof: Let us consider a VP with a violations array V and assume that after applying load
rescheduling with Active Strategy the violations array becomes V. The proof will be done
by contradiction. Let us suppose that there is a strategy Z with a violations array Z,
different from V that achieves lower cost. Since s = 0, we have M* = P* for every i.
Then from Eq. (3.2.2a), we have, regarding the costs of the Strategies, that

2 [P ZY<Y2 [PE -V, 0or P x Z<P %V,

where * denotes vector inner product. This implies that there is at least one pair of hours
a, b for which

pa.7ay pb.7b -~ pa. jja pb . b (3.2.3a)
with Z = V' foreveryi+#a, b (3.2.3b)
From (3.2.3a) we have
pPa.(Ze—Ve)+Pb-(ZV-VP) <, (3.2.3c)
and from (3.2.2b) and (3.2.3b) we get
Z%=—7PandVe=-7P (3.2.3d)
From (3.2.3¢) and (3.2.3d), we have
pa.(Z¢—-V*)—-Pr.(Z°-V*) <0,
Thus
(Z¢*-Vve)-(P*-P" <0,

which yields two cases:
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1) if P* > P’ wehave Z¢ < V% and Z? > VP
2) if P* < PP wehave Z% > V%and Z? < V?

But from the definition of the Active Strategy, in each case Active would transfer as
much load as possible:

1) from V% to V7, i.e. min{V¢} and max{V/?}
2) from VP to V¢, i.e. min{V?} and max{V %}

From (3.2.2¢), we have that both V¢ and Z! are bounded by the same margins. So for both
cases we have

Ve = Z%and VP = ZP (3.2.3¢)
From (3.2.3¢) and (3.2.3b), we have that Z! = V' foreveryi,ie. Z = V.
This means that Optimal Strategy and Active Strategy are identical, proving the lemma m

The optimality of the Active Strategy when s = 0, implies the following corollary to
Lemma 3.2.1:

Corollary 3.2.1: for s = 0, Active Strategy has lower cost than Passive.
As for the Passive Strategy, we can show the following lemma.
Lemma 3.2.2: Passive Strategy is optimal when spread s is very high.

Proof: Let us consider a VP with a violations array V and assume that after applying load
rescheduling with Passive Strategy its violations array becomes V. The proof that Passive
Strategy is optimal for high enough s will be done by contradiction. Let us assume that
there is another strategy Z that when applied results in a violations array Z, different than
¥, and with lower cost. A very high s means that for every ij with V! > 0 and V/ < 0,
we have that M > M/. As in (3.2.3a), in this case there is at least one pair of hours a, b
for which

M®- Z¢+MP- ZP < P VO PP VP
which in view of Eq.(3.2.1) and (3.2.3d) (that stands also here) becomes
(PO+5s)- 29— (P4—5)-2°< (PP+5s) - VO — (P*—5)-V°

Consequently, Z% - (2s) < V% -2s, or Z* < V% Then, because of (3.2.3b), we have
Z <V, which implies that Z is the Passive Strategy since by definition it is the one that
minimizes the violations and the violations array. ]

Corollary 3.2.2 (to Lemma 2): When the spread s is high, Passive Strategy has lower cost
than Active.

82



Combining Eq. (3.2.1) with the VP’s cost function given by (3.2.2a), we observe that the
VP_Cost function is strictly increasing with respect to s for any ¥, with the cost curve’s
slope given by

l= ?:1(?1. - Xl)
Since Passive Strategy attempts to drive ¥* — X' as close to zero as possible, we have for
the derivatives of the VP_Cost functions

lActive > lPassive (3 -2-4)

From (3.2.4) and Lemmas 3.2.1 & 3.2.2 we conclude the following theorem.

Theorem 3.2.1: Given the set S of spreads, there is unique s*e S for which Active and
Passive Strategies’ cost is equal.

The preceding Theorem tells us that the VMG Association, when dealing with its
constituent VPs, can strategically choose a general s value, in a way that can serve its
goals. That is, it can choose a high spread s when it has reasons to want the VPs to try to
meet their SLAs (function more “passively”) or a low spread s when it wants to give
incentives to the VPs to try to counteract the overall system’s imbalance (function more
“actively”). Thus, the VMGA can utilize s as a control variable for implementing the
tradeoff between motivating users towards predictability (passive) or towards flexibility
to rescheduling (active).

The Proposed Hybrid Strategy

We propose a Hybrid Strategy as a way to combine the advantages of Active and Passive
Strategies. Hybrid Strategy splits problem (3.2.2) in two subproblems, by dividing the set
of hours into two groups:

~ Group A contains all hour indices i for which there exists an hour z such that either of
the following inequalities holds

Pi—s> P +s (3.2.5a)
Pi+s< P?—s (3.2.5b)

~Group B, contains all the remaining hours (in which the price difference among them, is
smaller than the spread). The Hybrid Strategy is defined as follows:

Definition of Hybrid Strategy: apply the Active Strategy in Group A, and the Passive
Strategy in Group B.

The following theorem can be proven:
Theorem 3.2.2: Hybrid Strategy is optimal for every value s of the spread

Proof: We denote the violations array resulting by the Hybrid strategy as ¥ and will
prove it to be optimal for any value of s. For the sake of contradiction, let us assume that
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Y is not optimal and there is an optimal solution W # Y.If W # ¥ then there is at least
one pair of hours i, j such that:

Wi—-Vi=e (3.2.6a)
Wi—-Yi=—e (3.2.6b)

and
W =Y%foreverya #i,j (3.2.6¢)

where e is a prosumption quantity in kWhs.
We distinguish three cases:
1) Caseli,je€A:

Condition (3.2.5) actually implies that Hybrid is based on M and not on P, as it defines
the groups by the hour’s M. From the proof of Lemma 3.2.1, by adding the value of s (in
other words, replacing P! with M%), it is easily concluded that W® = Y2 for every hour
a € A. So Hybrid is optimal for Group A. From Eq. (3.2.6c) we have that W& = ¥4 for
every a € B, proving W =Y.

2) Caseli,je€B:
Conditions (3.2.5) & (3.2.3) are equivalent and so Lemma 3.2.2 applies as it is, and

W@ = Y% for every a € B. Similarly to above, from Eq.(3.2.6c) we have that W = ¥4
for every a € A, proving W =Y.

3) Caseie€A,jeB:

From Egs. (3.2.6a) & (3.2.6b) we have M > M/. But this is in direct contradiction
with (3.2.5a) & (3.2.5b), because if such i, j exist they would both be in group A by
definition (because they act as an alternative policy z for each other). Since i, j always
belong to the same group, constraint (3.2.2b) can be split in two constraints:

ZVT/izK

ieA
z Wi=L
jeB
with K+ L =Y Y
where each constraint involves only variables from one of the subvectors Y €4 and V'€ 5.
Thus, the problem becomes trivially parallelizable, which means that the decomposed

problem (Hybrid approach) is equivalent to the original one, and also from cases 1 and 2
above, we have W =Y. n
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Up till now, we have looked at the Balancing market in the presence of the spread
parameter s, which is used to penalize VPs that do not meet their SLAs. We proved that
the optimal strategies to be followed by a VP for small and large values of the spread are
the Active and the Passive strategies, respectively, and then showed that Hybrid is the
optimal strategy for any value of the spread. With Theorem 3.2.2 proven, we assume
from now on that all VPs apply the Hybrid Strategy in all cases. In accordance with
Lemmas 3.2.1 and 3.2.2, Hybrid strategy is expected to approach Active Strategy for
s — 0 and approach Passive Strategy as s increases. We will verify this in the simulation
results. We can intuitively understand the previous conclusions, by recalling that a low
value of s represents favoring users’ flexibility, whereas a high value of s represents
favoring users’ predictability.

The strategies described for an individual VP, when trying to minimize the violations and
the corresponding penalties in its SLA with a VMG Association, are also applicable to a
VMG Association in order to reschedule the loads of its constituent VPs and minimize
the Association’s violations and penalties in its SLA with the MO. The only difference is
that when the rescheduling is decided collectively, the results are better than when
decided distributedly (each user for itself) due to statistical multiplexing, or else the
additional degrees of freedom the VMG Association has by aggregating the flexibility of
several VPs.

In the following subsection, we look at the value of flexibility and how it is increased by
combining VPs into VMG Associations. We define the difference between the
Independent and the Associations case as the value of cooperation. Flexibility
Aggregators (as described in the literature) can utilize the same possibility; the difference
is that Flexibility Aggregators would do it in order to make profits themselves, while
VMG Associations do it to create savings for their users.

Study of Flexibility

In any case, the profits stemming from a prosumer cluster portfolio’s flexibility have to
be shared among (in the case of VMG Associations) or with (in the case of Flexibility
Aggregators) the VPs who provide this flexibility. The flexibility of a VP is defined by
parameter f of Eq. (3.2.2c). Thus, what we refer to as value of flexibility is the revenues
the Association can achieve by using the flexibility of its VPs. By using the knowledge of
the flexibility value, the Association can introduce new ways of pricing its clients or even
introduce a new energy market product, which can be called “Flexibility Retail Market”,
to buy flexibility from the VPs.

Assuming s = s7, (i.e., the spread at which Active and Passive Strategies’ cost is equal,
we want to study the way the Cost of the VP changes with f. From problem (3.2.2) we
have that the Cost of the VP is
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24
Z[Mi-Vi] =Mx*V
i=1
where V! = Y!— X! is the violation remaining after the optimal Hybrid strategy is
applied. For the hours i in which the Active Strategy is applied, we have

Vf{ =yi— f Y
whereas for the hours i where the Passive Strategy is applied, we have

7 Vi—f Y, Vi>f .Yt
i 0, Vi<f-.vt

This is because Passive stops adding or subtracting loads from hour i once V! = 0 (i.e.,
once the violation at time 7 has been minimized), while Active continues subtracting load
from hour i trying to reverse the violation, as long as more flexibility is available. So,
when f increases V!p also decreases (but not linearly) up to certain point where V¢p = 0,
beyond which it does not decrease anymore. So, although the function’s derivatives
cannot be expressed in closed analytical form (because Vp is not differentiable at point
Vi=f -YY), itis quite clear that:

Statement 3.2.1: The cost of the VP is a strictly decreasing, non-linear and convex
function of f.

The validity of Statement 1 will also be confirmed through the simulation results. By the
non-linearity and convexity of the cost function, one can see that sacrificing comfort to
achieve very high values of flexibility is rewarded with diminishing returns, i.e, some
revenue is obtained but not necessarily as high as the discomfort level caused. On the
other hand, from Eq. (3.2.2a) we have that the cost and consequently the value of
flexibility is also dependent on the value of s.

3.2.3.2 VP cooperation and rescheduling at the VMG layer

In this section, we assess the advantages that can be obtained through the cooperation of
multiple VPs that are aggregated in coalitions, or clusters, namely the VMG
Associations. We also study the profits of cooperation in the case of positive, zero, and
negative correlation among the violation patterns of the VPs forming a cluster, giving
insights on the criteria that should be used to cluster VPs. In particular, we show that VPs
whose violation patterns are negatively correlated can gain important benefits from their
cooperation, but the benefits of cooperation also extend, even though reduced, to VPs that
are uncorrelated or even positively correlated.

VMGA communicates the balancing market pricing pattern to the VPs and the scheduling
algorithms run in each VP. In the cooperative case, the VPs communicate to the VMGA
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their violations , the VMGA applies the cooperative scheduling algorithms (that now run
in the Association’s side) and the outputs are communicated back to the VPs.

Denoting the final violations array of a VP 4 and a VP B as V, and Vg, respectively, the
total cost of the VPs’ violations when acting individually (non-cooperatively) would be
h h
Cost "O"=€0%P = VP _Cost, + VP_Costy = Z M - VE+ Z M} -V
i=1 i=1

whereas the cost of the violations of a cluster made up of VP 4 and B (cooperating)
would be

h
Cost °°P = VP_Cost,,p = Z Mg - (Vi + V).
i=1
Note that Cost “°°P is not equivalent to Cost ™°"~¢°°P  because for those hours i that
Vi-VE <0, we have M} # M} (see Eq.(3.2.1)). In other words, when 4 and B combine
in a cluster they may reduce or overhaul some of the SLA violations (penalized through
the spread s).

For all hours i for which we have V/} -V} > 0, we have
Cost MO"C00P ()= Cost °°P (i), foris.t. Vi -Vi>0 (3.2.7a)
Let us consider now an hour i where 4 and B have opposite violations, that is,
Vi-Vi<o (3.2.7b)
For the individual case we then have

M- VEi+MS-Vi= (P +s) - Vi+(Pi—s) -Vi=P - (Vi+VE) +5s- (Vi—TV)

(3.2.7¢)
whereas for the cooperative case we have
Mip-(Vi+ Vi) =P +s)(Vi+ Vi) = PL- (Vi+VE) +s - (Vi + V)
(3.2.7d)
From Eqs.(3.2.7¢) & Eq.(3.2.7d) and (3.2.7b) we conclude that
ML-Vi+ ML -VE= My - (VE+ 1) (3.2.7¢)

From (3.2.7¢) & Eq.(3.2.7a), we have for the overall cost of the non-cooperative and the
cooperative case:

24 24 24
N+ Y (U] = (Mg - (7 + V)] (3279
i=1 i=1 =1

i
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Equation (3.2.7f) expresses that the cost of two VPs’ violations is higher than or equal to
that of a virtual united VP (cluster) that participates in the market as one entity and thus
there is a profit from their cooperation. An important parameter that affects the amount of
this profit is the number of hours 7 for which (3.2.7b) stands. This is related to the criteria
that are used to select the particular VPs that should be grouped together into clusters for
energy exchange.

Useful in making the clustering decisions for VPs is the concept of VPs’ correlation. A
VP A4 will be said to be positively correlated to a VP B when their violations patterns are
affected (by the weather and other conditions) probabilistically in the same way, or
mathematically, if their violation vectors defined as V, and Vg, have strictly positive
cross-correlation:

E(Vy* Vg)>0

where * denotes the inner product between vectors and E( ) denotes the expected value.
An example of positively correlated VPs would be a set of solar parks located in nearby
geographical areas, where an unexpected loss of sunshine would affect all the VP
production patterns in the same way. Similarly, VP A will be said to be negatively
correlated to VP B when an increase/decrease in the production of A is connected with a
corresponding decrease/increase in the production of B, that is,

E(V, * Vg)<O.

VP A will be said to be uncorrelated to VP B, when their production sources are
independently affected, that is,

E( VA * VB): E(VA) * E(VB) =0,

where we have assumed that E(V,) = E(Vz) = 0, as is the case for unbiased estimators
(forecasters).

In the performance results, we examine the cases where a cluster is composed of:
a) maximally positively correlated VPs,

b) uncorrelated VPs and

c) pairs of negatively correlated VPs.

Our results will show that the profit of cooperation is low but positive for positive
correlated VPs, higher for uncorrelated VPs, and is the highest for negatively correlated
VPs.

3.2.4 Model and data used for simulation
3.2.4.1 Simulation model
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In our simulation experiments, a VP is modeled as a set of 4 parameters, VP =
(S,B,DF, f), where S = (§1,52,...,5%%) is a 24-clement array denoting the amounts of
energy (kWhs) that the VP agrees to sell (in its SLA) throughout the next day with a
sampling time of one hour. Also, B = (BY,B?,...,B**)is a 24-element array denoting
the amounts of energy (kWhs) that the VP agrees to buy (in its SLA) throughout the next
day with a sampling time of one hour. For demonstration purposes, we chose a 24h
scheduling horizon, in order to obtain the results throughout a whole day. It should be
noted though, that balancing market prices are generally unpredictable and the larger the
scheduling horizon the more the results will deviate from the actual optimal. Nevertheless
this issue can be tackled by iteratively running the scheduling algorithm in real-time
during the day. The implementation of the real-time version is left for a future study.

We define the prosumption array as X = B — S. We also define a violation vector V' as
the difference between the vector Y containing the actual hourly prosumption values and
the vectorX containing the forecasted prosumption pattern, that is,
V=w4,v?%..,v?*) = X — Y. The entry v is assumed to be a random variable that is

uniformly distributed in [-DF, DF]; parameter DF is referred to as the Deviation Factor,
indicating the margins (£ DF) according to which the VP is expected to deviate from the
SLA, and is expressed in kWh per hour. The Flexibility Factor f is a float variable,
indicating the amount of energy prosumption shifting that the VP can accomplish. It is
expressed as a scalar between 0 and 1 or corresponding % value (0 corresponds to no
flexibility, and 1 or 100% corresponds to all loads and/or supply units being flexible).
Note that prosumption shifting can be accomplished either by shifting loads and/or by
shifting energy supply (e.g. using scheduling for controllable units or storage capacity for
RES).

The VP communicates its deviation vector V to the VMGA. At the Association level, a
set of market-clearing prices is created for each hour of a certain day and is represented
by vector:

P = (P, P? .., P?)

is a 24-element array denoting the market price (€ per kWh) at each of the 24 time
intervals (hours) before the spread is applied. Taking into account the spread s, we obtain
the Balancing Market Prices by Eq. (3.2.1) and assign them to vector M.

Vector M is communicated by the Association to the VP. By now, the VP can calculate
the expected daily Cost with no scheduling techniques applied, to use it as a reference for
the strategies evaluation:

24

VP_Cost(2) = Z[Vi - MY,

i=1
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where the @ (null) in the parenthesis signifies the cost when no rescheduling strategy is
applied. The VP applies load shifting strategy L in {Active, Passive, Hybrid}, subject to
its flexibility factor f, thus changing its initial violation vector V to a new violation
vector denoted as V' (L). The cost of the applied strategy is calculated as

VP_Cost(L) = ¥#,[V(L)" - M'], for any strategy L in {Active, Passive, Hybrid}.

The percentage savings realized by strategy L is given as

Value of Strategy L (VOS(L)) % = (VP_Cost(e) — VP_Cost(L))-100 /VP_Cost(o),
our metric of merit for evaluating the performance of the strategy (Active, Passive, or
Hybrid) applied.

3.2.4.2 VPs Cooperation

A use case of cooperation was implemented for » VPs in direct representation of the
mathematical model and the daily energy cost per VP was calculated resulting in two
cases: the average daily cost per VP when they do not cooperate, denoted as

Cost "°™7¢°°P " and the average daily cost per VP when they cooperate in a cluster,
denoted as Cost €°°P. For the calculation of Cost “°°P, we formed and used the 24-n

violations matrix V,, with n being the number of cooperating VPs and elements l/;f’i
representing the violation of VP « at hour i:
n_1(VP_Cost?)

n

COSt non—coop —

%31[(27;:1 Va'i) 'Mi]
n

Cost €9%P =

The difference between these values gives the daily monetary profit that each VP gains
on average through cooperation and the corresponding % gain is defined as:

Value of Cooperation (VOC) % = (Cost™°™~ %P — Cost°°P) - 100 / Cost™omc00P
3.2.4.3 Data Used in Simulations

The implementation was made in Python environment. For the pricing and the
prosumption data, we used sets of values extracted from the VIMSEN Decision Support
System (DSS), which provides open source data for production, consumption and pricing
derived from Hellenic Electricity Distribution Network Operator, regarding 100 RES
producers (of different kinds), 150 consumers (industrial, commercial, residential) and 50
very small prosumers in Greece during 2015. Many of them are located in the same
LV/MV substation, making it feasible to apply the proposed aggregation strategies.
Because variable v' of the violation vector V of the model is a random variable, the
simulation was run for a large number of iterations to extract the average value for all the
results.
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Strategies evaluation and study of spread

As school buildings constitute an important prosumer type in Greece whose data is
recorded in VIMSEN’s DSS, for the prosumption data we consider a typical school at a
typical day in Athens. For the results presented in section 6.1 regarding the strategies’
evaluation and the choice of spread, we assume DF=1.5 kW, f = 25% and an average
presumption array

X =[1.54,2.12,2.05,1.52,1.42,1.42,1.47,0.89,0.87,1.16,0.76,0.91,0.72,1.13, 3.51,
3.45,3.74,4.26,4.37,3.31,1.58,1.71, 1.73, 1.60]
The pricing data is given by the vector:
P = [3.75,3.66,3.66,3.70, 3.66,3.54,3.70,5.03,6.27,6.5,7.43,7.47,7.21,6.80, 6.41,
5.78,6,6,5.5,3.9,2.9,3.7,3.95,5.5].
Set of prosumers, cooperation and correlation

For the results presented regarding the value of the cooperation among the VPs as well as
the effect of their correlation, we used both real and simulated data. The real data was
extracted from [VIMGIT] for a set of different prosumers all for March 21% 2015, 24
hours. For the simulated data experiments, 100 synthetic profiles were created by random
uniform distributions of prosumption with a median value of 3 kWh and a standard
deviation of 3. In both cases, we again assumed f = 25% and DF = 1.5.

3.2.5 Simulation Results and Discussion

In this section, we evaluate the strategies described and also the cooperation framework
defined. In particular, in section 3.2.5.1, we evaluate the Value of Strategy for the Active,
passive and Hybrid strategies, and study the effect of the spread parameter s. In section
3.2.5.2, we analyze the Value of Flexibility of the VPs, as a function of parameter f. The
savings that can be obtained through cooperation, that is the Value of Cooperation %
metric, are investigated in section 3.2.5.3 along with the role played by correlation factor.

3.2.5.1 Policies’ evaluation and study of spread

Through simulation, we evaluate the Value of Strategy L (% savings) gained with each
strategy L in {Active, Passive, or Hybrid} for different values of s. The results obtained
are depicted in Figure 3.2.f4. We present the results beginning from s = 1, because in
lower spreads the curves scale are higher and the results would not be as clear for the
reader.

91



Hybrid
Active

Passive ’

(o))
o

wm
o

w
o
—

Value (% savings) of strategy L
) >
o o

[
o

o

15 20 25 30 35 2.0
Spread (cents/kWh)

—
o

Figure 3.2.f4- Value (% savings) of Strategy L = Active, Passive, or Hybrid as a function

of spread s

The results in Figure 3.2.f4 are in completely aligned with Lemmas 3.2.1 and 3.2.2, and
Theorems 3.2.1 and 3.2.2, as follows:

X/
o

The performance of the Active strategy approaches that of the Hybrid strategy for
small values of s, as expected by Lemma 3.2.1. Its Value of Strategy metric (%
savings) is monotonically decreasing with s as expected, since a higher spread trims
the price difference between a high-value and a low-value element of P.

The value (% savings) of Passive strategy is not affected by the spread s, as
expected, since by definition the Passive strategy tries to meet the VP’s SLA
agreement, regardless of the s value. For a high spread, Passive strategy becomes
optimal, as expected by Lemma 3.2.2.

After a certain spread value, the Active strategy becomes less beneficial than the

Passive. There is a unique s value in which the two strategies are equally beneficial
(Theorem 3.2.1).

The lower the s, the more “actively” the Hybrid strategy behaves and the higher the s,
the more “passively” the Hybrid strategy behaves.
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¢ The Hybrid strategy (optimal for every s, from Theorem 3.2.2) outperforms the other
two strategies examined, yielding significant savings ranging from 30-60% for the
parameter values examined.

3.2.5.2 The Value of Flexibility

The model used in the previous section to evaluate the rescheduling strategies, considered
a single VP having a given flexibility factor f. In this subsection, we investigate the
degree to which a VMG Association’s profits are affected by its portfolio’s flexibility.
The simulation experiments assumed fixed spread equal to s* and flexibility parameter f
varying from 0 up to 100%. Figure 3.2.f5 depicts the Value of Flexibility (% savings)
metric as a function of f. We observe that the Value of Flexibility (savings) function
under the Hybrid strategy is indeed strictly increasing, not linear and concave, confirming
Statement 3.2.1. As expected, the Hybrid strategy achieves the best % savings over all
strategies and for all values of f, reaching savings of about 75% for high flexibility, in
the experiments conducted.

Hybrid
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Figure 3.2.5- Value of Flexibility (% savings) as a function of flexibility parameter f

Note that the Active strategy becomes less profitable when more than 25% flexibility is
available. This is because the simulation was run for s = s*, with s* extracted in the
results for f = 25% (the intersection point in Figure 3.2.f4 gives s* = 1.6 ). But what is
more important at this point is that Hybrid strategy is verified to be the most profitable
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strategy for every value of f and for every value of s. So, from now on we assume that
all VPs apply the Hybrid strategy in all cases.

Simulation experiments were carried out for a range of values of f (0-100 %) and values
of s (1-4 cents’kWh) and a 3D curve was extracted, showing the way the
Value of Flexibility (VOF) metric depends on these two factors (Figure 3.2.f6). Such a
curve is extracted by the Association after step 4 of the procedure described for defining
each VP’s flexibility. Thus, even in a use case where the value of s is not constant but is
adapted by the MO, the Association can also adapt the value (savings) function of
flexibility by applying the real-time s value to Figure 3.2.f6 and extract the respective 2D

curve.
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Figure 3.2.f6 - Value of flexibility (% savings) as a function of the spread s and flexibility
parameter f (Hybrid Strategy is applied)

3.2.5.3 Evaluation of the value of Cooperation

In this set of experiments, we evaluated the Value of Cooperation metric as a function of
the number 7 of cooperating VPs under the negatively-, positively- and un-correlated VP
cases. For the simulation we used the same profile and deviation distribution data with
sections 3.2.5.1 and 3.2.5.2. The results are plotted on the same graph in Figure 3.2.f7 for
the three correlation cases, and for 1 to n=20 cooperating VPs. The simulation algorithm
aggregates the prosumers’ profiles and applies the Hybrid strategy.
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Figure 3.2.f7- Value of Cooperation (% savings) as a function of the number n of
cooperating VPs

Figure 3.2.f7 confirms Eq. (3.2.7f), stating that the savings due to cooperation over the
non-cooperative case are always positive (even for positively-correlated VPs!). It also
shows that negatively correlated VPs exhibit savings of the order of 100%, as expected,
since they are able to cancel out each other’s violations when cooperating. The Value of
Cooperation is significantly smaller in the case of independent VPs (of the order of 40%
when n=2), but it increases rapidly with n, and approaches that of negatively-correlated
VPs when 7 is large. Hence, a higher number of cooperating VPs results to a higher profit
per VP when the VPs are independent. When the VPs are positively or negatively-
correlated, the incorporation of a very large number of VPs in the cluster has diminishing
returns, in the sense that it yields little savings beyond a certain point. Forming larger
coalitions, however, is highly beneficial when the VPs are independent.

To demonstrate these conclusions more clearly, we run additional simulations for a set of
synthetic (simulated as opposed to real) prosumption data and a larger number of
cooperating VPs (n=100). The results are shown in Figure 3.2f8. We observe that the
curve obtained with the real data is actually no different than that obtained with synthetic
data.
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Chapter 4

CONCLUSIONS, FUTURE WORK, POLICY
IMPLICATIONS

In this dissertation, we considered a set of smart devices at the side of residential
electricity consumers and a home energy management system that is able to make
decisions about home electricity consumption by taking into account the user’s
preferences, the dynamic electricity pricing signals as well as the operational constraints
of devices. We took on the problem of incentivizing users to shape their consumption
patterns in line with the needs of the electricity system. In this setting we formulated a
game where each agent tries to optimize its own objective. We formulated the problem of
designing online auction mechanisms that are able to bring the system to a Nash
equilibrium. In order to achieve these goals we drew on concepts of algorithmic game
theory and mechanism design.

We studied and develop techniques for two general use cases of DSM: online algorithms
for real-time consumption curtailment and offline algorithms for day-ahead load
scheduling. For the real-time demand response case, we designed two online auction
schemes for two specific business models.

In the first one, we considered a setting of strategic, intelligent users and an ESP seeking
to incentivize them in order to curtail part of their consumption in response to a DR-
event. We showcased the inefficiency of previous state-of-the-art approaches, which
either do not consider user incentives, or adopt a direct-revelation approach, respectively
leading to either lack of truthfulness and consequent inefficiency, or to lack of privacy
and scalability. To overcome these shortcomings, we presented a novel iterative auction
mechanism based on Ausubel’s clinching auction, that implements the truthful and
efficient VCG outcome but also allows for a distributed implementation and a privacy-
preserving communication protocol. Our theoretical and simulation results verified that
the proposed scheme combines the desired properties with very good performance and
small overhead. Future work can further extend user rationality to also anticipate future
DR-events based on local information and learning techniques.

The second business model refers to cases such as energy cooperatives where the issue of
fairness of the allocation is important. We considered a model of a budget-balanced
aggregating entity serving as ESP for its registered users. We proposed a P-RTP
mechanism and evaluated its performance against that of the classic RTP mechanism in
terms, of the most well established KPIs derived in the literature. In order to focus on the
merits of the main idea, we kept the system model simple so as not to harm the generality
of the results. Future research can extend the results to more advanced system models
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that include: a) the possibility of load shifting in addition to load curtailment; b) RES and
energy storage systems (ESS). In addition, the user’s utility function and the way the user
makes decisions is still an open area for research. Distinct models for different devices
could be considered and applied under the P-RTP paradigm. Moreover, in electricity
markets, different pricing mechanisms (P-RTP, RTP, flat-price, etc) are to be offered to
real users as an option, making the co-existence of different pricing mechanisms for
different users in a given market an interesting problem. Finally, the new prospects of
electricity pricing offered by P-RTP will impact, if adopted, the sizing (investment cost)
of RES and ESSs. We believe that the integration of RES and ESS sizing with P-RTP
mechanism design may give rise to new capabilities for self-sufficient micro-grids and
advanced demand side management.

For the day-ahead load scheduling case, we designed and evaluated a novel DSM scheme
that addresses several issues that were not jointly addressed before. We focused on
modern energy pricing models and argued that they do not fairly reward demand
responsive users, who are more willing than others to adopt energy efficient schedules.
Thus, existing pricing models are not designed to trigger behavioral changes as they do
not provide energy consumers with attractive incentives in the form of fair compensation.
Motivated by this observation, we developed a hybrid billing mechanism that disposes an
adjustable level of rewarding users by offering them financial incentives to modify their
consumption schedules. The proposed DSM scheme preserves the economic efficiency,
individual rationality and budget-balance properties. It is also able to satisfy coupling,
system-wide constraints. The proposed scheme is theoretically proven to always bring the
system to the Nash equilibrium. Our algorithm can be a valuable tool in the hands of an
ESP in order for the latter to employ innovative business models and respective revenue
streams mainly by selling DSM units in various types of flexibility markets. It aims at
motivating its customers to exploit their shiftable and curtailable devices in order to
reduce the cost of conventional energy usage. Our evaluation uses a standard state of the
art scheme as a benchmark and we show that the proposed scheme manages to prompt
energy behavioral changes of users much more efficiently than the state of the art. Future
studies, can study the impact of our results in: islanded microgrids, energy communities
and innovative business models for ESPs towards the latters’ participation in the
emerging flexibility markets.

Finally, we studied the problem of jointly considering a day-ahead load scheduling and a
real-time DSM scheme that balances unexpected deviations from the agreed schedule. An
energy market model (day-ahead and balancing market) was described that is aligned
with the emerging liberalized electricity market expected to prevail within the next years.
Given the day-ahead market agreements, we considered an approach where a market
beneficiary violating its schedule is exposed to a dynamic per-unit penalty (the so called
spread) through trading its violations in the balancing market, instead of incurring a fixed
SLA violation penalty. Three different strategies (Active and Passive and Hybrid) for
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load shifting towards reducing market losses were described, simulated and compared.
The Active strategy was proven to outperform the Passive one for spread values below a
specific point. A Hybrid strategy, combining the advantages of the two, was also
proposed and shown both theoretically and experimentally to perform better for any value
of the flexibility and the spread. The spread parameter can be strategically chosen by the
market operator to give incentives towards the desired energy prosumers’ behavior. Our
study can provide insights to policy makers for taking into account the expected users’
behavior when defining the penalty policy. Applying the Hybrid strategy, we extracted a
curve of revenue improvements as a function of flexibility and observed that they are
linked in a monotonically increasing and convex way. We also presented a 3D graph
showing the improvements obtained for different values for the flexibility and the spread.

Future research can use this study as an input: (i) for algorithms that define a user’s
flexibility versus discomfort tradeoff, modeling and accounting for the user’s customized
preferences, and (ii) policies regarding the consumers’ compensation for providing
flexibility. The benefits of cooperation were also demonstrated and studied for the case of
multiple users forming clusters. The benefits of cooperation are higher when the
cooperating users have negatively-correlated violation patterns, but they can also become
significant for users with independent patterns, by increasing the number of participants.
Our results can provide insights to investors and help subsidy policy makers in
motivating investments of the most suitable kind in terms of DR flexibility efficiency in
each geographical area. Future research directions include studying the degree to which
cooperating users can increase their negotiating power towards becoming significant and
active players in the energy market, by implementing a real-time receding horizon
version of our algorithms to compensate for inaccurate forecasts, also taking into account
physical network constraints.
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