
ΕΘΝΙΚΟΜΕΤΣΟΒΙΟΠΟΛΥΤΕΧΝΕΙΟ
ΣΧΟΛΗΗΛΕΚΤΡΟΛΟΓΩΝΜΗΧΑΝΙΚΩΝ

ΚΑΙΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΤΟΜΕΑΣ ΣΗΜΑΤΩΝ ΕΛΕΓΧΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ

Προγραμματισμός πραγματικού χρόνου τετράποδου ρομπότ σε
δίκτυο EtherCAT μέσω ROS

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Μιχαήλ Α. Καραμουσαδάκης

Επιβλέπων Καθηγητής: Κωνσταντίνος Τζαφέστας
Αν. Καθηγητής ΕΜΠ

Συνεπιβλέπων Καθηγητής: Ευάγγελος Παπαδόπουλος
Καθηγητής ΕΜΠ

Εργαστήριο Αυτομάτου Ελέγχου ΜΜ-ΕΠ
Αθήνα, Ιούλιος 2019

ΕΘΝΙΚΟΜΕΤΣΟΒΙΟΠΟΛΥΤΕΧΝΕΙΟ
ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΣΗΜΑΤΩΝ ΕΛΕΓΧΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ

Προγραμματισμός πραγματικού χρόνου τετράποδου ρομπότ σε
δίκτυο EtherCAT μέσω ROS

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Μιχαήλ Α. Καραμουσαδάκης

Επιβλέπων Καθηγητής: Κωνσταντίνος Τζαφέστας
Αν. Καθηγητής ΕΜΠ

Συνεπιβλέπων Καθηγητής: Ευάγγελος Παπαδόπουλος
Καθηγητής ΕΜΠ

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 11η Ιουλίου 2019.

.
Κωνσταντίνος Τζαφέστας
Αν. Καθηγητής ΕΜΠ

.
Δημήτριος Σούντρης
Καθηγητής ΕΜΠ

.
Ευάγγελος Παπαδόπουλος
Καθηγητής ΕΜΠ

Εργαστήριο Αυτομάτου Ελέγχου ΜΜ-ΕΠ
Αθήνα, Ιούλιος 2019

National Technical University of Athens
School of Electrical and Computer Engineering

Division of Signals, Control and Robotics

Real-time programming of EtherCATmaster in ROS for a
quadruped robot

DIPLOMA THESIS

Michail A. Karamousadakis

Control Systems Lab - EP
Athens, July 2019

.

Μιχαήλ Α. Καραμουσαδάκης
Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών ΕΜΠ

Copyright © Μιχαήλ Α. Καραμουσαδάκης, 2019
Με επιφύλαξη παντός δικαιώματος. All rights reserved.
Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή τμή-
ματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη
κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προ-
έλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για
κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα και
δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου Πολυτε-
χνείου.

iii

Περίληψη
Η πρόοδος σε τεχνολογίες fieldbus, σε συστήματα πραγματικού χρόνου και προγραμματι-

στικά πλαίσια ρομποτικής, υπόσχονται ριζικό μετασχηματισμό των πεδίων της βιομηχανικής

αυτοματοποίησης και της ρομποτικής. Δεδομένου ότι οι διεργασίες στη βιομηχανική ρο-

μποτική υπόκεινται συνήθως χρονικούς περιορισμούς, η χρήση συστημάτων πραγματικού

χρόνου προσπαθεί να αξιοποιήσει την απόδοση και την ασφάλεια σε αυτά τα πολύ απαιτη-

τικά και κρίσιμα για την ασφάλεια περιβάλλοντα. Στις τεχνολογίες fieldbus, το πρωτόκολλο

EtherCAT ξεχωρίζει για τα πολυάριθμα πλεονεκτήματα που προσφέρει για hard και soft συ-

στήματα πραγματικού χρόνου, μεταξύ των οποίων είναι οι σύντομοι χρόνοι ενημέρωσης δε-

δομένων, η χαμηλή μεταβλητότητα στην ποιότητα της επικοινωνίας και μειωμένο κόστος

εξοπλισμού. Μεταξύ των ρομποτικών πλαισίων, το λειτουργικό σύστημα για ρομπότ (ROS)

ξεχωρίζει για την επεκτασιμότητα του, την ευκολία εκμάθησης του και τη δημοτικότητα του

στην κοινότητα ρομποτικής. Αυτή η διπλωματική εργασία στοχεύει στο σχεδιασμό και την

ανάπτυξη μιας εφαρμογής λογισμικού, η οποία εξασφαλίζει συγχρονισμένη κίνηση των πο-

διών ενός τετράποδου ρομπότ που ονομάζεται Laelaps II, που δημιουργήθηκε και αναπτύ-

χθηκε στο εργαστήριο CSL-EP στο Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ). Συγκεκριμένα,

οι κύριοι στόχοι του έργου είναι: (α) Δημιουργία ενός λειτουργικού συστήματος πραγματι-

κού χρόνου (RTOS) που βασίζεται στο GNU / Linux, με στόχο την ικανοποίηση των σκλη-

ρών περιορισμών πραγματικού χρόνου που επιβάλλει η συγχρονισμένη κίνηση του Laelaps

II. (β) Χρήση ενός EtherCAT Master που ονομάζεται EtherLab στo προαναφερθέν RTOS,

για τον έλεγχο του δικτύου που αποτελείται από EtherCAT slaves, που είναι τοποθετημένοι

σε κάθε πόδι του ρομπότ και τα ελέγχουν. (γ) Ανάπτυξη μιας Διεπαφής Προγραμματισμού

Εφαρμογών ROS (API) για τη διευκόλυνση της επέκτασης και της διαλειτουργικότητας με

λογισμικό στο ROS περιβάλλον. Η υλοποίηση του έργου, μέσω του συνδυασμού αυτών των

στόχων, αξιολογήθηκε με δοκιμή της ικανότητας βάδισης του Laelaps II. Τα αποτελέσματα

δείχνουν ότι τα πειράματα βάδισης ήταν επιτυχημένα και το συνολικό έργο θα μπορούσε

να ικανοποιήσει τις απαιτήσεις για ένα βιομηχανικό τετράποδο ρομπότ όπως το Laelaps II.

Τέλος, προτείνονται προτάσεις για βελτιώσεις όσον αφορά την προσέγγιση του σχεδίου και

κατευθύνσεις για περαιτέρω διερεύνηση του θέματος.

Λέξεις-Κλειδιά

Συστήματα πραγματικού χρόνου, ρομποτική, τετράποδα ρομπότ, χρονοδρομολόγηση πραγ-

ματικού χρόνου, GNU/Linux, PREEMPT-RT επέκταση, ROS, EtherCAT, EtherLab.

iv

Abstract
Advances in fieldbus technologies, real-time systems and robotics frameworks hold a promise

for radical transformation of the industrial automation and robotics fields. Since industrial

robotics usually are subject to timing constraints, utilization of real-time systems attempts

to leverage performance and safety in these highly demanding and “safety-critical” environ-

ments. In fieldbus technologies, the EtherCAT protocol stands out for it’s numerous benefits

for hard and soft real-time systems, including short data update times, low communication

jitter and reduced hardware costs. Among robotics frameworks, the Robot Operating System

(ROS) stands out for it’s high customization, extendability, modularity, ease of learning and

popularity in the robotics community. The project in the context of this thesis aims to de-

sign and develop a software application, which will ensure synchronized motion of the legs

of a quadruped robot called Laelaps II, created and developed at the CSL-EP lab, at the Na-

tional Technical University of Athens (NTUA). Specifically, the main objectives of the project

are: (i) Creation of a Real-Time Operating System (RTOS), with modification and configu-

ration of an Operating System (OS) based on GNU/Linux, aiming to meet the hard real-time

constraints which Laelaps II synchronized motion imposes. (ii) Utilization of an EtherCAT

master called EtherLab, in the aforementioned RTOS, for controlling the network consisting

of EtherCAT slaves, which are placed at each leg of the robot and control them; (iii) De-

velopment of a ROS Application Programming Interface (API) for facilitating extendability,

usability, maintainability and inter-operability with software (to be) written in the ROS en-

vironment. The implementation of the project, through the combination of these objectives,

was evaluated by testing the trotting ability of Laelaps II. The results show that the trotting

experiments were succesfull and that the overall project can meet the requirements for an

industrial quadruped robot like Laelaps II. Finally, suggestions for improvements regarding

the project’s approach and directions for further investigation on this topic are proposed.

Keywords

Real-time systems, robotics, quadruped, laelaps, real-time scheduling, software, GNU/Linux,

Linux kernel, PREEMPT-RT patch, ROS, EtherCAT, EtherLab, real-time.

Στην Φλώρα και στην Ειρήνη

vi

Αντί Προλόγου

Στο σημείο αυτό θα ήθελα να εκφράσω την ευγνωμοσύνη μου προς τους ανθρώπους που

συνέδραμαν στην ολοκλήρωση αυτής της διπλωματικής εργασίας, αλλά και στην ευρύτερη

ακαδημαϊκή μου πορεία. Αρχικά, χρωστώ την μεγάλη μου ευγνωμοσύνη προς τον πανάγαθο

Θεό, που «συνεργεί εις παν έργον αγαθόν». Έπειτα, θα ήθελα να ευχαριστήσω τον καθη-

γητή κ. Ευάγγελο Παπαδόπουλο, για την αμέριστη συμπαράσταση και κατανόηση σε όλη

την πορεία εκπόνησης της διπλωματικής μου. Ακόμη, θέλω να ευχαριστήσω τους υποψή-

φιους διδάκτορες Κώστα Μαχαιρά, Θανάση Μαστρογεωργίου και Κώστα Κουτσούκη που

υπομονετικά με βοήθησαν στο θεωρητικό και πειραματικό μέρος της διπλωματικής. Επίσης,

ευχαριστώ θερμά τον διδάκτορα κ. Βαγγέλη Κούκη που με ενέπνευσε και με καθοδήγησε να

ασχοληθώ με το σημείο τομής του τομέα των Υπολογιστικών Συστημάτων με τον τομέα της

Ρομποτικής. Στάθηκε αρωγός κάθε στιγμή εκπόνησης της διπλωματικής και έδωσε πολύτι-

μες και καίριες συμβουλές για την ολοκλήρωση του πειραματικού μέρους, και για αυτό το

λόγο έχει την ευγνωμοσύνη μου. Επιπλέον, ευχαριστώ από καρδιάς την οικογένειά μου και

τους αγαπημένους μου φίλους για τη στήριξη, την κατανόηση και την ανεκτίμητη συντροφιά

τους. Τέλος, θέλω να εκφράσω την ευγνωμοσύνη μου προς όσες και όσους υποστηρίζουν

έμπρακτα την ελεύθερη και δωρεάν διακίνηση της γνώσης, αναφέροντας χαρακτηριστικά

τους προγραμματιστές ελεύθερου λογισμικού.

Μιχαήλ Καραμουσαδάκης

Απρίλιος 2019

vii

viii

Contents

Περίληψη iii

Abstract iv

Αντί Προλόγου vii

List of figures xiii

List of tables xviii

List of code blocks xix

List of Acronyms xxiii

Εκτενής Ελληνική Περίληψη 1

Εισαγωγή . 1

Σκοπός & Κίνητρο . 1

Υπάρχουσες Προσεγγίσεις . 2

Υπόβαθρο . 4

Συστήματα Πραγματικού Χρόνου . 4

GNU / Linux και Πραγματικός Χρόνος . 4

Λειτουργικό Σύστημα για Ρομπότ (ROS) . 6

Το πρωτόκολλο EtherCAT . 6

Ο EtherLab Master . 7

Σχεδιασμός & Υλοποίηση . 9

Συνιστώσα Λογισμικού . 9

ix

x

Πειραματική Αξιολόγηση . 12

Αποτελέσματα . 12

Επίλογος . 19

Συμπεράσματα . 19

Μελλοντικές Δυνατότητες . 20

1 Introduction 23

1.1 Problem Statement . 23

1.2 Literature Review . 24

1.2.1 Legged Robots Overview . 24

1.2.2 Fieldbus Systems Overview . 25

1.2.3 EtherCAT Robotic Applications Overview 29

1.2.4 Real-time Systems Overview . 30

1.2.5 Real-Time Operating Systems Overview 31

1.2.6 ROS 2 Overview . 34

1.3 Benefits . 36

1.4 Thesis Structure . 37

2 Background in Real-Time & ROS 39

2.1 Real-time Systems Concepts . 39

2.1.1 General Concepts . 39

2.2 Real-time Task Scheduling . 41

2.3 Real-time GNU/Linux . 45

2.3.1 The PREEMPT_RT Patch . 46

2.4 Real-time Scheduling in GNU/Linux . 55

2.4.1 The first in, first out policy . 56

2.4.2 The round-robin policy . 57

2.4.3 The deadline policy . 57

2.4.4 The normal policy . 59

2.4.5 The batch policy . 59

2.4.6 The idle policy . 59

2.5 Robot Operating System (ROS) . 60

2.5.1 Components of ROS . 60

2.5.2 Basic ROS Terminology . 61

2.5.3 Message Communication in ROS . 65

xi

3 Background in EtherCAT 71

3.1 EtherCAT Technology . 71

3.1.1 EtherCAT characteristics . 71

3.1.2 Physical Layer . 72

3.1.3 Data Link Layer . 73

3.1.4 Application Layer (AL) . 77

3.1.5 Distributed Clocks . 79

3.1.6 Synchronization in the Slaves . 81

3.1.7 Synchronization in the Master . 87

3.2 EtherCAT Masters . 89

3.2.1 EtherCAT Masters Overview . 89

3.2.2 The IgH EtherCAT Master for GNU/Linux (EtherLab) 95

4 Requirements Analysis & Technical Specifications 105

4.1 Requirements Analysis . 105

4.1.1 Laelaps II . 105

4.1.2 User Categories . 106

4.1.3 Functional Requirements . 107

4.1.4 Non-functional Requirements . 107

4.2 Technical Specifications . 108

4.2.1 Design Choices . 108

4.2.2 System Architecture . 110

4.2.3 Application Programming Interface 134

5 Implementation 139

5.1 Software Implementation . 139

5.2 Installation Process . 160

5.2.1 The Preempt_RT Patch . 160

5.2.2 EtherLab . 165

5.3 Configuration & Optimization . 168

5.3.1 Isolating the Application . 168

5.3.2 Full Dynamic Ticks . 170

5.3.3 Optimizing the Partitioned System 171

xii

6 Experimental Evaluation 175

6.1 Tools, Methodology & Environment . 175

6.1.1 Building the application . 176

6.1.2 Starting the EtherLab module . 177

6.1.3 Slaves Initialization . 178

6.1.4 Launching the application . 180

6.1.5 Monitoring . 181

6.2 Experiments & Results . 181

6.2.1 Experiments . 182

6.2.2 Results . 185

7 Conclusions & Future Work 195

7.1 Concluding Remarks . 195

7.2 Future Work . 196

Bibliography 199

Appendices 211

1 Appendix A . 213

1.1 Final script . 213

List of figures

1 Ρομπότ με πόδια της Boston Dynamics: (a) Handle, (b) SpotMini, (c) Atlas

και (d) BigDog. 3

2 Ρομπόταιχμής με πόδια, που βρίσκονται σε ερευνητικά ιδρύματα: (a)ANYmal,

(b) Hermes, (c) Cheetah και (d) Inu. 3

3 Μία τυπική EtherCAT τοπολογία, με την “on-the-fly” επεξεργασία πλαισίων

(frames) EtherCAT [1, Κεφάλαιο 38]. 7

4 Συνολική Αρχιτεκτονική του EtherLab[2]. 8

5 Συνολική Αρχιτεκτονική του Συστήματος. 9

6 Εσωτερική Aρχιτεκτονική της Μονάδας Λογισμικού. 10

7 Επιθυμητή ελλειπτική τροχιά όλων των άκρων των ποδιών (κόκκινο) μαζί με

την πραγματική τους απόκριση (μαύρα) σε σχέση με τα συστήματα αναφο-

ράς που βρίσκονται στις αρθρώσεις ισχίων των ποδιών. 13

8 Επιθυμητή απόκριση των γωνιών των γονάτων (κόκκινο) και πραγματική

απόκριση των αρθρώσεων των γονάτων (μαύρο). 14

9 Επιθυμητή απόκριση των γωνιών των ισχίων (κόκκινο) και πραγματική από-

κριση των αρθρώσεων των ισχίων (μαύρο). 15

xiii

xiv LIST OF FIGURES

10 Εντολές PWMτου κινητήρα γονάτου κάθε ποδιού (μαύρο) και τα αντίστοιχα

προκαθορισμένα όρια PWM (κόκκινο). 16

11 Εντολές PWM του κινητήρα ισχίου κάθε ποδιού (μαύρο) και τα αντίστοιχα

προκαθορισμένα όρια PWM (κόκκινο). 17

12 Εκτίμηση ταχύτητας της άρθρωσης γονάτου κάθε ποδιού (μαύρο) και τα

αντίστοιχα προκαθορισμένα όρια ταχύτητας του κινητήρα (κόκκινο). 18

13 Εκτίμηση ταχύτητας της άρθρωσης ισχίου κάθε ποδιού (μαύρο) και τα αντί-

στοιχα προκαθορισμένα όρια ταχύτητας του κινητήρα (κόκκινο). 19

1.1 BostonDynamics legged robots: (a)Handle, (b) SpotMini, (c)Atlas, (d)BigDog. 25

1.2 State of the Art legged robots: (a) ANYmal, (b) Hermes, (c) Cheetah and (d)

Inu. 26

1.3 (a)KRC4 Controller with robotic arm by KUKA and (b)MiniBOT Robot by

NexCom. 29

1.4 Shadow Dexterous Hand by Shadow Rob Company 30

1.5 (a) Talos biped robot by PAL Robotics, (b) HyQ2Max quadruped robot by

IIT and (c) ANYmal robot from ETH. 30

2.1 Spectrum of real-time systems. 40

2.2 A task model [3]. 42

2.3 Priority order of execution in ksoftirqd thread [4]. 48

2.4 Interrupt inversion [5]. 49

2.5 Threaded interrupt handling [5]. 50

2.6 Two paths by which softirqs run [4]. 51

2.7 A priority inversion example [6]. 52

2.8 A priority inheritance example [6]. 53

LIST OF FIGURES xv

2.9 The usual taskmodel of a real-time task definedwith the Linux deadline-class

parameters. 58

2.10 The ROS Meta-Operating System [7]. 61

2.11 ROS Components [7]. 62

2.12 Message Communication between Nodes [7]. 65

2.13 Topic Message Communication [7]. 66

2.14 Service Message Communication [7]. 67

2.15 Action Message Communication [7]. 68

2.16 Message Communication [7]. 69

3.1 EtherCAT typical topology, with the on-the-fly frame processing [1, Chap-

ter 38]. 72

3.2 EtherCAT Frame Structure [8]. 74

3.3 EtherCAT datagram structure [9]. 75

3.4 EtherCAT Slave State Machine [8]. 78

3.5 Offset measurement in the DC mechanism [10]. 81

3.6 Concept of the TCL algorithm [11]. 81

3.7 EtherCAT Application Level [12]. 82

3.8 EtherCAT process data exchange [12]. 82

3.9 Time between Master and Slave Application [12]. 82

3.10 Slave in Free Run mode [12]. 83

3.11 EtherCAT network in Free Run mode [13]. 84

3.12 Slave in SM Synchronous mode [12]. 84

3.13 EtherCAT network in SM Synchronous mode [13]. 85

xvi LIST OF FIGURES

3.14 Slave in DC Synchronous mode [12]. 85

3.15 EtherCAT network in DC Synchronous mode [13]. 86

3.16 EtherCAT shift time [14]. 87

3.17 Acceptable vs wrong shift times [14]. 88

3.18 Master synchronized to DC Base [15]. 89

3.19 Pseudo-code of a typical EM control loop [16, Chapter 18]. 90

3.20 EtherCAT control loop timing diagram [16, Chapter 18]. 90

3.21 EtherLab Master Architecture [2]. 96

3.22 Multiple masters in one module [2]. 97

3.23 Master phases and transitions [2]. 97

3.24 Field Memory Management Unit (FMMU) Configuration [2]. 99

3.25 Master Configuration [2]. 100

4.1 Laelaps II. 106

4.2 Overall System Architecture. 111

4.3 A Use-Case Diagram for the Operator. 112

4.4 Internal architecture of the software project. 113

4.5 Synchronization scheme followed in the software project. 115

4.6 Sending Path anatomy. 118

4.7 Receiving Path anatomy. 120

4.8 Actual and virtual links of Laelaps II legs [17]. 123

4.9 The leg’s model [17]. 123

4.10 The leg’s workspace [17]. 124

LIST OF FIGURES xvii

4.11 Different positions along the semi-elliptical trajectory [17]. 125

4.12 EtherCAT Process Data handling in the slaves [17]. 129

4.13 EtherCAT slave software architecture [17]. 129

4.14 The EtherCAT slave MCU [17]. 130

4.15 The EtherCAT slave ESC [17]. 130

4.16 EtherCAT Control Tower Assembly [17]. 131

4.17 EtherCAT Control Tower Assembly on Laelaps II [17]. 132

4.18 Electrical System of Laelaps II [17]. 133

5.1 The PREEMPT_RT kernel configuration option using menuconfig. 162

6.1 The PC/104 computer. 176

6.2 Reset button to initialize legs’ pose [17]. 178

6.3 Laelaps II on treadmill ready to perform experiments [17]. 179

6.4 Laelaps’ State Machine [17]. 179

6.5 Desired elliptical trajectory of all legs toe (red) along with their actual re-

sponse (black) w.r.t coordinate systems located in the hip joints of the legs. . . 186

6.6 Desired response of knee angles (red) and actual response of knee joint (black).187

6.7 Desired response of hip angles (red) and actual response of hip joint (black). . 188

6.8 PWM commands of each leg’s knee motor (black) and the respective prede-

fined PWM limits (red). 189

6.9 PWM commands of each leg’s hip motor (black) and the respective prede-

fined PWM limits (red). 190

6.10 Velocity estimation of each leg’s knee joint (black) and the respective prede-

fined motor speed limits (red). 191

xviii LIST OF FIGURES

6.11 Velocity estimation of each leg’s hip joint (black) and the respective prede-

fined motor speed limits (red). 192

List of tables

2.1 Hard real-time versus soft real-time systems [18]. 40

2.2 Comparison of the Topic, Server, and Action [7]. 65

3.1 Commercial versus Open-Source EMs [16, Chapter 18]. 92

3.2 EtherLab versus SOEM. 93

3.3 Application Interface Timing Comparison [2]. 103

4.1 EtherCAT Laelaps II Motion Control Output variables. 126

4.2 EtherCAT Laelaps II Motion Control Input variables. 127

4.3 ROS API of the software project. 134

6.1 Trotting Experiment parameters. 183

6.2 Parameters independent of EtherCAT application. 184

6.3 Parameters independent of EtherCAT application. 184

6.4 Configurations tested. 185

6.5 Frequency Experiment Results. 193

xix

xx

List of code blocks

5.1 The call to mlockall(). 140

5.2 The EthercatSlave class definition. 142

5.3 The ecrt_slave_config_dc() function declaration. 142

5.4 The EthercatCommunicator class definition. 143

5.5 The EthercatCommunicator::initmethod. 146

5.6 The EthercatCommunicator::startmethod. 147

5.7 The EthercatCommunicator::runmethod. 148

5.8 The EthercatCommunicator::publish_raw_datamethod. 153

5.9 The PDOOutListener class definition. 155

5.10 The PDOInPublisher class definition. 156

5.11 The PDOInPublisher::pdo_raw_callbackmethod. 157

5.12 The utilities::copy_process_data_buffer_to_buf function. 159

5.13 Command for unzipping the kernel compressed archive. 161

5.14 Commands for patching the kernel. 161

5.15 The configuration options for building the kernel with PREEMPT_RT patch. 162

xxi

xxii LIST OF TABLES

5.16 Steps for building the kernel with the PREEMPT_RT patch. 163

5.17 The install_etherlab_patched.sh script. 165

5.18 The Makefile for building EtherLab. 166

6.1 The change_permissions_ether_ros.sh script. 176

6.2 The reinstall_e1000e_wo_throttling.sh script. 177

6.3 The make_rt_task_ether_ros.sh script. 180

1 The final script for performing extra real-time optimizations. 213

List of Acronyms

API Application Programming Interface. iii, iv, xix, 5, 9–11, 20, 46, 93,

95, 102, 103, 105, 107, 109–111, 113, 114, 116, 117, 119, 121, 134,

140, 142, 143, 196

CLI Command Line Interface. 9, 11, 110, 111, 113, 114, 180

DC Distributed Clocks. xvi, 79–81, 83–89, 130, 138, 143, 145, 146,

148, 152

DMA Direct Memory Access. 118, 119, 121

ESC EtherCAT Slave Controller. xvii, 72, 76, 79, 80, 86, 128–131

FMMU Field Memory Management Unit. xvi, 77, 98, 99

FOSS Free and Open Source Software. 32, 36

IRQ Interrupt Request. 21, 49, 120, 121, 178, 197

ISR Interrupt Service Routine. 47–49, 86, 178

MCU Micro Controller Unit. xvii, 1, 24, 128–131, 196

MII Media Independent Inter face. 87

NIC Network Interface Controller. 96, 101, 118, 119, 121, 122, 177

xxiii

xxiv List of Acronyms

NMI Non-maskable Interrupt. 174

PDI Process Data Image. 98, 99, 128

PDOs Process Data Objects. 10–12, 77, 98, 102, 111–116, 128, 138, 143,

145, 147, 148, 152, 154–156, 158, 160, 194

RTOS Real-Time Operating System. iii, iv, 5, 31–33, 36, 41, 45, 46, 91,

94

SDO Service Data Object. 98, 102

SPI Serial Peripheral Interface. 128, 130

ΕΛ/ΛΑΚ Ελεύθερο Λογισμικό/Λογισμικό Ανοιχτού Κώδικα. 2

Εισαγωγή

Σκοπός & Κίνητρο

Απαιτήσεις για τετράποδα ρομπότ όπως η υψηλή ταχύτητα, η μεγάλη επιτάχυνση και η ικα-

νότητα να κάνουν κλειστές στροφές, επιβάλλουν σκληρούς περιορισμούς πραγματικού χρό-

νου στις μονάδες επεξεργασίας τους. Με ένα σύστημα κατανεμημένου ελέγχου, η χρήση

του EtherCAT για το σχεδιασμό ενός σκληρού συστήματος πραγματικού χρόνου που απο-

τελείται από δικτυωμένες μονάδες επεξεργασίας αποτελεί μια ικανοποιητική επιλογή, αν

και προκύπτει η ανάγκη προγραμματισμού σε πραγματικό χρόνο των κόμβων επικοινωνίας

(master / slaves). Συνήθως, οι EtherCAT slaves (μονάδες επεξεργασίας για τον έλεγχο των

ποδιών ή Μονάδες Μικροελεγκτή (MCU)) σε αυτό το είδος της διαμόρφωσης, έχουν ένα

πολύ συγκεκριμένο καθήκον (έλεγχο των ποδιών) και αποτελούνται από, ειδικά σχεδιασμέ-

νους σύμφωνα με το εγχειρίδιο χρήσης του κατασκευαστή και ολοκληρωμένους στο υλι-

σμικό EtherCAT Slave Controllers, επομένως δεν υπάρχει ανάγκη για επιπλέον εργασία σε

ότι αφορά το θέμα του πραγματικού χρόνου. Ωστόσο, ο EtherCAT master μπορεί να υλοποι-

ηθεί ως λύση λογισμικού, οπότε μια ανάγκη εμφανίζεται σε αυτή την περίπτωση για μια λύση

πραγματικού χρόνου. Έτσι, ο πρωταρχικός στόχος αυτής της διπλωματικής είναι η σχεδίαση

και η υλοποίηση μιας εφαρμογής που να χρησιμοποιεί έναν EtherCAT master πραγματικού

χρόνου στο ROS σε GNU / Linux.

Ορισμένα από τα πλεονεκτήματα στην προσέγγιση αυτής της διπλωματικής είναι τα εξής:

• Χρήση του EtherCAT: Ως πρωτόκολλο επικοινωνίας δικτύου σε πραγματικό χρόνο,

το EtherCAT διαθέτει μια μεγάλη κοινότητα χρηστών. Τα τελευταία χρόνια, έχει γίνει

δημοφιλές στη ρομποτική κοινότητα και στα εργαστήρια ρομποτικής λόγω των πλεο-

νεκτημάτων του.

• Ενσωμάτωση στο ROS: Στη ρομποτική, το λειτουργικό σύστημα για ρομπότ (ROS)

αποτελεί ένα καθιερωμένο πλαίσιο. Το λογισμικό που ενσωματώνεται σε αυτό, έχει

σημαντικά οφέλη, όπως έτοιμες βιβλιοθήκες, ταχεία πρωτοτυποποίηση, επεκτασιμό-

τητα, δομοστοιχειωτό σχεδιασμό, τυποποίηση και υποστήριξη από την κοινότητα.

• Λογισμικό στο GNU / Linux: Δεν υπάρχουν πολλά να πούμε για τα πλεονεκτήματα

1

2 ΕΙΣΑΓΩΓΗ

της ανάπτυξης λογισμικού στο GNU / Linux. Το γεγονός ότι μέχρι σήμερα αποτε-

λεί ένα από τα μεγαλύτερα έργα Ελεύθερο Λογισμικό/Λογισμικό Ανοιχτού Κώδικα

(ΕΛ/ΛΑΚ) παρέχει αξεπέραστα πλεονεκτήματα όπως δωρεάν πηγαίο κώδικα (GNU

Public License) και μεγάλη κοινότητα χρηστών και προγραμματιστών.

• Λύση πραγματικού χρόνου:Η προτεινόμενη προσέγγιση σχεδίασης χρησιμοποιεί ένα

από τα μεγαλύτερα έργα στον κόσμο GNU / Linux πραγματικού χρόνου, συγκεκρι-

μένα το patch PREMPT-RT. Τα οφέλη περιλαμβάνουν χαμηλό κόστος συντήρησης,

σταθερότητα και μεγάλη κοινότητα για υποστήριξη και ανάπτυξη.

Υπάρχουσες Προσεγγίσεις

Έρευνα στα ρομπότ με πόδια έχει διεξαχθεί για πολλά θέματα, από το σχεδιασμό τους έως τη

δυνατότητα ελέγχου τους, εξετάζοντας την ικανότητα τους για αυτόνομες, ημιαυτόνομες ή

τηλεχειριζόμενες επιχειρήσεις σε δύσκολα εδάφη όπου τα οχήματα με τροχούς φτάνουν στα

όριά τους. Τα μελλοντικά τετράποδα ρομπότ αναμένεται να λειτουργούν σε άκρως δυναμι-

κούς, μη δομημένους υπαίθριους χώρους όπου θα περιηγούνται σε δύσπρόσιτα περιβάλλο-

ντα, όπως καταρρέοντα κτίρια, καταστροφές, δάση, βουνά και εργοτάξια. Τα καθήκοντά τους

θα κυμαίνονται από τη μετάδοση αναγνώσεων αισθητήρων στον απομακρυσμένο χειριστή

(π.χ. κάμερες, LIDAR, υπέρυθρες ακτινοβολίες και επίπεδα ακτινοβολίας) μέχρι τη μεταφορά

μεγάλων ωφέλιμων φορτίων όπως εργαλείων ή δομικών υλικών. Τα υπάρχοντα ρομπότ με

πόδια αιχμής περιλαμβάνουν τα Handle Σχήμα 1(a), SpotMini Σχήμα 1(b), Atlas Σχήμα 1(c)

και BigDog Σχήμα 1(d), σχεδιασμένα και κατασκευασμένα από την Boston Dynamics¹.

Τέλος, όσον αφορά τον ερευνητικό κόσμο, το ANYmal ρομπότ Σχήμα 2(a) από το Institute of

Robotics and Intelligent Systems στο πανεπιστήμιο ETH της Ζυρίχης², τοHermes Σχήμα 2(b)

καιCheetahΣχήμα 2(c), ρομπόταπό τοBiomimeticRobotics Lab στοMIT³ και το InuΣχήμα 2(d)

ρομπότ από το KOD*LAB στοUPenn⁴ είναι χαρακτηριστικά παραδείγματα ρομπότ με πόδια

που αναπτύσσονται σε πανεπιστήμια.

¹https://www.bostondynamics.com
²http://www.rsl.ethz.ch/robots-media/anymal.html
³http://biomimetics.mit.edu
⁴https://kodlab.seas.upenn.edu

https://www.bostondynamics.com
http://www.rsl.ethz.ch/robots-media/anymal.html
http://biomimetics.mit.edu
https://kodlab.seas.upenn.edu

ΕΙΣΑΓΩΓΗ 3

(a) (b)

(c) (d)

Σχήμα 1: Ρομπότ με πόδια της Boston Dynamics: (a) Handle, (b) SpotMini, (c) Atlas και (d)
BigDog.

(a) (b)

(c) (d)

Σχήμα 2: Ρομπότ αιχμής με πόδια, που βρίσκονται σε ερευνητικά ιδρύματα: (a) ANYmal, (b)
Hermes, (c) Cheetah και (d) Inu.

4 ΥΠΟΒΑΘΡΟ

Υπόβαθρο

Συστήματα Πραγματικού Χρόνου

Ένα σύστημα πραγματικού χρόνου είναι ένα σύστημα που πρέπει να ικανοποιεί

ρητούς (περιορισμένους) περιορισμούς χρόνου απόκρισης ειδάλλως κινδυνεύει με

σοβαρές συνέπειες, συμπεριλαμβανομένης της αποτυχίας [19].

Συνεπώς, η ορθότητα της απόκρισης ενός τέτοιου συστήματος εξαρτάται όχι μόνο από το

λογικό αποτέλεσμα αλλά και από τον χρόνο που παραδόθηκε. Τα συστήματα πραγματικού

χρόνου διακρίνονται σε τρεις κατηγορίες [19]:

• Σκληρά (Hard): Σε σκληρά συστήματα πραγματικού χρόνου, η μη τήρηση μιας μόνο

προθεσμίας οδηγεί σε πλήρη και καταστροφική αποτυχία του συστήματος.

• Σταθερά (Firm): Σε σταθερά συστήματα πραγματικού χρόνου, η μη τήρηση ορισμένων

προθεσμιών δεν θα οδηγήσει σε πλήρη αποτυχία, αλλά η μη τήρηση περισσότερων από

μερικές, οδηγεί σε πλήρη και καταστροφική αποτυχία του συστήματος.

• Μαλακά (Soft): Σε μαλακά συστήματα πραγματικού χρόνου, η απόδοση υποβαθμίζεται

από την αδυναμία ικανοποίησης των περιορισμών του χρόνου απόκρισης.

GNU / Linux και Πραγματικός Χρόνος

ΤοGNU / Linux [20] σχεδιάστηκε και κατασκευάστηκε ως λειτουργικό σύστημα πολλαπλών

χρηστών γενικού σκοπού, βασισμένο στο UNIX. Οι στόχοι ενός συστήματος πολλαπλών

χρηστών είναι γενικά σε αντίθεση με τους στόχους της λειτουργίας πραγματικού χρόνου. Τα

λειτουργικά συστήματα γενικού σκοπού ρυθμίζονται για να μεγιστοποιήσουν τη μέση από-

δοση, μερικές φορές σε βάρος της καθυστέρησης, ενώ τα λειτουργικά συστήματα πραγματι-

κού χρόνου επιχειρούν να τοποθετήσουν ένα άνω όριο στην καθυστέρηση, μερικές φορές σε

βάρος της μέσης απόδοσης. Γενικά, υιοθετήθηκαν δύο σημαντικές προσεγγίσεις στο GNU /

Linux όσον αφορά τον πραγματικό χρόνο:

• Η Co-Kernel προσέγγιση: Η παλαιότερη λύση που βρέθηκε για το Linux πραγματι-

κού χρόνου ήταν η τοποθέτηση ενός μικρού πυρήνα πραγματικού χρόνου που τρέχει

δίπλα-δίπλα με το Linux στο ίδιο υλισμικό. Σε αυτή την προσέγγιση συμπεριλαμβάνο-

νται οι προσπάθειες των RTAI και Xenomai. Σε αυτήν την περίπτωση, όλες οι διακοπές

ΥΠΟΒΑΘΡΟ 5

συσκευών (device interrupts) πρέπει να περάσουν από τον co-kernel προτού υποβλη-

θούν σε επεξεργασία από τον κανονικό πυρήνα, έτσι ώστε το Linux να μην μπορεί ποτέ

να τους αναβάλει, εξασφαλίζοντας έτσι προβλέψιμο χρόνο απόκρισης στην πλευρά

του πραγματικού χρόνου. Επίσης, σε αυτή την περίπτωση, απαιτούνται συνήθως συ-

γκεκριμένα API για την ανάπτυξη μιας εφαρμογής σε πραγματικό χρόνο.

• Η προσέγγιση πλήρους preemptible πυρήνα (Fully Preemptible Kernel): Αυτή η προ-

σέγγιση ασχολείται με τη μετατροπή του Linux σε ένα πλήρες Λειτουργικό Σύστημα

Πραγματικού Χρόνου (ΛΣΠΧ / RTOS). Αυτό συνεπάγεται ότι γίνονται αλλαγές στον

πυρήνα του Linux που επιτρέπουν την εκτέλεση διαδικασιών σε πραγματικό χρόνο χω-

ρίς να υπάρχει παρεμβολή από απρόβλεπτες ή unbounded δραστηριότητες από διαδι-

κασίες που δεν είναι πραγματικού χρόνου. Το Real-Time Linux (RTL) Collaborative

Project (RTL)⁵ είναι η πιο σχετική λύση ανοιχτού κώδικα για αυτήν την επιλογή [21].

Το έργο βασίζεται στην επέκταση PREEMPT_RT και στοχεύει στη δημιουργία ενός

προβλέψιμου και ντετερμινιστικού περιβάλλοντος που μετατρέπει τον πυρήνα του Li-

nux σε μια βιώσιμη πλατφόρμα πραγματικού χρόνου. Ο τελικός στόχος του έργου RTL

είναι να περάσει την επέκταση PREEMPT_RT στον mainline πυρήνα. Η σημασία αυ-

τής της προσπάθειας δεν σχετίζεται με τη δημιουργία ενός RTOS που βασίζεται στο

Linux (αυτό έχει επιχειρηθεί ήδη αρκετές φορές), αλλά με την παροχή στον ίδιο τον

πυρήνα του Linux, δυνατοτήτων πραγματικού χρόνου. Το κύριο όφελος είναι η δυνα-

τότητα χρήσης των τυποποιημένων εργαλείων και βιβλιοθηκών του Linux χωρίς την

ανάγκη ειδικών ΔΠΕ⁶ πραγματικού χρόνου. Επίσης, το GNU / Linux χρησιμοποιείται

και υποστηρίζεται ευρέως, γεγονός που βοηθά να διατηρηθεί το λειτουργικό σύστημα

ενημερωμένο με νέες τεχνολογίες και χαρακτηριστικά, κάτι που αποτελεί συχνά πρό-

βλημα σε μικρότερα έργα λόγω περιορισμών πόρων.

Έχοντας αυτά υπόψη, η επέκταση PREEMPT_RT επιλέχθηκε ως ο καλύτερος υποψήφιος για

την ανάπτυξη αυτής της εφαρμογής πραγματικού χρόνου. Αξίζει να σημειωθεί ότι, όπως και

η περίφημη συζήτηση Torvalds / Tanenbaum σχετικά με την απαξίωση των μονολιθικών πυ-

ρήνων [22], στο GNU / Linux υπήρξε μακρά σειρά συζητήσεων σχετικά με διάφορες πτυχές

των επιλογών σχεδιασμού πυρήνα του Linux. Ένα από τα πιο αμφιλεγόμενα θέματα ήταν η

ερώτηση σχετικά με τον τρόπο προσθήκης επεκτάσεων πραγματικού χρόνου στον πυρήνα

Linux [23].

⁵https://wiki.linuxfoundation.org/realtime/rtl/start
⁶Διεπαφή Προγραμματισμού Εφαρμογών (API)

https://wiki.linuxfoundation.org/realtime/rtl/start

6 ΥΠΟΒΑΘΡΟ

Λειτουργικό Σύστημα για Ρομπότ (ROS)

Το ROS είναι ένα μετα-λειτουργικό σύστημα ανοιχτού κώδικα για το ρομπότ σας.

Παρέχει τις υπηρεσίες που θα περιμένατε από ένα λειτουργικό σύστημα, συμπερι-

λαμβανομένης της αφαίρεσης υλικού, του ελέγχου των συσκευών χαμηλού επι-

πέδου, της εφαρμογής κοινώς χρησιμοποιούμενων λειτουργιών, της μετάδοσης

μηνυμάτων μεταξύ των διαδικασιών και της διαχείρισης των πακέτων. Παρέχει

επίσης εργαλεία και βιβλιοθήκες για την απόκτηση, κατασκευή, συγγραφή και

εκτέλεση κώδικα σε πολλούς υπολογιστές⁷.

Το ROS σημαίνει λειτουργικό σύστημα για ρομπότ [7], οπότε θα περίμενε κανείς ότι το ROS

είναι ένα ακόμα παραδοσιακό λειτουργικό σύστημα που στοχεύει σε συγκεκριμένες ρομπο-

τικές πλατφόρμες. Αυτό όμως δεν ισχύει και η συντομογραφία δεν βοηθά στην επίλυση αυ-

τής της σύγχυσης. Ένας ακριβέστερος ορισμός είναι ότι το ROS είναι ένα μετα-λειτουργικό

σύστημα. Ο όρος αυτός περιγράφει ένα σύστημα που παρέχει λειτουργίες όπως η διαχεί-

ριση διαδικασιών, ο προγραμματισμός, η παρακολούθηση, η διαχείριση μνήμης, ο χειρισμός

σφαλμάτων, οι πρωταρχικές μορφές επικοινωνίας και η λειτουργικότητα, χρησιμοποιώντας

ένα επίπεδο εικονικοποίησης μεταξύ εφαρμογών και κατανεμημένων υπολογιστικών πλατ-

φορμών, ενώ τρέχει πάνω από ένα παραδοσιακό λειτουργικό σύστημα. Αυτός ο τύπος λογι-

σμικού ονομάζεται επίσης middleware ή πλαίσιο λογισμικού.

Το πρωτόκολλο EtherCAT

Το πρωτόκολλο EtherCAT βασίζεται σε μια προσέγγιση master / slave και στηρίζεται σε μια

τοπολογία δακτυλίων στο φυσικό επίπεδο [17]. Μόνο ένας master επιτρέπεται στο δίκτυο

(μπορούν να συνδεθούν πολλαπλοί master μέσω διακόπτη, αλλά μόνο ένας μπορεί να υπάρ-

χει σε κάθε υποδίκτυο που ο διακόπτης ορίζει) και αυτό είναι κατάλληλο, για παράδειγμα,

για να συνδέεται μια μονάδα ελέγχου (π.χ. PLC) με αποκεντρωμένα περιφερειακά (αισθη-

τήρες, ενεργοποιητές, μηχανισμοί κίνησης κ.λπ.). Χρησιμοποιώντας κατάλληλες πύλες, το

EtherCAT μπορεί να διαλειτουργεί τόσο με συμβατικά πρωτόκολλα δικτύωσης υπολογι-

στών (TCP / IP στοίβα) όσο και με άλλες λύσεις Ethernet (RTE) πραγματικού χρόνου, όπως

EtherNet / IP ή/και PROFINET.

Ο κύριος κόμβος έχει τον πλήρη έλεγχο της κυκλοφορίας που ανταλλάσσεται μέσω του δι-

κτύου EtherCAT. Συγκεκριμένα, είναι η μόνη συσκευή που μπορεί να αναλάβει την πρωτο-

⁷https://www.ros.org/

https://www.ros.org/

ΥΠΟΒΑΘΡΟ 7

βουλία στην επικοινωνία. Ως εκ τούτου, είναι υπεύθυνη για την έναρξη όλων των ανταλλα-

γών δεδομένων με τις υποτελείς μονάδες. Κάθε υποτελής μονάδα επεξεργάζεται το ληφθέν

πλαίσιο (frame) για να εξάγει / εισάγει δεδομένα από / μέσα της. Στη συνέχεια, το πλαίσιο

(frame) μεταφέρεται στον επόμενο υποτελή κόμβο του δακτυλίου, όπως απεικονίζεται στο

Σχήμα 3.

Σχήμα 3:Μία τυπική EtherCAT τοπολογία, με την “on-the-fly” επεξεργασία πλαισίων (frames)
EtherCAT [1, Κεφάλαιο 38].

Ο EtherLabMaster

Δεδομένου ότι το λογισμικό EtherLab έχει επιλεγεί ως ο EtherCATmaster που θα επικοινωνεί

η προς ανάπτυξη εφαρμογή, η αρχιτεκτονική του παρουσιάζεται συνοπτικά στο Σχήμα 4.

Τα συστατικά του περιβάλλοντος του master περιγράφονται παρακάτω:

• Μονάδα Master: Μονάδα πυρήνα που περιέχει ένα ή περισσότερα EtherCAT master

στιγμιότυπα, τη διασύνδεση EtherCAT συσκευών και την διεπαφή εφαρμογής.

• Μονάδες Συσκευών: Μονάδες οδηγού συσκευής Ethernet με δυνατότητα υποστήρι-

ξης του πρωτοκόλλου EtherCAT, που προσφέρουν τις συσκευές τους στον EtherCAT

master μέσω της EtherCAT Διεπαφής Συσκευής. Αυτά τα τροποποιημένα προγράμ-

ματα οδήγησης δικτύου μπορούν να χειριστούν συσκευές δικτύου που χρησιμοποιού-

νται για λειτουργία σε δίκτυο EtherCAT και “κανονικές” Ethernet συσκευές παράλ-

8 ΥΠΟΒΑΘΡΟ

Σχήμα 4: Συνολική Αρχιτεκτονική του EtherLab[2].

ληλα. Ένας master μπορεί να δεχτεί μια συγκεκριμένη συσκευή και έπειτα μπορεί να

στείλει και να λάβει πλαίσια (frames) EtherCAT. Οι συσκευές Ethernet που απορρί-

φθηκαν από τoν EtherCATmaster είναι συνδεδεμένες στη στοίβα δικτύου του πυρήνα

όπως συνήθως.

• Εφαρμογή: Ένα πρόγραμμα που χρησιμοποιεί τον EtherCAT master (συνήθως για κυ-

ΣΧΕΔΙΑΣΜΟΣ & ΥΛΟΠΟΙΗΣΗ 9

κλική ανταλλαγή δεδομένων διεργασίας με EtherCAT slaves). Αυτά τα προγράμματα

δεν αποτελούν μέρος του EtherCAT master κώδικα, αλλά πρέπει να δημιουργούνται ή

να γράφονται από το χρήστη. Μια εφαρμογή μπορεί να ζητήσει ένα master μέσω της

Διεπαφής Εφαρμογής. Αν αυτό επιτύχει, έχει τον έλεγχο τουmaster:Μπορεί να παρέχει

δεδομένα διαμόρφωσης διαύλου και ανταλλαγής δεδομένων. Οι εφαρμογές μπορούν

να είναι μονάδες πυρήνα (που χρησιμοποιούν απευθείας τη Διεπαφή Εφαρμογής πυ-

ρήνα, kernelspace) ή προγράμματα χώρου χρήστη (userspace), που χρησιμοποιούν τη

Διεπαφή Εφαρμογής μέσω της βιβλιοθήκης EtherCAT ή της βιβλιοθήκης RTDM, όπως

φαίνεται και στο Σχήμα 4.

Σχεδιασμός & Υλοποίηση

Στο Σχήμα 5 παρουσιάζεται ένα βασικό διάγραμμα ανάπτυξης μαζί με τα βασικά στοιχεία και

τις συνδέσεις τους. Αυτό το διάγραμμα περιγράφει διαισθητικά τα στοιχεία του συνολικού

συστήματος και παρέχει μια γενική εικόνα του ρομπότ με τον χειριστή του.

Σχήμα 5: Συνολική Αρχιτεκτονική του Συστήματος.

Συνιστώσα Λογισμικού

Η συνιστώσα λογισμικού του έργου, στα πλαίσια της διπλωματικής, παρουσιάζεται στο 2

(βλ. Σχήμα 5) μαζί με τις υψηλότερου επιπέδου συνδέσεις της. Το λογισμικό αυτό προσφέ-

ρει ένα ROS API για ROS κόμβους που αναπτύχθηκαν από άλλους μηχανικούς λογισμικού,

προσφέρει Διεπαφή Γραμμής Εντολών (CLI) στον χειριστή και επικοινωνεί με τη μονάδα πυ-

10 ΣΧΕΔΙΑΣΜΟΣ & ΥΛΟΠΟΙΗΣΗ

ρήνα EtherLab για την επίτευξη της EtherCAT επικοινωνίας. Αυτή η συνολική συμπεριφορά

επιτυγχάνεται μέσω διαφορετικών υπομονάδων, που απεικονίζονται στο Σχήμα 6.

Σχήμα 6: Εσωτερική Aρχιτεκτονική της Μονάδας Λογισμικού.

Στο A στο Σχήμα 6, απεικονίζεται η βασική υπομονάδα του λογισμικού, που έχει το όνομα

EtherCAT Communicator. Αυτή η υπομονάδα στην βάση της αποτελείται από ένα νήμα

(thread) που εκτελείται σε πραγματικό χρόνο και καλεί το API της EtherLab βιβλιοθήκης

για χώρο χρήστη, το οποίο με τη σειρά του κάνει μια κλήση συστήματος στη μονάδα πυρήνα

EtherLab που επικοινωνεί με τους EtherCAT slaves. Αυτή η υπομονάδα χρησιμοποιεί τη βι-

βλιοθήκη pthread για τη δημιουργία ενός νήματος πραγματικού χρόνου και για τη χρήση

ενός pthread spinlock. Εφαρμόζει μια μηχανή καταστάσεων, την οποία υλοποιεί σε ένα πλαί-

σιο πραγματικού χρόνου στη συχνότητα βρόχου ελέγχου EtherCAT (≥ 2 KHz).

Στο B (βλ. Σχήμα 6), επισημαίνεται η υπομονάδα του Input Process Data Objects (PDOs)

Publisher. Αυτό το μέρος του λογισμικού λαμβάνει τα αντικείμενα δεδομένων εισαγωγής

(τις μεταβλητές EtherCAT που μεταβάλλουν οι slaves και μεταβιβάζουν στον master) από

το δίκτυο EtherCAT μέσω του EtherCAT Communicator και τις δημοσιεύει σε ένα topic

στο ROS, στην συχνότητα βρόχου ελέγχου EtherCAT (≥ 2 KHz). Ακόλουθα, οι κόμβοι ROS

ΣΧΕΔΙΑΣΜΟΣ & ΥΛΟΠΟΙΗΣΗ 11

που εφαρμόζουν αλγόριθμους ρομποτικής όπως SLAM, πλοήγηση και εκτίμηση κατάστασης,

μπορούν να λάβουν αυτά τα δεδομένα και να τα επεξεργαστούν αναλόγως.

Στο C (βλ. Σχήμα 6), επισημαίνεται η υπομονάδα του Output Process Data Objects (PDOs)

Publisher. Αυτό το μέρος του λογισμικού λαμβάνει τα αντικείμενα δεδομένων διεργασίας

εξόδου (τις μεταβλητές EtherCAT που μεταβάλλονται από τους κόμβους του ROS ή τον

χειριστή και μεταβιβάζονται στο master Ethernet σε δίκτυο EtherCAT μέσω του EtherCAT

Communicator και εκδίδει σε ένα topic στο ROS, στη συχνότητα βρόχου ελέγχου EtherCAT

(≥ 2KHz). Συνεπώς, οι κόμβοι ROS που εφαρμόζουν αλγόριθμους ρομποτικής όπως SLAM,

πλοήγηση και εκτίμηση κατάστασης, μπορούν να λάβουν αυτά τα δεδομένα και να τα επε-

ξεργαστούν αναλόγως. Ανακύπτει ένα ερώτημα σχετικά με το γιατί αυτά τα Output PDOs

θα πρέπει να δημοσιεύονται στο οικοσύστημα ROS, αφού πιθανότατα μεταβάλλονται από

έναν κόμβο στο πλαίσιο του ROS. Η απάντηση είναι ότι αυτά τα δεδομένα θα μπορούσαν να

ενδιαφέρουν περισσότερους από έναν κόμβους ROS (εκτός από πιθανώς αυτόν που τα αλλά-

ζει), έτσι ώστε οι άλλοι κόμβοι να έχουν πρόσβαση σε αυτές τις αλλαγές. Ένας άλλος λόγος

είναι ότι τα δεδομένα θα μπορούσαν να αλλάζουν από τον χειριστή, όπως προαναφέρθηκε,

έτσι ένας κόμβος ROS να μπορεί να γνωρίζει τις αλλαγές με την εγγραφή στο προαναφερθέν

topic. Παρ’ όλα αυτά, αυτό το υποσύνολο δημιουργήθηκε για να παρέχει πληρότητα μέσω

του ROS API, ωστόσο αν το κόστος που εισάγεται είναι υπερβολικό, αυτό το υποσύνολο θα

μπορούσε να απενεργοποιηθεί σε μελλοντικές εκδόσεις.

Στο D (βλ. Σχήμα 6), απεικονίζεται η υπομονάδα του Output Process Data Objects (PDOs)

Listener. Αυτό το μέρος του λογισμικού ακούει σε ένα ROS topic, λαμβάνει τα (τροποποιη-

μένα) αντικείμενα δεδομένων διεργασίας εξόδου (τις μεταβλητές EtherCAT που αλλάζουν

από τον κύριο κόμβο και διαβιβάζονται στους EtherCAT υποτελείς κόμβους) απευθείας από

το οικοσύστημα ROS ή έμμεσα από το δημιουργημένο CLI και τα διαβιβάζει στον EtherCAT

Communicator για να σταλούν στο δίκτυο. Το D ολοκληρώνει έναν πρώτο κλειστό βρόχο

ανατροφοδότησης που αποτελείται από το άμεσο οικοσύστημα ROS (άλλοι ROS κόμβοι που

υλοποιούνται), το δίκτυο EtherCAT και την εφαρμογή, επιτρέποντας την επικοινωνία μεταξύ

όλων αυτών των στοιχείων.

Στο E (βλ. Σχήμα 6), εμφανίζεται η υπομονάδα της διεπαφής γραμμής εντολών (CLI).

Αυτό το μέρος του λογισμικού διευκολύνει τον χρήστη που είναι υπεύθυνος για τη συνο-

λική λειτουργία και τη διαχείριση των λειτουργιών του ρομπότ (επίσης γνωστός ως Χειρι-

στής / Operator), να αλληλεπιδρά με έναν απλό και αποτελεσματικό τρόπο με το δίκτυο των

EtherCAT υποτελών κόμβων και να ελέγχει αποτελεσματικά τις συγχρονισμένες κινήσεις

12 ΠΕΙΡΑΜΑΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ

των ποδιών. Επιπλέον, ο EtherCAT Communicator ενεργοποιείται ή απενεργοποιείται μέσω

αυτής της υπομονάδας και επίσης οι μεταβλητές EtherCAT που στέλνει ο κύριος κόμβος

(Output PDOs), μεταβάλλονται μέσω αυτής της υπομονάδας από τον Χειριστή / Operator.

Στο F (βλ. Σχήμα 6), παρουσιάζεται η υπομονάδα τουOutput Process Data Objects (PDOs)

Publisher Timer (χρονοδιακόπτης). Αυτό το μέρος του λογισμικού σε συγκεκριμένα χρονικά

διαστήματα (για αυτό το λόγο ονομάζεται χρονοδιακόπτης) αντιγράφει τα δεδομένα διερ-

γασίας που αποστέλλονται από την αντίστοιχη δομή προσωρινής αποθήκευσης (buffer) και

τα δημοσιεύει σε ένα ROS topic. Με αυτές τις δημοσιευμένες πληροφορίες, πραγματοποιεί-

ται μια έμμεση καταγραφή που αποτελεί μια γρήγορη εκκίνηση για την αποσφαλμάτωση της

συμπεριφοράς της μονάδας λογισμικού. Ως εκ τούτου, το F ολοκληρώνει ένα δεύτερο κλει-

στό κύκλωμα ανάδρασης, αποτελούμενο από τους χρήστες που διαχειρίζονται τη λειτουργία

του ρομπότ, το οικοσύστημα ROS, τη μονάδα λογισμικού και το δίκτυο EtherCAT. Ωστόσο,

αυτός ο δεύτερος κλειστός βρόχος είναι σίγουρα πιο χαλαρός και έμμεσος από τον πρώτο,

υπό την έννοια ότι υπάρχει ο ανθρώπινος παράγοντας στη μέση, πράγμα που σημαίνει ότι

πρέπει να υπάρξει διαχείριση και παρακολούθηση από ένα χρήστη ώστε να αναλάβει δράση

και να κλείσει αυτόν το βρόχο.

Πειραματική Αξιολόγηση

Αποτελέσματα

Για την αξιολόγηση της απόδοσης ολόκληρου του συστήματος, πραγματοποιήθηκε μια σειρά

πειραμάτων. Σε αυτή τη σειρά πειραμάτων, ορίζεται μία επιθυμητή ελλειπτική τροχιά για το

άκρο του κάθε ποδιού μέσω της αναπτυγμένης εφαρμογής μαζί με τα κέρδη ελέγχου και τις

παραμέτρους του συστήματος. Τα δεδομένα καταγράφονται χρησιμοποιώντας το rosbag

και επεξεργάζονται και απεικονίζονται με τη χρήση ενός προσαρμοσμένουMatlab script. Αξί-

ζει να σημειωθεί ότι σε κάθε slave εφαρμόζεται ένας ελεγκτής PIV (Proportional - Integral -

Velocity) (περισσότερες πληροφορίες στο [17]), έτσι ο master δεν επηρεάζει τη διαδικασία

ελέγχου αλλά απλώς παρέχει σε κάθε slave τις απαραίτητες παραμέτρους μέσω EtherCAT.

Κατά τη διάρκεια της φάσης μόνιμης κατάστασης του πειράματος, όπου και οι παράμετροι

a_ellipse100 και b_ellipse100 έχουν φτάσει στην τελική τους τιμή, το άκρο (End Ef-

fector) κάθε ποδιού εκτελεί μια συγκεκριμένη διαδρομή που προσπαθεί να συγκλίνει με την

επιθυμητή ελλειπτική τροχιά. Η επιθυμητή ελλειπτική διαδρομή / τροχιά του άκρου κάθε

ποδιού (κόκκινο) μαζί με την πραγματική απόκριση κάθε ποδιού (μαύρο) στο χώρο εργασίας

ΠΕΙΡΑΜΑΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ 13

τους, σε σχέση με τα συστήματα συντεταγμένων που βρίσκονται στις αρθρώσεις ισχίων των

ποδιών, εμφανίζονται στο Σχήμα 7. Αυτό το σχήμα διευκρινίζει το γεγονός ότι τα σφάλματα

μόνιμης κατάστασης στις αρθρώσεις ισχίου και γονάτου μεταφράζονται ως σφάλματα στην

τοποθέτηση του άκρου. Αξίζει να σημειωθεί ότι λόγω του εδάφους και των χαμηλών τιμών

των Κερδών Ελέγχου, οι επιθυμητές ελλειπτικές τροχιές δεν παρακολουθούνται στενά στην

μόνιμη κατάσταση και απαιτείται καλύτερη ρύθμιση αυτών των κερδών, ειδικά για τα οπίσθια

πόδια.

-0.05 0 0.05

x axis --> +

0.56

0.57

0.58

0.59

0.6

+
 <

--
 y

 a
x
is

FR End Effector in Steady State

-0.05 0 0.05

x axis --> +

0.55

0.56

0.57

0.58

0.59

0.6

+
 <

--
 y

 a
x
is

FL End Effector in Steady State

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

x axis --> +

0.55

0.56

0.57

0.58

0.59

0.6

+
 <

--
 y

 a
x
is

HR End Effector in Steady State

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

x axis --> +

0.55

0.56

0.57

0.58

0.59

0.6

+
 <

--
 y

 a
x
is

HL End Effector in Steady State

Σχήμα 7: Επιθυμητή ελλειπτική τροχιά όλων των άκρων των ποδιών (κόκκινο) μαζί με την
πραγματική τους απόκριση (μαύρα) σε σχέση με τα συστήματα αναφοράς που βρίσκονται στις
αρθρώσεις ισχίων των ποδιών.

Το Σχήμα 8 εμφανίζει την επιθυμητή τιμή γωνίας άρθρωσης γόνατος κάθε ποδιού (κόκκινο)

και την πραγματική απόκριση κάθε αντίστοιχης γωνίας άρθρωσης γόνατος (μαύρο) σε όλο

το πείραμα. Τόσο η μεταβατική κατάσταση όσο και η μόνιμη κατάσταση απεικονίζονται. Οι

μονάδες όλων των μεταβλητών είναι μοίρες και όπως μπορεί να παρατηρηθεί σε αυτά τα

14 ΠΕΙΡΑΜΑΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ

σχήματα, οι επιθυμητές τιμές παρακολουθούνται στενά από όλα τα πόδια, ωστόσο υπάρχει

αρκετό περιθώριο βελτίωσης που μπορεί να επιτευχθεί με μια συνετή ρύθμιση των κερδών

ελέγχου ή με ρύθμιση των ροπών για τους κινητήρες του γονάτου.

0 5 10 15 20 25 30 35 40 45
-20

-10

0

10

A
n
g
le

 [
d
e
g
]

Response of FR Knee Angle

0 5 10 15 20 25 30 35 40 45
-20

-10

0

10

A
n
g
le

 [
d
e
g
]

Response of FL Knee Angle

0 5 10 15 20 25 30 35 40 45
-20

-10

0

10

A
n
g
le

 [
d
e
g
]

Response of HR Knee Angle

0 5 10 15 20 25 30 35 40 45

Time [s]

-20

-15

-10

-5

0

5

A
n
g
le

 [
d
e
g
]

Response of HL Knee Angle

Σχήμα 8: Επιθυμητή απόκριση των γωνιών των γονάτων (κόκκινο) και πραγματική απόκριση
των αρθρώσεων των γονάτων (μαύρο).

Κατά παρόμοιο τρόπο, το Σχήμα 9 περιγράφει την επιθυμητή τιμή της γωνίας άρθρωσης του

ισχίου κάθε ποδιού (κόκκινο) και την πραγματική απόκριση κάθε αντίστοιχου ισχίου άρθρω-

σης (μαύρο) καθ’ όλη τη διάρκεια του πειράματος. Τόσο η μεταβατική κατάσταση όσο και η

μόνιμη κατάσταση απεικονίζονται. Οι μονάδες όλων των μεταβλητών είναι μοίρες και όπως

μπορεί να παρατηρηθεί σε αυτά τα σχήματα, οι επιθυμητές τιμές παρακολουθούνται στενά

από όλα τα πόδια, ωστόσο υπάρχει αρκετό περιθώριο βελτίωσης (ακόμη περισσότερο από

τους κινητήρες γόνατος) που μπορεί να επιτευχθεί με σωστή ρύθμιση των κερδών ελέγχου

για τους κινητήρες ισχίου. Επειδή οι ίδιες τιμές κέρδους ελέγχου χρησιμοποιήθηκαν και για

ΠΕΙΡΑΜΑΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ 15

τους δύο κινητήρες (με και χωρίς ψήκτρες) είναι απολύτως κατανοητό γιατί οι δύο αυτές

αρθρώσεις δεν έχουν την ίδια απόκριση όσον αφορά τα σφάλματα. Επιπλέον, αξίζει να ανα-

φερθεί ότι η άρθρωση ισχίου εκτελεί ευρύτερη κίνηση, η οποία αποτελεί έναν ακόμη λόγο

για τον οποίο τα προκύπτοντα σφάλματα είναι μεγαλύτερα σε σύγκριση με τις αρθρώσεις

γόνατος.

0 5 10 15 20 25 30 35 40 45
-10

0

10

20

30

A
n
g
le

 [
d
e
g
]

Response of FR Hip Angle

0 5 10 15 20 25 30 35 40 45
-10

0

10

20

30

A
n
g
le

 [
d
e
g
]

Response of FL Hip Angle

0 5 10 15 20 25 30 35 40 45
-10

0

10

20

30

A
n
g
le

 [
d
e
g
]

Response of HR Hip Angle

0 5 10 15 20 25 30 35 40 45

Time [s]

-10

0

10

20

30

A
n
g
le

 [
d
e
g
]

Response of HL Hip Angle

Σχήμα 9: Επιθυμητή απόκριση των γωνιών των ισχίων (κόκκινο) και πραγματική απόκριση
των αρθρώσεων των ισχίων (μαύρο).

ToΣχήμα 10 απεικονίζει τις εντολές PWM[%] του κινητήρα γόνατος κάθε ποδιού (μαύρο) με

το αντίστοιχο προκαθορισμένο όριο (κόκκινο). Αυτές οι εντολές είναι η έξοδος του ελεγκτή

PIV του γονάτου και μεταφράζονται απευθείας σε εντολές ροπής δεδομένου ότι εφαρμόζε-

ται μια αρχιτεκτονική ελέγχου ρεύματος. Όπως μπορούμε να παρατηρήσουμε, οι εντολές και

στα δύο οπίσθια πόδια είναι πάντοτε εντός του εύρους ορίων, επομένως δεν υπάρχει λόγος

τροποποίησης τους. Όμοια, στα δύο μπροστά πόδια, αν και έχουν φθάσει τα όρια πολλές φο-

16 ΠΕΙΡΑΜΑΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ

ρές, λόγω του γεγονότος ότι συνέβη μόνο για σύντομα χρονικά διαστήματα, δεν απαιτείται

καμία επιπλέον ενέργεια.

Σχήμα 10: Εντολές PWM του κινητήρα γονάτου κάθε ποδιού (μαύρο) και τα αντίστοιχα προ-
καθορισμένα όρια PWM (κόκκινο).

Ομοίως, το Σχήμα 11 απεικονίζει τις εντολές PWM [%] του κινητήρα ισχίου κάθε ποδιού

(μαύρο) με το αντίστοιχο προκαθορισμένο όριο (κόκκινο). Αυτές οι εντολές είναι η έξοδος

του ελεγκτή PIV του ισχίου αυτή τη φορά και μεταφράζονται απευθείας σε εντολές ροπής,

δεδομένου ότι εφαρμόζεται μια αρχιτεκτονική ελέγχου ρεύματος. Όπως μπορεί να παρατη-

ρηθεί, τα όρια PWMτου ισχίου προσεγγίζονται επανειλημμένα, ειδικά στα οπίσθια πόδια, με

αποτέλεσμα να πρέπει να ληφθεί υπόψη μια αύξηση του επιτρεπόμενου εύρους.

Το Σχήμα 12 παρουσιάζει την εκτίμηση ταχύτητας της άρθρωσης του γόνατος κάθε ποδιού

(μαύρο) και τα αντίστοιχα όρια ταχύτητας του κινητήρα (κόκκινο) όπως καθορίζονται από

ΠΕΙΡΑΜΑΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ 17

Σχήμα 11: Εντολές PWM του κινητήρα ισχίου κάθε ποδιού (μαύρο) και τα αντίστοιχα προκα-
θορισμένα όρια PWM (κόκκινο).

τον κατασκευαστή.Όπως μπορεί να παρατηρηθεί από το ακόλουθο σχήμα, οι ταχύτητες κάθε

κινητήρα γόνατος είναι πάντοτε εντός της επιτρεπόμενης περιοχής. Επομένως, δεν υπάρχει

καμία ανησυχία σχετικά με το σύστημα ταχύτητας που θα μπορούσε να δικαιολογήσει τη

μείωση των ορίων PWM του γόνατος.

Τέλος, κατά παρόμοιο τρόπο, το Σχήμα 13 απεικονίζει την εκτίμηση ταχύτητας της άρθρωσης

του ισχίου κάθε ποδιού (μαύρο) και τα αντίστοιχα όρια ταχύτητας του κινητήρα (κόκκινο)

όπως καθορίζονται από τον κατασκευαστή. Για άλλη μια φορά, οι ταχύτητες κάθε κινητήρα

ισχίου είναι πάντοτε εντός του επιτρεπόμενου εύρους, οπότε δεν υπάρχει λόγος να μειωθούν

τα όρια PWM του ισχίου.

Γενικά, η συνολική εικόνα αυτών των αποτελεσμάτων δείχνει ότι τα πειράματα για τα πόδια

18 ΠΕΙΡΑΜΑΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ

0 5 10 15 20 25 30 35 40 45

-5

0

5

V
e
lo

c
it
y
 [
ra

d
/s

]
Response of FR Knee Velocity

0 5 10 15 20 25 30 35 40 45

-5

0

5

V
e
lo

c
it
y
 [
ra

d
/s

]

Response of FL Knee Velocity

0 5 10 15 20 25 30 35 40 45

-5

0

5

V
e
lo

c
it
y
 [
ra

d
/s

]

Response of HR Knee Velocity

0 5 10 15 20 25 30 35 40 45

Time [s]

-5

0

5

V
e
lo

c
it
y
 [
ra

d
/s

]

Response of HL Knee Velocity

Σχήμα 12:Εκτίμηση ταχύτητας της άρθρωσης γονάτου κάθε ποδιού (μαύρο) και τα αντίστοιχα
προκαθορισμένα όρια ταχύτητας του κινητήρα (κόκκινο).

στο Laelaps II ήταν επιτυχημένα, αν και συνιστώνται μικρές τροποποιήσεις στα κέρδη και

στις αναλογίες ελέγχου (PWM εντολές) για τη βέλτιστη απόδοση στο βάδισμα, οι οποίες θα

πρέπει να μελετηθούν περαιτέρω.

Από την προοπτική του EtherCAT master, πρέπει να σημειωθεί ότι το ether_ros λειτούρ-

γησε όπως αναμενόταν, χωρίς να υπάρχουν skipped πακέτα από το EtherLab, πράγμα που

σημαίνει ότι οι περιορισμοί σε πραγματικό χρόνο, όπως αναλύονται στις λειτουργικές απαι-

τήσεις, έγιναν σεβαστοί . Ακόμη, είναι αξιοσημείωτο το γεγονός ότι επιτεύγχθηκε 2.5 kHz

συχνότητα βρόχου EtherCAT. Τέλος, όσον αφορά το περιβάλλον ROS, τα μηνύματα λήφθη-

καν με επιτυχία στα κατάλληλα θέματα εγκαίρως.

ΕΠΙΛΟΓΟΣ 19

0 5 10 15 20 25 30 35 40 45
-10

-5

0

5

10
V

e
lo

c
it
y
 [
ra

d
/s

]
Response of FR Hip Velocity

0 5 10 15 20 25 30 35 40 45
-10

-5

0

5

10

V
e
lo

c
it
y
 [
ra

d
/s

]

Response of FL Hip Velocity

0 5 10 15 20 25 30 35 40 45
-10

-5

0

5

10

V
e
lo

c
it
y
 [
ra

d
/s

]

Response of HR Hip Velocity

0 5 10 15 20 25 30 35 40 45

Time [s]

-10

-5

0

5

10

V
e
lo

c
it
y
 [
ra

d
/s

]

Response of HL Hip Velocity

Σχήμα 13: Εκτίμηση ταχύτητας της άρθρωσης ισχίου κάθε ποδιού (μαύρο) και τα αντίστοιχα
προκαθορισμένα όρια ταχύτητας του κινητήρα (κόκκινο).

Επίλογος

Συμπεράσματα

Συνολικά, οι απαιτήσεις που είχαν διατυπωθεί, ικανοποιήθηκαν με επιτυχία. Σύμφωνα με τα

αποτελέσματα της πειραματικής αξιολόγησης, ο σχεδιασμός και η ανάπτυξη που παρουσιά-

ζεται σε αυτή την Διπλωματική Εργασία πέτυχαν να συνδυάσουν τις τεχνολογίες EtherCAT

και ROS υπό περιορισμούς σε πραγματικό χρόνο και να παράγουν το αποτέλεσμα ενός τε-

τράποδου ρομπότ, δηλαδή του Laelaps II.

Λεπτομερέστερα, οι δυνατότητες πραγματικού χρόνου που προσφέρονται από την επέκταση

20 ΕΠΙΛΟΓΟΣ

PREEMPT_RT αποδείχτηκαν επαρκείς για τον έλεγχο κίνησης του Laelaps II και ο συνδυα-

σμός της επέκτασης μαζί με το EtherLab αποδείχθηκε άξιος αντικαταστάτης της προσέγγισης

Windows / TwinCAT. Όσον αφορά την επέκταση PREEMPT_RT, παρόλο που καταναλώ-

θηκε αρκετός χρόνος ανάπτυξης για λεπτομερή ρύθμιση του πυρήνα του συστήματος και

του κώδικα της εφαρμογής, προκειμένου να βελτιστοποιηθεί η καθυστέρηση (latency) του

master, το κόστος αυτό θεωρείται πολύ μικρότερο από άλλες προσεγγίσεις όπως το Xenomai

και τοRTAI, που μπορεί να προσφέρουν καλύτερες επιδόσεις, αλλά έχουν περισσότερα έξοδα

συντήρησης και ανάπτυξης. Όσον αφορά το EtherLab, η απόφαση να υιοθετηθεί αυτή η προ-

σέγγιση σχεδίασης αντί για το SOEM, αποδείχθηκε σοφή κατά τη διαδικασία ανάπτυξης και

επικύρωσης. Αν και είχε μια απότομη καμπύλη μάθησης για την κατανόηση του τρόπου ανά-

πτυξης κώδικα που χρησιμοποιεί το API του, η τεκμηρίωση ήταν εξαιρετική και διευκόλυνε

τη διαδικασία ανάπτυξης. Επίσης, το EtherLab έδειξε τη δύναμή του στη διαδικασία εντοπι-

σμού σφαλμάτων, καθώς προσέφερε μηχανισμούς για την άμεση εξέταση κάθε πτυχής του

δικτύου EtherCAT.

Τέλος, εκτός από τις δυνατότητες πραγματικού χρόνου, η αναπτυγμένη εφαρμογή προσφέ-

ρει διαλειτουργικότητα με το περιβάλλον ROS, μέσω του ROS API. Αυτό το βήμα ανοίγει

πολλές δυνατότητες, λαμβάνοντας υπόψη το μέγεθος του οικοσυστήματος ROS και την ποι-

κιλία των εφαρμογών που αναπτύσσονται σε αυτό. Οι μελλοντικοί κόμβοι ROS θα έχουν τη

δυνατότητα να επικοινωνούν με τους κωδικοποιητές και τους κινητήρες του Laelaps II και

να δημιουργούν προφίλ συγχρονισμένων κινήσεων των ποδιών. Αυτά τα προφίλ θα μπορού-

σαν να ξεκινήσουν απλά, όπως το βάδισμα, που μελετήθηκε σε αυτή την διπλωματική, και να

συνεχίζουν με εξαιρετικά πολύπλοκες κινήσεις, όπως καλπασμό και τρέξιμο ή συνδυασμούς

αυτών. Αυτό το χαρακτηριστικό δεν πρέπει να παραμεληθεί: η ROS-οποίηση του Laelaps II

είναι ένα τεράστιο βήμα προς την δομοστοιχειωτή σχεδίαση (modularity) του λογισμικού

και τη μείωση της ανάπτυξης και της διατήρησης, που είναι σημαντικοί παράγοντες τόσο

για τον ακαδημαϊκό χώρο όσο και για τη βιομηχανία.

Μελλοντικές Δυνατότητες

Παρόλο που η τρέχουσα εφαρμογή ελέγχου κίνησης μέσω EtherCAT στο Laelaps II έχει δο-

κιμαστεί και έχει αποδειχθεί ότι είναι πλήρως λειτουργική τόσο σε επίπεδο λογισμικού όσο

και υλικού, πολλές πτυχές μπορούν να βελτιωθούν στο μέλλον για να επιτευχθεί μεγαλύτερη

ευρωστία.

Πρώτον, η αναπτυγμένη εφαρμογή μπορεί να επεκταθεί για να υποστηρίξει διαφορετικά

ΕΠΙΛΟΓΟΣ 21

φορτία δεδομένων για EtherCAT slaves και αυτόματη διαμόρφωση μιας νέας εφαρμογής

EtherCAT χωρίς χειροκίνητη διαμόρφωση στον πηγαίο κώδικα ether_ros.

Μια πρόσθετη ιδέα είναι η διεξαγωγή πειραμάτων για τον εντοπισμό των καθυστερήσεων

σε κάθε πτυχή του συστήματος. Ο χρόνος του βρόχου EtherCAT καταναλώνεται μεταξύ του

δικτύου, των υποτελών κόμβων και του κύριου κόμβου και θα ήταν χρήσιμο να γνωρίζουμε

τον χρόνο που καταναλώνει κάθε στοιχείο του συστήματος. Σε αυτή την κατεύθυνση, εργα-

λεία εντοπισμού⁸ στον πυρήνα θα μπορούσαν να χρησιμοποιηθούν για τον εντοπισμό ποια

διαδικασία εκτελείται από ποια CPU, πόσο χρόνο χρειάζεται για να εκτελεστεί κλπ. Με αυ-

τόν τον τρόπο μπορεί να εντοπιστεί η καθυστέρηση της εφαρμογής, του πυρήνα και του δι-

κτύου EtherCAT.Ηκαθυστέρηση του δικτύου EtherCATμπορεί να ανιχνευθεί με τη μέτρηση

των διαστημάτων μεταξύ δύο διαδοχικών διακοπών του Ethernet IRQ που είναι αφιερωμένο

στο δίκτυο EtherCAT. Αυτή η καθυστέρηση μπορεί εύκολα (αλλά όχι με μεγάλη ακρίβεια)

να παρακολουθείται από τη χρήση του Wireshark. Η καθυστέρηση του πυρήνα αποτελεί-

ται από καθυστερήσεις που εισάγονται από την μονάδα EtherLab, τον χρονοδρομολογητή

(scheduler) και άλλες διακοπές που δεν σχετίζονται με το δίκτυο EtherCAT (π.χ. χρονοδια-

κόπτες, IPI).

Τέλος, αν το τρέχον σύστημα ελέγχου αλλάξει και γίνει κεντρικό, το ether_ros θα πρέπει

επίσης να αλλάξει. Μια κεντρικοποιημένη προσέγγιση σημαίνει μεγαλύτερο όγκο δεδομέ-

νων προς το ether_ros και η αναπτυγμένη εφαρμογή δεν έχει βελτιστοποιηθεί για αυτό

το είδος περιπτώσεων. Για να λειτουργήσει αυτή η προσέγγιση, η εφαρμογή πρέπει να αλ-

λάξει σημαντικά, βελτιστοποιώντας την αλληλεπίδραση με το περιβάλλον ROS, όπως τον

αριθμό των topics που θα χρησιμοποιηθούν, τις συγκεκριμένες ουρές επανάκλησης (callback

queues) κ.α.

⁸http://www.brendangregg.com/blog/2015-07-08/choosing-a-linux-tracer.html

http://www.brendangregg.com/blog/2015-07-08/choosing-a-linux-tracer.html

22

1
Introduction

Only those who will risk going too

far can possibly find out how far

one can go.

T.S. Eliot

In this chapter, we first provide a quick overview of the problem and the proposed solution.

Then, existing solutions and their shortcomings are described. Next, the benefits of the pro-

posed solution are briefly mentioned. Finally, the structure of the document is presented.

1.1 Problem Statement

In industrial robotic systems, there was always a need for a feature-rich network communica-

tion, between actuators, sensors and the processing unit(s), and usually this was handled with

wired means. For this reason a variety of protocols in both hardware and software were de-

veloped. In addition, the time-dependent nature of the processes of those systems demanded

the employment of real-time solutions to the network and computations.

ROS (Robot Operating System) is a meta-operating system, a standard in modern robotics,

which is used for software development of robotics applications. It greatly reduces develop-

ment andmaintenance time and offersmodularity (in hardware and software). Its community

is targeted on GNU/Linux.

Fieldbus Systems is a family of industrial computer network protocols used for real-time con-

trol, which had an enormous influence on the flexibility and performance of industrial au-

tomation systems in all application areas.

23

24 CHAPTER 1. INTRODUCTION

EtherCAT is an Ethernet-based fieldbus system, and is suitable for both hard and soft real-time

computing requirements in automation technology. Its features include short data update

times with low communication jitter and reduced hardware costs, due to utilization of the

low cost Ethernet technology, thanks to the latter’s long term usage in computer networks in

the past decades. These features render EtherCAT a proper network solution for real-time

constrained robotic systems, especially for systems like quadruped or biped robots.

Quadruped robots tend to be designed with properties such as high speed, rapid acceleration

and ability to make tight turns, thus requiring hard real-time constraints from their onboard

processing units. With a distributed control scheme at hand, employment of EtherCAT for

the design of a hard real-time system composed of networked processing units, is a satisfac-

tory option, although the need for real-time programming the communication nodes (mas-

ter/slaves) arises. Usually, the EtherCAT slaves (processing units for controlling the legs or

MCUs in this kind of configuration, have a very specific task, i.e. that of controlling the legs.

They comprise of, specifically designed, hardware-integrated EtherCAT Slave Controllers,

therefore there is no need for extra work in the real-time aspect. However, the EtherCAT

master can be implemented as a software solution, so a need appears to real-time program

it. Thus, the primary objective of this thesis is the design and implementation of a real-time

EtherCAT master in ROS on GNU/Linux.

In the following chapters, we thoroughly describe the design and implementation of a real-

time EtherCAT master in the ROS framework and present the obtained results.

1.2 Literature Review

In this section we briefly describe other approaches, which have similarities with our own.

1.2.1 Legged Robots Overview

Research in Legged Robots has been conducted for numerous matters, from their design to

their controllability, examining their capability for autonomous, semi-autonomous, or remo-

tely-controlled operations in challenging terrains, where wheeled and tracked vehicles reach

their limits. Future quadruped robots are expected to operate in highly dynamic, unstruc-

tured outdoor environments, where they will navigate inside challenging environments, such

as collapsed buildings, disaster sites, forests, mountain farms, and construction sites. Their

tasks will range from transmitting sensor readings to the remote operator (e.g., cameras, LI-

1.2. LITERATURE REVIEW 25

DAR, infrared, and radiation levels) to carrying heavy payloads such as tools or building

materials. State of the art legged robots include Handle in Figure 1.1(a), SpotMini in Fig-

ure 1.1(b), Atlas in Figure 1.1(c) and BigDog in Figure 1.1(d), designed and manufactured by

Boston Dynamics¹.

(a) (b)

(c) (d)

Figure 1.1: Boston Dynamics legged robots: (a) Handle, (b) SpotMini, (c) Atlas, (d) BigDog.

ANYmal robot in Figure 1.2(a) from the Institute of Robotics and Intelligent Systems of ETH

Zurich university², MIT’s Hermes in Figure 1.2(b) and Cheetah in Figure 1.2(c), robots by

the Biomimetic Robotics Lab³, and Upenn’s Inu in Figure 1.2(d), robot by KOD*LAB⁴, are

characteristic examples of legged robots developed at universities.

1.2.2 Fieldbus Systems Overview

The advent of fieldbus systems in automation industry in the late 80’s and early 90’s, rev-

olutionized it in a unique way. Prior to their arrival, the traditional method in industrial

automation for connecting multiple computational units was parallel wiring [24], where all

components were wired individually. However, the number of connections increased with

the increasing degree of automation, which led to a high wiring expenditure. Therefore the

¹https://www.bostondynamics.com
²http://www.rsl.ethz.ch/robots-media/anymal.html
³http://biomimetics.mit.edu
⁴https://kodlab.seas.upenn.edu

https://www.bostondynamics.com
http://www.rsl.ethz.ch/robots-media/anymal.html
http://biomimetics.mit.edu
https://kodlab.seas.upenn.edu

26 CHAPTER 1. INTRODUCTION

(a) (b)

(c) (d)

Figure 1.2: State of the Art legged robots: (a) ANYmal, (b) Hermes, (c) Cheetah and (d) Inu.

cheap fieldbus systems were a rather necessary solution, providing cheap and faster commu-

nication in the industrial networks.

The fieldbus systems are nowadays indispensable within industry. As a fixed component of

complex machinery and installations, they are primarily used in manufacturing automation.

However, the fieldbus is also used in process and building automation, aswell as in automotive

engineering.

Sensors and actuators (so-called “field devices”) as well as motors, switches, drives, or lamps

are connected with programmable logic controllers (PLCs) / master and process controllers

with the help of wire-bound and serial fieldbuses. As such, the fieldbus supports the rapid

exchange of data between individual system components even over great distances. Strong

external loads cannot influence the robust digital signal transmission system. Fieldbus com-

municates only via a single cable, allowing considerable decrease of the wiring, compared to

parallel wiring systems.

Fieldbus systems function inmaster-slave operation. Themaster controls the processes, while

the slave stations work on the individual partial tasks.

Fieldbus systems can differ in their topology (star, line, tree or ring), in their transmission

1.2. LITERATURE REVIEW 27

medium, and in their transmission protocols (message-oriented procedure or summation

frame procedure). The individual fieldbuses also differ in regard to the reachable cable length,

the maximum number of data bytes per telegram and the function scope. As such, additional

functions such as the alarm handling, diagnosis, and lateral traffic between individual bus

participants are not possible for every fieldbus.

Popular examples of fieldbus systems:

• Interbus: The interbus with transmission rates of up to 2 Mbps is characterised by high

transmission security and a short, constant cycle time. It is divided into subsystems

and consists of the remote bus, the installation remote bus and the local bus arranged

in a ring topology. The remote bus serves to connect up to 254 subscribers which are

located at large distances from each other, while the local bus connects subscribers, that

are located close to each other, to the system.

• Profibus: The PROFIBUS is used in manufacturing engineering and automation. It has

an unlimited number of subscribers and data transmission rates between 9.6 kbps and

500 kbps. In master-slave operation, the Token passing [25] access procedure is used.

Here, slaves may only access the profibus upon the master’s request.

In addition, the utilization of the inexpensive Ethernet technology in the industrial automa-

tion, has produced many systems and protocols which are categorized as fieldbus systems.

These systems have the same type of operation (master-slave), but are connected over Ether-

net. As such, these Industrial Ethernet systems combine two valuable traits: standarization to

the type of operation and support by the fieldbus systems community, and standarization and

support by the computer networking society. Since modern machines and systems must per-

form increasingly complex tasks, data networks are growing larger. This is where real-time

capable Ethernet networks come into play, because they provide a consistent flow of data from

the control level down to the field level. Today, Industrial Ethernet is being promoted with

several different proprietary designs [26, 27]. More than 20 different protocols compete in

this rapidly growing market, each offering adaptations to meet different real-time and cost

challenges, such as:

• EtherNet/IP (IP stands for “Industrial Protocol”): The EtherNet/IP is an industrial net-

work protocol that adapts the Common Industrial Protocol to standard Ethernet. It is

one of the leading industrial protocols in the United States and is widely used in a range

of industries including factory, hybrid and process automation. An active star topology

28 CHAPTER 1. INTRODUCTION

is characteristic for the Ethernet/IP protocol, where individual devices are connected

via a point-to-point connection, which is done via a switch. This has the advantage that

due to the star topology, operation of devices with transfer rates from Mbps to Gbps

can be activated in the same network. In addition, Ethernet/IP enables problem-free

functioning of twisted pair and glass fiber cables. Not least, data collisions with simul-

taneous utilization of real-time applications are avoided with the help of the switch.

• Profinet: Profinet (acronym for Process Field Net) is an industry technical standard for

data communication over Industrial Ethernet. It is designed for data collection from,

and control of, equipment in industrial systems, under tight time constraints (on the

order of 1ms or less). It is the open industrial Ethernet standard promoted by Profibus

International (PI). This group claims that more than 2 million Profinet devices are cur-

rently installed in plant environments; more Profinet than Profibus engineers were cer-

tified in 2012.

• Sercos III [28]: Sercos III is the third generation of the Sercos interface, a globally

standardized open digital interface for the communication between industrial controls,

motion devices, input/output devices (I/O), and Standard Ethernet nodes. Sercos III

merges the hard real-time aspects of the Sercos interface with Ethernet. It is based on

and conforms to the Ethernet standard (IEEE 802.3 and ISO/IEC 8802-3). Sercos III

features include cyclic update to devices at rates as low as 31.25 µs and support of up to

511 Slave devices on one network.

• EtherCAT: EtherCAT (Ethernet for Control Automation Technology) is a fieldbus sys-

tem based on Ethernet, invented by BeckhoffAutomation. The protocol is standardized

in IEC 61158 and is suitable for both hard and soft real-time computing requirements

in automation technology. The goal during development of EtherCAT was to apply

Ethernet for automation applications requiring short update times (also called cycle

times; ≤ 100 µs) with low communication jitter (for precise synchronization purposes;

≤ 1µ s) and reduced hardware costs. The entire process data communication takes

place in the slave controller. Normal network update rates range from 1 to 30 kHz.

However, EtherCAT can also be used with slower cycle times.

Concerning the Laelaps II quadruped, EtherCAT was selected, because of its high perfor-

mance in terms of bandwidth and speed, its determinism, and its convenient slave-synchron-

ization capabilities. In addition, there is no need to set device addresses, and its diagnostic

1.2. LITERATURE REVIEW 29

capabilities make the process of finding the sources ofmalfunctions and troubleshooting sub-

stantially easier.

1.2.3 EtherCAT Robotic Applications Overview

EtherCAT technology in robot applications has become increasingly popular in the last decade

mainly due to the low cycle time, achieved reduced wiring and its modularity. Herein, char-

acteristic examples in the different robotic application fields are presented.

In the industrial manufacturing sector, KUKA Robotics⁵ has developed a modular Ether-

CAT controller (KR C4 Controller - Figure 1.3(a)) to control the developed industrial robotic

arms of the company in several different tailor-made automation solutions. NexCom⁶ has

developed a wide range of EtherCAT based robotic solutions such as MiniBOT Robot in Fig-

ure 1.3(b) for educational purposes too, offering a broad selection ofmaster controllers, robot

arms, drives and motors, I/Os, industrial cameras etc.

(a) (b)

Figure 1.3: (a) KR C4 Controller with robotic arm by KUKA and (b)MiniBOT Robot by Nex-
Com.

In the field of haptic – soft robotics and manipulation robotics, Shadow Robot Company ex-

ploited EtherCAT technology to develop a truly anthropomorphic hand. The Shadow Dex-

terous Hand⁷ (Figure 1.4), has 20 actuated degrees of freedom, absolute position and force

sensors, and ultra sensitive touch sensors on the fingertips, providing high precision.

In the field of legged robotics, PALRobotics⁸ has designed TALOS (Figure 1.5(a)), a fully elec-

trical humanoid biped robot that uses torque control in every joint and EtherCAT to tackle

complex industrial tasks. Talos is capable of 6 kg payload in each arm. Similarly, the Depart-

⁵https://www.kuka.com
⁶http://www.nexcom.com
⁷https://www.shadowrobot.com
⁸https://pal-robotics.com

https://www.kuka.com
http://www.nexcom.com
https://www.shadowrobot.com
https://pal-robotics.com

30 CHAPTER 1. INTRODUCTION

Figure 1.4: Shadow Dexterous Hand by Shadow Rob Company

ment of Advanced Robotics of the Italian Istitute of Technology (IIT)⁹ has exploited Ether-

CAT to design and build HyQ2Max quadruped robot [29] (Figure 1.5(b)) which mimics the

robustness and versatility of animals in challenging terrains. In Switcherland, the robotics

company ANYbotics, a spinoff of the famous Robotic Systems Lab in ETH Zurich, along

with the lab have utilized EtherCAT in the design and control of ANYmal quadruped robot

[30] (Figure 1.5(c)).

(a) (b) (c)

Figure 1.5: (a) Talos biped robot by PAL Robotics, (b) HyQ2Max quadruped robot by IIT and
(c) ANYmal robot from ETH.

1.2.4 Real-time Systems Overview

Real-time systems [31] are computing systems that must react within precise time constraints

to events in the environment. As a consequence, the correct behavior of these systems de-

pends not only on the value of the computation but also on the time at which the results are

produced [32]. A reaction that occurs too late could be useless or even dangerous. Examples

⁹https://www.iit.it

https://www.iit.it

1.2. LITERATURE REVIEW 31

of applications that require real-time computing include the following [31]:

• Chemical and nuclear plant control.

• Control of complex production pro-

cesses.

• Railway switching systems.

• Automotive applications.

• Flight control systems.

• Environmental acquisition and moni-

toring.

• Telecommunication systems.

• Medical systems.

• Industrial automation.

• Robotics.

• Military systems.

• Space missions.

• Consumer electronic devices.

• Multimedia systems.

• Smart toys.

• Virtual reality.

In the computer engineering world, as the transition from single process handling to multi

process handling took place, the need for anOperating System tomanage these processes was

apparent. Similarly in the real-time systems world, the need for multi-tasking and scheduling

of multiple prioritized tasks made the shift to Real-Time Operating Systems inevitable.

1.2.5 Real-Time Operating Systems Overview

With the use of an Operating System in real-time systems, there were new and more complex

applications and solutions on the field. Nowadays, many Real-Time Operating Systems are

available in the community. Some of the most popular proprietary RTOSes include [31]:

• VxWorks (byWind River)¹⁰: First released in 1987, VxWorks is designed for use in em-

bedded systems requiring real-time, deterministic performance and safety and security

certification. It is targeted to industries, such as aerospace and defense, medical de-

vices, industrial equipment, robotics, energy, transportation, network infrastructure,

automotive, and consumer electronics.

• ENEA OSE (by ENEA)¹¹: Enea OSE is a robust, high-performance, Real-Time Oper-

ating System optimized for multi-processor systems requiring deterministic real-time

¹⁰https://www.windriver.com
¹¹https://www.enea.com

https://www.windriver.com
https://www.enea.com

32 CHAPTER 1. INTRODUCTION

behavior and high availability. It decreases development time, enhances reliability and

reduces lifetime maintenance costs for a wide range of systems, from wireless devices

and automobiles, to medical instruments and telecom infrastructure.

• Windows CE (by Microsoft)¹²: Windows CE is an operating system developed by Mi-

crosoft and designed for small footprint devices or embedded systems.Some of the de-

vices that run Windows CE include industrial controllers, point of sale terminals, cam-

eras, Internet appliances, cable set-top boxes and communications hubs.

• QNX Neutrino¹³: QNX Neutrino is a Real-Time Operating System used for mission-

critical applications, from medical instruments and Internet routers to telematics de-

vices, process control applications, and air traffic control systems.

• Integrity (by Green Hills)¹⁴: Integrity is a Real-Time Operating System which is built

around a partitioning architecture to provide embedded systems with reliability, secu-

rity, and real-time performance.

Through the years, intensive research in the field of real-time systems has been conducted,

producingmany open-source real-time research kernels, including [31]: CHAOS [33],MARS

[34], Spring [35], ARTS [36], RK [37], TIMIX [38], MARUTI [39], HARTOS [40], YARTOS

[41], HARTIK [42], Erika Enterprise¹⁵, Shark¹⁶, Marte OS¹⁷ and FreeRTOS¹⁸. Recently the

FreeRTOS kernel became an AWS¹⁹ open source project.

Most of the aforementioned kernels didn’t evolve to a commercial product, but they were use-

ful for experimenting novel approaches, some ofwhich are to be integrated in next-generation

operating systems [31].

GNU/Linux as a Free and Open Source Software (FOSS) project has a large active developer

and user community, offering security, maintainability, reliability, stability, frequent updates

and other features. However, it is a general purpose operating system originally designed to

be used in server or desktop environments. For this reason, not much attention has been

given to real-time issues. As a result, a latency of hundreds of milliseconds can be experi-

¹²https://www.microsoft.com
¹³https://blackberry.qnx.com/
¹⁴https://www.ghs.com
¹⁵http://www.erika-enterprise.com
¹⁶http://shark.sssup.it
¹⁷https://marte.unican.es
¹⁸https://www.freertos.org
¹⁹Amazon Web Services

https://www.microsoft.com
https://blackberry.qnx.com/
https://www.ghs.com
http://www.erika-enterprise.com
http://shark.sssup.it
https://marte.unican.es
https://www.freertos.org

1.2. LITERATURE REVIEW 33

enced in real-time activities. This makes common GNU/Linux distributions not suitable for

hard real-time applications with tight timing constraints. On the other hand, making Linux a

Real-Time Operating System would enable the full-power of a real operating system for real-

time applications, including a broad range of open source drivers and development tools. For

this reason, a considerable amount of effort has been given during the last years to provide

GNU/Linux with real-time features. Such efforts include (but are not limited to) [31]:

• RTLinux: RTLinux has been the first real-time extension for Linux, created by Vic-

tor Yodaiken. Wind River Systems acquired the product in February 2007 and made a

version available as Wind River Real-Time Core for Wind River Linux. As of August

2011, Wind River has discontinued the Wind River Real-Time Core product line, ef-

fectively ending commercial support for the RTLinux product. Currently, the version

distributed by Wind River as Wind River Linux could be considered as the continued

RTLinux project.

• RTAI: RTAI²⁰ (Real Time Application Interface) started as a modification of RTLinux

by Paolo Mantegazza at the Dipartimento di Ingegneria Aerospaziale, Politecnico di

Milano, Italy. Through the years, the original idea of RTLinux has been considerably

changed and enhanced. RTAI is now a community project, and the source code is

released as open source.

• Xenomai: The Xenomai²¹ project was launched in August 2001. In 2003 it merged with

the RTAI project to produce a production-grade real-time free software platform for

Linux called RTAI/fusion, on top of Xenomai’s abstract Real-Time Operating System

(RTOS) core. Eventually, the RTAI/fusion effort became independent from RTAI in

2005 as the Xenomai project.

• PREEMPT_RT: PREEMPT_RT²² is a kernel patch to make a Linux system more pre-

dictable and deterministic. It was originally created and developed by Ingo Molnar, a

major contributor to the Linux kernel. Currently, Real-Time Linux, an Open Source

project sponsored by The Linux Foundation²³, was formed to coordinate efforts to

mainline Preempt RT and assist maintainers in continuing development work, long-

term support and future research of RT.

²⁰http://www.rtai.org
²¹http://www.xenomai.org
²²https://wiki.linuxfoundation.org/realtime/start
²³https://www.linuxfoundation.org

http://www.rtai.org
http://www.xenomai.org
https://wiki.linuxfoundation.org/realtime/start
https://www.linuxfoundation.org

34 CHAPTER 1. INTRODUCTION

• SCHED_DEADLINE: SCHED_DEADLINE²⁴ is a Linux kernel patch developed by Ev-

idence s.r.l. in the context of the ACTORS²⁵ European project. It adds a deadline-based

scheduler with resource reservations in the standard Linux kernel.

• Linux/RK: In Linux/RK, the Linux kernel has been directly modified [43, 44] to in-

troduce real-time features. Linux/RK is developed by the Real-time and Multimedia

Systems Laboratory led by Dr. Raj Rajkumar at Carnegie Mellon University.

• LITMUSRT : LITMUSRT ²⁶ is a real-time extension of the Linux kernel with a focus on

multiprocessor real-time scheduling and synchronization. The Linux kernel is modi-

fied to support the sporadic task model, modular scheduler plugins, and reservation-

based scheduling. Clustered, partitioned, and global schedulers are included, and semi-

partitioned scheduling is supported as well. LITMUSRT has been continuously main-

tained by Björn Brandenburg since 2006, and actively developed until 2017.

1.2.6 ROS 2 Overview

1.2.6.1 History of ROS

ROS [45] started as the development environment for the Willow Garage PR2 robot. The

primary goal was to provide the software tools that users would need to undertake novel

research and development projects with the PR2. At the same time, it was desired that ROS

to be useful on other robots. So a lot of effort was given into defining levels of abstraction

(usually through message interfaces) that would allow much of the software to be reused.

Still, it’s characteristics include [45]:

• No real-time requirements (or, any real-time requirements would be met in a special-

purpose manner).

• Excellent network connectivity (either wired or close-proximity high-bandwidth wire-

less).

• Applications in research, mostly academia.

• Maximum flexibility, with nothing prescribed or proscribed.

²⁴http://www.evidence.eu.com/sched_deadline.html
²⁵http://www.actors-project.eu/
²⁶https://www.litmus-rt.org/

http://www.evidence.eu.com/sched_deadline.html
http://www.actors-project.eu/
https://www.litmus-rt.org/

1.2. LITERATURE REVIEW 35

ROS satisfied the PR2 use case, but also was useful on a variety of other robots. Today ROS is

used not only on the PR2 and robots that are similar to the PR2, but also on wheeled robots

of all sizes, legged robots, industrial arms, outdoor ground vehicles (including self-driving

cars), aerial vehicles, surface vehicles, and more.

In addition, ROS is being adopted beyond the academic research that was the initial fo-

cus. ROS-based products are coming to market, including manufacturing robots, agricul-

tural robots, commercial cleaning robots, and others. Government agencies are also looking

closely at ROS for use in their field systems. For instance, NASA is expected to be running

ROS on the Robonaut 2 that is deployed to the International Space Station.

With all these new uses of ROS, the platform is extended. While it is holding up well, there is

a belief that the needs of a now-broader ROS community can be met, by tackling their new

use cases head-on, hence the effort for ROS 2.

1.2.6.2 New Use Cases

The following use cases are of specific interest, for the ongoing and future growth of the ROS

community, in which there wasn’t much consideration at the beginning of the project [45]:

• Teams of multiple robots: while it is possible to build multi-robot systems using ROS

today, there is no standard approach, and they are all somewhat of a hack on top of the

single-master structure of ROS.

• Small embeddedplatforms: small computers, including “bare-metal”micro controllers,

are wanted to be first-class participants in the ROS environment, instead of being seg-

regated from ROS by a device driver.

• Real-time systems: real-time control directly in ROS is a common request, including

inter-process and inter-machine communication (assuming appropriate operating sys-

tem and/or hardware support).

• Non-ideal networks: ROS is expected to behave as well as possible when network con-

nectivity degrades due to loss and/or delay, from poor-qualityWiFi to ground-to-space

communication links.

• Prescribed patterns for building and structuring systems: while the flexibility of ROS is

maintained, there is a need to provide clear patterns and supporting tools for features

such as life cycle management and static configurations for deployment.

36 CHAPTER 1. INTRODUCTION

At the beginning of the ROS project, the above mentioned use cases weren’t the norm, there-

fore they weren’t treated in a canonical frame and the development on these areas was depen-

dent in the way robotics engineers skipped the norm to satisfy their needs. However, with

ROS 2²⁷ there seems to be a different point of view. Specifically in the real-time systems as-

pect, there is an exemplary use case [46, 21] which demonstrates a real-time robotic system,

consisting of real-time computing nodes (with Real-Time Operating Systems) and real-time

communication between them (via TSN protocols), all integrated in the ROS 2 environment.

The results look very promising, however the technology needs to mature and gain sufficient

support from the robotics community.

1.3 Benefits

In this section we highlight the value of our contribution by mentioning the benefits of its

design, as follows:

• EtherCAT utilization: As a real-time network communications protocol, EtherCAT

has a large community of users. In the last years, it has become popular in the robotics

community and in robotics labs for its benefits.

• Integration in ROS: In robotics, the Robot Operating System has become a standard

framework. Software that integrates with it, has profound benefits, like off-the-shelf

libraries, rapid prototyping, modularity, standardization and community support.

• Software onGNU/Linux: There isn’t much to say about the benefits of developing soft-

ware on GNU/Linux. The fact that it’s one of the biggest FOSS projects till today pro-

vides unsurpassed benefits: free code (GNU Public Licence), large user and developer

community.

• Real-time Solution: The proposed design approach utilizes one of the biggest projects

in the real-timeGNU/Linuxworld, namely the PREMPT-RTpatch. Again benefits here

include low maintenance cost, stability and great community for support and develop-

ment.

²⁷https://github.com/ros2/ros2

https://github.com/ros2/ros2

1.4. THESIS STRUCTURE 37

1.4 Thesis Structure

This thesis is organized as follows: In Chapter 2 and Chapter 3, we present the theoretical

background and concepts that our work is based on. In Chapter 4 we analyse the archi-

tecture of our solution and the design decisions made from a higher-level perspective. In

Chapter 5 we demonstrate the main points of our implementation and refer to the problems

we faced during the development process, the proposed workarounds, the optimizations and

the testing. In Chapter 6 we present the experimental evaluation of our solution. Finally, in

Chapter 7 we sum up with concluding remarks, suggested future improvements and alterna-

tive approaches.

38

2
Background in Real-Time&ROS

We are not makers of history. We

are made by history.

Martin Luther King, Jr.

In the two following chapters, the key theoretical elements for the understanding of this

project, are provided. First, several fundamental principles concerning real-time systems

are explained. Next specific areas considering the real-time modification of GNU/Linux, are

analyzed. This chapter concludes with a brief presentation of ROS, the framework in which

the developed project has been written.

2.1 Real-time Systems Concepts

Real-time systems had an astounding impact in the industrial automation field. From avionics

and nuclear plants, to robotics and automotive industry, the need for deterministic systems is

unquestionable. First, a definition of these systems, along with their basic characteristics are

the following:

2.1.1 General Concepts

A real-time system is a system that must satisfy explicit (bounded) response-time

constraints or risk severe consequences, including failure [19].

Consequently, the correctness of the system’s response depends not only on the logical re-

sult but also on the time it was delivered. A real-time system can be distinguished in three

39

40 CHAPTER 2. BACKGROUND IN REAL-TIME & ROS

categories [19]:

• Hard: In hard real-time systems, failure tomeet a single deadline leads to complete and

catastrophic system failure.

• Firm: In firm real-time systems failure to meet a few deadlines will not lead to total

failure, but missing more than a few leads to complete and catastrophic system failure.

• Soft: In soft real-time systems performance is degraded by failure to meet response-

time constraints.

Characteristic differences between hard real-time systems and soft real-time systems are il-

lustrated in the following Table 2.1:

Characteristic Hard real-time Soft real-time (on-line)
Response time Hard-required Soft-desired
Peak-load performance Predictable Degraded
Control of pace Environment Computer
Safety Often critical Non-critical
Size of data files Small/medium Large
Redundancy type Active Checkpoint–recovery
Data integrity Short-term Long-term
Error detection Autonomous User assisted

Table 2.1: Hard real-time versus soft real-time systems [18].

Examples of hard real-time systems include power plant control systems, railway switching

systems, medical systems (e.g. pacemakers), military systems, avionics and electronic en-

gines. Examples of firm real-time systems include most professional and industrial robot

control systems such as the control loops of collaborative robot arms, aerial robot autopilots

and mobile robots, including self-driving vehicles [46]. Examples of soft real-time systems

include live audio-video systems and telepresence robots [46]. An artistic illustration of the

above concepts is presented in Figure 2.1.

Figure 2.1: Spectrum of real-time systems.

Other examples of categories of real-time systems, include fail-safe, fail-operational, guaran-

teed-response, best-effort and more. More information on the matter can be found in [18].

2.2. REAL-TIME TASK SCHEDULING 41

2.2 Real-time Task Scheduling

Note: This section is largely based on [3, 31].

In a conventional operating system, the goal of a scheduler is to optimize a metric (average

latency, average throughput, minimum latency, maximum throughput etc), by assigningwork

to resources. However, in a Real-Time Operating System, tasks have timing constraints and

their execution is bounded to a maximum delay that has to be respected [3]. The objective of

scheduling in this case, is not only to optimize a metric, but also to allow tasks to meet these

timing constraints when the application runs in nominal mode.

Real-time tasks are the basic software activities that are scheduled; they may be periodic or

aperiodic, and have soft, firm or hard real-time constraints [3]. The basic parameters of a

real-time task are depicted in a task model and are presented in Figure 2.2:

• r: The task’s release time (or arrival time), i.e. the triggering time of the task execution

request.

• C : The task’s worst-case computation time, i.e. the time the task is fully allocated to the

processor.

• D: The task’s relative deadline, i.e. the time the task has in order to finish, before it

misses it’s deadline.

• T : The task’s period (this parameter is valid only for periodic tasks).

For a hard real-time task, the relative deadline allows computation of the absolute deadline

d = r +D. Violation of the absolute deadline causes failure.

For the aperiodic tasks, the parameter T doesn’t exist [3]. These four parameters (r, C,D, T)

are sufficient for modelling a periodic task. Each time a task is ready to run, it releases a pe-

riodic request. After the first release time, the next release times (also called request times,

arrival times or ready times) are rk = r0 + kT , where r0 is the first release and rk the k+1th

release. Consequently, the next absolute deadlines are dk = rk+D. A common scenario for a

real-time task, is to have parametersD = T , which implies that the periodic task has a relative

deadline equal to period. The task parameters should always follow this rule: 0 < C≤D≤T .

The precision on defining the above parameters affects also the quality of scheduling, there-

fore their definition is an important aspect of real-time design. If the duration of operations

42 CHAPTER 2. BACKGROUND IN REAL-TIME & ROS

Figure 2.2: A task model [3].

like task switching, system calls, interrupt processing and scheduler execution cannot be ne-

glected, they have to be added to the task computation times. As a result, a deterministic

behavior is required for the kernel, which should guarantee maximum values for these op-

erations. Other useful parameters derived from the four previous parameters (r, C,D, T)

are:

• u = C/T : The processor utilization factor of a task; the inequality u≤1 must hold.

• ch = C/D: The processor load factor; the inequality ch≤1 must hold.

It should be noted that usually, the problem of timing constraints is not the only one that

has to be addressed [31]. Other typical constraints include precedence constraints (there is a

time dependence between two tasks) and resource constraints (software structuresmay require

mutual exclusion).

In general, to define a scheduling problem three sets need to be specified: a set of n tasks

2.2. REAL-TIME TASK SCHEDULING 43

Γ = {τ1, τ2, ..., τn}, a set of m processors P = {P1, P2, ..., Pm} and a set of s types of re-

sources R = {R1, R2, ..., Rs} [31]. In this context, scheduling means assigning processors

from P and resources from R to tasks from Γ in order to complete all tasks under the spec-

ified constraints [47]. This problem, in its general form, has been proved to be NP-complete

[48] and computationally intractable. In order to reduce the complexity of constructing a

feasible schedule, typical approaches found in literatures include: simplification of the com-

puter architecture (i.e. by considering single processor systems), adoption of a preemptive

model, usage of fixed priorities, removal of precedence and/or resource constraints, homo-

geneity in task sets (only periodic or only aperiodic activities), just to name a few [31]. Based

on the assumptions made on the system or on the tasks, the various scheduling algorithms

are classified as follows [31]:

• Preemptive versus Non-preemptive: The running task can / cannot be interrupted at

any time to assign the processor to another active task.

• Static versus Dynamic: Scheduling decisions are based on fixed / dynamic parameters.

• Off-line versus Online: A scheduling algorithm is used off-line / online if it is executed

before tasks activation / executed at runtime.

• Optimal versusHeuristic: An algorithm is said to be optimal if it minimizes a given cost

function defined over the task set. An algorithm is said to be heuristic if it is guided by

a heuristic function in taking its scheduling decisions. The heuristic algorithm doesn’t

guarantee optimality.

Considering these classifications, some of the most popular uniprocessor periodic task sche-

duling algorithms used in real-time operating systems, include:

• Rate Monotonic (RM): This algorithm assigns priorities to periodic tasks according to

their periods [31]. Thismeans that taskswith shorter periodswill have higher priorities.

Since periods are constant, RM is a fixed-priority assignment: a priority Pi is assigned

to the task before execution and does not change over time [31]. In addition, RM is

preemptive: the currently executing task is preempted by a newly arrived task with

shorter period [31]. The fixed-priority assignment makes the RM algorithm easy to

use and simple to understand and implement. However this simplicity comes with a

cost. In [49] it is shown that RM is optimal among all fixed-priority assignments in

the sense that no other fixed-priority algorithms can schedule a task set that cannot

be scheduled by RM. The authors in [49] also calculated the least upper bound of the

44 CHAPTER 2. BACKGROUND IN REAL-TIME & ROS

processor utilization factor for a generic set of n periodic tasks. The schedulability test

for RM is [3, 50]:

U =
n∑

i=1

Ci

Ti

≤ n(21/n − 1)

where Ci is the computation time, Ti is the release period (with deadline one period

later), and n is the number of processes to be scheduled. For example, U ≤ 0.8284 for

two processes. If the number of processes tends towards infinity, this expression tends

towards [50]:

lim
n→∞

n(
n
√
2− 1) = ln 2 ≈ 0.693147 . . .

A study [3] using stochastic methods showed that for random task sets, the proces-

sor utilization has an asymptotic bound of 88% [51], however this bound depends on

knowing the exact task parameters (periods, deadlines) which cannot be guaranteed

for all task sets. The feasibility analysis of the RM algorithm can also be performed us-

ing a different approach, called the Hyperbolic Bound [52, 53]. The test has the same

complexity as the original bound in [49], but it is more permissive, as it accepts task

sets that would be rejected using the original approach. More information regarding

this algorithm can be found in [31, 3] and [54, Chapter 2].

• Earliest Deadline First (EDF):This algorithm assigns priority to tasks according to their

absolute deadline: the task with the earliest deadline will be executed at the highest pri-

ority [31, 3]. As pointed in [55], EDF is optimal among all online algorithms, meaning

that if a task set is not schedulable by EDF, then it cannot be scheduled by any other al-

gorithm. There is a necessary and sufficient schedulability condition for periodic tasks

with deadlines equal to periods, scheduled under EDF [3]:

U =
n∑

i=1

Ci

Ti

≤ 1 (2.1)

The previous inequality shows that a set of periodic tasks with deadlines equal to peri-

ods is schedulable with the EDF algorithm if and only if the processor utilization factor

is less than or equal to 1. A hybrid task set (with periodic and aperiodic tasks) is schedu-

lable with the EDF algorithm if (sufficient condition):

U =
n∑

i=1

Ci

Di

≤ 1 (2.2)

A necessary condition is given by Equation 2.1. Note that Equation 2.1 provides a nec-

2.3. REAL-TIME GNU/LINUX 45

essary and sufficient condition to verify the feasibility of the schedule [54, Chapter 2].

Thus, if it is not satisfied, no algorithm can produce a feasible schedule for that task

set. The EDF algorithm does not make any assumption about the periodicity of the

tasks; hence it can be used for scheduling periodic as well as aperiodic tasks [3]. The

dynamic priority assignment allows EDF to exploit the full CPU capacity, reaching up

to 100% of processor utilization [54, Chapter 2]. When the task set has a utilization

factor less than one, the residual fraction can be efficiently used to handle aperiodic

requests activated by external events. A benefit for using a fixed-priority algorithm like

RM, compared to a dynamic-priority like EDF, is its simple implementation and sup-

port by the hardware and the RTOSes. EDF [54, Chapter 2] is superior in many aspects

[56], generating a lower number of context switches, thus causing less runtime over-

head. Furthermore, using a suitable kernel mechanism for time representation [57],

EDF can be implemented effectively in microprocessors for increased system utiliza-

tion and timely execution of hybrid task sets [58]. Finally, it is worth mentioning that

[31] an interesting feature of EDF during permanent overloads is that it automatically

performs a period rescaling, so tasks start behaving as they were executing at a lower

rate, proven in [59], while under fixed priority scheduling, a permanent overload con-

dition causes a complete blocking of the lower priority tasks.

In conclusion, it is worth mentioning that according to [3] there doesn’t exist an optimal on-

line scheduling algorithm for multiple processors [60]. Therefore the guaranteed optimality

of a real-time scheduling algorithm in uniprocessor systems, i.e. EDF, doesn’t hold in the

multiprocessor systems. Another notable fact is that usually in a realistic scenario, the task

set is not homogeneous, meaning that the above mentioned algorithms must be enhanced

with other approaches to handle non-homogeneous (hybrid) task sets.

2.3 Real-time GNU/Linux

Note: This section is largely based on [5].

GNU/Linux [20] was developed to be a general-purpose operating system based on Unix,

supporting multiple users. However, the objectives of such a system don’t line up with the

requirements of real-time tasks and operations. The main objective of general-purpose oper-

ating systems is the maximization of average throughput, at the expense of latency, while the

main objective of Real-Time Operating Systems is to place an upper bound on latency, at the

expense of average throughput. In general, two major real-time approaches were adopted in

46 CHAPTER 2. BACKGROUND IN REAL-TIME & ROS

GNU/Linux [20, 5]:

• The Co-Kernel Approach: In this approach, a real-time kernel is placed side-by-side

with Linux on the same hardware. In this approach belong the efforts by RTAI and

Xenomai. In this case, all device interrupts are processed by the co-kernel prior to

being processed by the standard kernel, in order for Linux not to postpone them. In this

way, deterministic response time is ensured on the real-time side. Also, usually specific

APIs are needed in order to develop a real-time application in systems following this

approach.

• The Fully Preemptible Kernel Approach: In this approach, the main objective is to

convert Linux itself into a full RTOS. This means that the Linux kernel’s internals are

changed, in order to allow real-time processes to run uninterrupted, without unpre-

dictable or unbounded activities caused by non real-time processes. The Real-Time

Linux (RTL) Collaborative Project¹ is the most relevant open-source solution for this

option [21]. The RTL project is based on the PREEMPT_RT patch and aims to create a

predictable and deterministic environment turning the Linux kernel into a viable real-

time platform. The ultimate goal of the RTL project is to mainline the PREEMPT_RT

patch. The objective of this project is not to create an RTOS based on GNU/Linux, but

to provide real-time capabilities to the Linux kernel. The benefit of this approach, is the

utilization of existing Linux standard tools and libraries without the need for compat-

ibility with specific real-time APIs. Moreover, GNU/Linux has a strong community of

users and developers, which provides frequent OS updates with new technologies and

features [21]. For smaller projects this can be an issue, due to resource limitations [21].

With that in mind, the PREEMPT_RT patch was selected as the best candidate for the de-

velopment of the real-time application, in the context of this thesis. It is worth mentioning

that, like the famous Torvalds/Tanenbaum debate about the obsolescence of monolithic ker-

nels [22], in GNU/Linux there was a long series of debates about various aspects of Linux

kernel design choices. One of the most controversial topics was the question on how to add

real-time extensions to the Linux kernel [23].

2.3.1 The PREEMPT_RT Patch

A few years ago, a great endeavour started in the Linux community. Its ultimate goal was to

convert the Linux kernel into a Real-Time Operating System (RTOS), without the need of a

¹https://wiki.linuxfoundation.org/realtime/rtl/start

https://wiki.linuxfoundation.org/realtime/rtl/start

2.3. REAL-TIME GNU/LINUX 47

microkernel [5]. For achieving this objective, structural changes to the kernel’s internals were

necessary. For instance, the ISRs should not unconditionally preempt processes running on

CPUs and unbounded priority inversion should not be allowed.

Ingo Molnar, a major contributor to the Linux kernel, started his own patch (one among

many efforts) against the mainline kernel in order to add real-time features [5]. He wanted

to enhance the Linux kernel with real-time features that would improve the user’s experience

[5]. Molnar started his RT patch and several other kernel developers joined his project. The

project matured and became a real-time alternative. Features developed in the patch have

been mainlined, including high-resolution timers, kernel lock validation, generic interrupts

for all architectures, robust futexes, and priority inheritance. Currently, the project is con-

tinued under the context of Real-Time Linux Collaborative Project. Head of maintaining

the latest release is Thomas Gleixner and head of maintaining past releases is Steven Rostedt.

Some of these features are described below.

2.3.1.1 Interrupts AsThreads

In the Linux kernel, when a device performs an asynchronous event, it sends an interrupt

signal that preempts the CPU to perform the Interrupt Service Routine (ISR), for the device

that issued the interrupt [5]. Then, the ISR is executed at a higher priority than any user task,

and with interrupts disabled (or masked off) on the CPU. Thus, the ISR can be preempted

only by another interrupt, and only if the ISR re-enables the interrupts. Interrupt work is

normally divided into two parts: top half and bottom half. The top half is implemented by

the interrupt handler. The bottom half is implemented by softirqs, tasklets or work queues

initiated from the top half, or by the interrupt thread in case of threaded interrupt. A device

driver puts as little work as possible into the ISR and pushes other work to a tasklet, a softirq

or a work queue. These methods are analyzed below:

• kernel thread: A kernel thread is a thread residing in the Linux kernel. It can be awak-

ened by an ISR to handle any work left, so that the ISR can return quickly and allow the

process which was preempted, to resume. A kernel thread is similar to other threads in

Linux. For instance, it can be scheduled, have its priority changed or pinned to specific

CPUs, just to name a few operations.

• softirq: A softirq is a service routine that is performed after the return of an ISR and

before resuming the process that was interrupted [5, 61]. If too much work has been

queued in softirq context, the kernel wakes up a kernel thread (ksoftirqd) to finish it.

48 CHAPTER 2. BACKGROUND IN REAL-TIME & ROS

There’s been debate in the Linux kernel community as to what qualifies as “too much

work” [5, 62].

• tasklet: A tasklet has similarities with a softirq, in the sense that it also occurs after

an ISR and before resuming the interrupted process. A tasklet can run on only one

CPU at a time, while a softirq can run simultaneously on two separate CPUs [5, 62].

Tasklets are implemented internally, by a softirq. The softirq function that implements

tasklets, merely ensures that two tasklet functions are not running at the same time [5].

Consequently, tasklets are also executed by a ksoftirqd thread [5]. In a ksoftirqd thread,

softirqs are serviced in the order depicted in Figure 2.3.

• A work queue queues up work to be run in a worker kernel thread. Works are placed

in the work queue to be executed sequentially and the worker kernel thread provides

asynchronous execution of works from it. The work queue works in a FIFO manner,

which means that the worker thread calls the works in turn [5]. Work performed in

a work queue can block or be preempted, which may be desirable in situations where

resources are requested but are not available [63]. Their simplicity are a reason for

utilizing them rather than creating custom kernel threads.

Figure 2.3: Priority order of execution in ksoftirqd thread [4].

In the Linux kernel, ISRs, softirqs and tasklets compose the highest-priority entities. There-

fore when they are executed, they preempt the process which is running on the CPU. This

behavior however introduces high latencies in the system, thus the RT patch transforms all

of them into kernel threads.

2.3. REAL-TIME GNU/LINUX 49

Hard IRQs As Threads: A hard Interrupt Request (IRQ) mainly consists of an Interrupt

Service Routine (ISR). It starts when the interrupt preempts the CPU and lasts until the ISR

returns the CPU back to normal processing [5]. If an ISR preempts a high-priority process in

order to service a lower-priority work, interrupt inversion happens. In Figure 2.4, the latency

introduced by an ISR, which preempts a high-priority process, is illustrated [5]. The latency

includes the two arrows (the context switch latency), in addition to the ISR running time [5].

Figure 2.4: Interrupt inversion [5].

It is evident that the hardware interrupt has to preempt the CPU. However, the RT patchmin-

imizes the time of the interrupt inversion, by converting the interrupt handlers into kernel

threads [5]. In this way, when the interrupt is triggered, the ISR merely wakes up a kernel

thread that will run the registered function by the driver, instead of the ISR running the in-

terrupt handler itself [5]. This threaded interrupt handling by the RT patch, is illustrated in

Figure 2.5.

With the threaded interrupt handling, the preemption of the CPU when an interrupt is trig-

gered is still unavoidable. However, with this handling, there are only two actions performed

before giving the CPU to the previously running task; the interrupt lines are masked and the

interrupt service kernel thread is awakened [5]. Thus, if the awakened thread has higher pri-

ority than the preempted task, then it will preempt again the previously preempted task [5].

Otherwise, the previously preempted task will continue to run [5].

50 CHAPTER 2. BACKGROUND IN REAL-TIME & ROS

Figure 2.5: Threaded interrupt handling [5].

Softirqs As Threads: There are two places where software interrupts are run and preempt

the current thread, as illustrated in Figure 2.6 [61, 5]. One of them is at the end of the process-

ing for a hardware interrupt; it is common for interrupt handlers to raise softirqs, so it makes

sense (for latency and optimal cache use) to process them as soon as hardware interrupts can

be re-enabled [61]. The second option is when kernel code re-enables softirq processing [61].

The final result is that the accumulated softirq work (which can be substantial) is executed in

random intervals and preempts the process which happens to be running at the wrong time;

this was a major latency issue that needed to be addressed.

Until 3.0 kernel, the real-time patches have traditionally pushed all softirq processing into

separate threads, each with its own priority [5, 61]. This allowed, for example, the priority

of network softirq handling to be raised on systems where networking needed real-time re-

sponse; similarly, it could be lowered on systems where response to network events was less

critical [5]. However, the process of tuning the priorities of these threads could be a hard task.

Since 3.6.1-rt1 patch, the handling of softirqs has changed again [61]. When a thread raises a

softirq, the specific interrupt in question (i.e. network receive processing) is remembered by

the kernel [61]. When the thread exits the context where software interrupts are disabled, that

particular softirq (and no others) will be run. This has the effect of minimizing softirq latency

(since softirqs are run as soon as possible) [61]. Equally important is the fact that it also ties

processing of softirqs to the processes that generate them [61]. For instance, a process rais-

2.3. REAL-TIME GNU/LINUX 51

Figure 2.6: Two paths by which softirqs run [4].

ing network-related softirqs will not be obliged to process another process’s timers. Thus, the

work is kept local, non-deterministic behaviors caused by running another process’s softirqs

are avoided, and softirq processing is run with the priority of the process which created the

work [61]. In conclusion, the PREEMPT_RT patch handles differently from the mainline

kernel the time the softirq runs, after there was a hardware interrupt (the first path), yet the

path triggered by the ksoftirqd re-enabling softirq processing (the second path) is mostly the

same between the patch and mainline.

2.3.1.2 Priority Inheritance

Since 2.6.18 kernel, priority inheritance is part of the mainline Linux kernel [5]. The first

entities in the RT patch incorporating the priority inheritance scheme, were the userland

fast mutexes (futex). Nowadays, the futex priority inheritance algorithm is the one used for

internal locks in the RT patch [5]. It should be noted that priority inversion isn’t a problem,

unless it is unbounded, which means that the time the process with higher priority must wait

for the blocked resource, is not predictable [5].

The classic example of unbounded priority inversion consists of three processes,A,B, andC ,

whereA has the highest priority andC has the lowest. C starts first, acquires a lock and then

is preempted byA. A is trying to take the same lock thatC has, but must block and wait forC

52 CHAPTER 2. BACKGROUND IN REAL-TIME & ROS

to release it. A gives the CPU back toC so thatC can finish its work that needed the lock. But

B comes along, preempts C , and runs for some unpredicted amount of time. Consequently,

B is not only preempting the lower-priority process C but also the higher-priority process

A, since A was waiting on C . This is unbounded priority inversion, and it is illustrated in

Figure 2.7 [5].

Figure 2.7: A priority inversion example [6].

Generally, there are various methods to address priority inversion. The RT patch utilizes the

priority inheritance approach [5]. In the classic example illustrated in Figure 2.7, the priority

inheritance approach works this way: C starts first, acquires a lock and then is again pre-

empted by A, then A tries to take the same lock that C has but must block and wait for C to

release it. At this point, the priority inheritance algorithm takes place: C gets the maximum

priority of the processes waiting for the lockC has, so in this example the priority ofA. Con-

sequently,B cannot preempt C , when it wakes up and tries to. Then, C finishes its work that

needed the lock, releases the lock, then A acquires it (as the process with the highest prior-

ity), does its work, sleeps and then B runs as expected. The priority inheritance approach is

illustrated in Figure 2.8.

The priority inheritance algorithm, was first utilized in futexes, solving the problem of un-

bounded priority inversions [5]. The futex is a way to perform locking in user-space without

the need to enter the kernel, apart from cases of contention. It is similar to a mutex, except it

doesn’t make unnecessary system calls [5]. The futex, using sharedmemory and atomic oper-

ations (supported by hardware), acquires and releases mutex locks without the overhead of a

2.3. REAL-TIME GNU/LINUX 53

Figure 2.8: A priority inheritance example [6].

system call (in user-space) [5]. When contention takes place, for instance when a thread waits

for a mutex and needs to sleep, the thread releasing the mutex, notices the thread waiting for

the mutex and makes a system call to wake up the sleeping thread [5].

In order to solve the problemof a blocked orphaned futex (the owner of the futex didn’t release

it and was terminated), robust futex² was invented. In a nutshell, the robust futex has a layout

which the kernel reads and knows what futexes a thread may have on exit [64]. Thus, when a

thread terminates, the kernel can unlock its locked futexes and signal the waiting threads to

wake up [5]. In this way, applications don’t need to bother whether a thread holding a futex

dies and locks up the rest of the application [5].

Futexes can be used among processes, apart from threads, provided they have a piece of shared

memory [5]. POSIXmutexes implement futexes in the latest distributions. More information

regarding futexes, can be found in [64, 65, 66, 67].

2.3.1.3 High-Resolution Timers

Themost essential from all the characteristics that distinguish a real-time system, is the ability

to trigger an event at a specific time (otherwise the term real-time system has lost its meaning)

[5]. Until kernel 2.6, the smallest unit which represented time was the jiffy and the HZ global

variable, represented the hertz of jiffies [5]. The timers used, would create interrupts based

on an amount of jiffies, which in turn were depending on the value of HZ. For instance, if

²https://lwn.net/Articles/177111/

https://lwn.net/Articles/177111/

54 CHAPTER 2. BACKGROUND IN REAL-TIME & ROS

the HZ frequency was 1000, a jiffy had a resolution of 1ms (1/1000) and therefore a timing

event could be scheduled at minimum after 1ms. Moreover, when a jiffy in time would pass,

a timer interrupt was needed to update the jiffy variable [5].

In addition, the timer accounting was done in a timer wheel. The timing events would be

recorded into the timer wheel. The timer wheel consisted of layers of “buckets”. In the first

layer, each bucket represented a future jiffy, with the first layer having 256 buckets. For in-

stance, if an application needed to be notified 20 jiffies into the future, that event would be

recorded into the 20th bucket of the first layer. If the event would be more than 256 jiffies

into the future, it would go to the next layer of buckets, where each bucket represented 256

jiffies. If the event would be more than 65, 536 (256 × 256) jiffies, it would be placed to the

third layer of buckets. When the time would reach the last bucket of the first layer, the events

on the second layer would need to be rehashed into the first layer. The rehashing operation

required the interrupts to be disabled and had O(n) complexity (where n is the number of

items in the bucket for rehashing) [5].

Thomas Gleixner, a major contributor to the RT patch, tried to solve this issue with a new

design of timer infrastructure called hrtimers [5]. He realized that the timers placed into the

timer wheel belonged to two distinct types: action timers and timeout timers. Action timers

are timers that are expected to expire [5]. Applications use action timers regularly, in order

to be notified for events. If the action timer is placed in the upper layers of the timer wheel,

it will get rehashed again and again until it reaches the first layer. The complexity of adding /

removing a timer has O(1) for the timer wheel, however the rehashing has O(n) complexity.

Therefore, the timer wheel isn’t efficient for action timers, since these timers require more

rehashings than additions / deletions.

On the other hand, timeout timers are ideal for the timerwheel [5]. Timeout timers are timers

that fire if an event was missed. For example, the network stack in Linux uses many timeout

timers. For instance, a timeout timer will fire when a packet didn’t arrive in time, thus telling

the kernel that another acknowledgment should be sent [5]. These timers are added / removed

constantly, therefore these operations should have as low overhead as possible. Consequently,

the timer wheel is a good match for the timeout timers [5].

As a result, hrtimers handled the action timers and the timeout timers remained in the timer

wheel [5]. The hrtimer infrastructure uses a red / black tree instead of hashes. Thus, the

complexity for adding / removing nodes becomes O(logn). The first node of the tree can be

2.4. REAL-TIME SCHEDULING IN GNU/LINUX 55

found inO(1) time, with the help of hooks introduced by the algorithm on the tree. However,

the major advantage of using this tree, is that the nodes in it are sorted, which translates to

no cost of rehashing, on the contrary to the timer wheel. The hrtimer infrastructure was

mainlined in Linux 2.6.18. After many improvements, the O(1) scheduler eventually was

replaced by the Completely Fair Scheduler (CFS), which is the default process scheduler used

in GNU/Linux ever since kernel 2.6.23 [68]. More information regarding the hrtimers, can

be found in [69, 70, 5].

Detailed overview of characteristics and features of the PREEMPT_RT patch can be found in

[71, 72, 73, 5], [74, Chapter 17] and [75, Chapter 16].

2.4 Real-time Scheduling in GNU/Linux

Note: This section is largely based on [76].

In Section 2.2, the real-time scheduling algorithms were briefly introduced. In this section,

this information is specialized in the context of GNU/Linux, as the ground base of the fol-

lowed implementation scheme.

As it has been stated in Subsubsection 2.3.1.3, since Linux 2.6.23, the default scheduler is the

Completely Fair Scheduler (CFS), which replaced the earlierO(1) scheduler. The scheduler is

the kernel component that decides which runnable thread will be executed by the CPU next.

In this section, the reader is assumed to be familiarwith basic knowledge of the default process

priorities and simple system calls for changing scheduling policies, like nice(). If this is not the

case, a concise explanation of these matters can be found in [76]. The behavior of the Linux

scheduler with respect to a process depends on the process’s scheduling policy, also called the

scheduling class [76]. Apart from the normal policies, GNU/Linux provides also three real-

time scheduling policies, since kernel 3.14.

A preprocessor macro from the header <sched.h>³ represents each policy: the macros are

SCHED_FIFO, SCHED_RR, SCHED_DEADLINE, SCHED_BATCH, SCHED_NORMAL and SCHED_-

IDLE. A static priority is assigned to every process, not to be confused with the nice value.

For normal (non real-time) processes, this priority is 0 [76]. For the real-timeprocesses except

the deadline-classed ones, its range is [1 - 99]. Since the deadline class is a dynamic priority

policy, a static priority cannot apply to it, and therefore for consistency reasons this priority

³https://github.com/torvalds/linux/blob/master/include/uapi/linux/sched.h

https://github.com/torvalds/linux/blob/master/include/uapi/linux/sched.h

56 CHAPTER 2. BACKGROUND IN REAL-TIME & ROS

is 0 for the deadline-classed processes.

The Linux scheduler always selects the highest-priority process to run (i.e. the one with the

largest numerical static priority value) [76]. For example, if a process with a priority of 41

becomes runnable and a process is running with a static priority of 40, then the scheduler will

immediately preempt the running process and switch to the newly runnable process [76]. In

the same manner, if a process is running with a priority of 40, and a process with a priority of

39 becomes runnable, the scheduler will not run it until the process with priority 40 somehow

blocks (i.e. I/O or sleeps or waits for an event). Since normal processes have a static priority

of 0, any real-time process that becomes runnable will always preempt a normal process and

then run [76].

Moreover, the deadline-classed processes, since they have dynamic priorities, have higher

priority even than real-time classed processes like FIFO and RR. Although this section should

discuss only the real-time scheduling policies, the non real-time scheduling classes are briefly

described for completion.

2.4.1 The first in, first out policy

The first in, first out (FIFO) class is a real-time policy without timeslices. A FIFO-classed pro-

cess will continue running as long as no higher-priority real-time process becomes runnable

[76]. The FIFO class is represented by the macro SCHED_FIFO.

One of the characteristic features of the FIFO class, is its lack of timeslices, which distin-

guishes this class from the RR class (see Subsection 2.4.2). Since a FIFO-classed process has

real-time policy, once it becomes runnable, it will immediately preempt a normal process.

Generally, a runnable FIFO-classed process will always run if it’s the process with the highest

priority. However there are cases in which this doesn’t happen, for instance if this process

blocks, yields the processor in which it’s running or a real-time process with higher priority

becomes runnable [76]. The FIFO class can implement the Rate Monotonic (RM) algorithm

briefly introduced in Section 2.2. This is accomplished by assigning to each real-time FIFO-

classed process a static scheduling policy, inversely proportionate to its period time⁴. More

information regarding the FIFO class can be found in [76].

⁴https://elinux.org/images/f/fe/Using_SCHED_DEADLINE.pdf

https://elinux.org/images/f/fe/Using_SCHED_DEADLINE.pdf

2.4. REAL-TIME SCHEDULING IN GNU/LINUX 57

2.4.2 The round-robin policy

The round-robin (RR) class is almost the same with the FIFO class, except that it imposes

additional rules in the case of processes with the same priority. This class is represented by

the SCHED_RRmacro. The distinctive feature the RR class has, is the timeslice. When an RR-

classed process exhausts its timeslice, another process with the same priority is scheduled. In

this way, RR-classed processes of a given priority are scheduled round-robin among them-

selves. If there is only one process at a given priority, the RR class is identical to the FIFO

class. In such a case, when its timeslice expires, the process simply resumes execution [76].

The decision whether to use SCHED_FIFO or SCHED_RR is entirely dependent on the intra-

priority process behavior. The RR class’s timeslices are relevant only among same-priority

processes. FIFO-classed processes will run uninterruptible, while RR-classed processes with

the same priority will schedule among themselves. A lower-priority process will never run if

a higher-priority process exists, whichever policy is chosen [76].

2.4.3 The deadline policy

The deadline class is inherently different from the other two real-time classes (FIFO & RR).

The static priorities of the processes in this class are 0, since the algorithm this class represents,

assigns dynamic priorities to processes. The implemented algorithm is EDF (briefly described

in Section 2.2), complemented by Constant Bandwidth Server (CBS) [77, 78, 79] along with

Greedy Reclamation of Unused Bandwidth (GRUB) algorithms [80, 81, 82, 83].

The CBS algorithm assigns scheduling deadlines to tasks so that each task runs for at most its

runtime every period, avoiding any interference between different tasks (temporal isolation).

TheGRUB algorithm allows tasks to consumemore than their reserved runtime, up to amax-

imum fraction of the CPU time (so minimum spare CPU time exists for execution of other

tasks), provided this doesn’t break the guarantees of other tasks. This class is represented by

the SCHED_DEADLINEmacro. It was developed by Evidence s.r.l.⁵ in collaboration with ReTiS

Lab of Scuola Sant’Anna within the ACTORS⁶ European project and it was incorporated in

the mainline kernel, since version 3.14 [31].

In a nutshell, a process in this class is defined with three scheduling parameters (defined in

nanoseconds):

⁵http://www.evidence.eu.com/sched_deadline.html
⁶http://www.actors-project.eu/

http://www.evidence.eu.com/sched_deadline.html
http://www.actors-project.eu/

58 CHAPTER 2. BACKGROUND IN REAL-TIME & ROS

• Runtime

• Deadline

• Period

These parameters (Runtime, Deadline, Period) do not necessarily correspond to the parame-

ters defined in Subsection 2.1.1 (r, C,D, T); common practice is to set Runtime to something

bigger than the average computation time (or worst-case execution time for hard real-time

tasks) C , Deadline to the relative deadline D, and Period to the period of the task, T . Thus,

for this scheduling class, the scheduling parameters are presented in Figure 2.9:

Figure 2.9: The usual task model of a real-time task defined with the Linux deadline-class pa-
rameters.

If the Period is specified as 0, then it is made the same as Deadline. In general the kernel

requires the following inequalities to hold:

Runtime ≤ Deadline ≤ Period

In addition, under the current implementation, all of the parameter values must be at least

1024, which is just over one microsecond (there cannot be a resolution of less than a mi-

crosecond in these parameters), and less than 263. If any of the above mentioned checks fails,

the process will receive an error by the kernel [84].

2.4. REAL-TIME SCHEDULING IN GNU/LINUX 59

To ensure deadline scheduling guarantees, the kernel must prevent situations where the set of

deadline-classed processes is not feasible (schedulable) within the given constraints. The ker-

nel thus performs an admittance test when setting or changingDeadline policy and attributes.

This admission test calculates whether the change is feasible and if it is not, the process will

receive an error by the kernel [84].

For example, it is required (but not necessarily sufficient) for the total utilization to be less than

or equal to the total number of CPUs available, where that process’s utilization is its Runtime

divided by its Period (since each process can maximally run for Runtime per Period). More

information about this class can be found in [85, 86, 87, 88, 89, 90, 91, 92, 84], and in the

material below⁷ ,⁸.

2.4.4 The normal policy

The normal policy is the standard scheduling policy and the default non real-time class [76].

This policy is represented by SCHED_NORMAL. All normal-classed processes have a static pri-

ority of 0 (unrelated with their nice value). Consequently, any runnable real-time (FIFO, RR,

Deadline) classed process will preempt a running normal-classed process. Processes with

normal policy, are scheduled based on their nice value [76].

2.4.5 The batch policy

This policy is represented by SCHED_BATCH. It’s the complete opposite of the real-time poli-

cies: processes in this class will run only when there are no other runnable processes on the

system, even if every other process has exhausted its timeslice [76]. This behavior is different

from the behavior of processes with the largest nice values (i.e. the lowest-priority processes)

in that eventually such processes will run, as the higher priority processes will eventually ex-

haust their timeslices [76].

2.4.6 The idle policy

This policy is represented by SCHED_IDLE. It is a policy for scheduling low priority jobs. All

idle-classed processes have a static priority of 0 (unrelated with their nice value). This policy

is intended for running processes at extremely low priority (lower even than a+19 nice value

with the normal or batch policies) [84]. Ιt was mainlined in kernel version 2.6.23.

⁷https://ti.tuwien.ac.at/ecs/teaching/courses/brds/slides-1/rt-linux
⁸http://retis.santannapisa.it/ luca/TuToR/

60 CHAPTER 2. BACKGROUND IN REAL-TIME & ROS

More technical information on the scheduling policies in Linux, can be found in [84, 93].

2.5 Robot Operating System (ROS)

Note: This section is largely based on [7]. A basic definition of ROS, is provided in the ROS

Wiki:

ROS is an open-source, meta-operating system for your robot. It provides the ser-

vices you would expect from an operating system, including hardware abstraction,

low-level device control, implementation of commonly-used functionality, message-

passing between processes, and package management. It also provides tools and

libraries for obtaining, building, writing, and running code across multiple com-

puters⁹.

In other words, ROS is a robot software platform that provides numerous development tools

and libraries for easy development of robot applications [7].

ROS is a meta-operating system [7]. This term describes a system that provides functionali-

ties like processmanagement, scheduling,monitoring,memorymanagement, error handling,

communication primitives and operability by utilizing a virtualization layer among applica-

tions and distributed computing platforms, while running on top of a traditional operating

system [7]. This type of software is also called middleware or software framework.

ROS is officially supported to run on top of Ubuntu or Debian [7]. In addition, it has its own

application package management system and package conflict resolution. That said, the ver-

satility and plentitude of the different robot application programs developed and maintained

by the ROS community, have created an ecosystem that provides distributed packages peer-

reviewed and peer-developed. In Figure 2.10, ROS as a meta-operating system is illustrated,

controlling robots and sensors with a hardware abstraction layer and offering the tools and

libraries for developing robot applications based on existing traditional operating systems [7].

2.5.1 Components of ROS

As shown in Figure 2.11¹⁰, ROS consists of many components including [7]:

⁹https://www.ros.org/
¹⁰https://wiki.ros.org/APIs

https://www.ros.org/
https://wiki.ros.org/APIs

2.5. ROBOT OPERATING SYSTEM (ROS) 61

Figure 2.10: The ROS Meta-Operating System [7].

• A client library layer to support various programming languages.

• A hardware interface layer for hardware control (also called Hardware Abstraction

Layer or HAL).

• A communication layer enabling data transmission between different components in

the ROS environment.

• The Robotics Application Framework which aids at building Robotics Applications.

• The Robotics Applications, service applications which aid in developing custom appli-

cations in ROS.

• Simulation tools which can simulate robots in virtual environments.

• Software Development Tools which facilitate the development and debugging of appli-

cations.

2.5.2 Basic ROS Terminology

In this subsection fundamental ROS terms are briefly described¹¹.

Master: Themaster¹² is the main component of the ROS environment. It behaves like a name

¹¹https://wiki.ros.org/ROS/Concepts
¹²https://wiki.ros.org/Master

https://wiki.ros.org/ROS/Concepts
https://wiki.ros.org/Master

62 CHAPTER 2. BACKGROUND IN REAL-TIME & ROS

Figure 2.11: ROS Components [7].

server for the node to node connections and communications. It is responsible for book-

keeping the address, name, status and other information of topics, services, nodes and actions.

Without the master, the connection among nodes and the communication via mechanisms

like topics, services and actions, is impossible. The master communicates with slaves using

the XML-RPC (XML-Remote Procedure Call) protocol [94]. This is anHTTP-based protocol

that does not maintain connectivity, allowing it to be lightweight, therefore making it suitable

for robotic applications. It can be scaled to tenths or even hundreds of nodes [7].

Node: A node¹³ is in ROS what is a process in a traditional UNIX operating system; a process

that performs computation. It is typical in ROS, every node to have a specific task to ac-

complish. For example in a robot control system, one node will control a laser range-finder,

one will control the wheel motors, another will perform localization and so on. Their use

is important in ROS, as they provide modularity and fault tolerance. If one fails, the others

will continue to work. A master is also a node. However, if the master crashes, the ROS

environment can not work properly, as previously described. Upon startup, a node registers

information such as name, message type, URI address and port number of the node. The

registered node can act as a publisher, subscriber, server, client, action server, action client

or a mixture of the above based on the registered information. Lastly, nodes can exchange

messages using topics and services [7].

¹³https://wiki.ros.org/Nodes

https://wiki.ros.org/Nodes

2.5. ROBOT OPERATING SYSTEM (ROS) 63

Package: ROS software is organized in packages¹⁴. A package may contain multiple ROS

nodes, custom (independent of ROS) libraries, third-party developed libraries, configuration

files, which constitute a coherent module [7]. The goal of these packages is to provide this

useful functionality in a modular manner so that software can be easily reused. Packages

should have enough functionality in them, making them reusable by other software but not

too much making them heavyweight.

Message: The nodes exchange data via messages¹⁵. A message is a simple data structure,

comprising of typed fields. Standard primitive types (integer, boolean, string, floating point,

etc.) are supported, as are arrays of primitive types and there is no limitation in the number

of fields defined [7].

Topic: Topics¹⁶ are named buses over which nodes exchange messages [7]. The standard

process for using topics is as follows: the publisher node first registers its topic with themaster

and then starts publishing messages on a topic. Subscriber nodes that want to receive the

topic, request from the master to subscribe them to the topic with the specific name. The

specified name plays an important role in this process, as there cannot be multiple topics

with the same name. Based on this information, the subscriber node directly connects to the

publisher node to exchange messages using topics [7].

Publish andPublisher: The term publishmeans the action of transmitting relative to the topic

messages [7]. The publisher node communicates with themaster and registers its information

and topic. Then, it sends a message to connected subscriber nodes that are interested in the

same topic [7]. The publisher is declared in a node. A node can have many publishers that

publish to the same (or different) topic [7].

Subscribe and Subscriber: The term subscribe means the action of receiving relative to the

topicmessages [7]. The subscriber node communicates with themaster and registers its infor-

mation and topic [7]. Then, receives information from themaster related to the publisher that

publishes to the relative topic [7]. Based on the received publisher information, the subscriber

node directly connects to the publisher node and receives messages from the connected pub-

lisher node [7]. The subscriber is declared in a node. A node can have many subscribers that

subscribe to the same (or different) topic [7].

¹⁴https://wiki.ros.org/Packages
¹⁵https://wiki.ros.org/Messages
¹⁶https://wiki.ros.org/Topics

https://wiki.ros.org/Packages
https://wiki.ros.org/Messages
https://wiki.ros.org/Topics

64 CHAPTER 2. BACKGROUND IN REAL-TIME & ROS

Service: A service¹⁷ provides a synchronous bidirectional communication between the service

client, which requests a service, and the service server, which is responsible for responding to

requests [7].

Service Server: A service server receives a request as an input and transmits a response as an

output [7]. Both request and response are in the form of messages [7].

Service Client: A service client requests a service to the server and receives a response [7].

Both request and response are in the form of messages [7].

Action: The action¹⁸ is another message communication method used for asynchronous bidi-

rectional communication [7]. Action is used where there is some time for providing a re-

sponse after receiving a request and intermediate feedback responses are provided until the

result is returned [7]. The main difference with services is that actions are representing asyn-

chronous events and processes, whilst services are more close to the traditional definition of

a server, communicating in a synchronous manner.

Action Server: An action server receives a goal from an action client and responds with a

result and/or feedback [7]. The process the server follows can be programmatically defined.

The goal, result and feedback are all in the form of messages.

Action Client: An action client transmits a goal to a server and receives a result and/or feed-

back [7]. The goal, result and feedback are all in the form of messages.

Parameter: A parameter¹⁹ in ROS refers to parameters used by nodes [7]. The parameters

have default values, which can be modified if necessary [7]. These parameters are stored in

the memory of the parameter server node, and are retrieved or modified with communica-

tion with this server, via the master [7]. Since the concept of parameters is not designed for

high-performance or real-time performance, it is best used for static, non-binary data such

as configuration parameters.

Parameter Server:

TheParameter Server is loaded in themaster, and is responsible for storing parameters, which

nodes use (read or modify) [7].

¹⁷https://wiki.ros.org/Services
¹⁸https://wiki.ros.org/actionlib
¹⁹https://wiki.ros.org/ParameterServer

https://wiki.ros.org/Services
https://wiki.ros.org/actionlib
https://wiki.ros.org/Parameter Server

2.5. ROBOT OPERATING SYSTEM (ROS) 65

2.5.3 Message Communication in ROS

The message communication mechanisms in ROS are presented here with more details, since

they will be useful for understanding the design decisions made in this work. The differ-

ent message communication primitives are illustrated in Figure 2.12 and a summary of their

differences is presented in Table 2.2.

Figure 2.12: Message Communication between Nodes [7].

Table 2.2: Comparison of the Topic, Server, and Action [7].

Type Features Direction Description
Topic Asynchronous Unidirectional Used when exchanging data continuously
Service Synchronous Bi-directional Used when request processing requests and

responds current states
Action Asynchronous Bi-directional Used when it is difficult to use the service

due to long response times after the request
or when an intermediate feedback value is
needed

2.5.3.1 Topic

The topic message communication uses the same type of message for both publisher and sub-

scriber as shown in Figure 2.13 [7]. The publisher node registers its information and topic to

66 CHAPTER 2. BACKGROUND IN REAL-TIME & ROS

the master and publishes its messages. The subscriber node receives the information of the

publisher node corresponding to the specific topic name registered in the master. Based on

this information, the subscriber node directly connects to the publisher node to receive the

messages published [7].

Figure 2.13: Topic Message Communication [7].

For example, the node responsible for controlling the LiDAR sensor²⁰, retrieves the scans

and publishes them in the form of messages (in this case the LaserScan type of messages²¹),

typically in the topic /scan. Then the node that wants these messages, e.g. for localization

like amcl²², will subscribe to the topic and after it receives the proper information from the

master, it connects to the publisher node and receives the messages.

Since topics are unidirectional and remain connected (TCP connection is used under the

hood) to continuously send or receive messages, they are useful in situations which require

publishing messages periodically [7]. A message from a publisher can be received my many

subscribers and vice versa [7]. Connections with multiple publishers / subscribers can be

created too [7].

2.5.3.2 Service

The service message communication is a synchronous and bidirectional communication be-

tween the service client, requesting a service, and the service server, responding to the request

as shown in Figure 2.14 [7]. The topic, is an asynchronous method which is advantageous on

periodical data transmission since it is unidirectional and creates and keeps a connection [7].

²⁰https://en.wikipedia.org/wiki/Lidar
²¹https://docs.ros.org/melodic/api/sensor_msgs/html/msg/LaserScan.html
²²https://wiki.ros.org/amcl

https://en.wikipedia.org/wiki/Lidar
https://docs.ros.org/melodic/api/sensor_msgs/html/msg/LaserScan.html
https://wiki.ros.org/amcl

2.5. ROBOT OPERATING SYSTEM (ROS) 67

Figure 2.14: Service Message Communication [7].

On the other hand, in ROS there is a need for synchronous communication which uses re-

quest and response, much like a traditional DNS server and client [7]. ROS satisfies this need

by providing a synchronized message communication method called service [7]. A service

consists of a service server that responds to a received request and a service client that sends

requests and receives responses. A service implements one time message communication,

which differentiates it from a topic [7]. Consequently, when the request and response of a

service are completed, the connection between the two nodes is lost [7].

A typical scenario for using services, is a ROS node that wants to start another node, so it

sends a service request to a service server (similar to a daemon in a UNIX OS) which is active

and in its turn wakes up the requested node. As an example, a client sends a request for

the current time to a server, as shown in Figure 2.14 [7]. Then, the server will check the

time and respond to the client [7]. After the bidirectional communication, connection is lost

[7]. Usually there shouldn’t be a delay in the server’s response. The decision for utilizing

the service mechanism over other mechanisms, leads to deciding whether there should be

synchronous communication between two nodes in the context of the well-known client-

server communication model.

2.5.3.3 Action

The action message communication is an asynchronous and bidirectional communication be-

tween the action client requesting a goal and the action server responding to the goal as shown

in Figure 2.15.

68 CHAPTER 2. BACKGROUND IN REAL-TIME & ROS

Figure 2.15: Action Message Communication [7].

Actions are used when a requested goal takes a long time to be completed, therefore progress

feedback is necessary. It is similar to a service, but the key difference between them is the

asynchronicity which characterizes the actions. The message transmission method is similar

to the asynchronous topic [7].

For example, as shown in Figure 2.15, a client sets home-cleaning tasks as a goal to the server.

Then, the server informs the user of the progress of these tasks in the form of feedback, and

finally sends the final result to the client [7]. Unlike the service, the action is often used to

command complex robot tasks such as canceling transmitted goal while the operation is in

progress. In addition, a typical scenario in which actions are used in ROS is the package

responsible for moving the robot, namely the move_base²³, which provides a node that im-

plements an action server: it accepts a new goal in the form of a new desired pose of the robot,

sends feedback of the current pose of the robot and returns the result pose if the goal pose

was accomplished.

Nodes in ROS can havemultiple publishers, subcribers, service clients / servers, action clients

/ servers and communicate with other nodes [7]. In order for the nodes to exchange mes-

²³https://wiki.ros.org/move_base

https://wiki.ros.org/move_base

2.5. ROBOT OPERATING SYSTEM (ROS) 69

sages among themselves, the master is necessary for establishing a connection, as shown in

Figure 2.16 [7].

Figure 2.16: Message Communication [7].

A master behaves similarly to a name server as it keeps names, URI addresses, port numbers

and parameters of all the nodes, topics, services and actions [7]. Nodes register their own

information to the master as soon as they are launched, and receive relative information from

the master for other nodes [7]. Then, each node connects to each other to perform message

communication [7].

70

3
Background in EtherCAT

Technology is a useful servant but a

dangerous master.

Christian Lous Lange

In this chapter, the key theoretical elements for the understanding of this work are provided.

At first, the architecture and functionality of EtherCAT, a central component of this project,

is described. This is followed by an analysis of EtherCAT masters in GNU/Linux, focusing on

their virtues and drawbacks.

3.1 EtherCAT Technology

Note: This section is largely based on [16, 17].

3.1.1 EtherCAT characteristics

Ethernet for Control Automation Technology (EtherCAT)¹ belongs to the Ethernet based

fieldbus systems category. Apart from leveraging Ethernet technology, its main features in-

clude short cycle times and low communication jitters [1, Chapter 38].

EtherCAT networks adopt themaster/slave approach and form ring topologies² at the physical

level [16, Chapter 18]. The master/slave approach implies that there is only one master in an

EtherCAT network [16, Chapter 18]. A characteristic example of EtherCAT’s utilization is

the connection of control units (e.g PLCs) to decentralized peripherals (e.g. sensors, actu-

¹https://www.ethercat.org/default.htm
²https://en.wikipedia.org/w/index.php?title=Ring_network&oldid=887240057

71

https://www.ethercat.org/default.htm
https://en.wikipedia.org/w/index.php?title=Ring_network&oldid=887240057

72 CHAPTER 3. BACKGROUND IN ETHERCAT

ators) [16, Chapter 18]. Another feature of EtherCAT is its interoperability with traditional

(e.g. TCP/IP stack) as well as other real-time Ethernet (RTE) protocols, like Ethernet/IP and

PROFINET [16, Chapter 18].

In an EtherCAT network, the EtherCAT traffic is controlled by the master node [16, Chap-

ter 18]. The master initializes the network for data transmission, by preparing the data ex-

changes with the slaves [16, Chapter 18]. Each slave processes the received frame in order

to extract/insert data from/into it [16, Chapter 18]. Then, the frame is forwarded to the next

slave in the ring, as illustrated in Figure 3.1 [16, Chapter 18].

Figure 3.1: EtherCAT typical topology, with the on-the-fly frame processing [1, Chapter 38].

3.1.2 Physical Layer

A distinctive feature of EtherCAT, is its famous processing on-the-fly, done in the data link

layer of the slaves. This feature ensures high performance, however, in order to achieve this,

tasks like frame processing and relaying need to happen in parallel in hardware. Conse-

quently, specialized hardware called EtherCAT Slave Controllers (ESCs) is used on the slave’s

side. The communication is accomplished by the frame passing through a slave with only a

minimum delay, and while passing, the slave hardware (ESC) reads the data that is addressed

to it and writes a response [16, Chapter 18]. The frame continues to the next slave which

reads and writes in the same way, and so on until the frame has passed the last slave [16,

3.1. ETHERCAT TECHNOLOGY 73

Chapter 18]. At this point the frame turns around and takes the same way back as it came³

(ring topology) [16, Chapter 18]. When received, the master reads the entire frame and takes

actions according to the slaves’ information [16, Chapter 18].

The EtherCAT protocol can be used in many network topologies (e.g. star), although the

one-frame/many-slaves concept requires the topology to be reducible to a logical line (e.g. a

simple line, or a more complex tree) [16, Chapter 18]. The key to this concept is that a frame

can only travel one way through all slaves, in a well-defined order. Apart from Ethernet,

EtherCAT supports EBUS as a physical layer, however, in this thesis the Ethernet physical

layer is used. More information regarding the Physical Layer of EtherCAT can be found in

[16, Chapter 18].

3.1.3 Data Link Layer

Thedesign of theData Link Layer of EtherCAT aimed to leverage the available Ethernet band-

with as well as to achieve qualitative communication between master and slaves.

Note: The terms octet and byte are used interchangeably. The reason there are two terms with

the same meaning (an entity with 8 bits of data), is that the former is clearly describing an

entity with 8 bits of data, while the latter historically has been used to describe entities with

variable amount of bits⁴.

3.1.3.1 Frame Format

In an EtherCAT network, the propagated frames, are standard Ethernet frames with Ether-

CAT frames encapsulated in the data field (payload). As a result, the following Ethernet fields

are also included (Figure 3.2):

• Preamble (8 bytes)⁵.

• Destination and source MAC addresses (6 bytes each).

• EtherType (2 bytes, set to 0x88A4 to distinguish them from non-EtherCAT frames).

• Frame check sequence (FCS, 32 bits).

³although through a different wire, in the case of full-duplex Ethernet technology.
⁴https://en.wikipedia.org/w/index.php?title=Byte&oldid=896613432
⁵“An Ethernet frame starts with a seven-octet preamble and one-octet start frame delimiter (SFD). The

preamble consists of a 56-bit (seven-byte) pattern of alternating 1 and 0 bits, allowing devices on the network to
easily synchronize their receiver clocks, providing bit-level synchronization. It is followed by the SFD to provide
byte-level synchronization and to mark a new incoming frame.” [95].

https://en.wikipedia.org/w/index.php?title=Byte&oldid=896613432

74 CHAPTER 3. BACKGROUND IN ETHERCAT

• Inter-frame gap.

The EtherCAT frame, encapsulated in the payload of the Ethernet frame, contains:

• An EtherCAT frame header (2 bytes).

• One or more EtherCAT datagrams.

Figure 3.2: EtherCAT Frame Structure [8].

The EtherCAT frames are concatenated, without intermediate gaps between them [16, Chap-

ter 18]. With the last EtherCAT frame, the payload of the Ethernet frame is completed, unless

its total size is 63 octets or less [16, Chapter 18]. In such a case, the payload is padded with

extra 0 bits, so as to have 64 octets, as required by the Ethernet specifications [16, Chapter 18].

The last filed of the Ethernet frame is CRC, which is necessary for checking the integrity of

the frame (from the master and the slaves) [16, Chapter 18].

3.1.3.2 EtherCAT datagram Format

As shown in Figure 3.3, each EtherCAT datagram consists of the following fields:

• The Datagram Header, which has valuable information for the EtherCAT datagram,

including:

– The type of the service command (Cmd).

– The address of the slave, to which the datagram is targeted to (Address).

– The length of the EtherCAT datagram field Data (Len).

3.1. ETHERCAT TECHNOLOGY 75

– A bit showing if there are more EtherCAT datagrams after the current datagram

(M).

• The Data field, which can have variable-sized data (0 to 1486 bytes) and includes the

information to be exchanged.

• The working counter (WKC), which is used for checking if a command has been suc-

cessfully executed by the relevant slaves.

Figure 3.3: EtherCAT datagram structure [9].

Regarding the Cmd field, there exist different types of commands, which can be used to carry

out highly optimized read and write operations on slaves [16, Chapter 18]. Generally speak-

ing, they can be grouped according to the access type [16, Chapter 18]:

• Read (RD) is used by the master to read memory areas or registers from slave devices

76 CHAPTER 3. BACKGROUND IN ETHERCAT

[16, Chapter 18].

• Write (WR) is used by the master to write to memory areas or registers of slave devices

[16, Chapter 18].

• Read/Write (RW) is used by the master to carry out both a read and a write operation

at the same time; in this case, reading is performed by the slave before writing [16,

Chapter 18].

• Read/Multiple Write (RMW) is used by the master to carry out a read operation to

the addressed slave and a write operation to all the other slaves on the network [16,

Chapter 18]. This type of command isn’t so common.

Further details on the service commands and the EtherCAT datagram internals can be found

in [16, Chapter 18],[1, Chapter 38] and [9].

3.1.3.3 SyncManager

In order to exchange data, the master and the application running on the slave access the

ESC’s memory [16, Chapter 18]. As a result, concurrency problems may arise if simultaneous

access is performed without restriction [16, Chapter 18]. To solve this problem, EtherCAT

provides the mechanism of SyncManagers [16, Chapter 18]. They are implemented in the

ESC hardware and are configured by the master [16, Chapter 18].

Both the communication direction and the communication mode can be chosen [16, Chap-

ter 18]. Each SyncManager uses a buffer in the local memory area for exchanging data and

transparently controls all accesses to the buffer [16, Chapter 18]. The buffer changes take

effect immediately after the reception of the end of the frame [16, Chapter 18].

In a nutshell, SyncManagers support two communication modes:

1. Buffered Mode (or Process Data): This mode is real-time capable [16, Chapter 18]. In

this mode, the producer and the master operations are independent, which means that

each entity can access the buffer any time without causing concurrency problems [16,

Chapter 18]. The consumer is always provided with the newest data [16, Chapter 18].

In case data are written to the buffer faster than they are read, old data are discarded

[16, Chapter 18]. Cyclic process data exchange constitutes the main use of this mode

[16, Chapter 18]. This mode is also known as 3-buffer mode, since three buffers of

identical size are used [16, Chapter 18]. The first is used by the producer (for writing),

3.1. ETHERCAT TECHNOLOGY 77

the second by the consumer (for reading) and the third is used for intermediate storage

[16, Chapter 18].

2. Mailbox Mode: The Mailbox is used for sending larger pieces of data [16, Chapter 18].

They are guaranteed to reach their destination, however real-time guarantees cannot be

given [16, Chapter 18]. In this mode, a handshake mechanism takes place prior to data

exchange, in order to prevent concurrency issues [16, Chapter 18]. For each mailbox,

one buffer is used [16, Chapter 18]. The mailbox mode is typically used for application

layer (AL) protocols, where the time required to exchange information is usually not

very important [16, Chapter 18].

More information for the SyncManagers can be found in [16, Chapter 18] and [1, Chapter 38].

3.1.4 Application Layer (AL)

The Application Layer of EtherCAT is implemented as a state machine, in which the states

describe the behavior of the device and the transitions between states are triggered by events

[16, Chapter 18]. In each state, different functions are called in the EtherCAT slave [16, Chap-

ter 18]. Similarly, in each state different commands should be sent to the slave by the master

[16, Chapter 18].

The state machine is controlled and monitored using some registers included in the slave [16,

Chapter 18]. Themaster controls the state transitions bywriting to theAL control register, thus

creating the corresponding events [16, Chapter 18]. In turn, the slave updates information

about its current state by writing in the AL status register [16, Chapter 18]. In this way, error

notification is performed via error codeswritten in this register [16, Chapter 18]. As Figure 3.4

shows, an EtherCAT slave supports four basic states and one optional:

• Init: EtherCAT slaves enter this state at power-on. In this situation, the master initial-

izes the SyncManager channels for mailbox communications [16, Chapter 18].

• Preoperational: In this state, mailbox communications are enabled but process data

communications are not [16, Chapter 18]. The EM initializes the SyncManager chan-

nels for process data, the Field Memory Management Unit (FMMU)s and the Process

Data Objects (PDOs) mapping mechanism, if supported [16, Chapter 18].

• Safe operational: In this state, mailbox and process data communications are enabled,

but the slave outputs are kept in a safe state, while inputs are updated cyclically [16,

78 CHAPTER 3. BACKGROUND IN ETHERCAT

Chapter 18].

• Operational: In this state, slaves can transfer data between the network and their I/O

logic. Mailbox and process data communications are completely enabled. The opera-

tional state is the normal working condition for slaves after completing the bootstrap

phase [16, Chapter 18].

• Bootstrap (optional): The bootstrap state is mainly aimed at downloading the device

firmware [16, Chapter 18]. In the bootstrap state, mailboxes are active but restricted to

file access via EtherCAT services [16, Chapter 18].

Figure 3.4: EtherCAT Slave State Machine [8].

3.1.4.1 Application Protocols

An additive feature of EtherCAT is the support ofmultiple standard application protocols [16,

Chapter 18]. Supported solutions include [16, Chapter 18]:

• CANopen over EtherCAT (CoE): This option offers a way to access a CANopen object

dictionary (OD) and to exchange CANopenmessages according to event-drivenmech-

anisms.

• Ethernet over EtherCAT (EoE):This option allows tunneling of standardEthernet Frames

in EtherCAT networks.

• File access over EtherCAT (FoE): This option enables the download/upload of firmware

and other files.

3.1. ETHERCAT TECHNOLOGY 79

• Servo drive profile over EtherCAT (SoE):This option enables the SERCOS device profile

to be used, which is suitable for demanding drive technology.

3.1.5 Distributed Clocks

The task of synchronizing multiple clocks in a distributed system isn’t found only in automa-

tion systems, but also in many computer and network systems. There are few methods to

synchronize slave nodes over a network. One of them is the IEEE 1588 Precision Time Pro-

tocol [96] (since 2002), a technology for sharing clocks between distributed systems. IEEE

1588 provides a distributed time base used to timestamp data with sub-microsecond preci-

sion and was designed to satisfy the needs of specific markets, which weren’t served by either

of the two dominant protocols, NTP and GPS [96].

The EtherCATDistributed Clocks (DC) uses the same concept of distributed time base. Since

DC refers to the ESC internal clocks, slave synchronization between slaves corresponding to

DC is done in hardware and thus guaranteed to much better than 1 µs[97].

The clock synchronization process consists of the following three main actions:

i. Propagation delaymeasurement: At certain time intervals, the master sends a synchro-

nization datagram to the slaves. In this datagram, each slave writes the time measure-

ment of its local clock [16, Chapter 18]. After receiving all the timestamps, the master

computes the propagation delay for each segment of the network, while taking into

account the EtherCAT network topology [16, Chapter 18].

ii. Offset compensation: Since the local clock of each slave is a free-running counter, usu-

ally it doesn’t have the same value as the reference clock [16, Chapter 18]. In order to

compensate this offset, the master computes the offset between the local clock of each

slave and the reference clock. Then, themaster writes each offset to a specific register of

each slave [16, Chapter 18]. When this step is finished, all devices (master and slaves)

share the same absolute system time [16, Chapter 18].

iii. Drift compensation: After the two previous actions are performed, the drift of every

local clock is compensated by a time control loop (TCL) [16, Chapter 18]. This mecha-

nism corrects the local clock of each device by regularly measuring its difference with

the reference clock [16, Chapter 18]. This algorithm has been evaluated and alternative

approaches are presented in [11, 97, 98, 99].

80 CHAPTER 3. BACKGROUND IN ETHERCAT

3.1.5.1 Propagation Delay Measurement

In each slave, there exist frame processing/forwarding delays, related to internal and commu-

nicationmediummechanisms [16, Chapter 18]. As a result, the propagation delay introduced

between the reference node and each slave should bemeasured with caution [16, Chapter 18].

The process is the following [16, Chapter 18]:

• The master sends a datagram to all slaves.

• Each slave writes its local clock’s value when the first bit of this datagram is received.

• This operation is performed to each port of the slave device, on both the processing and

forwarding paths.

• Τhe master receives the timestamps and computes the path delays, taking into consid-

eration the network topology.

More details on this action can be found in [16, Chapter 18].

3.1.5.2 Offset Compensation

When the system starts, the local clock on each device of the EtherCAT network will probably

have a different value from the reference clock [16, Chapter 18]. Thus an offset compensa-

tion is necessary [16, Chapter 18]. After the propagation delay measurement has finished,

the master can compute the offset of each local clock from the reference clock, by examining

the previously received timestamps [16, Chapter 18]. Then, this offset is written into a system

time offset register of each slave and is used to adjust the local time [16, Chapter 18]. There-

fore, when the initialization has finished, each slave supporting DC can compute the absolute

system time independently, by using the local time and the offset values [16, Chapter 18]. An

illustrated example with one slave is presented in Figure 3.5.

3.1.5.3 Drift Compensation

The last action of the DC synchronization process is the compensation of oscillator drifts [16,

Chapter 18]. There is a natural drift between the local clock of each device and the reference

clock, due to variations between the crystal oscillators used in each device (two clocks are

never identical, even from the same manufacturer) [16, Chapter 18]. This drift is corrected

by a TCL algorithm implemented into each ESC and shown in Figure 3.6 [16, Chapter 18].

3.1. ETHERCAT TECHNOLOGY 81

Figure 3.5: Offset measurement in the DC mechanism [10].

Figure 3.6: Concept of the TCL algorithm [11].

3.1.6 Synchronization in the Slaves

A core feature of EtherCAT is its ability to enable automatic synchronization between the

master and the slaves in the network, providing an absolute system time to which all devices

adjust [17]. Another important characteristic is the flexibility of each slave, to define its own

synchronization mode (i.e. not all slaves support DC Synchronization Mode), independently

of the other slaves in the network [17]. At application level, the master and the slaves perform

software loops (Figure 3.7).

The applications on the master and the slaves exchange process data in predefined time inter-

vals (Figure 3.8) [12]. These intervals can be arbitrarily short, provided that the applications

have time to execute their loops [12].

82 CHAPTER 3. BACKGROUND IN ETHERCAT

Figure 3.7: EtherCAT Application Level [12].

Figure 3.8: EtherCAT process data exchange [12].

The applications on the master and the slaves synchronize by defining time relationships be-

tween the start time of their cyclic loops, as shown in Figure 3.9 [12].

Figure 3.9: Time between Master and Slave Application [12].

In EtherCAT there are three main time relationships defined for each slave application with

respect to the master cycle (Synchronization Modes) [12]:

• Free Run (no synchronization): Process data handling in the slave is triggered by an

internal event. There is no time relationship with the master cycle.

• SM Synchronous (Sync Manager): Process data handling in the slave is triggered by a

3.1. ETHERCAT TECHNOLOGY 83

hardware interrupt event generated when the cyclic frame carrying the process data is

received.

• DC Synchronous (Distributed Clocks): Process data handling in the slave is triggered

by a hardware interrupt event based on the Distributed Clocks and on the absolute

system time.

3.1.6.1 Free Run Mode

When a slave operates in Free Run Mode (Figure 3.10), the execution of the local application

is triggered by an internal time source [12]. This mode has the following characteristics [13]

(Figure 3.11):

• The cyclic frames and local application don’t have a time relationship.

• Time offset among different “Free Run” slaves is not defined.

• Intended for I/O (input/Output) devices handling slow-varying signals.

Figure 3.10: Slave in Free Run mode [12].

3.1.6.2 SM Synchronous Mode

When a slave operates in SM Synchronous Mode (Figure 3.12), the process data handling is

triggered by a hardware interrupt when the cyclic frames are received (Figure 3.13) [12]. The

master provides a timer variable for each slave in order for the entire network to synchronize

to the reference clock [12]. This becomes a necessity to quadruped control applications, where

each slave should adhere to a reference clock in order to create gaiting sequences [17].

Synchronization inaccuracies may occur if a network is configured in SM Synchronous mode

which may affect the efficiency of the synchronization [12]. Main reasons are [12]:

• The cyclic frames have jitter due to the master. This jitter is propagated to the slaves’

applications.

84 CHAPTER 3. BACKGROUND IN ETHERCAT

Figure 3.11: EtherCAT network in Free Run mode [13].

• The last slaves receive the cyclic frames later than the first due to propagation delays,

regardless of the master’s jitter.

Figure 3.12: Slave in SM Synchronous mode [12].

3.1.6.3 DC Synchronous Mode

Using the DC mechanism, as described in Subsection 3.1.5, the devices in a network can be

synchronized, allowing distributed applications to synchronize as well (Figure 3.14).

The DC mechanism has many features, including [9]:

• Synchronization of the clock of each device in the EtherCAT network.

• Generation of synchronous output signals (SyncSignals).

• Precise timestamping of input events (LatchSignals).

• Generation of synchronous interrupts.

3.1. ETHERCAT TECHNOLOGY 85

Figure 3.13: EtherCAT network in SM Synchronous mode [13].

Figure 3.14: Slave in DC Synchronous mode [12].

• Synchronous digital output updates.

• Synchronous digital input sampling.

The DC mechanism operates above the Data Link layer of EtherCAT [17]. It’s not supported

by all slaves, however DC-enabled and non DC-enabled slaves can typically operate together

in the samenetwork [17]. It should bementioned that theDCmechanismdepends on specific

feaures of EtherCAT, such as its ring topology, datagram processing “on the fly” and hardware

timestamping, thus it’s not a general-purpose synchronization mechanism [17].

86 CHAPTER 3. BACKGROUND IN ETHERCAT

When a slave operates inDC SynchronousMode, the process data handling is triggered by the

hardware SYNC events generated in the slave based on the DC System Time (Figure 3.15).

Each generated interrupt signal is serviced by an Interrupt Service Routine (ISR), which is

triggered simultaneously in each slave of the network. This ensures intrinsic synchronization

among the slaves without using any timer variables. This mode in order to work, requires

the cycle frame time to be large enough to allow all ISRs to be triggered in each slave. In case

this isn’t satisfied, lost frames interfere with the internal synchronization of the slaves, causing

communication errors. The advantages of DC Synchronous Mode are:

• The hardware SYNC events (interrupt signals) are generated in each slave automatically

by the EtherCAT Slave Controller (ESC). The ESC should be configured to operate in

DC Synch mode (specified in the ENI file).

• The process data handling in each slave is not affected by the master’s jitter or propa-

gation delays.

Figure 3.15: EtherCAT network in DC Synchronous mode [13].

3.1. ETHERCAT TECHNOLOGY 87

3.1.6.4 SYNC Shift Times

The application on each slave operating in SM or DC Synchronous mode, needs to be shifted

with respect to the application on the master, in order for the slave application to receive the

incoming data before it starts a new loop (Figure 3.16).

Figure 3.16: EtherCAT shift time [14].

In SM Synchronous mode, the slave application is triggered by the incoming frame, thus no

extra configuration parameter is needed.

In DC Synchronous mode, the shift between the SM interrupt and the master cycle is set by

the master on system start-up. The shift’s value is reconfigurable. Setting the time shift in

DC Synchronous mode requires caution. The shift’s value should guarantee the SYNC event

in the slave to be generated after the cyclic frame is received by all slaves in the network and

before the next cyclic frame is received by the slave. In the same time, its value shouldn’t be

affected by communication jitter, propagation delays or the number of slaves (Figure 3.17).

Therefore, there doesn’t exist a single correct value, but an interval of acceptable values.

The SYNC shift has a lower bound, which consists of the following factors:

• Hardware delay introduced by the slaves internally:

– 1 μs for every slave of the network withMedia Independent Inter face (MII) Ports.

– 3 μs for every slave of the network with only EBUS Ports.

• Hardware delay introduced by the cables which is approximately 5.3 ns for each meter

of cable in the EtherCAT network [100].

3.1.7 Synchronization in the Master

Note: This section is largely based on [15].

The master operates in two synchronization modes [15]:

88 CHAPTER 3. BACKGROUND IN ETHERCAT

Figure 3.17: Acceptable vs wrong shift times [14].

• The Cyclic Mode.

• The DC Mode.

3.1.7.1 Cyclic Mode

Slaves operating in Free Run or SM Synchronous mode are compatible with the Cyclic Mode.

The master sends the process data frames on certain time intervals [15]. These intervals are

controlled by a local timer in the master [15].

3.1.7.2 DCMode

In DC Mode, the master sends the process data frames periodically, similarly to the Cyclic

Mode. The difference is that the local clock in the master (and the local clock in each slave) is

synchronized with the master clock [15]. In DC Mode, all DC-enabled slaves and the master

are synchronized to the DC Base Time, a virtual time which has a fixed time relationship with

the reference time (produced by the master clock) [15]. In Figure 3.18, the synchronization

between the local clock of the master and the DC Base Time is shown [15].

Note: The master clock is the EtherCAT reference clock, to which all the devices (including

the master’s local clock) are adjusted. This clock is usually the local clock of the slave closer

to the master.

More and technical information can be found in [15].

3.2. ETHERCAT MASTERS 89

Figure 3.18: Master synchronized to DC Base [15].

3.2 EtherCATMasters

Note: This section is largely based on [16, Chapter 18].

Since the EtherCAT technology is thoroughly described, the next spot of attention goes to

the EtherCAT Masters. In this section, the EtherCAT Masters are introduced and a brief

comparison takes place. Finally, the preferable EtherLab is briefly introduced.

3.2.1 EtherCATMasters Overview

EtherCAT Masters (EMs) can be implemented in software [16, Chapter 18]. EM facilitates

the use of a control application in the master, which reads and writes process data from/into

the slaves’ memory [16, Chapter 18]. Typical characteristics of an EM include network mon-

itoring, fault detection and recovery, automatic discovery of the network topology, slaves

synchronization and configuration at system start-up [16, Chapter 18].

However, the most critical task of an EM is the control application running in the master [16,

Chapter 18]. This application usually realizes a control loop, which starts after the configu-

ration of the slaves has finished [16, Chapter 18]. Thus, the level of determinism of the EM,

affects directly the real-time performance of the running control application [16, Chapter 18].

3.2.1.1 Control Loop

The control application usually realizes a basic control loop, as shown with pseudo-code in

Figure 3.19 [16, Chapter 18]. The control loop is a cyclic task with a period (TCY CLE) [16,

90 CHAPTER 3. BACKGROUND IN ETHERCAT

Chapter 18]. This task includes writing/reading process data to/from slaves [16, Chapter 18].

Figure 3.19: Pseudo-code of a typical EM control loop [16, Chapter 18].

In a nutshell, the EtherCAT frames received through the EM’s network interface are passed

to the application through a call to the receive_frame function [16, Chapter 18]. In this

function call, certain sub-tasks are implied such as extraction of datagrams from the frame,

extraction of process data from each datagram, their concatenation and storage into the cor-

responding variables (data in the figure) [16, Chapter 18]. Then the main control algoirthm

is executed by calling the execute_control_application function [16, Chapter 18]. When the

function finishes, new data (new_data in the figure) have been produced and are ready to

be transmitted [16, Chapter 18]. These data are passed as arguments to the send_frame

function, which ensures the data are sent to the EtherCAT slaves, after making the necessary

actions such as concatenating the data into datagrams, coalescing the datagrams into a single

frame and sending the frame to the EtherCAT network [16, Chapter 18]. After the frame is

sent, the application needs to wait time equal to the period, hence the call to the wait function

(wait in the figure) with argument a time interval equal to TCY CLE [16, Chapter 18].

Iterations of the control loop are shown in the timing diagram in Figure 3.20. The tCPU in

Figure 3.20: EtherCAT control loop timing diagram [16, Chapter 18].

Figure 3.20 corresponds to the time spent by the application, to occupy a CPU in the master

3.2. ETHERCAT MASTERS 91

and execute the control loop (i.e. the calls to the receive_frame, execute_control_-

application and send_frame functions) [16, Chapter 18]. The tNET represents the time

needed for the EtherCAT frame to traverse all the slaves in the network and return back to the

EM [16, Chapter 18]. The time needed to store the frame received from the network interface

into the EM memory is also included in tNET [16, Chapter 18]. The time interval needed

for the input data of each slave to be copied from its memory to EtherCAT datagrams is also

included in tNET [16, Chapter 18]. Similarly, the time interval needed for the output data

of each slave to be copied from the EtherCAT datagrams to its memory is also included in

tNET [16, Chapter 18].

Since EtherCAT provides determinism, the tNET interval has small variations across iter-

ations of the control loop. In practice, tNET , which depends on the frame size and other

parameters, can be computed analytically [100].

However, the tCPU interval is not deterministic [16, Chapter 18]. This interval consists of two

time intervals [16, Chapter 18]:

• tALG: This interval represents the time the control algorithm spends in the CPU. The

implementation of the algorithm in code affects directly the tALG. Usually, tALG has an

upper bound, which can be found analytically or experimentally.

• tEM : This interval includes the latency introduced by the protocol stack to send and

receive EtherCAT frames and operating system latencies caused by interacting tasks,

context switching, and scheduling. Unfortunately, it’s not known a priori whether tEM

has an upper bound.

Consequently, the inequality tCPU + tNET ≤ TCY CLE might not hold under certain circum-

stances [16, Chapter 18]. To solve the unbounded intervals of tEM , EM implementations

usually leverage hard Real-Time Operating Systems, network drivers and protocol stacks op-

timized for latency [16, Chapter 18]. For instance, in [101] the performance of an EM using

hard Real-TimeOperating Systems and protocol stacks is evaluated [16, Chapter 18]. It shows

that jitters on the order of 10µs can be experienced for a 1ms cycle time [16, Chapter 18].

On the contrary, EM implementations based on non Real-Time Operating Systems and pro-

tocol stacks are typically inappropriate for applications requiring the real-time features of

EtherCAT [16, Chapter 18]. These implementations usually mean that tEM is not bounded,

thus delays larger than 1ms are expected [16, Chapter 18]. In such cases, the performance

92 CHAPTER 3. BACKGROUND IN ETHERCAT

using EtherCAT could be worse than non real-time Ethernet protocols like EtherNet/IP [16,

Chapter 18].

3.2.1.2 Commercial versus Open-Source implementations

The most important requirement for EM is determinism [16, Chapter 18]. The EtherCAT

network provides determinism to the tNET time interval, which is achieved through specific

slave hardware [16, Chapter 18]. However the determinismof themaster is equally important,

as the actions summarized in Figure 3.19 need to be completed in a single iteration of the

control loop, in order to ensure deterministic cycle times [16, Chapter 18].

Although EMs based on mixed hardware/software have been proposed in the literature (with

Field Programmable Gate Arrays in [102]), this section focuses on EMs implemented purely

in software [16, Chapter 18].

Two distinct categories exist for EM implementations: commercial and open-source. Their

differences are summarized in Table 3.1. A more detailed comparison between the two cate-

gories can also be found in [103].

Table 3.1: Commercial versus Open-Source EMs [16, Chapter 18].

Criteria Commercial Open-Source
Cost − Usually expensive + Less expensive (or free)

Customization − Not always + Customizable code and (usu-
ally) better performance

Usability + Easy-to-use – Not always easy-to-use
Standardization + Programming languages

compliant with IEC 61131-3
– Nonstandard programming
languages (e.g. C/C++)

Documentation + Detailed – Sometimes poor
Hardware support + Variety of devices – Limited

Features + Full – Some EtherCAT features
maybe not implemented

Customer Support + Advanced – Sometimes incomplete support
by the community

Reliability + QoS guarantees – Instability issues

The biggest strength of open-source EMs is that they are usually free and easily customizable

[16, Chapter 18]. Consequently, if a large number of complex and custom control applications

needs to be developed, then the open-source category makes a good match [16, Chapter 18].

Although not free, the commercial EMs provide other features, like usability through Graph-

ical User Interfaces (GUIs), reliability, full support, standardization and fully featured editions

3.2. ETHERCAT MASTERS 93

[16, Chapter 18]. These features facilitate the learning process and provide short time-to-

market solutions [16, Chapter 18].

Among the commercial implementations, Beckhoff TwinCAT⁶ is one of the most popular

EMs, developed by the company which introduced EtherCAT [16, Chapter 18]. Other pop-

ular commercial implementations include the NI EM and KPA EM⁷, produced by National

Instrument and Koenig-pa GmbH, respectively [16, Chapter 18].

In the open-source implementations, the most popular EM is EtherLab [16, Chapter 18]. It’s

developed by Ingenieurgemeinschaft IgH⁸ and it’s free [16, Chapter 18]. SOEM is another

popular open-source solution and it’s also free [16, Chapter 18]. However, SOEM is not used

in applications requiring determinism and low cycle loop period TCY CLE , since its imple-

mentation is not real-time (more on this below) [16, Chapter 18] [103].

3.2.1.3 Comparison of EtherCATMasters in GNU/Linux

In GNU/Linux the two most popular open-source EMs are IgH Master (or EtherLab) and

SOEM.These EMs are licensed under LGPLv2 andGPLv2 respectively. A concise comparison

is presented in Table 3.2.

Table 3.2: EtherLab versus SOEM.

EtherLab SOEM
Learning Curve (Installation,
Configuration and API) Steep Low

Documentation Excellent (since v.1.5) Poor
Mailing List Support Yes Yes
Portability No Yes
Integrability of EtherCAT
(EM Type) Full (Type A) Some EtherCAT features not

implemented (Type B)

user-space / kernel-space kernel-space with
user-space API user-space

Licence LGPLv2 GPLv2

SOEM is a small library running in user-space. It is lightweight and easy to familiarize with

(setting it up and getting started). The documentation of the project is quite poor but the

mailing list is supportive not only to beginners but also to experienced users and developers.

Since it’s a user-space library, it can be deployed in other OSes as well (Windows, MacOS,

⁶https://www.beckhoff.com/twincat/
⁷https://koenig-pa.de/products/ethercat/kpa-ethercat-master
⁸https://www.etherlab.org/en/ethercat/index.php

https://www.beckhoff.com/twincat/
https://koenig-pa.de/products/ethercat/kpa-ethercat-master
https://www.etherlab.org/en/ethercat/index.php

94 CHAPTER 3. BACKGROUND IN ETHERCAT

RTOSes). Since SOEM is a library, the user needs to create a custom application to provide

means for:

• Reading and writing process data to be sent/received by SOEM.

• Detecting and managing errors reported by SOEM.

After creating the process data to be transmitted, SOEM communicates with the vanilla Linux

Network Stack in order to pass the process data to the network driver, which in turn will

send them across the EtherCAT network. After the system call, SOEM has no control over

the latency introduced by the OS (network driver, scheduler etc). More information for the

SOEM project can be found in it’s GitHub repository⁹, it’s official homepage¹⁰ and it’s index

page¹¹.

On the other hand, the IgH Master is a full-featured EM, highly configurable and flexible. It

is more complex to set it up and get started. The documentation provided is excellent and the

mailing list is also quite active.

A fundamental feature of the SOEM software is that it resides in user-space. With that in

mind, it can not employ features a kernel module may have, like talking directly with the

network driver, and be informed when each datagram is sent and delivered. SOEM can only

communicate with the vanilla Linux Network Stack (not optimized for latency) and suffer the

extra performance loss which OS’s latency (context switching and copying of process data)

introduces. This drawback can be considered a major one, as far as latency and determinism

of cycle time are considered.

On the contrary, the architecture of IgH Master is quite perspicacious as it’s implemented as

a kernel module [2]. Kernel code can have real-time characteristics, i.e. lower latency than

user-space code [2]. The main task of an EM is to service the control loop, which requires

cyclic work to be done [2]. Cyclic work in the kernel is typically triggered by timer interrupts

[2]. Thus, the execution time of a function processing timer interrupts is less in kernel-space

than in user-space [2]. In kernel-space, context switches to other user-space processes isn’t

necessary [2]. Another reason favoring kernel-space, is that themaster needs to directly com-

municate with the Ethernet hardware. This is suitable to be done in the kernel also (through

network device drivers) [2].

⁹https://github.com/OpenEtherCATsociety/SOEM
¹⁰https://openethercatsociety.github.io
¹¹https://openethercatsociety.github.io/doc/soem/index.html

https://github.com/OpenEtherCATsociety/SOEM
https://openethercatsociety.github.io
https://openethercatsociety.github.io/doc/soem/index.html

3.2. ETHERCAT MASTERS 95

3.2.2 The IgH EtherCATMaster for GNU/Linux (EtherLab)

Note: This section is largely based on [2].

Since the EtherLab software has been selected for development, it’s necessary to present it’s

core features and functionalities for consistency.

3.2.2.1 Features

A summary of the basic features of EtherLab is illustrated below. More details for these fea-

tures along with the installation instructions of EtherLab can be found in [2, 104]. Some

EtherLab’s features include [2]:

• It’s a kernel module for Linux 2.6 / 3.x / 4.x.

• It’s implemented according to IEC 61158-12 specifications [105, 106].

• Includes EtherCAT-capable native drivers for some Ethernet chips as well as a generic

driver for all chips supported by the Linux kernel.

• It supports multiple EtherCAT masters running in parallel.

• It supportsmany Linux real-time extensions (Xenomai, RTAI, PREEMPT_RT) through

its independent architecture.

• It provides an Application Programming Interface (API) for applications, that want to

use EtherCAT functionality.

• It introduces Domains, which allow grouping of process data transfers with different

slave groups and task periods.

• Supports Distributed Clocks.

• Supports CANopen over EtherCAT (COE), Ethernet over EtherCAT (EoE), Vendor-

specific over EtherCAT (VoE), File Access over EtherCAT (FoE) and Servo Profile over

EtherCAT (SoE) protocols.

• Includes a user-space command-line tool ethercat.

3.2.2.2 Architecture

The architecture of the EM is presented in Figure 3.21 [2]. The components of the master

environment are briefly described [2]:

96 CHAPTER 3. BACKGROUND IN ETHERCAT

Figure 3.21: EtherLab Master Architecture [2].

• Master Module: This is a kernel module which contains at least one EtherCAT master

instance, the EtherCAT Device Interface and the Application Interface.

• Device Modules: These are the intermediates between the Master Module and the

Network Interface Controller (NIC). There are two categories; In the first belong the

EtherCAT-capable Ethernet device driver modules, which offer their devices to the

EtherCAT master via the EtherCAT Device Interface. These modified network drivers

can handle network devices used for EtherCAT operation and standard Ethernet traffic

at the same time. In the second category belong the Standard Ethernet device drivers

3.2. ETHERCAT MASTERS 97

that aren’t modified by EtherLab. They are connected to the kernel’s network stack as

usual. In this case, the Master Module communicates with the Linux Network Stack

with its Generic Ethernet driver module. After accepting a device, the master is able to

send and receive EtherCAT frames.

• Application: This is a program which is written by the user. It interfaces with the mas-

ter in order to exchange process data with the EtherCAT slaves in the network. An

application can request a master through the application interface. The application can

reside in kernel-space and interface with themaster via the kernel application interface,

or reside in user-space and interface with the master via the EtherCAT or the RTDM

library.

The EtherCAT master kernel module ec_master can contain multiple master instances [2].

Each master waits for certain Ethernet device(s) identified by its MAC address(es) [2]. For

instance, the master module can be loaded with two masters, each one assigned to a specific

MAC address as shown in Figure 3.22 [2].

Figure 3.22: Multiple masters in one module [2].

Every EtherCAT master provided by the master module (ec_master) transitions between var-

ious phases, shown in Figure 3.23 [2]:

Figure 3.23: Master phases and transitions [2].

• Orphaned phase: In this phase the master waits for its Ethernet device(s) to connect.

There is no bus configuration available.

98 CHAPTER 3. BACKGROUND IN ETHERCAT

• Idle phase: In this phase the master has accepted all available Ethernet devices, but is

not requested by any application yet. Thus, the master merely runs its state machine.

This involves automatically scanning the bus for slaves and executing pending opera-

tions from the user-space interface (for example SDOaccess). Again, there is noProcess

Data exchange since the bus communication isn’t configured yet.

• Operation phase: In this phase the master is requested by an application which pro-

vides a bus configuration and exchanges Process Data.

For consistency, some useful common terms are presented below [2]:

• Process Data Image: The logical entities which are exchanged between master and

slaves are called Process Data Objects (PDOs). They are encapsulated in EtherCAT

datagrams, before the master sends them to the EtherCAT network. These entities are

presented by the slaves and change their inputs and outputs. The available PDOs can be

specified by reading the slaves’ E2PROM. The application registers the PDOs’ entries

for exchange during cyclic operation. The sum of all registered PDO entries defines the

Process Data Image, which is exchanged via datagrams with logicalmemory access (e.g.

LWR, LRD or LRW).

• Process Data Domains: The Process Data Image can be easily managed by introducing

domains, which allow grouped PDOs exchange. Domains are necessary for Process

Data exchange, so there has to be at least one. There is no upper limit for the number

of domains, but each domain occupies one Field Memory Management Unit (FMMU)

in each slave involved, so the maximum number of domains is limited by the slaves.

• FMMUConfiguration: An application registers PDO entries for exchange. Every PDO

entry occupies an area of the slave’s physical memory, which is protected by a Sync-

Manager for synchronized access. The SyncManager needs to have its last byte to be

accessed, in order to react on a datagram accessing its memory. Thus, the whole syn-

chronized memory area needs to be included into the Process Data Image. Figure 3.24

presents how FMMUs are configured to map physical memory to logical Process Data

Images.

3.2.2.3 Application Interface

The Application Interface provides functions and data structures for applications to use an

EtherCAT master. Every application uses the master in two steps [2]:

3.2. ETHERCAT MASTERS 99

Figure 3.24: Field Memory Management Unit (FMMU) Configuration [2].

• Configuration: The application requests the master and configures it. For instance,

the application can create domains, configure slaves and register PDO entries in each

domain.

• Operation: The application runs its control loop and exchanges process data.

For the user’s convenience, there are a few example applications in the examples/ subdirectory

of the master code which are documented in the source code [2].

The application configures the bus through the application interface [2]. Figure 3.25 depicts

the objects, which can be configured by the application [2].

Slave Configuration: The application has to inform the master about the expected bus topol-

ogy [2]. This is done by creating slave configurations, which provide information related to

internal characteristics and position of the slaves in the network [2]. When the application

creates a slave configuration, it provides the slave’s bus position, vendor id and product code

[2]. The master in turn, checks whether a slave with the given vendor id, product code and

position exists [2]. If the information is correct, the slave configuration is linked to the real

slave on the bus and the slave is configured with the information provided by the application

[2].

Cyclic Operation: After the application has finished the configuration step, the master needs

to be activated [2]. During activation, the master calculates the Process Data Image (PDI)

and applies the bus configuration for the first time [2]. After the master is activated, the bus

configuration cannot be changed and the application proceeds to the Operation step [2].

100 CHAPTER 3. BACKGROUND IN ETHERCAT

Figure 3.25: Master Configuration [2].

More details regarding the Application Interface of the master, can be found in [2].

3.2.2.4 Ethernet Devices

Note: The term device means an Ethernet network interface hardware.

EtherLab supports two types of devices [2]:

• NativeEthernetDeviceDrivers: These are native EtherCAT-capable device drivermod-

ules, which handle Ethernet hardware. They are used by the master to connect to the

EtherCAT network and need to be able to accept Ethernet devices either for EtherCAT

operations (real-time) or for standard Ethernet traffic using the Linux Network Stack.

More information regarding the basic structure of a standard Ethernet device driver

can be found in [107]. Its advantages include [2]:

– There is only one networking driver used for EtherCAT and non-EtherCAT de-

vices.

– Themodifications are based on existing Ethernet device driver, which is function-

ing properly and without any issues.

– The master can achieve bare-metal performance, since for EtherCAT operation,

the traffic doesn’t traverse the non deterministic Linux Network Stack.

However, it has the following disadvantages [2]:

3.2. ETHERCAT MASTERS 101

– The modified driver becomes more complicated, as it must handle EtherCAT and

non-EtherCAT devices.

– There are additional case differentiations in the driver code.

– Changes and bug fixes on the standard drivers have to be ported to the EtherCAT-

capable versions regularly.

– A modified EtherCAT-capable version of the original Ethernet driver needs to

exist for the Linux system’s components, thus this type has limited availability.

• Generic Ethernet Device Driver: This type uses the Linux Network Stack to connect

to the Network Interface Controller (NIC). It’s available since master version 1.5. Its

advantages include [2]:

– It’s not limited to specific drivers, versions and vendors, thus all Linux Ethernet

drivers are supported.

– The Linux Ethernet drivers are used without any modification.

However, it has the following disadvantages [2]:

– It doesn’t support real-time extensions like RTAI, because the Linux Network

Stack code uses dynamic memory allocations, which could cause the system to

freeze in realtime context [2].

– The performance is worse than the native type, since the EtherCAT frames need

to traverse the whole Linux Network Stack.

Since there are ways of providing the Linux kernel wih real-time capabilities (e.g. with PRE-

EMPT_RT, more on this in the following chapters) [108], the master in such setting could

operate without native drivers, by using the Linux Network Stack instead. Figure 3.21 shows

theGeneric Ethernet Driver Module, that connects to standard Ethernet device drivers via the

Linux Network Stack. This kernel module is named ec_generic and can be loaded the same

way as a native EtherCAT-capable Ethernet driver. After it’s loaded, the module makes avail-

able all the Linux-compatible devices to the EtherCAT master. As soon as the master accepts

a device, the module creates a packet socket¹² with its socket_type set to SOCK_RAW, bound

to this device. Subsequent calls to the device interface will interface with this socket.

¹²https://linux.die.net/man/3/socket

https://linux.die.net/man/3/socket

102 CHAPTER 3. BACKGROUND IN ETHERCAT

3.2.2.5 User-space Interfaces

Since the master is a kernel module, it is useful to have user-space interfaces, which facilitate

master accessibility fromuser-space, finermonitoring, bus visualization andonline parameter

modification. These interfaces are implemented via a character device¹³ and a user-space

library.

Command-line Tool: The user-space tool, developed in the context of EtherLab, provides a

quick visualization of the whole status of the EtherCAT network with simple commands. The

user of this program can:

• Display the Bus Configuration.

• Print the current slaves on the bus along with some useful information for each one.

• Set a Master’s Debug Level.

• List Sync Managers, PDOs assignment and mapping of slaves.

• Show configured Domains.

• Show master and Ethernet devices’ information.

• Request from the slaves to reach new application layer states.

• Output a slave’s register contents.

• Write Service Data Object (SDO) entries to a slave.

User-space Library: The native application interface resides in kernel-space and hence is only

accessible from there. To make the application interface available from user-space programs,

the user-space library libethercat has been created, which is linked to programs under the

terms and conditions of the LGPL, version 2¹⁴. The kernel-space API ismapped to user-space,

through an ioctl() interface. The kernel code interfaces directly the kernel API. Since the

user-space API calls an ioctl() interface before reaching the kernel API, a small delay is in-

troduced. For performance reasons, the actual domain process data are not copied every time

between kernel and user memory, but are memory-mapped to the user-space application. As

soon as themaster is configured and activated, itmaps thewhole process datamemory (all the

¹³https://en.wikipedia.org/w/index.php?title=Device_file&oldid=894614419
¹⁴https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

https://en.wikipedia.org/w/index.php?title=Device_file&oldid=894614419
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

3.2. ETHERCAT MASTERS 103

domains) to user-space. As a result, the user-space application accesses directly the process

data without additional delay.

Timing Aspects: An interesting aspect is the time differences between the user-space library

calls and the kernel API calls. Table 3.3 shows the call times and standard deviancies of typical

(and time-critical) API functions measured on an Intel Pentium 4 M CPU with 2.2 GHz and

a standard 2.6.26 kernel.

Kernel-space User-space
Function µ(t) σ(t) µ(t) σ(t)
ecrt_master_receive() 1.1µs 0.3µs 2.2µs 0.5µs
ecrt_domain_process() < 0.1µs < 0.1µs 1µs 0.2µs
ecrt_domain_queue() < 0.1µs < 0.1µs 1µs 0.1µs
ecrt_master_send() 1.8µs 0.2µs 2.5µs 0.5µs

Table 3.3: Application Interface Timing Comparison [2].

The test results show that, for this configuration, the user-space API introduces about 1 µs

additional delay for each function, compared to the kernel API.

Kernel/User APIDifferences: The only difference between the two APIs is the inability of the

user-space API to provide external memory for domains. The reason is that the process data

memory is managed internally by the library functions, since it’s mapped to user-space.

104

4
Requirements Analysis & Technical

Specifications

If you can’t explain it simply, you

don’t understand it well enough.

Popular quote

In this chapter a thorough analysis of the fundamental requirements of this work is provided.

In addition, all the technical specifications of the system, which have been translated to the

implementation of the solution are illustrated. First, the performance of the final system is

specified for this project. Finally, the design choices adopted, the modeling, along with the

overall system architecture and the API are presented.

4.1 Requirements Analysis

Every software project should have specific requirements to comply with. In the following

section the project’s requirements analysis is presented.

4.1.1 Laelaps II

Laelaps II¹(shown in Figure 4.1)introduces some improvements over its previous version,

Laelaps I², in both mechanical and electrical properties. In the motion control scope, the

main features of the robot have changed, including the leg design, the actuator-related char-

¹http://nereus.mech.ntua.gr/legged/?page_id=161
²http://excellence.minedu.gov.gr/thales/en/thalesprojects/379424

105

http://nereus.mech.ntua.gr/legged/?page_id=161
http://excellence.minedu.gov.gr/thales/en/thalesprojects/379424

106 CHAPTER 4. REQUIREMENTS ANALYSIS & TECHNICAL SPECIFICATIONS

acteristics and the power supply systems [17].

Figure 4.1: Laelaps II.

Laelaps II’s enhancements, compared to Laelaps I, include [17]:

• New legs are designed and manufactured with lightweight carbon fiber tubes and cus-

tom aluminum parts.

• The PCIe/104 tower, which was used for centralized control is replaced with four iden-

tical EtherCAT Slave towers. Each of them controls the motion of one leg, with param-

eters provided by the EtherCAT master (decentralized control scheme).

• Driver extension boards are upgraded.

• The front parts of the body are reallocated, enabling the four legs to be symmetrically

distributed.

Most of the electrical upgrades are thoroughly described in [109, Chapter 4] and the interested

reader is referred to it for more details.

4.1.2 User Categories

The system to be developed will support the following user categories:

• SoftwareDeveloper: The SoftwareDeveloper creates software in theROS environment,

which inter-operates with the system to be developed.

• Operator: The Operator commands and monitors the overall system and tunes the

necessary parameters to achieve the desired performance and metrics.

4.1. REQUIREMENTS ANALYSIS 107

4.1.3 Functional Requirements

The EtherCAT network of Laelaps II, was thoroughly evaluated and tested with much success

in Windows [17]. However the robotics (localization, navigation, state estimation, percep-

tion) algorithms, developed in the ROS environment for reasons described in Section 2.5,

require GNU/Linux (preferably the Ubuntu distribution) as the host OS. The system to be

developed should:

• Run in the GNU/Linux OS (preferably the Ubuntu distribution).

• Employ EtherCAT as the communication protocol and technology betweenmaster and

slaves.

• Reside in the ROS environment.

• Have firm real-time characteristics. Thatmeans that the communication betweenmas-

ter and slaves should be deterministic. This requirement, stands in the middle of func-

tional and non-functional requirements, however due to the importance of determin-

ism on the project, it has been categorized as functional.

4.1.4 Non-functional Requirements

The non-functional requirements complete the requirements of this work. These require-

ments explain how the system should behave. In this context, the system to be developed

should:

• Have APIs for interoperability with the other robotics algorithms residing in ROS.

• Be extensible, meaning if the EtherCAT application data changes, an experienced de-

veloper should be able to make the required changes in < 20 person-hours.

• Have EtherCAT control loop time TCY CLE < 500µs (defined in Subsection 3.2.1),

which translates to a control loop frequency > 2 kHz.

• Have adaptability, meaning that the Mean Time to Change (MTTC) operability with

different EtherCAT master under GNU/Linux will require < 1 person-month for a se-

nior system developer³.

³http://users.csc.calpoly.edu/~jdalbey/SWE/QA/QualityAttributesStearns.html

http://users.csc.calpoly.edu/~jdalbey/SWE/QA/QualityAttributesStearns.html

108 CHAPTER 4. REQUIREMENTS ANALYSIS & TECHNICAL SPECIFICATIONS

• Offer installability; A non-experienced user can install and operate the program with-

out assistance of any kind.

• Offer maintainability; A software developer with 1 year of experience will be able to

correct any known defect in < 2 person-days⁴.

• Provide understandability; A novice user can learn to operate major use cases without

outside assistance.

• Provide thorough documentation of every aspect of it.

• Provide robustness; erroneous data inputs should be answered with error messages.

• Provide mechanisms for safety; For critical situations there will be a software “panic

button”. This should stop instantly the motion control of the robot.

• Be open-source; All the source code will be available at the CSL-EP Bitbucket reposi-

tory.

4.2 Technical Specifications

In this section the design along with the system’s architecture are illustrated.

4.2.1 Design Choices

The requirements specified in the previous section need to be translated in the technical spec-

ifications of the project. The design choices made, played a catalytic role in this procedure,

and are described below.

To realize the employment of an EtherCAT master in GNU/Linux, two choices exist as an-

alyzed and compared in Subsection 3.2.1. Only the EtherLab EM meets the specified re-

quirements and therefore this EM is chosen. More details on the features and architecture of

EtherLab can be found in Subsection 3.2.2 and in [2].

In order to meet the functional requirement for firm real-time characteristics, the developed

application should run in an OS that is modified to be hard real-time capable, as previously

stated and explained in Subsection 3.2.1. For this requirement there are a handful of options

to consider like RTAI, Xenomai and PREEMPT_RT. RTAI has been a rather popular library

in the embedded linux world, however in the last decade its popularity has declined due to the

⁴http://users.csc.calpoly.edu/~jdalbey/SWE/QA/QualityAttributesStearns.html

http://users.csc.calpoly.edu/~jdalbey/SWE/QA/QualityAttributesStearns.html

4.2. TECHNICAL SPECIFICATIONS 109

fact that if one would like to write code i.e. a real-time thread, it should reside in kernel-space.

This has the benefit of very low latency, yet lacks in maintainability, installability and config-

urability, not to mention the profound risk of freezing the kernel due to some buggy code.

Therefore this library cannot be chosen. After experimentingwithXenomai andPREEMPT_-

RT for a small while, the latter is chosen as the most non-invasive and suitable solution for

our case. Recall that maintainability and installability are key-factors and non-functional re-

quirements for the project and these requirements were taken into account (augmented with

the reasons illustrated in Section 2.3) and led to the decision for PREEMPT_RT. More details

on the features and architecture of PREEMPT_RT can be found in Subsection 2.3.1.

The requirement for interoperability should be satisfied from this project and this comes down

to deciding what kind of API to use. This API should be created in the terms of ROS (anal-

ogous to a REST API in a web application). In the ROS context, this translates to choosing

message communication mechanisms for interaction and data exchange between nodes. For

further details and definitions on the ROS context, the interested reader is referred to Sub-

section 2.5.2 and for details and differences on the various communication mechanisms in

ROS, the reader is referred to Subsection 2.5.3. Furthermore for interoperability reasons, the

language of choice for the project is C++. This decision is based partly on the knowledge that

with C++, the EtherLab user-space C API can be integrated seamlessly in the project, but also

that C++ is one of the mainstream languages supported by ROS and has a good balance be-

tween low-level tweaking and programming, and expressiveness and abstraction, distinctive

features of the high-level languages.

Interoperability is required among ROS nodes which implement higher-level locomotion,

control and localization algorithms. These nodes must send commands to the motors and

receive feedback from the encoders quite frequently, therefore the mechanism selected for

implementing the ROS API of the project is the topics mechanism. This conclusion was not

reached at the beginning of the project, but after experimentation with the services mech-

anism. Topics provide a more throughput-friendly message communication among nodes.

Since the nodes communicating with the project’s node will require frequent exchange of data

messages, this is the most appropriate design choice.

Another important design decision should be made on the synchronization primitive for the

application’s threads. In the program there should be two fundamental threads. The first

will run in real-time context and execute the cyclic loop in a deterministic manner and the

second accepts the input commands from the ROS environment and writes synchronously to

110 CHAPTER 4. REQUIREMENTS ANALYSIS & TECHNICAL SPECIFICATIONS

a common buffer, shared with the real-time thread. This synchronization should be handled

with extreme caution, since the real-time thread shouldn’t go for sleep, rather busy-wait on

a locking mechanism. This mechanism is decided to be a POSIX spin lock, which offers the

busy-waiting part and is easy to use, since implementation of the POSIX threads (spin locks

API is part of pthreads API) API are instantly available on Linux.

Last but not least, the most appropriate library for threads should be picked out for our case.

There are three favorable candidates: The C++ Thread core library, the Boost Thread library

and the POSIX Thread library. After a brief research on these libraries, it is concluded that

the most useful, rich and appropriate for this project is the Posix Thread library. A key part

of the conclusion is the familiarity of the author with the pthread library. Also, major role to

this conclusion have characteristics of this library like richness and simplicity of its API and

assignment of system-wise attributes, compared with the other libraries. However, a known

trade-off arises, the overhead of wrapping objects and functions of the pthread C library in

C++ classes and methods.

4.2.2 System Architecture

In this section the overall System Architecture is presented and it’s key components are ana-

lyzed. In Figure 4.2 a basic deployment diagram enhanced with the fundamental components

and their connections is illustrated. This diagram describes in an intuitive manner the overall

system’s components, and provides a systemic view of the robot with it’s operator. Its com-

ponents are described in detail below.

4.2.2.1 The Operator Interface

The Operator, in 1 , communicates with the software component, starts/stops the Ether-

Lab operation phase and changes values of EtherCAT variables related to the motion of the

quadruped robot’s legs. For deeper understanding of the user interface created, facilitating

the operation of the robot, a use case diagram is illustrated in Figure 4.3.

Apart from starting/stopping and restarting the communication with the EtherCAT slaves,

the most important command offered through the Command Line Interface (CLI) is the

ability to change the values of the EtherCAT variables, independently of the state of the com-

munication with the slaves (online or offline). Lastly, the Operator has the ability to change

EtherCAT variables for one slave or for all of them.

4.2. TECHNICAL SPECIFICATIONS 111

Figure 4.2: Overall System Architecture.

4.2.2.2 Project’s software component

The software component of this project is presented in 2 along with it’s higher-level con-

nections. The software offers a ROS API (more on that in Subsection 4.2.3) to ROS nodes

developed by other software engineers, offers a CLI to the Operator and interfaces with the

EtherLab kernel module to achieve EtherCAT communication. This overall behaviour is ac-

complished through different submodules, illustrated in Figure 4.4.

In A the EtherCAT Communicator submodule is pictured. This submodule consists of a

thread running in real-time context and calls the EtherLab User-space Library API, which in

turn makes a system call to the EtherLab Kernel Module that communicates with the Ether-

CAT slaves. This module uses the pthread library for creating a real-time thread and for uti-

lizing the pthread spinlock. It realizes the state machine described in Subsubsection 3.2.1.1,

implementing it in real-time context at the EtherCAT control loop frequency (≥ 2kHz).

In B the submodule of the Input Process Data Objects (PDOs) Publisher is highlighted.

This part of the presented software project receives the input Process Data Objects (PDOs)

(the EtherCAT variables which the slaves change and pass to the master) from the Ether-

CAT network via the EtherCAT Communicator, and publishes them in a topic in ROS, at the

EtherCAT control loop frequency (≥ 2kHz). Consequently, the ROS nodes implementing

robotics algorithms such as SLAM, navigation and state estimation, can receive these data

112 CHAPTER 4. REQUIREMENTS ANALYSIS & TECHNICAL SPECIFICATIONS

Figure 4.3: A Use-Case Diagram for the Operator.

and process them accordingly.

In C the Output Process Data Objects (PDOs) Publisher is highlighted. This submodule

receives the output Process Data Objects⁵ from the EtherCAT network via the EtherCAT

Communicator, and publishes them in a topic in ROS, at the EtherCAT control loop fre-

quency (≥ 2kHz). Consequently, the ROS nodes implementing robotics algorithms such as

SLAM, navigation and state estimation, can receive these data and process them accordingly.

A question here arises, as to why should these Output PDOs be published to the entire ROS

⁵The EtherCAT variables which nodes in ROS or the Operator change and pass them to master in order to
be sent to the EtherCAT network.

4.2. TECHNICAL SPECIFICATIONS 113

Figure 4.4: Internal architecture of the software project.

environment, since probably they are changed by a node in the ROS framework. The an-

swer is that these data could interest more than one ROS nodes (apart from the one changing

them), so other nodes can access these changes. Another possibility is that the data could be

changed by the Operator, as previously mentioned, so a ROS node should be able to know

the changes by subscribing to the aforementioned topic. Nevertheless, this submodule was

created to provide completeness in its ROS API. If the overhead introduced is extravagant,

this submodule could be disabled in future versions.

In D the submodule of the Output Process Data Objects (PDOs) Listener is presented. This

submodule listens to a ROS topic, receives the (modified) output Process Data Objects⁶ di-

rectly from the ROS ecosystem or indirectly from the created CLI, and passes them to the

EtherCATCommunicator in order to be sent to the network. The D submodule concludes a

first closed feedback loop, consisting of the ROS ecosystem (other ROS nodes implemented),

the EtherCAT network and the application, allowing communication among all these com-

ponents.

⁶The EtherCAT variables which are changed from the master side and passed to the EtherCAT slaves.

114 CHAPTER 4. REQUIREMENTS ANALYSIS & TECHNICAL SPECIFICATIONS

TheCommand Line Interface (CLI), in E , facilitates the user who is responsible for the over-

all operation and administration of the robot functionalities (the Operator), to interact with

a simple and effective manner with the EtherCAT slaves network and control the synchro-

nized moves of the legs effectively. This submodule offers to the Operator the functionalities

described previously in 1 . Furthermore, the Operator can activate / deactivate the Ether-

CAT Communicator through the CLI, and the EtherCAT variables that the master sends (the

Output PDOs) can be altered via this submodule from the Operator.

In F , the submodule of the Output Process Data Objects (PDOs) Publisher Timer is pre-

sented. This part of the project copies at certain intervals in time (for this reason it’s called

a Timer) the process data to be sent from the corresponding buffer and publishes them to a

ROS topic. With this published information, indirect logging takes place which constitutes a

quick start for debugging the behavior of the software component. Therefore submodule F

concludes a second closed feedback loop, consisting of the users administering the operation

of the robot, the ROS ecosystem, the software module and the EtherCAT network. However,

this second closed loop is definitely more indirect from the first one, in the sense that there is

the human factor in the middle, therefore there must be administration and monitoring from

a user to take action in order to close this loop.

The submodules in A , D and F are working simultaneously on the same critical data.

For this reason, a synchronization scheme is introduced as previously analyzed, with the bold

red lines illustrating this need for synchronization. The chosen synchronization mechanism

is a pthread spinlock, for reasons previously stated. The scheme is depicted in Figure 4.5.

Themain shared resources in the following description are the spinlock lock, the buffer pro-

cess_data_buf and the buffer domain1_pd. In a nutshell, submodule A realizes the fun-

damental state machine described in Subsubsection 3.2.1.1. This includes setting the real-

time attributes of the thread before starting the cyclic loop, waiting for a fixed time interval

and receiving the PDOs of the frame from the EtherCAT network, via calling a user-space

API of EtherLab (more on that in Chapter 5), in the domain1_pd buffer.

It should be noted, that the domain1_pd buffer is shared between the application and the

EtherLab kernel module, as aforementioned in Subsubsection 3.2.2.5. This means that simul-

taneous access to this buffer shouldn’t be allowed, since it is not safe. Although submodule

A wouldn’t ever access the shared buffer at the same time with the EtherLab module (the

submodule always uses the user-space API -calls EtherLab- after accessing the shared buffer),

4.2. TECHNICAL SPECIFICATIONS 115

Figure 4.5: Synchronization scheme followed in the software project.

it is expected from the application to be instantly responsive to new inputs, i.e. tomanage new

incoming output PDOs from anywhere anytime. This expectation could not be met with just

one buffer, since the application has limited time slice in the overall control loop time interval

to access the buffer, while the incoming traffic could arrive in anymoment in the control loop.

Consequently, a neat solution to this problem was devised, by introducing a second buffer,

116 CHAPTER 4. REQUIREMENTS ANALYSIS & TECHNICAL SPECIFICATIONS

namely the process_data_buf. This buffer is shared by the application’s submodules and

isn’t accessed by EtherLab. Therefore a synchronizationmechanism is provided, namely spin-

lock lock, in order for the submodules to access safely the same buffer process_data_buf.

That said, submodule A copies safely the new output PDOs (only these PDOs are changed

from the master’s side) from the process_data_buf to the domain1_pd buffer. With this

action, it has created the new PDOs ready to be sent. Then, it sends all the PDOs to B and

C , in order to be published in the corresponding topics. Next, it calls the user-space API

of EtherLab to send the domain1_pd buffer with the new PDOs to the EtherCAT network.

Finally it starts over the entire process.

Submodule D is responsible for taking the user input (output PDOs of EtherCAT applica-

tion) into a private buffer and safely copy it into the process_data_buf. Finally submodule

F copies safely the buffer process_data_buf to a private one and subsequently publishes

it’s contents to a corresponding ROS topic, at fixed time intervals (order of seconds).

4.2.2.3 Other ROS nodes

The other ROS modules inter-operating with the developed application (using the ROS API),

are depicted in 3 , in Figure 4.2. The kind of algorithms depending on the developed soft-

ware application, are the ones that communicate with the legs and synchronize them. In this

context, when the robot operates, these components should be necessary for an autonomous

operation:

• High-Level Control & Motion Planning Algorithms: These algorithms are the bare-

bones of motion, since they allow the robot to move correctly based on the developed

control algorithms. This family of algorithms sends motion commands to the four legs,

based on an analytical model of the robot. For example, if we wish the robot to move

to a certain location, this kind of algorithms should compute the corresponding veloc-

ities and accelerations and pass them to each leg controller (see also 6). In order to

pass these parameters, they should use the project’s ROS API to communicate with the

EtherCAT slaves.

• State Estimation Algorithms: These algorithms are critical in the functionality of a

robot, as they estimate the pose⁷ of the robot at fixed time intervals. They estimate

the robot’s pose in an unknown world, therefore should these components not work,

⁷Here by pose we mean the vector consisting of the position {x, y, z} and orientation {ϵ, η} (represented
by a unit quaternion).

4.2. TECHNICAL SPECIFICATIONS 117

it would be devastating for the accomplishment of tasks and operations. This set of

algorithms in order to function properly needs to use the project’s ROS API, extract

the information for the position and velocities of the motors and determine, through a

motion and sensors model, the current pose of the robot with accuracy.

• SLAM Algorithms: The Simultaneous Localization and Mapping (SLAM) algorithms

are an essential part of every robot software. With the aid of such algorithms, the robot

can localize itself based on a map of the environment, which is simultaneously updated

dynamically. In order for these algorithms to properly work, they need to have an

odometry estimation, which can be inferred by the angles and angular velocities of the

motors of the legs, through the project’s ROS API, or by other external means.

4.2.2.4 EtherLab

The EtherLab software is shown in 4 , in Figure 4.2. The project’s software utilizes EtherLab

to communicate with the EtherCAT Slave Network. More information on its internal archi-

tecture can be found in Subsection 3.2.2 and in [2]. This module has a user-space library, and

it’s API is used by the project’s software, as already shown in Figure 4.4.

4.2.2.5 Linux Network Stack

The Linux Network Stack is illustrated in 5 , in Figure 4.2. To acquire a complete picture

of the overall system architecture, it is convenient to present the relationship of the Linux

Network Stack with the EtherLab module and the EtherCAT network. Detailed information

about the internal architecture of the Linux Network Stack can be found in [110, 111, 112,

113, 114, 115]. For simplicity and consistency, the analysis follows two common paths: the

sending and the receiving one.

Sending Path: Thepath the code and the data follow in order for the application to transmit

an EtherCAT frame, is illustrated in Figure 4.6.

Depending on the type of the device chosen to run EtherLab (Native or Generic), the sending

path differs significantly. However the first steps are the same: The application calls ecrt_-

master_send() of the user-space API of EtherLab, which makes an ioctl() call with the

EC_IOCTL_SEND option and eventually calls the kernel-space ecrt_master_send() func-

tion of the module. There some sanity checks are performed as well as internal bookkeeping

and some statistics are kept. Then, the frame is ready to leave the master and head to slaves.

118 CHAPTER 4. REQUIREMENTS ANALYSIS & TECHNICAL SPECIFICATIONS

Figure 4.6: Sending Path anatomy.

This call is made from the ndo_start_xmit()⁸ function pointer. Note that, depending on

how the EtherLab module has been compiled and built in the system, there will be different

functions registered to be called from the above function pointer.

From this point on, the two sending paths are separated (red dashed lines).

If the device chosen is a Native EtherCAT-capable one, then the call continues to it’s regis-

tered function for ndo_start_xmit()which passes the frame to the hardware specific code

and copies the data to a TX ring buffer in RAM (some NICs are “multiqueue”: they can DMA

many Buffers from/to RAM), signals the NIC for DMA and then NIC is ready for transmis-

sion.

However, if the device chosen is a generic one, which means that the driver used has no mod-

⁸device->dev->netdev_ops->ndo_start_xmit()

4.2. TECHNICAL SPECIFICATIONS 119

ifications from the EtherLab code, then the path followed is a typical one: Calling the socket

kernel API through the wrapper kernel_sendmsg() with a RAW defined socket. After this

call, the rest is left to the Linux kernel. In addition, for comparison reasons, a call from the

send() system call is included, which is called from a typical network program that sends

data to a network through a socket.

The short version of the rest of the path followed is described below. The kernel_sendmsg()

calls sock_sendmsg() which after some internal wrappings, gets into the Protocol Subsys-

tem. There, the data will pass all the IP-related internal layers and are encapsulated into a

packet. Since the IP source and destination field is not defined in the EtherCAT data (unlike

a typical IP packet), the data probably won’t be routed. Then, the data continue into the net-

device subsystem in which traffic control code will classify with the aid of the Transmit Packet

Steering (XPS) algorithm, into which TX queue the data will be put (if there are many). Then

theQueueing Discipline of the specific TX queue will be applied. This task will run in a softirq

context (from the ksoftirqd thread of a specific CPU), while so far the path was created in a

process context. Finally the packet will be checked if it needs segmentation, will be handed to

the packet taps (like PCAP, the library Wireshark or tcpdump use to capture filters in POSIX-

compliant systems) and the standard driver’s ops are used to pass the data down to the NIC

by calling the registered function for ndo_start_xmit(). After that, the typical procedure

follows: The registered function for ndo_start_xmit() passes the data to the hardware spe-

cific code, the now EtherCAT frame is checked for fragmentation, is copied to a a TX ring

buffer in RAM, the NIC is signaled for DMA and then NIC is ready for transmission. Keep

in mind that in spite of coloring the Native Driver submodules blue (which contribute to the

transmission), the Native Driver is a standard driver with some minor modifications from

the EtherLab code.

Receiving Path: The path which the code and the data follow in order for the application to

receive an EtherCAT frame, is illustrated in Figure 4.7.

Depending on the type of device chosen to run EtherLab (Native or Generic), the receiving

path is altered significantly too. However the first steps are the same: The application calls

ecrt_master_receive() of the user-space API of EtherLab, which makes an ioctl() call

with the EC_IOCTL_RECEIVE option and eventually calls the kernel-space ecrt_master_-

receive() function of the module. From there and after some sanity checks, internal book-

keeping and some statistics, the device->poll(device->dev) function pointer calls the

registered function for polling. Note that, depending on how the EtherLab module has been

120 CHAPTER 4. REQUIREMENTS ANALYSIS & TECHNICAL SPECIFICATIONS

Figure 4.7: Receiving Path anatomy.

built and initialized in the system, there will be different functions registered to be called from

the above function pointer.

From this point on, the two receiving paths are separated (red dashed lines), but they both

merge with the call to ecdev_receive(), after each one completing it’s own journey.

If the device chosen is a Native EtherCAT-capable one, then the call continues to the regis-

tered function for polling ecdev_receive() (EtherLab code inside the standard driver).

This function has been registered when the EtherCAT native driver module was inserted

(“probed”) into the kernel (path shown with black dashed lines). Next, the function calls

“manually” the, lightly modified by EtherLab, IRQ handler of the driver, which is short-

circuited to a call to adapter->clean_rx() function handler which finally leads to the fi-

4.2. TECHNICAL SPECIFICATIONS 121

nal goal of ecdev_receive(). Note here that the IRQ handler is modified so that if it is

awaken by the EtherLab code, it doesn’t call any actual poll functions, as a standard Ethernet

driver would do normally (see later). The ecdev_receive() receives the raw (EtherCAT)

frames and passes them to ec_master_receive_datagrams(), which extracts the neces-

sary EtherCAT datagrams and places them in the Domain Queue for further processing.

However, if the device chosen is a generic one, which means that the driver used has no mod-

ifications from the EtherLab code (the standard Ethernet driver is used), then the path fol-

lowed is a typical one; The registered poll function that the device->poll(device->dev)

points to, is the ec_gen_poll() (registered when the EtherLab module is initialized in the

kernel with the generic device, path shown with black dashed lines), which leads to ec_-

gen_device_poll() which does two things: First calls the socket kernel API through the

wrapper kernel_recvmsg() with a RAW defined socket. After this call and when kernel_-

recvmsg() returns, it merges with the path followed by Native, which means calling the

ecdev_receive(), which receives the raw (EtherCAT) frames and passes them to ec_mas-

ter_receive_datagrams(), which extracts the necessary EtherCAT datagrams and places

them in the Domain Queue for further processing. Meanwhile, in the call of the wrapper

kernel_recvmsg(), the path continues to the Linux kernel. In addition, for comparison

reasons, a call from the recv() system call is included, which is called from a typical net-

work program that receives data to a network through a socket.

The receive path in the Linux kernel code breaks into two parts. Thefirst consists of the frames

received from the Ethernet cable while the second part consists of the calls either from the

system call recv() or from the EtherLab module with a generic device, starting from their

common call of sock_recvmsg(). The meeting point is the queue sk_receive_queue,

which both parts access safely through a shared sk_receive_queue->lock. The first part

runs in application context, while the second runs in interrupt and later softirq context.

The first part is described below, through a brief summary. The NIC receives the Ethernet

frame, DMAs the frame into an RX ring buffer in RAM and raises an interrupt in the ker-

nel. The registered IRQ handler of the standard driver is executed, the IRQ is cleared on the

NIC, so that it can generate IRQs for new packet arrivals, NAPI softirq poll loop is started

with a call to __napi_schedule, which triggers the ksoftirqd thread to run the corre-

sponding handler of the pending softirq, which eventually calls the NAPI⁹ poll function

⁹New API (NAPI) was introduced in the kernel as a solution to the issue of driven down CPUs caused by the
frequency of the interrupts from NICs.

122 CHAPTER 4. REQUIREMENTS ANALYSIS & TECHNICAL SPECIFICATIONS

registered from the driver (when “probed” in the kernel, path shown with black dashed lines)

to do the further processing. Next, the driver’s poll function harvests packets from the RX

ring buffer in RAM and hands them over to napi_gro_receive, where they are checked

for Generic Receive Offloading (GRO). After GRO the path continues to netif_receive_-

skb(), which after Receive Packet Steering (RPS) handling eventually leads to netif_re-

ceive_skb_core(), which after delivering data to any taps (like PCAP), passes the data on

to the registered protocol layer handlers. Finally, the data after passing through the protocol

stacks, netfilter, routing optimizations and berkeley packet filters, are eventually placed in the

queue sk_receive_queue with the use of the __skb_queue_tail(), through the shared

sk_receive_queue->lock.

The second part is far more brief than the first one; The call from kernel_recvmsg() leads

after passing through some protocol specific layers (like UDP, TCP and ... RAW too) to sock_-

recvmsg(), which calls the function __skb_recv_datagram(). This function reads safely

from the queue sk_receive_queue, through the shared lock sk_receive_queue->lock.

Finally, after kernel_recvmsg(), the function ec_gen_device_poll() calls ecdev_re-

ceive() and eventually the data end up in the Domain Queue for further processing.

4.2.2.6 Cyclic loop exchange

The cyclic loop created from exchange of EtherCAT frames is pictured in 6 , in Figure 4.2.

The EtherCAT protocol, network topology, frames and cyclic loop are thoroughly described

in Section 3.1 and Section 3.2. For the quadruped robot, the EtherCAT slaves network topol-

ogy forms a daisy chain, in the sense that the EtherCAT frame leaves the Ethernet NIC of the

master, passes all the slaves, and then takes the same way back as it came, through the same

cable (ring topology). There is no switch intervened in the current EtherCAT network topol-

ogy. The Ethernet cable is connected to one port of the NIC of the master, while the slaves

have two connected Ethernet ports each, except from the last one, which has also one port.

Prior to introducing the EtherCAT process data or variables shared among the master and

the slaves, it is of utmost importance to underline the leg’s model which is followed and the

reasons for choosing these process data. Each leg of the quadruped robot consists of three

links, as shown in Figure 4.8. However, since the attached spring is stiff, it can be safely

assumed that it comprises of two links (the upper is actual while the lower is virtual) [17].

In Figure 4.9, the motion planning and control parameters of each leg are presented [17].

4.2. TECHNICAL SPECIFICATIONS 123

Figure 4.8: Actual and virtual links of Laelaps II legs [17].

Figure 4.9: The leg’s model [17].

The kinematics equations regarding the leg shown in Figure 4.9 are [17]:

Forward Kinematics:

xE = l1sinθ1 + l2sinθ2

yE = l1cosθ1 + l2cosθ2
(4.1)

Inverse Kinematics:

124 CHAPTER 4. REQUIREMENTS ANALYSIS & TECHNICAL SPECIFICATIONS

Applying the law of cosines, the former (4.1) becomes [17]:

ϕ = θ2 − θ1

x2
E + y2E = l21 + l22 − 2l1l2cos(π − ϕ) = l21 + l22 + 2l1l2cosϕ

cosϕ =
x2
E + y2E − (l21 + l22)

2l1l2

sinϕ = −
√
1− cos2ϕ

ϕ = atan2(sinϕ, cosϕ)

(4.2)

Thus, solving (4.2) for θ1 and θ2 [17]:

θ2 =
π

2
− atan2(yE, xE) + atan2(l1sinϕ, l2 + l1cosϕ)

θ1 = θ2 − atan2(sinϕ, cosϕ)
(4.3)

Regarding the leg’s workspace, the maximum/minimum lengths of the leg (knee joint at end-

stop) are [17]:

leff,max = l1 + l2 = 250 + 350 = 600mm

leff,min =
√
l21 + l22 =

√
2502 + 3502 = 430, 12mm, θ2 = 90°

(4.4)

A visualization of the leg’s workspace is shown in Figure 4.10 [17].

Figure 4.10: The leg’s workspace [17].

Note: The EtherCAT application is the one which is implemented with the EtherCAT protocol

and refers to data exchange via the Input andOutput EtherCATvariables. When the developed

application is mentioned, this refers to the developed application in the context of this thesis

(which eventually runs the EtherCAT application).

4.2. TECHNICAL SPECIFICATIONS 125

Each EtherCAT Slave enables each leg to form semi-elliptical trajectories, with all the param-

eters of these trajectories controlled by the master, as introduced in [116]. Thus, only the

slaves perform the necessary computations for the motion control of each leg [17]. The mas-

ter merely provides the necessary parameters for the desired elliptical trajectory, listed in the

TrajectoryParameters Record in Table 4.1 [17]. The computed ellipse is defined in (4.5) w.r.t.

point 0 (hip axis) defined in Figure 4.9 [17]. The ellipse needs to be always inside the limits

of the leg’s workspace [17]. Consequently, each slave’s firmware is specifically programmed

to disregard parameters which produce invalid ellipses [17]. The firmware will continue to

serve the last (xtraj, ytraj) point until a new valid point is passed to it [17].

xtraj = xtraj,cntr + αcos(ωtrajt+ ϕ)

ytraj = ytraj,cntr + bsin(ωtrajt+ ϕ)
(4.5)

To model the impedance of the treadmill’s floor, a flattening parameter has been added on

the y semi-minor axis (b), altering the shape of the elliptical trajectory [17]. The different

positions along this semi-elliptical trajectory are shown in Figure 4.11 [17].

Figure 4.11: Different positions along the semi-elliptical trajectory [17].

From the aforementioned analysis in (4.5), the necessary parameters for the semi-elliptical

trajectories are realized. These include the centre of the trajectory in the x axis (xtraj,cntr),

126 CHAPTER 4. REQUIREMENTS ANALYSIS & TECHNICAL SPECIFICATIONS

the centre of the trajectory in the y axis (ytraj,cntr), the semi-major x axis (α), the semi-minor

y axis (b), the flattening parameter for the creation of semi-ellipses (flattness_param), and

finally the trajectory frequency (ωtraj). These parameters are of utmost importance for the

creation of the correct semi-ellipses by the slaves, via the correct commands of the master.

However for consistency reasons, the whole set of the EtherCAT input and output variables

shared among master and slaves with comments for each one, along with the most important

ones aforementioned, are presented in Table 4.1 and Table 4.2.

Note: The Output EtherCAT variables are variables the master sends to the slaves. Thus, they

are written by the master and read by the slaves. The Input EtherCAT variables are variables

the master receives from the slaves. Thus, they are written by the slaves and read by the

master.

Table 4.1: EtherCAT Laelaps II Motion Control Output variables.

Index Subindex
Data

Type
Name Comments

0x7000 Record Buttons

0x01 bool State_Machine State Machine variable

0x02 bool Initialize_clock not used

0x03 bool
Initialize_-

angles
not used

0x04 bool
Inverse_-

Kinematics
not used

0x05 bool Blue_LED light Blue LED

0x06 bool Red_LED light Red LED

0x07 bool Button1 not used

0x08 bool Button2 not used

0x09 int8 Transition_time
Time for smooth transition

functions (sec)

0x7010 Record Desired_x_value

0x01 int32 Desired_x_value Not read by slave (for future use)

0x7012 Record TargetMode

0x01 uint16 FilterBandwidth First order lag filter frequency (Hz)

0x7014 Record Desired_y_value

4.2. TECHNICAL SPECIFICATIONS 127

0x01 int32 Desired_y_value Not read by slave (for future use)

0x7020 Record ControlGains PIV Gains

0x01 int16 Kp100_knee
Proportional gain of knee motor /

100

0x02 int16 Kd1000_knee Velocity gain of knee motor / 1000

0x03 int16 Ki100_knee Integral gain of knee motor / 100

0x04 int16 Kp100_hip Proportional gain of hip motor / 100

0x05 int16 Kd1000_hip Velocity gain of hip motor / 1000

0x06 int16 Ki100_hip Integral gain of hip motor / 100

0x7030 Record TrajectoryParameters Semi-elliptical trajectory parameters

0x01 int16 x_cntr_traj1000 x centre of the ellipsis (mm)

0x02 int16 y_cntr_traj1000 y centre of the ellipsis (mm)

0x03 int16 a_ellipse100 semi-major x axis (cm)

0x04 int16 b_ellipse100 semi-minor y axis (cm)

0x05 int16 traj_freq100 Trajectory’s frequency (Hz) / 100

0x06 int16 phase_deg Trajectory’s initial phase (deg)

0x07 int16 FlatnessParam100 Flatness parameter of y axis / 100

Table 4.2: EtherCAT Laelaps II Motion Control Input variables.

Index Subindex
Data

Type
Name Comments

0x6010 Record hip_angle

0x01 int16 hip_angle
Rotational angle of hip

(deg) * 100

0x02 int16 desired_hip_angle
Desired rotation angle of

hip (deg) * 100

0x6012 Record FeedbackTime

0x01 uint16 Time
Time variable from slave

device (sec)

0x6014 Record knee_angle

0x01 int16 knee_angle
Rotational angle of knee

(deg) * 100

128 CHAPTER 4. REQUIREMENTS ANALYSIS & TECHNICAL SPECIFICATIONS

0x02 int16 desired_knee_angle
Desired rotation angle of

knee (deg) * 100

0x6020 Record Commands

0x01 int16 PWM10000_knee
Output of PIV control for

knee (%) * 100

0x02 int16 PWM10000_hip
Output of PIV control for

hip (%) * 100

0x6030 Record Velocity PIV Gains

0x01 int32 velocity_knee1000
Rotational speed of knee

(rad/s) * 1000

0x02 int32 velocity_hip1000
Rotational speed of hip

(rad/s) * 1000

4.2.2.7 EtherCAT Slave Network

The EtherCAT Slave Network is depicted in 7 , in Figure 4.2. Every component of this net-

work comprises of internal hardware and software architecture, which is briefly introduced.

More information for the hardware and the software architecture of these components, can

be found in [17, 109].

As far as the software architecture of the EtherCAT slaves is concerned, the handling of the

Process Data Objects (PDOs) in the EtherCAT slave can be separated in two main steps as

depicted in Figure 4.12 [17]:

• Low level on-the-fly data exchange: The ESC reads/writes data from/to the EtherCAT

frame and stores/reads the data to/from the internal DPRAM.

• The slave application performs further data processing.

In each slave, a microcontroller is responsible for the entire application layer. As outlined in

Figure 4.13, the EtherCAT slave software stack consists of three main parts [17]:

• Process Data Image (PDI) and Hardware abstraction which is hardware specific and

needs to be implemented according to the platform/PDI. In the SlaveApplication, Serial

Peripheral Interface (SPI) plays this role which is themeans of communication between

the MCU and the EtherCAT Slave Controller (see below).

4.2. TECHNICAL SPECIFICATIONS 129

Figure 4.12: EtherCAT Process Data handling in the slaves [17].

• Generic EtherCAT stack that corresponds to all those functionalities which are not

hardware and application specific for a slave, such us the full EtherCAT state machine,

mailbox communication and generic process data exchange.

• User application which implements the slave specific functions i.e. motor control.

Figure 4.13: EtherCAT slave software architecture [17].

As far as the slave hardware architecture is concerned, this comprises of three hardware com-

ponents [17]:

• An EtherCAT Slave Controller (ESC) which handles the EtherCAT protocol in real-

time by processing the EtherCAT frames on-the-fly and provides the interface for data

exchange between a master and a slave. The ESC is responsible for the realization of

the Physical and Data Link Layers.

• A host Micro Controller Unit (MCU) realizing the Application Layer including the

130 CHAPTER 4. REQUIREMENTS ANALYSIS & TECHNICAL SPECIFICATIONS

Hardware Access, the Generic EtherCAT stack and User Application structures as pre-

sented in Figure 4.13.

• A custom printed circuit board connecting these two devices (the green board in the

following figures).

For Laelaps II needs, theC2000DelfinoMCUF28379DLaunchPadDevelopmentKit byTexas

Instruments (TI) (Figure 4.14) has been selected, as a low cost and powerfulMCU, to become

the host microcontroller of all EtherCAT slaves [17].

Figure 4.14: The EtherCAT slave MCU [17].

Regarding the EtherCAT Slave Controller (ESC), the FB1111-0141 (SPI) ESC by Beckhoff

(Figure 4.15), has been selected [17]. It’s a flexible ESC which communicates with the MCU

via the Serial Peripheral Interface (SPI) protocol and operates in DC Synchronous mode trig-

gered by three external interrupt signals [17].

Figure 4.15: The EtherCAT slave ESC [17].

Each leg of Laelaps II is being controlled by one EtherCAT Control Tower Assembly which

realizes an EtherCAT slave in the configured network. Thus, four identical assemblies are

constructed and used to control Laelaps II [17]. Figure 4.16 shows the final version of the

4.2. TECHNICAL SPECIFICATIONS 131

EtherCAT Control Tower Assembly [17]. Except for the aforementioned components, the

assembly includes [17]:

• ATMS320F28379DExtension board interfacingwith all necessary peripherals (ePWM,

eQEP etc.) for two motors presented in Section 4.4 of [109].

• A voltage regulator (DC -DC converter, Step –Down 5V 2AUSB¹⁰) supplying the logic

power to the whole assembly.

• A plexiglass supporting base for mounting purposes on the Laelaps body.

In Figure 4.16 also notice the custom printed circuit board for connecting the MCU with the

ESC in green color.

Figure 4.16: EtherCAT Control Tower Assembly [17].

Finally, the entire EtherCAT Control Tower Assembly mounted on Laelaps II robot is shown

in Figure 4.17 [17]. All four slave devices are connected to the EtherCAT network. The first

is on the Hind Right Leg and the last on the Fore Right Leg [17].

4.2.2.8 Electrical & Actuation systems

The actuation system of Laelaps II is pictured in 8 , in Figure 4.2. Prior to introducing the

actuation systems chosen in Laelaps II, it’s worth to mention briefly the electrical system, in

order to acquire a general grasp of the overall architecture. For further information anddetails

on the electrical system of Laelaps II, the reader is referred to the exhaustive and excellent

¹⁰https://grobotronics.com/dc-dc-step-down-5v-2a.html

https://grobotronics.com/dc-dc-step-down-5v-2a.html

132 CHAPTER 4. REQUIREMENTS ANALYSIS & TECHNICAL SPECIFICATIONS

Figure 4.17: EtherCAT Control Tower Assembly on Laelaps II [17].

approach in [109, Chapter 4].

Electrical system

The main electrical components of Laelaps II are [17]:

• The High Power Distribution board which provides high power to all drivers.

• The Logic Power supply system with voltage regulators (5V) supplying all EtherCAT

towers.

• Eight motor driver boards (amplifiers) configured for current control. Four of the

drivers are connected to brushed motors, which drive the knee of each leg and the rest

are connected to brushless motors, which control the hip motion.

• Four EtherCAT Control Tower Assembly slaves (introduced briefly above), connected

to the motor drivers and the encoders of each leg.

It should be noted that each set of EtherCAT tower and connected drivers controls the leg

of the opposite side (left → right), because of the way the motors are mounted to the body

[17]. For example, the EtherCAT Control Tower Assembly and the two motor drivers shown

in Figure 4.18, control the motion of the Fore Right Leg and NOT the Fore Left Leg which is

4.2. TECHNICAL SPECIFICATIONS 133

visible in the same figure [17]. This detail is important when operating the software on the

master’s as well on the slaves’ side since the users should not be confused which EtherCAT

Control Tower Assembly corresponds to which Laelaps leg [17].

Figure 4.18: Electrical System of Laelaps II [17].

Actuation system

In Laelaps II different combinations of motors and gearheads are used for driving its knee

and hip joints, but in both cases, a pulley with a specific gear ratio (48/26) is mounted to

reduce the rotational speed of the motor and increase the output torque [17]. All motors

and gearheads are purchased from Maxon Motors¹¹ [17]. For the hip joints, EC 45, Ø45 mm,

brushless motors, 250 Watt¹² are used along with the Planetary Gearhead GP 52 C Ø52 mm,

4–30 Nm¹³ with a gear ratio of 343/8 [17]. For the knee joints, RE 50, Ø50 mm, Graphite

Brushes motors, 200 Watt¹⁴ are used along with the Planetary Gearhead GP 52 C Ø52 mm,

4–30 Nm¹⁵ with a gear ratio of 637/12 [17]. More information on the actuation system, the

type of control scheme and the electronics created for controlling the motors, can be found

in [17, 109].

¹¹https://www.maxonmotor.com
¹²Motor Datasheet
¹³Gearhead Datasheet
¹⁴Motor Datasheet
¹⁵Gearhead Datasheet

https://www.maxonmotor.com
https://www.maxonmotor.com/medias/sys_master/root/8830474944542/2018EN-215.pdf
https://www.maxonmotor.com/medias/sys_master/root/8831071289374/2018EN-359.pdf
https://www.maxonmotor.com/medias/sys_master/root/8830469865502/2018EN-133.pdf
https://www.maxonmotor.com/medias/sys_master/root/8831071289374/2018EN-359.pdf

134 CHAPTER 4. REQUIREMENTS ANALYSIS & TECHNICAL SPECIFICATIONS

4.2.3 Application Programming Interface

In this subsection the Application Programming Interface (API) provided by the project’s

software to other ROS software, is presented. As already highlighted, this API should be

created in the context of a ROS API (much like a REST API for web applications), since the

software should interoperate with other ROS nodes. The ROS API is presented in Table 4.3.

Table 4.3: ROS API of the software project.

Package Name: ether_ros

Node type: ether_ros

Node name: ether_comm

Publishers:

Topic Name: /pdo_raw

Message Name: PDORaw.msg

Message Type:

Header header

uint8[] pdo_in_raw

uint8[] pdo_out_raw

Topic Name: /pdo_in_slave_x , x ∈ [0− 3]

Message Name: PDOIn.msg

Message Type:

Header header

int16 hip_angle

int16 desired_hip_angle

uint16 time

int16 knee_angle

int16 desired_knee_angle

int16 PWM10000_knee

int16 PWM10000_hip

Message Type:
int32 velocity_knee1000

int32 velocity_hip1000

Topic Name: /pdo_out

Message Name: PDOOut.msg

4.2. TECHNICAL SPECIFICATIONS 135

Message Type:

Header header

uint8 slave_id

bool state_machine

bool initialize_clock

bool initialize_angles

bool inverse_kinematics

bool blue_led

bool red_led

bool button_1

bool button_2

int8 sync

int32 desired_x_value

uint16 filter_bandwidth

int32 desired_y_value

int16 kp_100_knee

int16 kd_1000_knee

int16 ki_100_knee

int16 kp_100_hip

int16 kd_1000_hip

int16 ki_100_hip

int16 x_cntr_traj1000

int16 y_cntr_traj1000

int16 a_ellipse100

int16 b_ellipse100

int16 traj_freq100

int16 phase_deg

int16 flatness_param100

Topic Name: /pdo_out_timer

Message Name: PDOOut.msg

Message Type: The same as in /pdo_out

Subscribers:

Topic Name: /pdo_listener

Message Name: ModifyPDOVariables.msg

136 CHAPTER 4. REQUIREMENTS ANALYSIS & TECHNICAL SPECIFICATIONS

Message Type:

uint8 slave_id

uint8 index

uint8 subindex

bool bool_value

uint8 uint8_value

int8 int8_value

uint16 uint16_value

int16 int16_value

uint32 uint32_value

int32 int32_value

uint64 uint64_value

int64 int64_value

string type

Topic Name:

/pdo_raw

2 subscribers:

1 in PDOInPublisher

1 in PDOOutPublisher

Message Name: PDORaw.msg

Message Type:

Header header

uint8[] pdo_in_raw

uint8[] pdo_out_raw

Services:

Service Name: /ethercat_communicatord

Service Type: EthercatCommd.srv

Request type: string mode

Response type: string success

Actions:

Action Name: -

Request type: -

Feedback type: -

Response type: -

Parameters:

File: config/ethercat_slaves.yaml

4.2. TECHNICAL SPECIFICATIONS 137

Name
Default

value
Comments

/ethercat_-

slaves/(front /

back)_(left /

right)_-

leg/vendor_id

0x00000A12

The Vendor ID is a spe-

cific ID given to a vendor,

member of the ETG

(EtherCAT Technology

Group). For NTUA CSL

this is the default value.

It’s necessary to be spec-

ified, otherwise the slave

won’t be configured by

EtherLab

/ethercat_-

slaves/(front /

back)_(left /

right)_leg/alias

0

A zero alias means to use

simple position address-

ing. Formore information

see the documentation in

[2]

/ethercat_-

slaves/(front /

back)_(left /

right)_-

leg/position

[0-3]
Theposition of the slave(s)

in the network

/ethercat_-

slaves/(front /

back)_(left /

right)_-

leg/product_code

0x00a986fd

A specific number which

is stored in the slave’s

E2PROM and is flashed

when downloading the

firmware to the slave.

Defined also in the ESI

file of the slave.

138 CHAPTER 4. REQUIREMENTS ANALYSIS & TECHNICAL SPECIFICATIONS

/ethercat_-

slaves/(front /

back)_(left /

right)_-

leg/assign_-

activate

0x0700

A specific value found in

the ESI file of the slave and

necessary for tuning the

slave in DC Synchroniza-

tion mode

/ethercat_-

slaves/(front /

back)_(left /

right)_leg/input_-

port

0x6010
The port for the input

PDOs. Defined in the ESI.

/ethercat_-

slaves/(front /

back)_(left /

right)_-

leg/output_port

0x7000
The port for the output

PDOs. Defined in the ESI.

/ethercat_-

slaves/period_ns
400000

The period the control

loop is working on. It’s

defined in nanoseconds.

Should it be changed, it

should with caution.

/ethercat_-

slaves/run_time
360000

The run time of the exper-

iments. Defined in sec-

onds. It’s set for 100 hours

:)

/ethercat_-

slaves/sync0_shift
55000

This parameter is very

crucial to understand.

Refer to Chapter 5 for

more details.

5
Implementation

Nothing ever comes to one, that is

worth having, except as a result of

hard work.

Booker T. Washington

In this chapter, a detailed description is given of the implementation of the software project,

which resides in the ROS environment, utilizes EtherLab and complies to real-time require-

ments, as previously analyzed inChapter 4. Furthermore, the rationale behind each optimiza-

tion applied upon the initial approach, is presented. Then, the installation and configuration

process, along the path of a fully operational testing environment, are outlined. Finally, the

methods and tools used to ensure the correctness of the code, are descrided in detail.

In this chapter, only selected segments of code are included and discussed, in order to aid

the reader’s understanding of the implementation. The complete source code is available on

https://github.com/mikekaram/ether_ros.

5.1 Software Implementation

In this section, a list of the key classes, functions and structures that were implemented, are

provided, along with a brief explanation. This list refers to the final, optimized implementa-

tion.

ether_ros: This is the main source file of the EtherROS project (also the name of the ROS

package). Itsmain purpose is to initialize all the services, topics, data handlers and threads for

139

https://github.com/mikekaram/ether_ros

140 CHAPTER 5. IMPLEMENTATION

the operation of the program. Initially it requests and configures a master using the Ether-

Lab API. After the correct configuration of the master, it moves to acquiring a domain for

the process data to be used (domains allow grouping of process data transfers with different

slave groups and task periods). In the quadruped’s case, the EtherCAT slaves should be in

the same slave group and have the same task periods, therefore only one domain is created.

Then it continues by initializing the EtherCAT slaves by calling their init() method, the

EtherCAT Communicator, the Input PDO Publisher, the Output PDO Publisher, the Output

PDO Listener, the Output PDO Publisher Timer and the EtherCAT Communicator Daemon

service. Finally it opens the log file, if there are statistics for logging and calls the famous

ros::spin() function, which spins a thread for handling all the registered message com-

munications (topics, services, actions) by calling the corresponding registered handler.

Note: prior to the request for a master, the program locks the memory pages it will use in

advance with the following code in main():

1 ...

2 if (mlockall(MCL_CURRENT | MCL_FUTURE) == -1)

3 {

4 ROS_FATAL("mlockall failed");

5 exit(1);

6 }

7 ...

Listing 5.1: The call to mlockall().

Linux processes access memory by using virtual addresses [63, Chapter 4]. Each virtual ad-

dress translates into a physical address with the help of translation tables in the hardware

[63, Chapter 4]. As all processes don’t need all their allocated memory at the same time, it’s

possible to address more virtual memory than available physical memory [63, Chapter 4].

Allocatingmemory by default will only reserve a virtualmemory range [63, Chapter 4]. When

the first memory access to this newly allocated virtual memory occurs, this causes a page

fault, which triggers a hardware interrupt [63, Chapter 4]. This interrupt indicates that the

translation table does not contain the addressed virtual memory [63, Chapter 4]. The page

fault interrupt will be handled by the Linux kernel, which will provide the virtual-to-physical

memory mapping [63, Chapter 4]. Then the program execution continues [63, Chapter 4].

5.1. SOFTWARE IMPLEMENTATION 141

Most hardware architectures use a cache called translation lookaside buffer (TLB) as the trans-

lation table [63, Chapter 4]. The TLB cache is used to speed up virtual-to-physical memory

translations [63, Chapter 4]. If the looked-up address is in the TLB (TLB hit), then the trans-

lation is done instantly. Otherwise (TLB miss) the address should be searched in the Page

Table which introduces extra latency [63, Chapter 4].

Virtual memory makes it possible for Linux to have memory content stored in a disk and

the data to be copied from the disk to physical memory when they are needed by the pro-

cess [63, Chapter 4]. This is called demand paging and could cause unbounded latency [63,

Chapter 4]. Thus, an application designed as real-time, such as the one developed, needs to

disable demand paging by using the mlockall() function call: mlockall(MCL_CURRENT |

MCL_FUTURE) [63, Chapter 4].

The MCL_CURRENT flagmakes sure that all pages which are currently mapped into the address

space of the process are locked and the TLB contains the needed virtual-to-physical memory

mapping [63, Chapter 4]. This includes code, global variables, shared libraries, shared mem-

ory, stack and heap [63, Chapter 4]. The MCL_FUTURE flag makes sure that all pages which

will becomemapped into the address space of the process in the future are locked. means that

updates to the TLB and initialization of the physical memory are performed during future al-

locations, not when accessing the memory [63, Chapter 4]. Future allocations can be stack

growth, heap growth, new memory mapped files or shared memory regions, shm_open(),

malloc(), or similar calls like mmap() [63, Chapter 4].

When the mlockall() system call is used, it’s important to be called at the proper time [63,

Chapter 4]. For instance, a call to malloc() after mlockall() is called, can still show large

latency variation since the TLB is updated within this function call instead of when accessing

the memory [63, Chapter 4]. Not to mention that a malloc() could request more virtual

memory from the kernel [63, Chapter 4]. Thus, all needed dynamic memory should be allo-

cated at the start of the real-time process, to avoid this extra latency [63, Chapter 4].

EtherCAT slave: This class represents the EtherCAT slaves communicating with this soft-

ware. Its main purpose is to act as a placeholder for all the slave-oriented functions and vari-

ables. This class could easily be represented as a struct, however it was foreseen that this class

can have many methods acting on it’s member variables and it should be more appropriate to

see it as an object, in which operations are performed on. The number of the EthercatSlave

class objects equals to the number of the EtherCAT slaves in the network. The objects of this

142 CHAPTER 5. IMPLEMENTATION

class are instantiated from the ether_ros main(), as described above.

1 class EthercatSlave

2 {

3 private:

4 int vendor_id_;

5 std::string slave_id_;

6 int product_code_;

7 int assign_activate_;

8 int position_;

9 int alias_;

10 int input_port_;

11 int output_port_;

12 ec_slave_config_t *ighm_slave_; //pointer to the basic slave struct in

EtherLab

13 int pdo_in_;

14 int pdo_out_;

15 int32_t sync0_shift_;

16

17 public:

18 void init(std::string slave, ros::NodeHandle &n);

19 int get_pdo_out();

20 int get_pdo_in();

21 ec_slave_config_t *get_slave_config();

22 };

Listing 5.2: The EthercatSlave class definition.

As seen by the class definition, most of the private variables of this class, are configuration pa-

rameters specified in the Subsection 4.2.3, needed for the correct configuration of the Ether-

CAT slaves and are parsed from the ethercat_slaves.yaml into the object’s private vari-

ables. The class definition, ends with the initialization method and the methods for getting

the parameters and storing them into the object’s private variables. It’s worth noting that the

initialization method ends with a call to the ecrt_slave_config_dc(). This function is

part of the EtherLab API and is used for configuring distributed clocks in a slave. It’s decla-

ration is the following:

5.1. SOFTWARE IMPLEMENTATION 143

1 void ecrt_slave_config_dc(

2 ec_slave_config_t *sc, /**< Slave configuration. */

3 uint16_t assign_activate, /**< AssignActivate word. */

4 uint32_t sync0_cycle, /**< SYNC0 cycle time [ns]. */

5 int32_t sync0_shift, /**< SYNC0 shift time [ns]. */

6 uint32_t sync1_cycle, /**< SYNC1 cycle time [ns]. */

7 int32_t sync1_shift /**< SYNC1 shift time [ns]. */

8);

Listing 5.3: The ecrt_slave_config_dc() function declaration.

This function sets the AssignActivate word (assign_activate argument) and the cycle and

shift times for the sync signals. The AssignActivate word is vendor-specific and can be taken

from the XML device description file.

In the DC synchronization mode, the synchronization signals need a shift in order to fire at

the same time, after the SM events have finished (written input PDOs and read output PDOs),

in every slave. This is necessary for all slaves to have synchronously valid Outputs. However,

because of network delays and the master jitter, the SM events in the last slave require more

time to trigger than in the other slaves, therefore this shift needs to be adequately large to

avoid firing before every SM event has finished and small enough to avoid firing after the

next cycle has started. All this information is described extensively in Subsection 3.1.6. The

sync0_shift is a critical parameter and there doesn’t exist an optimal value for this param-

eter. However, since there were many successful experiments carried out in [17], which used

the TwinCAT’s value, namely 55 µs, this value was chosen for this project also.

EtherCAT Communicator: This class represents the central thread, on which every compo-

nent of the project depends on and is related to. Its core functionality has been summarized in

Subsubsection 4.2.2.2 and has been illustrated in Figure 4.5. This class essentially represents

a real-time thread which communicates with the EtherCAT network via the EtherLab API.

The class definition is presented below:

1 class EthercatCommunicator

2 {

3 private:

4 pthread_attr_t current_thattr_;

5 struct sched_param sched_param_;

144 CHAPTER 5. IMPLEMENTATION

6 static int cleanup_pop_arg_;

7 //cleanup_pop_arg_ is used only for future references. No actual usage

in our application.

8 //Serves as an argument to the cleanup_handler.

9 static pthread_t communicator_thread_;

10 static ros::Publisher pdo_raw_pub_;

11 static bool running_thread_;

12 static uint64_t dc_start_time_ns_;

13 static uint64_t dc_time_ns_;

14 static int64_t system_time_base_;

15

16 #ifdef SYNC_MASTER_TO_REF

17 static uint8_t dc_started_;

18 static int32_t dc_diff_ns_;

19 static int32_t prev_dc_diff_ns_;

20 static int64_t dc_diff_total_ns_;

21 static int64_t dc_delta_total_ns_;

22 static int dc_filter_idx_;

23 static int64_t dc_adjust_ns_;

24 #endif

25 static void *run(void *arg);

26 static void cleanup_handler(void *arg);

27 static void copy_data_to_domain_buf();

28 static void publish_raw_data();

29 static void sync_distributed_clocks(void);

30 static void update_master_clock(void);

31 static uint64_t system_time_ns(void);

32

33 public:

34 static bool has_running_thread();

35 void init(ros::NodeHandle &n);

36 void start();

37 void stop();

38 };

Listing 5.4: The EthercatCommunicator class definition.

5.1. SOFTWARE IMPLEMENTATION 145

One can observe in the private variables the scheduling related variables, the pthread_t

object which realizes the implemented pthread used in the program, a variable for handling

the publishing of the Process Data Objects (PDOs) (more on this later), some variables for

operating the fundamental control loop and finally some variables under the preprocessor if,

#ifdef SYNC_MASTER_TO_REF.

Thismacro is used to distinguish two operatingmodes the program can operate in, which can

be implied by the brief description of DC Mode of synchronization in Subsubsection 3.1.7.2,

however they are clarified here¹:

• In the first operating mode, the EtherCAT master provides the master clock (SYNC_-

REF_TO_MASTER defined) and in this case the synchronization in the DC mode from

the EtherCAT master’s side, functions in the folowing way:

– The EtherCAT master computer is used as the DC master for the entire system.

ecrt_master_application_time() is called in every cycle from ether_ros

to tell the EtherLab master what the current PC time is.

– Then ecrt_master_sync_reference_clock() is called in order to tell to the

slave DC master to synchronize to the EtherLab master’s time.

– Finally ecrt_master_sync_slave_clocks() to tell all other DC slaves to sync

to the slave DC master.

• In the second operating mode, the slave DC master provides the master clock (SYNC_-

MASTER_TO_REF defined) and in this case the synchronization in the DC mode from

the EtherCAT master’s side functions in the folowing way:

– ether_ros gets the slave DC master’s time using ecrt_master_reference_-

clock_time() and synchronizes the EtherLab master’s cycle and time to it.

– Then ecrt_master_sync_slave_clocks() is called in order to tell to all the

other DC slaves to synchronize to the slave DC master.

– Finally ecrt_master_application_time() is called with the next cycles mas-

ter time.

Note: With the second option there is a need to adjust the EtherCAT master PC’s time by the

drift time from the slave DC master time and adjust the real-time cycle to it. This is done in

¹More on the matter in http://lists.etherlab.org/pipermail/etherlab-users/2016/003013.
html

http://lists.etherlab.org/pipermail/etherlab-users/2016/003013.html
http://lists.etherlab.org/pipermail/etherlab-users/2016/003013.html

146 CHAPTER 5. IMPLEMENTATION

ether_ros with a call to the update_master_clock() method of the EthercatCommuni-

cator class. This method will be discussed later on when it’s called in the code.

Note: The second option appears to be better, it does not introduce jitter compared to the first

option. This is the default option used in TwinCAT.

After this brief introduction on the two synchronization modes in the DC mode, it’s useful to

examine further the code of some key methods of this class:

EthercatCommunicator::init()

1 void EthercatCommunicator::init(ros::NodeHandle &n)

2 {

3 ...

4

5 if (pthread_attr_init(¤t_thattr_))

6 {

7 ROS_FATAL("Attribute init\n");

8 exit(1);

9 }

10 if (pthread_attr_setdetachstate(¤t_thattr_,

PTHREAD_CREATE_JOINABLE))

11 {

12 ROS_FATAL("Attribute set detach state\n");

13 exit(1);

14 }

15 if (pthread_attr_setinheritsched(¤t_thattr_,

PTHREAD_EXPLICIT_SCHED))

16 {

17 ROS_FATAL("Attribute set inherit schedule\n");

18 exit(1);

19 }

20 /*

21 Use the SCHED_FIFO for now. It should be tested later if there is

a better scheduler (see: SCHED_DEADLINE, EDF + CBS)

22 */

23 if (pthread_attr_setschedpolicy(¤t_thattr_, SCHED_FIFO))

24 {

5.1. SOFTWARE IMPLEMENTATION 147

25 ROS_FATAL("Attribute set schedule policy\n");

26 exit(1);

27 }

28 ret = pthread_attr_setschedparam(¤t_thattr_, &sched_param_);

29

30 if (ret != 0) handle_error_en(ret, "pthread_attr_setschedparam");

31 ...

32

33 //Create ROS publisher for the Ethercat RAW data

34 pdo_raw_pub_ = n.advertise<ether_ros::PDORaw>("pdo_raw", 1000);

35

36

37 }

Listing 5.5: The EthercatCommunicator::initmethod.

This method is called from main(); it’s main purpose is to initialize the attributes of the real-

time thread which handles the sending and receiving of Process Data Objects (PDOs) from

the EtherCAT network. The most important of them are the scheduling policy (set with a

call to pthread_attr_setschedpolicy()) and the scheduling parameters (set with a call

to pthread_attr_setschedparam()). With them, the scheduling policy as well as some

scheduling parameters related to this policy are defined for this thread and are provided to

the Linux scheduler. For now the FIFO real-time scheduling policy (SCHED_FIFO), described

in Subsection 2.4.1, is used. After the initialization of the attributes, the ROS topic /pdo_raw

of the ROS publisher pdo_raw_pub_ is advertised (more on this later).

EthercatCommunicator::start()

1 void EthercatCommunicator::start()

2 {

3 int ret;

4

5 ret = ecrt_master_select_reference_clock(master,

ethercat_slaves[0].slave.get_slave_config());

6 ...

7 ROS_INFO("Activating master...\n");

8 if (ecrt_master_activate(master))

148 CHAPTER 5. IMPLEMENTATION

9 {

10 ROS_FATAL("Failed to activate master.\n");

11 exit(1);

12 }

13 domain1_pd = NULL;

14 if (!(domain1_pd = ecrt_domain_data(domain1)))

15 {

16 ROS_FATAL("Failed to set domain data.\n");

17 exit(1);

18 }

19 running_thread_ = true;

20

21 ret = pthread_create(&communicator_thread_, ¤t_thattr_,

&EthercatCommunicator::run, NULL);

22 ...

23 ROS_INFO("Starting cyclic thread.\n");

24 }

Listing 5.6: The EthercatCommunicator::startmethod.

This method is called from the EthercatCommunicatord service when the user sends the

start command for EtherCAT communication. Thismethod starts by selecting the first Ether-

CAT slave in the network to be the reference clock (slave DC master), to which every node

of the network will synchronize. Then, the function ecrt_master_activate() is called,

which activates the master by requesting EtherLab to switch to Operational Mode (which

will send a request to the EtherCAT slaves to reach Operational State, as shown in Subsec-

tion 3.1.4). After this call, the domain of the Process Data Objects (PDOs) is created by

calling ecrt_domain_data() and finally the pthread is created. This thread will run a func-

tion which will have as arguments, the run() method to run and the attributes initialized in

init().

EthercatCommunicator::run()

1 void *EthercatCommunicator::run(void *arg)

2 {

3 ...

4 pthread_cleanup_push(EthercatCommunicator::cleanup_handler, NULL);

5.1. SOFTWARE IMPLEMENTATION 149

5 #ifdef FIFO_SCHEDULING

6 CPU_SET(3, &cpuset_);

7

8 // set pthread affinity to CPU 3

9 if (pthread_setaffinity_np(communicator_thread_, sizeof(cpuset_),

&cpuset_))

10 {

11 ROS_FATAL("Set pthread affinity, not portable\n");

12 exit(1);

13 }

14 #endif

15 // get current time

16 clock_gettime(CLOCK_TO_USE, &wakeup_time);

17 clock_gettime(CLOCK_TO_USE, &break_time);

18 break_time = utilities::timespec_add(break_time, offset_time);

19 //PTHREAD_CANCEL_DEFERRED is the default but nevertheless

20 pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, NULL);

21 /**/

22 do

23 {

24 // check if there is a request for cancel

25 pthread_testcancel();

26

27 //set the cancel state to DISABLE

28 ret = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL);

29 ...

30

31 wakeup_time = utilities::timespec_add(wakeup_time, cycletime);

32 clock_nanosleep(CLOCK_TO_USE, TIMER_ABSTIME, &wakeup_time, NULL);

33 #ifdef TIMING_SAMPLING

34 clock_gettime(CLOCK_TO_USE, &start_time);

35 create_statistics(&start_time);

36 last_start_time = start_time;

37 #endif

38

39 // receive EtherCAT frame

40 ecrt_master_receive(master);

150 CHAPTER 5. IMPLEMENTATION

41

42 // receive process data

43 ecrt_domain_process(domain1);

44

45 // check the state of the domain

46 utilities::check_domain1_state();

47

48 // get statistics if the flags are enabled

49 if (!counter) //if counter is 0

50 {

51 // get statistics at 10 Hz

52 initialize_statistics_metrics();

53

54 // check for master state (optional)

55 utilities::check_master_state();

56 }

57 else counter--;

58

59 // move the data from process_data_buf to domain1_pd buf carefuly

60 utilities::copy_process_data_buffer_to_buf(domain1_pd);

61

62 //queue the EtherCAT data to domain buffer

63 ecrt_domain_queue(domain1);

64

65 // sync distributed clock just before master_send to set most

accurate master clock time.

66 EthercatCommunicator::sync_distributed_clocks();

67

68 // send EtherCAT frame

69 ecrt_master_send(master);

70

71 // send the raw data to the raw data topic

72 EthercatCommunicator::publish_raw_data();

73

74 // update the master clock with the drift, if SYNC_MASTER_TO_REF

defined

75 EthercatCommunicator::update_master_clock();

5.1. SOFTWARE IMPLEMENTATION 151

76

77 // set the cancel state to ENABLE

78 int ret = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);

79 ...

80

81 #ifdef TIMING_SAMPLING

82 clock_gettime(CLOCK_TO_USE, &end_time);

83 #endif

84 clock_gettime(CLOCK_TO_USE, ¤t_time);

85 } while (DIFF_NS(current_time, break_time) > 0);

86 /**/

87 #ifdef TIMING_SAMPLING

88 // write the statistics to file

89 log_statistics_to_file();

90 #endif

91 ...

92 running_thread_ = false;

93 exit(0);

94 }

Listing 5.7: The EthercatCommunicator::runmethod.

This method is executed by the pthread created in start(). It’s the core method of Ether-

catCommunicator and implements the pipeline shown in Figure 4.5.

A quick description follows: The method starts by declaring the cleanup_handler to be

used. This handler will be called when the thread is cancelled (i.e. when the EtherCAT Com-

municator is stopped). This handler could provide cleaning service, like freeing up memory

used from dynamic data structures.

Generally, stopping a thread externally is a difficult task to accomplish. One of the mechan-

ims that the pthread library provides is the one that cancels a thread asynchronously without

using custom shared variables, signals or other ways of message passing. That said, at the

beginning of the control loop, there is a call to pthread_setcancelstate() with the flag

PTHREAD_CANCEL_DISABLE (so that the loop will get to run uninterrupted) and at the end of

the loop there is a call to pthread_setcancelstate()with the flag PTHREAD_CANCEL_EN-

ABLE. Prior to the first call to pthread_setcancelstate() the cancel state is tested with a

152 CHAPTER 5. IMPLEMENTATION

call to pthread_testcancel(), hence if there is a request for cancellation, it won’t interrupt

the execution of the control loop and the thread will recognize the request in the beginning

of the loop and exit. In this manner, there is a clean and straight way of thread cancellation

without customized solutions.

Returning to the same point after the declaration of the cleanup_handler, if FIFO_SCHED-

ULING is defined (for now FIFO is the only policy well supported), the thread running run()

is pinned to a specific CPU, namely CPU 3, by calling pthread_setaffinity_np(). More

on the CPU pinning will be discussed in the Subsection 5.3.1.

Next, the code continues to the control loop, after computing some time parameters neces-

sary for running the loop. In the control loop, after pthread_setcancelstate(PTHREAD_-

CANCEL_DISABLE, ...) there is a call to clock_nanosleep() which makes sure that the

thread will sleep for a fixed time interval (defined in nanoseconds). This time interval is de-

fined in the ethercat_slaves.yaml file.

Next, after creating the statistics metrics (if LOGGING is defined) the core functions are per-

formed. Namely, the thread tells the EtherLab master to receive the EtherCAT frame by

calling ecrt_master_receive() and then it requires to receive its Process Data Objects

(PDOs) defined in the domain used, by calling ecrt_domain_process(). Then, it con-

tinues to check the state of the domain, by checking if anything changed in the Working

Counter. The Working Counter is related to the EtherCAT commands used (refer to Sub-

subsection 3.1.3.2), like LRW, and it’s value corresponds to the number and the kind of com-

mands actually being carried out. After this check, it creates a new samplewith timingmetrics

(latency, execution, period) for logging (if LOGGING is defined).

Themethod then proceeds bymoving the data from the process_data_buf buffer (which is

filled by PDOOutListener class) to the domain1_pd buffer. The domain1_pd is the buffer

used by EtherLab to get the process data from the network and to send the new process data

to the network. The synchronization process was briefly introduced in Figure 4.5 and it is

discussed further in copy_process_data_buffer_to_buf().

After the new process data have been copied to the domain1_pd buffer, they are ready to

be sent. Indeed, the method continues by calling ecrt_domain_queue() to queue the new

Process Data Objects (PDOs) to EtherLab’s internal domain queue. Then synchronization

of the distributed clocks is performed by calling sync_distributed_clocks(). The oper-

ations of this method were discussed above, when the two synchronization methods in DC

5.1. SOFTWARE IMPLEMENTATION 153

mode were described. The two methods are both supported, however the SYNC_REF_TO_-

MASTER is the default, since by testing both of them, the performance of the master was the

same.

Next, ecrt_master_send() is called in order to send the new process data to the network

via EtherLab.

Note: Theprocess of sending and receiving the EtherCAT frames by EtherLabwas thoroughly

described in Figure 4.6 and in Figure 4.7 respectively.

After sending the process data to the EtherCAT network, publishing these data to the ROS

network takes place by calling publish_raw_data(). More details on how this is done are

presented in the description of this method. Finally, update_master_clock() is called for

updating the master clock with the time drift, if SYNC_MASTER_TO_REF is defined, and the

current time is compared with the time for breaking the loop in the while() command.

This concludes the control loop pipeline in the run()method, which is run by the real-time

pthread. After the control loop and if LOGGING is defined, the statistics metrics are written to

the log file, and the run() method exits.

EthercatCommunicator::publish_raw_data(): This method is called from the run()

method and it’s purpose is to publish the process data, as soon as they have been received

from the EtherCAT network, to the ROS network. However these data are buffer data and

don’t make sense because they are not formatted to the EtherCAT variables used (defined in

Subsection 4.2.3). Consequently, these unformatted data are not sent directly to the ROS net-

work. First these data are sent to a ROS node, which will format them to EtherCAT variables

and then publish them to the ROS network. This solution was chosen, since communicat-

ing with the EtherCAT network and formatting the data with the specific EtherCAT variables

used, can be decoupled. Hence, the real-time communication which does not depend on the

type of variables used, can remain unchanged. In addition, if the EtherCAT variables used

change in the future, only the formatters will have to change, since they depend on the type

of EtherCAT variables used and as a result, software modularity is achieved. The method is

presented below:

1 void EthercatCommunicator::publish_raw_data()

2 {

3 // Create raw data vectors

4 std::vector<uint8_t> input_data_raw, output_data_raw;

154 CHAPTER 5. IMPLEMENTATION

5 std::vector<uint8_t> input_vec, output_vec;

6 unsigned char *raw_data_pointer;

7

8 // Create input data raw string

9 for (int i = 0; i < master_info.slave_count; i++)

10 {

11 raw_data_pointer = (unsigned char *)domain1_pd +

ethercat_slaves[i].slave.get_pdo_in();

12 input_vec.insert(std::end(input_vec), raw_data_pointer,

raw_data_pointer + num_process_data_in);

13 }

14 input_data_raw.insert(std::end(input_data_raw), std::begin(input_vec),

std::end(input_vec));

15

16 // Create output data raw string

17 for (int i = 0; i < master_info.slave_count; i++)

18 {

19 raw_data_pointer = (unsigned char *)domain1_pd +

ethercat_slaves[i].slave.get_pdo_out();

20 output_vec.insert(std::end(output_vec), raw_data_pointer,

raw_data_pointer + num_process_data_out);

21 }

22 output_data_raw.insert(std::end(output_data_raw),

std::begin(output_vec), std::end(output_vec));

23

24 // Send both strings to the topic

25 ether_ros::PDORaw raw_data;

26 raw_data.pdo_in_raw = input_data_raw;

27 raw_data.pdo_out_raw = output_data_raw;

28 pdo_raw_pub_.publish(raw_data);

29 }

Listing 5.8: The EthercatCommunicator::publish_raw_datamethod.

The method starts by wrapping the data in the domain1_pd buffer (unsigned char * →
std::vector<uint8_t>). Thiswrapping is necessary in order to publish these data through

a topic in ROS,which natively supports C++. The input ProcessDataObjects are copied in the

5.1. SOFTWARE IMPLEMENTATION 155

input_data_raw vector and the output Process Data Objects are copied in the output_-

data_raw vector. Then a ether_ros::PDORawmessage is created, and the two “raw” vectors

are wrapped into the raw_data message field. Finally this message is published to the ROS

network through the pdo_raw_pub_ publisher’s publish method.

Output PDO Listener: This class is responsible for receiving the input from the users,

namely the output Process Data Objects (PDOs), and safely fill the shared process_data_-

buf buffer. Later on, the data of this buffer will be copied from the real-time pthread running

the run() method, safely into the domain1_pd buffer, in order to be sent to the EtherCAT

network. The synchronization scheme for safe operations on the shared process_data_buf

buffer was briefly described in Figure 4.5 and is further discussed in copy_process_data_-

buffer_to_buf(). The definition of the class is the following:

1 class PDOOutListener

2 {

3 private:

4 ros::Subscriber pdo_out_listener_;

5 std::map<std::string, int> int_type_map_ = {

6 {"bool", 0},

7 {"uint8", 1},

8 {"int8", 2},

9 {"uint16", 3},

10 {"int16", 4},

11 {"uint32", 5},

12 {"int32", 6},

13 {"uint64", 7},

14 {"int64", 8}

15 };

16

17 public:

18 void init(ros::NodeHandle & n);

19 void pdo_out_callback(const ether_ros::ModifyPDOVariables::ConstPtr

&new_var);

20 void modify_pdo_variable(int slave_id, const

ether_ros::ModifyPDOVariables::ConstPtr &new_var);

21 };

Listing 5.9: The PDOOutListener class definition.

156 CHAPTER 5. IMPLEMENTATION

The definition of the private variables starts with the definition of the ROS subscriber pdo_-

out_listener_, which subscribes to /pdo_listener topic. Then the int_type_map_ is

defined, which maps data types like bool and uint8 coming as strings to integers from 0

to 8. This was done in this way, in order to allocate the correct amount of memory, in order

for these data to be copied to the process_data_buf buffer. In the public scope, the public

methods of the class are declared. In the init()method the ROS subscriber subscribes to the

topic aforementioned. In the pdo_out_callback() method, the new output Process Data

Objects are received andmodify_pdo_variable() is called to process them. Theprocessing

doesn’t take place on the pdo_out_callback()method, since slave_id, a message field in

ether_ros::ModifyPDOVariables, can have value between 0 and 255. The 255 is reserved

for multicasting the change to an EtherCAT variable, to all EtherCAT slaves. In this case, the

modify_pdo_variable()method is called for every slave.

Input PDO Publisher: This class is responsible for formatting the input Process Data Ob-

jects, received from the aforementioned ROS publisher pdo_raw_pub_, into Input EtherCAT

variables (defined in Table 4.2) and publishing them to the ROS network. The definition of

the class is the following:

1 class PDOInPublisher

2 {

3 private:

4 ros::Subscriber pdo_raw_sub_;

5 ros::Publisher * pdo_in_pub_;

6

7 public:

8 void init(ros::NodeHandle &n);

9 void pdo_raw_callback(const ether_ros::PDORaw::ConstPtr &pdo_raw);

10 };

Listing 5.10: The PDOInPublisher class definition.

In the private scope, the pdo_raw_sub_ ROS subscriber and the pdo_in_pub_ ROS pub-

lisher are defined. The former is used for subscribing to the /pdo_raw topic to receive the

“raw” Process Data Objects (PDOs) and the latter is used for publishing the newly formatted

Input EtherCAT variables to topics, one for each existing EtherCAT slave. In the public scope,

the init()method is used for initializing the two private variables and the pdo_raw_call-

5.1. SOFTWARE IMPLEMENTATION 157

back() is further discussed below:

PDOInPublisher::pdo_raw_callback()

1 void PDOInPublisher::pdo_raw_callback(const ether_ros::PDORaw::ConstPtr

&pdo_raw)

2 {

3 std::vector<uint8_t> pdo_in_raw = pdo_raw->pdo_in_raw;

4 uint8_t *data_ptr;

5 size_t pos;

6 for (int i = 0; i < master_info.slave_count; i++)

7 {

8 pos = i * num_process_data_in; //The size of every entry is

num_process_data_in

9 data_ptr = (uint8_t *) & pdo_in_raw[pos];

10 ether_ros::PDOIn pdo_in;

11 using namespace utilities;

12

13 // change the following code to match your needs

14 /*

15 Insert code here ...

16 */

17

18 pdo_in.hip_angle = process_input_int16(data_ptr, 0);

19 pdo_in.desired_hip_angle = process_input_int16(data_ptr, 2);

20 pdo_in.time = process_input_uint16(data_ptr, 4);

21 pdo_in.knee_angle = process_input_int16(data_ptr, 6);

22 pdo_in.desired_knee_angle = process_input_int16(data_ptr, 8);

23 pdo_in.PWM10000_knee = process_input_int16(data_ptr, 10);

24 pdo_in.PWM10000_hip = process_input_int16(data_ptr, 12);

25 pdo_in.velocity_knee1000 = process_input_int32(data_ptr, 14);

26 pdo_in.velocity_hip1000 = process_input_int32(data_ptr, 18);

27

28 /*

29

30 */

31 pdo_in_pub_[i].publish(pdo_in);

32 }

158 CHAPTER 5. IMPLEMENTATION

33 }

Listing 5.11: The PDOInPublisher::pdo_raw_callbackmethod.

The method starts by receiving the “raw” input process data. Then a new ROS message of

type ether_ros::PDOIn is created for every EtherCAT slave on the network, namely pdo_-

in. Next, this message is filled with the Input EtherCAT variables (which are extracted from

the input process data buffer data_ptr by choosing the type of the variable and it’s position

inside the buffer). Finally, the message is published to the topic of the corresponding slave.

Note: The topics have names of the form /pdo_in_slave_x, where x is the slave_id of

each slave.

Note: The position of the input EtherCAT variables inside the buffer can be computed, by

measuring the bytes prior to the variables, from the output of the command $ ethercat

pdos in a terminal.

Output PDO Publisher: This class is responsible for formatting the output Process Data

Objects (PDOs), received from the aforementioned ROS publisher pdo_raw_pub_, intoOut-

put EtherCAT variables (defined in Table 4.1) and for publishing them to the ROS network.

This class is very similar with the PDOInPublisher class discussed above, thus further de-

scription isn’t necessary.

Output PDO Publisher Timer: This class was created for debugging and logging pur-

poses. As far as it’s structure is concerned, it’s very similar to the PDOOutPublisher class.

The only difference is that the callback is not triggered by a subscriber listening to a topic and

receiving the PDOs, but by a software timer. In the callback, the output Process Data Objects

are copied safely from the process_data_buf buffer (see utilities::copy_process_-

data_buffer_to_buf()) to a private buffer, then they are formatted and published to the

/pdo_out_timer topic in ROS.

Services: This is a complementary source file to the project, which acts as a placeholder for

all the services used. For now, there’s only one service used, namely EthercatCommunica-

tord, which is a daemon for starting, stopping and restarting the EthercatCommunicator.

When there is a start command from the user, this service calls the EthercatCommunica-

tor::start() method, which eventually starts the real-time pthread with the Ethercat-

Communicator::run() method. Initially, the PDOOutListener was not implemented as a

5.1. SOFTWARE IMPLEMENTATION 159

subscriber multiplexing different types of variables, yet was split into different services for the

different types of variables. This however changed, since services, as message communication

means, have latency and cannot acheive high data throughput. Therefore the EthercatCom-

municatord service is the only one remaining in the file.

Utilities: This is a source file with utility functions, which are needed from core meth-

ods and functions of the project. The most used function under utilities namespace is

utilities::copy_process_data_buffer_to_buf(), which is presented and discussed

below:

utilities::copy_process_data_buffer_to_buf()

1 void copy_process_data_buffer_to_buf(uint8_t * buffer)

2 {

3 pthread_spin_lock(&lock);

4 for (int i = 0; i < master_info.slave_count; i++)

5 {

6 memcpy((buffer + ethercat_slaves[i].slave.get_pdo_out()),

7 (process_data_buf + ethercat_slaves[i].slave.get_pdo_out()),

8 (size_t)(ethercat_slaves[i].slave.get_pdo_in() -

ethercat_slaves[i].slave.get_pdo_out())

9);

10 }

11 /*

12 buffer + ethercat_slaves[i].slave.get_pdo_out()) ----> the starting

address of the slave's output pdos in the buffer

13

14 process_data_buf + ethercat_slaves[i].slave.get_pdo_out()) ----> the

starting address of the slave's output pdos in the process_data_buf

15

16 (size_t)(ethercat_slaves[i].slave.get_pdo_in() -

ethercat_slaves[i].slave.get_pdo_out() ----> size of output pdos

of the slave

17

18 */

19 pthread_spin_unlock(&lock);

20 }

160 CHAPTER 5. IMPLEMENTATION

Listing 5.12: The utilities::copy_process_data_buffer_to_buf function.

This function is finally presented after many previous references. It starts with locking the

critical section for copying the data from one buffer to the other, by calling pthread_spin_-

lock() on the lock global variable. Then the output Process Data Objects are copied from

the process_data_buf buffer to the buffer given as parameter in the function call. Finally

the function before exiting callspthread_spin_unlock() to unlock thelock variable, since

it exitted the critical section.

5.2 Installation Process

In this section, the process of installing the environment needed for deploying the aforemen-

tioned software, is described.

5.2.1 The Preempt_RT Patch

The first step to set up the environment, is to patch the Linux kernel to be used, with the

PREEMPT_RT patch. For now, the latest supported version of Linux kernel for deploying

the environment with all the necessary software, is 4.9. For some reason, EtherLab cannot be

built with kernel versions higher than 4.9. In the following procedure, Ubuntu 16.04 is used

as the host GNU/Linux distribution. If there is a different choice of GNU/Linux distribution

or Ubuntu version, the following steps can be easily translated and implemented in that too.

The following steps are based on a post in the Ubuntu fora²:

5.2.1.1 Step 0 - Making a working directory

First, a working directory should be created, e.g. /k̃ernel:

1 # Make working directory

2 $ mkdir ~/kernel && cd ~/kernel

²https://ubuntuforums.org/showthread.php?t=2273355

https://ubuntuforums.org/showthread.php?t=2273355

5.2. INSTALLATION PROCESS 161

5.2.1.2 Step 1 - Downloading the Linux kernel and the patch

In the rt project in the Linux kernel archives³ the 4.9 RT patch can be found and be down-

loaded. Up to now, the most recent RT patch for kernel 4.9 is patch-4.9.146-rt125.pat-

ch.gz. This can be downloaded with the following command:

wget https://www.kernel.org/pub/linux/kernel/projects/rt/4.9/patch-4.9-

.146-rt125.patch.gz

Then, in the Linux kernel archives⁴, the kernel that matches the above patch can be found and

be downloaded:

wget https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.9.146.tar.gz

5.2.1.3 Step 2 - Unzipping the kernel

Next, the compressed archive containing the kernel needs to be unzipped. This is done with

the following command:

1 # x - extract

2 # z - pipe through gunzip

3 # v - verbose (text output)

4 # f - from file

5 $ tar -xzvf linux-4.9.146.tar.gz

Listing 5.13: Command for unzipping the kernel compressed archive.

5.2.1.4 Step 3 - Patching the kernel

Then, the kernel needs to be patched. The code steps are shown below:

1 # Move to kernel source directory

2 $ cd linux-4.9.146

3

4 # c - pipe file contents to stdout

5 # d - decompress

6 $ gzip -cd ../patch-4.9.146-rt125.patch.gz | patch -p1 --verbose

Listing 5.14: Commands for patching the kernel.

³https://www.kernel.org/pub/linux/kernel/projects/rt/
⁴https://www.kernel.org/pub/linux/kernel/

https://www.kernel.org/pub/linux/kernel/projects/rt/
https://www.kernel.org/pub/linux/kernel/

162 CHAPTER 5. IMPLEMENTATION

5.2.1.5 Step 4 - Enabling Real-time attributes

In order to build the kernel the libncurses-dev package should be installed:

1 $ sudo apt-get install libncurses-dev build-essential libssl-dev git

bison flex libelf-dev

The next step should create a graphical menu in the terminal which can be scrolled through.

1 $ make menuconfig

This line will create a menu like the one pictured in Figure 5.1. In this figure, the option of

PREEMPT_RT is selected.

Figure 5.1: The PREEMPT_RT kernel configuration option using menuconfig.

In the graphical menu of make menuconfig, extra configuration parameters can be speci-

fied, derived from [63, Chapter 3], namely:

1

2 # y = YES & n = NO

3

4 # see below for a detailed description on how to enable this

configuration. Also see the above figure.

5 CONFIG_PREEMPT_RT_FULL=y

6

7 CONFIG_CPU_FREQ=n

5.2. INSTALLATION PROCESS 163

8

9 CONFIG_CPU_IDLE=n

10

11 CONFIG_NO_HZ_FULL=y # see Configuration section. You might not need this

configuration after all, if the application is multithreaded.

12

13 CONFIG_RCU_NOCB_CPU=y # see section of Configuration. You might not need

this configuration after all, if the application is multithreaded.

Listing 5.15: The configuration options for building the kernel with PREEMPT_RT patch.

Thebutton presses are enclosed in []s, except formenu scrollingwith the up and down arrows.

Comments are preceeded by # and are ment for clarification.

Tip: While in the menuconfig, one can type “/” and then search the place of a configuration

parameter. One can exit with [ESC].

1 ##Graphical Menu##

2

3 Processor type and features ---> [Enter]

4 Preemption Model (Voluntary Kernel Preemption (Desktop)) [Enter]

5 Fully Preemptible Kernel (RT) [Enter] #Select

6

7 [Esc][Esc]

8

9 Kernel hacking --> [Enter]

10 Memory Debugging [Enter]

11 Check for stack overflows #Already deselected - do not select

12

13 [Esc][Esc]

14

15 [Right Arrow][Right Arrow]

16

17 <Save> [Enter]

18

19 .config

20

21 <Okay> [Enter]

164 CHAPTER 5. IMPLEMENTATION

22

23 <Exit> [Enter]

24

25 [Esc][Esc]

26

27 [Right Arrow]

28 <Exit> [Enter]

Listing 5.16: Steps for building the kernel with the PREEMPT_RT patch.

5.2.1.6 Step 5 - Compiling the kernel

This step takes more than 5 minutes in a typical workstation (i5/i7 CPUs).

1 $ make -j4

The -j4 referes to the number of jobs to be spawned for parallel processing. If there is only

a single core processor, this option can be omitted. It’s common practice to use the number

of cores after -j. There isn’t a proof that this is the best option. If little is known about the

processors, lscpu can be used in a terminal to determine the number of cores.

5.2.1.7 Step 6 - Making modules & installing

This step will take some time, but not as long as the previous step:

1 $ sudo make modules_install -j4

2 $ sudo make install -j4

5.2.1.8 Step 7 - Verifying and updating

One could verify that initrd.img-4.9.146-rt125, vmlinuz-4.9.146-rt125, and con-

fig-4.9.146-rt125 exist. They should have been created in the previous step:

1 $ cd /boot

2 $ ls

Then grub should be updated; this will allow the selection of the new kernel on bootup.

1 $ sudo update-grub

5.2. INSTALLATION PROCESS 165

It should be verified that there exists a menu entry containing the text “menuentry ‘Ubuntu,

with Linux 4.9.146-rt125”’. One can replace vim with gedit or any other text editor of her

choice, however this file should not be edited.

1 $ vim /boot/grub/grub.cfg

If one would like to make this kernel the new default (optional), this can be done by editing

the /etc/default/grub file. More information can be found in the Ubuntu Help page⁵.

5.2.1.9 Step 8 - Rebooting

Then, the PC should be rebooted and when the grub menu appears during boot, the newly

created RT kernel should be selected.

1 $ sudo reboot

Once rebooted, one can verify that everything was successful by running:

1 $ uname -a

The output should like the one below:

1 Linux pc_name 4.9.146-rt125 #1 SMP PREEMPT RT ...

5.2.2 EtherLab

After building the PREEMPT_RT Linux kernel and selecting it during boot, the EtherLab

kernel module should be installed. The procedure is the following: After cloning the repos-

itory of the project, cd into the etherlab directory of the project and run the install_-

etherlab_patched.sh script. This script is specifically written for automatic installation

of EtherLab and is presented below:

1 # install the necessary packages for building EtherLab

2 sudo apt-get install autoconf automake libtool mercurial

3

4 # hg clone might fail because there is no user registered. In this case

uncomment and run the following line:

⁵https://help.ubuntu.com/community/Grub2/Setup

https://help.ubuntu.com/community/Grub2/Setup

166 CHAPTER 5. IMPLEMENTATION

5 # echo -e '[extensions] \n mq = \n [ui] \n username = Foo Bar

<foobar@mail.com>' > ~/.hgrc

6

7 # clone the EtherLab repository

8 hg clone -u 33b922ec1871 http://hg.code.sf.net/p/etherlabmaster/code

ethercat-1.5.2-merc

9

10 # clone the patches

11 hg clone http://hg.code.sf.net/u/uecasm/etherlab-patches

ethercat-1.5.2-merc/.hg/patches

12 cd ethercat-1.5.2-merc

13

14 # apply the patches

15 hg qpush -a

16 cd ..; make ethercatMasterInstallWithAutoStart

17 rm -rf ethercat-1.5.2-merc

Listing 5.17: The install_etherlab_patched.sh script.

After patching the EtherLab source code, in line 16 a make command is issued with ether-

catMasterInstallWithAutoStart argument. The Makefile corresponding to the above

make command is based in a Makefile available from [104] and has been modified for the

project’s needs. It is presented below:

1 SHELL := /bin/bash

2 ethercatMasterVersion:=1.5.2-merc_unofficial_patch

3 # ethercatMasterZip:=ethercat-$(ethercatMasterVersion).tar.bz2

4 ethercatMasterDirectory:=ethercat-1.5.2-merc

5 udevRulesFile:=99-EtherCAT.rules

6 ethercatUserGroup:=$(shell whoami)

7

8 $(udevRulesFile):

9 @echo "Generating udev rules file"

10 @echo "KERNEL==\"EtherCAT[0-9]*\", MODE=\"0664\",

GROUP=\"$(ethercatUserGroup)\"">$(udevRulesFile)

11

12 ethercatMaster: $(udevRulesFile)

5.2. INSTALLATION PROCESS 167

13 # tar -xvf $(ethercatMasterZip)

14 cd $(ethercatMasterDirectory);\

15 ./bootstrap;\

16 ./configure --enable-generic --disable-8139too --enable-e1000e

--with-e1000e-kernel=4.9 --enable-hrtimer --enable-cycles;\

17 make all modules;

18

19 ethercatMasterInstall: ethercatMaster

20 cd $(ethercatMasterDirectory);\

21 sudo make modules_install install;\

22 sudo depmod;\

23 sudo mv ../$(udevRulesFile) /etc/udev/rules.d/$(udevRulesFile);\

24 sudo ln -s /opt/etherlab/etc/init.d/ethercat /etc/init.d/ethercat;\

25 sudo mkdir -p /etc/sysconfig/;\

26 sudo cp /opt/etherlab/etc/sysconfig/ethercat /etc/sysconfig/ethercat;\

27 sudo sed -i 's/DEVICE_MODULES=\"\"/DEVICE_MODULES=\"generic\"/g'

/etc/sysconfig/ethercat;\

28 sudo ln -s /opt/etherlab/bin/ethercat /usr/bin/ethercat;\

29 interfaces=`ifconfig | grep -e "^e[tn][a-z0-9]*" -o`;\

30 for i in $$interfaces;do lastInterface=$$i; done;\

31 interfaceMAC=`ifconfig $$lastInterface | ...

32 grep "[0-9A-Fa-f]\{2\}:[0-9A-Fa-f]\{2\}:[0-9A-Fa-f]\{2\}:

33 [0-9A-Fa-f]\{2\}:[0-9A-Fa-f]\{2\}:[0-9A-Fa-f]\{2\}" -o`;\

34 sudo sed -i

"s/MASTER0_DEVICE=\"\"/MASTER0_DEVICE=\"$$interfaceMAC\"/g"

/etc/sysconfig/ethercat;\

35

36 ethercatMasterInstallWithAutoStart: ethercatMasterInstall

37 sudo update-rc.d ethercat defaults;\

38 sudo /etc/init.d/ethercat start;

39

40 clean:

41 @echo Removing compiled installation files

42 @rm -f -r $(ethercatMasterDirectory) $(udevRulesFile)

Listing 5.18: The Makefile for building EtherLab.

168 CHAPTER 5. IMPLEMENTATION

It should be noted that in order to build EtherLab, root permissions are needed. With this

Makefile, EtherLab is built with both native and generic driver options. If a different native

driver from e1000e is used, the line 17 in theMakefile should be changed and updatedwith the

correct configuration option and the correct driver version. In an EtherLab’s web page⁶ and in

[2, Chapter 9], the supported hardware and the options the command configure takes, are

shown respectively. If the hardware at hand is not supported, then the configuration options

related to the native drivers should be removed and EtherLab should be built only with the

generic driver option.

5.3 Configuration &Optimization

Note: This section is largely based on [63].

In this section, the steps for configuring and optimizing the aforementioned installed system

are presented, in order to meet the real-time requirements described in Section 4.1.

5.3.1 Isolating the Application

If there is a need for real-time performance on single-core systems it is necessary to adapt the

entire system, e.g. using the PREEMPT_RT patch or an RTOS [63, Chapter 2]. This is not

always necessary in amulti-core system [63, Chapter 2]. Recently added features in the Linux

kernel make it possible to aggressively migrate sources of kernel-introduced jitter away from

selectedCPUs [63, Chapter 2]. This provides bare-metal-like performance on theCPUswhere

sources of jitter have been removed, thus creating a real-time environment for an application

running in Linux user-space [63, Chapter 2].

On a default setup, this is not possible since the Linux kernel needs to do some regular house-

keeping [63, Chapter 2]. It is possible to move much of this housekeeping to some dedicated

CPUs, provided there is a multicore system [63, Chapter 2]. That leaves the other CPUs rel-

atively untouched by the Linux kernel, unless a user-space task triggers some kernel activity

[63, Chapter 2]. The application that executes in this bare-metal environment should avoid

using libc calls and Linux system calls [63, Chapter 2].

When using this method correctly, it is possible to enhance throughput and real-time per-

formance by reducing the overhead of interrupt handling [63, Chapter 2]. This is beneficial

e.g. for applications that require very high throughput, and for device drivers that handle fre-

⁶http://www.etherlab.org/en/ethercat/hardware.php

http://www.etherlab.org/en/ethercat/hardware.php

5.3. CONFIGURATION & OPTIMIZATION 169

quent interrupts, such as 10Gb Ethernet drivers [63, Chapter 2]. The basic approach followed

is descibed briefly here; For elaborate information on the matter, the reader is referred to the

excellent guide in [63, Chapters 2 and 3]. The first step for CPU isolation in Linux, is to

define different cgroups (non real-time and real-time) in the cpuset cgroup [63, Chapter 3].

Note: After this definition, the two distinct cgroups need to be associated with aNUMA node,

even if the memory architecture of the system isn’t NUMA-enabled.

Load balancing, i.e. task migration, is a default activity in the Linux kernel that introduces

non-deterministic jitter. It is therefore necessary to disable load balancing in the real-time

cpuset. This also means that it is necessary to specify the correct affinity for the threads that

should execute within the real-time CPUs. Next, the general purpose tasks are moved to the

general non real-time partition, however this is not possible for every task, since some tasks

need to execute on all available CPUs. All future child tasks that are created from the non

real-time partition will also be placed in this partition.

After the general purpose tasks are migrated, it is the interrupts’ turn. Some interrupts are

not CPU-bound. Unwanted interrupts introduce jitter and can have serious negative impact

on real-time performance. They should be handled on the general purpose CPUs whenever

possible. The affinity of these interrupts can be controlled using the /proc file system. Typical

interrupts that should be moved are: timer interrupts, network related interrupts and serial

interface interrupts.

On the other hand, if there are any interrupts that are part of the real-time application, they

should be configured to fire in the real-time partition. Regarding the network interrupts,

Linux can route the packets on different CPUs in an SMP system and the handling can create

timers on the specific CPUs, for example the ARP timer management, based on neigh_-

timer. There are a couple of solutions that can be adopted to minimize the effect of rerout-

ing packets on different CPUs, like migrating all the timers on the non-realtime partition if

possible or specifying the affinity of network queues on some architectures. The developed

application needs the packets from the EtherCAT network to be received only in the real-time

partition thus the affinity of the network queues (for the XPS and RPS algorithms, see also

Subsubsection 4.2.2.5) should be set to the CPUs related to the real-time partition.

Finally, the pid of the application which will run in a real-time context, should be moved to

the real-time partition and also pinned to a specific CPU (if there are many CPUs in the real-

time partition). This has been described briefly in pthread_setaffinity_np() function

170 CHAPTER 5. IMPLEMENTATION

call. In this manner, the application will be isolated (even from general purpose interrupts)

and pinned to a specific CPU, thus achieving real-time and bare-to-metal performance.

Note: If EtherLab is configured and run with the native driver option, then as previously

described in Subsubsection 4.2.2.5), there is no need to set affinity of the network queues,

since the native EtherCAT-capable driver is accessed without traversing the Linux Network

Stack first. However, if EtherLab is configured and run with the generic driver option, then

this affinity should be set.

Note: There is also a kernel boot parameter that achieves isolation of CPUs, useful for isolating

the real-time domain from load balancing at system start-up: isolcpus=1,2,3,4,....

Note: Of course the developed application can not be pinned to a specific CPU belonging to

the real-time partition, if the application is not in the real-time cgroup. Thus, the application

needs to be moved to the real-time cgroup prior to pinning it on a specific CPU.

5.3.2 Full Dynamic Ticks

Ticks are used to balance CPU execution time between several tasks running on the same

CPU [63, Chapter 2]. They are interrupts generated by a hardware timer and occur at regular

intervals determined by the CONFIG_HZ kernel configuration, which for most architectures

can be configured when compiling the kernel [63, Chapter 2]. The tick interrupt is a per-CPU

interrupt [63, Chapter 2].

The full dynamic ticks (CONFIG_NO_HZ_FULL kernel configuration) adaptively try to shut-

down the tick whenever possible, even when the CPU is running tasks [63, Chapter 3]. To

achieve full dynamic ticks on a CPU, the application running on this CPU must comply to

some requirements [63, Chapter 3]. First, only one thread should run on eachCPU [63, Chap-

ter 3]. The application should not use any POSIX timers, directly or indirectly [63, Chapter 3].

This usually excludes any kernel calls that will access the network, but also excludes a number

of other kernel calls [63, Chapter 3]. Keeping the kernel calls to a minimum will maximize

the likelihood of achieving full dynamic ticks [63, Chapter 3]. Since the developed application

is a multithreaded one, full dynamic ticks option is not encouraged.

To enable full dynamic ticks to specific CPUs (the kernel configuration must be enabled), the

following boot parameters should be used: nohz_full=1,2,3,4,... [63, Chapter 3].

5.3. CONFIGURATION & OPTIMIZATION 171

5.3.3 Optimizing the Partitioned System

If the above subsections do not offer enough real-time properties, then this subsection pro-

vides some more hints for optimization.

5.3.3.1 Optimizing Power Saving

Power saving can be handled in Linux with various techniques. Here two of them are briefly

described:

• Dynamic Frequency Scaling: When little CPU-bound work is performed, the CPU

frequency can be reduced as a way to reduce power consumption [63, Chapter 2]. This

is called dynamic frequency scaling [63, Chapter 2]. This option is enabled at compile

time by the configuration parameter CONFIG_CPU_FREQ [63, Chapter 2]. If enabled,

the system will include functionality, called a governor, for controlling the frequency

[63, Chapter 2]. There are several governors optimized for different types of systems

[63, Chapter 2]. The decision to use dynamic frequency scaling in a real-time system

depends on the time that is needed to increase the frequency and that time’s relation to

the latency requirements [63, Chapter 2].

• CPU Power States: When the CPU is idle (i.e. no tasks are ready to run on this CPU)

the CPU can be put in sleep state (C state) [63, Chapter 2]. A sleep state means that

the CPU does not do any execution, while still ready to respond on certain events, e.g.

an external interrupt [63, Chapter 2]. CPUs usually have a range of power modes [63,

Chapter 2]. Deeper sleep means lower power consumption at the price of increased

wake-up time [63, Chapter 2]. As with dynamic frequency scaling, the transition be-

tween the power states is controlled by a governor [63, Chapter 2]. To configure the ker-

nel to enter sleeping state when idle, the compile-time configuration parameter CON-

FIG_CPU_IDLE is used [63, Chapter 2].

Power saving techniques interact poorly with real-time requirements [63, Chapter 2]. The

reason is that exiting a power saving state cannot be done instantly, e.g. 200µ s wake-up

latency from sleepmode C3 and 3µ s fromC1 on an Intel i5 - 2GHz [63, Chapter 2]. Thismay

not be a problem in e.g. a soft real-time system where the accepted latency is longer than the

wake-up time or in amulticore systemwhere power saving techniquesmay be used in a subset

of the cores [63, Chapter 2]. However, it is recommended the power saving mechanisms

to be disabled on system start-up, using the following kernel configuration parameters [63,

172 CHAPTER 5. IMPLEMENTATION

Chapter 2]:

• Disabled frequency scaling by setting CONFIG_CPU_FREQ=n.

• Disabled transitions to low-power states by setting CONFIG_CPU_IDLE=n.

5.3.3.2 Disabling power management

TheCPU frequency governor causes jitter because it is periodically monitoring the CPUs [63,

Chapter 3]. The actual activity of changing the frequency can also have a serious impact [63,

Chapter 3]. The frequency governor is disabled, as described previously, with the following

configuration: CONFIG_CPU_FREQ=n [63, Chapter 3].

However, an alternative is, at runtime, to change the governor policy (of a specific real-time

CPU) to performance. The advantage in this approach, is that each CPU can have different

power policy [63, Chapter 3]. Yet, it should be noted that this could damage the hardware

because of overheating and research should be conducted as to what works for the specific

hardware [63, Chapter 3].

5.3.3.3 Optimizing Real-TimeThrottling

If only real-time tasks were runnable on a CPU, they would consume all CPU power if the

scheduling principles were followed [63, Chapter 2]. Sometimes that is the wanted behavior,

but it would also allow that bugs in real-time threads completely block the system [63, Chap-

ter 2]. To prevent this from happening, the real-time throttling mechanism makes it possible

to limit the amount of CPU power that the real-time threads can consume [63, Chapter 2].

The mechanism is controlled by two parameters: rt_period and rt_runtime [63, Chapter 2].

The total execution time for all real-time threads cannot exceed rt_runtime during each rt_-

period [63, Chapter 2]. As a special case, rt_runtime can be set to -1 to disable the real-time

throttling [63, Chapter 2].

The throttlingmechanism allows the real-time tasks to consume rt_runtime times the number

of CPUs for every rt_period of elapsed time [63, Chapter 2]. Consequently, a real-time task

can utilize 100% of a single CPU as long as the total utilization does not exceed the limit. The

default settings rt_period=1000000 µs (1s) and rt_runtime=950000 µs (0.95s) give a limit of

95% CPU utilization [63, Chapter 2]. The parameters are associated with two files in the

/proc file system [63, Chapter 2]:

5.3. CONFIGURATION & OPTIMIZATION 173

• /proc/sys/kernel/sched_rt_period_us

• /proc/sys/kernel/sched_rt_runtime_us

In the generic case, execution of the real-time tasks may be blocked for a time equal to the

difference between rt_runtime and rt_period [63, Chapter 3]. This situation should however

be quite rare since it requires that there are real-time tasks (i.e. tasks scheduled with real-

time policies) that are ready to run on all CPUs. This condition should be rare since real-time

systems are typically designed to have an average real-time load of significantly less than 100%

[63, Chapter 3]. Consequently, it is recommended to keep the real-time throttling enabled

[63, Chapter 3]. For systems that do not have any real-time tasks, the real-time throttling will

never be activated and the settings will not have any impact [63, Chapter 3]. An alternative

when usingCPU isolation is to avoid using real-time classes, since theCPU is supposed to run

a single task anyway [63, Chapter 3]. In this case, real-time throttling should not be activated

[63, Chapter 3].

Note: If the system is configured with CONFIG_NO_HZ_FULL and a real-time process executes

on a CONFIG_NO_HZ_FULL CPU, real-time throttling will cause the kernel to schedule extra

ticks [63, Chapter 3].

5.3.3.4 Time Stamp Counter (tsc timer - x86 only)

The time stamp counter is a per-CPU counter that produces time stamps [63, Chapter 3].

Since the counters may drift, Linux will periodically check that they are synchronized [63,

Chapter 3]. But this periodicity means that the tick might appear despite using full dynamic

ticks [63, Chapter 3]. By telling Linux that the counters are reliable, Linux will no longer per-

form the periodic synchronization [63, Chapter 3]. The side effect of this is that the counters

may start to drift, something that can be visible in trace logs for example [63, Chapter 3]. The

boot parameter for making the tsc timers reliable is: tsc=reliable [63, Chapter 3].

5.3.3.5 Delay vmstat timer

This timer is used for collecting virtual memory statistics [63, Chapter 3]. The statistics are

updated at an interval specified as seconds in /proc/sys/vm/stat_interval [63, Chap-

ter 3]. The amount of jitter can be reduced by writing a large value to this file [63, Chapter 3].

174 CHAPTER 5. IMPLEMENTATION

5.3.3.6 Machine check - x86 only

The x86 architecture has a periodic check for corrected machine check errors (MCE) [63,

Chapter 3]. The periodic machine check requires a timer that causes unwanted jitter [63,

Chapter 3]. The periodic check should be turned off on the real-time CPUs [63, Chapter 3].

5.3.3.7 Disabling the watchdog timer

The watchdog timer is used to detect and recover from software faults and requires a regular

timer interrupt [63, Chapter 3]. This interrupt is a jitter source that can be removed, at the

obvious cost of less error detections [63, Chapter 3].

5.3.3.8 Disabling the NMIWatchdog - x86 only

The NMIs are hardware interrupts which are fired when there are non-recoverable hardware

errors. Thus, the debugging feature for catching hardware hangings and cause a kernel panic

(the NMI Watchdog) can also be disabled [63, Chapter 3]. On some systems it can generate

a lot of interrupts, causing a noticeable increase in power usage [63, Chapter 3].

5.3.3.9 Memory Overcommit

By default, the Linux kernel allows applications to allocate (but not use) more memory than

is actually available in the system [63, Chapter 2]. This feature is called memory overcommit

[63, Chapter 2]. The idea is to provide amore efficientmemory usage since processes typically

ask for more memory than they will actually need [63, Chapter 2]. However, overcommitting

alsomeans there is a risk that processes will try to utilize morememory than there is available

[63, Chapter 2]. If this happens, the kernel invokes the Out-Of-Memory Killer (OOM killer)

[63, Chapter 2]. The OOM killer scans through the tasklist and selects a task to kill to reclaim

memory, based on a set of heuristics [63, Chapter 2].

When an out-of-memory situation occurs, the whole system may become unresponsive for a

significant amount of time, or even end up in a deadlock [63, Chapter 2]. Thus, for embed-

ded and real-time critical systems, the allocation policy should be changed so that memory

overcommit is not allowed [63, Chapter 2]. In this mode, malloc()will fail if an application

tries to allocate more memory than is strictly available, and the OOM killer is avoided [63,

Chapter 2]. More information on the matter can be found in the man page for proc (5)⁷ and

Linux kernel supported overcommit handling modes.

⁷http://man7.org/linux/man-pages/man5/proc.5.html

http://man7.org/linux/man-pages/man5/proc.5.html

6
Experimental Evaluation

If something can go wrong, it will

go wrong.

Murphy’s General Law

In this chapter, the evaluation process and the experimental results are presented. The tools,

methodology, and environment pertaining to the evaluation process are described. The chap-

ter concludes with the presentation of experimental results along with a brief description.

6.1 Tools, Methodology & Environment

In this section the tools andmethodology employed for building and launching the developed

application are described. Next, the configured and monitoring environment are presented.

The setup described in this chapter was configured with the following tools:

• A PC/104 computer by RTD Embedded Technologies, Inc¹, see Figure 6.1.

• Ubuntu 16.04with kernel 4.9.115-rt93 patchedwithPREEMPT_RT (described inChap-

ter 5).

• IgH Master (EtherLab) version 1.5.2.

• Intel Network Interface Controller 82574L with e1000e driver.

¹https://www.rtdusa.com/home.htm

175

https://www.rtdusa.com/home.htm

176 CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.1: The PC/104 computer.

6.1.1 Building the application

After building the environment (described in Chapter 5) as a placeholder for the application

to run, the next step is to build the application and launch it in this environment.

The application developed is wrapped into a ROS package. Therefore the only thing required

for building the application is to run:

1 $ catkin_make

This is a command for issuing the build of the ROS packages residing in the ROS workspace.

After successfully building the application, there is an extra step before launching it. Since

the developed application needs to communicate with EtherLab (a kernel module), it needs

root privileges. For this reason, the following script was written, which should be executed

after building the application:

1 #!/bin/bash

2 cd ~/catkin_ws/devel/lib/ether_ros

3 chown root:root ether_ros

4 chmod a+rx ether_ros

5 chmod u+s ether_ros

Listing 6.1: The change_permissions_ether_ros.sh script.

6.1. TOOLS, METHODOLOGY & ENVIRONMENT 177

6.1.2 Starting the EtherLab module

Before launching the application, EtherLab should be properly configured and initialized.

If EtherLab was built with the script presented in Chapter 5, then probably EtherLab has

started already (the script builds it with the ethercatMasterInstallWithAutoStart op-

tion, which auto-starts EtherLab on system start). However, in case there exist many NICs in

a system, it should be defined with which NIC should EtherLab communicate. This is done

with a sysconfig file (located in etc/sysconfig/ethercat), which is read when EtherLab

is initialized and described in [2, Chapter 7]. The MASTER0_DEVICE parameter should be

filled with the corresponding NIC. The corresponding MAC address can be easily found with

the ifconfig command in a terminal.

Important note: The Ethernet driver modules for EtherCAT operation should be defined in

the sysconfig file also. In case the EtherLab module is intended to be used with the native

driver option, then the DEVICE_MODULES parameter must be filled with the corresponding

EtherCAT native driver’s name (e.g. e100, e1000, e1000e, igb). If the generic driver option

is used, then the parameter should be filledwith generic. However, since the applicationwill

use the Linux Network Stack, in the generic case, before (re)starting EtherLab, the following

script should be run as a further optimization:

1 #!/bin/bash

2 rmmod e1000e

3 modprobe e1000e InterruptThrottleRate=0 RxIntDelay=0 TxIntDelay=0

Listing 6.2: The reinstall_e1000e_wo_throttling.sh script.

This script basically reinstalls the e1000e (used in this setup) but with some optimizations

applied. The most basic is the parameter InterruptThrottleRate set to 0, with which the

driver places no limit to the amount of interrupts per second, the adapter will generate for

incoming packets. More information can be found in [117]. This is not necessary for the

native option, since the default driver won’t be used by EtherLab.

After this configuration, EtherLab can be initialized. This is done with the following com-

mand:

1 $ sudo /etc/init.d/ethercat restart # other options are: start, stop and

more

178 CHAPTER 6. EXPERIMENTAL EVALUATION

Important note: After EtherLab initialization has finished, the optimizations shown in Sec-

tion 5.3 should be applied. It’s critical to apply these optimizations after (re)installing the

Ethernet driver to be used, since the priority of the IRQ thread regarding the Ethernet driver’s

ISR should be changed after (re)installing the Ethernet driver.

6.1.3 Slaves Initialization

Before launching the application it is necessary to initialize the EtherCAT slaves to the correct

configuration. The slaves of Laelaps II are initialized by placing manually all the legs in the

position depicted in Figure 4.8 and by pressing the Reset button (shown in Figure 6.2) of every

Delfino Launchpad [17].

Figure 6.2: Reset button to initialize legs’ pose [17].

Before continuing to the next step, all wires, drivers and extension boards should be checked

and be properlymounted on the quadruped robot [17]. The current EtherCAT application (as

developed in [17]) comprises of two states: theOperational state and theConfigurational state

[17]. In the Operational state, the Output variables are processed by the slaves and the Input

variables are returned to the master, while in the Configurational state, the Output variables

are not processed by the slaves, thus the Input variables returned should be disregarded [17].

Therefore prior to performing any experiments on Laelaps II, the EtherCAT variable State

Machine² should be set to Configurational State (0) for each slave, before enabling the High

Voltage Power Supply [17]. Figure 6.3 illustrates the experimental setup of Laelaps II on the

treadmill, ready to perform the desired task [17].

The State Machine diagram of Laelaps is illustrated in Figure 6.4. When parameters to all

EtherCAT Output variables have been set and the State Machine is switched to Operational

²bool State_Machine

6.1. TOOLS, METHODOLOGY & ENVIRONMENT 179

Figure 6.3: Laelaps II on treadmill ready to perform experiments [17].

State (1), Laelaps executes the desired movement.

Figure 6.4: Laelaps’ State Machine [17].

180 CHAPTER 6. EXPERIMENTAL EVALUATION

6.1.4 Launching the application

After starting the EtherLab module and initializing the EtherCAT slaves, the application is

launched. This is done by running the following command in a terminal:

1 $ roslaunch ether_ros ether_ros.launch

The launch file used above simply creates a ROS node from the developed application and

launches it in the ROS environment. The Operator should run the python file ethercat_-

keyboard_controller.py by executing:

1 $ rosrun ether_ros ethercat_keyboard_controller.py

This python file creates a custom Command Line Interface (CLI) which gives functionality

to the user, as described in Subsubsection 4.2.2.2. With this, the user can send commands to

the EtherCAT network. The Output variables are summarized in Subsection 4.2.3, but also

can be viewed using the following command:

1 $ ethercat pdos

Before sending the “start” command (and after launching the ROS node), the user should run

the following script:

1 #!/bin/bash

2 ether_ros_pid=$(ps -e | grep "ether_ros" | grep -o -E '[0-9]+' | head -n

1)

3 sudo echo $ether_ros_pid > /sys/fs/cgroup/cpuset/rt/tasks

Listing 6.3: The make_rt_task_ether_ros.sh script.

This script will make sure that the pid of the ROS node process will be on the pids of the real-

time cgroup, as created in Section 5.3. In this way, the application can request to be pinned

on a specific CPU (namely 3), as shown in pthread_setaffinity_np() function call, and

the request will be satisfied, since it belongs to the real-time cgroup. Otherwise, the request

will not be accepted and an error code will be returned.

By completing the aforementioned steps, it’s time for the user to give the “start” command.

This is done in the custom terminal with: !start.

6.2. EXPERIMENTS & RESULTS 181

6.1.5 Monitoring

After launching the application and sending the “start” command, the real-time communi-

cation begins. However, somehow the process should be monitored, in order for the user to

stay informed with the current situation of the overall system. The following steps aim to this

direction.

6.1.5.1 Ring Buffer

The messages from the kernel need somehow to be monitored. EtherLab logs information

regarding skipped packets in the kernel logs, therefore if some packets are skipped, they can

bemonitored with these logs. The kernel messages are written into a ring buffer. The contents

of the ring buffer can be monitored through the dmesg command. Another useful command

is the following:

1 $ tail -f /var/log/kern.log

The tail command reveals only the latest messages, and the kern.log contains only the

kernel’s messages of any log level.

6.1.5.2 rqt

The rqt³ is a useful tool in the ROS environment for monitoring the status of the ROS ecosys-

tem. With this tool, topics and nodes along with their connections can be observed easily.

Lastly, one useful plugin to visualize online data from multiple topics, is the rqt_multiplot⁴.

6.2 Experiments & Results

This section presents the results of experiments with Laelaps II and the developed real-time

application in low frequency.

Since successful experiments have been conducted with a similar system (the only difference

is the EtherCAT master used) [17], the experiments carried out in this section, correspond to

the parameters shown in [17].

³http://wiki.ros.org/rqt
⁴http://wiki.ros.org/rqt_multiplot

http://wiki.ros.org/rqt
http://wiki.ros.org/rqt_multiplot

182 CHAPTER 6. EXPERIMENTAL EVALUATION

6.2.1 Experiments

In the context of this thesis, two experiments have been conducted. The first is related to the

trotting ability of Laelaps II. Its objective is to evaluate the ability of the legs to synchronize

properly and achieve the desired trottingmovement. The second is related to the control loop

frequencies of the EtherCAT network. Its objective is to compare the two types of EtherLab

drivers and measure their highest achieved EtherCAT control loop frequency.

6.2.1.1 Trotting Experiment

In this experiment, the developed application provides the parameters of the desired elliptical

trajectory for the toe of each leg alongwith other parameters of the system. Thedata are logged

using rosbag and post processed and plotted using a Matlab script. It is worth mentioning

that a PIV (Proportional – Integral – Velocity) controller is implemented in each slave (more

information in [17]), thus the master does not affect the control algorithms running in the

slaves, merely supplies each slave with the necessary parameters via EtherCAT.

For this experiment, a table describing the parameters used is provided along with figures.

The figures present:

• The desired elliptical trajectory of all toes (red) along with their actual response (black)

w.r.t coordinate systems located at the hip joints of the legs.

• The desired response of both knee and hip angles (red) of every leg with their respective

actual response of each knee and hip joint (black).

• ThePWMcommands of each knee and hipmotor (black)which is the output of the PIV

controllers with their respective predefined PWM limits (red). These values represent

the continuous current limits of both motors. More information on the selected limits

can be found in [17].

• The velocity estimation of each knee and hip joint (black) and the respective predefined

motor speed limits (red).

In this experiment, Laelaps II is initially in a standing position with all four legs configured

with the parameters shown in Table 6.1. The parameters a_ellipse100 and b_ellipse100

are set to 0 at the beginning of the experiments, therefore the elliptical trajectory is just a point.

After the recording (with rosbag) begins, b_ellipse100 parameter (which corresponds to

the clearance from the ground) is increased to 4 cm linearly with time (the rate of this increase

6.2. EXPERIMENTS & RESULTS 183

depends on the value of Transition_time variable, which was set to 3 seconds throughout

the experiment) to all slaves simultaneously, and similarly a_ellipse100 variable (which

corresponds to the step length) is linearly increased to 5 cm. Laelaps starts trotting slowly

and accelerates to reach a constant forward velocity. After several steps, the parameters are

again changed to their initial values (first a_ellipse100 and then b_ellipse100), Laelaps

decelerates and eventually stops walking and remains still. The recording is terminated and

all data are saved and post processed in Matlab.

The experiment’s parameters are depicted in Table 6.1 and in Table 6.2:

Table 6.1: Trotting Experiment parameters.

Parameters
FL

Leg

FR

Leg

HL

Leg

HR

Leg

x_cntr_traj1000 (mm) 0 0 0 0

y_cntr_traj1000 (mm) 599 599 598 598

a_ellipse100 (cm) 5 5 5 5

b_ellipse100 (cm) 4 4 4 4

traj_freq100 (Hz / 100) 100 100 100 100

phase_deg (deg) 180 0 0 180

Transition_time (sec) 3 3 3 3

Trajectory Parameters

FlatnessParam100 0 0 0 0

Kp100_knee 8000 8000 8000 8000

Kd1000_knee 50 50 50 50Control Gains of Knee

Ki100_knee 0 0 0 0

Kp100_hip 8000 8000 8000 8000

Kd1000_hip 50 50 50 50Control Gains of Hip

Ki100_hip 0 0 0 0

Knee 38.25 38.25 38.25 38.25
PWMmax values (%)

Hip 41.17 41.17 41.17 41.17

Filter Bandwidth Frequency FilterBandwidth (Hz) 20 20 20 20

Control Loop Frequency (kHz) 10 10 10 10

184 CHAPTER 6. EXPERIMENTAL EVALUATION

Table 6.2: Parameters independent of EtherCAT application.

Parameters Values

Loop Frequency of EtherCAT 2.5 kHz

Shift Time of Sync0 Interrupt 55 µs

Voltage Supply (System) 40.34 V

Max Value of Current (System) 50.11 A

6.2.1.2 Frequency Experiment

In this experiment, the developed application provides the parameters of the desired ellip-

tical trajectory for the toe of each leg along with other parameters of the system, however

High Power is not provided to the robot, hence the robot doesn’t move. Therefore, the devel-

oped application and the EtherCAT application are running in the same way as in the trotting

experiment, but there is no actuation from the motors.

For this experiment, the table describing the parameters used is the same as in the trotting

experiment, shown in Table 6.1 and Table 6.2, although the Loop Frequency of EtherCAT is

changed.

In this experiment, Laelaps II is in a standing position with all four legs configured with

the parameters shown in Table 6.1. The parameters a_ellipse100 and b_ellipse100

are set to 0 throughout the experiment. In each round of the experiment a configuration

(as shown in Table 6.4) is tested with a specific EtherCAT Loop Frequency and the kernel

logs are checked for skipped EtherCAT frames. If there are skipped frames, this means that

the frequency provided is not achievable by the according configuration. The experiment’s

parameters are depicted in Table 6.3 and in Table 6.4. In each first round the EtherCAT

Loop Frequency is set to 2.5kHz and in each following round the EtherCAT Loop Time

(1/EtherCATLoopFrequency) is decreased by 50µ s.

Table 6.3: Parameters independent of EtherCAT application.

Parameters Values

Time of each round 10 minutes

Shift Time of Sync0 Interrupt 55 µs

6.2. EXPERIMENTS & RESULTS 185

Voltage Supply (System) 40.34 V

Max Value of Current (System) 50.11 A

Table 6.4: Configurations tested.

EtherLab Configuration Optimizations

EtherLab with Generic Driver No

EtherLab with Generic Driver Yes

EtherLab with Native Driver No

6.2.2 Results

6.2.2.1 Trotting Experiment Results

During the steady state phase of the experiment, where both the a_ellipse100 and b_-

ellipse100 parameters have reached their final value, the toe (End Effector) of every leg

performs a specific path trying to converge with the desired elliptical trajectory. The desired

elliptical trajectory of each toe (red) along with the actual response of every leg (black) in

their workspace, with respect to the coordinate systems located in the hip joints of the legs

(O point in Figure 4.9), are shown in Figure 6.5.

186 CHAPTER 6. EXPERIMENTAL EVALUATION

-0.05 0 0.05

x axis --> +

0.56

0.57

0.58

0.59

0.6

+
 <

--
 y

 a
x
is

FR End Effector in Steady State

-0.05 0 0.05

x axis --> +

0.55

0.56

0.57

0.58

0.59

0.6

+
 <

--
 y

 a
x
is

FL End Effector in Steady State

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

x axis --> +

0.55

0.56

0.57

0.58

0.59

0.6

+
 <

--
 y

 a
x
is

HR End Effector in Steady State

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

x axis --> +

0.55

0.56

0.57

0.58

0.59

0.6

+
 <

--
 y

 a
x
is

HL End Effector in Steady State

Figure 6.5: Desired elliptical trajectory of all legs toe (red) along with their actual response
(black) w.r.t coordinate systems located in the hip joints of the legs.

This figure clarifies the fact that steady state errors in the hip and knee joints are adjourned

as errors to the positioning of the toe. It is worth mentioning that due to the ground and the

low values of the Control Gains, the desired elliptical trajectories are not tracked closely at

the “steady” state and a better tuning of these gains is required, especially for the hind legs.

Furthermore, the gains for the I term of the control scheme were 0, so proper tuning of these

gains is required too.

Figure 6.6 displays the desired value of each knee joint (red) and the actual response of this

joint (black) throughout the experiment.

6.2. EXPERIMENTS & RESULTS 187

0 5 10 15 20 25 30 35 40 45
-20

-10

0

10
A

n
g
le

 [
d
e
g
]

Response of FR Knee Angle

0 5 10 15 20 25 30 35 40 45
-20

-10

0

10

A
n
g
le

 [
d
e
g
]

Response of FL Knee Angle

0 5 10 15 20 25 30 35 40 45
-20

-10

0

10

A
n
g
le

 [
d
e
g
]

Response of HR Knee Angle

0 5 10 15 20 25 30 35 40 45

Time [s]

-20

-15

-10

-5

0

5

A
n
g
le

 [
d
e
g
]

Response of HL Knee Angle

Figure 6.6: Desired response of knee angles (red) and actual response of knee joint (black).

Both the transition and the steady state phase are illustrated. The desired values are closely

tracked by all legs, yet there is plenty of room for improvement which can be achieved by a

judicious regulation of the control gains for the knee motors.

In a similar manner, Figure 6.7 describes the desired value of each hip joint angle (red) and

the actual response of every hip joint (black) throughout the experiment.

188 CHAPTER 6. EXPERIMENTAL EVALUATION

0 5 10 15 20 25 30 35 40 45
-10

0

10

20

30

A
n
g
le

 [
d
e
g
]

Response of FR Hip Angle

0 5 10 15 20 25 30 35 40 45
-10

0

10

20

30

A
n
g
le

 [
d
e
g
]

Response of FL Hip Angle

0 5 10 15 20 25 30 35 40 45
-10

0

10

20

30

A
n
g
le

 [
d
e
g
]

Response of HR Hip Angle

0 5 10 15 20 25 30 35 40 45

Time [s]

-10

0

10

20

30

A
n
g
le

 [
d
e
g
]

Response of HL Hip Angle

Figure 6.7: Desired response of hip angles (red) and actual response of hip joint (black).

Both the transition and the steady state phase are illustrated. The desired values are closely

tracked by all legs, yet there is plenty of room for improvement (even more than the knee

motors) which can be achieved by proper regulation of the control gains for the hip motors.

Since identical control gain values were used for both motors (brushed and brushless) it is

totally understandable why these two joints don’t have an identical response as far as errors

are concerned. Moreover, it is worth mentioning that the hip joint performs a wider move-

ment which is another reason why the resulting errors are larger compared to the knee joints.

Another reason explaining the large errors, is the absence of an I term or a feedforward term,

which could support the robot weight.

Figure 6.8 depicts the PWM commands [%] of each knee motor (black) with its respective

predefined limit (red). These commands are the output of the knee’s PIV controller and are

6.2. EXPERIMENTS & RESULTS 189

directly translated in torque commands since a current control architecture is implemented.

As it can be observed, the commands in both hind legs are always within the limit. Con-

cerning the two forelegs, although the limits are reached several times, due to the fact that it

happened only for short intervals, no extra action is needed.

Figure 6.8: PWM commands of each leg’s knee motor (black) and the respective predefined
PWM limits (red).

Similarly, Figure 6.9 depicts the PWM commands [%] of each leg’s hip motor (black) with

its respective predefined limit (red). These commands are the output of the hip’s PIV con-

troller, and are directly translated in torque commands since a current control architecture is

implemented. As it can be observed, hip PWM limits are recurrently reached, especially in

the hind legs, thus an increase of the allowed range should be considered.

190 CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.9: PWMcommands of each leg’s hipmotor (black) and the respective predefined PWM
limits (red).

Figure 6.10 presents the velocity estimation of each leg’s knee joint (black) and the respec-

tive motor speed limits (red) as specified by the manufacturer (briefly described in Subsec-

tion 4.2.2). As it can be noticed from Figure 6.10, the velocities of all knee motors are always

within the allowed range.

6.2. EXPERIMENTS & RESULTS 191

0 5 10 15 20 25 30 35 40 45

-5

0

5
V

e
lo

c
it
y
 [
ra

d
/s

]
Response of FR Knee Velocity

0 5 10 15 20 25 30 35 40 45

-5

0

5

V
e
lo

c
it
y
 [
ra

d
/s

]

Response of FL Knee Velocity

0 5 10 15 20 25 30 35 40 45

-5

0

5

V
e
lo

c
it
y
 [
ra

d
/s

]

Response of HR Knee Velocity

0 5 10 15 20 25 30 35 40 45

Time [s]

-5

0

5

V
e
lo

c
it
y
 [
ra

d
/s

]

Response of HL Knee Velocity

Figure 6.10: Velocity estimation of each leg’s knee joint (black) and the respective predefined
motor speed limits (red).

Finally, Figure 6.11 illustrates the velocity estimation of each hip joint (black) and the respec-

tive motor speed limits (red) as specified by the manufacturer (briefly described in Subsec-

tion 4.2.2). Once again, the velocities of every hip motor are always within the allowed range,

thus there is no need to consider reducing hip PWM limits.

192 CHAPTER 6. EXPERIMENTAL EVALUATION

0 5 10 15 20 25 30 35 40 45
-10

-5

0

5

10

V
e
lo

c
it
y
 [
ra

d
/s

]
Response of FR Hip Velocity

0 5 10 15 20 25 30 35 40 45
-10

-5

0

5

10

V
e
lo

c
it
y
 [
ra

d
/s

]

Response of FL Hip Velocity

0 5 10 15 20 25 30 35 40 45
-10

-5

0

5

10

V
e
lo

c
it
y
 [
ra

d
/s

]

Response of HR Hip Velocity

0 5 10 15 20 25 30 35 40 45

Time [s]

-10

-5

0

5

10

V
e
lo

c
it
y
 [
ra

d
/s

]

Response of HL Hip Velocity

Figure 6.11: Velocity estimation of each leg’s hip joint (black) and the respective predefined
motor speed limits (red).

In this section, the presented results depict a successful trotting experiment on Laelaps II.

Minor modifications on control gains and ratios (PWM commands) are recommended for

improved performance on the gait, which should be further investigated. From the EtherCAT

master perspective, it should be noted that ether_ros worked as expected, without skipped

packets from EtherLab, in spite of using the generic driver. This means that the real-time

constraints, as analyzed in the functional requirements, were respected, with 2.5 kHz Ether-

CAT loop frequency achieved. Finally, regarding the ROS environment, the messages were

received successfully on the appropriate topics on time.

6.2. EXPERIMENTS & RESULTS 193

6.2.2.2 Frequency Experiment Results

As it can be observed from the following Table 6.5, the native driver is superior to the generic

by a large margin (close to 120 µs). The apparent reason as illustrated and explained in the

previous chapters, is the use of the Linux Network Stack by the generic driver, which adds

extra latency resulting to skipped packets from a Loop Time and below. The native driver

may be superior to the generic, however it has limited availability. If the native driver is not

available for the existing system, further development needs to be done for creating one. Thus

a well-known tradeoff arises once again, between availability and performance. It should be

noted that when themaster (using EtherLabwith native driver) requested from the EtherCAT

slaves to switch to Operation State and the Loop Time was equal or below 220 µs, the slaves

refused to switch. Therefore for the specific EtherCAT payload (240 bytes) and for the specific

slaves used, the threshold of the Loop Time is 230 µs.

Table 6.5: Frequency Experiment Results.

Configuration Optimizations
EtherCAT Loop Time

(µs)

Number of skipped

packets

EtherLab with

Generic
No 400 0

EtherLab with

Generic
No 350 ≈ 100

EtherLab with

Generic
Yes 400 0

EtherLab with

Generic
Yes 350 0

EtherLab with

Generic
Yes 300 ≈ 100

EtherLab with

Native
No 400 0

EtherLab with

Native
No 350 0

EtherLab with

Native
No 300 0

194 CHAPTER 6. EXPERIMENTAL EVALUATION

EtherLab with

Native
No 250 0

EtherLab with

Native
No 240 0

EtherLab with

Native
No 230 0

Nevertheless, the EtherCAT application could run in a 4.348 kHz EtherCAT Control Loop

frequency, a frequency far beyond the requested one. From this experiment, it was also mea-

sured that the time the EtherCAT frame (240 bytes) needed to traverse the EtherCATnetwork

and return to the master has a median of 110 µs and a variance of 4 µs. Also the time needed

by the developed application to receive an EtherCAT frame, create the new PDOs and send

the new frame to the network was less than 30 µs.

7
Conclusions & FutureWork

We are made wise not by the

recollection of our past, but by the

responsibility for our future.

George Bernard Shaw

In this final chapter, an overall assessment of the developed project is drawn and conclusions

are presented regarding the results and the technologies used. Finally, a few directions for

further improvement (considered worthy of investigation) and future work are outlined.

7.1 Concluding Remarks

All in all, the requirements formulated in Chapter 4 were managed and met succesfully. Ac-

cording to the experimental evaluation results, the design and development of this thesis

achieved to combine the technologies of EtherCAT and ROS under real-time constraints and

produce the outcome of a trotting quadruped robot, namely Laelaps II.

In more detail, the real-time capabilities offered by the PREEMPT_RT patch proved to be

highly sufficient for the motion control of Laelaps II and the combination of the patch along

with EtherLab proved to beworthy superseder of theWindows / TwinCAT approach. Regard-

ing the PREEMPT_RT patch, although a fair amount of development time was consumed on

tweaking the system’s kernel and the application’s code in order to optimize the master’s la-

tency, this cost is considered to be far smaller than other approaches like Xenomai and RTAI,

195

196 CHAPTER 7. CONCLUSIONS & FUTUREWORK

which may offer better performance, yet trading off maintainability and development costs.

As far as EtherLab is concerned, the design decision to adopt this approach instead of SOEM,

proved to be wise during the development and the validation process. Although a hard and

steep learning curve was involved for understanding the way of developing code that utilizes

it’s API, the documentation was excellent and facilitated the process of development. Also,

EtherLab showed it’s strength in the debugging process, since it offered mechanisms to ex-

amine instantly every aspect of the EtherCAT network.

In addition, on top of the real-time capabilities, the developed application offers inter-oper-

ability with the ROS environment, through it’s ROS API. This step opens a lot of possibilities,

considering the size of the ROS ecosystem and the diversity of the currently developed appli-

cations in it. The future ROS nodes will have the ability to communicate with the encoders

and motors of Laelaps II and orchestrate profiles of synchronized motions of the legs. These

profiles could start with simple ones like trotting, studied in this thesis, and continue with

highly complex like galloping and running or combinations of them. This feature shouldn’t

be neglected; the ROS-ification of Laelaps II is a huge step towards software modularity and

reduction of development and maintaining costs, important factors for both academia and

industry.

Last but not least, the EtherCAT communication protocol proved to be highly efficient and

useful throughout the experimental validation. Depending on the data payload which is inti-

mately connected to the size of the EtherCAT frame, this technology can reach really low cycle

times and guarantee proper communication between a master and several slaves exploiting

only a few really affordable devices (MCUs and ESCs). To put this information in context, the

total purchasing cost of all the required components for the control architecture of Laelaps II

is almost 10% of the previous version (Laelaps I). Conclusively, the decision to switch towards

EtherCAT technology was judicious and wise due to its alleviating functionalities, especially

in the motion control area. The new decentralized architecture will certainly enable Laelaps

II to perfom higher frequency motions and reach its maximum velocity, with only minor up-

grades on its mechanical system, enabling future projects in the CSL-EP laboratory to easily

adopt this scheme.

7.2 FutureWork

Although the current implementation of motion control via EtherCAT on Laelaps II has been

tested and has been proven to be fully functional at the software and hardware level, several

7.2. FUTUREWORK 197

aspects can be improved in the future to achieve greater robustness.

Firstly, the developed application can be extended to support different payloads for EtherCAT

slaves and automatic configuration of a new EtherCAT application without manual configu-

ration on the ether_ros source code.

An additional idea, is to conduct experiments for tracing the latencies in every aspect of the

system. The EtherCAT loop time is consumed among the network, the slaves and the master,

and it would be useful to know the amount of time each component of the system consumes.

To this direction, tracing tools¹ in the kernel could be utilized in order to trace which process

is run by which CPU, how much time does it take to run etc. In this way, the latency of the

application, the kernel and the EtherCAT network can be traced. The EtherCAT network’s

latency can be traced by measuring the intervals between two consecutive interrupts of the

Ethernet IRQ dedicated to the EtherCAT network. This latency can be easily (but not so

accurately) monitored by the use of Wireshark too. The kernel latency consists of latencies

introduced by the EtherLab module, the scheduler and other interrupts not related with the

EtherCAT network (e.g. timers, IPIs).

Another possible direction, is experimentation with a different scheduling policy and com-

parison with the currently used SCHED_FIFO. A suitable candidate could be SCHED_DEAD-

LINE policy, however extra technical effort is required for integrating this policy to the exist-

ing project’s workflow.

Moreover, should the current control scheme change and become centralized, the ether_ros

should change too. A centralized approach means more throughput towards ether_ros and

the developed application is not optimized for this kind of case. For this approach to work,

the application needs to be changed significantly, by optimizing the interaction with the ROS

environment, like the number of threads to be used, specific callback queues etc.

Finally, when the thesis was halfway finished, new approaches of motion control based on

open-source standards emerged. These approaches are based on ROS 2 (version “crystal” at

the time of this writting), which is yet at an early stage of maturity, but is thought to be the

successor of ROS. These approaches deal with real-time constraints with the offered inherent

features of ROS 2. Currently, the approach of controlling a robotic arm without the need for

a fieldbus system is proposed [46, 21, 118, 119].

¹http://www.brendangregg.com/blog/2015-07-08/choosing-a-linux-tracer.html

http://www.brendangregg.com/blog/2015-07-08/choosing-a-linux-tracer.html

198 CHAPTER 7. CONCLUSIONS & FUTUREWORK

Although EtherCAT offers unquestionably many benefits, the need for programming both

the master and the slaves persists. On the contrary, this approach proposes a motion control

of a robotic arm, by adopting ROS 2, PREEMPT_RT patch, H-ROS, HRIM [120] and Ether-

net enhanced with Time Sensitive Networking (TSN) standards [119], which offers no extra

development cost for programming the “slaves”. In fact, in this approach there is no master

and slaves, merely a computer and the objects (sensors, actuators) publishing and listening

to specific topics, which the computer can take advantage of. This is achieved by erasing a

variable from the existing equation, namely EtherCAT, and replacing it with deterministic

Ethernet under TSN standards (IEEE 802.1 AS) [119]. There is a caveat however; the cur-

rently supported motors are only of a specific brand², therefore the shift is not necessarily

applicable to the CSL-EP laboratory’s setting, yet this approach deserves some research.

²https://acutronicrobotics.com/docs/products/actuators/modular_motors/hans/
specification

https://acutronicrobotics.com/docs/products/actuators/modular_motors/hans/specification
https://acutronicrobotics.com/docs/products/actuators/modular_motors/hans/specification

Bibliography

[1] B. Wiliamowski and J. Irwin, Industrial Communications Systems: The Industrial Elec-

tronics Handbook. CRC Press, 2011.

[2] F. Pose, IgH EtherCAT Master 1.5.2 Documentation, Ingenieurgemeinschaft IgH,

10 2017, [Accessed 18-March-2019]. [Online]. Available: https://www.etherlab.org/

download/ethercat/ethercat-1.5.2.pdf

[3] F. Cottet, J. Delacroix, C. Kaiser, and Z. Mammeri, Scheduling in Real-Time Systems.

John Wiley & Sons, November 2002, pp. 8–33, 93–96. [Online]. Available: https://doi.

org/10.1002/0470856343

[4] Alison Chaiken, “IRQs: the Hard, the Soft, the Threaded and the Preemptible,”

October 2016, [Accessed 14-March-2019]. [Online]. Available: https://events.static.

linuxfound.org/sites/events/files/slides/Chaiken_ELCE2016.pdf

[5] Yaghmour, Karim and Masters, Jonathan and Ben-, Gilad, Building Embedded Linux

Systems, 2nd Edition, 2nd ed. Sebastopol, CA, USA: O’Reilly & Associates, Inc., 2008.

[6] Steven Rostedt, “Real-Time is coming to Linux: What does that mean

for you?” October 2018, [Accessed 14-March-2019]. [Online]. Available:

https://events.linuxfoundation.org/wp-content/uploads/2017/12/elc-eu-2018-rt-

what-does-it-mean_Steven-Rostedt.pdf

[7] Y. Pyo, H. Cho, L. Jung, and D. Lim, ROS Robot Programming (English). ROBOTIS, 12

2017, pp. 10–15, 41–63.

199

https://www.etherlab.org/download/ethercat/ethercat-1.5.2.pdf
https://www.etherlab.org/download/ethercat/ethercat-1.5.2.pdf
https://doi.org/10.1002/0470856343
https://doi.org/10.1002/0470856343
https://events.static.linuxfound.org/sites/events/files/slides/Chaiken_ELCE2016.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Chaiken_ELCE2016.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/12/elc-eu-2018-rt-what-does-it-mean_Steven-Rostedt.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/12/elc-eu-2018-rt-what-does-it-mean_Steven-Rostedt.pdf

200 BIBLIOGRAPHY

[8] EtherCAT and EtherCAT-P Slave Implementation Guide, 3rd ed., Beckhoff Automation

GmbH, 3 2018, [Accessed 18-March-2019]. [Online]. Available: https://www.ethercat.

org/download/documents/ETG2200_V3i0i4_G_R_SlaveImplementationGuide.pdf

[9] EtherCAT Slave Controller Hardware Data Sheet Section I: Technology, 2nd ed.,

Beckhoff Automation GmbH, 7 2014, [Accessed 18-March-2019]. [Online]. Available:

https://download.beckhoff.com/download/document/io/ethercat-development-

products/ethercat_esc_datasheet_sec1_technology_2i3.pdf

[10] Elmo Motion Control Ltd., “Multi-Axis Position Control by EtherCAT Real-Time

Networking,” january 2012, [Accessed 18-March-2019]. [Online]. Available: https:

//products4engineers.nl/images/default/vbVUrK-pdf.pdf

[11] J. Liu, X. Li, M. Liu, X. Cui, and D. Xu, “A new design of clock synchronization al-

gorithm,” Advances in Mechanical Engineering, vol. 6, 2014. [Online]. Available: https:

//journals.sagepub.com/doi/pdf/10.1155/2014/958686

[12] Synchronization Modes, EtherCAT Technology Group, 2019, etherCAT Technology

Group (ETG)KnowledgeBase.Only available for ETGMembers. [Accessed 18-March-

2019].

[13] EtherCAT Technology Group, “EtherCAT Synchronization,” 5 2014, etherCAT Tech-

nology Group (ETG) Knowledge Base. Only available for ETG Members. [Accessed

18-March-2019].

[14] ——, “How-To Configure DC SYNC Shift Times,” 12 2017, etherCAT Technology

Group (ETG)KnowledgeBase.Only available for ETGMembers. [Accessed 18-March-

2019].

[15] EtherCAT Protocol Enhancements, EtherCAT Technology Group, 12 2015, etherCAT

Technology Group (ETG) Knowledge Base. Only available for ETG Members. [Ac-

cessed 18-March-2019].

[16] R. Zurawski, Industrial Communication Technology Handbook, 2nd ed. CRC Press,

2017.

[17] S. Athiniotis, “Firmware design for microcontrollers on ethercat network for

quadruped robot motion control,” Master’s thesis , School of Mechanical Engineering,

National Technical University of Athens, 2018.

https://www.ethercat.org/download/documents/ETG2200_V3i0i4_G_R_SlaveImplementationGuide.pdf
https://www.ethercat.org/download/documents/ETG2200_V3i0i4_G_R_SlaveImplementationGuide.pdf
https://download.beckhoff.com/download/document/io/ethercat-development-products/ethercat_esc_datasheet_sec1_technology_2i3.pdf
https://download.beckhoff.com/download/document/io/ethercat-development-products/ethercat_esc_datasheet_sec1_technology_2i3.pdf
https://products4engineers.nl/images/default/vbVUrK-pdf.pdf
https://products4engineers.nl/images/default/vbVUrK-pdf.pdf
https://journals.sagepub.com/doi/pdf/10.1155/2014/958686
https://journals.sagepub.com/doi/pdf/10.1155/2014/958686

BIBLIOGRAPHY 201

[18] H.Kopetz,Real-Time Systems: Design Principles forDistributed EmbeddedApplications,

2nd ed., ser. Real-Time Systems Series. Springer, 2011, pp. 13–17. [Online]. Available:

https://doi.org/10.1007/978-1-4419-8237-7

[19] P. A. Laplante, Real-Time SystemsDesign andAnalysis, 3rd ed. JohnWiley& Sons, April

2004, pp. 4–6. [Online]. Available: https://doi.org/10.1002/0471648299

[20] D. Abbott, Linux for embedded and real-time applications, 4th ed. Elsevier, 2017, pp.

258–270.

[21] C. S. V. Gutiérrez, L. U. S. Juan, I. Z. Ugarte, and V. M. Vilches, “Real-time linux com-

munications: an evaluation of the linux communication stack for real-time robotic

applications,” arXiv preprint arXiv:1808.10821, 2018.

[22] Wikipedia contributors, “Tanenbaum-Torvalds debate,” 2019, [Accessed 14-March-

2019]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Tanenbaum%

E2%80%93Torvalds_debate&oldid=884077588

[23] Thomas Gleixner, “Realtime Linux: academia v. reality,” July 2010, [Accessed 14-

March-2019]. [Online]. Available: https://lwn.net/Articles/397422/

[24] KUNBUS GmbH, “Fieldbus Basics,” 2018, [Accessed 4-December-2018]. [Online].

Available: https://www.kunbus.com/fieldbus-basics.html

[25] Wikipedia contributors, “Token passing,” 2019, [Accessed 14-March-2019]. [On-

line]. Available: https://en.wikipedia.org/w/index.php?title=Token_passing&oldid=

789850568

[26] A. Hansson, “Industrial Ethernet is now bigger than fieldbuses,” 2018, [Accessed

5-December-2018]. [Online]. Available: https://www.automationworld.com/article/

industrial-ethernet-now-bigger-fieldbuses

[27] J. Pinto, “From Fieldbus to Industrial Ethernet,” 2018, [Accessed 4-December-

2018]. [Online]. Available: https://www.automationworld.com/article/technologies/

networking-connectivity/ethernet-tcp-ip/fieldbus-industrial-ethernet

[28] Wikipedia contributors, “SERCOS III,” 2018, [Accessed 4-December-2018]. [On-

line]. Available: https://en.wikipedia.org/w/index.php?title=SERCOS_III&oldid=

855929777

https://doi.org/10.1007/978-1-4419-8237-7
https://doi.org/10.1002/0471648299
https://en.wikipedia.org/w/index.php?title=Tanenbaum%E2%80%93Torvalds_debate&oldid=884077588
https://en.wikipedia.org/w/index.php?title=Tanenbaum%E2%80%93Torvalds_debate&oldid=884077588
https://lwn.net/Articles/397422/
https://www.kunbus.com/fieldbus-basics.html
https://en.wikipedia.org/w/index.php?title=Token_passing&oldid=789850568
https://en.wikipedia.org/w/index.php?title=Token_passing&oldid=789850568
https://www.automationworld.com/article/industrial-ethernet-now-bigger-fieldbuses
https://www.automationworld.com/article/industrial-ethernet-now-bigger-fieldbuses
https://www.automationworld.com/article/technologies/networking-connectivity/ethernet-tcp-ip/fieldbus-industrial-ethernet
https://www.automationworld.com/article/technologies/networking-connectivity/ethernet-tcp-ip/fieldbus-industrial-ethernet
https://en.wikipedia.org/w/index.php?title=SERCOS_III&oldid=855929777
https://en.wikipedia.org/w/index.php?title=SERCOS_III&oldid=855929777

202 BIBLIOGRAPHY

[29] C. Semini, V. Barasuol, J. Goldsmith,M. Frigerio,M. Focchi, Y.Gao, andD.G.Caldwell,

“Design of the hydraulically actuated, torque-controlled quadruped robot hyq2max,”

IEEE/ASME Transactions on Mechatronics, vol. 22, no. 2, April 2017, pp. 635–646.

[30] M. Hutter, C. Gehring, A. Lauber, F. Gunther, C. D. Bellicoso, V. Tsounis,

P. Fankhauser, R. Diethelm, S. Bachmann, M. Bloesch, H. Kolvenbach, M. Bjelonic,

L. Isler, and K. Meyer, “ANYmal - toward legged robots for harsh environments,”

Advanced Robotics, vol. 31, no. 17, 2017, pp. 918–931. [Online]. Available: https:

//doi.org/10.1080/01691864.2017.1378591

[31] Giorgio C. Buttazzo,Hard Real-Time Computing Systems: Predictable Scheduling Algo-

rithms and Applications, 3rd ed., ser. Real-Time Systems Series. Springer, 2011, vol. 24,

pp. 1, 34–39, 86–118, 428–456. [Online]. Available: https://doi.org/10.1007/978-1-

4614-0676-1

[32] J. A. Stankovic and K. Ramamritham, Eds., Tutorial: Hard Real-time Systems. Los

Alamitos, CA, USA: IEEE Computer Society Press, 1989.

[33] K. Schwan, P. Gopinath, and W. Bo, “CHAOS-kernel support for objects in the real-

time domain,” IEEE Transactions on Computers, vol. C-36, no. 8, Aug 1987, pp. 904–

916.

[34] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C. Senft, and R. Zainlinger,

“Distributed fault-tolerant real-time systems: the mars approach,” IEEE Micro, vol. 9,

no. 1, Feb 1989, pp. 25–40.

[35] J. A. Stankovic andK. Ramamritham, “The spring kernel: a new paradigm for real-time

systems,” IEEE Software, vol. 8, no. 3, May 1991, pp. 62–72.

[36] H. Tokuda and C. W. Mercer, “ARTS: A distributed real-time kernel,” SIGOPS Oper.

Syst. Rev., vol. 23, no. 3, Jul. 1989, pp. 29–53. [Online]. Available: http://doi.acm.org/

10.1145/71021.71023

[37] I. Lee, R. King, and R. Paul, “RK: A real-time kernel for a distributed system with pre-

dictable response,” Technical Reports (CIS), p. 714, 1988.

[38] I. Lee and R. King, “Timix: a distributed real-time kernel for multi-sensor robots,”

in Proceedings. 1988 IEEE International Conference on Robotics and Automation, April

1988, vol. 3, pp. 1587–1589.

https://doi.org/10.1080/01691864.2017.1378591
https://doi.org/10.1080/01691864.2017.1378591
https://doi.org/10.1007/978-1-4614-0676-1
https://doi.org/10.1007/978-1-4614-0676-1
http://doi.acm.org/10.1145/71021.71023
http://doi.acm.org/10.1145/71021.71023

BIBLIOGRAPHY 203

[39] S. T. Levi, S. K. Tripathi, S. D. Carson, and A. K. Agrawala, “The MARUTI hard real-

time operating system,” in [1989] Proceedings. The Fourth Israel Conference on Com-

puter Systems and Software Engineering, June 1989, pp. 5–15.

[40] D. D. Kandlur, D. L. Kiskis, and K. G. Shin, “HARTOS: A distributed real-time oper-

ating system,” SIGOPS Oper. Syst. Rev., vol. 23, no. 3, Jul. 1989, pp. 72–89. [Online].

Available: http://doi.acm.org/10.1145/71021.71025

[41] K. Jeffay, D. Stone, and D. Poirier, “Yartos: Kernel support for efficient, predictable

real-time systems,” IFAC Proceedings Volumes, vol. 24, no. 2, 1991, pp. 7 – 12. [Online].

Available: http://www.sciencedirect.com/science/article/pii/S1474667017512604

[42] G. C. Buttazzo and M. D. Natale, “HARTIK: a hard real-time kernel for programming

robot tasks with explicit time constraints and guaranteed execution,” in Proceedings

IEEE International Conference on Robotics and Automation, vol. 2, May 1993, pp. 404–

409.

[43] S. Oikawa and R. Rajkumar, “Portable RK: A portable resource kernel for guaranteed

and enforced timing behavior,” in Proceedings of the Fifth IEEE Real-Time Technology

and Applications Symposium, IEEE, 1999, p. 111.

[44] S. Oikawa, “Linux/RK: A portable resource kernel in linux,” in In 19th IEEE Real-Time

Systems Sumposium, 1998.

[45] B. Gerkey, “Why ROS 2?” 2017, [Accessed 6-December-2018]. [Online]. Available:

https://design.ros2.org/articles/why_ros2.html

[46] C. S. V. Gutiérrez, L. Usategui San Juan, I. Zamalloa Ugarte, and V. Mayoral

Vilches, “Towards a distributed and real-time framework for robots: Evaluation

of ROS 2.0 communications for real-time robotic applications,” ArXiv e-prints, p.

arXiv:1809.02595, Sep. 2018.

[47] J. Blazewicz, K. H. Ecker, G. Schmidt, and J. Weglarz, Scheduling in computer and man-

ufacturing systems. Springer Science & Business Media, 2012.

[48] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of

NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1979.

[49] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard-

real-time environment,” Journal of the ACM (JACM), vol. 20, no. 1, 1973, pp. 46–61.

http://doi.acm.org/10.1145/71021.71025
http://www.sciencedirect.com/science/article/pii/S1474667017512604
https://design.ros2.org/articles/why_ros2.html

204 BIBLIOGRAPHY

[50] Wikipedia contributors, “Rate-monotonic scheduling,” 2019, [Accessed 14-March-

2019]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Rate-

monotonic_scheduling&oldid=884167834

[51] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling algorithm: exact

characterization and average case behavior,” in [1989] Proceedings. Real-Time Systems

Symposium, Dec 1989, pp. 166–171.

[52] E. Bini, G. Buttazzo, and G. Buttazzo, “A hyperbolic bound for the rate monotonic

algorithm,” in Proceedings 13th Euromicro Conference on Real-Time Systems, June 2001,

pp. 59–66.

[53] E. Bini, G. C. Buttazzo, and G. M. Buttazzo, “Rate monotonic analysis: the hyperbolic

bound,” IEEE Transactions on Computers, vol. 52, no. 7, July 2003, pp. 933–942.

[54] I. Lee, J. Y.-T. Leung, and S. H. Son, Handbook of Real-Time and Embedded Systems,

1st ed. Chapman & Hall/CRC, 2007.

[55] M. Dertouzos, “Control robotics: The procedural control of physical processeds,” in

Proc. IFIP congress, 1974, pp. 807–813.

[56] G. C. Buttazzo, “Rate monotonic vs. edf: judgment day,” Real-Time Systems, vol. 29,

no. 1, 2005, pp. 5–26.

[57] A. Carlini and G. C. Buttazzo, “An efficient time representation for real-time embed-

ded systems,” in Proceedings of the 2003 ACM symposium on Applied computing. ACM,

2003, pp. 705–712.

[58] G. Buttazzo, P. Gai et al., “Efficient edf implementation for small embedded systems,” in

Proc. International Workshop on Operating Systems Platforms for Embedded Real-Time

Applications, 2006.

[59] A.Cervin, “Integrated control and real-time scheduling,” Ph.D. dissertation, LundUni-

versity, 2003.

[60] S. Sahni, “Preemptive scheduling with due dates,” Operations Research, vol. 27, no. 5,

1979, pp. 925–934.

[61] Jonathan Corbet, “Software interrupts and realtime,” October 2012, [Accessed 14-

March-2019]. [Online]. Available: https://lwn.net/Articles/520076/

https://en.wikipedia.org/w/index.php?title=Rate-monotonic_scheduling&oldid=884167834
https://en.wikipedia.org/w/index.php?title=Rate-monotonic_scheduling&oldid=884167834
https://lwn.net/Articles/520076/

BIBLIOGRAPHY 205

[62] M. Wilcox and H.-P. Company, “I’ll do it later: Softirqs, tasklets, bottom halves, task

queues, work queues and timers,” in Linux Conference of Australia 2003, linux. conf.

au., 01 2003.

[63] T. L. et al, Linux Real-Time Manual, Enea AB, September 2015, [Accessed 19-March-

2019]. [Online]. Available: http://linuxrealtime.org/index.php/Main_Page

[64] Rostedt, Steven et all, “RT-mutex implementation design,” June 2017, linux kernel doc-

umentation, [Accessed 14-March-2019]. [Online]. Available: https://www.kernel.org/

doc/Documentation/locking/rt-mutex-design.txt

[65] ——, “RT-mutex subsystem with PI support,” linux kernel documentation, [Accessed

14-March-2019]. [Online]. Available: https://www.kernel.org/doc/Documentation/

locking/rt-mutex.txt

[66] ——, “Lightweight PI-futexes,” linux kernel documentation, [Accessed 14-March-

2019]. [Online]. Available: https://www.kernel.org/doc/Documentation/pi-futex.txt

[67] Jonathan Corbet, “Priority inheritance in the kernel,” April 2006, [Accessed 14-March-

2019]. [Online]. Available: https://lwn.net/Articles/178253

[68] R. Love, Linux Kernel Development, 3rd ed. Addison-Wesley Professional, 2010, pp.

41–50.

[69] T. Gleixner and D. Niehaus, “Hrtimers and beyond: Transforming the linux time sub-

systems,” in Proceedings of the Linux symposium, vol. 1. Citeseer, 2006, pp. 333–346.

[70] Molnar, Ingo and Gleixner, Thomas, “High resolution timers and dynamic ticks design

notes,” linux kernel documentation, [Accessed 14-March-2019]. [Online]. Available:

https://www.kernel.org/doc/Documentation/timers/highres.txt

[71] PaulMcKenney, “A realtime preemption overview,” August 2005, [Accessed 14-March-

2019]. [Online]. Available: https://lwn.net/Articles/146861/

[72] S.-T. Dietrich and D. Walker, “The Evolution of Real-Time Linux,” in 7th RTL Work-

shop. Citeseer, 2005.

[73] S. Rostedt and D. V. Hart, “Internals of the rt patch,” in Proceedings of the Linux sym-

posium, vol. 2, 2007, pp. 161–172.

http://linuxrealtime.org/index.php/Main_Page
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.txt
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.txt
https://www.kernel.org/doc/Documentation/locking/rt-mutex.txt
https://www.kernel.org/doc/Documentation/locking/rt-mutex.txt
https://www.kernel.org/doc/Documentation/pi-futex.txt
https://lwn.net/Articles/178253
https://www.kernel.org/doc/Documentation/timers/highres.txt
https://lwn.net/Articles/146861/

206 BIBLIOGRAPHY

[74] C. Hallinan, Embedded Linux Primer: A Practical Real-World Approach. Pearson Edu-

cation India, 2011.

[75] C. Simmonds, Mastering Embedded Linux Programming. Packt Publishing Ltd, 2017.

[76] R. Love, Linux systemprogramming: talking directly to the kernel andC library. ”O’Reilly

Media, Inc.”, 2013, pp. 177–210.

[77] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard real-time sys-

tems,” in Proceedings 19th IEEE Real-Time Systems Symposium (Cat. No.98CB36279),

Dec 1998, pp. 4–13.

[78] L. Abeni, S. Superiore, and S. Anna, “Server mechanisms for multimedia applications,”

1998.

[79] T. Cucinotta and F. Checconi, “The IRMOS realtime scheduler,” August 2010, [Ac-

cessed 14-March-2019]. [Online]. Available: https://lwn.net/Articles/398470/

[80] G. Lipari and S. Baruah, “Greedy reclamation of unused bandwidth in constant-

bandwidth servers,” in Real-Time Systems, 2000. Euromicro RTS 2000. 12th Euromicro

Conference on. IEEE, 2000, pp. 193–200.

[81] L. Abeni, J. Lelli, C. Scordino, and L. Palopoli, “Greedy cpu reclaiming for sched_dead-

line,” in Proceedings of the Real-Time Linux Workshop (RTLWS), Dusseldorf, Germany,

2014.

[82] L. Abeni, G. Lipari, A. Parri, and Y. Sun, “Multicore cpu reclaiming: parallel or se-

quential?” in Proceedings of the 31st Annual ACM Symposium on Applied Computing.

ACM, 2016, pp. 1877–1884.

[83] Luca Abeni, “CPU reclaiming for SCHED_DEADLINE,” December 2016, [Accessed

14-March-2019]. [Online]. Available: https://lwn.net/Articles/710360/

[84] Michael Kerrisk et all, SCHED(7), Linux man pages project, [Accessed 14-March-

2019]. [Online]. Available: http://man7.org/linux/man-pages/man7/sched.7.html

[85] Wikipedia contributors, “SCHED DEADLINE,” 2019, [Accessed 14-March-

2019]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=SCHED_

DEADLINE&oldid=877700934e

https://lwn.net/Articles/398470/
https://lwn.net/Articles/710360/
http://man7.org/linux/man-pages/man7/sched.7.html
https://en.wikipedia.org/w/index.php?title=SCHED_DEADLINE&oldid=877700934e
https://en.wikipedia.org/w/index.php?title=SCHED_DEADLINE&oldid=877700934e

BIBLIOGRAPHY 207

[86] Automotive LinuxWiki, “SCHEDDEADLINE,” [Accessed 14-March-2019]. [Online].

Available: https://wiki.automotivelinux.org/sched_deadline

[87] J. Lelli, C. Scordino, L. Abeni, and D. Faggioli, “Deadline scheduling in the linux ker-

nel,” Software: Practice and Experience, vol. 46, no. 6, 2016, pp. 821–839.

[88] Jonathan Corbet, “Deadline scheduling for Linux,” October 2009, [Accessed 14-

March-2019]. [Online]. Available: https://lwn.net/Articles/356576/

[89] Jonathan Corbet, “Deadline scheduling: coming soon?” December 2013, [Accessed

14-March-2019]. [Online]. Available: https://lwn.net/Articles/575497/

[90] Jonathan Corbet, “Adding periods to SCHED_DEADLINE,” July 2010, [Accessed 14-

March-2019]. [Online]. Available: https://lwn.net/Articles/396634/

[91] Linux Kernel Contributors, “Deadline Task Scheduling,” linux kernel documenta-

tion, [Accessed 14-March-2019]. [Online]. Available: https://www.kernel.org/doc/

Documentation/scheduler/sched-deadline.txt

[92] Steven Rostedt, “Understanding SCHED_DEADLINE,” May 2017, [Accessed 14-

March-2019]. [Online]. Available: http://events17.linuxfoundation.org/sites/events/

files/slides/oss-tokyo-using-sched-deadline-2017.pdf

[93] Michael Kerrisk et all, SCHED_SETATTR(2), Linux man pages project, [Accessed 14-

March-2019]. [Online]. Available: http://man7.org/linux/man-pages/man2/sched_

setattr.2.html

[94] Wikipedia contributors, “XML-RPC,” 2019, [Accessed 3-January-2019]. [Online].

Available: https://en.wikipedia.org/w/index.php?title=XML-RPC&oldid=859831408

[95] Wikipedia contributors, “Ethernet frame,” 2019, [Accessed 15-April-2019]. [On-

line]. Available: https://en.wikipedia.org/w/index.php?title=Ethernet_frame&oldid=

889578680

[96] Wikipedia contributors, “Precision Time Protocol,” 2019, [Accessed 18-March-

2019]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Precision_

Time_Protocol&oldid=888012740

[97] G. Cena, I. C. Bertolotti, S. Scanzio, A. Valenzano, and C. Zunino, “Evaluation of

EtherCATdistributed clock performance,” IEEETransactions on Industrial Informatics,

vol. 8, no. 1, 2012, pp. 20–29.

https://wiki.automotivelinux.org/sched_deadline
https://lwn.net/Articles/356576/
https://lwn.net/Articles/575497/
https://lwn.net/Articles/396634/
https://www.kernel.org/doc/Documentation/scheduler/sched-deadline.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-deadline.txt
http://events17.linuxfoundation.org/sites/events/files/slides/oss-tokyo-using-sched-deadline-2017.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/oss-tokyo-using-sched-deadline-2017.pdf
http://man7.org/linux/man-pages/man2/sched_setattr.2.html
http://man7.org/linux/man-pages/man2/sched_setattr.2.html
https://en.wikipedia.org/w/index.php?title=XML-RPC&oldid=859831408
https://en.wikipedia.org/w/index.php?title=Ethernet_frame&oldid=889578680
https://en.wikipedia.org/w/index.php?title=Ethernet_frame&oldid=889578680
https://en.wikipedia.org/w/index.php?title=Precision_Time_Protocol&oldid=888012740
https://en.wikipedia.org/w/index.php?title=Precision_Time_Protocol&oldid=888012740

208 BIBLIOGRAPHY

[98] ——, “On the accuracy of the distributed clock mechanism in EtherCAT,” in IEEE In-

ternational Workshop on Factory Communication Systems Proceedings. IEEE, 2010, pp.

43–52.

[99] S.-M. Park, H. Kim, H.-W. Kim, C. N. Cho, and J.-Y. Choi, “Synchronization im-

provement of distributed clocks in EtherCAT networks,” IEEE Communications Let-

ters, vol. 21, no. 6, 2017, pp. 1277–1280.

[100] G. Cena, S. Scanzio, A. Valenzano, and C. Zunino, “Performance analysis of switched

EtherCAT networks,” in IEEE 15th Conference on Emerging Technologies & Factory Au-

tomation (ETFA). IEEE, 2010, pp. 1–4.

[101] M. Cereia, I. C. Bertolotti, and S. Scanzio, “Performance of a real-time EtherCAT mas-

ter under Linux,” IEEE Transactions on Industrial Informatics, vol. 7, no. 4, 2011, pp.

679–687.

[102] Maruyama, Tatsuya and Yamada, Tsutomu, “Hardware acceleration architecture for

EtherCAT master controller,” in 9th IEEE International Workshop on Factory Commu-

nication Systems. IEEE, 2012, pp. 223–232.

[103] S. Scanzio, “SoftPLC-Based Control: A Comparison between Commercial and Open-

Source EtherCATTechnologies,” inHandbook of Research on Industrial Informatics and

Manufacturing Intelligence: Innovations and Solutions. IGI Global, 2012, pp. 440–463.

[104] “Getting started with IgH EtherCAT Master for Linux,” Synapticon GmbH,

tutorial for installing IgH EtherCAT master. [Accessed 18-March-2019]. [On-

line]. Available: https://doc.synapticon.com/tutorials/getting_started_igh_ethercat_

master/installing_igh_ethercat_master

[105] “Industrial communication networks - Fieldbus specifications - Part 4-12: Data-link

layer protocol specification - Type 12 elements,” International Electrotechnical Com-

mission, Geneva, CH, Standard, 8 2014.

[106] “Industrial communication networks - Fieldbus specifications - Part 6-12: Application

layer protocol specification - Type 12 elements,” International Electrotechnical Com-

mission, Geneva, CH, Standard, 8 2014.

[107] J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux Device Drivers: Where the Kernel

Meets the Hardware, 3rd ed. ” O’Reilly Media, Inc.”, 2005.

https://doc.synapticon.com/tutorials/getting_started_igh_ethercat_master/installing_igh_ethercat_master
https://doc.synapticon.com/tutorials/getting_started_igh_ethercat_master/installing_igh_ethercat_master

BIBLIOGRAPHY 209

[108] HOWTO setup Linux with PREEMPT_RT properly, The Linux Foundation, 6 2017,

[Accessed 18-March-2019]. [Online]. Available: https://wiki.linuxfoundation.org/

realtime/documentation/howto/applications/preemptrt_setup

[109] G. Bolanakis, “Design and Implementation of a Quadruped Robot Electronic System,”

Master’s thesis , School of Electrical and Computer Engineering in National Techni-

cal University of Athens, 9 2018. [Online]. Available: http://dspace.lib.ntua.gr/handle/

123456789/47768

[110] Monitoring and Tuning the Linux Networking Stack: Receiving Data, packagecloud, 6

2016, [Accessed 18-March-2019]. [Online]. Available: https://blog.packagecloud.io/

eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/

[111] Monitoring and Tuning the Linux Networking Stack: Receiving Data Illus-

trated, packagecloud, 10 2016, [Accessed 18-March-2019]. [Online]. Available:

https://blog.packagecloud.io/eng/2016/10/11/monitoring-tuning-linux-networking-

stack-receiving-data-illustrated/

[112] Monitoring and Tuning the Linux Networking Stack: Sending Data, packagecloud, 2

2017, [Accessed 18-March-2019]. [Online]. Available: https://blog.packagecloud.io/

eng/2017/02/06/monitoring-tuning-linux-networking-stack-sending-data/

[113] Arnout Vandecappelle, kernel-flow, The Linux Foundation, 1 2018, [Accessed

19-March-2019]. [Online]. Available: https://wiki.linuxfoundation.org/networking/

kernel_flow

[114] Linus Torvalds, main Github repository of Linux Kernel source code. [Accessed 18-

March-2019]. [Online]. Available: https://github.com/torvalds/linux

[115] C. Benvenuti, Understanding Linux Network Internals: Guided Tour to Networking on

Linux. ” O’Reilly Media, Inc.”, 2006.

[116] K. Machairas and E. Papadopoulos, “An active compliance controller for quadruped

trotting,” in 24th Mediterranean Conference on Control and Automation (MED). IEEE,

2016, pp. 743–748.

[117] “Linux Driver for Intel(R) Ethernet Network Connection,” Linux kernel documen-

tation, [Accessed 3-April-2019]. [Online]. Available: https://www.kernel.org/doc/

Documentation/networking/e1000e.txt

https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/preemptrt_setup
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/preemptrt_setup
http://dspace.lib.ntua.gr/handle/123456789/47768
http://dspace.lib.ntua.gr/handle/123456789/47768
https://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/
https://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/
https://blog.packagecloud.io/eng/2016/10/11/monitoring-tuning-linux-networking-stack-receiving-data-illustrated/
https://blog.packagecloud.io/eng/2016/10/11/monitoring-tuning-linux-networking-stack-receiving-data-illustrated/
https://blog.packagecloud.io/eng/2017/02/06/monitoring-tuning-linux-networking-stack-sending-data/
https://blog.packagecloud.io/eng/2017/02/06/monitoring-tuning-linux-networking-stack-sending-data/
https://wiki.linuxfoundation.org/networking/kernel_flow
https://wiki.linuxfoundation.org/networking/kernel_flow
https://github.com/torvalds/linux
https://www.kernel.org/doc/Documentation/networking/e1000e.txt
https://www.kernel.org/doc/Documentation/networking/e1000e.txt

210 BIBLIOGRAPHY

[118] C. S. V. Gutiérrez, L. U. S. Juan, I. Z. Ugarte, I. M. Goenaga, L. A. Kirschgens, and

V. M. Vilches, “Time synchronization in modular collaborative robots,” arXiv preprint

arXiv:1809.07295, 2018.

[119] C. S. V. Gutiérrez, L. U. S. Juan, I. Z. Ugarte, and V. M. Vilches, “Time-sensitive net-

working for robotics,” arXiv preprint arXiv:1804.07643, 2018.

[120] I. Zamalloa, I. Muguruza, A. Hernández, R. Kojcev, and V. Mayoral, “An information

model for modular robots: the Hardware Robot Information Model (HRIM),” arXiv

preprint arXiv:1802.01459, 2018.

Appendices

211

1. APPENDIX A 213

1 Appendix A

1.1 Final script

The system is booted into the operating system with the PREEMPT_RT patch and with the

following boot parameters added: isolcpus=2,3 nohz_full=2,3 tsc=reliable. The

final script presented here, is applicable in a system with four physical CPUs and a x86 archi-

tecture. If this is not the case, changes to this script should be applied.

The final script developed for the aforementioned optimizations (some of them, not all), is

presented below:

1

2 #!/bin/bash

3

4 ## Create CPU isolation with cgroups (Probably already done with

isolcpus boot parameter)

5

6 #enable the creation of cpuset folder

7 mount -t tmpfs none /sys/fs/cgroup

8 #create the cpuset folder and mount the cgroup filesystem

9 mkdir /sys/fs/cgroup/cpuset/

10 mount -t cgroup -o cpuset none /sys/fs/cgroup/cpuset/

11 #create the partitions

12 mkdir /sys/fs/cgroup/cpuset/rt

13 mkdir /sys/fs/cgroup/cpuset/nrt

14

15 # add the general purpose CPUs to the nRT set:

16 echo 0,1 > /sys/fs/cgroup/cpuset/nrt/cpuset.cpus

17

18 # add the real-time CPUs to the RT set:

19 echo 2,3 > /sys/fs/cgroup/cpuset/rt/cpuset.cpus

20

21 # make the CPUs in the RT set exclusive, i.e. do not let tasks in other

sets use them:

22 echo 1 > /sys/fs/cgroup/cpuset/rt/cpuset.cpu_exclusive

23

214

24

25 ## Restart real-time CPUs with CPU hotplug

26 # Restart is not needed, because the CPUs are isolated from boot.

27

28 ## Not NUMA-enabled configuration

29

30 # Associate the nRT set with NUMA node 0:

31 echo 0 > /sys/fs/cgroup/cpuset/nrt/cpuset.mems

32

33 # Associate the RT set with NUMA node 0:

34 echo 0 > /sys/fs/cgroup/cpuset/rt/cpuset.mems

35

36

37 ## Configure load balancing

38

39

40 # Disable load balancing in the root cpuset. This is necessary for

settings in the child cpusets to take effect:

41 echo 0 > /sys/fs/cgroup/cpuset/cpuset.sched_load_balance

42

43 # Then disable load balancing in the RT cpuset:

44 echo 0 > /sys/fs/cgroup/cpuset/rt/cpuset.sched_load_balance

45

46 # Finally enable load balancing in the nRT cpuset:

47 echo 1 > /sys/fs/cgroup/cpuset/nrt/cpuset.sched_load_balance

48

49 # Also kill the irq_balance process of Linux

50 pkill -9 irqbalance

51

52 ## Move general purpose tasks to the general GP partition

53

54 # For each task in the root cpuset, run the following command, where

each pid of task should occur on its own line: echo pid_of_task >

/sys/fs/cgroup/cpuset/nrt/tasks

55

56 IFS=$'\r\n' GLOBIGNORE='*' command eval 'cpuset_pids=($(cat

/sys/fs/cgroup/cpuset/tasks))'

1. APPENDIX A 215

57 for i in "${cpuset_pids[@]}";

58 do

59 echo $i; echo $i > /sys/fs/cgroup/cpuset/nrt/tasks;

60 done

61

62 ## Move IRQs to the general purpose CPUs

63

64 # Some interrupts are not CPU-bound. Unwanted interrupts introduce

jitter and can have serious negative impact on real-time

performance. They should be handled on the general purpose CPUs

whenever possible. The affinity of these interrupts can be

controlled using the /proc file system.

65 # First set the default affinity to CPU0 or CPU1 to make sure that new

interrupts ’wont be handled by the real-time CPUs. The set {CPU0,

CPU1} is represented as a bitmask set to 3, (20 + 21)..

66 echo 3 > /proc/irq/default_smp_affinity

67

68 # Move IRQs to the nRT partition

69 # echo 3 > /proc/irq/<irq>/smp_affinity

70 # Interrupts that can not be moved will be printed to stderr. When it

is known what interrupts can not be moved, consult the hardware and

driver documentation to see if this will be an issue. It might be

possible to disable the device that causes the interrupt.

71

72 # Typical interrupts that should and can be moved are: certain timer

interrupts, network related interrupts and serial interface

interrupts. If there are any interrupts that are part of the

real-time application, they should of course be configured to fire

in the real-time partition.

73

74 cd /proc/irq

75 irq_array=($(ls -d */ | cut -f1 -d'/'))

76 for i in "${irq_array[@]}";

77 do

78 echo $i; echo 3 > /proc/irq/$i/smp_affinity;

79 done

80

216

81 ## Network queues affinity

82

83 # Linux can route the packets on different CPUs in an SMP system. Also

this handling can create timers on the specific CPUs, an example is

the ARP timer management, based on neigh_timer. There are a couple

of solutions that can be adopted to minimize the effect of rerouting

packets on different CPUs, like migrating all the timers on the

non-realtime partition if possible, specifying the affinity of

network queues on some architectures.

84

85 # If the application needs the packets to be received only in the nRT

or RT partition then the affinity should be set as follows:

86

87 # echo <NRT cpus mask> > /sys/class/net/<non EtherCAT

interface>/queues/<queue>/<x/r>ps_cpus

88 # echo <RT cpus mask> > /sys/class/net/<EtherCAT

interface>/queues/<queue>/<x/r>ps_cpus

89 echo 8 > /sys/class/net/enp5s0/queues/rx-0/rps_cpus

90 echo 8 > /sys/class/net/enp5s0/queues/tx-0/xps_cpus

91

92 echo 3 > /sys/class/net/enp6s0/queues/rx-0/rps_cpus

93 echo 3 > /sys/class/net/enp6s0/queues/tx-0/xps_cpus

94

95 ## Execute a task in the real-time partition

96

97 # Now it is possible to run a real-time task in the real-time partition:

98 # echo pid_of_task > /sys/fs/cgroup/cpusets/rt/tasks

99

100 # Since we have an RT partition with more than one CPU we might want to

choose a specific CPU to run on. Change the task affinity to only

include CPU3 in the real-time partition. This is done in the code,

so no need to be done externally.

101

102

103 ## Time Stamp Counter (tsc - x86 only)

104

105 # The time stamp counter is a per-CPU counter for producing time

1. APPENDIX A 217

stamps. Since the counters might drift a bit, Linux will

periodically check that they are synchronized. But this periodicity

means that the tick might appear despite using full dynamic ticks.

106

107 # By telling Linux that the counters are reliable, Linux will no longer

perform the periodic synchronization. The side effect of this is

that the counters may start to drift, something that can be visible

in trace logs for example.

108

109 # Here is an example of how to use it as a boot parameter:

110

111 # isolcpus=2,3 nohz_full=2,3 tsc=reliable

112

113

114 ## Delay vmstat timer

115

116 # It is used for collecting virtual memory statistics.The statistics

are updated at an interval specified as seconds in

/proc/sys/vm/stat_interval. The amount of jitter can be reduced by

writing a large value to this file. However, that will not solve the

issue with worst-case latency.

117

118 # Example (10000 seconds):

119 echo 10000 > /proc/sys/vm/stat_interval

120

121 # BDI writeback affinity

122

123 # It is possible to configure the affinity of the block device

writeback flusher threads. Since block I/O can have a serious

negative impact on real-time performance, it should be moved to the

general purpose partition. Disable NUMA affinity for the writeback

threads

124 echo 0 > /sys/bus/workqueue/devices/writeback/numa

125

126 # Set the affinity to only include the general purpose CPUs (CPU0 and

CPU1).

127 echo 3 > /sys/bus/workqueue/devices/writeback/cpumask

218

128

129 ## Real-time throttling in partitioned system

130

131 # Real-time throttling (RTT) is a kernel feature that limits the amount

of CPU time given to Linux tasks with real-time priority. If any

process that executes on an isolated CPU runs with real-time

priority, the CPU will get interrupts with the interval specified in

/proc/sys/kernel/sched_rt_period_us. If the system is configured

with CONFIG_NO_HZ_FULL and a real-time process executes on a

CONFIG_NO_HZ_FULL CPU, note that real-time throttling will cause the

kernel to schedule extra ticks. See Section 2.3, Real-Time

Throttling and Section 3.2.4, Optimize Real-Time Throttling for more

information.

132

133 # Disable real-time throttling by the following command:

134 echo -1 > /proc/sys/kernel/sched_rt_runtime_us

135

136 ## Machine check - x86 only

137

138 # The x86 architecture has a periodic check for corrected machine check

errors (MCE). The periodic machine check requires a timer that

causes unwanted jitter. The periodic check can be disabled. Note

that this might lead to that silently corrected MCEs goes unlogged.

Turn it off on the RT CPUs. For each CPU in the real-time partition,

do the following:

139

140 echo 0 > /sys/devices/system/machinecheck/machinecheck2/check_interval

141 echo 0 > /sys/devices/system/machinecheck/machinecheck3/check_interval

142

143 # It has been observed that it is enough to disable this for CPU0 only;

it will then be disabled on all CPUs.

144

145 ## Disabling the NMI Watchdog - x86 only

146

147 # Disable the debugging feature for catching hardware hangings and

cause a kernel panic. On some systems it can generate a lot of

interrupts, causing a noticeable increase in power usage:

1. APPENDIX A 219

148

149 echo 0 > /proc/sys/kernel/nmi_watchdog

150

151

152 ## Increase flush time to disk

153

154 # To make write-backs of dirty memory pages occur less often than the

default, you can do the following:

155

156 echo 1500 > /proc/sys/vm/dirty_writeback_centisecs

157

158 ## Disable tick maximum deferment

159

160 # To have the full tickless configuration, this patch should be

included. This allows the tick interval to be maximized by setting

sched_tick_max_deferment variable in the /proc filesystem. To

disable the maximum deferment, it should be set to -1.

161

162 echo -1 > /sys/kernel/debug/sched_tick_max_deferment

163

164 ## Disable Memory Overcommit

165

166 echo 2 > /proc/sys/vm/overcommit_memory

167

168 #### Pending ####

169 ## Change the real-time priority of: EtherCAT IRQs, ksoftirqd thread

for CPU3.

Listing 1: The final script for performing extra real-time optimizations.

	Περίληψη
	Abstract
	Αντί Προλόγου
	List of figures
	List of tables
	List of code blocks
	List of Acronyms
	Εκτενής Ελληνική Περίληψη
	Εισαγωγή
	Σκοπός & Κίνητρο
	Υπάρχουσες Προσεγγίσεις

	Υπόβαθρο
	Συστήματα Πραγματικού Χρόνου
	GNU / Linux και Πραγματικός Χρόνος
	Λειτουργικό Σύστημα για Ρομπότ (ROS)
	Το πρωτόκολλο EtherCAT
	Ο EtherLab Master

	Σχεδιασμός & Υλοποίηση
	Συνιστώσα Λογισμικού

	Πειραματική Αξιολόγηση
	Αποτελέσματα

	Επίλογος
	Συμπεράσματα
	Μελλοντικές Δυνατότητες

	Introduction
	Problem Statement
	Literature Review
	Legged Robots Overview
	Fieldbus Systems Overview
	EtherCAT Robotic Applications Overview
	Real-time Systems Overview
	Real-Time Operating Systems Overview
	ROS 2 Overview
	History of ROS
	New Use Cases

	Benefits
	Thesis Structure

	Background in Real-Time & ROS
	Real-time Systems Concepts
	General Concepts

	Real-time Task Scheduling
	Real-time GNU/Linux
	The PREEMPT_RT Patch
	Interrupts As Threads
	Priority Inheritance
	High-Resolution Timers

	Real-time Scheduling in GNU/Linux
	The first in, first out policy
	The round-robin policy
	The deadline policy
	The normal policy
	The batch policy
	The idle policy

	Robot Operating System (ROS)
	Components of ROS
	Basic ROS Terminology
	Message Communication in ROS
	Topic
	Service
	Action

	Background in EtherCAT
	EtherCAT Technology
	EtherCAT characteristics
	Physical Layer
	Data Link Layer
	Frame Format
	EtherCAT datagram Format
	SyncManager

	Application Layer (AL)
	Application Protocols

	Distributed Clocks
	Propagation Delay Measurement
	Offset Compensation
	Drift Compensation

	Synchronization in the Slaves
	Free Run Mode
	SM Synchronous Mode
	dc Synchronous Mode
	SYNC Shift Times

	Synchronization in the Master
	Cyclic Mode
	dc Mode

	EtherCAT Masters
	EtherCAT Masters Overview
	Control Loop
	Commercial versus Open-Source implementations
	Comparison of EtherCAT Masters in GNU/Linux

	The IgH EtherCAT Master for GNU/Linux (EtherLab)
	Features
	Architecture
	Application Interface
	Ethernet Devices
	User-space Interfaces

	Requirements Analysis & Technical Specifications
	Requirements Analysis
	Laelaps II
	User Categories
	Functional Requirements
	Non-functional Requirements

	Technical Specifications
	Design Choices
	System Architecture
	The Operator Interface
	Project's software component
	Other ROS nodes
	EtherLab
	Linux Network Stack
	Cyclic loop exchange
	EtherCAT Slave Network
	Electrical & Actuation systems

	Application Programming Interface

	Implementation
	Software Implementation
	Installation Process
	The Preempt_RT Patch
	Step 0 - Making a working directory
	Step 1 - Downloading the Linux kernel and the patch
	Step 2 - Unzipping the kernel
	Step 3 - Patching the kernel
	Step 4 - Enabling Real-time attributes
	Step 5 - Compiling the kernel
	Step 6 - Making modules & installing
	Step 7 - Verifying and updating
	Step 8 - Rebooting

	EtherLab

	Configuration & Optimization
	Isolating the Application
	Full Dynamic Ticks
	Optimizing the Partitioned System
	Optimizing Power Saving
	Disabling power management
	Optimizing Real-Time Throttling
	Time Stamp Counter (tsc timer - x86 only)
	Delay vmstat timer
	Machine check - x86 only
	Disabling the watchdog timer
	Disabling the NMI Watchdog - x86 only
	Memory Overcommit

	Experimental Evaluation
	Tools, Methodology & Environment
	Building the application
	Starting the EtherLab module
	Slaves Initialization
	Launching the application
	Monitoring
	Ring Buffer
	rqt

	Experiments & Results
	Experiments
	Trotting Experiment
	Frequency Experiment

	Results
	Trotting Experiment Results
	Frequency Experiment Results

	Conclusions & Future Work
	Concluding Remarks
	Future Work

	Bibliography
	Appendices
	Appendix A
	Final script

