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Περίληψη

Οι πολυπύρηνοι επεξεργαστές είναι ο βασικός δομικός λίθος όλων των σύγχρονων

υπολογιστικών συστημάτων. Παρ’ όλα τα οφέλη που παρέχει η δυνατότητα ταυτόχρονης

εκτέλεσης εφαρμογών, ο ανταγωνισμός που προκαλείται για κοινόχρηστους πόρους του

πολυεπεξεργαστή όπως η κρυφή μνήμη τελευταίου επιπέδου (Last Level Cache) και το

εύρος του διαύλου δεδομένων προς τη μνήμη είναι πολλές φορές καταστροφικός για την

επίδοση των εφαρμογών. Ειδικότερα, σε περιβάλλοντα υπολογιστικού νέφους (Cloud

Environments), ο πάροχος καλείται να εξασφαλίσει συγκεκριμένα και αυστηρά επίπε-

δα επίδοσης (Quality of Service goals) για συγκεκριμένες εφαρμογές, οδηγώντας στην

ανα-γκαστική εκτέλεση των τελευταίων σε απομονωμένα περιβάλλοντα για την αποφυγή

αντα-γωνισμού και την τελική υποχρησιμοποίηση του συστήματος.

Για το λόγο αυτό, το πρόβλημα του ανταγωνισμού για κοινόχρηστους πόρους σε σενά-

ρια συνεκτελέσεων έχει απασχολήσει εκτενώς την επιστημονική κοινότητα. Η παρούσα

εργασία επικεντρώνεται στην πρόβλεψη των καταστάσεων ανταγωνισμού αξιοποιώ-ντας

αποκλειστικά δεδομένα από μετρικές επίδοσης υλικού (hardware performance counters)

κατά την απομονωμένη εκτέλεση των εφαρμογών. Βασικό χαρακτηριστικό της πρόσεγγί-

σης μας είναι το ότι δεν απαιτεί τη συνεκτέλεση μιας εφαρμογής με άλλες ώστε να εντοπι-

στεί το εάν επηρεάζει την επίδοσή τους ή επηρεάζεται η ίδια, καθιστώντας την ιδανική για

κέντρα δεδομένων όπου δεν υπάρχει η πολυτέλεια εσκεμμένης πρόκλησης καταστάσεων

ανταγωνισμού.

Ο τελικός μας μηχανισμός περιλαμβάνει δύο ταξινομητές βασισμένους σε τεχνικές

μηχανικής μάθησης. Ο κάθε ταξινομητής λαμβάνει ως είσοδο ένα συγκεκριμένο σύνολο

μετρικών επίδοσης και κατηγοριοποιεί την εφαρμογή ως προς την ικανότητά της να επη-

ρεάζει την εκτέλεση άλλων εφαρμογών (noise) και την ευαισθησία της επίδοσής της όταν

συνεκτελείται με άλλους (sensitivity). Υποδεικνύουμε επίσης πώς μπορούν οι χαρακτηρι-

σμοί που αποδίδουμε στις εφαρμογές μπορούν να αξιοποιηθούν από έναν χρονοδρομολο-

γητή εφαρμογών (application scheduler) σε ένα περιβάλλον υπολογιστικού νέφους ώστε

να μεγιστοποιηθεί η επίδοση εφαρμογών υψηλής προτεραιότητας.

Λέξεις-Κλειδιά: ανταγωνισμός για κοινόχρηστους πόρους επεξεργαστή, χαρακτηρισμός

εφαρμογών, πρόβλεψη συμπεριφοράς, μετρικές επίδοσης υλικού, μηχανική μάθηση
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Abstract

Multiprocessors are the basic building block of all modern computing systems. De-

spite the benefits yielded by the ability to execute applications concurrently, the rivalry

between applications for the chip’s shared resources, such the Last Level Cache and the

memory bandwidth, can be detrimental to performance. Especially in commercial cloud

environments, the provider is obliged to abide by strict performance guarantees required

by certain applications (Quality of Service goals), leading to the isolated execution of the

latter in dedicated servers to avoid interference, and consequently to the system’s under-

utilization.

As a result, extensive research has been conducted on the problem of application in-

terference. This diploma thesis focuses on predicting cases where interference might be

present by utilizing exclusively data by low-level hardware performance counters gathered

during isolated application execution. The main characteristic of our approach is that it

does not require executing an application with co-runners to decide whether it will suffer

from or create contention, making it ideal for cloud environments, where subjecting an

application to artificial interference is prohibitive.

Our final mechanisms consists of two machine learning base multiclass classifiers.

Each classifier receives a s input a specific set of hardware performance counter values

and classifies the application in regards to its ability to cause interference (noise) and its

sensitivity to it. We also showcase how the labels we have assigned each application

can then be utilized by an application scheduler in a datacenter, in order to maximize the

performance of high-priority applications.

Keywords: interference, processor shared resources, application profiling, application

classification, hardware performance counters, machine learning
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Chapter 1

Εκτεταμένη Περίληψη

1.1 ΤοΠρόβλημα τουΑνταγωνισμού σεΠολυεπεξερ-

γαστικά Συστήματα

Οι πολυπύρηνοι επεξεργαστές, οι επεξεργαστές δηλαδή που σε μία μόνο πλακέτα

(chip) περιλαμβάνουν περισσότερους από έναν πυρήνες (CPU cores), αποτελούν τη βα-

σική πηγή υπολογιστικής δύναμης κάθε σύγχρονου υπολογιστικού συστήματος. Κάθε

πυρήνας έχει μία ιδιωτική επιπέδου 1 (Level 1, L1) και επιπέδου 2 (Level 2, L2) κρυφή

μνήμη (cache), ενώ οι υπόλοιποι πόροι του chip, όπως η κρυφή μνήμη τελευταίου επιπέ-

δου (Last Level Cache, LLC), το εύρος του διαύλου προς τη μνήμη (DRAM Bandwidth),

το δίκτυο διασύνδεσης και το εύρος ζώνης του δικτύου είναι κοινοί και διαμοιραζόμενοι

ανάμεσα στους πυρήνες, και κατ’ επέκταση ανάμεσα στις εφαρμογές που εκτελούνται σε

αυτούς.

Παρόλο που η ταυτόχρονη συνεκτέλεση πολλών εφαρμογών αποτελεί το βασικό πλε-

ονέκτημα ενός πολυεπεξεργαστή, ο ανταγωνισμός (interference) που δημιουργείται ανά-

μεσα στις εφαρμογές για τους κοινόχρηστους πόρους του chip οδηγεί στην σημαντικά

μειωμένη επίδοση των τελευταίων. Στην παρούσα διπλωματική εξετάζεται ο ανταγωνι-

σμός στους εξής δύο πόρους:

• LLC: Διαφορετικές εφαρμογές προσπελαύνουν διαφορετικές θέσεις μνήμης και

δεδομένα. Εφαρμογές που πραγματοποιούν συχνές προσβάσεις στην LLC ή/και

χρησιμοποιούν μεγάλο κομμάτι της μπορεί να εκτοπίσουν δεδομένα άλλων εφαρ-

μογών, ή να υποφέρουν οι ίδιες από συχνό εκτοπισμό των δεδομένων τους. Ο

συνεχόμενος ανταγωνισμός για χώρο στην LLC οδηγεί σε αυξημένα miss rates, τα

οποία υποβαθμίζουν την επίδοση και αυξάνουν την κατανάλωση ενέργειας.

• DRAM Bandwidth: Εφαρμογές που πραγματοποιούν πολλές και συχνές προσβά-

σεις στην μνήμη συναγωνίζονται μεταξύ τους για το διαθέσιμοMemoryBandwidth,

κυρίως ως αποτέλεσμα μοτίβου προσβάσεων που δεν επωφελείται από την ιεραρ-

χία κρυφών μνημών.
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Σε αυτή τη διπλωματική εργασία, θεωρούμε ότι οι εφαρμογές είναι μονονηματικές (έ-

να νήμα εκτέλεσης), και οι όροι ”εφαρμογή” και ”νήμα εκτέλεσης” χρησιμοποιούνται ως

ταυτόσημοι

1.2 Προσεγγίσεις στο Πρόβλημα του Ανταγωνισμού

Εξαιτίας της συνεπειών στην επίδοση που έχει ο ανταγωνισμός για τους κοινόχρη-

στους πόρους, έχει προταθεί ένας αριθμός μηχανισμών και λύσεων για την αντιμετώπισή

του. Γενικότερα, οι μηχανισμοί αυτοί στοχεύουν σε ένα ή περισσότερα από τα κάτω όσον

αφορά το interference:

1. Πρόληψη

2. Εντοπισμός και διαχωρισμός του από φυσιολογικές αυξομοιώσεις στο φόρτο εργα-

σίας (workload) των εφαρμογών ή την εναλλαγή φάσεων εκτέλεσης

3. Ελαχιστοποίησή του και των συνεπειών του

Η γενική ακολουθία γεγονότων όταν μία εφαρμογή υποβληθεί σε ένα σύστημα είναι

η εξής:

1. Άφιξη εφαρμογής

2. (Προαιρετικό) Εκτός σύνδεσης δημιουργία προφίλ εφαρμογής (offline profiling)

3. Χρονοδρομολόγηση εφαρμογής (τοποθέτηση σε server/core) και λήψη αποφάσεων

για το διαμοιρασμό πόρων

4. Έναρξη εκτέλεσης

5. (Προαιρετικό) Δημιουργία προφίλ εφαρμογής ταυτόχρονα με την εκτέλεσή της

(profiling concurrent to the execution)

6. (Προαιρετικό) Παρακολούθηση εκτέλεσης εφαρμογής (online monitoring) και α-

ναπροσαρμογή των αποφάσεων χρονοδρομολόγησης ή/και διαμοιρασμού πόρων

Τα βήματα 2,3,5,6 δίνουν στον σχεδιαστή του συστήματος ένα εύρος επιλογών, από

το αν θα τις συμπεριλάβει ή όχι (αν είναι σημειωμένες ως προαιρετικές) ως τις παρα-

μέτρους τις υλοποίησής τους (π.χ. τον αλγόριθμο χρονοδρομολόγησης). Μπορούμε να

διαχωρίσουμε τις μέχρι τώρα προσεγγίσεις ως προς τις τεχνικές που χρησιμοποιούν σε

δύο κατηγορίες:

• OnlineMonitoring κατά την συνεκτέλεση: Οι προτάσεις που εντάσσονται σε αυτή

την κατηγορία ([29], [17], [13]) δεν απαιτούν γνώση των χαρακτηριστικών της α-

πομονωμένης (”φυσιολογικής”) εκτέλεσης της εφαρμογής, και δεν περιλαμβάνουν

κάποιο profiling. Ως συνέπεια, το σύστημα δεν γνωρίζει τίποτα για την εφαρμογή
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πριν την τοποθέτησή της σε κάποιον production server μαζί με άλλες εφαρμογές.

Οι προσεγγίσεις αυτές στοχεύουν στον εντοπισμό του interference μέσω της online

συλλογής μετρικών για την επίδοση των εφαρμογών, και τη χρήση αυτών για τη

λήψη αποφάσεων σε περίπτωση που δεν ικανοποιούνται οι στόχοι επίδοσης που

έχουν τεθεί (QoS).

• Profiling: Σε αυτή την κατηγορία περιλαμβάνονται μηχανισμοί που συγκεντρώ-

νουν πληροφορίες σχετικά είτε με την απομονωμένη εκτέλεση μιας εφαρμογής,

είτε με την συνεκτέλεσή της με άλλες, συγκεκριμένες εφαρμογές, με σκοπό την

πρόβλεψη του interference και την μείωση των συνεπειών του. Οι μηχανισμοί

αυτοί απαιτούν ένα απομονωμένο, ελεγχόμενο περιβάλλον (isolated server), όπου

μπορεί να συλλεχθεί ο απαραίτητος αριθμός μετρήσεων για σενάρια απομονωμέ-

νης εκτέλεσης ή εσκεμμένης συνεκτέλεσης. Συνήθως συνδυάζονται με τη χρήση

online monitoring, ώστε οι μετρήσεις του τελευταίου να μπορούν να συγκριθούν με

αυτές της απομονωμένης εκτέλεσης και να εντοπιστεί το interference, καθώς και

με τεχνικές διαμοιρασμού πόρων. Οι τεχνικές profiling που έχουν προταθεί στη

βιβλιογραφία είναι οι εξής:

– Intrusive Micro-Benchmarks: Συνθετικά μετροπρογράμματα υποβάλλουν

την εφαρμογή σε συγκεκριμένη πίεση ως προς τους κοινούς πόρους, ώστε

το σύστημα να καταγράψει την αντίδραση της εφαρμογής, και να μπορεί να

προβλέψει το αποτέλεσμα σε περιπτώσεις που εφαρμογές σε σενάρια συνε-

κτέλεσης δημιουργήσουν αντίστοιχη πίεση ([4], [5]).

– Isolated Profiling: Καταγραφή της συμπεριφοράς μιας εφαρμογής όταν τρέ-

χει απομονωμένη ([30], [21], [27], [7]).

Κάθε μία από τις παραπάνω προσεγγίσεις και μηχανισμούς έχει συγκεκριμένα πλεο-

νεκτήματα και μειονεκτήματα. Πιο συγκεκριμένα, το μεγάλο μειονέκτημα του profiling

είναι ότι απαιτεί έναν ή περισσότερους απομονωμένους servers για να πραγματοποιηθεί,

με αποτέλεσμα να μειώνονται ουσιαστικά οι πόροι και η υπολογιστική δύναμη του συστή-

ματος. Επιπλέον, εάν διενεργείται πριν την τοποθέτηση μια εφαρμογής σε έναν production

server (a-priori), καθυστερεί τη χρονοδρομολόγηση της εφαρμογής, μια καθυστέρηση που

αυξάνει σημαντικά το κόστος λειτουργίας όσο αυξάνεται ο αριθμός των εφαρμογών προς

εκτέλεση. Στον αντίποδα, εάν ο μηχανισμός profiling σχεδιαστεί και βελτιστοποιηθεί

προσεχτικά, έχει τη δυνατότητα να ισοσταθμίσει τα προαναφερθέντα κόστη που επιφέ-

ρει. Σε περιβάλλοντα όπου δεκάδες εφαρμογές συνυπάρχουν σε ένα server, είναι πολύ

δύσκολο να εντοπιστεί εκείνη η οποία δημιουργεί τον ανταγωνισμό λόγω του μεγάλου α-

ριθμού αλληλεπιδράσεων. Ειδικότερα σε εμπορικά περιβάλλοντα υπολογιστικού νέφους,

όπου οι πελάτες χρεώνονται ανάλογα με τη διάρκεια των διαστημάτων όπου οι εφαρμογές

τους ικανοποιούν τους QoS στόχους τους, το interference μπορεί να επηρεάσει σημαντικά

το οικονομικό κέρδος του παρόχου. Σε αυτές τις περιπτώσεις, η δυνατότητα αποφυγής ή

ελαχιστοποίησης του interference πριν αυτό συμβεί αποτελεί σημαντικό πλεονέκτημα.

Η βασική πρόκληση για τις προτάσεις που δε χρησιμοποιούν profiling είναι ο ίδιος ο

εντοπισμός του interference, και ο διαχωρισμός του από φυσιολογικές εναλλαγές φάσης
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ή workload της εφαρμογής. Δεδομένου του ότι το σύστημα δε γνωρίζει τα χαρακτηριστι-

κά της απομονωμένης εκτέλεσης της εφαρμογής, και του ότι οι περισσότερες εφαρμογές

έχουν πολλαπλές φάσεις και δυναμικά workloads, ο εντοπισμός των περιπτώσεων όπου

η μείωση της επίδοσης είναι εξαιτίας ανταγωνισμού και όχι φυσιολογική κι αναμενόμενη

είναι ένα ιδιαίτερα απαιτητικό πρόβλημα. Αλγόριθμοι που εντοπίζουν τις φάσεις εκτέλε-

σης ([3], [20], [6]) μπορούν ενδεχομένως να χρησιμοποιηθούν, αλλά συνήθως εισάγουν

πολύ μεγάλο υπολογιστικό κόστος και αποφεύγονται.

Τέλος, μία άλλη παράμετρος που πρέπει ο σχεδιαστής να λάβει υπόψιν του είναι η

πολυπλοκότητα του συστήματος, και το επίπεδο στο οποίο λαμβάνει αποφάσεις. Συ-

στήματα που λειτουργούν σε ”χαμηλό” επίπεδο προσφέρουν υψηλά εξειδικευμένες και

εξατομικευμένες πολιτικές χρονοδρομολόγησης και διαμοιρασμού πόρων, σχεδιασμένες

για κάθε συγκεκριμένο σύνολο εφαρμογών. Μια τέτοια προσέγγιση πιθανότητα θα με-

γιστοποιούσε τη χρησιμοποίηση των πόρων, αλλά θα περιλάμβανε σημαντικά κόστη υ-

λοποίησης και χρήσης, καθώς θα απαιτούσε συχνή λήψη μεγάλου αριθμού μετρήσεων,

επηρεάζοντας την ίδια την επίδοση των εφαρμογών.

1.3 Κατηγοριοποίηση Εφαρμογών για την Πρόλη-

ψη Φαινομένων Ανταγωνισμού

1.3.1 Πειραματική Πλατφόρμα και Μετροπρογράμματα

Όλες οι εκτελέσεις μετροπρογραμμάτων που παρουσιάζονται στην παρούσα διπλω-

ματική εργασία έγιναν σε έναν επεξεργαστή Intel® Xeon® E5-2630 v4, του οποίου τα

χαρακτηριστικά φαίνονται στον Πίνακα 1.1.

Οικογένεια Επεξεργαστών Broadwell

Βασική Συχνότητα Επεξεργαστή 2.20 GHz

Αριθμός Πυρήνων 10

Αριθμός Νημάτων 20

L1 (data) Cache (ανά πυρήνα) 320 KB

L2 Cache (ανά πυρήνα) 2.5 MB

Last Level Cache (κοινή) 25 MB, 20-way

DRAM Bandwidth 68.3 GB/sec

Πίνακας 1.1: Χαρακτηριστικά του Επεξεργαστή Intel® Xeon® E5-2630 v4

Η οικογένεια επεξεργαστών στην οποία ανήκει ο Intel® Xeon® E5-2630 v4 περιλαμ-

βάνει την Intel Resource Director Technology (RDT), η οποία επιτρέπει στον χρήστη να
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παρακολουθεί την εκτέλεση διάφορων εφαρμογών (CacheMonitoring Technology, CMT)

μέσω μετρικών επίδοσης υλικού (PerformanceMonitoring Units, PMUs) και να ελέγχει το

διαμοιρασμό της LLC (Cache Allocation Technology, CAT). Για την λήψη των αναγκαίων

μετρήσεων, απενεργοποιήσαμε το hyperthreading στον επεξεργαστή (ώστε να μπορούν να

καταγραφούν έως και 8 PMUs ταυτόχρονα, σε αντίθεση με τα 4 PMUs που επιτρεπόταν

αρχικά), και τροποποιήσαμε κατάλληλα την διεπαφή που προσφέρει η Intel για την λήψη

μετρήσεων (PQoS API) ώστε να μπορεί να λαμβάνει τιμές για επιπλέον PMUs (πέραν των

4 που ήδη κάλυπτε). Επίσης, λάβαμε μετρήσεις και μέσω του εργαλείου linux perf, για

να επιβεβαιώσουμε ότι συμφωνούν με αυτές του PQoS και ότι μπορεί να χρησιμοποιηθεί

σαν εναλλακτική του. Τα αποτελέσματα από το linux perf ήταν στο μεγαλύτερο μέρος

τους παρόμοια με αυτά του PQoS, αλλά περιλάμβαναν περισσότερο θόρυβο, οδηγώντας

μας στην επιλογή του PQoS ως εργαλείου συλλογής μετρήσεων.

Τα μετροπρογράμματα (benchmarks) που χρησιμοποιήσαμε προέρχονται από τη σουί-

τα SPEC 2017, με την προσθήκη ενός μετροπρογράμματος από τη σουίτα Polybench 3.2

(jacobi-2d benchmark), καθώς και δύο άλλων μετροπρογραμμάτων (stream, hpcg). Ε-

πιπρόσθετα, χρησιμοποιήθηκε η σουίτα Alberta Workloads ([1]), η οποία περιλαμβάνει

επιπλέον inputs για κάποια από τα SPEC 2017 benchmarks. Συνολικά, χρησιμοποιήθηκαν

140 benchmarks.

1.3.2 Σενάρια Συνεκτέλεσης

Αρχικά, εκτελέσαμε κάθε εφαρμογή σε απομονωμένο περιβάλλον, ώστε να καταγρά-

ψουμε τα χαρακτηριστικά της κατά την ”φυσιολογική” εκτέλεση. Εν συνεχεία, δημιουρ-

γήσαμε και εκτελέσαμε σενάρια συνεκτελέσεων 2 εφαρμογών. Κάθε εφαρμογή ήταν μο-

νονηματική και προσκολλημένη σε έναν πυρήνα. Εάν μία εφαρμογή ολοκληρωνόταν πριν

την άλλη, ξαναξεκινούσε, μέχρι να ολοκληρωθούν και οι 2 τουλάχιστον μία φορά. Πο-

σοτικοποιήσαμε την επίδοση κάθε εφαρμογής χρησιμοποιώντας το IPC (Instructions Per

Cycle, Εντολές Ανά Κύκλο) και το συνολικό χρόνο εκτέλεσης, ενώ για την μέτρηση του

interference ορίσαμε τις μετρικές Sl (Slowdown) and Deg (Degradation) ως:

Sl =
tcoexec
talone

Deg =
ipcalone − ipccoexec

ipcalone
∗ 100%

όπου:

talone: συνολικός χρόνος απομονωμένης εκτέλεσης
tcoexec: συνολικός χρόνος εκτέλεσης στο σενάριο συνεκτέλεσης
ipcalone: ipc απομονωμένης εκτέλεσης
ipccoexec: ipc στο σενάριο συνεκτέλεσης

Μελετώντας διαφορετικά σενάρια συνεκτέλεσης, παρατηρήσαμε ότι συγκεκριμένες

εφαρμογές εμφανίζουν πάντα την ίδια συμπεριφορά ως προς το interference που δημιουρ-

γούν ή δέχονται, ανεξάρτητα της εφαρμογής με την οποία εκτελούνται. Για παράδειγμα,
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το stream δημιουργεί μείωση στην επίδοση οποιασδήποτε εφαρμογής με την οποία συ-

νεκτελείται, ενώ το xz_r εμφανίζει μειωμένη επίδοση με οποιαδήποτε εφαρμογή κι αν

συνεκτελεστεί. Σταθερές συμπεριφορές όπως οι παραπάνω αποτελούσαν ένδειξη για το

ότι το κατά πόσο μια εφαρμογή θα προκαλέσει ή θα επηρεαστεί από κάποια άλλη είναι

ένα εγγενές χαρακτηριστικό της εφαρμογής. Εάν αυτό το χαρακτηριστικό μπορεί να συ-

σχετιστεί με μετρικές υλικού που έχουν καταγραφεί κατά την απομονωμένη εκτέλεση,

τότε μπορεί κάποιος να ξέρει την συμπεριφορά της εφαρμογής ως προς το interference

χωρίς να της δημιουργήσει εσκεμμένο interference, και να λάβει αποφάσεις σχετικά με

την χρονοδρομολόγησή της και τους πόρους που θα της παραχωρηθούν.

1.3.3 Σχεδιασμός Αλγορίθμου Κατηγοριοποίησης

1.3.3.1 Σχεδιαστικές Επιλογές

Οι όροι noise (ή και contentiousness) και sensitivity χρησιμοποιούνται από τη βιβλιο-

γραφία για να περιγράψουν το πόσο μία εφαρμογή υποφέρει από ή μπορεί να δημιουρ-

γήσει μείωση επίδοσης σε σενάρια συνεκτέλεσης. Γενικά, μια εφαρμογή χαρακτηρίζεται

ως noisy εάν οδηγεί σε σημαντική μείωση της επίδοσης της συνεκτελούμενης εφαρμογής,

και quiet εάν την αφήνει ανεπηρέαστη. Αντίστοιχα, χαρακτηρίζεται ως sensitive εάν η

επίδοσή της μειώνεται ανεξάρτητα της συνεκτελούμενης εφαρμογής, και insensitive εάν

η επίδοσή της μένει σχεδόν πάντα σταθερή. Στο παρελθόν έχουν γίνει αρκετές προσπά-

θειες ([16], [28], [31], [26]) κατηγοριοποίησης των εφαρμογών λαμβάνοντας υπόψιν τα

παραπάνω χαρακτηριστικά, αλλά όλες εμφάνιζαν σημαντικούς περιορισμούς ως προς την

ακρίβεια και την απόδοση. Η προσέγγισή μας στόχευε στη δημιουργία ενός αλγόριθμου

κατηγοριοποίησης που θα είχε τα εξής χαρακτηριστικά:

• Προληπτικός (Preventive): Θα θέλαμε να μπορούμε να προλάβουμε τον ανταγω-

νισμού προτού συμβεί, όχι να τον αντιμετωπίσουμε αφού εμφανιστεί.

• Χαμηλού Κόστους (Lightweight): Οι τεχνικές που χρησιμοποιούμε θα πρέπει να

μην επιβαρύνουν την επίδοση των εφαρμογών, ούτε να απαιτούν διατήρηση μεγά-

λων βάσεων δεδομένων ή μοντέλων ή να έχουν υψηλό υπολογιστικό κόστος.

• Μη-Επεμβατικός (Non-Intrusive): Δε θα πρέπει να απαιτείται εκτέλεση σεναρίων

με εσκεμμένη πρόκληση interference.

Με βάση τα παραπάνω, επιλέξαμε μία αντίστροφη προσέγγιση. Πρώτα κατηγοριο-

ποιήσαμε τις εφαρμογές παρατηρώντας τον τρόπο που αλληλεπιδρούσαν με άλλες στα

σενάρια συνεκτέλεσης, και μετά προσπαθήσαμε να δούμε αν μετρικές που είχαν ληφθεί

στις απομονωμένες εκτελέσεις μπορούσαν να χρησιμοποιηθούν για να δικαιολογήσουν

τα μέλη κάθε κατηγορίας. Κάθε εφαρμογή χαρακτηρίστηκε ως προς το noise ως noisy,

potentially noisy (κάποιες φορές προκαλεί interference και κάποιες όχι, ανάλογα με την

εφαρμογή που συνεκτελείται) ή quiet, και ως προς το sensitivity ως sensitive,potentially

sensitive (κάποιες φορές εμφανίζει μειωμένη απόδοση λόγω interference και κάποιες όχι,

ανάλογα με την εφαρμογή που συνεκτελείται) ή insensitive. Η διαδικασία με την οποία

χαρακτηρίστηκαν οι εφαρμογές παρουσιάζεται αναλυτικά στο 4.5.1.
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1.3.3.2 Μοτίβα σε Μετρικές Επίδοσης Υλικού

Η πρώτη μας προσέγγιση ήταν να εξετάσουμε την περίπτωση κάποιες PMUs να μπο-

ρούν να υποδείξουν την κατηγορία στην οποία ανήκει μία εφαρμογή. Συγκεντρώσαμε

μετρήσεις για όλες τις εφαρμογές από 25 διαφορετικά hardware events σχετικά με την

ιεραρχία κρυφών μνημών και την κεντρική μνήμη, και προσπαθήσαμε να τις συσχετίσου-

με με τις διάφορες κατηγορίες, λαμβάνοντας υπόψιν τις παρατηρήσεις των Molka et al.

([19]) και Subrmanian et al. ([25]), καθώς και τις δικές μας παρατηρήσεις. Πέραν από

τις απευθείας μετρήσεις των PMUs, συνδυάσαμε διαφορετικές PMUs μεταξύ τους για να

δημιουργήσουμε νέες μετρικές (π.χ. misses per kilo instructions).

Δύο μετρικές που φάνηκαν να μπορούν να χρησιμοποιηθούν στην κατηγοριοποίηση

ήταν το LLC acpki (accesses per kilo isntructions) και το memory bandwidth. Εφαρμογές

που ήταν quiet και ταυτόχρονα insensitive εμφάνιζαν LLC acpki κοντά στη μονάδα, πιθα-

νότατα επειδή εφαρμογές που κάνουν λίγες προσβάσεις στην LLC δεν επηρεάζονται και

δεν επηρεάζουν τις προσβάσεις άλλων εφαρμογών. Αντίστοιχα, noisy εφαρμογές εμφάνι-

ζαν υψηλές τιμέςmemory bandwidth, γεγονός που οφείλεται στο ότι εάν μια εφαρμογή κά-

νει πολλές και συχνές προσβάσεις στη μνήμη, καταναλώνει όλο το διαθέσιμο bandwidth,

εμποδίζοντας έτσι την εκτέλεση των υπόλοιπων εφαρμογών. Μία επιπλέον μετρική που

εμφάνισε ενδιαφέρον οι είναι κύκλοι στους οποίους η εκτέλεση παύεται επειδή εκκρεμεί

κάποιο αίτημα προς κάποιο επίπεδο μνήμης (cache/memory stalls). Sensitive εφαρμογές

φάνηκε να έχουν γενικά περισσότερα stalls.

Αντίθετα, μετρικές που συχνά χρησιμοποιούνταν στη βιβλιογραφία, όπως το LLC

mpki (misses per kilo instructions) και το LLC miss rate (misses per accesses) δεν φά-

νηκαν να εμφανίζουν κάποιο διακριτό μοτίβο. Ακόμα και για τις μετρικές που πιθανώς

ακολουθούσαν κάποιο μοτίβο, όπως το LLC acpki, δεν μπορούσαμε να καθορίσουμε συ-

γκεκριμένες τιμές-κατώφλια που να διαχωρίζουν επαρκώς τις εφαρμογές.

1.3.3.3 Κατηγοριοποίηση με τον Αλγόριθμο K-Means

Η επόμενη προσέγγισή μας ήταν να χρησιμοποιήσουμε τον αλγόριθμο k-means ([12]),

έναν αλγόριθμο ο οποίος διαχωρίζει ένα σύνολο παρατηρήσεων σε k ομάδες (clusters)

χρησιμοποιώντας Ευκλείδειες αποστάσεις, με κάθε παρατήρηση να χαρακτηρίζεται από

ένα διάνυσμα τιμών (features) (όλες οι παρατηρήσεις έχουν ίδια features, αλλά καθεμία

έχει διαφορετικές τιμές για το καθένα). Στην περίπτωσή μας, κάθε εφαρμογή ήταν μία

παρατήρηση, και τα features ήταν διαφορετικές PMUs. Στόχος μας ήταν να βρούμε το

κατάλληλο σύνολο features ώστε τα clusters που θα προέκυπταν να ήταν ίδια με αυτά

που είχαμε ήδη δημιουργήσει εποπτικά. Η διαδικασία που ακολουθήθηκε περιγράφεται

στο 4.5.3. Ο k-means κατάφερε σε κάποιες περιπτώσεις, όπως αυτή της κλάσης noisy, να

δημιουργήσει cluster παρόμοια με τα ζητούμενα, αλλά στην πλειοψηφία των περιπτώσεων

απέτυχε. Η αποτυχία του αυτή οφείλεται στο ότι υποθέτει κλάσεις μη-επικαλυπτόμενες

στο χώρο και παρόμοιου μεγέθους, οι οποίες συνθήκες δεν ισχύουν στην περίπτωσή μας.
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1.4 Χαρακτηρισμός Εφαρμογών με τη Χρήση Μη-

χανικής Μάθησης

Τέλος, προσεγγίσαμε το πρόβλημα ως ένα πρόβλημα ταξινόμησης επιβλεπόμενης μη-

χανικής μάθησης (supervised machine learning classification problem). Στόχος μας ήταν

η δημιουργία δύο ταξινομητών (classifiers), ενός για το noise κι ενός για το sensitivity,

οι οποίοι θα λάμβαναν ένα διάνυσμα από features για κάθε εφαρμογή (διαφορετικό σύ-

νολο features για κάθε classifier) και θα την τοποθετούσαν στην αντίστοιχη κατηγορία.

Το μοντέλο που επιλέξαμε για τους classifiers είναι το SVM (Support Vector Machine).

Το συγκεκριμένο μοντέλο είναι εξαιρετικά κατάλληλο για μικρά datasets (140 εφαρμογές

στην περίπτωσή μας), καθώς δημιουργεί τα σύνορα μεταξύ των κλάσεων χρησιμοποιώ-

ντας μόνο τα στοιχεία κοντά στο υποψήφιο σύνορο (support vectors) και όχι όλα τα στοι-

χεία του dataset. Για τον ίδιο λόγο είναι και αρκετά ανθεκτικό σε outliers (στοιχεία με μη

ομαλή συμπεριφορά), ενώ είναι και ένας σχετικά χαμηλού κόστους μοντέλο ως προς την

εκπαίδευση και τη χρήση.

Το αρχικό dataset διαχωρίστηκε δύο ξεχωριστές φορές, ώστε να δημιουργηθεί ένα σύ-

νολο εκπαίδευσης (train set) και ένα σύνολο αξιολόγησης (test set) για τον κάθε classifier.

Τα train και test sets κατασκευάστηκαν με την τεχνική του stratified sampling, ώστε κάθε

set να έχει έναν αντιπροσωπευτικό αριθμό στοιχείων από κάθε κλάση (και άρα να είναι

μία όσο το δυνατόν πιο πιστή μικρογραφία του αρχικού dataset). Σε μεγαλύτερα datasets

συνήθως χρησιμοποιείται τυχαίο sampling για την δημιουργία των train και test sets, κα-

θώς ο πληθυσμός είναι τόσο μεγάλος που μια τυχαία επιλογή μπορεί να δημιουργήσει

αντιπροσωπευτικά δείγματα, αλλά το μέγεθος του dataset μας ήταν απαγορευτικό για να

εφαρμοστεί αποτελεσματικά μια τέτοια τεχνική.

Εν συνεχεία, εφαρμόσαμε στα train sets έναν αλγόριθμο κανονικοποίησης (standardi-

zation scaling), ώστε να μην επηρεαστούν οι classifiers από τις διαφορετικές τάξεις με-

γέθους των διάφορων features. Για να γίνει η επιλογή του συνόλου features για κάθε

classifier, χρησιμοποιήθηκε τόσο ένας αλγόριθμος αυτόματης επιλογής features (Recursive

Feature Elimination, RFE), όσο και οι παρατηρήσεις μας από τις προηγούμενες ενότητες.

Παρόλο που ο αλγόριθμος RFE επέλεξε σε κάποιες περιπτώσεις αναμενόμενα features,

όπως το memory bandwidth, κάποιες φορές κατέταξε ως δευτερεύοντες μετρικές που θα

περιμέναμε να είναι πρωτεύοντες, όπως το LLC acpki για τον sensitivity classifier. Εκ-

παιδεύσαμε πολλά διαφορετικά μοντέλα, με feature sets διαφορετικού μεγέθους και με

διαφορετικά features, για να επιλέξουμε τα καταλληλότερα (Πίνακας 1.2).

Μετά την εκπαίδευση, κάθε μοντέλο υποβλήθηκε σε μία διαδικασία βελτιστοποίη-

σης. Η υλοποίηση του SVM που χρησιμοποιήσαμε (python scikit-learn framework) πα-

ρέχει δύο παραμέτρους για τον έλεγχο της μορφής των συνόρων που θα δημιουργήσει ο

αλγόριθμος, τα C και gamma. Οι παράμετροι αυτοί μπορούν να καταστρατηγηθούν τόσο

για τη βελτίωση της επίδοσης του classifier, όσο και για τον έλεγχο του φαινομένου του

overfitting. Υπάρχουν περιπτώσεις όπου ένα μοντέλο μαθαίνει με τόση λεπτομέρεια το

train set, όπου κατασκευάζει ένα εξατομικευμένο σύνορο, με αποτέλεσμα να μην μπο-

ρεί να γενικευτεί σε νέα δεδομένα. Σε αυτή την περίπτωση γίνεται λόγος για overfitted

μοντέλο. Αντίθετα, όταν το σύνορο που δημιουργείται είναι υπερβολικά απλουστευμέ-
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συνολικά features που

εξετάστηκαν

LLC acpki, LLC mpki, LLC miss rate, DRAM

Bandwidth, total L2 pending miss stalls, total L2

pending miss stalls/total cycles, store buffer stalls

τελικό noise feature set LLC acpki, LLC mpki, LLC miss rate

τελικό sensitivity

feature set

LLC mpki, LLC acpki, DRAM bandwidth, total L2

pending miss stalls/total cycles

Πίνακας 1.2: Features που χρησιμοποιήθηκαν στους τελικούς classifiers

νο και δεν καταφέρνει να καταγράψει τα χαρακτηριστικά του πληθυσμού γίνεται λόγος

για underfitting. Και σε αυτή την περίπτωση, το μοντέλο δεν μπορεί να γενικευτεί επαρ-

κώς. Πέραν των C και gamma, έχουμε και τη δυνατότητα να εκπαιδεύσουμε μοντέλα με

διαφορετικούς μαθηματικούς πυρήνες (η συνάρτηση με βάση την οποία υπολογίζονται

τα σύνορα). Οι πυρήνες που εξετάστηκαν ήταν ο γραμμικός (linear) και ο gaussian. Για

τη διερεύνηση των παραμέτρων εφαρμόσαμε τη μέθοδο 10-fold cross validation με grid

search, και αξιολογήσαμε κάθε συνδυασμό με ένα σύνολο διαφορετικών μετρικών επίδο-

σης (recall, precision, f1 score). Το σύνηθες μέτρο επίδοσης για έναν classifier, η ακρίβεια

(accuracy), δεν μπορούσε να χρησιμοποιηθεί στην περίπτωσή μας, καθώς οι εφαρμογές

ήταν άνισα κατανεμημένες στις διάφορες κλάσεις.

Στο Σχήμα 1.1 παρουσιάζουμε ενδεικτικά τα scores ενός sensitivity classifier με συ-

γκεκριμένο feature set και gaussian πυρήνα, για διάφορες τιμές των παραμέτρων C και

gamma (ως μετρική χρησιμοποιείται το recall). Γενικά, χαμηλές τιμές C οδηγούν σε

underfitting (χαμηλό recall), ενώ υψηλότερες τιμές για τα C και gamma μπορεί να ο-

δηγήσουν σε overfitting. Παρατηρούμε επίσης ότι υπάρχουν συγκεκριμένοι συνδυασμοί

τιμών για τις παραμέτρους που επιτυγχάνουν πολύ καλύτερη επίδοση σε σχέση με την

πλειοψηφία. Σε κάθε περίπτωση, λόγω του πολύ μικρού μεγέθους του dataset μας, κάθε

αποτέλεσμα αντιμετωπίστηκε με μεγάλη προσοχή.

Μετά την ολοκλήρωση της παραπάνω διαδικασίας, επιλέξαμε τους 5 καλύτερους

noise και τους 5 καλύτερους sensitivity classifiers, οι οποίοι έπειτα αξιολογήθηκαν στα

αντίστοιχα test sets. Τα χαρακτηριστικά των δύο τελικών classifiers που χρησιμοποιή-

θηκαν παρουσιάζονται στον Πίνακα 1.3, ενώ τα scores του με βάση διάφορες μετρικές

παρατίθενται στον Πίνακα 1.4.

Παρατηρώντας την κατανομή των προβλέψεων των classifiers για τα test sets, συ-

μπεράναμε ότι εμφανιζόταν ένα bias προς τις κλάσεις potentially sensitive και potentially

noisy. Το φαινόμενο αυτό οφείλεται στο ότι οι κλάσεις αυτές περιέχουν περισσότερα

στοιχεία από τις υπόλοιπες, και άρα οι classifiers έχουν εκπαιδευτεί με περισσότερα στιγ-

μιότυπά τους και δίνουν μεγαλύτερη πιθανότητα σε ένα στοιχείο να ανήκει σε αυτές.

Το bias αυτό μπορεί να εξαλειφθεί σε σημαντικό βαθμό χρησιμοποιώντας κάποια τε-

χνική oversampling στο αρχικό dataset. Πειραματιστήκαμε με τον αλγόριθμο SMOTE

(Synthetic Minority Over-sampling TEchnique), ο οποίος εισάγει τεχνητά στοιχεία στις

νοητές ευθείες που ενώνουν τα προϋπάρχοντα στοιχεία του dataset. Εκπαιδεύοντας ξα-
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Σχήμα 1.1: Διερενηση παραμέτρων για έναν sensitivity classifier. Πολύ χαμηλές τιμές για το C

οδηγον σε underfitting.

Τύπος Classifier Feature Set Πυρήνας C Gamma

noise LLC mpki, LLC acpki, LLC miss

rate

gaussian 10 1

sensitivity LLC mpki, LLC acpki, DRAM

bandwidth, total L2 pending miss

stalls/total cycles

gaussian 2 1

Πίνακας 1.3: Χαρακτηριστικά τελικών noise και sensitivity classifiers

Τύπος Classifier noise sensitivity

Accuracy 0.8333 0.8095

Recall (macro) 0.8333 0.8095

Recall (micro) 0.8005 0.7787

F1 score (macro) 0.8322 0.8095

F1 score (micro) 0.8271 0.7902

Πίνακας 1.4: Scores των τελικών noise και sensitivity classifiers στο αντίστοιχο test set
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νά τα μοντέλα που επιλέξαμε παραπάνω στα νέα train sets, και αξιολογώντας τα στα νέα

test sets, παρατηρήσαμε ότι το bias είχε εξαφανιστεί, δίχως να επηρεαστούν σημαντικά

τα scores των classifiers.

1.5 Συμπεράσματα και Μελλοντικές Επεκτάσεις

Τα πειράματά μας και η τελική επίδοση των classifiers αποτελούν ενδείξεις υπέρ του

ότι το noise και το sensitivity είναι δύο χαρακτηριστικά που μπορούν να συσχετιστούν

με μετρικές επίδοσης υλικού και να εντοπιστούν στη συμπεριφορά μίας εφαρμογής κατά

την απομονωμένη της εκτέλεση. Τα αποτελέσματα αυτά πρέπει σε κάθε περίπτωση να

αντιμετωπιστούν με προσοχή, κυρίως λόγω του σχετικά μικρού συνόλου εφαρμογών που

μελετήθηκαν. Παραθέτουμε παρακάτω κάποιες προτάσεις για περαιτέρω επέκταση της

παρούσας διπλωματικής:

• Εμπλουτισμός του dataset με μεγαλύτερο αριθμό εφαρμογών, και με εφαρμογές

από διαφορετικά επιστημονικά πεδία (cloud computing, graph processing, machine

learning) για να αυξηθεί η επίδοση των classifiers.

• Πειραματισμός με διαφορετικούς τύπους μοντέλων μηχανικής μάθησης.

• Δημιουργία υποκλάσεων από τις υπάρχουσες κλάσεις οι οποίες θα περιγράφουν με

μεγαλύτερη ακρίβεια τη συμπεριφορά των εφαρμογών. Οι κλάσεις που ορίσαμε

είναι εξειδικευμένες σε βαθμό που να εξυπηρετεί το σκοπό της παρούσας διπλωμα-

τική εργασίας, αλλά εμφανίζουν εσωτερικά κάποια ετερογένεια (ειδικά οι κλάσεις

potentially noisy και potentially sensitive), η οποία θα μπορούσε να αξιοποιηθεί

για τη λήψη πιο εξατομικευμένων αποφάσεων κατά τη χρονοδρομολόγηση και το

διαμοιρασμό των πόρων.

• Μελέτη της επίδρασης στις κλάσεις του πολυνηματισμού (multithreading). Σε σε-

νάρια όπου συνεκτελούνται περισσότερα του ενός αντίγραφα (νήματα) μίας εφαρ-

μογής, τα χαρακτηριστικά δρουν ”αθροιστικά” μετατρέποντας για παράδειγμα μια

potentially noisy εφαρμογή σε noisy. Θα ήταν εξαιρετικά χρήσιμο για έναν χρο-

νοδρομολογητή να γνωρίζει σε ποιο βαθμό η συμπεριφορά των εφαρμογών κάθε

κλάσης ”μεγεθύνεται” ή αλλάζει όταν συνεκτελούνται πολλά νήματα μίας εφαρ-

μογής.
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Chapter 2

Introduction

2.1 Modern Multicore Systems

Undoubtedly, the creation of multiprocessors has played a significant role in the dra-

matic increase of the computational power modern computers possess. Before multicore

Central Processing Units (CPUs) made their appearance, a single-core system fostering

more than one applications would showcase significantly decreased performance, as each

application could only be scheduled after the previous one was completed. The issue of

the increasing number of applications that needed to be run concurrently was tackled both

on the software level, with the introduction of hyperthreading and the scheduling of mul-

tiple threads of execution in one physical core, and the hardware level, with attempts to

create systems with more than one CPUs. On the downside, the first solution could lead

to the system underperforming, if the added needs in resources for the threads sharing

a core surpass what the core can offer, whereas the second one introduces a noteworthy

overhead due to the necessary data transfer between different chips, balancing out the per-

formance gains yielded by the presence of multiple CPUs. Thus, the creation of a single

chip containing more than one processing cores was a revolution, decreasing the over-

head of communication between chips and providing multiple applications with sufficient

resources to function properly.

Although each core in a multiprocessor has some resources private to itself and thus

the thread running on it, several aspects of the chip are still shared between different con-

current threads. A typical example of a shared component is the Last Level Cache (LLC).

Caches are utilized to increase performance, as they keep frequently accessed data close

to the processor, minimizing in theory the need for time and energy consuming accesses to

the main, off-chip memory. Modern multicores usually have cache hierarchies consisting

both of private and shared caches. In the example below (Figure 2.1), each core has a

private, Level 1 (L1) and Level 2 (L2) cache, and all cores share a common Level 3 (L3 or

Last Level) cache. Except for caches, cores (and thus applications) also share the bus in-

terface that communicates with the main memory, making DRAM Bandwidth (the rate at

which a processor write to / reads frommemory) another crucial shared component. Other
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resources that could be affected by interference are the memory controllers, the network

bandwidth and the interconnection network, but this thesis focuses upon the LLC and the

DRAM Bandwidth.

Figure 2.1: A typical multiprocessor architecture

Note: In this thesis, the words ”application” and ”thread” are used interchangeably,

as all discussed applications are single-threaded.

2.2 The Interference Problem

Multiprocessor technology has definitely evolved since it was first introduced, and

has overcome many of the problems it used to face, but as the need for resource utilization

and the amount of applications and threads ran on a multiprocessor continue to increase,

several issues regarding resource sharing have been detected.

Shared resources significantly suffer from application interference as past bibliogra-

phy has showcased ([5],[10],[15],[24]), becoming a bottleneck for execution and affecting

the overall performance of the system. More specifically, we can detect two main ways

applications interfere with each other’s execution:

• LLC Contention: Different applications have different workloads and access dif-

ferent memory locations. As a result, applications that make frequent accesses to

the LLC and/or utilize a large portion of it might evict data stored there from other

applications, or suffer themselves from frequently evicted data. This phenomenon

is augmented in inclusive cache hierarchies, where all the data stored int the L1 and

L2 caches must also be stored in the LLC. This constant rivalry for cache space

leads to increased miss rates, which degrade performance and increase energy con-

sumption.

• DRAMBandwidth Contention: Applications that makemany and frequent requests

to the main memory compete with each other for the available Memory Bandwidth,

usually due to access patterns than do not benefit from cache hierarchies.
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Simply increasing the size of those resources to the extent of fully satisfying modern ap-

plication needs is unrealistic. As a result, a vast amount of research has been conducted to

resolve the interference issue, extending across the development stack. As no one solution

has proven to be a panacea, researchers continue to examine all possible approaches, as

the interference problem appears to need a multi-level, collaborative solution.

2.3 Resource Sharing in the Cloud

As multiprocessors are key to achieving high performance in environments with hun-

dreds of applications, they have become the dominant processor type in cloud environ-

ments. However, such environments are distinctively different from commercial comput-

ers, as the applications they serve as well as the performance restrictions they have exhibit

some unique characteristics.

Cloud applications are classified into two categories:

• Latency-Critical (LC): User-facing applications, such as social media or advertis-

ing, sensitive to the request response latency.

• Best Effort (BE): Batch applications, typically computationally intensive.

LC applications usually have strict performance requirements, which can easily be

violated as a consequence of interference. In a commercial cloud that employs a pricing

model based upon requested performance guarantees ([15]), stricter and higher Quality of

Service (QoS) goals come with a higher cost for the costumer and profit for the provider.

However, the need to abide by such goals (as costumers are charged only when they are

met) may lead to system underutilization, if applications need to be isolated into servers

to achieve them. As datacenters host up to thousands of applications, it becomes evident

that naively scheduling LC applications to dedicated, isolated servers severely hinders

the infrastructure from reaching its maximum potential. Consequently, resource sharing

between applications seems to be inevitable, augmenting the aforementioned interference

problem to the extreme and making the creation of efficient policies to tackle it necessary.
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Chapter 3

Approaches to the Interference

Problem

3.1 Overview

As we have already established, interference in shared resources is a problem that has

not yet been resolved, and one that most probably requires a combination of mechanisms

across the execution pipeline, from the point an application arrives to the server until its

execution completes. Solutions proposed usually are consistent with this rule, proposing

full mechanisms that span the pipeline and address interference in multiple stages.

Since present solutions comprise of manifold complementary methods, there is no

single base upon which they can be clearly categorized. Those solutions target in one or

more of the following when it comes to interference:

1. Prevention

2. Detection

3. Mitigation

In general, the pipeline followed upon the arrival of a new application can be summarized

in the following steps:

1. Application arrival

2. (Optional) Offline application profiling

3. Scheduling and resource allocation decisions

4. Start of execution

5. (Optional) Application profiling concurrent to the execution
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6. (Optional) Online monitoring of execution and adjustment of scheduling and/or

resource allocation decisions

In a naive system, steps 2,5 and 6 would be completely omitted, and scheduling and re-

source allocation would be done in a random fashion. Steps 2,3,5,6 present the system

designer with several choices: from whether to include them or not (if they are marked

as ”Optional”) to the specifics of each step’s implementation (for example, the scheduling

algorithm, the performance counters used, or the allocation policy). Consequently, those

steps and the decisions designers make can be used to broadly categorize research on the

matter.

3.2 Online Monitoring during Co-Execution

Firstly, we will examine proposals that do not include any kind of profiling of individ-

ual applications. This means the system has no knowledge of that the characteristics of

each application, such as its memory access patterns or LLC utilization, before its assign-

ment to a production server. As a result, those proposals mainly aim to detect and moder-

ate interference as soon as it begins, rather than prevent it. in general, they rely solely on

gathering measurements (in the form of performance counters) during the co-execution of

applications, which are later used to make scheduling and/or resource allocation decisions,

in the case that performance goals are not met.

CPI2 [29] is a mechanism developed by Google to monitor the performance of jobs

(applications split down to multiple threads/tasks) running on their cloud clusters and ma-

nipulate the measurements to detect when a job’s performance is degrading. Zhang et

al. argue that the Cycles Per Instruction (CPI) metric is adequate to identify interference

in a cloud environment, since it correlates highly both with request latency and transac-

tions per second, the main performance metrics used for latency sensitive and batch jobs

respectively. The CPI2 overview is presented in Figure 3.1.

Firstly, CPI samples per job (all the threads of a job in a specific machine) are col-

lected from all the machines for a 10 second period every minute and sent to a per-cluster

CPI sample aggregator. The aggregator creates a per-job per-cpu type structure (refreshed

daily) that includes the corresponding CPI mean and standard deviation from the collected

samples along with historical data. Those strictures are the ”predictions” of how a specific

job normally executes, and are sent to local agents running in each machine. Each agent

collects one CPI sample per-task per-minute and uses the predicted values to determine

if it is an outlier. If more than 3 outliers are gathered over a 5-minute window, the job’s

behavior is marked as anomalous. The harmful antagonist is identified by correlating the

harmed job’s CPI samples with the CPU usage of its co-runners. Possible antagonists

are addressed by CPU usage throttling. As it is targeted at a real-life commercial cloud

environment, CPI2 is an example of a mechanism that tries to minimize as much as pos-

sible overheads, mainly by using only one performance metric, lightweight monitoring

and simple decision-making to detect and reduce contention. However, their approach

solely focuses upon compute-intensive workloads, making no reference to the ways CPI
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Figure 3.1: The CPI2 pipeline

accounts for interactions with the memory subsystem, the network and other resources.

Also, their contention reduction mechanism can be considered as rather coarse-grained,

as it attempts to restore performance by capping all execution of the suspected antagonist,

instead of only memory operations, LLC occupancy etc.

Heracles [17] is a more sophisticated approach that targets resource underutilization

by focusing on the different and sometimes complementary performance needs of LC and

BE applications. Lo et al. note that an interesting approach to minimizing resource un-

derutilization would be the collocation of LC and BE applications, as the first remain idle

for large periods of time, during which the latter can take over the unused resources. They

go on to define an optimization problem, where the target is maximum utilization with

respect to the QoS goals of LCs, and structure Heracles upon the premise that interference

in a resource is considered harmful only when its utilization is so high it affects an LC

application, which is always prioritized over a BE application.

The metrics monitored by Heracles are queries per second (application load) and tail

latency. A top-level controller is responsible for deciding if BE application will be collo-

cated with a LC one, depending on whether they threaten its performance. BE execution

is halted when the LC workload is above 85% of its maximum in the server, and is re-

stored when load drops beneath 80%. It is also suspended for an amount of time (before

re-attempting to start BE execution) when the latency slack (the difference between the

QoS target and the measured tail latency) is negative, accounting for load spikes. If BE

execution is decided, the top-level controller forwards the latency lack values to three in-

dependent sub-controllers, each responsible for a shared resource: core and memory, CPU

frequency and network bandwidth. Note that the first sub-controller accounts for both core

count and cache and memory bandwidth portion granted to BE applications, as the authors

notice a strong connection between them. Each sub-controller follows a specific algorithm

that dictates how the respective resources are allocated to BE applications while always

ensuring that LCs’ performance targets are not violated.

Heracles was evaluated using representative workloads of containing different LC and
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Figure 3.2: Heracles overview

BE applications, and managed to always satisfy QoS goals. Additionally, resource utiliza-

tion was notably increased across all resources, with some even approaching 90%. The

authors also introduced a new metric to describe combined performance, called Effective

Machine Utilization (EMU), which is equal to the sum of the LC applications throughput

with that of the BE applications. EMU was also shown to increase in all examined work-

loads, as a result of the system’s consideration of more subtle interference relationships in

different resources and its fine-tuned policies of reducing said interference.

Although Heracles adopts a more fine-grained approach to interference that CPI2 by

controlling the allocation of discrete shared resources, it places its focus point on max-

imizing resource utilization. The workloads examined consist of only two types of ap-

plications, where contentious co-runners are all considered equally responsible for perfor-

mance degradation, so interference detection is more straightforward. Kannan et al. ([13])

on the other hand concentrate on workloads whose applications place stress on different

resources, and attempt to pinpoint the contentious co-runner. The resources considered

are: CPU, LLC, Network Bandwidth and I/O. Proctor is divided into two components:

a Performance Degradation Detector (PDD) and a Performance Degradation Investigator

(PDI).

The PDD is responsible for constantly monitoring application execution and inform-

ing the system when contention in a shared resource is discovered. To that end, the QoS

metric (IPC for CPU/LLC sensitive applications, I/O latency and throughput for I/O appli-

cations and tail latency or network throughput for Network applications) of each running

application is continuously sampled, and step detection is applied to the resulting time

series. Step detection is a process of finding abrupt changes in a time series, and is im-

plemented by Proctor using the finite difference method. The PDD performs pair wise

difference of subsequent elements in the time series, and signals a possible interference is-

sue when the finite difference of two elements spikes. The process is illustrated in Figures

3.3 and 3.4. The timestamp of the spike is saved and propagated to the PDI. To reduce

noise in the time series before step detection is applied, Proctor utilizes median filtering,

with a moving window that selectively discards elements that are notably higher than the

window’s median. This technique proves to be crucial for minimizing false positives (for

example, in case of spikes) in interference detection, while simultaneously preserving the

characteristics of the time series without excessively smoothing it.
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Figure 3.3: Proctor’s performance degradation detection

Figure 3.4: Time series step detection using the finite difference method

When the PDD flags an interference incident, the PDI is activated to investigate it.

During application execution, low level metrics such as cache misses and context switches

are collected, and when Proctor suspects contention for application A in a workload, it tries

to correlate A’s QoS metric time series with the low-level time series of its co-runners by

obtaining the Pearson’s Correlation Coefficient. The co-runners whose low-level metrics

exhibit higher correlation with the affected application are labeled as the contentious ones,

and the corresponding metrics are use to dictate the source which is more likely saturated.

We assume that the timestamp sent by the PDD is so as the time series correlated include

the moment that interference begun. To reduce overheads due to the volume of the data

collected, real-time subsampling is performed upon the collected series using the Chi-

square χ2 test before they are correlated. To mitigate interference, Proctor simply migrates

the contentious application to a different CPU/network channel/physical disk.

The speedup observed by the authors when Proctor is used is on average above 2.0

compared to a system where no interference detection and mitigation mechanism is used.

Furthermore, the computational overhead of its components is rather small, and its 8%

false positive rate (times that non-existing intrusion was identified) is characterized as

small, even though the cost of those false positives and the migrations they lead to are

not reported. In addition, the examined 5-application workloads include only one affected

and one contentious application, with the contention taking place in only one resource. It

is unclear whether Proctor’s techniques would perform as effectively in workloads with

multiple intruders or when contention spans across multiple resources.

3.3 Profiling-Based Mechanisms

This category includes mechanisms that attempt to acquire information about an appli-

cation’s normal (isolated) execution characteristics or its reaction to specific co-runners,

in order to make decisions to avoid and/or lessen interference consequences.

One way of categorizing profiling techniques is according to when they are employed;

36



either before or concurrently to the application execution. In both cases they require a ded-

icated server that resembles a ”lab environment”, meaning an application can be heavily

monitored and executed without interference, or with deliberate, known interference. It is

important though to underline at this point the difference between online monitoring and

what we characterize as profiling concurrently to the execution: online monitoring collects

metrics about an application periodically and tries to determine its current state (whether

is suffers from contention). If coupled with a profiling mechanism, online monitoring is

used to compare current metrics with an established set of behaviors. When alone, online

monitoring is agnostic to the ”ground truth” of each application. In this thesis, we consider

as ”profiling concurrently to the execution” all actions made to discover an application’s

normal behavior or its interactions with specific, known co-runners that take place after

its execution has started.

In the following subsections we examinemechanisms that include profiling to prevent,

detect or moderate interference categorized based on the profiling method used. Most of

those mechanisms include profiling as only the first step towards the end goal, and usually

propose online monitoring and resource management techniques to maximize benefits.

3.3.1 Intrusive Micro-Benchmarks

Firstly, we will focus on approaches that, during profiling, apply controlled pressure

upon shared resources so as to gain insight about the application’s characteristics. Syn-

thetic, tunable microbanchmarks are used to deliberately interfere with the application,

and their performance effects on the latter are measured. In that way, the system not only

has knowledge of the isolated execution, but also of the possible harm specific contention

can create.

One of the most interesting employments of this technique is by Delimitrou et al. ([4]).

Although Paragon performs profiling to also estimate the impact of hardware heterogene-

ity (and [5] extends it to resource scale-out (more servers) and scale-up (more resources

per server)), we will discuss only the interference-related profiling. The authors suggest

characterizing each application based on two criteria: its sensitivity to contention and its

potential to create it. Several shared resources (sources of interference, SoI) are iden-

tified (memory bandwidth and capacity, L1/L2/L3 caches, TLBs, network and storage

bandwidth) and a microbenchmark is created to target each resource. During profiling, an

application is run with a specific microbenchmark, whose intensity is progressively tuned

up until the application’s QoS target (set to 95% of solo run performance) is violated. The

microbenchmark’s intensity percentage at this point is the application’s ”tolerated interfer-

ence” (TI) score. Similarly, the application is run with the microbenchmark as we intensify

its pressure, until its performance degrades by 5% compared to its solo execution. Again,

its intensity percentage at that point is the application’s ”caused interference” (CI) score.

A small set of applications is profiled as described for all SoIs.

Paragon classifies new applications using two collaborative filtering techniques: Sin-

gular Value Decomposition (SVD) and PQ-reconstruction (PQ) ([23]). We will not pro-

ceed into fully explaining those techniques, as this exceeds the scope of this thesis. The

37



Figure 3.5: Paragon overview

process requires two utility matrices, one for TI and one for CI, that have applications as

rows and SoIs as columns. When the previously presented offline profiling is completed,

the matrices are populated with the collected scores, creating dense rows. In the online

mode, when a new application arrives, it is profiled for 1 minute with two random mi-

crobenchmarks and its scores are added to the matrices. PQ-reconstruction and SVD are

then used to fill the empty entries in the row and compute the confidence in each similarity

concept. An example of a similarity concept can be ”application A and b both have a TI

score above 60%”. Similarity concepts are represented by single values, and their mag-

nitude signifies their confidence. In summary, collaborative filtering is used to classify

applications in regards to their ability to tolerate and cause interference. This classifica-

tion is then utilized by Paragon’s scheduler to schedule applications in servers so as to

minimize interference.

As the microbenchmarks used in mechanisms like Paragon are usually in-house imple-

mentations, and are not easily created, El-Sayed et al. ([8]) introduce a different method

of calculating applications’ sensitivity to interference online. DynaWay utilizes the In-

tel RDT technology previously mentioned to modify the available LLC capacity, creating

thus artificial interference. More specifically, DynaWay periodically enters into profiling

phase for a specific application. During that time, is divides the cache into two partitions:

one for the profiled application and one for the rest. Then, it progressively subtracts cache

ways from the first partition and adds them to the second, monitoring at the same time the

effects on LLC misses, ipc and memory bandwidth. When profiling ends, the respective

curves are created and used to make cache partitioning decisions. This method can poten-

tially be used similarly to a synthetic microbenchmark, emulating contention on a shared

resource so that the application’s sensitivity to interference is characterized.

3.3.2 Isolated Profiling

In this category we present mechanisms that only require the knowledge of an applica-

tion’s normal, uninterfered execution. The value of such knowledge has been previously

explained; it can be used to predict how the application may interfere with others and/or

be compared with metrics gathered online to determine whether it suffers from contention.

A representative example of offline-profiled behavior being utilized to make perfor-
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Figure 3.6: DynaWay’s profiling phase

mance predictions is Dirigent ([30]). Zhu et al. again split applications into Latency Crit-

ical, LC and Best Effort, BE (in the paper different titles are used, but the definitions

are the same) and try to minimize the performance variation of LC applications through

fine-grained interference management. Dirigent’s profiler is activated upon the arrival of

a new LC application. The application is executed in an isolated environment and a se-

ries of (time, progress) pairs is periodically recorded, where progress is measured as the

number of retired instructions during the past time segment.

Figure 3.7: Execution time prediction phases

Then, the LC application is placed in a server along with BE applications, and its

progress is monitored with the same time interval that was used during its offline profil-

ing. For each time segment a time penalty is computed using the expected time to make

the amount of progress within the offline profiled segment at the rate of progress experi-

enced in the online monitored segment. Instead of utilizing only the time penalties com-

puted, Dirigent attempts to increase accuracy by keeping an exponential moving average

of the penalty within each segment across multiple executions of a specific LC applica-

tion. When invoked, Dirigent’s predictor uses the calculated penalty for each past segment

along with the average penalties of the segments yet to execute and the total elapsed time

since the beginning of the application’s execution to estimate the total execution time of

the application.

After the expected execution time of an LC application due to interference is calcu-

lated, it is used to determine whether any resource management actions need to be taken.
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Since Dirigent aims to minimize performance variations (while satisfying QoS goals),

and not execution time, if an LC application’s expected execution time is smaller than

its target time, resources will be allocated to BE applications. Similarly, if the expected

time surpasses the target one, more resources will be allocated to the LC application. A

fine-grained and a coarse-grained controller are responsible for managing the operating

frequency of each core (and the execution suspension of BE applications) and the LLC

partitioning respectively.

Another interesting approach is that of Novakovic et al. ([21]), who propose initiating

application profiling in an isolated environment only after the application has started its

co-execution with others in one of the production servers. The isolated execution uses real-

time inputs to create a profile that can be directly compared to the interfered execution, so

that performance fluctuations can be attributed to either normal phase changes or interfer-

ence. DeepDive is comprised of three parts that cooperate to ensure LC applications are

detrimentally affected by interference: a warning system, an interference analyzer and a

placement manager (Figure 3.8).

Figure 3.8: DeepDive overview

The warning system’s role is to differentiate performance changes due to interference

from those due to workload change. More specifically, it monitors a set of low-level met-

rics and compares the measurements of each LC application with a set of known behaviors

it possesses. If there is nomatch within its archive, it searches in other servers for instances

of the same application running (something that is typical for LC applications), and com-

pares the two instances’ behaviors. This utilization of global information is based on the

notion that if threads executing the same code have the same performance changes, the

latter probably are caused by workload changes and not interference. If no match is found

with either local or global behaviors, the interference analyzer is invoked. The authors

claim that invocations of the analyzer due to false positives pose minimal overheads to the

overall mechanism. False negatives on the other hand are more impactful, and are handled

using a vector of metric thresholds. Authors used a clustering algorithm on the acquired

normal behaviors to produce said thresholds, which separate representative application

performance from noise, while also properly identifying interference.

The interference analyzer used in DeepDive is based on a previously proposed tech-

nique described by Vasic et al. in DejaVu ([27]). Upon invocation, the analyzer clones
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the examined application (which is being executed in a production server, as normal) in

an isolated environment. It then intercepts the requests of the original application’s copy,

and forwards copies of them to the isolated clone. In that way, it establishes the nor-

mal, uninterfered behavior of said application under real-time workloads. The low-level

measurements regarding isolated performance are sent to the warning system, along with

the aforementioned vector of metric thresholds. Application degradation is computed as

the ratio of retired instructions during interfered execution to that of the isolated execu-

tion, and if degradation is higher than an the operator-established threshold, the placement

manager is activated. In this case, the analyzer uses the collected ”isolation” metrics to

compute stalls duo to contention in different shared resources, selects the resource that is

introduces the most and informs the manager accordingly. The placement manager then

makes scheduling decisions regarding the application that is more aggressive with the

shared resource where interference is detected.

During evaluation, DeepDive required about a day of operation to capture all nor-

mal behaviors, during which the false positive rate was high. After that period, the rate

dropped to nearly zero, showing that DeepDive can successfully differentiate interference

from workload changes. In addition, no false negatives where detected, and the analyzer’s

degradation estimation is within 10% accuracy in the worst case.

As we mentioned before, the idea of concurrently running an application in the pro-

duction and the isolated environment with the same workload was introduced in [27].

However, Vasic et al. use this kind of profiling not to differentiate workload fluctuations

from interference, but to determine resource allocations that satisfy performance goals.

They specifically target request-and-response applications, that are user-dependent and

experience significant variability in their inputs, so an approach aiming to capture the be-

havior during different workloads is reasonable. In addition, DejaVu is among the first

mechanisms that leverage machine learning techniques to solve the resource allocation

and interference problem.

Figure 3.9: DejaVu overview

When the training phase begins, DejaVu profiles an application both in its production

and its isolated environment, using a proxy that duplicates requests as described above.

Profiling is performed for a certain period (e.g. a week), until the administrator decided

that a representative set of workloads has been captured. N different low-level metrics are

monitored during profiling, and are used to compose a per-workload signature, a N-tuple
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that is representative of the workload’s behavior. K-means clustering is then performed

using all workload signatures of an application, and workload classes are created. The

workload that is closer to each class’s centroid is selected as representative, and a tuning

process is triggered.

During this stage, tuning is performed for each workload class. A tuning mechanism

is responsible for determining the resource allocation that is sufficient to meet QoS targets

of the application under each representative workload, without being wasteful. When

tuning is completed, DejaVu creates a lookup table containing (representative workload

signature, interference index, optimal resource allocation) triplets for each application,

where interference index is equal to 1 for all entries (its purpose is later explained). This

resource allocation will be referenced as baseline.

Furthermore, a decision tree classifier is trained to place new incoming workloads dur-

ing production execution into the best fitting class. Trained with all the gathered workload

signatures and their corresponding classes (as denoted by k-means), the classifier can de-

termine the class of an unknown workload based on its signature. When a new workload

begins, its signature is created. Although it is not stated by the authors, we assume that

the signature is produced through the isolated profiling mechanism. The classifier then

assigns the new workload to a class and the corresponding baseline resource allocation is

applied.

In case the QoS goal is still being violated after applying the optimal resource alloca-

tion for a workload, DejaVu assumes interference is to be held responsible. The current

interference index of the workload is then computed as the ratio of production to isolated

performance, and the lookup table is queried to find a matching entry. If there isn’t one,

tuning is triggered, and a new entry with the best resource allocation for this (representa-

tive workload signature, interference index) is added, and can later on be reused.

Dwyer et al. ([7]) also employ machine learning techniques, but this time for perfor-

mance degradation estimation. Their main idea is to train a model that can predict the

future performance of an application using measurements gathered online. The benefit of

such approach is that, although it does require offline profiling of a significant number

of scenarios explained below, this is a one-time overhead; once the prediction model is

trained, no offline profiling is necessary for new application coming.

To create the training set, the authors selected a set of HPC applications created the

following execution scenarios for each one of them: a solo run (the primary application

runs alone), a clean run (the primary application runs with copies of itself) and several

random runs (the primary application runs with other, randomly selected applications from

the set), creating over 500 scenarios. The authors chose to split each scenario execution

into 5-billion instructions windows called execution instances, and train the model based

on instances and not on complete applications runs. The duration of the instances was

selected to give the system enough time to gather all the 340 different low-level metrics

available in their system. All the scenarios where then executed, measuring all the low-

level metrics in each execution. For each scenario there is a primary application (the one

whose performance degradation we study) and its co-runners. For each instance in each

scenario the degradation of the primary application is calculated, using the duration in
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clock cycles of the scenario instance and its respective solo run instance. As a result,

each instance is characterized by a set of 340 attributes for each one of the applications it

includes, plus the degradation value.

Before training the model, attribute selection was performed to eliminate unnecessary

attributes, reducing their number from 340 to 19. In addition, for the distinction between

primary and co-running application to be made, the measurements of the co-running ap-

plications are averaged. The final training set is comprised of thousands of instances,

each one characterized by the measurements of its primary application, the average of the

measurements of the co-runners, and the degradation value. The model selected was a

regression tree, and bootstrap aggregating was also used to improve accuracy. The trained

model was evaluated with cross-validation, using error rate (difference between the esti-

mated and the actual degradation) as the accuracy metric. The average error rate is 16%,

with 80% of the error rates being under 20%. To eliminate cases where the error rate is

very large due to outliers, the authors create a confidence predictor. If two or more at-

tributes of the to-be-predicted instance are more than two standard deviations away from

the mean of the training measurements, the predictor outputs a null prediction, marking

the instance as non-confident.

This predictor is coupled with a scheduler that tries to maximize resource utilization

without violating performance goals. All cores in a server are filled in a best-fit policy

and the necessary low-level metrics are constantly monitored and used to estimate degra-

dation. If the latter exceeds an established threshold, the scheduler migrates the suffering

application.

3.4 Conclusions

The proposals examined in the previous sections are only some of the ways designers

have tried to tackle the interference issue. It has now become evident there probably isn’t a

method or a a combination of methods that is a ”one-fits-all”, performing optimally in ev-

ery scenario, under all application types and with no overhead. All decisions bare advan-

tages and disadvantages, and designers must carefully enorchistrate mechanisms whose

overheads are balanced by the profits yielded.

A technique that has significant trade-offs is profiling. Conducting controlled profiling

requires one or more isolated servers that can no longer be used to host multi-application

workloads, essentially reducing the computational power of the datacenter, and as a conse-

quence its profits. Also, a-priori profiling is time consuming, and given the large number

of applications arriving at a datacenter, profiling them all would impose a major delay to

their execution, again increasing costs for the provider. Although making sophisticated

decisions before execution begins can prevent interference, in the cases of non-interfering

applications, precious time and resources have been wasted for a workload whose perfor-

mance is already satisfactory. Concurrent to execution profiling as we have described it

might not require the extra time a-priori profiling does, but it still requires isolated servers,

and no choices can be made before execution begins.
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The big advantage of profiling is that, if carefully articulated and optimized, it can

cancel the overheads it creates by the performance gains it offers. In environments where

tens of applications share one server, locating the contentious ones can be very challenging

due to the large amount of interactions present. Indeed, being able to completely prevent

interference or take actions to control its impact before it becomes harmful can prove

extremely helpful for a commercial cloud. As we have previously described, in the pricing

model we examine cloud costumers are charged only when the performance goals they

have set are met. Consequently, executing applications that do not satisfy their QoS goals

is unprofitable.

The primary challenge with proposals that do not conduct profiling is actually detect-

ing interference, and separating it from application phase or workloads changes. As the

isolated execution measurements of the application are unknown, and most applications

are comprised ofmore than one execution phases and havemultiple or dynamicworkloads,

recognizing performance decreases due to contention is demanding, as it has become evi-

dent from the works previously described. Phase-detection mechanisms ([6],[3],[20]) can

perhaps be utilized, but they are often computationally expensive and introduce prohibitive

overheads.

Another parameter that needs to be taken into consideration is the actual complex-

ity of the mechanism, and the granularity at which it makes decisions. Having a system

that operates at a very fine granularity, offering highly customized policies in regards of

scheduling and resource management, tailored to a specific combination of applications,

seems very lucrative. Such an approach would probably utilize resources optimally, but

have an excessive cost of operation, probably requiring a large amount of low-level mea-

surements, profiling and frequent monitoring. As the amount of metrics needed or the

frequency at which they are gathered increases, application performance is also affected.
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Chapter 4

Application Classification for

Interference Prevention

In the previous chapter several approaches and design trade-offs where discussed, to

showcase just a portion of the design space system engineers face. In this chapter, we

attempt to investigate in practice the impact of co-execution and interference, and present

our approach to the problem.

4.1 System Configuration and Benchmarks

All the executions presented in this thesis where run on a Intel® Xeon® Processor

E5-2630 v4, whose specifications are listed in Table 4.1.

This family of processors features the Intel Resource Director Technology (RDT),

which provides the user with the ability to monitor performance metrics and manage re-

source allocation. The Cache Monitoring Technology (CMT) allows the user to dynami-

cally observe a number of low-level metrics, such as the LLCmisses and occupancy, at the

granularity of a logical core. CAT is utilizing the four underlying registers that Intel tech-

nology offers for event counters monitoring to report up to four metrics: ipc (instructions

per cycle), LLC mpki (misses per kilo instructions), LLC occupancy and DRAM band-

width. Because in our experiments we wanted to monitor as many performance counters

as possible in one run, but did not want to opt for sampling techniques, we decided to

deactivate hyperthreading in our processor, which makes another four registers available

for events’ monitoring, adding up to eight events monitored per run. Additionally, we

modified the code of the API (called PQoS) so that it can monitor all the desirable events.

We also took measurements using the linux perf command to verify that they match those

reported by PQoS. Because perf uses switching between monitored events and sampling,

it’s results contained more noisy that those of PQoS, but where for the most part identical.

All the reported measurements from now on where gathered using PQoS.
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Architecture Family Broadwell

Processor Base Frequency 2.20 GHz

Number of Cores 10

Number of Threads 20

L1 (data) Cache (per core) 320 KB

L2 Cache (per core) 2.5 MB

Last Level Cache (shared) 25 MB, 20-way

DRAM Bandwidth 68.3 GB/sec

Table 4.1: Intel® Xeon® Processor E5-2630 v4 specifications

In addition to CMT, Intel RDT also offers Cache Allocation Technology (CAT), with

which the user can partition the LLC into sets of ways, and assign those sets to groups

of cores. Later processor model also feature Memory Bandwidth Monitoring Technology

(MBM) and Memory Bandwidth Allocation Technology (MBA).

The benchmarks used in our experiments are mainly from the SPEC 2017 Suite, with

one addition from the Polybench 3.2 Suite (jacobi-2d benchmark), as well as the stream

and hpcg benchmarks. The SPEC 2017 benchmarks are divided into two categories, that

differ mainly in the input sizes and the memory footprint: rate and speed. Some of the

benchmarks have implementations in both categories, so to avoid confusion we denote the

rate version with ”_r” and the speed version with ”_s”. Furthermore, the Alberta Work-

loads ([1]) were also used for some of the benchmarks. When the input of benchmark is

one of the Alberta ones, its name is added to that of the benchmark. For example, om-

netpp_r_star is the rate version of the omnetpp benchmark with the ”star” input (from the

Alberta Workloads), whereas omnetpp_r is the rate version with the original SPEC 2017

input. Our final set has in total 140 benchmarks.

4.2 Co-Execution Scenarios

Firstly we run each application on each own, to capture its solo behavior. Then, we

create 2-application scenarios. As we want to examine interference in resources that are

shared across the chip, each application is single threaded and pinned to a specific core (to

eliminate interference in core-private components such as the L1 cache). If one application

finishes execution before the other, it is restarted. This continues until all applications are

executed at least one time. To avoid executing all 9.730 possible pairs, for our initial

analysis we choose only the rate implementations with the SPEC 2017 inputs, as well as

the hpcg, stream and jacobi-2d benchmarks. As performance indicators we choose IPC
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and total execution time, and to measure interference we define Sl (Slowdown and Deg
(Degradation) as:

Sl =
tcoexec
talone

Deg =
ipcalone − ipccoexec

ipcalone
∗ 100%

where:

talone: total execution time when run alone
tcoexec: total execution time in the co-execution scenario
ipcalone: ipc when run alone
ipccoexec: ipc in the co-execution scenario

Figure 4.1 shows a typical scenario where interference impacts performance. Om-

netpp_r exhibits a slowdown of 1.23, with a 19.7% Deg, even with just one co-running
thread. In Figure 4.2 we can see that lbm_r dominates omnetpp_r in the LLC (leading to

almost three times higher LLC mpki).

Figure 4.1: IPC, scenario: 1 omnetpp_r with 1 lbm_r

Figure 4.2: LLC occupancy, scenario: 1 omnetpp_r with 1 lbm_r

When examining closer how different applications interact when co-scheduled, one

can begin to see a pattern: there are applications that exhibit the same behavior regardless

of their co-runner. In Figure 4.3, we see stream executed with perlbench_r, gcc_r, cactuB-

SSN_r and blender_r. In all four cases, stream appears to negatively impact its co-runners

performance to various degrees, while always taking over the LLC.
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(a) 1 stream with 1 perlbench_r

(b) 1 stream with 1 gcc_r

(c) 1 stream with 1 cactuBSSN_r

(d) 1 stream with 1 blender_r

Figure 4.3: IPC of various stream’s co-runners

In Figure 4.4, we see xz_r’s ipc when executed with mcf_r, jacobi-2d, cactuBSSN_r

and cam4_r. In all cases, xz_r experiences different degrees of performance degradation.
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(a) 1 xz_r with 1 mcf_r

(b) 1 xz_r with 1 jacobi-2d

(c) xz_r with 1 cactuBSSN_r

(d) 1 xz_r with 1 gcc_r

Figure 4.4: IPC of xz_r in various scenarios

Lastly, in Figure 4.5 we present the case of namd_r. Interestingly enough, namd_r is

not only highly resistant to any interference (no changes in its ipc), but also does not create

any contention (no significant changes in its co-runners ipcs).
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(a) 1 namd_r with 1 lbm_r

(b) 1 namd_r with 1 xalancbmk_r

(c) 1 namd_r with 1 cam4_r

Figure 4.5: IPC of namd_r and its co-runners in various scenarios

The above examples are a strong indicator that whether an application will experience

and/or create performance degradation in a scenario might be inherent characteristics of

the application itself, and not dependent on the application mix in the scenario. This ob-

servation has also been made and verified by Tang et al. in [26] . If these characteristics

can be correlated to low-level metrics (PerformanceMonitoring Units, PMUs), such as the

LLC mpki, then one can predict them without placing the application in a possibly detri-

mental for its performance co-execution scenario, and make useful decisions in regards of

its placement in a server.
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4.3 Noise and Sensitivity

Noise (often referred to as ”contentiousness”) and sensitivity are two terms that have

been used in bibliography ([26]) to describe how much an application suffers from or can

create performance degradation in multi-application scenarios. In general, an application

is considered noisy if it results in significant degradation of its co-runner’s performance,

and quiet when it leaves its co-runner completely unaffected. Similarly, we call an appli-

cation sensitivewhen its performance is constantly affected in the presence of a co-runner,

and insensitive when it almost never is.

Prior work has been controversial about whether sensitivity and noise are correlated.

Jiang et al. ([18]) conclude that there is a correlation, and applications are either sensitive

and noisy or insensitive and quiet, whereas other works ([14],[31],[26]) find cases of other

combinations, such as noisy and sensitive. In our work, we consider the two characteristics

not correlated, meaning that an application’s level of noise does not necessarily determine

its level of sensitivity and vice versa. Noise and sensitivity reflect two different aspects of

an application’s behavior: how much it uses a shared resource and how much it benefits

from it. Usage does not always mean benefit. Resources that act as performance opti-

mization mechanisms, such as the LLC, fall under that case, as their effectiveness relies

upon the application’s data patterns. For example, if an application has no reuse pattern

in its data, then it constantly brings new entries in the LLC without ever reusing them. In

that case, it creates high contention for its co-runners, constantly evicting their entries, but

does not suffer itself if its data gets evicted, since it wouldn’t reuse them anyway.

4.4 Previous Work on PMU-based Classification

Several attempts have been made to classify applications in regards of their noise and

sensitivity based on performance counters. We present below themost representative ones.

Lin et al. in [16] classify applications into four different colors depending on the

slowdown they experience when run with 1/4 of the LLC compared to when they run

with the whole LLC. Qureshi and Patt in [22] study the performance of applications when

run with various portions of the LLC, and divide them into high-, low- and saturating-

utility. Both of those works address only the subject of sensitivity and not that of noise,

and examine only the LLC as a shared resource. In addition, they require multiple runs of

an application, which is unrealistic in production environments.

Xie and Loh introduce an animalistic classification ([28]) . An application can either

be a turtle (low use of the LLC), a sheep (low LLC miss rate, insensitive to the amount

of LLC it is allocated), a rabbit (low LLC miss rate, sensitive to the amount of LLC it is

allocated) or a devil (high LLC miss rate). The authors employ a mechanism proposed

in [22] to dynamically measure the least amount of LLC an application needs to achieve

an acceptably low LLC miss rate (expressed in relation to the LLC miss rate of the solo

run). Applications are placed into a category according to their respective values for LLC

accesses, LLC miss rate, LLC misses and the aforementioned LLC amount (expressed in

ways). This approach however faces some limitations expressed in [31] . For example, Xie
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et Loh state that devils are applications with high contentiousness due to high LLC miss

rates and low sensitivity, as they exhibit low data reuse. But because their classification

takes into consideration only LLC-related metrics, they fail to account for contention and

sensitivity in other resources, such as the DRAMbandwidth. In [31], the authors show that

some applications that show high LLC miss rates and would classify as devils are highly

sensitive when it comes to other resources, like DRAM bandwidth and prefetchers.

Zhuralev et al. ([31]) propose a pain based classification scheme, defining pain as the

product of sensitivity with noise. To calculate sensitivity they use stack distance profiles,

whereas for noise the LLC accesses per million instructions are used. They also implement

a scheme that is based only on LLCmiss rate, supporting the case that the latter is sufficient

in making scheduling decisions. Although their pain scheme slightly outperformed the

LLC miss rate, they continue on to use the latter in their contention-aware scheduler, as it

is much less complex to implement and performs almost the same.

Lastly, in [26], Tang et al. attempt to predict an application’s noise and sensitivity using

linear regression. To correctly account for both characteristics, and shared resources other

than the LLC, they propose using as performance counters the LLC_lines_in/ms for
memory bandwidth usage and the (L2_lines_in− LLC_lines_in)/ms for LLC usage.

Their conclusions are rather interesting: although they were able to create a linear model

using regression to predict an application’s contentiousness, a similar model could not be

created for sensitivity, which proved to be much more complex to identify based on their

performance counters.

4.5 Designing a Non-Intrusive, Lightweight Classi-

fication Algorithm

As we have already mentioned, when it comes to addressing interference all choices

have advantages and disadvantages, and each designer is called to decide which choices

are worth the overhead and which not. We wish to create a classification mechanism that

bares the following characteristics:

• Preventive: Contrary to other approaches, we want to be able to prevent interfer-

ence from happening, not detect it after it happens. Having an estimation of how

applications will interact before they actually do is of high value, especially in cases

where one of them has strict performance goals.

• Lightweight: The amount of PMUsmeasuredmust be such that it will not add over-

heads during execution. Also, we do not wish to maintain large databases or other

models (e.g. neural networks). Finally, our solution must be as computationally

inexpensive as possible.

• Non-Intrusive: Because we wish to use profiling, a necessary small overhead has

already been added to out mechanism. However, since profiling will be done (if

necessary) upon application arrival in one of the system’s servers, we want the time
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it spends there to be ”useful”: its performancemust not be affected in anyway, sowe

cannot use any intrusive benchmarks or cache allocation techniques to observe how

performance is impacted. This is a constrain we decide to pose since ourmechanism

is targeted to commercial cloud environments, where profit is proportionate to an

application’s ”useful” time.

4.5.1 Defining the Classes

Taking into consideration the previous constrains, we decided to adopt a reverse-

engineering approach: first categorize our applications according to the behavior we ob-

serve in co-execution scenarios, and then see if any combination of PMUs can discern

between categories. Determining whether an application is e.g. noisy or quiet is not

straightforward, even if one has abundant resources and time to examine applications,

as those terms are loosely defined. Sensitivity in regards of the LLC can be observed by

executing an application with various amounts of LLC ways, and then analyzing how its

performance was affected (similarly to [22] and [8]). To that extent, we used Intel CΑT to

run each application with 1 up to 19 ways, and created an ipc-cache ways curve for each

application. Applications whose performance continued to improve as the cache ways in-

creased were labeled as sensitive, and those who after 1-2 ways showed no performance

as insensitive. All other applications exhibited a performance saturation after a certain

amount of ways (different for each application), and were labeled as potentially sensitive,

meaning the could suffer from contention under certain pressure, but not always. In a

machine that also supported Intel MBA we could have performed a similar analysis for

memory bandwidth, but since we do not have that ability in our current processor, we had a

different approach. Bandwidth is on of the shared resources where usage most of the times

means benefit. Even if the data brought from memory are a result of prefetching and end

up not being useful to the application’s execution, the data are still fetched, so if bandwidth

is dominated by someone else the application will suffer long stalls, and thus performance

losses, waiting for the requested data. To test if some of our labeled as insensitive and

potentially sensitive applications have been misplaced, we examine their co-executions

with an in-house microbenchmark that saturates memory bandwidth. Indeed, applications

like stream and jacobi-2d, which do not seem to have performance gains from increasing

LLC capacity, are affected when contention in the memory bus is extreme, and thus we

move them to the potentially sensitive category.

Noise is more difficult to define. Some benchmarks were very easily labeled when

we observed the results from their co-executions, as they exhibited the same behavior re-

gardless their co-runner. Lbm_r, stream, hpcg and others consistently caused a Deg of at
least 20%, and so we label them as noisy. Other applications, like namd_r, leela_r and

exchange2_r always left their co-runner unaffected, so we label them as quiet. However,

most of the applications did not exhibit a striking behavior, so we decided to establish

a ”reference benchmark”, one that would be ”in the middle” in both categories. Luck-

ily enough, cactuBSSN_r showcased the necessary characteristics: it had median or very

close to median values in all PMUs. We consider it to be a fitting reference since it is nei-
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ther insensitive to interference nor extremely sensitive, neither contentious nor completely

quiet. Our strategy was to run all benchmarks with cactuBBSN_r and observe the degra-

dation they caused it. If Deg > 10%, we label the benchmark as noisy, whereas if Deg
is almost 0 we label them as quiet. Not to our surprise, all insensitive applications where

also quiet. Since applications in the insensitive category need minimum cache capacity

and memory bandwidth, we expect them to not access shared resources to a large extent,

and thus not create problems for their co-runners. Every other benchmark was labeled as

potentially noisy.

Although aDeg of 10% might seem rather small, we would like to underline the fact

that we are discussing 2-application workloads. The caches and bandwidth in our pro-

cessor are significantly large, so they most likely can handle the majority of 2-application

scenarios. In real production environments, all cores are used, so an interference that might

seem negligible in a 2-application scenario is highly exacerbated in a 10-application sce-

nario, as we will see in later chapters.

The thresholds forDeg mentioned below are empirical and based on averaged values

from our experiments, and we do not claim that they are universal or inerrant. However,

we observed that they are capable of correctly capturing the vast majority of cases, so

we consider them adequate for the purpose of this thesis. In the cases where Deg was

marginal, we examined more co-runs to select a category. Our general strategy was to be

conservative, and if in great doubt place an application in the potentially noisy/sensitive

class.

4.5.2 PMU Patterns

After positioning our benchmarks in categories, our first step was to examine whether

different PMUs could indicate sensitivity and/or noise. We run each application in isola-

tion collecting all the metrics listed in Table 4.2 using our modified version of the PQoS

API. We also collected information about the LLC occupancy and DRAM bandwidth us-

ing the built-in functions of PQoS. To select the metrics we would analyze, we took into

consideration the observations made in [25] and [19], along with our observations regard-

ing the memory subsystem.

Apart from the raw PMUs data, we combined PMUs to create new metrics, such as

miss rates.

As we mentioned before, applications that maintain their data in private to each core

parts and do not greatly use shared resources, are quiet and insensitive. This can be trans-

lated into having low values for LLC accesses per kilo instructions (LLC acpki) and mem-

ory bandwidth. In Figure 4.6 and Figure 4.7 we present the LLC acpki for a set of rep-

resentative benchmarks. Insensitive and quiet benchmar5ks have a LLC acpki around 1,

significantly lower than all others.

A rather strong indicator can be memory bandwidth. Applications that highly use the

memory bus during solo execution, will continue to do so in co-execution scenarios, and

are most probably noisy. As we see in Figure 4.8, noisy applications do indeed have much

higher memory bandwidth values.
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Figure 4.6: LLC acpki

Benchmarks labeled according to sensitivity

Figure 4.7: LLC acpki

Benchmarks labeled according to noise

We also considered the methodology described in [19] to detect memory boundness.

Molka et al. suggest that stall-related counters could reveal if an application’s performance

heavily depends on the LLC and memory. If a large fraction of the cycles an application

spends halted (CYCLE_ACTIVITY.STALLS_L2_PENDING) is due to pending requests to

lower levels of memory (LLC + DRAM), it means it cannot overlap waiting for those

requests with useful computation. As a result, extra misses in the LLC or congestion in

the bandwidth will result in more stalls that cannot be ”disguised” by computation, making
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Figure 4.8: DRAM Bandwidth

Benchmarks labeled according to noise

stalls a promising indicator of sensitivity. Again, there didn’t seem to be any clear pattern

that could be outlined in Figure 4.9. It is worth noting that mem stalls (stalls because of a

pending request to the main memory) might be higher than L2 miss pending stalls (stalls

because of a pending request from L2) because of L1 prefetchers.

Two PMUs that are widely considered strongly related to noise and sensitivity are LLC

mpki and miss rate (misses per access). Many prior works ([14],[31],[26]) have reasoned

both in favor and against LLC mpki accurately describing application behavior. A brief

look to Figure 4.10 shows that there are cases LLC mpki can be misleading. For example,

many potentially sensitive and sensitive applications have LLC mpkis similar to those of

insensitive applications. That is because an application might have a data set almost the

size of the LLC; in that case, the LLC mpki in the solo run would not be high, but any

co-runner that stresses the LLC would result in a performance drop. We do see that noisy

applications show higher LLCmpkis, but the difference is not that large to safely draw any

conclusions. Miss rate is not that useful either, as we see quiet applications having large

miss rates. In those cases, the applications rarely access the LLC, so they are not affected

by co-runners, but those rare accesses happen to be mainly misses, resulting in high miss

rates.

Lastly, we examined if individual application performance can be correlated with

PMUs. A strong correlation between the ipcs of one category’s applications and a PMU,

e.g. LLC mpki, could suggest that for this category, performance can be ”translated” into

low lever metrics, that could later be used to characterize the category. We used Pearson’s

Correlation Coefficient ([2]), but found no specific pattern in the way ipc correlated with

various PMUs.
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Figure 4.9: Stalls due to data requests

Benchmarks labeled according to sensitivity

After the aforementioned analysis, we can sum up our conclusions in the following

points:

• There seems to be no easily detectable pattern in PMUs that can be used differentiate

categories. If such a pattern exists, it is too complex for the human eye to detect.

• In the cases where some categories are discernible, (e.g. high memory bandwidth

in noisy applications), it is unclear where the thresholds between classes should be

placed, and we think that empirically setting them would be arbitrary.

• Some metrics yield interesting insights into application behavior and can perhaps

be used as part of a classification algorithm.
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Figure 4.10: LLC mpki

Benchmarks labeled according to sensitivity

Figure 4.11: LLC miss rate (misses/accesses)

Benchmarks labeled according to noise

58



4.5.3 K-Means Clustering

Although an empirically created classification algorithm could not be created, the fact

that the few PMU patterns we could detect agreed with our assumptions about the corre-

sponding parts of memory and application behavior led us to consider pairing PMUs and

our insights with already established algorithms. K-means ([12]) is a well-known cluster-

ing algorithm used to split N observations into k clusters. Given an initial set of k means

(centroids), the algorithm alternates between two steps. It assigns each observation to

the cluster whose mean has the least squared Euclidean distance (the ”closer” mean), and

then re-calculates each centroid as the mean of the observations in the respective cluster.

K-means can be applied to observations that have more than 3 dimensions, also called

features. Each observation has a specific value for each feature in the feature set. Our

goal was to see if k-means could find the borders between classes, e.g. the threshold of

memory bandwidth above which an application can be labeled noisy.

We begun our experiments with noise, as our observations suggest that borders be-

tween noisy, potentially noisy and quiet applications might actually exist. In our ex-

periments we used the implementation included in the scikit-learn python framework.

Standardization was applied to all data using the StandardScaler method of the python

sklearn.preprocessing package. Standardization (or Z-score normalization) is a feature

scaling method that rescales the values of a vector to have zero-mean and unit-variance.

Its use was necessary to avoid biases because of differences in the PMUs units. For ex-

ample, memory bandwidth can have values of up to 12.000 MB, whereas LLC mpki is

typically around 5-10. The algorithm was tested with feature sets containing all possible

combinations of the PMUs most strongly related to noise: LLC acpki, LLC mpki, LLC

miss rate and memory bandwidth. Figure 4.12 and Figure 4.13 shows two representative

examples of how the algorithm creates clusters, projected into 2-d space using Principal

Component Analysis (PCA), a dimensionality reduction algorithm. We immediately see

that noisy applications, such as stream and hpcg, can quite effectively be separated from

the others. However, potentially noisy and quiet classes are more difficult to tell apart, as

their respective applications seem to overlap. The results where similar when we exam-

ined sensitivity. This time, the features used by the algorithm were LLC acpki, LLCmpki,

LLC miss rate, memory bandwidth, total L2 stalls and total L2 stalls/total cycles. Here,

borders are even more blurry (Figure 4.14) confirming previous work that sensitivity is

more difficult to detect than noise ([26]).

Our conclusion is that k-means succeeds only partially because it assumes separable,

”spherical” clusters, which clearly is not the case for all classes. The clusters are also

expected to be of similar size, which also does not apply in out dataset.
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(a) k-means clusters

(b) actual clusters

Figure 4.12: Noise: k-means clusters VS actual clusters

Features: LLC acpki, LLC mpki, DRAM bandwidth, LLC miss rate
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(a) k-means clusters

(b) actual clusters

Figure 4.13: Noise: k-means clusters VS actual clusters

Features: LLC mpki, DRAM bandwidth, LLC miss rate
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(a) k-means clusters

(b) actual clusters

Figure 4.14: Sensitivity: k-means clusters VS actual clusters

Features: LLC acpki, LLC mpki, DRAM bandwidth, L2_pending_stalls/tot_cycles
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Event Name Description

LONGEST_LAT_CACHE.MISS Core-originated cacheable demand requests the missed in LLC

LONGEST_LAT_CACHE.REFERENCE Core-originated cacheable demand requests that refer to the LLC

L2_RQSTS.MISS All requests that miss in the L2 cache

L2_RQSTS.REFERENCES All L2 requests

MEM_UOPS_RETIRED.ALL_LOADS All retired load uops

MEM_UOPS_RETIRED.ALL_STORES Retired store uops that split across a cacheline boundary

BR_INST_RETIRED.ALL_BRANCHES All (macro) branch instructions retired

CYCLE_ACTIVITY.STALLS_L2_PENDING Execution stalls while L2 cache miss demand load is outstanding

CYCLE_ACTIVITY.STALLS_MEM_ANY Execution stalls while memory subsystem has an outstanding load

CYCLE_ACTIVITY.STALLS_L1D_PENDING Execution stalls while L1 cache miss demand load is outstanding

CYCLE_ACTIVITY.CYCLES_L2_PENDING Cycles while L2 cache miss demand load is outstanding

CYCLE_ACTIVITY.CYCLES_MEM_ANY Cycles while memory subsystem has an outstanding load

CYCLE_ACTIVITY.STALLS_TOTAL Total execution stalls

CYCLE_ACTIVITY.CYCLES_L1D_PENDING Cycles while L1 cache miss demand load is outstanding

RESOURCE_STALLS.SB Cycles stalled due to no store buffers available (not including draining from sync)

CPU_CLK_UNHALTED.THREAD_P Thread cycles when thread is not in halt state

DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK Load misses in all DTLB levels that cause page walks

DTLB_STORE_MISSES.MISS_CAUSES_A_WALK Store misses in all DTLB levels that cause page walks

L2_TRANS.DEMAND_DATA_RD Demand Data Read requests that access L2 cache

L2_TRANS.RFO RFO requests that access L2 cache

L2_TRANS.L1D_WB L1D writebacks that access L2 cache

L2_TRANS.L2_WB L2 writebacks that access L2 cache

Table 4.2: Performance Monitoring Events - Broadwell Architecture
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Chapter 5

An Application Classifier using

Machine Learning

In this chapter we describe our final approach to creating an application classifier to

prevent interference consequences. Since our previous efforts, which centered around

more simplistic designs and algorithms, proved to be incapable of detecting the underly-

ing correlations between PMUs, we decided to adopt a more sophisticated approach and

employ machine learning methods. As our problem is a classification one, our work was

to create a representative training set, select and train a suitable for the problem classi-

fier and manipulate its parameters to reach an optimal result. We continue on to present

a short summary of necessary machine learning background, outline the challenges we

faced when designing our classifier and evaluate our final implementation.

5.1 Machine Learning Background

Machine learning comprises of a large set of algorithms and tools employed to es-

sentially program computers to learn from data. Though more challenging to understand

those algorithms, they are particularly useful in problems too complex for a statistical or

empirical analysis to yield a solution, for cases with many involved parameters and a large

design space that requires a lot of hand-tuning and extensive lists of rules, or for problems

that include large amounts of data or need to dynamically adapt in the presence of new

datapoints.

In general, machine learning methods can be categorized according to a variety of

criteria, such as:

• Whether they are trained with human supervision or not (supervised, unsupervised,

semisupervised or reinforcement learning).

• Their ability to learn and adapt while operating (online or batch learning).
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• Whether they try to make predictions by uncovering patterns in the training data or

simply compare new datapoints with known ones (model-based or instance-based

learning).

The pipeline of the machine learning process proceeds as follows (figure 5.1). The

first and perhaps most important step is to acquire or create a representative dataset. It

is usually said that ”models are only as good as their data”, since a machine learning

algorithm creates amodel based on the datapoints upon it is trained; themore characteristic

of the the general population the training data, the more the possibilities that for the model

to make accurate predictions. We will present several data-preprocessing steps in later

sections. The dataset is then split into a training set and a test set. The training set will

be the datapoints upon which the algorithm will be trained, whereas the test set is used to

evaluate the model produced and tune its parameters. This process is usually iterative: the

model can be re-trained and re-tested until it yields satisfactory results.

Figure 5.1: Machine learning process overview

The problems tackled by machine learning techniques can be split into to distinctive

categories: classification (predicting classes) and regression (predicting values). Let x
be the input to a model, and y the corresponding (predicted) output. If y is a discrete

-categorical value (a discrete class label), we have a classification problem, whereas if

it is a real number (e.g. an integer or a floating point value) we have a regression prob-

lem. Somemachine learning algorithms, such as decision trees, can tackle both categories.

Other ones can either be applied to only one category of problems, or need extensive and

complex modification to be fitting for applying to both categories. Some popular clas-

sification algorithms include decision trees, support vector machines, logistic regression,

naive Bayes, k-nearest neighbors etc.

5.1.1 Data Preparation

As we already mentioned, data is one of the most crucial parts in a machine learning

model, and must fulfill the following criteria.

1. Sufficient Quantity. For machine learning algorithms to actually be able to learn,

a large amount of datapoints are required. This is especially evident in [11], where
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even fairly simple algorithmswere able to perform almost the same as very complex

ones when given enough data.

2. Representative Instances. Even if one has a vast amount of data available, those

must be representative of the general population and the new cases the model might

come to face. For example, it would be useless to train a regression model to pre-

dict the average temperature for a month using training data mainly from summers

months. Note that it is not necessary for all classes or ranges of values to be equally

represented: the dataset must contain datapoints in the same analogy as they are

present in the general population.

3. Good Quality. A dataset ideally should not contain errors, outliers or irrelevant

noise.

4. Relevant Features. The features by which datapoints are characterized also play

a key role. More features might uncover more intricate patterns, but too many or

irrelevant ones introduce a significant amount of noise to the system.

5.1.1.1 Feature Selection

Feature selection is the (most of the times) automatic selection of data attributes that

are most relevant to a specific problem. It usually acts as a filter, removing features that

might be redundant or introduce false patterns. Reducing the number of features a model

needs to perform adequately is desirable, as it results in a faster model, whose underlying

processes are less complex andmore easily understood. Nevertheless, if not done carefully

feature selection can introduce bias and lead to overfitting. Feature selection methods can

be split into three categories:

1. Filter Methods: A statistical measure is used to assign a score to each feature. All

features are then ranked by score and either selected or removed.

2. EmbeddedMethods: Those methods learn which features mostly contribute to the

accuracy of a model while the model is being created.

3. Wrapper Methods: Different combinations of features are created, evaluated and

compared to each other. The evaluation is done by a predictive model, which as-

signs each combination with a score based on model accuracy. A well known wrap-

per method is the Recursive Feature Elimination (RFE) algorithm. RFE iteratively

fits a model using data with a specific set of features and removes the weakest one

based on the model’s ranking, until it reaches a specific number of features.

5.1.1.2 Feature Scaling

In the K-Means subsection we mentioned using standardization, a step that is neces-

sary when different features have different units. Each feature vector is standardized to
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have a mean of zero and a standard deviation of one, replacing each element x use a new
x′ such that

x′ =
x− x

σ
where x and σ are the original vector’s mean and standard deviation respectively. Other

methods of scaling include min-max normalization (data is scaled to the range of [0, 1] or
[−1, 1]) and scaling to unit length (vector is scaled so that its complete length is 1).

Note that in machine learning models, the scaling transformation must be created upon

only the training set and not the whole dataset.

5.1.2 Training and Test Set

Creating a training and a test set from your datapoints is a key step, as one must make

sure that both are characteristic of the whole dataset so that the algorithm is accurately

trained and evaluated. A testing set can be created by sampling the dataset in either a

random or stratified way. If the dataset is large enough, then random sampling should be

sufficient to adequately capture all trends. However, in very small or incomplete datasets,

one may prefer opting for stratified sampling: the dataset is divided into homogeneous

subgroups called strata, and the right number of instances is sampled from each stratum to

guarantee that the test set is representative of the overall population. Selecting the criterion

according which the strata are created is pivotal, as it must be the feature or combination

of features that best represents the dataset’s characteristics.

5.1.3 Support Vector Machines

A Support Vector Machine (SVM) is a quite versatile and powerful supervised ma-

chine learning model, that can perform both regression and classification (linear and non-

linear), though it usually used for the latter. It is also particularly suitable for small and

medium sized datasets.

When used for classification, the SVM algorithm plots data instances as points in a

n-dimensional space (where n is the number of features), with the value of each feature

being the value of a particular coordinate. Then, classification is performed by finding

the maximum margin hyperplane that differentiates best the two classes. We call support

vectors the co-ordinates of individual instances, and support vector machine the frontier

(hyperplane) which best divides the two classes.

Figure 5.2: SVM classification example
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5.1.3.1 Linear and Non-Linear SVM

When the two classes can be separated by a straight line we call them linearly sepa-

rable. If we demand that all instances of a class are on the one side of the hyperplane, we

are conducting hard margin classification. However, this only performs well if there are

no outliers and the data is indeed linearly separable, as an outlier can either prevent a hard

margin classifier from finding a hyperplane, or find a hyperplane that is not satisfactory.

To avoid such issues it is preferable to use a more flexible model, one that balances

keeping the margin between the classes as large as possible and limiting margin violations.

This is called soft margin classification, and can be controlled with the regularization

parameter of the classifier, discussed later on.

Many times though a dataset cannot be separated by a straight line. In this case, a

method called kernel trick is employed to try and create a hyperplane. A kernel is a math-

ematical function which transforms a low dimensional input space to a higher dimensional

one, which essentially means converting the problem from non-separable to separable.

5.1.3.2 Tuning Parameters

The SVM algorithm has a number of parameters that can be used to customize the

model. The first one is the kernel used to create the hyperplane, with the most common

kernel types being linear, polynomial and gaussian. The kernel type determines the math-

ematical function used to compute the hyperplane, and is chosen based on the way classes

are formed and how they are separated(linearly or not). Two other important parameters

are regularization and gamma. Regularization (or C) indicates how much we want to

avoid misclassifying each training example. For large values of C, a smaller-margin hy-

perplane will be chosen, if that hyperplane is more effective in classifying all the training

points correctly. Conversely, a very small value of Cwill result to larger-margin separating

hyperplane, even if that hyperplane misclassifies more points. Gamma defines how far

the influence of a single training instance reaches. With low gamma, instances far away

from plausible lines are considered in calculation for the hyperplane, whereas high gamma

means the points close to plausible lines are considered in calculation.

5.1.4 Classification Problems

Classification problems, as we have alreadymentioned, are defined as problemswhere

for an input x the output is a discrete value y, representing a class. Before continuing, we
would like to present some of the different types of classification, the challenges one might

face when trying to train classifier and the main metrics used for evaluating the later’s

efficiency.

5.1.4.1 Binary and Multiclass Classification

Binary classifiers can distinguish between only two classes, whereas multiclass (or

multinomial) classifiers can distinguish between more than two classes. Some algorithms,
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such as naive Bayes, can handle multiple classes directly, while others, like SVM, are

strictly binary. However, binary classifiers can be manipulated into performing multiclass

classification by either using a one-versus-all or a one-versus-one strategy. In one-versus-

all (OVA), N binary classifiers are trained for N classes, with classifier Ni distinguishing

between class i and all other classes merged together. For a datapoint to be classified,
each classifier produces a decision score. The one with the higher score is selected, and

the datapoint is place in the corresponding class. In one-versus-one (OVO) strategy, one

classifier is trained for each pair of classes, resulting in
N∗(N−1)

2 classifiers. A new data-

point is placed in the class that is chosen by the majority of the classifiers.

5.1.4.2 Overfitting and Underfitting

The performance of a machine learning model is judged by its predictions’ accuracy

when faced with an unknown dataset, and we have already discussed the role of a high-

quality training set in achieving good accuracy. However, a model with a great training

set might underperform either because the model is too simple to accurately describe the

population, or too complex to generalize well.

Figure 5.3: Three classifiers for the same data, showcasing under- and overfitting.

Overfitting refers to a model that has learned the detail and noise in the training data

to the extent that it negatively impacts the performance of the model on new data. This

means that the noise or random fluctuations in the training data are picked up and learned

as concepts by the model. The problem is that these concepts do not apply to new data and

prevent the model from generalizing effectively. Overfitting is more likely with nonpara-

metric and nonlinear models that have more flexibility when learning a target function.

Therefore, many of these models also include parameters or techniques to control how

much detail the model learns.

Techniques such as cross validation, dataset enrichment, features removal, ensem-

bling, etc. can be used to prevent a model from overfitting. In the case of SVM, the

aforementioned parameters of C and gamma can be used to mitigate overfitting phenom-

ena. In general, if an SVM classifier is overfitting, C and gamma should be decreased.

In figure 5.4, we show SVM models trained with a gaussian kernel and different C and

gamma values, and how this affects the resulting hyperplane.

Underfitting refers to a model that can neither fit the training data nor generalize to

new data. It is often not discussed, as it is easily detected during training given a good
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Figure 5.4: SVM classifiers trained with different C and gamma values

performance metric. When it is present, a more complex model is required.

5.1.4.3 Performance Metrics

To quantify how a classifier is performing, and detect phenomena of over- or under-

fitting, data scientists rely on evaluation metrics. The most important of them are:

• Confusion matrix: Although itself not a performance measure, the confusion ma-

trix can provide very useful insights into the distribution of the test set into different

classes, and is the foundation of almost all other metrics.

Figure 5.5: Confusion matrix of a binary classification problem

Suppose we have a binary classification problem with two classes, P and N, and a

classifier being evaluated on the instances of a test set. According to each instance’s

actual and predicted class, it will be characterized as TP (true positive), FP (false

positive), FN (false negative) and TN (true negative). Ideally, the number of false

positives and false negatives would be zero. In a classification problem with N

classes, the confusion matrix is a N*N array defined similarly to binary problems.

Each row of the matrix represents the results of prediction for the corresponding

class at that row, while each column represents the actual class. The diagonal cells

show the number of correct classifications, while the off diagonal cells represent

the misclassified predictions.
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• Accuracy: Accuracy in classification problems is the number of correct predictions

made by the model over all predictions made, also defined as:

Accuracy =
TP + TN

TP + FP + TN + FN

with respect to the confusion matrix. In general, accuracy is not the preferred per-

formance metric when it comes to classifiers, as it is affected by skewed datasets

(datasets where some classes are much more populated others), introducing bias

towards the most popular class.

• Precision: Using the confusion matrix, precision is defined ass:

Precision =
TP

TP + FP

Precision is a metric of the portion of positive predictions that were actually posi-

tive.

• Recall or Sensitivity: Typically used alongside precision, recall shows the propor-

tion of actual positives that were identified correctly:

Recall =
TP

TP + FN

In a classification task, a precision score of 1.0 for a class Α informs us that every

item labeled as belonging to Α does indeed belong to it, but says nothing about the

number of items from A that were misplaced into other classes. On the other hand,

a recall of 1.0 means that every item that should have been labeled as A was indeed

labeled as such, but says nothing about how many other items were incorrectly also

labeled as A. Ideally, a classifier would have both high recall and precision. In

reality, those two metrics have an inverse relationship, and increasing one comes

at the cost of decreasing the other. Depending on the classification problem, one

should choose which of the two better applies and should receive more attention.

• F1 score: A metric that combines precision and recall and is better suited when

balance between the two is needed (and classes are unevenly populated), defined

as:

F1_score = 2 ∗ Precision ∗Recall

Precision+Recall
=

TP

TP + FN+FP
2

• ROC curve andROC-AUC score: The ROC curve is a performance measurement

used for a classification problem at various threshold settings. ROC-AUC score

is a measure of separability, i.e. it displays the model’s capability to distinguish

between classes, and is equal to the area underneath the ROC curve. Given a binary
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classification problem, the True Positive Rate, or the Recall that we have defined

above is given by the type:

TPR =
TP

TP + FN

while the false positive rate is defined as:

FPR = 1− TPR =
FN

TP + FN

The ROC curve is created by plotting TPR against FPR:

Figure 5.6: ROC curve

An ideal model has a ROC-AUC score near 1, meaning it can correctly discern

classes.

For further information about machine learning models, the reader can refer to [9].

5.2 The Noise and Sensitivity Classifiers

We have already discussed the nature of our supervised classification problem, but we

will mention it again for completeness. Our goal was to build two classifiers, one for noise

and one for sensitivity, that receive as input a vector of application features in the form

of PMU values and produce an output in the form of a discrete number, either ”0”, ”1”

or ”2”, which represents the class the input has been placed to. Table 5.1 illustrates the

correspondence between numbers and classes for each classifier.

Our dataset consisted of the 140 benchmarks described in the previous chapter, with

the same noise and sensitivity labels that were then determined. Because our dataset was

very small for machine learning algorithms, our design had to be extremely careful for

our model to yield meaningful results. All the processes described below were performed

twice, once for the noise classifier and once for the sensitivity classifier.

Our first step was to divide the dataset into train and test sets. Here, we experimented

with both random and stratified sampling. The strata in the stratified sampling were cre-

ated using the classes’ labels, so that our final sets would have the three classes in the
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Output Noise Class

0 Quiet

1 Potentially Noisy

2 Noisy

Output Sensitivity Class

0 Insensitive

1 Potentially Sensitive

2 Sensitive

Table 5.1: Classes of the Noisy and Sensitivity Classifiers

same ratios as the original dataset. Since we had such limited data, random sampling was

expected to create train and tests sets not representative of the population. Indeed, strati-

fied sampling created train and test sets which contained datapoints of discrete classes in

ratios that differed from those of the original dataset by 1.4% on average and 3% maxi-

mum. On the other hand, random sampling’s sets differed by 8.3% on average and 14.5%

maximum. Thus, we chose the stratified sampling method, and split our original dataset

into 70% train set - 30% test set. Note that the train and test sets for the two classifiers

were different.

Next, we scaled our train set using the sklearn.preprocessing.StandardScaler() method,

which performs standardization. We then executed a feature selection algorithm to deter-

mine which features were the most useful. The features that were examined are outlined

in Table 5.2. Our algorithm of choice was RFE with a linear regression model, and the

top 6 features for each classifier are presented sorted in Table 5.3. At this point, we cross-

examined RFEs results with our own past observations and insights. The features selected

by the algorithm for the noise classifier agreed with our expectations, although memory

bandwidth was only the fourth most important feature. This might be because although

noisy applications exhibit very high memory bandwidths and are easily discernible, the

bandwidth values of quiet and potentially noisy applications overlap, and thus bandwidth

alone cannot tell them apart. When it came to sensitivity, the results were not as expected.

The ratio of stalls due to shared resources to total cycles ranked first, as we anticipated, but

LLC acpki ranked last, probably for the same reasons that memory bandwidth ranked only

fourth in the noise classifier. However, because RFE takes into consideration the accuracy

of classifiers, which as we have mentioned is not the best metric for multilabel classifica-

tion, we decided to train our classifiers with more than one feature sets, and decide on the

results. The final feature sets tested are presented in Table 5.2.

The algorithm we chose as the foundation of our model was SVM. SVM classifiers

perform verywell on small datasets, as they create the hyperplane taking into consideration

only the points close to it (support vectors) and not all the datapoints. In addition, they are

rather resistant to outliers. We employed the implementation denoted as SVC in python’s

scikit-learn framework, and used the one-versus-one multiclass classification strategy. To

improve our models and mitigate overfitting, we experimented with different values for

the C and gamma parameters using 10-fold cross validation with grid search, as well as

with both linear and gaussian kernels. Also, when running the cross validation method we
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total features examined LLC acpki, LLC mpki, LLC miss rate, DRAM Band-

width, total L2 pending miss stalls, total L2 pending

miss stalls/total cycles, store buffer stalls

noise feature set LLC acpki, LLC mpki, LLC miss rate

sensitivity feature set LLC mpki, LLC acpki, DRAM bandwidth, total L2

pending miss stalls/total cycles

Table 5.2: Features used in final classifiers

noise LLC mpki, LLC miss rate, LLC acpki, DRAM Bandwidth, total

L2 pending miss stalls

sensitivity total L2 pendingmiss stalls/total cycles, LLCmpki, DRAMBand-

width, total L2 pending miss stalls, LLC miss rate

Table 5.3: Top 5 features ranked from most to least significant using RFE

evaluated each model with a number of different scoring functions: accuracy, precision,

recall and f1 score (both micro and macro averages).

Because our train and test sets are small, the results of this analysis were treated with

caution. There were models that performed very well, but high values for C and gamma,

which suggests overfitting. In Figure 5.7 we see the macro averaged recall scores of dif-

ferent combinations between C and gamma, for two different noise classifiers, one with

linear kernel and one with gaussian (using the same feature and train set). The gaussian

kernel clearly outperforms the linear one, as different classes overlap in the feature space

and a straight line cannot effectively separate them.

In many cases, higher values of C and gamma got better scores during the grid search,

as they led to overfitting. Similarly, very low values of C and gamma did not create a

sophisticated enough hyperplane to capture the classes (Figure 5.8). It is worth noting

though that there were specific combinations of C-gamma values that outperformed the

respective maximum values pair. Nevertheless, the scores were not drastically different,

which is expected when taking into consideration the small size of our dataset.

To confirm our intuition that LLC acpki is a valuable feature in sensitivity classifi-

cation, although RFE pointed otherwise, we compared the scores of a sensitivity classi-

fier with feature set [LLC mpki, LLC acpki, memory bandwidth, total L2 pending miss

stalls/total cycles] with one with a feature set containing the top 4 features from RFE,

namely [LLC mpki, memory bandwidth, total L2 pending miss stalls, total L2 pending

miss stalls/total cycles]. It is evident in Figure 5.9 that our intuition is correct, with the

first classifier performing notably better.
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(a) linear kernel

(b) gaussian kernel

Figure 5.7: Parameter search for two classifiers, one with linear kernel and one with gaussian

Scores in cross validation

We chose the 5 best noise and 5 best sensitivity classifiers, which were then evaluated

upon their respective test set (noise or sensitivity). In order to further validate the models

that appeared to be optimal though cross validation, we hand-tuned models with the re-

spective parameters and examined their scores under several scoring functions. The two

final classifiers are outlined in Table 5.4, and their scores are presented in Table 5.5.
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Figure 5.8: Parameter search for a sensitivity classifier. Very low C values lead to underfitting.

Classifier Type Feature Set Kernel C Gamma

noise LLC mpki, LLC acpki, LLC miss

rate

gaussian 10 1

sensitivity LLC mpki, LLC acpki, DRAM

bandwidth, total L2 pending miss

stalls/total cycles

gaussian 2 1

Table 5.4: Final noise and sensitivity classifiers’ specifications

Classifier Type noise sensitivity

Accuracy 0.8333 0.8095

Recall (macro) 0.8333 0.8095

Recall (micro) 0.8005 0.7787

F1 score (macro) 0.8322 0.8095

F1 score (micro) 0.8271 0.7902

Table 5.5: Final noise and sensitivity classifiers’ scores on test set
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(a) feature set = [LLC mpki, LLC acpki, memory bandwidth, total L2 pending miss

stalls/total cycles]

(b) feature set = [LLC mpki, memory bandwidth, total L2 pending miss stalls, total L2

pending miss stalls/total cycles]

Figure 5.9: Parameter search for two sensitivity classifiers with different feature sets
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At this point, it is interesting to present the two classifiers’ confusion matrices (noise

and sensitivity respectively): 
7 5 0

0 19 0

0 2 9



6 3 2

0 17 1

0 2 11


As we can see, in both cases the majority of mispredictions involves the potentially

noisy or potentially sensitive class. This is due to the nature of our dataset: both those

classes have around 60-70 datapoints, with each other class having around 40 datapoints.

In such a small dataset, this difference in sizes was enough to create a small bias in favor

of the potentially-x classes, as the classifier ”saw” more of their instances during training.
We tried to eliminate this phenomenon using a data preparation technique called over-

sampling. With over-sampling, artificial datapoints are created and used to pad classes

that have small populations. We used the Synthetic Minority Over-sampling TEchnique

(SMOTE), which places new instances on the lines connecting already existing (in the

original dataset) instances of each minority class. We then trained two new classifiers,

using train sets originating from the over-sampled dataset. Their confusion matrices are

presented below (noise and sensitivity respectively):
14 1 2

3 17 1

1 0 14



16 0 1

4 13 0

6 2 10


The number of mispredictions did not change drastically, but their nature did; we now see

for example sensitive applications being mistaken for insensitive. Although these classi-

fiers might be considered more fair, we chose to not use them for two main reasons. First,

the fact that the potentially-x classes have more instances is a characteristic of the general
application population. In reality, there aren’t many applications that are always noise or

always insensitive, and most applications fall in the space in between. Second, we prefer

our classification to be conservative when labeling an application as insensitive or quiet.

Take the case of an application A that the classifier cannot decide whether to label it as

quiet or potentially noisy. If A is quiet, but gets labeled as potentially noisy, no future

co-runner will suffer. We might not get the maximum performance gain compared to a

random scheduling as we will choose to schedule A with caution, thinking it might affect

its co-runner, but we will certainly not lose. If on the other hand A is potentially noisy, but

gets labeled as quiet, we might schedule it with a sensitive co-runner, thinking A will not

affect its performance, when in reality it will. In the case we decided to keep the classifiers

which were trained with the oversampled dataset, we could introduce our ”preference” of

not easily classifying an application as quiet or sensitive by changing the relative weights

between the classes. SVC’s implementation gives the designer the ability to control this

level of ”preference”, and train classifiers that act accordingly.
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5.3 Interference Aware Scheduling using Noise and

Sensitivity Classifiers

Finally, we would like to illustrate how our classifiers can be utilized in a cloud envi-

ronment to facilitate interference aware scheduling. We examined the following scenario:

we had a server containing 10-core multiprocessors, and two application pools, one with

high-priority (HP) applications and one with low-priority (LP) ones. Each multiprocessor

could host one copy of a HP application and nine copies of a LP application. Our goal was

to create HP-LP pairs such so that average performance degradation of HP applications

is minimal. This resembles a commercial cloud where applications with strict QoS goals

would be of higher priority, while best effort, batch applications would be used to fill any

remaining cores.

Our scheduling algorithm was based on the following set of rules:

1. Select all sensitive HP applications and all quiet LP applications, and pair as many

as possible.

2. Select all insensitive HP applications and all noisy LP applications, and pair as

many as possible.

3. If there are remaining quiet LP applications, pair them with potentially sensitive

HP applications.

4. If there are remaining insensitive HP applications, pair them with potentially noisy

LP applications.

5. When faced with a mix of sensitive and potentially sensitive HP applications, and

another one of noisy and potentially noisy BP applications, pair the potentially sen-

sitive HPs with the noisy BPs and the sensitive HPs with the potentially noisy HPs.

We proceed to present some representative mixes of applications, and how our sched-

uler faced them.

5.3.1 Scenario 1: 1 noisy LP + 1 potentially noisy LP + 1 sensi-

tive HP + 1 insensitive HP

The first example showcases exactly the benefits of a-priori knowledge of an appli-

cation’s behavior. The noisy LP (lbm_r) is co-scheduled with the insensitive HP (ex-

change2_)r, and the potentially noisy LP (omnetpp_r_star) with the sensitive HP (om-

netpp_r_rand27). TheDeg for the two HPs is 6% and 33% (19.5% on average), and their

ipcs are plotted in Figure 5.10 and Figure 5.11

If the applications were paired vice-versa, the Deg for the HPs would have been 2%
and 64%, significantly worse on average (33%).
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Figure 5.10: IPC, selected co-location: 1 exhange2_r with 9 lbm_r

Figure 5.11: IPC, selected co-location: 1 omnetpp_r_rand27 with 9 omnetpp_r_star

5.3.2 Scenario 2: 1 noisy LP + 1 potentially noisy LP + 1 sensi-

tive HP + 1 potentially sensitive HP

In this case, the scheduler chooses to place 1 noisy BP (lbm_) with 1 potentially sen-

sitive HP (blender_r), and 1 potentially noisy BP (omnetpp_r_star) with 1 sensitive HP

(omnetpp_r_rand27). Since there is no quiet LP, it tries to place the sensitive HP with the

next ”less noisy” LP. The HPs show a Deg of 29% and 30% (29.5%), and their IPCs are
shown in Figure 5.12 and Figure 5.13. In the alternative scenario, the HPs’Deg would be
11% and 64% (37.5%). Here, one of the previous scenario’s ”harmful” collocation, that of
(omnetpp_r_star) with (omnetpp_r_rand27), is in this scenario a necessary choice, since

the alternative creates much performance degradation in total for the HPs.

Figure 5.12: IPC, selected co-location: 1 blender_r with 9 lbm_r

Figure 5.13: IPC, selected co-location: 1 omnetpp_r_rand27 with 9 omnetpp_r_star
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5.3.3 Scenario 3:1 noisy LP + 1 quiet LP + 2 potentially sensi-

tive HPs

Unfortunately, in this application mix our scheduler cannot do much, since both HPs

are labeled as potentially sensitive, so it makes the pairs at random. A potential extension

to tackle such cases would be for the scheduler to decide based on the values of individual

PMUs, e.g. try to co-locate with the noisy LP the potentially sensitive BP with th lower

LLC mpki, but this is beyond the scopes of this thesis. We present the two possible co-

locations (Figure 5.14, Figure 5.15, Figure 5.16, Figure 5.17), and the Deg of each HP.

Figure 5.14: IPC, selected co-location: 1 blender_r with 9 lbm_r

Deg of HP = 29%

Figure 5.15: IPC, selected co-location: 1 cactuBSSN_r with 9 exchange2_r

Deg of HP = 0%

Figure 5.16: IPC, alternative co-location: 1 blender_r with 9 exchange2_r

Deg of HP = 0%
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Figure 5.17: IPC, alternative co-location: 1 cactuBSSN_r with 9 lbm_r

Deg of HP = 22%

An important observation we can make by looking at co-executions like the one above

is the effect of multiple threads. In our initial analysis, we discussed scenarios that con-

sisted of only one thread per application. Here, we see how certain characteristics are

augmented when multiple copies of an application are present. The fact that potentially

noisy applications, when in many copies, create significant contention is not unexpected;

this is why we labeled them as potentially noisy in the first place. Noisy applications in

many copies cause so much contention that even insensitive applications might exhibit a

small performance degradation, as shown in Figure 5.10.
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Chapter 6

Conclusion and Future Work

Interference due to application behavior in multicore systems has proven to be the

main bottleneck for resource utilization and efficient execution. Multiprocessors contain

a number of cores, each one having a private Level 1 and Level 2 cache, and all of them

sharing the rest of the chip’s resources. In environments with a very large number of appli-

cations, such as datacenters or HPC clusters, the amount of stress placed on the Last Level

Cache and DRAMBandwidth leads to significant performance degradation. Especially in

the case of commercial clouds, where some applications require strict performance guar-

antees, interference prevention and mitigation is of utter importance. In the beginning of

these thesis, we examined several prior approaches that aimed to tackle different aspects

of the problem: detect application interference and differentiate it from workload fluc-

tuations and normal application phase changes, or specify the resource that is suffering

from contention and the application causing it, predict performance degradation of differ-

ent co-execution scenarios. After carefully analyzing those proposals, we identified their

individual trade-offs and evaluated which mechanisms provide enough benefits to cancel

their overheads. We concluded that there is no mechanism proposed that can accurately

predict the behavior of an application in a co-execution scenario in regards of interfer-

ence that is based only on metrics gathered while an application is running in an isolated

environment.

We then executed a representative set of co-execution scenarios to validate that in-

terference is indeed detrimental to performance. Our results indicated that contention in

some cases can be so high that the ability to predict it before it happens, rather than trying

to detect it while it is happening, can be of great significance. In addition, several appli-

cations showcased constant behavior in all co-execution scenarios, leading us to believe

that the contention an application creates or the impact contention has on its performance

are characteristics inherent to the application, and can perhaps be derived by examining

other aspects of its behavior. Our goal was to design a mechanism that could deduce how

noisy (capable of creating contention) or sensitive (prone to suffering from contention) an

application is based on a set of low-level performance counters (PMUs) gathered during

isolated execution. This mechanism had to abide by the following constrains: bare min-

imum profiling overheads, rely solely on isolated performance and not on experimental
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co-execution scenarios, and be able to predict cases of interference prior to scheduling and

not detect them after scheduling the application in a production environment.

The first step was defining the two characteristics we wanted to predict: noise and sen-

sitivity. We determined the level of sensitivity one application has by observing its perfor-

mance when it was allocated different amounts of LLC capacity, and categorized applica-

tions into insensitivewhen LLC capacity didn’t affect performance, sensitivewhen perfor-

mance constantly improved as LLC capacity increased and potentially sensitivewhen per-

formance improved until a certain capacity threshold, after which remained the same. To

determine the level of contention caused by an application we utilized a reference bench-

mark. According to the level of performance degradation an application caused to our

reference benchmark we labeled it as noisy (high degradation, quiet (no degradation) or

potentially noisy (moderate degradation). The labels each application received where ad-

ditionally confirmed by examining its behavior in our executed scenarios.

We then composed extensive profiles for each application by collecting a large amount

of low-level performance counters during execution. The counters we focused on where

those related with the LLC, the memory bandwidth, other memory-related components

(such as TLBs) and their interactions with private caches and DRAM. From those pro-

files, we tried to detect trends in the values of PMUs that could be correlated with the

labels of the applications. Although some metrics like LLC acpki and memory bandwidth

did exhibit general patterns for some of our categories (e.g. noisy applications having

high memory bandwidth values) we couldn’t outline a specific set of rules to fully char-

acterize the application distribution into our categories. However, the exposure of even

some general trends motivated us to examine more complex mechanisms, such as cluster-

ing algorithms. We experimented with k-means clustering, a well-established algorithm

that divides instances into classes according to a set of features. Although we evaluated

a variety of feature sets, the PMU patterns describing behavior and the boarders between

classes proved to be too complex for k-means to uncover them.

Our final approach was to utilize machine learning techniques, which have proven

to be particularly effective in recognizing intricate relationships between data features.

More specifically, we aimed to tackle our supervised learning problem with two multi-

class classifiers, one for noise and one for sensitivity. The main challenge in our case

was the significantly small size of our dataset, which required scrupulous manipulations

to avoid misleading results. To overcome that hurdle, after carefully selecting represen-

tative train and test sets as well as a list of data features for each classifier, we trained a

large collection of SVM classifiers with various feature sets and kernels. We also tried

to mitigate overfitting phenomena by experimenting with the parameters (C, gamma) of

the classifier. We evaluated all models using a list of scoring functions (accuracy, recall,

precision, f1 score). Our two final classifiers had (recall) scores of 0.833 and 0.8095 for

noise and sensitivity classification respectively. We then showcased how our classifiers

can be utilized in a cloud environment with high- and low-priority applications to make

optimal scheduling decisions and avoid or minimize interference effects on performance.

Our work can be extended towards various directions. One intriguing approach would

be to further break down each category, especially the potentially-x ones, to make even
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more accurate predictions about their behaviors. Another idea is to explore if it possible

to assign each application with a specific score that can be directly utilized to predict the

amount of contention it might create/suffer. Our categories were intentionally generic due

to the lack of a large dataset, but obtaining profiles from more applications might reveal

new pattern that can be exploited.

Interesting work can also be done on how behaviors scale on scenarios with more

than two threads. We briefly discussed in our last chapter how certain characteristics are

augmented when there are more than one co-executors present, and further investigation

is needed to determine how classification can be utilized in more complex co-execution

scenarios. Machine learning techniques are a promising approach to the matter, as they

have only recently started being employed by system engineers and computer architects,

and there is plenty of room to experiment with their abilities.
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