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[epiAnym

H enefepyaocia eidévov anoterel Pacikd KAGOO TG ETCTAUNG TOV VTOAOYIGTMV
Kol TG ynowokng eneepyocioc onuatoc. H aglofavpactn avdntoén oty modtnto tomv
EIKOVOV Tov TapotnpnOnke ta tehevtaio S0 ypdévia E0ecav EMTOKTIKY TNV aAvAyKN Yo
avantuén a&lomoTemv aAld Kot Ypryopmv adyopiBumy yio v enegepyacia, v eEaymyn
YOPOKTNPIOTIKAOV KOl TNV OVOYVOPLIOT TPOTOHT®V OTIG €KOveS avtés. H emtuyio tov
KAGOOL yivetar @avepn ov avoAoylotel kaveic to TAN00G TV EQUPUOYDOV Ol OToieg
xpnoonoovv adyopibuovg emelepyaciog ekdvov. H poumotikr) 6pacn, n avdivon
BrotaTpik®dv KOVAOV, 1 BLOUNYOVIKE CVTOUOTOTOINGT KOl TO, VTOKOTELVOVUEVE O LLOTOL
etvat HOVo PeEPIKE TP adEIYHATO EPAPLOYADV TOV YPTCLLOTOLOVVTAL Ol TEYVIKES OVTEG.

Ao Vv GAAN pepid, n avartuén tov cvomudtev lidar (Light Detection And
Ranging) cvvdéeton aueca e v avamtuén Tov TPOTOL CLGTHHATOG Laser 6Tig apyég g
dekaetiog Tov 1960. H pedém g atpndceapag onpepo Paciletoan oe peydro Pabud ota
ovotuato lidar Adym g e&apetikng tovg akpifelag, g dvVaTOTNTOG HETPNONG TNG
ATLOCOUIPOG O TPOYLATIKEG GUVONKES, KOADTTTOVTOG LEYOAES ATOGTACELS OAAG Kot o€ 1,2
N 3 dwotdoelg. Mia oamd Tig Pooikég epopuoyés tov ovotnuatov lidar sivor n
TOPOKOAOVONGCT  0EPOAVUATOV KOl VEQAOV OTNV  aTtHOcQApd. QoT1d60, TEXVIKEG
OLTOLOTOTOUUEVOD EVIOMIGUOV KOl KOTATUNGONG CEPOAVUATOV KOl VEQ®OV GE TETOLES
peTpNoelg dgv Exovv avamtuydet dreEodukd.

2V mopovca. SUTAMUOTIKY ACKNOT EMYEPELTOL 1] 0ELOTOINGT YVOOTOV TEYVIKMOV
tov Topéa TG enefepyasiog €kOVOV HE OKOTO TOV €VIOMICUO KOl TNV KOTATUNGM
AEPOAVUATOV Kol VEQOV 6€ HETPNoel; mov mpospyovior and to lidar EOLE tov
gpyaomnpiov Ontoniextpovikng, Lasers kot Epappoydv tovg tov EBvicod Metodprov
IToAvteyveiov. Apyukd yivetor o eilcoyoyn ota cvotfiuata lidar. ‘Emetta yivetan pio
AVOOKOTN O TOV LITAPYOVCOV TEYVIKMOV TOL LITApYovv otnv PipAoypapioa. X1n cuvéyeln
Tapovcldlovtal OPOPES TEYVIKEG YO TNV OVTILETOMTION TOL TPOPANUOTOS, YiveTan
oVYKpIon Kot aloAdyNon Toug Kot TEA0G poteivetal n EATIOTN vAOTOINGT. To AoyioHKod
7oV ypnopomomdnke yia v avdmtuén eivor to MATLAB kot | mapovciaon tov yiveton
éupeca amd vt Tov alyopifuov.

AéEeic Khewdwa: Lidar, EOLE Lidar, MeAétn Atuoéceapag, Eviomiopnog Agpoivudtov,
Eneéepyasio Ewovov, AroBopvBonroinon, Katdtunon Ewkéoveov, MATLAB.






Abstract

Image processing is basic branch in the field of computer science and digital signal
processing. The remarkable development in quality of images which has been observed in
the past 50 years has made imperative the development of both reliable and fast processing
algorithms, for extracting features and recognizing patterns in these image. The success of
the field becomes obvious if one considers the number of applications that include image
processing. Robotic vision, analysis of biomedical images, industrial automation and self-
driving cars are just a few examples of applications that use these techniques.

On the other hand, the development of lidar systems (Light Detection And Ranging)
is directly linked to the development of the first Laser in the early 1960s. Nowadays,
atmospheric profiling relies heavily on lidar systems due to the great resolution of the
measurements, the ability to observe the atmosphere in real conditions covering great
distances and in 1,2 or 3 dimensions. One of the main applications of lidar systems is the
tracking of aerosol layers and clouds in the atmosphere. However, in spite of the
widespread use of this application, only a few algorithms for automated detection and
segmentation of aerosol layers and clouds in such measurements have been developed.

This diploma thesis attempts to exploit well-known techniques in the field of image
processing for the purpose of detection and segmentation of aerosol layers and clouds in
measurements coming from the lidar system of the Laboratory of Optoelectronics, Lasers
and their Application of the National Technical University of Athens. Initially lidar systems
are introduced. Then a review of the existing techniques in the bibliography is made.
Subsequently, various techniques to address the problem are being presented, compared
and evaluated and finally we propose the optimal implementation. The software used for
the development is MATLAB and its presentation is indirectly from the algorithm. In the
last part of this work we draw conclusions and propose future work.

Keywords: Lidar, EOLE Lidar, Atmospheric Study, Aerosol Detection, Image Processing,
Noise Filtering, Image Segmentation, MATLAB.



Evyopiotieg

®a MBera apykd vo evyoploTNo®m Tovg EMPAETOVTEG KOONYNTEG LoV AnuiTplo
Yovvtpng EMIT ko AAéEavdpo TTamayidvvn EMII, yio tnv gukoaipio Tov mpoceépepay vo
EPYOAOTM Y10 EVOL TOGO EVOLOPEPOV KOl OTOLTNTIKO Project.

Eniong, éva peydio evyaptotd opeilm otov petaddaktopikd I'edpylo Agvtdpn.
H apépyvn ompiEn kot n kabodrynon tov vapéov KaopioTikés yior TNV mopeio TG
SmAopatikéc. Méoa and Tic cuNTIoELS TOL ElYOE ATEKTNGO OYl LOVO KOIVOUPLEC 10EEG
oAAG Kupimg épabo oG Vo TIG amOdEYOUOL TIG TPOKANGELS KOl VO, OVTILETOTIL® TIC
dvokorieg mov eppaviCoviar ce tétoa gidovg mpoPAnuata. Emiong, Bo nbeka va
EVYOPLOTHCM TNV VITOYNPLOL SWAKTOP Pdvia Zovmiwva mov pov pe fordnoce va Kataidfm
10 BewpnTikd vdPabdpo YOpw amd v meployn Twv lidar kot pov mapeiye o amoapaitnto
VAKO Kot TIG YPNOES SIEVKPIVIGELS Y10l TO GUVOAO dedopévav Tov lya, KabdS Kot Tov
epeovnm ‘Extop-Zafie Aghootik yioo v ovvelceopd tov otnv a&loAdynon Tov
GLGTNLOTOG TTOV OVOATTOELE.

Téhog Ba NBeha va evYOPIGTHG® TOVS YOVEIS LoV TTOV PdYONGAY Yo Vo PTAG® GTO
onueio mov eipon GNUEPA Kol TOLG PIAOVS LOL TTOV MTaY TAGL pov Kab’ OAn TNV Topeia
LLOV GTO TOVETLGTNLLLO.

Mapoveiong lodvvng
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Chapter 1: Executive Summary in Greek

[Teprypaon Xvotnuatov lidar

O o6poc LIDAR egivan okpovopo vy “Light Detection And Ranging” kot
ypnoponomdnke tpdTn Qopd amd tovg Fiocco and Smullin ya pedétn g atpudopapag
ypnowonowwvtag va laser [1]. Enuepa n teyvikn lidar kvplapyei otig petpnioelg tov
WBOTATOV TNG OTLOCEUPAG AGY® TNG XOPIKNG (0 HEPIKA EKATOGTH MG LEPIKE LETPOL) KOl
™¢ ¥PoviKng axpifetag (AMyo SevTEPOAENTO MG AEMTA) TOL TOPEYEL, TNG OLVOTOTNTAG
TOPOUTPNONG TNG ATUOCPALPAS GE TPOULYLOTIKO YPOVO, TOL LEYAAOL EDPOVS TV LETPNCEDV
(amd pepikd pétpa g 100-150 yAp.) aAld kou e duvatdtnrog petpnoeov o€ 1, 2 ko 3
dwotdaocels. H Bacikn| didtaén tov suotipatog eaivetar oty eikdva 1.1.To cdhotnpa sivar
évag evepyoc arcOntipag anotehoOEVOS oo £vay TOUTO Kol €va 0éktn. O Toumdg Tov
oLOTAROTOG €ivor évo laser, To omoio ekTEUTEL TOALOVG PMTOG HE GUYKEKPIUEVO, UKN
KOLOTOG Kot TOADGELS avaAoya e TNV gkdotote pétpnon. H déoun omtodg mov mapdyetal
EKTEUTETOL KOTOKOPLOA Kot LEPOG TNG omioBookedaleTal amd To LopLo TNG OTULOGOOLPAG.
O 6ékng amoteleitor amd Eva TNAECKOTIO TOL GLAAEYEL TNV okedalOpeVn akTivofolio Kot
évav NAEKTPOVIKO VTTOAOYIGTH oL TO amobnkevet. O xpdvog mov TEPVE amd TNV EKTOUNY)|
evog maApov and to laser mg v cvAloyn tov and to ThAeokomio kabopilel To Hyog g
uétpnong (ranging). XapaktnpioTikd Tov GIUOTOG OTMG 1) EVINGT, TO UWHKOG KOLATOG Kot
1N TOAMOT YPNCLUOTOOVVTAL GTNV TEPLYPAPT] TNG KOTAGTACNG TG OTULOCOUPAS OGS 1|
Oepuokpacio, n mieon, N vypacio Kot 0 GvEROS KOOMG EMIONG KO TIG OMTIKES KOl
YEMUETPIKES 1O10TNTES OEPOAVUATOV KOL VEQDV.

| - - - - = = I |
| TRANSMITTER | RECEIVER :
| ]|+ Y |
| d |
| I OPTICAL I
| BEAM I 1 1 ANALYZER/ :
EXPANDER I I DETECTOR

! ] FIELD |
| || STOP I |
| Il DATA l
| | ACQUISITION / |
| LASER | COMPUTER :

| L_TELESCOPE :
- S

Ewoéva 1.1: H Baocwkn| d1dtaén evog cvatipoatog lidar [Weitkamp, 2005].
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AVOADOVTOG TOL YOPAKTNPIOTIKA TNG oKeSALOUEVNG OKTIVOBOAMOG KOl OVAAOYQ HE TNV
1010TNTO. TG ATUOCPULPOG TOL peAeTdtal, Exovv avamntuydel didpopeg texvikég lidar. Ot
Baoikdtepeg etvat:

Elastic-backscatter lidar: Xpnoyomotgitot yio. TV aviyvevor aepolvpdTov Kot
vepwv otV atpoceapo. Boociletor oty €AdoTiKN) OKEOAOYN TNG EKTEUTOUEVNG
axTvoPoAiag He Ta HopLo TG ATUOGPOLPAG.

Raman lidar: Bociletow tv okédacn Raman m omoia &ivol ovelaoTiki.
Xpnoiponoteiton Kupiwg yioo LETPNOELS BEPLOKPAGIOG KOt Y10 TOV EVIOTIGUO VOPUTUDV,
umopel wotd600 va. ypnotpomombel Kot yio aviyvevon 0ePOAVUATOV KOl VEQ®OV GE
TEPUMTAOCELS YOUNAOV TEPPAALOVTOC PMTOC.

Differential-absorption lidar or DIAL: Xpnowonotei aktivoBolieg pe 600 unkn
KOLOTOG KO GUYKPIVOVTOG TNV ammroppOPNGT TOVG OO TO OEPLOL TG ATULOGPAIPOS UTOPEL
VoL LETPNGEL TNV YNUKT] GUGTOGT TOV OEPIMV AVTOV.

Resonance fluorescence lidar: Xpnoyonoeitar kvpiog yo TOovV €VTOTIoUO
LETAAMKAOV GTOLXEI®MV GE AEPOADLOTO TOV OVATEPOL TUNLOTOS TNG ATUOGPALPOC, OVALECH
ota 80 pe 110 yAu., otV mepLoyn g LEGOTOVOTG.

Doppler lidar: Xpnowonoigitat yio HeTPHGELG TOV AVEUOV. XPNOILOTOIDOVTOG TO
eowopevo Doppler, 1 dapopd g cvyvotNTog UETAED NG EKTEUTOUEVNG KOl TNG
okedalopevng okTvoBoAiog LVTOONADVEL TNV GYETIKY KIVNon TOV 0EPOAVUATOV TTOV
LETOQEPOVTOL LEGD TOV OVELLOV.

H yevikn e€icmon mov meprypaeet 1o omicbookedalopevo lidar onjpo eivon ) e€ng (elastic
basckscatter ka1 Raman lidar)

P(R) =K G(R) B(R) T(R) (1.1)
Omnov 10 R dnAdver v andetaoct and 1o cvotnpa. Awakpivovpe 4 6povg:

e K: mov vrodnidvel Ty omddoon Tov cvotiuatog lidar

¢  G(R): yeouetpikdc 6p0og IOV TEPIEXEL TNV AVTIGTPOQ®S avaroyn e&aptnon
TOV GNUOTOS OO TO TETPAYDVO TNG OTOGTOONG.

e PB(R): o ovvtereotg omcbookédaong oty andotacn R. Anhdver v
wKavOTNTOL. TG ATHOCEOPOS Vo oKeddoel v oakTvofoiio mpog v
avtifetn KatevBuvon amd v omoio TPoNADE.

e T(R): 6pog perddoong mov TEPLYpAPeL TO TOGO TNG OKTVOPOAIEG TTOL
okedaleTon mpog GAleg KorevBvvoels katd Ty petddoon and to lidar oty
ATULOCPOLPO Kot AL TG .

Ot dvo pmTot dpot eEaptdviat €€’ 0AoOKANPoL and TV 01dtaln evd ot dvo terevTaiol
elval To avtikeipevo HEAETNG.
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2V mapovea SIMAGUOTIKY Topovcstdlovpe HeBOSOVS Yo TOV EVIOMIGUO Kot TNV
KOTATUNOT OEPOALUATOV Kol vepdv o€ petpnoelg lidar amd to ocvomua EOLE tov
Epyaostmpiov Ontoniektpovikng, Laser kot tov Epappoydv tovg tov EOvikod Metodprov
[Tolvteyveiov. H dudtaén apyd oxedidotnke Kot avarntoydnke omd tov kad. AAEEavOpo
[Momaywavvn to 2000 evod and 10T1e €xel avadlapopembel kot emavacyedlooTel TOAAESG
popéc [10, 11, 12]. To cvompa Bpicketar tov 4° dpopo Tov ktnpiov Pvoiknic (37.5° B,
24.8° A, 212 p.). To odotnua EOLE ypnowonotsi tantdypovo TV TEXVIKY EAOGTIKNAG
okédaong (elastic backscatter) kot v teyvikr; Raman (Raman lidar).

Ewova 1.2: To mieokdmo mepiovAloyng ¢ oktivofoiiog tov cvotiuatog EOLE,
nwpocoyn (aprotepd) Kot kdtoyn (de€i1d).

EneEepyacio EikOvov

2TV EMOTHUY TOV VIOAOYIGTAV, 1] YNOLOKT ENeEEPyOcio EIKOVOV ivol 1 xpnom
VIOAOYIOTIKOV aAyopiBuwv yio v emeepyacio ewdvov. TIoArég and Tig TEYVIKES T™NG
eneepyaciog ewOvav avortoydnkov ot dekoetio tov 1960, 6tov akdpa 10 KOGTOG
eneéepyaciog NTav apketd VYMAS. QotO60, KABMG 01 LTOAOYIGTES YEVIKOD GKOTOV £YIVOLV
O YPNYOPOL, GPYIoaV VO aVOAUUBEVOUY TOV pOAO E0IKEVUEVOL VAICUIKOD Yol TIG
TEPLEGOTEPES EKTOG OO TIG TO ATTOTNTIKEG EQOAPUOYEG. ME TOVG YPNYOPOVS VITOAOYICTEG
Kol EneEePYaoTéG emeEepynciog oNUOTOS Vo YivovTal eVpEMS SLOBEGILOL OTIC APYES TOV
2000, n ynoaxn eneéepyocio OVaV £xel yivel n o cuvnOiopévn pébodog eneéepyaciog
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EIKOVOV, Oyl LOVO Yol etvor 1 o TOAVTAELPT OALG Ko Yiati elvat 1) o @O nébodog.
H ynowoxn eneéepyacio eikdvov ivol n HOVO TPOKTIKY Ao Yio:

Eayoyn yopokTnploTIK®OV: X1 Unyovikny udbnon, oty avayvopiorn Tpotummy
kot omv enefepyacio eikdvov, 1 egaymyn YopaKTPIoTIKOV Eekivd amd €va
apykd GET dEGOUEVMV KOl KOTAOKEVALEL LETPIKEG OIEVKOADVOVTOG TaL ETAKOAOVON
frpoto pabnong ko yevikevong. Xmnv enefepyoacio €KOVOV, aAyOpOHov
YPNOOTOOVVTOL TV OVIYVELST KOl ATOUOVMOOT] TOV ETBVUNTOV TUNUATOV 1)
oyNUATOV TV eIKOvev 1 Bivteo. Tumkol adydpBupov etvar:

Aviyvevon oku®v, YOVIOV, KNAO®V, KIviong, OTTIKN pon, TEXVIKEG KAT®PAIOL,
uetaoynuotiopog Hough, evepyd meprypaupata, K.o.

Katnyopromoinon: Eival 1o mpoPANLa mpocsdiopicoo e KoTnyopiog Tov aviKel
Qo véo TOpOTNPNON, OTNV TEPIMTMOON €VOC GET EKMOIOEVONG TOV TEPLEXEL
TOPATNPYCES TV OTOI®V 1 Kotnyopieg eivar Non yvootés. Kdmolor amd tovg mo
ocvvnBiopévoug alyopibuovg sivar: TaSvountg Bayes, Perceptron, Support vector
machines, k-kovtivotepog yeitovag, 0EVIpa OmoPACE®Y Kol VEVPMOVIKG diKTVA.

Avayvopion Ipotdmwv: Eivoar 10 mpdfinpo g avtdpamns ovayvapiong
TPOTUTMV KOl KAVOVIKOTNTAG G€ dedopéva HEGH VTOAOYISTIK®Y ahyopiBuwv. Ot
TANPOPOPIES TOV EEAYOVTOL YPTCLOTOLOVVTOL Y10 ATOPACELS OGS 1 TaSvOuN o
TV dedopévmy Kot Katnyopiec. Tumkol akydpiBuor mepthapupdvovv: K-means,
Kernel Principal Analysis (PCA) ka1 mixture models.
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Kivntpo AtmtA®UoTiKne

21000¢ NG OWMAMUOTIKNG epyoaciog eivar m  avdmtoén evoc  aiyopibupov
eneéepyaciog EKOVOV yloL TNV OUTOUOTY OVIYVELON KOl KOTATUNGOT OEPOAVUATOV KOl
vepmv og odedouéva lidar amd 10 ovotquo EOLE. Ou aviyvevon tov 1dothtov
OEPOAVUATOV OTTMOG 1 GLYVOTNTA, TO VYOG KOl 1 CLYKEVIPMOT] TOVG £YOLV 1O101TEPO
EVOLOPEPOV AOY® TOV eVdEiEemv cuayétiong Tovg e v avBpomvn vyeio [9,10]. Emiong
gtval yvootd moc ta véen dwdpapatilovv éva facikd poro oto KAipo Tov Thavitn [11].
210 TopeABOV Exouv avamtuyOel ELAYIOTES TOPOLOLEG EPOUPLOYES, EK TMV OTOI®V KOpLio dEV
avtipetonilel To dedopuéva amod tig lidar petprioeig og ewoveg [12, 13, 14].

To onpo a6 1o suomua EOLE eivan povodidotato. H éviaon tov etvat evoeiktik|
NG OULYKEVIPMONG OEPOALUATOV KOL VEQP®OV TOV VLRAPYOLV OV  OTUOGPOIPAL.
2uvdvalovtog TOAAES LOVOIIACTOTES LETPNOELS, GUVEXOUEVES OTO YPOVO, KOTACKEVALOVLE
€va 0160146T0TO TPOPIA (EWKOVA») TNG CLYKEVTPMONG, LE SAGTAGELS TO YPOVO KOl TO VYOG
™G kGBe pétpnong. XLvvenmc, Kabe onuelo TV PETPNCEMV, GE GLYKEKPIUEVO VYOS Kot
YPOVIKO TAOiG10, avTimpoommedeTat e évo pixel otny ewdva. ‘Etot, yopikég kot ypovikég
1010t TEG TOV onpatog lidar petatpénovion o€ 11OTNTES TV YELTOVIKGOV PiXel Tng eikovac.
Expetailevopevol 11 ev AOY® 1010TNTEC, 0 OAYOPIOLOG OV KOTAGKELAGOLE OPYLKAL
OVIYVEDEL T OLEPOAVLLOTOL KO TOL VEQT KOl VOTEPQ T TUNRTOTO0gl. Ol amaTnoeLg g
EQUPUOYNG Elvar 1 660 TO dSLVATOHV AyOTEPT) OALOIWGOT TV YEMUETPIKMY YOPUKTNPLOTIKOV
TOV 0EPOAVUATOV KOONDS Kol | LTOUATOTOINGT TNG AelTovpyiog, Yo TNV EAAYIGTN OLVITN
avOpomvn tapéuPaon. o va 1KOVOTOMGOLUE TIG TOPOTAVED OTOLTGELS, OTOPEVYOVLE
mv xpnon eiAtpwv peyding eEopdivvong tov onpotog. Exiong, o vynidc 06pvPog kot to
LEYOAO €VPOG TIUMV TOL ONUOTOG HOG OOTPEMEL TNV YPNON KAUGGIKOV oAyopiBuwmv
aviyvevong axupmv (edge detection) yia Tov eviomoud TOV OEPOALUATOV KOl THV
KATATUN G TOVGS. AVt avTov, ot HEBodOoL Tov AvamTOHEALE XPNOLLOTOOVY GIATPA TOV dEV
OALOIDVOLV GNUAVTIKE TO GNHO, €VAICONTES TEYVIKEG KATOOAIDV Y10l TV AOUAKPLVOT
TOV GNUATOG VITOPEOPOV, EVD 01 YEMUETPIKES 1010TNTES TOVL ONUATOS Enesepydlovion HECH
HOPPOAOYIK®V QIATp®V. ['a TNV KaTATUN O™, YPNCUOTOUCALE YVOSTOVS alyopiBovg g
OPOGNG VITOAOYIGTMOV TOV UITOPOVV Vo ypnciporombodv og Eva peydro Padbud yowpic mv
emifreyn tov ypnot.

O aiydépiBpog avartoydnke oto mpoypoappatiotikd mepipdriiov MATLAB evo 1
¢€080¢ TOL glval To popKopIoHEVA agpoidpaTa Kot VEEN (Tapovctdlovtol ®g cuvleTIK)
ewova) Kabdg emiong kot 1o LEGO VYOG KAOE CTPOOTOC.
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[Mpo-eneéepyacio Tov EOLE lidar criuatoc

To onpa mov pereTdpe oty TapovSa epyacio eivol To onfpa e PKog kouatog 1064
nm ond tic petpnoelg Klett (nueproleg) xar Raman (amoygvpativég) Tov GLOTALOTOG
EOLE. H yopwn avdivon tov ofjuartog givor 7.5 . evod n ypovikn avdivon 1,5 A. To
oLVoLo TV peTpioemv gival 8192, ®otdc0 T0 dedopEva EVILUPEPOVTOC GTAUATOVY GTO.
8000 p. Emumdéov, Adym g e£GpTNnomng TOL GHLOTOG atd TN YEWUETPIO, Ol LETPNOELS TOV
ovotipatog uéxpt ta 497 p. Bewpovvral avallomoteg kot ayvoovvtal. H didpkeia tmv
petpnoemv dgv eivatl otabepn). Tvmikd, kopaivovtol amd 40 wg 160 1 and 1 uéypt 4 dpec.

[Ipdto Prpa tov akyopiBuov givar n eloaywyn tov onpotoc. To onuo amoteleiton and
v omcBookedalopevn aktivofolio amd o pLopLeL TG ATHOCPULPAG TNG EKTEUTOUEVNS
déounc tov laser kat, ev pépet, omd avemOountn axtvoforio. Ady®m tov mEPIPAAAOVTOC
QmToc. Yroroyilovtag v péon | tov onpatog oto vyn 10000 og 12000 ., dmov ivon
acLVNGTN 1 TOPOLGio AEPOAVUAT®OV 1| VEQEDOV, EEAYOVIE KO OPALPOVIE TO GO TOL
opeikeTon otV aktvoPoria tov mepPdAlovtog emTog amd to onuo tov lidar. Emiong,
ommg éyel oM avaeepbei, to lidar ofpa eival avtiotpdEmg avarloyo TOV TETPUYDVOL TNG
amootoons, pe amotélecpa va @Biver ypiyopa pe to vyoc. I avtd 1o AdYO
TOAAOTAAGLALOVLE TO GO LLE TO TETPAYMVO TNG OMOGTACNG. TNV TOPOVGa AVAALGT, T,
VY1 avomapicTavTol Le aKEPUIES TIES VT Yol TIG TPAYUOTIKEG TOVG, OAS. 219.5 n.— 1,
227n. — 2, xok. To wpoxvmtov ofjua ovopdletor dtopBmpévng epPéretag onua (Range
Corrected Signal, RCS) evd to ofjpa mov Aapfdavovue and to lidar, petd tv agaipeon tov
nep1BaAlovtog mTog, To ovoudlovue onuo omtoBookédaong (Backscatter Signal, BS). Ta
dvo onuata eaivovral otig eikoveg 1.3 kot 1.4 yio to 1010 ocbvoro petpricemv tov EOLE
lidar. Tiveton pavepd mog to onpa dixwe tnv d10pbmon eppéreiag e&acbevel ToAD ypryopo
Le omoTEAEGHO VAL YiVEL AdDVOTN 1| AViXVELOT] 0EPOAVUATOV KOl VEQ®OV GTO. LEYOADTEPXL
VY1 G atpoOGeapoc. Qo6tdc0, 1) 010pBmon puféretog £xel coPapr| emimTmon TV avénon
oV BopvPov ot0 onua, pe to RCS va gpeavilel apketd pkpn avaioyio GUOTOG TPOG
06pvpo (SNR), avaroyia 1 omoio peidvetar pe o0 VYWog. Q¢ eldylotn TN Tov 600
onuatov Bswpovpe v tun 0 KaBOC apvnTikég TESG OV £Y0VV QUOIKT ONUOGIA.
EmmAéov, yio kaAdTepn emonTEiol TV 6TpopdTov Tov RCS, Oswpodue v tiuq 3x10% mg
TN UEYLOT TN TOV.
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EOLE,ATHENS :14/09/2017 - BS @1064nm
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Ewova 1.3: To onpa omcBockédaong (BS) ywa to chvoro Raman petpnoemv tov EOLE
lidar cvotuotog otic 14/09/2017.

EOLE,ATHENS :14/09/2017 - RCS@1064nm
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Ewova 1.4: To onua dopBopévng eppéretoc (RCS) yia to chivoro Raman petpriicemv tov
EOLE lidar cuotpatog otig 14/09/2017.
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Aviyvevon Agpolvoudtev kot NeQovV

"Eyovtag ta RCS ka1 BS w¢ g16000v¢, mapakdtm meprypdpovpe alyopiBpovg mov
AVaTOEQLE Y10 TNV OVIXVELGN TOV OEPOAVUATMOV KOl TOV VEQOV OV ERPAVIfOVTOL GE
oVTA.

Aviyvevon Akuov

H npd pébodoc mov viomomoape rav n aviyvevon axkpov. H Bacikn 10éa etvan
n ebpeon TV oplov HETAED TOV AePOALUATOV Kol UETA M ¥PpNoTN €VOG oAyopiBuov
KOTATUNoNG vy tov Jwpiopd tovg amd 1o vadfabpo (kabapn oTpOCEOPQ).
Xpnowonomoape eidtpa yia vo Bertidcovpe to AdYo avoroyiag ofjuatog Tpog B6pvo
™mc¢ ewovac (SNR) kat dokipdoape didpopa eiktpo aviyvevong akpuov o0rmg to. Canny,
Sobel, Laplacian, Prewitt, Roberts, central and intermediate differences. Qot6co, ot
TOPATAVE® TEXVIKEG ATOTVYXAVOV VO AVIXVEDGOVV T, OPLL TOV AEPOAVUATOV, EKTOG KOt OV
petdvape TOAD TV avaAvon NG KOVAS, TPayua To omoio aviifaivel TNV omaitnon y
datrpnon g avdivong tov lidar onpotog. Tuvendog, amoppiyape v uéBodo avtr Kat
vAomomjoape o GAAN puébodo, avtn tov thresholding, pe tig tpeig moporlayéc e vo
TAPOLGLALOVTOL GTN GUVEXELD.

Teyvikn Katooiiov ypnowomowwvtoc o RCS (CloudDetect)

H mpot pébodog ypnowonotel poévo 1o RCS wg eicodo. To mpmdto Prpa g
uebodov givan n ypnon eiktpav (filtering) yio v e€opudivven tov Bopvpov oto RCS
onua. Xty emeCepyoacio KOVOV, To YnEoKa @iltpa givol GLOTALOTA TOV EKTEAOVV
padnpoticéc Tpaelg o S1oKPITA GNUOTA TPOKELUEVOL VO EVIGYDUGOVV 1 VO EANTTMOGOVY
opiopéva atotyeia Tov onuatoc. Ta eiltpa meptypdpovtal and tov Tupnva. toug (kernel),
0 omoiog givar cvvBm¢ Eva pKkpog Tivakag, pe Tov omoio cuveAdicetan (convolution) m
ewova. H yevum e€lomon g diodtdotarng cuvéMEng diveton amd tnv oyéon:

a

b
gy =0 fEy =) > E0fc-sy-0, (@2

s=—at=-b

Omov g(X,y) ko f(X,y) eitvar 1 @uATpoptopévn Kot 1 opyikn EKOVO aVTIGTOLYO KoL © Eivot
0 TVPNVOG TOL PIATPOVL.

To debtepo Prina amotedeitan amd T0 TEPACHO TNG EKOVOS OO £V KOUTOPAL [LE
OKOTO TOV JYWPICHO TOL YPNOUOL GNHOTOG (TEPLOYES OEPOAVUATOV 1) VEQ®V) Omtd TO
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onuo vroPadpov (kabapn atuodcearpa). H tiun tov Katweiiov mov epapuocape opileton
amd TV oYEoN:

2

o

Omnov [ kot 62 fvor 1) EST TIUY KL 1) TUTTKY OOKALGT] AVTIGTOL0L TOV LEPOVE TOV GTLLOTOC

e T peyaddtepn and 0 kon pkpdtepn amd 3x10* A.U. O Adyoc mov mepropilovpe To
€0pOg TOL CNUATOG Yo TNV €E0Y®YN TOV CTOTIOTIKOV KOl KOTE GUVETELD TNG TIUNG TOV
KOTOEAIOL €ivar OTL Ol TIHEG OV TEPLOPICAUE TPOKLITOVV €ITE OO COAALOTO TOV
LETPNOEWMV E1TE A0 TOAD TUKVE GTPAOLUATO AEPOAVUATOV KOl VEQDOV KO UTOPEL VoL £XOVV
apyVNTIKO aVTIKTUTO 6TOV KOBOPIoUO TOL KAT®PALOV.

To tpito otéoo tov aiyopiBuov elvar n amdppym, HEC® €VOG LOPPOAOYIKOV
OIATPOV, TOV UIKPOV TEPLOYDV CTPOUATOV OV £(0VV gvTomotel Kabdg Bewpovpe Ot
amoteAoLV 06pLPo KoL OYL TPAYUATIKG CTPOUATO AEPOAVUATOV 1| VEPDV. ['tat TV 1éB0d0
dokudoope dtdpopa ynerokd @idtpa, énwg to Gaussian, median, motion & average.
[Mapoxkdto Tapovctdlovpe T0 amotéAecua Tov aAyopibuov ypnoiporoidvog Gaussian
¢eiltpo peyéboug 3x3.

EOLE,ATHENS :14/09/2017 - RCS@1064nm
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Ewova 1.5: Ta aviyvevpévo agpoidpota yioe o covolo Raman perprioewv tov EOLE
lidar cvotuatog otic 14/09/2017, ypnowonowwvtag ™ péBodo CloudDetect.
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MéBodoc Kazmohiov ue Atayopioud te swodvace (CloudDetectUp &CloudDetectDown)

H devtepn pébodog mov avamtoéape Owoywpiler v ewkovo oe 000 un
EMKOAVTTOUEVO, LEPT): TO KAT® UEPOS TOV TTEPLEYEL KLPIMG TO 1GYVPO CNLLO TOL TPOEPYETAL
amd 1o mhovntikod oprokd otpopo (Planet Boundary Layer, PBL) kot to dve pépog mov
amotedeiton omd T0 acHeVESTEPO KOUUATL TOL GNUATOG TO OTTO10 UTOPEL VoL TEPLEYEL AETTTA
otpopata agpolvpdtov (oe oyéon ue to PBL) f/kon véen. H Pacikn 18éa yio tov
dtywpiopd G ekOVag Eival 11 EDPECT] APVNTIKOV TILADV 6TO oNpa omcBookédaons. Ot
APVNTIKEG TIUEG TPOEPYOVTOL OO TNV APaipesT) TNG £VTOoNG TOV TEPPAALOVTOS PWTOHG OO
10 onuo omcbookédaong kot epgaviCovion gite oe peydha Hvym (mdveo omd 1300 p.
TEPIMOV) pHE YopMAn €vtacm onuatog, €ite o€ petpnoss 6mov n 6éoun tov laser €yet
eEacBevnoet apketd kabmg dlamepva kdmoro Tukvo otpapa. H pébodog draympilet apyicd
T0. 600 GEdApaTo Kot ETELTo Sonpel TV eKOvVa 6T d00 PEPN He Eva optidVTIO GUVOPO LLE
Bd&on to Vyog 6To VYog apyilovv va epeaviovTot ot apvNTIKEG TIUES.

‘Enteita amd 10 Soympiopd g €KOvVag, o oAyoplduog ypnoytonotel v 1ot
uebodoroyia pe v pébodo CloudDetect yio va aviyvedost to agporduata., ®GTOG0
epappolet dapopetTikd @iltpo Kol TIHEG KOTOPAOL 6TO KAOE PEPOG TNG EKOVOS. XTO
Kdt®, 10 oNua e€ivar moO w6YLVPO evd M mopovcsio BopvPov eivor pkpr. XvveEndG
YPNOOTOoVE HKpOTEPO PidTpo (HEeyéBovg 3X3) ko Bétovpe oTabepn TIU KaTOPAiOV
ton pe 6000 A.U. Zto ave uépog, 1o onpa eivar o acbevic evm o 06pufog €xet eviovotepn
napovcio. Q¢ omotéAecua, ypnotpomoovpe mEpa amd 10 RCS kot 10 ofua
omcBookédaong to omoio €xel peyohvtepn avaroyio onupatog mpog Oo6pvPo. Apyikd
epapudlovpe peyavtepa pidtpa (ueyébovg 5xX5) onpata yuo peimon tov Bopvfov. Enetta
Ta cLVOLALoLUE KOt EPAPUOLOVE KATOOALD LE PAOT TO CTATIGTIKA YOPOKTNPICTIKA TOL
onpatog. Téhog amoppintove To LIKPE AEPOADLATO TTOV £XOVV TPOKVWEL KOl 6T 000 PLéEP
g ewkovoc. To amotédecpa g HeBddov mapovstaletal otV EKOVA TOL AKOAOVLOEL.
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EOLE,ATHENS :14/09/2017 - RCS@1064nm
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Ewéva 1.6: Ta aviyvevpéva aepoivpata yio o cbvoro Raman petpnoemv tov EOLE
lidar cvotuatog otig 14/09/2017, ypnopomoiwvtog ) péBodo CloudDetectUp/Down.

MéBodoc Kazmohiov ue dauépion tne eikdévoe (CloudDetectH)

H tpitn pébodog mov avamtdéope cvuvovdaletl Tic dLO TPMTEG TOL E£YOLUE MO
napovctdcel. Atywpilel Kot avT TV EIKOVE GE dLO TEPLOYEG KOt EPAPLOLEL dLOPOPETIKAL
oidtpa H tpitn pébodog mov avanto&ape cuvovdalel Tic Sv0 TPOTEG TOL EYOLLE NON
napovctdcetl. Atywpilel Kot avT TV EIKOVE GE dLO TEPLOYEG KOt EPAPLOLEL dLOPOPETIKAL
OIATPa KO TIHES KATOPAOV 61O KoBEva EEXMPLOTE, Y®PIS OOTOCO Vo TPOKHTTOLY OVO
SLPOPETIKEG EIKOVEC O1 OTOIEC GLYY®VEVOVTOL GTO TEAOG OGS 1) TPONYoLEVT] HEBOSOC.
AvT’ avtol, YpNoWoToldVTaS Olaywpilovpe TV €KOVO. GE OLO TEPLOYES: N TPAOTN
TePAAUPavel TNV mepLoyn KAT® amd 10 onueio (€va dSopopeTIKod VYOS Yo KAbe péETpnon
070 Ed10 TOL YPOVOV) OTTOL M TN ToL BS yiveton pukpdtepn tov 0.01 A.U. evid 1 dedtepn
OAeG TIC VITOAOITES. ZVVNOWG 0 dtapeplopdg avtog xwpilet to PBL amd 1o vwdrouro onpa.
Mo v aviyvevon TV GEPOAVUATOV KOl TOV VEQP®V YPNGLLOTOOVUE 101 QidTpar Kot
nopopoteg TWéG katoeAiov pe avtd g peboddov CloudDetectUp/Down yio tic dvo
neproyés. To amotérespa g pebBodov gaiverar oty gwova 1.7.
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Ewéva 1.7: Ta aviyvevpéva aeporvpata yio o chvoro Raman petpnoemv tov EOLE
lidar cvetuatog otig 14/09/2017, ypnoomoidvtog tn péBodo CloudDetectH.

Koatdtunon Agpolvudtov kot Neoov

Tnv aviyvevon tov aepoAVLATOV Kol TOV VEQOV aKkolovBel 1) katdtunon tovg. Ta
YOPOKTNPLOTIKE TOL YPNGUYLOTOLOVUE Y10, VO SO0 M®PIGOVILE TO CTPOUOTO AEPOAVUATOV
etvar n évtaon kot 1 0€om TOVS GTIC SLACTAGELS TOV VYOG Kot ToL Xpovov. ‘Evag mpdtog
Saympopdc TV eEAYOUEVOV OTPOUAT®V givol To TAavNTIKO oplakd otpopa (PBL), ta
OTPMOUATO TTOV OVOUELYVOOVTOL €V UEPEL PE OLTO KOL TAL GTPOUATO OTO avdTeP LYN. To
PBL amotehel 10 pé€Pog TG Tpomds@apag mov ennpedletal aueco omd v avOpomivn
dpacTNPOTNTA Kot £XEL TEPACTLIA EMLOPACT TNV LOAVVOT TOV aépa. Agpordpata oto PBL
TPOEPYOVTAL KUPIMG omd avOpdTIvY dpactnploTnTo Kot amotereitor amd PBropnyavikn
oKkovn kot téepa, kavon Propdlog ktA. Ta otpdpata mov gpeaviovior e vynAdTEPO
oyn, pokptd and to PBL mpoépyoviar and mepifaiiovtikodg dpactnptotnta, Onme
HEeTaPopd okOVNG amo Enpég Teploys, cHVVEQQ Kot BoAdGGo olepOAVLOTA KO TEQPPOL OO
NEAICTEOYEVT dpacTNPlOTNTe. Me Bdon TV mopamave dSlympiopid, £X0VUE YOPIGEL TNV
KOTATUNOT TOV 0EPOAVUATOV o€ Tpio otdd. To mpdTo TaEVOoUEl TO CTPOUATO GTA
VYNAGTEPO VYT, TO 0£VTEPO draymPilel Ta LEPIKMG avaperypéva pe to PBL otpopata, evd
To Tpito KAveL Katdtunon tov PBL. Ewikdtepa, yio v tpitn Katnyopio mapovcidlovpe
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TPEIS TOPEUPEPEIC TEXVIKEC. AKOAOVOEL Lol cOVTOUN TTEPLYPAPT TOV TEYVIKMOV KOl TMV
alyopiBumv otovg omoiovg Pacilovrat.

Kotdtunon tov Avatepov ZTpodudtov

Ta otpduaTa 0WTE cCVVavTOVTOL 6 HyM apketd vynAdtepa omd To PBL dote va
ta Bewpnoovpe ¢ avesapnta. Adym tov vyniov BopvPov ota vy avTd, TO HOVO
YOPOKTNPLIGTIKO TTOV ¥PNOIomolovpe givor 1 Béon tovg. H opadomoinon tovg yiveton pe
Baon TIC OMOCTAGEIS TOV £YOLV, YPNOLUOTOLOVIOS M0 OLEVPVUEVY] TOPOAAOYT TNG
ovvaptnong bwlabel tov MATLAB mov opadomotei ta pixel mov cuvdéovtar peta&d tovg.
"Eva mopddetrypo KoTdtnong yio to ovatepo GTPOUATO TapovctdleTor oty ikova 1.8.

EOLE,ATHENS :14/09/2017 - Classified Upper Aerosols@1064nm
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Ewova 1.8: Katdtunon tov agpolvpdtov ota peyaidtepo Hym v to chvolo Raman
petpnoewv tov EOLE lidar cuotuartog otic 14/09/2017. To PBL Bewpeitatl mpog to mapodv
®G €Va. VIO GTPOLAL.
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Awyopiopoc tov gv puépst avaustypuévov pe to PBL otpoudtov

I'a v mepintwon mov epgavifovior oTpodpato Tov avaperyvooviot pe to PBL og
KATO10 ONUEI0 YPNOUYLOTOIOVHE U0l TOPAAAAYT] TOV KAOGIKOV OAYopiOpov kotdtunong
watershed. Tvmikd o odyOpOuog ¥PNOIOTOIEL TO. TOTIKA EAAYIOTO TOV O1601AGTATOV
ONUOTOG TOV EIKOVOV MG KEVIPO TOV TEPLOYDOV TOV SLUUOPPOVOVTOL (U0 TEPLOYN Yol
KaBéva), TV aviyvevon oKUOV Kabdg Kol HETPIKEG Yo KOOOPIGUO TOV OMOGTACEMV
peta&o pixel mg ewovac. H dukn pog exdoyn xpnoomotel Lop@oroyikd giktpo yio tov
VTOAOYICUO TOV OKUOV KOyl ToV KoOBopiopd Tov KEVIPOV TOV TEPLOYDV OV
npokvmrovy. [apakdtw mapovsidloviot pa pétpnon amd to cvomue EOLE oty onoia
eupaviCovror gv puépet avapetypéva e 1o PBL otpdpata kabdg kot o dtoywpiopdg Toug
HEG® TOV aAYopiOLOoL TOL OVOTTOEALE.

EOLE,ATHENS :17/09/2018 - RCS@1064nm x10%
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Ewoéva 1.9: To onua o1opBouévng epPéretag (RCS) vy 1o ovvoro Klett petproemv tov
EOLE lidar svomparog otig 17/09/2018.
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EOLE,ATHENS :17/09/2018 - Segmented Aerosols @1064nm
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Ewova 1.10: H dwyopion tov ogpoAvpdt®v TOL aVOUELYVOOVIOL €V UEPEL UE TO
TAAVNTIKO 0pLakd oTpdLLa, TO omoio £xel BewpnBel g Eva eviaio otpdpa oto chvoro Klett
petpnoewv tov EOLE lidar cuotmuoatog otig 17/09/2018.

Katdtunon tov otpoudtov tov PBL

Ao &yovpe dlaywpioel TANP®G TO TAAVNTIKO OPLOKO GTPOUN OO TO VITOAOITO
ONUO, TOPOKAT® TAPOLGLALOVUE TPELS OAYOPIOLOVC/TOPAALAYES TPOKEWEVOL VO TO
KOTOKEPLOATICOVLE OTO ETLUEPOVS CTPAOUOTO AEPOAVUATMV TOV TO ATOTEAOVV. AdY® TNG
amovciog wyvpol BopvPov oty meployn Tov PBL umopovpe va ekpetailevtodpe 1660
Vv €VIOoN TOL GNUOTOG OGO KOl TO YEMUETPIKO YOPUKTNPIOTIKA TOV GTPOUATOV.
[Mapaxdto mapovsidlovpe T peBddovg mov avamtuéape. Oleg amotelobvtol and dHo
oTAOW: L0 PYIKT KATATUNOT G€ GUVOAN KOl EMELTA KOTATOEN TOV GUVOA®Y OVTAOV UE
Baon To Kyog Kot TN ¥povikn dtdpkeLd Tovs. O1 dVO TPMTES YPNGLOTOIOVV TNV EVTOCT] TOL
ONLLOTOG Y10 TV OPYLIKT KOTATUNOY 6€ GUVOAD VD 1 Tpitn AapPdvel vtoyy Kot T B€om).
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Altitude ASL [m]

Koatdtunon tov otpoudtov tov PBL: K-means

H péBodoc avt exterel o mpon Katdtunon tov PBL ypnoomoidvtog tov
aAyopiBpo k-means. O aiyoplOpog avtdg oToyevEL dloympiopd v mapatnpioemy o K
opadeg (clusters) pe Paon v Kovtvotepn AdGTAGT TN TOPATHPNONG GO TNV HECT] TIUR
™G OpGdaG. ATOTEAEGUA TNG TEYVIKNG aVTNG givar 0 yopiopdg tov PBL og k khdoelc, pe
Baon v évtaon tovc. ‘Emerta, maipvovtag tv ekdotote KAAGN, KOTATAGGOVUE TO
aePOADLLOTO TTOV eRPaVIfovTaLl LE TOPOUOLO TPOTO LE TNV KATATOET TOV CTPOUATOV GTO
peyoAvtepa VY. o v avtdpan TR0y TOV AplOUdY TOV KAAGEMV XPTCLLOTOMGOLE
10 kpurnpro Calinski-Harabasz, 0étovtag g péyioto apiudv kidcewv tic 6. To
amotédeopa TG peBoddov paivetar otny ewova 1.11.

EOLE,ATHENS :17/09/2018 - Segmented Aerosols @1064nm
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Ewoéva 1.11: H xoatdtpunon tov agpoAVpdTov TOU TAGVNTIKOD OpPloKoD GTPOUOTOG
ypnoonowwvag v pébodo k-means yia to cvvoro Klett perpioemv tov EOLE lidar
ocvotnuatog otig 17/09/2018.

Koazdtunon tov otpoudtev tov PBL: Mutltithresh

H ovykekpyévn pébodog dtapépet amd tnv Tponyovevn LOVo 6Tov aAydpifo mov
VAOTOLEL TNV 0PYIKT KATATUNGN TOV KAAGE®Y TOV GNUATOG e Bdon v évtaon. O ev Adyw
alyopBpog etvar por dtevpovpévn pébodog tov Otsu, mov tomobetnBel v-1 KoTdPAMO 6TO
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Altitude ASL [m]

1OTOYPOLLLO TOL GTIUOTOG LE GTOYO VO TO Sl MPIGEL GE V EPT TOL OToia va, eppavifovy TV
eldylotn ovvarn  Oakvpovon. e v emioyn tov mTANOOVE TOV  KATOPAIWV
YPNOUOTOCAUE TNV UETPIKN TOL TTPooPéPel 1 cvvaptnon Multithresh, Bétovioc wg
eldyrotn Tun g 1o 0.99 (uéyrotn 1) Ko og péyroto aplud Katweiiov ta 5.

EOLE,ATHENS :17/09/2018 - Segmented Aerosols @1064nm
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Ewova 1.12: H xatdtunon tov ogpoAvUAT®V TOL TAGVNTIKOD OPLKoL GTPMOUNTOS
ypnoonotwvtag v néBodo mutlithresh yio 1o chvoro Klett petpricewv tov EOLE lidar
ocvotnuoatog otig 17/09/2018.

Koazdtunon tov otpoudtev tov PBL: 3D kmeans

H tpit pébodog mov avamtoéape eivar pa diedpvven g pnebddov kmeans dote
vo TepAapPaver Ta xopikd (HYog) Kot YpoviKA YOPpaKTPIOTIKA, TEPA OO TV EVIACT], TV
otpopdtov. o va amo@vyovue v Kvuplapyion ™S €VTaong TOL GNUOTOG AOY® TOL
ueyéiov evpovc tTpwov g (0-30000 A.U.) otov dloayopiopd TV KAACE®V,
YPNOUOTOUCOUE TEYVNTES TIUEG OVOTAPAGTACTG TOL VYOLG Kol TOL XPOVOL TTOL V. £ivar
ovykpioyes pe avtég g €viaons. Metd v eEaywyn tov KAAce®v, akoAovBel 1 o
TEPUTEP® OLAYWPIOUOG TOVG aviroya pe tnv Béom tovg Omwg axkpiac yivetar oTig
nponyovueveg dvo puebddove. H emdoyn tov apBpov K yia tov k-means yiveton péom tov
kpumpiov Calinski Harabasz.
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EOLE,ATHENS :17/09/2018 - Segmented Aerosols @1064nm

8000 layer10

layer9

7000
layer8

6000
layer7

layeré

o
o
o
o

layer5
4000
layer4

Altitude ASL [m]

3000
layer3

2000 layer2

"'M*

08:22 09:15 10:12 11:07 12:04 12:59
Time [UTC]

PBL

Background

Ewova 1.13: H xatdtunon tov agpoAvUAT®V TOL TAOVNTIKOD OPLOKOD GTPOUOTOS
ypnoonotwvtag v péBodo 3d k-means yio to cvvoro Klett petpricewmv tov EOLE lidar
ocvotipatog otig 17/09/2018.

ITpotewvouevn YAomoinon

I'evikd, pmopovpe va dwywpicovpe tov alyopBuo og tpio frpotas

1. Ewoymyn ko mpo-ene&epyacio tov EOLE lidar dedopévov.
2. Aviyvevon tov aepOAVLATOV KOl VEQOV.
3. Katdtunon tov agporlvpdtov Kot VEQMV.

To mpodTo KOpudtt vrodewkvietar omd tnv Oeswpia Tov lidar koi cvvenmg eivol
tumortopévo. To debTePO Kot To TPiTo ivarn Ta AVTIKEILEVA VTG TNG EPYACTOC.

Mo 1o dg0TEPO KOUUATL, TNV OVIYVELOT TOV OEPOAVUATOV KOl VEQPDV £YOVUE
TPOTEIVEL TPEIS SLUPOPETIKOVG aAyopiBovg:

e CloudDetect (C),
e CloudDetectUp/Down (CUD), and
e CloudDetectH (CH)
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To tpito xoppdtt Tov aAyopibuov,  katdtunomn, Umopel vo yoplotel 6€ Tpia
emueEPovg vro-tpoPfAnuata: Katdtunon tov agpoivpdtov ce peydia vy, Katdtunon
TOV AEPOAVUATOV TTOL avoueryvoovtol ev uépet pe to Iiovntikd Oplokd Ztpopa (PBL)
Kol KOTaTunon tov agpoivpdtov tov PBL. Tha to mpdta dvo €xovpe mpoteivel 000
HeBOO0LE, EVM Y10 TO TPITO EYOVLE TPOTEIVEL TPELS:

e Katdtunon tov PBL pe ypnon tov k-means (K)
e Katdtunon tov PBL pe ypnon e multithresh (M)
e Katdtunon tov PBL pe xpnon tov 3d k-means (3K)

Mo vo amopavBovue moleg amd TG TOPATAVED TEXVIKEG €lval Ol KAAVTEPES Yl TO
TPOPANUO  pHOC, KATOOKEVAGOUE 4  OPOPETIKOVS GLVOVAGHOVS TMV  TOPUTAVED
aAyopiBuwv (Pipelines) kot die€nyape évo VTOKEEVIKO Teipapa, 6ov {nthooue and Evay
g6 otig petpnoeig lidar va Pabuoloyfoet v anddoon kabe pipeline pe pio tun
avdpeco oto 1 (xeipiomn amddoom) kot 4 (Bértiomn amddoomn). Ot cvvdvacuol v
pipelines mopovoidlovtal otov mivaka 1.1 evd to anoteléopata g aloddynong ctov
nivaxa 1.2.

Pipelines/Ztadia Ipo-emelepyooio Aviyvevon Koazdzunon
Pipeline A Standard CloudDetect Multithresh
Pipeline B Standard CloudDetectH 3d k-means
Pipeline C Standard CloudDetectH Multithresh
Pipeline D Standard CloudDetectUp/Down K-means

IMivaxag 1.1: Ot cuvdvacpoi tov 4 pipelines.

Metprioeig/Pipelines Pipeline A Pipeline B Pipeline C Pipeline D

BoaOpoioyio #1 1 3 3 4
BaOporoyio #2 1 3 4 3
BoaOpoioyio #3 1 2 3 4
BaOporoyio #4 2 1 4 4
BabOpoioyio #5 3 2 4 3
BoaOpoioyio #6 4 1 3 3
BoaOpoioyio #7 1 4 4 4
BoaOpoioyio #8 1 2 3 4
BaOpoioyio #9 1 3 3 4
Babpoloyio #10 1 2 4 3
Yvvolikn Babpoioyia 16/40 23/40 35/40 36/40

MMivaxkag 1.2: Toa oxop twv pipelines yu 10 dwupopetikés petprioeig tov EOLE lidar
ovotiuatog. O pécog xpodvog ektéleong e mpo-enetepyaciag sivor 2.3267013.
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Omnwg deiyvetl o wivaxag 1.2, ta pipelines C kot D £yovv v kaAddtepn anddoon. To
Pipeline A £deiée kvpimg mpoPfAUaTo OTNV GVIXVELSN TOV AEPOAVUATOV AOY® TNG
CloudDetect pebodov, evod to Pipeline B giye xaxn anddoon otnv katdtunon Aoym g
uebodov 3d k-means. ‘Eyovpe mapatnpnoet oxetikd mopopoto. anddoorn petad Ttmv
CloudDetect a1 CloudDetectUp/Down kot peta&d tov Multithresh kot K-means
puefodwv, opotdtnTa 1 ool avtovoakAdtal Kot oTic fadporoyiec Tov TEPANATOC.

1 ovvéyel mapovotdlovue Tig amoddoelg Tmv pipelines oto ypdvo extéleong Kot
otV xpnon pviunc. No onuetmbei 6tL 0 pEcog pOvog EKTEAEGNC TG ELGAYMYNG Kol TPO-
eneéepyaciag Tov onpartog givor 2,3267013 s.

Metproeig/Pipelines Pipeline A Pipeline B Pipeline C Pipeline D

Méoog Xpovog 0.1993114 3.4648503 0.1737661 3.5144804
Extéleong (S)
M.O. Awvoung Mviung 98.7048 2,350.2252 31.6444 2,659.2284
(MB)
M.O. Méyiotng Xpfong 1438 6078.4 1235.6 6078.4
Mviung (KB)

IMivaxag 1.3: Anodoon tov Pipelines 610 ypdvo ektéleong Kot on ¥pNon Lvnung.

Onog Prénovpe otov mivaka 1.3, ta Pipelines mov ypnoyiomoiodv tov arkyopduo
k-means £&yovv onuavtikd UEYOADLTEPO YPOVO EKTEAEONG KOL XPNoN WUVAUNG. AvTd
opeiletan Kupimg otV gvpeon 1oV PEATIGTOL apBUoD TV AplBUOY TOV KAGCEDV HECW
tov Kprrnpiov Calinski-Harabasz. Qotdco, Tépa amd to kpirrhplo, mapatnpndnke twg n K-
means katdtunomn givat yevikd o apyn and avty péom g Multithresh.

Yvvendg mpoteivovpe 1o Pipeline C: Tlpo-ene&epyacio—CloudDetectH—Multi-
thresh w¢ Béltio vAomoino.

Yourepacuato kot MeAlovtikn Epyocia

O 010%0¢ VNG TNG SMAGUOTIKNG Epyaciag elvarl 1 aviyvevon Kot 1 KATATUNGN
agpolvpdtov Kol vepmv og petpnoelg tov lidar cvetuatog EOLE. H vAonoinon pog
Bacileton oe TeyvKéS emefepyaciag ewoOvov. To kOplo TAEOVEKTNUHO OVLTAG TNG
TPOGEYYIONG EIVAL 1] EKUETAAALELGT TOV YPOVIKAOV (YPOVIKT GLUVEYELN) TEPO OO TIG YWPIKES
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1010tteg tov lidar onpoatog. IMapatmpndnke Pektioon g anddoong katd nepimov 50%
0€ OYE0N HE VAOTOUCEIS TOV EKUETOAAELOVTOVGOV HOVO TIC YOPIKEG 1O10TNTEG
(novodidotata QIATpa).

To mpoOPAnuo Kot €01KOTEPA M KATATUNOT TOV OEPOALUATOV, OV  £)EL
povoonuavtn Avon. ‘Etol, ywo v aoldoynon g AOONG TOL  TPOTEIVOLLE,
YPNOUOTOUCOUE  VTOKEWEVIKY  a&loddynon. Aedopévov ¢ Pobporoyiog ¢
a&loroynong (87.5%), pmopovue va 16xvpIeTovUE OTL 1] VAOTOINoT pag givol a&dmior.
Emiong, eivon acparés va dnidoovue 0t eneéepyooio petpnocwv lidar ypnoiomoidvtag
alyopiBuovg emelepyaciog EIKOVOV €lval HioL VTOGYOUEVN TPOGEYYIOT KOl MG €K TOVTOV
a&iCer va peretnOel mepattépo.

Emmpocbétmg, n vhomoinom pog emtuyydvel TV ovTtOUATn OviyveLOTM Kol
KATATUNOT TOV GTPOUATOV 6€ T0G06T0 92%. Q6TOG0, diveTar 1) SLVUTOTNTA GTOV XPNOTN
va puluicetl yepoxivnta v gvacnocia g KoTdTUNnoNg eMAEyovToas TV aplipd tov
KAMAGE®V GE TEPIMTWGT TOV 1) CVTOUATOTOUNUEVT) AVOT) OEV EIVOL IKOVOTTOINTIKTY].

[Mopd ™V omodederypévn AETovpyIKOTTA TG VAOTOINONG MG, O OAyOplOLog
emdEyeTol apKeETES PEATIOOELS, €WOWKOTEPO. OTO KOUMATL NG KaTtdtunons. Mia
Beltiotomoinon ya v €bpeon tov apBuod kKhdocewv tov kK-means a&ilet va gpevvnOei.
Extog amd tig peBodoroyiec mov mapovcidcope o€ avthiv TV epyocio, po GAAN
vrooyouevn péBodog Yy to mPOPANUE NG KatdTunong €ivar m xpnomn VELPOVIKAOV
OIKTOV.

Téhog, n avdmtuén g epapuoyng ektoc T TAateoppag tov MATLAB egival to
EMOUEVO Pripal TNG SOLAELAS OV TOPOVGIALETOL TNV TPOKEEVN epyacia. Agdopuévov Tov
HEGOL OpOL YPOVOL eKTEAEONC TOL OAyopibupov (2.32 + 0.17 Sec) kot TNV GUVOMKN
déopevon uvAung (31.64MB) pmopodue va TPOcOpUOGOLUE TNV LAOTOINGN  UOGC
TPOKEWEVOL va. ypnolponombel 6e KATO0 EVOOUATOUEVO GOOTNUO, Yo avdAvon Ge
TPOYUATIKO YpOVO, Yopic TNV avaykn evog kevipikov H/Y.
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Chapter 2: Introduction

2.1 Lidar Systems for Atmospheric Studies

2.1.1 Lidar System Setup

The term lidar is an acronym for “Light Detection And Ranging” which was first
used in 1963 by Fiocco and Smullin, for atmospheric studies using a ruby laser [1]. Since
then, the successful development of the lidar technique was strongly related with the
progress in the fields of lasers, optics and optoelectronics. Atmospheric profiling nowadays
relies heavily on lidar technologies. This is due to the great spatial (from several cm to
several m) and time (few sec or min) accuracy of the measurements, the ability to observe
the atmosphere in real conditions covering long distances (from a few m to 100-150 km)
and the reception of spatial measurements in 1,2, or 3 dimensions. The variety of
interaction processes of the emitted radiation with the atmospheric constituents that can be
used in lidar, allow the determination of the basic atmospheric variables of state, such as
temperature, pressure, humidity and wind, as well as the optical and geometric properties
of aerosols, clouds and basic aerial pollutants (i.e. O3, HCs, Hg, CO», etc) [2, 3].The basic
operating principle setup of a lidar system is presented in figure 2.1.

- T T T T = I |
| TRANSMITTER ] RECEIVER |
| ||* Y |
| | |
| I OPTICAL |
| BEAM I | ANALYZER/ |
EXPANDER I | DETECTOR

| | FIELD '
| || STOP I |
| Il DATA l
| | ACQUISITION / |
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Figure 2.1: Principle setup of a lidar system [Weitkamp, 2005].
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The system is an active sensor, therefore consists of a transmitter and a receiver.
Short light pulses with lengths of a few to several hundred nanoseconds, specific
wavelengths and/or polarization are generated by the laser. Many systems apply a beam
expander within the transmitter unit to reduce the divergence of the light beam before it is
sent out into the atmosphere. It is usually followed by an optical analyzing system which,
depending on the application, selects specific wavelengths or polarization states of the
collected light. The selected radiation is directed onto a detector, where the received optical
signal is converted into an electrical signal which is then stored in a computer. The intensity
of the received signal is indicative of the concentration and active cross-section of the
scavenger / absorber. While the emitted laser radiation is transmitted to the atmosphere,
knowing the velocity of light ¢ [¢=3x108 m / sec] of the laser radiation in the Earth's
atmosphere, we calculate the distance between the emission system and the position of the
scavenger / absorber [atmospheric molecules and particles] as:

cxt

2= 2.1)

In the above formula, the factor 2 is introduced because the detected radiation covers a
distance equal to 2z, from the emission point to the scatter point and back again. The spatial
resolution of measurements is determined by the sampling frequency of received signals.
Usually the frequency ranges from 20 to 40 MHz, which correspond to spatial resolution
of 3.75to 7.5 m. The basic methods of recording the lidar signals are two: analog detection
mode and photon counting detection mode. The first one uses the photons of the backscatter
radiation and turns them into electric current pulses. This method is used for short
distances, about 5-8 km. The second method is used exclusively for detecting weak lidar
signals from greater distances, starting from 6-8 km. Because the photons coming from
these distances reach the detector at a low rate, it is possible to detect each photon
separately and form an electric pulse. Combining the above methods results in the final
signal that the system exports [4].
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2.1.2 Lidar Techniques for Atmospheric Studies

The basic lidar techniques for atmospheric study which make use of specific
interaction processes of the emitted radiation with the atmospheric constituents are:

Elastic-backscatter lidar: It is the classic and the simplest form of lidar. By elastic
scattering we describe the process in which the wavelength of the radiation remains
unchanged. This type of lidar is used to deliver information about the presence and location
of aerosol and cloud layers and is often called a Rayleigh-Mie lidar.

Raman lidar: It uses the Raman scattering which is an inelastic scattering process
that involves the change of the vibrational-rotational energy level of the molecule. The
frequency shift of the scattered radiation corresponds to the energy difference between the
initial and the final molecular energy states and is thus specific for the interacting molecule.
The basic applications of the Raman lidar are the measurements of the atmospheric
temperature profiles and the presence of water vapor. In addition, it can be used for tracking
aerosol and cloud layers in situations of low ambient light.

Differential-absorption lidar or DIAL: This technique makes use of single
absorption lines or broad absorption bands of gases to detect atmospheric gases with high
sensitivity. By emitting two wavelengths, one of which is absorbed more strongly than the
other it is possible to determine the molecular absorption coefficient.

Resonance fluorescence lidar: Such systems are used to study the presence of
layers that contain metallic atoms in the upper atmosphere, in the mesopause region,
between about 80 and 110 km height. Resonance fluorescence is obtained if the energy of
the incoming photon coincides with the energy of a transition in an atom, ion, or molecule
from one into another level.

Doppler lidar: This system is used to measure turbulence and wind. These physical
quantities are the macroscopic manifestation of the collective motion of atmospheric
molecules and particles. Along the line of sight of the laser beam, Doppler shifts of the
backscattered radiation to higher frequencies means the scatterers move toward the lidar
and to lower frequencies that the scatterers fend off the lidar. By determining this frequency
shift the wind speed along the lidar line of sight can be measured.
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2.1.3 Elastic Backscatter and Raman Lidar Equation

In the simplest form, the detected backscatter lidar signal can be written as:

P(R) = K G(R) B(R) T(R)
(2.2)

i.e., the power P received from a distance R is made up of four factors:

e K summarizes the performance of the lidar system

e G(R) describes the range-dependent measurement geometry

e B(R) is the backscatter coefficient at distance R. It stands for the ability of
the atmosphere to scatter light back into the direction from which it comes

e T(R) is the transition term and describes how much light gets lost on the
way form the lidar to distance R and back.

The first to terms are completely determined by the lidar setup and the last two are the
subjects of investigation and in principle unknown.

Going into more detail, the K factor can be written as:

CT
K =Py A1 (2.3)

Po is the average power of a single laser pulse, t is the temporal pulse length. The factor %2
appears because of an apparent “folding” of the laser pulse as illustrated in Fig 2.2. When
the lidar signal an instant time t after the leading edge of the pulse was emitted,
backscattered light from the leading edge of the pulse comes from the distance R1 = ct /2.
At the same time, light produced by the trailing edge arrives from the distance R> = ¢ (t -
1) /2. Thus AR = R1 — Rz = ¢1/2 is the length of the volume from which the backscattered
light is received at an instant time. A is the area of the primary receiver optics responsible
for the collection of backscattered light, and n is the overall system efficiency, including
optical efficiency of the elements that the light has to pass and the detection efficiency.
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The geometric factor

0(R)
R? (2.4)

G(R) =

Includes the laser-beam receiver-field-of-view overlap function O(R) that ranges from
[0, 1] and the term R2, The quadratic decrease of the signal intensity with distance is due
to the fact that the receiver telescope area makes up a part of a sphere’s surface with radius
R that encloses the scattering volume (Fig. 2.2). In a case of an isotropic scatterer at
distance R, the solid angle A/R? is the perception angle of the lidar for light scattered at
distance R. It is primarily the R dependence that is responsible for the large dynamic
range of the lidar signal. For example, if the detection of the signal starts at 10m with O(R)
= 1, the signal will be 6 orders of magnitude lower at 10 km just because of the geometry
effect.
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Figure 2.2: Illustration of the lidar geometry [Weitkamp, 2005].
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The backscatter coefficient B(R, A) is the primary atmospheric parameter that
determines the strength of the lidar signal. It describes how much light is scattered into the
backward direction. Let N; be the concentration of scattering particles of kind j in the
volume illuminated by the laser pulse, and dojsca (m, A)/dQ the particles’ differential
scattering cross section for the backward direction at wavelength A. The backscatter
coefficient can then be written as

do}',sca
ZNI(R) 70 (A, 2.5)
7

with summing over all kinds of scatterers. Since the number concentration is given in units
of m and the differential scattering cross section in m?sr%, the backscatter coefficient has
the unit m? srl. In the atmosphere, the laser light is scattered by air molecules and
particulate matter, i.e., B(R, A) can be written as

.B(R: ) = .Bmol(R: )+ Baer (R, A). (2.6)

Molecular scattering (index mol), mainly occurs from nitrogen and oxygen molecules,
primarily depends on air density and thus decreases with height. Particulate scattering
(index aer for aerosol particles) is highly variable in the atmosphere on all spatial and
temporal scales. Particles may represent tiny liquid and solid air-pollution particles
consisting of sulfates, soot and organic compounds, mineral-dust and sea-salt particles,
pollen and other biological material, as well as comparably large hydrometeors such as
cloud and rain droplets, ice crystals, hail, and graupel.

The final part of the lidar equation is the transition term which represents the
fraction of light that gets lost on the way from the lidar to the scattering volume and back.
The term can take values between 0 and 1 and is given by

R
T(R,1) = exp l—Zf a(r,l)drl (2.7)
0
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This term results from the specific form of the Lambert-Beer-Bouguer law for lidar. The
integral considers the path from the lidar to distance R. The factor 2 stands for the two-way
transmission path. The sum of all transmission losses is called light extinction, and a(R, 1)
is the extinction coefficient. It is defined in a similar way as the backscatter coefficient as
the product of number concentration and extinction cross section ojext for each type of
scatterer j,

a(RA) = ) N (R)G) (D) (28)
J

Extinction can occur because of scattering and absorption of light by molecules and
particles. Therefore can be written as the sum of four components.

a(Rr /1) = amol,sca (R, /1) + amol,abs (R' /1) + aaer,sca (R: /1) + (2-9)
aaer,abs (Rr /1)-

Summarizing the discussion of the individual terms, the lidar equation can be written as

O(R)
RZ

P(R, 1) = POCZ—TAn B(R, Dexp l—z J a(r,/l)drl (2.10)
0

For the Raman technique, the lidar system has to detect both the elastic and the inelastic
backscatter signal. The Raman lidar signal can be written as:

ad An Olg};) B(R, Araman)exp l_z J a(r, )
0

2

+ a(r, Araman) drl

P(R’ Araman) =Py

(2.11)
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2.1.4 The EOLE Lidar System

The EOLE lidar set-up of the Laboratory of Optoelectronics, Lasers and their
Applications of the National Technical University of Athens was first designed, developed
and installed by NTUA prof. Alex Papayannis [5]. The setup was placed on the ground
floor of the applied physics building of NTUA, in Zografou (37.5°N, 24.8° E, 212 a.s.l.).
It was designed to study aerosol layers using the elastic-backscatter method and it was first
put into operation in spring of 2000, in the frame of EARLINET program [6]. In 2004, the
setup upgraded to a backscatter — Raman lidar, with a double laser beam [at 355 and 532
nm] and the ability to detect the elastic backscatter of both radiations, as well as the
radiation of 387 nm, which comes from the Raman backscatter of laser radiation 355 nm
from the atmospheric nitrogen (N2) [7]. Subsequently, in September 2006, the system was
upgraded to a model Raman-lidar system, with 6 wavelengths, triple emission beam (at
355,532 and 1064 nm) [8]. The system was able of simultaneous detection of those
backscattered radiations, as well as the radiations of 387 and 607 nm (Raman backscatter
on N2 atoms of 355 and 532 nm radiations respectively) and the 407 nm radiation (Raman
on H2O molecules of 355nm radiation) [9]. Finally, in March 2010, the system was
transferred to the 4" floor of the applied physics building, at altitude 212 m a.s.l.

Figure 2.3: The receiving telescope of the EOLE Raman-lidar, facade (left) and top-view
(right).
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2.2 Image Processing

In computer science, digital image processing is the use of computer algorithms to
perform image processing on digital images. Many of the techniques of digital image
processing were developed in the 1960s when the cost of processing was fairly high.
However, as general-purpose computers became faster, they started to take over the role of
dedicated hardware for all but the most specialized and computer-intensive operations.
With the fast computers and signal processors available in the 2000s, digital image
processing has become the most common form of image processing and generally, is used
because it is not only the most versatile method, but also the cheapest. Digital image
processing is the only practical technology for:

e Feature Extraction: In machine learning, pattern recognition and in image
processing, feature extraction starts from an initial set of measured data and builds
derived values intended to be informative and non-redundant, facilitating the
subsequent learning and generalization steps. In image processing, algorithms are
used to detect and isolate various desired portions or shapes (features) of a digitized
image or video. Typical algorithms are:

Low-level

Edge detection, Corner detection, Blob detection Scale-invariant feature transform.
Curvature

Edge direction, changing intensity, autocorrelation.

Image motion

Motion detection, optical flow

Shape based

Thresholding, Blob extraction, Template matching, Hough transform

Flexible methods

Deformable, parameterized shapes, Active contours (snakes)
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e Classification: It is the problem of identifying to which of a set categories a new
observation belongs, on the basis of a training set of data containing observations
whose category membership is known. Most commonly used algorithms for
classification include: Naive Bayes classifier, Perceptron, Support vector machines,
k-nearest neighbor, decision trees and neural networks.

e Pattern recognition: It is the automated recognition of patterns and regularities in
data through the use of computer algorithms. The information extracted is then used
to take actions such as classifying the data into different categories. Typical
algorithms of pattern recognition include: K-means clustering, Kernel principal
component analysis (PCA) and mixture models.

Figure 2.4: A feature extraction example. Detecting edges.
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2.3 Thesis Motivation

The goal of this thesis is to introduce an image processing algorithm capable of
detecting and segmenting aerosol layers and clouds in EOLE lidar measurements. Tracking
the properties of aerosol layers such as frequency, height and concentration is of great
interest because studies have indicated a correlation between aerosols and human health
[10]. Furthermore, it is know that clouds play an essential role in Earth’s climate [11]. The
input data are provided by the EOLE lidar system of the Laboratory of Optoelectronics,
Lasers and their Application of the National Technical University of Athens. The lidar
system was initially designed, developed and installed in 1999 by Professor Alexandros
Papayannis of NTUA. Now it is placed on top of the school of Applied Mathematical And
Physics Sciences of NTUA, at altitude 212 m above the sea level.

The signal from each lidar measurement is 1D. Its intensity is indicative of the
concentration and active cross-section of aerosol layers and/or clouds in the atmosphere.
By combining many 1D measurements, continuing in time, we can form a 2D profile
(“image”) of the concentration, with dimensions the vertical height and time.
Consequently, each point of the signal (specific height and time) represents a pixel of the
image. As a result, time and spatial properties of the lidar signal are transformed to adjacent
pixel properties of the lidar image. Using these properties, the suggested algorithm tries to
firstly extract the useful signal (aerosol layers and/or clouds) from the background radiation
and then segments the layers found. The algorithm has been developed using MATLAB
and the output (segmented aerosol layers) are being presented as synthetic image. Along
the image, mean height of each layer is also provided.
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Attitude (km)

Chapter 3: Literature Survey

3.1 Complete Works / Solutions

According to the best knowledge of the author, based on a thorough survey in
research publications, cloud and aerosol layers detection in lidar measurements is an issue
studied in only a few scientific papers.

In [12] the team presents an algorithm for detecting aerosol layers and clouds in
lidar data provided by a system placed aboard a satellite. The algorithm first averages the
profile data to an initial horizontal resolution and then scans the data for extended regions
(space & time), also called features, of enhanced backscatter that rises significantly above
the signal magnitude expected from a pure molecular atmosphere, using a threshold value.
The region detected is then removed from the profile and the data below its base are
corrected for the estimated signal attenuation that occurs as the beam propagates through
the layer. Then, the feature-free profiles are averaged to a new, coarser spatial resolution,
so that the subsequent profile scans can identify progressively fainter features.
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Figure 3.1: (top) A 20 minute time period of backscatter measurements and (bottom) a
vertical feature mask showing the location of the layers detected. Colors represent the
resolution at which the detection was made.

In addition, in [13] Chuanfeng Zhao et al. introduce a method to detect clouds and
aerosol layers based on micropulse lidar measurements. The algorithm is generally based
on the difference between the observed lidar-reflected signal and the estimated background
signal of ambient light. It uses statistical parameters to estimate noise and empirical
thresholding values to separate it from useful signal.
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Figure 3.2: Sensitivity of the cloud classification method to the threshold values used. (a)
Backscattering signal returns, (b) cloud classification with T>3, (c) cloud classification
with T>4, (d) the cloud difference between figures (c) and (b), (e) cloud classification with
T>11, (f) the cloud difference between figures (e) and (b).

46



Lastly, in [14] is presented a method to estimate the height of the planetary
boundary layer (PBL) using lidar measurements but it is also suggested to be used to detect
aerosol layers and clouds. The method is based on the Wavelet Covariance Transform
(WCT) which measures the similarity between the lidar signal (range corrected) and the

Haar function:
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where z is the height, a and b are parameters of the step function called dilation and
translation. The method yields satisfactory results in the cases of clean atmosphere over
the PBL and aerosol layers in the free troposphere, decoupled from the PBL. However,
when there are aerosol layers coupled with the PBL or they are incomplete mixed, the

method is likely to fail.
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Figure 3.3: (left) The Haar function, (right) time series of the range corrected lidar signal.
The red lines represent the WCT profile each half an hour.
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3.2 Set of Applicable Image Processing Algorithms

As mentioned before, in this work we try to approach the task of detection and then
segmentation the aerosol layers and clouds in lidar measurements by using classic image
processing algorithms, assuming the lidar data as grayscale images. The problem can be
divided into three subsections: 1) Preprocessing of the lidar data, 2) Detection of the aerosol
layers and clouds, 3) Segmentation of the aerosol layers and clouds. The first part is
indicated by the lidar equation theory and therefore is standardized while the second and
third are the objects of study. Considering peculiarities of the lidar signal such as the great
range of the intensity and the presence of high noise, we tested various feature extraction
methods including edge detection, image filtering, thresholding methods and
morphological filters. For the segmentation of the aerosol layers and clouds we
experimented with classical segmentation algorithms such as the k-means clustering, the
watershed segmentation, and histogram equalization methods.

Based on the requirements for high resolution in height and time dimension as well
as for the automation of the process, in chapter 4 we describe the methodologies of the
algorithms we developed and in chapter 5 we present their performance, and we propose a
solution. Lastly, in chapter 6 we draw conclusions of this work and propose feature work.
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AU.

Chapter 4: Testing and Customization of Algorithms
for EOLE Data Processing

4.1 Pre-Processing of the EOLE Lidar Signal

In this project, the signal to study is the 1064 nm wavelength signal from both the
Klett measurements (daytime) and Raman (evening) of the EOLE lidar system. The spatial
resolution of the signal is 7.5 m and the time resolution is 1.5 min. The number of samples
of height is 8192, starting from 219.5 m a.s.l. However, the data of interest stop at nearly
8000 m. In addition, due to the inability of the lidar system to collect reliably the
backscattered signal at low heights, we ignored the data collected from heights lower than
497 m a.s.l. On the other hand, the number of the measurements in time is not fixed.
Typically, the duration varies from 40 to 160 samples or 1 to 4 hours.

4.1.1 Removing the Background Signal of Ambient Light

At the beginning of the algorithm we read the signal values of each measurement.
The radiation signal that reaches the detector of the lidar system consists of backscatter
radiation from the laser and, to some extent, undesirable direct sunlight. However, knowing
that aerosol layers and clouds do not form at higher altitudes, a mean value representing
the ambient light can be calculated by averaging data collected at heights from 10000 to
12000 m. Figure 4.1 shows the difference between the initial lidar signal and the signal
after the removal of ambient light.
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Figure 4.1: Lidar signal for 1 measurement in time before (dash) and after (solid) removing
the signal coming from ambient light. Note that the signal after removing the background
contains negative values. These values of course are due to errors of the lidar system and
are set to zero.

4.1.2 Range Correction

As shown in figure 4.1, the EOLE lidar signal attenuates very quickly with range
and converges to values around zero. This happens because the signal is inversely
proportional to the square of range as described in equation. Therefore, a range correction
is required. For this, instead of using the true height values, we use integer values that
represent the heights as: 219.5m — 1, 227m — 2, and so on. The product is called Range
Corrected Signal (RCS) and is the signal to study given in arbitrary units (A.U). The
difference between the EOLE range corrected signal and the EOLE backscatter signal (BS)
is shown in figures 4.2, 4.3 and 4.4. Note that we considered negative signal values equal
to zero and, for the purpose of demonstrating the lidar images, we set the value 3x10* A.U.
as the absolute signal maximum.

15 T T

_

——Backscatter Lidar Singal

10

_— | L J : | \

3000 4000 5000
Altitude [m]
4

9000

L

Aw ‘ '“\M‘w ;.W.' H"

4000 5000
Altitude [m]

I

Figure 4.2: (top) the backscatter signal for 1 measurement in time after the removal
background, (bottom) the range corrected signal.
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Figure 4.3: The EOLE backscatter lidar signal without range correction for the EOLE
14/09/17 Klett measurement.
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Figure 4.4: The EOLE range corrected lidar signal for the EOLE 14/09/17 Klett
measurement.
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As shown in the above figures, the EOLE backscatter signal attenuates very quickly with
height due to the R factor of the lidar equation. As a result, it is impossible to detect
aerosol layers at high altitudes. By performing the range correction though, we manage to
reveal those aerosol layers at higher altitudes. However, the noise of the signal is greatly
increased at heights where the backscatter signal was previously almost equal to zero. This
usually happens after the planet boundary layer (PBL), i.e. the big area at the bottom of
figure 4.6, and the SNR continues decreasing with height.

4.2 Detection of Aerosol Layers & Clouds

Having the range corrected signal as input, we now test some techniques to extract
aerosol layers and clouds of the EOLE lidar images. The only strict restriction at this point
is to not alter the initial lidar signal in a way to consider false positives as aerosol layers.

4.2.1 Edge Detection

A first method we tested for the extraction of aerosol layers and clouds is the edge
detection method. The basic idea is to find the boundaries of the aerosol layers and then
use a segmentation algorithm to separate them from the background. The first step of the
method includes filtering the image to improve the SNR. Next is the application of an edge
operator to extract the edges. We experimented with various image filters and edge
operators such as Canny, Sobel, Laplacian, Prewitt, Roberts, central and intermediate
differences, however due to the low SNR of the lidar signal, none of them was capable of
detecting properly the boundaries of the layers, unless we lowered the resolution of the
lidar image significantly. The reduction of the image resolution however conflicts with the
requirement of not distorting the shape of the layers, therefore we reject the edge detection
method. Next we present three variations of thresholding methods for the detection of
aerosol layers and clouds.
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4.2.2 Thresholding Method Using the RCS (CloudDetect)

In this paragraph we introduce a method (CloudDetect) to detect the aerosol layers
and clouds by using one single technique through the whole EOLE lidar image. In order to
do that, we first filter the input image (RCS) with an image filter, then apply a threshold to
extract the features from the background and lastly apply a morphological filter to reject
features of small sizes that we consider as noise.

In signal processing, a digital filter is a system that performs mathematical
operations on a sampled, discrete-time signal to reduce or enhance certain aspects of the
signal. The digital filter is fully described by the kernel, a usually small matrix or mask
with odd size, which is being convolved with the input image. The general expression of a

convolution is
a

b
gV =wrfExy =) > oE0fc-sy-0, @D

s=—at=-b

Where g(x,y) is the filtered image, f(x,y) is the original image,  is the filter kernel.
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Figure 4.5: Example of image filtering.
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For the filtering process we tested various filters such as:

» 2D Gaussian Filter: This is a filter whose impulse response is an approximation
of the Gaussian function. Such filters are used to reduce image noise and usually
are followed by edge detection techniques. The filter is described by equation (4.2)
and Figure 4.6.
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Figure 4.6: (left) 2D Gaussian distribution with p=0 and o=1, (right) discrete
approximation of the Gaussian function with c=1.

» 1D Median Filter: Median filter is a non-linear digital filtering technique that is
used to reduce noise. Each output pixel contains the median value in the M-by-1
neighborhood around the corresponding pixel in the input image.

» 2D Median Filter: 2D median filter an extension of the 1d median filter. Each
output pixel contains the median value in the M-by-N neighborhood around the
corresponding pixel in the input image.

» Motion Filter: This filter is used to approximate the linear motion of a camera by
N pixels with an angle of 6 degrees in a counter-clockwise direction. The filter
becomes a vector for horizontal and vertical motions. As example we present a
motion filter with N =3 and 6 = 45°:

0 0.0754 | 0.1883

0.0754 | 0.3215 | 0.0754

0.1883 | 0.0754 0
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For the purpose of filtering to enhance the regions of the aerosol layers we tested the
motion filter as pipeline of filters: first a motion filter with length N = 3 and angle 6 =
90° representing the spatial continuity of the lidar signal and then a motion filter with
N =3 and 6 = 0° for the time continuity.

» Average Filter: Mean or average filtering is a simple method of smoothing images,
i.e. reducing the amount of the amount of intensity variation between a pixel and
its neighbors. The output pixel of the filter is simply the average value of the pixels
in its neighborhood.

» Anisotropic diffusion Filter: This filter is is a non-linear and space-variant filter
used for blurring an image based on diffusion process.

The filtering is done with the help of the MATLAB functions imfilter and medfilt1/2 and
imdiffusefilt. To deal with the boundaries we used the options of replicate for the imfilter
function and symmetric for the median filters.

After filtering the image, we apply a threshold to extract the aerosol layers and
clouds from the background defined as

T=,u—7

u = mean(RCSiy, ), 02 = std(RCSim ) (4:3)

where RCSji, = RCS < 3x10* & RCS > 0

The reason we take into account only RCS values between 0 and 3x10% is because these
values come from errors, dense layers or clouds and can have a negative impact on the
estimation of the statistical parameters.

Following the extraction of the layers, the produced binary image passes through a
morphological filter to cut layers that are smaller than a certain size. As the size limit we
set 100 pixels. The rejection of the small features is done with the help of the MATLAB
function bwareaopen. Bwareaopen takes a binary image as input removes all connected
components (objects) that have fewer than P (P=100 in our case) pixels The connectivity
is 8 for a two dimension image (8 neighbors for each pixel). The whole processing flow of
the CloudDetect algorithm is described in figure 4.7 and an example of its performance is
shown in figure 4.8.
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Figure 4.7: Processing flow of the CloudDetect algorithm.
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Figure 4.8: The output of CloudDetect method using a 2D average filter with size [3, 3]
for the EOLE 14/09/17 Klett measurement.
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4.2.3 Thresholding Method with Splitting the Lidar Image
(CloudDetectUp & CloudDetectDown)

The second thresholding method for detecting the aerosol layers and clouds
presented here splits the image into two non-overlapping parts: the first part, called “down
part”, contains the strong lidar signal values at lower heights and often extends to the upper
limit of the PBL. The second part or “up part” contains mostly weak lidar signals that may
contain thin aerosol layers (compared to PBL) and clouds. The processing for the two parts
can be done in parallel.

The basic idea to split the image is to perform different detection methods on the
two parts, based on their intensity values and their SNR. An intuitive way to do the split is
to locate pixels of the BS lidar image that have negative values. These values indicate that
the signal has attenuated a lot and that there is presence of strong noise. Using the BS as
input and without setting its negatives values equal to zero, we draw a mask of the image
presenting the negative values as ones and the positive or zero values as zeros. Figure 4.9
shows the mask and also the bound that splits the image.

Figure 4.9: A mask of the image for the EOLE 14/09/17 Klett measurement showing pixels
with negatives values as 1 (white), pixels with positive or zero values as 0 (black) and the
line that splits the image (red line).
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By comparing the figures 4.9 and 4.3 we see that the presence of negative values truly
suggests the height above which the lidar signal has weakened enough to be unlikely to
detect aerosol layers. After the acquisition of the mask, we take the sum of it along the
dimension of time. The formed vector contains information about whether negative signal
values have occurred at a certain height. Heights below a threshold of about 1300 m a.s.l.
are because of errors of the lidar system and therefore are ignored. As the requested
boundary we consider the 10" lower height at which a negative value occurs. This is
because we want to ensure that we don’t consider a random negative value as the absolute
boundary and to have a smoother transition between the two parts of the image.

Negative values in the EOLE backscatter lidar signal can also occur by extreme
weakening of the laser beam when it passes through dense clouds. When this happens, the
values of the signal in these measurements become negative because of the subtraction of
the ambient light radiation. An example of such measurements is shown in figure 4.10. In
order to distinguish these negative values from the negative values at the regions of weak
lidar signal we have to take into account how many negative values occurred at a single
lidar measurement over time. If the number of the incorrect values is over 25% of the
overall measurements we have to exclude those values from the mask, by setting them
equal to zero, right before the process of splitting the image. The new corrected mask
excluding such errors and showing the boundary line between the two parts is shown in
figure 4.11.

EOLE,ATHENS :01/11/2018 Negatives ->1 ,Positives ->0
T —

s

[ TR

w
=1
=1
=3
|
|

1000

09:32 10:21 11:11 12:02 12:52 13:42
Time [UTC]

Figure 4.10: A mask of the image for the EOLE 01/11/18 Klett measurement that contains
attenuated laser beams showing the negative values as 1 (white) and non-negative as 0
(black).
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Figure 4.11: A mask of the image for the EOLE 01/11/18 Klett measurement showing the
negative values without those due to systematic errors. Negative values are shown as 1
(white), non-negative as 0 (black) and the boundary line that splits the image as red line.

Now that we have separated the two regions, one with the strong lidar signal and
one with the weak signal we can apply different filters and threshold values in order to
extract the aerosol layers.

For the down part, after experimenting with a lot of filters, we have concluded that
the best filter is a series of two motion filters, each one with length of 3 pixels. The first
one performs the motion filter along the height dimension and the second one along the
time dimension. Considering that in this part of the image the signal has a high mean
intensity and relatively low noise, a simple threshold value can separate aerosol layers from
the background satisfactorily. We set the threshold value to 6000 A.U. After the application
of the threshold, the pixels that have passed it form a mask. Then we pass that mask through
the bwareaopen function as described in ch.4.2.1. All the pixels that belong in the new
mask return to their original, pre-filtering, values.
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The extraction of the aerosol layers and clouds at the up part of the EOLE lidar
images is a challenging task, as previously described. To deal with the low SNR of these
images’ part, we have to consider working with the backscatter signal. To illustrate the
difference in the context of noise between the BS and the RCS in these heights we show
the BS and RCS signals for 1 measurement over time in figure 4.12.
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Figure 4.12: The EOLE backscatter signal for 1 measurement over time before (top) and
after (bottom) the range correction. Negative values have been set to zero. SNR clearly
decreases after the range correction.

For the Up part we tested different methods. The most promising one uses an
average image filter of size 5x5 for both the RCS and BS images. By multiplying the two
generated images, it is possible to enhance areas of aerosol layers in contrast to the
background. Then, we apply an empiric threshold, set to 45 A.U., to separate the layers
from the background signal, form a mask, in a similar way with the down part and multiply
the mask with the averaged RCS image. We now have to pass the generated image from a
second threshold to pick only the strong signal values that indicate the presence of an
aerosol layer. As found, the up part is more sensitive to the threshold value. Therefore, we
calculate the mean value of the up part and as threshold we set the maximum of the mean
value and 3500 A.U., in order to avoid regions with very low intensity to be considered as
aerosol layers. The processing flow of the algorithms CloudDetectDown and
CloudDetectUp is shown in figure 4.13 and the result of the method in figure 4.14.
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Figure 4.13: Processing flow of the CloudDetectDown & CloudDetectDown algorithms.
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Figure 4.14: The output of CloudDetectUp & CloudDetectDown algorithm for the EOLE
14/09/17 Klett measurement.
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4.2.4 Thresholding Method with Partitioning the Lidar Image
(CloudDetectH)

In this paragraph we introduce a third algorithm (CloudDetectH) for detecting
aerosol layers and clouds on EOLE lidar images. As mentioned previously, the EOLE
backscatter lidar signal attenuates in relation with range squared, so in this algorithm we
part the image into two regions based on the intensity of the BS. The first region contains
the measurements with strong signal intensity and the second the regions with weak lidar
signal values. We define weak signal values as values lower than 0.01 A.U.

The algorithm initially finds the lower in height measurement with value lower than
0.01 A.U. of the BS for each lidar measurement over time. The height values however,
tend to lack of consistency. To improve the coherence we smooth the values of heights
using the MATLAB function smooth. Using the height values generated, we form a mask
for the whole lidar image by setting all pixels above the found heights (including them)
equal to zero and the pixels below them equal to one. Usually, this method separates the
Planet Boundary Layer from the rest of the signal. Figure 4.15 demonstrates the
corresponding mask for the lidar image of figure 4.4.
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Figure 4.15: A mask showing the partition of the lidar image by the CloudDetectH method
for the EOLE 14/09/17 Klett measurement.
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Now that we have partitioned the lidar image into two parts we can apply different
methods to extract the aerosol layers for each part based on their characteristics.

For the first part (white region) we filter the whole RCS image with two motion
filters with length 3 pixels, just like the CloudDetectDown. Then we pass the generated
image through a threshold equal to 6000 A.U and collect the data belonging to the white
region using the mask.

For the second part (black region) we filter the whole RCS and BS images with
average filters of sizes [5, 5]. Working in a similar way with the CloudDetectUp, we pass
the product of the two averaged images through a threshold set to 45 A.U. The values that
passed this threshold form a mask which is then multiplied with the averaged RCS image.
The generated image then passes through a second threshold. For the value of this threshold
we use statistical parameters of the data that belong in the weak signal region of the RCS
image (i.e. the black region in fig 4.15). We calculate the mean and the standard deviation
of the pixels of the averaged RCS image that have intensities lower than 15000 A.U and
greater than 0. As a threshold we consider the maximum of the mean value and 3500 A.U.
In addition, if the standard deviation is greater than 2000 A.U., we increase the threshold
value by 1000 A.U. in order to reject layers that have occurred due to the high noise of the
signal.

Finally, we combine the all the pixels from the two regions of the lidar image and
we reject all the layers that consisting of 100 pixels or less using the function bwareaopen.
The processing flow of the algorithm is presented in figure 4.16. The output of the
CloudDetectH algorithm is shown in figure 4.17.
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Figure 4.16: Processing flow of the CloudDetectH algorithm.
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Figure 4.17: The output of the CloudDetectH method for the EOLE 14/09/17 Klett
measurement.

4.3 Segmentation of Aerosol Layers & Clouds

After the detection of the aerosol layers and clouds in the EOLE lidar images,
follows the segmentation of the extracted layers. The features that we use to classify the
layers are the intensity and the position in the image (height and time) of the layers. A first
segmentation for the detected aerosol layers is the discrimination between the planet
boundary layer (PBL), the layers that are partially mixed with the PBL and the upper
aerosol layers and clouds.

The planetary boundary layer (PBL) is a key variable in climate modeling and has
an enormous influence on air pollution [15]. It is the part of the troposphere directly
influenced by the Earth’s surface and it responds to surface forcings with a time scale of
about an hour or less. The height of this layer is a fundamental quantity for the description
of vertical mixing processes in the lower part of the troposphere and it exerts a strong
influence in the environmental state at the surface. Aerosols in the PBL come mostly from
human activity such as industrial dust and ashes, combustion of biomass, SO- salts, etc.
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Upper layers consist of aerosol layers coming mostly from environmental activity
such as desert dust produced in arid regions, clouds, marine aerosols coming from the
Earth’s oceans and natural sulfur aerosols formed during volcanic eruptions.

4.3.1 Segmentation of the Upper Layers

In this paragraph we describe a method for the segmentation of aerosol layers that
are above the PBL. The noise in these layers is very high, so the only feature that we can
use for the segmentation is the position of the layers.

For the segmentation of the aerosol layers we use the MATLAB function bwlabel.
Bwlabel takes a binary image as an input and finds all the pixels that are connected (4-way
or 8-way connectivity) and labels them with an integer. The background is considered as
one object and it is labeled as 0. An example of the bwlabel function is shown in figure
4.18.

VI
0 0 0
:
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
VI
Initial binary image The output of bwlabel using The output of bwlabel using
4-way connectivity 8-way connectivity

Figure 4.18: An example of the MATLAB function bwlabel.

The bwlabel function is limited to use 4 or 8 connectivity. However, we have to consider
a more extended connectivity for the aerosol layers, therefore we expand the connectivity
of the bwlabel by dilating the image for both the height and time dimensions and then use
the bwlabel.
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Dilation is the one of the basic operations in mathematical morphology, the other
is erosion. Both are being presented here for the sake of completeness. In mathematical
morphology, a binary image is viewed as a subset of a Euclidean space R ¢ or the integer
grid Z <. Let the A be a binary image and B a structuring element regarded as a subset of
R 4. The dilation of A by B is defined by

A®B = UAb (4.4)

beEB

Where Ay is the translation of A by b. In a similar way we define erosion of A by
B as

AOSB= ﬂA_b (4.5)

beB

Where A, denotes the translation of A by —b. Erosion converts a pixel with value
1 to O if one of its neighbors, which are being defined by the structure element, has zero
value. In a similar way, dilation turns a pixel with value 0 to 1 if one of its neighbors has
one value. An example of the basic morphological operations is shown in figure 4.18.
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Figure 4.19: Examples of the basic morphological functions: erosion and dilation.

By dilating the binary image and then applying the bwlabel function, we manage
to consider as one layers that are more than 1 pixel away from each other. Figure 4.20

66



shows the result of the bwlabel function in an EOLE lidar image. The Planet Boundary
Layer is consider as one single aerosol layer for the moment.
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Figure 4.20: Segmentation of the upper aerosol layers of the EOLE 14/09/17 Klett
measurement. The Planet Boundary Layer is considered as one layer.

Now that we have classified the aerosol layers and the clouds that are at higher
altitudes and away from the Planet Boundary Layer, have to examine methods to segment
the various aerosol layers that make up the PBL, also called mixed layer, or are joining at
some point with it. The PBL usually contains many aerosol layers of various shapes and
intensities which are mixed. In the following chapters we test some basic image processing
techniques for the segmentation of the aerosol layers in the PBL.

4.3.2 Segmentation of the partially mixed with the PBL layers

Many lidar measurements contain aerosol layers that don’t belong to the PBL
however they merge with it at some point in the measurement. Figure 4.21 demonstrates
an example of an EOLE lidar measurement that contains aerosol layers of this type. In this
paragraph we describe a method to disconnect these layers from the PBL in order to classify
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them as separate aerosol layers. This algorithm follows the algorithm for the segmentation
of the upper layers described in ch. 4.3.1.
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Figure 4.21: The RCS image after the detection of the aerosol layers of the EOLE
19/09/2017 Klett measurement. Note the aerosol layers that join the PBL at the left and
right of the image.

After the segmentation of the upper layers, the remaining aerosol layers are
considered as one by the bwlabel. If the PBL combined with the partially mixed layers
extends only to a small height (about 500m) we consider the remaining aerosols as one
mixed layer. Otherwise, some of the remaining layers may not be not part of the PBL. To
disjoin these type of layers we consider the extent at which these layers are mixed with the
PBL, i.e. the number of measurements over time at which these layers have been mixed
with the PBL. For this purpose we will use a variation of the watershed segmentation as
described below.

In the classical watershed segmentation algorithm, an image is regarded as a
topographic landscape with ridges and valleys. The elevation values of the landscape are
typically defined by the gray values of the respective pixels. Based on such a 3D
representation the watershed transform decomposes an image into catchment basins. For
each local minimum, a catchment basin comprises all points whose path of steepest descent
terminates at this minimum. Watersheds separate basins from each other. The watershed
transform decomposes an image completely and thus assigns each pixel either to a region
or a watershed.
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Figure 4.22: lllustration of the watershed segmentation.

Next we describe the methodology used for our problem. First we obtain a binary
image (mask) that contains the PBL aerosols and the mixed with it layers (shape of the
overlapping components). Then we find the outer edges of the mask. To do that we use the
MATLAB command bwmorph( mask, remove’) . This command sets a pixel to O if its 4-
connected neighbors are all 1’s, thus leaving only boundary pixels.
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Figure 4.23: The outer edges (white) of the aerosol layers detected in the EOLE
19/09/2017 Klett measurement.
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Now that we have successfully detected the outer edges of the aerosol layers we remove
them from the mask. By doing this process separated regions of aerosol layers may arise.
If so we apply the watershed segmentation using these regions as markers or catchment
basins. Otherwise we continue removing the 2", 3, ... n™ most outer pixels of the mixed
layer and when a separate aerosol layer arises we apply the segmentation algorithm. Instead
of the extraction of the outer pixels process, we could use an erosion process, with an
increasing in size structure element, of the image. However, the process used offers a more
accurate extraction of the pixels. The number of iterations n for the extraction of the outer
pixels depends on the number of the lidar measurements taken over time or the size of the
image in the horizontal dimension. This is because we have to consider the extent at which
a layer is mixed with the PBL as described before.

In the process of removing the outer pixels of the aerosol layers many small layers
may occur. To reject these, use the function bwareaopen as described before. In this way,
we avoid the over-segmentation of the aerosol layers. Figure 4.24 shows the result of the
extraction of the outer pixels process at the 3" iteration. Note the disconnection that has
occurred between the aerosol layer at the left of the image with the PBL.
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Figure 4.24: The extraction of the outer pixels process at the 4™ iteration of the lidar image
for the EOLE 19/09/2017 Klett measurement. The red rectangle shows the aerosol layer
that has been separated from the PBL.

When a disconnection between the aerosol layers emerges we apply the watershed
segmentation. Firstly, we calculate the distance for each pixels from the markers, i.e. the
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main cores of the aerosol layers. For the calculation of the distance we use the MATLAB
function bwdist, which assigns a number to a pixel that is the distance between that pixel
and the nearest nonzero pixel of the binary image. For the metric of the distance we used
the “chessboard” metric which is described as:

distance = {|x; — x2|, |y1 — ¥2| } (4.6)

Then we apply the watershed transformation on the image that contains the distances
measured for each pixel using the function watershed. The transform sets as zero the pixels
of the distance image that are equally spaced from two or more catchment basins or
markers. Based on these boundaries, the transform segments the image into a number of
regions equal to the number of the markers. Arbitrarily we classify the boundary pixels to
the Planet Boundary Layer. Finally, we multiply the segmented image with the initial
binary mask that contains the shape of the mixed aerosol layer. The whole processing flow
of the method is shown in figure 4.28. The output for the lidar image of figure 4.25 is
presented in figure 4.26.
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Figure 4.25: Processing flow of the watershed segmentation algorithm.
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Figure 4.26: Segmentation between the partially mixed aerosol layers and the PBL of the
lidar image for the EOLE 19/09/2017 Klett measurement.

4.3.3 Segmentation of PBL: K-means

Following the segmentation of the partially mixed with the PBL aerosol layers, we
try to segment the PBL to its individual parts/layers. For the segmentation of the Planet
Boundary Layer we can use both the intensity and the position layers. In the method
described in this paragraph we use the k-means algorithm using only the intensity of the
signal as input to segment the PBL and then apply a method to separate the layers based
on their position in the image (height and time).

K-means clustering is a method of vector quantization that is popular for cluster
analysis in data mining. The method aims to partition n observations into k clusters in
which each observation belongs to the cluster with the nearest mean, serving as a prototype
of the cluster. Given a set of observations (X1, X2, ..., X3), where each observation is a d-
dimensional real vector k-means clustering aims to partition the n observations into k (< n)
sets S = {S1, Sz, ..., Sn} S0 as to minimize the within-cluster sum of squares (WCSS) (i.e.
variance).

k K
arg msinz Z [lx — w;||?> = arg mSinE |S;|Vars; 4.7
i=1

i=1 x€S;
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where p; is the mean points in S;.
The standard algorithm uses an iterative refinement technique. Given an initial set
of k means mi™, m®, ..., m® the algorithm proceeds by alternating between two steps:
Assignment step: Assign each observation to the cluster whose mean has the least
Euclidean distance, this is intuitively the “nearest” mean.

57 = { Xp: “xp -m' )” ”xp B mft)”ZVJ" l=j= k}’ (4.8)

where each x, is assigned to exactly one S®, even if it could be to two or more of them.
Update step: Calculate the new means (centroids) of the observations in the new

clusters.

(t+1) _ Z
i 59 (4.9)

X ES(t)

The algorithm has converged when the assignments no longer change. However it does not
guarantee to find the optimum.

Common initialization methods for the selection of the initial cluster centroid
positions are the Forgy and Random Partition. The former randomly chooses k
observations from the dataset and uses these as the initial means. The latter first randomly
assigns a cluster to each observation and then proceeds to the update step, thus computing
the initial mean to be the centroid of the cluster’s randomly assigned points. The Forgy
method tends to spread the initial means out, while Random Partition places all of them
close to the center of the data set.
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1. k initial "means" (in this 2. k clusters are created by 3. The centroid of each of the k 4. Steps 2 and 3 are repeated
case k=3) are randomly associating every observation  clusters becomes the new until convergence has benn
L with the nearest mean. The .
generated within the data . mean reached.
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domain (shown in color). voronoi diagram gererated by

the means.

Figure 4.27: Demonstration of the standard k-means algorithm.
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The implementation of the k-means algorithm in MATLAB is done with the
function kmeans. As input we use the intensity of the pixels that make up the PBL in the
lidar image. The distance metric we use is the Euclidean. As initial cluster centroid
positions we choose the default option called ‘plus’. This method selects k observations
from the data set X as: the first cluster center is chosen uniformly at random from the X,
after which each subsequent cluster center is chosen randomly from the remaining data
points with probability proportional to its distance from the point’s closest existing cluster
center. To make the algorithm more robust, due to the randomness of the selection of the
initial centroids, we set the option ‘Replicates’ of the function to 3. This option determines
the number of times to repeat the clustering, each with a new set of initial centroids.

For the automated selection of the optimum number of clusters k we used the
Calinski-Harabasz criterion. The method selects the optimum k that maximizes the index
CH described as:

_ trace(BG)/(k —1)
 trace(WG)/(n — k)

(4.10)

Where

WG =X Y7L (xi; — %) (xy; — %) is the within-group dispersion matrix,

BG = Y% n;(x, — ¥)(x, — X) ' is the between-group dispersion matrix,

x;j is the vector of attribute values for the j™in the i"" group,

X is the mean vector of all n objects,

X, is the mean vector of the objects in group i,

n; is the number of objects in group i,

Trace(WG) and trace(BG) are the within- and between-cluster sums-of-squares and k and
n denote the number of clusters and the total number of objects. The values of k we test
range [2, 5].

The k-means algorithm represents the pixel values to an integer number i = 1,2,
...,k that represent the cluster that they belong. We change the labelling of the clusters
according to the intensity value of their respective centroids, i.e. the background is labeled
as 1 and the highest in intensity cluster is labeled as k. In the highest intensity we choose
to include all the pixels with intensities above 27000 A.U. by setting these pixels’
intensities to 4000 A.U. to ensure the creation of a separate cluster. In addition, we set all
the pixels with intensities equal to zero (i.e. the pixels that don’t belong to the PBL) to
-1000 A.U. In this way we manage to select and separate the cores of some aerosol layers
with high intensity and we avoid to reject a pixel which has low intensity but belongs to
the PBL as background.

Now that we have used the intensity of the signal in the PBL we have to take into
account the geometrical properties of the produced segments, meaning the height and their
duration over time. Considering the total duration of the lidar measurements, we
incorporate very small segments to the bigger aerosol layers that which surround them. To
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implement this we perform a grayscale image closing. In grayscale morphology, images
are functions mapping a Euclidean space or grid into the set of reals R U {—oo, 400} .
Denoting an image by f(x) and the grayscale structuring element by b(x), where B is the
space that b(x) is defined, the grayscale closing of f by b is given by the

f@B=(f®B)OB
where (f @ b)(x) = supyep [f(¥) + b(x — y)] is the grayscale dilation (4.11)
and (f © b)(x) = infyep [f(x +y) — b(y)] is the grayscale erosion

After the incorporation of the small segments, we classify the segments of the PBL
using the bwlabel in a similar manner as the segmentation of the upper layers. The
processing flow and the result of the method are shown below.

PBL .| Apply .| Incorporate small Segment using
K-means “| layers to bigger ext. bwlabel

Segmented
PBL

Figure 4.28. Processing flow of the K-means algorithm for the Segmentation of the mixed
layers.
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Figure 4.29: Segmentation of the PBL for the EOLE 14/09/2017 Klett measurement using
the kmeans method.
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4.3.4 Segmentation of PBL: Multithresh

A different method to perform the segmentation of the PBL based at first only on
the signal intensity and secondly, take the position into account is to replace the kmeans
algorithm with an algorithm that uses the histogram of the image. The histogram is an
accurate representation of the distribution of the signal intensity values. It basically divides
the entire range of values into a series of intervals, called bins and then count how many
values fall into each interval.

EOLE,ATHENS : 19/09/2017 - Histogram for the PBL pixels @1064nm
T T

3
Signal Intensity x10*

Figure 4.30: Histogram of the intensity values of the pixels that belong to the PBL for the
EOLE 19/09/2017 Klett measurement.

The algorithm we use is an extension of the Otsu’s method algorithm, called multi
Otsu method. The classical version, which is named after Nobuyuki Otsu, is used to
automatically perform clustering-based image thresholding or for the reduction of a
graylevel image to a binary image. The algorithm assumes that the image contains two
classes of pixels following bi-modal histogram (foreground and background pixels), it then
calculates the optimum threshold separating the two classes so that their combined spread
(intra-class variance) is minimal.

76



The intra-class variance is defined as:
0w () = wo(t)og () + wi(t)of (1) (4.12)

Where mo and w1 are the probabilities of the two classes separated by a threshold t, and co?
and o12 are variances of these two classes. The class probability is computed from the L
bins of the histogram:

t—1 L-1
wo®) = ) p(®) and w,(®) = Y p(@) (4.13)

The algorithm first computes the probabilities and sets up the initial means i (0). Then
steps through all possible thresholds t = 1,..., maximum intensity, updates the w;jand i,
and computes the intra-class variance o2,(t). The desired threshold corresponds to the
minimum o3(t).

The extended version of the Otsu’s method computes N thresholds using the same
method, thus it can be used for segmentation of the signal intensity. The implementation
of the algorithm can be done by the MATLAB function multithresh. The function takes as
input the image A and the number of the thresholds N. The output is a 1xXN vector (levels)
which can be used to convert A into an image quant_A with (N+1) discrete levels using
the function imquantize which assigns integer values in the range [1 (N+1)] as per the
criterion below:

1,if A(k) < levels(1)
quantygy =3 m,if levels(m — 1) < A(k) < levels(m) (4.14)
k N+ 1,if A(k) > levels(N)

The function mutlithresh returns also a metric values which indicates the
effectiveness of the thresholds. Metric is in range [0 1] and a higher value represents greater
effectiveness. For the automated selection of the number of thresholds we used the criterion
below:

N = {L,Lf 1 <i < 3 and metric(i) > 0.99 (4.15)

4 ,otherwise
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The segmentation based on the intensity values of the PBL layers follows the final
part of the segmentation which uses the position of the aerosols. The methodology we used
here is identical with the one described in the kmeans method.
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Figure 4.31: Segmentation of PBL for the EOLE 14/09/2017 Klett measurement using the
multithreash method.

4.3.5 Segmentation of PBL.: 3D K-means

Kmeans can be used to partition observations (X1, X2, ..., X3), where each observation
is a d-dimensional real vector. Therefore, we can use both the intensity and the position of
the aerosol layers at the same time, as input of the kmeans, in order to segment the layers
in the PBL. The algorithm we built is a variation of the kmeans described in the previous
chapter. The difference lies in the fact that input data is 3-dimensional vector:

e The first dimension of the data is the signal intensity as described in the kmeans
algorithm.

e The second dimension is an integer that represents the height of the layer. Because
of the great range of the signal intensities (0-30000 A.U.) we cannot use the real
height values (~500m - 4000m). Instead, we use a vector that has size equal to the
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range of height of the PBL and contains linear increasing values. The result of the
method is very sensitive to the ranging of the “height” vector. A good ranging is:
[min(RCS), max(RCS)/3].

e The third dimension corresponds to the position of the layers in the time domain.
For the same reasons with the height, we use a time vector with range
[min(RCS)/10, max(RCS)/30], and size equal to the number of lidar measurements
over time.

For the automated selection of the number of clusters we used the Calinski-Harabasz
criterion described in paragraph 4.3.3. For the distance between each observation we
choose the Euclidean metric and we repeat the clustering 3 times. In addition, we use the
same segmentation using the position of the segmented areas (bwlabel), as described in
kmeans and multithresh methods.
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Figure 4.32: Segmentation of the PBL using the 3Dimensional K-means method for the
EOLE 14/09/2017 Klett measurement. The height parameter affects dramatically the
segmentation.
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Chapter 5: Proposed Pipeline of Algorithms

In general, we can separate the whole algorithm in three parts/steps:

1. Import and preprocessing of the EOLE lidar data.
2. Detection of the aerosol layers and clouds.
3. Segmentation of the aerosol layers and clouds.

The first part is indicated from the lidar signal equation theory and therefore is
standardized. The second and the third are the main subject of this work.

For the second part, the detection of the aerosol layers and clouds we have proposed
three different algorithms:

e CloudDetect (C),
e CloudDetectUp/Down (CUD), and
e CloudDetectH (CH).

The third part can be divided into three sub-sections: Segmentation of the Upper
Layers, Segmentation of the partially mixed with the PBL Layers and Segmentation of the
Planet Boundary Layer. For the first two we have proposed two methods described in
paragraphs 4.3.1 and 4.3.2 respectively. As for the segmentation of the Planet Boundary
Layer we have proposed the following three algorithms:

e Segmentation of the PBL using k-means (K),
e Segmentation of the PBL using multithresh (M),
e Segmentation of the PBL using 3d k-means (3K),

In this chapter, we built 4 different pipelines, by combining the individual steps, in
order to evaluate the performance of each and to propose the best solution. The 4 pipelines
are:

Pipelines/Stages Pre-processing Detection Segmentation
Pipeline A Standard CloudDetect Multithresh
Pipeline B Standard CloudDetectH 3d k-means
Pipeline C Standard CloudDetectH Multithresh
Pipeline D Standard CloudDetectUp/Down K-means

Table 5.1: The stages for the pipelines tested.

80



For the testing of the performance we conducted a subjective experiment, where
we consulted an expert in lidar measurements to score the performance of each algorithm
by setting a value between 1 (worst performance) and 4 (best performance). The results of
the test are shown below.

Measurements/Pipelines Pipeline A Pipeline B Pipeline C Pipeline D

Score #1 1 3 3 4
Score #2 1 3 4 3
Score #3 1 2 3 4
Score #4 2 1 4 4
Score #5 3 2 4 3
Score #6 4 1 3 3
Score #7 1 4 4 4
Score #8 1 2 3 4
Score #9 1 3 3 4
Score #10 1 2 4 3
Total score 16/40 23/40 35/40 36/40

Table 5.2: Scores of the Pipelines for 10 different EOLE lidar measurements.

As the above table shows, the pipelines C and D have the best performance. Pipeline A had
mainly issues to detect aerosol layers because of the CloudDetect method, while Pipeline
B had poor performance in the segmentation due to the 3d K-means method. We have
noticed relatively similar performance between CloudDetectH and CloudDetectUp/Down
as well as between Multithresh and K-means as described in chapter 4. This similarity is
also reflected in the above scores.
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Next we present the performances of the pipelines tested in execution time and
memory utilization. The average execution time the import and pre-processing of the lidar
signal is 2.3267013 sec.

Measurements/Pipelines  Pipeline A Pipeline B Pipeline C Pipeline D
Avg. Execution Time (s)  0.1993114 3.4648503 0.1737661 3.5144804

Avg. Memory Allocated 98.7048 2,350.2252 31.6444 2,659.2284
(MB)
Avg. Peak Memory 1438 6078.4 1235.6 6078.4
Usage (KB)

Table 5.3: Performance of the Pipelines in execution time and memory utilization.

As shown in table 5.3 the Pipelines that use k-means clustering have significantly higher
memory usage and execution times. This is mainly due to the selection of the optimal k for
the clustering using the Calinski-Harabasz criterion. Apart from the criterion, we noticed
that k-means clustering is in general slower from the Multithresh clustering.

As a result we suggest the Pipeline C: Pre-processing—CloudDetectH—Multi-
thresh as the best solution.
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Chapter 6: Conclusions and Future Work

The goal of this diploma thesis was the detection and segmentation of aerosol layers
and clouds in the EOLE lidar measurements. Our implementation is based on image
processing algorithms. The main advantage of this approach is the exploitation of the time
properties (time continuity) except from the spatial properties of the lidar signal. The
improvement of the algorithm using the time continuity of the signal reaches to about 50%
(relative to using only 1d filters, in the dimension of height).

The problem, particularly the segmentation of the layers, has no unambiguous
solution. Therefore, we used a subjective evaluation. Given the scores of the evaluation
(87.5%), we can claim that our implementation is a credible solution to the problem. In
addition, it is safe to declare that the processing of lidar measurements using image
processing algorithms is a promising approach and hence worth investing in.

Furthermore, our implementation achieves the goal of automated detection and
segmentation of the layers in 92% of the measurements tested. However, the user is given
the ability to adjust the parameters of clustering (number of classes) in case of the solution
provided by the algorithm is not satisfying.

In spite of the proven functionality of the described implementation, the developed
algorithm has plenty room for improvement, especially in the segmentation part. An
optimization for the selection of the number of clusters in k-means is a problem worth
studying. Beyond the methods described in this thesis, another promising method for the
segmentation problem is the development of a neural network.

Lastly the development of the algorithm outside the MATLAB platform is the next
step of the work presented in this thesis. Given the average execution time of the algorithm
(2.32 + 0.17 sec) and the total memory used (31.64 MB) we can customize our
implementation in order to use it on an embedded system for real time analysis without the
need of a PC.
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