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ATmayopeleTOL 1 avIlypor], amofNKeuon Kol Vo TNG Topovoag epyaciag, €5 oAOKANPOL 1
TUNHOTOG OVTAG, Y10 EUTOPIKO 6KOTO. Emttpémetal n avatdnmon, amobnkevuon kot Sovopn yio GKoTo
L1 KEPOOGKOTMIKO, EKTALOEVTIKNG 1] EPEVVNTIKNG GVONG, LILO TNV TPOUTOHESN VAL avapEPETAL 1) TN
Tpoérevong kot va datnpeital To mapdv uivopa. Epotipoata mov apopovv ) xpron e epyaciog
Y10 KEPOOOKOTIKO GKOTO TPEMEL VA, ameLBVVOVTAL TTPOG TOV GLYYPUPEQ.

Ot amdyeLg Kot T0. GUUTEPACLATE TOV TEPLEYOVTOL GE AVTO TO EYYPUPO EKPPALOVY TOV CLYYPOPEN
Kol gV mpémel va, epunvevdel Ot avtimpocsmrevovy 11§ enionues B€oelg tov E6vikod Metoofiov
IToAvteyveiov.
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Abstract

In this work 'we investigate Natural Language Representations by two different points of view
cognitive neuroscience and topic modelling. For the evaluation of each approach, we use multiple
datasets and experimental setups which follow literature’s guidelines. Moreover, we evaluate our
work both quantitatively and qualitatively providing useful insights and visualizations in order to
make our results interpretable.

First, from the angle of cognitive neuroscience we explore how brain representations can help
us improve current corpus-based language representations. Neural activation models that have been
proposed in the literature use a set of example words for which fMRI measurements are available in or-
der to find a mapping between word semantics and localized neural activations. Successful mappings
let us expand to the full lexicon of concrete nouns using the assumption that similarity of meaning
implies similar neural activation patterns. In this paper, we propose a computational model that es-
timates semantic similarity in the neural activation space and investigates the relative performance
of this model for various natural language processing tasks. Despite the simplicity of the proposed
model and the very small number of example words used to bootstrap it, the neural activation seman-
tic model performs surprisingly well compared to state-of-the-art word embeddings. Specifically, the
neural activation semantic model performs better than the state-of-the-art for the task of semantic sim-
ilarity estimation between very similar or very dissimilar words, while performing well on other tasks
such as entailment and word categorization. These are strong indications that neural activation se-
mantic models can not only shed some light into human cognition but also contribute to computation
models for certain tasks.

In the second part, we investigate how topic modelling can help us produce multi-prototype word
embeddings and compare their performance with single-prototype models. In traditional Distribu-
tional Semantic Models (DSMs) the multiple senses of a polysemous word are conflated into a single
vector space representation. In this work, we propose a DSM that learns multiple distributional rep-
resentations of a word based on different topics. First, a separate DSM is trained for each topic and
then each of the topic-based DSMs is aligned to a common vector space. Our unsupervised map-
ping approach is motivated by the hypothesis that words preserving their relative distances in differ-
ent topic semantic sub-spaces constitute robust semantic anchors that define the mappings between
them. Aligned cross-topic representations achieve state-of-the-art results for the task of contextual
word similarity. Furthermore, evaluation on NLP downstream tasks shows that multiple topic-based
embeddings outperform single-prototype models.

Key words

Computational Neuroscience, Deep Learning, Machine Learning, Word Embeddings, Multiple Word
Embeddings, Natural Language Processing, Topic Modelling, Cognition & Natural Language

! Papers: [1], [2] have been conducted under the development of this thesis.






Exterapévn Hepidnyn

Tv mapovco epyocia 2 emyelpodpe va sfetdcovpe Avamapaotdosic Puotkng MAdmoscag omd

000 doPoPETIKEG OMTIKEG YOVies, avtn TN I'vootikng Nevpoemotiung kat vt g Ocpatikng Mo-
vteromoinong. [a v a&loldynon Tov amoTEAEGUAT®Y HOG, XPTCULOTOIGOUE TOALATAL SLpPOpE-
TIKEC Phoelg 0edOUEVOV KOl TEPALATIKES dLadIKACiES, COUQ®VA LE TNV ekdotote Bipioypapio. Emi-
A0V, 0E10AOYNCOLE TO ATOTEAEGLLOTO TG £PEVVOG LLOG TOGO TOLOTIKA OGO Kol TOGOTIK( Our TopEyo-
VTOG YPNOLEG OTTIKOTO|GELS KOl OOTEAEGILOTA, TTOV JivouV 6ToV avayvmotn Pabdtepn katavonon
oW and TIG 10€€G OV YPNGILOTOINONKAY Kot T GLUTEPAGT AT TV E0XONKAY.
Avarapaoctacels Duoikig 'hoccag

H povtehomoinon g Ducwkng 'docag givar dtaypovicd 1 dtadikacio TpofAeyns TG EMOUEVTS
AEENG o€ €val KOUATL KEWWEVOL dedopEVMVY TV Ttponyobuevav AéEemv. Eivatl éva amd ta mo amAd
mpofinuarta tov Topén e Eneéepyaciog Ovowmg MAdocag pe antég mpakTIkeS EPOUPLOYES OTTMG M
£EVTTVT CUUTANPOCT TANKTPOAOYOVLEVOL KEWWEVOV, TPOTACT ATAVINGEWDY GE LUVILLOTO NAEKTPOVI-
KoV Tayvdpopeiov [3], d10pbwomn cuvtakTik®v Aabdv K.o. Emopévac, 0tmg eival Aoywkd €xet epguvn el
Swypovikd oe peydro Pabpd. O Khaoowkég mpoceyyioelg Pacilovtatl otn perétn tov v-ypappov(n-
grams). To n-gram &ivat 1 akoAovBio v KOUUATIOV KEWEVOL OTT®MG CLAAAPES, Ypdppata 1 AéEelc. Me
™ xprion Mopkofiovav AAGidwv, 0 Y®PIGUOG TOL KEWEVOL 6 n-grams Bondnce dote pe dtodiko-
oieg nabnong va e&ayBovv oToLyEl GUVTAKTIKNAG 1| ONUUCIOAOYIKNG LOPPOAOYIOG TOV KEWEVODL [4].
[pdopata, Ta vevpwvikd diktvo Tpdsdlog TpoPodoTNoN G avTikKaTacoTAdNKAY aTd VEVPMVIKE dlkTVN
pe ovatpopoddtnon (RNNs) [5].
Holvonpia

A6 VTOAOYIGTIKN G TAELPAG, OL VOTTOPACTAGELS TOV AEEEMY GTOXEVOVY GTO VAL HIEVKOAVVOVV TOVG
VTOAOYIOTEG VO, EVIOTICOVY VOTLOTIKG GTOLYEIN TNG YADGGOG, 0AAG KOl VO K®OKOTOIGOLV QTN TNV
TANPOPOPIa e EVO POPUAACTIKS TPOTO TOL VO TOVG EXLTPEMEL VA, TNV YPTCLLOTOMGOVV TPOG EMIAVOT
CYETIKOV TPOoPANUAT®V, 01OV 1) Katavonon g YAdooag mailel onuaviikd poro. H onpavtikdétta
NG KOTOVONGNG TNG OTLOGLOA0YING S1apOp®V AEEIKOAOYIKGOY LOoVAd®Y Tailel kKabBoploTikd poro otV
KOTOVON 0N KAl TNV EXIKTNON TG YAOOoAG. AVTo cupfaivet yioti ot AEEeLg, ot GLAAAPES Kal TOL VTTOAOL-
TEG YAMGGOAOYIKES LOVASEG 0moTELOVV Ta facikd cvuotatikd g Puoikng ['Adocag. H molvonuia
glvar €va YAWGG1KO @avOUEVO TOV GLVAVTATOL GUVHOWE G€ Lovadeg mov Tailovy oNUOVTIKO pOAO
oV katovonorn g YAdooog, Tig AéEeic. Tuykekpyéva, n tolvonpio pag Aééng (m.y. mlevpa) Oa
UTOPOVGE VO EXNPEAGEL SPACTIKE TNV OVATOPAGTAUOT) TNG, AVAAOYA. LLE TO YAWGGIKO TAIG10 GTO 0010
TNV GLUVOVTAE, dNAAOT TIg AEEEIS LE TIG OTTOlEG CUVLTTAPYEL OE £VO GLYKEKPIUEVO KOUUATL KELEVOD.
®vown Noooa & Eyképalrog

Emmléov, Tpocpatmc, £peuves TAVO GE YVAOOTIKA TEPALOTH TO. OTOI0 SLEPEVVOVY TNV OAANAE-
TOPAOT PLGIKNG YADGGOS Kol EYKEPAAOD, GAIVETAL VO VITOINAMVOLV OTL 1] KOTOVONOT| TG OTLLOG1O-
Aoylog umopet va evioyvBel amd Tic OepeMdOelc YvooTikéG oyéoelc netald tov Aéemv [6]. Eriong,
TPOCOATESG EPYUGIEG OO VIOAOYIGTIKOVG VEVPOETIGTILOVES KOl YAWGGOAOYOVG, £xovv deiéet Ot &i-
VOl EPIKTN M XOPTOYPAPNoN UETAED YVOOTIKOD KOl GNUOGIOA0YLKOD Ydpov [7, 8, 9, 10]. Mo amiq
GUVETELN OVTNG TG Topathpnong eival 6t 1 évvola pog Aééng eEoptdtar oe peydio Padbud amod Tig
ONUAGIOAOYIKEG OYECELG TTOL potpaletar pe aAleg AéEets. Ommg Eyovv mpdopata, avopepbel amd ToA-
AOVG EPEVVNTEG, Ol TAPASOGIUKEG TPOCEYYIOELS UNYOVIKNG LAONONG Epepav ToyEIEG KoL OTLOVTIKES
Peltidoelc oe SopopeTiKA KadnKovTo ENEEEPYUTIAG PLOIKOV YAMGOHOV, 0ALL 0 TOUENS EVOEYETOL
VO OVTILETOTIGEL amd TOPO Kol 610 £ENG dSVOKOAN TPoPANLaTA (.. GXESUCUOC AOYOV, EMLYELPTLLO-

2 01 dnpootevoeic: [1], [2] exmovnOnkay Kot T SIGpKELR THG TAPOVGUS SUTAMUATIKNG EPYOCTOC.
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ToAOYIKN av@Aivon K.AT.) mov Ba enmeeAnfovv and TV KOAVTEPN KATAVONON TOV J0IKAGIDOV TOV
gumAékovtal 6tov eyképaro. Emumdéov, o1 epguvntég evdlapépovtal kot TdAL vo aloAoyRoovV T G-
VAPELD TOV LOVTEAWDY TOVG COUPOVO, LLE LI YVAOOTIKY] dtdotacn. TEAOG, 1| YVOOTIKY EMGTAIT ®@EAET
KoL LEPIKEG POPES TAIPVEL EUTVELGT OTO VITOAOYIGTIKA LOVTEAQ.

0.1 TI'vootikd Enpoacioroyika Movtéla

Y& avto To onueio, Ba TopoVolaGTEL GUVOTTIKA 1) SOVAELY Lo oty dnpocigvon [1].

H peiétn g onpacioloyiog otov £yKEQAAO gival €vag KAGOO0G TG YuXoyYA®CGOAOYIiOG TOV V-
COUOTOVEL TNV KOTOVOTON TNG ONLOGIOA0YI0G KOl TMV VELPOAOYIK®V doUdV Tov gumAékovtat. [Tpo-
onabel Vo amavTGEL GTO AVOTAVTNTO EPMTNO TOV TAG TO OVTIKEIEVA KO 01 EVVOLEG OVTITPOGM-
nevovrol Ko enegepyaloviar otov avBpmmvo eyképoro [11]. 'Exovv dielayBel dipopec pnekéteg yia
va digpguvnBolV ot Pnyovicpol K®S1KoToinoNg Kol 0TOKMIKOTOINGTG TOV EYKEPAAOD OTOV LITAPYEL
éva gpédiopa, OTmG avoiveTal otn cvvéxela. [ ontikd epebicpata, peréteg Exovv deiket OTL elvan
€PIKTO VO YIVETOL S1AKPLIOT) KOl VO LLIOVPYIO EIKOVOV LE TN XPHOT TPOTOA®Y VEVPIKNG OPUCTNPLO-
™mrog, Kupimg 6To omTikd eAowd [12, 13, 14, 15, 16], o Ui Tov £YKeAAOL OV gival vIeHBLVO
Yo TNV OTIKN ene&epyacio TANPoPopldv. AAAEG LEAETEG £xoLV KaTAOEIEEL TN OY€om HeTa&D TG YVm-
OTIKNG avtidinyng kot g opdag [17, 18]. Ot Aegikég onpascioroyieg Pacilovtar otnv vedbeon OTL
napopoleg AéEelg eppavifoviar o mapopota tepiPdirovra [19]. Me Bdon avti v vrobeon, Exovv
poTadel 600 SLAPOPETIKEG TPOCEYYIGELS YO T ONLIOVPYio CNUAGIOA0YIKAOV povTélmv. H mpdn po-
c€yylon gival 1 kodkomoinon g onpacioroyiag pog Aééne, epapudlovtag ) peimon Tov dlooTd-
GEWMV TNG UNTPOS CLVOTOPENG TOV AEEEWV OV VTTOAOYIGTNKE LLE TN YPNOT| LEYAA®OV KeWévmv [20, 21].
H 6g0tepn mpocéyyion avtikabiotd avtn Ty «uétpnony» pe povtéia [22] pe Baon ta vevpwvikd, oi-
Ktoa [23, 24, 25, 26, 27].

AVt 1 SaTpIPn emyEPEl VO ATOVTIGEL EGV Ol AVATOPACTAGELS TG CNUACLOA0YI0G e Pdon Tov
EYKEPAAO EIVOL CUUTANPOUATIKEG O GYECT e TIC AEEIKOAOYIKES avamapaoTdoels. Ot amavTnoElg oe
L0 TETOLOL EPMTNOT PEPVOVY VEEC YVAOGELS Y10, TO POAO TOV HITOPOVV VoL S1adpapaticovy To dedopéEva
TOV EYKEPAAOV GTN HEAETN TNG ONUOCIOAOYING.

370 TAOIG10 TOV EUTAOVTIGHOD OVTAOV TOV AEEIKOV GNUAGIOAOYIKOV LOVTEAMVY LE YVOCIUKES TTAT-
POQOopieg, KABMS Kot TV AvVOKAALYT TNG YVOGCIOKNG OVATOPACTUOT|G TG CTLOGIOAOYIKNG OMUAGLOAO-
viog, OPKETEG LEAETEG EYOVV EMYEPTNOEL VO EEETAGOLVYV TN XOPTOYPAPNON METAED TNG ONUAGIOAOYIKNG
OVOTAPACTACT G VITOAOYIOTIKAV KOl YVOOTIKMOV LOVTEAMV. X€ TPOTYOVUEVT Epyacia, £yl amoderyfel
OTL 1 onpactoroyia Twv AéEemv oyetiletal pe dSuVApIKA EVEPYOTOINOTG GE TEPLOYES TOL EYKEPAALOV
Kot OTL €ivol Suvath 1) ATOKMIIKOTOINGN UETOED VEVPOVIK®DY EVEPYOTOMGEWDY KOl GNLLOGLOAOYIKOD
nepeyopévou Tov Aééewv [7, 28, 29, 30, 31]. EmimAéov, o1 veupikég vepyomooelg delyvouy 0Tt £xouv
TPOYVOOTIKN 10Y0 G€ GYE0N e TN onuactoroyio pog Aééng [7, 8] kar mpotaong [32, 33]. Ot vro-
AOYIOTIKEG HEAETEG IOV GTOXEVOVV GTI| OLEPEVVNGT] TNG EMIOPACNC TOV VEVPOVIKADV EVEPYOTOMGEWDY
o€ eKQPAcEL; AEEemV €xouv deiéel OTL e TNV EUUECT] EVOOUATMON VEVPIKMY EVEPYOTOMCEDV KOUTA
NV eKTaidELON TOV AEEIKOV GTLLOGIOAOYIK®Y HOVTEAW®V UTOPEl Vo BEATIOGEL TV IKAVOTNTA YEVI-
KELOTG TOLG TTAPA TV TEPLOPICUEVT) TOGOTNTO EYKEPOAMKDV OESOUEVMOV VEVPIKNC EVEPYOTOINGNG TOV
ypnoipomoovval [34, 35].

AVTEC 01 INUOCIEVCELS KATUOELKVOOVL TNV 1oYLpT VIapén ox€ong HETAED VTOAOYIGTIKOV G-
GLOAOYIK®V HOVTEAWDV KOl VEVPMVIKOV AVOTUPACTAGE®V. Q2GTOCO, TOPAUEVEL VO SOVUE TAG Ol YVO-
OLOKES ONUOCIOAOYIKEG OVATOPACTACELS UTOPOVV Vo GVUPAAOVY o1 Pedtioon TG amddoong TV
VTOAOYIOTIK®V OTJLOCLOAOYIKMV HOVTEAMV, EOIKA Y10 TEPimAOKa TPoPA AT TaEIVOUNONG KOt VoL
YVOPLONG.

Me Bdon tig Tpoavapepheioeg HEAETEG TOV OEiYVOVV GUGYETICUO UETAED TOTIK®V VELPOVIKOV
OpacTNPOTATOV Kol AEEIKOAOYIKAOV AVATOPACTACE®MY, TPOTEIVOLLE VO VTOAOYICTIKO HOVIEAO YO
OTLLOGIOAOYIKT] OHOLOTNTO OV (PTCLUOTOIEL TPOPAETOUEVES VEVPOVIKES EVEPYOTOWOELS OV OTO-
KkTOnkav and éva pKpod 6HVOAo oLGLOoTIKMV. To TPoTEWOUEVO HOVTELD £QapUOLETAL O SLAPOPO
apofAuato enegepyaciog eLOIKNG YAOooas. To Hoviého TpoPAEYNC VEVPOVIKAOV EVEPYOTOINCEMV

12



OV YPTCLUOTOLOVUE MOTE VO EEAYOVLLE VEDPMVIKEG EVEPYOTOINGELG Y1t AEEEIG EKTOG AVTMV OV VLITLP-
YOLV OTO EYKEPOAKE dedopéva oL EYOVLE GTn d1dBeom pog ivatl avtd Tov mpoteivetol oto [7]. X
MoTa pe To TEPAUATO oG, TPAOTO CVYKPIVOVUE TNV AOS0GT) TOV TPOTEWVOUEVOL LOVIEAOL Y0 TO
TPOPAN U TNG ONUAGLOAOYIKNG opotdtnTag Kot delyvovpe 4Tt yuo optopéva {evyn Aéemv amodidet
OTOTEAEGLOTO KAADTEPQ OO AEEIKOAOYIKES OVOTTOPACTOCELG. XTI CLUVEXELD, OEIOAOYOVLLE TNV AmO-
doon tov povtélov yio ta&vounon Aécewv, ta&vounon AéEemv avaloya LE TN GLGYETION TOL G UE
TIG OLOONGCELG KOl TNV GLVETHY®YN KEWEVOVL. O cuVOLOCUOG TMV VEVPMVIKMY KOl T®V TUPUd0G1-
KOV AEEIKOAOYIKDY OVOTOPACTAGE®V EETEPVO—CE KATOIEG TEPITTOGEIC—TO KOADTEPA UEYPL TOPO
OTOTEAEGLOTO GUPPOVO UE TN BiPAoypapia.

0.1.1 Movtého XNpactoroyIK@V NevpOVIKOV Avanapaotdocmv AfEemv
0.1.2 Xnpoocioroyiki) oporoTNTO

Me Bdomn v vobeon 0TL Tapdpoleg AEEEIS £XOVV TAPOLOLEC VEVPIKEG EVEPYOTOMGELS, TPOTEL-
VOULLE £VOL LOVTELO Y10 TNV EKTIUNON TOV OUOLOPOPPaV AéEemv mov Poacilovtal 6€ VEVPIKES EvEPYO-
TOMGELS TOL TPOPAETOVTOL LIE T XPTYOT TOL TPOPAENTI VELPOVIKADV EVEPYOTOGEMY TOL VAOTO)-
Onke [7]. Ed® va onpeimdei 6t1 voxel ovopdlovpue to 3d gikovoototyeio 10 omoio eumepiéyet pua Tiun
EVEPYOTOINGNG Y10 L0 CTOLXELDON EYKEPAAIKY| TEPLOYY|. XTNV TOPOVGO ONOGIEVGT] XPTCLOTOLIOVLE
ta 500 voxel(V') mov pag mapéyovv v ypnotpdtepn minpopopio. A&loloynoope StaQopeg HETPIKEG
Y10 TOV VITOAOYIGLO TNG GNHOGIOAOYIKNG OLOLOTNTOG amd TIC VELPWVIKEG evepyomomoaels. [lapovoid-
Couple (o HETPIKT, TTOV £XEL SIOUOPPMOEL MG 1 CTUOUGLEVT TETPAYMVIKT OTOGTUOT), Kol E00CE TO
KOADTEPO ATOTEAEGUATOL:

v
S(wbw?) = Z by (yv(wl) - yv(w2))2v (0.1)

v=1

omov S(w1, wg) eivar 1 onpactoroykh opodmra peta&d tov AéEemv wy kot we, To V' avimpocw-
TEVEL TOV 0PLOUO TV VOXels Tov ¥P1GILOTOI0VVTAL GTNV TPOPAETOUEVT EYKEPAAIKT AVOTAPEGTACT,
yy(w) eivon m gvepyonoinomn evdg voxel yua ™ AéEn w, ko b, givon éva Bapog g cvpPoing evog
oLYKEKPUEVOL Voxel 6Tn HeTpikn opoldtTag, To omoio To pabaivovpe pécm ekmaidevong.

0.1.3 TIIpoépinpa Tarvopnong

H anddoon g onpactoloyikng opototntag mov vroroyiotnkay and v e&icoon 0.1 a&oro-
yMOnkav eniong oto TpdPANa onpovpyiog ta&ovopioag oto chvoro dedopévov ESSLLI [36]. H on-
povpyio taEovopiog yivetal ypNOILOTOLOVTOG TOVG POPEIG VEVPIKNG evepyomoinong ¢(w) mov vro-
Aoyilovton amd v E&icmon 4.2 kot toug popeig cuvtereoti b ov opifovtar otnv E&icwon 0.1 mov
EKTOLOEVETAL YPTOLUOTOLDOVTOG YPOULUKT TAAVIPOUNOT 6€ OX0 TO chvoro dedouévov MEN. X1 ov-
VEYela, o Tivakag opotottag S(w;, w;) vrohoyieton yio OAa ta {evyn 6T0 GHvVOLo dedopévav xpnot-
pomolwvtog v e&icmon 0.1 kail 6t cvvéyela epapproletatl o alyoplOIOC PUCUOTIKNG OLOSOTOINoNG
7oV TpoteiveTal 6to [37] yro vo AneBovv o1 Ae&icég KAAGELS. X 0T TNV EPYUGIA, 1) VEOP®VIKY| GUY-
YDVELGT| OVOPEPETAL GTNV TPADUT CLVEVOGCT T®V AEEIKOAOYIKDOV KOl VELPOVIKDOV AVATOPUCTACEDY.
XpNOYOTOMGAE TN UETPIKN TNG KAOapOTNTAG TOV KAAGE®DV Y10 TNV 0EI0AOYT|ON TG TOOTNTOS TOV
ovtoOHaTA dNovpyNpéEVEY kKhacewv[38].

0.1.4 Toa&wvopnon Aéemv avaroyo pe T cvoyiTion T0VG pE TIc Atoh)oeis

[No to mwopdv TpoPANpa xpnoomolovpe o chvVoro dedopévmv Sensicon. EE opiopov 6Aa to
0LO100TIKG 6TO Sensicon cuvdéovtal pe va Tpaypatikd actntipro epébopa. H ta&vounon npay-
patomoteitatl OTmg meprypdoetal 6to vrokePdioro 0.1.3, dnA. H pitpa opordtntag oty E&icwon 0.1
vrohoyiletal pe ypnomn tov popéa Pépoug b OV EKTOISEVETAL GTO GHVORO dedouévov MEN kot ot
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ovvéyela epappoletar n pacpatikn opadonoinon [37] yia tig mévte katnyopieg aiohnong. Ot poxd-
TTOVGEG OLLAOES YPNOULOTOIOVVTAL Yiol TV TOEWVOUN oM VONUATOV gite pHeTa&d dvo aichnoewv, evog
&vavtt OA@V 1 petald Tov TEvTe aobnoemy.

0.2 TIlewpopoatikny ASrordynon

MEN: T mpofANHo 6NULOGIOAOYIKNG OLOIOTNTOC, EKTOOEVOVUE Kot AEIOAOYOVUE TO LOVTEAD LLOG
610 oVvolo dedopévav MEN [39] to omoio amotereital amd 3000 (ebyn AéEemv (2000 yio ohvoro
exmaidevonc kot 1000 Cevydpia yio oOvoro alloddynong). Kabe (edyog AéEewv ouvdéetal pe pio
Bobuoroyio opordtntag. Anpovpynoape eniong 2 vroovvola MEN amd 39 mold mapdpoe kot 79
EVTEAMG OaPOPeTIK Levyn AEEE@V YPNOLOTOIDOVTOG [0l TEXVIKT KAT®PAiov, 6mov to {gvydpla pe
Babporoyio opototntog tave amod 0,85 kot kite amd 0,1 aviKovv 6To TPMTO Kot To dEHTEPO VITOGV-
VOAO avTicTOUYOL.

ESSLLI: T v gpyaocia dnpuovpyiog tagovopiog, a&oA0YOUUE TO HOVIEAO LAG GTO GUVOAO 6ed0-
puévov ESSLLI [36]. AmoteAeitan amd pua iepapyio tpidv emmédmv (2-3-6 1aéeig). To younAidtepo
emimedo epapyiag meptrappdvet 6 TaEELG 0VOLOTIKAV, TO pecaio 3 Talelg, evd N avdTtepn Taén da-
kpiveton peta&d {OVIovmV VIOV KOl OVTIKEIUEVOV.

Sensicon: T to&vopunon voruatog, xp1oIoTo00E To GuVvoro dedopévav Sensicon [40]. To Sensicon
glvar éva Aegd mov mepiéyel 22684 ayyiuéc AEEelg Kot ouvdéel kbbe AEEN pe 5 apOuntiég Pabd-
poioyiec. Ot Babuoroyieg avtiotoryovv 6t cuvaeela ¢ AéENg pe kKabe pia amod tig 5 acnoelg,
ONAad1| v OpascT, TNV 0KOT, TN YELGN, TNV OGUN KAl TNV a1]. [0 va ¥pNCHOTOIGOVIE AVTEC TIC
Babporoyieg yio v epyacio aicOnong ta&vounong, emAEEQIE OVGLUGTIKG TTOV £XOVV [T UNOEVIKA
omoteAéspoTO e pio povo Evvola Kot £xouv ¢ arotéhespo 1011 AéEerc.

SNLI dataset: I'to To TpdPANLA TG GUVETHYWYNC XPNCULOTOUCALE TO GUVOAO dedopévav Stanford
Natural Language Inference (SNLI) [41] to onoio mepiéyetl mepimov 570 yihddeg {evyn mpotdcemy
LE TPEIC ETIKETEC: GLVETAY®YN, OvTipaon kal ovdétepo. H mpoenelepyasio Gov yio TV Tapovcio
OPKETOV OVCLUCTIKAOV, giye ©G amotélecpo Tov oynuatiopd 30.498 kot 592 derypdrtov exmaidevong
Kol 0E0AOYNONG YO TV TEPIMTMOT TPUDBY TOVAUYIOTOV OVGLACTIKOV Kol 171.528 ekmaidgvong kot
3201 derypdrov a&lodldynong yia TNy TepinT®ot TovAdyloTov §00 Kovdv AéEemv ne 1o MEN.

0.3 Ilewpopotika omoteréopoTa,

0.3.1 ZXnpoociroyiki) oporoTNTO

INa to TpoPfAnua g oNUACIOA0YIKAG opoldTNTaS, epapuosape v e€icmon 0.1 yuo ta {gdyn
AéEewv Tov cuvOlov dedopévov MEN. Ta y,(.) g e&iomong 0.1 vroAoyicTnKay ¥pNGOTOLOVTOG
v g€icoon 4.2. Xpnowonooope to vrocHvoro ekmaidevong tov MEN ywo v expddnon tov
Bapdv b ¢ eicmong 0.1 xpNGHOTOIDOVTOG YPOLLUKT TAAVIPOUNGN. AVTd Ta Bdpn ypnoporomon-
KOV Y10 TNV EKTIUNON TV OLOOTHT®V Y1 TO VTocHvoro dokiung tov MEN. O cuvtedeotig cuoyéti-
ong Spearman avépecsa otig fabpoloyieg avOpdOTIVIG OROOTNTOC KOL TO OTOTEAEGLLOTO OLOLOTITOG
7oV vroAoyiotnkov and v e&icwon 0.1 ypnoipomombnke og petpikn a&loAdynone. To amotelé-
opata mapovotdlovrarl otov [ivaka 0.1, 6tov cuykpivovpe TV ardO0GT TOL TPOTEWVOUEVOL LOVTE-
AOV o€ oyéon Ue TNV amddoot Tov AeEKoA0YIKoD HovELOL W2vec [25] ekTaldeVUEVEG GTO KEIEVO
GoogleNews.

ZuvoliKd, To povtelo w2vec Eemepva To O1K0 [ag LoVTELD emTuYydvovtag cuoyétion 0.76 og OAa
T OVGLOOTIKA. To VELP®VIKO GNUOGIOA0YIKO HOVTEAD aLEAVEL TV amdOO0GT TOL KABMG EKUETOAAED-
opaote meplocotepa voxels pBavovtag oto 0.48 cuoyétion yua tovidyiotov 150 voxels. Ztov nivoka
0.1, epoavileton eniong n anddoon Yo Tpio. VTOGHVOAL TOV JOKILACTIKOV cuVOAoL MEN, dniadn
“Ta meprocdtepa & Arydtepo Opon”, “Arydtepo dpown” ko “Ta mep1ooOTEPO OUOLN” OVGIUCTIKA.
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Ymoovvoro OvelasTik®V ApOpog Voxel Nevpovikd Znpaclor. poviého w2vec

All Concrete nouns 50 0.43 0.76
100 0.47 0.76

150 0.48 0.76

200 0.48 0.76

[Ieprocdtepo & Arydtepo Opoteg 50 0.58 0.73
100 0.82 0.73

150 0.82 0.73

200 0.88 0.73

Aryotepo dpoteg 50 0.43 0.43
100 0.44 0.43

150 0.47 0.43

200 0.63 0.43

[TeprocoTEpPO OLO1EG 50 0.28 0.14
100 0.63 0.14

150 0.68 0.14

200 0.83 0.14

ivakag 0.1: Anoteléopata a&lohdynong 610 VTOGVVOAO GUYKEKPLLEVOV OVGLOGTIKAOV TOL SOKILO-
6TIKOD 6LVOAOL ToL MEN Kot 6T0 TEPLGGOTEPQ KOl AYOTEPO TAPOLOLO, VTOGVVOAL G-
YKEKPILEVOV AEEEmV.

H Beitioon g amddoong yiverar mo éviovn kabadg o apBuoc tav voxels avEavetor. H koldtepn
BaBpoioyio cvoyétiong mov emrvyydvetat givor 0.88 yia v wepintwon tov “Ilepiocdtepo & At-
yotepo opowwv ” ya 200 voxels, vrepPaivovtag to poviého w2vec (cvoyétion 0.73). Ewducd yo v
ePInT®ON TOV VITOGLVOAOL aEloAdYNoNG “Ta TeplocdTEP OUOWN” TOPATNPOVLE O 0EIOCTHEIDTN
Stpopd LeTaEL TV 60 povtéhmv, dnA. 0.83 évavt 0.14.

0.3.2 IIpopipate ®voikic N'odocag

211 cuvEyEln TPOLGIALOVLE TV OTOS0GT TOV GNUAGIOAOYIKOD HOVTEAOD VEVPIK®DV EVEPYOTOLN-
GEMV Y TN OMpovpyio TaEovouiag, Tnv TaSvOUNon TOV aictncemy Kot TN VONUOTIKY CUVETOYMYY.

Agdopéva(ESSLI)  Nevpoviké Inpacioroyiké Movtého  w2vee  Zuvdvoopig w2vee & NEVPOVIKOV avamapuotdceEmy

6 KAAoELS 0.61 0.70 0.71
3 KAhdoelg 0.77 0.95 0.95
2 KAMdoeLg 0.66 0.77 0.72

Mivakag 0.2: AnoteAéopata a&loAdynong yio T onpovpyio ta&vounong.

Ta amotedéopata g a&loldynong mapovaidlovtot otov Iivaka 0.2. Ola to amoteléouata Tov
detyvovtar vroroyilovton o voxels V' = 250. To povtého pog cupmeplpépetonl xepdtepa omd Ot
TO HovTéAo W2vec Kol oTIg TPELS TAEELS (6, 3 1 2), 001000, 0 GLVOVAGHOG TV dVO EMTLYYAVEL TIG
KaAvTEPQ amoTelécpata yo 6 ko 3 tageis, o€ 0.71 ko 0.95 kabapotnta, avtictoyya. [ v epyacio
tavounong Tov acfcemv ypNGILOTOloVE TO GUVOAD dedopévav Sensicon yio Vo 0EI0A0YGOVIE
NV ardS0G6T TOL LOVTELOL LOC.

To amoteAéopata g a&loldynong mapovoidlovtor otov [livaka 0.3. Ta dvo povtéda enttuyyd-
VOUV PO OTOTEAEGLOTO, LE TO LOVTELD oG Vo amodidel kaivtepa 0.37 évavtt 0.33 yia tagivo-
unon kot Tov 5 aiodinoenv. O cuvoLaGOG TMV 000 LOOVTEA®V EETEPVA TA EMUEPOVG ATOTEAEGLOTOL
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Kk('malg Nevpoviké Inpacioroyiké poviého  w2vee  Xovdvoopdg w2vee & NEvPpOVIK®OV avar.

Opaon, Axon 0.55 0.55 0.57
Opoaon, Apn 0.68 0.66 0.69
‘Opaon, 'ebon 0.60 0.60 0.61
Axon, Apn 0.59 0.58 0.59
Axon, I'evon 0.57 0.55 0.57
I'edon, Aen 0.54 0.54 0.54
Opaon, Yroroureg 0.68 0.68 0.68
Axon, Yroroumeg 0.74 0.74 0.74
AN, Yrohoureg 0.81 0.81 0.81
I'gvom, Yroloureg 0.78 0.78 0.79
Axon, Opaon, Ocepnon,
Aopn, I'edon 0.37 0.33 0.39

Mivaxag 0.3: Atoteléopata a&loldynong yio v Ta&vopunon aiodncemv Tov AEEemv.

Y10 TV TAELOVOTNTO TOV TAEIVOUNGE®Y OVALESH GE OLAJEC GO GEMY KOl EMTVYYAVEL EMIONC TV KO-
Aotepn emidoon yio v ta&vouncomn avapeso kKot otig néve aicnoeig 0.39. Avtd ta anotedéopota
GULLPOVOVLV ETIONG LE TN VEVPOEMIGTNLOVIKY| £pevva [42, 43, 44, 45, 46, 47]. [Tapatnpodpe 411 1 KO-

Agdopéva(SNLI)  Awsetdees (GloVe, Nevpovikéc evepy.) GloVe  Xuvévaespog Nevpovikdv & GloVe Avampactdcsmv

3-Kxowé (300,250) 68.2 68.7
2-kowvéd (300,250) 76.6 71.7

Mivaxag 0.4: Atoteléopata akpifelag yio To TpOPANUE TG TPOTUGINKTG CUVETOYWOYNS.

pveaio akpifela emtTLYYAVETAL LE LE TO GUVIVOGLO TOV 2 HOVIEAMY OVATOPACTACE®DY TOGO Y10, TO
egeralopeva vroovvora (68.7+0.9% kot 77.7£0.9%). Enperdorte 0Tt €0 eMAEEULLE VAL GUYKPIVOVULE
TIG VEVLPIKEG EVEPYOTOMNGELG [LE SLOPOPETIKEC AEEUKOAOYIKEG OVATTPACTAGELG Y10 VO, EMEKTEIVOVLLE TNV
a&loAoynon Hog e GALeg AeEIKOAOYIKES OVATAPACTAUCELS TOL &0 BN KaAY Yp1oT LE SUPOPETIKOD HO-
VTELOV.

0.4 Tlewpopotikd ZoprTePacpRaTo

H avéivon ¢ anddoong Tov poviélov pag £0e1&e umopei va dtoympioet to ToAD OpLota, Kot ToAD
OVOLLO10, OVGLOGTIKA KOADTEPQ A0 TO, CUEPIVA LOVTELD AEEE®V, EVD TOPAAANAa ExEl xelpdTepT Emi-
d00T GLVOAIKA Y10 TO TPOPANLLOL OTLLAGIOAOYIKNG opotdTNTag AEEmV. AVTN eivan pia toyvpn Evoeién
OTL 1] ONUAGLOAOYIKT] SLOKPITOTNTO TOV VEVPOVIKDV OVOTOPUOTAGEDV EXEL SIOPOPETIKO GNUAGLONO-
YIKO TEPLEYOLUEVO ATO OLTH TOV TOPASOGIOKDY LOVIEA®DV OVATOPACTACEDV AEEEWV KAl £TGL Ol VEVL-
POVIKEG EVEPYOTOINGELS UTOPOVV VO, Xp1oipomombodv yio v Peltioon T@v onuepvOV GNUAGLO-
AOYIKOV mopactdosmy. Ta anotedéopata oyetikd pe v AeEikoloykn tagovopia, Ty tagvounon
alctnce@v Kot To TPOPANUA TG CLVETAY®OYNS TPAYHATL ETPEPALDOVOLY TN CNUOCIOAOYIKT TATPO-
QOpio TOV VELPOVIK®V OVOTAPUCTAGEMY. ZUVOMKE, Ol VEVPOVIKEG EVEPYOTOUCELS LTOPOVV EMIGNC
va ypnoomomBody 6€ GUVIVAGUO e AALES ONLOCLOAOYIKEG TAPACTAGELS Kol BaBEG 0PYITEKTOVIKES
vt Bertioon Tov antotedespdToVv og dokoha mpofAnpate Duoikng FAdooag, OT®G 1 TPOTAGLOKT
GUVETOY®OYT.

16



0.5 AwBepotikéc Katavepnuéveg AvonapacTtacels

e avtd 10 onpeio, o TaPoVCIACTEL GUVOTTIKA 1 SOVAELY LOC TTOV £YIVE GE CLUVEPYAGIN LLE TPONV
péhog g opadag Edevbepio Mapidkov otn dnuocicvon [2].

Yta mapadootakd Kataveunuévo Inpoacioroyikd Movtéha(DSM) ot moAlamAég acOfoelg piog
TOAOONUNG AEENG AVATOPOPIGTOVTOL [LE £VOL GNUEID EVTOG SLOVUGLLOTIKOD YMPOL. X€ OVTN TNV EPYO-
oia, Tpoteivovpe E&va DSM mov pabaivel moAAOTAEC KATAVEUNUEVES OVATOPUCTACELS oG AEENC TTOV
Baociletat oe drapopetikd Bépata. To tpéyovta pabnclokd Loviéda avamapdotaong AEemv Kmdiko-
TOLOVV TIG OTUOCIOAOYIKEG KOl GUVTAKTIKEG TANPOQOpPies TV AéEemVv voBeTtdvTog TNV VITOBESN TG
Katovepnuévnc évvotog Tv Aégewv [19]. Ot akydpiBpot eEoywync avamapaotdoemy AEEemV KOIKOo-
ToLoVV 10 GLpHEpaldpEVa TV AéemV o€ dlavicpata yapaktnplotik@yv (embeddings). Qotdc0, TETOWN
povtéda (w2vec, Glove, fasttext) poBaivouv ovomapactdoelg evog onpeiov, ol onoieg dev pHmopovv
va kataypdyouv Tig Eexmplotég £vvoleg moAvonumv Aééewv (T.y. fdpos | kieivw), apol og AapPa-
VOUV T0 O10POPETIKA ONLAGIOAOYIKA TAAIG10 TOV avTéEG Pmopel va BpeBovv evtog evog keyuévov. 'Etot,
N dnuovpyio TOAALATAGY SLOVUGUATMV, Ol OTTOIEG KOIKOTO00V SIPOPETIKEG oNUacies AEEEMV GTOV
ONUAGIOAOYIKO YDpo, Umopel va, pag fondncet va BEATIOGOVILE TV KOTAVONOT| TS PUGIKNG YADGGOC.

Ot pébodot Tov TaPAyoLY TOAAATAES KATAVEUNUEVES OVOTOPACTAGELG 0vA AEET LTOPOVV VO, OLLOL-
domomBovv e 600 gupeieg katnyopieg. Ot péBodot ywpic emifreyn Tapdyovv avamapucTUGELS TOAA-
AV SIOVOGLATOV YOPIG TN XPNOT OCNUAGIOAOYIKAOV AEEIKDOV TOP@V. XT0 LOVTELO [48], TO KEVTPOELON
TV KAAGEWDV T0. 0010 E0PTAOVTOL OO TO, SIOPOPETIKA GLUEPAiOpEV TOV gppavileTot pua AEEN, xpn-
GLOTOMONKOV Y10 VO SNULOVPYHGOVY EVO GUVOAO KEWOIKMV Y10, KAOE dLOPOPETIKO VO LAY OVOTOPOL-
otdoemv Yo kibe AEEn. Endpevec épevveg Pacionkov og Tapdpoleg Tpoceyyioelg Tpochétovag
YPNOT UPYLTEKTOVIKADV VEVPOVIK®V SIKTH®V TOV EVOMUATDOVOLY TOCO TO TOTIKO OGO Kol TO KABOALKO
mlaiclo cvpepalopévev Katd T dwdpkewn g eknaidevong [49, 50, 51]. M mbavotikn Tpocey-
yion eonydn and 1o [52], dmov to povtédo Skip-Gram tov Word2Vec tporomombnke yia va, pddet
ToALOTAEG avamopactdoels. EmmAéov, evoopatdbnkay éupeca 0épota oto povrédo Skip-Gram, e
OTOTEAEGLOL TNV ONOVPYIC SLVUGHLATMOV TTOV LOVTEAOTTOINGOV TN GNUAGLoA0Yi0 Hiog AEENS KAT® amd
dtopopetikd mAaicia copepalopévav [53, 54, 55].01 poceyyicelg pe ) ypnon enipreyns, fociopé-
veg o€ TPOTEPN YVDOT oV aoktOnke amd Ae€ikd (ww.y. WordNet) poli pue oadyopibuovg doywpiopon
TOV SOQOPETIKMOV VONUatev pog AEEng, stonybnoav eniong yuo v e&aywyn [56, 57] molhamiodv
OVOTOPOCTACEWDV.

0.5.1 Evomompévo AwoBepatikdé Movtéro

To choTud pog akolovbel pia TpocEyyion Tecodpmy Pnudtov, 1 omoio UToPEl VO ATEIKOVIOTEL
oto oynua 0.1:

1. Evwgio Kotavepnpévo Xnpocioroyiké Movtéro. AoBEviog evoc cuvolov dedopévov amd
TOoAMG Keipeva ekmaidevovpe éva DSM mov k@dikomotel T onUactoloyic TV SloPOPETIKMY
AEEewV G AVATOPACTACELS TOL OTOTEAOVVTOL 0T £Va, SIAVLG L Yo, TNV KaBepia. Xto Kaboiiko
Korovepnuévo Znpoacioroyké Movtého Ba avapepopaote wg Global-DSM.

2. AwBgpotikd Katavepnpéva Xnopcioroyikd Movtéha. Xtn cuveyeld, Eva Stobelatikd po-
VTELO EKTIOLOEVETOL XPT|CLOTOLDOVTAG TNV 1010 GLAAOYT dedopévav. To poviédo avtd ympilel Ta
dedopéva oe K (mBavag aainiemikodivntopeva) vrokeipeva. ‘Eneita, éva DSM gxkmoidevetan
o€ kabe vrokeipevo pe amotélecpa ta K DSMs 10 kabéva Pacicuévo og dapopeticd Bépa
(TDSMs). H Bepatiki mpocapoyr] Tov GNUACGLOA0YIKOD YOPOv AAUPAvel vITdyn TIC TUpOAAL-
Y£€G TOL TOPOVGLALEL it AEET ATV CLVOVTATOL GE JLAPOPETIKOVG BEUATIKOVG TOLEIS KOl G €K
TOVTOV 0dNYEl 6T dnpovpyia eIKOV Oepatikdv dtovoopdtov (topic embeddings).

3. AvtioToiylon OgpaTik@v S1evOespaTOVY. 11 GUVEYELD, TPOPAALOVUE TO SOVUCUATIKO YDPO
kd0e DSM otov koo yopo tov Global-DSM, ypnotiponoidvtog pio AMota AéEemv mov amote-
AoVV dykvpec —mapovotdlovtal o€ 1d1E¢ oyeTIkéG Béoeic— petald twv 600 aVTOV YOPWV, Ol
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omoieg EMAEYOVTAL LEG® EVOG OVEEAPTNTOV GLGTHIATOG LAONONG Ypic enifAeyn. Xt0 evomol-
NUEVO ONUAGLOAOYIKO YdpPo, KABe AEEN avtimpocwreveTal ond Eva cHVOLO BELaTIKGY dlavV-
OUAT®V TOVL TPOTYOLUEVOG ATOUOVAOBN KAV 6 EEYMPIETONS SLOVUGUATIKODS YDPOLGS, OTLLOVP-
yovTog €161 £va evortompévo moivBepatiké DSM (UTDSM).

4. E&opaivvon morlami@dv SLOOERATIKAOV OLOVOGPATOV. ¢ emopevo Prina, TpoPfaivovpe e
o Tevikn eEopHAALYONG Yo Vo OLadoTOo GOV E Ta Bepatikd dtavocpoto kabe AéEng oe N
Kavovikég xatavopég péow evog Movtéhov Miéng Kavovikov Katavopumv (GMM). Avtd 1o
prpo petdvet to B6pvPo mov E1GAYETAL LEG® TMV OVTIOTOLYNGEMV TV 2 YDPMV KOl TOV 0pOIdV
dedopévary ekaidevonG Kot GUUBAAEL GTIV TPOGEYYIOT) TV OLOPOPETIKAOV VONUATOV LEGH EVO-
moinong dtavucudtev ond didpopa BT,

7\“\,
T

l Word2Vec

~~ -
,,,,,,,,,,, ~ Alignments

v

Unified multi-
topic
DSM

Xympa 0.1: Eekvovtog ond Eva apyiko Keipevo, onpiovpyodvtal K 0€uatokevipikd subcorpora
(SC5) kau ot ovvéyeto dnuovpyovvral K ydpot Oepatikng onpoctoroyiog (17°DSM;)
01 0mo{01 6T GLVEYELN TPOPAALOVTOL GE £V EVIOIO YDPO.

To mpdTO Prpa Tpog ™ HEUOTIKT TPOGAPLOYT TOL GTLAGIOAOYIKOD YMPov gival eEoy@yn TV
Oepdtov, ypnowomoldviag tov AlyopiBuo Latent Dirichlet (LDA) [58]. H Baoikr| tov 1d3éa eivar
OTL TO £YYPOOO OVTITPOCOTEVOVTOL MG TUYOI0 pelypata Tave og Bépata, 6mov kdbe Bépa opiletan
O¢ Katavopun mhavotntov o€ o cuAhoyn Aégewv. Ta mpokdmTovTa BENATA YPNCILOTOOVVTAL OTN
GULVEYEWDL Yo TNV gKkmaidevon tov Bepatikdv DSM. Ze auth v gpyacio, emAEyovpe TO HOVTELD
Word2Vec [25]. O gyyevic pn-vTetepuvicloc tov aiyopifuov Word2Vece odnyel otn dnuovpyio ovo-
VEYDV SLOVUGUOTIKOV YOP®V OV OgV €lval LKA VOVYPAUUICUEVO GE VA EVIOIO GTUAGIOAOYIKO
GUGTNHA AVOPOPACS, OTOKAEIOVTOG TN CUYKPLON LETAED TOV OVATOPASTACEDY TVO AEEEWV dlopope-
TIKGOV Oepotikov ediov. o va Tapakdpyove avtdv ToV TEPLOPICUO, TPETEL VO TPOPAAAOVLE TIG
exppaocelg AéEemv twv TDSM og éva Kovd SoVUGLATIKO YMdPo. ZuyKeKpEva, vtoBétovpe 6Tt Ta
TDSMs emdetkvhouy onUAVTIKEG SOKVUAVGEIS OTI| UVOTUPACTACELS TOV TOAVCUOV AEEEMVY, EVAD
SlaTnpEiTOL 1 OYETIKN GNUAGIOAOYIKT aOcTac UETAED povoonumy AéEemv. Avti 1 vobeon pog
®ONcE Vo oKEPTOVUE TIG LOVOSTIUAVTEG AEEELS G dyKvpes LETAED GNUOGIOAOYIKGV YDp®V. Evag 1po-
TOG YlO. VO OVOKTNOEL KAVEIS TN Alota TV aykupav givol va v €dyel amd Aeihoyikodg TOpovg
onwg to WordNet [59]. Qotdc0, avt 1 néBodoc meplopileTon oTIc YADGGEC GOV VIAPYOLY TETOL0L
Ae&col Topot kKot e€aptdTol omd TN Ae&IKn KAALYN Kol TNV TOWOTNTO 0LTOV TV Topov. [a va Ee-
TEPOUCTOVV Ol TAPOUTAV® TEPLOPIOLOL, TPOoTEIVOLUE Lo TAPwG avTopatn péBodo. ITapdio mov ot
SLPOPETIKOT S1OVUGHOTIKOL YDPOL dev givart eVOVYPAUUICUEVOL MG TTPOG KOVOVG GEOVEG, Ol avTioTOL-
YEC UNTPEG opotdTNTag (dTay KovovikomotnBovv) eivat. Me Baon avth Ty Tapatipnon, vroroyilovpe
NV opototnTa Leta&y pog dedopévng AEEnG kot kdBe aAANg AéEng oto Ae&loYio (KaTovour Opold-
TNTOC) Y10 TO SPOPETIKG BEpaTa Kot TV KOBOAMKO Ydpo. Xt cuvéyela, vrtofétovpe OTL 01 KAAES
ONUAGIOAOYIKEG AYKLPES Ba TPETEL VO EYOVV TOPOLOLES KATUVOLEC OLOIOTNTOG OVAEGO GTOVE dVO
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XDOPOVG, OTWG amewkoviletar oto Xynpa 5.3. 'Eotw to V va givon n topn tov Ae&hoyiov tov TDSMs
ka1 Global-DSM, K ta dtapopetikd Opata Kot d 1 0146TA0T TOV SIUVUGHOTIKOV AVATOPUCTACEDV.
¥ ovvéxsia opilovps 10 X € RIVIX? ¢ prpa Stavuopdtov tov TDSM k kit to Y e RIVIx4
®¢ PNTpa dtovuspdtov tov Kaboiukod DSM, 6mov 1 oelpd ¢ k6Oe PiTpag aviieTolyel 6TV KOvovi-
KOO pEVT avomapaotacn poag Aééne oto V. Xt cvvéyela, opifovpe ta Sy = XX kT, Sg = Yy”?
e RIVIXIVIyq givar o1 mivaxeg katavopng opotdmtag yie 1o TDSM k kot to global-DSM, avtictoyo.
21oy06 pog etvot va oy you e i AioTo, o1 LOCIOA0YIKGV oyKupmdv A mov gAay1oTonolel TNy evkAEi-
dglo omdoTooT HETOED TV SD0 SL0POPETIKOV KUTUVOUMY OUOIOTNTAS. ZVYKEKPIUEVO, Yo KAOE AEEn
1 voAoyilovpe TN HEOT] ONUACIOAOYIKT KOTAVOUT 6€ OAa Ta. Bépata:

K
. 1 .
<8 > = 74 E S, (0.2)
k=1

| <si>r —shlla, Yi=1,...,[V] (0.3)

oMoV sf], 32 gtvo n ypopun 7 g untpag opodtntag Sy Kot S, AvTiGTO(M, TOV AVTITPOCGMTEVEL TV
KaTavour opototnTog HeTa&d g AEENG ¢ kot kdbe aAAng AéEng oto Ae&ihdylo V. Zn cuvéyetn emt-
Aéyovpe tig dyxvupeg | Al og Tig Aé€eis pe Tig pikpdtepeg TyéG cbppmva pe to kprripto 0.3. Emmiéov,
vrobétovpe 6T VTAPYEL Evag 0pOOYDOVIOE TIVUKOG LETACYTLOTIOUOD LETUED TMV OEUATIKMDY aVaTopOL-
OTAGEMV TOV EE0YOUEVOV ONUAGLOAOYIKAOV aykup®@V kafe TDSM(Xhpog anync) Kot TV aviicTolywy
avomapacTdceny T0v kafoikod DSM(xdpog mpoopiopod) [60, 61, 62]. Yrobétovpe 6L 10 v), € R4
glvar 1o ddvuopo ™ AEENG J-th dykvpag oTov YMdPO T YNG Kot ag € R? givon ) avtiotoyyn avamapd-
GTAGT] TOL POPEN GTO YMDPO TPooplopod. O mivakag petacynuatiopod My € R4 mov mpoBdidet tov
TPAOTO YDOPO GTO TEAELTOIO PAOEL LEG® TNG EMIALGNG TOV aKOAOVOOL TpoPATaTOS PEATIGTOTOINGONG
TEPLOPIGHLOV[63]:

|A] .

%i;lzl | Myeq, — ol |13, st. MM =1 (0.4)
j=

H mpofoin TV S10vuGUATOV TV SLUPOPETIKAOV YDPOV GTOV EVOTOMUEVO YDPO EMTVLYYAVETUL LECH
™mg epapproyng g e&lowong 0.4 og kdBe TDSM. Zvykekpyiéva, dedopnévig pog AEENG kKot k-06Thg
Bepatikig Katavopng = € RY, vrooyilovpe ™V TpoParidpevn avamapdotaon x) € R? ¢ eénc:

JI;C = kak (0-5)

EeKVOVTOG otd TO GUVOAO ELOVYPANIGUEVOY BELATIKAOV SLOVUGUATOV {x;}le v k60e AEEN,
poBaivovpe éva povtého pui&ng Kovovikov Katavopdv pe N cuviotdoss. Avtd 1o frpa Asttovpyet
®¢ EUUEGOG TPOTOC KAUTATUNONG TOL YDPOL TOV BELOTIKAV avVOTapUcTAGE®Y Y10 KéOe AEEN Tpokel-
UEVOL VO KOTOYPAPOVV TLO YPNOLLO VITEP-OEHaTa —EvoTn BerdTtov— To 0ol AVTITPOCOTEVOVY
KOADTEPQ TIG POPETIKEG oNuacies Tovug. Ymobétovpe 6Tt kdbe kavoviky katovoun oynuotilet pio
ONUACIOAOYIKA GUVEKTIKY LOVAJO TOL OVTIGTOLXEL O £va, SPOPETIKO VONLLOL TNG EKAOTOTE AEENC.
311 GUVEXELD, TO KEVTPOELDEG KAOE KAVOVIKNG KOTOVOUNG XPTCILOTOLEITOL G OVTITPOCHOTOG KAbE GL-
VIGTOGOG, 0ONY®VTOG G€ £va VEO oOVOLO efouaivuévav BELOTIKMV SIOVUGHATOV {x;ﬁb}nNzl v k6Oe
AEEM, 6mov ¥ € RY,

0.5.2 XOvoro dgdopévarv opordtntog pe faon Ta copepalopeva

INa vo ektiunBei ) onpocioroyikn opotdtnTo HETOED VoG (EVYap1ov AEEEMV, YPTCLLOTOIOVLE TO
kabiepopévo ovvoro dedopévov Stanford Contextual Word Similarity (SCWS) [49] to omoio amo-
teheltan amd Cevyn Aé€ewv 2003 pe kabopioLéveg GNUOCIOAOYIKES OpotOTNTES. AKOAOVODVTOG TIG
vopueg aEoAdynong mov tpoteivovrot ot PiAtoypagia, yproipnonotodpe Tig petpikég AvgSimC kot
MaxSimC, mpotevopeveg apytkd oto [48].
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0.5.3 ZXvvora oedopévev 1o Mpopinpata ®vokis Ndocag

Tagvopnon Keypévov. Xpnoonomoape 1o 20NewsGroup cuvoro 6e60UEVOY, TOV AmoTEAEITAL
a6 20000 éyypapa. O o10)0G pag gival va ta&vopnoovpe Kabe Eyypaeo oe pio omd tig 20 do-
QOPETIKEC KAAGELG POGIGHEVOL GTO TEPIEXOLEVO TOV.

Avayvopion Mopdaepacnc. Xe avtd 10 mpdPfAnua otoyxevovpe otnv e€okpifwon g Tapdepacns
avapeca og (e0yn TPoTAoE®V HEG® TOL GLVOLOVL dedopévmv g Microsoft [64].

AvomtapooTdcels 6€ ENIMEd0 TPOTACEMV KAl EYYPAPOV.

Agdopévov evog yypaeov N pag epdong D, 6mov wy avtictoryet otn d-100t) AéEn oto D, eEdyovpe
TNV QVOTTOPACTOCT TNG HE TPELS OUPOPETIKOVG TPOTOVG:

|ID| K

1
AvgCp = D] 0 p(kID)at (wa), (0.6)
d=1k=1
Avgp = L il i i=75§c(wdz), (0.7)
Pl K
| D

1 /
MaXCD = ﬁ E Ty (’LUd)
w=t (0.8)

s.t. m = argmax{p(k|D)},
k=1,.. K

omov p(k| D) vrodnidver v mhavotnto tov Bépatog k mov emotpépetor amd v LDA mov déyetan
g gicodo Ty TpoTac/Eyypago D karz) (w,) eivarn TpoPePAnévn GTOV KOWO XHPO AVATAPEGTAO
™g AéEng wy ywo 0 Bépa k. [ v mepintwon tng avoayvapiong tapaepicemy, e&aydyovpe Eva
UOVO SEVLGLLOL YOPAKTNPLOTIK®Y Y10 KABe {evyog TpoTdcewv, cuvdvalovTog T YupaKTNPIOTIKA TV
LEULOVOUEVOV TPOTAGEWMV.

Metd Vv €€0ymyn YOPOKTNPLOTIKAOV, EKTOOEVOVLE EVOV YPUUUIKO TaEtvounTy e xpron dtavu-
opdTev vrootpiEng (SVM) [65] xpnoLLUOTOIOVTOG TO TPOTEVOUEVE GOVOAX dES0UEVAOV EKTTOIOEL-
ong/doKiung Kot yio o 000 TpoPAnpate. AvagEpovpe To KOADTEPO amoTEAECUATA V1o KAOE mepa-
HOTIKY] OLOpOpP®on UETd amd Tn puouion g TopapéTpov mowng Tov SVM 100 0pov GOAALATOG
YPNOYLOTOLDVTAG TIG AvamapaoTdoels AéEemv H00-0100TAcEMY.

0.6 Ilepopotikd amoteréopata & Xvlntnon

0.6.1 Oporwotnra pe faon ta copepalépeva

Ytov Iivaxa 0.5 cvykpivovpe to poviého poc (UTDSM) e Tig avamapaostdoels 6tov Kabokd
x®po (Global-DSM) kot Ti¢ KaAVTEPES 0O ATOWYN EMIO0CNG TPOGEYYIGEIS TOAAATADY SLOUVUCUATOV
Yo 10 TPOPANUO ONUAGIOAOYIKNG OLOtOTNTOG LE Pdon To TAaicto cvpepalopévev. Eival capég ot
OAeg 01 dropopeTikég maparrayég tov UTDSM éxovv kadbtepn amddoon and to global-DSM kot yio
TIG dV0 peTpikég opototnToc. H ypnon wog eviaiog kavovikng katoavounig (UTDSM + GMM (1)) oto
01010 e€opdAivvong tng nebodov mapdyst Topouole anoterécpata pe to global-DSM. Avtd avapé-
vetat kaBmg Kot o1 000 HEB0SOL TaPEYOVV L KEVTPOELONG HOVOIIOVUCUATIKT OVTITPOCOTEVCT| LILOG
AéENG. Ooov agpopd to MaxSimC, 1o povtédo amodidel otabepd vynAdtepn anddoon dtav 1 Aota on-
LOGIOAOYIKAOV ayKupdv e&dryetat pécm g nebdoov pog, avti vo ypnoUYLOTOIoVIE TUYAI0 ETAEYUEVEG
AéEerg ayxvpag (UTDSM Random). [Mopatnpovpe eniong 6t 1 tuyaio aykbipwor ektelel eEAappmg
yepdtepn ond v UTDSM oe oyéom pe v petpikn AvgSimC. Avtd 10 amoTéAECO ETKVPDOVEL
Vv Voot Hag OTL 0L avaToPacTAoELS AEEe®V, Ol omoiec LolpalovTol GUVETEIG KUTAVOLES OLOLO-
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NTOG HETAED SUPOPETIKDV BEUATIKAOV YDPWV, CUVIGTOVV KATAAANAES OHUOGIOAOYIKES AYKDPES TIOV
kaBopilovv Tig avtioToLyicelg HETOED ONUACIOAOYIKDOV SLOVUGLOTIKOV YOPOV.

| M£6odog | AvgSimC | MaxSimC |

Liu et. al(2015)[54] 67.3 68.1
Liu et. al(2015b)[53] 69.5 67.9
Amiri et. al(2016)[66] 70.9 -

Lee et. al(2017)[67] 68.7 67.9
Guo et. al(2018)[68] 69.3 68.2

300-01aotdocic
Global-DSM 67.1 67.1
UTDSM Random 69.1+0.1 | 66.4+0.2
UTDSM 69.6 67.1
UTDSM + GMM (1) 67.4 67.4
UTDSM + GMM (2) 68.4 68.3
UTDSM + GMM (3) 68.9 68.3
500-01aotdocic

Global-DSM 67.6 67.6
UTDSM Random 69.4+0.1 | 66.5+0.3
UTDSM 70.2 68.0
UTDSM + GMM (1) 67.6 67.6
UTDSM + GMM (2) 68.8 68.6
UTDSM + GMM (3) 69.0 68.5

Hivakag 0.5: ZVykpion anddoomng HETAED TOV OOPOPETIKAOV TPOGEYYIGEMY GTO GOVOAO dEOUEVHOV
SCWS, e ypnon g ovoyétiong Spearman. To UTDSM avagépetatl otny tpofoario-
pevn owbepatikn avarapdotaocr, To UTDSM Random avagépetal otnv mepintoon
oL Tuyaieg AéEelg ypnoyomolovvion g dykvpeg kot 1o GMM (c) avtiotolyel oty
e&opdovon péom GMM e ¢ GUVICTOGES.

Emumdéov, mapatnpovpe 6t 1 e€opdioven pécw GMM £€yet dopopeTikn enidopact oTig 600 pe-
tpkég, MaxSimC kot AvgSimC. Xvykekpiévo, 1 AvgSimC amodidel Pe GLVETELD TO YOUUNAOTEPO
aroteréopoto otav 1 egopddloven GMM epappoletal. ATodidovpe avTn T GuUTEPIPOPE o€ ThAvN
OTOAELD TNG TANPOPOPING TOL HOVTEAOV —Leimon Tov aptBpod TV BEHoTIKGOV S10VVCUAT®V— TOV
glvat tkavn vo 001 yNOEL € AMMAELOG XPTOUUNG O AUGIOAOYIKNG TANpoPopiac. Tavtdypova, 1 TEXVIKI
eEopdivvong Beltidvel egaipetikd v anddoor g MaxSimC og 6ieg Tig TBavEG TEpTTOCELS. Ag-
dopévov OTL AT M HETPIKN Elvan o gvaicOnn 611 BopuPddElg avamapacTacElg AEEEmV, aVTO TO
amoTEAEG O Ol VEL OTL M TEYVIKY| LOG LELDVEL TO BOPLPO OV EIGAYETAL GTO GUGTNUE LOG, KPUTOVTOG
ONUACIOA0YIKA PEATIOUEVES EKOOGELC TOV avamapaoTdcemy kGbe AEENG.

2UVoMKd, 1 amdd0GT TOL HOVTELOL HaG elval GUYKPIoLUN Kol GUYVE KOAVTEPT OE GYEoT e GAAD
povtéda Paoet g AvgSimC, yw T1g drebepotikég avanapactdoels oidotacns 500. Emruyydvoope
emiong v kaAvTePN emidoon yia ) petpik] MaxSimC, ypnoylomoidvrag E0UaAVUEVEG OEUATIKES
avaropactdoelg dtaotdcewv 300 1 500 pe 2 1 3 GUVICTMOGES KAVOVIKDV KOTAVOUMY.

0.6.2 IIpopipate ®voiknic N'dooag

Ext6g amd to tumomompuévo kpitipto a&loAdynong g opotoTnTog HeETaly Aécewmv, diepeuvaype
EMIONG TNV ATOTEAEGHOTIKOTITO TOV HOVTEAOD LOG LLOG OE EMIMEDO EYYPAPOV KOl TPOTAGEWDV: TAEIVO-
LUNGOT KEWEVOL KOl OVOYyVAPLOT| TAPOPPACEDV.

To amotehéopata g a&loAdyNoNg GYETIKA te TNV TaSvOUnon KEWEVOL TOPOLGLALOoVTOL GTOV
[Tivaka 0.6. [apatnpodpe 6Tt 10 HovTEAo Hog AELTOVPYEL KOAVTEPA OO TIG LOVOSIOVUGLOTIKES OVOL-
TPOCTACELS GE OAEG TIG LETPIKEG Ko Yiat TIG 6v0 mpooeyyioels (AvgCp, Avgp), Eva 1) xprion Kupiapyov
OepdTov eaivetal va £xel youniotepn anddoon (MaxCp). H dwapopd anddoong peta&d tov kupiop-
YOV KOl TOV LEGOV BELOTOC TPOKVTTEL EMELON TOL BT TOV OVOKOADEON KOV 0 TOV aAyopOpo LDA
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Mé60d0g ‘AKpiBsw Avaximon Fl-okop Evctoyia

LDA 39.7 41.8 38.8 41.8
Global-DSM 62.9 63.3 62.9 63.3
MaxCp 61.9 63.0 62.0 63.0
Avgp 63.5 64.6 63.3 64.3
AvgCp 64.6 65.5 64.5 65.5

Mivakag 0.6: Amoteléopato aloldynong ToEVOUNONG KELLEVOL TOALOTADY KATNYOPLDV.

eivar TOAVOG SLOPOPETIKA 0O TO SLOPOPETIKA BEUATA TOL GLYKEKPYEVOL GUVOLAOL dedopEVDV. G
€K TOVTOV, £VOl HECO UYL S1OVUGUATMVY EMLTUYYAVEL KAOADTEPO OMOTEAEGLLOTA OO TNV ETIAOYT Ola-
voopatov pe faor v vyniotepn mbavotra Bepdtov, ayvomvrag £Tot Bépata Ta omoio Uropel va
£€xouv mapOLOLES TOAVOTNTES Kol £YOVV GTLLOVTIKT GCUUPOAT GTO ATOTEAEGHLAL.

| M£0odog | Akpipsia  Avakinon Fl-okop Evotoyia |

Global-DSM 68.6 69.2 62.0 69.2
MaxCp 69.0 69.3 62.1 69.3
Avgp 67.7 69.4 64.0 69.4
AvgCp 68.8 69.4 62.6 69.4

Mivaxag 0.7: Atoteléopata aEl0AOYNONG GYETIKG LE TNV TPOPANLO aViYVELOTG TOPUPPACEDV.

To amoteAéopato yio To TPOPAN UL avayvdplong topoaepdoemv tapovaialovral otov [Tivoka 0.7.
To Avgp amopépel Ta KOADTEPQ AmOTELECLATA, E101KA o€ peTpioelg F1 mov delyvouv 6Tt o1 drabepoti-
KEG OVOTAPUOTACELS EIVOL ONUAGIOAOYIKE TAOVGLOTEPES OO TIC LOVOOSIOVUGLOTIKEG OVATOPOGTAGELS
(Global-DSM). ITapdro mov epapudlovpe Tig karavouss Bépatog p(k|D) mov e&dyovrar amd LDA
(novTédo emumédov eyypdeov) o€ évo TPOPANUA TOV UTOTEAEITOL OO TPOTAUCELS, Ol PEATIDOEL OF
oY£01 LLE TN HOVOSLOVUGHOTIKES avamapaotdoels epeavifovral eniong otic meputtdoelg AvgCp Kot
MaxCp.

Yvvolikd, to mpotewvouevo poviého UTDSM Eemepvd to povodtovocpatikd poviédo Global-
DSM oo mpofAnua TG onUACIOA0YIKNG opototntag pe Bdon to cupepaldpeva Kot TpoPfAnpota
eneEepynciog PUOIKNG YAMGGOS. ZVYKEKPIUEVO OGOV ApOPA T GNLOGIOAOYIKT OLOOTNTA, 1) TPOGEY-
vion pog eopdivvong Pedtiovel Ta amoteAéopatd pog otn MaxSimC, to onoio egaptdrol Tepiocd-
TEPO 0o T0 BOpLPO, eV emnpedlel eErappmdg T AvgSimC. Zv a£10A0yNnon Yo TPOPANUATO QUGTKTG
YADGGOC, TOPATNPOVLLE OTL GTNV TEPITTM®AN TNE TOEVOUNONS KEWEVOD 01 LEsES PEBO0JOL GLUVOLAC OV
TOV J0VUGUATOV ETITLYYAVOLV KOADTEPO, OTOTEAEGUATO. XTIV OVAYVAPIOT] TAPAPPUCTG, 1] ETIAOYT
TOV SLOVOGHLOTOG LE TNV LYNAOTEPT TOaVOTNTA BEATIOVEL TO OMOTEAEGLOTO OKPIPELAG, EVED Ol VTO-
Aowmeg HEB0SOL AELTOVPYOVV KOADTEPX GE AAAEG LETPNOELS. € OAEG GYEDOV TIG TEPIMTACELS, EKTOG OO
v xp1on e pebddov MaxCp otnyv Ta&vounon KEWEVOV, 01 TOAAATAESG OVOTOPACTAGELG LLOG £XOVV
KOADTEPEG EMOOGELG ATTO TO LOVTELO LLOVIG OVOTOPAGTAGTG.

0.7 Avaivon Cross Domain

Y vt TNV EVOTNTA B0l EKTEAEGOVE UL TOLOTIKT] OVOADOT] TV OTOTEAECUATOV LOG, Bol amelko-
VIGOULLE TO OTOTEAEGLLOTO TOV HOVTEA®V HOG Kot Ba EETAOOVLE TO AVTIKTLTIO TNG TPOPOANG OE Evav
KOO YOPO Y10, GUYKEKPLUEVEG AEEELC.

0.7.1 OntiKomoinomn TS CNRAGLOAOYIKIG SLUKVPAVON G

Ytmv Ewova 0.2 arnewovifovpe Tig Bepaticég avomapactdosls entd AEEEMV TPV KoL PETH TNV
TPOPOAT] TOVG GTOV EVOTMONUEVO YDPO, YPNOLLOTOLOVTOS TV HEB0OO NG aVAALGNG TPMTEHOLGMV
ocuvicToc®v. [lapovoidlovpe emMMTAEOV TIG KOVOVIKES KOTOVOUES TOV OVIIOTOLYOVV GTLG TOAANTAES
SrobepaTikég avamapaotdoels kae AEENG o1 omoieg avTaVaKAOLY TN SIKVUAVOT) TOV VO LLOTOG TOVC.
To kévtpo kabe KoTavoung kabopiletor amd Tov LEGO TG AVTIOTOLYNG KOTAVOT KOL 1] ETLPAVELD TTOV
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KataAapuPavel omd Tov Tivako cuvolakOpavens. Aplotepd, anetkovifovpe t 0éon TV Aééewv Tpv
TNV TPOPOAN TOLE GTOV KOO YMDPO. LTOV YDPO 0T, 01 AEEELS EMOEIKVVOOVY TTAPOLOL0. KAALYN TE-
pLoyng aveEaptnta and v ToAvonuic Tovg. Metd amod Tig avtioTolyioels, PAémovpe oto de&ld OTL M
TEPLOYN| KATAVOUNG Hog AEENG elvar evOEKTIKY Tov Pafpol moAvonpiag tng. ZuyKEKPLUEV, TOPATY-
povpE OTL | SLOKDLLOVOT] TOV OVOTOPUCTAGEDY YIVETOL LEYAADTEPT Y10 TIC TEPUTTOCELS TOADCT| UMV

99 <6y EE 1Y

AeEewv ommg “python”, “java”, “adobe”, mpokelévou vo amrodofovv mhavOTNTEG OTIC SIOUPOPETIKES
€vvoléc Toug. Movoonueg AéEeic 6mmg “snake”, “microsoft” kot “malay”, £x00v GOEMOG UIKPOTEPEC
SLOKVUAVGELG. ZVYKPIVOVTOS TIG dVO SLOPOPETIKEG EIKOVES, UTOPOVUE VL SOVUE OTL TO CNUACIOAOYIKO
€0POG TOVG LETOPAALETOL AVAAOYO LLE TNV TTOAVGM Lo TovG. EmimAéov, Tapatnpovpe 0Tt 01 GNLOGIOAO-
Yikég oyéoels pHetald Tomv AéEemv £xovv amodobel TOAD KaAvTEPH PLETA TNV TPOPOAN TOVG GTOV KOO

SLOVUGHLATIKO YMDPO.

snake
snake

python apple
python malay
adobe
apple java

adobe microsoft

microsoft

malay java

Zypa 0.2: Mo diodidotarn avamopdotacel; —ypnoyoroidvrag tov PCA— mov amewcovilet Tig
avanopaoctdoelg 7 AéEemv mpv (aplotepd) kot peTd (0e€1d) mpoforn twv TDSM otnv
KOO S10VUGLLATIKO XDPO.

0.8 Ilewpopotika Xoprepacpta

Yvvoiikd, n Tpotewvopevn pEBodog Hog yio T dnpovpyio U TOALOTAGV SLOOEUATIKGY OVATOPO-
OTAGE®V TETVYE TO KAADTEPO, ATOTEAEGLOTO Y10 TO Pactkd TpdPANa cvykpiong peboddwv ToALaTADY
dtvuopdtev, coppava pe t PipAoypaeic. Av kot to Oépata 6€ oyxéon He To SIUPOPETIKA VO LLOTOL
TV AEEEWMV OV lval amOAVTO TOVTIGUEVE, 1] dLoONTIKN Hag Tpocéyyion eEopdAivvong Bertimoe ta
aroteréopotd pag. Eva oynua mpocappoostikod GMM mov kabopiler Tov aplfud tov Kavovikov
KOTOVOL®OV SLOPOPETIKA ava AEEN, Ba pmopohioe va elval TO OMOTEAEGLOTIKO KOODG 0 apBudg Tov
VONUAT®V S10PEPEL Y10 SIUPOPETIKES AEEELC.

To wepdpoto og KAaoowd TpofAnpate eUOIKNG YADOCGOS £0e1&ay OTL £vag OmAdC GLUVOVAGUOG
TOV TOAAUTADY SLOVOGUATOV oG PEATIDVEL TNV EMIO0CT GE GUYKPLON UE LOVTELD LLOVIG avOTapd-
otoong. Emmléov, n molotiky avilvon emifefoidvel Ty epunveio Tov HOVTEAOD HOG KOl ETIKVPOVEL
TIG S1POPEC LETOED EVOVYPALUGHEVDV Kot Un vBuypapucpévey ydpov. TEAOg, Teptypdost Le Go-
PNVEL TIG LEAAOVTIKEG KOTEVOVVGELS OTTMG 1 (PO TPOCAPUOGTIKOD OPLOLOV KAVOVIKMY KOTAVOU®DV.

AEgic KAEWOWO
Yroloyiotikny Nevpoemotiun, Babeid Mabnon, Mnyoaviky Madnor, Atovocpotikés Avaropactd-

oelg AéEewv, [Todamiég Alavuopoticéc Avamapaotdoelg Aééewv, Ospatik] Moviehonoinomn, Ene-
Eepyaoio Puokng ['aooag, ['vootikn Aettovpyia & Gvown MAocca
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Chapter 1

Introduction

1.1 Natural Language Representations

Language modelling is the task of predicting the next word in a text given the previous words. It is
probably the simplest language processing task with concrete practical applications such as intelligent
keyboards, email response suggestion [3], spelling autocorrection etc. Unsurprisingly, language mod-
elling has a rich history. Classic approaches are based on n-grams and employ smoothing to deal with
unseen n-grams [4]. More recently, feed-forward neural networks have been replaced with recurrent
neural networks (RNNs) [5] and long short-term memory networks (LSTMs) [70] for language mod-
elling. Many other language models that extend the classic LSTM have been proposed in recent years.
Probably the most remarkable aspect about language modelling is that despite its simplicity, it is core
to many of the later advances in Natural Language Processing and Understanding field:

o Word embeddings/representations: The objective of word2vec is a simplified version of lan-
guage modelling.

e Sequence-to-sequence models: Such models generate an output sequence by predicting one
word at a time.

e Pretrained language models: These methods use representations previously extracted from
language models for transfer learning.

This conversely means that many of the most important recent advances in NLP reduce to a form of
language modelling. Multi-task learning is a general method for sharing parameters between models
that are trained on multiple tasks. In neural networks, this can be done easily by tying the weights of
different layers. Intuitively, multi-task learning encourages the models to learn representations that
are useful for many tasks. This is particularly useful for learning general, low-level representations,
to focus a model’s attention or in settings with limited amounts of training data.

Multi-task learning is now used across a wide range of NLP tasks and leveraging existing or “ar-
tificial” tasks has become a useful tool in the NLP repertoire. Dense vector representations of words
or word embeddings have been used as early as 2003 [23]. The main innovation that was proposed in
[25] was to make the training of these word embeddings more efficient by removing the hidden layer
and approximating the objective. While these changes were simple in nature, they enabled—together
with the efficient word2vec implementation—Ilarge-scale training of word embeddings. Word2vec
comes in two flavours continuous bag-of-words (CBOW) and skip-gram. They differ in their objec-
tive: one predicts the centre word based based on the surrounding words, while the other does the
opposite. While these embeddings are no different conceptually than the ones learned with a feed-
forward neural network, training on a very large corpus enables them to approximate certain relations
between words such as gender, verb tense, and country-capital relations.

While the relations word2vec captured had an intuitive simplicity, later studies showed that there
is nothing inherently special about word2vec: Word embeddings can also be learned via matrix fac-
torization [74, 75] and with proper tuning, classic matrix factorization approaches like SVD and LSA
achieve similar results[76] bridging the theoretical gap between count-based models([77, 38]) and
predict-based (neural network) models. However, due to their performance and computational effi-
ciency predict-based models [22], tend to be mostly used in literature.
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From a computational perspective, word representations aim to facilitate computers to detect as-
pects of meaning in language, as well as to encode this information in a formalistic way that enables
their interpretability by computers. The importance of understanding the semantics of lexical units
is paramount to language comprehension and acquisition, as they constitute the basic components of
human language. Furthermore, polysemy is a linguistic phenomenon commonly found in corpora
that plays a major role in language comprehension. Specifically, the polysemic nature of a word eg.
python could drastically affect its representation, depending on the context it belongs to.

Recently, cognitive experiments seem to indicate that the understanding of these semantics could
be aided by the fundamental cognitive relationships between words [6]. One straightforward impli-
cation of this observation is that a word’s meaning highly depends on the semantic relationships it
shares with other words. Furthermore, recent work by computational neuroscientists and linguists,
have shown that a mapping between cognitive and semantic space is feasible [7, 8, 9, 10].

Some of the applications of NLP that integrate the above information in their systems include:
automatic translation of texts, information retrieval, automatically summarizing text, natural language
generation, question answering, search engines and converting spoken speech into text.

1.2 Cognition & Natural Language

Neural language processing would benefit from a better understanding of human processes: as it has
been said by several researchers recently, traditional machine learning approaches have brought rapid
and important improvements in different natural language processing tasks but the field may have
to face from now on more difficult problems (e.g. discourse planning, argumentative analysis, etc.)
that would benefit from a better understanding of the processes involved in the brain. Additionally,
researchers are again interested in evaluating the relevance of their models according to a cognitive
dimension. Many of the existing computational models attempt to study language tasks under cogni-
tively plausible criteria (such as memory and processing limitations) that humans face. New machine
learning techniques, especially deep learning, bring back to the front scene a new version of neural
networks that seems both more powerful and more sound, from a technical as well as a cognitive
point of view. Last but not least, cognitive science also benefits and sometimes takes inspiration from
computational models.

Language acquisition is another domain where computation models and cognitive sciences have
a fruitful dialogue. To a certain extent, neuroimaging has renewed the study of language by making
it possible to directly observe processes in the brain but for the rest, language is only known through
direct production, i.e. language utterances. Therefore, the study of language acquisition by children
is crucial, since it gives an overview on what vocabulary and structures are mastered first.

The study of people with language pathologies has also attracted a high interest in the last decades,
see for one example among many others[78]. This field can be compared, to a certain extent, to the
research done in language acquisition: the idea is to get an accurate description of the language pro-
duction of people with languages pathologies so as to find what is deficient in their speech and then
propose relevant treatments or relevant measures to help them overcome their difficulties. Addition-
ally cognitive science has of course a long tradition of mapping language deficiencies with specific
areas in the brain [79].

At first sight, language evolution can be seen more as a social process than as a cognitive one.
However, language evolution has to take into account how a group of individuals master a language
and transmit this knowledge to their infants. This is the core of social cognition, that aims at studying
how individual knowledge interacts so as to give birth to social processes. Language evolution can
thus be seen as one of the central topics of social cognition [80, 81, 82, 83].

1.2.1 Semantics and Brain

The study of semantics in the brain is a branch of psycholinguistics that incorporates the understanding
of semantics and the neurological structures that are involved. It attempts to answer the unanswered
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question of “how objects and concepts are represented and processed in the human brain[11]. This
field of study has received an enormous amount of research because in essence, semantics is what al-
lows us to verbalize and express ourselves about the people, places, and things in our lives. It is essen-
tial to human communication and exists within all human beings across languages. Although widely
studied, understanding the neurological side of semantics is highly controversial. Researchers agree
that the inferior frontal, inferior parietal , and temporal cortex are all involved in processing semantic
memory however the exact involvement of the specific areas is not necessarily agreed upon [84].

1.2.2 Motivation & Challenges

Various studies have been carried out to explore brain encoding and decoding mechanisms when a
stimulus is present, as detailed next. For visual stimuli, studies have shown that is feasible to discrim-
inate and reconstruct images using patterns of neural activity, mainly found in the visual cortex [12, 13,
14, 15, 16], the part of brain responsible for visual information processing. Other works have demon-
strated the relationship between cognitive perception and speech [17, 18]. Regarding textual stimuli,
researchers have shown distributed semantic maps of words are present in our brains [10, 29]. Lexical
semantics are based on the assumption that similar words appear in similar contexts [19]. Based on
that assumption, two different approaches for building semantic models have been proposed. The
first approach is to encode word semantics, by applying dimensionality reduction of context-word
occurrence matrix which was computed using large corpora [20, 21]. The second approach replaces
thse “counting” by predictive models [22] based on neural networks [23, 24, 25, 26, 27]. Counting
models calculate and weight context vectors, while predictive models learn word vectors by guessing
the context in which these words tend to appear.

Linguistic resources have helped neuroscientists map semantics onto the brain. This thesis at-
tempts to answer whether brain and corpus-based representations of semantics also complementary.
The answers to such question bring new insights into the role that brain and corpus data can play in
the study of semantics.

In pursuance of enriching such lexical semantic models with cognitive information, as well as
discovering the cognitive representation of word semantics, a number of studies have attempted to ex-
amine the mapping between semantic representation of computational and cognitive models. In prior
work, it has been shown that semantic of words are related to activation potentials in regions of the
brain and that decoding between neural activations and semantic content [7, 28, 29, 30, 31] is possible.
Furthermore, neural activations are shown to have predictive power with respect to semantics at the
word [7, 8] and sentence [32, 33] level. Computational studies that aim to explore the influence of
neural activations in word representations have shown that by incorporating neural activations when
training lexical semantic models can improve their generalization ability despite the small amount of
neural activation data used [34, 35]. These works show that a strong relationship exists between com-
putational semantic models and neural representations. However, it remains to be seen how cognitive
semantic representations, including localized neural activation patterns can help improve the perfor-
mance of computational semantic models, especially for complicated classification and recognition
tasks.

Motivated by the aforementioned studies that show correlation between localized neural activa-
tions and word semantics, we propose a computational model for semantic similarity that utilizes pre-
dicted neural activations learned from a small set of concrete nouns. The proposed model is applied
to a variety of natural language processing tasks. The neural activation prediction model used here for
lexical expansion is that proposed in [7]. In our list of experiments, we first compare the performance
of the proposed neural activation model for a concrete noun semantic similarity task and show that
for certain word pairs it outperforms the state-of-the-art. Then we evaluate the performance of neural
activation vectors for a word classification, sensory modality (sense) classification and textual entail-
ment task. The fusion of neural and traditional word embedding vectors are shown to outperform the
state-of-the-art. To our knowledge, this is the first time brain imaging data are successfully used for
the aforementioned tasks.
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Figure 1.1: The two different spaces of neural and word representations that we are trying to bridge
in the Chapter 4. Computational integration of brain information in word representations
could help us encode word semantics better.

1.3 Multiple Representations

Most word embedding models typically represent each word using a single vector, which makes these
models in discriminative for ubiquitous homonymy and polysemy. In order to enhance discrimina-
tiveness, we employ latent topic models to assign topics for each word in the text corpus, and learn
topical word embeddings(TWE) based on both words and their topics. In this way, contextual word
embeddings can be flexibly obtained to measure contextual word similarity. We can also build doc-
ument representations, which are more expressive than some widely-used document models such as
latent topic models. In the experiments, we evaiuate the TWE models on two tasks, contextual word
similarity and text classification. The experimental results show that our models outperform typi-
cal word em-bedding models including the multi-prototype version on contextual word similarity,
and also exceed latent topic models and other representative document models on text classification.
Most word embedding methods assume each word preserves a single vector, which is problematic
due to homonymy and polysemy. Multi-prototype vector space models [48] were proposed to cluster
contexts of a word into groups, then generate a distinct prototype vector for each cluster. Following
this idea, proposed multi-prototype word embed-dings based on neural language models [23]. Despite
of their usefulness, multi-prototype word embed-dings face several challenges:

e These models generate multi-prototype vectors for each word in isolation, complicated corre-
lations among words as well as their con-texts.

e In multi-prototype setting, contexts of a word are divided into clusters with no overlaps. In
reality, a word’s several senses may correlate with each other, and there is not clear semantic
boundary between them

1.3.1 Cross Topic Semantics

Recent approaches that produce multiple distributed representations per word make use of topic mod-
eling techniques as discussed in Chapter 2. Current word representation learning models encode the
semantic and syntactic information of words adopting the distributional hypothesis [19]. Those ap-
proaches are ubiquitous in Natural Language Processing (NLP), achieving impressive results in tasks
such as information retrieval [85], sentiment analysis [86] and machine translation [66, 87]. However,
such models learn single point representations, which cannot capture the distinct meanings of polyse-
mous words (e.g., cancer or view). This leads to conflated word representations of diverse contextual
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semantics. Thus, the creation of multi-sense embeddings, which encode different word meanings in
the semantic space can help us to improve natural language understanding.

Employing multiple embeddings can improve performance in downstream NLP tasks, such as
part-of-speech tagging, semantic relation identification [51] and machine translation [60]. Distribu-
tional Semantic Models (DSMs) with multiple representations per word have been proposed in the
literature, based on clustering local contexts of individual words [48, 52, 50] and on usage of exter-
nal lexical resources [88, 89]. Furthermore, alternative approaches were proposed which associated
different word embeddings with different topics [90, 53, 54].

1.3.2 Motivation & Challenges

Unsupervised models for learning multiple embeddings rely on locally clustering the contexts for each
individual word [48, 49, 50, 51, 52]. This locality assumption ignores complicated correlations among
words, that is with their contexts. Furthermore, contexts are clustered without overlaps which is not so
accurate as several meanings may correlate with each other. The topic based approaches do not model
clearly topic and word interactions [53] or make static assumption for such relationships [54]. Other
relevant approaches that utilize topic-based corpora, do not perform both the necessary alignment of
word embedding models trained in different topic spaces and their sense adaptation yielding evaluation
results not directly comparable to the standard evaluation methods in contextual similarity task [90].
Supervised approaches[56, 57, 88, 89], rely on external resources and lexicons. Consequently, they
are restricted to languages where such lexical resources exist, depend on the lexical coverage and
quality of such resource and cannot capture the semantic shift of words over time [91].

With the proposed research, we intend to explore methods for creating multiple representations of
words in different topic spaces. In particular, we propose a novel approach for learning cross-topic
word embeddings, by employing weakly supervised or unsupervised methods. As a second step,
we aim to investigate methods for aligning cross-topic word vectors, by grouping them together into
sense clusters, in order to obtain smoothed word sense representations, thus reducing the noise from
the sparse training data. Finally, the aforementioned approach is totally unsupervised depending only
on the quality and diversity of the initial corpus.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Note that each chapter can be considered self-
contained in terms of notation but methods, experiments and conclusions may be drawn from the
results of the former.

e Chapter 2 outlines the machine learning background theory to follow the methods and the con-
tent of the present thesis. Specifically, a general introduction in machine learning is presented
explaining the learning process. Then, traditional classification models which are used in this
work are explained. After the traditional models, neural networks and especially recurrent neu-
ral networks (RNNs), long short-term memory units (LSTMs) and attention mechanism are
described. Finally, we describe two major dimensionality reduction methods.

e Chapter 3 presents the natural language processing background needed to understand this the-
sis. After briefly presenting the basic hypothesis between the vast majority of language rep-
resentations models [19], the most popular single representation models are presented. Then,
we briefly discuss about multiple representations models. Next, we extensively explain the
topic modelling algorithm we used in this work. Moreover, we present some previous work
on transformation between different spaces. Finally, the needed connection between brain and
semantics is presented.

e Chapter 4 includes research work involved the computational examination of brain represen-
tations (fMRI) and whether they can be combined along with current word embeddings. We
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used an already proposed approach to predict neural activations—intensity values of voxels of
an fMRI image—for a given word. Next, our proposal of a similarity model which utilizes neu-
ral activations showed that neural activations differentiate from word embeddings especially in
highly similar and dissimilar words. In addition, a simple fusion schema of neural activations
along with word embeddings in various NLP tasks (taxonomy creation, human sense classifica-
tion, textual entailment) increased performance in both of the cases of traditional and “modern”
ML (clustering, neural networks) models.

Chapter 5 Traditional DSMs conflate multiple word senses in one representation. On the other
hand, TDSMs incorporate the assumption that the meaning of a word changes in different topic
domains. We focus on alignment of word embeddings from different topic-specific spaces to
a common space by hypothesizing that monosemous words preserve their relative distances.
Preliminary contextual semantic similarity experimentation has shown that topic-based repre-
sentations fusion improves current results.

Chapter 6 includes conclusions inferred from the thesis and outlines future directions that could
be followed.



Chapter 2

Machine Learning Background

2.1 Notation

We denote real, integer and natural numbers as R, Z, N, respectively. Scalars are represented by no-
boldface letters, vectors appear in boldface lowercase letters and matrices are indicated by boldface
uppercase letters. All vectors are assumed to be column vectors unless they are explicitly defined

as row vectors. For a vectorz € R”, ||zy = Y- |2 is its £1 norm and ||z[js = /> 1" 22 is
its {5 norm, where z; is the ith element of z. By A € R™*™ we denote a real-valued matrix with n

rows and m columns. Additionally, the jth column of the matrix A and its entry at ¢th row and jth
column are referenced as A; and A;;, respectively. The trace of the matrix A appears as tr(A) and its

Frobenious norm as ||A||[r =/>i"; >/~ a;. The square identity matrix with n rows is denoted

as I, € R™*", Finally, X(*) refers to the estimate of a variable X at the kth iteration of an algorithm.
We define the conditional probability of the event €2; given that the event {25 has already happened
with: p(Q|Q'). We denote with a||b the concatenation of vectors a and b. We define the element-wise
multiplication for two vectors a and b with a ® b.For the matrices A € R™*", b € R™*"" we indicate
their Hadamard(element-wise) product as A ® B.

2.2 Machine Learning Introduction

Machine learning (ML) is the scientific field that can be seen as a subset of Artificial Intelligence(Al)
and studies algorithms and statistical models that computer systems use to effectively perform a spe-
cific task without using explicit instructions, relying on patterns and inference instead. Machine learn-
ing algorithms are mathematical algorithms that are based on sample data, known as “training data”,
in order to make predictions in a desired range of values. In general, they seek to provide knowledge
to computers through data, observations and enable them to interact with the real world. That acquired
knowledge allows computers to correctly generalize to new settings without human intervention.

ML tasks can be categorized in several broad categories. These categories are mainly discrimi-
nated by the way learning is achieved and how the system receives feedback during the learning pro-
cedure is given to the system developed. Two of the most widely adopted ML methods are supervised
learning which uses labelled output data in order to refine the systems knowledge and unsupervised
learning which exploits a set of data which contains only inputs and no desired output labels to learn
their structure.

However, there are some other categories such as reinforcement learning, active learning —which
are not part of the thesis—, semi-supervised and weakly supervised learning which make use of labelled
output data in smaller parts of the learning process.

2.2.1 Supervised Learning

Supervised learning is the machine learning task of learning a function that maps an input to an output
based on example input-output pairs. A supervised learning algorithm learns a mapping function from
the training data and the learned function allows for the algorithm to correctly determine the class
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labels for unseen instances. Supervised learning as the name indicates the presence of a supervisor
as a teacher. Basically supervised learning is a learning in which we teach or train the machine using
data which is well labeled that means some data is already tagged with the correct answer. Supervised
learning problems can be categorized into regression and classification problems.

Classification is when the output space is discrete i.e. the output variable is a category. Regression
is when the output space is continuous i.e. the output variable is a real value.

2.2.2 Unsupervised Learning

In other machine learning problems, the training data consists of a set of input vectors without any
corresponding target values. The goal for unsupervised learning is to model the underlying structure
or distribution in the data in order to learn more about the data.These are called unsupervised learning
because unlike supervised learning above there is no correct answers and there is no teacher. It could
be contrasted with supervised learning by saying that whereas supervised learning intends to infer
a conditional probability distribution conditioned on the labels of input data, unsupervised learning
intends to infer an a priori probability distribution. One subset of unuspervised learning is clustering.
A clustering problem is where you want to discover the inherent groupings in the data. Another class
of unsupervised tasks is association problems. In association problems we want to discover rules is
that describe large portions of your data without the existence of labels.

2.3 Traditional Classification Methods

Any classification method uses a set of features or parameters to characterize each object, where these
features should be relevant to the task at hand. We consider here methods for supervised classification
as we have defined it in section. There are two phases to constructing a classifier. In the training phase,
the training set is used to decide how the parameters ought to be weighted and combined in order to
separate the various classes of objects. In the testing phase, the weights determined in the training set
are applied to a set of objects that do not have known classes in order to determine what their classes
are likely to be.

If a problem has only a few (two or three) important parameters, then classification is usually an
easy problem. For example, with two parameters one can often simply make a scatter-plot of the fea-
ture values and can determine graphically how to divide the plane into homogeneous regions where
the objects are of the same classes. The classification problem becomes very hard, though, when there
are many parameters to consider. Not only is the resulting high-dimensional space difficult to visual-
ize, but there are so many different combinations of parameters that techniques based on exhaustive
searches of the parameter space rapidly become computationally infeasible. Practical methods for
classification always involve a heuristic approach intended to find a “good-enough” solution to the
optimization problem.

2.3.1 Linear Regression (LR)

In statistics, linear regression is a linear approach to modelling the relationship between a dependent
variable and one or more independent variables. The case of one dependent variable is called sim-
ple linear regression while if more than one dependent variables exist, the process is called multiple
linear regression. This term is distinct from multivariate linear regression, where multiple correlated
dependent variables are predicted, rather than a single scalar variable.

In linear regression, the relationships are modeled using linear predictor functions whose unknown
model parameters are estimated from the data. Such models are called linear models. Simple linear
regression estimates exactly how much the dependent variable y will change when the independent
variable x changes by a certain amount. With regression, we are trying to predict the y variable from
x using a linear relationship (i.e., a line):

y="bo+bix (2.1)
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where by is known as the intercept (or constant), and the b; as the slope for x. The machine learning
community tends to use other terms, calling Y the target and X a feature vector. Specifically for the
case of multiple linear regression let:

1 11 ... T1k 1 bl
1 21 ... ok Y2 b2

X = 1 x31 ... x3 Y = Y3 ,b= b3 (22)
1 Zp1 oo Tk LYn _bk_

According to the above notation, the linear regression model can be written in the form:
y=Xb (2.3)
and b coefficients can be estimated as

b = argmin ||y — bX |3 (2.4)
b

using that minimizes the Sum of Squared Errors (SSE). Tikhonov regularization, named for Andrey
Tikhonov, is the most commonly used method of regularization of ill-posed problems. In statistics, the
method is known as Ridge regression, in machine learning it is known as weight decay. Ridge Regres-
sion is a remedial measure taken to alleviate multicollinearity amonst regression predictor variables
in a model. Often predictor variables used in a regression are highly correlated. When they are, the
regression coefficient of any one variable depend on which other predictor variables are included in
the model, and which ones are left out. Ridge regression adds a small bias factor to the variables in
order to alleviate this problem. In that case the b coefficients can be estimated as:

bridoe = argbmin [ly = bX |13 + Allbl13 (2.5)

where y € R”, x € R"*P. Here, A\ > 0 is a tuning parameter for controlling the strength of the
penalty. When A = 0, we minimize only the loss which may lead to overfitting and when A\ = oo the
coefficients are zeroed which leads to underfitting.

2.3.2 Support Vector Machines (SVMs)

In many machine learning problems feature vectors of different classes may be not linearly separable
in the original space they live in. Presumably, one cannot easily find a hyperplane of the input feature
space serving as a classification boundary for data belonging to each class of the training set. For
this reason, it was proposed that the original finite-dimensional space be mapped into a much higher-
dimensional space, presumably making the separation easier in that space [92].

SVMs are trying to find maximum-margin hyperplanes in order to create these classification
boundaries between the vectors of each class as it is depicted in Figure. Concretely, let a train-

ing set comprises N input vectors a1, ..., xy with corresponding target values yi, ..., yy where
Y; € {—1, 1}.
We are given [ training examples x;,y;, @ = 1,--- ,1, where each example z; € R?), and a class

label with one of two values (y; € {—1,1}). Now, all hyperplanes in R? are parameterized by a vector
(w), and a constant (b), expressed in the equation:

w-x+b=0 (2.6)
Given such a hyperplane (w,b) that separates the data, this gives the function
f(x) = sign(w-x +b) (2.7)
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Figure 2.1: Example of binary classification of two linearly separable classes where each main pa-
rameter is explicitly indicated.

which correctly classifies the training data and other data it hasn’t seen yet. So we define the canonical
hyperplane to be that which separates the data from the hyperplane by a “distance” of at least! 1. That
is, we consider those that satisfy:

yi(xi-w+b) >1 Vi (2.8)

To obtain the geometric distance from the hyperplane to a data point, we must normalize by the mag-
nitude of W. This distance is simply:

yi(Xi - W+ b) 1
[wi  —lwl

d((w, b, xi> - (2.9)

Intuitively, we want the hyperplane that maximizes the geometric distance to the closest data
points.

From the equation we see this is accomplished by minimizing ||w|| (subject to the distance con-
straints). The main method of doing this is with Lagrange multipliers. We can define the matrix
(H)ij = yiyj(X; - X;), and introduce more compact notation. The problem is eventually transformed
into:

minimize: W(a) = —a’1+ Ja"Ha (2.10)
subject to: aly=0 (2.11)
0<ac<C1 (2.12)

where «fis the vector of [ non-negative Lagrange multipliers to be determined, and C'is a regularization
term for configuring the penalty term of wrongly classified instances. In addition, from the derivation

! In fact, we require that at least one example on both sides has a distance of exactly 1. Thus, for a given hyperplane, the
scaling (the ) is implicitly set.
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of these equations, it was seen that the optimal hyperplane can be written as:

W= iy (2.13)

The solution of constrained equation system(2.10, 2.11, 2.12) is given by Lagrange multipliers
[93].

When a data set is not linearly separable, doesn’t mean there isn’t some other concise way to
separate the data. To do this, we define a mapping z = ¢(x) that transforms the d dimensional input
vector x into a (usually higher) d’ dimensional vector z.

Given a mapping z = ¢(x), to set up our new optimization problem, we simply replace all oc-
curences of x with ¢(x). Our problem ( eq. 2.10) becomes:

minimize: W(a) = —a’1+ Ja"Ha
with (H);; = vy, (¢(X;) - ¢(x;)) Then eq. 2.13 would be

W= Z i P(X;)

Any time a ¢(x,) appears, it is always in a dot product with some other ¢(xp). That is, if we knew
the formula ( kernel) for the dot product in the higher dimensional feature space,

K (Xa, Xp) = ¢(Xa) - &(Xp) (2.14)

The matrix in our optimization would simply be (H);; = v;y; (K (X;,X;)). And our classifier f(x) =
sign(Zi ;i (K (x4, X)) + b>. We can easily extend the previous formulation of binary decision

SVMs in multi-class problems by simply training separate binary classifiers for all the classes available
in the training data and choose the one with the highest confidence.

2.3.3 Clustering

Clustering is the task of dividing the population or data points into a number of groups such that data
points in the same groups are more similar to other data points in the same group and dissimilar to
the data points in other groups. It is basically a collection of objects on the basis of similarity and
dissimilarity between them.

Figure 2.2: A clustering example.
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Spectral Clustering

In spectral clustering, the data points are treated as nodes of a graph. Thus, clustering is treated as
a graph partitioning problem. The nodes are then mapped to a low-dimensional space that can be
easily segregated to form clusters. An important point to note is that no assumption is made about
the shape/form of the clusters. Given an enumerated set of data points, the similarity matrix—which
is symmetric— defined as A, where A;; > 0 represents a measure of the similarity between data
points with indices ¢ and j. The general approach to spectral clustering is to use a standard clustering
method on relevant eigenvectors of a Laplacian matrix of A. There are many different ways to define
a Laplacian which have different mathematical interpretations, and so the clustering will also have
different interpretations. Next, we describe a widely adopted approach by [37]. Given a dataset of n
points z1, ...z, in R? we form the affinity matrix A € R™ x n as:

Ay = e llsimsill/2® 4, — g (2.15)

Here, the scaling parameter o2 controls how rapidly the affinity A;; decreases with the distance be-

tween x; and x;. Its value is determined we simply search over as the one that gives the tightest
(smallest distortion) clusters as described in [37].

L™ =1 - D2ADTY? Dy =" Ay (2.16)
j

Then we find ey, eg, ..., ek, the k largest eigenvectors of L, form the matrix E = [ejeq, ...ex] €
R,,:x where e¢; € R™ and normalize each row of E to have unit length. Treating each row of F as a
point in R¥, cluster them into % clusters via k-means or any other algorithm. As a final step we assign
the original point x; to cluster j if and only if row ¢ of the matrix E was assigned to cluster j.

Gaussian Mixture Model (GMM)

GMM is a probabilistic model coming from the mathematical field of statistics [94]. In this approach
we describe each cluster by its centroid (mean), covariance matrix, and the size of the cluster. Rather
than identifying clusters by “nearest” centroids, we fit a set of Gaussians to the data. And we estimate
Gaussian distribution parameters such as mean and Variance for each cluster and weight of a cluster.
After learning the parameters for each data point we can calculate the probabilities of it belonging to
each of the clusters.

So mathematically we can define Gaussian mixture model as mixture of Gaussian distributions.
It is based on multi-variant normal distributions, which have n-dimensional random variables as de-
scribed in 2.17.

f(X) = 41 6_%(X—N)TZ_1(X—#) (2.17)
(2m) 5112

Equation 2.17 use the random variable X, the expectation 1, the variance o and the variance
matrix X respectively. A GMM itself is constructed from weighted sums of N gaussian densities as
in 2.18.

N
PN =Y wig(x|m, =) (2.18)
i=1
with
r=(x1,...,Tpn) d-dimensional data vector
w=(w,...,wN) mixture weights
g(x|pmi, i), ..., N gaussian components
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The mixture weights have to satisfy the constraint Zf\; L w; = 1. Each of the components is a
multi-variant gaussian function as described in 2.19.

1 1 Iy—1
g(x|pi, 3i) = WWWP{—Q(?C—M) % (95—/%)} (2.19)
A complete GMM can be described by its parameters A = {w, p, ¥}. Typically a GMM is trained
by the Expectation-Maximization (EM) algorithm [95]. This algorithm is used to iteratively apply
the Maximum-Likelihood estimation of the model parameters which tries to find the parameters, that
maximize the likelihood of a GMM for a given training data with N datapoints. The GMM likelihood

is typically described as (assuming an independence between the training vectors X = {z;,...,zn}):
N
p(X|N) = [] o)) (2.20)
j=1

As a direct maximization is not possible because of the non-linearity of the 2.20, the EM tries to
iteratively estimate new model parameters \ based on a given model A such that p(X|\) > p(X|)).
One iteration step itself is typically split into the E- and M-step. In terms of GMM, during the E-step
the probabilities of the generation of a datum z; by the component ¢ are computed. These probabilities
are used to calculate the amount of datapoints assigned to a component by n; = Z;V: 1 Dji- In the M-
step the new parameters are calculated by

pi = YL B 2.21)
B= L), B (2.22)
w; = n (2.23)

These steps are repeated until a convergence threshold is reached.

2.4 Neural Networks

Deep learning is an artificial intelligence function that imitates the workings of the human brain in
processing data and creating patterns for use in decision making. Deep learning is a subset of machine
learning in artificial intelligence (Al) that has networks capable of learning unsupervised from data
that is unstructured or unlabeled. Also known as deep neural learning or deep neural network. These
techniques have enabled significant progress in the fields of sound and image processing, including
facial recognition, speech recognition, computer vision, automated language processing, text classi-
fication. An Artificial Neural Network (ANN) is a biologically inspired computational model that is
patterned after the network of neurons present in the human brain. The area of ANNs has originally
been inspired by the goal of modeling biological neural systems, but has since diverged and become
a matter of engineering and achieving good results in Machine Learning tasks. The basic computa-
tional unit of the brain is a neuron. Each neuron receives input signals from its dendrites and produces
output signals along its (single) axon. Its axon connects via synapses to dendrites of other neurons.
The dendrites carry the signal to the cell body where they all get summed. If the final sum is above
a certain threshold, the neuron can fire, sending a spike along its axon. In the computational model,
we assume that only the frequency of the firing communicates information. We thus model the firing
rate of the neuron with an activation function f—usually sigmoid function ¢ in neural networks—
, which represents the frequency of the spikes along the axon. In pursuance of learning complex
non-linear functions, architectures that combine several artificial neurons have been designed and are
called Multi-Layer Perceptrons (MLPs). Instead of MLPs, Feed-Forward Neural Networks (FFNNs)
have been implemented, where each neuron connects with all neurons of the previous layer and there
are no connections between the neurons of the same layer.
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Figure 2.3: A three-layer Neural Network which was taken from [69]. It contains three inputs, one
hidden layers of four neurons and one output layer with two outputs.

Each neural network is composed of an input layer, one or more hidden layer(s) and an output
layer as depicted in Figure 2.3. Another basic component of neural networks is activation function
which decides whether a neuron should be activated or not by introducing non-linearities to its out-
put. Examples of such functions is sigmoid, tanh, ReLU and leaky-ReLU. The objective of a neural
network is to minimize Equation 2.24.

However, the problem of overfitting arises when we have such an expressive model. We do not
just fit the underlying function, but we in fact fit the noise as well. It naturally results in a model that
does not generalize well on test data. Regularization is a way to mitigate this effect. To solve this
problem we restrict the form of the solution. Specifically, the loss function takes the following form:

~

N
© = argmin £(6) = argmin % Z L(f(x;0),y:) + AR(6). (2.24)
o o i=1

A is a value that has to be set manually, based on the classification performance on a development
set (called hyperparameter). The regularizers R measure the norms of the parameter matrices and opt
for solutions with low norms. Common norms are Ly [96] and Ls. Another effective technique for
preventing overfitting is dropout [97, 98].

Finally, to train the model, we need to solve the optimization problem in Equation 2.24. A com-
mon solution is to use Stochastic Gradient Descent (SGD) [99]. A number of alternate optimization
algorithms have been introduced to ensure convergence. Currently, optimization techniques with au-
tomatic regulation of the learning rate are used such as Adagrad [100], Adadelta [101] and Adam
[102]. To minimize the cost function of a given neural network using the optimal set of values for 6 ,
we need to compute the gradient. Efficient gradient calculation was introduced with backpropagation
algorithm [103, 104]. Backpropagation methodically computes the derivatives of a complex expres-
sion using the chain-rule, while caching intermediary results. The gradients are indicative of reaching
the minimum of the loss which is neural networks training objective.

2.4.1 Recurrent Neural Networks (RNNs)

A recurrent neural network (RNN) is a class of artificial neural network where connections between
nodes form a directed graph along a temporal sequence. The core idea behind RNNSs is to process
information sequentially. In a traditional neural network we assume inputs and outputs are independent
of each other. They are called recurrent because they perform the same task for every element of
a sequence, depending the output on previous inputs. Thus, they demonstrate the ability to have
a “memory” which captures the information calculated so far. They are particularly useful when
modeling audio and text modalities where the underlying time dependencies are inherent in the nature
of the input data [105].
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Figure 2.5: LSTM: Learn long term dependencies by asserting control over what goes in and out of
memory cells[70].

As it can be observed from Figure 2.4, RNNs have nodes organized into successive “layers”.
Given the input wti\io where NV is the length of the input sequence, processes every input vector at
time step z; from input sequence and outputs h; (hidden state) and forwards both to the next step.
Formally, at each time step ¢, the equations that describe the function of the RNN are:

hi = qWanay + Whphi—1 + by)
yr = r(Whyhe + by)

where y; is the output vector at time step ¢, by, is the bias for h, b, is the bias for y and ¢, r are
the activation functions for = and h respectively. Finally there are three parameter matrices who are
notated as Wy, (input-to-hidden weights), W}, (hidden-to-hidden), and W}, (hidden-to-output).

2.4.2 Long Short Term Memory (LSTM) unit

Theoretically, RNNs are able to model arbitrarily long dependences between the input data. However,
because of the nature the training algorithm for neural networks—backpropagation—the long-term de-
pendencies of the input sequence yield the problem of vanishing or exploding gradients. Precisely,
the recurrent topology of the network which implies the computation of the gradient and its flow over
multiple timesteps gradients vanish or explode due to the finite-precision calculations when the error
is tried to be propagated backwards. LSTMs [106] is one way to tackle this problem. The core func-
tionality which controls the magnitude of gradients is its forget gate. In Figure 2.5 the block diagram
of an LSTM cell is displayed.

The core components of the LSTM architrecture are the forget,input,output gates. Forget gate
controls the informational flow from the networks memory. Intuitively, determines the portion of the
information to be kept. Input gate controls the informational flow for the input vector x; at the current
timestep. The output gate determines the final activation of the cell h; at the current timestep from its
current precomputed state ¢;. Formally, given a sequence x1, ..., z,, of vectors of an input sequence,

49



with inputs h;_; and ¢;—1, hy and ¢; for x; are computed as follows:

iy = tanh(Wyzy + Whihi—1 + b;)
Jt = o(Wajzy + Whihi—1 + bj)
ft = c(Wypzy + Wiphi—1 + by)
ot = 0(Waoxy + Whohi—1 + o)
= fit ®@c—1+ 1t @ Ji

hy = tanh(¢;) ® oy

Forget gate(f;) This gate decides the proportion of the information which should be discarded by
the use of the sigmoid function. In this way, the output will be a number between zero and one
which the former corresponds to forget the input of the previous activation. In contrast, a value
of 1 in this gate represents that the information of the previous activation h;—1 alongside with
the information from the current input vector x; would be fully considered for the computation
of the state of this LSTM.

Input gate (¢;) The input gate controls the information which will flow from the activation of the
previous timestep h;-; alongside with the information from the current input vector x; when
we are trying to update the current state weights.

Cell state (c;) To calculate the updates on for the current state we are adding the information which
has been controlled by the aforementioned gates (input and forget gates). First, the cell state
is pointwise multiplied by the forget vector, an operation which decides the values that will be
updated. Next, the output from the input gate is pointwise added.

Output gate (0;) In order to compute the output at the current timestep ¢, we need to combine the
precomputed state vector ¢; after a nonlinear function tanh(-) is applied as well as information
from the input vector and the activation from the previous timestep at the output gate multi-
plier.The output gate decides what the next hidden state should be. The new cell state and the
new hidden is then carried over to the next time step.

2.4.3 Bidirectional LSTM

As mentioned above, RNNs capture information about the sequential data they have seen until time
step ¢ and encode it in their hidden state. However, it is also possible to acquire more information by
reading a given sequence backwards, in order to make more accurate predictions. So, a bi-directional
RNN operations are described next.

We encode the input sequence from the beginning to the end (forward RNN) and also in reverse
(backward RNN). We then combine the hidden states of the two RNN layers in order to find the hidden
state for each time step. Specifically, we separately compute the hidden state of the forward RNN ﬁt
at time step ¢ as well as the corresponding hidden state of the backward RNN E and concatenate them
in order to compute the final hidden state at each timestep. To this end, the hidden state at time step ¢
is simply the concatenation of the two vectors:

—
he = hill B rs
The same applies for all the 7" + 1 time steps of the input sequence.

2.4.4 Attention Mechanism

The basic idea behind attention is that not all vectors in a given sequence contribute to the same degree
to the meaning that is expressed in the overall input. So, the model should not use all vectors equally
to make a prediction, but focus on the parts of the input that contain the most relevant information
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for a given task. To implement this approach, an attention mechanism [70, 107] can be used in order
to find the relative importance of each input vector of a sequence. To amplify the contribution of the
most informative vectors, we assign a weight a; to the hidden step that corresponds to each vector h;.
We compute the fixed representation r of the whole input sequence, as the weighted sum of all hidden
states.

e; = tanh(Wph; +by), e; € [-1,1] (2.25)

T
%:4;@&24ﬂ Y a=1 (2.26)
> expler) i

T

r=3"ah; (2.27)

=1

where W}, and by, are the attention layer’s weights. A simple visualization of the mechanism is depicted
in Figure 2.6.

aq a, as ay
hy h, hs hy
i i I i
RNN —| RNN —{ RNN |— ...—| RNN
i i i i
X1 X2 X3 XN

Figure 2.6: A high-level image of an RNN with attention.

2.5 Dimensionality Reduction Methods

Dimensionality reduction is the process of reducing the number of random variables under considera-
tion, by obtaining a set of principal variables and can be categorized into feature selection and feature
extraction. The first approaches try to find a subset of the original variables while the latter transforms
the data in the high-dimensional space to a space of fewer dimensions. It can help by removing multi-
collinearity which improves the interpretation of the parameters of the machine learning model, data
may become easier to visualize when reduced to very low dimensions such as 2D or 3D (especially in
tasks we are interested in create representations of data) and also avoids the curse of dimensionality.

2.5.1 Principal Components Analysis

Principal component analysis can be used to analyze the structure of a data set or allow the represen-
tation of the data in a lower dimensional dataset (as well as many other applications).

Let {Z;} be a set of NV column vectors of dimension D. Define the scatter matrix S, of the data
set as

N
Se = > (& — fix) (& — fiz)"
=1
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where ji,. is the mean of the dataset
N
ﬁ:r: = N z; fi
1=

The d largest principle components are the eigenvectors w; corresponding to the d largest eigen-
values. d can be chosen arbitrarily with d < D. The eigenvectors of S can usually be found by using
singular value decomposition. The dominant eigenvectors describe the main directions of variation
of the data. The d eigenvectors can also be used to project the data into a d dimensional space. Define

W = [fi1, fiz, - - -, fid]
The projection of vector ¥ is ¥ = WL Z. The corresponding scatter matrix S, of the vectors {#;} is:
S, = WIS, W

The matrix W maximizes the determinant of S, for a given d. An intuitive illustation of how PCA
works is given in Figure 2.7.

1st PC

Figure 2.7: PCA applied in a synthetic dataset reducing its dimension from 3 to 2. The two primary
components—dimensions with higher varianve— are clearly outlined.

2.5.2 t-Distributed Stochastic Neighbor Embedding (t-SNE)

Algorithm t-SNE is a non linear technique for dimensionality reduction that is particularly well suited
for the visualization of high-dimensional datasets [108]. Specifically, it models each high-dimensional
object by a two- or three-dimensional point in such a way that similar objects are modeled by nearby
points and dissimilar objects are modeled by distant points with high probability. Let us for simplicity
to take the example of mapping data point from a d-dimensional space to the R2.

A data point in the original d-dimensional space is defined as z;. A mapped point is a point
y; € R?. The positions of the mapped points is chosen to conserve the structure of the data. More
specifically, if two data points are close together, we want the two corresponding mapped points to
be close too. Hence, let |x;—x;| be the Euclidean distance between two data points, and |y;—y;| the
distance between the mapped points. A conditional similarity between the two data points is firstly
defined as:

e—|:pi—xj\2/20i2

P € o 411277

Equation 2.28 measures how close x; and z;, considering a Gaussian distribution around xi with a
given variance 01-2 . This variance is chosen such that points in dense areas are given a smaller variance
than points in sparse areas as described in [108]. Next, the similarity is defined as:

Pjli = (2.28)

Dij = 7”2]\[ i (2.29)
In the same manner, a similarity matrix for the mapped points is defined as:
Fllzi = ) with(z) = (2.30)

g =
Y Y i — ) 1+ 22
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Whereas the data similarity matrix (p;;) is fixed, the mapped similarity matrix (g;;) depends on the
mapped points. We want is for these two matrices to be as close as possible. That corresponds to
minimizing the Kullback-Leiber divergence between the two distributions p;; and g;;. This measures
the distance between our two similarity matrices. To minimize this score, we perform a gradient
descent.

53






Chapter 3

Natural Language Processing Background

Natural Language Processing (NLP) is a field of computer science, artificial intelligence (also called
machine learning), and linguistics concerned with the interactions between computers and human
(natural) languages. It is the process of a computer extracting meaningful information from natural
language input and/or producing natural language output. It is analysis of human language based on
semantics and various parsing techniques [109]. The goal of NLP is to identify the computational
machinery needed for an agent to exhibit various forms of linguistic behavior. It also design, imple-
ment, and test systems that process natural languages for practical applications. NLP is a discipline
between linguistics and computer science which is concerned with the computational aspects of the
human language faculty. The main task of it is to construct programs in order to process words and
texts in natural language.

3.1 Distributional Hypothesis

Distributional Semantics embraces a wide range of approaches based on the distributional hypothesis,
in an attempt to capture meanings of linguistic entities (words, phrases) from their usage in language.
This hypothesis is often described by the famous quote “You shall know a word by the company it
keeps” [110], which presumes a correlation between distributional similarity and meaning similarity.
The direct implication of this hypothesis is that two words that are considered to be semantically simi-
lar are expected to occur in similar contexts, and vice-versa. The conceptualization of this hypothesis,
requires a definition of what constitutes a context of a target word defined in a mathematical frame-
work. In this work, we follow the commonly used definition of a context as the set of words existing
within a window around each occurrence of the target word.

3.2 Language Representations

3.2.1 Count-based Models

In the simplest case of traditional DSMs, each dimension captures statistical information for context
items observed to co-occur no further than a fixed distance ¢ from the target’s instance. This sim-
ple counting method results in a co-occurrence matrix, where the components of each vector can be
interpreted as weights denoting the strength of the relationship between the target and the respective
context word. It can be observed though, that raw co-occurrences are not a reliable source of informa-
tion for revealing meaning correlation, as frequent yet uninformative context words tend to co-occur
with most of the target words at a high rate.

In order to mitigate this phenomenon, non-linear operations can be applied on the co-occurrence
matrix in an attempt to downplay the role of highly frequent words. Typically, the most widely used
transformation is the Positive Pointwise Mutual Information (PPMI) defined by [111] as:

PPMI(word;, word;) = max(0, PMI(word;, word,)) (3.1)
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P(word;) N P(word;)
P(word;)P(word;)

PMI(word;, word;) = log, (3.2)
In the above relation the numerator gives us information about how often the two words occur
together, while the denominator tells us how often we would expect the two words to co-occur assum-

ing they occurred independently, so their probabilities could just be multiplied (see example in Table
3.1).

player | court | Athenian | cart a
basketball | 485 410 1 45 | 1053
democracy 1 2 350 10 | 375

player | court | Athenian | cart | a
basketball | 0.21 0 0 0 |0.01
democracy 0 0 1.93 0 0

Table 3.1: Example of co-occurence matrix, extracted using raw counts (upper table), and after PPMI
transformation (lower table)

Since count-based methods calculate the co-occurrence matrix for all words, they result in sparse
high-dimensional representations —that is, most of the components of the vectors are zero— as a word
is often semantically related to a small percentage of context instances. Commonly, dimensionality
reduction is applied to the large matrix (in this case, the PPMI-weigthed co-occurrence matrix) in order
to lessen the noise and reduce the sparsity of the vector space. The basic idea is to generate a lower-
rank approximation of the original matrix, while in parallel retain the relations between the vectors.
The resulted lower dimensional space is represented by the most important dimensions of the data set,
along which most variation happens. The most popular method to generate matrix approximations
of any given rank k is Singular Value Decomposition (SVD) [112], based on extracting the singular
values of the initial matrix. An abstract scheme that summarizes the steps of creating a count-based
DSM in depicted in 3.1.

Cooccurence T-Idf Dimensionality
Matrix pRSlabEng Reduction

Count-based
DSM

Figure 3.1: Abstract representation of count-based Distributional Semantic Models procedure.

3.2.2 Word Embeddings

The key idea behind the unsupervised word vectors is that one would like the embedding vectors
of “similar” words to have similar vectors. While word similarity is hard to define and is usually
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very task-dependent, current approaches derive from the distributional hypothesis [19], stating that
words are similar if they appear in similar contexts. Different methods all create supervised training
instances in which the goal is to either predict the word from its context, or predict the context from
the word. Perhaps the most important set of pretrained embedding vectors is word2vec. Word2vec is
an approximation of language modeling, applied to a fixed word window.

Word2vec [25]

Word2vec is a shallow, two-layer neural network which is trained to reconstruct linguistic contexts of
words. It takes as its input a large corpus of words and produces a vector space, typically of several
hundred dimensions, with each unique word in the corpus being assigned a corresponding vector in
the space. Word vectors are positioned in the vector space such that words that share common contexts
in the corpus are located in close proximity to one another in the space. Word2Vec is a particularly
computationally-efficient predictive model for learning word embeddings from raw text.

INPUT PROJECTION OUTPUT INPUT PROJECTION ~ OUTPUT
w(t-2) 4 WE2)
w(t-1) < w(t-1)

SUM
A
: > w(t) w(t) >
4
w(t+1) 4 w(t+1)
w(t+2) 4 w(t+2)
cBOwW Skip-gram

Figure 3.2: Word2vec training models. Taken from [25]

Given enough data, usage and contexts, word2vec can make highly accurate guesses about a
word’s meaning based on past appearances. Those guesses can be used to establish a word’s asso-
ciation with other words (e.g. “king” is to “man” what “queen” is to “woman’), or cluster documents
and classify them by topic. Those clusters can form the basis of search, sentiment analysis and rec-
ommendations in such diverse fields as scientific research, legal discovery, e-commerce and customer
relationship management.

Word2Vec has two forms, the Continuous Bag-of-Words (CBOW) model and the Skip-Gram
model, as illustrated in Figure 3.2. When the feature vector assigned to a word cannot be used to
accurately predict that word’s context, the components of the vector are adjusted. Each word’s con-
text in the corpus is the teacher sending error signals back to adjust the feature vector. The vectors
of words judged similar by their context are nudged closer together by adjusting the numbers in the
vector.

e Continuous Bag of Words (CBOW)

Supposing we want to predict word w;, the input to the model could be w;_2, w; 1, w41, Wwit2,
the preceding and following words of the target word. The output of the neural network will be
w;. So, the CBOW model can be thought as learning word embeddings by training a model to
predict a word given its context.
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o Skip-Gram

This model is the opposite of CBOW, as in this case the input of the model is w; and the output
would be w;_9, w;—1,w;t1, wit+2. The task, therefore, is to learn word embeddings by training
a model to predict context given a word.

Even though the distributional hypothesis offers an appealing platform for deriving word simi-
larities by representing words according to the contexts in which they occur, it has some inherent
limitations, which should be taken into account when using the derived representations. The most
important one, which has been largely examined in this thesis, is the lack of context.

Lack of context

The distributional approaches aggregate the contexts in which a term occurs in a corpus. The resultis a
context-free, or else context-independent word representation. An obvious problem that occurs is that
polysemous words (words with obvious multiple senses) cannot be modeled properly. For example,
a bank may refer to a financial institution or to the side of a river, a star may be an abstract shape, a
celebrity or an astronomical entity, etc. By assigning the same vector to all the senses of a given word,
language cannot be modeled in its complex form, as the meaning of numerous words evades.

Window of surrounding words

Another limitation comes from learning embeddings based only on a small window of surrounding
words, sometimes words such as good and bad share almost the same embedding [113], which is
problematic if used in tasks such as sentiment analysis [114]. At times these embeddings cluster
semantically similar words which have opposing sentiment polarities. This leads the downstream
model used for the sentiment analysis task to be unable to identify this contrasting polarities leading
to poor performance.

3.3 Multiple-prototype representations

A large majority of current research on distributional semantics relies solely on models where each
word is uniquely represented by one point in the semantic space. From a linguistic perspective, these
models can not precisely capture the meaning of a polysemous word, resulting in a conflated repre-
sentation of its diverse contexts. The problematic nature of single-prototype models could be better
understood in the following two examples, which present two different contextual occurrences of the
word bank.

e “.my friend and I are walking along the banks of the river when...”

e “.Ineed to go to the bank to withdraw money today in order to....”

Here, the inferred meanings of the word python are totally different in the two contexts referring
in the edges of a river and financial instutition respectively. In pursuance of making these distinctions
feasible in NLP, we need to account for polysemy in our models and turn the single-prototype rep-
resentations to multiple-prototype representations. In the following sections we group the methods
that assign multiple representations per word into two broad categories: unsupervised models induce
multiple representations without leveraging external semantic lexical resources such as lexicons or
large word databases, while supervised models rely on knowledge-based approaches.

3.3.1 Predict-Based Models
Fixed number of prototypes per word

[48] were the first to introduce multiple-prototype representations for lexical semantics. Motivated by
the distributional hypothesis, they collected local contexts for each target word (as a vector formed by
collecting frequency statistics in a fixed window around it) and applied clustering on them, with the
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number of clusters being the single parameter of the model. The centroids of the created clusters were
used in order to create a set of “sense-specific” vectors for each target word (Figure 3.3). Following
the clustering approach, [49] proposed a recurrent neural network that incorporated both global and
local context to learn multiple dense, low-dimensional embeddings. Again the number of possible
senses corresponding to each word coincided with the fixed number of clusters.

(cluster#1)
location
importance
... chose Zbigniew Brzezinski bombing
for the position of ... —
... thus the symbol s position (cluster#2)
on his clothing was ... post
.. writes call options against appointme
the stock position ... nt, role, job
... offered a position with ... —
... a position he would hold .
until his retirement in ... single i(:tI::;ﬁr#S)
.. endanger their position as prototype f o\ Y.
a cultural group... '
... on the Ehartpof the vessel s M
current position ... (cluster#4)
... notin a position to help... lineman,
tackle, role,
scorer
(collect contexts) (cluster) (similarity)

Figure 3.3: Overview of the multi-prototype approach using contextual clustering.

A probabilistic framework was later introduced by [52] who extended the Word2Vec model via
representing the probability of a context word given the target word as a finite mixture of the proto-
types of the target word. Using this framework, they designed an Expectation-Maximization algo-
rithm to learn multiple embeddings, where the number of senses attributed to each word constituted a
predetermined design decision.

Despite the fact that models with a fixed number of prototypes per word established the first
attempts to provide vector representations that integrated the polysemic nature of words, more recent
approaches provide more flexible solutions to the problem. Their flexibility is attributed to the fact
that the real number of senses for words differs according to their polysemy degree (note that some
words have only one sense, a.k.a. monosemous words) and changes through time as the evolution of
language causes the creation of new senses (e.g., word python as a programming language).

Adaptive number of prototypes per word

More recent approaches mostly relied on neural network architectures that encode multi-sense infor-
mation. [50] motivated by the clustering approaches of previous models, followed an online method
of learning skip-gram sense embeddings during which they also estimated the number of clusters.
Contrary to previous work, both context and word vectors were learned simultaneously, instead of
learning context representations as part of a pre-processing step. Later, a dynamic Gaussian skip-
gram mixture model was introduced by [115] enabling the detection of different number of senses for
each word during training. In that work, each word was represented as a Gaussian mixture instead
of a point vector in the embedding space, where each Gaussian component represented a sense of the
word. In a more recent work, [66] made use of autoencoders to map each word to a context-specific
representation, while [67, 116] implemented discrete sense selection through reinforcement learning.

All of the above methods utilized the context information of each word occurrence without taking
into account the relative order of words in the context window. [117] suggested that this omission
impairs the quality of multi-prototype representations derived by clustering-based methods, and noted
that the order of context words matters to the meaning of the target word. To tackle this issue, they
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used a neural network model, called CSV (Context-Specific Vector), which can generate both word
and context representations. Their proposed neural network architecture contained a convolutional
layer that was designed to produce context representations reflecting the order of their constituents.
After the refined generated context representations were extracted, they were used to learn context-
specific multi-prototype word embeddings.

Another definition of context was also described in [53], who treated context as a topic domain.
Motivated by the observation that polysemous words usually change their meaning when they reside
in different topic domains, they were the first to utilize topic modeling to learn multiple-prototype
representations. Specifically, the Latent Dirichlet Allocation (LDA) algorithm was employed into the
skip-gram model to get the distribution of a word over topics, which was further utilized to extract
topic-word embeddings. In a more recent work, LDA was utilized to infer the weights of each topic.
The weights were further used to define a mixture vector representation for each target word that
predicted its corresponding context words [55]. Moreover, [118] exploited Wikipedia articles and
assumed that words co-occurring in articles under the same subject share the same sense. The sense-
aware prototypes were produced via clustering the Wikipedia pages based on the global and local
contextual information of the target word.

A probabilistic approach was followed by [51], who proposed that a word should be associated
with a new sense when there is evidence in its context suggesting that it sufficiently differs from its
early senses. They also noted that such a theoretical scheme naturally points to Chinese Restaurant
Process. According to this probabilistic framework, each word occurrence corresponds to a costumer
while each table corresponds to a sense of a word. In these terms, a new word occurrence could either
sit in an occupied table (assigned to an existing word sense), or choose an unoccupied table to sit
(assigned to a new word sense).

[116] proposed a different theoretical framework to induce multiple sense-specific embeddings for
each ambiguous word, using a recurrent neural network. Instead of using the contextual information
of words as evidence of their possible meanings, they utilized bilingual resources motivated by the
fact that a word with multiple senses could have a different translation in another language.

3.3.2 Knowledge-Based Models

The unsupervised methods reviewed so far attempt to conceptualize the polysemic nature of words via
creating multiple-prototype representations from raw contextual information extracted from massive
text corpora. More recent techniques that achieve state-of-the-art performance in contextual semantic
similarity tasks, involve knowledge-based approaches. In general, these knowledge-based approaches
utilize an incomplete knowledge base along with a large corpus of text and try to use the first as a prior
knowledge to the problem. The most widely known sense inventory used as an auxiliary knowledge
for multiple-prototype representations extraction is WordNet. Nouns, verbs, adjectives and adverbs
are grouped into sets of cognitive synonyms called synsets, each expressing a distinct concept as
described in [119].

[56] used the definitions provided for each word by WordNet, in order to assign vector represen-
tation to senses. Using these sense vectors as initial estimations along with single-prototype word
vectors, they refined them through word sense disambiguation algorithms. Given the disambiguated
words, they finally modified the skip-gram model in order to jointly train words and sense vec-
tors. Later, [57] used BabelNet as their underlying sense inventory, which constitutes an enriched
database of WordNet. By leveraging the knowledge of the inventory they automatically generated
sense-annotated corpora, using a word sense disambiguation algorithm. Sense-agnostic representa-
tions were extracted via employing the skip-gram model over the annotated corpus.

Another knowledge based approach introduced by [88] thought of words as sums of their lexemes
(units), and synsets as sums of their lexemes. The interpretation of this theoretical foundation naturally
establishes algebraic operations between word vectors in a mathematical algorithm. More specifically,
pre-trained word embeddings were extended to embeddings of lexemes and synsets, with the help of
WordNet. Recently, [89] de-conflated pre-trained word representations based on the deep knowledge
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derived from WordNet. After linking these pre-trained representations to WordNet, they extracted
a list of semantically biased words towards the ambiguous word. Given the biased words and the
target word’s lemma representations, they extracted a sense-aware representation for the target word
via searching for the vector with the minimum distance from it.

3.4 Latent Dirichlet Allocation

The Latent Dirichlet Algorithm (LDA), introduced by [58], is a generative probabilistic model of a
corpus, that attempts to identify the hidden topics lying behind it. For example, if observations are
words collected into documents, it posits that each document is a mixture of a small number of topics
and that each word’s presence is attributable to one of the document’s topics. In linguistics, the word
“topic” refers to an abstract scheme that gives us information about what is talked about in a set of
words (i.e. sentence/document). From a mathematical view, in LDA, one could imagine that a “topic”
in NLP applications is described as a set of words that frequently occur together. In statistical terms,
it could be presented as a distribution over the vocabulary of a particular corpus. For interpretation
reasons, if the distribution is extracted, we can obtain the set of most related words with respect to
a specific topic via applying a threshold to its distribution (retain words with a probability above a
determined threshold). Topic modeling is a classic problem in information retrieval. Related models
and techniques are, among others, latent semantic indexing, independent component analysis, proba-
bilistic latent semantic indexing, non-negative matrix factorization, and Gamma-Poisson distribution.
The LDA model is highly modular and can therefore be easily extended. The main field of interest is
modeling relations between topics.

3.4.1 Intuition

The basic idea of LDA is that documents (set of sentences) are represented as mixtures over topics,
where each topic is characterized by a distribution over words. This assumption implies that a docu-
ment could not exhibit only a single topic, which seems to be logical as documents are large entities
of text. To gain insight into this assumption one can examine the distribution of possible topics, in a
particular document, as presented in Figure 3.4.

Topic proportions and
assignments
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Figure 3.4: Intuition of LDA, an example presented in [71].
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As explained in [71], the article is about using data analysis to determine the number of genes that
an organism needs to survive. The article has been highlighted manually in order to create clusters of
words that could be attributed to each of the topics residing in it: genetics, data analysis and evolu-
tionary biology. The words about data analysis, such as “computational” and “prediction” have been
highlighted in blue; words about evolutionary biology, such as “survive” and “organism”, have been
highlighted in pink; words about genetics, such as “sequenced” and “genes,” have been highlighted
in yellow. LDA tries to capture the above intuition, and automate the procedure of assigning topics
to documents, and word distributions to topics. To do so, it does the following for each document:

1. Assume there are k topics across all of the documents

2. Distribute these k topics across document m (this distribution is known as o and can be sym-
metric or asymmetric, see for the example histogram on the right) by assigning each word a
topic.

3. For each word in the document:

(a) Assume its topic is wrong but every other word is assigned the correct topic.
(b) Probabilistically assign word w a topic based on two things:

e what topics are in the document

e how many times this word has been assigned a particular topic across all of the doc-
uments

4. Repeat this process a number of times for each document.

3.4.2 Notation and Terminology

As we are going to put the above intuition into a mathematical framework, we should firstly introduce
the basic notation and terminology needed to describe linguistic terms and concepts such as “words”,

“documents”,“corpora”, “topic”, as well as the document-topic and the topic-word distributions. Fol-
lowing [58] we define:

e A word is considered the basic unit of our data, defined to be an item from a vocabulary indexed
by {1, ..., V'}. Mathematically, it is represented as a vector that has a single component equal
to one and all other components equal to zero. For example, the representation of the first word
of the vocabulary corresponds to a V-dimensional vector w; =[10000 ... |.

e A document is a group of N words denoted by d = (w1, ws, ..., wy ), where wy, is the n-th
word in the group.

e A corpus is a collection of M documents denoted by C' = {d1,d2,...,dnr}.

e A topic is a distribution over the vocabulary noted as /3 (5 denotes the topic distribution of the
k-th topic, where k € K and K corresponds to the total number of topics).

e The document-topic distribution for document d is defined as 6, while 0, 4 is the topic propor-
tion of topic 5 in document d.

e The topic-word distribution for document d is defined as z4, while z4 ,, is the topic assignment
for word w,, in document d.
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3.43 Algorithm

Generally, LDA could be described as a generative probabilistic model of a corpus, where the observed
variables are documents and the latent variables are the topics residing in the corpus. As mentioned
above, the basic idea of the algorithm is that each document could be assigned to a distribution over
topics, where each topic is a distribution over words. In order to infer these distributions LDA assumes
the following generative process for each document d in a corpus C, whose graphical representation
is given if Figure 3.5:

1. Choose N ~ Poisson(§), where N corresponds to the number of words for d.
2. Choose ¥ ~ Dirichlet(a)
3. For each of N words, wy,:

(a) Choose a topic z, ~ Multinomial(?))

(b) Choose a word w,, from p(wy|z,, 3), a multinomial probability conditioned on the topic
Zn-

The ultimate goal of the above process is to estimate the hidden distributions 61.p, z1.p, b1.x,
given the observed variables wy.p. As a result, the key inferential problem that we need to solve
in order to use LDA is that of computing the posterior distribution of the hidden variables given the
corpus as analyzed in Equation 3.3, using the Bayes’ Theorem.

p(511K7 01:D7 Z1:D> wl:D)
p(wlzD>

p(Bix, V1D, 21:0|W1.D) = (3.3)

The numerator of the above fraction can be computed as the joint distribution of all random vari-
ables. However, in order to compute the denominator of the fraction we have to marginalize over all
possible topic structures defined by 01.p, z1.p and 81.x. When doing so a coupling between 61.p and
51k arises making the separation of them in the computation of the log likelihood function impossible.
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Figure 3.5: Graphical model representation of LDA as presented in [58].

So while exact inference is not tractable, various inference techniques have been proposed in order
to approximate the above solution:
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e Variational Inference. The idea proposed by [120] was to modify the original graphical model
of Figure 3.4 by removing the edges and nodes which are responsible for creating the undesirable
coupling mentioned above. As a result a simpler distribution is used in order to approximate
the real.

e Collapsed Gibbs Sampling. The approximation introduced by [121] was that a high-dimensional
distribution is simulated by sampling on lower-dimensional subsets of variables where each sub-
set is conditioned on the value of all others. The sampling is done sequentially and proceeds
until the sampled values approximate the target distribution.

e Collapsed Variational Inference. [122] made weaker factorization assumptions than those
made by the Variational Inference algorithm in order to approximate the true posterior. Specifi-
cally, instead of assuming the parameters to be independent from latent variables they treat their
dependence on the topic variables, in an exact fashion marginalizing out the 6 and 3 variables.

e Online Variational Inference. Later, [123] noted that the Varational Inference algorithm re-
quires a full pass through the entire corpus each iteration, making the whole procedure slow for
large datasets. In this direction they proposed an online variational inference algorithm based
on stochastic optimization with a natural gradient step. They also showed that the algorithm
produces good parameter estimates on large datasets dramatically faster than batch algorithms.

3.5 Transformations in semantic spaces

As mentioned previously, neural network models —such as Word2Vec or FastText— have become
very popular recently. The vector representations they produce, has been proved that significantly and
continuously outperform the traditional count-based models [22]. Many scientists attributed this su-
periority to the natural edge of neural networks over methods that solely relied on word co-occurrence
counts. One of the main characteristics of predictive Distributional Semantic Models is that they cre-
ate semantic spaces which are not aligned to a fixed coordinate system, due to their non-deterministic
nature. Basically, this means that if the algorithm runs under the same dataset twice, the resulted
semantic spaces have drastically different global structures. For this reason, the problem of defining
transformations between semantic spaces has attracted a lot of attention recently, as it enables the
comparison of the distributed representations that belong to different datasets.

The most popular application of semantic spaces transformation is machine translation, where the
ultimate goal is to automate the process of generating large dictionaries starting from few bilingual
data. [72] were the first to introduce such mappings in order to predict translations between English
and Spanish words. After learning word representations for the two languages using the Word2Vec
model, they proposed a linear mapping between the two language-specific semantic spaces. After the
alignment, the correct translation of a target word is expected to lie near the target word.

As they noted, their core motivation was that all common languages have similar geometric ar-
rangements, as they share concepts that are concept in the real world. Later work on machine transla-
tion focused on the properties of the transformation matrices between languages [60], as well as on the
properties of the embeddings being mapped to the shared space. Specifically, [124] showed that the
neighborhoods of the mapped embeddings are highly polluted by Aubs, which are defined as vectors
that tend to be popular nearest neighbors of many items.

Another application of semantic spaces transformation was later studied by [125], who attempted
to explore the semantic differences of words between the informal English of social media (Twitter
corpus), and the formal English of well organized texts (Wikipedia corpus). Towards aligning the
two semantic spaces, they assumed that a mapping existed between the most frequent words of the
two corpora. After mapping the two languages to a common space, they employed a normalization
of word distances based on term-frequency. Finally, they used these distances to find discriminative
words —in terms of usage— between the two corpora.
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Figure 3.6: Projections of distributed word vector representations of numbers and animals in English
(left) and Spanish (right) using PCA as presented in [72].

The semantic evolution of words’ meaning can be captured in large-scale corpora that refer to
different periods of time. [91] created diachronic embeddings, by constructing embeddings in each
time-period and then learning consecutive linear rotational matrices that mapped the vector spaces
of historic corpora that corresponded to different time intervals, to track the semantic drifts of words
within-years. The relative high dimensionality of diachronical embeddings poses a challenge, as they
are typically not embedded in 2 or 3 dimensions that can be easily interpreted by humans. For this
reason, dimensionality reduction techniques usually take place in order to visualize the trajectory a
word follows over time in a 2 dimensional space.

Figure 3.7 illustrates an example of words’ trajectories that reveal semantic evolution of words
through time. By comparing the relative position of the words with their “temporal” nearest neighbor
we could track interesting semantic shifts in their meaning that could also reflect cultural evolution.
For instance, the word gay shifted from meaning “cheerful” or “frolicsome” to referring to homosex-
uality. In the early 20th century broadcast referred to “casting out seeds”; with the rise of television
and radio its semantics shifted to “transmitting signals”. The word “awful” underwent a process of
pejoration, as it shifted from meaning “full of awe” to meaning “terrible” as reported in [91].

Recently [59] applied semantic space transformations in an attempt to enrich the coverage of an
existing vocabulary with rare or unseen words. The interesting property of their approach is that dis-
tributional information derived from text corpora, could be used in order to complete the missing parts
of knowledge bases and vice-versa. To achieve it, they created a mapping between a distributional
semantic space and a lexical ontology using semantic bridges of monosemous words.

Mapping Methods

We start by defining basic terminology in order to explain the most popular methods of alignment
between semantic spaces that can be found in the literature. Let X and Y be the word embedding ma-
trices of the source and target language, respectively. The ¢-th column of matrix X is the distributed
vector representation z; € R% of word i, while y; € R? is its equivalent distributed vector represen-
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Figure 3.7: Two-dimensional visualization of semantic change of three English words.

tation in the target language. We aim to find a transformation matrix W € R%*¢ that maps the source
language to the target language, such that W X is as close as possible to Y. As summarized in [126],
this transformation matrix could be computed through linear, orthogonal of canonical methods.
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e Linear methods in this area were introduced by [72] who used a linear mapping as the first

attempt to align semantic spaces for machine translation. They used a least squares objective
function that minimizes the sum of squared Euclidean distances between the translated pairs
vectors of two languages, without imposing a restriction to the matrix. This problem (also
known as Ordinary Least Square) has a closed-form solution as indicated in Equation 3.4.

W =argmin ||[WX - Y|r = (X'X)"' XY (3.4)
w

Few years later, [124], incorporated an L2-regularization term to the objective function.

Orthogonal methods were firstly proposed by [60] who noticed that both the source and the
target vectors should remain normalized to unit length during the learning phase of the mapping
algorithm. They also noted that normalization is a crucial characteristic that the aligned repre-
sentations should hold, as it ensures that the dot product between two vectors falls back to their
cosine similarity, the most widely used distance measurement between word embeddings. For
this reason, they mapped the source space to the target via solving the constraint optimization
problem of Equation 3.5.

W = argmin |[WX — Y||p, subject to WIWZ =1. (3.5)
w

From a mathematical perspective, the above problem is known as the orthogonal Procrustes
problem and it has a closed form solution. The optimal W is recovered by UV, where U and
V, are obtained through the Singular Value Decomposition (equal to (UXV7T)) of Y X7, For a
more detailed review of the problem we refer the reader to [63].

Canonical methods on the other side, compute two distinct linear mappings M; and My first,
where the objective is to maximize the correlation between the dimensions of the projected
matrices M1 X ans M>Y . After computing the two mappings, the transformation matrix W is
recovered through a simple algebraic operation as noted in Equation 3.5. [127] were the first
to use Canonical Correlation Analysis in order to map two semantic spaces, which was later
proved to give similar results to the orthogonal mapping.

W = M1_1M27 where My, My = argmax cov(M X, MaY). (3.6)
My, M2



3.6 Natural Language & Cognition

The advances in artificial intelligence and the post-Google interests in information retrieval, in the
recent decades, have made large-scale processing of human language data possible and produced im-
pressive results in many language processing tasks. However, the wealth and the multilingualism
of digital corpora have generated additional challenges for language processing and language tech-
nology. To overcome some of the challenges an adequate theory of this complex human language
processing system is needed to integrate scientific knowledge from the fields of cognitive science and
cognitive neuroscience, in particular. Over the last few years, emerging applications of NLP have
taken a cognitive science perspective recognising that the modelling of the language processing is
simply too complex to be addressed within a single discipline.

3.6.1 Brain Imaging Modalities

Before brain imaging technologies were developed, the study of language in the brain used reaction
times and eye tracking, and a considerable amount of progress was made with these simple measure-
ments. More sophisticated brain imaging technologies have become very popular in recent decades,
and have allowed researchers to explore the brain’s activity during a variety of tasks.The most common
brain imaging technologies are Electroencephalography (EEG), Magnetoencephalography (MEG) and
functional Magnetic Resonance Imaging (fMRI).

Each technique has its own unique advantages and disadvantages, and each measures brain ac-
tivation in a different way. Electroencephalography (EEG) measures the voltage fluctuations along
the scalp that occur when many neurons fire in a coordinated fashion. EEG has the benefit of being
able to record changes in voltage by the millisecond, making it one of the best brain recording modal-
ities in terms of time resolution (similar resolution to MEG). However, the largest drawback of EEG
is poor spatial resolution, which is caused by interference from the skull and scalp. MEG measures
the magnetic field caused by many neurons firing in synchrony. That is, MEG measures the currents
caused by external neurons sending signals to groups of neurons that lie parallel to the skull. Like
EEG, MEG has time resolution on the order of ms. The spatial resolution of MEG is better than EEG.
The imaging technique with the greatest spatial resolution is functional Magnetic Resonance Imaging
(fMRI), which can achieve resolution as fine as Imm. An example fMRI image appears in Figure 3.8.
fMRI measures changes in blood oxygenation in response to increased neuronal activity, called the
blood-oxygen-level dependent (BOLD) response. Because fMRI depends on the transport of oxygen
via blood to the brain, its time constant is governed by the rate at which blood can replenish oxygen
in the brain.Though fMRI can acquire images at the rate of about 1 image per second, the BOLD
response can take several seconds to reach its peak after a stimulus is shown. Thus, amongst the three
modalities discussed here, fMRI has the worst time resolution and the best spatial resolution.

3.6.2 Semantics and Brain

Semantics in the brain has historically been studied not by comparing the magnitude of activity be-
tween conditions, but rather by the information encoded in the neural activity. One can measure the
information encoded in neural activity by training machine learning algorithms to predict some feature
of the input stimuli. Machine learning algorithms do not require large differences in magnitude be-
tween conditions, but rather leverage patterns in the recordings of neural activity, which may involve
differences in signal in both the positive and negative direction indifferent areas of the brain at dif-
ferent times. We will discuss Machine learning to recover the neural information encoding in greater
detail in Chapter 5.The study of semantics in the brain has often linked brain activation to linguistic
measurements of semantics.
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Figure 3.8: Neural activation image for the noun celery similar concrete nouns including the 500
most stable voxels (participant P1).An fMRI image is 3D. This figure shows just one
horizontal slice in Montreal Neurological Institute (MNI) space of the three-dimensional
image. The color of each voxel (pixel in brain space) represents the percent change over
baseline of the BOLD response in that brain area.

[7] showed that the fMRI activity of people reading 60 common concrete nouns could be mod-
eled as the linear combination of features derived from 11 verb co-occurrence with the target word.
[128] extended this work to show that similar results could be obtained using feature norms (free-form
naming of word characteristics), and [129] showed that the activity from noun reading could be tied
to biologically relevant brain areas (e.g. manipulation-related words to motor cortex). [29] used Mag-
netoencephalography (MEG), the same 60 words of [ 7], and behavioral data collected via Mechanical
Turk to explore the neural basis of semantic representation. [29] found that the semantic represen-
tation of a word unfolds overtime, and that different semantic elements appear at different times in
different parts of the brain.In [30], they showed that a set of automatically derived corpus statistics (a
VSM) could perform as well as the behavioral data from [29]. Another linguistic resource, WordNet,
has also been used to study language in the brain. WordNet ([130]) is a lexical database where English
words and relationships between words are recorded (e.g. cat “is a kind of” feline). Words may be
associated with groups of synonymous words called “synsets”. [10] annotated 2 hours of video with
over1 700 WordNet categories. These annotations were then used to map semantic categories onto
the brain via linear regression. The study confirmed much that was already known about semantics
in the brain (e.g. face stimuli give strong reactions in the fusiform face area - FFA) but also showed
the extremely distributed nature of semantics in the brain. For example, videos containing people
show activation in FFA, but also in posterior Superior Temporal Sulcus (pSTS - associated with gaze
following), in the Extrastriate Body Area (EBA - activated by stimuli containing body parts) as well
as widespread activation in frontal and temporal regions. A brain-browsing interface has been sup-
plied by the authors (http://gallantlab.org/brainviewer/huthetal2012/) which can be used
to explore WordNet in cortical space.

Recently, MEG has ben used to study the effect of context on brain activation while subjects read
a chapter from a story. [131] used different linguistic techniques were used to represent semantics -
Recurrent Neural Network Language Models (RNNLM) ([132]) and Neural Probabilistic Language
Models (NPLM) ([133]). Each of these two models is a multilayer neural network which represents
the history of words encountered. In the case of RNNLM, an unlimited lexical history is available,
constrained only by the size of the hidden layer in the network, whereas a 3- or 5-word history is
used to train a NPLM. Both models are trained to predict the next word, given the word’s previous
context. Then a model was trained to predict story-reading MEG activity from the hidden, output or
embedding layers of the neural networks. [131] found that the hidden layer of a RNNLM performed
best,followed by the hidden layer of a NPLM given 5 words of context. Context vectors were most
useful for predicting brain activity 250ms after the onset of a word, perhaps reflecting the process
of combining a new word with the current semantic state. Thus, [131] show that story context can
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be used to differentiate brain states, and that some amount of the brain activation is correlated to the
prediction of the next word in a story. However, when the semantics of the sentence changes due to
different words or differing context, the semantic retrieval/memory and unification processes will also
change, resulting in differential brain activity.
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Chapter 4

Neural Activation Semantic Models

4.1 Computational Cognitive Semantic Models for Natural Language

In this section, our published work in the 27th International Conference on Computational Linguistics
(COLING 2018) is presented [1].

4.2 Motivation

Mental process of encoding and decoding meaning of concepts is not fully understood. The process
of mapping neural activations to word embeddings has been explored neuroscientists and computa-
tional linguists [ 134, 7, 30, 129]. However, the computational integration of brain information in word
representations is little explored and could help us encode word semantics better. We propose an ap-
proach for calculating word similarity of concrete nouns from predicted neural activations. Its analysis
show improvement of performance over conventional word embeddings for highly similar/dissimilar
words. Moreover, we use predicted neural activations of concrete nouns along with conventional
word embeddings and evaluate their performance in Taxonomy, Textual Entailment, Human Sense
Classification tasks. Fusion of neural activations and conventional word embeddings can improve
performance.

4.3 Related Work

A significant body of literature investigates neural activations by mapping word semantics to fMRI
data. Most of them have in common a basic idea published in [7]. In this work, a model is introduced
that maps low dimensional word coocurence vectors to neural activations. The approach is validated in
a neural activation-based word classification task. This work shows that the mapping between lexical
semantic spaces constructed via computational lexical semantic algorithms and 3D neural activations
representations measured via fMRIs is possible.

A first variant of the aforementioned model was introduced in [8], where the use of WordNet fea-
tures was investigated for constructing the lexical semantic space. Word classification results reported
showed similar performance to [7], however, by fusion of the two lexical semantic models improved
classification results where achieved.

A second approach, introduced in [135], extends the work in [7] by increasing the number of
fMRI voxels used in the neural activation vectors and the number of featurs (dimension) of the lexical
semantic model showing additional performance improvement.

Algorithms that count word co-ocurences and utilize hand-crafted features for constructing lexical
semantic models can be found in [21, 38].Moreover, various lexical semantic models that predict a
word based on its context have also elaborated [23, 25, 27]. Word prediction models tend to perform
better in natural language processing tasks such as analogy, similarity, synonym detection, concept
taxonomy [22] and sentiment analysis [113, 136]. However, their relationship with cognitive lexical
representation is not yet well understood, at least to a degree that would allow us to improve current
computation lexical semantic models. Along these lines, there have been two main lines of work.
In [34], neural activations were integrated in the training procedure of lexical semantic models in
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order to learn word embeddings that include latent neural information. Although a small number of
words was used to bootstrap the neural activation representations, it have been shown that their model
can predict unseen words and generalizes well across different topics. Ruan et al. [35], have shown
that neural activations for different parts of the brain are correlated with word embeddings especially
skip-grams. A semantic model was also proposed for training word embeddings as a first step towards
including cognitive information in a word vector representation.

4.4 Decoding the meaning of nouns to predict human brain activity

The human ability of translating concepts into words and back depends on the ability of mind to
decode and encode meaning. This mental process, which is not currently completely understood, has
captivated the interest of both neuroscientists and computational linguists [134, 137, 138, 139, 129].
Specifically, when a person experiences a visual stimulus of a concept, reads, speaks or writes a word,
particular neuronal regions in the brain are activated [31].

Various studies have been carried out to explore brain encoding and decoding mechanisms when
a stimulus is present, as detailed next. For visual stimuli, studies have shown that is feasible to
discriminate and reconstruct images using patterns of neural activity, mainly found in the visual
cortex [12, 13, 14, 15, 16], the part of brain responsible for visual information processing. Other
works have demonstrated the relationship between cognitive perception and speech [17, 18]. Regard-
ing textual stimuli, researchers have shown distributed semantic maps of words are present in our
brains [10, 29]. Lexical semantics are based on the assumption that similar words appear in similar
contexts [19].

Based on that assumption, two different approaches for building semantic models have been pro-
posed. The first approach is to encode word semantics, by applying dimensionality reduction of
context-word occurrence matrix which was computed using large corpora [20, 21]. The second ap-
proach replaces thse “counting” by predictive models [22] based on neural networks [23, 24, 25, 26,
27]. Counting models calculate and weight context vectors, while predictive models learn word vec-
tors by guessing the context in which these words tend to appear.

In pursuance of enriching such lexical semantic models with cognitive information, as well as
discovering the cognitive representation of word semantics, a number of studies have attempted to
examine the mapping between semantic representation of computational and cognitive models. In
prior work, it has been shown that semantic of words are related to activation potentials in regions
of the brain and that decoding between neural activations and semantic content [7, 28, 29, 30, 31] is
possible. Furthermore, neural activations are shown to have predictive power with respect to semantics
at the word [7, 8] and sentence [32, 33] level. Computational studies that aim to explore the influence
of neural activations in word representations have shown that by incorporating neural activations when
training lexical semantic models can improve their generalization ability despite the small amount of
neural activation data used [34, 35].

These works show that a strong relationship exists between computational semantic models and
neural representations. However, it remains to be seen how cognitive semantic representations, includ-
ing localized neural activation patterns can help improve the performance of computational semantic
models, especially for complicated classification and recognition tasks. Motivated by the aforemen-
tioned studies that show correlation between localized neural activations and word semantics, we pro-
pose a computational model for semantic similarity that utilizes predicted neural activations learned
from a small set of concrete nouns.

The proposed model is applied to a variety of natural language processing tasks. The neural acti-
vation prediction model used here for lexical expansion is that proposed in [7]. In our list of experi-
ments, we first compare the performance of the proposed neural activation model for a concrete noun
semantic similarity task and show that for certain word pairs it outperforms the state-of-the-art. Then
we evaluate the performance of neural activation vectors for a word classification, sensory modality
(sense) classification and textual entailment task. The fusion of neural and traditional word embed-
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ding vectors are shown to outperform the state-of-the-art. To our knowledge, this is the first time brain
imaging data are successfully used for the aforementioned tasks.

4.5 Brain and Human Senses

4.5.1 Vision

Processing of visual information is quite complex compared to that of other special senses we possess.
Vision processing in the brain is not particularly confined to a specific region, rather it follows a global
circuitry (involving multiple regions of the brain). The visual cortex of the brain is a part of the cerebral
cortex that processes visual information. It is located in the occipital lobe in the back of the head [45].
The ventral stream, sometimes called the “What Pathway”, is associated with form recognition and
object representation. It is also associated with storage of long-term memory. The dorsal stream,
sometimes called the “Where Pathway” or “How Pathway”, is associated with motion, representation
of object locations, and control of the eyes and arms, especially when visual information is used to
guide saccades or reaching.

4.5.2 Audition

The Temporal Lobe mainly revolves around hearing and selective listening. It receives sensory in-
formation such as sounds and speech from the ears. It is also key to being able to comprehend, or
understand meaningful speech. In fact, we would not be able to understand someone talking to us,
if it wasn’t for the temporal lobe.[46] This lobe is special because it makes sense of the all the dif-
ferent sounds and pitches (different types of sound) being transmitted from the sensory receptors of
the ears. The auditory cortex is the most highly organized processing unit of sound in the brain. This
cortex area is the neural crux of hearing, and—in humans—Ilanguage and music. The auditory cor-
tex is divided into three separate parts: the primary, secondary, and tertiary auditory cortex. These
structures are formed concentrically around one another, with the primary cortex in the middle and the
tertiary cortex on the outside. The primary auditory cortex is tonotopically organized, which means
that neighboring cells in the cortex respond to neighboring frequencies[140].

4.5.3 Touch

Cortical homunculus is a distorted representation of the human body, based on a neurological ”map”
of the areas and proportions of the brain dedicated to processing motor functions, or sensory functions,
for different parts of the body. Touch is mediated by primary (SI) and secondary (SII) somatosensory
cortex. Touch first arrives in cortex at the primary somatosensory cortex. This region is known for
its homuncular organization, that is, the arrangement of neurons is determined by the arrangement of
receptors on the skin[42].

4.5.4 Taste

The primary gustatory cortex is a brain structure responsible for the perception of taste. It consists
of two substructures: the anterior insula on the insular lobe and the frontal operculum on the inferior
frontal gyrus of the frontal lobe[43]. By using extracellular unit recording techniques,Kobayashi,
Masayuki [44] have elucidated that neurons in the AI/FO respond to sweetness, saltiness, bitterness,
and sourness, and they code the intensity of the taste stimulus.

4.5.5 Olfaction

Olfactory system is also located in gustatory cortex[47]. Once an odor molecule binds to a receptor, it
initiates an electrical signal that travels from the sensory neurons to the olfactory bulb, a structure at the
base of the forebrain that relays the signal to other brain areas for additional processing. One of these
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areas is the piriform cortex, a collection of neurons located just behind the olfactory bulb that works
to identify the smell. Smell information also goes to the thalamus, a structure that serves as a relay
station for all of the sensory information coming into the brain. The thalamus transmits some of this
smell information to the orbitofrontal cortex, where it can then be integrated with taste information.
What we often attribute to the sense of taste is actually the result of this sensory integration.

4.6 Neural Activations Semantic Model

The neural activation prediction model used here is that proposed in Mitchell [7]!. A high level
illustration of the proposed model can be seen in 4.1. First activation potentials are measured from
fMRI images. We consider voxels to be 3D pixels created by MRI scanning software depicting brain
state. Every voxel v is associated with a TN x V' array, M, of neural activation values (blood flow),
where V' is the number of voxels, T" is the number of trials, IV is the number of stimuli, in our case
different nouns. The first step is to select the most stable (salient) voxels, V' to include in the neural
activation model. The stability score s, for voxel v is computed as the average pairwise Pearson
correlation g for all the different row combinations of M, as follows:

TN TN
2
“TN(IN -1 M., M;.), Yv=1---V' 41
v TN(TN—l);j;rl o(Miy, My), Vo 4.1)

where M; . is the ith row of matrix M. High stability scores, s,, as described in Equation 4.1, indicate
that corresponding voxels have consistent representations across different trials and nouns. Next, the
neural activation predictive model proposed in [7] is defined.

For this purpose we identify a set of m seed words s1, S92, ..., Sm, and a function f;(w) that
estimates the association between seed word s; and word w. The core assumption of the model is that
words that are closely associated have similar neural activation patterns, thus the mapping from the
associative (semantic) space to the neural activation (voxel) space is estimated as follows:

m

yv(w) = Z Cu,i fz(w)a Vo=1--- ‘/7 (42)

i=1

where y,, (w) is the activation of voxel v for word w, f;(w) is a scalar value that reflects the association
between the i seed word s; and the word w, m is the number of seed words (semantic features), V' is
the total number of voxels and ¢, ; is a learned weight ranging between 0 and 1. A set of 25 verbs (seed
words) was identified in [7] as semantic features s;; seed words were manually selected according to
psycholinguistic criteria. The similarity function f;(w) was set to the (normalized) co-occurrence
frequency of the i*" seed word and w, estimated on a corpus. The weights cv,; Were estimated using
the fMRI data on words w using linear or ridge regression estimation. Once ¢, ; have been estimated,
Equation 4.2 can be used to predict the neural activation of unseen words”. In this section we present
baseline results on the neural activation prediction model of [7] and investigate the performance of the
proposed neural activation semantic model of Equation 4.4 for a semantic similarity task on the MEN
dataset. Our goal here is first to reproduce the results in [7] and then to investigate the properties
of neural activation embeddings semantic models compared to traditional embedding models, e.g.,
word2vec in [25].

! The features in [7] are attractive because of their simplicity and low-dimensionality, and generalize well for lexical
expansion to a large lexicon compared to other works described in Section 4.4 that potentially perform slightly better.

2 Although Equation 4.4 can be used to perform lexical expansion an any token w for which f;(w) can be computed,
the proposed framework (choice of f() and associated fMRI data) is meant for concrete words and typically only neural
activations for concrete words are reported in the literature.
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Figure 4.1: A high level overview of the neural predictor model [7].

4.6.1 Neural Activations Prediction Analysis

As proposed in [135], we choose the 500 most stable voxels from the fMRI images. Then, ¢, ; is
estimated as in Equation 4.2 by applying linear regression per voxel across different words with
regularization. To evaluate the neural activation prediction model we used cosine similarity in order
to evaluate if our prediction for the possible pair of test words is correct or not. Correct prediction
means that sum of the cosine similarities of the correct matched pairs is greater than the false matched
pair as shown next:

cos(i1,pi) + cos(iz, ps) > cos(ig, pi) + cos(i1, P3), (4.3)

where 7 is the actual image and p'is the predicted image of 500 voxels. The dataset, which consists
of 60 nouns, is split in train set (the rest 58 nouns) and test set (2 nouns) for all possible (620) = 1770
combinations using cross-validation. First, we examined the effects of two main parameters of the
model. The number of stable voxels used for every participant and the effect of the regularization
parameter applied in the linear model which maps the semantic to the neural space. In Figure 4.2,
the variations of every participant’s accuracy—calculated as in Equation 4.3— with respect to differ-
ent values of the regularization parameter, bridge are depicted. We can clearly observe that smaller
values of l;“idge(in the interval(0, 10]) yield the best accuracy for most of the participants. However,
Participants 3 & 9 appear to improve their performance until bridge ~ 400, while Paricipants 2 &
6 demonstrate their best performance without regularization parameter. The variations in accuracy
performance are at most 3 — 4% except for Participant 2 which shows a higher sensitivity in the ef-
fect of regularization parameter. Overall, in our experiments we chose the regularization parameter
which yielded the best performance for each participant. Next, the variations of every participant’s
accuracy(Equation 4.3) regarding to different numbers of stable voxels(V) is illustrated in Figure 4.3.
Generally, we can see that the accuracy of different participants achieves its higher value for 200 to
500 stable voxels. Accuracy variations performance are at most 2% in that particular interval. As
referred above, we selected the 500 more stable voxels in our setup to be consistent with [7], as their
values after a particular threshold do not affect our final results and for participants which disagree
with that threshold their respective best pridge mitigates accuracy loss.

Finally, in Figure 4.4 we show how the two parameters affect the average(across participants)
accuracy. It is obvious, that small values of regularization parameter achieve the best performance as
observed in most of the participants (Figure 4.2). Average accuracy demonstrates slight oscillations
with regards to the number of stable voxels, appearing almost constant performance after 200 voxels.

After our experimentation with the two main parameters we chose to replicate the neural predictor
model for V' = 500 and b"%9¢ was selected separately for each participant according to his/her best
accuracy. Then, the evaluation process(Equation 4.3) is followed for every one of 9 participants.
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Figure 4.2: Accuracy of different participants for different values of regularization parameter. The
number of stable voxels selected is 500.
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Figure 4.3: Accuracy of different participants for different values of stable voxels selected
parameter. Regularization parameter is set to 1.

The results are shown reported in Table 4.1 when using linear and ridge regression to estimate ¢, ; in
Equation4.2. Results from [7] are also shown for comparison. Ridge regression performs very close to
the results in [7], as expected. Results in Table 4.1 are on average consistent with the baseline results
reported in [7]. We achieved higher performance for some participants and lower for others. This
can be attributed to the different tools we used to implement the system (as we used scikit-learn [141]
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Figure 4.4: Average accuracy across participants for different values of regularization parameter
(bottom) and regularization parameter(top). The number of stable voxels and
regularization parameter were set as 500,1 respectively.

Participant ID  Linear Regression Ridge Regression Mitchell et. al

1 0.79 0.84 0.83
2 0.75 0.82 0.76
3 0.63 0.76 0.78
4 0.63 0.79 0.72
5 0.61 0.78 0.78
6 0.58 0.65 0.85
7 0.58 0.75 0.73
8 0.65 0.68 0.68
9 0.57 0.68 0.82
Mean 0.64 0.75 0.77

Table 4.1: Baseline Model Results

and [7] used Matlab). Moreover, we experimented with the number of voxels and our results agree
with the findings reported in [135].

4.6.2 Semantic Similarity

Based on the hypothesis that similar words have similar neural activations, we propose a model to
estimate word similarities based on neural activations predicted using Equation 4.2. We evaluated
various metrics for computing semantic similarity from neural activations. We present only a top
performing metric formulated as the weighted square distance, namely:

v
S(w,wa) =Y by (yo(wr) — yo(w2))?,

v=1

(4.4)
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where S (w1, ws) is the semantic similarity between words w; and ws, V' represents the number of
voxels used in the predicted neural image, y, (w) is the activation of a voxel for word w, and b, is
a learned weight of the contribution of a particular voxel to the similarity metric. In Figure 4.5 the

Figure 4.5: Neural activation images for two similar concrete nouns including the 500 most stable
voxels (participant P1). This figure shows just one horizontal slice in Montreal
Neurological Institute (MNI) space of the three-dimensional image.

predictions of neural activations for two highly similar nouns in fMRI dataset are presented. Visual-
izations were created from 500 voxels to gather insight for our computational model. Observe that
both brain images have similar neural activations both in terms of which parts of the brain are activated
and the activation values. Although, we don’t utilize localization information, our weighting schema
implicitly detects activation patterns by variations in b; coefficients.

4.6.3 Taxonomy Creation

The performance of similarities computed by Equation 4.4 were also evaluated on a taxonomy creation
task on the ESSLLI dataset [36]. Taxonomy creation is performed using the neural activation vectors
y(w) estimated from Equation 4.2 and the coefficient vectors b defined in Equation 4.4 trained using
linear regression on the whole of the MEN dataset. Then, the similarity matrix S(w;, w;) is estimated
for all pairs in the dataset using Equation 4.4 and then the spectral clustering algorithm proposed
in [37] is applied to obtain the lexical classes. In this work, neural fusion refers to early fusion (vec-
tor concatenation) of word vectors and neural activation vectors. We used a purity-based metric for
evaluating the quality of the automatically created clusters. The purity P of the taxonomy is defined
as in [38]:

k
1
P = 7 gmjax(eij), (4.5)

where ¢;; is the number of nouns assigned to the ith cluster that belong to the jth groundtruth class, &
is the number of clusters, and d is the total number of concrete nouns included in the dataset. Purity
expresses the fraction of nouns that belong to the true class, which is most represented in the cluster,
taking values in the range [0, 1].

4.6.4 Human Sense Classification

For the sensory modality (sense) classification task we use the Sensicon dataset to evaluate the perfor-
mance of our model regarding sense discrimination. By definition all nouns in Sensicon are concrete
nouns since they are associated with a real-world sensory stimulus. Sense classification is performed
as described in the subsection 4.6.3, i.e., the similarity matrix in Equation 4.4 is calculated using the
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weight vector b trained on the MEN dataset and then the spectral clustering [37] is applied for the five
sense categories. The resulting clusters are used for sense classification either between two senses,
one versus all or among all five senses.

4.6.5 Multisense prediction

A next step is to determine for a given word the degree it interacts with a particular human sense.
Neural activations of each word are predicted based on the work proposed by Mitchell [7] described
in 4.6. We want to characterize the sense content of words in a continuous valence range regarding
their neural activations. We model the valence of each word as a linear combination of its semantic
similarities 4.6.2 extracted from our neural our similarity model to a set of seed words and the valence
ratings of these words:

N
5% (wy) = ag + Z a; - s(w;) - d(w;, wy) (4.6)
i=1
where w; is the word we aim to characterize, w1, ws, ..., wy are the seed words, u(w;) is the valence
rating for seed word,a; is the weight corresponding to word (that is estimated as described next), d is
a measure of semantic similarity between words. The similarity d is extracted using the same method
as described in 4.6.3. Assuming we have a training corpus of words with known ratings (SenSicon)
and a set of seed words (a subset of the lexicon) for which we need to estimate weights, we can use
4.6 to create a system of linear equations with unknown variables as the weights and the extra weight
which is the shift (bias). The optimal weights are found by training our system via Ridge Regression.
Once the weights of the seed words are estimated the valence of an unseen word can be computed
using 4.6. Note that no additional training corpus or data are required here, the weights are estimated
on the corresponding lexicon and are used to bootstrap the model.

4.6.6 Entailment

Next, we applied the neural activations to an entailment classification task. We used a Bi-LSTM
model proposed in [142] featuring contextual attention (see Figure 4.6) as our baseline model. Word
embeddings for concrete nouns were estimated using GloVe as detailed in [74] and used as input to
the Bi-LSTM network. The neural activations vectors were then combined via early fusion (vector
concatenation) with GloVe embeddings [74]. Evaluation results for GloVe vectors and neural fusion
are shown in Table 4.6 in terms of prediction accuracy.

4.7 Experimental Setup

We built the neural activations prediction model as in [7] using fMRI data for 60 concrete nouns.
We calculate the semantic features f;(w) for each concrete noun, w, by counting its co-occurences
with 25 manually selected verbs in a large corpus created in [143] by aggregating results of web
queries to Yahoo. The fMRI data used in our experiments were collected and processed by [7] and are
publicly available. In this dataset, each one of the participants was presented 60 concrete nouns (for
6 times each) through a line drawing which was labeled with the corresponding noun. Each out of
nine subjects, was asked to think about properties of the presented noun during scanning procedure.
Finally, a vector representation of the whole cortex neural activation was extracted. Further details
about the dataset can be found in [7] and its supplementary website®. Prior to training both training and
test data are averaged across trials and the final neural activations of each noun are mean normalized.
The following datasets have been used for semantic similarity, taxonomy creation, sense classification
and entailment tasks. The code of the present work is publicly available®.

3 http://www.cs.cmu.edu/~tom/science2008/
4 https://github.com/athn-nik/neural_asm
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Figure 4.6: Bi-LSTM with context attention used in our experiments. Words’ representations are
either pretrained word embeddings or fusion of neural activations and word embeddings.

MEN: For the semantic similarity task we train and evaluate our model on the MEN dataset [39]
which consists of 3000 word pairs (2000 for training set and 1000 pairs for test set). Each word pair is
associated with a similarity score. This score was computed by averaging the similarities that provided
by human annotators. We hand-labeled the dataset to keep only concrete nouns because the neural
activation prediction model is trained only on concrete nouns. This resulted in 1114 pairs (562 unique
words) in the training set and 524 pairs (438 unique words) in the test set. The similarity scores were
normalized between zero and one. We also created 2 subsets of MEN of 39 highly similar and 79
highly dissimilar word pairs using a thresholding technique, where pairs with similarity score over
0.85 and under 0.1 belong in the first and second subset respectively.

ESSLLI: For the taxonomy creation task, we evaluate our model on the ESSLLI dataset [36]. It
consists of a three-level hierarchy (2-3-6 classes). The lowest level of hierarchy contains 6 classes of
concrete nouns (birds, land animals, fruit, greens, vehicles, tools), the middle 3 classes (vegetables,
artifacts, animals) while the upper class is distinguished between living beings and objects.

Sensicon: For sense classification, we use the Sensicon [40] dataset. Sensicon is a dictionary which
contains 22684 English words and associates each word with 5 numerical scores and a part of speech
annotation. The scores correspond to the relevance of the word to each of the 5 senses, namely vision,
hearing, taste, smell and touch. In order to use these scores for the sense classification task we selected
nouns who have non-zero scores in only one sense results in 1011 words. For the multisense prediction
task, SenSicon will be splitted into train,validation,test subsets and evaluation will be performed in
test subset using 10-fold cross validation. Because of the size of Sensicon dataset we intuitively
selected to include in our evaluation setup words having a consistently large score (at least 0.1). The
prementioned setup eventually selected 1180 words.

SNLI dataset: For the entailment task, we used the Stanford Natural Language Inference (SNLI)
dataset [41] which contains around 570K sentence pairs with three labels: entailment, contradiction
and neutral. We preprocessed the initial dataset to keep only training and testing examples that have
at least two or three concrete nouns that are also in the MEN dataset for both premise and hypothesis.
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This resulted in 30,498 training and 592 test samples for the case of at least three common words and
171,528 training and 3201 test samples for the case of at least two common words with MEN.

4.8 Experimental Results

4.8.1 Semantic Similarity

For the semantic similarity task, we applied Equation 4.4 for the word pairs of the MEN dataset. The
Yy (.)s of Equation 4.4 were computed using Equation 4.2 utilizing up to 250 voxels. We exploited
the training subset of MEN for learning the b weights of Equation 4.4 using linear regression. Those
weights were used for computing the similarities for the test subset of MEN. The Spearman correlation
coefficient between the human similarity scores (ground truth) and the similarity scores computed by
Equation 4.4 was used as evaluation metric. The results are presented in Table 4.2, where we compare
the performance of the proposed neural model (averaged across participants) against the performance
yielded by the w2vec word embeddings [25] trained on the GoogleNews corpus.

Subset Number of voxels Neural model w2vec
All Concrete nouns 50 043 0.76
100 0.47 0.76
150 0.48 0.76
200 0.48 0.76
Most & Least similar 50 0.58 0.73
100 0.82 0.73
150 0.82 0.73
200 0.88 0.73
Least similar 50 0.43 0.43
100 0.44 0.43
150 0.47 0.43
200 0.63 0.43
Most similar 50 0.28 0.14
100 0.63 0.14
150 0.68 0.14
200 0.83 0.14

Table 4.2: Evaluation results on the concrete nouns subset of the MEN test set, and on most and
least similar concrete word subsets.

Overall, the w2vec model outperforms the neural model achieving 0.76 correlation on all con-
crete nouns. For the neural model, performance increases as more voxels are exploited reaching 0.48
correlation is obtained for at least 150 voxels. In Table 4.2, the performance is also shown for three
subsets of the MEN test set, namely, “Most & Least similar”, “Least similar” and “Most similar”
concrete nouns. For all three subsets, the performance achieved by the neural model exceeds® the
performance of w2vec when at least 100 voxels are used. The performance improvement becomes
more pronounced as the number of voxels increases. The best correlation score achieved is 0.88 for
the case of the “Most & Least similar” subset for 200 voxels, outperforming the w2vec model (0.73
correlation). Especially for the case of the “Most similar” evaluation subset, we observe a remarkable
difference between the two models, i.e., 0.83 vs. 0.14 for the neural and the w2vec model, respec-
tively.

> The differences between the similarity scores estimated by our model and the baseline (i.e., w2vec) were found to be
statistically significant at 99% level according to paired-sample t-test.
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4.8.2 NLP Tasks

Next we present the performance of the neural activation semantic model for a taxonomy creation
(semantic class classification), sensory modality (sense) classification, and lexical entailment task.
Neural vectors are averaged across participants and evaluated both standalone and in combination
(early or late fusion) with traditional word embedding models. In this work, neural fusion refers to
early fusion (vector concatenation) of word vectors and neural activation vectors. We used a purity-
based metric for evaluating the quality of the automatically created clusters. Purity expresses the
fraction of nouns that belong to the true class, which is most represented in the cluster, taking values
in the range [0,1].

Dataset Neural Model w2vec Neural Fusion
ESSLI (6 classes) 0.61 0.70 0.71
ESSLI (3 classes) 0.77 0.95 0.95
ESSLI (2 classes) 0.66 0.77 0.72

Table 4.3: Evaluation results for taxonomy creation.

The evaluation results are presented in Table 4.3 for the neural activation model, the w2vec word
embeddings [25] trained on the GoogleNews corpus and the late fusion of the two models (denoted as
neural fusion) with equal weighting of their similarity matrices S. All results shown are computed on
V' = 250 voxels. The neural model performs worse that the w2vec model in all three subtasks (6, 3
or 2 classes), however, the proposed neural fusion achieves the best purity scores for 6 and 3 classes,
at 0.71 and 0.95 purity, respectively. For the case of 2 classes, the best performance is yielded by the
w2vec model (0.77). However, the purity of the clusters yielded by the neural model for 2 and 6 classes
is comparable with the w2vec’s performance. For the sensory modality (sense) classification task we
use the Sensicon dataset to evaluate the performance of our model regarding sense discrimination. By
definition all nouns in Sensicon are concrete nouns since they are associated with a real-world sensory
stimulus.

Sense Number of voxels Number of seeds Neural Model w2vec

Vision 225 300 0.28 0.27
Audition 100 900 0.57 0.58
Touch 50 500 0.42 0.43
Taste 100 500 0.72 0.71
Smell 225 800 0.48 0.48

Table 4.4: Pairwise evaluation results for sense taxonomy task .

The evaluation results® are presented in Table 4.5 for the neural model, the w2vec model (same
as the one used in the previous section) and the late fusion of the two (neural fusion) using equal
weighting on the similarity matrices .S. The evaluation metric used is the purity of clusters defined in
Equation 4.5. All results shown are computed on V' = 250 voxels.

The neural and w2vec models achieve very similar results for two-way classification tasks, with
the neural model performing better 0.37 versus 0.33 for five-way sense classification. The neural
fusion model outperforms both neural and w2vec models for the majority of the two-way classifica-
tion tasks and also achieves top performance for the five-way classification task reaching 0.39 purity
score. Overall, the neural and neural fusion models show strong performance for this task, which is

% Note that the sense smell is not always present in Table 4.5 because smell has only four nouns compared in to other
senses that contain more than 100 nouns each.
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Classes Neural Model w2vec Neural Fusion

Vision, Audition 0.55 0.55 0.57
Vision, Touch 0.68 0.66 0.69
Vision, Taste 0.60 0.60 0.61

Audition, Touch 0.59 0.58 0.59

Audition, Taste 0.57 0.55 0.57
Taste, Touch 0.54 0.54 0.54
Vision, Other 0.68 0.68 0.68

Audition, Other 0.74 0.74 0.74
Touch, Other 0.81 0.81 0.81
Taste, Other 0.78 0.78 0.79

Audition, Vision, Smell, Touch, Taste 0.37 0.33 0.39

Table 4.5: Evaluation results for two-way, one-vs-all, and five-way sense classification.

reasonable given the localization of sensory representations in the human cortex. The results for the
human multisense regression task are presented in Table 4.4. We observe that especially for Taste and
Audition senses our simple approach achieves results comparable to lexical embeddings. In the cases
of Touch, Vision and Smell the two models perform similarly. However, it can be seen that Taste is
clearly discriminated by the two models while other senses that may be contained in more abstract
words such as Vision and Touch are more difficult to be estimated. Note that, our results are indicative
and between the different configurations (seeds, voxels) do not differ more than 1 —2%. These results
are also consistent with neuroscientific research [42, 43, 44, 45, 46, 47]. The results are reported for

Dataset(SNLI) Dimensions (GloVe, neural) GloVe Neural Fusion
3-common (300,250) 68.2 68.7
2-common (300,250) 76.6 77.7

Table 4.6: Entailment task accuracy for GloVe and neural fusion vector input to the Bi-LSTM.

two subsets of the SNLI dataset, namely, 3-common and 2-common (see section 4.7). We observe
that the top accuracy is achieved by the fusion scheme for both the 3-common and 2-common subsets
(68.7£0.9% and 77.7 +0.9%). Note that, here we chose to compare neural activations with different
state-of-the-art embeddings to extend our evaluation in lexical embeddings with different flavor.

4.9 Further Experimentation

In this section, we will demonstrate some preliminary experiments which outline our ideas for the
future directions of our work in Chapter 4. As a first step we wanted to expand the neural predictor
beyond concrete nouns and test the performance of our similarity model. Secondly, we tried to in-
vestigate the compositional ability of neural activations at a sentential level. A high level illustration
of our experimentation can be found in Figure 4.7. Note that the weighted additive schema in com-
positionality investigation is left as future research. Rank classification evaluation is a method used
in [73] which classifies an answer as correct depending on the highest correlation to the actual answer
among other alternatives. It is also left as future work.

4.9.1 Data Description

We used a recently outsourced dataset [73] which contains fMRI images of a wide variety of words,
sentences and concepts. Specifically, the imaging dataset consists of three different experiments which
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Figure 4.7: Our experimentation procedure on the dataset released in [73].

are described below and are publicly available on the paper website (https://osf.io/crwz7).
Experiment 1

In Experiment 1, words are presented in participants namely 128 nouns, 22 verbs, 29 adjectives, 1
function word. They are presented in three ways:

e In a “cloud” along with other words, while the target word/concept is outlined.
e In a sentence where its meaning is clearly discriminated.
e Via representative images of its meaning and uses.

In our experimentation, we manipulated those three ways separately and on average.

Experiment 2

The second experiment, includes 24 different topics. Every topic is associated with four passages four
sentences length each. The passages usually refer to words or concepts that semantically fall into the
particular topic. We have one fMRI image per sentence. An example of the data demonstrated to the
participants is presented below:

Topic: Fruit
Passage 1 Passage 2
An apple is a fruit that can be green, red or yellow. Banana is a fruit that grows in bunchs, with a soft edible inside.
Apples have thin skin, a crisp, sweet pulp and seeds inside. Banana when ripe can be yellow or purple and have small brown spots.
Some very tart apples are used to make cider. The greatest producers are tropical countries, such as India.
Apples can be eaten raw, roasted or baked in pies. Unripe bananas and plantains are staple foods and often cooked like potatoes.
Passage 3 Passage 4
Peach is an orange-yellow fruit with a characteristic smell. Raspberry is a fruit that grows in forest clearings or fields.
Skin of a peach is thin and covered in small, fine hairs. A single raspberry consists of many small fruits joined together.
Peaches have a large, red-brown stone inside which contains the seed. | Raspberries are eaten by themselves or cooked with sugar into jam.
Peaches are sweet and delicate, and must be harvested after ripening. Leaves of the raspberry are used fresh or dried in herbal teas.

Experiment 3
The third experiment, includes 24 different topics as in Experiment 2. Every topic is associated with
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three passages three or four sentences length each. The difference from the previous experiment is
that the topic are mainly abstract concepts and all the passages refer to the topic in an explicit way.
We also have one fMRI image per sentence. An example of the data shown to every participants is
presented below:

Topic: Beekeeping

Passage 1

Beekeeping encourages the conservation of local habitats.

It is in every beekeeper’s interest to conserve local plants that produce pollen.

As a passive form of agriculture, it does not require that native vegetation be cleared to make way for crops.
Beekeepers also discourage the use of pesticides on crops, because they could kill the honeybees.

Passage 2

Artisanal beekeepers go to extremes for their craft, but their product is worth the effort.
Artisanal honey-making emphasizes quality and character over quantity and consistency.
To produce the finest honey, beekeepers become micromanagers of their honeybees.
They scout the fields, know when nectar flows, and select the best ways to extract honey.

Passage 3

As the beekeeper opens the hive, the deep hum of 40,000 bees fills the air.
The beekeeper checks honey stores, pollen supplies, and the bee nursery.
Bees crawl across his bare arms and hands, but they don’t sting, because they’re gentle.

Their experiment in [73] focus on how different topics and words differ in terms of neural acti-
vations, examining all three different experiments. They first used a neural predictor similar to [7] to
map the lexical space to the neural space. Then, they tested the learned neural representations behavior
in different topic and words discriminative tasks.

4.9.2 Abstract Concepts Decoding

In order to determine if the neural predictor can help our similarity model to generalize in words other
than concrete nouns we used the fMRI images of Experiment 1 and trained our neural predictor. Then,
we tested our similarity model on the whole MEN dataset.

Subject Wordcloud Pictures Sentences Average Glove

MO1 0.37 0.35 0.37 0.35 0.74
MO02 0.41 0.4 0.46 0.35 0.74
MO03 0.37 0.39 0.37 0.39 0.74
MO04 0.36 0.34 0.36 0.39 0.74
MO5 0.33 0.38 0.33 0.4 0.74
MO06 0.37 0.37 0.37 0.33 0.74
MO07 0.25 0.38 0.43 0.3 0.74
MO8 0.39 0.36 0.39 0.45 0.74
M09 0.42 0.39 0.38 0.35 0.74
M10 0.32 0.34 0.33 0.4 0.74
M13 0.36 0.315 0.14 0.39 0.74
M14 0.37 0.41 0.38 0.33 0.74
M15 0.34 0.42 0.39 0.34 0.74
M16 0.35 0.36 0.39 0.39 0.74
M17 0.44 0.3 0.37 0.38 0.74
P01 0.36 0.39 0.45 0.37 0.74
AVG 0.36 0.37 0.37 0.37 0.74

Table 4.7: Evaluation results across all words for MEN similarity dataset.
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In Table 4.7, spearman correlation results for the whole MEN dataset are presented. We observe
that lexical word embeddings perform better in all cases.

Subject Wordcloud  Pictures Sentences Average Glove

Low High Low High Low High Low High Low High
MO1 -0.64 -0.05 -0.07 0.19 055 023 023 012 043 035
MO02 0.15 -0.66 085 -043 -043 -0.04 0.14 052 043 035
MO03 076 021 084 044 0.15 046 028 -0.72 043 035
MO04 0.76 -0.14 -0.18 0.16 0.15 -0.16 0.64 -056 043 035
MO5 099 066 -006 071 099 065 -021 077 043 035
MO6  -046 -0.05 048 -059 -046 -0.05 -09 -0.14 043 035
MO07 081 -0.07 -099 04 078 -035 055 -0.13 043 035
MO8  -0.83 -021 049 022 043 035 0.16 022 043 035
M09 0.16 033 -044 -0.67 -0.78 -0.18 0.15 -036 043 035
M10 -059 -021 0.16 064 022 069 0.15 026 043 035
M13 -0.83 0.12 -0.18 -0.94 -0.12 0.05 0.16 -0.24 043 0.35
M14 078 0.18 028 -006 078 0.18 -09 068 043 035
M15 -0.95 027 -043 028 -0.74 022 -0.22 -0.12 043 0.35
M16 090 -025 055 029 049 056 043 0.12 043 035
M17  -027 -023 -095 01 021 034 -0.1 -0.6 043 035
P01 021 -025 007 -03 -074 046 098 -0.06 043 035

Table 4.8: Evaluation results on the low and high similarity subsets of the MEN dataset.

Next, we experimented with the highly similar and dissimar subsets of MEN dataset. In Table 4.8,
spearman correlation results for the the high and low similar subsets of MEN dataset are shown.
We can see that for some participants and specific data subsets neural activations outperform lexical
embeddings. However, they demonstrate extreme variations making it infeasible to reach a general
conclusion.

4.9.3 Compositionality of words in Brain

Semantic composition is one part of a larger cognitive process termed semantic unification. Semantic
unification includes not only composing the meaning of words in phrases, but also phrases in sen-
tences, and sentences in larger thematic structures. However, most of the studies were performed in
EEG data examining regional characteristics of semantics understanding and how particular EEG com-
ponents are related to syntactic or semantic characteristics of language [144, 145, 29, 146, 147]. As
a preliminary experimentation step in examination of sentence compositionality we calculated Spear-
man correlation of a neural representation of sentence extracted by its words —by using the trained
model on the 180 words— compared with its actual neural representation. We chose to combine word
neural activation either additively or multiplicatively.

Subject Multiplicative Additive

MO02 0.03 -0.04
MO03 0.11 0.24
MO04 0.01 0.04
MO07 0.02 0.04
M15 0.003 0.01
P01 0.44 0.61

Table 4.10: Evaluation results on sentence compositionality for Experiment 3.
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Subject Multiplicative Additive

MO02 0.03 0.04
MO04 0.02 0.01
MO07 0.05 0.07
MO8 0.01 0.02
M09 -0.01 -0.03
M14 -0.03 -0.04
P01 0.04 0.09

Table 4.9: Evaluation results on sentence compositionality for Experiment 2.

In Tables 4.9, 4.10 the Spearman correlation of performance of our method is presented. Although,
PO1 subject appears to have a higher correlation demonstrating a compositional tendency according
to our simple method, the other subjects do not validate the same hypothesis. Their correlation values
indicate almost no correlation between the word combined and the actual sentence’s neural activations
representation.

4.10 Experimental Summary & Discussion

The analysis of the neural model word performance showed that the proposed model can differentiate
between very similar and very dissimilar concrete nouns better than state-of-the-art word embeddings
semantic models, while it performs worse overall for the word semantic similarity task. This is a
strong indication that the semantic discriminability of neural activation vectors is of a different flavor
than that of traditional word embedding vectors, and thus neural vectors can be used to augment state-
of-the-art semantic representations.

Results on the taxonomy classification, sense classification and entailment task indeed verify the
different flavor of neural embeddings. For certain tasks, e.g., sense classification, neural models
provide state-of-the-art performance. For other tasks, the fusion of neural and word2vec embeddings
provides significant improvement.

Overall, (predicted) localized neural activation vectors can also be used in conjunction with other
semantic representations and deep architectures to improve the results in challenging tasks, like con-
cept entailment.
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Chapter 5

Cross-topic Distributional Representations

In this chapter we present our work in 2019 Annual Conference of the North American Chapter of
the Association for Computational Linguistics which was made in cooperation with a former group
member Eleftheria Briakou [2].

5.1 Multiple Embedding Models via cross unsupervissed mappings

In traditional Distributional Semantic Models (DSMs) the multiple senses of a polysemous word are
conflated into a single vector space representation. In this work, we propose a DSM that learns multi-
ple distributional representations of a word based on different topics. First, a separate DSM is trained
for each topic and then each of the topic-based DSMs is aligned to a common vector space. Our
unsupervised mapping approach is motivated by the hypothesis that words preserving their relative
distances in different topic semantic sub-spaces constitute robust semantic anchors that define the
mappings between them. Aligned cross-topic representations achieve state-of-the-art results for the
task of contextual word similarity. Furthermore, evaluation on NLP downstream tasks shows that
multiple topic-based embeddings outperform single-prototype models.

5.2 Motivation

Current word representation learning models encode the semantic and syntactic information of words
adopting the distributional hypothesis [19]. Word-level representation algorithms encode contextual
information of words into dense feature vectors (embeddings). However, such models(w2vec, Glove,
fasttext) learn single point representations, which cannot capture the distinct meanings of polysemous
words (e.g., bank or book). This leads to conflated word representations of diverse contextual se-
mantics. Thus, the creation of multi-sense embeddings, which encode different word meanings in the
semantic space can help us to improve natural language understanding.

5.3 Related Work

Methods that assign multiple distributed representations per word can be grouped into two broad
categories.! Unsupervised methods induce multiple word representations without leveraging semantic
lexical resources. [48] were the first to create a multi-prototype DSM with a fixed number of vectors
assigned to each word. In their model, the centroids of context-dependent clusters were used to create a
set of “sense-specific” vectors for each target word. Based on similar clustering approaches, follow-up
works introduced neural network architectures that incorporated both local and global context in a joint
training objective [49], as well as methods that jointly performed word sense clustering and embedding
learning as in [50, 51]. A probabilistic framework was introduced by [52], where the Skip-Gram
model of Word2Vec was modified to learn multiple embedding vectors. Furthermore, latent topics
were integrated into the Skip-Gram model, resulting in topical word embeddings which modeled the
semantics of a word under different contexts [53, 54, 55]. Another topic-related embedding creation

! We limit our discussion to related works that use monolingual DSMs and corpora.
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approach was proposed in [90] where a mixture of topic-based semantic models was extracted by
topical adaptation of in-domain corpora. Other approaches used autoencoders [66], convolutional
neural networks designed to produce context representations that reflected the order of words in a
context [117] and reinforcement learning [67, 68].

Supervised approaches, based on prior knowledge acquired by sense inventories (e.g., WordNet)
along with word sense disambiguation algorithms, were also introduced for sense-specific represen-
tations extraction [56, 57]. In other works, pre-trained word embeddings have been extended to em-
beddings of lexemes and synsets [88] or were de-conflated into their constituent sense representations
[89] by exploiting semantic lexical resources.

5.4 Unified Multi-Topic Model

Our system follows a four-step approach which can be visualized in Figure 5.1:

1. Global Distributional Semantic Model. Given a large collection of text data we train a DSM
that encodes the contextual semantics of each word into a single representation, also referred to
as Global-DSM.

2. Topic-based Distributional Semantic Models. Next, a topic model is trained using the same
corpus. The topic model splits the corpus into K (possibly overlapping) sub-corpora. A DSM
is then trained from each sub-corpus resulting in K topic-based DSMs (TDSMs). The topical
adaptation of the semantic space takes into account the contextual variations a word exhibits
under different thematic domains and therefore leads to the creation of “topic-specific” vectors
(topic embeddings).

3. Mappings of topic embeddings. Next, we map the vector space of each topic-based DSM to the
shared space of the Global-DSM, using a list of anchor words selected through an unsupervised
self-learning scheme. In the unified semantic space each word is represented by a set of topic
embeddings that were previously isolated in distinct vector spaces, thus creating a Unified multi-
Topic DSM (UTDSM).

4. Smoothing of topic embeddings. As an optional step, we employ a smoothing approach in
order to cluster a word’s topic embeddings into N Gaussian distributions via a Gaussian Mix-
ture Model (GMM). This step lessens the noise introduced to our system through the semantic
mappings and sparse training data.

Word2Vec

~ -
,,,,,,,,,,, ~ Alignments

Unified multi-
topic
DSM

Figure 5.1: Starting from an initial corpus, K topic subcorpora (SC;) are created and subsequently
K topic embedding spaces are created (1" D.S M;) which are then projected in a the global
space.
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5.4.1 Creation of Topic Spaces

The first step towards the thematic adaptation of the semantic space is the induction of in-domain cor-
pora, using the Latent Dirichlet Algorithm (LDA) [58]. LDA is a generative probabilistic model of a
corpus. Its core idea is that documents are represented as random mixtures over topics; where each
topic is defined as a probability distribution over a collection of words. Given as input a corpus of
documents, LDA trains a topic model and creates a distribution of words for each topic in the corpus.
Using the trained LDA model, we infer a topic distribution for each sentence in the corpus. After-
ward, following a soft clustering scheme each sentence is included in a topic-specific corpus when the
posterior probability for the corresponding topic exceeds a predefined threshold. The resulting topic
sub-corpora are then used to train topic-based DSMs. Any of the DSM training algorithms proposed
in the literature can be used for this purpose; in this paper, we opt for the Word2Vec model [25].

5.4.2 Mapping across different Topic Spaces

The intrinsic non-determinism of the Word2 Vec algorithm leads to the creation of continuous vector
spaces that are not naturally aligned to a unified semantic reference space, precluding the comparison
between words of different thematic domains. To circumvent this limitation, we need to map the
word representations of TDSMs to a shared vector space. In particular, we hypothesize that TDSMs
capture meaningful variations in usage of polysemous words, while the relative semantic distance
between monosemous words is preserved. This hypothesis motivated us to think of monosemous
words as anchors between semantic spaces, as illustrated in Figure 5.2. One way to retrieve the list
of anchors is to extract monosemous words from lexical resources such as WordNet [59]. However,
this method is restricted to languages where such lexical resources exist and depends on the lexical
coverage and quality of such resources.

cancer astrology astrology’

—
Mappings

cancer

cancer' |

Figure 5.2: Simplified depiction summarizing the intuition behind the alignment process of topic
embeddings. In the unified vector space, the polysemous word cancer is represented by
two topic vectors that capture different semantic properties of the word under a zodiacal
and a medical topic. Words astrology and tumor are examples of semantic anchors that
define the mappings.

To overcome the above limitations, we propose a fully unsupervised method for semantic anchor
induction. Although the embeddings of the topic and global semantic vector spaces are not aligned,
their corresponding similarity matrices (once normalized) are. Based on this observation, we compute
the similarity between a given word and every other word in the vocabulary (similarity distribution)
for the different topic and global spaces. Then, we assume that good semantic anchors should have
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similar similarity distributions across the topic-specific and the global space, as illustrated in Figure
5.3. [148] was based on a similar observation to align vector semantic spaces in bilingual machine
translation context.

- global

6 - topic

crater

0.0 0.2 0.4 0.6 0.8 1.0 0.6 0.8 1.0

professor october

Figure 5.3: Similarity distributions of four different words (corresponding to the smoothed density
estimates of the similarity matrices) in topic domain space as defined in Equation 5.1
and global space sg. Selected anchors (“professor” and “october”) have more similar
distributions in the global and topic spaces, when compared to unselected ones (“view”
and “crater”). We observe that the selected anchors are less ambiguous, while the not
selected ones are expected to have diverse contextual semantics.

Let V be the intersection of the Global-DSM and the K TDSMs vocabularies and d the embedding
dimension. We then define X, € RIVIxd a5 the embedding matrix of the k-th TDSM, and Y € RIVIxd
as the embedding matrix of the global DSM, where the i-th row of each matrix corresponds to the unit
normalized representation of a word in V. Then, we define S, = X kXZ, Sg = YYT e RIVIXIVI
to be the similarity distribution matrices for the k-th TDSM and the global-DSM, respectively. Our
objective is to extract a list of semantic anchors A that minimizes the Euclidean distance between the
two different similarity distributions. Specifically, for every word ¢ we calculate the average semantic
distribution across all topics:

) 1 K
<sh>p = ?Zs;f (5.1)
k=1
| <si>x —syll2, Yi=1,...,|V] (5.2)

where s;, st is the i-th row of the S, and Sy similarity matrix, respectively, representing the sim-
ilarity distribution between word ¢ and every other word in the vocabulary V. We then choose | A|
anchors as the words with the smallest values according to criterion 5.2. Furthermore, we assume
that there exists an orthogonal transformation matrix between the topic embeddings of the extracted
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semantic anchors of each TDSM (source space) and the corresponding representations of the global-
DSM (target space). The orthogonality constraint on the transformation matrix is widely adopted by
the literature for various semantic space alignment tasks [60, 61, 62]. Assume ozZ: € R? is the vector
representation of the j-th anchor word in the source space and ozg € R? is its corresponding vector
representation in the target space. The transformation matrix M}, € R%*¢ that projects the first space
to the latter is learned via solving the following constraint optimization problem:?

|4]
~ j 112 T
i E 1 | Myog, — o |l5, st. MMy =1 (5.3)
J:

The induction of multiple topic embeddings in the unified vector space is achieved via applying
Equation 5.3 to each TDSM. Specifically, given a word and its k-th topic distributed representation
z, € RY, we compute its projected representation z) € R as follows:

JJZ}, = Mpx; (5.4)

5.4.3 Clustering of Topic Embeddings

Starting from the set of aligned topic embeddings {x;g}szl for each word, we learn a Gaussian Mixture
Model with N components, where closely positioned topic embeddings are assigned to the same
component. This step operates as an implicit way of segmenting the space of topic embeddings for
each word in order to capture more useful hyper-topics—union of topics—which better represent their
different meanings. We suggest that each Gaussian distribution forms a semantically coherent unit that
corresponds to closely related semantics of the target word. Subsequently, the mean vector of each
Gaussian distribution is used as a representative vector of each component, leading to a new set of
smoothed topic embeddings {x}N_, for each word, where z} € R%.

Topic Space #1 Topic Space #2 Topic Space #N

bank
O-\\

Global Space

Figure 5.4: Mapping of topic embeddings. The embeddings from each topic space are projected to
the global space. The embeddings of each word are then clustered together, forming the
corresponding sense clusters.

2 This problem is known as the orthogonal Procrustes problem and it has a closed form solution as proposed in [63].
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5.5 Experimental Setup

5.5.1 DSM Settings

As our initial corpus we used the English Wikipedia, containing 8.5 million articles [149]. During
the training of the topic model, we used the articles found in the Wikipedia corpus and employed the
Gensim implementation of LDA [150] setting the number of topics K to 50. Using a threshold of
0.1, we followed a soft-clustering approach, to bootstrap the creation of topic sub-corpora, using our
trained topic model. Finally, we used Gensim’s implementation of Word2Vec and Continuous Bag-
of-Words method to train both the global-DSM and the TDSMs. The context window parameter of
Word2Vec is set to 5, while the dimensionality d of all the constructed DSMs is equal to 300 or 500.3

5.5.2 Semantic Anchors

The number of semantic anchors that determine the mappings between our source and target spaces is
setto |A| = 5000 # according to our unsupervised approach (criterion 5.2). Those are selected from
the common set of words that are represented in all semantic spaces with |V| ~ 12 000.

As a second experiment, we randomly sample | A| words from the vocabulary of each TDSM to
define its transformation matrix. We repeat this experiment 10 times, every time sampling a different
list from the corresponding vocabulary and report average performance results.

5.5.3 Gaussian Mixture Model

To apply the smoothing technique on the set of a word’s topic embeddings we use the Scikit-learn
implementation of Gaussian Mixture Model clustering algorithm [65]. We initialize the mean vector
of each component using k-means algorithm and the parameters of the model are estimated using
Expectation-Maximization (EM) algorithm.

5.5.4 Semantic Contextual Word Similarity Dataset

To estimate the semantic similarity between a pair of words provided in sentential context, we use
the standard evaluation Stanford Contextual Word Similarity (SCWS) [49] dataset which consists of
2003 word-pairs with assigned semantic similarity scores computed as the average estimations of
several human annotators. Following the evaluation guidelines proposed in literature, we employ the
AvgSimC and MaxSimC contextual metrics, firstly discussed in [48]. In particular, given the word-
pair (w, w’), and their provided contexts (¢, ¢') we define:

K K
. 1 ‘
AvgSimC(w, w') =4 p(jlw, )p(klw’, ¢')d(a;(w), 2}, (w')), (5.5)
j=1k=1
MaxSimC(w, w') = d(z'(w), ' (w')), (5.6)
(W) = Uargmax, -, e p(jlw.c) (W) (5.7)

An example following the notation used in 5.4.2, K is the number of topics returned by the trained
LDA model, x; is the word embedding trained on the sub-corpus corresponding to the j-th topic

3 Any parameter not mentioned is set to default values of the corresponding implementations (e.g., Word2Vec, Gensim
LDA).

* We have experimented with different values of anchors from {1000, 2000, 3000,4 000, 5000} and report results for
the best setup.

94



after being projected to the unified vector space, p(j|w, ¢) denotes the posterior probability of topic j
returned by LDA given as input the context ¢ of word w, d denotes the cosine similarity between the
two input representations and finally 7 (w) is the vector representation of word w that corresponds
to the topic with the maximum posterior for c. Intuitively, a higher score in MaxSimC indicates the
existence of more robust multi-topic word representations. On the other hand, AvgSimC provides a
topic-based smoothed result across different embeddings. A simplified example taken from the dataset
can be found below:

war battle
...modern French Army retains two Dragoons regiments from the 32 it possessed at the beginning of
World War I : the 2nd, which is a nuclear, bacteriologic and chemical protection regiment, and the
13th, which is a special-ops parachute...

Battle of Namakura, it would be one of Britain'’s numerous embarrassing colonial defeats of the
war. The largest sieges of the war, however, took place in Europe. The initial German advance into
Belgium produced four major sieges, the Battle of Liege... —9.08

war hostility
...was striving to drag all of the Arab countries into a war. After the Samu raid, these apprehensions
became the deciding factor in Jordan s decision to participate in the war. King Hussein was convinced
Israel would try to occupy the West Bank whether Jordan went to war, or not. Israel and Syria. In
addition to...

... history of the Talmud reflects in part the history of Judaism persisting in a world of hostility
and persecution. Almost at the very time that the Babylonian... — 5.6

5.5.5 Downstream NLP Tasks Datasets

Text classification. We used the 20NewsGroup® dataset, which consists of about 20 000 documents.
Our goal is to classify each document into one of the 20 different newsgroups based on its content.
Paraphrase Identification. For this task we aimed at identifying whether two given sentences can
be considered paraphrases or not, using the Microsoft Paraphrase dataset [64].

5.5.6 NLP Tasks

Besides the standard evaluation benchmark of contextual word similarity, we also investigate the ef-
fectiveness of our mapped cross-topic embeddings on document and sentence level downstream NLP
tasks: text classification and paraphrase identification. We report weighted-averaging precision, re-
call, F1-measure and accuracy performance metrics.

Document and Sentence level representations.

Given a document or a sentence 1D, where wy corresponds to the d-th word in D, we extract its feature
representation using three different ways:

Dl K

1
A = — D)z, 5.8
+€Cb = [ 3 3 plkID)s} i) (58
Avg 1 gD EK 11'/ (wq) (5.9)
D = ¥ d)» .
==t o

5 http://qwone.com/ jason/20Newsgroups/
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(5.10)

s.t. m = argmax{p(k|D)},
k=1,. K

where p(k|D) denotes the posterior probability of topic k returned by LDA given as input the sen-
tence/document D and z} (wq) is the mapped representation of word wy for topic k. For the case of
paraphrase identification, we extract a single feature vector for each sentence-pair via concatenating
the features of the individual sentences.

After feature extraction, we train a linear Support Vector Classifier (SVM) [65] using the proposed
train/test sets for both tasks. We report the best results for each experimental configuration after tuning
the SVM’s penalty parameter of the error term using 500-dimensional word embeddings.

5.6 Experimental Results & Discussion

5.6.1 Contextual Similarity

In Table 5.1 we compare our model (UTDSM) with our baseline (Global-DSM) and other state-of-the-
art multi-prototype approaches for the contextual semantic similarity task. It is clear that all different
setups of UTDSM perform better than the baseline for both contextual semantic similarity metrics.
Using a single Gaussian distribution (UTDSM + GMM (1)) at the smoothing step of our method pro-
duces similar results to the baseline model. This is anticipated as both methods provide a centroid
representation of a word’s diverse semantics. In terms of MaxSimC the model consistently yields
higher performance when the list of semantic anchors is induced via our unsupervised method in-
stead of using randomly selected anchor words (UTDSM Random). We also observe that random
anchoring performs slightly worse than UTDSM with respect to AvgSimC. This result validates our
hypothesis that the representations of words, which share consistent similarity distributions across dif-
ferent topic domains, constitute informative semantic anchors that determine the mappings between
semantic vector spaces.

Furthermore, we observe that GMM smoothing has a different effect on the MaxSimC and AvgSimC
metrics. Specifically, for AvgSimC we consistently report lower results when GMM smoothing is ap-
plied for different number of components. We attribute this behavior to a possible loss of model
capacity—decrease in the number of topic embeddings—that is capable of capturing additional topic
information. Atthe same time, our smoothing technique highly improves the performance of MaxSimC
for all possible configurations. Given that this metric is more sensitive to noisy word representations,
this result indicates that our technique lessens the noise introduced to our system and captures finer-
grained topic senses of words.

Overall, the performance of our model is highly competitive to the state-of-the-art models in terms
of AvgSimC, for 500-dimensional topic embeddings. We also achieve state-of-the-art performance
for the MaxSimC metric, using smoothed topic embeddings of 300 or 500 dimensions with 2 or 3
Gaussian components.

5.6.2 NLP Tasks

Besides the standard evaluation benchmark of contextual word similarity, we also investigate the ef-
fectiveness of our mapped cross-topic embeddings on document and sentence level downstream NLP
tasks: text classification and paraphrase identification. We report weighted-averaging precision, re-
call, F1-measure and accuracy performance metrics.

Evaluation results on text classification are presented in Table 5.2. We observe that our model
performs better than the baseline across all metrics for both averaging approaches (AvgCp, Avgp),
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Method H AvgSimC | MaxSimC

Liu et. al(2015)[54] 67.3 68.1
Liu et. al(2015b)[53] 69.5 67.9
Amiri et. al(2016)[66] 70.9 -
Lee et. al(2017)[67] 68.7 67.9
Guo et. al(2018)[68] 69.3 68.2
300-dimensions
Global-DSM 67.1 67.1
UTDSM Random 69.1+0.1 | 66.4+£0.2
UTDSM 69.6 67.1
UTDSM + GMM (1) 67.4 67.4
UTDSM + GMM (2) 68.4 68.3
UTDSM + GMM (3) 68.9 68.3
UTDSM + GMM (8) 69.1 68.0
UTDSM + GMM (10) 69.0 67.8
500-dimensions

Global-DSM 67.6 67.6
UTDSM Random 69.4+0.1 | 66.5+£0.3
UTDSM 70.2 68.0
UTDSM + GMM (1) 67.6 67.6
UTDSM + GMM (2) 68.8 68.6
UTDSM + GMM (3) 69.0 68.5
UTDSM + GMM (8) 69.5 68.5
UTDSM + GMM (10) 69.2 68.0

Table 5.1: Performance comparison between different state-of-the-art approaches on SCWS, in terms
of Spearman’s correlation. UTDSM refers to the projected cross-topic representation,
UTDSM Random refers to the case when random words served as anchors and GMM
(c) corresponds to GMM smoothing with ¢ components.

‘ Method ‘ Precision Recall Fl-score Accuracy
LDA 39.7 41.8 38.8 41.8
Global-DSM 62.9 63.3 62.9 63.3
MaxCp 61.9 63.0 62.0 63.0
Avgp 63.5 64.6 63.3 64.3
AvgCp 64.6 65.5 64.5 65.5

Table 5.2: Evaluation results of multi-class text classification.

while the usage of dominant topics appears to have lower performance (MaxCp). Specifically, we
get an improvement of 2 — 2.5% on topic-based average and 0.5 — 1% on simple average combi-
nation compared to using Global-DSM. The performance difference between the dominant and the
average topic arises because the topics discovered by LDA algorithm is possibly different than the
different topics of the specific dataset. Hence, a smoothed mixture of vectors achieves better results
than choosing vectors based on the highest topic probability, thus, ignoring topics which may have
similar probabilities and have a major contribution to the result.

‘ Method ‘ Precision Recall Fl-score Accuracy ‘
Global-DSM 68.6 69.2 62.0 69.2
MaxCp 69.0 69.3 62.1 69.3
Avgp 67.7 69.4 64.0 69.4
AvgCp 68.8 69.4 62.6 69.4

Table 5.3: Evaluation results on paraphrase detection task.
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Results for the paraphrase identification task are presented in Table 5.3. Avgp yields the best
results especially in F1 metric showing that cross-topic representations are semantically richer than
single embeddings baseline (Global-DSM). Although we apply the topic distributions p(k|D) ex-
tracted from LDA (document-level model) to a sentence-level task, improvements over the baseline
are also shown in the AvgCp and MaxCp cases. “Hard” vector choice performs better than other meth-
ods in precision metric which can be attributed to the fact that paraphrase identification examples are
significantly shorter and condensed in meaning than those of text classification.

Overall, the proposed UTDSM model outperforms the baseline Global-DSM model on contextual
semantic similarity and downstream tasks. Specifically, our smoothing approach improves our results
in MaxSimC which is more noise-dependent, while it slightly affects AvgSimC. In downstream task
evaluation, we observe that in the case of text classification average combination methods achieve bet-
ter results which means that multiple topic vectors contribute to overall topic selection. In paraphrase
identification, selection of the vector with the highest probability improves precision results, while
still averaging methods perform better in other metrics. In almost all cases, except for the MaxCp in
text classification task, our multiple embeddings perform better than single-representation model.®

5.7 Cross Domain Analysis

In this section, we are going to perform a qualitative analysis of our results, visualize our model results
and examine the impact of our alignment for specific words and semantic neighborhoods.

5.7.1 Semantic Neighborhoods

Finally, we carry out a cross-domain semantic analysis to detect the variations of a word’s meaning
in different topic domains. To that end, we use a list of known polysemous words and measure the
semantic similarity between different topic representations of the same ambiguous word. The ultimate
goal of this analysis is to validate that our model captures known thematic variations in semantics of
polysemous words.

Word  Topic Words Nearest Neighbors Similarity

drug health, medical, cancer, treatment, disease insulin, therapy, heparin, chemotherapy, vaccines 0.61
drug, health, marijuana, alcohol, effects meth, cocaine, methamphetamine, mdma, heroin

act law, court, legal, tax, state bylaw, legislature, complying, entities, entitlement 039
music, guitar, piano, dance, theatre touring, pantomime, weekend, shakespeare, musical

python garden, plant, fish, bird, animal macaw, crocodile, hamster, albino, rattlesnake 0.97
software, forum, download, windows, web algorithm, parser, notepad, gui, tutorial

rock mountain, river, park, road, trail geology, slab, limestone, waterfalls, canyon 0.43
music, guitar, piano, dance, theatre touring, acoustic, americana, songwriter, combo

nursery garden, plant, tree, flower, gardening camellias, succulents, greenhouse, ornamental, grower 0.46

university, school, college, education, program prep, montessori, grammar, preschool, infant

Table 5.4: Examples of polysemous words and the change of meaning between different topic do-
mains. First column lists the example target words. Second column includes the most
probable words of the topic domains —a distribution over words— these words are as-
signed to. Each row corresponds to a different topic domain. Third column shows the
nearest monosemous neighbors of the target word in the corresponding topic domain. The
last column corresponds to the cosine similarity between the two topic representations of
the target word.

Table 5.4 includes examples of our analysis. The most probable words of the topics (second

6 Similar results were obtained for each metric using smoothed word embeddings. Also, there are no standard evaluation
approaches for comparison of previous works on downstream tasks.
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column) give an intuitive sense of their major contexts, while their nearest neighbors (third column)
infer the sense of the target word in the corresponding topic domain. Specifically, we observe that
the word python shifts from meaning “snake” in a topic about animals and nature, to referring to a
“programming language” under a topic about computers. Word drug is mostly related to “medication”
in a broad medical domain; it experiences though a slight shift from this meaning when it resides in
a topic about “illegal substances”. The highly polysemous word act shifts from meaning “statute” to
meaning “performance” under the corresponding law and art topics. In a thematic domain about music
the word rock refers to a “music style” while in a more broad context about nature it refers to “stone”.
Finally, the word nursery corresponds to a “childcare facility” in a topic about education, whereas its
meaning changes to “seedbed” in a topic about plants. Moreover, in Figure 5.5 we visualize the latent
semantic space of the neighborhoods for the two discriminative senses of word python, using principal
component analysis. By examining the local neighborhoods of the words subjected to analysis, we
show that our model produces meaningful results that reflect the expected topic semantics of words.

5.7.2 Visualizing Semantic Variance

Finally, we carry out a cross-domain semantic analysis to detect the variations of a word’s meaning
in different topic domains. To that end, we use a list of known polysemous words and measure the
semantic similarity between different topic representations of the same ambiguous word. The ultimate
goal of this analysis is to validate that our model captures known thematic variations in semantics of
polysemous words.

snake
shake

on apple
python malay P
adobe
apple java

adobe microsoft

microsoft

malay java

Figure 5.5: A 2-dimensional projection—using PCA—of the latent semantic space encoded in our
unified vector space model, depicting the topic word representations of 7 words before
(left) and after (right) mapping the TDSMs to the global semantic space.

Table 5.4 includes examples of our analysis. The most probable words of the topics (second
column) give an intuitive sense of their major contexts, while their nearest neighbors (third column)
infer the sense of the target word in the corresponding topic domain. For example, the word drug is
mostly related to “medication” in a broad medical domain; it experiences though a slight shift from
this meaning when it resides in a topic about “illegal substances”. Furthermore, the highly polysemous
word act shifts from meaning “statute” to meaning “performance” under the corresponding law and
art topics. Similar semantic variations are observed for words python, rock and nursery.

Moreover, in Figure 5.5 we visualize the topic embeddings of seven words before and after project-
ing the topic-based DSMs to the unified space, using principal component analysis. We additionally
depict the Gaussian distribution learned from the topic representations of each word reflecting the un-
certainty of their meanings. The center of each distribution is specified by the mean vector and contour
surface by the covariance matrix. On the left, we depict the position of words prior to applying the
unsupervised mapping approach where the topic sub-spaces are unaligned. In the unaligned space,
words demonstrate similar area coverage regardless of their polysemy. After the mappings, we see on
the right that the area under a word’s distribution is indicative of its degree of polysemy. Specifically,
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we observe that the variance of the learned representations becomes larger for the cases of polyse-

9% Ces 9% ¢

mous words such as “python”, “java”, “adobe” in order to assign some probability to their diverse
meanings. Monosemous words such as “snake”, “microsoft” and “malay” have smaller variances.
Comparing the two different illustrations, we can see that their semantic range changes according to
their polysemic nature. In specific, we observe similar variances in their unaligned space gaussians
versus variances that agree with a word’s degree of polysemy in the aligned space. Furthermore, we
observe that the semantic relationships between words are much better captured by their correspond-

ing positions in the aligned space. In the same way, in Figure 5.6 we visualize the topic embeddings
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Figure 5.6: A 2-dimensional projection—using tSNE algorithm—of the latent semantic space en-
coded in our unified vector space model, depicting the topic word representations of 10
words after mapping the TDSMs to the global semantic space.

of a subset which includes ten words after projecting the topic-based DSMs to the unified space, using
tSNE algorithm. In the mapped space, we observe again that the area under a word’s distribution is
indicative of its degree of polysemy. Moreover, it is clear that the usage of more than one gaussian
components in our smoothing approach can improve the meanings capture as for example, “image”
and “pride” have some points that tend interfere with other words’ points correctly and cannot be in-
cluded into a single gaussian component. In Figure 5.7 we can see the visualization of 7 words using
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Figure 5.7: A 2-dimensional projection of the latent semantic space encoded in our unified vec-
tor space model, depicting the topic word representations of 7 words after mapping the
TDSMs to the global semantic space using 2 gaussian components for each word.
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2 gaussian components. It is clear, that for polysemous words such as “idol” and “pride” the use of
multiple gaussians better discriminates their different meanings. Similarly, monosemous words such
as “pop”, “celebrity” and “god” have almost identical gaussians which agrees with their monosemous

b

nature.

5.8 Experimental Summary & Discussion

Overall, our proposed method for unsupervised multiple embeddings creation achieved state-of-the-art
results for the major benchmark datasets. Although topics and different word senses are not perfectly
aligned, our intuitive smoothing approach improved our results. An adaptive gaussian mixture schema
determines the number of gaussian components per word could be more effective as the number of
senses differ for different words.

Experiments on downstream NLP tasks showed that a simple exploitation of our topical embed-
dings improves performance over single-representation models. Additionally, our in depth qualitative
analysis demonstrates our model interpretability and validates the differences between aligned and
unaligned spaces. Finally, it clearly outlines future directions such as the use of adaptive number of
gaussians.
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Chapter 6

Conclusions

We draw some conclusions from this work which can be divided into two main categories correspond-
ing to Chapters 4 and 5 respectively. Hence, we will list the most profound conclusions we drew from
the work presented in this thesis in respect to the Chapters referred above.

6.1 Cognition & Natural Language Representations

6.1.1 Final Remarks

We proposed a simple neural activation semantic model extending the work of [7]. The performance
of the neural model was investigated for the tasks of word semantic similarity, taxonomy creation,
sensory modality classification and concept entailment.

The results of our model revealed the different flavor of neural activations compared to conven-
tional embeddings. First, we observed that neural activations alone perform better than stat-of-the-art
embeddings in similarity estimation concerning highly similar and dissimilar words. Next, we tested
our similarity approach in taxonomy creation and sensory modality classification, achieving perfor-
mance improvements or similar performance with word embeddings. Finally, their usage as feature
representations along with word embeddings in entailment task validated that they provide additive
information in the semantic space.

Although the collection of neuroimaging data has many limitations such as variation across par-
ticipants, high signal-to-noise ratio and the need of expensive equipment for data capture, it provides
an alternative view of how lexical and sensory information in localized in the human brain. Despite
the very small dataset used in our experiments, results are encouraging about the value of neural ac-
tivations patterns for computational tasks.

6.1.2 Future Work

As a next step, we will investigate learning how abstract concepts can be depicted in brain and if a
neural predictor can be built for abstract concepts. Then, the performance of neural activations could
be examined for a whole dictionary in a wider variety of tasks.

Another interesting direction is to determine the differences between textual representations and
neural activations in a more specific way and evaluate the semantic or syntactic value of brain rep-
resentations. The way that word embeddings and neural activations interact in different tasks and
respective performance differences may indicate the laters’ impact. Furthermore, we would like to
explore alternative methods for combining neural activations and word embeddings such as employing
more efficient and sophisticasated fusion schemas.

Another parameter that could be investigated is neural activations’ localization properties. Uti-
lizing their spatial patterns explicitly might further improve their efficiency and lead us to discover
properties of different brain regions with regards to word semantics.
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6.2 Cross Topic Natural Language Representations

6.2.1 Final Remarks

We present an unsupervised approach of mapping multiple topic-based DSMs to a unified vector space
in order to capture different contextual semantics of words. We assume that words having consistent
similarity distributions regardless of the domain they exist in could be considered informative seman-
tic anchors that determine the mappings between semantic spaces. The projected word embeddings
yield state-of-the-art results on contextual similarity compared to previously proposed unsupervised
approaches for multiple word embeddings creation, while they also outperform single vector repre-
sentations in downstream NLP tasks. In addition, we provide insightful visualizations and examples
that demonstrate the capability of our model to capture variations in topic semantics of words.

6.2.2 Future Work

As future work, one can hypothesize that the area a word covers in the mapped space reveals its
semantic range. In this direction, a refinement of the semantic anchor selection approach could be
explored in an iterative way assuming that the variance of a word’s Gaussian distribution denotes its
degree of polysemy [151].

Then, the anchor points can be refined by estimating their polysemy in the global space. Semantic
range (degree of polysemy) estimation after their projection in the global space can be determined
by calculating the determinant of the covariance matrix after fitting a Gaussian distribution on each
words’ topic vectors [152]. A new subset of anchor words can then be chosen constituted by the words
with the highest variance. Then we can use the new subset of anchor words to learn the projection of
the topic vectors to the global space. The aforementioned procedure can be performed iteratively and
halt when only a small subset—defined by a threshold parameter—of the anchor words changes.

Moreover, we would like to explore a more sophisticated smoothing technique where the number
of Gaussian components is adapted for each word. Given that Gaussian mixture embeddings could
capture the uncertainty of a word’s representation in the semantic space one could also investigate
different metrics for measuring the semantic relationship between word pairs that go beyond their
point-wise comparison.

Specifically, clustering operates as an implicit way of segmenting the space of topic embeddings
for each word, in order to capture more useful hyper-topics (i.e. union of topics), which better repre-
sent their different meanings. A Gaussian Mixture Model is used to iteratively cluster via Expectation-
Maximazation, topic embeddings into /N Gaussian distributions and reduce the number of embeddings
to IV by representing each Gaussian component with its corresponding mean vector. Alternatively,
one can use k-means algorithm and use the respective centroid of each cluster. However, such ap-
proaches require a predetermined number of clusters which is not a natural constraint for different
word meanings. In this direction, one can employ hierarchical clustering [153] or density-based esti-
mation [154]. A more intuitive method would be either to select the number of Gaussian components
using BIC criterion or start by using 2 components and iteratively split the component with the highest
variance until a specific threshold.

Finally, it may be helpful to investigate non-linear mappings between semantic spaces using deep
neural network architectures.
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