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1

Περίληψη
Σε πολλές περιπτώσεις ενδιαφερόμαστε για προβλήματα τα οποία, παρόλο που είναι δύσκολο να λυθούν
καθολικά, μπορούν να αντιμετωπιστούν με κάποια ευριστική τοπικής βελτιστοποίησης. Το αρχετυπικό
παράδειγμα αυτής της κατηγορίας προβλημάτων είναι το πρόβλημα μέγιστης τομής, όπου βρίσκουμε μια
ολοένα μεγαλύτερη τομή γραφήματος αλλάζοντας την πλευρά των κόμβων, μέχρι να μην υπάρχει άλλη
δυνατή τοπική βελτίωση μέσω τέτοιων κινήσεων. Έχει δειχθεί ότι αυτό το πρόβλημα είναι πλήρες στην
κλάση PLS, που περιέχει όλα τα προβλήματα διακριτής τοπικής βελτιστοποίησης.

Στην παρούσα εργασία εξετάζουμε μια απλούστερη εκδοχή του παραπάνω προβλήματος, εμπνευσμένοι
από τις συνδυαστικές ιδιότητες των βεβαρυμένων παίγνιων συμφόρησης. Σε αυτό το πρόβλημα ο γράφος
έχει βάρη στους κόμβους αντί για τις ακμές. Χρησιμοποιώντας και τροποποιώντας υπάρχουσες αναγωγές
στην κλάση PLS, δείχνουμε ότι το απλούστερο αυτό πρόβλημα μας είναι επίσης πλήρες στην κλάση αυτή.
Επιπλέον, εξετάζουμε την πολυπλοκότητα εύρεσης ισορροπιών σε συγκεκριμένες μορφές βεβαρυμένων
παίγνιων συμφόρησης. Ειδικότερα, αποδεικνύουμε ότι σε δίκτυα με τοπολογία σε σειρά και παράλληλα
η εύρεση αμιγούς ισορροπίας είναι PLS πλήρης. Ακόμα, εφαρμόζοντας την υπολογιστική πολυπλοκότητα
του προβλήματος μέγιστης τομής με βεβαρυμένους κόμβους, δείχνουμε ότι σε δίκτυα συμφόρησης με πολλές
αρχές και προορισμούς η εύρεση ισορροπίας είναι επίσης PLS πλήρης, ακόμα και όταν οι συναρτήσεις κόστους
είναι ταυτοτικές.

Λέξεις-κλειδιά: πολυπλοκότητα αναζήτησης, PLS, μέγιστη τομή, τοπική αναζήτηση, παίγνια συμφόρησης
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Abstract
In many settings we are interested in problems that, despite being hard to solve globally, admit some
local optimization heuristic that can offer locally optimal solutions. The archetypal example of this class
of problems is the MAXCUT problem under the flip neighborhood, where we can incrementally improve
the value of the cut by flipping nodes. However, it has been shown that calculating the result of this
process a priori is at least as hard as solving any other local optimization problem, i.e. it is PLS-hard.

In this thesis, we consider a variation of the above problem, named NODEMAXCUT, inspired by
the combinatorial structure of weighted congestion games, where the MAXCUT graph is instead node-
weighted rather than edge weighted. We show that, surpisingly, this problem is still PLS-hard despite its
still simple structure, through an involved reduction from the canonical PLS problem CIRCUITFLIP. Our
reduction is based on and extends previous work on similar reductions. Secondly, we consider certain
forms of weighted congestion games, namely series-parallel weighted congestion games with linear delay
functions, as well as weighted multi-commodity congestion games with identity delay functions. The
latter is obtained as an application of the PLS hardness of NODEMAXCUT. Our work adds a new
PLS-complete problem to the literature.

Keywords: search complexity, PLS, local max cut, local search, congestion games
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Εκτεταμένη Ελληνική Περίληψη
Σε αυτή την ενότητα παρουσιάζουμε συνοπτικά το περιεχόμενο αυτή της εργασίας στην Ελληνική γλώσσα.
Αρχικά, παρουσιάζουμε τις κλάσεις πολυπλοκότητας αναζήτησης με τις οποίες ασχολούμαστε, καθώς και το
βασικό πρόβλημα της μέγιστης τομής (MAXCUT). Επιπλέον, παρουσιάζουμε το βασικό τεχνικό πρόβλημα
αυτής της εργασίας, το πρόβλημα μέγιστης τομής με βεβαρυμένους κόμβους, καθώς και ένα σκιαγράφημα
της απόδειξης της απόδειξης πολυπλοκότητας ισορροπιών του. Τέλος, εισάγουμε τον αναγνώστη στα
αποτελέσματα εύρεσης αμιγών ισορροπιών σε παίγνια συμφόρησης και δείχνουμε μερικά θεωρήματα για την
πολυπλοκότητα αναζήτησης όταν οι παίκτες έχουν βάρη.

Πολυπλοκότητα αναζήτησης
Οι ισορροπίες Nash ενός παιγνίου αποτελούν καταστάσεις όπου κανένας παίκτης δεν έχει κέρδος αν αλλάξει
μονομερώς την στρατηγική του. Αποτελούν πολύ φυσιολογικές καταστάσεις που δημιουργούνται σε οποιοδήποτε
σύστημα με εγωιστικούς παίκτες και, ως εκ τούτου, αποτελούν αντικείμενο σημαντικής έρευνας για πολλά
χρόνια. Το πρόβλημα με πολλές από αυτές τις έννοιες στρατηγικής ισορροπίας είναι ότι είναι γενικά δύσκολο
να βρεθούν σε πολυωνυμικό χρόνο, πράγμα που ισχύει ιδιαίτερα για τις αμιγείς ισορροπίες. Παρόλο που
σε πολλά παίγνια η ύπαρξη τέτοιων καταστάσεων είναι δεδομένη (μέσω επιχειρημάτων δυναμικού μεταξύ
άλλων), η εύρεση τους εξακολουθεί να είναι δύσκολη.

Το παράδοξο προβλημάτων που έχουν πάντα λύση, ενώ ταυτόχρονα η λύση αυτή είναι δύσκολο να βρεθεί
έχει οδηγήσει τους ανθρώπους να ορίσουν σχετικές κλάσεις πολυπλοκότητας. Σε αυτές τις περιπτώσεις η
πιο διαδεδομένη και ευρέως χρήσιμη κλάση NP δεν μπορεί να βοηθήσει, καθώς η απόφαση για αντικείμενα
που μπορεί να μην υπάρχουν και η εύρεση αντικειμένων που πάντα υπάρχουν έχουν σημαντικές διαφορές.
Συγκεκριμένα, τα προβλήματα που έχουν πάντα εύκολα ελέγξιμες λύσεις λέγονται ότι ανήκουν στην
TFNP, που σημαίνει Total Function Non-deterministic Polynomial. Η κλάση αυτή περιέχει όλα τα δυνατά
προβλήματα αναζήτησης. Ωστόσο, κανένα πρόβλημα αυτής της κλάσης δεν μπορεί να είναι πλήρες, καθώς
η κλάση είναι σημασιολογικά ορισμένη αντί για συντακτικά. Αυτό σημαίνει ότι και μόνο η απόφαση για το
αν ένα πρόβλημα έχει λύση ισοδυναμεί με απόφαση για σημασιολογική ιδιότητα που είναι μη αποφασίσιμο
πρόβλημα.

Για αυτό το λόγο, έχουν οριστεί ορισμένες υποκλάσεις της TFNP, οι οποίες επιδέχονται πλήρη προβλήματα.
Συγκεκριμένα, με βάση το θεώρημα που εγγυάται την ύπαρξη λύσης σε κάθε περίπτωση, ορίζεται και μια
αντίστοιχη υποκλάση της TFNP. Ο ορισμός αυτός είναι πλέον συντακτικός, σύμφωνα με τον οποίο ένα
πρόβλημα είναι πλήρες στην αντίστοιχη κλάση αν και μόνο αν είναι τουλάχιστον τόσο δύσκολο όσο η
εύρεση της λύσης του αντίστοιχου προβλήματος. Για παράδειγμα, μερικές από τις πιο σημαντικές τέτοιες
υποκλάσεις προβλημάτων αναζήτησης είναι οι κλάσεις PPP, PPA, PPAD και PLS, μεταξύ άλλων. Στις
επόμενες παραγράφους περιγράφουμε συνοπτικά τις σημαντικές αυτές κλάσεις.

Η κλάση PPP περιέχει τα προβλήματα εντοπισμού λύσης που υπάρχει λόγω επιχειρήματος περιστεροφωλιάς.
Δεδομένου ενός κυκλώματος με ίσο αριθμό δυφίων εισόδου και εξόδου, το βασικό πρόβλημα αυτής της
κλάσης ζητάει δυο εισόδους που είτε οδηγούν στο ίδιο αποτέλεσμα, είτε μια είσοδο που οδηγεί στο μηδενικό
αποτέλεσμα. Η ύπαρξη ενός από τα δυο είδη λύσεων είναι εγγυημένη από την αρχή περιστεροφωλιάς.
Προβλήματα σε αυτή τη κλάση αφορούν συχνά τη δυσκολία εύρεσης συγκρούσεων σε συναρτήσεις κατακερματισμού.

Η κλάση PPA περιέχει προβλήματα όπου κατά μια έννοια ζευγαρωμένα μεταξύ τους και αναζητούμε το
άλλο άκρο ενός τέτοιου ”ζευγαρώματος”. Πιο συγκεκριμένα το βασικό πλήρες πρόβλημα αυτής της κλάσης
δίνει ένα γράφημα με βαθμούς κορυφών 1 ή 2 και ζητάει, δεδομένης μιας κορυφής βαθμού 1, άλλη μια
τέτοια κορυφή. Η μαθηματική αρχή πίσω από αυτή την κλάση είναι το λήμμα της χειραψίας, ύπαρξη περιττής
κορυφής σε γράφημα με άρτιες κορυφές σημαίνει ύπαρξη άλλης τέτοιας κορυφής.

Η κλάση PPAD αποτελεί την τομή των δυο παραπάνω κλάσεων και αφορά στην εύρεση της άλλη περιττής
κορυφής όταν όμως το γράφημα έχει την παραπάνω ιδιότητα ότι είναι πλέον κατευθυνόμενο. Με αναγωγές
μέσω του λήμματος Sperner σε αυτή την κλάση έχουμε την πληρότητα ορισμένων συνεχών θεωρημάτων
ύπαρξης σταθερού σημείου.

Η κλάση PLS είναι η πιο μελετημένη από της κλάσεις αναζήτησης, και ιστορικά αυτή που ορίστηκε
πρώτη [JPY88]. Περιέχει όλα τα προβλήματα όπου μπορούμε να κάνουμε κάποιου είδους τοπική βελτίωση
αλλεπάλληλα, μέχρι που να φτάσουμε σε κάποιο τοπικό ακρότατο που δεν επιδέχεται περαιτέρω βελτιώσεις.
Η εύρεση τυχόν τέτοιου τοπικού ελαχίστου είναι το πλήρες πρόβλημα της PLS. Επειδή η κλάση PLS
διαδραματίζει πρωταγωνιστικό ρόλο στα θεωρήματα πληρότητας που δείχνουμε παρακάτω, αφιερώνουμε μια
ενότητα για να παρουσιάσουμε ορισμούς, θεωρήματα, αναγωγές και προβλήματα σχετικά με την PLS. Για
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περισσότερα παραπέμπουμε τον αναγνώστη στις εργασίες των [AAL03],[MAK07].

Πολυωνυμική Τοπική Αναζήτηση
Ο αρχικός ορισμός που δόθηκε για την κλάση αυτή από τους [JPY88] είναι ο παρακάτω.

Ορισμός 1. Ένα πρόβλημα L στην κλάση PLS αποτελείται από ένα σύνολο στιγμιοτύπων DL, και από ένα
σύνολο λύσεων FL για κάθε στιγμιότυπο. Σε κάθε λύση s αντιστοιχεί ένα κόστος cL(s, x) ∈ N, ένα σύνολο
N(s, x) ⊂ FL(x) που αποκαλείται η γειτονιά του s καθώς και δυο αλγόριθμοι AL, CL. Ο πρώτος επιστρέφει
μια τυχαία λύση ενός στιγμιότυπου, ενώ ο δεύτερος επιστρέφει είτε μια λύση s′ ∈ N(s, x) με cL(s′, x) < cL(s, x)
είτε επιστρέφει ότι η λύση είναι τοπικά βέλτιστη

Με άλλα λόγια, στην PLS ανήκουν όλων των ειδών τα προβλήματα που μπορεί να εφαρμόσει κανείς
κάποια αλληλουχία τοπικών βελτιώσεων. Για παράδειγμα, ο γραμμικός προγραμματισμός είναι ένα τέτοιο
πρόβλημα, αν σκεφτεί κανείς το simplex pivoting που μας δίνει πάντα μια λίγο καλύτερη λύση. Κατ’εξαίρεση,
στο συγκεκριμένο πρόβλημα έχουμε κυρτότητα οπότε η τοπικά βέλτιστη αυτή λύση είναι και καθολικά
βέλτιστη. Πέρα από αυτό, προβλήματα συνδυαστικής βελτιστοποίησης που επιδέχονται τοπική αναζήτηση
συναντάμε σε πολλούς τομείς.

Το θέμα είναι ότι κάποια από αυτά τα προβλήματα είναι πολύ πιο δύσκολο να λυθούν από άλλα. Για
παράδειγμα, το πρόβλημα της τοπικά μεγιστοτικής τομής είναι πολύ πιο δύσκολο από το πρόβλημα του
γραμμικού προγραμματισμού, το οποίο επιδέχεται πολυωνυμικά υπολογίσιμες λύσεις. Για αυτό το λόγο,
γίνεται χρήση αναγωγών μεταξύ των προβλημάτων PLS ώστε να έχουμε αυστηρές αποδείξεις ότι ένα
πρόβλημα τοπικής βελτιστοποίησης είναι πιο δύσκολο από ένα άλλο.

Ορισμός 2. Ένα πρόβλημα Α PLS-ανάγεται σε ένα πρόβλημα Β αν υπάρχουν δυο αλγόριθμοι f,g ώστε ο f να
στέλνει στιγμιότυπα x του Α σε στιγμιότυπα f(x) του Β, o g στέλνει ζεύγη (λύση του f(x),x) σε λύσεις του x,
και αν s είναι τοπικό βέλτιστο του Β τότε το g(s, x) είναι τοπικό βέλτιστο του x.

Η σημαντικότερη ιδιότητα αυτών των αναγωγών είναι ότι διατηρούν τα τοπικά ελάχιστα. Δηλαδή αν
μετατρέψουμε μέσω μιας τέτοιας αναγωγής ένα πρόβλημα σε ένα άλλο, το οποίο λύσουμε, τότε η λύση που
θα πάρουμε για το αρχικό πρόβλημα είναι πάλι τοπικό ελάχιστο. Αυτό κάνει τις αναγωγές αυτές αρκετά πιο
περίπλοκες από τις κλασσικές αναγωγές NP.

Ωστόσο, δεν έχουμε ορίσει ακόμα ποια από αυτά τα προβλήματα είναι δύσκολα και ποια όχι. Όπως και
στη θεωρία της NP πληρότητας, υπάρχουν πλήρη προβλήματα για αυτή την κλάση στα οποία έχει αποδειχθεί
ότι όλα τα προβλήματα της PLS ανάγονται. Συγκεκριμένα, το αρχετυπικό πλήρες πρόβλημα της PLS είναι
το πρόβλημα CIRCUITFLIP.

Ορισμός 3. Στο CIRCUITFLIP έχουμε ως στιγμιότυπο ένα κύκλωμα χωρίς feedback το οποίο αποτελείται μόνο
από πύλες AND/OR και έχει n εισόδους και m εξόδους. Το κόστος μιας λύσης είναι ο δυαδικός αριθμός που
αναπαρίσταται από τα bit της εξόδου. Οι γειτονικές λύσεις μιας λύσης είναι οι δυαδικοί αριθμοί που προκύπτουν
με την αλλαγή ακριβώς ενός bit στην είσοδο.

Μπορεί να αποδειχθεί το παρακάτω θεώρημα για τη δυσκολία αυτού του προβλήματος σε σχέση με όλα
τα προβλήματα τοπικής βελτιστοποίησης. [JPY88].

Θεώρημα 1. Όλα τα προβλήματα στην κλάση PLS ανάγονται στο CIRCUITFLIP.

Επειδή αυτό το πρόβλημα, παρόλο που είναι πολύ ισχυρό δεδομένης της δυνατότητας του να περικλείει
όλα τα προβλήματα της PLS, είναι ιδιαίτερα τεχνητό, κυρίως λόγω του ότι περιέχει κυκλώματα στην
περιγραφή του, χρειαζόμαστε κάποιο πιο απλό πρόβλημα για να έχουμε μια γενική θεωρία PLS-πληρότητας.
Αυτό επιτυγχάνεται με ένα από τα πιο γνωστά PLS-πλήρη προβλήματα, το πρόβλημα της μέγιστης τομής.

Συγκεκριμένα στο MAXCUT κάθε στιγμιότυπο είναι ένα γράφημα κομμένο σε δυο πλευρές (cut). Το
κόστος (ή κέρδος) είναι το συνολικό βάρος των ακμών που διασχίζουν την τομής. Γειτονικές λύσεις
αποκτούνται όταν αλλάζουμε μια κορυφή από μια πλευρά σε μια άλλη, και τοπικό βέλτιστο έχουμε όταν
καμία αλλαγή κορυφής από μόνη της δε μπορεί να αυξήσει το βάρος της τομής.

Παρόλο που το παραπάνω πρόβλημα φαίνεται σχετικά απλό, έχει αποδειχθεί ότι [Sch91] ακόμα και το
CIRCUITFLIP ανάγεται σε αυτό. Δηλαδή CIRCUITFLIP ≤P LSMAXCUT. Πράγματι, λόγω της απλότητας
του αυτό το πρόβλημα χρησιμοποιείται ευρέως για αποδείξεις PLS-πληρότητας, αντί για περίπλοκες αναγωγές
στο CIRCUITFLIP.
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Ένα από τα προβλήματα που απαντάμε στις επόμενες ενότητες αφορά στην πληρότητα του προβλήματος
όταν έχουμε βάρη στους κόμβους και όχι στις ακμές. Όπως το MAXCUT είναι πολύ χρήσιμο, ειδικά για
αναγωγές σε παίγνια συμφόρησης, το πρόβλημα με βάρη στους κόμβους χρησιμεύει ιδιαίτερα σε PLS-
αναγωγές όπου οι παίκτες έχουν βάρη.

Μέγιστη τομή με βεβαρυμένους κόμβους
Σε αυτή την ενότητα παρουσιάζουμε μια εποπτεία της απόδειξης της PLS-πληρότητας του προαναφερθέντος
προβλήματος. Ειδικότερα, τονίζουμε ότι λόγω της βαρύτητας του δε μπορεί να αναχθεί το MAXCUT άμεσα
σε αυτό, πράγμα που δείχνει ότι το πρόβλημα είναι αρκετά πιο θεμελιώδες από το MAXCUT. Στα παρακάτω
θα αναφερόμαστε στο πρόβλημα ως NODEMAXCUT.

Η καρδιά των τεχνικών εργαλείων που απαιτούνται για την απόδειξη αυτή βρίσκονται στις συσκευές
που παρουσιάστηκαν αρχικά στο [Sch91] και επαναχρησιμοποιήθηκαν αργότερα για παρόμοιες αναγωγές
[GS10],[ET11]. Οι συσκευές αυτές αποτελούν υπογραφήματα με την ιδιότητα να προσομοιάζουν στη
συμπεριφορά πυλών NOR. Ειδικότερα, κάθε τέτοιο γράφημα έχει κάποιους εξωτερικούς κόμβους, που
αποκαλούμε ακροδέκτες. Όταν αυτοί έχουν κάποιες συγκεκριμένες τιμές τότε η συσκευή συμπεριφέρεται με
δυο τρόπους: Στη μια περίπτωση οι κόμβοι εισόδου δεν έχουν πλέον καμία επίδραση από τους εσωτερικούς
κόμβους, ενώ στη δεύτερη περίπτωση οι κόμβοι εξόδου έχουν μεγάλο κέρδος αν πάρουν την τιμή που
αντιστοιχεί στο NOR των εισόδων. Έχουν δηλαδή μια λειτουργία “εισόδου” και μια λειτουργία “υπολογισμού”,
το οποίο ελέγχεται από κάποιους κόμβους ελέγχου.

Η βασική δυσκολία στην αναγωγή είναι να κάνουμε αυτές τις συσκευές να λειτουργήσουν σε στιγμιότυπα
που έχουμε βάρη μόνο σε κόμβους. Συγκεκριμένα, δημιουργούμε μερικές κατασκευές σε γραφήματα
βεβαρυμένων κόμβων που έχουν τις ιδιότητες που θέλουμε και μας επιτρέπουν να ελέγξουμε τους κόμβους
ελέγχου, καθώς και να επιτύχουμε σύγκριση των εξόδων των κυκλωμάτων. Στις επόμενες παραγράφους
επιχειρούμε να περιγράψουμε τη λειτουργία αυτών των κατασκευών.

Η πρώτη κατασκευή αφορά των έλεγχο των ακροδεκτών που ελέγχουν τη λειτουργία της συσκευής
NOR. Εδώ η δυσκολία είναι ότι οι ακροδέκτες έχουν πολύ μεγάλο βάρους κόμβου σε σχέση με το βάρος
της εξόδου, που θα πρέπει να τους ελέγξει. Ωστόσο, αυτοί οι ακροδέκτες συνορεύουν με κόμβους πολύ
μικρού βάρους, που σημαίνει ότι μπορούμε να τους ελέγξουμε με οσοδήποτε μικρού βάρους κόμβους, αρκεί
να μπορέσουμε να κάνουμε αυτόυς τους μικρούς κόμβους να πάνε στη σωστή θέση κατ’ αρχάς. Για να το
επιτύχουμε αυτό παρατηρούμε ότι η αναλλοίωτη που μειώνεται κατά μήκος μιας αλυσίδας αιτιότητας κόμβων,
δηλαδή όταν λέμε ότι κάποιος κόμβος θα έχει αναγκαστικά κάποια τιμή εξαιτίας ενός άλλου κόμβου κλπ,
είναι το γινόμενο βάρος κόμβου επί το bias που έχει ο κόμβος. Με άλλα λόγια ένας μικρός κόμβος με
μικρό bias μπορεί να επηρεάσει έναν μεγάλο κόμβο με πολύ μικρό bias. Εφαρμόζοντας αυτό το τέχνασμα
κατορθώνουμε να προσομοιώνουμε κατευθυνόμενες ακμές που έχουν αυθαίρετο βάρος. Φυσικά, αυτό δεν
αρκεί γιατί αλλιώς θα μπορούσαμε να έχουμε απευθείας αναγωγή από το MAXCUT.

Το δεύτερο σημαντικό κομμάτι της αναγωγής που λείπει για την κατανόηση της είναι το ότι για να
επιτύχουμε τόσο σύγκριση όσο και έλεγχο σφαλμάτων, όπως γίνεται στην αναγωγή του MAXCUT [Sch91],
πρέπει να χρησιμοποιήσουμε μόνο έναν κόμβο σύγκρισης. Επιπλέον, αυτός ο κόμβος πρέπει να ενωθεί με
όχι μόνο τον τελευταίο ακροδέκτη ελέγχου, αλλά με όλους. Ο λόγος είναι ότι από τη μια αν ενωνόταν μόνο
με τον τελευταίο τότε το bias σε περίπτωση λάθους θα ήταν παρόμοιο με το βάρους του ελαχίστου bit που
δε θα αρκούσε για να αλλάξει την κατάσταση του κόμβου σύγκρισης παρά το λάθος, ενώ από την άλλη αν
το ενώσουμε με όλους τότε μπορεί το λάθος να έχει επίδραση στον κόμβο σύγκρισης ίση με τη επίδραση του
λάθος. Όταν είναι ίσα τότε μπορεί το λάθος να μην υπερνικά την λανθασμένη σύγκριση αλλά, παίρνοντας
περιπτώσεις, δείχνουμε ότι τότε το κύκλωμα που χάνει τη σύγκριση είναι ούτως ή άλλως μικρότερο (αφού
βγάζει αναγκαστικά 0 εκεί που το άλλο βγάζει 1 για να υπερνικά το λάθος).

Με αυτές τις δυο παραπάνω τεχνικές διαισθήσεις μπορούμε να κάνουμε τις NOR συσκευές να λειτουργήσουν
σε ένα περιβάλλον με βεβαρυμένους κόμβους. Η απόδειξη είναι αρκετά τεχνική και παρουσιάζεται στο
αγγλικό κείμενο παρακάτω. Τονίζουμε ότι η εκτενής παρουσίαση της αναγωγής στο αγγλικό κείμενο
αποτελεί πρακτικά προσεκτική εφαρμογή των παραπάνω δυο ιδεών σε ορισμένα σημεία. Εν τέλει καταλήγουμε
στο παρακάτω θεώρημα:

Θεώρημα 2. Το NODEMAXCUT είναι PLS-πλήρες.
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Βεβαρυμένα Παίγνια Συμφόρησης
Η σημαντικότερη εφαρμογή της πληρότητας αυτού του προβλήματος είναι στο να αποδεικνύουμε αποτελέσματα
σχετικά με τη δυσκολία ισορροπιών σε παίγνια συμφόρησης. Σε προβλήματα συμφόρησης έχουμε διαφορετικούς
παίκτες οι οποίοι επιλέγουν πόρους και δημιουργούν συμφόρηση σε αυτούς. Επειδή οι παίκτες συμπεριφέρονται
εγωιστικά η διαδικασία μοιάζει με τοπική βελτιστοποίηση όταν υπάρχει γενική ποσότητα που ελαττώνεται σε
κάθε κίνηση παίκτη. Για αυτό τον λόγο η θεωρία της PLS πληρότητας χρησιμοποιείται συχνά για να δείξει
δυσκολία εύρεσης ισορροπιών Nash σε τέτοια παίγνια.

Ορισμός 4. Ένα παίγνιο συμφόρησης G = {N,F, (Ai)i∈[N ], (df ), f ∈ F} όπου [N] αναπαριστά το σύνολο
των παικτών, F αναπαριστά το σύνολο των πόρων, Ai ⊂ 2F αναπαριστά τις στρατηγικές του παίκτη i και
df : N −→ Z τη συνάρτηση κόστους που σχετίζεται με τον πόρο f. a = (a1, ..., aN ) είναι το προφίλ στρατηγικών
όπου ο παίκτης i επιλέγει την στρατηγική ai ∈ Ai. Για ένα προφίλ a η συμφόρηση nf(a) ενός πόρου f ορίζεται
ως f(a) = |{i ∈ [N ]|f ∈ ai}|. Το κόστος κάθε παίκτη είναι το σύνολο των κοστών των πόρων στην επιλεγμένη
στρατηγική του ci(a) =

∑
(f∈ai)

df (nf (a)).

Στα γενικά παίγνια συμφόρησης έχει δειχθεί από τον Rosenthal ότι υπάρχει ένα δυναμικό που συσσωρεύει
τις βελτιώσεις όλων των παικτών σε κάθε κίνηση [Ros73].

Θεώρημα 3. F (S) =
∑
f∈F

Nf∑
k=1

df (k) αποτελεί ακριβές δυναμικό για τα παίγνια συμφόρησης.

Το παραπάνω σημαίνει ότι τα παίγνια συμφόρησης μπορούν να αναλυθούν ως προβλήματα τοπικής
βελτιστοποίησης, καθώς εγωιστική κίνηση παίκτη ισοδυναμεί με τοπική βελτίωση. Φυσικά, σε περιπτώσεις
που υπάρχουν ισορροπίες Nash αλλά δεν υπάρχει δυναμικό και η ύπαρξη τους βεβαιώνεται με κάποιο άλλο
επιχείρημα, πχ λεξικογραφικό, η θεωρία της PLS δεν μπορεί να βοηθήσει.

Στη γενικότερη περίπτωση, η εύρεση ισορροπιών έχει αποδειχθεί ότι είναι PLS-δύσκολη από τους
[FPT04]. Εκεί αποδεικνύεται ότι τα παίγνια αυτά στην πιο αφηρημένη τους μορφή είναι ακόμα πιο δύσκολα
από την εύρεση ισορροπιών στη μέγιστη τομή, μέσω μιας αναγωγής από το MAXCUT σε αυτά. Επιπλέον,
δείχνουν ότι όταν το παίγνιο συμφόρησης έχει τη μορφή δικτύου, τότε είναι εύκολο να βρούμε αμιγείς
ισορροπίες όταν όλοι οι παίκτες έχουν τον ίδιο προορισμό και αρχή, ενώ είναι PLS-δύσκολο όταν έχουμε
πολλούς προορισμούς. Η δεύτερη απόδειξη είναι αρκετά περίπλοκη, ανάγοντας από το CIRCUITFLIP.

Αργότερα, οι Vocking et al έδειξαν ότι τα παίγνια σε δίκτυα είναι PLS-δύσκολα ακόμα και όταν οι
συναρτήσεις κόστους είναι γραμμικές. [ARV08]. Με το παραπάνω αποτέλεσμα, η πολυπλοκότητα των
αμιγών ισορροπιών σε παίγνια συμφόρησης είναι πρακτικά κλειστό πρόβλημα.

Ωστόσο, μια ενδιαφέρουσα παραλλαγή των κλασσικών παίγνιων συμφόρησης είναι όταν έχουμε διαφορετικά
βάρη στους παίκτες. Το μοντέλο αυτό, αν και μικρού ενδιαφέροντος από μόνο του, απέκτησε μεγάλη σημασία
όταν δείχτηκε από τους [FKS05a] ότι για γραμμικές συναρτήσεις κόστους υπάρχει βεβαρυμένο δυναμικό.
Συγκεκριμένα, έδειξαν το παρακάτω θεώρημα.

Θεώρημα 4.
∑
i∈N

wi

∑
e∈si

(ae∗wi+be)+
∑
e∈E

se∗(ae∗se+be) είναι δυναμικό για βεβαρυμένα παίγνια συμφόρησης

με γραμμικά κόστη.

Επομένως, άμεσα έχουμε ότι η κατηγορία των παίγνιων με βεβαρυμένους παίκτες είναι μια κατηγορία
παιγνίων που πρέπει να αναλυθεί όπως και τα κλασσικά παίγνια συμφόρησης. Το πρόβλημα, ως τώρα, είναι ότι
τα μόνα αποτελέσματα γνωστά για PLS-πληρότητα βεβαρυμένων παίγνιων πηγάζουν από απλές γενικεύσεις
των παραπάνω αποτελεσμάτων με τον προφανή τρόπο, δηλαδή θέτοντας όλους τους παίκτες με το ίδιο βάρος.
Φυσικά, αυτό δεν αποκαλύπτει την ακριβή επίδραση που έχει η ύπαρξη βαρών στους παίκτες, η οποία όπως
δείχνουμε σε αυτή την εργασία, είναι μεγάλη.

Συγκεκριμένα, αποκαλύπτουμε ότι όταν έχουμε βεβαρυμένους παίκτες τότε ο υπολογισμός ισορροπίας
είναι PLS-δύσκολος, ακόμα και στις περιπτώσεις που το δίκτυο έχει τη μορφή σύνδεσης σε σειρά και
παράλληλα. Σε αυτές τις τοπολογίες έχει δειχτεί ότι η ισορροπία είναι εύκολο να βρεθεί με μια απλή
άπληστη στρατηγική [FKS05b]. Η δικιά μας αναγωγή, που αποδεικνύει το παρακάτω θεώρημα, χρησιμοποιεί
με καίριο τρόπο τα βάρη των παικτών έτσι ώστε να προσομοιώσει ένα στιγμιότυπο του MAXCUT.

Θεώρημα 5. Τα βεβαρυμένα παίγνια συμφόρησης σε συνδεσμολογία σειρά και παράλληλα έχουν PLS-δύσκολες
αμιγείς ισορροπίες.

xi



Ένα άλλο ερώτημα που εγείρεται σχετικά με την επίδραση των βαρών στη δυσκολία των ισορροπιών
αφορά στο τι γίνεται αν βγάλουμε όλους τους συντελεστές από τις γραμμικές συναρτήσεις κόστους και
αφήσουμε βάρη μόνο στους παίκτες. Στην εργασία αυτή δείχνουμε ότι, ακόμα και τότε, τα βάρη των
παικτών αρκούν για να κάνουν τις ισορροπίες PLS-δύσκολες.

Θεώρημα 6. Τα βεβαρυμένα παίγνια συμφόρησης με ταυτοτικά κόστη έχουν PLS-δύσκολες αμιγείς ισορροπίες.

Το παραπάνω θεώρημα προκύπτει μέσω μιας αναγωγής από το πρόβλημα που ορίσαμε και αποδείξαμε
PLS-δύσκολο, το NODEMAXCUT. Αυτό είναι ένα από τα προτερήματα του καθώς το απλό MAXCUT δε θα
μπορούσε να απεικονίσει τη δυσκολία αυτού του προβλήματος.
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Chapter 1

Introduction

Local search is ubiquitous in nature. No agent has omniscient access to all information of its environment,
which leads it to make short-term, myopic decisions based on its locally available information. A prime
example of this is evolution ([Kaz19]), considering how survival of the fittest causes the adaptivity of a
species to be optimized. Since there is no central authority instructing the system on which characteristics
are ideal, all improvements in biological organisms happen through an iterative locally improving process,
i.e. the best immediate characteristic is picked each time.

The deep power of local search has inspired humans to apply it on solving important optimization
problems. We often find ourselves in settings where obtaining all possible information and making a
globally optimal decision is infeasible, such as picking what to wear, in which case we might iterate on
an existing wardrobe, until we settle on an attire where no small improvements can be made. More
importantly, however, local search heuristics have provided significant help in facing fundamental com-
putational problems where global optimization is provably intractable. One of the most celebrated such
success stories was the travelling salesman problem where an efficient tactic for producing “good enough”
hamiltonian circuits comes from the local search paradigm. Specifically, one of the historically first such
local improvement heuristics, proposed by Croes [Cro58], was simply to start from an arbitrary hamilto-
nian cycle, and then examine whether swapping any pair of edges would offer a better cycle. In practice
this algorithm produces solutions of very high quality as well as terminating fast in most cases. Indeed,
one can show that the smoothed complexity of this process is in fact polynomial. Other heuristics for
this problem have also been proposed, such as the Kernighan-Lin neighborhood, where the neighborhood
has a depth first structure, instead of breadth first. Another domain of application of local search is the
celebrated Simplex algorithm. Overall, local search has met huge success in the field of combinatorial
optimization and is a powerful technique one may apply in various settings.

However, local search does not show up only in human-devised algorithms. While in an algorithm
there is a central authority, a program, that guides the optimization process, seeking to improve some
overall cost function, in nature there are multiple agents that only seek to improve their own lot. The
only guarantee we have regarding the rationale behind the decisions of these agents is that they will act
selfishly and take actions for solely personal gain. There are cases, however, where the actions of these
agents happen to contribute to a global quantity. To elaborate, in these multiagent systems there exists
a combinatorial invariant that gets increased by an action if and only if that action improves the lot of
the actor. Specifically, when we consider systems with this property as games with multiple players, we
call them “potential games”, since akin to a potential in physics, that global quantity implicitly tracks
the progress of the players towards a selfish local optimum. Viewing through this lens, one can see why
the natural process of players playing a potential game is computationally equivalent to local search with
arbitrary pivot rules.

Central to the study of potential games are games of a special form: i.e. congestion games. Congestion
games consist of a set of players, as well as a set of resources that players utilize and induce delay on,
according to some cost function. They not only possess a potential function [Ros73] but they in fact
capture the entire class of potential games. This is because for every potential game there is a congestion
game with the same potential function [MS96], which renders congestion games not only a useful model
for examining real-life congestion scenarios, like traffic or job scheduling, but also for obtaining insight
on computational aspects of potential local minima.
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However, calculating any local minimum of the potential function in congestion games, under the
neighborhood where players make selfish moves, has been shown to be PLS-hard [FPT04]. Polynomial
Local Search (PLS) is a complexity class [JPY88] meant to capture the hardness of computing the
endpoint of a local search iterative procedure. In other words, a PLS-hard problem is at least as hard
as any local search problem one can imagine. Hence, calculating such a local optimum, or in game
theory terms, a pure nash equilibrium, is unlikely to be possible in polynomial time, unless several hard
optimization problems can be efficiently solved. This raises the following interesting question, in the
words of Kamal Jain: “If your laptop can’t find it, neither can the market”. Responses to this divergence
between theory and reality (after all supply and demand quickly reaches stability in real world markets!),
include the rejection of pure nash equilibria as meaningful notions and replacing them with the much
more tractable correlated equilibria, as well as going beyond worst case analysis and considering the
smoothed complexity of iterative algorithms. In fact, the latter approach has had certain success stories
including the smoothed analysis of max-cut [ABPW17], k-means [AMR11] and the simplex method for
LP [ST04].

Of particular interest to us are congestion games with a slight modification. Namely, the players
have non-uniform impacts on the cost functions of the resource delays, i.e. the players are weighted.
These games are predictably called weighted congestion games. Unlike the unweighted case, however,
these games do not admit a potential function (and hence no guarantee of existence of PNE) in the
general case [FKS05a]. For the existence of such a potential function to be guaranteed we need further
stipulations on the actual cost functions of the resources. In particular, it has been shown that a
necessary and sufficient condition for a potential function to exist is that the delays must either be a
linear or exponential function of the sum of the weights of the players using them [FKS05a],[PS07]. In
either of these cases a potential function can be found.

Similar to unweighted congestion games, pure nash equilibria (equivalently local minima of the
potential function) are PLS-hard to find. [ARV08]. However, in all such reductions the players’ weights
themselves don’t play a meaningful role, and in fact these reductions can work even for unweighted
players. This leaves open the question of whether placing weights on players does in fact make the
problem of finding equilibria fundamentally more difficult from a computational perspective, or the
difficulty is in fact implicit into the particular delay functions chosen.

1.1 Technical Contribution
Our main motivation for this work is examining the PLS complexity of pure nash equilibria in player-
weighted congestion games. However, unlike previous work on the PNE complexity of congestion games
([FPT04],[ARV08]), we wish to focus on the computational impact of the player weights themselves, which
means we concentrate on weighted games where the unweighted version has polynomially computable
equilibria.

MAXCUT is a prominent PLS-complete problem, based on which a large number of PLS-hardness
results can be proven, including several concerning congestion game equilibria. For our purposes in this
thesis, MAXCUT is insufficient, because all edges have different weights and thus we cant use it in our
reductions. For this reason, we define a natural simplification of MAXCUT, called NODEMAXCUT, where
the graph is now node-weighted instead of edge-weighted. In this new problem, players are identified
with nodes, each seeking to choose the side of the cut with the least total weight of neighbors present
in the same side. This problem does possess a pure nash equilibrium, once one notices that it has a
weighted potential, i.e. the weight of the node multiplied by the local improvement. The problem itself
is interesting due to its apparent simplicity and succinctness, leading one to think that a polynomial
time algorithm should exist for computing a PNE of a NODEMAXCUT instance.

However, our main technical contribution of this thesis is to show that this problem is, in fact, PLS-
complete. The proof of this result is rather involved using the general framework proposed in [Sch91],
but with several new ideas that shed light on how weights alone can provide the necessary complexity
through the weighted potential function. Overall, our reduction consists of a complex NODEMAXCUT
instance graph, whose equilibria would reveal an equilibrium value of any CIRCUITFLIP instance. More
specifically, our reduction uses the gadgets proposed by Schaffer and Yannakakis to emulate NOR logic
gates in order to show the PLS-completeness of MAXCUT. These NOR gadgets have several useful
properties that are necessary for constructing and operating an arbitrary boolean circuit in a MAXCUT
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(or NODEMAXCUT in this case) instance. They have been constructed in such a way that a control node,
having minimal weight itself, allows the inputs to either change freely or “lock” and calculate the NOR
value.

Our reduction needs certain additional constructions in order to make these NOR gadgets work in a
NODEMAXCUT setting. The first, and most important, of these additions is a “leveraging” gadget that
permits the lower weighted nodes of the output of this circuit to influence the heavier control nodes of the
NOR gadgets. This is achieved by alternating increasingly heavy and light nodes, so as to augment the
ability of the gadget to move a heavy node, without violating the fact that the potential must decrease
along this process. The second addition is more complicated and concerns the overall architecture of our
construction. It relates to the fact that one cannot properly achieve comparison between the outputs of
the Boolean circuit, as well as make sure that only one circuit is active at the time, using weights only
on the nodes. For this reason, we have a single flag node, unlike previous reductions, e.g. [GS10],[ET11],
which have two. Moreover, in our reduction we have to connect all the control variables of the NOR
gadgets to the flag node unlike previous reductions. This is because of the restrictive nature of not being
able to have weights on each individual edge, unlike existing approaches, which can use any weight on
each edge. In particular, connections between the flag node and the control variables are not made only
once to ensure correctness of the whole circuit, but are instead made for each control node corresponding
to each bit of the output. This way the incorrectness of a bit will cause flag, though the control node,
to ignore its value.

While the PLS-completeness of NODEMAXCUT might be of independent interest to readers, our main
use for it is to show certain PLS-hardness results, which, without NODEMAXCUT, would be difficult
to prove. Specifically, we show that multi-commodity weighted congestion games with identity delay
functions are PLS-hard. This is an interesting development, since it implies that any meaningful extension
of the celebrated restricted links algorithm of [GLMM10] on any larger network would have to solve a
PLS-hard problem. To show our result, we use the fact that in the case of large amounts of constant delay
(which can be modeled with a very heavy player) players will choose to take the shortest path regardless
of other players’ actions. By exploiting this, we force the players to take specific paths in a grid-like
network, inspired by the construction of [ARV08], and hence emulating a NODEMAXCUT instance.

In addition to the above, we also present a novel proof of the PLS-completeness of weighted congestion
games played on series-parallel network topologies. This shows that the results of [FKS05b] for series
parallel networks cannot be extended to the unrestricted case with arbitrary weights on players. To
prove this, unlike the previous cases, we reduce directly from MAXCUT. We use the presence of weights
on the players as separators to force them to interact in the specific ways they would if they were nodes
in a MAXCUT instance.

1.2 Organization of this work
In the first chapter we survey progress that has been made so far in the direction of tractability of total
search problems. We present general results from the literature from reaserch on inefficient proofs of
existence along the last decades.

In the second chapter we focus on the PLS complexity class, which is directly connected to our
work. Here, we rigorously define and explain the toolbox we are going to use in further chapter to prove
PLS-harndess for our problems.

In the third chapter we fully present the PLS-completeness proof of node weighted max cut, which
is the main point of interest of this thesis. The proof is long and convoluted, since it reduces from a
Circuit problem, but it possesses certain interesting ideas used for utilizing the presence of a weighted
potential instead of an exact one.

In the fourth chapter we introduce the reader to the theory of congestion games and their local search
dynamics. We survey the bibliography, concentrating on existing results on the complexity of Pure Nash
Equilibria.

In the last chapter, we present our PLS-hardness results for specific classes of weighted congestion
games. In particular, we use a simple reduction to induce PLS-hardness through player weights for series-
parallel networks. Also, we apply our NODEMAXCUT problem to show PLS-hardness for congestion games
where the delays are identity functions.
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Chapter 2

Complexity of Searching

Suppose you have a very difficult algorithmic problem to solve, which requires you to find some solution.
Despite your best efforts that solution appears to be impossible to calculate and no algorithm you try
seems to work. For this reason, you turn to the rich field of complexity theory, with the purpose of
reducing some known hard problem to your own, thereby proving that’s its futile to insist in a solution
to your problem. This is because such a solution would imply so much more than simply resolving your
problem. It would, in fact, permit the resolution of that much harder problem you reduced from.

This approach of reducing from known hard problems to your own, has in fact found groundbreaking
success in the last decades with the theory of NP-completeness. In particular, NP-complete problems
are decision problems where even being able to answer whether a solution exists is difficult. An example
is the classic SAT problem where given a formula we are required to answer if its satisfiable. It turns
out that there a multitude of problems that exhibit this structure of a solution being hard to find, but
easy to verify, assuming it even exists.

What happens, however, when the problem you are considering is in fact strictly easier than any NP
problem? Specifically, what if, for some reason, you are guaranteed that the solution you are looking for
does exist, but you have no clue how to find it. In reality, such problems crop up all across theoretical
computer science, and beyond. From the computation of Nash Equilibria to the calculation of fixed
points, problems whose solutions we know for certain to exist, and which we could readily identify if
presented with, crop up in a variety of places. Because we are guaranteed the existence of at least one
solution, the problems of the class NP are not adequate for reducing, leaving it uncertain how we might
obtain complexity lower bounds for our problems.

To alleviate this, a subclass of FNP has been identified, namely TFNP, with the purpose of capturing
exactly these problems where we are searching for something that we know exists.

In this chapter we will define the basic complexity framework that allows us to capture the difficulty of
search problems. Unlike decision problems, where a simple yes/no answer will suffice in search problems
we also ask for the certificate that renders an instance of a problem a yes-instance. This further demand
allows us to pose interesting questions on problems that might in fact be easier or harder than mere
decision.

2.1 From decision to search
The class NP is the class of all decision problems that admit a succinct certificate. We can define a
direct function analogue FNP (function nondeterministic polynomial) which consists of the problems
or, equivalently, relations where either a short solution can be reported or a negative answer if no such
solution exists.
Definition 2.1.1. FNP

A problem in FNP consists of: (a) A set DL of polynomially recognizable strings (the instances). (b)
For each instance, a set of solutions FL(x), x ∈ DL which are polynomially bounded in length with respect
to the length |x| of the instance. (c) A binary relation R(x, y) such that R(x, y) ⇐⇒ x ∈ DL∧y ∈ FL(x)

Every problem in NP can be easily transformed into its standard function counterpart, where we
demand the certificate as the solution. An immediate question that arises is how much harder is actually
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returning the certificate compared to simply deciding about its existence. Maybe there exist problems
where locating the certificate would be intractable, even if we had an oracle that decides its existence?

Perhaps unsurprisingly, the answer turns out to be negative. The search versions all NP problems
can be reduced to their decision analogues. For instance, FSAT, where we are asked to find a satisfying
assignment to a given boolean formula can be solved easily with access to an oracle that tells us whether
a formula can be satisfied or not. In particular, assuming that a variable of a formula takes a certain
truth value, we can ask the oracle if the rest of the formula can be satisfied and, if not, we can assume
the opposite value. By repeating this, we can find the actual satisfying configuration. Moreover, because
any search problem can be reduced to FSAT (by modifying the classic NP reductions) and SAT can be
reduced to any NP-complete problem, we have that all search versions of NP-complete problems are no
harder than their decision version.

Theorem 2.1.1. FNP = FP ⇐⇒ NP = P

We note that the above self-reducibility property only applies to NP-complete problems (since SAT
only reduces to those) and not simply NP problems. For instance FACTORING, the problem of deter-
mining a divisor and its corresponding search version PRIME, cannot be reduced to each other. In fact,
it is known through a breakthrough result of Agrawal et al [AKS04] that determining the primality of
a number can be done in polynomial time, but a polynomial algorithm for factoring does not currently
exist. If it did, the consequences for modern cryptography would be catastrophic. The actual hardness
of FACTORING is, presently, an important open problem.

Furthermore, it was shown by Bellare et al [BG94] that, similar to Ladner’s theorem and the existence
of NP-intermediate problems, under certain assumptions, then there are NP problems that are easier to
decide than provide concrete solutions to.

Theorem 2.1 renders any inquiry into the hardness of searching for the certificates of NP-hard prob-
lems meaningless, since we may as well reformulate these questions with respect to NP, which is a well
explored class.

The deeper reason, however, that such search problems are so difficult (i.e. as hard as NP) is that
the problems we investigate may as well not have any solution forcing us, indirectly, to also answer
the question of its existence at the same time when searching. The most interesting search problems
are those where, somehow, we are guaranteed that what we are searching for exists. These problems
obviously have no meaningful decision analogues and yet capture the true essence of the difficulty of the
computation of searching. This class, introduced by Papadimitriou et al [MP91] is named TFNP.

2.2 TFNP
TFNP stands for Total Function Nondetermistic Polynomial. As the name implies, it is the class that
encapsulates the difficulty of problems where one is asked to search for something whose existence is
guaranteed. In other words, the relations R(x, y) that comprise this class are such that for every instance
x there is always a solution y that satisfies.

Definition 2.2.1. [MP91]
TFNP is the class FNP constricted to total relations R(x, y).

Naturally, problems in TFNP should be easier than problems in FNP, since they are only a subset
of the latter. Indeed, the fact that we are guaranteed that we can find a solution can only make things
easier. However, this totality gives an even stronger indication of the fact that TFNP lies strictly below
FNP, with respect to difficulty. Specifically, imagine that there exists a problem in TFNP so fiendishly
difficult that, given an oracle that solves it, we can use that oracle to solve NP-hard problems. This
would mean that if the instance of any NP-problem is a yes-instance then a call to our TFNP oracle
would produce some succinct solution which we would then manipulate to obtain our yes-certificate.
Conversely, if the NP-hard problem was a no-instance our oracle would again return a solution (it always
returns a solution since its total!) which we would manipulate to obtain our no-answer. But then, one
may ask, what if we took that solution that the oracle returned, and used it as a succinct no-certificate?
If that were true, the we would be able to construct a way such that any NP-problem can not only admit
yes-certificates, but also succinct no-certificates. This would imply that NP=co-NP (and also that the
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Figure 2.1: Schematic showing NO-instances cannot be matched to any call of the TFNP oracle unless
NP=co-NP

polynomial hierarchy collapses to the first level). Hence, unless we concede that all NP problems can also
admit no-certificates, we have serious reason to believe that the totality of TFNP problems places them
strictly below FNP in difficulty. That is not to say that TFNP problems are easy. There has been a
multitude of lower bounds for total search problems showing they are hard (even for quantum computers
[Aar06].

On the other hand, we have no serious indication that TFNP is an easy class, i.e. lies within the
realm of FP. The problems that are contained in TFNP are, despite the guarantees of the existence of the
solution, still hard on their own right. Such problems include finding nash equilibria, calculating stable
points of functions or even the notorious problem of factoring, all of which are considered intractable
for the tools humanity currently possesses. Then again, there are problems in TFNP that are trivially
easy to solve, such as simple algebraic equations. We therefore need to define the complete problems of
this class, in order to be able to classify problems as being intrinsically intractable or not. The major
difficulty into which one runs while attempting to define the archetypal TFNP problem is that even
deciding whether a relation R(x, y) is total is NP-hard. This makes it unlikely for an extremely generic
TFNP problem to exist, capable of capturing all total search problems with no additional guarantees on
the nature of the relation R(x, y) itself. In other words, TFNP is a semantic class. To that end,i.e. to
obtain syntactic definitions, several subclasses of relations were defined by Papadimitriou et al, such that
each guarantees the totality of the relation through a simple combinatorial argument. These subclasses
are:

• PLS: existence of a sink on a directed graph

• PPA: handshaking lemma

• PPP: pigeonhole principle

• PPAD: directed handshake

• CLS: continuous fixed point

These classes are obtained as syntactic formulations of their corresponding existence theorem. We
mention here that in Papadimitriou’s original paper [Pap94] a class for the probabilistic existence argu-
ment was proposed, and especially for the Lovasz Local Lemma, namely the class PLL. In the meantime,
however, it was shown by Moser and Tardos [MT10] that LLL objects can in fact be efficiently con-
structed which meant this class was in P and hence not interesting. We also note that while the three
principal classes (PPA,PPP,PLS) might seem disjoint with no common combinatorial structure, recent
work [GP17] has revealed the existence of a unified syntactic class that can in fact capture all of the
aforementioned classes, namely PTFNP (Provable TFNP), that possesses a simple complete problem.
That problem is called Wrong Proof and, given a circuit that produces the logical steps of a (exponen-
tially sized) proof , i.e. use of axioms or inference rules, and which also produces a false conclusion as its
last step, we are asked to find the mistake in the proof. This is nontrivial and in fact it turns out that
solving this problem is at least as hard as solving any problem of the known TFNP classes.
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Figure 2.2: Hierarchy of some of the currently known search classes

2.2.1 PPP
PPP (short for Polynomial Pigeonhole Principle) is the total search complexity class meant to capture
problems related to the inefficient proof of the pigeonhole principle. In particular, problems in this class
require some sort of collision to be found. Naturally, this class is useful for modelling cryptography and
hashing related problems.

Its archetypal complete problem is the following problem, called PIGEON. [Pap94]

Definition 2.2.2. Given a circuit C with n input and n outputs, find either an input u such that C(u) = 0,
or find two inputs u, v such that C(u) = C(v).

Moreover, another subclass closely related to PPP but contained within it is PWPP (polynomial
weak pigeon principle) which is the set of all problems polynomially reducible to WEAKPIGEON

Definition 2.2.3. Given a circuit C with n input and less than n outputs, find two inputs u, v such that
C(u) = C(v).

In other words, PWPP is the PPP class only constrained to a non-injective setting, forcing a collision
to exist.

Despite its very simple description and ease of understanding, the PPP class remained without a
natural complete problem not making explicit references to circuits for several decades until the work of
[SZZ18] who showed the existence of a natural PPP-complete problem related to lattice cryptography.

A very interesting problem whose completeness status is not yet know is FACTORING. It was shown
by [Jeř16] that factoring is both in PPA and (through a randomized reduction) in PPP.

2.2.2 PLS
One of the other major classes characterized by a nonconstructive proof of existence is the PLS (Polyno-
mial Local Search) class. In this case, the profound combinatorial argument used to show the existence
of the solution is the presence of a sink in a directed acyclic network. Considering how the rest of this
work is deeply intertwined with the PLS class we are going to give only cursory definitions here and
defer the detailed description of this class to the next chapter.

The canonical PLS-complete problem is CIRCUITFLIP.
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Definition 2.2.4 ([JPY88]). An instance of CIRCUITFLIP can be described as a feedback-free Boolean
Circuit made up of AND, OR and NOT gates with n input bits (x0, x1, x2...xn)and m output bits
(y0, y1, y2...ym). The cost cL(x) is the binary value associated with its output, i.e.

∑
2i ∗ yi. The

neighborhood of a given solution x are all the binary assignments of Hamming distance 1 from x., i.e.
with only one bit flipped. The algorithm CL that produces a better neighboring solutions checks whether
flipping any single bit improves the cost and, if not, returns x.

Similar to other TFNP classes a problem is contained in PLS if and only if it can be polynomial time
reduced to CIRCUITFLIP. However, the process of reducing to CIRCUITFLIP isn’t as simple as reducing
to any of the complete problems of the other classes because of complications added by the presence of
a specific neighborhood function.

To overcome this, [JPY88] showed that as long as a problem has some local optimization structure,
it does in fact belong in PLS, by showing almost all such problems can be reduced to CIRCUITFLIP.

Interesting complete problems in this class are, among other, MAXCUT and the travelling salesman
problem un the Lin-Kernighan heuristic. [Pap92].

2.2.3 PPA
The third principal TFNP class stands for polynomial parity argument, and is related to the handshaking
lemma. PPA problems generally have some sort of pairing property, like for example in the problem of
finding a second hamiltonian cycle given one. Its existence is guaranteed by a pairing argument.

More generally the canonical PPA-complete problem asks whether in a graph, with exponentially
many vertices each having degree equal to two or one, given a node with a single incident edge, we can
find another such node.

Figure 2.3: Graph of a PPA problem

This problem can be given in circuit form through a circuit that for any input nodes returns either
both neighbors or only one, if the degree is equal to 1.

Similar to PPP, this class did not really have any natural complete problems until the work of
[FRG17] which demonstrated that CONSENSUSHALVING is in fact PPA-complete.

The reason that the two previously mentioned classes do not have many complete problems is that
while they capture important combinatorial existence principles, they were only meant as intermediate
classes in capturing a very specific form of solution whose existence is guaranteed, but no efficient
algorithm is known.

In particular, at the intersection of PPP and PPA lies PPAD, which contains the computation of a
mixed nash equilibrium for two player games.
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Figure 2.4: Graph of a PPAD problem

2.2.4 PPAD
PPAD (polynomial parity argument directed) is, as the name implies, the directed version of PPA. In
particular, now the circuit of the complete problem separately gives two solutions. The first is the
predecessor of a node, if it exists, and the second is the successor, if it exists as well. Because the induced
graph is now directed we now have sources and sinks, as well as predecessors P and successors S. We
say that the induced graph has a directed edge from A to B if and only if P(B)=A and S(A)=B. The
fundamental question of PPAD is to ask for a node who either has no predecessor or no successor. This
is the ENDOFTHELINE problem.

Definition 2.2.5. Given two circuits that return for each node a predecessor and a successor, and given
a node who’s successor or predecessor is itself, find another such node.

Note that unlike PPA we also have directedness here. An interesting property of PPAD is that if we
took the naive route and attempted to ask what the node at the other end of the directed path is, then
the problem would in fact be PSPACE-hard! [Pap94]. The fact that we ask for any sink or source node
in the graph places it far lower in the hierarchy of complexity.

Furthermore, we mentioned earlier that PPAD lies at the intersection of PPP and PPA. This is not
apparent from the definition as no mention of collision is made.

Theorem 2.2.1. PPAD ⊂ PPP

[Pap94]. To show this we only have to define a function from the set of the nodes onto itself so that
either the element that corresponds to a specific element 0 (here our starting source) or a collision, will
permit us to find a sink. Indeed, that function f is defined as f(A) = S(A), if it exists and f(A) = A
otherwise. Notice that a collision f(A) = f(B) = A = S(B) = S(A) would mean that A is the required
sink. Notice, also, that the PPP oracle can’t return P (0) since we labelled as 0 the starting source. ■

Some of the most important problems complete in PPAD are BROUWER and KAKUTANI [K+41], which
are the problems asking for the solutions whose existence is guaranteed by the eponymous theorems. Note
that these theorems are connected to this discrete combinatorial class through Sperner’s construction.

It is a curious aspect of this class that it seems to accumulate the completeness of so many interesting
problems, compared to its more fundamental components PPA and PPP, which only have one or two
complete problems.
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Figure 2.5: Graph of a truthful ENDOFTHEMETEREDLINE problem

2.2.5 CLS
Last but not least, we mention the class CLS. CLS was introduced by Daskalakis et al in [DP11] in order
to capture the difficulty of certain continuous (and hence amenable to PPAD theorems) and optimization
(and hence amenable to local search) problems. This class lies at the intersection of both PPAD and
PLS. Typical problems in this class include mixed nash equilibria in congestion games (where we have
both PLS and PPAD existence arguments) among other.

The first definition for CLS proposed by Daskalakis et al was somewhat artificial, combining both a
PLS and PPAD problem and tryign to solve them at the same time. Specifically, their definition of a
typical CLS-complete problem was the following.

Definition 2.2.6 (CONTINUOUS LOCALOPT [DP11]). Given two functions f and p assumed to be Lipschitz
continuous, and ϵ,λ >0,find an ϵ-approximate fixpoint of f with respect to p, or two points that violate
the λ-continuity of p or of f .

Hence, CLS is a close relative to PLS, in which not only the potential function is continuous, but
also the neighborhood function is continuous. It is the continuity of the neighborhood function that
also places it inside PPAD; indeed, an approximate fixpoint of the neighborhood function (which can be
found within PPAD) is a solution.

The problem with CONTINUOUS LOCALOPT is that it is not very natural, attempting to merge two
different functions in an artificial way.

For this reason, a novel CLS-complete problem was proposed by Hubacek et al [HY17]. This problem
is called ENDOFTHEMETEREDLINE.

Definition 2.2.7 (ENDOFTHEMETEREDLINE [HY17]). Given circuits S, P : {0, 1}n −→ {0, 1}n, and V :
{0, 1}n −→ [2n] ∪ {0} such that P (0n) = 0n ̸= S(0n) and V (0n) = 1, find a string x ∈ {0, 1}n satisfying
one of the following:

• either P (S(x)) ̸= x or S(P (x)) ≠ x ̸= 0n

• x ̸= 0n and V (x) = 1

• either V (x) > 0 and V (S(x))−V (x) ̸= 1 or V (x) > 1 and V (x)−V (P (x)) ̸= 1

Practically, ENDOFTHEMETEREDLINE instances look somewhat like Figure 2.5.
Notice that this problem is at least as easy as a PPAD problem, since we also have the additional

information of the distance on the nodes. Obviously, however, the truthful behaviour of the V function
cannot be guaranteed, which is why, in usual TFNP fashion, we add possible violations as solutions that
can be returned.
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Chapter 3

Polynomial Local Search

PLS, short for Polynomial Local Search, is the class whose relations embody the difficulty of computing
any local optimum in any sort of discrete local optimization setting. In other words, the relation that
must be satisfied is a set of constraints that show every neighboring solution has worse value. Defining
PLS as a set of total problems instead of relations we have the following definition, given by Johnson,
Papadimitriou and Yannakakis in their seminal paper introducing PLS. [JPY88]. For an complete picture
of PLS and techniques associated with local search we refer the reader to [AAL03] and [MAK07].

Definition 3.0.1. A problem L in PLS consists of a set of instances DL, and a set of solutions FL

for each instance, similar to TFNP. Moreover, for each solution s we have a polynomial time function
cL(s, x) ∈ N, a set N(s, x) ⊂ FL(x) called the neighborhood of s as well as the following two algorithms
AL, CL. Algorithm AL produces any solution s given an instance x. Algorithm CL given an instance x
and a solution s either returns a solution s′ ∈ N(s, x) with cL(s

′, x) < cL(s, x) or reports that no such
solution exists and hence s is locally optimal.

The very definition of PLS suggests an immediate algorithm to compute such a local optimum of a
PLS problem.
Algorithm 1: Standard Algorithm

s← AL(x)
if cL(AL(s, x)) < cL(s, x) then

s← AL(s, x)
else

return s
end if

Indeed, this algorithm will iteratively improve the value of the solution in the simplest way possible
until it arrives to a solution that cannot be further improved. Of course, its efficiency is not guaranteed
and in most PLS problems it can be shown that it takes exponential time with respect to the size of the
description of the problem to run.

The first question one might consider is, given the cost functions and the algorithms that choose
the next neighbor each time (i.e. the pivot functions), whether it’s possible to obtain the output of
the standard algorithm without having to run it in its entirety. In other words, can shortcuts exist for
computing the final destination of a specific path along the transition graph? This is called the “Standard
Algorithm Problem”

The answer is negative by the following theorem, also proved in the paper introducing the PLS class
to the world [JPY88].

Theorem 3.0.1. There is a PLS problem such that its corresponding Standard Algorithm Problem is
NP-hard

To see this, one only needs to construct a PLS problem that emulates SAT. Specifically we choose
the set of solutions to be variable assignments of a SAT formula, with each solution’s neighbors being
the succeeding and preceding number in its binary representation and the cost being equal to the binary
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representation, except if its a satisfying assignment in which case its 0. By beginning from the all true
assignment, the standard algorithm would move downwards until it detects a satisfying assignment or
reaches 0. In either case, the output solves the satisfiability problem.

Note that the Standard Algorithm Problem is not in TFNP, despite being a search problem, since
its solutions cannot be verified succinctly without rerunning the algorithm.

The main interest of PLS problems, however, is not finding a specific local optimum but finding any
local optimum, which is no longer NP-hard and hence more tractable and interesting.

3.1 PLS reductions
As with any complexity class, our main tools for giving concrete bounds on the hardness of a problem
are reductions. In this section, we seek to present the specific reductions used to establish hardness of
PLS problems as well as draw unconditional conclusions regarding the intractability of local searching
their solution domain.

As in the theory of NP-hardness, a PLS problem reduces to another, if we can transform instances
from one problem to another, and through a solver for one problem obtain a solution for the other.
Specifically, A ≤P LSB means that instances of A are transformed into instances of B, and therefore A
is “easier” than B.

Definition 3.1.1. [JPY88]
A problem A is PLS-reducible to a problem B if there exist two algorithms f,g such that f maps

instances x of A to instances f(x) of B, g maps (solutions of f(x),x) pairs to solutions of x, and if s is a
local optimum of B then g(s, x) is a local optimum of x

The main technical contribution of this work is such an involved PLS reduction, presented in chapter
4. To clarify, what one needs to do to obtain a PLS-reduction is provide a consistent way to transform
given “hard” arbitrary instances of problem A, into instances of of problem B, so that from a local
optimum of the newly created instance we can extract a local optimum of the initial problem. Note that
notion of reduction has all the desirable properties of NP-reductions, such as composability.

Before we go on to define PLS-complete problems, however, we present a stronger form of reduction,
namely tight PLS-reductions that permit transferring more properties than mere PLS-hardness from one
problem to the other. To do this we define the transition graph of a PLS-problem.

Definition 3.1.2 ([Sch91]). The transition graph of an instance I of a PLS problem L is a directed graph
with one node for each solution and one s→ t edge for each (s, t) pair such that t ∈ N(I, s) ∧ cL(t, I) <
cL(s, I)

In short, the transition graph shows the possible path a local search algorithm might take. Obviously,
since it is acyclic, it possesses at least one sink node, which shows the totality of the problem.

Using this graph we now present an augmented version of a PLS-reduction, which not only allows
the transference of the local optima from one instance to the other, but also conserves the structure of
the transition graph. If such a reduction with the following properties is achieved, in addition to the
reduction mentioned before, we obtain stronger bounds on the runtime of local search.

Definition 3.1.3 ([Sch91]). Let P, Q be PLS problems, and let (f,g) be a PLS reduction from P to Q. We
say that the reduction is tight if for any instance I of P we can choose a subset R feasible solutions for
the image instance J=f(I) of Q so that the following properties are satisfied:

• (1) contains all local optima of J.

• (2) For every feasible solution p of I, we can construct in polynomial time a solution q of J such
that g(q,I)=p.

• (3) Suppose that the transition graph of J, TG(J) contains a directed path q → q’, such that
q, q’ ∈ R, but all internal path vertices are outside R, and let p=g(q,I) and p’=g(q’,I) be the
corresponding feasible solutions of I Then, either p = p’ or TG(I) contains an arc from p to p’.
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To give some intuition for this definition, we have to consider a PLS-reduction as an injective function
from the transition graph of problem P to the transition graph of problem Q. As function f sends solutions
of the initial instance to certain nodes of the transition graph of the second problem. The crux of the
notion of tightness is that the paths between nodes along the transition graph will not be shortened, i.e.
the path A→ B is at most as long as f(A)→ f(B).

The reason this is important, is that if we knew that the lengths of the paths of the initial transition
graph are long then the new instance constructed has even longer such paths, and hence allows bounds on
the performance of any algorithm that is forced to follow the improvement path strictly, to be transferred
unconditionally to the new problem.

Specifically, in the same paper [Sch91] it is proven that the archetypical PLS-complete problem
CIRCUITFLIP (which we will define rigorously in the next section) has the following properties:

• The Standard Algorithm Problem (SAP) is PSPACE-complete (note how this is even stronger that
3.0.1)

• There are initial solutions for which any local search algorithm (i.e. like SAP) would be forced to
visit exponentially many nodes before reaching the sink

These properties, as long as one uses strictly tight PLS-reductions, are immediately transferred to
any PLS-complete problem. Note that these properties constitute unconditional lower bounds on the
performance of strict local search and would hold even if PLS turns out to be in FP. Since most PLS-
reductions today are tight we have these properties for almost all PLS-hard problems. This means that
a potential polynomial algorithm for calculating a local optimum is extremely unlikely to be achieved
by following strictly the local improvement path. Instead it would have to cut across the solution space,
just like the Ellipsoid Method and the Interior point algorithm.

3.2 PLS complete problems
In this section we give an overview of the major problems that have been proven to be PLS-complete,
using reductions similar to the previous section. This will illustrate the basic combinatorial nature that
underlies all such problems, as well as show that even very natural local optimization problems are
PLS-complete.

We begin with the archetypal PLS-complete problem, namely CIRCUITFLIP. This problem holds the
same importance with respect to the PLS class as SAT does for NP.

Definition 3.2.1 ([JPY88]). An instance of CIRCUITFLIP is a feedback-free Boolean Circuit made up of
AND, OR and NOT gates with n input bits (x0, x1, x2, ..., xn) and m output bits (y0, y1, y2, ..., ym). The
cost cL(x) is the binary value associated with its output, i.e.

∑
2i ∗ yi. The neighborhood of a given

solution x are all the binary assignments of Hamming distance 1 from x, i.e. with only one bit flipped.
The algorithm CL that produces a better neighboring solutions checks whether flipping any single bit
improves the cost and, if not, returns x.

Note that, while CIRCUITFLIP is a minimization problem, it can easily be formulated as a maximiza-
tion problem, simply by flipping the output bits. From now on when we use the term “cost” we refer to
the minimization version, while when we use the term“value” we refer to the maximization version.

The first thing one must do to show that CIRCUITFLIP does in fact capture all of PLS is to reduce
every PLS problem to it. A full proof of this fact is provided in [JPY88]. We give here an overview.

Theorem 3.2.1. CIRCUITFLIP is PLS-complete.

Proof Sketch. The main difficulties in proving this theorem lie in adapting the neighborhood structure of
an arbitrary PLS problem to CIRCUITFLIP. To this end we have to first reduce to an intermediate problem
where the neighborhood can match the local neighborhood structure of the CIRCUITFLIP problem.

Specifically, we reduce to two intermediate problems. First, we restrict each solution to have only
one improving neighbor. Second, we have to reduce to a problem where the solution strings have the flip
neighborhood as an improvement function. Finally, we add a circuit to calculate the cost function. ■
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Therefore, CIRCUITFLIP is at least as hard as any problem that incorporates some local search
heuristic combinatorial structure. While CIRCUITFLIP is a useful problem that we can now use to show
other problems as PLS-complete, it is unwieldy and rather unnatural. The reason is that circuits are
implicit in its description, despite the fact that most problems we encounter in practice make no mention
to circuits and boolean logic.

To alleviate this, Schaffer and Yannakakis [Sch91], using an involved reduction from CIRCUITFLIP
to POS-NAE3SAT, and then from POS-NAE3SAT to MAXCUT showed that MAXCUT is PLS-complete
under the flip heuristic. This is an extremely natural problem, which allowed a vast amount of other
problems to be shown PLS-complete. In addition, their proof was also tight, as in 3.1, which showed
that the flip heuristic in a MAXCUT instance can not only take an exponential number of steps to finish,
but it is also PSPACE-hard to compute its ending state.

To stress its importance, we define MAXCUT below.

Definition 3.2.2 (MAXCUT [Sch91]). An instance of MAXCUT consists of a simple undirected graph G
(V, E) with positive weights on the edges. A feasible solution is a partition of V into two sets V1, V2
(not necessarily of equal size). The measure of a solution is the weight of the cut, i.e. the total weight
of the edges having one endpoint in each half of the partition, and optimal solutions have maximum
measure. Two solutions are neighbors if one can be obtained from the other by moving a single vertex
from one side of the partition to the other side.

The combinatorial structure of this problem is in fact so natural and simple, that it is often very
easy to find it even in very simple settings, allowing us to bring the complexity intractability bounds of
CIRCUITFLIP down to our specific problem.

One of the places that this aforementioned structure can be found is in the local best response
improvement dynamics of congestion games. Often, one corresponds the players of a congestion game
with the nodes of a MAXCUT instance, while encoding the edge weights in the interactions between
players, in order to show that the local best response dynamics behave in the exact same way as the flip
heuristics of MAXCUT. Since the fixed points of best response dynamics, i.e. configurations where no
player has any incentive to change, are the Pure Nash Equilibria of a game, such a correspondence shows
that finding the PNE of the particular game is PLS-complete.

In Chapter 5 we construct certain reductions of this sort, mostly using MAXCUT as a starting point
to show PLS-completeness of certain games. However, our work reveals that in certain games, where the
interactions between players cannot encode arbitrary edge weights, MAXCUT is insufficient for showing
PLS-hardness. This leads as to consider a very natural extension of MAXCUT, named NODEMAXCUT,
which is exactly the same as MAXCUT only now the graph is node-weighted instead of edge weighted. A
direct reduction from MAXCUT to NODEMAXCUT is in fact unlikely to be achievable since edge weights
for every pair of nodes cannot be emulated only with weighted nodes. Because of this, we have to consider
a more complicated reduction from CIRCUITFLIP to NODEMAXCUT, which shows the fundamental aspect
of our problem.

The reductions from CIRCUITFLIP below are by no means an exhaustive list of all PLS reductions.
For instance, [DM13] and [DMT09] prove PLS-completeness for their problems in an entirely different
way. Here we focus on PLS-reductions in graph theoretic problems.

3.3 Reductions from CircuitFlip
3.3.1 The Schaffer-Yannakakis construction
The most important PLS problem CIRCUITFLIP was historically reduced to, is the archetypal MAXCUT
problem. The reduction that achieved this in [Sch91] possesses several powerful characteristics that were
later reused in further PLS proofs, including our own. In this section we give a concise and non-rigorous
presentation of the inner workings on the proof, especially remarking the parts that we intend to reuse
in further sections.

3.3.1.1 High level architecture
The construction presented by Schaffer and Yannakakis [Sch91] consists of a POSNAE3SAT instance that
emulates a CIRCUITFLIP instance in the following way: whenever we flip a variable in the POSNAE3SAT
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Figure 3.1: The general organization of the gadget used in the [Sch91] proof. Note that the rectangular
shape is meant to conceptually represent the gadgets responsible for comparison and unlocking the correct
circuit.

instance, it either corresponds to an input of the CIRCUITFLIPinstance being flipped, or to an intermediate
step between two such flips. POSNAE3SAT is a variation of classic 3SAT where instead of arbitrary
3SAT clauses we have clauses that are satisfied only if at least one variable has a different truth value from
the others. Because a POSNAE3SAT instance can be immediately converted to a MAXCUT instance,
in the following we will present the proof as if it was directly reducing to a MAXCUT instance. Hence,
when we use the term “true value” we mean that in the MAXCUT instance the node is on the side of the
cut corresponding to variables with true value.

Proof [Sch91] in a nutshell: The MAXCUT instance is composed of one central gadget
that emulates the main circuit S, as well as n additional such circuits Ci that calculate
the values of the neighbor solutions. There are also n nodes Di, connected in such a way
that at most only one has true value at a time. The Di with the true value is interpreted
as the circuit that is meant to provide the improving solution to S. Moreover, there are
certain auxiliary gadgets whose purpose is to compare the values of the outputs, incentivise
the correct Di towards the true value, “unlock” the central circuit S so it can take the new
solution and finally force all circuits S,Ci to calculate correctly. In an equilibrium state
no Di must have true value, all circuits must be computing correctly, and no Ci must be
calculating a value higher than S. This means that MAXCUT equilibria are at least as hard
as CIRCUITFLIPequilibria, i.e. finding them is PLS-hard.

In order to emulate the entire neighborhood structure the proof needs not only to construct a single
circuit-simulating MAXCUT gadget, but also to to repeat this construction for each potential neighbor
of each solution, as well as implement a way to compare between the outputs of these circuits. That is
necessary so that every flip results in a better solution for the CIRCUITFLIP problem.

At the core of this proof lies a very important construction, that is reused by all subsequent PLS
reductions from CIRCUITFLIP. This gadget’s purpose, which we call the SY (Schaffer-Yannakakis) gadget,
is to emulate a NOR gate, with some additional stipulations. By combining these gadgets Schaffer and
Yannakakis obtain their S,Ci circuits.

Because of the central importance of the way this gadget functions we present here a detailed overview
of its inner workings.

3.3.1.2 The Schaffer-Yannakakis gadget
The construction Schäffer and Yannakakis used to prove MAXCUT is PLS-complete consists of certain
input nodes, certain output nodes and certain internal nodes. In particular, each such NOR gate is
composed of the nodes in the following figure.

Note that the interesting part here is that while we gave the construction in node weighted form, it
performs exactly in the same way even if we use weighted edges with wij = wi ∗ wj . This is because in
the original construction by Schaffer and Yannakakis it was first used to prove the P-completeness of the
unweighted case of local MAXCUT.

What does this gadget do? It has the following properties: if the control nodes y, z have certain
values then the gadget either computes the NOR value of its inputs or “unlocks” its input nodes so that
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Figure 3.2: The NODEMAXCUT instance implementing a NOR(n) gadget.

they experience no bias with respect to the gadget.
More specifically, we have the following lemmas.

Lemma 3.3.1. In an equilibrium, if z1i = 1 and y1i = 0, then I1(gi), I2(gi) are indifferent with respect to
the gadget Gi.

Lemma 3.3.2. If gate Gi is incorrect, then z2i = 1. If y2i = 0 then z2i = 1. If z2i = 1, then for all j < i
z1j = z2j = z3j = 1 and y1j = y2j = y3j = 0.

Lemma 3.3.3. Suppose z1i = 0 and y1i = 1. If gi is correct then z2 and y2 are indifferent with respect to
the other nodes of the gate Gi. If gi is incorrect then gi is indifferent with respect to the other nodes of
the gate Gi, but gains the node ρ of weight 2−500N .

Lemma 3.3.4. If Control = 1 then all y, z nodes have a 2−87N bias towards their natural values. If
Control = 0 then all y, z nodes have a 2−87N bias towards their unnatural values.

Lemma 3.3.5. Assuming all nodes of the computing circuit gadget are in equilibrium and have no external
biases. If Control = 1 then ∀i,z1i = 0, y1i = 1, z2i = 0, y2i = 1, z3i = 0, y3i = 1. If Control = 0 then
∀iz1i = 1, y1i = 0, z2i = 1, y2i = 0, z3i = 1, y3i = 0.

What one should particularly note is that these control nodes have extremely low bias to either
direction, despite the fact that they define the behaviour of the entire construction based on their value.
Indeed, that is the fundamental reason the reduction itself functions. We stress the importance of these
NOR gadgets as they are reused practically intact in our reduction in the next chapter.

3.3.2 The simplified two circuit construction
However, the framework utilized by Schaffer and Yannakakis is somewhat unwieldy when one needs to
adapt it for further PLS-completeness proofs from similar graph theoretic problems. In these cases, one
can use certain simpler PLS-completeness reduction gadgets proposed by [ET11].

Two such cases are the following. The first is the PLS-hardness of MAXCUT with the added stipulation
that instance graphs have maximum degree 5 and ONEENEMYPARTYAFFILIATION, which is a variation
of MAXCUT only with all except one edge for each node being negative. Because of their significant
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Figure 3.3: The simplified flip-flop architecture.

similarity to MAXCUT, Elsasser and Tscheuschner modified and simplified the original proof of Schaffer
and Yannakakis to use it on their more complex problem.

The principal modification that both of these approaches adopt is that instead of having N circuits
calculating the value of each neighbor and then comparing to choose the improving flip, Elsasser and
Tscheuschner use only two circuits that each output an improving solution if one exists, along with the
value of the current solution. This greatly simplifies things, considering that we now dont have to bother
with comparing multiple values among other details. This two-circuit approach was also used by Gairing
and Savani to prove PLS-completeness [GS10] using the Schaffer-Yannakakis gadgets.

Note that the reductions using only two circuits themselves borrow from an even older construction by
Krentel [Kre89], showing PLS-completeness for certain other local optimization problems. Furthermore,
this two circuit construction has the unfortunate property that the reduction is no longer tight. This is
due to the fact that while local optima of the construction still correspond to local optima of CIRCUITFLIP,
each improving flip might flip multiple bits at the same time, hence creating shortcuts in the process of
local search. Regardless, in this work we are concentrated on the computational hardness of the local
optima themselves, rather than, albeit unconditional, guarantees on the performance of local search
itself.
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Chapter 4

Node Weighted Max Cut

The main technical work of this thesis is presented in this section. In particular, this chapter contains
the full details of our proof reducing CIRCUITFLIP to NODEMAXCUT. We remind that the proof in this
chapter heavily draws from the proofs of [ET11] and [GS10] which in turn draw from [Sch91]. Firstly, we
present the problem and give an intuitive motivation for its formulation. Next, we explain why a direct
reduction from MAXCUT to NODEMAXCUT is unlikely to exist and why it is necessary to reduce from
the much more fundamental CIRCUITFLIP problem. Secondly, we present the overview of our reduction,
along with proofs for the behaviour of each gadget.

4.1 The problem
The central problem we are examining in this chapter comes from a slight simplification of MAXCUT.
Specifically, now we assume nodes each have their own weight and each node, instead of choosing a
partition such that

∑
i,j∈Vx

wij is minimized, the node minimizes
∑

i,j∈Vx∩N(i) wj . In NODEMAXCUT
the node strives to choose a side with as light neighbors as possible. Note that an immediate combinatorial
difference is that now every node ”sees” each other the same way, i.e. a very heavy node greatly influences
all his neighbors, as opposed to vanilla MAXCUT where he might have heavy and light adjacent edges,
influencing his neighbors non-uniformly.

Definition 4.1.1 (NODEMAXCUT). An instance of NODEMAXCUT consists of a simple undirected graph
G (V, E) with positive weights (Wi) on the nodes and unweighted edges. A feasible solution is a partition
of V into two sets V1, V2 (not necessarily of equal size). The measure of a solution is the weight of the
cut, where the edges eij are considered as if having weight Wi ∗Wj . Optimal solutions have maximum
measure. Two solutions are neighbors if one can be obtained from the other by moving a single vertex
from one side of the partition to the other side.

NODEMAXCUT instances are essentially MAXCUT instances, where one asks the question: what if
we only had node weights? In other words, similar to MAXCUT where players seek to maximize the
sum of their adjacent edges in the cut, now in NODEMAXCUT players seek to maximize the sum of
their neighboring vertices on different sides of the cut as them. It is a natural variation of the basic
MAXCUT. The fact that such a node weighted game does in fact possess a Nash Equilibrium is not
trivial. Indeed, one needs to observe that we now have a weighted potential function, rather than normal
potential function. Specifically, in MAXCUT the potential function (i.e. the cut) has the following form.∑

σ(i) ∗ σ(j) ∗Wij

Where σ(i) ∈ −1, 1 depending on the side of the cut.
On the contrary, a player A in NODEMAXCUT seeks to maximize∑

B∈N(A)

σ(A) ∗ σ(B) ∗WB

One immediately notes the necessity for a weight factor for the potential so that it can become exact,
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Figure 4.1: An instance of NODEMAXCUT. Note how node weights are equivalent to Wi ∗Wj edges, in
terms of each player’s local dynamics

making the problem equivalent to having a graph with edges of the form Wi ∗Wj .∑
σ(i) ∗ σ(j) ∗Wi ∗Wj

The main setting NODEMAXCUT instances arise in, to the best of our experience so far, is Weighted
Congestion Games with Identity Delays. In these games we cannot conceal edge weights wij in the
delay functions so as to reduce from MAXCUT. In fact such Congestion Games are most common in the
real world as opposed to adversarially constructed delay functions. Indeed when we use modern roads
they each have similar susceptibility to congestion instead of exponentially different coefficients. This
similarity between resources means that we need a different problem to capture their PLS-completeness,
i.e. to obtain PLS-hardness solely through the exponentially different weights of players. For this reason,
we define our NODEMAXCUT problem and examine its local search complexity.

4.1.1 A naive unsuccessful approach
The first question one asks is whether PLS-hardness for NODEMAXCUT can be immediately obtained
through a reduction from the usual MAXCUT problem, obviating the need for such a cumbersome re-
duction. To see why this is unlikely to be true, let us consider the simplest possible version of such
a reduction. In particular, such a reduction would consist of a MAXCUT instance where certain nodes
correspond to the nodes of the NODEMAXCUT instance, in a bijective manner.

Since the neighborhood structures in these two constructions must match for the PLS reduction
to be valid, a flip of a node in the red graph must correspond to a flip of a node of the blue graph.
Moreover, suppose in the red MAXCUT instance the node being flipped gains ∆ =

∑
Wij by being

flipped. Since the correspondence must be a bijection, flipping the node in the blue graph also gains
∆ =

∑
Wij . Now consider what happens to value of the cut (i.e. potential) after such a flip. At first,

it changes by ∆. Since the other dark blue nodes must somehow be ”informed” of the fact that this
node was flipped, certain light blue nodes must flip, solely through local improvement. However, their
local improvement flips also strictly increase the value of the cut and hence the value of the cut is now
∆+ δ1. Now if we flip the deep blue node we initially flipped back to its original side we must decrease
the cut again exactly by ∆, since the other dark blue nodes never changed. Afterwards, the light blue
nodes again flip in order to inform the other dark blue nodes of the change of their neighbor. This again
increases the cut by δ2 to a total of δ1 + δ2. Notice that both the starting and end states of this process
correspond to the exact same partitions of the nodes of the original red MAXCUT graph. Therefore, by
finiteness, there must be a configuration of the blue NODEMAXCUT graph such that both values of the
cut are the same. However this would imply that δ1 = δ2 = 0 which can only happen if no light blue
nodes move after a flip of the ”core” dark blue nodes has been achieved. This is impossible since the
neighborhood of the dark blue nodes must change whenever one of them changes (in order to emulate
MAXCUT) and this cannot be achieved with constant light blue nodes in a NODEMAXCUT instance. In
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the above reasoning one could replace the dark blue nodes with sets of nodes, and yet they would run
into the same problem: as long as intermediate nodes are used, they will absorb a nonzero part of the
improvement of every move, making a one-to-one correspondence with a MAXCUT instance impossible
to achieve. The above difficulties strongly suggest that NODEMAXCUT is in fact a more fundamental
problem whose PLS-hardness cannot be derived directly from MAXCUT. For this reason we turn to the
”grandmother” problem of the PLS complexity class, namely CIRCUITFLIP.

Figure 4.2: How a naive reduction from NODEMAXCUT would have to work. Initial MAXCUT instance
is in red, the deep blue nodes are the corresponding nodes of NODEMAXCUT, and light blue are any nodes
that the reduction would add to emulate MAXCUT

Definition 4.1.2. An instance of CIRCUITFLIPcan be described as a feedback-free Boolean Circuit made
up of AND, OR and NOT gates with n input bits (x0, x1, x2...xn)and m output bits (y0, y1, y2...ym). The
cost cL(x) is the binary value associated with its output, i.e.

∑
2i ∗ yi. The neighborhood of a given

solution x are all the binary assignments of Hamming distance 1 from x., i.e. with only one bit flipped.
The algorithm CL that produces a better neighboring solutions checks whether flipping any single bit
improves the cost and, if not, returns x.

Of course, NODEMAXCUT is not the first problem that requires reducing from the oldest known
PLS problem. Recall the two problems presented in the previous section, which utilized a flip-flop
architecture to reduce from CIRCUITFLIP. Our proof draws a significant amount of ideas from these
proofs. The differences are highlighted in the next section.

4.2 Overview of the reduction
In our proof, we slightly simplify certain details of the two previous reductions to obtain an even simpler
construction, which combined with our insights into the nature of NODEMAXCUT and the gadgets that
this entails, allows us to obtain a PLS-hardness proof for our problem. More specifically, we use the
two-circuit construction of Elsasser and Tscheuschner, with the added simplification that now instead of
two central nodes controlling which of the two circuits is active, we have only one such node (the active
circuit depends on the value of that node) connected in a somewhat involved way with the outputs of the
circuits so that we can achieve comparison. This is necessary because of the combinatorial structure of
NODEMAXCUT as opposed to all preceding problems where edges have weights rather than nodes, which
would cause significant difficulties if we were to directly use the preexisting reductions. Furthermore,
and more importantly, we create a gadget that allows nodes with small weights to influence nodes with
heavy weights, which is the key observation into the nature of NODEMAXCUT as a weighted potential
game that allows the reduction to work. In short, it exploits the fact that the weights of nodes enter into
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Figure 4.3: The high level construction of the NODEMAXCUT instance. Note that rectangles represent
gadgets that will be defined below, circles represent nodes that take part in multiple gadgets, and bolded
black circles represent a set of (n) such nodes. The computation gadgets are represented by CA and CB.

the differential of the potential as a coefficient in weighted games, and hence allows very small reductions
in the potential to happen in several improving steps. We are now going to describe our reduction in
detail along with proofs of the lemmas that dictate the behaviour of the construction. The only lemmas
that will not be proved are the ones in Section 3.3.1.2 because they are identical to the ones provided by
Schaffer and Yannakakis. We remind that we are reducing CIRCUITFLIPto NODEMAXCUT. This means
we are constructing an instance of NODEMAXCUT that emulates a pair of circuits giving their outputs as
inputs to each other. Given a circuit C of CIRCUITFLIP, the node-weighted graph that we construct is a
combination of different gadgets which themselves might be seen as smaller instances of NODEMAXCUT
. These gadgets have different goals but what each of them intuitively does is receiving some information
to some of its nodes, the “input” nodes, and transforming it while carrying it through its internal part
towards the “output” nodes. These input and output nodes are the nodes through which the different
gadgets are connected. The connections are not always simple and we will later go into more detail on
how these connections are done.

As before, our construction follows a flip-flop architecture that has been previously used for reductions
from CIRCUITFLIP to MAXCUT and some of its variants, but requires more sophisticated implementa-
tions in many of its gadgets, since we deal with the special case of NODEMAXCUT. The most important
differences and our major technical contributions are summarized at the end of the section. The con-
structed instance is presented at a high level in Figure 4.3. Next, we discuss the role of each separate
gadget. The exact construction of each separate gadget is presented in its respective section.

For a given circuit C of the CIRCUITFLIP with n input gates and m output gates, we first construct
the Circuit Computing gadgets Cℓ (for ℓ = A,B). These gadgets are instances of NODEMAXCUT that
simulate C in the following sense: I ℓ is a set of n nodes whose values correspond to an “input string”
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of C. Valℓ is a set of m nodes whose values correspond to the output of circuit C with input string I ℓ.
Nextℓ is a set of n nodes that represent a neighbor string of I ℓ with greater output value in C. More
precisely, if the “input” string defined by the values of I ℓ, has a neighbor solution (Hamming distance 1)
with strictly greater cost then the values of the n nodes in Nextℓ correspond to this neighbor string. In
case such a neighbor string does not exist (which means that I ℓ is an optimal solution to CIRCUITFLIP)
the values of the nodes in Nextℓ equal I ℓ.

These Circuit Computing gadgets have two separate functionalities: the write mode (Controlℓ = 0)
and the compute mode (Controlℓ = 1). When Cℓ is in the write mode the values of the input nodes I ℓ
are changed. When Cℓ is in the compute mode the values of the nodes Nextℓ,Valℓ are updated with the
correct output values of the circuit C. To formalize the term correct, we introduce the following notation
that we use through the section.

Definition 4.2.1. For the given circuit C of CIRCUITFLIP. We denote with:
• Real-Val(Iℓ) the value of the circuit C with input string defined by the values of the nodes in Iℓ.
• Real-Next(I)ℓ) is a neighbor string (Hamming distance 1) of Iℓ with strictly greater output value

in circuit C. If such a string does not exist, Real-Next(Iℓ) = Iℓ.

The Comparator gadget comparesValA andValB , which are intended to be Real-Val(IA), Real-Val(IB)
and outputs 1 if ValA ≤ ValB or 0 otherwise. The result of this comparison is “stored” in the value of
the Flag node. If Flag = 1 then IB “writes” her better neighboring solution to IA (symmetrically if
Flag = 0). Intuitively, if this happens then in the next “cycle” IA will have a better value and will write
her improving solution to IB . This goes on and on until no better neighbor solution exists and both IA
and IB have the same output node values.

The CopyB gadget (respectively for CopyΑ) is responsible for writing the values of the nodes NextB
to the nodes IA when Flag = 1 (when ValA ≤ ValB). When Flag = 1 the nodes TB take the values of
the nodes in NextB. Now if IA ̸= NextB then the Equality gadget turns the value of the ControlA to
0 because IA ̸= TB . Thus CA enters write mode and the nodes in IA adopt the values of the NextB
nodes. Then ControlA becomes 1 since IA = TB and CA enters “compute mode”. This means that values
Real-Next(IA), Real-Val(IA) are written to the output nodes NextA, ValA.

Before proceeding we present a proof-sketch of our reduction. The mathematically rigorous version
of this proof is presented in the proof of Theorem 4.2.11 at the end of the section. We will prove that
at any equilibrium of the instance of NODEMAXCUT of Figure 4.3 in which Flag = 1 (symmetrically if
Flag = 0) three things hold.

1. IA = NextB
2. NextB = Real-Next(IB)
3. Real-Val(IB) ≥ Real-Val(IA)

Once these claims are established we can be sure that the string defined by the values of nodes in IB
defines a locally optimal solution for CIRCUITFLIP. This is because the above 3 claims directly imply
that Real-Val(IB) ≥ Real-Val (Real-Next (IB)) which means that there is no neighboring solution of IB
with strictly greater cost. Obviously we establish symmetrically the above claims when Flag = 0.

Since our construction in Figure 4.3 is an instance of NODEMAXCUT and the bitwise complement
of an equilibrium is also equilibrium the term Flag = 1 seems meaningless. In the construction of the
Circuit Computing gadget (and in the constructions of all the presented gadgets) there also exist two
supernodes, a 1-node and a 0-node, with huge weight that share an edge. As a result, at any equilibrium
these nodes have opposite values. The term Flag = 1 means that the Flag node has the same value with
the 1-node. This notation is also used in subsequent lemmas and always admits the same interpretation.
As one can see in the appendix, the construction of the gadgets assume nodes with values always 0 or 1.
This can be easily established by connecting one such node with its complementary supernode.

In the rest of the section we present the necessary lemmas to make the above presented proof sketch
rigorous. To do so, we follow a three step approach. We first present the exact behavior of the Circuit
Computing gadgets CA, CB . We then reason why IA = NextB, which we refer to as the Feedback problem.
Finally we establish the last two claims which we refer to as Correctness of the Outputs.
Circuit-computing gadgets
The Circuit Computing gadgets CA, CB are the basic primitives of our reduction and are based on the
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gadgets introduced by Schäffer and Yannakakis to establish PLS-completeness of MAXCUT. This type
of gadgets can be constructed so as to simulate any boolean circuit C. The most important nodes are
those corresponding to the input and the output of the simulated circuit C and are denoted as I,O.
The other important node is the Control that switches between the write and the compute mode of the
gadget. Figure 4.4 is an abstract depiction of this type of gadgets. The properties of the gadget are
described in Theorem 4.2.1. Its proof is presented in further sections, where the exact construction of
the gadget is presented. We first introduce some convenient notation that will help us throughout the
proof of completeness.

Figure 4.4: Circuit Computing gadgets. The big, dashed “vertices” named I and O, represent all the input
and output nodes respectively. This type of (“hyper”-)node is represented in the rest of the figures with a
bold border.

Definition 4.2.2. Let an instance of NODEMAXCUT and a specific equilibrium of this instance. The bias
that node i experiences with respect to the subset N ′ ⊆ N is∣∣∣∣∣∣

∑
j∈N1

i ∩N ′

wj −
∑

j∈N0
i ∩N ′

wj

∣∣∣∣∣∣
where N0

i is the set of neighbors of node i that choose 0 (respectively for N1
i )

Bias is a key notion in the subsequent analysis. The gadgets presented in Figure 4.3 are subset of
nodes of the overall instance. Each gadget is composed by the ”input nodes”, the internal nodes and
the ”output nodes”. Moreover as we have seen each gadget stands for a ”circuit” with some specific
functionality (computing, comparing, copying e.t.c.). Each gadget is specifically constructed so as at
any equilibrium of the overall instance, the output nodes of the gadget experience some bias towards
some values that depend on the values of the input nodes of the gadget. Since the output nodes of a
gadget may also participate as input nodes at some other gadgets, it is important to quantify the bias
of each gadget in order to prove consistency in our instance. Ideally, we would like to prove that at any
equilibrium the bias that a node experiences from a gadget in which it is an output node, is greater than
the sum of the biases of the gadgets in which it participates as input node.

Theorem 4.2.1 describes the equilibrium behavior of the input nodes Iℓ and output nodes Nextℓ, V alℓ
of the CircuitComputing gadgets Cℓ.

Theorem 4.2.1. At any equilibrium of the NODEMAXCUT of Figure 4.3.

1. If Controlℓ = 1 and the nodes of Nextℓ,V alℓ experience 0 bias from any other gadget beyond Cℓ

then:

• Nextℓ = Real-Next(Iℓ)
• Valℓ = Real-Val(Iℓ)

2. If Controlℓ = 0 then each node in Iℓ experiences 0 bias from the internal nodes of Cℓ.
3. Controlℓ experiences wControlℓ bias from the internal nodes of Cℓ.
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Case 1 of Theorem 4.2.1 describes the compute mode of the Circuit Computing gadgets. At any equi-
librium with ControlA = 1, and with the output nodes of CA being indifferent with respect to other
gadgets, then CA computes its output correctly. Note that because the nodes in NextA,ValA are also
connected with internal nodes of other gadgets (CopyΑ and Comparator gadgets) that may create bias
towards the opposite value, the second condition is indispensable. Case 2 of Theorem 4.2.1 describes
the write mode. If at an equilibrium ControlA = 0 then the nodes in IA have 0 bias from the CA

gadget and as a result their value is determined by the biases of the CopyB gadget and the Equality
gadget. Case 3 of Theorem 4.2.1 describes the minimum bias that the equality gadget must pose to the
Control nodes so as to make the computing gadget flip from one mode to the other. As we shall see,
the weights wControlA = wControlB = wControl are selected much smaller than the bias the Controlℓ
nodes experience due to the Equality gadgets, meaning that the Equality gadgets control the write mode
and the compute mode of the Circuit Computing gadgets no matter the values of the nodes in Cℓ gadgets.

We remark that our construction of the Circuit Computing gadgets presented in further sections
ensures Theorem 4.2.1 for selecting wControl arbitrarily smaller than the weights for the internal nodes
of the Circuit Computing gadgets. As we shall see up next this is crucial for our reduction and, as
we discuss in the end of the section, this is a major difference with the respective Circuit Computing
gadgets of other reductions in this vein. This is because of the inclusion of the leveraging gadget that
the combinatorial structure of NODEMAXCUT dictates.
Solving the Feedback problem.
The purpose of this section is to establish the first case of the above presented claims i.e. at any
equilibrium of NODEMAXCUT instance of Figure 4.3 in which Flag = 1, NextB is written to IA and vice
versa when Flag = 0. This is formally stated in Theorem 4.2.2.

Theorem 4.2.2. Let an equilibrium of the instance of NODEMAXCUT described in Figure 4.3.
• If Flag = 1 then IA = NextB
• If Flag = 0 then IB = NextA

We next present the necessary lemmas for proving Theorem 4.2.2.

Lemma 4.2.3. Let an equilibrium of the overall LOCALNODEMAXCUT instance of Figure 4.3. Then
• ControlA = (IA = TB)

• ControlB = (IB = TA)

Below we present the construction of the equality gadget. This gadget is specifically designed so that at
any equilibrium, its internal nodes create bias to ControlA towards the value of the predicate (IA = TB).
Notice that if we multiply all the internal nodes of the equality gadget with a positive constant, the bias
ControlA experiences towards value (IA = TB) is multiplied by the same constant (see Definition 4.2.2).
Lemma 4.2.3 is established by multiplying these weights with a sufficiently large constant so as to make
this bias larger than wControlA. We remind that by Theorem 4.2.1, the bias that ControlA experiences
from CA is wControlA. As a result, the equilibrium value of ControlA is (IA = NextB) no matter the
values of ControlA ’s neighbors in the C1 gadget. The red mark between ControlA and the CA gadget
in Figure 4.3 denotes the ”indifference” of ControlA towards the values of the CA gadget (respectively
for ControlB).

In the high level description of the NODEMAXCUT instance of Figure 4.3, when Flag = 1 the values
of NextB is copied to IA as follows: At first TB takes the value of NextB. If IA ̸= TB then ControlA = 0
and the CA gadget switches to write mode. Then the nodes in IA takes the values of the nodes in NextB.
This is formally stated in Lemma 4.2.4.

Lemma 4.2.4. At any equilibrium point of the NODEMAXCUT instance of Figure 4.3:
• If Flag = 1, i.e. NextB writes on IA, then

1. TB = NextB
2. If ControlA = 0 then IA = TB = NextB
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• If Flag = 0 i.e. NextA writes on IB, then

1. TA = NextA
2. If ControlB = 0 then IB = TA = NextA

In further sections, we present the construction of the Copy gadgets. At an equilibrium where Flag = 1,
this gadget creates bias to the nodes in IA, TB nodes towards adopting the values of NextB. Since IA, TB

also participate in the Equality gadget in order to establish Lemma 4.2.4 we want to make the bias of
the CopyB gadget larger than the bias of the Equality gadget. This is done by again by multiplying the
weights of the internal nodes of CopyB with a sufficiently large constant. The ”indifference” of the nodes
in IA, TB with respect to the values of the internal nodes of the Equality gadget is denoted in Figure 4.3
by the red marks between the nodes in IA, TB and the Equality gadget.

In Case 2 of Lemma 4.2.4 the additional condition ControlA = 0 is necessary to ensure that IA =
NextB. The reason is that the bias of the Copy gadget to the nodes in IA is sufficiently larger than the
bias of the Equality gadget to the nodes in IA, but not necessarily to the bias of the CA gadget. The
condition ControlA = 0 ensures 0 bias of the CA gadget to the nodes IA, by Theorem 4.2.1. As a result
the values of the nodes in IA are determined by the values of their neighbors in the CopyB gadget.

Proof of Theorem 4.2.2. Let an equilibrium in which Flag = 1. Let us assume that IA ̸= NextB. By
Case 1 of Lemma 4.2.4, TB = NextB. As a result, IA ̸= TB , implying that ControlA = 0 (Lemma 4.2.3).
Now, by Case 2 of Lemma 4.2.4 we have that IA = NextB, which is a contradiction. The exact same
analysis holds when Flag = 0. ■

Correctness of the Output Nodes.

In the previous section we discussed how the Feedback problem (IA = NextB when Flag = 1) is solved in
our reduction. We now exhibit how the two last cases of our initial claim are established.

Theorem 4.2.5. At any equilibrium of the instance of LOCALNODEMAXCUT of Figure 4.3:
• If Flag = 1

1. Real-Val(IA) ≤ Real-Val(IB)
2. NextB = Real-Next(IB)

• If Flag = 0

1. Real-Val(IB) ≤ Real-Val(IA)
2. NextA = Real-Next(IA)

At first we briefly explain the difficulties in establishing Theorem 4.2.5. In the following discussion
we assume that Flag = 1, since everything we mention holds symmetrically for Flag = 0. Observe that
if Flag = 1 we know nothing about the value of ControlB and as a result we cannot guarantee that
NextB = Real-Next(IB) or ValB = Real-Val(IB). But even in the case of CA where ControlA = 1 due to
Theorem 4.2.2, the correctness of the nodes in NextA or ValA cannot be guaranteed. The reason is that
in order to apply Theorem 4.2.1, NextA and ValA should experience 0 bias with respect to any other
gadget they are connected to. But at an equilibrium, these nodes may select their values according to
the values of their heavily weighted neighbors in the CopyA and the Comparator gadget.

The correctness of the values of the output nodes, i.e. NextA = Real-Next(IA) and ValA =
Real-Val(IA), is ensured by the design of the CopyΑ and the Comparator gadgets. Apart from their
primary role these gadgets are specifically designed to cause 0 bias to the output nodes of the Circuit
Computing gadget to which the better neighbor solution is written. In other words at any equilibrium
in which Flag = 1 and any node in CA: the total weight of its neighbors (belonging in the CopyA or the
Comparator gadget) with value 1 equals the total weight of its neighbors (belonging in the CopyA or the
Comparator gadget) with value 0.

The latter fact is denoted by the green marks in Figure 4.5 and permits the application of Case 1 of
Theorem 4.2.1. Lemma 4.2.6 and 4.2.7 formally state these ”green marks”.
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Figure 4.5: Since Flag = 1 any internal node of the C2 gadget has 0 bias with respect to all the other
gadgets. As a result, Theorem 4.2.1 applies.

Lemma 4.2.6. At any equilibrium point of the LOCALNODEMAXCUT instance of Figure 4.3:

• If Flag = 1 then any node in NextA experience 0 bias with respect to the CopyΑ gadget.

• If Flag = 0 then then any node in NextB experience 0 bias with respect to the CopyB gadget.

Lemma 4.2.7. Let an equilibrium of the instance of LOCALNODEMAXCUT of Figure 4.3:

• If Flag = 1 then all nodes of CA experience 0 bias to the Comparator gadget.

• If Flag = 0 then all nodes of CB experience 0 bias to the Comparator gadget.

The reason that in Lemma 4.2.7 we refer to all nodes of CA (respectively CB) and not just to
the nodes in V alA (respectively V alB) is that in the constructed instance of LOCALNODEMAXCUT of
Figure 4.3, we connect internal nodes of the CA gadget with internal nodes of the Comparator gadget.
This is the only point in our construction where internal nodes of different gadgets share an edge and is
denoted in Figure 4.3 and 4.5 with the direct edge between the CA gadget and the Comparator gadget.
Now using Lemma 4.2.6 and Lemma 4.2.7 we can prove the correctness of the output nodes NextA,ValA
when Flag = 1 i.e. NextA = Real-Next(IA) and ValA = Real-Val(IB) (symmetrically for the nodes in
NextB,ValB when Flag = 0).

Lemma 4.2.8. Let an equilibrium of the instance of LOCALNODEMAXCUT of Figure 4.3:

• If Flag = 1 then NextA = Real-Next(IA), ValA = Real-Val(IA).

• If Flag = 0 then NextB = Real-Next(IB), ValB = Real-Val(IB).
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Proof. We assume that Flag = 1 (for Flag = 0 the exact same arguments hold). By Theorem 4.2.2
we have IA = NextB and by Lemma 4.2.4 we have that TB = NextB. As a result, IA = TB and by
Lemma 4.2.3 ControlA = 1. Lemma 4.2.6 and Lemma 4.2.7 guarantee that the nodes in NextA,ValA of
CA experience 0 bias towards all the other gadgets of the construction and since ControlA = 1, we can
apply Case 1 of Theorem 4.2.1 i.e. ValA = Real-Val(IA) and NextA = Real-Next(IA). ■

Up next we deal with the correctness of the values of the output nodes in ValB and NextB when
Flag = 1. We remind again that, even if at an equilibrium ControlB = 1, we could not be sure about
the correctness of the values of these output nodes due to the bias their neighbors in the CopyB and
the Comparator gadget (Theorem 4.2.1 does not apply). The Comparator gadget plays a crucial role in
solving this last problem. Namely, it also checks whether the output nodes in NextB have correct values
with respect to the input IB and if it detects incorrectness it outputs 0. This is done by the connection
of some specific internal nodes of the CA, CB gadgets with the internal nodes of the Comparator gadget
(Figure 4.3: edges between CA, CB and Comparator).

Lemma 4.2.9. At any equilibrium of the NODEMAXCUT instance of Figure 4.3:

• If Flag = 1 then NextB = Real-Next(IB)

• If Flag = 0 then NextA = Real-Next(IA)

We highlight that the correctness of values of the output nodes NextB, i.e. NextB = Real-Next(IB),
is not guaranteed by application of Theorem 4.2.1 (as in the case of correctness of NextA, V alA), but
from the construction of the Comparator gadget. Lemma 4.2.9 is proven in Section 4.3.3 where the
exact construction of this gadget is presented. Notice that Lemma 4.2.9 says nothing about the cor-
rectness of the values of the output nodes in V alB . As we latter explain this cannot be guaranteed
in our construction. Surprisingly enough, the Comparator outputs the right outcome of the predicate
(Real-Val(IA) ≤ Real-Val(IB)) even if ValB ̸= Real-Val(IB). The latter is one of our main technical con-
tributions in the reduction that reveals the difficulty of LOCALNODEMAXCUT. The crucial differences
between our Comparator and the Comparator of the previous reductions are discussed in the end of
the section. Lemma 4.2.10 formally states the robustness of the outcome of the Comparator even with
”wrong values” in the nodes of V alB and is proven in the next section.

Lemma 4.2.10. At any equilibrium of the NODEMAXCUT instance of Figure 4.3:

• If Flag = 1, NextA = Real-Next(IA), ValA = Real-Val(IA) and NextB = Real-Next(IB) then

Real − V al(IA) ≤ Real − V al(IB)

• If Flag = 0, NextB = Real-Next(IB), ValB = Real-Val(IB) and NextA = Real-Next(IA) then

Real − V al(IB) ≤ Real − V al(IA)

We are now ready to prove Theorem 4.2.5.

Proof of Theorem 4.2.5. Let an equilibrium of the instance of Figure 4.3 with Flag = 1 (respectively
for Flag = 0). By Lemma 4.2.9, NextB = Real-Next(IB) and thus Case 1 is established. Moreover by
Lemma 4.2.8, NextA = Real-Next(IA) and ValA = Real-Val(IA). As a result, Lemma 4.2.10 applies and
Real-Val(IA) ≤ Real-Val(IB) (Case 2 of Theorem 4.2.5) ■

Having established Theorem 4.2.2 and 4.2.5 the PLS-completeness of NODEMAXCUT follows easily. For
the sake of completeness we present the proof of Theorem 4.2.11 that we describe in the beginning of
the section.

Theorem 4.2.11. NODEMAXCUT is PLS-complete.
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Proof. For a given circuit C of the CIRCUITFLIP, we can construct in polynomial time the instance of
LOCALNODEMAXCUT of Figure 4.3. Let an equilibrium of this instance. Without loss of generality,
we assume that Flag = 1. Then, by Theorem 4.2.2 and Theorem 4.2.5, IA = NextB, NextB =
Real −Next(IB) and Real − V al(IA) ≤ Real − V al(IB). As a result, we have that

Real − V al(IB) ≥ Real − V al(IA)

= Real − V al(NextB)

= Real − V al (Real −Next(IB))

But if IB ̸= Real−Next(IB), by Definition 4.2.1 then Real−V al(IB) > Real−V al (Real −Next(IB))
which is a contradiction. Thus IB = Real − Next(IB) = IB , meaning that the string defined by the
values of IB is a locally optimal solution for the CIRCUITFLIP problem. ■

4.3 Proofs of the individual gadgets
In the following sections we fully present all the details of the construction for the proof of Theorem
4.2.11. Recall that our NODEMAXCUT instance is composed of the following gadgets:

1. Leverage gadgets that are used to transmit nonzero bias to nodes of high weight.
2. Two Circuit Computing gadgets A,B that calculate the values and next neighbors of solutions.
3. A Comparator gadget
4. Two Copy gadgets that transfer the solution of one circuit to ther other, and vice versa.
5. Two controller gadgets that decide which circuit should enter write or compute mode.
Note that whenever we wish to have a node of higher weight that dominates all other nodes of lower

weight, we multiply its weight with 2kN for some constant k. We then choose N sufficiently high so that,
for all k, nodes of weight 2kN dominate all nodes of weight 2(k−1)N . Henceforth, we will assume N has
been chosen sufficiently high for this purpose.

Moreover, when we have constant nodes of a certain value (i.e. pinned to 1) we connect them with
one of two supernodes. Supernodes are nodes of huge weight that share an edge and as a result at any
equilibrium these nodes have opposite value. In particular, these supernodes have weight 21000N which
dominates the weight of any other node, given we chose N as described above. The term Control = 1
means that the Control node has the same value with the 1-node.

When we reference the value of a circuit, we will mean the value that the underlying CIRCUITFLIP
instance would output given the same input.

When we reference the value of a node we will mean the side of the cut it lies on. There are two
values, 0, 1 for each side of the cut.

4.3.1 Circuit Computing Gadget
Each of the two computing circuits is meant to both calculate the value of the underlying CIRCUITFLIP
instance, as well as the best neighboring solution. For technical reasons one of the two circuits will need
to output the complement of the value instead of the value itself, so that comparison can be achieved
later with a single node.

In this section we present the gadgets that implement the above circuits in a NODEMAXCUT instance.
The construction below is similar to the constructions of Schäffer and Yannakakis used to prove MAXCUT
PLS-complete ([Sch91]). Since NOR is functionally complete we can implement any circuit with a
combination of NOR gates. In particular, each NOR gate is composed of the gadgets below. Each such
gadget is parameterized by a variable n, and a NOR gadget with parameter n is denoted NOR(n). Since
we wish for earlier gates to dominate later gates we order the gates in reverse topological order, so as
to never have a higher numbered gate depend on a lower numbered gate. The ith gate in this ordering
corresponds to a gadget NOR(2N+i). Note that the first gates of the circuit have high indices, while the
final gates have the least indices.

We take care to number the gates so that the gates that each output the final bit of the value of the
circuit are numbered with the n lowest indexes, i.e. the gate of the kth bit of the value corresponds to
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a gate NOR(2N+k). This is necessary so that their output nodes can be used for comparing the binary
values of the outputs.

The input nodes of these gadgets are either an input node to the whole circuit or they are the output
node of another NOR gate, in which case they have the weight prescribed by the previous NOR gate.
The input nodes of the entire circuit (which are not the output nodes of any NOR gate) are given weight
25N .

Figure 4.6: The NODEMAXCUT instance implementing a NOR(n) gadget.

Moreover, we have y1i ,z1i nodes which are meant to bias the internal nodes of each gadget and
determine its functionality. Specifically, a1i , a2i , c1i , c2i , vi, b3i are biased to have the same value as y1i , while
b1i , b

2
i , d

1
i , d

2
i , c

3
i are biased to have the same value as z1i . This is achieved by auxiliary nodes of weight

2−200N , shown in Figure 4.7.

Figure 4.7: Local bias to internal nodes from y1i , z
1
i

We also have auxiliary nodes ρ of weight 2−500N that bias the output node gi to the correct NOR
output value. Note that these nodes have the lowest weight in the entire construction.
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Figure 4.8: Extremely small bias to NOR output value.

These control nodes, y1, z1, y2, z2 are meant to decide the functionality of the gadget. We say that
the y, z nodes have their natural value when y = 1 and z = 0. We say they have their unnatural value
when y = 0 or z = 0. In general, when these nodes all have their natural values the NOR gadget is
calculating correctly and when they have their unnatural values the circuit’s inputs are indifferent to the
gadget.

Unlike Schäffer and Yannakakis ([Sch91]) we add two extra control variable nodes y3, z3 to each such
NOR gadget, both of weight n − 50. The reason is to ascertain that in case of incorrect calculation at
least one y variable will have its unnatural value. Otherwise, it would be possible, for example, to have
an incorrect calculation with only z2 being in an unnatural state.

These NOR gadgets are not used in isolation, but instead compose a larger computing circuit.
As Schäffer and Yannakakis do ([Sch91]), we connect each of the control variables zi, yi of the above
construction so as to propagate their natural or unnatural values depending on the situation. The
connection of these gadgets is done according to the ordering we established earlier. Recall that the last
m gates correspond to gadgets calculating the value bits, the n gates before them correspond to the
output gates of the next neighbor, and the rest are internal gates of the circuit.

Figure 4.9: Connecting the control nodes of the NOR gadgets. Recall that M is the number of total gates
in the circuit, n is the number of solution bits and m is the number of value bits. Note that the gates are
ordered in reverse, i.e the first gates have highest index.

These gadgets’ function is twofold. Firstly, they detect a potential error in a NOR calculation and
propagate it to further gates, if the control variables have their unnatural values. Second,if the control
variables have their unnatural values, they insulate the inputs so that they are indifferent to the gadget
and can be changed by any external slight bias.

Furthermore, all the nodes of these gadgets are all multiplied by a 2100N weight, except the nodes
of the NOR gadget corresponding to the final bits of the value which are multiplied by 290N . This is so
that a possible error in the calculation of the next best neighbor supersedes any possible result of the
comparison. The auxiliary nodes introduced above, which are meant to induce small biases to internal
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nodes, are not multiplied by anything.
Lastly, for technical simplicity, we have a single node for each computing circuit meant to induce bias

to all control variable nodes y, z at the same time. The topology of the connection is presented below.

Figure 4.10: We use a single node Control to bias all control nodes y, z. Note that this node is connected
with the y, z nodes through leverage gadgets

We now state the properties of these gadgets.

Lemma 4.3.1. In an equilibrium, if z1i = 1 and y1i = 0, then I1(gi), I2(gi) are indifferent with respect to
the gadget Gi.

Lemma 4.3.2. If gate Gi is incorrect, then z2i = 1. If y2i = 0 then z2i = 1. If z2i = 1, then for all j < i
z1j = z2j = z3j = 1 and y1j = y2j = y3j = 0.

Lemma 4.3.3. Suppose z1i = 0 and y1i = 1. If gi is correct then z2 and y2 are indifferent with respect to
the other nodes of the gate Gi. If gi is incorrect then gi is indifferent with respect to the other nodes of
the gate Gi, but gains the node ρ of weight 2−500N .

Lemma 4.3.4. Assuming all nodes of the computing circuit gadget are in equilibrium and have no external
biases. If Control = 1 then ∀i,z1i = 0, y1i = 1, z2i = 0, y2i = 1, z3i = 0, y3i = 1. If Control = 0 then
∀iz1i = 1, y1i = 0, z2i = 1, y2i = 0, z3i = 1, y3i = 0.

Lemma 4.3.5. If Control = 1 then all y, z nodes have a 2−87N bias towards their natural values. If
Control = 0 then all y, z nodes have a 2−87N bias towards their unnatural values.

Proof. The NotControl nodes are dominated by Control’s bias of 27N and hence have the opposite
value. By lemma 4.3.15 we have that Control and NotControl experience at most 26N bias, while the
y, z nodes experience 2−87N bias towards the values opposite Control and NotControl, which proves
the claim. ■

The proofs of these statements can be found in [Sch91] since this particular gadget is unchanged.

Lemma 4.3.6. Assuming all nodes of the computing circuit gadget are in equilibrium and have no external
biases. If Control = 1 then ∀i,z1i = 0, y1i = 1, z2i = 0, y2i = 1, z3i = 0, y3i = 1. If Control = 0 then
∀iz1i = 1, y1i = 0, z2i = 1, y2i = 0, z3i = 1, y3i = 0.

Having stated the above auxiliary lemmas, we can finally prove the theorem specifying the behaviour
of our computing circuits.

Theorem 4.3.7. At any equilibrium of the LOCALNODEMAXCUT of Figure 4.3.

1. If Controlℓ = 1 and the nodes of Nextℓ,V alℓ experience 0 bias from any other gadget beyond Cℓ

then:

• Nextℓ = Real-Next(Iℓ)
• Valℓ = Real-Val(Iℓ)
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2. If Controlℓ = 0 then each node in Iℓ experiences 0 bias from the internal nodes of Cℓ.

3. Controlℓ experiences wControlℓ bias from the internal nodes of Cℓ.

Proof.

1. Since Controlℓ = 1 and since we assumed no node experiences any external bias, by lemma 4.3.6
we have that all y, z have their natural values and hence all gates compute correctly, by lemma
3.3.2. Therefore, Nextℓ = Real −Next(Iℓ) and V alℓ = Real − V al(Iℓ).

2. Since Controlℓ = 0, by lemma 4.3.6 all y, z have their unnatural values. Since all NOR gadgets
have unnatural control nodes we have that their inputs are indifferent with respect to the gadgets.
Hence, the claim that they are unbiased follows.

3. The Controlℓ node is connected to a node NotControlℓ, of weight WNotControlℓ = 27N , as well as
to several leverage gadgets, which contribute bias at most 2100N−94N = 26N . Hence, the 27N bias
dominates.

■

4.3.2 Copy Gadget

The Copy Gadgets transfer the values of the next best Neighbor of a circuit to the input of the other
circuit. This is fundamental for the correct computation of the local optimum. There are some technical
conditions that these gadgets should satisfy, which we discuss in the following.

The purpose of the Copy Gadgets is twofold. Firstly, when the Flag node has value 1, they are meant
to give the inputs of Circuit B a slight bias to take the values of the best flip neighbor that Circuit A
offers, that is NextA. Secondly, in this case they are meant to give zero bias to the output nodes of
Circuit A that calculate the best flip neighbors. This is because when node Flag is 1, the input of circuit
A is going to change, which means that the NOR gates of this circuit will compute the new values. A
consequence of the functionality of the NOR gadgets is that the outputs of a gadget are only biased
towards the correct value with a very small weight. This is because the gadget is constructed in a way
that allows these nodes to be indifferent to all of their neighbors when the time comes to change their
value. As a result, if we connect the output nodes with other gadgets, we have to ensure that they will
experience zero bias from them in order for the computation to take place properly. Since the outputs
of Circuit A that produce the next best neighbor are connected to the Copy Gadgets, we should ensure
that they will experience zero bias when node Flag is 1, so that they can change properly. A similar
functionality should be implemented when node Flag is 0.

In this Section we present the gadgets that implement the above functionality. There are two Copy
gadgets with similar topology, CopyA and CopyB. For simplicity, we only describe the details of CopyA.
The gadget takes as input the value of node Flag, which determines whether a value should be copied
or whether the outputs of Circuit A should experience zero bias. It also takes as input NextA, which is
the next best neighbor calculated by Circuit A. The output of the gadget is a bias to nodes IB and TA

towards adopting the value of NextA.
At this point, one might wonder why we didn’t just connect the output of the CopyA gadget to the

input IB . This is because the value of IB also depends on the control variables. If the control variables
of the input gates have natural values, then the inputs experience great bias from the gate, making it
impossible for their values to change by the Copy Gadget. Hence, the Copy Gadget gives a slight bias
to node TA, which is an input to an auxiliary circuit that compares it with IB (i.e the Equality gadget)
. If they are not equal, this means that the output has not been transferred yet. In this case, the output
of the gadget is given a suitable value to bias the control nodes towards unnatural values. When this
happens, the inputs IB can change to the appropriate values.
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Figure 4.11: The gadgets that copy the values from one circuit to the other

Note that we have one of the above gadgets for each of the bits of the next best neighbor solution
that the Circuit Computing gadgets output.

We have a gadget of Figure 4.11 for each of the m bits of the next best neighbor. Nodes Fi,A has
a very large weight in order to dominate the behavior of ηi,A. However, we do not want this node to
influence the behavior of Flag. For this reason, we connect Flag with Fi,A using a Leveraging gadget.
Notice that the behavior of Fi,A is dominated by Flag by weight at least 250N . Another important point
is that we connect the output of the CopyA gadget with the input of Circuit B using another Leveraging
gadget. This is due to the fact that the weight of the input nodes is of the order of 2105N , which is far
more than the weight of ηi,A. Hence, we do not want the input nodes to influence the value of ηi,A, while
also ensuring that the Copy gadget gives a slight bias to the inputs IB towards the value of NextA.

We now prove Lemma 4.2.4, which makes precise the already stated claims about the function of the
Copy Gadgets.

Lemma 4.3.8. At any equilibrium point of the LOCALNODEMAXCUT instance of Figure 4.3:
• If Flag = 1, i.e. NextB writes on IA, then

1. TB = NextB
2. If ControlA = 0 then IA = TB = NextB

• If Flag = 0 i.e. NextA writes on IB, then

1. TA = NextA
2. If ControlB = 0 then IB = TA = NextA

Proof. We prove the claim for Flag = 1. The case Flag = 0 is identical.
We begin with the first claim. Due to the leveraging gadget, node Fi,B experiences bias from Flag

which is slightly less than 250N . Hence, it is biased towards 0 with weight at least 249N . This is greater
than the weight of ηi,B , which is the other neighbor of Fi,B . Hence, Fi,B = 0 at equilibrium. Now
node ηi,B experiences zero total bias from nodes Fi,B and constant 1 and biases 2100N by NextBi, 230N
by Ti,B and slightly more that 275N by the input Ii,A due to leveraging, which means that its value at
equilibrium will be determined by NextBi. Specifically, ηi,B = ¬NextBi at equilibrium. Now, node Ti,B

experiences bias 240N from ηi,B and biases of the order of 27N from the gates of the controller gadget.
Hence, Ti,B has bias towards NextBi equal to wηi,B

and will take this value at equilibrium.
To prove the second claim, we use the already proven fact that ηi,B = ¬NextBi when Flag = 1.

Due to the Leverage gadget, node I i experiences bias slightly less than 210N from node ηi,B . Since
ControlA = 0, by Lemma 4.2.1, we have that Ii,A is indifferent with respect to the gadget CA, and will
therefore take the value of ¬ηi,B = NextBi = Ti,B

■
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Lemma 4.3.9. At any equilibrium point of the NODEMAXCUT instance of Figure 4.3:
1. If Flag = 1 then any node in NextA experience 0 bias with respect to the CopyΑ gadget.
2. If Flag = 0 then then any node in NextB experience 0 bias with respect to the CopyB gadget.

Proof. We notice that due to leveraging, node Fi,A of gadget CopyA experiences bias slightly less than
250N from node Flag = 1. This dominates its behavior, since the other neighbor ηi,A has weight that is
orders of magnitude smaller. Hence, Fi,A = 0. Now, node ηi, experiences total bias 2 ∗ 2110N from nodes
Fi,A and constant 0, 2100N from NextAi, 230N from Ti,A and slightly more than 275N from Ii,B due to
the Leverage gadget used. This means that ηi,A = 1. Now we are ready to prove our claim. Node NextAi

is connected to nodes ηi,A and constant 0 of gadget CopyAi. They have the same weight and opposite
values at equilibrium. This means that NextAi has 0 bias with respect to CopyAi, i.e it is indifferent.

The case for Flag = 0 follows symmetrically. ■

4.3.3 Comparator gadget
The purpose of the Comparator gadget is to implement the binary comparison between the bits of the
values of the two circuits. At the same time we need to ensure that the nodes of the losing circuit (i.e
the circuit with the lower value) are indifferent with respect to the Comparator gadget, so that Lemma
4.2.1 can be applied.

In particular, the output nodes that correspond to the bits of the value, presented in the section if
the computing circuits, with weights 290N ∗ 2N+i are each connected as below.

Note that the output bits of the second circuit Β are the complement of their true values, in order
to achieve comparison with a single bit. The weight of the Flag node is 280N

Figure 4.12: Nodes of the Comparator gadget. Note that Circuit Β is meant to output the complement
of its true output.

To see why the value of node Flag implements binary comparison one needs to consider four cases: In
the first two, where the ith bits are both equal, the total bias Flag experiences is zero, since it experiences
bias towards a certain bit as well as the complement of said bit. In the other two, where one bit is 1 and
the other is 0, the Flag node will experience 2i bias towards either value, which will supersede all lower
bits.

However, the Comparator gadget is meant not only to implement comparison between values, but
also to detect whether a circuit is computing wrongly and, hence, to fix it. To this end we connect
the following control nodes to the node Flag: the control nodes y3m+1,A for circuit A and z3m+1,B for
circuit B, where m + 1 is the last NOR gadget before the bits of the values (recall that we have m
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value bits and that wy3
i,A

= wz3
i,B

= 2100N ∗ (2N+m+1− 50)) (see Figure 4.9), as well as the control nodes
y3i,A, z

3
i,B ,∀i ≤ m for each NOR gadget that corresponds to an output bit of the value (which have weight

wy3
i,A

= wz3
i,B

= 290N ∗ (2N+i − 50)). The nodes y3m+1,A and z3m+1,B are used to check whether the next
best neighbor has been correctly computed. If it isn’t, these nodes dominate Flag, due to their large
weight of 2100N compared to the weight of the value bits, which is of the order of 290N . The control nodes
of the output bits of the value are used in a more intricate way to ensure that even if one to the results is
not correct, the output of the comparison is the desired one. Details are provided in Lemma 4.3.11. All
these nodes are connected in such a way that a control node with unnatural value, biases Flag towards
fixing that circuit.

Figure 4.13: Connection between the control nodes and the Flag node.

We prove the following properties:

Lemma 4.3.10. Let an equilibrium of the instance of NODEMAXCUT of Figure 4.3:

• If Flag = 1 then all nodes of CA experience 0 bias to the Comparator gadget.
• If Flag = 0 then all nodes of CB experience 0 bias to the Comparator gadget.

Proof. Suppose Flag = 1. Then the only nodes of CA connected to the Comparator gadget are the value
output bits and certain control nodes, in such a way that they are connected to either Flag or a constant
node 0 of weight equal to Flag. In all cases, both biases cancel each other out and the nodes of Circuit
A are indifferent. Suppose Flag = 0. Then the only nodes of CB connected to Flag are also connected
with a constant 1 node. Similarly to the first case, all nodes of circuit B are indifferent with respect to
the Comparator gadget when Flag = 0. ■

We now prove the most important lemma of the Comparator gadget. Our goal is to compare the
output values of the two circuits, so that we change the input of the circuit with the smaller real value.
The main difficulty lies in that one or both of the circuits might produce incorrect bits in their output. A
simple idea would be to try to detect any incorrect output bits and influence Flag accordingly, as we do
with control variables y3m+1,A and z3m+1,B . However, if the least significant bit of a circuit is incorrect,
the weight of the corresponding control node is exponentially smaller that the rest of the bits. Hence, it
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cannot dominate the outcome of the comparison. This means that sometimes we might be in equilibrium
where some output nodes are incorrect. To alleviate this problem we propose this construction.

The idea behind this lemma is very simple: if it is guaranteed that the output of one of the circuits
is correct and we know which bits of the other circuit might be wrong, we can still compare their true
values. This is accomplished by an extension of the traditional comparison method, by also taking into
account the control variables of the output bits and examining all the possible cases. This lemma is very
useful in our proof, since by Lemma 4.2.8 we know that at least one of the circuits computes correctly
in equilibrium.

Lemma 4.3.11. At any equilibrium:
Suppose Flag = 1. If ∀i, z1i,A = 0, y1i,A = 1, z2i,A = 0, y2i,A = 1, z3i,A = 0, y3i,A = 1 and ∀i > m, z1i,B =

0, y1i,B = 1, z2i,B = 0, y2i,B = 1, z3i,B = 0, y3i,B = 1 then Real − value(IA) ≤ Real − value(IB)

Suppose Flag = 0. If ∀i, z1i,B = 0, y1i,B = 1, z2i,B = 0, y2i,B = 1, z3i,B = 0, y3i,B = 1 and ∀i > m, z1i,A =

0, y1i,A = 1, z2i,A = 0, y2i,A = 1, z3i,A = 0, y3i,A = 1 then Real − value(IB) ≤ Real − value(IA)

Proof. Since for all gates that do not correspond to value bits (see Figure 4.9), we have that they possess
natural values, and hence Flag is indifferent with respect to them, we only need to examine the final m
gates that correspond to the value bits.

We denote the kth bit of ValA,ValB as Ak, Bk. Bk corresponds to the actual value of the kth bit
of the circuit B instead of its complement for simplicity. The actual value of the node corresponding
to Bk is the opposite. We also denote z2k,B the control node corresponding to the bit Bk. We make
the distinction between Ak, Bk and Real(Ak), Real(Bk). These may be equal or different depending on
whether the circuit calculated the kth bit correctly. By the assumption we know that Ak = Real(Ak)
since A calculates correctly. We do not know whether Bk = Real(Bk), but we do know that Bk ̸=
Real(Bk) =⇒ z2k,B = 1.

We consider three cases.
In the case that (Ak, Bk, z

2
k,B) ∈ (0, 0, 0), (1, 1, 0), (0, 1, 1), Flag experiences bias at most 2∗290N ∗(50)

from this bit towards Flag = 1 in any of these cases. In this case, we have that either Real(Ak) =
Real(Bk) orReal(Ak) < Real(Bk), depending on whetherBk calculated correctly. Either way, Real(Ak) ≤
Real(Bk).

In the case that (Ak, Bk, z
2
k,B) ∈ (0, 1, 0), Flag experiences bias 2∗290N ∗(2N+k) from this bit towards

Flag = 1. In this case, we have that Real(Ak) < Real(Bk), since both calculate correctly.
In the case that (Ak, Bk, z

2
k,B) ∈ (0, 0, 1), (1, 0, 0), (1, 1, 1), (1, 0, 1) then Flag experiences bias at least

2 ∗ 290N ∗ (2N+k − 50) towards Flag = 0 from this bit in any of these cases. In these cases, Real(Ak)
might be higher, but we will show that these cases can never matter.

Suppose k the highest i for which (Ai, Bi, z
2
k,B) /∈ (0, 0, 0), (1, 1, 0), (0, 1, 1).

If no such k exists then all bits must lie in the first case and hence ∀kReal(Ak) ≤ Real(Bk). Hence,
Real − value(IA) ≤ Real − value(IB).

If for that k, (Ak, Bk, z
2
k,B) ∈ (0, 1, 0), we know that Real(Ak) < Real(Bk) while for all higher bits

kReal(Ak) ≤ Real(Bk). This means that Real − value(IA) < Real − value(IB), since the lower bits
don’t matter as long as we have a strict inequality in a high bit.

Lastly, if we have that (Ak, Bk, z
2
k,B) ∈ (0, 0, 1), (1, 0, 0), (1, 1, 1), (1, 0, 1), we have that Flag experi-

ences bias at least 2 ∗ 290N ∗ (2N+k − 50) towards Flag = 0 from this bit. Furthermore, it experiences
bias at most 2 ∗ 290N ∗ (50) towards Flag = 1 from each bit higher that k. Each bit i lower than k causes
bias at most 2 ∗ 290N ∗ (2N+i) each towards Flag = 1. In total, if we have m bits, we have at most
(m− k) ∗ 2 ∗ 290N ∗ (50)+

∑
i<k 2 ∗ 290N ∗ (2N+i) ≤ (m) ∗ 2 ∗ 290N ∗ (50)+2 ∗ 290N ∗ (2N+k− 2N ) towards

Flag = 1 and at least 2 ∗ 290N ∗ (2N+k − 50) towards Flag = 0. For N sufficiently high, the bias towards
0 would win, making Flag no longer have 1 as its best response, which is a contradiction. Hence, the
third case can not happen in an equilibrium with Flag = 1.

The case for Flag = 0 is identical, with the only difference being we consider y2k, instead. ■

Lemma 4.3.12. At any equilibrium of the NODEMAXCUT instance of Figure 4.3:

• If Flag = 1 then NextB = Real-Next(IB)

• If Flag = 0 then NextA = Real-Next(IA)
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Proof. Assume an equilibrium with Flag = 1 and NextB ̸= Real−Next(IB). By Lemma 3.3.2 we have
that Circuit B is computing incorrectly and hence the control node z3m+1,B (i.e. the last gate before the
value bits) has its unnatural value, which is z3m+1,B = 1.

Assume that, ControlA = 0. Then by Lemma 4.2.4 we have that IA = TB , which by Lemma 4.2.3
we have ControlA = 1, a contradiction. Hence, ControlA = 1.

Therefore, since have that ControlA = 1 and that NextA = Real−Next(IA), which by Lemma 4.3.6,
implies that the corresponding node y3m+1,A has its natural value y3m+1,A = 1.

This means that Flag experiences bias towards 0 at least 2 ∗ 2100N ∗ (2N+m+1 − 50) from the nodes
z3m+1,B ,y3m+1,A, which dominates Flag to take value 0. This is a contradiction since we assumed that
Flag = 1 at equilibrium. Hence, if Flag = 1 then it must be that NextB = Real −Next(IB).

Similarly, we can prove that if Flag = 0 then NextA = Real −Next(IA) ■

Lemma 4.3.13. At any equilibrium of the LOCALNODEMAXCUT instance of Figure 4.3:

• If Flag = 1, NextA = Real-Next(IA), ValA = Real-Val(IA) and NextB = Real-Next(IB) then

Real − V al(IA) ≤ Real − V al(IB)

• If Flag = 0, NextB = Real-Next(IB), ValB = Real-Val(IB) and NextA = Real-Next(IA) then

Real − V al(IB) ≤ Real − V al(IA)

Proof. Assume that, ControlA = 0. Then by Lemma 4.2.4 we have that IA = TB , which by Lemma 4.2.3
we have ControlA = 1, a contradiction. Hence, ControlA = 1.

Since Flag = 1 and we have that ControlA = 1, by Lemma 4.3.6 all control nodes of CA have
their natural values. Furthermore, since by the proof of Lemma 4.2.9 we know that all control nodes
of weight 2100N have their natural values, we can apply Lemma 4.3.11. Therefore, Real − V al(IA) ≤
Real − V al(IB)

The proof for Flag = 0 is identical.
■

4.3.4 Equality Gadget
The Equality Gadgets are used to check whether the next best neighbor of a circuit has been successfully
transferred to the input of the other circuit. The output of the Equality gadget is connected to the control
variables of the circuit that should receive the new input. If the new input has not been transferred, the
output of this gadget biases the Control node towards 0, which biases the internal control nodes towards
unnatural values. This enables the inputs of the circuit to change successfully to the next solution.
When the new solution is transferred, the output of the gadget changes, in order to bias the control
nodes towards their natural values, so that the computation can take place.

Since we have two possible directions, both from Circuit A to Circuit B and vice versa we need two
copies of the gadgets described in this section.

We will now describe the function of the Equality Gadget when Circuit A gives feedback to Circuit
B. The Equality Gadget takes as inputs the TA nodes from the CopyA Gadgets and IB and simply
checks whether they are equal. Due to Lemma 4.2.4, in equilibrium the TA nodes have the same value
as NextA which we want to transfer. One might try to connect NextA as input to the Equality gadget.
The reason we avoid this construction is that we do not want the output nodes of the Circuit Computing
gadget CA to experience any bias from this gadget, because the computation changes their value with
very small bias. For this reason, we connect TA nodes to the input that are dominated by ηA nodes.
The input nodes IB are dominated by either the nodes in the NOR gadgets or ηA, hence we can connect
them directly as inputs to the gadget.

For each bit of the next best neighbor, we construct a gadget as in Figure 4.14, which performs the
equality check for the i− th bit of the next best neighbor. The idea for this construction is very simple:
the weights decrease as we come closer to the output, so that the input values dominate the final result.
If the inputs are equal, the final value will be 0. Notice that we have put and intermediate node between
IB and the gadget to ensure that the two input nodes will have equal weight. A detailed analysis is
provided in the proof of Lemma 4.2.3.
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Figure 4.14: This gadget performs equality check for the bits Ii,B and Ti,A. If they are equal, Ri,A = 0
in equilibrium. We have n such gadgets for each of the two circuits. The n gadgets are connected to
produce the final output, which is ControlB.

Now that we have gadgets to perform bit wise equality checks, we need to connect them all to produce
the output of the Equality gadget. This is done by the construction of Figure 4.14 Essentially, the idea is
that if all the bits are equal, all the comparison results will be 0 and will dominate the ControlB to take
1. If at least one result is 1, then together with the constant node 1 will bias ControlB to take value 0.

We now prove the main lemma concerning the Equality Gadget, which states that in equilibrium,
the output of the Equality will be 1 if and only if the two inputs to the gadget are equal.

Lemma 4.3.14. Let an equilibrium of the overall NODEMAXCUT instance of Figure 4.3. Then

• ControlA = (IA = TB)

• ControlB = (IB = TA)

Proof. For simplicity we only prove the second claim, since the first follows by similar arguments. We
first focus on on the behavior of a single Equality gadget. We would like to prove that Ri,A = 0 if and
only if Ii,B = Ti,A.

We first observe that node e1i,A is biased with weight 2105N by Ii,B , which is greater that the bias
from its other neighbor e2i,A. Hence, in equilibrium it is always the case that e1i,A = ¬Ii,B . Moreover,
nodes e2i,A and e3i,A essentially function as the complements of e1i,A and Ti,A. This is because they are
biased with weight 230N by them, which is greater than the bias by node e5i,A. Hence, e2i,A = ¬e1i,A and
e3i,A = ¬Ti,A.

We first examine the case where IB = TA. Then e1i,A = ¬Ti,A. Since these nodes have equal weights,
node e4i,A experiences 0 total bias from them and is biased by constant node 0 with weight 220N and
by R2 with weight 29N . Therefore, e4i,A = 1. By the previous observations we have that e2i,A and e3i,A
have opposite values, which means that e5i,A has bias 0 from these two nodes. Is also has bias 220N by
constant 0 and 29N from Ri,A. Hence, e5i,A = 1. Nodes e4i,A and e5.i bias node Ri,A towards 0 with
weight 2 ∗ 220N , which is greater than the bias from constant 0 and ControlB. As a result, we have that
Ri,A = 0 and the argument is complete in this case.

Now we examine the case where Ii,B ̸= Ti,A. Assume that Ii,B = 1, the other case follows similarly.
Then, e1i,A = 0, Ti,A = 0, e2i,A = 1, e3i,A = 1. This means that e5i,A is biased with weight at least 2 ∗ 230N
towards 1, which is greater than the combined weight of Ri,A and constant 0. Therefore, e5i,A = 0. Now
we observe that Ri,A is biased with weight at least 2 ∗ 220N towards 1 by nodes e5i,A and constant 0,
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which is greater that the combined weight of e4i,A and ControlB. Hence, Ri,A = 1 in this case. If Ii,B = 0,
then we could prove similarly that e4i,A = 0, which implies that Ri,A = 1 by the same argument.

We will now prove that ControlB takes the appropriate value. First of all, we observe that ControlB
is connected with NotControlB, (part of the Circuit Computing gadget) which has weight 27N and with
Ri,A nodes which have weight 29N . It is also biased with weight slightly more than 26N by each of
the control variables yi due to the leverage gadget. This means that for N large enough ControlB is
dominated by the behavior of the Ri,A nodes. Suppose that Ii,B = Ti,A for all i, 1 ≤ i ≤ n. By
the preceding calculations, we have that Ri,A = 0 for all i. Hence, ControlB experiences total bias
n ∗ 29N towards 1, which is greater than the weight of constant node 1. Thus, ControlB = 1 in this case.
Now suppose that there exists a j, 1 ≤ j ≤ n, such that I2,j = ¬Tj,A. By the preceding calculations,
Rj,A = 1. Hence, node ControlB is biased by nodes Rj,A and constant 1 towards 0 with weight at least
(n−1)∗29N+29N = n∗29N , which is greater than the combined weight of all the other Ri,A’s. Therefore,
ControlB = 0 in this case and the proof is complete.

■

4.3.5 Leverage Gadget

The Leverage gadget is a basic construction in the PLS completeness proof. This gadget solves a basic
problem in the reduction. Suppose that we have a node with relatively small weight A and we want
to bias a node with large weight B. For example, the large node might be indifferent towards its other
neighbors, which would allow even a small bias from the small node to change its state. We would also
like to ensure that the large node does not bias the smaller one with very large weight, in order for the
smaller to retain its value.

This problem arises in various parts of the PLS proof. For example, we would like the outputs of
a circuit to be fed back to the inputs of the other one. The outputs have very small weight compared
to the inputs, since the weights drop exponentially in the Circuit Computing gadget. We would like
the inputs of Circuit 2 to change according to the outputs of circuit 1 and not the other way around.
Another example involves the Equality Gadget, which influences the Controlℓ of the Circuit Computing
gadget. The nodes of the Gadget have weights of the order of 210N , while the control nodes of the Circuit
Computing gadget are of the order of 2100N . We would like the output of the gadget to bias the Controlℓ
nodes, while also remaining independent from them.

Let’s get back to the original problem. A naive solution would be to connect node A directly with
node B. However, this would result in node B biasing node A due to the larger weight it possesses. For
example, if we connected Control1 with the control variables of Circuit 2, then they would always bias
Control1 with a very large weight, rendering the entire Equality gadget useless. We would like to ensure
that node A biases B with a relatively small weight, while also experiencing a small bias from it.

The solution we propose is a Leveraging gadget that is connected between nodes A and B. It’s
construction will depend on the weights A and B, as well as the bias that we would like B to experience
from A. Before describing the construction, we discuss it’s functionality on a high level.

As shown in Figure 4.15, we place the gadget between the nodes A and B. We use two parameters
x, ϵ in the construction. We first want to ensure that node A experiences a small bias from the gadget.
This is why we put nodes L1,1, L1,2 at the start with weight B/2x+1 + ϵ, which puts a relatively small
bias. We want these nodes to be dominated by A. This is why nodes L1,3, L1,4 have combined weight
less than A. However, these nodes cannot directly influence B, since it’s weight dominates the weights
of L1,1, L1.2. For this reason, we repeat this construction x + 1 times, until nodes Lx,1, Lx,2, whose
combined weight is slightly larger than B. This means that nodes Lx,3, Lx,4 are not dominated by B
and can therefore be connected directly with it. The details of the proof are given below.
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Figure 4.15: The Leveraging Gadget

Lemma 4.3.15. If the input node A of a leverage gadget with output node B, parameters x, ϵ, has value
1, then the output node experiences bias wA/2

x+2 ∗ ϵ towards 0, while the input node A experiences bias
wB/2

x− 2 ∗ ϵ towards 1. If A has value 0, then B experiences the same bias towards 1, while A is biased
towards 0.

Proof. We first consider the nodes L1,1, L1,2. They both experience bias wA towards the opposite value
of A, which is greater than the remaining weight of their neighbors 2 ∗ wA − 2 ∗ ϵ, and hence they are
both dominated to take the opposite value of A. Similarly, the nodes L1,3, L1,4 are now biased to take
the opposite values of L2,1, L2,2 with bias at least wB/2

x + 2 ∗ ϵ, which is greater than the remaining
neighbors of wB/2

x+ ϵ. Hence, both L1,3, L1,4 have the same value as A in any equilibrium. In a similar
way, we can prove that, in any equilibrium Li,3 = Li,4 = A, and therefore B experiences bias wA/2

x+2∗ϵ
towards the opposite value of A, while A experiences bias at most wB/2

x − 2 ∗ ϵ from this gadget. ■

Note that the above lemma works for any value of ϵ. This means that we can make the bias that B
experiences arbitrarily close to wB/2

x. For all cases where such a Leverage gadget is used, it is implied
that ϵ = 2−1000N which is smaller than all other weights in the construction. Hence, we only explicitly
specify the x parameter and, for simplicity, such a Leverage gadget is denoted as below schematically.

Figure 4.16: Leveraging Gadget notation
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Chapter 5

Congestion Games

In this chapter we give a succinct introduction to the congestion game model. It is meant to serve both
as a primer on the existing line of work, as well as provide motivation for our PLS results in the next
section. Situations modeled by congestion games show up all around us on a daily basis. For example,
imagine you have to cross the city center to get to a meeting you are late for, only it happens to be
rush hour, and everyone is late for something and wishes to get there as fast as possible. In that case
everyone will seek to take the shortest road (or the road they perceive to be the shortest!) which, for
many people might coincide. Hence, many people will end up stuck in traffic. Situations like these are
what’s examined by the theory of congestion games, which asks questions such as: how much worse are
situations like these made by the selfish behaviour of the drivers? does the traffic always reach a stable
state in reasonable time? How hard is it to calculate that stable end state a priori?

5.1 Definitions
We begin by defining congestion games and showing some basic results about them.

Definition 5.1.1. A congestion game G is a tuple G = {N,F, (Ai)i∈[N ], (df ), f ∈ F} where [N] denotes
the set of players, F denotes the set of resources, Ai ⊂ 2F denotes the strategy space of player i and
df : N −→ Z the cost function associated with resource f. a = (a1, ..., aN ) is an outcome of the game in
which player i chooses strategy ai ∈ Ai. For an outcome a we define the congestion nf(a) on resource
f by f(a) = |{i ∈ [N ]|f ∈ ai}|. The cost for each player is the sum of the costs on the facilities of his
strategy, ci(a) =

∑
(f∈ai)

df (nf (a))

In other words a congestion game is composed of resources that players can pick, which in turn cause
the players to incur some cost based on the amount of users. Sometimes this set of resources can be
a more meaningful combinatorial structure, like a network. In these cases players have paths as their
allowable strategies and the resources are edges of a graph.

Another useful property that congestion games can often have is the following: the strategy sets
of the players can coincide. In this case, we call the congestion game symmetric since everyone has
access to the same choices as everyone else. In the network case it means that the game takes the form
of an s-t routing game. Otherwise, the game is called asymmetric, or it is not specified. Moreover,
if the players have different impacts on the delay functions among themselves then the game is called
a weighted game, due to the presence of weights on players. Similar to all games, the most common
behaviour is that of players acting selfishly given a state of the game. In this situation we consider
the best-response dynamics of the game, which is the sequence of the states resulting from the iterative
process of each player improving his lot. A state where the best response dynamics no longer induce any
movement is called the Pure Nash Equilibrium, in the case of deterministic strategies, and the Mixed
Nash Equilibrium in the case of mixed (randomized) strategies. Here we will be occupied principally
with pure strategies and their properties.

The first question one seeks to answer is whether such a Pure Nash Equilibrium exists, and if so how
can we calculate it? After all, mother nature seems to always find the equilibrium very quickly.
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Figure 5.1: An example of a network congestion game

5.2 Potential functions
In certain situations local improvement dynamics have the property that they always converge to an
equilibrium, i.e. after a finite amount of best-response moves we will be at a point where no one has
incentive to change. This usually, happens because the transition graph of the game, where each node
is a configuration of strategies, and edges correspond to best response moves, is directed and acyclic.
In that case best-response moves will inevitably converge to some configuration and they will be unable
to cycle. This is by no means the sole method of proving equilibria existence, the decision problem of
determining existence of a PNE in congestion games has been well studied [Mil06],[Mil96].

There are generally two ways one uses to prove that the underlying transition graph has a DAG
structure. The first way is the lexicographic method, wherein it is shown that configurations admit some
sort of partially-ordered set structure. An example where this is useful is in the case of load scheduling, or
in other words parallel links with weighted players, where we order the configurations by the satisfaction
of each player from heaviest to lightest (i.e. lexicographic). The second, and easier, way is to use the
potential method, which can be seen as a special case of the first approach. In the potential method
we show that every configuration has some invariant that only gets increased with every best response
move. This is called the potential function. The acyclic structure of a the transition graph follows from
the existence of this function, since otherwise we would be able to have a directed cycle with strictly
increasing values which is impossible.

A function F is a called an (exact) potential of a game G if it assigns a positive number to every
configuration, such that:

F (S)− F (S′
i, S−i) = c(S)− c(S′

i, S−i)

It turns out that such a function does exist for all (unweighted) congestion games. Discovered by
[Ros73] in 1973, the following function does in fact capture the improvement dynamics of a congestion
game.

Theorem 5.2.1. F (S) =
∑
f∈F

Nf∑
k=1

df (k) is an exact potential for unweighted congestion games, where Nf

is the total load on resource f .

Proof. F (S)−F (S′
i, S−i) =

∑
f∈Si\S′

i

Nf∑
k=1

df (k)+
∑

f∈S′
i\Si

Nf∑
k=1

df (k)−
∑

f∈Si\S′
i

Nf−1∑
k=1

df (k)−
∑

f∈S′
i\Si

Nf+1∑
k=1

df (k) =∑
f∈Si\S′

i

df (Nf )−
∑

f∈S′
i\Si

df (Nf+1) =
∑

f∈Si\S′
i

df (Nf )+
∑

f∈Si∩S′
i

df (Nf )−
∑

f∈S′
i∩Si

df (Nf )−
∑

f∈S′
i\Si

df (Nf+

1) = c(S)− c(S′
i, S−i) ■
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Observe that since in every best response move a player moves from cost c(S) to cost c(S′
i, S−i) she

experiences some finite improvement and therefore the potential gets reduced by some finite amount by
every best response move. This immediately suggests a pseudopolynomial algorithm for computing a
pure nash equilibrium of a congestion games. Indeed, repeating such a local optimization heuristic will
inevitably return a fixed point. This is similar to what a Lyapunov function does in dynamical systems,
only in this case the function is discrete. Unfortunately, there are counterexamples where this process
can take a very long time to finish, simply because of tiny differences in the delay functions values. This
can even happen with linear delays.

Hence, by the above function, we have that all congestion games are potential games. A significant
question that arises from this is: Are there any potential games that aren’t congestion games? The
answer is, somewhat surprisingly, negative. In fact, it has been shown that every exact potential game
can be cast in the form of a congestion game, in other words every potential game has an isomorphic
congestion game. [MS96]. Hence, any and all inquiries into the nature and behaviour of potential games
can be cast in terms of congestion games.

Theorem 5.2.2. Every potential game is isomorphic to a congestion game.

While this was originally proven in a rather complicated fashion by [MS96], there exists a more
intuitive way of showing this by breaking the game into two subgames, due to [VBVM+99].

We begin by defining coordination and dummy games.

Definition 5.2.1. A strategic game G = (N,S[N ], c[N ]) is:
• a coordination game if c = ci∀i (i.e. everyone has the same goal)
• a dummy game if for all strategy pair S’,S differing only in one player, c(S−i, S

′
i) = c(S) (i.e. every

player is indifferent to unilateral deviation

It turns out that a necessary and sufficient condition for a game to be a potential game is for it to
be writable as the sum of a coordination and a dummy game.

Theorem 5.2.3. A strategic game G = (N,S[N ], c[N ]) is a potential game if and only if there exist functions
cd and cc such that c = cd + cc and (N,S[N ], c

d
[N ]), (N,S[N ], c

c
[N ]) are dummy and coordination games

respectively.

Proof. The if direction is obvious since we can use cc as the potential.
For the “only if” direction let F be the potential function of the game. Also let cc = F . Indeed,

(N,S[N ], c
c
[N ]) then becomes a coordination game since F is the same for all players. It remains to

prove that the residue, i.e. cdi = ci − F is a dummy game. Let us compute the change in a player’s
cost that results from a unilateral deviation. By the definition of the potential, F (S−i, S

′
i) − F (S) =

c(S−i, S
′
i)− c(S) = c(S−i, S

′
i)− c(S)− (cd(S−i, S

′
i)− cd(S)) −→ 0 = cd(S−i, S

′
i)− cd(S) and hence cd is a

dummy game. ■

All that remains is to show that both dummy games and coordination games are isomorphic to a
congestion games, separately. first, we define what it means for two game to be isomorphic. Informally,
this means that the games are identical apart from possibly reordering their strategies.

Definition 5.2.2. Let two strategic games G1 = (N,S[N ], c[N ]), G2 = (N,S′
[N ], c

′
[N ]) with identical player

sets. They are said to be isomorphic if there is a bijection f such that for every configuration of player
strategies we have that c′(S′

1, .., S
′
N ) = c(f(S1), .., f(SN ))

Theorem 5.2.4. Every coordination game is isomorphic to a congestion game.

Proof. For every state of the game we define a resource r(S), such that its cost is exactly c(S) is all players
are using it and 0 otherwise. The strategies of the players are r(Si, S−i)) for all S−i, i.e. every strategy
of each player contains the resources corresponding to every configuration where he takes that particular
strategy, with the other player ranging over the rest of the strategies. For example in a two-player three-
strategy coordination game the strategy corresponding to strategy 1 in the coordination game would be
r(1, 1), r(1, 2), r(1, 3). Note how every pair of players will always have a single common resource r(S),
which will always be used by everyone and will be the only resource that incurs any delay. ■
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Theorem 5.2.5. Every dummy game is isomorphic to a congestion game.

Proof. Essentially we desire a congestion game such that the delay of each player depends only on what
resources the other players choose, regardless of his own choice. To do so we define one resource r(S−i)
for each player and for each configuration of the rest of the non-i players. The strategies for each player
are: r(S−i)∪r(xj)|j ∈ N \ i, xi ̸= Si. Note that this means that every player has all the r(S−i) resources
but all of them except exactly one will be used by some other player. Indeed, the delay functions are
setup in such a way that c(r(S−i)) is equal to c(S−i) when only one player is using it and 0 otherwise. ■

This concludes the proof of the isomorphism between potential games and congestion games, as we
can pair up the strategies in the two separate congestion game instances we construct by taking their
unions.

The above result cements the study of congestion games as central to understanding the behaviour
of local optimization heuristic in the presence of a global potential function. Congestion games do not
only constitute a useful model for a realistic situation but also confer insight into the nature of local
optima and how hard they are to find.

5.3 Tractability of equilibria
As described in the previous section congestion games and potential games (lyapunov functions) are
closely intertwined. The main object of interest in these situations is the actual minimum of this function,
i.e. the nash equilibrium. It is, after all, the reason the existence of the potential is so important. In
this section we are going to present several results concerning the question of finding that minimum. As
described in the previous chapters, hardness guarantees are obtained in the form of PLS reductions, as
well as the PSPACE completeness of the standard algorithm problem. The results below are organized
in a hierarchical manner, where, in order of decreasing generality, we present the tractability status of
the main point of interest of this thesis: the calculation of a PNE.

5.3.1 General congestion games
In the most general case where there is an arbitrary set of resources and strategies, [FPT04] devised
a simple PLS completeness proof that is an immediate reduction from MAXCUT. In particular, the
congestion game they propose is composed of two strategies for each node, each of which contains one
of two resources fe, f ′

e that correspond to each edge. These resources have cost we when used by zero or
one player, but cost 0 when used by two players. Lastly, the strategy sets of each player are constrained
to be the two strategies corresponding to each node. Note how this gives an immediate reduction from
MAXCUT considering that the chosen strategy for each player is the same as the side of the cut it would
take. In the original paper, the reduction was from POSNAE3SAT but the essence of the constructed
instance is practically the same.

Theorem 5.3.1. Computing a Pure Nash Equilibrium for general congestion games is PLS-complete.

Note, however, that the above reduction only works for the general asymmetric case. What happens
when one considers general congestion games again, only now the players have identical access to all
strategies? Turns out that in this case as well the problem is PLS-complete, through a slight modification
of the reduction in the previous paragraph. To modify the reduction above so that it can work in a
symmetric strategic setting, one needs to somehow eliminate the possibility that players might all choose
the same strategy, in which case the reduction would break down. The solution for this is simple. To
every strategy set that we only want a single player to take part in, we add an exclusive resource which
has a delay cost function with a huge jump. In particular, considering any asymmetric game’s strategies
Si, we construct our symmetric game instance with strategies Si∪ei, with dei = 0 for at most one player
and a very high number for more than one player. Clearly, in any equilibrium, since we have N strategies
that each only fit one player and N players, the players will have separate strategies making the game
indistinguishable from the asymmetric case.

Theorem 5.3.2. Computing a Pure Nash Equilibrium for symmetric general congestion games is PLS-
complete.
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Figure 5.2: A symmetric network congestion game converted to a min-cost flow problem

What these results of [FPT04] tell us is that we will need to restrict ourselves further if we wish to
have well behaved congestion games with tractable equilibria. General congestion games are simply too
general and hard. The first such concession one makes is to consider congestion games rooted in reality,
i.e. congestion games played on networks.

5.3.2 Network congestion games
In network congestion games the tractabilty of the pure equilibria has interesting distinctions depending
on whether we consider the symmetric or the asymmetric case. In both case the Standard Algorithm
Problem (i.e. best response) is PSPACE-hard, which means naive local search in general performs
abysmally. There is in exception to that in case of series-parallel networks where best response does in
fact work for efficient computation of a PNE [FKS05b]. We begin by presenting the positive results of
[FPT04] for computing PNE using a simple flow algorithm for symmetric network games.

5.3.2.1 The symmetric case
Theorem 5.3.3 ([FPT04]). There is a polynomial algorithm for finding a pure Nash equilibrium in sym-
metric network congestion games.

The algorithm works by directly minimizing the Rosenthal potential instead of running a local search
process. In particular, it creates the following network on which it runs a min-cost flow polynomial
algorithm. Each edge of the congestion game network is replaced with N parallel edges, each of capacity
1 and each having cost de(i). Then it is clear that any flow corresponds to a configuration of the
congestion game whose Rosenthal potential value is equal to the flow being routed. Since such a flow
can be globally minimized we immediately have a polynomial algorithm for global minimization of the
potential, which also constitutes a nash equilibrium. This substitution process is illustrated in Figure
5.2.

This means that symmetric networks are easy to calculate equilibria for.

5.3.2.2 The asymmetric case
Unfortunately, the above algorithm cannot be extended to the network case where there are multiple
sources and destinations. The main reason for that is because flows cannot be necessarily converted back
to strategy configurations unambiguously. In fact, it can be shown that computation of equilibria in the
asymmetric case is PLS-complete, and hence no algorithm can work, unless PLS ⊂ FP .

Theorem 5.3.4 ([FPT04],[ARV08]). It is PLS-complete to compute any Pure Nash Equilibrium in asym-
metric network congestion games.

There are two ways to prove this result. The first way that this result was proven was by Fabrikant
et al [FPT04]. Their proof consisted of reducing directly from CIRCUITFLIP, and therefore was extraor-
dinarily complex. In particular, their approach built on the MAXCUT reduction of Yannakakis et al
[Sch91] and added even more complications due to the fact that this is now a network game. However,
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Figure 5.3: A small modification of the [ARV08] reduction

a few years later, Vocking et al [ARV08] produced an infinitely simpler PLS completeness proof for the
same result, as an application of their PLS hardness framework for congestion games. We give here a
general description of their proof. In their approach, the authors of [ARV08] define threshold games
as an intermediate step for showing PLS complexity from MAXCUT. While threshold games are a nice
model that facilitates proving PLS-completeness for other problems and extensions, we find that the
presentation of the [ARV08] construction is simpler when presented directly as a MAXCUT to network
games reduction. To be more specific, they construct a grid-like network as in Figure 5.3.

There are N players, each having as source the node Si and destination the node Di. The large
diagonal edges have their delay functions setup in such a way that, regardless of what other players do,
taking more than one such edge would be irrational, since it would lead to a strictly greater cost than
necessary. Thus, players can only choose the above or the below segment of the network, corresponding
to which side of the cut they take in the MAXCUT instance. Lastly, once they choose a side they will
incur exactly the cost of their neighbor who chose the same side, due to the way the intersections of this
grid are set up. This completes the proof of the PLS-completeness of asymmetric (i.e. multi-commodity)
network congestion games. We also note that this proof is tight in the sense of [Sch91], which means
that the standard algorithm problem is PSPACE-hard, and any best response sequence has exponential
length.

An interesting distinction can therefore be drawn between symmetric and asymmetric network games.
Unlike the case of general abstract congestion games, there is an immense complexity gap between the
tractability of the equilibria of these problems. Perhaps the same “symmetrization” technique that
[FPT04] used to prove the hardness of symmetric games from asymmetric ones can be applied here as
well? And if not, why?

The answer is that it can, only with a few caveats. Recall that this “symmetrization” technique
simply boils down to adding a resource to each strategy so it is taken by exactly one player. In the case
of networks this is tantamount to adding an edge to each source-target pair. Following this idea the
symmetrized network would look like in Figure 5.4.

The reason this cannot give a reduction to the case of symmetric networks which is easily solvable
through flows is that while one player takes one edge of the S edges, we have no guarantee it will end
up taking the corresponding edge of the other side. For example a player might end up taking S − S1

but also taking D4 −D, which makes the hard instances of the grid-like networks of [ARV08] lose their
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Figure 5.4: The “symmetrized” version of an asymmetric congestion network instance.

difficulty.
One thing that this approach can give us, on the other hand, is that if we started from an instance

with players all taking their respective edges, i.e. player 1 taking S − S1,D1 −D etc, then this property
would be retained throughout any sort of best response movement. By recalling that the best response
dynamics of asymmetric networks can perform exponentially badly, we have the following result.

Corollary 5.3.4.1 ([ARV08]). For every N, there exists a symmetric network congestion game with N
players, initial state S, polynomially bounded network size, and linear delay functions such that every
best response sequence starting in S is exponentially long.

The reason why this peculiar behaviour of symmetric networks to be both in FP, but also for their
best response sequences to be PSPACE-hard, is interesting because it reveals that in many problems, even
in PLS, local search isn’t in fact the best approach! Another example of this is the simplex algorithm.
It was shown by [FS15] that the simplex algorithm, for a specific pivot, (i.e. the local search heuristic
for LPs) has PSPACE-hard properties. However, LPs have been known to be polynomially solvable
ever since the ellipsoid method, or any of the interior point algorithms came into public view. It is
worth mentioning here one of the very few results that concern computing Nash equilibria without using
local search. Specifically, in [GLMM10] the authors design an algorithm based on maximum flows that
computes an equilibrium state in a restricted links game.

As we saw in the last two sections, local improvement sequences both in the case of symmetric
and asymmetric networks can perform arbitrarily badly. Despite that, there exist specific cases where
best-response can in fact be a legitimate tactic. We briefly present two such subcases below.

5.3.2.3 Series-Parallel Networks
Series parallel graphs consist of a very simple topology of edges connected either in parallel or in sequence,
repeated recursively. More rigorously:

Definition 5.3.1. A Series-Parallel graph is either:

• an edge

• two series-parallel graphs connected in parallel

• two series-parallel graphs connected in series
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Despite their simple appearance, such graphs have an interesting necessary and sufficient condition
for identifying them. Namely, [BBT85] showed that a network is series parallel if and only if a greedy
algorithm can calculate a maximum flow. This interesting property was later leveraged by [FKS05b] to
show that a best response algorithm does in fact converge quickly in the case of series parallel networks
(and effectively only in those). This is because once a player settles into his best response, then no matter
how the others change he will have no incentive to change his choice, and thus every player will move at
most once.

Hence, in this simple case of symmetric networks best response is a valid strategy for computing a
Nash Equilibrium.

5.3.2.4 Matroid Games
Another type of game where best response is quite efficient is the case of congestion games where the
resources have some matroid property.

Definition 5.3.2. A tuple M = (R, I) is a matroid if R is a finite set of resources and I is a nonempty
family of subsets of R such that if I ∈ I and J ⊂ I, then J ∈ I, and if I, J ∈ I and |J | < |I|, then there
exists an i ∈ I \ J with J ∪ {i} ∈ I

Essentially, the matroid combinatorial structure embodies settings where we have some exchange
property, similar to bases in linear algebra.

We are not going to go much into detail regarding these games, but we are going to note that in
the general case such games are MST allocation games (recall that the set of Minimum Spanning Trees
satisifes an exchange property and is discrete convex), but in the case of matroid congestion games they
devolve into a bunch of parallel links connected in parallel, which isnt a very interesting topology.

Nevertheless, a matroid conestion game can have its best response sequences converge in O(n2 ∗m ∗
rank) moves as shown in the seminal paper of Vocking et al [ARV08].

5.3.3 Approximate equilibria
While we often seek exact equilibria where all players have no incentive to change, they are often quite
intractable as we saw in the previous sections. For this reason, an alternate definition of equilibrium
that has been well-examined is the notion of an approximate equilibrium. In an approximate equilibrium
players cannot unilaterally deviate from their choice and increase their payoff more than a certain factor.
In particular, there is no configuration u and player i such that c(u−i, u

′
i) ≤ a ∗ c(u). The main intel-

lectual attraction of such approximate equilibria is several results on their tractability. One of the most
important such results concerns an algorithm by Caragiannis et al for computation of approximate equi-
libria in congestion games [CFGS11]. This algorithm has also been extended for approximate equilibria
in weighted games [CF19]. Despite its power, the aforementioned algorithm has the drawback on only
being applicable to specific delay functions, and not general functions, which can provably have PLS-hard
equilibria [SV08], and hence exponentially long best-response chains. Moreover, there have been signifi-
cant advancements in the case that the players seek to optimize their configuration towards an optimal
social value or , even though these are not approximate equilibria. [FM09],[LMM03]m[CS11],[AAE+08].

5.4 Weighted congestion games
As we saw in the previous sections, it is clear that the “lay of the land” concerning the tractability
of congestion games, both symmetric and asymmetric is well examined. However, congestion games
can admit an interesting generalization in the form of games where the players are allowed to control
nonuniform atomic units of flow, i.e. they are weighted.

These games were introduced by Fotakis et al in [FKS05a], where it was shown that for an equilibrium
to exist a necessary condition is for the delay functions to be affine. In that case, a potential function
can be constructed, and similar to vanilla congestion games, a guarantee for the eventual convergence of
nash best response dynamics obtained. The difference in this case is that the differential of the potential
function due to a player’s best-response move is not exactly the value he improves his lot with, but
instead his improvement multiplied by his weight.
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Theorem 5.4.1.
∑
i∈N

wi

∑
e∈si

(ae∗wi+be)+
∑
e∈E

se∗(ae∗se+be) is a weighted potential function for weighted

congestion games with affine delays.

We note that affine function arent the only family of delays that admits a weighted potential. As
shown in [PS07] similar results can be obtained for networks with exponential functions. As [HKM11]
show these are the only two function classes admitting weighted equilibria. It is possible by defining the
impact of weighted players one the costs in a more sophisticated way to obtain more games with existing
equilibria. [KR15].

In constrast with unweighted games, however the complexity of equilibria has not been well studied.
All results regarding the tractability of Nash equilibria in weighted congestion games are so far directly
derived as edge cases of unweighted games. For example, we know that weighted congestion games with
affine functions are PLS-complete, but only because we know that unweighted games with affine functions
are PLS-complete.

The motivating question of this work is to examine the impact of weights on the complexity of the
nash equilibria. Therefore, we focus our attention on case of congestion games where the unweighted
variants are in FP. The first such problem concerns symmetric networks, and in fact a very specific type
of them which was mentioned earlier, which are series-parallel weighted congestion games. Note that in
[FKS05b] weighted congestion games in a series parallel setting was proven to not be amenable to best
response dynamics, but the question of its PLS-completeness was left unanswered.

Theorem 5.4.2. Series-parallel weighted congestion games are PLS-complete.

The proof of this theorem utilizes a direct reduction from MAXCUT and is presented in the next
section.

The major technical work of this thesis, i.e. the PLS-completeness of node weighted maximal cut,
was motivated by the assumption of using identity delays in a congestion game. While it has its own
independent interest, its main use to us is showing PLS-completeness even in games where the edges are
unweighted, but only players have weights. Hence we obtain the following novel result about weighted
congestion games with identity delays.

Theorem 5.4.3. Asymmetric weighted congestion games with identity delay functions are PLS-complete.

Again, the proof of this is presented in the final chapter.
Overall, this clears up significantly the landscape regarding complexity of equilibria in the weighted

settings specifically. A central question remains, however, which pertains to the complexity of equilibria
when a game is both symmetric and has identity delay functions.
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Chapter 6

PLS completeness of Weighted
Congestion Games

In this section we state and provide proofs for our PLS-completeness theorems for congestion games.
In the first part we do so for single-commodity Weighted Network Congestion Games on series parallel
networks with linear latencies (Theorem 6.1.1) and in the second part we do so for multi-commodity
Weighted Network Congestion Games with the identity function on all links (Theorem 6.2.1), by applying
the result of the section devoted to NODEMAXCUT.

6.1 Series-parallel weighted congestion games
We prove that it is PLS-hard to compute an equilibrium of a Weighted Congestion Game, even if it is a
Weighted Network Congestion Game on a series-parallel single-commodity network with linear latencies,
i.e., with latency functions of the form ℓk(x) = akx. We do so by reducing from MAXCUT.

Theorem 6.1.1. Computing a Nash equilibrium in single-commodity Weighted Network Congestion Games
with linear latency functions is PLS-complete.

Proof. We will reduce from the PLS-complete problem MAXCUT. Given an instance of MAXCUT we
will construct a Weighted Network Congestion Game for which the Nash equilibria will correspond to
maximal solutions of MAXCUT and vice versa.

To give the construction, let H(N,A) be an edge-weighted graph of a MAXCUT instance and let
n = |N | and m = |A|. In the constructed Weighted Network Congestion Game instance there will be 3n
players which will share n different weights inside the set {16i : i ∈ [n]} so that for every i ∈ [n] there
are exactly 3 players having weight wi = 16i. All players share a common origin-destination pair o − d
and choose o− d paths on a series-parallel graph G. Graph G is a parallel composition of two identical
copies of a series-parallel graph.We call these copies G1 and G2. In turn, each of G1 and G2 is a series
composition of m different series-parallel graphs, each of which corresponds to the m edges of H. For
every {i, j} ∈ A let Fij be the series-parallel graph that corresponds to edge {i, j}. Fij is presented in
Fig. 6.1, where D is assumed to be a (polynomially) big enough constant. An example graph G is given
in Fig. 6.2.

Observe that in each of G1 and G2 there is a unique path that contains all the links with latency
functions ℓi(x), for i ∈ [n], and call these paths pui and pli for the upper (G1) and lower (G2) copy
respectively. Note that each of pui and pli in addition to those links, contains some links with latency
function of the form wijx

wiwj
. These links for path pui or pli are in one to one correspondence to the edges

of node i in H and this is crucial for the proof.
By the choice of the players’ weights and the latency functions’ slopes, one can show that at a Nash

equilibrium, a player of weight wi chooses either pui or pli. The formal proof uses induction starting from
larger weights. The heaviest players, i.e., players with weight wn, have a dominant strategy to choose
either pun or pln since ℓn(x) has a significantly smaller slope than all other ℓi(x)’s, small enough so that
even if all other players choose the same paths (reaching a load of at most 3

∑n
l=1 16

l = 16n+1−1
16−1 ), still
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Figure 6.1: The series-parallel network Fij that corresponds to edge {i, j} ∈ A

Figure 6.2: An example of the structure of the construction for a graph H(N,A), with N = {1, 2, 3, 4}
and A = {{1, 2}, {1, 3}, {1, 4}, {2, 4}}. Each of the upper and lower parts consists of copies of F12, F13,
F14 and F24 connected in series.

players of weight wn prefer pun or pln over all other paths. But then, pun and pln get a lot of weight load
at equilibrium compared to the weight of lighter players. This makes the links on these paths look like
they get some big additive constants, which makes them extremely expensive for all lighter players and
these players exclude them from their strategy space. That said, by the same reasoning, the players of
weight wn−1 have a dominant strategy to choose either pun−1 or pln−1 and this inductively proves true for
all i ∈ [n].

Additionally, one can prove that pui and pli will have at least one player (of weight wi). The underlying
idea is that if wlog pui has two players (of weight wi) then the third player of weight wi prefers to go
to pli, since it is going to be empty. This already provides a good structure of a Nash equilibrium and
players of different weights, say wi and wj , may go through the same link in G (the edge with latency
function wijx/wiwj) only if {i, j} ∈ A. The correctness of the reduction lies in the fact that players in
G try to minimize their costs incurred by these type of links in the same way one wants to minimize the
sum of the weights of the edges in each side of the cut when solving LOCALMAXCUT.

Given a maximal solution S of MAXCUT the proof shows that the configuration Q that for every
k ∈ S routes 2 players through puk and 1 player through plk and for every k ∈ N \ S routes 1 player
through puk and 2 players through plk is an equilibrium. Conversely, given an equilibrium Q the cut
S = {k ∈ N : 2 players have chosen puk at Q} is a maximal solution of LOCALMAXCUT.

Assume that we are at equilibrium and consider a player of weight wk that has chosen puk and wlog
puk is chosen by two players (of weight wk). By the equilibrium conditions the cost she computes for puk
is at most the cost she computes for plk, which implies

m∑
i=1

2D16k

4k
+

∑
{k,j}∈A

wkj(2 · 16k + xu
j 16

j)

16k16j
≤

m∑
i=1

2D16k

4k
+

∑
{k,j}∈A

wkj(2 · 16k + xl
j16

j)

16k16j

where xu
j (resp. xl

j) is either 1 or 2 (resp. 2 or 1) depending whether, for any j : {k, j} ∈ A, one or two
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players (of weight wj) respectively have chosen path puj . By canceling out terms, the above implies∑
{k,j}∈A

wkjx
u
j ≤

∑
{k,j}∈A

wkjx
l
j ⇔

∑
{k,j}∈A

wkj(x
u
j − 1) ≤

∑
{k,j}∈A

wkj(x
l
j − 1) (6.1)

Define S = {i ∈ N : xu
i = 2}. By our assumption it is k ∈ S and the left side of (6.1), i.e.,∑

{k,j}∈A wkj(x
u
j − 1), is the sum of the weights of the edges of H with one of its nodes being k and

the other belonging in S. Similarly, the right side of of (6.1), i.e.,
∑

{k,j}∈A wkj(x
l
j − 1) is the sum of

the weights of the edges with one of its nodes being k and the other belonging in N \ S. But then (6.1)
directly implies that for the (neighboring) cut S′ where k goes from S to N \ S it holds W (S) ≥W (S′).
Since k was arbitrary (given the symmetry of the problem), this holds for every k ∈ [n] and thus for
every S′ ∈ ND(S) it is W (S) ≥W (S′) proving one direction of the claim. Observing that the argument
works backwards the proof completes. ■

6.2 Multi-Commodity Weighted Network Congestion Games with iden-
tity delays

We prove that it is PLS-hard to compute an equilibrium in Weighted Congestion Games, even if it is a
Weighted Network Congestion Game with all latency functions equal to the identity function, i.e., for
any link e, ℓe(x) = x. This result is stronger in some aspect than that of Section 6.1 since we allow
only the weights of the players to be exponential. Note that if both the coefficients of the linear latency
functions and the weights of the players are polynomial, then best response dynamics converges to an
equilibrium in polynomial time. For the proof, we reduce from NODEMAXCUT which, as we prove in
Theorem 4.2.11, is PLS-complete.

Theorem 6.2.1. Computing a Nash equilibrium in multi-commodity Weighted Network Congestion Games
with all links having the identity function as their latency function is PLS-complete.

Proof. We will reduce from the PLS-complete problem NODEMAXCUT. Our construction draws ideas
from Ackermann et al. [ARV08]. For an instance of NODEMAXCUT we will construct a multi-commodity
Network Congestion Game where every equilibrium will correspond to a maximal solution of NODEMAX-
CUT and vice versa. For the formal PLS-reduction, which needs functions ϕ1 and ϕ2, ϕ1 returns the
(polynomially) constructed instance described below and ϕ2 will be revealed later in the proof.

We will use only the identity function as the latency function of every link, but for ease of presentation
we will first prove our claim assuming we can use constant latency functions on the links. Then we will
describe how we can drop this assumption and use only the identity function on all links, and have the
proof still going through.

Let H(N,A) be the node-weighted graph of an instance of NODEMAXCUT and let n = |N | and
m = |A|. The Weighted Network Congestion Game will have n players, with player i having her own
origin destination oi − di pair and weight wi equal to the weight of node i ∈ N . In the constructed
network there will be many oi− di paths for every player i but there will be exactly two paths that cost-
wise dominate all others. At equilibrium, every player will choose one of these two paths that correspond
to her. This choice for player i will be equivalent to picking the side of the cut that node i should lie in
order to get a maximal solution of NODEMAXCUT.

The initial network construction is shown in Fig. 6.3. It has n origins and n destinations. The rest
of the vertices lie either on the lower-left half (including the diagonal) of a n× n grid, which we call the
upper part, or the upper-left half of another n × n grid, which we call the lower part. Other than the
links of the two half-grids that are all present, there are links connecting the origins and the destinations
to the two parts. For i ∈ [n], origin oi in each of the upper and lower parts connects to the first (from
left to right) vertex of the row that has i vertices in total. For i ∈ [n], destination di in each of the
upper and lower parts connects to the i-th vertex of the row that has n vertices in total. To define the
(constant) latency functions, we will need 2 big constants, say d and D = n3d, and note that D ≫ d.

All links that connect to an origin or a destination and all the vertical links of the half-grids will
have constant D as their latency function, and any horizontal link that lies on a row with i vertices will
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Figure 6.3: (a) The construction of the reduction of Theorem 6.2.1. As an example, in orange are the
least costly o2 − d2 paths pu2 (up) and pl2 (down), each with cost equal to 2D + 2d + (n − 2)D. (b)
The replacement of the red node at the i-th row and j-th column of the upper half-grid whenever edge
{i, j} ∈ A. A symmetric replacement happens in the lower half-grid.

have constant i · d as its latency function. To finalize the construction we will do some small changes
but note that, as it is now, player i has two shortest paths that are far less costly (at least by d) than
all other paths. These two paths are path pui that starts at oi, continues horizontally through the upper
part for as much as it can and then continues vertically to reach di, and path pli which does the exact
same thing through the lower part (for an example see Fig. 6.3a). Each of pui and pli costs equal to
ci = 2D + i(i − 1)d + (n − i)D. To verify this claim simply note that (i) if a path tries to go through
another origin or moves vertically away from di in order to reach less costly horizontal links, then it will
have to pass through at least (2+ i−1)+2 vertical links of cost D and its cost from such edges compared
to pui ’s and pli’s costs increases by at least 2D = 2n3d, which is already more than paying all horizontal
links; and (ii) if it moves vertically towards di earlier than pui or pli then its cost increases by at least d,
since it moves towards more costly horizontal links.

To complete the construction if {i, j} ∈ A (with wlog i < j) we replace the (red) vertex at position
i, j of the upper and the lower half-grid (1, 1 is top left for the upper half-grid and lower left for the lower
half-grid) with two vertices connected with a link, say euij and elij respectively, with latency function
ℓij(x) = x, where the first vertex connects with the vertices at positions i, j − 1 and i − 1, j of the grid
and the second vertex connects to the vertices at positions i+1, j and i, j +1 (see also Fig. 6.3b). Note
that if we take d ≫

∑
k∈[n] wk, then, for any i ∈ [n], paths pui and pli still have significantly lower costs

than all other oi − di paths. Additionally, if {i, j} ∈ A then pui and puj have a single common link and
pli and plj have a single common link, namely euij and elij respectively, which add some extra cost to the
paths (added to ci defined above).

Assume we are at equilibrium. By the above discussion player i ∈ [n] may only have chosen pui or
pli. Let S = {i ∈ [n] : player i has chosen pui }. We will prove that S is a solution to NODEMAXCUT. By
the equilibrium conditions for every i ∈ S the cost of pui , say cui , is less than or equal to the cost of pli,
say cli. Given the choices of the rest of the players, and by defining Si to be the neighbors of i in S, i.e.
Si = {j ∈ S : {i, j} ∈ A}, and Ni be the neighbors of i in N , i.e. Ni = {j ∈ N : {i, j} ∈ A}, cui ≤ cli
translates to(
2D+ i(i−1)d+(n− i)D

)
+
( ∑

j∈Ni

wi+
∑
j∈Si

wj

)
≤

(
2D+ i(i−1)d+(n− i)D

)
+
( ∑

j∈Ni

wi+
∑

j∈Ni\Si

wj

)
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with the costs in the second and fourth parenthesis coming from the eij ’s for the different j’s. This
equivalently gives ∑

j∈Si

wj ≤
∑

j∈Ni\Si

wj ⇔
∑
j∈Si

wiwj ≤
∑

j∈Ni\Si

wiwj .

The right side of the last inequality equals to the weight of the edges with i as an endpoint that cross
cut S. The left side equals to the weight of the edges with i as an endpoint that cross the cut S′, where
S′ is obtained by moving i from S to N \S. Thus for S and S′ it is W (S′) ≤W (S). A similar argument
(or just symmetry) shows that if i ∈ N \ S and we send i from N \ S to S to form a cut S′ it would
again be W (S′) ≤W (S). Thus, for any S′ ∈ ND(S) it is W (S) ≥W (S′) showing that S is a solution to
NODEMAXCUT. Observing that the argument works backwards we have that from an arbitrary solution
of NODEMAXCUT we may get an equilibrium for the constructed Weighted Congestion Game instance.
For the formal part, to define function ϕ2, given the constructed instance and one of its solutions, ϕ2

returns solution s = {i ∈ [n] : player i has chosen pui }.
What remains to show is how we can almost simulate the constant latency functions so that we use

only the identity function on all links and, for every i ∈ [n], player i still may only choose paths pui or pli
at equilibrium. Observe that, since we have a multi-commodity instance we can simulate (exponentially
large) constants by replacing a link {j, k} with a three link path j − ojk − djk − k, adding a player with
origin ojk and destination djk and weight equal to the desired constant. Depending on the rest of the
structure we may additionally have to make sure (by suitably defining latency functions) that this player
prefers going through link {ojk, djk} at equilibrium.

To begin with, consider any horizontal link {j, k} with latency function i · d (for some i ∈ [n]) and
replace it with a three link path j− ojk − djk − k. Add a player with origin ojk and destination djk with
weight equal to in3w, where w =

∑
i∈[n] wi, and let all links have the identity function. At equilibrium

no matter the sum of the weights of the players that choose this three link path, the ojk − djk player
prefers to use the direct ojk − djk link or else she pays at least double the cost (middle link vs first and
third links). Thus the above replacement is (at equilibrium) equivalent to having link {j, k} with latency
function 3x+ in3w = 3x+ i · d, for d = n3w.

Similarly, consider any link {j, k} with latency function D and replace it with a three link path
j − ojk − djk − k. Add a player with origin ojk and destination djk with weight equal to n3d and let
all links have the identity function. Similar to above, this replacement is (at equilibrium) equivalent to
having link {j, k} with latency function 3x+ n3d = 3x+D, for D = n3d.

With these definitions, at equilibrium, all complementary players will go through the correct links
and, due to the complementary players, all links that connect to an origin or a destination will have cost
≈ D, all vertical links of the half-grids will cost ≈ D, and any horizontal link that lies on a row with
i vertices will cost ≈ i · d, where “≈” means at most within ±3w = ± 3d

n3 (note that w is the maximum
weight that the oi − di players can add to each of the three link paths). Additionally, for every i ∈ [n],
pui and pli are structurally identical, i.e., they have the same structure, identical complementary players
on their links and share the same latency functions. All the above make the analysis go through in the
same way as in the simplified construction. ■
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