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IHegiinym

H pn yooppux) ahiniemidooon tOviwv og paryvnTiopévo mAAopo. te Ty eQLdAhou-
00 VYPIoVYVOV NAEXQOUAYVNTIXMV QUONMV peletdtor OteEodnd. Emrtuyydveton n
Exdpoaon ™ XaUATOVLAVIG TOV YVQOREVIQOU O€ L00QOoTa tokamak wg ocvuvAagTnon
0pdoemV Yovidv. Me autOV TOV TEOTO OvoiyeL 0 dQONOG YO TNV EGAQUOYT RAVO-
virov OemELOV dLaTOQUY®MV 0T MEAETN TNG OUVAXTS TOV YUQOXEVTQOU VIO TNV
eMOQOLOT LOYVITIXMV ROL NAEXLTQOUOLYVITIXMV OLATOQUYMDV.
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Abstract

The nonlinear interaction between ions in magnetised plasmas and high frequency electro-
magnetic beat waves is studied. The Hamiltonian of the gyrocenter motion in tokamak equi-
libria is brought in an action angle form. This enables the application of canonical pertur-
bation theories for the study of the gyrocenter dynamics in the presence of magnetic and

electromagnetic perturbations.
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Exteronévn Megidnym

H Bewoio mhdopatog emmdéyeTol TOELS OLORQLTES TEQLYQOAPES:

* TooyLég pepovouévov ocopatdimv (single particle description). H avdhvon em-
HEVIQMVETOL 0T dUVOUKT] GPOQTIOUEVOV COUATIOIMY TTOV artoQTICOVV TO TAY-
ouo o€ OEOOUEVO NAERTQOUOYVNTLIRO TTEQLRAAAOV.

o Kuvnunf) Bempia. ‘Omov tar ovdhoywd dpawvdueva eEetdlovion ue faon v
€EEMEN OLVOQTNOEMV RATAVOUNG.

» Ozwpio pevotot | Mayvntovdgoduvauxi) (MHD). Omov oL 6vvoQTHoEeLS %a-
TOVOUNG aVATTOQIOTOVTAL OO €VOL TETEQOUOUEVO aELOUO QOTTWV TOVG (CVVNOE-
0TEQ ATTO TIG TTQWTES OVO 1) TOELS QOTES).

H mopotoa ggyaoio eusmistrel 0TV momMTY) 0It0 TIG TEELS TTEQLYQADES. ZTNV LOOQQOT,
TO COUATIOW TTOV AT TICOVY TO PéCcOo xivouvTal aveEdoTnTa Tto éva amd To GALO
2«0l OLOLTNEOUV TO OAOXRANQMOUATA TNG %{VNONG TTOV VITOYOQEVOVTAL 0TI TLG ALVTIOTOL-
xes ovppetoies. H mopadoyi auti arttohoyeiton amd T dtadood xotd TdEelg neyé-
Boug LETOED TV XOQARTNOLOTIXDV XQOVOY TOV GALVOUEVOV IOV HOG OLTTALOYOAOVV
%Ol TOV X0OVWV UETOED TV OVY®REOVOEWY. AV 0L CUYXQOVOELS E(VOL O ®VQLOLOYOG
WNYOVIOUOG LE TOV OTTOL0 TA LAXQOCKROTURA CUOTI|UOTO £QYOVTAL 08 BEQUOOVVAUAT
LOOQQOTCL, TO EQMTNUO TOV TL ONUOLVEL porQooromxt] eEEMEN evog collisionless pé-
OOV %Ol IS OUTH EMTVYYAVETAL OeV €)Yl EDROAT ATAVINOT. ZTNV TQOCEYYLON TTOU
oxnolovBolpe arovoLdlovV HeV oL GVYRQOVOELS, WOTOO0O 1) dUVa U TOV ®AOE CrwuoL-
Tdlov emmeealetal amd to volouta dopécov Nmwv mean field diatagaymv, MOy
TV QUOUDV TTOV OVVTNEEL TO TAAOUO. AlataQayés emiong evOEyeTaL VA TQORVYPOUV
%o oo 2000d EEWTEQLLOVGS TTOQAYOVTES TTOV XOAAVE TIG CUMUETOIES TNG adLaTAQO-
NG nivnong. H emidoaon avtdv tov dtotaaydv ot Ouvouxt] Tov LEHOVOUEVOD
OWUATLOOU 08 LOVTEAD TTOU AITTOVTOL TNG GUOKNG TAGONATOG o€ tokamak xou oL -
TTWOELS TTOV ALVTEG EVOEYETOL VA £XOVV 0T CUALOYLKT] CUUITTEQLPOQE TOV HECOV E(VaLL
TO EVQVTEQO AVTIXEIUEVO ALUTC TNG EQYOOLOG.
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Baowi magadoym s avdlvong elval n 0maoEn eEwterot poyvnTinov mediov
010 mAdopo. YmoBétovue OTL 1 £€vtoon Tov payvntirol mediov elvol agretd Loy,
MOTE VA OLoywELoeL T duvouxt] o OV0 YWEOYQOVIRES HAMUAKES. XAV ATOTEAECUQL,
adtaTdantn ®ivnon Twv couaTdimV amaTiletol amd dVO0 JLOKQLTES ALVIOELS; T
YONYOQT ®XUXRAOTQOVLXT] ®{VNON, ONAAOT| Lo OTTELQOELDT) EMROELOT ®iviioN YUQW OITd
TNV €XAOTOTE MOYVNTIXT Yoo uul, ue otabeer ovyvotnra 2, = ¢B/m (rurhoTtQovi-
%1 ovyvotnTa) ®ol otafeet) axtiva p; (axtiva Larmor), mov vmeQtiBetaol oty ®watd
TAEeLS peyéBoug mo aQyn oAioOnomn Tov xEVIQOU TN ®UKAOTQOVIXNG ®IVNONS (YVQO-
AEVTQOV).

H duapood #»Aipoxrag €xel onUavTinég CUVETELES RAL VIO TNV ETOQO0N TOV OL0-
TOQAY MV 0T duvouxT] TOV cOUaTOiov. Tlo dLaTaQayég e XOQAXRTNOLOTIXOUS Y 00-
VOUG TOA) peYOAUTEQOUS OITO TNV TTEQLOAO TNG KURAOTQOVLXTG RIVIIONG RO L% TTOAD
peyahitego amd TV axtiva Larmor, pdévo m xivnon tov yvooxrevigov evoéyetol va
ETMNQEOOTEL ONUAVTIXG OTTO TN OLATAQOYT] KOL, RATA TN UEAETY TNG OLATOQAYUEVNS
duvouxrng, N xvrhotoovixi) xivnon wroel voa ayvondet. TTagopotmg, yio unxrn »at
YOOVOUG TNG TAENGS TNG ®KUKAOTQOVILXNG ®(VNONG 1) OAIGON O™ TOV YUQOAEVTQOU ElVaL O-
puehntéa nal  adinienidgaon pmogel va BewoenOei 0t hapfdvel ymwoa oe megudilov
OUOYEVOUS HAYVNTIXOU TTEQ(OV TTOV €XEL TOL TOTUKA Y OLQAXTOLOTIXA TOU WOV TIXOD
nediov ot B¢om tov yvooxrevigov. Ta Kepdhawo 1 xan 3 dsrovror thg delteong
TROOEYYLONG, eV To. Kepdhawa 2, 4 »atl 5 dctovtol Thg mem g

210 Kedpdhawo 1 eEetdleton 1 duvauni] Tng ®urhotQovixig xivnong oe meQpdh-
AOV OpOYEVOUS LOYVITIXOU TEdIOV VIO TNV €MOQAON EVOS VYPIOVYVOU NAERTQOOTO-
TLXOU ®UPATOG oV OodidetTal nabeta oto poryvnTirnd medio. To moOAnua auto pe-
AetnOnre OleE0dnd ota TéAN Tng Oenaetiag Tov 1970 nal otig aQyés Tov 1980 »an
elvol €va amd to TOQAdElYIATO OVAdOQAS YO TTEQUITTMOELS VIETEQMVIOTIXNG duva-
KNG TTOV UETATUTTEL ATTO OUAAN O€ YAOTLXY %V oN, OTAV TO TAGTOS TOU XUUATOG
avEdvetar. To xepdhoaro avtd AetTovQyel MG LOTOQLXT AVaOQOWUT| 0TO TTROPANUO TOV
banérlov dvo rvudtwv, mov eEetdleton oto Kedpdiawo 3. Eivor emiong pa e0xoln
ELOAYWYT] OTIS LOONUOTIRES TEXVIRES, TO LOTIRO %Ol TOVS TQOPANUATIONOVS TOU ®U-
QLOV HEQOVG TNG OLOTOLPNG.

Kdavovrtag yonong tg ravovixig Bemiog dwatapaywv tov Deprit, eEetdllouvue
™V U0EEN 1 W oAoxANQWUATWV ®ivnong xaL opahwv Teoylwv KAM. T'a wxod
TIAGTY) SLATOQOY MV, OL OLOTAQAYUEVES TQOYLES OLOTNEOVV TNV (dLal ToTOAOYIL UE TLg
0 OLOTAQOKTES TQOYLES KL TOL OAORANQMUATO TNG %{VNONG IOV VITOAOYICOVTOL e TQO-
OEYYLON TEMTNG TAENG AVATTOQAYOUV UE LXAVOTIOTLXT] axgifela to {yvog mov apn-
VOUV Ol OLATOQAYUEVES TQOYLES ROAOMDS OLEQYOVTAL ATTO LLOL TOUT] TOU GOoLHOV X (DQOU
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(toun) Poincare). Tio peyohvtega AT, OL OLOTOQAYUEVES TQOYLES EEanOAOVOOVY VO
elval opohég, ahAd 1 Tooloyio Tovg ahAATeL, AOyw TS epddviong ovvrovioumv. Ot
OVVTOVIOUOL oUTOl Elvol atoTEAEOHO O WxENG OLOEBmOoNg TG oV vOTNTAS TS O-
dLaTaQanTNg ®ivnong ratd 62, Aoyw dpowvopévav devtegns tdEemeg. H duvpbwon
oUTH) VoL QUEANTEQ YLOL LOVTOL UE URQES TOYVTNTES KOL YIVETOL ONULAVTIXT] LOVO OTOV
wavormole(tal n ouvOnun Cerenkov, dniadr) povo 6tav 1 oxtivo Larmor elvon aoxetd
peyaAn mote 1 TEOPOAT TNG TAXVTNTAS TOV COUATIOOV 0ToV dEova OLddoong Tov
®OPATOG VO, EeMEQATEL TV GOOLKT] TOXVTNTO TOV RVUOTOS. Z€ QUTHV TNV TEQIITTM-
o1, oL xaumvieg KAM arhdCovv tomoloyia rat, amd evbeieg, oxynuatiCovv ahvoideg
VNOLOV YUQW OTTO TO REVIQO TMWV CUVTOVIOUMV.

I anopn peyaritega mhdty, ol xourtoies KAM xataotoépovial eVieAmS 1ol
N duvauxn yivetow yootxt. Toelg ovyyeveic unyaviopol eivor vtevbBuvol yio tThv
eupavion Tov ydovg. ITpwtov, pe TNV avEnon tov mAaTovg Tg dtotaQayig, avEd-
vetor ®ot 1 OLOeOWoN TNV AdLOTAQAXTY CLUYVOTNTA, UE ATOTEAETUO TNV EUPAVLON
EMITAEOV OUVTOVIOUMV. AEVTEQOV, TO TAATOS TWV VIOLDV YUQM OO TO REVIQA TWV
ouvtoviopmV ueyodmvel. Toltov, epdaviCovtal ouvtoviopol avateens tdEng. ‘Omwg
mooPAémeL To xoutiELo Tov Chirikov, 6tav oL cuvtoviopol emxaliTTovTaL, 1 ®ivnon
yiveTow yootint).

H epddvion yootinmv tooytmdv ivol AQeNxTo OUVOEIEUEVY UE LLOL TTOLOTLXT) OAAOL-
v 0T CVALOYLRY) OV UTEQLHOQA VITO TNV ETOQOLOT TNG OLoTOQAYNG. Z€ EVaL LECO OTtd
TO OO0 ATTOVOLATOVY OUYXLQOVOELS, 1] OXTLVOPOALC LTTOQEL VO LETADEQEL EVEQYELXL, EL-
TE LEOW PaLVOREVMV PelENs (amdoPeon Landau), eite pe »aTo.0TQOPT) TV ETMPAVELDV
KAM. Otav ot empdveies KAM dratnootvrat, dev eivar duvatdy va vidoEel pargo-
ornomxt| LETOPOQA, x0OMGC 1) HOTAVOUTY ETMOTQEPEL OTNV QLQYLAT] TNG RATAOTOON OTAV
opnoel ) datagayn. [ pérora mhditn, n #hion Tng ovvaETNOoNg ®aTOvVOUNG UNOEVi-
Cetal oTIg MEQLOYES TOV GAOILOV XDEOV OOV eudPaviCovtol voLd CVVTOVIOUOD, &-
Eautiag g HeTad0oQAag amd TEQLOTQORGT) YUQ®W atd TO ®EVTQO TOL cuvtoviopov. H
uetaPoli) avti), Moyw pelEng, dev eivor amdAvTo avaoTEEWLUN ®aL dLoTnEElTOL RaL
LETA TO TEQAS TNG OAANAETOQOIONG. 25 OUVETELQ, YIVETOL LAXQOOROTUXY| LETADOQA
OQUNG %Ol EVEQYELAS UETOED HEOOU AL axTLVOPBOALAGS, 1) omolo OpWS TeQLogiteTot a-
7O TNV EXTAOT TOV VIOLOV TWV CUVTOVIOUMV. AVTIOETO, OTOV RHUQLOQYEL 1 XOLOTIXT)
%«{vNnom, 1 AVARATAVOUT — RO, DG EX TOVTOU, 1) LETAPOQA — E(VOL TTEQLOCOTEQO ALTTOTE-
Aeopotix], yia to AOYo OTL ToL cwpotidla eivar ehevBega va dtayvBovv oe onuavTind
UEYAAUTEQEG EXTAOELS TOU GAOLLOV Y DQOV. ZUITEQOOUATIXA, TOLOTIXES AMAOYES OTN)
LOVOOMUATLOLAXT) OUVOLIULKT] CUVETTAYOVTOL VAAOYEG TTOLOTIXES OLOLPOQES 0T LOKQO-
oromxi) aAANAeTiOQOION.
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210 Kepdhato 2 eEetdlovron oL 0ELoV IUETOIRES LOOQQOTTES TTAAOUATOS O€ CUOKREV-
€G LAYV TIXNG OUYRQATNONG. 2€ ROTAOTAOT LOOQQOTUAGS, OL YQULUUES TOU LOLYVITIXOD
nediov o o ovorevt tokamak avamriocovrol og emddaveleg epPOAEVUEVDV OLOOLA-
OTATWVY TOQWV, OV eVOEYETOL VO dLaywEilovTal amd éva 1 meQLocoTeQa separatrix. H
LOLOTNTO QUTY] OPELAETOL OTO YEYOVOS OTL, VITO TTQOVITTOOETELS, OL LAYV TIRES YOOUUES
OUVOVTaL VO AVOITaQO0TAOOVV ATTO TIS TQOYLES EVOG OAOUANQMOLUOV Y AUATOVLOLVOD
duvo RO CLOTHULATOG.

H tomohoyio Tov poyvnuindv yoouumyv eivor og xa0e vhipoxo xabooLotix yio
TLG LOLOTNTES TOV TAAOUOTOS IOV CUYRQATEITOL XOL POIORETOL OE LOOQQOTUA LECOL 0T
ovoxrevt]. AmO paryvntovoQoduvauKrt] oxOoTLA, OAES OL TTOCOTNTES TTOV XOQUATNQL-
Couv T poryvnTIxt) LO0QQOTIO TTQETEL VOL Elval OTOOEQES TTAVM OTIS LOYVNTIXES ETUD -
VeLeS. ATO ®LVNTINT] OROTILAL, OL LETAPOAES RATA IHOS TV LOYVITIXDV ETULHAVELDV El-
val ®xoTd TaEeLg peyEBous uxeOTEQES IO AvTioTOLYES LETOPOAES ®ADETO OTILG POy VT)-
THES ETUPAVELES. ZTN) HOVOOWUATIOLLT) TTEQLYQAPT), 1] dUVOAUXLT] TOV YUQOREVTQOU
dtvetal ammd €val OLOUANQMOLUO XOATOVIAVO oVOTNIA pe Vo Babuotg elevBeglag.

OL CUVTETAYUEVES QOTG EIVOL YEVIXEVUEVO TOQOELDT) CUOTIULATO GUVIETOYUEVOV
0TO. OTIO(OL 1 AXTLVIXT) CUVTETOYUEVY ®OO0QITEL TN poyvnTirT emddavela, eva oL 010
oxTIVIXES ouvTETAYUEVES Olvouv T B€0m Tov onuelov TAVD 0T PayvnTy emda-
vela. To peydho tovg mheovéxTnua elvar OTL 1 X101 TOVG SLEVROAUVEL ONUAVTIXG TN
OLATUTTWON TOV WOLOTHTMV AOLOTAQAXTOV HOYVNTIXMV LooQQommV. ['a opdderyua,
LayVNTOUOQOOVVOUKES TTOCOTNTES, OTIWG 1) TUEON EIVAL OUVAQTNOELS LOVO TNG AU TLVL-
%NG OUVTIETAYUEVTG.

OL OUVTETOYUEVES EVOELDV LOYVITIXDV YQOUUMDV E(VOL TAVTOYXQOVO %Ol OUVAQ-
toelg 0pdong — Ywviog Tou duVOUXOU GUOTHUOTOS TV HoyVNTIX®V yoauumy. H
OUTLVLRT] CUVTETOYMEVT €LVOL 1) TOQOELONG QOT) TTOV TEQLUAEIETAL QIO TN POYVNTLRY
emddvelo nou 1 xavovixt] 8gdon tov duvauxrov cvothuatog. H moloedng yovia
etvaw n ovCuyng yovio tThg 0dong, evad 1 TOQOELONG YWVIa £XEL TNV £VVOLOL TOV Y Q0-
vou 0ToV omolo eEehiooeton To duvauxd ovotnuo. H XawAtoviavi elval ton pe tyv
Toh0€LdN) QOT] TTOV TEQLUAELETAL QLTTO TNV LYV TLXT) ETLPAVELQL.

H »otnyopia ovvretaypévov evheidv pLoyvnTindy YOAUWMY OTNV 0Tl 1 QO-
1] TOV QEVHOTOG €lvar emiong evOUYQaUUY, OVOUALETAL ROTNYOQLO CUVTETAYUEVWV
Boozer. O ovvtetayuéveg Boozer eivar duvatdv va vITOAOYLOTOUV OUVAQTIOEL TWV
OUVTETAYUEVMV TOU €QYOOTNQIOV, XAVOVTAGS %0101 TWV TOCOTHTWV OV VITOAOY(CO-
VIOl Ao VEEMS OLAOEOOUEVOUG HMOLKES TTOV EEAYOVV T1] LOLYVITLXT) LOOQQOTUO OLTTO
nerpapotinés petpnoels. H yomon toug dieurohiivel onuoviind thv Expoact Tov du-
VOUXOU OUOTIUOTOS TOU YUQOREVTQOU G X OUUATOVLAVOT CUOTILOTOG.
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210 Kedpdhawo 3 eEetdletar n Ouvauxt) g ®urAoTQOVIXTS RIVoNG O TTEQUPAA-
AoV opoYeEVOUG paryvnTiro¥ ediov vd TV emtdQaon 00 VYPIoVY VOV NAEXLTQOUOYVT-
TIXOV ®RVUATOV oV dtadidovtal ®vdbeta 0To paryvnTnd medio. Xe oUyrQLon Ue TV
alnienidoaon pe éva povo novua, mov peretnOnxre oto Kedpdlowo 1, n magovoia &-
vOG 0eVTEQOV RUUATOG ELOAYEL EVOV ETUTAEOV UNYOVIOUO OUVNTIXNG AVTOAAAYNG €-
végyelag. TTépa amd v alniemidoaon pe »dbe »Opa Eexmolotd, Ta cwpatiowo
UoQoUve Vo ®eQOIooVV 1) va (AoovV evéQyeld, AAMNAETOQMVTOG UE TO GARENO TTOV
dmwoveyeitar amd v vEéedeon twv dUo xvpdtwv. H ahinlemidoaon peta&l 16-
VIOV ROl GaxEAOV elvaLl PN YOOUUXT] ROl TOVAGYLOTOV OEVTEQNS TAENS ™G TTQOG TO
TAGTOG TNG OLoTaQay g, WOTOCO, OTAV 1) SLUPOQA LETAED TMV OUYVOTITWV TOV O1U0
AVUATOV E(VOL (01 LE TNV RURAOTQOVLRY) OUYVOTNTA, TOTE O GpAneLOC elval 08 OUVTO-
VIOUO UE TNV OOLATAQUAXTY] RIVIOT) TOV LOVIMV RAL 1] LETAPOQA EVEQYELOS EVOEYETOL
vaL ELvolL LoYVQET] OxOUN ROL VL0 UXQG TTAATY).

21 povtehomoinom tov meoPAnuotog eEetdllov e TV emidoaon mévie ehe0eQwV
TOQOUETQMV; TNG REVIQLXNG OUYVOTNTAGS, TG TAXVTNTOS TOU GA%EAOV, TNG TOAWONG,
TOV QUTOCUVTOVIOUOU TNG OUYVOTNTOS TOU GOAREAOV OO TNV RURAOTQOVLXT] OUYVO-
™To rot puord Tov TAaTovs s dratagayns. o wxed mAaTn, 1 OLoTaQayIEVT
nivnon Tov VIOV avalivetal og U0 EMUEQOVS KIVIOELS. Z€ O YO YOO TAAAVTM-
o1 rEoU TAATOVS, AOYM™ TNG emidQaoNS ©A0E HVUOTOG EEYWOLOTA %Ol O Uial 0LQYT)
€EEMEN TOV %EVTEOU TNG TOAAVTOONG, AOYW TNG CUVOVOOTIXTG ETUOQAONS TMWV KUUA-
TV pEow Tov daxérov. To xEvteo g TaldvTmwong xabmg nou 1 XoUATOVIOVT) IOV
7n0000iCeL TV €EEMEN TOL VIOLOYITeTOL 08 deVTEQN TAEY pE TEYVINES TTOQOUOLES UE
QUTEG IOV Yonotpomotoaue oto Kepdiawo 1.

‘Otav n taybTnta Tov parélov £xel xateOuvon do pe T paowrf TayvTnTa TOV
AVUATOV, O GOOLROG XDOOG YOUNADYV EVEQYELMDV, TTOV 0TV TEQITTMON TOVU VOGS LOVO
HOPATOG TTOQOUEVEL AVETTNQENOTOG, AOYW TOV eveQyelarol natwdiiov Cerenkov, e-
taoynpatiletar dpaotnd. EppoaviCovror vnowd cuvioviopot pe evegyeland e0pog
IOV eXTELVETAL ATTO 0YeDOV uNOeVIRES EVEQYELES LEYOL OXEDOV TNV EVEQYELD HATWDAL-
0oV. ZWUOTIOLO e TTOAD YOUNAES AOYIHES EVEQYELES, VITO TNV eTOQMOT TOV GarEAOV,
TEQLOTEEGOVTOL YVQW OITO TO REVTQO TOV VNOLOU RAL PTAVOUV O€ EVEQYELES OLYXQI-
otpeg pe v evégyeta Cerenkov. EGv o pdnelog dtadidetor pe xatevBuvon aviifetn
a0 T poort) TaxvTNTo TOV dU0 RVUATWV, EpdaviCovTal xoL TEAL VOLE OTOV X DO
TOV XOUNADV EVEQYELDV, AAAA 1) EXTAOT) TOVG (VAL ONUAVTIXA TTEQLOQLOUEVT]. ZTNV
TOMTY TEQIMTWON, 0 GANEALOS OUVATAL VO LETAPEQEL ONUOAVTLRA TTOOG EVEQYELOS OF
LLOL XOLTOVOUT) LOVTWV, EVED 0T OeVTEQM O)L.
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Klplo yoapaxtnootixd tg datagayuévng »ivnong eivar n VmaEn evog exdu-
MOUEVOU OUVTOVIOUOU HETOED adLOTAQARTNG CUYVOTNTOS RaL TG alAnAenidoaong
deltegns TéEns. Emopévog, yio uxod mhdtn, eivor or 6got delitepng TAENG exelvol
IOV RVQLAQYOVV, VD 1 OLOOwON TEMTNG TAENS elvar apeintéa. Kabmg to mhdtog
aVEAVEL, Ta GoLvOuEVO TEMTNG TAENS YivovTal loyveOoTeEQX %Al 1] XOMUATOVLOVT) TOV
YUQOXEVTQOU ALYOTEQO OXQLPNG OTNV TEQLYQAPT) TNG TTANQOUS RIVNOTNC.

2TV TEQLOYT TOV PAOLLOV X(MDEOV TEQO OO TO EVEQYELANO RATMHAL AVOITTTVOOE-
Tau £vaL OiXTLO VNOLDY OVVTOVIOUOD TOU #EVTQOU TaldvVTmong. ‘Otav oL TahavthoeLg
TOMTNG TAENG YIVOUV 0QUETA LOYVQES, TA VNOLAL AUTA RATACTQEDOVTOL ROL 1) TEEQLO-
¥ VYNADV eveQyelmV yivetal yootixt). [a euvoirég tayvTnTeS Parélov, copatiowo
IOV OLTTOXRTOUV ETOQNUT] EVEQYELXL, MOTE TO REVTQO TNG TOAAVIWONG VO TANOLAOEL TO
ROTOPAL EVOEYETOL VO TEQACOUVV OTNV YOLOTIXT TEQLOYT], OV TO TAATOS TAAAVTWONG
elvol 0QUETA LOYVQEO, KoL HE AVTOV TOV TQOTO VO ALTTORTI|COVV OXOUOL LEYOADTEQES
evépyeles. To ehdyloto amoutovuevo TAATOg TG dLaTaQayig, *aBmMS noL 1 €XTaon
TNG XOUOTIXNG TTEQLOYTG, VITOAOYICOVTAL NUAVAAVTIRA.

H ouyvotnta tov paxéhov dev yoerdletor va elvar axgipmg (on pe tnv ®vuxho-
ToovIxt ovyvotnta. ['o uxrQog arooUVTOVIOHOUGS, 1] AAANAETHOQOOM QO TIXA TT0L-
oapével (da pe TV ahAniemidogaon téhelov ovvtoviopot. Kabwg o amocuvtoviopog
UEYAMDVEL, TO COUATIOLO pe PeYALeg eVEQYELES TTODOUV VO OAMAETIOQAVE e TOV G-
%eho. ‘Otav autd cupfaivel yio copotidlo pe evEQYELD CUYRQIOLUN UE TNV EVEQYELD
noTOPAMoU, N alMAniemidoaon xataotoédetar. O PEYLOTOS EMTOETOUEVOS ALTTOGUVTO-
VIOUOG, (MDOTE VO UV ROTOOTQEPETAL 1] AAANAETHOQOON, EIVOL RATA TTQOOEYYLON OVTL-
0TROPWS OVALOYOS TNG GPE€QOVOAS CVYVOTNTAG, TTOV ONUAiVeEL OTL Yo deOOUEVO OITO-
OUVTOVIOUO VITAQYEL IO LEYLOTY] HEQOVOA CUYVOTITA TTAVMD OITO TNV OTol0L 1] AAANAE-
nidoaon etvar 0oBevig.

e ePOQUOYES TTOV €YOVV VA HAVOUV UE UAYVNTIXTY OVYXRQATN O, N} OAloON oM TOoU
YUQOXEVTQOU AVATOMEVRTO CUVETAYETAL AITOOUVTOVIOUO, X0OMS TO aVTO OLEQYETAL
aTtd meQLOYES ne dradoetint| Evraon poyvnTnov mediov. o Tpég magapétomy Tu-
TurEG Yoo OeQUoTUENVIRG TAAOUO 08 OVOoxreVT] tokamak, O LEYLOTOG ALITOOUVTOVIOMOG
ETMTVYYAVETOL PECO O LOALG LA YUQOTEQI0OO0, Yial HEQOVOO OUYVOTNTA LOMS OERA
$oég peyarvTeen g ®urhotoovirig. IMagdAnha, o xoo6vog aliniemidoaong, o
Y00VOg dONAadN 7oV YeLGLeTaL £va COUATIOLO UE YOUNAT) EVEQYELDL YLOL VO, LTTOXTT)-
O€L EVEQYELOL OUYRQIOLUY HE TNV EVEQYELA RATWPAIOV, elvon TTOAD peyaAog ratl ovyva
Eemepvael axduo now v meptodo oAloBnong touv yveodxrevigou. O ocuvolMxos moou-
VIOVIOUOG 7oV Aapfdvel xmoa xatd T didxrela Tov xeOvou allniemidgaong eival
notd TdEelg pueyEbovg ueyahTEQOS TOU UEYLOTOU ETTOETOUEVOU OITOOUVTOVIOUOU.
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Katd ovvéneia, o vd perétn unyoviopog de dpaivetal va eivor Wdloitega vooyope-
VOG Y10 TQORTIXES EPAQUOYES OTY OEQUOTVENVIXT) OUVTNED.

210 Kedpdhawo 4 avarrvooetor 11 péB0dog avdivong 10oxoxot GpAoUAToS Yio
™V HEAETN TNG OUVOUKRTNG TOV YUQOXEVIQOU OF UOYVNTLXT) LooQQodtio tokamak. H
duVaUART) TOV YUQOXEVTIQOU O LayVNTLxY| L00QQOTtia tokamak magovoldlel peydlo
eVOLOPEQOV, TOOO T TTQARTLXY) OROTUAL, RAODG OTNV RIVNOT) TOV YUQOREVTQOU OPE(-
AOVTOL OL CUVTOVIOUOL LOVTMYV VYNATIS EVEQYELAS UE LAYV TOUAQOOUVAUKES OLOTAQO-
v€S mov dieyeipovtor 0To TAGoNA, 600 ®aL atd BewEnTnt) oromd. AV oL 1 LoEdN
™G XAWATOVLAVIG TOV YUQOXEVTIQOU €(val YvwoTy) amd ) dexaetiar tov 1980, dev
elyov yivel Ta amogaltnro Pripoto Mote 1) OuVo KT Vo Wtoet vo avolvbel pe epog-
noym g ravovirig Bewiog dtatagaywv, Tov duvatdTeQoy dNAadn egyaielov ov
daBéToupe yia TV avdivon Twv dLATaQo MV OLORANQMOOLUMY Y OLUATOVIOVDV TIQO-
PANUATOV.

To mpdTo Prua TNg ®avovirng Bemoiag datagaymv eival 1 eEebeor evog ra-
VOVIXOU HETOOYNUOTIOUOV TWV CUVIETOYUEVDV TOU GOOXOD YDQEOU OE ROVOVIREG
OUVTETAYUEVES OQAOEMV YWVIDV, £TOL MOTE 1) AOLATAQOAXTY XOMATOVIOVT) VA €Vl
ovvaETNoN TOV 00doemV amoxrieloTivd. Tlagadooiaxnd n ravoviri Bewoia diato-
oaymv edpaguoletar oe mpofAnuata 6mov N adtatdoaxntn XaAtoviavi elval eite
€€ aQYNG eEXTEPGQAOUEVN OOV OVVAQTNOT TwV dQAoEWV, eiTe elval aQueTd amii dote
va, umoQel e0ROAAL VO EXPQOOTEL 08 TETOLO LOQDT] AVOAVTIXA.

2 100QQOTIiES Ie 0 EoVIrT) CUIUETQLN, OTaV 1) duvapuxt exddletol oe ovvTeTay-
uéveg Boozer, 1 X0 UATOVIOVT) TOU YUQOREVTQOU E(vaLl AVEEAQTNTN OTTO TNV TOQOELDT)
vovia. Emopévmg, n xavovixi Toooeldng oo elval otaber) »at (om pe TV TOQOEL-
01 004.0M %O TO OVOTNUO EIVOL TIROAXTIXA EVO OUVAUAXO GVOTNUA EVOS LOVO PaOpot
ehevOeplag natL wg ex TOUTOV OAOUANEDOLHO. AV ot 1) XaWATOVLAVY] TOV YUQOXTE-
VIQOU €(VOL OAOUANQMOLUY), O€ KOO TEQITTWON OV €xeL QITAT) LOQPT). Zuy VA O€ oL
TOQANETQOL TNG elvol YVWOTES Lovo aduntind. Emouévog elvanl mooxrtind adiva-
TOV VO EXPQOOTEL AVAATING OOV GUVAQTNOT TWV OQACEWMV, OIS ALTTOLTEL 1) KAVOVIRT)
Bewoia datagoaywv. H mpotmdOeon auti) iwavomoleltal pe Ty avastugn tov aglb-
UNTOD RAVOVIXOU HETACYNUATIOUOT TOU GAOLROV Y WOV 08 OQAOELS YWVIES.

O 00OUNTIROG PETOOYNUATIONOS 08 OQAOELS Ywvieg vtoloyiletan Eeymolotd og
%100¢ enimedo Tov GaoLroV YMEOV pe 0TaOEQT) TOQOELDT OQ], LE OAORATIQWOT %OL-
TAANAWDV TTOCOTHTWV RATA UNROG TWV TEOYLMV. Q0TO00, OV VTTAQYEL OUVEYTNG LETOL-
OYNUOTIONOS TTOU VAL XOAVTTTEL OLOXANQO TO TiTEOO. AVTIOETO, O LETATYNUATIONOS
EVOG LETAOYNUATIONOG 08 OQAOELS YWVIES ElVaL OLVEYTIS LOVO YLOL X MOIaL TTOV OEV ENITE-
oLEYOLYV separatrix. ETopévmg, mpoxelpuévou va naAvpOel oAOxANQo To emimedo, eival
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QITOLQAL{TNTO VO VITOAOYLOTEL £€VaL OUVOAO EEYWOLOTMOV HETACYNUATIOUDV, EVOG VIO KA
Oe plo meproym mov xobopiletor amd rdmolo separatrix. Tig meQLoyég opifoval amd
TO. separatrices 0€ ®ATOL0 eTiTmedO pe otabepr| F tig ovoudlovpe nreigovs. To olvoro
TWV UETOOYNUOTIOUMV 08 OQAOELS YWVIES YL ®AOE 1)elo amotelel Evav dThavta.

H pelétn tov ouvtoviopmv eival amaoaltnTn yio Thv meoPAeYn TG OVUTEQLPO-
041G €VOg dUVaUXOU CVOTHUATOG Taovoia diatagay®v. Kabdhg o ovvioviouog el-
val pn Tomxrd Gatvouevo, aAld eEaQTaTal amtd oAOXANEN TNV TEOYLA, 1| LEAETT TWV
OUVTOVIOUMV OLevrolveTaL o€ peydho Badpod, Otav 1 duvount] OLOTVTOVETAL O OU-
ot OQACEMV — YWVIDV, ETELOT) O QUTHV TNV TEQITTWON 1] oVVONUY CUVTOVIOUOD
motgvel alyefowni] poedt). O 0QLOUOG ONUAVTIRDV OAAG €V YEVEL OVOROAO LOVTELO-
TOLNOLUWV LEYEDDV, OIS YLaL TTOULQAIELY UL 1) ATTOOTOON 1) 1] EXTALCT TWV CUVTOVIOUMDV
elva TeTLUPEVOS OTaV Aapfdvel Yo oTov xmEo Tov dpdoemv. Ta evon TV cuvTOo-
VIOUMV eEAQTOVTOL ATTd TN LoEdT) TG drataoyns, arlld Ta névroa Tovg xaboilo-
VTOL O€ TQMTY) TTQOOGEYYLOT OO TAL Y OQAXTIQLOTIXA TOV AdLATAQOXTOV TTQOPALATOG
amoxhetotind. IlegLoyég 0to XMEO TV OQACEWYV IOV EIVOL TTUAVES OE OUVTOVIOUOUG
elvow ev yEVeL exelveg 0TIg omoleg Oa TowToEUPAVIOTEL Y AOG, ToQOoVTio ®ATOLaS dLaL-
toayns. To ebpog tov ndbe ouvroviopov elvar avdioyo e v teTpaywvint oila
TOV TAATOVG TNG OvTioTouymg auoviric T datagayfs. Otav ta mhdtn twv ov-
VIOVIOUOV EMXALDTTTOVTOL, EpdavileTol YAog oty meQLoy eupéretas twv d10 ov-
vioviopwv. Kot eméxntaon, aAvoideg aMANAOEMARAAVTTOUEVWY GUVTOVIOUMDV GUVE-
ThyovTaL aoTirt) OLdyvon oTNV TEQLOYT] TOV GOOLXOT XMDEOV OV OVTES HOADTTTOVV.
AVOoADOELS TETOLOV TUTTOV LOG ETUTOETOVV VO TTIROPAEPOUUE EVOEYOUEVT] OTTMAELD OW-
patdiov amd To tokamak roQovoior Loy viTinmy dLaTaQaymV.

H avdivon tooytoxrol ¢pAopatog eivar onuoviirt) Oyl HOvVo Yo T1) LOVOOMmUATL-
olaxi] nivnon, ahlG ®aL Yoo T WOVTEAOTIONOT TS OVALOYRNG CVUTEQLPOQAS. A-
TIOVOIaL OLOTAQAY DV, RAOE CLUVAQTNON ROTAVOUTNG OF LOOQQOTM UITTOQEL VO EXDQAOTEL
oav ovvaQTNon dVO AVEEAQTNTWV OLOTNOTOLUDY TTOCOTHTWV (AL TNG LYV TIXTG QO-
mc). Kabe tétola dvada elvor €yrvmn, alhd Yol TOUG 0ROTOVGS TNG OLOTOQANTIXTG
avaivong, N dudda twv dQACEMV EVOL 1 TTEQLOOOTEQO QT OLUY). Z€ TEQITTWON Loy V-
000 y&ovg, OTaV oL TEQLO0OTEQES RaUTUAES KAM €xouv notaotoadet, 1 eEEMEN ™G
OVVAQTNONG ®OTAVOUNG TeQLyQddeTal amd pa eElowon thmov Focker—Plank. O te-
Aeotng dudyyvong vohoyiCeTon GUVOQTIOEL TWV ALQUOVIXMV TAATMOV TNS dLOTAQMYTC.
To yeyovog Ot 0 TeheoTNg OLdyVOoNG exPEALETUL ONTA WG OVVAQTNOT TWV OQACEWYV
elval éva onuovtind mheovéxtnua Tg pebodov.

210 Kepdhato 5 eEetdlovpe amd podnuatirt) oxomd t uébodo avdivong too-
yLaxov pdopatos. H adiatdoartn XomAtoviav) Tov YUQOXREVIQOU AVI|XEL OTNV OL-
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noyévelo Tov Xowhtoviavaov oo Pabumv ehevbeglog pe o ayvonowun 0€on, mov

€YouV TN Lo
H=H(p,qF),

omov F' 1 ovQuyng »ravovirt) oour g ayvonolung 6éong. Zmv megimrwon g Xa-
WATOVIAVAG Tov YuEdxeVTQOU, 1 F eivau (o pe thv xavovird) Togoedf opun. ‘Oleg
oL XOATOVIAVES AVTNG TNG OLLOYEVELOS EIVOL OMOXANQWOLUES, OALG, OTIWG KoL OTNV
eQITT™OT TNG XA MATOVIAVTG TOU YUVQOREVIQOU, (VAL OYedOV TAVTA ATAQOLTNTOS O
0QLOUNTIROG VITOAOYLOUOG EVOS LETOOYNUATIONOU 08 OQAOELS YWVIES, (DOTE AVTES VAL
exdOOTOVV 0V oUVAQTNON TWV dQdoewV

K =K(J,F).

‘Ouwg, 0 VITOAOYLOHOE TOU HETAOYNUOTLONOU 08 00doeLs Ymvieg dev AvelL Gha Ta 1Qo-
PANpoto. Amonteitol EMITAEOV 1] RATAOKEVT) LOVTEAMV YL TN LOQdT) TNG VEaS XA~
toviavig K (J, F) and delypata and touddeg (J, F, K), VTOAOYLOUEVES e aQLOpunTL-
%«1) OAOXATQWON ROTA UROVG TV TEOYLMV. ATtoQaitnTn meovmdOeon eivar o doym-
OLOMOG TV SELYUATOV VAL MITELQO, ETTOUEVIS OITOLTE(TOL YVMOT ROL LOVTEAOTTONON
TV %oV oNueimY TS XOMATOVIOVNG RAL TOV OYLATOG TWV separatrices 0€ ®A0e
toun pe otabept F. Kd&Be dALo mood TeToLupévn amaitnor, adAld amagaitnTo vo
LRAVOTTOLNOEL YL TIG OVAYRES TNG OVAAVONG TQOYLAXOU GACUOTOG.

[N g avayxreg Tng ravovirig Bemoiag datagay®dv, Ta LOVIELA Hog Ba TREMEL
VO, WTOQOTV VO VITOAOYIOOUV %0l TLG TTOQAYDYOoUs TS Xahtoviavig. TNa magddery-
LLaL, 1) EXTIUNOT) TOV €0QOVG TOU CUVTOVIOROU OITOLTEL T YVMOT TOU XEOOLOVOU Tiva-
%0 (TOV TTvano OEVTEQMV TTALQAYWDYWV) TNG VEAS XAATOVIOVIG G TTQOG TG OQAOELS.
INa autdv ToV VITOAOYLOUO, 1) VTTAEEN TTEQLOCOTEQWY TNG OGS NTElQov o rABe Toun
ovvemdyetol o onpaveiet] dvoxoria. Ta delypoata dtadoyndv Topmv, oyt povo Oa
TOETEL VOL SLO WELOTOUV ava NTelpoug, ahAd now OL {OLEG OL 1)TTELQOL YELTOVIXMDYV TOUWDV
va, ®aTNyoQLomomBoiv avd owoyéveleg loodvvapiog. Me dAha Aoy astonteiton 1
LOVTEAOTIOIN O TOU TOTOAOYLXOU OXEAETOV TOU AdLATAQAXTOU Ppaowol ymoov. E-
MIAEOV, avTY) Bo TIRETEL VO YIVETAL ATTOOOTIRA RAL AVTOUATO, Y WIS KOO EX TOV
TROTEQWYV VITOOEOT YLOL TOV AELOUO, TO OYNUOL KoL TNV OE0T) TWV NITEIQWV.

H povtelomoinomn Tov Tomohoyirol oxrehetov eival €va laitea amotnTind Teo-
PAnuo. Mmopetl wotdco va mogarapdOel, ®avovtog YN0 ATORAELOTIRG TOTURDV
YOQAXTNOLOTIXMV. O HETAOYNUATIONOS 08 OQAOELS YWVIES VITOAOYICETOL e OAORAT-
QWON ®ATA UNROVG TMWV TROPOAMYV TV TQOYLMLV 08 TOUES pe otabepn) F wow epdavi-
CeL eEqptnon amd v dratnenowun dedon F, Aoym g petafoing Tov dQOuov olo-
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nAMEwong oe dtadoyrég Topég. QotO00 dev eivar LOLALTEQO dVOROAO VO LETADEQEL
rovelg avtiv Ty €EGQTNOM EVTOS TOU OAOXRANQWDUOTOS, XQATMHVTIAS TO OQOUO OAO-
xAowong 0tabeod now aArldloviag xvatdAAnAia TV VIO 0OAOXANQWON ToodTNTA. Me
QUTOV TOV TEOTO VITOAOYILETAL OAOUANQMTIRA, OYL LOVO O (OLOG O UETAOYNUOTIONOG,
OAAG nOL M TOEAY™WYOS TOV WG TEOG F.

Evteldg avaroya vitohoyiCovron xat oL TmTeS ToQdymyol xabe @NTol OAORAT-
QOUOTOS TNG ®ivnong, dAadn ®dbe mooOTNTOS TOV EXPEATETAL QNTA OOV OLOUAT|QW-
Ha ®OTA PNrHOVG LaS RAELOTNG TEOYLAS ®AToLog dladoQnig poodns. Me emaywyn,
OLeg oL oL AywyoL ®&Be QNTOU OAORANQMOUOTOS TG %{VNOoNG elvor duvaToOV va exdal-
o0ToUV oV ENTA oAoxAnE®uaTo TG ®ivnong. Me avaioyo TQOo, TO OTOLYELC TOV
Xeoowavo mivaxa g véag Xouhtoviavig exdodlovror oov gntd oloxAnohuoto
™G ®ivnong xaL vroAoyiCovtol ToQdAIAM e TOV (OL0 TOV HETAOYNUATIONO, X MWOIG 0L
vapoQE 0€ TOTOAOYIXA Y OQAXTNOLOTIXA TV TEOYLMV. TEéA0g, N uEBod0g dontpdleTon
LE TNV EGAQUOYT] TNG OTY] OLOTALQOXTIXT] AVAAVOY TOU YEVIXEVUEVOU EXNQEUOVG.
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Chapter 1

Electrostatic Wave perpendicular to a
Uniform Magnetic Field

The single ion dynamics in a uniform magnetic field under the influence of a perpendicularly
propagating electrostatic wave has been one of the paradigms of deterministic dynamics that
undergoes transition from regular to chaotic motion with increasing perturbation strength.
The motivation for studying it in the context of thermonuclear fusion has been the application
of lower hybrid waves for plasma heating, by means of collisionless ion energization. This
short chapter will serve both as an introduction to the beating wave problem discussed in
Chapter 3 and as a demonstration of some of the mathematical tools we will be employing
in the rest of this thesis.

1.1 Modelling and analysis

Here we will follow the analysis Karney et al. (Karney, 1978, Karney and Bers, 1977). For
typical fusion plasmas (see tab. 1.1) the plasma and cyclotron frequencies of electrons and

protons are related by:
and

It follows from the cold plasma dispersion relation (Stix, 1992) that the lower hybrid waves
in the plasma core propagate almost perpendicularly to the magnetic field (Kikuchi et al.,

2012), with frequency w > €1, and almost electrostatic polarization (Brambilla, 1998); see
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quantity symbol value
average electron density n 1 x 108 cm™3
average electron temperature 1’ 10keV
electron cyclotron frequency Q.. (B =1T) 176 GHz
proton cyclotron frequency ~ Q.,(B =1T) 95.8 MHz
proton bounce frequency wpp(B=1T) 100kHz
electron plasma frequency Whpe 2THz
proton plasma frequency Wpp 40 GHz
proton Larmor radius PLp Icm

Table 1.1 Characteristic scales of magnitude for typical fusion plasmas

also subsection 3.3.2. In a Tokamak, the magnetic field inhomogeneity is characterized by

B
VB~ —
R,’

with R, the major radius of the Tokamak. Since the typical Larmor radius of the ions is much
smaller than 17, and the drift frequencies of the guiding center motion are much smaller than

the cyclotron frequency, i.e.

p < Ry,

where L4 is the characteristic length of the drift motion, it is reasonable to model the

magnetic field as a homogeneous field in the z direction
B =DB,z, A =By
and the lower hybrid wave as an electrostatic wave propagating in the y direction

E = Eyycos(ky —wt) ® = —E,/ksin(ky — wt).
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The Hamiltonian of the perpendicular motion of the particle is

H=—(p—qA)?+qd
2m(p qA)* +¢q
1
= %((Py —qByx)? +p2) + q®

Normalizing

m
time to Q71 = —
C qB

length to k!

m
* momentum to —

k

m$?
12

* energy to

the normalized single particle Hamiltonian becomes

k> mS) qB mO 2 kqE, . B
h = 2m2()2 ( i Dy — kox)2—|— (T) pi] — ng sin(kk~ly — w/Q.t)

= % [(py — 2)* + p3] — esin(y — vt)

where
v=w/Q,

is the wave to cyclotron frequency ratio, which is assumed to be a large non integer number
in general and

kqEy
€= .
m2?
is the effective amplitude of the wave, which can function as the ordering parameter. Then

the Hamiltonian is naturally arranged in orders of € as the first order polynomial

where h, is the unperturbed Hamiltonian and h, is the (first order) perturbation.
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It so happens that h be integrable. The canonical transform to the guiding center vari-

ables (p1, ¢) and (p,,y,) is generated by the mixed generating function (Goldstein, 1956)

1
G(2,y,pg,®) = ypy + 5(x = py)* cot g, (1.1)
from which we have
oG
Po =5 = (z — py) cot @,
oG
by a_y = Pg>
oG
yg = % =Y — (m_pg)00t¢:y_pma
g
0G 1 . 2
H= g = 5(1‘—%)2 sin ~ ¢,

which, by appropriate sign and angle conventions, gives

Dy = \/ﬂcosgb (1.2)
T =p,+/2pcos ¢ (1.3)
Py =Dy (1.4)
Y=y, +/2using (1.5)

(1.6)

The unperturbed Hamiltonian in the guiding center variables is

hO(:uM ¢7pgayg> = W (17)

from which it follows that the guiding center variables are also the Action Angle coordinates
(Goldstein, 1956, Jose and Saletan, 1998) of h. The Action p is the magnetic moment of the
particle and the Angle ¢ the gyro-angle of the gyration motion. Note that both the variables
of the (p,,y,) Action Angle pair are ignorable in the unperturbed Hamiltonian h,. The full
Hamiltonian becomes

h = pu— esin(p, + /2usin ¢ —vt). (1.8)

This can be further simplified by taking into account that the canonical momentum p, is

a constant of motion. The time evolution of the canonical position y, conjugate to p, is
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determined by the time evolution of the (u, ¢) pair by

d oh
% = 8_pg = —ecos(p, + \/2using —vt). (1.9)
Since the two degrees of motion are decoupled and the (p,, y,) couple does not contribute

to the particle energization, we can, for our purposes, resort to the reduced Hamiltonian
h(p, ¢,t) = p — esin(psin g — vt), (1.10)

where p = /2y is the Larmor radius and we wave taken p, = 0 by an appropriate phase
shift of the wave.

1.2 Analyzing near integrable dynamics: Perturbation the-

ories

In order to construct the first order integral of motion of the perturbed system will follow
Deprit perturbation theory (Deprit, 1969), a theory in the family of Lie transform methods.
We will only summarize the main concepts of Deprit perturbation theory here. Excellent
descriptions and tutorials can be found elsewhere (Cary, 1981, Lichtenberg and Lieberman,
1992).

1.2.1 Interlude: Lie Pertubration Theory

The objective of canonical perturbation theories is to find a continuous family of near identity
transforms that map points z in the original phase space U to points z in a transformed phase
space V'

b :zeclU—zeV,

so that
S _p:z—z

be the identity map, with the intent that the dynamics on the new phase space V is less
complicated. Canonical perturbation theories rely on the conjecture that all quantities can
be expressed as power series of one or more ordering parameters and that equality of power

series implies equality of the individual terms.
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Traditional perturbation techniques focus on calculating the terms of a canonical trans-

form generating function(Goldstein, 1956)
S = Z €"S,,.

Each step of the process adds an extra term to the power series of S. The generating functions
are necessarily of mixed form, e.g. S(q, P, t), functions of the old positions and the new
momenta, or any such combination. Subsequently, they give rise to transforms that are
also expressed in mixed form and have to be inverted in every step of the process. As a
consequence, the algebraic complexity increases significantly in each step to such an extent
that carrying out the process to order higher than €2 may be impracticable, or disheartening
at best (Lichtenberg and Lieberman, 1992).

Lie perturbation theories overcome the problem of mixed variables. The do so by cal-
culating the transform indirectly. In Lie perturbation theories the focus is not on transforms
between phase spaces per se, but on transforms of functions on the phase space. Instead of
seeking to calculate ®_ directly, Lie perturbation techniques calculate the operator 7' = @,
the pullback operator associated with ®_ (Flanders, 1989). The operator 7" maps functions
g:V — Rtofunctions f =Tg: U — R,so that f(z) = g(z(z)), i.e

i

- N7z
R

and is formally defined by means of a generating function w(z, t; €), so that

V4

T = exp|— /6 L(e")de'],
0

with L being the Poisson bracket operator defined by

_ _Owof 9fow
Li= [w,f] N aqi api aqz' api.

Deprit Perturbation Theory

Up to now the discussion has been kept rather general. No rules have been given about how
the transform 7' is related to the problem at hand. Deprit perturbation theory is one of many

possible recipes for specifying 7" and w incrementally. First, as is customary, we assume



1.2 Analyzing near integrable dynamics: Perturbation theories 7

that all objects can be expanded as power series in the perturbation parameter e:

oo

w=>€w,,, (1.11)
n=0

l;::jiie”Ln+1, (1.12)
n=0

T=3 T, (1.13)
n=0

H = jf:e”]¥n, (1.14)
n=0

J{'::ifienzzn, (1.15)
n=0

where K is the Hamiltonian in the new phase space V', given by

€ 8 /
K:T4H+T{/Tw)w@hd
A ot
Up to first order the Lie transform is given by
TO — 17
Tl =-—L 1
1 1
and its inverse by
Tyt =1,
111_1 =L 1

1 1
Tyl = Lyt 513
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The components of the generating function w must satisfy a series of p.d.es

W+[w1aHo]:K1_H1 (1.16)
Ow,
W*‘[U@HO] = 2(Ky — Hy) — Ly (K; + Hy) (1.17)

(1.18)

All equations above are of the type of inhomogeneous Liouville equation

0
1. H =

with solution .
£ = | drsg (e (o)
to

with S, being the time evolution operator under the unperturbed Hamiltonian H,.

Each term in the sequence depends only on those that precede it, so that in principle, the
terms w,, can be computed iteratively to arbitrarily high order. In each step ¢, the ¢-th order
term of the new Hamiltonian K, is unspecified and we are free to choose it as we like. We
typically choose K to be as simple as possible, provided that our choice does not break the
ordering scheme. Ideally, we want to take K, = 0 in every step. As we will see, this is not
always possible, such as in the case of resonances, where the choice K; = 0 introduces the

problem of small denominators and the perturbation scheme fails.

1.2.2 First order effects

We begin by Fourier expanding eq. 1.10 by means of the well-known Bessel series (Abramowitz
and Stegun, 1970)
o0
h=p—e Y  J,(p)sin(ng — vt) (1.19)
n=—oo

Although it is perfectly valid to proceed with a time dependent Hamiltonian like the one
above, it is conceptually easier to work with an equivalent autonomous Hamiltonian in the ex-
tended phase space. Let us introduce the canonical pair (7, x) and the extended autonomous

Hamiltonian
(o]

H=p+vi—e > J,(p)sin(ng—x). (1.20)

n=—oo
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Note that x is trivially integrated in time as

x(t) = vt.

To proceed with the perturbation analysis, we assume there exist a time independent
generating function that w can be expanded as a power series in €. The first order component

wy 1s given by the equation

[wy, Ho) = Z 1,,(p) sin(ng — x)
i ‘
T2 ; J,(p)em?=) + cc.,

where we have taken K, to be zero. Expanding

Z wy X +cec.,

we get 1.(p)
_ n\P
L 9(n —v)
and
- Jn(p) ind)f )
w1:—nz_oom€( X +c.e.
=— Z cos (ng — x).

Obviously, if the wave to cyclotron frequency ratio v where integer or near integer, we would
already be in trouble.

The new magnetic moment can be computed to first order by

p=Tu=p—elip=p—elwy,p

For small perturbation amplitudes, the curves of conserved first order invariants accu-

rately reproduce the particle orbits, as can be verified by comparing the Poincare plot on the
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Figure 1.1 Poincare plot on ¢ = 0, for e = 1.2, v = 30.23.
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Figure 1.2 Contour plot of the first order invariant ;4 = 7'y for e = 1.2, v = 30.23.
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Poincare surface ¢ = 0 for v = 30.23 and e = 1.2 (fig. 1.1) and the contour plot of 1 = T
for the same parameter values (fig. 1.2).

1.2.3 Second Order Effects

For larger amplitudes, the perturbation scheme begins to fail, although the mechanism by
which it does so may not be too obvious. Hopefully, it will become clear when we carry the
perturbation analysis to the next order.

The second order component of w is given by the Liouville equation:

—= + [wy, Hy] = 2(K,) — Ly H;. (1.21)

1e-4

P

Figure 1.3 Second order frequency correction AS2 for v = 30.23. The correction is almost zero for
small Larmor radii, and takes on significant value, only for p £ v, where its diagram resembles a
weakly decaying oscillation curve. The second order islands will first appear at the local extrema of
this curve.

Again, we would like to take K, = 0, as we did with K, but unfortunately we can not.
If we did, the constant terms on left hand side of eq. 1.21 would lead to a blowup of w,,

which would destroy the ordering. To avoid this, we are forced to take

1 1 1 & J.(p)J,
K, = §<L1H1> = §<[w1,H1]> - _§Z n i v n(p>pn<10), (1.22)

n=0
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where (... ) denotes the non oscillating part of the enclosed quantity. The new Hamiltonian

K is up to second order

/

K:u+ul—e2éz n_1.(0) (o) (1.23)

n—v p

n=0

In the transformed phase space the canonical momenta p and [ are invariant up to second
order, but the frequencies have changed. The interaction with the wave has introduced a

second order correction to the average gyrofrequency, so that

d¢

— =1+€eA0
a e
where the correction A(2 is given by
10 &K n 1,(0)35(p)
AQ = ——— n LA 1.24
201 T;) n—v p (1.24)

The correction AS) is rather small, as can be seen in fig. 1.3. It is almost zero for small
Larmor radii, and takes on significant value, only for p Z v, where its diagram resembles a
weakly decaying oscillation curve, but then it never becomes greater than 0.5%. There is a
surprisingly simple physical argument to explain this behaviour. In order for the cyclotron
frequency to be significantly modified, the Cerenkov condtidion should be satisfied in the
course of a single gyration. This should require that the projection of the particle veloc-
ity v, along the direction of the wave propagation become equal to the phase velocity vy,
at least once for every full turn around the axis of rotation. Temporarily letting go of the

normalizations, we have on one hand

vy =Qp

and on the other
L w
Uph = E

Therefore the requirement that the particle catches up with the wave implies
vy g vpha

or
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which explains why there is a threshold in p. Additionally, considering that as the normal-
ized radius becomes much larger than v, the energy of the particle increases quadratically,
it is reasonable that the relative effect of the interaction with the wave should decline for
increasing Larmor radii, which explains the slow decay in A(2, for high values of p.

This small frequency correction is enough to modify the topology of the invariant curves,
even for relatively small perturbation amplitudes. This can have a dramatic effect on the
qualitative features of the perturbed phase space, as can be seen for example in fig. 1.4.
To demonstrate this, let us from now on, without loss of generality, limit the discussion
to v = 30.23, which we have chosen so that its fractional part be far from any low order
rational number, such as e.g. 1/4, or 2/5. Let us first reexamine the first order Hamiltonian
H,, which we copy here for convenience.

oo

Hy=— Y I,(p)sin(ng — x). (1.25)
n=—ooc
In this series above there are two ’slow’ angles, namely ¢; = 30¢ — x and ¢, = 31¢ —
X- They are slow in the sense that their unperturbed frequencies are close to the cyclotron
frequency, but because of the way we have chosen the wave frequency, they are safely away
from any low order resonance with the cyclotron frequency.

For moderate amplitudes, however, the frequency correction can bring these angles in
resonance with the base frequency. This changes the topology of the Kolmogorov, Arnold,
Moser (KAM) curves, the solid curves on the Poincare surface, which are associated with
the existence of integrals of motion. This means that islands form around the fixed points,
bounded by separatrices.i.e. the limiting curves on the Poincare surface that separate areas
of different topology. Due to the oscillating character of A2 multiple chains for different
resonance orders form, see . 1.4

We can predict the amplitude of first appearance and location of such resonances of order

s/p, where s, p are small integers, by requiring that

30AQ —0.23 = —, for ¢, and

31AQ—0.23 == —1, for ¢,.

ST VRS R RV

We can also predict the shape of the curves on the Poincare surface along which the
resonant islands will occur. This is achieved by mapping any solutions p,, of the equations

above to the original phase space through

pres = T_lﬁres'
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Figure 1.4 Poincare plot and prediction of the location of resonance islands, for v = 30.23 and
e = 1.8. The interaction with the wave modifies the base frequencies of the particle so that second
order resonances appear. Solid green lines: Predicted locations for the 3 /4 resonance with ¢,. Dashed
orange lines: Similarly, for the 4 /5 resonance. The mapping of the estimated resonance locations onto
the Poincare surface has been carried out by using the first order approximation of the inverse Lie
transform.

Of course, we do not use the exact 7!, which we do not know, but the first order approxima-
tion of it that we have already calculated perturbatively. The perfectionist could in principle
approximate 7! to any order they like, carrying out the same amount of steps in the per-
turbation analysis, but we find that the first order approximation suffices for the purposes of

this chapter.

In fig. 1.4 we get the chance to compare the estimated location of the resonance chains
to the actual location of the islands on the Poincare plots for v = 30.23 and € = 1.8. Five
or six resonance chains form, three for the 3/4 resonance of ¢, with the base frequency and
two or three for the 4/5 resonance. The corresponding approximations are depicted with
solid green lines for the 3/4 resonance and dashed orange lines, for the 4/5 resonance. The
essential features of the perturbed phase space are reproduced with great accuracy, even by

first order approximation.
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1.3 Onset of chaotic behaviour.

The features of the moderately perturbed phase space, as depicted in fig. 1.4 may be qualita-
tively different from the weakly perturbed phase space, fig. 1.1, but the motion is still regular:
The trace of each separate orbit on the Poincare plot lies on one or more one-dimensional
curves. However, as the amplitude of the perturbation increases, the situation changes. The
integrals of motion get broken and there appear orbits whose trace covers densely a finite
area on the Poicare map. This is the signature of chaotic motion .

Three related but distinct mechanisms are at work to cause this effect. First, as the pertur-
bation amplitude grows, so does the effect of A2, which means that resonances that where
previously absent are allowed to form chains of islands on the Poincare surface. Second,
the width of the already existing islands grows, due to the fact that the resonances become
stronger. Third, higher order effects come into play, that may introduce even more chains
or modify the characteristics of the already existing ones. Obviously, this cannot go on ad
infinitum. There is only so much room for resonant islands before they begin to overlap.
When this happens, the integrals of motion break and the motion becomes chaotic. This
criterion for estimating the onset of chaotic motion, namely overlap of resonant islands is

called Chirikov criterion.
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Figure 1.5 Poincare plot and prediction of the location of resonance islands, for v = 30.23 and
e = 2.2. Part of phase space has become chaotic, due to resonance overlap. The primary resonance
chains that appeared in fig. 1.4 are also present here along with new ones that did not appear before.
Satellite islands around the primary once also form.
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The case of e = 2.2, as depicted in fig. 1.5 is an excellent demonstration of the effects of
these mechanisms. This figure is a reproduction of a figure that was first published by Karney
et al. (Karney, 1978, Karney and Bers, 1977), but with much more detail than the original.
Much can be said about this rich and beautiful structure, but most would be out of scope for
this chapter. Notice that the resonance chains that appeared in fig. 1.4 are also present here.
Around them there is a sea of chaotic orbits, except for the upper 3/4 chain, which was a
bit more isolated from its neighbours to begin with. Resonance chains of other ratios that
where previously either absent or too narrow to be detected can also be seen perforating the
stochastic sea, running parallel to the 3/4 and 4/5 chains. Around the islands of the primary
resonances, satellite islands form; a higher order effect.

For € = 3.8 most of the part of phase space we have focussed on has become chaotic. As
is expected, with increasing amplitude the fraction of phase space that still supports KAM
curves shrinks, but never completely disappears (Markus and Meyer, 1974). As is demon-
strated in fig. 1.6, there exist two wide disjoined chaotic bands, separated by a narrow band
of regular motion, where there still persists a modified integral of motion p. Orbits inside

the chaotic bands are allowed to cover densely all available phase space.

50
48 -
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X

Figure 1.6 Poincare plot and prediction of the location of resonance islands, for v = 30.23 and
e = 2.2. Part of phase space has become chaotic, due to resonance overlap. The primary resonance
chains that appeared in fig. 1.4 are also present here along with new ones that did not appear before.
Satellite islands around the primary once also form.

There is deep connection between the onset of chaotic behaviour and underlying physics

of the interaction that causes it. Consider for example a particle distribution representing a
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collisionless plasma. The only way a wave can exchange significant energy with a such a
medium is either by means of phase mixing (i.e. Landau damping ), or by destruction of
KAM surfaces'. With no change in the KAM surface topology, such as in the low amplitude
domain, there can be no net transfer, since only small fluctuations around the equilibrium
state are induced, and the particle distribution returns to its original state once the wave
source turns off and the interaction stops. In the moderate amplitude regime, phase mixing
effects inside the islands that form around the resonances flatten out the distribution function,
which forms plateaus on the location of the resonant islands (White, 2012, 2013, White
et al., 2010). This results in a net exchange between wave and plasma, but the amount of
this exchange is limited by the widths of the islands. When chaotic motion dominates, the
redistribution can be much more effective, since the particles are able to diffuse on much
wider parts of phase space. In conclusion, qualitative changes in single particle dynamics

imply qualitative changes in wave — plasma interaction.

1.4 Conclusions and Discussion

The interaction of a gyrating ion in a homogeneous magnetic field with a perpendicular high
frequency electrostatic wave, such as the lower hybrid wave, is a problem with rich physics.
Depending on the amplitude of the wave, there are three qualitatively distinct regimes of
interaction, weak, medium and strong, that correspond to different topologies of the sin-
gle particle phase space. In order for a particle to exchange net energy with the wave, the
Cerenkov condition must be satisfied along the particle orbit. This puts a lower threshold on
the energy of the particles that can be energized by the wave. For realistic conditions, the
phase velocity of the lower hybrid wave is significantly larger that the thermal velocity of
the ions, meaning that only the tail of the ion distribution can be thermalized.

This chapter served both as an introduction to the beating wave problem, which we ad-
dress in a later chapter, as well as a short tutorial to some of the mathematical techniques we
are going to be using in the rest of this thesis. It also gave us the opportunity to introduce and
discuss important concepts such as KAM curves, resonance chains and resonance overlap,
as well as the onset of chaos. These concepts are the recurring themes that bring together
the different chapters of this thesis.

'For an interesting discussion about whether or not KAM surface destruction and Landau Damping are
indeed unrelated and if Landau Damping is in fact a collisionless process, see (Mouhot and Villani, 2011)






Chapter 2
Flux Coordinates in Tokamak Equilibria

When a Tokamak is in equilibrium, the magnetic field lines inside it have a very special
property; each of them can be embedded in a smooth 2D surface, which has the topology of
a two dimensional torus. In general, the magnetic field lines cover densely and therefore can
be said to define these surfaces, which we call flux surfaces, for obvious reasons. Since the
magnetic lines can never cross one another, the magnetic surfaces are arranged in families of
embedded tori (see fig. 2.1). There are two kinds of limiting surfaces in this configuration;
first, if the family of embedded tori, is simply connected, there is the degenerate case where
the magnetic field line lies on a 1D curve, so that the flux surface is no a surface at all, but
rather a line, the innermost element in the set of the embedded tori, which we call magnetic
axis. Second, the case when two such surfaces share a common line of contact, which must
be a limiting curve for the magnetic field lines, because of the no cross constraint. Such
surfaces separate disjoined families of embedded flux surfaces and are called separatrices
(see fig. 2.2). The trace of the lines of contact on a Poincare surface ,i.e two dimensional
cross section, is an unstable stationary point, or an X-point. The trace of the magnetic axis
is a stable stationary point, or an O-point.

It is no coincidence that the picture we described above is also a signature of integrable
Hamiltonian systems. As we will see, the magnetic field lines are indeed Hamiltonian. The
topology of the magnetic field has a profound effect on the coexisting plasma in multiple
scales. In the fluid/MHD picture, all equilibrium quantities must be constant on the magnetic
surfaces. In the kinetic description, gradients along the surfaces and gradients across the
surfaces differ by scales of magnitude. In the single particle drift picture, the unperturbed
guiding center dynamical system is an integrable Hamiltonian system with two degrees of
motion (see Chapter 4).

Unless there is good reason to do otherwise, any reasonable mathematical modelling of

Tokamak plasmas should provide ways to express these properties of plasma equilibria in a
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s

Figure 2.1 general toroidal topology

trivial manner. For example, an MHD quantity, such as the pressure, which is necessarily
constant on a given magnetic surface, should be a function of a single variable. For this
reason, it is sensible make use of coordinate systems adapted to the magnetic field topology.
Such systems are known as magnetic surface coordinates, or magnetic coordinate represen-
tation and a wide variety of those have been used in literature. To meet the demands of the
toroidal topology, we will use one radial coordinate p, which is constant on each magnetic
surface, as well as two angular coordinates 6 and ¢. On the degenerate innermost surface, ¢

parametrizes the magnetic axis curve, while 6 is undefined. We assume that the triad

e’ =Vp, e =Vh e*=Vo 2.1

forms a right handed contravariant basis. The associated covariant basis is
e = 8 I‘, eg — 891‘, e(b — 8¢I‘, (2.2)

Of course the angular coordinates 6, ¢ are not "true” coordinates, in the sense that the
one-forms df and d¢ are not closed and, whenever we make use of the functions 0(r) and

é(r), it is to be understood that they are defined only locally!.

By construction,

el — S i _ i ok
e'-e; =07, €' = ¢, ;1€ X €, e, =Je; ;€ x e, (2.3)

g K3

'For an interesting example of how a physicist may run into trouble, when naively neglecting the local
nature of the angular coordinates, see (Peierls, 1979, Peierls and Urbano, 1968).
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with €,

ik the Levi-Civita symbol and

1

ﬂzep-<eexe¢):m

the Jacobian.

Figure 2.2 toroidal surfaces with separatrix

The magnetic field is associated with a vector potential A so that
B =V xA.

Write
A = ApV,o + A,VO + A¢V¢>

so that
B=VA,xVp+VA;xVO+VA, x V.

(2.4)

2.5)

(2.6)

(2.7)

For the radial coordinate p, it is possible to find a function G so that ,G = A . This is

not always possible for for the angular coordinates, since df and d¢ are not closed. We

can therefore eliminate the radial component of the vector potential by means of the gauge

transform A" — A — VG. Then

’

A" = (Ag—8,G)VO+ (A, — 0,G) Vo
= $V0 — 1,V

(2.8)
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And
B=Vy x Vi — Vz/)p x V. (2.9)

Eq. 2.9 is known as the contravariant representation of the magnetic field.

2.1 Boozer Coordinates

In the above, the discussion has been kept rather general and we have made no use of the
prescribed toroidal topology of the magnetic field. Accordingly no justification for the con-
travariant representation of the magnetic field has been given and we have jet to assign any
physical meaning to the individual terms of eq. 2.9. In this section we show that the existence
of invariant tori for the magnetic field lines implies that the contravariant representation can

take the form
B = Vi(p) x VO — pr(zp) x V. (2.10)

meaning that both ¢ and 1, are flux functions. When this is the case, ¢ is the normalized
toroidal flow and ¢, the normalized poloidal flow inside the flux surface.

2.1.1 The Hamiltonian nature of the magnetic lines

Let the following two assumptions hold:

1. The map (p, 0, ¢) — (¢, 0, ¢) is a diffeomorphism, so that the flux surface coordinate
p can be replaced by 1,

2. The poloidal component of the magnetic field B - V¢ is everywhere non zero.

Assumption 1 means that we can use the triad (1), 0, ¢) as a coordinate system. Then, the

magnetic field line equations are given by

dy B-Vy V¢ (Vi, x Vo)
dp  B-V¢ V¢ (Vi) x Vh)
- _J(w,e,qﬁ)v% (Vo x Vy) = _va : (g(w,97¢)e¢ X e’ﬁ) (2.11)
o0,
a0’

= Vi, eg = —Vi, - Opr = —
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And

9 B-V9 VO (Vi x V9
dp B-V¢  Voé- (Vi x V)

= —J 400V - (VO X VO) = Vi, - (T y,0.5€" x &) (2.12)
oY
= Vi, e, = 8_1;)'

It follows that the magnetic field lines describe a Hamiltonian flow for the canonical pair
(6,%) with the Hamiltonian H = 1,,(6, 1), ) and ¢ being the time.

Interlude:Variational Approach

Carry and Littlejohn have given us an alternative, perhaps more satisfying, interpretation of
the Hamiltonian nature of the magnetic field (Cary and Littlejohn, 1983). They wave pointed
out that for some given vector potential A, the magnetic field lines are reproduced by the
Lagrangian:
dr
L=A(r) —dr.
(x) ar’"

This is easily confirmed, considering that the variational principle for the action integral
d
5/A(r) A, 2.13)
dr

yields the Euler—Lagrange equations:

(V x A) x 3—: =0, (2.14)

so that the parametric line r(7) is parallel to the magnetic field.

If we assume that the toroidal field is never zero, so that the magnetic field line can locally

be parametrized by ¢ and use the representation:

A =Vl — Vo, (2.15)
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as we did before, the variational principle becomes

5/A(r)-3—;d¢:0:

6/A(r) : (epp+e99+e¢> d¢p =0=
(2.16)
5/ (¢e9 — ¢pe¢) . (epp' + eeé + ed)) dp=0=

f ()

Notice the similarity of eq. 2.16 with the Hamiltonian dynamics variational principle, namely

5/ [pill—(;l — h(q, p, t)] dt = 0. (2.17)
One can define ¢ as the canonical momentum conjugate to the canonical angle ¢ and v, as
the Hamiltonian. There is only one problem. The poloidal flux 1), must be expressed as
a function of v, 6 and ¢. There should therefore exist a diffeomorphism from (p, 6, ¢) to
(1,8, ¢) for the Hamiltonian description to make sense. This is the diffeomorphism condi-
tion we postulated in the beginning of this section. In the Hamiltonian dynamics literature

it is known as the Hessian condition (Jose and Saletan, 1998).

An interesting consequence of eq. 2.9 is that the magnetic field is independent of any
variation of ¢, with respect to ¢, so that we can substitute ¥, (p, 6, ¢) with < 1, >, its
average over ¢. Thus, the Hamiltonian H can be brought in autonomous, i.e. time indepen-
dent form and is therefore conserved and the dynamic system for the magnetic field lines is
integrable. In other words, the assumption that ¢ is a time-like variable implies the existence

of flux surfaces. This is a direct consequence of the Coulomb law for the magnetic field.

Integrability means that — at least locally — there is some transform to Action Angle vari-
ables 1), 6 . These are straight field line coordinates, so that

Y, = P, (),
dip

Pra

a9 _ v, _ 1
dp oy q(¢)

For the remainder of this thesis, whenever there exist flux surfaces, we will make use of

Action Angle flux coordinates exclusively, so that we can drop the barred notation and the
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reader can safely assume that the flux coordinates (1, 0,1, ) to be Action Angle coordi-

nates, unless otherwise stated.

The covariant representation of the magnetic field in Action Angle variables takes the

form
1

B=Vux Vo

V), (2.18)

so that
B-Vy =0.

The flux function g(¢)) represents the number of toroidal turns per poloidal turn. MHD sta-
bility criteria impose restrictions for the allowed values of ¢ in realistic Tokamak equilibria.
Suppression of the Kink instability, for example, requires ¢ > 1 (Zohm, 2014). For this

reason q is known as the safety factor.

The Physical interpretation of flux Coordinates

Since wp is a flux function, we have

BV, =0= Vi, (Vih x VO) =0

e 2.19
= Vi, —2— = 0= 9,0, =0, (2.19)
I (1,0.6)

which re-states the known fact that the Hamiltonian is conserved, if it is explicitly indepen-

dent of time. The requirement that v is also a flux function means that

B -Vi=0= —Vi, (Vo x Vi) =0
:>8977Z}p20'

(2.20)

Therefore, the Hamiltonian 1, is only a function of ¢, so that ¢ is a function of the action.

In fact v is the action, since

J = i jlgqbde = ). 2.21)
2T

It follows that § = O, = 0 and that (6, v) is the angle—action pair. Apart from a dynamical
meaning, v also has a significant interpretation in terms of the magnetic field quantities alone;
it is proportional to the toroidal magnetic flux enclosed by the corresponding magnetic field

surface. To demonstrate this, let us calculate the magnetic flux flowing through a tube defined



26 Flux Coordinates in Tokamak Equilibria

by ¢ = 14. Since B - Vi) = 0, we have
v, = //B -dS, (2.22)
s

where S is the surface depicted in fig. 2.3a) , with ¢ = const. and dS parallel to the toroidal

vector e®.

AZ

Y

21 0

=0
a) b)

Figure 2.3 a) The flux tube 1) = 15 encloses a surface S perpendicular to the toroidal direction e?.
b) When calculating the toroidal flux W, through S, the surface integral transforms to a closed path
integral in the 6, p plane.

Therefore

v, //B ds = //B dp x df = // e><e9 dpdd

— // IB Vo dpdh = / J (VY x V) - V¢ dpdf (2.23)

S S
= //ep -V dpdf = / 0, dpd®.
s S

Making use of Green’s theorem, which we quote here, for convenience

/662 (‘9Ddxdy—/de+Qdy,

oD
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we get (by substituting P = — and ) = 0)

v, = —/w df = 2mpg —2m 9P| _, (2.24)
oS

where the integration path 9.5 is shown on fig. 2.3b). By choosing w‘pzo =0,

—,, (2.25)

so that ¢ is the normalized toroidal flux enclosed in a flux tube around the magnetic axis.

Similarly, the poloidal flux through the surface S’ bounded by 1, = 0 and ¢, = ¥, &,
with § = const. and dS’ parallel to the poloidal vector e’ is given by

\I/p://B-dS:S///B-quxdp

S/

S’ S/
— [[~avu, (Vo x 90) dpdo - // V-, ded (2.26)
S’ o

_ // 0,0, dpdo — / ¥, df = 2m),,
)

08’

where again we have chosen = 0. It becomes clear that ¢, is the normalized poloidal
g Plp=0 p

flux.

2.1.2 Boozer Coordinates: A particular pair of Action Angle variables

There is more than one Acton Angle representation for the magnetic field. As can easily be

confirmed, the contravariant representation

B = Vi(p) x V0 — Vi, () x V.

remains invariant under the transform

¢ =9 +q\
0 =0+,
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so does the Hamiltonian character of the magnetic field lines. Here A is chosen so that the
transform is a diffeomorphism, but is otherwise undefined. This leaves a freedom of choice

in the straight field line representation.

In general, the covariant representation for the magnetic field is

B =gV + IVH + 6V,

where
La(¥) 0o
__ “~pol
= o —ad), 2.27)
. Itor(w) do
I = o + 20" (2.28)

where I,,(¢) is the normalized poloidal current outside the flux surface, I, (1) the nor-
malized toroidal current inside the flux surface and o an unspecified function (D’haeseleer
et al., 1991). By appropriate choice of A, the covariant representation can be brought in a
form in which the covariant poloidal and toroidal components of the magnetic field are flux

functions, i.e constant on any flux surface:
B =g()V¢' + I()VE + V. (2.29)

The flux coordinates (1, 6, ¢") are a particular choice of straight field line coordinates flux

coordinates known as Boozer Coordinates (Boozer, 1980, 1981).
In Boozer coordinates the Jacobian is related to the magnetic field amplitude by

h(¥)

5: BQ?

where
h(¥) = (I +9q) /g,

a flux function. When studying the drift dynamics of the guiding center in Tokamaks, this
property of Boozer coordinates is especially important, because it facilitates writing the equa-
tions of motion in Hamiltonian form (White and Chance, 1984). We should point out how-
ever, that Boozer coordinates, although a popular and convenient choice, are by no means
the only available choice, see for example (Meiss and Hazeltine, 1990, White and Zakharov,
2003). For the remainder of this thesis we will drop the primed notation for the Boozer co-
ordinates and, unless otherwise stated, we will assume (1, 6, Yy, ®) to be already in Boozer

form.
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2.1.3 Axisymmetric Equilibria

Ideal Tokamaks are devices which support axisymmetric equilibria,i.e plasma equilibria that
are symmetric around the vertical axis (Mukhovatov and Shafranov, 1971, Wesson, 2004,
White, 2013, Zohm, 2014). In axisymmetric equilibria the force balance condition' 2

Vp=jxB, (2.30)

yields the Grad-Shafranov (GS) equation

o (10¢ 0*Y

where we make use of the right handed pseudo-toroidal coordinate system (R, Z, ¢), fig 2.4,
with Z the axis of symmetry and ¢ the ignorable toroidal angle. Here both the scalar pressure
p and the poloidal current g are flux functions®.

In the right handed toroidal coordinate system (R, Z, ¢), fig. 2.4, Z is the axis of sym-
metry and ¢ the ignorable toroidal angle.

Z

/"
AN r

Figure 2.4 pseudo toroidal coordinates

!The equilibrium condition is equivalent to the force balance condition, if the plasma inertia term is neg-
ligible with respect to the pressure gradient force:

Vp>>pv-Vv:>\/5>>v,
P

which means that the plasma flow must be much smaller than the speed of sound. This is usually assumed to
hold, (White, 2013, Zohm, 2014), but this assumption is not always valid, e.g. see (Guazzotto and Betti, 2005,
McClements and Hole, 2010) and references within.

2For typical Tokamak plasmas, the gravitational force is at least 10 orders of magnitude smaller than the
Lorentz force and can safely be neglected (J. P. Goedbloed, 2008).

3That g must be a flux function is a consequence of axisymmetry and eq. 2.27 and eq. 2.28, which require
that Ogg = 0, 1.
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Efficient Grad-Shafranov solvers that reconstruct the equilibrium by minimizing the er-
ror between the calculated flux, pressure and current profiles and the field measurements date
back more than 30 years (Hutchinson, 2005, Lao et al., 1985) and it can safely be assumed
that numerical approximations for ¢,(R, Z), g(v) and q(v) are readily available.

Reconstructing the Boozer Coordinates from solutions of the GS equation

Due to axisymmetry, the toroidal Boozer angle ( is related to ¢ through
(=¢—v(¥,0),
with v a yet to be determined function. Since
(Vi x V) - ¢ = (Vi x VO) - ¢,

the transformation ¢ — ( leaves the Jacobian invariant White (2013).

The solution of the Grad-Shafranov equation fully defines the magnetic field. The poloidal
components of the magnetic field can be calculated by taking the dot product of the con-
travariant representation

1 -
B:V@ZJXVH—V%XVszwaG—EV@bpxqﬁ—%prxVu

with the corresponding unit vectors, so that

1 0y
—_B-R=_—_—-_"2°
Br R R 0Z’
199,
Bz=B-2=1%r"

Similarly, the toroidal component can be calculated similarly by taking the dot product of gzg
with the covariant representation

B— %qﬁ—gvuuvemw,

so that
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Figure 2.5 Boozer Coordinates for an AUG equilibrium, shot 33147, at t=1.0

We are now ready to reconstruct the Boozer coordinates. On one hand we have

B.-VO=— =

where 7, = (V@bP - (VO x ng))il is the poloidal Jacobian. On the other, differentiation
along the magnetic field line is given by

B-V = B,d, + B,d,

where 9, is the derivative along the toroidal direction and 0, the derivative along the poloidal

direction. Applying the above operator to 6, we get
B-Vo= Bpalpﬁ,

or

1
0= dl
/ngp !

with the integration taking place along the poloidal cross section of the magnetic surface. In

Boozer coordinates, the poloidal Jacobian has the form

()

ﬂpzqﬂzq?,
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so that

1 B2
9 - q_h B—dlp,

p

The flux function h (1)) is determined by requirement that the angle coordinate 6 spans from

0 to 27 11
h = ——?g BQ/delp

C 2myq

thus, the toroidal current flux I can be calculated through

B*J = (I+g4gq)/q=1 = B*Jq—9q = h—ygq

Finally, the function v is given by the straight field line condition

B-V(
B-vg &

After substitution, we get
v gqd

90~ R2 q,
which determines v up to an added arbitrary flux function, which can be taken equal to zero.
The Boozer coordinates for an equilibrium in the ASDEX Upgrade tokamak are depicted in
fig. 2.5. The calculations where carried out using the GS solution calculated by the CLISTE
code (Carthy, 1999).



Chapter 3

Heating of ions by high frequency
electromagnetic waves in magnetized
plasmas.

In fusion type plasmas, electrostatic waves, like the lower hybrid wave, cannot access the
core of the plasma as easily as high harmonic fast waves or electron cyclotron waves; these
are primarily electromagnetic waves. As was established in Chapter 1, single waves can
exchange energy only with high energy ions. However, low energy particles may interact
with the envelope formed by the interference of two such waves, provided that the frequency
of the envelope is comparable to the gyrofrequency of the particles.

In this chapter, previous studies on heating of ions by two or more electrostatic waves
that propagate directly across the confining magnetic field are extended to electromagnetic
waves. The nonlinear wave-particle interaction is studied analytically using a two time-scale
canonical perturbation theory. The theory reveals the effects of various parameters on the
gain in energy by the ions — parameters such as the amplitudes and polarizations of the waves,
the ratio of the wave frequencies to the cyclotron frequency, the difference in the frequency

of the two waves, and the wave numbers associated with the waves.

3.1 Introduction

The interaction of electromagnetic waves with charged particles in magnetized plasmas man-
ifests itself in a variety of environments, such as space and astrophysical plasmas, particle
accelerators, and laboratory plasmas. Of particular interest are conditions in which net mo-

mentum or energy exchange takes place between the particles and the waves. In fusion plas-
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mas, externally launched electromagnetic waves are used to heat the plasma and to drive
plasma currents for enhanced confinement (Fisch, 1987, Kikuchi and Azumi, 2012). Con-
versely, in microwave sources the kinetic energy of energetic particles is transferred to waves
in order to generate and amplify electromagnetic radiation (Chu, 2004).

The interaction of a single electrostatic wave with ions in a uniform magnetic field has
been a paradigm for studying nonlinear wave-particle interactions (Fukuyama et al., 1977,
Karney, 1978, Karney and Bers, 1977, Lichtenberg and Liebermann, 1983, Smith and Kauf-
man, 1975, Taylor and Laing, 1975). We analyzed the non resonant case of this interaction
in Chapter 1. The wave incident on the ions was assumed to be of the lower hybrid type,
a quasi — electrostatic mode that propagates almost perpendicularly to the magnetic field,
whose wave frequency is typically a large multiplicand of the ion cyclotron frequency. The
tree regimes of weak, medium and strong wave particle interaction apply on particles that

satisfy the Cherenkov condition, i.e. particles with
vy R%J vpha

with v, being the phase velocity of the wave, so that there exist a lower energy threshold for
efficient wave particle interaction to take place. For typical plasma parameters, this means
that only the tail of a Maxwellian ion distribution function can be affected by a monochro-
matic non resonant lower hybrid wave. On the other hand, in case of resonance, i.e when
the wave frequency is an integer multiple of the ion cyclotron frequency, a “stochastic web”
is formed in the dynamical phase space of the ions and the energy threshold is significantly
lower (Benisti et al., 1997). Ions within the stochastic web can gain energy for small wave
amplitudes; however, the volume of phase space that is affected is limited, and the gain in
energy occurs over very long times (Benisti et al., 1997).

The aforementioned picture changes dramatically when ions interact with two non res-
onant electrostatic waves whose frequencies differ by an integer multiple (< 3) of the ion
cyclotron frequency, so that the beating envelope of the waves is in resonance with the un-
perturbed particle motion (Bénisti et al., 1998a.b, Ram et al., 1998, Spektor and Choueiri,
2004). The low energy ions, can interact with the beating envelope of the two waves and
through this interaction may gain sufficient energy so as to cross the Cherenkov threshold.
This interaction is nonlinear and, at least, of second order in the wave amplitudes. For elec-
trostatic waves propagating obliquely to the magnetic field, similar energy exchange takes
place provided that the wave numbers parallel to the magnetic field are equal for the two
waves (Strozzi et al., 2003).

Although the frequency of the envelope of waves does not have to be in exact resonance

with the ion cyclotron frequency, the acceptable tolerances are very small. In spite of the fact



3.2 The single particle Hamiltonian 35

that this remark has already been made in passing by other authors, (Bénisti et al., 1998a,
Strozzi et al.,2003), we believe not enough emphasis has been given on how strict limitations
this implies for realistic applications.

In previous studies, the stochhasticity threshold and the upper bound of the stochastic
region for beating electrostatic waves with equal (Benisti et al., 1997, Bénisti et al., 1998a,b,
Ram et al., 1998, Spektor and Choueiri, 2004) or almost equal (Jorns and Choueiri, 2013)
wavenumbers were estimated through the Chirikov criterion. The important question of
collective ion behaviour due to beating electrostatic waves was raised in (Jorns and Choueiri,
2011) and an attempt to tackle it was made by estimating ensemble averages of the energy
exchange. Due to the non linear character of the beat wave interaction, third or higher order
perturbation terms, which are challenging to calculate, are necessary for such an estimation.
In order to circumvent this difficulty, the authors modified expressions for the single wave
interaction, with the introduction of unknown pre-factors and scaling functions that they fit
to numerical data (Jorns and Choueiri, 2011, 2013). Although mathematically convenient,
these modifications do not have an clear physical meaning.

In this work we extend previous studies along two main directions. First, we consider
beating electromagnetic waves. This enables us to examine the effect of the polarization on
both single and collective ion dynamics, which can be significant. Second, we follow a novel
approach for studying the evolution of the ion velocity distribution function through func-
tional mapping equations. The effects of finite envelope phase velocity and finite deviation
from resonance, effects that had not been given enough attention before, are thoroughly stud-
ied. Finally, we estimate the stochasticity threshold following a different —more satisfying
in our opinion —approach, without applying the Chirikov criterion. Excellent agreement be-
tween numerical and analytical results is achieved, without the need of unknown prefactors
that need to be fitted to numerical results (Jorns and Choueiri, 2013).

3.2 The single particle Hamiltonian

Let us consider an ion of mass m and charge ¢ moving in a uniform magnetic field along the
z—direction and two X waves propagating along the x-direction, each having an electrostatic
component £, and an electromagnetic component E, . The frequencies of the two waves,
w; and w,, are assumed to be much larger than the gyrofrequency Q2 = ¢B,/m. The beat
frequency Aw = w; —ws is assumed to be equal or approximately equal to 2. Consequently,
there exists a second order resonance between the unperturbed motion and the envelope

formed by the waves, leading to energy transfer from the waves to the ions. The time scale
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separation due to the fact that the carrier frequencies are much larger than any other frequency
involved, i.e. w; > @ and w; > Aw will be a central point of our analysis.

The ellipticity of the wave polarization « is given by

E

x

Ey

5 3.1

i
«
and is assumed to be the same for both waves. This assumption requires that

g—zAw < .

This condition is mode dependent and should be checked a posteriori.
For convenience, let us normalize the physical quantities with respect to characteristic
scales, just as we did in sec. 1.1 :

e Time is normalized to 1

ky + ko
2

~1
lengths to kyt = ( ) , k; being the wave vectors of each wave,

. Q
¢ velocities to —,
0

ms
* momenta to ——,
0

QQ

* and energies to 2
0

Adopting the Wheyl gauge @ = 0, the electromagnetic field is described solely by the
vector potential

where

stands for the uniform magnetostatic field along the 2 axis and A for the electromagnetic
waves. We take A to correspond to two elliptically polarized electromagnetic waves prop-
agating perpendicularly to the magnetic field, along the X axis. The wave fields have an
electrostatic component A | g along X an electromangetic component A | ;o5 Perpendic-
ular to A, | pg- The electrostatic component is given by

E,

1 . 1 _ -
Alps = - w—lexp [i (kyx —wyt)] + o exp [i (kox —wyt)]| X + cc.  (3.3)
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where c.c. denotes the complex conjugate of the preceding expression. The ellipticity of the

polarization « determines the electromagnetic component of the waves:

or
By |1 : 1 : -
Ayl =ia— | —expli(kyz —wit)] + —expli(kyx —wot)]| ¥ + cc.  (3.5)
2 |wy Wy

The Hamiltonian of the particle in the presence of the vector potential A is

2
H = %(p—qu—qu) (3.6)

For A, = 0, this is equal to the Hamiltonian for the motion in this uniform magnetic field:

1 2
H, = om [pi + (p, — ¢By) ] ) (3.7

or, in normalized units
L1, 2
Hy = 5 [px + [p, — ] } 7 (3.8)

We will refer to H, as the unperturbed Hamiltonian and the corresponding motion of the ion

as the unperturbed motion. The full Hamiltonian is

1 1 1 ;
H =5 |:pm +€ (— cos(py) + — cos(¢2)>}
41 Va (3.9

2
1 . 1 .
+ 3 |:py — T+ o€ <— sin(¢y) + — Sm(%))} ;
Sl Vy
where
rk; = k;/kg
are the normalized wavenumbers,

are the normalized wave frequencies,
G = KiDy + Ripsing — vt

are the phases of the waves at the partilce location, with

p=1/2n
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the Larmor radius of the ion and

e = kogEqy/(mQ?)

the effective perturbation strength, which will later serve as an ordering parameter.

Before applying any canonical perturbation technique to analyze the particle dynamics,
we need to express the Hamiltonian in the Action Angle variables of the unperturbed gyro-
motion, i.e. the guiding centre variables [(1, 11), (Y, pg)] ,Jusing the generating function of

eq. 1.1
1
G, (z,y,p,,v) = xp, + 3 (z —pg)2 cot . (3.10)

The old phase space variables are related to the guiding centre variables as follows

Dy = \/ﬂcosdj

T =p,++/2psiny
Y=y, +/2usiny
Py = Dy

where the Action of the unperturbed motion . is the magnetic moment of the ion.

In guiding center coordinates, the single particle Hamiltonian H, = hy+h;+h,, ordered
in powers of ¢, takes the following form:

ho =i, (3.11)
1 1 . 1 . 1.
h, =epcos (— cos ¢ + — cos <;52> —aepsiny (— sin¢; + — sin gz52> , (3.12)
" V2 n V2
1,(1 1 S 1 1 ?
h, :562 (V_1 cos ¢y + A cos ¢2) + §a262 (1/_1 sin ¢y + p sin qb2> : (3.13)

Note that the canonical position y,,, the y coordinate of the gyrocenter, does not appear in the
Hamiltonian. Therefore, its conjugate momentum p is a constant of the motion. The only
effect p, has on the dynamics is to add a constant phase shift ¢ to the phases of the waves ¢,
as seen by the particle. From now on, in order to simplify the notation, we replace p, by the
phase shift 6.
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For the purpose of perturbation analysis, it is useful to express the perturbations ~; and

hq as Fourier series in 1. For the first order perturbation we have
hy, =e ilra0vat) L (1 +a)d, g (kip) + (1 =) Ty yq (1)) €™

[(1 + Oé) Jn—l (H2p) + (1 - a) Jn+1 (/{,2p>] einw

+c.c., (3.14)

and for the second order perturbation

e (1—a?) . 3 > .
8—1/%61(2n19 2u,t) Z Jn (2/‘431[)) e”“/’

n=—oo
2(1—-a?) ., > .
€ (8V2a )61(2/@29721/215) Z Jn (2/12,0) eznd)
2

n=—oo

hzz

_|_

e (1+a?) . o0 ,
1(ArO—Avt) E J (A iny
* dv v, ¢ n=oo n (Bpe
2 2 00
(l-a )ei(2m00—2ut) } : I, (2Kop) €Y

n=—oo

* 4v v,

+ c.c., (3.15)

where J,, is the Bessel function of the first kind of rank n, v is the carrier frequency (v, +

V)2, AV = vy — 1y, Ak = Ky — Ky, and Ky = (K1 + Kq) /2.

3.3 Oscillation Center Dynamics

Two distinct time scales can be immediately identified in the beat envelope interaction. The
fast wave frequencies on one hand and the slow gyrofrequency, which is comparable to the
slow beat envelope frequency on the other. The simultaneous presence of these timescales
implies that, for small enough perturbation amplitudes, it should be meaningful to separate
the perturbed motion in a similar manner. Conceptually, we expect the particle to perform a
fast oscillating motion, due to the linear interaction with each wave independently, superim-
posed on a much slower drift of some oscillation center,due to the slow nonlinear interaction
with the beat envelope. This is confirmed by the Poincare plot of fig. 3.1, of which more
later.

Instead of rushing to give a precise definition of the fast and slow motions and then

struggle to find the appropriate equations to describe them, we can delegate both actions to
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our perturbation scheme. To accomplish this, we seek to approximate a canonical transform
operator 1" which maps the original phase space to a new phase space where the new Hamil-
tonian K includes only slowly varying terms. Following the steps we took in Chapter 1 we
will apply Deprit’s perturbation method (Cary, 1981, Deprit, 1969, Lichtenberg and Lieber-
mann, 1983) to determine 7" up to second order in €. All terms absorbed in I’ are attributed
to the fast motion. The oscillation center motion is defined as motion dictated by the new

Hamiltonian K, which we will appropriately call oscillation center Hamiltonian.

3.3.1 Approximating the second order Invariant

The perturbation scheme applied here differs from the one we used in Chapter 1 in two as-
pects. First, the resonances with the envelope create extra secular terms, which must be taken
into account. Second, in keeping with the spirit of a similar analysis on the ponderomotive
force from the non resonant envelope of an electromagnetic wavepacket (Cary and Kauf-
man, 1981), we chose to integrate all Liouville equations that arise on a semi—infinite, rather
than an infinite domain. This choice is dictated by our resolution to look for a perturbation
scheme that explicitly separates the timescales. Explicit time dependence in the constructed
canonical transform will account for the fast linear oscillations around the oscillation center
due to each of the waves independently.

Let us begin by considering some yet to be defined operator 7' which maps a phase space
point 2 in the original phase space to a point Z in a new phase space

7 = T=. (3.16)

T is determined by a generating function w = wg + w, + w,, where w, is of order ¢’
(¢ = 0,1, 2). The leading term w, is the generator of the identity transformation. Since w
depends on time, the evolution of Z is governed by a new Hamiltonian K which, to second
orderine,is K = K, + K| + K, with

K, = hy (3.17)
ow,
170 1
K2:h2+§ %4‘{@”2:%} +§{w17h1+K1}' (3.19)

Again, we try to choose w; and w, so that K is as simple as possible; Ideally we would like
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The first order generating function w, satisfies the inhomogeneous Liouville equation

0
aﬂh +{wy, ho} = Ky —hy, (3.20)
with solution .
wy = / dr Sgt (t,7) g(T), (3.21)
t

0
where S, is the evolution operator for the unperturbed Hamiltonian, and g = K| — h; is the
right hand side of Eq. (3.20). In other words, we integrate g along the unperturbed orbits
given by h. Since h, is time independent and S, (¢, 7) maps ¢ — ¥+ (¢t — 7), the evolution
operator can be written as S ! (¢,7) = S, (7 —t). We choose K; = 0 and, assuming that

the wave fields are turned on adiabatically, set ¢, = —o0, so that
0
w; = —/ dr Sy (1) hy (T+1), (3.22)
or
e P S (10T (p) + (L= )Ty (10)
! vy — n—u,
i pitmat-vat) £ N Ly (K0) + (L= s (K2P) jny  (B.23)

/n/_]/2

4 c.c.

The denominators appearing in the terms above are not singular, since we have assumed that

v;’s are not integers.

The Liouville equation for w,, is

0

g2t {wa, hot = 2(K5 — hy) —{wy, hy} (3.24)
The Poisson bracket between w; and h; contains terms with frequencies equal to the beating
frequency of the two waves. These secular terms remain constant along the unperturbed
orbits and their integral would diverge, unless they are absorbed into K,, which we must

choose in such way that it cancels them out. Thus,

1
K, = <h2 +5 {wy, h1}>0, (3.25)
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where ()0 denotes averaging along the unperturbed orbits. Then Eq. (3.24) becomes

0
2 +{wq, hot = (—2hy —{wy, 1y}, (3.26)
where ()1 denotes the oscillating part of the enclosed expression. We solve Eq. (3.26)
using the same procedure used for solving Eq. (3.20).

The new Hamiltonian K up to second order in € is
K = p+ Ky (¥, ), (3.27)
where K, has the form
Ky = Koo (p) + Ky (p)expli(v— 1)) +cc.. (3.28)

The expressions for K ; and K,  are lengthy and do not elucidate any physics. The only
practical way of calculating them is by means of a symbolic computation package. No insight
could be possibly gained by viewing them in print form —the author never attempted to do
so —hence, they are not included in this thesis. We can eliminate the time dependence by
setting 1) = 1) — t, obtaining:

K=¢e[Kyo(p)+ Ky (m)exp[i (¢)]] +cec. (3.29)

K is independent of time and, to order €2, a constant of the motion.

The perturbation scheme yields a separation of timescales into fast and slow occurs
through T and K, respectively. The canonical transform 7" applied to K,

J=TK, (3.30)

provides a fuzzy quasi constant of motion in the original phase space variables. By construc-
tion, 1" is a time dependent near identity canonical transformation to the new phase space
variables, which accounts for the fast motion due to the off-resonant carrier frequency of the
waves. Consequently, the old and the new canonical variables can be said to oscillate around
one another. Since the time evolution of the new phase space, governed by the Hamiltonian
K, is by construction slow, the old phase space variables z can be thought as performing fast
small amplitude oscillations around the slow phase space variables Z. The new phase space
is the oscillation centre phase space and the Hamiltonian K the oscillation centre Hamilto-

nian that describes the averaged slow evolution of the oscillation centre of an ion.
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For small enough perturbation amplitudes, K provides an accurate description of the
overall dynamics of ions. This applies for moderate amplitudes as well, provided that the
particle does not cross the Cherenkov threshold. Since K is a function of x and 1), we
can plot contours of constant K in the two-dimensional ;. — ) phase space. These curves
represent the orbits of the oscillation centers of the ions. They interpolate smoothly the traces
left by the complete orbits on the Poincare surface j — 1) for t = 2nm. Figure 3.1 shows
the contours of constant K superimposed on the Poincaré surface-of-section obtained from
numerical integration of the equations of motion. The surface-of-section points almost lie
along the contour lines; the difference is due to small oscillations of the ions around their

oscillation centers.

-3 -2 -1 0 1 2 3

Figure 3.1 Contour plot (solid lines) for ¢ = 0.3, & = 2, v = 10.123 and dx = 0.0436 and the
corresponding Poincare plot (dots). Particles with low initial energy follow the oscillation center
curves and are coherently energized up to p & 8.5, where a separatrix is located. There are also
particles trapped around the elliptical points. The amplitude of the fast oscillations becomes large
near the separatrix, giving the false impression of chaotic motion.

The dynamics depicted in Fig. 3.1 is representative of a class of interactions with sim-
ilar patterns, which occur for a wide range of wave parameters and will be referred to as
favourable interaction. When favourable interaction takes place, practically all of the low
energy phase space is significantly affected by the beat wave. A common characteristic is
the appearance of one or more elliptical, around which form islands that extend from p ~ 0
up to a separatrix, which lies near p ~ v. Low energy particles can thus be coherently

energized to energies close to the Cerenkov energy threshold. If, as is assumed in similar
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studies (Jorns and Choueiri, 2011), the bulk of the initial distribution function of the ions is
located at the phase space area with small values of p, phase mixing effects will lead to a net
energy exchange and the distribution function will spread significantly across phase space.
Although the Poincare plot in Fig. 3.1 appears fuzzy, the motion of the particles is coherent.
The apparent fuzziness in the orbits, which is more pronounced near the separatrix, is due to
the fast oscillations around the oscillation centre. If the amplitude of the perturbation is large
enough, ions which happen to have been gained energy near the Cerenkov energy threshold,
may cross the separatrix and be stochastically energized to even higher energies. The onset

of chaotic motion of ions will be discussed in section 3.5 below.

We shall refer to those cases where only the high energy tail of the distribution function is
affected as unfavourable cases(see Fig. 3.3a)). In such cases the interaction is qualitatively

similar to the single wave interaction studied in Chapter 1.

3.3.2 The effect of the envelope phase velocity on the energy exchange

The envelope phase velocity dv/Jk plays a significant role in the qualitative behaviour of the
ion dynamics, as can be seen in Fig. 3.3. In general, when the envelope phase velocity is in
the opposite direction of the wave phase velocity the interaction is unfavourable; a velocity
threshold for ion energisation is introduced as in the case of ion interaction with a single wave
and most of the low energy phase space is only slightly affected by the presence of waves,
as in Fig. 3.3 a). On the other hand, a large positive envelope phase velocity leads to strong
energization of the low energy ions, but there are still particles that are trapped around an
elliptic point that appears in the middle of the low energy phase space (Fig. 3.3 b)). This is
similar to the phase space structure that emerges for infinite envelope phase velocity (Ak =
0) that has been regarded as representative of all beat wave interactions in previous studies
(Jorns and Choueiri, 2011, Spektor and Choueiri, 2004). The strongest energy exchange
takes place when the envelope phase velocity is approximately equal to the wave phase
velocity (Fig. 3.3 ¢)); the envelope is propagating at the same speed as the carrier wave and
there are no trapped particles. Similar behaviour has been observed for beating electrostatic

waves (Ram et al., 1998) as well as localized electrostatic wave packets (Kominis et al.,
2012).

Envelope phase velocity that is opposite to carrier phase velocity is not unrealistic. For
example, lower hybrid beating waves with fixed k| fall under this category, and thus cannot

transfer significant energy to low energy ions. This is because the envelope phase velocity



3.3 Oscillation Center Dynamics 45

_2}

_3}

Vg Vpn

_5}

—6}

20 40 60 80 100

k. /Ky

Figure 3.2 The relation between v, and vy, when Ak = 0.

is determined by the cold plasma dispersion relation, which, in the lower hybrid range, is

kﬁ m.
BESEAAS 1+?# (3.31)
were
w2
2 B (3.32)

B PN
is the lower hybrid frequency, when w; > €.

According to eq. 3.31, the wave vector is indeed almost perpendicular to the magnetic
field, while the group velocity is almost parallel to the magnetic field (Brambilla, 1998). It
is not unusual for £ to be fixed by some external condition, e.g. an antenna (Porkolab et al.,
2012), so that Ak;H — 0. Then

Ow\ "

and the perpendicular envelope group velocity v, = Ak /Aw is related to the perpendicular

k2
vy A —Ug, (—Lme + 1) : (3.34)

kﬁ m,

phase velocity vy, via

so that the envelope phase velocity is comparable in magnitude and opposite in sing with the
carrier phase frequency fig. 3.2. This falls under the domain of unfavourable energization,
depicted in Fig. 3.3 a).
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Figure 3.3 The effect of the envelope phase velocity on the topology of the phase space. Contour plots
(solid lines) and Poincare surfaces (dots). a) the envelope phase velocity is in opposite direction to the
phase velocity (e = 0.3, « = 2, v = 10.123 and §x = —0.0436). The low energy particles cannot
exchange energy with the waves. b)the envelope phase velocity is 2.25 times the phase velocity
(e =03, =2,v =10.123 and 6x = 0.0436).The interaction is strong but there are still particles
trapped around the elliptic point. c) the envelope phase velocity is almost equal to the phase velocity
(e =03, =2,v =10.123 and 6x = 0.0861). More particle orbits get squeezed near the separatrix.
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3.3.3 Detuning Tolerance
Suppose there is a mismatch § between the beat frequency and the gyrofrequency, so that
ov=1+9.
Then, the new Hamiltonian K takes on the form!
K = p+4 e [Kyg (1, 0) + Ky (1, 6)expli (v — (1+6)t)]] + c.c.. (3.35)
If we now eliminate the time dependence by setting 1) = (1+0)t, we get
K=—6u+¢é [ Ky (1:6) + Ky q (1, 0) exp [i (@)H +c.c. (3.36)

For large enough values of ¢, the term —d . dominates and  is approximately a constant of
motion. In this context, we could have made the choice K, = 0 in the first place, without

violating the perturbation ordering.

For small values of §, where the interaction is expected to be significant, we have

Ky, s Ky §=0 "
The most prominent difference with exact resonance is the appearance of the leading term
—&. Since this term is a function of 1 and independent of 1), it eventually dominates for
large enough values of p, i.e. for large enough energies. Given that, K, is a bounded func-
tion, while 6iu = 6p?/2 is not, the detuning restricts the phase space region over which
islands can appear. An interaction that is favourable, when the envelope is in exact reso-
nance with the unperturbed particle motion easily be rendered unfavourable by introducing a
small detuning, if the detuning term dominates for energies smaller or equal to the Cerenkov
energy threshold.

As a consequence, the maximum detuning tolerance scales as

—2
5t01 ~ UV .

Obviously, the scaling constant is a function of the beat phase velocity and the ellipticity of

the wave polarization «, but rigorously calculating it would be a formidable task.

'For 6 = 0, secular terms appear on the right hand side of eq. 3.26, whose integrals along the unperturbed
orbits diverge. These terms need to be cancelled out by K. For & # 0, these terms are no longer constant
along the unperturbed orbits, but they still need to be cancelled out by K. This is because their integrals,
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Figure 3.4 The effect of the detuning on the topology of the phase space. Contour plots for ¢ = 0.3,
a = 2,0k = 0.0436 and different values of the carrier frequency and the detuning. a) For v = 10.123,
and 6 = 8-107% the detuning has little or no effect. b) When the detuning is increased to § = 3-1074,
the energization of the low energy particles is destroyed. Similar results are obtained by increasing the
carrier frequency: ¢) § = 8-107% and v = 19.723 some of the low energy particles are trapped while
others can still access the p ~ v separatrix. d) A small increase in carrier frequency v = 20.123 leads
to the appearance of an extra separatrix, that prevents the energization of the low energy particles.

The contour plots depicted in Fig. 3.4 are indicative of the effect of detuning on the
topology of phase space. Cases a) and b) demonstrate interaction destruction by means
of dominance of the leading detuning term. For v &~ 10, the detuning tolerance is empir-
ically estimated to be &,; ~ 10~*. When J exceeds this value, the interaction becomes
unfavourable.

Based on the scaling law, the detuning tolerance when the carrier frequency doubles
should be approximately equal to 2.5 - 10~°. However, the scaling law overestimates the
detuning tolerance, since dominance of the leading term at the Cerenkov level is not the
only way the detuning can destroy the wave envelope interaction. This is also achieved
though the structural dependence of K, on the detuning 9, as demonstrated in fig. (3.4c) and

although finite, are proportional to 1. Including them in w,, for small values of &, would imply violating
the perturbation ordering.
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fig. (3.4d), for which v ~ 20 and § = 8 - 1079, safely within the predicted tolerance limits.
For v = 19.723 (Fig. (3.4c)) ions with very small initial energies can still be energized up
to p ~ v. But, for v = 20.123, as shown in Fig. (3.4d), the energy gain by the ions is quite

limited as an extra separatrix appears in the low energy domain of phase space.

To get a feeling of the effect of these tolerances for realistic problems, we should com-
pare 0,,; with the detuning experienced in a single gyration, due to the slow gyrocenter mo-
tion though areas of varying magnetic field amplitude inside a tokamak. The total detuning
experienced over a bounce period is

AB r
S ~ —— ~ —, (3.37)
B bounce R
where 7 is the minor radius and R the major radius of the tokamak. The total detuning
experienced over a single gyration is therefore

b ~ 520, (3.38)

c

and, in order for the assumed time scale separation to hold, it must be much smaller than the

detuning tolerance, i.e. it is required that
0, <K Oy

However, for typical tokamak plasmas (see tab. 1.1) we have

b 103

C
and the aspect ratio is typically of the order

r
— ~ 1071,
R
so that
5C lad 1074 ~ 5t01'

It follows that the detuning experienced over a single period is typically comparable to — or
even larger than — the typical detuning tolerance for the beating interaction to be effective.
Most particles in a tokamak will quickly drift away from resonance before they can interact

with the beat envelope.
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3.4 Distribution function evolution

So far we have used the oscillation center Hamiltonian K to extract information about the
qualitative features of the beat envelope interaction and in particular whether the interaction
favourable or not. In this section we calculate the time evolution of the ion distribution
function under the influence of the beat waves.

Let us begin by considering a generic Hamiltonian H, whose exact evolution operator
cannot be easily calculated. Suppose additionally that it is possible to construct an approxi-
mate canonical transformation 7" (¢, t,) to a new phase space Z = T z, which is governed by
the simpler Hamiltonian K, whose related evolution operator Sy is easy to calculate. The
distribution function g of the new phase space is related to the distribution function f of the

old phase space by

The time evolution of g is given by

g(z,t) = SEt,tg) gz, o). (3.40)

Therefore,
flzt) = T(t,tg) Sg'(t,tg) T (tg,tg) f(z,tg). (341)

For our purposes the formula above is not very useful as it is. Even though K is simpler
than H, it is still much too complicated for us to determine Sy in closed form. We can
bypass this difficulty by integrating on a finite time domain of length At (Kominis et al.,
2010). Then, for small enough At, the integrals do not diverge and no terms need to be
absorbed by K. We can now choose K = hy and S = S;. The canonical transform
T is accurate to the same order as At. This means that, in general, the evolution of the

distribution function needs to be calculated iteratively,
f(z,2At) = T (2At, At) St (2At, At) T (At,0) St (AL 0) f(2,0),  (3.42)

where we have assumed that 7" (¢, t) is the identity operator. In principle, this is equivalent
to
f(z,2At) = T (2At,0) SE! (2At,0) f(2,0), (343)

but not quite so, since 7" is only evaluated approximately. Moreover, if 2At is outside the
accuracy limits, the second form fails to give any correct result. However, one can sim-
plify eq. 3.42, provided that the following assumptions hold: (1) K is time independent.
Therefore, Si' (t + At,t) = Sg(—At). (2) The nonsecular terms of the generator of
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Figure 3.5 Mapping (solid line) and simulation (crosses) of the average energy evolution for one
unfavourable and one favourable case corresponding to the parameters of Fig. 3.3 a) and b). a) Un-
favourable energization. There is a small oscillation in the average energy due to the elliptical point
in the low energy domain of the phase space. b) The energy peaks and then relaxes at a constant value
due to phase mixing.
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T commute with the secular ones up to the same order in which 7' is calculated. Then
T ~ Tonsec Tsee = Tioe Thonsec- In this case, and if both Eq. 3.42 and Eq. 3.43 hold, we
have:

T (2At, At) Sp (—At) T (At,0) = T (2At,0) Sy (—A) (3.44)

Obviously, T,

wec Tequires At to be small, but 7, ... does not. So, under the aforementioned

assumptions we have

Tscc(ZAtv At) Tnonsec(QAt7 At) SK<_At) Tnonsec(Atﬂ O) Tscc(Atv 0) =
Tsec(QAt7 At) Tnonsec<2At7 0) SK<_At) Tsec<At7 O) =

Tnonsec(QAtv 0) Tsec(2At7 At) SK(_At) Tsec<At’ 0)
That is, only T, has to be applied iteratively, while the contribution from the nonsecular
terms is given by one single mapping which is commuted to the right hand side of the ex-

pression. By induction, when the calculation of the evolution over greater time intervals is

to be carried out, 7, ... can be commuted all the way to the right and applied only once, so
that
f (Za NAt) = Tnonsec(NAt7 O) Ssec:(NAtv O)f ('27 O) ’ (345)
with
S (NAL,0) = T, o (NAL, (N — 1) At) S (—AL) ... T, .. (AL, 0)S (—At).  (3.46)

We have tested this mapping by applying it to an initial distribution function of the form
finie = sech(2u) and letting it evolve under the influence of beat waves with the same
parameters as the ones we have used in fig. 3.3. The results are depicted in Fig. 3.5. The
first subfigure corresponds to the unfavourable case of fig. 3.3a). By choice, almost all of
the particles are initially located at the area around p a~ 0, where an elliptic point exists.
As expected from the phase space structure and verified by Fig. 3.5a), no significant energy
transfer to the particles takes place. The results of the mapping fit perfectly those obtained
by numerically integrating particle orbits.

The favourable case, fig. 3.5b) is much more interesting for various reasons. The par-
ticles that are initially located near p ~ 0 move along the lines dictated by the oscillation
centre Hamiltonian, acquiring significant amounts of energy. At Qt ~ 6 - 10* the average
energy peaks, since most of the particles are to be found near the separatrix at this time. As
can be seen in Fig. 3.3b), the 2nd order oscillation centre Hamiltonian fails to accurately
describe the motion near the separatrix. A separatrix does indeed exist, its average height

being the same as the one predicted by the 2nd order Hamiltonian, but its shape is curled due
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Figure 3.6 Average energy vs time for 7 different xmode IC waves spanning the range from v = 5.123
to 18.470. The time needed for the energy to reach the maximum increases with increasing carrier
frequency. For high frequencies the detuning comes into play, impeding the energization of the ions.

to fourth order effects. Due to phase mixing effects, the average energy relaxes at a constant
value which is about half the maximum value, but still about 20 times higher than the origi-
nal one. The application of the evolution mapping reproduces qualitatively the same picture
as the one described above, but fails to accurately predict the phase mixing effect. This is in
part due to the limitation of the second order analysis near the separatrix. However, the peak
time, the peak value, the relaxation time, as well as the relaxation value are all calculated
with good precision. The accuracy of the mapping is not limited only by higher order ef-
fects. As with any scheme that cannot account for mixing, the roughness of the distribution

increases with time and eventually the mapping becomes unstable.

Finally, we have studied the evolution of the ion distribution function under the influ-
ence of beating X— mode ion cyclotron (IC) waves, which satisfy the cold plasma dispersion
relation (Stix, 1992). We choose a deuterium plasma with n, ~ 10'%cm™3 and B ~ 4T.
We choose 7 different carrier frequencies spanning the range from v = 5.123 to 18.470. We
also assume a detuning § = 8 - 107 in all cases. Meaningful comparisons require that the
same normalization is used in all cases, so we have kept the normalisation that corresponds
to the wave vector of the carrier with the lowest frequency. We have also scaled the effective

perturbation amplitude ¢, so that the amplitude of the electric field is equal in all cases. As
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depicted in Fig. 3.6, the time needed for the energy to reach the maximum increases with
increasing carrier frequency. For high frequencies the detuning comes into play, impeding

the energization of the ions.

3.5 Onset of chaotic behaviour

We have demonstrated that the oscillation centre Hamiltonian is very efficient in reproducing
the slow motion of the oscillation centre of the particle. This applies when the perturbation
amplitude is sufficiently small, so that the perturbation scheme is well ordered and the pertur-
bation analysis holds. However, as it is typical for dynamical systems, when the perturbation
amplitude increases, the topology of the phase space changes, as parts of it become chaotic
and it becomes possible for particles to orbit through previously separated phase space re-
gions.

Onset of chaotic behaviour under the interaction with a single non resonant electrostatic
wave was reviewed in Chapter 1. Karney et al.(Karney, 1978, Karney and Bers, 1977) have
shown that chaotic motion takes place in the region above p,,,;,, & v —+/€,  and € being the
normalised frequency and the normalised amplitude of the wave respectively. The mecha-
nism that gives rise to chaotic motion is the overlapping of the first order islands that appear
in this region and become broader with increasing €. For Larmor radii near p,,,;,, the min-
imum required wave amplitude for stochastic motion scales like € ~ v2/3. This is closely
related to particle trapping by an electrostatic wave in the absence of a magnetic field, which
takes place near p = v. Karney’s criterion suggests that for stochastic motion to take place,
the particle should stay in the trapping region for at least one trapping bounce period, which
is equivalent to the Cerenkov condition. The chaotic region is also bounded from above. For
amplitudes much larger than the threshold value, the upper boundary scales like p,,, ~ €2/3.

The case of a single near— or on—resonance electrostatic wave is qualitatively different.
Due to intrinsic degeneracy, the first order islands appear in all or almost in all the phase
space, depending on whether there is exact or approximate resonance, no matter how small
the perturbation amplitude is. The chaotic motion is not due to resonance overlap between
the first order islands, but a result of resonance overlap between the higher order islands that
emerge in between the first order ones(Fukuyama et al., 1977). The energy threshold for
chaotic motion is significantly lower than the Cerenkov energy threshold that applies to the
non resonant interaction (Benisti et al., 1997).

The beating wave motion differs from the cases discussed above in the sense that there is
aresonance between the intrinsically degenerate unperturbed Hamiltonian and the second or-

der interaction. Therefore, somewhat counter intuitively, for small perturbation amplitudes
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Figure 3.7 Oscillation centre phase space plots and Poincare plots for o = 0.8, v = 5.123, 0k =
0.0861, § = 0 and different perturbation values. a) ¢ = 0.3 and the motion is coherent. b)e = 0.35
and stochastic diffusion through the separatrix boundary takes place.
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Figure 3.8 Contour plot for & = 0.8, v = 5.123 and 6« = 0.0861. The separatrix S acts as a barrier
for the coherent energization of low energy particles. For sufficiently strong perturbation amplitudes
though, the particles can cross the barrier by stochastically diffusing from the lower island L, to the
upper island U and into the chaotic region.
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the particle motion is governed by the second order oscillation centre Hamiltonian, while
the first order interaction is negligible. As the perturbation amplitude increases, the fast first
order oscillatory motion kicks in, rendering the oscillation centre Hamiltonian less accurate
and destroying the second order invariants, giving rise to chaotic behaviour. In a recent pa-
per, Jorns and Choueiri (Jorns and Choueiri, 2013) analyse the stochastic motion under the
influence of beating electrostatic wave. Their analysis is based on the conjecture that the
stochasticity criterion has a functional form given by { K,, 1} times an unknown prefactor,
which they fit to numerical data. In this section we give an alternative interpretation. We
argue that the origin of sotcastization has a simple physical explanation, namely separatrix

crossing due to the fast first order oscillations around the oscillation centre.

In favourable cases, particles with very small Larmor radii can be energized up to ener-
gies close to the Cerenkov threshold p ~ v, where a separatrix lies, blocking the passage to
higher energy areas of the phase space. In the area above the separatrix there is a web struc-
ture of a multitude of oscillation centre islands. For large enough perturbation amplitudes,
these islands can be destroyed, forming a chaotic sea in the area above the separatrix (see
Fig. 3.7). Particles whose oscillation center orbit passes near the separatrix can also access
the chaotic sea. This is demonstrated in Fig. 3.7, where a small increase in the perturbation
amplitude gives rise to a transition from coherent to stochastic motion. For favourable beat

wave interactions, there is no minimum energy threshold for chaotic motion.

For an orbit to become chaotic, two conditions must be satisfied. First, the oscillation
centre orbit must bring it to energies close to the Cerenkov energy threshold. Second, the
amplitude of the first order oscillations must be large enough for the particle to overcome
the Cerenkov energy threshold so that it can efficiently exchange energy with each wave
separately. When the fast oscillations near the separatrix are violent enough, the perturbation
scheme fails and the distinction between oscillation centre motion and oscillatory motion is
no longer possible. Obviously, there must be a minimum beat wave amplitude for which

separatrix crossing may occur.

A quantitative criterion for the minimum beat wave amplitude can be constructed, if one
allows oneself to be creative. We postulate that the factor that determines whether or not the
particle orbit remains bound to the oscillation centre orbit lies is the relation of the oscillation
amplitude to the distance of the two elliptical points marked with L and U in Fig. 3.8, that are
located below and above the separatrix S respectively. Chaotic diffusion takes place when
the ratio of the fast oscillation amplitude to the resonance distance exceeds some minimum
value. Then, a particle whose oscillation centre moves around the lower island L, can be

picked up by the upper island U and cross into the chaotic sea region.



58 Heating of ions by high frequency electromagnetic waves in magnetized plasmas.

0.55 T . T . . : ;

0.5

0.45

th

0.35

0.3

0.25

0-2 1 1 1 1 1 1 1
-2 -15 -1 -0.5 0 0.5 1 1.5 2

0.8 T T ' . .

0.751 X

0.7

0.65+ +

thos

0.55r

T
L

0.5

0.45+ i

-2 -15 -1 -0.5 0 0.5 1 1.5 2
o
Figure 3.9 Threshold values for the perturbation amplitude required for stochastic diffusion into the
chaotic sea as a function of the polarization parameter « for éx = 0.0861 and 6 = 0. a) v = 5.123,

b)r = 10.123. The analytical results (solid lines), show remarkable agreement with the numerical
experiments (Crosses).



3.5 Onset of chaotic behaviour 59

A reasonable measure for the intensity of the fast oscillations at the oscillation centre
area between the two resonance points L and U is the rms fast oscillation amplitude with

respect to time, averaged over ¢,

{0 = (w10} )y, - (3.47)

Let us also define the index of stochasticity I as the ratio

A}

= , (3.48)
A,OL,U

st

where { p}rmS is calculated at the separatrix level, which is approximately the mid level be-

tween the resonances,
_ PutrL

pm 2

Numerical analysis for various values of € and the rest of the parameters the same as

in Fig. 3.7 indicate that stochastic diffusion takes place for I, > 0.0862. From this we
can compute the corresponding minimum perturbation amplitude €;;,. If our postulate is
valid, the same value of I, must successfully determine the amplitude threshold for other
wave parameters. This is indeed the case. Results obtained for various parameter values are
depicted in Fig. 3.9 and show very good agreement with those obtained from simulations.

The chaotic region does not extend to infinity but it has an upper boundary at p = p,..-
Although it is difficult to give a simple analytic calculation of its numerical value, we can
instead derive the power law with which p_,, scales as a function of €. The same mechanism
as before applies here, i.e. separatrix crossing becomes possible, when the fast oscillation
amplitude is comparable to the island separation.

In general, island separation is approximately a constant function of p for large Larmor
radii. This should not come as surprise, because the island location is determined by the
local extrema of the oscillation center Hamiltonian K. K is composed of a series of terms
of the formJ,, (kp)J_,, .1 (kp) and we know that the Bessel function of the first kind behaves
asymptotically as (Abramowitz and Stegun, 1970)

_ 1 1
I, (2) ~ (2/72) 12 cos (z — 5T Zﬂ') : (3.49)
which means it has approximately evenly distributed extrema. The island separation should
be compared with the oscillating part of the Larmor radius {p}, which up to first order is
given by

{p} = {wy,p} ~ %. (3.50)
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Figure 3.10 The upper boundary of the stochastic region as a function of ¢ for three different values
of . Squares: Numerical results for o = 0. p,., goes as ¢2/3. Plus signs: Numerical results for
a = —0.5. p. goes as €*/3. Crosses: Numerical results for o = 2. Pmax 20€s as €2. Solid lines:
Fitted curves to the numerical data.

The way {p} scales for large values of p depends strongly on the ellipticity « and can be eas-
ily computed for the two limiting cases of a purely electrostatic beating wave with v = 0 or
a transverse one with a > 1. By inspection of Eq. (3.23), making use of the recurrence rela-
tions for the Bessel functions (Abramowitz and Stegun, 1970), it is seen that the numerators
that appear in the series that compose w, are proportional to ep~ /2] (k,p) in the former
case and ep'/? 3 (k,p) in the latter. Thus, by virtue of the asymptotic form of the Bessel
functions Eq. (3.49) and their derivatives (Abramowitz and Stegun, 1970), we expect the
oscillating part of the Larmor radius to behave asymptotically as

€

P~ —=75s (3.51)
0~
for « = 0 and
€
P ~ 75 (3.52)
) ~

fora > 1.

The stochasticity criterion requires {p} to be compared with the island separation, which
is approximately constant. This gives us a power law for the upper boundary of the stochastic
region of the form p,,. ~ €2/3 for electrostatic beating waves and p,,, ~ €2 for transverse
ones. Note that the former is of the same form as Karney’s result for the single wave interac-
tion. For intermediate values of a we expect the power law to take on values in the interval

[2/3,2]. This is confirmed by numerical simulations, the results of which are presented in
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Fig. 3.10 for three different values of the polarization ellipticitya. For « = —0.5 we get a

4/3 power law. Note that the square law turns up for ellipticity values as low as o = 2.

3.6 Conclusions.

In idealized uniformly magnetized plasmas, two high frequency electromagnetic waves can
effectively heat low energy ions, when the frequency difference between the two waves is
close to the ion cyclotron frequency. For small amplitude waves, low energy ions can gain
energy through coherent motion provided the envelope propagates in the same direction
as the phase velocity of each of the waves. However, if the envelope propagation is in
opposite direction to the single wave propagation, which is the case for e.g. low hybrid waves
with fixed parallel wavelengths, the energy gain is limited. For adequately high amplitudes
of the waves, ions that acquire velocities close to the Cerenkov velocity, can access the
chaotic region of the dynamical phase space where they extract much higher energies from
the waves.

The conditions for efficient energy exchange between waves and ions have been deter-
mined by means Deprit’s perturbation theory (see Chapter 1). The amplitude threshold for
the onset of chaotic motion has also been determined semi-analytically, along with a scaling
law for the maximum energy that can be acquired though beat envelope interaction. The va-
lidity of our calculations has been confirmed by comparison with simulations of the complete

dynamical equations.






Chapter 4

Orbital Spectrum Analysis of
Non-Axisymmetric Perturbations of the
Guiding-Center Particle Motion in
Axisymmetric Equilibria

The presence of non-axisymmetric perturbations in an axisymmetric magnetic field equi-
librium renders the Guiding Center (GC) particle motion non-integrable and may result in
particle, energy and momentum redistribution, due to resonance mechanisms. We analyse
these perturbations in terms of their spectrum, as observed by the particles in the frame of
unperturbed GC motion. We calculate semi-analytically the exact locations and strength of
resonant spectral components of multiple perturbations. The presented Orbital Spectrum
Analysis (OSA) method is based on an exact Action-Angle transform that fully takes into
account Finite Orbit Width (FOW) effects. The method provides insight into the particle
dynamics and enables the prediction of the effect of any perturbation to all different types
of particles and orbits in a given, analytically or numerically calculated, axisymmetric equi-

librium.

4.1 Introduction

Guiding Center (GC) theory has been widely used for more than four decades as the basis
for the study of single and collective particle dynamics in toroidal magnetic fields utilized
in fusion devices (Cary and Brizard, 2009). The theory has been originally formulated in

a non-canonical (Littlejohn, 1979) description which was later extended to a canonical one
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(White and Chance, 1984). The former has the advantage of being applicable to any type of
coordinates, whereas the latter, while being more abstract, has the advantage of an elegant
structure of the described dynamics, accompanied by an arsenal of powerful mathematical
methods (see Chapter 1 and Chapter 3).

The GC motion of charged particles in an axisymmetric magnetic field is known to be
regular, due to the existence of three integrals of motion, namely the energy, the magnetic
moment and the canonical toroidal momentum (Littlejohn, 1983, White and Chance, 1984).
However, the presence of any non-axisymmetric perturbation results in symmetry breaking,
non-integrability and complex particle dynamics. In realistic tokamaks, non-axisymmetric
perturbations are introduced due to static magnetic field fluctuations, magnetohydrodynamic
(MHD) modes or radio frequency (RF) waves. The effect of these perturbations is the re-
distribution of particles, energy and momentum, through local (e.g energy absorption) and
non-local processes (e.g. energy transport), that are based on resonant interactions with the
3 degrees of freedom of the GC motion (White, 2012, White et al., 2010).

Significant interaction with any perturbative mode takes place when the mode is resonant
with the unperturbed particle motion. Fundamental understanding of the perturbed motion
requires the knowledge of the position of the resonant orbits in phase space, where the res-
onant condition - involving the 3 frequencies of the unperturbed motion - is met. However,
this is not sufficient for obtaining a clear picture of the perturbed —single, or collective —
particle dynamics. Some measures of the strength and the extent of the resonance in the

phase space are also required.

The collective particle dynamics under symmetry-breaking perturbations can be studied
on the basis of single particle GC theory, described above. This is the Gyro-Kinetic (GK)
theory, which has been formulated either in non-canonical or canonical coordinates (Brizard
and Hahm, 2007), with the latter resulting in a kinetic equation of the Fokker-Planck type
in the Action space (Kaufman, 1972a). This is the standard quasilinear transport theory for-
mulated either by the trajectory integral approach (Brambilla, 1999, Eester and Koch, 1998,
Lamalle, 1993) or by the Hamiltonian approach, both made possible due to the canonical
structure of the GC phase space (Wang, 2006, White et al., 1982, White and Chance, 1984).
Common to the two approaches is the requirement that the quasilinear diffusion operator
be expressed in terms of constants of the unperturbed motion. The former approach relies
on the application of integration operators on the perturbations, the constants of motion be-
ing used to label the unperturbed orbits, whereas in the latter, the constants of motion are
the Action variables (Gambier and Samain, 1985, Hazeltine et al., 1981, Kaufman, 1972a,
Kominis, 2008, Kominis et al., 2008, 2010)
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Although the Action-Angle description is accompanied by powerful mathematical tools
(Goldstein, 1956, Lichtenberg and Lieberman, 1992) and is widely appreciated for its ele-
gance, applications have been restricted to either formal derivations (Gambier and Samain,
1985, Kaufman, 1972a, Kominis, 2008, Kominis et al., 2008, 2010) or calculations under
strict assumptions (Abdullaev et al., 2006, Hazeltine et al., 1981). Explicit calculations of
AA variables have been carried out only for the simple case of Large Aspect Ratio (LAR)
equilibria for transit and banana orbits, under the approximation of zero drift from the mag-
netic surfaces or Zero Orbit Width (ZOW) approximation (Brizard, 2011, Hazeltine et al.,
1981). However, it is known that energetic particle orbits deviate strongly from the magnetic
surfaces. Even the simple case of concentric circular magnetic surface equilibria supports
10 orbit types other than the transit and banana orbits (Eriksson and Porcelli, 2001, Gott
and Yurchenko, 2014) of Standard Neoclassical Theory (SNT). The effect of such orbits has
been long debated (Bergmann et al., 2001, Helander, 2000, Lin et al., 1997, Shaing et al.,
1997, Shaing and Peng, 2004), and though it seems that the contribution from low energy
non—standard orbits is not significant (Helander, 2000), this cannot be argued for energetic
orbits as well, since the bounce and drift frequencies can become comparable (Eriksson and
Porcelli, 2001), giving rise to new interactions and instabilities, which SNT cannot predict.
White and al. (White, 2012, White et al., 2010) have recently provided a method of numer-
ically locating resonances with a particular mode in phase space, by means of the vector
rotation criterion. This involves particle tracing, the time consuming process of numerically
integrating particle orbits with initial conditions that span the entire phase space for long
enough integration times so that the resonance is manifested and for every perturbation sep-

arately.

Undoubtedly, the AA formalism provides the appropriate description and concepts for
understanding the particle motion, due to its direct relation to the three adiabatic constant
of GC dynamics. No wonder the scientific community have decided to include it in most
textbooks on plasma physics or fusion (e.g. (Chen, 2013, Wesson, 2004)). The widespread
notion that the AA formalism cannot provide specific results for realistic magnetic field
configurations (e.g. (Eester, 1999, Lamalle, 1993)) stems from the fact that so far no general
method for obtaining the transform from configuration variables to AA variables has been
presented, rather than from some intrinsic obscurity of the Hamiltonian formalism itself. So
do the aforementioned restrictions and approximations. In fact, we argue that it is the AA
formalism that elucidates the dynamics and separates the timescales of different degrees of
motion. After all, it is the AA formalism that takes the most advantage of the Hamiltonian

structure and fully exploits the canonical structure of GC dynamics.
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In this chapter, we demonstrate a method for calculating the transform from configuration
space variables to AA variables for any given axisymmetric equilibrium. The existence of a
local transform to AA variable is guaranteed by the symmetries of the unperturbed system
(Goldstein, 1956), and, though, in general, no such global transform exists, we are able to
cover all phase space by calculating multiple AA transforms. The orbital frequencies, being
constants of motion, are functions of the Actions alone, so that the resonances can be located
and studied on the Action subspace. Since the Actions are both the canonical momenta and
the integrals of motion, perturbation analysis is significantly simplified (Goldstein, 1956,
Lichtenberg and Lieberman, 1992).

Based on the AA transform we introduce the Orbital Spectrum Analysis (OSA) method
for analytically estimating the effects of particle interaction with different kinds of pertur-
bations. In OSA, all different kinds of orbits are treated on equal footing, without referring
to phenomenological taxonomies, which makes it straightforward to expand the analysis to
equilibria more complex than LAR. One of the most significant advantages this approach
has to offer is that the frequencies of the different degrees of freedom are readily calculated
and that the resonance condition can be written in a simple form. Full Orbit Width (FOW)
effects are intrinsically taken into account and the phase space location as well as the ef-
fective strength of resonances is automatically revealed. Moreover, the Actions, being both
canonical momenta and constants of motion, provide an excellent framework for building an
equilibrium distribution function, a task that until recently has been known to be problematic
(Troia, 2012).

In section 4.2 the canonical GC motion is reviewed and the AA transform algorithm
is outlined. In section 4.3 we introduce the Orbital Spectrum Analysis (OSA) method and
demonstrate it by applying it to the case of synergetic interaction with two non resonant
magnetic perturbations, where chaotic particle motion occurs, while the magnetic field lines
remain regular and no magnetic surface destruction occurs. By means of OSA, the conditions

for transition to chaos are analytically determined.

4.2 The Action Angle Transform

Assuming that the gyromotion is much faster than every other process involved, the magnetic
moment remains constant and the particle motion is accurately approximated by the motion
of its guiding center. The Lagrangian of the Guiding Center (GC) motion of a charged
particle is

L= (A+p-B)-v+pué—H,
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where A and B are the vector potential and the magnetic field respectively, v is the guiding
center velocity, p the magnetic moment, &, the gyrophase, p; the parallel velocity to the
magnetic field, normalized with B and

H = p?B?/2+ uB + & 4.1

the Hamiltonian, with ® the electric potential (Littlejohn, 1983). All quantities are evaluated
at the guiding center position and normalized with respect to the nominal magnetic axis gy-
rofrequency and the major radius 2. It has been shown that, when the magnetic coordinates
(1, T, x) — ¢ being the toroidal flux, 7 and x the poloidal and toroidal angle — are Boozer
coordinates, the dynamical system is Hamiltonian and one can define P and P, to be the

canonical poloidal and toroidal momenta given by
and

P =pg+, (4.3)
respectively (White and Chance, 1984). The Hamiltonian in eq. 4.1 takes the form

(Py+¢, (P P))

"= 2¢° (Pﬂpx)

B? + uB + 9. 44)

In axisymmetric equilibria, the canonical position X is ignorable and P, is conserved, so
that the dynamical system, being reduced to one Degree Of Freedom (DOF), is integrable.
However, the motion in phase space is non—trivial and there is no straightforward way to
predict the behaviour of the system when perturbations are introduced and integrability is
lost.

The conserved canonical momenta P, and p are already the actions of the toroidal motion
and the gyromotion respectively. The AA pair (J, 6) of the poloidal motion is found by
integrating along a closed orbit in the poloidal plane:

1
J = — > dT 4.5)
27

and defining € as the normalized time

0 = wy(J, Py, p)t, (4.6)
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Figure 4.1 Schematic diagram of LAR characteristic orbits. Two separatrices, homoclinic to the x-point, are
shown, each one acting as a boundary between two continents.

where wy is the frequency of the poloidal motion and depends only on the three actions.
By virtue of the Liouville-Arnlold theorem (Arnold, 1989), such a transform always exists
locally. In particular we can cover all phase space with a measurable set of AA transforms,
one for each phase space region that is bounded by a separatrix. From now on we shall call

such a region a continent, while the set of transforms for all regions is called an atlas.

Fig. 4.1 depicts a poloidal projection of LAR orbits with fixed P, and p. Each of the
two separatrices (thick red lines) separates two continents. All orbits belonging to the same
continent share the same topology and the behaviour of the dynamics varies continuously
within each continent. The conventional orbit labelling (e.g. passing, trapped, stagnated) is
phenomenological and refers to the magnetic axis, because it is the natural reference point of
the magnetic field geometry and very close to the natural reference point of the slow particle
dynamics, i.e. the elliptic point of the inner passing orbits (innermost continent in the figure).
However, for the energetic particle dynamics, the magnetic axis is not special from the dy-
namics point of view, and conventional labelling is arbitrary and confusing. Fig. 4.1 depicts
a poloidal projection of LAR orbits with the same P, and p. Each of the two separatrices
(thick red lines) separates two continents. All orbits belonging to the same continent share
the same topology and the behaviour of the dynamics varies continuously within each con-
tinent. The conventional orbit labelling (e.g. passing, trapped, stagnated) is phenomenolog-
ical and refers to the magnetic axis, because it is the natural reference point of the magnetic
field geometry and very close to the natural reference point of the slow particle dynamics,
i.e. the elliptic point of the inner passing orbits (first continent in the figure). However, for
the energetic particle dynamics, the magnetic axis is not special from the dynamics point of

view, and conventional labelling is arbitrary and confusing. For example, in Fig. 4.1, the
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two orbits marked as stagnation and inner passing orbits share the shame topology, but their
conventional labelling is not the same. It would be more reasonable to label the orbits with
respect to the continent they belong to, this would not only underlines the dynamic charac-
teristics of each orbit, but additionally it would serve the purpose of clarity and algorithmic
simplicity.

Although the Hamiltonian H is integrable, finding an analytic solution to the AA trans-
form problem is impracticable. Instead, we calculate the atlas numerically. The algorithm
we follow relies on finding the boundaries of each continent in (7, %), P, (1) subspace, i.c. the
separatrices, and then calculating numerically each AA transform defined by eqs. 4.5,4.6 on
a carefully chosen sample of closed orbits. The particulars of the algorithm will be discussed

in Chapter 5.

In transforming from (7, ) to (J, ), the angles of the other two DOFs are redefined,
so that eventually all DOFs are described by AA pairs. In each continent, the transform
from (7,1, P, ) to (0, J, P, ) is implicitly generated by a function of the form F, =
F (7’, J, P, u). Dependence of F;, on P and p implies that the toroidal angle x is also

transformed to an new canonical angle variable

5% = X_fx<‘]707P)<7:u) (47)

and so does the gyration angle £. Therefore, this procedure generates the transform to the
AA pairs (PX, )2) and (u, 5 ) The new angles differ from the original in that they evolve
linearly with time, with frequencies w, and €2, which are the averaged drift frequency and
the mean gyrofrequency respectively. By construction, the new poloidal angle # evolves
linearly as well, with the average poloidal frequency wy, while the actions .J, P, and p are

constants of motion.

4.3 Chaotic motion due to magnetic perturbations

There is little reason to calculate the AA transform, unless we intend to study the particle
dynamics in the presence of perturbations. The dynamics of low energy particles is strongly
correlated with the magnetic topology, because their guiding centre orbits are essentially
parallel to the magnetic field lines. Thus, the particle motion is regular, provided that the
magnetic surfaces are conserved. However, for higher energy particles, this is not necessar-
ily true. Drift effects that are negligible for low energies, can no longer be neglected, and

the topologies of these two spaces are disentangled. Consequently, appearance of chaotic
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magnetic field lines may be a reliable criterion for predicting chaotic motion of low energy

particles, but inevitably fails for energetic particles.

In the high energy domain, resonance location and resonance overlap are purely dynamic
effects and particle motion can become chaotic without destruction of the magnetic surfaces.
This is, of course, not the first time this phenomenon has been described (see, for example,
(Matsuyama et al., 2014) and references therein), but here the analysis is restricted on the
particulars of phase space alone, without resorting to configuration geometry concepts. The
simplicity of this approach and the excellent quantitative results it can provide is a major
advantage of the OSA method.

4.3.1 Orbital Spectrum Analysis

A perturbation of the form
)B=V xoB

can be straightforwardly included in the guiding center Hamiltonian as (White, 2001)

H= (pc_a)2B2/2+MB+(I)7

with
pPe=p|to0,
and modified canonical momenta
P =y+pd, 4.8)
P =p.g+1, 4.9)

The first order perturbation Hamiltonian is
H, = —p,oB?+®
and second order perturbation Hamiltonian
H, = 0?B?/2.

For ideal MHD modes, the scalar potential ® must be chosen so that it cancels out the
parallel electric field induced by ddB/dt, to account for the rapid response of the electrons.
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Thus, a monochromatic mode with

0 =0, (¥)exp (i(my + nT —wt)) (4.10)
implies a scalar potential

® =2, . (¥)exp (i(mx +nt —wt))
with @, ., given by (White, 2013):

gq+1
mq-—+n

) = w

m,n

m,n*

Due to the nonlinear dependence of \ on 6 (eq. 4.7), the mode in eq. 4.10, which is
monochromatic in the magnetic coordinates, gives rise to an infinite series of harmonics in
the AA coordinates, for which the toroidal number is fixed and equal to the toroidal number
m of the magnetic perturbation o, but the poloidal number is not. The associated first order

Hamiltonian /; has the general form
H, = Z?—[;m (J,P,)exp(i (mx + s0 — wt)), (4.11)

The poloidal number n of the magnetic perturbation influences I, only by affecting the

amplitudes of its harmonic components, which are given by

1 .
H,,(J,P) = 5 %H}w () exp(i (nT +nf, (J,P,,0) — s0))do (4.12)
and there is no reason to assume any stronger connection between the two. For example, it

may seem reasonable at first sight to assume that for a given o the spectrum of /1, should

m,n?°
peak at the same poloidal number n, but this assumption is utterly unjustified. For even if
it happened to hold for some class of particle orbits, it would necessarily fail for orbits with

different topology.

As equation eq. 4.11 indicates, the resonances of the perturbation are located in action

space at the points where the resonance condition
mwX(J,PX,u)+sw9(J,PX,u)—w =0 4.13)

is met, s being any integer.



Orbital Spectrum Analysis of Non-Axisymmetric Perturbations of the Guiding-Center
72 Particle Motion in Axisymmetric Equilibria

The toroidal to poloidal frequency ratio for passing particles tracing exactly the magnetic
field lines is clearly
wa
= =g, (4.14)
Wo

q being the safety factor, so that, eq. 4.13 becomes for w = 0

maq+s=0, (4.15)

This approximation is accurate for low energy particles. The dynamic properties of the
particles (i.e. energy, magnetic moment) are not involved in the resonance condition and,
since for s = n, eq. 4.15 takes the form of the condition for the destruction of the mag-
netic surfaces (White, 2001), the perturbed dynamics of the particles is closely linked to the
perturbed magnetic topology.

As the energy increases, drift orbit effects come into play, a different kind of resonance
appears and the connection between the destruction of the magnetic surfaces and the de-
struction of the integrals of motion breaks. The ZOW approximation does not take into
consideration drifts across the magnetic surfaces, but allows for drift effects on the magnetic
surface across magnetic field lines. The magnetic geometry is approximated by the circular
Large Aspect Ratio (LAR) equilibrium, with B & 1 —r cos(7) and the poloidal and toroidal
frequencies for trapped particles are given by the pendulum formulas (Brizard, 2011, White,
2001)

~ T r(y) (4.16)

, 4.17)
with
K= ———— (4.18)

where r is the normalized minor radius, ¢ = dq/0 the shear, K and E the complete elliptic

integrals,

2 do
K(r) =
() /0 (1 — K2sin® ¢)1/2’

E(k) = 2 (1 — kZsin® ¢)/2dg.

(=)
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and all quantities are calculated at the low field point of the particle orbit. The equations
above are more that just a correction to eq. 4.15, since they account for drifts from the mag-
netic line and thus allow for a different kind of resonance to take place, one which involves
the dynamic characteristics of the particle. Had we ignored the drift motion, the toroidal
drift frequency would be zero, and the only possible resonances would occur at ¢ = rational,
i.e. only when the magnetic field lines are also in resonance with the perturbation. By allow-
ing for drift motion, chaotic magnetic field lines do not imply chaotic particle orbits, nor do

chaotic particle orbits necessarily suggest the existence of chaotic field lines.

For particles with even higher energies, drift across the magnetic surfaces becomes sig-
nificant and a full orbit approach is necessary. When the AA transform is carried out and the
unperturbed Hamiltonian H, is expressed as a function of the three actions, the frequencies

are given by

OH,(J,P.,

wy = —0<8J X u)) (4.19)
OHy(J, P, i

wg = %. (4.20)

As we will demonstrate in the following subsection, using eqs 4.16, 4.17 outside their do-

main of validity can lead to significant misrepresentation of the particle dynamics.

The location of the resonances in action space depends only on the spectral parameters
m and w. The actual profile of the perturbation, i.e the depencence on n or ), is relevant
in defining the amplitude of the resonant terms, but not in pinpointing their location in the
orbital spectrum. Since s can take on any integer value, each bounded continent may contain
a large number of such resonances, most of which are located in the narrow chaotic sea near
the separatrix, where w, approaches zero. In the bulk of each continent there are only a few,

if any, sites where eq. 4.13 is satisfied.

Near a particular resonance m wg, + s wy —w = 0, the dynamics follow a pendulum- like
Hamiltonian and a trapped area of width proportional to the square root of the perturbation
amplitude is formed. This width depends on A, . (.J, P,) and can be easily calculated

once the AA transform has been performed (more on this on Chapter 5).

4.3.2 Particle losses due to static magnetic perturbations

The advantages of the Orbital Spectrum Analysis method are highlighted, when it used to

predict the conditions under which perturbations may lead to loss of ion confinement. In this
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Figure 4.2 Resonance chart cross section in p. The solid black lines depict the energy surfaces,
crosses and stars correspond to resonances with m = 10 and m = 8 respectively.

section we apply it to the study of the dynamics in a LAR peaked equilibrium ! in the presence
of two static magnetic perturbations (w = 0). The case of time independent perturbations
may b3 particularly simple, but is rather indicative of the power of the AA transform and
the OSA method.

The perturbations are chosen to be of the form
0, =A;(Y)expi(mx +n7)], i=1,2,

with toroidal numbers m = 8 and m = 10 respectively, while the poloidal number equals
n = —1 for both perturbations. The amplitudes of the perturbation are assumed to be such
that

6B/B~107*—1073,

I'The safety factor, defined as ¢ = B - Vx/B - V7, is determined by the balance of the pressure and the
magnetic force and, as its name suggests, its profile is an important characteristic of the equilibrium. It is a
flux function in straight magnetic field line coordinates (see Chapter 2). It is known that, for LAR equilibria,
q profiles of the form

1

a=qo (1+ (¥/¥y)")" 4.21)

are acceptable solutions of the force balance condition. Equilibria with v = 1, 2, 3 are referred to as peaked,
rounded and flat respectively (White, 2001).
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well inside the domain of validity of perturbation theory. Moreover, the safety factor g is
chosen to range from 1 to 1.8, so that it is nowhere equal to —n/m and thus the magnetic

field lines are non resonant with the perturbation and no flux surface is destroyed.

The Hamiltonian is conserved and near any given m/s resonance, the quantity

P, =P —m/s]
is an adiabatic invariant. The cases where the ratio m/s or s/m becomes very large are
of little interest, since the adiabatic invariant coincides with one of the actions, so that no
significant redistribution takes place. Without assuming any particular knowledge about the
actual profile of the perturbations, other than their toroidal numbers, it is possible to chart the
location of the resonances in the action space of each continent, by requiring the resonance

condition
mwez

= integer. 4.22)
Wo

to be satisfied. Since the frequencies, given by eqs 4.19, 4.20, are functions of the three ac-
tions alone, eq. 4.22 describes a set of two—dimensional surfaces in the action space. More-
over, since the Hamiltonian is conserved, the perturbed particle motion will necessarily take

place near the surfaces of constant unperturbed energy H, (J Py, u).

The AA transform enables us to visualize the constant energy surfaces in Action space.
Fig. 4.2 depicts the cross section of the 3D chart of the m = 10 and m = 8 resonances in a
potato—banana continent with the = 8 - 1075 plane. A set of constant unperturbed energy
subsurfaces, near which the perturbed motion will be confined, due to time independence of
the perturbation, are plotted with solid black lines. The locations of the resonances on the
energy surfaces are marked with crosses and stars for the m = 10 and m = 8 perturbations
respectively. The location of the separatrix that bounds the banana continent is given by
Js(P,, ). Itis depicted as a thick red line in Fig. 4.2. Finally the last closed magnetic
surface with ¢ = ¢ max (S5 Pys 1) = Yy Where

Ynax 1S the maximum 1) value along the orbit defined by the three actions.

wail 18 Visualised by depicting the surface v

Coexistence of more than one resonances on the same energy surface can lead to chaotic
redistribution, due to destruction of the adiabatic invariant. On the energy surface denoted

by A in Fig. 4.2 there are two neighbouring resonances located at

P ,~-15-1073

X

Q

and

Py~ —137-107%
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Figure 4.3 Inspection of the resonance chart can reveal the phase space regions when mode synergy
can be significant. The analytically calculated resonance positions, width and overlap conditions are
in excellent agreement with the simulations. a) Poincare plot on the surface A of Fig. 4.2 for two
modes with subcritical amplitude. The semianalitically calculated positions of the resonances as well
as their widths are denoted with solid and dashed lines respectively. b) The same Poincare plot for
perturbations with critical amplitude. KAM lines between the two resonances have been destroyed
and significant redistribution can take place.
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Chiricov criterion (Lichtenberg and Lieberman, 1992) provides a simple estimation for the
onset of chaotic motion, by requiring that the resonances overlap. The resonance widths
Wes i are estimated by approximating the motion around the resonances with the pendulum

Hamiltonian (see Section 5.4). The criterion requires that for chaotic motion
AJ S Wres,l + VVres,Z? (423)

where AJ is the distance between two neighbouring resonances.

As demonstrated in Fig. 4.3, the OSA method predicts both the location of the reso-
nance center as well as the resonance width in the phase space. Moreover, application of the
Chirikov criterion is shown very successful in predicting the transition from weak to strong
chaos. Fig. 4.3a displays a Poincare plot of the perturbed motion, when the amplitude of
the perturbation A = A

Some chaos is present, due to the existence of higher order resonances, but the primary res-

suberit 18 lower than the analytically computed critical amplitude A ;.
onances are well separated by KAM surfaces and no significant particle redistribution takes
place. Superimposed on the Poincare plot are the analytically calculated locations of the
resonances (solid lines) and the resonance widths (dashed lines). It is evident that the reso-

the KAM surfaces have been destroyed and there is a chaotic sea between the two primary

nances do not overlap. The situation changes for A = A_;,

resonances.

The case of the energy surface B in Fig. 4.2 is of particular importance, because there
is a sequence of resonances linking a deeply trapped part of phase space to the plasma wall
(dashed blue line). When all consecutive resonances overlap, significant particle loss will
take plac3. Application of the Chirikov criterion overestimates the critical amplitude at

Achirikov = 1.2 - 1073, due to the strong presence of higher order resonances (see fig. 4.4).

The location of the resonances is determined by requiring that
wy/wy = /10

or
wy /wy = /8,

where s is any integer. In the above, it is important that we make use of the frequencies calcu-
lated through the full orbit width approach (eqgs 4.19, 4.20). The closed form estimations of
the poloidal and toroidal frequencies in eq. 4.16 and eq. 4.17 that are valid under the zero or-
bit width assumption are much easier to compute, but not nearly accurate enough for our pur-

poses. Figure 4.5 compares the frequency ratio curve on the energy surface B (Fig. 4.2) ob-
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Figure 4.4 The OSA method as a tool for estimating conditions for confinement loss. The outer closed
flux surface is marked with a thick dashed line. a) Poincare cut for the energy surface B of Fig. 4.2
and subcritical amplitude 0.08 Acpirikoy- Only two of the resonances have partially overlapped. b)
The same, with amplitude 0.3 Aqpirirov- Although, this is still below the critical value determined
by Chirikov criterion, the KAM surfaces have been destroyed. Chirikov criterion overestimates the
critical amplitude, by ignoring higher order resonances.
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Figure 4.5 Toroidal over poloidal frequency ratio as a function of J on the energy surface B. The
resonances with the m = 8 and m = 10 are located at the intersections with the horizontal dashed
lines. Solid curve: The frequencies are calculated numerically through eq. 4.19 and eq. 4.20, taking
into account full orbit width effects. Dashed-dotted curve: The frequencies are calculated using
the closed form formulas in eq. 4.16 and eq. 4.17 under the zero orbit width assumption. The two
approaches lead to qualitatively different predictions.
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tained through the numerical FOW approach, eqs 4.19, 4.20, with the one obtained through
the closed form approximate formulas. It is quite obvious that the two approaches predict
entirely different resonance ratios and locations. Even for a LAR equilibrium, the ZOW
approximation leads to incorrect predictions for the resonances experienced by energetic
particles. It is expected to be more inaccurate for an equilibrium with significant triangu-
larity and elongation (see (Zohm, 2014)), where the assumption of approximately circular
magnetic surfaces is not satisfied.

Up to this point, our analysis was limited to single particle motion. However, the Ac-
tion Angle formalism is ideally suited to the kinetic modelling of the collective particle
dynamics as well. In the absence of any nonaxisymmetric perturbation, an equilibrium dis-
tribution function can be expressed as a function of any triplet of independent conserved
quantities (Troia, 2012). Any such triplet would be valid, but, for the purposes of the study
of the perturbed dynamics, the most useful of them is the triplet of Actions. The presence
of nonaxisymmetric perturbations results in collisionless particle and momentum redistribu-
tion, either through phase mixing effects in the resonance islands, or through diffusion in
phase space, when the KAM surfaces are destroyed (see Chapter 1). This implies some time
evolution of the distribution function and possibly net exchange of energy and momentum
between the particles and the perturbations.

In case of strong chaos, when most of the KAM surfaces have been destroyed, this pro-
cess is governed by a Focker—Plank equation for the evolution of the Angle-averaged distri-
bution function in Action space (Kaufman, 1972b, Lichtenberg and Lieberman, 1992). Since
the Action variables are related to magnetic moment, parallel momentum and radial position
(or energy), particle, momentum and energy transport is also described by the corresponding

Action-dependent quasilinear diffusion tensor.

For perturbations for which the guiding centre approximation applies, the magnetic mo-
ment remains constant and the resonance condition is given by Eq. 4.13. At the points where

the resonance condition is met, the diffusion tensor is given by

D=n |7} §(r-w), 4.24)

where r = (s,m) is the vector of the harmonic numbers and w = (wy,wy) the vector of

frequencies.

The actual diffusion tensor

D D
D— J,J J,P,
D;p, Dp p,

X



4.3 Chaotic motion due to magnetic perturbations 81

2.5

1.5/
Djy;

0.5

1 1.1 1.2 13 14

J x10°

Figure 4.6 The J, J element of the quasilinear tensor for the case of Fig. 4.4b.

used in the Focker—Plank equation is a tensor whose elements smoothly interpolate the ele-
ments of the singular diffusion tensor D at the resonance points, to account for the spreading
of resonances, i.e. the appearance of resonance islands, due to nonlinear effects (Kaufman,

1972a). Finally, the Focker—Plank equation is given by

0 0 0
—fLwt) = —=- (D =f (L ut 4.25
ol Lty = 5o (D L)) 4.25)
where I = (J, P, ) is the vector of Actions and f is the distribution function (Abdullaev,
2006, Kaufman, 1972b). The fact that the diffusion tensor can be expressed explicitly in
Action space is one of the many advantages of the AA formalism.






Chapter 5

Path integral theory for Orbital
Spectrum Analysis

The Hamiltonian of the gyrocenter motion in unperturbed axisymmetric equilibria with no

electric field is given by (see eq 4.4):

— <Pc+wp <p7P<)>2 2
ch - 292 (p,P<> B<p7Q7P() + ﬂB<p7Q7P()' (51)

Here p and ¢ are the canonical momentum-position pair for the poloidal motion, while
P is the canonical momentum for the toroidal motion. Its conjugate position ¢ is not present
in the unperturbed Hamiltonian, so that P is constant. The unperturbed gyrocenter Hamilto-
nian is one example of the family of 2 DOM Hamiltonians with one ignorable angle, which
have the form
H = H(p,q; F),

where F' is the canonical momentum conjugate to the ignorable angle. For the gyrocen-

ter Hamiltonian H gos

Hamiltonians are integrable, but in order for them to serve as the starting point for canonical

the canonical toroidal momentum P, plays the role of F'. All such
perturbation analysis, they need to be expressed as functions of the Actions alone
K=K(J,F).

Calculating the Action Angle transform involves calculating a diffeomorphism (a smooth

invertible function with a smooth inverse) parametrized by F'

¢|F : (p7Q> - <J79>a
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AF AF

Figure 5.1 Correspondence of phase space continents for different values of F'.

so that (J, #) is a canonical pair and the new Hamiltonian K is independent of 0, i.e. K =
K (J, F). Doing so analytically is only practical for only a few exceptional Hamiltonians, so
in general such transforms must be carried out numerically. This is, of course the numerical
Action Angle transform discussed at some length in Chapter 4. As we have also pointed
out, for each F' = const. slice of phase space, a multitude of such transforms is generally

required, one for each continent bounded by a separatrix.

Calculating the Action Angle transform is half the battle. The other half is building
models of K (J, F') from the samples of (J, F', K') calculated through numerical integration.
This requires that the samples are grouped by continent, which in turn requires the knowledge
of the shape of separatrices and the location of the critical points on each F' = const. slice.
This is by no means a trivial task, but one we had to automate, before we could carry out our

calculations for Chapter 4.

For the purposes of canonical perturbation analysis, we even need to go a step further
and find a way to model the derivatives of K with respect to F'. For example, as we discuss
in length in sec. 5.4, estimating the width of resonant islands requires the calculation of the
Hessian matrix of K with respect to the actions. This would not present a major challenge,
if there only was only one continent on each slice, but now that there are many, we need
to find a way to connect associated continents on neighbouring slices with one another (see
fig. 5.1). In other words, we need to model the fopological skeleton of the unperturbed
phase space. Moreover, this must be done efficiently and with no prior assumption about the
number, shape and location of the phase space continents on each slice. All calculations in
Chapter 4 where carried out without having automated the steps above. Matching equivalent
continents on neighbouring slices relied by human inspection, which proved painstakingly
slow, error— prone, hard to reproduce, counter productive and in general defied good software

engineering practices that require separation of library and user code.

Building an automated tool for fast and reliable modelling of the topological skeleton
of 1 1/2 DOM phase spaces proved to be a very challenging task. Until this problem had
been tackled successfully, Orbital Spectrum Analysis was doomed to be nothing more than
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mathematical extravagance, far from the useful tool we aspired it to become. In this chapter
we discuss how we came to bypass these difficulties by taking an alternative approach, one
that does not presuppose any knowledge of topological characteristics, but relies only on
local information about the unperturbed dynamics. We shall begin by calculating the deriva-
tives of the Action Angle transform by means of path integrals along unperturbed orbits and
we shall proceed to calculating the Hessian matrix of the transformed Hamiltonian K in a
similar way. This improved topology agnostic Orbital Spectrum Analysis is benchmarked
by applying it to the extended pendulum Hamiltonian, from which valuable conclusions can

be drawn.

5.1 A bit of differential forms

For the calculations that follow, some elementary aspects of differential forms is necessary
(Flanders, 1989). All required theorems and definitions are quoted here for reference, with

no attempt for mathematical rigour.

Definition 5.1.1. A differential form of degree 1, or a 1-form on R" is an expression of the

a=)_ fdz

Definition 5.1.2. If f is a 0-form, i.e. a smooth function on R", df is the 1-form

form

The operator d is linear and satisfies a generalized Leibniz rule.

Suppose we have an open set U € R", an open set V € R"™. Let us denote the coordi-

nates in V' with
Y1
Yo
y = .

Ym

o= Zfidyia

(2

Consider now a 1-formon V

where f; are functions on V.
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Now suppose a smooth function ¢ : U — V. Write

(151(:171,.772, ,.%‘n)
y:QS(X) — (bZ(xl?x??'”?xn)

qu(xl?an axn>

Definition 5.1.3. Given a smooth map ¢ from U to V/, there is an operator ¢* called pullback
that maps k-forms on V' to k-forms on U. Applied to O-forms, ¢* gives

" (fi) = fie ¢
Applied to the 1-form a = > f,dy, , ¢* gives

¢*(a) =D ¢ (f;)d;. (52)
The pullback operation is
1. linear, ¢*(acv + bB) = a¢d*(r) + be*(B),
2. multiplicative, ¢*(af8) = ¢*(a)¢*(B),
3. natural, ¢* (¢* () = (¢ 0 ¢)* ().

Observe that the pullback operation “turns the arrow around.” When ¢ maps stuff on U
to stuff on V', ¢* maps other stuff on V' to other stuff on U'.
From eq. 5.2 we see that

9" (dy;) = do; = d(y; o ) = do*(y;).
Theorem 5.1.1. Let ¢ : U — V a smooth map and « a k-form on V', then ¢*(da) = d(¢*),

or

Theorem 5.1.1 means that the exterior derivative of a differential form is independent of
the coordinate system in which it is computed.

5.1.1 Path integrals of 1—-forms

Let U be an open set on R". A path on U is a smooth mapping ¢ : [a,b] € R — U. For our
purposes we will always assume that paths are bounded. Consider a 1-form o on U. The

pullback ¢*(«v) is a 1-form on [a, b] so it can be written as ¢*(«) = h(t)dt.
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Definition 5.1.4. The integral of a differential form o on U over the path c is defined by

/Ca:éb] c*(a):/abh(t)dt.

Note that,if ¢t : U — V is a smooth map so that ¢ = ¢ o ¢ is a well defined path on V" and
[ is a 1-form on V, then

[p=[ 0= [ woo=] cee)
/aﬁ = /Ct*(ﬁ) (5.3)

Our calculations will be based largely on the application of eq. 5.3.

Therefore

5.2 Calculation of the action derivatives

Suppose phase space U open in R?, with a Hamiltonian H (p,q; F), where (p,q) € U and
F is a real parameter. Let us define the orbit through (p, q,) for F' = F|, as the closed path
c(po, 903 Fy) = ¢ thatsatisfies (pg, qy) € ¢([0, 1]) and H(cy(t)) = const. = H (py, qq; Fp)-
Then the action at (p,, q,) is given by

1
J(pos 03 Fo) = %f pdg.
Co

Suppose there is a canonical transform from the phase space (p, q) € U to the phase space
(J,0) € V and the Hamiltonian of the new phase space has the functional form K (J; F'),
i.e. it is independent of the angle variable 6. Then, since the transform is time independent,

the two Hamiltonians are equal to one another,
H(p,q; F) = K(J; F)

and so are their differentials

oK 0K oJ oJ 0K 0J 0K

d d aJdJ—l—apd wapdp+waqdq+(8JaF+aF)d =

oH oOH oH oJ oJ 0K 0J 0K
F=w— — —— 4+ ——)dF

apclp~|— 8qdq+8Fd wapdp+waqdq+(aJaF+6F)d ,
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where of course w is the frequency. Therefore,

oJ  10H g
il — 4
op  wdp W >4
oJ  10H  p

90 wop w (5-5)

oK _oH _ 0J
oF ~ oF “Yor

In the next sections we will show how it is possible to calculate these derivatives as path

(5.6)
integrals over the orbit c.

5.2.1 The derivatives of Action in phase space.

In this subsection we will calculate how the action changes due to small translations on phase
space U. The parameter ' is not going to play any role, so we will temporarily omit it from

our formalism. We will reintroduce it in the following subsection. Write
H(p+Ap,q+Aq)~ H(p,q) + VH - (Ap,Aq) = H(x) + VH - Ax,

where obviously x = (p, ¢). Let us introduce the steepest descend translation operator

~ VH
T(AH) :x — x+ AH|VH|2

OH
Then, if T(Apa— ) © ¢y is a path,
p *

OH
(Apa—p ) o ¢y = cap + O(AP?),
where ¢y, is the orbit through (p + Ap, q). Let us use T, = T(Ap%—g N ), for brevity The
Action at (p + Ap, q) is given by

1
=W+Mm%%ﬁzm——%%p@
Thoco

We have managed to express the Action at the translated point as an integral over the original
orbit. All that is left is to calculate the 1-form fo (pdq). We have

~ OH, O0,H 0
Ty (p) = p-f—Ap—x |VH|2 p+AHWPH|2
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and

7 6 H
0. \VHP

Therefore

df =d +AHd<8H)

So that
o 8p 6’q
Ty (pdq) = |p+ AH—2 dg+ AHd =

)| o)

d +AH[ iy d(aqH
- P vHR TP (va|

Therefore the partial derivative of JJ with respect to p is given by the integral over the orbit

o] 1 0H 0,H 0, H
9l _ - 97 dq + pd 5.7
Bp 21 Op xo ]VH\Q P <|VH|> -7

Comparing eq. 5.4 and eq. 5.7 we see that the integral above is equal to the orbit period,
or that

1 1 o,H

= L —dq+ pd Ot (5.8)
w 27 L, [VHI? i |VH|2 ’ '

a result which will later prove useful.

5.2.2 The derivative of Action with respect to the free parameter

In this subsection we reintroduce the dependence on the parameter F'. We follow the path we
took in the previous calculation, but now instead of varying the initial point in phase space,

we vary the value of F'. We have
H(xq; Fy + AF) = H(xq; Fy) + | AF + O(AF?)
and of course
o0H
H(xq+ Ax; Fy + AF) ~ H(xq; Fy) + VH - Ax + 8—F’OAF.

Let us denote with ¢, = c(xq; F})) the orbit through (pg,qy) for F' = F, and cpp =
c(xq; Fyy + AF) the orbit through the same point (p,, g,) for F' = F, + AF. As we did
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earlier, we seek a smooth transformation that approximately maps ¢, on c - up to first order
on AF.

Proposition 5.2.1. Let T(AH) a translation operator so that

~ VH
T(AH) : AH——
( ):x — X+ |VH|2
oOH OH

as before. Then, th <AF [ } > o ¢y Is a path,

dF'o 9F

~ OH, OH 9
7 (AF [_8F 0——6F]) oo = cap + O(Ap?).
~ ~ OH, OH
Proof. Let us write T" for T’ (AF [8_F O—a—FD , for simplicity. It is sufficient to show

thatif x € ¢ is a point on the initial orbit , then the value of the Hamiltonian at the translated
point H (T x; Fy + AF') is almost equal to the value of the Hamiltonian at the initial point
H(xq; Fy+ AF), so that the translated point x = Tx is very close to the orbit c - through
Xq for F' = F|,. Indeed we have
~ 0H
H(Tx;Fy+ AF) = H(x+ Ax; Fy + AF) ~ H(x; F,) + VH - Ax + 8_FAF
VH [0H, OH oH
— AF + —AF
|VH|2[8F o GF} T oF
OH, OH ] OH

OH
= H(x; Fy) + 8—F‘OAF.

= H(x;F,)+ VH -

But, since x is a point on the initial orbit,
H(x; Fy) = H(xq; Fp)

so that S
a—F\OAF ~ H(xy; F, + AF),

which proves our point. ]

H(TX;FO + AF) = H(xg; Fpy) +

Proceeding as before, we can calculate the action
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We have
AF

~ OH, OH\ 0,H
T*(p)=p+< ) -

OF o= OF ) |[VH|?

and

- 3 ,H
T*(dq) :qu:dq+d( !VH|>

0H 0,H

B oH\ O0,H 0H o,H OH O, H

oH o0, H OH O,H
=dg+AF {aF‘od (IVHP) —d (a_FrVH\N |

Therefore, the pulled back 1 -form is up to first order

. OH, OH\ O,H
T(de)_pdq+AF<aF| 8F>|VH|2 1

oH o0,H OH 0,H
TPAF {a o? <|VH|2) —d (a_FwHPﬂ

OH, [ 0,H o,H
:pdq+AF [ 2dq+pd< >]

IV H]| NGB
OH a H OH O H
_AF 91 %
{GF yvmqu pd(@F |VH|2>]

And

0. 18H|7§ .\ 0,H
oF ~2raF o vapd TP |VH|2

0H 0,H OH O,H
P oF |VH|2 TP\ o \vHY

Of the two terms above only the first depends on the initial point of the differentiation,
through the dependence of the local derivative with respect to the free parameter. On the
other hand, the two path integrals that appear above depend only on the whole orbit and are

independent of the initial point x,,. By comparing with eq. 5.8, the above becomes

8J 10H OH 0,H oH O H
= =radd p( . ) (59)

oF Ea_F|o FOF |VH| OF |[VH



92 Path integral theory for Orbital Spectrum Analysis

From eq. 5.6, we get
0K OH oJ

OF ~ 9F 0 “oF’
or

a,H
0K w%aH , (5.10)

oF ~ 27 YaF VAP

OH 0 H
dq+pd< : 2>

OF |VH|

where, as expected, the dependence on the specific point of reference x, has disappeared
and only the dependence on the whole closed orbit remains.

5.2.3 Application: Parametrized harmonic oscillator

Let us verify our findings, by applying them to the parametrized harmonic oscillator Hamil-
tonian
H =p*+ F¢’,

with F' > 0 the spring constant. The orbit at I = const. = £ can be parametrized by

J— E' t
SRCE-E )

p = VEcos(t)

The calculation of the Action is straightforward.

1 1o [E E
J - deq 27T;§ V E cos(t) Fcos(t)dt Wi

Therefore
K(J;F)=2VFJ,

0K

— =2V F
oJ vVE
0K I
OF  F

Let us now apply egs. 5.8, 5.10 to verify that they replicate the results above.

We have
o,H = 2p,

0,H =2Fq,

\VH|? = 4p? + 4F?¢?
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8pH _ 2p
IVH|2 — 4p2 4+ 4F2¢?’
8qH B 2Fq

IVH|2 ~ 4p2 + 4F2¢2

Skipping some tedious algebra, we have

8pH T
dg= ——
L IVH]? VF+F

?g d( 8qH ) T
PP\IVEE) T VE+ 1

11 0,H o,H 1« 1
w  2m J [VH| IVH| 2r/F  2JF,

and

So that

as expected.

Similarly

0H 0,H ) 2p Er
GFVHEM T P arp T 2
o c P q 2(1+VF) F3/°

and
%d<8H8qH> E(2+VF)x
p o] — 2
. \OF |VH] 2(1+VF) F
so that
OK w [0H 9,H OH 0,H
7 o Por dg+pd | o+ 2
OF  2n J OF [VH|? OF |VH|
W En . E(2+\/F)7r
— o 2 2
2m 2(1+VF) F32  2(14+VF) F
_2VF Er _E _J
21 2F32  2F /T’

again as expected.
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5.3 Generalization to arbitrary integrals of motion

In this section, we build on the experience gained from the previous introductory section to
clean up our formalism and derive more general conclusions. This approach will enable us
to derive expressions for the calculation of the Jacobian of the Hamiltonian K (.J, F') as path

integrals.

5.3.1 The bracket operator

Here we define the bracket operator, which will be of significant importance for what is to
follow.

Definition 5.3.1. For any vector field v = (v,,v,), we define the bracket operator, which

maps any one-form a = «,,dp + «,dq to the one-form

[v,a] = (8paq — 8qap)(vpdq — qup) +d(v-a), (5.11)

where

Voo = vpap—i—vqaq

Proposition 5.3.1 reveals the elegant connection between the bracket operator and the
pullback of a near identity transformation on a one-form. As we shall see in the next subsec-

tion, the bracket operator is closely connected to the derivatives of path integrals.

Proposition 5.3.1. Consider a near identity infinitesimal transform ¢, : R? — R2, with
b(x) = X+ ev(x) and v = (v,,v,). Also consider a one form a = o, dp + a,dq. Then
up to first order in € the pullback of ¢, on o can be written in terms of the bracket operator
(eq. 5.11) as

Pt(a) = a+€v,al.

Proof. By definition, the pullback of ¢, on « is

Pe(@) = ¢(ey,)do, , + ¢ (g )do, 4.
The differentials of the zero forms ¢, ; are given by

v, v,
d¢e,p =dp+ ea—pdp + Ga—qdq

and
d =d qud iqu
¢€,q q + €—— p _.I_ €E—— q
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and the pullback of ¢, on the zero forms c; is up to first order

. oy ooy
¢e(ai>_ A ap D aq q (62)'

Therefore

¢i(a) = o, + eaaO;p v, + eaa;‘;pvq] [dp + e%—lpdp + eé;—vquq]
85; v, + eaaiqv |[dq + e%—;};dp + e%—q;qdq] + O(€?)
da,, da,, ov ov
_a—f—e[a—qv dp + — @p
+%v dq+%v dq+a,— 97,
oq 1 op P 8

—|—[a +e€

da 0 v, da da
=a+ e[—pqup + (8}9( v,)dp + a, dq + —qpvpdq) — —=v,dq

dq

op *

da,, da,,
—0é+€[8—qup—8—q’0dq+d( )
da, da,

1 0p

or, more compactly

di(a) = a+€[(0,a, — Oy ) v dp + (9,0, — O,a,)v,dq + d(v
= o+ (9,0, — 9,00,) (v,dq — v dp) + d(v - a) + O(€?)
= a+€[v,a] + O(e?),

where
[v,a] = (8paq — aqap)<vpdq — qup) +d(v-a).

5.3.2 Derivatives of path integrals

Suppose that s is an explicit integral of motion, i.e.

s(Xg; Fy) = % o= }g a,dp + a,dg,
o o

da, 0 ov da, da, 5
+ - v,dg + %(aqvq)dq +ay —Ldp + —pv D | — —qup] + O(€%)

a)] +0(e?)
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where ¢, is the orbit path passing through x, = (p,, q,) for F' = Fj,. In other words ¢, is the
closed path ¢, = ¢(py, q; F}y) that satisfies (pgy, qy) € ¢,([0,1]) and H(cy(t)) = const. =
H(py, qo; Fyy). We are interested in calculating the derivatives of explicit integrals of motion.
We should distinguish between the derivatives due to translation in phase space x — x+ Ax
and the derivative due to the variation of the free parameter F' — F + AF'.

A translation in phase space changes the starting point of the orbit path and this may or
may not lead to a change in the path integral, depending on whether or not the new starting
point lies on a different path than the original. If the translation takes place on a direction

perpendicular to V H , the integral of motion s should remain unchanged.

Theorem 5.3.1. If s(xq; F}y) = 99 a=¢ a,dp + a,dq is an explicit integral of motion,
€o
then

Vs = VH}{ [f, o], (5.12)

where
f =

VH o,H 0,H
VHE (!VHP’ \VHP)

Proof. First consider a translation in p, i.e. Xo = (py, ¢y) — X1 = (py + Ap, qy) and the
associated transformation in ¢y, i.e. ¢5 — ¢, We seek a near identity transformation that

takes ¢ to cp,, up to first order in Ap. As shown in subsection 5.2.1, the transformation
OH
T,:x—x+ Apa—p|0f(x)

with
(%) VH
X) = ——>5
[VH|?
satisfies these requirements. Then up to first order in Ap
)= a+O0(88) = § Tile) + 0K
T, ocq co
By virtue of proposition 5.3.1, this can be written as
OH 9
s(x1)= ¢ a+]| AP ’ f,a] + O(Ap?) = s(xq) + [AP8—p|Of,O‘] + O(Ap?),
Co Co

which, due to the bilinearity of the bracket operator can be further simplified to

s(xg) = s(x0) + 85|, § [£,0] + O(Bp?)
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Os OH
3= aplof (0]

s OH
e _ g1 £
0q dq |07§0[ ’a]’

Or, combining the two formulas above in a single formula

which means that

Similarly

vs:wzjé[f,a]

O

When the parameter F' varies, the integral of motion s should in general change as well,
but now there are two distinct ways through which the variation in F' can lead to a change
in the quantity s. As before, change in /' might induce a deformation in the path ¢, which
might result in a change of the value of the path integral. The other reason s might vary is
due to any explicit dependence of the one-form av on F', which should result in a contribution

of the form
oo

o oF
to the total variation of s.

Theorem 5.3.2. If s(xq; Fyy) is an explicit integral of motion with

s(xq; Fy) = % o= jlg a,dp + a,dg,
Co Co

then
9,
a_;’ - aFHzi £, o] + y{ Dy [ (5.13)
where
Dy o] = 0pa— [(0pH)E, a] (5.14)

and, as usual,
f

VH ([ 9,H 9,H
VH] O \|VH]P' [VH]? )

Proof. Consider a variation in the free parameter F;, — Fy + AF'. Then

s(xg; Fy + AF) :?g a(x; Fy + AF),

CAF
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where cp - is the deformed path through x,, due to AF'.

As in the previous proof, we seek a near identity transformation that takes ¢, to cx  up

to first order in AF'. As shown in subsection 5.2.2, the transformation

8H 3H
with VH

as above, satisfies these requirements.

Therefore

s(xg; Fy + AF) = yf a(x; Fy + AF) = yf a(x: Fy + AF) + O(AF?)
c T

AF F°Co

= % Tr(a(x; Fy + AF)) + O(AF?)

_ 7{ (a(x: Fy + AF)) + AF 7§ (0pH|, ~0p HE, a(x; Fy + AF)] + O(AF?)

Co

_ 7{ (a(x; Fy) +AF}§ g—g(x; Fy)

Co

+ AF@FH‘O% £, a(x; Fy)| — AF% [(0pH)E, a(x; Fy)] + O(AF?)

Co

§ or0+ 0pH|, § 1£.0] — § (@p8.

0

—8FH7£ %aFHfa faFa
:8FH?§O £, ] +j§ODF (o]

s(x; Fy) + AF + O(AF?).

Therefore

Applying eq. 5.12 and eq. 5.13 to the action integral

1
J—%%pdq,
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we get
1
VJ = %VH% [, pdq] (5.15a)
oJ 1 1
9 gaFHji [f, pdq] — %i{ [(OpH)E, pdq] . (5.15b)

It is easily verified that the above expressions are compatible with eq. 5.7 and eq. 5.9. We
will come across the one-forms and the path integrals that appear above so often that it is

reasonable to give them a name. Let us define

B =2r[f,pdq], (5.16a)
1
7= §itpdg = - ¢ (5.16b)
and

v = [(0pH)f, pdq] (5.17a)

1 1
G= 5§ OpM)E.pda] = - b (5.17b)

T Je, 2

As we shall show in the next section, 7' is the orbital period on the (p, ¢) plane, while G

is the ratio

w
G=-L,
w

where w is the orbital frequency on the (p, q) plane and w is the orbital frequency on the
(¢, F) plane. With these definitions in mind, the equations for the derivatives of the action

J become:
T
VJ=—VH (5.18a)
27
oJ T
= -0pH — G, (5.18b)

5.3.3 Calculating the derivatives of Action quantities

The Action Angle transform can be regarded as a mapping ® from the configuration manifold
U to the action manifold V,

¢:(pq,F)elU— (J,0,F)eV
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We use the coordinates (p, g, F') for points in the configuration space U and (J, 6, F') for
points in the action space V, fig. 5.2

Figure 5.2 The Action Angle transform ® as a mapping from the configuration manifold U to the
action manifold V. We use the coordinates (p, ¢, F') for points in U and (J, 6, F') for points in V.

We say that a function s : U — R is an action quantity, or an implicit integral of motion,
if s is constant along any orbitin U. Then forany s : U — R, thereis afunction S : V — R
so that S is independent of 6,i.e. S = S(J, F') and

s=0"5=5090.

By virtue of theorem 5.1.1, ds = d(®*S) = ®*(dS), so that, expanding the differentials

on both sides of the equation, we get

95 1o+ g+ 22 aF = o (8—de> + o (8—SdF) .

op dq oF oJ oF
But, 5 5 5
J J J
O*(dJ) =d® , = —d —d —dF
(dJ) 7= op P+aq Q+8F
and
O*(dF) = dF,
so that

bs  9s  Os oS\ 197 8] aJ 05
98 i+ a0+ 2 ar — (22 [ 00+ o+ 2L ar] 4+ (0+22) aF.
Sodp -+ Godat ( 8J> [6pdp+ Jda+ o ]+( )d
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Which means that,

ds <®*as> a7

ap aJ) op
0 (0907
dg 0J ) 0q
0s L,0SY\ 0J ,08
o= (v57) o (55 )
Or, equivalently
L08

(05 e (55)
OF dJ) OF oF )"

By substituting eqgs. 5.18 in the above, we get

T [ 08

Vs = o <q> §> VH (5.19a)
ds 08\ (T 0H L08

or = (*57) (zor —¢) * (*'57) 519

The meaning of the special path integrals 7" and G

If H(p,q, F) is the Hamiltonian in U and K (J, F') the Hamiltonian in V', the relation be-
tween them is
H=9K =Ko,

Then, from eq. 5.19a, we have

But, from eq. 5.18a, we have
T
VJ = Q—VH = VH%[f,pdq],
T

so that

OK\ T
H=(o"2) =
vi = (57)

2T ’
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from which we conclude that
(5.20)

But the derivative of the Hamiltonian K in Action Angle space with respect to the Action
J is equal to the orbital frequency w on the (p, q) plane and the expression

oK
— Ppr—
YA

should be interpreted as the frequency w expressed as a function on U. It then follows that

the explicit integral of motion

7= §lt.pdd =5 $ 5=

is indeed equal to the orbital period on the (p, g) plane.

Moreover, applying eq. 5.19b to the pair H and K, we get

(08 (L0 ) (w28

oF o0J 2w OF oF
10H *8K
—w<aa—F—G) t (‘I’ aF>
of oK

Again the derivative of the Hamiltonian K in Action Angle space with respect to the Action
F is equal to the orbital frequency w on the (¢, F') plane and the expression

0K
wp=® —,
F OF
should be interpreted as the frequency w expressed as a function on U. We have thus proved
our assertion that the explicit integral of motion
1

G=—
2T i

is equal to the ratio of the orbital frequencies wy and w, i.e.

w
G=-L.
w
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Finally, we have succeeded in expressing the first derivatives of the Hamiltonian K in

Action Space V' by through path integrals in configuration space U ,

GK 27T 47T2
oK w
¢r—— 9F wG = o . (5.21b)

The quantity G is for dynamical systems the equivalent of the safety factor ¢ for Tokamak
equilibria. Obviously, GG is an important quantity for the study of the behaviour of the dy-
namic system near resonances. There is only one more gap to fill before we are able to
calculate the Hessian matrix of K, i.e. the matrix of second derivatives, in a similar manner.
This is the subject of the next paragraph.

The derivatives of explicit integrals of motion in Action Space

Let us now apply eqns 5.19 to the special case when s is an explicit integral of motion, i.e.

S:%Oé.
c

0

Equating the right hand sides of eq. 5.19a and eq. 5.12 we get

BSN .
Vs = <<1> 8J> VH_VH;{[f,a],

from which we infer that the derivative of any explicit integral of motion with respect to J

can be calculated by means of two other integrals of motion, i.e.

L0S
¢ ﬁ—wl{ if,al. (5.22)

0

Similarly we can compute 05, by equating the right hand sides of eq. 5.19band eq. 5.13,

so that
0s 0S 10H L 08
aF (‘1’ )(aa—F—G>+<‘D 5F)
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which gives, by means of eq. 5.22

o(s55)+ (v55) - o0

(@%%):G(@%?yﬁfDFm. (5.23)

or

The Hessian of K

We are now ready to calculate the second derivatives of the Hamiltonian in Action space V.
By construction, the first derivatives 0 ;K and 0K are both Action quantities, in that they
are independent of the angle coordinate 6, so that they remain constant along the orbit. This
means that the formulas in eqns 5.19 hold for the first derivatives 0 ;K and 0, K as well.

Take
0K

S =—
OF’
so that

Sy
s OF

On the one hand we know from eq. 5.21b that

2T
= wG = =G,
s=w -
so that 5 5
s s
Vs =—VG — —=GVT.
T T2
This, combined with the definitions
1
G=—
2 "

and

1
T=—
2%7505

as explicit integrals of motion and the application of the formula in 5.12eq.

1
VG—%VHfmﬂ7

1
VT:%VHfmm,
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lead to
27r 1 27 G
H
Vs= 2 v 7§ Ryl 75

-2 [75 )~ § it.6] vH.

On the other hand, we know from eq. 5.19a that

1 oS
=~ (22 ) VH.
Vs w( 8J>v

Equating the above, we get

(e ) v =2 [fea-F fuea)]va

v $iea)-7 $iea) | (524

Similarly we have on one hand

or

83_27r8G 2w 0T 8G w 0T

OF  TOF T2 0F “0F T OF

along with
or
H D
oF _ 2n Or 74 }g r
— = —0pH f — @ D
6F 27TaF 750[77]4'277?50 7]
so that

AN [75 [fm]—%gf £.5

0 ychF M_g}éDF [5]]
OnH oS w
:F_<q) >

i § prbl =7 ¢ el ]

On the other hand, from eq. 5.19b we have

ds LOS\ [0pH L 08
OF (q)é’J)( w >+(I)8F

w
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So that, equating the above, we get

08 9S\ 1 G
vt =c (o g)qﬁmm—ﬁyimm,

or

LO2K LK\ 1 G
@W—G(‘b aFaJ)W}fODFM—ﬁ?iDFW ©2)

Finally, the second derivative of K with respect to .JJ can be calculated by taking

2
S=WwW = ——.
T
and, choosing T so that T = T*. Therefore
g
T
and .
oS 2w oT
oJ  T20J°
or, equivalently
L0827 0T
oJ  T20J°

Using the definition of 7" as an explicit integral of motion eq. 5.16b, as well as the formula

for the J-derivative of explicit integrals of motion in Action Space, eq. 5.22, the equation

08  2m 1l B w3

2 3
g K ?{[f,ﬁ]. (5.26)

above becomes

or

5.4 Dynamics near resonances

Here we follow the exposition in Lichtenberg and Lieberman (Lichtenberg and Lieberman,
1992).
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Assume a Hamiltonian in Action Space with a small perturbation term
H = HO(J7 F) + EHl(J7 07 F7 ¢)

Suppose that for some (.J, F') there is a resonance between

0H,
w=—7—
0J
and
0H,
w = —
FoF
so that
YF _ C, 7, § co-prime integers
w oS

Then the canonical perturbation methods we employ when we are away from resonances
fail, due to small denominators. We can however remove the resonance by applying the
following strategy. Let us choose a transform generator

Foy=(rf — s¢)J + ¢F

so that
0F 5 A
J 9 = rJ
0F o ~ ~
F = — [
96 sJ
= 8‘9:2 =71l —s¢
oJ
and
~ 09,
The Jacobian of the transformation is
o1 01
0J OF r 0
— = 5.27
ol .

8J OF
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while for the Hessian, we have in Einstein notation

0’H, 02,0z, 0*H,

02,02, 0%, 0%; 02,02,

or, in matrix form
Hess(H,y(J, F)) = g7 - Hess(Hy(J, F)) - 4,
which means

Hess( H, j,ﬁ =
( ol >> rH;p—sHpp Hpp

(5.28)

In the new coordinates the Hamiltonian takes the form
}A[ = ETO(j7 ﬁ) + EHl(j7 éa F? (g)

Near the resonance 6 ~ 0, which means that the new angle 6 changes much more slowly
than the angle gg = ¢. We can use this time scale separation to average out the fast angle
contribution to the perturbation component, so that the Hamiltonian becomes independent

of qg up to first order and the associated action Fisan integral of motion, i.e.
- s
F=F ——-J = const. (5.29)
T

Notice that for s > r or r > s eq. 5.29 becomes J = const and F' = const respectively.
Hence the only resonances of importance for modifying the invariants are those with low
harmonic numbers s and r. The actual averaging can be carried out by Fourier expanding

the perturbation as

H, = Z H, ,,expli(l0 + me)]
I,m

=S ol )

and dropping any terms that depend on qg to get

H~H =Y H exp[—ipd].

—bpT,ps
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We also choose to neglect all terms with |p| > 1, since the Fourier coefficients generally fall
off rapidly. This significantly simplifies /1, which becomes

Hy~H ~Hy,+H_,, exp[—if] + H, explif]
— Hog -+ [H_ | exp[—i(0 — 0)) + [H, _,| expli(d — )]
= HO,O + 2‘H—r,s‘ COS(@ _ 90)7

where
6y = arg(H_, ).

Finally, we end up with a much simplified Hamiltonian

— ~

H = H0<j7 F) + 6IJO,O(‘}? F) + 26|H7T,s(jv F>| COS(é— 90)7 (530)

with F' = const. Hence H is effectively a single degree Hamiltonian. The stationary points
are determined by - -
0H OH
— =0 and =~ =0 (5.31)
00 oJ

The first condition gives the éres coordinates of the resonances, which must satisfy

~

—2e[H_, (J, F)|sin(f,e; — 6,), (5.32)
implying that
0., = b, (5.33)
or
0. =0, +m (5.34)

The second condition then becomes

] OH, o|H
8[{0 +e—90 4 9¢ | 0
oJ oJ oJ

=0,

with the positive sing corresponding to @res = 0, and the negative sign to éres =0y +7. To

lowest order this reproduces the resonance condition, i.e.

oH,

0 —,
0.J
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or
0H, 0H,

T s =7rw—Sswr = 0.
o0J OF E
From now on we will restrict ourselves to the case where the resonance condition is met
only locally for particular values of ./ and F'. This is called accidental degeneracy and has
different qualitative features that intrinsic degeneracy, for which the resonance condition
is satisfied for a local neighbourhood in J and F'. In other words, we assume that a small

excursion from the resonance point, takes us away from resonance, or equivalently that

8%H,
d.J2

£0.

The perturbation terms cause a small displacement of the fixed points away from the
resonance condition. We can estimate a first order correction jc of the fixed point positions,

by expanding the zero order term, i.e.

2f . OH O|H_,
8A0Jc+6 09 4 2¢ Aol g
dJ? oJ aJ
~ —1
. 2H 0H, 0|H_,
J. = —¢ 0" Hy { 09 42 | ;']:» (5.35)
8.J2 8.J oJ
. € OHyo  O|H_, s!}
J, =— U Il i (5.36)
r2H;; + s(sHpp — 2rH ;) { oJ oJ

with

J, =rlJ, (5.37)
and

F, = —sl, (5.38)

The displacement of the stationary points away from the resonance surface takes place tan-
gentially to the surface H, = const, due to the relation of the integers r and s with the partial
derivatives of the unperturbed Hamiltonian at the resonance location.

Inspection of eq. 5.30 shows that in the excursions in J are of order , J = O(eH_, ,),
while the excursions in ¢ are of zeroeth order, so we can expand about the stationary point
in .J but not in .

We have

Hy(J,F) = H,

0,res

H. - 10%H 2
+a—PAJ+—a AO(AJ) .
o.J 2 9.J2




5.4 Dynamics near resonances 111

The linear term ~
0H, , -
2AJ

oJ

is zero, due to the resonance condition and we can drop the constant term H, ... The

resulting Hamiltonian, governing the motion near the resonance is

AH = %M(Aj)Z — K cos(6 —0,), (5.39)
with A

M = % =r2H ,,; + s(sHpp — 2rH ;1) (5.40)
and

K =—2H_, (], F)|. (5.41)

It follows that the motion near the resonance is governed by the pendulum Hamiltonian. The

stable fixed point is

i 6, M <0
Op+m M >0

The effective mass of the pendulum M, = | M| is determined by the second derivatives of
the unperturbed Hamiltonian on the location of the resonance and on the resonance ratio r/s.
The maximum excursion from the resonance curve is small, occurs at the separatrix and is

given by half the separatrix width A.J__ . This occurs for AH = K and 0 = 6, so that
12 2ANH_, (], P) 2
= 2¢1/2 BLELA

r2H;; + s(sHpp — 2rH ;)

~ K
A =2|— 542
Jmax ‘ M ( )

Since AJ,,, = O(e!/?) the excursion in action due to libration around the fixed points
usually dominates over the displacement of the fixed point from the resonance jc due to
finite perturbation strength, which is of order O(¢). Referring back to the original Action
space, near the resonance, the perturbation gives rise to a change in the topology of the phase
space orbits, with the creation of a separatrix centerd around the fixed points and extending
on the tangential plane of the H, = const. surface, with half widths

~ r’K 1/2
AJ . =|r|AT =2—
Jmax |T| Jmax M
O T
= 2¢l1/2 : (5.43)

r?H;;+ s(sHpp —2rH ;)
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and

~ A~ 1/2
2s*|H_, ,(J, F)|

r?H;;+ s(sHpp — 2rH ;)

(5.44)

5.4.1 The Special Case of a Monochromatic Perturbation in the ignor-

able angle

A ¢-monochromatic perturbation is the special perturbation with a single harmonic m in the

¢ direction, with Fourier representation

H, = ; k; H, exp|i(10 + k)]

- Z Z Hl’kexp[%(lé—k (sl + k?T)Q;)]
l

k=+m

The first order adiabatic terms are those with

sl = —kr =Fmr

or

=1 (5.45)
S

Since we have prescribed r and s to be co-prime integers, eq. 5.45 can be satisfied only if s

divides m, or

m = ps, p integer. (5.46)

Then eq. 5.45 gives
l=Fpr (547)

If there is no such p, i.e. if s does not divide m, then the perturbation is non-resonant and
no first order islands are formed on the resonance curve. When the resonance condition
eq. 5.46 is satisfied, we can follow the footsteps of the previous paragraph, only we now
cannot choose p = 1.

As before, we need to determine the adiabatic component of the perturbation, which is

ﬁl = H—pr,m CXp[—Zpé] + Hpr,—m CXp[—f—Zpé]
= 2’H—pr,m’ COS(p(é — 90))a
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with .
0, = —arg(H )
0 » ( )

—pr,m

Near the resonance, the motion is governed by the Hamiltonian

AH = %M(Aj)Q — K cos(p(0—6,)), (5.48)
with )

M = % =12H,; ;4 s(sHpp — 2rH ;) (5.49)
as before and

K=—2]H_,, .(J,F). (5.50)

This differs from the standard Hamiltonian of the general case in two places. First the pres-
ence of p as a multiplying constant in the argument of the potential in eq. 5.48, which has
no effect other than increasing the number of fixed points. Second in specifying the rele-
vant Fourier amplitude that determines /. Other than this, all the previous conclusions hold.
Namely, the maximum excursion in J is determined by the half width of the pendulum sep-

aratrix, which is given by

N S oA ()|
Adu =277 = 2¢l/2 TH dk (5.51)
r?H;;+ s(sHpp —2rH;p)
which in the original Actions translates to
) 25 1/2
AJ .. =|r|AJ .. =2
max ’r’ max M
wm (B |
= 2¢!/2 5 —promy (5.52)
r2H;;+ s(sHpp —2rH ;)
and
A 2K 1/2
AF1max = |S|A‘Jmax =2 W
- A 1/2
2
_ 261/2 2s |prr,m(‘]7 F)| (553)
r?H;;+ s(sHpp —2rH ;)
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5.5 Computing the orbital spectrum

In this section we will consider perturbations of the general form
H, = P(p,q)ei™? + cc. (5.54)

where cc. stands for complex conjugate. The choice of such general form has a clear physical
meaning. It represents a perturbation with a monochromatic component in the ¢ “toroidal”
direction modulated by prescribed profile P(p, q) in the (p, ¢) ’poloidal” plane. In the Action

Angle coordinates, [, can be written as

Hy =" A,(J, F)elm0mé) + cc. (5.55)

We will demonstrate how to compute the amplitudes A, (J, F') the of Fourier series in
eq. 5.55 from the prescribed from in eq. 5.54.

The trick is to keep ¢ fixed and treat H. ; as a function of only the poloidal angle . Then

Hyl = A,emfme 3 Anemtme
n n
= Z (Aneimci + Aine—im&) oind

=> C,(¢)e™,
where

(¢) = Ape™? 4 A7 e7 e,

The Fourier amplitudes C,, can be numerically estimated by means of a DFT on a sufficiently
large number of samples of the projection of a closed orbit on the ¢ = const. surface. Per-
forming this operation twice, once for ¢ = 0 and once for ¢ = A¢, we can determine the
Fourier amplitudes A,, in eq. 5.55 by

C ) eimAJ) - C

A, = nyezimAé _1 - (5.56)

with

and
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Ineq. 5.56 the value of A¢ must be chosen so that the denominator does not become so small
as to be a threat for numerical accuracy. This means that mA¢ must not come too close to
an integer multiple of 27r. Since our domain of interest is for small non-zero integers m, this
can be easily satisfied by taking A¢ equal to a small integer. In our codes, we take A¢ = 1,
which is a sufficiently good choice for our purposes, although it should be noted that it may
not be adequate when Fourier amplitudes of very high harmonic number need to be specified.
Therefore we have

4, = G = Cug (5.57)
" e2im — 1
with
Cn,l = Cn<1)
and
Cho = Cy(0)

5.6 Application: The extended pendulum

In this section we make use of the knowledge acquired in this chapter, to study the dynamic
behaviour of the extended pendulum. The Hamiltonian of this system is similar to the simple
pendulum, but with an extra degree of freedom, whose canonical momentum F’ acts like the

amplitude of the restoring force.

H(p,q,F) = %MpQ — Fcosq (5.58)
Associated with F' is the ignorable canonical position ¢, a periodic variable with period
equal to 2w. Of course, the extended pendulum phase space on a plane of positive F' =
const. (fig. 5.3) looks exactly like the phase space of the simple pendulum. At £, = F',
two marginal orbit curves emerge from the X-points located at ¢ = 4. These form the
separatrix, which separates the phase space into three regions, each of which is determined

by the topology of the orbits contained within. For small energies, Ey;, < E,, the orbits are

SX 2

bound around the O-point at the axes origin. For large enough energies £, > E,, there

rot SX?
are two kinds of free orbits moving in opposite direction. When F' < 0, the O-point and the

X-point exchange position, but the topology of the phase space remains unchanged.

The extended pendulum is perhaps one of the most complex dynamic systems for which
there is a known analytic solution for the Action Angle transform. Assuming F' > 0, the
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Figure 5.3 The Extended Pendulum phase space on a surface of constant F' > 0.

action is given by

J=R— , (5.59)
@ EE(Ffl), k > 1, rotation

8 {é’(/{) — (1—k*)X(k), k<1, libration
2

where
1/2

<=3 (1:})] 7
n= (1)

with X and & the complete elliptic integrals

_[* d
.%(K'/)_/O (1—m2sin2¢)1/27

E(k) = /2 (1 — K2sin’ ¢)'/2dg.
0

Due to difference in orbit topology on the two sides of the separatrix, the action is a
discontinuous function of the energy. This is demonstrated in fig. 5.4, in which there is a
conspicuous drop of 50% when the energy crosses the marginal value E, = F'. This reflects
the fact that, as we have repeatedly stated, there can be no single continuous Action Angle

transform
D:(p,q) €U —(J,0) €V,

when the domain U contains a separatrix. In order to treat the dynamic system in action

angle coordinates, we need to treat separately each continent bound by a separatrix. In what
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J

sx,lib

E'Jsx,rot

E

oy T

Figure 5.4 The extended pendulum Action as a function of the energy for constant /' > 0. The
discontinuity at the separatrix energy L, = I is due to the different topology of orbits on either
sides of the separatrix.

follows, unless otherwise stated, we shall limit our analysis to the libration continent defined
by FE < E, = F.

Moreover, although there is indeed a closed analytic expression for J as a function of the
energy, i.e. J as a function of the Hamiltonian H , the equation relating the two, eq. 5.58, is
transcendental, and it would be impractical, if not impossible to invert. In other words, this
is a case, where J(H, F) is known, but K (.J, F') is not. It is therefore a perfect test case for
the theory we developed in the previous sections.

5.6.1 Polynomial Fitting of H(J, I)

Although the K (.J, F') is not known in a closed analytic form, it can be modelled by sampling
J(H, F) for a sufficiently large number of samples and then fitting a 2D polynomial of

sufficient degree, so as to obtain an expression of the form
K(J,F)~ P,(J, F),

where P, is a 2D polynomial of n X n degree. Then, we can approximate the derivatives of

the Hamiltonian by the derivatives of P,,.

K 9°P,
02,0z, - 02,0z

What is the point of path integral theory, if we can make do with polynomial fitting? This
will be answered at the end of this subsection.
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Figure 5.5 . The Hamiltonian K (.J, F') on a subset of the libration continent in action space. Top:
Exact calculation of K (.J, F') by sampling eq. 5.59 for an extended pendulum with unit mass M = 1.
Bottom: The relative error due to the approximation of K with a 10 x 10 degree polynomial. Apart
from an apparent localized glitch at K = 0, the approximation is almost perfect.
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In what follows, we test the method above, by applying it on a set of 1600 samples on
the libration continent of a unit mass pendulum, M = 1, for F' € [0.1, 1]. The discussion
below is not intended as an exhaustive study, but as a test case to illustrate the arguments

made so far.

On the F' > 0 action semi-plane, the libration continent is the subset
Upp : (J, F), F>0,0 < J < J 3 (F)),

where Jg, i, (F7) is given by the libration branch of eq. 5.59, for x — 1. The Hamiltonian
K is a very smooth function of the actions, as can be seen in fig. 5.5. This should make it
easy to fit with a low degree polynomial, if it where not for the sharp edges of the domain
Uy, and our need to approximate the second derivatives of K with sufficient accuracy.

As expected, a 10"-degree polynomial P fits the samples of K almost perfectly, apart
from an artificial glitch of about 1% error, at K = 0, where the relative error is ill-defined
(see fig. 5.5). On the other hand, the second derivative is much harder to approximate, even

’Pyy

OF?

calculated by means of eq. 5.25, we get a relative error of the order of

when K has such smooth dependence on the action variables. Comparing , to the
2

t value of —
exact value o O

2 b
10% inside the sampling domain, which becomes much larger at the edges, as can be seen

clearly in fig. 5.6.

For polynomials of ”small” degree n, the quality of the approximation of the second
order derivative, seems to improved with increasing n, see fig. 5.7, but of course this trend
does not go on ad infinitum, see fig. 5.8. It follows that there is some optimal polynomial,

but it seems very hard to determine what that is a priori.

Somewhat counter intuitively, polynomial fitting is not a trivial task, even in this example
of particularly smooth functions. Comparison with path integral calculation is the only direct
way of estimating the quality of the approximation of the second order derivatives. However,
this is not the strongest argument in favour of path integral theory. The only reason we were
able to use polynomial fitting in the first place, is that we already had a trivial model for the
topological skeleton of the dynamics, namely £ < F' for libration and £/ > F’ for rotation.
When the topological skeleton is not known a priori, which is usually the case, path integral

theory is our only choice.
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0.2

Figure 5.6 . Exact and approximate calculation of the second order derivatives of K(.J, F'). Top:
Exact calculation of the second derivative of K with respect to F' in the libration continent for an
extended pendulum with unit mass M = 1. The value grows towards negative infinity near the
separatrix. Bottom: The relative error due to polynomial approximation of the same derivative. The

approximation was done with a 10 x 10 degree polynomial. Even though K (J, F’) is very smooth,
the relative error becomes significant, especially at the edges.
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0.2

0.2

Figure 5.7 Effect of the degree of the polynomial model P, ,,, for "small” nn. From top to bottom,
left to right. The relative error in the estimation of the second derivative for n ranging from 5 to 10.
The approximation improves as n increases. The dynamic parameters are kept the same as in fig. 5.6
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Figure 5.8 Effect of the degree of the polynomial model P,
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n.n» for “large” n. From top to bottom,

left to right. The relative error in the estimation of the second derivative for n ranging from 25 to 30.
There is no clear trend in the quality of the approximation as n increases, although some values lead
to better performance than others. The dynamic parameters are kept the same as in fig. 5.6
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5.6.2 Predicting the transition to deterministic chaos.

We now turn to the analysis of the perturbed extended pendulum. Assuming a time indepen-
dent perturbation of the form

H, = Acos(ng + m¢),
the Hamiltonian of the perturbed system is

1
H=H,+H, = §Mp2 — Fcosq+ Acos(ng +ma).

By writing the Hamiltonian above in Action Angle variables,

K(J,0,F,¢)=Ky(J, F) + Z Apymei(PGer‘Z;) + Z Ay, F)ei(pefmq;)
P p

we can see clearly that the perturbation we have chosen is monochromatic in the angle vari-
able ¢ but not in the angle variable 6.

The appearance of the perturbation destroys the invariance of the Angles J and F', but,
since the perturbation is time independent, the Hamiltonian is conserved and the perturbed
orbits lie on the submanifold I = const. For small enough amplitudes, there exist Action
variables J and F of the perturbed Hamiltonian, so that

K(J,0,F,¢) = K(J,F).

Their relation to the Action Angle variables of the unperturbed system can in principle be ap-
proximated to arbitrarily high order by perturbation methods discussed in previous chapters.
When the perturbation amplitude becomes larger than some critical value, the integrals of
motion .J and F cease to exist. Then the orbits cover densely a finite subset of the H = const.
submanifold and the motion becomes chaotic.

To predict the perturbation amplitude in which we have transition to chaos, we make use
of the Chirikov criterion, which dictates that chaos occurs when the widths of two neigh-

bouring first order resonances overlap. The first order resonances occur when

r .
=< r, S coprimes,

-

G

&

but, as we saw in subsec. 5.4.1, only those ratios for which s divides m are relevant.
We shall now apply the techniques we developed in the previous sections to analyse

two qualitatively distinct cases. The deeply trapped and the weakly trapped orbits. For
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demonstration purposes, we choose to limit ourselves to specific perturbation parameters.

From now on, we choose n = —5 and m = 4 so that the perturbation becomes
H, = Acos(4¢ — 5q).

The first order resonances will occur at s = [1,...,4]. We shall see that second order reso-

nances also appear at s = 8.

Deeply Trapped Orbits

The perturbed orbit under the time independent perturbation //; conserves the Hamiltonian
H . This means that to zeroeth order H, is also approximately conserved. In particular, orbits
with negative unperturbed energy H, will continue to have H, < 0. But, for F' > 0, these
orbits are always trapped and they will continue to be trapped ad infinitum, unless H, was

comparable to H; to begin with. This is evident from the fact that

H > —F cosq+ Acos(ng + mo) =
Fcosq > —H — Acos(ng +m¢) =
F>—-H-—A,

which means that for negative H or H, sufficiently far from 0, ' will always be positive
and the orbit will never cross the separatrix, which occurs at , = F'. On the other hand F’
may become arbitrarily large, trapping the particle closer and closer to the fixed point ¢ = 0.

For demonstration purposes, but with no loss of generality, we will examine the dynamics
for a range of increasing perturbation amplitudes on the invariant surface H = —0.5.

The small amplitude perturbation case, where the motion is regular almost everywhere
in phase space, arises for A = 4-1072 . On the left hand side of fig. 5.9 we have plotted the
unperturbed frequency ratio G for different values of F' on the invariant surface H = —0.5.
We have also marked the location of the resonances with low harmonic numbers, with r and
s taking small positive and negative values up to £5.

On the right hand side of fig. 5.9 we have plotted the corresponding Poincare surface
for A = 4 -1073. The islands formed due to low harmonic first order resonances are easily
distinguished. From top to bottom, they correspond to the ratios —5/4,—1/1,—3/4 and
—1/2.

The calculated widths of the first order resonances are marked by the horizontal solid
color bars. We have ignored the first order displacement of the fixed points from the res-

onance eq. 5.36, which depends on the derivatives of the perturbation with respect to the
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Actions. Since the resonance widths are too small for the resonances to overlap, the motion
is almost everywhere regular this patch of phase space, except for maybe the small areas
near the secondary separatrices formed at the edges of the chains of resonant islands. This is
in particular evident in the —3/4 resonant chain. Finally, if the reader pays close attention,
he or she may be able to notice the two chains of 8 small second order islands at —9/8 and
—7/8.

A somewhat different picture is painted when we double the perturbation amplitude to
A =8-1073. As seenin fig. 5.10, the calculated resonant widths for the —1/1 and the —3 /4
islands are still not big enough to satisfy the Chirikov criterion, yet a considerable portion
of phase space between the two resonances is undoubtedly chaotically connected. This is
clearly a case where Chirikov criterion overestimates the required conditions for the onset
of chaos. The most probable explanation is twofold. First, there is the —7/8 second order
resonance chain interposed between the first order chains. Second, there may be a finite first
order displacement of the island centers from the resonance lines, see eq 5.36, which we
have chosen to ignore. The combination of the two is probably what lowers the threshold
for the onset of chaos.

Among other noteworthy features, is the notable first order displacement of the —1/2
chain, the appearance —9/8 second order chain, as well as the appearance of a —2/3 chain.
Since 3 and 4 are obviously co-primes, the appearance of this chain is due to a first order
correction of the orbit frequencies.

The reasonable conclusion that *Chiricov criterion always overestimates the required
amplitude for the onset of chaos’, is far too hasty. As seen in fig. 5.11, which depicts the
dynamics for A = 2.2 - 1072, the calculated widths of the —5/4 and the —1/1 chains obvi-
ously overlap, but the two chains are not chaotically connected. However, this is probably
due to a considerable first order displacement of the —1/1 centers from the —1/1 resonance
level. One can see for themselves that the remaining —1/1 islands are not located in the cen-
ter of the corresponding coloured stripe that marks the calculated island position and width.
Including first order corrections for the resonant islands locations is a top priority for future

work.
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Weakly Trapped Orbits

When the energy is positive, the invariant submanifold A/ = const. contains a separatrix
and the topology of the perturbed orbits can change from trapped to passing. This makes
it a more interesting model for applications where one is concerned with determining the

conditions of confinement loss in a dynamic equilibrium.

The existence of the separatrix means that there is an area where wy goes to zero and
the ratio of the frequencies G = w,,/w, explodes to infinity. Near the separatrix there is an
area densely populated with resonances. Consequently, near the separatrix, there is almost
always some finite, although possibly very narrow, patch of phase space that exhibits chaotic

behaviour for arbitrarily small perturbation amplitudes.

For symmetry reasons, we will now examine the dynamics on the invariant surface H =
0.5. The separatrix occurs at
F.,, =H=05

sep

For F' < F.

sep?

the orbits are passing, while for ' > F,

sep

the orbits are weakly trapped.
Trapped orbits can become passing and vice-versa when the part of phase space from which

they originate becomes chaotically connected to the separatrix.

First we take A = 8 - 10~%, which is considerably smaller than the amplitudes we used
for the deeply trapped case, although such comparisons are hardly meaningful here. The
dynamics is depicted in fig. 5.12. The location of the separatrix is marked by a thick black
horizontal line in both the resonance chart on the left hand side, as well as the Poincare plot
on the right. The lowest harmonic resonances near the separatrix have been clearly marked,
but since they are located tightly on the F' axis, their labelling has been omitted. As predicted,
some of the resonances have already started to overlap, so that a chaotic ribbon around the

separatrix has already formed.

The low harmonic resonant islands of ratios —1/4,0/1,1/4 and 1/2 are easily distin-
guishable on the Poincare chart and their calculated widths are marked with the superim-
posed horizontal coloured ribbons. Notice on the resonance chart on the left how the pass-
ing orbit branch, with F' < F,,, approaches the assymptote of the separatrix horizontal
line much faster that the trapped orbit branch, with I* > I . This is the reason why the
passing 1/2 chain is already connected to the separatrix, while the trapped 1/2 chain is not.
A noteworthy characteristic is the passage of w; through zero without the existence of an
associated separatrix. This is a general characteristic of the class of Hamiltonians that we
study in this chapter, but it is also a feature that surprised us the first time we encountered
it. Finally, notice that since the harmonic content of the perturbation in the ¢ coordinate is

monochromatic with m = 4, no n/5 resonances appear on the Poincare plot.
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The effects of increasing the perturbation amplitude to A = 3 - 1073 are depicted in
fig. 5.13. We can easily see that more trapped orbits are now allowed to escape, as the 1/2
and 1/4 resonances are now connected to the separatrix. The 0/1 resonance is marginally
separated from the chaotic sea. At the top edge of the chaotic sea, just bellow the 0/1 chain,
one can see the traces of the second order 1/8 resonance.

To complete the picture, we have included fig. 5.14, which depicts the dynamics for
A = 4.5-1073. Now the 0/1 chain is also connected to the chaotic sea, but note how
the Chirikov criterion predicts that it should not, it’s width not yet being large enough for
resonance overlap. Again, we postulate that this is due to a combination of the effect of the
second order resonances in 1/8 with the fact that we have not accounted for the first order
displacement of the centers of the islands from the resonant levels. The latter effect seems
to be especially strong for the large but remote —1/4 islands.
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5.7 Conclusions

Path integral theory for orbital spectrum analysis bypasses the need to model the topological
skeleton of integrable dynamical systems. Although the functional form of the Hamiltonian
as a function of the Actions is in general not known, its Hessian and other quantities that are
required for canonical perturbation analysis can be calculated by appropriate path integrals.

We have demonstrated the validity of the techniques developed in the first part of this
chapter, by analysing the effect of perturbations on the extended pendulum Hamiltonian. In
the course of this analysis we have gained experience on the unexpected difficulties that arise
when performing perturbation analysis in this context, where quantities that one usually takes

for granted are sometimes surprisingly difficult to calculate.
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