EONIKO METTOBIO ITOAYTEXNEIO

Y XOAH HAEKTPOAOTON MHXANIKON KAI MHXANIKON YTTIOAOTIZTON
TOMEAY TEXNOAOTIAY [TAHPO®OPIKHE KAI YTIOAOTIETON
EPrastHPIO MIKPOYOAOIIESTON KAI WHIIAKON L YSTHMATON

Energy-Efficient Design and Implementation of

Approximate Floating-Point Multiplier

AIIAOMATIKH EPrAsIA
™mce

OEOAQPAY ITAITAPOYNH

EnBArénmv: Kiopdh Hexpeotld
Kodnyntic E.M.IL

EPrasTHPIO MIKPOYTIOAOTIETON KAI WHSIAKON L TSTHMATON
Adrva, Adyoustog 2019

Edvixé Metodfio Iloauteyvelo
Eyoh) Hihextpohdywv Mnyavixwy xou Mnyovixodv YTroloyiotoy
Touéag Teyvoroyiog [IAnpogpopurc xa Troloyiotdy

Epyaotfpio Muxpobnoloyiotadv xar Ungoxwmy LucTnudtey

Energy-Efficient Design and Implementation of

Approximate Floating-Point Multiplier

AIIAOMATIKH EPrAsIA
™mce

OEOAQPAY ITAITAPOYNH

EnBArénwv: Kiopdh Hexpeotld
Kodnyntic E.M.IL

Eyxpldnxe and tnv teiwern eCetaotinr emtpony| tnyv 30 Auvyolotou 2019.

(Yroypagn) (Ymoypagr)) (Yroypagn)
Krapdh Iexpeotln Anurteloc Xolvteng Feddpyioc I'volpac
Kodnyntic E.M.IL Kodnyntic E.M.IL Enixovpoc Kadnyntic E.M.II

Adrva, Adyoustog 2019

(Troypagn)

OEOAQPA TIIATIIAPOYNH
Amhopotovyog Hiextoohdyog Mnyovinde xon Mnyovixde Troroyiotov E.M.IL

Copyright (©)—All rights reserved ©EOAQPA TTAITAPOTNH, 2019.
Me empilaln TovToC SLXoUMUATOS.

Arnoyopeletar 1 avTiypopr, amoUfxeuon xai dtavour| Tng mopoloos cpyootag, €€
OMOXAPoU 1) TUAMATOC AUTAG, Yot eumopxd oxomd. Emrtpéneton 1 avatinwmon,
omoVAxELOT) KoL BLVOUY| YO OXOTO U1 XEEOOOXOTUXO, EXTIOUOEUTIXNAG 1 EPELVNTIXAC
pUoNg, Ut TNV TEoLTGVEoT Vo avapépeTal 1 TNYT) TEOEAEUONC XL Vo BlaTneeiton To
ToEov uivuua. Bpwtiuata mou agopolyv T yeron g cpyasiag Yyl xEpB0oXOTIXG
o%0oT6 TEETEL VoL ameLYOVOVTAL TPOS TOV GUYYPOPE.

Ou anddeg xan To CUUTEPAOUATA TTOL TEPLEYOVTAL O AUTO TO £YYEUPO EXPEALOUV TO
oLYYEAUPEDN X DEV TEETEL Vo EPUNVELVEL OTL avTimpocwTebouy Ti¢ enionuec VEoelg Tou
Edvixol Metoofou IloAuteyveiou.

HeptAngm

To Ipétuno IEEE 754 »ivntric UTOSL0G TOATC EVOL 1) TTLO XOWY| AVATOEAC TUOT) Yol TEAY Ut
Tixo0¢ aprduole o utohoYloTéC. O aptiunTnég HOVABES XVNTHS UTOBIAC TOANG YENOWOTOL0-
Ovton oe TOMES €QopUoYES, OTwe 1 Yngroxy| eneepyaoia oruatog xau 1 wnyovixt wédnon. Ot
TOMATAAGIAC TEG ElVAL ATO TIC ONUAVTIXOTERES UPLIUNTIXES LOVADES XAl YENOYLOTOLOOVTOL GE
eval eupl QAo PrELOXGY CLCTNUATWY. 20TOCO, Uila LOVEDdA TOANATAACLOGUOV amottel LYNAS
UTOAOYLOTIXO QopTio, To omolo 0dnYel e onuavTX XaTavdAwon evépyetag. O UToAOYIoUOS
XATE TPOCEYYLON EVOL €VOC TPOTOG YLoL VoL OYEOLAGOUUE YR YORPA Xl EVERYELOXA ATOOOTIXA
GUGC THUOTA.

Avuty| 1 Simhwyatixn epyaocio Tapouctdlel Pl TEOGEYYLOT TOU TOANATAACLIG TH apldumy
xwnthc-unodlactoric. H mpocéyyion egapudleton 6Tov TOAOTAOXO TOMAATAAGIAOUS TWYV O-
eruwyv mantissa. H e@apuoyr tou npotetvéuevou xotd mpooéyyion tolhamiaciac Tt ota 16
nolo yewdver ta delay, area, energy éwe xan 32%, 54%, 53% avtiotoryo oe oyéon ue Tov
axELB TOMNNATAACLIO TN, £V Topovotdler opdhua uxpodtepo and 3,4%. Eriong, n epappoyn
TOU TRPOTELVOUEVOL XATd TROCEYYIOT TOAATAACGTH ota 32 nploa pewdvel ta delay, area,
energy €mc xou 46%, 83%, 82% ovtictoiya o alyxplon pe Tov axplB TOMATAACLUCTH, EVE
nopouctdlel o@dhpo uxpotepo and 2,2%. O TEoTEWOUEVOC XATH TPOGEYYIOT| TOAMATAAGLO-

oA apLiP®V xvNTAC UTOBLO TOA S adlohoyHinxe xou oe eninedo epapuoyY<.

AéEeic KAeoud

[Tpooceyyiotxdg Troroyiopos, Aprdunuxd Kuxdouata, Aprduol Kivntic Trodiactorre,
[Moramiactoopde, [pdtuno IEEE 754, Yyedlaon ASIC, Avoyr ota Xgdhyarta, Katavdhwon
Evépyeuag

Abstract

IEEE Standard 754 floating-point is the most common representation today for real
numbers on computers. Floating-point (FP) arithmetic units are used in many applica-
tions, such as digital signal processing and machine learning. Multipliers are the most
important operational units and are used in a wide range of digital systems. However,
a multiplication unit suffer from high computational load, which leads to considerable
power consumption. Approximate computing is a way to design fast and energy efficient
systems.

This diploma thesis describes an approximation of floating-point multiplier. The ap-
proximation is applied to the costly mantissa multiplication. The implementation of pro-
posed approximate FP multiplier in 16 bit reduces delay, area and energy up to 32%, 54%,
and 53% respectively compared with the exact multiplier, while incurring in an error less
than 3.4%. Also, the implementation of proposed approximate FP multiplier in 32 bit
reduces delay, area and energy up to 46%, 83%, and 82% respectively compared with the
exact multiplier, while incurring in an error less than 2.2%. The proposed approximate

FP multiplier was also evaluated at application level.

Keywords

Approximate Computing, Arithmetic Circuits, Floating-Point Numbers, Multiplica-
tion, IEEE Standard 754, ASIC Design, Error Tolerance, Energy Efficiency

Euyapiotieg

H moapotoa dimhwuatixn epyacio extoviinxe otov touéa Teyvoroyiag IIAnpopopixic xau
Trohoylot®y 011 SLdpxeLo Tou oxadnuaixol étoug 2018-2019 xou emopay(lel Tic OTOUBES LoL
oto Edvixd Metodfo Iohuteyvelo. Oa Hlela bioutépwe va euyoplothow Tov emBAEnovTa
xodnynth pou . Iexpeotln Kioudh yioo v xadodriynoy| tou xan yior Ty uxotpior ToU Uou
€0woE Vo Aoy oAU UE €vo TOOO EVOLUPEROV xou ETXonEo avTixelpevo. Enlong, Vo fieha vo
ELYOPLOTHOW ToV LToYNPLo BLddxTopa Aéovta Baciielo yio tnv e€oupetiny cuvepyaota xou Yo
v moAUTWn Borjdela Tou You Topelye OTOTE T YEEWCTNXAL.

Téhog Yo Hieha var eUYELOTACL TNV OLXOYEVELY HOU YOl TNV ATAETY Xou TOAOTAELET OTHELET,
xaL xatovonon xadohn Tn SIEEXELN TV OTOUBKOY UoU, XM %ot XATOLUE TOAY Bixolg Loy
XL ONUAVTXOUS Yial EUEVOL avUp®TOUE YLoL TNV UTOROVY] TOUG XOL T1) ONUOVTIXY) UTOCTAHRIEN

ONO QUTO TO BLICTNUO Xk WLETEQO TOUG TEAEUTAUOUC UTjVES.

Contents

ITepiindm 1
Abstract 3
Evyopiotieg 5
Contents 7
List of Figures 9
List of Tables 13
Extetapévn Ilepiindn 15
1 Introduction-Motivation 35
1.1 Floating-point arithmetic 35

2 Theoretical Background 37
2.1 Introduction L 37
2.2 Binary numeral system oL Lo L Lo 37
2.2.1 Binary arithmetic oo oL 38

2.2.1.1 Two’s complement 38

2.3 Booth’s Algorithms o 39
2.3.1 Booth’s Multiplication Algorithm 39

2.3.2 Modified Booth’s Multiplication Algorithm 41

2.4 Binary multiplication oL oo oL 43
2.4.1 Wallace tree multiplication 44

2.4.2 Modified Booth Algorithm using Wallace tree 46

2.5 Floating-point numbers oo 50
2.5.1 The Standard IEEE 754 L oo 50

2.5.2 Binary Interchange Format Encoding 53

2.5.2.1 Half precision binary floating-point format 53

2.5.2.2 Single precision binary floating-point format 54

7

Contents

2.5.2.3 Double precision binary floating-point format

3 Related Work in the Field of Floating-Point Operations

3.1 Floating-point adder o
3.1.1 Standard floating-point adder algorithm
3.1.2 LOP Algorithm
3.1.3 Far and Close Data-path Algorithm

3.2 Floating-point multiplier,
3.2.1 Floating-point multiplication algorithm

4 Related Work in the Field of Approximate Computing

4.1 Approximate computing
4.2 Approximate software
4.3 Approximate hardware

4.3.1 Approximate architecture

4.3.2 Approximate circuit

5 Proposed Floating-Point Multiplier

5.1 Imtroduction.
5.2 Accurate floating-point multipliers
5.3 Proposed approximate multiplier

5.3.1 Hybrid partial product perforation-rounding

6 Experiment

6.1 Tools and Experimental Setup
6.2 FError Analysis
6.3 Evaluation at Circuit Level

6.4 Evaluation at Application Level

7 Conclusion

Bibliography

101

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

One, Two xou Sofjator.o oo
Mepuxd yivopeva xou d1op0wTinde 6pog
ITivoca pepixdv yvopévev pali ue tov 6lopiwTind 6po Yia €Vay TOAMATAACLO-

CTAI2XI2 . ..
[ToAhamhacloothc Tomou Modified Booth 0oL
AvamapdoTtac xvnThC LUTOBIHCTOMG GE BEXAOLXT) Xou O BLADLXT LoEPY|
Floating-point wopgn [1]o Lo
IEEE half precision avanopdotact evoc aptdpol xvnTrg UTOOIHCTOMAC
IEEE single precision avomopdotaon evog aptduol xivntig UToBloToOAAS . . .
To BEVTEO TWV UEPXOY YIVOUEVWLY TOU axel3) TohamAactaoTh 12x12
To BEVTEO TWV UEPXOY YIVOUEVWLY TOU axel3Y) TohamAactacTy 26x26
To ywépevo (P) tou moloamhootooth 12x12 . . . oo 0 oo
To ywépevo (P) tou moloamlooctooth 26x26
Holomhaclootic 12x12 dnolwy pe k=2 xaem=6
[Holomhaoloothc 26x26 dnoiwy pe k=3 xao m=8
Pareto Energy-Error 16bit o L oo
Pareto Energy-Error 32bit o o

2 bit pairing as per Booth encoding
Multiplication of two numbers with Booth Algorithm
3 bit pairing as per Modified Booth encoding
Multiplication of two numbers with Modified Booth Algorithm
Multiplication of two unsigned numbers
Multiplication of numbers 1010 and 1011
Partial products of two 5-bit numbers L.
Wallace tree algorithm Lo
A 5x5 Wallace tree multiplier L L.
Modified Booth Encoding o oL
Partial Products and Correction Term
Partial products matrix with the correction term of a 12x12 multiplier . . .
Modified Booth Multiplier

A decimal and a binary floating point representation

9

10 List of Figures
2.15 Floating-point format [1] L 52
2.16 IEEE half precision floating-point respesentation 54
2.17 IEEE single precision floating-point representation 55
2.18 IEEE double precision floating-point representation 55
3.1 Flowchart for standard floating-point adder [2] 58
3.2 Micro-architecture of standard floating-point adder [3] 59
3.3 Micro-architecture of LOP algorithm [3] 61
3.4 The LOP algorithm in three stages [4] 62
3.5 Micro-architecture of far and close data-path algorithm [3] 63
3.6 Block diagram of floating-point multiplier 64
3.7 Architecture of the conventional 24x24 bit Vedic Multiplier using 12x12

Vedic multipliers [5] L 66
3.8 4x4 array multiplier [6] Lo o 67
3.9 4x4 Wallace Tree multiplier [6] 67
3.10 Steps involved for 4-bit binary numbers multiplication using Urdhva Tiryagh-

hyam Technique [7] Lo 68
4.1 Classification of different approximate computing techniques [8] 70
5.1 The partial product tree of a 12x12 accurate modified booth multiplier . . . 76
5.2 The partial product tree of a 26x26 accurate modified booth multiplier . . . 77
5.3 The product (P) of the 12x12 multiplier 7
5.4 The product (P) of the 26x26 multiplier 7
5.5 Flowchart of our accurate floating-point multiplier 79
5.6 An approximate 12x12 bit multiplier with k=2 and m=6 81
5.7 An approximate 26x26 bit multiplier with k=3 and m=8 82
5.8 Flowchart of proposed approximate floating-point multiplier 83

6.1 Evaluation of the proposed approximate half precision floating-point multi-
pliers in Pareto diagrams, when synthesized and operating at their critical
pathdelay 90

6.2 Evaluation of the proposed approximate single precision floating-point mul-
tipliers in Pareto diagrams, when synthesized and operating at their critical
pathdelay 90

6.3 MRED variation of PR\km multiplier with respect to configuration param-
eters for floating-point multiplier size (left) 16 bits, and (right) 32 bits. . . . 91

6.4 Hardware gains and accuracy results using (a) the proposed 16x16 approx-

imate multipliers, and (b) the proposed 32x32 approximate multipliers . . . 92

List of Figures

11

6.5

6.6

6.7

6.8

Image blurring using the proposed approximate multipliers. (a) Original
image (Lena). Image blurring using (b) the accurate multiplier, (c) the
PR|,, design, (d) the PR|, , design, (e) the PR|, , design, (f) the PR|;,
design, (g) the PR|; ¢ design, and (h) the PR|; s design
Image blurring using the proposed approximate multipliers. (a) Original
image (cameraman). Image blurring using (b) the accurate multiplier, (c)
the PR|,, design, (d) the PR|, , design, (e) the PR, design, (f) the
PR|; 4 design, (g) the PR|; ¢ design, and (h) the PR[, 5 design
Image blurring using the proposed approximate multipliers. (a) Original im-
age (Lena). Image blurring using (b) the accurate multiplier, (c) the PR|, 5
design, (d) the PR|g ,, design, (e) the PR|q 1, design, (f) the PR|g ;4 design,
() the PR| g design, and (h) the PR|} g design
Image blurring using the proposed approximate multipliers. (a) Original
image (cameraman). Image blurring using (b) the accurate multiplier, (c)
the PR|, |, design, (d) the PR|g,, design, (e) the PR|, design, (f) the
PR|g 1 design, (g) the PR|;, ;5 design, and (h) the PR, design.

List of Tables

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5

5.1
5.2

5.3

5.4

9.5

6.1
6.2
6.3

Iivaxoc xwdixonoinong Modified Booth 16
Kotnyopionoinon oe Overflow,Underflow,Normal avdroyo ye tnv tur tou E

(binaryl6) 23
Kotnyopionoinon oe Overflow,Underflow,Normal avéroyo ye tnv Ty tou E

(binary32) 24
Radix-2 encoding L 40
Booth and Modified Booth encoding 42
Modified Booth Encoding Table 46
The floating-point formats oL oL 52
The representations of floating-point data in half precision format. 54
The representations of floating-point data in single precision format 55
The representations of floating-point data in double precision format 56
Adder implementation analysis 0L 59
Right shift shifter implementation analysis 60
LOD implementation analysis 60
Left shift shifter implementation analysis 60
Standard and F&C algorithm analysis 63
XOR accuracy table 74
Normalization Effect on Result’s E and Overflow/Underflow Detection (bi-

naryl6) . .o 75
Normalization Effect on Result’s E and Overflow/Underflow Detection (bi-

NATY32) . . e 76
The multiplier’s output according to the categorization of the number (bi-

naryl6) 78
The multiplier’s output according to the categorization of the number (bi-

NATY32) . o e 78
5 specific combinations of P, P 87
Total Results of PR|,, in Critical Path Delay (binaryl6) 88
Total Results of PR|, ,, in Critical Path Delay (binary32) 89

13

14 Aot op Toflec

6.4 PSNR and SSIM values of the outputs of image blurring (Lena), using
different approximate multiplier designs (16x16 bit) 96

6.5 PSNR and SSIM values of the outputs of image blurring (cameraman),
using different approximate multiplier designs (16x16 bit) 96

6.6 PSNR and SSIM values of the outputs of image blurring (Lena), using
different approximate multiplier designs (32x32 bit) 96

6.7 PSNR and SSIM values of the outputs of image blurring (cameraman),

using different approximate multiplier designs (32x32 bit) 97

Extetopevn Ilepiindmn

Ewcoaywyn

H "floating-point” apriuntixn yenowonolelton eUp€nwg 6 TOAOUE ToUElg, o eI Yo
EMOTNUOVIXOUS UTOAOYIoUoUE xodwe xou yia emedepyaocia onudtwy. Me 1o mépaoyo Ty
Yeovwy €youv avantuytel ToAéc npooeyyioeic oe apripole. H ”floating-point” oprduntixy
€lVol 1) TO AMOTEAEOUATIXY) VATAUPAOTACY] TEAYUATIXWY optIUDY, Xl EWBOLXA GTOV TOPEN TWV
UTOAOYLOT®Y, Yol Bivel TN SuvatdTnTa Var avamopactodody TOAD Uixpol ot ToOAAOL UeYdAoL
apriuol.

O 6po¢ "floating-point” avagpépetar 6TO YEYOVOS OTL 1) UTOBLIGTOAY EVOG apLiuol unopel
va totovetniel oe onowdrtote Véom tou apriuon. H petatdmion tneg umodlactohr|c UeToBAAAEL
xat Tov exétn mou nepthauPdveton otov apLiud.

Ané v eugdvion Tou TeOTOU LUTOAOYLOTH €youv yenowonoinlel Sudpopec " floating-
point” avanopactdoelc. To 1985, duwe, xadepwinxe to npdtuno IEEE 754 yio tnv o-
vamoapdo ooy ”floating-point”.

H vrohoylotiny| taydtnta Twv tedewy pe apripoie ”floating-point” yetpdte oe "FLOPS”,
xa ebvon vt ToAD onuoavTind péyedog ota utohoytoTixd cucthyata. To cucTAUATE NAEXTEO-
VIXOV UTOAOYLO TWYV dlordé€Touy Wia ewdd oyedoouévn ”floating-point” yovdda n onola exteel

Tic mpdlelc wetall " floating-point” apriudv.

20vtouo BOewpentixd TrolBadpo

Avadixo Mootnua Aptdumy

To duadixd cloTnua etvon To Baoind aEriuNTiXd GOGTNUA TOV NAEXTEOVIXOY CUCTNUATOY.
Kdie duadndg oprdudy exppdleton Ue BUVAUELS TOU 2, xou ATOTEAELTAL ATOXAELOTING omd TaL
el 70”7 xou 717, Kdde gmeplo ovoudletan bit.

Kée apriduodc avanapiototor 010 duadixd cLoTnua we e€ng:

n—1
a:ZT*ai (0.1)
i=0

omou, a : ebvar 1 Ty Tou apELiuoy,

15

ITivaxcag 1: Ilivaxoc xwdixonoinone Modified Booth

Avadud Pmepla Unoplo Modi- Kodwomounuévo dnelo y;
fied Booth
Y2j+1 Y2j Y2j-1 sign = | zl = |22 =
S one; twoj
0 0 0 0 0 0 0
0 0 1 +1 0 1 0
0 1 0 +1 0 1 0
0 1 1 +2 0 0 1
1 0 0 -2 1 0 1
1 0 1 -1 1 1 0
1 1 0 -1 1 1 0
1 1 1 0 lor0 0 0

b : etvor 0 apriudg Twv dneiny Tou apriuoy,

a; : elvon 1 Ty xdde Pneplou.

INo mopdderyua, o aprduog 17 avarapictator oto duadixd cloTnua we 10001. Xenowwo-
rowdvtag Ty eZiowon (0.1) o duadde aptiude 10001 avtiotoryel otov:

1204052 +0%22 +0%2% + 12 =17y,

H péyiot iy evog oprduol tou anotekeiton and n ¢mepio ebvor 2 — 1 xan 1 eAdyiotn ebvon
0. To mpwro Ynyio evéc aprduod ovoudleton Most Significant Bit (MSB) xou to teleutaio
Imeplo tou apriuol ovoudletar Least Significant Bit (LSB). ¥to napondve topddetyuo ue tov
aprdpd 10001 o dnwio mou ToMamhactdleton pe o 24 ebvor To MSB ot to hnpio mou Tolo-
mhaotéleton pe to 20 etvar 1o LSB. Ye xdide duadind aprdud 1o dhneplo mou molamhacidleto
ue to 2° ebvor o LSB.

H opudunmtixny oo duadnd cOoTnua elvon TopodpoLs Ue TNy aeldunTixn Tomv dhAwy optiunTti-
AWV CUCTNUATLY. 2TOUG BLABIXOUE dELUoVE EXTEAOUVTIL OAES OL TRAEELS, OTWS 1) TPOCHEDT),
1 apalpeoT), 0 ToAamAacLacHOS xau 1) OadpeoT). H npdodeon elvon napduota e autr Twv dexa-

OV aptiu®y. 2Tnv Topoloa dimhwuatixy epyacio Yo acyohniolue e T0V TOAATAACLIGUO.

Teoronownpévog aryoprdnog tou Booth (Modified Booth algorithm)
‘Eotw 800 apripol X, T oe cuumifpnua wg tpog 2. O T diveton and tn oyéon:

n/2—1
Y=Y yMPxd (0.2)
j=0

Ytov enopevo mivaxa 1 @aiveTton THg SLOopPEVOVTAL To GHUUTA XATE TOV TPOTOTOMNUEVO

oaly6prduo tou Booth (radix-4 encoding)

16

Yxhua 1: One, Two xou S orjyota

O hoywég elomoelg mou TepLypdpouy Tov mivoxa 1 etvou:

one; = Y251 D Y2 (0.3)
two; = (y2j+1 D ygj) * ONE; (04>
S = Y25+1 <0'5>

Y10 oyfua 1 gabveton o x0xAwuo Tou vAomolel Ti¢ Tpoavagepieioes eEIGOOELS.
21N cuVEYELd TOROUGIALOVUE TOV TEOTO UE TOV OTo{o TapdyovTon Tor HepXd Yvoueva. H
elowon (0.6) meprypdepel to ywouevo P twv 8o aprdumv X, Y, e tov aprdud Y vo ebvou

AWOOTONUEVOS AT TOV TpoToTolNUEVO ahyoprduo Tou Booth.

n/2—1 n/2—1
P=Xx+Y =Y XsyMPso¥=ct+ > PP;j+2% (0.6)
=0 =0

omou ct etvor 0 SlopwTndg 6pog xou PP tor uepxd Yvoueva.

O BropinTindg 6pog ct etvar avoryxalog Yot TNy eoywYT) WOTOL ATOTEAEGUOTOS XOL OTNV
TepinTwon mou xdmola Yepd ywvoueva eivon apvrtixol aprduol. Xto oyfuo 2 gaivovtal To
oTddLo Tou axohovdolvton WOTE Vo TeoxUEL 0 6pog ct oe évay moAlaniactacth 12 Pngiwy.

‘Onwe @aiveton 6To OYAUL 2 T YXEL XUXAAXIN OVTITPOCWTEVOUY TNV ENEXTACT) TROCTLOU
6tav 0o X molamhaowdletan pe to 2 (two; = 1). To MSB xdle pepixol ywouévou éxyel
opvnTied Bdpoc omdte To yxrpl xuxAdxia avixadioTtoton omd Tor yadpo (P) xar mpootideton

emniéov o mapdyovtag -1 (—p = D — 1). 31N cUVEYEL YENOWOTOIOVTAS TO UadNUoTind

17

® 0000000 0Q0QC0CO0OCQ0
@ 000000000000
@ 00000000000 Q
@0 000000000 O0O0
@0 00000000000
@ 000000000000
1
1 ® 000000000000
N ® 000000000000
4 000000000000
000000000000
\ 000000000000
00000000 O0D0O0D
s
T 1 #0000 000000CO0
i 1 000000000000
i 1 ®0000CO0O0CO0OO0ODO0ODO0OO0OO0
T 1 0000000000 O0O0
T 1 @0 00000000000
1 ® O 00 0O0O0O0O0CO0OO0ODO0OO0
y
T #0000 0000000000
T 00000000000 O0
T 000000000 O0QCO0
1 0000000000 CO0
1 ® 000000000000
+ 000000000000
1
*® 0000000000 O0CO0
+ ®0 00000000 O0O0O0 °®
1 ® 0000000000 O0CO0 L
T ® 000000000000 L]
T 0 0DD00000000O0O0 ®
" 0000000000 O0O0 [
*

YxApno 2 Mepwd yvopevo xou dlopdntinds 6poc

xO o (2 - 1 = 1) 1o -1 avuxadiototou and to (-2 + 1). 'Enerta mpaypotonowolvior ol
apouEécel; Tou Tpogxuday amd TO TEONYOUUEVO GTAdl0. XTo TeheuTaio 6Tddlo mpooTivevTton
X0l TOL UTTAE XUXADKL TTOU avTLtpocwredouy Ta dloptwtixd ¢npia (n;). Av 10 xwdonoinuévo
xatd Modified Booth {neplo éyel apvntind Bdeoc t6te T0 Bropwtind ¢nelo maipver Tnv T
1, wote va yivel 1 yetdBoom amd To CUUTAREWUO KOC TEOS 2 GTO CUUTANPMUN WS TEOS EVaL.
Av 6uwg to Bdpoc elvon Yetind, toTE TO SloplnTind Pnplo maipvel Ty Ty 0.

O BopdwTtixdg 6pog ct unoloyileTton and TV TAPUXATEL CYEDT):

n/2—1 n/2—2
ct= > (my#2¥)42"x 1+ (2¥TH) 2! (0.7)
=0 j=0

To pepixd yvoueva unohoyilovton e Tn Yerom TV ONUATOY one;, two; ol s UECE TV
EMOUEVWY EELCMOEMV:

n—1
PPj=p;, 2" 43 " (pji % 27%) (0.8)
=0

18

223 g2 o 220 218 218 1T 516 518 214 913 12 oM 210 28 28 27 28 25 24 2 22 21 20

1 Posz Pont Poso P Pog Por Pos Pos Pos Poz Poz Pot Poo

Priz Pin Prao Pie Pig Piz Pig Pis Pra Pz Pz Pig Pig Ng
1 Par Pam Paso Pae Pze Par Pos P25 Pas Pzz Pa2 Par Pzo Ny
1 Parz Pan Paro Pag Pag Par Pag Pas Pas Paz Paz Par Pag nz
1 Pasz Dat Pato Dose Pag Par DPag Pas Dss DPaz Paz Pag Pag Ny
1 Psiz Psu Psto Psa Psg Psr Psg Pss Pse Psz Psz Psy Psg Ny

Sxhua 3 Ilivaxo yepixodv yvouévev pall pe tov Sloplwtind dpo yia évav todlamhaotooth 12x12

pji = ((z: @ 55) * onej) + ((zi-1 & 55) * twoy) (0.9)
pio = ((xo ® s;) x one;) + (s; * two;) (0.10)

Bin = (((Tn1 @ 55) % one;) + (Tn_1 & 5;) * two;)) (0.11)
nj = s; * (one; + two;) (0.12)

XeNOWOTOLOVTIC OAAL T TUEATAVE TO OY AU 3 €YOUNE TOV TVOXA TV UERIXMOY YIVOUEVWY
poall ye tov dloptwTind 6p0 yio Evay ToAlamAactooTh 12x12.
O TOAATAUCIAOTAC TOU AMOTEAEITOL OO TIC YEVVATELEG TUEAYWYNG UEPIXMY YIVOUEVW®Y,

0 MB xwdwonoimnty, to CSA Wallace 6évtpo xou 1o yeryopo CLA adpoioty| galvetar oto
oyfua 4.
Floating-point agtdpol

Ou apipol "floating-point” (xvntic unodlotolfc) ebvar évac mdavdg teéToC ovama-

pdotaone twv mpaypatixay oprdudy. To npdtuno IEEE 754 [1] nopouctdlet d0o diapopeTt-

19

X

thigh l
—
[PPy G }4 — Yo
[PP, G }4 D — V1
T .
{ PP, Generator }< 8
c
i
Cliow g
:) ‘ 4—Vn_1
{ PPpz.1 G < l
! g

CSA Tree

Fast CLA Adder

l

PX*Y

SxHua 4: IloManhaoothc tonov Modified Booth

Sign Exponent Sign Exponent
—— —— —— e —
+7.02*1023 +1.01101 * 2-1101
e [S— e e —
Mantissa Base Mantissa Base

EyxApe 5: Avanapdotoon xwvntic utodlacTorc oe dexadixn xou ot duadixr Lop@n

%EC HOPPES XWVNTAC UTOBLUO TOAAC, TN duadxh Lopen xan T dexadix popyh (oyfua 5). Kéde
aptduoC OE LOoRPPT| XVNTAC LTOBCOTOAMAC amoTeAE(Ton and Tela Yépn: To mpdornuo, T “man-
tissa” xou tov exdétn. H Bdon (base or radix) eivor 1o 2 xou to 10 Yot Toug duadixolc Toug
oexadLxoLg apriuols avtioTolya.

Yy nopoloo Simhwuatixd epyoacta Yo acyorndolue Ye Ty xwdxonolnon xivnthg uto-
oo ToMTC o€ duadixr Lop@n xou ouyxexpuéva pe T ”half-precision” (mou etvon xwdixonoinon

ota 16 ¢nglo) xou tn "single-precision” (mou elvon xwdixonoinon ota 32 ¢nepla)

Kwduxonoinorn Kiwwntrc Yrodiactorric o Avadixr) Moo

Kdie apriudc xvntrg unodlac Todhc €xel povo uia xwdonolnon oe duadxr pop@r. 'E-
Vo optdudC XvnTHS UTOBLIG TOAAS TTou xwdxoTnoteitoan oe duadixr Lopy| pe yenon k Pnplwv
qatvetar oTo oyua 6.

O uadixol apripol pe tn popet Tou oyfuatoc 6 arnotelodvton and To tpdonuo (to MSB),
tov exdétn E nou eivan ta endpeva w Pnoio (E = e + bias), xar tn "mantissa” nou eivar ta

teheutaio m gnplo. Avdhoya ye Ty T tou E xou tou M o apripol xatnyopiomolodvon o

elnc:
- "Normal” apuiuol eivon awtol mou 1o E madpver axéponeg Tipég peyalbrepeg and to 1 xou

20

1 bit MSE w bits LSE MSEBE m = p - 1 bits LSE
= E M
(sign) (biased exponent) (trailing significand field)

Yo 6: Floating-point poppy [1]

15 | 14 0] 9 110

YxAwo 7: IEEE half precision avanapdotooy evdc apidpod xivnthc unodlactolic

uEdTERES amd to 2% — 2, aveldptnTa and TNV Tir Tou M.
- "Zero” apruol eivon ot apriuol mou €youvv E=0 xo M=0.
- ”Subnormal” oprduol ivor ot aprduol Tou €youy E=0 xou M # 0.
- 7Infinite” apripol etvor ov apriupol mou €youy E=2"-1 xa M=0.

- "NaN” apriuol eivon ot aprduol mou éyovy E=2"-1 xou M # 0.

apoxdtey mapovoldlova oL 500 XOOXOTONCELS XWVNTHS UTOBIUCTOA G O BuAdLXT| Lop®T

e Tic onoleg Vo aoyorntolue otny Tapolca BITAWUNTIXNY epyasia.

e Half precision

To oyfua 7 detyver tnv avanopdotacy "half precision” evog oprduol xivntig uTOdLO-
otolic. O oprdude autdg anoteheiton omd 16 Ynpla. To mpodto Ynglo eivon to Yngplo
npoofuou (S), o endpeva 5 Pnela avarapotolv tov exdétn (E), xou ta 10 teleutaia
dneolo T "mantissa” (M). Hpoo¥étovtac éva emmiéov Pnpio unpootd and tn "mantis-
sa” €youue pla emmhéov petoBAnTy) mou ovoudleton significand”. Av o ex¥étng elvou
peyahltepog amd to 0 xou uixpdtepog and to 31, xou undpyet 1 oto (MSB) tou "sig-
nificand” téte o aprdude eivar "normal”. H eZiowon (0.13) neprypdpet évay "normal”

apLiuo.

Z = (—1)° x 2(E=Bias) o (1 M) (0.13)

Onov: M =mg*x2 "+ mgx2 2+ my 23+ .. +my %277 +mg %2719,
avd Buoc = 15.

H uixpodtepn tiur| tou exdétn eivon 10 Epyip = 000012 —011115 = —14, xou 1) peyohOtepn
elvot 10 Eppqr = 111102 — 011115 = 15. Eniong o pixpdtepog "normal” oprdudg eivan o
271 2 6.10%1075 xou 0 peyehhTepoc "normal” aprdude ebvor o (2—2710)%21% ~ 65504.

21

3|30 23|22 110

Xynuo 8: IEEE single precision avanopdotoaoy evog aptduod vt UnodlaoToANG

e Single precision

To oyrfua 8 delyvel Ty avarnapdotaor ”single precision” evog aprduold xivntrg uTodLo-
otolc. O oprdude autdc anotereiton amd 32 dngla. To npwto Pnglo elvon to dmeolo
mpoofuou (S), to endpeva 8 dYngio avoaropiotolv tov exdétn (E), xou ta 23 teheutaio
dnolo tn "mantissa” (M). Hpoo¥érovtac éva emmiéov Pnplo unpootd and tn "mantis-
sa” €youpe pa emmhéov petofAnTH mou ovoudleton significand”. Av o ex¥étng eivou
peyahitepog amd to 0 xou uxpdtepog and to 255, xat undpyet 1 oto (MSB) tou ”signif-
icand” téte 0 aprdude eivon "normal”. ‘Onwe avagépaue 1 eZiowon (0.13) neprypdepet
évay "normal” opriuo.

‘Onou: M =mago %271 4 mop %272 4+ mgg * 273 4+ .. 4+ my * 2722 4+ myg * 2723,

avd Buoe = 127.

H uwpdtepn T tou exdétn etvor 10 Epy = 01y — TF g = —126, xou 1 peyahltepen
ebvot 10 Eppgy = FEy — TFp = 127. Eniong o uxpdtepog "normal” apriude ebvar o
27126 ~ 1.18 ¥ 1073® %ou o peyohltepoc "normal” aprdude ebvor o (2 — 2723) x 2127 ~
3.40 % 10%8.

ITpotewduevog mMEoOoeEYYLOTIXOC TOAAATAXACLACTAS apt-

ROV XLVNTNS UTOOLUC TOANG

Y1n Simhouatier auty) epyacio apyxd uhomotiooue Tov axel3| ToAlaTAacLaG T 500 opLd-

UV XVNTAC UTOBLHO TOAC.

Axpiric ToANATAACLACTHE AELIUOY XIVNTHE UTOBLACTOANG

‘Eotw A, B 600 "normal” apriyol xivntic unodlactohrc. Xougwva pe ty e&iowon (0.13)

€)(OLUE:

A = (=1)%4 x 2(Fa=Bias) , (1 M y) (0.14)

avO

B = (—1)%8 x 2Bs=Bias) , (1 Mp) (0.15)

22

ITivaxag 2: Kotmmyoponoinorn oe Overflow,Underflow,Normal ovéhoya ye v T tou E (bi-
nary16)

Kotnyopia E Eyoha
E<15 Aev uropel var oANEEeL xaTd
NV xavovixonolnon
Underflow E=15 Mrnoget va yiver normal a-

EWUOS XUTd TNV XAVOVL-
xornoinon (av mpootedel 1
otov exdétn)

Normal apriuol 16 < E <45 Mrnogel vo upetatpanel oe
overflow xatd tnv xavovixo-
nolnon

Overflow E>45 Agv unogel var aAAGEEL xATA

TNV XOVOVLXOTIOINGCT

XeNoWoToLdVToS TIC ToRTdve €ELOMOELS TO YWOUEVO TwV BV apliumy dlvetal and tnv

oaxohoudT egicwon:

P = Ax B = (—1)%4+58) , 9(BatEp=2+Bias) , (1 My 5 1. Mp) (0.16)

[Mo tov toAamhactacyd Ty dVo apriucy oxohoutdolvTal To ETOUEVO 7 GTAdIAL.

1.

To mpdonuo Sp Tou Yvouévou mpoxinTeL av epapuécovpue 0 Aoyixy tUAn XOR ota
mpdonuo S4 xaw Sp. Av ol aprduol A xou B éyouv to {Blo mpdonuo téte T0 P €yet
mpoonuo 0 aAlwg Exel tpdonuo 1.

. HlpooVétoupe toug exdéteq: B = E4 + Ep

E¢etaloupe Tic mepintwoelg va €youue underflow 7| overflow.

Avdhoyo ye v T Tou E ot apripol xatnyoplomoodvion 6meg golveton oToug mivaxeg
2 (v 16x16) xou 3 (yio 32x32).

Ou mivaixeg 2 xon 3 delyvouv 6T 1 tepintwon uderflow unogel vo 0dnyroel oe "normal”
aptduo, xadoe xou 6Tt évag “"normal” apriude umopet va petofel o overflow. Autéc ot

dLo mepinTwoelg Yo e&eTacTOOY 0TO GTABIO 7.

[Mo va mdpoupe Ty T tou exd€Tn Tou TEAXOD YIVOUEVOU TEETEL VoL TROCECOUUE
ot (Ea + Ep — 2Bias) wa @opd to Bias: Ep = E4 + Ep — 2Bias + Bias =
Fs+ Eg — Bias = E — Bias

[tov tohhamhaotaopd tov significands (1.My, 1.Mp) Ya yenoponoticouye tov tpo-
Tonotnuévo alybertuo tou Booth xo to 8évtpo Wallace nou éyouue neprypdidel mapo-

ICAON

23

ITivaxag 3: Koatmyopionoinorn oe Overflow,Underflow,Normal avéhoya pe v Ty tou E (bi-

nary32)

Kotnyopia E Eyoha
E<127 Aev unopel var ohhdEeL xorTd
NV xavovixono{non
Underflow E=127 Mrnogel va yiver normal o-

EWUOC XATE TNV XAVOVL-
xornoinon (av mpootedel 1
otov exVéTn)

Normal cpripot 128 < E < 381 | Mnopel va petotpanel o€
overflow xatd tnv xavovixo-
Toinon

Overflow E>381 Aev unopel va aAAGEEL xaTd

TNV XOVOVLXOTIOINGOT

1
1 @000000000CO0CO0O
1 90000CO0C00O0C0C0O @
1 9000000000000 @
1000000000000 @
1000000000000 @
1 000000000000 @
]

Eyxnpo 9: To 5évtpo twv Pepdy YIVOUEVLY Tou oxe3n ToAlamiactootr 12x12

— Xy teplntewon Tou tohhaniactooth 16x16 n mantissa €yet 10 dnepla. Hpoovéto-

vtog éva emmAéov melo maipvouue To significand. ‘Etotr to 1.M anotehelton omd
11 dnepla. Enedr) oune to 1.M dev etvor cpyntinde aprdudc mpenet va tpocécou-
pe éva emniéov 0 otny apyr. 'Etol tehixd o moAamhacioc g yag Yo etvor €vag

12x12 mohhamhaclactig. O 800 apripol mou morhamhacidlovton eivo:

X12 = 01. My,

Yi2 = 01.Mp.

To oyfuo 9 Belyvel TO BEVTRPO TWV UEPIXDY YIVOUEVGY TOU 0x@l31] TOMATAACIAOTH

12x12 mou ypnowonotel Tov Tpononoinuévo alyopriuo Tou Booth.

Yy meplntwon tou toAaniaciac T 32x32 1 mantissa €yet 23 ¢meplo. ITpociéto-
vTog €va emmiéov Ynelo malpvouye to significand. ‘Etol to 1.M anoteheiton and
24 |nopla. Enedr| ouwe to 1.M dev etvon apvntinde apriudc npénetl va npocécoupe
éva emnAéov 0 oty opyn. Enedr| dpwe o apriuog T xwdwonoleltan xatd Tov Teo-
ronotnuévo aryopriuo tou Booth ypewaldpacte xan dAio éva 0 unpoctd and To
01.M. 'Etot tehxd o molhamiactao g pog Yo elvon €vog 26x26 tolamhactoo Thg.

Ot 800 apriuol mtou torhamhactdlovton etvor:
Xog = 001. M4,
Yo6 = 001.Mp.

24

1
1000000 0CCO0CCOCO0O0O0O00O00OO0O00O0O00O00CO0
1 ®0C0000C0C0O0O0CCOCCOOOOO0OOOO0O0O0O0O @
10000000000 0COCO0O0O00O00O0O0OO0O0O0O00C @
1000000 0C0O00COC0OOOCCO0C0OOOOOOO0O0CO @
1®0000000000C0O000C0000000QOO0OCC0O @
1000000000000 QO000Q0O0COQQ0O0O00 @
1€@0000C00C0CCOCOOQOOOOO0OOO0O0O0O0O0C0C @
1®00000C0C0O0C0OCOCOCOO0O0O0O0O00OO0O0O00 @
1@0000C000C0C0O0C0C0OCO0OO0OO0O0OO0O0O0O0O00 @
1800000000000 0O000O0O0QQO0O000000 @
190000000000 QO0000000000QQO0OOO0O @
1 ®0000C00C0O00O0O00O0OQO00C0O00O000O000O000 @
1 ®@00CC0OCCO0C0O0OCO0COCOO0O0OO0O000O000O0CO @
[]

EyAne 10: To 8évtpo twv Pepx®V Yivopévmy tou axplB) tolhariootaoty 26x26

0

0

P.'\-Iv 1

Purizy Paoorpsy Poooridy Pvis

... Pusovezsy Paooypean Paaorpas

YxAure 11: To ywépevo (P) tou torhamhactaoth 12x12

To oyfua 10 delyvel T0 5EVTEO TWV UEPIXWDY YIVOUEVLY TOL oXELBT TOAMATAACIACTY

26x26 mou yernowotnolel Tov TpomonouEvo alyderiuo tou Booth.

6. Kavovixonololye o anotéAeoua HOTe var UTEEYEL UoVo €val 1 umpocTd and TNy UTodLo-

GTOMY).

— Yty mepintwon tou nodamhactacth 12x12 dngiwy to arotéheoya Pxxy amo-

telelton and 24 dnpla. To mpdto 2 dngla ebvar 0. To oyruo 11 Belyver to
Px v = 00zxzx.2xx22 ... 2002,

Av Px vy (3) = 1, n unodioctohr] npénet vo yetonvniel plo 0éon optotepd xa o ex-
Vétne Ep mpénet va augniel xatd 1. Enedn ta Sioedéouo Pnepla tne mantissa etvon
10, epapudloupe 1N YéYodo tne meponhc yior Toe umohoima. H Ty tne mantissa
ebvan ta Pneplor omd 1o Px xy (4) éwe 10 Pxxy (13) (Mp = Pxxy(4) ... Pxxy(13)).
Alhde, 1ty Tou exdétn Ep dev odAdlet xou 1 Ty Tne mantissa elvon tor gnepla
and 10 Pxxy(5) éwc 10 Pxxy(14) (Mp = Pxxy(5) ... Pxxy(14)).

— YV rmepintwon tou toAaniactac T 26x26 (nelny to arnotéheopa Py xy omo-

telelton and 52 dngla. To mpdtar 4 Yngla ebvar 0. To oyruo 12 Belyver to
Pxyy = 000zx.xx222 . .. xxXTL.
Av Px v (5) = 1, nunodioo tohf npénet vor petonavniel pio Véon optotepd xat o ex-

Vétne Ep mpénet va augniel xatd 1. Enedn ta Siodéoa Pnepla tng mantissa etvon

0

0O(0] O

P.lx"’ 1

Paarizy Pooorpsy Paeory Pooomsy Poceriey Pacerr,

... Paserism Pacersty Paoaorpse

YxApa 12: To ywépevo (P) tou todamiaoiootr 26x26

25

23, epapuolouye 1N pédodo tng mepixomAc Yo Ta umohowma. H Ty tne mantissa
etvan o Pnepla omd 10 Pxy (6) éwc 10 Pxxy (28) (Mp = Pxxy (6) ... Pxxy(28)).
A, iy Tou exdétn Ep dev odAdCer xou 1 Ty Tne mantissa etvon tor Pnepia
and 10 Pxxy (7) éwc 10 Pxxy(29) (Mp = Pxxy(7)... Pxxy(29)).

7. Abo emnAéov Ereyyol. .

— Av E = 15 yw binaryl6 (n E = 127 yw binary32) (oné to 0tdd10 2) o 0 exdétne
Ep elye augniel xotd 1 and 1o otddo 6, 1dte 10 amotéheoyo and underflow yiveton

normal.

— Av E = 45 yw binaryl6 (n £ = 381 yw binary32) (an6 to otddio 2) xat o
ex¥étne Ep elye audniel xatd 1 and to otddio 6, t61e 10 anotéAeopa and normal

vivetou overflow.

ITpooeyyLoTindg TOAAATAACLAOTAG AELIUWDY XIVNTAG LUTOBLACTOANG

[Mo v eapuodcoupe xatd TEocEYYLoY TOAMATAAGIACUS, 800 aptiu®y xVNTAS UTOBLIC TO-
Mg, Yo eQopuodcoLUE TNV TREOGEYYLoT 6To 6Tddlo 6 dmou mtoAarhactdletor ol aptiuol X xou
T. H teyviny| mou yenowonotflnxe yia Ty Teocgyyion elvon auTr Tou avantuydnxe and Toug
ouyypogeic Tou [9] xou ovoudletar Hybrid Partial Product Perforation-Rounding.

‘Eotw X xou T ot 800 apripol n dnplwv. T'a 1o yivouevo toug toylet:

n/2—1
XxY =) XuxyMPxd (0.17)
§=0

omov, y;MB € {0, £ 1, + 2}.

Partial Product Perforation

Yopgpova ye tn uédodo autr ayvoolue Ta k TemTo GUVEYOUEVOL UERLXE YIVOUEVH EEXIVOVTAS
amd to AyoTtepo onuovTixd. Anhadih to k Aydtepo onpavtind ¢meia tou T xwdxonoinuéva
xatd ToV TpoTOTOINUEVO olyberduo tou Booth, dev mopdyovton. Apa to 2k LSBs tou T
(ovurepthopPovouévou tou b_y) amodeipovton. Tehxd to yvouevo twv X xou T unoroyiletan

we eENc:

n/2—1
XxY]p= Y XxyMPsd (0.18)
j=k

26

Partial Product Rounding

Yopgpova pe tn pédodo oauth o m-1 LSBs tou X anolelpovta, xou npociétovpe to dneplo

Typ—1 OTO UTOAOLTIO THO GNUAVTIXO XOUUATL Xy, OTWS QUUVETAL TOQOXATE:

X +Tm—1 = <xn—17 $n—2-'-xm>2,s + Tm—1 (019)

H repixonn twv m-1 LSBs Yo 0dnyoloe ot onuavtixd opdiuota. Tpoxeyévou va anopeu-
yOel autd, to teheutaio LSB (2,,—1) npootidetar 010 X,y doTe va Exoupe uxpdTtepo oQiAuoL.
Y11 ouvéyela topouctdlovTon oL 800 TEPLTTMOELS YL TIC OLPORETIXES TWES TOU Typ—1.

Av 2,1 = 0, T0Te Tol XUTA TEOCEYYLON UEQIXA YIVOUEVAL (f’]) urohoyilovton amd
oyéon: Pj = (Xom +0) x y;MB = X, 5 y;MP).

Edv -1 = 1, xou ypnowonowvtag) oyéon X, + 1 = — X, 10 xatd mpocéyyion

HEELX YIVOUEVAL (P]) unohoyilovton ané) oyéon: P = (X + 1) x y;MB = (=X) *
yMB =X # (—y;MPB), bmou (—y;MB) = (=1)* * (2 x two; + one;).

Xpnowonowdvtag) oyéon Xp* = Xy @ -1 mpoxewévou va oynuatiotel 10 X, 1
70 Xy, 0L 800 TEPITTOCELC UTopolY VoL GUYYwVELTOUY. Emmhéov yenowonoteitar 1 oyéon
$i* = 8§ ® Tm—1 Y va oynpatiotel o y;MB 1o —y;MP. 'Etol 1 oyéon mou umo-
hoviler ta pepnd ywbueva Siogoppdvetan we effic: P = X x y;MBT 6nou y;MET =
(—1)%" % (2% two; + one;).

Hybrid Partial Product Perforation-Rounding

Ou 800 mopomdve texVIKég cuvdudlovton xau €tol meoxintel 1 teyvixr) Hybrid Partial
Product Perforation-Rounding. Aut n teyvixn yapaxtneileton and tic mopopétpous k xau
m. H mopduetpoc k avagépeton otov apriud Twv HEPIX®Y YIVOUEV®Y TOU AMOAEIPOVTOL, EVE 1)
TOEAUETEOC M AVAPERETOL GTOV optdUd TwV NPV TV PEPXOY YIVOUEVKDY TIOU anoAelpovTaL.

H e&lowomn nou meprypdget tnv teyvixr) Hybrid Partial Product Perforation-Rounding etvou:

n/2—1 n/2—1
X XY= > Pixdl =" X xyM" x4/ (0.20)
i=k j=k

6mou k € [0, n/2-1) xou m € [0, n-1).

O Swpdwtinds bpog oty nepintwon auth divetan and T oyéon: ¢;* = s;*x(one; + twoj).
To oyfua 13 amewxovilel évay todaniactooth 12x12 Pnplwy ue k=2 xou m=6.

To oyfua 14 ancixovilel évay Torhaniactaoth) 26x26 ¢nepiwy pe k=3 xor m=8.

O xatd mpocéyyion oyedlooudc Eyel évay emniéov éheyyo. H é€oBoc Tou molamhactia-

ouoV g yavtiooo tou A pe outh Tou B (1xx ... xx * 1.xx ... XX) éyel TN HOpPH XX.XXXX

27

NS OOPOPOO

1 000000 ®

1900000000 @®

1 ®0000CCOOODOS®
1900000 0COOGCOSOOOS

1
1 @000 O0COO0
19000000 @
19000000 @
1000000 @
@

@ sign extension
@ perforated bits
@ truncated bits
@ signfactors

@ new sign factors

Yynpo 13: Ioranioaociootrg 12x12 gnplwv pe k=2 xo m=6

- e
1900
1800
1 0000
1@00000O0
1 @00000O00O0O0O0O
1000000 0C0O0O0O
1000000000000
1800000000000 000
1 ®#000000000000000O0
1 8000000000000 000000
1
100000000000 O0OO00O0O0O0O0O
1000000000 C0O0O0O0O00O00O0Q @ @ sign extension
100000000000 C0O0O00O0OO0 o] @ periorated bits
1800000000000 0O000000 © O fomEsis
18000000000 CO000000C © ® sonicons
1000000000000 0O0O0O0O0O0C0 Q
1000000000000 000000 @ eueisi o
1000000000 C0O0O000Q0 00 o]
1000000000000 0OD0O0O00OO0OO0O (o]
1 @000 0CCO0O0000C00O00O0O000 @
5]
Sxhua 14: IHoramhootaothic 26x26 dnplwy ye k=3 xoar m=8

28

...... xxxx. To el apiotepd amd Ty unodiac oAt uropet va etvar 01 1 10 1 11 otov axpi3y
TOAMATAACIACTH. X TOV XATd TEOGEYYION OYEBLOUO, oUTd Tor Suo dualdxd Ynpla uropolv
enione va ebvan undevixd xon ta dVo. Enopévng, 1 neplntworn auth eAEYYETOL Xou oV Loy UEL

auTo 1) €€0d0¢ yopaxtnelleton we overflow.

IMetpopatind AnoteAéopota

‘Ohot ov tohhamiactaotée vhorodnxay oe Verilog HDL. T tn oOvieor| Toug yenotuo-
roufdnxe To Synopsys Design Compiler xou 1 tpocopoiwst| toug €yve ye To Mentor Graphics
ModelSim.

Avdiuon cpaApdTwy

et yétpnon twv ogpaludtny yenowonolovue to yéco opdiue (MRED) Adyw tne
©BL6TNTéE Tou var emneedletan AyOTERO amd TNV xatavour TV e.eddwy. To (MRED) bivetou

omo6 TN oyéon:

S"RED g

MRED =
M

(0.21)
6TOVL:

e To RED opileton wg 1 aprduntixs Stopopd uetald 1ou oxe3o0g anoTeAEoUATOS XAl TOU
XATE TPOGEYYLON OTOTEAEGUATOS DLOLEOUMEVOU UE TO UXELBEC AMOTEAEGUOL.
P~ P|

REDsp = P

(0.22)

o M = N — sum_wrong-inf — sum_NaN _red. (N eivar o apriudc tov e106dwv. Ot

petoPAntéc sum_wrong_inf xou sum_NaN_red do avohudolv otn cuvéyetla.)
H mdavétnra vo éyoupe opdhpa RED pixpdtepo tou 2% divetan amd tny mopoxdte oyéon:

PRED = ’% (0.23)

6mou, pos elvor 0 cuvohxde apriude Twv RED nou etvar uixpdtepa tou 2%.

Y1y vhonolnoy| pag To anotéheoya unopel vo etvou:
o Kavovixoc aprdude mou teprypdpeton and ty e&iowon (0.13).
e Overflow mou avanapicTotal W AMELO.

e Underflow nou avamnapiototar ¢ undév.

H petafintd sum_wrong_inf auv&dveton xotd 1 av to P eivon dnewpo xou to P oy, xau
avtiotpoga. H petofAnty sum_NaN_red ow&dveton xatd 1 av to P elvon undév xaw to P oy,

xan avtiotpoga. Etol mpoxdnTouy oL mapaxdte oyEoEC:

29

sum_wrong_inf

WRONG_INF =
N

(0.24)

NaN _red = W (0.25)

A&woloynom oe Eninedo KuxAwuatog

Y10 xe@dhono 6 mopouctdlovTton avohUTIXG T AMOTEAECUAT YO TOUC TOAAATAAGIAOTES

16x16 »ou 32x32 avtioTtouya.

e 16x16

‘Onwe gaiveton otov tivaxa 6.2 1o o@dhuo xupaivetar arnd 0.05% éwe 3.33%. To xépdoc
oe delay, area, energy ¢tdvel 1o 32%, 54%, 53% avtiotoya. Or yetofintéc NaN_red
xow WRONGL_INF elvor oyedov undevixée.

o 32x32

‘Onwe goiveton otov mivaxa 6.3 1o o@dhua xuyaiveton omd 0.00% éwe 2.2%. To xépdog
oc delay, area, energy @tdvel 1o 46%, 83%, 82% avtiotoya. Ou yetofintéc NaN_red
xat WRONGL_INF elvar oyedov undevixée.

Ta oyfuata 6.1 xou 6.2 mapoucidlouy TV alloAdynor xdie TeyVixAc oe dlaryeduuaTa
Pareto yi 16 xou 32 bit avtiotouya.

INo éva Bedouévo GOoTNUA TO UTEOGTVO UEPOg Tou pareto Oelyvel TIC MO AMOTEAECU-
Txég LAoTofoelc. Xenolonowvtog To oyfuata 15 xou 16 Beloxouye tic npooceyyiceg mou

Beloxovton mdve ota cUvopa. O mpoceyyloeic autég elvon:

° PR\O’27 PR\LO, PR\M, PR\SA7 PR|3767 el PR\4767 yiat binary16.

° PR\4’12, PR]&127 PR\6,14, PR|8716, PR]IOJS, el PR|1O,207 via binary32.

Y10 oyfua 15 napatnpolye 6Tt Gheg oL LAonooelg e rounding==8 xodoc xaL aUTEC YE
perforation=4 eiodyouvv c@dlua yOpw oto 3.4%. Auth n andtoun adinomn Tou GPIAIATOS
mdavov cupPalvel yiatt to rounding=8 anaheipel and 1o T apxetd onuavtixd Ynglo tng TéENng
tou 274 o pixpdrepnc aflac. Ouolwe To perforation=4 ancreiper and to X o avtiotoryw
bneplor

Y10 oyfua 16 mopatneolue 6T oYedOV Ohec o LhoToloelg Ye rounding=20 xowg xou
autée pe perforation=10 ewodyouv o@dhua yopw oto 1.6%. Auth 1 andtoun adlnorn tou
opdipatog miavov cupPBaiver vt to rounding=20 anoheiger and o T apxeTd onuavTIXd
dnolo tne w8Enc Tou 277 xou wixpdepne aficc. Opolwe to perforation=10 anoielper and 10
X 1o avtioTtouya dnepla.

To oyfua 6.3 nopouctdlel Tov TpéTo Ye tov onolo ennpedleton 1o MRED oand tic mopo-

u€tpoug k xan m, yia tohhamiaciao T ueyédoug n = 16, 32 bits. ‘Onwe gatveton to perforation

30

2750 [POR2
P1R2
2550 F% x PR % PORS AR
¥ P1RO
2350 xFoRs
E 21507 w 2R4 P1R6
S X P2R2 % X PORS
> 19501 Xoga PRS0
‘En x% P3RO
g 1750 Xpar4 X P1RS
a 1550 + X PIRG X P4R2
| o
1350 P3RS
-l 150 1 i | | | | | | | 1 P4R4>r<x P4R5|
0 03 06 09 12 15 18 21 24 27 3 33 36
MRED (%)
YxAno 15: Pareto Energy-Error 16bit
P4RS
5800*%&1{:
5400 xP4ar12 x APR
5000
4600 PGR12
"y X P4R14
= 42001
% 380[] . XP4R16
‘i 3400 IXPeR14 X P4R1S
%3 | XPoR1S P10RS
E gggg wporia o PR T2
= - P10R12
PBR20
. 200L XPRT ypsrig oo RE1OR14
1800 - P10R18
1400 F XP10R20
1[]0[] 1 L | 1 | | 1 | 1 1 L J
0 02 04 06 08 | 12 14 16 1.8 2 22 24

MRED (%)

YxApa 16: Pareto Energy-Error 32bit

31

elodyel yeyalbtepn Ty o@dhuatoc and to rounding. Emmiéov xodag avgdvovton to bits
Tou apiuol to opdipa emnpedleton Ayotepo Yo (Bleg Tiéc k xon m. Tt mopdderyua, yio
n=16, k=4 xou. m=6 to MRED civar 3.33%. Ev& yio n1=32, k=4 xou m=8 to MRED eivou
0.0%.

Ta xépdn oe area xoi energy ylo T XoAhOTEPEC VAOTIOACEL ToU eTAEYINxay paivovtal
oT0 oy 6.4.

IMo tor 16bits to MRED xupadvetan yetaZd 0.05% xau 3.33%, 10 %épdoc ot area petald
7.29% non 54.65% xou to xépdoc o energy petalld 3.57% xou 53.55%.

IMa ta 32bits to MRED xupadveton petad 0.01% xa 2.20%, to xépdog oe area petald
46.03% xou 83.45% xou To %épdoc oe energy petall 37.25% xou 82.43%.

AZwolbéynor o Eninedo Egappoyng

H egapuoyr giktonv o eidveg €xel wg 6To)0 TN PeRTinon Tng TOWOTNTAS 1) TOV TOVIOUO
TWY YVOELOUATWY TOUS (apolpesT) duUY MV, ViYVEUCT] UXUMY XAl TOVIOUOS TWV TERLY PUUUATOY,
eEGAELPN TOU QPOUVOUEVOU XOXAIVGLY UATIOY AT EOVES TROCWTLY, VOAWGCT TN EXOVOC XTA.)

H anoteheoyatixdTnTol TV TEOTEWVOUEVOY XATH TEOCEYYIOY TOMATAACLIC TGV ASlOAO-
YHOnxe yenowomowdvtog wa egappoyy| yiot BoAwpa (Gaussian blur) g exévac. To Gaus-
sian blur eivar évog tinog @iltpou mou yenoiwwonotel wo Gaussian cuvdpetnon yio Tov UTo-
AOYIOUO TOU PETAOYNUATIONOL Tou epapudletar oe xdde pixel tng exodvag. To YoAwua e
EXOVaG, oL CLVATKC Yenowonoteital yia T Pelwor Tou VopUBou Xal TV AETTOUEREWDY TNG

EXOVOC, ETUITUYYAVETOL OO T1) GUVENEY PETAE) EVOC TUPHVAL YO TNG ELXOVOC:

g(z,y) = wx f(z,y) (0.26)
omou g(x,y) elvon 1 Quitpaplogévn eoéva, f(z,y) elvoar n tpwtdTUTY EXdVY, W Elval TO
QlATEO.

H ¢Z08og tng emdvag mpoacdloptleton yenowonowvTog Ty axdloudr eglowon:

1 1
Y(i+1j+1)= > > X(i+1+m,j+1+n)*Gulm+2,n+2) (0.27)

m=—1n=-1

Gy Olvetan and tn oyéon:

1 1 1

2] 6 ofow
— _ 1 1 1
N R A

[Mo Ty egapuoyr auth yenotuomolioous 5V0 dBlaopeTinésg exoves, Tn Lena xou tov cam-

eraman.

32

e molMamhactaothic 16x16 Pnplwy

To oyfua 6.5 delyver Ty TpwtéTunn etxdva Lena (EyhAuo 6.5(a)), xou Tic exxXOVES TOU
€y 0LV TEOXVPEL amd TNV EQUPUOYY| TOU QIATEOU YLol FOAWUOL YPNOHLIOTOWMVTAS TOV oxXeL3Y
rtolMamiactac Tt (Eyhue 6.5(b)) %ot ToUC TEOTEWVOUEVOUC XATY TEOGEYYIOY) TOAAUTAC-
oo tée (Uyhua 6.5(c)-(h)).

e TolhamhoctaoThc 32x32 dnpiewy

To oyfua 6.6 deiyver tnv mpwtdTuTn exxdva cameraman (Xyruo 6.6(a)), xou g et
XOVESC IOV €0V TEOXVPEL amd TNV EQUEUOYT TOU QIATEOU Yiot VOAWUA YENOLULOTOLOVTOC
Tov oxptf3n tohhamhaotoo T (EyAua 6.6(b)) xor Touc TpoTEVGUEVOUC XaTd TPOGEYYLON
rtolMamiactactée (Lyua 6.6(c)-(h)).

To anotéheoya tng dadxaciag Yorwpatog dev elvor edxolo va aflohoyniel omtixd, yio
auTd yenotponotolue dvo deixtec: to deixtn PSNR (Peak Signal-to-Noise Ratio) xode xou
0 deixtn SSIM (Structural Similarity Index). Ot tipéc twv Setxtdv aUTOY Qaivoviar 6Toug
nivaxeg 6.4-6.7. To PSNR bivetar and tn oyéon (0.29).

(0.29)

2
PSNR =10 logio (M AX; >

MSE
‘Onou to M AX| detyvel tn uéylot duvary| tir pixel g exdvoc (otny tepintwoy| pog

etvar 0 255). To péow tetpaywvixd opdipa MSE diveton and tn oyéon:

m—1n—1
MSE= 3" S7(1,5) - K(i,4) (030)
i=0 j=0

To SSIM yenowonoteiton yioo T u€tpnon tng opoldtntog PeTod 800 exdvev. Ot Tiuég
Tou SSIM mou ebvan 1 delyvouv tnv xahiTepn anddooT), dNAOY|, GUoL Ue aUTH ToU axEBoUC
nohhanmhactactr. Ou umdhoinee Twée mou elvon ueyalltepeg and to 0.80 avtiotolyolv ot

enione xakég mpooeyyioels.

33

Chapter 1

Introduction-Motivation

1.1 Floating-point arithmetic

Floating-point (FP) arithmetic is widely used in many areas, especially scientific com-
putation and signal processing. Over the years, a variety of approximating real numbers
have been introduced. One of them, the floating-point arithmetic, is clearly the most
efficient way of representing real numbers in computers. Floating-point numbers have
two advantages over integers. First, they can represent values between integers. Second,
because of the scaling factor, they can represent a much greater range of values.

This FP arithmetic uses formulaic representation of real numbers as an approximation
so as to support a trade-off between range and precision. For this reason, it is often found
in systems which include very small and very large numbers, because, they require fast
processing times.

The term floating-point refers to the fact that a number’s radix point (decimal or binary
point) can be placed anywhere relative to the significant digits of the number. This position
is indicated as the exponent component, and thus the floating-point representation can be
thought as a kind of scientific notation.

Since the first computer appeared, a variety of floating-point representations have been
used. In 1985, the IEEE 754 [1] Standard for Floating-Point Arithmetic was established,
and since the 1990s, the most commonly encountered representations are those defined by
the IEEE.

The speed of floating-point operations measured in terms of FLOPS. This measurement
is an important characteristic of a computer system, especially for applications that involve
intensive mathematical calculations.

A floating-point unit is a part of a computer system specially designed to carry out

operations on floating-point numbers.

35

Chapter 2

Theoretical Background

2.1 Introduction

In this chapter we analyze all the algorithms and techniques were used in this diploma
thesis. Specifically the binary numbers, the floating point numbers, the encoding in a
binary interchange format of a floating-point number, multiplication of two floating-point

numbers etc will be explained.

2.2 Binary numeral system

The binary system is the basic numeral system in digital electronics. Each binary
number expressed in the base-2 numeral system, which uses exclusively the digits ”0”
(zero) and ”1” (one). Specifically each digit is referred as bit (a;).

Every number is represented in the binary system according to the equation (2.1)

n—1
a:ZQi*ai (2.1)
1=0

where,
a : is the value of the number,
b : is the number of bits of the binary number,

a; : is the value of each bit.

For example, the decimal number 17 is represented in the binary system as 10001.
Using the equation (2.1) the binary number 10001 corresponds to:
1520 40520 +0%22 +0%23 +1%2% =17y.

The maximum value of a number which consists of n bits is 2" — 1 and the minimum
is 0. The left-most bit in a string called Most Significant Bit (MSB) and the right-most

37

bit called Least Significant Bit (LSB). In the above example the bit multiplied with 2* is
the MSB and the bit multiplied with 2° is the LSB. In all cases the LSB multiplied with
20,

2.2.1 Binary arithmetic

Arithmetic in binary is much like arithmetic in other numeral systems. Addition, sub-
traction, multiplication, and division can be performed on binary numerals. The addition
of two positive binary numbers is similar to the addition of decimal numbers. In this
diploma thesis we will analyze the multiplication. The equation (2.1) can represent only
positive numbers. Two’s complement is a mathematical operation on binary numbers, and
it is an example of a radix complement. It is used in computing as a method of signed

number representation.

2.2.1.1 Two’s complement

A two’s-complement number system encodes positive and negative numbers in a binary
number representation. The weight of each bit is a power of two, except for the most
significant bit, whose weight is the negative of the corresponding power of two.

The value a of a n-bit number (a,,—1a,—2...a2a1a0) is given by modifying equation (2.1)

as follows:

n—2

a=—ap_1 %21 + Z 2 % ay (2.2)
i=0

The most significant bit determines the sign of the number and it is sometimes called
the sign bit. If the MSB is ”1” the number is negative. The range of numbers represen-
tation is not the same as the unsigned binary numbers. Using n bits, all integers from
-(2"7 1) to (277! —1) can be represented. For example, a 4-bit unsigned number can repre-
sent the values 0 (0000) to 15 (1111). However a two’s complement 4-bit number can only
represent positive integers from 0 to 7 (0111), because the rest of the bit combinations
with the most significant bit as ”1” represent the negative integers from -1 (1111) to -8
(1000).

To get the two’s complement of a binary number, the bits are inverted by using the
bitwise NOT operation (one’s complement). Then the value 1 is added to the one’s
complement, ignoring the overflow which occurs when talking the two’s complement of
0. For example, the decimal number 7 is represented by A = 01115y (using 4 bits). The
MSB is 0, so it represent a non-negative value. To get the one’s complement required to
invert the bits of the number, A — 1000(3). Then add 1 to the number 1000 and have the
binary number 1001. Using the equation (2.2) the binary number 1001 corresponds to:
—1%28 4022+ 02" + 1520 = —7(

38

2.3 Booth’s Algorithms

This is a kind of algorithm which uses a more straightforward approach. This algorithm
also has the benefit of the speeding up the multiplication process [10] and it is very efficient

too.

2.3.1 Booth’s Multiplication Algorithm

As we have explained a number Y can be written according to the equation (2.2) as:

n—2

Y = —yp_1 2" 14 Z 20 %y, (2.3)
i=0

Moreover using a mathematical trick Y can be written as: Y=2Y-Y=Z

2Y = ~Yn1 Yn2 Yn-3 -.--Y O
=Y = 0 Yn—1 —Yn—2 - - -—Y1 —Y0
7 = Zn—1 "“n—2 - .. Z1 20

where: zg = 0 — yj,
Z1 =Yo — Y1,

22 = Y1 — Y2,

Zn—2 = Yn—-3 — Yn—-2
The digit z,—1 is computed as follows: 2,1 = —2yp—1 + Yn—2 + Yn—1 = Yn—2 — Yn—1
Thus Y can be computed as:

n—1
V=) 2%z (2.4)
=0

The product P of two n-bit numbers X, Y is : P=X*Y (2n-bits). According the

equation (2.2) the two’s complement X, Y and P can be expressed as:

n—2

X =z, #2774+ 2wy (2.5)
=0
n—2 '

Vo= —ypqx2" 14> 2xy, (2.6)
=0

39

1111000110
0-10 0
Figure 2.1: 2 bit pairing as per Booth encoding

Table 2.1: Radix-2 encoding

Yi Yi—1 Encoded digits
(Yi-1 — i)
0 0 0
0 1 1
1 0 -1
1 1 0
2n—2
P=—po,_q %2271 4 Z 20 % p; (2.7)
i=0

According to Booth’s multiplication algorithm and using the equation (2.4) the product

P is formed:

n—1

P=X+Y =) (gii1—y)*x X2 (2.8)
=0

Booth’s algorithm compare 2 bits at a time with overlapping technique. Grouping
starts from the LSB, and the first block only uses one bit of the multiplier and assumes a
zero for the second bit as shown in Figure 2.1.

According the equation (2.8) for each bit y;, for i running from 0 to n-1, the bits y;
and y;_1 are considered. Where these two bits are equal, the partial product (PP) is left
unchanged. Where y; = 0 and y;_1 = 1, X is added to PP, and where y; = 1 and y;_1
= 0, X is subtracted from PP . In all cases the partial product shift left 1 bit. The final
value of PP is the signed product.

In the table 2.1 the radix-2 encoding is displayed. As it shown in Table (2.1) each
encoded digit can be 0 or 1 or -1.

For example we have to multiply two signed numbers : X=10110 and Y=00101 (Figure
2.2). According to radix-2 encoding, Y is 01111. The arithmetic shift to the left is used

to avoid overflow and it is equivalent to sign extension. The digits in the boxes represent

40

X= 1 0 1 0
Y= o 0o 1 0 1 Partial product = 00000
olo 1 0 1 o 1 Add -X_ The first partial
product
i 0 1 1 0 +1 Add X.
111 1 0 1 1 0 The second partial product
o 1 0 1 0 -1 Add -X._
oo o 1 1 1 1 0 The third partial product
i 0 1 1 0 +1 Add X.
1 1 10 0 11 1.0 The forth partial product
O ¢ 0o 0 O 0 Add 0.
i1 1 0 0 1 1 1 0 Result : -50

Figure 2.2: Multiplication of two numbers with Booth Algorithm

this extension.

The basic advantage of Booth’s multiplication algorithm is the fact that handles both
positive and negative numbers uniformly. Also achieves efficiency in the number of ad-
ditions required when the multiplier has a few large blocks of 1’s. One of the solutions
of realizing high speed multipliers is to enhance parallelism which helps to decrease the
number of subsequent calculation stages. The Booth algorithm (Radix-2) has two disad-

vantages.

1) The number of add / subtract operations and the number of shift operations becomes

variable and becomes inconvenient in designing parallel multipliers.

2) The algorithm becomes inefficient when there are isolated 1’s. These problems are
overcome by using Modified Booth Algorithm (Radix-4).

2.3.2 Modified Booth’s Multiplication Algorithm

The basic idea of modified booth algorithm is that, instead of shifting and adding for
every column of the multiplier term and multiplying by 0 or 1, we only take every second
column and multiplying by +1, —1, +2, —2 or 0, to obtain the same result. Thus, half of
the partial products can be reduced using this algorithm. We modified the equation (2.4)

as follows:
n—1 n/2—1 n/2—1 n/2—1
Y=Y 2%z=) (2¥xzy+ 2 wzmin) = Y (s 2%z)2 = Yy
=0 7=0 j=0 =0
(2.9)

41

-2

m

0

1

00011

Figure 2.3: 3 bit pairing as per Modified Booth encoding

Table 2.2: Booth and Modified Booth encoding

Booth encoding Modified Booth encoding
Yi+1 Yi Yi—1 Zi+1 Zi ijB =2z +2%241 =Y —
2% Yit1 + Yi1

0 0 0 0 0 0

0 0 1 0 +1 +1

0 1 0 +1 -1 +1

0 1 1 +1 0 +2

1 0 0 -1 0 -2

1 0 1 -1 +1 -1

1 1 0 0 -1 -1

1 1 1 0 0 0

where,
ijB = 25 + 2% 295401 = Y251 — Y25 + 2% (Y2; — Y2j4+1) = —2% Y2541 + Y25 + Y251 (2.10)

Modified booth algorithm compare 3 bits at a time with overlapping technique. Group-

ing starts from the LSB, and the first block only uses two bits of the multiplier and assumes

a zero for the third bit as shown in Figure 2.3.

In table 2.2 the booth and the modified booth encoding is displayed. The bit y_; is 0.

Radix-4 Booth algorithm is given below:

- Extend the sign bit by one position if necessary to ensure that the number is even.

- Append a 0 to the right of the LSB of the multiplier.

- According to the value of each vector, each Partial Product will be 0, +y, —y, +2y

or —2y.

For example we have to multiply two signed numbers : A= 10110101(-75) and B=01110010
(114) (Figure 2.4). According to the radix-4 encoding, B is 2112. In the case of the mod-
ified booth algorithm, an arithmetic shift to the left by two places is required. The

42

b=
1"
=]
—_
-
=1
(=1
—_

B= 01110010 Partial product = 00000000

olo 100101 1 0 5 Add -2A. The first partial
product

10110101 +1 Add A

T 11101101010 The second partial product

01001011 -1 Add-A
0coo0j0ot1TO00O0O0O0TTOTO The third partial product
101101010 +2 Add 2A.
10111101 0011010 Result : -8550

Figure 2.4: Multiplication of two numbers with Modified Booth Algorithm

arithmetic shift to the left is used to avoid overflow and it is equivalent to sign extension.
The digits in the boxes represent this extension.

The advantage of this method is the halving of the number of partial products. Thus,
the propagation delay to run circuit, the complexity of the circuit, and power consumption
can be reduced. However, the computation of -2A and +2A increases the complexity of
the circuit. In most applications the Modified Booth Algorithm is used for the exact

multiplication of two numbers.

2.4 Binary multiplication

Similar to the multiplication of decimal numbers, binary multiplication follows the
same process for producing a product result of two binary numbers. The binary multipli-
cation is much easier as it contains only 0 and 1. The four fundamental rules for binary

multiplication are:

0x0=0
0x1=0
1x0=0
1x1=1

Let a m-bit unsigned number A and a n-bit unsigned number B. The multiplication of
these two is given in figure 2.5.

For the unsigned numbers the result (P) is expressed as follows:

m—1 ' n—1 . m—1n-—1 o m+n—1
P:A*B:ZT*ai*ZQJ*bj:ZZ(ai*bj)*ZZﬂ: Z pex 28 (2.11)
1=0 7=0 =0 7=0 k=0

43

| 20byA {m bits} |

+

| 2'b,A {m bits} |

+

| 22b,A {m bits} |

+

| 2n1p A {m bits}

| B*A {m<+n bits}

Figure 2.5: Multiplication of two unsigned numbers

1010 —— Multiplicand
X 1011 — Multiplier
1010 —— Partial product 1
1010 w———p Partial product 2
0000 «———p Partial product 3
1010 —— Partial product 4
1101110

Figure 2.6: Multiplication of numbers 1010 and 1011

The figure 2.6 describes a multiplication of two unsigned numbers 1010 and 1011. From
this multiplication, partial products are generated for each digit of the multiplier. Then
all these partial products are added to produce the final product value. In the partial
product multiplication, when the multiplier bit is zero, the partial product is zero, and

when the multiplier bit is 1, the resulted partial product is the multiplicand.

2.4.1 Wallace tree multiplication

The modified booth multiplication algorithm reduces the number of partial products
to 50%. However for large multipliers, 32-bit and over, the number of partial products is
over 16-bit. In this case, the performance of modified booth algorithm is limited. Wallace
tree multiplier can achieve a better result than the previous multiplier. This algorithm
uses full adders, because, they add three bits and give as output two bits. Figure 2.7 shows
the partial products, which are formed, when two 5-bit numbers (A, B) are multiplied.
Figure 2.8 describe a 5x5 Wallace tree algorithm. This implementation uses 12 full adders
for the first 4 stages. Moreover, 3 full adders and 5 half adders are used from the Carry
Propagation Adder in the last stage.

According this algorithm the rows of partial products are divided into groups of three.

44

agb, ab, ab, apb,
o o O O
ab, ab, ab, ab apb

o o O O O

0

ab, ab, ab, ab, apb,
o o O O O
ab, ab, ab, ab, ab,
o o O O O
a,b, ab; ab, ab, ab,
O

o O O O O

Figure 2.7: Partial products of two 5-bit numbers

O

a@\ f\ o)
(% cﬂ‘ 0' 0
f6\|0|\@’ \@" W
‘C) {/ 0 0
0 (y 0 0

° /?’?W/ .

./ff

‘//e :}/s & s 00
0

S j//e e & e 0

) 0

e}

Figure 2.8: Wallace tree algorithm

45

agh, 5 p 20y

HJ“Q TTJ 'HJ ay

| FA .-—| FA 7| FA
‘

ab, / aobf'bc agh,
J—{ } Carry look-ahead adder‘0r Carry propagation adder) }J
S : I
Figure 2.9: A 5x5 Wallace tree multiplier
Table 2.3: Modified Booth Encoding Table
Binary bits Modified Encoded digit y;
Booth’s
Digits
Y25+1 Y25 Y25—1 sign = | x1 = |22 =
S; one; twoy
0 0 0 0 0 0 0
0 0 1 +1 0 1 0
0 1 0 +1 0 1 0
0 1 1 +2 0 0 1
1 0 0 -2 1 0 1
1 0 1 -1 1 1 0
1 1 0 -1 1 1 0
1 1 1 0 lor0 0 0

Each set of three rows give a set of two rows, which consists of the sum bit and the carry
bit. The bits, which cannot form of a group of three, are left alone. The steps in figure
2.8 can be reduced if both full and half adders are used. The bits, which cannot form of
a group of three, form of a group of two. The rest of the algorithm is the same as the
previous algorithm. Figure 2.9 shows a 5x5 Wallace tree multiplier with the addition of
half adders.

2.4.2 Modified Booth Algorithm using Wallace tree

Let X and Y two unsigned n-bit numbers in two’s complement. Table 2.3 shows how

modified booth’s encoding digits of Y are implemented into circuits.

The equations which describing the table 2.3 are:

46

Figure 2.10: Modified Booth Encoding

one; = Yzj—1 D Y2; (2.12)
twoj = (Y2j+1 © y2;) * ONE; (2.13)
55 = Y2j+1 (2.14)

The circuit that implements these logic equations is shown in figure 2.10.
The equation (2.15) describes the product P by using a correction term (ct) and the
partial products (PP;):

n/2—1 n/2—1
P=Xx+Y =Y XsyMPso¥=ct+ > PP;j+2% (2.15)
j=0 j=0

The figure 2.11 shows how the ct of a 12-bit multiplier is formed.

As shown in figure 2.11, the grey circles are the extra bit. This extra bit is used
when X is multiplied by 2 (two; = 1). The MSB of each partial product has a negative
weight, so the grey circles are replaced with the black circles (p) and a factor -1 is added
(—=p =p — 1). Subsequently, the -1 is replaced by -24+1 (-1=-2+1). In the fourth step we
have to replace 2-1 by 1. Lastly, the blue circles that present the correction bits (n;) are
added. If the modified booth’s digit has a negative weight (ijB = —1,-2,i.es; = 1),
the correction bit is one in order to get the 2’s complement from the 1’s complement. In
case of positive weight, the correction bit is zero.

The correction term is computed through the equation:

47

® 00000000 0C0O0CO0
®@ 000000000000
@ 000000000000
@ 00000 0CC0O0O00O0
@ 000000000 O0O0O0

@ 000000000 O0OO0O0

® 000000000000
® 000000000000
000000000000

-
L
® 00 0C0CO0OO0CO0QOOCOCO0OO0O0

00000000000

“

L]
® 20000000 O0O0O0O0

1

1 ® 00000000000 CO0
4 ® 000000000000
1 ® 000000000000
1 ® 00000000000
® 000000000000

41 ® 000000000000

1

T ® 000000000000
+ ® 000000000000
1 ® 0000000000 0CO0
1 ® 00 0C0CO0O0CO0O0C0C0CO0O0
T 8000000000000

“« ® 000000000000

T ® 000000000000
1 ® 000000000000
+ ® 0000000000 QCO0
T ® 000000000000
T8 000000000000

1000000000000

Partial Products and Correction Term

.

Figure 2.11

(2.16)

n/2—2
7=0

0

Z (nj*22j)+2”>k

n/2—1

J

ct =

Using the equation (2.16), the equation (2.15) is computed as follows:

(2.17)

n/2—1
+ Y PPjx2%
j=0

(22j+1) _ 2n1>

n/2—2
1+ >
=0

(nj*22j) 4 2™ % (

Where:

n—1
n % 2n+2j + Z (pj,z' % 2i+2j>

(2.18)

PP,

=0

i

48

223 g2 o 220 218 218 1T 516 518 214 913 12 oM 210 28 28 27 28 25 24 2 22 21 20

1 Posz Pont Poso P Pog Por Pos Pos Pos Poz Poz Pot Poo

Praz Pann P Pig Pig P Pig Pis Prs Pz Prz Pn Prg Ng
1 Par Pam Paso Pae Pze Par Pos P25 Pas Pzz Pa2 Par Pzo Ny
1 Parz Pan Paro Pag Pag Par Pag Pas Pas Paz Paz Par Pag nz
1 Pasz Dat Pato Dose Pag Par DPag Pas Dss DPaz Paz Pag Pag Ny
1 Psiz Psu Psto Psa Psg Psr Psg Pss Pse Psz Psz Psy Psg Ny

Figure 2.12: Partial products matrix with the correction term of a 12x12 multiplier

pii = (i ® s5) x one;) + ((xi—1 & s5) * two;) (2.19)
pio = ((xo @ sj) * onej) + (s * two;) (2.20)

Djn =! (((zn-1 @ 85) x onej) + ((vn-1 @ s5) * twoy)) (2.21)
n; = s; * (one; + two,) (2.22)

Using all the above, Figure 2.12 shows a partial product matrix with the correction

term of a 12x12 multiplier.

The multiplier, which consists of the partial products generators, the MB encoder, the
CSA Wallace tree and the fast carry look-ahead adder (CLA) adder [11], is shown in figure
2.13.

49

X

thigh l
—
[PPy G }4 — Yo
[PP, G }4 D — V1
T .
{ PP, Generator }< 8
c
i
Cliow g
:) ‘ 4—Vn_1
{ PPpz.1 G < l
! g

CSA Tree

Fast CLA Adder

l

PX*Y

Figure 2.13: Modified Booth Multiplier

2.5 Floating-point numbers

A number representation specifies some way of encoding a number, usually as a string
of digits. There are several mechanisms by which strings of digits can represent numbers.
Floating point numbers are one possible way of representing real numbers. The IEEE

754 [1] standard presents two different floating point formats (Figure 2.14):
e Binary format
e Decimal format
All the floating point numbers are composed by three components:
e Sign: it indicates the sign of the number (0 positive and 1 negative).
e Mantissa: it sets the value of the number.

e Exponent: it contains the value of the base power (biased).

The base (or radix) is implied and it is common to all the numbers (2 for binary

numbers and 10 for decimal numbers)

2.5.1 The Standard IEEE 754

The standard IEEE 754 provides for many closely related formats, differing in only a
few details. Five of these formats are called basic formats and the others are recommended
for extending these basic formats.

Basic formats:

50

Sign Exponent Sign Exponent
] =

£7020108 101101+ 27101
- s o -

Mantizza Base Mantissa Base
Figure 2.14: A decimal and a binary floating point representation
e Three binary formats, with encoding in lengths of 32, 64 and 128.

e Two decimal formats, with encoding in lengths of 64 and 128.

Not basic formats:
e Two binary formats, with encoding in lengths of 16 and 256.
e A decimal format, with encoding in length of 32.

A floating-point datum, which can be a signed zero, finite non-zero number, signed
infinity, or a NaN (not-a-number) [12], can be mapped to one or more representations of
floating-point data in a format.

The representations of floating-point data in a format consist of:

- triples (sign, exponent, significand): in radix b, the floating-point number, which

represented by a triple, is (—1)%9" x perPonent x significand
- +infinite,-infinite
- NaN

The set of finite floating-point numbers representable within a particular format is

determined by the following integer parameters:
- b = the radix, 2 or 10
- p = the number of digits in the significand (precision)
- Ena: = the maximum exponent E
- FEpin = the minimum exponent E

The different formats are summarized in Table 2.4.
In this diploma thesis we will analyze the binary interchange format encoding and

specifically the binary16, the binary32 and the binary64.

o1

Table 2.4: The floating-point formats

Name Common Base Number of digits | Emnin J - Notes
name (the in the significand
radix d) | (p)
binary16 Half preci- | 2 11 —14 +15 Not
sion basic
binary32 Single pre- | 2 24 —126 +127
cision
binary64 Double 2 53 —1022 +1023
precision
binary128 | Quadruple | 2 113 —16382 416383
precision
binary256 | Octuple 2 237 —262142 | +262143 | Not
precision basic
decimal32 10 7 -95 +96 Not
basic
decimal64 10 16 —383 +384
decimall28 10 34 —6143 +6144
1bit MSB whits LSB MSBE m = p - 1 bits LSE
S E M
(sign) (biased exponent) (trailing significand field)
[RPN P T PRSI, SO

Figure 2.15: Floating-point format [1]

52

2.5.2 Binary Interchange Format Encoding

Each floating-point number has only one encoding in a binary interchange format.
Representations of floating point data in the binary interchange formats are encoded,
using k bits, in three fields as shown in figure 2.15.

The binary number in figure 2.15 consists of:
a) 1-bit sign S.
b) w-bit biased exponent E = e + bias.

c) (m = p—1)-bit trailing significant field digit string M = dids...d,—1; the leading bit
of the significand, dy, is implicitly encoded in the biased exponent E.

The range of the encoding’s biased exponent (E) shall include:

- every integer between 1 and 2% — 2, to encode normal numbers.
- the reserved value 0 to encode 0 and subnormal numbers.

- the reserved value 2¥-1 to encode +in finite and NaNs.

The value v of the floating-point datum representation, is inferred from the constituent

fields as follows:

a) If E=2"—1and M # 0, then v is NaN regardless of S.
b) fE=2"Y—-1and M =0, then v = —19 x (4+00).

c) If 1 < FE <2%—2 then the value of the corresponding floating-point number is v =
(—1)%x 2F=bias x (1 4 2'=P x M); thus normal numbers have an implicit leading
significant bit of 1.

d) f E =0 and M # 0, then the value of the corresponding floating-point number is
v = (—1)% x 2Fmin x (0 + 2P x M); thus subnormal numbers have an implicit

leading significant bit of 0.

¢) fE=0and M =0, then v = (—1)° x (+0) (signed zero).

2.5.2.1 Half precision binary floating-point format

Figure 2.16 shows the IEEE 754 half precision binary format representation. It consists
of a one bit sign (S), a five bit exponent (E), and a ten bit fraction (M or Mantissa). An
extra bit is added to the fraction to form what is called the significand. If the exponent is
greater than 0 and smaller than 31, and there is 1 in the MSB of the significand then the
number is said to be a normalized number. In this case the real number is represented by
equation (2.23).

53

15| 14 0] 9 110

Figure 2.16: IEEE half precision floating-point respesentation

Table 2.5: The representations of floating-point data in half precision format

Exponent Significant | Significant Equation

Zero non-zero
000002 zero,-0 subnormal (1)« 274 0.M

numbers

000015, ..., 11110, normalized value (—1)% % 20F=15) « 1. M
111115 +infinity,- | Nan (quiet,

infinity signalling)

Z = (=1)% « 2(E=Bias) 4 (1 M) (2.23)

Where: M =mg* 271 +mg*2 2 +my %2734+ .+ my %279 4+ mgy %2710,

and Bias = 15.

The half-precision binary floating-point exponent is encoded using an offset-binary
representation, with the zero offset being 15; also known as exponent bias in the IEEE
754 standard.

FEpin = 000015 — 011115 = —14,

FErgr = 111109 — 011115 = 15,

Exponent bias = 011115 = 15

Thus, in order to get the true exponent as defined by the offset-binary representation,
the offset of 15 has to be subtracted from the stored exponent E. The stored exponents
000002 and 111115 are interpreted specially as shown in Table 2.5.

The minimum positive normal value is 274 ~ 6.10 * 10~ and the minimum positive

subnormal value is 2724 ~ 5.96 « 10785,

2.5.2.2 Single precision binary floating-point format

Figure 2.17 shows the IEEE 754 single precision binary format representation; it con-
sists of a one bit sign (S), an eight bit exponent (E), and a twenty three bit fraction (M
or Mantissa). An extra bit is added to the fraction to form what is called the significand.
If the exponent is greater than 0 and smaller than 255, and there is 1 in the MSB of
the significand then the number is said to be a normalized number. In this case the real
number is represented by equation (2.23).

Where M = mao 271 +mop 272 +1mgg % 273 + ... +my %2722 + mg x 2723,

o4

31|30 23| 22 110

Figure 2.17: IEEE single precision floating-point representation

Table 2.6: The representations of floating-point data in single precision format

Exponent Significant | Significant Equation
ZETo Nnon-zero
00x zero,-0 subnormal (—1)% % 271265 0.
numbers
0ly,....,FEg normalized value (—1)° % 2E-127) 4 1. M
FFy +infinity,- | Nan (quiet,
infinity signalling)

and Bias = 127.

The single-precision binary floating-point exponent is encoded using an offset-binary
representation, with the zero offset being 127; also known as exponent bias in the IEEE
754 standard.

FEpin =01y —7F g = —126,

FEgr =FEg —TFg =127,

Exponent bias = 7FH = 127

Thus, in order to get the true exponent as defined by the offset-binary representation,
the offset of 127 has to be subtracted from the stored exponent E. The stored exponents
00 and F'Fp are interpreted specially as shown in Table 2.6.

The minimum positive normal value is 27126 ~ 1.18 + 1073® and the minimum positive

subnormal value is 2719 ~ 1.4 % 10745,

2.5.2.3 Double precision binary floating-point format

Figure 2.18 shows the IEEE 754 double precision binary format representation; it
consists of a one bit sign (S), an eleven bit exponent (E), and a fifth two bit fraction (M
or Mantissa). An extra bit is added to the fraction to form what is called the significand.
If the exponent is greater than 0 and smaller than 2047, and there is 1 in the MSB of
the significand then the number is said to be a normalized number. In this case the real
number is represented by equation (2.23).

Where M = ms1 % 271 + msg % 272 4+ g * 273 + ...+ mq % 2791 + mg % 2752,

63 | 62 52 | 51 110

Figure 2.18: IEEE double precision floating-point representation

95

Table 2.7: The representations of floating-point data in double precision format

Exponent Significant | Significant Equation
Zero Nnon-zero
000000000002 zero,-0 subnormal | (—1)° % 2710225 0. M
numbers
00000000001,..., normalized value (—1)% % 2(F=1023) w1 M
111111111109
111111111114 +infinity,- Nan (quiet,
infinity signalling)

and Bias = 1023.

The double-precision binary floating-point exponent is encoded using an offset-binary
representation, with the zero offset being 1023; also known as exponent bias in the IEEE
754 standard.

FEpin = 000000000012 — 011111111115 = —1022,

FErar = 111111111109 — 011111111115 = 1023,

Exponent bias = 011111111115 = 1023

Thus, in order to get the true exponent as defined by the offset-binary representation,
the offset of 1023 has to be subtracted from the stored exponent E. The stored exponents
000000000002 and 011111111115 are interpreted specially as shown in Table 2.7.

The minimum positive normal value is 271022

—1074

and the minimum positive subnormal

value is 2

56

Chapter 3

Related Work in the Field of
Floating-Point Operations

3.1 Floating-point adder

Floating-point addition is the most common floating-point operation and accounts for
almost half of the scientific operation. As a consequence, it is a fundamental component of
math co-processor, DSP processors, embedded arithmetic processors, and data processing
units. These components demand high numerical stability and accuracy and hence are
floating-point based. Floating-point adder is the most complex operation in a floating-
point unit. Moreover, it is a costly operation in terms of hardware and timing, as it
needs different types of building blocks with variable latency. In floating-point addition
implementations, latency is the overall performance bottleneck. Various algorithms and

design approaches have been developed by the VLSI community [13, 14, 15].

3.1.1 Standard floating-point adder algorithm

In this section we analyze the standard floating point algorithm architecture, and
the hardware modules designed as part of this algorithm. The standard architecture is
the prototype algorithm for floating-point addition in any kind of hardware and software
design [2].

Let N1 and N2 be two floating-point numbers. Each number consists of sign (s1, s2),
exponent (el, e2), and significand (f1, f2). Given these two numbers, Figure 3.1 shows the
flowchart of the standard floating-point adder algorithm. A description of the algorithm

is as follows:

- The two operands, N1 and N2 are read in.

- Then N1 and N2 compared for denormalization and infinity. If numbers are denor-
malized, set the implicit bit to 0 otherwise it is set to 1. At this point, the fraction
part is extended to 24 bits.

o7

Sct appropriate implicit bit
to ‘0" else setto 1

Swap N & N2

Replace /2 by 2's
complement

Replace s by 2°s
complement

Leading One Detector

/ Register Ouiput & Exceptions /

Figure 3.1: Flowchart for standard floating-point adder [2]

Subsequently, the two exponents, el and e2 are compared. If el is less than e2, N1

and N2 are swapped, and previous f2 will now be referred to as f1 and vice versa.

The smaller fraction, {2, is shifted right by the absolute difference result of the two

exponents’ subtraction. Now both the numbers have the same exponent.

The two signs are used to see whether the operation is a subtraction or an addition.

If the operation is a subtraction, f2 is replaced by 2’s complement.
Now the two fractions are added using a 2’s complement adder.

If the result sum is negative, it has to be inverted and a 1 has to be added to the

result.

The result is then passed through a leading one detector or leading zero counter.

This is the first step in the normalization.

Then, the result is shifted left to be normalized. In some cases, 1-bit right shift is

needed.
Subsequently, the result is rounded towards nearest even, the default rounding mode.

If the carry out from the rounding adder is 1, the result is left shifted by one.

o8

| Sl Exp | Mantissa | | Sl Exp | Mantissa
: PE
e — 8 23
r ¥
Exponent l
Lyifference 1 & ¥ ¥
1]] L] 1
1 / - Mux - Mux
Sizn Diff Fi
24
& 4
a > Right Shiller
Dilt 7 |
Larger exp Sub
Coul
LoD 27
=
A8 s
MNormalize
—
h h 2

—

AddSub |
2

Exp Oum

3
Mantissa Out

Figure 3.2: Micro-architecture of standard floating-point adder [3]

Table 3.1: Adder implementation analysis

Adder Type Combinational Slices
Delay (ns)

Ripple-Carry 15.91 18

Carry-Save 11.951 41

Carry-Look 9.720 39

Ahead

VHDL 6.018 8

- Using the results from the leading one detector, the exponent is adjusted. The sign

is computed and after overflow and underflow check, the result is registered.

Using the above algorithm, the standard floating point adder was designed. Figure 3.2
shows the detailed micro-architecture of the design and the main hardware modules which
are necessary for floating-point addition [2].

All these modules add a significant delay to the overall latency of the floating-point
adder.

Malik et al. [3] presented a survey, which was directed towards designing different
available implementations of all these components separately onto a Virtex 2p FPGA
device with a speed grade of 7.

First of all, the authors compared each one of three different adders with the VHDL

7

inbuilt adder function, ”+” . 16 bit carry look-ahead adder, carry save adder, and ripple
carry adder were designed and synthesized for Virtex2p FPGA. Combinational delay and

slices obtained using Xilinx ISE and shown in table 3.1.

99

Table 3.2: Right shift shifter implementation analysis

Shifter Type Combinational Slices
Delay (ns)

Align 10.482 71

Barrel 9.857 71

Behavioral 9.357 201

Table 3.3: LOD implementation analysis

LOD Type Combinational Slices
Delay (ns)

Behavioral 9.05 20

Oklobazija 8.32 18

In order to pre-normalize the mantissa of the number with the smaller exponent, a
right shift shifter is used to right shift the mantissa by the absolute exponent difference.
Three custom shifters were designed for this purpose. Table 3.2 shows the synthesis results
obtained by using Xilinx ISE.

After the addition, the next step is to normalize the result. The first step is to identify
the leading or first one in the result. This result is used to shift left the adder’s result
by the number of zeros in front of the leading one. In order to perform this operation,
special hardware, called Leading One Detector (LOD) is implemented. Behavioral and
Oklobazija type LOD were implemented and Table 3.3 shows the synthesis results.

Using the results from the LOD, the result from the adder is left shifted to normalize
the result. Table 3.4 gives the synthesis results obtained from Xilinx ISE implemented for
Virtex2p device.

The design was implemented for only one pipeline stage. The minimum clock period
reported by the synthesis tool after placing and routing was 27.059ns. The levels of logic
reported were 46. That means the maximum clock speed that can be achieved for this
implementation is 36.95 MHz. The number of slices reported by the synthesis tool was
541.

Table 3.4: Left shift shifter implementation analysis

LOD Type Combinational Slices
Delay (ns)

Behavioral 8.467 80

VHDL 8.565 90

60

[1 B=p | Tt issa] [E] Ep | Tiordsa

3
-~
Y
Exponent
Driffereruce 1 r
o 1 o 1
hbo: Tifiec
Sign Dof o4
=] 2
ff p| Fizht Shifter
g R
Diff I e R)
24 44
h ¥ v
Larger exp Sub_h_lz‘s Comp .ﬁ.ﬂd&rl | LOp |

Exp Chat Nfardicsa Ch

Figure 3.3: Micro-architecture of LOP algorithm [3]

3.1.2 LOP Algorithm

The goal of a floating-point adder is to obtain better overall latency. This improve-
ment, compared with the above adder, is achieved by the Leading One Predictor (LOP)
algorithm. Figure 3.3 shows the micro-architecture of the LOP algorithm.

This algorithm was first introduced by Flynn [16] in 1991. Since then there have been
number of improvements [14, 17]. The most feasible design was given by J.D. Bruguera
and T. Lang [14], and it detects the error concurrently with the leading one detection.
Malik et al. [3] show that the main improvement seen in LOP design is the level of logic
reduced by 23% with an added expense of increasing the area by 38%. The improvement
of the minimum clock period is small. Therefore, it is not a feasible design option for
FPGA. However, LOP algorithm is a good option in VLSI design, because, the levels of
logic affect the latency.

Another design was given by Malik et al. [4]. In order to achieve five levels of pipeline
and gain maximum clock frequency, the LOP has been further pipelined in three stages
as shown in figure 3.4.

The tree like structure requires identical modules working in parallel which are ex-
ploited to divide the overall latency of the LOP into three different pipeline stages. They
used ModelSim [18] to simulate all the modules in a hierarchy design process. After the
design was tested for functional correctness, the design was synthesized using Xilinx ISE
6.31 [19] synthesis tool provided by Xilinx. This tool synthesizes HDL for different Xilinx
FPGAs and devices. They concluded that by using properly placed pipeline stages, LOP

algorithm can be used to significantly improve both latency and area compared to the

61

Exponent 4 Exponent B Mantisza & Mantisza B

Sub |—>| Shifter
Exponent
=
Larger
Exponent L v
Adder | | LOP: Stagsl
k. 4 b
r
LOP: Stage 2
b r
r
LOP: Stage3
b 4
v
Shifter
v h
Sub [Rowd |
Exponent out Mantissa out

Figure 3.4: The LOP algorithm in three stages [4]

Xilinx Intellectual Property available for FP adder.

3.1.3 Far and Close Data-path Algorithm

According to the studies, 43% of floating-point instructions [20] have an exponent
difference of zero or one. In order to manipulate this fact and to improve performance
in terms of latency, the data path is divided into far and close path. The close path is
computed for all the operations in case the exponent difference is 0 or 1, while the far path
computes for the rest of the computations. The algorithm is potentially larger than the
previously implemented algorithms but has shown significant improvement in latency and
thus used in almost all the present commercial microprocessors. The micro-architecture
of far and close data-path algorithm is shown in Figure 3.5.

Malik et al. [3] compared the far and close data-path algorithm to the standard
algorithm. They ascertain that one shifter delay and rounding delay has been removed for
critical paths of data-paths with help of almost double the hardware and compound adder
implementation. Table 3.5 shows a comparison between the standard algorithm and far
and close data-path algorithm implementation on a Virtex 2p FPGA device.

The minimum clock period reported by the synthesis tool after placing and routing was
19% better than that of standard floating-point adder implementation. The levels of logic
reported were showing 34% improvement. Both these improvements were evident because
in both the critical paths one shifter and one adder has been removed. The number of
slices reported by the synthesis tool was 1018 which is a significant increase compared to

standard algorithm.

62

[8] Bp] Tfardicsa

] (=] B

Ifard sa onk

Figure 3.5: Micro-architecture of far and close data-path algorithm [3]

Table 3.5: Standard and F&C algorithm analysis

Clock Period (ns) | Clock Speed | Area (Slices) | Levels of
(MHz) Logic
Standard 27.059 36.95 041 46
F& C 21.821 45.82 1018 30
%of imp. +19% +19% -88% +34%

63

A_exponent B_exponent) .
A_mantissa B_mantissa

N R

|I- = -II

A_sign B_sign l
T

\ / (+ Je— Bias
XOR

v

1 ‘ Noralizer |
Y

‘ Multiplier Result |

Figure 3.6: Block diagram of floating-point multiplier

3.2 Floating-point multiplier

Floating-point multipliers are widely used in digital signal processing and multimedia.
Thus, floating-point multiplication plays a major role in the design and implementation
aspects of floating-point processors [21].

3.2.1 Floating-point multiplication algorithm

Floating-point numbers which are normalized have the form which described with the
equation (2.23). Significand is the mantissa with an extra MSB bit. The following steps

are carried out to multiply two floating-point numbers :

1. Multiplying the significand: i.e. (1.M7 * 1.My).

2. Placing the decimal point in the result.

3. Adding the exponents: i.e. (Ey + Ey — Bias).

4. Obtaining the sign by XOR operation of S; and .Ss.

5. Normalizing the result: i.e. obtaining 1 at the MSB of the results ”significand”.
6. Rounding operation is performed on the result to fit in the available bits.

7. Checking for underflow/overflow occurrence.

The figure 3.6 shows the block diagram of a floating-point multiplier.

The below example shows a multiplication of two floating-point numbers. For each
number, consider a floating-point representation similar to the IEEE 754 single precision
floating-point format, but with a reduced number of mantissa bits (only 3). Let A (0
10000100 010 = 40), and B (1 10000001 101 = -6.5) these two numbers.

To multiply A and B the bellow 6 steps are followed:

64

1. Multiply significand:
1.010
x1.101
1010
0000
1010
1010
10000010

2. Place the decimal point to the result:10.000010

3. Add exponents:
10000100
+10000001
100000101

The exponent representing the two numbers is already shifted /biased by the bias
value (127) and it is not the true exponent: Eq4 = FA_tye + bias , Ep = Ep_trye +
bias and Eg + Eg = EA_true + EB—true + 2 x bias. So we should subtract the bias

from the resultant exponent otherwise the bias will be added twice.
100000101
-01111111
10000110
4. Obtain the sign bit and put the result together: 1 10000110 10.000010
5. Normalize the result so that there is a 1 just before the radix point (decimal point).
Moving the radix point one place to the left increments the exponent by 1.
1 10000110 10.000010 (before normalizing)
1 10000111 1.0000010 (normalized)
The result is: 1 10000111 000001 (without the hidden bit)
6. The mantissa bits are more than 3 bits (mantissa available bits), and rounding is

needed. If we applied the truncation rounding mode then the stored value is: 1
10000111 000

K.Deergha Rao et al. [5] proposed the architecture of the 24x24 bit Vedic real multiplier
based on four 12x12 bit Vedic real multipliers. A Vedic multiplier (VM) is faster than the
Array multiplier and it has been designed in [22]. The 24 x24 bit VM architecture using
12 x12 bit VMs and RCAs is shown in Figure 3.7.

65

B1 Al B, Al B 4 BO A0

T S T e A

12x12Vedic 12x12Vedic 12x12Vedic 12x12Vedic
Multiplier Multiplier Muluplier Multiplier
24bit RCA

¢ h 4

24 bit RCA

A 4 A 4 ¢
24bit RCA

v

v
3(47_23) 8(23-12) .‘:(11-0)

Figure 3.7: Architecture of the conventional 24x24 bit Vedic Multiplier using 12x12 Vedic mul-
tipliers [5]

The proposed 32x32 bit complex floating point Vedic multiplier using four floating
point real Vedic multipliers solution is coded in VHDL and implemented on .FPGA Device:
xc7k480¢,fg1156,C,-3.

The performance of the proposed Vedic, Array, and Booth, 32-bit complex floating
point multipliers are compared in terms of delay, power and device Utilization. According
to their results, the proposed complex floating point Vedic multiplier is much faster as

compared to Booth and Array multipliers but with little increase in power consumption.

Kodali et al.[23] compered three floating-point multiplication algorithms, namely Booth,
normal Karatsuba, and recursive Karatsuba. They have implemented these algorithms
for both single and double precision using VHDL. It has been synthesized and routed
on Virtex-6 FPGA target using Xilinx ISE. Simulation results have been analyzed in
ModelSim-SE. They observed that the recursive Karatsuba algorithm performs better
than normal Karatsuba and Booth algorithm. Moreover, the recursive Karatsuba algo-
rithm has the least FPGA resources utilised and the speed is relatively high. So, the
authors came to the conclusion that recursive Karatsuba is the best algorithm among the

three algorithms.

In [6] compared performance of multiplexer based on single precision floating point
multipliers like Array, Wallace Tree and Vedic multipliers are done. The above multipliers
shows in figures 3.8, 3.9 and 3.7 respectively. The single-precision floating point multiplier,
which is presented in this paper, is designed using Verilog. The simulation and synthesis
of the different multipliers are performed by using Xilinx ISE and performance parameters
are summarized. Functional verification of Array, Wallace tree and Vedic are performed

and results are summarized.

In this paper different single precision floating-point multipliers are analyzed using
4x1 and 2x1 multiplexers and regular full adder based single precision floating-point mul-

tipliers with respect to area and delay. According the results 4x1 multiplexer based Vedic

66

X; ket Ty tg i
g % 78 |
HA fe— FA FA «— HA
Xof i Yy e LEN
NI
FA (=— FA FA HA
o | x,g‘ xug Yz
| ¢ Y
l—<l FA |&— FA f«—{ FA }«— HA
i’.; *.".’.—, *;’-i *24 *‘J

Figure 3.8: 4x4 array multiplier [6]

Final sdder

v 7 ¥ s *Pi v P P33 wp2 YFI w PO

Figure 3.9: 4x4 Wallace Tree multiplier [6]

67

~Pultiplier

/
i 1 1 1
T PP 1
- - - T - Multiplicand
7 a1 1| e
/,/ ~ - ¥ /I” /,1’1 1
rJJ ,,” ,r,’ s - e - e
l ! r ¥ ¥ ¥ i s0)
| ! | i | I I
| b | | | |
: : | ! ! I |
10 11 11 10 1 o 0 Carry
1 1 1 a o o} o} 1 Product

LsB

Figure 3.10: Steps involved for 4-bit binary numbers multiplication using Urdhva Tiryagbhyam
Technique [7]

multiplier has the lowest delay compared to that of other multipliers. Further, the analysis
is extended to Vedic with 2x1 multiplexer to improve the delay. By using 2x1 multiplexer,
floating-point multiplication requires 1003 LUTs and 548 slices and delay is 43.61 ns.
By reducing complexity the overall performance can be improved. From the results it is
concluded that Single Precision Vedic multiplication using 2x1 multiplexer gives better
performance in terms of area and delay.

Y. Srinivasa Rao et al.[7] compered two implementation of double-precision floating-
point multipliers. One of them using Urdhva Tiryagbhyam technique and the other using
Karatsuba technique. The Urdhva Tiryagbhyam technique [24] can take (2n-1) steps
for designing the n-bit multiplier. In figure 3.10 a 4-bit multiplier can take 7-steps for
designing of the multiplier, using Urdhva Tiryagbhyam technique.

The 4-bit multiplier has 4-bit multiplier as one of the operand and 4-bit multiplicand
is the second operand. The carry resents the previous state generated carry and it can be
added to the current to get the final product.

According to [7] the delay of the Karatsuba multiplier is 18.139ns and the delay of
the Urdhva Tiryagbhyam multiplier is 15.034ns. As a consequence Urdhva Tiryagbhyam
multiplier is faster in comparison with the Karatsuba multiplier. Also the Urdhva Tiryagh-

hyam multiplier consumes less power in comparison with the Karatsuba multiplier.

68

Chapter 4

Related Work in the Field of
Approximate Computing

4.1 Approximate computing

Approximate Computing (AC) is a wide spectrum of techniques that reduce the ac-
curacy of computation in order to improve energy, performance, and other metrics. Ap-
proximate computing has attracted significant traction for both academia and industry.
AC exploits the fact that several applications, such as machine learning and multimedia
processing, do not necessarily need to produce precise results to be useful. For instance,
we can use a lower resolution image encoder in applications where high-quality images are
not necessary. By relaxing the numerical equivalence between the specification and imple-
mentation of error-tolerant applications, approximate computing deliberately introduces
“acceptable errors” into the computing process and promises significant energy-efficiency
gains.

Various approximate computing techniques at almost all computing layers have been
presented in the literature, over the year. There are different techniques for the implemen-
tation of AC. A classifications of different AC techniques is illustrated in Figure 4.1. As it
shown those techniques are classified into hardware-based and software-based. Techniques
at the hardware level [25], [26], [27], [28], [29] have less accurate and high efficient energy
components. Software-level techniques [30], [31], [32] reduce calculations or accesses to

memory to improve performance at the expense of precision in the results [33].

4.2 Approximate software

The most essential techniques for AC based on software are: code perforation, bit
width reduction, float point to fixed point conversation, synchronization elision.

Code perforation

This technique is based on identifying parts of code that can be discarded without

exceeding an error threshold. This technique includes loop perforation. Loop perforation

69

compiler
@ -E :

source
code

& Neural acceleration Architecture Circuit

Level Level

e Level circuit: voltage overscaling,
imprecise logic circuits

o Code perforation
e Bit width reduction

* Float to fixed point conversion s Architecture level: imprecise ISA

& Syncronization elision and processors, neural accelera-

tion

Software Hardware

Figure 4.1: Classification of different approximate computing techniques [8]

transforms loops to execute a subset of their iterations. The goal is to reduce the amount

of computational work that is required to produce its result.

The survey which conducted by Sidiroglou-Douskos et al. [34] shows that loop perfo-
ration can effectively increase a range of applications with the ability to operate at various
attractive points in the tradeoff space. The applications, which have been perforated, are
often able to deliver significant performance improvements, at the cost of a small (typically
5% or less) decrease in the accuracy. The results from their implemented loop perforation
system show that loop perforation can dramatically increase the ability of applications to
achieve decrease of the energy consumption and/or increase of the performance in exchange

for the decrease of the accuracy.
Bit width reduction

The improvement of perforation and power consumption can take place by reducing
the accuracy, which is basically the number of bits of a floating point number. In [35] the
authors present a method based on the approximate computing, in order to hide informa-
tion in internet of things devices. This can be achieved by using some less significant bits
of number mantissa. They introduce the threats to IoT devices, the available mitigation
methods, and propose an approximate computing based security primitive that enables
us to embed various information during the process of approximate computing. The au-
thors, also, demonstrate how information can be generated and hidden for several security

applications.
Float point to fixed point conversation

In order to reduce energy cost, an approximation of a floating point program can be
used. According this technique Aaomodt et al. [36] noted some impressive speedups. In
their paper is shown that an SQNR improvement equivalent to carrying up to 2.0 extra
bits of precision throughout the computation is achievable using IRP-SA in conjunction
with the FMLS operation. Furthermore, they emphasize in the possibility of an achievable
13% speedup, by simply adding a FMLS operation with a few output shift distances. In
addition, a complementary-scaling technique (IDS) was proposed. This technique enables

the parameterization of the fixed-point scaling of a variable depending upon the context of

70

its definitions and uses. An implementation of IDS specialized to single-nested loops was
found to improve accuracy of a lattice filter benchmark by the equivalent of more than 16
bits of precision.

Synchronization elision

In parallel applications, synchronization overhead is a major performance-limiting fac-
tor. Synchronization relaxing increases the possibility of performance and efficiency im-
provement. Renganarayana et al. [37] have shown that significant performance speedups
can be obtained by relaxing the widespread assumption that all programmer specified
synchronizations are essential to produce good quality results. Their experiments with
a variety of benchmarks show that relaxing synchronization using this methodology can
achieve significant speedups. For example, up to 15x for the K-means benchmark and
up to 3x on top of the expert optimized BFS kernel in Graph500, with no degradation
in the quality of the results. The positive results presented on relaxed synchronization
are a strong indication of the potential of the general area of approximate computing,
where they sacrifice the determinism and preciseness of the general computing paradigm
as practiced today for improved latency, reduced energy consumption, and lower system

cost, while providing results acceptably close to what would otherwise be possible.

4.3 Approximate hardware

4.3.1 Approximate architecture

Hardware consist of processor, memory, and storage. It is difficult to improve the
performance, energy efficiency, and density of these component in parallel, because im-
proving one often sacrifices the other. Approximate computing can improve performance
and energy efficiency, in case of processors, as well as density for memories and storage.

For processor architectures many approaches have been proposed to run energy-efficient
code segments or single instructions. Chippa et al. [38] present an integrated and system-
atic approach to approximate computing in hardware. They designed and fabricated a
Recogniton and Mining (RM) processor and demonstrated 2-20X savings in energy over a
variety of applications. Furthermore, Esmaeilzabeth et al. [39] proposed an ISA (Instruc-
tion Set Architecture) that simplifies the hardware by relying on the compiler to provide
certain invariants statically, eliminating the need for checking or recovery at run time.
The authors describe a high-level microarchitecture that supports interleaved high and
low-voltage operations and a detailed design for a dual-voltage SRAM array that imple-
ments approximation-aware caches and registers. They model the power of their proposed
dual-voltage microarchitecture and evaluate its energy consumption in the context of a va-
riety of error-tolerant benchmark applications. Experimental results show energy savings
up to 43%. In the same way, Sampson et al. [40] proposed to use a type system based on
information-flow tracking ideas: variables and objects can be declared as approximate or

precise; approximate data can be processed more cheaply and less reliably; and they can

71

statically prove that approximate data does not unexpectedly affect the precise state of
a program. Their type system provides a general way of using approximation. They im-
plement their type system on top of Java and experiment with several applications, from
scientific computing to image processing to games. Their results show that annotations
are easy to insert: only a fraction of declarations must be annotated and endorsements are
rare. Once a program is annotated for approximation, the runtime system or architecture
can choose several approximate execution techniques. The hardware-based model, that
they proposed, shows potential energy savings between 7% and 38%.

Alternatively, performance can be improved by transforming segments of code into a
neural-inspired algorithm running on hardware accelerators. A proposal to accelerate code

based on Parrot transformation is shown in [25].

4.3.2 Approximate circuit

For a given circuit, we could achieve reduced energy consumption by lowering its supply
voltage without reducing the corresponding operational frequency. Over the years, there
are several proposals in the literature for approximate arithmetic units. One of those
proposals is adders. A few representative approximate adder designs are described in the
following.

In [41] a novel approximate adder design to considerably reduce energy consumption
with a very moderate error rate, has been presented for energy efficient neuromorphic VLSI
systems. The results show that the proposed adder is 2.4x faster and 43% energy efficient
over traditional adders. Accordingly, the proposed design approach is applicable to energy
efficient neuromorphic VLSI system designs. Ye et al. [42] proposed a reconfiguration-
orient approximate adder design. In particular, experimental results demonstrate that
they simultaneously achieve much better throughput and image quality when applying
their adder to a discrete cosine transform (DCT) application.

Another important arithmetic unit used in computing is the multiplier. Kulkarni et
al. [43] proposed a power-efficient multiplier contribution with 2x2 approximate multiplier
blocks. With a mean error of 1.39% - 3.35% and power savings between 30% - 50%, the
underdesigned multiplier architecture presented allows for trading of accuracy for power.
The results suggest that design-for-error based techniques have significant potential for

power savings, and can be easily integrated into today’s automated ASIC design flow.

72

Chapter 5

Proposed Floating-Point
Multiplier

5.1 Introduction

In this chapter, we will analyze all the work that has been constructed in this diploma
thesis. First of all, two different floating-point multipliers will be described, in section 5.2.

Then our proposed approximate multipliers are explained in section 5.3.

5.2 Accurate floating-point multipliers

Two floating-point multipliers will be analyzed, in this diploma thesis. The one mul-
tiplier has as input two floating-point numbers which are encoded in the binaryl6 inter-
change format. The other multiplier has as input two floating-point numbers which are
encoded in the binary32 interchange format. As referred in subsection 2.5.2.1 a normalized
number in represented by equation (2.23).

Let A and B be two n-bit floating-point numbers. According to the equation (2.23):

A= (—1)%4 x 2(Fa=Bias) 4 (1 M y) (5.1)

and

B = (=1)%8 x 2(Fs=Bias) o () ppp) (5.2)

Using the above equations, the product (P) of A and B is:

P = Ax B = (—1)%4+58) , 9(BatEp=2+Bias) , (1 My 5 1. Mp) (5.3)

73

Table 5.1: XOR accuracy table

A B ouT
0 0 0
0 1 1
1 0 1
1 1 0

To multiply A and B the bellow 7 steps are followed:

. Obtaining the sign Sp by XOR operation of Sy and Sp. If A and B have the same

sign-bit, the sign-bit of P is 0, else it is 1. The truth table of Exclusive OR Gate is
shown in Table 5.1.

. Adding the exponents: £ = E4 + Ep

. Checking for underflow/overflow.

— For 16x16 bit multiplier, the stored exponent (Ep = E4 + Ep — Bias) is 5-bit.
For real numbers Ep is greater than 0 and less than 31. So, 0 < Ep < 31 =
O0<FEs+Ep—15<3l=15< Ep+ Ep <46 = 15 < E < 46.

According to the exponent’s and mantissa’s values a floating-point number

(binary16) referred as zero, subnormal, normal, infinite or NaN. These five

cases are summarized as follow:

*

*

If E < 15, the result of multiplier is underflow.

IfE=15then E=15=FEs+FEp=15=Fs+ Eg—15=0= Ep =0.
The product P which has zero exponent (Ep = 0), represent either zero
number (if mantissa of P (Mp) is zero), or subnormal number (if mantissa
of P (Mp) is not zero). Zero and subnormal numbers are considered as
underflow. These numbers may turn to normalized numbers during nor-
malization.

If 16 < E < 45, the result is normalized number (real number). A normal-
ized number may turn in overflow during normalization.

If E > 45, the result is overflow. In the specific case where E = 46:
EFE=46=FEp+FEFp=46= FE,+ Eg —15=46 — 15 = Ep = 31.

The product P which has EFp = 31, represent either infinite number (if
mantissa of P (Mp) is zero), or NaN number (if mantissa of P (Mp) is not

zero). Infinite and NaN numbers are considered as overflow.

74

Table 5.2: Normalization Effect on Result’s E and Overflow/Underflow Detection (binary16)

Category E Comments
E<15 Can’t be compensated dur-
ing normalization
Underflow E=15 May turn to normalized

number during normaliza-
tion (dy adding 1 to it)

Normalized number | 16 < F < 45 May result in overflow dur-
ing normalization
Overflow E>45 Can’t be compensated

According to the value of E, the number is categorized as it shown in table 5.2.
If E is greater than 45, the result is overflow. If E is less than 16, the result is

underflow.

— For 32x32 bit multiplier, the stored exponent (Ep = E4 + Ep — Bias) is 8-bit.
For real numbers Ep is greater than 0 and less than 255. So, 0 < Ep < 255 =
0<Esq+FEp—127T<255 = 12T < E4 + Ep < 382 = 127 < E < 382.
According to the exponent’s and mantissa’s values a floating-point number
(binary32) referred as zero, subnormal, normal, infinite or NaN. These fivecases

are summarized as follow:

x If £ < 127, the result of multiplier is underflow.

x* If B =127, then £ =127 = E4+ Ep =127 = E4+ Ep — 127 =0 =

Ep =0.
The product P which has zero exponent (Ep = 0), represent either zero
number (if mantissa of P (Mp) is zero), or subnormal number (if mantissa
of P (Mp) is not zero). Zero and subnormal numbers are considered as
underflow. These numbers may turn to normalized numbers during nor-
malization.

« If 128 < E < 381, the result is normalized number (real number). A
normalized number may turn in overflow during normalization.

« If £ > 381, the result is overflow. In the specific case where £ = 382:
E=382= FE,+ FEp=382= E5+ FEp— 127 =382 — 127 = Ep = 255.
The product P which has Ep = 255, represent either infinite number (if
mantissa of P (Mp) is zero), or NaN number (if mantissa of P (Mp) is not

zero). Infinite and NaN numbers are considered as overflow.

According to the value of E, the number is categorized as it shown in table 5.3.
If E is greater than 381, the result is overflow. If E is less than 128, the result

is underflow.

Tables 5.2 and 5.3 show that an underflow result may turn to normalized number,

75

Table 5.3: Normalization Effect on Result’s E and Overflow/Underflow Detection (binary32)

Category E Comments
E<127 Can’t be compensated dur-
ing normalization
Underflow E=127 May turn to normalized

number during normaliza-
tion (dy adding 1 to it)
Normalized number | 128 < E < 381 | May result in overflow dur-
ing normalization
Overflow E>381 Can’t be compensated

[]
O_L
oce
Q=
[oNeN]
o000
[oNONeN J
0000~
[oNeNONoN J
o000 0-=
[oNeNeNoNoN g
000000
®e 000000
0000
[NoloNoNoNe]
[eNoNoNe]
e 000
000
®eO0 00
[o}®]
[_ene}
o}
®0

Figure 5.1: The partial product tree of a 12x12 accurate modified booth multiplier

and a normalized number may result in overflow during normalization. These two

cases will be analyzed in stage 7.

4. We should subtract the bias from the E: Ep = E — Bias (Ep is the stored exponent
of product P)

5. The significands (1.M 4, 1.Mp) will be multiplied by using a modified booth multi-
plier (subsection 2.4.2).

— In case of 16x16 bit multiplier, the number of mantissa’s bits is 10. Significand is
the mantissa with an extra MSB bit. So 1.M consists of 11 bits. The significand
is not negative number. Thus, we should add an extra zero bit in front of 1.M.

The modified booth multiplier will be a 12x12 bit multiplier. The two numbers

are:
X12 =01.My,,
Yo =01.Mp.

Figure 5.1 shows the partial product tree of a 12x12 accurate modified booth

multiplier.

— In case of 32x32 bit multiplier, the number of mantissa’s bits is 23. Significand is
the mantissa with an extra MSB bit. So 1.M consists of 24 bits. The significand
is not negative number. Thus, we should add an extra zero bit in front of 1.M.
Now, each number consists of 25 bits. Because, Y must be encoded in modified
booth algorithm, it needs an extra zero bit in front of 01.M, this time. The
modified booth multiplier will be a 26x26 bit multiplier. The two numbers are:

76

1

1000000 0CCO0CCOCO0O0O0O00O00OO0O00O0O00O00CO0

1 ®0C0000C0C0O0O0CCOCCOOOOO0OOOO0O0O0O0O @
10000000000 0COCO0O0O00O00O0O0OO0O0O0O00C @
1000000 0C0O00COC0OOOCCO0C0OOOOOOO0O0CO @
1®0000000000C0O000C0000000QOO0OCC0O @
1000000000000 QO000Q0O0COQQ0O0O00 @
1€@0000C00C0CCOCOOQOOOOO0OOO0O0O0O0O0C0C @
1®00000C0C0O0C0OCOCOCOO0O0O0O0O00OO0O0O00 @
1@0000C000C0C0O0C0C0OCO0OO0OO0O0OO0O0O0O0O00 @
1800000000000 0O000O0O0QQO0O000000 @
190000000000 QO0000000000QQO0OOO0O @
1 ®0000C00C0O00O0O00O0OQO00C0O00O000O000O000 @
1 ®@00CC0OCCO0C0O0OCO0COCOO0O0OO0O000O000O0CO @
[]

Figure 5.2: The partial product tree of a 26x26 accurate modified booth multiplier

0] 0

Puoarity Porocr2h Procria) Poorial RIS crereeerermrmrrerermreamsmsmimim et crmsmsmsmsmsmtm et s msmsm smsmsmtmsoes msmsmsmssareresemsms Prsevrazy Paoerzay Pioerze

Figure 5.3: The product (P) of the 12x12 multiplier

Xog = 001. My,
Yo = 001.Mp.
Figure 5.2 shows the partial product tree of a 26x26 accurate modified booth

multiplier.
6. Normalize the result so that there is a 1 just before the radix point (decimal point).

— In case of 12x12 bit multiplier the result Pxxy consists of 24 bits. The first 2
bits are 0. Figure 5.3 shows the result Pxxy = 00zz.xzxx ... r022.
If Pxxy(3) = 1, the radix point must be moved one place to the left and the
exponent Fp must be increased by 1. The mantissa’s bits are more than 10 bits
(mantissa available bits), and we applied the truncation rounding mode. The
stored value of mantissa is from Px xy (4) to Pxxy (13) (Mp = Pxxy(4) ... Pxxy(13)).
Else, the exponent Ep left unchanged and the stored value of mantissa is from
Px«y(5) to Pxxy(14) (Mp = Pxxy(5)... Pxxy(14)).

— In case of 26x26 bit multiplier the result Pxyy consists of 52 bits. The first 4
bits are 0. Figure 5.4 shows the result Px«y = 0000xz.xxxx2 ... x0022.
If Px,y(5) = 1, the radix point must be moved one place to the left and the
exponent Ep must be increased by 1. The mantissa’s bits are more than 23 bits
(mantissa available bits), and we applied the truncation rounding mode. The
stored value of mantissa is from Px xy (6) to Pxxy (28) (Mp = Pxxy(6) ... Pxxy(28)).

O|0]0]O0

Pooorl) PINEZE PO0NTI) PIONTAY PIONISE PIGNIED PHRNITY comroreremmrsoserereersseeemoseresmeeessmresserersresemresseressereseroer oo Pucevisn) Proevist) Povisz

Figure 5.4: The product (P) of the 26x26 multiplier

7

Table 5.4: The multiplier’s output according to the categorization of the number (binary16)

Category Product P = AxB | Product P = AxB | Product P = AxB
(sign) (exponent) (mantissa)
Underflow Sp=54® Sp 00000 0000000000
Normalized number | Sp =S4 @ Sp Ep (stage 4,6,7) | Mp (stage 6)
Overflow Sp=54®Sp 11111 0000000000

Table 5.5: The multiplier’s output according to the categorization of the number (binary32)

Category Product P = | Product P = AxB | Product P = AxB (man-
AxB (sign) (exponent) tissa)

Underflow | Sp =S54 ® Sg | 00000000 00000000000000000000000

Normalized | Sp =S4 ® Sp | Ep (stage 4,6,7) | Mp (stage 6)

number

Overflow Sp=8S,®5g | 11111111 00000000000000000000000

Else, the exponent Ep left unchanged and the stored value of mantissa is from
PX><Y<7) to PX><Y(29) (Mp = Pxxy(’?) ce PXXy(Qg)).

7. Two addition checks.

— If E =15 for binaryl6 (or E = 127 for binary32) (stage 2) and the exponent

Ep was increased by 1 from stage 6, the number referred as normalized.

— If E = 45 for binary16 (or E = 381 for binary32) (stage 2) and Ep was increased

by 1 from stage 6, the result is overflow.

Tables 5.4, 5.5 show the multiplier’s output according to the categorization of the
number.

The flowchart of our accurate floating-point multiplier shows in figure 5.5.

5.3 Proposed approximate multiplier

In order to improve energy, performance, and other metrics we use an approximation

in our design.

5.3.1 Hybrid partial product perforation-rounding

The authors in [9] proposed a hybrid technique combining the partial product perfo-
ration of [44] with a truncation/rounding method. This approximation will be used in our
design. Specifically when we multiply the numbers X and Y (stage 5).

Let X and Y be two n-bit 2’s complement binary numbers. Using the equation (2.9)
their product X x Y is calculated as follows:

78

Read binary
inputs Aand B

h J

Read S, and Read E, and Read M, and
Ep Mg
¥
¥
Add exponents Multiply:
E=E,+Eg 01.Mg * 01.Mg (Half
precision)
v 001.Mg *
R 001.Mg (Single
S, XOR S ecking 1or S
A 2 e precision)
oveflow
¥
Subfract Normalize the
Bias from E, result
E,=E-8iss 1.Mg (Mantissa)
¥ ¥
Update £, Truncation

h J

Checking for
real number

h 4

Checking for
overflow

Y w Y

Update floating-point format

Figure 5.5: Flowchart of our accurate floating-point multiplier

79

n/2—1
XxY =Y XuxyMPxd (5.4)
j=0

where y; M8 € {0, + 1, + 2}.

Partial Product Perforation

The partial product perforation technique, which was presented in [9], dismisses the
generation of k successive partial products starting from the least significant ones. There-
fore the k least significant modified Booth digits are not generated; namely, the 2k LSBs
of Y (including y_1) are discarded. Thus, the product X x Y is calculated approximately

by the next equation:

n/2—1 A
X XY= Y XxyMPxd (5.5)
j=k

Partial Product Rounding
In the partial product rounding technique the m-1 LSBs of X are discarded, and x,_1

is added with the most significant remaining part (X,,), as follows:

X+ 2Tm—1 = <-%'n—17 xn—2---xm>2,s + Tm—1 (5-6)

The truncation of the m-1 LSBs would lead to significant errors in the calculations.
The last remaining LSB (z,,-1) is added to X,, to lead to smaller errors. The partial
products with modified booth encoding are produced combining two cases.

In case of z,,—1 = 0, the inexact partial products (PZ) are calculated by P] =
(Xm +0) * ijB = Xy * ?/jMB)

In case of 2,,,_1 = 1, and using the relation X,, +1 = —X,,, the inexact partial prod-
ucts (]%) are calculated by P; = (X, + 1) y; M8 = (=X) *y;MB = X = (—y;MB),
where (—y;MB) = (=1)¥ * (2 x two; + one;). Using the relation X,,,* = X5, ® T to
form X,,, or X,, the two cases are combined. Similarly 5% = 8 ® xy,—1 is used to form ei-
ther ijB or —ijB. Therefore, the partial products are computed by]5] = X5 *ijB*,

where y;MB" = (=1)%" % (2 two; + one;).

Hybrid Partial Product Perforation-Rounding
Partial product perforation and partial product rounding are combined to form the

proposed technique called hybrid partial product perforation-rounding. The proposed

80

I R N N N R NN NN NN N BN
1 @O0000C0000OOSPSS® @
1 @000 000COOCOPOOS O
100000 0CO0O0OPOPOES O
1 000000 O0OOPODOSOOO @

®
1
1 @000 000 @ sign extension
1000000 @ @ perforated bits
18000000 @ @ ftruncated bits
1T @000 000 o

® ® sign factors
@ new sign factors

Figure 5.6: An approximate 12x12 bit multiplier with k=2 and m=6

approximate multiplier is characterized by two configuration parameters: k and m. The
parameter k refers to the number of the perforated partial products starting from the least
significant ones, and m labels the partial product bit that rounding is applied to. The
notation PR|; . is used to label the selected configuration. Note that k € [0, n/2-1) and
m € [0, n-1). Hence, in the proposed hybrid technique, the multiplication is performed
approximately as follows:

n/2—1 n/2—1
XX Y|m= > Pixdl = " X sy 54 (5.7)
j=k j=k

The implementation of the partial product accumulation is performed by an accurate
Wallace tree, whereas its carry-save output is added by a prefix (fast) adder. The accumu-
lation tree, except for the properly weighted partial products, includes the correction term
("1” and sign factors). The n/2-k sign factors (c¢;*) are defined as ¢;* = s;* x(one; + two;).

Figure 5.6 shows an approximate 12x12 bit multiplier with k=2 and m=6.

Figure 5.7 shows an approximate 26x26 bit multiplier with k=3 and m=8.

The flowchart of proposed approximate floating-point multiplier shows in figure 5.8.
The approximate design has an extra check. The output of mantissa’s (1.xx...xx * 1.xx...xx)
multiplication has the form xx.xxxx......xxxx. The bits left to the radix point can be 01
or 10 or 11 in the accurate multiplier. In the approximate design, these two bits can also

be zero. So this case is checked and the output is turned to overflow.

81

eo000Q0QOQQOOPOO0O0CQQOO0OO0ROCGOER®E
eoo00O0QOPQOQQOOOOOQOOCQOOOROER®E® O
eoo0o0QOQROOOOOOOROER®REE® O
1000000000000 0000C0C000000QO®® @
18000000000000000C00CCOQ0OOOGGS @
1 000000000000 0000C0CC000G00RG @
1800000000000 Q0000C0000000CRE @
100000000000 00Q0000C0000QOC®E @
1000000000000 QQCQ00CO000OOGERE @
18000000000 0C00000Q0C0000000COO® @
18000000000000000C00CCOQ0OO0OCRE ©
1 0000000000000 00C0C0COOOO0OOO @
100000000000 00000C0CC00OOOQC0 @
°
;
100000000000 00000Q0O0
1800000000000 Q000000 @ ® sign extension
1000000000000 0000Q0QC0 © @ perforated bits
1000000000000 0C0000C0O © @ truncated bils
1 0000000000000 00000 ©)
18000000000000000000 © O e
1000000000000 QO0O0O0O00 @ O roeErTE
1 0000000000000 00000 @
1890000000000 000000QQC0 ©
1 0000000000000 00Q000 ©
6}

Figure 5.7: An approximate 26x26 bit multiplier with k=3 and m=8

82

Read binary
inputs Aand B

h J

Read S, and Read E, and Read M, and
Ep Mg
¥
¥
Add exponents Multiply:
E=E.+Eg 01.Mg = 01.Mg (Half
precision)
v 001.Mg *
P 001.Mg (Single
S, XOR S ecking 1or S
A B e Tiow precision)
oveflow
¥
Subtract Mormalize the
Bias from E, result
E,=E-Bias 1.Mg (Mantissa)
and
v Checking for a
specific case
Update E;
¥
Checking for h J
real number
Truncation

h 4

Checking for
overflow

v L 4

Update floating-point format

Figure 5.8: Flowchart of proposed approximate floating-point multiplier

83

Chapter 6

Experiment

6.1 Tools and Experimental Setup

All the multipliers to be compared, are implemented in Verilog HDL, synthesized using
Synopsys Design Compiler and the TSMC 65-nm standard cell library, and simulated with
Mentor Graphics ModelSim. The critical path delay and the area are reported by Synopsys
Design Compiler, while the power consumption is measured with Synopsys PrimeTime-
PX tool using all the possible input combinations. All the designs are synthesized and
simulated at 1V, i.e., the nominal supply voltage. The procedure, that was followed,

consists of the next steps:

e The project is created via the command $create_project.

e The Verilog code and the testbench are prepared, and they are checked via the

commands $make check_vlog and $make check_tb, respectively.

e The rtl simulation is occurred via the command $make rtl_sim. Mentor Graphic
ModelSim opens and the simulation begins. After that, the functional correctness of
our design is checked. So, with the help of matlab, we implement and simulate our
design in the software level. Matlab and rtl simulation generate an output file of the
results of 100000 multiplications. We compare the two output files and if they are

identical, the design is correct.

e The command $make env set all the parameters of the synthesis (clock period,
library etc.). Next, via the command $make dcsyn the design synthesis happens.
This step is repeated until the critical path (smallest delay) is found. The command
$make dcsyn uses the tool Synopsys Design Compiler and the TSMC 65-nm stan-
dard cell library in order to find out if the time constrains are violated and also

computes the total area needed for the given parameters.

e The command $make sta defines the clock period of the testbench to be the same

with the clock period, which was used in the design synthesis. Furthermore, the

85

Static Time Analysis (STA) provides a more accurate answer of whether the time
constrains are met. Next, the command $make gate_sim is performed and a gate
level simulation is occurred. Lastly, the command $make power computes the

power consumption with the help of the Synopsys PrimeTime-PX tool.

e The final step is to compute the error of the approximate multiplier. To achieve this,
matlab is used, where the comparison of the accurate and the approximate result

leads to the computation of the average error.

6.2 Error Analysis

In this section, we analyze the accuracy of the proposed multiplier adopting the mean
relative error distance (MRED) metric [45] due to its advantage of being less affected
by the input’s distributions. RED is defined as the arithmetic difference between the
accurate and the approximate product divided by the accurate product, while MRED is
the average of REDs for a set of given inputs. The possibility of having RED smaller than
2% (PRED) is another important metric used in [46] and [47] for evaluating approximate
radix multipliers. Considering the multiplication of two n-bit numbers, A and B, with the

P being the approximate product and P the accurate, the RED is calculated by:

|P—P|
REDp = ——F— (6.1)
|P|
MRED is calculated by:
RED
MRED — ZMAB (6.2)

where M = N — sum_wrong_inf — sum_NaN _red. (N is the number of inputs. The
metrics sum_wrong_inf and sum_NaN _red are gone to be explained in table 6.1.)
PRED is given by:

PRED =]% (6.3)

where pos the total sum of REDs being smaller than 2%.
In our design the output can be:

e a real number, or

e overflow (which is represented as infinite), or

e overflow (which is represented as zero).

Table 6.1 shows 5 combinations of P, P when RED is not computed by equation (6.1),

and 2 extra metrics for some of these cases:

86

Table 6.1: 5 specific combinations of P, P

P P RED sum_wrong_inf sum_NaN _red
infinite infinite 0 - -
infinite Not infinite | - sum_wrong_inf | -
(real number) +1
Not infinite | infinite - sum_wrong_inf | -
(real number) +1
Zero Zero 0 - -
zero Not zero (real | - - sum_NaN_red + 1
number)
Not zero (real | zero - - sum _NaN_red + 1
number)

As it shown in table 6.1, the value of sum_wrong_inf is increased by 1 when P is infinite
and P is not infinite, and vice versa. The value of sum_NaN _red is increased by 1 when P

is zero and P is not zero, and vice versa. So we compute two addition metrics as follows:

sum_wrong_inf

N

WRONG_INF = (6.4)

NaN _red = —sum,N]\c;N,red (6.5)

6.3 Evaluation at Circuit Level

This section includes the evaluation of the proposed design in terms of accuracy (er-
ror) and hardware (delay, area, power, and energy). Firstly, all the simulations were made
for a 16x16 floating-point multiplier (n = 16). In Table 6.2 all results of the half preci-
sion floating-point multiplier, which use the Hybrid Partial Product Perforation-Rounding
technique, in critical path delay are displayed. The error ranges from 0.05% to 3.33%.
The gain in delay, area, energy is up to 32%, 54%, 53% respectively. The NaN_red and
WRONG_INF variables are almost 0%.

In addition, all the simulations were made for a 32x32 floating-point multiplier (n =
32). In Table 6.3 all results of the single precision floating-point multiplier, which use
the Hybrid Partial Product Perforation-Rounding technique, in critical path delay are
displayed. The error ranges from 0.00% to 2.2%. The gain in delay, area, energy is up to
46%, 83%, 82% respectively. The NaN_red and WRONG_INF variables are almost 0%.

Figures 6.1 and 6.2 show the Pareto diagrams of approximation half and single precision
floating-point multiplier, respectively.

As it shown in figure 6.1, all the implementations with rounding = 8, as well as those
with per foration = 4 have error about 3.33 %. In rounding = 8, this increase in error is

probably due to removing from Y very significant digits (27*). Similarly per foration = 4

87

Table 6.2: Total Results of PR|, ,, in Critical Path Delay (binary16)

Multiplier| Delay | Power | Area | Energy MRED| PRED | NaN_red | WRONG
(ns) | (WW) | (um®) | (uW xns) | (%) | (%) (%) INF
(%)
CMB 0.76 | 3314 2388 2518.64 - - - -
PR|, 0.74 | 3668 2341 2714.32 0.05 100.00 | 0.00 0.00
PR| 4 0.75 | 3134 1875 2350.50 0.20 99.98 0.00 0.01
PR|yg 0.68 | 3720 2044 2529.60 0.81 92.27 0.03 0.03
PR|078 0.64 3163 1607 2024.32 3.24 42.84 0.09 0.11
PR|, 0.73 | 3327 2214 2428.71 0.05 100.00 | 0.00 0.00
PR| 0.71 | 3624 2166 2573.04 0.08 100.00 | 0.00 0.00
PR|, 4 0.71 | 2725 1792 1934.75 0.21 99.98 0.00 0.01
PR| ¢ 0.67 | 2971 1740 1990.57 0.81 92.12 0.03 0.04
PR‘LS 0.62 2801 1492 1736.62 3.24 42.80 0.09 0.12
PRy, 0.69 | 3682 2205 2540.58 0.20 99.98 0.01 0.01
PRy, 0.69 | 2904 1779 2003.76 0.21 99.99 0.01 0.01
PR‘ZA 0.66 | 3132 1792 2067.12 0.28 99.98 0.01 0.01
PR|yq 0.64 | 3059 1661 1957.76 0.83 90.84 0.03 0.05
PR|yq 0.60 | 2369 1301 1421.40 3.24 42.91 0.09 0.17
PR|; 0.64 | 2811 1583 1799.04 0.81 92.31 0.02 0.03
PR|;, 0.64 | 3048 1583 1950.72 0.81 92.11 0.02 0.03
PR|;, 0.62 | 2822 1481 1749.64 0.83 90.61 0.03 0.05
PR|376 0.58 2714 1415 1574.12 1.10 78.07 0.04 0.12
PR|;4 0.55 | 2312 1177 1271.60 3.31 42.92 0.09 0.39
PR|,, 0.54 | 2658 1303 1435.32 3.25 42.78 0.09 0.14
PR|,, 0.56 | 2786 1390 1560.16 3.25 42.76 0.09 0.16
PR\474 0.54 2275 1167 1228.50 3.26 42.75 0.09 0.21
PR\4 6 0.51 2294 1083 1169.94 3.33 42.81 0.10 0.43

88

Table 6.3: Total Results of PR|, , in Critical Path Delay (binary32)

Multiplier| Delay | Power | Area | Energy MRED| PRED | NaN_red| WRONG
(ns) | (uW) | (pm?) | (uWxns) | (%) | (%) (%) INF
(0)
CMB 1.00 | 8527 8690 8527.00 - - - -
PR|, ¢ 0.90 | 6442 5261 5797.80 0.00 100.00 | 0.00 0.00
PR|,,, | 0.87 | 6593 5216 5735.91 0.00 100.00 | 0.00 0.00
PR|,,, | 0.85 | 6295 4690 5350.75 0.01 100.00 | 0.00 0.00
PR|,,, |0.83 | 5248 3773 4355.84 0.03 100.00 | 0.00 0.00
PR|, 4 | 0.79 | 4863 3391 3841.77 0.10 100.00 | 0.00 0.00
PR|, s | 0.75 | 4641 3240 3480.75 0.41 100.00 | 0.00 0.00
PRl 5, | 0.72 | 4070 2692 2930.40 1.63 60.75 0.01 0.01
PR|;,, | 0.80 | 5820 3842 4656.00 0.01 100.00 | 0.00 0.00
PRlg,, |0.80 | 4286 3043 3428.80 0.03 100.00 | 0.00 0.00
PRlg1 | 0.76 | 4190 2928 3184.40 0.10 100.00 | 0.00 0.00
PRlgs | 0.73 | 4110 2648 3000.30 0.41 100.00 | 0.00 0.00
PRlgo | 0.70 | 3397 2243 2377.90 1.63 60.76 0.01 0.01
PRlg,, |0.73 | 3864 2543 2820.72 0.10 100.00 | 0.00 0.00
PR|gs | 0.73 | 3181 2113 2322.13 0.14 100.00 | 0.00 0.00
PR|g,s | 0.69 | 3208 2012 2213.52 0.42 99.99 0.00 0.00
PR|g5 | 0.64 | 3477 2006 2225.28 1.63 60.70 0.01 0.03
PR|,,s | 0.67 | 4416 2457 2958.72 1.63 61.03 0.01 0.00
PR|y10 | 0.68 | 3942 2179 2680.56 1.63 61.04 0.01 0.00
PR|,y15 | 0.67 | 3925 2176 2629.75 1.63 61.05 0.01 0.00
PR|,y14 | 0.64 | 3561 1957 2279.04 1.63 61.01 0.01 0.01
PR|y16 | 0.61 | 3546 1869 2163.06 1.63 61.04 0.01 0.02
PR|p15 | 0.59 | 3381 1690 1994.79 1.66 60.97 0.01 0.07
PR]10’20 0.54 2774 1438 1497.96 2.20 55.14 0.01 0.26

89

2750 2400
X
x APR x APR
2550 % x x 2200 %, %
X
EZBSU* 2000+ X
S 2150T 5 N w »
3 x 3! nx
1950 X X = %
&0 % 9 1600 x X
9 1750 X X L x X
X
B st x x 1400 :
X
1350 1200 xX
% x
150 ———— X 1000 ————t————
0 03 06 09 12 15 18 21 24 27 3 33 36 0 03 06 09 12 15 18 21 24 27 3 33 36
MRED (%) MRED (%)
077
0.71Fx x
X
0687 %
= X
:&65' x ¥
= 062t x x
a] X
0.59 %
0.56 X,
X
053+
X
0 03 06 09 12 15 18 21 24 27 3 33 36
MRED (%)

Figure 6.1: Evaluation of the proposed approximate half precision floating-point multipliers in
Pareto diagrams, when synthesized and operating at their critical path delay

5800% 5800
5400 5400
5000 - 5000 F
__ 4600 4600 F
&0 X
£ 42007 42000
< 3800 £ 3800k
s Is¢ X = |
7, 00 o 00 [X g
B 3000 X X £ 3000 %
2 2600 X <2600} x X X
noof ¥ X ix 200F x . %
1800 - 1800 F X
1400 i 1400 x
op_ s
0 02 04 06 08 1 12 14 16 18 2 22 0 02 04 06 08 1 12 14 16 18 2 22 24
MRED (%) MRED (%)
092
088
084
084K »
20761 x &
XX X
Zom : x
j2l
g 068 %
064 X
0.6 "
056
X
P S S S S S S SR . . A
0 02 04 06 08 | 12 14 16 18 2 22 24
MRED (%)

Figure 6.2: Evaluation of the proposed approximate single precision floating-point multipliers in
Pareto diagrams, when synthesized and operating at their critical path delay

90

35 25
K2 ¥
2 L5 %
A ¢ a) ;
= 15 3] 1
Mo m
2 05 2 0.5
0 0L\
4 10 ,
6 20
2 4 L i
| 2
;) 10
per foration(k) "0 rounding(m) per foratin(k) B rounding(m)

Figure 6.3: MRED variation of PR|k’m multiplier with respect to configuration parameters for
floating-point multiplier size (left) 16 bits, and (right) 32 bits.

removes from X the corresponding digits.

As it shown in figure 6.2, all the implementations with rounding = 20, as well as those
with per foration = 10 have error about 1.6 %. In rounding = 20, this increase in error is
probably due to removing from Y very significant digits (27°). Similarly per foration = 10
removes from X the corresponding digits.

Figure 6.3 presents how MRED is affected by the configuration parameters k and m
for floating-point multiplier size n = 16, 32. As shown, perforation introduces higher er-
ror than rounding, due to the significance of the bits that are pruned. Moreover, as the
bit-width increases, MRED is less affected by the approximations. As it shown for n =
16 MRED is up to 3.33 percent, when k=4 and m=6. For n = 32 MRED is 0.0 percent,
when k=4 and m=8.

Pareto frontier

For a given system, the Pareto frontier or Pareto set or Pareto front is the set of
parameterizations (allocations) that are all Pareto efficient. Finding Pareto frontiers is
particularly useful in engineering. By yielding all of the potentially optimal solutions, a
designer can make focused tradeoffs within this constrained set of parameters, rather than
needing to consider the full ranges of parameters.

Using the Pareto diagram (Energy-MRED), the approximations which lie on the fron-

tier are chosen. These approximations are:
° PR|O72, PR|170, PR|1’4, PR]3’4, PR]3,67 and PR|476, for binary16.

° PR]4712, PR]6,12, PR\6714, PR]&lﬁ, PR‘IO,lS’ and PR’10,20> for binary32.

The gain of area and energy, of each of the above multipliers are computed and are

shown in figure 6.4.

91

MRED:

MRED 1.12%

0.84%

P1RO P3R6

(@)

MRED:
0.21%

MRED:
0.05%

m gain_area
[] an Ererwv

3 37'%

MRED:

MRED

0-14%
MRED 0.03%
0.01%
0.01%

PaR12 PBR12 PBR14 PBR16

MRED:

(o)

MRED:
1.66%

P10R18

W gain_area

HE an |_energy
RED:
2 20%

P10R20

Figure 6.4: Hardware gains and accuracy results using (a) the proposed 16x16 approximate
multipliers, and (b) the proposed 32x32 approximate multipliers

For 16bit multiplier MRED ranges from 0.05% to 3.37%, the gain of area ranges from
7.29% to 54.65%, and the gain of energy ranges from 3.57% to 53.55%.

For 32bit multiplier MRED ranges from 0.01% to 2.20%, the gain of area ranges from
46.03% to 83.45%, and the gain of energy ranges from 37.25% to 82.43%.

6.4 Evaluation at Application Level

In image processing, a kernel, convolution matrix, or mask is a small matrix. It is
used for blurring, sharpening, embossing, edge detection, and more. This is accomplished
by doing a convolution between a kernel and an image. The general expression of a
convolution is:

where g(x,y) is the filtered image, f(z,y) is the original image, w is the filter kernel.
The effectiveness of the proposed approximate floating-point multipliers was assessed

by using them in an image blurring (Gaussian blur) application.

output is determined using the following equation:

The image blurring

1 1
Y(i+1j+1)= > >

m=—1n=-—1

X(@i4+14+m,j+1+n)*Gyu(m+2,n+2) (6.7)

where X(i,7) denote the pixel of the i-th row and the j-th column of input, and
Y (i+ 1,7+ 1) denote the pixel of the (i + 1)-th row and the (j + 1)-th column of output.

Gplur 18 given by:

92

Figure 6.5: Image blurring using the proposed approximate multipliers. (a) Original image
(Lena). Image blurring using (b) the accurate multiplier, (c) the PR|,, design, (d) the PR|, ,
design, (e) the PR|, , design, (f) the PR|[;, design, (g) the PR|; ¢ design, and (h) the PR, q
design

1 1 1
_ |1 1 1
1 21 £ 3k

Two different grayscale test images, Lena and cameraman, where used for the image

blurring application.

e 16x16 bit floating-point multiplier

Figure 6.5 presents the original image of Lena (Figure 6.5(a)), and the output images
produced by image blurring using an accurate 16x16 bit floating-point multiplier

(Figure 6.5(b)) and the proposed approximate multipliers (Figure 6.5(c)—(h)).

Figure 6.6 presents the original image of cameraman (Figure 6.6(a)), and the output
images produced by image blurring using an accurate 16x16 bit floating-point multi-
plier (Figure 6.6(b)) and the proposed approximate multipliers (Figure 6.6(c)—(h)).

e 32x32 bit floating-point multiplier

Figure 6.7 presents the original image of Lena (Figure 6.7(a)), and the output images
produced by image blurring using an accurate 32x32 bit floating-point multiplier

(Figure 6.7(b)) and the proposed approximate multipliers (Figure 6.7(c)—(h)).

Figure 6.8 presents the original image of cameraman (Figure 6.8(a)), and the output
images produced by image blurring using an accurate 32x32 bit floating-point multi-

plier (Figure 6.8(b)) and the proposed approximate multipliers (Figure 6.8(c)—(h)).

93

(e) V) 9 (a)

Figure 6.6: Image blurring using the proposed approximate multipliers. (a) Original image
(cameraman). Image blurring using (b) the accurate multiplier, (c) the PR|,, design, (d) the
PR|, , design, (e) the PR, , design, (f) the PR|;, design, (g) the PR|; design, and (h) the
PR|, s design

(e) ® ()] (h)

Figure 6.7: Image blurring using the proposed approximate multipliers. (a) Original image
(Lena). Image blurring using (b) the accurate multiplier, (c) the PR|, ;, design, (d) the PR|; ;,
design, (e) the PR|s ;, design, (f) the PR|g ;5 design, (g) the PR|, ;5 design, and (h) the PR|, 5
design

94

(e) ® (9) (h)

Figure 6.8: Image blurring using the proposed approximate multipliers. (a) Original image
(cameraman). Image blurring using (b) the accurate multiplier, (c) the PR|, ;, design, (d) the
PR, design, (e) the PR|s ,, design, (f) the PR[g ;4 design, (g) the PR|,, ;5 design, and (h) the
PR, 5 design

The quality of the blurring process may not be easily assessed by human eyes. To
measure the quality of the approximate output images, two metrics, the Peak Signal-to-
Noise Ratio (PSNR) and the Structural Similarity Index (SSIM), were used [48]. PSNR
is calculated as follows:

(6.9)

MAX/?
PSNR =10xlogg (L >

MSE

PSNR is most easily defined via the mean squared error (MSE). Given a noise-free

mxn monochrome image I and its noisy approximation K, MSE is defined as:

MSE = ml Z i([(i,j) — K(i,5))? (6.10)

Tables 6.4 and 6.5 display the PSNR (in dB) and SSIM results of different approximate
multipliers 16x16 bit utilized for image blurring on Lena and cameraman, respectively.

Tables 6.6 and 6.7 display the PSNR (in dB) and SSIM results of different approximate
multipliers 32x33 bit utilized for image blurring on Lena and cameraman, respectively.

The approximations which have SSIM = 1 showed the best performance as that
of exact multiplication. The values of SSIM which are over to 0.8 but they are not 1

correspond to good approximations as well.

95

Table 6.4: PSNR and SSIM values of the outputs of image blurring (Lena), using different
approximate multiplier designs (16x16 bit)

Lena

Multiplier PSNR (dB) SSIM
PR 0.2 o0 1

PR 10 o0 1
PR, 59.22 0.99
PR|s, 59.22 0.99
PR, 50.86 0.98
PR|, 50.86 0.98

Table 6.5: PSNR and SSIM values of the outputs of image blurring (cameraman), using different
approximate multiplier designs (16x16 bit)

Cameraman

Multiplier PSNR (dB) SSIM
PR|, 00 1
PR, 00 1
PR, , 55.17 0.99
PR|4, 55.17 0.99
PRl 48.20 0.87
PR|, 48.20 0.87

Table 6.6: PSNR and SSIM values of the outputs of image blurring (Lena), using different
approximate multiplier designs (32x32 bit)

Lena

Multiplier PSNR (dB) SSIM
PR|y;y 0 1
PR|g 1y 0 L
PRl 4 o0 1
PR|g 4 e 1
PR|1s 54.46 0.99
PR 90 44.46 0.95

96

Table 6.7: PSNR and SSIM values of the outputs of image blurring (cameraman), using different
approximate multiplier designs (32x32 bit)

Cameraman

Multiplier PSNR (dB) SSIM
PRl 15 © 1
PRlg 1, o 1

PRl 14 o 1
PRlg 6 o 1
PR|)13 52.99 0.95
PR| iy 40.66 0.80

97

Chapter 7

Conclusion

In this diploma thesis, inexact half and single precision FP multiplier designs have
been proposed. All the multipliers are implemented in Verilog HDL, synthesized using
Synopsys Design Compiler and the TSMC 65-nm standard cell library, and simulated
with Mentor Graphics ModelSim. The results from evaluation at circuit level shown that
the proposed approximate FP multiplier reduces delay, area and energy up to 32%, 54%,
and 53% respectively compared with the exact multiplier for 16bit, while incurring in an
error less than 3.4%. Also, the proposed approximate FP multiplier reduces delay, area
and energy up to 46%, 83%, and 82% respectively for 32bit, while incurring in an error
less than 2.2%. Furthermore, the effectiveness of the approximate multipliers was assessed

in an image blurring application.

99

Bibliography

[1]
2]

3]

IEEE 754-2008, ieee standard for floating-point arithmetic. 2008.

Ali Farmani. High performance hardware design of ieee floating point adder in fpga
with vhdl.

Ali Malik and Seok-Bum Ko. A study on the floating-point adder in fpgas. In 2006
Canadian Conference on Electrical and Computer Engineering, pages 86—-89. IEEE,
2006.

Ali Malik and Seok-Bum Ko. Effective implementation of floating-point adder using
pipelined lop in fpgas. In Canadian Conference on Electrical and Computer Engi-
neering, 2005., pages 706-709. IEEE, 2005.

K Deergha Rao, PV Muralikrishna, and Ch Gangadhar. Fpga implementation of
32 bit complex floating point multiplier using vedic real multipliers with minimum
path delay. In 2018 5th IEEE Uttar Pradesh Section International Conference on
FElectrical, Electronics and Computer Engineering (UPCON), pages 1-6. IEEE, 2018.

KV Gowreesrinivas and P Samundiswary. Comparative performance analysis of mul-
tiplexer based single precision floating point multipliers. In 2017 International confer-
ence of Electronics, Communication and Aerospace Technology (ICECA), volume 2,
pages 430-435. IEEE, 2017.

Y Srinivasa Rao, M Kamaraju, and DVS Ramanjaneyulu. An fpga implementa-
tion of high speed and area efficient double-precision floating point multiplier using
urdhva tiryagbhyam technique. In 2015 Conference on Power, Control, Communi-
cation and Computational Technologies for Sustainable Growth (PCCCTSG), pages
271-276. IEEE, 2015.

Alexander Aponte-Moreno, Alejandro Moncada, Felipe Restrepo-Calle, and Cesar
Pedraza. A review of approximate computing techniques towards fault mitigation in
hw/sw systems. In 2018 IEEFE 19th Latin-American Test Symposium (LATS), pages
1-6. IEEE, 2018.

V. Leon, G. Zervakis, S. Xydis, D. Soudris, and K. Pekmestzi. Walking through the
energy-error pareto frontier of approximate multipliers. IEEE Micro, 38(4):40-49,
Jul-Aug 2018.

101

[10]

[11]

[13]

[14]

V. Leon, S. Xydis, D. Soudris, and K. Pekmestzi. Energy-efficient VLSI implemen-
tation of multipliers with double LSB operands. IET Circuits Devices Syst., to be
published, doi: 10.1049/iet-cds.2018.5039, 2019.

Yuke Wang, C Pai, and Xiaoyu Song. The design of hybrid carry-lookahead/carry-
select adders. [IEFEE Transactions on circuits and systems II: Analog and Digital
Signal Processing, 49(1):16-24, 2002.

David Goldberg. What every computer scientist should know about floating-point
arithmetic. ACM Computing Surveys (CSUR), 23(1):5-48, 1991.

P-M Seidel and Guy Even. Delay-optimized implementation of ieee floating-point
addition. IFEFE Transactions on computers, 53(2):97-113, 2004.

Javier D Bruguera and Tomas Lang. Leading-one prediction with concurrent position
correction. IEEE Transactions on Computers, 48(10):1083-1097, 1999.

Stuart F Oberman, Hesham Al-Twaijry, and Michael J Flynn. The snap project:
Design of floating point arithmetic units. In Proceedings 13th IEEE Sympsoium on
Computer Arithmetic, pages 156-165. IEEE, 1997.

Nhon Quach and Michael J Flynn. Leading one prediction-implementation, general-

ization, and application. Computer Systems Laboratory, Stanford University, 1991.

Erdem Hokenek and Robert K. Montoye. Leading-zero anticipator (lza) in the ibm
risc system /6000 floating-point execution unit. IBM Journal of Research and Devel-
opment, 34(1):71-77, 1990.

Model technology, available at:. http://www.model.com/products/60/se.asp.

Xilinx design tools center: Free ise webpack 6.3i, available at:. http://www.xilinx.

com/.

Stuart F Oberman and MJ Flynn. Advanced computer arithmetic design. J. Wiley,
2001.

Taciano A Rodolfo, Ney LV Calazans, and Fernando G Moraes. Floating point hard-
ware for embedded processors in fpgas: Design space exploration for performance
and area. In 2009 International Conference on Reconfigurable Computing and FP-
GAs, pages 24-29. IEEE, 2009.

Honey Durga Tiwari, Ganzorig Gankhuyag, Chan Mo Kim, and Yong Beom Cho.
Multiplier design based on ancient indian vedic mathematics. In 2008 International
SoC Design Conference, volume 2, pages II-65. IEEE, 2008.

Ravi Kishore Kodali, Satya Kesav Gundabathula, and Lakshmi Boppana. Fpga im-

plementation of ieee-754 floating point karatsuba multiplier. In 2014 International

102

[27]

[30]

[32]

Conference on Control, Instrumentation, Communication and Computational Tech-
nologies (ICCICCT), pages 300-304. IEEE, 2014.

Sandesh S Saokar, RM Banakar, and Saroja Siddamal. High speed signed multiplier
for digital signal processing applications. In 2012 IEEFE International Conference on
Signal Processing, Computing and Control, pages 1-6. IEEE, 2012.

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Neural accel-
eration for general-purpose approximate programs. In Proceedings of the 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture, pages 449-460.
IEEE Computer Society, 2012.

Armin Alaghi and John P Hayes. Strauss: Spectral transform use in stochastic circuit
synthesis. IFEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 34(11):1770-1783, 2015.

Martin Van Leussen, Jos Huisken, Lei Wang, Hailong Jiao, and José Pineda de Gyvez.
Reconfigurable support vector machine classifier with approximate computing. In
2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages 13-18.
IEEE, 2017.

V. Leon, G. Zervakis, D. Soudris, and K. Pekmestzi. Approximate hybrid high radix
encoding for energy-efficient inexact multipliers. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 26(3):421-430, March 2018.

Vasileios Leon, Konstantinos Asimakopoulos, Sotirios Xydis, Dimitrios Soudris,
and Kiamal Pekmestzi. Cooperative arithmetic-aware approximation techniques for
energy-efficient multipliers. In Proceedings of the 56th Annual Design Automation
Conference 2019, DAC ’19, pages 160:1-160:6, New York, NY, USA, 2019. ACM.

Xin He, Guihai Yan, Yinhe Han, and Xiaowei Li. Acr: Enabling computation reuse
for approximate computing. In 2016 21st Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 643-648. IEEE, 2016.

Lawrence McAfee and Kunle Olukotun. Emeuro: A framework for generating multi-
purpose accelerators via deep learning. In 2015 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), pages 125-135. IEEE, 2015.

Nhut-Minh Ho, Elavarasi Manogaran, Weng-Fai Wong, and Asha Anoosheh. Efficient
floating point precision tuning for approximate computing. In 2017 22nd Asia and

South Pacific Design Automation Conference (ASP-DAC), pages 63—-68. IEEE, 2017.

Qiang Xu, Todd Mytkowicz, and Nam Sung Kim. Approximate computing: A survey.
IEEE Design € Test, 33(1):8-22, 2015.

103

[34]

[35]

[37]

[40]

[41]

[42]

[43]

Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Rinard.
Managing performance vs. accuracy trade-offs with loop perforation. In Proceedings
of the 19th ACM SIGSOFT symposium and the 13th European conference on Foun-
dations of software engineering, pages 124-134. ACM, 2011.

Mingze Gao and Gang Qu. A novel approximate computing based security primitive
for the internet of things. In 2017 IEEE International Symposium on Circuits and
Systems (ISCAS), pages 1-4. IEEE, 2017.

Tor M Aamodt and Paul Chow. Compile-time and instruction-set methods for im-
proving floating-to fixed-point conversion accuracy. ACM Transactions on Embedded
Computing Systems (TECS), 7(3):26, 2008.

Lakshminarayanan Renganarayana, Vijayalakshmi Srinivasan, Ravi Nair, and Daniel
Prener. Programming with relaxed synchronization. In Proceedings of the 2012 ACM
workshop on Relaxing synchronization for multicore and manycore scalability, pages

41-50. ACM, 2012.

Vinay K Chippa, Swagath Venkataramani, Srimat T Chakradhar, Kaushik Roy, and
Anand Raghunathan. Approximate computing: An integrated hardware approach. In

2013 Asilomar conference on signals, systems and computers, pages 111-117. IEEE,
2013.

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Architecture
support for disciplined approximate programming. In ACM SIGPLAN Notices, vol-
ume 47, pages 301-312. ACM, 2012.

Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis
Ceze, and Dan Grossman. Enerj: Approximate data types for safe and general low-
power computation. In ACM SIGPLAN Notices, volume 46, pages 164-174. ACM,
2011.

Yongtae Kim, Yong Zhang, and Peng Li. An energy efficient approximate adder
with carry skip for error resilient neuromorphic vlsi systems. In Proceedings of the
International Conference on Computer-Aided Design, pages 130-137. IEEE Press,
2013.

Rong Ye, Ting Wang, Feng Yuan, Rakesh Kumar, and Qiang Xu. On reconfiguration-
oriented approximate adder design and its application. In 2018 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD), pages 48-54. IEEE, 2013.

Parag Kulkarni, Puneet Gupta, and Milos Ercegovac. Trading accuracy for power
with an underdesigned multiplier architecture. In 2011 24th Internatioal Conference
on VLSI Design, pages 346-351. IEEE, 2011.

104

[44]

[45]

[47]

Georgios Zervakis, Kostas Tsoumanis, Sotirios Xydis, Dimitrios Soudris, and Kiamal
Pekmestzi. Design-efficient approximate multiplication circuits through partial prod-
uct perforation. IEEFE Transactions on Very Large Scale Integration (VLSI) Systems,
24(10):3105-3117, 2016.

Jinghang Liang, Jie Han, and Fabrizio Lombardi. New metrics for the reliability of
approximate and probabilistic adders. IEEE Transactions on computers, 62(9):1760—
1771, 2012.

Honglan Jiang, Jie Han, Fei Qiao, and Fabrizio Lombardi. Approximate radix-8
booth multipliers for low-power and high-performance operation. IEEE Transactions
on Computers, 65(8):2638-2644, 2015.

Weiqgiang Liu, Liangyu Qian, Chenghua Wang, Honglan Jiang, Jie Han, and Fab-
rizio Lombardi. Design of approximate radix-4 booth multipliers for error-tolerant
computing. IEEE Transactions on Computers, 66(8):1435-1441, 2017.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, Eero P Simoncelli, et al. Image quality
assessment: from error visibility to structural similarity. IEFE transactions on image
processing, 13(4):600-612, 2004.

105

107

