EONIKO METXOBIO ITOAYTEXNEIO

2XOAH HAEKTPOAOTON MHXANIKQN
KAI MHXANIKQN YTIOAOTIETQN

TOMEAZX 2HMATON EAETXOY KAI POMITOTIKHE

IIpoypappationdg mpaypatiko YpOovov TETpAnodov pounot oe
diktvo EtherCAT péow ROS

AITTAOMATIKH EPTAXIA

MuixanA A. Kapapovoaddkng

EmpAénwv Kabnyntrg: Kwvotavtivog Tlagéotag
Av. KaOnyntrg EMIT

SvvemPAénwv KaOnynrig: Evdyyelog IamadomovAog
Kabnyntrg EMII

Epyaotrpto Avtopatov EAéyxov MM-EII
Abnva, IovAtog 2019

EONIKO METZOBIO [TOAYTEXNEIO
2XOAH HAEKTPOAOTON MHXANIKON KAI MHXANIKQON YTIOAOTTETON
TOMEAX ZHMATQN EAETXOY KAI POMIIOTIKHE

IIpoypappationdg mpaypatikod Ypovov TETpanodov pounot o
diktvo EtherCAT péow ROS

AITTAQOMATIKH EPTAXIA

MuixanA A. Kapapovoaddkng

Enprénwv KaOnynrng: Kwvotavtivog Tlagéotag
Av. KaOnynrtr¢ EMII

SvvemPAénov KaOnynrig: Evdyyelog ITanadomovAog
KaBnyntrg EMIT

EyxpiOnke and v tpieln eetaotikn emttponn tnv 111 IovAiov 2019.

Kwvotavtivog Tlagéotag AnpnTplog Zovvtpng Evdyyehog IanadomovAog
Av. KaOnyntig EMII KaBnyntrg EMII KaOnyntig EMII

Epyaotrpto Avtopatov EXéyxov MM-EII
Abnva, IovAtog 2019

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
ScHoOL OF ELECTRICAL AND COMPUTER ENGINEERING
Di1visION OF SIGNALS, CONTROL AND ROBOTICS

Real-time programming of EtherCAT master in ROS for a
quadruped robot

DIPLOMA THESIS

Michail A. Karamousadakis

Control Systems Lab - EP
Athens, July 2019

MuixanA A. Kapapovoaddkng
HAektpoAdyog Mnxavikog kat Mnyavikog YnoAoyiotwv EMIT

Copyright © Miyan\ A. Kapapovoadaxng, 2019

Me emgOlagn mavtog Sikawwparog. All rights reserved.

Amnayopedetal n avitypaer, anofnkevon kat Stavopr TngG mapovoag epyaciag, €§ oAokAnpov 1 Tun-
HATOG AVTHG, Yl EUTTOPIKO 0koTO. Emitpémetan n avatbnwon, amobnkevon kat Stavopr| yia oKomo pn
KePOOOKOTIKO, EKTTAUSEVTIKNG 1] EPEVVITIKNG GVOTG, LTIO TNV TTpoiTMObeon va avaépeTal 1) Tyt Tpo-
¢\evong kat va Satnpeitatl o mapov prvupa. Epotripata mov agopolv T Xprion g epyaciag yla
KepSOOKOTIKO OKOTIO TIPETEL VA amevBVVOVTaAL TTPOG TOV GUYYPAPEQ.

Ot anmdyelg Kat Ta GUUTEPATUATA TIOV TIEPLEXOVTAL OE AVTO TO £YYPaPO eKPPAlovY TOV GUYypaPEéa Kat

dev mpémet va eppnvevdel 6Tt avtimpoownevovy TiG emionpeg O¢oeig Tov EBvikov Metaopiov IToAvte-
XVveiov.

iii

ITepilnyn

H npdodog oe texvoloyieg fieldbus, oe ovotrpata mpaypatikod XpOvov Kol TPOYPAHUATL-
OTIKA TTAQUOLA POUTIOTIKIG, VTTOOXOVTAL PLUIKO HETAOKNUATIONO TV TeSiwy TNG PLOUNXAVIKAG
QUTOHATOTIOINONG Kat TNG POUTOTIKNG. Aedopévov 0Tt ot diepyacieg oTn Plopnyavikn po-
HTTOTIK LTTOKELVTAL OVVADWG XPOVIKOUG TTEPLOPLOUODVG, T} XPTIOT) CLOTHHATWY TPAYUATIKOV
Xpovov mpoonadel va alomouoet TV anddoon Kal TNV ac@AAeLo 08 AUTA Ta TTOAD amauth-
TIKA Ko Kpiotpa ya Ty ac@daleta mepipdAlovta. Ztig texvoloyieg fieldbus, To mpwtdkollo
EtherCAT &exwpiCet yia ta moAvdpiBpa mheovektriparta mov npoogépet yia hard kat soft ov-
OTHHATA TPAYHATIKOV XpOVoU, HeTall Twv omoiwy eival oL ouvTopoL xpdvol evuépwong Se-
Sopévwy, 1 XapunAn petafANTOTNTA OTNY TOLOTNTA TNG EMKOLVWVIAG KAl HEWHEVO KOOTOG
egomAiopov. Meta&d Twv popmoTikwy TAatoiwy, To Aettovpyikd cbotnua yia popnot (ROS)
Eexwpilel yla TV EMEKTACIHOTNTA TOV, TNV VKON £kpdOnong Tov kat T SNUOTIKOTHTA TOV
OTNV KOLVOTNTA POUTIOTIKNG. AVTH 1 SITAWHATIKY) gpyacio 0TOXEVEL 0TO OXeSIAOUO Kal TV
avantuln pag epappoyng AoyLloptkov, 1 onoia e§ac@alifel GUYXpOVIOHEVN Kiviion TwWV TTO-
Stwv evog tetpamodov poundt mov ovopdletat Laelaps II, mov dnpovpyndnke kat avamnti-
XOnke oto gpyaotripto CSL-EP oto EO6viko Metoofio IToAvtexveio (EMII). Zvykekpiuéva,
oL kKUplot oTdX0L TOL €pyov eivat: (a) Anuovpyia VoG AeITOVPYIKOD CLUOTHHATOG TTPAYHUATL-
ko0 xpovov (RTOS) mov Bacifetar 6to GNU / Linux, pie 6ToX0 TNV tKAvomoinon Twv okAn-
POV TEPLOPLOHWDV TIPAYHATIKOD XpOVOL ToL eMBAAAEL 1) GLYXpOVIoPEVT kivion Tov Laelaps
I1. () Xprion evog EtherCAT Master mov ovopdGetan EtherLab oto mpoavagepBév RTOS,
yta Tov éheyxo Tov Siktvov mov amoteleitat and EtherCAT slaves, mov eivat tomoBetnuévol
oe kaBe OSL TOv PopTOT Kat Ta EAEyYoLV. (V) Avamtuén wag Aemtagng ITpoypappatiopon
E@appoywv ROS (API) yia tn StevkoAvvon TG eméKTAoTG Kat TNG SLAAEITOVPYIKOTNTAG e
Aoylopkd oto ROS mepiparrov. H vlomoinon tov épyov, péow Tov cuvELATUOD VTV TWV
otoxwv, aftohoyndnke pe Sokuur| g kavotntag Padiong tov Laelaps II. Ta amotedéopata
deixvouv 011 Ta metpapata Padiong Hrav emTuxnpéva Kat To GUVOAKO épyo Ba pmopovoe
VA LKAVOTIOLNOEL TIG ATIAUTOELG Yl éva Plopunxaviko tetpdnodo pounot onwg to Laelaps II.
Télog, mpoteivovtal TPOTACELS Yla PEATIWOELG OGOV aPOPA TNV TIPOTEYYLOT TOL 0Xediov Kal

katevBvvoelg yla mepautépw Siepevvnomn Tov Bépatoc.

Aé€eic-Kheda

ZVOTAUATA TIPAYHATIKOD XPOVOV, POUTIOTIKT, TETPATIOSa pOUTOT, XpoVoSpopoAdynon mpay-

HatikoO xpovov, GNU/Linux, PREEMPT-RT ené¢ktaon, ROS, EtherCAT, EtherLab.

v

Abstract

Advances in fieldbus technologies, real-time systems and robotics frameworks hold a promise
for radical transformation of the industrial automation and robotics fields. Since industrial
robotics usually are subject to timing constraints, utilization of real-time systems attempts
to leverage performance and safety in these highly demanding and “safety-critical” environ-
ments. In fieldbus technologies, the EtherCAT protocol stands out for it's numerous benefits
for hard and soft real-time systems, including short data update times, low communication
jitter and reduced hardware costs. Among robotics frameworks, the Robot Operating System
(ROS) stands out for it’s high customization, extendability, modularity, ease of learning and
popularity in the robotics community. The project in the context of this thesis aims to de-
sign and develop a software application, which will ensure synchronized motion of the legs
of a quadruped robot called Laelaps II, created and developed at the CSL-EP lab, at the Na-
tional Technical University of Athens (NTUA). Specifically, the main objectives of the project
are: (i) Creation of a Real-Time Operating System (RTOS), with modification and configu-

ration of an Operating System (OS) based on GNU/Linux, aiming to meet the hard real-time
constraints which Laelaps II synchronized motion imposes. (ii) Utilization of an EtherCAT
master called EtherLab, in the aforementioned RTOS, for controlling the network consisting
of EtherCAT slaves, which are placed at each leg of the robot and control them; (iii) De-
velopment of a ROS Application Programming Interface (API) for facilitating extendability,

usability, maintainability and inter-operability with software (to be) written in the ROS en-
vironment. The implementation of the project, through the combination of these objectives,
was evaluated by testing the trotting ability of Laelaps II. The results show that the trotting
experiments were succesfull and that the overall project can meet the requirements for an
industrial quadruped robot like Laelaps II. Finally, suggestions for improvements regarding

the project’s approach and directions for further investigation on this topic are proposed.

Keywords

Real-time systems, robotics, quadruped, laelaps, real-time scheduling, software, GNU/Linux,

Linux kernel, PREEMPT-RT patch, ROS, EtherCAT, EtherLab, real-time.

Ztnv QLlawpa kot oty Eiprvy

vi

Avrtillpoloyov

210 onueio avto Ba Nlela va eKPPACW TNV EVYVWHOGVVI] LOV TTPOG TOVG avBpwmovg Tov
ovvéSpapay oty oOAoKANpwaon avThg TNG SIMAWHATIKAG epyaciag, aAld kat oTnv evphTepn
akadnpaikr pov mopeia. Apxikd, XpwoTw TNV HEYAAN LoV EVYVWHOOUVN TIpOG ToV Ttavdyabo
O¢d, mov «ovvepyel eig mav épyov ayabov». Eneita, Oa nbeka va gvxapiotiow tov kabn-
ynt k. Evayyelo Ianaddomovdo, yia Ty auépLotn OLUTApdoTacn Kot KATavonon o OAn
TNV Topeia eKTOVNONG TNG SIMAWHATIKAG Hov. Akoun, BéAw va evxaploTnow Tovg vIoymn-
@lovg dddktopeg Kwota Maxaipd, @avaon Maotpoyewpyiov kot Kwota Kovtoovkn mov
vTIopOVETIKA He PonOnoav o1o BewpnTikd kat Telpapatikod pépog NG Simhwpatikng. Eniong,
gvuxaplotw Beppd Tov diddktopa k. BayyéAn Kovkn mov pe evénvevoe kat pe kaBodrynoe va
aoXoAn0W pe To Onueio TOUNG TOL TOUEX TWV YTTOAOYLOTIKWV ZVOTHUATWYV e TOV TOHER TNG
Poumotikrg. XZtaOnke apwyog kdbe otryun ekmovnong tng Sumhwpatikng kat édwoe ToAUTL-
HEG Kat Kaipleg GVUPBOVAEG yla TNV OAOKANPWOT TOV TEPAUATIKOV HEPOVG, KAl Yl AVTO TO
Aoyo éxel Ty evyvwpoobvn pov. EmmAéov, evxaplotd amd kapdidg Tny otkoyEveld Hov Kot
TOVG AYATNUEVOVG OV PIAOVG Yia TN oTHPLEN, TNV KATAVONOT KAl TNV AVEKTIUNTI CUVTPOPLA
TovG. TéNog, BEAw va ek@pdow TNV EVYVWUOOUVN OV TIPOG OOEG Kat OOOVG LTTOOTNPIlovY
gumpakta TNV eAevBepn kat Swpedv SLaKivion TNG YVWOTNG, avaPEPOVTAG XAPAKTNPLOTIKA

TOVG TIPOYPAHUATIOTEG EAevBePOL AoyLopikoD.

Miyank Kapapovoadaxng
Anpiliog 2019

vii

viii

Contents

Iepidnyn iii
Abstract iv
Avti I[IpoAoyov vii
List of figures xiii
List of tables xviii
List of code blocks xix
List of Acronyms xxiii
Exteviig EAAnvikn IepiAnyn 1
Eloaywyn 1
Ykomog & Kivntpo . . . L 1
Yndpyovoeg IIpooeyyioels 2
YroPabpo 4
Jvotnuata Ipaypatikod Xpovov o L oL 4

GNU / Linux kat [TpaylatikOG XpOvoG « . . .« v v v v v v e e e e e e e 4
Agrtovpyiko Zvotnua yia Poundot (ROS) oL 6

To mpwtokoANo EtherCAT 6
OEtherLabMaster e 7
IXeOLAoUOC & YAOTIOINOT -« v v v o e e 9
ZUVIOTWOA AOYIOUIKOU o o o e e e e e e e e e e e e e e e e e e 9

ix

Iepapatik) AEOAOYNOT . . . o o o o e e 12

ATOTENEOHATA o o v ottt e 12
EmAOYog . . o o 19
ZUUTIEPAOHOTO o v v v v v v v e e e e e e e e e e e e 19
MEAOVTIKEG AUVATOTNTEG « « « v v v e e e e e e e e e e e e e e e e e e 20
Introduction 23
1.1 Problem Statement 23
1.2 LiteratureReview L 24
1.2.1 Legged Robots Overview 24
1.2.2 Fieldbus Systems Overview 25
1.2.3 EtherCAT Robotic Applications Overview 29
1.2.4 Real-time Systems Overview 30
1.2.5 Real-Time Operating Systems Overview 31
1.26 ROS2Overviewo 34
1.3 Benefits 36
1.4 ThesisStructure it 37
Background in Real-Time & ROS 39
2.1 Real-time Systems Concepts i 39
2.1.1 GeneralConcepts e 39
2.2 Real-time Task Scheduling 41
2.3 Real-time GNU/LINUX o vttt e e e e e e e e e 45
2.3.1 The PREEMPT RTPatch 46
2.4 Real-time Scheduling in GNU/Linux 55
2.4.1 Thefirstin, firstoutpolicy 56
2.42 Theround-robinpolicy 57
2.4.3 ‘Thedeadlinepolicy 57
244 ‘Thenormalpolicy 59
24,5 Thebatchpolicy 59
24.6 Theidlepolicy e 59
2.5 Robot Operating System (ROS) 60
2.5.1 Componentsof ROS. 60
2.5.2 BasicROS Terminology 61

2.5.3 Message CommunicationinROS 65

3 Background in EtherCAT

3.1 EtherCAT Technology
3.1.1 EtherCAT characteristics
3.1.2 Physical Layer
3.1.3 DataLinkLayer
3.1.4 Application Layer (AL)
3.1.5 DistributedClocks.
3.1.6 SynchronizationintheSlaves
3.1.7 Synchronization in the Master
3.2 EtherCAT Masters v v v ittt e e e e e e
3.2.1 EtherCAT Masters Overview
3.2.2 The IgH EtherCAT Master for GNU/Linux (EtherLab)
4 Requirements Analysis & Technical Specifications
4.1 Requirements Analysis
4.1.1 LaelapsII. e
4.1.2 User Categories v v v v v i e e e e
4.1.3 Functional Requirements
4.1.4 Non-functional Requirements
4.2 Technical Specifications
42.1 Design Choices it i
4.2.2 System Architecture
4.2.3 Application Programming Interface
5 Implementation
5.1 Software Implementation
5.2 Installation Process
52.1 ThePreempt_ RTPatch
522 EtherLab
5.3 Configuration & Optimization
5.3.1 Isolating the Application
5.3.2 Full DynamicTicks

5.3.3 Optimizing the Partitioned System

xi

71
71
71
72
73
77
79
81
87
89
89
95

105
105
105
106
107
107
108
108
110
134

xii

6 Experimental Evaluation
6.1 Tools, Methodology & Environment
6.1.1 Building the application
6.1.2 Starting the EtherLabmodule
6.1.3 Slaves Initialization
6.1.4 Launching the application.
6.1.5 Monitoring e e e e e e e e e e e
6.2 Experiments&Results
6.2.1 Experiments e e
622 Results e

7 Conclusions & Future Work

7.1

ConcludingRemarks

7.2 Future Work . ..

Bibliography

Appendices
1 Appendix A
1.1 Final script

175
175
176
177
178
180
181
181
182
185

195
195
196

199

List of figures

Poumnot pe modia tng Boston Dynamics: (a) Handle, (b) SpotMini, (¢) Atlas

kat (d) BigDog. e

Poumnot aryung e todia, mov fpiokovrtal o€ epgvvnTikd tdpvuata: (a) ANYmal,

(b) Hermes, (c) Cheetahkat (d) Inu.

Mia tumukr) EtherCAT tonoloyia, pe tnv “on-the-fly” enelepyaoia mlaoiovy

(frames) EtherCAT [1, KepdAawo 38].

Yvvohwkr) Apyitektovikn tov EtherLab[2]. o0,

YUVOAIKN APYITEKTOVIKN TOU ZUOTAUATOC. « « & v v v v o v e e e e e e e a

EowTtepikr) Apyitektovikn Tng Movadag Aoyloukov.

EmiBountr eA\eimtikn tpoxid OAwv Twv akpwv Twv todtwv (kOkkivo) uadi pe

TNV TPAYUATIKN TOVG anmOkpLon (Lavpa) o€ 0XEOT LE TA CLOTAUATA AVAPO-

pag 1ov Ppiokovtal oTiC apBpwoelg 1oYiwY TwV TOSIV.

EmBuuntr amokplon twv yovidv Twv YovaTwv (KOKKIVO) KAl TIPAYUATIKN

amoKpLoN TWV apfpWoeWV TWV YOVATWV (LAVPO). v v o o o v e e e .

EmBuuntn andkpion twv yoviov Tov 1oiov (KOKKIVO) KAl TIPAYUATIKT oTTo-

KpLon Twv apfpwoewv Twv oxiwv (LAVPO). . . . v v v v

xiii

Xiv

LIST OF FIGURES

10 EvtoAég PWM tov kivtiipa yovdtov kabe modiov (Ladpo) Kat Ta avtioTorya
pokaBoplopéva 0pta PWM (KOKKIVO). . .« . v v v o o v e e e e e e e 16

11 Evtoléc PWM tov kivntipa 1oxiov kdBe modiov (navpo) kat ta avtiotorya
1pokaBopLopeva 0pta PWM (KOKKIVO). v v v o o v e e e e e e 17

12 Extiunon tayvtnrtag tg apbpwong yovatov kdbe modov (pavpo) kat ta
avtiotolya Tpokaboplopéva OpLa TaYVTNTAG TOL KIvnTthpa (KOKKvo). 18

13 Extiunon taxvtnrag g apBpwong toyiov ke modiov (Lavpo) kat Ta avTi-
ototya tpokaboplouéva dpla TaxLTNTAG TOV KIVNTAPA (KOKKIVO). 19
1.1 Boston Dynamicslegged robots: (a) Handle, (b) SpotMini, (c) Atlas, (d) BigDog. 25

1.2 State of the Art legged robots: (a) ANYmal, (b) Hermes, (c) Cheetah and (d)
TN o oo e e e 26

1.3 (a) KR C4 Controller with robotic arm by KUKA and (b) MiniBOT Robot by
NexCom. ot e e e e e 29
1.4 Shadow Dexterous Hand by Shadow Rob Company 30

1.5 (a) Talos biped robot by PAL Robotics, (b) HyQ2Max quadruped robot by
IIT and (c) ANYmal robotfromETH. 30
2.1 Spectrum of real-time systems. 40
22 Ataskmodel [3]. 42
2.3 Priority order of execution in ksoftirqd thread [4]. 48
2.4 Interruptinversion [5].. 49
2.5 Threaded interrupt handling [5]. 50
2.6 Two paths by which softirgsrun [4]. 51
2.7 Apriorityinversion example [6]. 52
2.8 A priority inheritanceexample [6]. 53

LIST OF FIGURES XV
2.9 The usual task model of a real-time task defined with the Linux deadline-class
parameters.o 58
2.10 The ROS Meta-Operating System [7]. 61
2.11 ROSComponents [7]. i e 62
2.12 Message Communication between Nodes [7]. 65
2.13 Topic Message Communication [7]. 66
2.14 Service Message Communication [7]., 67
2.15 Action Message Communication [7]. 68
2.16 Message Communication [7]. 69
3.1 EtherCAT typical topology, with the on-the-fly frame processing [1, Chap-
BT 38l o i 72
3.2 EtherCAT Frame Structure [8]. 74
3.3 EtherCAT datagram structure [9]. 75
3.4 EtherCAT Slave State Machine [8]. 78
3.5 Offset measurement in the DC mechanism [10]. 81
3.6 Concept of the TCL algorithm [11]. 81
3.7 EtherCAT Application Level [12]. 82
3.8 EtherCAT process data exchange [12]. 82
3.9 Time between Master and Slave Application [12]. 82
3.10 Slavein Free Runmode [12]. i e 83
3.11 EtherCAT network in Free Runmode [13]. 84
3.12 Slave in SM Synchronous mode [12]. 84
3.13 EtherCAT network in SM Synchronous mode [13]. 85

xvi

LIST OF FIGURES
3.14 Slave in DC Synchronous mode [12]. 85
3.15 EtherCAT network in DC Synchronous mode [13]. 86
3.16 EtherCAT shift time [14]. i i i 87
3.17 Acceptable vs wrong shift times [14]. 88
3.18 Master synchronized to DCBase [15]. 89
3.19 Pseudo-code of a typical EM control loop [16, Chapter 18]. 90
3.20 EtherCAT control loop timing diagram [16, Chapter 18]. 90
3.21 EtherLab Master Architecture [2]. 96
3.22 Multiple mastersinonemodule [2]., 97
3.23 Master phases and transitions [2]. oL, 97
3.24 Field Memory Management Unit (FMMU) Configuration [2]. 99
3.25 Master Configuration [2]. 100
4.1 LaelapsIL. e 106
4.2 Overall System Architecture.. 111
4.3 A Use-Case Diagram for the Operator. 112
4.4 Internal architecture of the software project. 113
4.5 Synchronization scheme followed in the software project. 115
4.6 Sending Pathanatomy. 118
4.7 Receiving Pathanatomy. 120
4.8 Actual and virtual links of Laelaps ITlegs [17]. 123
49 Thelegsmodel [17]. 123
4.10 Thelegs workspace [17]. 124

LIST OF FIGURES xvii

4.11 Different positions along the semi-elliptical trajectory [17]. 125
4.12 EtherCAT Process Data handling in the slaves [17]. 129
4.13 EtherCAT slave software architecture [17]. 129
4.14 The EtherCAT slave MCU [17]. i it it i i e 130
4.15 The EtherCAT slave ESC[17]. i i it i i i i 130
4.16 EtherCAT Control Tower Assembly [17]. 131
4.17 EtherCAT Control Tower Assembly on LaelapsIT [17]. 132
4.18 Electrical System of Laelaps IT [17]. 133
5.1 'The PREEMPT_RT Kkernel configuration option using menuconfig. 162
6.1 ThePC/104 computer. vt v i ittt e e e 176
6.2 Reset button to initialize legs' pose [17].. 178
6.3 Laelaps IT on treadmill ready to perform experiments [17]. 179
6.4 Laelaps State Machine [17]. 179
6.5 Desired elliptical trajectory of all legs toe (red) along with their actual re-

sponse (black) w.r.t coordinate systems located in the hip joints of the legs. . . 186
6.6 Desired response of knee angles (red) and actual response of knee joint (black). 187
6.7 Desired response of hip angles (red) and actual response of hip joint (black). . 188
6.8 PWM commands of each leg’s knee motor (black) and the respective prede-

fined PWM limits (red). e 189
6.9 PWM commands of each leg’s hip motor (black) and the respective prede-

fined PWM limits (red). e 190
6.10 Velocity estimation of each leg’s knee joint (black) and the respective prede-

fined motor speed limits (red).. 191

Xviii LIST OF FIGURES

6.11 Velocity estimation of each leg’s hip joint (black) and the respective prede-

fined motor speed limits (red).. 192

List of tables

2.1 Hard real-time versus soft real-time systems [18]. 40
2.2 Comparison of the Topic, Server, and Action [7].. 65
3.1 Commercial versus Open-Source EMs [16, Chapter 18]. 92
3.2 EtherLabversusSOEM., 93
3.3 Application Interface Timing Comparison {2]. 103
4.1 EtherCAT Laelaps II Motion Control Output variables. 126
4.2 EtherCAT Laelaps II Motion Control Input variables. 127
4.3 ROS API of the software project. 134
6.1 Trotting Experiment parameters. 183
6.2 Parameters independent of EtherCAT application. 184
6.3 Parameters independent of EtherCAT application. 184
6.4 Configurationstested. 185
6.5 Frequency ExperimentResults. 193

Xix

List of code blocks

5.1 Thecalltomlockall(). 140
5.2 'The EthercatSlave class definition. 142
5.3 Theecrt slave config dc() function declaration. 142
5.4 'The EthercatCommunicator class definition. 143
5.5 'The EthercatCommunicator::initmethod. 146
5.6 'The EthercatCommunicator::startmethod.. 147
5.7 'The EthercatCommunicator::runmethod. 148
5.8 The EthercatCommunicator::publish raw datamethod. 153
5.9 The PDOOutListener class definition. 155
5.10 The PDOInPublisher class definition. 156
5.11 The PDOInPublisher::pdo_raw_callback method. 157
5.12 Theutilities::copy process_data_buffer_to_buf function. 159
5.13 Command for unzipping the kernel compressed archive. 161
5.14 Commands for patching thekernel. 161
5.15 The configuration options for building the kernel with PREEMPT_RT patch. 162

XXi

xxii

LIST OF TABLES
5.16 Steps for building the kernel with the PREEMPT_RT patch. 163
5.17 The install etherlab_patched.shscript. 165
5.18 The Makefile for building EtherLab. 166
6.1 The change_permissions_ether_ros.shscript. 176
6.2 Thereinstall el1000e wo throttling.shscript.. 177
6.3 Themake rt task ether ros.shscript. 180
1 The final script for performing extra real-time optimizations. 213

List of Acronyms

API Application Programming Interface. iii, iv, xix, 5, 9-11, 20, 46, 93,

140, 142, 143,196

CLI Command Line Interface. 9,11, 110, 111, 113, 114, 180
DC Distributed Clocks. xvi, 79-81, 83-89, 130, 138, 143, 145, 146,
148, 152

DMA Direct Memory Access. 118, 119, 121

ESC EtherCAT Slave Controller. xvii, 72, 76, 79, 80, 86, 128-131

FMMU Field Memory Management Unit. xvi, 77, 98, 99
FOSS Free and Open Source Software. 32, 36

IRQ Interrupt Request. 21, 49, 120, 121, 178, 197

ISR Interrupt Service Routine. 47-49, 86, 178

MCU Micro Controller Unit. xvii, 1, 24, 128-131, 196

MII Media Independent Inter face. 87

NIC Network Interface Controller. 96, 101, 118, 119, 121, 122, 177

XXiv

NMI

PDI

PDOs

RTOS

SDO

SPI

EA/AAK

List of Acronyms

Non-maskable Interrupt. 174

Process Data Image. 98, 99, 128

94

Service Data Object. 98, 102
Serial Peripheral Interface. 128, 130

EXevBepo Aoyiopkd/Aoylopkd Avorxtov Kodika. 2

Ewoaywyn

Ykomog & Kivntpo

Amnoutnoelg yla TeTpdnoda pounot 0mwg 1 vynAr TaxOTNTA, 1 HEYAAN EMTAYVVOT KAl 1] KA~
VOTNTA VA KAVOLV KAELOTEG OTPOPEG, EMPBAANOVY OKANPOVG TEPLOPLOHOVG TIPAYUATLKOV XPO-
vou 0TIG Hovadeg emegepyaciog Tovg. Me €va oUOTNHA KATAVEUNHEVOL EAEYXOV, 1] XPTION
tov EtherCAT yia 1o oxedlaopd evog okAnpov CLGTARATOG TPAYUATIKOD XpOVOL TTOL aro-
Teeitar anod Siktvwpéveg povadeg enegepyaciog amoTelel fia KAVOTONTIKTY EMAOYT, av
KA TIPOKVTITEL 1} AVAYKT] TPOYPAUUATIONOD OE TTPAYUATIKO XPOVO TWV KOUPWV EMKOLVWYVIAG
(master / slaves). Zvvi0wg, ot EtherCAT slaves (povadeg enegepyaociog yia tov éAeyyo twv
nodiwv i1 Movadeg Mikpoeleykthy (MCU)) og avtod to €i80g NG Stapdp@waong, £xovv éva
TOAD ovyKkekplpévo kabnkov (éAeyxo Twv modiwv) kal amotedovvTal and, etdikd oXedlaopE-
VOUG CUUPWVA e TO EYXELPIOLO XPTIOTG TOV KATAOKEVAOTN KAl OAOKANPWHEVOVG OTO VAL-
opk6 EtherCAT Slave Controllers, emopévwg 8ev vmdpyet avdykn yla emmAéov epyaocia oe
OTLagopd To Bépa Tov Mpaypatkov xpovov. Qotdo0, o EtherCAT master pmopei va vAomot-
n0ei wg Ao AOYLOUIKOV, OTIOTE [La AVAYKT EUQAVICETAL OE AUTT TV TIEPIMTWOT YLa piat AVOT
Tpaypatikod xpovov. Etol, o mpwtapxikog 0toxog avtng tng Simhwiatikng eivat n oxediaon
Kat 1 VAoToinon pag epappoyng mov va xpnotpomotei évav EtherCAT master mpoypatikov

xpovov oto ROS oe GNU / Linux.
Oplopéva amo Ta TAEOVEKTHLATA OTNV TIPOCEYYLOT AUTNG TNG STAWHATIKAG eivar Ta e&ng:

« Xpnon tov EtherCAT: Qg mpwtoxoAo emkowvwviag SIKTVOL o€ TpaypaTiKd xpovo,
10 EtherCAT Siabétet pua peydAn kowvotnta xpnotwv. Ta tedevtaio Xpovia, £xet yivel
ONUOPIAEG 0TI POUTIOTIKE KOLVOTNTA KAL OTA EPYACTHPLA POUTIOTIKNG AOYw TwV TIAEO-

VEKTNHATWYV TOV.

» Evowpatwon oto ROS: X1 pounotikn, to Aettovpyikd ovotnpa ya pounot (ROS)
anotehel éva kabiepwpévo mAaioto. To Aoylopkd OV EVOWUATAOVETAL 08 AVTO, EXEL
onNUavTKd o@éAn, omwg £totueg PiAobnKes, Taxeia TPWTOTLTOTOINOT), EMEKTACIUO-

NTa, SOHOCTOLXEWWTO OXESLACHO, TUTTOTIOINOT KAt LTTOGTNPLEN ATO TNV KOWVOTNTA.

» Aoytopko oto GNU / Linux: Aev vmdpyovv TOAAA va TTOVHE Ylo To TAEOVEKTHIATA

2 EIXAT'OI'H

¢ avantving Aoytoukod oto GNU / Linux. To yeyovog 0Tt uéxpt onpepa anote-

Ael éva amo ta peyalvtepa épya EAevBepo Aoyiopiko/Aoyiopikod Avorytod Kwdika

(EA/AAK) mapéxet afemépaota mAeovektrpata Onws Swpedv mnyaio kwdika (GNU

Public License) kat peydAn KovoTnTa XpnoTWV KAt TPOYPAHUUATIOTMDV.

« Avon mpaypatikod xpovov: H mpotetvopevn mpooéyylon oxediaong xpnotpomnotel éva
and ta peyalvtepa épya otov koopo GNU / Linux mpaypatikov xpdvov, Guykekpl-
péva to patch PREMPT-RT. Ta o@éAn mepthapPdvouvy xapnAo k0GToG cuvTripnong,

otafepoTnTa KOt LEYAAN KOLVOTNTA YLt LTTOOTHPLEN Kat avamTuén.

Ynapxovoeg Ilpooeyyioeig

Epevva ota poumnot pe modia €xet Ste§axOei yra toA& Bépata, and to oxedtacpuod tovg Ewg T
Suvatotnta eAéyxov Toug, e§eTAloVTaG TNV IKAVOTNTA TOVG Yia AVTOVOLEG, UAVTOVOUEG 1)
TnAexelpt{Opeveg emixelprioels oe SUoKoAa e5APN OGTOL Ta OXIHATA E TPOXOVG PTAVOLY OTA
opta TovG. Ta eEANOVTIKA TETPATOS POUTIOT AVAUEVETAL VAL AELTOVPYOVV O AKPWS SLVALL-
KOVUG, un Sounpévoug vraibplovg xwpovg omov Ba meptyodvtan oe dvompooita mepiPailo-
VTQ, OTIWE KATAPPEOVTA KTipLa, KATATTPOPES, ddom, fouvd kat epyotadia. Ta kabrjkovtd Toug
Oa xopaivovtat and T HETASOON AVAYVWOEWY ALOONTHPWY GTOV ATOUAKPVOUEVO XELPLOTH
(m.x. kapepeg, LIDAR, vépuBpeg axtivoPolieg kat emimeda aktivoPoliag) HéExpL Tn HeTaPopd
peydAwv w@éApwy @opTiwv Onwg epyaleiwy 1 Soptkwv VAkwy. Ta vtapxovta pounoT e
nodta arxpng meptlapBavovy ta Handle Zxnua 1(a), SpotMini Zxfua 1(b), Atlas Zyrua 1(c)

kat BigDog Zxnua 1(d), oxedtaopéva kat katackevaopéva anod tnv Boston Dynamics'.

Télog, 600V agopd Tov epevvnTiKO KOOUO, To ANYmal pounot Zxnua 2(a) amo to Institute of
Robotics and Intelligent Systems oo tavemotiuio ETH tng Zupixng?, to Hermes Zxrjua 2(b)
kat Cheetah Zynua 2(c), popndt and to Biomimetic Robotics Lab oo MIT? kat to Inu Exrua 2(d)
popnot and o KOD*LAB oto UPenn® eivau xapaktnplotikd mapadeiypoata pounot pe modia

TIOL AVATITUOCOVTAL OE TIAVETILOTI| LA

'https://www.bostondynamics.com
http://www.rsl.ethz.ch/robots-media/anymal.html
*http://biomimetics.mit.edu
*https://kodlab.seas.upenn.edu

https://www.bostondynamics.com
http://www.rsl.ethz.ch/robots-media/anymal.html
http://biomimetics.mit.edu
https://kodlab.seas.upenn.edu

EI>AI'QI'H 3

BigDog.

Ixnua 2: Poumot auypnis pe modia, mov Ppiokoviau oe epevvytiké 18pvpata: (a) ANYmal, (b)
Hermes, (c) Cheetah xou (d) Inu.

4 YIIOBA®PO

YnoPabpo

Xvotnpata [paypatikod Xpovov

Eve 000THUO TIPAYUATIKOD XpOVOU €ival €V OUOTHU® TIOV TIPETIEL VA IKAVOTIOLEL
pHTOUG (TIEPLOPLOUEVOVG) TIEPIOPLOUOTS YPOVOU ATTOKPLOTS ELOGAAWS KivOVVEDeL e

oofapéc ovvémeie, ovpmepidapPavouévng tne amotvyiog [19].

Zuvenwg, 0pBoTNTA TNG ATOKPLONG EVOG TETOLOV CLOTANATOG e§apTaTal OXL HOVO and To
Aoyiko amotéheopa aAld kal amod Tov Xpovo mov apadodnke. Ta cvoThpaATA TPAYUATIKOD

XpoOvov StakpivovTtal o€ Tpelg katnyopieg [19]:

o ZkAnpd (Hard): Ze okAnpd cvotripata mpaypatikod Xpovou, 1 Ui THpnon Hag povo

npoBeopiag odnyei oe MANPN KAl KATAGTPOPLKT ATOTVYX(At TOV CLOTHHATOG.

o 2taBepd (Firm): Ze otabepd ovoTHpATA TPAYUATIKOV XPOVOU, 1) 1] THPTOT) OPLOHEVWY
npobeopwv dev Ba odnynoet oe mAnpn anotvxia, aAAd) Un THPNON TEPLOCOTEPWY ATIO

HepLkéG, odnyel o€ TANPN Kal KATACTPOPLKT| ATTOTLXIA TOL CLOTHHATOG.

o Mahaxd (Soft): Ze palakd cLOTHHATA TPAYHATIKOD XpOVOD,) arddoon vrroBabuiletat

and TNy advvapio IKAVOTOINOoNG TWV TEPLOPLOUWY TOV XPOVOL ATOKPLOTG.

GNU / Linux kou Ipaypatikog Xpovog

To GNU / Linux [20] oxeS140TnKe KAl KATACKEVAOTNKE WG AEITOVPYLKO GVOTN A TOANATAWY
XPNOTWV yevikov okomov, Pactopévo oto UNIX. Ot otd)0L £VOG 0VOTNHATOG TOANATAWY
XPNOTWOV eival yevikd oe avtibeon pe Tovg atdXovg TG AetTovpyiag mpaypatikov xpovov. Ta
AELTOVPYIKA CLOTHHATA YEVIKOV 0KOTIOV puOpilovTal yia va HEYLOTOTIOW|CoVY TN HEOT) amo-
doon, Uepikég Popég o€ PAapog TG KaBVOTEPNONG, EVW Ta AELTOVPYIKA CLUOTHHUATO TTPAYHUATL-
KOV XpOVOU ETYELPOVV VA TOTTODETHOOVV £va Avw Oplo oTNY KABVOTEPNOT, HEPLKEG POPEG OE
Bapog g péong amodoong. Ievikd, vioBetriOnkav dvo onuavtikég mpooeyyioelg oto GNU /

Linux 600V agopd Tov Ipaypatiko xpovo:

« H Co-Kernel npooéyyion: H nalaidtepn Avon mov Ppébnke yia to Linux mpaypati-
KOV XpOVOL TV 1 TOMOOETNON EVOG UIKPOV TP VA TIPAYHATIKOV XpOVOL TTOV TPEXEL
Simha-dimAa pe To Linux 01o idto VALoUKO. Ze auTr| TNV TpocéyyLlon ovpnepthappdavo-

vtat ot tpoondBeteg Twv RTAI kat Xenomai. Xe autrv TV mepintwor, 0Aeg ot Slakomeg

YIIOBA®PO >

ovokevwv (device interrupts) mpémnel va mepdoovv anod Tov co-kernel mpotov viroPAn-
Bo0v oe emegepyacia and TOV KAVOVIKO VPN VA, £TOL WOTE To Linux va pnv punopei moté
va Toug avaPdlel, eEaopalifovtag £Tot TpoPAEYo XpOvVo amdKpLoNG OTNY TAELPA
TOV Tipaypatikov Xpovov. Eniong, o avtn tnv nepintwon, anaitovvtal ovvinbwg ov-

ykekpipéva APT yia Ty avantudn pag eQappoyng o€ Tpaypatiko Xpovo.

« H npooéyyion mAnpovg preemptible muprva (Fully Preemptible Kernel): Avtn n npo-
o€yylon aoxoAeital pe Tn petatponr Tov Linux og éva mAnpeg Asttovpytkd XvoTnpa
[Tpaypatikov Xpovov (AXIIX / RTOS). Avté ovvendyetat 6Tt yivovtat aAAayég 6ToV
muprva Tov Linux mov emttpémovy tnv ekTéAeon Sladikaolwv oe Tpaypatikd xpovo xw-
pic va vapxet mapep ol and anpoPAenteg 1 unbounded dpaotnpLoTnTEG ATTO Stadi-
Kaoieg mov dev eivat mpaypatikod xpovov. To Real-Time Linux (RTL) Collaborative
Project (RTL)® eivat i) o oXeTIkf Abomn avolytod kddika yta avthy Tnv emloyn [21].
To ¢pyo Paociletar otnv enéktaon PREEMPT_RT kat otoxevel ot Snpovpyia evog
TPOPAEYIHOV KAl VIETEPUIVIOTIKOV TTEPIPAANOVTOG TTOV HETATPETEL TOV TTVPT VAL TOV Li-
nux ot fa Prootpun mAateoppa mpaypatikov xpovov. O teAikdg 6Toxog Tov épyov RTL
eivat va mepaoet tnv enéktaon PREEMPT_RT otov mainline muprva. H onuacia av-
TG ™G mpoomndbetag Sev oxetifetar pe tn Snuovpyia evog RTOS mov Paciletal oo
Linux (auto €xet emyelpnOel ndn apketés @opéc), ahld pe TV mapoxn otov idlo Tov
nuprva tov Linux, duvatotritwy mpaypatikov xpovov. To kOplo 6@elog eivar n dvva-
TOTNTA XPrIONG TwV TLTOTIONHEVWY gpyaleiwv kat PipAtoOnkwv Tov Linux xwpig tnv
avaykn eldikwv AIIE® paypatikov xpovov. Eniong, to GNU / Linux xpnowomnoteitat
Kat vooTnpietal evpéwg, yeyovog mov Pondd va dtatnpnOei to Aettovpykd cvoTnua
EVIUEPWHEVO [E VEEG TEXVONOYIEG KAl XAPAKTNPLOTIKA, KATL IOV amoTeAel GLXVA TTPO-

PANua o HKpOTEPA Epya AOYW TEPLOPLOUWY TTOPWV.

‘Exovtag avtd vtoyn, n enéktaon PREEMPT_RT emhéxOnke wg 0 kKaATEPOG LITOYNPLOG Yia
Vv avdntuén avthg TG epappoyns mpaypatikod xpovov. A&ilet va onpetwBei 0t1, OMwWG KAt
n epignun ov{rtnon Torvalds / Tanenbaum oyetikd pe tnv ana&iwon Twv povoldikwv mu-
privwv [22], oto GNU / Linux vnp&e pakpd oetpd ou{nNTrioewy OxeTIKA He SLAQOPES TTUXES
Twv emAoywv oxediaopov muprva tov Linux. Eva and ta mo apgleydpeva Bépata fnrav n
EPWTNOT) OXETIKA HE TOV TPOTIO TIPOCONKNG EMEKTACEWY TPAYUATIKOV XPOVOL GTOV Tupriva

Linux [23].

*https://wiki.linuxfoundation.org/realtime/rtl/start
*Ateragn Ipoypappatiopod Egappoywv (API)

https://wiki.linuxfoundation.org/realtime/rtl/start

6 YIIOBA®PO

Agrtovpyko Zvotnpa ywa Popnot (ROS)

To ROS eivar éva peta-AeiTovpyiko oVOTHUX avoLyToU KWOIKX Yio TO POUTIOT 0.
Iapéyer 11 vnpeoies mov O mepipévate amo Eva AeITovpyIko OVOTHUX, CUUTIEPL-
AapPavouévng e apaipeons vAikov, Tov eEAEPyov TWY OVOKEVWY YaunAov emi-
TéSov, THG EPAPUOYHG KOWVWS XPHOIUOTIOIOVUEVWY AEITOVPYIWY, THS HETRS00NS
pnvopdtey petald Twv Siadikaoiwy ke tnG Siayeipions Twv makétwy. Ilapéyel
emions epyadeia ko PifrioONKeS yi THYV AmOKTHOY, KATAXOKEVY, OVYYPAPH Kl

extédeon kwdika o€ moALovs vtodoyioTés’.

To ROS onpaivet Aettovpyikd ovotnpa ya popnot [7], onote Oa mepipeve kaveig 61t o ROS
elval éva akopa Tapadootakd AEITOVPYIKO CVOTNHA IOV OTOXEVEL O GUYKEKPLUEVEG POULTIO-
TIKEG TAATPOPUEG. AVTO OHWG eV LoYVEL Kat 1) cuvTopoypagia dev Bondd otnv enilvon av-
TG ™G ovyxvone. Evag akpipéotepog optopdg eivat 0Tt To ROS eivau €va peta-Aettovpytico
ovotnua. O 6pog avTog TepLypd@PeL éva oVOTNHA TTOL TIapEXEL AelTovpYieg OTwG 1 Stayei-
plon Sladtkaciwy, 0 TPOYPAUHATIONOG, 1] TapakoAovOnomn, n Staxelpton VNG, O XELPLOUOG
OQAAULATOV, Ol TIPWTAPXLIKEG HOPPEG ETMKOLVWVIAG KAL] AELTOVPYIKOTNTA, XPNOLUOTIOLDOVTAG
éva eninedo eloVIKOTOINONG HeTaED EQAPUOYDY KAl KATAVEUNUEVWY VTTOAOYLOTIKWY TIAAT-
POPUWY, EVW TPEXEL TAVW ATtO €va TTapadoalako AelTovpylkd ovoTnra. AvTdG 0 TOTTOG AoYL-

opkov ovopdletan emiong middleware 1} TAaioto Aoytopikov.

To npwtokoAlo EtherCAT

To mpwtoxoAo EtherCAT Paoiletal oe pa mpooéyyton master / slave kat otnpiletal oe wa
tonoloyia SakTvhiwv 010 Quokd eminedo [17]. Movo évag master emtpénetal 0To SiKTLO
(umopotv va ovvdeBovv moAlamoi master péow StakomTn, AAAA HoOVo €vag pumopel va vap-
XeL o€ k&Be vodikTLO OV 0 SLakdTTNG opilet) kaL AVTO eivan katdAAnNo, yia Tapaderypa,
yta va ovvdéetat pia povada edéyxov (m.x. PLC) pe amoxkevtpopéva mepipepetakda (aobn-
THPEG, EVEPYOTIOINTEG, UNXAVIOHOL Kivong k.AT.). Xpnoonoldvtag katdAAnAeg moleg, To
EtherCAT pmopel va Siahettovpyei 1600 pe ovufatikd mpwtdkolla SikTvwong voloyt-
otav (TCP / IP otoifa) 600 kat pe aAXeg Aoeig Ethernet (RTE) mpaypatikov xpovov, 6mwg
EtherNet / IP r)/xat PROFINET.

O k0pLog kOUPog £xel Tov MANPN EXeyX0 TNG KVKAOPOPpiag oV avTaAldooeTal HECW TOL SL-

ktvov EtherCAT. Xvykekpipéva, eival n LoV ovoKeL) TOL Hmopei va avaAdPel TV mpwTo-

"https://www.ros.org/

https://www.ros.org/

YIIOBA®PO 7

Povhia otny emkotvwvia. Qg ek TOVTOV, givat LITELBVVN yia TNV Evapén OAwWVY TwV avtalla-
ywv dedopévwv pe Tig vtoteleig povadeg. Kabe vrotehng povada enefepydletar to Angbév
mAaiolo (frame) yia va e§ayet / eloayet dedopéva anod / péoa tneG. It ovvéxela, TO TAAICLO

(frame) petagépetal 6Tov eMOUEVO LTTOTEAN KOUPO TOL SakTLAIOV, OTIWG amelkovileTal 0TO

Zxnua 3.

Slave 1 Slave N
I —— i —— — = ' —
G +— —
oo e
| |
——

Master T
| ;

1
Ethernet HDR |HDR 1| Data 1 |HDR 2| Data 2 | [N N] |HDR nl Data n I CRC | >

;
el
& |

%
N
A M=
\
\

A
A
A
A
AM
A
A
A
A
A
A
[A
A

i Datagram 1 | Datagram 2 f i Datagramn |

Exnua 3: Mia tomxi EtherCAT tomoloyia, ue v “on-the-fly” eneéepyaoia mAaoiwv (frames)
EtherCAT [1, KepdAato 38].

O EtherLab Master

Aedopévov 6tiTo hoylopiko EtherLab éxet emheyei wg o EtherCAT master mov Oa emikovwvei

1 TPOG avamTuln EQAPUOYT, 1] APXITEKTOVIKE TOV TTAPOVOLACETAL CUVOTITIKA 0TO ZxTua 4.
Ta ovotatikd Tov TeptPAANOVTOG TOL master TEPLYPAPOVTAL TAPAKATW:

» Movada Master: Movada muprva mov mepiéxet éva 1) meploodtepa EtherCAT master

otypotuna,) Stacvvdeon EtherCAT ovokevwv kat TNy Siemagr epappoyns.

o Movddeg Xvokevwv: Movadeg odnyol ovokevng Ethernet pe Suvatdotnta vrootrpt-
&€ng tov mpwtokdAlov EtherCAT, mov mpoo@épouy Tig cuokevEG Tovg otov EtherCAT
master péow tnG EtherCAT Aemagng Zvokevng. AvTd Ta TPOTOTOHEVA TTPOYPAN-
Hata 081 ynong Stkthov UTopovV va XELPLOTOVY GVOKEVEG SIKTVOV TIOL XPT|OLULOTIOLOD-

vtat yia Aettovpyia oe Siktvo EtherCAT kat “kavovikég” Ethernet cvokevég mapdh-

YIIOBA®PO

—_—
m
0
H
‘I"‘
sls8\ £
Userspace = S
Application T 8 @
85 | &
3 o
P
—_—
m
2]
H -
i 5
| @
LXRT / Xenomai S| 28 g
Userspace g .
Application g % I~ ‘ethercat
S g Tool
3
-
|
Userspace !
...................................... .
Kernelspace Character |
Device X
]
I
]
1
s YT N !
Application Module EtherCAT Master Module neric X
Ethernet i
Driver Module |
i
8 * i
il s Master 1 ® !
le %8_ 2 I
=| an " < I
g ¥] |
Task ®8 Master 0 8 % :
g = I
Generic % !
Ethernet (}= X
. Device !
Device X
J Interface \ y \ J :
ecdev_» () L netif_» () | X
I |
I R
Native EtherCAT-capable Ethernet Driver Standard !
Ethernet Driver i
1
|
net_device net_device | net_device |
1
|
<
Haraware oL L |
NIC NIC NIC |
[[[|
O O O
EtherCAT Ethernet EtherCAT

Ixnua 4: Zvvolikn Apyirektoviky) Tov EtherLab[2].

AnAa. Evag master pumopei va dextel fa OUYKEKPIUEVT] CLOKELT] KAl ETELTA UTTOPEL VL
oteilet kat va AaPet mhaiota (frames) EtherCAT. Ot ovokevég Ethernet mov anoppi-
@Onkav and tov EtherCAT master eivat cuvdedepéveg ot otoifa SikTdov TOL VP VA

onwg ovvidwg.

« E@appoyn: Eva npdypappa mov xpnotpomotei tov EtherCAT master (cuvrfwg yia kv-

2XEAIAXMOX & YAOIIOIHXH 9

KAKn avtadlayr dedopévwv Siepyaoiag pe EtherCAT slaves). Avtd ta mpoypdppata
dev amotehovv pépog tov EtherCAT master kwdika, aAld mpémet va dnuiovpyovvtat n
va ypagovtat and to Xprotn. Mia epappoyr unopei va {ntioet éva master péow tng
Atemtagnc E@appoyne. Av avto emitiyel, €xet Tov éAeyxo Tov master: Mmopel va mapéxet
dedopéva dapdppwong StavAov kat avtarlayng dedopévwy. Ot eQaployEég Hmopovv
va givat povadeg mopriva (mov xpnotpomnotodv anevbeiag tn Aenagn E@appoyng mv-
priva, kernelspace) 1 mpoypappata xwpov xpnotn (userspace), Tov XpnotHOTOLODV T
Aemagn E@apuoyng péow tng PipAodnkng EtherCAT 1 tng BtpAiodnkng RTDM, émwg
@aivetal kat 0To Zynua 4.

2xedraopog & Yhomoinon

Zto Zynpa 5 mapovotdletat éva Bactko Sidypapipo avamtvuéng padi pe ta Paotkd ototeia kat
TIG oVVOEoelg TOVG. AVTO To SLaypappa Teptypaget dlauoOnTikd Ta oTolKEi TOV CLUVOALKOD

OVOTHHATOG KAl TIOPEXEL LI YEVIKT] ELKOVA TOV POUTIOT LE TOV XELPLOTT| TOV.

Laelaps I
Robot
Linux PC
~\ Actuators / Motors @
) o
\/ ROS environment
Operator ~ " "3 AL '
- | (1 ,
() Algorithms
(+) (2)
g)
/ g Stat S
Y ate
/ \ @ Estimation EtherRos al so';::m“ <
AAAAA 5 Algorithms N EtherCAT
3 e, [O
S Q Slave Network
3
Functions
1. Every EtherCAT Slave
® receives and processes
Q the data addressed to it
[} (through its ESC)
QU /D 5 2. After processing, sends
'_9 \ Q - - the appropriate commands!
[A to each motor
£ 3. Receives feedback and
Q EtherLab Linux Network Stack propagates it to the master
X EtherCAT Slave Controller (ESC) (through its ESC)
)
J
. , , ,
Zxnua 5: Zvvolikr ApyitekToVIKY TOV SUOTHUATOG.
I U
2uVIoTWOoa AOYLOUIKOD

H ovviotdoa Aoyloptkov tov £pyov, ota mAaiota TG SITAWUATIKNG, TapovotdleTatl 0To @
(BA. Zxfpa 5) padi pe tig vynAdTepov emtméSov cuvdéoelg TnG. To NoyLopKO avTd TPOoPE-
pet éva ROS API yia ROS kopBoug mov avantoxOnkav and dAAovg pnxavikovg AoyLopkou,

npoo@épet Atemagr Ipappng Evrolwv (CLI) otov Xelplotn kat emikovwvei ge Tn povdda mo-

10 2XEAIAXMOZX & YAOIIOIHXH

priva EtherLab yia tnv enitevén tng EtherCAT emkowvwviag. Avtr 1 GUVOAIKE GUUTEPLPOPA

EMUTVYXAVETAL HETW SLAPOPETIKWY VTTOHOVASWY, IOV ametkovi{ovTat 6To Zxnpa 6.

Linux PC
ROS environment
O
: (»)
QJ
2 ModifyPDOVariablesListener |
] A
I~ | SLAM
Operator g Algorithms .
- PDOInPublisher Software Engineer
(EthercatKeyboardController) @ Q
v T Algorithms
» Ether
Actor
@ 1 l
State Estimation
v, > Algorithms ¢

—— PDOOutPublisher
PDOutPublisherTimer

()

v f
s N\
EtherLab User- Submodule of
space Library our application
J

Software in ROS

EtherLab
Kernel Module

EtherLab Software

R

Kernel-space

J

2xfua 6: Ecwtepikn Apyitextovikn 6 Movadag Aoyiouikov.

210 @ 070 XxNpa 6, anetkovietat n Bacikn vopovada Tov AOYLOpIKOD, IOV éxeL TO OVOpa
EtherCAT Communicator. Avtj | vopovada otnyv Pfdon tng amoteheital and éva vijpa
(thread) mov exteAeitar o mpaypatikd xpovo kat kaei to API tng EtherLab BipAoBrkng
yla XWwpo XProTh, TO OT0LO [Le TN OELPA TOV KAVEL piat KATOT) OLOTHHATOG 0T povada muprva
EtherLab mov emikowvwvei pe tovg EtherCAT slaves. Avtr) nj vopovdda xpnotpomnotet T Pi-
BAoOnkn pthread yia tn dnpovpyia evog VAHATOG TIPAYHATIKOD XpOVODL Kat Yl Th Xpron
evog pthread spinlock. EQappolet pua punyavr Kataotaoewy, Tnv onoia VAoToLel o€ €va TAai-

Ol0 TPAYHATIKOV XpOVOL 0Tr ovxvoTnTa Bpdxov ehéyxov EtherCAT (> 2 KHz).

210 (BA. Zxnua 6), emonuaivetat n vropovada tov Input Process Data Objects (PDOs)

Publisher. Avto 1o pépog Tov Aoytopikov AapPdver Ta avtikeipeva dedopévwv eloaywyng
(16 petaPAntég EtherCAT mov petafdAlovv ot slaves kat petafifalovv otov master) and
10 diktvo EtherCAT péow tov EtherCAT Communicator kat Tig dnpoaotevel og éva topic

oto ROS, otnv ovxvotnta Ppdxov eAéyxov EtherCAT (> 2 KHz). AkodovBa, ot koppfot ROS

2XEAIAXMOZX & YAOIIOIHXH 11

7oL eQappolovv akyoptBpovg pounotikng onwg SLAM, horynon Kat eKTiunon Katdotaong,

umopovv va AdPouvv avtd ta Sedopéva kat va Ta enefepyactodv avaloyws.

>10 @ (BA. Zxnua 6), emonuaivetat n vropovada tov Output Process Data Objects (PDOs)

Publisher. Avto 1o pépog Tov Aoylopkod AapBavel Ta avtikeipeva dedopévwv diepyaciag
egodov (15 petafAntég EtherCAT mov petapdilovratr and tovg kdppovg tov ROS 1 tov
xeptotr) kat petafifalovrat oto master Ethernet oe Siktvo EtherCAT péow tov EtherCAT
Communicator kot ekdidet o€ éva topic oto ROS, otn ovxvotnta Bpodxov eAéyyov EtherCAT
(> 2KHz). Zvvenwg, ot kopPpot ROS mov epappdfovv akyopiBpovg pounotikng 6nwg SLAM,
TAOTYNOT] Kal EKTIHNOT KATAOTAOTG, HTopovV va AdPouv avtd Ta dedopéva Kal va Ta eme-
Eepyaotody avaloyws. AvakvmTel éva epwTna oXeTIKA He To yati avtd ta Output PDOs
Oa mpémnel va dnuootevovtal oto otkoovotnua ROS, agov mbavotata petafdAlovtal and
évav koppo oto mhaioto tov ROS. H amdvtnon eivat 6tt avtd ta Sedopéva Ba pmopovoav va
evlLapépovy meploodTePOVG amo £vav koppovg ROS (ektog and mbavwg avtov mov ta alAd-
Cel), €Tt wote ot Aot kopPot va éxovv mpdoPaot oe avtég Tig aAlayéc. Evag dAAog Adyog
elvaw Ott Ta Sedopéva Ba propovoav va aAldlovv and Tov XepLoTh, OTwG TpoavapEpOnke,
étot évag kOopPog ROS va pmopei va yvwpilet Tig ahdayég pe Ty eyypagr) 01o mpoavagepOiv
topic. ITap’ OAa avtd, avtd To VTooHVOAo dnpovpYHONKe yia va TapExel TANPOTNTA HECW
Tov ROS API, woTt600 av 10 K60TOG OV elodyeTal eival vITEPPOAIKO, AVTO TO VIToohVolo Ba

Hmopovoe va anevepyomnounOei oe peANOVTIKEG ekSOOELG.

>to @ (BA. Zxrpa 6), amewovifetat i vopovada tov Output Process Data Objects (PDOs)
Listener. Avtd T0 pépog Tov Aoyloptkol akovet og éva ROS topic, AapPavet ta (tpomomotn-
uéva) avtikeipeva dedopévwv Siepyaciag e§0dov (tig petaBAntég EtherCAT nov aAlalovv
and tov kOplo kOpPo kat StaPipaiovtar otovg EtherCAT vroteheic koppovg) anevbeiag and
10 owkoovotnua ROS 1} éppeca and to Snuovpynuévo CLI kau ta StaPiPalet otov EtherCAT
Communicator yia va otalovv oo diktvo. To @ OAOKANPWVEL £V TIPWTO KAELDTO BpdXO
avatpo@odOTNoNG mov anoteleitat amod To dpeco otkoovotnua ROS (dANot ROS koppot mov
vlomnolovvtat), To SikTvo EtherCAT kat TV eQappoyT, EMTPETOVTAG TNV EMIKOVWVia peTald

OAWV AVTWV TWV OTOLXEIWY.

210 @ (BA. Zxrpa 6), eppaviCetat n vropovada tng dtemapng ypappng evrodav (CLI).
AvT6 1O U€POG TOL AoYLOIKOV SlevkoADVEL TOV XproTn Tov eivat vtevbuvog yla T ovvo-
Ay Aettovpyia kat 1 Staxeipton Twv AELTOVPYLOV TOV POUTOT (emiong yvwoTtog wg Xetpt-
otrG/ Operator), va aAAnAemidpd e Evav amho kat anoteleopatikd Tpomo pe To §ikTvo Twv

EtherCAT vnotedav kOpPwv Kat va eA€yXel ATOTEAEOUATIKA TIG CUYXPOVIOUEVEG KIVIOELG

12 IIEIPAMATIKH AEIOAOIHXH

Twv modwwv. EmmAéov, o EtherCAT Communicator evepyomotleital 1} anevepyomoleital LEow
avtng NG vopovadag kat emiong ot petaPAntég EtherCAT mov otélvel o kbprog kopPog

(Output PDOs), petapdAlovtal péow avtng TG vropovadag and tov Xeptotn / Operator.

>10 @ (BA. Zxrjpa 6), mapovatdetal) vtopovdda tov Output Process Data Objects (PDOs)

Publisher Timer (xpovodiakontng). Avto To HEPOG TOV AOYIOULKOD O€ CUYKEKPIHLEVA XPOVIKA
Staotrpata (yia avtd to Aoyo ovopdletat Xpovodiakontng) avitypdeet Ta Sedopéva diep-
yaoiag mov anootéAAovtal anod tnv avtiototxn doun mpoowpivng anodrkevong (buffer) kat
Ta dnuootevet og éva ROS topic. Me avtég TG Snpootevéveg TANPOPOpIES, TPAYUATOTIOLE(-
TOL Lo EUEDT] KATAYPAPT) TTOL ATTOTEAEL Lial YPTyOpn EKKIVIOT YL TV AOCQAALATWOT) TNG
OVLUTIEPLPOPAG TNG HOoVASAG AOYLOLKOV. ()G €k TOVTOV, TO @ ohokAnpwvet éva debTepo KAeL-
0T KUKA WA avadpaong, anoteAoVUEVO amd Tovg XprioTeg Tov Staxetpilovtat tn Aettovpyia
TOV pOuUTOT, T0 otkoovoTnpa ROS,) povada Aoytopikov kat To diktvo EtherCAT. Qotdoo,
avTdg 0 deVTEPOG KAELOTOG PpoXOG eival oiyovpa mio Xahapog Kat EUHECOG ATIO TOV TTPWTO,
Vo TNV évvola OTL VTdpxeL 0 avBpwTvog TapdyovTag 0T HEOT), TIPAYHA IOV OTUALVEL OTL
npémel va vrap&et Staxeipton kat mapakoAovbnon and éva xproTtn wote va avaldPet Spdon

Kat va kAeiogL autdv to Ppoxo.
[Mepapatikn A§toAoynon

Amnotedéopata

T v aloddynon g and8oong oOAOKANPOL TOL CUOTHUATOG, TTPAYHATOTOONKE Lo OELPd
TEPAPATWV. X QUTH TN OELPA TEPARATWV, opileTat pia emBupunTr eEAAETTIKY TPOXLA Yiat TO
dKpo Tov KABe TOSIOV HECW TNG AVATITUYHEVNG EQapHOYNG padi pe Ta kEpON eAéyxov Kkat Tig
TAPAPETPOVG TOV ovoTNHatoG. Ta dedopéva kataypd@ovTal XpnoLonolwvTag To rosbag
katene€epydlovtal kat aneikovifovtal pe T Xprion evog mpooappoopévov Matlab script. Agi-
(et va onpewwdei 0T1 oe kaBe slave epapuoletar évag eheyktrg PIV (Proportional - Integral -
Velocity) (nepiocodtepeg mAnpogopieg oto [17]), £tot 0 master Sev emnpedlet T Stadikaoia

eAéyxov aAAd amAwg mapéxel ot kabe slave Tig anapaitnteg mapapétpovg péow EtherCAT.

Katd tn Stdpketa Tng ¢Aong HOVIUNG KATAOTAOTG TOV TIEPANRATOG, OTIOV KAl Ol TIAPAHETPOL
a_ellipsel@0 kat b_ellipsel@d éxovv @tdoel 0Ty TeAkn Tovg Tipr, To akpo (End Ef-
fector) k&Be modi0V exTeAel pia ovykekpipévn Stadpour mov poomabei va cuykAivel pe TV
emBopntr eAewntikr tpoxtd. H embopntr eAewntikr diadpour / tpoxid tov dkpov kabe

108100 (kokkIvo) padi pe TNy mpaypatikn anokpion kdbe modiov (Ladpo) aTo xwpo epyaciag

IIEIPAMATIKH AEIOAOIHXH 13

TOVG, O€ OXE0T] E TA CLOTHHATA CVUVTETAYUEVWY TTOVL BpiokovTal 0TI apBpwoels oxiwy Twv
nodlwv, eppavifovtat 0to Zxnua 7. Avto 1o oxnpa Stevkptvifet To yeyovog OTt Ta opaApata
HOVIHNG KATAOTAONG 0TI apBpwaoelg toXiov kat yovaTtov petappalovrat wg o@aApata otny
tomoBétnomn tov dkpov. A&ilel va onpetwdei 6Tt Adyw Tov E5APOVE KAl TWV XAUNADY TILWV
Twv Kepdwv EXéyyov, ot emBountég eAewntikég Tpoxiég dev mapakolovBovvtal 0TeEva oTNV

HOVIUN KATAOTAOT Kal amauteital kaAvTepn puOuion avtwv Twv kepdwy, eldikd yia ta omioBia

nodLa.
FR End Effector in Steady State . 55FL End Effector in Steady State
056 |
056 |
0.57
(2] [%2]
2 2 057
© ©
T‘ 0.58 >‘
Y \ 0.58
+ +
059 0.59
0.6 , 0.6 ,
-0.05 0 0.05 -0.05 0 0.05
X axis --> + X axis --> +
. 5\!,-IFI End Effector in Steady State . 5g—IL End Effector in Steady State
056 | - 0.56 |
2 057 2 057
x x
© ©
> >
v 0.58 y 058
+ +
0.59 0.59
0.6 ‘ ‘ : : : 0.6 : : ‘ : :
-0.06 -0.04 -002 0 002 004 006 -0.06 -0.04 -002 0 002 004 0.06
X axis --> + X axis --> +

Ixnua 7: Embounty eAMentiky poyid dAwv twv dkpwv Twv modiwv (kdxkivo) pali ye v
TIPAXYUKTIKY] TOVUG XTIOKPLOY (UaUpa) O€ OXE0N UE T CUOTHURTX AvaPopds ov PpickovTal oTig
apOpawoeis ioyiwy Twv modiwy.

To Zxnua 8 epgavilet Tnv emBupntn Tiun yoviag dpOpwong yovatog kabe modiov (kOkkivo)
Kat TNV TPAYHATIKT andkplon kdbe avtiotoxng ywviag dpBpwong yovarog (Havpo) oe OAo
to meipapa. Tooo n petaBatikr KATAoTAON 000 KAl 1] HOVIUN KatdoTtaon aneikovifovrat. Ot

Hovadeg OAwV Twv peTaPAnTwy eival poipeg kat 0w pnopei va mapatnpndei oe avtd ta

14 IIEIPAMATIKH AEIOAOIHXH

oxnuata, ot emBvunTég TIHEG TapakolovBovvtal oTeVA amd Ola Ta modia, WoTOCO LTIAPXEL
apkeTo mepldwpto Pektiwong mov pmopei va emtevyOel pe pia ovverr pouion Twv kepdwv

eA€yxoL 1 e pOOULOT TWV POTIWVY YL TOVG KIVITIPEG TOV YOVATOV.

Response of FR Knee Angle
T T T

10 T T T T T
S 0F -
(6]
S,
Q
o.10 |- .
<
20 | | |
0 5 10 40 45
10 T T T
> 0 —
(6]
S,
Qo
210 |- -
<
20 | | |
0 5 10 40 45
10 T T T
S 0 -
(0]
S,
o
210 .
<
20 I I I
0 5 10 40 45
5 T T T
0% —
=)
B °r]
(0]
240 %
C
< 50 _
20 | | |
0 5 10 40 45

Time [s]

Ixnua 8: EmOuunts amokpion Twv ywvidv Twv yovaTwy (KOKKIVO) KAL TPXYUXTIKY ATOKPLOY]
TV apBpwoewy TwY yovaTwy (Havpo).

Katd mapopoto tpomo, 1o Zxnua 9 neptypdeet tny embountn Tipn g yoviag apdpwong tov
toxiov kdbe oS0V (KOKKIVO) Kal TNV TPAYHATIKY andkplon kdbe avtiotoyov toiov dpOpw-
ong (Havpo) ka® OAn tn didpkela Tov melpdpatog. Tooo n petaPatikn kKatdotaon 600 Kat n
povipn katdotaon anetkovifovtat. Ot povadeg OAwv Twv HetaPAnNTwy givat poipeg kat OTwg
pnopei va mapatnpndel o avtd ta oxpata, ot embuuntég TG TapakolovBolvrat oteva
and oha ta oS, WOTOCO VIAPXEL apkeTd TeplBwplo PeATiwong (akdun mTepLOoOTEPO ATO
TOVG KIVNTNPEG YOVaTog) mov pmopei va emtevxOei pe owotn pvbion Twv kepdwv eXéyyov

yta Tovg Kivntrpeg oxiov. Emeidn| ot idieg tipég képdovg eAéyxov xpnotpomomOnkav kat yia

IIEIPAMATIKH AEIOAOIHXH 15

Tovg Vo KIVNTNPEG (e Kat Xwpig YRKTPEG) eival amoAVTwG katavontod ylati ot Vo avtég
apBpwoelg dev €xovy TV idta andkplon 6cov agopd ta opaipata. Emmiéov, afiCet va ava-
@epBel 0TL 1 dpBpwon woxiov exTelel evpvTEPN Kivom, 1 oToia amotelel évav akoun Adyo

Yl TOV OTI0I0 TAl TIPOKVTITOVTA OQAAHATA eival HeYaADTEpa O OVYKPLOT pe TIG apOpwoelg

yovatog.
Response of FR Hip Angle
30 T T T T T T T T
20 -
>
(0]
S 10 - *
(0]
I=)
C
< 0f -
10 | | |
0 5 10 40 45
30 T T T
20 —
>
(0]
S 10 .
(0]
©
C
< 0f -
10 | | |
0 5 10 40 45
30 T T T
20 -
>
3
(0]
=)
C
< 0fr —
10 | | |
0 5 10 40 45
30 T T T
20 —
=)
(0]
S 10 - *
(0]
©
C
< 0fF —
10 | | | | | | | |
0 5 10 15 20 25 30 35 40 45

Time [s]

Ixnua 9: EmOuunth andkpion twv ywviov Twv woyiwv (KOKKIVo) kol TpayUaTIKy améKpLon
Twv apbpwoewy Twv oyiwv (Lavpo).

To 2xnua 10 anekovilel Tig evtodég PWM [%] tov kivntiipa yovatog kabe modiov (pnavpo) pe
T0 avtioTot o Tpokaboplouévo OpLo (KOKKLVO). AUTEG oL eVTOAEG eivat) €£000G Tov eAeyKTH
PIV tov yovatov kat peta@paiovtar anevbeiag oe evtolég pomng dedopévov oTt epapuole-
TaL L0 APXITEKTOVIKT EAEYXOV peVHATOG. OTIWwG HITOPOVE VA TTAPATIPTITOVLE, OL EVTOAEG Kol
ota dvo omioOia OSLa eival TAVTOTE EVTOG TOV EVPOVG OpiwY, EMOUEVWG SV LTTAPXEL AOYOG

Tpomomnoinong Tovg. Opota, ota §0o umpootd modia, av kat €xovv eBdoet Ta Opta TOANEG @o-

16 IIEIPAMATIKH AEIOAOIHXH

PEG, AOYw TOL YeyovOTOG OTL GUVEPT HOVO Yo GUVTOHA XpOoVvikd dtaoThpata, v amatteitat

Kapia emmAEoV evépyela.

PWM Command of FR Knee

E
= -]
]
E Al LN"» Hldl
g 20 |- 1 |
=
EL-4{:I | |
0 5 10 15 20
PWM Command of FL Knee
BT T T T T T
St i} 1 | -
b r. M .
RO -
; 20 |- 1 1 -
=
'14-0 | | | I
0 5 10 15 20 45
PWM Command of HR Knee
E T T T T T T
ol — < 1 - imits _|
5 \ Lu | rl ﬂ' h \ I 1 ."‘Illl
% 20 | mn IR SN . ':- -
14ﬁ | | | | | |
5 10 15 20 25 0 a5 40 45
PWM Command of HL Knee
4{:' T T T T T T
£
o \ —
% oL . ,}MHH‘ H &H H_’,ﬁ._ I ;IJmits_
Q /
E 20 - '.r' —
I:I_{H:I | | | | |
5 10 15 20 25 a0 a5 40 45

Time [s]

Xxnua 10: Evtodés PWM tov kivythipa yovatov kibe modiod (uadpo) keu Ta avTioToly mpo-
kaBopiouéva opix PWM (kokkivo).

Opoiwg, to XxAua 11 anewkovilel TG evtodéc PWM [%] tov kivntrpa toxiov kdbe modion
(Hadpo) pe To avtioTtor o pokaboptopévo Opto (KOKKIVO). AUTEG oL eVTOAEG eival 1) £§080¢
tov eheyktr PIV Tov oyiov avtr| T @opd kat petagpalovtat anevbeiag o€ evtolég pomn,
dedopévov OTt epappoletal pia apyttekTovikn EAéyxov pevpatog. Omwg pmopel va mapatn-
pnOei, ta Opta PWM tov toxiov mpooeyyilovrat emavelAnpuuéva, eidikd ota oniodia modia, e

anoté\eopa va Tpénet va AneBei voyn pa ad&non Tov EMTPETOHEVOL EVPOVS.

To Zxnua 12 mapovotdlet Ty extipnon taxvTntag s apbpwong tov yovatog kdbe modiov

(Habpo) Kal Ta avTioTOLXA OpLa TaXVTNTAG TOV KivnTipa (KOKKIvo) omwg kabopifovtal amod

IIEIPAMATIKH AEIOAOIHXH 17

PWM Command of FR Hip

50 T T T T T T T T
F | %
= | “
g | r | limits
3 /
= 4
L oep I I I 1 1 1 1 I
0 5 10 30 35 40 45
PWM Command of FL Hip
50 T T T T T T T T
E
o A
£ - b UGB R RN ARRIARNRRR limits |
g 0 bo— . ill hﬁl ll [t r ;
W i !
Qo | Il
2 T | /
L op | | | | | 1 1 |
0 5 10 30 35 40 45
PWM Command of HH Hip
50 | | |
E I. || [] ‘l "\
g W |
E oL = - || H iy limits _|
g ¥
L op I I I 1 1 1 1 I
0 5 10 15 20 25 30 35 40 45
PWM Command of HL Hip
50 T T
= X
E
£ ol WH _____ __limits |
£ /
S \
= f /
s I |I' 4
L en l l 1 l
0 5 10 35 40 45

T|me (5]

Ixnua 11: Evrodéc PWM tov kivythipa toyiov k&Oe modiov (puatpo) kot toc avtioTorye mpoka-
Bopiopéva dpic PWM (kokkivo).

Tov Kataokevaotn. Omwg pmopel va mapatnpndel and o akohovbo oxnpa, ot TayvTnTeG KAbe
KLV THpa YOVATOG €ival TAVTOTE EVTOG TNG EMUTPEMOUEVNG TEpLoXG. Emopévwg, dev vmdpyet
Kapio avnovxia oxeTkd e To oVOTNHA TaxOTNTAG oL Ba Hmopovoe va SikaloAoynoeL T

pelwon Twv opiwv PWM tov yovatog.

Téhog, katd mapopoLo Tpomo, To Zxnpa 13 anetkovilel Tnv extipnon tayxvtnTag tng apdpwong
Tov Loyiov kdBe o0V (Havpo) Kal Ta avTioToLa OpLa TAXVTNTAG TOV KIvnThpa (KOKKLVO)
onwg kabopilovtat amod Tov katackevaotr. [ta GAAN pa gopd, ot TaxvTnTEG KADE KIvThpQaL
Loiov eival TAVTOTE EVTOG TOV EMITPEMOUEVOV £DPOVG, OTOTE OeV LTLAPXEL AOYOG Vot petwBovv

Ta 0pta PWM Ttov oyiov.

Tevikd, 1 GLVOAIKT EIKOVA AVTWV TWV ATTOTEAEOUATWYV ey Vel OTL Ta elpapata ylo ta modia

18 IIEIPAMATIKH AEIOAOIHXH

Response of FR Knee Velocity

Velocity [rad/s]
o

S | | | | | | | | |
0 5 10 15 20 25 30 35 40 45

Response of FL Knee Velocity

Velocity [rad/s]
o

S | | | | | | | | |
0 5 10 15 20 25 30 35 40 45

Response of HR Knee Velocity

Velocity [rad/s]
o

S | | | | | | | | |
0 5 10 15 20 25 30 35 40 45

Response of HL Knee Velocity

Velocity [rad/s]
o

Time [s]

Yxnua 12: Extipnon tayvtytag 116 dpbpwons yovatov k&Oe modiod (uatpo) keu T avTioToryo
npokabopropéva opia TAYVTHTAG TOV KIVHTHPA (KOKKIVO).

oto Laelaps II fjtav emruynpéva, av Kol OLVIOTOVTAL [(KPEG TPOTIOTIOOEL 0Ta kKéPOT Kat
oTi§ avahoyieg eAéyxov (PWM evtoléq) yia tn féATiotn anddoon oto Padioua, ot omoieg Ba

npémel va peketnBovv mepartépw.

Amo v mpoontikr Tov EtherCAT master, mpémnet va onpeiwdet 6t1 o ether_ros Aettovp-
yNoe 0Twg avapevotay, xwpig va vrdpyovv skipped makéta and to EtherLab, mpdypa mov
OTUALVEL OTL OL TIEPLOPLOPOL OE TPAYUATIKO XPOVO, OTIWG AVAADOVTAL OTIG AEITOVPYIKEG aTTall-
toe, éytvav oeBaotol . Akoun, eivat aglooneiwTo To yeyovog ot emitebyxOnke 2.5 kH 2
ovxvotnta Ppoxov EtherCAT. Téhog, doov agpopd to meptpdAlov ROS, ta unviopata Aredn-

Kav pe emrvxia ota katdAAnAa Oépata eykaipwg.

EINIAOI'OX 19

Response of FR Hip Velocity

Velocity [rad/s]
o

10 ! ! ! ! ! ! ! ! |
5 10 15 20 25 30 35 40 45

Response of FL Hip Velocity

Velocity [rad/s]
o

-10 | | | | | | | | |
5 10 15 20 25 30 35 40 45

Response of HR Hip Velocity

Velocity [rad/s]
o

-10 | | | | | | | | |
5 10 15 20 25 30 35 40 45

Response of HL Hip Velocity

Velocity [rad/s]
o

Time [s]

Exnua 13: Extiunon taxvtnrag 116 dpOpwons toyiov k&Oe modiov (pavpo) ko T avTioTorya
npokaBopiopéva dpia TayVTHTAG TOV KIVHTHP (KOKKIVO).

Eniloyog

Yvumepacpata

2uVvolikd, ot amautroelg mov eixav Statvnwbel, tkavomomOnkav pe emrvyio. Zopuewva pe Ta
ATMOTEAEOHATA TNG TELPAUATIKNG A§LOAOYNONG, 0 OXeSLAOHOG Kal 1] avATTLEN TOL TAPOLOLA-
(etat og avtn TV AmAwpatikn Epyacia métuxav va cuvdvacovy tig texvoloyieg EtherCAT
kat ROS vtd meplopilopons o€ mpaypatikd Xpovo Kal va Tapdyovv To anmoTéNeopa VoG Te-

Tpdmodov pounot, SnAadr tov Laelaps II.

Aemtopuepéotepa, oL SUVATOTNTEG TIPAYHATIKOD XPOVOU TTOV TTPOTPEPOVTAL AT TNV EMEKTAOT

20 EINIAOI'OX

PREEMPT_RT amodeiytnkav emapkei yia Tov éAeyxo kivnong tov Laelaps II kat o ovvdva-
opoG TG eméktaong pali pe to EtherLab amodeixOnke dflog avrikataotdtng tng mpooéyylong
Windows / TwinCAT. Ocov agopa tnv enéktaon PREEMPT_RT, napdro mov katavalw-
Onke apketdg XpOvog avdmTvdng yia Aemtopepr) puBULON TOL TVPTVA TOL CLOTAHHATOG KAl
TOV KWAIKA TNG EPAPHOYNS, TTPOoKeLEVOL va BeAtioTtomonOei n kaBvotépnon (latency) tov
master, T0 KO0TOG avTO Bewpeitat TOAD [KkpOTEPO Ao dAAeG TpooeyYyioelg 0w To Xenomai
kat o RTAI nov pmopel va mpoa@épouvv kalbtepeg emdooels, alla éxovv meplocdtepa ¢€0da
ovvtrpnong kat avantuéng. Ocov agopd to EtherLab, n anogaon va vioBetnBei avtr n mpo-
oéyyton oxediaong avti yia to SOEM, anodeixOnke cogn katd tn Stadikacio avantugng kat
ETKVPWOTG. AV Kal eiXe (Lo AMOTOUN KapmOAn HABNonG yla Ty Katavonon Tov TpOmov avd-
ntvéng kwdika mov xpnotpomotei o API tov, 1) tekunpiwon frav efatpetikr kat StevkoAvve
 Stadikacia avamntvéng. Emniong, to EtherLab ¢8ei&e tn SOvaur tov oty Stadikacia evrom-
OHOV OQAAPATWY, KABWG TIPOTEPEPE UNXAVIOHOG yla TV dueon e&étaon kabe TTuxng Tov

Siktvov EtherCAT.

Télog, ekTOG amd TIG SLUVATOTNTEG TIPAYHATIKOD XPOVOL, 1] AVATITUYUEVT EQAPUOYT] TTPOOPE-
pet Stakettovpykotnrta pe to mepPdAlov ROS, péow tov ROS APIL. Avto to Pripa avoiyet
TMoAAEG Suvatotnrteg, Aappdvovtag vtoyn To péyedog Tov okoovotrpatog ROS kat tnv mot-
KA TV epappoy@v mov avantvooovtal oe avtd. Ot peAhovtikoi kdppot ROS Ba éxovv
SuvatdtnTa va enKkovwvolV e Tovg KwOIKOTONTEG Kat Tovg Kivntrpeg Tov Laelaps IT kat
va dnpovpyovv mpo @il cLYXPOVIOHEVWY KIVIOEWY TwV TOSLWYV. Avtd Ta Tpo@ik Ba pumopov-
oav va Eekiviioovy anhd, 0mwg to Padtopa, ov peetOnke o€ avtn TNV StTAwpatik, Kat va
ovveyiouv pe e&atpeTikd TOADTTAOKEG KIVIOELS, OTIWG KAATIAOUO Kat TPEELHO 1} cLuVSLAGHOVG
aTWYV. AVTO TO XapaKTNPLOTIKO dev Tpémel va apapeAnOei: 1 ROS-omoinon tov Laelaps II
elval éva tepdoTio Prjpa mpog TNy dopoototxewwtr oxediaon (modularity) Tov Aoyloutkov
Kat TN peiwon g avantugng kat tng Statripnong, mov eival onNHavTKoi TapAayovTeg TO00

yta Tov akadnpaiko Xwpo 600 Kat yia Tn flopnxavia.

MeAlovTikég AvvatoTnTeg

[Tapolo mov n tpéxovoa epappoyn eréyxov kivnong péow EtherCAT oto Laelaps II éxet do-
Kipaotel kat éxet amodetxOei 0Tt eivau MApwg Aettovpyikn 1000 o€ eninedo Aoyloptkov 660
Kat VAKOV, TOAAEG TITLXEG uropovV va PeAtiwBovv o1o péAAov yia va emitevyOei peyakvtepn

gvpwoTia.

[Tpwtov, N avantuypévn epappoyn pnopei va enektadel yla va vootnpiet Stapopetikd

EINIAOI'OX 21

goptia dedopévwv yia EtherCAT slaves kat avtopatn Stapdopewon pag véag epappoyng
EtherCAT ywpig xeipokivntn Stapopewon otov mnyaio kwdika ether_ros.

Mia mpooBetn 16éa eivar) Ste€aywyrn mepapdToy ya Tov evtomopo twv kabvoteproewv
oe kaBe v ToL GVoTHHATOG. O XpOvog Tov Ppoxov EtherCAT katavalwvetat petagd Tov
SikTVOoV, TWV VIOTEAWV KOUPWYV Kat TOL KVPLOV KOpBOL Kat Ba NTav xproo va yvwpifovpe
TOV XpOVO TOV KATAVAAWDVEL KAOE OTOLXELO TOL CLOTHHATOG. X AVTH TNV kKatevLBVVON, epya-
Aeia evtomopov® atov muprva Ba propodoav va xpnotpononfovv yla ToV EVIOTIORO TTola
Stadikaoia exteheitat ano mota CPU, mooo xpovo xpetaletat ya va ekteleotel kKA. Me av-
TOV TOV TpOTO Uropel va evromiotel 1 kabvoTtépnon Tng epapproyns, Tov Tuprva Kat Tov Si-
ktvov EtherCAT. H kaBvotépnomn tov diktdov EtherCAT pnopei va avixvevbei pe tn uétpnon
TV StaoTnpdTwy peta&d dvo dtadoxikwv dtakonwv tov Ethernet IRQ mov eivat aglepwuévo
oto Oiktvo EtherCAT. Avtr) n kaBvotépnon pnopei evkoAa (aAla Oxt e peydhn akpifeta)
va tapakolovBeitat amo tn xpron tov Wireshark. H kabvotépnon tov mupriva amoteei-
T and kabBvotepnoelg mov elodyovrat and tnyv povdda EtherLab, Tov xpovodpopoloyntn
(scheduler) kot dA\eg Stakomég mov Sev oxetiCovrat pe to diktvo EtherCAT (.. xpovodia-

KomteG, IPI).

Téhog, av to Tpéxov cvotnua eAéyxov ahld&et kat yivel kevtpikd, To ether_ros Ba mpémet
emiong va aAla&et. Mia kevTpikomomnpévn TpooeyyLon onpaivet peyalvtepo oyko dedopé-
vV Tpog To ether_ros kat n avantoypévn epappoyn dev éxet Petiotomondei ya avto
10 eidog mepmTwoewv. [la va Aettovpynoet autr 1) TPOCEYYLON, | EQAPUOYT TIPETEL VAL aLA-
Aa&el onuavtikd, Petiotonowwvtag TNy alnhenidpaon pe to meparlov ROS, dnwg tov
aptOpo twv topics mov Ba xpnotpomomnBovy, Tig cvykekpLpéveg ovpég emavakAnong (callback

queues) K.d.

8http://www.brendangregg.com/blog/2015-07-08/choosing-a-linux-tracer.html

http://www.brendangregg.com/blog/2015-07-08/choosing-a-linux-tracer.html

22

Introduction

Only those who will risk going too
far can possibly find out how far

one can go.

T.S. Eliot

In this chapter, we first provide a quick overview of the problem and the proposed solution.
Then, existing solutions and their shortcomings are described. Next, the benefits of the pro-

posed solution are briefly mentioned. Finally, the structure of the document is presented.

1.1 Problem Statement

In industrial robotic systems, there was always a need for a feature-rich network communica-
tion, between actuators, sensors and the processing unit(s), and usually this was handled with
wired means. For this reason a variety of protocols in both hardware and software were de-
veloped. In addition, the time-dependent nature of the processes of those systems demanded

the employment of real-time solutions to the network and computations.

ROS (Robot Operating System) is a meta-operating system, a standard in modern robotics,
which is used for software development of robotics applications. It greatly reduces develop-
ment and maintenance time and offers modularity (in hardware and software). Its community

is targeted on GNU/Linux.

Fieldbus Systems is a family of industrial computer network protocols used for real-time con-
trol, which had an enormous influence on the flexibility and performance of industrial au-

tomation systems in all application areas.

23

24 CHAPTER 1. INTRODUCTION

EtherCAT is an Ethernet-based fieldbus system, and is suitable for both hard and soft real-time
computing requirements in automation technology. Its features include short data update
times with low communication jitter and reduced hardware costs, due to utilization of the
low cost Ethernet technology, thanks to the latter’s long term usage in computer networks in
the past decades. These features render EtherCAT a proper network solution for real-time

constrained robotic systems, especially for systems like quadruped or biped robots.

Quadruped robots tend to be designed with properties such as high speed, rapid acceleration
and ability to make tight turns, thus requiring hard real-time constraints from their onboard
processing units. With a distributed control scheme at hand, employment of EtherCAT for
the design of a hard real-time system composed of networked processing units, is a satisfac-
tory option, although the need for real-time programming the communication nodes (mas-
ter/slaves) arises. Usually, the EtherCAT slaves (processing units for controlling the legs or
MCU s in this kind of configuration, have a very specific task, i.e. that of controlling the legs.
They comprise of, specifically designed, hardware-integrated EtherCAT Slave Controllers,
therefore there is no need for extra work in the real-time aspect. However, the EtherCAT
master can be implemented as a software solution, so a need appears to real-time program
it. Thus, the primary objective of this thesis is the design and implementation of a real-time

EtherCAT master in ROS on GNU/Linux.

In the following chapters, we thoroughly describe the design and implementation of a real-

time EtherCAT master in the ROS framework and present the obtained results.

1.2 Literature Review

In this section we briefly describe other approaches, which have similarities with our own.

1.2.1 Legged Robots Overview

Research in Legged Robots has been conducted for numerous matters, from their design to
their controllability, examining their capability for autonomous, semi-autonomous, or remo-
tely-controlled operations in challenging terrains, where wheeled and tracked vehicles reach
their limits. Future quadruped robots are expected to operate in highly dynamic, unstruc-
tured outdoor environments, where they will navigate inside challenging environments, such
as collapsed buildings, disaster sites, forests, mountain farms, and construction sites. Their

tasks will range from transmitting sensor readings to the remote operator (e.g., cameras, LI-

1.2. LITERATURE REVIEW 25

DAR, infrared, and radiation levels) to carrying heavy payloads such as tools or building
materials. State of the art legged robots include Handle in Figure 1.1(a), SpotMini in Fig-
ure 1.1(b), Atlas in Figure 1.1(c) and BigDog in Figure 1.1(d), designed and manufactured by

Boston Dynamics'.

Figure 1.1: Boston Dynamics legged robots: (a) Handle, (b) SpotMini, (c) Atlas, (d) BigDog.

ANYmal robot in Figure 1.2(a) from the Institute of Robotics and Intelligent Systems of ETH
Zurich university’, MIT’s Hermes in Figure 1.2(b) and Cheetah in Figure 1.2(c), robots by
the Biomimetic Robotics Lab’, and Upenn’s Inu in Figure 1.2(d), robot by KOD*LAB*, are

characteristic examples of legged robots developed at universities.

1.2.2 Fieldbus Systems Overview

The advent of fieldbus systems in automation industry in the late 80’s and early 90’s, rev-
olutionized it in a unique way. Prior to their arrival, the traditional method in industrial
automation for connecting multiple computational units was parallel wiring [24], where all
components were wired individually. However, the number of connections increased with

the increasing degree of automation, which led to a high wiring expenditure. Therefore the

'https://www.bostondynamics.com
*http://www.rsl.ethz.ch/robots-media/anymal.html
*http://biomimetics.mit.edu
*https://kodlab.seas.upenn.edu

https://www.bostondynamics.com
http://www.rsl.ethz.ch/robots-media/anymal.html
http://biomimetics.mit.edu
https://kodlab.seas.upenn.edu

26 CHAPTER 1. INTRODUCTION

(©) (d)

Figure 1.2: State of the Art legged robots: (a) ANYmal, (b) Hermes, (c) Cheetah and (d) Inu.

cheap fieldbus systems were a rather necessary solution, providing cheap and faster commu-

nication in the industrial networks.

The fieldbus systems are nowadays indispensable within industry. As a fixed component of
complex machinery and installations, they are primarily used in manufacturing automation.
However, the fieldbus is also used in process and building automation, as well as in automotive

engineering.

Sensors and actuators (so-called “field devices”) as well as motors, switches, drives, or lamps
are connected with programmable logic controllers (PLCs) / master and process controllers
with the help of wire-bound and serial fieldbuses. As such, the fieldbus supports the rapid
exchange of data between individual system components even over great distances. Strong
external loads cannot influence the robust digital signal transmission system. Fieldbus com-
municates only via a single cable, allowing considerable decrease of the wiring, compared to

parallel wiring systems.

Fieldbus systems function in master-slave operation. The master controls the processes, while

the slave stations work on the individual partial tasks.

Fieldbus systems can differ in their topology (star, line, tree or ring), in their transmission

1.2. LITERATURE REVIEW 27

medium, and in their transmission protocols (message-oriented procedure or summation
frame procedure). The individual fieldbuses also differ in regard to the reachable cable length,
the maximum number of data bytes per telegram and the function scope. As such, additional
functions such as the alarm handling, diagnosis, and lateral traffic between individual bus

participants are not possible for every fieldbus.
Popular examples of fieldbus systems:

o Interbus: The interbus with transmission rates of up to 2 Mbps is characterised by high
transmission security and a short, constant cycle time. It is divided into subsystems
and consists of the remote bus, the installation remote bus and the local bus arranged
in a ring topology. The remote bus serves to connect up to 254 subscribers which are
located at large distances from each other, while the local bus connects subscribers, that

are located close to each other, to the system.

o Profibus: The PROFIBUS is used in manufacturing engineering and automation. It has
an unlimited number of subscribers and data transmission rates between 9.6 kbps and
500 kbps. In master-slave operation, the Token passing [25] access procedure is used.

Here, slaves may only access the profibus upon the master’s request.

In addition, the utilization of the inexpensive Ethernet technology in the industrial automa-
tion, has produced many systems and protocols which are categorized as fieldbus systems.
These systems have the same type of operation (master-slave), but are connected over Ether-
net. As such, these Industrial Ethernet systems combine two valuable traits: standarization to
the type of operation and support by the fieldbus systems community, and standarization and
support by the computer networking society. Since modern machines and systems must per-
form increasingly complex tasks, data networks are growing larger. This is where real-time
capable Ethernet networks come into play, because they provide a consistent flow of data from
the control level down to the field level. Today, Industrial Ethernet is being promoted with
several different proprietary designs [26, 27]. More than 20 different protocols compete in
this rapidly growing market, each offering adaptations to meet different real-time and cost

challenges, such as:

o EtherNet/IP (IP stands for “Industrial Protocol”): The EtherNet/IP is an industrial net-
work protocol that adapts the Common Industrial Protocol to standard Ethernet. It is
one of the leading industrial protocols in the United States and is widely used in a range

of industries including factory, hybrid and process automation. An active star topology

28

CHAPTER 1. INTRODUCTION

is characteristic for the Ethernet/IP protocol, where individual devices are connected
via a point-to-point connection, which is done via a switch. This has the advantage that
due to the star topology, operation of devices with transfer rates from Mbps to Gbps
can be activated in the same network. In addition, Ethernet/IP enables problem-free
functioning of twisted pair and glass fiber cables. Not least, data collisions with simul-

taneous utilization of real-time applications are avoided with the help of the switch.

Profinet: Profinet (acronym for Process Field Net) is an industry technical standard for
data communication over Industrial Ethernet. It is designed for data collection from,
and control of, equipment in industrial systems, under tight time constraints (on the
order of 1ms or less). It is the open industrial Ethernet standard promoted by Profibus
International (PI). This group claims that more than 2 million Profinet devices are cur-
rently installed in plant environments; more Profinet than Profibus engineers were cer-

tified in 2012.

Sercos III [28]: Sercos III is the third generation of the Sercos interface, a globally
standardized open digital interface for the communication between industrial controls,
motion devices, input/output devices (I/O), and Standard Ethernet nodes. Sercos III
merges the hard real-time aspects of the Sercos interface with Ethernet. It is based on
and conforms to the Ethernet standard (IEEE 802.3 and ISO/IEC 8802-3). Sercos III
teatures include cyclic update to devices at rates as low as 31.25 ps and support of up to

511 Slave devices on one network.

EtherCAT: EtherCAT (Ethernet for Control Automation Technology) is a fieldbus sys-
tem based on Ethernet, invented by Beckhoff Automation. The protocol is standardized
in IEC 61158 and is suitable for both hard and soft real-time computing requirements
in automation technology. The goal during development of EtherCAT was to apply
Ethernet for automation applications requiring short update times (also called cycle
times; < 100 ps) with low communication jitter (for precise synchronization purposes;
< 1u s) and reduced hardware costs. The entire process data communication takes
place in the slave controller. Normal network update rates range from 1 to 30 kHz.

However, EtherCAT can also be used with slower cycle times.

Concerning the Laelaps II quadruped, EtherCAT was selected, because of its high perfor-

mance in terms of bandwidth and speed, its determinism, and its convenient slave-synchron-

ization capabilities. In addition, there is no need to set device addresses, and its diagnostic

1.2. LITERATURE REVIEW 29

capabilities make the process of finding the sources of malfunctions and troubleshooting sub-

stantially easier.

1.2.3 EtherCAT Robotic Applications Overview

EtherCAT technology in robot applications has become increasingly popular in the last decade
mainly due to the low cycle time, achieved reduced wiring and its modularity. Herein, char-

acteristic examples in the different robotic application fields are presented.

In the industrial manufacturing sector, KUKA Robotics® has developed a modular Ether-
CAT controller (KR C4 Controller - Figure 1.3(a)) to control the developed industrial robotic
arms of the company in several different tailor-made automation solutions. NexCom® has
developed a wide range of EtherCAT based robotic solutions such as MiniBOT Robot in Fig-

ure 1.3(b) for educational purposes too, oftering a broad selection of master controllers, robot

= 4
RS

(a) (b)

arms, drives and motors, I/Os, industrial cameras etc.

Figure 1.3: (a) KR C4 Controller with robotic arm by KUKA and (b) MiniBOT Robot by Nex-
Com.

In the field of haptic - soft robotics and manipulation robotics, Shadow Robot Company ex-
ploited EtherCAT technology to develop a truly anthropomorphic hand. The Shadow Dex-
terous Hand’ (Figure 1.4), has 20 actuated degrees of freedom, absolute position and force

sensors, and ultra sensitive touch sensors on the fingertips, providing high precision.

In the field of legged robotics, PAL Robotics® has designed TALOS (Figure 1.5(a)), a fully elec-
trical humanoid biped robot that uses torque control in every joint and EtherCAT to tackle

complex industrial tasks. Talos is capable of 6 kg payload in each arm. Similarly, the Depart-

*https://www.kuka.com
Shttp://www.nexcom.com
"https://www.shadowrobot.com
8https://pal-robotics.com

https://www.kuka.com
http://www.nexcom.com
https://www.shadowrobot.com
https://pal-robotics.com

30 CHAPTER 1. INTRODUCTION

Figure 1.4: Shadow Dexterous Hand by Shadow Rob Company

ment of Advanced Robotics of the Italian Istitute of Technology (IIT)® has exploited Ether-
CAT to design and build HyQ2Max quadruped robot [29] (Figure 1.5(b)) which mimics the
robustness and versatility of animals in challenging terrains. In Switcherland, the robotics
company ANYbotics, a spinoft of the famous Robotic Systems Lab in ETH Zurich, along
with the lab have utilized EtherCAT in the design and control of ANYmal quadruped robot

[30] (Figure 1.5(c)).

(b) (c)

Figure 1.5: (a) Talos biped robot by PAL Robotics, (b) HyQ2Max quadruped robot by IIT and
(c) ANYmal robot from ETH.

1.2.4 Real-time Systems Overview

Real-time systems [31] are computing systems that must react within precise time constraints
to events in the environment. As a consequence, the correct behavior of these systems de-
pends not only on the value of the computation but also on the time at which the results are

produced [32]. A reaction that occurs too late could be useless or even dangerous. Examples

*https://www.iit.it

https://www.iit.it

1.2. LITERATURE REVIEW 31

of applications that require real-time computing include the following [31]:

 Chemical and nuclear plant control. o Medical systems.

« Control of complex production pro- + Industrial automation.
CESSES: « Robotics.

« Railway switching systems. o Military systems.

« Automotive applications. Space missions.

« Flight control systems. o Consumer electronic devices.

. I . o Multimedia systems.
 Environmental acquisition and moni-

toring. Smart toys.

Virtual reality.

Telecommunication systems.

In the computer engineering world, as the transition from single process handling to multi
process handling took place, the need for an Operating System to manage these processes was
apparent. Similarly in the real-time systems world, the need for multi-tasking and scheduling

of multiple prioritized tasks made the shift to Real-Time Operating Systems inevitable.

1.2.5 Real-Time Operating Systems Overview

With the use of an Operating System in real-time systems, there were new and more complex

applications and solutions on the field. Nowadays, many Real-Time Operating Systems are

available in the community. Some of the most popular proprietary RTOSes include [31]:

« VxWorks (by Wind River)'’: First released in 1987, VxWorks is designed for use in em-
bedded systems requiring real-time, deterministic performance and safety and security
certification. It is targeted to industries, such as aerospace and defense, medical de-
vices, industrial equipment, robotics, energy, transportation, network infrastructure,

automotive, and consumer electronics.

« ENEA OSE (by ENEA)'': Enea OSE is a robust, high-performance, Real-Time Oper-

ating System optimized for multi-processor systems requiring deterministic real-time

Yhttps://www.windriver.com
“https://www.enea.com

https://www.windriver.com
https://www.enea.com

32 CHAPTER 1. INTRODUCTION

behavior and high availability. It decreases development time, enhances reliability and
reduces lifetime maintenance costs for a wide range of systems, from wireless devices

and automobiles, to medical instruments and telecom infrastructure.

« Windows CE (by Microsoft)'*: Windows CE is an operating system developed by Mi-
crosoft and designed for small footprint devices or embedded systems.Some of the de-
vices that run Windows CE include industrial controllers, point of sale terminals, cam-

eras, Internet appliances, cable set-top boxes and communications hubs.

o QNX Neutrino'*: QNX Neutrino is a Real-Time Operating System used for mission-

critical applications, from medical instruments and Internet routers to telematics de-

vices, process control applications, and air traffic control systems.

o Integrity (by Green Hills)'*: Integrity is a Real-Time Operating System which is built

around a partitioning architecture to provide embedded systems with reliability, secu-

rity, and real-time performance.

Through the years, intensive research in the field of real-time systems has been conducted,
producing many open-source real-time research kernels, including [31]: CHAOS [33], MARS
[34], Spring [35], ARTS [36], RK [37], TIMIX [38], MARUTI [39], HARTOS [40], YARTOS
[41], HARTIK [42], Erika Enterprise'®, Shark'®, Marte OS'” and FreeRTOS'®. Recently the

FreeRTOS kernel became an AWS' open source project.

Most of the aforementioned kernels didn’t evolve to a commercial product, but they were use-
ful for experimenting novel approaches, some of which are to be integrated in next-generation

operating systems [31].

GNU/Linux as a Free and Open Source Software (FOSS) project has a large active developer

and user community, offering security, maintainability, reliability, stability, frequent updates
and other features. However, it is a general purpose operating system originally designed to
be used in server or desktop environments. For this reason, not much attention has been

given to real-time issues. As a result, a latency of hundreds of milliseconds can be experi-

2https://www.microsoft.com
Phttps://blackberry.gnx.com/
“https://www.ghs.com
Yhttp://www.erika-enterprise.com
http://shark.sssup.it
"https://marte.unican.es
Bhttps://www.freertos.org

' Amazon Web Services

https://www.microsoft.com
https://blackberry.qnx.com/
https://www.ghs.com
http://www.erika-enterprise.com
http://shark.sssup.it
https://marte.unican.es
https://www.freertos.org

1.2. LITERATURE REVIEW 33

enced in real-time activities. This makes common GNU/Linux distributions not suitable for
hard real-time applications with tight timing constraints. On the other hand, making Linux a

Real-Time Operating System would enable the full-power of a real operating system for real-

time applications, including a broad range of open source drivers and development tools. For
this reason, a considerable amount of effort has been given during the last years to provide

GNU/Linux with real-time features. Such efforts include (but are not limited to) [31]:

o RTLinux: RTLinux has been the first real-time extension for Linux, created by Vic-
tor Yodaiken. Wind River Systems acquired the product in February 2007 and made a
version available as Wind River Real-Time Core for Wind River Linux. As of August
2011, Wind River has discontinued the Wind River Real-Time Core product line, ef-
fectively ending commercial support for the RTLinux product. Currently, the version
distributed by Wind River as Wind River Linux could be considered as the continued

RTLinux project.

o RTAL RTAI* (Real Time Application Interface) started as a modification of RTLinux
by Paolo Mantegazza at the Dipartimento di Ingegneria Aerospaziale, Politecnico di
Milano, Italy. Through the years, the original idea of RTLinux has been considerably
changed and enhanced. RTAI is now a community project, and the source code is

released as open source.

« Xenomai: The Xenomai*' project was launched in August 2001. In 2003 it merged with
the RTAI project to produce a production-grade real-time free software platform for

Linux called RTAI/fusion, on top of Xenomai’s abstract Real-Time Operating System

(RTOS) core. Eventually, the RTAl/fusion effort became independent from RTAI in
2005 as the Xenomai project.

« PREEMPT_RT: PREEMPT_RT?? is a kernel patch to make a Linux system more pre-
dictable and deterministic. It was originally created and developed by Ingo Molnar, a
major contributor to the Linux kernel. Currently, Real-Time Linux, an Open Source
project sponsored by The Linux Foundation®’, was formed to coordinate efforts to
mainline Preempt RT and assist maintainers in continuing development work, long-

term support and future research of RT.

2http://www.rtai.org

2http://www.Xxenomai.org
2https://wiki.linuxfoundation.org/realtime/start
Zhttps://www.linuxfoundation.org

http://www.rtai.org
http://www.xenomai.org
https://wiki.linuxfoundation.org/realtime/start
https://www.linuxfoundation.org

34 CHAPTER 1. INTRODUCTION

« SCHED_DEADLINE: SCHED_DEADLINE?* is a Linux kernel patch developed by Ev-
idence s.r.l. in the context of the ACTORS?® European project. It adds a deadline-based

scheduler with resource reservations in the standard Linux kernel.

o Linux/RK: In Linux/RK, the Linux kernel has been directly modified [43, 44] to in-
troduce real-time features. Linux/RK is developed by the Real-time and Multimedia

Systems Laboratory led by Dr. Raj Rajkumar at Carnegie Mellon University.

o LITMUS?T: LITMUS?7?¢ is a real-time extension of the Linux kernel with a focus on
multiprocessor real-time scheduling and synchronization. The Linux kernel is modi-
fied to support the sporadic task model, modular scheduler plugins, and reservation-
based scheduling. Clustered, partitioned, and global schedulers are included, and semi-
partitioned scheduling is supported as well. LITMUS® has been continuously main-

tained by Bjorn Brandenburg since 2006, and actively developed until 2017.

1.2.6 ROS 2 Overview

1.2.6.1 History of ROS

ROS [45] started as the development environment for the Willow Garage PR2 robot. The
primary goal was to provide the software tools that users would need to undertake novel
research and development projects with the PR2. At the same time, it was desired that ROS
to be useful on other robots. So a lot of effort was given into defining levels of abstraction

(usually through message interfaces) that would allow much of the software to be reused.
Still, it’s characteristics include [45]:

 No real-time requirements (or, any real-time requirements would be met in a special-

purpose manner).

« Excellent network connectivity (either wired or close-proximity high-bandwidth wire-

less).
o Applications in research, mostly academia.

o Maximum flexibility, with nothing prescribed or proscribed.

http://www.evidence.eu.com/sched deadline.html
Phttp://www.actors-project.eu/
*https://www.litmus-rt.org/

http://www.evidence.eu.com/sched_deadline.html
http://www.actors-project.eu/
https://www.litmus-rt.org/

1.2. LITERATURE REVIEW 35

ROS satisfied the PR2 use case, but also was useful on a variety of other robots. Today ROS is
used not only on the PR2 and robots that are similar to the PR2, but also on wheeled robots
of all sizes, legged robots, industrial arms, outdoor ground vehicles (including self-driving

cars), aerial vehicles, surface vehicles, and more.

In addition, ROS is being adopted beyond the academic research that was the initial fo-
cus. ROS-based products are coming to market, including manufacturing robots, agricul-
tural robots, commercial cleaning robots, and others. Government agencies are also looking
closely at ROS for use in their field systems. For instance, NASA is expected to be running

ROS on the Robonaut 2 that is deployed to the International Space Station.

With all these new uses of ROS, the platform is extended. While it is holding up well, there is
a belief that the needs of a now-broader ROS community can be met, by tackling their new

use cases head-on, hence the effort for ROS 2.
1.2.6.2 New Use Cases

The following use cases are of specific interest, for the ongoing and future growth of the ROS

community, in which there wasn’t much consideration at the beginning of the project [45]:

« Teams of multiple robots: while it is possible to build multi-robot systems using ROS
today, there is no standard approach, and they are all somewhat of a hack on top of the

single-master structure of ROS.

 Small embedded platforms: small computers, including “bare-metal” micro controllers,
are wanted to be first-class participants in the ROS environment, instead of being seg-

regated from ROS by a device driver.

 Real-time systems: real-time control directly in ROS is a common request, including
inter-process and inter-machine communication (assuming appropriate operating sys-

tem and/or hardware support).

» Non-ideal networks: ROS is expected to behave as well as possible when network con-
nectivity degrades due to loss and/or delay, from poor-quality WiFi to ground-to-space

communication links.

o Prescribed patterns for building and structuring systems: while the flexibility of ROS is
maintained, there is a need to provide clear patterns and supporting tools for features

such as life cycle management and static configurations for deployment.

36 CHAPTER 1. INTRODUCTION

At the beginning of the ROS project, the above mentioned use cases weren't the norm, there-
fore they weren't treated in a canonical frame and the development on these areas was depen-
dent in the way robotics engineers skipped the norm to satisfy their needs. However, with
ROS 2% there seems to be a different point of view. Specifically in the real-time systems as-
pect, there is an exemplary use case [46, 21] which demonstrates a real-time robotic system,

consisting of real-time computing nodes (with Real-Time Operating Systems) and real-time

communication between them (via TSN protocols), all integrated in the ROS 2 environment.
The results look very promising, however the technology needs to mature and gain sufficient

support from the robotics community.

1.3 Benefits

In this section we highlight the value of our contribution by mentioning the benefits of its

design, as follows:

o EtherCAT utilization: As a real-time network communications protocol, EtherCAT
has a large community of users. In the last years, it has become popular in the robotics

community and in robotics labs for its benefits.

« Integration in ROS: In robotics, the Robot Operating System has become a standard
framework. Software that integrates with it, has profound benefits, like off-the-shelf

libraries, rapid prototyping, modularity, standardization and community support.

« Software on GNU/Linux: There isn't much to say about the benefits of developing soft-
ware on GNU/Linux. The fact that it's one of the biggest FOSS projects till today pro-
vides unsurpassed benefits: free code (GNU Public Licence), large user and developer

community.

o Real-time Solution: The proposed design approach utilizes one of the biggest projects
in the real-time GNU/Linux world, namely the PREMPT-RT patch. Again benefits here
include low maintenance cost, stability and great community for support and develop-

ment.

*"https://github.com/ros2/ros2

https://github.com/ros2/ros2

1.4. THESIS STRUCTURE 37

1.4 Thesis Structure

This thesis is organized as follows: In Chapter 2 and Chapter 3, we present the theoretical
background and concepts that our work is based on. In Chapter 4 we analyse the archi-
tecture of our solution and the design decisions made from a higher-level perspective. In
Chapter 5 we demonstrate the main points of our implementation and refer to the problems
we faced during the development process, the proposed workarounds, the optimizations and
the testing. In Chapter 6 we present the experimental evaluation of our solution. Finally, in
Chapter 7 we sum up with concluding remarks, suggested future improvements and alterna-

tive approaches.

38

Background in Real-Time & ROS

We are not makers of history. We

are made by history.

Martin Luther King, Jr.

In the two following chapters, the key theoretical elements for the understanding of this
project, are provided. First, several fundamental principles concerning real-time systems
are explained. Next specific areas considering the real-time modification of GNU/Linux, are
analyzed. This chapter concludes with a brief presentation of ROS, the framework in which

the developed project has been written.

2.1 Real-time Systems Concepts

Real-time systems had an astounding impact in the industrial automation field. From avionics
and nuclear plants, to robotics and automotive industry, the need for deterministic systems is
unquestionable. First, a definition of these systems, along with their basic characteristics are

the following:

2.1.1 General Concepts
A real-time system is a system that must satisfy explicit (bounded) response-time

constraints or risk severe consequences, including failure [19].

Consequently, the correctness of the system’s response depends not only on the logical re-

sult but also on the time it was delivered. A real-time system can be distinguished in three

39

40 CHAPTER 2. BACKGROUND IN REAL-TIME & ROS
categories [19]:

« Hard: In hard real-time systems, failure to meet a single deadline leads to complete and

catastrophic system failure.

o Firm: In firm real-time systems failure to meet a few deadlines will not lead to total

failure, but missing more than a few leads to complete and catastrophic system failure.

o Soft: In soft real-time systems performance is degraded by failure to meet response-

time constraints.

Characteristic differences between hard real-time systems and soft real-time systems are il-

lustrated in the following Table 2.1:

Characteristic Hard real-time Soft real-time (on-line)
Response time Hard-required Soft-desired

Peak-load performance Predictable Degraded

Control of pace Environment ~ Computer

Safety Often critical ~ Non-critical

Size of data files Small/medium Large

Redundancy type Active Checkpoint-recovery
Data integrity Short-term Long-term

Error detection Autonomous User assisted

Table 2.1: Hard real-time versus soft real-time systems [18].

Examples of hard real-time systems include power plant control systems, railway switching
systems, medical systems (e.g. pacemakers), military systems, avionics and electronic en-
gines. Examples of firm real-time systems include most professional and industrial robot
control systems such as the control loops of collaborative robot arms, aerial robot autopilots
and mobile robots, including self-driving vehicles [46]. Examples of soft real-time systems
include live audio-video systems and telepresence robots [46]. An artistic illustration of the

above concepts is presented in Figure 2.1.
Non real-) So! ™ol T———lpp o eI
time time time

Computer User Internet Cruise Tele- Flight Electronic
Simulation Interface video control communications control engine

Figure 2.1: Spectrum of real-time systems.

Other examples of categories of real-time systems, include fail-safe, fail-operational, guaran-

teed-response, best-effort and more. More information on the matter can be found in [18].

2.2. REAL-TIME TASK SCHEDULING 41

2.2 Real-time Task Scheduling

Note: This section is largely based on [3, 31].

In a conventional operating system, the goal of a scheduler is to optimize a metric (average
latency, average throughput, minimum latency, maximum throughput etc), by assigning work

to resources. However, in a Real-Time Operating System, tasks have timing constraints and

their execution is bounded to a maximum delay that has to be respected [3]. The objective of
scheduling in this case, is not only to optimize a metric, but also to allow tasks to meet these

timing constraints when the application runs in nominal mode.

Real-time tasks are the basic software activities that are scheduled; they may be periodic or
aperiodic, and have soft, firm or hard real-time constraints [3]. The basic parameters of a

real-time task are depicted in a task model and are presented in Figure 2.2:

o 7: The tasK’s release time (or arrival time), i.e. the triggering time of the task execution

request.

o (' The task’s worst-case computation time, i.e. the time the task is fully allocated to the

processor.

o D: The task’s relative deadline, i.e. the time the task has in order to finish, before it

misses it’s deadline.
o T': The task’s period (this parameter is valid only for periodic tasks).

For a hard real-time task, the relative deadline allows computation of the absolute deadline

d = r + D. Violation of the absolute deadline causes failure.

For the aperiodic tasks, the parameter 7" doesn't exist [3]. These four parameters (r, C, D, T')
are sufficient for modelling a periodic task. Each time a task is ready to run, it releases a pe-
riodic request. After the first release time, the next release times (also called request times,
arrival times or ready times) are r;, = 1o + kg, where 7 is the first release and rj, the £ + 1th
release. Consequently, the next absolute deadlines are dj, = 7, +D. A common scenario for a
real-time task, is to have parameters D = 7T, which implies that the periodic task has a relative
deadline equal to period. The task parameters should always follow this rule: 0 < C<D<T..
The precision on defining the above parameters affects also the quality of scheduling, there-

fore their definition is an important aspect of real-time design. If the duration of operations

42 CHAPTER 2. BACKGROUND IN REAL-TIME & ROS

ro: release time of thelst request of task
C: worst-case computation time
D: relative deadline

T: period
ry: release time of k+1th request of task
.r(r 0’5 ’ ‘2 ’ T<) r,=ry+ kT is represented by
with0=C<D=<T d,: absolute deadline of k+1th request of task
d, = r+ D is represented by ‘

Note: for periodic task with D = T (deadline equal to period)
deadline at next release time is represented by

Timing diagram

A
A
A

A

'
A

Y ._-

Fp do r dl ry

| B

Figure 2.2: A task model [3].

like task switching, system calls, interrupt processing and scheduler execution cannot be ne-
glected, they have to be added to the task computation times. As a result, a deterministic
behavior is required for the kernel, which should guarantee maximum values for these op-
erations. Other useful parameters derived from the four previous parameters (r, C, D, T)

are:
o u = C/T: The processor utilization factor of a task; the inequality u<1 must hold.
o ch = C/D: The processor load factor; the inequality ch<1 must hold.

It should be noted that usually, the problem of timing constraints is not the only one that
has to be addressed [31]. Other typical constraints include precedence constraints (there is a
time dependence between two tasks) and resource constraints (software structures may require

mutual exclusion).

In general, to define a scheduling problem three sets need to be specified: a set of n tasks

2.2. REAL-TIME TASK SCHEDULING 43

I'= {m,7,....,7}, a set of m processors P = { Py, P, ..., P,,} and a set of s types of re-
sources R = {Ry, Ry, ..., Rs} [31]. In this context, scheduling means assigning processors
from P and resources from R to tasks from I" in order to complete all tasks under the spec-
ified constraints [47]. This problem, in its general form, has been proved to be NP-complete
[48] and computationally intractable. In order to reduce the complexity of constructing a
feasible schedule, typical approaches found in literatures include: simplification of the com-
puter architecture (i.e. by considering single processor systems), adoption of a preemptive
model, usage of fixed priorities, removal of precedence and/or resource constraints, homo-
geneity in task sets (only periodic or only aperiodic activities), just to name a few [31]. Based
on the assumptions made on the system or on the tasks, the various scheduling algorithms

are classified as follows [31]:

« Preemptive versus Non-preemptive: The running task can / cannot be interrupted at

any time to assign the processor to another active task.
o Static versus Dynamic: Scheduling decisions are based on fixed / dynamic parameters.

o Off-line versus Online: A scheduling algorithm is used oft-line / online if it is executed

before tasks activation / executed at runtime.

« Optimal versus Heuristic: An algorithm is said to be optimal if it minimizes a given cost
function defined over the task set. An algorithm is said to be heuristic if it is guided by
a heuristic function in taking its scheduling decisions. The heuristic algorithm doesn’t

guarantee optimality.

Considering these classifications, some of the most popular uniprocessor periodic task sche-

duling algorithms used in real-time operating systems, include:

« Rate Monotonic (RM): This algorithm assigns priorities to periodic tasks according to
their periods [31]. This means that tasks with shorter periods will have higher priorities.
Since periods are constant, RM is a fixed-priority assignment: a priority P is assigned
to the task before execution and does not change over time [31]. In addition, RM is
preemptive: the currently executing task is preempted by a newly arrived task with
shorter period [31]. The fixed-priority assignment makes the RM algorithm easy to
use and simple to understand and implement. However this simplicity comes with a
cost. In [49] it is shown that RM is optimal among all fixed-priority assignments in
the sense that no other fixed-priority algorithms can schedule a task set that cannot

be scheduled by RM. The authors in [49] also calculated the least upper bound of the

44

CHAPTER 2. BACKGROUND IN REAL-TIME & ROS

processor utilization factor for a generic set of n periodic tasks. The schedulability test

for RM is [3, 50]:
=37

i=1

<n(2"" 1)

)

where C; is the computation time, 7; is the release period (with deadline one period
later), and n is the number of processes to be scheduled. For example, U < 0.8284 for
two processes. If the number of processes tends towards infinity, this expression tends
towards [50]:

lim (V2 —1) =In2 ~ 0.693147 . ..

n—oo

A study [3] using stochastic methods showed that for random task sets, the proces-
sor utilization has an asymptotic bound of 88% [51], however this bound depends on
knowing the exact task parameters (periods, deadlines) which cannot be guaranteed
for all task sets. The feasibility analysis of the RM algorithm can also be performed us-
ing a different approach, called the Hyperbolic Bound [52, 53]. The test has the same
complexity as the original bound in [49], but it is more permissive, as it accepts task
sets that would be rejected using the original approach. More information regarding

this algorithm can be found in [31, 3] and [54, Chapter 2].

Earliest Deadline First (EDF): This algorithm assigns priority to tasks according to their
absolute deadline: the task with the earliest deadline will be executed at the highest pri-
ority [31, 3]. As pointed in [55], EDF is optimal among all online algorithms, meaning
that if a task set is not schedulable by EDF, then it cannot be scheduled by any other al-
gorithm. There is a necessary and sufficient schedulability condition for periodic tasks

with deadlines equal to periods, scheduled under EDF [3]:
= — <1 2.1

The previous inequality shows that a set of periodic tasks with deadlines equal to peri-
ods is schedulable with the EDF algorithm if and only if the processor utilization factor
isless than or equal to 1. A hybrid task set (with periodic and aperiodic tasks) is schedu-
lable with the EDF algorithm if (sufficient condition):

U= Z D <1 (2.2)
=1

A necessary condition is given by Equation 2.1. Note that Equation 2.1 provides a nec-

2.3. REAL-TIME GNU/LINUX 45

essary and sufficient condition to verify the feasibility of the schedule [54, Chapter 2].
Thus, if it is not satisfied, no algorithm can produce a feasible schedule for that task
set. The EDF algorithm does not make any assumption about the periodicity of the
tasks; hence it can be used for scheduling periodic as well as aperiodic tasks [3]. The
dynamic priority assignment allows EDF to exploit the full CPU capacity, reaching up
to 100% of processor utilization [54, Chapter 2]. When the task set has a utilization
factor less than one, the residual fraction can be efficiently used to handle aperiodic
requests activated by external events. A benefit for using a fixed-priority algorithm like
RM, compared to a dynamic-priority like EDE is its simple implementation and sup-
port by the hardware and the RTOSes. EDF [54, Chapter 2] is superior in many aspects
[56], generating a lower number of context switches, thus causing less runtime over-
head. Furthermore, using a suitable kernel mechanism for time representation [57],
EDF can be implemented effectively in microprocessors for increased system utiliza-
tion and timely execution of hybrid task sets [58]. Finally, it is worth mentioning that
[31] an interesting feature of EDF during permanent overloads is that it automatically
performs a period rescaling, so tasks start behaving as they were executing at a lower
rate, proven in [59], while under fixed priority scheduling, a permanent overload con-

dition causes a complete blocking of the lower priority tasks.

In conclusion, it is worth mentioning that according to [3] there doesn't exist an optimal on-
line scheduling algorithm for multiple processors [60]. Therefore the guaranteed optimality
of a real-time scheduling algorithm in uniprocessor systems, i.e. EDF, doesn't hold in the
multiprocessor systems. Another notable fact is that usually in a realistic scenario, the task
set is not homogeneous, meaning that the above mentioned algorithms must be enhanced

with other approaches to handle non-homogeneous (hybrid) task sets.

2.3 Real-time GNU/Linux

Note: This section is largely based on [5].

GNU/Linux [20] was developed to be a general-purpose operating system based on Unix,
supporting multiple users. However, the objectives of such a system don’t line up with the
requirements of real-time tasks and operations. The main objective of general-purpose oper-
ating systems is the maximization of average throughput, at the expense of latency, while the

main objective of Real-Time Operating Systems is to place an upper bound on latency, at the

expense of average throughput. In general, two major real-time approaches were adopted in

46 CHAPTER 2. BACKGROUND IN REAL-TIME & ROS
GNU/Linux [20, 5]:

o The Co-Kernel Approach: In this approach, a real-time kernel is placed side-by-side
with Linux on the same hardware. In this approach belong the efforts by RTAI and
Xenomai. In this case, all device interrupts are processed by the co-kernel prior to
being processed by the standard kernel, in order for Linux not to postpone them. In this
way, deterministic response time is ensured on the real-time side. Also, usually specific
APIs are needed in order to develop a real-time application in systems following this

approach.

o The Fully Preemptible Kernel Approach: In this approach, the main objective is to
convert Linux itself into a full RTOS. This means that the Linux kernel’s internals are
changed, in order to allow real-time processes to run uninterrupted, without unpre-
dictable or unbounded activities caused by non real-time processes. The Real-Time
Linux (RTL) Collaborative Project’ is the most relevant open-source solution for this
option [21]. The RTL project is based on the PREEMPT_RT patch and aims to create a
predictable and deterministic environment turning the Linux kernel into a viable real-
time platform. The ultimate goal of the RTL project is to mainline the PREEMPT_RT
patch. The objective of this project is not to create an RTOS based on GNU/Linux, but
to provide real-time capabilities to the Linux kernel. The benefit of this approach, is the
utilization of existing Linux standard tools and libraries without the need for compat-
ibility with specific real-time APIs. Moreover, GNU/Linux has a strong community of
users and developers, which provides frequent OS updates with new technologies and

features [21]. For smaller projects this can be an issue, due to resource limitations [21].

With that in mind, the PREEMPT_RT patch was selected as the best candidate for the de-
velopment of the real-time application, in the context of this thesis. It is worth mentioning
that, like the famous Torvalds/Tanenbaum debate about the obsolescence of monolithic ker-
nels [22], in GNU/Linux there was a long series of debates about various aspects of Linux
kernel design choices. One of the most controversial topics was the question on how to add

real-time extensions to the Linux kernel [23].

2.3.1 The PREEMPT_RT Patch

A few years ago, a great endeavour started in the Linux community. Its ultimate goal was to

convert the Linux kernel into a Real-Time Operating System (RTOS), without the need of a

'https://wiki.linuxfoundation.org/realtime/rtl/start

https://wiki.linuxfoundation.org/realtime/rtl/start

2.3. REAL-TIME GNU/LINUX 47

microkernel [5]. For achieving this objective, structural changes to the kernel’s internals were
necessary. For instance, the ISRs should not unconditionally preempt processes running on

CPUs and unbounded priority inversion should not be allowed.

Ingo Molnar, a major contributor to the Linux kernel, started his own patch (one among
many efforts) against the mainline kernel in order to add real-time features [5]. He wanted
to enhance the Linux kernel with real-time features that would improve the user’s experience
[5]. Molnar started his RT patch and several other kernel developers joined his project. The
project matured and became a real-time alternative. Features developed in the patch have
been mainlined, including high-resolution timers, kernel lock validation, generic interrupts
for all architectures, robust futexes, and priority inheritance. Currently, the project is con-
tinued under the context of Real-Time Linux Collaborative Project. Head of maintaining
the latest release is Thomas Gleixner and head of maintaining past releases is Steven Rostedt.

Some of these features are described below.
2.3.1.1 Interrupts As Threads

In the Linux kernel, when a device performs an asynchronous event, it sends an interrupt

signal that preempts the CPU to perform the Interrupt Service Routine (ISR), for the device

that issued the interrupt [5]. Then, the ISR is executed at a higher priority than any user task,
and with interrupts disabled (or masked off) on the CPU. Thus, the ISR can be preempted
only by another interrupt, and only if the ISR re-enables the interrupts. Interrupt work is
normally divided into two parts: top half and bottom half. The top half is implemented by
the interrupt handler. The bottom half is implemented by softirgs, tasklets or work queues
initiated from the top half, or by the interrupt thread in case of threaded interrupt. A device
driver puts as little work as possible into the ISR and pushes other work to a tasklet, a softirq

or a work queue. These methods are analyzed below:

o kernel thread: A kernel thread is a thread residing in the Linux kernel. It can be awak-
ened by an ISR to handle any work left, so that the ISR can return quickly and allow the
process which was preempted, to resume. A kernel thread is similar to other threads in
Linux. For instance, it can be scheduled, have its priority changed or pinned to specific

CPUs, just to name a few operations.

o softirq: A softirq is a service routine that is performed after the return of an ISR and
before resuming the process that was interrupted [5, 61]. If too much work has been

queued in softirq context, the kernel wakes up a kernel thread (ksoftirgd) to finish it.

48 CHAPTER 2. BACKGROUND IN REAL-TIME & ROS

There’s been debate in the Linux kernel community as to what qualifies as “too much

work” [5, 62].

o tasklet: A tasklet has similarities with a softirq, in the sense that it also occurs after
an ISR and before resuming the interrupted process. A tasklet can run on only one
CPU at a time, while a softirq can run simultaneously on two separate CPUs [5, 62].
Tasklets are implemented internally, by a softirq. The softirq function that implements
tasklets, merely ensures that two tasklet functions are not running at the same time [5].
Consequently, tasklets are also executed by a ksoftirgd thread [5]. In a ksoftirqd thread,
softirqs are serviced in the order depicted in Figure 2.3.

o A work queue queues up work to be run in a worker kernel thread. Works are placed
in the work queue to be executed sequentially and the worker kernel thread provides
asynchronous execution of works from it. The work queue works in a FIFO manner,
which means that the worker thread calls the works in turn [5]. Work performed in
a work queue can block or be preempted, which may be desirable in situations where
resources are requested but are not available [63]. Their simplicity are a reason for

utilizing them rather than creating custom kernel threads.

Tasklet interface Raised by devices Kernel housekeeping
In kernel/softirq.c: IRQ_POLL since 4.4
const char * const softirg_to_name[NR_SOFTIRQS] = { r

‘ "HI".‘ "TIMER"J"NET X", "NET RX", "BLOCK", "BLOCK IOPOLL".‘
r'TASKLET"\ "SCHED", "HRTIMER",|"RCU"
% A

Gone since 4.1

Figure 2.3: Priority order of execution in ksoftirqd thread [4].

In the Linux kernel, ISRs, softirqs and tasklets compose the highest-priority entities. There-
fore when they are executed, they preempt the process which is running on the CPU. This
behavior however introduces high latencies in the system, thus the RT patch transforms all

of them into kernel threads.

2.3. REAL-TIME GNU/LINUX 49

Hard IRQs As Threads: A hard Interrupt Request (IRQ) mainly consists of an Interrupt

Service Routine (ISR). It starts when the interrupt preempts the CPU and lasts until the ISR

returns the CPU back to normal processing [5]. If an ISR preempts a high-priority process in
order to service a lower-priority work, interrupt inversion happens. In Figure 2.4, the latency
introduced by an ISR, which preempts a high-priority process, is illustrated [5]. The latency

includes the two arrows (the context switch latency), in addition to the ISR running time [5].

Hi Prio Task

Interrupt
Handler

Figure 2.4: Interrupt inversion [5].

It is evident that the hardware interrupt has to preempt the CPU. However, the RT patch min-
imizes the time of the interrupt inversion, by converting the interrupt handlers into kernel
threads [5]. In this way, when the interrupt is triggered, the ISR merely wakes up a kernel
thread that will run the registered function by the driver, instead of the ISR running the in-
terrupt handler itself [5]. This threaded interrupt handling by the RT patch, is illustrated in

Figure 2.5.

With the threaded interrupt handling, the preemption of the CPU when an interrupt is trig-
gered is still unavoidable. However, with this handling, there are only two actions performed
before giving the CPU to the previously running task; the interrupt lines are masked and the
interrupt service kernel thread is awakened [5]. Thus, if the awakened thread has higher pri-
ority than the preempted task, then it will preempt again the previously preempted task [5].

Otherwise, the previously preempted task will continue to run [5].

50 CHAPTER 2. BACKGROUND IN REAL-TIME & ROS

Hi Prio Task

Interrupt

-------- »
J:I wake_up(thread);

«

Interrupt
schedule() Handler

________ »
»

Figure 2.5: Threaded interrupt handling [5].

Softirqs As Threads: There are two places where software interrupts are run and preempt
the current thread, as illustrated in Figure 2.6 [61, 5]. One of them is at the end of the process-
ing for a hardware interrupt; it is common for interrupt handlers to raise softirgs, so it makes
sense (for latency and optimal cache use) to process them as soon as hardware interrupts can
be re-enabled [61]. The second option is when kernel code re-enables softirq processing [61].
The final result is that the accumulated softirq work (which can be substantial) is executed in
random intervals and preempts the process which happens to be running at the wrong time;

this was a major latency issue that needed to be addressed.

Until 3.0 kernel, the real-time patches have traditionally pushed all softirq processing into
separate threads, each with its own priority [5, 61]. This allowed, for example, the priority
of network softirq handling to be raised on systems where networking needed real-time re-
sponse; similarly, it could be lowered on systems where response to network events was less
critical [5]. However, the process of tuning the priorities of these threads could be a hard task.
Since 3.6.1-rtl patch, the handling of softirgs has changed again [61]. When a thread raises a
softirq, the specific interrupt in question (i.e. network receive processing) is remembered by
the kernel [61]. When the thread exits the context where software interrupts are disabled, that
particular softirq (and no others) will be run. This has the effect of minimizing softirq latency
(since softirgs are run as soon as possible) [61]. Equally important is the fact that it also ties

processing of softirgs to the processes that generate them [61]. For instance, a process rais-

2.3. REAL-TIME GNU/LINUX 51

system management
Hard_x RQ thread
‘a AW
raises softirq raises softirq

local_bh_enable() run_ksoftirqd()

\
do_current_softirgs() (RT) do goﬁirq()'
or - - ’
__do_softirq() |

exhausts timeslice?

Figure 2.6: Two paths by which softirgs run [4].

ing network-related softirgs will not be obliged to process another process’s timers. Thus, the
work is kept local, non-deterministic behaviors caused by running another process’s softirgs
are avoided, and softirq processing is run with the priority of the process which created the
work [61]. In conclusion, the PREEMPT_RT patch handles differently from the mainline
kernel the time the softirq runs, after there was a hardware interrupt (the first path), yet the
path triggered by the ksoftirgd re-enabling softirq processing (the second path) is mostly the

same between the patch and mainline.
2.3.1.2 Priority Inheritance

Since 2.6.18 kernel, priority inheritance is part of the mainline Linux kernel [5]. The first
entities in the RT patch incorporating the priority inheritance scheme, were the userland
fast mutexes (futex). Nowadays, the futex priority inheritance algorithm is the one used for
internal locks in the RT patch [5]. It should be noted that priority inversion isn’t a problem,
unless it is unbounded, which means that the time the process with higher priority must wait

for the blocked resource, is not predictable [5].

The classic example of unbounded priority inversion consists of three processes, A, B, and C,
where A has the highest priority and C has the lowest. C' starts first, acquires a lock and then
is preempted by A. A is trying to take the same lock that C' has, but must block and wait for C

52 CHAPTER 2. BACKGROUND IN REAL-TIME & ROS

to release it. A gives the CPU back to C' so that C' can finish its work that needed the lock. But
B comes along, preempts C, and runs for some unpredicted amount of time. Consequently,
B is not only preempting the lower-priority process C' but also the higher-priority process

A, since A was waiting on C. This is unbounded priority inversion, and it is illustrated in

Figure 2.7 [5].

blocked
A
A

;]

A

\ A
° I]
preempted preempted

Figure 2.7: A priority inversion example [6].

Generally, there are various methods to address priority inversion. The RT patch utilizes the
priority inheritance approach [5]. In the classic example illustrated in Figure 2.7, the priority
inheritance approach works this way: C starts first, acquires a lock and then is again pre-
empted by A, then A tries to take the same lock that C' has but must block and wait for C' to
release it. At this point, the priority inheritance algorithm takes place: C gets the maximum
priority of the processes waiting for the lock C' has, so in this example the priority of A. Con-
sequently, B cannot preempt C', when it wakes up and tries to. Then, C finishes its work that
needed the lock, releases the lock, then A acquires it (as the process with the highest prior-
ity), does its work, sleeps and then B runs as expected. The priority inheritance approach is

illustrated in Figure 2.8.

The priority inheritance algorithm, was first utilized in futexes, solving the problem of un-
bounded priority inversions [5]. The futex is a way to perform locking in user-space without
the need to enter the kernel, apart from cases of contention. It is similar to a mutex, except it
doesn’t make unnecessary system calls [5]. The futex, using shared memory and atomic oper-

ations (supported by hardware), acquires and releases mutex locks without the overhead of a

2.3. REAL-TIME GNU/LINUX 53

blocked sleeps

wakes up v

A

>

preempted releases lock

Figure 2.8: A priority inheritance example [6].

system call (in user-space) [5]. When contention takes place, for instance when a thread waits
for a mutex and needs to sleep, the thread releasing the mutex, notices the thread waiting for

the mutex and makes a system call to wake up the sleeping thread [5].

In order to solve the problem of a blocked orphaned futex (the owner of the futex didn’t release
it and was terminated), robust futex® was invented. In a nutshell, the robust futex has a layout
which the kernel reads and knows what futexes a thread may have on exit [64]. Thus, when a
thread terminates, the kernel can unlock its locked futexes and signal the waiting threads to
wake up [5]. In this way, applications don't need to bother whether a thread holding a futex
dies and locks up the rest of the application [5].

Futexes can be used among processes, apart from threads, provided they have a piece of shared
memory [5]. POSIX mutexes implement futexes in the latest distributions. More information

regarding futexes, can be found in [64, 65, 66, 67].
2.3.1.3 High-Resolution Timers

The most essential from all the characteristics that distinguish a real-time system, is the ability
to trigger an event at a specific time (otherwise the term real-time system has lost its meaning)
[5]. Until kernel 2.6, the smallest unit which represented time was the jiffy and the HZ global
variable, represented the hertz of jiffies [5]. The timers used, would create interrupts based

on an amount of jiffies, which in turn were depending on the value of HZ. For instance, if

’https://lwn.net/Articles/177111/

https://lwn.net/Articles/177111/

54 CHAPTER 2. BACKGROUND IN REAL-TIME & ROS

the HZ frequency was 1000, a jiffy had a resolution of 1 ms (1/1000) and therefore a timing
event could be scheduled at minimum after 1 ms. Moreover, when a jifty in time would pass,

a timer interrupt was needed to update the jifty variable [5].

In addition, the timer accounting was done in a timer wheel. The timing events would be
recorded into the timer wheel. The timer wheel consisted of layers of “buckets”. In the first
layer, each bucket represented a future jiffy, with the first layer having 256 buckets. For in-
stance, if an application needed to be notified 20 jiffies into the future, that event would be
recorded into the 20th bucket of the first layer. If the event would be more than 256 jiffies
into the future, it would go to the next layer of buckets, where each bucket represented 256
jiffies. If the event would be more than 65, 536 (256 x 256) jiffies, it would be placed to the
third layer of buckets. When the time would reach the last bucket of the first layer, the events
on the second layer would need to be rehashed into the first layer. The rehashing operation
required the interrupts to be disabled and had O(n) complexity (where n is the number of

items in the bucket for rehashing) [5].

Thomas Gleixner, a major contributor to the RT patch, tried to solve this issue with a new
design of timer infrastructure called hrtimers [5]. He realized that the timers placed into the
timer wheel belonged to two distinct types: action timers and timeout timers. Action timers
are timers that are expected to expire [5]. Applications use action timers regularly, in order
to be notified for events. If the action timer is placed in the upper layers of the timer wheel,
it will get rehashed again and again until it reaches the first layer. The complexity of adding /
removing a timer has O(1) for the timer wheel, however the rehashing has O(n) complexity.
Therefore, the timer wheel isn't efficient for action timers, since these timers require more

rehashings than additions / deletions.

On the other hand, timeout timers are ideal for the timer wheel [5]. Timeout timers are timers
that fire if an event was missed. For example, the network stack in Linux uses many timeout
timers. For instance, a timeout timer will fire when a packet didn't arrive in time, thus telling
the kernel that another acknowledgment should be sent [5]. These timers are added / removed
constantly, therefore these operations should have as low overhead as possible. Consequently,

the timer wheel is a good match for the timeout timers [5].

As aresult, hrtimers handled the action timers and the timeout timers remained in the timer
wheel [5]. The hrtimer infrastructure uses a red / black tree instead of hashes. Thus, the

complexity for adding / removing nodes becomes O(logn). The first node of the tree can be

2.4. REAL-TIME SCHEDULING IN GNU/LINUX 55

found in O(1) time, with the help of hooks introduced by the algorithm on the tree. However,
the major advantage of using this tree, is that the nodes in it are sorted, which translates to
no cost of rehashing, on the contrary to the timer wheel. The hrtimer infrastructure was
mainlined in Linux 2.6.18. After many improvements, the O(1) scheduler eventually was
replaced by the Completely Fair Scheduler (CES), which is the default process scheduler used
in GNU/Linux ever since kernel 2.6.23 [68]. More information regarding the hrtimers, can

be found in [69, 70, 5].

Detailed overview of characteristics and features of the PREEMPT_RT patch can be found in
[71, 72,73, 5], [74, Chapter 17] and [75, Chapter 16].

2.4 Real-time Scheduling in GNU/Linux

Note: This section is largely based on [76].

In Section 2.2, the real-time scheduling algorithms were briefly introduced. In this section,
this information is specialized in the context of GNU/Linux, as the ground base of the fol-

lowed implementation scheme.

As it has been stated in Subsubsection 2.3.1.3, since Linux 2.6.23, the default scheduler is the
Completely Fair Scheduler (CFS), which replaced the earlier O(1) scheduler. The scheduler is

the kernel component that decides which runnable thread will be executed by the CPU next.

In this section, the reader is assumed to be familiar with basic knowledge of the default process
priorities and simple system calls for changing scheduling policies, like nice(). If this is not the
case, a concise explanation of these matters can be found in [76]. The behavior of the Linux
scheduler with respect to a process depends on the process’s scheduling policy, also called the
scheduling class [76]. Apart from the normal policies, GNU/Linux provides also three real-

time scheduling policies, since kernel 3.14.

A preprocessor macro from the header <sched.h>> represents each policy: the macros are
SCHED_FIFO, SCHED_RR, SCHED_DEADLINE, SCHED_BATCH, SCHED_NORMAL and SCHED_-
IDLE. A static priority is assigned to every process, not to be confused with the nice value.
For normal (non real-time) processes, this priority is 0 [76]. For the real-time processes except
the deadline-classed ones, its range is [1 - 99]. Since the deadline class is a dynamic priority

policy, a static priority cannot apply to it, and therefore for consistency reasons this priority

*https://github.com/torvalds/linux/blob/master/include/uapi/linux/sched.h

https://github.com/torvalds/linux/blob/master/include/uapi/linux/sched.h

56 CHAPTER 2. BACKGROUND IN REAL-TIME & ROS
is 0 for the deadline-classed processes.

The Linux scheduler always selects the highest-priority process to run (i.e. the one with the
largest numerical static priority value) [76]. For example, if a process with a priority of 41
becomes runnable and a process is running with a static priority of 40, then the scheduler will
immediately preempt the running process and switch to the newly runnable process [76]. In
the same manner, if a process is running with a priority of 40, and a process with a priority of
39 becomes runnable, the scheduler will not run it until the process with priority 40 somehow
blocks (i.e. I/O or sleeps or waits for an event). Since normal processes have a static priority
of 0, any real-time process that becomes runnable will always preempt a normal process and

then run [76].

Moreover, the deadline-classed processes, since they have dynamic priorities, have higher
priority even than real-time classed processes like FIFO and RR. Although this section should
discuss only the real-time scheduling policies, the non real-time scheduling classes are briefly

described for completion.

2.4.1 The first in, first out policy

The first in, first out (FIFO) class is a real-time policy without timeslices. A FIFO-classed pro-
cess will continue running as long as no higher-priority real-time process becomes runnable

[76]. The FIFO class is represented by the macro SCHED_FIFO.

One of the characteristic features of the FIFO class, is its lack of timeslices, which distin-

guishes this class from the RR class (see Subsection 2.4.2). Since a FIFO-classed process has

real-time policy, once it becomes runnable, it will immediately preempt a normal process.
Generally, a runnable FIFO-classed process will always run if it’s the process with the highest
priority. However there are cases in which this doesn’t happen, for instance if this process
blocks, yields the processor in which it’s running or a real-time process with higher priority
becomes runnable [76]. The FIFO class can implement the Rate Monotonic (RM) algorithm
briefly introduced in Section 2.2. This is accomplished by assigning to each real-time FIFO-
classed process a static scheduling policy, inversely proportionate to its period time*. More

information regarding the FIFO class can be found in [76].

*https://elinux.org/images/f/fe/Using SCHED DEADLINE.pdf

https://elinux.org/images/f/fe/Using_SCHED_DEADLINE.pdf

2.4. REAL-TIME SCHEDULING IN GNU/LINUX 57

2.4.2 'The round-robin policy

The round-robin (RR) class is almost the same with the FIFO class, except that it imposes
additional rules in the case of processes with the same priority. This class is represented by
the SCHED_RR macro. The distinctive feature the RR class has, is the timeslice. When an RR-
classed process exhausts its timeslice, another process with the same priority is scheduled. In
this way, RR-classed processes of a given priority are scheduled round-robin among them-
selves. If there is only one process at a given priority, the RR class is identical to the FIFO

class. In such a case, when its timeslice expires, the process simply resumes execution [76].

The decision whether to use SCHED_FIFO or SCHED_RR is entirely dependent on the intra-
priority process behavior. The RR class’s timeslices are relevant only among same-priority
processes. FIFO-classed processes will run uninterruptible, while RR-classed processes with
the same priority will schedule among themselves. A lower-priority process will never run if

a higher-priority process exists, whichever policy is chosen [76].

2.4.3 The deadline policy

The deadline class is inherently different from the other two real-time classes (FIFO & RR).
The static priorities of the processes in this class are 0, since the algorithm this class represents,
assigns dynamic priorities to processes. The implemented algorithm is EDF (briefly described
in Section 2.2), complemented by Constant Bandwidth Server (CBS) [77, 78, 79] along with
Greedy Reclamation of Unused Bandwidth (GRUB) algorithms [80, 81, 82, 83].

The CBS algorithm assigns scheduling deadlines to tasks so that each task runs for at most its
runtime every period, avoiding any interference between different tasks (temporal isolation).
The GRUB algorithm allows tasks to consume more than their reserved runtime, up to a max-
imum fraction of the CPU time (so minimum spare CPU time exists for execution of other
tasks), provided this doesn’t break the guarantees of other tasks. This class is represented by
the SCHED_DEADLINE macro. It was developed by Evidence s.r.1.” in collaboration with ReTiS
Lab of Scuola SantAnna within the ACTORS® European project and it was incorporated in

the mainline kernel, since version 3.14 [31].

In a nutshell, a process in this class is defined with three scheduling parameters (defined in

nanoseconds):

*http://www.evidence.eu.com/sched deadline.html
Shttp://www.actors-project.eu/

http://www.evidence.eu.com/sched_deadline.html
http://www.actors-project.eu/

58 CHAPTER 2. BACKGROUND IN REAL-TIME ¢ ROS
e Runtime
o Deadline
o Period

These parameters (Runtime, Deadline, Period) do not necessarily correspond to the parame-

ters defined in Subsection 2.1.1 (r, C', D, T'); common practice is to set Runtime to something

bigger than the average computation time (or worst-case execution time for hard real-time
tasks) C, Deadline to the relative deadline D, and Period to the period of the task, 7". Thus,
for this scheduling class, the scheduling parameters are presented in Figure 2.9:

Timing Diagram
I >
D
< ¥ Period
e T TR >
I >
4 Deadline A
>
ri

Runtime

Figure 2.9: The usual task model of a real-time task defined with the Linux deadline-class pa-
rameters.

If the Period is specified as 0, then it is made the same as Deadline. In general the kernel

requires the following inequalities to hold:

Runtime < Deadline < Period

In addition, under the current implementation, all of the parameter values must be at least
1024, which is just over one microsecond (there cannot be a resolution of less than a mi-
crosecond in these parameters), and less than 2%3. If any of the above mentioned checks fails,

the process will receive an error by the kernel [84].

2.4. REAL-TIME SCHEDULING IN GNU/LINUX 59

To ensure deadline scheduling guarantees, the kernel must prevent situations where the set of
deadline-classed processes is not feasible (schedulable) within the given constraints. The ker-
nel thus performs an admittance test when setting or changing Deadline policy and attributes.
This admission test calculates whether the change is feasible and if it is not, the process will

receive an error by the kernel [84].

For example, it is required (but not necessarily sufficient) for the total utilization to be less than
or equal to the total number of CPUs available, where that process’s utilization is its Runtime
divided by its Period (since each process can maximally run for Runtime per Period). More
information about this class can be found in [85, 86, 87, 88, 89, 90, 91, 92, 84], and in the

material below” *°.

2.44 The normal policy

The normal policy is the standard scheduling policy and the default non real-time class [76].
This policy is represented by SCHED_NORMAL. All normal-classed processes have a static pri-
ority of 0 (unrelated with their nice value). Consequently, any runnable real-time (FIFO, RR,
Deadline) classed process will preempt a running normal-classed process. Processes with

normal policy, are scheduled based on their nice value [76].

2.4.5 The batch policy

This policy is represented by SCHED_BATCH. It’s the complete opposite of the real-time poli-
cies: processes in this class will run only when there are no other runnable processes on the
system, even if every other process has exhausted its timeslice [76]. This behavior is different
from the behavior of processes with the largest nice values (i.e. the lowest-priority processes)
in that eventually such processes will run, as the higher priority processes will eventually ex-

haust their timeslices [76].

2.4.6 Theidle policy

This policy is represented by SCHED_IDLE. It is a policy for scheduling low priority jobs. All
idle-classed processes have a static priority of 0 (unrelated with their nice value). This policy
is intended for running processes at extremely low priority (lower even than a +19 nice value

with the normal or batch policies) [84]. It was mainlined in kernel version 2.6.23.

"https://ti.tuwien.ac.at/ecs/teaching/courses/brds/slides-1/rt-linux
$http://retis.santannapisa.it/ luca/TuToR/

60 CHAPTER 2. BACKGROUND IN REAL-TIME & ROS

More technical information on the scheduling policies in Linux, can be found in [84, 93].

2.5 Robot Operating System (ROS)

Note: This section is largely based on [7]. A basic definition of ROS, is provided in the ROS
Wiki:

ROS is an open-source, meta-operating system for your robot. It provides the ser-
vices you would expect from an operating system, including hardware abstraction,
low-level device control, implementation of commonly-used functionality, message-
passing between processes, and package management. It also provides tools and
libraries for obtaining, building, writing, and running code across multiple com-

puters’.

In other words, ROS is a robot software platform that provides numerous development tools

and libraries for easy development of robot applications [7].

ROS is a meta-operating system [7]. This term describes a system that provides functionali-
ties like process management, scheduling, monitoring, memory management, error handling,
communication primitives and operability by utilizing a virtualization layer among applica-
tions and distributed computing platforms, while running on top of a traditional operating

system [7]. This type of software is also called middleware or software framework.

ROS is officially supported to run on top of Ubuntu or Debian [7]. In addition, it has its own
application package management system and package conflict resolution. That said, the ver-
satility and plentitude of the different robot application programs developed and maintained
by the ROS community, have created an ecosystem that provides distributed packages peer-
reviewed and peer-developed. In Figure 2.10, ROS as a meta-operating system is illustrated,
controlling robots and sensors with a hardware abstraction layer and offering the tools and

libraries for developing robot applications based on existing traditional operating systems [7].

2.5.1 Components of ROS

As shown in Figure 2.11'°, ROS consists of many components including [7]:

*https://www.ros.org/
Yhttps://wiki.ros.org/APIs

https://www.ros.org/
https://wiki.ros.org/APIs

2.5. ROBOT OPERATING SYSTEM (ROS) 61

& Wi (#ETos)
6 &Em Windows 10 mbed
fegorc ONX SOFTWARE SYSTEMS %
@ubuntu :)))/OCtO

debian /\ PROIECT .
Aarch. _ = ot ﬁ VxWﬁ’ks
4% CentOS L INUX osxecapitan WIND RIVER

Device Drivers, Libraries, Debugging Tools, Message Passing
Execution Tools, Compile Tools, Installer, Package Create and Release

ROBOT <> Meta Operating System <€=» SENSOR

APP

Figure 2.10: The ROS Meta-Operating System [7].

o A client library layer to support various programming languages.

o A hardware interface layer for hardware control (also called Hardware Abstraction

Layer or HAL).

« A communication layer enabling data transmission between different components in

the ROS environment.
« The Robotics Application Framework which aids at building Robotics Applications.

« The Robotics Applications, service applications which aid in developing custom appli-

cations in ROS.
o Simulation tools which can simulate robots in virtual environments.

« Software Development Tools which facilitate the development and debugging of appli-

cations.

2.5.2 Basic ROS Terminology
In this subsection fundamental ROS terms are briefly described''.

Master: The master'? is the main component of the ROS environment. It behaves like a name

https://wiki.ros.org/R0OS/Concepts
2https://wiki.ros.org/Master

https://wiki.ros.org/ROS/Concepts
https://wiki.ros.org/Master

62 CHAPTER 2. BACKGROUND IN REAL-TIME & ROS

. - & .
Client [rosepp ruspy J L roslisp { rosjava } [roslibjs J
Layer S N T S e R
RObOtiCS [Movelt! J L navigatioin] { executive smach ‘ [descartes J [rospeex J
Application)]

p p [teleop pkgs rocon } { mapviz { people } [ar track }

5 dynamic reconfigure ruhol localization robot pose ekf ‘ Industrial core robot web tools ros realtime mavros

Robot

obotics . - -
App“[ation [1f robot state pubhsh&f] [robot model [ros control J [calibration } octomap mapping J
Framework Y)

{ vision opencv image pipeline } { laser pipeline | { perception pcl] [laser filters } | ecto W
Communication { common msgs rosbag J [actionlib | L pluginlib J [rostopic J rosservice J
Layer { rosnode roslaunch J [rosparam | [rosmaster] [rosout] ros console]
1\ [
Hardwa re camera drivers GPS/IMU drivers] [joystick drivers | [range finder drivers] [3d sensor drivers } | diagnostics }
Interface wef : \‘ - .
Layer audio common s'é)r:g{(g;i%:ss] [pcwer supply drivers | (rosserial } [ethercat drivers } L ros canopen 1
Software
N ((

Develo pment L RViz qt] [wstool ‘ [rospack] l catkin } | rosdep W
Tools

i i azebo ros pkgs stage ros

imulation 9 pkas | | g

Figure 2.11: ROS Components [7].

server for the node to node connections and communications. It is responsible for book-
keeping the address, name, status and other information of topics, services, nodes and actions.
Without the master, the connection among nodes and the communication via mechanisms
like topics, services and actions, is impossible. The master communicates with slaves using
the XML-RPC (XML-Remote Procedure Call) protocol [94]. This is an HTTP-based protocol
that does not maintain connectivity, allowing it to be lightweight, therefore making it suitable

for robotic applications. It can be scaled to tenths or even hundreds of nodes [7].

Node: A node' is in ROS what is a process in a traditional UNIX operating system; a process
that performs computation. It is typical in ROS, every node to have a specific task to ac-
complish. For example in a robot control system, one node will control a laser range-finder,
one will control the wheel motors, another will perform localization and so on. Their use
is important in ROS, as they provide modularity and fault tolerance. If one fails, the others
will continue to work. A master is also a node. However, if the master crashes, the ROS
environment can not work properly, as previously described. Upon startup, a node registers
information such as name, message type, URI address and port number of the node. The
registered node can act as a publisher, subscriber, server, client, action server, action client
or a mixture of the above based on the registered information. Lastly, nodes can exchange

messages using topics and services [7].

Bhttps://wiki.ros.org/Nodes

https://wiki.ros.org/Nodes

2.5. ROBOT OPERATING SYSTEM (ROS) 63

Package: ROS software is organized in packages'*. A package may contain multiple ROS
nodes, custom (independent of ROS) libraries, third-party developed libraries, configuration
files, which constitute a coherent module [7]. The goal of these packages is to provide this
useful functionality in a modular manner so that software can be easily reused. Packages
should have enough functionality in them, making them reusable by other software but not

too much making them heavyweight.

Message: The nodes exchange data via messages'®. A message is a simple data structure,
comprising of typed fields. Standard primitive types (integer, boolean, string, floating point,
etc.) are supported, as are arrays of primitive types and there is no limitation in the number

of fields defined [7].

Topic: Topics'® are named buses over which nodes exchange messages [7]. The standard
process for using topics is as follows: the publisher node first registers its topic with the master
and then starts publishing messages on a topic. Subscriber nodes that want to receive the
topic, request from the master to subscribe them to the topic with the specific name. The
specified name plays an important role in this process, as there cannot be multiple topics
with the same name. Based on this information, the subscriber node directly connects to the

publisher node to exchange messages using topics [7].

Publish and Publisher: The term publish means the action of transmitting relative to the topic
messages [7]. The publisher node communicates with the master and registers its information
and topic. Then, it sends a message to connected subscriber nodes that are interested in the
same topic [7]. The publisher is declared in a node. A node can have many publishers that

publish to the same (or different) topic [7].

Subscribe and Subscriber: The term subscribe means the action of receiving relative to the
topic messages [7]. The subscriber node communicates with the master and registers its infor-
mation and topic [7]. Then, receives information from the master related to the publisher that
publishes to the relative topic [7]. Based on the received publisher information, the subscriber
node directly connects to the publisher node and receives messages from the connected pub-
lisher node [7]. The subscriber is declared in a node. A node can have many subscribers that

subscribe to the same (or different) topic [7].

“https://wiki.ros.org/Packages
https://wiki.ros.org/Messages
https://wiki.ros.org/Topics

https://wiki.ros.org/Packages
https://wiki.ros.org/Messages
https://wiki.ros.org/Topics

64 CHAPTER 2. BACKGROUND IN REAL-TIME & ROS

Service: A service'” provides a synchronous bidirectional communication between the service
client, which requests a service, and the service server, which is responsible for responding to

requests [7].

Service Server: A service server receives a request as an input and transmits a response as an

output [7]. Both request and response are in the form of messages [7].

Service Client: A service client requests a service to the server and receives a response [7].

Both request and response are in the form of messages [7].

Action: The action'® is another message communication method used for asynchronous bidi-
rectional communication [7]. Action is used where there is some time for providing a re-
sponse after receiving a request and intermediate feedback responses are provided until the
result is returned [7]. The main difference with services is that actions are representing asyn-
chronous events and processes, whilst services are more close to the traditional definition of

a server, communicating in a synchronous manner.

Action Server: An action server receives a goal from an action client and responds with a
result and/or feedback [7]. The process the server follows can be programmatically defined.

The goal, result and feedback are all in the form of messages.

Action Client: An action client transmits a goal to a server and receives a result and/or feed-

back [7]. The goal, result and feedback are all in the form of messages.

Parameter: A parameter'” in ROS refers to parameters used by nodes [7]. The parameters
have default values, which can be modified if necessary [7]. These parameters are stored in
the memory of the parameter server node, and are retrieved or modified with communica-
tion with this server, via the master [7]. Since the concept of parameters is not designed for
high-performance or real-time performance, it is best used for static, non-binary data such

as configuration parameters.
Parameter Server:

The Parameter Server is loaded in the master, and is responsible for storing parameters, which

nodes use (read or modify) [7].

Yhttps://wiki.ros.org/Services
Bhttps://wiki.ros.org/actionlib
Yhttps://wiki.ros.org/ParameterServer

https://wiki.ros.org/Services
https://wiki.ros.org/actionlib
https://wiki.ros.org/Parameter Server

2.5. ROBOT OPERATING SYSTEM (ROS) 65

2.5.3 Message Communication in ROS

The message communication mechanisms in ROS are presented here with more details, since
they will be useful for understanding the design decisions made in this work. The differ-
ent message communication primitives are illustrated in Figure 2.12 and a summary of their

differences is presented in Table 2.2.

Message

(Topics, Services, Actions, Parameters)
Node 1 Node 2

Topic
P) ‘:}

Service Request

S Service Response ‘:
:} Action Goal ‘

Action Feedback

A

A 4

¥

Action Result

\ 4

Parameters | Parameters

[
Write Read

Figure 2.12: Message Communication between Nodes [7].

Table 2.2: Comparison of the Topic, Server, and Action [7].

Type Features Direction Description

Topic ~ Asynchronous Unidirectional Used when exchanging data continuously

Service Synchronous Bi-directional Used when request processing requests and
responds current states

Action Asynchronous Bi-directional Used when it is difficult to use the service
due to long response times after the request
or when an intermediate feedback value is
needed

2.5.3.1 Topic

The topic message communication uses the same type of message for both publisher and sub-

scriber as shown in Figure 2.13 [7]. The publisher node registers its information and topic to

66 CHAPTER 2. BACKGROUND IN REAL-TIME & ROS

the master and publishes its messages. The subscriber node receives the information of the
publisher node corresponding to the specific topic name registered in the master. Based on
this information, the subscriber node directly connects to the publisher node to receive the

messages published [7].

> - - Topic
N

. LiDAR sensor data in
LiDAR Sensor 1 ;qerSensor messages Amcl

Publisher Subscriber

- (="
N *Topic “"\.f _ Publisher Topic Robot A
ye Distance Sensor
(Obstacle x, y)

Publisher Subscriber Robot B

Figure 2.13: Topic Message Communication [7].

For example, the node responsible for controlling the LiDAR sensor?’, retrieves the scans
and publishes them in the form of messages (in this case the LaserScan type of messages®'),
typically in the topic /scan. Then the node that wants these messages, e.g. for localization
like amcl*?, will subscribe to the topic and after it receives the proper information from the

master, it connects to the publisher node and receives the messages.

Since topics are unidirectional and remain connected (TCP connection is used under the
hood) to continuously send or receive messages, they are useful in situations which require
publishing messages periodically [7]. A message from a publisher can be received my many
subscribers and vice versa [7]. Connections with multiple publishers / subscribers can be

created too [7].
2.5.3.2 Service

The service message communication is a synchronous and bidirectional communication be-
tween the service client, requesting a service, and the service server, responding to the request
as shown in Figure 2.14 [7]. The topic, is an asynchronous method which is advantageous on

periodical data transmission since it is unidirectional and creates and keeps a connection [7].

*https://en.wikipedia.org/wiki/Lidar
2'https://docs.ros.org/melodic/api/sensor msgs/html/msg/LaserScan.html
2https://wiki.ros.org/amcl

https://en.wikipedia.org/wiki/Lidar
https://docs.ros.org/melodic/api/sensor_msgs/html/msg/LaserScan.html
https://wiki.ros.org/amcl

2.5. ROBOT OPERATING SYSTEM (ROS) 67

Service Request

Hey Server,
What time is it now?

Server Client

Let me see...
It’s 12 O’clock! ‘

Respond to Service

- —_—

) "‘..

Server Client

Figure 2.14: Service Message Communication [7].

On the other hand, in ROS there is a need for synchronous communication which uses re-
quest and response, much like a traditional DNS server and client [7]. ROS satisfies this need
by providing a synchronized message communication method called service [7]. A service
consists of a service server that responds to a received request and a service client that sends
requests and receives responses. A service implements one time message communication,
which differentiates it from a topic [7]. Consequently, when the request and response of a

service are completed, the connection between the two nodes is lost [7].

A typical scenario for using services, is a ROS node that wants to start another node, so it
sends a service request to a service server (similar to a daemon in a UNIX OS) which is active
and in its turn wakes up the requested node. As an example, a client sends a request for
the current time to a server, as shown in Figure 2.14 [7]. Then, the server will check the
time and respond to the client [7]. After the bidirectional communication, connection is lost
[7]. Usually there shouldn’t be a delay in the server’s response. The decision for utilizing
the service mechanism over other mechanisms, leads to deciding whether there should be
synchronous communication between two nodes in the context of the well-known client-

server communication model.
2.5.3.3 Action

The action message communication is an asynchronous and bidirectional communication be-

tween the action client requesting a goal and the action server responding to the goal as shown

in Figure 2.15.

68 CHAPTER 2. BACKGROUND IN REAL-TIME & ROS

Hey Server,
Do some chores for me

Action Goal
' | N
‘ 4 Gl -
¥ Washing .
Server Client

Dishes

Action Feedback

— | S\
= f
Server Client

Action Result

Work done!”

— S L
Server Client

Figure 2.15: Action Message Communication [7].

Actions are used when a requested goal takes a long time to be completed, therefore progress
feedback is necessary. It is similar to a service, but the key difference between them is the
asynchronicity which characterizes the actions. The message transmission method is similar

to the asynchronous topic [7].

For example, as shown in Figure 2.15, a client sets home-cleaning tasks as a goal to the server.
Then, the server informs the user of the progress of these tasks in the form of feedback, and
finally sends the final result to the client [7]. Unlike the service, the action is often used to
command complex robot tasks such as canceling transmitted goal while the operation is in
progress. In addition, a typical scenario in which actions are used in ROS is the package
responsible for moving the robot, namely the move_base®*, which provides a node that im-
plements an action server: it accepts a new goal in the form of a new desired pose of the robot,
sends feedback of the current pose of the robot and returns the result pose if the goal pose

was accomplished.

Nodes in ROS can have multiple publishers, subcribers, service clients / servers, action clients

/ servers and communicate with other nodes [7]. In order for the nodes to exchange mes-

Zhttps://wiki.ros.org/move base

https://wiki.ros.org/move_base

2.5. ROBOT OPERATING SYSTEM (ROS) 69

sages among themselves, the master is necessary for establishing a connection, as shown in

Figure 2.16 [7].

Node Info

Connection Info

Passing Messages
(Topic, Service, Action)

Figure 2.16: Message Communication [7].

A master behaves similarly to a name server as it keeps names, URI addresses, port numbers
and parameters of all the nodes, topics, services and actions [7]. Nodes register their own
information to the master as soon as they are launched, and receive relative information from
the master for other nodes [7]. Then, each node connects to each other to perform message

communication [7].

70

Background in EtherCAT

Technology is a useful servant but a

dangerous master.

Christian Lous Lange

In this chapter, the key theoretical elements for the understanding of this work are provided.
At first, the architecture and functionality of EtherCAT, a central component of this project,
is described. This is followed by an analysis of EtherCAT masters in GNU/Linux, focusing on

their virtues and drawbacks.

3.1 EtherCAT Technology

Note: This section is largely based on [16, 17].

3.1.1 EtherCAT characteristics

Ethernet for Control Automation Technology (EtherCAT)' belongs to the Ethernet based
fieldbus systems category. Apart from leveraging Ethernet technology, its main features in-

clude short cycle times and low communication jitters [1, Chapter 38].

EtherCAT networks adopt the master/slave approach and form ring topologies® at the physical
level [16, Chapter 18]. The master/slave approach implies that there is only one master in an
EtherCAT network [16, Chapter 18]. A characteristic example of EtherCAT’s utilization is

the connection of control units (e.g PLCs) to decentralized peripherals (e.g. sensors, actu-

'https://www.ethercat.org/default.htm
*https://en.wikipedia.org/w/index.php?title=Ring network&oldid=887240057

71

https://www.ethercat.org/default.htm
https://en.wikipedia.org/w/index.php?title=Ring_network&oldid=887240057

72 CHAPTER 3. BACKGROUND IN ETHERCAT

ators) [16, Chapter 18]. Another feature of EtherCAT is its interoperability with traditional
(e.g. TCP/IP stack) as well as other real-time Ethernet (RTE) protocols, like Ethernet/IP and
PROFINET [16, Chapter 18].

In an EtherCAT network, the EtherCAT traffic is controlled by the master node [16, Chap-
ter 18]. The master initializes the network for data transmission, by preparing the data ex-
changes with the slaves [16, Chapter 18]. Each slave processes the received frame in order
to extract/insert data from/into it [16, Chapter 18]. Then, the frame is forwarded to the next

slave in the ring, as illustrated in Figure 3.1 [16, Chapter 18].

Slave 1 Slave N
——— i ——— ——— - ' ——
e — —
e o o
| I
——

Maste T
L ;

Ethernet HDR |HDR 1| Data 1 |HDR 2| Data 2 | s00 |HDR nl Data n I CRC | S o=
' ' i ' '
' ' H ' '

5> >
<< ¥<<< ‘<<<'<<%<Z
SIS

e

|
L |

A M
N
A

|

i Datagram 1 | Datagram 2 ' i Datagramn |

Figure 3.1: EtherCAT typical topology, with the on-the-fly frame processing [1, Chapter 38].

3.1.2 Physical Layer

A distinctive feature of EtherCAT, is its famous processing on-the-fly, done in the data link
layer of the slaves. This feature ensures high performance, however, in order to achieve this,
tasks like frame processing and relaying need to happen in parallel in hardware. Conse-
quently, specialized hardware called EtherCAT Slave Controllers (ESCs) is used on the slave’s
side. The communication is accomplished by the frame passing through a slave with only a
minimum delay, and while passing, the slave hardware (ESC) reads the data that is addressed
to it and writes a response [16, Chapter 18]. The frame continues to the next slave which

reads and writes in the same way, and so on until the frame has passed the last slave [16,

3.1. ETHERCAT TECHNOLOGY 73

Chapter 18]. At this point the frame turns around and takes the same way back as it came’
(ring topology) [16, Chapter 18]. When received, the master reads the entire frame and takes

actions according to the slaves” information [16, Chapter 18].

The EtherCAT protocol can be used in many network topologies (e.g. star), although the
one-frame/many-slaves concept requires the topology to be reducible to a logical line (e.g. a
simple line, or a more complex tree) [16, Chapter 18]. The key to this concept is that a frame
can only travel one way through all slaves, in a well-defined order. Apart from Ethernet,
EtherCAT supports EBUS as a physical layer, however, in this thesis the Ethernet physical
layer is used. More information regarding the Physical Layer of EtherCAT can be found in
[16, Chapter 18].

3.1.3 Data Link Layer

The design of the Data Link Layer of EtherCAT aimed to leverage the available Ethernet band-

with as well as to achieve qualitative communication between master and slaves.

Note: The terms octet and byte are used interchangeably. The reason there are two terms with
the same meaning (an entity with 8 bits of data), is that the former is clearly describing an
entity with 8 bits of data, while the latter historically has been used to describe entities with

variable amount of bits®.
3.1.3.1 Frame Format

In an EtherCAT network, the propagated frames, are standard Ethernet frames with Ether-
CAT frames encapsulated in the data field (payload). As a result, the following Ethernet fields
are also included (Figure 3.2):

o Preamble (8 bytes)®.
o Destination and source MAC addresses (6 bytes each).
o EtherType (2 bytes, set to 0x88A4 to distinguish them from non-EtherCAT frames).

 Frame check sequence (FCS, 32 bits).

*although through a different wire, in the case of full-duplex Ethernet technology.

*https://en.wikipedia.org/w/index.php?title=Byte&0ol1did=896613432

*“An Ethernet frame starts with a seven-octet preamble and one-octet start frame delimiter (SFD). The
preamble consists of a 56-bit (seven-byte) pattern of alternating 1 and 0 bits, allowing devices on the network to
easily synchronize their receiver clocks, providing bit-level synchronization. It is followed by the SFD to provide
byte-level synchronization and to mark a new incoming frame.” [95].

https://en.wikipedia.org/w/index.php?title=Byte&oldid=896613432

74 CHAPTER 3. BACKGROUND IN ETHERCAT
o Inter-frame gap.

The EtherCAT frame, encapsulated in the payload of the Ethernet frame, contains:
o An EtherCAT frame header (2 bytes).

 One or more EtherCAT datagrams.

64-1522 Byte
A
s A
Ethernet frame Ethernet Header | Ethernet Data | FCS
48 bit 48 bit 16 bit 46-1500 Byte 32 bit
P EtherType
Basic EtherCAT frame | Destination | Source 0x88A4 | EtherCAT Data | FCS I
6 Byte 6 Byte 2 Byte 2 Byte 44-1498 Byte
) e EtherType
Basic EtherCAT frame Destination Source OxBBA4 EtherCAT Header Datagrams FCS
EtherCAT header
14 Byte 11 bit 1 bit 4 bit 44*-1498 Byte 4 Byte
| Ethernet header l Length I Res. |Type 1...n Datagrams I FCS—I
b, b, by
b, = 12-1498 Byte " - "
SUM(bs, by, ..., by) < 1498 Byte 1% EtherCAT Datagram I 2™ ... l | n"' EtherCAT Datagram |

Figure 3.2: EtherCAT Frame Structure [8].

The EtherCAT frames are concatenated, without intermediate gaps between them [16, Chap-
ter 18]. With the last EtherCAT frame, the payload of the Ethernet frame is completed, unless
its total size is 63 octets or less [16, Chapter 18]. In such a case, the payload is padded with
extra 0 bits, so as to have 64 octets, as required by the Ethernet specifications [16, Chapter 18].
The last filed of the Ethernet frame is CRC, which is necessary for checking the integrity of
the frame (from the master and the slaves) [16, Chapter 18].

3.1.3.2 EtherCAT datagram Format
As shown in Figure 3.3, each EtherCAT datagram consists of the following fields:

o The Datagram Header, which has valuable information for the EtherCAT datagram,
including:
— 'The type of the service command (Cmd).
— The address of the slave, to which the datagram is targeted to (Address).

— 'The length of the EtherCAT datagram field Data (Len).

3.1. ETHERCAT TECHNOLOGY 75

- A bit showing if there are more EtherCAT datagrams after the current datagram

(M).

o The Data field, which can have variable-sized data (0 to 1486 bytes) and includes the

information to be exchanged.

o The working counter (WKC), which is used for checking if a command has been suc-

cessfully executed by the relevant slaves.

* add 1-32 padding bytes if Ethernet frame is shorter than
64 Bytes (Ethernet Header+Ethernet Data+FCS)

Ethernet header Ethernet Data FCS
EtherCAT header '
14 Byte 11 bit 1 bit 4 bit 44*-1498 Byte 4 Byte
Ethernet header | Length | Res. | Type 1...n Datagrams FCS
= >
1% EtherCAT Datagram 2 . n" EtherCAT Datagram

10 Byte 0-1486 Byte 2 Byte

Working Counter
Datagram Header Data
9 (WKC)
8 Bit 8 Bit 32 Bit 11 Bit 3 Bit 1 1 16 Bit
Cmd ldx Address Len R C | M| IRQ
0 8 16 48 59 62 |63 |64 79
More EtherCAT Datagrams
16 Bit 16 Bit
Position Offset -4 Position Addressing

Address Offset -« Node Addressing

Logical Address <& |ogical Addressing

Figure 3.3: EtherCAT datagram structure [9].

Regarding the Cmd field, there exist different types of commands, which can be used to carry
out highly optimized read and write operations on slaves [16, Chapter 18]. Generally speak-
ing, they can be grouped according to the access type [16, Chapter 18]:

« Read (RD) is used by the master to read memory areas or registers from slave devices

76 CHAPTER 3. BACKGROUND IN ETHERCAT

[16, Chapter 18].

o Write (WR) is used by the master to write to memory areas or registers of slave devices

[16, Chapter 18].

o Read/Write (RW) is used by the master to carry out both a read and a write operation
at the same time; in this case, reading is performed by the slave before writing [16,

Chapter 18].

o Read/Multiple Write (RMW) is used by the master to carry out a read operation to
the addressed slave and a write operation to all the other slaves on the network [16,

Chapter 18]. This type of command isn't so common.

Further details on the service commands and the EtherCAT datagram internals can be found

in [16, Chapter 18],[1, Chapter 38] and [9].
3.1.3.3 SyncManager

In order to exchange data, the master and the application running on the slave access the
ESC’s memory [16, Chapter 18]. As a result, concurrency problems may arise if simultaneous
access is performed without restriction [16, Chapter 18]. To solve this problem, EtherCAT
provides the mechanism of SyncManagers [16, Chapter 18]. They are implemented in the
ESC hardware and are configured by the master [16, Chapter 18].

Both the communication direction and the communication mode can be chosen [16, Chap-
ter 18]. Each SyncManager uses a buffer in the local memory area for exchanging data and
transparently controls all accesses to the buffer [16, Chapter 18]. The buffer changes take
effect immediately after the reception of the end of the frame [16, Chapter 18].

In a nutshell, SyncManagers support two communication modes:

1. Buffered Mode (or Process Data): This mode is real-time capable [16, Chapter 18]. In
this mode, the producer and the master operations are independent, which means that
each entity can access the buffer any time without causing concurrency problems [16,
Chapter 18]. The consumer is always provided with the newest data [16, Chapter 18].
In case data are written to the buffer faster than they are read, old data are discarded
[16, Chapter 18]. Cyclic process data exchange constitutes the main use of this mode
[16, Chapter 18]. This mode is also known as 3-buffer mode, since three buffers of

identical size are used [16, Chapter 18]. The first is used by the producer (for writing),

3.1. ETHERCAT TECHNOLOGY 77

the second by the consumer (for reading) and the third is used for intermediate storage

[16, Chapter 18].

2. Mailbox Mode: The Mailbox is used for sending larger pieces of data [16, Chapter 18].
They are guaranteed to reach their destination, however real-time guarantees cannot be
given [16, Chapter 18]. In this mode, a handshake mechanism takes place prior to data
exchange, in order to prevent concurrency issues [16, Chapter 18]. For each mailbox,
one buffer is used [16, Chapter 18]. The mailbox mode is typically used for application
layer (AL) protocols, where the time required to exchange information is usually not

very important [16, Chapter 18].

More information for the SyncManagers can be found in [16, Chapter 18] and [1, Chapter 38].

3.1.4 Application Layer (AL)

The Application Layer of EtherCAT is implemented as a state machine, in which the states
describe the behavior of the device and the transitions between states are triggered by events
[16, Chapter 18]. In each state, different functions are called in the EtherCAT slave [16, Chap-
ter 18]. Similarly, in each state different commands should be sent to the slave by the master

[16, Chapter 18].

The state machine is controlled and monitored using some registers included in the slave [16,
Chapter 18]. The master controls the state transitions by writing to the AL control register, thus
creating the corresponding events [16, Chapter 18]. In turn, the slave updates information
about its current state by writing in the AL status register [16, Chapter 18]. In this way, error
notification is performed via error codes written in this register [16, Chapter 18]. As Figure 3.4

shows, an EtherCAT slave supports four basic states and one optional:

o Init: EtherCAT slaves enter this state at power-on. In this situation, the master initial-

izes the SyncManager channels for mailbox communications [16, Chapter 18].

o Preoperational: In this state, mailbox communications are enabled but process data
communications are not [16, Chapter 18]. The EM initializes the SyncManager chan-

nels for process data, the Field Memory Management Unit (FMMU)s and the Process

Data Objects (PDOs) mapping mechanism, if supported [16, Chapter 18].

o Safe operational: In this state, mailbox and process data communications are enabled,

but the slave outputs are kept in a safe state, while inputs are updated cyclically [16,

78 CHAPTER 3. BACKGROUND IN ETHERCAT

Chapter 18].

o Operational: In this state, slaves can transfer data between the network and their I/O
logic. Mailbox and process data communications are completely enabled. The opera-
tional state is the normal working condition for slaves after completing the bootstrap

phase [16, Chapter 18].

« Bootstrap (optional): The bootstrap state is mainly aimed at downloading the device
firmware [16, Chapter 18]. In the bootstrap state, mailboxes are active but restricted to

file access via EtherCAT services [16, Chapter 18].

Init
A y ; : f
(P) | (P (S1) (18) i (8l i
\ v

Pre-Operational Bootstrap
(optional)

(OP) (PS) (SP)

v

Safe-Operational

r

(so) | (0s)

L

Operational

Figure 3.4: EtherCAT Slave State Machine [8].

3.1.4.1 Application Protocols

An additive feature of EtherCAT is the support of multiple standard application protocols [16,
Chapter 18]. Supported solutions include [16, Chapter 18]:

o CANopen over EtherCAT (CoE): This option offers a way to access a CANopen object
dictionary (OD) and to exchange CANopen messages according to event-driven mech-

anisms.

o Ethernet over EtherCAT (EoE): This option allows tunneling of standard Ethernet Frames
in EtherCAT networks.

o File access over EtherCAT (FoE): This option enables the download/upload of firmware

and other files.

3.1. ETHERCAT TECHNOLOGY 79

o Servo drive profile over EtherCAT (SoE): This option enables the SERCOS device profile

to be used, which is suitable for demanding drive technology.

3.1.5 Distributed Clocks

The task of synchronizing multiple clocks in a distributed system isn’t found only in automa-
tion systems, but also in many computer and network systems. There are few methods to
synchronize slave nodes over a network. One of them is the IEEE 1588 Precision Time Pro-
tocol [96] (since 2002), a technology for sharing clocks between distributed systems. IEEE
1588 provides a distributed time base used to timestamp data with sub-microsecond preci-
sion and was designed to satisfy the needs of specific markets, which weren't served by either

of the two dominant protocols, NTP and GPS [96].

The EtherCAT Distributed Clocks (DC) uses the same concept of distributed time base. Since

DC refers to the ESC internal clocks, slave synchronization between slaves corresponding to

DC is done in hardware and thus guaranteed to much better than 1 ;1s[97].

The clock synchronization process consists of the following three main actions:

i. Propagation delay measurement: At certain time intervals, the master sends a synchro-
nization datagram to the slaves. In this datagram, each slave writes the time measure-
ment of its local clock [16, Chapter 18]. After receiving all the timestamps, the master
computes the propagation delay for each segment of the network, while taking into

account the EtherCAT network topology [16, Chapter 18].

ii. Offset compensation: Since the local clock of each slave is a free-running counter, usu-
ally it doesn’t have the same value as the reference clock [16, Chapter 18]. In order to
compensate this offset, the master computes the offset between the local clock of each
slave and the reference clock. Then, the master writes each offset to a specific register of
each slave [16, Chapter 18]. When this step is finished, all devices (master and slaves)
share the same absolute system time [16, Chapter 18].

iii. Drift compensation: After the two previous actions are performed, the drift of every
local clock is compensated by a time control loop (TCL) [16, Chapter 18]. This mecha-
nism corrects the local clock of each device by regularly measuring its difference with
the reference clock [16, Chapter 18]. This algorithm has been evaluated and alternative

approaches are presented in [11, 97, 98, 99].

80 CHAPTER 3. BACKGROUND IN ETHERCAT

3.1.5.1 Propagation Delay Measurement

In each slave, there exist frame processing/forwarding delays, related to internal and commu-
nication medium mechanisms [16, Chapter 18]. Asa result, the propagation delay introduced
between the reference node and each slave should be measured with caution [16, Chapter 18].

The process is the following [16, Chapter 18]:
 The master sends a datagram to all slaves.
« Each slave writes its local clock’s value when the first bit of this datagram is received.

« This operation is performed to each port of the slave device, on both the processing and

forwarding paths.

« The master receives the timestamps and computes the path delays, taking into consid-

eration the network topology.
More details on this action can be found in [16, Chapter 18].
3.1.5.2 Offset Compensation

When the system starts, the local clock on each device of the EtherCAT network will probably
have a different value from the reference clock [16, Chapter 18]. Thus an offset compensa-
tion is necessary [16, Chapter 18]. After the propagation delay measurement has finished,
the master can compute the offset of each local clock from the reference clock, by examining
the previously received timestamps [16, Chapter 18]. Then, this offset is written into a system
time offset register of each slave and is used to adjust the local time [16, Chapter 18]. There-
fore, when the initialization has finished, each slave supporting DC can compute the absolute
system time independently, by using the local time and the offset values [16, Chapter 18]. An
illustrated example with one slave is presented in Figure 3.5.

3.1.5.3 Drift Compensation

The last action of the DC synchronization process is the compensation of oscillator drifts [16,
Chapter 18]. There is a natural drift between the local clock of each device and the reference
clock, due to variations between the crystal oscillators used in each device (two clocks are
never identical, even from the same manufacturer) [16, Chapter 18]. This drift is corrected

by a TCL algorithm implemented into each ESC and shown in Figure 3.6 [16, Chapter 18].

3.1. ETHERCAT TECHNOLOGY

81

TM2 = 1053

Master
Line Delay = 1s
Tm = 1050s
M1 = 1051

Follow Up

Follow Up

Slave

Ts = 1000s

Ts = 1001
TS1 = 1002
——

Ts = 1052

TS2 = 1053

not known yet

'

Offset = TS1 - TM1 - Delay
=1002-1051-0=-49

Adjust Time: Ts - Offset = Ts - (- 49)

Offset = TS2 - TM2 - Delay
=1053-1053-0=0

Adjust Time: Ts - Offset =Ts -0

Figure 3.5: Offset measurement in the DC mechanism [10].

!

I+
—_

At

_II—
K

Retainer

. £
‘ i —/—3f Retainer
L_ocal Reference
time time

Figure 3.6: Concept of the TCL algorithm [11].

3.1.6 Synchronization in the Slaves

A core feature of EtherCAT is its ability to enable automatic synchronization between the

master and the slaves in the network, providing an absolute system time to which all devices

adjust [17]. Another important characteristic is the flexibility of each slave, to define its own

synchronization mode (i.e. not all slaves support DC Synchronization Mode), independently

of the other slaves in the network [17]. At application level, the master and the slaves perform

software loops (Figure 3.7).

The applications on the master and the slaves exchange process data in predefined time inter-

vals (Figure 3.8) [12]. These intervals can be arbitrarily short, provided that the applications

have time to execute their loops [12].

82 CHAPTER 3. BACKGROUND IN ETHERCAT

Master Slave
Application Application

Q Q

Figure 3.7: EtherCAT Application Level [12].

/ Cyclic output data \

-8 =

Figure 3.8: EtherCAT process data exchange [12].

The applications on the master and the slaves synchronize by defining time relationships be-

tween the start time of their cyclic loops, as shown in Figure 3.9 [12].

mger Application \
1 T
1 Logic . ’ 1 Logic .

- -

defined time relationship ‘I
we Application /

Figure 3.9: Time between Master and Slave Application [12].

In EtherCAT there are three main time relationships defined for each slave application with

respect to the master cycle (Synchronization Modes) [12]:

o Free Run (no synchronization): Process data handling in the slave is triggered by an

internal event. There is no time relationship with the master cycle.

o SM Synchronous (Sync Manager): Process data handling in the slave is triggered by a

3.1. ETHERCAT TECHNOLOGY 83

hardware interrupt event generated when the cyclic frame carrying the process data is

received.

o DC Synchronous (Distributed Clocks): Process data handling in the slave is triggered
by a hardware interrupt event based on the Distributed Clocks and on the absolute

system time.
3.1.6.1 Free Run Mode

When a slave operates in Free Run Mode (Figure 3.10), the execution of the local application

is triggered by an internal time source [12]. This mode has the following characteristics [13]

(Figure 3.11):
« The cyclic frames and local application don’t have a time relationship.
« Time offset among different “Free Run” slaves is not defined.

« Intended for I/O (input/Output) devices handling slow-varying signals.

possible framejitter (~ps) due to EtherCAT Master implementation
- - / \5() \(— EtherCAT frame
7/ ECAT Frame </ ECAT Frame 7/ < ECAT Frame /JI/ (ittor: —ys)
1
1
1
|
1
1
1
1
1
1
1
1

DC Sync
event

DC Sync events

DC Sync
(jitter: ~ns)

event

| 1
|

| DC Sync

; event

|

|
|
|
I
|
|
|

Slave Tésk Slave Task Slave Task Slave Task

W

Slave Task
Free Run

I |
1 (no synchronization)

}
Local timer event Local timer event I Luual!limerevenl I Local timer event | Local timer event ‘
t t

Figure 3.10: Slave in Free Run mode [12].

3.1.6.2 SM Synchronous Mode

When a slave operates in SM Synchronous Mode (Figure 3.12), the process data handling is
triggered by a hardware interrupt when the cyclic frames are received (Figure 3.13) [12]. The
master provides a timer variable for each slave in order for the entire network to synchronize
to the reference clock [12]. This becomes a necessity to quadruped control applications, where

each slave should adhere to a reference clock in order to create gaiting sequences [17].

Synchronization inaccuracies may occur if a network is configured in SM Synchronous mode

which may affect the efficiency of the synchronization [12]. Main reasons are [12]:

« The cyclic frames have jitter due to the master. This jitter is propagated to the slaves’

applications.

84

Master Cycle Time

| =

»
»

=

Frame

CHAPTER 3. BACKGROUND IN ETHERCAT

Slave 1 Cycle Time

|‘

<+
[
l

-

B .

Output Input Latch
Prepare |l Prepare
QOutputs Inputs
1 !
Slave 2 Cycle Time
Slave 3 Cycle Ti

Slave n Cycle Time

Figure 3.11: EtherCAT network in Free Run mode [13].

o The last slaves receive the cyclic frames later than the first due to propagation delays,

regardless of the master’s jitter.

possible framejitter (~ps) due to EtherCAT Master implementation

\52 ECAT Frame ,’/}1\{4 ECAT Frame

B -
7, ECAT Frame ,I,/;
| |
| DC Sync : DC Sync
: event | event
| |
1 é!ave Task 7 Slave Task
SM2/3 event SM2/3 event

s

Y

%,
[}
|
|

DC Sync
event

;’Slava Task

SM2/3 event

Figure 3.12: Slave in SM Synchronous mode [12].

3.1.6.3 DC Synchronous Mode

EtherCAT frame
(jitter: ~ps)

DC Sync events
(jitter: ~ns)

Synchronous with SM Event
(jitter: ~ps)

Using the DC mechanism, as described in Subsection 3.1.5, the devices in a network can be

synchronized, allowing distributed applications to synchronize as well (Figure 3.14).

The DC mechanism has many features, including [9]:

Generation of synchronous interrupts.

Precise timestamping of input events (LatchSignals).

Generation of synchronous output signals (SyncSignals).

Synchronization of the clock of each device in the EtherCAT network.

3.1. ETHERCAT TECHNOLOGY 85
Cycle Time |
S 5 ~
Input
/ Latch
o Prepare o
= Inputs 5
|SM Event Qutputs
1 valid -
S =
N |SM Event
Outputs 3
2 valid 3
/]
SM Event | Outputs
T valid T
o 2
A 8 E Frame g F Frame
A" = il Delay 3 [l Delay
L0 1 >
QOutputs valid Input Latch

Figure 3.13: EtherCAT network in SM Synchronous mode [13].
possible framejitter (~ps) due to EtherCAT Masler implementation

I/ / / \5(/s \;/ - EtherCAT frame
% ecATFame 7 7, ecatFrame 7 / €ca Frame 7, il
| |
I | I
| DC Sync | DC Sync | DC Sync DC Sync events
: ! event : ' event : evenl (jitter: ~ns)
I [! I I |
| |
7 ”, K, !
[Stave Task :] siave Task Fsiave Twlf
| |
SM2/3 event SM2/3 event SM2/3 event :z:::'"’“""' with DC SYNC
Set Outputs Set Outputs SetOutputs | (iitter: =ns) _
Sync0 event Sync0 evenl Sync0 evenl

Figure 3.14: Slave in DC Synchronous mode [12].

« Synchronous digital output updates.
« Synchronous digital input sampling.

The DC mechanism operates above the Data Link layer of EtherCAT [17]. It's not supported
by all slaves, however DC-enabled and non DC-enabled slaves can typically operate together
in the same network [17]. It should be mentioned that the DC mechanism depends on specific
feaures of EtherCAT, such as its ring topology, datagram processing “on the fly” and hardware

timestamping, thus it’s not a general-purpose synchronization mechanism [17].

86 CHAPTER 3. BACKGROUND IN ETHERCAT

When a slave operates in DC Synchronous Mode, the process data handling is triggered by the
hardware SYNC events generated in the slave based on the DC System Time (Figure 3.15).

Each generated interrupt signal is serviced by an Interrupt Service Routine (ISR), which is

triggered simultaneously in each slave of the network. This ensures intrinsic synchronization
among the slaves without using any timer variables. This mode in order to work, requires
the cycle frame time to be large enough to allow all ISRs to be triggered in each slave. In case
this isn’t satisfied, lost frames interfere with the internal synchronization of the slaves, causing

communication errors. The advantages of DC Synchronous Mode are:

o The hardware SYNC events (interrupt signals) are generated in each slave automatically

by the EtherCAT Slave Controller (ESC). The ESC should be configured to operate in

DC Synch mode (specified in the ENI file).

o The process data handling in each slave is not affected by the master’s jitter or propa-

gation delays.

Cycle Time
MASTER . =
- g g
s s
DC Sync
Signal
Input
SM Event Latch
Outputs
o Prepare valid Prepare o
5 Outputs Inputs 5
SM Event
5 g
Z £

‘SM Event

SM Event ‘

Frame Frame
Delay Outputs Input E Delay
valid Latch

DC Sync
Signal

Jitter

Jitter

Jitter

Jitter

Jitter
Jitter

All

Figure 3.15: EtherCAT network in DC Synchronous mode [13].

3.1. ETHERCAT TECHNOLOGY 87

3.1.6.4 SYNC Shift Times

The application on each slave operating in SM or DC Synchronous mode, needs to be shifted
with respect to the application on the master, in order for the slave application to receive the

incoming data before it starts a new loop (Figure 3.16).

- D
Logic . Logic .

master

slave

i |
' Logic | . Logic |
shift | shift |
>
i i

F 3

. 4

Figure 3.16: EtherCAT shift time [14].

In SM Synchronous mode, the slave application is triggered by the incoming frame, thus no

extra configuration parameter is needed.

In DC Synchronous mode, the shift between the SM interrupt and the master cycle is set by
the master on system start-up. The shift’s value is reconfigurable. Setting the time shift in
DC Synchronous mode requires caution. The shift’s value should guarantee the SYNC event
in the slave to be generated after the cyclic frame is received by all slaves in the network and
before the next cyclic frame is received by the slave. In the same time, its value shouldn’t be
affected by communication jitter, propagation delays or the number of slaves (Figure 3.17).

Therefore, there doesn't exist a single correct value, but an interval of acceptable values.
The SYNC shift has a lower bound, which consists of the following factors:

» Hardware delay introduced by the slaves internally:

— 1 ps for every slave of the network with Media Independent Inter face (MII) Ports.

- 3 us for every slave of the network with only EBUS Ports.

« Hardware delay introduced by the cables which is approximately 5.3 ns for each meter

of cable in the EtherCAT network [100].

3.1.7 Synchronization in the Master
Note: This section is largely based on [15].

The master operates in two synchronization modes [15]:

88 CHAPTER 3. BACKGROUND IN ETHERCAT

SYNC Shift Time
1

SYNC Shift Time
NOTOK! !

master Cycle Time

1
N

% L

Figure 3.17: Acceptable vs wrong shift times [14].

« The Cyclic Mode.
« The DC Mode.
3.1.7.1 Cyclic Mode

Slaves operating in Free Run or SM Synchronous mode are compatible with the Cyclic Mode.
The master sends the process data frames on certain time intervals [15]. These intervals are

controlled by a local timer in the master [15].
3.1.7.2 DC Mode

In DC Mode, the master sends the process data frames periodically, similarly to the Cyclic
Mode. The difference is that the local clock in the master (and the local clock in each slave) is
synchronized with the master clock [15]. In DC Mode, all DC-enabled slaves and the master
are synchronized to the DC Base Time, a virtual time which has a fixed time relationship with
the reference time (produced by the master clock) [15]. In Figure 3.18, the synchronization

between the local clock of the master and the DC Base Time is shown [15].

Note: The master clock is the EtherCAT reference clock, to which all the devices (including
the master’s local clock) are adjusted. This clock is usually the local clock of the slave closer

to the master.

More and technical information can be found in [15].

3.2. ETHERCAT MASTERS 89

Local Timer Local Timer
Application Application
ser Shift Master | Master Shift
master i the messmum velue of DC Base
e minimi M delay imas of al slaves ‘
—A
[Frame [0 U DU
v v
Fixed Shift (precalc.) Frame Delay Master
SyncO Shift Slave
——
SyncO Synco

Figure 3.18: Master synchronized to DC Base [15].

3.2 EtherCAT Masters

Note: This section is largely based on [16, Chapter 18].

Since the EtherCAT technology is thoroughly described, the next spot of attention goes to
the EtherCAT Masters. In this section, the EtherCAT Masters are introduced and a brief

comparison takes place. Finally, the preferable EtherLab is briefly introduced.

3.2.1 FEtherCAT Masters Overview

EtherCAT Masters (EMs) can be implemented in software [16, Chapter 18]. EM facilitates
the use of a control application in the master, which reads and writes process data from/into
the slaves’ memory [16, Chapter 18]. Typical characteristics of an EM include network mon-
itoring, fault detection and recovery, automatic discovery of the network topology, slaves

synchronization and configuration at system start-up [16, Chapter 18].

However, the most critical task of an EM is the control application running in the master [16,
Chapter 18]. This application usually realizes a control loop, which starts after the configu-
ration of the slaves has finished [16, Chapter 18]. Thus, the level of determinism of the EM,

affects directly the real-time performance of the running control application [16, Chapter 18].
3.2.1.1 Control Loop

The control application usually realizes a basic control loop, as shown with pseudo-code in

Figure 3.19 [16, Chapter 18]. The control loop is a cyclic task with a period (Ttycrg) [16,

90 CHAPTER 3. BACKGROUND IN ETHERCAT

Chapter 18]. This task includes writing/reading process data to/from slaves [16, Chapter 18].

while (TRUE) { .

walt (time = time + Toyerp) s E =
data = receive frame(); 8
new data = execute control application(data); g |
send_frame (new_data);

} NET

Figure 3.19: Pseudo-code of a typical EM control loop [16, Chapter 18].

In a nutshell, the EtherCAT frames received through the EM’s network interface are passed
to the application through a call to the receive_frame function [16, Chapter 18]. In this
function call, certain sub-tasks are implied such as extraction of datagrams from the frame,
extraction of process data from each datagram, their concatenation and storage into the cor-
responding variables (data in the figure) [16, Chapter 18]. Then the main control algoirthm
is executed by calling the execute_control_application function [16, Chapter 18]. When the
function finishes, new data (new_data in the figure) have been produced and are ready to
be transmitted [16, Chapter 18]. These data are passed as arguments to the send_frame
function, which ensures the data are sent to the EtherCAT slaves, after making the necessary
actions such as concatenating the data into datagrams, coalescing the datagrams into a single
frame and sending the frame to the EtherCAT network [16, Chapter 18]. After the frame is
sent, the application needs to wait time equal to the period, hence the call to the wait function

(wait in the figure) with argument a time interval equal to Ty o1 [16, Chapter 18].

Iterations of the control loop are shown in the timing diagram in Figure 3.20. The tcpy in

tr1< 2"Teyere

tra> Teycre

tepu tNET Teyere
t
EM I I, o
) ¥ t
. E S NET IDLE . E S NET IDLE - E S NET IDLE .
taLG Teycie Teyere

Figure 3.20: EtherCAT control loop timing diagram [16, Chapter 18].

Figure 3.20 corresponds to the time spent by the application, to occupy a CPU in the master

3.2. ETHERCAT MASTERS 91

and execute the control loop (i.e. the calls to the receive_frame, execute_control_-
application and send_frame functions) [16, Chapter 18]. The ¢, g1 represents the time
needed for the EtherCAT frame to traverse all the slaves in the network and return back to the
EM [16, Chapter 18]. The time needed to store the frame received from the network interface
into the EM memory is also included in ¢ gr [16, Chapter 18]. The time interval needed
for the input data of each slave to be copied from its memory to EtherCAT datagrams is also
included in ¢ ygp [16, Chapter 18]. Similarly, the time interval needed for the output data
of each slave to be copied from the EtherCAT datagrams to its memory is also included in

tner[16, Chapter 18].

Since EtherCAT provides determinism, the ¢y g7 interval has small variations across iter-
ations of the control loop. In practice, tyg7, which depends on the frame size and other

parameters, can be computed analytically [100].

However, the ¢ py interval is not deterministic [16, Chapter 18]. This interval consists of two

time intervals [16, Chapter 18]:

o tarc: This interval represents the time the control algorithm spends in the CPU. The
implementation of the algorithm in code affects directly the ¢ 4. Usually, ¢ 41 has an

upper bound, which can be found analytically or experimentally.

o tpy This interval includes the latency introduced by the protocol stack to send and
receive EtherCAT frames and operating system latencies caused by interacting tasks,
context switching, and scheduling. Unfortunately, it's not known a priori whether ¢z,

has an upper bound.

Consequently, the inequality tcpy + tnpr < Teyorne might not hold under certain circum-
stances [16, Chapter 18]. To solve the unbounded intervals of ¢z);, EM implementations

usually leverage hard Real-Time Operating Systems, network drivers and protocol stacks op-

timized for latency [16, Chapter 18]. For instance, in [101] the performance of an EM using

hard Real-Time Operating Systems and protocol stacks is evaluated [16, Chapter 18]. It shows

that jitters on the order of 10445 can be experienced for a 1ms cycle time [16, Chapter 18].

On the contrary, EM implementations based on non Real-Time Operating Systems and pro-

tocol stacks are typically inappropriate for applications requiring the real-time features of
EtherCAT [16, Chapter 18]. These implementations usually mean that ¢z, is not bounded,

thus delays larger than 1ms are expected [16, Chapter 18]. In such cases, the performance

92 CHAPTER 3. BACKGROUND IN ETHERCAT

using EtherCAT could be worse than non real-time Ethernet protocols like EtherNet/IP [16,
Chapter 18].

3.2.1.2 Commercial versus Open-Source implementations

The most important requirement for EM is determinism [16, Chapter 18]. The EtherCAT
network provides determinism to the ¢y gr time interval, which is achieved through specific
slave hardware [16, Chapter 18]. However the determinism of the master is equally important,
as the actions summarized in Figure 3.19 need to be completed in a single iteration of the

control loop, in order to ensure deterministic cycle times [16, Chapter 18].

Although EMs based on mixed hardware/software have been proposed in the literature (with
Field Programmable Gate Arrays in [102]), this section focuses on EMs implemented purely

in software [16, Chapter 18].

Two distinct categories exist for EM implementations: commercial and open-source. Their
differences are summarized in Table 3.1. A more detailed comparison between the two cate-

gories can also be found in [103].

Table 3.1: Commercial versus Open-Source EMs [16, Chapter 18].

Criteria | Commercial Open-Source
Cost — Usually expensive + Less expensive (or free)
Customization — Not always + Customizable code and (usu-
ally) better performance
Usability + Easy-to-use - Not always easy-to-use
Standardization | + Programming languages | - Nonstandard programming
compliant with IEC 61131-3 languages (e.g. C/C++)
Documentation | + Detailed - Sometimes poor
Hardware support | + Variety of devices — Limited
Features + Full - Some EtherCAT features
maybe not implemented
Customer Support | + Advanced - Sometimes incomplete support
by the community
Reliability + QoS guarantees — Instability issues

The biggest strength of open-source EMs is that they are usually free and easily customizable
[16, Chapter 18]. Consequently, if a large number of complex and custom control applications

needs to be developed, then the open-source category makes a good match [16, Chapter 18].

Although not free, the commercial EMs provide other features, like usability through Graph-
ical User Interfaces (GUIs), reliability, full support, standardization and fully featured editions

3.2. ETHERCAT MASTERS 93

[16, Chapter 18]. These features facilitate the learning process and provide short time-to-

market solutions [16, Chapter 18].

Among the commercial implementations, Beckhoff TwinCAT® is one of the most popular
EMs, developed by the company which introduced EtherCAT [16, Chapter 18]. Other pop-
ular commercial implementations include the NI EM and KPA EM’, produced by National
Instrument and Koenig-pa GmbH, respectively [16, Chapter 18].

In the open-source implementations, the most popular EM is EtherLab [16, Chapter 18]. It’s
developed by Ingenieurgemeinschaft IgH® and it’s free [16, Chapter 18]. SOEM is another
popular open-source solution and it’s also free [16, Chapter 18]. However, SOEM is not used
in applications requiring determinism and low cycle loop period Ty o, since its imple-

mentation is not real-time (more on this below) [16, Chapter 18] [103].
3.2.1.3 Comparison of EtherCAT Masters in GNU/Linux

In GNU/Linux the two most popular open-source EMs are IgH Master (or EtherLab) and
SOEM. These EMs are licensed under LGPLv2 and GPLv2 respectively. A concise comparison
is presented in Table 3.2.

Table 3.2: EtherLab versus SOEM.

| EtherLab | SOEM
Learning Curve (Installation, Steep Low
Configuration and API)
Documentation Excellent (since v.1.5) Poor
Mailing List Support Yes Yes
Portability No Yes
Integrability of EtherCAT Some EtherCAT features not
(EMgType)y Full (Type A) implemented (Type B)
user-space / kernel-space kernel-space with user-space

user-space API

Licence LGPLv2 GPLv2

SOEM is a small library running in user-space. It is lightweight and easy to familiarize with
(setting it up and getting started). The documentation of the project is quite poor but the
mailing list is supportive not only to beginners but also to experienced users and developers.

Since it’s a user-space library, it can be deployed in other OSes as well (Windows, MacOS,

*https://www.beckhoff.com/twincat/
"https://koenig-pa.de/products/ethercat/kpa-ethercat-master
8https://www.etherlab.org/en/ethercat/index.php

https://www.beckhoff.com/twincat/
https://koenig-pa.de/products/ethercat/kpa-ethercat-master
https://www.etherlab.org/en/ethercat/index.php

94 CHAPTER 3. BACKGROUND IN ETHERCAT

RTOSes). Since SOEM is a library, the user needs to create a custom application to provide

means for:

+ Reading and writing process data to be sent/received by SOEM.
o Detecting and managing errors reported by SOEM.

After creating the process data to be transmitted, SOEM communicates with the vanilla Linux
Network Stack in order to pass the process data to the network driver, which in turn will
send them across the EtherCAT network. After the system call, SOEM has no control over
the latency introduced by the OS (network driver, scheduler etc). More information for the

SOEM project can be found in it’s GitHub repository’, it’s official homepage'® and it’s index
page’’.

On the other hand, the IgH Master is a full-featured EM, highly configurable and flexible. It
is more complex to set it up and get started. The documentation provided is excellent and the

mailing list is also quite active.

A fundamental feature of the SOEM software is that it resides in user-space. With that in
mind, it can not employ features a kernel module may have, like talking directly with the
network driver, and be informed when each datagram is sent and delivered. SOEM can only
communicate with the vanilla Linux Network Stack (not optimized for latency) and suffer the
extra performance loss which OS’s latency (context switching and copying of process data)
introduces. This drawback can be considered a major one, as far as latency and determinism

of cycle time are considered.

On the contrary, the architecture of IgH Master is quite perspicacious as it's implemented as
a kernel module [2]. Kernel code can have real-time characteristics, i.e. lower latency than
user-space code [2]. The main task of an EM is to service the control loop, which requires
cyclic work to be done [2]. Cyclic work in the kernel is typically triggered by timer interrupts
[2]. Thus, the execution time of a function processing timer interrupts is less in kernel-space
than in user-space [2]. In kernel-space, context switches to other user-space processes isn't
necessary [2]. Another reason favoring kernel-space, is that the master needs to directly com-
municate with the Ethernet hardware. This is suitable to be done in the kernel also (through

network device drivers) [2].

*https://github.com/OpenEtherCATsociety/SOEM
Yhttps://openethercatsociety.github.io
https://openethercatsociety.github.io/doc/soem/index.html

https://github.com/OpenEtherCATsociety/SOEM
https://openethercatsociety.github.io
https://openethercatsociety.github.io/doc/soem/index.html

3.2. ETHERCAT MASTERS 95

3.2.2 'The IgH EtherCAT Master for GNU/Linux (EtherLab)
Note: This section is largely based on [2].

Since the EtherLab software has been selected for development, it’s necessary to present it’s

core features and functionalities for consistency.
3.2.2.1 Features

A summary of the basic features of EtherLab is illustrated below. More details for these fea-
tures along with the installation instructions of EtherLab can be found in [2, 104]. Some

EtherLab’s features include [2]:

o It’s a kernel module for Linux 2.6 / 3.x / 4.x.
o It’s implemented according to IEC 61158-12 specifications [105, 106].

o Includes EtherCAT-capable native drivers for some Ethernet chips as well as a generic

driver for all chips supported by the Linux kernel.
o It supports multiple EtherCAT masters running in parallel.

o Itsupports many Linux real-time extensions (Xenomai, RTAI, PREEMPT_RT) through

its independent architecture.

o It provides an Application Programming Interface (API) for applications, that want to

use EtherCAT functionality.

o It introduces Domains, which allow grouping of process data transfers with different

slave groups and task periods.
o Supports Distributed Clocks.

« Supports CANopen over EtherCAT (COE), Ethernet over EtherCAT (EoE), Vendor-
specific over EtherCAT (VoE), File Access over EtherCAT (FoE) and Servo Profile over
EtherCAT (SoE) protocols.

o Includes a user-space command-line tool ethercat.
3.2.2.2 Architecture

The architecture of the EM is presented in Figure 3.21 [2]. The components of the master

environment are briefly described [2]:

96

CHAPTER 3. BACKGROUND IN ETHERCAT

Userspace
Application

aoEpau|
uoneslddy

1easmylaqy

m
]
H
s

()=

LXRT / Xenomai
Userspace

53

5%
Application % %
3

wpy ™ jessayiaq)|

Userspace !
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, K
Kernelspace |
I
I
|
it Generic |
Application Module EtherCAT Master Module Ethernet !
Driver Module |
|
2 % |
Ig -z Master 1) !
=]

Pl I = f;‘: !

= 3.0 = red
8z ¥ S !
Task ®g Master 0 8 % !
g =4 |
Generic % !
Ethemnet {(}= i
Device !
Interface |
ecdev_* () I netif_* () | |
I[|
I
Native EtherCAT-capable Ethernet Driver Standard !
Ethernet Driver I
I
|
net_device net_device net_device |
I
I
I
I
Haroware ot L |
NIC NIC I |
L] U [|

a a O
O OO0 O
EtherCAT Ethernet EtherCAT

Figure 3.21: EtherLab Master Architecture [2].

o Master Module: This is a kernel module which contains at least one EtherCAT master

instance, the EtherCAT Device Interface and the Application Interface.

o Device Modules: These are the intermediates between the Master Module and the

Network Interface Controller (NIC). There are two categories; In the first belong the

EtherCAT-capable Ethernet device driver modules, which offer their devices to the
EtherCAT master via the EtherCAT Device Interface. These modified network drivers
can handle network devices used for EtherCAT operation and standard Ethernet traffic

at the same time. In the second category belong the Standard Ethernet device drivers

3.2. ETHERCAT MASTERS 97

that aren’t modified by EtherLab. They are connected to the kernel’s network stack as
usual. In this case, the Master Module communicates with the Linux Network Stack
with its Generic Ethernet driver module. After accepting a device, the master is able to

send and receive EtherCAT frames.

o Application: This is a program which is written by the user. It interfaces with the mas-
ter in order to exchange process data with the EtherCAT slaves in the network. An
application can request a master through the application interface. The application can
reside in kernel-space and interface with the master via the kernel application interface,
or reside in user-space and interface with the master via the EtherCAT or the RTDM
library.

The EtherCAT master kernel module ec_master can contain multiple master instances [2].
Each master waits for certain Ethernet device(s) identified by its MAC address(es) [2]. For
instance, the master module can be loaded with two masters, each one assigned to a specific

MAC address as shown in Figure 3.22 [2].

Kernel space

! |
| EtherCAT master module !
| :
| |
| 1
! |

Figure 3.22: Multiple masters in one module [2].

Every EtherCAT master provided by the master module (ec_master) transitions between var-

ious phases, shown in Figure 3.23 [2]:

.\ Device connection Master request

/—\/—\

\—/U

Device disconnection Master release

Figure 3.23: Master phases and transitions [2].

« Orphaned phase: In this phase the master waits for its Ethernet device(s) to connect.

There is no bus configuration available.

98 CHAPTER 3. BACKGROUND IN ETHERCAT

o Idle phase: In this phase the master has accepted all available Ethernet devices, but is
not requested by any application yet. Thus, the master merely runs its state machine.
This involves automatically scanning the bus for slaves and executing pending opera-
tions from the user-space interface (for example SDO access). Again, there is no Process

Data exchange since the bus communication isn’t configured yet.

« Operation phase: In this phase the master is requested by an application which pro-

vides a bus configuration and exchanges Process Data.
For consistency, some useful common terms are presented below [2]:

o Process Data Image: The logical entities which are exchanged between master and

slaves are called Process Data Objects (PDOs). They are encapsulated in EtherCAT

datagrams, before the master sends them to the EtherCAT network. These entities are
presented by the slaves and change their inputs and outputs. The available PDOs can be
specified by reading the slaves’ EPROM. The application registers the PDOs’ entries
for exchange during cyclic operation. The sum of all registered PDO entries defines the
Process Data Image, which is exchanged via datagrams with logical memory access (e.g.

LWR, LRD or LRW).

 Process Data Domains: The Process Data Image can be easily managed by introducing

domains, which allow grouped PDOs exchange. Domains are necessary for Process
Data exchange, so there has to be at least one. There is no upper limit for the number

of domains, but each domain occupies one Field Memory Management Unit (FMMU)

in each slave involved, so the maximum number of domains is limited by the slaves.

« FMMU Configuration: An application registers PDO entries for exchange. Every PDO
entry occupies an area of the slave’s physical memory, which is protected by a Sync-
Manager for synchronized access. The SyncManager needs to have its last byte to be
accessed, in order to react on a datagram accessing its memory. Thus, the whole syn-

chronized memory area needs to be included into the Process Data Image. Figure 3.24

presents how FMMUs are configured to map physical memory to logical Process Data

Images.

3.2.2.3 Application Interface

The Application Interface provides functions and data structures for applications to use an

EtherCAT master. Every application uses the master in two steps [2]:

3.2. ETHERCAT MASTERS 99

Slave0 Slave1

RAM

IHIIIHW%I

Domain0 Image ‘,’ / Domaini Ima e)

HIII%I\IWAI\

Registered PDO Entries

Figure 3.24: Field Memory Management Unit (FMMU) Configuration [2].

« Configuration: The application requests the master and configures it. For instance,

the application can create domains, configure slaves and register PDO entries in each

domain.
 Operation: The application runs its control loop and exchanges process data.

For the user’s convenience, there are a few example applications in the examples/ subdirectory

of the master code which are documented in the source code [2].

The application configures the bus through the application interface [2]. Figure 3.25 depicts
the objects, which can be configured by the application [2].

Slave Configuration: The application has to inform the master about the expected bus topol-
ogy [2]. This is done by creating slave configurations, which provide information related to
internal characteristics and position of the slaves in the network [2]. When the application
creates a slave configuration, it provides the slave’s bus position, vendor id and product code
[2]. The master in turn, checks whether a slave with the given vendor id, product code and
position exists [2]. If the information is correct, the slave configuration is linked to the real

slave on the bus and the slave is configured with the information provided by the application

[2].

Cyclic Operation: After the application has finished the configuration step, the master needs

to be activated [2]. During activation, the master calculates the Process Data Image (PDI)

and applies the bus configuration for the first time [2]. After the master is activated, the bus

configuration cannot be changed and the application proceeds to the Operation step [2].

100 CHAPTER 3. BACKGROUND IN ETHERCAT

=1

Master = Domain
Index

n n
Slave Configuration n | Sync Manager n | PDO n | PDO Entry
Ali "] Index " Index - |I"Ide‘x

'as Direction Subindex
Position Bitlength
Vendor ID
Product Code

SDO Configuration

_l Index

Subindex
Data

SDO Request

Index
Subindex

Figure 3.25: Master Configuration [2].

More details regarding the Application Interface of the master, can be found in [2].
3.2.2.4 Ethernet Devices

Note: The term device means an Ethernet network interface hardware.

EtherLab supports two types of devices [2]:

« Native Ethernet Device Drivers: These are native EtherCAT-capable device driver mod-
ules, which handle Ethernet hardware. They are used by the master to connect to the
EtherCAT network and need to be able to accept Ethernet devices either for EtherCAT
operations (real-time) or for standard Ethernet traffic using the Linux Network Stack.
More information regarding the basic structure of a standard Ethernet device driver

can be found in [107]. Its advantages include [2]:

- There is only one networking driver used for EtherCAT and non-EtherCAT de-

vices.

- The modifications are based on existing Ethernet device driver, which is function-

ing properly and without any issues.

- The master can achieve bare-metal performance, since for EtherCAT operation,

the traffic doesn’t traverse the non deterministic Linux Network Stack.

However, it has the following disadvantages [2]:

3.2. ETHERCAT MASTERS 101

- The modified driver becomes more complicated, as it must handle EtherCAT and

non-EtherCAT devices.
— There are additional case differentiations in the driver code.

- Changes and bug fixes on the standard drivers have to be ported to the EtherCAT-

capable versions regularly.
- A modified EtherCAT-capable version of the original Ethernet driver needs to

exist for the Linux system’s components, thus this type has limited availability.

« Generic Ethernet Device Driver: This type uses the Linux Network Stack to connect

to the Network Interface Controller (NIC). It’s available since master version 1.5. Its

advantages include [2]:

- It’s not limited to specific drivers, versions and vendors, thus all Linux Ethernet

drivers are supported.
- The Linux Ethernet drivers are used without any modification.
However, it has the following disadvantages [2]:

- It doesn’t support real-time extensions like RTAI, because the Linux Network
Stack code uses dynamic memory allocations, which could cause the system to

freeze in realtime context [2].

- The performance is worse than the native type, since the EtherCAT frames need

to traverse the whole Linux Network Stack.

Since there are ways of providing the Linux kernel wih real-time capabilities (e.g. with PRE-
EMPT_RT, more on this in the following chapters) [108], the master in such setting could
operate without native drivers, by using the Linux Network Stack instead. Figure 3.21 shows
the Generic Ethernet Driver Module, that connects to standard Ethernet device drivers via the
Linux Network Stack. This kernel module is named ec_generic and can be loaded the same
way as a native EtherCAT-capable Ethernet driver. After it’s loaded, the module makes avail-
able all the Linux-compatible devices to the EtherCAT master. As soon as the master accepts
a device, the module creates a packet socket'” with its socket_type set to SOCK_RAW, bound

to this device. Subsequent calls to the device interface will interface with this socket.

Zhttps://linux.die.net/man/3/socket

https://linux.die.net/man/3/socket

102 CHAPTER 3. BACKGROUND IN ETHERCAT

3.2.2.5 User-space Interfaces

Since the master is a kernel module, it is useful to have user-space interfaces, which facilitate
master accessibility from user-space, finer monitoring, bus visualization and online parameter
modification. These interfaces are implemented via a character device'’ and a user-space

library.

Command-line Tool: The user-space tool, developed in the context of EtherLab, provides a
quick visualization of the whole status of the EtherCAT network with simple commands. The

user of this program can:
« Display the Bus Configuration.
o Print the current slaves on the bus along with some useful information for each one.
o Set a Master’s Debug Level.
« List Sync Managers, PDOs assignment and mapping of slaves.
« Show configured Domains.
 Show master and Ethernet devices’ information.
o Request from the slaves to reach new application layer states.
 Output a slave’s register contents.

o Write Service Data Object (SDO) entries to a slave.

User-space Library: The native application interface resides in kernel-space and hence is only
accessible from there. To make the application interface available from user-space programs,
the user-space library libethercat has been created, which is linked to programs under the
terms and conditions of the LGPL, version 2'*. The kernel-space API is mapped to user-space,
through an ioctl1() interface. The kernel code interfaces directly the kernel API. Since the
user-space API calls an ioct1() interface before reaching the kernel API, a small delay is in-
troduced. For performance reasons, the actual domain process data are not copied every time
between kernel and user memory, but are memory-mapped to the user-space application. As

soon as the master is configured and activated, it maps the whole process data memory (all the

Bhttps://en.wikipedia.org/w/index.php?title=Device file&oldid=894614419
“https://www.gnu.org/licenses/old-licenses/1gpl-2.1.html

https://en.wikipedia.org/w/index.php?title=Device_file&oldid=894614419
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

3.2. ETHERCAT MASTERS

103

domains) to user-space. As a result, the user-space application accesses directly the process

data without additional delay.

Timing Aspects: An interesting aspect is the time differences between the user-space library

calls and the kernel API calls. Table 3.3 shows the call times and standard deviancies of typical

(and time-critical) API functions measured on an Intel Pentium 4 M CPU with 2.2 GHz and

a standard 2.6.26 kernel.
Kernel-space User-space
Function () o(t) u(t) o(t)
ecrt_master_receive() 1.1us 0.3us 2.2us 0.5us
ecrt_domain_process() < 0.1us < 0.1us lus 0.2us
ecrt_domain_queue() < 0.1us < 0.1us lus 0.1us
ecrt_master_send() 1.8us 0.2us 2.5us 0.5us

Table 3.3: Application Interface Timing Comparison [2].

The test results show that, for this configuration, the user-space API introduces about 1 us

additional delay for each function, compared to the kernel API.

Kernel/User API Differences: The only difference between the two APIs is the inability of the

user-space API to provide external memory for domains. The reason is that the process data

memory is managed internally by the library functions, since it's mapped to user-space.

104

Requirements Analysis & Technical

Specifications

If you can’t explain it simply, you

don’t understand it well enough.

Popular quote

In this chapter a thorough analysis of the fundamental requirements of this work is provided.
In addition, all the technical specifications of the system, which have been translated to the
implementation of the solution are illustrated. First, the performance of the final system is
specified for this project. Finally, the design choices adopted, the modeling, along with the

overall system architecture and the API are presented.

4.1 Requirements Analysis

Every software project should have specific requirements to comply with. In the following

section the project’s requirements analysis is presented.

4.1.1 LaelapsII

Laelaps II'(shown in Figure 4.1)introduces some improvements over its previous version,
Laelaps I, in both mechanical and electrical properties. In the motion control scope, the

main features of the robot have changed, including the leg design, the actuator-related char-

'http://nereus.mech.ntua.gr/legged/?page id=161
*http://excellence.minedu.gov.gr/thales/en/thalesprojects/379424

105

http://nereus.mech.ntua.gr/legged/?page_id=161
http://excellence.minedu.gov.gr/thales/en/thalesprojects/379424

106 CHAPTER 4. REQUIREMENTS ANALYSIS ¢ TECHNICAL SPECIFICATIONS

acteristics and the power supply systems [17].

Figure 4.1: Laelaps II.

Laelaps II's enhancements, compared to Laelaps I, include [17]:

o New legs are designed and manufactured with lightweight carbon fiber tubes and cus-

tom aluminum parts.

o The PCle/104 tower, which was used for centralized control is replaced with four iden-
tical EtherCAT Slave towers. Each of them controls the motion of one leg, with param-

eters provided by the EtherCAT master (decentralized control scheme).
o Driver extension boards are upgraded.

« The front parts of the body are reallocated, enabling the four legs to be symmetrically
distributed.

Most of the electrical upgrades are thoroughly described in [109, Chapter 4] and the interested

reader is referred to it for more details.

4.1.2 User Categories
The system to be developed will support the following user categories:

o Software Developer: The Software Developer creates software in the ROS environment,

which inter-operates with the system to be developed.

o Operator: The Operator commands and monitors the overall system and tunes the

necessary parameters to achieve the desired performance and metrics.

4.1. REQUIREMENTS ANALYSIS 107

4.1.3 Functional Requirements

The EtherCAT network of Laelaps II, was thoroughly evaluated and tested with much success
in Windows [17]. However the robotics (localization, navigation, state estimation, percep-
tion) algorithms, developed in the ROS environment for reasons described in Section 2.5,
require GNU/Linux (preferably the Ubuntu distribution) as the host OS. The system to be
developed should:

 Run in the GNU/Linux OS (preferably the Ubuntu distribution).

« Employ EtherCAT as the communication protocol and technology between master and

slaves.
o Reside in the ROS environment.

 Have firm real-time characteristics. That means that the communication between mas-
ter and slaves should be deterministic. This requirement, stands in the middle of func-
tional and non-functional requirements, however due to the importance of determin-

ism on the project, it has been categorized as functional.

4.1.4 Non-functional Requirements

The non-functional requirements complete the requirements of this work. These require-

ments explain how the system should behave. In this context, the system to be developed

should:

 Have APIs for interoperability with the other robotics algorithms residing in ROS.

« Be extensible, meaning if the EtherCAT application data changes, an experienced de-

veloper should be able to make the required changes in < 20 person-hours.

« Have EtherCAT control loop time Toycrr < 500us (defined in Subsection 3.2.1),

which translates to a control loop frequency > 2 kHz.

« Have adaptability, meaning that the Mean Time to Change (MTTC) operability with
different EtherCAT master under GNU/Linux will require < 1 person-month for a se-

nior system developer”’.

*http://users.csc.calpoly.edu/~jdalbey/SWE/QA/QualityAttributesStearns.html

http://users.csc.calpoly.edu/~jdalbey/SWE/QA/QualityAttributesStearns.html

108 CHAPTER 4. REQUIREMENTS ANALYSIS ¢ TECHNICAL SPECIFICATIONS

o Offer installability; A non-experienced user can install and operate the program with-

out assistance of any kind.

o Offer maintainability; A software developer with 1 year of experience will be able to

correct any known defect in < 2 person-days*.

« Provide understandability; A novice user can learn to operate major use cases without

outside assistance.
o Provide thorough documentation of every aspect of it.
« Provide robustness; erroneous data inputs should be answered with error messages.

» Provide mechanisms for safety; For critical situations there will be a software “panic

button”. This should stop instantly the motion control of the robot.
+ Be open-source; All the source code will be available at the CSL-EP Bitbucket reposi-
tory.
4.2 Technical Specifications

In this section the design along with the system’s architecture are illustrated.

4.2.1 Design Choices

The requirements specified in the previous section need to be translated in the technical spec-
ifications of the project. The design choices made, played a catalytic role in this procedure,

and are described below.

To realize the employment of an EtherCAT master in GNU/Linux, two choices exist as an-

alyzed and compared in Subsection 3.2.1. Only the EtherLab EM meets the specified re-

quirements and therefore this EM is chosen. More details on the features and architecture of

EtherLab can be found in Subsection 3.2.2 and in [2].

In order to meet the functional requirement for firm real-time characteristics, the developed
application should run in an OS that is modified to be hard real-time capable, as previously
stated and explained in Subsection 3.2.1. For this requirement there are a handful of options

to consider like RTAI, Xenomai and PREEMPT_RT. RTAI has been a rather popular library

in the embedded linux world, however in the last decade its popularity has declined due to the

*http://users.csc.calpoly.edu/~jdalbey/SWE/QA/QualityAttributesStearns.html

http://users.csc.calpoly.edu/~jdalbey/SWE/QA/QualityAttributesStearns.html

4.2. TECHNICAL SPECIFICATIONS 109

fact that if one would like to write code i.e. a real-time thread, it should reside in kernel-space.
This has the benefit of very low latency, yet lacks in maintainability, installability and config-
urability, not to mention the profound risk of freezing the kernel due to some buggy code.
Therefore this library cannot be chosen. After experimenting with Xenomaiand PREEMPT _-
RT for a small while, the latter is chosen as the most non-invasive and suitable solution for
our case. Recall that maintainability and installability are key-factors and non-functional re-
quirements for the project and these requirements were taken into account (augmented with
the reasons illustrated in Section 2.3) and led to the decision for PREEMPT RT. More details
on the features and architecture of PREEMPT RT can be found in Subsection 2.3.1.

The requirement for interoperability should be satisfied from this project and this comes down
to deciding what kind of API to use. This API should be created in the terms of ROS (anal-
ogous to a REST API in a web application). In the ROS context, this translates to choosing
message communication mechanisms for interaction and data exchange between nodes. For
further details and definitions on the ROS context, the interested reader is referred to Sub-
section 2.5.2 and for details and differences on the various communication mechanisms in

ROS, the reader is referred to Subsection 2.5.3. Furthermore for interoperability reasons, the

language of choice for the project is C++. This decision is based partly on the knowledge that
with C++, the EtherLab user-space C API can be integrated seamlessly in the project, but also
that C++ is one of the mainstream languages supported by ROS and has a good balance be-
tween low-level tweaking and programming, and expressiveness and abstraction, distinctive

features of the high-level languages.

Interoperability is required among ROS nodes which implement higher-level locomotion,
control and localization algorithms. These nodes must send commands to the motors and
receive feedback from the encoders quite frequently, therefore the mechanism selected for
implementing the ROS API of the project is the topics mechanism. This conclusion was not
reached at the beginning of the project, but after experimentation with the services mech-
anism. Topics provide a more throughput-friendly message communication among nodes.
Since the nodes communicating with the project’s node will require frequent exchange of data

messages, this is the most appropriate design choice.

Another important design decision should be made on the synchronization primitive for the
application’s threads. In the program there should be two fundamental threads. The first
will run in real-time context and execute the cyclic loop in a deterministic manner and the

second accepts the input commands from the ROS environment and writes synchronously to

110 CHAPTER 4. REQUIREMENTS ANALYSIS ¢ TECHNICAL SPECIFICATIONS

a common buffer, shared with the real-time thread. This synchronization should be handled
with extreme caution, since the real-time thread shouldn't go for sleep, rather busy-wait on
a locking mechanism. This mechanism is decided to be a POSIX spin lock, which offers the
busy-waiting part and is easy to use, since implementation of the POSIX threads (spin locks

API is part of pthreads API) API are instantly available on Linux.

Last but not least, the most appropriate library for threads should be picked out for our case.
There are three favorable candidates: The C++ Thread core library, the Boost Thread library
and the POSIX Thread library. After a brief research on these libraries, it is concluded that
the most useful, rich and appropriate for this project is the Posix Thread library. A key part
of the conclusion is the familiarity of the author with the pthread library. Also, major role to
this conclusion have characteristics of this library like richness and simplicity of its API and
assignment of system-wise attributes, compared with the other libraries. However, a known
trade-off arises, the overhead of wrapping objects and functions of the pthread C library in

C++ classes and methods.

4.2.2 System Architecture

In this section the overall System Architecture is presented and it’s key components are ana-
lyzed. In Figure 4.2 a basic deployment diagram enhanced with the fundamental components
and their connections is illustrated. This diagram describes in an intuitive manner the overall
system’s components, and provides a systemic view of the robot with it’s operator. Its com-

ponents are described in detail below.
4.2.2.1 The Operator Interface

The Operator, in @, communicates with the software component, starts/stops the Ether-
Lab operation phase and changes values of EtherCAT variables related to the motion of the
quadruped robot’s legs. For deeper understanding of the user interface created, facilitating

the operation of the robot, a use case diagram is illustrated in Figure 4.3.

Apart from starting/stopping and restarting the communication with the EtherCAT slaves,

the most important command offered through the Command Line Interface (CLI) is the

ability to change the values of the EtherCAT variables, independently of the state of the com-
munication with the slaves (online or offline). Lastly, the Operator has the ability to change

EtherCAT variables for one slave or for all of them.

4.2. TECHNICAL SPECIFICATIONS 111

Laelaps I
Robot
Linux PC
~\ Actuators / Motors @
(1) ;
_/ ROS environment
Operator
' | igati
(@) Algorithms
() (+)
[
o 3
\ H
e
AN 2 stimation EtherRos al;';wms
AAAAA g orithms EtherCAT (1)
= @ Slave Network K/
|
CT L] == Slave Application running in 1. Every EtherCAT Slave
o MicroController Unit (MCU) | || || | receives an: d processes
o @ the data addressed to it
[} 2 (through its ESC)
2 a (s) @ = — | 2 After processing, sends
-~ e the appropriate commands!
))\ 0 each motor
£ 3. Receives feedback and
) EtherLab Linux Network Stack " propagates it to the master
N Cyclic Loop EtherCAT Slave Controller (ESC) (through its ESC)
_

Figure 4.2: Overall System Architecture.

4.2.2.2 Project’s software component

The software component of this project is presented in @ along with it’s higher-level con-

nections. The software offers a ROS API (more on that in Subsection 4.2.3) to ROS nodes

developed by other software engineers, offers a CLI to the Operator and interfaces with the
EtherLab kernel module to achieve EtherCAT communication. This overall behaviour is ac-

complished through different submodules, illustrated in Figure 4.4.

In @ the EtherCAT Communicator submodule is pictured. This submodule consists of a
thread running in real-time context and calls the EtherLab User-space Library API, which in
turn makes a system call to the EtherLab Kernel Module that communicates with the Ether-
CAT slaves. This module uses the pthread library for creating a real-time thread and for uti-

lizing the pthread spinlock. It realizes the state machine described in Subsubsection 3.2.1.1,

implementing it in real-time context at the EtherCAT control loop frequency (> 2kHz).

In the submodule of the Input Process Data Objects (PDOs) Publisher is highlighted.
This part of the presented software project receives the input Process Data Objects (PDOs)

(the EtherCAT variables which the slaves change and pass to the master) from the Ether-
CAT network via the EtherCAT Communicator, and publishes them in a topic in ROS, at the
EtherCAT control loop frequency (> 2kHz). Consequently, the ROS nodes implementing

robotics algorithms such as SLAM, navigation and state estimation, can receive these data

112 CHAPTER 4. REQUIREMENTS ANALYSIS ¢ TECHNICAL SPECIFICATIONS

Use-Case for
communication

Start EtherCAT |
_Communication _

Stop EtherCAT |

_(:ommunication .

Ftestart Etherch

Communicatoion

Operator - :

iy

“Run Script with -

EtherCAT

Actor

.. commnads

-Change value of
EtherCAT variable

" Pushthe
"Software" Panic
Button

Figure 4.3: A Use-Case Diagram for the Operator.

and process them accordingly.

In @ the Output Process Data Objects (PDOs) Publisher is highlighted. This submodule
receives the output Process Data Objects® from the EtherCAT network via the EtherCAT

Communicator, and publishes them in a topic in ROS, at the EtherCAT control loop fre-
quency (> 2kHz). Consequently, the ROS nodes implementing robotics algorithms such as
SLAM, navigation and state estimation, can receive these data and process them accordingly.

A question here arises, as to why should these Output PDOs be published to the entire ROS

>The EtherCAT variables which nodes in ROS or the Operator change and pass them to master in order to
be sent to the EtherCAT network.

4.2. TECHNICAL SPECIFICATIONS 113

ROS environment
[
8
Q
2 ModifyPDOVariablesListener
% A I
S | SLAM
Operator = Algorithms .
o PDOInPublisher Software Engineer
(EthercatKeyboardController) @ I O
|| Navigation
v = Algorithms
» Ethercat(i
Acor
@ 1 l
v State Es_tlmatlon Actor
[—— PDOOutPublisher Algorithms
PDOutPublisherTimer
L
\4 f \
EtherLab User- Submodule of
space Library our application
@ Software in ROS
Q
S
) (R
-~ EtherLab p |
g Kernel Module EtherLab Software
N ()
g -
X

Figure 4.4: Internal architecture of the software project.

environment, since probably they are changed by a node in the ROS framework. The an-
swer is that these data could interest more than one ROS nodes (apart from the one changing
them), so other nodes can access these changes. Another possibility is that the data could be
changed by the Operator, as previously mentioned, so a ROS node should be able to know
the changes by subscribing to the aforementioned topic. Nevertheless, this submodule was
created to provide completeness in its ROS API. If the overhead introduced is extravagant,

this submodule could be disabled in future versions.

In @ the submodule of the Output Process Data Objects (PDOs) Listener is presented. This

submodule listens to a ROS topic, receives the (modified) output Process Data Objects® di-

rectly from the ROS ecosystem or indirectly from the created CLI, and passes them to the
EtherCAT Communicator in order to be sent to the network. The @ submodule concludes a
first closed feedback loop, consisting of the ROS ecosystem (other ROS nodes implemented),
the EtherCAT network and the application, allowing communication among all these com-

ponents.

®The EtherCAT variables which are changed from the master side and passed to the EtherCAT slaves.

114 CHAPTER 4. REQUIREMENTS ANALYSIS ¢ TECHNICAL SPECIFICATIONS

The Command Line Interface (CLI), in @, facilitates the user who is responsible for the over-

all operation and administration of the robot functionalities (the Operator), to interact with
a simple and effective manner with the EtherCAT slaves network and control the synchro-
nized moves of the legs effectively. This submodule offers to the Operator the functionalities
described previously in @ Furthermore, the Operator can activate / deactivate the Ether-
CAT Communicator through the CLI, and the EtherCAT variables that the master sends (the
Output PDOs) can be altered via this submodule from the Operator.

In @, the submodule of the Output Process Data Objects (PDOs) Publisher Timer is pre-

sented. This part of the project copies at certain intervals in time (for this reason it’s called
a Timer) the process data to be sent from the corresponding buffer and publishes them to a
ROS topic. With this published information, indirect logging takes place which constitutes a
quick start for debugging the behavior of the software component. Therefore submodule @
concludes a second closed feedback loop, consisting of the users administering the operation
of the robot, the ROS ecosystem, the software module and the EtherCAT network. However,
this second closed loop is definitely more indirect from the first one, in the sense that there is
the human factor in the middle, therefore there must be administration and monitoring from

a user to take action in order to close this loop.

The submodules in @, @ and @ are working simultaneously on the same critical data.
For this reason, a synchronization scheme is introduced as previously analyzed, with the bold
red lines illustrating this need for synchronization. The chosen synchronization mechanism

is a pthread spinlock, for reasons previously stated. The scheme is depicted in Figure 4.5.

The main shared resources in the following description are the spinlock lock, the buffer pro-
cess_data_buf and the buffer domainl_pd. In a nutshell, submodule @ realizes the fun-

damental state machine described in Subsubsection 3.2.1.1. This includes setting the real-

time attributes of the thread before starting the cyclic loop, waiting for a fixed time interval
and receiving the PDOs of the frame from the EtherCAT network, via calling a user-space

API of EtherLab (more on that in Chapter 5), in the domain1_pd buftfer.

It should be noted, that the domainl_pd buffer is shared between the application and the

EtherLab kernel module, as aforementioned in Subsubsection 3.2.2.5. This means that simul-

taneous access to this buffer shouldn’t be allowed, since it is not safe. Although submodule
@ wouldn’t ever access the shared buffer at the same time with the EtherLab module (the

submodule always uses the user-space API -calls EtherLab- after accessing the shared bulffer),

4.2. TECHNICAL SPECIFICATIONS 115

£
/ - \
/ = o
[Ll \
~ ~ [5 B \
g N £
/ N\ FE
-———— \ g
2 \\
52
D=
.uﬂ.
28«
-Emg - .
305 ° « w8
HRS 5% | |2 o% |[e |V s
> g9 S - 1 oz | |5« 5
a5 O~ -» 2 © [56 .) =
& ® Ik =2 | [83 = s 2
] 3 e % E_E b 5 H
Q £ 8 ¢ 52 M
-l 9 T |2 o 3 E “ « =
o c] aQ 2l |8 = o £ “ S
o 586 2 2 = b= S |8 £
52 CES 2 s £5 =gl =
23 z3 ~=|° S8 gls 5
3 ¢ 3 - &
o > -
] 8 ' g2 %i
S ! 22
3 3
] 8 < el 4 gs
s EEIRL 2y 53
sa e o3 S
g 7) s 23
= ’ : - 8= /
= -7 \ s \ 5 /
o e /
\ « Sq /

-
5
3
| °
o B
) i
AN
S 2
P
H g4 &
@
2o s8¢ 3
28 -zl |
oo 4 3 "
o
/ A
1 -~
' ;
1
N
] o 1 S~
g8 3% (58| Chah
- \ [
FE g~ £ 1
£E E
o E \ 1
8 ‘~_ 1
o o e * o
8 E g E 7y) E§
o 33 g 5o 8, 8o i3
S —» X5 —» @ —» OEF cd 5 8E — 3¢
> =2 2 Qg <5 oag =
° © £] o=] = &
E £ § = 5 H EE
] =]
o/ = &4 S H ge

\

\

y

58
S8
2c |
£5
we
55
DS

Shared
Resources
spinlock lock ﬁ

buffer | | | |
process_data_buf

buffer
domainl_pd

Figure 4.5: Synchronization scheme followed in the software project.

itis expected from the application to be instantly responsive to new inputs, i.e. to manage new
incoming output PDOs from anywhere anytime. This expectation could not be met with just
one buffer, since the application has limited time slice in the overall control loop time interval
to access the buffer, while the incoming traffic could arrive in any moment in the control loop.

Consequently, a neat solution to this problem was devised, by introducing a second buffer,

116 CHAPTER 4. REQUIREMENTS ANALYSIS ¢ TECHNICAL SPECIFICATIONS

namely the process_data_buf. This buffer is shared by the application’s submodules and
isn’t accessed by EtherLab. Therefore a synchronization mechanism is provided, namely spin-

lock lock, in order for the submodules to access safely the same buffer process_data_buf.

That said, submodule @ copies safely the new output PDOs (only these PDOs are changed
from the master’s side) from the process_data_buf to the domainil_pd buffer. With this
action, it has created the new PDOs ready to be sent. Then, it sends all the PDOs to (B) and
@, in order to be published in the corresponding topics. Next, it calls the user-space API
of EtherLab to send the domainil_pd buffer with the new PDOs to the EtherCAT network.

Finally it starts over the entire process.

Submodule @ is responsible for taking the user input (output PDOs of EtherCAT applica-
tion) into a private buffer and safely copy it into the process_data_buf. Finally submodule
@ copies safely the buffer process_data_buf to a private one and subsequently publishes

it's contents to a corresponding ROS topic, at fixed time intervals (order of seconds).
4.2.2.3 Other ROS nodes

The other ROS modules inter-operating with the developed application (using the ROS API),
are depicted in @, in Figure 4.2. The kind of algorithms depending on the developed soft-
ware application, are the ones that communicate with the legs and synchronize them. In this
context, when the robot operates, these components should be necessary for an autonomous

operation:

« High-Level Control & Motion Planning Algorithms: These algorithms are the bare-
bones of motion, since they allow the robot to move correctly based on the developed
control algorithms. This family of algorithms sends motion commands to the four legs,
based on an analytical model of the robot. For example, if we wish the robot to move
to a certain location, this kind of algorithms should compute the corresponding veloc-
ities and accelerations and pass them to each leg controller (see also @). In order to
pass these parameters, they should use the project’s ROS API to communicate with the

EtherCAT slaves.

o State Estimation Algorithms: These algorithms are critical in the functionality of a
robot, as they estimate the pose’ of the robot at fixed time intervals. They estimate

the robot’s pose in an unknown world, therefore should these components not work,

"Here by pose we mean the vector consisting of the position {z, y, z} and orientation {€,n} (represented
by a unit quaternion).

4.2. TECHNICAL SPECIFICATIONS 117

it would be devastating for the accomplishment of tasks and operations. This set of
algorithms in order to function properly needs to use the project’s ROS API, extract
the information for the position and velocities of the motors and determine, through a

motion and sensors model, the current pose of the robot with accuracy.

o SLAM Algorithms: The Simultaneous Localization and Mapping (SLAM) algorithms
are an essential part of every robot software. With the aid of such algorithms, the robot
can localize itself based on a map of the environment, which is simultaneously updated
dynamically. In order for these algorithms to properly work, they need to have an
odometry estimation, which can be inferred by the angles and angular velocities of the

motors of the legs, through the project’s ROS API, or by other external means.
4.2.2.4 EtherLab

The EtherLab software is shown in @, in Figure 4.2. The project’s software utilizes EtherLab
to communicate with the EtherCAT Slave Network. More information on its internal archi-

tecture can be found in Subsection 3.2.2 and in [2]. This module has a user-space library, and

it's API is used by the project’s software, as already shown in Figure 4.4.
4.2.2.5 Linux Network Stack

The Linux Network Stack is illustrated in @, in Figure 4.2. To acquire a complete picture
of the overall system architecture, it is convenient to present the relationship of the Linux
Network Stack with the EtherLab module and the EtherCAT network. Detailed information
about the internal architecture of the Linux Network Stack can be found in [110, 111, 112,
113, 114, 115]. For simplicity and consistency, the analysis follows two common paths: the

sending and the receiving one.

Sending Path: The path the code and the data follow in order for the application to transmit
an EtherCAT frame, is illustrated in Figure 4.6.

Depending on the type of the device chosen to run EtherLab (Native or Generic), the sending
path differs significantly. However the first steps are the same: The application calls ecrt_-
master_send() of the user-space API of EtherLab, which makes an ioct1() call with the
EC_IOCTL_SEND option and eventually calls the kernel-space ecrt_master_send() func-
tion of the module. There some sanity checks are performed as well as internal bookkeeping

and some statistics are kept. Then, the frame is ready to leave the master and head to slaves.

118 CHAPTER 4. REQUIREMENTS ANALYSIS ¢ TECHNICAL SPECIFICATIONS

EtherCAT
Communicator Socket
Program
3
O
o ecrt_master_send()
N \ ssize_t send(
a'; int sockfd, const void *buf,
g ioctl(...,EC_TOCTL_SEND,...) size_t Len, int flags);
EC_T0CTL() SYSCALL_DEFINE4(send, ...
l Protocol
ec_ioctl_send() __sys_sendto()
TCP/P,
ecrt_master_send() kernel_sendmsg() sock_sendmsg() uopap, | Routing
- = RAW Rules
Generic Ethernet
ec_master_send_datagrams() Driver Module
ec_gen_device_start_xmit() Netdevice
ec_device_send() Subsystem
3 Traffic Control
31 Classification
2 device->dev-> ol .ndo_start_xmit =
Q| netdev_ops->ndo_start_xmit() ec_gen_netdev_start_xmit() TX QUEUES
= Queueing
N Disciplines P L .| |..
Native EtherCAT-capable qdisc Submodule of our
Ethernet Device Driver Application
Standard Ethernet
Device Driver
. > .ndo_start_xmit =
{e100,e1000,igb, ...} _xmit_frame() EtherLab User-
.ndo_start_xmit = space Library
{e100,€1000,igb, . ..}_xmit_frame()
TX RING
BUFFER
TX RING EtherLab Kernel
BUFFER Submodule
® Network Interface Card - Linux Kernel
S
S
S
i
£ ‘TX QUEUES User-space
Program using
socket

Ethernet
Cable

Figure 4.6: Sending Path anatomy.

This call is made from the ndo_start_xmit()® function pointer. Note that, depending on
how the EtherLab module has been compiled and built in the system, there will be different

functions registered to be called from the above function pointer.
From this point on, the two sending paths are separated (red dashed lines).

If the device chosen is a Native EtherCAT-capable one, then the call continues to it’s regis-
tered function for ndo_start_xmit () which passes the frame to the hardware specific code
and copies the data to a TX ring buffer in RAM (some NICs are “multiqueue” they can DMA
many Buffers from/to RAM), signals the NIC for DMA and then NIC is ready for transmis-

sion.

However, if the device chosen is a generic one, which means that the driver used has no mod-

8device->dev->netdev_ops->ndo_start xmit()

4.2. TECHNICAL SPECIFICATIONS 119

ifications from the EtherLab code, then the path followed is a typical one: Calling the socket
kernel API through the wrapper kernel_sendmsg() with a RAW defined socket. After this
call, the rest is left to the Linux kernel. In addition, for comparison reasons, a call from the
send() system call is included, which is called from a typical network program that sends

data to a network through a socket.

The short version of the rest of the path followed is described below. The kernel_sendmsg()
calls sock_sendmsg() which after some internal wrappings, gets into the Protocol Subsys-
tem. There, the data will pass all the IP-related internal layers and are encapsulated into a
packet. Since the IP source and destination field is not defined in the EtherCAT data (unlike
a typical IP packet), the data probably won’t be routed. Then, the data continue into the net-
device subsystem in which traffic control code will classify with the aid of the Transmit Packet
Steering (XPS) algorithm, into which TX queue the data will be put (if there are many). Then
the Queueing Discipline of the specific TX queue will be applied. This task will run in a softirq
context (from the ksoftirqd thread of a specific CPU), while so far the path was created in a
process context. Finally the packet will be checked if it needs segmentation, will be handed to
the packet taps (like PCAP, the library Wireshark or tcpdump use to capture filters in POSIX-
compliant systems) and the standard driver’s ops are used to pass the data down to the NIC
by calling the registered function for ndo_start_xmit(). After that, the typical procedure
follows: The registered function for ndo_start_xmit () passes the data to the hardware spe-
cific code, the now EtherCAT frame is checked for fragmentation, is copied to a a TX ring
buffer in RAM, the NIC is signaled for DMA and then NIC is ready for transmission. Keep
in mind that in spite of coloring the Native Driver submodules blue (which contribute to the
transmission), the Native Driver is a standard driver with some minor modifications from

the EtherLab code.

Receiving Path: The path which the code and the data follow in order for the application to
receive an EtherCAT frame, is illustrated in Figure 4.7.

Depending on the type of device chosen to run EtherLab (Native or Generic), the receiving
path is altered significantly too. However the first steps are the same: The application calls
ecrt_master_receive() of the user-space API of EtherLab, which makes an ioct1() call
with the EC_IOCTL_RECEIVE option and eventually calls the kernel-space ecrt_master_-
receive() function of the module. From there and after some sanity checks, internal book-
keeping and some statistics, the device->poll(device->dev) function pointer calls the

registered function for polling. Note that, depending on how the EtherLab module has been

120 CHAPTER 4.

REQUIREMENTS ANALYSIS ¢ TECHNICAL SPECIFICATIONS

Linux PC
EtherCAT Socket

o Communicator Program
o
K
g ! |
@ ecrt_master_receive() .
& ssize_t recv(
3 int sockfd, void *buf,
> size_t Len, int flags);

ioctl(...,EC_TOCTL_RECEIVE,...) |

I
SYSCALL_DEFINE4(recv, ... sk_receive_queue->lock sk_receive_queue ‘
Place Data in the
Domain Queue __sys_recvfrom() N
f—L __skb_queue_tail()
EC_TOCTL() I
ec_master_receive_datagrams() sock_recvdmsg() __skb_recv_datagram()
Protocol Subsystem

ec_ioctl_receive() I
3 ecdev_receive() €sesesrsrasasssssssssans kernel_recvmsg() Tcenp, UoP/P, Bl R ting Rules
Q ecrt_master_receive() A
by i
TI) Generic Ethernet :
< ec_device_poll. Driver Module :
T - L2 4 Packet Taps
K H

device->poll(device->dev)

. Native EtherCAT-capable
Ethernet Device Driver

adapter->clean_rx()

ecdev_offer()
4

.probe =
{e100,e1000,igb, ...} _probe()

-+ > ec_poll() +
. H
R ec_gen_init_module()
{e100, 1000, igb, ... }_intr()

RX RING
BUFFER

ec_gen_device_poll()

t

......... » ec_gen_poll()
a
ecdev_offer()
ec_gen_device_offer()
*

offer_device()

__netif_receive_skb_core()

netif_receive_skb()

Standard Ethernet napi_gro_receive()

Device Driver

netif_napi_add() &8

{e100, 1000, igb, .. . }_poll()

__napi_schedule()

{e100,€1000, igb, ...}_intr()

.probe =
{e100,e1600, 1gb, . . .}_probe()

RX RING
BUFFER

Hardware

Network Interface Card

=

)

Submodule of our
Application

EtherLab User-
space Library

EtherLab Kernel
Submodule

User-space
Program using
socket

Ethernet
Cable

Figure 4.7: Receiving Path anatomy.

—

built and initialized in the system, there will be different functions registered to be called from

the above function pointer.

From this point on, the two receiving paths are separated (red dashed lines), but they both

merge with the call to ecdev_receive(), after each one completing it’s own journey.

If the device chosen is a Native EtherCAT-capable one, then the call continues to the regis-

tered function for polling ecdev_receive() (EtherLab code inside the standard driver).

This function has been registered when the EtherCAT native driver module was inserted

(“probed”) into the kernel (path shown with black dashed lines). Next, the function calls
“manually” the, lightly modified by EtherLab, IRQ handler of the driver, which is short-

circuited to a call to adapter->clean_rx() function handler which finally leads to the fi-

4.2. TECHNICAL SPECIFICATIONS 121

nal goal of ecdev_receive(). Note here that the IRQ handler is modified so that if it is
awaken by the EtherLab code, it doesn't call any actual poll functions, as a standard Ethernet
driver would do normally (see later). The ecdev_receive() receives the raw (EtherCAT)
frames and passes them to ec_master_receive_datagrams(), which extracts the neces-

sary EtherCAT datagrams and places them in the Domain Queue for further processing.

However, if the device chosen is a generic one, which means that the driver used has no mod-
ifications from the EtherLab code (the standard Ethernet driver is used), then the path fol-
lowed is a typical one; The registered poll function that the device->poll(device->dev)
points to, is the ec_gen_poll() (registered when the EtherLab module is initialized in the
kernel with the generic device, path shown with black dashed lines), which leads to ec_-
gen_device_poll() which does two things: First calls the socket kernel API through the
wrapper kernel_recvmsg() with a RAW defined socket. After this call and when kernel_-
recvmsg() returns, it merges with the path followed by Native, which means calling the
ecdev_receive(), which receives the raw (EtherCAT) frames and passes them to ec_mas-
ter_receive_datagrams (), which extracts the necessary EtherCAT datagrams and places
them in the Domain Queue for further processing. Meanwhile, in the call of the wrapper
kernel_recvmsg(), the path continues to the Linux kernel. In addition, for comparison
reasons, a call from the recv() system call is included, which is called from a typical net-

work program that receives data to a network through a socket.

The receive path in the Linux kernel code breaks into two parts. The first consists of the frames
received from the Ethernet cable while the second part consists of the calls either from the
system call recv() or from the EtherLab module with a generic device, starting from their
common call of sock_recvmsg(). The meeting point is the queue sk_receive_queue,
which both parts access safely through a shared sk_receive_queue->lock. The first part

runs in application context, while the second runs in interrupt and later softirq context.

The first part is described below, through a brief summary. The NIC receives the Ethernet
frame, DMAs the frame into an RX ring buffer in RAM and raises an interrupt in the ker-
nel. The registered IRQ handler of the standard driver is executed, the IRQ is cleared on the
NIC, so that it can generate IRQs for new packet arrivals, NAPI softirq poll loop is started
with a call to __napi_schedule, which triggers the ksoftirqd thread to run the corre-

sponding handler of the pending softirg, which eventually calls the NAPI® poll function

*New API (NAPI) was introduced in the kernel as a solution to the issue of driven down CPUs caused by the
frequency of the interrupts from NICs.

122 CHAPTER 4. REQUIREMENTS ANALYSIS ¢ TECHNICAL SPECIFICATIONS

registered from the driver (when “probed” in the kernel, path shown with black dashed lines)
to do the further processing. Next, the driver’s poll function harvests packets from the RX
ring buffer in RAM and hands them over to napi_gro_receive, where they are checked
for Generic Receive Offloading (GRO). After GRO the path continues to netif_receive_-
skb (), which after Receive Packet Steering (RPS) handling eventually leads to netif_re-
ceive_skb_core(), which after delivering data to any taps (like PCAP), passes the data on
to the registered protocol layer handlers. Finally, the data after passing through the protocol
stacks, netfilter, routing optimizations and berkeley packet filters, are eventually placed in the
queue sk_receive_queue with the use of the _ skb_queue_tail(), through the shared

sk_receive queue->lock.

The second part is far more brief than the first one; The call from kernel_recvmsg() leads
after passing through some protocol specific layers (like UDP, TCP and ... RAW too) to sock_-
recvmsg(), which calls the function __skb_recv_datagram(). This function reads safely

from the queue sk_receive_queue, through the shared lock sk_receive_queue->lock.

Finally, after kernel_recvmsg(), the function ec_gen_device_poll() calls ecdev_re-

ceive() and eventually the data end up in the Domain Queue for further processing.
4.2.2.6 Cyclicloop exchange

The cyclic loop created from exchange of EtherCAT frames is pictured in @, in Figure 4.2.
The EtherCAT protocol, network topology, frames and cyclic loop are thoroughly described
in Section 3.1 and Section 3.2. For the quadruped robot, the EtherCAT slaves network topol-

ogy forms a daisy chain, in the sense that the EtherCAT frame leaves the Ethernet NIC of the
master, passes all the slaves, and then takes the same way back as it came, through the same
cable (ring topology). There is no switch intervened in the current EtherCAT network topol-
ogy. The Ethernet cable is connected to one port of the NIC of the master, while the slaves

have two connected Ethernet ports each, except from the last one, which has also one port.

Prior to introducing the EtherCAT process data or variables shared among the master and
the slaves, it is of utmost importance to underline the leg’s model which is followed and the
reasons for choosing these process data. Each leg of the quadruped robot consists of three
links, as shown in Figure 4.8. However, since the attached spring is stiff, it can be safely

assumed that it comprises of two links (the upper is actual while the lower is virtual) [17].

In Figure 4.9, the motion planning and control parameters of each leg are presented [17].

4.2. TECHNICAL SPECIFICATIONS 123

-

D
Vv

LA

>4

actual link

4

stiff spring
\ virtual link
"4

Figure 4.8: Actual and virtual links of Laelaps II legs [17].

Figure 4.9: The leg’s model [17].

The kinematics equations regarding the leg shown in Figure 4.9 are [17]:

Forward Kinematics:

rp = lisinf + lysinby
(4.1)
yE = licosfy + lacosbs

Inverse Kinematics:

124 CHAPTER 4. REQUIREMENTS ANALYSIS ¢ TECHNICAL SPECIFICATIONS

Applying the law of cosines, the former (4.1) becomes [17]:

¢ =0, — 0,
o5+ yn =17 + 15 — 2llscos(m — @) = I3 + 15 + 2l112c05¢
v +yg — (F+18)

_ 42
cos® ST (4.2)
sing = —\/1 — cos?¢
¢ = atan2(sing, coso)

Thus, solving (4.2) for 6; and 6, [17]:

0y = g — atan2(yg, v) + atan2(lysing, ly + l1cos@)
(4.3)

0, = 0y — atan2(sing, cose)

Regarding the leg’s workspace, the maximum/minimum lengths of the leg (knee joint at end-

stop) are [17]:

leffmas = L + Iy = 250 + 350 = 600mm
(4.4)
leffamin = A/ 12 + 13 = /2502 4 350% = 430, 12mm, 65 = 90°

A visualization of the leg’s workspace is shown in Figure 4.10 [17].

Figure 4.10: The leg’s workspace [17].

Note: The EtherCAT application is the one which is implemented with the EtherCAT protocol
and refers to data exchange via the Input and Output EtherCAT variables. When the developed
application is mentioned, this refers to the developed application in the context of this thesis

(which eventually runs the EtherCAT application).

4.2. TECHNICAL SPECIFICATIONS 125

Each EtherCAT Slave enables each leg to form semi-elliptical trajectories, with all the param-
eters of these trajectories controlled by the master, as introduced in [116]. Thus, only the
slaves perform the necessary computations for the motion control of each leg [17]. The mas-
ter merely provides the necessary parameters for the desired elliptical trajectory, listed in the
TrajectoryParameters Record in Table 4.1 [17]. The computed ellipse is defined in (4.5) w.r.t.
point 0 (hip axis) defined in Figure 4.9 [17]. The ellipse needs to be always inside the limits
of the leg’s workspace [17]. Consequently, each slave’s firmware is specifically programmed
to disregard parameters which produce invalid ellipses [17]. The firmware will continue to

serve the last (24,4, Yirq;) point until a new valid point is passed to it [17].

Ltraj = Ltragj,entr + acos(wtr(zjt + ¢> (4 5)

Ytraj = Ytraj,centr + bSin<wtrajt + ¢)

To model the impedance of the treadmill’s floor, a flattening parameter has been added on
the y semi-minor axis (b), altering the shape of the elliptical trajectory [17]. The different
positions along this semi-elliptical trajectory are shown in Figure 4.11 [17].

Configuration of leg Configuration of leg

-01 0.1
0 0
01 01
@02 W 02
x x
@ / © /
> 03 / > 03 /
! [/
v v /
+ 04 + 04 /
0 05 /
0.6 08
07 L L L L L 0.7
-0.3 0.2 04 0 0.1 0.2 03 02 01 0 0.1 02
X axis --> + X axis --> +

Configuration of leg Configuration of leg

0.1 0.1
or] o Q@
\ \
0.1 0.1 \
\
\ \
@ 02+ \ w02 \
x b x)
© " © ;’
> 03 / > 0.3 /
J | /
v v /
+ 04r + 04 /
/ /
051 / 0.5 /
06 - Q 08+ @
or 07
-0.3 -0.2 0.1 0 0.1 0.2 -0.3 02 0.1 0 0.4 0.2
X axis --> + X axis >+

Figure 4.11: Different positions along the semi-elliptical trajectory [17].

From the aforementioned analysis in (4.5), the necessary parameters for the semi-elliptical

trajectories are realized. These include the centre of the trajectory in the x axis (24yqj cntr)

126 CHAPTER 4. REQUIREMENTS ANALYSIS ¢ TECHNICAL SPECIFICATIONS

the centre of the trajectory in the y axis (y4yqj cntr), the semi-major x axis («), the semi-minor
y axis (), the flattening parameter for the creation of semi-ellipses (flattness_param), and
finally the trajectory frequency (wiq;). These parameters are of utmost importance for the
creation of the correct semi-ellipses by the slaves, via the correct commands of the master.
However for consistency reasons, the whole set of the EtherCAT input and output variables
shared among master and slaves with comments for each one, along with the most important

ones aforementioned, are presented in Table 4.1 and Table 4.2.

Note: The Output EtherCAT variables are variables the master sends to the slaves. Thus, they
are written by the master and read by the slaves. The Input EtherCAT variables are variables

the master receives from the slaves. Thus, they are written by the slaves and read by the

master.
Table 4.1: EtherCAT Laelaps II Motion Control Output variables.
Data
Index | Subindex Name Comments
Type
0x7000 Record Buttons
0x01 bool State_Machine State Machine variable
0x02 bool Initialize clock not used
Initialize -
0x03 bool not used
angles
Inverse_-
0x04 bool not used
Kinematics
0x05 bool Blue_LED light Blue LED
0x06 bool Red_LED light Red LED
0x07 bool Buttonl not used
0x08 bool Button2 not used
Time for smooth transition
0x09 int8 Transition_time
functions (sec)
0x7010 Record Desired_x_value
0x01 int32 Desired x_value Not read by slave (for future use)
0x7012 Record TargetMode
0x01 uintlé | FilterBandwidth First order lag filter frequency (Hz)
0x7014 Record Desired_y_value

4.2. TECHNICAL SPECIFICATIONS

127

0x01 int32 Desired_y value Not read by slave (for future use)
0x7020 Record ControlGains PIV Gains

0x01 int16 55158 [Proportional gain of knee motor /

100

0x02 int16 Kd100e_knee Velocity gain of knee motor / 1000

0x03 int16 Ki100_knee Integral gain of knee motor / 100

0x04 int16 Kp100_hip Proportional gain of hip motor / 100

0x05 int16 Kd1eee_hip Velocity gain of hip motor / 1000

0x06 int16 Kilee hip Integral gain of hip motor / 100

0x01 inti16 x_cntr_trajleee x centre of the ellipsis (mm)
0x02 intile y_cntr_trajleee y centre of the ellipsis (mm)
0x03 intil6 a_ellipselo0 semi-major z axis (cm)
0x04 inti16 b_ellipsele0 semi-minor y axis (cm)
0x05 int16 traj_freqlo0 Trajectory’s frequency (Hz) / 100
0x06 inti16 phase_deg Trajectory’s initial phase (deg)
0x07 intl6 | FlatnessParam100 Flatness parameter of y axis / 100

Table 4.2: EtherCAT Laelaps II Motion Control Input variables.

Data
Index | Subindex Name Comments
Type
0x6010 Record hip_angle
Rotational angle of hip
0x01 intl6 hip_angle
(deg) * 100
Desired rotation angle of
0x02 intil6 desired_hip_angle
hip (deg) * 100
0x6012 Record FeedbackTime
Time variable from slave
0x01 uintie6 Time
device (sec)
0x6014 Record knee_angle
Rotational angle of knee
0x01 intlé6 knee_angle
(deg) * 100

128 CHAPTER 4. REQUIREMENTS ANALYSIS ¢ TECHNICAL SPECIFICATIONS

Desired rotation angle of
0x02 intl6é | desired_knee_angle
knee (deg) * 100
0x6020 Record Commands
Output of PIV control for
0x01 intlé6 PWM10000 knee
knee (%) * 100
Output of PIV control for
0x02 int16 PWM10008_hip
hip (%) * 100
0x6030 Record Velocity PIV Gains
Rotational speed of knee
0x01 int32 velocity kneel000
(rad/s) * 1000
Rotational speed of hip
0x02 int32 velocity hipl000
(rad/s) * 1000

4.2.2.7 FEtherCAT Slave Network

The EtherCAT Slave Network is depicted in @, in Figure 4.2. Every component of this net-
work comprises of internal hardware and software architecture, which is briefly introduced.
More information for the hardware and the software architecture of these components, can

be found in [17, 109].

As far as the software architecture of the EtherCAT slaves is concerned, the handling of the

Process Data Objects (PDOs) in the EtherCAT slave can be separated in two main steps as

depicted in Figure 4.12 [17]:

o Low level on-the-fly data exchange: The ESC reads/writes data from/to the EtherCAT
frame and stores/reads the data to/from the internal DPRAM.

« The slave application performs further data processing.

In each slave, a microcontroller is responsible for the entire application layer. As outlined in

Figure 4.13, the EtherCAT slave software stack consists of three main parts [17]:

o Process Data Image (PDI) and Hardware abstraction which is hardware specific and

needs to be implemented according to the platform/PDI. In the Slave Application, Serial
Peripheral Interface (SPI) plays this role which is the means of communication between

the MCU and the EtherCAT Slave Controller (see below).

4.2. TECHNICAL SPECIFICATIONS 129

Slave PD stack Slave PD stack
Application Application
;; W = % .g M | | (e | B | %
B €| L u|lo| o @8 8 W e o @s
83| |ls S8
m a i o
w0 lalibo o
PDI abstraction layer PDI abstraction layer
0x220.10 SM2 | SM3 022010 SM2 SM3
Regster | ffieran Register | DPRAV
FMMUO FMMU 1 FMMU O FMMU 1

Figure 4.12: EtherCAT Process Data handling in the slaves [17].

o Generic EtherCAT stack that corresponds to all those functionalities which are not
hardware and application specific for a slave, such us the full EtherCAT state machine,

mailbox communication and generic process data exchange.

o User application which implements the slave specific functions i.e. motor control.

Application User
e.g. CiA402 Drive Profile Application

—————————————— Application function set iSEEESSEESSSaataa]

w
EtherCAT ? E ﬁ § § 8 Process Generic
MSta;]t_e data EtherCAT stack
achine Mailbox
——————————————— Hardware function set imm—— e ———————]
PDI and hardware abstraction Hardware
access
c Mailbox Process data
T o EtherCAT Slave
Register : ESC address space (DPRAM) Controller (extract)

Figure 4.13: EtherCAT slave software architecture [17].

As far as the slave hardware architecture is concerned, this comprises of three hardware com-

ponents [17]:

o An EtherCAT Slave Controller (ESC) which handles the EtherCAT protocol in real-

time by processing the EtherCAT frames on-the-fly and provides the interface for data
exchange between a master and a slave. The ESC is responsible for the realization of

the Physical and Data Link Layers.

o A host Micro Controller Unit (MCU) realizing the Application Layer including the

130 CHAPTER 4. REQUIREMENTS ANALYSIS ¢ TECHNICAL SPECIFICATIONS

Hardware Access, the Generic EtherCAT stack and User Application structures as pre-

sented in Figure 4.13.

o A custom printed circuit board connecting these two devices (the green board in the

following figures).

For Laelaps IT needs, the C2000 Delfino MCU F28379D LaunchPad Development Kit by Texas
Instruments (TI) (Figure 4.14) has been selected, as a low cost and powerful MCU, to become
the host microcontroller of all EtherCAT slaves [17].

Figure 4.14: The EtherCAT slave MCU [17].

Regarding the EtherCAT Slave Controller (ESC), the FB1111-0141 (SPI) ESC by Beckhoft

(Figure 4.15), has been selected [17]. It’s a flexible ESC which communicates with the MCU

via the Serial Peripheral Interface (SPI) protocol and operates in DC Synchronous mode trig-

gered by three external interrupt signals [17].

Figure 4.15: The EtherCAT slave ESC [17].

Each leg of Laelaps II is being controlled by one EtherCAT Control Tower Assembly which
realizes an EtherCAT slave in the configured network. Thus, four identical assemblies are

constructed and used to control Laelaps II [17]. Figure 4.16 shows the final version of the

4.2. TECHNICAL SPECIFICATIONS 131

EtherCAT Control Tower Assembly [17]. Except for the aforementioned components, the

assembly includes [17]:

o ATMS320F28379D Extension board interfacing with all necessary peripherals (ePWM,
eQEP etc.) for two motors presented in Section 4.4 of [109].

« A voltage regulator (DC - DC converter, Step - Down 5V 2A USB'°) supplying the logic

power to the whole assembly.
o A plexiglass supporting base for mounting purposes on the Laelaps body.

In Figure 4.16 also notice the custom printed circuit board for connecting the MCU with the

ESC in green color.

TMS320F28379D Extension Board

......

Debug
micro USB

Plexiglass Supporting Base

Figure 4.16: EtherCAT Control Tower Assembly [17].

Finally, the entire EtherCAT Control Tower Assembly mounted on Laelaps II robot is shown
in Figure 4.17 [17]. All four slave devices are connected to the EtherCAT network. The first
is on the Hind Right Leg and the last on the Fore Right Leg [17].

4.2.2.8 Electrical & Actuation systems

The actuation system of Laelaps II is pictured in , in Figure 4.2. Prior to introducing the
actuation systems chosen in Laelaps II, it’s worth to mention briefly the electrical system, in
order to acquire a general grasp of the overall architecture. For further information and details

on the electrical system of Laelaps II, the reader is referred to the exhaustive and excellent

https://grobotronics.com/dc-dc-step-down-5v-2a.html

https://grobotronics.com/dc-dc-step-down-5v-2a.html

132 CHAPTER 4. REQUIREMENTS ANALYSIS ¢ TECHNICAL SPECIFICATIONS

Figure 4.17: EtherCAT Control Tower Assembly on Laelaps II [17].

approach in [109, Chapter 4].
Electrical system
The main electrical components of Laelaps II are [17]:
« The High Power Distribution board which provides high power to all drivers.

o The Logic Power supply system with voltage regulators (5V) supplying all EtherCAT

towers.

« Eight motor driver boards (amplifiers) configured for current control. Four of the
drivers are connected to brushed motors, which drive the knee of each leg and the rest

are connected to brushless motors, which control the hip motion.

« Four EtherCAT Control Tower Assembly slaves (introduced briefly above), connected

to the motor drivers and the encoders of each leg.

It should be noted that each set of EtherCAT tower and connected drivers controls the leg
of the opposite side (left — right), because of the way the motors are mounted to the body
[17]. For example, the EtherCAT Control Tower Assembly and the two motor drivers shown
in Figure 4.18, control the motion of the Fore Right Leg and NOT the Fore Left Leg which is

4.2. TECHNICAL SPECIFICATIONS 133

visible in the same figure [17]. This detail is important when operating the software on the
master’s as well on the slaves’ side since the users should not be confused which EtherCAT

Control Tower Assembly corresponds to which Laelaps leg [17].

: *;'.‘:*.-"‘. '
X ;

Figure 4.18: Electrical System of Laelaps II [17].

Actuation system

In Laelaps II different combinations of motors and gearheads are used for driving its knee
and hip joints, but in both cases, a pulley with a specific gear ratio (48/26) is mounted to
reduce the rotational speed of the motor and increase the output torque [17]. All motors
and gearheads are purchased from Maxon Motors'' [17]. For the hip joints, EC 45, @45 mm,
brushless motors, 250 Watt'? are used along with the Planetary Gearhead GP 52 C (352 mm,
4-30 Nm'* with a gear ratio of 343/8 [17]. For the knee joints, RE 50, @50 mm, Graphite
Brushes motors, 200 Watt'* are used along with the Planetary Gearhead GP 52 C @352 mm,
4-30 Nm'® with a gear ratio of 637/12 [17]. More information on the actuation system, the
type of control scheme and the electronics created for controlling the motors, can be found

in [17, 109].

https://www.maxonmotor.com
2Motor Datasheet

3Gearhead Datasheet

*Motor Datasheet

3Gearhead Datasheet

https://www.maxonmotor.com
https://www.maxonmotor.com/medias/sys_master/root/8830474944542/2018EN-215.pdf
https://www.maxonmotor.com/medias/sys_master/root/8831071289374/2018EN-359.pdf
https://www.maxonmotor.com/medias/sys_master/root/8830469865502/2018EN-133.pdf
https://www.maxonmotor.com/medias/sys_master/root/8831071289374/2018EN-359.pdf

134 CHAPTER 4. REQUIREMENTS ANALYSIS ¢ TECHNICAL SPECIFICATIONS

4.2.3 Application Programming Interface

In this subsection the Application Programming Interface (API) provided by the projects

software to other ROS software, is presented. As already highlighted, this API should be
created in the context of a ROS API (much like a REST API for web applications), since the
software should interoperate with other ROS nodes. The ROS API is presented in Table 4.3.

Table 4.3: ROS API of the software project.

Package Name: ether_ros
Node type: ether_ros
Node name: ether_comm
Publishers:
Topic Name: /pdo_raw
Message Name: PDORaw.msg

Header header

Message Type: uint8[] pdo_in_raw
uint8[] pdo_out_raw
Topic Name: /pdo_in_slave_x , x € [0 — 3]
Message Name: PDOIn.msg

Header header

intl6 hip_angle

intl6 desired_hip_angle
uintlée time

Message Type: intl16 knee_angle

intl6 desired knee angle
intl6 PWM10000 knee
intl6 PWM1000@_hip

int32 velocity kneel000

Message Type:
o int32 velocity hip1000

Topic Name: /pdo_out

Message Name: PDOOut.msg

4.2. TECHNICAL SPECIFICATIONS

Message Type:

Heade
uint8
bool
bool
bool
bool
bool
bool
bool
bool
int8
int32
uintil
int32
intle
intl6
intl6
intle
intle
intl6
intl6
intle
intl6
intl6
intl6
intle
intl6

r header
slave_id
state machine
initialize clock
initialize angles
inverse kinematics
blue led
red_led
button_1
button_ 2
sync
desired x_value
6 filter_ bandwidth
desired y value
kp_100_knee
kd_1000 knee
ki 100 knee
kp 100 hip
kd_1000_hip
ki_100_hip
X_cntr_trajleee
y_cntr_trajlo00
a_ellipselo0
b ellipsel00
traj_freqlee
phase_deg
flatness_paraml00

135

Topic Name:

Message Name:

Message Type:

/pdo_out_timer

PDOOut.msg

The same as in /pdo_out

Subscribers:

Topic Name:

/pdo_listener

Message Name:

ModifyPDOVariables.msg

136 CHAPTER 4. REQUIREMENTS ANALYSIS & TECHNICAL SPECIFICATIONS

uint8 slave_id
uint8 index
uint8 subindex
bool bool value
uint8 uint8 value
int8 int8 value

Message Type: uintlé uintl6_value
intl6 intl6_value
uint32 uint32_ value
int32 int32 value
uint64 uint64_value
int64 int64 value
string type

/pdo_raw
Topic Name: 2 subscribers:
1 in PDOInPublisher
1 in PDOOutPublisher

Message Name: PDORaw.msg
Header header

Message Type: uint8[] pdo_in_raw
uint8[] pdo out raw

Services:

Service Name: /ethercat_communicatord

Service Type: EthercatCommd.srv

Request type: string mode

Response type: string success

Actions:

Action Name: -

Request type: -

Feedback type: .

Response type: -

Parameters:
File: config/ethercat_slaves.yaml

4.2. TECHNICAL SPECIFICATIONS

CHAPTER 4. REQUIREMENTS ANALYSIS ¢ TECHNICAL SPECIFICATIONS

Implementation

Nothing ever comes to one, that is
worth having, except as a result of

hard work.

Booker T. Washington

In this chapter, a detailed description is given of the implementation of the software project,
which resides in the ROS environment, utilizes EtherLab and complies to real-time require-
ments, as previously analyzed in Chapter 4. Furthermore, the rationale behind each optimiza-
tion applied upon the initial approach, is presented. Then, the installation and configuration
process, along the path of a fully operational testing environment, are outlined. Finally, the

methods and tools used to ensure the correctness of the code, are descrided in detail.

In this chapter, only selected segments of code are included and discussed, in order to aid
the reader’s understanding of the implementation. The complete source code is available on

https://github.com/mikekaram/ether ros.

5.1 Software Implementation

In this section, a list of the key classes, functions and structures that were implemented, are
provided, along with a brief explanation. This list refers to the final, optimized implementa-

tion.

ether_ros: This is the main source file of the EtherROS project (also the name of the ROS

package). Its main purpose is to initialize all the services, topics, data handlers and threads for

139

https://github.com/mikekaram/ether_ros

140 CHAPTER 5. IMPLEMENTATION

the operation of the program. Initially it requests and configures a master using the Ether-
Lab API. After the correct configuration of the master, it moves to acquiring a domain for
the process data to be used (domains allow grouping of process data transfers with different
slave groups and task periods). In the quadruped’s case, the EtherCAT slaves should be in
the same slave group and have the same task periods, therefore only one domain is created.
Then it continues by initializing the EtherCAT slaves by calling their init() method, the
EtherCAT Communicator, the Input PDO Publisher, the Output PDO Publisher, the Output
PDO Listener, the Output PDO Publisher Timer and the EtherCAT Communicator Daemon
service. Finally it opens the log file, if there are statistics for logging and calls the famous
ros::spin() function, which spins a thread for handling all the registered message com-

munications (topics, services, actions) by calling the corresponding registered handler.

Note: prior to the request for a master, the program locks the memory pages it will use in

advance with the following code in main():

1

2| if (mlockall(MCL_CURRENT | MCL_FUTURE) == -1)
3004

4 ROS_FATAL("mlockall failed");

5 exit(1);

61 }

7

Listing 5.1: The call tomLockall().

Linux processes access memory by using virtual addresses [63, Chapter 4]. Each virtual ad-
dress translates into a physical address with the help of translation tables in the hardware
[63, Chapter 4]. As all processes don't need all their allocated memory at the same time, it’s

possible to address more virtual memory than available physical memory [63, Chapter 4].

Allocating memory by default will only reserve a virtual memory range [63, Chapter 4]. When
the first memory access to this newly allocated virtual memory occurs, this causes a page
fault, which triggers a hardware interrupt [63, Chapter 4]. This interrupt indicates that the
translation table does not contain the addressed virtual memory [63, Chapter 4]. The page
fault interrupt will be handled by the Linux kernel, which will provide the virtual-to-physical
memory mapping [63, Chapter 4]. Then the program execution continues [63, Chapter 4].

5.1. SOFTWARE IMPLEMENTATION 141

Most hardware architectures use a cache called translation lookaside buffer (TLB) as the trans-
lation table [63, Chapter 4]. The TLB cache is used to speed up virtual-to-physical memory
translations [63, Chapter 4]. If the looked-up address is in the TLB (TLB hit), then the trans-
lation is done instantly. Otherwise (TLB miss) the address should be searched in the Page
Table which introduces extra latency [63, Chapter 4].

Virtual memory makes it possible for Linux to have memory content stored in a disk and
the data to be copied from the disk to physical memory when they are needed by the pro-
cess [63, Chapter 4]. This is called demand paging and could cause unbounded latency [63,
Chapter 4]. Thus, an application designed as real-time, such as the one developed, needs to
disable demand paging by using themlockall() function call: mlockall(MCL_CURRENT |
MCL_FUTURE) [63, Chapter 4].

The MCL_CURRENT flag makes sure that all pages which are currently mapped into the address
space of the process are locked and the TLB contains the needed virtual-to-physical memory
mapping [63, Chapter 4]. This includes code, global variables, shared libraries, shared mem-
ory, stack and heap [63, Chapter 4]. The MCL_FUTURE flag makes sure that all pages which
will become mapped into the address space of the process in the future are locked. means that
updates to the TLB and initialization of the physical memory are performed during future al-
locations, not when accessing the memory [63, Chapter 4]. Future allocations can be stack
growth, heap growth, new memory mapped files or shared memory regions, shm_open(),

malloc(), or similar calls like mmap () [63, Chapter 4].

When the mlockall() system call is used, it's important to be called at the proper time [63,
Chapter 4]. For instance, a call to malloc () after mlockall() is called, can still show large
latency variation since the TLB is updated within this function call instead of when accessing
the memory [63, Chapter 4]. Not to mention that a malloc() could request more virtual
memory from the kernel [63, Chapter 4]. Thus, all needed dynamic memory should be allo-

cated at the start of the real-time process, to avoid this extra latency [63, Chapter 4].

EtherCAT slave: This class represents the EtherCAT slaves communicating with this soft-
ware. Its main purpose is to act as a placeholder for all the slave-oriented functions and vari-
ables. This class could easily be represented as a struct, however it was foreseen that this class
can have many methods acting on it’s member variables and it should be more appropriate to
see it as an object, in which operations are performed on. The number of the EthercatSlave

class objects equals to the number of the EtherCAT slaves in the network. The objects of this

142 CHAPTER 5. IMPLEMENTATION

class are instantiated from the ether_ros main(), as described above.

1 |class EthercatSlave

2 {

3 private:

4 int vendor_id_;

5 std::string slave_id_;

6 int product_code_;

7 int assign_activate_;

8 int position_j;

9 int alias_;

10 int input_port_;

11 int output_port_;

12 ec_slave_config t *ighm slave ; //pointer to the basic slave struct in
EtherLab

13 int pdo_in_;

14 int pdo_out_;

15 int32_t sync@_shift ;

16

17 public:

18 void init(std::string slave, ros::NodeHandle &n);

19 int get_pdo_out();

20 int get_pdo_in();

21 ec_slave_config t *get_slave_config();

221}

Listing 5.2: The EthercatSLave class definition.

As seen by the class definition, most of the private variables of this class, are configuration pa-

rameters specified in the Subsection 4.2.3, needed for the correct configuration of the Ether-

CAT slaves and are parsed from the ethercat_slaves.yaml into the objects private vari-
ables. The class definition, ends with the initialization method and the methods for getting
the parameters and storing them into the object’s private variables. It's worth noting that the
initialization method ends with a call to the ecrt_slave config dc(). This function is
part of the EtherLab API and is used for configuring distributed clocks in a slave. It's decla-

ration is the following:

T

5.1. SOFTWARE IMPLEMENTATION 143

1 void ecrt_slave_config_dc(

ec_slave_config t *sc, /**< Slave configuration. */
uintl6é_t assign_activate, /**< AssignActivate word. */
uint32_t sync@_cycle, /**< SYNCO cycle time [ns]. */
int32_t synco@_shift, /**< SYNCO shift time [ns]. */
uint32_t syncl_cycle, /**< SYNC1 cycle time [ns]. */
int32_t syncl_shift /**< SYNC1 shift time [ns]. */

)

o NN N U ok W

Listing 5.3: The ecrt_slave_config_dc() function declaration.

This function sets the AssignActivate word (assign_activate argument) and the cycle and
shift times for the sync signals. The AssignActivate word is vendor-specific and can be taken

from the XML device description file.

In the DC synchronization mode, the synchronization signals need a shift in order to fire at
the same time, after the SM events have finished (written input PDOs and read output PDOs),
in every slave. This is necessary for all slaves to have synchronously valid Outputs. However,
because of network delays and the master jitter, the SM events in the last slave require more
time to trigger than in the other slaves, therefore this shift needs to be adequately large to
avoid firing before every SM event has finished and small enough to avoid firing after the

next cycle has started. All this information is described extensively in Subsection 3.1.6. The

sync@_shift is a critical parameter and there doesn't exist an optimal value for this param-
eter. However, since there were many successful experiments carried out in [17], which used

the TwinCAT’s value, namely 55 ps, this value was chosen for this project also.

EtherCAT Communicator: This class represents the central thread, on which every compo-
nent of the project depends on and is related to. Its core functionality has been summarized in

Subsubsection 4.2.2.2 and has been illustrated in Figure 4.5. This class essentially represents

a real-time thread which communicates with the EtherCAT network via the EtherLab API.

The class definition is presented below:

1 |class EthercatCommunicator

2 1

private:

N

pthread_attr_t current_thattr_;

Ul

struct sched param sched_param_;

//cleanup_pop_arg_1is used only for future references.

CHAPTER 5.

int cleanup_pop_arg_;

in our application.

//Serves as an argument to the cleanup_handler.

pthread_t communicator_thread_;
ros::Publisher pdo_raw_pub_;
bool running_thread_;

uint64_t dc_start_time_ns_;
uint64_t dc_time_ns_;

int64_t system_time_base_;

#ifdef SYNC_MASTER_TO_REF

uint8_t dc_started_;
int32_t dc_diff_ns_;
int32_t prev_dc_diff _ns_;
int64_t dc_diff_total ns_;
int64_t dc_delta_total ns_;
int dc_filter_idx_;

int64 t dc_adjust _ns_;

void *run(void *arg);

void cleanup_handler(void *arg);
void copy_data_to _domain_buf();
void publish_raw_data();

void sync_distributed clocks(void);
void update_master clock(void);

uinté4_t system_time _ns(void);

bool has_running_thread();

void init(ros::NodeHandle &n);

void start();

void stop();

144

6 static
7

8

9 static
10 static
11 static
12 static
13 static
14 static
15

16

17 static
18 static
19 static
20 static
21 static
22 static
23 static
24 |#endif
25 static
26 static
27 static
28 static
29 static
30 static
31 static
32
33 |public:
34 static
35
36
37
38 1}

IMPLEMENTATION

No actual usage

Listing 5.4: The EthercatCommunicator class definition.

5.1. SOFTWARE IMPLEMENTATION 145

One can observe in the private variables the scheduling related variables, the pthread_t
object which realizes the implemented pthread used in the program, a variable for handling

the publishing of the Process Data Objects (PDOs) (more on this later), some variables for

operating the fundamental control loop and finally some variables under the preprocessor if,

#ifdef SYNC_MASTER_TO_REF.

This macro is used to distinguish two operating modes the program can operate in, which can

be implied by the brief description of DC Mode of synchronization in Subsubsection 3.1.7.2,

however they are clarified here':

o In the first operating mode, the EtherCAT master provides the master clock (SYNC_-
REF_TO_MASTER defined) and in this case the synchronization in the DC mode from

the EtherCAT master’s side, functions in the folowing way:

- The EtherCAT master computer is used as the DC master for the entire system.
ecrt_master_application_time() is called in every cycle from ether_ros

to tell the EtherLab master what the current PC time is.

- Then ecrt_master_sync_reference_clock() is called in order to tell to the

slave DC master to synchronize to the EtherLab master’s time.

- Finally ecrt_master_sync_slave_clocks() to tell all other DCslaves to sync

to the slave DC master.

o In the second operating mode, the slave DC master provides the master clock (SYNC_ -
MASTER_TO_REF defined) and in this case the synchronization in the DC mode from

the EtherCAT master’s side functions in the folowing way:

- ether_ros gets the slave DC master’s time using ecrt_master_reference_-

clock_time() and synchronizes the EtherLab master’s cycle and time to it.

- Then ecrt_master_sync_slave_clocks() is called in order to tell to all the

other DC slaves to synchronize to the slave DC master.
- Finally ecrt_master_application_time() is called with the next cycles mas-

ter time.

Note: With the second option there is a need to adjust the EtherCAT master PC’s time by the

drift time from the slave DC master time and adjust the real-time cycle to it. This is done in

"More on the matter in http://lists.etherlab.org/pipermail/etherlab-users/2016/003013.
html

http://lists.etherlab.org/pipermail/etherlab-users/2016/003013.html
http://lists.etherlab.org/pipermail/etherlab-users/2016/003013.html

146 CHAPTER 5. IMPLEMENTATION

ether_ros with a call to the update_master_clock() method of the EthercatCommuni-

cator class. This method will be discussed later on when it’s called in the code.

Note: The second option appears to be better, it does not introduce jitter compared to the first

option. This is the default option used in TwinCAT.

After this brief introduction on the two synchronization modes in the DC mode, it’s useful to

examine further the code of some key methods of this class:

EthercatCommunicator::init()

1

(SSIEE \S)

S O oo NN N U

11
12
13
14
15

16
17
18
19
20
21

22
23
24

void EthercatCommunicator::init(ros::NodeHandle &n)

{

if (pthread_attr_init(¤t_thattr_))

{
ROS_FATAL("Attribute init\n");
exit(1);

}

if (pthread_attr_setdetachstate(¤t thattr_,
PTHREAD CREATE_JOINABLE))

ROS_FATAL("Attribute set detach state\n");
exit(1);

}

if (pthread_attr_setinheritsched(¤t_thattr_,
PTHREAD_EXPLICIT_SCHED))

ROS_FATAL("Attribute set inherit schedule\n");
exit(1l);

/*
Use the SCHED_FIFO for now. It should be tested later if there is
a better scheduler (see: SCHED DEADLINE, EDF + CBS)
*/
if (pthread_attr_setschedpolicy(¤t_thattr_, SCHED_FIFO))
{

5.1. SOFTWARE IMPLEMENTATION 147

25 ROS_FATAL("Attribute set schedule policy\n");
26 exit(1);
27 }

28 ret = pthread_attr_setschedparam(¤t thattr_, &sched param);

30 if (ret != @) handle_error_en(ret, "pthread attr_setschedparam");

33 //Create ROS publisher for the Ethercat RAW data

34 pdo_raw_pub_ = n.advertise<ether_ros::PDORaw>("pdo_raw", 1000);

Listing 5.5: The EthercatCommunicator: :init method.

This method is called from main(); it's main purpose is to initialize the attributes of the real-

time thread which handles the sending and receiving of Process Data Objects (PDOs) from

the EtherCAT network. The most important of them are the scheduling policy (set with a
call to pthread_attr_setschedpolicy()) and the scheduling parameters (set with a call
to pthread_attr_setschedparam()). With them, the scheduling policy as well as some
scheduling parameters related to this policy are defined for this thread and are provided to
the Linux scheduler. For now the FIFO real-time scheduling policy (SCHED_FIFO), described
in Subsection 2.4.1, is used. After the initialization of the attributes, the ROS topic /pdo_raw

of the ROS publisher pdo_raw_pub_ is advertised (more on this later).

EthercatCommunicator::start()

1 |void EthercatCommunicator::start()

2 q

3 int ret;

4

5 ret = ecrt_master_select_reference_clock(master,
ethercat_slaves[0@].slave.get_slave_config());

6

7 ROS_INFO("Activating master...\n");

8 if (ecrt_master_activate(master))

148 CHAPTER 5. IMPLEMENTATION

9

22
23
24

ROS_FATAL("Failed to activate master.\n");
exit(1);

}

domainl_pd = NULL;

if (!(domainl_pd = ecrt_domain_data(domainl)))

{
ROS_FATAL("Failed to set domain data.\n");
exit(1l);

}

running_thread_ = true;

ret = pthread_create(&communicator_thread_, ¤t_thattr_,

&EthercatCommunicator::run, NULL);

ROS_INFO("Starting cyclic thread.\n");

Listing 5.6: The EthercatCommunicator: :start method.

This method is called from the EthercatCommunicatord service when the user sends the

start command for EtherCAT communication. This method starts by selecting the first Ether-

CAT slave in the network to be the reference clock (slave DC master), to which every node

of the network will synchronize. Then, the function ecrt_master_activate() is called,

which activates the master by requesting EtherLab to switch to Operational Mode (which

will send a request to the EtherCAT slaves to reach Operational State, as shown in Subsec-

tion 3.1.4). After this call, the domain of the Process Data Objects (PDOs) is created by

calling ecrt_domain_data() and finally the pthread is created. This thread will run a func-

tion which will have as arguments, the run() method to run and the attributes initialized in

init().

EthercatCommunicator::run()

1

(SS IR \S)

S

void *EthercatCommunicator::run(void *arg)

{

pthread_cleanup push(EthercatCommunicator::cleanup_handler, NULL);

5.1. SOFTWARE IMPLEMENTATION

O© 0 NN N G

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

#ifdef FIFO_SCHEDULING
CPU_SET(3, &cpuset);

// set pthread affinity to CPU 3

if (pthread_setaffinity_np(communicator_thread_, sizeof(cpuset_),

&cpuset_))
{
ROS_FATAL("Set pthread affinity, not portable\n");
exit(1);
}
t#tendif

// get current time

clock_gettime(CLOCK_TO_USE, &wakeup_time);

clock_gettime(CLOCK_TO_USE, &break_ time);

break_time = utilities::timespec_add(break_time, offset_time);

//PTHREAD_CANCEL_DEFERRED is the default but nevertheless

pthread_setcanceltype(PTHREAD CANCEL DEFERRED, NULL);
R R

do

{

// check if there is a request for cancel

pthread_testcancel();

//set the cancel state to DISABLE
ret = pthread_setcancelstate(PTHREAD CANCEL DISABLE, NULL);

wakeup_time = utilities::timespec_add(wakeup_time, cycletime);

clock_nanosleep(CLOCK _TO USE, TIMER ABSTIME, &wakeup time, NULL);
#ifdef TIMING_SAMPLING

clock_gettime(CLOCK_TO_USE, &start_time);

create_statistics(&start_time);

last_start_time = start_time;

#endif

// receive EtherCAT frame

ecrt_master_receive(master);

149

150

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

66
67
68
69
70
71
72
73
74

75

CHAPTER 5. IMPLEMENTATION

// receive process data

ecrt_domain_process(domainl);

// check the state of the domain

utilities::check_domainl_state();

// get statistics if the flags are enabled

if (!counter) //if counter is ©

{
// get statistics at 10 Hz
initialize statistics_metrics();
// check for master state (optional)
utilities::check master_state();

}

else counter--;

// move the data from process_data_buf to domainl pd buf carefuly

utilities::copy_process_data buffer_to buf(domainl pd);

//queue the EtherCAT data to domain buffer

ecrt_domain_queue(domainl);

// sync distributed clock just before master_send to set most
accurate master clock time.

EthercatCommunicator::sync_distributed clocks();

// send EtherCAT frame

ecrt_master_send(master);

// send the raw data to the raw data topic

EthercatCommunicator: :publish_raw_data();

// update the master clock with the drift, if SYNC_MASTER_TO_REF
defined

EthercatCommunicator: :update_master_clock();

5.1. SOFTWARE IMPLEMENTATION 151

76

77 // set the cancel state to ENABLE

78 int ret = pthread_setcancelstate(PTHREAD CANCEL_ ENABLE, NULL);
79

80

81 |#ifdef TIMING_SAMPLING

82 clock_gettime(CLOCK_TO_USE, &end_time);

83 |#endif

84 clock_gettime(CLOCK_TO_USE, ¤t_time);
85 } while (DIFF_NS(current_time, break_time) > 0);

87 |#ifdef TIMING_SAMPLING

88 // write the statistics to file
89 log statistics_to_file();

90 |#endif

91

92 running_thread_ = false;

93 exit(0);

94 |}

Listing 5.7: The EthercatCommunicator: : run method.

This method is executed by the pthread created in start(). It’s the core method of Ether-

catCommunicator and implements the pipeline shown in Figure 4.5.

A quick description follows: The method starts by declaring the cleanup_handler to be
used. This handler will be called when the thread is cancelled (i.e. when the EtherCAT Com-
municator is stopped). This handler could provide cleaning service, like freeing up memory

used from dynamic data structures.

Generally, stopping a thread externally is a difficult task to accomplish. One of the mechan-
ims that the pthread library provides is the one that cancels a thread asynchronously without
using custom shared variables, signals or other ways of message passing. That said, at the
beginning of the control loop, there is a call to pthread_setcancelstate() with the flag
PTHREAD_CANCEL_DISABLE (so that the loop will get to run uninterrupted) and at the end of
theloop thereisa call to pthread_setcancelstate() with the flag PTHREAD_CANCEL_EN-
ABLE. Prior to the first call to pthread_setcancelstate() the cancel state is tested with a

152 CHAPTER 5. IMPLEMENTATION

call to pthread_testcancel(), hence if there is a request for cancellation, it won't interrupt
the execution of the control loop and the thread will recognize the request in the beginning
of the loop and exit. In this manner, there is a clean and straight way of thread cancellation

without customized solutions.

Returning to the same point after the declaration of the cleanup_handler, if FIFO_SCHED-
ULING is defined (for now FIFO is the only policy well supported), the thread running run()
is pinned to a specific CPU, namely CPU 3, by calling pthread_setaffinity_np(). More
on the CPU pinning will be discussed in the Subsection 5.3.1.

Next, the code continues to the control loop, after computing some time parameters neces-
sary for running the loop. In the control loop, after pthread_setcancelstate(PTHREAD_-
CANCEL_DISABLE, ...) thereisa call to clock_nanosleep() which makes sure that the
thread will sleep for a fixed time interval (defined in nanoseconds). This time interval is de-

fined in the ethercat_slaves.yaml file.

Next, after creating the statistics metrics (if LOGGING is defined) the core functions are per-
formed. Namely, the thread tells the EtherLab master to receive the EtherCAT frame by

calling ecrt_master_receive() and then it requires to receive its Process Data Objects

(PDOs) defined in the domain used, by calling ecrt_domain_process(). Then, it con-
tinues to check the state of the domain, by checking if anything changed in the Working
Counter. The Working Counter is related to the EtherCAT commands used (refer to Sub-

subsection 3.1.3.2), like LRW, and it’s value corresponds to the number and the kind of com-

mands actually being carried out. After this check, it creates a new sample with timing metrics

(latency, execution, period) for logging (if LOGGING is defined).

The method then proceeds by moving the data from the process_data_buf buffer (which is
filled by PDOOutListener class) to the domainl_pd buffer. The domainl_pd is the buffer

used by EtherLab to get the process data from the network and to send the new process data
to the network. The synchronization process was briefly introduced in Figure 4.5 and it is
discussed further in copy process data buffer to buf().

After the new process data have been copied to the domainl_pd buffer, they are ready to
be sent. Indeed, the method continues by calling ecrt_domain_queue() to queue the new

Process Data Objects (PDOs) to EtherLab’s internal domain queue. Then synchronization

of the distributed clocks is performed by calling sync_distributed_clocks(). The oper-

ations of this method were discussed above, when the two synchronization methods in DC

5.1. SOFTWARE IMPLEMENTATION 153

mode were described. The two methods are both supported, however the SYNC_REF_TO_-
MASTER is the default, since by testing both of them, the performance of the master was the

same.

Next, ecrt_master_send() is called in order to send the new process data to the network

via EtherLab.

Note: The process of sending and receiving the EtherCAT frames by EtherLab was thoroughly
described in Figure 4.6 and in Figure 4.7 respectively.

After sending the process data to the EtherCAT network, publishing these data to the ROS

network takes place by calling publish raw_data(). More details on how this is done are

presented in the description of this method. Finally, update_master_clock() is called for
updating the master clock with the time drift, if SYNC_MASTER_TO_REF is defined, and the
current time is compared with the time for breaking the loop in the while() command.
This concludes the control loop pipeline in the run() method, which is run by the real-time
pthread. After the control loop and if LOGGING is defined, the statistics metrics are written to
the log file, and the run() method exits.

EthercatCommunicator: :publish_raw_data(): This method is called from the run()
method and it’s purpose is to publish the process data, as soon as they have been received
from the EtherCAT network, to the ROS network. However these data are buffer data and
don’t make sense because they are not formatted to the EtherCAT variables used (defined in

Subsection 4.2.3). Consequently, these unformatted data are not sent directly to the ROS net-

work. First these data are sent to a ROS node, which will format them to EtherCAT variables
and then publish them to the ROS network. This solution was chosen, since communicat-
ing with the EtherCAT network and formatting the data with the specific EtherCAT variables
used, can be decoupled. Hence, the real-time communication which does not depend on the
type of variables used, can remain unchanged. In addition, if the EtherCAT variables used
change in the future, only the formatters will have to change, since they depend on the type
of EtherCAT variables used and as a result, software modularity is achieved. The method is

presented below:

1 |void EthercatCommunicator::publish raw data()
2 {
3 // Create raw data vectors

4 std::vector<uint8 t> input_data_raw, output_data raw;

154

12

13
14

15
16
17
18
19

20

21
22

23
24

26
27
28

29 |}

CHAPTER 5. IMPLEMENTATION

std::vector<uint8 t> input_vec, output_vec;

unsigned char *raw_data_pointer;

// Create input data raw string

for (int i = @; 1 < master_info.slave_count; i++)

{
raw_data_pointer = (unsigned char *)domainl_pd +
ethercat_slaves[i].slave.get_pdo_in();
input_vec.insert(std::end(input_vec), raw_data_pointer,
raw_data_pointer + num_process_data_in);
}

input_data_raw.insert(std::end(input_data_raw), std::begin(input_vec),

std::end(input_vec));

// Create output data raw string

for (int i = @; 1 < master_info.slave count; i++)

{
raw_data_pointer = (unsigned char *)domainl pd +
ethercat_slaves[i].slave.get pdo out();
output_vec.insert(std::end(output_vec), raw_data_ pointer,
raw_data_pointer + num_process_data out);
}

output_data_raw.insert(std::end(output_data_raw),

std::begin(output_vec), std::end(output_vec));

// Send both strings to the topic
ether_ros::PDORaw raw_data;
raw_data.pdo_in_raw = input_data_raw;
raw_data.pdo _out_raw = output_data_ raw;

pdo _raw_pub_.publish(raw_data);

Listing 5.8: The EthercatCommunicator: :publish_raw_data method.

The method starts by wrapping the data in the domainl_pd buffer (unsigned char * —

std: :vector<uint8_t>). This wrapping is necessary in order to publish these data through

a topic in ROS, which natively supports C++. The input Process Data Objects are copied in the

5.1. SOFTWARE IMPLEMENTATION 155

input_data_raw vector and the output Process Data Objects are copied in the output_-

data_rawvector. Thena ether_ros: :PDORaw message is created, and the two “raw” vectors
are wrapped into the raw_data message field. Finally this message is published to the ROS
network through the pdo_raw_pub_ publisher’s publish method.

Output PDO Listener: This class is responsible for receiving the input from the users,

namely the output Process Data Objects (PDOs), and safely fill the shared process_data_-

buf buffer. Later on, the data of this buffer will be copied from the real-time pthread running
the run() method, safely into the domainl_pd buffer, in order to be sent to the EtherCAT
network. The synchronization scheme for safe operations on the shared process_data_buf

buffer was briefly described in Figure 4.5 and is further discussed in copy process_data_-

buffer to_buf(). The definition of the class is the following:

1 |class PDOOutListener

2 q

3 private:

4 ros::Subscriber pdo _out listener_;

5 std::map<std::string, int> int_type_map_ = {
6 {"bool", @},

7 {"uint8", 1},

8 {"int8", 2},

9 {"uint1le", 3},

10 {"intle", 4},

11 {"uint32", 5},

12 {"int32", 6},

13 {"uinte4", 7},

14 {"int64", 8}

15 }s

16

17 public:

18 void init(ros::NodeHandle & n);

19 void pdo_out_callback(const ether_ros::ModifyPDOVariables::ConstPtr

&new_var);
20 void modify_pdo_variable(int slave_id, const
ether_ros::ModifyPDOVariables::ConstPtr &new_var);

211}

Listing 5.9: The PDOOutListener class definition.

156 CHAPTER 5. IMPLEMENTATION

The definition of the private variables starts with the definition of the ROS subscriber pdo_ -
out_listener_, which subscribes to /pdo_listener topic. Then the int_type_map_ is
defined, which maps data types like bool and uint8 coming as strings to integers from 0
to 8. This was done in this way, in order to allocate the correct amount of memory, in order
for these data to be copied to the process_data_buf buffer. In the public scope, the public
methods of the class are declared. In the init () method the ROS subscriber subscribes to the
topic aforementioned. In the pdo_out_callback() method, the new output Process Data
Objects are received and modify_pdo_variable() is called to process them. The processing
doesn't take place on the pdo_out_callback() method, since slave_id, a message field in
ether_ros::ModifyPDOVariables, can have value between 0 and 255. The 255 is reserved
for multicasting the change to an EtherCAT variable, to all EtherCAT slaves. In this case, the

modify_pdo_variable() method is called for every slave.

Input PDO Publisher: This class is responsible for formatting the input Process Data Ob-

jects, received from the aforementioned ROS publisher pdo_raw_pub_, into Input EtherCAT
variables (defined in Table 4.2) and publishing them to the ROS network. The definition of

the class is the following:

1 |class PDOInPublisher

2 |{

3 private:

4 ros::Subscriber pdo_raw_sub_;

5 ros::Publisher * pdo_in_pub_;

6

7 public:

8 void init(ros::NodeHandle &n);

9 void pdo_raw_callback(const ether_ros::PDORaw::ConstPtr &pdo raw);
10135

Listing 5.10: The PDOInPublisher class definition.

In the private scope, the pdo_raw_sub_ ROS subscriber and the pdo_in_pub_ ROS pub-
lisher are defined. The former is used for subscribing to the /pdo_raw topic to receive the

“raw” Process Data Objects (PDOs) and the latter is used for publishing the newly formatted

Input EtherCAT variables to topics, one for each existing EtherCAT slave. In the public scope,

the init () method is used for initializing the two private variables and the pdo_raw_call-

5.1. SOFTWARE IMPLEMENTATION 157
back() is further discussed below:

PDOInPublisher: :pdo_raw_callback()

1 |void PDOInPublisher::pdo_raw_callback(const ether_ros::PDORaw::ConstPtr
&pdo_raw)

2 19

3 std::vector<uint8 t> pdo_in_raw = pdo_raw->pdo_in_raw;

4 uint8 t *data_ptr;

5 size t pos;

6 for (int i = @; 1 < master_info.slave count; i++)

7 {

8 pos = 1 * num_process_data_in; //The size of every entry is

num_process_data_in

9 data_ptr = (uint8 t *) & pdo_in_raw[pos];

10 ether_ros::PDOIn pdo_in;

11 using namespace utilities;

12

13 // change the following code to match your needs

14 /*

15 Insert code here ...

16 */

17

18 pdo_in.hip_angle = process_input_intl6(data_ptr, 0);

19 pdo_in.desired_hip_angle = process_input_intil6(data_ptr, 2);

20 pdo_in.time = process_input_uintlé6(data_ptr, 4);

21 pdo_in.knee_angle = process_input_intl6(data_ptr, 6);

22 pdo_in.desired knee_angle = process_input_intil6(data_ptr, 8);

23 pdo_in.PWM10000 knee = process_input_intl6(data_ptr, 10);

24 pdo_in.PWM10000_hip = process_input_intl6(data_ptr, 12);

25 pdo_in.velocity kneel@@® = process_input_int32(data_ptr, 14);

26 pdo_in.velocity hipl@@0 = process_input_int32(data_ptr, 18);

27

28 /*

290 Lol

30 */

31 pdo_in_pub [i].publish(pdo_in);

32 }

158 CHAPTER 5. IMPLEMENTATION

Listing 5.11: The PDOInPublisher: :pdo_raw_cal lback method.

The method starts by receiving the “raw” input process data. Then a new ROS message of
type ether_ros: :PDOIn is created for every EtherCAT slave on the network, namely pdo_ -
in. Next, this message is filled with the Input EtherCAT variables (which are extracted from
the input process data buffer data_ptr by choosing the type of the variable and it’s position
inside the buffer). Finally, the message is published to the topic of the corresponding slave.

Note: The topics have names of the form /pdo_in_slave_x, where x is the slave_id of

each slave.

Note: The position of the input EtherCAT variables inside the buffer can be computed, by
measuring the bytes prior to the variables, from the output of the command $ ethercat

pdos in a terminal.

Output PDO Publisher: This class is responsible for formatting the output Process Data
Objects (PDOs), received from the aforementioned ROS publisher pdo_raw_pub_, into Out-
put EtherCAT variables (defined in Table 4.1) and for publishing them to the ROS network.

This class is very similar with the PDOInPublisher class discussed above, thus further de-

scription isn't necessary.

Output PDO Publisher Timer: This class was created for debugging and logging pur-
poses. As far as it’s structure is concerned, it’s very similar to the PDOOutPublisher class.
The only difference is that the callback is not triggered by a subscriber listening to a topic and
receiving the PDOs, but by a software timer. In the callback, the output Process Data Objects

are copied safely from the process_data_buf buffer (see utilities: :copy process_-

data_buffer to_buf()) to a private buffer, then they are formatted and published to the

/pdo_out_timer topic in ROS.

Services: This is a complementary source file to the project, which acts as a placeholder for
all the services used. For now, there’s only one service used, namely EthercatCommunica-
tord, which is a daemon for starting, stopping and restarting the EthercatCommunicator.

When there is a start command from the user, this service calls the EthercatCommunica-

tor: :start() method, which eventually starts the real-time pthread with the Ethercat-

Communicator: :run() method. Initially, the PDOOutListener was not implemented as a

5.1. SOFTWARE IMPLEMENTATION 159

subscriber multiplexing different types of variables, yet was split into different services for the
different types of variables. This however changed, since services, as message communication
means, have latency and cannot acheive high data throughput. Therefore the EthercatCom-

municatord service is the only one remaining in the file.

Utilities: This is a source file with utility functions, which are needed from core meth-
ods and functions of the project. The most used function under utilities namespace is
utilities::copy_process_data_buffer_to_buf(), which is presented and discussed

below:

utilities::copy_process_data_buffer_to_buf()

1 |void copy_process_data_buffer_to_buf(uint8_t * buffer)

2

3 pthread_spin_lock(&lock);

4 for (int i = @; i < master_info.slave_count; i++)

5 {

6 memcpy ((buffer + ethercat_slaves[i].slave.get_pdo out()),

7 (process_data_buf + ethercat_slaves[i].slave.get pdo out()),

8 (size_t)(ethercat_slaves[i].slave.get pdo_in() -

ethercat_slaves[i].slave.get pdo out())

9)s

10 }

11 /*

12 buffer + ethercat_slaves[i].slave.get pdo out()) ----> the starting
address of the slave's output pdos in the buffer

13

14 process_data_buf + ethercat_slaves[i].slave.get pdo out()) ----> the
starting address of the slave's output pdos in the process_data buf

15

16 (size_t)(ethercat _slaves[i].slave.get pdo_in() -
ethercat_slaves[i].slave.get pdo out() ----> size of output pdos
of the slave

17

18 */

19 pthread_spin_unlock(&lock);

20 |}

160 CHAPTER 5. IMPLEMENTATION

Listing 5.12: The utilities::copy_process_data_buffer_to_buf function.

This function is finally presented after many previous references. It starts with locking the
critical section for copying the data from one buffer to the other, by calling pthread_spin_-

lock() on the lock global variable. Then the output Process Data Objects are copied from

the process_data_buf buffer to the buffer given as parameter in the function call. Finally
the function before exiting calls pthread_spin_unlock() tounlock the lock variable, since

it exitted the critical section.

5.2 Installation Process

In this section, the process of installing the environment needed for deploying the aforemen-

tioned software, is described.

5.2.1 'The Preempt_RT Patch

The first step to set up the environment, is to patch the Linux kernel to be used, with the
PREEMPT_RT patch. For now, the latest supported version of Linux kernel for deploying
the environment with all the necessary software, is 4.9. For some reason, EtherLab cannot be
built with kernel versions higher than 4.9. In the following procedure, Ubuntu 16.04 is used
as the host GNU/Linux distribution. If there is a different choice of GNU/Linux distribution

or Ubuntu version, the following steps can be easily translated and implemented in that too.
The following steps are based on a post in the Ubuntu fora*:
5.2.1.1 Step 0 - Making a working directory

First, a working directory should be created, e.g. /Rernel:

1 # Make working directory

2 |$ mkdir ~/kernel && cd ~/kernel

*https://ubuntuforums.org/showthread.php?t=2273355

https://ubuntuforums.org/showthread.php?t=2273355

5.2. INSTALLATION PROCESS 161

5.2.1.2 Step 1 - Downloading the Linux kernel and the patch

In the rt project in the Linux kernel archives® the 4.9 RT patch can be found and be down-
loaded. Up to now, the most recent RT patch for kernel 4.9 is patch-4.9.146-rt125.pat-

ch.gz. This can be downloaded with the following command:

wget https://www.kernel.org/pub/linux/kernel/projects/rt/4.9/patch-4.9-
.146-rt125.patch.gz

Then, in the Linux kernel archives*, the kernel that matches the above patch can be found and

be downloaded:
wget https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.9.146.tar.gz
5.2.1.3 Step 2 - Unzipping the kernel

Next, the compressed archive containing the kernel needs to be unzipped. This is done with

the following command:

1 # x - extract

2 # z - pipe through gunzip

3 # v - verbose (text output)

4 # f - from file

5 |% tar -xzvf linux-4.9.146.tar.gz

Listing 5.13: Command for unzipping the kernel compressed archive.

5.2.1.4 Step 3 - Patching the kernel

Then, the kernel needs to be patched. The code steps are shown below:

1 # Move to kernel source directory
2 |$ cd linux-4.9.146

3

4 # c - pipe file contents to stdout

d - decompress

Ul

6 |$ gzip -cd ../patch-4.9.146-rt125.patch.gz | patch -pl --verbose

Listing 5.14: Commands for patching the kernel.

*https://www.kernel.org/pub/linux/kernel/projects/rt/
*https://www.kernel.org/pub/linux/kernel/

https://www.kernel.org/pub/linux/kernel/projects/rt/
https://www.kernel.org/pub/linux/kernel/

162

CHAPTER 5. IMPLEMENTATION

5.2.1.5 Step 4 - Enabling Real-time attributes

In order to build the kernel the 1ibncurses-dev package should be installed:

1

$ sudo apt-get install libncurses-dev build-essential libssl-dev git

bison flex libelf-dev

The next step should create a graphical menu in the terminal which can be scrolled through.

1

$ make menuconfig

This line will create a menu like the one pictured in Figure 5.1. In this figure, the option of
PREEMPT _RT is selected.

Use the arrow keys to navigate this window or press the
hotkey of the item you wish to select followed by the <SPACE
BAR>. Press <?> for additional information about this

Preemption Model

()

()

()

ﬁ 6 Preemitible Kernel iBasic RT%
M)BFully Preemptible Kernel (RT

No Forced Preemption (Server)
Voluntary Kernel Preemption (Desktop)
Preemptible Kernel (Low-Latency Desktop)

< Help >

Figure 5.1: The PREEMPT _RT kernel configuration option using menuconfig.

In the graphical menu of make menuconfig, extra configuration parameters can be speci-

fied, derived from [63, Chapter 3], namely:

1

2
3
4

#y = YES & n

= NO

see below for a detailed description on how to enable this

configuration. Also see the above figure.

CONFIG_PREEMPT_RT_FULL=y

CONFIG_CPU_FREQ=n

5.2. INSTALLATION PROCESS 163

10
11

12
13

CONFIG_CPU_IDLE=n

CONFIG_NO_HZ_FULL=y # see Configuration section. You might not need this

configuration after all, if the application is multithreaded.

CONFIG_RCU_NOCB_CPU=y # see section of Configuration. You might not need

this configuration after all, if the application is multithreaded.

Listing 5.15: The configuration options for building the kernel with PREEMPT _RT patch.

The button presses are enclosed in []s, except for menu scrolling with the up and down arrows.

Comments are preceeded by # and are ment for clarification.

Tip: While in the menuconfig, one can type “/” and then search the place of a configuration

parameter. One can exit with [ESC].

O 0 NN N Uk WD

e e e e
G s W DD = O

16
17
18
19
20
21

##Graphical Menu#i

Processor type and features ---> [Enter]

Preemption Model (Voluntary Kernel Preemption (Desktop)) [Enter]

Fully Preemptible Kernel (RT) [Enter] #Select

[Esc][Esc]

Kernel hacking --> [Enter]

Memory Debugging [Enter]

Check for stack overflows #Already deselected - do not select

[Esc][Esc]

[Right Arrow][Right Arrow]

<Save> [Enter]

.config

<Okay> [Enter]

164 CHAPTER 5. IMPLEMENTATION

23 <Exit> [Enter]

25 [Esc][Esc]

27 [Right Arrow]
28 <Exit> [Enter]

Listing 5.16: Steps for building the kernel with the PREEMPT_RT patch.

5.2.1.6 Step 5 - Compiling the kernel

This step takes more than 5 minutes in a typical workstation (i5/i7 CPUs).

1 |$ make -j4

The -j4 referes to the number of jobs to be spawned for parallel processing. If there is only
a single core processor, this option can be omitted. It's common practice to use the number
of cores after -j. There isn't a proof that this is the best option. If little is known about the

processors, 1scpu can be used in a terminal to determine the number of cores.
5.2.1.7 Step 6 - Making modules & installing

This step will take some time, but not as long as the previous step:

1 |$ sudo make modules_install -j4

2 |$ sudo make install -j4

5.2.1.8 Step 7 - Veritying and updating

One could verify that initrd.img-4.9.146-rt125,vmlinuz-4.9.146-rt125,and con-

fig-4.9.146-rt125 exist. They should have been created in the previous step:

11$ cd /boot
2 1% 1s

Then grub should be updated; this will allow the selection of the new kernel on bootup.

1 |$ sudo update-grub

5.2. INSTALLATION PROCESS 165

It should be verified that there exists a menu entry containing the text “menuentry ‘Ubuntu,
with Linux 4.9.146-rt125”. One can replace vim with gedit or any other text editor of her

choice, however this file should not be edited.

1 |$ vim /boot/grub/grub.cfg

If one would like to make this kernel the new default (optional), this can be done by editing
the /etc/default/grub file. More information can be found in the Ubuntu Help page’.

5.2.1.9 Step 8 - Rebooting

Then, the PC should be rebooted and when the grub menu appears during boot, the newly
created RT kernel should be selected.

1 |$ sudo reboot

Once rebooted, one can verify that everything was successful by running:

1 |$ uname -a

The output should like the one below:

1 |Linux pc_name 4.9.146-rt125 #1 SMP PREEMPT RT ...

5.2.2 FEtherLab

After building the PREEMPT_RT Linux kernel and selecting it during boot, the EtherLab
kernel module should be installed. The procedure is the following: After cloning the repos-
itory of the project, cd into the etherlab directory of the project and run the install_-
etherlab_patched. sh script. This script is specifically written for automatic installation

of EtherLab and is presented below:

1 # install the necessary packages for building EtherLab
2 sudo apt-get install autoconf automake libtool mercurial
3
4

hg clone might fail because there is no user registered. In this case

uncomment and run the following line:

*https://help.ubuntu.com/community/Grub2/Setup

https://help.ubuntu.com/community/Grub2/Setup

166

10
11

12
13
14
15
16
17

CHAPTER 5. IMPLEMENTATION

echo -e '[extensions] \n mg = \n [ui] \n username = Foo Bar

<foobar@mail.com>"' > ~/.hgrc

clone the EtherlLab repository
hg clone -u 33b922ec1871 http://hg.code.sf.net/p/etherlabmaster/code

ethercat-1.5.2-merc

clone the patches
hg clone http://hg.code.sf.net/u/uecasm/etherlab-patches
ethercat-1.5.2-merc/.hg/patches

cd ethercat-1.5.2-merc

apply the patches
hg gpush -a
cd ..; make ethercatMasterInstallWithAutoStart

rm -rf ethercat-1.5.2-merc

Listing 5.17: The install_etherlab_patched. sh script.

After patching the EtherLab source code, in line 16 a make command is issued with ether-

catMasterInstallWithAutoStart argument. The Makefile corresponding to the above

make command is based in a Makefile available from [104] and has been modified for the

project’s needs. It is presented below:

[OSTEE S

S O oo NN N U

11
12

SHELL := /bin/bash
ethercatMasterVersion:=1.5.2-merc_unofficial_patch

ethercatMasterzip:=ethercat-$(ethercatMasterVersion).tar.bz2
ethercatMasterDirectory:=ethercat-1.5.2-merc
udevRulesFile:=99-EtherCAT.rules

ethercatUserGroup:=$(shell whoami)

$(udevRulesFile):
@echo "Generating udev rules file"
@echo "KERNEL==\"EtherCAT[0-9]*\", MODE=\"0664\",
GROUP=\"$(ethercatUserGroup)\"">$(udevRulesFile)

ethercatMaster: $(udevRulesFile)

5.2.

14
15
16

17
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33

35
36
37
38
39
40
4]
42

INSTALLATION PROCESS 167

tar -xvf $(ethercatMasterzip)

cd $(ethercatMasterDirectory);\

./bootstrap;\

./configure --enable-generic --disable-8139too --enable-e1000e

--with-el000e-kernel=4.9 --enable-hrtimer --enable-cycles;\

make

all modules;

ethercatMasterInstall: ethercatMaster

cd $(ethercatMasterDirectory);\

sudo
sudo
sudo
sudo
sudo
sudo

sudo

make modules_install install;\

depmod;\

mv ../$(udevRulesFile) /etc/udev/rules.d/$(udevRulesFile);\

In -s /opt/etherlab/etc/init.d/ethercat /etc/init.d/ethercat;\
mkdir -p /etc/sysconfig/;\

cp /opt/etherlab/etc/sysconfig/ethercat /etc/sysconfig/ethercat;\
sed -i 's/DEVICE_MODULES=\"\"/DEVICE_MODULES=\"generic\"/g'

/etc/sysconfig/ethercat;\

sudo

In -s /opt/etherlab/bin/ethercat /usr/bin/ethercat;\

interfaces="ifconfig | grep -e ""e[tn][a-2z0-9]*" -0 ;\

for i in $$interfaces;do lastInterface=$$i; done;\

interfaceMAC="ifconfig $$lastInterface | ...

grep

"[0-9A-Fa-f]\{2\}:[0-9A-Fa-f]\{2\}:[0-9A-Fa-f]\{2\}:

[0-9A-Fa-f]\{2\}:[0-9A-Fa-f]\{2\}:[0@-9A-Fa-f]\{2\}" -07;\

sudo

sed -i

"s/MASTER@G_DEVICE=\"\"/MASTER@_ DEVICE=\"$$interfaceMAC\"/g"

/etc/sysconfig/ethercat;\

ethercatMasterInstallWithAutoStart: ethercatMasterInstall

sudo

sudo

clean:

update-rc.d ethercat defaults;\
/etc/init.d/ethercat start;

@echo Removing compiled installation files

@rm -

f -r $(ethercatMasterDirectory) $(udevRulesFile)

Listing 5.18: The Makef1iLle for building EtherLab.

168 CHAPTER 5. IMPLEMENTATION

It should be noted that in order to build EtherLab, root permissions are needed. With this
Makefile, EtherLab is built with both native and generic driver options. If a different native
driver from e1000e is used, the line 17 in the Makefile should be changed and updated with the
correct configuration option and the correct driver version. In an EtherLab’s web page® and in
[2, Chapter 9], the supported hardware and the options the command configure takes, are
shown respectively. If the hardware at hand is not supported, then the configuration options
related to the native drivers should be removed and EtherLab should be built only with the

generic driver option.

5.3 Configuration & Optimization
Note: This section is largely based on [63].

In this section, the steps for configuring and optimizing the aforementioned installed system

are presented, in order to meet the real-time requirements described in Section 4.1.

5.3.1 Isolating the Application

If there is a need for real-time performance on single-core systems it is necessary to adapt the
entire system, e.g. using the PREEMPT_RT patch or an RTOS [63, Chapter 2]. This is not
always necessary in a multi-core system [63, Chapter 2]. Recently added features in the Linux
kernel make it possible to aggressively migrate sources of kernel-introduced jitter away from
selected CPUs [63, Chapter 2]. This provides bare-metal-like performance on the CPUs where
sources of jitter have been removed, thus creating a real-time environment for an application

running in Linux user-space [63, Chapter 2].

On a default setup, this is not possible since the Linux kernel needs to do some regular house-
keeping [63, Chapter 2]. It is possible to move much of this housekeeping to some dedicated
CPUs, provided there is a multicore system [63, Chapter 2]. That leaves the other CPUs rel-
atively untouched by the Linux kernel, unless a user-space task triggers some kernel activity
[63, Chapter 2]. The application that executes in this bare-metal environment should avoid

using libc calls and Linux system calls [63, Chapter 2].

When using this method correctly, it is possible to enhance throughput and real-time per-
formance by reducing the overhead of interrupt handling [63, Chapter 2]. This is beneficial
e.g. for applications that require very high throughput, and for device drivers that handle fre-

Shttp://www.etherlab.org/en/ethercat/hardware.php

http://www.etherlab.org/en/ethercat/hardware.php

5.3. CONFIGURATION & OPTIMIZATION 169

quent interrupts, such as 10Gb Ethernet drivers [63, Chapter 2]. The basic approach followed
is descibed briefly here; For elaborate information on the matter, the reader is referred to the
excellent guide in [63, Chapters 2 and 3]. The first step for CPU isolation in Linux, is to

define different cgroups (non real-time and real-time) in the cpuset cgroup [63, Chapter 3].

Note: After this definition, the two distinct cgroups need to be associated with a NUMA node,

even if the memory architecture of the system isn't NUMA-enabled.

Load balancing, i.e. task migration, is a default activity in the Linux kernel that introduces
non-deterministic jitter. It is therefore necessary to disable load balancing in the real-time
cpuset. This also means that it is necessary to specify the correct affinity for the threads that
should execute within the real-time CPUs. Next, the general purpose tasks are moved to the
general non real-time partition, however this is not possible for every task, since some tasks
need to execute on all available CPUs. All future child tasks that are created from the non

real-time partition will also be placed in this partition.

After the general purpose tasks are migrated, it is the interrupts’ turn. Some interrupts are
not CPU-bound. Unwanted interrupts introduce jitter and can have serious negative impact
on real-time performance. They should be handled on the general purpose CPUs whenever
possible. The affinity of these interrupts can be controlled using the /proc file system. Typical
interrupts that should be moved are: timer interrupts, network related interrupts and serial

interface interrupts.

On the other hand, if there are any interrupts that are part of the real-time application, they
should be configured to fire in the real-time partition. Regarding the network interrupts,
Linux can route the packets on different CPUs in an SMP system and the handling can create
timers on the specific CPUs, for example the ARP timer management, based on neigh_-
timer. There are a couple of solutions that can be adopted to minimize the effect of rerout-
ing packets on different CPUs, like migrating all the timers on the non-realtime partition if
possible or specitying the affinity of network queues on some architectures. The developed
application needs the packets from the EtherCAT network to be received only in the real-time
partition thus the affinity of the network queues (for the XPS and RPS algorithms, see also
Subsubsection 4.2.2.5) should be set to the CPUs related to the real-time partition.

Finally, the pid of the application which will run in a real-time context, should be moved to
the real-time partition and also pinned to a specific CPU (if there are many CPUs in the real-

time partition). This has been described briefly in pthread_setaffinity np() function

170 CHAPTER 5. IMPLEMENTATION

call. In this manner, the application will be isolated (even from general purpose interrupts)

and pinned to a specific CPU, thus achieving real-time and bare-to-metal performance.

Note: If EtherLab is configured and run with the native driver option, then as previously

described in Subsubsection 4.2.2.5), there is no need to set affinity of the network queues,

since the native EtherCAT-capable driver is accessed without traversing the Linux Network
Stack first. However, if EtherLab is configured and run with the generic driver option, then

this affinity should be set.

Note: There is also a kernel boot parameter that achieves isolation of CPUs, useful for isolating

the real-time domain from load balancing at system start-up: isolcpus=1,2,3,4,....

Note: Of course the developed application can not be pinned to a specific CPU belonging to
the real-time partition, if the application is not in the real-time cgroup. Thus, the application

needs to be moved to the real-time cgroup prior to pinning it on a specific CPU.

5.3.2 Full Dynamic Ticks

Ticks are used to balance CPU execution time between several tasks running on the same
CPU [63, Chapter 2]. They are interrupts generated by a hardware timer and occur at regular
intervals determined by the CONFIG_HZ kernel configuration, which for most architectures
can be configured when compiling the kernel [63, Chapter 2]. The tick interrupt is a per-CPU
interrupt [63, Chapter 2].

The full dynamic ticks (CONFIG_NO_HZ_FULL kernel configuration) adaptively try to shut-
down the tick whenever possible, even when the CPU is running tasks [63, Chapter 3]. To
achieve full dynamic ticks on a CPU, the application running on this CPU must comply to
some requirements [63, Chapter 3]. First, only one thread should run on each CPU [63, Chap-
ter 3]. The application should not use any POSIX timers, directly or indirectly [63, Chapter 3].
This usually excludes any kernel calls that will access the network, but also excludes a number
of other kernel calls [63, Chapter 3]. Keeping the kernel calls to a minimum will maximize
the likelihood of achieving full dynamic ticks [63, Chapter 3]. Since the developed application

is a multithreaded one, full dynamic ticks option is not encouraged.

To enable full dynamic ticks to specific CPUs (the kernel configuration must be enabled), the
following boot parameters should be used: nohz_full=1,2,3,4,... [63, Chapter 3].

5.3. CONFIGURATION & OPTIMIZATION 171

5.3.3 Optimizing the Partitioned System

If the above subsections do not offer enough real-time properties, then this subsection pro-

vides some more hints for optimization.
5.3.3.1 Optimizing Power Saving

Power saving can be handled in Linux with various techniques. Here two of them are briefly

described:

« Dynamic Frequency Scaling: When little CPU-bound work is performed, the CPU
frequency can be reduced as a way to reduce power consumption [63, Chapter 2]. This
is called dynamic frequency scaling [63, Chapter 2]. This option is enabled at compile
time by the configuration parameter CONFIG_CPU_FREQ [63, Chapter 2]. If enabled,
the system will include functionality, called a governor, for controlling the frequency
[63, Chapter 2]. There are several governors optimized for different types of systems
[63, Chapter 2]. The decision to use dynamic frequency scaling in a real-time system
depends on the time that is needed to increase the frequency and that time’s relation to

the latency requirements [63, Chapter 2].

« CPU Power States: When the CPU is idle (i.e. no tasks are ready to run on this CPU)
the CPU can be put in sleep state (C state) [63, Chapter 2]. A sleep state means that
the CPU does not do any execution, while still ready to respond on certain events, e.g.
an external interrupt [63, Chapter 2]. CPUs usually have a range of power modes [63,
Chapter 2]. Deeper sleep means lower power consumption at the price of increased
wake-up time [63, Chapter 2]. As with dynamic frequency scaling, the transition be-
tween the power states is controlled by a governor [63, Chapter 2]. To configure the ker-
nel to enter sleeping state when idle, the compile-time configuration parameter CON-

FIG_CPU_IDLE is used [63, Chapter 2].

Power saving techniques interact poorly with real-time requirements [63, Chapter 2]. The
reason is that exiting a power saving state cannot be done instantly, e.g. 2004 s wake-up
latency from sleep mode C3 and 3 s from C1 on an Intel i5 - 2GHz [63, Chapter 2]. This may
not be a problem in e.g. a soft real-time system where the accepted latency is longer than the
wake-up time or in a multicore system where power saving techniques may be used in a subset
of the cores [63, Chapter 2]. However, it is recommended the power saving mechanisms

to be disabled on system start-up, using the following kernel configuration parameters [63

b

172 CHAPTER 5. IMPLEMENTATION
Chapter 2]:

o Disabled frequency scaling by setting CONFIG_CPU_FREQ=n.

« Disabled transitions to low-power states by setting CONFIG_CPU_IDLE=n.
5.3.3.2 Disabling power management

The CPU frequency governor causes jitter because it is periodically monitoring the CPUs [63,
Chapter 3]. The actual activity of changing the frequency can also have a serious impact [63,
Chapter 3]. The frequency governor is disabled, as described previously, with the following
configuration: CONFIG_CPU_FREQ=n [63, Chapter 3].

However, an alternative is, at runtime, to change the governor policy (of a specific real-time
CPU) to performance. The advantage in this approach, is that each CPU can have different
power policy [63, Chapter 3]. Yet, it should be noted that this could damage the hardware
because of overheating and research should be conducted as to what works for the specific

hardware [63, Chapter 3].
5.3.3.3 Optimizing Real-Time Throttling

If only real-time tasks were runnable on a CPU, they would consume all CPU power if the
scheduling principles were followed [63, Chapter 2]. Sometimes that is the wanted behavior,
but it would also allow that bugs in real-time threads completely block the system [63, Chap-
ter 2]. To prevent this from happening, the real-time throttling mechanism makes it possible

to limit the amount of CPU power that the real-time threads can consume [63, Chapter 2].

The mechanism is controlled by two parameters: rt_period and rt_runtime [63, Chapter 2].
The total execution time for all real-time threads cannot exceed rt_runtime during each rt_-
period [63, Chapter 2]. As a special case, rt_runtime can be set to -1 to disable the real-time

throttling [63, Chapter 2].

The throttling mechanism allows the real-time tasks to consume rt_runtime times the number
of CPUs for every rt_period of elapsed time [63, Chapter 2]. Consequently, a real-time task
can utilize 100% of a single CPU as long as the total utilization does not exceed the limit. The
default settings rt_period=1000000 us (1s) and rt_runtime=950000 us (0.95s) give a limit of
95% CPU utilization [63, Chapter 2]. The parameters are associated with two files in the
/proc file system [63, Chapter 2]:

5.3. CONFIGURATION & OPTIMIZATION 173
e /proc/sys/kernel/sched_rt_period_us
e /proc/sys/kernel/sched_rt_runtime_us

In the generic case, execution of the real-time tasks may be blocked for a time equal to the
difference between rt_runtime and rt_period [63, Chapter 3]. This situation should however
be quite rare since it requires that there are real-time tasks (i.e. tasks scheduled with real-
time policies) that are ready to run on all CPUs. This condition should be rare since real-time
systems are typically designed to have an average real-time load of significantly less than 100%
[63, Chapter 3]. Consequently, it is recommended to keep the real-time throttling enabled
[63, Chapter 3]. For systems that do not have any real-time tasks, the real-time throttling will
never be activated and the settings will not have any impact [63, Chapter 3]. An alternative
when using CPU isolation is to avoid using real-time classes, since the CPU is supposed to run
a single task anyway [63, Chapter 3]. In this case, real-time throttling should not be activated
[63, Chapter 3].

Note: If the system is configured with CONFIG_NO_HZ_FULL and a real-time process executes
on a CONFIG_NO_HZ_FULL CPU, real-time throttling will cause the kernel to schedule extra
ticks [63, Chapter 3].

5.3.3.4 Time Stamp Counter (tsc timer - x86 only)

The time stamp counter is a per-CPU counter that produces time stamps [63, Chapter 3].
Since the counters may drift, Linux will periodically check that they are synchronized [63,
Chapter 3]. But this periodicity means that the tick might appear despite using full dynamic
ticks [63, Chapter 3]. By telling Linux that the counters are reliable, Linux will no longer per-
form the periodic synchronization [63, Chapter 3]. The side effect of this is that the counters
may start to drift, something that can be visible in trace logs for example [63, Chapter 3]. The

boot parameter for making the tsc timers reliable is: tsc=reliable [63, Chapter 3].
5.3.3.5 Delay vmstat timer

This timer is used for collecting virtual memory statistics [63, Chapter 3]. The statistics are
updated at an interval specified as seconds in /proc/sys/vm/stat_interval [63, Chap-

ter 3]. The amount of jitter can be reduced by writing a large value to this file [63, Chapter 3].

174 CHAPTER 5. IMPLEMENTATION

5.3.3.6 Machine check - x86 only

The x86 architecture has a periodic check for corrected machine check errors (MCE) [63,
Chapter 3]. The periodic machine check requires a timer that causes unwanted jitter [63,

Chapter 3]. The periodic check should be turned off on the real-time CPUs [63, Chapter 3].
5.3.3.7 Disabling the watchdog timer

The watchdog timer is used to detect and recover from software faults and requires a regular
timer interrupt [63, Chapter 3]. This interrupt is a jitter source that can be removed, at the

obvious cost of less error detections [63, Chapter 3].
5.3.3.8 Disabling the NMI Watchdog - x86 only

The NMIs are hardware interrupts which are fired when there are non-recoverable hardware
errors. Thus, the debugging feature for catching hardware hangings and cause a kernel panic
(the NMI Watchdog) can also be disabled [63, Chapter 3]. On some systems it can generate

a lot of interrupts, causing a noticeable increase in power usage [63, Chapter 3].
5.3.3.9 Memory Overcommit

By default, the Linux kernel allows applications to allocate (but not use) more memory than
is actually available in the system [63, Chapter 2]. This feature is called memory overcommit
[63, Chapter 2]. The idea is to provide a more efficient memory usage since processes typically
ask for more memory than they will actually need [63, Chapter 2]. However, overcommitting
also means there is a risk that processes will try to utilize more memory than there is available
[63, Chapter 2]. If this happens, the kernel invokes the Out-Of-Memory Killer (OOM killer)
[63, Chapter 2]. The OOM Kkiller scans through the tasklist and selects a task to kill to reclaim

memory, based on a set of heuristics [63, Chapter 2].

When an out-of-memory situation occurs, the whole system may become unresponsive for a
significant amount of time, or even end up in a deadlock [63, Chapter 2]. Thus, for embed-
ded and real-time critical systems, the allocation policy should be changed so that memory
overcommit is not allowed [63, Chapter 2]. In this mode, malloc () will fail if an application
tries to allocate more memory than is strictly available, and the OOM Kkiller is avoided [63,
Chapter 2]. More information on the matter can be found in the man page for proc (5)” and

Linux kernel supported overcommit handling modes.

"http://man7.org/linux/man-pages/man5/proc.5.html

http://man7.org/linux/man-pages/man5/proc.5.html

Experimental Evaluation

If something can go wrong, it will

g0 wrong.

Murphy’s General Law

In this chapter, the evaluation process and the experimental results are presented. The tools,
methodology, and environment pertaining to the evaluation process are described. The chap-

ter concludes with the presentation of experimental results along with a brief description.

6.1 Tools, Methodology & Environment

In this section the tools and methodology employed for building and launching the developed
application are described. Next, the configured and monitoring environment are presented.

The setup described in this chapter was configured with the following tools:
« A PC/104 computer by RTD Embedded Technologies, Inc', see Figure 6.1.

« Ubuntu 16.04 with kernel 4.9.115-rt93 patched with PREEMPT_RT (described in Chap-
ter 5).

o IgH Master (EtherLab) version 1.5.2.

o Intel Network Interface Controller 82574L with e1000e driver.

'https://www.rtdusa.com/home.htm

175

https://www.rtdusa.com/home.htm

176 CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.1: The PC/104 computer.

6.1.1 Building the application

After building the environment (described in Chapter 5) as a placeholder for the application

to run, the next step is to build the application and launch it in this environment.

The application developed is wrapped into a ROS package. Therefore the only thing required

for building the application is to run:

1| $ catkin_make

This is a command for issuing the build of the ROS packages residing in the ROS workspace.

After successfully building the application, there is an extra step before launching it. Since
the developed application needs to communicate with EtherLab (a kernel module), it needs
root privileges. For this reason, the following script was written, which should be executed

after building the application:

1 | #!/bin/bash

2 | cd ~/catkin_ws/devel/lib/ether_ros
3 | chown root:root ether_ros

4 | chmod a+rx ether_ros
5

chmod u+s ether_ros

Listing 6.1: The change_permissions_ether_ros. sh script.

6.1. TOOLS, METHODOLOGY & ENVIRONMENT 177

6.1.2 Starting the EtherLab module

Before launching the application, EtherLab should be properly configured and initialized.
If EtherLab was built with the script presented in Chapter 5, then probably EtherLab has
started already (the script builds it with the ethercatMasterInstallWithAutoStart op-
tion, which auto-starts EtherLab on system start). However, in case there exist many NICs in
a system, it should be defined with which NIC should EtherLab communicate. This is done
with a sysconfig file (located in etc/sysconfig/ethercat), which is read when EtherLab
is initialized and described in [2, Chapter 7]. The MASTER@_DEVICE parameter should be
filled with the corresponding NIC. The corresponding MAC address can be easily found with

the ifconfig command in a terminal.

Important note: The Ethernet driver modules for EtherCAT operation should be defined in
the sysconfig file also. In case the EtherLab module is intended to be used with the native
driver option, then the DEVICE_MODULES parameter must be filled with the corresponding
EtherCAT native driver’s name (e.g. €100, 1000, e1000e, igb). If the generic driver option
is used, then the parameter should be filled with generic. However, since the application will
use the Linux Network Stack, in the generic case, before (re)starting EtherLab, the following

script should be run as a further optimization:

1 #!/bin/bash
2 rmmod e1000e
3 modprobe €1000e InterruptThrottleRate=0 RxIntDelay=0 TxIntDelay=0

Listing 6.2: The reinstall_el000e_wo_throttling. sh script.

This script basically reinstalls the e1000e (used in this setup) but with some optimizations
applied. The most basic is the parameter InterruptThrottleRate set to 0, with which the
driver places no limit to the amount of interrupts per second, the adapter will generate for
incoming packets. More information can be found in [117]. This is not necessary for the

native option, since the default driver won't be used by EtherLab.

After this configuration, EtherLab can be initialized. This is done with the following com-

mand:

1 | $ sudo /etc/init.d/ethercat restart # other options are: start, stop and

more

178 CHAPTER 6. EXPERIMENTAL EVALUATION

Important note: After EtherLab initialization has finished, the optimizations shown in Sec-
tion 5.3 should be applied. It’s critical to apply these optimizations after (re)installing the
Ethernet driver to be used, since the priority of the IRQ thread regarding the Ethernet driver’s
ISR should be changed after (re)installing the Ethernet driver.

6.1.3 Slaves Initialization

Before launching the application it is necessary to initialize the EtherCAT slaves to the correct
configuration. The slaves of Laelaps II are initialized by placing manually all the legs in the
position depicted in Figure 4.8 and by pressing the Reset button (shown in Figure 6.2) of every
Delfino Launchpad [17].

Figure 6.2: Reset button to initialize legs’ pose [17].

Before continuing to the next step, all wires, drivers and extension boards should be checked
and be properly mounted on the quadruped robot [17]. The current EtherCAT application (as
developed in [17]) comprises of two states: the Operational state and the Configurational state
[17]. In the Operational state, the Output variables are processed by the slaves and the Input
variables are returned to the master, while in the Configurational state, the Output variables
are not processed by the slaves, thus the Input variables returned should be disregarded [17].
Therefore prior to performing any experiments on Laelaps II, the EtherCAT variable State
Machine® should be set to Configurational State (0) for each slave, before enabling the High
Voltage Power Supply [17]. Figure 6.3 illustrates the experimental setup of Laelaps II on the
treadmill, ready to perform the desired task [17].

The State Machine diagram of Laelaps is illustrated in Figure 6.4. When parameters to all
EtherCAT Output variables have been set and the State Machine is switched to Operational

*bool State_Machine

6.1. TOOLS, METHODOLOGY & ENVIRONMENT 179

Figure 6.3: Laelaps II on treadmill ready to perform experiments [17].

State (1), Laelaps executes the desired movement.

Time variable of the trajectory

planning starts
Operational State Configurational State
,»/ State Machine = 1 \:_ / * State Machine =0
.-'buq:nut PWIM signals of knee| (Cutput PWM signals of knee!
| and hip motors are enabled, | :' and hip motors are disabled, |
| depending on the control | . regardless of the control
' command comman
\ e - z
Time variable of the trajectory

planning resets

Figure 6.4: Laelaps’ State Machine [17].

180 CHAPTER 6. EXPERIMENTAL EVALUATION

6.1.4 Launching the application

After starting the EtherLab module and initializing the EtherCAT slaves, the application is

launched. This is done by running the following command in a terminal:

1 | $ roslaunch ether_ros ether_ros.launch

The launch file used above simply creates a ROS node from the developed application and
launches it in the ROS environment. The Operator should run the python file ethercat_-
keyboard_controller.py by executing:

1 | $ rosrun ether_ros ethercat_keyboard_controller.py

This python file creates a custom Command Line Interface (CLI) which gives functionality

to the user, as described in Subsubsection 4.2.2.2. With this, the user can send commands to

the EtherCAT network. The Output variables are summarized in Subsection 4.2.3, but also

can be viewed using the following command:

1 $ ethercat pdos

Before sending the “start” command (and after launching the ROS node), the user should run

the following script:

1 | #!/bin/bash
2 | ether_ros_pid=$(ps -e | grep "ether ros" | grep -o -E '[@-9]+' | head -n
1)

3 | sudo echo $ether_ros pid > /sys/fs/cgroup/cpuset/rt/tasks

Listing 6.3: The make_rt_task_ether_ros. sh script.

This script will make sure that the pid of the ROS node process will be on the pids of the real-
time cgroup, as created in Section 5.3. In this way, the application can request to be pinned

on a specific CPU (namely 3), as shown in pthread_setaffinity np() function call, and

the request will be satisfied, since it belongs to the real-time cgroup. Otherwise, the request

will not be accepted and an error code will be returned.

By completing the aforementioned steps, it’s time for the user to give the “start” command.

This is done in the custom terminal with: ! start.

6.2. EXPERIMENTS ¢ RESULTS 181

6.1.5 Monitoring

After launching the application and sending the “start” command, the real-time communi-
cation begins. However, somehow the process should be monitored, in order for the user to
stay informed with the current situation of the overall system. The following steps aim to this

direction.
6.1.5.1 Ring Buffer

The messages from the kernel need somehow to be monitored. EtherLab logs information
regarding skipped packets in the kernel logs, therefore if some packets are skipped, they can
be monitored with these logs. The kernel messages are written into a ring buffer. The contents
of the ring buffer can be monitored through the dmesg command. Another useful command

is the following:

1 $ tail -f /var/log/kern.log

The tail command reveals only the latest messages, and the kern.log contains only the

kernel’s messages of any log level.
6.1.52 rqt

The rgt® is a useful tool in the ROS environment for monitoring the status of the ROS ecosys-
tem. With this tool, topics and nodes along with their connections can be observed easily.

Lastly, one useful plugin to visualize online data from multiple topics, is the rqt_multiplot*.

6.2 Experiments & Results

This section presents the results of experiments with Laelaps II and the developed real-time

application in low frequency.

Since successful experiments have been conducted with a similar system (the only difference
is the EtherCAT master used) [17], the experiments carried out in this section, correspond to

the parameters shown in [17].

*http://wiki.ros.org/rqt
*http://wiki.ros.org/rgt multiplot

http://wiki.ros.org/rqt
http://wiki.ros.org/rqt_multiplot

182 CHAPTER 6. EXPERIMENTAL EVALUATION

6.2.1 Experiments

In the context of this thesis, two experiments have been conducted. The first is related to the
trotting ability of Laelaps II. Its objective is to evaluate the ability of the legs to synchronize
properly and achieve the desired trotting movement. The second is related to the control loop
frequencies of the EtherCAT network. Its objective is to compare the two types of EtherLab

drivers and measure their highest achieved EtherCAT control loop frequency.
6.2.1.1 Trotting Experiment

In this experiment, the developed application provides the parameters of the desired elliptical
trajectory for the toe of each leg along with other parameters of the system. The data arelogged
using rosbag and post processed and plotted using a Matlab script. It is worth mentioning
that a PIV (Proportional - Integral — Velocity) controller is implemented in each slave (more
information in [17]), thus the master does not affect the control algorithms running in the

slaves, merely supplies each slave with the necessary parameters via EtherCAT.

For this experiment, a table describing the parameters used is provided along with figures.

The figures present:

o The desired elliptical trajectory of all toes (red) along with their actual response (black)

w.r.t coordinate systems located at the hip joints of the legs.

o The desired response of both knee and hip angles (red) of every leg with their respective

actual response of each knee and hip joint (black).

o The PWM commands of each knee and hip motor (black) which is the output of the PIV
controllers with their respective predefined PWM limits (red). These values represent
the continuous current limits of both motors. More information on the selected limits

can be found in [17].

« The velocity estimation of each knee and hip joint (black) and the respective predefined

motor speed limits (red).

In this experiment, Laelaps II is initially in a standing position with all four legs configured
with the parameters shown in Table 6.1. The parameters a_ellipsel®@and b_ellipsel00
are set to 0 at the beginning of the experiments, therefore the elliptical trajectory is just a point.
After the recording (with rosbag) begins, b_ellipse100 parameter (which corresponds to

the clearance from the ground) is increased to 4 cm linearly with time (the rate of this increase

6.2. EXPERIMENTS ¢ RESULTS 183

depends on the value of Transition_time variable, which was set to 3 seconds throughout
the experiment) to all slaves simultaneously, and similarly a_ellipse1@0 variable (which
corresponds to the step length) is linearly increased to 5 cm. Laelaps starts trotting slowly
and accelerates to reach a constant forward velocity. After several steps, the parameters are
again changed to their initial values (first a_ellipse100 and then b_ellipse100), Laelaps
decelerates and eventually stops walking and remains still. The recording is terminated and

all data are saved and post processed in Matlab.

The experiment’s parameters are depicted in Table 6.1 and in Table 6.2:

Table 6.1: Trotting Experiment parameters.

Parameters FL FR HL HR
Leg Leg Leg Leg
x_cntr_traj1000 (mm) 0 0 0 0
y_cntr_traj100e (mm) 599 | 599 | 598 | 598
a_ellipsel00 (cm) 5 5 5 5
b_ellipsel@0 (cm) 4 4 4 4
Trajectory Parameters traj_freqlee (Hz/100) | 1ee | 1ee | 100 | 1@
phase_deg (deg) 180 0 0 180
Transition_time (sec) 3 3 3 3
FlatnessParamloo 0 0 0 0
Kp100_knee 8000 | 8000 | 8000 | 8000
Control Gains of Knee Kd1000 knee 50 50 50 50
Kile0 knee 0 (5] (%] (5]
Kp10@_hip 8000 | 8000 | 8000 | 8000
Control Gains of Hip Kd1eee hip 50 50 50 50
Kil@@_hip 0 0 0 0
Knee 38.25 | 38.25 | 38.25 | 38.25
PWM max values (%)
Hip 41.17 | 41.17 | 41.17 | 41.17
Filter Bandwidth Frequency FilterBandwidth (Hz) 20 20 20 20
Control Loop Frequency (kHz) 10 10 10 10

184 CHAPTER 6. EXPERIMENTAL EVALUATION

Table 6.2: Parameters independent of EtherCAT application.

Loop Frequency of EtherCAT 2.5kHz
Shift Time of Sync0 Interrupt 55 ps

Voltage Supply (System) 4034V

Max Value of Current (System) 50.11 A

6.2.1.2 Frequency Experiment

In this experiment, the developed application provides the parameters of the desired ellip-
tical trajectory for the toe of each leg along with other parameters of the system, however
High Power is not provided to the robot, hence the robot doesn’t move. Therefore, the devel-
oped application and the EtherCAT application are running in the same way as in the trotting

experiment, but there is no actuation from the motors.

For this experiment, the table describing the parameters used is the same as in the trotting

experiment, shown in Table 6.1 and Table 6.2, although the Loop Frequency of EtherCAT is

changed.

In this experiment, Laelaps II is in a standing position with all four legs configured with
the parameters shown in Table 6.1. The parameters a_ellipse100 and b_ellipsel00
are set to 0 throughout the experiment. In each round of the experiment a configuration
(as shown in Table 6.4) is tested with a specific EtherCAT Loop Frequency and the kernel
logs are checked for skipped EtherCAT frames. If there are skipped frames, this means that
the frequency provided is not achievable by the according configuration. The experiment’s
parameters are depicted in Table 6.3 and in Table 6.4. In each first round the EtherCAT
Loop Frequency is set to 2.5kH z and in each following round the EtherCAT Loop Time
(1/EtherC AT LoopFrequency) is decreased by 50 s.

Table 6.3: Parameters independent of EtherCAT application.

Parameters Values

Time of each round 10 minutes

Shift Time of Sync0 Interrupt 55 18

6.2. EXPERIMENTS ¢ RESULTS

Voltage Supply (System)

40.34V

Max Value of Current (System)

50.11 A

Table 6.4: Configurations tested.

EtherLab with Generic Driver No
EtherLab with Generic Driver Yes
EtherLab with Native Driver No

6.2.2 Results

6.2.2.1 Trotting Experiment Results

185

During the steady state phase of the experiment, where both the a_ellipse100 and b_-

ellipsel@0 parameters have reached their final value, the toe (End Effector) of every leg

performs a specific path trying to converge with the desired elliptical trajectory. The desired

elliptical trajectory of each toe (red) along with the actual response of every leg (black) in

their workspace, with respect to the coordinate systems located in the hip joints of the legs

(O point in Figure 4.9), are shown in Figure 6.5.

186 CHAPTER 6. EXPERIMENTAL EVALUATION

FR End Effector in Steady State . FL End Effector in Steady State
: .55 T
0.56 |
0.56 |
0.57 |
(2] 2]
2 2 057
© ©
T 0.58 | >‘
Y y 0.58
+ +
0.59 fi 059 |
06 0.6 -
-0.05 0 0.05 -0.05 0 0.05
X axis --> + X axis --> +
6 5\!)-IR End Effector in Steady State . 5!."' End Effector in Steady State
0.56 |] 0.56 |
(2] L [%2)
&> 0.57 &> 0.57
© ©
> >
Y 058 | v 0-58
+ +
0.59 |] 059 |
06 : : : : : 0.6 : : : : :
-0.06 -0.04 -002 0 002 004 006 -0.06 -0.04 -002 0 002 004 006
X axis --> + X axis --> +

Figure 6.5: Desired elliptical trajectory of all legs toe (red) along with their actual response
(black) w.r.t coordinate systems located in the hip joints of the legs.

This figure clarifies the fact that steady state errors in the hip and knee joints are adjourned
as errors to the positioning of the toe. It is worth mentioning that due to the ground and the
low values of the Control Gains, the desired elliptical trajectories are not tracked closely at
the “steady” state and a better tuning of these gains is required, especially for the hind legs.
Furthermore, the gains for the I term of the control scheme were 0, so proper tuning of these

gains is required too.

Figure 6.6 displays the desired value of each knee joint (red) and the actual response of this
joint (black) throughout the experiment.

6.2. EXPERIMENTS ¢ RESULTS 187

Response of FR Knee Angle
T T T

10 T T T T T
= 0 _
(0]
S,
<@
©.10 |- .
<
20 | | |
5 10 40 45
10 T T T
> 0 -
[0
S
<@
2.10 |- .
<
20 | | |
5 10 40 45
10 T T T
= 0 _
[0
S
Q<
210 |- .
<
-20 ! . !
0 5 10 40 45
5 T T T
0% —
>
s °r 7
(0]
210 - -
c
<5 -
-20 | | |
0 5 10 40 45

Time [s]

Figure 6.6: Desired response of knee angles (red) and actual response of knee joint (black).

Both the transition and the steady state phase are illustrated. The desired values are closely
tracked by all legs, yet there is plenty of room for improvement which can be achieved by a

judicious regulation of the control gains for the knee motors.

In a similar manner, Figure 6.7 describes the desired value of each hip joint angle (red) and

the actual response of every hip joint (black) throughout the experiment.

188 CHAPTER 6. EXPERIMENTAL EVALUATION

Response of FR Hip Angle
T T T

30 T T T T T
20 - -
i)
3
(0]
)
C
< 0f —
10 | ! *
5 10 40 45
30 T T T
20 — —
=)
3
[0}
)
c
< O0f —
10 : : *
5 10 40 45
30 T T T
20 .
>
3
<@
(o))
e
< of -
10 ! : *
5 10 40 45
30 T T T
20 -+ —
=)
3
(0]
)
C
< 0f —
10 | | | | | | | |
5 10 15 20 25 30 35 40 45

Time [s]

Figure 6.7: Desired response of hip angles (red) and actual response of hip joint (black).

Both the transition and the steady state phase are illustrated. The desired values are closely
tracked by all legs, yet there is plenty of room for improvement (even more than the knee
motors) which can be achieved by proper regulation of the control gains for the hip motors.
Since identical control gain values were used for both motors (brushed and brushless) it is
totally understandable why these two joints don’t have an identical response as far as errors
are concerned. Moreover, it is worth mentioning that the hip joint performs a wider move-
ment which is another reason why the resulting errors are larger compared to the knee joints.
Another reason explaining the large errors, is the absence of an I term or a feedforward term,

which could support the robot weight.

Figure 6.8 depicts the PWM commands [%] of each knee motor (black) with its respective

predefined limit (red). These commands are the output of the knee’s PIV controller and are

6.2. EXPERIMENTS ¢ RESULTS 189

directly translated in torque commands since a current control architecture is implemented.
As it can be observed, the commands in both hind legs are always within the limit. Con-
cerning the two forelegs, although the limits are reached several times, due to the fact that it

happened only for short intervals, no extra action is needed.

PWM Command of FR Knee

B &

limits

PWM Command [%]
g o
T T
=
—=

b
=

o 5 10 15 20 45
PWM Command of FL Knee
E 0k e r r”{)ﬂ{J HEH Y W et — - fllmlts
% o0 - HH o ';,"' -
o I I I I
“% 5 10 15 20 45
PWM Command of HR Knee
4{) T T T T T
£
e T . | -
£ ol . | limits _|
E 20 LU L e il.'" -
E | | 1 1 |
“% 5 10 15 20 25 30 a5 40 45
PWM Command of HL Knee
4D T T T T T T T T
2 -\
Soeotr i
E oL] W’ Y limits
X ad o
é-zu - i;‘ i
o | | | 1 |
40 5 10 15 20 25 :m 35 40 a5
Time [s]

Figure 6.8: PWM commands of each leg’s knee motor (black) and the respective predefined
PWM limits (red).

Similarly, Figure 6.9 depicts the PWM commands [%] of each leg’s hip motor (black) with
its respective predefined limit (red). These commands are the output of the hips PIV con-
troller, and are directly translated in torque commands since a current control architecture is
implemented. As it can be observed, hip PWM limits are recurrently reached, especially in

the hind legs, thus an increase of the allowed range should be considered.

190 CHAPTER 6. EXPERIMENTAL EVALUATION

PWM Command of FR Hip

50 T T T T T T T T
£ | *
2 { - h
g L #'H' M H}'FW \;_Iimits
£ ™ - ' FIFIBIEITIFF MU W e ,-; i 1
S /
= '_'.J"
E 50 1 1 1 I 1 I I I
0 5 0 15 20 25 30 a5 40 45
PWM Command of FL Hip
50
BT T T T T T T T T
] \
@
E L | L T LRI TRV T TR T TRV I T —— limits _|
g LH] Foe—— *i h i || lL b f."‘l
= | | /
E 50 1 1 1 | 1 | | |
0 5 10 15 20 25 30 a5 40 45
PWM Command of HR Hip
50 T T T T T T
3'3_" I. | | |
= TR J \
: — gl | it
L T o
(] l;.,-
= ¥
& 50 1 1 1 . 1 . . .
0 5 10 15 20 25 30 a5 40 45
o PWM Command of HL Hip
I I I T I T
F
z \
% ok _r_i WH M } : | »»L_.._ I ;Iimits i
Q |“ lII ‘) | ;.-'
s I H IJ v
o o 1 1 L 1 L L L
0 5 10 15 20 35 30 a5 40 45

Time [s]

Figure 6.9: PWM commands of each leg’s hip motor (black) and the respective predefined PWM
limits (red).

Figure 6.10 presents the velocity estimation of each leg’s knee joint (black) and the respec-
tive motor speed limits (red) as specified by the manufacturer (briefly described in Subsec-
tion 4.2.2). As it can be noticed from Figure 6.10, the velocities of all knee motors are always

within the allowed range.

6.2. EXPERIMENTS ¢ RESULTS

Velocity [rad/s] Velocity [rad/s]

Velocity [rad/s]

Velocity [rad/s]

[$)]

o

'
[6,]

[$)]

o

'
(6]

[6)]

o

'
6]

(&

o

o

Response of FR Knee Velocity

| | | | |

191

o

15 20 25 30 35

Response of FL Knee Velocity

| | | | |

o

15 20 25 30 35

Response of HR Knee Velocity

| | | | |

o

15 20 25 30 35

Response of HL Knee Velocity

o

Figure 6.10: Velocity estimation of each leg’s knee joint (black) and the respective predefined
motor speed limits (red).

Time [s]

Finally, Figure 6.11 illustrates the velocity estimation of each hip joint (black) and the respec-

tive motor speed limits (red) as specified by the manufacturer (briefly described in Subsec-

tion 4.2.2). Once again, the velocities of every hip motor are always within the allowed range,

thus there is no need to consider reducing hip PWM limits.

192

Velocity [rad/s] Velocity [rad/s] Velocity [rad/s]

Velocity [rad/s]

o

o

&

iy
o

CHAPTER 6. EXPERIMENTAL EVALUATION

Response of FR Hip Velocity

1 1 1 1 1

15 20 25 30 35
Response of FL Hip Velocity

| | | | |

15 20 25 30 35

Response of HR Hip Velocity

| | | | |

15 20 25 30 35

Response of HL Hip Velocity

Time [s]

Figure 6.11: Velocity estimation of each leg’s hip joint (black) and the respective predefined
motor speed limits (red).

In this section, the presented results depict a successful trotting experiment on Laelaps II.

Minor modifications on control gains and ratios (PWM commands) are recommended for

improved performance on the gait, which should be further investigated. From the EtherCAT

master perspective, it should be noted that ether_ros worked as expected, without skipped

packets from EtherLab, in spite of using the generic driver. This means that the real-time

constraints, as analyzed in the functional requirements, were respected, with 2.5 kH z Ether-

CAT loop frequency achieved. Finally, regarding the ROS environment, the messages were

received successfully on the appropriate topics on time.

6.2. EXPERIMENTS ¢ RESULTS 193

6.2.2.2 Frequency Experiment Results

As it can be observed from the following Table 6.5, the native driver is superior to the generic
by a large margin (close to 120 us). The apparent reason as illustrated and explained in the
previous chapters, is the use of the Linux Network Stack by the generic driver, which adds
extra latency resulting to skipped packets from a Loop Time and below. The native driver
may be superior to the generic, however it has limited availability. If the native driver is not
available for the existing system, further development needs to be done for creating one. Thus
a well-known tradeoft arises once again, between availability and performance. It should be
noted that when the master (using EtherLab with native driver) requested from the EtherCAT
slaves to switch to Operation State and the Loop Time was equal or below 220 ps, the slaves
refused to switch. Therefore for the specific EtherCAT payload (240 bytes) and for the specific
slaves used, the threshold of the Loop Time is 230 ps.

Table 6.5: Frequency Experiment Results.

EtherCAT Loop Time Number of skipped
Configuration Optimizations
(us) packets
EtherLab with
No 400 0
Generic
EtherLab with
No 350 ~ 100
Generic
EtherLab with
Yes 400 0
Generic
EtherLab with
Yes 350 0
Generic
EtherLab with
Yes 300 ~ 100
Generic
EtherLab with
No 400 0
Native
EtherLab with
No 350 0
Native
EtherLab with
No 300 0
Native

194 CHAPTER 6. EXPERIMENTAL EVALUATION
EtherLab with
No 250 0
Native
EtherLab with
No 240 0
Native
EtherLab with
No 230 0
Native

Nevertheless, the EtherCAT application could run in a 4.348 k£ H z EtherCAT Control Loop

frequency, a frequency far beyond the requested one. From this experiment, it was also mea-

sured that the time the EtherCAT frame (240 bytes) needed to traverse the EtherCAT network

and return to the master has a median of 110 us and a variance of 4 us. Also the time needed

by the developed application to receive an EtherCAT frame, create the new PDOs and send

the new frame to the network was less than 30 ps.

Conclusions & Future Work

We are made wise not by the
recollection of our past, but by the

responsibility for our future.

George Bernard Shaw

In this final chapter, an overall assessment of the developed project is drawn and conclusions
are presented regarding the results and the technologies used. Finally, a few directions for

further improvement (considered worthy of investigation) and future work are outlined.

7.1 Concluding Remarks

All in all, the requirements formulated in Chapter 4 were managed and met succesfully. Ac-
cording to the experimental evaluation results, the design and development of this thesis
achieved to combine the technologies of EtherCAT and ROS under real-time constraints and

produce the outcome of a trotting quadruped robot, namely Laelaps II.

In more detail, the real-time capabilities offered by the PREEMPT_RT patch proved to be
highly sufficient for the motion control of Laelaps II and the combination of the patch along
with EtherLab proved to be worthy superseder of the Windows / TwinCAT approach. Regard-
ing the PREEMPT_RT patch, although a fair amount of development time was consumed on
tweaking the system’s kernel and the application’s code in order to optimize the master’s la-

tency, this cost is considered to be far smaller than other approaches like Xenomai and RTAI,

195

196 CHAPTER 7. CONCLUSIONS ¢ FUTURE WORK

which may offer better performance, yet trading off maintainability and development costs.
As far as EtherLab is concerned, the design decision to adopt this approach instead of SOEM,
proved to be wise during the development and the validation process. Although a hard and
steep learning curve was involved for understanding the way of developing code that utilizes
it's API, the documentation was excellent and facilitated the process of development. Also,
EtherLab showed it’s strength in the debugging process, since it offered mechanisms to ex-

amine instantly every aspect of the EtherCAT network.

In addition, on top of the real-time capabilities, the developed application offers inter-oper-
ability with the ROS environment, through it's ROS API. This step opens a lot of possibilities,
considering the size of the ROS ecosystem and the diversity of the currently developed appli-
cations in it. The future ROS nodes will have the ability to communicate with the encoders
and motors of Laelaps II and orchestrate profiles of synchronized motions of the legs. These
profiles could start with simple ones like trotting, studied in this thesis, and continue with
highly complex like galloping and running or combinations of them. This feature shouldn't
be neglected; the ROS-ification of Laelaps II is a huge step towards software modularity and
reduction of development and maintaining costs, important factors for both academia and

industry.

Last but not least, the EtherCAT communication protocol proved to be highly efficient and
useful throughout the experimental validation. Depending on the data payload which is inti-
mately connected to the size of the EtherCAT frame, this technology can reach really low cycle
times and guarantee proper communication between a master and several slaves exploiting
only a few really affordable devices (MCUs and ESCs). To put this information in context, the
total purchasing cost of all the required components for the control architecture of Laelaps II
is almost 10% of the previous version (Laelaps I). Conclusively, the decision to switch towards
EtherCAT technology was judicious and wise due to its alleviating functionalities, especially
in the motion control area. The new decentralized architecture will certainly enable Laelaps
IT to perfom higher frequency motions and reach its maximum velocity, with only minor up-
grades on its mechanical system, enabling future projects in the CSL-EP laboratory to easily

adopt this scheme.

7.2 Future Work

Although the current implementation of motion control via EtherCAT on Laelaps II has been

tested and has been proven to be fully functional at the software and hardware level, several

7.2. FUTURE WORK 197
aspects can be improved in the future to achieve greater robustness.

Firstly, the developed application can be extended to support different payloads for EtherCAT
slaves and automatic configuration of a new EtherCAT application without manual configu-

ration on the ether_ros source code.

An additional idea, is to conduct experiments for tracing the latencies in every aspect of the
system. The EtherCAT loop time is consumed among the network, the slaves and the master,
and it would be useful to know the amount of time each component of the system consumes.
To this direction, tracing tools’ in the kernel could be utilized in order to trace which process
is run by which CPU, how much time does it take to run etc. In this way, the latency of the
application, the kernel and the EtherCAT network can be traced. The EtherCAT network’s
latency can be traced by measuring the intervals between two consecutive interrupts of the
Ethernet IRQ dedicated to the EtherCAT network. This latency can be easily (but not so
accurately) monitored by the use of Wireshark too. The kernel latency consists of latencies
introduced by the EtherLab module, the scheduler and other interrupts not related with the
EtherCAT network (e.g. timers, IPIs).

Another possible direction, is experimentation with a different scheduling policy and com-
parison with the currently used SCHED_FIFO. A suitable candidate could be SCHED_DEAD-
LINE policy, however extra technical effort is required for integrating this policy to the exist-

ing project’s workflow.

Moreover, should the current control scheme change and become centralized, the ether_ros
should change too. A centralized approach means more throughput towards ether_ros and
the developed application is not optimized for this kind of case. For this approach to work,
the application needs to be changed significantly, by optimizing the interaction with the ROS

environment, like the number of threads to be used, specific callback queues etc.

Finally, when the thesis was halfway finished, new approaches of motion control based on
open-source standards emerged. These approaches are based on ROS 2 (version “crystal” at
the time of this writting), which is yet at an early stage of maturity, but is thought to be the
successor of ROS. These approaches deal with real-time constraints with the offered inherent
features of ROS 2. Currently, the approach of controlling a robotic arm without the need for

a fieldbus system is proposed [46, 21, 118, 119].

'http://www.brendangregg.com/blog/2015-07-08/choosing-a-linux-tracer.html

http://www.brendangregg.com/blog/2015-07-08/choosing-a-linux-tracer.html

198 CHAPTER 7. CONCLUSIONS ¢ FUTURE WORK

Although EtherCAT offers unquestionably many benefits, the need for programming both
the master and the slaves persists. On the contrary, this approach proposes a motion control
of a robotic arm, by adopting ROS 2, PREEMPT_RT patch, H-ROS, HRIM [120] and Ether-
net enhanced with Time Sensitive Networking (TSN) standards [119], which offers no extra
development cost for programming the “slaves”. In fact, in this approach there is no master
and slaves, merely a computer and the objects (sensors, actuators) publishing and listening
to specific topics, which the computer can take advantage of. This is achieved by erasing a
variable from the existing equation, namely EtherCAT, and replacing it with deterministic
Ethernet under TSN standards (IEEE 802.1 AS) [119]. There is a caveat however; the cur-
rently supported motors are only of a specific brand?, therefore the shift is not necessarily

applicable to the CSL-EP laboratory’s setting, yet this approach deserves some research.

*https://acutronicrobotics.com/docs/products/actuators/modular motors/hans/
specification

https://acutronicrobotics.com/docs/products/actuators/modular_motors/hans/specification
https://acutronicrobotics.com/docs/products/actuators/modular_motors/hans/specification

[1]

2]

Bibliography

B. Wiliamowski and J. Irwin, Industrial Communications Systems: The Industrial Elec-

tronics Handbook. CRC Press, 2011.

E Pose, IgH EtherCAT Master 1.5.2 Documentation, Ingenieurgemeinschaft IgH,
10 2017, [Accessed 18-March-2019]. [Online]. Available: https://www.etherlab.org/

download/ethercat/ethercat-1.5.2.pdf

E Cottet, J. Delacroix, C. Kaiser, and Z. Mammeri, Scheduling in Real-Time Systems.
John Wiley & Sons, November 2002, pp. 8-33, 93-96. [Online]. Available: https://doi.
org/10.1002/0470856343

Alison Chaiken, “IRQs: the Hard, the Soft, the Threaded and the Preemptible,’
October 2016, [Accessed 14-March-2019]. [Online]. Available: https://events.static.
linuxfound.org/sites/events/files/slides/Chaiken_ELCE2016.pdf

Yaghmour, Karim and Masters, Jonathan and Ben-, Gilad, Building Embedded Linux
Systems, 2nd Edition, 2nd ed. Sebastopol, CA, USA: O’'Reilly & Associates, Inc., 2008.

Steven Rostedt, “Real-Time is coming to Linux: What does that mean
for you?” October 2018, [Accessed 14-March-2019]. [Online]. Available:
https://events.linuxfoundation.org/wp-content/uploads/2017/12/elc-eu-2018-rt-

what-does-it-mean_Steven-Rostedt.pdf

Y. Pyo, H. Cho, L. Jung, and D. Lim, ROS Robot Programming (English). ROBOTIS, 12
2017, pp. 10-15, 41-63,

199

https://www.etherlab.org/download/ethercat/ethercat-1.5.2.pdf
https://www.etherlab.org/download/ethercat/ethercat-1.5.2.pdf
https://doi.org/10.1002/0470856343
https://doi.org/10.1002/0470856343
https://events.static.linuxfound.org/sites/events/files/slides/Chaiken_ELCE2016.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Chaiken_ELCE2016.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/12/elc-eu-2018-rt-what-does-it-mean_Steven-Rostedt.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/12/elc-eu-2018-rt-what-does-it-mean_Steven-Rostedt.pdf

200

(8]

[9]

[11]

[13]

[14]

[15]

BIBLIOGRAPHY

EtherCAT and EtherCAT-P Slave Implementation Guide, 3rd ed., Beckhoff Automation
GmbH, 3 2018, [Accessed 18-March-2019]. [Online]. Available: https://www.ethercat.
org/download/documents/ETG2200_V3i0i4_G_R_SlavelmplementationGuide.pdf

EtherCAT Slave Controller Hardware Data Sheet Section I: Technology, 2nd ed.,
Beckhoff Automation GmbH, 7 2014, [Accessed 18-March-2019]. [Online]. Available:

https://download.beckhoff.com/download/document/io/ethercat-development-

products/ethercat_esc_datasheet_secl_technology_2i3.pdf

Elmo Motion Control Ltd., “Multi-Axis Position Control by EtherCAT Real-Time
Networking,” january 2012, [Accessed 18-March-2019]. [Online]. Available: https:
//productsdengineers.nl/images/default/vbVUrK-pdf.pdf

J. Liu, X. Li, M. Liu, X. Cui, and D. Xu, “A new design of clock synchronization al-
gorithm,” Advances in Mechanical Engineering, vol. 6, 2014. [Online]. Available: https:
//journals.sagepub.com/doi/pdf/10.1155/2014/958686

Synchronization Modes, EtherCAT Technology Group, 2019, etherCAT Technology
Group (ETG) Knowledge Base. Only available for ETG Members. [Accessed 18-March-
2019].

EtherCAT Technology Group, “EtherCAT Synchronization,” 5 2014, etherCAT Tech-
nology Group (ETG) Knowledge Base. Only available for ETG Members. [Accessed
18-March-2019].

——, “How-To Configure DC SYNC Shift Times,” 12 2017, etherCAT Technology
Group (ETG) Knowledge Base. Only available for ETG Members. [Accessed 18-March-
2019].

EtherCAT Protocol Enhancements, EtherCAT Technology Group, 12 2015, etherCAT
Technology Group (ETG) Knowledge Base. Only available for ETG Members. [Ac-
cessed 18-March-2019].

R. Zurawski, Industrial Communication Technology Handbook, 2nd ed. CRC Press,
2017.

S. Athiniotis, “Firmware design for microcontrollers on ethercat network for
quadruped robot motion control,” Masters thesis , School of Mechanical Engineering,

National Technical University of Athens, 2018.

https://www.ethercat.org/download/documents/ETG2200_V3i0i4_G_R_SlaveImplementationGuide.pdf
https://www.ethercat.org/download/documents/ETG2200_V3i0i4_G_R_SlaveImplementationGuide.pdf
https://download.beckhoff.com/download/document/io/ethercat-development-products/ethercat_esc_datasheet_sec1_technology_2i3.pdf
https://download.beckhoff.com/download/document/io/ethercat-development-products/ethercat_esc_datasheet_sec1_technology_2i3.pdf
https://products4engineers.nl/images/default/vbVUrK-pdf.pdf
https://products4engineers.nl/images/default/vbVUrK-pdf.pdf
https://journals.sagepub.com/doi/pdf/10.1155/2014/958686
https://journals.sagepub.com/doi/pdf/10.1155/2014/958686

BIBLIOGRAPHY 201

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applications,
2nd ed., ser. Real-Time Systems Series. Springer, 2011, pp. 13-17. [Online]. Available:
https://doi.org/10.1007/978-1-4419-8237-7

P. A. Laplante, Real-Time Systems Design and Analysis, 3rd ed. John Wiley & Sons, April
2004, pp. 4-6. [Online]. Available: https://doi.org/10.1002/0471648299

D. Abbott, Linux for embedded and real-time applications, 4th ed. Elsevier, 2017, pp.
258-270.

C. S. V. Gutiérrez, L. U. S. Juan, I. Z. Ugarte, and V. M. Vilches, “Real-time linux com-
munications: an evaluation of the linux communication stack for real-time robotic

applications,” arXiv preprint arXiv:1808.10821, 2018.

Wikipedia contributors, “Tanenbaum-Torvalds debate,” 2019, [Accessed 14-March-
2019]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Tanenbaum%
E2%80%93Torvalds_debate&oldid=884077588

Thomas Gleixner, “Realtime Linux: academia v. reality, July 2010, [Accessed 14-

March-2019]. [Online]. Available: https://lwn.net/Articles/397422/

KUNBUS GmbH, “Fieldbus Basics,” 2018, [Accessed 4-December-2018]. [Online].
Available: https://www.kunbus.com/fieldbus-basics.html

Wikipedia contributors, “Token passing,” 2019, [Accessed 14-March-2019]. [On-
line]. Available: https://en.wikipedia.org/w/index.php?title=Token_passing&oldid=
789850568

A. Hansson, “Industrial Ethernet is now bigger than fieldbuses,” 2018, [Accessed

5-December-2018]. [Online]. Available: https://www.automationworld.com/article/

industrial-ethernet-now-bigger-fieldbuses

J. Pinto, “From Fieldbus to Industrial Ethernet,” 2018, [Accessed 4-December-

2018]. [Online]. Available: https://www.automationworld.com/article/technologies/

networking-connectivity/ethernet-tcp-ip/fieldbus-industrial-ethernet

Wikipedia contributors, “SERCOS III,” 2018, [Accessed 4-December-2018]. [On-
line]. Available: https://en.wikipedia.org/w/index.php?title=SERCOS_II1&oldid=
855929777

https://doi.org/10.1007/978-1-4419-8237-7
https://doi.org/10.1002/0471648299
https://en.wikipedia.org/w/index.php?title=Tanenbaum%E2%80%93Torvalds_debate&oldid=884077588
https://en.wikipedia.org/w/index.php?title=Tanenbaum%E2%80%93Torvalds_debate&oldid=884077588
https://lwn.net/Articles/397422/
https://www.kunbus.com/fieldbus-basics.html
https://en.wikipedia.org/w/index.php?title=Token_passing&oldid=789850568
https://en.wikipedia.org/w/index.php?title=Token_passing&oldid=789850568
https://www.automationworld.com/article/industrial-ethernet-now-bigger-fieldbuses
https://www.automationworld.com/article/industrial-ethernet-now-bigger-fieldbuses
https://www.automationworld.com/article/technologies/networking-connectivity/ethernet-tcp-ip/fieldbus-industrial-ethernet
https://www.automationworld.com/article/technologies/networking-connectivity/ethernet-tcp-ip/fieldbus-industrial-ethernet
https://en.wikipedia.org/w/index.php?title=SERCOS_III&oldid=855929777
https://en.wikipedia.org/w/index.php?title=SERCOS_III&oldid=855929777

202

[29]

[30]

[31]

BIBLIOGRAPHY

C. Semini, V. Barasuol, J. Goldsmith, M. Frigerio, M. Focchi, Y. Gao, and D. G. Caldwell,
“Design of the hydraulically actuated, torque-controlled quadruped robot hyg2max,”
IEEE/ASME Transactions on Mechatronics, vol. 22, no. 2, April 2017, pp. 635-646.

M. Hutter, C. Gehring, A. Lauber, E Gunther, C. D. Bellicoso, V. Tsounis,
P. Fankhauser, R. Diethelm, S. Bachmann, M. Bloesch, H. Kolvenbach, M. Bjelonic,
L. Isler, and K. Meyer, “ANYmal - toward legged robots for harsh environments,”
Advanced Robotics, vol. 31, no. 17, 2017, pp. 918-931. [Online]. Available: https:
//doi.org/10.1080/01691864.2017.1378591

Giorgio C. Buttazzo, Hard Real-Time Computing Systems: Predictable Scheduling Algo-
rithms and Applications, 3rd ed., ser. Real-Time Systems Series. Springer, 2011, vol. 24,
pp- 1, 34-39, 86-118, 428-456. [Online]. Available: https://doi.org/10.1007/978-1-
4614-0676-1

J. A. Stankovic and K. Ramamritham, Eds., Tutorial: Hard Real-time Systems. Los
Alamitos, CA, USA: IEEE Computer Society Press, 1989.

K. Schwan, P. Gopinath, and W. Bo, “CHAOS-kernel support for objects in the real-
time domain,” IEEE Transactions on Computers, vol. C-36, no. 8, Aug 1987, pp. 904-
916.

H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C. Senft, and R. Zainlinger,
“Distributed fault-tolerant real-time systems: the mars approach,” IEEE Micro, vol. 9,

no. 1, Feb 1989, pp. 25-40.

J. A. Stankovic and K. Ramamritham, “The spring kernel: a new paradigm for real-time

systems,” IEEE Software, vol. 8, no. 3, May 1991, pp. 62-72.

H. Tokuda and C. W. Mercer, “ARTS: A distributed real-time kernel,” SIGOPS Oper.
Syst. Rev., vol. 23, no. 3, Jul. 1989, pp. 29-53. [Online]. Available: http://doi.acm.org/
10.1145/71021.71023

I. Lee, R. King, and R. Paul, “RK: A real-time kernel for a distributed system with pre-
dictable response,” Technical Reports (CIS), p. 714, 1988.

I. Lee and R. King, “Timix: a distributed real-time kernel for multi-sensor robots,”
in Proceedings. 1988 IEEE International Conference on Robotics and Automation, April
1988, vol. 3, pp. 1587-1589.

https://doi.org/10.1080/01691864.2017.1378591
https://doi.org/10.1080/01691864.2017.1378591
https://doi.org/10.1007/978-1-4614-0676-1
https://doi.org/10.1007/978-1-4614-0676-1
http://doi.acm.org/10.1145/71021.71023
http://doi.acm.org/10.1145/71021.71023

BIBLIOGRAPHY 203

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

S. T. Levi, S. K. Tripathi, S. D. Carson, and A. K. Agrawala, “The MARUTI hard real-
time operating system,” in [1989] Proceedings. The Fourth Israel Conference on Com-

puter Systems and Software Engineering, June 1989, pp. 5-15.

D. D. Kandlur, D. L. Kiskis, and K. G. Shin, “HARTOS: A distributed real-time oper-
ating system,” SIGOPS Oper. Syst. Rev., vol. 23, no. 3, Jul. 1989, pp. 72-89. [Online].
Available: http://doi.acm.org/10.1145/71021.71025

K. Jeffay, D. Stone, and D. Poirier, “Yartos: Kernel support for efficient, predictable
real-time systems,” IFAC Proceedings Volumes, vol. 24, no. 2, 1991, pp. 7 - 12. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S1474667017512604

G. C. Buttazzo and M. D. Natale, “HARTIK: a hard real-time kernel for programming
robot tasks with explicit time constraints and guaranteed execution,” in Proceedings
IEEE International Conference on Robotics and Automation, vol. 2, May 1993, pp. 404-
409.

S. Oikawa and R. Rajkumar, “Portable RK: A portable resource kernel for guaranteed
and enforced timing behavior,” in Proceedings of the Fifth IEEE Real-Time Technology
and Applications Symposium, IEEE, 1999, p. 111.

S. Oikawa, “Linux/RK: A portable resource kernel in linux,” in In 19th IEEE Real-Time
Systems Sumposium, 1998.

B. Gerkey, “Why ROS 2?” 2017, [Accessed 6-December-2018]. [Online]. Available:
https://design.ros2.org/articles/why_ros2.html

C. S. V. Gutiérrez, L. Usategui San Juan, I. Zamalloa Ugarte, and V. Mayoral
Vilches, “Towards a distributed and real-time framework for robots: Evaluation
of ROS 2.0 communications for real-time robotic applications,” ArXiv e-prints, p.

arXiv:1809.02595, Sep. 2018.

J. Blazewicz, K. H. Ecker, G. Schmidt, and J. Weglarz, Scheduling in computer and man-

ufacturing systems. Springer Science & Business Media, 2012.

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1979.

C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard-
real-time environment,” Journal of the ACM (JACM), vol. 20, no. 1, 1973, pp. 46-61.

http://doi.acm.org/10.1145/71021.71025
http://www.sciencedirect.com/science/article/pii/S1474667017512604
https://design.ros2.org/articles/why_ros2.html

204

[50]

[51]

BIBLIOGRAPHY

Wikipedia contributors, “Rate-monotonic scheduling,” 2019, [Accessed 14-March-
2019]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Rate-
monotonic_scheduling&oldid=884167834

J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling algorithm: exact
characterization and average case behavior;” in [1989] Proceedings. Real-Time Systems

Symposium, Dec 1989, pp. 166-171.

E. Bini, G. Buttazzo, and G. Buttazzo, “A hyperbolic bound for the rate monotonic
algorithm,” in Proceedings 13th Euromicro Conference on Real-Time Systems, June 2001,

pp- 59-66.

E. Bini, G. C. Buttazzo, and G. M. Buttazzo, “Rate monotonic analysis: the hyperbolic
bound,” IEEE Transactions on Computers, vol. 52, no. 7, July 2003, pp. 933-942.

I. Lee, J. Y.-T. Leung, and S. H. Son, Handbook of Real-Time and Embedded Systems,
Ist ed. Chapman & Hall/CRC, 2007.

M. Dertouzos, “Control robotics: The procedural control of physical processeds,” in

Proc. IFIP congress, 1974, pp. 807-813.

G. C. Buttazzo, “Rate monotonic vs. edf: judgment day;,” Real-Time Systems, vol. 29,

no. 1, 2005, pp. 5-26.

A. Carlini and G. C. Buttazzo, “An efficient time representation for real-time embed-
ded systems,” in Proceedings of the 2003 ACM symposium on Applied computing. ACM,
2003, pp. 705-712.

G. Buttazzo, P. Gai et al., “Efficient edf implementation for small embedded systems,” in
Proc. International Workshop on Operating Systems Platforms for Embedded Real-Time
Applications, 2006.

A. Cervin, “Integrated control and real-time scheduling,” Ph.D. dissertation, Lund Uni-

versity, 2003.

S. Sahni, “Preemptive scheduling with due dates,” Operations Research, vol. 27, no. 5,

1979, pp. 925-934.

Jonathan Corbet, “Software interrupts and realtime,” October 2012, [Accessed 14-

March-2019]. [Online]. Available: https://lwn.net/Articles/520076/

https://en.wikipedia.org/w/index.php?title=Rate-monotonic_scheduling&oldid=884167834
https://en.wikipedia.org/w/index.php?title=Rate-monotonic_scheduling&oldid=884167834
https://lwn.net/Articles/520076/

BIBLIOGRAPHY 205

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

M. Wilcox and H.-P. Company, “T'll do it later: Softirgs, tasklets, bottom halves, task

queues, work queues and timers,” in Linux Conference of Australia 2003, linux. conf.

au., 01 2003.

T. L. et al, Linux Real-Time Manual, Enea AB, September 2015, [Accessed 19-March-
2019]. [Online]. Available: http://linuxrealtime.org/index.php/Main_Page

Rostedt, Steven et all, “RT-mutex implementation design,” June 2017, linux kernel doc-

umentation, [Accessed 14-March-2019]. [Online]. Available: https://www.kernel.org/

doc/Documentation/locking/rt-mutex-design.txt

——, “RT-mutex subsystem with PI support,” linux kernel documentation, [Accessed

14-March-2019]. [Online]. Available: https://www.kernel.org/doc/Documentation/

locking/rt-mutex.txt

——, “Lightweight PI-futexes,” linux kernel documentation, [Accessed 14-March-

2019]. [Online]. Available: https://www.kernel.org/doc/Documentation/pi-futex.txt

Jonathan Corbet, “Priority inheritance in the kernel,” April 2006, [Accessed 14-March-
2019]. [Online]. Available: https://lwn.net/Articles/178253

R. Love, Linux Kernel Development, 3rd ed. Addison-Wesley Professional, 2010, pp.
41-50.

T. Gleixner and D. Niehaus, “Hrtimers and beyond: Transforming the linux time sub-

systems,” in Proceedings of the Linux symposium, vol. 1. Citeseer, 2006, pp. 333-346.

Molnar, Ingo and Gleixner, Thomas, “High resolution timers and dynamic ticks design
notes,” linux kernel documentation, [Accessed 14-March-2019]. [Online]. Available:

https://www.kernel.org/doc/Documentation/timers/highres.txt

Paul McKenney, “A realtime preemption overview, August 2005, [Accessed 14-March-

2019]. [Online]. Available: https://lwn.net/Articles/146861/

S.-T. Dietrich and D. Walker, “The Evolution of Real-Time Linux,” in 7th RTL Work-
shop. Citeseer, 2005.

S. Rostedt and D. V. Hart, “Internals of the rt patch,” in Proceedings of the Linux sym-
posium, vol. 2, 2007, pp. 161-172.

http://linuxrealtime.org/index.php/Main_Page
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.txt
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.txt
https://www.kernel.org/doc/Documentation/locking/rt-mutex.txt
https://www.kernel.org/doc/Documentation/locking/rt-mutex.txt
https://www.kernel.org/doc/Documentation/pi-futex.txt
https://lwn.net/Articles/178253
https://www.kernel.org/doc/Documentation/timers/highres.txt
https://lwn.net/Articles/146861/

206

[74]

[78]

[79]

[80]

[83]

[84]

[85]

BIBLIOGRAPHY

C. Hallinan, Embedded Linux Primer: A Practical Real-World Approach. Pearson Edu-
cation India, 2011.

C. Simmonds, Mastering Embedded Linux Programming. Packt Publishing Ltd, 2017.

R. Love, Linux system programming: talking directly to the kernel and C library.”O’Reilly
Media, Inc”, 2013, pp. 177-210.

L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard real-time sys-
tems,” in Proceedings 19th IEEE Real-Time Systems Symposium (Cat. No.98CB36279),
Dec 1998, pp. 4-13.

L. Abeni, S. Superiore, and S. Anna, “Server mechanisms for multimedia applications,’

1998.

T. Cucinotta and E Checconi, “The IRMOS realtime scheduler,” August 2010, [Ac-
cessed 14-March-2019]. [Online]. Available: https://lwn.net/Articles/398470/

G. Lipari and S. Baruah, “Greedy reclamation of unused bandwidth in constant-
bandwidth servers,” in Real-Time Systems, 2000. Euromicro RTS 2000. 12th Euromicro
Conference on. IEEE, 2000, pp. 193-200.

L. Abeni, J. Lelli, C. Scordino, and L. Palopoli, “Greedy cpu reclaiming for sched_dead-
line,” in Proceedings of the Real-Time Linux Workshop (RTLWS), Dusseldorf, Germany,
2014.

L. Abeni, G. Lipari, A. Parri, and Y. Sun, “Multicore cpu reclaiming: parallel or se-
quential?” in Proceedings of the 31st Annual ACM Symposium on Applied Computing.
ACM, 2016, pp. 1877-1884.

Luca Abeni, “CPU reclaiming for SCHED_DEADLINE,” December 2016, [Accessed
14-March-2019]. [Online]. Available: https://lwn.net/Articles/710360/

Michael Kerrisk et all, SCHED(7), Linux man pages project, [Accessed 14-March-
2019]. [Online]. Available: http://man7.org/linux/man-pages/man7/sched.7.html

Wikipedia contributors, “SCHED DEADLINE,” 2019, [Accessed 14-March-
2019]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=SCHED_
DEADLINE&oldid=877700934e

https://lwn.net/Articles/398470/
https://lwn.net/Articles/710360/
http://man7.org/linux/man-pages/man7/sched.7.html
https://en.wikipedia.org/w/index.php?title=SCHED_DEADLINE&oldid=877700934e
https://en.wikipedia.org/w/index.php?title=SCHED_DEADLINE&oldid=877700934e

BIBLIOGRAPHY 207

(86]

[87]

(88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

Automotive Linux Wiki, “SCHED DEADLINE,” [Accessed 14-March-2019]. [Online].

Available: https://wiki.automotivelinux.org/sched_deadline

J. Lelli, C. Scordino, L. Abeni, and D. Faggioli, “Deadline scheduling in the linux ker-
nel,” Software: Practice and Experience, vol. 46, no. 6, 2016, pp. 821-839.

Jonathan Corbet, “Deadline scheduling for Linux,” October 2009, [Accessed 14-
March-2019]. [Online]. Available: https://lwn.net/Articles/356576/

Jonathan Corbet, “Deadline scheduling: coming soon?” December 2013, [Accessed

14-March-2019]. [Online]. Available: https://lwn.net/Articles/575497/

Jonathan Corbet, “Adding periods to SCHED_DEADLINE,” July 2010, [Accessed 14-
March-2019]. [Online]. Available: https://lwn.net/Articles/396634/

Linux Kernel Contributors, “Deadline Task Scheduling,” linux kernel documenta-

tion, [Accessed 14-March-2019]. [Online]. Available: https://www.kernel.org/doc/

Documentation/scheduler/sched-deadline.txt

Steven Rostedt, “Understanding SCHED_DEADLINE,” May 2017, [Accessed 14-
March-2019]. [Online]. Available: http://events17.linuxfoundation.org/sites/events/

files/slides/oss-tokyo-using-sched-deadline-2017.pdf

Michael Kerrisk et all, SCHED_SETATTR(2), Linux man pages project, [Accessed 14-
March-2019]. [Online]. Available: http://man7.org/linux/man-pages/man2/sched_

setattr.2.html

Wikipedia contributors, “XML-RPC,” 2019, [Accessed 3-January-2019]. [Online].
Available: https://en.wikipedia.org/w/index.php?title=XML-RPC&oldid=859831408

Wikipedia contributors, “Ethernet frame,” 2019, [Accessed 15-April-2019]. [On-
line]. Available: https://en.wikipedia.org/w/index.php?title=Ethernet_frame&oldid=
889578680

Wikipedia contributors, “Precision Time Protocol,” 2019, [Accessed 18-March-
2019]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Precision_
Time_Protocol&oldid=888012740

G. Cena, L. C. Bertolotti, S. Scanzio, A. Valenzano, and C. Zunino, “Evaluation of
EtherCAT distributed clock performance,” IEEE Transactions on Industrial Informatics,
vol. 8, no. 1, 2012, pp. 20-29.

https://wiki.automotivelinux.org/sched_deadline
https://lwn.net/Articles/356576/
https://lwn.net/Articles/575497/
https://lwn.net/Articles/396634/
https://www.kernel.org/doc/Documentation/scheduler/sched-deadline.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-deadline.txt
http://events17.linuxfoundation.org/sites/events/files/slides/oss-tokyo-using-sched-deadline-2017.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/oss-tokyo-using-sched-deadline-2017.pdf
http://man7.org/linux/man-pages/man2/sched_setattr.2.html
http://man7.org/linux/man-pages/man2/sched_setattr.2.html
https://en.wikipedia.org/w/index.php?title=XML-RPC&oldid=859831408
https://en.wikipedia.org/w/index.php?title=Ethernet_frame&oldid=889578680
https://en.wikipedia.org/w/index.php?title=Ethernet_frame&oldid=889578680
https://en.wikipedia.org/w/index.php?title=Precision_Time_Protocol&oldid=888012740
https://en.wikipedia.org/w/index.php?title=Precision_Time_Protocol&oldid=888012740

208

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

BIBLIOGRAPHY

——, “On the accuracy of the distributed clock mechanism in EtherCAT; in IEEE In-
ternational Workshop on Factory Communication Systems Proceedings. IEEE, 2010, pp.
43-52.

S.-M. Park, H. Kim, H.-W. Kim, C. N. Cho, and J.-Y. Choi, “Synchronization im-
provement of distributed clocks in EtherCAT networks,” IEEE Communications Let-

ters, vol. 21, no. 6, 2017, pp. 1277-1280.

G. Cena, S. Scanzio, A. Valenzano, and C. Zunino, “Performance analysis of switched
EtherCAT networks,” in IEEE 15th Conference on Emerging Technologies & Factory Au-
tomation (ETFA). IEEE, 2010, pp. 1-4.

M. Cereia, I. C. Bertolotti, and S. Scanzio, “Performance of a real-time EtherCAT mas-
ter under Linux,” IEEE Transactions on Industrial Informatics, vol. 7, no. 4, 2011, pp.

679-687.

Maruyama, Tatsuya and Yamada, Tsutomu, “Hardware acceleration architecture for
EtherCAT master controller;,” in 9th IEEE International Workshop on Factory Commu-
nication Systems. IEEE, 2012, pp. 223-232.

S. Scanzio, “SoftPLC-Based Control: A Comparison between Commercial and Open-
Source EtherCAT Technologies,” in Handbook of Research on Industrial Informatics and
Manufacturing Intelligence: Innovations and Solutions. IGI Global, 2012, pp. 440-463.

“Getting started with IgH EtherCAT Master for Linux,” Synapticon GmbH,
tutorial for installing IgH EtherCAT master. [Accessed 18-March-2019]. [On-
line]. Available: https://doc.synapticon.com/tutorials/getting_started_igh_ethercat_

master/installing_igh_ethercat_master

“Industrial communication networks - Fieldbus specifications - Part 4-12: Data-link
layer protocol specification - Type 12 elements,” International Electrotechnical Com-

mission, Geneva, CH, Standard, 8 2014.

“Industrial communication networks - Fieldbus specifications - Part 6-12: Application
layer protocol specification - Type 12 elements,” International Electrotechnical Com-

mission, Geneva, CH, Standard, 8 2014.

J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux Device Drivers: Where the Kernel
Meets the Hardware, 3rd ed. ” O’'Reilly Media, Inc.’, 2005.

https://doc.synapticon.com/tutorials/getting_started_igh_ethercat_master/installing_igh_ethercat_master
https://doc.synapticon.com/tutorials/getting_started_igh_ethercat_master/installing_igh_ethercat_master

BIBLIOGRAPHY 209

(108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

HOWTO setup Linux with PREEMPT RT properly, The Linux Foundation, 6 2017,
[Accessed 18-March-2019]. [Online]. Available: https://wiki.linuxfoundation.org/

realtime/documentation/howto/applications/preemptrt_setup

G. Bolanakis, “Design and Implementation of a Quadruped Robot Electronic System,’
Master’s thesis , School of Electrical and Computer Engineering in National Techni-
cal University of Athens, 9 2018. [Online]. Available: http://dspace.lib.ntua.gr/handle/
123456789/47768

Monitoring and Tuning the Linux Networking Stack: Receiving Data, packagecloud, 6
2016, [Accessed 18-March-2019]. [Online]. Available: https://blog.packagecloud.io/

eng/2016/06/22/monitoring-tuning-linux- networking-stack-receiving-data/

Monitoring and Tuning the Linux Networking Stack: Receiving Data Illus-
trated, packagecloud, 10 2016, [Accessed 18-March-2019]. [Online]. Available:
https://blog.packagecloud.io/eng/2016/10/11/monitoring-tuning-linux- networking-

stack-receiving-data-illustrated/

Monitoring and Tuning the Linux Networking Stack: Sending Data, packagecloud, 2
2017, [Accessed 18-March-2019]. [Online]. Available: https://blog.packagecloud.io/

eng/2017/02/06/monitoring-tuning-linux-networking-stack-sending-data/

Arnout Vandecappelle, kernel-flow, The Linux Foundation, 1 2018, [Accessed
19-March-2019]. [Online]. Available: https://wiki.linuxfoundation.org/networking/

kernel flow

Linus Torvalds, main Github repository of Linux Kernel source code. [Accessed 18-

March-2019]. [Online]. Available: https://github.com/torvalds/linux

C. Benvenuti, Understanding Linux Network Internals: Guided Tour to Networking on

Linux.” O'Reilly Media, Inc’, 2006.

K. Machairas and E. Papadopoulos, “An active compliance controller for quadruped
trotting,” in 24th Mediterranean Conference on Control and Automation (MED). IEEE,
2016, pp. 743-748.

“Linux Driver for Intel(R) Ethernet Network Connection,” Linux kernel documen-

tation, [Accessed 3-April-2019]. [Online]. Available: https://www.kernel.org/doc/

Documentation/networking/e1000e.txt

https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/preemptrt_setup
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/preemptrt_setup
http://dspace.lib.ntua.gr/handle/123456789/47768
http://dspace.lib.ntua.gr/handle/123456789/47768
https://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/
https://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/
https://blog.packagecloud.io/eng/2016/10/11/monitoring-tuning-linux-networking-stack-receiving-data-illustrated/
https://blog.packagecloud.io/eng/2016/10/11/monitoring-tuning-linux-networking-stack-receiving-data-illustrated/
https://blog.packagecloud.io/eng/2017/02/06/monitoring-tuning-linux-networking-stack-sending-data/
https://blog.packagecloud.io/eng/2017/02/06/monitoring-tuning-linux-networking-stack-sending-data/
https://wiki.linuxfoundation.org/networking/kernel_flow
https://wiki.linuxfoundation.org/networking/kernel_flow
https://github.com/torvalds/linux
https://www.kernel.org/doc/Documentation/networking/e1000e.txt
https://www.kernel.org/doc/Documentation/networking/e1000e.txt

210 BIBLIOGRAPHY

[118] C. S. V. Gutiérrez, L. U. S. Juan, I. Z. Ugarte, I. M. Goenaga, L. A. Kirschgens, and

V. M. Vilches, “Time synchronization in modular collaborative robots,” arXiv preprint

arXiv:1809.07295, 2018.

[119] C.S. V. Gutiérrez, L. U. S. Juan, I. Z. Ugarte, and V. M. Vilches, “Time-sensitive net-
working for robotics,” arXiv preprint arXiv:1804.07643, 2018.

[120] I. Zamalloa, I. Muguruza, A. Hernandez, R. Kojcev, and V. Mayoral, “An information
model for modular robots: the Hardware Robot Information Model (HRIM),” arXiv
preprint arXiv:1802.01459, 2018.

Appendices

211

1. APPENDIX A 213

1

1.1

Appendix A

Final script

The system is booted into the operating system with the PREEMPT_RT patch and with the

following boot parameters added: isolcpus=2,3 nohz_full=2,3 tsc=reliable. The

final script presented here, is applicable in a system with four physical CPUs and a x86 archi-

tecture. If this is not the case, changes to this script should be applied.

The final script developed for the aforementioned optimizations (some of them, not all), is

presented below:

1

= W N

O© 0 NN N G

10
11
12
13
14
15
16
17
18
19
20
21

22
23

#!/bin/bash

Create CPU isolation with cgroups (Probably already done with

isolcpus boot parameter)

#enable the creation of cpuset folder

mount -t tmpfs none /sys/fs/cgroup

#create the cpuset folder and mount the cgroup filesystem
mkdir /sys/fs/cgroup/cpuset/

mount -t cgroup -o cpuset none /sys/fs/cgroup/cpuset/
#create the partitions

mkdir /sys/fs/cgroup/cpuset/rt

mkdir /sys/fs/cgroup/cpuset/nrt

add the general purpose CPUs to the nRT set:
echo 0,1 > /sys/fs/cgroup/cpuset/nrt/cpuset.cpus

add the real-time CPUs to the RT set:

echo 2,3 > /sys/fs/cgroup/cpuset/rt/cpuset.cpus

make the CPUs in the RT set exclusive, i.e. do not let tasks in other
sets use them:

echo 1 > /sys/fs/cgroup/cpuset/rt/cpuset.cpu_exclusive

214

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48
49
50
51
52
53
54

55
56

Restart real-time CPUs with CPU hotplug

Restart is not needed, because the CPUs are isolated from boot.

Not NUMA-enabled configuration

Associate the nRT set with NUMA node ©:

echo © > /sys/fs/cgroup/cpuset/nrt/cpuset.mems

Associate the RT set with NUMA node ©0:

echo @ > /sys/fs/cgroup/cpuset/rt/cpuset.mems

Configure load balancing

Disable load balancing in the root cpuset. This is necessary for
settings in the child cpusets to take effect:
echo @ > /sys/fs/cgroup/cpuset/cpuset.sched load balance

Then disable load balancing in the RT cpuset:
echo @ > /sys/fs/cgroup/cpuset/rt/cpuset.sched load balance

Finally enable load balancing in the nRT cpuset:
echo 1 > /sys/fs/cgroup/cpuset/nrt/cpuset.sched_load_balance

Also kill the irq_balance process of Linux

pkill -9 irgbalance

Move general purpose tasks to the general GP partition

For each task in the root cpuset, run the following command, where
each pid of task should occur on its own line: echo pid of task >

/sys/fs/cgroup/cpuset/nrt/tasks

IFS=$'\r\n' GLOBIGNORE='*' command eval 'cpuset_pids=($(cat
/sys/fs/cgroup/cpuset/tasks))’

1. APPENDIX A 215

57
58
59
60
61
62
63
64

65

66
67
68
69
70

71
72

73
74
75
76
77
78
79
80

for i in "${cpuset pids[@]}";
do
echo $i; echo $i > /sys/fs/cgroup/cpuset/nrt/tasks;

done

Move IRQs to the general purpose CPUs

Some interrupts are not CPU-bound. Unwanted interrupts introduce
jitter and can have serious negative impact on real-time
performance. They should be handled on the general purpose CPUs
whenever possible. The affinity of these interrupts can be
controlled using the /proc file system.

First set the default affinity to CPU® or CPUl to make sure that new
interrupts ’wont be handled by the real-time CPUs. The set {CPUO,
CPU1} is represented as a bitmask set to 3, (20 + 21)..

echo 3 > /proc/irq/default_smp_affinity

Move IRQs to the nRT partition

echo 3 > /proc/irq/<irqgq>/smp_affinity

Interrupts that can not be moved will be printed to stderr. When it
is known what interrupts can not be moved, consult the hardware and
driver documentation to see if this will be an issue. It might be

possible to disable the device that causes the interrupt.

Typical interrupts that should and can be moved are: certain timer
interrupts, network related interrupts and serial interface
interrupts. If there are any interrupts that are part of the
real-time application, they should of course be configured to fire

in the real-time partition.

cd /proc/irq

irq_array=($(ls -d */ | cut -f1 -d'/"))

for i in "${irqg_array[@]}";

do

echo $i; echo 3 > /proc/irq/$i/smp_affinity;

done

216

81 ## Network queues affinity
82
83 # Linux can route the packets on different CPUs in an SMP system. Also
this handling can create timers on the specific CPUs, an example is
the ARP timer management, based on neigh_timer. There are a couple
of solutions that can be adopted to minimize the effect of rerouting
packets on different CPUs, like migrating all the timers on the
non-realtime partition if possible, specifying the affinity of
network queues on some architectures.

84
85 # If the application needs the packets to be received only in the nRT
or RT partition then the affinity should be set as follows:

86
87 # echo <NRT cpus mask> > /sys/class/net/<non EtherCAT
interface>/queues/<queue>/<x/r>ps_cpus

88 # echo <RT cpus mask> > /sys/class/net/<EtherCAT
interface>/queues/<queue>/<x/r>ps_cpus

89 echo 8 > /sys/class/net/enp5s@/queues/rx-0/rps_cpus
90 echo 8 > /sys/class/net/enp5s@/queues/tx-0/xps_cpus
91
92 echo 3 > /sys/class/net/enp6s@/queues/rx-0/rps_cpus
93 echo 3 > /sys/class/net/enp6s@/queues/tx-0/xps_cpus
94
95 ## Execute a task in the real-time partition
96
97 # Now it is possible to run a real-time task in the real-time partition:
98 # echo pid_of_task > /sys/fs/cgroup/cpusets/rt/tasks

99
100 # Since we have an RT partition with more than one CPU we might want to
choose a specific CPU to run on. Change the task affinity to only
include CPU3 in the real-time partition. This is done in the code,
so no need to be done externally.

101
102
103 ## Time Stamp Counter (tsc - x86 only)
104

105 # The time stamp counter is a per-CPU counter for producing time

1. APPENDIX A 217

stamps. Since the counters might drift a bit, Linux will
periodically check that they are synchronized. But this periodicity
means that the tick might appear despite using full dynamic ticks.
106
107 # By telling Linux that the counters are reliable, Linux will no longer
perform the periodic synchronization. The side effect of this is
that the counters may start to drift, something that can be visible
in trace logs for example.

108
109 # Here is an example of how to use it as a boot parameter:
110
111 # isolcpus=2,3 nohz_full=2,3 tsc=reliable
112
113
114 ## Delay vmstat timer
115
116 # It is used for collecting virtual memory statistics.The statistics
are updated at an interval specified as seconds in
/proc/sys/vm/stat_interval. The amount of jitter can be reduced by
writing a large value to this file. However, that will not solve the
issue with worst-case latency.

117
118 # Example (10000 seconds):

119 echo 10000 > /proc/sys/vm/stat_interval
120
121 # BDI writeback affinity
122
123 # It is possible to configure the affinity of the block device
writeback flusher threads. Since block I/O can have a serious
negative impact on real-time performance, it should be moved to the
general purpose partition. Disable NUMA affinity for the writeback
threads

124 echo @ > /sys/bus/workqueue/devices/writeback/numa

125
126 # Set the affinity to only include the general purpose CPUs (CPU@ and
CPU1).

127 echo 3 > /sys/bus/workqueue/devices/writeback/cpumask

218

128
129
130
131

132
133
134
135
136
137
138

139
140
141
142
143

144
145
146
147

Real-time throttling in partitioned system

Real-time throttling (RTT) is a kernel feature that limits the amount
of CPU time given to Linux tasks with real-time priority. If any
process that executes on an isolated CPU runs with real-time
priority, the CPU will get interrupts with the interval specified in
/proc/sys/kernel/sched_rt_period_us. If the system is configured
with CONFIG_NO_HZ_FULL and a real-time process executes on a
CONFIG_NO_HZ_FULL CPU, note that real-time throttling will cause the
kernel to schedule extra ticks. See Section 2.3, Real-Time
Throttling and Section 3.2.4, Optimize Real-Time Throttling for more

information.

Disable real-time throttling by the following command:

echo -1 > /proc/sys/kernel/sched_rt_runtime_us

Machine check - x86 only

The x86 architecture has a periodic check for corrected machine check
errors (MCE). The periodic machine check requires a timer that
causes unwanted jitter. The periodic check can be disabled. Note
that this might lead to that silently corrected MCEs goes unlogged.
Turn it off on the RT CPUs. For each CPU in the real-time partition,
do the following:

echo @ > /sys/devices/system/machinecheck/machinecheck2/check_interval

echo @ > /sys/devices/system/machinecheck/machinecheck3/check_interval

It has been observed that it is enough to disable this for CPU@ only;
it will then be disabled on all CPUs.

Disabling the NMI Watchdog - x86 only

Disable the debugging feature for catching hardware hangings and

cause a kernel panic. On some systems it can generate a lot of

interrupts, causing a noticeable increase in power usage:

1. APPENDIX A

148
149
150
151
152
153
154

155
156
157
158
159
160

161
162
163
164
165
166
167
168
169

echo @ > /proc/sys/kernel/nmi_watchdog

Increase flush time to disk

To make write-backs of dirty memory pages occur less often than the

default, you can do the following:

echo 1500 > /proc/sys/vm/dirty_writeback_centisecs

Disable tick maximum deferment

To have the full tickless configuration, this patch should be

included. This allows the tick interval to be maximized by setting

sched_tick_max_deferment variable in the /proc filesystem. To

disable the maximum deferment, it should be set to -1.

echo -1 > /sys/kernel/debug/sched tick max_deferment

Disable Memory Overcommit

echo 2 > /proc/sys/vm/overcommit_memory

Pending

Change the real-time priority of: EtherCAT IRQs, ksoftirqd thread
for CPU3.

219

Listing 1: The final script for performing extra real-time optimizations.

	Περίληψη
	Abstract
	Αντί Προλόγου
	List of figures
	List of tables
	List of code blocks
	List of Acronyms
	Εκτενής Ελληνική Περίληψη
	Εισαγωγή
	Σκοπός & Κίνητρο
	Υπάρχουσες Προσεγγίσεις

	Υπόβαθρο
	Συστήματα Πραγματικού Χρόνου
	GNU / Linux και Πραγματικός Χρόνος
	Λειτουργικό Σύστημα για Ρομπότ (ROS)
	Το πρωτόκολλο EtherCAT
	Ο EtherLab Master

	Σχεδιασμός & Υλοποίηση
	Συνιστώσα Λογισμικού

	Πειραματική Αξιολόγηση
	Αποτελέσματα

	Επίλογος
	Συμπεράσματα
	Μελλοντικές Δυνατότητες

	Introduction
	Problem Statement
	Literature Review
	Legged Robots Overview
	Fieldbus Systems Overview
	EtherCAT Robotic Applications Overview
	Real-time Systems Overview
	Real-Time Operating Systems Overview
	ROS 2 Overview
	History of ROS
	New Use Cases

	Benefits
	Thesis Structure

	Background in Real-Time & ROS
	Real-time Systems Concepts
	General Concepts

	Real-time Task Scheduling
	Real-time GNU/Linux
	The PREEMPT_RT Patch
	Interrupts As Threads
	Priority Inheritance
	High-Resolution Timers

	Real-time Scheduling in GNU/Linux
	The first in, first out policy
	The round-robin policy
	The deadline policy
	The normal policy
	The batch policy
	The idle policy

	Robot Operating System (ROS)
	Components of ROS
	Basic ROS Terminology
	Message Communication in ROS
	Topic
	Service
	Action

	Background in EtherCAT
	EtherCAT Technology
	EtherCAT characteristics
	Physical Layer
	Data Link Layer
	Frame Format
	EtherCAT datagram Format
	SyncManager

	Application Layer (AL)
	Application Protocols

	Distributed Clocks
	Propagation Delay Measurement
	Offset Compensation
	Drift Compensation

	Synchronization in the Slaves
	Free Run Mode
	SM Synchronous Mode
	dc Synchronous Mode
	SYNC Shift Times

	Synchronization in the Master
	Cyclic Mode
	dc Mode

	EtherCAT Masters
	EtherCAT Masters Overview
	Control Loop
	Commercial versus Open-Source implementations
	Comparison of EtherCAT Masters in GNU/Linux

	The IgH EtherCAT Master for GNU/Linux (EtherLab)
	Features
	Architecture
	Application Interface
	Ethernet Devices
	User-space Interfaces

	Requirements Analysis & Technical Specifications
	Requirements Analysis
	Laelaps II
	User Categories
	Functional Requirements
	Non-functional Requirements

	Technical Specifications
	Design Choices
	System Architecture
	The Operator Interface
	Project's software component
	Other ROS nodes
	EtherLab
	Linux Network Stack
	Cyclic loop exchange
	EtherCAT Slave Network
	Electrical & Actuation systems

	Application Programming Interface

	Implementation
	Software Implementation
	Installation Process
	The Preempt_RT Patch
	Step 0 - Making a working directory
	Step 1 - Downloading the Linux kernel and the patch
	Step 2 - Unzipping the kernel
	Step 3 - Patching the kernel
	Step 4 - Enabling Real-time attributes
	Step 5 - Compiling the kernel
	Step 6 - Making modules & installing
	Step 7 - Verifying and updating
	Step 8 - Rebooting

	EtherLab

	Configuration & Optimization
	Isolating the Application
	Full Dynamic Ticks
	Optimizing the Partitioned System
	Optimizing Power Saving
	Disabling power management
	Optimizing Real-Time Throttling
	Time Stamp Counter (tsc timer - x86 only)
	Delay vmstat timer
	Machine check - x86 only
	Disabling the watchdog timer
	Disabling the NMI Watchdog - x86 only
	Memory Overcommit

	Experimental Evaluation
	Tools, Methodology & Environment
	Building the application
	Starting the EtherLab module
	Slaves Initialization
	Launching the application
	Monitoring
	Ring Buffer
	rqt

	Experiments & Results
	Experiments
	Trotting Experiment
	Frequency Experiment

	Results
	Trotting Experiment Results
	Frequency Experiment Results

	Conclusions & Future Work
	Concluding Remarks
	Future Work

	Bibliography
	Appendices
	Appendix A
	Final script

