.'f
£

<7
.

la

- E *,
e "“/

” APOMHBEV S .
L a=sl

|

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

DIVISION OF COMPUTER SCIENCE
COMPUTER SYSTEMS LAB

Application classification techniques’ design for interference
mitigation in multiprocessor systems

DIPLOMA THESIS

Marina Vemmou

Supervisor: Georgios Goumas
Assistant Professor, N.T.U.A.

Marina Vemmou

Athens, July 2019

TXNE]

4

-
HE

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

3; ‘ff‘” ﬂ SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
4,2 NEY DIVISION OF COMPUTER SCIENCE

1

COMPUTER SYSTEMS LAB

Application classification techniques’ design for interference

mitigation in multiprocessor systems

DIPLOMA THESIS

Marina Vemmou

Supervisor: Georgios Goumas
Assistant Professor, N.T.U.A.

Approved by the examining committee on July 19%, 2019.

G.Goumas N.kozyris N.Papaspyrou
Assistant Professor, N.T.U.A. Professor, N.T.U.A. Associate Professor, N.T.U.A.
Athens, July 2019.

Marina Vemmou
Electrical and Computer Engineer

Copyright © Marina Vemmou, 2019. National Technical University of Athens.
All rights reserved.

This work is copyright and may not be reproduced, stored nor distributed in whole or
in part for commercial purposes. Permission is hereby granted to reproduce, store and
distribute this work for non-profit, educational and research purposes, provided that the
source is acknowledged and the present copyright message is retained. Inquiries regarding
use for profit should be directed to the author.

The views and conclusions contained in this document are those of the author and should
not be interpreted as representing the official policies, either expressed or implied, of the
National Technical University of Athens.

Iepiinyn

Ot moAvmOpnvor eneepyaotéc eival 0 Pactkog dSopUtkog AiBog OAmV TmV GLYYPOVOY
VTOAOYIOTIK®V cvuoTndtwy. [lap’ 6da o 0QEAN TOL TAPEYEL 1] SVVATOTNTA TOVTOYPOVIG
EKTELEOTG EPAPUOYDV, O OVTAYMOVIGUOG TOV TPOKAAEITAL Y10 KOWVOYPNGTOVG TOPOVS TOV
moAveneEePyoTr OT®G 1 KpLe1 Pviun tehevtaiov emmédov (Last Level Cache) kot o
€0Pp0g TOV S1OA0V SEGOUEVMV TTPOG TN VAN ELVOIL TOAAES POPES KOTAGTPOPIKOS YiaL TNV
emidoon tov epoppoymv. Ewdikotepa, oe mepiPdiiovia vroroyiotiko vépoug (Cloud
Environments), o mépoyog kaieitan vo eEaCQUAIGEL GLYKEKPUEVO KOl VOTNPE Emime-
da emidoong (Quality of Service goals) yio cUYKEKPIUEVES EQOPLOYEG, OONYDVTOG OTNV
OVO-YKOGTIKT] EKTEAECT] TV TEAEVTOI®MV G OMOLOVOUEVE TEPIPAALOVTO VIO TNV ATOPVYT|
OVTO-YOVIGHOD KOl TNV TEMKT VITOYPNGLLOTOINGT) TOL GUGTHUATOG.

"o 10 Ady0 T, TO TPOPAN LA TOV AVTUYOVIGLOD Y10 KOWVOYPTOTOVE TOPOVG OE GEVA-
PLOL GUVEKTEAEGE®V EYEL AMAGYOANGEL EKTEVAG TNV EMGTNOVIKT Kowvdtnta. H mapovca
EPYOCIO EMKEVTIPMVETAL GTIV TPOPAEYT] TOV KUTUCTAGEDY OVTOY®VIGIOV 0EIOTOID-VTOG
ATOKAEIOTIKA dgdopéva amd HeTplKég enidoong vakov (hardware performance counters)
KOTA TV OTOUOVOUEVT] EKTEAECT] TOV EPAPULOYDOV. Baoikd yopaKxTnplotikd g npoceyyi-
oMG HLog ival TO OTL deV OTONTEL T1) GUVEKTEAEOT] LLOIG EPAPUOYNG LE BALEC DOTE VOL EVTOTIL-
otel To ev enmpedlel Ty emidoon Tovg N emnpealetaln ido, KafIoTOVTOC TNV WOAVIKT Yo
KEVIPO OEOOUEV®V OOV OEV VIAPYEL 1| TOAVTEAELN ECKELUWEVTG TPOKATONG KOTAGTAGEWDY
AVTOY®OVIGLOV.

O teMKog Hog UNyavicrog tepthappavel 600 TaEvounTéG POCIOUEVOVG OE TEXVIKEG
pnyoavikng pédnong. O kabe ta&vountig Aappdvel og 16000 éva GLYKEKPIUEVO GUVOAO
UETPIKDV EMIO0ONC KOl KATNYOPLOTOLEL TNV EQPOPLOYT OC TPOS TNV IKAVOTNTE TG VAL EMY)-
pedlel v extédeon GAA®V epapuoy®V (noise) kot TNy evaictncio tng enidoong g étav
ovvekTeleital pe AALOLG (sensitivity). YmodelkvouLe ETIONG TAOG LTOPOLY OL YOPOKTNPL-
ool oV 0TOdIdOVE GTIC EPAPLOYEG UTOPOBV VO 05100 B0V 0o £vay YPOovodPOUOAO-
Nt epapuoymv (application scheduler) og éva mepBAAAOV DTOAOYIGTIKOD VEPOLS DOOTE
va peylotononel n enidoon pOPLOYDOY VYNANG TPOTEPALOTITAS.

AéEarc-Kheona: avtaymviopuog yuo Kovoypnotovg mopovg enelepyactn, YopaKTNPIoHOG
EQOPLOYDV, TPOPAEYN GUUTEPLPOPAG, LETPIKEG EMIOOCTC VAIKOD, UNYOVIKT Labnon

Abstract

Multiprocessors are the basic building block of all modern computing systems. De-
spite the benefits yielded by the ability to execute applications concurrently, the rivalry
between applications for the chip’s shared resources, such the Last Level Cache and the
memory bandwidth, can be detrimental to performance. Especially in commercial cloud
environments, the provider is obliged to abide by strict performance guarantees required
by certain applications (Quality of Service goals), leading to the isolated execution of the
latter in dedicated servers to avoid interference, and consequently to the system’s under-
utilization.

As a result, extensive research has been conducted on the problem of application in-
terference. This diploma thesis focuses on predicting cases where interference might be
present by utilizing exclusively data by low-level hardware performance counters gathered
during isolated application execution. The main characteristic of our approach is that it
does not require executing an application with co-runners to decide whether it will suffer
from or create contention, making it ideal for cloud environments, where subjecting an
application to artificial interference is prohibitive.

Our final mechanisms consists of two machine learning base multiclass classifiers.
Each classifier receives a s input a specific set of hardware performance counter values
and classifies the application in regards to its ability to cause interference (noise) and its
sensitivity to it. We also showcase how the labels we have assigned each application
can then be utilized by an application scheduler in a datacenter, in order to maximize the
performance of high-priority applications.

Keywords: interference, processor shared resources, application profiling, application
classification, hardware performance counters, machine learning

Evyoprotieg

H mopovoa epyascia ekmoviOnke oto Epyaotiplo Ynorkoyiotik®v Zvotnudtov g
Yyoic Hiektpoddymv Mnyavikov kot Mnyovikov Yroloyiotmv tov Efvikod Metco-
Brov [MoAvteyveiov.

®a nBera va guyaplotnow WTépwg tov EmPrénovta Kabnynt pov k. T'edpylo
I'kodpa yio Tnv cvveyn kabodnynon kot otNpiEn mov pe tpobopia pov mapeiye Katd ™
S1apKELD EKTOVNONG TG TOPOVoHG SIMAMUOTIKNG epyaciag. EmumAéov, Ba ffeia va gv-
yapronow tovg kanyntég k. N.Kolopn kot k. N.[laracmtopov, kabog kot tov petadt-
daktopwkd gpevvnt K. K.Nika, yio o evolagépov mov pov KaAAépynoay péca amd to
LOOLOTA TOVG Y10 TNV EMGTNLN KOl OPYLTEKTOVIKT] TMV VITOAOYIGTOV, KOOGS Kot Y10l TIG
TOADTILESG YVAOOELG TTOL LOV TTPOCEPEPAY OAL QT TO, YPOVIAL.

O kOKAOG OTTOVOGV OV Kot 1] Topovod epyacia dev B elyov oAokAnpwbel diywe tnv
TOPOVGI0 TNG 7O OLOPPA ETEPOKANTNG TAPENS QIAMVY, UI0G TAPENS TTOL TOTE OE PAVTO-
Copovv 61t Ba pov Gée va OMOKTNO®. X0G EVYUPLOTH OAOVG Yo KAOE GTIYU OV LoV
yapicate. Idwitepa O NOera va guyapiotiow ™ POTEWT, Y100 TNV GLVEYN TNG VITOUOV
Kal onpign, kai 1o Niko, yio Kabe oTIyp| Tov TOTEYE GTOVG GTOYOVG OV TTLO TOAD o’
0G0 £YQ.

To peyoddtepo gvyapIoTd Vol YioL TV OIKOYEVELA LOV, oL OAT TN oTHPIEN KOt EUTL-
6T0GUVT OV cvveyiLel v, LoV TPOGPEPEL.

Mopiva Béppov,
IovAog 2019

10

Contents

Hepitnyn

Abstract

Evyoaprotieg

1

4

Exterapévn Hepiinyn

1.1 To [Ip6PAnua Tov Avtaywvicuov oe Iodlvenegepyaotikd ZvotiHota

1.2 TIlpooceyyiceic oto [IpdfAnpa tov Avtoyoviopod
1.3 Katnyoplonoinon Epoppoyav yo v Ipodinyn @awvouévov Avtaywovi-

1.3.1 Ilepapatikn [MAatedppa kot Metporpoypdupota
1.3.2 Zevlplo ZUVEKTEAECTIG « « v v v v v v e e e e e e e e e
1.3.3 Zyedwouodg Alyopibpov Katnyopromoinong.
1.4 Xopoxmpiopds Epappoyav pe m Xpfion Mnyavikig Mdabnong
1.5 Zvumepdopata kot Medhovtikég Enextdoeic. L.

Introduction

2.1 Modern Multicore Systems
2.2 The Interference Problem L .
2.3 Resource SharingintheCloud

Approaches to the Interference Problem

3.1 OVervIEW . . . oL

3.2 Online Monitoring during Co-Execution

3.3 Profiling-Based Mechanisms
3.3.1 Intrusive Micro-Benchmarks
3.3.2 Isolated Profiling

34 Conclusions

Application Classification for Interference Prevention

4.1 System Configuration and Benchmarks
4.2 Co-Execution Scenarios.
4.3 Noiseand Sensitivity

16
16
17

19
19
20
21

26

28
28
29
30

31
31
32
35
36
37
42

4.4
4.5

Previous Work on PMU-based Classification
Designing a Non-Intrusive, Lightweight Classification Algorithm

4.5.1 DefiningtheClasses
452 PMUPatterns
453 K-Means Clustering

An Application Classifier using Machine Learning

5.1

52
53

Machine Learning Background
5.1.1 DataPreparation
5.1.2 Trainingand TestSet
5.1.3 Support Vector Machines
5.1.4 Classification Problems
The Noise and Sensitivity Classifiers
Interference Aware Scheduling using Noise and Sensitivity Classifiers . .
5.3.1 Scenario 1: 1 noisy LP + 1 potentially noisy LP + 1 sensitive HP
+ linsensitive HP oo .
5.3.2 Scenario 2: 1 noisy LP + 1 potentially noisy LP + 1 sensitive HP
+ 1 potentially sensitive HP,
5.3.3 Scenario 3:1 noisy LP + 1 quiet LP + 2 potentially sensitive HPs .

6 Conclusion and Future Work

13

51
52
53
58

63
63
64
66
66
67
71
78

78

79
80

82

List of Figures

1.1

2.1

3.1
3.2
33
34
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

4.13

4.14

5.1

Alepevnomn Topap€Tpov yio évav sensitivity classifier. [ToAd youniég ti-
uég yia to C odnyov og underfitting. L.

A typical multiprocessor architecture

The CPI% pipeline o
Heracles overview 0.
Proctor’s performance degradation detection
Time series step detection using the finite difference method
Paragonoverview
DynaWay’s profilingphase
Execution time predictionphases
DeepDive overview e
DejaVuoverview

IPC, scenario: 1 omnetpp rwith 1lbm r
LLC occupancy, scenario: 1 omnetpp rwith 1lbm r
IPC of various stream’s CO-TUNNETS o o v v v v v v v oo o ..
IPC of Xz rin various scenarios
IPC of namd _r and its co-runners in various scenarios
LLC acpki Benchmarks labeled according to sensitivity
LLC acpki Benchmarks labeled according tonoise
DRAM Bandwidth Benchmarks labeled according tonoise
Stalls due to data requests Benchmarks labeled according to sensitivity . .
LLC mpki Benchmarks labeled according to sensitivity
LLC miss rate (misses/accesses) Benchmarks labeled according to noise .
Noise: k-means clusters VS actual clusters Features: LLC acpki, LLC

mpki, DRAM bandwidth, LLC missrate
Noise: k-means clusters VS actual clusters Features: LLC mpki, DRAM

bandwidth, LLCmissrate
Sensitivity: k-means clusters VS actual clusters Features: LLC acpki,

LLC mpki, DRAM bandwidth, L2 pending_stalls/tot cycles

Machine learning process OVerviewo a

14

5.2
53
54
5.5
5.6
5.7

5.8

59

5.10
5.11
5.12
5.13
5.14
5.15

5.16

5.17

SVM classification example
Three classifiers for the same data, showcasing under- and overfitting. . .
SVM classifiers trained with different C and gamma values
Confusion matrix of a binary classification problem
ROCecurve e
Parameter search for two classifiers, one with linear kernel and one with

gaussian Scores in cross validation
Parameter search for a sensitivity classifier. Very low C values lead to

underfitting.
Parameter search for two sensitivity classifiers with different feature sets .
IPC, selected co-location: 1 exhange2 rwith9lbm r
IPC, selected co-location: 1 omnetpp r rand27 with 9 omnetpp r star . .
IPC, selected co-location: 1 blender rwith9lbm r
IPC, selected co-location: 1 omnetpp r rand27 with 9 omnetpp r star . .
IPC, selected co-location: 1 blender r with 9 Ibm r Deg of HP =29% . .
IPC, selected co-location: 1 cactuBSSN_r with 9 exchange2 r Deg of HP

IPC, alternative co-location: 1 blender r with 9 exchange2 r Deg of HP
=0% . oo
IPC, alternative co-location: 1 cactuBSSN_r with 9 Ibm_r Deg of HP =
22% .o

15

68
69
69
71

74

75
76
79
79
79
79
80

Chapter 1

Exterapévn Iepiinyn

1.1 ToIIpopinna tov Avraymviepnov og Ilorlvemelep-
YOOTIKG XvoTipoTo

Ot olvmopnvol enelepynotés, ol emelepynotég dNAad Tov o€ pio Hovo TAAKETO
(chip) meprrapPavouv mepiocdTepovg omd Evav mopnveg (CPU cores), amotelovv) Po-
GIKN TTNYN LTOAOYIGTIKNG dVvauNg Kabe cOyypovov LITOAOYIOTIKOD cuoThpatog. Kdabe
mopnvag £xet pia Witk emmédov 1 (Level 1, L1) kot emmédov 2 (Level 2, L2) kpoen
pviun (cache), evd ot vrdéromotl mOPoL Tov chip, OTMG 1 KPLET| PVHUN TELELTAIOL EMITE-
dov (Last Level Cache, LLC), 10 g0pog Tov dtoviov mpog T pviiun (DRAM Bandwidth),
70 SiKTLO JLEVVIESN G Kot TO €0pog {dVNG ToL S1KTVOL givan kKowvol kot dtopotpalopevol
AVALLEGO GTOVG TVPNVES, KL KAT EXEKTUCT] OVALESO OTIG EPAPLOYEG TTOL EKTEAOVVTOL GE
oV TOVG.

[Tapdro oL 1 TOVTOYPOVTY] GUVEKTEAEGT] TOAADY EQAPLOYDV amOTELEL TO PacKO TAE-
ovékTNnUo evog molvenelepyaotn, o avtayoviopog (interference) mov dnuovpysiton ovd-
HEGO GTIG EPAPUOYEG Y10 TOVG KOWOYPTGTOVG TOPOLS TOL chip 0dnyel 6NV ONUOVTIKA
pelopévn emidoon TV TeEAevTainy. XtV Tapodoo SmAMUATIKY e£eTAlETOL O OVTUY®VL-
ou6g 6Tovg £€\G 0VO TOPOVG:

* LLC: Aw@opeTikéc epaploYES TPOGTELOVVOUY SOQOPETIKES BEGEL VUG Ko
dedopéva. Eeappoyéc mov mpaypatomolovv cuyvég mposfaocelg otnv LLC 1/kat
YPNOLULOTOLOVV HEYOAO KOPUATL TNG Lopel va EKTOTIGOVY dedOpEVE, BAA®Y EQAP-
HOY®V, N Vo VTOPEPOLV 01 1dLEC amd cLYVO EKTOTIGHO TV dedopévav toug. O
GUVEXOUEVOG aVTAY®VIGUOG Yo, xdpo oty LLC odnyei oe avénuéva miss rates, to
omoia vroPadpuilovv v enidoon Kot ALEAVOVY TNV KOTOVAAWDGCT) EVEPYELNG.

* DRAM Bandwidth: E@appoyég mov mpaypatomolovv ToArég Kot cuyvEG TpocPd-
oelg oty pviun cuvayoviovrat peta&d Toug yo to dtbéoipo Memory Bandwidth,
Kuplwg ©¢ amotéAespo LoTifov TpocPicey Tov dev enm@eleitar amd TV epap-
Y10 KPLPEDOV VIOV,

17

2 oot T OIMAWUOTIKY EpYacio, Oewpoiue OTL 01 EPOPUOYES EIVOL HOVOVIIUOTIKES (&-
VoL VIO EKTEAEGNS), KL 01 Opol “epopuoyn” kol ViU ekTEAEoNS” ypHoYOTOI0OVTaL (G
TODTOTHUOL

1.2 IIpooeyyiceic oto Hpofinna tov Avtay®viopov

E&ottiog g ovveneidv oty emidoon Tov £YEL 0 AVTAYOVIGUOS Y10, TOVG KOWOYPT)-
GTOVG TOPOVG, £xEL TPOTADEL £vag AplOLOC UNYOVIGLOVY KOl ADGEDV Y10 TV OVTILETOTION
tov. ['evikdtepa, ot pnyavicpol avtoi ctoygbovy o€ Eva 1| TepLocdTEPN Amd TO KATO OGOV
a@opd to interference:

1. IIpdinyn

2. Evtomiopog kot d1oy@piopdg To amd QLGIOAOYIKEG AVEOUOIDCELS GTO POPTO EPYOL-
olag (workload) T@v epappoy®mv 1 TNV EVOALOYT] PAGEDY EKTEAECTC

3. Eloylotomoinon Tov Kol TV GUVETELDY TOV

H yevic axodovbia yeyovotwov otav pia epappoyn vrofinbei og éva cuotnua eivat
N e&Nc:

1. Agn epappoynig
2. (ITpoarpetikd) Extog cvuvdeong onuovpyio tpoeid epappoyng (offline profiling)

3. Xpovodpopordynon epapuroyns (tomobEtnon oe server/core) Kot Afyn oropicemv
Y10l TO OLOLOPACHO TOPOV

4. 'Evapén extéheong

5. (Ilpoopetikd) Anpovpyio TPOPIA EQAPLOYNG TOVTOXPOVA UE TNV EKTEAECT TNG
(profiling concurrent to the execution)

6. (ITpooarpetikd) IapakorovOnon ektéheonc epappoyng (online monitoring) Kot o-
VOTTPOGOPHIOYT] TOV OTOPAGEDY YPOVOIPOLOAOYNONG 1)/KaL SLOUOIPAGHOD TOP®V

Ta PApata 2,3,5,6 divovv 61OV GYESIAOTH TOV CLGTNHIATOG VA EVPOS ETAOYDV, ATO
70 av Ba Tig cvumepAdPel 1§ Oyt (av glval CNUEIOUEVES MG TIPOULPETIKES) MG TIG TP~
UETPOVG TIC LAOTTOINGNG TOVG (T.Y. TOV ahydpiBuo ¥povodpopordynons). Mmopoipe va
Sloyopicovpe TIG PEYPL TOPO TTPOCEYYIGELS MG TPOG TIG TEYVIKEG TTOV YPTCLULOTOLOVV GE
dvo katnyopies:

* Online Monitoring katd tnv cuvektéieon: O1TPOTAGEIS TOV EVIAGCOVTOL GE VT
v xotnyopia ([29], [17], [13]) dev amaitohv yvdOoN TOV YUPOKTNPIOTIKOV TNG O-
TOLOVOLEVNC (PLGLOAOYIKNG) EKTELESTC TNE EPAPLLOYNG, Kot dEV TEPIAAPivVOoLY
Kdmoto profiling. Qg cvvéneln, To GVOTNUO deV YVOPILEL TITOTO, Y10, TNV EQPAPUOTYT

18

P TNV tomobETnon ¢ oe kdmowov production server pali pe GAAeg EQOPLOYEC.
Ovpoceyyioelg avtég GTOXEVOVY GTOV EVIOTIGHO TOV interference péow tng online
GLALOYNG LETPIKAV YL TNV TG00 TOV EPUPLOYDV, KOL TN YPNON ALTAOV Yol TN
MY OTOQACE®Y GE TEPITTMOOT TOL JEV TKAVOTOLOVVTOL Ol GTOYOL EMIB00NG TOV
&yovv tebet (QoS).

* Profiling: X¢ avt v xotmyopia teptAapfavoviol Unyovicol Tov GuYKEVIP®-
VOUV TANPOPOPIEC CYETIKA €ITE [LE TNV OTOUOVAOUEVT) EKTELECT] LULOG EQOPIOYNC,
€lte e TNV CUVEKTEAEST TG UE AAAEG, GUYKEKPIUEVES EQUPHOYES, LE CKOTO TNV
mpoPAreyn Tov interference kot v peiwon TV cvvemeldv tov. Ot punyovicpol
aVTOl OTALTOVV €VO, ATOLOVOLEVO, EAEYYOpEVO TEPIPALAoV (isolated server), Omov
umopet va cuAdeydet o amapaitnTog aptBpdc HETPNGEDY Y10 GEVAPLOL OTOLOVOE-
VNG EKTELEONG 1] ECKEUUEVNG GLVEKTEAEOTG. ZuvNBmg cuvdvdlovTatl pe T ¥pnion
online monitoring, GCTE 01 LETPNGELS TOV TEAEVTAIOV VO LTOPOVV VO, GLYKPLOOVV LE
QTEG TNG OTOUOVMUEVTG EKTELECT|G KOl VO EVTOTIOTEL TO interference, Kabmg Kot
He TeXVIKEG Otapolpacpov opwv. Ot teyvikég profiling mov €yovv mpotabel ot
Biproypapia givar ot e€ng:

— Intrusive Micro-Benchmarks: Xvv0etikd petponpoypdppota vropdiiovy
TV €QOPUOYN OE GLYKEKPUYEVT TEST] MG TPOG TOVS KOWOVUS TOPOLS, MOTE
TO GUOTNO VO, KOTOYPAWEL TV OVTIOPOOT TNG EQAPLOYNG, KOL VO LITOPEL Vo,
TPOPAEYEL TO ATOTELEGLLO OE TEPUTTMOELG TOV EPUPOYEG GE GEVAPLO GLVE-
KtéAeong dnuovpyncovy avtiotoyn wwicon ([4], [5]).

— Isolated Profiling: Kataypogn tng cupmepipopds pog epoproyng otav tpé-
xevamopovouévn ([30], [21], [27], [7]).

KéBe pio and tig mapondve mpoceyyicelg Kot unyoviocog £El GLYKEKPILEVO TAEO-
vektpato kot pelovektipoto. [T ovykexpipéva, to peydio petovéktnua tov profiling
glvat 0Tt amaitel Evav 1 TEPIOGOTEPOVS OMOUOVOUEVOVS SETVETS Y10 VO TPOYLATOTO0€l,
LLE QTOTELEC LA VO LELMVOVTOL OVCLAGTIKA 01 TOPOL KOIL 1) VITOAOYIGTIKT] SOV TOV GLGTY-
patog. EmmAéov, edv dievepyeitan mptv Ty tomofEtnon o epopproyng o€ évay production
server (a-priori), KoBvoTEPEL TN YPOVOSPOLOAIYNOT TG EQUPHOYNC, Lo KABVGTEPT O™ TOL
AVEAVEL GIULOVTIKG TO KOGTOG AglToVpYing 660 ALEAVETAL O 0PLOUOC TV EPAPUOYDY TPOGC
eKTEAEOT]. XTOV avTimodo, €dv o pnyoviopog profiling oyedaotel kKot Beltictomombel
TPOGEYTIKE, EYEL TN SLVOTOTNTO VO 1I60cTAOUIGEL Ta TPOUVOPEPOEVTO KOGTN OV EMPE-
pel. Xe mepiariiovta OTov dekddEg EQPAPUOYEC GUVLTTAPYOVY GE éva server, gival ToAD
dVGKOAO VO EVTOTIIOTEL EKEIV 1 OTTOioL ONUIOVPYEL TOV OVTOYOVIoUO AOY® TOL PEYAAOD 0-
p1OLov aAAniemdpdoewy. Edwodtepa o€ epumoptkd mepBAAAOVTA VTOAOYIGTIKOV VEPOLG,
OOV 01 TEAATEG YPEDVOVTOL AVAAOYOL LLE T OLAPKELN TOV SLOCTNUATOV OOV 01 EPUPUOYES
TOVG IKOVOTO100V ToVG QOS 6TOY0VE TOVG, TO interference pmopel vo nNpedoel CNUOVTIKA
TO OLKOVOLUKO KEPOOG TOV TAPAYOV. ZE AVTEC TIC TEPIMTMGELC, 1) SUVATOTNTO ATOPVYNG 7
glayrotonoinomng Tov interference mpv avtd cvuPel amotedel GNUAVTIKO TAEOVEKTILLAL.

H Baocikn tpdxinon yia Tig TPoTdcElg Tov g ypnoionotovy profiling sivat o id10¢ o
gvtomiopog tov interference, kot 0 SOYOPIGUOS TOV GO PLUGIOAOYIKES EVOALUYEG PAOTG

19

N workload g epappoyng. Aedopévov Tov 4Tt T0 cVLGTNHA OE YVOPILEL TA YOPUKTNPLOTL-
K6 TNG OMOUOVMUEVNG EKTELECTG TG EPAPLOYNG, KL TOV OTL Ol TEPIGCOTEPEG EPAPUOYEG
€YoV TOAMATAEG Acelc Kot duvoutkd workloads, 0 EVIOTIGHOG TV TEPUTTAOCEWDY OTOV
1N peiwon g enidoong givar e&uitiag ovIoy®VIGHOV Kot Ol QUGIOAOYIKT Kl OVOLEVOUEVT
glvat éva 1dwaitepa amontnTikd TpoOPAnuHa. AlyopBpotl Tov eviomilovy Tic pdoelg ektéle-
ong ([3], [20], [6]) pmopodv evdeyopévag va ypnoomomboidy, aArd cuvnbmg elcdyovy
TOAD PEYAAO VTTOAOYIOTIKO KOGTOC KOl OTOPEVYOVTOL.

Télog, pia GAAN TApPAUETPOG OV TPEMEL 0 GYESAOTNG v AAPEL VITOYIV TOL Elvar M)
TOAVTAOKOTNTO TOV GUGTHHOTOC, KOl TO €MiNEOO GTO OMOi0 AQUPAVEL ATOPAGELS. Xv-
OTHLLOTO TTOV AELITOVPYOVV GE “YOUNAO” eMIMEDO TPOGPEPOVY VYNAA eEE1dIKEVUEVES Kal
eE0TOIKEVUEVEG TOMTIKEG YPOVOOPOUOAGYNONG Kol SIOUOPAGHOD TOPMOV, CYEOIACUEVES
Yo KABE GUYKEKPYEVO GUVOLO €QapUoY®DY. Mo tétola Tpocéyyion mbavotnta Bo pe-
YIGTOTOOVGE T1| XPNOIULOTOINoN TV TOpwV, AALL B TEPIAAUPOVE OUAVTIKE KOGTT V-
Aomoinong Kot ypnong, kabmg Ba amaitovoe cuyvi] Mym HeydAov aptBpov PETPHCEMY,
emnpealovtag tnv idia TV ENI600T TOV EPUPLOYDV.

1.3 Koamnyopromoinen E@appoyov ywo v Ipoin-
Y1 Parvopéveov Avtaymvicpov

1.3.1 MHewpopotikn HAot@oppa kor MeTpompoypappato

'O)eg 01 EKTEAECELS UETPOTPOYPOUUATOV TOV TOPOLGIALOVTOL GTIV TOPOVGO. SITA®-
Hatiky epyocio ywvav oe évav eneEepyaotn Intel® Xeon® E5-2630 v4, tov omoiov Ta
yopaktnplotikd eaivovtar otov [ivaxka 1.1.

Owoyévern Enelepyactv Broadwell
Baoua] Zoyvétnta Enctepyoaotn 2.20 GHz
ApOpog Mopivov 10

ApOpoc Nnparov 20

L1 (data) Cache (avé Topiva) 320 KB

L2 Cache (avé mopiva) 2.5 MB

Last Level Cache (kowv1) 25 MB, 20-way
DRAM Bandwidth 68.3 GB/sec

Hivaxag 1.1: Xapaktnpotikd tov Enelepyaoty| Intel® Xeon® E5-2630 v4

H owoyévela enekepyactdv otny onoio aviket o Intel® Xeon® E5-2630 v4 meptioyt-
Béver v Intel Resource Director Technology (RDT), 1 omoia emitpénel otov ypnotn va

20

mopakolovdel TNy exktédeon ddpopwv epapproyadv (Cache Monitoring Technology, CMT)
HEC® HETPIKGV eTidoong VAoV (Performance Monitoring Units, PMUs) ka1 vo éAéyyet To
Swpotpaopod e LLC (Cache Allocation Technology, CAT). I'a tnv Afjym t@v avoyKoiov
petpnoemv, anevepyonomoapie to hyperthreading otov enelepyaoth (doTE VO LTOPOVHV VOl
Kataypoaeovv g kot 8 PMUs tavtdypova, oe avtiBeon pe ta 4 PMUs mov emtpendtay
aPYIKA), KOl TPOTOTOCOLE KOTAAANAQ TNV dlEmapT| Tov Tpocpépel 1 Intel yio Tnv Anym
petpricewv (PQoS API) wote va umopei va Aapfavet Tipés yio emmiéov PMUs (népav tov
4 wov NoN kdlvmte). Emiong, AdPape petpnioelg kot péocw tov gpyaieiov linux perf, yuo
va emPefatdoovpe 6TL GLUEOVOVVY pe avTéG Tov PQOS kot 6T pmopet va yproiponombet
oav evollaxtikn Tov. To amotedéopata omd o linux perf Ntav 610 pEYOAVTEPO HEPOC
TOVg TOpOpoLY e ovtd tov PQoS, aAdd mepiiauPavay mtepioadtepo B0pvfo, 0dnydVTaG
pag oty entioyn Tov PQoS wg epyaieiov GAAOYNC LETPICEMV.

To petpompoypdappata (benchmarks) mov ypnoyomomcape TpoEpyovTaL 0md T covi-
ta SPEC 2017, pe v mpoctnkmn evog LETpOTpoypappatog and m covita Polybench 3.2
(jacobi-2d benchmark), kafdg kot dvo GAiwv petpomrpoypappdtov (stream, hpeg). E-
mnpocheta, ypnoponombnke n covita Alberta Workloads ([1]), n onoia meptiapfdvet
emumAéov inputs yio kamoto a6 to. SPEC 2017 benchmarks. Zuvolikd, ypnoiponomdnikay
140 benchmarks.

1.3.2 Xevapra Xvvektédeong

Apykd, extelécapie KGOe epapLOY OE ATOUOVOUEVO TEPPAALOV, DGTE VO KaTaypd-
YOLLLE TO YOPUKTNPLOTIKA TNG KOTA TNV ~QLG1I0A0YIKY” ekTédeon. Ev ocuveyeia, onpuovp-
YAOOLE Kol EKTELEGOLLE GEVAPLO cuvEKTEAEGEMV 2 gpappoydv. Kabe epapupoyn ftav po-
VOVNUOTIKY KO TPOCKOAANLEVT € évav mupnva. Edv pia epappoyn ohokAnpovortay tpv
Vv AN, Eavagekvoioe, péypt va olokinpmbovv Kot ot 2 tovAdylotov pio eopd. Ilo-
GOTIKOTOMGOLE TNV enidoor kdbe epappoyng ypnoomoidvtag to IPC (Instructions Per
Cycle, Evtoléc Ava KOkAo) Kot To GOVOALKO YpOVO EKTEAECTG, EVM Y10 TNV UETPNOT TOV
interference opicape tig petpikéc SI (Slowdown) and Deg (Degradation) wc:

Sl — tcoexec

ZL/alone

__ tPCalone — tPCcoexec

Deg = - * 100%
tPCalone

omov:
talone: GUVOMKOG YPOVOG OTOLOVMUEVNG EKTEAEOTG
teoezec: OVVOMKOG YPOVOC EKTELECT|G OTO GEVAPLO GUVEKTEAECTC
1PCalone: 1PC ATOLOVOUEVNG EKTELEOTG
1PCeoerec: 1PC OTO GEVAPLO GUVEKTELECTG
MeAetdvTog S10pOoPETIKE GEVAPLO GUVEKTEAEONC, TOPOTNPNOUUE OTL GUYKEKPILEVEG
€QOPROYEG pEavilovy TavTa TNV 1010 CLUTEPLPOPE MG TTPOG To interference mov dnpovp-
yYoOv 1 d€yovtat, aveEApTnTa TG EPAPUOYNG ME TNV omoia ektehovvtat. o Tapddetypa,

21

To stream Snuovpyel peimorn 6TV EMIGO0T OTOLCONTOTE EPAPLOYNG LE TNV OTOL0l GL-
VEKTEAEITAL, EVD TO XZ_T gUPOVI(EL HEIOUEVN EMIOOOT e OMOLOONTOTE EQUPLOYT KL OV
ovvekteleoTel. XTafepEC GLUTEPIPOPEC OTTMOC Ol TUPUTAV® omoTeAoVoaY EVOEIEn Yo TO
OTL T0 KaTd OGO o Epappoyn Ba mpokaiéoet 1 Oa exnpeactel and kdmowo GAAN givol
€va gyyevEg YOPAKTNPIOTIKO TNG EQOpRoYNS. Edv avtd to yopaktnpiotikd pmopel va ov-
OYETIOTEL UE UETPIKEG DAMKOD OV £XOVV KOTOYPOPEL KOTA TNV OTOUOVOUEVT] EKTEAEDT,
ToTE Pmopel KAmolog vo EEPeL TNV CLUTEPLPOPE TNG EPOPLOYNG WG TPOG TO interference
Yopic va. g dnovpynoet eokeppévo interference, kot vo AGPeL amopAoelg GYETIKA [LE
TNV XPOVOIPOLOAGYNOT| TNG KAl TOVG TOPOLG TTOL Ba TG TapaympnBoHVv.

1.3.3 Xyedwaopoc AryopiBpov Katnyopromoinong
1.3.3.1 ZXyedwotikéc Emoyég

Ot 6pot noise (1) Kou contentiousness) Kol sensitivity ypnoLoTolovvToL amod T PifAlo-
YPOQia Yio Vo TEPLYPAYOLV TO TOGO piC EPOPLOYT VTOQEPEL O 1| PTOopEl vo. dnpovp-
ynoel peimon enidoong o€ oevapla cuvektédeonc. 'evikd, pia epappoyn yapaxtnpiletal
®G Noisy €dv 0dnyel 6€ ONUOVTIKY PEI®OT TNG EXIO0CTG TG CLUVEKTEAODUEVNG EQAPLOYNG,
Kot quiet v v aenvel avernpéaotr. Avtictotya, yopaxktpiletal wg sensitive eav 1
EMIOO0N NG LEIDVETOL OVEEAPTNTA TNG CLUVEKTEAOVUEVTG EPAPLLOYNG, KOt insensitive edv
N enidoon g Hével oxeddv mhvta otabepn). 1o TapeABOv £xouv yivel apKeTEG TPOOTA-
Oeteg ([16], [28], [31], [26]) Kotnyoplomoinong TV PapUoydv Aapupdvovtag vToyty ta
TOPOTAV® YOPOKTNPIOTIKA, OAAG OAES EPPAVILOV GLOVTIKOVG TEPLOPIGLOVS MG TPOG TNV
axpifeto kot v amddoon. H mpocéyyion pog otoéyeve ot onpovpyio evog aryopidpov
Katnyoplomoinong mov Ba giye ta €ENG YAPAKTNPIGTIKA:

» IIpoimrTikog (Preventive): ®a 0Elape va pmopovue va TpoAdPovie TOV avToym-
VIGLOV TPOTOV GLUPEL, OYL VO TOV AVTILETOMIGOVE POV ELPAVICTEL.

* Xapunrov Kéostovg (Lightweight): Ot teyvikég mov ypnoiponolovpe Bo pénet va
unv exapivouy Ty eTid0oN TV EPAPUOYDV, 0VTE VO AIOLTOVV dloThpTon peyd-
AoV Bacewv dedopEVOV 1 LOVIEL®V 1 VO £XOVV VYNAD VITOAOYIGTIKO KOGTOG.

* Mn-Ezngppatikég (Non-Intrusive): Ae Oa tpénet va amarteiton ektédeon cevapiov
pe eokeppévn mpdxkinon interference.

Me Bdon ta mopordve, emidééape pio aviiotpoen tpocéyyion. [pota katnyoplo-
TOMGULE TIC EQOUPLOYEG TOPATNPAOVTIOG TOV TPOTO TOV OAANAETIOPOVSAV LE GAAEG GTO
GEVAPLO GUVEKTELEONG, KOl LETA TPOSTAONGAE VO SOVUE OV UETPIKES OV elyav AneOel
OTIG OTOLOVMUEVEG EKTEAEGELS LITOPOVOAY VO YPNCILOTONO0HV Yid VO SIKAOAOY GOV
Ta péAn kébe kotnyopiag. Kdabe epoappoyn xopaktnpictnke oG Ipog To noise mg noisy,
potentially noisy (kamoteg popéc mpokoiel interference Kot kdmoleg Oy, avdAloyo pe v
EPOPLOYTN TOL GUVEKTEAEITAL) 1| quiet, KO WG TPOG TO sensitivity wg sensitive,potentially
sensitive (kdmoleg popég eppavilel petmpévn amddoon Adyw interference ko KAmoleg Oy,
avaAoyQ LE TNV EQUPLOYN TOV cuveKTEAEiTAL) 1 insensitive. H dadikacio pe Tnv omoia
YOPOKTNPIoTNKOV 01 EPAPUOYES TAPOLGLALETAL OVOAVLTIKG 6TO 4.5.1.

22

1.3.3.2 Moripa og Metpikég Enidoong Yikov

H mpdtn pog mpocéyyion frav va e&etdoovpie Ty mepintwon kdmroeg PMUs va pmo-
povv va vodeitovv v katnyopio otV omoia oviKel pio EQAPUOYT. ZVYKEVIPOOOUE
UETPAOELS Yo OAES TIC EQOPLOYEG amd 25 dtapopetikd hardware events oyeTikd pe v
epapyio KPLEOV LVNUOV KOL TV KEVIPIKT UVIUT, KoL TPOCTOONGULE VO TIG GUGYETIGOV-
He pe Tig duapopeg Katnyopies, Aappdvovrag vrdyy tic Tapatnpnoelg tov Molka et al.
([19]) ko Subrmanian et al. ([25]), xkaBdg kot T1g dikég pag mapatnpnoets. [épav amod
T1¢ angvbeiog petpioelg twv PMUs, cuvdvdcape dtapopetikéc PMUS peta&d toug yia vo
dnuovpyncovpe véeg netpikég (mm.y. misses per kilo instructions).

AVO PETPIKEG TTOV PAVIKAY VO LTOPOVY VO, ¥PNOLUOTOIN000V GTNV KOTNYOploToinom
nrav 1o LLC acpki (accesses per kilo isntructions) kot to memory bandwidth. Epappoyég
7oV YOV quiet ko TavTdYpova insensitive eppaviCav LLC acpki kovtd otn povada, mbo-
votato ENEON EPAPLOYEG TOL KAvouv Alyeg TpooPacelc oty LLC dev ennpedlovran Kot
dev emmpedlovv Tig TPosPAcES GAALDY EQAPLOYDV. AVTIGTOLYM, NOISY EPAPUOYES ELPAVL-
Cav vynAég Tyéc memory bandwidth, yeyovog mov opeidetal 6To Tl GV Lo EQAPHLOYT KA~
VEL TOAAEG KOl GLYVEG TPOGPACELG T UV, KATAVOA®DVEL OAO TO dtabéoipo bandwidth,
eumodilovtag £Tol TNV EKTEAECT] TOV VITOAOWT®V EQPAPUOYDOV. Mio EMTALOV PETPIKT TOV
eUPAVIcE eVOLOQEPOV 01 ival KUKAOL GTOVG OTTOI0VG 1) EKTEAEST] TADETOL EXELON EKKPEUEL
KATO10 oo Tpog Kamolo eninedo uviung (cache/memory stalls). Sensitive epappoyéc
Qavnke va Eyovv yevika mepiocdtepa stalls.

Avrtifeta, petpikéc mov ocvyvd ypnoipomrolovvtay ot Pipioypaeia, 6mwg to LLC
mpki (misses per kilo instructions) kot To LLC miss rate (misses per accesses) dev @d-
ynKav vo eeoviovy Kamoto dtakpitd potifo. AKOUO KOl Y10 TIC LETPIKEG TOV THAVOG
axoAovBovcav kdmoto potifo, 0nwg to LLC acpki, dev pmopovoape va kabopicovpe ou-
YKEKPYEVES TILEG-KOTMPALL TOV VO Sy ®Pilovy ETOPKAS TIG EPOPLOYES.

1.3.3.3 Koatnyopromoinon pe tov AkyopiOpo K-Means

H endpevn mpocéyyion pog ftav va xpnoiLomotcovpe tov ahyopifpo k-means ([12]),
évav alyopiBuo o omoiog dwywpilel éva cvvolo mapatnpnoewv o€ k opddec (clusters)
ypnowomownvtag Eukieideleg amootdoels, pe kabe mapatipnon va yopoktnpiletar omd
éva dudvoopa v (features) (0Aec ol mapatnpioelg £xovv idwa features, aAld kabepio
€xel O10POPETIKEG TIUES Yo TO KaBEva). TNV mepintwon pag, kabe epappoyn nrav pio
mapatipnon, kot ta features rav dwapopetikég PMUs. Xtoy0¢ pog ftav vo fpovpe 1o
KatdAAnio cvvolo features dote ta clusters mov Ba mpoékvmtay vo fTav idwe pe avtd
mov glyape MON donpovpynoet emontikd. H dtadikacio mov akolovdnOnke weprypdopetal
010 4.5.3. O k-means katdpepe 6€ KATOIEG TEPMTAOGELS, OTMG OVTH TNG KAAGNG NOisy, va.
dnovpynoet cluster mapopoa pe ta {nrodpeva, aALE 6TV TAEOYN QLN TOV TEPUTTOCEDY
amétuye. H amotuyia Tov avth opeidetal 610 0Tt vITOBETEL KAGGELS UN-EMKOAADTTOUEVEG
GTO YOPO Kot Tapdpotov peyéBoug, ot omoieg cuvOnKeS dev 1GXHOVY GTNV TTEPITTWST LLOG.

23

1.4 Xoapoxtmypiopos E@appoyov pe tn Xpijon Mn-
yoviknS Madnong

Téhog, Tpoceyyicape To TPOPANUO O Eva TPOPANUL TAEVOUNOTG EMPAETOUEVTG UT)-
YOVIKNG nabnong (supervised machine learning classification problem). Xtdyog pog nrov
N dnuovpyia dvo ta&vountav (classifiers), evog yio o noise ki €vog yio To sensitivity,
ot omoiot Ba Adppavay éva didvocpa amd features yio KaOe epappoyn (d10popeTikd 6v-
voho features yio k@Be classifier) kot Oa v TomobeToboav otV avticToyyn KaTnyopia.
To povtélo mov emAélape yia Tovg classifiers etvar 1o SVM (Support Vector Machine).
To ocvykekpévo povtéro givar e€opeTikd KotdAAnio yuo pukpd datasets (140 epappoyés
otV TEPINTOON HoK), Kabdg dnpovpyel ta chvopa HeTalld TV KAAGEWV YPTCLLOTOLD-
VIO LOVO TO GTOLYELD KOVTH GTO VTTOYNPLO GVVOPO (support vectors) Kot Oyl OA0 TO GTOL-
yela Tov dataset. 'l Tov 010 AOY0 givar kKot apkeTd avOektikd oe outliers (oTolygio pe pn
OLLOAT] GUUTEPLPOPA), EVD EIVOL KOL EVOG GYETIKA YOUNAOD KOGTOVE LOVTEAO O TPOC TNV
gkmaidevon Kot tn ypnomn.

To apywéd dataset daympiotnie d00 EeywpPloTéc popic, MoTE vo dnpovpynoel Eva cb-
volo ekmaidgvong (train set) kot évo cuvoro aloldynong (test set) yio tov ke classifier.
To train Ko test sets KaTaoKeLAGTKAY LLE TNV TEXVIKN ToV stratified sampling, mote kdbe
set va £xel £vav avVTITPOCOTEVTIKO aplBud atoryeinv amd kabe kKAdon (Kot dpa vo gival
pia 660 To duVATOV O TOTN UIKPOYpOeia TOL apykoy dataset). Xe peyoivtepa datasets
ouvnBmg ypnoomoteiton Tuyoio sampling yio v dnpovpyia TV train Kot test sets, Ko-
0d¢ 0 mAnBvopdg etvar OG0 peEYAAOG OV o, TVYOio ETAOYY UITOPEL VO, ONUIOVPYNCEL
AVTITPOCORELTIKG delypLata, aAld To péyebog tov dataset pLog TV ATOYOPELTIKO Y10 VOl
EQOPUOCTEL OMOTEAEGLATIKA LU0 TETOLOL TEYVIKT).

Ev ovveyeia, epapudcape ota train sets Evav adyopidpo kavovikonoinong (standardi-
zation scaling), ®ote va unv ennpeactovv ot classifiers oo Tig dSrapopetikég TaEelg pe-
v€0ovg TV ddpopwv features. o va yivel n emdoyn tov cvuvorov features yio KOs
classifier, ypnoipomomnke 1660 £vag aiydpiBpog avtopatng emhoyng features (Recursive
Feature Elimination, RFE), 660 kot o1 Tapatnpnoeig Hog amd TIC TPOTYOVLEVEG EVOTNTEG.
Haporo mov o aiyopiBpog RFE enéhele oe kamoleg nepimtooelg avapevopeva features,
ommg 10 memory bandwidth, kdmwotec popég Katétate mg devtepevovTeg LeTPIKEG TOL Oa
mepévope va ivar Tpotevovieg, 0mwg to LLC acpki yio tov sensitivity classifier. Ex-
TOOEVGOE TOAAL SLoPOPETIKA LovTéa, pe feature sets dlapopeTikoD peyéBoug kat pe
dpopetika features, yia vo emiégovpe ta katorAniotepo (Iivaxag 1.2).

Metd v eknaidevon, kdbe povtédo voPAandnke oe pio dwadikacio BeAtioTonoin-
onc. H viomoinon tov SVM mov ypnoponomoope (python scikit-learn framework) mo-
pExeL 600 TOPAPETPOVG V1oL TOV ELEYYO TNG LOPPNG TOV GLVOPWOV TToL Ha dnuovpynceL o
alyopBpoc, o C kot gamma. Ot TopapeTpot 0vtol Pmopovv va KataoTpatnyntody 1060
v T Pertioon tng emidoong tov classifier, 660 kot yio Tov EAEYX0 TOL EAIVOUEVOD TOV
overfitting. Ymapyovv mepmTdoELg OTOL Eva LOVTEAO pabaivel pe TOoT AETTOUEPELD TO
train set, 6OV KOTOOKEVALEL Eva EEATOMKEVUEVO GVUVOPO, LLE OMOTELEGLO VO, NV UTO-
pel va yevikevutel og véa dedopéva. e autn TV Tepintwon yiveton Adyog yia overfitted
povtéro. Avtifeta, 6tav T0 GUVOpPO OV dnpovpyeitan givorl VITEPPOMKE ATAOVGTEVE-

24

ovvolkd features mov LLC acpki, LLC mpki, LLC miss rate, DRAM
egetdotnay Bandwidth, total L2 pending miss stalls, total L2
pending miss stalls/total cycles, store buffer stalls

TeMKO noise feature set LLC acpki, LLC mpki, LLC miss rate
TEMKO sensitivity LLC mpki, LLC acpki, DRAM bandwidth, total L.2
feature set pending miss stalls/total cycles

Mivaxag 1.2: Features mov ypnotpomodnkav otoug telkovg classifiers

VO KoL 08V KOTOPEPVEL VO KOTOYPAYEL TO, YOUPOKTNPLOTIKA TOL TANOLGHOV YiveTal Adyog
yw underfitting. Kot og aut v Ttepintmon, 10 HovtéAo deV ITOPEL VO YEVIKELTEL Emap-
k¢, TIépav tov C kot gamma, £Y0VUE Kal T1 SVVATOTNTO VO, EKTOLOEVCOVIE LOVTEAD LE
SpopeTikovs padnpatucong mopnveg (n cuvaptnon pe Pdon v omoia vroloyilovral
Ta ovvopa). Ot mopnveg Tov e€etdotnioy NTav o Ypappkds (linear) kot o gaussian. o
™ depevivnon tov TapapsTpov spapudcaue) pébodo 10-fold cross validation pe grid
search, kot agloloynocape kiBe GuVIVAGUO e EVa GHVOLO OLOPOPETIKAOV LETPIKAOV EMIO0-
ong (recall, precision, f1 score). To cuvnbBeg puétpo enidoong yia Evav classifier, n axpifeia
(accuracy), dgv pmopovoe va xpnoionombei oty TePInTOON HOG, KOOMG 01 EPUPLOYES
NTAV AVIGO KOTOVEUNUEVES OTIC SLAPOPES KAAGELC.

1o Zynua 1.1 tapovoidlovpe evdektikd To scores evog sensitivity classifier pe cv-
ykekpipévo feature set kot gaussian mopnva, yuo S1dpopeg TEG TV mapapétpov C kat
gamma (®¢ Petpkn ypnowyomoteitor to recall). Tevikd, youniég tipég C odnyodv ce
underfitting (yaunAd recall), evd vynAdtepeg Tipég yio too C Kot gamma Pmopel va o-
dnynoovv oe overfitting. [oapoatnpodpe eniong OTL VIGAPYOVY GVYKEKPIUEVOL GLVOVAGHOT
TIUAV Y10 TIC TOPUUETPOVG TOV EMTVYYAVOLY TOAD KOAVTEPN €MIBOCT GE GYEOT LE TNV
mieloyneia. e ke mepintwon, Ady® Tov TOAD pikpov peyéBovg Tov dataset pog, Kabe
OTOTEAEGLOL OVTILETOMICTNKE LLE LEYAAN TTPOCOYN.

Metd v oloKANP®ON TNG MAPOUTAVE® O10dIKACIOC, EMALEQUE TOVG 5 KOADTEPOLG
noise kat Tovg 5 kaAvtepovg sensitivity classifiers, ot oroiot éneta aglodoynOnKav cto
avtiotouya test sets. Ta yopakplotikd tov dvo TehMkdv classifiers wov ypnoomoln-
Onkav mapovsialoviar otov Ilivaxa 1.3, evd ta scores Tov pe Pdomn Saeopeg HETPIKES
napatifevrol otov [livaxa 1.4.

Hoapommpodvrag v katavoun tov tpoPfréyewnv tov classifiers yuo ta test sets, ov-
umepdvape 6Tl epeoviCotav Eva bias mpog Tig KAAoelg potentially sensitive kot potentially
noisy. To @oivopevo avtd opeiletar 6T0 OTL Ol KAAGEIS OLTEG TTEPIEXOVV TTEPIGGOTEPO.
oToLyEln amd TIC LVIOAOTEC, Kot apa ot classifiers £xovv ekmadevTel Le TEPIOTOTEPA GTLY-
oéTUmd Tovg Kot dtvouvv peyaivtepn mOAVOTNTA GE £va OTOLXEID VO AVIKEL OE QLTEG.
To bias avtd pmopel va eEarelpbel oe onpovTikd Pabpd ypNOLOTOIOVTOC KATOW TE-
v oversampling oto apywkd dataset. [Nepapotiotikape pe tov aiyopiipo SMOTE
(Synthetic Minority Over-sampling TEchnique), o onoiog siodyst 1eyvnTtd otoryeio oTIg
vontég gubeieg mov evvouv ta Tpoimapyovta otoryeia Tov dataset. Exmoudevovrog Ea-

25

C=0.0110429 0429 0429 0429 0429 0429 0.429 0429 0.50
C=0.1}0429 0592 0.694 0622 0633 0.633 0.75
co1 0.70
0.65
c=2|
0.60
c=5
0.55
c=10
0.50
=100 0.45
~ ~ 5 ~ " o o o
) & o & & & o oD
% @ @ & & & & 4
€ & &8 & & €
@& & & & &

Xymqpa 1.1: Aepevnon mapapétpov yuo évay sensitivity classifier. [ToAd yopunAés tipés ya to C
odnyov o€ underfitting.

Tomog Classifier Feature Set Mopnivac C Gamma
noise LLC mpki, LLC acpki, LLC miss gaussian 10 1
rate
sensitivity LLC mpki, LLC acpki, DRAM gaussian 2 1
bandwidth, total L2 pending miss
stalls/total cycles

Mivoxag 1.3: Xoapaktnplotikd TeEAMK®V noise kot sensitivity classifiers

Tomog Classifier noise sensitivity
Accuracy 0.8333 0.8095
Recall (macro) 0.8333 0.8095
Recall (micro) 0.8005 0.7787
F1 score (macro) 0.8322 0.8095
F1 score (micro) 0.8271 0.7902

Mivakog 1.4: Scores tov TeEMKOV noise kot sensitivity classifiers oto avtictoyyo test set

26

va ta povtéha ov emAEEULE TAPOUTAV® GTa vEX train sets, Kot aEl0A0YMVTOG T 6T VEN
test sets, mapotnproape 6t To bias eiye eEopoaviotel, diymg va ETNPENSTOOHY CNUAVTIKA
Ta scores TV classifiers.

1.5 Xvprepaopota kor Melrhovtikég Enektacels

To mwepdpatd pag ko n tedkn exidoon tov classifiers amotelodv evdei&elg vitép Tov
OTL TO noise Kol To sensitivity givot 600 YOPUKTNPIOTIKG TOV UITOPOLY VO, GUGYETICTOVY
LE LETPIKEG EMIOOOTIG VAIKOD KOl VO EVTOTIGTOVV GTI GUUTEPIPOPH P0G EPUPHOYNE KATA
™V amopovepévn g ektédeon. Ta amoteAéopata avtd mpénel o€ kibe mepinTmon vo
OVTILETOTIGTOVV UE TPOGOYN, KUPIG AOY® TOL GYETIKE UIKPOV GLVOALOV EQUPLOYDV TOV
peretnOnkav. [opabétovpe TopaKATO KATOEG TPOTAGELS Y10 TEPUITEPW EMEKTACN TNG
TOPOVOAG SITAMUATIKNAG:

* Eumhovtiopdc tov dataset pe peyohvtepo aplipd poproydyv, Kol e EPUPUOYES
Ao dLopopeTIKA emoTnovikd tedia (cloud computing, graph processing, machine
learning) yo v avénbei n emidoon tov classifiers.

* Tleipopatiopdc pe S10popeTIkod THTOVG LOVIEA®V UNYAVIKIG LaOnong.

* Anpovpyio VTOKAAGE®OV 0T TIC VIAPYOVGES KAAGELS 01 0moieg Ba TepLypaipoLvV e
peyoddtepn axpifela ™ cupmeppopd TV epoappoydv. Ot KAAGEL Tov opicape
glvar e€edikevpéveg o€ Pabuod mov va eEumnpetel 10 6KOTO TG TAPOVSUS SITAMLLO-
TIKN gpyaciog, aAAd euavifovy E0OTEPIKA KATOL0, ETEPOYEVELX (101K O1 KAAGELS
potentially noisy kot potentially sensitive), 1 omoia 6o pmopovoe vo aglomombei
Yo T Ay To eEUTOMKEVUEVOV OTOPACEDY KATE T1 XPOVOSPOUOAOYNGT] KOl TO
SLOHOPOCHO TV TOPWV.

* Melétn g enidopaong oTig KAGGELG ToL ToAvvnpatiopov (multithreading). Xe oe-
VapLo OOV GVVEKTEAOVVTOL TEPLGGATEPA TOV EVOG avTiypapa (VALATa) Hiog epop-
HOYNG, TO YOPUKTNPLOTIKG OpovV “afpoloTIKA” HETATPETOVTOG Y10l TOPUSELY L0 LIl
potentially noisy epappoyn o€ noisy. ®o tav eEQNPETIKA YPNOUO Yo EVAV YPO-
vodpoporoynth va yvopilel o€ oo Pabud n cupmePLPOPE TOV EPUPLOYDV KAOE
KAGoNG “ueyeboverar” | aAldlel 6Tav GUVEKTEAODVTOL TOALG VLT UioG EQap-
poyne.

27

Chapter 2

Introduction

2.1 Modern Multicore Systems

Undoubtedly, the creation of multiprocessors has played a significant role in the dra-
matic increase of the computational power modern computers possess. Before multicore
Central Processing Units (CPUs) made their appearance, a single-core system fostering
more than one applications would showcase significantly decreased performance, as each
application could only be scheduled after the previous one was completed. The issue of
the increasing number of applications that needed to be run concurrently was tackled both
on the software level, with the introduction of hyperthreading and the scheduling of mul-
tiple threads of execution in one physical core, and the hardware level, with attempts to
create systems with more than one CPUs. On the downside, the first solution could lead
to the system underperforming, if the added needs in resources for the threads sharing
a core surpass what the core can offer, whereas the second one introduces a noteworthy
overhead due to the necessary data transfer between different chips, balancing out the per-
formance gains yielded by the presence of multiple CPUs. Thus, the creation of a single
chip containing more than one processing cores was a revolution, decreasing the over-
head of communication between chips and providing multiple applications with sufficient
resources to function properly.

Although each core in a multiprocessor has some resources private to itself and thus
the thread running on it, several aspects of the chip are still shared between different con-
current threads. A typical example of a shared component is the Last Level Cache (LLC).
Caches are utilized to increase performance, as they keep frequently accessed data close
to the processor, minimizing in theory the need for time and energy consuming accesses to
the main, off-chip memory. Modern multicores usually have cache hierarchies consisting
both of private and shared caches. In the example below (Figure 2.1), each core has a
private, Level 1 (L1) and Level 2 (L2) cache, and all cores share a common Level 3 (L3 or
Last Level) cache. Except for caches, cores (and thus applications) also share the bus in-
terface that communicates with the main memory, making DRAM Bandwidth (the rate at
which a processor write to / reads from memory) another crucial shared component. Other

29

resources that could be affected by interference are the memory controllers, the network
bandwidth and the interconnection network, but this thesis focuses upon the LLC and the
DRAM Bandwidth.

Multicore Processor Multicore Processor

Figure 2.1: A typical multiprocessor architecture

Note: In this thesis, the words “application” and “thread” are used interchangeably,
as all discussed applications are single-threaded.

2.2 The Interference Problem

Multiprocessor technology has definitely evolved since it was first introduced, and
has overcome many of the problems it used to face, but as the need for resource utilization
and the amount of applications and threads ran on a multiprocessor continue to increase,
several issues regarding resource sharing have been detected.

Shared resources significantly suffer from application interference as past bibliogra-
phy has showcased ([5],[10],[15],[24]), becoming a bottleneck for execution and affecting
the overall performance of the system. More specifically, we can detect two main ways
applications interfere with each other’s execution:

* LLC Contention: Different applications have different workloads and access dif-
ferent memory locations. As a result, applications that make frequent accesses to
the LLC and/or utilize a large portion of it might evict data stored there from other
applications, or suffer themselves from frequently evicted data. This phenomenon
is augmented in inclusive cache hierarchies, where all the data stored int the L1 and
L2 caches must also be stored in the LLC. This constant rivalry for cache space
leads to increased miss rates, which degrade performance and increase energy con-
sumption.

* DRAM Bandwidth Contention: Applications that make many and frequent requests
to the main memory compete with each other for the available Memory Bandwidth,
usually due to access patterns than do not benefit from cache hierarchies.

30

Simply increasing the size of those resources to the extent of fully satisfying modern ap-
plication needs is unrealistic. As a result, a vast amount of research has been conducted to
resolve the interference issue, extending across the development stack. As no one solution
has proven to be a panacea, researchers continue to examine all possible approaches, as
the interference problem appears to need a multi-level, collaborative solution.

2.3 Resource Sharing in the Cloud

As multiprocessors are key to achieving high performance in environments with hun-
dreds of applications, they have become the dominant processor type in cloud environ-
ments. However, such environments are distinctively different from commercial comput-
ers, as the applications they serve as well as the performance restrictions they have exhibit
some unique characteristics.

Cloud applications are classified into two categories:

» Latency-Critical (LC): User-facing applications, such as social media or advertis-
ing, sensitive to the request response latency.

» Best Effort (BE): Batch applications, typically computationally intensive.

LC applications usually have strict performance requirements, which can easily be
violated as a consequence of interference. In a commercial cloud that employs a pricing
model based upon requested performance guarantees ([15]), stricter and higher Quality of
Service (QoS) goals come with a higher cost for the costumer and profit for the provider.
However, the need to abide by such goals (as costumers are charged only when they are
met) may lead to system underutilization, if applications need to be isolated into servers
to achieve them. As datacenters host up to thousands of applications, it becomes evident
that naively scheduling LC applications to dedicated, isolated servers severely hinders
the infrastructure from reaching its maximum potential. Consequently, resource sharing
between applications seems to be inevitable, augmenting the aforementioned interference
problem to the extreme and making the creation of efficient policies to tackle it necessary.

31

Chapter 3

Approaches to the Interference
Problem

3.1 Overview

As we have already established, interference in shared resources is a problem that has
not yet been resolved, and one that most probably requires a combination of mechanisms
across the execution pipeline, from the point an application arrives to the server until its
execution completes. Solutions proposed usually are consistent with this rule, proposing
full mechanisms that span the pipeline and address interference in multiple stages.

Since present solutions comprise of manifold complementary methods, there is no
single base upon which they can be clearly categorized. Those solutions target in one or
more of the following when it comes to interference:

1. Prevention
2. Detection
3. Mitigation

In general, the pipeline followed upon the arrival of a new application can be summarized
in the following steps:

—

. Application arrival

N

. (Optional) Offline application profiling

98]

. Scheduling and resource allocation decisions

N

. Start of execution

9]

. (Optional) Application profiling concurrent to the execution

32

6. (Optional) Online monitoring of execution and adjustment of scheduling and/or
resource allocation decisions

In a naive system, steps 2,5 and 6 would be completely omitted, and scheduling and re-
source allocation would be done in a random fashion. Steps 2,3,5,6 present the system
designer with several choices: from whether to include them or not (if they are marked
as ”Optional”) to the specifics of each step’s implementation (for example, the scheduling
algorithm, the performance counters used, or the allocation policy). Consequently, those
steps and the decisions designers make can be used to broadly categorize research on the
matter.

3.2 Online Monitoring during Co-Execution

Firstly, we will examine proposals that do not include any kind of profiling of individ-
ual applications. This means the system has no knowledge of that the characteristics of
each application, such as its memory access patterns or LLC utilization, before its assign-
ment to a production server. As a result, those proposals mainly aim to detect and moder-
ate interference as soon as it begins, rather than prevent it. in general, they rely solely on
gathering measurements (in the form of performance counters) during the co-execution of
applications, which are later used to make scheduling and/or resource allocation decisions,
in the case that performance goals are not met.

CPI? [29] is a mechanism developed by Google to monitor the performance of jobs
(applications split down to multiple threads/tasks) running on their cloud clusters and ma-
nipulate the measurements to detect when a job’s performance is degrading. Zhang et
al. argue that the Cycles Per Instruction (CPI) metric is adequate to identify interference
in a cloud environment, since it correlates highly both with request latency and transac-
tions per second, the main performance metrics used for latency sensitive and batch jobs
respectively. The CPI? overview is presented in Figure 3.1.

Firstly, CPI samples per job (all the threads of a job in a specific machine) are col-
lected from all the machines for a 10 second period every minute and sent to a per-cluster
CPI sample aggregator. The aggregator creates a per-job per-cpu type structure (refreshed
daily) that includes the corresponding CPI mean and standard deviation from the collected
samples along with historical data. Those strictures are the ’predictions” of how a specific
job normally executes, and are sent to local agents running in each machine. Each agent
collects one CPI sample per-task per-minute and uses the predicted values to determine
if it is an outlier. If more than 3 outliers are gathered over a 5-minute window, the job’s
behavior is marked as anomalous. The harmful antagonist is identified by correlating the
harmed job’s CPI samples with the CPU usage of its co-runners. Possible antagonists
are addressed by CPU usage throttling. As it is targeted at a real-life commercial cloud
environment, CPI? is an example of a mechanism that tries to minimize as much as pos-
sible overheads, mainly by using only one performance metric, lightweight monitoring
and simple decision-making to detect and reduce contention. However, their approach
solely focuses upon compute-intensive workloads, making no reference to the ways CPI

33

cluster CPI sample-
scheduler smoothed, aggregator
averaged, —
CPI specs = ‘

" 4 |
- / CP___-éamplqs

\ ageﬁt [age;'lt || [agent]||[agent ||| agent |
[task | || [task | || [task | || [task | || [task |
[task | ||[task] || [task | ||[task | || [task |
[victim |

machines

Figure 3.1: The CPI? pipeline

accounts for interactions with the memory subsystem, the network and other resources.
Also, their contention reduction mechanism can be considered as rather coarse-grained,
as it attempts to restore performance by capping all execution of the suspected antagonist,
instead of only memory operations, LLC occupancy etc.

Heracles [17] is a more sophisticated approach that targets resource underutilization
by focusing on the different and sometimes complementary performance needs of LC and
BE applications. Lo et al. note that an interesting approach to minimizing resource un-
derutilization would be the collocation of LC and BE applications, as the first remain idle
for large periods of time, during which the latter can take over the unused resources. They
go on to define an optimization problem, where the target is maximum utilization with
respect to the QoS goals of LCs, and structure Heracles upon the premise that interference
in a resource is considered harmful only when its utilization is so high it affects an LC
application, which is always prioritized over a BE application.

The metrics monitored by Heracles are queries per second (application load) and tail
latency. A top-level controller is responsible for deciding if BE application will be collo-
cated with a LC one, depending on whether they threaten its performance. BE execution
is halted when the LC workload is above 85% of its maximum in the server, and is re-
stored when load drops beneath 80%. It is also suspended for an amount of time (before
re-attempting to start BE execution) when the latency slack (the difference between the
QoS target and the measured tail latency) is negative, accounting for load spikes. If BE
execution is decided, the top-level controller forwards the latency lack values to three in-
dependent sub-controllers, each responsible for a shared resource: core and memory, CPU
frequency and network bandwidth. Note that the first sub-controller accounts for both core
count and cache and memory bandwidth portion granted to BE applications, as the authors
notice a strong connection between them. Each sub-controller follows a specific algorithm
that dictates how the respective resources are allocated to BE applications while always
ensuring that LCs’ performance targets are not violated.

Heracles was evaluated using representative workloads of containing different LC and

34

Latency readings

Controller

Can BE grow?

Internal

) ‘ : : feedback
loops
DRAM LLC cPU
BW (cAT) Y Power

Figure 3.2: Heracles overview

BE applications, and managed to always satisfy QoS goals. Additionally, resource utiliza-
tion was notably increased across all resources, with some even approaching 90%. The
authors also introduced a new metric to describe combined performance, called Effective
Machine Utilization (EMU), which is equal to the sum of the LC applications throughput
with that of the BE applications. EMU was also shown to increase in all examined work-
loads, as a result of the system’s consideration of more subtle interference relationships in
different resources and its fine-tuned policies of reducing said interference.

Although Heracles adopts a more fine-grained approach to interference that CPI? by
controlling the allocation of discrete shared resources, it places its focus point on max-
imizing resource utilization. The workloads examined consist of only two types of ap-
plications, where contentious co-runners are all considered equally responsible for perfor-
mance degradation, so interference detection is more straightforward. Kannan et al. ([13])
on the other hand concentrate on workloads whose applications place stress on different
resources, and attempt to pinpoint the contentious co-runner. The resources considered
are: CPU, LLC, Network Bandwidth and I/O. Proctor is divided into two components:
a Performance Degradation Detector (PDD) and a Performance Degradation Investigator
(PDI).

The PDD is responsible for constantly monitoring application execution and inform-
ing the system when contention in a shared resource is discovered. To that end, the QoS
metric (IPC for CPU/LLC sensitive applications, I/O latency and throughput for I/O appli-
cations and tail latency or network throughput for Network applications) of each running
application is continuously sampled, and step detection is applied to the resulting time
series. Step detection is a process of finding abrupt changes in a time series, and is im-
plemented by Proctor using the finite difference method. The PDD performs pair wise
difference of subsequent elements in the time series, and signals a possible interference is-
sue when the finite difference of two elements spikes. The process is illustrated in Figures
3.3 and 3.4. The timestamp of the spike is saved and propagated to the PDI. To reduce
noise in the time series before step detection is applied, Proctor utilizes median filtering,
with a moving window that selectively discards elements that are notably higher than the
window’s median. This technique proves to be crucial for minimizing false positives (for
example, in case of spikes) in interference detection, while simultaneously preserving the
characteristics of the time series without excessively smoothing it.

35

12

0 step tl
detection]
WA
- - performance
issue at t1

wmmwmwn#

4+ QoS

|

Figure 3.3: Proctor’s performance degradation detection

Y] YZ 4 5 1 8 Yﬂ Ylﬂ YU Yﬂ YH
m?;;fjc [infinfinfinin|in]infiseses [sss [ss]es |
I I I T T I T T SEN o |

- B A A A

finite P B T o B T

e 801100150216 1501 o [ouz 679 oon os
e YOOV Y Y Y. Y

performance issue

Figure 3.4: Time series step detection using the finite difference method

When the PDD flags an interference incident, the PDI is activated to investigate it.
During application execution, low level metrics such as cache misses and context switches
are collected, and when Proctor suspects contention for application A in a workload, it tries
to correlate A’s QoS metric time series with the low-level time series of its co-runners by
obtaining the Pearson’s Correlation Coefficient. The co-runners whose low-level metrics
exhibit higher correlation with the affected application are labeled as the contentious ones,
and the corresponding metrics are use to dictate the source which is more likely saturated.
We assume that the timestamp sent by the PDD is so as the time series correlated include
the moment that interference begun. To reduce overheads due to the volume of the data
collected, real-time subsampling is performed upon the collected series using the Chi-
square y’ test before they are correlated. To mitigate interference, Proctor simply migrates
the contentious application to a different CPU/network channel/physical disk.

The speedup observed by the authors when Proctor is used is on average above 2.0
compared to a system where no interference detection and mitigation mechanism is used.
Furthermore, the computational overhead of its components is rather small, and its 8%
false positive rate (times that non-existing intrusion was identified) is characterized as
small, even though the cost of those false positives and the migrations they lead to are
not reported. In addition, the examined 5-application workloads include only one affected
and one contentious application, with the contention taking place in only one resource. It
is unclear whether Proctor’s techniques would perform as effectively in workloads with
multiple intruders or when contention spans across multiple resources.

3.3 Profiling-Based Mechanisms
This category includes mechanisms that attempt to acquire information about an appli-
cation’s normal (isolated) execution characteristics or its reaction to specific co-runners,

in order to make decisions to avoid and/or lessen interference consequences.
One way of categorizing profiling techniques is according to when they are employed;

36

either before or concurrently to the application execution. In both cases they require a ded-
icated server that resembles a ”lab environment”, meaning an application can be heavily
monitored and executed without interference, or with deliberate, known interference. It is
important though to underline at this point the difference between online monitoring and
what we characterize as profiling concurrently to the execution: online monitoring collects
metrics about an application periodically and tries to determine its current state (whether
is suffers from contention). If coupled with a profiling mechanism, online monitoring is
used to compare current metrics with an established set of behaviors. When alone, online
monitoring is agnostic to the ”ground truth” of each application. In this thesis, we consider
as ”profiling concurrently to the execution” all actions made to discover an application’s
normal behavior or its interactions with specific, known co-runners that take place after
its execution has started.

In the following subsections we examine mechanisms that include profiling to prevent,
detect or moderate interference categorized based on the profiling method used. Most of
those mechanisms include profiling as only the first step towards the end goal, and usually
propose online monitoring and resource management techniques to maximize benefits.

3.3.1 Intrusive Micro-Benchmarks

Firstly, we will focus on approaches that, during profiling, apply controlled pressure
upon shared resources so as to gain insight about the application’s characteristics. Syn-
thetic, tunable microbanchmarks are used to deliberately interfere with the application,
and their performance effects on the latter are measured. In that way, the system not only
has knowledge of the isolated execution, but also of the possible harm specific contention
can create.

One of the most interesting employments of this technique is by Delimitrou et al. ([4]).
Although Paragon performs profiling to also estimate the impact of hardware heterogene-
ity (and [5] extends it to resource scale-out (more servers) and scale-up (more resources
per server)), we will discuss only the interference-related profiling. The authors suggest
characterizing each application based on two criteria: its sensitivity to contention and its
potential to create it. Several shared resources (sources of interference, Sol) are iden-
tified (memory bandwidth and capacity, L1/L2/L3 caches, TLBs, network and storage
bandwidth) and a microbenchmark is created to target each resource. During profiling, an
application is run with a specific microbenchmark, whose intensity is progressively tuned
up until the application’s QoS target (set to 95% of solo run performance) is violated. The
microbenchmark’s intensity percentage at this point is the application’s "tolerated interfer-
ence” (TI) score. Similarly, the application is run with the microbenchmark as we intensify
its pressure, until its performance degrades by 5% compared to its solo execution. Again,
its intensity percentage at that point is the application’s ’caused interference” (CI) score.
A small set of applications is profiled as described for all Sols.

Paragon classifies new applications using two collaborative filtering techniques: Sin-
gular Value Decomposition (SVD) and PQ-reconstruction (PQ) ([23]). We will not pro-
ceed into fully explaining those techniques, as this exceeds the scope of this thesis. The

37

Classification for heterogeneity (SVD+PQ) Per-server stctel

App 1| 1,3 i :; i (~64B) Scheduling
arrivall | '3 [EEENE EEx J’
ER 1335 .
g 257 s | s 959
P v ' | Selection of Colocation Candidctes | —1
Classification for interference (SVD+PQ) I " %.S S
}7 v T ._____"S"]_'e’_M_'WfB____f'L,E
'24° 333438 A ST S S
by PR B i S ()
Lot R Per-app state DC servers
(~64B)
Step 1: Application Classification Step 2: Server Selection

Figure 3.5: Paragon overview

process requires two utility matrices, one for TI and one for CI, that have applications as
rows and Sols as columns. When the previously presented offline profiling is completed,
the matrices are populated with the collected scores, creating dense rows. In the online
mode, when a new application arrives, it is profiled for 1 minute with two random mi-
crobenchmarks and its scores are added to the matrices. PQ-reconstruction and SVD are
then used to fill the empty entries in the row and compute the confidence in each similarity
concept. An example of a similarity concept can be application A and b both have a TI
score above 60%”. Similarity concepts are represented by single values, and their mag-
nitude signifies their confidence. In summary, collaborative filtering is used to classify
applications in regards to their ability to tolerate and cause interference. This classifica-
tion is then utilized by Paragon’s scheduler to schedule applications in servers so as to
minimize interference.

As the microbenchmarks used in mechanisms like Paragon are usually in-house imple-
mentations, and are not easily created, El-Sayed et al. ([8]) introduce a different method
of calculating applications’ sensitivity to interference online. DynaWay utilizes the In-
tel RDT technology previously mentioned to modify the available LLC capacity, creating
thus artificial interference. More specifically, DynaWay periodically enters into profiling
phase for a specific application. During that time, is divides the cache into two partitions:
one for the profiled application and one for the rest. Then, it progressively subtracts cache
ways from the first partition and adds them to the second, monitoring at the same time the
effects on LLC misses, ipc and memory bandwidth. When profiling ends, the respective
curves are created and used to make cache partitioning decisions. This method can poten-
tially be used similarly to a synthetic microbenchmark, emulating contention on a shared
resource so that the application’s sensitivity to interference is characterized.

3.3.2 Isolated Profiling

In this category we present mechanisms that only require the knowledge of an applica-
tion’s normal, uninterfered execution. The value of such knowledge has been previously
explained; it can be used to predict how the application may interfere with others and/or
be compared with metrics gathered online to determine whether it suffers from contention.

A representative example of offline-profiled behavior being utilized to make perfor-

38

T Co-running apps - Co-running apps
| {App2, ..., ADpN} | ! {App1, App3,
Zl ; i
Slal ol - AppN}
2l EN
% E: E:
£ £
Ulas! @ |
23 =
L= H
Sl& g 0l
al <L Appz
[l i H i
~ .
Measurement interval -

. L
Time

Figure 3.6: DynaWay’s profiling phase

mance predictions is Dirigent ([30]). Zhu et al. again split applications into Latency Crit-
ical, LC and Best Effort, BE (in the paper different titles are used, but the definitions
are the same) and try to minimize the performance variation of LC applications through
fine-grained interference management. Dirigent’s profiler is activated upon the arrival of
anew LC application. The application is executed in an isolated environment and a se-
ries of (time, progress) pairs is periodically recorded, where progress is measured as the
number of retired instructions during the past time segment.

st sz s3 Time

AT AT AT
(a) Offline profiling

ST PR P g Time

AT + P, AT + P, AT + P

(b) Average online execution time penalty

e 53 Time

AT + ay Py AT + @xP; AT + MA(ay, @3)Ps

(¢) Execution time prediction

Figure 3.7: Execution time prediction phases

Then, the LC application is placed in a server along with BE applications, and its
progress is monitored with the same time interval that was used during its offline profil-
ing. For each time segment a time penalty is computed using the expected time to make
the amount of progress within the offline profiled segment at the rate of progress experi-
enced in the online monitored segment. Instead of utilizing only the time penalties com-
puted, Dirigent attempts to increase accuracy by keeping an exponential moving average
of the penalty within each segment across multiple executions of a specific LC applica-
tion. When invoked, Dirigent’s predictor uses the calculated penalty for each past segment
along with the average penalties of the segments yet to execute and the total elapsed time
since the beginning of the application’s execution to estimate the total execution time of
the application.

After the expected execution time of an LC application due to interference is calcu-
lated, it is used to determine whether any resource management actions need to be taken.

39

Since Dirigent aims to minimize performance variations (while satisfying QoS goals),
and not execution time, if an LC application’s expected execution time is smaller than
its target time, resources will be allocated to BE applications. Similarly, if the expected
time surpasses the target one, more resources will be allocated to the LC application. A
fine-grained and a coarse-grained controller are responsible for managing the operating
frequency of each core (and the execution suspension of BE applications) and the LLC
partitioning respectively.

Another interesting approach is that of Novakovic et al. ([21]), who propose initiating
application profiling in an isolated environment only after the application has started its
co-execution with others in one of the production servers. The isolated execution uses real-
time inputs to create a profile that can be directly compared to the interfered execution, so
that performance fluctuations can be attributed to either normal phase changes or interfer-
ence. DeepDive is comprised of three parts that cooperate to ensure LC applications are
detrimentally affected by interference: a warning system, an interference analyzer and a
placement manager (Figure 3.8).

Production } Sandboxed environment | Placement (production)
2': Evaluate VM
Client Requests | Proxy placement (e.g., of the

most aggressive VM)

1: Clone VM
(if needed)
Warning system | | Interference analyzer || | Placement manager .|
VMM VM | VM -
OtherVMs' | | WM 4 ;
behavior 7 behavior, | 2": Update normal [Synthetic
(low-level g 0y i
N VM behavior [k | benchmark

,,,,,,,,,,, i mimicking VMO

"‘-.:'"‘” """"""""""""" !

Figure 3.8: DeepDive overview

The warning system’s role is to differentiate performance changes due to interference
from those due to workload change. More specifically, it monitors a set of low-level met-
rics and compares the measurements of each LC application with a set of known behaviors
it possesses. Ifthere is no match within its archive, it searches in other servers for instances
of the same application running (something that is typical for LC applications), and com-
pares the two instances’ behaviors. This utilization of global information is based on the
notion that if threads executing the same code have the same performance changes, the
latter probably are caused by workload changes and not interference. If no match is found
with either local or global behaviors, the interference analyzer is invoked. The authors
claim that invocations of the analyzer due to false positives pose minimal overheads to the
overall mechanism. False negatives on the other hand are more impactful, and are handled
using a vector of metric thresholds. Authors used a clustering algorithm on the acquired
normal behaviors to produce said thresholds, which separate representative application
performance from noise, while also properly identifying interference.

The interference analyzer used in DeepDive is based on a previously proposed tech-
nique described by Vasic et al. in DejaVu ([27]). Upon invocation, the analyzer clones

40

the examined application (which is being executed in a production server, as normal) in
an isolated environment. It then intercepts the requests of the original application’s copy,
and forwards copies of them to the isolated clone. In that way, it establishes the nor-
mal, uninterfered behavior of said application under real-time workloads. The low-level
measurements regarding isolated performance are sent to the warning system, along with
the aforementioned vector of metric thresholds. Application degradation is computed as
the ratio of retired instructions during interfered execution to that of the isolated execu-
tion, and if degradation is higher than an the operator-established threshold, the placement
manager is activated. In this case, the analyzer uses the collected “isolation” metrics to
compute stalls duo to contention in different shared resources, selects the resource that is
introduces the most and informs the manager accordingly. The placement manager then
makes scheduling decisions regarding the application that is more aggressive with the
shared resource where interference is detected.

During evaluation, DeepDive required about a day of operation to capture all nor-
mal behaviors, during which the false positive rate was high. After that period, the rate
dropped to nearly zero, showing that DeepDive can successfully differentiate interference
from workload changes. In addition, no false negatives where detected, and the analyzer’s
degradation estimation is within 10% accuracy in the worst case.

As we mentioned before, the idea of concurrently running an application in the pro-
duction and the isolated environment with the same workload was introduced in [27].
However, Vasic et al. use this kind of profiling not to differentiate workload fluctuations
from interference, but to determine resource allocations that satisfy performance goals.
They specifically target request-and-response applications, that are user-dependent and
experience significant variability in their inputs, so an approach aiming to capture the be-
havior during different workloads is reasonable. In addition, DejaVu is among the first
mechanisms that leverage machine learning techniques to solve the resource allocation
and interference problem.

Resource allocation

DejaVu profiling RECIUCUEIN Workload Interference Resource
and clustering 2 @ tuning signature index allocation
\’/\ —g @@ > MiM2.. 1 3
. : ¢ . @ MAM2, ... 1 2

Time Metric 2 M1M2, ... 1 1

DejaVu reuse of
resource allocation
decisions

s v
TR
T11T11)

Workload volumeltype

Training = Reuse (periodic/on-demand)

AN

Time.

DejaVu online workload
classification

Virtualized
resources

Workload volume/type

Figure 3.9: DejaVu overview

When the training phase begins, DejaVu profiles an application both in its production
and its isolated environment, using a proxy that duplicates requests as described above.
Profiling is performed for a certain period (e.g. a week), until the administrator decided
that a representative set of workloads has been captured. N different low-level metrics are
monitored during profiling, and are used to compose a per-workload signature, a N-tuple

41

that is representative of the workload’s behavior. K-means clustering is then performed
using all workload signatures of an application, and workload classes are created. The
workload that is closer to each class’s centroid is selected as representative, and a tuning
process is triggered.

During this stage, tuning is performed for each workload class. A tuning mechanism
is responsible for determining the resource allocation that is sufficient to meet QoS targets
of the application under each representative workload, without being wasteful. When
tuning is completed, DejaVu creates a lookup table containing (representative workload
signature, interference index, optimal resource allocation) triplets for each application,
where interference index is equal to 1 for all entries (its purpose is later explained). This
resource allocation will be referenced as baseline.

Furthermore, a decision tree classifier is trained to place new incoming workloads dur-
ing production execution into the best fitting class. Trained with all the gathered workload
signatures and their corresponding classes (as denoted by k-means), the classifier can de-
termine the class of an unknown workload based on its signature. When a new workload
begins, its signature is created. Although it is not stated by the authors, we assume that
the signature is produced through the isolated profiling mechanism. The classifier then
assigns the new workload to a class and the corresponding baseline resource allocation is
applied.

In case the QoS goal is still being violated after applying the optimal resource alloca-
tion for a workload, DejaVu assumes interference is to be held responsible. The current
interference index of the workload is then computed as the ratio of production to isolated
performance, and the lookup table is queried to find a matching entry. If there isn’t one,
tuning is triggered, and a new entry with the best resource allocation for this (representa-
tive workload signature, interference index) is added, and can later on be reused.

Dwyer et al. ([7]) also employ machine learning techniques, but this time for perfor-
mance degradation estimation. Their main idea is to train a model that can predict the
future performance of an application using measurements gathered online. The benefit of
such approach is that, although it does require offline profiling of a significant number
of scenarios explained below, this is a one-time overhead; once the prediction model is
trained, no offline profiling is necessary for new application coming.

To create the training set, the authors selected a set of HPC applications created the
following execution scenarios for each one of them: a solo run (the primary application
runs alone), a clean run (the primary application runs with copies of itself) and several
random runs (the primary application runs with other, randomly selected applications from
the set), creating over 500 scenarios. The authors chose to split each scenario execution
into 5-billion instructions windows called execution instances, and train the model based
on instances and not on complete applications runs. The duration of the instances was
selected to give the system enough time to gather all the 340 different low-level metrics
available in their system. All the scenarios where then executed, measuring all the low-
level metrics in each execution. For each scenario there is a primary application (the one
whose performance degradation we study) and its co-runners. For each instance in each
scenario the degradation of the primary application is calculated, using the duration in

42

clock cycles of the scenario instance and its respective solo run instance. As a result,
each instance is characterized by a set of 340 attributes for each one of the applications it
includes, plus the degradation value.

Before training the model, attribute selection was performed to eliminate unnecessary
attributes, reducing their number from 340 to 19. In addition, for the distinction between
primary and co-running application to be made, the measurements of the co-running ap-
plications are averaged. The final training set is comprised of thousands of instances,
each one characterized by the measurements of its primary application, the average of the
measurements of the co-runners, and the degradation value. The model selected was a
regression tree, and bootstrap aggregating was also used to improve accuracy. The trained
model was evaluated with cross-validation, using error rate (difference between the esti-
mated and the actual degradation) as the accuracy metric. The average error rate is 16%,
with 80% of the error rates being under 20%. To eliminate cases where the error rate is
very large due to outliers, the authors create a confidence predictor. If two or more at-
tributes of the to-be-predicted instance are more than two standard deviations away from
the mean of the training measurements, the predictor outputs a null prediction, marking
the instance as non-confident.

This predictor is coupled with a scheduler that tries to maximize resource utilization
without violating performance goals. All cores in a server are filled in a best-fit policy
and the necessary low-level metrics are constantly monitored and used to estimate degra-
dation. If the latter exceeds an established threshold, the scheduler migrates the suffering
application.

3.4 Conclusions

The proposals examined in the previous sections are only some of the ways designers
have tried to tackle the interference issue. It has now become evident there probably isn’t a
method or a a combination of methods that is a ”one-fits-all”, performing optimally in ev-
ery scenario, under all application types and with no overhead. All decisions bare advan-
tages and disadvantages, and designers must carefully enorchistrate mechanisms whose
overheads are balanced by the profits yielded.

A technique that has significant trade-offs is profiling. Conducting controlled profiling
requires one or more isolated servers that can no longer be used to host multi-application
workloads, essentially reducing the computational power of the datacenter, and as a conse-
quence its profits. Also, a-priori profiling is time consuming, and given the large number
of applications arriving at a datacenter, profiling them all would impose a major delay to
their execution, again increasing costs for the provider. Although making sophisticated
decisions before execution begins can prevent interference, in the cases of non-interfering
applications, precious time and resources have been wasted for a workload whose perfor-
mance is already satisfactory. Concurrent to execution profiling as we have described it
might not require the extra time a-priori profiling does, but it still requires isolated servers,
and no choices can be made before execution begins.

43

The big advantage of profiling is that, if carefully articulated and optimized, it can
cancel the overheads it creates by the performance gains it offers. In environments where
tens of applications share one server, locating the contentious ones can be very challenging
due to the large amount of interactions present. Indeed, being able to completely prevent
interference or take actions to control its impact before it becomes harmful can prove
extremely helpful for a commercial cloud. As we have previously described, in the pricing
model we examine cloud costumers are charged only when the performance goals they
have set are met. Consequently, executing applications that do not satisfy their QoS goals
is unprofitable.

The primary challenge with proposals that do not conduct profiling is actually detect-
ing interference, and separating it from application phase or workloads changes. As the
isolated execution measurements of the application are unknown, and most applications
are comprised of more than one execution phases and have multiple or dynamic workloads,
recognizing performance decreases due to contention is demanding, as it has become evi-
dent from the works previously described. Phase-detection mechanisms ([6],[3],[20]) can
perhaps be utilized, but they are often computationally expensive and introduce prohibitive
overheads.

Another parameter that needs to be taken into consideration is the actual complex-
ity of the mechanism, and the granularity at which it makes decisions. Having a system
that operates at a very fine granularity, offering highly customized policies in regards of
scheduling and resource management, tailored to a specific combination of applications,
seems very lucrative. Such an approach would probably utilize resources optimally, but
have an excessive cost of operation, probably requiring a large amount of low-level mea-
surements, profiling and frequent monitoring. As the amount of metrics needed or the
frequency at which they are gathered increases, application performance is also affected.

44

Chapter 4

Application Classification for
Interference Prevention

In the previous chapter several approaches and design trade-offs where discussed, to
showcase just a portion of the design space system engineers face. In this chapter, we
attempt to investigate in practice the impact of co-execution and interference, and present
our approach to the problem.

4.1 System Configuration and Benchmarks

All the executions presented in this thesis where run on a Intel® Xeon® Processor
E5-2630 v4, whose specifications are listed in Table 4.1.

This family of processors features the Intel Resource Director Technology (RDT),
which provides the user with the ability to monitor performance metrics and manage re-
source allocation. The Cache Monitoring Technology (CMT) allows the user to dynami-
cally observe a number of low-level metrics, such as the LLC misses and occupancy, at the
granularity of a logical core. CAT is utilizing the four underlying registers that Intel tech-
nology offers for event counters monitoring to report up to four metrics: ipc (instructions
per cycle), LLC mpki (misses per kilo instructions), LLC occupancy and DRAM band-
width. Because in our experiments we wanted to monitor as many performance counters
as possible in one run, but did not want to opt for sampling techniques, we decided to
deactivate hyperthreading in our processor, which makes another four registers available
for events’ monitoring, adding up to eight events monitored per run. Additionally, we
modified the code of the API (called PQoS) so that it can monitor all the desirable events.
We also took measurements using the linux perf command to verify that they match those
reported by PQoS. Because perf uses switching between monitored events and sampling,
it’s results contained more noisy that those of PQoS, but where for the most part identical.
All the reported measurements from now on where gathered using PQoS.

45

Architecture Family Broadwell
Processor Base Frequency 2.20 GHz
Number of Cores 10

Number of Threads 20

L1 (data) Cache (per core) 320 KB

L2 Cache (per core) 2.5 MB

Last Level Cache (shared) 25 MB, 20-way
DRAM Bandwidth 68.3 GB/sec

Table 4.1: Intel® Xeon® Processor E5-2630 v4 specifications

In addition to CMT, Intel RDT also offers Cache Allocation Technology (CAT), with
which the user can partition the LLC into sets of ways, and assign those sets to groups
of cores. Later processor model also feature Memory Bandwidth Monitoring Technology
(MBM) and Memory Bandwidth Allocation Technology (MBA).

The benchmarks used in our experiments are mainly from the SPEC 2017 Suite, with
one addition from the Polybench 3.2 Suite (jacobi-2d benchmark), as well as the stream
and hpcg benchmarks. The SPEC 2017 benchmarks are divided into two categories, that
differ mainly in the input sizes and the memory footprint: rate and speed. Some of the
benchmarks have implementations in both categories, so to avoid confusion we denote the
rate version with ” r”” and the speed version with ” s”. Furthermore, the Alberta Work-
loads ([1]) were also used for some of the benchmarks. When the input of benchmark is
one of the Alberta ones, its name is added to that of the benchmark. For example, om-
netpp_r_star is the rate version of the omnetpp benchmark with the star” input (from the
Alberta Workloads), whereas omnetpp r is the rate version with the original SPEC 2017
input. Our final set has in total 140 benchmarks.

4.2 Co-Execution Scenarios

Firstly we run each application on each own, to capture its solo behavior. Then, we
create 2-application scenarios. As we want to examine interference in resources that are
shared across the chip, each application is single threaded and pinned to a specific core (to
eliminate interference in core-private components such as the L1 cache). If one application
finishes execution before the other, it is restarted. This continues until all applications are
executed at least one time. To avoid executing all 9.730 possible pairs, for our initial
analysis we choose only the rate implementations with the SPEC 2017 inputs, as well as
the hpcg, stream and jacobi-2d benchmarks. As performance indicators we choose [PC

46

and total execution time, and to measure interference we define S (Slowdown and Deg

(Degradation) as:
Sl — tcoeazec

talone

_ Z'pcalone - ipccoexec

Deg = - * 100%
tPCalone

where:
talone: total execution time when run alone
teoeec: total execution time in the co-execution scenario
1PCalone: 1pc When run alone
1PCeoexec: 1PC in the co-execution scenario

Figure 4.1 shows a typical scenario where interference impacts performance. Om-
netpp_r exhibits a slowdown of 1.23, with a 19.7% Deg, even with just one co-running
thread. In Figure 4.2 we can see that lbm_r dominates omnetpp _r in the LLC (leading to
almost three times higher LLC mpki).

0 100 200 300 400 500 600
Execution Time

lf IPC_omnetpp_r_alone — IPC_omnetpp_r — IPC_lbm_r_alone IPC_\bm_r‘

Figure 4.1: IPC, scenario: 1 omnetpp r with 1 Ibm r

WWWWWMWMWMWWMMWWMw

pancy

LLC_occu
S

WWWWVWW“WWWWMW

0 100 200 300 400 500 600
Execution Time

— LLC_occupancy_omnetpp_r_alone — LLC_occupancy_omnetpp_r — LLC_occupancy_lbm_r_alone LLC_occupancy_Ibm_r‘

Figure 4.2: LLC occupancy, scenario: 1 omnetpp r with 1 Ibm_r

When examining closer how different applications interact when co-scheduled, one
can begin to see a pattern: there are applications that exhibit the same behavior regardless
of their co-runner. In Figure 4.3, we see stream executed with perlbench r, gcc_r, cactuB-
SSN_rand blender r. In all four cases, stream appears to negatively impact its co-runners
performance to various degrees, while always taking over the LLC.

47

25
20 //ﬁ/—’_’W/—/v_’V\ﬂ
% 15
" 10 \‘
osf
0 50 100 150
Execution Time
‘ — IPC_solo2_perlbench_r_alone IPC_so[oZ_per\bench_r|
(a) 1 stream with 1 perlbench _r
20

IPC_solo2
- -
S &
;/§
>
,ﬁ

v Mf\j\ MLA/IWJ\MLJU\” 4 \f

0 50 100 150 200
Execution Time

0.5 ff

‘ — IPC_solo2_gcc_r_alone IPCisolozigccir‘

(b) 1 stream with 1 gcc r

N

IPC_solo2

=
o

o o
o

o
=

o

100 200 300 400
Execution Time

l — IPC_solo2_cactuBSSN_r_alone IPC_solo2_cactuBSSN_r l

(c) 1 stream with 1 cactuBSSN r

e ‘W&%[\W AMV\/\W il Mw \N’MMJ\ jwm,ﬂmwuwﬂ/\-ﬂﬂf

~
o

3 15
2
o
-4

10

0.5

0 100 200 300 400 500
Execution Time
| — IPC_solo2_blender_r_alone IPC_so[oZ_bIender_r‘

(d) 1 stream with 1 blender r

Figure 4.3: IPC of various stream’s co-runners

In Figure 4.4, we see xz_r’s ipc when executed with mcf r, jacobi-2d, cactuBSSN r
and cam4 _r. In all cases, xz_r experiences different degrees of performance degradation.

48

IPC_solol

0 50 100 150
Execution Time

‘7 IPC_solol_xz_r_alone — |PC_50[01_xz_r|

(a) 1 xz rwith 1 mef r

IPC_solol

0 50 100 150
Execution Time

‘7 IPC_solol_xz_r_alone — IPC_su[ol_xz_r|

(b) 1 xz_r with 1 jacobi-2d

IPC_solo1

0 50 100 150
Execution Time

‘7 IPC_solol_xz_r_alone — |PC_su[ol_xz_r|

(c) xz_r with 1 cactuBSSN r

IPC_solol

0 50 100 150
Execution Time

‘7 IPC_solol_xz_r_alone — |PC_su[ol_xz_r|

(d) 1 xz rwith 1 gcc r

Figure 4.4: IPC of xz_r in various scenarios

Lastly, in Figure 4.5 we present the case of namd_r. Interestingly enough, namd r is
not only highly resistant to any interference (no changes in its ipc), but also does not create
any contention (no significant changes in its co-runners ipcs).

49

0 100 200 300 400
Execution Time

— IPC_namd_r_alone — IPC_namd_r — IPC_lbm_r_alone IPC_lbm_r

(a) 1 namd rwith 1 Ilbm_r

Tad

\.f A w, \«—*w»w./m/f oA L Il A Ao mJ‘ oAty /\w,«MNL,»,«,\\/»/”v.«rx.h,nrvv«,MV,QN/UVAW

0 100 200 300 400
Execution Time

— IPC_namd_r_alone — IPC_namd_r — IPC_xalancbmk_r_alone IPC_xalancbmk_r

(b) 1 namd_r with 1 xalancbmk r

S A R AR

0 100 200 300 400 500 600 700
Execution Time

— IPC_namd_r_alone — IPC_namd_r — IPC_cam4_r_alone IPC_cam4_r

(¢) 1 namd r with 1 cam4 r

Figure 4.5: IPC of namd r and its co-runners in various scenarios

The above examples are a strong indicator that whether an application will experience
and/or create performance degradation in a scenario might be inherent characteristics of
the application itself, and not dependent on the application mix in the scenario. This ob-
servation has also been made and verified by Tang et al. in [26] . If these characteristics
can be correlated to low-level metrics (Performance Monitoring Units, PMUSs), such as the
LLC mpki, then one can predict them without placing the application in a possibly detri-
mental for its performance co-execution scenario, and make useful decisions in regards of
its placement in a server.

50

4.3 Noise and Sensitivity

Noise (often referred to as ”contentiousness”) and sensitivity are two terms that have
been used in bibliography ([26]) to describe how much an application suffers from or can
create performance degradation in multi-application scenarios. In general, an application
is considered noisy if it results in significant degradation of its co-runner’s performance,
and quiet when it leaves its co-runner completely unaffected. Similarly, we call an appli-
cation sensitive when its performance is constantly affected in the presence of a co-runner,
and insensitive when it almost never is.

Prior work has been controversial about whether sensitivity and noise are correlated.
Jiang et al. ([18]) conclude that there is a correlation, and applications are either sensitive
and noisy or insensitive and quiet, whereas other works ([14],[31],[26]) find cases of other
combinations, such as noisy and sensitive. In our work, we consider the two characteristics
not correlated, meaning that an application’s level of noise does not necessarily determine
its level of sensitivity and vice versa. Noise and sensitivity reflect two different aspects of
an application’s behavior: how much it uses a shared resource and how much it benefits
from it. Usage does not always mean benefit. Resources that act as performance opti-
mization mechanisms, such as the LLC, fall under that case, as their effectiveness relies
upon the application’s data patterns. For example, if an application has no reuse pattern
in its data, then it constantly brings new entries in the LLC without ever reusing them. In
that case, it creates high contention for its co-runners, constantly evicting their entries, but
does not suffer itself if its data gets evicted, since it wouldn’t reuse them anyway.

4.4 Previous Work on PMU-based Classification

Several attempts have been made to classify applications in regards of their noise and
sensitivity based on performance counters. We present below the most representative ones.

Lin et al. in [16] classify applications into four different colors depending on the
slowdown they experience when run with 1/4 of the LLC compared to when they run
with the whole LLC. Qureshi and Patt in [22] study the performance of applications when
run with various portions of the LLC, and divide them into high-, low- and saturating-
utility. Both of those works address only the subject of sensitivity and not that of noise,
and examine only the LLC as a shared resource. In addition, they require multiple runs of
an application, which is unrealistic in production environments.

Xie and Loh introduce an animalistic classification ([28]) . An application can either
be a turtle (low use of the LLC), a sheep (low LLC miss rate, insensitive to the amount
of LLC it is allocated), a rabbit (low LLC miss rate, sensitive to the amount of LLC it is
allocated) or a devil (high LLC miss rate). The authors employ a mechanism proposed
in [22] to dynamically measure the least amount of LLC an application needs to achieve
an acceptably low LLC miss rate (expressed in relation to the LLC miss rate of the solo
run). Applications are placed into a category according to their respective values for LLC
accesses, LLC miss rate, LLC misses and the aforementioned LLC amount (expressed in
ways). This approach however faces some limitations expressed in [31] . For example, Xie

51

et Loh state that devils are applications with high contentiousness due to high LLC miss
rates and low sensitivity, as they exhibit low data reuse. But because their classification
takes into consideration only LL.C-related metrics, they fail to account for contention and
sensitivity in other resources, such as the DRAM bandwidth. In [31], the authors show that
some applications that show high LLC miss rates and would classify as devils are highly
sensitive when it comes to other resources, like DRAM bandwidth and prefetchers.

Zhuralev et al. ([31]) propose a pain based classification scheme, defining pain as the
product of sensitivity with noise. To calculate sensitivity they use stack distance profiles,
whereas for noise the LLC accesses per million instructions are used. They also implement
a scheme that is based only on LLC miss rate, supporting the case that the latter is sufficient
in making scheduling decisions. Although their pain scheme slightly outperformed the
LLC miss rate, they continue on to use the latter in their contention-aware scheduler, as it
is much less complex to implement and performs almost the same.

Lastly, in [26], Tang et al. attempt to predict an application’s noise and sensitivity using
linear regression. To correctly account for both characteristics, and shared resources other
than the LLC, they propose using as performance counters the LLC lines _in/ms for
memory bandwidth usage and the (L2 lines in — LLC' lines_in)/ms for LLC usage.
Their conclusions are rather interesting: although they were able to create a linear model
using regression to predict an application’s contentiousness, a similar model could not be
created for sensitivity, which proved to be much more complex to identify based on their
performance counters.

4.5 Designing a Non-Intrusive, Lightweight Classi-
fication Algorithm

As we have already mentioned, when it comes to addressing interference all choices
have advantages and disadvantages, and each designer is called to decide which choices
are worth the overhead and which not. We wish to create a classification mechanism that
bares the following characteristics:

* Preventive: Contrary to other approaches, we want to be able to prevent interfer-
ence from happening, not detect it after it happens. Having an estimation of how
applications will interact before they actually do is of high value, especially in cases
where one of them has strict performance goals.

* Lightweight: The amount of PMUSs measured must be such that it will not add over-
heads during execution. Also, we do not wish to maintain large databases or other
models (e.g. neural networks). Finally, our solution must be as computationally
inexpensive as possible.

* Non-Intrusive: Because we wish to use profiling, a necessary small overhead has
already been added to out mechanism. However, since profiling will be done (if
necessary) upon application arrival in one of the system’s servers, we want the time

52

it spends there to be "useful”: its performance must not be affected in any way, so we
cannot use any intrusive benchmarks or cache allocation techniques to observe how
performance is impacted. This is a constrain we decide to pose since our mechanism
is targeted to commercial cloud environments, where profit is proportionate to an
application’s “useful” time.

4.5.1 Defining the Classes

Taking into consideration the previous constrains, we decided to adopt a reverse-
engineering approach: first categorize our applications according to the behavior we ob-
serve in co-execution scenarios, and then see if any combination of PMUs can discern
between categories. Determining whether an application is e.g. noisy or quiet is not
straightforward, even if one has abundant resources and time to examine applications,
as those terms are loosely defined. Sensitivity in regards of the LLC can be observed by
executing an application with various amounts of LLC ways, and then analyzing how its
performance was affected (similarly to [22] and [8]). To that extent, we used Intel CAT to
run each application with 1 up to 19 ways, and created an ipc-cache ways curve for each
application. Applications whose performance continued to improve as the cache ways in-
creased were labeled as sensitive, and those who after 1-2 ways showed no performance
as insensitive. All other applications exhibited a performance saturation after a certain
amount of ways (different for each application), and were labeled as potentially sensitive,
meaning the could suffer from contention under certain pressure, but not always. In a
machine that also supported Intel MBA we could have performed a similar analysis for
memory bandwidth, but since we do not have that ability in our current processor, we had a
different approach. Bandwidth is on of the shared resources where usage most of the times
means benefit. Even if the data brought from memory are a result of prefetching and end
up not being useful to the application’s execution, the data are still fetched, so if bandwidth
is dominated by someone else the application will suffer long stalls, and thus performance
losses, waiting for the requested data. To test if some of our labeled as insensitive and
potentially sensitive applications have been misplaced, we examine their co-executions
with an in-house microbenchmark that saturates memory bandwidth. Indeed, applications
like stream and jacobi-2d, which do not seem to have performance gains from increasing
LLC capacity, are affected when contention in the memory bus is extreme, and thus we
move them to the potentially sensitive category.

Noise is more difficult to define. Some benchmarks were very easily labeled when
we observed the results from their co-executions, as they exhibited the same behavior re-
gardless their co-runner. Lbm_r, stream, hpcg and others consistently caused a Deg of at
least 20%, and so we label them as noisy. Other applications, like namd r, leela r and
exchange2 r always left their co-runner unaffected, so we label them as quiet. However,
most of the applications did not exhibit a striking behavior, so we decided to establish
a “reference benchmark™, one that would be ”in the middle” in both categories. Luck-
ily enough, cactuBSSN_r showcased the necessary characteristics: it had median or very
close to median values in all PMUs. We consider it to be a fitting reference since it is nei-

53

ther insensitive to interference nor extremely sensitive, neither contentious nor completely
quiet. Our strategy was to run all benchmarks with cactuBBSN_r and observe the degra-
dation they caused it. If Deg > 10%, we label the benchmark as noisy, whereas if Deg
is almost 0 we label them as quiet. Not to our surprise, all insensitive applications where
also quiet. Since applications in the insensitive category need minimum cache capacity
and memory bandwidth, we expect them to not access shared resources to a large extent,
and thus not create problems for their co-runners. Every other benchmark was labeled as
potentially noisy.

Although a Deg of 10% might seem rather small, we would like to underline the fact
that we are discussing 2-application workloads. The caches and bandwidth in our pro-
cessor are significantly large, so they most likely can handle the majority of 2-application
scenarios. Inreal production environments, all cores are used, so an interference that might
seem negligible in a 2-application scenario is highly exacerbated in a 10-application sce-
nario, as we will see in later chapters.

The thresholds for Deg mentioned below are empirical and based on averaged values
from our experiments, and we do not claim that they are universal or inerrant. However,
we observed that they are capable of correctly capturing the vast majority of cases, so
we consider them adequate for the purpose of this thesis. In the cases where Deg was
marginal, we examined more co-runs to select a category. Our general strategy was to be
conservative, and if in great doubt place an application in the potentially noisy/sensitive
class.

4.5.2 PMU Patterns

After positioning our benchmarks in categories, our first step was to examine whether
different PMUs could indicate sensitivity and/or noise. We run each application in isola-
tion collecting all the metrics listed in Table 4.2 using our modified version of the PQoS
API. We also collected information about the LLC occupancy and DRAM bandwidth us-
ing the built-in functions of PQoS. To select the metrics we would analyze, we took into
consideration the observations made in [25] and [19], along with our observations regard-
ing the memory subsystem.

Apart from the raw PMUs data, we combined PMUs to create new metrics, such as
miss rates.

As we mentioned before, applications that maintain their data in private to each core
parts and do not greatly use shared resources, are quiet and insensitive. This can be trans-
lated into having low values for LLC accesses per kilo instructions (LLC acpki) and mem-
ory bandwidth. In Figure 4.6 and Figure 4.7 we present the LLC acpki for a set of rep-
resentative benchmarks. Insensitive and quiet benchmar5ks have a LLC acpki around 1,
significantly lower than all others.

A rather strong indicator can be memory bandwidth. Applications that highly use the
memory bus during solo execution, will continue to do so in co-execution scenarios, and
are most probably noisy. As we see in Figure 4.8, noisy applications do indeed have much
higher memory bandwidth values.

54

El insensitive
I potentially sensitive 61.72
60 3 sensitive

25.97 26.18

3.47

< S < < X X < < <
ee®S 29CHS ray S e R e ‘\gel,acwass*, X\ endet

g ey 90 - AL e *a\a“ﬁ"‘;\;eb‘ o _cam‘\:‘)\’“ares‘j&,\vmf 505"““/‘ & ﬂé@veV“’e“cv‘){ﬂ‘gdél“_om“ewp <
e ,
Figure 4.6: LLC acpki
Benchmarks labeled according to sensitivity
B quiet
Il potentially noisy 51;72
60 ({3 noisy

50

30.80
30 .39
25.97 26.18
20
11.86
10.73
10 9.84
5.06
3.47
X 0.97
. 0.82 0.52 0.82 0.89 0.97 00
et SIS en0f b S o1t NS PRV TS SN S SR S et 0P gt S
W g S 9 ‘,ax»“”"s‘e o8 e® s‘“"e*m“z@‘°a°w6213*a\am ene g™ 5 Soe.ve““e“ 0 =;Lov°‘““ﬂ o™ o

Figure 4.7: LLC acpki
Benchmarks labeled according to noise

We also considered the methodology described in [19] to detect memory boundness.
Molka et al. suggest that stall-related counters could reveal if an application’s performance
heavily depends on the LLC and memory. If a large fraction of the cycles an application
spends halted (CYCLE ACTIVITY.STALLS L2 PENDING) is due to pending requests to
lower levels of memory (LLC + DRAM), it means it cannot overlap waiting for those
requests with useful computation. As a result, extra misses in the LLC or congestion in
the bandwidth will result in more stalls that cannot be ”disguised” by computation, making

55

4000

B quiet
Il potentially noisy 371&59
3 noisy

3500

3000

2500

2264.29

2000

1500

1179.99

1000

695.89

500 384.26 368.19

14742 150.55

ol_044 4.66 04 040
< L (3 . < Qs

e~ B 609 qarnd S

: i 9 oo B
8 S 0 ER

16.10

< <

, S
. o
51

s N
1 cac‘““ss
5014

PR

ex 54 Py ot gee s SRR &S
o SR souve‘me“ e m.eﬁ“‘ew 5007 oo

Y 526 e

Figure 4.8: DRAM Bandwidth
Benchmarks labeled according to noise

stalls a promising indicator of sensitivity. Again, there didn’t seem to be any clear pattern
that could be outlined in Figure 4.9. It is worth noting that mem stalls (stalls because of a
pending request to the main memory) might be higher than L2 miss pending stalls (stalls
because of a pending request from L2) because of L1 prefetchers.

Two PMUs that are widely considered strongly related to noise and sensitivity are LLC
mpki and miss rate (misses per access). Many prior works ([14],[31],[26]) have reasoned
both in favor and against LLC mpki accurately describing application behavior. A brief
look to Figure 4.10 shows that there are cases LLC mpki can be misleading. For example,
many potentially sensitive and sensitive applications have LLC mpkis similar to those of
insensitive applications. That is because an application might have a data set almost the
size of the LLC; in that case, the LLC mpki in the solo run would not be high, but any
co-runner that stresses the LLC would result in a performance drop. We do see that noisy
applications show higher LLC mpkis, but the difference is not that large to safely draw any
conclusions. Miss rate is not that useful either, as we see quiet applications having large
miss rates. In those cases, the applications rarely access the LLC, so they are not affected
by co-runners, but those rare accesses happen to be mainly misses, resulting in high miss
rates.

Lastly, we examined if individual application performance can be correlated with
PMUs. A strong correlation between the ipcs of one category’s applications and a PMU,
e.g. LLC mpki, could suggest that for this category, performance can be “translated” into
low lever metrics, that could later be used to characterize the category. We used Pearson’s
Correlation Coefficient ([2]), but found no specific pattern in the way ipc correlated with
various PMUs.

56

Sensitive
TI2T6

1000

800

a0

200

Potentially Sensitive

1500 1484.67

1316

103396 102072 1012.00

1000

500

417 268
505.mef 1 507.cactuBssh 523.xalanchmk._ - 526 blender 527.cama 1 510 parest 1 519.1bm 1

Insensitive

TOT6T

169811
159009

1500 149993

1097.77
1000
79203

500

11504 08
082 576 1092209 007 018 Bkl
508.namd 1 hange2 r

A2 3e3 2071838

1396 413
Slleslar 538 magick © S1Lpoviay 531 deepsiend. ¢
W total_Cycles*10"9 MMM fotal_exec_stalls10~9 () fotal |1d_miss_stalls*10"9 W fotal |2_miss_stalls"10"9 WM total mem_stalls*10"9

548.exchang:

Figure 4.9: Stalls due to data requests
Benchmarks labeled according to sensitivity

After the aforementioned analysis, we can sum up our conclusions in the following

points:

» There seems to be no easily detectable pattern in PMUSs that can be used differentiate
categories. If such a pattern exists, it is too complex for the human eye to detect.

* In the cases where some categories are discernible, (e.g. high memory bandwidth
in noisy applications), it is unclear where the thresholds between classes should be

placed, and we think that empirically setting them would be arbitrary.

» Some metrics yield interesting insights into application behavior and can perhaps

be used as part of a classification algorithm.

57

El insensitive
Il potentially sensitive 16.24

16113 sensitive

8.50

130

1 <

o oy DB o0t dt 2 NS 34 S (5] xS 3 33 ! ! ! !
g0 gy o0 5 et o e@a‘f; Cac\u“"; e Teper® g o g g GO o 51 '*7"00 verwe“&s’@"“(/ﬂ oone ¥
Y oo 5004 520
Figure 4.10: LLC mpki
Benchmarks labeled according to sensitivity
B quiet
05| |EEE potentially noisy | .. 049 049
3 noisy M

5 =y
501 o

< <
002 \a“@“;; pen® s

s s hs s S s s
bt gt acnt o gee S XPP- o oS &t
e 55 0o 502 NAACE 5 1
23 Iy o e 50 o ! 50

<
s

< : s 1 s
e okt ays gt nd.
oW g 00 6_5\v¢9295\ e %Bve,ma

Figure 4.11: LLC miss rate (misses/accesses)
Benchmarks labeled according to noise

58

4.5.3 K-Means Clustering

Although an empirically created classification algorithm could not be created, the fact
that the few PMU patterns we could detect agreed with our assumptions about the corre-
sponding parts of memory and application behavior led us to consider pairing PMUs and
our insights with already established algorithms. K-means ([12]) is a well-known cluster-
ing algorithm used to split N observations into k clusters. Given an initial set of k means
(centroids), the algorithm alternates between two steps. It assigns each observation to
the cluster whose mean has the least squared Euclidean distance (the ”closer” mean), and
then re-calculates each centroid as the mean of the observations in the respective cluster.
K-means can be applied to observations that have more than 3 dimensions, also called
features. Each observation has a specific value for each feature in the feature set. Our
goal was to see if k-means could find the borders between classes, e.g. the threshold of
memory bandwidth above which an application can be labeled noisy.

We begun our experiments with noise, as our observations suggest that borders be-
tween noisy, potentially noisy and quiet applications might actually exist. In our ex-
periments we used the implementation included in the scikit-learn python framework.
Standardization was applied to all data using the StandardScaler method of the python
sklearn.preprocessing package. Standardization (or Z-score normalization) is a feature
scaling method that rescales the values of a vector to have zero-mean and unit-variance.
Its use was necessary to avoid biases because of differences in the PMUs units. For ex-
ample, memory bandwidth can have values of up to 12.000 MB, whereas LLC mpki is
typically around 5-10. The algorithm was tested with feature sets containing all possible
combinations of the PMUs most strongly related to noise: LLC acpki, LLC mpki, LLC
miss rate and memory bandwidth. Figure 4.12 and Figure 4.13 shows two representative
examples of how the algorithm creates clusters, projected into 2-d space using Principal
Component Analysis (PCA), a dimensionality reduction algorithm. We immediately see
that noisy applications, such as stream and hpcg, can quite effectively be separated from
the others. However, potentially noisy and quiet classes are more difficult to tell apart, as
their respective applications seem to overlap. The results where similar when we exam-
ined sensitivity. This time, the features used by the algorithm were LLC acpki, LLC mpki,
LLC miss rate, memory bandwidth, total L2 stalls and total L2 stalls/total cycles. Here,
borders are even more blurry (Figure 4.14) confirming previous work that sensitivity is
more difficult to detect than noise ([26]).

Our conclusion is that k-means succeeds only partially because it assumes separable,
”spherical” clusters, which clearly is not the case for all classes. The clusters are also
expected to be of similar size, which also does not apply in out dataset.

59

8
6 o
4t
2r ° ° ° o
. o
‘ (]
Jort
. X *
0 ‘ :’o L o o ‘
"n ° ® 5 °
"\ *
Sl TR Y
L ‘
-4 -2 0 2 4 6 8
(a) k-means clusters
8
6 °
a4t
2f R ° .
. .
P
o B L
. & T .
'.- . L
S,
! °0 %
L ‘
-4 -2 0 2 4 6 8

(b) actual clusters

Figure 4.12: Noise: k-means clusters VS actual clusters
Features: LLC acpki, LLC mpki, DRAM bandwidth, LLC miss rate

60

2+
... °
: .
» .
al .
PRE RN @
of et A
8 ®
o %
—1L o o
2L
. ‘ ‘ ‘ ‘
-2 0 2 a 6 8
(a) k-means clusters
3
2+
l.-
i :
l_
PR L «
L 8
0 4, ¥ . .
6" a0
. %
-1t e L]
-2t
. ‘ ‘ ‘ ‘
-2 0 2 a4 6

(b) actual clusters

Figure 4.13: Noise: k-means clusters VS actual clusters
Features: LLC mpki, DRAM bandwidth, LLC miss rate

61

5
al
3l
e
°
2 s e o o
£
X ° °
®
1 °® . °
°® ‘
.
0 ° |.
r o ® °
et ‘ o X o
-1 ° @ oo A
o .
= ‘
-2 0 2 a 6 8
(a) k-means clusters
5
al
3 L
2 L * e
. .
1t o0 .
°® ‘-
I
0 .‘
4
o °
-1 @ abo had
°e
= ‘
-2 0 2 a4 6 8

(b) actual clusters

Figure 4.14: Sensitivity: k-means clusters VS actual clusters
Features: LLC acpki, LLC mpki, DRAM bandwidth, L2 pending_stalls/tot cycles

62

Event Name

Description

LONGEST LAT CACHE.MISS

Core-originated cacheable demand requests the missed in LLC

LONGEST_LAT CACHE.REFERENCE

Core-originated cacheable demand requests that refer to the LLC

L2 _RQSTS.MISS

All requests that miss in the L2 cache

L2 _RQSTS.REFERENCES

All L2 requests

MEM_UOPS_RETIRED.ALL_LOADS

All retired load uops

MEM_UOPS_RETIRED.ALL STORES

Retired store uops that split across a cacheline boundary

BR_INST_RETIRED.ALL BRANCHES

All (macro) branch instructions retired

CYCLE_ACTIVITY.STALLS_L2_PENDING

Execution stalls while L2 cache miss demand load is outstanding

CYCLE_ACTIVITY.STALLS_ MEM_ANY

Execution stalls while memory subsystem has an outstanding load

CYCLE_ACTIVITY.STALLS_L1D PENDING

Execution stalls while L1 cache miss demand load is outstanding

CYCLE_ACTIVITY.CYCLES_L2 PENDING

Cycles while L2 cache miss demand load is outstanding

CYCLE_ACTIVITY.CYCLES_ MEM_ANY

Cycles while memory subsystem has an outstanding load

CYCLE_ACTIVITY.STALLS _TOTAL

Total execution stalls

CYCLE_ACTIVITY.CYCLES_L1D_PENDING

Cycles while L1 cache miss demand load is outstanding

RESOURCE_STALLS.SB

Cycles stalled due to no store buffers available (not including draining from sync)

CPU_CLK_UNHALTED.THREAD_P

Thread cycles when thread is not in halt state

DTLB_LOAD MISSES.MISS_CAUSES A WALK

Load misses in all DTLB levels that cause page walks

DTLB_STORE_MISSES.MISS_CAUSES A WALK

Store misses in all DTLB levels that cause page walks

L2 TRANS.DEMAND DATA RD

Demand Data Read requests that access L2 cache

L2 TRANS.RFO

RFO requests that access L2 cache

L2 TRANS.LID WB

L1D writebacks that access L2 cache

L2 TRANS.L2 WB

L2 writebacks that access L2 cache

Table 4.2: Performance Monitoring Events - Broadwell Architecture

63

Chapter 5

An Application Classifier using
Machine Learning

In this chapter we describe our final approach to creating an application classifier to
prevent interference consequences. Since our previous efforts, which centered around
more simplistic designs and algorithms, proved to be incapable of detecting the underly-
ing correlations between PMUs, we decided to adopt a more sophisticated approach and
employ machine learning methods. As our problem is a classification one, our work was
to create a representative training set, select and train a suitable for the problem classi-
fier and manipulate its parameters to reach an optimal result. We continue on to present
a short summary of necessary machine learning background, outline the challenges we
faced when designing our classifier and evaluate our final implementation.

5.1 Machine Learning Background

Machine learning comprises of a large set of algorithms and tools employed to es-
sentially program computers to learn from data. Though more challenging to understand
those algorithms, they are particularly useful in problems too complex for a statistical or
empirical analysis to yield a solution, for cases with many involved parameters and a large
design space that requires a lot of hand-tuning and extensive lists of rules, or for problems
that include large amounts of data or need to dynamically adapt in the presence of new
datapoints.

In general, machine learning methods can be categorized according to a variety of
criteria, such as:

* Whether they are trained with human supervision or not (supervised, unsupervised,
semisupervised or reinforcement learning).

* Their ability to learn and adapt while operating (online or batch learning).

64

* Whether they try to make predictions by uncovering patterns in the training data or
simply compare new datapoints with known ones (model-based or instance-based
learning).

The pipeline of the machine learning process proceeds as follows (figure 5.1). The
first and perhaps most important step is to acquire or create a representative dataset. It
is usually said that "models are only as good as their data”, since a machine learning
algorithm creates a model based on the datapoints upon it is trained; the more characteristic
of the the general population the training data, the more the possibilities that for the model
to make accurate predictions. We will present several data-preprocessing steps in later
sections. The dataset is then split into a training set and a test set. The training set will
be the datapoints upon which the algorithm will be trained, whereas the test set is used to
evaluate the model produced and tune its parameters. This process is usually iterative: the
model can be re-trained and re-tested until it yields satisfactory results.

_—» TestDataset ——————__

F. v ¥

Data Data Train Train ML . Evaluate
Acquisiion " Cleanng | Dataset * Model ») Test Model 4 odel *|panara Mas

A
Most time

spent here

Adjust Model
Parameters

Figure 5.1: Machine learning process overview

The problems tackled by machine learning techniques can be split into to distinctive
categories: classification (predicting classes) and regression (predicting values). Let x
be the input to a model, and y the corresponding (predicted) output. If y is a discrete
-categorical value (a discrete class label), we have a classification problem, whereas if
it is a real number (e.g. an integer or a floating point value) we have a regression prob-
lem. Some machine learning algorithms, such as decision trees, can tackle both categories.
Other ones can either be applied to only one category of problems, or need extensive and
complex modification to be fitting for applying to both categories. Some popular clas-
sification algorithms include decision trees, support vector machines, logistic regression,
naive Bayes, k-nearest neighbors etc.

5.1.1 Data Preparation

As we already mentioned, data is one of the most crucial parts in a machine learning
model, and must fulfill the following criteria.

1. Sufficient Quantity. For machine learning algorithms to actually be able to learn,
a large amount of datapoints are required. This is especially evident in [11], where

65

even fairly simple algorithms were able to perform almost the same as very complex
ones when given enough data.

2. Representative Instances. Even if one has a vast amount of data available, those
must be representative of the general population and the new cases the model might
come to face. For example, it would be useless to train a regression model to pre-
dict the average temperature for a month using training data mainly from summers
months. Note that it is not necessary for all classes or ranges of values to be equally
represented: the dataset must contain datapoints in the same analogy as they are
present in the general population.

3. Good Quality. A dataset ideally should not contain errors, outliers or irrelevant
noise.

4. Relevant Features. The features by which datapoints are characterized also play
a key role. More features might uncover more intricate patterns, but too many or
irrelevant ones introduce a significant amount of noise to the system.

5.1.1.1 Feature Selection

Feature selection is the (most of the times) automatic selection of data attributes that
are most relevant to a specific problem. It usually acts as a filter, removing features that
might be redundant or introduce false patterns. Reducing the number of features a model
needs to perform adequately is desirable, as it results in a faster model, whose underlying
processes are less complex and more easily understood. Nevertheless, if not done carefully
feature selection can introduce bias and lead to overfitting. Feature selection methods can
be split into three categories:

1. Filter Methods: A statistical measure is used to assign a score to each feature. All
features are then ranked by score and either selected or removed.

2. Embedded Methods: Those methods learn which features mostly contribute to the
accuracy of a model while the model is being created.

3. Wrapper Methods: Different combinations of features are created, evaluated and
compared to each other. The evaluation is done by a predictive model, which as-
signs each combination with a score based on model accuracy. A well known wrap-
per method is the Recursive Feature Elimination (RFE) algorithm. RFE iteratively
fits a model using data with a specific set of features and removes the weakest one
based on the model’s ranking, until it reaches a specific number of features.

5.1.1.2 Feature Scaling

In the K-Means subsection we mentioned using standardization, a step that is neces-
sary when different features have different units. Each feature vector is standardized to

66

have a mean of zero and a standard deviation of one, replacing each element x use a new
2’ such that

where T and o are the original vector’s mean and standard deviation respectively. Other
methods of scaling include min-max normalization (data is scaled to the range of [0, 1] or
[—1,1]) and scaling to unit length (vector is scaled so that its complete length is 1).

Note that in machine learning models, the scaling transformation must be created upon
only the training set and not the whole dataset.

5.1.2 Training and Test Set

Creating a training and a test set from your datapoints is a key step, as one must make
sure that both are characteristic of the whole dataset so that the algorithm is accurately
trained and evaluated. A testing set can be created by sampling the dataset in either a
random or stratified way. If the dataset is large enough, then random sampling should be
sufficient to adequately capture all trends. However, in very small or incomplete datasets,
one may prefer opting for stratified sampling: the dataset is divided into homogeneous
subgroups called strata, and the right number of instances is sampled from each stratum to
guarantee that the test set is representative of the overall population. Selecting the criterion
according which the strata are created is pivotal, as it must be the feature or combination
of features that best represents the dataset’s characteristics.

5.1.3 Support Vector Machines

A Support Vector Machine (SVM) is a quite versatile and powerful supervised ma-
chine learning model, that can perform both regression and classification (linear and non-
linear), though it usually used for the latter. It is also particularly suitable for small and
medium sized datasets.

When used for classification, the SVM algorithm plots data instances as points in a
n-dimensional space (where n is the number of features), with the value of each feature
being the value of a particular coordinate. Then, classification is performed by finding
the maximum margin hyperplane that differentiates best the two classes. We call support
vectors the co-ordinates of individual instances, and support vector machine the frontier
(hyperplane) which best divides the two classes.

Y

x

Figure 5.2: SVM classification example

67

5.1.3.1 Linear and Non-Linear SVM

When the two classes can be separated by a straight line we call them linearly sepa-
rable. If we demand that all instances of a class are on the one side of the hyperplane, we
are conducting hard margin classification. However, this only performs well if there are
no outliers and the data is indeed linearly separable, as an outlier can either prevent a hard
margin classifier from finding a hyperplane, or find a hyperplane that is not satisfactory.

To avoid such issues it is preferable to use a more flexible model, one that balances
keeping the margin between the classes as large as possible and limiting margin violations.
This is called soft margin classification, and can be controlled with the regularization
parameter of the classifier, discussed later on.

Many times though a dataset cannot be separated by a straight line. In this case, a
method called kernel trick is employed to try and create a hyperplane. A kernel is a math-
ematical function which transforms a low dimensional input space to a higher dimensional
one, which essentially means converting the problem from non-separable to separable.

5.1.3.2 Tuning Parameters

The SVM algorithm has a number of parameters that can be used to customize the
model. The first one is the kernel used to create the hyperplane, with the most common
kernel types being linear, polynomial and gaussian. The kernel type determines the math-
ematical function used to compute the hyperplane, and is chosen based on the way classes
are formed and how they are separated(linearly or not). Two other important parameters
are regularization and gamma. Regularization (or C) indicates how much we want to
avoid misclassifying each training example. For large values of C, a smaller-margin hy-
perplane will be chosen, if that hyperplane is more effective in classifying all the training
points correctly. Conversely, a very small value of C will result to larger-margin separating
hyperplane, even if that hyperplane misclassifies more points. Gamma defines how far
the influence of a single training instance reaches. With low gamma, instances far away
from plausible lines are considered in calculation for the hyperplane, whereas high gamma
means the points close to plausible lines are considered in calculation.

5.1.4 Classification Problems

Classification problems, as we have already mentioned, are defined as problems where
for an input z the output is a discrete value y, representing a class. Before continuing, we
would like to present some of the different types of classification, the challenges one might
face when trying to train classifier and the main metrics used for evaluating the later’s
efficiency.

5.1.4.1 Binary and Multiclass Classification

Binary classifiers can distinguish between only two classes, whereas multiclass (or
multinomial) classifiers can distinguish between more than two classes. Some algorithms,

68

such as naive Bayes, can handle multiple classes directly, while others, like SVM, are
strictly binary. However, binary classifiers can be manipulated into performing multiclass
classification by either using a one-versus-all or a one-versus-one strategy. In one-versus-
all (OVA), N binary classifiers are trained for N classes, with classifier N; distinguishing
between class ¢ and all other classes merged together. For a datapoint to be classified,
each classifier produces a decision score. The one with the higher score is selected, and
the datapoint is place in the corresponding class. In one-versus-one (OVO) strategy, one
classifier is trained for each pair of classes, resulting in w classifiers. A new data-
point is placed in the class that is chosen by the majority of the classifiers.

5.1.4.2 Opverfitting and Underfitting

The performance of a machine learning model is judged by its predictions’ accuracy
when faced with an unknown dataset, and we have already discussed the role of a high-
quality training set in achieving good accuracy. However, a model with a great training
set might underperform either because the model is too simple to accurately describe the
population, or too complex to generalize well.

N P { . X

X x).(f ")5/

X X %

e ¥ X - X X x X R
xxx)()I< X X xx xxx Xx
X x Xx X Xx x

Under-fitting Appropriate-fitting Over fitting

{too simple tc forcefitting — 1
explain the good to be true

Figure 5.3: Three classifiers for the same data, showcasing under- and overfitting.

Overfitting refers to a model that has learned the detail and noise in the training data
to the extent that it negatively impacts the performance of the model on new data. This
means that the noise or random fluctuations in the training data are picked up and learned
as concepts by the model. The problem is that these concepts do not apply to new data and
prevent the model from generalizing effectively. Overfitting is more likely with nonpara-
metric and nonlinear models that have more flexibility when learning a target function.
Therefore, many of these models also include parameters or techniques to control how
much detail the model learns.

Techniques such as cross validation, dataset enrichment, features removal, ensem-
bling, etc. can be used to prevent a model from overfitting. In the case of SVM, the
aforementioned parameters of C and gamma can be used to mitigate overfitting phenom-
ena. In general, if an SVM classifier is overfitting, C and gamma should be decreased.
In figure 5.4, we show SVM models trained with a gaussian kernel and different C and
gamma values, and how this affects the resulting hyperplane.

Underfitting refers to a model that can neither fit the training data nor generalize to
new data. It is often not discussed, as it is easily detected during training given a good

69

7=0.1,C=0.001 7=0.1,C=1000

15 15
- -
10) e 10 ") =
aff = wup s af s wvp
s ' I.‘II.. 5 os ’ -"nu'- .,
™ i S
T :-'- 4 e 44 T :-'- . e 24 4
oof w e ® e oof m " ® A e s NGO . X
Aty 4 T W 44
- Y o R] a1 7 aihaia
Iy FYSEW s SN
0.5 t“,‘-iA -05 l“,‘ai.
-1.0 — -1.0,
-15 -10 -05 00 05 10 15 20 25 -15 -10 =05 00 05 10 15 20 25
T x
- y=5,C=0.001 i 5 =5,C = 1000
. .
10 i 1.0
. Ot af = o
' " Rany, F " ' . Mg R
05F moamm s : L OSFmme .
. ; - N
Ty - J 2 l:l 44 A T2) L ; -:- 44
oof =.=n o Bodo A ool = "= oy .2
N TS G AT A . £1 4N, AL,
Ap aaa a,d ap fanala,d
-05 B g “AliA -0.5 A .“i.
-1.0 -1.0
-15 -1.0 -05 00 05 10 15 20 25 -15 -1.0 -05 00 05 10 15 20 25

T Ty

Figure 5.4: SVM classifiers trained with different C and gamma values

performance metric. When it is present, a more complex model is required.

5.1.4.3 Performance Metrics

To quantify how a classifier is performing, and detect phenomena of over- or under-
fitting, data scientists rely on evaluation metrics. The most important of them are:

» Confusion matrix: Although itself not a performance measure, the confusion ma-
trix can provide very useful insights into the distribution of the test set into different
classes, and is the foundation of almost all other metrics.

Predicted class

P N

True False

P | Positives Negatives
(TP) (FN)

Actual
Class

False True

N | Positives Negatives

(FP) (TN)
Figure 5.5: Confusion matrix of a binary classification problem

Suppose we have a binary classification problem with two classes, P and N, and a
classifier being evaluated on the instances of a test set. According to each instance’s
actual and predicted class, it will be characterized as TP (true positive), FP (false
positive), FN (false negative) and TN (true negative). Ideally, the number of false
positives and false negatives would be zero. In a classification problem with N
classes, the confusion matrix is a N*N array defined similarly to binary problems.
Each row of the matrix represents the results of prediction for the corresponding
class at that row, while each column represents the actual class. The diagonal cells
show the number of correct classifications, while the off diagonal cells represent
the misclassified predictions.

70

» Accuracy: Accuracy in classification problems is the number of correct predictions
made by the model over all predictions made, also defined as:

TP +TN
TP+ FP+TN+FN

Accuracy =

with respect to the confusion matrix. In general, accuracy is not the preferred per-
formance metric when it comes to classifiers, as it is affected by skewed datasets
(datasets where some classes are much more populated others), introducing bias
towards the most popular class.

* Precision: Using the confusion matrix, precision is defined ass:

TP

Precision = m

Precision is a metric of the portion of positive predictions that were actually posi-
tive.

» Recall or Sensitivity: Typically used alongside precision, recall shows the propor-
tion of actual positives that were identified correctly:

TP

Recall = m

In a classification task, a precision score of 1.0 for a class A informs us that every
item labeled as belonging to A does indeed belong to it, but says nothing about the
number of items from A that were misplaced into other classes. On the other hand,
arecall of 1.0 means that every item that should have been labeled as A was indeed
labeled as such, but says nothing about how many other items were incorrectly also
labeled as A. Ideally, a classifier would have both high recall and precision. In
reality, those two metrics have an inverse relationship, and increasing one comes
at the cost of decreasing the other. Depending on the classification problem, one
should choose which of the two better applies and should receive more attention.

* F1 score: A metric that combines precision and recall and is better suited when
balance between the two is needed (and classes are unevenly populated), defined

as:
F1 9 Precision * Recall TP
score = _
- Precision + Recall — TP 4 INEEP

* ROC curve and ROC-AUC score: The ROC curve is a performance measurement
used for a classification problem at various threshold settings. ROC-AUC score
is a measure of separability, i.e. it displays the model’s capability to distinguish
between classes, and is equal to the area underneath the ROC curve. Given a binary

71

classification problem, the True Positive Rate, or the Recall that we have defined
above is given by the type:

TP

TPR=——
R=Tprrn

while the false positive rate is defined as:

FN

-1 _
FPR TPR TP+ N

The ROC curve is created by plotting TPR against FPR:

FPR

Figure 5.6: ROC curve

An ideal model has a ROC-AUC score near 1, meaning it can correctly discern
classes.

For further information about machine learning models, the reader can refer to [9].

5.2 The Noise and Sensitivity Classifiers

We have already discussed the nature of our supervised classification problem, but we
will mention it again for completeness. Our goal was to build two classifiers, one for noise
and one for sensitivity, that receive as input a vector of application features in the form
of PMU values and produce an output in the form of a discrete number, either 707, ”1”
or ”2”, which represents the class the input has been placed to. Table 5.1 illustrates the
correspondence between numbers and classes for each classifier.

Our dataset consisted of the 140 benchmarks described in the previous chapter, with
the same noise and sensitivity labels that were then determined. Because our dataset was
very small for machine learning algorithms, our design had to be extremely careful for
our model to yield meaningful results. All the processes described below were performed
twice, once for the noise classifier and once for the sensitivity classifier.

Our first step was to divide the dataset into train and test sets. Here, we experimented
with both random and stratified sampling. The strata in the stratified sampling were cre-
ated using the classes’ labels, so that our final sets would have the three classes in the

72

Output Noise Class Output Sensitivity Class

0 Quiet 0 Insensitive
1 Potentially Noisy 1 Potentially Sensitive
2 Noisy 2 Sensitive

Table 5.1: Classes of the Noisy and Sensitivity Classifiers

same ratios as the original dataset. Since we had such limited data, random sampling was
expected to create train and tests sets not representative of the population. Indeed, strati-
fied sampling created train and test sets which contained datapoints of discrete classes in
ratios that differed from those of the original dataset by 1.4% on average and 3% maxi-
mum. On the other hand, random sampling’s sets differed by 8.3% on average and 14.5%
maximum. Thus, we chose the stratified sampling method, and split our original dataset
into 70% train set - 30% test set. Note that the train and test sets for the two classifiers
were different.

Next, we scaled our train set using the sklearn.preprocessing.StandardScaler() method,
which performs standardization. We then executed a feature selection algorithm to deter-
mine which features were the most useful. The features that were examined are outlined
in Table 5.2. Our algorithm of choice was RFE with a linear regression model, and the
top 6 features for each classifier are presented sorted in Table 5.3. At this point, we cross-
examined RFEs results with our own past observations and insights. The features selected
by the algorithm for the noise classifier agreed with our expectations, although memory
bandwidth was only the fourth most important feature. This might be because although
noisy applications exhibit very high memory bandwidths and are easily discernible, the
bandwidth values of quiet and potentially noisy applications overlap, and thus bandwidth
alone cannot tell them apart. When it came to sensitivity, the results were not as expected.
The ratio of stalls due to shared resources to total cycles ranked first, as we anticipated, but
LLC acpki ranked last, probably for the same reasons that memory bandwidth ranked only
fourth in the noise classifier. However, because RFE takes into consideration the accuracy
of classifiers, which as we have mentioned is not the best metric for multilabel classifica-
tion, we decided to train our classifiers with more than one feature sets, and decide on the
results. The final feature sets tested are presented in Table 5.2.

The algorithm we chose as the foundation of our model was SVM. SVM classifiers
perform very well on small datasets, as they create the hyperplane taking into consideration
only the points close to it (support vectors) and not all the datapoints. In addition, they are
rather resistant to outliers. We employed the implementation denoted as SVC in python’s
scikit-learn framework, and used the one-versus-one multiclass classification strategy. To
improve our models and mitigate overfitting, we experimented with different values for
the C and gamma parameters using 10-fold cross validation with grid search, as well as
with both linear and gaussian kernels. Also, when running the cross validation method we

73

total features examined

LLC acpki, LLC mpki, LLC miss rate, DRAM Band-
width, total L2 pending miss stalls, total L2 pending
miss stalls/total cycles, store buffer stalls

noise feature set

LLC acpki, LLC mpki, LLC miss rate

sensitivity feature set

LLC mpki, LLC acpki, DRAM bandwidth, total L2

pending miss stalls/total cycles

Table 5.2: Features used in final classifiers

noise LLC mpki, LLC miss rate, LLC acpki, DRAM Bandwidth, total
L2 pending miss stalls
sensitivity total L2 pending miss stalls/total cycles, LLC mpki, DRAM Band-

width, total L2 pending miss stalls, LLC miss rate

Table 5.3: Top 5 features ranked from most to least significant using RFE

evaluated each model with a number of different scoring functions: accuracy, precision,
recall and f1 score (both micro and macro averages).

Because our train and test sets are small, the results of this analysis were treated with
caution. There were models that performed very well, but high values for C and gamma,
which suggests overfitting. In Figure 5.7 we see the macro averaged recall scores of dif-
ferent combinations between C and gamma, for two different noise classifiers, one with
linear kernel and one with gaussian (using the same feature and train set). The gaussian
kernel clearly outperforms the linear one, as different classes overlap in the feature space
and a straight line cannot effectively separate them.

In many cases, higher values of C and gamma got better scores during the grid search,
as they led to overfitting. Similarly, very low values of C and gamma did not create a
sophisticated enough hyperplane to capture the classes (Figure 5.8). It is worth noting
though that there were specific combinations of C-gamma values that outperformed the
respective maximum values pair. Nevertheless, the scores were not drastically different,
which is expected when taking into consideration the small size of our dataset.

To confirm our intuition that LLC acpki is a valuable feature in sensitivity classifi-
cation, although RFE pointed otherwise, we compared the scores of a sensitivity classi-
fier with feature set [LLC mpki, LLC acpki, memory bandwidth, total L2 pending miss
stalls/total cycles] with one with a feature set containing the top 4 features from RFE,
namely [LLC mpki, memory bandwidth, total L2 pending miss stalls, total L2 pending
miss stalls/total cycles]. It is evident in Figure 5.9 that our intuition is correct, with the
first classifier performing notably better.

74

C=0.01}0561 0561 0.561 0561 0.561 0.561 0561 0.561 0.88

0.84
€=0.1
0.80
c=1
0.76
c=2
10.72
C=5 10.68
C=10 10.64
10.60
C=100
&
(a) linear kernel
€=001}0449 0449 0449 0449 0443 0449 0449 0449 085
c=0.1 0694 0.653 0.80
0.75
c=1
{0.70
c=2
{0.65
=5 10.60
c=10 {055
{0.50
C=100
LJoas
X4 oy 9 " s bl N Q
o° P o & & & e ~
% & @ & & & & 4
& & & & & & &
Q?& & & S &§

(b) gaussian kernel

Figure 5.7: Parameter search for two classifiers, one with linear kernel and one with gaussian
Scores in cross validation

We chose the 5 best noise and 5 best sensitivity classifiers, which were then evaluated
upon their respective test set (noise or sensitivity). In order to further validate the models
that appeared to be optimal though cross validation, we hand-tuned models with the re-
spective parameters and examined their scores under several scoring functions. The two
final classifiers are outlined in Table 5.4, and their scores are presented in Table 5.5.

75

C=0.0110429 0429 0429 0429 0429 0429 0.429 0429 0.50
c=0.1} 0.694 0622 0633 0.633 0.75
co1 0.70
0.65

c=2|
0.60

c=5
0.55

c=10
0.50
=100 0.45

Figure 5.8: Parameter search for a sensitivity classifier. Very low C values lead to underfitting.

Classifier Type Feature Set Kernel C Gamma
noise LLC mpki, LLC acpki, LLC miss gaussian 10 1
rate
sensitivity LLC mpki, LLC acpki, DRAM gaussian 2 1
bandwidth, total L2 pending miss
stalls/total cycles

Table 5.4: Final noise and sensitivity classifiers’ specifications

Classifier Type noise sensitivity
Accuracy 0.8333 0.8095
Recall (macro) 0.8333 0.8095
Recall (micro) 0.8005 0.7787
F1 score (macro) 0.8322 0.8095
F1 score (micro) 0.8271 0.7902

Table 5.5: Final noise and sensitivity classifiers’ scores on test set

76

0.80
C=0.010.429 0429 0429 0429 0429 0429 0429 0429

0.75
C=0.1}0429 0571
0.70
-1
0.65
=2
10.60
-5
{0.55
c=10
{0.50
C=100 10.45
& ~ 5 ~ 0 “ o o
8 o o o & & o~ S
% 2 @ & & & & .
& & & & & & & &
& § 9 S &

(a) feature set = [LLC mpki, LLC acpki, memory bandwidth, total L2 pending miss
stalls/total cycles]

C=0.01-0.429 0429 0429 0429 0429 0429 0429 0429 0.76

0.72
C=0.1{0.429 0.582
0.68
C=10.612
0.64
t=2 {o.60
c=5 40.56
40.52
Cc=10
10.48
C=100
10.44
Jy " 9 e AN he Q 9
8 S o & & & Pt S
z 2 @ N & & & 4
& & ¢ & ¢

(b) feature set = [LLC mpki, memory bandwidth, total L2 pending miss stalls, total L.2
pending miss stalls/total cycles]

Figure 5.9: Parameter search for two sensitivity classifiers with different feature sets

77

At this point, it is interesting to present the two classifiers’ confusion matrices (noise
and sensitivity respectively):

7 5 0 6 3 2
0 19 0 0 17 1
0 2 9 0 2 11

As we can see, in both cases the majority of mispredictions involves the potentially
noisy or potentially sensitive class. This is due to the nature of our dataset: both those
classes have around 60-70 datapoints, with each other class having around 40 datapoints.
In such a small dataset, this difference in sizes was enough to create a small bias in favor
of the potentially-z classes, as the classifier ”saw” more of their instances during training.
We tried to eliminate this phenomenon using a data preparation technique called over-
sampling. With over-sampling, artificial datapoints are created and used to pad classes
that have small populations. We used the Synthetic Minority Over-sampling TEchnique
(SMOTE), which places new instances on the lines connecting already existing (in the
original dataset) instances of each minority class. We then trained two new classifiers,
using train sets originating from the over-sampled dataset. Their confusion matrices are
presented below (noise and sensitivity respectively):

14 1 2 16 0 1
3 17 1 4 13 0
1 0 14 6 2 10

The number of mispredictions did not change drastically, but their nature did; we now see
for example sensitive applications being mistaken for insensitive. Although these classi-
fiers might be considered more fair, we chose to not use them for two main reasons. First,
the fact that the potentially-x classes have more instances is a characteristic of the general
application population. In reality, there aren’t many applications that are always noise or
always insensitive, and most applications fall in the space in between. Second, we prefer
our classification to be conservative when labeling an application as insensitive or quiet.
Take the case of an application A that the classifier cannot decide whether to label it as
quiet or potentially noisy. If A is quiet, but gets labeled as potentially noisy, no future
co-runner will suffer. We might not get the maximum performance gain compared to a
random scheduling as we will choose to schedule A with caution, thinking it might affect
its co-runner, but we will certainly not lose. If on the other hand A is potentially noisy, but
gets labeled as quiet, we might schedule it with a sensitive co-runner, thinking A will not
affect its performance, when in reality it will. In the case we decided to keep the classifiers
which were trained with the oversampled dataset, we could introduce our ”preference” of
not easily classifying an application as quiet or sensitive by changing the relative weights
between the classes. SVC’s implementation gives the designer the ability to control this
level of "preference”, and train classifiers that act accordingly.

78

5.3 Interference Aware Scheduling using Noise and
Sensitivity Classifiers

Finally, we would like to illustrate how our classifiers can be utilized in a cloud envi-
ronment to facilitate interference aware scheduling. We examined the following scenario:
we had a server containing 10-core multiprocessors, and two application pools, one with
high-priority (HP) applications and one with low-priority (LP) ones. Each multiprocessor
could host one copy of a HP application and nine copies of a LP application. Our goal was
to create HP-LP pairs such so that average performance degradation of HP applications
is minimal. This resembles a commercial cloud where applications with strict QoS goals
would be of higher priority, while best effort, batch applications would be used to fill any
remaining cores.

Our scheduling algorithm was based on the following set of rules:

1. Select all sensitive HP applications and all quiet LP applications, and pair as many
as possible.

2. Select all insensitive HP applications and all noisy LP applications, and pair as
many as possible.

3. If there are remaining quiet LP applications, pair them with potentially sensitive
HP applications.

4. If there are remaining insensitive HP applications, pair them with potentially noisy
LP applications.

5. When faced with a mix of sensitive and potentially sensitive HP applications, and
another one of noisy and potentially noisy BP applications, pair the potentially sen-
sitive HPs with the noisy BPs and the sensitive HPs with the potentially noisy HPs.

We proceed to present some representative mixes of applications, and how our sched-
uler faced them.

5.3.1 Scenario 1: 1 noisy LP + 1 potentially noisy LP + 1 sensi-
tive HP + 1 insensitive HP

The first example showcases exactly the benefits of a-priori knowledge of an appli-
cation’s behavior. The noisy LP (Ibm r) is co-scheduled with the insensitive HP (ex-
change2)r, and the potentially noisy LP (omnetpp r star) with the sensitive HP (om-
netpp_r rand27). The Deg for the two HPs is 6% and 33% (19.5% on average), and their
ipcs are plotted in Figure 5.10 and Figure 5.11

If the applications were paired vice-versa, the Deg for the HPs would have been 2%
and 64%, significantly worse on average (33%).

79

25
o R amiet St T A
ot W“vwmww»mwww A ey % oy BRI s

xxxxxxxxxxxxx

| |
! (0 /

i D | [

e

.- - -mm e |

Figure 5.11: IPC, selected co-location: 1 omnetpp r rand27 with 9 omnetpp_r_star

5.3.2 Scenario 2: 1 noisy LP + 1 potentially noisy LP + 1 sensi-
tive HP + 1 potentially sensitive HP

In this case, the scheduler chooses to place 1 noisy BP (Ibm_) with 1 potentially sen-
sitive HP (blender r), and 1 potentially noisy BP (omnetpp r star) with 1 sensitive HP
(omnetpp _r rand27). Since there is no quiet LP, it tries to place the sensitive HP with the
next ”less noisy” LP. The HPs show a Deg of 29% and 30% (29.5%), and their IPCs are
shown in Figure 5.12 and Figure 5.13. In the alternative scenario, the HPs’ Deg would be
11% and 64% (37.5%). Here, one of the previous scenario’s “harmful” collocation, that of
(omnetpp_r_star) with (omnetpp_r rand27), is in this scenario a necessary choice, since
the alternative creates much performance degradation in total for the HPs.

. M T W f il I Y M,} W‘ “\f }M M 0

| | \4 N \ \" Al ‘ \
‘\\w “ }' ‘ /‘M " lr U\ W‘H‘w”m J\Um”w 1"¢‘

\

TR 4 ‘
rJ) W)‘\WN\ ”\JN

10

xxxxxxxxxxxxx

Figure 5.13: IPC, selected co-location: 1 omnetpp r rand27 with 9 omnetpp r_star

80

5.3.3 Scenario 3:1 noisy LP + 1 quiet LP + 2 potentially sensi-
tive HPs

Unfortunately, in this application mix our scheduler cannot do much, since both HPs
are labeled as potentially sensitive, so it makes the pairs at random. A potential extension
to tackle such cases would be for the scheduler to decide based on the values of individual
PMUs, e.g. try to co-locate with the noisy LP the potentially sensitive BP with th lower
LLC mpki, but this is beyond the scopes of this thesis. We present the two possible co-
locations (Figure 5.14, Figure 5.15, Figure 5.16, Figure 5.17), and the Deg of each HP.

il P “
MM w ”MT i 4l ‘u o M b M

J\

e |

‘ ‘{ Jrl f 1A il '{‘mw\ J\P

| 1" Iy
o’ | el M‘ \rk\ 1

Execution Time
[oc_blender r_alone oc_blender r]

Figure 5.14: IPC, selected co-location: 1 blender r with 9 Ibm_r
Deg of HP =29%

12
210

100 20 300 300
£

xecuton Time
— Tpc_cactuBSEN_r_aione e cactuBsSNT
[]

Figure 5.15: IPC, selected co-location: 1 cactuBSSN r with 9 exchange2 r
Deg of HP = 0%

oot e A, AT W

ton Time

[oc_blender_r alone oc_blender 1]

Figure 5.16: IPC, alternative co-location: 1 blender r with 9 exchange2 r
Deg of HP = 0%

81

zzzzz

Figure 5.17: IPC, alternative co-location: 1 cactuBSSN r with 9 Ibm r
Deg of HP = 22%

An important observation we can make by looking at co-executions like the one above
is the effect of multiple threads. In our initial analysis, we discussed scenarios that con-
sisted of only one thread per application. Here, we see how certain characteristics are
augmented when multiple copies of an application are present. The fact that potentially
noisy applications, when in many copies, create significant contention is not unexpected;
this is why we labeled them as potentially noisy in the first place. Noisy applications in
many copies cause so much contention that even insensitive applications might exhibit a
small performance degradation, as shown in Figure 5.10.

82

Chapter 6

Conclusion and Future Work

Interference due to application behavior in multicore systems has proven to be the
main bottleneck for resource utilization and efficient execution. Multiprocessors contain
a number of cores, each one having a private Level 1 and Level 2 cache, and all of them
sharing the rest of the chip’s resources. In environments with a very large number of appli-
cations, such as datacenters or HPC clusters, the amount of stress placed on the Last Level
Cache and DRAM Bandwidth leads to significant performance degradation. Especially in
the case of commercial clouds, where some applications require strict performance guar-
antees, interference prevention and mitigation is of utter importance. In the beginning of
these thesis, we examined several prior approaches that aimed to tackle different aspects
of the problem: detect application interference and differentiate it from workload fluc-
tuations and normal application phase changes, or specify the resource that is suffering
from contention and the application causing it, predict performance degradation of differ-
ent co-execution scenarios. After carefully analyzing those proposals, we identified their
individual trade-offs and evaluated which mechanisms provide enough benefits to cancel
their overheads. We concluded that there is no mechanism proposed that can accurately
predict the behavior of an application in a co-execution scenario in regards of interfer-
ence that is based only on metrics gathered while an application is running in an isolated
environment.

We then executed a representative set of co-execution scenarios to validate that in-
terference is indeed detrimental to performance. Our results indicated that contention in
some cases can be so high that the ability to predict it before it happens, rather than trying
to detect it while it is happening, can be of great significance. In addition, several appli-
cations showcased constant behavior in all co-execution scenarios, leading us to believe
that the contention an application creates or the impact contention has on its performance
are characteristics inherent to the application, and can perhaps be derived by examining
other aspects of its behavior. Our goal was to design a mechanism that could deduce how
noisy (capable of creating contention) or sensitive (prone to suffering from contention) an
application is based on a set of low-level performance counters (PMUs) gathered during
isolated execution. This mechanism had to abide by the following constrains: bare min-
imum profiling overheads, rely solely on isolated performance and not on experimental

83

co-execution scenarios, and be able to predict cases of interference prior to scheduling and
not detect them after scheduling the application in a production environment.

The first step was defining the two characteristics we wanted to predict: noise and sen-
sitivity. We determined the level of sensitivity one application has by observing its perfor-
mance when it was allocated different amounts of LLC capacity, and categorized applica-
tions into insensitive when LLC capacity didn’t affect performance, sensitive when perfor-
mance constantly improved as LLC capacity increased and potentially sensitive when per-
formance improved until a certain capacity threshold, after which remained the same. To
determine the level of contention caused by an application we utilized a reference bench-
mark. According to the level of performance degradation an application caused to our
reference benchmark we labeled it as noisy (high degradation, quiet (no degradation) or
potentially noisy (moderate degradation). The labels each application received where ad-
ditionally confirmed by examining its behavior in our executed scenarios.

We then composed extensive profiles for each application by collecting a large amount
of low-level performance counters during execution. The counters we focused on where
those related with the LLC, the memory bandwidth, other memory-related components
(such as TLBs) and their interactions with private caches and DRAM. From those pro-
files, we tried to detect trends in the values of PMUs that could be correlated with the
labels of the applications. Although some metrics like LLC acpki and memory bandwidth
did exhibit general patterns for some of our categories (e.g. noisy applications having
high memory bandwidth values) we couldn’t outline a specific set of rules to fully char-
acterize the application distribution into our categories. However, the exposure of even
some general trends motivated us to examine more complex mechanisms, such as cluster-
ing algorithms. We experimented with k-means clustering, a well-established algorithm
that divides instances into classes according to a set of features. Although we evaluated
a variety of feature sets, the PMU patterns describing behavior and the boarders between
classes proved to be too complex for k-means to uncover them.

Our final approach was to utilize machine learning techniques, which have proven
to be particularly effective in recognizing intricate relationships between data features.
More specifically, we aimed to tackle our supervised learning problem with two multi-
class classifiers, one for noise and one for sensitivity. The main challenge in our case
was the significantly small size of our dataset, which required scrupulous manipulations
to avoid misleading results. To overcome that hurdle, after carefully selecting represen-
tative train and test sets as well as a list of data features for each classifier, we trained a
large collection of SVM classifiers with various feature sets and kernels. We also tried
to mitigate overfitting phenomena by experimenting with the parameters (C, gamma) of
the classifier. We evaluated all models using a list of scoring functions (accuracy, recall,
precision, fl score). Our two final classifiers had (recall) scores of 0.833 and 0.8095 for
noise and sensitivity classification respectively. We then showcased how our classifiers
can be utilized in a cloud environment with high- and low-priority applications to make
optimal scheduling decisions and avoid or minimize interference effects on performance.

Our work can be extended towards various directions. One intriguing approach would
be to further break down each category, especially the potentially-x ones, to make even

84

more accurate predictions about their behaviors. Another idea is to explore if it possible
to assign each application with a specific score that can be directly utilized to predict the
amount of contention it might create/suffer. Our categories were intentionally generic due
to the lack of a large dataset, but obtaining profiles from more applications might reveal
new pattern that can be exploited.

Interesting work can also be done on how behaviors scale on scenarios with more
than two threads. We briefly discussed in our last chapter how certain characteristics are
augmented when there are more than one co-executors present, and further investigation
is needed to determine how classification can be utilized in more complex co-execution
scenarios. Machine learning techniques are a promising approach to the matter, as they
have only recently started being employed by system engineers and computer architects,
and there is plenty of room to experiment with their abilities.

85

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[7]

(8]

José Nelson Amaral, Edson Borin, Dylan R Ashley, Caian Benedicto, Elliot Colp,
Joao Henrique Stange Hoffmam, Marcus Karpoff, Erick Ochoa, Morgan Redshaw,
and Raphael Ernani Rodrigues. The alberta workloads for the spec cpu 2017 bench-
mark suite. In 2018 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 159-168. IEEE, 2018.

Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. Pearson correlation
coefficient. In Noise reduction in speech processing, pages 1-4. Springer, 2009.

Arnamoy Bhattacharyya, Stelios Sotiriadis, and Cristiana Amza. Online phase de-
tection and characterization of cloud applications. In 2017 IEEE International Con-
ference on Cloud Computing Technology and Science (CloudCom), pages 98—105.
IEEE, 2017.

Christina Delimitrou and Christos Kozyrakis. Paragon: Qos-aware scheduling for
heterogeneous datacenters. In ACM SIGPLAN Notices, volume 48, pages 77-88.
ACM, 2013.

Christina Delimitrou and Christos Kozyrakis. Quasar: resource-efficient and qos-
aware cluster management. In ACM SIGARCH Computer Architecture News, vol-
ume 42, pages 127-144. ACM, 2014.

Ashutosh S Dhodapkar and James E Smith. Comparing program phase detection
techniques. In Proceedings of the 36th annual IEEE/ACM International Symposium
on Microarchitecture, page 217. IEEE Computer Society, 2003.

Tyler Dwyer, Alexandra Fedorova, Sergey Blagodurov, Mark Roth, Fabien Gaud,
and Jian Pei. A practical method for estimating performance degradation on mul-
ticore processors, and its application to hpc workloads. In Proceedings of the In-
ternational Conference on High Performance Computing, Networking, Storage and
Analysis, page 83. IEEE Computer Society Press, 2012.

Nosayba El-Sayed, Anurag Mukkara, Po-An Tsai, Harshad Kasture, Xiaosong Ma,
and Daniel Sanchez. Kpart: A hybrid cache partitioning-sharing technique for com-
modity multicores. In 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 104—117. IEEE, 2018.

87

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Aurélien Géron. Hands-on machine learning with Scikit-Learn and TensorFlow:
concepts, tools, and techniques to build intelligent systems. ” O’Reilly Media, Inc.”,
2017.

Sriram Govindan, Jie Liu, Aman Kansal, and Anand Sivasubramaniam. Cuanta:
quantifying effects of shared on-chip resource interference for consolidated virtual
machines. In Proceedings of the 2nd ACM Symposium on Cloud Computing, page 22.
ACM, 2011.

Alon Halevy, Peter Norvig, and Fernando Pereira. The unreasonable effectiveness
of data. 2009.

Anil K Jain. Data clustering: 50 years beyond k-means. Pattern recognition letters,
31(8):651-666, 2010.

Ram Srivatsa Kannan, Animesh Jain, Michael A Laurenzano, Lingjia Tang, and Ja-
son Mars. Proctor: Detecting and investigating interference in shared datacenters.
In 2018 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 76—86. IEEE, 2018.

Rob Knauerhase, Paul Brett, Barbara Hohlt, Tong Li, and Scott Hahn. Using os ob-
servations to improve performance in multicore systems. /IEEE micro, 28(3):54—66,
2008.

Gabriella Laatikainen, Arto Ojala, and Oleksiy Mazhelis. Cloud services pricing
models. In International Conference of Software Business, pages 117—129. Springer,
2013.

Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang, and P Sa-
dayappan. Gaining insights into multicore cache partitioning: Bridging the gap be-
tween simulation and real systems. In 2008 IEEE 14th International Symposium on
High Performance Computer Architecture, pages 367-378. IEEE, 2008.

David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and Chris-
tos Kozyrakis. Heracles: Improving resource efficiency at scale. In ACM SIGARCH
Computer Architecture News, volume 43, pages 450—462. ACM, 2015.

Jason Mars and Mary Lou Soffa. Synthesizing contention. In Proceedings of the
Workshop on Binary Instrumentation and Applications, pages 17-25. ACM, 20009.

Daniel Molka, Robert Schone, Daniel Hackenberg, and Wolfgang E Nagel. Detect-
ing memory-boundedness with hardware performance counters. In Proceedings of
the 8th ACM/SPEC on International Conference on Performance Engineering, pages
27-38. ACM, 2017.

Priya Nagpurkar, P Hind, Chandra Krintz, Peter F Sweeney, and VT Rajan. Online
phase detection algorithms. In International Symposium on Code Generation and
Optimization (CGO’06), pages 13—pp. IEEE, 2006.

88

(21]

[22]

(23]
[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

Dejan Novakovi¢, Nedeljko Vasi¢, Stanko Novakovi¢, Dejan Kosti¢, and Ricardo
Bianchini. Deepdive: Transparently identifying and managing performance inter-
ference in virtualized environments. In Presented as part of the 2013 {USENLX}
Annual Technical Conference ({USENIX}{ATC} 13), pages 219-230, 2013.

Moinuddin K Qureshi and Yale N Patt. Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared caches. In
2006 39th Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO’06), pages 423-432. IEEE, 2006.

A Rajaraman and J Ullman. Textbook on mining of massive datasets. 2011.

Daniel Sanchez and Christos Kozyrakis. Vantage: scalable and efficient fine-grain
cache partitioning. In ACM SIGARCH Computer Architecture News, volume 39,
pages 57-68. ACM, 2011.

Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and Onur
Mutlu. The application slowdown model: Quantifying and controlling the impact of
inter-application interference at shared caches and main memory. In Proceedings of
the 48th International Symposium on Microarchitecture, pages 62—75. ACM, 2015.

Lingjia Tang, Jason Mars, and Mary Lou Soffa. Contentiousness vs. sensitivity: im-
proving contention aware runtime systems on multicore architectures. In Proceed-
ings of the 1st International Workshop on Adaptive Self-Tuning Computing Systems
for the Exaflop Era, pages 12-21. ACM, 2011.

Nedeljko Vasi¢, Dejan Novakovi¢, Svetozar Miuc¢in, Dejan Kosti¢, and Ricardo
Bianchini. Dejavu: accelerating resource allocation in virtualized environments.
In ACM SIGARCH computer architecture news, volume 40, pages 423-436. ACM,
2012.

Yuejian Xie and Gabriel Loh. Dynamic classification of program memory behav-
iors in cmps. In the 2nd Workshop on Chip Multiprocessor Memory Systems and
Interconnects, 2008.

Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale, and John
Wilkes. Cpi 2: Cpu performance isolation for shared compute clusters. In Proceed-
ings of the 8th ACM European Conference on Computer Systems, pages 379-391.
ACM, 2013.

Haishan Zhu and Mattan Erez. Dirigent: Enforcing qos for latency-critical tasks
on shared multicore systems. ACM SIGARCH Computer Architecture News,
44(2):33-47, 2016.

Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. Addressing shared
resource contention in multicore processors via scheduling. In ACM Sigplan Notices,
volume 45, pages 129-142. ACM, 2010.

89

	Î€ÎµÏ†Î¯Î»Î·Ï‹Î·
	Abstract
	ÎŁÏ–Ï⁄Î±Ï†Î¹Ï…Ï—Î¯ÎµÏ‡
	ÎŁÎºÏ—ÎµÏ—Î±Î¼Î�Î½Î· Î€ÎµÏ†Î¯Î»Î·Ï‹Î·
	Î¤Î¿ Î€Ï†Ï„Î²Î»Î·Î¼Î± Ï—Î¿Ï– Î‚Î½Ï—Î±Î³Ï›Î½Î¹Ï…Î¼Î¿Ï“ Ï…Îµ Î€Î¿Î»Ï–ÎµÏ•ÎµÎ¾ÎµÏ†Î³Î±Ï…Ï—Î¹ÎºÎ¬ Î£Ï–Ï…Ï—Î®Î¼Î±Ï—Î±
	Î€Ï†Î¿Ï…ÎµÎ³Î³Î¯Ï…ÎµÎ¹Ï‡ Ï…Ï—Î¿ Î€Ï†Ï„Î²Î»Î·Î¼Î± Ï—Î¿Ï– Î‚Î½Ï—Î±Î³Ï›Î½Î¹Ï…Î¼Î¿Ï“
	ÎıÎ±Ï—Î·Î³Î¿Ï†Î¹Î¿Ï•Î¿Î¯Î·Ï…Î· ÎŁÏƒÎ±Ï†Î¼Î¿Î³Ï”Î½ Î³Î¹Î± Ï—Î·Î½ Î€Ï†Ï„Î»Î·Ï‹Î· Î¦Î±Î¹Î½Î¿Î¼Î�Î½Ï›Î½ Î‚Î½Ï—Î±Î³Ï›Î½Î¹Ï…Î¼Î¿Ï“
	Î€ÎµÎ¹Ï†Î±Î¼Î±Ï—Î¹ÎºÎ® Î€Î»Î±Ï—ÏƒÏ„Ï†Î¼Î± ÎºÎ±Î¹ ÎœÎµÏ—Ï†Î¿Ï•Ï†Î¿Î³Ï†Î¬Î¼Î¼Î±Ï—Î±
	Î£ÎµÎ½Î¬Ï†Î¹Î± Î£Ï–Î½ÎµÎºÏ—Î�Î»ÎµÏ…Î·Ï‡
	Î£Ï⁄ÎµÎ´Î¹Î±Ï…Î¼Ï„Ï‡ Î‚Î»Î³Î¿Ï†Î¯Î¸Î¼Î¿Ï– ÎıÎ±Ï—Î·Î³Î¿Ï†Î¹Î¿Ï•Î¿Î¯Î·Ï…Î·Ï‡

	Î§Î±Ï†Î±ÎºÏ—Î·Ï†Î¹Ï…Î¼Ï„Ï‡ ÎŁÏƒÎ±Ï†Î¼Î¿Î³Ï”Î½ Î¼Îµ Ï—Î· Î§Ï†Î®Ï…Î· ÎœÎ·Ï⁄Î±Î½Î¹ÎºÎ®Ï‡ ÎœÎ¬Î¸Î·Ï…Î·Ï‡
	Î£Ï–Î¼Ï•ÎµÏ†Î¬Ï…Î¼Î±Ï—Î± ÎºÎ±Î¹ ÎœÎµÎ»Î»Î¿Î½Ï—Î¹ÎºÎ�Ï‡ ÎŁÏ•ÎµÎºÏ—Î¬Ï…ÎµÎ¹Ï‡

	Introduction
	Modern Multicore Systems
	The Interference Problem
	Resource Sharing in the Cloud

	Approaches to the Interference Problem
	Overview
	Online Monitoring during Co-Execution
	Profiling-Based Mechanisms
	Intrusive Micro-Benchmarks
	Isolated Profiling

	Conclusions

	Application Classification for Interference Prevention
	System Configuration and Benchmarks
	Co-Execution Scenarios
	Noise and Sensitivity
	Previous Work on PMU-based Classification
	Designing a Non-Intrusive, Lightweight Classification Algorithm
	Defining the Classes
	PMU Patterns
	K-Means Clustering

	An Application Classifier using Machine Learning
	Machine Learning Background
	Data Preparation
	Training and Test Set
	Support Vector Machines
	Classification Problems

	The Noise and Sensitivity Classifiers
	Interference Aware Scheduling using Noise and Sensitivity Classifiers
	Scenario 1: 1 noisy LP + 1 potentially noisy LP + 1 sensitive HP + 1 insensitive HP
	Scenario 2: 1 noisy LP + 1 potentially noisy LP + 1 sensitive HP + 1 potentially sensitive HP
	Scenario 3:1 noisy LP + 1 quiet LP + 2 potentially sensitive HPs

	Conclusion and Future Work

