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Anayopeleton 1 aviypoy|, amodrixeuon xon dtavour tng mapoloug epyaciog, €€ ohoxArjpou
1) TWAUXTOS AUTAG, Yid EUTOPIXO oxoTo. Emitpénetar 1 avatinomon, amotixeuor) xat Slavou
YL OXOTO U] XEEOOOKOTUNS, EXTIAUDEVTIXAC 1) EPELVNTIXAC YUONG, UTO TNV Tpolnddeon va
OVAUPERETAL 1) TTNYT) TEOEAEUOTG o VoL SlaTneeiton To Topdy prvupa. EoontAuata tou agopoly
™ yeNon tne epyaoiug Yo xepBooXOTIXG OXOTO TEETEL Vol ameLYUVOVTOL TEOC TOV GUY-
Youpéa.

Ou amdeic xan To CUUTEQIOUATA TIOU TEQLEYOVTOL OF QUTO TO EYYPAPO EXPEALOUY TOV CUY-
Yeoupéa xou BeV TEETEL var epUNVELDEL 6TL avTimpocwmnelouy Ti¢ enionuec Yéoeig Tou Edvixold
Metoéfou Iloduteyveiou.



ITepiindn

Y& auTh TN SimAwpaTixy, elodyoupe TNy évvola g Buotdlaas vrné Awatapayég yioo Yuvou-
aotikés Anuompacies, eumveucpévol and TNy Teoceatr douleld oto Endowment Effect xou
otnv evotdielo U dlatapayéc o TEolAruaTa OTwe To Minimum Multiway Cut xo to
k-Median. Auté Bondder oto vo Eemepdooupe To SLdpopa eyt Yior QLAUAHUELS Xou un-
PLoAAUELS YNy avVioUoUE OF O YEVIXEG XAAOELC oUVOETHoEWY valuation, étwg submodular
xou subadditive.

1o mAaiolor ToU GYEBLGUOU UNYAVIOUMY, UECK TOU OPIoUOU UAC Yio TNV evoTdielo UTd
OLatapary €, o omolog exeAlel Ue QUOIOAOYLXG TEOTO 6TL 1) AUGT) EVOS G TLYULOTUTIOU LIS GUV-
dLaoTIXAC OnuoTpaciag Oev TEENEL TEETEL vor ahhdleL LT pxpég Blatapayéc, amodeiloue 6Tt
UE ot amhy) ToRdAANAT un-@uioAin dnuonpacio uropolue va Bpolue eixoha TNy BEATIOT
Aoor oe W euctody| onuonpacta ye subadditive valuations. Emlong yio evotadeic sub-
modular dnuonpaociec, anodelaue ot 1 [apdhhnin Anponpacio Acttepne Twrc, Peloxel
™V BéhTiotn Ao, xadog xou etvan guhahing, ue tnv évvota tng Ioopponiog Nash. Erilong
Behtuwooue TO TEONYOUUEVO X4Te QEAYUN TOU % yioo T dnuompacio Kelso-Crawford yua
submodular cuvaptricelg, detyvovtag oTL av Eva oTypéTuno wag submodular dnuompaciog
ebvon apxetd evotadée, tote 1) dnuompacio Kelso-Crawford Peloxel nédvta tny Bértiotn Ao,
Emniéov, otov topéa tou Tiunuatos tns Avapyias oe omhéc dnuompacicg, detloue 6Tt
TO 4T QPEAYUATA TOU % v IapdAdnies Anpompacies Aeltepns Tiuns yioe submodu-
lar cuvaptroeic mapauével tight axodua xan yio Ayo evotadeic dnuonpacies, €wg 6Tou yia
xdmotar T evoTdielog xon v, malpvel eyyunuéva Ty i 1. T v nepintwon twv
HapdAAnAwy Anporpacicor Hpatng Tiuns y XOS cuvaptioelg, BEATIOOAUE TO TEONY0U-
HEVO %dTe Pedrypa Tou 1 — %, oelyvovtag 6Tl 660 To ELCTHHC YivETOL EVOL G TLYULOTUTIO LIS
onuomnpactaug, 1660 avldvel 1o xdtw @edyupa Tou TwhAuatog e Avapylaug, €mg dTou mdpet
™V TWh 1, aouunTwTixd.

A€Eeig KAedid: Yuvouvaotinéc Anupornpacies, Xyedioaouoc Mnyaviouwy, Avdiucr tépa
ano ) Xewpotepn lepintwon, Buotdieia und Avotapoyés, Tlunua e Avapyiog






Abstract

In this thesis, we introduce the notion of Perturbation Stability for Combinatorial Auc-
tions, inspired by the recent works on the Endowment Effect and on the Perturbation
Stability of problems like Minimum Multiway Cut and k-Median. This helps overcome the
various impossibility results for truthful and non-truthful auctions for the more general
valuation classes, like submodular and subadditive valuations.

In this work, for the case of pure mechanism design, via our definition for perturbation
stability that conveys in a natural way that the solution of an instance of a combinatorial
auction should not change under small perturbations, we proved that by using a simple
non-truthful Parallel Auction, one can find the optimal allocation for stable subadditive
instances. Also for stable submodular instances we showed that a Parallel Second Price
Auction finds the optimal allocation, while at the same time being truthful in an Fz-Post
Equilibrium way. We also improved the previous approximation ratio of % of the Kelso-
Crawford Auction for submodular valuations, by proving that, if a submodular instance
is stable enough, then the Kelso-Crawford Auction finds the optimal allocation.

Additionally, for the case of Price of Anarchy in simple auctions, we showed that the
lower bound of % for Parallel Second Price Auctions with submodular valuations remains
tight even for highly-stable instances, until it “jumps” to a guaranteed value of 1. For the
case of Parallel First Price Auctions for XOS valuations, we improved the previous bound
of 1— é, by showing that as an instance of a combinatorial auction becomes more stable,
the lower bound for the Price of Anarchy increases, reaching the value of 1 asymptotically.

Keywords: Combinatorial Auctions, Mechanism Design, Beyond Worst Case Analysis,
Perturbation Stability, Price of Anarchy






Euyapiotisg

PTédvovTac 01O TEAOC TV POLTNTIXGY UOU YEOVLY, Jo HEAN Vo EUYURLOTHCE TOUG ov-
Ypwnoug mou ye Borinoay va gTdow €56 TOU elyot TWEAL.
Hpdta, Yo Hieha var euyaploTAow TOV TUTEEA XU TOV TUTTOV OV TOU ATAY TEVTOL Yio UEVAL
TEOTUTIOL (¢ AVUIPWTOL X0 WG ETLOTAROVES X0l UE EVEUTIVEUTAY VOL XAVG O,TL €Y XAVEL UEYEL
ofjuepa. Erlong, Yo Adeha va euyopiothon tn untéea You %ot ToV adERPS oL TOU HToV
mdvta exel Yo uéva, GTOTE TOUG YEEICTNXAL.

X1 ouvéyeta, Ya Helo vo euyaploThon Tov emBAEmoVTd You, x. Pwtdxn, o omolog ue
EVEUTVEUGE Vo ooy ok Ue Tov Topca Tng Ocwpntuixc IIAnpogopinyc and to TenhTo pdinuo
oto omolo Tov elya xar 0 omolog ue xadodRYNoE PE TIC GUULOUAES TOU GE QWUTO TO TEWTO
HOL EQELUVNTIXG EpYoO.

Emunicov, Ya Hieha va euyaplothow 6houg Toug giloug Tou Eyw xdvel xatd Tn dLdpxela TS
poltnotic pou, oL omofol Exavay Tor TEAEUTOLN TEVTE YPOVIoL AEEYUOTA.

Téhocg, Yo Hleho Tdve amd dhoug va evyoptotiow Ty Aledla, ue TV omolo Tépaca OAeC
HOU TIC QOITNTIXEG OTIYPES, EUXOAES 1) DUOXOAESG, xou Ywpic TNV omola autéd To TaldL TV
TEVTE YpOVKY Va fTay TOAL o 8Uox0h0 xou TOh) o PoupeTo.

[évyne
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Chapter 1
Extetopévn EAAnvixd Tlepiindn

Y10 xe@dhato owtd, cUVOPILOUUE TO TEPLEYOUEVO TNG ToE0VCOS OITAWHATIXAC, OiVOVTOC
Baoixolg oplopols xou Vempruata, ywelc arodellec.

1.1 Ewoaywyn

Me tov épo Byedoopde Mnyaviopoy (Mechanism Design) evvoolue tov xhddo e
Ocwplag Houyviwv, otov omolo avtl va mpoomadolue amhd vo TeofAégoupe TV EYwio-
T CUUTERLPORE. TwV oty TeY, Tpoonadolue vo Tnv puiuicovue yéow uLoag dtadwaciog-
unyoviopoU. Iho cuyxexpyéva, oxomdg Yog €lvol, UEGK XATOLG QUTOUUTOTOUEVNG Ot
adwaoloc (Bn)\a&r’] Tov pnxocvtcpox’)), TOL EYWICTXE TOUS GUUPEROVTAL VoL TopaAANAL ovTon
UE TO XOWMVIXO XONO.

e xdie oTiypldTUTO EVOC Uy aviucol €youue éva oUvolo N and mabyteg, pe mAnddporiuo
n. Ernionc undpyetl éva obvoho O and miavéc exfBdoeic Tou unyoviopon. Kdie natytng i
€YEL WAL LOLWTIXY oLUVEETNOT GUVOAOL V5, 1) oTtola AéyeTon valuation function xau avTioTolyel

x&de miovr ExPoacm ot par Py aevNTIXY| TEOYUOTIXA T
V; - O — R*

"Evo unyaviopog 6éyetar xdmola oo and toug atyteg xan anogacilel Ty Tehxt| €xBoon
w omd 10 6UVoAD O, xo®S X XATOLo TANEWUT TOU TEENEL VoL xAVEL xde TalyTng. 2Lxomog
TWY TANPGUOY EVOL Vol UTOYEEDGOLY Toug TtakyTeg vo Bondnoouy’ otny yeytotonolnon tng
xowovixic eunueplog (Social Welfare), mou elvon ico pe 1o 1o dpotoya Y . v;(w). Xxonde
TV TOUY TGOV EVOL VoL UEYIOTOTORo0LY TNV Yenodtntd toug (utility) mou eivon {on e o
valuation tng éxfaong peiov v mhnpwur mou Toug INTAUNNKE VoL TANPOGOLY.

H mo amh) xonyoplio unyoviouodv etvar auth Tne dueong amoxdiudng (Direct Revelation).
Edw ot matyteg dlvouv otov unyavioud we £lcodo xdmola GuVEETNoT|, OTOU QU TOUY TNV AA-
Vel Yo elvon To mparypotind valuation toug. Ye auth) TNV xoTNYOElo UNYAVIOUGY OXOTOS TOU
Yyedtaopol Mnyovioumy etvar 1 uhomolnom yiog dtadxactag-unyoviolol, otny onola UEcw
TWY TANPWUGY ToL Yol UTOAOYLG TV UETE TNV ATOXGALYY TWV CUVIPTAGEWY TV TALY TGOV, OL
Ty TeEC var Umoypevovtor’ vor Touv Ty akfdeto. ‘Evog pnyovioudc mou Tto meTuyalvel auto
Aeyeton QrhaAing xon autd Tou TETUYOEVEL EfVOL 1) CTEATIYIXY| TWV TOLY TWY TOU TEOCOLOEL T1)
UEYIOTN YenowoTnTa va efvan var Touy Ty akrjdeta, SnAady| vor amoxahdouy TV Tearypatixn)
CLVAPTNOTY| TOUC.

13



O mo yVwoTég unyaviouog Tou XATaEQVEL Vo efvan TowTOYEOVaL xou QLAAUNG xon Vo
ueytoTtonolel TNy xowvwvixt| eunuepla eivar o VCG, o omolog mapouctdletar avahuTtind oty
evotnta 3.4. Meow xdmolwy meplmhoxwy TANeWU®Y 1) UEYICTOTOINCT TNG YENOTIXOTNTA TV
Touy TV cupPalvel pOVo OTaY UENIOTOTOLETOL XoU 1) XOWwVixY| eunuepia, To ontolo onuaivel
OTL ouu@épel Toug TakyTeg Vo amoxaAbdouy Ta TporyUaTd Toug valuations. AvoTtuyde o
UNYAVILOOC auTOC Efvar adOVOTO VoL EQpUOGTEL 0TNY TEdEn BLOTL 1) UAoToinor) Tou cuvidwg
amoutel exVeTING yEbdVO.

O tpdmog ye tov omolo meEpypdpnXay TEW oL unyaviouol elvon TOAD yevxog. Me auTh
™V epyooio pag evilapépouy ot cuvduaoTés dnuonpasiec (Combinatorial Auctions) émou
Vewpolpe OTL £youue €va oUVoLo amd dlapopeTind avtixelyeva M, TAndudtntog m, xat To
valuation function xde mailxtn 6éycton cav dploua €vo UTOGUVOLO avTIXEWEVKDY Tou M,
mou elvon Tar avTixelpeva ou dEyeTon oTo TéAOg TNg Onuonpaciog. Edw, n mocdTnTa Tng

AOWVWVIXTG EuNuEplag looUTAL e
n
> vilS)
i=1

6mou xée S; efvon éva utocivoro Tou M, Eévo and to undhoira: S; NSy = 0, dtav i # k.

Mot ToA) onuavTiny évvola 6Ty Ly edlooud Mnyaviouomy xot YEVIXOTERX OTNV OLXOVOULXN
VYewpla etvon auth tne Walrasian Ioopporniac (Walrasian Equilibrium,).

Optopde 1 (Walrasian Iooppornia). Walrasian Isoppotio ovoudleton éva Siévuoua Tiuoy p
X0 L0 OLOVOUT) TOV AVTIXEWEVODY ST, ..., Sy, TETOLL WOTE Xde mabyTng ¢ Vo elvon EuyaploTn-
uévoc’, dnhadt| ue Bdom To BLdvucua TGV P To 6UYOAO S; Tou To €yel dwiel va ueyloTomolel

NV YENOTXOTNTA TOU
ul(S) =) 2ul(S) =)
JES; jES

yia xdde unocUvoro avtixeyevwy S C M.

To ywtl auth 1 évvola elvan t6c0 onuoavTtixy ebvar ebxolo va To xatohdfBer xavelc: Ay
Beolue %xdmoto BLEVUGU THIWY TOL xavoToLel TNY GLVITXN AUTY, TOTE Yo OGAOUS TOUG Toky TEC
1 TO omAT) o QLAOAUNG GTEATN Y Elval ATAd VoL TEEOUY TO UTOGUVOAO AVTIXEIUEV®Y TTOU
mpotiwoLy. To enduevo Vewpnua avadetviel Tpaypatixd t6co duvaty eivar  Walrasian
Ioopporia.

Ocdpnua 1 (lo Ocwenua Poindiac). Eotw e Walrasian Ioopporia, pe didvvopua
Tipy p ka1 owvoun Si, ..., Sy. Toéte n dwavoun Si, ..., S, peyioTOTOIEl THY KOWWVIKT) €UN-

Hepia.

'Etot pag yiveton ebxola xatavontoé nota etvon 1) 80voun tne Walrasian Isopponiog xat téc0
amho6 elval Vo YENOWOTOWGOUUE TIC THES TNG Guat T L€poue. AucTuY KOS TO UEYUAUTEROD
TeOBANUa TS lvon 6Tt 1) UoeEY) TNE ebvon ey yunuévn uévo oe Teploplouévo chvoro valuation
function, yvwoté we Gross-Substitutes.

o mpoyweHoouuE 6T ETMOUEVO XEQdAato, Vo oplcoupe Twpa T 3 Paocinéc xAJoE amd
ouvapTthoelg valuation, pe Tic omoleg Yo aoyorndolue opydTepa.

Opwounog 2 (Submodular Euvaptﬁost@). M cuvdptnon v : M — Rt Aéyeton submod-
ular, ov yio xdde utooivola avixewévey S C T C M xou yio xd0e avtxeipevo j ¢ S
Loy Ve

v(SU{j}) —v(S) = v(TU{j}) —v(T)
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Optopog 3 (XOS Xuvapthoeic). M ouvdptnon v : M — R Aéyetan XOS, av undpyouv
StovOopato (ay, ..., a,) YE UN opvnTXés Tiée, omou yio xdle [, ay = (azn, ..., Giy), GOTE Vo
oy Vet Yo xéde S € M

v(S) = max Z a;

jes

Optowdc 4 (Subadditive Xuvaptiioewc). M ouvdptnon v : M — R Aéyetan subadditive,
av ya xdde unooUvoha avixewevwy S, T C M woylel

v(S)+u(T)>v(SUT)

1.2 IIepax tng Avdiuvong Xeipotepng Ilepintwong

Auté eivan éva olvTouo xe@diato 6mou amAd Yo avagépouue TNV évvola g AvdAuong
mépo and ) Xewpotepn Hepintwon (Beyond Worst Case Analysis). Méow tng avdhuong
auTrc TeoonadoUUE Vo EEMEPACOUUE TEOBANUATA TOU SNULOVEYEL 1) AVIAUCT) TNE YELROTERNC
neplntwone.  To mo yapaxtnoloTind mopddetyyo téTolou meofBiuatog eivon 1 pédodog
Simplex mou yenowornoteitar yioo Ty eniivon tpofAnudtwy Fpopuixot Hpoypauuotionol.
Hapdho mou yio w1 pedodo auth Eyouv Beeldel mapadelypata yio o omtola 1) emlAvoy| Toug
yeedleton exdeTind ypodvo, ebvan 1) To upltepa YENOYLOTOOUUEVT uéW080¢ Yia To TEOBANUA
auté. Omndte yatl yenowonotolue auth Ty pédodo xat byt xdmolo dhAn Tou Eyel amodety Vel
OTL AOVEL OTIOLOBHTOTE TEOBANUN O TOAUWYUUIXO YEOVO!

H andvinon oc autd 1o epdTnua diveton péow wiag pedodou avdiuong mou Aéyeton Eo-
wouuévne Avdhuone (Smoothed Analysis.) Me outh Ty ovdhuon yoc evilopépet Oyt o
YeOVog exTéNEomG evOg alyoplluou oTr yelpdtepn mep(mTwor), oAAd oAAG ot Wior Tuyaio
Teployh) YUpw amd Tt yewdTeen tepintwon. 1o cuyxexpéva, otn pédodo Simplex yog ev-
OLUPEREL O UEGOG YPOVOG TOU YEELdCETaL £Val G TLYULOTUTIO VoL TEECEL QU0 TOU TPOGVECOUUE OTd
otouyela g ewobdou Tuyaio I'vaovoctavd Odpufo e Tumxy anoxhion o. Eyer amodery el
TO TOEOXATEL VEDETUL

Ocwenua 2. Ye éva mpdpAnpua I'papjixot Hpoypappatiopol e d petafAntés kair n me-
propiouols, dua npootelel OdpuPos I'kdous Tumkng amdkAions o, ota otoiyeia TnNg 10660V
V1a TOUS TEPIOPIOHOUS, 0 EKTIUWUEVOS XPOVoS Tpe&iuatos eval

O(d?c=%\/logn + d*1log®? n)

BAénouye pe autd 10 Yedpnuo 6t 1 miavotnTa vo yeetaotel 1 uédodoc Simplex exdetind
YEOVO €lval TOAD et o TPOTOTOLAGOVUE Alydt TNy apyxn elcodo. 'Etot yivetar ebxoha
xatovonto YTl 1 uédodog Simplex mpotydton and dAloug uedodoug, TUEdAO TOU UE TNV
xhaoowt| Evvola ebval yelpdtepn.

M dhhn pédodoc avdhuone mépa and Ty avdAucT YEWOTERNC TEpinTwong, eivan auTh Tng
Euvotddelag und Awrtapayéc (Perturbation Stability). Me outh v uédodo npootodolye vo
Yoo TNElCOLUE XATOL GTIYULOTUTIO YwElC VONUa XaL xdmola ue vonua. I'evixd otiyuotuna
UE voruo YewpolvTon autd mou €youy duvaty| BEtiotn Abon. T va yiver auty| 1 évvola To
xaTovonTY| o¢ oxe@Tolpe To TEOBANUa Tou Clustering.
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Y10 mpoéAnua Tou clustering mpoomadolyue va ywplcoupe onueio xdmotou yHeou o ouddeg,
OOoTE ol o€ (BLot OUADA VoL €Y OUY UXET) ATOC TAGT), EVG OTUELXL OE OLUPOPETIXES OUADES VoL
€youv peyaAlTepeg amootdoelc. Autéd to medPAnua eivor NP-Hard. Tlapého tng duoxoiiog
Opwe va Bpolue TN AOon oc €va OTOLOONTOTE GTLYUOTUTO UTopoUUE Vo Bpolue elxola
v Béhtiotn Adorn oe oTiywotuma Ye vonuo. [ vo mocotixonotjoouue moOco vonua
EyEl Vo OTIYMLOTUTIO, AEUE OTL Elvon Y-euoTaIES Ay UTOPOUUE VoL UEWWGOUUE TNV UTOCTUO
OTOLOBNATOTE 2 ONUElWwY xoTd TaEdryovTa v xat 1 BEATIOTN AUom va Topopeivel (dta. Auth 1
évvola tocotixonolel T6co evoTadfg eivon 1 BEATIOTN AloT. Ioylbel To mapoxdte Yedpnua.

Ocwenua 3. Av éva otryudtuno clustering eivar 2-evotadés, tote pmopolue va ppolje
Ty Béltiotn AVon o€ ToAvwy ke Xpovo.

1.3 Evotdlsia und AiwatogayEs o ZUVOLACTIXES

Anporpacieg

Topa Yo e@apudcoUUe TIC EVVOLEG TNG TEONYOUUEVNE EVOTNTAS OE GUVOUNC TIXES OMUO-
mpooiec.  Iho ocuyxexpwéva, Yo yenowonotfoouue v évvola tne Euctdelag und Ar-
atoapoyéc. o and autd dume Ya opicoupe v €vvola Tou (Endowment Effect) oc ouv-
duvaoTég Onuornpacies.  Mougdva ue o Endowment Effect, duo xdmolog malytng €yet
ouvdptnon valuation v(-), o ToU SOCOLPE AATOLO LTOGUVORO AVTIXEWEVWY S, TdTE oia
Tou yio Tor avTieetpeva autd Yo cwEndel xon 1) xouvolpyla Tou cuvdptnom Vo yiver v5e(),
6Tou

v(T) =v(T) + (= 1) - v(SNT)

omou T'C M xau to « Sebyvel moco 1oyved eivon to Endowment Effect: Aya oo = 1, t67e

Ol CLVUPTNAOELC TUPAUEVOLY (Bleg xou poxTxd 0ev umdpyel Endowment Effect, eve 6co
UEYOAWVEL TO 1) emmEOcVETN adior TOU amoxTOUV Tol avTIXEiuEVa ToU GUVOROL S WS TEOC
10 omoio yivetar To endowment, auEdveTol.

Topa ye v évvola Tou Endowment Effect, umopolue va oploouue néte €va otypdTuno
UG ouVBLHOTIXNG OnuoTpactiog Eyel vonua, dnhadr Tov oploud Tou ToTe elvor y-suoTadés.

Opiowog 5. M cuvduaotixt| dnuonpacio AEyeTon y-euoTodi|c av 1 BEATIOT SLoWERLOT) TRV
AVTIXEWEVWY EIVOL LOVOBLXT| Xal TUPUUEVEL HOVaOLXY| dua xdvoupe endow oe Evay auvdaipeTo
Tyt éva audaipeTo avTixeluevo xotd 7.

Me amholotepa Aoyia, Yo 6molov malytn ¢ € N xou avtixeluevo j € M, n értiotn Ao
oTg GUVURTAGELS U1 (+), ..., Un(+), Topapével BéEATIoTn oTig ouvaptioels v (+), ..., vl (+), émou:

o Av k #£i, t6te v (S) = v (5), VS C M

o T tov madytn 7, vi(S) = vi(S) + (v — 1) - v (SN{j}), vSC M
To mo dueco anotéheoyo Tou TaEATAVE 0plool elvol To Afupa Tou axoloudel, Tou delyvel
Tov TPOTO pE Tov omolo ot euoTtadelc dnponpaocieg elvar o EUXOAEG AO TIC YEVIXESG OMUO-

Tpaolec.
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14 Z / 7/ /. Z 7 z
Adppa 1. Ye pua ovvdvaotikn dnuompacia, n oroia efvar y-evotadrs, ya kdOe Levydpr
Tay Ty i, k ka1 yia kdOe avtikeijievo j mov aviker ato ovvodo O;, mou €lval ta avtikeiueva
mou divovtal otov maiytn i otny Pértiotn davoun, wyvel

0;(0;) —vi(O; = {j}) > (v = 1) - v (j)

Me ot To Mupo Yo uTopEGOUPE Vol XAVOUUE OAEG TIG ATTOOEILELS TWV ETOUEVKY XEQURALWY,
omou Vo 6etloupe T TAeovEX TN £Y0LY Ol eucTaElC ONUOTEACIES O OYEDT UE TIC YEVIXES
ornuoTpacies.

1.4 Mnyovicpol pe N ywelg evotdisia

Ye auTO TO %EPIANO Vol BOVUE XYTOLL AT TOL TO OLACTUOL ATOTEAEGUOTOL YLOL UMY AVIOHOUC
YioL oUVOLACTIXESG BNpoTpacie, xadng xaL TWE VT umopoLy va BeAtivydolv yia euctaelc

UMY OVIOUOUC.

Apywd, Ya oploouye v évvola tou awthpotog ofiog (Value Query), oto onolo napouctd-
Coupe o€ xdmolov Toly TN €vo UTOCUVORO o6 OVTIXEIUEVA Yo UTOC YOG OMOVTAEL UE TNV
ofior Tou Yoo autd Tar avtixeipeva.  Xpetalopaote Tor outrdator adlog yotl av Vélaue va
UAOTIOLACOUUE €Vay UNyovioUd dueong amoxdiudne ywelic autd, Yo énpene vo udouue OAn
N ouvdptnon allug xde matytn, Tng onolag To péyedog elvan exdetind wg mpog To M.

Oa avageplolue €8¢) oe 500 Unyaviogolg Tou yenoiwonotoly athiuata aliag. O mewTtog
ebvou yio subadditive cuvaptrioeic xou ywplc va ebvon griaking tetuyalvel Adyo TpocEyyiong
T0 TOAU 2, ev® 0 6eUTEROC bvan @rhakfiing yia submodular cuvaptroelg xan TeTuyakvel Adyo
Tpocéyylone 1o Tohd /m. Kau yio toug 2 éyel anodeydel Tt Sev umopoiv vo Bedtiwdolv
X0l VoL €Y0LY XAAVTEQOUS AOYOUC TROGEYYLONS.

Euelc, yenowonot®vtog Ty €vvola Tng eUoTIVELNS OTECUUE ToL TUEATEVE PEAYUNTH UE TOV
€& omAG Unyavouo:

Algorithm 1 ITopdhinin Anuonpacio
: @éO€S1:SQZ...:Sn:@
: for j € M do
‘Eotw i o talytne mou yeytotonotel 1o v;(j)
Adoe to avixeipevo j otov mabyt 4, Onhadh Véoe S; «— S; U {5}
end for
enéotpede  dovoun (S, ...S5y)

A S

Arnodel€aye oTt yio subadditive dnuompacicg mou elfvan 2-eucTadelc, o ToEUTAVE UNYAVIOUOS
(ywele vou ebvon prhaliine), Beloxer v Bértiotn koo,

Ocwenua 4. Eotw a ovvdvaotikn onuonpacia je subadditive ovvaptrjoeas. Tote o
unyaviouds 1 Ppioker tny Béxtiotn Owavour) twy avTKEUEVwY 0€ TOAVWYUHIKG XPOvo,
kdvovtag pdvo n - m areiuata aéia.

‘Apo 6oV unyoviopdd 1 mpocéoouye xon TANPOUES, UTOPOVUE VoL TOV XAVOUUE PLAIARUN Yia
TNV O TEPLOPIOUEVT XhdoT Twv submodular cuvaptcewy. Kdde tolytng ¢ mou talpvel éva
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oUVOAO S;, TANPAOVEL TO AYPOLOUA TV HEYIOTWY AELOY TWV GAAWY TOLY TOVY YLl To AVTIXEUEVA
ToU S, ONAadY| av o mabyTng k yio To avTixeluevo j xatédeoe Tiun by, TOTE 0 TalyTNG ¢ TOU

Thee To oOVOho S; TANPWVEL
P =) maxby

JES;

Autdc o unyaviopoe eivan yYvwotoc we Hopdhhnin Anpornpactior Acttepne Twrc Parallel
Second Price Auction.

Ocwenua 5. H HapdAAnAn Anpornpacia Aedtepng Tiuns yia 2-evotalel§ ourdvaotikég
onuonpacies ue submodular eivar gilaAndng ue tny évvowa tou ex-Post Incentive Com-
patibility, dnAadn av dAor o1 maiytes Aéve tny aAnlea, dev ouugéper kavévay va alldéer

oTPATNYIKN.

Iponyouuévne avagépoue tor antruato o&lag, To omolo efvan €vag TEOTOC YLl TOV UNYAVIOUO
VoL aAANAETLORG e Toug TakyTeg. TTdpyel €vag dANOG YVWOTOS TEOTOG YL TOV UMY UVIOUO
Vo ahAANAETBEA P Toug TalyTeg, Toe demand queries. K6 mopoucidloupe o€ €vay maly T
war Tyr Yo xdde avtixelyevo xon ouTodS Yag amavTdel e TO GOVOROTIOU UEYLOTOTOEL TNV
YeNoTxoTNTd Tou, dnhadn av v(-) elvon 1 cuvdpTtnon o&iag Tou xat N Tur Tou divouue oE
x&de avtixeipevo j elvon pj, T0TE 1 amdvTnot| Tou eivan To GUvolo S, Yl To omolo Loy Vel

v(S) =) py =)= > p,NT C M
jes JET
‘Evag dudonuog pnyoviopde mou yenowonotel demand queries eivon o Kelso-Crawford.
Autoc o unyaviopog augdvel oTadloxd TIC TWES Yo Tar avTixelueva Tou Yéhouv ol Taly TeC:
Ye xde yOpo xdie malyTne €yel xdmolo avTIXEUEVOL Xou ONADVEL (péow evoc demand query)
Tola ETTAEOY avTixelueva VEAEL Yior VoL UEYIO TOTOLAGEL TNV YENOTIXOTNTA TOV. X T1 CUVEYELX
Yio T ETTEOCVETA avTiXEluEVR Xdmolou Taly TN audvovTon oL TYES ToUg Xal 6ivovTol OTOV
Ty tn. Auto emavolopfaveTton u€ypt oL TWES VoL Yivouv apxeTd Ynhéc HoTE xavévag TolyTng
vou uny 9€Aet va mpel emmhéov avTixeiueva.

Algorithm 2 H dnuonpacio Kelso-Crawford

1: @é08512522...25n:®

2: Oécepy=pr=..=pp =0

3: while true do

4 Poraxdde nalytn i v to T;, mov peyotonowet v (S;UTh) =D g, Pj— D ier (P +€)
5: Av vy xde modytn i woylel T; = (), enéotpede ) dwvopr| (S, ..., Sy)

6: AropopeTtind Stdhege tuyaia madytn @ yio tov onoio T; # 0.

7 Oéoce S, + S, UT;

8: D x&de k # i, Oéoe S, <+ S, — T;

9: [No xdde j € T, Oéoe p; < p; + €

10: end while

Iapdho mou autde 0 alyoprduoc dev etvar QUAaAUNG, lvor apxeTd Bidonuog, 61Tt uTtohoyilel
yioe TV xhdor twv Gross-Substitutes cuvapthoewy wa Walrasian Iooppomia, anodewviov-
Tog €10l TNV UToedh) Toug o auty TV xAdor. T'a submodular cuvapticelc utohoyilel pia
AOom mou ebvan 2-tpoceyYloTiny NG BEATIOTNG.
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Euelc delape 6TL xou autdS 0 Uy vavIopog BEATIOVETOL oY 1) TO OTLYpLOTUTIO Ebvon evoTtardéc.
1o ouyxexpéva, av etvor 3-evotadéc ndvto Boloxet TNV BEATIOTN BLAVOUY| TWV AVTIXEUEVWY.

Ocwenua 6. Aua ypnooromjoovue tn onporpacia Kelso-Crawford oe yna ovvdvaotikn
dnuonpacia pe submodular ovvaptioes nov eivar 3-evotaing, tére avti ya pia 2 mpooey-
yiotikd AVon), Ppiokoupe tny féltion.

Y auté T0 xEPIANO EldopE TS apxeTOl amhol xou dloucUNTIXOL YNy UVIOUOL TOL BEV EYYUGOV-
ToL TO60 XOAY ATOTEAEGUOTA, UTOROUY VoL Bpouy TNV BEATIOTY) BLUVOUT TV OVTIXEWEVGY.

1.5 To Tilunua tng Avapylag o Anuonpacieg

¥e owt6 T0 xePdIano Vo Solpe to Tiunua tne Avopyioc (Price Of Anarchy) oe cuvduooTixég
onuonpactes. Ilpw oplcoupe Tt elvor awtd, Yo TEETEL VoL BWOOUNE TOV 0pIoHO YLl 2 Baoixég
woppotiec Nash. H mpwtn eivon 1 opuyric woopponia Nash(Pure Nash Equilibrium) otny
omolo oL Taly TEC OEV EMTEENETAL VoL £YOLY TUYAUES OTEATNYLXES.

Oploupoc 6 (Awyf]g Iooppomnia Nash). Xe ulae cuVOLUCTLIXY| dnuoTeacio Eva TEOPIA o
bids b = (b, ..., b,,) anotehel Auy1| Ioopponia Nash, oe o nopdhhnin Snuonpasio [pdhtne
1 Aeltepng Twrc omou xde avTIXElUEVO XATUAYEL UE TN p;(b), av xdde malyTng 4, yio
x&e BropopeTnd Bidvuopo amd bids bj, dev Tov cuugéper vo tovtdeet bj, dnhadh

vi(Si(b) = > pi(b) Zwi(Si(bl,b)) = > pi(b),by)

j€Si(b) j€Si(b},b_;)

2N ouvéyeta éyoude v Avdpetn loopponia Nash(Mized Nash Equilibrium), otny onola
ETUTPETOVTOL OTRUTNYES ME TUYOTN T

Optowode 7 (Avdueixtn Ioopponia Nash). Ye pa cuvbuaotixr Snuonpocio éva Teogih and
xotavopég ond bids D = (Dy, ..., D,), anotehel wo Avduewxtn looppornio Nash, oe wia
ToEdAAnin dnuornpacto Ipdtne 1 Acttepnc Tyhc 6mou xdde avTIXEUEVO XATOARYEL UE TIUT
p;(b), av x&de naixtne 7, yia xdde diapopetin| xatavoury D, 8ev cUU@EREL TOV i VoL dAAIEEL
Vv oTpoTnyixr Touv o D, Snhad

~ ) ~(D;,D_;) .
j€S;(b) j€Si(b)

‘Eyovtog oploet Tic Sudpopeg ioopponiec Nash, urnopolue va opicouue 1o tiunua e Avap-
yloc: Eivou (oo ye tov ehdyioto Adyo tng xowmvixrg sunuepiog 6Anmy twv Iooppomumy, mpog
™ BérTioTn xowwvixn eunueplo. o Avdueteg Iooppomniec otov aprdunty| €youpe T uéon
Ty g wopotioc. 1o ouyxexpuéva:

~ Ebep (XZien vilSi(b)))
ZieN Ui(Oi)

Apyixd Vo avapepdoiye ot Tapdihniec Anuompoaocieg Ilpdtng Twihc, Tou elvor TopdUOLES UE
autéc e Acttepng Tire, ahhd xdde matytng yio xde avTixeluevo Tou Tpe TANPOVEL TNV
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T mou movtape. o autée Tig dnuompaocies, €yel amoderyel ot i Aptyelc Ioopponieg
t0 Tiunua tng Avopyloc etvoar mdvta 1, to omolo onuatver 6tL Bploxeton mdvto BéAToT
drovour| Twv ayodwv. Avotuyng, Auryeic Iooppotiec oe Tlopdiiniec Anuonpaciec Iodhtng
TG uTdpyouy av ot uévo av uttdeyel Walrasian Iooppotia, to onolo 6w avardooue xou
TPONYOULUEVWS BEV Efval EYYUNUEVO YL TIC TEQLOCOTEPES XAUOELS CUVAPTACEWY.

‘Ocov agopd Avduewteg Iooppotieg oe Hapdhiniec Anponpacieg Ilpwtng Tyng, ta medy-
wortor ebvon o evdtapépovta: ‘Eyel anoderydel 6Tt to tiunua tng Avapylaug yio XOS cuvopth-
oelc elvon TouAdyoTOoV 1 — %, xododg 1o 6TL UTdEY oLV LlooppoTieg Tou £youv auTd To Tiunua.
Auto onuabver oTL ywplc xdmoto tapandve ototyeio dev yiveton va eyyunlolue yeyalitepo
Tlunuo Avopyloac yior authy TNV TepinTwon.

To mpdrypata oArdlouy av urtodécouue 6Tl oL dnuonpaocteg yag elvor euotadeic. Anodellopue
OTL AOLUTTWTIXG w¢ Teog To ¥ ol Tapddiniec Anuonpactec Ilpwtng Tiurg ebvan BéATioTeC.
ITio cuyxexpéva

Ocwenua 7. Ye kdle y-evotaln ovvdvaotikn onuonpacia e XOS ouvaptrioers to tiunua
S Avapyias yia Mixtés XtpatnyikéS eivar touddyiotoy %

Meyohitepo evotapépov yio To xouudTt Tne eus Tdetac topouctdlouy o IlapdAiniec Anuo-
mpooieg Aetepng Tung. Eow eneldr ol otpatiyinés Tov mouxTov lvor o amhés, Yo avapep-
Yolue yévo oe Auryelc Ioopponiec. Xto yevixdtepo mhaioto €yel amodetydel ot yiao XOS
oLvopTAoES To Tiunua g Avapylag elvor Tdvta ueyYaAlTERO amod %, xododg xou €yel Boedel
Topddetyuo ue tétoto Tlunuo.

‘Apo utovécoupe 6Tt oL drnuoTpacies pog eivon xa y-euctadelc, utopolue Yo XOS cuvapth-
OElg Vo amodelouue AOyo Topdpolo Ue autdv mou amodetloue xou otic aupdhhniec Anuo-
mpaoieg Ilpwtng Trg, onAady| ot o Tiunuo v Avapylag etvon Touldyiotov 1—:?

To mo evTuTWOolaXd amoTEAESUATO Hog OULS Elvan yia y-euoTaelg dnuompaciog we submod-
ular ouvopthoec. AmodelZape ot to Tipnua e Avapylog cuveyilet vor uropel vo ebvon 3,
660 v < 3. Ta mpdrypota duwe aArdlouy porydalor OUme 6Tay To 7y Yivel 3 xon Tévew.

Oewpnua 8. Ye kdle 3-evotalny ouvvdvaotikn dnuonpacia pe submodular ouvvaptioes
to tiunua s Avapyiag eivar ndvta 1.
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Chapter 2

Introduction

Imagine that you have in possession of an important painting, for which you no longer
have any use of, maybe because your walls are now full of even more important paintings.
Because the painting is important and you have no use for more money, you want to make
sure that it is taken by someone who really values its worth, despite how much he pays.
Basically, you wish to sell it to the person who values it more.

In terms of Mechanism Design, this is called an auction, where the goal is to maximize
the Social Welfare, meaning the total value produced when a good is allocated. In a more
complex case, there might be many different goods, which depend highly on each other:
For example, when auctioning two paintings, a bidder might not value both paintings
together higher than what he values a single painting. A simple explanation for this is
that he might not have enough space for both paintings and simply have use of only
one of them. The opposite is also a probable scenario: Each painting alone might have
small value, but together their value may be tenfold the sum of their independent value,
because together form some part of a collection.

Unfortunately, although this problem might sound easy, another difficulty has to be taken
into account. To illustrate this, consider a naive solution to the first problem with the
single painting: Simply ask each bidder for their value and give the painting for free
to the one that says the highest number. This would simply not work, because as the
“algorithm” implies, the painting is not given to the bidder with the highest value, but
to the bidder who can come up with a number higher than that of the other bidders, i.e.
there is no guarantee that anyone will say the truth.

To counter this problem, bidders are required to give some sort of payment in order to
show that their value is as high as they claim it to be. This can be modeled by imagining
that each player wants to maximize his wtility, i.e. the value he gets from the items he
acquires, minus the payment he is asked to make.

All the above ideas, are the primary concerns in the field of Game Theory, where any
setting involves a set of players who try to selfishly satisfy their own goals. Mechanism
Design, the science of rule making, tries to regulate this selfish behavior, in order to
achieve a common goal, like the maximization of Social Welfare. Mechanism Design
could also be characterized as reverse game theory, because instead of analyzing and
predicting the selfish behavior of the players in a system, it tries to create a system in
which the best strategy of every player is to be truthful.
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2.1 Single-Parameter Auctions

In this section we are going into a little more detail about auctions, where the whole
information that each bidder has private and is not publicly known can be represented
with a single real number. These are the simplest environments one can have. For more
details see section 3.2.

The setting is the one described above: We have 1 item and n bidders and we want to give
the item to the bidder with the highest value for the item, information which is hidden
from everyone else. In order to do that, we are going to ask everyone to submit a bid,
which if the players play truthfully should be their hidden value. The first naive solution
is to give the item for free to the bidder who bids the highest value. As explained before
this auction is doomed to fail, as every bidder is going to be completely dishonest and
try to simply outbid everyone else no matter his value.

The second solution is the following: Simply give the item to the bidder with the highest
bid and have him pay his bid. This may sound like a good and natural solution at first,
but it has a number of problems: Even the bidder who should win the item has no clear
strategy, because he does not know the values of the other bidders. He does not know
whether the other bidders have values close to his, in which case he should bid close to his
value, or if the other bidders have values much lower than him, in which case he should
bid low. This auction, known as First Price Auction, favors bidder who are likely to take
risk and not necessarily the bidder who should win the item.

The solution to this problem came from Vickrey, in 1961. [1] shows that the Vickrey-
Auction has all the properties that one would want: It “forces” the bidders to truthfully
bid their value, by making this strategy strictly better than any else, and also finds the
bidder whose value is the highest and allocates him the item. All these are achieved
simply by having the bidder with the highest bid, pay the second highest bid. Because
of this payment rule, the Vickrey auction is often called Second-Price Auction.

In 1981, Myerson generalized this result for auctions where more than one items can
be allocated and the bidders’ private information again can be represented with a real
number. In order to make this setting more understood, think of an item for which we
have several copies and each bidder is interested in only one copy. Myerson’s Lemma
([6]) states that a mechanism “forces” truthfulness and achieves maximum social welfare
if and only if it is monotone and makes each bidder pay his externality. By monotone we
mean a mechanism in which if a bidder increases his bid he is not going to receive less
items. To calculate the externality of a bidder an explicit formula is used, which can be
found in section 3.2. Myerson’s Lemma simply states that for each setting (examples will
be given below), there is a unique payment that checks our goals (maximum welfare and
truthfulness), thus also showing that Vickrey’s Auction is the only auction that achieves
all these goals.

In order to better understand the multi-unit, single-parameter environments for which
Myerson’s Lemma is, let us present an auction more complex than that described before:
We have a total capacity W and n bidders, each with a known size w; and a private value
v;. We can think each w; as the length of a TV ad, while W as the total time we are
allowed for advertisements. Our goal is to use the ads whose total size fit our capacity
and also achieve maximum welfare over all other feasible solutions. This is basically a
knapsack problem, where the values of the items are private. Myerson’s Lemma gives an
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explicit mechanism that guarantees truthfulness and maximum welfare (unfortunately in
pseudo-polynomial time).

The last result of this section involves Sponsored Search Auctions, where we want to
illustrate the usefulness of Myerson’s Lemma in the real world. Here our items are slots
for ads in a search result page, which people have a probability to click (it is only logical
to assume that the higher the slot the higher the probability). Again, each bidder has
a private value that represents the profit if his add is clicked. Our goal is to auction off
these slots, where the highest slot goes to the bidder with the highest value. Each time
a search is performed by a user, an auction takes place in order to be decided what ads
are going to appear on each slot. The auction format can only be the one that Myerson’s
Lemma dictates. It is estimated that sponsored search accounted for 98% of Googles
revenue in 2006 [18].

2.2 Multi-Parameter Auctions

In this section we are going to analyze the generalization of Single-Parameter Auctions,
Combinatorial Auctions. In the previous setting we presented Myerson’s Lemma, which
in most cases provides a mechanism that checks all our goals (maximum social welfare
and truthful bidding). Unfortunately in Combinatorial Auctions mechanisms either are
not that simple or they simply do not exist. Sometimes, in order to achieve a good
approximation ratio we are required to drop the requirement for truthfulness.

In this setting we generally assume that there is a set M that includes m distinct items,
for which each bidder has a valuation that is represented by a set function, which maps
each subset of the items to a positive real number, i.e. v : 2¥ — R*. We always assume
that each valuation function is non-decreasing, meaning that the value of a subset does
not decrease when more items are added, while also that each valuation function is
normalized, meaning that the value for the empty set is always 0.

Because the definition above is too general, in order to hope for better results we need
to restrict out valuation functions. We are going to analyze 3 classes of valuation. The
first and more strict of the 3 are submodular valuations, where for any sets S, 7T it holds
that v(S) +v(T) > v(SUT) +v(SNT). The most strict class is the one of subadditive
valuations, where the inequality constraint is like the one in submodular valuations but
more slack: v(S) + v(T) > v(S UT). The valuation class that lies in-between the two
are XOS valuations (also known as fractionally subadditive), where each function is the

maximum of some additive functions, i.e. v(S) = max, <Z ics am->.

Previously we stated that in Multi-Parameter Auctions there is not something as good
as Myerson’s Lemma, that can solve most of our problems. This is not completely true,
as there exists a mechanism that works for every auction with general valuations, but
has one major downside: It usually runs in €(2™) time. This mechanism is known as the
VCG Mechanism and it was introduced by Vickrey [1], Clarke [3] and Groves [4]. It is a
generalization of Myerson’s Lemma, although this time it is not the only mechanism that
meets the desired properties. The key to the VCG mechanism is again on the pricing
policies: Each bidder is charged his externality, see section 3.4 for more details.

Someone may have already noticed that even if every bidder was guaranteed to be truth-
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ful, simply the input might be too large for us: Each bidder’s support for his valuation
function is exponential in m. In order to solve this problem, we assume that we can ask
bidders queries, which gives us the necessary information for their valuation. Now we are
going to see the 2 most common queries, Value Queries and Demand Queries.

2.2.1 Value Queries

Value Queries are the simplest queries one can think of. A bidder is given a set of
items and is asked to answer with his value for said set. Value queries have been used
on many mechanisms in order to approximate the optimal value, as it has been proven
that even for submodular auctions where the valuations are considered publicly known,
finding the optimal allocation is NP-hard [8]. One of the most popular algorithms that
2-approximates the optimal allocation is that of [8], which will also be analyzed here
section 6.1.1. This algorithm again assumes that valuations are publicly known. In the
same setting is the algorithm of Vondrak [20], providing an approximation ratio of —%,
which is optimal for the value query model[12].

Regarding mechanisms that use value queries and also “force” bidders to be truthful, the
optimal one was made in [21] and provides an approximation bound of y/m. In 2011
it was shown in [22] that value queries cannot achieve better approximation, even with
randomized protocols. Having seen these tight bounds for value queries, we hope that
the next type of queries are going to provide better results.

2.2.2 Demand Queries

Demand queries are slightly more complicated than value queries. In a demand query a
bidder is presented with a price for each item and is asked to pick the set of items that
maximizes his utility. It turns out that demand queries are strictly stronger than value
queries, because one can simulate a value queries with polynomial demand queries, but
the opposite requires an exponential number of value queries. For this reason we believe
that with demand queries we are going to achieve better approximation results.

A known result that shows that demand queries are stronger, is in the case where bidders’
valuations are publicly known. The approximation ration of < that was first proven
with demand queries [14], can be decreased to —% — 107, as shown by Feige and Vondrak
[15]. The strength of the demand queries can also be seen by the lower bound for this
problem: In [24] it was shown that it is impossible to get a better approximation ratio
than 23: for problems where the valuations are submodular. Let us also add the results
of [16], in which a non-truthful algorithm for the more general subadditive valuations was
found, with an approximation ration of %

Now we are going to see how demand queries affect our ability to make mechanism
that force truthfulness. The first non-trivial results where that of [13], in 2006, prov-
ing an expected approximation ratio of O(log”m). Later, in 2007 a better ratio of
O(log mloglogm) was found in [17] and then in 2012 an even better ration of O(logm)
for XOS valuations in [26]. The current state of the art was found in 2016 and is the
mechanism of Dobzinski [33], which guarantees an expected cost of O(y/Ilogm) for XOS
valuations, while also making truth-telling strictly an optimal strategy for each bidder.
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All these results have much better approximation ratios than the optimal O(y/m) ratio
that value queries provide, proving how better demand queries are.

2.3 Price of Anarchy in Auctions

Price of Anarchy (POA) is very important nation of Algorithmic Game Theory. It was
first used by Papadimitriou in [9] and it shows the inefficiency of equilibria: It is equal to
the ratio of the gain/cost of the equilibria with the worst outcome and the the gain/cost
of the optimal solution. It has been used in many cases, one of the most known being
in congestion games, where in [10] it was shown that probably the simplest non-trivial
network has the worst POA.

In our setting we are going to use POA to characterize how “good” a simple auction is,
if we leave the bidders bid selfishly. Simple Auction usually refers to Parallel First or
Second Price Auctions, where each bidder submits a bid for each item and each items
goes to the bidder with the highest bid, for which he pays either his bid (first price) or
the second highest bid (second price).

In general, first price auctions are considered better, because they have higher Price
of Anarchy: When the bidders are allowed only pure strategies, the equilibria always
achieves maximum welfare, but unfortunately such equilibria doe not always exist. For
randomized strategies in [28] it was shown that POA for First Price Auctions is at least
1—% for XOS valuation, while for subadditive valuations it is at least %, proven in Feldman
et al.

On the other hand Second Price Auctions have worse results: For XOS valuations it was
proven in [31] that the POA is at least %, a result which can easily be verified as tight.
For subadditive valuations, in [27] a lower bound of § was found for the price of anarchy

in Second Price Auctions, which is twice as bad as the one in first Price Auctions.

2.4 Beyond Worst Case Analysis

In this section we are going to do a complete turn and talk about a completely different
field: Beyond Worst Case Analysis. In this field the goal is to analyze algorithms, usually
for hard problems, in a different manner than that of the classical analysis, which is
to simply find the worst case input. The reason for this is that we want to uncover
some information about the problem/algorithm, which is hidden because of our simplistic
worst-case view.

There are many ways to analyze a problem other than the worst case. In this work we
will focus more on Perturbation Stability, but we are also going to see Smoothed Analysis,
which is more easily understandable. In Smoothed Analysis we look at a hybrid of worst-
case and average-case analysis: An adversary picks a “bad” input and then some random
process perturbs it a little. What we are interested in is the expected running time of the
perturbed input. If this expected running time, for every starting input, is guaranteed to
be small, e.g. polynomial, then we can assume that any input that yields large running
time, e.g. exponential, is not natural and unlikely to come across.

To illustrate this notion let us present the results of [11], concerning Dantzig’s famous
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simplex algorithm, that has been used since the 1940s to solve Linear Programs, but for
which infinitely many examples have been found that run in exponential time. Spielman
and Teng [11] showed that given any LP instance for which the input matrixes have been
perturbed slightly, the simplex method has polynomial expected running time. One of
the corollaries of this is that given a “hard” instance, we can perturb it slightly, thus
slightly changing its solution, and solve it with the simplex method in polynomial time.
This result reveals the reason why simplex is the dominating algorithm in practice, even
though by the classical sense its running time is exponential.

In order to make Smoothed Analysis a bit more understood let us also present the problem
of Local Max Cut, where given a graph we are required to find a partition of the vertexes
in which if we move any vertex to the other part, the total weight of the edges whose
vertexes are in different partitions will decrease. To find such a partition, in the worst
case we are required to do an exponential number of iterations. However, if we perturb
the edges of the graph with random noise, then if the graph has a maximum degree of
O(log n) the expected running time is polynomial [23] and for general graphs the expected
running time is quasi-polynomial, i.e. n©(°¢™ [35]. Both results look at the problem at
a different angle, to show that empirically it is easy to find a Local Max Cut.

Now let us see Perturbation Stability. Here we try to focus our analysis only on instances
of a problem that matter. To quantify when an instance matters, we usually look at
how stable the optimal solution is: If for any small perturbation of the original instance
the final solution changes, then the optimal allocation of the original instance is not
stable and thus not meaningful. Just like before, let us present a few examples to make
Perturbation Stability better understood.

First consider the problem of clustering, where we are given some items and we are
required to partition them into a fixed number of clusters, such that items in the same
cluster are more similar to each other, than items in other clusters. This problem is again
a well-known NP-Hard problem. However in [34] they proved that if a clustering instance
is 2-stable, i.e. we can distort the similarity of any pair of elements up to a factor of
2, then we can find the optimal solution in polynomial time. This results shows that it
is easy to find partitions when they are distinct enough, which is often the case at real
world instances of clustering problems.

Finally, let us present another example for Perturbation Stability, that of Minimum
Multiway Cut, where given a graph and k vertexes and we are required to partition the
graph into k partitions, each containing exactly one of the k vertexes. Even for k > 3 this
is a NP-Hard problem. Makarychev, Makarychev, and Vijayaraghavan in [30] showed that
if a Minimum Multiway Cut instance is 4-stable, i.e. by dividing any edge up to a factor
of 4 the optimal partition stays the same, we can recover the optimal solution simply be
solving a Linear Program. This LP generally does not have an integral solution, meaning
that its solution does not directly reveal the optimal solution, but in the 4-stable case
it does exactly that: Its solution is integral and it encodes in a natural way the optimal
solution.
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2.5 Our Contribution

Our aim is to use ideas from Beyond Worst Case Analysis in Mechanism Design, because
as we saw in the worst case, most auction problems are hard. Because in combinatorial
auctions our aim is to partition the items to the bidders, just like in clustering and
minimum cut problems, we are going to use Perturbation Stability in order to characterize
some instances as meaningful and other some non-meaningful. In particular, we will call
an instance stable when the optimal allocation remains uniquely optimal if we perturb
the instance in the following way:

1. Pick one arbitrary bidder ¢ and one arbitrary item j.

2. Increase for bidder ¢ the value of the bundles that contain j proportionally to his
value for item j as a singleton.

Thus if we pick a bidder ¢« and an item 7 such that in the optimal allocation i does
not get j, then we weaken the optimal allocation because now bidder ¢ want j more.
This notion of stability was inspired by the Endowment Effect (see section 5.2). The
exact definition (stated formally here section 5.3), is that when the instance is ~y-stable,
a bidder’s valuation changes from v(-) to:

V(S) =v(S) + (v —1)-v(SN{j})

where S is any subset of the items. Now, when an instance is stable, intuitively, the
optimal allocation has to stand out in some way which makes it have the compelling
properties required to improve the results above. Specifically, the main property of -
stable instances is that the marginal value for any item that a bidder receives in the
optimal allocation, is greater than (v — 1) times the values of that item as a singleton for
any other bidder, i.e. if an item j belongs to O;, where O; is the bundle that ¢ receives
in the optimal allocation, then for any other bidder £ it holds

vi(0;) —vi(O; — j) > (v = 1) - v ({j})

Using this property we have shown a number of interesting results. First we improved the
previous bound of /m for submodular mechanisms that are truthful and use value queries.
We showed that when the instance is 2-stable and bidders have submodular valuations,
then in a parallel Second Price Auction bidding truthfully is always an ex-post Nash
Equilibrium, i.e. if all other bidders bid truthfully, then the dominating strategy is to
bid truthfully as well.

For 2-stable combinatorial auctions with subadditive valuations we showed a result sim-
ilar, but weaker, with the previous one: If an instance is 2-stable, then one can find the
optimal solution with polynomial many value queries, in polynomial time, but there are
no truthful guarantees.

For 2-stable submodular valuations we also showed that there always exists a Walrasian
Equilibrium, a well-known notion in economics, which in general is not guaranteed for
submodular valuations. This result is similar to that of multiway max cut [30], because
in both cases, if the instance is stable enough then each LP, which under normal circum-
stances has a fractional optimal solution, is integral.
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For the setting of Price of Anarchy, in Parallel Second Price Auctions we found that
the upper bound of 1 is tight even for (3 — €)-stable submodular instances, while for
submodular instances that are 3-stable the Price of Anarchy is always 1. In Parallel First
Price Auctions, we showed that the POA of Mixed Equilibria is equal to 1 asymptotically
for XOS valuations. Specifically, we showed that y-stable XOS instances have guaranteed
POA at least %

2.6 Organization of the Thesis

First in chapter 3 - Basic of Mechanism Design we are going to properly define all the
basics of Mechanism Design that one needs to read this thesis. Specifically, we are
going to start with Single-Parameter Environments and then we are going to analyze
Multi-Parameter Environments. In the latter we are going to see more specific notions
than what we saw in the introduction. In particular first we are going to present many
more valuation classes, then analyze Linear Programming for Combinatorial Auctions
and finally see what a Walrasian Equilibrium is, along with the famous First and Second
Welfare Theorems and their proofs.

In chapter 4 - Beyond Worst Case Analysis we will define and analyze in more detail the
different tools of Beyond Worst Case Analysis that we saw earlier: First we are going to
see Smoothed Analysis and then Perturbation Stability.

In chapter 5 - Perturbation Stability in Combinatorial Auctions we define exactly what
Stability in Combinatorial Auctions is, along with the important lemmas that directly
reveal the usefulness of stability in the settings that it is used. Before we do that,
at the start of Perturbation Stability in Combinatorial Auctions, we analyze what the
Endowment Elffect is, which is an important scheme that inspired our definition for stable
combinatorial auction instances.

In chapter 6 - Mechanisms we analyze the basic mechanisms that exist in each problem for
each valuation category, along with our stability-based mechanisms, which provide better
guarantees than the previous ones. First we analyze Direct Revelation Mechanisms and
then Auctions with demand queries.

Finally in chapter 7 - Price of Anarchy in Auctions we define the different kinds of
equilibria and then present all the state of the art theorems for POA for First and
Second Price Auctions. After this we present our results for POA for stable combinatorial
auctions.
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Chapter 3

Basic of Mechanism Design

In this chapter we are going to give some fundamental definitions for the area of Mech-
anism Design. First we are going to talk about general settings. Then we are going to
talk more specifically about single-parameter environments, where each bidder has only
1 private piece of information and finally we are going to talk about the much more
general and complex setting, multi-parameter auctions where bidders have many private
information.

3.1 Preliminaries

Mechanism Design involves a set of players and an auctioneer. We always play the part
of the auctioneer, who is trying to allocate some goods to the players. Our goal is to
design a mechanism, which gives some kind of guarantee. There are many guarantees,
which we will talk about later. In order to achieve these guarantees, we will sometimes
ask the players for some kind of payment.

Definition 3.1 (The basic Setup). We assume that we have n bidders and a set of feasible
outcomes . Each bidder has a private valuation v; : O — R*, which is unknown to us
and a set of actions A;. After collecting a vector of actions a = (ay, ..., a, ), where for each
i, a; € A;, the mechanism uses a function f : (A4, ..., 4,) — O, that maps each vector of
actions to a feasible outcome. The mechanism also uses a pricing policy, which is a vector
of functions p = (p1, ..., p), where for each i, p; : (Ay, ..., A,) — RT. Finally each bidder
7 has a utility u;, which gives the final gain of i and depends on his private valuation,
the outcome and the result of the pricing policy. The bidder’s goal is to maximize their
utility. The pair (f, p) defines a mechanism.

The definition above describes a mechanism as general as possible. We are going to start
simplifying the setting. First we are going to restrict ourselves to bidders out have quasi-
linear utility functions, meaning their utility is simply their valuation minus the price
they have to pay.

Definition 3.2 (Quali-Linear Utility Function). Let v; : O — R™ be a valuation of a
bidder i, (f,p) a mechanism and a the vector of the actions of the bidders. We will say
that bidder i has quasi-linear utility, if

ui = vi(f(a)) — pi(a)
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From now on we are going to only talk about bidders who have quasi linear utility
functions. Another simplification that often happens is that bidders do not report actions,
something which is very general, but bids. A bid is what a bidder claims his private
valuations to be. A mechanism that ask from each bidder a bid, is called direct revelation
mechanism, because each player is asked to directly reveal his valuation.

Definition 3.3 (Direct Revelation Mechanism). A mechanism (f, p) is called a Direct
Revelation Mechanism, if each bidder’s action is to report a bid b;, where b; = O — R*.

In this chapter we are going to assume that each mechanism is a direct revelation mech-
anism, unless stated otherwise.

Now we are going to talk about one of the first goals of our mechanisms: To predict what
kind of strategies the players should play. First we will define what a dominant strategy
is. A dominant strategy is simply a bid (or more generally an action) that maximizes the
utility of a player, regardless of the bids of the other players.

Definition 3.4 (Dominant Strategy). Let (f, p) be a Direct Revelation Mechanism. For
a player 7, a bid b; is called a Dominant Strategy, if for any other bid o} and bids b_;

0i(f(bi;bi)) — pi(bi, boi) > vi( f(b], b)) — pi(b, )

One of our goals is for our mechanism to be truthful. A mechanism is called truthful if
for each bidder his dominant strategy is to bid truthfully, i.e. report his true valuation.

Definition 3.5 (Truthful Mechanism). A mechanism (f, p) is called Truthful, if for every
bidder ¢ and any valuation function v;, reporting as bid v; is a dominant strategy, i.e. for
every bid b; and every vector of bids b_;

vi(f(vi,b-i)) — pi(vi, b_i) > vi(f(bi,b_i)) — pi(bi, b_;)

If a mechanism is truthful, each bidder has nothing to lose by reporting his true valuation,
thus helping us, the auctioneer, learn the whole picture in order to fulfill our goals. For
completeness, let us define truthful mechanisms, in a randomized context where we use
a set of deterministic mechanisms.

Definition 3.6 (Universal Truthful). A randomized mechanism {f* p*};—; ., which is
a set of deterministic mechanisms (f!,pt), ..., is called Universally Truthful if every one
of his deterministic mechanisms is truthful.

Another goal of our mechanism is that every bidder should not regret telling the truth.
This means that if he reports his true valuations, his utility should not be negative. This
property is called individually rationality.

Definition 3.7 (Individually Rationality). A mechanism (f,p) is Individually Rational
if for every bidder 7, every valuation v; and any vector of bids b_;

vi(f(vi, b)) — pi(f(vi, b)) >0

Definition 3.8 (DSIC). A mechanism (f,p) is called DSIC, if it is both truthful and
individually rational.
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Mechanisms that are DSIC are (part of) the holy grail: Every bidder always wants to tell
the truth, no matter matter what the other bidders are doing and also has no incentive
not to participate, since his utility cannot be negative.

Up until now our only goal is DSIC. This can be trivially achieved, if our mechanism
outputs a fixed outcome and 0 payments. As one might have guessed this has no interest,
meaning we should raise our bar a little. What follows is some quantities that are of
great interest for us, the auctioneer.

Definition 3.9 (Social Welfare). The Social Welfare of an outcome w € O is defined as
SW = ui(w)
i=1

The Social Welfare is what is best for the bidders as a whole, because it maximizes their
total valuations.

Definition 3.10 (Revenue). The Revenue of a mechanism (f,p), for a given vector of
bids b is defined as

o S
=1

The Revenue is the total of the payments of all the bidders and generally has the purpose
to please the auctioneer. We will not go into more detail about the revenue of an auction,
as from now on our goal is going to maximize the social welfare.

In order to summarize this chapter, our goals (plus a new one) are the following: Create
mechanisms that maximizes the social welfare, while being DSIC, all in polynomial time.
This means that the mechanism is going to force each bidder to bid his true valuation
(because this will be his best action), while at the same time ensuring that the output
outcome maximizes the sum of the bidders’ values, while calculating it in polynomial
time.

3.2 Single-Parameter Environments

In this section we are going to talk about the simpler setting, where each bidder’s private
valuation is not as complicated as a function, but can simply be represented by a single
real number which is called his value, denoted v; € R*. In this setting we are first going
to look at the simplest auction, where we simply have one item, and we want to allocate
it to the bidder with the highest valuation. The first solution that comes to mind seems
to be to allocate it to the bidder with the highest bid and have him pay his bid. This is a
first price auction and it simply does not work. The reason is because it cannot possibly
be DSIC, as the final utility is always 0 if a bidder bids truthfully. The best (and as will
be stated later) only solution is a Vickrey auction.

Definition 3.11 (Vickrey or Second Price Auction). A Vickrey or Second Price Auction
is an auction where every bidder reports a bid and the item goes to the player with the
highest bid. Each player pays 0, except for the winning player who pays the second
highest bid.
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This auction may seem a little a bit weird, but it can be proven that it checks all our
desirable goals.

Theorem 3.1 ([1]). For any vector of valuations v = (v1,...,v,), the Vickrey auction
has the following 3 properties

1. It can be calculated in polynomial time.
2. It is DSIC.

3. If every bidder bids truthfully, it mazimizes social welfare.

The first and third properties are easy enough to understand. The second, although
more complex, also seems logical: The winning bidder, since his valuation is the highest,
is guaranteed to pay less than his valuation since he will pay the second highest bid.
The other bidders, in order to win would have to bid higher than their valuation, thus
achieving negative utility if doing so.

Proof. The first property is trivial since both the allocation rule and the pricing policy
are simple find-the-maximum-element problems. The third is also trivial, since if we are
reported the true valuations, allocating the item to the bidder with the highest valuation
is indeed the option that maximizes social welfare.

For the second property, fix a bidder i, his valuation v; and consider any bid vector b_;
played by the other players. Denote with B = max(b_;). Consider 2 cases: v; > B or
v; < B. All we have to do is show that in both cases bidder i has nothing to lose by
bidding v;.

In the first case, by bidding v;, his utility is v; — B > 0. By bidding higher he is still
guaranteed the same utility, but by bidding lower, his bid will either stay above B, keeping
the utility the same, or will drop at B or below, thus risking the utility to drop to O.
This completes the proof for the first case.

In the second case, by bidding v; his utility will always be 0. By bidding lower, his utility
does not increase, while by bidding higher he is in danger of bidding above B. This will
lead to utility v; — B which is non-positive. This completes the proof for the second
case. |

Now we are going to present a simplified version of a very important theorem, proven in
[6], known as Myerson’s Lemma.

Theorem 3.2 (Myerson’s Lemma [6]). A mechanism (f,p), where £ is a vector of allo-
cation functions, is DSIC if and only if

e The function f;(-,b_;) is non-decreasing for every bidder i and bid vector b_;.

o Given a bid vector b the payment rule for bidder i is given by the following formula

b; d
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Myerson’s lemma can be summarized in the following sentence: Given that we want to
make a DSIC mechanism, all we have to do is make sure that we do not allocate a bidder
less if he bids more, and that the payments are given by that function in eq. (3.1). To
understand the payment function, let us present how it works in the Vickrey auction.

In the Vickrey auction, the allocation function for a certain bidder ¢ is a step function:
fi(bi,b_;) = step(b; — max(b_;)), where f;(-) = 0 denotes that bidder ¢ does not get
allocated anything, while f;(-) = 1 means that 7 is allocated the good. The derivative of
fi is a delta function: £ f;(z,b_;) = (2 — max(b_;)). This means that the payment rule
is

b;
py Y (b, b_y) = / z-0(z — max(b_;))dz = max(b_;) - 1[b; > max(b_;)]
0

Given Myerson’s Lemma we can easily create DSIC mechanisms for single-parameter
environments. Another example of its application is a generalization of the previous
setting, where we have k identical items and we want to allocate them to the k bidders who
have the highest valuation. Myerson’s Lemma says to allocate them to the k£ bidders who
have the highest bids and have them pay the (k+1)-highest bid, which is a generalization
of the Vickrey auction.

3.3 Multi-Parameter Environments

In the previous section each bidder had a single parameter, which characterized his val-
uation. However what happens when there are multiple distinct items sold? A simple
answer is that each bidder has a value for each item and when he gets multiple items then
his total value is simply the sum of the value of each item. This turns out to simplify
reality too much. Consider a player Bob, who wants to buy a house. Lets say that there
are 2 identical houses, each of a value of 1 to Bob. However, giving Bob both houses
does not necessarily mean that his total valuation will be 2, simply because Bob might
not have use for the second house. This example shows that we need to create a more
complex model to describe environments like the one above.

Definition 3.12 (Combinatorial Auction). A cCombinatorial Auction is described by a
triplet (IV, M, v). N is a set of bidders with cardinality |[N| = n, M is a set of items with
cardinality |M| = m and v is a vector of n set functions, v = (vy,...,v,), each from a
subset of M to a non-negative real number, i.e. for each i € N, v; : 2¥ = R*. Each
function v; is assumed to be normalized to 0, i.e. v;(#)) = 0 and non-decreasing, i.e. if

In this setting let us define what a feasible allocation is.

Definition 3.13 (Feasible Allocation). In an auction (N, M,v), a Feasible Allocation
(S, ...,.Sp) is a vector of n disjoint sets, i.e. Vi # k, S; N Sy = 0.

What we care about is the optimal allocation which maximizes ), v;(S;). From now
on an optimal allocation is going to be symbolized with the vector O, whose elements

are going to be (O, ...,O,).
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3.3.1 Valuation Classes

In definition 3.12, each valuation needed only be normalized and non-decreasing. It turns
out that when the valuations are that general, finding an efficient allocation can be quite
hard. To solve this problem we define classes of valuations. Let v be a valuation function
and M the set of items.

Definition 3.14 (Additive Function). A valuation function v : 22 — R* is additive if

for every S C M
o(S) =Y o({i})

jes
where for every j € M, v({j}) > 0.

This is one of the least general classes of valuations, as items are viewed independently.

Definition 3.15 (Unit-Demand Function). A valuation function v : 2M +— R is called
unit-demand if for every S C M
v(S) = maxv({j})

jeSs
where for every j € M, v({j}) > 0.

This is also one of the least general classes, because, just like additive valuations, each
bundle of items is easily calculable from the values of each singleton.

Definition 3.16 (Submodular Function). A valuation function v : 2™ +— R* is called
submodular if for every S,T C M, with S C T and any item j ¢ S

v(SU{j}) —o(S) 2 v(T'U{j}) —o(T)

Submodular functions include both additive and unit-demand functions. They are the
analogous to concave function and they represent a form of diminishing returns: the
larger the set, the less is the additional value when a new item is added. Submodular
functions can sometimes be characterized as general enough, as they capture various
general settings.

Definition 3.17 (XOS Function). A valuation function v : 22 — RT is called XOS if
there exist a set A = {ay(+), az(*), ...} of additive valuation functions, such that for every
SCM

o($) = maxa($) = max Y a({5})

acA -
JjES

XOS functions are kind of hard to understand, but are the class that is slightly more
general that submodular and because of their definition they are sometimes easier to
work with, compared to submodular valuations.

Definition 3.18 (Subadditive Function). A valuation function v : 2M — RT is called
Subadditive if for every S, T C M

o(T) + v(S) > v(TUS)
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Subadditive functions are so general that in most cases they are the most general class
used. They include XOS functions and are sometimes called complement-free, because
they capture the notion that a combination of 2 bundles does not increase the value of each
bundle. As an example of non-subadditivity, a nail and a hammer independently might
have little value, but together their value is greater than the sum of the two independent
values.

To sum up the relation of the aforementioned classes

Additive, Unit-Demand C Gross-Subtitutes C Submodular C XOS C Subadditive

The class of Gross-Subtitutes mentioned above is also a very important class, but because
the definition is more technical, it can be found in . Below is the above relation in a
diagram.

Subadditive

Submodular

Gross Substitutes

Unit

Additive Demand

3.3.2 Combinatorial Auctions and Linear Programming

As many other combinatorial problems, maximizing the total welfare can be formulated
as an Integer Linear Program. We present the Linear Program Relaxation, where each
variable, instead of taking a value from {0, 1}, takes a value in [0, 1].

Definition 3.19 (The Linear Programming Relaxation (LPR)). Let (N, M, v) be a com-
binatorial auction. The Linear Programming Relazation is

Maximize Z Z Tis - vi(S)

i=1 SCM

s.t. szisg1 VjeM
i=1 S|jes
Z 76 < 1 Vie N
SCM
Tig >0 Vie N, SCM

The LP’s variables z;g, take values from 0 to 1. x;5 = 1 denotes that bidder i receives
bundle S in the final allocation. The objective function is maximizing the social welfare,
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the first set of inequalities ensure that each item is allocated at most 1 time and the
second set of inequalities is to ensure that each bidder gets at most 1 bundle. Note
that, in terms of n and m, the LRP has exponentially many variables, but linearly many
constraints. The dual of the above LP is the following.

Definition 3.20 (The Dual Linear Programming Relaxation (DLPR)). Let (N, M,v)
be a combinatorial auction. The Dual Linear Programming Relazation is

Minimize z”: u; + Z Dj
i=1

JEM
s.t. uz—i-Zp]sz(S) \V/’iEN, SQM
jeSs
u; >0, p; >0 Vie N, jeM

The usage of the variables w; and p; is intentional, as we will see later that they can be
interpreted as utilities and prices, respectively.

We would like to now provide an example, to show that the solution to the LRP can be
fractional.

Example 3.1 (LRP can be fractional). Consider two players Alice and Bob and two
items a and b. Alice has a value of 2 for each non-empty set and Bob only cares for the
whole bundle ab, for which he has a value of 3. The optimal allocation allocates both
items to Bob for a welfare of 3. However, the optimal fractional solution has welfare equal
to 3.5: Allocate half the bundle ab to Bob for a value of 1.5. This means that Alice can
have half the bundle {a} and half the bundle {b}, for a welfare of 2. To be more clear we
provide the positive variables of the optimal allocation, where bidders 1 and 2 are Alice
and Bob, respectively: x1, = 0.5, 1, = 0.5, £94 = 0.5. This means that the fractional
solution can have higher welfare than the integral one.

3.3.3 Walrasian Equilibrium

A natural mechanism that one may come up with, is the following: Pick a price for each
item and the let each bidder take what he prefers. The idea behind this simple mechanism
is simple. If the prices are picked right and are not too high, then each item will be picked
by someone who has high value for it, and therefore we will achieve high total welfare. In
addition, it would be best that no matter the order in which the bidders pick items, each
bidder would always pick the same bundle. This idea can easily be formulated. Firstly
we need to define what is the best preference of a bidder.

Definition 3.21 (Demand of a bidder). Let ¢ be a bidder, v;(-) his valuation and py, ..., py,
prices for each item. A bundle S C M is called a Demand of bidder 4, if for every bundle
T C M, bidder 7 does not gain utility by picking T, i.e.

vi(S) =Y pi = ul(T) = .
j€S JET

Now that we have defined what each bidder prefers we are ready to define these market-
clearing prices.
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Definition 3.22 (Walrasian Equilibrium). Let (N, M, v) be a combinatorial auction. A
vector of non-negative prices pj,...,p; and an allocation ST, ..., S} is called Walrasian
Equilibrium, if for every player i, S; is his demand at prices pj, ..., p},, and for any item
j not allocated (j ¢ U;S;), it holds that pj = 0.

Setting walrasian equilibrium prices for the items and simply letting the bidders take
what they demand, seems like a very simple and truthful mechanism. Unfortunately,
a walrasian equilibrium does not always exist, as we demonstrate with the following
example.

Example 3.2 (Non-Existance of Walrasian Equilibrium). Consider the same setting as
in example 3.1. Consider two cases.

First case is Bob’s demand does not contain the empty set. This means that he demands
the whole bundle and Alice demands the empty set. For him to demand the whole bundle,
means that the sum of the two prices is at most 3, which means that at least one item
has price at most 1.5. But if an item has price less than 1.5, Alice would demand that
item and not the empty set, which leads to a contradiction.

Second case is that Bob’s demand has the empty set, which means that the sum of the
prices is greater than 3. This implies that Alice cannot demand the bundle ab as her
value for it is 2. This means that Alice demand is one item, w.l.o.g. item a, for a price
at most 2. Item b is now left out of any demand, which means that since we have a
walrasian equilibrium, its price is 0. This contradicts with the fact that the sum of the
two prices is at least 3.

The fact that we used the same example twice in a row is not a coincidence. It turns out
that existence of a walrasian equilibrium and the integrality of the LRP are one and the
same. We see that through two of the most fundamental theorems of Mechanism Design.

The first is the First Welfare Theorem. It states that an allocation of an walrasian
equilibrium maximizes the social welfare, even over fractional solutions of the LRP.

Theorem 3.3 (The First Welfare Theorem [19]). Let (N, M, v) be a combinatorial auc-
tion and (p%,...,ps) and (S§,...,Sk) a Walrasian Equilibrium. Then (S5, ..., Sk) mazi-
mizes welfare over all fractional solutions i.e. Y . . v;(SF) > >0 > acns Tis - 0i(S) for
any feasible fractional solution {s}i s. -

Proof. Fix a feasible solution to the LRP {x;s};s, a bidder ¢ and a bundle S C M.

Because we have a walrasian equilibrium, we know that

=S = (3.2)

jes: jes

By multiplying inequality 3.2 with x;5 and summing over all ¢+ and S C M we get

)PP IETHCILIES P ES S) BRI 9 BENCE

i=1 SCM JESY i=1 SCM jeSs

Since the solution is feasible, using the fact that 1 > 3" scur Tis for all ¢ in inequality 3.3

we get
ZU’ (S7) Z Z p; > szs v;(S szs ij (3.4)

i jEST JES
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To prove the theorem we now simply need to prove that ), Z]’es; P; > D5 Tis Djes Py
Notice that the LHS equals > jem D, since every item appears at most once and for items
J that j ¢ UuSy it holds that p; = 0. In the RHS, each p} is multiplied by » Zsues s,
which is at most 1, because of the first set of inequalities in the LRP. This concludes the
proof. [ |

Now we know that if an auction has a walrasian equilibrium, then posting the right price
to each item gives a truthful mechanism, that also finds the optimal allocation. However
it is time to wonder how we can find if a walrasian equilibrium exists and if so, how to
calculate the prices. We only know that if a walrasian equilibrium exists, then the LRP
is integral. However the opposite is also true: A walrasian equilibrium exists if and only
if the LRP is integral. This is formulated by the Second Welfare Theorem.

Theorem 3.4 (The Second Welfare Theorem [19]). Let (N, M,v) be a combinatorial
auction. If the LRP of (N,M,v) has an integral optimal solution, then a walrasian
equilibrium also exists.

Proof. Let Oy, ...,0, be the allocation that maximizes social welfare over all fractional
allocations. Also consider the optimal solution to the DLRP, pj, ...,p}, and uj, ..., u). We
will show that O, ..., O,, together with pj, ..., p; form a Walrasian Equilibrium.

Fix a bidder 7. Because of the complementary slackness conditions and x;0, = 1 > 0, the

second constraint in the DLRP must hold with an equality

u; = v;(0;) — ij

JEO;
Substituting u} in the second constraint of the DLPR, for any S C M we get

vi(0) = Y p > ui(S) = 1) (3.5)

J€0; jES

Because of inequality 3.5 we have completed half the proof of the existence of a Walrasian
Equilibrium. Now we need to show that if an item is unsold then its price is 0. This
also comes from the complementary slackness conditions: In the LRP, for j € M such
that the first constraint is not strict (here meaning that j is not allocated) we have that
p; = 0. Thus we have completed the proof. [ |

3.4 VCG Mechanism

In this section we are going to talk about the VCG mechanism, which belongs more
in section 3.1, but is presented here because it is too complex to have been presented
before. The VCG mechanism is the generalization to Myerson’s lemma, for any setting.
It provides a mechanism that is both DSIC and maximizes social welfare over all feasible
outcomes. Unfortunately, just like Myerson’s Lemma it does not guarantee polynomial
running time.

Theorem 3.5 (Vickrey-Clarke-Groves (VCG) Mechanism [1, 3, 4]). For any setting,
no matter how general it is, there is always a DSIC direct-revelation welfare-maximizing
mechanism.
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Now we are going to analyze the mechanism itself. The allocation rule is simple: Given
that everyone is telling the truth, pick the outcome that maximizes the bids that the
bidders made

V%) = argmax Z bi(w

weO i—1

This completes the proof of welfare maximization, since we assume that the bidders are
truthful. Now we need to give payments that make truth telling a dominant strategy.
Denote with w* the outcome of the VCG mechanism. The payment policy is the following

n
P “(b ffggZ b(e) = D bl

This means that each bidder is asked to pay his externality, since the first sum is how
much the maximum welfare would have been without ¢ and the second sum represents
how much the social welfare is now, without calculating 7. Notice that the payment is
always non-negative. In order for this to make more sense, let us look at the utility of
bidder i, if the bids of the other players are b_;

CG (L
w9 (b) = v;(w +Zbk rilea(%(Zbk
k7£Z k;éz

Let us denote with B_;(w) = >, ; bx(w). The only thing that i can affect with his bid
in his utility is the outcome w*, meaning that we can ignore the third term, since it is
independent of i’s bid. Let us denote with w* the outcome if 4 is truthful and with w’ the
outcome if ¢ bids v]. Then, always ignoring the third term, i’s utility if he bids truthfully
is

u; = vi(w") + B_;(w")
Because VCG picks w* in order to maximize the exact quantity above we have that

up = vi(w") + Boi(w") 2 vi(w) + B-i(w)

We notice that latter term is ¢’s utility if he bids v, for any v.. This concludes the proof
because we showed that truthful bidding dominates every other strategy.

Although the VCG mechanism is pretty awesome it lacks a very important property:
Guarantee that it can be calculated in polynomial time. Specifically, for unit-demand,
additive and Gross Substitutes valuations, one can calculate the VCG payments in poly-
nomial time, but for submodular valuations, it is NP-Hard to do so.
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Chapter 4

Beyond Worst Case Analysis

4.1 Introduction

When creating an algorithm for a certain problem, our goal is to make that algorithm
good. But what does “good” mean? The first thought that comes to mind is that the
complexity of our algorithm should always be at most some function of the size of the
input, in the best case polynomial. However this is not always what good means.

The most well-known such case is the problem of Linear Programming or LP, where the
goal is to minimize a linear objective function, subject to some linear constraints. It
has been proven that any LP problem can be solved in polynomial time in the number
of variables and constraints, for example with the ellipsoid method. Yet, the algorithm
that is most commonly used in practice to solve LP problems, is the simplex method,
developed by Dantzig in the 1940s. The problem with this algorithm is the fact that for
very specific instances, it can take exponential time to find the solution, as shown by
Klee and Minty in 1970[2].

So why do we use the simplex algorithm, when there are plain better algorithms? The
reason is because the term “better” applies only to the worst case instances of each
algorithm, which are very hard to come across, making the simplex algorithm far better
in practice. However, the last sentence is still vague. In the next sections we are going
to define what “in practice” or “better” means in a formal sense.

4.2 Smoothed Analysis - Simplex Method

In this section we are going to analyze the example that we mentioned previously: How
and why is the simplex method good in practice. First lets us explain what Smoothed
Analysis is. In Smooth Analysis we think of an adversary, who comes up with an instance
of the problem I. Then, that instance is perturbed slightly by a random process and
becomes I’ = I + N, when N can be thought as some form of noise with mean 0. Then
the Smoothed Complexity of an algorithm is the maximum expected time that takes to
solve instance I’; over all instances I. The definition of Smoothed Complexity is trying
to capture that when solving a problem, it is very unlikely to have a specific adversarial
worst case instance, but rather some instance that is close to that.
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Now let us now remind that the input to a linear program are a matrix A € R™*¢ and
2 vectors b € R™ and ¢ € R?, where we are required to either maximize or minimize the
function ¢’ -x, subject to Ax < b. In [11], Spielman and Teng showed that bad examples
for the simplex method are basically non-existent.

The perturbation that they proposed is the following: Independently for each entry of A
and b, add a Gaussian random variable with mean 0 and standard deviation . When
o = 0 then the instance remains unchanged and we are doing a pure worst case analysis,
while when o — oo, the input is uniformly random and we have a pure average case
analysis. Spielman and Teng showed that the expected running time of the simplex
method is at most polynomial, meaning that bad examples are very rare.

Theorem 4.1. [11] For every initial linear program, in expectation over the perturbation
to the program, the running time of the simplex method is polynomial in the input size
and L.

This theorem basically tells us that if we make a small perturbation to our initial input,
then the simplex algorithm is going to find a solution near the optimal (since the objective
function is unchanged) in polynomial time. This shows why the simplex algorithm in
practice is not considered an exponential algorithm: The chances that the running time
is going to be exponential are very small.

Another similar but simpler result, that also shows how fast the simplex algorithm is, is
that of [38]. Dadush and Huiberts show that when the elements of the input are bounded
and the simplex method uses the shadow vertex pivot rule, then the expected running
time of the input perturbed by Gaussian Random Noise with deviation ¢ is at most

O(d?02\/logn + d*log®*n)

These results are a first example of how Beyond Worst Case Analysis helps to analyze
algorithms in a more detailed manner than that of the worst case. Next we will see a
differnt way to analyze algorithms.

4.3 Perturbation Stability

In this section we are going to talk about Perturbation Stability. We are going to go
into more detail than the previous one, because this is the type of analysis we are going
to use on mechanism design. Perturbation Stability, in our settings, captures the fol-
lowing property: when trying to assign items into certain categories, an instance where
miss-assigning an item has impact on the optimal solution, does not have much mean-
ing. Another way to understand this, is that we would like the optimal solution to be
meaningful and far away from suboptimal solutions. This will become more specific and
understood as we analyze examples of known problems where this has been used.

4.3.1 Stable Clustering

Clustering in general is the problem where we are trying to partition points of a space
into categories that are similar to each other. In particular, we are going to study the
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k-median problem. In this problem we are given a set of points X and a distance function
between the points d(-, -), which is symmetric and satisfies the triangular inequality. The
objective is to find k points from X, called centers, such that each center is a close
representative of a distinct subset of the points from X, i.e. we are trying to find points
1y .. € X, such that, if C; = {z € X : i = argmin, d(z, )}, then the following

function is minimized
k
> dlr)

i=1 zeC}

A reasonable assumption here is to assume that if a clustering is not clearly optimal, then
some points are not clearly assigned to a certain cluster, thus making the choice of their
assignment not important. This, in order makes the instance not meaningful. First we
need a way to generate instances that are close to ours, in order to compare their optimal
solutions.

Definition 4.1 (v-Perturbation for Clustering Problems). For v > 1, a ~y-perturbation
of an instance (X, d) is another instance (X, d’) with the same set of points and a new
distance function such that for any 2 points z,y € X

to9) € | 2oy, dios)]

Thus by perturbing an instance we get another instance where each pair of items are at
most v times closer to each other. Now we are ready to define what makes an instance
have a clearly optimal solution, i.e. makes it stable.

Definition 4.2 (Perturbation Stability for Clustering Problems). A k-median instance
is called ~y-perturbation-stable, or simply ~y-stable if its optimal clusters C7, ..., C} remains
uniquely optimal in any y-perturbation of (X, d).

Now what we want is that if an instance is stable enough, then it should be easy to
recover its meaningful solution, since it is far away from other solutions. That is exactly
what Angelidakis, Makarychev, and Makarychev proved, by constructing a new algo-
rithm called single-link++. This algorithm, instead of finding the optimal clustering in
the original graph, which is complete, calculates the optimal solution in the Minimum
Spanning Tree of the original graph, where it can be done in polynomial time.

Theorem 4.2 ([34]). In every 2-perturbation-stable k-median instance, the single-link++
algorithm recovers the optimal solution in polynomial time.

This theorem seems to make the best out of a bad situation: Even though k-median is a
NP-Hard problem, when the solution is meaningful, then we can find it easily.

4.3.2 Stable Minimum Cut

This time we are going to look at the Minimum Cut problem. As it is probably known,
in Minimum Cut we are given a graph and we are asked to partition its vertexes into 2
sets in order to minimize the sum of the weights of the edges that have vertexes in both
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sets. However it is also known that minimum cut is not a hard problem, as we can solve
it in polynomial time. What is of interest to us is the linear program that encodes an
instance of minimum cut.

Solving a problem via its linear program relaxation (where we get a solution that is not
necessarily discrete as we would want it to be) and then doing some kind of rounding is
a very popular way to solve or even approximate hard problems. But again in minimum
cut, this is easy. One can show that if the optimal solution to a minimum cut instance is
unique, then the LP relaxation has an integral solution. This means that minimum cut
can also easily be solved by a LP.

Thus we have established that minimum cut problem is easy. However, its generalization
Minimum Multiway Cut is not. Here we are given a graph and k vertexes called terminals.
We must partition the vertexes into k£ sets, where each set contains exactly 1 terminal,
so that the sum of the weights of the edges whose vertexes belong to different sets is
minimized. It turns out that this problem is much harder. To be precise, even when
k = 3, the problem is NP-Hard. This also means that we should not hope that by solving
the LP relaxation of the multiway cut problem we can guarantee that we will find the
optimal integral solution.

Now that we have found a difficult problem we would like to apply the same setting that
we applied for the k-medians problem. As before, we can contemplate that if the optimal
solution to the Minimum Multiway Cut problem is not clearly optimal (and thus not
stable), then the instance is not meaningful. So let us define what a stable instance of
multiway cut is.

Definition 4.3 (Perturbation Stability for Graph Problems). For v > 1, an instance
of multiway cut is «-stable if its optimal partition of the vertexes is the unique optimal
partition to any ~-perturbation, which is the original problem, but the weight of each
edge w, is replaced by edge weight w! € [%we, We).

This definition basically says that an instance is stable if the optimal solution does not
change when the weights have changed a little. Calling stable instances meaningful makes
sense, since it is only natural for the weights of the edges to not be properly calculated and
contain some error in them. Now we can show the main theorem, shown by Makarychev,
Makarychev, and Vijayaraghavan, which states that if a multiway cut instance is stable
enough then finding its solution is as easy as solving its LP relaxation problem.

Theorem 4.3 ([30]). For every 4-perturbation stable multiway way cut instance, the
optimal solution to the linear program relaxation of the multiway cut, is integral, meaning
that the optimal solution can be found in polynomial time.

As in the k-medians problem, we have that if the instance is clearly optimal, then solving
the multiway cut problem is easy: all we have to do is use our favorite Linear Programming
solver.

4.4 Conclusion

In this chapter we saw problems where in the worst case we knew that their solution is
intractable. However, by using Beyond Worst Case Analysis, we showed that these worst
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cases are not really important, as they either almost never exist (Smoothed Analysis), or
they are not meaningful (Perturbation Stability). In the next chapters, we are going to use
Perturbation Stability in mechanism design, where many of the problems are intractable,
to show that meaningful instances can have the desired properties that we talked in the
precious chapter.
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Chapter 5

Perturbation Stability in
Combinatorial Auctions

5.1 Introduction

In the previous section we saw how Beyond Worst Case Analysis can help analyze prob-
lems to show that the worst cases, in which exist unwanted properties, are either not
interesting or scarce in a way that makes them not important. In this section we are
going to define the notion of perturbation stability in auctions, in order to later show
that interesting-stable instances of auctions have a number of very important properties,
which in the worst cases do not exist. To do that we need to define how to perturb an
instance of a combinatorial auction. However, because combinatorial auctions are com-
plicated, perturbing is not as easy as it was in the other problems that we saw before.
In order to correctly define perturbation we first going to look at something called the
Endowment Effect.

5.2 The Endowment Effect

The Endowment Effect was first used as a term by Thaler in [5], to explain situations
where simply possessing an item, makes us value it more. This concept was generalized
and used by Babaioff, Dobzinski, and Oren in [37] to show that an interesting result for
combinatorial auctions: If we assume that after we have assigned the items to the bidders,
their value for their newly possessed items increases, then it is easier to find allocations
that make everyone happy. In order to illustrate their findings, let us first define what
how they modeled and used the endowment effect.

Definition 5.1 (Endowment Effect[37]). Let ¢ be a bidder, v;(+) his valuation and S a
bundle of items. Then if bidder ¢ is endowed with set S by «, then his new valuation is

vPNT) = vi(T) + (@ — 1) - 0,(SNT)

(2

Studying the above definitions we can make the following remarks. Firstly, the endowed
value of a set that is a subset of S is simply multiplied by «. Secondly, if a set is disjoint
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with S then its endowed value is equal to its original value. With this definition we have
a way to increase the valuation function of a bidder, but only “around” a desired set.

Using this definition Babaioff, Dobzinski, and Oren showed that if almost any allocation
is endowed enough, then this allocation becomes a Walrasian equilibrium, meaning not
only that it maximizes social welfare at the endowed valuations, but that there exists
market clearing prices. However, their most interesting result is the following, concerning
combinatorial auctions with submodular valuations.

Theorem 5.1 ([37]). Let (N, M,v) be a submodular combinatorial auction and Sy, ..., Sy,
a local optimum. Then for any o > 2, for the endowed valuations vf"sl, U5 the
allocation Sy, ..., S, forms a Walrasian equilibrium.

In order to understand this theorem, first we need to define what a local optimum is. As
one might expect, a local optimum is an allocation whose welfare does not increase if we
allocate 1 item to a different player, i.e. for any i,k € N and j € 5;

vi(1Si) + vk (Sk) = vi(S; = {7}) + vk(Sk U {5})

Now, what theorem 5.1 says is that if we found a local optimum at the non-endowed
valuations, then allocation the local optimum creates endowed valuations, where we have
a Walrasian equilibrium. This is useful, because taking into account the endowment
effect, which says that after we acquire some items then we value them more, we can
simply allocate the local optimum and then have a welfare maximizing allocation.

Since the proof of theorem 5.1 is quite simple, we are going to present it here. The proof
uses prices p; = v;(j]5; — j) if j € S; to show the existence of the Walrasian Equilibrium
for the endowed valuations and breaks down into two parts. In the first part we prove
that no bidder is willing to drop any items for which he has been endowed. This is only
natural because each bidder’s valuation has been increased at least by (o — 1) - p; for
7 € S; because of submodularity. In the second part we show that no bidder is willing
to obtain any items that are not in his endowed set, because of local optimality. The
technical proof follows.

Proof. Fix a bidder . First we are going to prove that for any set S that does not contain
an item j € 5;, S U j provides not less utility for i. Fix such a set S and an item j € S;.
Bidder ¢’s utility by adding j to S increases by

T=v7%(SUj) = vf™(8) —p;

(2

=v;(SUJ) + (a = Dui((SN S Uj) —vi(S) = (a = Dui(S N S;) — p;
All we have to do now is prove that [ is not negative. To do that we use monotonicity,

v;(SUJ) > v;(S) and submodularity, vi((S Nn.S;) U j) —v;(SNS;) > vi(S;) — v (S; — 7).
This, because of @« — 1 > 0 gives

Because o > 2 and the definition of p;, from inequality 5.1 we have I > 0. Inductively,
this gives us than bidder ¢ has nothing to lose by adding the whole bundle S;.
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Now we simply need to prove that bidder ¢, who always demands a superset of S;, has
nothing to lose by discarding items not in S;. Fix a bundle S, for which S; C S that
contains an item j for which j € S, for some k # ¢. By discarding j from S, bidder i’s
utility would increase by

I =v"%(S = j) — v (S) + p;
= v;(S — J) + (@ = Dvi(Si) — vi(S) — (@ — 1)v; (S;) + p;

Now because the allocation is a local optimum and by the definition of p;, for which
J € Sk, we have that p; = v, (Sk) — vk(Sk — J) > v;(S; U j) — v;(S;). This gives us

1> Uz(S — ]) — UZ(S) + Uz(Sz U]) - Uz(Sz)

Because of S; Uj C S and submodularity v;(.S; U j) — v;(S;) > v;(S) — v;(S — j), which
proves that I > 0. Inductively this gives us that ¢ has nothing to lose by discarding items
not in .S;.

To sum all the above up, we have that ¢+ has nothing to lose by gaining the whole bundle
S; and also nothing to lose by discarding items not in S;. This means that S; is his
demand at prices p;, proving the existence of a Walrasian Equilibrium at the endowed
valuations. |

Overall theorem 5.1 is quite nice and as said before seems quite practical: By allocating
any local optimum and putting the prices of the equilibrium, because of the endowment
effect, everyone has his demand and is happy. However there is a major flaw: Finding
a local optimum is no easy task. Babaioff, Dobzinski, and Oren proved that even for 2
submodular players, finding a local optimum requires exponential many value queries.

A lot of also interesting results about the endowment effect were also found by Ezra,
Feldman, and Friedler in [39], where they generalized the results of [37]. Their main result
was that if we use a different and stronger form of endowment, then 2-endowing XOS
valuations according to a welfare maximizing allocation, creates a Walrasian Equilibrium.
The endowment that they used, given a valuation function v(-) and a bundle S was the
following

v (T) =v(T) + (a—1) - (v(S) —v(S —T))

5.3 Definition of Stability in auctions

In this section we are going give the basic definitions for Perturbation Stability in Com-
binatorial Auctions. First we need to define how to perturb an instance of an auction.
For this we are going to use the endowment effect that we talked about above, in order
to be able to increase a certain valuation function. We will use the same endowment as
in [37], although it does not matter as the definitions from [39] produce the same final
result. A y-perturbation of the original instance allows one bidder to endow his valuation
for one item by ~.

Definition 5.2 (v-Perturbation of Combinatorial Auctions). For v > 1, a y-perturbation
of a Combinatorial Auction (N, M, v) is another combinatorial auction (N, M, v'), where
for one bidder i € N, one item j € M and some o € [1,7]:
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o V/(S)=v(S)+ (6 — 1) -v;(SN{j}), for every S C M

Simply put, the above perturbation keeps every valuation the same, except for one, which
is endowed for one item.

Having defined how to perturb an auction, we are ready to define what is a perturbation
stable combinatorial auction.

Definition 5.3 (Perturbation-Stability of Combinatorial Auctions). For v > 1, an in-
stance of a combinatorial auction is called y-Perturbation Stable, or simply ~-Stable, if
its optimal allocation is unique, and remains unique under any ~-Perturbation.

To add some intuition to the definition above, it simply states that the optimal allocation
is strong enough, so that it remains optimal even if any single item is endowed for any
single bidder, by at most . Let us present an example to make the definition even clearer.

Example 5.1. Let Alice and Bob be our 2 bidders, in an auction of 2 items a and b.
Alice and Bob are unit-demand. Alice values item a for 2 and item b for 1. Bob is
symmetrical, meaning he values b for 2 and a for 1. Clearly the optimal allocation is
Oa = {a},Op = {b}. Let us calculate how stable this auction is.

First we indeed notice that the optimal allocation is unique, which means that the auction
is at least 1-stable. In order to check what is the maximum value of v, we need to find how
much we need to endow some item for some bidder, in order for the allocation (04, Op)
to be suboptimal. We easily notice that if we endow either Alice’s value for item a, or
Bob’s value for item b the optimal allocation will only get stronger. Since the bidders are
symmetrical we only need to check what happens when we endow Alice’s value for b.

If we endow by ~, her new valuation is v/, (b) = v and v/,(ab) = v+ 1. Now the optimal
allocation still has a social welfare of 4 and any other allocation that could become optimal
(giving ab to Alice or b to Alice and a to Bob) has welfare equal to v+ 1. Thus in order
for the optimal allocation to remain uniquely optimal it must hold that 4 > v+ 1. This
concludes that the auction is (3 — €)-stable or simply y-stable, where v < 3.

5.4 Properties of Perturbation-Stable Auctions

Having defined what makes an auction stable, we can start exploring some of the proper-
ties that derive from the definition of y-stability. First we will see a very basic, but very
fundamental property of stable auctions.

Claim 5.1. Let (N, M, v) be a y-stable auction, for any v > 1 and Oy, ..., O,, the optimal
allocation. Then it holds that
M = Uien0;

Proof. We are going to show this by contradiction. Suppose that for some ;7 € M,
J ¢ UienO;. Then by giving j to any bidder, the total social welfare is not going to
change, because the allocation is already optimal. But this means that an allocation
different from the optimal one, has the same welfare as the optimal. Because of the
uniqueness of the optimal allocation in stable auctions, this leads to a contradiction. W
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Now we will prove a general lemma, that does not restrict to any valuation classes and
is the foundation of vy-stable auctions.

Lemma 5.1 (Basic Propery of Stable Auctions). Let (N, M,v) be a 7y-stable auction.

Then for every bidder i € N, every item in i’s optimal bundle 7 € O; and any other
bidder k # i it holds that

0;(0 — 1) —v;(0; — j) > (v — 1) - ve(4)

Proof. Fix an arbitrary bidder ¢, an item j € O; and another bidder k, whose optimal set
is Og. Since the auction is y-stable the optimal allocation will not change if we endow
k’s value for item j by 7, changing k’s valuation from wvg(-) to vi(-). In the perturbed
auction we compare the optimal allocation with the allocation which is the same us the
optimal, but j goes to k instead of i:

> ul(0) +vi(0;) + v (Ok) > Y~ u(On) + v:(O0; = j) + v} (O U j)

I,k Ik

0i(0;) + vi(Ok) > vi(O; = j) + v (Ox Uj) + (v = 1) - v (j)

vi(0;) = vi(O; = j) > vi(Ox U j) — v(Ok) + (v — 1) - vi(j) (5.2)
Because vy, is non decreasing vy (O U j) — v, (Og) > 0. Combining this and inequality 5.2
yields the lemma. n

Now that we have proven a general property of stable auctions, we can restrict ourselves
to more specific classes of valuations.

Corollary 5.1 (Property of Stable Subadditive Auctions). Let (N, M,v) be a ~y-stable
auction with subadditive valuations. Then for every bidder i € N, every item in i’s
optimal bundle j € O; and any other bidder k # i

vi(7) > (v = 1) - ve(J)
Proof. Because of lemma 5.1 we already know that
vi(0 — i) = vi(O; — j) > (v = 1) - v (j) (5.3)
and because of subadditivity that
vi(g) + vi(O0; = j) 2 vi(0;) (5.4)
Combining inequalities 5.3 and 5.4 yields the corollary. |

Corollary 5.2 (Property of Stable XOS Auctions). Let (N, M,v) be a y-stable auction
with XOS wvaluations. Denote with q;(-) the additive function that supports bidder i’s

optimal bundle O;. Then for every bidder i € N, every item in i’s optimal bundle j € O;
and any other bidder k # 1

(7)) > (v = 1) - vk(j)
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Proof. Because of lemma 5.1 we already know that

00 = i) = (0, = ) > (v = 1) - (j) (5.5)

and because valuations are XOS

wOi—i) = 3 al) (5.6)

te0;—j
Combining v;(0;) = > _,c0. ¢:(j), inequalities 5.5 and 5.6 yields the corollary. [ |

Corollary 5.3 (Property of Stable Submodular Auctions). Let (N, M,v) be a ~y-stable
auction with submodular valuations. Then for every bidder i € N, every item in i’s
optimal bundle j € O;, any subset S C O; and any other bidder k # i

vi(S) = vi(S = j) > (v = 1) - v (j)
Proof. Because of lemma 5.1 we already know that
vi(0;) = vi(O; — j) > (v — 1) - vk(j) (5.7)
and because valuations are submodular and S C O;
0i(S) — vi(S — j) = vi(0;) — vi(O; — j) (5.8)
Combining inequalities 5.7 and 5.8 yields the corollary. |

With this corollaries we are going to prove the majority of the theorems that will follow
in the next two chapters. First we are going to improve the results for general auctions
and secondly we are going to improve the bounds associated with Price of Anarchy in
simple auctions.
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Chapter 6

Mechanisms

In this chapter we are going to look at different mechanisms, which either find the op-
timal allocation or try to approximate the optimal allocation, usually up to a constant
factor. This includes two different sections: First we are going to look at direct revelation
mechanisms with use value queries and then at mechanisms that use demand queries. At
each of these two sections, at the beginning we will focus on general settings, while at
the end we will analyze mechanism that take advantage of the stability hypothesis.

6.1 Direct Revelation Mechanisms

In this section we are going to look at mechanisms that are direct revelation, meaning
that the bidders are required to answer Value Queries. The definition of a value query
follows.

Definition 6.1 (Value Query). Let S be a set of items, ¢ a bidder and v;(-) his valuation
function. Then bidder i’s answer to a Value Query for the set S is value for the set S,
meaning v;(.5).

This kind of mechanisms are considered restrictive, because demand queries (see sec-
tion 6.2) are strictly more powerful than value queries, which we will prove later. Despite
that fact, there are many mechanisms that achieve great results using only value queries.
First we are going see some of these mechanisms, without the assumption that the auction
is stable.

6.1.1 Direct Revelation without Stability

First we take a look at a well known algorithm made by Lehmann, Lehmann, and Nisan
from [8], that approximates the optimal allocation up to a factor of 2, when the valuations
are submodular. As we also did in the introduction, let us state that for submodular
valuations with value queries, there exists a better, but more complicated algorithm,
that of [20], with a ratio of 4.

The algorithm that performs on the simple following idea: Give the items sequentially,
each time at the bidder with the largest marginal contribution, i.e. to the bidder who
has the highest increase in his valuation, given his current set.
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Algorithm 3 2-Approximation Algorithm for Submodular valuations [§]
1 Set S;=8=...=85,=0
2: for j € M do
3 Let i be the bidder that maximizes v;(S; U {j}) — v;(.S;)
4: Allocate item j to bidder i, i.e. set S; < S; U {j}
5
6

: end for
: return allocation (51, ...5,)

We can easily tell that the algorithm uses a polynomial number of value queries and
to be exact, in each iteration 2n value queries are made. Next follows the main result
concerning the algorithm.

Theorem 6.1 ([8]). Algorithm 3 provides a 2-approximation to the optimal allocation.

Proof. Let (Oq, ..., 0,) denote the optimal allocation and (51, ..., S,,) the allocation of the
algorithm. Without loss of generality let M = {1,...,m} the items in the order they were
iterated in step 2. Also denote with A; the value that item j added to the total allocation
in step 4. Fix a random bidder ¢ and denote with X; the first ¢ items of set O; — S;. Note
that Xo =0 and Xo,_s, = O; — S;. Now we have that

\OifSi|—1
t=0
|OrSZ~|—1

< Z (vi(Ss — Xi) — v;(S; — Xiq1))

t=0
< D4

JjE€O0;—S;

SZAJ‘

J€0;

where the first inequality holds because of submodularity and the second because in
the algorithm we take the item with the largest marginal contribution A;. Summing
the above inequality over all bidders and using the facts that v;(0;) < v;(O; U S;) and

Yo ui(Si) = Zz ZjeOi A;

7

Zvi(Oi) — sz’(si> < Z%(Sz)

we prove the theorem. |

The algorithm above provides a constant factor approximation for auctions with submod-
ular valuations. A natural question that one might ask is if we can calculate the optimal
solution in polynomial time. The answer is no, as the following theorem suggest.

Theorem 6.2 ([8]). Finding the optimal allocation in a combinatorial auction with two
valuations that are additive and budget-additive is NP-Hard.
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In the theorem, instead of submodular valuations, additive and budget-additive are used.
We have stated that additive valuations are a subclass of submodular and the same can
be proved for budget additive valuations. The proof that follows is slightly different than
the proof provided by Lehmann, Lehmann, and Nisan et. al.

Proof. We will reduce the Subset Sum problem: Given a set of non-negative integers
U ={ai,...,an} and an integer ¢, find if exists a subset S C U such that >, ga; = t.
The auction to which the problem will be reduced has two bidders. The first is additive:

v1(S) = >_,ega; and the second is budget-additive: v2(S) = 2 min (t, > jes aj>. Denote
with F' the sum of the integers aq, ..., a,,. Note that a calculation of a value query can be

done in polynomial time, using only the subset-sum’s input. Fix an optimal allocation
S1, 59, where all the items are allocated. Its total welfare is

vl(Sl)+vg(Sg):Zaj+2min(t,2aj)§ ZCLJ—Ft—l—Z&J:F—Ft

JES1 JES2 JES1 JES2

This inequality proves that F' 4 ¢ is an upper bound for the optimal allocation and that
the equality holds only when »° jes, @j = t. This means that by finding the optimal
allocation, we can check if its social welfare is less or equal to F' + ¢, which immediately
tells us if there is a subset of the integers that have sum equal to ¢, thus solving the subset
sum problem. [ |

The theorem above covers the subject of exact calculation of the optimal allocation. Let
us also note that approximating the problem only with value queries with a factor of _%;
is also an NP-Hard problem [12]. What we didn’t cover is if algorithm 3 can be truthful.
The answer is no, which can be shown by a simple example where no pricing scheme can
make the bidders be truthful. However, something even more powerful holds. Dobzinski
showed in [22] than best approximation ratio that a truthful polynomial mechanism with
value queries can achieve is \/m.

Theorem 6.3 ([22]). Let A be a randomized universally truthful mechanism for com-
binatorial auctions with submodular valuations that provides an approximation ratio of
mP5=¢, for some constant € > 0. Then, A makes exponentially many value queries.

The above theorem suggests that the approximation ratio of algorithm 3 is unachievable
when truthfulness is an issue. Let us add that an algorithm with approximation ratio of

O(y/m) has been fund in [21].

6.1.2 Direct Revelation with Stability

In this section we are going to present our algorithms that have surprisingly good results,
provided that the auction is stable. First we start with a mechanism for subadditive
valuations.

The algorithm that follows is similar to algorithm 3, but instead of greedily trying to
maximize the marginal contribution of each item, it greedily maximizes the singleton
contribution of each item, i.e. it allocates each item to the bidder who has the highest
contribution for the item as a singleton.
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Algorithm 4 Optimal Algorithm for 2-stable Subadditive Auctions
1: SetSlegzzsn:@
2: for j € M do
3 Let ¢ be the bidder that maximizes v;(7)

4: Allocate item j to bidder i, i.e. set S; <— S; U {j}

5

6

. end for
: return allocation (S, ...5,)

Theorem 6.4. Let (N, M,v) be 2-stable combinatorial auction with subadditive valu-
ations. Then algorithm 4 outputs the optimal allocation (Oq,...,0,) with polynomial
number of value queries.

In order to prove theorem 6.4(the polynomial part is trivial) one has to simply use corol-
lary 5.1 that states exactly what we need: The bidder who gets each item at the optimal
allocation, is the one with the largest singleton value.

Proof. Fix an item j and suppose that ¢ is the bidder for who 7 € O;. Because of
corollary 5.1 and the fact that the auction is 2-stable we know that v;(j) > vi(j), for any
other bidder k # ¢. Because j is allocated to the bidder with the higher singleton value,
1 will receive item 7. This concludes the proof. |

This is immediately a better result than the 2-approximation algorithm 3, because it both
finds the optimal solution and works for a much larger class of of valuation functions. We
should also add that algorithm 3 also finds the optimal allocation when the valuations
are submodular and the auction is 2-stable. However, what the above algorithm lucks is
truthfulness.

In order to extend our algorithm to be truthful, we must come up with some sort of
payment that the bidders must pay. First, we need to we restrict ourselves to submodular
valuations and run the same algorithm, while charging each bidder the second highest
singleton value. This is actually a Parallel Second Price Auction, which generally does
very poorly, and only works on restricted classes of valuations, e.g. additive.

Algorithm 5 Parallel Second Price Auction (P2A)

1: Set S, =5,=...=5,=0

2: for j € M do

3 Collect n bids for item j, (b, ..., bnj)

4 Let 7 be the bidder that maximizes b;;

5: Allocate item j to bidder i, i.e. set S; <= S; U {j}
6

7

8

9

Set p; = maxj; by;
: end for
: For each i set ;=) ;4 pj
. return allocation (S, ...S,) and payments (P, ...P,)

We should note that during the run of this mechanism, bidders do not learn what they are
allocated, meaning that in every iteration we expect b;; = v;(j). A simple implementation
to achieve this is to collect all the bids at once.
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P2A, given that bidders bid truthfully, finds the optimal allocation, just like algorithm 4
does. What’s left is to prove its truthfulness.

Theorem 6.5. Mechanism 5 is EPIC (Ez-Post Incentive Compatible) for 2-stable com-
binatorial auctions.

This theorem might seem more like a corollary from corollary 5.3: For a certain bidder, if
other bidders bid truthfully, since his singleton values are strictly less for items not in his
optimal set, he strictly loses utility by obtaining them. On the other hand, for the items
in his optimal set, since his minimum marginal value is greater than the other bidders’
singleton values, he only gains utility by obtaining them.

Proof. Fix a bidder 4, his valuation v;(-) and suppose that any other bidder %k bids his
singleton value vy (j) for each item j € M. We need to prove that i has nothing to gain
if he bids untruthfully.

We will show this by contradiction. Suppose that ¢ makes a different bid and ends up
with higher utility. In order to change his utility he must change either his allocated set
or the payments. Since the payments are independent of his bids he must to be allocated
a set S different than O;. First we prove that it must hold that S C O;.

Let’s assume the opposite, that there exists a j for which j € S and j ¢ O;. Then i’s
utility by dropping j would decrease by V = v;(S) — v;(S — j), but it would increase
by P = maxyy; vk(j). Because j belongs to some Oy, by corollary 5.1, and 2-stability
P > v;(7). Also because of submodularity, V' < v;(j). This shows that ¢ has strictly
higher utility if he drops any items not in O;. Now we have to disprove that S C O;.
By contradiction, suppose that there exists a j such that 7 € O;, but j ¢ S. Then
i’s utility by acquiring j would increase by V = v;(S U j) — v;(S) and decrease by
P = maxy; v;(j). From corollary 5.3, we know that P < v;(SU j) —v;(5), which means
that bidder ¢ gains strictly positive utility by obtaining any item in O;.

The theorem is now proven. We have shown that bidder ¢ strictly loses utility from items
outside of O; and strictly gains utility from items in O;. [ ]

Algorithm 5 and theorem 6.5 provide a simple, elegant and truthful mechanism for sub-
modular 2-stable auctions. This both solves the problem of non-approximability with
value queries under a factor of \/m, as well as the inability to find the optimal allocation
in polynomial time.

Let us also state the analogy of our results, with the results presented in section 4.3.1:
In both cases, a simple and intuitive algorithm, which in the general setting had no
guaranteed results, in the stable setting achieved optimal results.

6.2 Auctions with demand queries

In the previous section we analyzed mechanisms that used value queries. As we discussed,
there is also another type of queries, called Demand Queries. In this section we are going
to describe auctions that use demand queries, to either find the optimal allocation or
approximate it. First though we need to describe what a demand query is. Simply put,
when a bidder is presented with a vector of prices and is asked to answer a demand query,
we expect him to answer with a bundle that maximizes his utility.
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Definition 6.2 (Demand Querry). Given a bidder with valuation v(-) and a vector of
prices p = (p1, ..., Pm), the Demand Query D(v,p) is the demand of the bidder, i.e. the
bundle S C M that maximizes v(S) — >, ;-

As we have noted before, demand queries are strictly stronger than value queries. The
reason for that is that a value query can be simulated with a polynomial number of
demand queries. Intuitively, one can use binary search on the prices to find the value of
a certain set.

Lemma 6.1 ([19]). The value query for a bundle S can be simulated by t - |S| demand
queries, where t is the number of bits of precision in the representation of a bundle’s
value.

Proof. W.lo.g let S = {1,...,m}, where m = |S| and let S; denote the first ¢ items
of S, ie. S; = {1,...,i}. By calculating every v(S;) — v(S;_1), we can find v(S5) =
D imy 0(85) = v(Si1).

To calculate v(S;) — v(S;_1), we set p; = 0, for j € S;_1, p; = oo, for j ¢ S; and run a
binary search on p; to find at which price the bidder starts preferring v(S;) to v(S;_1).
That price is equal to v(S;) — v(S;-1).

We need to find |S| marginal values and each binary search requires ¢ value queries, giving
a total of ¢ - |S| value queries. [ |

It is clear now that demand queries are stronger than value queries, as we can simulate
the latter with the first. But can we also do the opposite? Then answer is no, and that
is the reason why demand queries are strictly stronger.

Lemma 6.2 ([19]). An exponential number of value queries may be required for simulating
a single demand query.

In order to see the first mechanism that utilizes demands queries, first we are going to give
the proper definition for the gross-substitutes class of valuations. If a valuation function
is gross-substitutes, then given some prices and a demand set for that prices, increasing
the prices for some items, will not make the bidder not demand the items for which the
prices remain unchanged. The proper definition follows.

Definition 6.3 (Gross-Substitutes Function). A set function v : 2M +— R satisfies
the gross-substitutes condition, if for any price vectors p,q such that p > q (pairwise
comparison) and any set S € D(v, p), there exists a bundle 7' C M such that

TeDwqand S—ACT

where A = {j € M : q(j) > p(j)}

6.2.1 Demand queries without Stability

Seeing the above definition one might start coming up with ways to calculate the opti-
mal bundle for auctions where the valuations satisfy the gross-subtitutes condition. For
instance a good idea is that if a bidder has his demand, and we take an arbitrary subset
of his demand and raise the prices, he can always keep the items that he already has and
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get some more to again stay satisfied with a new set that maximizes his utility. This is
the idea that the Kelso-Crawford Auction utilizes.

Algorithm 6 The Kelso-Crawford Auction[7]

1:S€t51252:...25n:®

2: Setpr=py=...=p,p, =0

3: while true do

4 Askeach bidder i for a set T;, that maximizes v;(S;UT;) = cq Pj— > jer, (pj+¢)
5: If for every bidder 4 it holds that T; = (), output the allocation (S, ...,S,)

6: Otherwise pick arbitrarily a bidder 7 for whom T; # ().

7 Set S; + S; UT;

8: For each k #£ i, set S, < Sy — T;

9: For each j € T} set pj < p; + €
10: end while

The Kelso-Crawford mechanism can be summarized in 2 key points:

1. Once a bidder takes an item, he cannot lose it, unless another bidder demands it.

2. In every round, some of the items that are demanded by some bidder, have their
prices increases.

Taking into account the definition of the gross-subtitutes and the two key points of the
Kelso-Crawford, one might begin to notice that the these two fit perfect: Even if a gross-
subtitutes bidder loses some items, he can keep what he already owns, maybe take some
more items, and end up with a bundle that maximizes his utility either way. Indeed, we
can easily prove that the Kelso-Crawford auction outputs a me-Walrasian equilibrium,
meaning that unsold items have price 0 and every bidder gets a bundle that yields utility
within me of his preferred bundle.

Theorem 6.6. Let (N, M,v) be a combinatorial auction, where all bidder’s valuations
satisfy the gross-subtitutes condition. Then the Kelso-Crawford Auction terminates with
prices and bundles that form a me-Walrasian equilibrium.

Proof. Fix a bidder i. Using induction we are going to show that in each iteration of
the auction, after bidder ¢ has picked his set T;, the bundle .S; U T; is the demand of i at
prices p; for j € S; and p; + € for j ¢ S;.

At the start of the auction the invariant holds because S; = (), which means that the set
S; UT; can be whatever bidder 7 wants.

For the inductive step, consider an arbitrary iteration, where at some previous point
bidder ¢ chose and took his demand S;, but has now lost a subset A of S; because the
prices for items in A used to be p;, but now are ¢;. We notice that this perfectly fits the
definition of the gross-subtitutes: Since S; was the demand of bidder i at prices p and
now he has S; — A at the same prices and can also choose from the rest of the items at
prices q, there is a set T, such that T; U S; is the demand of 1.

Thus we have shown that at each iteration where a bidder changes his bundle, he ends up
with his demand. This means that this also holds at the end of the mechanism. Lastly
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we need to state that the final allocation and prices are not a Walrasian equilibrium, but
a me-Walrasian equilibrium, because bidder ¢ has his demand if the items outside of .S;
have their price increase be e. |

Having found a good mechanism that can calculate the best solution is pseudo polynomial
time, one may ask if the algorithm is better than simply calculating the optimal solution:
Is the algorithm truthful? The answer unfortunately is no, even for 2 bidders. The
intuition is that a bidder might be willing to drop some items from his optimal set, in
order to make another bidder satisfied and keep him from raising the prices on the other
items. This is exactly what happens in the example that follows.

Example 6.1. Let Alice and Bob be our 2 bidders, in an auction of m items. Alice is
additive and values each item the same, equal to a, with @ > 1. Bob is unit demand and
also values each item the same, equal to 1. Notice that both are gross-substitutes. One
can easily tell that the unique optimal solution is for Alice to receive all the items, for a
total value of a-m. We should also note that the minimum price on each item in order to
have a Walrasian equilibrium is exactly 1. This is also the solution that Kelso-Crawford
finds in the end, because in each iteration, either will Alice hold all the items and Bob is
going to pick the one with the lowest price, if that is lower than 1, or will Bob have an
item, which Alice is going to take.

If Alice is truthful, then she will take all the items, each at price 1, for a total utility of
(a — 1) - m. However Alice has a better strategy: Let Bob keep the first item, which will
keep him happy and take the rest of the items at price 0. This yields a total utility of
a-(m—1). Aslong as a < m, Alice is going to chose the latter strategy, giving a sub
optimal solution.

An immediate result from theorem 6.6, is that gross-substitutes always have a Walrasian
equilibrium, something that is not true for the more general class of submodular val-
uations. However the Kelso-Crawford auction can be used for submodular valuations,
giving a good approximate result. If the valuations are submodular, then each bidder
will never have negative valuation by taking some items at some prices, because after
he loses some of them, the marginal contribution of each item will be even larger that
before. Beside this point, we can also achieve an approximation ratio of 2.

Theorem 6.7 ([25]). Let (N,M,v) be an auction with submodular valuations. Then
running the Kelso-Crawford auction on (N, M, v) yields a 2-approximation of the optimal
solution, up to me, and each bidder gains non negative utility.

Proof. First we will prove the second part of the theorem using induction: At every step
of the auction, for every bidder ¢ and his set 5;, it holds that for every T' C S;

w(T) = b,
JeET

Meaning that he has non zero utility for any subset of the items he holds. In the base
case where every bidder has not been allocated any items yet, the proof is trivial. For
the inductive step we need to prove that the invariant holds, when a bidder is picked to
increase his bundle and when a bidder’s bundle gets smaller because some of his items
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are picked. In the second case the invariant holds, simply because the prices stay the
same and the invariant held for a superset of items.

In the case where i increases his bundle from S; to S; UT; (where we assume that S; and
T; are disjoint), because S; U T; maximizes his utility it must hold that for every T' C T;

vi(SZ-UTZ-)—ij Zvi(SiUT)—ij (6.1)

JET; JjeET

Where we assume that the p; for the items in 7; have already been raised. Now imagine
that the invariant does not hold: v;(A) < ZjeA p;, for some bundle A. W.l.o.g. label the
items in A = {1,...,a} where the first [ items are the ones that are in S; and the items
from [ +1 to a are the ones that are in 7;. Now denote with X the first j items if A, i.e.
X; ={1,...,7}. Note that Xy = 0 and X, = A. Using this notation, because A breaks
the invariant we have that

a

v(X) + D (0:(X5) — (X)) < ij + > (6.2)

J=I+1 J=i+1

Because X; C S; and the invariant holds for subsets of S; we have that v;(X;) > 22‘:1-
This means that in inequality 6.2 for some j > [ + 1, it must hold that

vi(X;) — vi(X;-1) <pj (6.3)

otherwise inequality 6.2 is false. Since j > [ it holds that j € T}, which used in inequal-
ity 6.3, because of submodularity, produces the following

This inequality contradicts with inequality 6.1 if we use T' = T; — 5. Thus we proved that
the invariant always holds.

Now we are going to prove the first part of the theorem, that the final allocation, from
now on denoted with Si,..,5,, is a 2-approximation of the optimal one. Fix a bidder .
Bidder ¢ has nothing to gain by extending his set to S; U O;. This means that

vi(S) > ui(SiU0) — Y (pi+e) =ui(0) =Y (pj+e) (6.4)
J€O; —=S; J€0;

where the second inequality holds because of monotonicity and the fact that the prices
are non-negative. Summing inequality 6.4 over all ¢ gives

> wi(S) > Zvi(Oi) =Y (pi+e) (6.5)

i i jEO;

Now because M = U;0; and p; = 0 for the items that were not allocated, inequality 6.5

becomes
Z%‘(Si) > Z v;(0;) — Z ij — me (6.6)

i i jeS;

Now we make the following simple note: Because of the invariant, v;(S;) > > . pj-
Using this in inequality 6.6 gives us the theorem.
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This completes the analysis of the Kelso-Crawford Auction, which as stated before is
a non-truthful auction. For completeness, let us show the state of the art for truthful
auctions with demands queries. We would like to remind the results of [22], where a
lower approximation bound of \/m was shown, for truthful auctions with submodular
valuations, using only value queries. Because of that, we would expect that when using
the stronger demand queries the approximation would be much better.

This is indeed the case. One of the most known and simple algorithms that provides
an expected approximation ratio of O(logm) for XOS bidders in truthful auctions with
demand queries, is that of Krysta and Vécking in [26]. However, the state of the art for the
same setting is the algorithm of Dobzinski. In [33] he proves that there exists a mechanism
that is truthful and has expected approximation ratio O(y/logm). Unfortunately, this
mechanism is too complicated to even state here.

6.2.2 Demand queries with Stability

In this section we are going to revisit some of the mechanisms of the previous section and
we are going to show their advanced potential, under the assumption that the auction is
stable.

First we are going to prove a very basic fact about 2-stable auctions with submodular
valuations: The very important fact that they always admit a Walrasian equilibrium. To
prove this we are going to us once again corollary 5.3. For each item j that j € O;, at
price p; = v;(O;) — v;(O; — j) > vi(j), every other bidder does not want the item since it
is higher than his singleton value and bidder ¢ wants it because the price is equal to the
smallest marginal value.

Theorem 6.8. Let (N, M,v) be a 2-stable auction with submodular valuations. Then
the prices py, ..., pm, where if j € O; then p; = v;(§10; — j) = v;,(O;) — v;(O; — j), form a
Walrasian equilibrium.

Proof. Fix a bidder ¢ and his optimal bundle O;. Suppose that his demand is the set S.
First we are going to prove that if j ¢ O;, then 7 ¢ S. Using lemma 5.1 we know that
for some k, p; = vg(j|Or — j) > v;(j). This means that if bidder ¢ dropped item j from
S, then his utility would decrease by v;(S|S — 7), which by submodularity is at most
v;(j), but it would also increase by p;, which is strictly larger than v;(j). This means
that dropping item j, ¢’s utility would strictly increase, which means that j cannot be in
his demand.

Now we need to prove that if j € O;, then ¢ has nothing to lose by gaining j. Fix such
an item j and a demand S of bidder 7. Note that we have already proven that S C O;.
We will show that by adding ;7 to S, ¢’s utility would not decrease, making S U j also
the demand of i. Adding j to S, increases i’s utility by v;(j]S) which is more than
v;(7]0; — j), because of submodularity and S C O; — j. By adding j to S, bidder i’s
utility also decreases by p; = v;(j|O; — j). This shows that i’s utility cannot decrease by
adding j to his demand. By induction, this concludes that S = O; and also completes
the proof of the theorem. |

Thus we have shown that stability breaks the barrier of the non existence of Walrasian
equilibrium for submodular valuations. This also means that we can find the optimal
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solution by solving the LPR with demand queries and the ellipsoid algorithm. This also
gives a polynomial time algorithm that finds the optimal solution, just like when the
valuations satisfy the gross-substitutes condition. We can also find another similarity
between gross-substitutes and stable submodular auctions: The Kelso-Crawford auction
always finds the optimal solution.

Theorem 6.9. Let (N, M,v) be a 3-stable auction with submodular valuations. Then
the Kelso-Crawford auction, by taking the € term sufficiently small, outputs the optimal
allocation.

Proof. For every item j, that j € O;, let w; = maxg,; vg(j), i.e. the second highest
singleton value for item j. It is easy to show that for every item j, its price p; will exceed
wj, only when j is allocated to ¢ in the final allocation, where 7 € O;. That is because
only ¢ can yield an addition to his utility by such a price.

Now let (Si,...,5,) be the final allocation of the Kelso-Crawford Auction and suppose
that it is different than the optimal one. Because (51, ...,S,) is the final allocation, any
bidder ¢ has no gain to switch from S; to .S; U O;:

—ijZUi(SiUOi)—ij— Z pjt+€

JES; JES; JEO; —S;

From now on we will assume that the € terms are small enough, so that they can be
ignored. Because v;(+) is non-decreasing and submodular, we know that v;(S; U O;) >
vi(O;) and 3 icq o, vi(J) +vi(Si N O;) > vi(S;). Using those in the above inequality

Y ul) Fu(SN0) Zu(0) = Y b

JES;—0; JE€O,;—S;

But, as we argued before, for each item in O; — §;, the price must be lower than w;,
because no bidder other that ¢ would have the incentive to increase the price above w;.
Also for the items j € S; — O; it holds that w; > v;(j), from the definition of the prices
w; and the fact that j ¢ O;. All these in the above inequality yield:

Z wj + Z wj > v;(0;) — vi(S; N O;) (6.7)
J€Si—0; J€0;i=5S;

Summing inequality 6.7 for all 2, and using the fact that U; (Si — Oi) = Ui(Oi — Si) (both
unions represent the items not optimally allocated) we get that

Z Z (2 - wy) >Z 0; (O —UlSﬂO)) (6.8)

Now because of lemma 5.1 we have that v;(0;) — v;(O; — j) > 2 - w; for items j € O;.
This makes inequality 6.8

S Y @i0) — w0 =) > 3 (1(0) — vi(Sin 0) (6.9)

i j€O0;—S; i
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Thus because it holds that Zjeofsi (Ui(Oi) — ;(0; — j)) < v;(0;) — vi(S; N O;) for
submodular valuations, we have that inequality 6.9 can’t hold. Thus we have reached a
contradiction, which completes the proof of the theorem. [ |
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Chapter 7

Price of Anarchy in Auctions

In this chapter we are going to look at the Price of Anarchy, or POA, in simple mecha-
nisms. By simple we mean a mechanism where each bidder 7 makes a bid for each item
b;j. Then each item j goes to the bidder with the highest bid, for some price. Let us
formally define what we mean by simple mechanism.

Definition 7.1. Let (N, M, v) be a combinatorial auction. A mechanism is called simple,
when each bidder i € N reports a bid vector b; = (b1, ..., bim ), gets allocated the set of
items for which his bids are the highest, i.e. S; = S;(b) = {j € M : b;; = maxy, by; } and
for each item he gets pays a function of all the bids p; = p;(b), where b = (b, ..., b,).
Ties are broken arbitrarily.

7.1 Introduction

We are going to study the price of anarchy of some simple auctions. POA quantifies how
bad is the social welfare of an equilibrium, compared to the optimal social welfare. First
let us define the different kinds of equilibrium, from the perspective of auctions.

First we have the Pure Nash Equilibrium, where each bidder has a non-randomized bid
vector, which is the best response to the bids of the other players.

Definition 7.2 (Pure Nash Equilibrium (PNE)). Let (N, M, v) be a combinatorial auc-
tion. A bid profile b = (by,...,b,) is a Pure Nash Equilibrium (PNE) at a simple
mechanism with pricing policy p;(b), when for every bidder ¢ and any other bid vector
b!, i has no incentive to change his bid tp b, i.e.

vi(Si(b)) = > pi(b) > wi(Si(bi b)) = > pi(blboy)

Jj€Si(b) Jj€S:i(b],b_;)

Secondly we have the Mixed Nash Equilibrium, where each bidder is allowed to have a
randomized bid, which maximizes the expected utility of the bidder.

Definition 7.3 (Mixed Nash Equilibrium (MNE)). Let (N, M,v) be a combinatorial
auction. A profile of bid vector distributions D = (Dy, ..., D,,), is called a Mized Nash
Equilibrium (MNE) at a simple mechanism with pricing policy p;(b), if for every bidder
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¢ and any other bid distribution D, i has no incentive to play according to D., i.e.

E |u(Sib) = 3 pb)| = E - |u(Sib) = Y pib)

b~D ) (D}, D_;) )
jeSi(b) Jj€S;i(b)

These are two of the basic concepts of Nash Equilibriums in auctions. There are more
general equilibria, but we are not going to mention them here. Now we are ready to
define what Price of Anarchy is. We will define it for MNE, but the definition is similar
for PNE.

Definition 7.4 (Price of Anarchy (POA) for MNE). Let (N, M,v) be a combinatorial
auction and D = (D, ..., D,)) a MNE for that auction. Then the Price of Anarchy is
the ratio between the expected welfare of the equilibrium and the welfare of the optimal

allocation, i.e.
po_ Bven Sy ui(S(b)
ZieN Ui(Oi)

In the following sections we are going to see 2 simple auctions: Parallel 1st Price Auctions
(P1A) and Parallel 2nd Price Auctions (P2A) and study their POA.

7.2 Parallel 1st Price Auctions (P1A)

In this section we are going for the first time see mechanisms that make bidders pay
their bid. Formally, P1A is a simple mechanism where p;(b) = max; b;;. In general, 1st
price auctions are considered much more complicated than 2nd price auctions, because
in first price auctions one needs to know information about the bids of the other bidders
to bid successfully. However, in this setting, where we assume that a bidder knows the
valuations of the other bidders, as well as the bid strategy that they are following, we can
show that P1A do better that P2A. We will talk more about that at the next section,
where we will compare the 2 types of auctions directly.

7.2.1 Price of Anarchy for Pure Equilibrium

First we are going to study PNE in P1A. Interestingly, PNE in P1A are always, no matter
the valuation class, optimal: The output is always the optimal allocation.

Theorem 7.1. Let (N, M,v) be a combinatorial auction and let b be bids that form a
PNE of P1A. Then the POA of b is always 1, i.e. the allocation Sy(b), ..., S,(b) achieves
optimal welfare.

Proof. Fix a bidder ¢ and an optimal allocation Oy, ...,O,. We construct an alternative
bid b} for him: Bid 0 for items not in O;, and p;(b) + € for items in O;. Using this
bidding strategy we see that ¢ will receive only items in O;. For simplicity we will omit
the arguments in S;(-) and p;(-). Because we had a PNE, ¢ should not gain anything by
switching to b

vi(Si) — ij > v;(0;) — Z(pj +¢) (7.1)

JES; J€O0;
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By adding inequality 7.1 for all ¢ we get

Zvi(si) =D ) 0= u0) =D > (pi+e) (7.2)

7 jESi 7 ) jEOi

W.l.o.g we can assume that both allocations S and O leave no items unassigned. This
means that in inequality 7.2 the term with the prices cancel each other out and by taking
the € term infinitesimally small we get

Z Ui<Si) > Z Ui(Oz’)

(2

which proves the theorem. |

The above theorem gives a very interesting corollary: The prices of the PNE form a
walrasian equilibrium, because of inequality 7.1: By replacing O; with an arbitrary set S
we get that at prices pq, ..., p,, the set .S; is the demand of bidder 1.

Corollary 7.1. Let (N, M,v) be a combinatorial auction and let b be bids that form a
PNE of P1A. Then the prices py(b), ..., pm(b) form a walrasian equilibrium.

We can also notice that the opposite is true as well: Using the prices py, .., p,, from a
walrasian equilibrium we can construct a PNE by having each bidder bid for item j,
either p; if he receives j at the walrasian equilibrium, either infinitesimally less that p;
other wise.

Corollary 7.2. Let (N, M,v) be a combinatorial auction and let py, ..., pm be the prices
of a walrasian equilibrium. Then the following bidding vectors form a PNE of P1A.

b {pj, if 7 goes to i in the walrasian equilibrium
i

pj — €, otherwise

To conclude all that we saw, PNE in P1A achieve maximum welfare for all valuation
classes, but have one major flaw: They exist only when walrasian equilibrium exist,
which as we know are guaranteed only for gross-substitutes valuations. Under the scope
of stability, the above also means that PNE become better only when stability guarantees
the existence of walrasian equilibrium.

7.2.2 Price of Anarchy for MNE without Stability

Having talked about the more specific type of Nash Equilibrium, we are ready to move to
a more general setting, Mixed Nash Equilibrium, where bidders are allowed randomized
strategies. Unfortunately the welfare guarantees are not as good as in PNE. Specifically,
there is an example where the POA of P1A is 1 — % Christodoulou et al. created an
auction with OXS bidders, a class that contains unit-demand but is contained by gross-
substitutes, where the POA goes to 1 — %, as n — 00.

Theorem 7.2. In an auction where bidders have OXS valuations, the POA of a MNE
in a P1A can be 1 — 1 ~ 0.6321.
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This means that for every valuation class more general than OXS, we can not guarantee
POA larger than 1 — % Showing the proof for the above theorem, as well as simply
presenting the example that Christodoulou et al. construct is far too complicated for the
purpose of this thesis.

Having found an upper bound for the POA, we are now going to prove a lower bound.
More specifically we are going to show that for XOS valuations (see definition 3.17) the
POA of any MNE is at least 1 — é, closing completely the gap between the lower and the
upper bound.

Theorem 7.3 ([28]). Let (N, M,v) be a combinatorial auction with XOS valuations and
D = (Dy,...,D,) a profile of bid vector distributions that forms a MNE for the PI1A.
Then the POA of D = (Dy, ..., Dy,) is at least 1 — £ ~ 0.6321.

Proof. Fix a bidder 7 and his valuation v;(-). Let ¢;(-) denote the additive valuation that
represents i’s valuation at set O;. This means that v;(O;) = ¢;(0;) and v;(S) > ¢;(S) for
every S C M. Thus by using ¢;(-) instead of v;(-) for bidder i, we can only underestimate
his value.

We will construct a deviating bid bj for i. For every item j ¢ O;, bj;
J € Oy, i s going to draw a bid bj; from a distribution with density function f;(r) =
and support [0, (1 — %)qz(j)]

Now consider an arbitrary realization of the players’ bids b ~ D. We will focus on an
arbitrary item j € O;, by underestimating i’s valuation with ¢;(-), meaning that if ¢ bids
x for item j and gets it, his utility will be ¢;(j) — x. Thus, i’s expected utility from item
7 by bidding as above is

= 0. For every item
1

a(j)—z

0, if maxy; by > (1 — %)qz(j)
“Lal),
wly > SO0 g, (7) — @) f(w)da = (7.3)
= (1—2)qi(j) — maxyy; bej,  otherwise

By looking more closely at inequality 7.3, in the first case 0 > (1 — 2)g;(j) — maxy; by;.
Thus, we can see that in both cases, u; > (1 — 1)¢;(j) — maxpen by;, simply by adding
bidder ¢ to the max term. Since this is a 1st price auction, p;(b) = maxyen by; and by
adding the inequality for all items we get an underestimate of i’s total expected utility
at bid realizations b

db) 2 32 (- ) Y ali) — Y pilb) = (1= 2)u(0) = Y m(b) (1)

Jj€O; J€O; j€O0; Jj€O;

Where the last equality holds because ¢;(O;) = v;(O;). Now by taking the expectation
over b of inequality 7.4, we get a lower bound of i’s utility if he uses the deviation
described at the start. Because D was a MNE, we have that his expected utility u;(D)
before deviating will be higher than the deviating utility

, 1
ui(D) 2 B w(b) 2 (1~ -)u(0) - E > i(b) (7.5)

b~D
J€0;
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By adding inequality 7.5 over all ¢+ and replacing each utility u; with its expression

E S asm) -3 3 nm) | = 0= w00 - B S nb)

( i jeS;(b) i i jEO;

By simplifying inequality 7.6

1
E (Z m(&(b))) > (1-0) > u(0)

which proves the theorem. |

Thus we see that the Price of Anarchy in P1A always lies in [0.6321, 1] and that the lower
bound cannot be increased. Now we are going to see how this bounds are affected by
stability guarantees in auctions.

7.2.3 Price of Anarchy for MNE with Stability

In this section we are going to see how the results of the previous section can be improved
when we assume that the auction is stable. We have proven in corollary 5.1 that if v > 2
then the bidder with the highest singleton value for an item is the one who gets that item
in the optimal allocation. From now on we are going to denote with w; the maximum of
the singleton values of the bidders that do not get item j at the optimal allocation, i.e.
if j € O;, then w; = maxy; vi(J).

Because in stable auctions the singleton of the bidders are very important, we would like
to prove that in a P1A no bidder is going to bid higher than w; for item j. However this
is not the case. Consider a really simple example with 2 bidders and 1 item. The first
bidder has value 1 and the second 2. A PNE is for the first bidder to bid 1.5 and the
second bidder to bid 1.5 4 €.

Since the above does not hold, we are going to prove something a little bit more convo-
luted: A bidder will bid higher that his singleton value only if he is sure that he is not
going to receive that item.

Claim 7.1. Let (N, M,v) be a combinatorial auction with subadditive valuations and
D = (D, ...,D,) a profile of bid vector distributions that forms a MNE for P1A. Then
for every j € M and any i € N the following entailment is true

If P [j€Si(b)] >0, then P [b; > wvi(j)] =0

This claims that if a bidder gets a certain item with positive probability, then he, under
no circumstances, bids higher than his singleton value for that item. The proof is quite
easy, as we just need to prove that a bidder would only lose utility by bidding above his
singleton value if he got that item.
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Proof. Fix a bidder 7 and an item j. We will show this by contradiction: Suppose that
at some realization of D; bidder ¢ bids higher than v;(j) for item j and that at some
other realization of D bidder i gets item j. Since the distributions in D are independent,
this means that there exists a realization of D where bidder ¢ both gets j and bids for it
higher than v;(j). Now we need to show that if bidder i lowered his bid to v;(j) he would
gain utility.

In the realizations where i bids high for j and he does not get j, he has nothing to lose
by lowering his price.

In the realizations where ¢ bids high for j and gets j, if he lowered his price to v;(j) he
would either lose the item, yielding a utility increase of b;; — v;(j|S — j) or he would
simple pay less, increasing his utility by b;; — v;(j). Both quantities are strictly positive,
the first because of subadditivity - v;(j|S — j) < v;(j) -, meaning that D is not a MNE,
which completes the contradiction. |

Having proven the claim above, we are ready to show how the POA increases when the
auction is stable.

Theorem 7.4. Let (N, M,v) be a y-stable auction, v > 2, with XOS bidders. Let D be a
profile of bid vector distributions which forms a MNE for P1A. Then the POA is strictly
greater than 3—:?

The proof that follows is quite easy: As v becomes larger, the value that a bidder gets
from each item in his optimal set gets further away from the second highest singleton.
This means that if we have him bid the second highest singleton for each item, his utility
should be large enough to prove that the allocation of the equilibrium has high enough
welfare.

Proof. Fix a bidder ¢. We are going to construct a deviating bid for i. For any items
j ¢ Oy, bid 0. Denote with A the subset of O; that i gets with probability 1 at the MNE.
For the items in A, keep the same bidding strategy and for the other items j in O; — A
bid the second highest singleton w; + €, i.e. maxy,; vi(j). This bidding strategy gets @
the whole bundle O;. This is obvious for items in A. For items j € O; — A, player ¢
only needs to outbid any other player k that has positive probability to get j. Because
of claim 7.1 their bid is at most w;, which means that our deviating bids achieve getting
these items from them.

Before using our deviating bid let us analyze the expected payment of 7 at the equilibrium:

E pib)=E > pib)+ E > pi(b) > E > p;(b) (7.7)
j€S;(b) j€S;(b)—A jEA jeA

Where the equality holds because for every realization of bids b, A C S;(b) and the
inequality because the payments are always non-negative. Now we use the fact that if
1 uses the deviating bids, he is not going to lose any utility. For the payment at the
equilibrium we use inequality 7.7 as it is a lower bound for the real payment of ¢

E v;(Si(b)) — tEDij(b) >0i(0) — > w;— b,IE:’Dij(b) (7.8)

b~D , , ,
JEA JEO;—A JEA

Now by rearranging and using corollary 5.2 (w; < #qi (7)) on inequality 7.8 we get
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E u(Si(0) > ui(0) - —— D7 aili) = (0, ——Z% (7.9)

JEO —-A J€O;

Where in the second inequality we simply make the sum contain more items. Using now
the fact that v;(0;) = >~ .0, ¢;(j) and by adding inequality 7.9 for all ¢, we complete the
proof of the theorem. |

This theorem does not really say anything, unless v > e+1, where the POA is guaranteed
above 1 + % Asymptotically the POA becomes equal to 1. We also provide a graph to
show how fast is the growth of the POA.
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7.3 Parallel 2nd Price Auctions (P2A)

In this section we are going to study Parallel 2nd Price Auctions (P2A), where the price
of each item j is the second highest bid, ie. if j € S;(b) then p;j(b) = maxyy, by;.
Traditionally, second price auctions are considered better, because it is easier for bidders
to make their bids, especially when they don’t know the information about the other
players. However, as we are going to see now, first price auctions provide better guarantees
for the POA. In P2A, we are going to restrict ourselves only to PNE, as the bidders have
a lot of freedom, even at this restricted setting. As we did in the previous section, first
we are going to see P2A, without any assumptions of stability.

7.3.1 Price of Anarchy without Stability

It has been proven by Vickrey in [1] that 2nd price auctions for single parameter settings
are awesome in a sense. However, if 2nd price auctions are left totally unrestricted they
provide no POA guarantees whatsoever. As the following example demonstrates, 2nd
price auctions, even for 1 item, can have unbounded POA.

Example 7.1. Consider 2 bidders and 1 item. Alice has value 1 for the item and Bob
has value € < 1. The optimal allocation has welfare 1. However, the bids 0 and 100, for
Alice and Bob respectively, forms a PNE: If Alice overbids Bob she will have utility of
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—99, while Bob couldn’t be happier since he gets the item for free. This PNE has POA
equal to €, which can be arbitrarily close to 0.

The problem with this example is that bidders with low value can bid arbitrarily high,
making other bidders with high values uninterested in the item that they would have
wanted. In order to achieve some kind of lower bound in the POA, we need to set some
no-overbidding rules.

First we are going to see the strongest assumption of no-overbidding, that forces each
player to bid below his value, no matter the outcome of the P2A.

Definition 7.5 (Strong No Overbidding (SNO)). A bid profile b = (b, ..., b,,) satisfies
SNO if for every bidder @

jes
for every bundle of items S C M.

Next we see a weaker no-overbidding assumption, that forces each player to bid below
his value only for the bundle that he will receive.

Definition 7.6 (Weak No Overbidding (WNO)). A bid profile b = (by, ..., b,,) satisfies
WNO if for every bidder ¢

vi(Si(b)) = Y by (7.11)

j€S;(b)

for every bundle of items S C M.

Having defined our two notions of no-overbidding we are ready to explore what values
takes the POA in P2A. We will begin with an example, that shows that POA can be %

Example 7.2 (POA in P2A can be 1). Consider 2 unit-demand bidders, Alice and
Bob and 2 items a and b. Alice’s values for a and b are 2 and 1, respectively. Bob is
symmetrical, meaning his values are 1 and 2 instead. We can conclude that the optimal
welfare is 4.

Consider now that Alice’s bids for a and b are 0 and 1, while Bob’s are 1 and 0. These
bids actually form an equilibrium. Since everything is symmetrical we will only analyze
Alice’s point of view. Alice has no reason to change her to bid for item b, since she gets
it for free, for a total utility of 1. If she decides to bid for item a, her total value will
increase to 2, but she will also be required to pay 1, bringing her total utility again to 1.
Thus we have concluded that Alice can not gain any utility by deviating. Thus we have
an equilibrium with welfare of 2, making POA equal to %

Notice that both the bids of the equilibrium, as well as the deviating bids conform to
SNO.

Now our hope is to prove that this example is the worst case scenario and that POA in
P2A is always above % This is indeed the case. Surprisingly we do not have to restrict
ourselves only to bidding profiles that conform to SNO, as the assumption of WNO is
enough.
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Theorem 7.5 ([31]). Let (N, M,v) be a combinatorial auction with XOS valuations and
b a bidding profile that forms a PNE for P2A. Then the POA of b is at least %

The proof that follows is quite simple. If each bidder for the set that he gets allocated in
the optimal allocation bids high enough, then he will pay the bids of the other players,
which in turn because of WNO are most the welfare of the equilibrium.

Proof. Fix a bidder 7 and denote with ¢;(-) the additive valuation that represents v;(O;).
Because we have XOS, this means that v;(0;) = ¢;(O;) and v;(S) > ¢;(S) for any S C M.
We will create a deviating bid for ¢: Bid 0 for items not in O; and for items j € O; bid
b;; = qi(j). Then i’s utility by deviating in such a way would be

ui(bs, b_;) = vi(Si(b}, b)) — Z I}ﬂlgf brj
]esz(b:ﬂb* )
> ) (Qi(j) — max bkj)

jESi(b}b_;)

> Z (ql-(j) — Hl]?kaj) =v;(O;) Z maxbkj

J€0; Jj€O0;

Where in the first inequality we put more terms in the max term and used that v;(S;) >
¢;(S;) and in the second we added the terms ¢;(j) — maxy, by; for the items that i did not
get, because such terms are negative. Finally the equality holds because v;(O;) = ¢;(O;).
Now we can combine this inequality with the fact that u;(b;, b_;) is not going to be more
than the utility of ¢ at the equilibrium, which in turn is less than the value of i’s bundle
at the equilibrium

vi(Si(b)) > ui(b) > u;(by, b_;) > vi(O0;) = Y max by (7.12)

J€0;

Now by adding inequality 7.12 for all ¢ and using the fact that U;S; = U;O; (because we
can suppose that both allocate all items), we get

> 0i(Si(b)) =) " wi(0) = > Z max by (7.13)

i i i j€5;(b

Now because of WNO we know that >, 1,y max by; < v;(Si(b)). Using this in inequal-
ity 7.13 and by rearranging we prove the theorem. |

This concludes the study of Price of Anarchy in Parallel 2nd Price Auctions, as we have
found both the lower and the upper bound. Next we are going to study P2As under
stability conditions, where we will show that things are a lot more interesting.

7.3.2 Price of Anarchy with Stability

In this section we are going to study P2A under the assumption of stability. First we

would like to find some bound to show how good can we expect our results to be. Let’s
1

look at example 7.2, in which POA was ;. Notice that this is the same example as
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example 5.1, where we showed that this auction is (3 — €)-stable. This means that we
cannot hope to show better bounds than the previous section when v is less than 3.

One idea is to make adjustments to theorem 7.4 and show that POA in P2A is also
greater than ”’—:f This makes sense as for v = 3 we get the bound of %, of the previous
auction. This idea indeed works with minor adjustments to the proof of theorem 7.4, but
the reality is that we can prove something much stronger. For 3-stable auctions, POA is
always 1, meaning that the only allocation that achieves an equilibrium is the optimal
one. To prove this we are going to assume a different overbidding method, that allows
bidders more freedom than SNO. We call this Singleton No-Overbidding (SiNO) and it
simply states that each bidder should not bid more for each item than his singleton value.

Definition 7.7 (Singleton No Overbidding (SiNO)). A bid profile b = (by, ..., b,,) satis-
fies Singleton No Overbidding (SiNO) if for every bidder i and item j

Just for concreteness let us prove the fact that SINO allows bidders more bidding options
than SNO.

Claim 7.2 (SNO C SiNO). If a bidding profile b satisfies SNO, then it also satisfies
SiNO.

Proof. Fix a bidder i and an item j. Since b; satisfies SNO, then for the bundle S = {j}
we have that v;(j) > b;;. This completes the proof. [ |

Now we are ready to properly state that with SINO, POA is always 1.

Theorem 7.6. Let (N, M,v) be a 3-stable combinatorial auction with submodular valu-
ations and b a bidding profile that forms a PNE for P2A and satisfies SiNO. Then the
allocation of the equilibrium is the optimal allocation.

The proof that follows is similar to the proof of theorem 6.9. Intuitively, because the gap
between the prices and the values has gotten large enough, the bidder who is optimally
allocated an item has much more incentive to outbid the other bidders for that item.

Proof. We will show this by contradiction. First, denote with w; the second highest
singleton value of item j, ie. if j € O;, w; = maxyy vi(j) (we know that ¢ has the
highest singleton because of corollary 5.1). Fix a bidder i for who O; Z S;(b). Let A; be
the items that i is allocated in the equilibrium that are also in O;, i.e. A; = O; N S;(b).
We construct a deviating bid for i: For items not in O;, bid 0, for items A; bid as before
(which means that the prices for these items will be the same as before) and for items in
O; — A; bid w; + €. This bid vector guarantees that ¢ will receive the whole bundle O;,
because of SINO. His new utility is

wp = v;(0;) = Y pi(b) — | > max byj = vi(0) =Y pi(b)— > w;  (7.15)
JEA; JEO;—A; JEA; JEO;—A;

where the inequality holds because of SINO: Every bid must be below every corresponding
singleton value, which in turn is less than the maximum of the singleton values. Now we
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use that this new utility can’t be greater than the utility of the bidder at the equilibrium
(for simplicity we denote S; = S;(b))

i Si) = Y pi(b) > v(0) = Y pi(b) = D w (7.16)

JES; JEA; JEO;—A4;

In inequality 7.16 we can eliminate the term ., p;(b) because it is contained in the
term > Jes; p;(b). Also we can ignore the rest of the prices as they are positive. All these
make inequality 7.16

vi(S) = vi(0) = Y w; (7.17)

JeEO0;—A;

Now using the facts that >, g 4 vi(j) + vi(4i) > v;(S;) and w; > v;(j) for items such
that j € S; — A;, inequality 7.17 becomes

Z w; + Z w; > v;(0;) — vi(4;) (7.18)

JESi—A; JEO;—A;

Using the fact that U;(S; — A;) = M — U; A; = U;(O; — A;) and adding inequality 7.18 for

all 7 and we get
2> Y wy =) (0i(0) — vilAy) (7.19)

i JEO;—A; %

Because of lemma 5.1 and 3-stability, for any item j € O; we have that v;(j]|0; —j) > sw;.
This makes inequality 7.19

ST (0(0) ~ (0 ) > 3 (0(0:) — vl A) (7.20)

i JEO;—A; i

Now if for every i, Zjeoi—Ai (vi(Oi) —0;(0; — ])) < v;(0;) — vi(A;), inequality 7.20 is a
contradiction. The latter inequality is true because of submodularity: W.l.o.g. we order
items in O; — 4; = {1,2,3,...,]0; — A;|} and denote X; = {1,2, ..., j}, where X, = () and
X|0,—4;) = O; — A;. This makes the RHS in the inequality that we want to prove equal
to

|0;—A;]
vi(0:) —vi(A) = D (0i(0s = Xj1) — wi(0; = X)) (7.21)
j=1
Because of submodularity v;(O; — X;-1) — v;(0; — X;) > v;(0;) — v;(O; — j), which
completes the proof. [ |

This completes the section of POA, having proven that without stability guarantees P1A
are better that P2A, but stable P2A are better than stable P1A, when the auction is at
least 3-stable.
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