)
VP 9O Eﬂ£§

NPOMHOEV S

Xk

EOGNIKO METXOBIO ITOAYTEXNEIO

2XOAH HAEKTPOAOTON MHXANIKQON
KAI MHXANIKQON YTIOAOTIZTON

TOMEAX TEXNOAOTIAX ITAHPO®OPIKHE KAI YIIOAOTIZTON

Eiwkovikonoinon Xvokevov AnoOnkevong oe Ileptparlovra
Ynoloytotikob Négovg: pia Ipryopn, Ao@alng kat
Evéhuctn Ilpooéyyion pe SPDK kau virtio-vhost-user

AIITAQOMATIKH EPTAXIA

NwoAaog I'. Apayalng

EmpAénwv KaOnyntg: Nextdptog Kolvpng
Kabnyntrg EMIT

Epyaotiplo YToAoyloTikwv ZvoTthpatwy
ABnva, IovAiog 2019

E®NIKO METZOBIO ITOAYTEXNEIO
YXOAH HAEKTPOAOT'ON MHXANIKQN KAI MHXANIKQN YIIOAOTIEZETON
TOMEAX TEXNOAOTITAY [IAHPO®OPIKHYE KAI YIIOAOITETQON

Ewoviconoinon Xvokevwv AnoOnkevong oe Ilepiparlovta
Ynoloylotikov Négovg: pa Ipiyopn, Ac@alng kat
Evéhuctn Hlpooéyyion pe SPDK kau virtio-vhost-user

AITIAQOMATIKH EPTAXIA

NikoAaog I'. Apayalng

EmpAénwv Kabnyntig: Nextdptog Kolvpng
Kabnyntrig EMII

EyxpiOnke anod v tpipeAn eetaotik emttpontny v 19n IovAiov 2019.

Nextdprog Kolopng NikoAaog IMamaomvpov Tewpyrog Ikovpag
Kabnyntrig EMII Kabnyntrig EMII En. Kabnyntig EMII

Epyaotiplo YToAoyloTikwv ZvoTthpatwy
ABnva, IovAiog 2019

3 A
- (
. :,’; 4‘3) <i
NPOMHBEV S -
=ty

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
Di1visioN oF COMPUTER SCIENCE

Storage Virtualization in the Cloud: A Fast, Secure and
Flexible Approach with SPDK and virtio-vhost-user

DIPLOMA THESIS

Nikolaos G. Dragazis

Computing Systems Laboratory
Athens, July 2019

Nikoraog I'. Apayalng
Aumdwpatovyog HAektpohdyog Mnxavikog kat Mnxavikog Yrohoyiotwv EMIT

Copyright © Nwolaog I'. Apayalng, 2019

Me emgpOla&n mavtog Sikawwpartog. All rights reserved.

Anayopedetatn avtypagr, anodrkevon kat Stavour) Tng tapovoag epyaciag, e§ ohokAnpov
TUAHATOG AVTHG, Yl eumoptkd okomo. Emtpénetal n avatvnwon, amobnikevon kat Stavour yia
OKOTIO U kepOOOKOTIKO, EKTTAUSEVTIKNG 1] EPEVVITIKNG QYVONG, VTIO TNV poiobeon va avagé-
petat n TNy mpoéhevong kat va Statnpeitat To mapdv pfvopa. Epotipata mov agopodv T
XPNoN NG epyaciag yia kepdooKoTMIKO OKOTO Tpémel va anevfhvovTal Tpog Tov ouyypagéa.
Ot andyelg Kat Ta CUUTEPACHATA TTOV TIEPLEXOVTAL O AUTO TO £YYPapo eKPpAlovv Tov ovy-

ypagéa kat 8ev mpémet va eppnvevdei 0Tt avtimpoownebovy Tig emtionpeg Béoelg Tov EOvikod
MetooBrov ITodvteyveiov.

iii

[epinyn

H napovoa Simhwyatikr epyacia mpaypatedetal To TPOPANUA TNG ELKOVIKOTOINONG
ovokevwv anodrkevong ot mepParllovta vtohoyloTikol vépoug. H eikovikomoinon
OLOKEVWV ATTOONKEVONG APOPA GTNV VAOTIOINOT) ELKOVIKWV CLOKELWYV amodrkevong
Yot EIKOVIKEG HNXaVEG. AVTO To (rTnpa éxet pedetnOei exTevwg 0To Tape OOV Kat EXovy
npotabei Stapopeg vAoTotoels. Qotdoo, 1 paydaia egENEn TG Texvoloyiag Twv pé-
owv anofrkevong €xet odnynoet oe peiwon Twv xpovwv kabvotépnong (latency), ka-
OlotwvTag €Tl To ouvolikd xpovikd diotnpa enefepyaciag evog artripartog I/0 va
elval TPWTIOTWG VTOAOYLOTIKO KOOTOG avTi yia kO0TOG enegepyacsiag 0To LECO amo-
Orkevong. Avto To yeyovog pHag wOel 0TO Va OTPEYOLLE TV TIPOCOXT HAG EK VEOL OTO
AOYLOpIKO Kol Va EPYAOTOVHE yia TNV Tepattépw PeAtiwor| Tov.

Ze autr) Simlwpatikn Tapovotdlovpe pa véa peBodo vAOTOINONG EKOVIKWY LE-
owv amoBnkevong mov Aéyetal “SPDK/VVU”. H Baotkr| 1d€a givat o Staxwplopog tov
Hovomatiod Sedopévwy anod tov enontn (hypervisor). O unxaviopog pag amoteAeitat
amo LA ELKOVIKT UNXaVi) TTov AelTovpyei oav cLokevr anodnKkevong Kat TapéxeL LT -
peoieg anobnkevong oe AAAeG TOTIKEG ELKOVIKEG HNXAVEG TTOV TPAYUATOTIOLOVV VTIO-
AoyloTikég epyaoies. OAn n kivion I/O dpopoloyeital diapéoov TG OLOKELTG amo-
Orkevong, al\d xwpic T mapéuPaon Tov emMONTN 6TO povordtt dedopévwy. O unxa-
VIOROG ETUKOVWVIAG Twv SVO EIKOVIKWV pnxavwv Baciletat og popalopevn pviun.
Av pvBuotei katdAAnAa, avtn n Avon ovvdvalet vynAo throughput, xapnAn kabv-
otépnon kat KAgakwotuotnta. Eivat emiong oxetikd aoc@alng vmod v €vvola 0TL TO
AoYLOpIKO TIPOCOUOIWONG THG GVOKELTIG TPEXEL HEOA O€ EIKOVIKT) pnxavn. Télog, oe me-
pLPAAAOVTA DTTOAOYLOTIKOV VEQOLG, VTN 1] AVOT €ival EVENIKTN QMO TNG OTITIKY HATLA
TOL XpNoTH, SLOTL O XPNOTNG €xeL TOV TTAT P €AeYXO TOV HovoTtaTiol dedopévmy. ZTnv
ovoia, 0 Xprotng uopei va tpocappoet Suvapkd o vAko (hardware) Twv etkovikwv
TOv pnxavwy. Amokalodpe avtr v WOTTA WG “AmobnkevTikr AelTovpylkOTNTA
opt{opevn and to Xprotn™

H vhonoinon tov SPDK/VVU nepiehdppave evaoxoAnon pe moAAamia épya Aoyt-
opkoD kat aAAnAemnidpaon pe Tig avtioTotyeg kovotnteg. Exovpe vofalet allayég
ota ¢pya avotktov Aoytopkov SPDK! ? kau DPDK?®. Ta SPDK kat DPDK cuvarmote-
oDV TO AOYLOUIKO TIPOCOUOIWOT|G IOV TPEXEL LEGA OTNV ELKOVLIKI| (NXAVT) IOV ATTOTE-
\ei tn ovokevr| anoBrkevone. Exovpe emiong vrtoPdlet arlayés oto QEMU* kat oo
VIRTIO? yia pia véa GUOKEDT) TIAPAELKOVIKOTIOINONG TToL Aéyetal “virtio-vhost-user”,
1 o7oict VAOTIOLEL TO UNXAVIOHO ETUKOLVWVIAG TWV EIKOVIKWYV UNYAVWY. ZUVOAIKA, K-
TOLEG AANAYEG G EXOVY CUYXWVELTEL VW KATOLEG AANEG TEAODY QLT TN OTLYUR LTIO
aflohoynon.

AéEeic-Khedua

ELKOVIKOTIO{10T) CLOKEVWYV ATTOBNKEVONG, EMLTAXVVOT TOL povoTaTiol Sedopévwy, vep-
oeAideg, IOMMU, odnyoi ovokevav oto xwpo xprotn, DMA ywpic avtiypagpa, DMA
ano6 ovokevr) oe ovokevt], SPDK, vhost-user, uviun katdAAnAn yia DMA, “kapewpa”
oelidwv, PCI, MMIO, PIO, QEMU, KVM, evepyog avapovn, xwpis kheldwparta, eventtd,
ioeventfd, irqfd, unix domain sockets

'https://review.gerrithub.io/qg/owner:+Dragazis+status:merged
*https://review.gerrithub.io/qg/status:+open+owner:+Dragazis+repo:+spdk/spdk
*http://mails.dpdk.org/archives/dev/2019-June/135116.html
*https://lists.gnu.org/archive/html/gemu-devel/2019-04/msg03082.html
*https://lists.oasis-open.org/archives/virtio-dev/201906/msg00036.html

https://review.gerrithub.io/q/owner:+Dragazis+status:merged
https://review.gerrithub.io/q/status:+open+owner:+Dragazis+repo:+spdk/spdk
http://mails.dpdk.org/archives/dev/2019-June/135116.html
https://lists.gnu.org/archive/html/qemu-devel/2019-04/msg03082.html
https://lists.oasis-open.org/archives/virtio-dev/201906/msg00036.html

iv

Abstract

This diploma thesis deals with the problem of storage virtualization in cloud environ-
ments. Storage virtualization is the implementation of emulated storage devices for
virtual machines. This concept has been extendedly studied in the past and various
implementations have been proposed. However, the rapid evolution of the storage
media technologies has led to significantly lower latencies, making the bulk of I/O
processing time be software overhead rather than actual processing on the storage de-
vice. This forces us to turn our focus back to the software and prevent it from becoming
a bottleneck.

In this diploma thesis, we are presenting a new storage virtualization solution called
“SPDK/VVU?”. The basic idea is to offload the I/O datapath from the hypervisor. Our
setup consists of a Storage Appliance VM that offers storage services to local Com-
pute VMs. All the I/O traffic goes through the Storage Appliance VM but without the
intervention of the hypervisor in the datapath. The inter-VM communication mecha-
nism is based on shared memory. If properly configured, this solution combines high
throughput, low latency and scalability. It is also quite secure in the sense that the de-
vice emulation software runs inside the Storage Appliance VM. Last but not least, in
cloud environments, this solution is flexible from a user’s perspective, because the end
user has full control of the datapath. Essentially, the user can adjust dynamically the
underlying virtual hardware of his compute VMs. We call this property “User Defined
Storage”

The implementation of SPDK/VVU required working on multiple projects and inter-
acting with the corresponding communities. We have submitted patches to the SPDK®
7 and DPDK® open source projects. SPDK and DPDK make up the emulation software
running inside the Storage Appliance VM. We have also submitted some patches on
QEMU’ and VIRTIO' on a new paravirtualized device called “virtio-vhost-user”,
which implements the inter-VM communication mechanism. Overall, some of our
patches have been merged while others are currently under review.

Keywords

storage virtualization, I/O datapath acceleration, hugepages, IOMMU, userspace drivers,
zero-copy DMA, peer-to-peer DMA, SPDK, vhost-user, DM A-able memory, page pin-
ning, PCI, MMIO, PIO, QEMU, KVM, polling, lock-free, eventfd, ioeventfd, irqfd,
inter-VM communication, unix domain sockets

Shttps://review.gerrithub.io/g/owner:+Dragazis+status:merged
"https://review.gerrithub.io/qg/status:+open+owner:+Dragazis+repo:+spdk/spdk
8http://mails.dpdk.org/archives/dev/2019-June/135116.html
*https://lists.gnu.org/archive/html/gemu-devel/2019-04/msg03082.html
https://1ists.oasis-open.org/archives/virtio-dev/201906/msg00036 . html

https://review.gerrithub.io/q/owner:+Dragazis+status:merged
https://review.gerrithub.io/q/status:+open+owner:+Dragazis+repo:+spdk/spdk
http://mails.dpdk.org/archives/dev/2019-June/135116.html
https://lists.gnu.org/archive/html/qemu-devel/2019-04/msg03082.html
https://lists.oasis-open.org/archives/virtio-dev/201906/msg00036.html

[TpoAoyog

2e avtd To onpeio, Oa nleka va ekppdow tn Pabid pov evyvopoovvn ya Ty avidio-
TeAr] ovveloQopd Tov ovvadéd@ov pov BayyéAn Kovkn, xt povo ota mhaiota avtng
NG SIMAwpATIKAG epyaciag, AAN Kal YEVIKOTEPA OTNV ATEPUOVI TPOOTIAOEL OV Yia
™V Katdktnon g yvaoone. Eniong, Oa nfeka va evxaplotiow tovg kabnyntég pov
Kkat Waitepa tovg kvpiovg KoQupn, Iamacmvpov, Tkovpa kat Pwtdkn yla Ti§ yVwoeLg
TIOV OV HETEPEPAV AAAG KVPIWG Ylat TOV TPOTIO OKEYNG TTOV MOV HETEdWOAV 0T YVW-
otwkn meptoxn TG Emotnung twv Ynoloytotwv. Etdikr pveia Oa 0eda va kévw otov
ekAmovTa kabnyntn koplo Mndka and m XEMOE yia tov dptio tpdmo didaokaliog
Tov, Ttov Ba amoTeAel ONueEio AVAPOPAG OTN HETETELTA EMAYYEALATIKE OV KapLEPQL.
Téhog, 0¢Aw va evxapLOTHOW TNV OLKOYEVELL HOV YLt OAN TN GTPLEN KAl TOUG GUHPOL-

TNTEG HOV VLA T OHOPPA POLTNTIKA XpOvia Ttov iepacape pali oto ITohvtexveio.

Nixog Apéyalns
TovAioc 2019

vi

IepiAnyn

AEaig-KAeida

Abstract

Keywords

ITpoAoyog

List of figures

Contents

Ewovikomoinon Xvokevwv ArtoOnkevong pe o Mnyavioué SPDK/VVU

1 Ewoaywyn o e

1.1 Skomog & Kivntpo L L
1.2 Ynapyovoeg [Ipooeyyioeig kat SPDK/VVU
2 Oewpntikd YoBabpo L
2.1 QEMU/KVM e
2.2 [Teprypageic Apyeiwv yia Xvupdavta - Event File Descriptors .
2.3 ioeventfd/irafd
2.4 VFEIO e
2.5 YnepoeAideg (Hugepages)
2.6 VIRTIO
2.7 IOMMU
3 EwaywynotoSPDK

vii

iii

iii

vii

O O NN NN U U DD+ =

viii

4 Ewoaywyn oto mpwtokoAo Vhost
4.1 Tevikn Ieptypaeny o o o oo
4.2 Tpomog Aettovpyiag Tov TpwTtokOAANov vhost-user
5 IXEOLAOUOC & v v o o e e e e
5.1 Tevikn) [eptypaen tng Xxediaong
5.2 H ovokevn virtio-vhost-user
5.3 Enexteivovtag to povomdtt eAéyyov vhost-user
5.4 Enexteivovtag to povomdtt dedopuévwy vhost-user
5.5 Emnekteivovtag Tovg unxaviopovg etdomotoswyv vhost-user . .
5.6 AMayéc oto SPDK katotoDPDK
5.6.1 Apyttektovikn Tov vhost kwdika 6to SPDK
5.6.2 AlOTa ANNQYOV . . . oL
5.7 [Teptypagn Aecitovpyiag Tov Mnyaviopov SPDK/VVU
6 YAOTIOINOT . . o v o o e e e e e e e e e e e e
6.1 AN ayéc oTIg Tpodlaypa@eg TnG CLOKELNG virtio-vhost-user .
6.2 AN\ ayéc otV vAOTOINON TNG OLOKELNG Virtio-vhost-user
6.3 AMayécotoDPDK
6.4 AMayécotoSPDK Lo
7 ABONOYNOT . . . o o e
7.1 Koéotog Elkovikomoinong
7.2 ACQANELDL . . . o o e e e
7.3 Metagopd EAéyyovoto Xpriotn
8 Emidoyog o

L1 Purpose
1.2 Motive e e e e e e e e

1.3 Existing Solutions and SPDK/VVU

1.4 Structure of the diplomathesis

2 Background

2.1

Port I/O and Memory Mapped I/O

2.2

PCL PCI device resources v v v v v v v v e e i et

2.3

PCIEXpress« . o o i e

2.4

QEMU/KVM . . o oo e e e e

2.5

Event File Descriptor

2.6

ioeventfd/irgfd L

2.7

2.8

2.9

Hugepages e e

2.10

VIRTIO e

2.11

2.12
2.13

2.14

Direct Device Assignment (Passthrough)

2.15

File Sharing via Unix Sockets

3 Introduction to Storage Performance Development Kit

3.1 Whatis SPDK (Brief Description)
3.2 Purpose of SPDK, target audience, usecases
3.3 Architecture
3.4 How it works (Key features, primary concepts)
3.5 Application Framework
4 Vhost
4.1 Whatis vhost (Brief Description)
42 Purposeofvhost
4.3 Differences between kernel-space and user-space vhost
4.4 Howvhost-userworks
4.5 More about inter-process communication via shared memory

ix

47
47
48
49
52
55
56
56
58
61
65
67
69
70
71

73

75
75
76
78
80
82

85

5 Design of SPDK/VVU 95
5.1 General Description 95

5.2 'The virtio-vhost-user deviceinanutshell 97

5.3 Extending the vhost-user controlplane 98

5.4 Extending the vhost-userdataplane. 98

5.5 Extending the vhost-user notification mechanism 100

5.6 Changesin SPDKand DPDK 101
5.6.1 Architecture of SPDK’s vhostcode 101

5.6.2 ListofChanges 103

5.7 OperationEnd-to-End 103
571 ControlPlane 105

572 DataPlane 109

6 Implementation of SPDK/VVU 119
6.1 BriefOverview 119

6.2 Changes in the virtio-vhost-user device specification 120

6.3 Changes in the virtio-vhost-user devicecode 121
6.3.1 Architecture of the virtio-vhost-user PCl device 121

6.3.2 Improvements in the QEMU devicecode 121

6.4 ChangesinDPDK, 131
6.4.1 Introduce vhost transport operations structure 131

6.4.2 Extract AF_UNIX-specific code from core vhost-user code . . 133

6.4.3 Introduce the virtio-vhost-user driver and transport 133

6.4.4 Export the virtio-vhost-user transport through librte_vhost

public API 134
6.4.5 Add virtio-vhost-user devices in dpdk-devbind.py 136

6.4.6 Export the virtio-vhost-user transport choice to the end user . 136

6.5 ChangesinSPDK. 136
6.5.1 Integrate the virtio-vhost-user transport in libspdk_vhost . . 136
6.5.2 Add support for vfio no-IOMMU mode 138
6.5.3 Support registering non-2MB aligned virtual addresses 139

6.5.4 Register the virtio-vhost-user device as a DMA-capable device 143

xi

7 Evaluation 147
7.1 Diskmetrics 147

7.2 Virtualization /O overhead 149

7.3 SPDK/VVU Virtualization overhead 151

74 Security 157

7.5 User-defined Storage 157

8 Conclusion 161
8.1 ConcludingRemarks o oL 161

82 FutureWork 162
8.2.1 AddClItestsin SPDKtestpool 163

8.2.2 Integrate SPDK/VVU with Katacontainers and Kubernetes . . 163

8.2.3 Enhancements in the virtio-vhost-user code in QEMU 163

8.2.4 Implement the virtio-vhost-user device over more transports . 163

8.2.5 Implement Filesystems for SPDK 163
8.2.6 Refactor the SPDK’s memory map structure 164
8.2.7 Rewrite SPDK’s API for the vhost-user transport 164

Bibliography & References 165

xii

List of figures

1 KaBvotepnoeig Zvokevwv Amobnkevong yia Attiuata I/O0 12
2 Apxitektovikn Tov SPDK oL oo 14
3 Tomoloyia Mnyaviopov SPDK/VVU 24
2.1 PCIExpressTopology 51
31 HWI/Olatency 76
3.2 SPDK Architecture 78
3.3 SPDK Application Framework 83
51 SPDK/VVU Topologyo 104
7.1 SPDK/VVU UsageModel 159

xiii

Xiv

Ewovikonoinon Zvokevwv
Amobnkevong pe o Mnxaviouo
SPDK/VVU

1 Ewaywyn

1.1 Xkomog & Kivntpo

2t mapovoa SIMAWHATIKT A0XOAOVHAOTE He TH PEATIWON TWV UNXAVIOHDV ELKOVL-
KoToinong ovokevwv anodrkevong, Wiwg oe mepPAAlovTa VTOAOYIOTIKOD VEQPOLG
(cloud). To mpoPAnpa avtd eivatr tohvdiaotaro. Mia and Tig katevfuvoelg 0Tig omoieg
KIVOOHAOTE givat 1) KaAvTepn a&lomoinon Twv SuvatotnTwy Twv oOYXpovwV HECWY
amoBnkevong. Eivat yeyovog 0t Tn onpeptvr emoxr 0Ao£va Kat TEPLOCOTEPEG EPAPUO-
Yég mov Tpéxovy oto cloud xpetdlovrtat amoBnkevTikn AettovpykdTTa VYNANG ATTO-
doong. Qoto00, AapPdvovrag VoY TIG VIAPXOVOEG TIPOOEYYIOELG 0TO Oépa avto,
@aivetat 0Tt dev éxel kataPAnOel apketr mpoonabeia mpog TG katevBvvon TG PEA-
TLOTNG A&LOTTOINOTG TWV GUYXPOVWYV AOBNKEVTIKDVY HéTwY, OTtws ot NVMe[51] SSDs.
Emniong, wa e&icov onpavtikr mapduetpog 0to mpoPAnpa avto ivan n acealeta. Xta
neptPAANovVTA VTTOAOYLOTIKOV VEQOUG Ta BEpata acpaleiag eival o onpavTikad, StoTt
gxovpe TOANOVG XpTOTEG Vo XELPI{OVTAL ELKOVIKEG [NXAVEG TIOV TPEXOLY GTO (SLo Pu-
oo unxavnpa. Télog, pia mokv onpavtikr katevbvvon oty onoia KlvovuaoTe 0T
Tapovoa SITAWHATIKY eivat 1) tapoxn meptocotepng eveli§iag oTov TeEAkO XpHoTn.
Ztoxog eival va pmopei 0 xpriotng va puBuilet Tnv amobnkevTiki AetTovpytkdTnTA IOV

TIOPEXEL OTLG ELKOVIKEG TOV UNXAVEG. AVTH TN OTLyHn, 0Ta dnpoota clouds mov mapéxovv

1

2 1. EIZAT'OI'H

vnodopég oav vnnpeoia (Infrastructure as a Service - IaaS), o xpriotng €xet eAaxiot
evehi&ia oto B¢pa avtd, kabwg o mapoxog vnpeowwv (Cloud Provider) éxet To mAnpn

¢\eyxo 010 povomdtt dedopévawv.

To kivnTpo yla TNV evaoxoAnomn pe elkovikég ovoKkevEG amodrkevong ota mAaiota TG
napovoag Simhwpatikng eivat Strtd. Ilpwtov, eivat yeyovog 0Tt to cloud ev yéver, aAla
Kat Lo €181k d, 1) Tapoxn LITOSOHWY Cag VTN PETia elval pia avepXOUevn TaoT. XTo TAai-
010 aVTO ATOKTA 1OLaiTEPO EVALAPEPOV 1 PEATIWOT) TWV TTAPEXOUEVWY VTN PETLWDV ATIO-
Onkevong kat n KAAvYN TWV avaykdv Sta@opwv melatwy. AedTepov, Ta Tekevtaia
XPOVLA TTAPATNPOVE (Lo OHAVTIKT PeATiwon oty Texvoloyia, Kat CUVETWG Kal 0TN
oVVOAKT) amodoon, Twv pécwv anobnkevong. Exovue mepdoet and tnyv emoxn Twv un-
xavikav diokwv (HDDs) otnv emoxn tov diokwv otepedg kataotaong (Solid State
Drives - SSDs). Znjuepa, vdpxovv moAv anodotikég Texvoloyieg amobnkevong, 6nwg
n texvoloyia 3D crosspoint[1] kau avtiototya oAV anodoTikd TPWTOKOANA EMKOLVW-
viag, onwg to NVMe. Avtn 1 fektiwon tov péowv amobnkevong kabiotd mo dVokoin

TNG ELKOVIKOTIOINOT) TOVG e TPOTIO TTOL va aflomotel TANpwG TIG SLVATOTNTEG TOUG.

1.2 Ymapyovoeg IIpooeyyioeig kat SPDK/VVU

AvTn) TN OTLypn VTIAPXOVV SLAPOPOL UNXAVIOUOL EIKOVIKOTIOINONG OLOKEVWY aTtob-
KEVOTG Kal avtioTorya TOANG KPLTHpLa KATNYOPLOTOINoNG. Oa UTOPOvOAE Va TOVG

ta&voproovpe oTig akolovbeg katnyopieg:

1. Texvikég eucovikomoinong

o TANPNG elkovikomoinon (trap and emulate):

1 OVOKeLT elkovikoToteital and Tov endmntn (mx. QEMU[16])

« napa-gwkovikonoinon (VIRTIO[2]):

1 ovokevr| e§akolovBei va vAomoteitan anod tov endmtn. QoTdo0, 1 ATO-
doon 1I/0 eivau kaXvTepn, S16TL ot drivers €xovv PeAtiotononBei wote va

HELDVETAL TO KOOTOG ELKOVIKOTIOINOTG.

o amngvBeiag avabeon (passthrough):

n ovokevn eivat a mpaypatikr) PCI ovokevr mov avabétetat e§ ohokAr-

pov oe pia etkovikn punxavn. H ewcovikn pnxavn éxet anevbeiag mpooPaon

1. EIZATOI'H 3

0TOVG TTOPOVG TNG OVOKEVNG (KaTaxwpntég, xwpot Stevbvvoewy, dako-
TEQ).

« pecolapovuevn avabeon (mdev[4]):
1| OLOKELT] TTAPOVOLALETAL GV TTOANATIAEG EIKOVIKEG GUOKEVEG ATIO TO TIL-

priva Tov host. Avtr| 1 TeXvikr ovvSvadel Ta TAeOVEKTHHATA TNG TANPNG

ELKOVIKOTIOINONG He avTd TG anevdeiag avdbeong.
2. Ilpocopoiwon Tov omicBov pépovg tng ovokevng (Movomatt Aedopévwv)

« IIpooopoiwon otov enontn (QEMU):
Ta autrjpata I/O mpooopotwvovTtal and Tov ENOTTN Kot VAOTIOLOVVTAL GOG
KAnoelg ovotiuatog read/write oe pa eikova diokov (disk image), mov
elvat éva apxeio 0To TomIKO cVOTNHUA apXeiwV Tov host.

« IIpocopoiwon oto xwpo mupnva (vhost[5]):
To povomatt dedopévwy amoomatatl and Tov enONTN Kat VAoToLeiTal and
Tov mupriva tov host. Me avtd tov TpdTO 1| GLOoKELT) VAoTIOLELTAL £E ONO-
KAfpoL Héoa oTOV TTVpTVa, Xwpig TNV TapépPact Tov enomTn, YAVTWVO-
VTaG £T0L TO KOOTOG amd alhayég katdotaong (context switches). O un-
Xaviopog vhost Sovlevet pe potpalopevn pvnun.

o Ilpocopoiwon ato xwpo xpnotn (vhost-user([6]):
TO HOVOTIATL OeSOHEVWV ATTOOTIATAL ATIO TOV EMOTTN Kt VAOTIOLEITAL OE it
Eexwptotn Stepyacia aTo xwpo xproTn Tov host. Avtdg 0 pnyaviopog eivat
{ia TpoTtoToinem Tov pnxaviopov vhost. BaoiCetat oe potpalopevn pviun
KAl UTOpEL va eMITOXEL KAADTEPT amddooT amd TOV VP VA oV TAPAKALL-

Yovpe Tov muprva e drivers oto xwpo xprnotn (myx. SPDK[72]).
3. IIpwtokoAo AmoOnkevong

« virtio-blk:

TPWTOKOANO 101K OXESLAOUEVO Yl TEXVIKEG TTapagikovikomoinong. Ila-

pakauntel To vroovotnua SCSI Tov Tvprva.

« SCSI:
TPWTOKOANO gvpeiag vVoBETnonG yla peydAo mAnbog ovokevwv (my. ov-

OKEVEG Virtio-scsi)

4 1. EIZAT'OI'H

o« NVMe:

TpwTOKOANO Tov amodidel kakvTepo anddoon o oLVEVACKO e Ta GVY-
XPOVa UN-TITNTIKA péoa, a&lomotwvTtag Tig 18toTNTéG Toug (xaunAo latency,

vynAog Babpodg maparniiopov, vynAo throughput)

Zta emopeva kepdhata, Oa peheToOVE LA VEA TEXVIKT ELKOVIKOTIOINONG SioKWV IOV
BaciCetar oto MpwtdkoANo vhost-user, oto Aoytopkd SPDK kat otr ovokevr virtio-
vhost-user. Ovopaovpe avto to véo unxaviopo “SPDK/VVU”. H Baokr| 18éa eival
va Bactotovpe 0To pnxaviopo vhost-user, aAAd vo AmOHOVWOOVIE TO AOYLOUIKO ELKO-
ViKoTI0inong péoa o€ pia Eexwptotr eikovikr pnxavi. Iia tnv vhomoinon tov ev Aoyw
HNXAVLIOHO, XpetaleTal va eMEKTEIVOVIE TOVG VTIAPXOVTEG UNXAVIOHODG EMUKOVWVIAG,
Omwg avtoi opilovtat and to MPpwTOKoAo vhost-user, ®OTE TO AOYLOUIKO EIKOVIKO-
noinong va e§akolovBei va £xet TpOGPAOT) GTN UV TNG EKOVIKNG UNXAVIG. AVTO
npaypatonoteitan pe tn Pordeta g cvokewvng virtio-vhost-user. Xpetaletar eniong

va enekteivovpe Tov kwdtka Tov SPDK dote va vmootnpilet avutd To VEO HnYavIopo.

O pnxaviopog SPDK/VVU ovvdvdlet tpia faoctkd mheovektripata. A§tomotel Ty ano-
doomn Tov unxaviopov vhost-user oe cuvévaopd pe Tovg drivers xwpov XproTn TOV
SPDK. Eivat mo ac@alng unxaviopog o oxéon pe 1o amAd npwtdkoAlo vhost-user,
S10TL TO AOYIOHIKO EIKOVIKOTIOINONG TPEXEL HETQ OE [iot EIKOVIKT] HNXOVT] Kat OXL ATeL-
Oeiog oto xwpo xprotn Tov host. TéEXOG, TapExel Vo EVENKTO UNXAVIOUO EAEYXOV TV
EIKOVIKDOV OLOKEVWYV amoBrKeVONG OTOVG TEAIKOVG XPTIOTEG, SLOTL TO AOYIOMIKO ELKO-
VIKOTIOINONG “Tpéxel” H€oa o€ [ia eLKOVIKT Hnxavr), 1 omoia Ba pmopovoe va aviiket oe

TEAKOVG XPNOTEG O €va TTEPIPAANOV VEQOUG.

2. ©EQPHTIKO YIIOBA®PO 5

2 Oewpntiko Ynopabpo

Ye auTr) TNV evotnTa mapabéTovpe OAEG TIG AMAPAITTEG YVWOELG Yia TN KATAVON 0T

NG TapovonG SIMAWUATIKNG.

2.1 QEMU/KVM

To QEMU([16] (Quick Emulator) eivat éva mpdypappla eLKOVIKOTIOINONG EVOG TAT|POVG
VTIOAOYLOTIKOV OVLOTHUATOG. MTopel va ipocopolbael Tov enegepyaotr), T pviun,
1o chipset kal TIG mepipepelakés ovokevég. To QEMU pmopel va xpnotponomnOei yia
Va eKTEAEOOVIE KWOIKA UETAYAWTTIOUEVO OF KATIOLA APXITEKTOVIKT) O€ eMelepyaoTn
SlapopeTikng apyxitekTovikng. XtnVv edikn mepintwon mov Béhovpue va ektehéoovpe
kwSika oe enefepyaotn) G idtag apyrrekTovikig (ya mapadetypa kwdika x86 o€ eme-
EepyaoTr apXITEKTOVIKNG X86), TOTE UTOPOVE VA TO KAVOVUE AUTO WE TILO ATTOSOTIKO
TpOTI0, LTIO TNV TPOUTODEOT OTL 0 EMEEEPYAOTHG EXEL EMEKTATELG ELKOVIKOTIOINONG (TTX.
Intel VT-x[78], VT-d[55]). Tta T0 okomd avtd, to QEMU xpnotponotel o module
KVM tov nuprjva.

To KVM[18] (Kernel Virtual Machine) eivat éva module oto muprjva Tov Linux mov
a&LOTIOLEL TIG EMEKTAOELG ELKOVIKOTIOINONG TWV CVYXPOVWY eTEEEPYATTOV, [LE TKOTIO VL
extelel guest kdSika amevBeiag 0To Puokod enefepyaotr) pe ao@ain tpomo. Otavypo-
VOL eMEEEPYATTES [LE EMEKTATELG ELKOVIKOTIOINOTG VIO TNPilovy EeXwpLoTég KaTAOTA-
O€LG AELTOVPYLOG. XTNV apXITEKTOVIKT X86 VTTAPXOLV 4 SLAQOPETIKEG KATAOTATELG/ ETTi-

neda Aettovpyiag mov eivat ta e§n¢:

KATAOTAOT| 100t - XWpog XprioTn

KATAOTAOT) r00t - YWwpog Tuprva

KOTAOTAOT] NON-root - Ywpog Xprotn

KATAOTAOT] NON-root - Ywpog mupniva

H katdotaon root avtiototyei og host kwdika evw 1 KATACTAOT NON-ro0t AVTIOTOLEL

oe guest kwdika. Kdmoteg Aettovpyieg kat kamoleg evIoAEG TpokalolV trap kat alkayn

6 2. ©EQPHTIKO YIIOBA®GPO

KATAOTAONG OTAV EKTEAOVVTAL 08 KATAGTACT) NON-TO0t KAl PLE AVTO TO TPOTIO EMITVYXA-
VeTat 1 etkovikomoinon tov VAkov. To KVM ewkovikomotel kamola uépn evog ovotn-
Hatog omws v MMU kat toug eleyktég Stakomwyv (interrupt controllers). Eniong,
xepiCetat tn katdotaon Tov eikovikov enefepyaotr| (Sopn Virtual Machine Control
Structure 1 VMCS ev ovvtopia) kat mapdyet eikovikég diakomég. Q2otoco, to KVM
dev pmopel va mpooopolwoet Eva TATPEG VTTOAOYLOTIKO CVOTNUA, VTIO TNV évvola OTL
dev pmopei va mpooopowwoel meplpepelaké ovokevEG. I avto xpnotlomnoteital o€
ovvdvaopo pe to QEMU. H npoypappatiotikn Stemagr tov KVM eivat to character

device file /dev/kvm kau éva chvolo and kAroelg cvotipatog ioctls[20].

Me Béon avtég Tig mAnpogopieg, n aAAnienidpaon twv QEMU kat KVM yivetat wg
efnc[23]:

ITpwv TNV ekkivnon TG etkovikng pnxavns, 1o QEMU aneikovilet to BIOS (1} amevBeiag
10 guest upnva av Bélovpe va mapaiyovpe to BIOS) 010 puotkd xwpo devBiv-
OEWV TOV €lKOVIKOV emegepyaotr). Avto yivetat pe To KVM_SET_USER_MEMORY_-
REGION KVM ioctl. ¥t ovvéyela, Snuiovpyei éva avvolo and etkovikolg enegepya-
otég (VCPUs) pe to KVM_CREATE_VCPU KVM ioctl. KaBe eikovikodg ene&epyaotr|g
avtioTotxel o€ éva Eexwplotod vijpa tng Stepyaciag QEMU. TIpotob Eekivrjoel va Tpéxel
guest kddika, To QEMU opilet Tnv apXiki] KATACTAOT TWV KATAXWPNTWOV TWV ELKOVL-
kv enefepyaoctwv pe ta KVM_GET_SREGS kat KVM_SET_SREGS KVM ioctls. Ztn
ovvéxeta, 7o QEMU divet evtohr] 6o KVM va Eexivrioet va tpéxet guest kStka pe
10 KVM_RUN ioctl. To KVM, og andkplon Tov artiuatog avtov, Eekivael va tpé-
xet guest kwdka pe v edikn evrodr; VMXON (avtn 1 evTohn eivau eldikn yla tng
APYLTEKTOVIKT X86, AANd avTioTOLKEG EVTOAEG DTIAPXOVV Kal Yl TIG AAAEG APYLTEKTO-
ViKéG). Me autr| TV eVToAr), 0 eme§epyaotng aAlalet katdotaomn ano root o non-root
- evalhakTikd Aépe ot mpaypatonotei VMENTRY - kau Eekiva va Tpéxet guest Kdika.
Y& mepinTWOoT OV 0 guest TVPTVAG ETUXELPTIOEL VA EKTEAETEL LA TPOVOULOVXA EVEP-
yela, o emefepyaotrs Ba kdvel trap, Ba emavéNBel oe katdotaon root kat Ba cuveyioel
va Tpéxetl kwdika Tov KVM. Avtn n ahAayn katdotaong andé non-root oe root Aé-
yetat “world switch”. To KVM eAéyxet 1o aitio tng aAAayng Katdotaong péow Twv
kataxwpntwv g doprig VMCS. Ze nepintwon mov 1o KVM pmnopei va e§umnpet-
o€l T0 AOy0 e§000V TNG ELKOVIKNG UNXAVHG, TO TTPATTEL Kal tpaypatomotei VMENTRY.
‘Eva tétoto yeyovog Aéyetau “ehagpd VMEXIT”. Ztn nepintwon o6pwg mov 1o KVM

Sev pmopel va xeptotei v £€0d0 (S10Tt yia mapadetypa ogeiletal oe mpoomélaon

2. ©EQPHTIKO YIIOBA®PO 7

EVOG KATAXWPNTH HLAG ELKOVIKNG GVOKEVNG eAeyxopevng amo to QEMU), emavépye-
tat 010 QEMU pe return and to ioct(KVM_RUN). Avtd 1o yeyovog Aéyetal “Papv
VMEXIT”. To QEMU yxeipiletat o yeyovog e£68ov kat emavakapPaver tn Stadkacia

eKTENEOTG guest KWSIKA, OTWG AVTT TTEPLYPAPTKE TIAPATIAVW.

Avakepalaiwvovtag, n dour tov Bpdxov oto kwdika tov QEMU mov mpaypatomotei

TIG avwTEPW Aettovpyieg potalet wg e&ng:

open("/dev/kvm™)
10ct1(KVM_CREATE_VM)
10ct1(KVM_CREATE_VCPU)
for (550 {
10ct1(KVM_RUN)

switch (exit_reason) {

case s /X Ll */
case /X L0 X/
}

2.2 Tleprypageic Apxeiwv yra Xvupavta - Event File Descriptors

Evag meprypagéag apyeiov ya ovppavta[24] (eventfd) eivat évag unxaviopog tov mo-

priva yla dievépyeta eldomotoewy Tov Muprva mpog dlepyacieg 0To XWPOo XproTn N
netafd Siepyactwv. Mmopei va edéyxetat yia eidomonoelg pali dAhovg meptypagei

apyeiwv pe Tig ovvaptnoeig select(), poll() xau epoll().

2.3 ioeventfd/irqfd

Ot punxaviopoi ioeventfd kot irqfd mapéxovtar and 1o KVM pe okond v mapaywyr
mo “ehagpwv” VMEXITs. Eivar Vo anmodotikoi nxaviopol yia eldomotoelg Tov guest

npog Tov host kat Tov host mpog Tov guest avtioTtorya.

O pnyxaviopog ioeventfd avtiotouyiCet StevBvvoeig I/O oe eventfds. Omotedrnote o

guest tpoone adet pia tétota StevBuvvon I/0, to KVM “Bapdel” tov avtiotoryo eventfd.

8 2. ©EQPHTIKO YIIOBA®GPO

O pnyxaviopog irgfd eivar To akpiwg avtibeto. Avtiotoryilel eventfds oe Staxomé.
Omotednmote kamolog “Bapdel” évav tétolo eventtd, to KVM otéAvel Tnv avtiotoryn

SLaKOTI) OTNV EIKOVIKT U)oV,

H mpoypappatiotikn) Slema@n yia T Xpron avtov Twv unxaviopov eivat ta ioctls
tonov KVM_IOEVENTEFD kou KVM_IRQFD, mov anote obv puépog tng Stemagrng Tov
KVM][20].

24 VFIO

To vfio[3] eivau évag driver oto mupriva Tov Linux mov kabiotd e@iktr 0 dnpovp-
yia 08nNywv ovoKEVWV OTO XWPO XPNOTH. ZTNV ovoia e&dyet OAOVG TOVG TOPOVG TWV
ovokevwv PCI og Siepyaoieg oto xwpo xpriotn. Ot moépot piag ovokewvrg PCI eivat ot
kataywpntég tov PCI Configuration Space, ot xwpot StevBvvoewv MMIO kat PIO kat
ot dtakomég (interrupts). To vfio emiong xpnotpomnotel tny IOMMU tov cvoThparog,
O€ TEPIMTWOT) IOV VIIAPYEL, Yla Vo tapéxeL T duvatotnta yio DMA pe ac@alr tpomo
and pvriun oto xwpo xpnotn. H mpoypappatiotikn Stemagn tov viio anotekeitat and
character device files oto katdAoyo /dev/vfio/ kat éva oVvolo amd KANOEIG OVOTH-
Hatog ioctls. Ot mdpot k&Be cvokevng anetkovifovTal o€ CUYKEKPIUEVA TUNHATA EVOG
character device file. Mia Siepyaoia éxet mpdofaon oe avtovg kavovtag read(), write()
1 mmap() oTa CLYKeKPLHEVaA THRHATA TOV apyeiov. O muprvag eldomolei To Xwpo xpn-
otn yta Slakomég and T ovokevn pe ™ xpnon evog eventfd. To viio vrootnpilet kat
Tovg dvo pnxaviopovg Tov StavAov PCI yia drakomég, dnhadn legacy kat MSI Sako-

TEC.

Ze mepintwon mov pia Siepyacia BéNet va (triioet DMA and pviun xwpov xpnotn,
xpnoorotei to VFIO_IOMMU_MAP_DMA ijoctl yia va SnAwoet T ouyKekpLpévn
neploxn pvnune. O vfio driver avalapfdvel va kdvet T OVYKEKPIUEVT TIEPLOXT WUVT)-
HNG katdAAnAn yia DMA. Me avto To ioctl, pa Siepyacia divelt oav mapapétpovg 6to
TUPTVAL £V GUVEXOUEVO EVPOG EIKOVIKWYV Slevfvvoewy OV AvTIOTOLXOVV 0TI UVIUN
yta DMA kat pua tevBvvon IOVA (IO Virtual Address). O vfio driver e§unnpetel avto

7o ioctl pe Tig akohovBeg evépyeteg:

o “KAPYWVEL” TN OUYKEKPLUEVT] TIEPLOXT HVIHNG, WOTE va eival KATAAANAN yla

DMA. Avto onpaivet 0Tt Ta avtiotorya mhaiota pvipng e Ba yivovv swap-out

2. ©EQPHTIKO YIIOBA®PO 9

and to moprva kat de Oa ald&et n anekdvion VA-to-PA (Virtual Address to
Physical Address).

o mpoypappatiCet tny IOMMU, xpnoponowwvtag tn Stevbuvvon IOVA nov édwoe
n depyaoia. Zvykekpipéva, eloayel Tig KatdAAnheg petagpdoelg oto IOVA domain
NG OLOKEVNG, WOoTe pia evToAn; DMA and to gvpog twv IOVA dievfuvoewv va

petagpaletat ano v IOMMU ce DMA and ta avtioTotxa uotka TAaiota

HvAunG.

To vfio dtabétel emiong) duvatotnTa va dovAevel xwpic IOMMU, mapakdpntovtdg
TNV, av avTh ivat evepyomonuévn 06To ovotnpa. Aépe 6Tt To viio eivat oe no-IOMMU

mode. Xe avtr) N iepintwon, dev vrootnpiletar to VFIO_IOMMU_MAP_DMA ioctl
Kat) povn Avon yta DMA amo pvrun xwpov xprotn ivat n xprion vrepoehidwy.

2.5 Ymnepoe)ideg (Hugepages)

Otovyypovol ene§epyaotég vootnpilovy moAamha peyéOn oelidwv. Otvepoeideg
elval OUVEXOUEVEG TIEPLOYEG PUOLKIG LUVIHNG TTOV eival HEYAADTEPEG ATIO TIG KAAOOLKEG
oehideg Twv 4KB. To péyebog twv vepoeAidwy efaptatat and tnv apxirektovikn. Ila

TapadeLypa, 1 apxLTeEKTOVIK X86 vtooTtnpilet peyén vrepoedidwv 2MB kot 1GB.

Ot vmepoehideg £xovv Tpiat SOMIKA XAPAKTNPLOTIKA[27]:

o elval OLVEYOUEVEG TTEPLOXEG PUOLKIG VNG, AVTO eTITPETEL VA EXOVUE pia Kat
povadikn anetkovion yia 2MB dievBuvoeig oo mivaka oehidwv pag Siepyaoiag
avti yia 512 anewcovioelg twv 4KB. Amtopia avtov eivat OTL pe pia kataywpnon
otnv TLB kakvntovpe peyakvtepo e0pog VNG, HELWVOVTAG £TOL TOV aplOpod

Ttwv TLB misses.
« O¢ yivovTal TOTé swap-out amod To Tuprva.

o namnewkovion VA-to-PA eivat otaBepry. Avtd onuaivel 6Tt o moprvog O petaxivei

T @uotkr| Torobeoia Tng vtepoeAidag oTn HVAUN.

Ot vmepoehideg éxovv Tpia Paotikd mAeovekTApaTa:

10 2. ©EQPHTIKO YIIOBA®GPO

e TO YEYOVOG OTL AVTIOTOLXOVV O€ OCUVEXOUEVT QUOLKI] LVIUUN ETUTPETEL VA EXOVE

Atyotepa TLB misses, 0Twg ava@épape Tapamdvw.

¢ T0 KOOTOG yla kdBe TMB miss eivat pkpOTEPO Oe OXEOT e TIG KAVOVIKEG OEAL-
deg, StoTL amatteitan n Stdoyion Ayotepwv emmédwv oto mivaka oehidwv (ot
ovyxpovol enegepyactés xpnotponolovy mivakeg oelidwv moANamAdv emumé-
dwv). Me mpovmobeon oti 1 kKAipaka (granularity) Tov tehevtaiov emmédov ei-
vat 4KB, yia viepoehideg 2MB yhvtwvovpe €va eminedo, evw ylo vepoelideg

1GB yAvtwvovpe 2 emineda.

o 1 anewkovion VA-to-PA yia kdBe vepoehida eivat otabepr). Me aAAa Aoyta, n
@uotkn StevBvvon wag vepoeidag dev allalel. H iStotnta avtr eivan yvwoTtr
w¢ “kdppwpa oelidag (page pinning)”. To yeyovog avtd Tig kabiota kataAAnAeg
yta Aertovpyieg DMA. Avth tn oTiypr, ot viepoelideg eival o povadikog pnya-
VIoUOG yla DMA and pviun xwpov Xpriotn xwpig tn mapepfoArn tov muprva.
IV avtiy TV d10tNTa Xpnotpomotovvtat and To SPDK cvvdvaotikd pe tov uio
driver. O uio driver ypnowonoteitat yia dnuovpyia drivers oto xwpo xpnotn,

aA\d, ev avtiBéoel pe Tov viio driver, Sev vtootnpilet Aettovpyie¢ DMA.

2.6 VIRTIO

To VIRTIO[2] eivan éva mpoTLTO yia SNovpyia CVOKELWV TAPAEIKOVIKOTIONONS.
Opilet TG Tpodiaypagés Twv cvokeLwV kabwg kat Twv drivers yia tov éAeyxo av-
TWV TwV oVokevwv. Zkomog Tov VIRTIO eival 0 oplopog evog pnxaviopov alAnAemi-
dpaong avapeoa oto driver kat 0TOV NOMTN OV VAOTOLEL TN OLOKELT, O oToiog Oa
e\aloTOTOLEL TO KOO TOG ELKOVIKOTIOINONG. ZTNV 0VOiA, AVTO OHAiVEL EAAYLOTOTIOINOT

twv VMEXITs mov mpokalovvtat anod Aettovpyieg PIO 1 MMIO.

To mpoTuTMo 0pilel OTL o1 drivers ywpilovtal oe Svo pépn. Yndpxet o frontend driver
TIov TPéxeL 0TO guest uprva, kat o backend driver mov eivat uépog tov emontn. H
emkolvovia avapeoa otov frontend kat tov backend driver yivetan pe eidikég dopég
dedopévwv mov Aéyovtat “virtqueues”. Ot virtqueues eival KukAkég ovpég amodnkev-
HEVEG 0TI LVIIUN TOL guest Kal ot omoieg dnutovpyovvtal and tov frontend driver. Ot
virtqueues dg xpnopomolovVTAL Yl TN HeTaPopd Sedopévwy alAd yla TN HeTapopd

detktwv ota dedopéva. Ot unxaviopoi eldononoewv avapeoa otov frontend kat Tov

2. ©EQPHTIKO YIIOBA®PO 11

backend driver aaptwvtar and to tomo tov Stavdov. To VIRTIO vrootnpilet tpeig
TOTov¢ StavAwv: PCI, MMIO, CCW.

2.7 IOMMU

H IOMMU eivau éva tufpa vAtkov mov mapepPArAeTal avapeoa oTIG TEPLPEPELAKES
OVOKEVEG Kat TN @uotkr pviun. H Aettovpyia tov eivat mapodpota pe avtr tng MMU
otov enefepyaotr}, aAAd agopd cvokevEg avti yla Stepyaoieg. Zvykekpipéva, LeTa-
@padet TG StevBivvoelg Twv Aettovpywv DMA mov mpaypatomotodvTat and Tig ov-
okevéG. O pnyaviopdg avtdg eival Stagavng ya Tig ovokevég. Kabe ovokevn avti-
AapBavetal évav eikovikd xwpo StevBivoewy, To “IOVA domain”. To Aoyiopko ei-
vat vrevbuvo yia to mpoypappatiopd s IOMMU pe Tov 0plopod Twv HETAQPAoEWY
IOVA-to-PA.

H Intel evowpataver tnv IOMMU o7o chipset, dnhadr oto vAiko mov ocvvdéet Tov
ene€epyaotn, T Pvnun Kat TG mepiepetakés ovokevé. H Intel xpnotpomotei twv 6po
“DMA Remapping (DMAR)” yia tnv IOMMU «kat Vv £vTdo0eL 0 TUAUA TV ETe-

Ktdoewv eikovikomnoinong Intel VT-d[55].

H IOMMU éxet 6vo mAeovektripata. Ilpwtov, eodyet éva eninedo aopaleiag ava-
HEOQ OTIG CLVOKEVEG Kal TN QUOLKT pviun. Me dAla Aoyla, TpooTatedel T QUOIKT
nvrpn and embéoeig DMA. Ot 6vokevég £xovv mpooBaot) oe éva TEPLOPLOUEVO KO-
HATLTNG QUOIKNG UvAuNG. AevTepov, kabiota duvartr Ty anevBeiag avabeon (passthrough)
OVOKELWV OF EIKOVIKEG UNXavEG. To TpOPANHa TOV AVAKDTITEL O€ TIEPIMTWOELG ATIED-
Oeiag avabeong eivat 6t ot drivers oTo guest muprva avtidapBavovtal Tov guest xwpo
devBvvoewy, evw ot Puatkég ovokevEg avTihapPdvovtat Tov host xwpo Sievbivvoewv.
H amevBeiag alAnAenidpaon} tovg kabiotatat duvartn pe tnv eicodo tng IOMMU, n
omoia dtapavwg kdvet TNV avaloyn petdagpaon StevBvvoewv. O mpoypappatTiopds

™G IOMMU pe 16 aneikovioelg GPA-to-HPA yivetaw and tov enomntn.[14]

12 3. EI>AI'QI'H XTO SPDK

3 Ewaywyn oto SPDK

To SPDK (Storage Performance Development Kit) [62] eivat éva cvvolo PipAodnkwv
Kat odnywv cvokevwv (drivers) yla cvokevég anobnrevong oto xwpo xprotn. Eivau
éva €pyo avolktov kwdika tng Intel. Eivar epmvevopévo amod to mpodndpyov kat ma-
pepepés épyo DPDK (Data Plane Develompent Kit) [63] mov agopd kdpteg Siktvov
avti yla ovokevég amobrikevong. To SPDK §ovAevel anokAeloTikd oe Xwpo xprotn

TIAPAKAUTTOVTAG TIAPWG TO TTUPT VAL

2komog tov SPDK eivat) mapoyr evog anmodotikol, ypriyopou kat KAIHLAKWOIHOL Ao-
YLOUKOV eEAEYXOV TWV oVYXpOVWY ovokevwy anobrikevong. Ta ovyxpova péoa amo-
Orkevong kaw ovykekpLpéva ot Stdpopeg Texvoloyieg ovokevwv NVMe mapovotdfovv
XapnAo latency, vynAé throughput kat €xovv vYNAS Babuod mapariniiopov. To SPDK,
ev avtiféoel e TOV YEVIKOD OKOTIOV TIUPTVA, €XEL OXESLAOTEL WOTE VAL EMTVYXAVEL TN
néyotn Svvatn aflomoinon Twv SuvatoTNTwY TWV GUYXPOVWV pécwv anodrkevong.
H emavaoyediaon tov Aoylopkov eAéyxov Twv cvokevwy anobrkevong amodetkvoe-
Tal KPIOLHN yla T GLVOALKT amdd0om TOL CVOTHHATOG, KaBWwG Ta cVYXpoVa Héca amo-
Onkevong emTvyxavovv oAb xapunAo latency, cvykpiotpo pe avtd Tov Aoyopkov. To

Sdypappa 1 divel pia aiobnon en’ avtov.

The Challenge: Media Latency

Latency
10(y28)

kemel driver Overhead <0.01%

kernel driver overhead 1-8%

kernel driver overhead 30%-50%

SSD 55D Drive Latency B Controller Latency
NAND o

bl e T | sy, (o s 1 gt s fed e Bt oo

Xxnua 1: Kabvoteproeis Xvokevwyv Amodnxevons yia Arthuata I/0

H Aertovpyia tov SPDK diakpivetar amd ta akdlovba tpia facikd xapaktnplotikd:

3. EI>XAI'QI'H XTO SPDK 13

1. 1o SPDK Sov)evel amokAeloTikd 0To XWpo Xpnotn[66]. Avtd onpaivel 6TL ta-
pakdpntel T otoifa amodrkevong tov mupnva. To SPDK eivat epodiaopévo pe
0dnyolg ovokevWV yla Stapopovg THTOVG CVoKEVWYV anoBnkevong. Ot odnyoi
OVLOKEVWV £XOVLV TIPOGPACT) GTOVG TOPOVG TWV CVOKEVWDV HETW SVO UNXAVIOUWY
Tov Tvpnva: To uio kat To viio. To SPDK mapakdapmntet to mupnva yia dvo Ao-

youg:

(a) pe avTo TO TPOTIO AMOPELYETAL TO KOOTOG and Ta context switches

(b) n otoifa amobnrevong Tov TVprVa éxel oXeSIAOTEL Yla VA EXEL IKAVOTIOL-
nrkn anodoon yia kdbe THmo ovokevng amobrkevoNG, PN EMTVYXAVOVTAG
TN BéATion duvatr anddoor yLa KAToLo CUYKEKPLUEVO TUTIO CVOKEVTG ATIO-

Onkevong

2. 10 SPDK &8¢ xpnowomotei kAetdwpata oto povondtt deSopévwv. Avtifétwg,
Xpnotpomotel avtallayn Unvopdatwyv [67] 6mov vitdpyet avaykn yia cuyxpovi-
opo. O Aoyog eivar 0Tt Ta kAetdwpata armodedetypéva de KALPHAKOVOLY AOYw TwV

cache invalidations mov mpokalovvtat and To mpwtOkoANo yia cache coherence.

3. 1o SPDK xpnotpomotei evepyd avapovr (polling) avti yia dtakomég (interrupts).
Amodewcvibetal 0Tt av T gival 1 KAADTEPN EMAOYN Yl TIG GVYXPOVEG CVOKEVEG
amofrkevong. Avtd ovpPaivel yia dvo Aoyovg. O mpwtog Adyog eivat 6Tt yia
NV e§UINPETNON WG SLAKOTING ATTAUTEITAL I CLHUETOXT) TOV TTVPTVaL. ZTn Ttepi-
TTwon Tov viio yla mapadetypa, o mupnvag mpémnetl va eldomotroet Tn dtepyacia
XWpov xprotn péow evog eventfd yia tn Afyn pag Stakonns. H ovppetoyr tov
Tuprva cvvemayetal context switches kat LTOAOYLOTIKO KOOTOG ATO TNV EKTE-
Aeomn NG ovvAPTNONG XepLopol Tng Stakomng. O devtepog Adyog eivatl OTL TO
KOOTOG aVAKTNONG piag Slepyaciag mov eival 0 KATAOTAOT VTTVOL TEPLHEVO-
VTOG e SLAKOT 1, aKON XELPOTEPQ, TO KOOTOG AAAAYNG TNG KATAGTAONG £VOG
ene€epyaotn mov PplokeTal 0 KATAOTAOT VITVOL TEPLUEVOVTOG (ta SLaKOTT
elval aoVUPOPO OTN TEPIMTWON TV 0VYXPOVWY ovokevV amobnkevong. Ot
oVYXPOVEG OVOKEVEG AmOOKEVONG EXOVV XAUNAO KAl OXETIKA VIETEPHIVIOTIKO
latency, yeyovog mov kabiotd v evepyod avapovi) CUUPEPOVOA OTN TEPIMTWON

tov SPDK, 6mov avapévetal va éxovpe moAa artrjpata I/0.

H apytrektovikny Tov SPDK pmnopei va xwplotet oe tpia dopukd emineda[64]. To ako-

14

3. EIXAT'QI'H XTO SPDK

AovBo oxnua mtapovaotdlet v apyitektovikr Sopr| tov SPDK kat 6Aa ta Sopukd oTot-

xela mov anaptifovv to €pyo.

SPDK Architecture
. Y4
NVMe-oF RPMA R iscs| f vhost-scsi vhost-blk Linux Integration
Storage Target Target Target Target nbd
N | NGRS
C Block Device Abstraction Layer (bdev) N RockDB
BlobFS
Services Blobstore QEMU
./
(N /
- N\
NVMe Drivers L
DIV NVMe-oF RDMA | NVMe PCle '”tglﬂgf‘T V'g'rci’vgf' Application
Initiator TCP Driver Framework
N AN /

Ixnua 2: Apyirextoviky) Tov SPDK

Zto katwtepo eminedo vmapyovv ot drivers Twv ovokevwv (NVMe, I/OAT, virtio-

pci). Zto evdiapeco eminedo Ppioketatr o Block Layer. To Block Layer amaptifetat

and ta bdev modules. Ta bdev modules éxovv avtioTtorn AettovpykoTnTA e TOVG

block device drivers oto mupriva. Zvykekpipéva, VAOTOLOVV pia Yevikr Stemagr ya

I/O and ovokevég kau eEdyovv ovokevég Tomov block mpog To avatepo eninedo. To

Block Layer diabétet eniong bdev modules mov vhomololv eikovikég ovokevég block

névw amod dAleg ovokevég block. O okomog TOLG eival 1) Tapoxn VINPESIOY OTIWG OL-

umieon, kpumroypdenomn, Aoywoi topot (logical volumes), kok. Té\og, oTo avwtepo

eninedo vdpyovv PrPAlobrkeg mov VAomoLovV TeppaTikd (targets) yia Stapopa mpw-

TOkoAa anobnkevong. To SPDK StaBétet NVMS target, iSCSI target kat vhost target.

4. EI>AI'QIH 2XTO IIPQTOKOAAO VHOST 15

4 Ewaywyn oto npwtokoAlo Vhost

4.1 Tevikn Heprypaen

To vhost eivat €vag pnyaviopog yia va pmopovpe va VAOTOLOVHE TO povomatt dedo-
HEVV yla ouokeLEg I/0 extog Tov endmtn (hypervisor). Eivat aveEdptnto tov tomov
TNG CLOKEVNG, AANA APOPA EIKOVIKEG OVOKEVEG TIOV VTTAKOVOLY 0TO TipdTLTO Virtio. O
HNXAVIOUOG eival amolvTta Stagavng yia Tov 0dnyod Tng ovokevng, dnladn dev xpeld-
(etau kamotov idovg tpomomoinon Tov 0dnyov. O 0KOTOG TOV UNXAVIOHOV eival va
HTTOPODLE VL DAOTIOLGOVLE TLO amodoTikd povordatia Sedopévwy amod avtd Tov end-

.

Yrapxovv 00 mapallayég TOV punxaviopov. YrapxeL n VAOToINon 0To XWPo Tuprva
Kat 1 VAomoinon oto xwpo xpnotn. Anotekei ovpPaon n mpwtn va Aéyetar “vhost”
kat 1 devtepn “vhost-user’, av kat otn Piphoypagia n odpPaocn avtn dev Tnpeita
Katd kavova. Iotopikd, n vAomoinon oto xwpo muprva mpobmrpe TG vAomoinong
oto xwpo xpnotn. [ta tnv akpifeta, n vhomoinon oto xwpo xpnotn Paciotnke oTnV
vlomoinon oto xwpo muprva. H eidomoidg diagopd avapeoa otig Svo mapaliayég
elval 0 UnNxaviopog emkotvwviag pe tov endntn ya v eykadidpvon tov povona-
TLo0 dedopévwv. O unxaviopog vhost xpnowomnotei character device files kat n kAfon
ovotrpatog ioctl(). O punxaviopodg vhost-user xpnoupomnotei unix domain sockets kat
avtaAlayn pnvopdtwy mévew amod to socket. Ia o pnyaviopd vhost-user vapxet éva

avemionpo mpwtdkoAAo ota éyypaga tov QEMU[6].

2t mapovoa SUTAWHATIKT XPTOLHOTIOLOVE TNV VAOTIOINGOT 08 XWpOo XproTn, YU avto

KAl aVAAVOVUE TO OVYKEKPLUEVO HNXAVIOUO 0TIV akoAovbn vroevoTnTa.

4.2 Tpomog Aertovpyiag Tov TpwTokOANov vhost-user

To mpwtdKkoAo vhost-user opilet Vo mAevpég o Sradiepyactakr enkovwvia: Tov
master kat Tov slave. Eval\aktikd, xpnowpomoteitat kat) opohoyia initiator kat target.
O master eivat 1 Stepyacia OV XPNOLHOTIOLEL TNV ELKOVIKT GLOKELT, SnAadn o emo-
nng. O slave eivat) Siepyaocia mov vAomotel TNy ekovikn ovokevr). O uNxaviopog

xwpiletat oe dVo pépn: To povomatL EXEyXov Kat TO povoratt Sedopévwy.

16 4. EI>AI'QI'H XTO IIPQTOKOAAO VHOST

To povomdtt eAéyxov eivat o pnyaviopog yla g eykadidpvon tov povomatiov dedo-
uévwv. To mpwtdkolo vhost-user opilet 0Tt avto ovpPaivel péoa anod pia oepd and
unvopata edéyyov. Ta pnvopata avtalldcoovtat peta&d Twv master kot slave péow
evog unix domain socket. Ta meploodTepa punvdpata mapdyovral and Tov master.
Q0T1600, VITAPXOVV TEPIMTWOELG HNVUUATWYV TTOL TtapdyovTat and Tov slave 1 eivat
anmavnon oe punvopata tov master. O master pumopei va Aettovpyel eite oav meAdtng
(client) eite oav e§umnpeTnTig (server) oty emkovwvia péow twv sockets. Zvvrwg,
o slave Aettovpyei oav efumnpetntc. H avtailayn pnvopdtwv mupodoteitan and

o0vdeon evog meddtn oto socket. H avtaAlayn pnvupdtwy yivetat wg e§ng:

o O master otélvel éva pvopa tomov VHOST_USER_GET_FEATURES, (-

vTag and Tov slave va tov kowvomotfioet T Aiota pe ta features mov vtootnpilet.
o O slave otélvel wg amavnon ta features mov vootnpilet.

O master ovykpivet ta features Tov slave pe ta features mov vrootnpilet o guest

00NYOG OVOKEVNG. ZTN CLVEYELA, SLANEYEL TT) TOUN TOVG KAl EVEPYOTIOLEL AVTA Tat

features otov slave pe éva prvopa tomov VHOST _USER_SET_FEATURES.

o Av o slave vtootnpilet to feature VHOST USER_F_PROTOCOL_FEATURES,
autd onpaivet 6Tt o slave vrootnpilet kdmota features mov ivar e€etdikevpéva
yla To pnxaviopo vhost-user. Ze avtn tn mepintwon o master padaivet avtd ta
teatures amo tov slave pe éva pnvopa tomov VHOST_USER_GET_PROTOCOL_-
FEATURES kat, 0Ttwg TPOTYOVUEVWG, EVEPYOTIOLEL TN TOWUT| TOVG HE EVa HIVLHA
tonov VHOST_USER_SET_PROTOCOL_FEATURES.

* 2Tr OVLVEXELQ, 0 master SUOCLOTIOLEl 0TOV slave Tr LViin TG ELKOVIKNG UNXavig
master. H pvrjun tov master mpémet va eivat potpalopevn. It avtod ovvrbwg sivat
éva apyeio oo tmpfs 1| oto hugetlbfs. Eniong,) uvnun tov master pnopei va &i-
VAl KATAKEPHATIOUEVT) 08 TTOANATAA pn-ovvexopeva Tunpata. To mpwtdkoAlo
vhost-user opilet wg meploptopd yia 1o péytoto mAnbog tovg tov apBud 8. O
master 0TéAvel OAN TN TANPOPOpia yia OAa T TUAHATA LVIUNG KE £Va UVLla
tomov VHOST_USER_SET_MEM_TABLE. Me to prjvopa avto, o master mepvd
oToV slave SIkalWHATA Yla TA AVOLKTA ApyEict IOV AVTIOTOLXOVV 0TI HVHHN TOV
woTe o slave, ev Télel, va éxel mpooPaon o€ OAn TN pvrun Tov master. Eniong,

yta kaBe tpfpa pviung otévet kat Tig akolovdeg mAnpogopieg:

4. EI>AI'QIH 2XTO IIPQTOKOAAO VHOST 17

- host eicovikn dievbuvvon - avtioToyel oTnV ewkovikn dievbuvvon oTov etko-
VKo xwpo Sevfhvoewv Tov EMOTTN OTOL Eival ATEIKOVIOUEVO TO OVYKE-

KPLUEVO KOHUATL VIIUNG TOL master

- guest guowkn dievBvvon - avtiotolyei ot @uokr Stevbuvvon oTo PLOIKO
xwpo dievbvvoewv tng guest CPU Tng elkovikng pnyavng master 0mov &i-

Vall ATTEIKOVIOUEVO TO OVYKEKPILEVO KOUUATL VTN G TOV master

- offset - offset 6nov o slave npémnet va kaver mmap() To v AOyw avoikto

apxeio

O slave kavet mmap() kaBe avoktod apyxeio, SnAadn kabe KoppdtL Hvipng Tov
master, Onwg avtd meptypdgovtat oto unvopa VHOST _USER_SET_MEM._-
TABLE.

« A@oOTov 0 slave amoxtnoel TPOGPaon TN UV TG EIKOVIKNG HNXAVHG master,
0 master oTé\vel TANPOPOpieg OXETIKA e TIG Virtqueues Tov guest 0dnyov ov-
OKeLVNG. AvTo eival amapaitnto wote o slave va pmopei va evromioel Tig virtqueues
otn pvAun tov master. Na kaBe virtqueue, o master otélvet Tig €€¢ TANpogo-

pieg:

- 70 péyeog g pe to unvopa VHOST _USER_SET_VRING_NUM

- 1o deiktn 0TV apyr| TG ovpdg pe to prvopa VHOST _USER_SET_VRING_-
BASE

- 1N guest uotkn StevBvvon dmov eivat amoBnkevpévn 1 virtqueue ot VRN

Tov master pe to uvopa VHOST_USER_SET_VRING_ADDR

o Télog, yla kdBe virtqueue, o master otéhvel Svo eventfds, évav kickfd kot évav
callfd omwg yapaktnprotikd Aéyovrat, pe ta punvopata VHOST _USER_SET -
VRING_KICK xow VHOST_USER_SET_VRING_CALL avtiototya. Avtd xpn-

OHOTIOLOVVTAL Yia TIG ELOTIOI 0L avdeoa 0TOV master kat Tov slave.

To povomatt dedopévwv agopd 6TovG HNXAVIOHODS Yl TNV HeTapopd Twv dedopé-
VoV and Kol TPog TN HVAuN TNG ekovikng pnxavne. O slave éxel mAnpn mpooPaon
0TI UV TOL master Kal, EMOMEVWSG, Exel anevbeiag mpooPaon OTIg virtqueues kot

ota dedopéva, O6TOL KL av avtd Ppiokovtal péoa oTn Hvnun tov master. Emopévwg, n

18 4. EI>AI'QI'H XTO IIPQTOKOAAO VHOST

HeTapopd Twv dedopévwy yiveTal He AUETO TPOTIO, XWPIG avTiypaga evTog TNG HVN-
NG tov master, Onwg akpPws SnAadn Sovhedel kat 0 NOTTNG yia TV e§umnpéTnon
artnpdtwv I/0. Ot eildonou|oelg peta&d twv master kat slave yia v vioBoAn véwv
artpdtwv I/0 kat yia v odokAnpwon enefepyaciag artnpdtwv I/0O yivetar pe

xpnon twv kickfds kat callfds avtiotorga.

5. 2XEAIAXMOZ 19

5 2xediaonog

5.1 Tevun Heprypagn g Xxediaong

2e auto To kepalato Ba meptypdyoupe To 0xXeSLATUO TOV UNXAVIOHOD ELKOVIKOTIOINONG
ovokevwv anobrkevong “SPDK/VVU”. O pnxaviopdg SPDK/VVU Paoiletal otov
vhost target tov SPDK kot 0t ovokevn virtio-vhost-user. O pnyaviopog SPDK/VVU
anmoTe\El EMEKTAOT TOV HNXaviopov vhost-user, dnwg avtdg opiletal 0to ev Adyw Tpw-
toKk0AMNo. Ev ovvtopia, o punxaviopog SPDK/VVU Sovlevel wg e&ng: avti va “tpé-
xovpe” tov SPDK vhost target oto xwpo Xpriotn tov host, Tov “tpéxovue” amopo-
Vwuéva péoa o€ Hia elkoVvIKn pnxavi). Etol, £xovpe o eLKOVIKT) unxavr| ov mapéyet

amoOnKevTIKN AELTOVPYIKOTNTA 08 AAAEG ELKOVIKEG UNKAVEG.

To yeyovog 0Tt Tpéxovpie TO AOYIOUIKO EIKOVIKOTIOINONG HECA O L0l EIKOVIKT] HIXOVT
OVVETIAYETAL OTL TIPETEL VAL EMEKTEIVOLE TO PnXaviopo vhost-user, dote o SPDK vhost
target va eaxolovBei va €xet TpooPaon oTn Hviun TG TPOG eEUTNPETNON EIKOVIKIG
HNXavnG. Avtd vhomoteital péow NG ovoKeLNg virtio-vhost-user. @a Sovpe oTig aKod-
AovbBeg evotnTeg Twe emTvyxdvetat avtod. Emiong, mpémet va emekteivovpe Tov kwdika
tov SPDK kat tov DPDK (to SPDK yxpnotponotei to DPDK wg submodule), wote o
SPDK vhost target va pmopei va Aettovpynoet Tévw amd 1o véo pnxaviopd. O véog
HNXAVIOpOG emikovwviag Aéyetat “virtio-vhost-user transport’, d16Tt BaoiCetat oty
OHWVLUN OLOKELT. O apXIKOG UNXAVIOHOG, OTIWG avTdG opileTat and To TPWTOKOANO
vhost-user, Aéyetar “AF_UNIX transport”. @a dobue o€ emopeveg evotnteg mwg Oa
tpomonotrjoovte Tov kwdika Twv SPDK kat DPDK wote va vtootnpifouvy kat ta §vo

transports.

2ZKOTOG TNG Tapovong SIMAWHATIKNG eival, Oxt amAwg 1 oxediaon kat vAomoinon tov
unxaviopov SPDK/VVU, aAAd kat 1 eVOWUATWOT) TOL 0T OXETLLOHEVA £pya avOLXTOV
Aoytopkov. O oxediaopodg mov Ba avalvoovpe og avtd T KEPAAALO Elval TPOG AvTH
v katevBuvon kat €xet mpokOyel and aAAnAemidpaon pe TIG AVTIOTOLKEG KOLVOTI)-
TeG. ZuyKekpLuéva, EXovpe emikotvwvroel'! ue tov Stefan Hajnoczi (Software Engineer
otnv opdda eikovikomnoinong g RedHat), o omoiog ivat o epmvevoTng TNG OCVOKELTG

virtio-vhost-user. O Stefan pag €xet e§ovotodotnoet'? wote va cuveyioovpe Tn Sovleld

"https://lists.@1.org/pipermail/spdk/2018-September/002488.html
PZhttps://lists.@1.org/pipermail/spdk/2018-December/002822 . html

https://lists.01.org/pipermail/spdk/2018-September/002488.html
https://lists.01.org/pipermail/spdk/2018-December/002822.html

20 5. 2XEAIAXMOX

TOV 000V APOPA TNV OAOKANPWOT) TOL TTPOTOLOPIOHOV TWV XAPAKTNPLOTIKWYV TNHG OL-
okevng (VIRTIO spec) kat Tnv oAokAfpwomn Tov kddika VAOTOINONG TNG CVOKELTG
oto QEMU. Ext66 and tov Stefan, éxovpe emiong emkotvwvroet kat pe tov Darek
Stojaczyk (Software Engineer otnv Intel kat core maintainer Tov SPDK) kat €xovpe
katahngel o £va Thavo epyaciag'® oXeTikd pe TG ahdayég Tov TpETeL va yivouv 0To
SPDK «kat 6to DPDK. Ia meploodtepeg mANpo@opieg OXETIKA e TNV TPEXOLOA KATA-

0TaoN Kat Ta emopeva Pripara, oag mapanépnovpe otny evotnta Eniloyog.

5.2 H ovokevn virtio-vhost-user

H ovoxkevry virtio-vhost-user eivat [l GUOKELT] TAPAEIKOVIKOTIOINOTG TTOV VTTAKOVEL
o1o mpoTLTo Virtio. Xkomog TG elval va emMeKTeiVEL TO UNXaVIOUO Vhost-user woTe va
Hmopove va Tpéxovpe vhost targets Léoa o€ eIKOVIKEG UNXaVEG. Oa SoDpE OTIG ETOLE-
Veg eVOTNTEG TIWG eMiTuyXAveTat avtd. H ovokevr eivan egodiacpévn pe éva (evydpt
ovpwv virtio (virtqueues) yta tnv emkowvwvia e tov guest driver. Eniong, vmootnpiet
MSI-X interrupts. AvTtr| Tn OTLyprn, ot TPOSIAYPAPES TNG CVOKEVTG TIEPLYPAPOVY TTWG

unopet va vhomownOei mavw and Siavdo PCI.

Ye avtifeon e TG vtOAoLTEG CLOKEVEG Virtio, 1) v AOyw ovokevr eival eQodtaopévn
He KATIOLoVG eMIMAEOV TTOPOVG. AVTOL OL TTOPOL €ival TVLTTOTIOLNHEVOL TTAVW ATtO StavAo
PCI pe virtio PCI capabilities. Ovopaotikd, avtoi ot emmA£ov mopoL eival oL KATAWPNTEG-
kovdovvia (doorbells), ot katayxwpntég yla eldomnoinoelg (notifications) kat n potpa-
(opevn pvrun (shared memory). Ot katayxwpnTég-kovdovvia XpNOIHOTOLOVVTAL ATIO
Tov vhost target wote va pmopel va eldomolel Tov master 6Tav OAOKANpWVETAL 1) ETE-
Eepyaoia evog artpatog I/0. Eivar ametkoviouévot og Stevfvvoeic MMIO tov xwpov
devBhvoewv TG ovokeLNg kat eival ovoxetiopévol pe callfds. Avto onpaivel ot 6Tav
o guest driver “Bapdel” éva kovdovvi, To QEMU Ba “Bapéoel” tov katdAAnlo callfd
wote va eldomownei 0 master. Ot katayxwpnTég yla eL00TO OIS eival T akpLpwg avTi-
Oeto and tovg kataywpnTéG-kovdovvia. XpnotpuomolovvTal yia va anetkoviCet o guest
driver MSI-X vectors oe kickfds. Ondte, 6tav n etkovikr pnxovr master “Bapdel” évav
kickfd, to QEMU otéAvet pua Stakomn pe To KatdAAnAo vector oTny elKoVIKN Hnxovn
slave. TéNog, N LotpalOpevn wvnun eivat 1 Lvnun TngG ELKOVIKNG HnXavig master ameL-

KOVIOHEVT 0To Xwpo StevBvvoewv Tng ovokevng virtio-vhost-user.

Bhttps://lists.@1.org/pipermail/spdk/2019-March/003163.html

https://lists.01.org/pipermail/spdk/2019-March/003163.html

5. 2XEAIAXMOZ 21

5.3 Emnexteivovrtag 1o povomartt eAéyxov vhost-user

Ye avth TV evotnta Ba dovpe mwG 1 ovokevn virtio-vhost-user emekteivel To povo-

T&TL EAEYXOL TOL TpWTOKOAAOL Vhost-user.

To povomatt eAéyyov tov pnxaviopov vhost-user eivat éva unix domain socket ano
To omoio o master oTéAvel unvopata otov slave. H avtaAlayn pnvopdtov Aappavet
XWpPa wg €7l To TAEIOTOV KATA TNV apyLkomoinor Tov vhost target. Baotkdg okomog Tov
Hovomatioy eAéyxov eival o slave va amoktnoet mpdoPaocn oTIg virtqueues kot 6TOVG

I/0O buffers otn puvnun tov master, n eykadidpvon dnhadr tov povonatiov dedopévwy.

H ovokevny virtio-vhost-user emekteivel To povomdtt eAéyxov wote o vhost target,
TIOV TPEXEL HECQ OTNV EIKOVIKT unxavn slave, va Aappdvet ta pnvopata mov otélvel
o master. H ovokevn virtio-vhost-user eivau éva character device oto QEMU, ondte
elvar ovoyxetiopévn pe to unix domain socket. H cvokevn} Stafadlet eloepyopeva un-
vopata and to socket kat Ta mpowbei oTov vhost target péow Twv virtqueues Tng
OVOKELVNG. AVTO LOXVEL Yla TA TEPLOGOTEPA UNVOHATA, AAAd OXL yla OAa. Yrdpyovv
OLYKEKPLUEVA UNVORATA TIOV ATALTOVY TIepaLTéPw enegepyacia amo T CLOKELT TIPLY
npowdnBolv otov vhost target. Avaloyn Sadikacia akolovBeitat kat ya Ta pnvo-
pata ov oTéAvel o vhost target otov master, Snhadr n cvokevr Aappdvel pnvopata

Héow TwV virtqueues Kal Ta ypaget 0to unix domain socket.

5.4 Enekteivovtag to povomatt dedopévwv vhost-user

Ye avth TV evotnta Ba dovpe mwG 1 ovokevn virtio-vhost-user emekteivel To povo-

ndtL dedopévwy Tov TPpwTokOAAov vhost-user.

To povomndtt dedopévwy Tov unxaviopot vhost-user Pacifetal e popalopevn pvrpn.
AnAadn o vhost target €xet mpooPaon og OAN Tr PV TOL master Kal, EMOUEVWG, OTLG
virtqueues kat 0tovg I/O buffers mov €xet deopevoet 0 081yOG TG CVOKEVTIG 0T HVAUN
TNG €IKOVIKNG unxavng master. ITio ovykekpipéva, n Hvnun TnG ELKOVIKNAG UNXavig
master eivau éva apyeio oto tmpfs 1} oto hugetlbfs, dnhadr éva apxeio anodnkevpévo
OTn QUOIKT uviun Tov pnxavhuatog. H eikovikn pnyavn slave kdver mmap() 6An

VN TNG ELKOVIKTG UNXAVTG master.

H ovokevn virtio-vhost-user enekteivel To povomartt dedopévwv wote o vhost target,

22 5. 2XEAIAXMOX

TIOV TPEYEL HEGA OTNV EIKOVIKY unxavn slave, va éxet mpdoPaocn otn pvrpn Tng etkovi-

KNG pnxavng master. Avtd vhomoteitat wg e&ng:

o master otélvel éva punvopa tomov VHOST _USER_SET _MEM_TABLE péow tov
unix domain socket. Me avtd o prjvupa o master divel mpooBaon o€ OAn TN uvnun
Tov otov slave (to Linux emtpénel o pua Siepyacia va mepvd Sikatwpata o€ avolkTa
apyeia TG oe aAln Siepyaoia péow unix domain sockets [61]). H ovokevny virtio-
vhost-user Aapfdvel To purivupa kat kévet mmap() T Pvnun Tov master. Xtrn ovveéxela,
TapOLOLddeL OTOV guest TN VI TOL master oav £va HEPOG TOL Xwpov StevBvvoewv
(MMIO) tn¢ ovokevng. Me avto tov Tpomo, o vhost target umopel va €xet anevdeiag

npooPaon ot uvnun Tov master xwpic mapepBoin tov QEMU.

5.5 Enekteivovtag Tovg unxaviopovg eldonotoewy vhost-user

2e avtn v evotnTa Ba dodpe mwG 1 ovokevn virtio-vhost-user emekteivel Tovg un-

XaVIOHOUG e80T OEWY TOL TPWTOKOANOL Vhost-user.

Ot unxaviopoi eldomooewy apopovv T000 o€ LGOTOLNOELG TOL master TPog Tov slave
yia véa autipata I/0, 600 kat eldomoinoelg Tov slave mpog Tov master yla iy mepd-
Twon Tev artnpdtwv I/0. To ntpwtdkollo vhost-user opilet 6Tt kat 0TIg SVO TEPIMTW-
oeig xpnotpomotovvtat eventfds. Ot eventfds Aéyovrat kickfds kau callfds yia tig §vo
nepmtwoelg. Ot eventfds dnpovpyovvtatl and tov master kat otéAvovtat otov slave
Héow Tov unix domain socket. Zvviifwg, n xprjon Tovg ovvodeveTal ad TOVG UNXAVL-

opovg ioeventfd/irqfd Tov KVM, wote 10 k60T0G ava VMEXIT va eivat pikpdtepo.

Eivau mpo@avég 6t otny mepintworn mov o vhost target Tpéxet L€oa O€ La EKOVIKT Un)-
xavn, dev umopel va xpnotponotel anevbeiog tovg eventfds. H ovokevr| virtio-vhost-
user mapexeL Evav EVAANAKTIKO UNXAVIOUO Yla TIG EL00TIO0ELG. ZVUYKEKPLUEVQ, 1) OV-
okevn AapPdvel Ta unvopaTa mov kotvomotovy atov slave tovg eventfds kat Tovg ow et
0€ e0WTEPIKEG SOUEG TNG OVOKEVTG. XTT) CLVEXELQ, ametkovilet Tovg callfds oe kataywpnTéc-
kovdovvia (doorbells). Omote, dmote o vhost target “Papdel” éva kovdovvi,) ovokevn
“Bapaer” tov callfd mov avtioTolel o ALTOV TOV KATAXWPNTH. ZTN TEPIMTWON TWV
kickfds, n ovokevry mapéxet éva virtio PCI capability otov 06nyo ovokevng wote va
Hnopet 0 00nyo¢g ovokevng va anetkovioel callfds oe MSI-X interrupt vectors. Xtn me-

PIMTWOT) TTOL €XEL YiVEL AVTN 1} AVTIOTOIXLOT), 1) OLOKELT TTapayet pia Stakomry MSI pe

5. 2XEAIAXMOZ 23

To katdAAnAo vector 6mote o master “PBapdaet” évav kickfd.

5.6 AA\ayég oto SPDK kat oto DPDK

Ta v vtootrpi&n Tov virtio-vhost-user transport, mpémnet va kdvovpe allayég otov

kwdwa Twv SPDK kot DPDK.

5.6.1 Apyirektovikn Tov vhost kwdika oto SPDK

To SPDK nepthapfavel pia PrpAiobnkn “vhost” mov vAomotei évav vhost target. H ap-

XLTEKTOVIKT] TOV KWwdika XwpileTat oe tpia uépn:

« 1 vAomoinomn tov povomatiol eAéyxov (lib/vhost/rte_vhost/)
* 1 VAoT0iNON TOV yeVIKOL povomatiod dedopévwv (lib/vhost/vhost.c)

« 1 vAomoinon tov e€edikevpévou povomatiod dedopévwy avaloya e To TPw-

TOKoANo anoBnkevong (lib/vhost/vhost_scsi[blk,nvme].c)

5.6.2 Aiota AAaywv

H npoobnxn vootrpiéng yia to virtio-vhost-user transport agopd anokAeloTIKA TO
Hovomdtiehéyyxov. Emopévwg, otarayég agopotv tn BitAtodnkn rte_vhost tov SPDK.
QoT10600, petd ano ocvuvevvonon pe tov Darek Stojaczyk, amogacioape ot alayég va
yivovv ot BtpAioOnkn librte_vhost tov DPDK. O Adyog eivat 6Tt n BipAioOnkn rte_-
vhost tov SPDK, 1 omoia vAomotei To povomaTt eAéyxov, eival OVOLAOTIKA €va avTi-
ypago g PtPAtodnkng librte_vhost tov DPDK. H kotvotnta tov SPDK éxet anoga-
oloet va xpnotpomotei anevdeiag tn PLpAodnkn tov DPDK o€ pelhovtikég exdooels.

Avtr) n AettovpykdtnTa vtapyel dN metpapatikd and v ékdoon 19.04 tov SPDK. '

[epLo0dTEPEG TANPOPOPIEG TYETIKA [E TNV TPEXOVOA KATACTAOT) KAL Yl ETOHEVA

Pritata, oag mapanépnovpe otny evotnta Enidoyog.

“https://spdk.io/release/2019/04/30/19.04_release/

https://spdk.io/release/2019/04/30/19.04_release/

24 5. 2XEAIAXMOX
5.7 Ileprypagn Astrovpyiag tov Mnxaviopov SPDK/VVU

H tomoloyia potalet wg e§ne:

Compute VM (Master) Storage Appliance VM (Slave)

==~ //

\\

SPDK vhost target
1/0 intensive workload

virtio-scsi
. bdev

i vhost-scsi
vvu drlvel:’ - device
. virtio-pci
driver

90}\@9// oo
shared memory et ,0\\I\P\ Lt u
- S k Idevivfio/5 devivfiol6
virtqueues Joe
1/0 buffers ’ \ ’ vfio-pci driver
= L}
""""" Mmapy) ¥ <

—

~__Vvu device virtio-scsi

| | Gomebe HBA
[Vmﬁoéiw [Ir:OStmmat,ﬂ.-.----.----.-__Vh_Qs_t-_q ér messages ____ I chardev
wcallid (unix socket)

Xxnua 3: Torodoyia Myyaviouod SPDK/VVU

H tomoAoyia amoteheitat amd {ia eKOVIKN unxavi 6mov yivetat boAoylotikn dov-
Aewd (Compute VM 1 master VM) kal [ia ELKOVIKT] UNXAVE] TTOV VAOTIOLEL T OLOKELT
amoBnKevong OV TTAPEXETAL OTNV TPWTN elkovikn pnxavn (Storage Appliance VM
1| slave VM). H ewkovikn unxavi master eivar epodiaopévn pe pa ovokevry PCI 10-
nov vhost-user-scsi, 1 omoia eivat évag virtio-scsi mpooappoyéag dtavdov (Host Bus
Adapter - HBA) tov omnoiov 1o povomndtt dedopévwv vhomoteitat ektdog Tov QEMU.
Yvykekpipéva, To povomdtt dedopévwy, To onoio amokaleitat “vhost device backend”
1 “vhost target”, vAomoteitat and tnv epappoyn vhost tov SPDK mov tpéxet oto xpo
XpPNoTn péoa oty eikovikn unxavn slave. EmmAéov,) etkovikr) pnxovr slave eivat ego-
Swaopévn pe évav virtio-scsi mpooappoyéa Stavdov kat dvo eikovikovg SCSI diokovg
ovvdedepévoug oo Siavlo SCSI. Avtoi ot diokot Ba aiovv To pdAo TwV TEMKWV E-
owv amoBnkevong yla ta dedopéva. Enpelwote woTO0 OTLT eMAOYT AVTH eivatl aAd
éva apadetypa. Ymapxovv moAéG dANeg emAoyEG yia Tehkd péoa amobrikevong, pe
Tolo KatdAANAn ya o unxaviopd SPDK/VVU 1n xprion evdg passthrough NVMe

dioxov.

5. 2XEAIAXMOZ 25

H Aertovpyia tov unxaviopod SPDK/VVU umopel va avalvbei og S00 ovvioTwoeG: TO
HovoTIaTL EAEYXOL Kat To povomdtt Sedopévwy. To povomartt eAéyxov xpnotpomnoteitat
yta) SLapdpPwaon TNG CLOKEVNG Kat, KVPiwg, yla TNV eykabidpuon Tov povonatiod
dedopévwv. To povomdtt dedopévwv xpnotpomoteitat yia tr HeTopopd Twv deSopévwv

Kat Twv peta-dedopévwy mov oxetiCovrat pe kabe aitnua I/0.

Movomnatt EAéyxov

To povomdtt eAéyyov agopd otnv avtallayn UNVupdTeV péow £vog unix domain
socket. H avtadlayn pnvopdtwv ocvpfaivel Kupiwg oTn ¢Aomn TnG apXLKomoinong g
ovokeLng, dnhadn dtav o master cuvdéetal oTo unix domain socket, To omoio eAéyxel

1 ovokevr virtio-vhost-user. H Stadikaoia apxikomnoinong dovlevet wg &n¢:

vroBétovpe ot etkovikn unxavn slave eivau evepyn kat 6t o SPDK vhost target tpéyet
HEOO OTNV EIKOVIKT pnxavn slave meppuévovTag yla véeg ouvOEoeLG. Xe avTn Th QAo
boot-apovpe tnv eikovikn pnxavr master. H etcovikr pnyavn master eivat epodia-
Opévn pe pa ovokevr vhost-user-scsi. H ovokevr| avth eival oty ovoia o master mov
ovvdéetal oto unix domain socket tng ovokevng virtio-vhost-user. Apéowg peta
ovvdeon, apxilet amooToAn pnvupdtwy and Tov master otov slave. Meta&d dAAwv
HNVUUATWY, 0 master oTéAvel €va uqvopa tomov VHOST _USER_SET _MEM_TABLE
{e To omoio divel mpooPaoct ot Pvriun Tov otov slave. H pvnun tng elkovikng pn-
xavng master eivat éva apyeio (1 moAla apyeia) oto tmpfs 1} oto hugetlbfs, wote va
elvaw potpalopevn. INa kaBe koppdtt pvrpng, o master eloayet ti§ &\ mAnpoopieg

0TO AVWTEPW UNVLAL

o évav meptypagéa apyeiov (file descriptor) - yia mmap()

« host eikovikny StevBvvon - avtioTolxel oty eikovikn StevBvVVOT OTOV €1KOVIKO

xwpo StevBvvoewv Tov QEMU dmov eival amelkoviouEVO TO CUYKEKPLUEVO KO-

HATL VNG TOV guest

o guest puowkr} dievBuvon - avtioTotel 0T Puotkr| dtevbvvon oTo PLOKO XWPO

drevBvoewv tng guest CPU dmov eival amelkovioPEVO TO CUYKEKPLHEVO KOHUATL

UVIHNG TOL guest

« offset - offset 6mov o slave npémnet va kdvel mmap() 1o ev Aoyw apyeio

26 5. 2XEAIAXMOX

o size - péye0og TOL KOUUATIOV UVIUNG

H ovoxkevr virtio-vhost-user Aappdvet avtd to prvopa kat ké&vet mmap() OAa T Kop-
HATIO LVIUNG TNG ELKOVIKNG HNXAVTG master. XTr GUVEXELA, ATIEIKOVILEL AVTA Tt KOLHA-

Tl pviung otov slave guest oav pépog Tov xwpov devbivvoewv Tng ovokewvns. Enetra,

0 master 0TéAvel KATIOLEG akOUN TANpOPOpieg oTOV slave, woTe va pumopei va evromioet

TIG virtqueues péoa ot pvrun tov master. TéAog, otéhvet Tovg kickfds kat callfds yia

Tig virtqueues péow unvopatwv VHOST_USER_SET_VRING_KICK kot VHOST_USER_-
SET_VRING_CALL avtiototya. H ovokevn virtio-vhost-user Aapfdvet ta unvopara
avtd. Toug pev callfds Tovg owlel oe ecwTepikég SOUES Kat TOVG AVTIOTOLI(EL € KATAXWPNTEG-
Kovdol VL, TOVG 0TToloVG Kat anekovilet ato xwpo StevBuvoewv NG cuokevng. Tovg

Oe kickfds emiong tovg olel kat apéxet Eva unxaviopod otov guest driver wote va
Tovg avtiototyioel oe MSI-X vectors. (201000, 010 pUnxavioud SPDK/VVU, to SPDK

de xpnowomnotel MSI-X vectors 8t0tt egappolet polling.

Movomnatt Aedopévwv

Me v 0AoKAfpwoN TNG apXIKOTOINONG TNG GLOKELNG, éxel dnpovpyndel To povo-
ndtt dedopévwv. Oa peletrioovpe €va amdo mapddetypa evog artrpatog read() oe
éva apyeio Tov Siokov, wate va dei§ovpe TN peTaPopd Twv SeSopEVWV Kal TWV HETA-

dedopévwv and akpn oe dkpr.

YnoBétovpe 6Tt fa Stepyacia OV TPEXEL OTO XWPO XPNOTN TNG EKOVIKNG HNXAVAS
master kavel read() o€ éva avolkTo apxeio mov eivat anodnkevpévo otov dioko vhost-
user-scsi. Yrobétovpe emiong o1t 1y Stepyaocia xpnotponotel to O_DIRECT flag wote
va mapakapyel Ty page cache tov muprva. Avtr n mapadoxn amAd anhomotel To agr-
YNué pag, kabwg de xpetaletat va aoxohnBobpe pe Tnv page cache, mov Sev eivat kat o
okomoG avTng TG dimhwpatikrc. To cvoTNHa apyeiwy 0To omoio elval amoBnkevpévo
10 apxeio, Ba petagpdaoet to aitnua og £€va ovvolo anod Block I/O autipata, ta omoia
kat tpowdei oto Block Layer tov mupriva. To Block Layer petaoynpatilet ta Block
I/O authpata og otrypodTuIa TG Sopng struct request kou ta mapadidet oto Request
Layer. To Request Layer epappolet ToArTikéG SPOHOAOYNONG TWV AUTNUATWY KaL, €V
téhel, mapadidet Ta artipata otov katdAAnho block device driver. Ev mpokeipévw, o

block device driver eivat o sd driver, mov eivat pépog Tov vroovotrpatog SCSI Tov

5. 2XEAIAXMOZ 27

nopriva. O sd driver petaoxnuartiCet To Block I/0 aitnpa oe €va aitnpa tomov SCSI
kat o mapadidet oto SCSI mid-layer. To SCSI mid-layer pe tn ogipd Tov To mapadidet
otov low-level driver, o omoiog ev mpokelpévw eivat o virtio-scsi driver Tov muprva.
O virtio-scsi driver petaoxnuartifet To aitnua oe £va aitnua TOTOL struct virtio_scsi_-
req_cmd. Ztn ovvéxela To TonobeTel 0Tn request virtqueue, XpnOLHOTOLWVTAG OOOVG
descriptors xpetdletat. O vhost target otnv ekovikr pnxavr slave, o omoiog mapa-
KohovOei TIg virtqueues oTn pvrpn Tov master pHEow TNG CLOKELVNG Virtio-vhost-user,
napatnpei Tovg véovg descriptors kat avacvvBétel To aitnua (kdvovtag petakd dA-
Awv kat petdgpaon dtevBvvoewv). To aitnua avtd mpowbeitat oto SCSI eninedo Tov
SPDK. To SCSI eninedo Bpioket oe motd ovokevn} (SCSI LUN) anevBvvetal To aitnua,
To petaoxnpatifel og éva avtikeipevo Tomov spdk_bdev_io (ecwtepikn avamapaotaon
Twv artnpatov Block I/0 oto SPDK) kat o mapadidet otov katdAAnho driver. Ev
TIPOKeEWEVW, To aitnua mapadidetal otov virtio-scsi driver Tov SPDK, wote tehika
va tapadofei oto tehko péoo amobnkevong. To telko péoco amobrkevong mpayua-
tomotelt DMA amnevBeiag otn pvrun tov master kat e§unnpetei o aitnua. O virtio-
scsi driver tov SPDK mapatnpei Tnv oAokApworn TOv ATHHATOG TIPAYUATOTOLWVTAG
polling mavw oTig virtqueues tng virtio-scsi cvokevng. Tote eldomotel Tov vhost target
KaAwvTag to kataAAnAo callback kat o vhost target kavet Tig katdAAnAeg tpomomnoun-
oelg ot virtqueue. TéAog, o vhost target eidomotei tov driver otn mhevpd Tov master
yta TV OAOKARPWOT) TOL AUTHHATOG LE TO VAL “YTUTNOEL” TOV KATAAANAO KaTaxwpnTh-
KovdovvL TNG ovokevrg virtio-vhost-user. H ovokevr “Papaet” Tov avtiototyo calltd

kat to KVM elodyet pia SLakomr| oTny €KOVIKE unxavi master.

Sopnepaopatikd, o pnxaviopos SPDK/VVU éxet tig €€ Vo onuavtikég i8totnteg:

1. to povomdti dedopévwy mapakapmntel oxedov e§ ohokAnpov tov endntn (QEMU).
Ynapyxovy, wotdo0, akdun dVo onpeia TOL ATALTOVY TH GUUUETOXT| TOV EMOTTN.
Zvuykekplpéva, ot eldomotroelg Tov slave Tpog Tov master yia TV oAokAnpwon
Twv artnpdtov I/0 péow twv callfds kat n mapaywyn eikovikwv Stakonmwv otn
nAevpd tov master. Kat ot dvo mepimtwoelg Oa umopovoav va mapakapedovv

av xpnotpomotovoape évav poll-mode virtio-scsi driver otn mAevpd Tov master.

2. n petagopd twv dedopévwy yivetal xwpic avtiypaga. Ta dedopéva petagpépo-
vtat anevBeiag and Tn pviun Tov master 0To TeEAKO HECO anodnkevong. Avti-

ypaga vidpxovv povo yia Ta peta-dedopéva, Ta omoia mepLypapovy kabe ai-

28

tpa I/0.

5. 2XEAIAXMOX

6. YAOIIOIHXH 29

6 YM\omoinon

o v vAomoinon tov pnxaviopov SPDK/VVU epyaotikape mavw ota e&ig épya
avotktov Aoylopkov: SPDK, DPDK, QEMU, VIRTIO. H vlomnoinon xwpiletat og dvo
KatevBuvoelg: 6TV OAoKANpwWoN TV TPOSLaypaPWV Kat TG VAOTIOINONG TG OVOKEVNG
virtio-vhost-user amo tn pia pepid, kat otn npoobnin aAllaywv ota SPDK-DPDK yia
v vrootrpi&n tov virtio-vhost-user transport and tnv dAAn pepld. g akoAovdeg

evoTnTeg mapatifetat avalvtikd ot alhayég mov kavape ota mpoavagepfévta épya.

6.1 AX\ayég otig mpodiaypagég TG ovokevrg virtio-vhost-user

"Ocov agopd Tig Tpodlaypageg TG ovokeLvng virtio-vhost-user, faclotrkape otnv
apxikn vAomoinon tov Stefan Hajnoczi'® kat mpooBéoape kamoteg aAhayés. Ztdxog
Hag eival n eVOWHATWOoT Twv TPodlaypapwyv avtwv 6To TpdTumo virtio. Ot ahAayég

IOV KAvayle givat ot e§ng:

1. dopbwoape kamola nooovog onpaciog Adon
2. mpooBéoape kamoleg emmA€ov anattrioel oto notification capability.

3. @povTticape woTe N MepLypa@n yia to shared memory capability va eivat og ovp-
@wvia pe to VIRTIO_PCI_CAP_SHARED_MEMORY_CFG capability mov emt-
Xepet va poaBéaet o Alan Gilbert oto virtio. H ovokevr) pag 0a Baoiletat oe

avTo To capability.

4. mpooBéoape pa AMoTa [e amalTioeLg TG omoieg pEmeL va akolovBei omotadr-

ToTe VAOTIOINOT TNG GVLOKEVNG 1) £vOG driver yla Tr cvokev).

2t ovvéxela, oteilape Ty avabewpnuévn ékdoon twv mpodiaypagwv ot mailing

list'® Tov virtio. AvTr| TN OTLYUr Avapévoupe yla oxOALa amod Ty KovoTnTa.

Yhttps://lists.oasis-open.org/archives/virtio-dev/201801/msg00110.html
$https://lists.oasis-open.org/archives/virtio-dev/201906/msg00036. html

https://lists.oasis-open.org/archives/virtio-dev/201801/msg00110.html
https://lists.oasis-open.org/archives/virtio-dev/201906/msg00036.html

30 6. YAOIIOIHXH

6.2 AX\ayég oty vAomoinon TG ovokevrg virtio-vhost-user

Ooov agopd tnv vAomoinomn NG ovokevng virtio-vhost-user oto QEMU, emiong Pa-
OloTHKapE 0TV apxtkn} vAomoinon tov Stefan Hajnoczi'”. Qot600, vAomoinon avty
TTAV NUTEANG KAl AaTtovoe apkeTeG aAAayég. ZTig akoloveg voevotnteg avakvo-

vtat ot alhay€g mov pooBéoayte.

Awaxwplopog tov kwdika ot frontend kat backend pépog

Mia ewovikny ovokevr| amoteleital and dvo pépn: to frontend pépog kat o backend
népog. To frontend pépog amotelei trnv vAomoinon twv ndépwv TG cvokevng PCI. To

backend pépog amotelel v vAoTOINON TNG AEITOVPYIKOTNTAG TG CVOKELVTG.

Ztn mepintwon NG CLOKELVNG virtio-vhost-user, éxovpe e§ayet OA0 T KWika OV aPopd
1o frontend pépog oto apyeio virtio-vhost-user-pci.c kol EXOVHE KPATHOEL TO KWOLIKA

nov vhomolel To backend pépog oto apxeio virtio-vhost-user.c.

YAomoinon dtakonwv wg andkpion o€ l00MO|0ELG TOV master

[TpooBéoape tn Suvatotnta yia mapaywyr Stakomwy émote o master “Papael” évav
kickfd. Avtr n Aettovpykotnta mpoPAEneTal and TG TPOSIAYPAPEG TIG CVOKEVTG,
aAla dev eixe vAomonBei. H ovokevn dnAavel Toug kickfds mov otéAvel o master oto
main event loop tov QEMU. X¢ 6 ovg tovg kickfds dnhwvet wg handler T ovvdptnon
event_notifier_set_handler(). H ovvaptnon avtn etodyetl Stakomég oTov guest kal Ka-

Aeitat and To main event loop 6mote o master “Papdel” évav kickfd.

Xprion tov unxaviopov ioeventfd yia tovg callfds

Ot callfds eivau ovoyxetiopévol pe kataxwpntég-kovdovvia (doorbells). ITpokeipévov
Va HELWOOVE TO KOOTOG TNG EIKOVIKOTIOINONG TwV pooPacewv ot doorbells, xpnotpo-
Tolovpe To unxaviopo ioeventtd tov KVM. Ztnv ovoia, avtd mov meTuXaivovle eival
071, 0o¢ mepinTworn mov o guest driver ypdyel o éva doorbell, to KVM “Bapdel” Tov

avtiotouyo callfd avti tov QEMU. Me avtd t0 Tpdmo yAvtwvovpe Ta context switches

https://lists.nongnu.org/archive/html/gemu-devel /2018-01/msg04806.html

https://lists.nongnu.org/archive/html/qemu-devel/2018-01/msg04806.html

6. YAOIIOIH>H 31

pHeta&d xwpov xprotn kat xwpov mupnva. Ta tn SnAwon twv callfds wg ioeventfds

XPTOLOTIOLOVE TT) OLVAPTNOT memory_region_add_eventfd().

YMomoinon twv virtio PCI capabilities yia Tovg mpocBetovg mopovg tnG cvokevig

Ot podiaypagég tng ovokevnig mpoPAémovy tn Xprjon virtio PCI capabilities yia tnv
Tunonoinon Twv Tpdobetwv mMOpwWV TNG oVoKELVHG. Me Tov Opo TPOTheTOVG TTOPOVG
avagepopacTe 0Tovg kataxwpntég-kovdovvia (doorbells), oTovg KataxwpnTég yla et-

domotroelg (notifications), kat 0T potpalopevn uvnun.

‘Exovpe vAomojoet tpia mpdobeta capabilities yia Tovg 1odpiBpovg mépovg TG ov-
okevrG. Ta capabilities apyikomotovvtatl and tn ovvdptnon virtio_vhost_user_init_-
bar(). Kabe capability cvoxetiCetar pe évav mopo. Ot mopot yia tovg doorbells, ta
notifications kat tn potpalopevn uviun tomoBetovvtal otov MMIO BAR 2 1ng ov-
okevnG. [ta tovg doorbells kat ta notifications opiCovue read()/write() handlers. Avto
yivetau katd T SnAwon Twv Topwv wg pépn Tov Xwpou dtevfhvoewv TnG oVoKeLNG He
T ovvaptnon memory_region_init_io(). TéEhog, cvoyetilovpe ta virtio PCI capabilities
HE TOLG avVTiOTOLXOVG TOPOLG Kat L0dyove Ta capabilities otn Alota pe ta capabilities

TNG OLOKEVNG Ke TN ovvaptnon virtio_pci_modern_region_map().

YAomoinon tov nediov UUID

Ot ipodiaypagég TnG cvokevng mpoPAénovy v vrapén evog kataxwpntr UUID pe
OKOTIO TNV TAVTOTIOINOT| TG GVOKEVTG At TOV 081y TNG CLOKELNG aveEapTHTWG TNG
SievBvvong PCI g ovokevnig. H tipry tov UUID opiletal katd Tnv apxikomoinon g

OVOKEVTG Kal TTPOKVTITEL e XPT\OT) TNG GLVAPTNONG gemu_uuid_generate().

6.3 AMX\ayég oto DPDK

Otarlayégoto DPDK emkevtpwvovtal kupiwg otn PrpAiodrkn librte_vhost, mov amo-
Telel TNV VAOTIOINOT) TOV HOVOTIATIOV EAEYXOV TOV TTPWTOKOAAOVL Vhost-user. Xkomog
elvat n vrootrpi&n Tov virtio-vhost-user transport. Ot aAlayég avalvovtal TG ako-

AovOeg vroEVOTNTEG.

32 6. YAOIIOIHXH

Ewoaywyn tng Soung vhost transport operations

H dnuovpyia pag yevikng dtemagng mov Oa vAomoteitar and kdbe transport emtpé-
TeL va éxovpe TOANanAd transports. Ev mpokepévw, xpetalopaote piag vomoinon
tov AF_UNIX transport - o tapadootakdg Hnxaviopog mov opiletal 6To TpwTokoAlo
vhost-user - kat po vAomoinon Tov virtio-vhost-user transport. Etodyovpue tn dopn
struct vhost_transport_ops, | omoia meptypA@et Tr SLEMAPT| TOV TPETEL VAL VAOTIOLEL TO

kaOe transport.

E§aywyn tov oxeti{opevov kwdika pe to AF_UNIX transport

®¢é\ovpe n VAoToinon TwV PnXaviopwy tov kabe transport va Statnpeitat oe Eexw-
pLotd apyeio. I avtd to oKkomd e&dyovpe OAeg TIG Aettovpyieg mov oxetifovtal pe TO
AF_UNIX transport ano ta apxeia socket.c kaw vhost_user.c kat TG Tomofetovpe oe éva
véo apxeio mov Aéyetal trans_af_unix.c. Me auTto TO TPOTO, UTOPOVLE VAl £XOVUE K-
Swka mov eivat potpaldpevog kat vAomoLei Aettovpyieg yevikeg kat yia ta dvo transports,
evw 0 e1dtkevpEvog kwdikag yta kdBe transport eivat cvppalepévog oe Eexwplota ap-

xela.

Ewoaywyn tov virtio-vhost-user driver kat Tov avriototyov transport

To virtio-vhost-user transport BaciCetat otnv opwvupn cvokevr). I avtd to Adyo
xpetalopaote éva driver yia tn ovokevry. O driver tomoBeteitan oto katdhoyo drivers/virtio_-
vhost_user. Ztnv idta tomofeoia elodyetat kat 1 vAomoinomn tov virtio-vhost-user transport

He To apxeio trans_virtio_vhost_user.c. Tio Tnv vooTpt&n Tov véov transport £Xovpe

evnuepwoel Ta oXeTikd Makefiles.

E§aywyn| Tov virtio-vhost-user transport uéow tng diemagng tng librte_vhost

O¢Aovpe éva pnxaviopd yia tnyv emAoyn avdapeca ota dvo transports. Iia To okomod
avTo, eloayovpe éva véo flag, to RTE_VHOST_USER_VIRTIO_TRANSPORT flag. To
flag avto mepvdrtal péow Tov devTEPOL OpiopATOG TNG CLVAPTNONG rte_vhost_driver_-

register() katvrodnAwvel 6TLeMOVOVE Tr XprjoLpoTOinoT TOV Virtio-vhost-user transport.

6. YAOIIOIH>H 33

2e nepintwon nov de xpnotpomnoteitat To flag, evvoeital 611 emAéyovpe To Tpokabo-
popévo AF_UNIX transport. H ovvdptnon avtr xpnopomnoteitat yio tn dnpovpyia

€vog véov vhost target.

6.4 AMN\ayégoto SPDK

Otalayégoto SPDK emikevtpdvovtat otny alonoinomn tov virtio-vhost-user transport
nov mapéyet N PLpAtodnkn librte_vhost tov DPDK. Ot aAAayég avaAvovtal 0TIg ako-

AovBeg vroevoTNTEG.

Evowpdatwon tov virtio-vhost-user transport otn fipAtodnkn libspdk_vhost

Enexteivovpe to API tov SPDK (JSON RPC calls kat configuration files) wote va ei-
vat duvatr 1 emloyn petadd Twv dvo Stabéoipwy transports and Tov Xprotn. Zv-
YKEKPIHEVQ, 1) eMAOYT] YiveTan pe Paon To ovopa Tov vhost controller. Av To 6vopa
eivau pa StevBvvon PCI, 101e 0 xprotng OéAet va xpnotlonouoet To virtio-vhost-
user transport kat) dtevBvvon PCI avapévetat va avtioTtotgel o€ pia ovokevr virtio-
vhost-user. Ze Sta@opeTikr mepintwon, o xpnotng emAéyet to AF_UNIX transport. O
¢\eyxog yta To 6vopa tov vhost controller yivetat otn ovvaptnon spdk_vhost_dev_-

register(), n| omoia xpnotlomoteitat ya n Snuovpyia evog véov vhost controller.

YnootrpiEn Tov viio o€ no-IOMMU mode

2t tonoAoyia SPDK/VVU Jev éxovpe kavéva AOyo va XprOLHOTIOL|COVE (Lo EIKO-
vikny IOMMU yia v ekovikr pnyavr slave. It avtd to okomo 0élovpe to SPDK va
unopei va xpnotpomnotei to viio kat oe no-IOMMU mode. To no-IOMMU mode dia-
npel v idta AettovpykdtnTa, dnhadn anevbeiog npdoPaocn otovg ndpovg pag PCI
OVOKELT|G ATtO TO XWPO XPHOTN, He HOVN Slapopd OTL SeV X PN OLHOTIOLOVE HETAPPAOELG

dtevBvvoewv yla Tig Aettovpyieg DMA G ovokevr|G.

Ta TG vootpién tov viio oe no-IOMMU mode xpetaotnkav o ardayés. H mpatn
aAhayn agopd oTo setup script (scripts/setup.sh). To script avtd, peta&d dAAwYV, kKdvel
bind ovokevég otov viio driver. Tpomonowmoape tn ovvOnkn eAéyxov wote va xpnot-

Homotei tov vfio driver oe mepintwon mov vidpyet o v Adyw driver, eite oe no-IOMMU

34 6. YAOIIOIHXH

mode, eite 0e x86 mode. H devtepn alAayn agopd oto vtophys mapping, SnAadr otov
e0WTEPLKO Tivaka petappdoewv Stevbvvoewv tov SPDK mov xpnotomnoteitat yia Tov
kaBoptopd Twv Stevbvvoewv DMA. Ze nepintwon mov xpnotponoteital o viio driver oe
no-IOMMU mode, kpatdpe VA-to-PA (virtual address to physical address) petagpa-
O€1G 0TO Tivaka avto. Xe mepintwon mov xpnotpomnoteitat o viio driver oe x86 mode,
dnhadn xpnopomnoteitar n IOMMU tov GvOTANATOG, TOTE KpaTAple HeTappaoels VA-
to-IOVA (virtual address to IO virtual address).

Enéktaon Tov memory map yua vootipin peta@pacewv un evbuypappiopéveoy

ota 2MB

H Soun twv memory maps tov SPDK, cvunepiapBavopévov tov vtophys map, ei-
vat dvo emmédwv pe to dévtepo eminedo va éxel wg Pabuo drapépiong ta 2MB. Avto
OTUAivVEL OTL OL HETAPPATELS IOV amoOnKevOVTAL APOPOVY THHHATA TOV ELKOVIKOV XW-
pov dievBivvoewv g Stepyaciag peyéBovg kat evBuypappiong 2MB. Avtn n emdoyn
elvau Oepitny oTIg MEpIMTWOELG OTIOV XpriotpomotovvTat viepoeideg (hugepages), S10t1,
€& opLopov, ot vriepoehideg (ot eikovikég StevBvvoelg oTig omoieg amekovifovrat) eival
evBuypappopéves ota 2MB. To mpoPAnua mpokvntel oto oevapio SPDK/VVU, 6mov
ot dtevBivvoelg ylo DMA avtiototyovv 0to Xwpo dtevfbvoewv tng ovokewvng virtio-
vhost-user, ot onoieg dev avtioTolyoOv oe LEPoeAidEG Kal, EMOUEVWG, OeVv ival ama-

paitnta evBvypappopéveg ota 2MB.

ITpog T0 TapoV, £xovpe ovpwvroel pe Tov Darek va mapakdpyovpe o mpdPAnua
auTtd pe To va kdvovpe mmap() OAovg Tov Topovg OAwv Twv PCI cuokevwv o€ etkovt-
K€ dlevBvvoeig mov eivau evBuypappiopéveg ota 2MB. O Telikdg 0TdX0G, OHWG, Elval
1 eméktaon TG SOUNG TwV memory maps, WOTE Va UTOPOVV VO KPATOVY HETAPPATELS

yta StevBvvoelg un evBuypappiopéveg ota 2MB.

AnAwon NG ovokevrg virtio-vhost-user cav otoxo yia Aettovpyieg DMA

Onwg avagépape oTnv TPONYOVUEVH VITOEVOTNTA, 0TO Hnxaviopo SPDK/VVU to te-
Ao péoo amoBnkevong kdvet DMA amd mopovg tng ouokevr| virtio-vhost-user. Avto
npovmobETeL OTLVTIAPYOVY pHeTaPpaoelg VA-to-PA oTo vtophys map mov avtiototyodv

oto xwpo dievbvvoewv NG ovokevng. Ia va yivel dpwg avtod, ya va Ppei Sniadn to

6. YAOIIOIH>H 35

SPDK 115 guoikég Stevbvvoelg mov avtiototyobv otov mmapped xwpo dievfvvoewv
NG OLOKEVNG, TIPETEL Vo X0V e SNAWOEL TN OLOKELT| 0TN AloTa g_vtophys_pci_devices
tov SPDK. To Aoape avtd otn ovvaptnon spdk_vhost_dev_register() pe to va SnAw-

voupe kdBe ovokevr| virtio-vhost-user otnv ev Adyw Aiota.

36

7. AEIOAOIrHXH

7 A§loloynon

e avtr) TNV evoTnTa Oa dovpe old eival Ta TAgovekTripata NG pebddov SPDK/VVU.

7.1

Kootog Eikovikomoinong

To KOGTOG ELKOVIKOTIONOTG AQOPA GTO KOGTOG TIOL £xeL 1) e§umnpétnon kabe artrpa-

106 I/0. H uébodog SPDK/VVU éxel onuavtikd petwpévo k00Tog oe oxéon pe dANeg

VTIAPYOVOEG TIPOOEYYIOELG. AVaAvTIKA, 1| ovpTepLPopd NG LeBodov wg mpog Tig dua-

QOpEG TNYEG KOOTOVG elKOVIKOTIOINONG elvat 1 €§n¢:

« e1domounoelg Tov guest 0dnyol cVOKELNG

To SPDK Paoiletal amoxetotikd og polling yia tn yvwotomoinon véwv attnud-
Twv I/0. T avtd kataotéAAel TG eldomoloelg amod Tov guest 081yd GLOKELT.
AvTo yivetar pe xprion tov VRING_USER_F_NO_NOTIFY flag, 6nwg avto opi-
Cetat oto mpoTuTo Virtio. O vhost target evnuepwvetat yia véa artjuata I/O
napakoAovBwvTag TG virtqueues 0T VAU TOv master péow TNG OLOKEVNG
virtio-vhost-user. ESw va onpeiwoovpie 0Tt vapxet éva mpooheto KOGTOG yLa TIG
TPOOPAcELG GTOV TTOPO Holpalopevng VNG TNG OVOoKeLNG virtio-vhost-user.
AvTo T0 KOOTOG TTPOKVTITEL Kol €§APTATAL ATTO TNG TEXVIKT ELKOVIKOTIOINONG TNG
HVIUNG. ZTOVG GVUYXPOVOUG ETEEEPYAOTES, 1] ELKOVIKOTIONOT TNG HVAUNG Elvat

vroBonBovpevn amod to VAo (PAéme [83]).

SLaKOTIEG ATTO T1 CLOKELT

O vhost target mpémnet va 0TéAvel eldomoinoelg oTov guest 08nyo oLOKEVNG OTNV
EIKOVIKT Hnxavr master yia Tng olokAnpwon Twv artnudtwv I/0. O unxavi-
ouog SPDK/VVU e@appolet vo Pertiotonooetg oto (rnua avto. H mpwtn
BeAtioTomoinon eivat 6TL Mpaypatomnolei ovyxwvevon Twv dtakomwyv. Anhadm,
avti va eldomolei Tov 08nyo oLoKeLN§ Yo TNV OAOKATpwOoT K&be aUTHATOG,
Tov eldomotei yla Tnv ohokAfpwon moAwv artnuatwv. H devtepn Pertiotonoi-
non eivat 6Tt T0 KOOTOG EIKOVIKOTIOINONG TWV SLAKOTIWV HELWVETAL LE TN XPTIoN
Twv pnxaviopwy ioeventfd/irqfd tov KVM. O pnyaviopdg vhomoinong twv dia-

komwv SovAevel wg e€ng: o vhost target “Papdel” éva doorbell tng ovokevr|g

7. AEIOAOIrHXH 37

virtio-vhost-user yia va oteilet pa eildomnoinon. To KVM npoocopoidvel avtn
v evépyela “Bapawvtag” Tov avtiotoryo callfd kat mpaypatonoiei VMENTRY.
>t pepta tov slave, to KVM Ba mapatnprioet 1o event otov callfd, 101t eivat
dnhwpévog oav irgfd. Qg andkpion oe avto to event, Ba oteiletl €va interrupt

OTNV €IKOVIKI Unxavr] master.

o efumnpémnon tov artnudtev I/0

O pnxaviopdg SPDK/VVU vioBetei 0Aa ta mheovektrpata tov SPDK wg éva
framework yla amodotiké I/0 pe ovokevég amodrkevong. Avta Ta TAEOVEKTH-
pata eivat kupiwg n arodotikotnta (efficiency) kau n kKAtpakwopotnra (scalability).
Anodotikotnta edw onpaivel 6t To SPDK ypetaletat Atydtepovg muprveg va
ektelovv I/O wote va metvyel 1o idto IOPS pe tov muprva tov Linux. Me dAa
Aoy, pmopovpe pe Atydtepovg muprveg yia I/O va kaAOWov e TIG avaykeg yla
amoONKEVTIKN AELTOVPYIKOTNTA TIEPLOCOTEPWY EIKOVIKWVY HNXavWYV. AvTo eivat
tSlaiTepa ONUAVTIKO KaBWG EMITPETEL VO £XOV|LE TTEPLOCOTEPEG ELKOVIKEG HNXOL-
VEG avd QUOLKO pnxavnua, SoTt éxovpe meploodTEPOVG VPN VEG Stabéotpovg
yta vtohoytoTikd goptia. Khipakwopotnta onpaivet 6Tt popodpe avéavo-
VTag, eite Tov aptlBpd twv mupnvey, gite Tov aptBuod twv diokwv, va avgroovpe
1o throughput. Kot ta §00 avwtépw mAeovekTnpata Loxvovv 0T TEPIMTWON
TIOV TIOPAKAUTITOVUE AT PWG TOV TTVPHVA 0TI HePLd Tov slave. AnAadn ot me-
PITTWOT) IOV XPNOLUOTIOLOVLE WG TEAKO [éco amobrikevong évav passthrough

dioko.

Eva eniong onpavtikd meovéktnua tov pnxaviopov SPDK/VVU mov mpokd-
nret and 1o SPDK eivat 6Tt Sovhevel xwpig avtiypaga 0To povomdtt Sedopévwy.
AnAadr), To Teko péco anmobrkevong kdvet DMA amevBeiag otn pvrun tng et-

KOVIKNG UnXavrG master.

7.2 Aocg@dalea

Amé mAevpdg ao@aleiag, eival TPOPAVESG OTLTO Va “TpEXOove” TO AOYLOULKO EIKOVIKO-
noinong (SPDK) péoa o€ pia elkoVIKT Unxavr eival cagwg mo ac@arég and To va To

“Tpéxovpe” 010 XWPO XP1ioTN 0TOV host.

38 7. AEIOAOIrHXH
7.3 Metagopd EAéyxov oto Xpriotn

2y eoaywyikn evotnTa avagepOnkape oe avTd TO XAPAKTNPLOTIKO e TNG £Vvola
“evei&ia”. Avtr) eivat iowg n onpavTikoTepn W8LOTNTA TOL UnXaviopod SPDK/VVU oe
oxéon pe dANeg Tpooeyyioels. ZvvioTd HAlloTa KawvoTopia kabwg dev mpoogépeTal
Tétolov €idovg vmnpeoia anod kdmoto dnuocto mepiPariov végoug. Io avalvtikd, o
Hnxaviopog SPDK/VVU emitpénel otovg xprioteg oe éva meptPAAAOV vEQOug va éxovv
TOV AP €AeYXO TWV GLOKELWV amoBnKkevonG TOL Tovg Sivel 0 TApPoxog. O ekdoToTE
XpNotng mapalapPavet €vav guokod dioko amd Tov mdpoxo Kat £va cOVolo amnd el-
KOVIKEG unxavég omov Ba Tpéet TIG epappoyég Tov. O xproTng Umopel HeTémetta va
Xelptotei Tov Sioko Omwg vopiler. Mmopel va Tov HoLpadet avapeoa OTIG ELKOVIKEG n-
XAVEG TOV, HTTOPEL VAL TOV PETAKLVEL amd TN pio eKOVIKH unxavhy otny aAln xwpig va
XPeLadetat emMavekKIvioels, kat o0tw kabefng. Amd tn pepld Tov mapdxov, o pnxa-
VIOHOG avuTog eival amoAvTwG acalns, kabwg o XproTng mPATTEL OAEG TIG EVEPYELEG

AUTEG PECA OF LA ELKOVLKT] HNXAVT).

Ext6¢ amod v eveliia 660V agopd T0 Xelptopod Twv SioKwy, 0 XproTngG EXELEMONG TNV
evehi&ia 6oov agopd to povoratt Sedopévwy. O pnxaviopdg SPDK/VVU napéxet oto
XPNoTn TAfpn éAeyxo 0To povomaTt dedopévwy. AvTd onuaivel OTL propel 0 XprioTng
va kdvel puBuioelg pe Paon g epappoyn mov Béhel va tpékel, 1600 0TN UepLd TOV
guest TP VA OTNV EIKOVIKT] HnXavr master, 600 kat oTn peptd Tov SPDK vhost target

OTnV elKOVIKN Unxavr slave, wote va éxet tn péytotn dvvarr anddoorn.

8. EIIIAOIOX 39

8 Emiloyog

8.1 Amortiunon

O oxedaopog kat n vAomoinon tov pnxaviopov SPDK/VVU nepieddpPave evaoyo-
Anon pe ToANA épya avolkTov Kwdtka kot aAAnAemidpaon e TIG avTioTolyeg Kovo-
Mtec. O anTepog 0TOX0G Hag e&apyng NTay, OXt HOVO 1) VAOTIOINGT) TOV HNXAVIoHOD
SPDK/VVU, aAAd kat 1 eVOWHATWOT] TOL 0T avTIoTOLKA £pYa AVOLKTOV Kddika. Av
Kat 0To SdoTNHA CVYYPAPNG TNG TTapovong StmAwpatikig o 0ebTepog 0ToX0G dev
éxel OAOKANpwOei, £xovpLe ONUELWOEL ONUAVTIKE TPO0JO PO avTh TNV KatévBuvon.
‘Exovpe Kata@épel va eVOWHATWOoOoLE KaToteg alayég oto SPDK'® kat éxovpe ka-
TalngeL oe ovpgwvia pe T KowoTnTa o€ Kdnoteg dANeg'’, ot omoieg Ba evowpatw-
Bolv kit avTég apoTov mepdoovpe To virtio-vhost-user transport 6cto DPDK. Exovpe
emiong oteilel éva ekTeveg TakéTo allaywv oto DPDK?® yua tnv evowpdtwon tov
virtio-vhost-user transport otn BipAoOnkn librte_vhost. Avapévoope oxdAia anod
KOWVOTNTA TTAVW 0€ avTd. ZXETIKA [E TH) OVOKELT Virtio-vhost-user, éxovpe oteilel éva
TakeTo alaywv otn Aiota virtio-dev?! yia Tig podiaypagég TG OVOKELHG KAt ava-
névoupe oxohta. Téhog, éxovpe oteilet éva mail otn Aiota Tov QEMU?? 610 omoio
napadétovpe To PeATiwpévo kDSIKa TNG GVOoKEVNG Kat (NTape yla oo/ Tapatnpn-

OclG.

Avagopikd pe Ta emOpEVA PriHATA, TPWTOG OTOXOG elval 1) EVOWHATWOT) TOL Virtio-
vhost-user transport cto DPDK. 2t6x0¢ eivatn oAokAnpwon avtov otnyv ékdoon 19.11.
[TapaAAnha, Bélovpe va mpoxwpnioet n Stadikacia ya Ty £ykpilon Twv mpodiaypa-
@WV NG ovokevng virtio-vhost-user. H ov{ftnon avapévetal va evradei petéd tnv oho-
KANPpwOoT £vOG AAAOV TIPOYEVEGTEPOV TIAKETOV AAAAYWV TTOV eKKpepel. AUEOWG HETA
™V €ykplon Twv mpodiaypapwy, Ba evreivovpe) dtadikacia yla TV eVOwHATWON
G vAomoinong tng ovokevng oto QEMU. Télog, apdTov £€Xxovv oAokAnpwbei Ta avw-
Tépw, Ba (nrrioovpe and) kowvdTnTa Tov SPDK va mepdoet Tig mpoouppwvnOévteg

aAlayég yla tn xprjon Tov virtio-vhost-user transport oto SPDK.

Bhttps://review.gerrithub.io/g/owner:+Dragazis+status:merged
Yhttps://review.gerrithub.io/g/status:+open+owner:+Dragazis+repo:+spdk/spdk
http://mails.dpdk.org/archives/dev/2019-June/135116.html
2https://lists.oasis-open.org/archives/virtio-dev/201906/msg@@036.html
22https://lists.gnu.org/archive/html/gemu-devel/2019-04/msg02910. html

https://review.gerrithub.io/q/owner:+Dragazis+status:merged
https://review.gerrithub.io/q/status:+open+owner:+Dragazis+repo:+spdk/spdk
http://mails.dpdk.org/archives/dev/2019-June/135116.html
https://lists.oasis-open.org/archives/virtio-dev/201906/msg00036.html
https://lists.gnu.org/archive/html/qemu-devel/2019-04/msg02910.html

40 8. EIIIAOI'OX
8.2 Melovtikég Enektaosig

Ynapyxovv Stagopeg mpoTtaoels ya peANovTikr dovAeld mavw oto unxaviopo SPDK/VVU.
[a mapdaderypa, Oa propovoape va eumhovticovpe T Aiota pe ta CI tests Tov SPDK
He tests yia To virtio-vhost-user transport. Eriong, Oa pmopovoayie va evowpatwoovpie
To pnxaviopnd SPDK/VVU ota Katacontainers[86]. Na €xovpe dnhadr pa etkovikn
HNXavn EAEYXOUEVN ATIO TO XPHOTN TIOL VA TTPOOPEPEL VYNATG anddoong vinpeoieg
anoBnkevong oe containers. Mia dAAn eviagépovoa enéktaotn 6cov agopa to SPDK
Ba frav n vhomoinomn evog ovotiuatog apxeiwv mavw and to Block Layer. Avto Oa
nrav laitepa XproLpo wote va umopodv epapuoyég va alAnAemdpovv anevbeiag pe
ovokevEg anofnkevong péow tov SPDK. Ia mapddetypa, Oa uropovoape pe avtd 10
TpOTO va avTikataotiioovpe oty Tomohoyia SPDK/VVU tov muprva oTnv €lkovikn
unxavn master pe SPDK, éxovtag ev TéAet éva povondtt Sedopévwy am’ dkpn o€ dkpn
amokAeloTIkd 0To XWpo Xpnotn. Emmnpdobeta, Oa pmopodoape va tpomomotrjoovpe
Stemagn} pe to xpnotn yla Ty emhoyn transport. YnevBupifovpe 6tL oty TpéYOoVTQ
vlomoinorn to emhexév transport kaBopiletar pe fdon to dvopa tov vhost controller.
Mia 1o katdAAnAn mpooéyyton Ba fTav n enéktaon Tng dtemagng pe TNy eilcodo piag
VEOG TIAPAUETPOV —trtype AOKAELOTIKA YU avTd To okoTo. Téhog, Ba umopovoape va
enekTeivovpe Tn Sopr Twv memory maps 0to SPDK. Onwg éxovpe mpoavagépel oTnv
eVOTNTA TNG VAoToinomngG, N KAigaka (granularity) Twv petagpdoewv (evbuypdppion
ota 2MB) eivat 1dlaitepa meptoploTikn. Avtd agopd téoo To unxaviopo SPDK/VVU
000 kat aAAeg mepunTwoelg xprong tov SPDK. H mpogavig Avon eivat n mpooBrikn
evog emmAéov emmédov khipakag 4KB otn dopn twv memory maps. Q0TtO00, i Té-

Tola alAayn povoBéTet curTnoN e TNV KovoTNTA.

Introduction

1.1 Purpose

The problem we are engaging with in this diploma dissertation is optimizing storage
virtualization in the cloud. Nowadays, there is an ever increasing amount of appli-
cations running in the cloud in containerized environments. Many of these applica-
tions are stateful, which means that they need some kind of persistent storage to keep
their data. More specifically, the high-performance cloud computing applications
have raised great demands on the I/O performance of modern datacenters. Therefore,
it turns out that the performance of the I/O datapath is becoming a significant factor
in the cloud. Currently, there are various storage virtualization approaches. However,
it seems that little effort has been put on optimizing those approaches in terms of per-

formance, especially for the new high-performance storage devices like NVMe SSDs.

Nonetheless, optimizing storage virtualization is not just about improving the I/O per-
formance. Another aspect of storage virtualization is security. The emulated storage
devices are implemented in software. Therefore, they are prone to bugs that may be
adding security holes in the system. Security is more important in cloud environments
where multiple users have access to virtual machines running on the same physical

machine.

Another problem with the existing storage virtualization solutions is that they are en-
tirely configured by the cloud provider. In other words, the user has no control over
his storage devices. Based on the type of the workload that he wants to run, the user

orders beforehand from the cloud provider the types of emulated or physical disks that

41

42 CHAPTER 1. INTRODUCTION

he wants to offer to his VMs. This means that the end user has no control over the I/O

datapath and he cannot rearrange his emulated hardware on the fly.

This is a feature that we will be referring to from now on as “flexibility”. It would be
a breakthrough if we could transfer the control of the emulated storage devices from
the cloud provider to the end user. This means that the user would gain control of his
storage. The user would have the flexibility to bring his own customized storage to his
apps. In other words, the user would have full control of what his applications would
see as storage devices and how the I/O processing would have been done by his storage
software. This is what we call here “User Defined Storage”. We strongly believe that this

would unlock new capabilities in terms of storage management in the cloud.

In this diploma thesis, we are going to introduce a new storage virtualization solution

that combines high performance, security and flexibility.

1.2 Motive

The technological evolution in the field of computer storage is revealing new poten-
tial as far as I/O performance is concerned. We have moved from the low spinning
disk drives to the SATA solid state drives, then to the NVMe solid state drives (thus
getting rid of the SATA controller latency by attaching the device directly to a PCle
endpoint) and recently to the NVMe solid state 3D crosspoint devices [1] (eg. In-
tel Optane SSDs). The new solid state media offer lower latency, higher throughput,
higher parallelism against the old rotational hard disks. Unfortunately, the current
software (kernel storage stack) is not making the full out of these new storage media,
because it has been designed to work well regardless of the underlying storage me-
dia. Nonetheless, we have reached to a point where the software latency has become
comparable to the hardware latency due to the evolution of hardware. So, it turns out
that hardware evolution has created the need for restructuring the corresponding stor-
age software. Reducing the overall I/O latency even further involves re-designing the

software to meet the demands of the modern hardware.

What is more, the I/O virtualization overhead in Virtual Machines is critical in cloud
services. In the cloud, users run their applications on top of emulated hardware. And

nowadays, there is an ever increasing amount of high-performance cloud computing

1.3. EXISTING SOLUTIONS AND SPDK/VVU 43

applications (eg. machine learning), thus turning the I/O virtualization overhead into
an important issue. However, judging from the existing storage virtualization solu-
tions, it seems that the storage performance in virtualized environments has not been

adequately improved. There is enough room for improvements in this field.

Finally, we argue that there is currently limited flexibility when it comes to IaaS in pub-
lic clouds. The users cannot adjust the storage devices for their VMs. This is currently
the cloud provider’s responsibility. The reason is that there is no secure way for sup-
porting this. Here, secure means that the end users should have access only to Virtual

Machines.

1.3 Existing Solutions and SPDK/VVU

There are plenty of storage virtualization solutions and many ways to categorize them.

Based on the different criteria, we have the following categories:

1. Virtualization Techniques

o full device emulation (trap and emulate):

the device is emulated by the hypervisor (eg. QEMU) on host user space

o paravirtualization (VIRTIO [2]):

the device is still emulated by the hypervisor. However, the I/O perfor-
mance is better, because the guest drivers have been optimized to produce

less VMEXITs per I/O request, thus reducing the virtualization overhead.

o direct device assignment (passthrough) with vfio [3]:
the device is a physical device attached on the host PCI bus. The device is
assigned to a virtual machine. The device’s PCI resources (PCI Configura-
tion Space, memory address space, port address space, interrupt vectors)
are exposed directly to the guest system. This technique achieves near-

native performance.

« mediated passthrough (mdev) [4]:

the device is exported as multiple virtual devices by the host kernel. The

host kernel exposes as many physical units of I/O operations (eg. HW

CHAPTER 1. INTRODUCTION

I/0 queues, MSI vectors) as possible directly to guests. This method is
a combination of full device emulation and vfio-based passthrough. Its
purpose is to combine the near-native performance of direct passthrough

with the device sharing feature of full device emulation.
2. Backend Device Emulation (I/O Datapath)

o QEMU user space device emulation:

the I/O requests are emulated by the hypervisor and they are implemented
as read/writes to a disk image, which is a file on the local host filesystem.

So, the guest storage device is backed by a file on the host filesystem.

« kernel device emulation (vhost [5]):
the I/0 datapath is offloaded from the hypervisor (QEMU). The device is
emulated by the kernel vhost subsystem. Thus, we have an in-kernel I/O
datapath, which means that the I/O datapath stays entirely inside the host
kernel. There is no need for QEMU intervention, and thus there are no
context switches from host kernel space to host user space. Vhost works
with shared memory, that is it has full access to the whole guest physical

memory.

« user space device emulation (vhost-user [6]):

the I/O datapath is offloaded from the hypervisor (QEMU) and imple-
mented in a separate process on host user space. This mechanism is a
variation of the in-kernel vhost implementation. Like vhost, vhost-user
works with shared memory. Overall, this technique can perform better
that the kernel storage stack if we replace the kernel with efficient user

space drivers (this is what SPDK does)
3. Storage Protocol

o virtio-blk:
dedicated paravirtualized storage protocol. It bypasses the guest kernel
SCSI subsystem.

« SCSIL:

storage protocol used by many types of storage devices (eg. virtio-scsi de-

vices)

1.4. STRUCTURE OF THE DIPLOMA THESIS 45

o« NVMe:

performs better for non-volatile media by taking advantage of their inher-

ent properties (low latency, high parallelism, high throughput)

In the following chapters, we are going to study a storage virtualization solution based
on vhost-user protocol, SPDK and the virtio-vhost-user device. We call this new stor-
age virtualization solution “SPDK/VVU?”. The basic idea is to keep the user space de-
vice emulation, like in case of vhost-user, but perform the device emulation inside a
dedicated Storage Appliance VM instead of host user space. This requires extending
the vhost-user mechanism so that the device emulation software - in our case the SPDK
- has still access to the VM’s memory. This extension of the vhost-user machanism is
implemented via the virtio-vhost-user device. We will also need to add some changes

in the SPDK code-base to support this new communication mechanism.

What we get with SPDK/VVU is great I/O performance due to vhost-user and SPDK,
better security because the device emulation is performed inside a containerized envi-
ronment (that is a virtual machine), and flexibility in the sense that the Storage Appli-
ance VM belongs to the end user, and thus the end user has full control of the dataplath.
It is important to say that despite the fact that the I/O datapath goes through a Virtual
Machine, the I/O performance is not reduced, because the aforementioned technique

bypasses almost completely the hypervisor from the I/O datapath.

1.4 Structure of the diploma thesis

The rest of this diploma thesis is organized as follows:

o Chapter 2: this chapter resumes the background knowledge that is necessary to

follow up with this diploma thesis

o Chapter 3: here we give an introduction to the SPDK framework. We give a
brief description of its purpose, its architecture and its key components. The
purpose of this chapter is to give the reader an overall understanding about the

purpose of the SPDK framework and how it works.

46

CHAPTER 1. INTRODUCTION

 Chapter 4: in this chapter we introduce the vhost protocol. We emphasize on

the user space implementation of vhost (also called “vhost-user”), because we

are not interested in the kernel space implementation in this diploma thesis.

Chapter 5: in this chapter we introduce the design of SPDK/VVU, our storage
virtualization solution that relies on SPDK and the virtio-vhost-user device. We
are going to explain how the virtio-vhost-user device extends the vhost-user
mechanism, how the SPDK vhost code is organized and what we have to do in

order to support this new setup.

Chapter 6: this chapter describes the internals of the actual implementation with

references to the code.

Chapter 7: here we attempt an evaluation of SPDK/VVU as a cloud-oriented
storage virtualization solution. We first explain the source of the virtualization
overhead. Then, based on our previous conclusions, we make a comparison
among the pre-existing storage virtualization solutions. Note that the compar-
ative evaluation is constrained on qualitative criteria. In other words, we are

deliberately not resorting on performance measurements in this thesis.

Chapter 8: in this chapter we are assessing our current state and describing our
next steps. We are also outlining some proposals for future improvements and

enhancements on SPDK/VVU.

Background

2.1 Port1/O and Memory Mapped I/O

Port I/0O (PIO) and Memory Mapped I/O (MMIO)([7] are two methods of perform-
ing I/0O between the CPU and peripheral devices. They are collectively referred to as
“Programmed I/O”, meaning that these methods rely on CPU instructions in order to
move the data from main memory to device memory, and thus occupying the CPU.
The other alternative is Direct Memory Access (DMA), where devices perform I/O

from/to physical memory without the CPU intervention.

From a software perspective, PIO is being performed by special-purpose instructions
that operate on a separate port address space, which is distinct from the processor’s
memory address space. PIO is not supported by all architectures. While some CPU
manufacturers implement a single address space in their chips, others have decided
that peripheral devices are different from memory and, therefore, deserve a separate
address space. Some processors (most notably the x86 family) have separate read and
write electrical lines for I/O ports and special CPU instructions (eg. IN/OUT in x86)
to access ports. Other processors, like ARM, do not have this functionality, hence

exclusively relying on memory mapped I/O for device manipulation.([8] chapter 9)

On the other side, MMIO is being performed with the same instructions used for ac-
cessing the main memory. During the bootup process, the BIOS maps the PCI device
memory regions to the processor’s memory address space. Whenever a memory access
is attempted by the CPU, the Northbridge redirects the memory access either to the

main memory or to a specific device based on the instruction’s source/target address.

47

48 CHAPTER 2. BACKGROUND

2.2 PCI, PCI device resources

PCI ([9], [8] chapter 12) is a local computer bus for attaching hardware devices to a
computer. PCI is standardized. It is a complete set of specifications defining how dif-
ferent parts of a computer should interact. The PCI architecture was designed as a
replacement for the ISA standard, with three main goals: to get better performance
when transferring data between the computer and its peripherals, to be as platform
independent as possible, and to simplify adding/detecting/configuring/removing pe-
ripherals to the system (this utility is referred to as “Plug-and-Play” and is inherent to

the PCI bus as opposed to older buses like ISA).

Each PCI peripheral is identified by a bus number, a device number, and a function
number. The PCI specification permits a single system to host up to 256 buses, but
because 256 buses are not sufficient for many large systems, Linux now supports PCI
domains. Each PCI domain can host up to 256 buses. Each bus hosts up to 32 devices,
and each device can be a multifunction board with a maximum of eight functions.

Therefore, each function can be identified at hardware level by a 16-bit address, or key.

PCI devices have their own address spaces. Specifically, PCI devices have three address
spaces: PCI memory address space, PCI I/O address space, and PCI Configuration
space. The hardware circuitry of each peripheral board answers queries referring to
these address spaces. The first two address spaces are shared by all the devices on the
same PCI bus (i.e., when you access a memory location, all the devices on that PCI bus
see the bus cycle at the same time). The configuration space, on the other hand, exploits
geographical addressing. Configuration queries address only one slot at a time, so they

never collide.

The PCI Specification defines that each PCI device has a PCI Configuration Space
Header. The PCI Configuration Space Header is a set of device registers that allow the
system to identify and control the device. The structure of the Configuration Space
Header is standardized. The most important registers in the PCI Configuration Space
Header are the Vendor ID, Device ID, Base Address Registers (BARs) and Capability

Pointer.

The Vendor and Device ID registers identify the device, and hence they are used by

the kernel to probe the corresponding device driver. The BARs are the interface for

2.3. PCI EXPRESS 49

accessing the device’s memory regions and I/O ports. In specific, the BARs contain
the physical addresses where the device’s memory regions and I/O ports have been
mapped in the processor’s memory and port address spaces respectively by the BIOS.
From the BAR’s msb we can tell whether this BAR refers to PIO or MMIO. The BARs
can also give us the size of each region. In specific, the device driver learns the size
of each region by writing all ones to the BAR bits and reading back the register value.
The PCI Configuration Space Header contains 6 BARs. However, there is an optional
7th BAR that can be used to point to the device's ROM. A PCI device may be equipped
with a ROM which can contain driver code or configuration information. BIOS runs
each device's ROM code during the POST [10] phase. Last but not least, the capability
pointer points to the first capability in the device capability list. PCI capabilities allow
more parts of the configuration space to be standardized. Each capability has one byte
that describes the capability type, and one byte to point to the next capability. There
are various types of capabilities, either generic ones (eg. MSI capability) or vendor-
specific (eg. virtio capabilities [2]) ones. The full list of capabilities can be found here.
The capabilities are often referring to configuration structures located in the device’s
memory address space or I/O address space. The capability pointers contain the phys-

ical addresses for those structures.

2.3 PCI Express

PCI Express (PCle) [11] is a computer bus specification, designed to replace the older
PCI, PCI-X and AGP bus standards. In fact, PCI express was designed to replace PCI
while making sure it is software compatible with PCI. This means that older PCI soft-
ware systems will still be able to detect and configure PCI express cards, although with-
out the PCI express features. Apart from the software compatibility and the same us-
age model with respect to read/write I/O memory transactions, PCI express has made
a number of improvements over PCI. PCI express uses serial bus technology whereas
PCl is based on parallel bus. This reduces the number of I/O lines connecting the PCI
express devices, thereby reducing the board cost and the board complexity. This also
allows to increase the transmission frequency, thereby providing better throughput.
PCI express also allows to scale bandwidth by providing support for multiple links.
Links can be scaled by a factor of 2, 4, 12, 16 or 32. Links are made up of lanes. A x1

https://elixir.bootlin.com/linux/v4.8/source/include/uapi/linux/pci_regs.h#L197

50 CHAPTER 2. BACKGROUND

connection, the smallest PCle connection, has one lane made up of four wires which
implement a full duplex connection. A x1 connection can carry 1 bit per cycle in both
directions. A x2 connection can carry 2 bits per cycle and so forth. Subsequently, x16
connections are capable of handling I/O intensive devices like graphics cards. PCI ex-
press has been designed only to be software compatible with PCI, so you can't have a

PCI express card inserted into a PCI slot or a PCI card inserted into a PCI express slot.

The components in a PCle topology are [12]:

» Root Complex: this is the host controller presented to the SoC. It connects the
processor and memory to the PCle devices. The root complex is integrated into
the chipset. It provides slots, which are called Root Ports, using which other

PCle devices can be connected to the system.

« PCle Endpoint: this term refers to each PCle card connected to the PCle trans-
port. Usually, it is either a controller (SATA, SCSI, USB) that has a device con-
nected to it or a device directly attached to the PCle transport (eg. NVMe disk,

graphics card).

o PCI express address space: the address space for the PCI express bus. It can
be either 32 bit or 64 bit depending on the root complex. This address space is
visible only to the PCI express components like the root complex, the endpoints,

the switches and the bridges.

 Bridge: component used to connect a PCI or a PCI-X device to a PCI express

root complex

 Switch: component used to connect multiple PCI express devices to the root
complex. Usually, a switch is being used if there are not enough slots present in

the board.

The topology goes as follows:

The root complex connects the CPU with the rest of the PCI express devices. It is part
of the chipset (also called “Host Bridge” or “North Bridge”). In modern CPUs, where
the host bridge is integrated inside the SoC, the root complex is part of the SoC as

well. The CPU uses the root complex to communicate with any of the PCI express

2.3. PCI EXPRESS 51

devices and the root complex can interrupt the CPU for any of the events generated by
the root complex itself or any of the PCI express devices. The root complex can also
directly access the memory without CPU intervention. Root complex offers a set of

“root ports” where other PCI express devices can be connected.

PCI express uses point-to-point topology, which means a single serial link to connect
any pair of devices. Each link is full-duplex and can be made of multiple lanes, thus
offering greater bandwidth. Each lane is a data stream that allows for a bidirectional

bit transfer per cycle.

Inside the root complex, there is a host bridge that connects the CPU to the multi-
ple root ports. These root ports are nothing but “virtual PCI-to-PCI bridges”. These
bridges are connected to the root bus spawned by the host bridge which is “Bus 0”.
Each virtual PCI-to-PCI bridge spawns a new PCI bus using which other PCI express

devices can be connected.

Similarly, in the case of a switch, the point-to-point topology is achieved by using mul-
tiple PCI-to-PCI bridges. There is one virtual PCI-to-PCI bridge for the “upstream

port” of the switch. The rest are used for the “downstream ports” of the switch.

An abstract overview of a PCI Express topology would look like this:

PCI Express: Architecture

[1 PCldevices

m
PCle Root Port P P
bridge
CPU i
PCle Root Port
|, __PCle Root Port

Figure 2.1: PCI Express Topology

Each bus is assigned a number by the BIOS during the bus scan and enumeration pro-

cess. These bus numbers are used by bridges or switches in order to root the transac-

52 CHAPTER 2. BACKGROUND

tions. So, each bridge or switch will have information about three bus numbers. One
is the “primary bus number” which tells the bus to which this bridge/switch is con-
nected. The “secondary bus number” is the lowest bus number which can be reached
through this bridge. The “subordinate bus number” is the highest bus number that can
be reached through this bridge.

PCl express also does not use dedicated IRQ lines, unlike PCI which has four dedicated
IRQ lines. It uses “inband signaling” even for interrupts. These are called “Message
Signaled Interrupts” or “MSI” in short. However, PCle also supports a Legacy interrupt

mechanism [13].

PCle offers two important features that concern this diploma thesis:

1. the device transactions are tagged with a Requester ID. This means that the root
complex knows from which device the request came from. This is possible in
PCle due to the point-to-point connection against the bus topology in PCI. This
feature enables creating distinct IOVA domains for each PCle device, and thus
achieving device isolation. Device isolation in terms of DMA transactions is

necessary for secure device passthrough in virtual machines [14].

2. Address translation Services (ATS). ATS enables the PCle Endpoints to request
the DMA address translations from the IOMMU and cache the translations, thus
alleviating IOMMU pressure and improving the hardware performance in the
I/O virtualization environment. In short, it is a cache for IOMMU translations

[15].

2.4 QEMU/KVM

QEMU [16] stands for “Quick Emulator”. It is a full system emulator meaning that it
can emulate a full computer system, including CPU, memory and peripheral devices.

However, it can also be used as a CPU emulator.

QEMU can be used to run machine code compiled for any architecture to a different
architecture. For example, we can run MIPS code on x86 host CPU. This is achieved
with dynamic binary translation (also called Just-in-Time compilation) performed by

QEMU’s Tiny Code Generator (TCG) [17].

2.4. QEMU/KVM 53

In case we want to run x86 code on x86 architecture, then it would be an overkill to
use the TCG. In such case and given that the CPU has virtualization features (eg. Intel
VT-x[78], VT-d[55]), we can use the KVM kernel module to run x86 code natively on
the host CPU.

KVM [18] [19] stands for “Kernel Virtual Machine”. It is a hypervisor that takes advan-
tage of the hardware virtualization extensions present in modern Intel and AMD CPUs
for safely executing guest code directly on the host CPU, thus achieving near-native
performance. KVM emulates some hardware components like the MMU (shadow
mmu) and the interrupt controllers (8259 PIC, APIC, IOAPIC, LAPIC). It also han-
dles the guest processor state (Virtual Machine Control Structure or VMCS in x86)
and injects virtual interrupts to the guest in case of no hardware assistance. How-
ever, KVM is not a full system emulator in the sense that it can not emulate peripheral
devices. This is why it is commonly used alongside QEMU. KVM uses the CPU’s vir-
tualization extensions in order to safely run guest code natively on the host CPU and

relies on QEMU to do the device emulation.

From an API standpoint, KVM is a kernel module. The KVM API consists of a set of
ioctls [20] [21] that are issued to control various aspects of a virtual machine. The ioctls
are issued on file descriptors. The primary KVM interface is the character device file
/dev/kvm/. There are also some ioctl types that return other file descriptors. In general,
the KVM API consists of a set of ioctls that involve spawning a new VM, registering its
memory, registering PIO and MMIO PClI regions, registering its virtual CPUs, creating
interrupt controllers (or irqchips in KVM terminology), injecting virtual interrupts to

the guest, starting executing guest code, etc.

In hardware-assisted virtualization, which we are considering here, the privileged CPU
instructions (like IN/OUT/LOAD/STORE) and privileged CPU operations (like writ-
ing to CR3 register) are emulated by the hypervisor (KVM) [22]. This means that the
CPU runs guest code natively but traps whenever a privileged instruction is executed.
At the same time, running host code (including privilege instructions) should nevel
trap. This differentiation is implemented in hardware with the privilege levels. In gen-
eral, the convention is that privilege level 0 corresponds to host code and privilege level
-1 corresponds to guest code. In x86 architecture with VT-x support, the ring 0 priv-

ilege level is called “root mode” and the -1 privilege level is called “non-root mode”.

54 CHAPTER 2. BACKGROUND

In fact, x86 does not only distinguish between root mode and non-root mode, but also
between root user-space/kernel-space and non-root user-space/kernel-space. Other-
wise, running guest OS’s system call handlers would be impossible (system call emula-
tion is another kind of virtualization design). x86 architecture offers two instructions
for switching between root mode and non-root mode. These are VMXON and VMX-
OFF. The VMXON command switches the CPU state into non-root mode, while the
VMXOFF command switches the CPU state into root mode. The corresponding op-
erations of switching between root node and non-root mode are called VMEXIT and

VMENTRY respectively.

Given all the above information, lets see how QEMU/KVM works under the hood
23]

Prior to booting up the VM, QEMU has to map either the BIOS code or directly the
guest kernel code (removing guest BIOS completely) into the guest memory address
space. This is accomplished by first mapping the code into QEMU'’s process address
space and then using the KVM_SET _USER_MEMORY_REGION KVM ioctl in order
to register this memory as a guest physical memory slot. QEMU accommodates each
guest physical memory slot with a guest physical address, which is where the KVM
will map this memory in the guest CPU memory address space. QEMU then creates a
set of vCPUs with the KVM_CREATE_VCPU ioctl. Each vCPU corresponds to a sep-
arate thread on the host. Before we can run code, we need to set up the initial states
of the vCPU register sets. This is done via the KVM_GET_SREGS and KVM_SET _-
SREGS ioctls. QEMU then instructs KVM to start running guest code natively with
the KVM_RUN ioctl. In response to this ioctl, the KVM runs the VMXON CPU in-
struction (this insruction is x86-specific, but a similar one exists for other architectures
with HW virtualization features). This is a virtualization-specific instruction that tells
the CPU to switch to non-root mode and start running guest code. When the guest OS
performs a privileged operation, the CPU will exit to the VMM code (KVM handler)
on host kernel space. This switch between root mode and non-root mode is generally
called a “world switch”, because it requires changing the whole CPU state. KVM takes
over and finds the exit reason from the VM’s control structure (VMCS) registers. The
VMCS is where the guest CPU state is saved during the world switch. If the KVM can
service the request itself, it will do so, and give control back to the guest. This is called

a “lightweight VMEXIT”. For requests that the KVM code can't serve, like any device

2.5. EVENT FILE DESCRIPTOR 55

emulation, it will defer to QEMU. This implies exiting to host user space from the host
Linux kernel, and hence this is called a “heavyweight VMEXIT”. QEMU finds the
exit reason from a KVM’s data structure and performs the device emulation. It then
switches back to KVM with KVM_RUN ioctl and the KVM in turn switches back to
guest code with the VMXON CPU instruction.

To sum up, the basic flow of a guest CPU in a simplified form, goes like this:

open("/dev/kvm™)
i0ct1(KVM_CREATE_VM)
ioct1(KVM_CREATE_VCPU)
for (550 {
i0ct1(KVM_RUN)

switch (exit_reason) {

case T /XLl X/
case /L0 X/
}

2.5 Event File Descriptor

eventfd [24] is a notification mechanism offered by the Linux kernel that can be used

by user space applications and by the kernel to notify user space applications of events.
It works as follows:

the kernel allocates a 64-bit counter in kernel space memory for each created eventfd.
Every user space application that has access to the event file descriptor can read or
write a value to this counter via read()/write() system calls. The side effects of read()
and write() depend on whether the eventfd counter currently has a nonzero value and
whether the EFD_SEMAPHORE flag was specified when creating the event file de-

scriptor.

Applications can use an eventfd instead of a pipe in all cases where a pipe is used simply
to signal events. The kernel overhead of an eventfd is much lower than that of a pipe,

and only one file descriptor is required (versus the two required for a pipe).

56 CHAPTER 2. BACKGROUND

A key point about an eventfd is that it can be monitored just like any other file descrip-

tor using select(), poll() or epoll().

2.6 ioeventfd/irqfd

ioeventfd and irqfd are two KVM mechanisms that can be used in order to produce

lightweight VMEXITS.

The ioeventfd mechanism binds a guest I/O port to a host eventfd. Whenevera VMEXIT
happens due to a guest read/write on that port, KVM kicks the eventfd and immedi-

ately resumes executing guest code with the VMXON command.

The irqfd mechanism binds a host eventfd to a guest irqchip pin. KVM polls on this
eventfd. Whenever the eventfd is kicked, KVM injects a virtual interrupt to the guest.

There are two ioctls in the KVM API for these two mechanisms. These are “KVM_-
IOEVENTFD”[20] and “KVM_IRQFD”[20]. The eventfds are allocated by the user
space process (QEMU) and passed to KVM through a proper data structure. QEMU
hooks up those eventfds to specific guest I/O ports and guest IRQs respectively.

These mechanisms are used both by the vhost[5] and vhost-user devices in order to
reduce the software latency in the I/O datapath. They are also used in cases where we
want to offload the device emulation to QEMU IOTHREADS[25] instead of the main
QEMU event loop thread (eg. virtio-blk/virtio-scsi dataplane).

2.7 DMA

DMA|[26] stands for “Direct Memory Access”. It is the action where a device accesses
the system memory or another device's MMIO space without the intervention of the
CPU. This means that we do not waste CPU cycles for data transfer among devices
and physical memory. This is a great benefit in comparison with the conventional
method of “CPU I/O” or “Programmed I/O’, in which the CPU is doing the data trans-
fer from the system memory to the device memory and vice versa. DMA is the pre-
ferred method for data transfer in case of I/O intensive devices like Gigabit Ethernet

cards, PCle NVMe SSDs, GPUs, etc.

2.7. DMA 57

In the past, devices could not perform DMA on their own. There was a separate device
called “DMA Controller” or “DMA engine” for this purpose. At present, most modern

devices enclose a dedicated DMA controller inside the PCI card.

The memory from which a device is programmed to perform DMA has to follow some

limitations[27][28]:

« the memory has to be pinned. This implies two things. The first is that it must
never get swapped out by the kernel memory management subsystem. The sec-
ond is that it must never get transferred to another physical frame, that is change
the VA-to-PA translation. This could be done for example by the kernel memory
management subsystem during memory compaction due to external memory
fragmentation, or in case of memory hotplug, where the load has to be rebal-

anced.

« the memory has to be assigned to a physical frame by the kernel before the
DMA operation takes place. This makes sense for user space memory buffers
which get allocated with the mmap() system call. The kernel follows the de-
mand paging strategy for user space memory. This means that the memory gets
allocated after the first page fault, which is triggered when this memory is ac-
cessed for the first time. This has to be done before instructing the device to
perform DMA from this user space buffer. Here, we assume that this is a sepa-

rate limitation from pinning, though it could be regarded as one.

« the memory has to be physically contiguous. A physical device understands
physical addresses. It cannot perform DMA from a memory buffer that is scat-
tered into multiple discontiguous physical 4KB frames. To be more precise, a
single I/O operation from the device perspective has to correspond to a phys-
ically contiguous memory segment. However, some modern devices support
doing multiple I/Os from physically scattered memory buffers as part of a single

DMA operation.

« the memory has to be aligned. This is a rather device-specific limitation. De-
vices have certain limitations regarding the buffer alignment. For example, the

NVMe specification[51] requires all physical memory to be describable by what

58 CHAPTER 2. BACKGROUND

is called a “PRP list” PRP lists have certain limitations regarding the address

alignment.

The last two limitations hold in cases where there is no IOMMU in the system. Oth-
erwise, the IOMMU satisfies these two limitations. (See [14] for the third limitation)

A memory region that satisfies the above limitations is often called “DMA-able” mem-

ory.

Except for DMA operations from system memory, it is also possible for DMA opera-
tions to be routed to the MMIO PCI resources of another device on the same PCI bus.
This is called “peer-to-peer DMA”. Generally, peer-to-peer DMA is a root of problems
as far as device isolation is concerned. This happens because the DM A operations may
not reach the Northbridge, where the IOMMU is integrated, thus being transparent to
the chipset.

2.8 VFIO

Vfio[3] is a kernel device driver that enables creating user space device drivers. It does
so by exposing all the PCI device resources (PCI Configuration Space, PCI device’s
memory address space, PCI device’s port address space, interrupts) to user space.
So, vfio enables I/O from user space, both Programmed I/O and DMA, in a secure,

IOMMU protected environment.

Vfio has been designed as a replacement for the pre-existing uio[29] framework. Uio
has serious limitations like no IOMMU protection, limited interrupt support, and re-
quires root privileges to access things like PCI Configuration Space. Vfio attempts
to solve all these limitations. However, vfio also supports bypassing the IOMMU or
working with systems without IOMMU, thus supporting unrestricted DMA.

Interface for VFIO

Vfio exposes each device’s resources through character device files in /dev/vfio/. The
device resources (PCI Configuration Space, PCI MMIO BARs, PCI PIO BARs) cor-

respond to offsets inside the device file. A user space process can interact with these

2.8. VFIO 59

resources by reading, writing or mmapping the corresponding segments in the device
file. Other device properties are discovered via ioctls. Vfio notifies user space about
device interrupts through eventfds, which are bound to device interrupts. Eventfds are
also configured via an ioctl. The vfio-pci driver supports all the PCI interrupt mecha-
nisms, that is legacy INTx interrupts, MSI interrupts and MSI-X interrupts. Note that
the interrupts are not configured by direct manipulation of the interrupt related regis-
ters in PCI Configuration Space (eg. Interrupt Pin) or MMIO space (eg. MSI-X vector
table). Interrupts are configured via ioctls[32].[30][31]

Enabling DMA from user space buffers

Before examining how vfio satisfies the DMA limitations, it is important to under-
stand the difference between CPU and DMA addresses[33]. The CPU uses physical
addresses in order to manage the physical memory and the device resources. On the
other hand, I/O devices use a different kind of addresses: “bus addresses”. If a de-
vice has registers at an MMIO address, or if it performs DMA to read or write system
memory, the addresses used by the device are bus addresses. In some systems, bus ad-
dresses are identical to CPU physical addresses, but in general they are not. IOMMUs
and host bridges can produce arbitrary mappings between physical and bus addresses.
From a device’s point of view, DMA uses the bus address space, but it may be restricted
to a subset of that space. For example, even if a system supports 64-bit addresses for
main memory and PCI BARs, it may use an IOMMU so devices only need to use 32-
bit DMA addresses. In some simple systems, the device can do DMA directly to the
physical addresses that the driver gives. But in many others, there is IOMMU hard-
ware sitting between the devices and physical memory that translates DM A addresses

(bus addresses) to physical addresses.

The vfio has to satisfy the DMA memory limitations for the user space DMA bulffers.
In case of x86 architecture with an IOMMU (this is called Typel IOMMU), vfio offers
an ioctl type called VFIO_IOMMU_MAP_DMA, which is used by user space drivers
to register the user space memory that will be used for DMA. With this ioctl, the user
space driver passes to the kernel a contiguous range of virtual addresses corresponding
to a user space buffer allocated from the process” heap (eg. with malloc() system call).

It also passes an IOVA address (I/O virtual address), which will be used by the kernel

60 CHAPTER 2. BACKGROUND

to program the IOMMU. The vfio driver cannot change the suggested IOVA address.
It will just fail in case it is not available. The vfio serves this ioctl by basically doing two

things:

« pin the registered user space memory. This means that this memory will never

get swapped out or moved to another physical address. This is done here: *

o program the IOMMU using the IOVAs passed from the user space driver. The
kernel IOMMU driver will insert the appropriate entries in the device IOVA do-
main. This implies that the user space driver can use IOVAs instead of physical
addresses for the DMA operations. In case the DMA buffer is scattered in phys-
ical memory, vfio will arrange the IOMMU entries in such a way that the device
will be seeing this memory as contiguous. This means that the registered mem-
ory, although it might be physically scattered, it will be mapped to a contiguous
IOVA segment. This is done here: >

The number of IOVA entries needed depends on the physical segments making
up the user space buffer. The user space buffer is possibly sparse in physical
memory. So, for each physical memory segment, a new IOMMU entry, mapping

the physical address to an IOVA address, has to be inserted.

VFIO in no-IOMMU mode

Vfio currently supports running on systems without an IOMMU. This is called “no-
IOMMU mode”. This mode of operation can be chosen by using a kernel parameter
when we insert the vfio module into the kernel. The no-IOMMU mode has a major
difference with the Typel IOMMU (x86 IOMMU). There is no IOMMU to do the
address translation (or we just don’t use it). This means that the user space driver
has to pass physical addresses instead of IOVAs to the device. The vfio driver in no-
IOMMU mode does not support the VFIO_IOMMU_MAP_DMA ioctl. This means
that we lose some benefits given by vfio like page pinning and mapping scattered PAs

to contiguous IOVAs. This implies that the user space driver cannot use regular heap

! https://elixir.bootlin.com/linux/latest/source/drivers/vfio/vfio_iommu_

typel.c#L1046
2 https://elixir.bootlin.com/linux/latest/source/drivers/vfio/vfio_iommu_

typel.c#L1@55

https://elixir.bootlin.com/linux/latest/source/drivers/vfio/vfio_iommu_type1.c#L1046
https://elixir.bootlin.com/linux/latest/source/drivers/vfio/vfio_iommu_type1.c#L1046
https://elixir.bootlin.com/linux/latest/source/drivers/vfio/vfio_iommu_type1.c#L1055
https://elixir.bootlin.com/linux/latest/source/drivers/vfio/vfio_iommu_type1.c#L1055

2.9. HUGEPAGES 61

memory as DMA buffer, because it does not follow the DMA memory limitations. It

turns out that the only solution (at least for now) is using hugepages.

The hugepages satisfy the DMA memory limitations as follows:

« hugepages by definition are pinned in physical memory. From the moment they
are allocated in physical memory, they never get swapped out or moved to an-
other location in memory. This requires that we are not talking about transpar-
ent hugepages, which have recently been added to the Linux kernel and enable

swapping out hugepages.

o older kernel versions used to prefault the hugepage memory during allocation
with mmap() system call. This comes in contrast to regular anonymous map-
pings (mmap with MAP_ANONYMOUS flag), which are assigned to 4KB pages
in the page cache after the first page fault (this is called demand paging). How-
ever, this has changed in recent kernels, which follow the demand paging strat-
egy for the hugepages as well. So, in order to use hugepage backed memory

buffers, the hugepages have to be “touched” once.

« hugepages are physically contiguous. For example, a 2MB hugepage will reside
in a contiguous 2MB physical memory range. In other words, a 2MB hugepage

is made of 512 consecutive physical 4KB memory frames.

o the address alignment limitation is device-specific and hugepages know nothing
about this. It is the responsibility of the driver to place the buffer in aligned

addresses inside the hugepage backed memory.

For more information about the hugepages, read the following section.

2.9 Hugepages

Description and Characteristics

Modern CPU architectures support multiple page sizes. Hugepages are contiguous

chunks of physical memory that are bigger than normal pages (like 4KB pages in x86).

62 CHAPTER 2. BACKGROUND

The size of hugepages depends on the architecture. For example, x86 CPUs support
2MB and 1GB hugepages.

Hugepages have three key features[27]:

o they are physically contiguous. This means that a 2MB hugepage will corre-
spond to a contiguous 2MB physical memory segment. This feature allows for
the use of a single page table entry for the whole 2MB memory region. There-
fore, one TLB cache line corresponds to 2MB physical addresses, thus reducing

the number of cache misses.

« they are non-swappable. This means that upon getting allocated on physical
memory after the first page fault (due to demand paging), the kernel memory

management subsystem will never swap them out.

« the VA-to-PA translation is fixed. This means that the kernel will never move
a hugepage to a different location in physical memory. On the contrary, this is
something common for regular 4KB pages. Given that a hugepage’s VA-to-PA
translation cannot change due to a swap-out/swap-in operation because of the

above feature, the kernel moves physical frames around in two scenarios:

1. as a means of reducing external memory fragmentation. External mem-
ory fragmentation is a state of physical memory where there is free mem-
ory but it is scattered in distinct segments rather that being contiguous.
This means that if a process wants to allocate a 1GB hugepage and there is
enough free memory but it is scattered, the hugepage allocation will fail. It
is caused naturally by the fact that multiple processes on a system allocate
and deallocate memory of various sizes. It is solved by a procedure called
“memory compaction”. Memory compaction involves moving occupied
physical memory frames to a different location in memory. This implies
that their physical address will change and this requires updating the page

tables of the relevant processes.

2. as a way to uniformly distribute the physical frames in case additional

physical memory is hotplugged in the system.

2.9. HUGEPAGES 63

Advantages and Purpose

The advantages of hugepages against normal 4KB pages are the following[34][35]:

« the contiguity of hugepages allows for greater performance due to less transla-
tions. Current platforms use multi-level page tables in which we can have a sin-
gle page table entry for a whole 2MB hugepage. This means that there is need
for only one TLB entry for a hugepage instead of 512 TLB entries for 2MB of re-
gural 4KB pages. This implies less cache misses, and thus greater performance

in terms of address translations.

o the TLB miss will run faster, because it requires walking three levels in the pro-
cess multi-level page table[36] instead of four, which holds for ordinary 4KB
pages (assuming 4-level page tables). Thus we achieve lower TLB miss over-

head.

« second and third features listed above are known together as “page pinning’.
There is currently no other way in Linux to do pinning from user space without
the assistance of the kernel. There is a relevant concept called “page locking”
but this is different from pinning. “Page locking” is basically the non-swapping
property and there is a system call for that called “mlock”[37]. But page locking
doesn’t guarantee fixed VA-to-PA translations. There is currently no other way
except for hugepages to do page pinning and consequently to do DMA from user
space memory without the help of the kernel (eg. vfio). In short, hugepages are
the only way of allocating DM A-able memory from user space, and thus creating

user space drivers without the kernel intervention.

There is a controversy as to whether the non-swapping feature is useful. Hugepages
are mostly used for the first advantage. That is greater performance due to less address
translations. There is a claim that non-swapping property is not useful. Thus, a new
feature has been developed which is called “transparent hugepages”[38]. This feature
is quite new and allows for the hugepages to get swapped out. It works by dynamically
gathering adjacent normal pages into a single hugepage and splitting a hugepage into
hundreds of normal pages when swapping it out. Transparent hugepages where created

at first for use by KVM in order to decrease the memory virtualization overhead[19].

64 CHAPTER 2. BACKGROUND

Reasons for adoption by SPDK and user space drivers in general

SPDK relies either on uio or vfio in order to access the PCI device resources directly
from user space. SPDK manages mostly storage devices, which perform DMA opera-
tions for data transfers. Enabling DMA operations from user space memory requires
that this memory is DM A-able or, in other words, pinned. That means that it will never
get swapped out or moved to another physical location in memory. So, SPDK needs
to somehow allocate pinned memory from user space. As mentioned above, there is
a POSIX system call that satisfies the first limitation and is called “mlock”. But it does
not satisfy the second one. The only available solution (at least for now) is hugepages.
At this point, it is important to point out that using hugepages to achieve page pinning
is only necessary in case of uio. On the contrary, in case of vfio, the vfio driver itself
performs the page pinning. The user space process just declares a portion of its virtual
memory as DMA-able with the VFIO_IOMMU_MAP_DMA ioctl and the vfio driver

performs the necessary actions to make this memory DMA-able[39].

Except for user space drivers, hugepages are also widely used in Virtual Machines in

order to minimize the memory virtualization overhead[40].

Interfaces for using hugepages in Linux

From an API standoint, Linux offers plenty of explicit interfaces for hugepages to user
space. The kernel does not use hugepages transparently. The most commonly used

interfaces for using hugepages are the following[41]:

1. shared memory

Hugepages are requested by using the shmget() system call. In specific, hugepages
are used by specifying the SHM_HUGETLB flag and ensuring the size is hugepage-
aligned. A limitation of this interface is that only the default hugepage size can

be used.

2. hugetlbfs

hugetlbfs is a filesystem in which all files are backed by hugepages. It is simi-
lar to tmpfs in the sense that it is a RAM-based filesystem, but instead of using

2.10. VIRTIO 65

4KB pages, it uses hugepages. Another difference between tmpfs and hugetlbfs
is that hugepages are not dynamically allocated in physical memory, in contrast
to regural pages. This means that the user, except for mounting the hugetlbfs on
the root filesystem, also has to manually pre-allocate the number of hugepages
he is going to use into the hugepage pool. This is done through the procfs
(/proc/sys/vm/nr_hugepages).

3. anomymous mmap()

As of kernel 2.6.32, support is available that allows anonymous mappings to
be created backed by huge pages with mmap() by specifying the flags MAP_-
ANONYMOUS|MAP_HUGETLB.

2.10 VIRTIO

VIRTIO[2] is a paravirtualized driver specification. It provides a common framework
for 1/0O virtualization that can be used by any type of device. VIRTIO defines how
drivers and emulated devices should be implemented in order to get greater perfor-
mance than full device emulation. The purpose of VIRTIO is that the guest should
continue to see a PCI device, but the driver and the device emulation are optimized in
a way that minimizes the operational overhead of the device. In other words, VIRTIO
aims at improving the host-guest interaction. This basically involves minimizing the

number of VMEXITs triggered by PIO or MMIO compared to a fully emulated device.

Reading from the Virtio specification:

The purpose of virtio and the virtio specification is that virtual environ-
ments and guests should have a straightforward, efficient, standard and
extensible mechanism for virtual devices, rather than boutique per-environment

or per-OS mechanisms.

o Straightforward:

Virtio devices use normal bus mechanisms of interrupts and DMA
which should be familiar to any device driver author. There is no

exotic page-flipping or COW mechanism: it’s just a normal device.

66 CHAPTER 2. BACKGROUND

o Efficient:

Virtio devices consist of rings of descriptors for both input and out-
put, which are neatly laid out to avoid cache effects from both driver

and device writing to the same cache lines.

o Standard:

Virtio makes no assumptions about the environment in which it
operates, beyond supporting the bus to which device is attached.
In this specification, virtio devices are implemented over MMIO,
Channel I/O and PCI bus transports, earlier drafts have been im-

plemented on other buses not included here.

o Extensible:

Virtio devices contain feature bits which are acknowledged by the
guest operating system during device setup. This allows forwards
and backwards compatibility: the device offers all the features it
knows about, and the driver acknowledges those it understands and

wishes to use.

The virtio spec defines that the virtio drivers follow a split-driver model[42]. There isa
frontend driver in the guest kernel and there is a backend driver in the hypervisor (eg.
QEMU). Data transfer is done through virtqueues. Virtqueues are queues that allow
for efficient host-guest communication between the frontend and the backend drivers.
The virtqueues are being allocated by the virtio frontend driver in physically contigu-
ous guest memory. The virtio frontend driver informs the virtio backend driver about
the location of the virtqueues in guest memory via a transport-specific mechanism
(eg. viaa virtio PCI capability in case of the PCI transport). Each virtqueue consists of
three parts: Descriptor Table, Available Ring, Used Ring. The data exchange between
the frontend and the backend driver goes as follows: the frontend driver inserts data in
the virtqueues in the form of scatter-gather lists. This essentially involves filling in new
descriptors with the guest physical addresses of the I/O buffers and pointing an equal
amount of available ring entries to the corresponding descriptor indexes. The backend
driver tracks down the new descriptors via the available ring and eventually handles
the actual data located in guest memory. Whenever finishing with some data process-

ing, the backend driver notifies the frontend driver about the amount of work that has

2.11. SCSI 67

been done via the used ring. In specific, the backend driver writes the corresponding
descriptor indexes into the used ring. As far as the host-guest notification mechanism
is concerned, the frontend driver notifies the backend driver for new data by kicking
a doorbell register. On the other side, the backend driver notifies the frontend driver

that the request has been completed by injecting a virtual interrupt into the guest.

Paravirtualized drivers are aware that the hardware is emulated. This allows for the
drivers to be designed in a way that takes into consideration the performance dif-
ferences between emulated and physical devices. These differences are focused on
three basic operations. The first is device memory access. In case of emulated de-
vices, accessing device memory has a notable performance penalty because it triggers
a VMEXIT and it has to be emulated by the hypervisor. This is the reason why vir-
tio defines that the virtqueues must be allocated in guest physical memory rather that
in device memory. In general, the fully emulated devices cause a larger number of
VMEXITs compared to their paravirtualized counterparts. Secondly, in case of emu-
lated devices, DMA is faster than in case of physical devices, because DMA is emulated
in software. So, allocating the virtqueues in guest memory instead of device mem-
ory makes no difference in the performance from a device perspective. Thirdly, the
host-guest notifications (guest notifications via doorbells and device interrupts) im-
pose greater overhead in case of emulated devices in comparison to physical devices.
Therefore, paravirtualized devices/drivers are designed in the direction of minimiz-

ing/batching the host-guest notifications.[43][44][45]

The VIRTIO Specification has gone through two revisions. The first implementation
was written as a draft spec by Rusty Russel’. Then, is was standardized by the OASIS
committee into an official specification. The first official version was 1.0. Recently, at
the end of 2018, version 1.1[2] has been launched. This version incorporates some

changes focused on performance.

2.11 SCSI

Small Computer System Interface (SCSI)[46] is a set of standards for physically con-

necting and transferring data between computers and peripheral devices. SCSI is both

*https://www.ozlabs.org/~rusty/virtio-spec/virtio-paper.pdf

https://www.ozlabs.org/~rusty/virtio-spec/virtio-paper.pdf

68 CHAPTER 2. BACKGROUND

a command set specification and a parallel peripheral bus hardware specification for
physically attaching peripheral devices to a computer system. It is a common miscon-
ception that SCSI is a protocol for the control of hard disks. SCSI can be used for other

device types as well. For example, tape drives, optical drives, printers, etc.

Many modern device controllers use the SCSI command set as a protocol to communi-
cate with their devices through many different types of physical connections. In SCSI
language, a bus capable of carrying SCSI commands is called a “transport”, and a con-
troller connecting to such a bus is called a “host bus adapter” (HBA). Evolving from
the initial SCSI bus specification, the SCSI protocol has been standardized to work
over various interconnects/transports. These specifications are collectively called the
“SCSI Transport Protocols”. There are specifications for SCSI over Parallel Bus (Parallel
SCSI), SCSI over Serial Bus (SAS), SCSI over TCP/IP (iSCSI), SCSI over FibreChannel,
SCSI over PCle, SCSI over ATA, etc.

There are two types of devices on a SCSI bus[47]:

« SCSlinitiators: SCSI devices that originate SCSI commands transmitted through

an initiator port or a target/initiator port.

o SCSI targets: SCSI devices containing logical units that service commands re-

ceived through a target port or a target/initiator port.

The SCSI Architecture Model [48] adopts a client-server communication model. SCSI
initiators act like clients and SCSI targets act like servers. Initiators send Command
Descriptor Blocks (CDBs) to the Targets over the underlying interconnect. The tar-
gets execute the received CDBs and return the appropriate response. Targets can be

subdivided into several Logical Units (LUNs).

From a software perspective, the Linux SCSI Subsystem is responsible for handling the
SCSI devices in the system. The SCSI Subsystem lies underneath the Block Layer in the
kernel storage stack, thus handling bio requests passed down by the Block Layer. The
SCSI subsystem uses a three layer design, with upper, mid, and low-level layers. Every
operation involving the SCSI subsystem (such as reading a sector from a disk) uses one
driver at each of the 3 levels[49]: one upper layer driver, one lower layer driver, and

the SCSI midlayer.

2.12. NVME 69

The SCSI upper layer provides the interface between user space and the kernel, in the
form of block and character device nodes for I/O and ioctl(). The SCSI lower layer

contains drivers for specific hardware devices.

In between is the SCSI mid-layer, analogous to a network routing layer such as the IPv4
stack. The SCSI mid-layer routes a packet based data protocol between the upper layer’s
/dev nodes and the corresponding devices in the lower layer. It manages command
queues, provides error handling and power management functions, and responds to
ioctl() requests. It is also responsible for bus scanning, device enumeration and tag

allocation.

Except for NVMe devices, all other kind of storage devices are treated as SCSI devices
by the Linux kernel. This means that the I/O requests pass through the SCSI Sub-
system. The SCSI low-level driver is responsible to do the translation from the SCSI
protocol to another storage protocol. For example, libata transforms SCSI commands
into ATA commands[50]. This is called “SCSI Emulation” The reason that the kernel
treats all devices like SCSI devices is that the Linux SCSI Subsystem is well-designed
and very efficient. So, it seems like a good idea to use it for other protocols like SATA,

USB, etc.

2.12 NVMe

NVM Express (NVMe) is a storage protocol[51] designed to exploit the inherent par-

allelism of modern solid state media.

Modern solid state media are inherently highly parallel and low latency devices. The
SATA(AHCI) and SCSI interfaces cannot meet the demands of modern storage de-
vices. The NVMe protocol solves the latency problem by directly attaching the SSDs
to PCle endpoints and thus bringing the device closer to the CPU. This results in lower
I/0 latency, because we get rid of the intermediate controller’s overhead (eg. SATA,
SCS], etc.) in the CPU<>device communication. NVMe also requires less MMIO op-
erations per I/O request in contrast to older specifications like AHCI, thus saving CPU
cycles. In addition, NVMe results in lower OS software latency, because the I/O re-
quests targeted to NVMe devices bypass the SCSI subsystem in the kernel storage stack.
What is more, the NVMe protocol exports the high-parallelism of the modern storage

70 CHAPTER 2. BACKGROUND

media. Each NVMe device can support up to 65535 I/O queues with 65535 pending
I/Os each. The kernel takes advantage of the device parallelism with the multiqueue
block layer (knows as blk-mq[52]). The multiqueue block layer maintains multiple
lockless software queues - one per core - and multiple dispatch queues that match the

device's HW queues.

The NVMe I/O datapath goes through a set of I/O queues. In I/O operations, com-
mands are placed by the host software into the Submission Queue (SQ), and comple-
tion information received from SSD hardware is then placed into an associated Com-
pletion Queue (CQ) by the controller. A SQ and a CQ form a “queue pair” (QP). I/O
queue pairs are allocated in host memory by the NVMe driver. This is used for most
NVMe controllers. Some NVMe controllers, which can support Controller Memory

Buffer, may put I/O queue pairs at controllers’ PCI BAR space.[53]

Last but not least, NVMe can work over various transports. It can work over local
connections (NVM over PCle or NVMe for short) or over remote connections (NVM
over Fabrics or NVMT for short). Remote connections include fabrics like Ethernet,

FibreChannel, etc.

2.13 1IOMMU

IOMMU is a hardware component that works as a layer of indirection between the I/O
devices and the physical memory. The I/O devices understand only virtual addresses
that are called IOVAs and perform DMA from these addresses. The IOMMU sits be-
tween devices and physical memory and makes the translation of I/O virtual addresses
to physical addresses in the CPU physical address space. Thus, whenever a device per-
forms a DMA operation on an IOVA, the IOMMU transparently translates the IOVA
to a physical address, thus redirecting the memory access to the right memory ad-
dress. In modern systems, the IOMMU hardware component is part of the PCle Root
Complex (which is part of the host bridge)[54]. Intel incorporates this functionality
in the modern chipsets along with other virtualization features which are collectively
referred to as “Intel Virtualization Technology for Direct I/O (Intel VT-d)”[55]. Intel
uses the term “DMA Remapping (DMAR)” for the IOMMU.

The IOMMU works in the same way as the MMU in the CPU. It can be seen asan MMU

2.14. DIRECT DEVICE ASSIGNMENT (PASSTHROUGH) 71

for I/0. The MMU exposes a virtual address space per process in order to control the
memory accesses made by each process. Similarly, the IOMMU exposes an I/O virtual

address space per I/O device in order to control the DMA accesses of each I/O device.

The IOMMU is useful for two reasons. Firstly, it protects the memory against arbi-
trary DMA operations made by a malicious I/O device (eg. an external device con-
nected through a Thunderbolt port) or a malicious driver or even a buggy driver. This
is called the “translation property”. Note though that this works in page granularity.
Restricting access to a part of a page is possible with another feature called “bounce
bufters”[56]. Secondly, it can expose a different I/O virtual address space to each I/O
device. This is a property that has been made possible with the launching of the PCle
standard. In a PCI Express transport, the requests are tagged. This implies that the root
complex can tell which device triggered each request. Consequently, the IOMMU,
which is part of the root complex, can tell which device makes each DMA operation,
and hence keep a different IOMMU table (called IOVA domain) per I/O device. This
is called the “isolation property”. This last feature of modern IOMMUs is extremely
useful in case of passed-through devices. Without this feature, passing through differ-
ent devices to different VMs would not be possible, because each VM requires different

GPA-to-HPA mappings[14].

2.14 Direct Device Assignment (Passthrough)

Direct Device Assignment [57] is the act of passing control of an entire physical device
on the host system to a single Virtual Machine. So, instead of emulating the device on
the hypervisor, we expose a physical device directly to the guest. Exposing a physical
PCI device to a guest essentially involves exposing the PCI device resources, that is
the PCI Configuration Space, the PCI memory address space, the PCI port address
space and the device interrupts (legacy or MSI/MSI-X). Note that, under certain cir-
cumstances, this can be done in such a way that the guest can access these resources
directly, thus taking the hypervisor completely out of the picture. Direct device assign-
ment is usually useful for network devices, storage devices and GPUs. The advantage
of this technique is the near-native performance in terms of latency and throughput.

The performance is definitely better than any other virtualization technique (QEMU

72 CHAPTER 2. BACKGROUND

emulation, paravirtualization, vhost, vhost-user). The disadvantage is that we have to
assign the entire device to a single VM, thus losing the ability for device sharing. How-
ever, this is getting addressed in modern devices with SR-IOV[58]. SR-IOV is about
exposing a single physical device as multiple virtual devices to multiple VMs. This
seems the same as device emulation. The key difference with device emulation is that
the virtual devices are implemented by the device itself (the hardware) instead of the

hypervisor (the software).

There are certain requirements for the implementation of Direct Device Assignment.
Firstly, QEMU must have access to the device resources (PCI configuration space,
memory regions, ports). This is necessary because QEMU is responsible for creating
the guest system architecture (CPU, chipset, PCle topology) and also QEMU may need
to modify some of the device information (eg. capability bits, etc.). Secondly, QEMU
must be notified for device interrupts. Depending on the hardware limitations, there
may be no hardware virtualization extensions for routing a device’s interrupt directly
to a guest. In this case, QEMU/KVM has to perform the interrupt injection. Thirdly,
in case the device is a DM A-capable device, it must be able to perform DMA from the

guest memory in a secure way.

All the above requirements are actually the same as with the case of user space drivers.
So, Direct Device Assignment is implemented with the aid of vfio kernel driver. vfio
provides access to a device in a secure and programmable IOMMU context. QEMU
has access to the device resources through the corresponding vfio device file under
/dev/vfio/. Also, vfio uses eventfds to notify QEMU about device interrupts. In specific,
whenever the kernel receives an interrupt caused by the passed-through device, it kicks
the eventfd that corresponds to that interrupt. Last but not least, DMA operations
from the device to the guest memory is enabled with the aid of the host IOMMU. The

IOMMU is necessary for two reasons:

1. First, it performs the GPA-to-HPA translations, which are necessary for doing

DMA operations directly to guest memory.

2. Second, it offers security in the DMA operations in the sense that the device can

access only a portion of the guest memory.

QEMU is responsible for setting up the GPA-to-HPA mappings in the IOVA domain

2.15. FILE SHARING VIA UNIX SOCKETS 73

of the passed-through device. This is quite tricky and there are various techniques for
this[59][60]. Although declaring the whole guest memory as DMA-able to the vfio
driver is sufficient, it is not a suitable solution, because vfio will pin all guest memory.
Note that setting up GPA-to-HPA translations involves both translations for the guest
physical memory and translations for the memory address spaces of the guest PCI

devices (thus enabling peer-to-peer DMAs as well).

2.15 File Sharing via Unix Sockets

The Linux kernel offers a mechanism for sharing an open file between unrelated pro-
cesses on a local system. Unrelated here means with no parent-child relationship. This
mechanism uses the ancillary data of a message sent over a Unix domain socket. This
procedure is often referred to as “file descriptor passing’, but this is inaccurate because
we do not pass a file descriptor. What happens is that the kernel creates a new file
descriptor referring to the same struct file instance. This mechanism resembles to the

way the dup() system call works.[61]

Ancillary data can be sent with system calls sendmsg() and recvmsg().

74

Introduction to Storage Performance

Development Kit

3.1 Whatis SPDK (Brief Description)

SPDK [62] is a user space driver framework for storage. It is a set of libraries, drivers
and target applications for a variety of storage protocols like vhost, NVMe-oF and
iSCSI. It supports a variety of storage backends like malloc RAM-disks, local NVMe
disks, remote NVMe disks, virtio-scsi devices, virtio-blk devices, Linux AIO block de-
vices, etc. It runs completely in user space and bypasses the kernel storage stack. It
has been designed for maximum scalability and efficiency, especially in case of next

generation NVMe SSDs.

The motive for the creation of SPDK was an earlier Intel’s driver framework called
DPDK [63]. DPDK is a user space driver framework for networking that achieves great
performance by combining the Intel CPUs and NICs. So, the Intel engineers thought
about creating an equivalent framework for storage that will make best use of the Intel
NVMe SSDs. Therefore, SPDK has been created. At first, it was called “DPDK for
Storage”. SPDK and DPDK are not independent projects. SPDK incorporates DPDK
as a submodule and it uses DPDK’s core libraries to do some low-level operations like
memory management (hugepages), PCI bus scanning, vfio device handling, message

passing, implementing lockless queues (I/O channels), etc.

75

76CHAPTER 3. INTRODUCTION TO STORAGE PERFORMANCE DEVELOPMENT KIT

3.2 Purpose of SPDK, target audience, use cases

In the last few decades there has been a great evolution in the storage media technol-
ogy. Solid-state storage media have come to replace the slow spinning rotational hard
disks. Solid-state media offer significant advantages over the conventional hard disks
like lower latency, greater throughput, higher parallelism, lower power consumption
and bigger rack density. In figure 3.1, we present an empirical estimation about the av-
erage hardware latencies (hardware latency = bus latency + device latency) of the main
storage technologies compared to the software latencies. In practice, a more accurate
estimation would require taking into consideration many factors, like queue depth,

I/O pattern, etc.

The Challenge: Media Latency

Latency
10(y28)

kernel driver Overhead <0.01%

kernel driver overhead 1-8%

kernel driver overhead 30%-50%

HDD SSD SSD SSD Drive Latency M Controller Latency M Driver Latency
+SAS/S NAND NAND optane™
2 +NVM +NVMe™

trvbmed cstumparinm oflswers iy il g g e ot ol o s R T 0 | ey o b 3 et o e g o,

Figure 3.1: HW I/O latency

Moving into new storage media has unlocked a huge range of possibilities about what
people can do with their storage. Drives are getting incredibly fast. This shift from the
slow spinning disks to the incredibly fast solid state media comes to the challenge. In
the era of hard disks, it didn’t really matter if you had a small portion of software latency
from the software storage stack, because the media itself was so slow. But, as soon as we
entered the solid state era, the software latency became a bigger portion of the overall
latency. The software latency for I/O operations comes mainly from the kernel storage
stack. The kernel storage stack has been designed with a top-down approach in order

to be able to sufficiently handle a great variety of storage media. This means that is has

3.2. PURPOSE OF SPDK, TARGET AUDIENCE, USE CASES 77

been designed is such a way that it works decently with any storage media underneath.
However, this comes to an expense of not being optimized for certain storage media,
like the NVMe SSDs. To conclude, nowadays it makes sense to focus our efforts on

reducing the software I/O latency in order to improve the overall I/O latency.

SPDK is a driver framework for storage. Unlike the kernel storage stack, it has been
designed in a bottom-up approach. This means that it has been optimized to make the
best out of the modern solid-state media. As a rule of thumb, it has been measured
to offer 10 times greater I/O performance than the kernel storage stack. SPDK also
works as a reference storage architecture, as it is the first user space storage framework.
Except for SPDK applications, someone could possibly use some SPDK libraries in

other projects. This is feasible due to SPDK’s BSD license.

However, it is important to emphasize that SPDK is not targeted to average I/O work-
loads. For those tasks, the kernel is doing pretty well. SPDK refers to users that want
to run I/O intensive workloads. In addition, SPDK is a great solution for datacen-
ters, because it gives to the datacenter architects the tools they need to increase the
overall scalability, flexibility and efficiency of their storage architecture. Getting into
more detail, efficiency is about the number of cores we need to keep up with a specific
storage workload. SPDK needs less cores to reach the same amount of IOPS than the
Linux kernel. Scalability is about increasing the number of storage devices handled
by the software storage stack. With SPDK this is possible by simply using more cores
for the I/O processing. And also this can be seen from another perspective. SPDK of-
fers greater scalability as it allows scaling out the number of locally connected physical

disks per machine while achieving proportional IOPS scalability.

Last but not least, SPDK takes advantage of the high parallelism of modern hardware.
Modern CPUs have many cores. Modern I/O devices have many I/O queues. SPDK
makes use of this inherent parallelism by assigning I/O queues to cores. Each core
works on a specific I/O queue. The idea behind this approach is to eliminate the need
for locks, and thus avoid the inherent constraints of the locking schemes. Threads can

communicate with message passing to resolve synchronization issues.

78CHAPTER 3. INTRODUCTION TO STORAGE PERFORMANCE DEVELOPMENT KIT

3.3 Architecture

SPDK has a modularized architecture. It is made of libraries, device drivers and appli-
cations. The following figure depicts the layout of the various SPDK components that
make up the SPDK framework.

SPDK Architecture

N 0
NVMe-oF RDMA iScsI vhost-scsi vhost-blk Linux Integration
Storage Target Target Target Target nbd
Protocols Cinder

AN VPP TCP/IP
C Block Device Abstraction Layer (bdev) RockDB
BlobFS
Services Blobstore QEMU
;/
AN
Ve /ﬁ
NVMe Drivers Core
DU NVMe-oF RPMA | NVMe PCle '”tglllgf‘T "'g'r‘l’vzrc' Application
Iniiator ~ Tcp Driver Framework
A VAN 5/1

Figure 3.2: SPDK Architecture

The SPDK’s components can be grouped into three distinct layers. Starting from the
bottom layer and building up, these layers are the following [64]:

1. Hardware Drivers

This layer contains the device drivers for the physical devices. At the moment, it
contains an NVMe driver, an I/OAT driver and a virtio-pci driver. The NVMe
driver contains an abstracted transport API so that it can support implementa-
tions for various NVMe transports. At the moment, the NVMe driver supports

PCle transport, RDMA transport and TCP transport.

2. Block Device Layer
This layer is equivalent to the kernel block layer. It can be split into two parts:
(a) the Block Device Abstraction Layer (BDAL). This layer creates a generic

interface for all block devices implemented by the underlying bdev mod-
ules. This is the API exported to the storage protocols lying on top. Each

3.3. ARCHITECTURE 79

(b)

new bdev module must implement this API. This generic interface could
be parallelized with the request function that has to be implemented by all

block device drivers in the kernel.

the bdev modules. A bdev module is the equivalent of a kernel block de-
vice driver. This means that it exports block devices (or bdevs for short)
from storage backends, just like kernel block device drivers export block
device files. For example, the NVMe bdev module creates bdevs from lo-
cal NVMe SSDs or remote NVMe SSDs. The actual hardware is driven
by the underlying NVMe driver. The bdev modules implement a generic
interface defined by the BDAL, so that the upper layers can interact with
the bdev modules through the BDAL. SPDK also supports creating virtual
bdevs (vbdevs) on top of other bdevs. This allows implementing higher
level operations like Logical Volumes (Ivols), GPT, encryption, compres-

sion, etc.

3. Storage Protocols

This is the upper layer. It contains a set of libraries that implement the follow-
ing storage protocols: vhost-user target (blk,scsi,nvme), iSCSI target, NVMe-oF
target. This layer interacts with the underlying bdev modules through the BDAL
APL

All the above are just libraries. SPDK also contains a number of applications. These

applications make use of the above SPDK libraries that implement the storage proto-

cols. Therefore, the code of the applications is quite trivial. This separation between

the storage protocol libraries and the applications that make use of these libraries has

been made deliberately so that a third party could make use of these libraries in other

projects. SPDK is equipped with four applications:

iSCSI target
NVMe-oF target
vhost target

spdk target (a unified application combining the above three)

80CHAPTER 3. INTRODUCTION TO STORAGE PERFORMANCE DEVELOPMENT KIT

SPDK relies on DPDK EAL library for some low-level management operations. Given
that DPDK already has some core libraries that implement these operations, SPDK
integrates DPDK as a submodule and makes use of DPDK libraries.

3.4 How it works (Key features, primary concepts)

SPDK achieves greater performance (better efficiency and scalability) than the kernel
storage stack. This has been achieved by combining three key techniques [65]:

1. SPDK is a user space framework[66]. This means that it runs completely in
user space and it bypasses the kernel storage stack. In other words, it handles
the storage devices directly from user space, thus removing the kernel overhead
from the critical path. In detail, what happens is that the kernel exposes all the
PCI resources of each PCI storage device to user space. The PCI resources of
each PCI card is the PCI Configuration Space, the memory and port address
spaces and the interrupts. Currently, the kernel offers two mechanisms (kernel
modules) for this purpose. These are the uio driver and its ancestor, the vfio

driver. Bypassing the kernel is useful for two reasons:

(a) we avoid context switches between kernel space and user space

(b) we are not relying on the general-purpose kernel storage stack that adds

unnecessary overhead

2. SPDK is lockless, at least in the datapath. SPDK uses message passing among
threads for synchronization instead of locks. It is not obvious that this is a bet-
ter synchronization technique in terms of scalability. However, it turns out that
locks have some intrinsic limitations that make them non-scalable like lock con-
tention, cache coherence in NUMA systems, etc. In specific, SPDK works as
follows: each SPDK application is multithreaded. Each shared data structure is
assigned to a single thread. This means that this thread will always be respon-
sible for the manipulation of this data structure. This mainly concerns HW I/O
queues (NVMe queue pairs, virtqueues, etc.). Whenever another thread needs
to do some operation on this data structure, it sends an event to the other thread

via a lockless ring buffer. Each event declares what job needs to be done. An

3.4. HOW IT WORKS (KEY FEATURES, PRIMARY CONCEPTS) 81

event is basically a function pointer and pointers to the function arguments.
This approach scales better than locks, because the data remain in the cache
close to the thread that manipulates the data. It is important to note at this point
that SPDK does not use message passing to move data, and hence to speed up
the data processing. SPDK uses message passing to eliminate the resource con-

tention caused by conventional locking schemes.[67]

3. SPDK uses poll-mode drivers. SPDK polls on devices for I/O completions in-
stead of waiting for interrupts. It turns out that in case of modern low-latency
NVMe devices, interrupts add a significant overhead, thus turning polling into a
better option. The explicit reasons for the high overhead of interrupts compared
to polling are analyzed below. First of all, polling is more efficient than inter-
rupts in case of intensive I/O workloads. Handling an interrupt is very expensive
compared to the modern media overhead, because it requires the intervention of
the operating system. In specific, it requires two context switches (swap out the
running process, run the interrupt handler, swap in the previous process) and
the execution of the interrupt handler, which is an additional software overhead.
Secondly, the execution of the interrupt handler affects the CPU cache, thereby
causing additional cache misses for potentially performance-critical data. Thirdly,
polling on an NVMe device is fast, because only host memory needs to be read
(no MMIO) in order to check a queue pair for a bit flip, and technologies such
as Intel’s DDIO will ensure that the host memory being checked is present in the
CPU cache after an update by the device. It is important to mention at this point
that polling does not mean that SPDK threads are blocked waiting for I/O com-
pletions. SPDK uses asynchronous I/O, which means that SPDK multiplexes
other work with periodically checking for I/O completions. Also, note that, due
to the low-latency properties of the modern storage media, the Linux kernel also
supports a variation of polling which is called “hybrid polling”. Its purpose is to
avoid the overhead of waking up an idle core waiting for I/O completion (syn-

chronous 1/0).[68]

Except for the aforementioned techniques, SPDK also uses some more techniques to
further optimize the performance. In case of NVMe devices, SPDK performs far fewer

MMIO writes than most NVMe drivers. When the CPU performs an MMIO write, a

82CHAPTER 3. INTRODUCTION TO STORAGE PERFORMANCE DEVELOPMENT KIT

request is generated by the CPU that’s placed into a hardware queue to later be sent
over the PCle bus to the device. If the CPU generates too many MMIO operations and
overflows that queue, the CPU will stall and wait for a slot at the end of the queue to
open up. What is more, SPDK, and especially the low-level drivers, have been opti-
mized so that they make best use of the system’s cache hierarchy. This involves mainly
minimizing the collisions, avoiding stalling due to chained data-dependent loads and

prefetching when possible.[65]

3.5 Application Framework

SPDK is made of many components. The Application Framework [69][70] is the glue
that combines all these components. The associated code lives under lib/event/. The

application framework builds on the environment abstraction framework.

SPDK adopts a multithreading model of execution. During the app initialization,
SPDK creates one thread for each core mask and pins all these threads to the underly-
ing cores. The cores that will be used by the SPDK application are provided by the user
via a command-line core mask parameter. The thread launching and pinning is done
with function spdk_reactors_start() in lib/event/reactor.c. These threads are essentially
busy loops (or schedulers) and they are called “reactors”. So, SPDK maintains one
reactor per core. Each reactor just awaits for and runs any incoming work. The code
for each reactor is function _spdk_reactor_run(). The incoming work can either be
an incoming event in the reactor’s event ring or a poller. An event is just a function
pointer along with a bunch of pointers to the functions parameters. The data structure
for each event is struct spdk_event. Usually, events are being sent by other threads to
ask for some work to be done on a specific data structure. This is how the message
passing mechanism has been implemented in SPDK. As a reminder, SPDK achieves
data synchronization by pinning certain data structures to certain threads so that these
data structures can be processed only by their corresponding threads. A poller is also
a function pointer and the function arguments. The difference between a poller and
an event is that the reactor runs an event only once, while a poller is being run pe-
riodically. Pollers are usually simple tasks that check hardware for async events. For

example, a poller could be checking the completion queue of an NVMe queue pair or

3.5. APPLICATION FRAMEWORK 83

the used ring of a virtqueue. SPDK abstracts hardware I/O queues into a thread-bound
(reactor-bound) data structure that is called “I/O Channel”. The data structure for an
I/O channel is struct spdk_io_channel. 1/O channels are being processed by pollers
running on the same thread. I/O channels do not need locks, because they cannot
be processed by different threads. Each I/O channel is being processed only by pollers
and events running on the same thread. In general, SPDK’s motivation is to parallelize
I/0O and eliminate resource contention by assigning each HW 1/O queue to a separate

thread.

Schematically, SPDK’s application framework looks like this:

SPDK: Application Framework

Core 0 Core 1

Reactor 0

m

Reactor N

Reactor 1

1/0 Device
52

Figure 3.3: SPDK Application Framework

84

Vhost

4.1 What is vhost (Brief Description)

Vhost is a protocol specification that allows oftfloading the emulation of a virtio device
from the hypervisor. This mechanism is device agnostic, meaning that it can be used
to implement any paravirtualized device type that complies to the virtio specification.
Currently, it is being used for the emulation of network and storage devices, where
offloading the I/O data path from the hypervisor can make a huge difference in the
I/O performance. The underlying vhost communication mechanisms are completely
transparent to the guest device driver, so there is no need for guest kernel modifica-

tions.

In a nutshell, vhost is a very efficient mechanism because it works with shared memory.
The emulated device has full access to the whole guest memory, hence there is no need

for data copies in the data path.

Nonetheless, vhost does not emulate a complete virtio PCI adapter. Instead, it restricts
itself to virtqueue operations only. It can also handle the device’s virtio configuration
structure. QEMU is still used to implement the PCI resources (PCI Configuration
Space, memory address space, port address space) and to perform tasks like, for ex-
ample, virtio feature negotiation and live migration. This means that a vhost driver
is not a self-contained virtio device implementation. It depends on QEMU to imple-
ment the transport-specific guest-visible part and handle the device’s control plane. In

other words, vhost is a mechanism that enables offloading a virtio device’s data plane.

85

86 CHAPTER 4. VHOST

There are two implementations of the vhost mechanism. The first approach is running
the vhost device backend (that is the virtio backend driver and the device emulation
code) inside the host kernel. This is the initial vhost implementation and is part of the
Linux kernel. The second approach is running the vhost device backend as a separate
process on host user space alongside QEMU. The former approach is called “vhost”[5]
and the latter approach is called “vhost-user”[6]. Essentially, “vhost-user” is nothing
more than just an extension of the “vhost” mechanism on user space. We will get into

more details about these two approaches in the following sections.

4.2 Purpose of vhost

Vhost is a mechanism that can be used to offload the I/O datapath of an emulated virtio

device from the hypervisor. This is useful for a number of reasons[71]:

1. the hypervisor’s I/O data path may not scale well. For example, in QEMU, the
I/0O datapath goes through just one host thread (the IOThread) [25]. This implies
that this is a bottleneck in scaling up the IOPS, even if we supply the guest kernel
with more vCPUs. Making changes in QEMU architecture to fix that is quite

complicated. So, vhost is a great solution in case the hypervisor is the bottleneck.

2. taking the hypervisor (QEMU) out of the picture may result to improved I/O
performance. This happens both in case of the kernel vhost and user space
vhost. Regarding the kernel vhost, vhost inserts virtio emulation code into the
kernel. This allows device emulation code to directly call into kernel subsys-
tems instead of performing system calls from user space. For example, in case
of a virtio-scsi device, the kernel vhost-scsi driver can submit I/O requests di-
rectly to the host kernel Block Layer. This approach is much faster than do-
ing this with read()/write() system calls from QEMU user space. Regarding the
user space vhost, we can improve the datapath with a customized user space
implementation. There are some open-source projects out there, like SPDK
and DPDK, which implement custom high-performance datapaths. Vhost-user
may actually be a better choice than vhost for implementing a customized high-

performance I/O datapath for two reasons. Firstly, vhost is part of the kernel

4.3. DIFFERENCES BETWEEN KERNEL-SPACE AND USER-SPACE VHOST 87

and therefore it is hard to incorporate changes/enhancements. Secondly, there
are cases where we can have better performance if we completely bypass the host
kernel. This is what DPDK and SPDK do. They use user space drivers that “talk”

directly to the physical devices without the intervention of the kernel.

4.3 Differences between kernel-space and user-space vhost

As we have mentioned above, there are two implementations of the vhost mechanism.
There is a kernel implementation, called “vhost”, and a user space implementation,
called “vhost-user”. Historically, vhost appeared first, and vhost-user was just a copy
of vhost in user space with some necessary adjustments in the communication mech-
anisms. There is a protocol specification for the vhost-user mechanism that is part of
the QEMU Documentation. The main differences between vhost and vhost-user are

the following:

o vhost is a series of kernel drivers living in drivers/vhost/ in the kernel source
code. They can be loaded as modules as well. Each vhost driver exposes a char-
acter device file, which serves as the interface for configuring the device instance.
The device instance is configured through a series of ioctl types. These imple-
ment the vhost protocol messages. On the contrary, vhost-user uses a unix do-
main socket as a communication mechanism instead of ioctls. The device ini-
tialization and configuration is done through a set of vhost-user protocol mes-
sages, sent over the unix domain socket. These messages complement the vhost
ioctl interface in the Linux kernel. We will get into more details about the vhost

protocol messages in the next section.

« the set of vhost-user protocol messages diverges from the set of kernel vhost pro-
tocol messages in order to support more devices. This is reasonable because the
kernel, in general, is more cumbersome in incorporating changes. At the mo-
ment, kernel vhost drivers support only virtio-net and virtio-scsi device back-

ends.

Unfortunately, in the web, the terms “vhost” and “vhost-user” are often used inter-

changeably. For example, in SPDK Documentation, it goes without saying that “vhost”

88 CHAPTER 4. VHOST

means “vhost-user’, because SPDK runs on user space.

In this thesis, we are using the user space vhost implementation, so we are not going

to talk more about the kernel vhost.

4.4 How vhost-user works

Vhost-user allows offloading the device emulation from the hypervisor into separate
processes on host user space. From now on, these processes will be referred to as
“vhost-user device backends” In other words, vhost-user is a protocol for devices ac-
cessible via inter-process communication. The protocol defines two sides of the com-
munication, master and slave. Master is the application that uses the emulated device,
that is the hypervisor (QEMU). Slave is the process that performs the device emula-
tion, that is the vhost-user device backend. From a different perspective, master is the
application that shares its virtqueues and slave is the consumer of the virtqueues. Note

that the terms initiator and target are also used.

The overall vhost-user mechanism can be split into two parts: the control plane and
the data plane. The control plane is the mechanism for establishing virtqueue sharing
between the device driver and the vhost-user device backend. The data plane is the
mechanism for accessing those virtqueues from the vhost-user device backend. The
data plane includes both the I/O control path, that is the movement of the metadata,
and the I/O data path, that is the actual data movement. The metadata are usually
structures holding pointers to the actual data in guest memory. Obviously, a well de-
signed vhost device backend would have a complicated, secure control plane and, at

the same time, a fast and efficient data plane.

The control plane is the mechanism for establishing the virtqueue sharing, so that the
vhost-user device backend can gain access to the guest driver’s virtqueues and serve
any I/O requests made by the guest virtio device driver. The vhost-user protocol de-
fines that this setup is done through a series of vhost-user protocol messages. In
general, all initialization and management information is exchanged using vhost-user
messages. The vhost-user messages are primarily sent from master to slave through a
unix domain socket on the host. However, there are some message types that are slave-

initiated. There are also some cases where replies are necessary for certain master-

4.4. HOW VHOST-USER WORKS 89

initiated messages. Master and slave can be either a client or a server in the socket
communication. However, slave is commonly used as a server. This means that the
slave creates the vhost-user socket and waits for guests to connect. The vhost-user
device initialization via vhost-user messages is triggered whenever there is a new con-

nection to a vhost-user socket. The message exchange goes as follows:

a new client connects to the unix socket. The server creates a new socket with

the accept() system call and triggers the message exchange.

The connection starts with the feature negotiation. Master sends message VHOST _-

USER_GET_FEATURES to get the virtio features that the slave supports.

The slave sends a reply with the virtio features that it supports.

The master compares the slave’s features with the features that he (that is the
guest driver) implements. The master chooses the common features and enables

those features in the slave with message VHOST _USER_SET_FEATURES.

If the slave supports the VHOST_USER_F_PROTOCOL_FEATURES virtio fea-
ture, this means that the slave supports some vhost-user-specific protocol ex-
tensions. Any protocol extensions are gated by protocol feature bits, thus al-
lowing full backwards compatibility on both master and slave. So, in case the
slave supports some protocol extensions, the master sends message VHOST _-
USER_GET_PROTOCOL_FEATURES to get to know those vhost-user-specific

features.

« The master checks which vhost-user-specific features are supported by the guest
driver. So, he finds the common features and enables them by informing the
vhost-user device backend accordingly with message VHOST _USER_SET_PRO-
TOCOL_FEATURES.

« When the feature negotiation is over, the master shares the whole VM’s file-
backed memory, so that the slave can access the guest driver’s virtqueues al-
located in guest memory. The guest memory may be fragmented into multiple
physically discontiguous regions on the host. The vhost-user specification puts a
limit on their number - currently 8. The master sends the necessary information

about all its regions with a message of type VHOST _USER_SET_MEM_TABLE.

90

CHAPTER 4. VHOST

The master passes file descriptors to the open files that correspond to the VM’s
file-backed memory through the ancillary data of the message, so that the slave
can map the guest’s memory. The master also sends the following information

per region:

host virtual address - the virtual address in QEMU’s host virtual address

space where this region has been mapped

guest physical address - the address in which the guest kernel has mapped

this region in the guest processor’s physical memory address space

offset - offset where the file should be mapped

size - the size of the region

The master may need to process the vhost device’s virtio configuration struc-
ture, assuming that the device has a device-specific virtio configuration struc-
ture. This is done with messages VHOST _USER_GET_CONFIG and VHOST _-
USER_SET_CONFIG. The existence of a device-specific virtio configuration struc-
ture, just like other standardized parts of the device’s PCI Configuration Space,
is exposed to the guest driver via a virtio PCI capability in the device’s PCI Con-

figuration Space.

After granting access to guest memory, the master sends information about the
guest driver’s virtqueues. This is necessary so that the vhost device backend
driver can find the virtqueues and the I/O buffers inside guest memory. For

each virtqueue, the master sends:
- its size with VHOST_USER_SET_VRING_NUM
- the base offset in the avail ring with VHOST_USER_SET VRING_BASE
- the host virtual addresses of the avail, used and descriptor rings making

up each virtqueue with VHOST _USER_SET_VRING_ADDR.

For each virtqueue, the slave subtracts the HVA, where the guest memory is
mapped in the virtual address space of QEMU process, from the HVA, where the
virtqueue is mapped in the virtual address space of QEMU process, thus getting
an offset. The slave then adds this offset to the host virtual address where he has

4.4. HOW VHOST-USER WORKS 91

previously mapped the guest memory in his virtual address space. This is how

the slave tracks the virtqueues in guest memory.

o Finally, the master sends a kickfd and a callfd for each virtqueue with mes-
sages VHOST_USER_SET _VRING_KICK and VHOST_USER_SET _VRING_-
CALL respectively. Kickfds and callfds are event file descriptors used for I/0O
submission notifications and I/O completion interrupts per virtqueue respec-
tively. These file descriptors are created by the master and sent to slave with the
same mechanism that is used to pass file descriptors for the guest memory re-
gions. These eventfds are usually hooked up as KVM ioeventfds and irqfds, thus
triggering lightweight VMEXITs and minimizing the virtualization overhead.

The data plane consists of the mechanisms for accessing the virtqueues and sending/re-
ceiving notifications. It is important to note that the data plane can be further split into
the I/O control path and the I/O data path. The I/O control path is the processing of
the metadata that describe each I/O request. Essentially, the metadata are pointers
to the actual data in guest memory. The I/O data path is the processing of the ac-
tual data. The metadata are handled differently than the data. When the vhost device
initialization phase is finished, the slave has access to the whole guest memory, and
hence to the driver’s virtqueues inside guest memory. The vhost device is ready to
handle I/O requests generated by the guest driver. The guest driver sends I/O requests
by allocating I/O buffers in guest memory, filling them with data and putting the guest
physical addresses of these buffers into virtqueues. The guest driver then kicks the
virtqueue to notify the device backend about the new I/O requests. According to the
virtio specification, kicking the virtqueue means writing to an I/O port correlated to
this virtqueue. The control returns to QEMU, which kicks the corresponding kickfd
related to this virtqueue, thus notifying the vhost device backend. However, note that
the kickfd could have been kicked by KVM directly if it had been hooked up as an io-
eventfd, but this is just an optimization. The vhost device backend polls on the kickfds,
notices the kick of the eventfd, and thus learns about the existence of new descriptors
in the virtqueue. So, it reads the descriptors. The desciptors contain GPAs pointing
to the actual data. The vhost device backend translates the GPAs to HVAs by sub-
tracting the GPA where the guest physical memory is mapped in the guest physical

memory address space and adding the remaining offset to the virtual address where it

92 CHAPTER 4. VHOST

has mapped the guest memory in its virtual address space. The vhost device backend
may also split the requests into I/O vectors in case they are fragmented into separate
vhost memory regions. Then, the vhost device backend serves the I/O requests. Once
I/O completes, the vhost device backend fills the response buffer with proper data and
notifies the master by kicking the corresponding callfd. Similarly to the kickfd, either
QEMU or KVM notices the kick and notifies the guest driver by injecting a virtual in-
terrupt. We deliberately did not get into details about the form of the I/O requests and
the I/O control and data path beyond the vhost device backend, because the vhost-user
protocol is device-agnostic. The number of virtqueues, the layout of the descriptors in
the virtqueues and the I/O data path depends on the type of virtio device. The above

abstract analysis of the vhost-user data plane applies to any type of virtio device.

Various optimizations can be applied to the data plane in order to make it more ef-
ficient. For example, using poll-mode drivers both in the master guest kernel and in
the slave process would completely eliminate the hypervisor’s intervention in the I/O

control path, thus eliminating VMEXITs.

Last but not least, the vhost-user protocol supports some optional features. For exam-
ple, the protocol specification includes features like pre-copy/post-copy live migration,

multi-queue support and IOMMU support.[72]

4.5 More about inter-process communication via shared

memory

It has been mentioned in the previous section that the vhost-user protocol grants the
vhost device backend process with full access to the guest physical memory. The back-
end tracks the driver’s virtqueues inside guest memory via some vhost-user messages.
A reasonable question rises at this point: “Why should we expose the whole guest
memory to the backend process and not just constraint the backend process with ac-
cess to the driver’s virtqueues and I/O buffers?”. Let’s get into more details about this

approach.

The vhost backend process must have access to the driver’s virtqueues and the I/O

buffers containing the actual data. In case of block devices, the data may be stored

4.5. MORE ABOUT INTER-PROCESS COMMUNICATION VIA SHARED MEMORY93

in kernel memory (page cache) or in user space memory (Direct I/O). This means
that the I/O buffers are not stored in fixed positions. Consequently, giving access to
the whole guest memory solves this problem without any further modifications in the

guest device driver.

The other approach, that is restricting access to just a portion of guest memory, would

work as follows:

the guest device driver should allocate the virtqueues inside this memory. The I/O
buffers should be allocated inside this memory as well. In case of virtio-scsi driver,
whenever a new I/O request would arrive from the SCSI mid-layer, the driver should
check if the I/O buffer (the actual data) related to this request is located inside the
portion of shared memory. If not, the driver should copy the data inside the shared

memory so that the vhost backend process can access them.

Comparing these two approaches, the advantage of exposing the whole guest memory,
instead of just a portion of it, is that there is no need for data copies, thus achieving a
fast zero-copy datapath. On the other hand, what we lose by exposing the whole guest
memory is that the backend process has unrestricted access to all guest memory, and

this is certainly a security hole.

94

Design of SPDK/VVU

In this chapter, we are going to analyze how the SPDK/VVU mechanism works, what
are the necessary changes that we have to make in order to implement this, and how

we ended up to this design after the interaction with the open source communities.

5.1 General Description

SPDK is a storage framework with a lot of libraries and applications that utilize these
libraries. Among other things, SPDK can create vhost targets that provide storage ser-
vices to local VMs. The SPDK vhost library is capable of exposing virtualized block
devices to QEMU instances or other arbitrary processes. It uses the vhost-user proto-

col to communicate with the VM.

In this chapter, we are going to introduce an alternative storage virtualization solution
that relies on SPDK vhost. This new storage virtualization solution is called “SPD-
K/VVU?”. 1t is based on the SPDK vhost application and the virtio-vhost-user device,
hence its name. It could be considered as an extension of the traditional vhost-user
communication mechanism, which is defined in the vhost-user protocol specification.
In a nutshell, SPDK/VVU works as follows: instead of running the SPDK vhost target
on host user space, we are shipping the SPDK vhost target inside a dedicated Stor-
age Appliance VM, running locally alongside the Compute VM. This way we can have

guests offering storage services to other guests.

Isolating the SPDK vhost target inside a Storage Appliance VM requires that we extend

95

96 CHAPTER 5. DESIGN OF SPDK/VVU

the vhost-user protocol communication mechanisms, so that the vhost target can still
have access to the Compute VM’s memory. The vhost-user protocol is split into three
parts: the control plane, the data plane and the notification mechanism. Actually, the
notification mechanism could be considered as part of the data plane, but we are going
to see it separately here. In this chapter, we are going to look through a proposal for
extending the traditional vhost-user communication mechanism, as described in the
specification, from the host all the way up to guest user space in the Storage Appli-
ance VM. We are going to introduce a new virtio device for this purpose that is called
“virtio-vhost-user”. Therefore, the new vhost-user transport is called “virtio-vhost-
user transport”. The traditional vhost-user transport is called “AF_UNIX transport’,
since it is based solely on socket communication. We are going to explain how the
virtio-vhost-user device extends the vhost-user communication mechanisms. Last but
not least, we will have to extend the SPDK and DPDK codebase (DPDK has been inte-
grated as a submodule in SPDK), so that the SPDK vhost target can work over this new
transport. We also need to extend the API, so that this new functionality is exported

to the end user.

Our goal in this thesis is not just to implement this new storage virtualization mecha-
nism, but to push it upstream into the corresponding projects. Our goal is to become
members of the SPDK, DPDK, QEMU and VIRTIO open source projects, interact
with the communities and push changes into these projects, so that SPDK/VVU is
available to everyone. In this direction, we first approached Stefan Hajnoczi ' (Software
Engineer at RedHat’s virtualization team). Stefan owns the original idea for the virtio-
vhost-user device and the setup of VMs offering storage services to other VMs. Stefan
had actually presented an RFC implementation for the device and for its spec. How-
ever, the project had been stalled due to lack of spare time. We used this RFC imple-
mentation and started working on the SPDK codebase in order to add support for the
virtio-vhost-user transport (we will show more information on this in section List of
Changes). After some time and after a successful demo of the SPDK/VVU setup in
the SPDK Community Meeting, Stefan authorized us * to pick up his work and finish
the device. Currently, we are awaiting for the device spec to be approved by the virtio

committee. For more information about our current state and our next steps, refer to

'https://lists.0@1.org/pipermail/spdk/2018-September/002488.html
*https://1lists.01.org/pipermail/spdk/2018-December/002822 .html

https://lists.01.org/pipermail/spdk/2018-September/002488.html
https://lists.01.org/pipermail/spdk/2018-December/002822.html

5.2. THE VIRTIO-VHOST-USER DEVICE IN A NUTSHELL 97

the Conclusion chapter.

5.2 'The virtio-vhost-user device in a nutshell

The virtio-vhost-user device is a QEMU character device that will be used to imple-
ment SPDK/VVU. It is a paravirtualized device that complies with the Virtio speci-
fication. Its purpose is to extend the vhost-user transport, so that it will be able to
offload the vhost device backend process from host user space into a dedicated Stor-
age Appliance VM running locally alongside the Compute VMs. In other words, the
virtio-vhost-user device allows running vhost devices inside VMs. We will see how

this is achieved in the following sections.

The virtio-vhost-user device is equipped with a pair of RX/TX virtqueues for host-
guest communication. It complies with the modern virtio interface (in other words,
not compliant with legacy drivers). It supports MSI-X interrupts. Currently, the virtio-

vhost-user device has been implemented over PCI transport only.

Unlike the rest of the virtio PCI devices, it is equipped with some additional device
resources. These resources are standardized with three virtio PCI capabilities. In
specific, the additional device resources are “doorbells”, “notifications” and “shared
memory’. The doorbells resource is a set of MMIO addresses that are hooked up with
eventfds. This means that whenever the guest driver kicks a doorbell, the QEMU de-
vice code emulates this operation by sending an event to the appropriate eventfd. The
guest driver can find the location and the number of the available doorbells in the de-
vice’s memory space via a doorbell configuration structure pointed out by the doorbell
capability. The notifications resource is the opposite to doorbells. MSI-X vectors are
being hooked up to eventfds. Whenever an eventfd is kicked on the host, the QEMU
device code triggers a guest interrupt with the appropriate MSI-X vector. The device
offers a notification capability, so that the guest driver can hook up MSI-X vectors
to certain eventfds. Finally, the shared memory resource is a portion of the device’s
memory address space that exposes a part of host memory to the guest. This mem-
ory is usually the file-backed memory of another VM. The guest driver can find out

the address and length of the shared memory resource from the shared memory virtio

PCI capability.

98 CHAPTER 5. DESIGN OF SPDK/VVU

5.3 Extending the vhost-user control plane

In this section we are going to examine the vhost-user control plane and how it is

altered in case of SPDK/VVU.

In short, the vhost-user control plane consists of the exchange of vhost-user protocol
messages for setting up the vhost-user target. According to the vhost-user specifica-
tion, the inter-process communication between the vhost-user master and slave for

the exchange of the vhost-user messages is done through a unix domain socket.

In SPDK/VVU, the QEMU vhost-user driver has to be able to exchange vhost-user
protocol messages with the SPDK vhost-user target that is running inside the Storage
Appliance VM. This is fulfilled via the virtio-vhost-user device. The device is associ-
ated with a chardev socket that will correspond to the host vhost-user unix domain
socket. It will also have a pair of virtqueues (RX and TX). The virtio-vhost-user device
will be working as a proxy for the most of the vhost-user protocol messages. This
means that it will be capturing any vhost-user messages arriving through the unix
socket and will be forwarding those messages to the guest. Subsequently, the driver
for this device will be receiving the messages from the RX virtqueue and passing them
to the message handler of the SPDK vhost target. It is obvious that a similar procedure
is followed for the slave-initiated vhost-user messages. It is important to mention that
the virtio-vhost-user device works as a proxy for the most of the vhost-user messages,
but not for all of them. There are some message types that require some work to be

done by the virtio-vhost-user backend driver on the host side.

5.4 Extending the vhost-user data plane

In this section we are going to examine the vhost-user data plane and how it is altered

in case of SPDK/VVU.

In short, the vhost-user data plane consists of the chain of events that are being done
during the submission of a block I/O request from the guest. It involves transferring
the metadata (eg. SCSI CDB) to the vhost target and further down to the actual storage
backend. It also involves the DMA operation that is performed by the storage backend

in order to serve the I/O request described in the metadata. In other words, the vhost-

5.4. EXTENDING THE VHOST-USER DATA PLANE 99

user data plane consists of the I/O control path, the I/O data path and the notifications.

The metadata for each block I/O request are inserted in virtio descriptors from the
master guest device driver. The actual data related to this metadata are saved in I/O
buffers. The I/O buffers could be located either in the page cache or in user space
memory in case of Direct I/O. Both the virtqueues and the I/O buffers are allocated by
the Compute VM’s virtio frontend driver in the Compute VM’s physical memory. The
SPDK vhost target and the underlying SPDK storage backend have to be able to have
access to those resources inside the Compute VM’s memory. In case of the vhost-user
protocol, this works by exposing the whole VM’s memory to the vhost target. In case
of SPDK/VVU, we need a mechanism so that the vhost target, running in slave guest

user space, can still have access to the Compute VM’s memory. This is done as follows:

during the initialization phase, the master sends a VHOST _USER_SET_MEM_TABLE
vhost-user message, which contains file descriptors for the file-backed memory of the
master VM. The virtio-vhost-user device intercepts this message and it maps all the
vhost memory regions in the virtual address space of the slave QEMU process. Then,
the virtio-vhost-user device exposes the mapped vhost memory regions to the guest as
a PCIMMIO region. This means that the master VM’s memory is exported to the slave
guest as device memory. Thus, the SPDK vhost target has access to the vhost memory

regions through the PCI memory address space of the virtio-vhost-user device.

The SPDK vhost target polls on the vhost-user virtqueues for any new descriptors sent
by the master guest driver. This means that the SPDK vhost target constantly accesses
the PCI MMIO region that exposes those virtqueues to the slave guest. It is impor-
tant to mention at this point that these MMIO accesses do not trigger VMEXITs. The
aforementioned PCI MMIO region of the virtio-vhost-user device is backed by host
memory, and specifically by the file-backed memory of the master VM. This means
that QEMU registers the mapped memory of the master VM as a memory slot to the
KVM module. As a result, any accesses from the slave guest to the MMIO region result
in a valid page table entry in the Extended Page Table, and thus no VMEXITs occur.
To conclude, the I/O control path and data path do not involve the intervention of
the hypervisor at any point, except for the slave-to-master notifications, which we are

going to examine in the following section.

100 CHAPTER 5. DESIGN OF SPDK/VVU

5.5 Extending the vhost-user notification mechanism

In this section we are going to examine the vhost-user notification mechanism and

how it is altered in case of SPDK/VVU.

The vhost-user notification mechanism is the means for the master guest virtio fron-
tend driver of the virtio block device to notify the SPDK vhost target for new descrip-
tors, and conversely, the means for the vhost-user target to notify the guest driver
for the completion of the submitted I/O requests. The vhost-user protocol defines
that event file descriptors are used for these notifications. The event file descriptors
are called kickfds and callfds respectively. They are usually accompanied with the io-

eventfd/irqfd KVM features to trigger lightweight VMEXITs.

According to the vhost-user protocol, the kickfds and callfds are created by the master
and passed to the slave via vhost-user messages. However, in case of SPDK/VVU, it
is obvious that these eventfds cannot be passed to the SPDK vhost target running in

slave guest user space. So, the solution adopted in SPDK/VVU is the following:

the virtio-vhost-user device intercepts these vhost-user messages and saves the kickfds
and callfds. Concerning the kickfds, the device supports hooking up kickfds to MSI-X
vectors. It exposes a virtio PCI capability to the guest so that the guest driver can set
up the mapping between callfds and interrupt vectors. However, notice that in case
of SPDK/VVU, this feature is unused, because SPDK relies exclusively on polling and
therefore disables the notifications from the frontend driver. Concerning the callfds,
the device exposes one doorbell per callfd to the guest. The doorbells are MMIO
addresses in the BAR 2 MMIO region. The device also registers the doorbells as io-
eventfds. This means that every access to a doorbell causes a trap—VMEXIT and the
KVM kicks the corresponding callfd.

Note that the doorbells and the shared memory regions are mapped to the same PCI
MMIO region of the virtio-vhost-user device. In QEMU, it is possible to create an
MMIO region that is split into multiple subregions. These subregions may be emulated
in different ways. For example, in QEMU it is possible to create a PCI BAR that is
composed of a RAM region and an MMIO region. This means that accesses to different
addresses inside that PCI BAR are emulated in a different way. If a guest MMIO address
is backed by host RAM, then an access to this address results in a valid PTE in the

5.6. CHANGES IN SPDK AND DPDK 101

extended page table, and therefore, there is no VMEXIT. If a guest MMIO address
is emulated by QEMU, then an access to this address causes a trap—VMEXIT, the
KVM returns the guest physical address to QEMU to emulate, and QEMU emulates

the access using the associated callbacks.

5.6 Changes in SPDK and DPDK

According to the previous chapters, the virtio-vhost-user device extends the vhost-
user communication mechanism, thus introducing a new vhost-user transport. We
call it the “virtio-vhost-user” transport as opposed to the “AF_UNIX” transport, which
is the traditional vhost-user transport defined by the vhost-user protocol specification.
In order to add support for this new transport, we have to make changes in SPDK and
DPDK. The reason why we are engaging with DPDK is because SPDK incorporates
DPDK as a submodule and uses DPDK’s librte_vhost, which is the control plane im-
plementation for the vhost-user protocol. In the following section, we are outlining
the architeture of the vhost-related code in SPDK, so that it becomes clear what we

have to change.

5.6.1 Architecture of SPDK’s vhost code

SPDK contains a library called “vhost” that implements a vhost-user target. The ar-

chitecture of the target can be split into three parts:

o the control plane implementation
o the generic data plane implementation

o the protocol-specific data plane implementations

The control plane implementation is the code related to vhost-user message handling,
socket I/0, fd handling and setting up of the translations for the virtqueues and the I/O
buffers. SPDK maintains its own control plane implementation in lib/vhost/rte_vhost/.
This library is just a copy of DPDK’s librte_vhost with some storage-specific changes.
Recall that SPDK incorporates DPDK as a git submodule. Recently, a new feature has

102 CHAPTER 5. DESIGN OF SPDK/VVU

been added in SPDK that allows using DPDK’s librte_vhost directly. The long-term

plan is that the internal rte_vhost copy will be only maintained as a legacy feature.

The generic data plane implementation is the code for creating a new vhost device,
destoying a vhost device, triggering the construction of the protocol-specific data plane
and registering the vhost memory regions to the SPDK’s user space page table (called
“vtophys memory map”). The code lives in lib/vhost/vhost.c. It exposes its API with a
vhost_device_ops structure, which is passed to the data plane. This is necessary for the
data plane to be able to trigger the data plane creation when the vhost-user initializa-
tion phase is completed and, respectively, destroy the data plane, in case it is necessary.
The generic data plane code interacts with the data plane through the public API of
the latter (rte_vhost.h). This interaction is necessary for operations like triggering the
vhost-user message exchange, when a new vhost device has been requested, or trans-

lating a guest virtual address to host virtual address.

The protocol-specific data plane implementation is the code that implements the data
plane for each of the supported storage protocols. The code for the three supported
protocols (virtio-scsi, virtio-blk, nvme) lives in lib/vhost/vhost_scsi[blk,nvme].c. Each
protocol implements the spdk_vhost_dev_backend structure, which is used by the generic
data plane to invoke the protocol-specific operations. The main field of this structure
is function start_session(), which creates the data plane for a vhost device. It is invoked
whenever a VM connects to the associated vhost-user unix socket and right after the
completion of the vhost-user message exchange. In short, what this function does is to
allocate I/0O request buffers (called “tasks” in SPDK terminology and they are equiv-
alent to the bio requests in the Linux kernel) for each of the device’s I/O queues, and
create a poller for each of the device’s I/O queues. Each poller polls on the correspond-
ing I/O queue in master guest memory. Whenever a poller tracks a new submitted
I/O request, it parses the request, it translates it according to the storage protocol, and

eventually delivers it to the SPDK Block Layer.

SPDK exposes all the aforementioned storage protocol implementations through the

vhost application located in app/vhost/.

5.7. OPERATION END-TO-END 103

5.6.2 List of Changes

Based on the above explanation, it is clear that we have to make changes in DPDK’s
librte_vhost, in order to insert the virtio-vhost-user transport. In other words, we have

to change the control plane. In specific, we have to do the following changes:

1. add a user space driver for the virtio-vhost-user devices
2. implement the virtio-vhost-user transport as part of librte_vhost.

3. export this new transport to the end user through the SPDK’s application-wide
APIs.

When we first engaged with SPDK, there was no option for using DPDK’s librte_vhost
directly. So, our first submitted patchset was attempting to add support for the virtio-
vhost-user transport in SPDK’s internal rte_vhost copy. Darek Stojaczyk (Software En-
gineer at Intel and core maintainer of SPDK) replied * by saying that the community’s
goal is to switch to DPDK’s librte_vhost and maintain the internal rte_vhost copy as a
legacy feature. Therefore, he rejected our patchset and kindly asked us to implement
the virtio-vhost-user transport in DPDK’s librte_vhost instead. After some discussion
on the mailing list, we reached to an end-to-end plan *. This plan involved many steps,

but the most important ones where the following:

1. support using DPDK’s librte_vhost directly

2. implement the virtio-vhost-user transport in DPDK’s librte_vhost

The first one has been implemented by Darek and released with the 19.04 release ver-
sion of SPDK as an experimental feature®. The second one is our responsibility. For

more on our current state on this and our next steps, refer to the Conclusion chapter.

5.7 Operation End-to-End

Ultimately, the end-to-end setup looks like this:

*https://1lists.01.org/pipermail/spdk/2019-January/003045.html
*https://lists.@1.org/pipermail/spdk/2019-March/003163.html
*https://spdk.1i0/release/2019/04/30/19.04_release/

https://lists.01.org/pipermail/spdk/2019-January/003045.html
https://lists.01.org/pipermail/spdk/2019-March/003163.html
https://spdk.io/release/2019/04/30/19.04_release/

104 CHAPTER 5. DESIGN OF SPDK/VVU

Compute VM (Master) Storage Appliance VM (Slave)

SPDK vhost target
1/0 intensive workload

// = ~ \ // as

K vhost-scsi
vvu drlvel; - device
o virtio-scsi
g et bdev
. virtio-pci
driver

shared memory o o

virtqueues

/dev/vfio/5 /dev/vfiol6

\\

u
P K
1/0 buffers al \ ’ vfio-pci driver
. X x
Dk SN Mmap() 8 S f

L/

Y
virtio-scsi | vhost initiator vhost-usér messages
RER Ceallfd |t JTTTTTTT T A

virtio-scsi
HBA

Figure 5.1: SPDK/VVU Topology

The setup consists of a Compute VM (master VM) and a Storage Appliance VM (Slave
VM). The two VMs communicate via the virtio-vhost-user device. The master VM is
equipped with a vhost-user-scsi PCI device, which is a virtio-scsi HBA whose back-
end part (the data plane) is being emulated outside QEMU. In specific, the guest-
visible PCI-specific part (PCI Configuration Space, memory address space, port ad-
dress space, interrupt mechanism) is being emulated by the master QEMU process,
while the backend part is being emulated by a separate process. The backend part,
also called the “vhost device backend” or “vhost target”, is being emulated by the SPDK
vhost app running in slave guest user space. Last but notleast, the slave VM is equipped
with a virtio-scsi HBA with a couple of SCSI disks attached on its SCSI transport. These
disks serve as the storage backends for the emulated vhost SCSI disks exposed to the
master VM via the vhost-user protocol. Note that the fact that we are using here a
virtio-scsi HBA as a storage backend is just an example. There are many other options
for this setup, like for example passing through an entire physical disk from the host.
Ultimately, what we have is a VM (Storage Appliance VM) that offers storage services
to another VM (Compute VM) via shared memory.

Getting into the internals of this storage virtualization mechanism, it would be easier

5.7. OPERATION END-TO-END 105

to be studied if we splitted the device operation into two parts: the control plane and
the data plane. The control plane involves all the management operations that are
necessary to setup the inter-process communication, configure the backend part and
ultimately enable the beginning of the I/O processing. The data plane involves the
whole data and metadata movement from the master guest memory to the underlying

storage backend in the slave VM side.

5.7.1 Control Plane

Concerning the control plane, it is obvious that most management operations are be-
ing done during the intialization phase. The initialization phase is triggered by the
connection of the master or the slave to the vhost-user unix domain socket. This de-
pends on whether the master is the client or the server in the socket communication.
In practice, this can be configured with the server option of the master’s and slave’s
QEMU chardevs. However, notice that the virtio-vhost-user transport, in contrast to
the AF_UNIX transport, does not support working as a client in the socket communi-
cation, so this configuration should be avoided in this case. The reason for this is that
when the slave VM would boot up and the virtio-vhost-user device would connect to
the master’s unix socket, the vhost-user backend in the master side would immedi-
ately start sending vhost-user messages to the unix socket, while the virtio-vhost-user
device wouldn’'t have been initialized yet (not bound to a driver yet). In the following

explanation we assume that the slave works as a server in the socket communication.
In detail, the initialization phase goes as follows:

Suppose that the slave VM is up and running and the SPDK vhost target has been
setup inside the slave VM and awaits for new connections. At this point, we boot
up the master VM equipped with a vhost-user-scsi PCI device. The memory of the
master VM is file-backed so that it is sharable and the slave VM can gain access to
it. The master VM’s memory could be backed either by regural 4KB memory frames
(eg. a file on host tmpfs) or by hugepages for better performance (eg. a file on host
hugetlbfs). In case we want to use a physical passthrough device as storage backend,
then the same setup for the master VM’s memory is sufficient. In such case, QEMU
will declare the whole guest memory (guest physical memory and MMIO regions of

all devices) as DM A-able memory to the host vfio-pci driver, which in turn will pin

106 CHAPTER 5. DESIGN OF SPDK/VVU

the guest memory and program the host IOMMU with GPA—HPA translations.

When the master VM is booting up, the master QEMU’s chardev socket connects to the
vhost-user unix socket created by the virtio-vhost-user device in the slave side. Master
QEMU also instantiates a vhost-user-scsi-pci device. This triggers the instantiation of

a vhost-user-scsi device:

hw/virtio/vhost-user-scsi-pci.c:

static void vhost_user_scsi_pci_instance_init(Object *obj)

{
VHostUserSCSIPCI *dev = VHOST_USER_SCSI_PCI(obj);

virtio_instance_init_common(obj, &dev->vdev, sizeof(dev->vdev),
TYPE_VHOST_USER_SCSI);
object_property_add_alias(obj, "bootindex", OBJECT(&dev->vdev),

"bootindex", &error_abort);

Then QEMU realizes the vhost-user-scsi instance by calling the .realize() method of
this type. The realize function triggers the vhost-user message exchange by calling

vhost_dev_init():

hw/scsi/vhost-user-scsi.c:

static void vhost_user_scsi_realize(DeviceState *dev, Error **errp)
{

VirtIOSCSICommon *vs = VIRTIO_SCSI_COMMON(dev);

VHostUserSCSI *s = VHOST_USER_SCSI(dev);

VHostSCSICommon *vsc = VHOST_SCSI_COMMON(S);

Error *err = NULL;

int ret;

if (!vs->conf.chardev.chr) {
error_setg(errp, "vhost-user-scsi: missing chardev™);

return;

34

35

36

37

38

39

40

41

42

43

44

45

5.7. OPERATION END-TO-END 107

virtio_scsi_common_realize(dev, vhost_dummy_handle_output,
vhost_dummy_handle_output,
vhost_dummy_handle_output, &err);
if Cerr != NULL) {
error_propagate(errp, err);

return;

if (!vhost_user_init(&s->vhost_user, &vs->conf.chardev, errp)) {

return;

vsc->dev.nvgs = 2 + vs->conf.num_queues;
vsc->dev.vgs = g_new(struct vhost_virtqueue, vsc->dev.nvgs);
vsc->dev.vqg_index = 0;

vsc->dev.backend_features = 0;

ret = vhost_dev_init(&vsc->dev, &s->vhost_user,
VHOST_BACKEND_TYPE_USER, @);
if (ret < 0) {

error_setg(errp, "vhost-user-scsi: vhost initialization failed:

%s",
strerror(-ret));
vhost_user_cleanup(&s->vhost_user);
return;
}
/* Channel and lun both are @ for bootable vhost-user-scsi disk */
vsc->channel = 0;
vsc->lun = 0;
vsc->target = vs->conf.boot_tpgt;
3

When the vhost-user connection is established, the vhost-user feature negotiation
takes place. The master QEMU vhost-user driver starts sending vhost-user protocol

messages to the vhost-user slave. These messages are intercepted by the virtio-vhost-

108 CHAPTER 5. DESIGN OF SPDK/VVU

user device and tunnelled through virtqueues all the way up to the SPDK vhost target.

At first, the master negotiates the virtio features and the vhost-user protocol-specific
features. After the negotiation, the master shares the Compute VM’s file-backed mem-
ory, so that the vhost target can access it directly. The memory can be fragmented into
multiple physically-discontiguous regions and the vhost-user specification puts a limit
on their number - currently 8. The driver sends a single message for all the regions -
the VHOST_USER_SET_MEM_TABLE message - giving the following data for each

region:

o file descriptor - this is a file descriptor related to the Compute VM’s file-backed

memory

o host virtual address - the virtual address where the master guest physical mem-
ory is mapped in QEMU’s virtual address space - used for memory translations

in vhost-user messages (e.g. translating vring addresses)

« guest physical address - the master guest physical address where this memory
region is mapped in master guest physical memory address space - used for ad-

dress translations in vrings (for QEMU this is a physical address inside the guest)
o offset - positive offset for the mmap

« size - size of the vhost memory region

The virtio-vhost-user device captures this last message and maps all the vhost mem-
ory regions into the virtual address space of the slave QEMU process. It then exposes
the mapped vhost memory regions to the slave guest as a RAM-backed PCI MMIO
region (BAR 2). Later on, the master sends messages with the necessary informa-
tion so that the vhost target can track the virtqueues and the I/O buffers inside the
previously mapped vhost memory regions. Specifically, for each virtqueue, it sends
the size of the virtqueue, the host virtual addresses for the three virtqueue structures
(avail ring, used ring, descriptor table), and the starting index in those structures. Last
but not least, the master sends the callfd and kickfd for each virtqueue with messages
VHOST_USET_SET_VRING_CALL and VHOST_USER_SET_VRING_KICK respec-

tively. These vhost-user messages are also intercepted by the virtio-vhost-user device.

5.7. OPERATION END-TO-END 109

The virtio-vhost-user device saves the kickfds (kickfds are not used in SPDK/VVU)
and callfds, and maps the callfds to doorbells. The doorbells are exposed to the slave
guest as the first 4KB in the BAR 2 PCI MMIO region of the virtio-vhost-user device.

5.7.2 Data Plane

When the device initialization is finished, the SPDK vhost target has access to the
virtqueues in master guest memory and is ready for I/O processing. We will showcase
an example with a read I/O request. Through this example, we are going to demon-
strate the vhost-user data plane, that is the I/O control plane and the I/O data plane.
Notice though that the kernel offers a wide range of interfaces, except for read()/write()

system calls, and tweaks for making I/O faster.

Suppose that a process, running in master guest user space, issues a read() system call
on a file saved on a vhost-user-scsi disk. Suppose also that this process uses direct
1/0[73] (open() with O_DIRECT flag) in order to bypass the master guest kernel page
cache. This is just an assumption in order to overlook the complexity added by the
kernel page cache management subsystem. Using O_DIRECT poses certain limita-
tions as far as the user space data buffer is concerned[74]. But we will overlook these
limitations as well, as this is not the purpose of this thesis. Bypassing the page cache
reduces the I/0 latency in case of solid state media, so it makes sense in our case. The
kernel system call handler for the read() system call is part of the VES subsystem[75].
The VES subsystem will translate the read request, which looks like “read those bytes
from this open file and return the data into this user space buffer” into a bunch of
Block I/0O requests (or simply bio requests implemeted by struct bio in <linux/bio.h>),
which are something like “read those sectors from this partition in this block device
and return the data in the user space buffer”. These bio requests are formed by the VFS
layer and passed down to the Block Layer[76]. The user space I/O buffer is represented
inside the bio structure as an I/O vector, since the user space buffer may correspond

to multiple discontiguous physical memory segments.

The Block Layer is the kernel component that is responsible for passing the bio re-
quests from the VEFS layer to the appropriate block device driver. The Block Layer
processes the bio requests in two phases. Inherently, the Block Layer is split into two

parts: the bio layer and the request layer. The bio layer provides an upstream interface

110 CHAPTER 5. DESIGN OF SPDK/VVU

to filesystems, allowing them to access a multitude of storage backends in a uniform
manner. The VES passes the bio requests to the bio layer. The bio layer incorporates
some higher-level services (device mapper, LVM, etc.). In our case, we assume that the

bio layer doesn’t modify the bio requests. It just forwards them to the request layer.

The request layer[77] performs the scheduling of the I/O requests. It essentially han-
dles the request queues of the underlying block devices. It determines the order of
the requests in the queue and the moment that each request is dispatched to the un-
derlying block device driver. Each request queue is filled with requests from the bio
layer. In specific, the bio layer creates a request instance (struct request defined in
<linux/blkdev.h>) for each bio request and passes it to the appropriate request queue.
Note that each request can be composed of more than one bios, because individual
requests can operate on multiple consecutive disk blocks. The request queues of all
block devices are being handled by the I/O scheduler. The request layer performs I/O
scheduling in order to maximize the I/O performance in case of non-random access
hard disk drives. Maximizing the I/O performance practically means minimizing disk

seeks when possible. The I/O scheduler has to perform three tasks [79]:

1. coalesce multiple physically contiguous (that means requests concerning con-
tiguous disk sectors) bio requests into a single request. This is referred to as

“merging”.

2. reorder the requests in such an order that minimizes the seek time, while not
delaying important requests unduly. This is referred to as “sorting”. Providing
an optimal solution to this problem is the source of all the complexity. There
are various algorithms for this task. Some of the available I/O schedulers (also

called elevators) in Linux are: CFQ, NOOP, Deadline, etc.

3. make these requests available to the underlying driver, so it can pluck them off
the queue when it is ready and to provide a mechanism for notification when

those requests are complete.
In addition, the I/O scheduler can operate on the requests in order to apply policies
for fairness and bandwidth limits.

So, the request sublayer of the Block Layer performs some fancy optimizations with

the bio requests. Note that here we assumed that the blk-mq feature is not enabled in

5.7. OPERATION END-TO-END 111

the master guest kernel. Eventually, a bio will be handed to the request handler([8] of
the block device driver of the target block device. In our case, the underlying device
is a SCSI disk, so the block device driver that handles this disk is the sd driver. The
sd driver is an upper level driver in the Linux SCSI Subsystem. The sd driver creates
a SCSI request from the bio request. It basically uses the last bytes of the bio struc-
ture to create a SCSI CDB structure for this bio request. The CDB is the metadata that
describe a SCSI command. It contains an opcode (eg. READ, WRITE, INQUIRY),
a tag (unique identifier for this request), the target LUN, a logical block number (the
first logical block accessed by this command), the transfer length (the number of con-
tiguous logical blocks of data that shall be read and trasferred to the data-in buffer)
and some other information. The physical address of the user space I/O buffer can be
found in the bio request structure. The sd driver passes the SCSI request to the SCSI
mid-layer. The mid-layer inserts the SCSI request in the command queue and even-
tually passes the request futher down to the low-level SCSI driver. In our case, the
low-level SCSI driver is the virtio-scsi driver. The virtio-scsi driver transforms each

SCSI request into a virtio-scsi request. A virtio-scsi request has the following format:

struct virtio_scsi_req_cmd {
// Device-readable part
u8 1lun[8&];
le64 id;
u8 task_attr;
u8 prio;
u8 crn;
u8 cdb[cdb_size];
// The next three fields are only present if
« VIRTIO_SCSI_F_T10_PI
// 1s negotiated.
1e32 pi_bytesout;
le32 pi_bytesin;
u8 pi_out[pi_bytesout];
u8 dataout[];

// Device-writable part

le32 sense_len;

20

21

22

23

24

25

26

27

112 CHAPTER 5. DESIGN OF SPDK/VVU

le32 residual;
lel6e status_qualifier;
u8 status;
u8 response;
u8 sense[sense_size];
// The next field is only present if VIRTIO_SCSI_F_T10_PI
// 1is negotiated
u8 pi_in[pi_bytesin];
u8 datain[];
1

A virtqueue generally consists of an array of descriptors. Each descriptor has the fol-

lowing format:

struct virtg_desc {
/* Address (guest-physical). */
le64 addr;
/* Length. */
le32 len;
/* This marks a buffer as continuing via the next field. */
#define VIRTQ_DESC_F_NEXT 1
/* This marks a buffer as device write-only (otherwise device

read-only). */

#define VIRTQ_DESC_F_WRITE 2
/* The flags as indicated above. */
lele flags;
/* Next field if flags & NEXT */
lel6 next;

s

Essentially, a virtio descriptor is a pointer to an I/O request. So, each I/O needs to be
converted into a chain of such descriptors. In our case, an I/O request is represented
by struct virtio_scsi_req_cmd. A single descriptor can be either readable or writable,
so each I/O request consists of at least two (request + response) descriptors. It is up

to the driver to partition the I/O request into a virtio descriptor chain. In our case,

5.7. OPERATION END-TO-END 113

the virtio-scsi driver transforms each received SCSI request into a virtio-scsi request
and then it maps each virtio-scsi request into a descriptor chain in one of the device’s
request virtqueues (a virtio-scsi device may have multiple request queues). According
to the virtio spec, a descriptor chain is a set of descriptors chained together via the
next field. The virtio-scsi driver transforms the I/O requests into descriptor chains as

follows:

each request must have at least two descriptors (request and response). The first de-

scriptor points to the SCSI command request, which is defined as follows:

/* SCSI command request, followed by data-out */

struct virtio_scsi_cmd_req {

__u8 lun[&]; /* Logical Unit Number */
__virtiob4 tag; /* Command identifier */

__u8 task_attr; /* Task attribute */

__u8 prio; /*¥ SAM command priority field */
__u8 crn;

__u8 cdb[VIRTIO_SCSI_CDB_SIZE];
} __attribute__((packed));

The second descriptor points to the SCSI command response, which is defined as fol-

lows:

/* Response, followed by sense data and data-in */

struct virtio_scsi_cmd_resp {

__virtio32 sense_len; /* Sense data length */
__virtio32 resid; /* Residuadl bytes in data buffer
o */

__virtiol6 status_qualifier; /* Status qualifier */

__u8 status; /* Command completion status */

__u8 response; /* Response values */

__u8 sense[VIRTIO_SCSI_SENSE_SIZE];
} __attribute__((packed));

The existence of any more descriptors depends on the command type. In case of a SCSI

READ command, any more descriptors point to the data_out buffers.

114 CHAPTER 5. DESIGN OF SPDK/VVU

Upon finishing with the descriptors, the virtio-scsi driver adds the head index of the
new descriptor chain to the available ring and increments the avail ring’s head pointer
by 1. The virtio-scsi driver doesn’t kick the virtqueue in order to notify the backend
driver, because the SPDK vhost target has suppressed the guest notifications with the
VIRTIO_F_NO_INTERRUPT feature flag. Thus, there are no VMEXITs in the datap-

ath due to device notifications.

On the slave side, the SPDK vhost-scsi device pollers poll on the master guest virtqueues
for any new I/O requests. According to the virtio spec, a virtio-scsi device has at least
3 virtqueues: a control queue, an event queue and one or more request queues. The
control queue and the event queue are used for management operations. The request
queues are used for transferring the SCSI requests. SPDK uses two pollers for all of
these virtqueues. Specifically, one poller for the control and event queues and one
poller for the request queues. The former is function vdev_mgmt_worker() and the
latter is function vdev_worker(). Both of them are defined in lib/vhost/vhost_scsi.c.
These pollers are being registered to the main reactor thread after the vhost-user fea-

ture negotiation. Specifically, this is done by function spdk_vhost_scsi_start_cb().

As a reminder, the virtqueues are allocated in master guest memory, which is exposed
to the slave guest as a portion of an MMIO BAR of the virtio-vhost-user device. This
implies that virtqueue polling is actually memory mapped I/O on a memory region
of the virto-vhost-user device. It is important to note at this point that these MMIO
accesses do not cause VMEXITs on the slave side, because this portion of the MMIO
BAR is RAM-backed. As a result, whenever the slave guest performs a memory ac-
cess to this MMIO RAM-backed BAR, then the HW MMU finds a valid PTE in the
Extended Page Table ([78] Chapter 28) and performs the translation from guest vir-
tual address to host physical address. In other words, this PTE maps a portion of the
MMIO BAR 2 of the virtio-vhost-user device to the host memory frames that make

up the master VM’s file-backed memory.

When the SPDK vhost-scsi device poller notices a new descriptor chain in the request
virtqueue, it needs to translate and transform it back into the original request form.
This is done by function task_data_setup(). In detail, for each descriptor, the device
performs a lookup in the vhost-user memory region table and goes through a gpa_-

to_vva translation (master guest physical address to slave guest vhost virtual address).

5.7. OPERATION END-TO-END 115

This is done as follows:

the metadata, that is the descriptor addresses and the addresses contained in the re-
quest and response structures, are master GPAs. For each master GPA, the vhost target
subtracts the master GPA where the master guest physical memory is mapped in mas-
ter guest physical memory address space. The remaining offset is then added in the
slave guest virtual address where the vhost target has mapped the shared memory re-

gion of the virtio-vhost-user device.

SPDK enforces the request and response data to be contained within a single memory
region. I/O buffers do not have such limitations. In case an I/O buffer is scattered
into multiple discontiguous vhost memory regions, SPDK automatically performs ad-
ditional iovec splitting and gpa_to_vva translations. After forming the request structs,

SPDK forwards such I/O to the SCSI layer.

The SPDK SCSI layer does the SCSI emulation, that is basically mapping the target
LUN to the corresponding bdev. The SCSI emulation layer is also responsible to reply
to incoming INQUIRY commands (recall that the SPDK vhost-scsi target can work
over various non-SCSI storage backends). The SCSI layer then passes the SCSI request
to the SPDK bdev layer. The SPDK bdev layer will handoff the SCSI request to the bdev
module that handles the storage backend that the request’s target LUN is associated
with. In this case, the bdev module is the poll-mode virtio-scsi driver that handles the

virtio-scsi storage backend.

The I/O request contains slave guest virtual addresses. The DM A-capable storage back-
end that will serve the I/O request understands slave guest physical addresses or slave
IOVAs it a vVIOMMU is present. In either case, an address translation is necessary. For
this purpose, SPDK maintains its own user space “page tables” or “memory maps”. So,
slave GVA — slave GPA (or slave IOVA) translation is done using the SPDK vtophys
memory map. Specifically, in case of the virtio-vhost-user device, SPDK uses the sysfs
to find the slave guest physical address where the device's memory is mapped in slave

guest physical memory address space.

The bdev module sends the I/O request to the storage backend and it polls for the com-
pletion. The storage backend could be any device, passed-through or emulated, that
SPDK has a driver for. The storage backend will perform DMA to the I/O buffers in

master guest memory. In case the storage backend is emulated by QEMU, then this is

116 CHAPTER 5. DESIGN OF SPDK/VVU

peer-to-peer DMA. In case the storage backend is a physical passed-through device,
then the device performs DMA directly from the master guest memory. Note that in
this case, if there is an IOMMU in the system and the passthrough has been imple-
mented with the vfio driver, then the DMA operation is possible if the slave QEMU
has setup the host IOMMU with GPA-to-HPA mappings to the MMIO BAR 2 of the
virtio-vhost-user device. Eventually, the storage backend will finish handling the I/0
request. The SPDK bdev module will notice that by polling for the I/O completion.
Once the I/O request is completed, the bdev module will notify the SPDK vhost-scsi
device. The vhost-scsi device will fill the virtio_scsi response buffer with proper data,
will add the head index of the descriptor chain to the used ring and then will interrupt
the master guest virtio-scsi driver by kicking the corresponding doorbell. The doorbell
is an MMIO address in the MMIO BAR 2 of the virtio-vhost-user device. The door-
bells of the virtio-vhost-user device have been hooked up as ioeventfds by QEMU. So,
the doorbell kick will cause a VMEXIT, KVM will kick the callfd that corresponds to

the guest MMIO address and then will resume executing guest code.

The callfd kick will be captured by KVM in the master side, since the callfds have been
bound to IRQs with the KVM irqfd mechanism. Therefore, the KVM will inject a
virtual interrupt in the master VM. The interrupt is delivered to the virtio-scsi driver.
As a result, the virtio-scsi driver in the master guest kernel gets notified about the

completion of the I/O request from the vhost device backend.
In conclusion, it is important to emphasize on two properties of this whole I/O mech-

anism:

1. the virtio-vhost-user communication mechanism bypasses almost completely
the hypervisor in the datapath. There are two key-points though that involve
the hypervisor (KVM):

(a) the I/O completion notifications via the callfds in the slave VM.

(b) the virtual interrupts for the I/O completions in the master VM.

Both of these could be bypassed if a poll-mode virtio-scsi driver were used in the

master guest kernel/user space instead of the default kernel virtio-scsi driver.

2. the DMA operation from the storage backend is completely zero-copy. This
means that there is no data copying in the I/O datapath. The data are being

5.7. OPERATION END-TO-END 117

trasferred directly from the master guest memory to the device memory via the
device DMA engine. What is actually being copied is the metadata for each I/O
request. In case of a vhost-scsi device, the metadata is the CDB for each SCSI
request. Zero-copy DMA applies to most of the SPDK bdevs, but not for all of
them. For example, it is true for local NVMe bdevs and virtio-scsi bdevs, but
not for NVMe over Fabrics. Moreover, the master guest may give misaligned

I/O bufters in which case copying is necessary.

118

Implementation of SPDK/VVU

6.1 Brief Overview

Implementing SPDK/VVU involved working on multiple projects simultaneously and
interacting with the corresponding communities. In brief, our work involved working

on the Virtio specification, QEMU, SPDK and DPDK. Here is an outline of our work:

1. Virtio Spec: update Stefan’s RFC implementation and submit a patchset in virtio-
dev mailing list. Until present, we have submitted multiple versions that incor-
porate the feedback from the community. At the moment, we are waiting for

reviews on the fourth version of the patchset.

2. QEMU: update Stefan’s RFC implementation of the QEMU device code to com-
ply with the revised spec. The goal is to get the device merged into upstream

QEMU. The review process will start soon after the device spec gets approved.
3. DPDK:

(a) librte_vhost: add support for the virtio-vhost-user transport
(b) introduce the virtio-vhost-user device driver

(c) update the testpmd and vhost-scsi applications so that they support choos-

ing among the available vhost-user transports

4. SPDK:

119

120 CHAPTER 6. IMPLEMENTATION OF SPDK/VVU

(a) vhost: integrate the virtio-vhost-user transport (auto-detect transport based

on vhost controller’s name)
(b) add support for vfio no-IOMMU mode
(c) support registering non-2MB aligned virtual addresses in the vtophys map

(d) register the virtio-vhost-user device as a DM A-capable device

In the following sections, we are analyzing the implementation details.

6.2 Changes in the virtio-vhost-user device specification

Prior to this thesis, Stefan Hajnoczi had already introduced an RFC implementation®
for the virtio-vhost-user device specification. We used this as a reference and incor-

porated some changes. These changes are the following:

1. rebased the spec on top of the latest master branch. This basically involved mov-

ing the device’s spec out of the main tex file and into a separate file.
2. fixed some minor bugs in the spec.

3. added some device/driver requirements for the notification capability. The con-
figuration structure of the notification capability has certain requirements, sim-

ilar to those of the MSI-X capability.

4. updated the shared memory capability so that it gets synced with the VIRTIO_-
PCI_CAP_SHARED_MEMORY_CFG capability. Alan Gilbert has already sub-
mitted a spec for shared memory regions over multiple transports (PCI, MMIO).

This is expected to be merged soon.

5. added conformance targets for the virtio-vhost-user device. This is just a short
list of all the device/driver requirements that a device/driver implementation

shall comply with.

We then submitted the revised version to the virtio-dev mailing list for review. Until

present, Stefan has reviewed the series. We have incorporated his comments along with

'https://lists.oasis-open.org/archives/virtio-dev/201801/msg@011@.html

https://lists.oasis-open.org/archives/virtio-dev/201801/msg00110.html

6.3. CHANGES IN THE VIRTIO-VHOST-USER DEVICE CODE 121

some other changes in the patchset and we have re-submitted subsequent versions of
the patchset. At the moment, we are on the fourth version of the patchset and we are
awaiting for review comments on this. The community is expected to start reviewing
more actively right after Alan’s patchset has been approved. The reason is that my

patchset depends on his.

6.3 Changes in the virtio-vhost-user device code

6.3.1 Architecture of the virtio-vhost-user PCI device

The virtio-vhost-user device code is located in hw/virtio/. There is a PCI-specific part
in virtio-vhost-user-pci.c that implements all the PCI-related operations (capabilities,
additional resources, interrupts, etc.) and the backend part in virtio-vhost-user.c that
implements the core device functionality (socket I/O handling, vhost-user message
parsing, virtqueue operations). There is also a header file (include/hw/virtio/virtio-

vhost-user.h) with all the necessary structure definitions.

6.3.2 Improvements in the QEMU device code

As we have already mentioned, Stefan has proposed an RFC implementation for the
virtio-vhost-user device. However, this is by no means complete, because it is just a
Proof of Concept. So, given the revised device spec, we worked on Stefan’s RFC device
implementation. We added some changes and improvements. Our primary concern
was to get the code aligned with the device specification. In specific, our changes are

the following:

Separate PCI transport-specific code from the backend code

virtio devices are split into two layers:

« transport (how the virtio device connects to the guest), which could be PCI, or

MMIO, or S390 device channels

2https://lists.nongnu.org/archive/html/gemu-devel/2018-01/msqg@4806. html

https://lists.nongnu.org/archive/html/qemu-devel/2018-01/msg04806.html

122 CHAPTER 6. IMPLEMENTATION OF SPDK/VVU

» backend (block, net, etc)

The two layers are connected via a virtio bus, which is 1-1 (ie. connects exactly one

backend to one transport)

Here, virtio-vhost-user-device is the backend, while virtio-vhost-user-pci is the backend
along with the transport. The declarations for these two device types comply with the

QEMU Object Model (QOM) and are the following:

static const TypeInfo virtio_vhost_user_info = {
.name = TYPE_VIRTIO_VHOST_USER,
.parent = TYPE_VIRTIO_DEVICE,
.instance_size = sizeof(VirtIOVhostUser),
.class_init = virtio_vhost_user_class_init,

5

static const VirtioPCIDeviceTypeInfo virtio_vhost_user_pci_info = {
.base_name = TYPE_VIRTIO_VHOST_USER_PCI,
.generic_name = "virtio-vhost-user-pci",
.instance_size = sizeof(VirtIOVhostUserP(CI),
.instance_init = virtio_vhost_user_pci_initfn,
.class_size = sizeof(VirtioVhostUserPCIClass),
.class_init = virtio_vhost_user_pci_class_init,

5

Almost always the end user doesn’t need to care about the split between backends and
transports, because QEMU provides convenient wrappers like virtio-vhost-user-pci,
which are a PCI transport plus a backend already connected to each other and wrapped

up in a handy single device package.

Concerning the virtio-vhost-user device, we have extracted the PCI transport-specific
code into virtio-vhost-user-pci.c and we have kept the backend code in virtio-vhost-
user.c. This pattern complies with a recent refactoring in QEMU code, where the PCI
transport implementations of some devices (scsi, crypto, 9p, etc.) have been extracted

from virtio-pci.c into separate files in hw/virtio/.

6.3. CHANGES IN THE VIRTIO-VHOST-USER DEVICE CODE 123

Implement slave guest interrupts in response to master virtqueue kicks

According to the device specification, the device must support registering MSI-X in-
terrupts to specific master virtqueue events. This means that whenever a vhost-user
kickfd is kicked, the virtio-vhost-user device must support triggering slave guest MSI-
X interrupts. This would allow for interrupt-driven vhost-user backends over the
virtio-vhost-user transport. The function that triggers the interrupt injection in re-
sponse to virtqueue kicks is virtio_vhost_user_guest_notifier_read() and works as fol-

lows:

/* Handler for the master kickfd notifications. Inject an INTx or MSI-X
< 1interrupt
* to the guest in response to the master notification. Use the
< appropriate
* vector in the latter case.
*/
void virtio_vhost_user_guest_notifier_read(EventNotifier *n)
{
struct kickfd *kickfd = container_of(n, struct kickfd,
< guest_notifier);
VirtIODevice *vdev = kickfd->vdev;
VirtIOVhostUser *vvu = container_of(vdev, struct VirtIOVhostUser,
< parent_obj);
VirtIOVhostUserPCI *vvup = container_of(vvu, struct
< VirtIOVhostUserPCI, vdev);
VirtIOPCIProxy *proxy = &vvup->parent_obj;

PCIDevice *pci_dev = &proxy->pci_dev;

if (event_notifier_test_and_clear(n)) {
/* The ISR status register is used only for INTx interrupts.
— Thus, we
* use it only in this case.
*/
if (!msix_enabled(pci_dev)) {

virtio_set_isr(vdev, 0x2);

21

22

23

24

25

26

27

28

29

30

124 CHAPTER 6. IMPLEMENTATION OF SPDK/VVU

/* Send an interrupt, either with INTx or MSI-X mechanism.
< msix_notify()
* already handles the case where the MSI-X vector is NO_VECTOR
— by not issuing
* interrupts. Thus, we don't have to check this case here.
*/

virtio_notify_vector(vdev, kickfd->msi_vector);

< trace_virtio_vhost_user_guest_notifier_read(kickfd->guest_notifier.rfd,

kickfd->msi_vector);

This function is being registered as an eventfd handler for each kickfd whenever a new
VHOST _USER_SET_VRING_KICK message arrives from the master (function m2s_-
set_vring_kick()). In other words, this is the callback that is being called whenever
a new event arrives on a kickfd. This callback is hooked up to the kickfd by event_-
notifier_set_handler() function. In QEMU, an event notifier is just a wrapper structure

for an eventfd. The code for the association of a kickfd with a callback looks like this:

/* Initialize the EventNotifier with the received kickfd */

event_notifier_init_fd(&s->kickfds[vq_idx].guest_notifier, fd);

/* Insert the kickfd in the main event loop */
if (fd '= -1) {
event_notifier_set_handler(&s->kickfds[vg_idx].guest_notifier,

virtio_vhost_user_guest_notifier_read);

Use ioeventfd mechanism for the callfds

The callfds are the eventfds that are being used in order to emulate the device inter-
rupts. The vhost device kicks the callfds in order to signal the completion of an I/O
request. The virtio-vhost-user device exports this mechanism to the slave guest via

doorbells. This means that whenever the slave guest vhost device kicks a doorbell,

6.3. CHANGES IN THE VIRTIO-VHOST-USER DEVICE CODE 125

which is actually memory-mapped I/0, QEMU emulates the MMIO by kicking the
callfd that corresponds to this doorbell. The problem with this mechanism is that the
emulation overhead for each doorbell kick is critical, given the fact that it is part of the
I/O datapath. What we did to reduce this overhead was to shift the MMIO emulation
from QEMU to KVM. This has been achieved by using the ioeventfd mechanism of-
fered by KVM. With the ioeventfd mechanism someone can hook up an eventfd with
an MMIO/PIO access. This means that KVM triggers eventfd kicks in response to
guest MMIO/PIO accesses. In this way, we avoid the context switch between host ker-
nel space and host user space. In the code, we are registering the callfds as ioeventfds
in function virtio_vhost_user_register_doorbell(). This function is just a wrapper for
vvu_register_doorbell(), which is part of the virtio-vhost-user-pci device class. It uses

function memory_region_add_eventfd() to register the ioeventfd.

static void vvu_register_doorbell(VirtIOVhostUserPCI *vvup,

- EventNotifier *e, uint8_t vqg_idx)

{
VirtIOPCIProxy *proxy = &vvup->parent_obj;
hwaddr addr = vg_idx * virtio_pci_queue_mem_mult(proxy);
/* Register the callfd EventNotifier as ioeventfd */
memory_region_add_eventfd(&vvup->doorbells.mr, addr, 2, false,
< vg_idx, e);

¥

The function virtio_vhost_user_register_doorbell() is called by m2s_set_vring call(),
that is whenever the master sends a VHOST _USER_SET_VRING_CALL message. The
code looks like this:

/* Initialize the EventNotifier with the received callfd */
event_notifier_init_fd(&s->callfds[vq_idx], fd);

/* Register the EventNotifier as an ioeventfd. */
if (fd !'= -1) {

virtio_vhost_user_register_doorbell(s, &s->callfds[vqg_idx], vqg_idx);

126 CHAPTER 6. IMPLEMENTATION OF SPDK/VVU

Implement virtio PCI capabilities for the additional device resources

The virtio-vhost-user device differs from the other virtio devices in that it requires
some additional resources. As a result, implementing the device specification in one
of the available virtio transports requires implementing these resources. Since it is not
certain whether it is possible for all the virtio transports to support these resources,
the device specification currently defines how these resources can be standardized
and exposed over the PCI transport. According to the device spec, in case of the PCI
transport, the additional device resources are being standardized with virtio PCI ca-
pabilities. The initial RFC implementation didn't include these capabilities. So we
implemented these capabilities, thereby getting the code synchronized with the spec-

ification.

The virtio-vhost-user device uses three additional resources, namely “doorbells”, “no-

tifications” and “shared memory”. Each one of these is standardized via a virtio PCI ca-

pability. So, what we need to implement is the virtio PCI capabilities and the read()/write()

MMIO handlers for the corresponding configuration structures. Since both of these
are PCI transport-specific operations, the relevant code is part of virtio-vhost-user-

pci.c.

The capabilities and the corresponding configuration structures are being initialized
by function virtio_vhost_user_init_bar(), which is called during the instantiation of
the virtio-vhost-user-pci device. The additional device resources are placed in MMIO

BAR 2. This BAR is initialized as follows:

const int bar_index = 2;

const uint64_t bar_size = 1ULL << 36;

memory_region_init(&vvup->additional_resources_bar, OBJECT(vvup),
"virtio-vhost-user", bar_size);
pci_register_bar(&vvup->parent_obj.pci_dev, bar_index,
PCI_BASE_ADDRESS_SPACE_MEMORY |
PCI_BASE_ADDRESS_MEM_PREFETCH |
PCI_BASE_ADDRESS_MEM_TYPE_64,

&vvup->additional_resources_bar);

20

21

22

23

24

6.3. CHANGES IN THE VIRTIO-VHOST-USER DEVICE CODE 127

The configuration structures for the additional device resources are initialized as fol-

lows:

/* Initialize the VirtIOPCIRegions for the virtio configuration
— sStructures

* corresponding to the additional device resource capabilities.

*

Place the additional device resources in the
< additional_resources_bar.

*/
VirtIOPCIProxy *proxy = VIRTIO_PCI(vvup);

vvup->doorbells.offset = 0x0;

vvup->doorbells.size

virtio_pci_queue_mem_mult(proxy) *
(VIRTIO_QUEUE_MAX + 1 /* Tlogfd */);
vvup->doorbells.size = QEMU_ALIGN_UP(vvup->doorbells.size, 4096);
VIRTIO_PCI_CAP_DOORBELL_CFG;

vvup->doorbells.type

vvup->notifications.offset = vvup->doorbells.offset +
< vvup->doorbells.size;
vvup->hotifications.size = 0x1000;

VIRTIO_PCI_CAP_NOTIFICATION_CFG;

vvup->nhotifications.type

/* cap.offset and cap.length must be 4096-byte (0x1000) aligned. */

vvup->shared_memory.offset = vvup->notifications.offset +

< vvup->notifications.size;

vvup->shared_memory.offset = QEMU_ALIGN_UP(vvup->shared_memory.offset,
< 4096);

/* The size of the shared memory region in the additional resources BAR
< doesn't

* fit into the length field (uint32_t) of the virtio capability

— sStructure.

* However, we don't need to pass this information to the guest driver

< via

25

26

27

28

29

30

31

32

128 CHAPTER 6. IMPLEMENTATION OF SPDK/VVU

* the shared memory capability because the guest can figure out the

- length of

* the vhost memory regions from the SET_MEM_TABLE vhost-user messages.
— Therefore,

* the size of the shared memory region that we are declaring here has
< no

* meaning and the guest driver shouldn't rely on this.

*/

vvup->shared_memory.size

0x1000;

vvup->shared_memory.type = VIRTIO_PCI_CAP_SHARED_MEMORY_CFG;

Here doorbells, notifications and shared_memory are VirtlOPCIRegion instances that
describe MemoryRegions for the configuration structures along with their location in
device memory. The offset parameter is the starting address in device memory, the
size is the total size of the configuration structure and the type is the type of the virtio

configuration structure.

For each MemoryRegion we need a set of read()/write() handlers for the MMIO emu-

lation. These are declared as follows:

/* Initialize the MMIO MemoryRegions for the additional device

< resources. */

static struct MemoryRegionOps doorbell_ops = {
.read = virtio_vhost_user_doorbells_read,
.write = virtio_vhost_user_doorbells_write,
.impl = {
.min_access_size = 1,

4,

.max_access_size

1
.endianness = DEVICE_LITTLE_ENDIAN,

35

static struct MemoryRegionOps notification_ops = {

.read = virtio_vhost_user_notification_read,

6.3. CHANGES IN THE VIRTIO-VHOST-USER DEVICE CODE 129

.write = virtio_vhost_user_notification_write,
.impl = {

.min_access_size

1,

.max_access_size = 4,

5
.endianness = DEVICE_LITTLE_ENDIAN,

5

Notice that we do not use any read()/write() handlers for the shared memory region.

The reason is that the shared memory region is RAM-backed.

The MemoryRegions for the configuration structures are being initialized as follows:

memory_region_init_io(&vvup->doorbells.mr, OBJECT(Cvvup),
&doorbell_ops, vvup,
"virtio-vhost-user-doorbell-cfg",

vvup->doorbells.size);

memory_region_init_io(&vvup->notifications.mr, OBJECT(vvup),
¬ification_ops, vvup,
"virtio-vhost-user-notification-cfg",

vvup->notifications.size);

This basically relates the MemoryRegions with the callbacks.

The last operation is to register the configuration structures that where previously ini-
tialized. This involves registering the MemoryRegions as subregions of the MMIO
BAR 2 and creating virtio PCI capabilities. The code is the following:

/* Register the virtio PCI configuration structures
* for the additional device resources. This involves
* registering the corresponding MemoryRegions as
* subregions of the additional_resources_bar and creating
* virtio capabilities.
*/

struct virtio_pci_cap cap = {

130 CHAPTER 6. IMPLEMENTATION OF SPDK/VVU

.cap_len = sizeof cap,
1
struct virtio_pci_doorbell_cap doorbell = {
.cap.cap_len = sizeof doorbell,
.doorbell_off_multiplier =
cpu_to_le32(virtio_pci_queue_mem_mult(proxy)),
1
virtio_pci_modern_region_map(proxy, &vvup->doorbells, &doorbell.cap,
&vvup->additional_resources_bar,
< bar_index);
virtio_pci_modern_region_map(proxy, &vvup->notifications, &cap,
&vvup->additional_resources_bar,
< bar_index);
virtio_pci_modern_region_map(proxy, &vvup->shared_memory, &cap,
&vvup->additional_resources_bar,

— bar_index);

Implement UUID configuration field

According to the device spec, the virtio-vhost-user device exports a UUID through the
device-specific configuration structure, thus allowing for stable device identification by
the guest driver, regardless of the assigned PCI address. The UUID is created during

the device realization. The code goes as follows:

static void virtio_vhost_user_device_realize(DeviceState *dev, Error
— **errp)

{

VirtIODevice *vdev = VIRTIO_DEVICE(dev);

VirtIOVhostUser *s = VIRTIO_VHOST_USER(dev);

/* Generate a uuid */
QemuUUID uuid;
gemu_uuid_generate(&uuid);

memcpy(s->config.uuid, uuid.data, sizeof(uuid.data));

6.4. CHANGES IN DPDK 131

The device-specific configuration structure is the following:

/* The virtio configuration space fields */
typedef struct {
uint32_t status;
#define VIRTIO_VHOST_USER_STATUS_SLAVE_UP @
#define VIRTIO_VHOST_USER_STATUS_MASTER_UP 1
uint32_t max_vhost_queues;
uint8_t uuid[16];
} QEMU_PACKED VirtIOVhostUserConfig;

6.4 Changesin DPDK

DPDK’s librte_vhost is the library that implements the vhost-user control plane.The
following sections give a detailed description of the changes that were made in this

library in order to support the virtio-vhost-user transport.

6.4.1 Introduce vhost transport operations structure

In the vhost-user protocol specification, there is no notion of a vhost-user transport.
The control plane is based on file descriptor handling (unix sockets, kickfds, callfds,
fds for the vhost memory regions, fds for the log memory regions) and socket I/O

(vhost-user messages).

The virtio-vhost-user device implements a different mechanism for the vhost-user
control plane. The virtio-vhost-user device turns the socket I/O into virtqueue op-
erations. It also handles the task of exposing master VM'’s resources (kickfds, callfds,

vhost memory regions) to the slave guest via PCI device resources.

In order to incorporate both of these transport implementations in librte_vhost, we

have introduced the following generic interface for the vhost transport operations:

20

21

22

23

24

25

26

27

132

CHAPTER 6. IMPLEMENTATION OF SPDK/VVU

struct vhost_transport_ops {

5

size_t socket_size;

size_t device_size;

int (*socket_init)(struct vhost_user_socket *vsocket, uint64_t
- flags);
void (*socket_cleanup)(struct vhost_user_socket *vsocket);
int (*socket_start)(struct vhost_user_socket *vsocket);
void (*cleanup_device)(struct virtio_net *dev, int destroy);
int (*vring_call)(struct virtio_net *dev, struct vhost_virtqueue
= *va);
int (*send_reply)(struct virtio_net *dev, struct VhostUserMsg
= *reply);
int (*send_slave_req)(struct virtio_net *dev,
struct VhostUserMsg *req);
int (*process_slave_message_reply)(struct virtio_net *dev,
const struct VhostUserMsg
< *msg);
int (*set_slave_req_fd)(struct virtio_net *dev,
struct VhostUserMsg *msg);
int (*map_mem_regions)(struct virtio_net *dev,
struct VhostUserMsg *msg);
void (*unmap_mem_regions)(struct virtio_net *dev);
int (*set_log_base)(struct virtio_net *dev,
const struct VhostUserMsg *msg);
int (*set_postcopy_advise)(struct virtio_net *dev,
struct VhostUserMsg *msg);
int (*set_postcopy_listen)(struct virtio_net *dev);
int (*set_postcopy_end)(struct virtio_net *dev,

struct VhostUserMsg *msg);

This interface is a set of function pointers that each transport should implement.

6.4. CHANGES IN DPDK 133

6.4.2 Extract AF_UNIX-specific code from core vhost-user code

The goal is to replace the AF_UNIX-specific code with calls to the transport opera-
tions. The AF_UNIX-specific code is everything related to socket I/O and file descrip-
tor handling. The former involves reading and writing vhost-user messages to unix
domain sockets. The latter primarily involves the socket management (listening on
the server socket, accepting new connections, closing connections), manipulating the
kickfds/callfds for master-slave notifications and mmaping/munmapping vhost mem-

ory regions.

The AF_UNIX-specific code is located in socket.c and vhost_user.c. The code in socket.c

serves two purposes:

1. hold the librte_vhost public entry points

2. perform socket management

The main purpose of vhost_user.c is the handling of the vhost-user messages.

We moved all socket management code from socket.c into trans_af unix.c. We also
moved all the fd-related operations from vhost_user.c into trans_af unix.c. The fd-
related operations are mmaping/munmapping the vhost memory regions and setting

up a userfaultfd for postcopy live migration.

6.4.3 Introduce the virtio-vhost-user driver and transport

The virtio-vhost-user transport relies on the virtio-vhost-user device for the master-
slave communication. So, a user space driver for this device is necessary. The driver
code cannot be placed in librte_vhost, because it depends on rte_bus_pci.h header file,
which gets exported when drivers/ is built, and drivers/ is built after lib/. Therefore,
we have created the folder drivers/virtio_vhost_user/ and inserted the driver code in
there. We have also copied the virtio pci code from drivers/net/virtio/ into drivers/vir-
tio_vhost_user/, because there is no public lib/virtio/ library that we could use. We
have enhanced the virtio pci code so that it handles the virtio PCI capabilities for the

additional device resources.

134 CHAPTER 6. IMPLEMENTATION OF SPDK/VVU

Along with the driver, we have inserted the virtio-vhost-user transport implemen-
tation. Both the driver and the transport code are located in file trans_virtio_vhost._-
user.c. The virtio-vhost-user transport needs to have access to some internal functions
and data structures of librte_vhost, so we have made vhost.h and vhost_user.h part of
librte_vhosts public API. Finally, we have updated the Makefiles so that the new trans-
port gets built as expected and gets linked with the apps, both in case of static and in
case of shared library build.

In case, of shared library build, we used the -no-as-needed flag of the GNU linker.
The reason is that we want the virtio_vhost_user library to be linked with the apps

unconditionally, although there is no symbol referring explicitly to this library.

6.4.4 Exportthevirtio-vhost-user transport through librte_vhost pub-
lic API

We need a mechanism so that librte_vhost can allow choosing between the available
vhost-user transports. We have added a global transport map in ‘vhost.h" which holds

pointers to the vhost transport operations of all the available transports.

typedef enum VhostUserTransport {
VHOST_TRANSPORT_UNIX = 0,
VHOST_TRANSPORT_VVU = 1,
VHOST_TRANSPORT_MAX = 2

} VhostUserTransport;

/* A 1list with all the available vhost-user transports. */

const struct vhost_transport_ops *g_transport_map[VHOST_TRANSPORT_MAX];

New transports can be registered with rte_vhost_register_transport(), which is part of

librte_vhost public API.

int
rte_vhost_register_transport(VhostUserTransport trans,

const struct vhost_transport_ops *trans_ops)

6.4. CHANGES IN DPDK 135

if (trans >= VHOST_TRANSPORT_MAX) {
RTE_LOGCERR, VHOST_CONFIG,
"Invalid vhost-user transport %d\n", trans);

return -1;

g_transport_map[trans] = trans_ops;

return 0;

An application can choose transport when it requests for a new vhost device. The
public entry point for this is function rte_vhost_driver_register(). The virtio-vhost-
user transport can be requested by passing the RTE_VHOST_USER_VIRTIO_TRANS-
PORT flag as the second argument.

int
rte_vhost_driver_register(const char *path, uint64_t flags)
{

int ret = -1;

struct vhost_user_socket *vsocket;

const struct vhost_transport_ops *trans_ops;

if (flags & RTE_VHOST_USER_VIRTIO_TRANSPORT) {
trans_ops = g_transport_map[VHOST_TRANSPORT_VVU];
if (trans_ops == NULL) {

RTE_LOGCERR, VHOST_CONFIG,
"virtio-vhost-user transport is not
< supported\n");

goto out;

}
} else {
trans_ops = g_transport_map[VHOST_TRANSPORT_UNIX];

20

21

22

136 CHAPTER 6. IMPLEMENTATION OF SPDK/VVU

6.4.5 Add virtio-vhost-user devices in dpdk-devbind.py

dpdk-devbind.py is a python script that binds/unbinds devices to the kernel vfio-pci
driver. We have added the virtio-vhost-user device’s vendor and device ID in the list

of devices that this script handles.

6.4.6 Export the virtio-vhost-user transport choice to the end user

The virtio-vhost-user transport is part of DPDK’s librte_vhost and we are interested in
using it from SPDK. However, it should also be possible to use the transport from the
DPDK apps. Therefore, we have updated the testpmd app and the vhost-scsi example

application so that the end user can choose between the two available transports.

6.5 Changes in SPDK

6.5.1 Integrate the virtio-vhost-user transport in libspdk_vhost

Given the integration of the virtio-vhost-user transport in DPDK’s librte_vhost, the
SPDK vhost library can choose between the transports via the function rte_vhost_-
driver_register(). However, there is currently no API for the end user to choose trans-

port.

SPDK offers two applications that allow creating vhost targets, the vhost app and the
spdk_tgt app. The latter is just a universal application that encapsulates all the SPDK
applications, including the vhost app. The user can create vhost targets either at run-
time, through JSON RPC calls, or statically, with a configuration file. We have ex-
tended both interfaces, so that the transport can be chosen from the vhost controller’s
name. Specifically, if the controller’s name is a DomBDF PCI address, then the user

wants to use the virtio-vhost-user transport, and the given PCI address is expected to

20

21

22

6.5. CHANGES IN SPDK 137

be the address of the virtio-vhost-user device. In any other case, the AF_UNIX trans-
port is used. The function spdk_vhost_dev_register() checks if the controller’s name is

a PCI address by using the function spdk_pci_addr_parse(). The code looks like this:

int
spdk_vhost_dev_register(struct spdk_vhost_dev *vdev, const char *name,
const char *mask_str,

const struct spdk_vhost_dev_backend *backend)

char path[PATH_MAX];
struct stat file_stat;
struct spdk_cpuset *cpumask;
#ifndef SPDK_CONFIG_VHOST_INTERNAL_LIB
struct spdk_pci_addr pci_addr;
uint64_t transport = 0;
#endif

int rc;

#ifndef SPDK_CONFIG_VHOST_INTERNAL_LIB
if (spdk_pci_addr_parse(&pci_addr, name) == 0) {
transport = RTE_VHOST_USER_VIRTIO_TRANSPORT;

For example, in case of the JSON RPC API, an example use case would look like this:
$ scripts/rpc.py construct_vhost_scsi_controller ~cpumask 0x1 vhost.0
$ scripts/rpc.py construct_vhost_scsi_controller ~cpumask 0x1 0000:00:07.0

In the first case, we are using the default AF_UNIX transport. In the second case, we
are using the virtio-vhost-user transport and we are specifying the PCI address of the

virtio-vhost-user device that we want to use.

1

2

138 CHAPTER 6. IMPLEMENTATION OF SPDK/VVU

6.5.2 Add support for vfio no-IOMMU mode

SPDK contains a set of user space device drivers controlling physical storage devices.
As aresult, it completely bypasses the Linux kernel storage stack. SPDK supports both

uio and vfio for passing device control to user space.

Vfio is more secure that uio, because it makes use of the IOMMU for DMA translations.
It is generally preferred against uio whenever possible. However, in case of the SPDK
vhost target with virtio-vhost-user transport, the Storage Appliance VM is dedicated
to I/O processing. Therefore, there is no need for DMA protection inside the Storage
Appliance VM. In fact, adding a vVIOMMU would increase the overall software latency.
So, someone would argue that we could use uio in order to eliminate the need for a
vIOMMU. The problem is that we can not use uio, because it does not support MSI

interrupts, which are used by the virtio-vhost-user device.

Recently, the vfio driver has been enhanced with a new mode of operation called “no-
IOMMU mode”. In this mode of operation, no DMA translations occur, regardless of
the existence or not of an IOMMU in the system. This feature is available on kernel

versions newer that 4.5.

So, we fixed the above problem by adding support for vfio no-IOMMU mode in SPDK.
This involved two changes in the code. Firstly, we had to make some changes in the

setup script (scripts/setup.sh). The setup script performs two tasks:

1. allocate hugepage memory that is necessary for the operation of the SPDK pro-

Cess

2. bind all supported PCI devices in one of the uio and vfio kernel drivers

So, what we did was to change the criteria for the choice between uio and vfio drivers.
In detail, the setup script chooses between vfio against uio only if an IOMMU is present
in the system. It does so by checking for any iommu_groups under /sys/kernel/iommu_-
groups. 1 changed this criterion. In specific, we want vfio to be preferred against uio in
case vfio module is loaded in the kernel in no-IOMMU mode. The new check looks

like this:

elif [[-n "$(1s /sys/kernel/iommu_groups)" || \

(-e /sys/module/vfio/parameters/enable_unsafe_noiommu_mode && \

1

2

6.5. CHANGES IN SPDK 139

"$(cat /sys/module/vfio/parameters/enable_unsafe_noiommu_mode)" ==
< "Y") 11; then

driver_name=vfio-pci

The second change we had to make was in the vtophys mapping. DMA remapping
does not make sense in vfio no-IOMMU mode, because the IOMMU is not used. This
implies that physical DMA addresses have to be used instead of IOVAs. So, we have
to store physical addresses in the vtophys mapping in case of vfio no-IOMMU. This is
actually the same code path as when the uio is used as a kernel driver, where we use
physical addresses for the DMA operations as well. So what we did was to check during
the vtophys mapping initialization whether vfio no-IOMMU is enabled. In such case,
we follow the same code path as with uio. That is use physical addresses for the DMA

mappings.

6.5.3 Support registering non-2MB aligned virtual addresses
Description of the SPDK memory map and its relevance with the vhost target

SPDK contains a set of user space drivers for storage devices. Storage devices serve
I/0O requests with DMA operations. This implies that the device driver has to explicitly
ask from the device to perform DMA from a specific physical memory address (or an
IOVA address in presence of an IOMMU) where the I/O buffer is stored. However,
SPDK is a user space process, thus having its own virtual address space. Therefore, in
case DMA is necessary, there is a need for SPDK to find the physical address per virtual
address and keep a mapping with the virtual-to-physical memory address translations.
And in case there isan IOMMU in the system, SPDK keeps virtual-to-IOVA mappings.
In this sense, the SPDK mapping can be considered as a user space page table. In the
SPDK’s code, page tables are referred to as “memory maps”. SPDK defines a 2-level
page table structure for its internal memory maps. The first level has 1GB granularity
and the second level has 2MB granularity. The definition of the memory map structure

lives in lib/env_dpdk/memory.c and goes like this:

/* Translation of a single 2MB page. */
struct map_2mb {

20

21

22

23

24

25

26

27

28

29

30

31

140 CHAPTER 6. IMPLEMENTATION OF SPDK/VVU

uint64_t translation_2mb;
s

/* Second-level map table indexed by bits [21..29] of the virtual
address.

* Each entry contains the address translation or error for entries that

haven't

* been retrieved yet.

*/

struct map_1gb {

struct map_2mb map[1ULL << (SHIFT_1GB - SHIFT_2MB)];

5

/* Top-level map table indexed by bits [30..47] of the virtual address.
* Each entry points to a second-level map table or NULL.
*/
struct map_256tb {
struct map_1gb *map[1ULL << (SHIFT_256TB - SHIFT_1GB)];

};

/* Page-granularity memory address translation */
struct spdk_mem_map {
struct map_256tb map_256tb;
pthread_mutex_t mutex;
uint64_t default_translation;
struct spdk_mem_map_ops ops;
void *cb_ctx;
TAILQ_ENTRY(spdk_mem_map) tailq;
1

SPDK allocates and uses two distinct memory maps. These are the “registration map”
and the “vtophys map”. Their difference comes from the data kept in the translation_-
2mb field. The registration map keeps track of the process virtual address ranges that
have been registered as DM A-able memory. The public API for the memory registra-

tion is function spdk_mem_register(). A 2MB memory range is marked as registered

6.5. CHANGES IN SPDK 141

by using the MSB bit in the translation_2mb field of the corresponding 2MB PTE. On
the other side, the vtophys map keeps the VA-to-PA (or VA-to-IOVA) translations for
each 2MB virtual address range. The PA (or IOVA) is kept in the translation_2mb field.
The function spdk_mem_register() refreshes the vtophys map alongside with the reg-
istration map via a notification callback whenever a new address range is registered.

This is done in this code section:

TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) {
rc = map->ops.notify_cb(map->cb_ctx, map,
< SPDK_MEM_MAP_NOTIFY_REGISTER, seg_vaddr, seg_len);
if (rc 1= 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);

return rc;

The code for the manipulation of the SPDK vtophys map is located in lib/env_dpd-
k/memory.c. The manipulation of the vtophys map involves finding the PA corre-
sponding to a VA, or using the vfio API to register a virtual address range as DM A-able
memory. Both for the registration map and for the vtophys map, each new registered
address has to be 2MB aligned due to the 2MB granularity of the SPDK’s memory map

structure.

Considering the operation of the vhost target, the vhost-user master sends a set of
vhost memory regions to the slave containing the driver’s virtqueues and I/O buffers
in master guest physical memory. Eventually, the processing of the I/O requests from
the vhost-user slave will be delivered to a storage device and the storage device will per-
form DMA directly from master VM’s memory. Therefore, the mapped vhost memory
regions have to be registered to the vtophys map during the vhost datapath initializa-
tion. The registration is done with function spdk_vhost_session_mem_register(). This
function registers each mapped vhost memory region to the vtophys map. This implies

that the vhost memory regions have to be mapped to 2MB aligned virtual addresses.

142 CHAPTER 6. IMPLEMENTATION OF SPDK/VVU

Description of the Problem

This is not a problem in case of vhost with AF_UNIX transport and given that the vhost
memory regions are backed by hugepages. In this case, the kernel will map the master
VM’s memory to a 2MB aligned virtual address in SPDK’s process address space for
sure, because this is the only way for having a single page table entry per hugepage in

the hardware’s multi-level page tables.

However, this is not true in case of vhost with virtio-vhost-user transport. In this
case, the virtio-vhost-user device maps the vhost memory regions sent by the master
and exposes them to the slave guest as an MMIO PCI memory region. So, instead of
mapping hugepage backed memory regions, the vhost target, running in slave guest
user space, maps segments of an MMIO BAR of the virtio-vhost-user device. Thus, the
mapped addresses are not necessarily 2MB aligned. Note that this is generally known

as “peer-to-peer DMA”. SPDK/VVU is just one type of it.

What is more, note that, in case of vhost with AF_UNIX transport, the vhost shared
memory is 2MB-aligned given that the VM’s memory is hugepage backed. But the re-
striction of hugepage-backed memory is unnecessary. The whole configuration would
still work if the VM’s memory was backed by a tmpfs file (normal 4KB pages) given that
we use vfio with IOMMU support. The vhost memory regions would be mapped by
the SPDK vhost target and then registered to vfio as DM A-able memory with MAP_-
DMA ioctl. Vfio would take care of making this memory DMA-able. This basically
involves pinning the memory and updating the device’s IOVA domain to grant access
to this memory. So, if we support registering non-2MB aligned virtual addresses in
the SPDK vtophys map, then we could use normal pages for the master VM’s memory
(losing though the better performance that hugepages offer).

Solution

To sum up, extending the SPDK memory map structure to allow registering non-2MB

aligned mappings would enable:

1. adding support for peer-to-peer DMAs in SPDK

2. using normal 4KB pages for the master VM’s memory instead of hugepages

6.5. CHANGES IN SPDK 143

Note that the 2MB granularity of the memory map has created implications in other
parts of the project as well. So, it is certain that the memory map will eventually be

refactored.

However, refactoring the memory map is not a trivial issue. It requires thoroughly
examining possible solutions and reaching to a consensus with the core maintainers.
This is definitely going to be time consuming. For the time being, we are resorting to
a hack in the DPDK code to overcome this problem. We are explicitly mapping all the
BARs of all the PCI devices (including the virtio-vhost-user devices) to 2MB-aligned

virtual addresses.

6.5.4 Register the virtio-vhost-user device as a DMA-capable device
Description of the Problem

In SPDK/VVU, the master vhost memory regions are exposed to the slave guest as re-
gions of the memory space of the virtio-vhost-user device. In case of vfio no-IOMMU
mode, SPDK stores the VA-to-PA translations in the vtophys map. The physical ad-
dresses associated with the vhost memory regions point out to the virtio-vhost-user
device memory regions. Therefore, it is necessary that the virtio-vhost-user device is
registered to the SPDK’s internal PCI device list (g_vtophys_pci_devices) so that SPDK
can find the VA-to-PA translations. Note that SPDK uses the sysfs to find the physical

addresses.

Solution

The virtio-vhost-user device is being handled by the virtio-vhost-user driver in DPDK.
We need to find the rte_pci_device instance (internal representation of a PCI device)
associated with the virtio-vhost-user device. For this purpose, we use DPDK’s rte_-
pci_dev_iterate() function. This function searches in DPDK’s internal PCI device list
using a PCI BDF address and, in case of a match, it returns the corresponding rte_-
device instance. We then use function spdk_vtophys_pci_device_added() to register the
device in SPDK’s internal PCI device list.

The code is the following:

20

21

22

23

24

25

26

27

28

29

144

int

CHAPTER 6. IMPLEMENTATION OF SPDK/VVU

spdk_vhost_dev_register(struct spdk_vhost_dev *vdev, const char *name,

const char *mask_str,

const struct spdk_vhost_dev_backend *backend)

/* Register the vvu PCI device to SPDK's internal list of

<~ DMA-capable devices.

* This will enable finding the physical addresses of the

< Vvhost-user memory

* regions in case of vfio no-IOMMU mode. Search for

< rte_device® instance

* in DPDK's internal PCI device list using a key-value pair for

< the BDF PCI
* address.
*/

struct rte_bus *bus;

struct rte_device *dev;

struct rte_pci_device *pci_dev;

char kv_pci_addr[PATH_MAX];

int key_len = sizeof("addr=") - 1;

int kv_len = key_len + strlen(nhame);

bus = rte_bus_find_by_name("pci™);

if (bus == NULL) {

SPDK_ERRLOG("Cannot find bus (pci)\n");
rc = -ENOENT;

goto out;

}

if (snprintf(kv_pci_addr, sizeof(kv_pci_addr), "addr=%s", name)

« = kv_len) {

SPDK_ERRLOG("Failed to copy PCI address '%s' for

— controller.\n", name);

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

6.5. CHANGES IN SPDK

rc = -EINVAL;

goto out;

dev = bus->dev_iterate(NULL, kv_pci_addr, NULL);
if (dev == NULL) {
SPDK_ERRLOG("Cannot find virtio-vhost-user device with
— BDF PCI address %s\n", name);
rc = -EINVAL;
goto out;
3
pci_dev = RTE_DEV_TO_PCI(dev);
spdk_vtophys_pci_device_added(pci_dev);

145

146

Evaluation

7.1 Disk metrics

The most common criterion for comparing various storage virtualization solutions is
the virtualization overhead. Virtualization overhead is the software overhead inserted
by the device emulation software. In this chapter we are going to have a look at the

disk metrics and examine SPDK/VVU’s virtualization overhead.

There are three storage metrics for measuring the storage performance. These are:

1. throughput (MB/s)
2. 1OPS (regs/s)

3. latency (ms)

Throughput is the amount of data you can write to a device in a given period of time.
IOPS is the number of I/O requests that the device can handle in a given period of

time. Latency is the time that the device needs to serve an I/O request.

In some way, all these metrics measure the same thing. However, each metric shows

different aspects of the system.

There are also some other metrics that are of great interest in cloud environments.

These are:

147

148 CHAPTER 7. EVALUATION

4. efficiency: this is how many CPUs we need in order to reach a certain amount of
IOPS. Increasing efficiency allows for greater VM density, because more CPUs

are available for other computations.

5. scalability: this is about scaling out the IOPS by either increasing the number of

CPUs that perform I/O or increasing the number of storage devices.

In cloud environments the hardware is emulated. This means that all the above metrics
are being affected by the storage virtualization overhead. The storage virtualization
overhead and the software overhead in general, did not use to be considered with the
older spinning disks. The reason is that spinning disks have orders of magnitude bigger
latency that the software. Spinning disks have latency in the order of milliseconds,
while the software latency is in the order of microseconds. This has changed. Modern
PCle NVMe SSDs have average latency in the order of microseconds. This implies
that the software latency is now proportional to the hardware latency. It is a common
misconception that storage virtualization is not a problem anymore, because the media
itself has become extremely fast. In fact, the opposite holds. Since the media have

become faster, the software overhead has turned into a bottleneck.

It is worth noting that measuring the storage performance is a multi-variable prob-
lem. Except for the inherent restrictions of the media and the storage virtualization

overhead, one has to tweak with the following parameters to have a complete view:

« number of I/O queues

« queue depth

 number of cores submitting I/O (blk-mq, scsi-mq)

» request size

o 1/O pattern (eg. random reads, sequential reads, etc.)

« notification mechanism (interrupts, block layer strict I/O polling, block layer

hybrid I/0O polling)

7.2. VIRTUALIZATION I/O OVERHEAD 149

7.2 Virtualization I/O overhead

Emulating a storage device inevitably incurs a virtualization overhead. The performance-
critical part of this overhead is the overhead in the virtualized I/O datapath. This is
what users are noticing in cloud storage services and this is what really matters to be

reduced. The overhead in the I/O datapath is coming from the following operations:

« guest notifications

Guest notifications is the mechanism used by the guest device driver in order to
inform the device about new I/O requests. The mechanism for implementing
guest notifications determines the emulation overhead. Usually, guest notifica-
tions are implemented as Port I/O or Memory Mapped 1/O operations on the
device resources. However, the actual implementation varies. For example, the
virtio specification defines a more lightweight guest notification mechanism by
essentially reducing the number of PIO/MMIO operations per I/O request. This
is basically the performance advantage of virtio devices against the fully emu-
lated devices. The virtio specification also defines a mechanism so that the de-
vice itself can reduce the frequency of notifications from the driver. This feature

is called “virtqueue notification suppression” with event index.

o device interrupts

Device interrupts is the mechanism used by the device in order to inform the
guest device driver about the I/O completions. There are various mechanisms
for implementing virtual interrupts, each one incurring a different emulation
overhead. The overhead of each mechanism depends on the amount of the hy-
pervisor’s intervention, which depends on the hardware assistance. In older
hardware, the interrupts from passed-through devices where handled by the
host kernel (KVM) and injected into the guest. The newer processors allow in-
terrupts to be injected directly into the VM, bypassing the host entirely. The
number of interrupts invoked by the device is also important. For example,
many devices perform interrupt coalescing, in order to reduce the overall vir-
tualization overhead incurred by interrupt emulation. The virtio specification

allows the guest driver to determine the frequency in which the device incurs

150 CHAPTER 7. EVALUATION

interrupts. This feature is called “virtqueue interrupt suppression” with event

index.

« dataplane emulation

The dataplane emulation encapsulates the whole emulation process for each I/0O
request. As we have already elaborated in section 1.3 of the introductory chap-
ter, there are various approaches and many ways to categorize them. First of all,
the dataplane emulation depends on the storage protocol (SCSI, BLK, NVMe).
Secondly, it is possible to handle the I/O requests inside QEMU (eg. QEMU
SCSI target) or in the host kernel (eg. QEMU LIO Target used by vhost-scsi).
Regarding the QEMU user space SCSI target, QEMU can interact with the phys-
ical storage backend in many ways through the host kernel system call interface.

The possible alternatives are:

- reading/writing to a file on the host filesystem
- reading/writing directly to a block device (/dev/sdX)

- sending guest SCSI commands directly to a host SCSI target via the SCSI
generic driver (/dev/sgX)

The host kernel interface exposes some mechanisms that QEMU can utilize in
order to improve the I/O performance, like asynchronous I/O and direct I/O.
What is more, it is possible to assign a physical device on the host directly to a
guest, either using the legacy passthrough interface (pci-assign) or using the vfio
driver. There is also a slight variation of this that relies on the host kernel to split a
device into multiple virtual devices. This is called “Mediated Passthrough”. Last
but not least, it is possible to offload the dataplane emulation from the hypervisor
and implement it either in the host kernel (eg. vhost + LIO) or in a separate host

user space process (eg. SPDK vhost target).

The aforementioned operations incur additional software latency in the I/O datapath.

This software latency comes from the following operations:

« I/O request submission: the guest driver informs the device about new avail-
able requests via a device doorbell. This implies MMIO/PIO emulation. The

emulation overhead depends on the dataplane implementation. In case of the

7.3. SPDK/VVU VIRTUALIZATION OVERHEAD 151

in-kernel vhost target, we get a VMEXIT, the execution flow goes to kvm and
kvm kicks the eventfd that has been hooked up to the doorbell’s address. This
is how the host kernel vhost subsystem gets notified and starts processing the
new guest I/O requests. This is often called a “lightweight VMEXIT”. In case of
the QEMU user space target, we get a VMEXIT plus a context switch (KVM_-
EXIT) to host user space. Then, QEMU takes control. This is often called a
“heavyweight VMEXIT”, because it involves both a world switch (VMEXIT) and

a context switch for returning to host user space.

« I/O submission to storage backend: in case QEMU implements the dataplane,
QEMU uses the host kernel system call API to submit I/O requests to the un-

derlying storage backend. This triggers context switches.

o 1I/O completion: the storage backend sends an interrupt to signal the I/O com-
pletion. Each interrupt causes a context switch and the execution of an in-kernel
interrupt handler. The SPDK vhost target avoids this overhead because it works
with polling.

Except for the latency, the storage virtualization approach affects the scalability as well.
In case of QEMU for example, the hypervisor handles all I/O requests from within the
same I/O thread. Regardless of the number of guest vCPUs submitting I/O requests
to the emulated storage device, QEMU uses one and only thread to handle all these
requests. So, it goes without saying that this is a scalability bottleneck for QEMU.

7.3 SPDK/VVU Virtualization overhead

SPDK/VVU has improved virtualization overhead compared to the existing storage

virtualization solutions. In detail, its benefits are the following:

« guest notifications

SPDK suppresses the guest notifications because it relies entirely on polling. The
SPDK vhost target continuously polls on the vhost virtqueues and checks for any
available descriptors. Therefore, there is no need for guest notifications from the
master guest driver. SPDK disables guest notifications in order to avoid unnec-

essary VMEXITs in the master side. This is done with the following function:

152

CHAPTER 7. EVALUATION

int
rte_vhost_enable_guest_notification(int vid, uintl6_t queue_id, int

enable)

{
struct virtio_net *dev = get_device(vid);
if (dev == NULL)
return -1;
if (enable) {
RTE_LOGCERR, VHOST_CONFIG,
"guest notification isn't supported.\n");
return -1;
}
dev->virtqueue[queue_id]->used->flags =
— VRING_USED_F_NO_NOTIFY;
return 0;
ks

The virtio specification provides a specific flag for disabling/enabling guest noti-
fications for virtio devices, which is called VRING_USER_F_NO_NOTIFY. This
flag concerns a specific virtio ring and is set in the flags field of the used vring
structure (definition of used vring is in /usr/include/virtio_ring.h). However,
according to the virtio spec, this feature it’s unreliable, so it’s simply an opti-

mization.

The SPDK vhost target has access to the vhost virtqueues, which are part of
the master guest physical memory, through the MMIO BAR 2 of the virtio-
vhost-user device. This BAR is RAM-backed, hence touching it does not trigger
VMEXITs in the slave side. In other words, virtqueue polling does not incur
any virtualization overhead in the slave side. The only additional virtualization
overhead related to virtqueue polling comes from the memory virtualization
mechanism[80]. Each memory access on the RAM-backed BAR incurs an ad-
dress translation in the MMU. The overhead comes from the TLB misses and

depends on whether we are using shadow page tables or extended page tables.

7.3. SPDK/VVU VIRTUALIZATION OVERHEAD 153

Let’s have a closer look at this.

Shadow page tables[81][82] is a memory virtualization technique that is purely
software-based. This means that the MMU cannot distinguish between root and
non-root mode of operation. So, in case of non-root mode, the CR3 register (this
is the register that always points at the head of the page table that is currently
being used) points to a page table which keeps GVA—HPA translations. This
page table is called “Shadow page table”. The overhead for each memory address

translation is the following:

- page table hit: same overhead with root mode
- page table miss: VMEXIT, page table updated by KVM

- page table updates by the guest kernel: VMEXIT, KVM replaces the newly
inserted page table entries (GVA—GPA) with GVA-to-HPA translations

On the other side, Extended page tables[78][83] (or Nested page tables) is a
memory virtualization technique that is hardware-based. This means that the
MMU differentiates its behavior in case of non-root mode. In specific, it keeps
track of two page tables: the guest page table with GVA— GPA translations, and
the KVM page table with GPA— HPA translations. The overhead for each mem-

ory address translation is the following:

- page table hit: double overhead in comparison with root mode because

two page tables need to be traversed

- page table miss: page fault handled by the guest kernel, no need to rely on
KVM

- page table updates by the guest kernel: no additional cost

In conclusion, extended page tables with hugepage-backed memory seems like
the best approach in order to reduce the memory virtualization overhead in our
use case. However, note that this is a general conclusion that applies to any VM
setup. Hugepages imply less TLB misses, because each TLB entry corresponds to
a bigger portion of contiguous physical memory, and also hugepages are pinned,

hence having fixed physical addresses.[84]

« device interrupts

154

CHAPTER 7. EVALUATION

The SPDK vhost target implements virtio devices. Hence, it supports sending
interrupts to the master guest driver for the I/O completions. The actual need for
device interrupts depends on the type of the master guest driver, that is whether

it is interrupt-driven or poll-driven.

If the master guest uses the in-kernel virtio driver to control the vhost-user de-
vice, then there is a need for interrupting the guest for each I/O completion. The
vhost-user protocol defines that this is done via an eventfd called “callfd”. In
SPDK, the actual implementation for accessing the callfd is transport-specific.
In SPDK/VVU, that is in case of the virtio-vhost-user transport, the vhost target
kicks a doorbell of the virtio-vhost-user device that corresponds to the virtqueue

it wants to notify. The code path is the following:

spdk_vhost_vq_used_signal() —
rte_vhost_vring_call() —
vhost_vring_call_split() —

trans_ops->vring_call()

The doorbell is an MMIO address that has been hooked up to the callfd via the
KVM ioeventfd mechanism. So, when the vhost target kicks the doorbell, we get
a VMEXIT, KVM kicks the callfd and re-enters the guest. In the master side, the
same callfd has been hooked up to an MSI vector with the irqfd mechanism. So,
when the slave KVM kicks the callfd, the master KVM injects a virtual interrupt
to the master VM in the next interrupt window. In conclusion, device inter-
rupts triggered by the slave guest involve just a lightweight VMEXIT due to the

combination of the ioeventfd and irqfd mechanisms.

On the other side, we could completely alleviate the need for device interrupts
by replacing the interrupt-driven virtio device driver with a poll-driven vir-
tio driver. The obvious solution is to use SPDK in the master VM as well.
This is straightforward since SPDK already has virtio-scsi and virtio-blk poll-
mode drivers. These poll-mode drivers suppress the device interrupts by using
the VRING_AVAIL_F _NO_INTERRUPT flag. With this solution, we can com-
pletely bypass the hypervisor (QEMU/KVM) in the datapath. We can also have
a full end-to-end user space storage stack, if we use a passed-through storage

backend.

7.3. SPDK/VVU VIRTUALIZATION OVERHEAD 155

Finally, even when the SPDK vhost target needs to send interrupts to the master
guest driver, it does not invoke a callfd kick per I/O completion. SPDK uses in-
terrupt coalescing based on time intervals. This is an optimization that does not
affect the guest I/O submission throughput, but it reduces the overall interrupt

loads.

o device emulation

First of all, the SPDK/VVU storage virtualization solution completely bypasses
the slave guest kernel storage stack. SPDK implements an efficient user space
storage stack instead. If this is accompanied with a passed-through storage back-
end - this means that SPDK in slave guest user space has direct access to the
physical device without the intervention of the hypervisor - then SPDK/VVU
carries all the advantages of SPDK in comparison with the kernel storage stack.

For more on this, refer to chapter 3.

SPDK/VVU can be set up with various types of storage backends. SPDK sup-
ports many types of storage backends. For example, it supports NVMe devices,
NVMe-oF devices, virtio-scsi devices, Linux AIO block devices, malloc RAM-
disks, etc. However, considering the fact that SPDK/VVU runs inside a VM,
these block devices are either emulated or physical passed-through devices. So,
alongside the supported storage backends in SPDK, there is also a wide range
of alternatives for the emulation of those storage backends. For example, we
could have emulated NVMe PCle disks, virtio-scsi devices, virtio-blk devices,
vhost-scsi devices, vhost-blk devices, passed-through physical devices, etc. In
most cases, SPDK uses zero-copy DMA in the vhost-user I/O datapath. This
means that the storage backend performs DMA directly from the master guest
memory. Consequently, eliminating the data copies in the datapath reduces the

total virtualization overhead.

Apart from zero-copy in slave side - that means no data copies in SPDK hugepage
memory - the vhost-user protocol allows having zero copy in the master side as
well. This means that the master guest driver does not have to move the data
around in guest memory so that the vhost device backend can access them. The
vhost-user protocol specification defines that the master exposes the whole guest

physical memory to the slave. Therefore, the slave has access to all guest mem-

156

CHAPTER 7. EVALUATION

ory, thereby being able to access the I/O buffers wherever they are allocated in
the first place, thus eliminating the need for data copies in guest memory. In
detail, the I/O buffers could either be allocated in guest user space memory (in
case a process performs I/O with O_DIRECT) or in the guest kernel page cache.
In any case, the guest device driver inserts new descriptors in the virtqueue that
point to virtio-scsi request structures, which in turn point to SCSI CDBs and the

I/O buffers.

This approach - exposing all master guest physical memory to the slave - is actu-
ally a compromise between performance and security. The vhost device backend
has access to all guest memory though it would be sufficient to have access only
to the vhost virtqueues and the I/O buffers. This would be the best solution in
terms of security. However, the problem with this solution would be that the
guest driver should have to continuously copy the I/O buffers into a fixed por-
tion of guest kernel memory, which would be shareable with the slave. Making

copies of the data implies performance degradation.

What is more, SPDK/VVU suppresses the storage backend’s interrupt notifica-
tions, because SPDK uses poll-mode drivers that poll on the storage backends
for I/O completions. This also contributes in minimizing the total virtualization

overhead.

Last but not least, using hugepage-backed memory as the master guest's memory
would certainly reduce the address translation overhead, because less TLB and
IOTLB entries would be required. Using hugepage-backed memory is neces-
sary in case we want to use legacy passthrough mode for the underlying storage
backend. In any other case, it is optional though more efficient. Tmpfs-backed

memory could be used as well.

scalability

SPDK/VVU can be deployed with various storage backends underneath, either
emulated or passed-through. In the former case, the hypervisor continues to be
a scalability bottleneck due to the I/O thread. The reason is that, in case of an
SMP guest, where we have a guest that is trying to submit I/O in parallel, even if
we have a separate I/O thread implementing a device’s dataplane (refer to virtio-

blk/virtio-scsi dataplane), there is always one and only host thread handling the

7.4. SECURITY 157

traffic coming from all the device’s request virtqueues. However, in the latter
case, the hypervisor gets completely out of the picture, and the I/O datapath
can scale out either by adding vCPUs or by adding more disks. Here, scaling
means increasing the throughput or the IOPS by dedicating more CPUs to /0,

or adding more disks to the system.

« efficiency

It is a fact that SPDK, and consequently SPDK/VVU, is more efficient than the
kernel blk-mgq/scsi-mq in terms of CPUs per IOPS. This has a dual meaning. The
first meaning is that with the same number of CPUs dedicated to I/O, where each
CPU is delegated with the exclusive management of a separate I/O queue, SPDK
achieves higher IOPS than the kernel. The other meaning is that the kernel needs
more CPUs than SPDK in order to achieve the same number of IOPS with SPDK.
Thus, SPDK/VVU is a storage virtualization solution that allows for bigger VM

density by basically saving CPUs for other compute workloads.

7.4 Security

It has already been mentioned in the introductory chapter that security is a great issue
in cloud environments, where multiple users are running their workloads on the same
physical machines. Originally, prior to the insertion of the virtio-vhost-user transport,
SPDK used to support running the SPDK vhost target on host user space alongside the

QEMU process. This implies having new potential vulnerability zones.

On the contrary, SPDK/VVU eliminates this problem. The SPDK vhost target gets
containerized by running inside a dedicated Storage Appliance VM instead of host
user space. So, given the fact that we already trust the hypervisor’s code, SPDK/VVU

is as must secure as the hypervisor is.

7.5 User-defined Storage

Maybe the most important feature of SPDK/VVU in comparison with the other com-

mon storage virtualization solutions is what we call “User-defined Storage”. This ba-

158 CHAPTER 7. EVALUATION

sically means that the end user can configure and customize the virtualized storage

infrastructure for his VMs. Here is how it works:

we assume that a user runs some I/O workloads in separate VMs in the cloud. Ex-
cept for these Compute VMs, the user also owns a Storage Appliance VM, which runs
locally alongside the Compute VMs. The Storage Appliance VM has some storage de-
vices attached and some virtio-vhost-user devices to communicate with the Compute
VMs. Given all the above, the user can run the SPDK vhost target inside the Storage
Appliance VM and create virtio-scsi disks, which he can later export to his Compute
VMs. Ultimately, what we have is a user that controls the virtual storage devices that

his Compute VMs access.

User-defined storage should not be confused with the term “Software-defined Storage”.
Software-defined Storage refers to the higher-level block services (snapshoting, thin
provisioning, etc.) offered by software running on top of commodity hardware. A

typical example is Ceph[85].

The range of combinations and tuning parameters of SPDK/VVU are endless. The user
can choose from a wide range of storage backends (malloc RAM-disk, local NVMe
disk, NVMe-oF, iSCSI, Linux AIO, virtio-scsi, virtio-blk), block layer utilities (GPT,
logical volumes, RAID, compression, encryption, snapshoting, thin provisioning) and
level of parallelism (I/O queues per poller). These are all inherent capabilities of SPDK.
So, based on the workload, the user can choose the right combination to match the
needs of the workload. For example, streaming applications need bandwidth more
than latency. This means that the spinning disks are a good choice for them. On the
contrary, databases rely on low latency, thus matching perfectly with NVMe devices.
Some other workloads need some scratch space to operate on. This is where a malloc

RAM-disk could fit in.

A schematic representation of a general use case would look like this:

7.5. USER-DEFINED STORAGE

SPDK/VVU: usage model

Storage
Appliance yhost.0 vhost.2
VM

thin

provisioning

Ivol0 Ivol1 Ivol2 snapshots
one

Logical Volume Store

bdev0 bdev1 bdev2

Figure 7.1: SPDK/VVU Usage Model

159

72

In conclusion, SPDK/VVU introduces the concept of User-defined Storage in the cloud.

In other words, the management of the storage infrastructure shifts from the cloud

provider to the end user. Though someone could doubt about its usefulness, there is

no question that this is a breakthrough.

160

Conclusion

In this final chapter, we are going to assess our current state and outline the next steps.
We are also going to give a list of suggestions for potential improvements/enhance-

ments on SPDK/VVU.

8.1 Concluding Remarks

As it has been explained in the Design of SPDK/VVU chapter, the design and im-

plementation of SPDK/VVU required working on multiple open source projects and
interacting with the corresponding communities. The reason why we decided to exter-
nalize our work is that we wanted to educate ourselves by contributing to a real open
source project. The interaction with other engineers and, most imprortantly, the social

difficulties that arrise from this, were very educational.

Over the last months, we have managed to make significant progress towards our
end goal, which is pushing SPDK/VVU upstream. We have managed to merge some
patches in SPDK ! and reach to an agreement on some others ? that will be merged soon
after the DPDK patches are merged. We have also pushed a long patchset * in DPDK
that adds the virtio-vhost-user transport. This patchset has been previously reviewed
by Darek Stojaczyk (software engineer at Intel and code maintainer of SPDK). We have
already received some review comments on this and we are working towards pushing

a second version. As far as the virtio-vhost-user device is concerned, we have pushed

'https://review.gerrithub.io/g/owner:+Dragazis+status:merged
2https://review.gerrithub.io/g/status:+open+owner:+Dragazis+repo:+spdk/spdk
*http://mails.dpdk.org/archives/dev/2019-June/135116.html

161

https://review.gerrithub.io/q/owner:+Dragazis+status:merged
https://review.gerrithub.io/q/status:+open+owner:+Dragazis+repo:+spdk/spdk
http://mails.dpdk.org/archives/dev/2019-June/135116.html

162 CHAPTER 8. CONCLUSION

the device spec in the virtio-dev mailing list *. We have received some comments and
we have already submitted revised versions. Last but not least, we have sent an intro-
ductory email in qemu-devel mailing list ® that attempts to reinitiate the discussion on
the virtio-vhost-user QEMU device code. Basically, we are asking for comments on

our revised version of the code.

Though significant progress has been made, there are still enough things to be done.
The review process on the DPDK patchset is estimated to last long, because the patchset
is quite extensive. The plan is to incorporate it in the 19.11 release version of DPDK
°. The patchset for the virtio device spec has not been adequately reviewed, because
it depends on another on-going patchset that attempts to introduce a shared memory
capability. When that other patchset gets merged, we will send a reminder. Lastly, we
have not yet received any comments on our QEMU device code. The reason is that the
device spec has to be approved prior to the actual device implementation. We will send
a reminder on that too when the spec gets approved. We may also need to make some
changes in the code in case we have previously made changes on the spec. The final
step in our plan is to merge the remaining patches in SPDK. This is straightforward

since the core maintainers of SPDK have already approved these patches.

Overall, this diploma thesis was very educational. We have hit into real bugs 7, we
have learned how to write software patches, we have worked with different develop-
ment workflows (GerritHub, git email), we have performed live demos ® and, most
importantly, we have built some experience on how to properly interact with other

developers.

8.2 Future Work

There are several changes/improvements that could potentially be done in SPDK/VVU.

They are enumerated in the following sections.

*https://1lists.oasis-open.org/archives/virtio-dev/201906/msq00036 . html
*https://1lists.gnu.org/archive/html/gemu-devel/2019-04/msg02910@. html
Shttp://mails.dpdk.org/archives/dev/2019-June/135337.html
"https://bugs.dpdk.org/show_bug.cgi?id=85
8https://lists.01.org/pipermail/spdk/2018-December/002808 . html

https://lists.oasis-open.org/archives/virtio-dev/201906/msg00036.html
https://lists.gnu.org/archive/html/qemu-devel/2019-04/msg02910.html
http://mails.dpdk.org/archives/dev/2019-June/135337.html
https://bugs.dpdk.org/show_bug.cgi?id=85
https://lists.01.org/pipermail/spdk/2018-December/002808.html

8.2. FUTURE WORK 163

8.2.1 Add Cl tests in SPDK test pool

SPDK uses a test pool to automate the continuous integration of the newly submitted

patches. So, it would be very useful to add some tests for the SPDK/VVU use case.

8.2.2 Integrate SPDK/VVU with Katacontainers and Kubernetes

Katacontainers[86] is a containerization framework that combines the security of VMs
with the speed of containers. Essentially, it runs containers inside VMs. It uses some
techniques to minimize the boot time and memory footprint of the VMs, so that they
resemble to containers as much as possible. So, it would be great to use the SPDK/VVU
in order to expose high-performance mountpoints inside each container’ root filesys-
tem. And later, it would be great to add APIs in Kubernetes[87] for the automation
of these setups. Note that Katacontainers is already pluggable to Kubernetes as a con-

tainer runtime.

8.2.3 Enhancements in the virtio-vhost-user code in QEMU

Currently, the virtio-vhost-user device code is still under development. Though my
device code is fully functional and compliant with the revised spec, there are several
more enhancements that could be made, like cross-endian support, live migration,

irqfds, etc.

8.2.4 Implement the virtio-vhost-user device over more transports

Currently, the virtio-vhost-user device has been implemented over the PCI transport.
However, we could also implement the device over the other two transports that virtio

supports, that is the MMIO and CCW transports.

8.2.5 Implement Filesystems for SPDK

Recall that SPDK implements a full-userspace high-efficient storage stack. However,
there is a part of the kernel storage stack that SPDK misses and that is filesystems. This

164 CHAPTER 8. CONCLUSION

means that SPDK works exclusively on a block level. However, since SPDK is a storage
stack, we think it would make sense to be able to interact directly with other user space
processes. For example, a great use case would be to run it inside the master VM in the
SPDK/VVU setup. If SPDK could directly interact with I/O intensive processes inside
the master VM, then we would have an end-to-end full-userspace storage stack, hence

we could completely bypass the Linux kernel.

So, the idea is to implement a user space filesystem sitting on top of the SPDK Block
Layer. An application should be able to seamlessly interact with read()/write() calls

and file-based semantics with SPDK.

8.2.6 Refactor the SPDK’s memory map structure

Currently, the SPDK memory maps have 2MB granularity. This essentially means that
DMA operations can only be done from hugepage memory. However, using hugepage
memory is more of an optimization than a prerequisite in most cases. So, it would
make sense to extend the memory map so that it can support saving translations for

regular 4KB pages. This would also allow for peer-to-peer DMA scenarios.

8.2.7 Rewrite SPDK’s API for the vhost-user transport

The current situation is that the transport is detected based on the vhost controller’s
name, which is either passed through JSON RPC calls or through a static configuration
file. A more robust solution would be to insert a —trtype option, both in the RPC calls,
and in the configuration file, so that the user can explicitly choose between the AF_-

UNIX and the virtio-vhost-user transports.

[1]

2]

Bibliography & References

Wikipedia - The Free Encyclopedia, 3D XPoint, https://en.wikipedia.org/
wiki/3D_XPoint [Online; accessed on the July 5th, 2019].

Virtual I/O Device (VIRTIO) Version 1.1, OASIS, December, 20th, 2018,
https://docs.oasis-open.org/virtio/virtio/vl.1/csprd@l/
virtio-vl.1-csprd@l.html [Online; accessed on the July 3rd, 2019].

VFIO - ”Virtual Function 1/O”, Linux Kernel Documentation, https://waw.
kernel.org/doc/Documentation/vfio.txt [Online; accessed on the July
3rd, 2019].

Bo Peng, Haozhong Zhang, Jianguo Yao, Yaozu Dong, Yu Xu, Haibing
Guan, MDev-NVMe: A NVMe Storage Virtualization Solution with Mediated
Pass-Through, USENIX ATC ’18, https://www.usenix.org/system/files/
conference/atcl8/atcl8-peng.pdf [Online; accessed on the July 5th, 2019].

Stefan Hajnoczi, QEMU Internals: vhost architecture, Open source and virtu-

alization blog, September, 7th, 2011, http://blog.vmsplice.net/2011/09/

gemu-internals-vhost-architecture.html [Online; accessed on the July

3rd, 2019].

Vhost-user Protocol, QEMU Documentation, https://git.qgemu.org/?p=

gemu.dgit;a=blob_plain;f=docs/interop/vhost-user.rst;hb=HEAD
[Online; accessed on the July 3rd, 2019].

165

https://en.wikipedia.org/wiki/3D_XPoint
https://en.wikipedia.org/wiki/3D_XPoint
https://docs.oasis-open.org/virtio/virtio/v1.1/csprd01/virtio-v1.1-csprd01.html
https://docs.oasis-open.org/virtio/virtio/v1.1/csprd01/virtio-v1.1-csprd01.html
https://www.kernel.org/doc/Documentation/vfio.txt
https://www.kernel.org/doc/Documentation/vfio.txt
https://www.usenix.org/system/files/conference/atc18/atc18-peng.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-peng.pdf
http://blog.vmsplice.net/2011/09/qemu-internals-vhost-architecture.html
http://blog.vmsplice.net/2011/09/qemu-internals-vhost-architecture.html
https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/interop/vhost-user.rst;hb=HEAD
https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/interop/vhost-user.rst;hb=HEAD

166 BIBLIOGRAPHY ¢ REFERENCES

[7] Wikipedia - The Free Encyclopedia, Memory-mapped 1/O, https://en.
wikipedia.org/wiki/Memory-mapped_I/0 [Online; accessed on the July 5th,
2019].

[8] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman, Linux Device
Drivers, Third Edition, O'Reilly Media, Inc., 2005, https://1wn.net/Kernel/
LDD3/ [Online; accessed on the July 3rd, 2019].

[9] X Window System Internals, The role of PCI, http://xwindow.angelfire.
com/pagel3_1.html [Online; accessed on the July 5th, 2019].

[10] BIOS CENTRAL, BIOS and Boot Sequences, http://www.bioscentral.com/

misc/biosbasics.htm [Online; accessed on the July 5th, 2019].

[11] Ravi Budruk, Don Anderson, Tom Shanley, PCI Express System Architecture,
MindShare, Inc., 2003.

[12] Darmawan Salihun, System Address Map Initialization in x86/x64 Ar-
chitecture Part 2: PCI Express-Based Systems, Reverse Engineering,

January, 9th, 2014, https://resources.infosecinstitute.com/

system-address-map-initialization-x86x64-architecture-part-2-pci-express-based-

[Online; accessed on the July 6th, 2019].

[13] Alex Williamson, VFIO interrupts and how to coax Windows guests to use MSI,
VFIO tips and tricks, September, 22th, 2014, http://vfio.blogspot.com/

2014/09/vfio-interrupts-and-how-to-coax-windows.html [Online; ac-

cessed on the July 6th, 2019].

[14] Alex Williamson, IOMMU Groups, inside and out, VFIO tips and
tricks, August, 25th, 2014, http://vfio.blogspot.com/2014/08/

iommu-groups-inside-and-out.html [Online; accessed on the July

6th, 2019].

[15] LWN.net, ATS capability support for Intel IOMMU, https://lwn.net/
Articles/319205/ [Online; accessed on the July 6th, 2019].

[16] QEMU the FAST! processor emulator, https://www.gemu.org/ [Online; ac-
cessed on the July 3rd, 2019].

https://en.wikipedia.org/wiki/Memory-mapped_I/O
https://en.wikipedia.org/wiki/Memory-mapped_I/O
https://lwn.net/Kernel/LDD3/
https://lwn.net/Kernel/LDD3/
http://xwindow.angelfire.com/page13_1.html
http://xwindow.angelfire.com/page13_1.html
http://www.bioscentral.com/misc/biosbasics.htm
http://www.bioscentral.com/misc/biosbasics.htm
https://resources.infosecinstitute.com/system-address-map-initialization-x86x64-architecture-part-2-pci-express-based-systems
https://resources.infosecinstitute.com/system-address-map-initialization-x86x64-architecture-part-2-pci-express-based-systems
http://vfio.blogspot.com/2014/09/vfio-interrupts-and-how-to-coax-windows.html
http://vfio.blogspot.com/2014/09/vfio-interrupts-and-how-to-coax-windows.html
http://vfio.blogspot.com/2014/08/iommu-groups-inside-and-out.html
http://vfio.blogspot.com/2014/08/iommu-groups-inside-and-out.html
https://lwn.net/Articles/319205/
https://lwn.net/Articles/319205/
https://www.qemu.org/

BIBLIOGRAPHY ¢ REFERENCES 167

[17]

[24]

Stefan Hajnoczi, QEMU Internals: Overall architecture and threading model,
Open source and virtualization blog, March, 5th, 2011, http://blog.
vmsplice.net/2011/03/gemu-internals-overall-architecture-and.

html [Online; accessed on the July 3rd, 2019].

Kernel Virtual Machine, https://www.linux-kvm.org/page/Main_Page
[Online; accessed on the July 6th, 2019].

LWN.net, Ten years of KVM, https://1wn.net/Articles/70516@/ [Online;
accessed on the July 6th, 2019].

The Definitive KVM (Kernel-based Virtual Machine) API Documentation, Linux

Kernel Documentation, https://www.kernel.org/doc/Documentation/

virtual/kvm/api.txt [Online; accessed on the July 3rd, 2019].

LWN.net, Using the KVM API, https://lwn.net/Articles/658511/ [On-
line; accessed on the July 6th, 2019].

Jan Kiszka, Architecture of the Kernel-based Virtual Machine (KVM), http:
//www. linux-kongress.org/2010/slides/KVM-Architecture-LK2010.
pdf [Online; accessed on the July 6th, 2019].

Stefan Hajnoczi, QEMU Internals: Big picture overview, Open source and vir-

tualization blog, March, 9th, 2011, http://blog.vmsplice.net/2011/03/

gemu-internals-big-picture-overview.html [Online; accessed on the

July 3rd, 2019].

Linux Programmer’s Manual, EVENTFD, http://man7.org/linux/

man-pages/man2/eventfd.2.html [Online; accessed on the July 6th,
2019].

Stefan Hajnoczi, Towards Multi-threaded Device Emulation in QEMU,
KVM Forum, 2014, https://www.linux-kvm.org/images/a/a7/
02x04-MultithreadedDevices.pdf [Online; accessed on the July 6th,
2019].

Wikipedia - The Free Encyclopedia, Direct memory access, https://en.
wikipedia.org/wiki/Direct_memory_access [Online; accessed on the July

6th, 2019].

http://blog.vmsplice.net/2011/03/qemu-internals-overall-architecture-and.html
http://blog.vmsplice.net/2011/03/qemu-internals-overall-architecture-and.html
http://blog.vmsplice.net/2011/03/qemu-internals-overall-architecture-and.html
https://www.linux-kvm.org/page/Main_Page
https://lwn.net/Articles/705160/
https://www.kernel.org/doc/Documentation/virtual/kvm/api.txt
https://www.kernel.org/doc/Documentation/virtual/kvm/api.txt
https://lwn.net/Articles/658511/
http://www.linux-kongress.org/2010/slides/KVM-Architecture-LK2010.pdf
http://www.linux-kongress.org/2010/slides/KVM-Architecture-LK2010.pdf
http://www.linux-kongress.org/2010/slides/KVM-Architecture-LK2010.pdf
http://blog.vmsplice.net/2011/03/qemu-internals-big-picture-overview.html
http://blog.vmsplice.net/2011/03/qemu-internals-big-picture-overview.html
http://man7.org/linux/man-pages/man2/eventfd.2.html
http://man7.org/linux/man-pages/man2/eventfd.2.html
https://www.linux-kvm.org/images/a/a7/02x04-MultithreadedDevices.pdf
https://www.linux-kvm.org/images/a/a7/02x04-MultithreadedDevices.pdf
https://en.wikipedia.org/wiki/Direct_memory_access
https://en.wikipedia.org/wiki/Direct_memory_access

168

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

BIBLIOGRAPHY ¢ REFERENCES

SPDK Documentation, Direct Memory Access (DMA) From User Space, https:
//spdk.io/doc/memory.html [Online; accessed on the July 6th, 2019].

SPDK Mailing List, Questions about vhost memory registration, https://lists.
@1.org/pipermail/spdk/2018-November/002647 .html [Online; accessed
on the July 6th, 2019].

The Userspace /O HOWTO, Linux Kernel Documentation, https://www.
kernel.org/doc/html/v4.15/driver-api/uio-howto.html [Online; ac-
cessed on the July 6th, 2019].

Alex Williamson, An Introduction to PCI Device Assignment with VFIO,
The Linux Foundation Events, http://eventsl?.linuxfoundation.
org/sites/events/files/slides/An%2@Introduction%20to%20PCI%
20Device%20Assignment%20with¥%20VFI0%20-%20W1il1l1iamson%20-%
202016-08-30_0.pdf [Online; accessed on the July 6th, 2019].

LWN.net, Safe device assignment with VFIO, https://lwn.net/Articles/
474088/ [Online; accessed on the July 6th, 2019].

VFIO Users Mailing List, Application examples using vfio ?, https://www.
redhat.com/archives/vfio-users/2018-February/msgd@013.html
[Online; accessed on the July 6th, 2019].

Dynamic DMA mapping Guide, Linux Kernel Documentation, https://www.
kernel.org/doc/Documentation/DMA-API-HOWTO.txt [Online; accessed
on the July 6th, 2019].

Linux Kernel Documentation, Transparent Hugepage Support, https:

//elixir.bootlin.com/linux/latest/source/Documentation/

admin-guide/mm/transhuge.rst [Online; accessed on the July 6th, 2019].

Andrea Arcangeli, Transparent Hugepage Support, KVM Forum, Boston,
August, 9th, 2010, https://elixir.bootlin.com/linux/latest/source/

Documentation/admin-guide/mm/transhuge.rst [Online; accessed on the

July 6th, 2019].

https://spdk.io/doc/memory.html
https://spdk.io/doc/memory.html
https://lists.01.org/pipermail/spdk/2018-November/002647.html
https://lists.01.org/pipermail/spdk/2018-November/002647.html
https://www.kernel.org/doc/html/v4.15/driver-api/uio-howto.html
https://www.kernel.org/doc/html/v4.15/driver-api/uio-howto.html
http://events17.linuxfoundation.org/sites/events/files/slides/An%20Introduction%20to%20PCI%20Device%20Assignment%20with%20VFIO%20-%20Williamson%20-%202016-08-30_0.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/An%20Introduction%20to%20PCI%20Device%20Assignment%20with%20VFIO%20-%20Williamson%20-%202016-08-30_0.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/An%20Introduction%20to%20PCI%20Device%20Assignment%20with%20VFIO%20-%20Williamson%20-%202016-08-30_0.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/An%20Introduction%20to%20PCI%20Device%20Assignment%20with%20VFIO%20-%20Williamson%20-%202016-08-30_0.pdf
https://lwn.net/Articles/474088/
https://lwn.net/Articles/474088/
https://www.redhat.com/archives/vfio-users/2018-February/msg00013.html
https://www.redhat.com/archives/vfio-users/2018-February/msg00013.html
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://elixir.bootlin.com/linux/latest/source/Documentation/admin-guide/mm/transhuge.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/admin-guide/mm/transhuge.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/admin-guide/mm/transhuge.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/admin-guide/mm/transhuge.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/admin-guide/mm/transhuge.rst

BIBLIOGRAPHY ¢ REFERENCES 169

[36]

[37]

[39]

LWN.net, Four-level page tables, https://lwn.net/Articles/106177/ [On-
line; accessed on the July 6th, 2019].

LWN.net, Locking and pinning, https://lwn.net/Articles/600502/ [On-
line; accessed on the July 6th, 2019].

LWN.net, The final step for huge-page swapping, https://1wn.net/Articles/
758677/ [Online; accessed on the July 6th, 2019].

VFIO Users Mailing List, Question about DMA from user space buffers, https://
www. redhat.com/archives/vfio-users/2018-December/msgd0000 . html
[Online; accessed on the July 6th, 2019].

Fedora Project, FeaturessKVM Huge Page Backed Memory, https:
//fedoraproject.org/wiki/Features/KVM_Huge_Page_Backed_Memory
[Online; accessed on the July 6th, 2019].

LWN.net, Huge pages part 2: Interfaces, https://lwn.net/Articles/
375096/ [Online; accessed on the July 6th, 2019].

M. Jones, Virtio: An 1/O virtualization framework for Linux, IBM Devel-

oper articles, January, 29th, 2010, https://developer.ibm.com/articles/
1-virtio/ [Online; accessed on the July 6th, 2019].

Arthur Kiyanovski, The Real Difference Between Emulation and Paravirtualiza-
tion of High-Throughput I/O Devices, Technion - Computer Science Department -
M.Sc. Thesis MSC-2017-19 - 2017, http://www.cs.technion.ac.il/users/
wwwb/cgi-bin/tr-get.cqgi/2017/MSC/MSC-2017-19. pdf [Online; accessed
on the July 6th, 2019].

Ing. Vincenzo Maftione, Virtio networking: A case study of I/O par-
avirtualization, http://lettieri.iet.unipi.it/virtualization/2015/

io-paravirtualization-tour.pdf [Online; accessed on the July 6th, 2019].

Luigi Rizzo, Giuseppe Lettieri, Vincenzo Maftione, Speeding Up Packet
I/O in Virtual Machines, http://www.iet.unipi.it/~a007834/papers/
20130903-rizzo-ancs.pdf [Online; accessed on the July 6th, 2019].

https://lwn.net/Articles/106177/
https://lwn.net/Articles/600502/
https://lwn.net/Articles/758677/
https://lwn.net/Articles/758677/
https://www.redhat.com/archives/vfio-users/2018-December/msg00000.html
https://www.redhat.com/archives/vfio-users/2018-December/msg00000.html
https://fedoraproject.org/wiki/Features/KVM_Huge_Page_Backed_Memory
https://fedoraproject.org/wiki/Features/KVM_Huge_Page_Backed_Memory
https://lwn.net/Articles/375096/
https://lwn.net/Articles/375096/
https://developer.ibm.com/articles/l-virtio/
https://developer.ibm.com/articles/l-virtio/
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2017/MSC/MSC-2017-19.pdf
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2017/MSC/MSC-2017-19.pdf
http://lettieri.iet.unipi.it/virtualization/2015/io-paravirtualization-tour.pdf
http://lettieri.iet.unipi.it/virtualization/2015/io-paravirtualization-tour.pdf
http://www.iet.unipi.it/~a007834/papers/20130903-rizzo-ancs.pdf
http://www.iet.unipi.it/~a007834/papers/20130903-rizzo-ancs.pdf

170

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

BIBLIOGRAPHY ¢ REFERENCES

Wikipedia - The Free Encyclopedia, SCSI, https://en.wikipedia.org/
wiki/SCSI [Online; accessed on the July 6th, 2019].

Ashish A. Palekar, Robert D. Russell, DESIGN AND IMPLEMENTATION OF
A SCSI TARGET FOR STORAGE AREA NETWORKS, University of New Hamp-
shire, Department of Computer Science, May, 2001, http://www.cs.unh.edu/
~rdr/tr@101.pdf [Online; accessed on the July 6th, 2019].

SCSI Architecture Model - 3 (SAM-3), T10 Technical Committee, http://
www.t10.0org/ftp/t10/document.02/02-119r@.pdf [Online; accessed on
the July 6th, 2019].

Linux Kernel Documentation, SCSI Interfaces Guide, https://www.kernel.

org/doc/html/v4.13/driver-api/scsi.html [Online; accessed on the July
6th, 2019].

Linux Kernel Documentation, libATA Developers Guide, https://www.
kernel.org/doc/html/v4.13/driver-api/libata.html [Online; accessed
on the July 6th, 2019].

NVM Express Base Specification, Revision 1.4, June, 10th, 2019,
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_
4-2019.06.10-Ratified.pdf [Online; accessed on the July 6th, 2019].

THOMAS KRENN WIKI, Linux Multi-Queue Block I0 Queueing Mech-

anism (blk-mq), https://www.thomas-krenn.com/en/wiki/Linux_

Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mg) [Online; accessed
on the July 6th, 2019].

SPDK Documentation, Submitting I/O to an NVMe Device, https://spdk.io/

doc/nvme_spec.html [Online; accessed on the July 6th, 2019].

Benoit Morgan, Eric Alata, Vincent Nicomette, Mohamed Kaaniche, By-
passing IOMMU Protection against I/O Attacks, HAL archives, Decem-
ber, 20th, 2016, https://hal.archives-ouvertes.fr/hal-01419962/
document [Online; accessed on the July 6th, 2019].

https://en.wikipedia.org/wiki/SCSI
https://en.wikipedia.org/wiki/SCSI
http://www.cs.unh.edu/~rdr/tr0101.pdf
http://www.cs.unh.edu/~rdr/tr0101.pdf
http://www.t10.org/ftp/t10/document.02/02-119r0.pdf
http://www.t10.org/ftp/t10/document.02/02-119r0.pdf
https://www.kernel.org/doc/html/v4.13/driver-api/scsi.html
https://www.kernel.org/doc/html/v4.13/driver-api/scsi.html
https://www.kernel.org/doc/html/v4.13/driver-api/libata.html
https://www.kernel.org/doc/html/v4.13/driver-api/libata.html
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4-2019.06.10-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4-2019.06.10-Ratified.pdf
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)
https://spdk.io/doc/nvme_spec.html
https://spdk.io/doc/nvme_spec.html
https://hal.archives-ouvertes.fr/hal-01419962/document
https://hal.archives-ouvertes.fr/hal-01419962/document

BIBLIOGRAPHY ¢ REFERENCES 171

[55]

[58]

Intel Virtualization Technology for Directed 1/0O, Intel, Inc., June, 2019,
https://software.intel.com/sites/default/files/managed/c5/15/

vt-directed-io-spec.pdf [Online; accessed on the July 3rd, 2019].

LWN.net, Bounce buffer for untrusted devices, https://lwn.net/Articles/
782845/ [Online; accessed on the July 6th, 2019].

QEMU Wiki, Features/VT-d, https://wiki.gemu.org/Features/VT-d#

Device_Assignment_In_General [Online; accessed on the July 6th, 2019].

Wikipedia - The Free Encyclopedia, Single-root input/output virtualiza-
tion, https://en.wikipedia.org/wiki/Single-root_input/output_

virtualization [Online; accessed on the July 6th, 2019].

Ben-Ami Yassour, Muli Ben-Yehuda, Orit Wasserman, On the DMA Mapping

Problem in Direct Device Assignment, http://www.mulix.org/pubs/iommu/

dmamapping.pdf [Online; accessed on the July 6th, 2019].

Yi Liu, Shared Virtual Memory in KVM, LinuxCon, China, November,
2017, https://www.lfasiallc.com/wp-content/uploads/2017/11/

Shared-Virtual-Memory-in-KVM_Yi-Liu.pdf [Online; accessed on the July
6th, 2019].

TECH DEVIANCY, Demystifying Unix Domain Sockets, Thomas Stover, Novem-
ber, 11th, 2011, http://www. techdeviancy.com/uds.html [Online; accessed
on the July 6th, 2019].

Storage Performance Development Kit, https://spdk.1i0/ [Online; accessed on
the July 6th, 2019].

Data Plane Development Kit, https://www.dpdk.org/ [Online; accessed on the
July 6th, 2019].

Introduction ~ to the Storage Performance Development Kit

(SPDK), https://software.intel.com/en-us/articles/

introduction-to-the-storage-performance-development-kit-spdk

[Online; accessed on the July 6th, 2019].

https://software.intel.com/sites/default/files/managed/c5/15/vt-directed-io-spec.pdf
https://software.intel.com/sites/default/files/managed/c5/15/vt-directed-io-spec.pdf
https://lwn.net/Articles/782845/
https://lwn.net/Articles/782845/
https://wiki.qemu.org/Features/VT-d#Device_Assignment_In_General
https://wiki.qemu.org/Features/VT-d#Device_Assignment_In_General
https://en.wikipedia.org/wiki/Single-root_input/output_virtualization
https://en.wikipedia.org/wiki/Single-root_input/output_virtualization
http://www.mulix.org/pubs/iommu/dmamapping.pdf
http://www.mulix.org/pubs/iommu/dmamapping.pdf
https://www.lfasiallc.com/wp-content/uploads/2017/11/Shared-Virtual-Memory-in-KVM_Yi-Liu.pdf
https://www.lfasiallc.com/wp-content/uploads/2017/11/Shared-Virtual-Memory-in-KVM_Yi-Liu.pdf
http://www.techdeviancy.com/uds.html
https://spdk.io/
https://www.dpdk.org/
https://software.intel.com/en-us/articles/introduction-to-the-storage-performance-development-kit-spdk
https://software.intel.com/en-us/articles/introduction-to-the-storage-performance-development-kit-spdk

172

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

BIBLIOGRAPHY ¢ REFERENCES

Ben Walker, Jim Harris, May, 6th, 2019, 10.39M Storage 1/O Per Second From One
Thread, https://spdk.io/news/2019/05/06/nvme/ [Online; accessed on the
July 6th, 2019].

SPDK Documentation, User Space Drivers, https://spdk.io/doc/

userspace.html [Online; accessed on the July 6th, 2019].

SPDK Documentation, Message Passing and Concurrency, https://spdk.io/

doc/concurrency.html [Online; accessed on the July 6th, 2019].

LWN.net, Improvements in the block layer, https://lwn.net/Articles/
735275/ [Online; accessed on the July 6th, 2019].

SPDK Documentation, Event Framework, https://spdk.io/doc/event.
html [Online; accessed on the July 6th, 2019].

Daniel Verkamp, SPDK: Under the Hood, https://s3.us-east-2.

amazonaws .com/intel-builders/day_1_spdk_under_the_hood.pdf

[Online; accessed on the July 6th, 2019].

Linux Piter #4, SPDK and Nutanix AHV: Minimising the Virtualisation Over-
head, Dr Felipe Franciosi, November, 2018, https://linuxpiter.com/
system/attachments/files/000/001/558/original/20181103_-_AHV_
and_SPDK. pdf?1543328586 [Online; accessed on the July 6th, 2019].

SPDK Documentation, Virtualized I/O with Vhost-user, https://spdk.i0/

doc/vhost_processing.html [Online; accessed on the July 6th, 2019].

RedHat Enterprise Linux Documentation, DIRECT I/O, https:

//access.redhat.com/documentation/en-us/red_hat_enterprise_

linux/5/html/global_file_system/sl-manage-direct-io [Online;
accessed on the July 6th, 2019].

IBM Knowledge Center, Considerations for the use of direct I/O (O_DIRECT),
https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.0/com.

ibm.spectrum.scale.v5r00.doc/blladm_considerations_direct_io.

htm [Online; accessed on the July 6th, 2019].

https://spdk.io/news/2019/05/06/nvme/
https://spdk.io/doc/userspace.html
https://spdk.io/doc/userspace.html
https://spdk.io/doc/concurrency.html
https://spdk.io/doc/concurrency.html
https://lwn.net/Articles/735275/
https://lwn.net/Articles/735275/
https://spdk.io/doc/event.html
https://spdk.io/doc/event.html
https://s3.us-east-2.amazonaws.com/intel-builders/day_1_spdk_under_the_hood.pdf
https://s3.us-east-2.amazonaws.com/intel-builders/day_1_spdk_under_the_hood.pdf
https://linuxpiter.com/system/attachments/files/000/001/558/original/20181103_-_AHV_and_SPDK.pdf?1543328586
https://linuxpiter.com/system/attachments/files/000/001/558/original/20181103_-_AHV_and_SPDK.pdf?1543328586
https://linuxpiter.com/system/attachments/files/000/001/558/original/20181103_-_AHV_and_SPDK.pdf?1543328586
https://spdk.io/doc/vhost_processing.html
https://spdk.io/doc/vhost_processing.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/global_file_system/s1-manage-direct-io
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/global_file_system/s1-manage-direct-io
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/global_file_system/s1-manage-direct-io
https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.0/com.ibm.spectrum.scale.v5r00.doc/bl1adm_considerations_direct_io.htm
https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.0/com.ibm.spectrum.scale.v5r00.doc/bl1adm_considerations_direct_io.htm
https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.0/com.ibm.spectrum.scale.v5r00.doc/bl1adm_considerations_direct_io.htm

BIBLIOGRAPHY ¢ REFERENCES 173

[75] Linux Kernel Documentation, Overview of the Linux Virtual File System,
https://www.kernel.org/doc/Documentation/filesystems/vfs.txt
[Online; accessed on the July 6th, 2019].

[76] LWN.net, A block layer introduction part 1: the bio layer, https://lwn.net/
Articles/736534/ [Online; accessed on the July 6th, 2019].

[77] LWN.net, Block layer introduction part 2: the request layer, https://1wn.net/
Articles/738449/ [Online; accessed on the July 6th, 2019].

(78] Intel 64 and IA-32 Architectures Software Developers Man-
ual, Intel, Inc., Semptember, 2016, https://www.intel.

com/content/dam/www/public/us/en/documents/manuals/

64-1ia-32-architectures-software-developer-vol-3c-part-3-manual.

pdf [Online; accessed on the July 3rd, 2019].
[79] Robert Love, Linux Kernel Development, Third Edition, Addison-Wesley, 2010.

[80] KVM Documentation, KVM Memory, https://www.linux-kvm.org/page/

Memory [Online; accessed on the July 7th, 2019].

[81] Linux Kernel Documentation, The x86 kvm shadow mmu, https://waw.
kernel.org/doc/Documentation/virtual/kvm/mmu.txt [Online; accessed

on the July 7th, 2019].

[82] Johan De Gelas, Memory Management, https://www.anandtech. com/show/
2480/7 [Online; accessed on the July 7th, 2019].

[83] Johan De Gelas, The second generation: Intel's EPT and AMD’s NPT, https://
www . anandtech. com/show/2480/10 [Online; accessed on the July 7th, 2019].

[84] James E. Smith, Ravi Nair, Virtual Machines: Versatile Platforms for Systems and

Processes, Morgan Kaufmann, 1 edition, June, 17th, 2005.

[85] Ceph, https://ceph.com/ [Online; accessed on the July 7th, 2019].

[86] Kata containers, https://katacontainers.io/ [Online; accessed on the July

9th, 2019].

[87] Kubernetes, https://kubernetes.io/ [Online;accessed on the July 9th, 2019].

https://www.kernel.org/doc/Documentation/filesystems/vfs.txt
https://lwn.net/Articles/736534/
https://lwn.net/Articles/736534/
https://lwn.net/Articles/738449/
https://lwn.net/Articles/738449/
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3c-part-3-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3c-part-3-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3c-part-3-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3c-part-3-manual.pdf
https://www.linux-kvm.org/page/Memory
https://www.linux-kvm.org/page/Memory
https://www.kernel.org/doc/Documentation/virtual/kvm/mmu.txt
https://www.kernel.org/doc/Documentation/virtual/kvm/mmu.txt
https://www.anandtech.com/show/2480/7
https://www.anandtech.com/show/2480/7
https://www.anandtech.com/show/2480/10
https://www.anandtech.com/show/2480/10
https://ceph.com/
https://katacontainers.io/
https://kubernetes.io/

174 BIBLIOGRAPHY ¢ REFERENCES

[88] Daniel P. Bovet, Marco Cesati, Understanding the Linux Kernel, 3rd Edition,
O’Reilly Media, Inc., November, 2005.

[89] SPDK Documentation, vhost Target, https://spdk.io/doc/vhost.html

[Online; accessed on the July 3rd, 2019].

https://spdk.io/doc/vhost.html

	Περίληψη
	Λέξεις-Κλειδιά
	Abstract
	Keywords
	Πρόλογος
	List of figures
	Εικονικοποίηση Συσκευών Αποθήκευσης με το Μηχανισμό SPDK/VVU
	Εισαγωγή
	Σκοπός & Κίνητρο
	Υπάρχουσες Προσεγγίσεις και SPDK/VVU

	Θεωρητικό Υπόβαθρο
	QEMU/KVM
	Περιγραφείς Αρχείων για Συμβάντα - Event File Descriptors
	ioeventfd/irqfd
	VFIO
	Υπερσελίδες (Hugepages)
	VIRTIO
	IOMMU

	Εισαγωγή στο SPDK
	Εισαγωγή στο πρωτόκολλο Vhost
	Γενική Περιγραφή
	Τρόπος Λειτουργίας του πρωτοκόλλου vhost-user

	Σχεδιασμός
	Γενική Περιγραφή της Σχεδίασης
	Η συσκευή virtio-vhost-user
	Επεκτείνοντας το μονοπάτι ελέγχου vhost-user
	Επεκτείνοντας το μονοπάτι δεδομένων vhost-user
	Επεκτείνοντας τους μηχανισμούς ειδοποιήσεων vhost-user
	Αλλαγές στο SPDK και στο DPDK
	Περιγραφή Λειτουργίας του Μηχανισμού SPDK/VVU

	Υλοποίηση
	Αλλαγές στις προδιαγραφές της συσκευής virtio-vhost-user
	Αλλαγές στην υλοποίηση της συσκευής virtio-vhost-user
	Αλλαγές στο DPDK
	Αλλαγές στο SPDK

	Αξιολόγηση
	Κόστος Εικονικοποίησης
	Ασφάλεια
	Μεταφορά Ελέγχου στο Χρήστη

	Επίλογος
	Αποτίμηση
	Μελλοντικές Επεκτάσεις

	Introduction
	Purpose
	Motive
	Existing Solutions and SPDK/VVU
	Structure of the diploma thesis

	Background
	Port I/O and Memory Mapped I/O
	PCI, PCI device resources
	PCI Express
	QEMU/KVM
	Event File Descriptor
	ioeventfd/irqfd
	DMA
	VFIO
	Hugepages
	VIRTIO
	SCSI
	NVMe
	IOMMU
	Direct Device Assignment (Passthrough)
	File Sharing via Unix Sockets

	Introduction to Storage Performance Development Kit
	What is SPDK (Brief Description)
	Purpose of SPDK, target audience, use cases
	Architecture
	How it works (Key features, primary concepts)
	Application Framework

	Vhost
	What is vhost (Brief Description)
	Purpose of vhost
	Differences between kernel-space and user-space vhost
	How vhost-user works
	More about inter-process communication via shared memory

	Design of SPDK/VVU
	General Description
	The virtio-vhost-user device in a nutshell
	Extending the vhost-user control plane
	Extending the vhost-user data plane
	Extending the vhost-user notification mechanism
	Changes in SPDK and DPDK
	Architecture of SPDK's vhost code
	List of Changes

	Operation End-to-End
	Control Plane
	Data Plane

	Implementation of SPDK/VVU
	Brief Overview
	Changes in the virtio-vhost-user device specification
	Changes in the virtio-vhost-user device code
	Architecture of the virtio-vhost-user PCI device
	Improvements in the QEMU device code

	Changes in DPDK
	Introduce vhost transport operations structure
	Extract AF_UNIX-specific code from core vhost-user code
	Introduce the virtio-vhost-user driver and transport
	Export the virtio-vhost-user transport through librte_vhost public API
	Add virtio-vhost-user devices in dpdk-devbind.py
	Export the virtio-vhost-user transport choice to the end user

	Changes in SPDK
	Integrate the virtio-vhost-user transport in libspdk_vhost
	Add support for vfio no-IOMMU mode
	Support registering non-2MB aligned virtual addresses
	Register the virtio-vhost-user device as a DMA-capable device

	Evaluation
	Disk metrics
	Virtualization I/O overhead
	SPDK/VVU Virtualization overhead
	Security
	User-defined Storage

	Conclusion
	Concluding Remarks
	Future Work
	Add CI tests in SPDK test pool
	Integrate SPDK/VVU with Katacontainers and Kubernetes
	Enhancements in the virtio-vhost-user code in QEMU
	Implement the virtio-vhost-user device over more transports
	Implement Filesystems for SPDK
	Refactor the SPDK's memory map structure
	Rewrite SPDK's API for the vhost-user transport

	Bibliography & References

