EOGNIKO METXOBIO ITOAYTEXNEIO
3XOAH HAEKTPOAOT'QN MHXANIKQN KAT MHXANIKQN
YITOAOTIXTOQN
TOMEAY TEXNOAOI'TAY ITAHPO®OPIKHY KAI YIIOAOTIXTOQN

ATTAQMATIKH EPTAYTA

Interference Aware Container Orchestration in
Kubernetes Cluster

AywAheag A. Tlevetonouviog
AM. : 03113412

EnBrénowy : Anufteoc I Xolvteng
Kaodnyntic EMII

A9fva
Noéupelog 2019

EOGNIKO METXOBIO IIOAYTEXNEIO
Y XOAH HAEKTPOAOT'QN MHXANIKON KAT MHXANIKON YIIOAOT'TETOQN
TOMEAY. TEXNOAOTTAY TAHPO®OPIKHY KAI YIIOAOT'TXTON

AITTAQOMATIKH EPTAXIA

Interference Aware Container Orchestration in
Kubernetes Cluster

Ayuéac A. TCevetémouhog
A.M. : 03113412

EnBrenwy : Anurtpioc 1. Yolvreng
Kadnyntic EMII

Towelric Emtponr E&étaonc

(Troypopi) (Troypopr) (Troypogr)
Anurtplog Xolvteng Havaywwtng Toavdxog I'ewpytoc I'roluac
Kodnyntic Kodnyntic Enixoupog Kodnyntc
EMII EMII EMII

Huepopnvia EEétaong:
18 Noesufeiov 2019

Copyright (©- All rights reserved Ayiiiéac A. TCeveténouvlog, 2019.

Me empOtaln xdie duconduoaTog.

Arnayopeletar 1 avitypagy|, amodixeuct xou Slavour| Tng Topolcug epyactiog, €€ oAoxhipou A Tuf-
HOTOG AUTAS, YLl EUTOPXG oxomd. Emtpéneton 1 avatinemon, anoUhxeuon xou dlavouy| Yol OXoTo
U1 XEEDOOXOTIXO, EXTUOEUTIXNG 1) EPELVNTIXAC POOTC, UTO TNV TEOUTOVEST) Vo avapepeTon 1) TNy N
TEOEAEUOTC %o Vo DlaTneeltan To ooy uivuua. EewtAuata mou agopodv tn yenon tng epyaociog

Yoo xepdooxomixéd oxomd meEmel vo ameudlvovion TEO¢ TOV GUYYPUQE.

(Yroypogpt))

Aywiéag A. TlevetonmOoULAOG
Aimhwpatovyoc Hhextpohdyoc Mnyovixde xow Mnyavixde Troroylotowv E.M.IL
(©2019 - All rights reserved.

ITepiAndm

YAUEEX, EVOC OGN0 X AUEAVOUEVOC 0ptIUOC Ao EQUOUOYES aveBaivel xou exTeleiToL
o€ TMEPBGANOVTO UTOAOYIGTIXOU VEPOUS. O DLYEIPLOTES TV XEVTOWY DEDOUEVWV
X0l Ol TEEOYOL UTNEECLMV VEPOUS €YOLY UOVETACEL TNV CUVOTHEEY XoL TNV oo
xowol ulotnon TopnY we TEMOTNG TAENG UEANUA 6OV aPopd. TO GYEBLICUO TWV
CUCTNUATOLY TOUC, UE OTOYO TNV ATOTEASOUANTIXOTERT] AVTIIETWTILOT) X0 OLoyElpLo)
TOU WEAVOUEVOU OYXOU UTOAOYLO TIX®Y amanTHoewY. Ty {Bla otiyur|, ol cuveyelc
eCehiCelc oTIC TEYVOROYIEC UAXOU T®V UTOAOYLOT®Y, £Y0UV 00NYHOEL GTN YPeHOoN
ETEPOYEVWY CUCTNUATWY, oAAd ot T cUVUEDT TOoug OE OddEC oTa GOYYPOVA
*EvTpa BedoUEVKY. Ol olUyypovol BEoHONOYNTES Xal EVopyNoTewTee BuoctlovTal
%VPlWC O ATMAEC PETEIXEC TOU EXACTOTE CUCTAUATOS, OTWE TO TOCOGTO YeNoNg
TOV XEVTPIXWY LoVadwy encéepyacioc Tou cuothuatoc (CPUs) xat tne xevtpnhc
UVNUNG, Yo TNV TOTOVETNOT TWV ELOEQYOUEVOY EQUQUOYMY GTOUS DLECYIOUS
Topoug. (26T600, dev houfBdveTon UTOYLY N ETOPAUCT) TWV EQUOUOYHY TTOU TOTO-
Yetolvon pall ye dhheg o€ BlouotpalOUEVOUC TOPOUC XL O OVTOYWVIOUOS UETOED
QUTGY YLOL TNV YEYOT) TV TOEWY AL 00TE XAl TO TS 1) ETEPOYEVELDL TOV ETUELOUS
CUCTAUATWY UTOREL VoL ETNEEGCEL T1) GUVOAXT] ATODOCT).

TNV Tapovoa epyacto, oyedLdLOVUE VoY OROUOAOYTTH EVOWUATWUEVO O EVOQ-
YNOTEWTY| 0€ TEPBIAAOY UTOAOYIGTIXOU VEPOUS, O OTOlOG EYEL ETYVOOT GYETIXY
ue TNy Omopdn Tiavic CLUPOENONE OE XATOLOY OO TOUC OLUUOLEULOUEVOUS TTOPOUC,
®oOC xo TO DLAPORETINO GYEDLIOUO UETAUED CUOTNUATGY, IXUVO Vo BEOUONOYEL
ATOTEAEOUATING EQUPUOYES TOU QUAVOLY OE EVal xEVTEO Oedopuévwy. Ilapouotid-
Coupe TNV enldpoaoyn TG doxnone TEoNC O OLEPOPOUS XOVOYENOCTOUS TOPOUC
EVOC CUCTAUATOS X0 TEOTEIVOUUE EVAV OVTITPOOWTELTIXG OEIXTY), IXovh VoL av-
TixaTonTellEl TNV XATdo oo Tou GUCTHUATOS, PaollOUEVoL OE TUPAUTNENOELS ETL
nelpopdtwy. Evoouatadvoupe t o o pe tov KuBepvtn (Kubernetes) |, évav
OO TOUC TILO EUPEWS YLPNOUOTIOLOUUEVOUC EVORYNO TEWTES UTOMOYLO TIXWDY GUCTY-
UATWY o€ TEPUBEANOVTA VEQOUC GUEEA, XAl OELY VOUUE KIS UTOPOVUE VoL ETULTOY OUUE
ulmAdTERN AmOBOGCT OE GUYXEIGT| UE TOV TROETUAEYUEVO OPOUONOYHTY, Vil Ulo TTOLX-
Ao AVTITPOCWTEUTIXGY TUTWY EQPUPUOYMY TTOU Y ETNOWOTOLOUVTUL EVRENS CHUEQRL.

Ag&eic KAeld1d— unohoylotéc VEgoug, dlayelplon Topmy, YeovodeoUoloY o),
Kubernetes, Interference-aware, etepoyévela

Abstract

Nowadays, there is an ever-increasing number of workloads pushed and exe-
cuted on the Cloud. To effectively serve and manage these huge computational
demands, data center operators and cloud providers have embraced workload
co-location and multi-tenancy as first class system design concern. In addition,
the continuous advancements in the computers’ hardware technology have led
to a heterogeneous pool of systems lying under data center environments. Cur-
rent state-of-the-art schedulers and orchestrators rely on typical metrics, such
as CPU or memory utilization, for placing incoming workloads on the available
pool of resources, thus, not taking into consideration the interference effects
each task cause, when co-located with others, as well as the impact of systems’
underlying diversity on the performance.

In this thesis, we design an interference- and heterogeneity- aware cloud or-
chestrator, able to efficiently schedule applications arriving at a data center on
a pool of available resources. We showcase the impact of applying stress on
different shared resources of two heterogeneous server systems and we propose
an indicator that depicts the state of the system based on these observations.
We integrate our solution with Kubernetes, one of the most widely used cloud
orchestration frameworks nowadays, and we show that we can achieve higher
performance compared to its default scheduler, for a variety of cloud represen-
tative workloads.

Keywords— cloud computing, resource management, scheduling, Kubernetes,
interference-aware heterogeneity

FEuyapiotieg

Apywnd, Yo fileha vo exppdow TNy euyYvwUoohv Hou otov emBiénovTa pou, Ka-
Unynth Anurteto Xoovten EMII, o onolog ue eumotedTnxe xat You €0woe TNy
guxouplal Vo EXTTOVAOW T1) OLAwPATIXY| Wou epyacia oto Epyaothpto Muxpoimoi-
oylo v xat Ungloxey Yuotnudtov (MicroLab) oto EMIL.

Emnlong, Yo fjieha vo euyopto THowW TOV YETAOIOAXTORPIXO EQELYNTA LwTHELo ZH0T
xou Tov utoglo ddxtopa Anuocdévn Macolpo yio 0 Borjlela xou 1 cuvep-
yaota Toug xod ‘Ohn TN Odpxelor Tne dimAwuotixc pou. H ouveyrc T pac
XATE TN OLIEXELL TNG OIMAWUATIXAG, ME BoinoE vor amoxThow YETYOROTERY Y VK-
OEIC OYETIXEC UE TO avTIXEUEVO Tou eCeTdoUE, Ol OToleg TaUTOY POV Efval Epop-
UOCLUEC O TOANOUC ToUelc TNG o0y YEOVNS TEYVOROYING Xl TWV CUCTNUATWY UT-
ohoytoTt@v. IlopdAhnha Ue ELGTyoyoy GTNY EQELVNTIXNA TEOCEYYIOT) XaL EPYAsiaL.
Oo N¥eha emiong va evyaploThow OAa to Yehn tou Microlab yia To euydpioto
TepBdhhov epyaotioc.

Axbuo Yo ek var euyoplothiow toug yovelc pou Avopea xou Xelotiva, tny
adep@r| wou Kateptva xow toug @lhouc wou. H cuveync umoothpilr toug xod
‘ONn T OLdpxetor TG CWhE XL TV OTIOUBWY UOU OE OTL XUl oV ETLYELPOUOA, LOU
€0V BUVaUT Yo GLUVEYIOW Vo ETUOWX® TOUC GTOYoUS Wou. Tehog, Eva ueydio
EUYOOIOTE OTNV XOTEAA Uou OEuida, 1 omola UE UTOUOVY| UE OTHPLEE OE OTLYUES
Tleong xou dyyoug.

Acknowledgments

Firstly, I would like to express my gratitude to my supervisor, Professor Dim-
itrios Soudris NTUA, who trusted me and gave me the opportunity to develop
my thesis at the Microprocessors and Digital Systems Laboratory (MicroLab)
in National Technical University of Athens (NTUA). In addition, I would like to
thank the Post-Doctoral Researcher and Proferssor Sotirios Xydis and the Ph.D
candidate Dimosthenis Masouros for their assistance and cooperation through-
out my diploma thesis development. Our continuous collaboration during this
thesis helped me to gain useful knowledge regarding to the subject we examined,
which is at the same time applicable to many areas of modern technology and
computer engineering. They also introduced me to the research approach and
environment. Furthermore, I would like to thank all the members of MicroLab
for a pleasant working environment.

Last but not least, I would like to thank my parents Andreas and Christina,
my sister Katerina and my friends. The constant support throughout my life
and studies in whatever I endeavor, gave me the strength to continue pushing,
trying to pursue my goals. Finally, a big thank you to my girlfriend Themis,
who patiently supported me in times of stress and anxiety.

11

Contents

ITepiindm 5
Abstract 7
Evyopiotieg 9
Acknowledgments 11
Extetapevn Ilepiindn 21
1 Ewoyoyh 21
2 KuBepviitne (Kubernetes) xou EvopyYotpwon containers 23
3 Avdluon extéleong e@apuoY®V oe TEPUSIANOVTA UE EVTOVT YEToN
TOV TOPWV « o v v v e 24
3.1 llocotixomolnon xou puétenomn mleong cuoTAUATOS 25
3.2 Etepoyévewor oo 26
4 YLyedlouog evowuatwuévou otov Kulepvrtn dpouoloynty, eviucpou
OYETIXA UE TNV XATACTUOT) TOU CUCTAUNTOS .+ .« . o o o o ot oo o 27
4.1 To mpoPAnuo TG dpopoRGYNoNG 28
4.2 Thomolnomo 28
5 Arnoteréoparta xou AZlohdynon ... oL 31
5.1 Ouoyevéc Lootnuar oo 31
5.2 Etepoyevéc Lootnuoe oo 34
6 Yovodn xow Medhovtin) AovAewd o oo 34
6.1 YXovobm Lo 34
6.2 Melovtid | QovAed L L 35
1 Introduction 37
1.1 Cloud Computing 37
1.2 Data Centers concerns: shared resources, Interference, under-
Utilization and Heterogeneity 38
1.3 Container Orchestration with Kubernetes 41
1.4 Thesis Overview 41

2 Related Work 43

2.1 Metrics Collection 43
21.1 Rusty 43
2.1.2 Bubble-Flux 43
2.1.3 Other approaches 43

2.2 Application Scheduling 44
2.2.1 Kuberneteso 44
222 Mage 44
2.2.3 Medea 44
224 Paragon 44

2.3 Resource Allocation, 45
231 Quasar 45
2.3.2 Other approaches 45

2.4 Our Approach 45

3 Kubernetes, a Container Orchestrator 47

3.1 Docker containers and Orchestration 47
3.1.1 Virtual Machines 48
3.1.2 Containerso 48
3.1.3 Orchestration 49

3.2 Kubernetes Master Node(s) Components 50

3.3 Kubernetes Worker Node(s) Components 51
3.3.1 Other Important Addons 51

3.4 Kubernetes Architecture 52
3.4.1 Cluster 52
3.4.2 Nodes 52
3.4.3 Deployment oL 53
3.44 Pods 54
3.4.5 Service 54

3.5 Kubernetes Resources 55

3.6 Kubernetes Scheduling 58
3.6.1 Node Filtering, 58
3.6.2 Node Prioritizing 60

4 Motivational Analysis and Observations 65

4.1 Experimental Infrastructure 65
4.1.1 Systemsetup 65
4.1.2 Monitoring and Communication 67

4.2 Description of Cloud workloads and Interference micro-benchmarks 68
421 iBench 68
4.2.2 Scikit-Learn 69

4.3
4.4

4.5

4.6

4.2.3 Spec CPU® 2006
4.2.4 Cloudsuite
Kubernetes scheduler Inefficiency
Impact of interference on the performance of applications
4.4.1 Stressing the Cores
4.4.2 Stressing L2 cache o0
4.4.3 Stressing L3 Cache (LLC)
4.4.4 Stressing Memory Bandwidth
4.4.5 Mixed Stressing Scenarios
4.4.6 Quantifying Stress Levels
Impact of heterogeneity on the performance of applications . . .
4.5.1 Stressing the Cores
4.5.2 Stressing L2 cache
4.5.3 Stressing L3 cache (LLC)
4.5.4 Stressing Memory Bandwidth
4.5.5 Mixed Stressing Scenarios
Stress Duration and Stress Level Pareto

Interference-aware Kubernetes Scheduler

5.1 Mathematical Modeling & Problem Definition

5.2 Proposed Solution and Heuristic Algorithm Approach
5.2.1 Parameter 1: Stress Score
5.2.2 Parameter 2: Duration Factor
5.2.3 Parameter 3: Heterogeneity Factor

5.3 Algorithm
5.3.1 1st Level - Socket Selection
5.3.2 2nd Level - Node Selection
5.3.3 Pod Placement

Evaluation

6.1 Single Server
6.1.1 Stressing one Socket
6.1.2 Stressing both sockets
6.1.3 Scheduling in the absence of artificial stress
6.1.4 Available Resources Usage

6.2 Heterogeneous System L.

Conclusion and Future Work

7.1
7.2

SUMMATY o
Future Work
7.2.1 Development Scope

91
91
93
94
95
97
98
98
100
101

103
103
103
105
105
107
107

7.2.2 Research Scope

8 Appendix

1 Kubernetes Cluster Setup

2 Custom Kubernetes Scheduler Setup

3 NES Setup

16

List

1.1
1.2

3.1
3.2
3.3
3.4
3.9
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9
4.10

4.11
4.12
4.13

4.14

of Figures

Memory System Architecture 39
LLC Interference 40
Virtual Machines and Containers 48
Hybrid Containerized Architecture 50
Kubernetes Architecture 52
Cluster-Node abstraction level 53
Node-Pod-Container abstraction levels 54
Node filtering and ranking 60
Stress Level and duration 66
Pod Scheduling o o 74
Average application completition time 76

Impact of CPU stress on the performance of target applications. 78
Impact of L2 Cache stress on the performance of target applica-

17200 1 79
Impact of L3 Cache stress on the performance of target applica-
tlons. 80
Impact of Memory Bandwidth stress on the performance of tar-
get applications. 81
Impact of mixed resources stressing scenarios on the performance
of target applications. 82
Impact of L3 Cache stress on low-level metrics of the socket. . . 83
Correlation between applications performance degradation and
system metrics. L. Lo o 0oL 85
Comparative performance analysis between H1 and H2, under
CPU-stress 86
Comparative performance analysis between H1 and H2, under
L2 cache-stresso 87
Comparative performance analysis between H1 and H2, under
L3 cache-stress. L 88
Comparative performance analysis between H1 and H2, under
Memory Bandwidth-stress 88

4.15

4.16

5.1
5.2
5.3
5.4

6.1

6.2

6.3

6.4

6.5
6.6

7.1

Comparative performance analysis between H1 and H2, under

different stressing scenarios L. 89
Stress Level and duration 90
Cluster Architecture 93
Area Calculation using the average duration. 95
Area Calculation using both average and maximum duration . . 96
Decay 97
Applications relative performance after being co-scheduled with

pre-existing stressing workload. 104
Applications relative performance after being co-scheduled with

pre-existing stressing workload. 105
Applications normalized performance distribution across multi-

ple scheduler design approaches 106
Different models medians and average values comparison. 106
Resources Usage imbalance between the sockets. 107

Comparison between different approaches in applications’ rela-
tive performance distribution in Heterogeneous Kubernetes cluster.108

A “noisy neighbor” on core zero over-utilizes shared resources in
the platform, causing performance inversion (though the priority
app on core one is higher priority, it runs slower than expected). 111

18

List of Tables

4.1
4.2

4.3
4.4
4.5

Virtual Machines Characteristics 66
Summary of workloads(BE=Dbest effort and LC=latency critical

workloads) L 73
Stressing Scenarios 82
Host-1 (H1) specifications 85
Host-2 (H2) specifications 86

19

Extetopevn Ileplindn

1 Ewayowyn

Trnv teheutada dexaetio, 1 LVIOVETNOT TWV UTOAOYLOTIXWOY GUCTNUATOY VEQOUC
TOEOVGIOCE ONUAVTIXY AVATTUET), TOCO OE ETUTEGO XATAVUAWTWY OGO XL ETLYELRY-
oewv, xou Yo cuveyloel vo e€eilooetar oto péddov. H e&élén xou 1 mpocpopd
e TeyYVvohoylag ewovixoroinong virtualization [aclouévne oe moxéTa (con-
tainers) , xaddc xat T TAEOVEXTAUOTA TIOL TEOCPEPOLY OL UTONOYIGTEC VEQPOUC
OTOUC YPNOTEC X0 OTOUC OLUYELPLO TEC, EYOUV UTOTEAEGEL EVOUCHA TEOS QUTY| TNV
xatebduvon. Ou yeoTEC €YOLUY TN BLYVUTOTNTU VO EXTEAEGOUY DLUPORETIXG. ELOT
EPUPUOYMOV X0 UTNEECLMY, TANEMVOVTAC LOVO TOUC TOPOUC TTOU Y ETCLLOTIOLOUVTOL
o€ Utor BEQOUEVT OTLYUY), EVE TOEEAANAAL ETUTEETETOL 1) AVATTUL T OLXOVOULY XAl-
MOXAS Y10l TOUS (PORELS EXUETAAAEUCTIC TV TOPWY VEQPOUC, Ol OTOLOL TOUC OLOUOLRS:-
Couv ot dlapopeTixols yYenotes. H adinon tou dyxou Tou pépTou E0YUCLOY TOU
POPTWINUAV XL EXTEAECTNHAY GE UTOAOYIOTEC VEPOUS, €YOLY AVAYXUOEL TOUC
(POPElC EXUETIAAEUOTC TWV XEVTPWY OEDOUEVMY XAl TOUC TOROYOUS UTNRECLOY VE-
goug, 6mwe to Google Cloud Platform xa Amazon EC2 (AWS) va ¥écouv
(W ONUAVTIXT] TROTEQUUOTNTO TOUC TO OYEOLAOUSO EVOC CUCTHAUNTOS UE YVOUOVA
TNV oLUVTOTOVETNON EPUEUOY®Y, XxadMC ETIONC XL TOV BLIUOLEUCUO TOPWY UETAED
OLUPOPETIXWY YLENOTWV.

(061600, QUTH 1 XATAVOUT TOPWY UPETULL ECEYWELOTWV YPNOTWY OEV €pyETAL
ctoyn. To goptio epyaociog mou TonovetolvIon OE XOWE PUOLXAL UMY VAT, OV-
Ty WVILOVToL GUVEYMS YLo XOVOYENOTOUC TORPOUCS, OTWS 1) XQUPT UVAUN, 1 YeNoT
NS XEVTEWNC UVANG, TO €0poc VNS Tou BIXTUOU Xou TNG UVARNG Xot SAhouc,
TEOXUAWVTAS TEPAOTIEC APVNTIXES EMOPAOEC oty anddoor. H xatdotact auth
eCehlooeTan xaddg ol véolr TpoundeuTéc UTNEECLOY UTOAOYICTOV VEQOUS, TEOO-
(PEPOUV OTOUC YPNOTEC EAACTIXOTNTA XL TN DUVATOTNTO YPNYOPNS ot €0XOANG
AVAVEWOCNG TNS YOPNTXOTNTAC TWV UNYOVOY TOU EVOLXLALOUY, 00NYOVTIC GE EVaY
OLYVOUIXO EQPODLACUO TV TOPKY GUC TAUATOC.

Avth n evehila 0T BUVATOHTNTO XAUEHWOTS TWY TOEWY OB YNOE TOUS YENOTES
vor {nToOv 6hO X0 TEQLOGOTEPOUC TOPOUC, WOTE VOl IXUVOTIOLCOUY TIC AMAUTHOELS
TOUC OYETX UE TNV TOLOTNTO TWV UTNEECLMY TOU ToEEYOUV oL evaicUNnTEC oTNV
xaduoTEENON EQUEHOYES TouS. (20TOCO, UxOUTN %o OE PEYAIAES ETouplEC OTWS 1)
Microsoft xou 1 Google n yeon yerion twv dleoluwy Topwv etvon GUVATLS xdTw

21

and 50%. Emniéov, ta xévtpa dedopévev tne Mozilla xou tne VMWare Aettoup-
youv pe 6% xau 20-30% yerion avtiotorya. Ot mdpoyol uTnEEsIOY BladixTioU
€y oLV TEoodLoploEl WS xplowo oToY0 oyedlaouol TN Bedtiwon Tne yenone Twv
LY YPOVWY UTOAOYLOTWY ANOUAXEUCTC UE OXOTO TN UEltOT TOU GUVOALXOU XOO-
Toug WoxtNotac. Amd TNy dhAn TAUpd, To TEdyUoTa YivovTon oxourn YEeOTER,
OTOUC DLALYELPLO TEC XAl EVOPY O TEWTEC OE GUG TOLY (EC UTOMOYLG TGV IOV ETUTRETOVY
OLOUOLEAOUO TOU GUOTAUATOC HETAUED OLOPORETIXWY OUAOWY EPUOUOYROY. Xopox-
TNeloTd o o cucTolyio utohoylotwy Tou Twitter n yerion twv dldéotuwy
e vy Hrov xdtw and 20%, evd v Blo oTiyun, ol BecUEUUEVOL TOpOL PTE-
vouv Péypl xou 10 80% e cuvohixic ywentxotnTog. O SlayElpto TéC YEYIAWY
XEVTPWV UTOAOYLOTMY OTOTUYYAVOLUY VoL EL0GQPIAGOUY TNV XATAAANAN TOCOTNTA
nopwv. Télog o ‘Gppod” Syelplotic cuototywdy Borg emtuyydver 25-35% xou
40% YenoTn ETECERYACTAOVY X UVAUNG AvTIoTOLY A, EVE Ol BECUEVUEVOL TOPOL elvou
v Bt oty 75% xou 60% avtioTovya.

Emniéov, n ouveyric e€€AEN TV TEYVOAOYIOV XL TWV YEVEWY UALXOU, omoutel
Ao TOUG POPELC EXUETUAAEUOTIC TWV XEVTEWY OEBOUEVKY Vo avoBordullouy emavethn-
UMEVE TNV UTIOXEUEVY UTIOBOUT TOUC, TEOXEWEVOU Vo GUUBAOICOUY UE TIC TEAEUL-
Tadeg e€eAelC xaL VoL ETITEETOLY GTOUC TOROGYOUS UTNRECLOY VEPOUC VAL TIOREY OUV
XAUAVTERT) TOLOTNTU UTNRESLOY, 00Ny WVTOS OE GUC TOLYIEC UE DLUPOPETIXES, AVOUOLO-
YEVELS OLUOPPWOELS DLAXOULOTOY. ATO Tal TOEATAVE, Evol TEOPAUVES OTL 1) GuU-
(pOENOT XAl 1) TOAUBLACTAUTY PUOT] BLPOEWY BLUUOLOACOUEVKY TOPWY UTOPOUY Vi
TEOXUAEGOUY OTUAVTIXY ETUTTOOY GTNY ATOO0CT| TWV EXTEAOUUEVKY EQUQUOY MV
X0l ETOPEVOC AVUDVETOL 1) VYN UG EVIAUEETS OYETXE UE TOV OVTAY WVICUO TIOU
UTdEYEL Ylot TN YPNoN TV TOpwY aAlo xat TNV Tdov ETEPOYEVELNL EVTOC ULAC
cuoToLylog EQAUPUOYWY, DEOUOAOYNOTC ELCERYOUEVWY EXTEAECIUMY QPOPTIMV.

H tpé€youoa tdom, 6Touc opyoaviopolg, Yio TNV OPOUOAOYNOT TWV ELCERYO-
UEVWY EQUEUOYOV OF €val 0UVORO Bladéotumwy Topwy elvot UECW EVORYNO TEWTWY
(container orchestrators) , énwc eivon 1o Kubernetes 1§ to Mesos. H e€én&n xou
ot BeATidoEIC oY amddooT Tou eNEPERE 1) Etxovixonoinon (virtualization) twv
EQUPUOYWY, 00NYNoE TIC EToupleg Vo aAAdEouV ToV TEOTO PE ToV OTolo avamTUo-
COUV TIC EQPUPUOYES TOUC OE TPOCUPUOCUEVES OE TEPYSAANOY UTOAOYLOTWOVY VEPOUC
wpxo-urmneeciec ye ypron containers. 201600 oL VAOTOLNCEIS TETOLWY EVORYTN-
OTEWTOV containers €youy GYEdOTEL UE YVOUOVA TNV ATOUOVOOT] TOPWY XAl
Oyt amopalTnTor TNV amodoTxoTeRn Yenon autwyv. Pavtdler emtoxTixr Aolmov
N ovéyxn yia Evoy dpouohoynth oe meplBdAlovTa VEQoug, omolog Vo oToyEvEL
TUESAANANL GTNY UEYICTOTONOT TOU TOGOCTOU YENONG TWY UTEOYOVIWY TORWY
OANS 1o TG AODOOTG TWV EPUQUOYHY TTOU EXTEAODVTOL.

22

2 KuBepvAtne (Kubernetes) xow Evopyrotpwon con-
tainers

ITaxéto (Container): To container efvon pior Tunonotnuévn povéda AoyLouxol
7 OTOlol CUYXEVTPMVEL TOV XWOLXA, AAAS ol OREC TIC eUpTiOEIC TOU €TOL MOTE
N €@apuoYY| Vo umopel var exteAe(ton ypryopo xan allomioTo o€ moixiha TepLBdh-
hovta utoloyioTov. To xEvtpa DEBOUEVWY GUEQN YENOWOTOLOLUY QUTY| TN VEX
Ty voloyla exovixomoinong, xadwg auth Eyel TOAG TAEOVEXTHUUTA CUYXELTIXE
UE TIC EXOVIXEC UNYAVEC OTWC 1) EVEAXTY) ONuLoupyia xo avamTudn EQUPUOY®Y,
N OLEUXOAUVOT EVOC YN YPOTEPOU XUXAOU OVATTUENC TOU AOYLOULXOU, GUVETELY
OYETXE UE TO TEPUBEANOY avdmTUENG ARG XOL TNV ATOUOVLOT TOPWVY.

Evopynotpwon: Xe ueydiec cuctolyle UTOAOYIOTMY UTEEYEL 1) avdryxn
EVOPYNOTEWONG ot Olayelptong twv containers . H avdyxn autrh xohOntetan
amd LAoToLfoelS 6Twg auTh Tou KuBepvntr, evog €pyou avolytol Aoylouixol o
cextvnoe va avomtiooston e mpwTtoPfoulia tne Google. O KuBepvritng anotehet
TNV THO €UPEWC YENOWOTOOVUEYY UAoTolNoT. Zextvoviag and To LmAdTECO
eNUMEDO APUPEOTC, 1) AEYLTEXTOVIXT] TOLU TEQLAUUPBAVEL VALY 1) TEPLOGOTEPOUS KO-
Bouc dpévtn’ (master) , ot onolot anoteholy To Tedlo EAEYYOU Xou vl TO UUOAO
TOU CUCTAUATOC, TalpVOLUY AmOQUOELS Xou OVTLOPOUY OF OLd(pOopa YEYOVOTA TOU
AofBdvouy ywpeo o auto. H dAAn ouddo x6uPwy eivon ol erovoualduevol xou-
Bou €pydred (workers), otouc onoloug amooTéNOVTUL X EXTEAOUVTOL OAEC OL
epyooiec-epapuoyéc. ‘Evoc xoufoc master mepiéyel: kube-apiserver, etced,
kube-scheduler, kube-controller-manager. om6é tnv dAAn, évac xéufoc worker
repéyel :kubelet, kube-proxy, Container runtime.

Or egopuoyec agol Totodetnioly péoa oe containers , Torodetovvtar o pod
ToL OTtolol UTOEOVY VaL TIERLEYOLY VAL 1| TEQLOCOTEPX containers 1) xol HOVADES ATO-
Wxevone (volumes). O KuBepvritne urtootneilet plar mAndopo LTNeectdy xat
TUEEYEL TOWUAES DUVATOTNTEC GTOUC YEHOTEC XU TEOYPUUUATIO TES, EUVOOVTUC TNV
QUTOHATOTOMOT) TWV AVAY XMV EQYUCIOY. Mot amd auTéC €ival 0 EVOOUATWUEVOS
dpouoroynTtic epyaotny. O tereutaiog Pactléuevog oe YeTpixeg uPniol emimé-
00U, APUUEETIXEC OE ENENEDO ELXOVIXOTOINONC OTIWC 1) YPNON TWV ENECERYAT TWY XAl
UVAUNG, Talpvel arogdoelc oyeTnd ue TNy Tonodétnon Twyv pods. H dadixdoia e
NV omola oL anogdoelg auTég Aaufdvovton ebvar 1 e€nc. Apyxd e€etdlovton dhoL
ot utoAglol xouBotl oyeTd pe TN SLeCOTNTE TOUC, XL TNV IXOVOTNTA TOUG
VoL ECUTNEETHCOUV TNV ELCEPYOUEVT] EQUOUOYY. TN CUVEYELL OGOl amd AUTOUC
xpwolv xatdhiniol, Baduoroyodvton Ye Tn Ypnon WS OELRdC and GUVIRTHOELS
ol tohdynone.

23

3 AvdAuorn exTEAEOTNG EQALUOY WY OE TEQLBIANOVTA UE
EVTOVY] YPHON TWV TOPWY

O KuBepvitng oe doxyr| mou EYLve oyeTIXd Ue T1) Oy ElpLoT XUTACTAOEWY UPNATC
Tleong oToug TOPOUC, ATETUYE VoL TOTOVETYOEL TNV ELCEPYOUEVT) EQPUPUOYY| GTOV TILO
XATIAANAO %xOuB0o, auTOV TOL VoL EAXYLGTOTOLOVOE TOV YPOVO EXTEAECTC TNG EQPUO-
Hoyhc meog doxur. Mdhiota, n ouyxexpuévn tonovetnor enégepe xauoTERN O
X (—0.6873). Ouctactixd ue to melpapor aUTO, ovaryVREoaUE TNV aduvouior Tou
Kuepvitn va avayvepilel o €ldog tTne nleone otoug mépoug, xat Teg 1 EAAeUm
OLUPOPETIXWY TIOPWY EMOPE TEAXE GTNV UTODBOOT).

XeNOWOTOIWVTAC WS EQUPUOYES Tleong TNy opdda ibench, mopatneooue
CUUTIEQLPORE. EQUOUOYWY amd TG ouddeg scikit, spec 2006 xau cloudsuite. Autég
OTOTENOUV EXTEAECLUO GEYELN TTIOU TEOCOUOLWMVOUY YUQUXTNELO TIXA EQUQUOY WY
TOU YENOWOTOOUVTAL EUREWS O TepBdhhovta VEQouc. ‘Etol, aoxwvtac mleo
OE TOPOUC OTWE TOL OLUPORETIXG eMIMEDA TNG XEUPNC UVAUNG, Ol EMelepYao TES,
oA xon To eVpog Cwvng TN OLOBOL TOU OBNYEL OTN XEVTOXT UVAUT UTOPECOE
VO TTEATNEYOOUKE T1 CUUTEQLPORE. TV EQPUOUOYMY, XUl TWS 1) ATOd0CT) TOUC
emnpealdTay avdroyo Ye TNV évtaon tng mieone autrhc. To mepiBdiiov Tou Ku-
BepvATn, DIEUXOALVE UECK TWV AELTOLEYLOY TOL TUEEYEL TNV EUXOAT Xl YRTYOEN
QUEOUELWTT TOU OYXOU EQYUCLMY.

H cuyxoutdn twv YETEIXWY ToL cUCTHUATOC £YLVE UE TN YeTioT Tou Performance
Counter Monitor (PCM) epyaheiov oyedaopévou and v Intel. Luyxexpiuéva
eldryape petewe omwe ta L2, L3 cache misses, Tov aprdud diaBaoudtemy o ovory-
VOOEWY OO X0l TEOC TN XEVIEXT WVHUT), TO TOGOOTO YENONEC TWV ETECEQYACTOY,
OANS o TOV aELlUb TWV EXTEAOUUEVWY EVTOA®Y aval XOXAO POAOYIOU TV ENECEp-
YOO TOV.

Ou doxupéc €yvay o pla amd T 600 OUdOES EMELEQRYUOTMOV TOU CUGTHUATOC,
1 omofa popdletar To xov6d tereutalo eninedo tne xpugrc uviunc. Ihiéoaue to
eninedo 000 o TEla TN XEUPHG UVAUNG, TN OloBO TNC HEVTEIXNC UVAUNG XOL TNV
XEVTEIXT| EMECEQYUCTIXT) LOVEDOL.

Hoapatnerdnxoy cUVOAXE BLUPOPETIXES CUUTEPLPOPES TOGO OVOL OUADN EQaE-
LOY®Y 650 ot UETUEY TV EQUOUOYOY TOU UTAYoVTaL Xt 6TNV (dtar ouddo. Eved 1
enldpoon Tne MlEoNC 0N *EVTEXY| UTOAOYLO TIXY| LOVADX Xat 6To eninedo 600 NG
XEUPNC UVNUNG OEV ElyE PEYAAN ETOPAOT), 1) TECT) OTO BlOD0 EVIPUNAC UVAUNG
xou o7to eninedo 3 (televtalo eMNEDO) TNC XELETC UVAUNG Gavnxe Vo eTneedlel
parydolor TNV amOBOOT TV EPUPUOY®Y TEOS doxT). Axololiwe, BNUoUEYNoUUE
XATOLOL GEVAPLYL TUECTIC T OTIOLL TIEPLELY OV DLUPORETIXC EVTUONC TUECELS OE TEQLO-
GOTEQOUC AT EVAY TTOPOUC TAUTOY POV, UE GXOTO TNV TEOCOUOIWOT| TRAYMATIXMY
ouvinrwy mieone. Ebvar afloonuelnwto mwe 1 ouuteplpopd, xou 1 enidpacn oTnv
am6d00T| elval avaAOYT 0 OAEC TIC OUAOEC €QupuOoY®Y. Me autd evvoouue mwg

24

08 " g 08 g,
0.6 06 KN

_ in-memory
0.4 x—astar e leslie 04 :
¥ lasso +-ada -~ data-serving

Ida = linregr 0.2 - 02 web-servin .
—x—rfc —o—1fr cactus sphinx g

0.8

e

0.6

x

°
=

Relative Performance

°
©

°
o

0 3 6 12 24 0 3 6 12 24 0 3 6 12 24
Deployed cpu-stress Pods # Deployed cpu-stress Pods # Deployed cpu-stress Pods

(a) Scikit (b) Spec 2006 (¢) Cloudsuite

Figure 1: Enidpacn tng mleong otig xevipég Yovddeg enelepyaoiag, 0Ty anddooy TV EQp-
HOY OV

O€ OAEC TIC EPUPUOYECS, Tal OEVHELY OE Bardud amdd00NG XATATACCOVTAL UE T1) GELOY
6,1,4,2,3. To yeyovoc autd emduxviel TNV eCUETNOY GYEBOY TOU GUVOAOU TWV
EQUPUOYWY ot TNV XATAG TooT) Tou Beloxeton To 0OoTNUA 6To 0Tolo EXTEAOUVTAL,
xo ovodUXVELTAL 1) otvEryxn yiar EVal UETEO XOTACTAOTS TOU GUC THUATOS, IXUVO VoL
XATATAEEL EVAL GUVOAO BLAPORETIXMY CUCTNUATOVY OVAAOY X UE TNV IXAVOTNTO TOUC
VoL PLAOEEVACOUY 0L VO ATOTERATOCOUY L0l ELGEQYOUEVY] EQUPUOYT.

[-
B

e

[N
o
5

3 ¢ 3 ! — 08 S
¥ lasso \L = ﬁ — X L S] 06 .
- ada m——y) .6
g *— astar -+ eslie 0.4 ¥ in-memory
= linregr 0.2 - data-serving
—x— rfc cactus #— sphinx

web-serving
0 1 2 4 0 1 2 4 0 2 4 8
Deployed L2-stress pods # Deployed L2-stress pods # Deployed L2-stress pods

(a) Scikit (b) Spec 2006 (¢) Cloudsuite

o
P
o

Relative performance

Figure 2: Enldpacr tng nieong o7to eninedo 600 TNg xpueNg UVNUNG 0NV OmOO00T] TWY EQPURUOY Y.

0.8 0.8

"

08

°

06 R N 06 K3

°
<

¥ lasso —e—ada
& linregr

—x—rfc —e—rfr

0.4 0.4

£ astar - -+ leslie

°

N
=%
)

0.2 0.2

cactus #— sphinx —

Relative performance

-

0 1 2 4 8 16 0 1 2 4 8 16 0 1 2 4 8 16
Deployed L3-stress pods # Deployed L3-stress pods # Deployed L3-stress pods

(a) Scikit (b) Spec 2006 (¢) Cloudsuite

Figure 3: Enidpacn tng nieong oto teheutaio eninedo xpu@nc Wviung, otny amoddocn Twy eQop-
HOY V.

3.1 Ilocotuxornoinorn xou peETpnon nileong cuoTHUATOG

H évtoon tne mleone ota mopamdve mepduota xodoptlotay and Tov aptiud twyv
epopuoywy ibench mou exteholvtay oto cvotnua. 2otdc0, oTO onuelo auTd
%plVETAL amoEalTNTN 1) OLOTITEUOT) NG XATAOTUONG TOU CUCTHUNTOS CUVORLXY UE
YeNon eVOC 1) GUVBLACUOU ATt UETEXES Younhol eminédou. Me otdyo tny nocott-
xomoinoT g meong evog CUCTHUATOS, DOXIUACOUE OLUPOPETINES UETEIXEC OTLSG
TO T0G00TO YPNONC TWV ENECEQYUTTOV, TIC EVIORES oval XOXAO EMELEQYAOTH, TOV
oEtIUO TV YAUEVWY TEOoTAdEL®Y EVPECTC OEBOUEVLY 6TO TeheuTalo eninedo Tng
XEUPNG UVAUNG, TOV aELiUd SLPBaoudTwy and TNV XEVTEXN WU xodag enlong
X0l VALY TPOTEWVOUEVO GLVOUNOUS OO EUAC AUTWOV TwV UeTe®y. H yetpuy| mou

25

° o
E

¥ lasso -+ ada
linregr

—e—rfr

° o
[N
o
o

Relative Performance

o

0.8
0.6
0.4
0.2

3 » ;

«astar - leslie — 04

" e ”
cactus —#®— sphinx 4 02

% in-memory
-+ data-serving
web-serving

0 1 2 4 8 16

Deployed memBw-stress Pods

(a) Scikit

Figure 4: Enidpoon tne mleone oto

0 1 2 4 8 16
Deployed memBw-stress Pods

(b) Spec 2006

€UPOC BLOBOU TEOC OTN VAU,

0 1 2 4 8 16
Deployed memBw-stress Pods

(¢) Cloudsuite

OTNV TG00 TV EQUOUOYMY.

¥ lasso - -+ ada

1
T
0.8 Ida = linregr 08 ¥ astar -+ leslie 08 /
x— rfc —eo—rfr !

cactus —#— sphinx X /
0.6 [== 0.6 * P 0.6 .. /
04 P A s s 04 = o X 04 .- e

S Vs S
6

X
0.2 »- M - 02 s]
" o [¥ in-memon +— data-serving web-serving
3 4 3 4 5 6
Scenario

(¢) Cloudsuite

©

Relative performance

o

1 2 3 4 5 6 1 2
Scenario

(a) Scikit

5 1 2

Scenario

(b) Spec 2006

Figure 5: En{dpoaom dla@opetin®y cevaplwy nieong otny anddooT] 1wy EQUEUOYMY.

TpoTelvouue ebvan 1 ootékouﬁn:

Reads + Writes
IPC

2T GUVEYELY, UE OXOTO TNV UETENOT) axpBELog TNS VEUC TROTEVOUEVNC UETOIXTC,
UTONOY{OUUE TN CUOYETION AUTAC XD KoL GAAWY PETEIXWY YUUNAOU ETLTE-
00U TOU CUOTHUTOC, UE TNV DLXOUAYOT] TNG AMOBOCNG TWY EPUOUOYWY TOU EX-
TEAEOTNUAY. LYEDOV O OAEC TIC TEPLTTWOELS 1) PETEIXT| WS THEOUGiHoE LUPNAT
CUCYETION UE TNV ONODOCT, TOU CUCTAUNTOS, EMITUYYAvVOVTAS LMY cucyETion
OXOUT] X0 OF GEVELUL IOV TEPLEAGUBAVAY THUTOYLEOVT] TECT] DLUPOPETIXMY TOPWV.
H wovotnra auth) tng oOVIETNG YETPXNAC VO ATOTUTIOVEL TNV XOTACTAUOY] TOU

CUCTAUATOC Efvol TOMAG UTOGYOUEVT], %o VEWPOUUE TS UTOREL VoL YENCULOTOL-
nUel yia TNV eXhOYY| TOU XATUAANAOTEPOU CUCTAUATOC Yo TNV ToToVETNOT Ealp-
LOY®V GE VoL ELXOVIXO TERBAAAOY VEQOUC, ATOTEAOVUEVO Ao UEYIAES GUG TOLY(EC
UTTOAOYLO TOV.

3.2 Ezepoyévela

Axolovdwe, oe po tpooTdielo Var BLEEEUVACOUUE ToL ATOTEAEGUOTA XL TIC ETLT-
TWOELC TNG ETEPOYEVELNC OFE €Al OUVYETO GUOTIUN UTOAOYIO TGV, EXTEAECUUE TIC
TEOYYOUHEVES UETEY|OELG OF EVAL DLAPORETING CUCTNHA XL OTT) CUVEYELX GLYXEIVAE
TIC peTpRoElC PETAC) TV 600.

To deltepo clotnua To onolo e€eTdoTNXE, EYEL TEPLOGOTEPOUC TUPHVES GUVO-
X8, HEYUAUTEQT) UVAUT], UEYAAVTEQO TO BEUTEPO ETUNMEDO XU UXEOTEQO TO TEITO
eMUMEDO TNG XPUPTC UVIUNG, TTEQLOCOTEPES OLODOUG, UE UEYUADTERO EVPOG TEOG 11
UVAUT CUYXELTIXG UE TO TPOTYOUUEVO.

‘Onwe xatadevivouy xat o axdroudo oyfuaTe, To 0ELTEPO GUOTNUA TOU
eletdotnxe, meTuyaivel LNAOTERT amddOoT OE OAWY TWV TUTWYV TIC TECELS, OF

26

nrdepior amod TS SOXUUACOUEVES OUAOES EQUOUOYWY.

mem-H2 Gata-Serving-H2 === web-Serving-H2 me= in-mem-H1
(((((
- average:H2 ===

s data-serving-H1 s web-serving-H. == - average-+ average-H1

duration (s)
- 8 B 8 %

® #Deployed cpu-stresspods ' - #Deployed cpu-stress pods # Deployed cpu-stress pods

(a) Scikit (b) Spec 2006 (c) Cloudsuite

Figure 6: Enidpaon tng mleong otig xevipwéc Yovadeg enelepyaoiag, 0TV anddoon TV EQop-
HOY OV

ata-serving-H1 memm web-serving-H1 = = = average-H2 -~ average-H1 ‘

e

o 3 2 3 " s
Deployed L2-stress pdds. N # Deployed L2-stress pods © 4 Deployed L8%tress pods / # VM available cores

(a) Scikit (b) Spec 2006 (¢) Cloudsuite

Figure 7: Enldpacn tng nicong oo eninedo 600 TNg xpu@Rc UVNUNG 0NV amod00T) TV EQPURUOYMV.

Deployed L3-stres$ pods : * ° ! # Deployed L3-stres$ pods ¢ * ’ ' # Deployed L3-stres$ pods

(a) Scikit (b) Spec 2006 (¢) Cloudsuite

Figure 8: Enidpacn tng nieone oto teheutaio eninedo xpugprc uviung, otny amddocn Twy eQop-
HOY V.

4 Xyedlaocuodg evowpatwueévou otov Kuepvrtn 6po-
KOAOYNTY, EVAUELOU OYETIXA UE TNV XATAC TAST, TOU
CLC THUATOG

O 7Mon undpywv dpouoroyhtne tou KuBepvitn, xplvouue o elvar oyediaouevog
ue Teomo WoTe v e€acPallel xuplwe Tt PlwotudtnTo plog epopuoync. Amo tnv
GANN PECW TNG ATOUOVWOTS TOPWY, Elvol XAvVOC Vol Bl ailoel XaADTERT mo-
000T) OYETIXG UE TNV EXTEAECT) EQUOUOY®Y, OONYWVTUS OUWS TOMES (POPES OE
UTLO-YENOLLOTOINOT TWV OECUEUPEVLY TIORWY, YEYOVOS oL CUUBAAREL apvrTixd
T000 0TO XOGTOC YENOTN 00O Xl OTN BLUVATOTNT AOENONS TNC YWENTIXOTNTAC
TV ®EVTPWY 0edopévwy. Me x0plo yvouovo tnv eniteuén tou Bimhol oToyoU
TOL 0POEE TNV TAVTOY POV UEYLOTOTIOMNOT) TNE ATOBOOTS TWY EXTEAOUUEVLY EQPUO-
LOYOV OAAS X0 TNV PEYIGTOTONGT) TOU TOGOGTOL YEYONG TWV OLUIESIUWY TOPWY,
TEOTEIVOUUE TOV OYEBLAOUS EVOC BEOUOAOYTTY], EVOLUATWUEVOL otov Kulepvrtn
0 OTOlOg PE YPNOT TNS UETPXNAS IOV OVOPEPOUNE GTNY TROTNYOUUEVT EVOTNTA, Vo
TOTOVETEL TIC ELOEQYOUEVES EPUOUOYES OTOUG XATAAANAOLE XOUfouC.

27

duration (s)
duration (s)

- 8 & 8 %

2 4 3 % 1 2 s o 5 T : " .
Deployed memBw-stress pods # Deployed memBw-stress pods # Deployed memBuw-stress pods

(a) Scikit (b) Spec 2006 (¢) Cloudsuite

Figure 9: En{dpoon tne mleonc oto €upog B1600L Tpog oTr) UvAUY, 0TNY amdd00T) TWV EQPURUOY Y.

adaHZ = i ——C
mlasso-H] mmmadaHl memidaHl melinregr-H1
iy 1 === average-H2 werage-H1

g 2 8
Il

duration (s)
duration (s)

3 4
Scenario

(a) Scikit (b) Spec 2006 (¢) Cloudsuite

Figure 10: En{dpaom dwupopetinmy oevaplwy ntieong otny anddooT) TV EQUoUoY®Y.

4.1 To mweofAnpa TN BEORONOYTNONS

To mpoBinuo Toto¥étnone epapuoy®y oe ouddes xOufwy Tou odloyuotpdlovTal
xotvoug mopoug Ya pmopoloe va avoyVel oe yevixevon tou Number Partition-
ing. Telxd t0 O xOVTIVO TEOPBANUa elvon awtd tou minTotal Dynamic Bin
Packing. O otdyoc € eivor 1 ehorytotonoinon tou Bépouc xdde opddac (bin).
O ocuvoAuog apLiudC TV OUddWY Elvol TETEQUOUEVOC, Yol To AVTIXELUEVA TPOC
Tomo¥étnon @idvouy xou gedyouy amd Toug xOUPouc oe auUUlpETA YEOVIXE OL-
Qo THUOTA Ko BV Umopoly vor adAdEouv xoufo agol tonodetniolyv. 201600 oTN
01| Hog TERIMTWOT 0 0pLoUoE ToL Bdpoug xdie avTixelEvou elvon TepimAoxog, Un
otadepde xou e€aptdton amd TNV xuTdoTaoT Tou BploxeTal 1) EXACTOTE OUAD.

4.2 Ylomoinon

[0 oyedlaoud Tou BoL UG OPOUOAOYTTY), YENOWOTOLNOUUE TNV EVPLO TIXN
uedodo tne Tomodétnone wdie eloepyOUEVNS EPUEUOYTC, 0TO XahUTEPO ‘Boyelo’
%80 DEBOUEVY YPOVIXT) OTUYWY|, CUMPWYV UE Tal Od pog xprtripta Porduordynone.
Ipooeyyioee Yvoo oy aryoplluny oe TpoBAfuate dpouoldYnong o TohuTd-
eNVoUC ETECEPYACTES, OIS AUTOC TOU EAAYLOTOU Ypovou enelepyaciog, dev Vo
UTopoUoaY VO EQURUOCTOUY OTNV TepinTwon Woc. Autd cupfaiver yiotl o un-
ONOYIOHOS TOU TENXOU OYNUATOS DPOUOAOYNoNG YIVETAUL EXTOC oUVOESTS ONANDT
mponyeltan Tou ypdvou extéreonc. Kdtl tétolo elvar adlvato oe nep3dhhov dmou
Gy vwoTtog aptdudg xou TOTOC EQUEUOY®Y xatapUdvouy oTo cuoTnua. Extoc au-
ToU 071 OLxY| hag TEPITTWOoT) BeV YVwel{OUUE TO YPOVO TERATWONS XdiE EPapUoYIC
oe avtideorn ye Tov mpoavapepUEvTa alydpriyo.

ESaywyr LETEIXWV %ol BLUAOLEACUOG

Ytor TAofolal TOU CUGTAUATOC TOU OYEOLACOUE, TEMOTO OTAd0 HTay 1) eCaywy
uetoxwy. Ot petpée autég e&rydnoay ue tn yeron tou gpyareiou PCM trg

28

Intel. Etvor yetpixéc mou agopoly 1660 UEUOVOUEVES XEVTPIXEC ETECERY O TIXEC
LoVadeS, 600 xou ohvoha autdV (socket). O petpinéc awtég POV HETEWVTAL, Ol
enelepydlovTal UEPIXMS OF xdUe EEYWELTTO UNYAvNUL, amtocTEANOVTOL OTOV xOuS0
master Tou KuBepvrtn. Auté emtuyydveton pe tn yenon evoc Network File Sys-
tem (NFS) petald NG EXOVIXNG UNYOVAC oTNY oTtolo avixel o xouffoc master
X0l OAWY TV OLAPORETIXMY UMY AVNUATWY SErVers Tou avixouy 6Tny cuctolyla, 1
onofa opiCeTon XL WS To CLGTNUA UoC.

Movtého CUCTAUATOS %O LOVTENO EPAPLOY WV

To mpwto eninedo agalpeonc tng vhonoinong yog, dOnAadr o doyeio oto onolo Yo
Tomo¥eTOUVTUL OL EloEPYOUEVES EPapuoyes ebvar To socket. Kdle socket amotehel-
ToL OO Lot OUBd ETECEQYUC TIXWY HOVAOWY oL oToleg uotpdlovTon ueTald Toug T0
TEAEUTOLO ETUTEDO TNG XEUPNC UVIUNG, CAAL Xou T1) OO0 TEOC TN XEVTELXT| VU
[ot %drde TéTota opdda ETEEEQYACTMOV XPUTAUE CUYXEXPWEVA TOV optiud Twv Ot-
offooudtwy xar yeuhiuateoy and o TEOg TNV XEVTIEWXY UVAUY, TO UECO 6p0 TOU
TOC0GTO0 TWV TUPHVLY Tou Bploxovtal oe avevepYr| xaTdo oo XoL T0 UECO 6p0
TWV EVIOA®Y Vel xOXAO POROYLOU Tou EXTEAOOVTUL GE XAUE UTOAOYLO TIXT) LOVADX
TIOU OVIAXEL 0TI CUYXEXQUIEVT) OO DTNV TEQITTWOT TNG ETEQOYEVELXS, AoSd-
VOUUE axoOun utody tov aptidud oAl xou To €UPOC TV BLOBWY TEOC TN HEVIEIXT
U

‘Ocov aopd TS EQUPUOYES, AUTEC TIC EYOUUE YULUXTNPIOEL XQUTMVTOC YLl X0
Veplo T0 GLUVOAXO YPOVO ToU BLIEXEL 1) EXTEAEST] TOUC, OTAY OEV LUTGEYEL Xopia
Tleon oto cloTnua. Emmicov o yopaxtneiopog autov Tepthoufdver xou Tov HEGO
OPO TWV AVAYVOOEWY XAl OLIBACUATWY ATO XL TEOC TH) UVHUT).

AXyoprdpocg

O olydpriuog Tou TEOTEWVOUEVOLU DEOUOAOYNTY TEQLEYEL BLO OTAOLL YioL TNV ETL-
AoYT) Tou x6ufou TotoVETNONG TG EXAOTOTE EPUPUOYTC.

Ytddwo lo: YNto mpoTo oTAd Tng vhomoinong uog, agol e€aydolv ol
ueTeéc yia xdie oudda enclepyactdv (socket) , ye yenon woc cuvdeTnong Bo-
Yuohdynone, emhéyetarl 1 opdda e TNy xaAvteen Poduoroyia. Ov emelepyaotéc
NG EXQOTOTE OMADAUC, UVXOLY OF ToEATAVL antd Evay xopPouc. H ouvdptnon
oty ebvon 1) axdhoudT:

Score; = Stress; x HF; x DF(t);

(¢ Stress; opilouye TNV micon mou O€yeton 1 opdda j xou opileton amd

7 R d y W 't] / /. V4 4
v eliowor Stress; = “UELEIEES T Eunpdodeta, yiveton xou évag emmiéov

ENEYYOC OYETX UE TN &aﬁsctp(gmw TWV EMECEPYACTWY TNC OUAOOC, UE YENOoT

29

tou Co-state. ¢ Cb-state oplleTton T0 TOCOCTO UL XEVTEIXAC MOVADUC ETEEEp-
yaoioc o omolo Peloxeton ot xatdoTaoT avauovic. AV T0 T0000TO LEMEQVAL [Lal
CUYXEXPWEVT THY), Vewpolue Twe 0 Tépog autog elvor dodéoloc. Xe avtivetn
TeplnTwor), Tpootideton xou auTd ooy U€pog TS &lowong.

Me tov 6po H F; optloupe TOV TapdyovTo ETEPOYEVELUC TOU UNYOVARATOC 1, TOV
omolo El0AYOUUE TELUUATIXG oTNY e&lowar), ue oxond va AauBdvouue LT T
OLOPOPETIXOTNTA HETOEY TV TOPWY 0UO0 1| TEQIGGOTERWY Unyovnudtwy. Koo cov
TOEAYOVTES YENOWOTOCUUE TOV apLiUd TV BLODWY TEOC TN UVHUT GG ot TO
£0POC QUTWY, Yot XAVE EEYWELOTO UNy VL.

1
- #links x bandwidth

HEF;

Télog pe to DF(t) optlouye Tov Topdyovta, o onolog hauBdvel uTOYLY Tou EXTOC
a6 TNV TECT) TOU BEYETOL EVOC DLOUOLPAUOUEVOC TOPOC, 1 OUADN ETELEQYUCTMY, 1
OLdpxeto Tng mieomng auTrC.

Y10 onueio autd oyedldouue xon eCETACUUE OLUPORETIXES TTPOCEYYIOELS YLol TO
CUYXEXPWEVO TPy OVTAL.

o MEooc YpbVOS EXTIMUEVNC ATOTERUTWOTS TWY DPOUOAOYNUEVWV EQUQUOYWV:

tavg

e McEcoc ypbvog EXTIUMUEVNC ATOTEQATWONG CLUY YROUUIXT TTWOT TNg Tleong
OTO OWUOTNUA OO TO PECO YPOVO UEYPL TOV UEYIOTO: tayg + 52

2
avg

o Auénuévo Bdpoc 6To Ypovo exTéleonc: t
o Auénuévo Bdpoc otn Teon : stress; X tayg

o DHivovoa extiunom yeodvou, Bactopévn ot oycon UeTadd HEGOU Xot HEYLOTOU
tavg

YEOVOU EXTENEGNC TWV SPOUONOYNUEVWY EQUOUOYOV: tmay X (1 4 €7 fmar)

3itddLo 20:

211N ouvEYEL, ool ETAEYVEL 1) XU TAAANAOTERT) O EMECEQYUTTWY, YPELdE-
TOL VO TPOOOLOPLOTEL TO EMOUEVO ETUTEDO aPAipESTC TOU GUCTHUATOS, TO OTOIO
ebvon 0 xoufoc A ewxoviny| unyavy). Ecetdloupe hotndv toug xoufouc Twv onolwv
Ol TIURTIVEC OVAXOUV OTNV ETUXPUTECTEQRT OUAON. XTO OTAO0 aUTO KOS AELTHELO
EMAOYNC YPNOWoToloUUe TN SlodeodtTnTo ToU eXdoToTE xOuPou. Eletdlouue
ONAAOY| TO TOCOGTH TV ETECEPYATTOVY xdVE xouSou Tou Beloxovton oe Aettoupylo
avapovhc. A&ICel vo SLEUXEIVIOTEL €06 TS WS AVAULOVY| EVVOOUUE TNV XATAG TUO
xotd TNV omolo 0 eneCepYaoTAC Elvol AVEVERYOC Xol Oyl XATAC TUOT OTIOU OVOUEVEL
GANES AerToupyieg Vo eEXTEAEOTDOUY OTIC YIol TIORADELY O UETUPORES UTO TN VAU

30

1.00 1.00 1.00
0.75 0.75 0.75
0.50 0.50 mE Kubernetes 050
0.25 0.25 = Custom 0.25
0.00

2 4 8 2 4 8

0.00 0.00

Kubernetes Custom
Deployed iBench pods # Deployed iBench pods Scheduler

Normalized Performance

(a) Ilicon oto ebpoc Lhvne didou(b) Ilicon teleutaiov emnédou tne xpuphc(c) Ilieon oe
mPOC T iU uvune NN
pvelelollld

Figure 11: Koavovixomounuévn anddoon eqoupuoy®y nou tonodethdnxay ye mpolndpyov opo-
nohoynuévo goptio.

5 Amnoteiécpata xouw AZlohdynon

270 x€@IA0 aUTO AELONOYOUUE TNV AMOTEAECUATIXOTNTA XEUE TEOGEYYIONC OYETIXG,
UE TNV AmOB00Y TV EPUOUOY®OY TOU TOTOVETOUVTUL GUUPMVI UE OUTAV. DUY-
UEXPUIEVO oUYXEIVOUE TNV uTdpyouoa uhotolnon otov Kulepvitn pe oheg Tic
OLLPOPETIXEC LAOTIOLOELS Tou TpoavagepUnxay. Ot doxtuéc yivovton apyxd oe
EVal OUOYEVEC GUG TN/ UMYV oL OTN GUVEYELD OE cUGTOLY (o ATOTENOVUEVT
oo BVO ETEPOYEVY| UMY UV UATOL.

5.1 Oupoyevég Ybotnua
‘Aoxnor texvninc nieorng oc wia oudda enelepyacTOV

YT0 TPWTO UEEOS TEWUUITLY Xot aElOAOYNONG, ECETACUUE TH CUUTEQLPORE TNG
vhomolnong pag, xou T A ano@doewy TN 0€ XUTACTUOT XATOL TNV OTolo Uia oo
TIC 0U0 OUADES ETECERYUOTMY DEYETAL TULEGELS OE DLUPOPETIXOUE TOPOUC TNS. Aol
AOLTOV TOTOVETHCOUNE TIC EQUOUOYESC Tiieong, BOXUACOUUE Vo BEOUONOYHCOUUE
25 egopuoyec and T ouddee scikit-learn, cloudsuite, spec2006. Xuyxpivouue
TOL AMOTEAECUOTA OUTY, UE QUTH TOU TEOXVUTTOUV oo T1) UTdeyouoa uhomolno
dpopohoynth otov KuBepvA.

IIiéCouue Ye TN oelpd TN 6l000 TEOC TN UVAUN Xl TO TEAEUTHO ETIMEDO TNC
XEUPNG UVANG X0t AOUBAVOUNE T ATOTEAEGHATO TTOU (QPUVOVTOL OTA DLy OUUMATOL
11a xou 11b. Onwe gaivetar xan and TIC XATAVOPES TNG XAVOVIXOTIOMNUEYNG ATtO-
000G TWV EQUPUOY®Y, 1N LAoTolnon Yog, Yvwellovtag tnv avénuévn nicorn oe
xplowoug Toépoug anogedyel TNV TOTOVETNOT TOU ELOEPYOUEVOU (PopTiou GE aL-
toUc. ‘Etot emtuyydver éwg xou 61.2% o 38.3% yuo mleorn €upoug Cwvng TNng
OLOO0U TEOG T1) UVAUN %o TOU TEAEUTALOL ETUTEDOL LEEUEY (NG TNG XEUPNG UVANG
avtioTorya. Axoun ulo topathenoT elvon eTlong 1 MEWOT TNEG TUTIXAC AmOXALONG
TNE ATODOOTC TOU CUVOROU TWV EQPUUOY WY, YEYOVOSC TTOU TNV Xoo Té TEPLOGOTERO

TeoBAEDu.

31

‘Aocxunor texvNnTHg tieong TOANATA®Y TOPWY %Xl GTLE 600 OABES ENEEERY AT TWV

‘Onoe gaiveton oto oyfua 1lc ,6mou mapouctdlovTon To GUVOAIXE amoTEAECUATA
xan oo Ta 4 oevdpla mou doxwpdotnxay. TomoletRinue diapopetinds apriuog
Ao EQPUPUOYES Teong TOPWY Xot OTIC 600 OUADES ENECEQYAUC TV XOU OTT GUVEYELYL
UETEAOOUE TNV ATODOCT] TV ETOUEVKY 25 EQUEUOYOV OTAY AUTES Vol BROUOAOYOUY-
TOY OO TN OLXT| oG TTROCEYYLOT AAAL o amd TNy 1on umdpyouoa. H diduecog twv
XOTOVOOY NTay TNy Ot Yo tpoceyyton omd 4.9% éwe xou 80% vdmhoteen. H
UEom TS TNe Stoécou amd Tic 4 SlopopeTixég Tée, Ntay xata 16.8% uhnidteen
OTN OWXT| oG TROCUPUOCHEYT, LAOTOING.

ApowoNOYNOT EPapUOY®Y Y welc TEXVYNTY doxror nieong

Y1n ouvEyEw, N ETOUEVY allOAOYNON Xl GOYXELOT) TNG OWNG HUC TROCEYYLONS
Ue TNV NON UTdEYOLCH, TEPLAUBAVEL TN BOXUT) DPOUOAGYNONG EPUOUOYWY YWElg
vo. TpoUmdpyel xdmolo @opTio EX TwV TEOTEPWVY 01O GUOTNUAL. Aoxdoope
AOLTOV T1) DPOUOAOYNOT) OUADWY EQPUOUOYWY Ol OTOLES BLEPepay o TARioC. 2uy-
HEXQUIEVAL YEYOLLOTIOLACHUE EQapUOYES amo: scikit-learn, cloudsuite xo spec2006.
Or ouddec autég amoteholvTay and Tuyaio dELIUd EPUEUOYOVY ATd TIC TOEUTAVE
BuBAoOrxec xan ywpellovtal oc UTOOUAOES, Ol OTolEC XaTaPUAvoLY avd YEOoVIXO
otdotnua xuuovouevo amd 10 €wg 50 deutepdhenta. O cuvohixde apriude Twv
EQUPUOY WV aval oudda Tou doxuudotnxay ftay and 20 €wg xan 100. Xta dorypdp-
wotar 12a xon 12b nopouctdlovon oL SLEUETOL xou Ot UECES TWEC amd TIC oxOAoUTES
viornofioelc Yo TonovEtnon 20 yeyel xan 100 epopuoymy:

e Default(Kubernetes)

e Only Stress (Stress)

e S bias (s_ bias)

e t bias (t_ bias)

e Time decay (decay)

e Average and max area (avg max_ area)
e Average area (avg area)

‘Onwe patveTon xon omd Tar oY HUUTA, 1) TANUOE TV TEOCUPUOCUEV®Y UAOTIOCEWY
TOU OPOUONOYNTN ETUPEREL XUNDTERA ATOTEAEGUATO OTNV ATODOCT] TWV EQPUPUOY MY,
ETUTLY YEVOVTOC UXPOTEQOUC YPOVOUS EXTEAECTC TOCO XATY HEGO 0GP0, OGO Xou €T
TOU GUVOAOU TNC XATAVOUNC TV DOXUUACOUEVOY EQUOUOYOV.

And To TELPUUOTIXG ATOTEAEGUATA XUAVTEQRT) TROCEYYLON YLl T CUYXEXPWEVN
nepintworn qatvetar vo ebvon 1 bias,n onola mapouctdlel xahlTepo BlduEcO OE

32

[

o
@
o

o
~

o
=
Normalized Performance
)
>
°
L

Normalized Performance
1)
>

<)

)
o
N

N
=]

20

30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100
Deployed applications # Deployed applications

® stress decay ® max-avg area @ avgarea ® stress decay ® max-avgarea @ avg area

s bias ® tbhias ——default s bias ® thias ——default

(a) Aidpecoc (b) Méon A

Figure 12: X0yxplon Slopopetinmy TpoceyYloewy dpouohdynong

oyéon ue v undpyouca vhomnoinon xatd 26.9%, 29.3%, 25.9%, 7.6%, 38.8%,
23.4%, 49.7%, 44.0% xou 26.9% ywo Ty tonotdétnon 20, 30, 40, 50, 60, 70, 80,
90 xon 100 eqopuoywv aviiototya. AvIAoya amoTEAECUUTA TEOXOTTOUY XOL Yol
™ wéon T, 1 onolo etvon udmAdtepn and 10.7% péyer xon 28.9%.

To xohOTERN AMOTEAEGUATA TTOU TEOXVUTTOUY Amd T1) TEOc VX1 TOL TaEdyovVTa
yedvou DF(t) evioppivouv Tny mepetaipm UEAETN OYETXE UE TNV XOAUTERT TEO[-
Aedm) EXTWOUEVOU YEOVOU, GANS XaL TO OYEDLCUO EVOC BEATIO TOTOLNUEVOL UOV-
TENOUL OloryElplong Tov.

Icopponia ypong Siadéoipnwy ToOE®wY CUCTHUATOG

Or peydhec cuctolylec UTOAOYIGTOV CHUEQN GTA XEVTPU DEDOUEVDY OTWE TROEL-
TIOYE UTOPEEOUY UG UTOEXUETIAAEUOT] TV DIAECIUOY TOPWY TOUS. XTo oy 13
ToEOVGLALOVUE UEQIXEC UETENOELC TOU CUC THUUTOC TOU ECAYOVTOL XOTAL TT) OLdEXELdL
wac amd Tic mpoavagepVéioeg doxéc. Ta Sorypduuota Toapoustdlouy TV YehoN
TOPWY AGVE OUABOC EMEEEQYUCTWY. 1TO TEWTO OLAY QUM 1) AVIGOPEOTIA Y ONC
TOU TeAEUTAlOL ETUTEDOU TNG XEUPNG UVAUNG OLopaiveTon amd T Olapopd TV U
ATOTEAECUATIXDY EVPECEWY DEBOUEVWY OF auUTY|. AuTtd onuaivel TS N Wat omd TS
600 ouddes NTav LTERPOETWUEVY), uTofaduiCovTac oNUAVTIXE TNV AmddooT) TWY
OPOUONOYNUEVWY OE QUTH) EPUOUOYOY AOYW UEYIANG CUYXEVIPWONG, EVW 1) GAAT
elYE TOV CUYXEXQUEVO TTOPO BLWIECIO XOL U1 YPTOWOTOLOUUEVO TO (B0 YEOVIXd
oldoTtnuo. Ao TNy dhAn TAEUEd, 0T OixY| wac LAoTolnoT, o dpouohoynTAS Elvou
EVAMEQOC GYETIXA UE TNV TEOT) TOU ETUXQEUTEL GTN XEUYPY| UVAUY HE ATOTEAECUOL VO
XATAVEUEL TIG EPUOUOYES TEOC OPOUOAOYTOT| UE EVAV TEQLOCOTERPO BlXUO TEOTO,
TEOCTIOWMVTUC VO OLUUOLEIOEL TO POPTO UETUED TWV OLUPORETIXMY UERWY TOU
cuoThUatoc. AvticTowyo oto dtayeduuata 13c xou 13b gatveton 1 neplocoTERO
LOOPEOTINUEVY] YPNOT] TWV TOPWY XATO TN DIUEXELX TNG EXTEAEOTC TWV EQUPUOY WV
mou TonoveTAdNHAY 0TO GUGTNUA and TO TPOCUPUOCUEVO Bpouoroynty. Téco 1
TOGOG Tl YLEHOT) TWV TURHVKY, 6GO X0l OL EVIOAES TTOU EXTEAOLY aUTOL 0voL XUXAO
POAOYLOU TaPOLGLALOLY ETHOTC EVOV TEPLOGOTERO LGOTLIO OLUOLPUOUS UETUEY TV
OUADOWY.

33

per
3

Instructions per Cycle
difference
Cé-state percentage
difference

L3 Misses difference
0.
8

(a) L3 cache

(¢) C6-state

Figure 13: Awvicopporia ypriong dardéouwy moépwy

5.2 Erzepoyevég XVotnpa

Téhog, to teleutaio melpopa olyxplong xon allohdYNoNC TOU BEOUOAOYNTY| TOU
oyeddooue, CeTAEL TNV ETEPOYEVELN, APOU XOAELTAL VO XATUVEIUEL EQUQUOYES
UETAEY BUO DLOPOPETIXDY CUCTNUATWY.

= default

N stress

=t bias

= decay
40 80 160 320 640

Deployed applications

Normalized Performance
° -
3 e
3 8

°
g

°

°
3
8

20

Figure 14: X0yxpion Tng xATOVOURS TNG XAVOVIXOTONUEVTC ATOB0CTC EQPUOUOYWY HETAED BLopOPE-
TIXWV TPOCEYYIGEWY GE Lot ETEQOYEVY| OUABN GUC TNUATOV.

Y. GEVAQLAL OTIOL 1) OPOUOAGYTOT) EQUQUOY OV HTOY ALY OTERO EVIOVT), UE UTOTEAECHA
To oLoTNUo Vo ebvar xave va Tig eunneeTel ywplc v dnuiovpyeite mieon otoug
TOEOUC TOU, TURUTNEOVUE Vo Unv utdpyel xdmoto Behtinon oty anddocr Twv
EQUPUOY WY €V CUYXPIOEL UE TNV UTdpyouca vhoroinon tou Kubernetes. {lotédoo,
o710 teheutolo oeVdpLo (Spopordynon 640 eQopuoY®Y), Ol TPOTEVOUEVES UTO EUAS
vAoTooeLg entTuyydvouv amo 23.8% uéypet xou 32% unidtepo dSidueco, xau omo
9.6% péypL xou 12.2% udnidtepn uéon .

6 X0Ovodn xow MeAhovtiny) Aovield

6.1 XOvodm

Y1 Otmhwuatixr) auth pyaota, apyixd cL{NTACUUE TIC ETLTTOOELS TOU ETUPEQEL
O AVTUYWVIOUOS UETAC) TWV EQPUPUOYMY O XOWVOYENOTOUS TOPOUS OTNY ATO000T
evoc ovoThuatoc. Emmiéov, nepypddoue Tic véeg tdoeic ota x€vTpa GEGOUEVMLY
OYETIXA PE TNV ELXOVIXOTOINGY XL EVORYNOTEWOT), OAAd o TNV avdyxrn Tou
OVODVETUL OYETIXG ME TNV ETLYVOOY TOCO TNG CUUPORENONG TWV XEIoOY TOPWY
TOU GUC TAUATOC, OGO Yo TNV ETEQOYEVELX TOU YopoxTNEllEL TIC GUYYPOVES OUBDES
UTTOAOYLO TOV.

MeTd amo TOAAES DOXYES, PE YPNON TWV XATIAANAWY EQUQUOY®Y Teong, Ot
ATOTWOUUE TNV ENLOPUOT, TNG TEONE TOPWY OTNV ATODOOT| TV EQPUPUOYOV XAl

34

oxohowe mpoTelvoue o UETEWXT Tou Yapaxtneilel TNy xatdotor mou PBeloxe-
ToL TO CUCTNUA. XTY OUVEYEL, ool Teplypddoue Tov KuBepvitn, mpoteivouue
ULlal VEo TPOGEYYLOT) OpOUOAOYNTH, TNV omola xol alOAOYOUUE CUYXQEIVOVTAC TNV
UE TNV 1o1N undpyouoa vionoinom. Ta anoteAéouata TOU TEOXUTTOLY Elvon EV-
YoppuvTind xodoe BEATIOVETAL 1) ATOBOCT] TWVY BPOUOAOYOUUEVY EQUQUOYWY OF
OLdpopar GEVAPLAL.

6.2 MeAlovTixr, dovAeld

2oy LEANOVTIXT| DOVAELY, TEOTEVOUUE ANt TEOYRUUUATIOTIXC TAEUPAS, TNV UEAETN
xou TV ovamTug T uLag Bdone Sedouévmy Tou Yo ETLTO OVEL TNV ATOXOULOT) UETELXWY
ToU cuoThuaToS. Télog, amd epeuvNTIXAC TAEUREAS, TEOTEIVOUUE TN MEANOVTIXT
YEY|0T VELEWVIXOD BIXTUOU YLoL TNV ATOTEASOUATIXOTERY) EVPECT) TNS CUVAETNONG
allohoynone Tou dpouoroynty. Emmiéov, teyvohoylec 6mwe to Cache Allocation
Technology xat 1o Running Average Power Limit Yo enétpemayv tn dwaycipion
TWY TOPWY TOU CUCTHUATOC XATE T1) OLIEXELX TNG EXTEAEONC, UE OXOTO TOCO TNV
ATOTEAECUATIXOTERY YPHOT) TOUC, 660 ot TNV BEATIWOT TNS GUVOAXTC EVEQYELOXNC
an6d00nc Tou e£eTalOUEVOU GUOTAUATOC.

35

Chapter 1

Introduction

1.1 Cloud Computing

Cloud Computing has transformed a large part of the IT industry and has
radically changed the way millions of users and organizations are using the
Internet. Moreover, companies with large batch-oriented tasks can get results
as quickly as their programs can scale. The adoption of cloud computing has
seen explosive growth, both at consumer and enterprise levels and will continue
to rise in the future [1]. The evolution and endorsement of container-based
virtualization technology, as well as the advantages that the Cloud computing
offers both to users and operators, have acted as enablers towards this direction.
Nowadays, it is easier than ever to deploy any application in the Cloud, running
in the operating system of your choice. Also, this revolutionary technology
made available to users the pay as you go feature while economies of scale are
enabled for data-center operators who are sharing their across several users. In
addition, an upfront commitment by cloud users is eliminated, thereby allowing
companies to start small and increase hardware resources only when there is an
increase in their needs.

Cloud provides service-oriented architecture which advocates "everything as
a service'. Cloud-computing providers offer their "services" according to differ-
ent models, of which the three standard models are Infrastructure as a Service
(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). "Infras-
tructure as a service" (IaaS) refers to online services that provide high-level APIs
used to deference various low-level details of underlying network infrastructure
like physical computing resources, location, data partitioning, scaling, security,
backup etc. A hypervisor runs the virtual machines as guests. Pools of hyper-
visors within the cloud operational system can support large numbers of virtual
machines and the ability to scale services up and down according to customers’
varying requirements. On the other hand, PaaS is the capability provided to
the consumer to deploy onto the cloud infrastructure consumer-created or ac-
quired applications created using programming languages, libraries, services,

37

and tools supported by the provider. The consumer does not manage or con-
trol the underlying cloud infrastructure including network, servers, operating
systems, or storage, but has control over the deployed applications and possibly
configuration settings for the application-hosting environment. Finally, Saas is
the service provided to the consumer to use the provider’s applications running
on a cloud infrastructure. The applications are accessible from various client
devices through either a thin client interface, such as a web browser (e.g., web-
based email), or a program interface. Again the consumer does not manage
the underlying cloud infrastructure, or even individual application capabilities,
with the possible exception of limited user-specific application configuration
settings.

1.2 Data Centers concerns: shared resources, Interfer-
ence, under-Utilization and Heterogeneity

What we call cloud, is the combination of hardware relying inside data centers
and the appropriate software to make use of this hardware, provided by Cloud
providers. Thanks to virtualization, someone can create useful I'T services using
resources that are traditionally bound to hardware [2]. That makes resources
more agile, allowing them to serve multiple functions. It allows user to use
a physical machine’s full capacity by distributing its capabilities among many
users or environments. The legacy servers, dedicated to only one task are no
longer a problem for any organization or business. Hypervisors offer this func-
tionality, which can sit on top of an operating system or get installed directly
onto hardware (like a server), which is how most enterprises virtualize.

In the history of computing, the transition from single-core Central Process-
ing Units (CPUs) to multi-core processors was definitely a breakthrough. This
new technology made it possible to run multiple applications or even multiple
threads of a process in the same machine concurrently. That innovation had
a great impact on the performance of computing tasks. However, a new issue
has started to arise. This issue is the shared resources competition between
the different consumers, called interference. While cloud is becoming more and
more popular, the amount of applications deployed and executed, competing
for shared resources usage, was also radically increased. The increment in the
amount of workloads uploaded and executed on the cloud, have forced data-
center (DC) operators and cloud providers, such as Google Cloud Platform [3]
and Amazon EC2 [4], to embrace workload co-location and multi-tenancy as
first class system design concern. Although hypervisors and virtualization pro-
vide a higher level of abstraction between the physical machines and the users,
it also makes them unaware of critical information about the hardware, which

38

will lead in suboptimal use of the physical resources provided.

The current trend in computer architecture design today is an isolated mem-
ory space for Level 1 and Level 2 cache for every physical core. Due to Hyper-
Threading,a core is consisted of two separate hardware threads sharing those
two resources spaces. Furthermore, physical cores belonging to the same socket
are sharing the same Last Level Cache (LLC) or Level 3 cache.

Physical Physical Physical Physical Physical Physical
Core _— Core Core O Core Core

CPU-0 CPU-12 CPU-1 | [CPU13 | LR CPU-v

RAM

Figure 1.1: Memory System Architecture

In general, interference describes such phenomena in any shared resources
such as cache and memory occupancy, memory and network bandwidth and
others. Today, system performance is increasingly coupled to cache hierarchy
design. Cache interference describes the phenomenon when two or more pro-
cessors request data from the cache. Cache in those cases in order to serve
both competitors requests, due to its restricted space, fetches and writes back
data from/to the main memory. Because of the finite amount of cache in every
level, when a cache miss is happening due to an application’s demand in data,
useful blocks that are used by other application(s) in the same cache space are
written back to the main memory (RAM). The read/write operations from/to
the RAM are expensive in terms of energy and delay, slowing down the whole
system. Because of the interference, those operations happen more frequently,
causing a great reduction in performance. Cache tends to be a performance bot-
tleneck because of high network and memory latency [5], and a better resource
management is a promising, worth to be researched topic.

39

Step 1 Red CPU Step 2: Green
fetches 2 blocks from CPU fetches &
the memaory blocks

1| r2 gl g2 g3 g4 g5 g6

o

Step 3:Fetch 7 Step 4: Red
blocks (b1, b2, b3, b4, CPU, tries to fetch
b5. b6, b7, bE) rl from cache, but it
fails.

.

be [r2 gl g2 g3 g4 g5 g6 bl | b2 |b3 | b4 b5 b6|b7|

Step 5: Red CPU, due to
the cache miss fetches
again rl and r2 from
memary.

ﬂ 2 g2 g3 g4 g5 gﬁ‘bl|b2|b3|b4|b5|b6|b7

Figure 1.2: LLC Interference

In figure 1.2, cache interference is illustrated. When the cache space is filled
up, new blocks that are needed, will replace the old ones based on the cache’s
replacement policy (e.g. fifo, lifo, Iru and others). Because of that, these data
that were written back to memory will be needed to be fetched again, even
if the application requiring them does not use any other data than that. For
example, as it is illustrated in figure 1.2, in Step 1, red application needs data
from memory, so it fetches the required data rl and its subsequent block r2
from memory. Afterwards, green application fetches blocks gl-h6. When the
blue application is executed, it requests data, they are fetched from memory and
they write r1 block back to memory. Next, when red application tries to use the
recently fetched rl, another cache miss is taking place. This is a miss caused
by interference, because while red application was keeping using the already
fetched data, co-scheduled applications caused contention competing for cache
space. This situation becomes even intensive when more and more applications
are running using the same shared resource. Such competition may carry on
for great amount of time, thus causing great performance degradation.

In an attempt to elevate the performance of the systems, in other works to
keep users satisfied, cloud providers currently provide users with elasticity and
resizability of their computing capacity, leading to a dynamic provisioning of
resources. This flexibility in resources scalability has led users to request more
and more resources in order to satisfy the Quality-of-Service (QoS) requirements
of their latency-sensitive workloads. However, even at large companies like Mi-
crosoft and Google the average utilization is typically under 50% [6]. Moreover,
Mozilla’s and VMWare’s data centers were reported to operate at 6% and at
20-30% utilization respectively [7]. Underutilized servers contribute to expenses
and limit the scaling of the data-center. Web service providers have identified
as a critical design goal the improvement of utilization in modern warehouse-
scale computers in order to reduce the total cost of ownership [8]. On the other
hand, things get worse in cluster managers and orchestrators that enable cluster
sharing between workloads. In a production cluster at Twitter, CPU utilization

40

is below 20% while resource reservations reach up to 80% of total capacity [9].
Cluster managers fail to reserve the right amount of resources. Finally, the
mature Google cluster manager Borg [10], achieves 25-35% and 40% CPU and
memory utilization respectively, while reserved resources are 75% and 60% at
the same time.

On top of that, the continuous evolution of hardware technologies and gen-
erations forces data-center operators to repeatedly upgrade their underlying
infrastructure, in order to keep up with the latest advancements in technology
and also allow cloud providers to supply the best (QoS) to their users, lead-
ing to clusters with various different server configurations. From the above, it
is evident that, multi-sharing and multi-diversity of resources can cause seri-
ous degradation on the performance of running applications, thus the need for
interference- and heterogeneous-aware scheduling of incoming workloads on a
cluster is indispensable.

1.3 Container Orchestration with Kubernetes

The current trend, at enterprise level, for the scheduling of arriving work-
loads on a pool of available resources is through container orchestrators, such
as Kubernetes [11] or Mesos [12]. The latest advancements and performance
improvements of container-based virtualization [13] have driven companies to
transform the way they develop and deploy their applications, converting them
to "cloud-native", containerized microservices. Even though container orches-
trators provide major benefits, such as ease of use and deployment, abstraction
of resources, scaling and others, the scheduling policies they follow are naive
relying on simple metrics, like CPU or memory utilization, neglecting interfer-
ence effects, overlooking the specifications of the underlying infrastructure and
the nature of the imposed stress on the shared resources, offering a reservation-
centric approach in cluster management.

Although Kubernetes is a very complex project, being continuously improved
by its large community, is currently unaware of some critical low-level resources.
As Kubernetes manages virtual machines (VMs), it is only (sometimes) aware
of the virtual CPU and memory usage. While, it uses those information so as
to make scheduling decisions for the incoming applications (pods), it fails to
identify low-level contention in resources like cache and memory bandwidth.

1.4 Thesis Overview

In this thesis, we explore the impact of interference-awareness in scheduling
process. We identify an inefficient and trivial pod placement decision mak-

41

ing conducted by Kubernetes scheduler, lacking from useful information about
system state. In chapter 4, we measure and analyze the impact of different low-
level resource contention on the performance of various applications. Based
on our observations, we propose a score function, attempting to reflect the
condition of a server system lying under a virtualized environment. In chap-
ter 5, we present our custom framework, which uses the previous proposed
score as a node prioritization function in order to schedule jobs from differ-
ent benchmark classes on a Kubernetes cluster. We also present an attempt
to introduce the time factor in application initial scheduling and heterogeneity
both in intra and inter-server level. With this approach we are trying to tackle
the problem of under-utilization of cluster resources due to contention-agnostic
schedulers. Finally, in chapter 6, we evaluate our proposed framework, being
compared with default Kubernetes scheduler, across different stressing scenarios
and workloads.

42

Chapter 2

Related Work

2.1 Metrics Collection

2.1.1 Rusty

Rusty [14] is a predictive monitoring system, able to address the aforementioned
challenges using Long Short-Term Memory networks to enable fast and accurate
runtime forecasting of key performance metrics and resources stresses of cloud-
native applications under interference. Rusty is lightweight and achieves high
prediction accuracy, i.e. average R? value of 0.98, thus forming a promising
solution for runtime predictive resource allocation.

2.1.2 Bubble-Flux

Bubble-Flux [15] is an integrated dynamic interference measurement and online
QoS management mechanism that provides accurate QoS control and maxi-
mizes server utilization. It is consisted of two parts. The first one, Dynamic
Bubble, measures the instantaneous pressure on the shared hardware resources
and predict how the QoS of a latency-sensitive job will be affected by potential
co-runners. Secondly, using an online Bubble Flux Engine, monitors the QoS
of the latency-sensitive applications and controls the execution of batch jobs to
adapt to load changes, in order to deliver satisfactory QoS.

2.1.3 Other approaches

Several approaches have been discussed regarding to hypervisor-based moni-
toring [16]. Open-sourced services like Prometheus [17], and the Elasticsearch,
fluentd and Kibana (EFK) stack [18] provide well-organized systems for met-
rics logging, aggregation and querying. Nevertheless, metrics acquired from
such collectors are naive, not able to reveal the real system state. They extract
metrics mostly used for alert generation, security insight, providing a brief
overview of the system’s condition. As a result the resource under contention

43

cannot be identified and the root cause of application degradation remains un-
manageable. Contrarily, low-level metrics, which describe micro-architectural
events, are capable of providing useful information regarding to the resource
under contention, namely the origin of system’s inability to serve workloads’
needs efficiently.

2.2 Application Scheduling

2.2.1 Kubernetes

State-of-the-art orchestrators like Kubernetes [11] and Mesos [12] rely on unso-
phisticated metrics, like CPU and memory utilization, to manage node avail-
ability and workload scheduling. Using agents, Kubernetes extracts aggregated
metrics from the worker nodes of the cluster. Afterwards it uses a two-level
approach. After examining all available nodes, it selects only the feasible ones.
The nodes remaining are evaluated through a variety of priority functions which
determine their viability. However, those naive metrics are not able to indicate
the condition of a system experiencing interference phenomena.

2.2.2 Mage

Mage [19] is an interference- and heterogeneity-aware runtime that leverages on-
line data mining to explore the space of application placements, and determine
the one that minimizes interference between co-resident applications. In addi-
tion, it continuously monitors and determines whether alternative placements
would prove beneficial, taking into account the overhead of migration.

2.2.3 Medea

Medea [20] is a cluster scheduler designed for the placement of long- and short-
running containers. It captures interactions among containers within and across
applications, following a two-scheduler design: (i) for long-running applica-
tions, it applies an optimization-based approach that takes into consideration
constraints and global objectives; (ii) for short-running containers, it uses a
traditional task-based scheduler.

2.2.4 Paragon

Paragon [21] is an online interference- and heterogeneity-aware, scalable data-
center scheduler. It is derived from analytical methods and instead of profiling
each application in detail, it leverages information already known by applica-
tions previously see. Using collaborative filtering techniques, to quickly classify

44

an unknown workload with respect to heterogeneity and interference, by iden-
tifying similarity to previously scheduled applications. Afterwards Paragon
greedily schedules aiming to maximize the performance of the applications and
the server utilization.

2.3 Resource Allocation

2.3.1 Quasar

Quasar [9] is a cluster management system that increases resource utilization,
while providing high application performance. Quasar does not rely on resource
reservations, but instead it determines the right amount of resources to meet
QoS constraints expressed by the user. Second, Quasar uses classification tech-
niques to determine the imact of the type and the amount of resources and
interference on performance of each workload. Moreover, it adjusts resource
allocation and assignment as needed during execution.

2.3.2 Other approaches

In addition various hardware-related techniques, including cache partitioning
have been explored to decrease inter-application contention. [22, 23, 24]

2.4 QOur Approach

Our approach focuses on global optimization objectives. Using a universal ap-
proach for every kind of workload behavior and duration aiming to maximize
resource utilization and minimize application execution delays provoked by in-
terference phenomena. The node condition and prioritization is based on micro-
architecture metrics extraction from the physical, underlying server, surpassing
virtualization resources abstraction level.

45

Chapter 3

Kubernetes, a Container Orchestrator

The framework we will analyze in the next pages is called Kubernetes (xuBep-
vhtng, Greek for "governor', "helmsman' or "captain")!

3.1 Docker containers and Orchestration

Virtualization technology increases efficiency in data centers by enabling servers
to run multiple operating systems and applications with different requirements
and dependencies. Server consolidation has been the focus of virtualization,
requiring hardware abstraction to create an environment that can run multiple
operating systems. Applications run on virtual machines abstracted away from
the hardware. As shown in figure 3.1, Virtual Machines on the left are created
on the top of a hypervisor. In Virtual Machines, a complete Operating System
is installed. As a result, every VM acts like a guest host. On the other hand
containers, presented on the right include a container engine, which creates
and manages containers. Note that virtualization via containers is also known
as containerization. As shown containerization technology runs multiple con-
tainers on a common underlying kernel which are abstracted away into logical
partitions. Linux containers with the docker packaging format allow a user to
bundle application code with its runtime dependencies, and deploy in a con-
tainer. A frequently asked question is if someone should use Virtual Machines
or containers for his infrastructure setup. In the following subsections, those
two technologies are described in more detail.

I"What is Kubernetes?". Kubernetes. Retrieved 2017-03-31.

47

App 1 App 3

App 1 App 2 App 3

Bins/Lib Bins/Lib Bins/Lib

Bins/Lib Bins/Lib Bins/Lib

Container Engine

Guest OS Guest OS

Operating System

Hypervisor
Infrastructure

Infrastructure D ‘

0O E &

Virtual Machines Containers

Figure 3.1: Virtual Machines and Containers 2

3.1.1 Virtual Machines

Virtual Machines (VMs) provide a virtualized hardware environment where a
guest OS is able to run one or more applications. They enable users to create
multiple OS instances over the same machine using a hypervisor. User has the
flexibility to allocate CPU, Memory and Disk resources into different VMs. This
technology unbounds applications from machines installed OS. Virtualization
has matured to include many resilient capabilities such as live migration, high
availability, SDN, and storage integration which, to date, are not as mature
with containerization. Virtualization also provides a higher level of security
by running the workload inside a guest operating system that is completely
isolated from the host operating system.

3.1.2 Containers

A container is a standard unit of software that packages up code and all its
dependencies so the application runs quickly and reliably from one computing
environment to another. A Docker container image is a lightweight, standalone,
executable package of software that includes everything needed to run an ap-
plication: code, runtime, system tools, system libraries and settings.

Container images become containers at runtime and in the case of Docker
containers - images become containers when they run on Docker Engine. Avail-
able for both Linux and Windows-based applications, containerized software
will always run the same, regardless of the infrastructure. Containers isolate
software from its environment and ensure that it works uniformly despite dif-
ferences for instance between development and staging. Containers technology
is:

Zhttps://www.bmc.com/blogs/containers-vs-virtual-machines,/

48

O Standard: Docker created the industry standard for containers, so they
could be portable anywhere

O Lightweight: Containers share the machine’s OS system kernel and there-
fore do not require an OS per application, driving higher server efficiency
and reducing server and licensing costs. The overhead of booting manag-
ing and maintaining a guest OS environment is avoided. Their lightweight
nature leads towards to greater start-up speed.

O Agile application creation and deployment: Increased ease and efficiency
of container image creation and deployment with quick and easy rollbacks
(due to image immutability). In fact, it is the application packaging and
deployment capability that is revolutionizing DevOps by providing the
capability for developers and operations to work side by side enabling
continuous development, integration and deployment. At the same time
environment consistency across development, testing and production is
provided, as it runs the same on a laptop as it does in the cloud.

O Resource isolation: Containers can be deployed with a fixed amount of
resources available. Such techniques control and prevent greedy resources
usage.

3.1.3 Orchestration

The answer to the previous question about which virtualization technology is
better to use is that they should be used both. They are in fact complementary
technologies. Containers support VM-like separation of concerns but with far
less overhead and far greater flexibility. As a result, containers have reshaped
the way people think about developing, deploying, and maintaining software. In
such a hybrid containerized architecture, the different services that constitute
an application are packaged into separate containers and deployed across a
cluster of virtual machines as illustrated in figure 3.2 [25].

49

Applications Applications Applications Applications Application
P T T T Software
Binaries / Binaries / Binaries / Binaries / Loyer
Libraries Libraries Libraries Libraries
Container 3 ‘ ‘ Container 4 Container
+ : Virtualization
Container Engine Layer
i Infrastruct
Guest OS Guest OS R nirastructure
: i Kernel Layer
‘ VM 1 ‘ ‘ VM 2 ‘ ‘ VM 3 ‘ VM
H : : Virtualization
‘ : Hypervisor (Type 1) ‘ Layer
Core Core Core Core
i-Cache |d-Cache i-Cache | d-Cache i-Cache ‘d-Cache i-Cache ‘d—Cache
L2 Cache L2 Cache L2 Cache L2 Cache
I L3 Cache | Physical
H Hardware
| System Bus ‘ Layer
Multicore : g] i
Processor ‘ Memory Fontroller ‘ [1/0 Corlltroller ‘ ‘ : ‘ ‘ : ‘
‘ Main Memory ‘ ‘ 1/0 Device ‘ l ‘ ‘ ‘

Figure 3.2: Hybrid Containerized Architecture 3

However, such an architecture highlights the need for container orchestration,
a tool that automates the deployment, management, scaling, networking, and
availability of container-based applications.

This is where Kubernetes comes in. Large, distributed containerized applica-
tions can become increasingly difficult to coordinate. By making containerized
applications dramatically easier to manage at scale, Kubernetes has become
a key part of the container revolution. It is a portable, extensible platform
that facilitates both declarative configuration and automation. It has a large,
rapidly growing ecosystem. Kubernetes services, support, and tools are widely
available. Google open-sourced the Kubernetes project in 2014. Kubernetes
builds upon a decade and a half of experience that Google has with running
production workloads at scale, combined with best-of-breed ideas and prac-
tices from the community. In the following sections we describe the different
components of that container orchestrator.

3.2 Kubernetes Master Node(s) Components

Master components provide the cluster’s control plane. Master components
make global decisions about the cluster (for example, scheduling), and they
detect and respond to cluster events (for example, starting up a new pod when
a replication controller’s replicas field is unsatisfied).

O kube-apiserver: Component on the master that exposes the Kubernetes

3https://insights.sei.cmu.edu/sei_blog/2017/09/virtualization-via-containers.html

20

API. It is the front-end for the Kubernetes control plane.

O eted: Consistent and highly-available key value store used as Kubernetes’
backing store for all cluster data.

O kube-scheduler: Component on the master that watches newly created pods
that have no node assigned, and selects a node for them to run on. It will
be discussed more thoroughly later on.

0O kube-controller-manager: Component on the master that runs controllers.
Logically, each controller is a separate process, but to reduce complexity,
they are all compiled into a single binary and run in a single process.

3.3 Kubernetes Worker Node(s) Components

Node Components run on every node as agents maintaining running pods and
providing the Kubernetes runtime environment.

O kubelet: An agent that runs on each node in the cluster. It makes sure that
containers are running in a pod. The kubelet takes a set of PodSpecs that
are provided through various mechanisms and ensures that the containers
described in those PodSpecs are running and healthy.

O kube-prozxy: a network proxy that runs on each node in the cluster. It
enables the Kubernetes service abstraction by maintaining network rules on
the host and performing connection forwarding. Kube-proxy is responsible
for request forwarding. It allows TCP and UDP stream forwarding or
round robin TCP and UDP forwarding across a set of backend functions.

0O Container Runtime: The container runtime is the software that is respon-
sible for running containers. (Docker in our case)

3.3.1 Other Important Addons

O DNS: Cluster DNS is a DNS server, in addition to the other DNS server(s)
in your environment, which serves DNS records for Kubernetes services.
Containers started by Kubernetes automatically include this DNS server
in their DNS searches.

51

3.4 Kubernetes Architecture

Kubernetes Master

Controller Manager

(Kubelet](cAdvisor] (Kube-Pruxy) (Kubelet](cAdvisor] (Kube-Proxy]

< Plugin Network (eg Flannel, Weavenet, etc) >

Kubernetes Node Kubernetes Node

Figure 3.3: Kubernetes Architecture 4

Kubernetes’s architecture makes use of various concepts and abstractions. Some
of these are variations on existing, familiar notions, but others are specific to
Kubernetes. As illustrated in 3.3 and described before, a Kubernetes cluster is
consisted of Nodes. Those nodes are separated into two groups, either Master
or Worker nodes. Workloads are executed in Worker Nodes. The entities sorted
by their abstraction level are containers, pods and services, deployments and
nodes.

3.4.1 Cluster

The highest-level Kubernetes abstraction, the cluster illustrated in figure 3.4,
refers to the group of machines running Kubernetes (itself a clustered appli-
cation) and the containers managed by it. A Kubernetes cluster must have
a master, the brain of the system, the node that commands and controls all
the other Kubernetes machines in the cluster. A highly available Kubernetes
cluster replicates the master’s facilities across multiple machines. But only one
master at a time runs the job scheduler and controller-manager. The cluster can
be set up locally or in the cloud. Most Cloud providers provide a ready-to-use
Kubernetes solution.

3.4.2 Nodes

Each cluster contains Kubernetes nodes. Nodes might be physical machines or
VMs. Again, the idea is abstraction: Whatever the application is running on,

“https://en.wikipedia.org /wiki/Kubernetes
Shttps://kubernetes.io/fr/docs/tutorials /kubernetes-basics/create-cluster /cluster-intro/

52

Node

2
5

node processes

Kubernetes cluster

Figure 3.4: Cluster-Node abstraction level °

Kubernetes handles deployment on that substrate. These Nodes can be either
Master Nodes or Worker Nodes. Worker nodes are the machines where the
applications (containers) run on. An node with its components is presented in

figure 3.5.

3.4.3 Deployment

As it is described in Kubernetes documentation, a desired state is described
in a Deployment, and the Deployment controller changes the actual state to
the desired state at a controlled rate. Deployments are defined to create new
ReplicaSets, or to remove existing Deployments and adopt all their resources
with new Deployments. This object offered the easily manageable scalabilty, so
as to increase or decrease accordingly the required stress levels, just by changing
the replicas of the pods created. In the following snippet a sample deployment
is presented:

| apiVersion: apps/vl

2 kind: Deployment

3 metadata:

4 name: 13

5 spec:

6 selector:

7 matchLabels:

8 app: 13

9 replicas: 1

10 template:
11 metadata:

12 labels:

13 app: 13
14 spec:

15 containers:
16 - name: 1l3-container
17 image: iwita/microlab:x1

18 command: ["/bin/sh","-c"]
19 args:
20 - <bash-command >

ports:

1
2 - containerPort: 80

23 imagePullPolicy: Always
1 imagePullSecrets:

23

- name: regcred

S

volume

containerized app

node processes

Figure 3.5: Node-Pod-Container abstraction levels ©

3.4.4 Pods

Nodes run pods, the most basic Kubernetes objects that can be created or
managed. FEach pod represents a single instance of an application or running
process in Kubernetes, and consists of one or more containers as shown in
figure 3.5. Kubernetes starts, stops, and replicates all containers in a pod as a
group. Pods keep the user’s attention on the application, rather than on the
containers themselves. Details about how Kubernetes needs to be configured,
from the state of pods on up, is kept in Etcd (distributed key-value store).

Pods are created and destroyed on nodes as needed to conform to the de-
sired state specified by the user in the pod definition. Kubernetes provides an
abstraction called a controller for dealing with the logistics of how pods are
spun up, rolled out, and spun down. Controllers come in a few different flavors
depending on the kind of application being managed. For instance, the recently
introduced “StatefulSet” controller is used to deal with applications that need
persistent state. Another kind of controller, the deployment, is used to scale
an app up or down, update an app to a new version, or roll back an app to a
known-good version if there’s a problem. Also a deployment will try to resched-
ule any failed pods. Finally a deployment tries to provide a guarantee that the
required number of pods are running on the cluster.

3.4.5 Service

Kubernetes Pods are mortal. They are born and when they die, they are not
resurrected. If you use a Deployment to run your app, it can create and destroy

Shttps://kubernetes.io/docs/tutorials /kubernetes-basics/explore/explore-intro/

54

Pods dynamically (e.g. when scaling out or in). Each Pod gets its own IP
address, however the set of Pods for a Deployment running in one moment in
time could be different from the set of Pods running that application a moment
later. This leads to a problem: if some set of Pods (call them “backends”)
provides functionality to other Pods (call them “frontends”) inside your cluster,
how do those frontends find out and keep track of which IP address to connect
to, so that the frontend can use the backend part of the workload? A Service is
an abstract way to expose an application running on a set of Pods as a network
service. Kubernetes gives pods their own IP addresses and a single DNS name
for a set of pods, and can load-balance across them.

3.5 Kubernetes Resources

When the user specifies a Pod, he can optionally specify how much CPU and
memory (RAM) each container needs. When containers have resource requests
specified, the scheduler can make better decisions about which nodes to place
Pods on. And when Containers have their limits specified, contention for re-

sources on a node can be handled in a specified manner .

Resource Types: CPU and memory are each a resource type. A resource type
has a base unit. CPU is specified in units of cores, and memory is specified
in units of bytes. CPU and memory are collectively referred to as compute
resources, or just resources. Compute resources are measurable quantities that
can be requested, allocated, and consumed. They are distinct from API re-
sources. API resources, such as Pods and Services are objects that can be read
and modified through the Kubernetes API server.
Each Container of a Pod can specify one or more of the following:

O spec.containers|].resources.limits.cpu
O spec.containers[].resources.limits.memory
O spec.containers[].resources.requests.cpu

O spec.containers[].resources.requests.memory

Although requests and limits can only be specified on individual Contain-
ers, it is convenient to talk about Pod resource requests and limits. A Pod
resource request/limit for a particular resource type is the sum of the resource
requests/limits of that type for each Container in the Pod.

"https://kubernetes.io/docs/concepts/configuration /manage-compute-resources-container/

95

Meaning of CPU and Memory: Limits and requests in CPU resources are mea-
sures in cpu units. One CPU in Kubernetes is equivalent to 1 vCPU or 1
Hyperthread on a bare-metal Intel processor (such as our Infrastructure). Also
fractional requests are allowed. For example a request of 0.5 cpu (or 500m
which can be read as five hundreds millicpu), allocates half of a CPU. CPU
is always requested as an absolute quantity, never as a relative quantity; 0.5
is the same amount of CPU on a single-core, dual-core, or a 48-core machine.
Regarding to the Memory’s requests and limits, they are measured in bytes.
Someone can express memory as a plain integer, or as a fixed-point integer.
Also the user can use the power-of-two equivalents: Ei, Pi, Ti, Gi, Mi, Ki. An
example demonstrating the resources requests and limits is the following:

apiVersion: vl

2 kind: Pod
3 metadata:

name: frontend

5 spec:

6

containers:
- name: db
image: mysql
env:
- name: MYSQL_ROOT_PASSWORD
value: "password"
resources:
requests:
memory: "64Mi"
cpu: "250m"
limits:
memory: "128Mi"
cpu: "500m"
- name: Wwp
image: wordpress
resources:

requests:
memory: "64Mi"
cpu: "250m"
limits:

memory: "128Mi"
cpu: "500m"

These requests and limits are passed to the container runtime, when the
kubelet starts a container of a Pod. When using Docker, there are used the
—cpu-shares and —memory flags accordingly.

When you create a Pod, the Kubernetes scheduler selects a node for the Pod
to run on. Each node has a maximum capacity for each of the resource types:
the amount of CPU and memory it can provide for Pods. The scheduler ensures
that, for each resource type, the sum of the resource requests of the scheduled
containers is less than the capacity of the node. Note that although actual
memory or CPU resource usage on nodes is very low, the scheduler still refuses
to place a Pod on a node if the capacity check fails. This protects against a
resource shortage on a node when resource usage later increases, for example,
during a daily peak in request rate.

56

Quality of Service (QoS)

Compressible Resources Guarantees (CPU) 8 Pods are guaranteed to get the
amount of CPU they request, they may or may not get additional CPU time
(depending on the other jobs running). This isn’t fully guaranteed today be-
cause cpu isolation is at the container level. Pod level cgroups will be introduced
soon to achieve this goal. Excess CPU resources will be distributed based on
the amount of CPU requested. For example, suppose container A requests for
600 milli CPUs, and container B requests for 300 milli CPUs. Suppose that
both containers are trying to use as much CPU as they can. Then the extra 100
milli CPUs will be distributed to A and B in a 2:1 ratio Pods will be throttled
if they exceed their limit. If limit is unspecified, then the pods can use excess
CPU when available.

Incompressible Resources Guarantees: Pods will get the amount of memory
they request, if they exceed their memory request, they could be killed (if some
other pod needs memory), but if pods consume less memory than requested,
they will not be killed (except in cases where system tasks or daemons need
more memory). When Pods use more memory than their limit, a process that

is using the most amount of memory, inside one of the pod’s containers, will be
killed by the kernel.

QoS Classes

0 If limits and optionally requests (not equal to 0) are set for all resources
across all containers and they are equal, then the pod is classified as Guar-
anteed.

0 If requests and optionally limits are set (not equal to 0) for one or more
resources across one or more containers, and they are not equal, then the
pod is classified as Burstable. When limits are not specified, they default
to the node capacity.

O If requests and limits are not set for all of the resources, across all contain-
ers, then the pod is classified as Best-Effort.

Pods will not be killed if CPU guarantees cannot be met (for example if
system tasks or daemons take up lots of CPU), they will be temporarily throt-
tled. Memory is an incompressible resource and so let’s discuss the semantics
of memory management a bit.

8https://github.com /kubernetes/community /blob/master /contributors/design-proposals /node/resource-
qos.md

o7

O Best-Effort pods will be treated as lowest priority. Processes in these pods
are the first to get killed if the system runs out of memory. These containers
can use any amount of free memory in the node though.

O Guaranteed pods are considered top-priority and are guaranteed to not
be killed until they exceed their limits, or if the system is under memory
pressure and there are no lower priority containers that can be evicted.

O Burstable pods have some form of minimal resource guarantee, but can
use more resources when available. Under system memory pressure, these
containers are more likely to be killed once they exceed their requests and
no Best-Effort pods exist.

3.6 Kubernetes Scheduling

The Kubernetes Scheduler is a core component of Kubernetes: After a user or
a controller creates a Pod, the Kubernetes Scheduler, monitoring the Object
Store for unassigned Pods, will assign the Pod to a Node. Then, the kubelet,
monitoring the Object Store for assigned Pods, will execute the Pod. ? For
each unscheduled Pod, the Kubernetes scheduler tries to find a node across the
cluster according to a set of rules. There are two steps before a destination
node of a Pod is chosen. The first step is filtering all the nodes and the second
is ranking the remaining nodes to find a best fit for the Pod.

3.6.1 Node Filtering

First, the Scheduler determines the set of feasible placements, which is the set
of nodes that meet a set of given constraints. All filter functions must yield
true for the Node to host the Pod. The following constraints called predicates
are set active by default:

NoDiskConflictPred: NoDiskConflict evaluates if a pod can fit due to the vol-
umes it requests, and those that are already mounted. If there is already a
volume mounted on that node, another pod that uses the same volume can’t

be scheduled there.

General Predicates: In this general predicate are included some of the major
predicates of kubernetes scheduler. PodF'itsPorts is a default predicate, where
fit is defined based on the absence of port conflicts. Furthermore, PodFitsRe-
sourcesPred, according to which, fit is determined by resource availability. The

https://medium.com/@dominik.tornow/the-kubernetes-scheduler-cd429abac02f

o8

HostNamePred determines the fit by the presence of the Host parameter and a
String match.

MatchNodeSelectorPred: In case a Node Selector is defined in the pod creation,
fit is determined at this stage based on this node selector query.

NoVolumeConflictPred: Fit is determined by volume zone requirements.

Max{EBS,GCEPD,AzureDisk,CSI}VolumeCountPred: F'it is determined by whether
or not there would be too many {EBS,GCEPD,AzureDisk,CSI} volumes at-
tached to the node.

MatchInterPodAffinity: In this predicate, fit is determined by inter-pod affinity.
Inter-pod affinity and anti-affinity allow you to constrain which nodes your pod
is eligible to be scheduled based on labels on pods that are already running
on the node rather than based on labels on nodes. The rules are of the form
“this pod should (or, in the case of anti-affinity, should not) run in an X if that
X is already running one or more pods that meet rule Y”. Y is expressed as
a LabelSelector with an optional associated list of namespaces; unlike nodes,
because pods are namespaced (and therefore the labels on pods are implicitly
namespaced), a label selector over pod labels must specify which namespaces
the selector should apply to.

CheckNode{DiskPressure, MemoryPressure, PIDPressure, Condition}: F'it is de-
termined by node {disk pressure,memory pressure,pid pressure, conditions}.
Node conditions include: not ready state, network unavailable or out of disk.

PodToleratesNodeTaintsPred: Fit is determined based on whether a pod can
tolerate all of the node’s taints. Taints and tolerations work together to ensure
that pods are not scheduled onto inappropriate nodes. One or more taints are
applied to a node; this marks that the node should not accept any pods that
do not tolerate the taints. Tolerations are applied to pods, and allow (but do
not require) the pods to schedule onto nodes with matching taints.

However there are a few more of them ready to be set for usage at any
Kubernetes custom deployment such as CheckServiceAffinityPredicate.

29

All schedulable-nodes in the All feasible-nodes in the cluster Most highly rated node
cluster

GO ¢

(N3) (N4) Predicate functions (N4) | Priority functions

GO CO

Figure 3.6: Node filtering and ranking

As someone can see in the picture above, in the first step the nodes are
filtered, and only the feasible ones, that satisfy the predicates are proceeded in
the latter steps.

Kubernetes Scheduler uses this technique for 2 reasons. Firstly, it needs to
make sure that no pod/deployment will be scheduled in a Node that is unable to
handle it taking into account its Quality of Service as well which can be declared
with a few configurations in the yaml file that creates the pod. Secondly, that
way it will run the second part of the algorithm (prioritization functions) across
a much less set of nodes, which will consume less system resources and less time.

There are 2 types of conditions that describe those predicates

0 Schedulability and Node Conditions: These conditions are accounted for
via taints and tolerations

0 Resource Availability: These types of functions deem a Node feasible based
on the Pod’s resource requirements compared with the Node’s resource
available resources.

Pod Node i
[Kind ["Poa" | Namespace | :Siring | Name | :Swring | Spec [[Staws [..) | Kind | "Node" | Name | Suing | Spec | .. [Swws [)

PodSpec
L InitContainers ‘ 11 I Containers 1 1 1 J Allocatable | :String : :Int -

NodeSiatus

Container |
L_Namc | :String | Image [:String | Resources] |)

ResourceRequirements \"

Limits [:String : Tnt | Requests [:String : Tmt |

Figure 3.7: Check for resource availability °

3.6.2 Node Prioritizing

After the filtering, with only the feasible Nodes remaining, Kubernetes scheduler
using a set of predefined rating functions, determines the viability of each Node.
The Pod will be scheduled in the one with the highest viability.

Ohttps: //medium.com/@dominik.tornow/the-kubernetes-scheduler-cd429abac02f

60

The rating for each Node derives from the summation of the weighted scores
of each priority function:

Summary of Key Notations for Final Score Calculation
Notation | Definition
Di Priority function ¢
w; Weight of Priority function ¢
k Number of feasible nodes to host the current pod
n; Node j being evaluated

k
Score(nj) =Y w; X p;, Vj € feasibleNodes
i=1

Summary of Key Notations for Priority Calculation
Notation | Definition
Cmem; | Total Memory Capacity of node j
Rmem; | Total Memory requested from node j
Cepu, Total Milli CPUs Capacity of node j
Repu, Total Milli CPUs resource requested from node j
S Score of node j being evaluated

The priority functions that are set by default in a Kubernetes installation
are the following:
ServiceSpreading: ServiceSpreadingPriority is a priority that spreads pods by
minimizing the number of pods belonging to the same service on the same node.

MostRequested: This a cluster autoscaler-friendly function. It gives used nodes
higher priority, based on their declared resources usage.

memsScore; + cpuScore;

Rmem; Repu;

memsScore; = , cpuScore; =

Cmem; Cepu;
RequestedToCapacityRatio: RequestedToCapacityRatioPriority is a configurable
priority function that assigns different scores in the node based in his resources
usage. By default, its behaviour is similar to the LeastRequestedPriority as it
assigns 1.0 to resource when all capacity is available and 0.0 when requested
amount is equal to capacity. Concluding, this function converts the scoring
assignments to a linear function and returns node’s score.

61

SelectorSpread: This function spreads the pods across hosts, considering pods
belonging to the same service, replica set or StateFulSet. It favors nodes that
have fewer existing matching pods. Trying to satisfy kubernetes principles, it
spreads replicate pods across difference nodes so as to achieve greater availabil-
ity when a node fails.

InterPodAffinity: InterPodAffinityPriority computes a sum by iterating through
the elements of weighted PodA ffinityTerm and adding the weight variable to the
sum if the corresponding PodAffinity is satisfied for that node. The node(s)
with the highest sum are the most preferred.

LeastRequested: It is a function that favors nodes with fewer requested re-
sources. It calculates the percentage of memory and CPU requested by pods
scheduled on the node, and prioritizes based on the minimum of the average
of the fraction of requested to capacity. It’s the opposite function from the

MostRequested.
__memScore; + cpuScore;

Rmem; Repu

memScore; = 1 — ,cpuScore; =1 —

Cmem; Cepu;

NodeAffinity: Node affinity is conceptually similar to nodeSelector — it allows
you to constrain which nodes your pod is eligible to be scheduled on, based on
labels on the node.

There are currently two types of node affinity, called requiredDuringSchedulinglg-
noredDuringExecution and preferredDuringSchedulinglgnoredDuringExecution.
You can think of them as “hard” and “soft” respectively, in the sense that the
former specifies rules that must be met for a pod to be scheduled onto a node
(just like nodeSelector but using a more expressive syntax), while the latter
specifies preferences that the scheduler will try to enforce but will not guaran-
tee. The “IgnoredDuringExecution” part of the names means that, similar to
how nodeSelector works, if labels on a node change at runtime such that the
affinity rules on a pod are no longer met, the pod will still continue to run on
the node.

Thus an example of required DuringSchedulinglgnored DuringExecution would
be “only run the pod on nodes with Intel CPUs” and an example preferredDur-
ingSchedulinglgnoredDuringExecution would be “try to run this set of pods in
a team of nodes sharing a specific tag, but if it’s not possible, then allow some
to run elsewhere”.

The specified function prioritizes nodes according to node affinity schedul-
ing preferences indicated in Preferred DuringSchedulinglgnored DuringEzecution.

62

Each time a node matches a preferredSchedulingterm, it will get the correspond-
ing weight added to its score. Thus, the more preferredSchedulingTerms the
node satisfies and the more those terms weight, the higher score the node gets.

TaintToleration: This function calculates the score for every node based on the
number of intorelable taints (preferNoSchedule) on the node.

ImageLocality: ImageLocalityPriority favors nodes that have already requested
pod container’s image. First it detects the presence of the image and then
calculates the score from 0 to 10 based on the total size of those images. It
takes also into account the number of nodes this image is spread, trying to
prevent node heating phenomena, i.e., pods get assigned to the same or a few
nodes due to image locality..

NodePreferAvoidPods: This is the priority function default kubernetes sched-
uler weighs more that anything else. Actually, if any node prefers to avoid the
pod being currently scheduled, this node’s score due to this function will be zero.
As a result, due to the high weight of this function, the final score of this node
will be also low. In other words, the reason behind this choice is making sure
that any node with the annotation scheduler.alpha.kubernetes.io/preferAvoidPods
will get to the bottom of the priority list.

BalancedResourceAllocation: This function should not be used alone, but should
be used together with LeastRequestedPriority. It favors nodes with balanced
resource usage rate. It calculates the difference between the cpu and memory
fraction of capacity, and prioritizes the host based on how close the two metrics
are to each other. This algorithm was partly inspired by [26].

cpu, mem, volume trequested.;
{Cpu;mem,’UOlume}fT’a,CtiOnj = { pu, ’ } q j

{cpu, mem, volume}capacityj

cpuF'raction; + memkF'raction; + volumeFraction;
3

mean; =

(cpuFraction; — mean;)? + (memFraction; — mean;)? + (volumeFraction; — mean;)?

3

variance; =

s; = 1 —wvariance;

Kubernetes native code is open-sourced. As a result, it is available for any-
one to download, configure and deploy an altered version. In this thesis, a
custom scheduler is used. This custom scheduler was created by changing the

63

native kubernetes project code, building the new scheduler executable, creating
the image, and finally using that image to create the customized deployment
representing the new scheduler.

After reviewing the whole Kubernetes scheduler package in the native Ku-
bernetes git repository and understanding its functionality, we tried to observe
any different functionality that a change in the code would result to. Our cus-
tom Kubernetes scheduler, includes all the default predicates, so as to serve
the first level of scheduling, the feasible nodes selection. We ensured to include
those predicates so as to avoid any pod placement into a non feasible node.
Regarding to the priority functions, we used the NodeA ffnitity priority giving
it a large weight. Furthermore, we also kept the LeastRequestedResources pri-
ority so as to deal with edge cases, where our picked node, was not a feasible
one. As the core decision making process is happening before actually kuber-
netes scheduler is used, decreasing the number of priority fuctions kubernetes
scheduler uses, we also decrease the overhead of our custom system.

64

Chapter 4

Motivational Analysis and
Observations

Both academia [27] and industry [28] have identified that contention on the low-
level shared resources of a system, i.e. low-level caches and bus bandwidth, can
lead to unpredictable performance variability and degradation, which highly
reduces the QoS of applications [29]. Especially in data-center environments, it
has been shown that the huge instruction sets of cloud workloads are between
one and two orders of magnitude larger than the L1 instruction cache can store,
and can lead to repeating instruction cache misses, which damage performance
[30, 31]. Moreover, hardware heterogeneity can have significant impact on the
performance of applications, especially for Latency-Critical (LC) applications
(32, 33].

In this chapter, we analyze and verify the impact of interference on different
shared resources of the system, on the performance of applications. Firstly,
we describe our experimental setup and, then, we demonstrate how resource
contention affects the performance and low-level metrics on a variety of cloud
workloads. Also we showcase the impact of heterogeneity in workload’s perfor-
mance. Furthermore, we reveal Kubernetes scheduler shortcoming regarding to
the pod placement in available nodes.

4.1 Experimental Infrastructure

4.1.1 System setup

For the rest of the thesis, we consider two multi-processor systems as shown
in tables 4.4 and 4.5, henceforth referenced as H1 and H2. To simulate a
cloud environment, all the referenced workloads running on the cluster have
been containerized, utilizing the Docker platform [34]. In addition, we have
deployed 5 virtual machines (VMs) on top of the physical machines with various
configuration serving as the nodes of our cluster, where each VM’s cores range
from 4 up to 16 and RAM size from 8192(MB) up to 65536(MB) and, we use

65

KVM as our hypervisor. Each VM'’s characteristics are described in table 4.1.

Virtual Machines
VM-Name Server Socket ID | Cores RAM
(GB)

kube-master H2 0 2 8
kube-01 H2 1 4 8
kube-02 H2 0 8 16
kube-03 H2 0 16 16
kube-04 H2 1 32 32
kube-05 H1 0 4 8
kube-06 H1 1 8 16
kube-07 H1 0 16 32
kube-08 H1 1 16 64

Table 4.1: Virtual Machines Characteristics

The combination of VMs with containers is currently the common way of
deploying cloud clusters at scale, since it establishes the perfect catalyst for
reliability and robustness [35]. The virtual cores of each VM have been mapped
on physical cores of the servers using the CPU pinning options of the 1libvirt
library, to eliminate context-switching and also be able to monitor VM-specific
metrics. On top of the VMs, we have deployed Kubernetes [11] as our container
orchestrator, one of the most popular and most used platforms nowadays. The
system as a whole is illustrated in figure 4.1. We used a single-master node
cluster with the VM serving as master deployed in a separate physical machine,
without affecting the testing results.

@ kube-00
2 \VCPUs, 8GB

@ kube-02 @ kube-01 @ kube-05 @ kube-06
8 VCPUs, 16GB 4 VCPUs, 8GB 4 VCPUs, 8GB 8 VCPUs, 16GB
El kube-03 El kube-04 El kube-07 El kube-08

16 vCPUs, 16GB 32 vCPUs, 32GB 16 vCPUs, 32GB 16 vCPUs, 64GB
‘ Performance Counters Monitoring ‘ ‘ Performance Counters Monitoring ‘

Socket O Socket 1 Socket O Socket 1

H1l H2
. Intel Xeon E5-2658A v3 s \ Intel Xeon Gold 6138 ,
\ 48 logical cores @2.20 GHz / . 80 logical cores @2.00GHz /
256G B RAM / \ 128GB RAM

Network File System (NFS)

Figure 4.1: Stress Level and duration

66

4.1.2 Monitoring and Communication

As a first step, we need to get insight about the real system metrics. Those met-
rics that describe the underlying infrastructure, residing on the host machine.
The previous layer of the one where Kubernetes is set on. For this purpose we
use the Performance Counter Minitor(PCM). PCM is a tool developed by Intel.
It is used as an agent, extracting a big variety of metrics from the system it
is running on. The Intel® Performance Counter Monitor [36] provides sample
C++ routines and utilities to estimate the internal resource utilization of the
Jatest Intel® Xeon®) and Core™ processors.

The CPU utilization does not tell you the utilization of the CPU. CPU
utilization number obtained from operating system (OS) is a metric that has
been used for many purposes like product sizing, compute capacity planning, job
scheduling, and so on. The current implementation of this metric (the number
that the UNIX* "top" utility and the Windows™ task manager report) shows the
portion of time slots that the CPU scheduler in the OS could assign to execution
of running programs or the OS itself; the rest of the time is idle. For compute-
bound workloads, the CPU utilization metric calculated this way predicted the
remaining CPU capacity very well for architectures of 80ies that had much
more uniform and predictable performance compared to modern systems. The
advances in computer architecture made this algorithm an unreliable metric
because of introduction of multi core and multi CPU systems, multi-level caches,
non-uniform memory, simultaneous multithreading (SMT), pipelining, out-of-
order execution, etc.

Using PCM we were able to extract system, socket and core metrics. Most
of the metrics provided useful information about the state of the system. The
available metrics are the following:

0 Instructions per Cy- O L3 Misses 0 C-States (C0,C1,C6)
cle
0O L2 Misses 0 L3 Occupancy 0 Reads/Writes

Instructions Per Cycle (IPC): Regarding to the core metric, IPC de-
scribes the instructions required to execute a piece of code divided by the num-
ber of hardware cycles done at this time. For the socket and the system, the
IPC is calculated by the following equation.

1 Oj—l
IPCJ = ; X %([PCC X C’OStatec)
j =

L2 & L3 Misses: These misses are the number of misses in the L2 and L3
cache respectively. Regarding to the core, they describe the misses occurred

67

in a predefined time interval. For the system and the sockets, misses are the
aggregation of all the misses occurred in the cores belonging to them.

C-States In order to save energy when the CPU is idle, the CPU can be
commanded to enter a low-power mode. Each core has three idle states, CO,
Cl and C6. They are numbered starting at CO, which is the normal CPU
operating mode, i.e. the CPU is 100% turned on. The higher the C number is,
the deeper is the CPU sleep mode, i.e. more circuits and signals are turned off
and the more time the CPU will take to go back to CO mode, i.e. to wake-up.
C1 state (Halt) stops CPU main internal clocks via software; bus interface unit
and APIC are kept running at full speed. Finally C6 state (deep power down)
reduces the CPU internal voltage to any value, including 0 Volts.

Read & Writes These metrics describe the number of reads and writes
from and to the memory. They are provided only at socket/system level and
they are extracted on a set time interval.

After the appropriate metrics extraction, we communicate them using a Net-
work File System, which enables file sharing between server(s) and Kubernetes
master node, where the scheduling procedure takes place. The NFS Server is
on Kubernetes Master Node (kube-00). The two NFS clients, are set in the two
servers, where the metrics extraction is taking place.

4.2 Description of Cloud workloads and Interference micro-
benchmarks

Modern data-center server machines accommodate a wide range of workloads,
which are basically either batch /best-effort (BE) applications, or user-interactive
/latency-critical (LC) applications. The former type of workloads require the
highest possible throughput, whereas the latter demand to meet their QoS con-
straints. In order to cover both BE and LC workloads, we consider workloads

from three popular scientific benchmarking libraries, i.e. scikit-learn [37] and
SPEC2006 [38] (as BE) and Cloudsuite [39] (as LC) suites.

4.2.1 iBench

In order to add constant artificial pressure on our tested machines, we utilized
the iBench suite [40]. iBench provides contentious micro-benchmarks which
can simulate various stress of resources in different intensities and for differ-
ent shared resources, ranging from core up to memory levels, able to press
resources that span the CPU, cache hierarchy, memory, storage and networking
subsystems. We utilize those benchmarks as a mean to stress specific shared
resources of the system and observe the impact of interference on the perfor-

68

mance of our running applications. More specifically, in this thesis we use the
following micro-benchmarks:

0 L3 cache 0 CPU

O L2 cache O Memory Bandwidth stress

In our tests, we used the Deployment object in Kubernetes, so as to deploy
those benchmarks.

4.2.2 Scikit-Learn

Scikit-learn [41] is a a free software machine learning library for the Python
programming language. It includes a wide range of state-of-the-art machine
learning algorithms. Using a general purpose language, this package aims to
close the gap between machine-learning and non-specialists, enabling them to
learn and use it in order to provide solutions to their problems. Emphasis is
put on ease of use, performance, documentation, and API consistency. It has
minimal dependencies, it is open-sourced, encouraging its use in both academic
and commercial settings. Workloads brief description is provided in table 4.2.
More specifically:

0 Lasso: Linear Model trained with L1 prior as regularizer (aka the Lasso).

O Linear Discriminant Analysis: A classifier with a linear decision bound-
ary, generated by fitting class conditional densities to the data and using
Bayes’ rule. The model fits a Gaussian density to each class, assuming
that all classes share the same covariance matrix.

O Linear Regression: Ordinary least squares Linear Regression.

0 AdaBoost Classifier: An AdaBoost [42] classifier is a meta-estimator
that begins by fitting a classifier on the original dataset and then fits addi-
tional copies of the classifier on the same dataset but where the weights of
incorrectly classified instances are adjusted such that subsequent classifiers
focus more on difficult cases.

0 Random Forest Regressor: A random forest is a meta estimator that
fits a number of classifying decision trees on various sub-samples of the
dataset and uses averaging to improve the predictive accuracy and control
over-fitting.

O Random Forest Classifier: A random forest is a meta estimator that fits
a number of decision tree classifiers on various sub-samples of the dataset

69

and uses averaging to improve the predictive accuracy and control over-
fitting.

The datasets used in the training phase of these workloads are comprised of
40,000 instances, with 784 features per instance. For the purposes of our thesis,
we dockerized those applications. After that, they were used from within the
Kubernetes cluster by creating the appropriate yaml files. A sample yaml file
for a scikit application deployment is the following:

| apiVersion: vl
2 kind: Pod
3 metadata:
! name: scikit-pod-lasso
5 spec:
6 restartPolicy: OnFailure
containers:
- name: scikit-container
9 image: registry.hub.docker.com/iwita/scikit:no_entry
10 env:

11 - name: CLF

12 value: "Lasso"

13 command: ["/bin/bash","-c"]

14 args:

15 - time /workloads/fit_${CLF}.py "/784x40000.data" "/784x40000.labels" "1"
16 ports:

17 - containerPort: 80

18 imagePullPolicy: Always

19 imagePullSecrets:
20 - name: regsecret

4.2.3 Spec CPU® 2006

Spec 2006® [38] is another suite, which includes both integer and floating point
benchmarks. SPEC designed this suite to provide a comparative measure of
compute-intensive performance using workloads developed from real user ap-
plications, as well as everyday operations deployed in cloud environments. The
SPEC CPU® 2006 benchmark is able to measure both the time of completition
of a single task a in a machine and the the amount of tasks a machine can
accomplish in a certain amount of time, called throughput. For the purposed
of this thesis we used the following benchmarks:

O 473.astar: This benchmark uses language C++ and its type is integer.
Astar is derived from a portable 2D path-finding library that is used in
game’s Al. This library implements three different path-finding algorithms:
First is the well known A* algorithm for maps with passable and non-
passable terrain types. Second is a modification of the A* path finding
algorithm for maps with different terrain types and different move speed.
Third is an implementation of A* algorithm for graphs. This is formed
by map regions with neighborhood relationship. The input file is a map
in binary format. The program also accepts typical map region size which

70

is used in regionbased path finding algorithm and density for randomly
created forest-style test maps. The program also reads the number of
ways to simulate. The program outputs the number of existing ways and
the total way length to validate correctness.

437.lesliedd: It is a floating point benchmark and it uses Fortan 90.
lesliedd is derived from LESlie3d (LargeEddy Simulations with Linear-
Eddy Model in 3D), a researchlevel Computational Fluid Dynamics (CFD)
code used to investigate a wide array of turbulence phenomena such as
mixing, combustion, and acoustics. LESlie3d uses a strongly-conservative,
finite-volume algorithm with the MacCormack Predictor-Corrector time
integration scheme. The accuracy is fourth-order spatially and second-
order temporally. For CPU2006, the program solves a test problem using
the temporal mixing layer. This type of flow occurs in the mixing regions
of all combustors that employ fuel injection (which is nearly all combus-
tors). The benchmark version, 437.leslie3d, performs limited file I/O using
a theoretically exact problem. Input parameters include the grid size, flow
parameters and boundary conditions. The output includes analysis infor-
mation that tracks the momentum thickness through time.

436.cactusADM: This is a floating point benchmark which is coded in
Fortran 90 and ANSI C. CactusADM is a combination of Cactus, an open
source problem solving environment, and BenchADM, a computational
kernel representative of many applications in numerical relativity (ADM
stands for ADM formalism developed by Arnowitt, Deser and Misner).
CactusADM solves the Einstein evolution equations, which describe how
spacetime curves as response to its matter content, and are a set of ten
coupled nonlinear partial differential equations, in their standard ADM
3+1 formulation. A staggered-leapfrog numerical method is used to carry
out the update. The input file defines the grid size, as well as the number
of iterations which the code will run. The outputs are the iteration, time,
and gxx and gyz components of the metric which are coordinate-dependent
descriptions of the space time.

482.sphinx3: Sphinx-3 is a widely known speech recognition system from
Carnegie Mellon University (CMU). It uses C language and it is a floating
point benchmark. CMU supplies a program known as livepretend, which
decodes utterances in batch mode, but otherwise operates as if it were
decoding a live human. The benchmark focuses on the CPU-intensive
portions of the task, thus it reads all the inputs during initialization and
then processes them repeatedly with different settings for the "beams" (the
probabilities that are used to prune the set of active hypotheses at each

71

recognition step). The AN4 Database from CMU is used as input. The
raw audio format files are used in either big endian or little endian form
(depending on the current machine). Correct recognition is determined by
examination of which utterances were recognized , as well as a trace of
language and acoustic scores.

The deployment of those benchmarks in our Kubernetes cluster is similar to
the previous ones:

apiVersion: vl

2 kind: Pod
3 metadata:

name: spec2006-astar

5 spec:

10
11

14

16

restartPolicy: OnFailure

containers:

- name: spec2006-astar-container
image: registry.hub.docker.com/iwita/spec2006
env:

- name: BENCHMARK
value: "473.astar"
ports:
- containerPort: 80
imagePullPolicy: Always
imagePullSecrets:
- name: regsecret

4.2.4 Cloudsuite

Finally, the Cloudsuite [39] benchmarks are based on real-world online ser-
vices hosted in modern data-centers. It consists of eight applications that have
been selected based on their popularity in today’s datacenters. The benchmarks
are based on real-world software stacks and represent real-world setups. Cloud
computing is emerging as a dominant computing platform for providing scalable
online services to a global client base. Today’s popular online services (e.g., web
search, social networking, and business analytics) are characterized by massive
working sets, high degrees of parallelism, and real-time constraints. These char-
acteristics set cloud services apart from desktop (SPEC), parallel (PARSEC),
and traditional commercial server applications (TPC). Those benchmarks stim-
ulate research into the field of cloud and data-centric computing.

0 In-Memory Analytics utilizes Apache Spark [43] and runs a collaborat-
ing filtering algorithm on a movie ratings dataset. This dataset is consisted
of 21,000,000 ratings applied to 30,000 movies, by 230,000 users. Its size
is 144MB.

O Data-Serving relies on the Yahoo! Cloud Serving Benchmark [44] and
the Cassandra data store [45]. This framework comes with appropriate
interfaces to populate and stress many popular data serving systems. We
also increased the amount of operations to 300,000.

72

Table 4.2: Summary of workloads(BE=best effort and LC=latency critical workloads)

Suite Benchmark Abbreviations | Type Input Description
Linear Model trained with L1 prior
Lasso lasso as regularizer

) (aka the Lasso)
784 x 4000.data Classifier with a linear decision

scikit-learn [41 . L BE .
[41] Linear Discrinimant boundary, generated by fitting
. lda 784 x 4000.1abels R s
Analysis class conditional densities to
the data and using Bayes’ rule.
Linear Regression linregr Ordinary least squares Linear Regression
™ This class implements the algorithm known as
AdaBoost Classifier ada i &

AdaBoost-SAMME [51]

Random Forest
Classifier
Random Forest Regressor | rfr

rfc

Pathfinding library for 2D maps,
including the well known A* algorithm.
Spec 2006 [38] BE Computational Fluid Dynamics

(CFD) using Large-Eddy Simu-

lations with Linear-Eddy Model

in 3D. Uses the MacCormack
Predictor-Corrector time integra-

tion scheme.

Solves the Einstein evolution

473.astar astar a map in binary format

grid size, flow
437 leslie3d leslie parameters and
boundary conditions

grid:120x120x120,

436.cactusADM cactus 1000 iterations equations uslng a staggered-

leapfrog numerical method

o . The AN4 Database from A widely-known speech recosn-
482.sphinx3 sphinx . tion system from Carnegie Mellon
CMU [52] is used LU

University
. . . 21k ratings, 30k movies a collaborative filtering algorithm
in-memory analytics in-mem

o T by 230k users (size 144MB) | in-memory on a dataset of user-movie ratings
Cloudsuite [39] LC wolios on ihe

data-serving data-serving OperationCount=30000 Yahoo! Cloud Serving Benchmark (YCSB)
web-serving web-serving Load Scale:100 social networking engine

0 Web-Serving is consisted of 3 servers, an NGINX [46] web-server, a Mem-
cached [47] caching server and a MySQL [48] database server, simulating
modern services hosted in the cloud. More specifically, this benchmark
includes the social network engine Elgg [49] and a client implemented us-
ing the Faban [50] workload generator. In the Load-Scale input parameter
in the client container creation, we used the value of 100 instead of the 7
which is used by default.

In order to deploy those benchmarks in our Kubernetes cluster we needed to
create the appropriate yaml files. However, as the presence of containers does
not make Kubernetes and Docker identical to each other in any way, regarding
to the cloudsuite we modified the Docker container logic into understandable
by Kubernetes objects.

4.3 Kubernetes scheduler Inefficiency

Taking into account all the information provided before, Kubernetes sched-
uler is highly dependent on Cluster Resources. As it is illustrated in figure
4.2, scheduler follows a reservation-centric approach, trying to satisfy incoming
applications requirements in high level resources. In addition, these resources
deviate from the real ones. This is happening because Kubernetes is considering
as allocated resources the ones the user has already requested. The resources

73

request can be set in yaml config file as it is presented in section 3.5.

Strong declared resources dependability is something that can downgrade
the whole infrastructure’s performance. Kubernetes API which is keeping all
the necessary information, is only aware of the requested resources the user
asked for, in the pod’s or deployment’s creation. However the real resources
the application uses may differ. If they are less from the asked ones, this
prevents those extra resources to be accessed by another application leading to
under-utilization. In case the real resource usage is more than the declared one
there may be several results depending on the limits declaration. If there is
no limit declaration, Kubernetes API, is only aware of the requested resources.
The extra resource usage is not reported anywhere, and it will scale greedily
according to applications demands. This may lead to slowdown in the Node’s
already running applications.

Figure 4.2: Pod Scheduling

On the other hand, another problem we observed is the kind of resources
according to which Kubernetes scheduler makes scheduling decisions. Node
prioritization depends on Memory (RAM) usage CPU utilization. However, we
observed that those resources are not representative for the condition of the
node, in many kinds of today’s applications. The perfect candidate to host
an incoming application is not the node with the minimum CPU and/or RAM
usage. In case two or more nodes have more than enough resources to host the
new application why should the one with the most space get selected? What if
the physical servers in which this node is set as a Virtual Machine suffers from
interference effects? What if the infrastructure suffers from memory interference
caused by workload scheduled by Kubernetes Scheduler? Those questions are
tested in the following sections.

Moreover, Kubernetes platform as it was referred before, has access to Vir-
tual Machine(VM) resources such as Disk, Memory and CPU Usage. In fact
those 3 types of resources are all virtual. They are part of a bigger pie of shared
resources pinned from the host machine to the VMs. As a result, the observ-
ability Kubernetes has is limited. The container orchestrator is completely
unaware of any co-scheduled tasks in the host machine, that may affect VMs’

74

performance. For example in a typical architecture, each core belonging to the
same socket, share the same L3 cache. L3 cache is a limited and really critical
resource for a system’s performance. Processor’s data missing from Level 1
(L1) cache are fetched from Level 2 (L2) cache. Furthermore if those blocks are
missing from L2, they are fetched from L3. Those operations are taking place in
the cache exclusively. However, if the data are also missing from the L3 cache,
they are fetched from Memory (RAM). The latter operation has a great cost
and also a great impact on nowadays computational performance. Delays due
to LLC misses appear to be the bottleneck for any trial of delay minimization.
As memory capacity, CPUs frequency, and multicore systems are being rapidly
increasing over the years, the data 1/O bandwidth between different memory
levels is unable to follow those rapid changes. As a result different algorithms
and techniques are being researched and developed for various computer archi-
tectures aiming to take advantage of any feasible cache usage improvement for
delay minimization.

Returning to Kubernetes (k8s), our problem in this thesis, is the fact that
Kubernetes worker nodes (kube-nodes) which are VMs created from 2 different
servers share resources for which Kubernetes API is completely unaware of.
As a result, k8s scheduler does not have in our opinion enough information
before its scheduling decision making. Kube-scheduler is connected with kube-
apiserver, where node information are exposed. We claim that those data are
not representative enough about nodes’ condition. As a matter of fact, we
conducted some tests to prove our claim.

As it was also referred before, cache interference has a great impact on the
performance of workload. Applications that are interacting more with cache
are more sensitive to such cache usage intensity. As a result, it is very criti-
cal applications with intense cache usage not to be placed in stressed shared
resources.

We tried to examine, what would Kubernetes scheduling decision be, when
an application is ready to be scheduled over pre-existing workloads. We used
two different Virtual Machines (VMs) where, each one’s cores are pinned in
a different socket of the server, a fact that Kubernetes is unaware of at the
moment.

0 kube-01 : 4 CPUs, 8GB of RAM
0 kube-02 : 8 CPUs, 16GB of RAM

The decision Kubernetes scheduler has to make is to select the best matching
node (VM) for the incoming application.

Firstly, we placed into our system, 9 applications from iBench. The 3 of
them were cpu-ibench intensive workloads and the other 6 were LLC intensive

75

(13-ibench). We put the 3 CPU intensive applications in kube-01 and the rest in
kube-02. Those 2 nodes’ cores belong to different sockets, with the last residing
in the same server.

Stress among VMs

VM Kind of Stress pods/available
name cores

kube-01 | CPU Bound 3/4

kube-02 | L3 cache intensive | 6/8

For our first test, we used the Lasso workload from the scikit-learn bench-
mark suite, as described in section 4.2. After scheduling the iBench benchmarks
in the proper nodes, we tried to schedule the scikit application. We repeated
this experiment 5 times. Kubernetes scheduled the application every time in
kube-02 (the one with the 6 x 13 intensive benchmarks). Then, we repeated
the process above, but this time we forced the application to be scheduled in
kube-01, by using a nodeSelector.

Default

82.2972

Optimal

56.5668

0 10 20 30 40 50 60 70 80 90
Time (sec)

Figure 4.3: Average application completition time

As it is presented in the graph above, the delay is calculated as:
optimal__time
default_time
The delay seems to be remarkable. As a result in this thesis, we are trying to

= 0.6873

delay =

analyze interference phenomena, performance degradation of co-located appli-
cations and to implement an interference (and heterogeneity) - aware scheduler
able to be integrated with a Kubernetes cluster set on Virtual Machines over
heterogeneous Servers.

4.4 Impact of interference on the performance of appli-
cations

Data-centers operators are trying to increase utilization, by accommodating
multiple applications in shared resources. Those resources are prone to con-
tention, causing destructive interference and leading to unpredictable perfor-
mance. Shared resources like last level cache, memory and network bandwidth,

76

core utilization and others usually suffer from such interference phenomena.
Imposing interference in the Last-Level cache (LLC) and memory pressure
has been proven to induce high performance degradation [5]. Moreover, latest
benchmarking of known cloud providers has shown that memory is reported to
be the new bottleneck that destroys applications performance [28]. Contention
is a state data-center operators should avoid, as a stressed resource may char-
acterize the current system unable to serve QoS requirements. As a result,
while one resource is over utilized, others may remain both under utilized and
unusable. Best-practices in such cases suggest balanced resources exploitation
so as to maximize performance per used server. Our first challenge is to observe
applications’ sensitivity to a variety of resources stress varying in nature and
intensity.

As interference has an impact on the performance of applications, in this
section, we profiled our target workloads, while stressing different shared re-
sources, with various levels of interference intensity. In System /Server level the
shared resources we are investigating are CPU, L2 cache, L3 cache and memory
bandwidth. Our servers are consisted of 2 sockets with isolated per socket Level
3 caches. However those sockets’ cores are distributed in different VMs. An
interesting fact there is that by stressing one VM, also another VM is highly
impacted. This is a common issue in Data Centers nowadays. Users in dif-
ferent VMs may observe performance degradation due to another VM, many
times owned by another party.

In the following subsections, we stress different resources of our system, and
derive some useful observations regarding to the performance degradation of
various applications deployed. We denote the performance of application ¢ as:

1
elapsedTime

per formance; =

As per formance(A, S) we define the performance of application A under stress
S. For now we measure the stress level using the amount of pods deployed. So
per formance(lasso,8 x 13 — ibench) is the performance of scikit lasso appli-
cation, co-scheduled with 8 pods of I3 — ibench. Therefore per formance(A,0)
is the performance of the application when executed isolated. Using the latest
variable, we define normalized performance.

per formance(A, S)

normalizedPer formance(4, 5) = per formance(A,0)

4.4.1 Stressing the Cores

The first resource we stressed was core utilization. Using cpu-ibench we mea-
sured the performance and different metrics of the system in different intensities.

77

We stressed one of our system sockets with 3, 6, 12 and 24 pods utilizing 12.5%,
25%, 50% and 100% of the available socket’s cores belonging to the cluster re-
spectively. As figure 4.4 depicts, the utilization of the cores of the socket has
negligible impact on the performance of our target workloads, compared to L3
and memory bandwidth stress (described in next paragraphs). Specifically, for
the scikit-learn benchmarks, the behavior of the workloads varies. While Lin-
ear Discriminant Analysis (1da), Lasso (lasso), AdaBoost Classifier (ada) and
Linear Regression (1inregr) have not significant impact on their performance,
Random Forest Regressor (rfr) and Random Forest Classifier (rfc) are more
affected by increased cpu utilization. On the other side, SPEC 2006 bench-
marks behaviour is pretty similar. They are not greatly impacted by high core
utilization. Last but not least, cloudsuite benchmarks performance is down-
graded in the late test cases, where the number of deployed ibench pods had
been increased. This is probably happening due to multi-threading. Cloudsuite
applications use multi-threading and as a result cpu resource starvation affects
more and more threads when there are not cores in idle state left.

._.
/
-
b

o
©
| ¢
X
|
>

[
o
§ . x S, i >.< i 0.8 X S
“g 06 n\\\ é : 06 0
e 0.4 - - D — | 04 X astar <+ |eslie
o X lasso +--ada |
S 0.2 Ida = linregr | 02 ;
% — % rfc —e—rfr | cactus - sphinx
0 0
0 3 6 12 24 0 3 6 12 24
Deployed cpu-stress Pods # Deployed cpu-stress Pods
(a) Scikit (b) Spec 2006
1 — .
0.8 X e
0.6 ¥ in-memory X
04 ; ’ X
-+ data-serving
02 web-serving e
0

0 3 6 12 24
Deployed cpu-stress Pods

(¢) Cloudsuite

Figure 4.4: Impact of CPU stress on the performance of target applications.

4.4.2 Stressing L2 cache

Attempting to go deeper in the cache hierarchy, we tested the L2 cache stress
impact on scikit, spec 2006 and cloudsuite applications’ performance. In order
to stress the L2 cache we used the L2-ibench benchmarks, which were sched-
uled in the appropriate hardware thread that is sharing the same L2 cache with
the thread where the tested application would be placed. As Kubernetes de-
ployment objects do not support application scheduling in a specific core, we
configured the ibench, scikit and SPEC 2006 images. Moreover, in the pod

78

configuration file, we added some additional commands using taskset without
affecting container’s execution. In order to test scikit and SPEC 2006 applica-
tions, we co-scheduled 1,2 and 4 L2-ibench pods on the one hardware thread
and our tested application on the other. This way we were able to test L2 cache
resource stress, by providing an idle hardware thread for the application to be
executed at the same time. It is also notable there that the previously referred
threads are pinned to different VMs.

Figures 4.5a and 4.5b show the impact of L2 stress on various scikit and spec
2006 applications. The performance degradation the tested applications suffer
from, is remarkable still from the first L2-ibench pod addition. However, there
is no addition degradation after the first L2-ibench pod. This behavior occurred
as the L2 cache of the hardware thread where our application was placed, was
already continuously clearing all the needed blocks. Beyond that, any addition
iBench pod did not affect further the performance of the application, as L2 cache
was already experiencing misses in every access endeavor. On the other hand,
for the multi-threaded cloudsuite benchmarks, we tested a different scenario.
Before, scheduling each application on a 8-cpu VM vm;, we had placed 2,4 and
8 L2-ibench pods in the respective hardware threads(sharing L2 cache with
vmq’s cores) which are pinned to another VM. As illustrated in figure 4.5¢ the
impact on performance was negligible.

As a result, scheduling taking into account the L2 cache stress in individual
cores on the scheduling of incoming applications seems to be promising for
some benchmarks. However, this is a practice that would be better applied
on a online scheduler able to migrate applications in different cores, nodes or
sockets at runtime.

) 1 1 e
= = |
c 0.8 N | 08 e
£ ¥ lasso N X ~ — X X | ‘ eeeeeeepasen e i — Q
£ s N : B) | 3
£ +--ada N — 4 ———% 1 06
g 0.4 Ida & ——— o | o4 % astar - leslie
w02 = linregr | 02
2 —x—rfc | cactus = sphinx
o 0 0
& 0 1 2 4 0 1 2 4
Deployed L2-stress pods # Deployed L2-stress pods
(a) Scikit (b) Spec 2006

08 e
0.6

0.4 X% in-memory
0.2 -+ data-serving
web-serving

0

0 2 4 8
Deployed L2-stress pods

(¢) Cloudsuite

Figure 4.5: Impact of L2 Cache stress on the performance of target applications.

79

4.4.3 Stressing L3 Cache (LLC)

Next, we containerized the L3-ibench and deployed it in our Kubernetes cluster
selecting a VM pinned in socketl and setting it running indefinitely. Each
L3-ibench pod accesses the 50% of available LLC continuously. Figure 4.6,
shows the normalized performance of different applications due to LLC stress
in various intensity levels (1,2,4,8,16).

While SPEC 2006 benchmarks seem to suffer from a linear degradation of
their performance, scikit ones have the 4 pods as a boundary of devastating
impact on their performance. The difference in normalized performance be-
tween 4 and 8 pods is up to 79.5% and seems to be a contention threshold,
especially in cloudsuite benchmarks which performance has a great impact
only beyond that. Different applications in the same group also vary in their
LLC stress sensibility. Random Forest Regressor (rfr) has negative impact on
his performance earlier than other benchmarks, proving to be more sensitive
in this kind of pressure. In addition, sphinx from SPEC 2006 benchmarks al-
though has no impact on its performance co-scheduled with 1 pod, when more
pods are placed, the performance is linearly downgraded with a high incline.

SN

S ! =,
< 0.8 0.8 &
g LSS
g 0.6 0.6 :
804 X lasso -—+-ada - 0.4 % astar e |eslie X
ERy Ida = linregr 02 -
= —x—rfc —e—rfr ' cactus —®— sphinx g
& 0 0
0 1 2 4 8 16 0 1 2 4 8 16
Deployed L3-stress pods # Deployed L3-stress pods
(a) Scikit (b) Spec 2006
X
0.8 =
0.6 N
0.4 % in-memory %
02 s data—serv_lng .
web-serving S

0

0 1 2 4 8 16
Deployed L3-stress pods

(¢) Cloudsuite

Figure 4.6: Impact of L3 Cache stress on the performance of target applications.

4.4.4 Stressing Memory Bandwidth

Next, using the memBw-ibench benchmark we were able to stress another shared
resource, the memory bandwidth. Following the same procedure as before, we
extracted stressing results, showed in figure 4.7. Memory bandwidth is the next
resource after LLC hierarchically. All of the benchmarks have a much smoother
gradient than the ones co-existing with LLC pressure. Cloudsuite and SPEC

80

2006 applications are insensitive in memory bandwidth before the threshold of
4 pods scheduling.

On the other hand, scikit benchmarks performance varies. While rfr suffers
from 44.7% performance degradation from the 1st pod’s addition, linregr,
does not get as affected even in the 4th pod’s scheduling.

[uN

1 — o S— s S

[
=
© &
£ 08 08 &
L 06 N f. 0.6 o
% 0.4 ¥ lasso -—-ada XS 0.4 ¥ astar - |eslie R
2 Ida —m— linregr -
S 0.2 0.2 .
R % rfe —e—1fr cactus #— sphinx &
x 0 0
0 1 2 4 8 16 0 1 2 4 8 16
Deployed memBw-stress Pods # Deployed memBw-stress Pods
(a) Scikit (b) Spec 2006
1 e 2
- =%

0.8 M N

0.6 S

04 X m-memory e

02 —— data-serving

’ web-serving

0

0 1 2 4 8 16
Deployed memBw-stress Pods

(c) Cloudsuite

Figure 4.7: Impact of Memory Bandwidth stress on the performance of target applications.

4.4.5 Mixed Stressing Scenarios

Trying to simulate real world case workload scenarios, we used different inten-
sities of ibench pods for stressing cpu, L3 cache and memory bandwidth at
the same time. We created 6 scenarios, which will be the pre-existing work-
load, before scikit and spec applications get co-scheduled. Those scenarios are
described in table 4.3. The different benchmarks behavior can be observed
in figure 4.8a between ada and linregr. While their normalized performance
seems to be equal in most scenarios, in the scenario 2, where L3 cache stress is
more than scenario 1 and less than scenario 3, ada performance degradation is
much smoother compared to linregr and the other benchmarks. Contrarily,
in scenario 4, linregr achieves greater relative performance than others do.

Roughly speaking, in all the scenarios of pressure, scikit, SPEC 2006 and
cloudsuite applications experienced analogous impact on their performance.
That means that performance was determined by system’s condition relatively.
The sorted scenarios according to applications relative performance is 6,1,4,2,3.
Interestingly that sorting remains the same for all benchmarks and the need
for an indicator of performance that would select a socket/system from a pool
of available ones, so as to maximize any incoming application’s performance is
revealed.

81

Table 4.3: Stressing Scenarios

| No. of Test | L3 (pods) | memBw (pods) | CPU (pods) |

#1 2 3 8
#2 5 1 4
#3 8 1 1
#4 2 8 2
#5 10 0 6
#6 0 0 0
1 ¥ Tasso —+—ada * 1 Ia

= linregr 08 X astar -+ |eslie
cactus & sphinx

o
©
o
5

oS¢
=N

06 P

0.4 = R
0.2 =

LR

SN —
L

R
N

-
-

Relative performance
(=]
S

=)
o

1 2 3 4 5 6 1 2 3 4 5 6
Scenario Scenario

(a) scikit (b) spec2006

1 HK—

0.8
X
0.6 -

X
04 e « N
0.2 Lo d
-
3

*—in-memory - data-serving web-serving |

0

1 2 4 5 6

Scenario

(¢) cloudsuite

Figure 4.8: Impact of mixed resources stressing scenarios on the performance of target appli-
cations.

4.4.6 Quantifying Stress Levels

While ibench adoption can offer a great perspective over co-scheduled applica-
tions performance by stressing and considering individual low-level resources,
for the real bottleneck of the system detection we need to inspect and examine
the low-level performance counters as a whole [14].

For this purpose we needed a more general way of measuring the stress
level. Trying to find an appropriate metric to measure socket performance,
we also monitored socket metrics using PCM. We extracted L3 cache misses
number, CO-state percentage, reads and writes from and to the memory and
IPC. Furthermore, we calculated the average of the values extracted. In the
following figures 4.9a and 4.9b, the variation of different metrics during different
levels of L3 cache stress is presented. In figure 4.9a, are displayed the L3
misses and L3 hits of the socket. The radical increase after the second pod
addition is happening because more and more minor processes of the system
are experiencing misses in every LLC access. The decrease of the L3 misses
after the 4th pod addition is an observation worth to be reviewed. L3 misses

82

intensity beyond that point is so high that it cannot get served by the available
memory bandwidth, thus processes requesting data missing from L3 cache are
in a wait state, their IPC is decreased and the total amount of additional
memory requests per timeframe is also decreased. Regarding to the figure 4.9b,
a plateau in reads and writes from and to the memory is illustrated starting
from the addition of the 4th pod. IPC is increased during the zero to one L3-
iBench pod transition. While, one L3 cache-iBench pod flushes continuously
half of the cache, useful blocks used by minor processes in the cluster are not
written back to memory. As a result, this process addition, contributes more
in the average IPC of the socket increment than the total L3 misses count.

=
N
=

et
wn
N
wn

o
©

Number of L3 Hits (M)
N
»
N

o
o

=
31

3
o
Gigabytes/0.1 sec

o
IS

"t
/1t

Number of L3 Misses (M)
o
(3]

Instructions Per Cycle

(=]
(=]
o w
»
»
(=] o
w

0 1 2 4 8 16 0 1 2 4 8 16
Deployed L3-stress pods # Deployed L3-stress pods

(a) L3 Misses & Hits (b) Reads, Writes & IPC

Figure 4.9: Impact of L.3 Cache stress on low-level metrics of the socket.

A conclusion derived from those figures is the dependability of the metrics
on stress level. As figures 4.6 and 4.7 previously also show, the pressure on L3
cache misses and memory bandwidth downgrades performance radically. LLC
is basically the border between the cores and the main memory. Any operation
taking place beyond that border generates additional delays in higher order of
magnitude than the operations happening within (L1 instruction misses, L1
data misses, L2 misses). Memory reads and writes are the requests for data in
behalf of L3 cache misses, and provide a low level performance counter able to
depict the number of memory access.

Additionally, following the previous metaphor, memory bandwidth repre-
sents the width of the pipe connecting operations within and beyond that
aforementioned border. As LLC misses are increased, the number of opera-
tions that will happen in memory side is increased as well. If the ratio of such
increments of operations is higher than the one memory bus can serve, memory
contention occurs. In this case, different processes are competing for memory
access [53], and as the available bandwidth is not able to support all requests at
the same time, neither memory reads and writes number nor L3 cache misses
are valuable indicators of contention beyond this point. In this case, IPC, an-
other low level hardware metric, is an indicator of further slowdown caused by
delays in process execution due to memory bus competition. A custom metric

83

we propose that is promising regarding to the stress level calculation is:

B Reads + Writes
a IPC

where reads, writes and IPC are the average of the measured values. This
metric takes into account the reads and writes from and to the memory, since the

Custom Metric (S) (4.1)

delay caused moving data from and to the memory is decisive for the system’s
performance. Additionally, in cases when reads and writes reach a plateau, IPC
is a valuable metric indicating the condition of the system.

System’s condition estimation through low-level metrics

In order to compare the accuracy of different metrics on reflecting the condition
of the system, we computed the Pearson correlation between the performance
degradation of each application executed under interference and the average of
the socket’s low-level metrics sampled prior to the scheduling of the applica-
tions. Figure 4.10 shows the correlation between the normalized performance
of the application under different levels of stress as described in the previous
section and the corresponding metrics values. Our custom metric seems to be
highly correlated with the performance of application in most scenarios. In
L3-ibench, the custom score and the CO-state of the sockets are competing for
the first place. Furthermore, in the memBw-ibench stress, L3 misses seem to be
correlated with applications performance too. In those two previous scenarios,
the high value of CO-state in performance correlation is disorienting. As CO0
depicts the percentage of physical cores in executing state (not being idle), it is
expected to get increased when the number of deployed pods is also increased.
As a result, due to the fact that those pods are stressing the system, CO seems
to be highly correlated with system’s contention. However, as figure 4.10d il-
lustrates, when different pods (cpu,L3,memBw) according to the table 4.3 are
deployed, CO0 is not a reliable system state indicator anymore. Finally, in core
utilization stress, our custom metric fails to indicate the isolated case and this
is depicted in correlation as shown in figure 4.10c. This is happening because
in the case of an empty system, the IPC metric is low enough to increase the
value of our scoring function.

4.5 Impact of heterogeneity on the performance of ap-
plications

Nowadays, data centers are consisted of systems differing in hardware charac-
teristics. As a result, clusters provided to clients are also heterogeneous, with

84

L3 misses — Reads
IPC — C0
== Custom Score

(a) L3 cache stress

s |3 MisseS — Reads
IPC e C0

e CUStOom Score

(c) CPU stress

Figure 4.10: Correlation between applications performance degradation and system metrics.

Virtual Machines residing in diverse systems. In such cases, when an orchestra-
tor like Kubernetes is responsible for nodes over different underlying systems
management, those different characteristics in resources and their usage must
be used properly in order to maximize the performance of the system as a whole.

The design of such a heterogeneity-aware scheduler is a research subject. In
the next paragraphs, we conducted the respective tests we did earlier, this time
on another server with different characteristics. Those two different machines

data-serving,

in-memory

| 3 Misses — Reads
IPC e CO
== Custom Score

(b) Memory Bandwidth stress

linregr

astar

leslie
sphinx cactus

L3 misses — Reads
IPC w— C0
e Custom Score
(d) Mixed scenarios stress

are described in table 4.4 (H1) and table 4.5 (H2)

Table 4.4: Host-1 (H1) specifications

Processor Model
Cores per socket
Sockets

L1 Cache

L2 Cache

L3 Cache

Memory

Links

Operating System

Intel® Xeon® E5-2658A v3
12 (24 logical) @2.20GHz

2

32KB instr. & 32KB data
256KB

30MB, 20-way set-associative
256GB @2133MHz

2 x QuickPath Interconnect
Ubuntu 16.04, kernel v4.4

85

Table 4.5: Host-2 (H2) specifications

Processor Model
Cores per socket

Intel® Xeon® Gold 6138
20 (40 logical) @2.00GHz

Sockets 2

L1 Cache 32KB instr. & 32KB data
L2 Cache 1024KB

L3 Cache 28MB, 11-way set-associative
Memory 128GB @2666MHz

Links 3 x Ultra Path Interconnect

Operating System Ubuntu 18.04, kernel v4.15

4.5.1 Stressing the Cores

As it is illustrated in figure 4.11, H2 is constantly performing better than H1.
CPU stress does not seem to radically impact the performance of deployed
applications. Furthermore, the deviation between the performance of the two
hosts remains constant between 31% and 36% across all the different scenarios
for spec 2006 benchmarks. This aforementioned behavior characterizes also
the scikit-learn applications. On the other hand, in the 100% cpu utilization
scenario, H2 due to its greater cores availability was able to schedule in a
more spacy VM the multi-threaded cloudsuite benchmarks. While difference in
performance is below 10% in the first four scenarios, in the fifth the respective
deviation is 61&.

duration (s)

— linregr-H2
w— |ass0-H1
e linregr-H1

ada-H2
— rfc-H2
m— ada-H1
— rfc-H1

Ida-H2
— rfr-H2
Ida-H1
rfr-H1

Deployed cﬁu-slress pods

(a) Scikit

18

astar-H2

1200 | sphinx-H2

m— astar-H1

leslie-H2 cactus-H2

— |eslie-H1 |

duration (s)
- & 8
o“

\

1

\

\

1
1
'
E
]
]
]
1
i
]
]
1
]
1

9
Deployed cpu-stress pods

(b) Spec 2006

in-mem-H2

data-serving-H2

web-serving-H2 mss in-mem-H1

mm— ata-serving-H1 mmmm web-serving-H1 - - - average-H2

=== average-H1

duration (s)

18 36

9
Deployed cpu-stress pods

(¢) Cloudsuite

Figure 4.11: Comparative performance analysis between H1 and H2, under CPU-stress

4.5.2 Stressing L2 cache

In L2 cache stress, as was also described in the single server analysis in sec-
tion 4.4 only one (L2 cache-iBench) pod is enough to flush the whole L2 cache
and force any other process trying to access it into a miss. Beyond that fur-
ther pod addition have no impact in any benchmarks performance. As figure

86

4.12a depicts, H2 appears to be tolerant enough. The performance deviation
is increased after one pod addition and remains constant during the latter sce-
narios. It is important to note at that point that H2 is consisted of larger L2
cache capacity as described in table 4.5. While scikit-learn (figure 4.12a) and
spec 2006 (4.12b) benchmarks seem to be affected by heterogeneity, cloudsuite
ones (figure 4.12¢) are not. More specifically, scikit benchmarks performance
deviation during the zero to one pod transition is altered from 20% to 40%.

astar-H2 leslie-H2 cactus-H2
sphinx-H2 mm— astar-H1 m— |eslie-H1

5

duration (s)
8

duration (s)
g 8
" *
z

1

\

Vol

VB

1

1

1 I

H S

1

]

1

]

I

] I

1 N
‘-

1

1

1

1

1

1
x>.| H

0 1 2
l5eployed L2-stress péds N # Deployed L2-stress pods

(a) Scikit (b) Spec 2006

in-mem-H2 data-serving-H2 web-serving-H2 mssm in-mem-H1
mmm data-serving-H1 mmsm web-serving-H1 - - - average-H2 -== average-H1

duration (s)
- &8 B & 8

Deployed Lﬁ'-zgtress pods / # VM'sog\vaiIabIe cores

(¢) Cloudsuite

Figure 4.12: Comparative performance analysis between H1 and H2, under L2 cache-stress

4.5.3 Stressing L3 cache (LLC)

Scikit (figure 4.13a) and SPEC 2006 (figure 4.13b) workloads present similar
behavior until the addition of the fourth pod. H1 and H2 performance is almost
the same with the isolated execution of the corresponding benchmark. Com-
pared with H1, H2 presents a greater tolerance in L3 cache stress. While H1
is impacted by interference in L3-cache from the fourth pod addition, H2 is af-
fected only after the eighth pod respectively. However both Hosts performance
is greatly deprecated in 16 L3 cache stress pods placement. On the other hand,
cloudsuite applications (figure 4.13c), performance is being degraded with a
slower ratio when compared with H1. Both hosts are only greatly impacted
after the addition of the 8th pod.

4.5.4 Stressing Memory Bandwidth

As tables 4.4 and 4.5 describe, the two hosts differ in the number of links
from/to the memory, as well as in the corresponding bandwidth. H2 which
is consisted of three Ultra Path Interconnect links (instead of two QuickPath
Interconnect links in H1) is evident that handles memory transactions in a much
more efficient way as shown in figure 4.14. Comparing the two hosts, H2 is only

87

200 12000 astar-H2 leslie-H2 cactus-H2
2000 lasso -H2 ada-H2 wew sphinx-H2 ~ memm average-H1 mmmm leslie-H1
—_ Ida-H2 — linregr-H2 .~ 10000 mmm cactus-H1 mmmm sphinx-H1 === average-H2
L — rfc-H2 —fr-H2 < - -~ average-H1
< 1500 m— |asso-H1 m— ada-H1 c 8000
2 Ida-H1 s linregr-H1 S 6000
© 1000 — rfc-H1 rfr-H1 ©
=1 -=-=- average - H2 - -~ average-H1 3 4000
S °
500 2000
o P e mll=zs-==sacl o e sl
0 1 4 8 16
Depfoyed L3-stress pods ° # Depfoyed L3-stres$ pods ¢ *©
(a) scikit (b) spec2006
in-mem-H2 data-serving-H2 web-serving-H2
& 1200 s in-mem-H1 mm data-serving-H1 s web-serving-H1
E’ - -~ average-H1 === average-H2
S 800
g
= -
S 400 -
P R———
0 1 4 8 16
Depfoyed L3-stress pods

(¢) cloudsuite

Figure 4.13: Comparative performance analysis between H1 and H2, under L3 cache-stress.

greatly impacted by memory bandwidth pressure in the more intensive scenario
(16 pods). Thus, the variation in H1 and H2 performance is kept constant until
the 8th pod addition, when H1 experiences contention and the performance of
the deployed application is significantly degraded. While H2 performs better
even in low pressure scenarios in scikit and SPEC 2006, the two servers operate
in a similar manner in the cloudsuite benchmarks. Subfigures 4.14a, 4.14b and
4.14c illustrate the performance of the corresponding benchmark suite, as well
as the average value for each suite over the different stressing scenarios.

astar-H2 leslie-H2 cactus-H2
00 :T‘:]S’Zgr";‘fz ?fga':gz a2 4000 sphinx-H2 ~ mesmastar-H1 e leslie-H1
- -~ - v | & - |
) — lasSoHL _— bl -Ida-Hl L o | | ™==cactus-Hl - mmmm sphin-H1 average-H2
s s finregr-H1 — rfc-H1 rfr-H1 5 - == average-H1 -
= 400 -=- average - H2 --- average-H1 - g 2000 3 _-
3 200 o ad 3 wol - = e M
0 1 2 4 8 16 0 1 2 4 8 16
Deployed memBw-stress pods # Deployed memBw-stress pods
(a) scikit (b) spec2006
300 in-mem-H2 data-serving-H2 web-serving-H2
w m— in-mem-H1 mm data-serving-H1 mm— eb-serving-H1
'5 200
g
3 10
04

2 4
Deployed memBw-stress pods

(¢) cloudsuite

Figure 4.14: Comparative performance analysis between H1 and H2, under Memory Bandwidth-
stress

4.5.5 Mixed Stressing Scenarios

Finally, we deployed the different stressing scenarios described in 4.3. As the
dashed lines depict in figure 4.15, the average elapsed time across all the different
scenarios behavior is similar for the three benchmark suites. The performance
deviation between H1 and H2 is observed in scenario 3. We would expected

88

the scenarios with the most delay to have the greatest difference between the
two hosts performance. However, the average performance of H1 in scenario 3
is worse that scenario 5. On the other hand, H2 achieves better performance
in scenario 5 than scenario 3. One explanation for this behavior is the greater
memory bandwidth of H2 (table 4.5) and the larger L3 cache of H1 (4.4) at
the same time. While in scenario 5 there are 10 x L3cache and 0 x Memory
Bandwidth stress pods deployed, in scenario 3 the pods are 8 and 1 respectively.

1000

lasso-H2 ada-H2 lda-H2 ‘w—(inregr-H2 mm ric 7000 astar-H2 leslie-H2 cactus-H2 sphinx-H2 mssm astar-H1
—

rfr me |asso-H1 e ada-H1 m— |da-H1 m— |inregr-H1 \ — 6000 o . inx- —_— H2 = .
~ 750 He-HL MiroHL --- average-H2 === average-H1 m |eslie-H1 = cactus-H1 — wmmm sphinx-H1 average-H2 average-H1

2

2 5000

=4

S 4000

®a00f _e-=
- 3 -

I - - . 3 2000 -

-4----z Ny O "N e - TSeo 1000 = BRSNS Sl RN
- = o J
2 3

3 . 4 . 4
Scenario Scenario

(a) scikit (b) spec2006

duration (s
@
8

N
]
3

in-mem-H2 data-serving-H2 web-serving-H.
400 mm in-mem-H1 = data-serving-H1 ~ wsmm web-serving-H
~=~ average-H2 -=-~ average-H1

duration (s)
N ow
8

100

Scenario

(c) cloudsuite

Figure 4.15: Comparative performance analysis between H1 and H2, under different stressing
scenarios

4.6 Stress Duration and Stress Level Pareto

Scheduling is a process, where the optimal candidate should be selected for ex-
ecuting the application in the beginning of the 'ready to be scheduled’ queue.
Regarding to the makespan scheduling problem, where we consider having m
identical machines, and n jobs, with processing time pl, p2, p3,...pn, the ob-
jective is to minimize the makespan by scheduling each job in the appropriate
machine. One algorithm for accomplishing this goal is the Longest Processing
Time algorithm (LPT). However, such an algorithm cannot be applied in an
on-line scheduler, as it needs the duration of the applications that are wait-
ing to be scheduled in the first place. Another problem arising for real-world
scheduling is the execution time slowdown of an application due to interference
happening in the shared resources. A question occurred during the development
of the current thesis was the competition between 2 candidate machines with
the following corresponding states. The first machine is under stress S1 and
the application running has an approximate duration time ¢1. The second node
has stress S2 < S1 and approximate duration time ¢2 > t1. Trying to simplify
the problem definition, we assume each node has one application running.

89

Trying to figure out this question we conducted the following test. We co-
scheduled SPEC 2006 applications with L3 cache stress benchmarks in 3 sce-
narios. We deployed 4, 8 and 16 L3 cache-ibench pods for a duration equal to

t t¢ . . .
Csolatedy ~%tet and ~=elated respectively, and on top of them we placed application
a.
1200
2 1000 E— e
g ——astar
3 800 T ——cactus
& 600 | ¥ ——leslie
“ S sphinx
400

4%t 8*/2 16*t/4
Deployed I3-bench pods * duration

Figure 4.16: Stress Level and duration

In figure 4.16, the results are displayed. As we can see, the product of stress
and its duration does not indicate the same degradation in the performance of
applications. We denote as c¢; the case with smaller stress and longer duration
and as co the case with the greater stress and the shorter duration. We can see
that c¢; leads to greater performance degradation of the evaluated application
compared to co. As a result cases with the same product (stress x duration)
differ in performance degradation, with the duration parameter being the one
with the most impact.

In the following sections we discuss and compare experimentally different
naive approaches that could offer a better modeling for the score occurred by
the product of stress level and duration.

90

Chapter 5

Interference-aware Kubernetes
Scheduler

We target conventional data center environments, where applications are arriv-
ing on the cluster and an orchestrator is responsible for scheduling them on the
available pool of VMs lying on top of the server systems, as shown in figure 5.1.

5.1 Mathematical Modeling & Problem Definition

Our problem in practice is a Partition problem or Number Partitioning gen-
eralization called Multiprocessor Scheduling Problem. Number Partitioning is
the task of deciding whether a given multiset S of positive integers can be par-
titioned into two subsets S1 and S2 such that the sum of the numbers in S1
equals the sum of the numbers in S2. Multiprocessor scheduling algorithms are
static or dynamic. A scheduling algorithm is static if the scheduling decisions
as to what computational tasks will be allocated to what processors are made
before running the program. An algorithm is dynamic if the decision is made
at run time. For static scheduling algorithms, a typical approach is to rank the
tasks according to their precedence relationships and use a list scheduling tech-
nique to schedule them onto the processors. We have n = number of sockets
sets, as many as the unique L3 caches in our infrastructure.

Another reduction is to a Bin Packing problem variation called minTotal
Dynamic Bin Packing (DBP) [54]. In the bin packing problem, items of different
volumes must be packed into a finite number of bins or containers each of
volume V' in a way that minimizes the number of bins used. Dynamic Bin
Packing (DBP) is a variant of classical bin packing, which assumes that items
may arrive and depart at arbitrary times. The minTotal DBP is a new version
of the DBP problem, and it targets at minimizing the total cost of the bins used
over time. In our case we only know the items’ departure time when executed
isolated. The arrival time and the item size are only known when the item
arrives. The items are not allowed to move from one bin to another once they

91

have been assigned upon arrivals.

Decription: However, the problem we are trying to solve is an online job
assignment in a finite amount of bins. Our objective is the minimization of
scheduled application a performance degradation d,, Ya € B, where B is the
set of the total jobs to get assigned.

Target HW model: Each server is uniquely identified by an identifier
i € N=" where n is the total number of servers available on the cluster.
We denote the j j € N=™ socket of server i as sj, where m; is the total
number of sockets of server i. Every socket ssz, j is characterized by its at-
tributes (C6, [PC, Reads, Writes, # Links, Links Bandwidth) and is consisted
of o; number of cores. Furthermore, each node (VM) in the cluster is consisted
of vepus pinned in the same socket and is denoted as nl.’i Every node is char-
acterized by the total number of cores p; < oj and their average C6 (C6). I
addition, each core of socket s and node’s nJ" is denoted as ¢}" ke N,

Application model: We con81der that each workload arriving on the cluster
is characterized by a tuple A = (Writes;s,, Reads;s,, C0;s0), where Writes;s,,
Reads;s,, C0;s, refer to the mean values of the respective low-level performance
counters (as described in section 4). As Writes;s, and Reads;s, refer to socket
metrics, C0;4, is related to core level metrics and is the average value of the
socket’s cores belonging to the examined cluster.

Summarizing our problem modeling and variables for the hardware model
are the following:

Summary of Key Notations
Notation | Definition
Sv; 14, Server
w total number of servers in the cluster
s 4§ socket, part of server i
m; total number of sockets of server ¢
0j total number of cores per socket in server ¢
nfz l;, node (VM) of server i and socket j
D total number of cores in [}, node.
cf{’j’l core in [y, node, part of the si socket
d, performance degradation of application a

The degradation of application ¢, d; is defined as:
d, = f1(A4|SL, S, ..., 8L, Sttt st Gin)

The degradation of the performance of each job depends on job’s behaviour A,

92

as well as on each candidate bin score S;, Vt after the job placement until it
departs from the bin. Moreover, the score of each socket j in time £, is:

St= S+ foldyy), Vi

Any job can be placed in exactly one bin. As it can be observed, S;H and
d; ; have a circular relationship, with the one being dependent on the value of
the other. This fact makes our problem more difficult to get reduced into a
known one. Also it is evident that the performance degradation d, of job a
depends on future incoming jobs placement.

The objective of our problem is the total minimization of jobs performance
degradation.

min » _d,,Va € B

Figure 5.1: Cluster Architecture

5.2 Proposed Solution and Heuristic Algorithm Approach

In this section, we discuss our approach in the previous problem. Firslty, as we
tested and evaluated in chapter 4 and illustrated in figure 4.10, the performance
degradation of the applications scheduled, is highly correlated with our custom
metric defined in equation 4.1. Taking this into account, when a placement
decision should be made, we consider the bin with the less score as the bin
where the incoming application will suffer from less degradation. This dynamic

93

scoring across the bins (sockets) is proportional to the already attached jobs’ left
execution time ¢z, the bin’s stress value Stress;, as well as servers heterogeneity.
Also, because of the application profiling, we are able to recognize different
characteristics between the different applications we need to schedule. Those
characteristics can make interference related delays more intensive. In other
words, applications may have a very diverse performance depending on the
other applications they are co-scheduled with.

Our approach solving this problem is an heuristic one, using a Best Fit
algorithm. We create a scoring function for every bin and for every incoming
item we pick the best one. The scoring function is the following:

S; = Stress; x DF(t) x HF

where DF (Duration Factor) is the impact of the approximate running applica-
tions duration which we need to take into account too. H F'is the Heterogeneity
variability. We discuss different functions of duration factor calculation in the
next sections.

5.2.1 Parameter 1: Stress Score

Using PCM, we extract system, socket and core metrics. We calculate the
weighted average of the metrics extracted over the last 20 seconds, with the
latest metrics weighing the most. Metrics are divided into socket and core
metrics. From the metrics provided we use the memory reads and writes, the
cores’ C6-state and IPC extracted in a 0.4 seconds interval. The stress score
will be calculated by using the custom metric described in equation 4.1. Also,
the need of core availability, should also been taken into account. So we divide
this scoring function into two cases.

In the first case, no more than one core in average is idle in the nodes
belonging in a specific socket.

06j><0j<1

The Stress score there will be:

Reads + Writes
[PC] X 06] X Oj

Stressj =

In the second case, when there are more than one cores in average available
in C6-state:

O6j X 05 >= 1,

94

the stress score will be:

Reads; + Writes;
IPCj X 1 % Oj

Stress; =

where

[PCj ZZIPCk, Ve € 9
1

5.2.2 Parameter 2: Duration Factor

A complete interference-aware scheduler except for the node condition, needs to
take into account the existing workload’s duration too. However, this duration
is currently not able to be calculated.

Regarding to the Duration Factor, which is a function depending to duration
(t) of running applications, we tested and evaluated several approaches using
the approximate values of average and max duration of scheduled applications.

Area Calculation using the average duration

Stress

St

Figure 5.2

As it is illustrated in 5.4, in this approach, we multiply the average approximate
calculated value of running applications duration with the stress of the current
bin(socket /node). The final score in this case is gray area in (Jy"’ sldz).

DF =ty

95

Area Calculation using both average and maximum duration

Stress

St

Figure 5.3

In this approach, we use both the average and the maximum value. For a
duration until ¢ = average we multiply with the corresponding stress. Beyond
that for average < t < max, we assume a linear degradation of the stress level,
until ¢ = max. The integral indicating the covered area is:

mazx S1 S1 X max
/ (—————— X ———)dr
avg “avg — max avg — max

[$1de +

tmax - tav
DF =ty + 45—

Duration - Stress Tendency

A question occurred while observing testing results, was what should the prefer-
able node be if the product of ¢ x .S is the same between 2 or more nodes. In
this case should the lowest stress level or the lowest duration be preferred. (e.g
nodel(stress = s,average_t = t), node2(stress = 10 x s, average_t = &)

10
We tried 2 different naive approaches using d > 1 as an exponent.

Duration Tendency Firstly we add some more value - bias to the average du-
ration of the running applications. Regarding to the example above, node2 will
get a lower score and will be selected.

DF =t x S,

Stress Tendency Next, we configured our scoring function in order to bias the
stressing factor of the equation. Subsequently, nodel is going to result into a
lower score an be the preferred one.

S;=txS]

96

Decay

Another factor that we thought should effect final node selection is the re-
lationship between the average and the maximum duration of the scheduled
applications. A big difference between the average and the maximum value of
duration, actually indicates a bigger amount of applications with only a small
amount of time remaining. Taking this into account we used the decay function
in order to calculate the duration factor this time.

—tavg

DE(t) = tyae X (1 — 7t

Actually the more the average and the maximum value vary, the less fi-
nal score should be given in the current socket (lesser score meaning greater
viability).

Bl Stress 2 < Stress 1

P

2
5

L 3 4 1
5 5 5

Figure 5.4

5.2.3 Parameter 3: Heterogeneity Factor

Hardware heterogeneity can have significant impact on the performance of ap-
plications, especially for Latency-Critical (LC) applications [32, 33]. In this
thesis, our cluster as a whole is heterogeneous. The two servers consisting the
system differ in L2, L3 (LLC) cache sizes and way of associativity. The number
of available cores, cache sizes, their base and maximum frequency and memory
also varies. Last but not least the number and the width of Quick Path In-
terconnect (QPI) links or memory buses serving the memory requests are also
different.

Trying to identify the state of each socket in order to prioritize them, we
added one more factor, the HF', Heterogeneous factor. This one takes into
account, the capability of each server to serve memory requests.

b

bi X lz

, where b is the bandwidth of each link in and [is the number of QPI links in
server 1.

HF; =

97

5.3 Algorithm

We decided to use our proposed custom metric in our custom scheduler’s im-
plementation. We designed a 2-level approach regarding to the node selection.
This leveled approach would be more efficient in large scale systems, because
this way we filter out a great amount of candidate nodes. For example, our
cluster is consisted of 2 servers, each server is consisted of 2 sockets and each
socket’s cores are pinned across 2 different VMs. As a result after selecting the
most appropriate socket we cut the amount of possible nodes to one quarter.
That is an approach able to scale in clusters with hundreds of sockets.

For the purposes of our design, we pinned each physical thread in the cor-
responding VM, in the appropriate core. (E.g. we mapped Host1/Socket0 to
the kube-02).

2 server_socket_kubeNode =

3 {

!

6

9
10
11
12
13
14
15
16

#(serverName, socketNumber) :(vmName, coreNum)
("Host1",0,2):("kube-02",0),
("Host1",0,3) : ("kube-02",1),

("Host1",0,4) :("kube-02",2),

("Host1",0,5) : ("kube-02",3),

("Host1",0,6) : ("kube-02",4) ,

("Host1",0,7):("kube-02",5),

("Host1",0,8) : ("kube-02",6),

("Host1",0,9) : ("kube-02",7),
¥

The skeleton of the scheduler’s implementation is the following. The sepa-
rate parts and functions are discussed later in more detail.

initializeSockets();

for a in applicationsQueue do
A, < Application(a);

sk < selectSocket(A,);

ny’ selectNode(s, Ay);
schedule(n)?);

end

Algorithm 1: Scheduler’s main function

5.3.1 1st Level - Socket Selection

The First Level Filtering is conducted between all the candidate sockets of
the cluster. In our infrastructure, we have to select one of the four available
sockets. For the purposes of this stage, we extract socket metrics for every
socket included in the cluster.

98

Also, another important fact here, which is also Kubernetes scheduler un-
aware of is that any Kubernetes cluster, especially the ones provided by Cloud
Providers where the physical resources are not owned by the user, is that VMs
resources are interfering with the residing physical resources. Usually in cloud
environments cores belonging to the same physical machine may be shared be-
tween two or more different clusters. In this case, Kubernetes is unaware of any
interference happening because of shared physical resources (such as socket).

First of all we gather the information we need for each socket. Socket is
the first level of abstraction where resources such as L3 cache and Memory
Bandwidth are shared between their sub components. In previous section, we
presented the impact on the performance of applications due to interference
into those shared socket resources.

Socket Initialization

The function called first is the initializeSockets() (Algorithm 2). In this
function pcm extracted metrics through the installed NFS are read. It is called
every time a new batch of applications, ready to get scheduled, arrives.

for i +— 0 to w do

s’ +read(),Vj € i;

for j < 0 to m; do
s5(C6) < initCores(server;, s});
calculateSocketScore(s’ timer);

end

end

Algorithm 2: Sockets initialization

The C6-State we set on the Socket object is not the socket level metric pro-
vided by PCM. The reason we use this metric is to take into account the cores
availability. As we need a more accurate number, instead of using the C6-state
average of the socket, we calculate a new C6-state average using only the cores’
of each socket being part of our cluster. This is conducted in the initCores ()
function described in algorithm 3. It intializes also the nodes metrics, according
to the pinned cores of the system.

99

cr < read() Vk;

for k <~ 0 to o; do

if ¢/ € nj’, VI € cluster then
update n}” (C6);
update sé-(C’G, IPC);

end

end
return s’(C6)

Algorithm 3: Cores initialization

Socket Score Calculation

The sockets after being intialized with the metrics extracted, they need to be
prioritized based on a scoring function. There are three parts which consist this
function: stress score, duration factor and heterogeneity factor.

At first place in the calculateSocketScore() function, we abstract from
each scheduled application the time passed since its scheduling and calculate
the average and the max duration for every socket.

for VA, € s{apps) do
tRemaining + A, (duration) — A,(arrival)—timer;
if tRemaining > 0 then
avg < tRemaining + avg;
max <— max(tRemaining,max)
else
| st {apps).remove(A,);
end

end

Algorithm 4: Running Applications’ Duration
Finally, we select the socket with the minimum total score. Next, we update

the reads and writes count temporarily by adding the scheduled application’s
metrics and calculating a new approximate value until real metrics are read
again. After that, we get to the next level of our process, selecting a node
among the ones being part of the selected socket.

5.3.2 2nd Level - Node Selection

After selecting the most appropriate socket according to our priority function,
the L3 cache and memory bandwidth are not prioritizing factors anymore as
their are shared between the cores within the socket. The next level of ab-
straction in our system, are the nodes (VMs). Owing to node heterogeneity, in

100

)

terms of virtual cores and memory capacity in this stage of our approach we
need to choose the most appropriate of the nodes whose cores are pinned to the
selected socket. We use the number of cores of each node in combination with
the average c6-state of those cores and we select the predominant node (with
the least score) to schedule the current application.

o k=pr
Scoreld; = S &7 (C6 — State)
k=1

Next we update again the node’s c6-state using application’s average value.

5.3.3 Pod Placement

Finally, after the most viable node is selected from our algorithm, we use node
affinity functionality in order to schedule the pod to the desired node (VM).
Using the appropriate yaml file which describes the pod’s characteristics and
containers image, we create a copy for each application ready to get scheduled,
changing the pod’s name with a unique id, pod’s most desired node (affinity)
and the scheduler to be used (my-scheduler). Those pod’s yaml file is presented
below:

apiVersion: vl
kind: Pod

3 metadata:

1

name: scikit-pod-lasso

5 spec:

19

N
N = O

W oW NN N NN NN NN
= O © 00 N o O & W

restartPolicy: OnFailure
schedulerName: my-scheduler
containers:
- name: scikit-container

image: registry.hub.docker.com/imageX

resources:

requests:
memory: "1648Mi"
env:

- name: CLF
value: "Lasso"
command: ["/bin/bash","-c"]
args:
- time /workloads/fit_${CLF}.py "/784x40000.data" "/784x40000.labels" "1"
ports:

- containerPort: 80
imagePullPolicy: Always
imagePullSecrets:
- name: regsecret
affinity:
nodeAffinity:
preferredDuringSchedulinglignoredDuringExecution:
- weight: 100
preference:
matchExpressions:
- key: kubernetes.io/hostname
operator: Imn
values:
- kube-08

101

Chapter 6

Evaluation

In this chapter, we evaluate the results of our proposed approach in various
scenarios. Firstly, by using a single server we evaluate our custom stress function
and various duration factor approaches. Next, by executing our workloads in
our two heterogeneous servers, Hl and H2 as described in 4.4 and 4.5, we
evaluate the efficacy of our proposed Heterogeneity Factor (HF - sec. 5).

6.1 Single Server

In this first part of the current chapter, we evaluate the performance of appli-
cations scheduled by Kubernetes scheduler and our custom solutions on VMs
residing on the top of a single server. We evaluate pod placement under different
scenarios, using our proposed custom scheduler.

6.1.1 Stressing one Socket

To begin with, we tested our proposed scheduler awareness regarding to the
already scheduled workload. Using the ibench micro-benchmarks we stressed
different shared resources of one of the two sockets consisting our infrastructure.
So as to avoid server heterogeneity, we used only one of our two servers. However

the VMs were of different resources capacity.
Virtual Machines
VM-Name | Server |socket Cores RAM
(GB)

kube-05 s2 0 4 8

kube-06 s2 1 8 16

kube-07 s2 0 16 32

kube-08 s2 1 16 64

In order to succinctly showcase the tests results, we used the normalized
performance, by dividing the elapsed time in isolated execution with the re-

103

Normalized Performance

1.00 1.00
0.75 0.75
0.50 0.50 BN Kubernetes
0.25 0.25 B Custom
0.00 0.00

2 4 8

2 4 8
Deployed iBench pods # Deployed iBench pods

(a) Memory Bandwidth stress (b) L3 stress

Figure 6.1: Applications relative performance after being co-scheduled with pre-existing stress-
ing workload.

spective time occurred when co-scheduled. In addition, we used violin plot to
better illustrate applications’ elapsed time distribution.

1solated time

per formance = :
elapsed_time

Memory Bandwidth

Memory pressure impacts system’s performance, as due to the limited band-
width, application competition and interference occurs. As shown in Fig. our
scheduler achieves a higher median in the y-axis which presents applications’
normalized performance. This is an indicator of performance improvement as
median values are 12.2%, 15.9% and 61.2% greater respectively. Moreover, the
results’ standard deviation is 21.88%, 47.27% and 35.77% smaller respectively
in our proposed scheduler than Kubernetes. As it is also shown in the violin
plots, the density of applications relative performance is accumulated in higher
values. This compact variation leads to a more predictable workload perfor-
mance.

L3 Cache

Similarly to the previous testcases, we stressed this time one of the sockets with
different intensities of L3 cache pressure using L3-ibench pods. The median
of the workloads performance is higher in our approach when scheduling 2 and
4 pods by 38.3% and 20.4% respectively. In 8 pods case, the two medians
are identical between Kubernetes and our custom scheduler, 0.5588 and 0.5476
respectively (2% lower). The standard deviation of the workload in this ¢ is
21.9%, 47.3% and 35.8% less in our approach in 2,4 and 8 pods deployment
respectively.

What we observed is that Kubernetes unawareness about system metrics,
lead to completely suboptimal application scheduling causing a great degrada-
tion in performance. While Kubernetes was choosing almost naively the winner
node, without taking into account the great interference 13-ibench was cre-

104

fig:schedule-mem

e o &=
u 9 o
S u o

e
N
o

e
o
S

Normalized Performance

Bl Kubernetes 1.00
B Custom
0.75
0.50
0.25
0.00
1 2 3 4

Kubernetes Custom
Scenario Scheduler

(a) Different Scenarios (b) Aggregated

Figure 6.2: Applications relative performance after being co-scheduled with pre-existing stress-
ing workload.

ating, our custom approach was avoiding scheduling pods in a stressed shared
resource. As long 2 different VMs were pinned to physical cores residing in
the same socket, it was critical both to know about the stress of the current
resource and the awareness of the system about the core pinning across the
virtual nodes.

6.1.2 Stressing both sockets

In this section, after scheduling random ibench workload in our system, con-
sisted of cpu,L3 and membw pressure , we tried to schedule 25 random appli-
cations arriving in batches in different time intervals. We compared again our
custom approach with Kubernetes scheduler and both the individual and ag-
gregated results are illustrated in figure 6.2. Among the different tests, the
median occurred by our scheduler was from 4.9-80.8% higher than the default
and the overall average was 16.8% greater as well.

Seenario Socket0 Socket1
CPU-pods | L3-pods | Mem-Bw pods | CPU-pods | L3 pods | Mem-Bw pods
1 1 3 2 3 4 3
2 3 1 0 2 3 4
3 2 0 3 4 1 0
4 4 1 1 2 1 0

6.1.3 Scheduling in the absence of artificial stress

Previously, we tested how our proposed scheduler would behave in a pre-existing
pressure, and its ability to share the incoming workload between the avail-
able resources. In this subsection, we schedule workloads consisted of different
amount of applications fluctuating from 20 to 100. The workloads included
applications referred in section 4.2. Those workloads were also consisted of
numerous batches arriving in our system on an interval fluctuating from 30
to 50 seconds. Fig. 6.3 illustrates the results of scheduling workloads varying

105

from 20 to 100 applications in a 44-core Kubernetes cluster consisted of Host 1
presented in table 4.4.

[
g
g
G
3
5 100
5
S 075
o
9
= 050
s
E
5025
=z
20 30 40 50 60 70 80 20 100

Deployed applications

=~
&
©

I
g
eifEds

22

2

&8ss
o 0

Figure 6.3: Applications normalized performance distribution across multiple scheduler design
approaches.

Violin plots illustrate the distribution of applications’ elapsed times. In y
axis is the normalized performance of those applications. From this figure, it is
evident that for smaller number of deployed workloads our scheduler achieves
much higher performance over the default scheduler, with 24.5% higher per-
formance on average achieved in average area approach. For higher number
of workloads we see that the performance gap between our proposed scheduler
and Kubernetes one shrinks. This is due to the fact that this huge amount of
workloads force our system to be saturated and, therefore, proper scheduling
does not affect the overall performance of workloads. However, even in such
over-stressed scenarios, we can still see that there is a clear advantage of our
proposed approach over the naive one.

[
[N

(93 (]
:
Eos 8] £08
= £ [] ®
8 s H 8 H]
a s @
Q06 (] 3 Q0.6 ! o
o -
8 O j: § & § ¢
'S 04 S04 p
E ° £
2 2
0.2 0.2
20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100
Deployed applications # Deployed applications
® stress decay ® max-avgarea @ avgarea ® stress decay ® max-avgarea @® avgarea
® sbi ® thias ——default ® s bias ® thias —— default
(a) Median (b) Average

Figure 6.4: Different models medians and average values comparison.

A more clear intuition can be obtained through figures 6.4a and 6.4b where
the median and average values are illustrated respectively. The majority of the
tested approaches overtake default Kubernetes scheduler results. From the tests
conducted, t bias as the duration factor (DF'(t)) approach seems to achieve the
higher values both in medians and averages. More specifically, it achieves higher
median by 26.9%, 29.3%, 25.9%, 7.6%, 38.8%, 23.4%, 49.7%, 44.0% and 26.9%
for the 20, 30, 40, 50, 60, 70, 80, 90 and 100 applications placement respectively.
Similar results occur regarding to the average value which from 10.7% to 28.9%
higher than the default one.

106

6.1.4 Awvailable Resources Usage

Data-centers today suffer from under-utilization. Due to high level resources
allocation, a low-level resource contention is either not manageable or it is
prevented by reserving more and more resources. However, a more even share
of the workload between isolated resources belonging to the same or different
systems, is able restrict this phenomenon.

In Fig. 6.5, we present some hardware system metrics extracted during one of
the above tests. More specifically, each figure describes resource usage from each
socket during the execution of our workloads. In Fig. 6.5a, the imbalance be-
tween each socket’s cache misses in Kubernetes scheduler is significantly greater
than our proposed one. Consequently, one of the two sockets was over-utilized,
degrading running applications performance due to contention, while the other
one had that specific resource available and unused. On the other side, our
proposed scheduler is aware of the L3 cache interference and distributes appli-
cations in a more evenhanded way, trying to share the load between separate
components of the system. Similarly in fig. 6.5b and 6.5c is displayed the more
balanced resource usage during the execution of the workload our proposed
approach scheduled. C6-state percentage which represents the inactive cores
and the Instructions per Cycle seem also to come up against a more equitable
sharing in our custom approach.

@Kubernetes BKubernetes
@ Custom @Custom

L3 Misses difference per
0.4 sec.

BN R A OO N ®
O O O O O © O o o
Instructions per Cycle
difference

S

C6-state percentage
difference
w b
o

Figure 6.5: Resources Usage imbalance between the sockets.

6.2 Heterogeneous System

Finally, we evaluated the heterogeneous scheduling, and how our proposed
approach schedules incoming pods compared to Kubernetes native scheduler.

107

Combining Host 1 and Host 2 in a Kubernetes cluster and using a catholic
scheduler approach we schedule 40, 80, 160, 320 and 640 applications. The
distribution of the different approaches applications relative performance is il-
lustrated using violin plots in figure 6.6.

ddddd

Figure 6.6: Comparison between different approaches in applications’ relative performance
distribution in Heterogeneous Kubernetes cluster.

In lower workload density, scheduler performance varies between the differ-
ent approaches. Cluster resources are more than enough to consume this small
amount of incoming applications and the performance varies. The median value
of distribution of our approaches is 1%-3% lower than the default. However,
when more and more applications get scheduled and the system is under con-
tention, our approaches average value increases. More specifically the median
value of the distribution is 6.5% and 28.4% higher in average than the default
in the 320 and 640 applications scheduling respectively.

Regarding to the t bias approach which stood out among all the other
approaches in the previous section, it achieved -8%, -0.7%, +0.1%, +10%,
+4.6%, +23.8% lower /higher median compared to the default scheduler in the
20,40,80,160,320 and 640 application placement scenarios respectively.

108

Chapter 7

Conclusion and Future Work

7.1 Summary

In this thesis, we discussed data-centers dual optimization goal of maximizing
performance and resource utilization at the same time. Moreover, we described
virtualization and containerization technologies as well as the trend for their
complementary use. Regarding to the orchestrator of the previously referred
containers, we presented Kubernetes.

Interference and heterogeneity are two major concerns for data operators
nowadays. Attenpting to observe such phenomena, we analyzed the perfor-
mance of workloads from different scientific benchmarking libraries, under pres-
sure on various resources in different intensities. Thus, we identified resources
contention and we proposed a highly correlated with application slowdown in-
dicator able to depict system’s condition. In addition we executed the same
workloads with the same resources stress specification for another system, and
we analyzed the deviation in performance occurred. After observing differences
between heterogeneous systems behavior, we recognized the need for heteroge-
neous aware scheduling.

Furthermore, we designed an integrated with Kubernetes interference-aware
scheduler and implemented it on the top of a virtualized environment. We
tested different approaches regarding to the selection of our scoring function,
which is consisted of three different parameters (stress, duration factor, het-
erogeneity factor). Moreover, we evaluated the pod placement of our proposed
scheduler on a single server, using different scenarios and compared it with
kube-scheduler. We showed that in most of the scenarios, our custom approach
improves the average performance of the deployed workloads by 20% ,the me-
dian of distribution by 30.3% and achieves a more balanced resource utilization
at the same time. Finally, we evaluated pod placement of our proposed ap-
proach when it comes to heterogeneous clusters. While we approached the
heterogeneity factor with a primitive factor, we observed that our proposed
scheduler achieved better results in high workload densities, when the system

109

was under contention.

7.2 Future Work

The analysis, observations and proposals described in this thesis were an im-
mature attempt to identify, describe and quantify interference and heterogene-
ity phenomena. In the following subsections, future work is suggested. We
categorize those suggestions into two groups, the ones related to development
optimizations and the ones related to further research opportunities.

7.2.1 Development Scope

Regarding to the development of the system, future work could include the use
of another framework in order to extract the needed metrics from the system.
This framework may extract metrics in a less frequent ratio, process them wast-
ing less resources and finally using a "smart" database, enabling faster querying.
Furthermore, such a system could be plugged-in Kubernetes project. Met-
rics extracted from the system will be communicated to the Kubernetes API,
as custom resources. Also, proposed scoring functions can be implemented in
kube-scheduler native code. Regarding to heterogeneity, the code can be ex-
tended to take into consideration modern system resources such as GPU.

7.2.2 Research Scope

On the other hand, we also suggest some research subjects as proposed fu-
ture work. First of all, a Neural Network could be used to better estimate
the condition of each candidate server and node. Instead of relying on an
observation-based custom score, the scoring function could be the prediction of
a well trained Neural Network.

Moreover, runtime control of resources could be implemented using PCM
metrics extracted. CPU frequency and RAM usage can be manipulated de-
pending on workload scheduled on pinned cores intensity. Additionally, along-
side with the scheduler, Cache Allocation Technology (CAT) [55] can also be
used. CAT enables privileged software such as an OS or VMM to control data
placement in the last-level cache (LLC), enabling isolation and prioritization of
important threads, apps, containers, or VMs. Using CAT, latency-critical tasks
running on the cluster can be prioritized as illustrated in figure 7.1.

Last but not least, energy efficiency is a concern being discussed a lot over
the years. Running Average Power Limit (RAPL) provides a way to set power
limits on processor packages and DRAM. This will allow a monitoring and con-
trol program to dynamically limit max average power, to match its expected

110

Coren
INuis'_.r :Sgrit:-r
nmghbar- : P
Last Level Cache

Figure 7.1: A “noisy neighbor” on core zero over-utilizes shared resources in the platform,
causing performance inversion (though the priority app on core one is higher priority, it runs
slower than expected).!

power and cooling budget. In addition, power limits in a rack enable power
budgeting across the rack distribution. By dynamically monitoring the feed-
back of power consumption, power limits can be reassigned based on use and
workloads. Because multiple bursts of heavy workloads will eventually cause
the ambient temperature to rise, reducing the rate of heat transfer, one uni-
form power limit can’t be enforced. RAPL provides a way to set short term
and longer term averaging windows for power limits. These window sizes and
power limits can be adjusted dynamically.

111

Bibliography

[1] C. V. networking Index, “Forecast and methodology, 2016-2021, white pa-
per,” San Jose, CA, USA, vol. 1, 2016.

[2] RedHat official website, https://www.redhat.com/.
[3] Google Cloud Platform, https://cloud.google.com/.
[4] Amazon Elastic Compute Cloud, https://aws.amazon.com/ec2/.

[5] S. Blagodurov, S. Zhuravlev, A. Fedorova, and A. Kamali, “A case for
numa-aware contention management on multicore systems,” in Proceedings

of the 19th international conference on Parallel architectures and compila-
tion techniques. ACM, 2010, pp. 557-558.

[6] L. A. Barroso and U. Holzle, “The case for energy-proportional computing,”
2007.

[7] R. McMillan, “Data center servers suck-but nobody knows how much,”
Wired magazine, www. wired. com/2012/10/data-center-servers, 2012.

[8] L. A. Barroso and U. Holzle, “The datacenter as a computer: An intro-
duction to the design of warehouse-scale machines,” Synthesis lectures on
computer architecture, vol. 4, no. 1, pp. 1-108, 2009.

[9] C. Delimitrou and C. Kozyrakis, “Quasar: resource-efficient and qos-aware
cluster management,” in ACM SIGARCH Computer Architecture News,
vol. 42, no. 1. ACM, 2014, pp. 127-144.

[10] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace analysis,”
in Proceedings of the Third ACM Symposium on Cloud Computing. ACM,
2012, p. 7.

[11] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
omega, and kubernetes.”

113

[12]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and 1. Stoica, “Mesos: A platform for fine-grained re-
source sharing in the data center.” in NSDI, vol. 11, no. 2011, 2011, pp.
22-22.

W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated perfor-
mance comparison of virtual machines and linux containers,” in 2015 IEEE

international symposium on performance analysis of systems and software
(ISPASS). 1EEE, 2015, pp. 171-172.

D. Masouros, S. Xydis, and D. Soudris, “Rusty: Runtime system pre-
dictability leveraging lstm neural networks,” IEEE Computer Architecture
Letters, vol. 18, no. 2, pp. 103—-106, 2019.

H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux: Precise online
gos management for increased utilization in warehouse scale computers,”
ACM SIGARCH Computer Architecture News, vol. 41, no. 3, pp. 607618,
2013.

E. Bauman, G. Ayoade, and Z. Lin, “A survey on hypervisor-based mon-

itoring: approaches, applications, and evolutions,” ACM Computing Sur-
veys (CSUR), vol. 48, no. 1, p. 10, 2015.

P. Authors, “Prometheus-monitoring system & time series database,” 2017.

K. Yang, “Aggregated containerized logging solution with fluentd, elastic-
search and kibana,” International Journal of Computer Applications, vol.
150, no. 3, 2016.

F. Romero and C. Delimitrou, “Mage: Online interference-aware scheduling
in multi-scale heterogeneous systems,” arXiv preprint arXww:1804.06462,
2018.

P. Garefalakis, K. Karanasos, P. Pietzuch, A. Suresh, and S. Rao, “M edea:
scheduling of long running applications in shared production clusters,” in
Proceedings of the Thirteenth EuroSys Conference. ACM, 2018, p. 4.

C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for het-
erogeneous datacenters,” in ACM SIGPLAN Notices, vol. 48, no. 4. ACM,
2013, pp. 77-88.

E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Fairness via source
throttling: a configurable and high-performance fairness substrate for
multi-core memory systems,” in ACM Sigplan Notices, vol. 45, no. 3.

ACM, 2010, pp. 335-346.

114

23]

[24]

[25]

2]

[27]

28]

[29]

[30]

[31]

F. Guo, Y. Solihin, L. Zhao, and R. Iyer, “A framework for providing
quality of service in chip multi-processors,” in Proceedings of the 40th An-
nual IEEE/ACM International Symposium on Microarchitecture. 1EEE
Computer Society, 2007, pp. 343-355.

S. Kim, D. Chandra, and Y. Solihin, “Fair cache sharing and partitioning

in a chip multiprocessor architecture,” in Proceedings. 13th International

Conference on Parallel Architecture and Compilation Techniques, 200.
PACT 2004. 1EEE, 2004, pp. 111-122.

D. Firesmith, Virtualization via Containers, carnegie Mellon University
Blogs.

X. Li, Z. Qian, S. Lu, and J. Wu, “Energy efficient virtual machine place-
ment algorithm with balanced and improved resource utilization in a data
center,” Mathematical and Computer Modelling, vol. 58, no. 5-6, pp. 1222—
1235, 2013.

S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing shared resource

contention in multicore processors via scheduling,” in ACM Sigplan Notices,
vol. 45, no. 3. ACM, 2010, pp. 129-142.

J. Guo, Z. Chang, S. Wang, H. Ding, Y. Feng, L. Mao, and Y. Bao, “Who
limits the resource efficiency of my datacenter: an analysis of alibaba dat-

acenter traces,” in Proceedings of the International Symposium on Quality
of Service. ACM, 2019, p. 39.

D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,
“Heracles: Improving resource efficiency at scale,” in ACM SIGARCH
Computer Architecture News, vol. 43, no. 3. ACM, 2015, pp. 450-462.

G. Ayers, N. P. Nagendra, D. I. August, H. K. Cho, S. Kanev,
C. Kozyrakis, T. Krishnamurthy, H. Litz, T. Moseley, and P. Ranganathan,
“Asmdb: understanding and mitigating front-end stalls in warehouse-scale
computers,” in Proceedings of the 46th International Symposium on
Computer Architecture, ISCA 2019, Phoenix, AZ, USA, June 22-26, 2019,
2019, pp. 462-473. [Online]. Available: https://doi.org/10.1145/3307650.
3322234

M. Ferdman, C. Kaynak, and B. Falsafi, “Proactive instruction fetch,” in
Proceedings of the 44th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO-44. New York, NY, USA: ACM, 2011, pp.
152-162. [Online|. Available: http://doi.acm.org/10.1145/2155620.2155638

115

https://doi.org/10.1145/3307650.3322234
https://doi.org/10.1145/3307650.3322234
http://doi.acm.org/10.1145/2155620.2155638

[32] J. Mars and L. Tang, “Whare-map: heterogeneity in homogeneous
warehouse-scale computers,” in ACM SIGARCH Computer Architecture
News, vol. 41, no. 3. ACM, 2013, pp. 619-630.

[33] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for het-
erogeneous datacenters,” in ACM SIGPLAN Notices, vol. 48, no. 4. ACM,
2013, pp. 77-88.

[34] D. Merkel, “Docker: Lightweight linux containers for consistent
development and deployment,” Linux J., vol. 2014, no. 239, Mar. 2014.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2600239.2600241

[35] V. Inc., “Containers on virtual machines or bare metal?” Deploying and
Securely Managing Containerized Applications at Scale, White Paper, Dec.
2018.

[36] Processor Counter Monitor (PCM), https://github.com/opcm/pem.

[37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn:

Machine learning in python,” Journal of machine learning research, vol. 12,
no. Oct, pp. 2825-2830, 2011.

[38] J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM SIGARCH
Computer Architecture News, vol. 34, no. 4, pp. 1-17, 2006.

[39] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic,
C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the
clouds: A study of emerging scale-out workloads on modern hardware,”
Proceedings of the Seventeenth International Conference on Architectural
Support for Programming Languages and Operating Systems, 2012.

[40] C. Delimitrou and C. Kozyrakis, “ibench: Quantifying interference for dat-
acenter applications,” in 2018 IEEFE international symposium on workload
characterization (IISWC). 1EEE, 2013, pp. 23-33.

[41] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-

learn: Machine learning in Python,” Journal of Machine Learning Re-
search, vol. 12, pp. 2825-2830, 2011.

[42] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting,” Journal of computer and
system sciences, vol. 55, no. 1, pp. 119-139, 1997.

116

http://dl.acm.org/citation.cfm?id=2600239.2600241

[43] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets.” HotCloud, vol. 10, no. 10-
10, p. 95, 2010.

[44] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the 1st
ACM symposium on Cloud computing. ACM, 2010, pp. 143-154.

[45] A. Cassandra, “Apache cassandra,” Website. Awvailable online at
http://planetcassandra. org/what-is-apache-cassandra, p. 13, 2014.

[46] NGINX official website, https://www.nginx.com/.

[47] B. Fitzpatrick, “Distributed caching with memcached,” Linux journal, vol.
2004, no. 124, p. 5, 2004.

(48] MySQL official website, https://www.mysql.com/.
[49] Elgg official website, https://www.elgg.org/.
[50] Faban official website, http://www.faban.org/.

[51] T. Hastie, S. Rosset, J. Zhu, and H. Zou, “Multi-class adaboost,” Statistics
and its Interface, vol. 2, no. 3, pp. 349-360, 2009.

[52] The CMU Audio Databases, http://www.speech.cs.cmu.edu/databases/an4/.

[53] S. Blagodurov, S. Zhuravlev, and A. Fedorova, “Contention-aware schedul-

ing on multicore systems,” ACM Transactions on Computer Systems
(TOCS), vol. 28, no. 4, p. 8, 2010.

[54] Y. Li, X. Tang, and W. Cai, “Dynamic bin packing for on-demand cloud
resource allocation,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 27, no. 1, pp. 157170, 2015.

[55] C. Intel, “Improving real-time performance by utilizing cache allocation
technology,” Intel Corporation, April, 2015.

[56] Kubespray — GitHub repository, https://github.com/kubernetes-
sigs/kubespray.

117

Chapter 8

Appendix

1 Kubernetes Cluster Setup

In this thesis, Kubespray[56] is used to install and make the initial setup of the
Kubernetes cluster.

In the next few lines, the process which was followed is presented.
Step 1: Clone the git repository

Kubespray offers a variety of choices according to the Cluster configuration,
such as naming the kube-nodes, classifying the nodes (master-workers), choose
the network plugin and also select the Kubernetes release to be installed.

Step 2:

0 Configure the inventory /sample/hosts.ini file using your own IPs and name
for each node

0 Configure the inventory/sample/group_ vars/k8s_ cluster /k8s_ cluster.yml

1 kube_network_plugin: flannel

Step 3:

0O Exchange RSA keys both private and public between VMs so as to com-
municate each other

0 Disable firewall

I $sudo ufw disable

O Enable ip forwarding

I $sudo sysctl -w net.ipvé4.ip_forward=1

O Disable swap
| $swappoff -a

119

Step 4:
O Install dependencies from requirements.txt

O Run as root the ansible playbook :

I $ansible-playbook --private-key=/path/to/private/key --user=ubuntu \
2 -i inventory/mycluster/hosts.ini --become --become-user=root cluster.yml

Step 5:

Run in Master Node

$ mkdir -p $HOME/.kube
$ sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
$ sudo chown $(id -u):$(id -g) $HOME/.kube/config

2 Custom Kubernetes Scheduler Setup

As it was referred before, the default scheduler of Kubernetes uses some pre-
selected functions for its decision making.

0 Change the native code accordingly, compile, create a docker container and
push it in a Docker registry

1 #!/bin/sh
KUBERNETES_PATH="/path/to/kubernetes/native_code"
DOCKERFILE_PATH="${KUBERNETES_PATH}/ _output/bin/"

5 echo $KUBERNETES_PATH
6 echo $DOCKERFILE_PATH

8 cd $KUBERNETES_PATH
9 sudo make all WHAT=cmd/kube-scheduler/
10 cd $DOCKERFILE_PATH

11 sudo docker build -t iwita/scheduler

12 sudo docker push iwita/scheduler:latest
13 cd

14 echo "END"

0 Create the deployment file (yaml)

1 apiVersion: vl
2 kind: ServiceAccount
metadata:
4 name: my-scheduler
5 namespace: kube-system
6 -
7 kind: ClusterRoleBinding
8 apiVersion: rbac.authorization.k8s.io/vl
9 metadata:
10 name: my-scheduler -as-kube-scheduler
11 subjects:
12 - kind: ServiceAccount
13 name: my-scheduler
14 namespace: kube-system

120

15 roleRef:

16 kind: ClusterRole

17 name: system:kube-scheduler
18 apiGroup: rbac.authorization.k8s.io
19 -==

20 apiVersion: apps/vl

21 kind: Deployment

22 metadata:

23 name: my-scheduler

24 labels:

25 component: scheduler

26 tier: control-plane

27 name: my-scheduler

28 namespace: kube-system
29 spec:

30 selector:

31 matchLabels:

32 component: scheduler

33 tier: control-plane

3 replicas: 1

35 template:

36 metadata:

37 labels:

38 component: scheduler

39 tier: control-plane

10 version: second

11 spec:

12 serviceAccountName: my-scheduler
13 containers:

14 - command:

15 - kube-scheduler

16 - --leader-elect=false

17 - --scheduler -name=my-scheduler
18 image: docker.io/iwita/scheduler:latest
19 livenessProbe:

50 httpGet:

51 path: /healthz

52 port: 10251

53 initialDelaySeconds: 15

54 name: my-scheduler

55 readinessProbe:

56 httpGet:

57 path: /healthz
58 port: 10251

59 resources:

60 requests:

61 cpu: ’0.1°

62 securityContext:

63 privileged: false

64 volumeMounts: []

65 env:

66 - name: NODE_NAME

67 valueFrom:

68 fieldRef:

69 fieldPath: spec.nodeName
70 nodeSelector:

71 kubernetes.io/hostname: kube-00

73 hostNetwork: false

74 hostPID: false
75 volumes: []

O Enable the scheduling in master node

1 $ kubectl taint nodes kube-00 node-role.kubernetes.io/master:NoSchedule-

121

O Create the deployment

1 $ kubectl create -f my-scheduler.yaml

0O Disable again the scheduling in master node

1 $ kubectl taint nodes kube-00 node-role.kubernetes.io/master=:NoSchedule

O Finally append in the end of the file that the following command opens

1 $ kubectl edit clusterrole system:kube-scheduler

the following lines

1 - apiGroups:

- storage.k8s.io
resources:

- storageclasses
verbs:

6 - watch

7 - list

8 - get

3 NFS Setup

In each server there is a folder containing all the needed scripts for metrics
extraction and sharing. The process is the following:

O Start the PCM and redirect output to serverX.csv

0 Create a daemon that cuts the output file serverX.csv keeping only the
columns names which are needed for specific metrics extaction and the
last 50 lines.

0 Create another daemon that extracts the socket metrics
O Create another daemeon that extracts the core metrics for every socket

O Finally calculate the weighted averages and send them in the shared folder
with the Network File System.

1 #!/bin/bash

3 cd

i sudo modprobe msr

5 sudo ./pcm.x 0.4 -r -csv=/path/pcm-serverl.csv 1>&- 2>&- &

g cd /path

10 while true; do

11 head -n 3 pcm-serverl.csv > pcm-serverl_cut.csv_temp &&
12 tail -n 50 pcm-serverl.csv >> pcm-serverl_cut.csv_temp &&
13 mv pcm-serverl_cut.csv_temp pcm-serverl_cut.csv

14 sleep 2s

15 done &

122

17 #Extract the socket metrics
18 ./socket_extraction_manager.sh &

20 #Extract the core metrics
21 ./core_extraction_manager.sh &

23 #Calculate Averages and move them in the shared folder
24 ./orchestrator.sh &

26 wait

1 #!/bin/bash

3 #This scirpt will run on serverl server and will share serverl metrics
4 #with Kubernetes Master VM (kube-00) using a NFS.

7 SHARED _FOLDER="/mnt/metrics_client/"

9 while true
10 do

12 ./nfs-serverl-calculateAverage.py > "${SHARED_FOLDER}serverl_sockets.out_temp" &&
13 mv "${SHARED_FOLDER}serverl_sockets.out_temp" "${SHARED_FOLDER}serverl_sockets.out"

15 ./nfs_init_cores_serverl_socketO.py > "${SHARED_FOLDER}serverl_socketO.out_temp" &&
16 mv "${SHARED_FOLDER}serverl_socketO.out_temp" "${SHARED_FOLDER}serverl_socketO.out"

18 ./nfs_init_cores_serverl_socketl.py > "${SHARED_FOLDER}serverl_socketl.out_temp" &&
19 mv "${SHARED_FOLDER}serverl_socketl.out_temp" "${SHARED_FOLDER}serverl_socketl.out"

21 sleep 1s
22 done

123

	Περίληψη
	Abstract
	Ευχαριστίες
	Acknowledgments
	Εκτεταμένη Περίληψη
	Εισαγωγή
	Κυβερνήτης (Kubernetes) και Ενορχήστρωση containers
	Ανάλυση εκτέλεσης εφαρμογών σε περιβάλλοντα με έντονη χρήση των πόρων
	Ποσοτικοποίηση και μέτρηση πίεσης συστήματος
	Ετερογένεια

	Σχεδιασμός ενσωματωμένου στον Κυβερνήτη δρομολογητή, ενήμερου σχετικά με την κατάσταση του συστήματος
	Το πρόβλημα της δρομολόγησης
	Υλοποίηση

	Αποτελέσματα και Αξιολόγηση
	Ομογενές Σύστημα
	Ετερογενές Σύστημα

	Σύνοψη και Μελλοντική Δουλειά
	Σύνοψη
	Μελλοντική δουλειά

	Introduction
	Cloud Computing
	Data Centers concerns: shared resources, Interference, under-Utilization and Heterogeneity
	Container Orchestration with Kubernetes
	Thesis Overview

	Related Work
	Metrics Collection
	Rusty
	Bubble-Flux
	Other approaches

	Application Scheduling
	Kubernetes
	Mage
	Medea
	Paragon

	Resource Allocation
	Quasar
	Other approaches

	Our Approach

	Kubernetes, a Container Orchestrator
	Docker containers and Orchestration
	Virtual Machines
	Containers
	Orchestration

	Kubernetes Master Node(s) Components
	Kubernetes Worker Node(s) Components
	Other Important Addons

	Kubernetes Architecture
	Cluster
	Nodes
	Deployment
	Pods
	Service

	Kubernetes Resources
	Kubernetes Scheduling
	Node Filtering
	Node Prioritizing

	Motivational Analysis and Observations
	Experimental Infrastructure
	System setup
	Monitoring and Communication

	Description of Cloud workloads and Interference micro-benchmarks
	iBench
	Scikit-Learn
	Spec CPU® 2006
	Cloudsuite

	Kubernetes scheduler Inefficiency
	Impact of interference on the performance of applications
	Stressing the Cores
	Stressing L2 cache
	Stressing L3 Cache (LLC)
	Stressing Memory Bandwidth
	Mixed Stressing Scenarios
	Quantifying Stress Levels

	Impact of heterogeneity on the performance of applications
	Stressing the Cores
	Stressing L2 cache
	Stressing L3 cache (LLC)
	Stressing Memory Bandwidth
	Mixed Stressing Scenarios

	Stress Duration and Stress Level Pareto

	Interference-aware Kubernetes Scheduler
	Mathematical Modeling & Problem Definition
	Proposed Solution and Heuristic Algorithm Approach
	Parameter 1: Stress Score
	Parameter 2: Duration Factor
	Parameter 3: Heterogeneity Factor

	Algorithm
	1st Level - Socket Selection
	2nd Level - Node Selection
	Pod Placement

	Evaluation
	Single Server
	Stressing one Socket
	Stressing both sockets
	Scheduling in the absence of artificial stress
	Available Resources Usage

	Heterogeneous System

	Conclusion and Future Work
	Summary
	Future Work
	Development Scope
	Research Scope

	Appendix
	Kubernetes Cluster Setup
	Custom Kubernetes Scheduler Setup
	NFS Setup

