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Hepiingm

e auTAY TN SITAWPATIXT EQYAOLO, EXPETAUAAEVOUACTE T1) DOUT TURT|VO-TEQLPERELAS XOL TIC LOYU-
PEC OHOPUMXEC WBLOTNTES TOV SLABLXTUOXDY XOWVOVIXDY BIXTOMVY Yot TNV avanTulr ToyUTEpWY
xou axpBéctepnv olyoplduwy yia Tnv meolAiedr evdagpépovtog Twv Yenotwyv. O muprvag
TWV GUYYEOVWY XOWOVIXWY BIXTUOVY anoTeheltal and oYeTIXd Alyoug emdpao TixoUs YeNoTES,
TwV omolwy Ta TEOYIA eVOLapEpovTog Eivan SLIECIUA GTO XOWVO, EVE 1) TAELOVOTNTO TWV TEPL-
(PEPELOXWY YENO TV oxoloLVel apxetd and autd e Bdor xowd evolapépovta. H mpocéyyiot
o ebvon vor amoppelhouye éva peydho pépog Tou Bixtlou, Tou amoTele(Ton ombd GUVOETELS Ue-
Tag) MEQLPERELAXWDY XOUBWY Xt VoL TEOPAEPOUNE ToL CUUPEPOVTA TV TEQLPERELAXDY XOUBWY
EEXVOVTOS OO TOL CUUPEROVTA TWV ETUORUC TIXMY TOUS CUVOECEWY. Tl To o%0Td auTod, YeEla-
Copaote éva enionuo LovTERO ToU Vo EENYEL TS Tal XOWVE EVOLUPECOVTA 00NYOVV GE GUVBEGELS
OuxtOou. Me yvouova Tic 1oYUeEs OUOPIALXES IBLOTNTEC TOL TaEOLGLAloLY TaL GUYYEOVAL Blo-
ductuaxd xowmvixd dixtua (AKA), tpoteivoupe éva vEo yeveTixd Uoviélo Bactopévo ot
duvaxh TNS Yvoune yia anodec ota AKA ye Bdon tnv avtahhayy| andPewy twv Tpaxtépwy
ue toug k mAnoiéotepoug yeltovég Toug. Ilo ouyxexpuéva, mpotelvouue éva GToYACTIXG
povtého oynuotiopol evdlagpépovtog, to Nearest Neighbor Influence Model (NNIM), to o-
nolo elvan eumvevopévo and to povtého Hegselmann-Krause xou otoyelel va eEnyroet mog
1 opoguiia Sloopp@vel To dixtuo. Me Bdon to NNIM, avanticcouue plor anoteAecuotixy
TEOGEYYLON Yot TNV TEOBAEPYT TOV CUUPEPOVTWY TWV TEPLPERELIXMDY YENOTWY. XTI CUVEYELN
VO TUGGOUPE EVAY ohYOELIUO Yior GUUTEEUCHUO ToRUUETEWY PEGw Metaolxol Expectation
Maximization (EM) xou amodemxvioupe 6tt, xdtw and edhoyec untolécelc, ol eZlotoE ou-
unepacuo’ p€oou mediou HoLdlouy UE TIC CUUPATIXES EMUVOANTTINES ECLOWOELS TWV XAACIXWY
AAA xou unopolv var xApoxwolv anoTeAecUoTind oe dixtua pe exotouplpla Yenotes. Arno-
deevhouue YewpenTixd OTL oL eELIGMOELC UEGOU TEBIOU GUYXAVOUY EVTOC TETEQUGUEVOU YEOVOU
xou 6t  Andotaon Ohxrc MetafBoric (Total Variation Distance) oe xdde ypovind Brua
ppdooeTa o TNEd amd Thve and wa exdetixd cuvdptnon pe Bdon 1/vE. Télog, afiomootye
TNV IXOVOTNTO TOU LOVTEAOU UOC Vol TROBAETEL EVOLUPEROVTA UETK XOUBWY UE PEYAAT) ETLEEOT
OTOL BLBTUAXA XOWVWVIXE BixTU, EETEPVMOVTAS TA OYETIXA HOVTEA BUVOULXC YVOUNS ol
uedddoue evowpdtwone xoufwv (node embeddings) puéow TuTOTOMNUEVWY ONUEiRY ovapopdc
TIOU UTdEY 0LV 6NV Teocatn BiBhoypapla and drnodn twv petpxoyv Méoou Tetpaywmvixo-
U Ygdhpoatoc (MTXE) xou Ilepioyfic xdtw and tn Xopaxtneiotin Kaundin Asttovpyiog tou
Aéxtn (IIXKAA) xaw umohoylotixol ypebévou e dixtuo Slapdpmy UeYedohy.

A€Zeig KAewdid.  Suvouny| diddoong anddemy, atoyaotiny duvauixy diddoone anddewy,
k mhnoiéotepol yeltoveg, Bdonuol, UEYoTn xdAudn, peYloTOTOINGT AvouEVOUEVNS Trdovo-
pdvelag, ouvapthoelc Lyapunov, Swodixtuaxd xotvomvixd dixtuo, mpolAiedn evilopepdviwy,

EVOOUATWOT xOUBwY



Abstract

In this Diploma Thesis, we take advantage of the core-periphery structure and the strong
homophilic properties of online social networks to develop faster and more accurate algo-
rithms for user interest prediction.

The core of modern social networks consists of relatively few influential users, whose
interest profiles are publicly available, while the majority of peripheral users follow enough
of them based on common interests. Our approach is to discard a large part of the network,
consisting of connections between peripheral nodes, and to predict the interests of the
peripheral nodes starting from the interests of their influential connections. To this end,
we need a formal model that explains how common interests lead to network connections.

Driven by strong homophilic properties that modern Online Social Networks (OSN)
exhibit, we propose a novel opinion-dynamics-based generative model for opinions in OSN
based on the agents’ opinions’ exchange with their k£ nearest neighbors. More specifically,
we propose a stochastic interest formation model, the Nearest Neighbor Influence Model
(NNIM), which is inspired by the Hegselmann-Krause model and aims to explain how
homophily shapes the network. Based on NNIM, we develop an efficient approach for
predicting the interests of the peripheral users.

Furthermore, we develop an algorithm for parameter inference via Variational Expec-
tation Maximization (EM) and prove that under reasonable assumptions, the mean-field
inference equations resemble the conventional Opinion Dynamics iterative equations and
can scale efficiently to networks with millions of agents. We theoretically prove that the
mean-field equations converge within finite time and the total variation distance at each
timestep is upper bounded by an exponential function with base 1/ VE.

Finally, we leverage our model’s ability to predict interests via highly-influential nodes
in Online Social Networks overcoming relevant Opinion Dynamics models and node em-
bedding methods via standardized benchmarks that exist in recent literature in terms of
AUC-ROC, RMSE and computational time in networks of various sizes. Concluding, we
set up a theoretical basis for the stochastic formulation of Opinion Dynamics and establish

a framework for label inference in very large graphs.

Keywords. opinion dynamics, stochastic opinion dynnamics, k nearest neighbors, in-
fluencers, maximum coverage, variational expectation-maximization, Lyapunov potential,
locality sensitive hashing, online social networks, interest prediction, multilabel classifica-

tion, node embeddings, auc-roc, rmse
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Extevnc Iepiindn ota EAANvVIXd

Ewooaywyn

O mholTt0o¢ TV oNuEpVGOY dXTLKY elval TepdoTiog. Kdmolog unopel va mapatneroet dixtua
OYEBOV TAVTOU: XOWWVIXY BixTua, dixTud XUXAOPoplag, Brohoyd dixTua, dixTua TaEUYWYNC
xou Bixtuo ahhnhenidpaong cwuatdiny etvar uepd mTohd Lwvtavd mopadetyuoto. H tdon twv
OLapOEWY LopPKY Lwng, x4Tw and T @OoM 1 TV XOVmVio, Vo GUVBEOVTOL Xt VoL GUVERYALoVToL
OnuoveYoLY ThoUota TEOTUTO TOU SLETOLY TNV xadnuepv pag Cwih.

Etvor xoAd xatovontd 6Tt Tol TEPLOGOTERA BLABLXTUAXE XOWVWVIXE BixTUA UEYIANG XA{UoaC
(AKA) epgoaviCouv ) Aeyoduevn dopr) muphvo-neplpépetos cope-teptnngpd otpuctupe (BA.
[48, 114, 88, 115, 99] xou Tic avapopés evtog). Ou x6ufor autdv Twv dxtiwy yweilovta
Toug ywetlovtar guowxd oe évay muprva C' xoufwyv mou eivor oTevd cuVBEdEUEVOL PETAED
TOug xau ot éva TepLpepeloxd alvoho U, dmou ol xoufol etvar apatd cuvOedeUévol, aAAd etvan
OYETIXA XAUAd CUVOEDEUEVO UE TOV TURTVOL. LTIC TEPLOCOTERPES TEPLTTWOELS, Ol XEVTEIXOL XOU-
Bot xuplopyolv oyedOY GTO UTOAOLTO BiXTUO, UE TNV EVVOLd OTL €Val UXEd XAdoud d1 XOUBLY
udmiot Baduod xuplapyet oe éva xhdopa (1 — a)n twyv ‘Seopeupévev’ (engaged) x6pPwv tou
duxtbou (bdmou Beopeupévo’ avagépetar o xOuPouc Ye Podud Thvew amd Eva cUYXEXELUEVO
6pt0). Edv nepropiléuyocte uévo otoug deopeupévous xouBous, axdun xon €vol UTOYEAUUIXO
xhdopa xouBwv xuplapyel oyeddv oe O (Beite eniong [16, 17, 18]). Autol ov onuoavtixol
x6uPol muprva, oL omofol Slortétouy Yeydho apldud eloEpyOUEVLY GUVBECE®Y, 1) aXOAOUTLY,
etvan eniong yvowotol (xou eZunnpetolv) we didonuot/ennpeactéc (celebrities/influencers) tou
otOou.  Ou emnpeactéc telvouv va exdétouy BNUocta — %URlwe Yol EUTOEXOVUS AOYOUS
[52, 37, 49, 100, 19] — tic TAnpogopiec TEoih toug (pilol xa eVBlPEPOVTA), ETOUEVLS OL
TAnpogoplec Umopoly va cLYXeEVTEWIoOY UXOA, Yiol Tapddetyuo péow xAfoewyv o REST
APIs.

Mot GAAT onuovTiny xivntrielar SOVoUY TOU SLOOR@®VEL T BoUY| TOU XOVwVIX0) BixTUoU
elvon 1 ‘opo@uAia’, ONAADY| 1) WOOTNTA UTO TNV OTOloL ToL GUVOEBEUEVOL ATOUO GE EVOL XOLVWVIXO
dixtuo €youv mopduota evilapépovta [73, 72]. Ta alyypova AKA yeydhng xhipoxos goiveto
voL elpaviel .oy LEES OUOPIALXES TAGELS, OL OTIO{EC ATOTEAOVGUY CTUAVTIXG UEQOC TWY XIVATEWY

woc (Bh. Enione Kegdhowo 2).

ITpoocéyyion xow LupwPorq. e authy T Amhoyotixn Epyacio, aglonotolye tic opogt-
Ax€g TdoELS xan TN SoUT| TUENVa-TepLpEpeLag Tou oLy yeovou OXN yla Vo amoxTAcouUE Emex-
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Tdoyeg xou axplBel pedodoug pdinong yio Ty TEOBAEDT TV EVOLPELOVTILY TWV TEPLPER-
gLy Ypnotwv evog dixtiou. H mpocéyyior yog elvor vo mpoodioplcouue xon vo yenol-
UOTIOLACOUNE TOUG TORAYOVTES ETLEEOTC Tou BixTOou w¢ “steady-state trend-setters” xou vo
aPHoOUUE TO BIxTUO YOpw Toug vo e&ehtydel clupmVa e pior emavoknmuixy| diadixacior Tou
Eexlvnoe amd Lo CUYXEVTEMOT TV YoRUXTNELO TIXWY TWV EMNEEACTOY. O UTOYEUUUIXOS ool
VUOC TWV EMNEENCTOVY EMUTEETEL UL APXETE Y1 YOoeN TpoeToacio (ot yelpdtepn nepintwon
€VTOVA UTIO-TETPAYOVIXO YPOVO) TwV EVOLAPEPGVTIOY TwV Yenotdv. Eunvevouévo and to ta
ouveZehTixd mabyvia Stoaubdppuone drodne [46, 11], otn cuvéyewa avipetwnilouye o dix-
TUO WG ATOTEAECUOL LG PUOLXHC duvaULx| Bladtxaciog, omou xdlde TepLpepeloands YeNoTNng
EVNUEPWVEL TIC BUVATOTNTES TN CURPWVOL UE To EVOLAPEROVTE NS K -EYYIEGTEROL YEITOVES TNV
nepupépeia, € 6tou emtteuy Vel ouvalveon (BA. enione Kegdhowo 4).

XpeNOWOTOOUUE TOV YOO EVOLAPEPOVTOS TOL OixTOOL ToL Bnuloupyeltal amd auTAY T Ol
adixaolar Yot Vo GUUTERAVOLUE TNV THovOTNTO OTL €VaIC TEQLPERELONOS YeNOTNS LioUeTEl GLY-
xexpéva evilapépovta (o epyaoia LloodUvaun Pe TV TadvounoT TOAATAGY ETXETGY). To
YAEWL Yol TNV EMEXTACUOTNTA TOU ahyopliuou eivar 6TL xard ‘OAn TN didpxeia Tng dadixactog,
xade mEpLPEPELanOS YENOTNG AAANAETLOPA HOVO PE TOUC k TANCLEGTEPOUC YEITOVES TOU.

ITio ouyxexpwéva, éva Baowxd pépog e mpocéyylone uog elvon to 'evetixd Movtého
Enpporc and k Kovtvdtepoug I'eitovec (Nearest Neighbor Influence Model/NNIM), wa
oToYao XY EmavahnmTxy| Stadxacio clugwva pe Ty omolo oL yeoteg e€ehicoouy Tar ev-
OlopépovTd Toug. e xdde ypovixd Brua, xdle mepupepetoande yenotng detypotilel évay véo
popéa BLADLXOU EVOLUPEROVTOC UE BAOT TOL EVOLUPELOVTA TWV TANCIEG TEPWY YELTOVMV TO GTNV
nepupépeta. H yevind Sour tou NNIM eunvéetan and 1o poviéro Hegselmann-Krausse [46].
201600, To NNIM elvar 6T0)a0Tind xou YENOOTOLETOL WG YEVETIXO UOVTEAO, UE GTOYO Vo
eZnyNoeL, PEow NG OMOPIAAS, TN CUVEXTIUNGOY TNG GOUNC TOU OLXTUOU XL ToL EVOLUPEROVTA
TV TEpLPEpElaX®Y Yenotov (BA. Kegdhoo 7).

[Tepihnmuixd, n wédodoc mpofrednc yag otoyeler atny avdxTNon Twv haviovoviwy evol-
APEPOVIWY TWV TEPLPEPELUXWY YPNOTWY TOL UEYICTOTOLOUY TNV TIAVOPAVELD TOU LOVTEAOU.
Av xon 1 1O€a elvan A, 1 ATOTEAEOUATIXT EQUPUOYT TNG amouTel oNUOVTIXY) TpooTdEL Xl
ppovtida (BA. Evétnta 7.1.1 xou Kegpdhowo 3). Xenowonowotue Variational Expectation-
Maximization, Aoy tne Aavddvoucag @iong tou NNIM, 6edopévou 6T 1) dueon peyotonolnon
e mioavotnTag Aoy etvan Sucdudxpttr. 2¢ anoTéAeoua, ABAVOUUE Uid ATAOTONUEVT) TEOGEY-
yion péoou nedlou Tou NNIM | n omolo elvon mopdpota ue TiC xAACIXES EELOWOELS TN XAACIXAS
OLVIUIXAC YVOUNG, XadoTOVTOG eTTAE0V BuVITH TNV eYxadidpuoT cOVBESTC YETALY TN O TO-

YAUOTIXAC XU TNG VIETEQUIVIO TIXTG BUVOIXNC TNG Y VOUNS.

Kivnteo

Yruepa, ol dvipwrol Telvouv va emneedlovTon omd GANOUS TOU €YOUY XOWVA EVOLAPELOVTAL.
AuTy) 1 1BIOTNTU TV XOWVWVIXOY OIXTOWY — TOL LUPICTATAUL Y10l EVaL AOYIXO YPOVIXO LT
OTIC XOWWVIXEC EMOTAPES — ovopdletar ogoguiio. Ou dvipwror popdlovtal cUVEYKS TIg

amoelc Toug xon xdde dtouo emneedlel évay dAAO e duvouixd tedémo. H avtodloyr mhneo-
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popiy oupPaivel cuvitng Tomxd PeTall TV avlpdTwy éng dTou emiteuydel cuvalveor,
onAad”| ot amoel ouyxhivouv oe €va uévo onuelo. O andelc umopel var avapépovion oe
TONTIXEC OYEOELS, LOUECIEC VEWY TACEWY, YOUTL xou EVOLUQEROVTOY Yewxd. Télog, autd
ToU XMoTE TNV aveyxn yior LEAETT) BUVOLXAG YVWUNG TAVTOY 0L ToeoVoa EVOL 1) EUGPAVIOT
o0y YPOVWY BLaBIXTUAXMDY XOWVWVIXADY dTiwy (AKA).

H ypouyur, épeuvac oty AAA ectidlel xuplwg og povtéha mou opllouy xdmota Evvola Tng
CYEITOVIACY YOpw amd xde YeNoTn xou piol OLodxacior EVNUERKONG TOU AoHBAVEL Y MR KOS
oM nAeniBpaon petalh Tou YeHoTn xa TwV YETOVWY Tou. H Siadacio eivon emavoknmtixy
xou emavahauBaveTon €we GTou oL YeNoTEC YTAcOoUV oE €va onueio oTo onolo ol amdelc Toug
dev aAldlouv — To omolo avagépeton ot Bihoypapio we ovraiveon. Metald Twv YVo-
otV povtédov AAA eivor 1o povtého Friedkin-Johnsen (FJ) [?], to yovtého DeGroot [24]
xou o povtého Hegselmann-Krause (HK) [46]. ITapdho mou autd ta povtéha napouctdlouy
LOYVEES LoINUATIXES WOLOTNTES OTIWS 1) GTAVEQOTNTA XU 1) GUYHALOT) TENEQUCUEVOL YPOVOU GE
po xotdotaon cuvaiveong, 6ev dladétouy YepueMmBEL ILOTNTES OTWS 1) 0TOYAOTIKOTNTA IOV
umoEolV Vo 0lOTOLACOUY T1) BUVAUT TOU HOVTEROU UE TOAAOUC Tedmoug. Mia guowr eméx-
TAOT Yo TN CLUTERIANYN oTOYACTIXWY WBLOTATWY elvon 6TL oL amdPelg YLl yeovixr oTiyur| dev
AVTITPOCWTEVOVTOL UG VIETEPUIVIO TIXES PETUPBANTES ahAd avThoUvTon amd Ui xotavour) D ue
éva ahvoro Tapapétewy B1) mou xadopilovion péow OMNAETBEACEMY TwV ToRAYOVIBY GTO
nponyoLuevo Brua. To povtého mou mpotelvoupe Péow auTAg NS epyaoiog, Exel aUTES TIC
wiotntee. o ouyxexpwéva, o xdde Brua t xdde yeRotng €yet wio duadixy| drodn mou bide-
Ton amd o xotovopr) Bernoulli. ¥1tn cuvéyeia, o yerotng «xortdley toug k-Kovtivotepoug
Ieitovee (KKT') 9éter tmv mdavétnta vo eVUEPOOEL TN YVOUN TN (0N UE Tov péco 6po
TWV ToEATNEOVUEVKDY amddewy. MohovoTt,, authc g PUOEMS Ta LOVTEAL XATEYOLY TPO-
POV TEOTERHUATA EVOVTL TV VIETEPUIVIOTIXMY OVOAGY®V TOUG, To CUYXEXPWEVA UOVTEAX
UTOPEEOLY amd VEUEALWDON UTOAOYICTIXG TEOPAAUATY, UE TO ONUAVTIXOTEQO AmO QUTH TNV
eCayny mopauétpry. H ancudeiac extiunon péyotne mdavogdverog (EMII) oto povtéha
QUTA YPELETOL EXVETIXG YPOVO YLOL VO UTOAOYIGTEL Xl EV TROXEWEVW TO TEOPBANua ancudelag
cuumepaouatohoylag efvar TEoX TGS adlVATO AOYw NS Aavidvouoag GUoNE TOU HOVTEAOU.
Auté 1o xevo épyeton vo xohugplel and tov ahyderiuo Expectation-Maximization (EM) nou
EMTEENEL TNV TEOCEYYLOTIXY XAl UTOAOYIOTIXA OmOBOTIXY UEYIOTOTOINGT] TNG AVOUEVOUEVNC
ThC TNE Tavogavelag UTOVETOVTOC ULol HETUBOAXT) XATOVOUY| T8V OTIC XPUPES UETABANTES.
‘Etot, pe yvoor uovo tne opyxAc XaTtdoTaone TwV anoenmy xatapéevoude Vo eE8YOUUE TIC
TOEAUUETEOUC Yiat Oho To YeveTxd ovtéro (I'M). Xenowomoudvtog Ty TeocéyyloTn Tou yé-
oou mediov (mean-field) (MII) xatopépvoupe va e€dyouue enavahnmTixéc eELODOELS Yo TNV
cuunepaopatohoyio TapouéTewy Yia TIC onoleg armodeikvioupe Jewpntikd 6Tl GUYXAVOLY OE
TEMEQPACHUEVO YPOVO XIS Xal OTL Yol UEYHAO opidud YENoTOVY 1) ToyLTNTA CUYXAIGNE — 0O
mpoc v Anéotoon Ohxrc Metoorric (AOM) - gpdooeton and pa exdetinr) cuvdptnon ue
Bdon 1/vVk. Emmiéov, mopatnpolpe 61t n pédodoc Hog YEVIXEUETH GE [id OXOYEVELL GTO-
YAC TV HOVTEADY BuVaixg andewy, oTta onola umopel va Yivel cuVAY Y1) CUUTERUCUSTLY
UE TPOUOLO TEOTO.

Téhog, emxupdvoupe TN U€Uodo pog ot BixTUa TEAYHATXO) XOOUOU UE TN YeNoN TWV
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CUUTEQAUCUATIXMY TURUUETEWY WE THIAVOTNTES VoL TPOTEVOUNE GUYXEXPUIEVA EVOLUPEPOVTA OE

CUYXEXPLEVOUC YPNOTES.

Yuvelehuxtixd Ioalyvia Awopopgpwong ‘Arodng

H owoyévela Jempnmincdy LovTEAmY GYNUATIOUO) YVOUNE oL oYeT{ovTon TEPLIOCOTERO Ue
™ S| pog ebvon tor Xuvelehwtxd Hotyvia Awudppnone Anolne (Coevolutionary Opinion
Formation Games / XIIAA) nou ewodyovtar oto [11]. Elugpwva pe to XIIAA, ot yefoteg
oL duxthou eZeliooouv Tic andelc toug pali pe Tic yertoviée touc (dnwe oto yovtéro HK).
Auté enextelvel 1o épyo twv Bindel et al. [12] nou embudxer Ty ehayiotonoinon 1ou x66Toug
OLapWViag TwV YeNoTeOY, Omwe Yo SoVUE TopoxdTe, aAAd PE TO OixTuo oTalEpd, PTAVOVTAS
TeEMxd oe pa YewpenTinr) tonyviovewmenuixy| xatovénon tou wovtéhou FJ. Ou cuyypogelc tou
[11] yevixebouv tn Aettoupyia xovwvixol xdotouc tou emfBdihouv ot Bindel et al. xou @pdo-
couv otevd 1o Tiunua tne Avopylac (TA) ! xo to epunvedouy we évav Tpbmo vor omodwiet
o&iot 070 OGO oL XOUBoL EXTYWOVY TNV EYYEVT TOUC drodn xat Tig amdelc TV Pilwv Toug.

Ye éva XIIAA, vndpyouv n noaixteg xadévag amd Toug onoloug EYel EYYEVA YVOUT §; XAl
exppdler Yvoun z; (6mou yewxd s; # z;). Ltéyoc xdde maixtn elvon vo EAayIGTOTOLAOEL TO
x60toc Ci(2) mou elvar GUVAEPTNON TV EYYEVAY OTOPEDY §; XOL TV EXPEACUEVLV ATOPEWY
z = (21,...,2n) OMV TV Tuxt®V. To adpolotind xowvwvixd xéotoc opiletan we C(z) =
>, Ci(2). Ovovyypageic Jewmpoiv dvo mowyvidie. To mpdto eivor to Tuppetpixd LITAA

(XXIIAA) 6mou divetanr 1 ouvdptnon x6otoug xdie maixtn we

Ci(zi,2—) = Zfij(zi — 2j) + wigi(2i — si) (1)

J#i
omou fi; xou g; ebvon YVwoTég mpaypoTixéC CLUVOPTACELS Tou elval XUPTEC, GUVEYKOS OL-
apoploes xou ouppeteixés, nhady fij(—x) = fij(z) xou gi(x) = gi(—x) xou g(0) = 0. X1
ouuuete podwon fi; = fji Tou xdvel To maky VISL CUUUETEIXO wWET ot (euydpta mauxtwy. To

oo Twv Bindel et al. opilet g(z) = 2% xu fij(z) = w;jz? bmov wi; = wj; AVTITPOCKTEVEL
10 Bdpoc g axunic {7, 7} uetadd mouxtdv @ xon 5. ‘Otav oL cuvopTrhoels elvor xUpTéS, UE Yprion

TOU BUVOULXOU

P(z) = Z wigi(zi — i) + Y fij(zi — %)) (2)

1<j
unopel xavele vo anodeléel Ty Ul Ioopponiog Nash. Emmiéov, yio tnv eCaywyr| Tou

pedypatog yia o TA ol cuyypageic e€etdlouy to alvolo

1To TA evée tauywidiod uetpd Tov Tp6T0 e ToV 0molo 1) amoTEAESUATINGTNTA VS GUG TAUNTOS UTtoPBaduile-
Tl AOY® TNG EYWIOTIXAC CUUTERLPORAS TeV TouxTdV tou. Eivar uia yevixr évvola mou unopel va emextodel
o€ dlopopeTind cUCTHPATA ot EVVoleg TNG amoTteAecuatxdTntoc. Alveton éva nouyvidt G = (N, S, u) pe éva
cet N 1oV mouxtdv otpatnyx S yio xdide malxtn ¢ inN, cuvaptioeic wgélelas u; : S toR, yo cuvdptnon

mpévolag W : S toR, 6nwe o utilitarian objective W(s) = >, ,. v ui(s) ©§ 0 wodupog otéyog (egalitarian
maxs jns W(s)

objective) W (s) = min; ina ui(s) xau éva ghvoho £ C S woopponiciv, to TA opileton g TA = =25 R
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s = {0 10) + L5 70) < AT0) + (2 2 0, Jebs s oom o |

3)

xou T0 6UVONO

Huw,g = {(/\, ,u)‘g(u) + (v —u)g'(u) < Ag(v) + pg(u)Ve,y > 0, gelvor wo cuvdpTnomn ﬁdpoug}
()
xot Tol cUvora A1, Ag mou divovtar we A = Uf Hay r xon Ay = Ug Huw,g. Ot ouyypapeic
Yenotpomooty v teyvixh tou Local Smoothness tou [92]. Seiyvouv ot yia xdde (A, 1) €
A1 N Az i A/ (1 — ) ebvan o avadstepo 6plo tou TA xou to ¢ = mingy ;yea;n A, ﬁ elvou
T0 xoh0TEPO avTERO Oplo. ‘OTay oL cuvapTroelC elvon XUPTEC xou Blaoponotnuéves, to TA
elvoaw T0 mohD 2. Téhog, oL cuyypapeic TopEyouv Uit YEVIXT XATaoXELT] xdTw oplou Yio TO
YYIIAA.
Yto YIIAA Kovtwétepwv Tertovov (EIHAAKKI), xdde noixtne xoitdler toug k min-
OLEGTEPOUC YEITOVES TG (UE CUVETES OTAOWO LOOTIINLDV) OE OYECT| UE Ta §; xou oynuotilet

10 oet K (2,1) xou umogépel x66T0¢

Ci(zi,z—;) = Z (25 — Zi)2 + ak(z; — Si)Q (5)
JEK (2.4)

Or ouyypageic delyvouv ott o mouyvidt K-NN éyet TA pe Ty o moAd otodepd yoo o > 1,
omou 1 otoepd Bertiwveton pall ye a. To xowvwvixd amotehéopota yivovtow xaAlTEQR OTAY OL
xouPol elvon «otevépuoloty, Snh. divouv peyahitepo Bdpog otic andeic Toug (o — 00). e
avtideon ue toug Bindel et al., ou cuyypageic 6etyvouv 6TL edv o xoufBot uropolv vo emhé€ouy
Toug Yeltovég Toug ue Bdomn Toug k mhnoéotepoug yeltovég toug, To TA unopel va gpoydet.
Téhoc, o1 ouyypageic delyvouv 6Tt yio wxpd o o TA ebvor Touldyiotov 1/a?; yeyovée mov
e&nyel yiotl To TA embdevdveton 6tary oL mpdxtopeg elvan o «eugueicy. H olvdeon ue 1o épyo
o gbva 1) BLopdEPWoT XOGTOUS WS AEVNTXOS Aoy dpriuog tng cuvdptnone mdavopdvetag (BA.
v axéhoudn Evotnro xau to Keg. 7).

I'evetixd Movtélo

Opogpiiia

Ov opogpuixéc wiotnteg ot KA €youv peydhn otoplo: oL Tp®TEC avapopés yior TNV
opogihior cuvavtdton 6To Xuunocto tou [IAdtwva ye v @edorn ‘Ouoiog opoiw ael teddler’,
onAad”y 6Tt oL dpotot Tanptdlouv petald toug. E&dAhou, n AEEN opogidia TpoépyeTal amd TIC
AéZeic opov xou pidia. H poviehomoinom towv ogoguiixmy diadxaotey oto KA yiveton cuvitong
péoo Twv ywewv Blau [73, 72] ot onoiot elvar TOANUBLEGTOTO GUOTAUOTO GUVTETAYUEVLY GTOU
1 *GE CUVTETAYUEVT] AVUPERETOL GE LAl XOVWVIXO-ONUOYEAUPIXY| HETOUBANTY, OTwe TO QUAO, 1|

NALAAXT) OUADAL, TO HOPPWTIXG ETENEDOD, TO ELGOONUA %.A.. H opyovewTiny 80voun ot Evay ymeo
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Blau etvou 1 opogihion cOugpwve e Ty onola 1 pot| TN TANeogoplac and dtouo ot dTouo eivon
ua itvouoa cUVAETNON NS AmOOTAONS UETOEL TV VECEWY TWV ATOUWY OTOV XOWOVLXO-
onuoyeapixd yweo. ‘Atoua pe peydhn andotact etvar oyedov antdovo va aAANAETOEOLY £V
TaUTOYEOVAL Ol OUOPLAOL GUUPETEYOVTES oy Nuatilouy petadl Toug xowvdtnteg. Modnuatixd,
av oL YPAOTES U,V €YOUV AVUTUPUCTACES Ty, T, AVTIOTOLYA TOTE 1) apyY| TNG OUOPAlag
uTodLXVVEL GTL GTay 1) amboToON ||y, — Ty || Elvon uixer| téTe N TdavéTNTE Vo ebvon pihot ot
u, v ebvan YeY AT,

H dueon cOvdeon nou umopel v xdvel xdmotog yiow TNV odo@uiia elvor 1 teplntworn twv
TANOLESTEPWY YELTOVWY. IIo cuYXEXEWEVA, YId VO TOCOTIXOTIOLACOUPE TNV OUOGLAio oE €val
KA ewodyouye v évvora tou opogpihixol deixtn (OA). T éva KA G(V, E) Jewpolyue 61t
0 xde x6uPoc u € V éxel éva Sidvuopo (BuadIXMY GTNY TEOXEWEVY TERITTWOT) YUEAUXTHELO-

oy @, € [0,1]92.

Ocwpolue 800 yertoviés. H mpddtn yettowd agopd TNy mopatnerioiun
yertovid tou xopPou N(u) U {u} evidée tou KA mou nepthayufdver xou tov xéufo u. 3tnv
TEpinTOoN ToU XATELYUVOUEVOL BIXTUOU AVOPEROUACTE OTNY EEM-YELTOVIA Tou xouPou u. H
0e0TEPN YELTOVIA apopd Toug Ky, TAnoLEoTEPOUS YElTOVES TOu XOuBou u, cuunepthauSovoué-
VOU %Ol TOU U. XXOTOG oG EVOL VO UETPHICOUUE TOGOTIXE T1) DLopoRd TV CUVIIPOLOUEVLY
EVBLPEROVTLY Qu, o By, avTioTolya Und W cuvdptnon cuvddpotone f : [0,1]4 — [0, 1]4.
Aedopéveny twv cuvapolopéveny (Ue Tov (Blo TPOT0) YapoXTNELE TIXMY Oy, Xt By, UETPAUE TO

Tetpaywvixd Lpdipa (MTE) petalld twv oy, By

RMSE(et,, 3,) = \/ Lol = fu) )

To onolo €yet ot Tiph evide tou daothuatog [0,1]. Ev ouveyeio hopPdvouue tov oto-

Yuouévo péco 6po yia bhoug toug x6Boug xou PeTEdUE TNV andoTool Tou and to 100%

ZUEV Wy

) x 100% (7)

Av Vélouvpe vo elodyouvde TNV €vvolo NG LoyLog PECH OTNV UETEIXTY oS UTOROUUE Vo
ABoupe tov otaduiouévo péco pe Bden toug €€w Baduolc w, = 1/(1 4 |out(u)|), eved av
VENOUUE VoL €YOTUUE Lot OUOLOUORPT VeWENoT UTOpoUUE Vo VEGOUUE OhaL ToL Wy, (00 PETAUED
Touc. AlncUnTixd 1 TUEATEVe UETEIXT LIS OELY VEL TOGOTIXE TO TOGO HOLELEL Lol TOQUTNEY O
YELTOVIA TOU YRAPOU UEGHL TWV XUV TOU PE TNV YELTOVLA TV ky TANCIECTERWY YELTOVLDY
Tou. Mo yeydAn opotoTNTo UETOEY QUTMY TWV YAUEAUXTNEIC TGV Fot UTOOHAWVE OTL UTOPOVUE
eVOEYOUEVOC Vo BACIOTOVUE TEVL OTNY BouY| TwV TANCIECTEPWY YELTOVWY, oYVOWVTIS TNV
TAUEATNEOVUEVT BoUY| TOU YRAPOU, ETITAUYUVOVTAS ETOL OPXETE TOUS aAYopiluoug Tou emdeovY
Téve 670 KA. Hepopotilbpacte Pe xovevixd dixtuo dlupbpev ueyeddv (anéd ~ 103 xéuBouc
¢ ~ 108 xbpBouc) pe Buadixd yopoxtneLe Txd xon petpdpe tov OA (oyyh. HI). Do tov ypr-
YOPO UTONOYLOUO YENoUoToloVUE Uelwon didotaong pe Avéiuon Kipiwv Buviotwody (AKYE)

2%t etpdpotd poc o Savhopata elvan amhde duadind, add 1 Yedpnon Soukedel xon Yo TEAYUOTING

Savbopata, 6Tou T0 xdie otolyelo LTOdNAWVEL TNV THAVOTATH 0 XPNOTNS U VoL EYEL TNV EXAOCTOTE WBLOTNTA.
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[13, 98] e&nydvrac o 95% tne dlomopdc Twv Beﬁopévwv?’. Ta amoteréopata mopatidevton
otov ITtvoa 7.1,

[apatneolue Tohd uPNAd ToGOCTE opoPLkiog GTa Bidpopa dixTua Tou eEeTAlOUNE Tal oTolo
HOG TToEOXVOUY VoL ELGGYOUPE €Vol LOVTEAO TAvVe OTO OTolo oL amdPElS TwV YeNoToY divovTtal

ue Bdon Toug xovTVOTEROUS TOUG YElTOVECS.

I'evetixé Movtého Empporic and toug k£ Kovtivotepoug I'eitoveg

Ye autrv TV evotnta opilouue o I'M xdtw and to onolo dnuiovpyolvIal oL anddelc. Xto
mhaiolo poag Yo utotécouue OTL oL YPNOTES dloop@@vovToL and dlaviouato Ue oTotyela eite
undév eite éva, xodéva amd o omolar exedlel v 0 yENoTNE ExEl LIYETACEL TNV avTicTOoLYT
yvoun 1 oyt o mapdderyua, évag yerotng umopel va €yel Ty tdorn vo utootneilel ‘undo-
%eT’, ahhd Sev unootneilel ‘mtodoapopo’. ‘Evac tétolog yenotng éxel éva Sidvuoua amdewy
foo pe (1,0). Trodétoupe btL xdde ypriotne €xet d andelc mov dlopopPwvovtal UE SOKIUES
Bernoulli mou eivon ave€diptnteg ot xdie Sidotaor. Ye xdide emavaindr, n mdavotnta xdmolog
va VOVETAOEL Lol SLYXEXPWEVY ahhnhouyio eVBLPEROVTWY/TdoEwY elvan 0 péoog bpoc Twy
anodewv twv KKI'. H Swduascio emavolopfdvetar €mg 6Tou QTACOUUE GE XATACTIOT, CUVAL-
veong. Popuohicotind, €éotw U va elvar 10 6UVOAO TWV TEOXTORMY Xal €6Tw X var ebvon 70
SLévuopo Yvoung tou yerotn vt oty t. ‘Eotw enlong Xg () vo unodnhdoet To GUVoAx6
Tivoxa anddewy yio éva unoctvoro S C U 6mou unotivetar Tt oL YprioTteg etvor BlateToryuévol
oe wa (awdaipetn) oelpd. Trodnidvoupe To Sidvuopa tdovdTnTag Tou x HE TO Bldvuoua

(t)

u’.

stvoro K (u) mou nepiéyel touc k mhnoéotepouc yeltovee u o ayéon ue Tic andielc tou.

H Suobixaocta dnuiovpyiog dniwvel ot xdlde gopd t > 0 o yprRotng xataoxeudlel éva

Y ouvéyewa, oTo YOpo t+ 1 xdie yprotne mepvder pa dtadixaoia eZoudhuvong (uéoog 6poc)

7. 4 4 7. t 1 V4 7’
X0l EVNUEPVEL Tal EVOLAPEROVTA TOU GUUPWVY UE To Be (££+ )> TETOLN WOTE

1
g€ =2 > XV (8)

vek® (u)
H emhoy tov yertovwy yivetar olugwva ue v andotacr Hamming nou opileton w¢

TO AYPOLoUA TWV CUVTETAYUEVOY OTIC OTIOlES BlaPwVoLY oL YEHOTES, dNhadY Yiot 600 YEHOTES

u,v € U oplletan ¢

S {0 £ X0V =3 (x0 - XY’ o

i=1 =1

Moxpooxomixd, n mdavotnto pa drodn 1 < ¢ < d vo evon 1 geta€ld twv yenotdv tou

unocuvorou S C U 1 ypovixr otiyur) t > 0 yovtelornoteltar and tnv nocoHTnTA ,ugg), omou

BOCUEVWY TOV ,ug)

W] =TT ()™ () (10)

3ayy\h. explained variance
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O mapduetpol autol PTOPOUY Vo UTOAOYIGTOUY €X TWV UCTERWY UETE TOV UTOAOYLOUO
TWV TOEOETPWY TV anddewy. o yia TapouoLo aVTUETOTIOT TOQUTEUTOVUE GTNY oVopoed
[55, 54].

[Tpoxewévou va mpofolue G CUUTEPUOUS TUPUUETEMY YId TO UOVTENO oUTO TEETEL Vol
oploouye yior cuUVEETNOT ®60TOUE TOL €yl oTaTioTixd vonua. H mo cuyvd yenowworooluevn
ouvdptnon ebvar auth g Tdavogpdvelac. Enouévee, opilouue o x00T0¢ w¢ TNV oTytaio

mdavogdvela Tou ovTéAouU TN Yeovixn oTiyuy t, fTot

»CétH) (ESH)) = log Z(;) Pr [Xg”ﬁgﬂ)} (11)
XU

H ocuvdptnon auth| €xet xataBoréc xon amd Tn HOVIEAOTOINGT] TETOLWY OLABXACLOY UTO
TNV Ty VIOUEWENTIXY) OX0TId 6oL 6X0TOC TOL xoeVOS Efval Var EAXYLO TOTIOLAOEL TO XOGTOS
aouppovias tou. Ileplocdtepa pnopoldv vo Peedolv otny avagpopd [12], n onola Yo uropoloe,
UTO TN 0N Yog poviehomoinot, v elvon 0 apvnTixdg Aoydpriuog mdavopdvelag HOVTEAOU
ue I'raovoiovée amodeg. Evog dhhog tpomoc va e€nyHOOUUE TN Uop@Y| TNS TOEAUTAVE Ti-
Yovopdvelog etvor 1 Mapxoflov 1ldtnta, dnhadi ol anddeic evog yenot dev ennpedlovio
Tpd LOVOV amd TNV TEOTYOUUEVT| XAUTAC TOCT).

Ev yével, o axpric ouunepooudc mapopétowy e EMIL yvwpeilovtog pévo v opyixi
XATAGTAOT TOU OLXTOOU X((JO) yeedletan ev yével ekletikd ypovo yio va hudel. O Adyog yio
Tov onolo cuuPatvel autéd elvan BLOTL xavelg meEnel va adpoloel Tavew o OhoL ToL EVOEYOUEVDL
yia Tic Aavddvouoeg petofantéc X ((Jt) vt > 1. Trnodérovtac wa petoBohueh xatavour; QM)
ToL oxohoU o0V oL UETABANTES TwV AOPENY, UTOPOUUE VA YPNOLOTOLACOUUE TNV aVIGOTNTO

Jensen yua vor e€dryoupe €var xdtw @pdryuo

£ét+1) > EQ(t) |:10g Pr |:X((Jt)

sé””” +Equ |~ 1ogQ(X))] (12)

méve oty miavogdvelr (w¢ Teog Tic HeTUBANTES Twy anddewy). Tlupbduoto anotéheoua

UTOPOUUE VoL AIBOUUE %o WG TROG TIC LUXPOCKOTUXES TURUUETEOUS ,u(Ut). H nocétnta

sSH)H (13)

ovoudleton Evidence Lower Bound (ELBO) xou omotehel évor xdto @edypo otny mi-

L4 — g [log Pr [X((})

Yavopdvelo. H yeron authic Tne ouvdptnong we avuxeevixrg etvan gupeior oo TeoBArjuota
otatioTixfc poviehonoinone [54, 55, 50, 101], Aéyw tng euxohiac otnyv Bertiotonoinon tng.

H urohownduevn nocdHtnta

Hgfgl) =Eqw [— log Q(X)| >0 (14)

elvan 1 evtponia tne petofohinic xatavourc. IloAAég emhoyéc €youv mpotadel yio T
uetoBohxny xatavour). H mo cuyyevic oto mpéPinud uoc amoterel 1 mpooéyyion péoov
rediov [50, 101], opudpevn ond 1 otamiotnd guoh.t Ly mpocéyyion auth, Yewpolpe

aveZdETNTES XU LOOVOUES METUBANTES, H\TOL

H ropandve Tpoxtixd eivon eupénc YVenoTh xou we Expectation Maximization (EM) [26]
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o = H ﬁ (¢§Z))X§f} (1 - ¢§Z)>1—Xfi> -

uelU i=1

To gpdypo ELBO ¢ EE. 13 unopel va ypagtel o¢

(t+1) _
’CQ-,E = EQ(t)

zd: > > 1{vexw} (X,-(Ji) log 1, + (1 X)) 10g (1 - ¢ )1

i=1 uelU veS

Y& autd 10 ONUEID XANOVUACTE VAL TROCEYYICOUUE TNV TOCOTNTA

1 {v e k® (u)} <XZ-(5) log 51-(2“) + (1 — Xf?) log (1 - ngrl)) > (17)

Tnv ornola Yo mpoceyyloouue ye yerion geoyudtonv Chernoff. Iho cuyxexpyéva, Yo dei&-
OUPE GTL 1ol opXOUVTLC PeYdho [U| = n xau xatddhmha gpaypévo k to aivoro KW (u) npoo-
eyyileton omé 10 olvoro KO (u) mou mepiéyer touc KKT 03¢ Tpoc 10 yhpo twv mapauétony
(xdde Tuyaio Sidvuopo avamaploToTon UE TO BLEVUGHO TWY TOEAUETEWY TOL) Yia xXGVE Yphotn
u. ITo ouyxexpuéva anodeixviouye To Tapaxdte Yempnua yia Ty andéctaor Hamming, to
omolo YEVIXEUETAL XAl YIo GAAES VOPUES UE TIC XATIAANAES oahharyES. Apyixd amodeixviouUe To

e&hc evolduecco Afuua

Ahppa 1. Eoto X,Y € {0,1}? 600 suvipoata je avebdptnres ovvtetayuéves Bernoulli
pe davidouara mapapérpor p = E [ X] ke g = E[Y] avziotoa, 6nAadry X; 1LX;, YilLY;
yia kdOe i # j ka1 X; LY; ya kd0e 1 < i,j < d ka1 || X —Y|| n andotaon Hamming peta&d

TOUg
1. Ia kd%e n > no émovny = E[||X = Y||] — |lp — qll > 0, wyvea n avioétnra ovyxér-

TPWONS

_y| - _ _2(m—m)’
Pr[| X =Y [|-E[|X —=Y|]| > n] <2exp g (18)

2. Ta kdB € > 0 1wyve n anodtnte ovykévpwons (xepdtepns Tepintwons)

1+€)d €2d
Pr (11X - ¥l - Ip - all > U5 < 2ewp (<57 (19)

3. AoOévtog ¢ € [0,1] ka1 ya kde € > 0 mpéner va daAébovue didotaon

d=Q <1°g(2/5)> (20)

€2

éto1 dote

1+e€)d
pr(lIX - ¥l - Ip -l < U5 210 (21)
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H avéhvon poc Boaoclleton oty avicdtnra geayuévoy Swpopdy [30] xar otn yevixwtepn
nepintwon oty avicotnta Tou Talagrand xou T ypron e Terywvixhc avicotntag. To Arjuua
HoG EYyudTtan OTL OTN YELROTERT TER(TTWoT 6ev Yo SoUUE GYEDOY TOTE TO TPAAUA VoL EETEPVE

() % H yewodtepn mepintwon ebvar auth otnv omolor 6k ebvar muxvd xou toornidava,
onhadh pi = ¢ = 1/2 vy xdde 1 < i < d. Ipogavdx, o opondtepes Blotdiels, 6mwe
QUTEC TOU oY VOUV OTNV TEAYUATIXOTNTA To Qedyua elvar ouontd xahbtepo xou e€aptdton
ond TV evepyd didotaon (ouvtetaypéves Ue apxolviwe peydhn udla). H ouunepipopd tne

exhéntuvong e€oETdToL oo TNV TOCOTNTA 1)y TOU LGOVTOL UE

d d
no = Z(pz(l — i) +qi(1 —pi)) Z - Qz (22)
i=1 i=1
Yty meplnTtworn mou €youde €va GUVOAO Btavuoudtey X1, ..., X, X0 TEAYHATOTOL-

coupe (') aveZdptnres doxipéc TS TOEATEVE, 1) ATOLTOVUEVY DIBGTAOT] UELWVETOL OE
log(2/9)
i=a (52 (23)
X1n ouvéyela, oTMOUEVOL UE TO TEONYOUUEVO ATuud, BIEGEUVOUUE TNV CUUTERLPORE TNG
ouppetpic dagopdc K6 K = (K '\ K) U (K \ K), énou ayvoolue touc deixtec t, u ydptv

EUXONAC. LUYXEXPWEVA anodeVOOLUE To EAC VedpTua
Ocdpnua 1. Fow ¢ > 0 kdroog mpaypuatikds apiuss xar éotw Xu,..., X, € {0,1}¢
duviouata ané aveédptntes dokiués Bernoulli. Awadéyovtag
kE<C (4n exp (—ezd) + log n)
yetroves, ya kdnowo C > 1 éyouue dt1 lim,,_,o Pri[|[K © K| > 1] = 0.

H avdhuon yioo tnv amédeln avtod tou Ocwpruatog yweletoun o dbo péen. To mpwto
ué€pog aupopd oTo Pediylo tng miavotntog xdmotou adversary oto vo ennpedoet Toug KKT
%0l To OEVTERO OXENOC OPOLALEL PE EVOL TTROBANUO UTUAADY %ot XAOWV, Xhaoxhc uedodou oTny
avdiuor miovotixwy olyoplduwy. Me Bdon o mopamdve xon YE TO YEYOVOS OTL ‘OYEBOV
BeBaiorc’ to ohvoro twv tuyainwy KKI' npoceyyiler to odvoro twv KKI' otov yopo twv
TopauéTemy (xotd avapevouevn ). Me Bdon to mopandve UTopoUUE Vo aTAOTOMGOUUE

v EE. 13 otnv yopon

iZ > e 1ogel )+ (1-0f))10g (1-00)| (29
i=1 uelU ve K (1) (u)

Aoufdvovtog Tic UEpIXES TORAYWYOUS WS TR0 TIG METAUBOAXES TOUEUUETEOUS

98 =0 (25)

XATUAYOUUE GTO GUVORO TWYV EMAVOANTTIXWY EELOWOENY
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t+1 Z ¢w (26)

vGK(t)

yioo xdde 1 < i < d xou yi xdde u € U. Ou e€lowoeic autég npocopotdlouvy ue To
xhaowd povtéha AAA mou €youy vietepuviopd. Me dhha AoyLa, ol eEloOOEC GUUTERACUOU
OTOL GTOYUOTIXG UOVTENN CUUTETTOUV WE TIC €EIOMOEL TV VIETEQUIVIOTIXOY. ‘Ocov opopd
TIC JOXPOOXOTUXES TUPAUUETEOUE EUXOAN BLAMIGTMVEL xavelc 0Tl yio xdde urtocivoro S C U

€y ouue OTL

Eg?# -
d
Egw Z Z <Xz(u) log u(t) (1 Xi(qi)) log (1 — ,ul(g)))] =
ues i=1 (27)
d
S5 (o 108l + (1= 61 ) 10g (1 - id))
u€esS i=1
Aopfdvovtog Tahl TapaydyYous €youue OTL
oD
auzfl) =0 (28)

Iood0vaua

H =g £ (29)

vES

I'evixevor. H mpocéyyion auty elvar mohd evdlogpépovoa xar unopel vo emextadel xat e
e 7 4 e 7 7 4 4
dAhou eldouc xatavoués. T'a mopdderypa av o anddeic axorovdolv I'raouoiavy| xatavour ue

e Z J4 t 4 7. 4 4 e 7
AYVWOTY) UEOT) TLU 65) XA YVWOTO TUVOAA BLO(OTEOPOCQ Y tote HATAVTIOTOLY LA

weU ve(®) (u)

T
L =B |3 Y 1o e KO} |- log ((2m)5]) — 5 (X0 - €l0) 21(X£”££f“>)u

(30)
Eve haufdvovtag Tic yéoeg TWES %Amolog Umopel var xatahngel ue tov (Blo Tedmo oTny
(t)

EE. 26 xu oty E&. 29. Av 0c xdmotog VéAEL Vo GUUTERAVEL TN LOXEOOXOTUX Xg" eVOC

urocuvohou S C U, unopel va xataAhgel pe tov Blo axpoe tpomo otny e&lonon

£ — |;| ; (60 = 1) () - ug))T (31)

Etvor evolopépov — xan avoxtéd — T0 TG YEVIXEVDETOL 1) Topamdve Yeodohoyio oe ex-

VETIXEC OLXOYEVELEC X0 UE TIOLEC EYYUHOELC.
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Kavovixonoinomn. I va tpociécouue xavovixomoinomn 6to LoVTERO HOTE VoL UMY XAVEL
overfit unopolye Vo E168yOUUE TAACUATIXES ATOPELC UEGEL TWV CUVIPTHOEMY XAVOVLXOTIONOTNS

w® bmou, Ty av mpocdécouye Tic apyxéc andleic éxouue 6Tt

W =a" Zd: (010865 + (1 0 ) 10g (1 - 67 (32)

uel i=1
O¢TovTog TIC Topaywyous loeg e To 0 €youue OTL YLoL T GUVORLXT) TWHVOPAVELX ELTELGERY E-

TaL 0 6POC TNG XUVOVIXOTONCTNS

acsty gLt

P + aa¢§;+1> =0 (33)
o orolog divel Tig enaunuéveg eELIOMOELS
o) = L DO (34)
“ k+a v k+a ™™

veEK®) (u)
Qdc sanity check unopolue vo Solue 6Tt yioo o = 1 mpoc¥étoupe pior drodn xou ndue o€
k + 1 yeltoveg amd k. Télog oe plor yexdTERT TERINTWON ToU Tpoc¥éTouue R TAACUATIXES

anoelc Py, pe BN oy 6mou 1 <1 < R €youpe ot

R
1
¢1(Lt+1) = m Z ¢q()t) + Z arwru (35)
veEK®) (u) r=1
R
A=>"a (36)
r=1

[apatnerote 6TL 1 mapamdve e&iowon aviiotolyel oe otaduouévo péoo dpo ue k + R
Bdemn, 6mou Ta mpwTa k Bden ebvon {oa pe 1 xan tor undrowna ebvan (oo ye . H popgr| tne
xavovixonolnong authc etvar Aoyixr| yior yetoBAntéc Bernoulli. Avtiotowya, oe I'raouctavég
uetoPAntég, Ta (Bl anoteAéopata Ya AdBoupe ue L2 Regularization. Eve ev yével o povtého
e EE. 26 ouyxhivel — dmwe Yo amodel€ouye avolutixd oty gpyacio pog — 1 alyxhion

TOU XOVOVIXOTIOLNUEVOU LOVTEAOU amoTEAEL oo Tod TEOBATUAL.

Yhomnoinorn. H vionolon unopel va npaypoatonomdel yenoWomoldvIag Tic SLipPopeS BLo-
Véoweg dopéc yio Ty edpeon KKI'. O empépoug mohumhoxdtnteg napatidevton otov Ilivaxa
7.2. ¥ty vhomoinot| pag €youpe yenotponolroel Locality Sensitive Hashing, xow yunropolye oe
€vol amh6 LUTOAOYLOTIXG cloTnua 2 Tupvewy xou 7T2GB pviung RAM va tpé€oupe to povtého

ot exatouplpLe x6pBoug oe ypévouc T T8ENg Twv 10? SeuteporénTmv.

OcwenTtixég IdLoTNTES

YOyxAon o Ilencpacuévo Xpdvo. Mnopolue va delouue ue yerion Ocwplag Au-
Toudtou EXéyyou (BA. Keg. 5) 6t ot EE. 26 cuyxhivouv oe menepacuévo ypdvo. Apyixd,
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OELYVOUUE OTL TO GUOTNUA PG CUYXAIVEL EV YEVEL OE ATELPO YPOVO UE YPNOT WIS CUVERTNONG
Suvoxol (cuvdptnorn Lyapunov) n omnoio Seiyvoupe 6ti elvon opvntixd optouévn xou 6T
CUVEYELA EXUETAAEUOUEVOL TO OpLO TNG XS xou TNV WLOTNTAL 6TL 6Ty dLo clvora W, Z C U
OLory wetlovtat eV EavacuVAVTIOOVTOL GE UEYUAUTEPOUS YPOVOUS XUTUAYOUUE GTO CUUTEQCU.
OTL 1) oUYXAON YIVETAUL OE TEMEQUOUEVO YPOVO.

ITio cuyxexpyéva, n emhoyT) Tou duvoutxol yivetar e TN Bordela Tng culuyolc axohou-
Vioc [81] II(t) = H() e axohoudiag O (t) = @(Ut) 6ToL

O(t+1) = A(t)P(t) (37)

6mou o A(t) elvan ypoupo-otoyaoTtixde mivaxag tou €yet Twéc 1/k otig Véoeg twv KKI

xou 0 odhol. H axoroudio II(t) éxer ouvtetarypéves tne Loppic m(f) > p 6mov p € (0,1) vy
xdde u € U tnv onolo €youye OTL €xel TO (810 GOVORO EELIOMOEWY GTO YWEO YROUUUWY, 1TOL

7 (¢ + 1) = T (¢) A(t) (38)

H cuvdptnon Lyapunov nou op{Couye etvar 7

V()= mu(t)llgu(t) — I (6) ()13 (39)
i=1

[o tnv omola detyvouue ot

V() =V(t+1) Z Hy(t — ¢\ (40)
H(t) = AT(t)diag(Wu(t +1))A(t) (41)

To ototyeto Hyy(t) tou mivoxo H(t) etvon

Ho(t) = % St + D1{u € KOw}i{o € KO(w)} (42)

Ernopévoe extde tou orneiou wooponiog 1 cuvdptnon V (t) eivor apyntixd opiouévn, ftot

Vit+1)= kQZTer— > P =P <Vt (43)
u,weK () (w)

Enlong, v 800 cuveyodueva abvoha yenotwy W, Z C U ot wa didotoor optlove tnv
METEW

Bz = min [ — ol (44)

YT GUVEYELDL YENOLLOTIOLOVTAC TO YEYOVOC OTL limy o0 V(1) = 0 xotahfiyouue 070 cuuTépaoua
OTL dmag o 6VO GUVOAX YWEWOTOLY TN OTYUn o ONAADY| 1 AmMOCTACY TV XOVILVOTEPWY
(to)

Yertovey v eyyltepwy onuelov w* € W oxa z* € Z eivan uixpdtepn and dyy, TOTE Y

ONOLG TOUG UG TEPOUG YPOVOUC Tt > o TUPUUEVOLY YwELoTd. Emouévng ol yenoTtee dnuoupyoly
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oLOTAdES o€ TEMEpaoUEVO Ypovo. H mireng amddelln tov dewenudtwy Beloxetu oto Keg. 7.

Hapadétouye TNy el SlatdTLON

Oedpnua 2 (L0yxhon). To obotnua twv EE 26 ovykAiver o€ nenepaouévo xpovo.

Pudpoég YOyxiong. O puldudc obyxhiong umopel va mpocSloplo Tel Y enoULOTOoIWVTAS
Yewpla Mapxofiavey Alucldwy. Apywxd, divoupe tny évvola tng Andotaone Ohinrc MetoBorg
(AOM) yio 800 pétpa mbavotntag 1, v xou Wiog o-dhyefpac F mdve oe évor Betylatind yweo
Q (aprduriowo) 1 onolo ebvou iom ye

dry (p,v) = jléI}IM(A) —v(4)] (45)

Dot pioe Moo Aducido mou emdéyeton Tdoun xatovops| T UE YMPO XUTUCTUCEWY
Q) pe n xatootdoelg, mivaxa petdfoone P, o didvuoua xatdotaong m(t), émou pe w(A,t)

ouuPoiiloupe o

r(A ) =S m(t)  AC[] (46)

z€A
optloupe 10 Ypovo peléng we tov eldyloto yedvo to(D) tétolog Hote  AOM petold tne
otdowne xatavounc m xou tne m(t) eivon uxpdtepn 1 lon and D, dnhadh

to(D) = inf{t > 0 ‘ dTv(Tr(t),ﬂ’) < D} (47)

I'vopiCoupe amd 1o Oewpernuo Perron-Frobenius 6t 1 AOM 1 ypovix| otiyur| t xuploe-
xelton and ) debtepn peyolbtepn Wotun [Az| < 1 oty t-ooth S0vopr, dnhadh

dry (m(t), ™) = O(|A2]") (48)

INo v egapudcouue Tov xavovo autd 6N Oy Yog TepInTwor Teénel va Bpolue Tov
o “apyd’ mivoxa yetdBoong, o omolog xou Va emnpedoet Tt cUYXAOT. XENOWOTOLOVTIS TO
amotéheopa tne exaociog tou Alon mou amodelydnxe TOA xoupd petd amd Tov Friedman®

xatohfiyouue oto e€hc Yedpnuo

Ocdhpnpa 3. H AOM wwv EE. 26 padverar oav o(k™Y?) yia k > 2 ka1 peydo n.
Iho ovykexpipéva, ya kdrow 6 € [0,1] apxerd pkpd kar n = Q (5_1/T) XpNotes omou
T =[(Vk—1+1)/2] — 1 tdére ue mdavétnta touvddyiotor 1 — § t AOM peadvetar oav
O(kft/Q)

H mhieng anddeln Beloxetan oto Keg. 7.

SMua ewdix| Bavoun yior o ahucida Mopxo étol dote edv 1 ahuoida Zexvé ye T otdoun xatavoun tne, 1
0pLOXY XATOVOUT OAWYV TWV XATACTAGEWY avd mdoo oTiyUn Yo elvon mévta 1 otdoiun xotavour. YTrodétovtoc
6Tl dev urdpyel duvatdtnTa uelwong, 1 otadepn xotavouy) elvar mavta povadxh av undpyet xa N UToedn
e unopel vor utovoelton and N YeTinr) emavdAndn dAwv twv xatactdoewy. H otdown xatavopr €xel tny
EEUNVELDL TNG TEPLOPICTIXNG XATAVOUNG OTAY 1) dAUGTDaL Elvon EpYOBLXY).

Tepioobtepec Aentopépeies unopolv va SwPuctoldv oto Keg. 5
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IIpoBAedn Evoiagepdviny ce AKA and ‘Alacnuouvg’ Xproteg oce
Aixtua pe Aopr IMupAva-Tlepipépeiag

Ye oauthv TNV evoTnTa, Yo TUPOUCLICOUUE WUldl EQUEUOYY ToU Uovtéhou pog. Ilo ouy-
HEXPUEVD, OTOYOC pag elvar va TpofBAédouue Ta evblapepdvTa TV yenotov ot éva AKA.
"Eyoupe éva xowvomvixd dixtvo G(V, E) ue |V| = n xépPou xau | E| = m edyec 6mou xdde xoy-
Bog o€ éva utocivoro C' V éyel d - SlaoTatind duadixd Bidvuoua Tou BelyVeL EGY 0 YpRoTNng
c inC eumhéxetan oe éva ouyxexpévo evdlagépoy 1 < i < d 1) oyt o mopdderyya, o
€VoL BIXTUO CUV-CUYYRUPEWY TA YUEUXTNELO TIXA AVTITPOCKOTEDOLY ToL GUVEDELA OTaL OOl EVaC
EQPELYNTAC EYEL ONUOCLEDTEL XAl OL UXUES AVTITPOCWTEVOUY GUV-CUYYRAUPEIC X0l GTOYEVOUUE

VO TROTEVOUPE GTOUG EQEUVNTES TTIOU VAL ONUOCIENGOLY TIS EQYACIES TOUC.

Aopy IMuerva-Tlepipépeiag. H dour) TOAGY x0vwvixoy dixtiwy UTopel Vo amocuv-
teel oe éva oyeTnd uxpd muprva (48, 114, 88, 115, 99, 82, 109] C' ue x6uBouc xou pia mep-
1pépera P, 6mou ol mepipepelonol xoufol elvon apond cuvdedeuévol UETAED TOUC, AAAd GYETIXA
XAAG GUVBESEUEVOL UE TOUG TUENVIXOUC YehoTee. ‘Onmg Topatneolue Telpouotixd, Eva xAdoua
WY XOUBwV-TLEVeVY xLplapyEel oyeddy ato utdroro dixtuo, dnhad éva xhdopo 6(n)n Twy
x0uPBwv elvon uebYuvo yior TNV xuptoEyia Tou (1 —a(n))n TV TEPLPEPELIXDY ‘EUTAEXOUEVLY
%x0uPwv. Me Tov 6p0 ‘eUmAEXOUEVOC’, AVAPEPOUACTE GE YPNOTES Tou axoloutolyv TouAdyLo-
TOV T 4TOp. XTA OECUEVUEVO UTOBIXTUN, axoun Xol OGO €VaL UTOYQROUMXO XAAoUd xOuBwY
etvar ueBLVOL Yo TNV xuptapy o evog TOAD LYo xAdouatog Twy xéuPwy [16, 17, 18]. Au-
7ol ot onuovTixol xouBot Tou SLETOUY PEYAAO aptiud ELOERYOUEVKY GUVOECELY 1| akddovlon
ebvou entiong Yvwotol we dieonudtntes fy ennpeactés/didonuor touv duktvov. H xOpia tdéa miow
and auTd To TElpopa elvar vor cuyxevTpeYolv anoteheopatind ol (ETonUaouévor) TapdyovieS
ETUEEONE TOL BIXTUOU X0, GTYN CUVEYELN, VO YENOHIOTOINUOo0Y To EVOLUPEROVTA TOUS YLal Vol
uddouv Tor eviLapeEdVTI Tou UTOAOLTOU BixTlou. To evilapépovta unopolv va eupavilovton
ue @iivouca oelpd oe oyéon e Tic oyeTixég Paduoloyieg Toug oTov YENOTH EVOLUPEROVTOS
e unyoviopog tpotdoewy. H mpooéyyion tou mpoAfuatoc tne cuumepiAndng twv eTixetody
YENOTN *ATW amd TO QUxd TWV ETMNEEACTOV €YEL TOAMIATAL 0@éAn. Ilpdtor am ‘Oha, 6mwC
TEATNEOVUE AEYOTERX, O TUETVAG Eival PO AAAG TOAD EXPEUC TIXOG O OYECT] UE TIC TTANRO-
poplec mou moapéyel. Emmiéov, ol emppoeic telvouy va extidevtor — xuplog yio eumoptxoic
Aoyoue [52, 37, 49, 100, 19] — tic mhnpogopiec mpopik Toug (pikol xou evdiagépovta) dnudota,
€101 oL TANPOYOpPiEC UToPOLY Vo GUYXEVTEOYOLUY eUXOAA. XENOWOTOLOUUE TOUG OELYUXTOAT-
TT00¢ XOUPOUS TOU BEXTN Yo VO XUTAOXEUACOUUE TO DUIERES YRAPTUO TOU TEPLEYEL TOUG
ennpeaotéc Yoll e Toug YeMoTES oL Toug oxohoutoly xou Tic oxués Petol toug. O péyio-
To¢ oELIUOC AUV OE €Va TETOLO OWUERPES YRAPTUO ETLEEONE EVOL CNUAVTIXG XEOTEROC AT
TO VOl TIRETEL VO XOLTAEETE OAOXANEO TO XOWOVIXOG BiXTUO.

XeNOWOTOLOUUE TO BYERES YEAPNUOL YENOTN-ENNEEACTY YIo VO ORYLXOTIOLCOVUE TIG THIES
TV Paduoloyidy eVOIAPEROVTOS TV YENOTWV WS TOV HECO 6p0 TWV EVOLIPEQOVIWY TWV
emnpeacTOY Tou axolovdolyv. H PBaocwr mpdxhnon €06 elvar TS Vo xAVETE TOUG YEHOTES

vo A NAETBE0LY Ywele var ypeldletan Vo Bouv TIC YEITOVIES TOUG.
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Evronmiopéc Awachuwy Xenotov. To mpdfinud o elvar mapduoto Ye 1o mpoBinua
e péyotne xdhudne (MK) otn cuvduaotixd Behtiotonoinom, xadoe opilouvye évo tocd-
OTOYO XU TEOCTIIOUUE VoL UEYIC TOTOLOOUUE TOUS XOUAUUUEVOUS YPNOTES UE TOV optlud TwV
ev Moyow Swonuotitwv. To mpdBinuo MK éyer amoderydel étu eivar NP-Hard [;, 34] xou o
dmAnoTog ahyoeriuog Tou TEoywedeL Ot YOPOUS Xl ETLAEYEL TOV XOUS0 YE ToV UEYIoTO apLiud
OXGAUTTOY YELTOVWY omodidet wo BEATIoTN avahoyio tpocéyytone 1 — 1/e . H extéleon tou
dminotou ahyopriuou ad-hoc €yel moAd LYNAG LTOAOYICTING XOGTOG XUVWC AVEAVETOL O ApL-
Yuog Twv xOuPwyv. o autév Tov Aoyo, Boaciloupe o €va meoivt Tou apyxol alyopiduou Tou
ovoudlouye Bucketed Greedy Bucketed MC (BGMC). ¥tov BGMC, éyoupe x6pBouc K we
Gvey pedrypa Tou VEAOLUE Va Y enolonotcouue oty xdAudrn pog. Tagivouoliue Toug xououg
olugwva pe toug Poduoic toug xan toug Baloupe oe log(n/k)/log~y non-uniform buckets
Vi, Viy oo peyédouc [vK 1, ..., [7" K] — [v"71K],..., v xdnoo v > 1. S1n cuvéyela
Eexwvdpe TeplopllovTog TIC YELTOVIES TWV X0pUPKY o€ V] Xt TEEYOUUE TOV dTANCTO ahyopLiuo
LEYLoTNS xdALPNE o awto. Edv xahbdpouue 6houg toug xoufoug 1 eEavTACOUNE TIC ETAOYES
K mou emotpégoupe. Alpopetind, cuveyiCouue to (Blo yenoilonowwvTag o cbvolo Vo xou
00t xoe€hg, aponpdvTag Toug NdN xaAuuuévoug xouPouc oe xdlde emavdhndn. Av xou eivou
TeopaveES 6Tl 0 ahyopriuog BI'M™ dev amodidet yevixd éva 6OVoAo AOGEWY TOU LoOUTOL UE T1|
ouuPotin?) dTAno T ADoT X EYEL QUOTNEA UXEOTERT, avoloyid TEOCEYYIONG, O alYOELIUOC
anodidet e€atpeTixd xohd anoteréopata 6tay extereitan oe AKA. ITio ocuyxexpuéva, yio pia
T xemophiov T = 4, évac mhnduoude n¥7 Soofuey xuplapyel tepitou 1o 70% Tou dixthou,

onwg pabveton 6To My, 7.2.

Acdopeva

Ta oTaTto TN Tou GLVOAOU BeBOUEVKVY uropoly va Beetolv otov Iivaxa ;3. Emié€aue
Ta axohovda Sixtua yior vo a&tohoyioouue T pédodo pog. To nepiocdtepa and 1o cOVoha Oe-
douévwv ebvor Snudota dladéoio oto SNAP [60] 7, ue e€uipeon to dblp [90] xou dBAT-dv [27]
6mou ta dedouéva mapéyovton amd Tov cuvtdxtn tou [90, 27]. Yto clvoho dedouévmv face-
book, xatapynooue toug e€epy OUEVOUC GUVBECUOUE ATt TOV XOUB0 Tou YW Yia Vo dellouye To
wotiBo xuptapyiog un acrhuavto (Srapopetind o xéufoc ey xuplapyetl o 100% twv yenotdv
OAn TV Gpa). 310 6UVOLO dedouévwy Toxes, eCaydyaue Tic eTéteg tou Iloxes yewpoxivnta
YENOWOTOLVTUS TIC TANPOPORIEC TOU TUPEYOVTUL amd Ta TPOoPik yenotov. 1o cuyxexpyéva,
olatneriooue TN oTHAN hobbies xou Swotnerioae ta 280 mo xowd youmt. Katapynooue eniong
ToUg ®OUBouC ToL BeV €YouV amoXUAUPEL TIC TANEOYORIEC TEOMIA XL TS GUVBEGELS TOUC Yol

elyav o yapaxtneoTixd public (oo ue 0.

ITelpapotinr Aldtadn

IMpaypoatixd Acdopéva. ' vo ehéylouye TNy anddoon Tou UOVTEAOU TELROUATIXG,
TPOLY O TOTOLAOAUE TTELRPOTO TOEVOUNONS HE TOMOTAES ETXETES (EVPEOTC EVOLPEROHVTWLYV)

OmoL Yag diveton Evol YRAPNUO UERUMS CEONUAOUEVO X0l GTOYEVOUUE Vo TEOPBAEYouNE Tig

"http://snap.stanford.edu/data/


http://snap.stanford.edu/data/
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eTxéTeC ou Aelmouv oTo Yedgnua. Ipoyuoatonotodye pla obyxplomn Wwioc-eloodou-1dlag-e£680u,
6mou 1) €l00dog Uoc amoTEAE(TOL Amd TO BUUERES YRAPTUA YENOTN-ENNEEACTY XU TIC ETIXETEC
emppoTc xou 1 emuunTy| €€0dog elval oL TopdUeTEOL-TIAVOTNTES TTOL TEETEL Vo TRoBAEQUOUY.
H yerion e napandve ddtagng unopel vo yenowwonowniel xon 6€ GUC TAUNTA CUOTAOEWY 6TIOU
ot mavotnteg mpoodlopllouv pla xotdtaly (ranking) yio 10 cuYXeEXEEVO YEHOTH.

ITio ouyxexpéva, yio xde xoufo u xon yia xdie etixéta 1 < ¢ < d amodidouye o Bond-
poroyia @iy € [0,1] Tou avumpocwnelel Ty mdavétnta 6Tl 0 Yerhotne Yo LioVeTHoEL QUTHY
™V eTxéTa (EVOIPEPOY). LUYAEVIPOVOUUE TOUC EMMEEACTEC TOU BIXTUOU YPNOWLOTOUDIVTOC
T0 eupeTixd BGMC xau Swotnpolue 1o Syepés Yedpnua PETAE) TV DIUOTUWY Xol TOU UT-
olotmou 0uxtUou. XpeNoWoTooLUE Wil T xatw@Alov T = 4 xou évav exdétn p = 0.7 6mwg
potvetar 6T0 Ly 7.2. X1n oxnvi| pag, UtoYETOUUE OTL UOVO OL ETIXETEC OLUCTIUOTHTWY elvon
YVwotég ot epde. O TAnpogopiec Tou xovol and Ta Tpopih Toug etvat éva xohd utoc TnEtl6-
MEVO GEVARLO oTNV emoTNHoVXT BIBAoYpapla, GEB0UEVOL OTL OL EMNEEACTES €Y OUV 01KOVOUIKA
kivntpa vo 1o npdfouv. Emmiéov, oe oevdpla mporyuatixhc Lwhg, auTtodg 0 TERLOPLOPEVOS dpL-
Yuog mpogih umopel va e€oplooeton Yéow xAfoewy oc REST APIs. Exteholye neipdpora e
ke {[v/n], [logn]} yelrovee, ye xa ywplc xavovixonoinom (6oL yenotuonoolpe TNV apytxi
XATAO TUOT WS OTOUVULOUEVY] ETITAEOV YVOUT).

Yo mewpdpatd pag yenotwornotoope to LSH yia v cupnepdvoupe toug k mhnoléctepoug
veltovee 8. Tlpdtov, ouyxpivoupe T pédodo poc pe o poviého Random HK nou meprypdpeTton
070 [36] To onolo eivat o povtého Tou Yotdlel TEploodTERO e TN Bouleld poc. Avti vor xortdlet
Toug KKI', to Pavoouy HK emiéyel éva tuyaio unocivoro ye k yeltoveg oe axtiva € > 0
0L Yphotn. Aeltepoyv, exnaudeboule Tic evowpoathoel node2vec [43], GraphWave [29] xou
NodeSketch [111] oto B0 yedpnuo xou 6T cuvéyela TapldloUUE OE €va UOVTEAO AOYIOTIC
PEYPECTLOV TOAAATAWY ETIXETWY. AuTd To ldog avapopds etvan oYeBOY TUTIXG, TS GLULNTAE
OTNV EVOTNTA LYETXT gpyaoio, oTny eE6pUEN YRUPNUATWY.

Emuié€aye to node2vec wg yio xhaoixy| tpocéyylon mou Boasiletan oe tuyaio telonopla, T0
GraphWave w¢ npocéyyion nou Poaciletar o€ yetaoynuoatioud xupatidiwy xou o NodeSketch
mou ebvar W véa pédodog mou Pactleton oe recursive linear sketching. To anotehéoyorta

7 7.
napatiVevton otov Ilivoxa ;.

2ulntnon

Avagépoupe anoteréopota xaddou ot 6pouc AUC-ROC xaw RMSE oe 6o T etpdpatd
pog: Xto cUvolo dedouévwv oto facebook €youue v xolltepn anddoon dcov aopd To
RMSE xou éyoupe AUC xovtd otic dhdeg pedddouc. hydtepo and 1% yio Gheg Tic eTinéteg
xou mapopote anotehéopota yoo To ton-50 % xau to ton-1. Xto dblp-dyn, fb-pages xou
github ¥ To clvolo dedopévev Zemepvd Tic dhheg pedbddouc — pe elalpeon to AT-PO"
otoug 1o1-50% oto dblp-dyn 6nou €youue peiwon 4%. Emmiéov, oto oivolo dedopévev

fb-pages, 1o GraphWave emtuyydvel éva mohd uxpd RMSE, wotéc0 amodider moAd younid

8Mopbpota anotehéopota ehfodnoay ue axpBelc uedddouc.
9To clvoro deBopévev Tepiéyer wlo etnéta, emouévie to anotehéopota AUC-ROC naupouévouv Ta (B
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AUC-ROC. Téhog, oto dixtuo pokec, 1o GraphWave xou to Random HK 8ev xAaxcdvouv
otoug mopoug Joc. Emmiéov, 1o povtého pog exteleiton eviog 34 deuteporéntwy Ue k =
[logn] yeitovec xou 377 deutepbhenta pe k = [y/n] yeltovec. Tavtdypovae, ot pédodot
EVOWUATOONE oL Unopoloope Vo TpéEouue ypedotnxay dexddeg Aentd. To Brua PCA bev
ennpeedlel T YpdVo exTENEOTC TOU YpeetdleTan Hovo 1 deutepdiento, xodog exmoudedeTon UOVo
oToug TON) onuavTixole xopBouc ou ebvor N7 oL omofol etvan auehitador.  Emtuyydvouue
AUC-ROC 91.84% xou PMXE 0.025 émou Zenepvdpe to NodeXxeten oe dpouvc RMSE (6
popéc yaunhotepo) xou Zenepvdue and dmon AUC-ROC xatd 0.3%. Téloc, 1o node2vec
éyet uhnidtepo puiud AUC-ROC (ue pixpd mepdtplo) oe oOyXpLon YE TO UOVTENO WOC UE

k = [y/n] yeitovec.

Y IVUTEPAC AT

Eunveuouévol and Tic 1oyupéc opopuiixéc wiotnteg twv AKA, tapousidloupe to povtéro
woc (NNIM). Autéd to povtéhro, av xar moAD amhd vor Yivel xotovontd, mopouctdlel onuay-
Tt Buoxohiot 6To cuunepacud TopouTewy ue amevdeiag EMII Twdetolue tn pedodoroyio
tou EM vyia vo avamtO&ouye €vay ohyoptduo yio CUUTERUOUO TORUUETOMY TOU HOVTEAOU TOU
Baoilovtow oty Tpocéyylon péoou TEBIOU Yo Vo cLVAYEYOUUE eEIGMOOELC PEGOU TEG{OL TOU
wodlouy pe ta mapadootaxd woviéha AAA. To yovtého yac cuyxhivel amodederyuéva oe

TEMEPAGUEVD YOV UE Tay hTNTAL oUYXMOTE o optodetetiton auotned omd k2

Yl HEY AL N
Q¢ eQopuoYT, UEAETAUE TO TEOBANUO TOU CUUTERAOUATOS TWYV EVOLUPEROVINY TV YENOTWYV CE
AKA amé dudonuoug xouBoug. o cuyxexpiuéva, 5oxudlouye YeNoULOTOLOUUE EVOL UTOYRO-
U6 o péyedog oUVolro Slachuwy we "trend - setters” yia Vo TpOETOWAGOUUE TO HOVTENO oG
xaL ot cuvéyela Vo exteAécouue To NNIM oe oAdxhnpo to dixtuo. Aoxwwdlovue 1 uédodo
woc oe dixtua Blapdpwy peyeddy xar afloloyolue Ty oxpBeta xar TNV ToldTNTA XoTdTUENG
TV wovtéhwy. Eyouue mapduolo xa T TEPLOCOTERES POPESC XUAUTEQU ATOTEAEGUATO U0 TIG

TREOCPATES UEVOBOUC EVOWUATWONS XOULwY xou oyetixd povtéha AKA.

AvTixTuToC

To épyo autd unopel va yweiotel oe 500 EeywpEoTONC TUAMVES: VeEWENTIXO XOoL TEAUX-
o, O mpony TUAOVAS EYEL VAL XAVEL UE TNV ELCAYWYY| TEOBANUATWY GTOYUC TIXAC OUVAULIXS
amoOEWY X0 TNV AVAmTUEN ATOTEAECUATIXOY ohYopldU®Y Yiot TNV e€aywYT| TOQUUETEWY, XO-
YOS 1o var Ty el VEWENTIXES EYYUNOELS YL TO XUAO TNS TROGEYYIoNS Xai TS oLyxAong. Ot
YeweNnTXég GUVELGPORES amd UOVES TOUC BEV TapoLGLdlouy TEOBAEYLUES XOWVWVIXOOLXOVOULXES
CUVETELES.

O televtaiog mUAGVAS auTod Tou eyypdpou Baclleton 6TV TEOBAEdN TwV EVOLPERHY-
TV TV Yenotwy and toug enneeactéc ota AKA. H edpeon towv diadruwy oe €va dixtuo
amd TNV Amodrn TV SOMXOV WOTATWY TOUG XAl 1) YEHON TWV EVOLUPEPOVIWY TOUC YL TNV
ETUVONOT TV EVOLUPEQPOVIWY TOU UTOAOLTOU BIXTUOU €YEl TOCO VETUEG OGO XL UEVNTIXES

AOWVWVIXOOWOVOUXES OUVETELES. AT TN uiot TAeLpd, To BEBopEVa TOL TaEEYOVTOL ATd AUTOVG
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Toug YeNoTeg elvan o movd Vo elvor BNUOGLo — BEBOUEVOU OTL OL BIACTUOL YPHOTES CUVATLG
ex¥€Touy TETOL BEBOPEVA YLoL TO BIXG TOUG XEEBOC — ol UTopoLY VoL An@doly UEcw XAHCEWY
REST API, o onolec unopodv va anoteAécouy 1oV xUplo odnyd Yol GTOYEUPEVESC TROTH-
oElC 0T BxTLA Yol Tor oTolol BEV YVWEIlouE TIC TROTYWACELC TNG TAELOVOTNTAS TWYV YENOTWY.
H épeuvd pog, detyvel meipopotind Tl Tor AMOTEAEGUOTO UTOEOLY Vo emteuyVoly e&etdlovTag
H6VO oUTOUC TOUG EEUPETIXG ETUOPUOTINOUE YPNOTES WS BLoopPrTES EVOLUPEPOVTOS (Blogop-
pwTéc tdoewy). Emmiéov, 1o Seltepo pépog mou mepthopBaver TNV EXTENEST, TOU HOVTEAOU
NNIM vyt Ty mpocopoinaon tng avtohhayhic amdPewy and eEapeTind opoPUAIXOUS YRNOTES.
Autr 1 Sladcacion unopel va emitpéel oToYELUEVES TROTAOELC Yot €vol TOAU PEYAhO Wépog
TWV YENOTWV TOU 8XTUOU, BEBOPEVOL OTL AmaUTEL Vol ATAG UTOGUVOAO T®V BEBOPEVLY Yol VoL
Aertoupyfoet. T va tpoodécouye éva mapdderypa, oe éva dixtuo Yenotdv pe n = 108, éva

xhdopo nd7

- avtiotolyel 010 1.58% twv yenotdv. xou to xhdoyo yiveton axdun YouunhoTeERo
xodde audvouue n. Ané TNV GAAN mAgupd, avoryvwpellouue OTL 1) EVERYOTOINGT CUCTACEWY
Ywelc var Yvewplloude Tolo TEPIEYOUEVO TEOTWA 1N €vag Yerotne — To omnolo umopel vo
elvol TEOCWTIXES TTANEOYOPRIES Yial TOV YEHOTN — €EETALOVTOG UOVO TIC GUVOEGELS TOU UE XOU-
Boug e UEYAAN ETLEEOT) OTO BIXTUO EVOEYETOL VOL UMV YENOHIOTIOLELTAL CWOTE omd EEWTEPLXOUC

TEAXTOPES.

MeArovtixég Ilpoextdoeig

Auth n epyaoio uropel vo enextadel oe TOAES eVBLaPEPOUTES UEANOVTIXES XATEUTUVOELS.
[Mpoto am "OAa, 1) Yprion TNe dounc TUENVO-TEPLPERELIS OE AhYORPLIUOUE ETULTAYUVOTS UTOREL VoL
enextadel xan o€ dAAa TpofAruota. Tlapadelyuata TeoBAnudtwy elvor Ta GUVTOUOTER UOVOTH-
Tl OAWY TV (euyapldV (E0pECT) UETEPHOEWY XEVTEIXOTNTOC OE €val B{XTUO), XoTdTan YENoTWY
oe éva dixtuo (m.y. PageRank) xou ahydprduot nou Basilovton oe tuyoioug meptndtous. Emi-
TAEOV, 1) CUYXEXPWEVT] XATAVONOT) TN OOUNC TURHVA-TEQLPERELNS UECL) YEVETIXWY UOVIEAWY
elvow emtiong war ovouy T yeouuy| epyactag.

Emumiéoyv, ta oy pag mapéyouy Uiot oTaTtoTixy eEAYNOT yior TN SUVOLIXT TNS YVOUNS,
EMEXTEVOVTAC TNV UTEEYO0UGO VEWENTIXH XUTAVONGT TWV SLOBIXACLOY CYNUATICUOD YVOUNG
[12, 11]. H enéxtoon authc e Yeauuhc epyaoiog, hopfdvovtac unddn yevixdtepee puiuioeic
(m.y. exdetinéc ooyéveleg) xou e€ehixtixée dradixaocies Vo Umopoloe Vo amo@épel onuavTixd

amotehéouuTa o€ pYaoieg ExpdInong YEUPNUATLWY %ot dAYOEIINOUE GUUTERACUOU.






Chapter 1

Introduction

“The masses have never thirsted after truth. They turn aside from evidence
that is not to their taste, preferring to deify error, if error seduce them. Who-
ever can supply them with illusions is easily their master; whoever attempts
to destroy their illusions is always their victim. An individual in a crowd is a

grain of sand amid other grains of sand, which the wind stirs up at will.”

— Gustave Le Bon, The Crowd: A Study of the Popular Mind

1.1 Motivation

The wealth of nowadays’ networks is tremendous. One can observe networks almost
everywhere: social networks, traffic networks, biological networks, production networks
and particle interaction networks are some very vivid examples. The tendency of the
various life forms, under nature or society, to bond and cooperate gives rise to rich patterns
which govern our daily lives.

It is well understood that most large-scale Online Social Networks (OSN) exhibit the
so-called core-periphery structure (see e.g., [48, 114, 88, 115, 99, 82, 109] and the references
therein). Namely, their nodes are naturally partitioned into a core set C' of nodes that are
tightly connected with each other, and a periphery set U, where the nodes are sparsely
connected, but are relatively well-connected to the core. In most cases, the core nodes
almost dominate the rest of the network, in the sense that a small fraction of dn high-degree
nodes dominate an (1 — a)n fraction of the network’s engaged nodes (where “engaged”
refers to nodes with degree above than a certain threshold). If we restrict to engaged nodes
only, even a sublinear fraction of nodes dominate almost everything (see also [16, 17, 18]).
These influential core nodes, which posses a large number of incoming connections, or
followers, are also known (and serve) as the celebrities or the influencers of the network.
Influencers tend to publicly expose — mainly for commercial reasons [52, 37, 49, 100, 19]
— their profile information (friends and interests), thus information can be gathered easily,
for example through REST API calls.

29
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Another major driving force shaping the structure of social network is homophily, i.e.,
the property under which connected individuals in a social network have similar interests
[73, 72]. Modern large-scale OSN seem to exhibit strong homophilic trends, which was a

major part of our motivation (see also Chapter 2).

1.2 Approach and Contribution

In this Diploma Thesis, we leverage homophilic trends and the core-periphery structure
of modern OSN to obtain scalable and accurate learning methods for predicting the inter-
ests of a network’s peripheral users. Our approach is to identify and use the influencers of
the network as steady-state trend-setters and let the network around them evolve accord-
ing to an iterative process initialized from an aggregation of the influencers’ features. The
influencers’ sublinear number allows for a quite fast initialization (in worst-case strongly
subquadratic-time) of the users’ interests. Inspired by coevolutionary opinion formation
[46, 11], we next treat the network as the result of a natural interest exchange dynamical
process, where each peripheral user updates her features according to the interests of her
k-nearest neighbors in the periphery, until consensus is reached (see also Chapter 4).

We use the interest space of the network generated by this process to infer the prob-
ability that a peripheral user adopts certain interests (a task equivalent to multilabel
classification). Key to the algorithm’s scalability is that throughout the process, each
peripheral user interacts only with her k-nearest neighbors.

More specifically, a key part of our approach is the Nearest Neighbor Influence Model
(NNIM), a stochastic iterative process according to which users evolve their binary interest
vectors. At each timestep, each peripheral user samples a new binary interest vector based
on the interests of her k nearest neighbors (wrt. their interest vectors) in the periphery.
The general structure of NNIM is inspired by the Hegselmann-Krausse model [46]. How-
ever, NNIM is stochastic and is used as a generative model, aiming to explain, through
homophily, the coevolution of the network structure and the peripheral user interests (see
Chapter 7).

From a bird’s view, our prediction method aims to recover the latent NNIM interest
vectors of the peripheral users that maximize the likelihood that NNIM evolves as ob-
served. Although the idea is simple, its efficient implementation requires significant effort
and care (see Section 7.1.1 and Chapter 3). We use Variational Expectation-Maximization,
due to the latent nature of NNIM, since direct maximization of the log-likelihood is in-
tractable. As a result, we obtain a simplified mean-field approximation of NNIM (see
Algorithm 1, Theorem 5 and (7.21)), which is similar to the classical opinion dynamics
equations, thus establishing a connection between stochastic and deterministic opinion
dynamics. We prove (see Theorem 7) that our algorithm converges in a finite number of
steps and establish an upper bound between the total variation distance, the number of
iterations, and the number k of neighbors used in the interest exchange processes (which

affects the running time). Our algorithm efficiently scales to networks with millions of
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nodes.

Our user interest prediction method scales smoothly to networks with millions of nodes,
with an almost linear-time complexity, for appropriate choices of hyperparameters (see
Table 7.2). We evaluated our method experimentally on six standard network benchmarks
taken from [60, 90, 27] with quite different characteristics (see Table 7.1). Our experimental
results suggest that our method performs similarly (or often outperforms) sophisticated
node embedding and traditional opinion dynamics methods in terms of AUC-ROC and
RMSE, whilst being able to run up to 100 times faster than the best known node embedding
methods in networks with up to 10° nodes (see Table 7.3).

Conceptually, our work draws ideas from (and contributes to) three major research
directions (see also the comparison to previous work in Section 7.4). From an algorithmic
perspective, we take advantage of the core-periphery structure of OSN to speed up in-
ference in large-scale networks. Moreover, we introduce and analyze a natural stochastic
generalization of coevolutionary opinion dynamics, which we eventually utilize for user
interest prediction. As a result, we obtain a new truly scalable user prediction approach
with excellent accuracy. Our methodology can be extended to a variety of problems in
combinatorial optimization and machine learning, where inference from the entire network
leads to prohibitive running times.

Chapter 7 contains the main contribution of the Thesis. More specifically, in terms

2. The code is imple-

of practical contributions, we open-source the code! of the thesis
mented using NumPy?, NetworkX?, Scikit-learn®, and Annoy®. In terms of theoretical
contributions we contribute all the theorems presented in Chapter 7. The Extended Ab-
stract in Greek contains the same information as Chapter 7, together with some additional
information, in the English Version. The data used for the experiments in this thesis are
anonymized and openly available on the Internet. We redirect the interested experimen-

talist to their original sources; for the avoidance of second-hand bias.

1.3 Thesis Structure

The current Thesis is written in two languages: English and Greek. The parts of the
Thesis that have been written in Greek contain an overview of our contribution in Greek
and are presented in the prelude. Following, there is a depth-one overview of the work
that has been used in order to arrive at the results presented as the main contribution.
Finally, Chapter 7 (Part C) contains the main contribution of our Thesis. This Thesis’
results have been submitted to a conference, and are currently under review [87].

The depth-one related works to our Thesis are presented in Parts A, B, C, and Ap-

Licensed under the MIT License
2https://shorturl.at/fxS34
*https://numpy.org
‘https://networkx.github.io
Shttps://scikit-learn.org
Shttps://github.com/spotify/annoy
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pendix A. The Thesis contains all the theoretical and technical tools to understand the
contribution of the thesis. Broken in parts, the constituent Chapters link with the contri-

bution as follows

Part A: Online Social Networks. This part gives an overview of the basic character-
istics of Online Social Networks (Homophily, Scale-free degree distribution, Small-world
properties, Densification Laws and Core-periphery structure). After reading it, the reader
should be able to understand the motivation and the hypothesis testing behind the pro-

posed model.

Part B: Learning. This part gives a brief overview of the various learning techniques
involved with our contribution. To begin with, Chapter 3 does a basic introduction in
Generative Models and briefly presents methods for performing statistical inference (MLE,
EM and EM Variants). The main purpose of this Chapter is to assist the reader through
understanding how the inference algorithm for our generative model works. Afterwards,
Chapter 4 gives an overview about classical models in Opinion Dynamics (FJ, LIP-FJ,
DeGroot, HK, Random HK, Network HK), and coevolutionary opinion formation. Since
Opinion Dynamics are equivalent to Dynamical Systems, we need to study their prop-
erties as Dynamical Systems, that is to account for convergence properties, convergence
rates and clustering behaviour. For these reasons, Chapter 5 briefly gives an overview
of dynamical systems and their behaviour for ¢ — oo. It also examines techniques for
proving Global Asymptotic Stability (GAS) and makes a reference to the second largest
eigenvalue theorem of a k-regular graph. Results from this Chapter are used to prove the
two main theorems of our contribution (Theorem 7 and Theorem 5). For implementa-
tion matters of the proposed model, Chapter 6 gives an overview of Unsupervised Feature
Learning Techniques which are used (implementation-wise) in the Thesis. The techniques
involve dimensionality reduction (PCA, Random Projections (JL Transform), MinHash)
and nearest neighbor search (KD Trees, Ball Trees, LSH, DCI/PDCI).

Technical Tools. Appendix A gives an overview to technical theoretical tools that are

used to help establish the theoretical basis of our paper.

Further Reading. For a more concrete and more-in-depth overview of the tools used
within the thesis we redirect the interested reader to the excellent classical textbooks in
Machnine Learning [98, 13, 32].
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Part A

Online Social Networks






Chapter 2

Characteristics of Social Networks

“Opoiog opoiw ael merdler”

— Plato, Symposium, c. 385-370 BC

2.1 Motivation

A research question that has been out for many decades is concerned with the un-
derstanding of structural properties and patterns inside real-world networks. Questions
like “What does a ‘normal’ network look like?”, “How does the network evolve?” and
“What abnormalities can arise in a real-world network?” are crucial to a wide range of
applications in economics, epidemiology, sociology and computer science. Attention has
also been shifting from “node-centric” approaches — i.e. approaches where properties of
individual nodes in the network are examined — to “network-centric” — that is to study
the network properties treating the network as an entity. Below, we present some proper-
ties of social networks, such homophily, scale-free distributions, core-periphery structure,

shrinking diameters and small-world properties.

2.2 Homophily

Homophily from Ancient Greek “homou” (same) and Greek “philia” (friendship) is
the tendency of be friends with similar others. A proverb for this property is well known:
“birds of a feather flock together”. Homophily has been well observed in multiple instances
of network and in various forms. Modeling of homophilic processes is usually done through
a Blau Space [73, 73] which is a multidimensional coordinate system where the socio-
demographic variables come as different dimensions. Examples of dimensions include age,
sex, years of education, salary, geographic location and so on. The organizing force in Blau
space is the homophily principle, which argues that the flow of information from person to
person is a declining function of distance in Blau space. Persons located at great distance in
Blau space are very unlikely to interact, which creates the conditions for social differences

in any characteristic that is transmitted through social communication. The homophily
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Figure 2.1: Power law degree distributions in software projects. Log-log plots of the Linux
Kernel 20.3M-long codebase.

principle thus localizes communication in Blau space, leading to the development of social
niches for human activity and social organization. Mathematically, the smaller the distance
||z — @, || is between the users, the higher is the probability of them being connected.
Individuals in homophilic relationships share common characteristics (beliefs, values,
education, etc.) that make communication and relationship formation easier. The opposite

of homophily is heterophily or intermingling.

2.3 Scale-free Degree Distributions

Many real-life social networks have degree distributions that come in the form of a
power law, that is a function p(k) such that for all constants b the property p(bk) = g(b)p(k)
holds. That is the fraction of the nodes p(k) with degree k behaves as k=7 for large
values of k. The value of the parameter v is usually between 2 and 3 [53]. The main
contributing factors which explain the emergence of scale free distributions are growth,
preferential attachment and latent features. The “growth” part refers to new nodes joining
the existing network over an extended period of time, the “preferential attachment” part
refers to the “rich nodes getting richer” [7], and the latent variables [95, 4] refer to sets
of latent variables that lead to power-law-like degree distributions such as in [55, 54]. It
is important to highlight that scale-free properties emerge in multiple domains, such as
statistical physics through molecular interactions, software through the degree distribution
of calls after static analysis [67, 86], the World Wide Web [61], airline networks and many
more.

The most notable characteristic in a scale-free network is the relative commonness of
vertices with a degree that greatly exceeds the average. The highest-degree nodes are
often called “hubs” (in our work these nodes will be called influencers or celebrities), and
are thought to serve specific purposes in their networks. In this work, we show how a
sublinear fraction of these nodes forms the opinions of a linear fraction of the nodes.

Scale-free networks have higher tolerance to faults. This characteristic emerges largely
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due to the structure itself. The influencer nodes are followed by nodes of smaller degree,
these nodes by nodes of (even) smaller degree and so son. If a failure occurs uniformly
at random, since most nodes have small degrees, the overall network will not be affected
extensively.

Moreover, scale-free networks have a clustering coefficient that is as well scale-free.
More precisely, the local clustering coefficient for a node u is defined as the fraction of
somenone’s friends that are friends with one another.

_ BN (N(u) X N(u))

LOC() = s N ) (2.1)

The global clustering coefficient is defined as

GOC — Number of closed triplets 3 x Number of triangles

= 2.2
Number of all triplets Number of all triplets (2:2)

Hence, the low-degree nodes belong to very dense sub-graphs and those sub-graphs are
connected to each other through hubs. This is a main drive for people to form communities,
which are small groups in which most people know most people. A node, depending on its
position on the distribution (or its “fame”) tends to belong to more communities the more
famous it is. This fact, combined with homophily, serves as a drive on how “influencers
shape interests” in a network. For example, a famous footballer like Christiano Ronaldo
endorses many people to be interested in “football” and a politician drives people towards
certain political affiliations. We will come back to this idea later in this thesis, where we

will examine sampling and fractional domination.

2.3.1 Examples of Scale-free Distributions

Zipf distribution. Zipf’s Law originated in the field of natural language processing
[95, 4]. Each word is associated by a rank (how frequent the word is) and the distribution of
the word is proportional to the inverse rank. Zipf’s law is most easily observed by plotting
the data on a log-log graph, with the axes being log (rank order) and log (frequency).
Formally, let:

e n be the number of elements
e k be the rank of a word

e s be the exponent

Then

where Hy, s = > 1_; %
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Figure 2.2: Barabasi-Albert Model for T' = 3 iterations. Source: Wikipedia.

Preferential Attachment. The “Preferential Attachment” mechanism refers to the
principles of the rich nodes getting richer and the poor nodes getting poorer. It has
been shown that such mechanisms generate power law distributions. One example is the
Barabdsi-Albert (BA) model [7]. In the BA model, we start with a network with ng nodes.
At each step t > 1 a node v; arrives and is connected to n < n;—1 nodes with probability

that is proportional to the degree of the existing nodes, that is

degg, , (s)
Zzew_l deth—l (Z)

Pri(v, s) € Ey] = se Vi (2.4)

Influencers tend to quickly accumulate even more links, while nodes with only a few
links are unlikely to be chosen as the destination for a new link. The new nodes have
a “preference” to attach themselves to the already heavily linked nodes. The BA model

demonstrates a power law of k3.

2.4 Small-world

A small-world network is a type of mathematical graph in which most nodes are not
neighbors of one another, but the neighbors of any given node are likely to be neighbors
of each other and most nodes can be reached from every other node by a small number
of hops or steps. Specifically, a small-world network is defined to be a network where
the average length of the shortest path between any two nodes u,v is proportional to
logn, where n is the number of nodes in the network. Small-world phenomena have
been found to hold extensively in multiple social networks. Travers and Milgram [108]
with their famous “six-degrees of separation” experiment demonstrated that people that
phenomenally seem very “far” apart (from an acquaintance viewpoint) are separated by
at most six steps. Furthermore, the work of Watts and Strogatz (Watts-Strogatz model)
provided a very simple random graph model [110] where we are given a graph G with
vertices vi,...,v, and each vertex is connected to the k vertices right of it (modulo n).

Then each vertex the k/2 rightmost edges are being rewired with probability 5 uniformly

at random with probability ﬁ In limiting case for § — 1 the Watts-Strogatz model
has an average path length of iggz and in the cases where 8 € (0,1) the path length

drops rapidly as g increases. Figure 2.3 shows how the Watts-Strogatz model behaves
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Figure 2.3: Behaviour of the Watts-Strogatz model on a graph with n = 12 vertices. In
the leftmost figure the value of g is 0 indicating complete order. In the middle figure the
value of /3 has increased near 1/2 and small-world phenomena start to appear. Finally, in
the rightmost figure consists of the case of § = 1 where the k/2 rightmost edges do rewire

uniformly at random, each with probability ﬁ

for increasing values of 5 (from left to right). Later, Kleinberg [56] verified small-world
phenomena using a random graph model where n = 12 vertices were positioned in a square
lattice, each vertex u was connected to its 4-neighborhood of distance 1, and each vertex u
was connected to one vertex v outside of its 4-neighborhood with probability proportional
to [|xy, —x,||; where @ > 0 is a clustering exponent. The agents are requested to deliver a
message from a start s to a terminal ¢ and each agent forwards the message to the neighbor
which is closest to the target distance (by L1 distance). What Kleinberg realized is that
the expected delivery time 7" depended on the clustering exponent a and not on the size

v of the network?!.

2.5 Densification Laws and Shrinking Diameters

In the work of Leskovec, Kleinberg and Faloutsos [59] the authors discover that in
many real-world graphs the diameter of the graphs decreases as new w(n) edges are added
on the graph. More specifically, they observe that the average path length between the
nodes of the graph shrinks contrary to conventional wisdom that the average path length
will increase in terms of n. The Community Guided Attachment model they propose is a
tree of height H with n = b leaves, which represent a communities-within-communities
structure?
h(u,v), that is the height of the subtree rooted at LCA (u, v). The probability of connection

is

. Then they connect edges between leaves u and v depending on the function

flu,v) = ¢~ huv)

The authors prove that the average out degree d is n!~1°%(9) for ¢ € [1,b), log,(n) for
¢ = b and O(1) if ¢ > b. Then the number of edges is dn = n® indicating that when
¢ € [1,b) the network obeys the densification law with a = 2 —log;(n). Then, they extend

the model by allowing new nodes to join the existing structure in the form that at each

!The same applies if each node has p > 1 short-range connections and ¢ > 1 long-range connections.
2Implying scale-free properties.
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Figure 2.4: Core-periphery structure in an airline network. Source: [48].

timestep ¢, b leaves are added to the existing leaves. Moreover, the connections can now

happen between every pair of nodes and have probabilities equal to

f(u,v) = 50

where §(u, v) is the shortest path between the nodes on the tree. Now, observe that for
two leaves 6(u,v) = 2h(u,v) since the tree is perfect. Hence, in order to accord with the
original model one has to set v = % In the same fashion, the authors show that the model
obeys the same behaviour with the exception of the case when ¢ > b? where a power law
appears.

Finally, they introduce the Forest Fire model which is described by a graph process
G such that.

e (5] contains only one node.
e For t > 2 a new node v joins G;.

e Two numbers x and y are generated following geometric distibution with means
p/(1—p) and rp/(1 —rp). The new node selects = outlinks and y inlinks and chooses
nodes wi, ..., Wzy4y that have not been visited. If there are less than x outlinks or y

inlinks available, occupy the available links.
e The links are added accordingly and nodes w1, ...,w, are marked as visited.

The authors show that the model obeys all the desiderata for a real-network and shrinks
as new edges are added to the network. Firstly, the network has power-law in-degree and
out-degree distributions, has a copying flavour (a newcomer copies the neighbors of his/her
ambassador), obeys a densification power law (a user is most engaged to the community

of his/her ambassador) and a shrinking diameter.

2.6 Core-periphery structure

The core-periphery structure is a structure model in real-world networks which was

firstly introduced by Wallersteiin in reference [109] and builds on an actual observation
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that nodes in a network belong to two categories®

The former category is the core C' and the latter is called the periphery P. The nodes
of the core set are tightly connected to themselves, the peripheral nodes are connected to
vertices of the core and the nodes of the peripheral set are loosely connected to one another
(in the ideal case, no connections occur betweeen the peripheral nodes). Intuitively, if pcc
is the probability that two nodes in the core are connected, pcp = ppc is the probability
that a node of the periphery is connected to a node at the core and ppp is the probability

that two peripheral nodes are connected then

bcc > pcp > ppp

Another way to view the core-periphery structure is through the continuous model of
Jia and Benson [48] according to which each node is associated with a real “coreness”
score 6,. More specifically, if 6, > 0 then the node is part of the core and if 6, < 0 then
the node is a peripheral one. The probability of and edge (u,v) appearing between nodes

u and v is given as

1
1+ exp(—6, —0,)

p(u,v)

It is clear that again pcc > pop > ppp is satisfied since the sum 6, + 6, decreases as
we move from core-core (positive), to core-periphery (near zero) and then to periphery-
periphery (negative). Moreover, Jia and Benson add spatial features {x, },cy and extend

their model to include them as

1
- elley — o2 + exp(—0, — 0,)

p(u, v)

However, the qualitative notion that social networks can have a core—periphery struc-
ture has a long history in disciplines such as sociology, international relations, and eco-
nomics. Observed trade flows and diplomatic ties among countries fit this structure. For
instance, the airline network studied by Jia and Benson depicted in Figure 2.4 discerns
hubs of high airline traffic — such as Europe — and peripheral nodes of low traffic —
such as Oceania. Krugman [58] argues that when transportation costs are low enough
manufacturers concentrate in a single region known as the core and other regions (the

periphery) limit themselves to the supply of agricultural goods.

30riginal work by Wallerstein discerned between three categories core, semi-periphery and periphery.
“World-system” refers to the inter-regional and transnational division of labor, which divides the world into
core countries, semi-periphery countries, and the periphery countries. Core countries focus on higher skill
(high capital production), and peripheral countries focus on labor-intensive production and raw materials.
This system subsequently augments the power of the core countries toward the rest. Besides, the system
has dynamic characteristics, in part as a result of revolutions in transport technology, and individual states
can gain or lose their core (semi-periphery, periphery) status over time, since the world-systems are rooted

in capitalist and imperialist economies.
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Finally, the core-periphery structure of networks combined with the scale-free proper-
ties of the networks motivates us to further investigate the structure of the influencers?
inside real-world networks. In modern follower-based networks, someone may be inter-
ested in covering a large portion of the network using the influential nodes. Practically,
one may have easier access to public profile information of celebrities — such as sports
players, show-biz people and politicians — than from ordinary people. Identifying these
“core-players” in an online social network can be a key for designing efficient algorithms.
The high-level idea is to sample these nodes using a simple sampling procedure which can
scale to millions of nodes, use these nodes — for example obtain the subgraph which they
span or the bipartite subgraph between the influencers and the rest of the network — and
design an efficient algorithm. The computational motivator behind it is that on a network
with n nodes the O(n?) worst-case cost of traversing all the edges is prohibiting for large
network applications. More specifically, we argue that in a real-world network, the num-
ber of influencers is sublinear with respect to the total number of users. The quantifying
objective is the one of coverage, that is how many nodes can these influencers cover. The

coverage objective is directly connected to the notion of the Almost Dominating Set.

Definition 1. A subset S C V' of a vertex set of a graph G(V, E) with |V| = n vertices is
called an a-Almost Dominating Set if and only if it dominates at least an of the vertices,

that is at least a fraction a of the nodes has neighbors in S.

In our study we will see how a sublinear fraction of the nodes that is for example n°"

nodes can dominate more than 75% of the network. For instance in a network of 8 million
users, the n%7-fraction is 0.8% of the total nodes. Undoubtedly, using information from
only 0.8% of the nodes can be a huge advantage for designing algorithms. For instance,
one can calculate approximate all-pairs shortest paths via precomputing all-pair-shortest
paths to the fractional subgraph and get very good approximations. Our applications will

mainly focus on interest prediction and the list can go on.

4The terms “influencers”, “celebrities” and “hubs” are used interchangeably throughout the text.
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Part B

Generative Models
Opinion Dynamics
Dynamical Systems

Unsupervised Learning






Chapter 3

Generative Models

3.1 Motivation

Learning in general can be of two main types. The first one is discriminative learning
where we do not pose any assumptions on the underlying distribution D of the data. In
discriminative learning, our goal is to build a good predictor and not the distribution itself.
However, if we know the distribution D which is modeled by a set of parameters 8, we can
do much more compared to discriminative learning. First of all, we can generate samples
from the distribution given that we know its parameters. Secondly, we can learn — given
an adequate number of samples — the parameters of the distribution such that the PDF
p(x|0) of the distribution fits the known samples in the best possible way. The samples
may either be observed directly or generated through a multi-level cause-result procedure
modeled by a Bayesian network.

Below, we discuss parameter learning schemes, starting from the simplistic Maximum
Likelihood Estimator, and then continuing with latent variable model learning through
Expectation-Maximization and its variants. For more information about generative models
we redirect the interested reader to [98] and [13].

3.2 Maximum Likelihood Estimation

To introduce the notion of Maximum Likelihood Estimation (MLE) we will start by
giving a simple example. Suppose that we have a coin that can either come heads or
tails when tossed and each outcome is labeled with 0 and 1 respectively and that we have
observed n independent coin tosses X1, ..., X, via simulating experiments. It is easy to
assume that our coin is modeled by a Bernoulli distribution with probability p of being
1. We now want to find the best possible u which explains the probability of observing
X = (Xy,...,X,). We therefore define the function

n n

p(X|p) = [[p(Xilw) = [ w1 = )= (3.1)

i=1 i=1

45
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And the function

L(p) = Xilogp; + (1 — X;)log(1 — p;) (3.2)
i=1

For finding the best p that describes the function, it suffices to set the derivative with

respect to u equal to 0. Therefore, after solving for u, we have

.1
m== ZlXi (3.3)
1=

The procedure described above is the most characteristic example of MLE. Moreover,
as we have described in the section about Concentration Bounds this estimate is very close
to the actual value p of the distribution. To be more specific, the CH Bound states that
with probability of at least 1 — d, the following holds

| —pl < logéi/(;) (3.4)

Indeed, if we let n — oo then 4 — p a.a.s., which means that our estimator is
asymptotically consistent. In general the MLE seeks the optimal set of parameters 6

that maximize the joint distribution p(X|0) as a function of 6.

3.3 Inference of Latent Variable Models through Expectation-

Maximization

3.3.1 Latent Variable Models

In generative models of random variables we usually assume that our data is sampled
from a specific distribution D for which all the variables are known, if provided a sample
from D. However, this is not always the case. Imagine that an unobserved variable Z
depends on the observed variable X through some distribution for which we want to learn
the parameters. Sometimes it is convenient to express such phenomena through networks

of latent variables. Below, we give some examples:

Example 1: Gaussian with Normally Distributed Mean. Assume that X ~
N (p, 0?) where o2 is deterministic and y is a random variable distributed as p ~ N (o, 03)

where g and og are known parameters.

Example 2: Gaussian Mixture Models. Consider k£ Gaussians N (p1,0%), ..., N (u, 7).
Then consider the categorical variable Z = (Zi,...,Zy) for which p(Z; = 1) = m; and
Zle m; = 1. We then observe the variable X such that p(X|Z; = 1) = N(y;,02). The
PDF of the data X is given as



47

Z TN (i, 02) (3.5)

Our goal is to infer the means yy and the variances o} as well as the mixture compo-

nents 7; only by observing data from p(X).

Example 3: A toy problem in OSN. Given an OSN G(V, E) each user u has a hidden
binary attribute X, which is Bernoulli-distributed with parameter p. For every pair of
users {u,v} € E we observe and edge which appears with probability p(u,v) = o(X,Xy)
independently of the other edges where o(z) = 1/(1 + exp(—z)) is the sigmoid function.
By observing the edges e, ..., e of the network we desire to find the probability that an
attribute X, is 1.

Generalilzation. More generaly, given a set of (independent) observations X = (X1,...,X,)
our goal is to infer the parameters 6 which maximize the log-likelihood of the observed

data, namely

L(0) =logp(X|0) =log > p(X, Z|6) (3.6)

z
Contrastingly to a classical MLE problem, the above problem poses severe computa-
tional barriers since the summation/integration with respect to Z inside the logarithm is

in general

1. Usually not tractable in P-time.

2. A closed-form for the solution is very difficult to be found, like in the case of Gaussian

Mixtures.

For that reason, we assume that the latent variables Z are modeled by a variational
distribution Q(Z) which is non-zero at the domain of Z. We now rewrite the log-likelihood

under this assumption, i.e. by dividing and multiplying by Q(Z)
X Z\G) p(X, Z|0)
= log E QZ =logE [ 3.7
S Q(z) YO Q(z) 37

By Jensen’s Inequality for the function f(z) = log(x) — which is concave since f”(x) =
—1/2* < 0 — we have that

p(X,Z)
Q(Z)

The quantity Lo = Eqg(z) [logp(X, Z)] is called the Evidence Lower Bound (ELBO)
whereas the quantity Hg = Eg(z) [~ log Q(Z)] is the entropy of Q(Z). It can be well

£(6) > Eo(z) [mg ] — Eguz logp(X, Z)] + Equzp) [~ 105 Q(2)]  (38)

understood from this form that optimization with respect to Q(Z) on the right hand side
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is a well-defined problem since an optimal solution of Lg 4+ H¢ is at most the optimal
value of the actual likelihood £. This EM approach for learning latent variable models
was first introduced by Dempster and Rubin in their classical paper [26]. In general, the
choices that are available for selecting the function QQ(Z) are ample, there are some main

categories to take into account [13]:

Classical EM. The function Q(Z) is defined as the posterior distribution p(Z|X, 6y)
given the previous values of the parameters. In a Gaussian Mixture Model the posterior

probability p(z; = 1|x) of a sample = belonging to the i-th Gaussian is given as

p(x|z; = 1)p(z; = 1) _ WiN(x‘:uiOvUz?O) (3.9)
Yiple=Dplzi=1)  SF mN (2|0, 02) '

Hence the Evidence Lower Bound for this sample is calculated as

Yi = ( 1’1‘ 00)

k
Ly, = ZP(% =1,z_; =0[x,00)logp(z,z = 1,z_; = 0[0)
=1 (3.10)

—Z’nlog milN (2| i, 07))

And for a set of samples X = (21, ...,zy)
n k
= Z Z ;i log (N (25|, 07)) (3.11)
j=1i=1
The optimal parameters can be found by setting VgL = 0 hence
n
ni =Y i (3.12)
j=1
k
n= Z n; (3.13)
i=1

1

1 n

= > i (3.15)
7 J=1

o =— Z iy — i)’ (3.16)
(]

The algorithm is ran iteratively until the values stop to change. A pictorial represen-
tation of the results of EM on Gaussian Mixtures for 2D Gaussians is shown in Figure 3.1

Hence the Classical EM algorithm can be summarized via the following procedure
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Negative log-likelihood predicted by a GMM

- 102

L 100

Figure 3.1: Expectation-Maximization for a Mixture of k¥ = 2 Gaussians.

E-Step: Lq(660) = > p(Z|X,600)logp(Z, X |6) (3.17)
Z
M-Step: 8" = argmaxyLq(0]6o) (3.18)

The procedure runs iteratively until it (empirically) converges. Although at first glance,
the procedure seems to converge empirically and provide good fits for the desired parame-
ters it has not been proven analytically and remains a demanding open problem. A recent
result by Daskalakis, Tzamos and Zampetakis [22] has given global convergence guarantees
for the EM algorithm for a Gaussian Mixture Models.

To prove the correctness of the EM procedure we first prove the following lemma

Lemma 1. Let p(z) and q(z) be two probability distributions defined over a domain A

with cross-entropy
H(pllg) = Eq(z) [~ log p(z)] (3.19)

Then the cross-entropy attains a minimum ezxactly when p(z) = q(x) for allx € A

Proof. For this optimization problem we define the Lagrangian function with respect to
p(z) as

L(\p) = /A —q(z)log p(x)dx + X </A p(x)dx — 1) (3.20)

Since the minimization should be done subject to the normalization constraint. Differen-

tiation with respect to p(z) yields

/A [—q(x) + )\] dz =0 (3.21)

p(x)
The integral should be 0 for every x and every integrand, therefore the integrand must
be 0. So

q(x) = Ap(x) (3.22)
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Integrating with respect to x both sides leaves out A = 1 and therefore p(z) = q(x).
Furthermore, the second derivative of the entropy is p(z)/¢?(z) > 0, hence the function
is convex. Therefore the minimum value is attained. The same holds when p(x), ¢(x) are

functions of multiple variables. O
Using the above result we can now state the correctness of the EM algorithm

Theorem 1. If Lo(0|60y) increases at every iteration then the actual likelihood L(@) in-

creases.

Proof. By using the above lemma directly we have that #H(0|0y) > #(6y|6y). Using the

relation between ELBO and the actual likelihood and this inequality we arrive at
£(8) — £(B0) > Lo(618) — Lo(60l60) (3.23)

O]

Variational EM (Mean-field). When the posterior function p(Z|X) is either diffi-
cult to be computed online for the iterative maximization proceedure or the resulting
equations, the use of a general variational distribution Q(Z) is called into action. More
specifically, inspired by work on statistical physics, the idea of Variational EM or Mean-
field Variational Inference was introduced in [50, 101]. According to this method the
latent variables are independent with respect to each other and are distributed with PDF's

Q; parametrized by variational parameters ¢; that is

Q(Z) = HQi(Zi|¢i) (3.24)

such that Q(Z) approaches the true posterior distribution in the statistical sense,
namely their Kullback-Leibler Divergence' approaches zero. An example of Variational
EM appears for parameter learning of the Multiplicative Attribute Graph Model [55, 54],
where each user u € V of a social network G(V, F) has a d-dimensional binary feature
vector F, = (Fy1, ..., Fuq) where each coordinate follows Be(yu;) independently from the

other coordinates and the probability that two users u and v are connected is given by

d

p(u,v) = [ [ ©ilFui, Fuil (3.25)
i=1

where {O;}1<i<q is a family of real valued 2 x 2 matrices with components less than

1. The authors choose a variational distribution such that F,; ~ Be(¢y;), that is

'For two probability distributions p(z), g(x) defined on A where g(z) # 0 the Kulback-Leibler Diver-
gence is defined as

D(plla) = / EAp(w)log;%dw

It can be proven that the Kullback-Leibler divergence is 0 iff p(z) = ¢(z) for all € A.
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d
Q=TT IIQui(Fu) (3.26)

ueV =1
After each expectation step where the ELBO L is optimized with respect to ¢,; using
gradient descent, the actual parameters u; are updated by freezing ¢,,; and optimizing with

respect to u;, where the likelihood to be optimized is

Lqi(w) =Y Eq,, logp(Fuilpi)] =Y [duilog pi + (1 — dui) log(1 — pus)] (3.27)
ueV ueV

which attains a maximum when

1
1= > ¢ (3.28)

ueV
Our contribution utilizes the Variational EM approach in a similar manner for per-

forming inference in Stochastic Opinion Dynamics models.

Pseudo EM. Many times, good fits can be found via a much simpler procedure. Instead
of calculating Lo = Eq(z) [logp(X, Z|0)] one can complete the missing data Z directly
in the actual likelihood with their expected values given the old parameters 8y and then
maximize with respect to the new parameters 8. This approach is known as Pseudo EM

and is discussed in references [42], [97] and [70]. Formally

6* = argmaxg logp (X, Ep(z1x,60) [Z]) (3.29)

To adduce an example, consider a set D = Dy,oq U Dpgq of n samples which follow
N(p, 1), where p has to be estimated. The set Dgooq contains observed samples and the
set Dpqq comprises only of missing samples. We first complete the bad data with their
old expected value u® and then compute the MLE of the completed data. From basic

statistics, we know that

M(Hl):%Zx:% Z x—i—% Z x:% Z m-l-m:du(t) (3.30)

xeD IEDgood TE€Dpqq IEDgood

In the steady state p(*tY = 4 = p* and therefore p* = ngﬁzxeDgood x. Even
though this trivial example serves to demonstrate the Pseudo EM technique — albeit the
result is trivial — the actual strength can be observed for example in samples from a
Multivariate Gaussian N (u, ) where at each coordinate samples are missing at different

locations.






Chapter 4
Opinion Dynamics

“It is better to change an opinion than to persist in a wrong one.”

— Socrates

4.1 Motivation

In everyday life, people tend to communicate with one another by exchanging informa-
tion and shaping their opinions. Given the tremendous size of social networks, interactions
upon which the peoples’ opinions change are mostly local meaning that each person has
his/her own dynamical social circles discussion with which results in steering opinions.
With the general term “opinions” we mean almost everything that can be modeled as
a real number in [0,1]. Examples are numerous: tendency to voting certain candidates,
opinions about controversial topics, likeliness of publishing papers at certain venues and
trash talking. In this context, the various people (or agents) of the network discuss until
they reach a consensus state where their opinions do not change in the future.

Opinion dynamics processes have been extensively studied in scientific literature. The
most influential models are the ones due to Friedkin and Johnsen (FJ) [38], DeGroot
[25] and Hegselmann and Krausse (HK) [46]. Alternations of these models have also
been introduced — such as in [35, 36, 2] — both from an optimization perspective and
a dynamical systems perspective. Below we are going to present some main models in

opinion dynamics as well as results regarding their properties.

4.2 Models of Opinion Dynamics

Notational Conventions and Basic Definitions. We consider a system U of |U| =n
agents each of which is associated with a function a:g) € [0,1] which represents his/her
opinion. The vector of all agents at time ¢ > 0 is denoted by &®. We say that a model
converges asymptotically to a point &* — which is called a consensus — if and only if
limy o0 [|2® — 2*| oo = 0. Each agent u € U has a dynamical neighborhood N () and

a transition function (model) which aggregates information from each agent v € N® (u)

93
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in order to produce the next state, that is

(t+1) _ ()

Equivalently, an opnion dynamics model can be seen as a series of graphs {G(t)} where
each graph G (U, E®) has an edge set E®) = Uwer N®(u). Convergence to consensus
is similary defined in the combinatorial sense such that lim; ., ’E(t) S E*‘ = 0 where &
denotes the symmetric difference between two sets, that is A© B = (A\ B)U (B \ A).
Having defined the above notions, we are now ready to explore some fundamental models

of opinion dynamics.

The DeGroot Model [25]. In the DeGroot Model we are given a stochastic matrix P

and an update rule of

) = pg® (4.2)

of the agents’ opinions. Note that the update rule is identical to a Markov Chain and
hence — from Markov Chains theory — we know that if the matrix P is aperiodic and
irreducible then the model converges to *. The convergence rate of the DeGroot model
is associated with the second largest eigenvalue of P, that is the total variation distance

decreases as O(\,) where Ay < 1 is the second largest eigenvalue of P.

The Friedkin-Johnsen (FJ) Model [38]. In the FJ model, there is an underlying
weighted and undirected social network G(V, E) with |V| = n nodes. An edge between
two agents ¢ and j exists in case the agents know one another in some way. Each agent’s
opinion xg ) is a real number in [0, 1] and each agent has an initial opinion about a matter,
which he does not change. Each edge has a non-negative weight w;; associated with the
strength of communication between the agents ¢ and j. Two agents do not communicate
if and only if w;; = 0. At each round ¢ + 1 the agent updates his/her opinion using

information from round ¢ as

(t)
(t+1) _ Zv;ﬁu WypTy~ + WyySy
Ty, = Z
veV Wuw

(4.3)

The above process can be represented by a stochastic matrix W such that each row is

normalized by its sum, that is

Wy
ZveV Wy

We define the matrices A and B such that

ueV (4.4)

Wyy =

by = Wyy Aij = U%‘j(l —0; ) (4.5)
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where §;; is the Kronecker delta function which is 1 if and only if ¢ = j and 0 otherwise.

The system can be rewritten in vector notation as

D = Az® 4 Bs (4.6)

The initial opinions of the agents — namely s — are constant in each iteration and
repeated averaging will not bring all the agents to the same opinion. By that construction
the intrinsic beliefs of each agent as well as the connections with one another create the
basis for reaching different opinions in the consensus state. By construction, the system
is GAS since A is substochastic — hence it has a spectral radius' — strictly less than 1

— and wy, < 1 and the consensus point is equal to

x* = (I - A)"'Bs (4.7)

where |I —A| # 0 since at consensus x® = 2+ = * Observe that the final opinions
for each agent are given as a linear combination of the initial opinions of the agents. The
FJ model has also been studied from a game-theoretical perspective by Bindel et al. [12].
They posed the question of how someone would asses the cost of not reaching a consensus
point. For that reason, they assumed that the update rule is derived as an optimal point

to the following social cost function

2 2
Cu(t) = Cu<37$f+l); 'T(_tzl) = Z Wy (xz(f) — ng“)) + Wy (ng“) — su> (4.8)
vEN M) (u)

where each agent u is a selfish agent. We are interested in studying what is the op-

timal strategy of each agent given that the opinions of the other agents do not change.
0C, (t)
8:0&”1)
quadratic disagreement cost can be viewed as likelihood maximization for means of Gaus-

By setting = 0 leads to the FJ update rule. From a stochastic viewpoint, the
sian opinions. We will come back later to this point, when we will study stochastic opinion
dynamics when extra samples are added to the likelihood as regularization. The function
Cy(t) is indeed convex and it can be shown that a Nash Equilibrium — namely a state
when each player is not benefited from changing strategy given that the other players have
fixed strategies is reached upon reaching * = (I — A)~!Bs. Indeed, the Nash Equilibrium

in this setting is defined as

Definition 2 (Nash Equilibrium (NE)). Let @ be a set of opinions for all the agents.
Then x is a Nash Equilibrium if for every player u and for every strategy y € [0,1] the
following holds

Culy,x_y) > Cylz,x_y) (4.9)

where x_,, denotes the opinions of the agents, excluding agent w.

!The spectral radius of a matrix A is defined as its maximum eigenvalue
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Algorithm 1 Best response dynamics

(0)

Every player has initial opinion

t+1
while consensus is not reached do

Every player update his/her opinion via

Ty (t) = argmingcp 11Cu(z, !

t+—t+1

end while

Recalling this definition, we can easily show that if every agent chooses the best re-
sponse (cost minimizer) regarding his/her individual cost C, () then the system reaches
a NE at the steady state. This class of dynamic behaviours — namely when everyone
chooses the strategy that minimizes his/her cost — are called best response dynamics. We
give the general description of the best response dynamics at Algorithm 1.

Of course, the best response strategy can generate multiple opinion dynamics models if
one takes into account that the weights w,, = wq(fg are a function of time. Besides, one can
extend this philosophy to address problems that involve limited information [35], that is
problems at which each agent u cannot attend to his/her whole neighborhood and instead
chooses to one of the agents — WLOG let him/her be v — in his/her neighborhood v

with probability

qu
Py = = (4.10)
" ZzGN(u) Wz
Then the agent suffers a cost due to v equal to
(1 — ay)(zy — 20)? + @y (0 — 54)° (4.11)

Wyy
vEN (u) Wuv
is equal to the cost in the deterministic case and therefore under expectation the NE is

where a, = 5 , where the neighborhood includes u as well. The expected cost
reached under the same stationary state * = (I — A)~!Bs. Therefore, we can define the

stochastic game I = (P, s,a) of n agents as the game defined by

e P which is a row-stochastic matrix with entries p,,
e s € [0,1]" which is the vector of internal/initial opinions

e a < (0,1]™ which is the vector of self-confidence with entries a,,

The authors of [35] study the Follow the Leader (FTL) strategy which is a classical

game-theoretical strategy based on “play the best you have observed” motto. Letting Wé?

be the set of random variables for which “u meets v at time ¢” parametrized by pq(fg = Puv

such that ) Wéf) =1 the FTL strategy states an update rule of the form
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t

2
xq(fﬂ) = argmingcp 1) = 2(1 — ay) (x - :UE/V)W) + au (@ — s54)° (4.12)
T7=0 “

Finanlly, the authors show that for the I = (P, s, a) stochastic game the FTL strategy

satisfies

)3/2

(logt)
E[|z® -« ||Oo} < C/logn_ (4.13)

where p = min, a,, and C is a constant. For a more detailed explaination of the work,

we redirect the interested reader to [51].

The Hegselmann-Krausse Model (HK) [46]. In the Hegselmann-Krausse (HK)

model each agent constructs his/her influence neighborhood

NO(y) = {v eU| ngf) - xl(f)H < 6} (4.14)

and updates his/her opinion according to the following rule

N N > a2l (4.15)
vEN® (u)|

A more general formulation of the HK model attributes a different radius ¢, for each
agent u. The model is shown to converge in reference [46] using combinatorial arguments.
However, recent work in [81] has shifted attention towards treating such models using
control systems theory. Moreover, recent work done in [36] has introduced two new models
related to the classical HK model.

The Network-HK Model [36]. An underlying network structure H(V, E) is added
such that the neighborhoods of the HK now become

N (u|H) = {v eU| H:US” - l‘q()t)H <end{u,v} € E(H)} (4.16)

The update rule remains the same. This model is also shown to converge, in the same

paper.

The Random-HK Model [36]. The model is similar to the HK model however
now we choose a random subset of k elements from the neighborhood and aggregate the
results. The convergence result is now proven using randomized analysis such that the

system reaches consensus under expectation.

General Averaging Dynamics. Moreover, the form of the HK model inspires a whole
family of dynamics with zero-input which are based on a similar “smoothing” procedure.

We give the formal definition below
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Definition 3 (Averaging Dynamics). An opinion dynamics model is said to belong to the

class of Averaging Dynamics if and only if it has an update rule of

1
(I S 117

for every agent u € U.

This class of dynamics is very interesting since it serves as a generalization of the

classical moving average filters from signal processing.

4.3 Coevolutionary Opinion Formation Games

The family of game-theoretic models of opinion formation that are most related to ours
is the Coevolutionary Opinion Formation Games (COFG) introduced in [11]. According
to COFG, the agents of the network evolve their opinions along with their neighborhoods
(such as in the HK model). This extends the work of Bindel et al. [12] which seeks the
minimization of the disagreement cost of agents, but with the network fixed, eventually
arriving at a game-theoretical understanding of the FJ model. The authors of [11] gen-
eralize the social cost function imposed by Bindel et al. and tightly bound the Price of
Anarchy (PoA)? and interpret it it as a way to attribute value to how much nodes value
their intrinsic and their friends’ opinions.

In a CG, there are n players each of which has an intrinsic opinion s; and expresses
an opinion z; (where in general s; # z;). Each player’s goal is to minimize the cost C;(z)
which is a function of s; and the expressed opinions z = (z1,...,z,) of all players. The
cummulative social cost is defined as C(z) = Y ;" ; C;(2). The authors consider two games.

The former one is the symmetric CG where each player’s cost function is given as

Cizi,z—i) =Y fij(zi — ) + wigi(zi — s:) (4.18)

J#i
where f;; and g; are real (fixed) valued functions that are convex, continuously differ-
entiable and symmetic, that is f;;(—z) = fij(z) and g;(x) = ¢gi(—z) and ¢g(0) = 0. In the
symmetric setting f;; = f;; which makes the game symmetric wrt to pairs of players. The
work of Bindel et al. sets g(z) = 22 and fij(z) = wisz where w;; = wj; represent the
weight of the edge {7, j} between players i and j. The existence of a unique pure NE can

be shown via the potential function

2The PoA of a game measures how the efficiency of a system degrades due to selfish behavior of its
agents. It is a general notion that can be extended to diverse systems and notions of efficiency. Given
a game G = (N,S,u) with a set A/ of players strategy sets S for each player i € A, utility functions
ui : § — R,a welfare function W : S — R, such as the utilitarian objective W(s) = >, \ ui(s) or

the egalitarian objective W (s) = min;en ui(s), and a set £ C S of equilibria, the PoA is defined as

_ maxges W(s)
PoA = minecg Wi(e) *
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¢(z) = Z wigi(zi — si) + Y fij(zi — 25) (4.19)

1<J

Moreover, to extract the PoA bound the authors consider the set

y—x
2

(@) < Af(y) + pf(z) for allz,y > 0, f is a weight function
(4.20)

Moy = { O] 1(0) +

the set

Huw,g = {()\,u)’g(u) + (v —u)g' (u) < Ag(v) + pg(u) for allz,y > 0, g is a weight function
(4.21)
and the sets Aj, Ao which are given as A; = Uf Moy, r and Ay = Ug Huw,g- Finally
the authors show that for any (A, ) € A; N Az the value A\/(1 — p) is an upper bound onf
the PoA and ¢ = min(y ;yc4,n4, ﬁ is the best upper bound.
Their proof is based on the technique of Local Smoothness introduced by Roughgarden
and Schoppmann [92] to which we make a quick reference. For each function C; one has
to prove that for gy < 1, A > 0 and for every z, and for a fixed profile o that

Z Cilzi 2 + (01 — zi)a@(;;z_i) < AC(0) + puC(2) (4.22)

Then the authors make use of the following result of [93] to prove their PoA bounds

Theorem 2. Let o denote a correlated equilibrium. If (4.22) holds for every outcome z
with respect to a fived outcome o then the ratio E,., [C(2)] to C(0) is at most \/(1 — ).
If o is the optimal outcome then the PoA is at most A\/(1 — p).

When the functions are convex and differentiable the PoA bound is always at most 2.
Finally, the authors provide a general lower bound construction for the symmetic CG.
In the K-NN CG each player looks at her k nearest neighbors (with consistent tie-

breaking) with respect to s; and forms the set K (z,7) and suffers a cost of

Cilzi,z—i) = Y (z— )"+ ak(z — s)° (4.23)
JEK(2,)

The authors show that the K-NN game has a PoA of at most a constant for o > 1,
where the constant improves together with the increase of a. The social outcomes become
better when nodes are “narrow minded” and give larger weight to their opinions (o — 00).
Contrary to Bindel et al. the authors show show that if nodes can choose their neighbors
based on their k nearest neighbors the the PoA can be bounded. Finally, the authors show
that for small o the PoA is at least 1/a?, which explains why PoA deteriorates upon the

agents being more “broad-minded”.



60

The connection to our work is the cost formulation as negative log-likelihood. Indeed,
in the stochastic case of Chapter 7 with agents having stochastic opinions the negative
log-likelihood cost resembles the costs introduced in [12, 11]. More specificaly, our work
considers binary opinions over a latent setting and the maximization of the ELBO (after
removing the double stochasticity) reduces to a cost similar to its game-theoretic counter-
part. Finally, when the agents have Gaussian opinions with unity covariance matrix and
the k-nearest neighbors are considered with respect to the expressed opinions z;, the cost
function of (4.23) is equivalent to the negative log-likelihood of the NNIM model.



Chapter 5

Dynamical Systems on the Steady
State

5.1 Lyapunov Stability and Lyapunov Functions

The study of dynamical systems the last century has been of prime importance in
mathematical and engineering sciences. As a computer scientist, I have one more reason
to care about: algorithms. It is without doubt that dynamical systems and algorithms are

two faces of the same coin. On the one hand, a (discrete) dynamical system is defined as

) = f(2® u(t)) (5.1)

Where f is a transition function, z(*) is the state of the system and w(t) is the input of
the system which we usually apply from outside. If the temporal variable ¢ is continuous,

the system is similarly

@(t) = f(@, u(t)) (5.2)

Similarly, an algorithm A is usually an iterative process f that evolves over discrete
time with the prospect of reaching some solution. Such algorithms are primarily learning

ones, with the most famous of them being the Steepest Descent [98] update that is

D = 20 )V f(z?) (5.3)

for finding the local optima of a function f. Steepest Descent updates also occur when
minimizing functionals of an input function, through the involvement of Euler Derivatives.
These problems usually arise in computer vision in terms of smoothing algorithms, such as
Gaussian smoothing or the infamous Perona-Malik anisotropic diffusion process [102]. On
the other hand, classical dynamical systems refer usually to electro-mechanical systems

and usually take the linear form of

2 = Az + B(t)u(t) (5.4)
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where A(t), B(t) are known matrices. While the exact behaviour of the dynamical
system is usually of little interest, most care about the limiting behaviour of a system.
For example, an electrical system is observed and measured after an adequate amount
of time has passed since its initialization which is called the steady state. Obviously,
systems which tend to attain infinitely large values in the steady state are not interesting
in any way, and the main goal of control systems theory is to counterbalance the systems’
uncontrolled behaviour towards instability with a controller, so that a final objective can
be achieved subject to the control law w(t).

For that reason, Aleksander Lyapunov dedicated his Doctoral Thesis [68] in the study
of the stability of dynamical systems. His work primarily focused on the study of the
stability of non-linear systems through analytical methods. Lyapunov’s Method is based
on the differential equation that describes the dynamical system and gives out informa-
tion about its behaviour without the need for analytically solving the initial differential
equation. Before reciting Lyapunov’s method we are going to introduce some definitions
about stability of dynamical systems. For that reason, we, for now, assume that a system
is described by the model

with a solution of ¢(t,xp). We now define the equilibrium point to be a root of the

function f.

Definition 4 (Equilibrium Point). The point * is called an equilibrium point of Eq. 5.5
iff f(x*) = 0.

For instance in the system @(t) = Ax® has a unique equilibrium at 0 if and only if

|A| # 0. Next, we give a general definition of stability

Definition 5 (General Definition of Lyapunov Stability). The equilibrium point x* is said
to be stable iff for every € > 0 there exists some § = (e) such that if ||xg — x*|| < 0, then
lp(t, xo) — x*|| < e for allt > 0.

Furthermore, we are interested on the system behaviour as t — oo, i.e. study if
the solution ") is sufficiently near &*. We define a system for which the solution is
sufficiently near the equilibrium point — regarless of the initial condition &g — for all ¢
and additionally £® — x* as t — cc.

Lyapunov’s idea for assesing the (asymtotic) stability of dynamical systems was to
define a “generalized energy” of the system V(m(t)) which will gradually decrease! until
the system reaches the equilibrium point *. The function V(z®) is a scalar function of

the state vector (Y. We below give the formal definition of a Lyapunov Function

1For a stable system
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Definition 6 (Lyapunov Function). The not time-varying Lyapunov Function V satisfies
the following conditions for all t > 0 and for all x near 0 where x* = 0 is an equilibrium

point.
1. V(z) € CY(R).
2. V(0) = 0.
3. V(x) >0 for all x # 0.
4. V(x) <0 for all x # 0 where V(x) = VV (x)"&.

Note that for a discrete system the only modification we need to consider is V (2(+1) <
V(z®) for all () # 0 as the condition for the monotonicity of the Lyapunov Function
and leave the rest conditions the same. We are now ready to present the main result of

Lyapunov [68]

Theorem 3 (Lyapunov’s Theorem (GAS)). Let & = f(x) be a dynamical system with
equilibrium point x* = 0 such that a Lyapunov Function V' can be determined. Then the

equilibrium point * = 0 is globally asymptotically stable (GAS).

Example 1: Warm-up. As a warm-up example, consider the system

B = @9 — T — 110 (5.7)

By = —x — 2320 — T (5.8)

and the function V = 22+22. Obviously, the point (z1,22)T = (0,0)7 is an equilibrium
point. The function V satisfies the first three properties of the definition for a Lyapunov
function and moreover VV = (2z1, 222). Plugging in the system definition and doing the
algebra we arive at V = —2(x? +23)% < 0 for all w1, 79 # 0. Therefore the system is GAS.

Determining Lyapunov Functions. Even though at first glance, the method is de-
scent for determining the stability of a dynamical system, yet finding an appropriate Lya-
punov Function is usually a very difficult problem. On the one hand, for an LTT system
2 = Az one defines a Lyapunov function V = 2’ Pz such that P > 0 and ATP—PA = —Q
for some @), where (Q > 0. On the other hand, as we will investigate later many opinion dy-
namics systems such as the Hegselmann-Krausse model require much more sophisticated
Lyapunov Functions. Some popular methods for determining the Lyapunov Functions is
the gradient method [20] and the Krasovskii method [7].

5.2 Markov Chains

One characteristic example of a dynamical system is a Markov Chain. A Markov chain

is a stochastic model describing a sequence of possible events in which the probability of
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Lyapunov function Vixy, x2)

Trajectory of system

044 [ ]

0.2 4

0.4 02 00 02 04
Estia]

(a) 3D Surface Plot (b) Contour Plot

Figure 5.1: Lyapunov Function V(x1,x2) of the example system. The trajectory v =
{(z1,m2) | 1 = @2 — 23 — 2123, 9 = —w1 — 23wy — 23, T = @90 = 0.4, t > 0} is
also provided as a scatter plot. Since V < 0 for all (x1,x2)T # (0,0)T the system moves

towards the base of the paraboloid V = 2% + x3

each event depends only on the state attained in the previous event. Markov Chains
are used widely in modeling population dynamics, communication systems and particle
interactions. Markov chains are the basis for general stochastic simulation methods known
as Markov Chain Monte Carlo (MCMC), which are used for simulating sampling from
complex probability distributions, and have found application in Bayesian statistics and
artificial intelligence. In this Thesis, we will refer to an important theorem for Markov
Chains regarding the convergence time of a Markov Chain. A Markov Chain is modeled
by an initial distribution 7(0) over a state space X and a stochastic transition matrix P

such that the probability of being at a state z € X at time ¢ is given by
) = zOp (5.9)

Asymptotic Behaviour of Markov Chains. If the Markov chain is irreducible and
aperiodic?, then there is a unique stationary distribution 7. Our focus is how fast does
the sequence (?) converge to 7, hence we are interested in the total variation distance

between w®) and 7 that is

dry(®) = |7~ wlrv = sup |3 w(a.t) = 3 (o) (5.10)

<X €A z€A
In algorithm analysis we are interested in the time such that every subset A C X of the

states is near to the respective stationary distribution with respect to some error tolerance

n > 0. For that reason, we define the mixing time of a Markov Chain as the minimum

2A Markov chain is said to be irreducible if it is possible to get to any state from any state.

A Markov Chain is aperiodic iff there is only 1 step required to pass from a state twice.
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time g such that the probability that the total variation distance between the current

probability distribution and the stationary distribution is less than 1. More formally

Definition 7 (Mixing Time). The mizing time ty = to(n) of a Markov Chain is defined
as
to(n) = inf {t >0] Hﬂ'(t) -7

< n} (5.11)

Moreover, it has been shown by Perron and Frobenius that the convergence rate of a
stationary Markov Chain is exponential with the second largest eigenvalue of the matrix
P3, that is

dry (t) = O(\}) (5.12)

Generally, if P is a stochastic matrix with second eigenvalue A\ = é < landt >

{%1 then the total variation distance will be at most 1. One particularly interesting
case is when the stochastic matrix P is proportional to the adjacency matrix A of a
k-regular graph® such that P = %A. Essentially, we are interested to understand the
worst-case behaviour of such a Markov Chain. That is we want to find the second largest

eigenvalue of the “slowest matrix” P*. From an optimization perspective

maximizep Aa(P) (5.13)
subject to P is row-stochastic (5.14)
1
P=>A (5.15)
k
(5.16)

A is an adjacency matrix of a k-regular graph
We give the following lemma to simplify the above optimization problem.

Lemma 2. Let A and B be two square m X m matrices such that B = kA for some

k € R*. Then if X is an eigenvalue of A then kK is an eigenvalue of B.

Proof. The proof is directly inferred from the characteristic polynomial and the identity
|kA| = k™| A|. Therefore

A A
XB(A) = |A[ — B| = |\ — kA| = k™ ‘/1[ — A‘ =k"xA (ﬁ) (5.17)
The result comes from the fact that xp(A\) =0 <= xa(A/k) =0. O

This simple lemma simplifies the above problem to the following one

maximizes Aa(A) (5.18)
subject toA is an adjacency matrix of a k-regular graph (5.19)

3The eigenvalues are less or equal to 1. If a chain is stationary that implies that 7« = 7 P therefore P has

its largest eigenvalue equal to 1. Hence the convergence rate is specified by the second largest eigenvalue
4In a k-regular graph every node has exactly k neighbors.
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Convergence Rate Bound
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Figure 5.2: Worst-Case Convergence Behaviour of a Markov Chain with a k-regular tran-

sition Matrix for various values of k > 3.

The above problem was posed by Alon® and eventually solved by Friedman in [39] which
states that the largest possible eigenvalue is 2v/k — 14 0o(1) for n — oo. For completeness
purposes, we cite the Chernoff-type Bound proved by Friedman in [39]:

Theorem 4 (Alon-Friedman’s Theorem). Let A be the adjacency matriz of a k-regular

graph G with k > 3 and second largest eigenvalue \o. Let € > 0 be any positive number

and 7= [(Vk—1+1)/2] — 1. Then

Prds <2VEk —14¢>1-0n) (5.20)
That is Ao = 2k — 1+ o(1) a.a.s. for n — oo.

Proof. The proof is lengthy (60 pages) and beyond the scope of this Thesis. We redirect

the interested reader to the respective paper. O

Corollary 1. The total variation distance of a Markov Chain with n states and a stochas-

tic matriz P of a k-reqular graph decreases as o(k_t/Q) for very large n for k > 3.

Proof. We apply Alon-Friedman’s Theorem to the adjacency matrix A = kP and then
scale the eigenvalues. The eigenvalue of the new matrix is 0(\/%) a.a.s. for very large n so
the convergence rate follows to be o(k~*/2). The behaviour for various values of k > 3 is
shown in Figure 5.2.

O

5Tt remained unsolved for many years.
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Unsupervised Feature Learning
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6.1 Dimensionality Reduction

In dimensionality reduction, our aim is to bring data which live in a high-dimensional
space to a low dimensional space, while avoiding losing valuable information, and run our
algorithms on. Running algorithms in low-dimensional spaces avoids “falling” to the so-
called “curse of dimensionality” where algorithms become inefficient in high dimensions.
The process of dimensionality reduction is closely tied to the ideas of lossy compression
in information theory. In this section, we are going to describe famous methods for per-
forming dimensinoality reduction and are closely related to this dissertation’s work. For a
more detailed introduction to dimensionality reduction, we redired the interested reader

to [98]. Moreover an excellent overview is given at [93].

6.1.1 Principal Components Analysis

Let @1, ..., x,, be vectors in a d dimensional real vector space with zero mean, that is
1

m

=", 2 =0 We would like to reduce the dimensions via a linear transformation
x — Wx where y = Wz is a lower dimensional vector of dimension d’ < d. Moreover,
given a compressed vector y, we seek a transformation matrix U such that £ = Uy is
d dimensional and the squared error is minimized. Therefore the PCA objective seeks

W e R4 U e R4 such that the objective

67
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Lpoa(UW) = o — &3 =>_ |z — UWa3 (6.1)
=1 =1

is minimized. From the above objective, it is evident that W = U” and that UTU = I
since if we fix U, W and let R = {UWx|z € R?} then the vectors of R can be represented
as Vy where VIV =T and y € RY. Hence

lz = Vyl3 = =l + lyl3 - 2" (V=) (6.2)

Setting the gradient wrt to ¢ to zero, we obtain that y = V7 x. Therefore for every
x, the vector that asserts minimum reconstruction error is VV7x. Since this holds for
all U and W we conclude that UTU = I and W = UT. Now the optmization objective

simplifies to

Lpoa(U) =) lai— &5 =) |l — UU a3 (6.3)
=1 =1

subject to UTU = I and W = UT. Expanding the identity ||z — UUT z||3 inside the

objective we get

le — U0 |3 = |l2]3 - (U e V) (6.4)

Hence the minimization objective transforms to the maximization objective

m
max tr | UL xxl U 6.5
e (07 St 63)

We now let A = >, im :I:zm;r which is symmetric and can be decomposed as A =
VDVT where VVT = I, the diagonal elements of D are the eigenvalues of A and the
columns of V are the eigenvectors of A. Therefore tr(UTAU) = tr(UTVDVTU) =
tr(BTDB) = Zle Aj Z?,lzl b?j,. But BT B = I and hence the problem reduces to finding
the d’ largest eigenvalues of A and the corresponding eigenvectors uq, ..., uy which will
become the columns of U. Finally W = U7,

6.1.2 Random Projections

Imagine we are given two vectors x,y € R? and we are asked to find a way such that
in a lower dimensional space R? with d’ < d the Eucledian distance between & and y is
negligibly affected. In other words if two points are nearby in R% they should be nearby
in RY. Tt turns out that there is a dimensionality reduction technique called the Johnson-
Lindenstrauss (JL) transform that achieves that [3, 98, 13]. Assume that we are given a
random vector r and define the projection function f(x|r) to be f(z|r) = (x,r). Clearly
the function f is random and if we choose r ~ N(0, I) then for two vectors x,y we have
that
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g(@, ylr) = f(z|r) — f(y|lr) = (@ —y,7) (6.6)
with mean
Er [9(z,y|r)] =0 (6.7)
and variance
Vo(g(,y|r)) = Er [g(x,y|7)?] = [l —yl3 (6.8)

Suppose that we repeat (independently) the experiment for d times with vectors
T1,...,7q where we gen d unbiased estimates of the distance between x and y. If one
uses the concentration bound for the y2-variables, then approximating the actual dis-
tance within a factor of 1 + ¢ requires setting d = O(logn/e?). More specifically, the
final JL transform is defined by a matrix A with entries a;; ~ N(0,1) and the mapping

f(xz]A) = \}d»,A:rl, similarly for two vectors x,y we have that

> (af (x — y))?

I/ (2]A) — f(ylA)5 = 7 (6.9)
as well as for every € € (0,3) the concentration inequality implies
1/Vd)Az|3
Pr [W > e] < 2exp(—exd'/6) (6.10)

Hence, for a set of n vectors a1, ..., x, choosing

_ [6log(n/é)
=<3 (6.11)

asserts that with probability of at least 1 — § the following holds

|Az|3

sup 5 1‘ <€ Vi<i<n (6.12)
i | [l]3

Note that the value of € does not depend on the initial dimensionality d of the vectors.

6.1.3 Similarity for Sets: MinHash

One of the very well-known problems in database systems is the one of finding how
similar two collections of items A and B are. A reasonable similarity measure is the one of
the Jaccard distance J(A, B) = |AN B|/|AU B| (or the intersection-over-union ratio). In
the case of real valued vectors, random projections project from a high dimensional space
to a low dimesional space using a random matrix A such that in expectation distance
is preserved and hence, due to measure concentration, the original distance is preserved

w.h.p.. In the case of sets, one should desire the same but for the Jaccard distance. Having

LR RY
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a way to measure Jaccard in expectation combined with independent trials would yield
a similar algorithm for sets. It turns out that there’s such algorithm which is called the
MinHash of a set that generates a set’s signature randomly. First of all, the MinHash
algorithm for a set U, chooses a permutation 7 : U — U of the elements of U usiformly
at random (each permutation occurs with probability ﬁ and maps each set S C U to
MinHash(S) = argmin,cgm(z). The MinHash function can serve as an unbiased estimator
of A;B C U. Via a simple counting argument one can deduce that Pr[MinHash(A) =
MinHash(B)] = J(A, B)

6.2 Nearest Neighbor Search

One of the fundamental problems in Data Science is the one of finding the nearest
(or the k nearest) neighbors of a point @, where the possible answers come from a set
A= {xy,...,x,} CR? that contains n points. Formally the nearest neighbor problem is
defined by a function ¢ : R* — R? such that?

q(z) = argmine 4 {||= — 2|/} (6.13)

where || - || is a norm function. From now on, for ease of demonstration we will assume
that it is the Eucledian norm. Similar results can be obtained for other norms since norms
are equivalent. The problem seems very easy from a first glimpse, however, as we process,
we will conclude that actually the opposite is correct: nearest neighbor search is a difficult
problem! To give a first scent why this is true, we will lie in the power of the nearest
neighbor classifier. A consider K classes Ay, As,... Ax C R? of points and a classifier
that for each query point @ assigns the class at which the closest point to @ belongs, with
ties broken consistently. It turns out that, however large the classes A1, As are the real

space R? can be partitioned into two sets D; for 1 < i < K such that

Di={zecRYFzecA,vye|JA;: o—y| = |z - z| (6.14)

J#i
the maximum cardinality of points n = Zle |A;| that a classifier h € H can correctly
separate, where H is the space of all the possible suitable classifiers (hypothesis class), is
also known as the VC-dimension of the classifier. The nearest neighbor classifier has an

infinite VC-dimension since it can “separate” arbitrarily many points.

6.2.1 Brute-force Approach

The most straightforward approach to find the k Nearest Neighbors is brute-force. We

calculate all the distances in O(nd) time and then find the k nearest with a partition

2To be totally correct, argmin is a set of at least one element and therefore ¢ must lie in it. However,
here we assume that we consistently select one element from the set and therefore we can treat it as a

function
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Figure 6.1: Nearest neighbor classifier example with 3 classes.

in linear time, yielding a total runtime of O(nd). Obviously, if we have m queries then
the total complexity is O(nmd); which is impractical for most real-world scenaria. Below
we will discuss how we can find nearest neighbors — either exactly or approximately —
via data structures like Ball Trees, KD Trees, Locality Sensitive Hashing or Dynamic

Continuous Indexing.

6.2.2 Intrinsic Dimensionality

Contrary to the well known notion of dimensionality — also called the ambient di-
mensionality — nearest neighbor search problems are mainly dependent on the intrinsic
structure of the data. For that reason, one refers to this quantity as the intrinsic dimen-

sionality of the data. Below we give the definition

Definition 8. A set of points D C R has intrinsic dimensionality A if for all r > 0 and
a>1 andp € D any ball B(p,r) satisfies

|B(p, ar)| < a®[B(p,r)| (6.15)
In other words, every ball of radius r > 0 contains O(r®) points from D.

To give an intuitive explanation, if the data points are uniformly distributed on a
manifold, then A ~ d. To adduce some examples, the d dimensional integer lattice Z¢
has A = d, and if one embedded a set D to a set D’ in a higher dimensional space, then
intrinsic dimensionality would be retained. Moreover, as a simple thought experiment take
the set D = Z¢ and a query point « that has 1/2 on all of its coordinates. Then x has 2¢

candidate nearest neighbors (wrt to the Eucledian norm) since distance d : Z¢ — R with

)=\ (3- y) (6.16)

=1

attains a minimum at exactly 2% points.
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6.2.3 KD Trees

The KD Tree is a divide-and-conquer data structure that allows efficient queries when
the intrinsic dimensionality (density) of the space is low. More specifically the construction

of the KD Tree builds a tree given a set of S of points and has two main parts

1. Base: When |S| = 1 then return the point (as a leaf of the KD Tree)

2. Recursion: Pick a dimension 1 < i < d, find the median point (wrt to this dimension)
and partition the space into two sets L, R. Then recurse on L and R making two

nodes vy, vg in the tree.

It is straightforward that, for example, in 1 dimension, the average-case query time is
O(logn) whereas the construction time is O(nlogn). In the more general case, querying
an axis-parallel range in a balanced KD tree takes O(n'~'/¢ 4+ m) time, where m is the

number of the reported points.

6.2.4 Ball Tree

The Ball Tree data structure follows a similar philosophy to KD Trees. More specifi-
cally, at each step, the data are partitioned into two balls By, By with centers ¢1, co € R%.
Each point is assigned to the ball with the nearest center to it. Finally, each leaf node in
the tree defines a ball and enumerates all data points inside that ball. If d* is the dimen-
sion of greatest spread and m is the median point along d* then the sets L, R that are
created contain points lying to the left and right of m respectively. Querying the nearest
neighbors of a point z is done through a depth-first traversal of the Ball Tree. A max-first

priority queue @ is maintained and at each node B we do one out of three operations

L. If for all mingep ||z — 2z||2 > maxyeq |||y — x||2 then return Q.

2. If B is a leaf then do an exhaustive scan of the points that lie inside B and update

Q.

3. If B is an internal node with children By, Br then recurse on By, Br starting from
the set whose center is closer to the query point. The order of search usually prunes

the search space considerably.

The performance of the Ball Tree is similar to the KD Tree, except from a slighter
advantage in higher dimensionalities. The general rule of thumb for choosing the appro-
priate between Brute-force, KD Trees and Ball Trees is that when d < 20 the KD Tree is
efficient, for small n Brute-force can be used and for the rest of the cases the Ball Tree is

preferred.
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6.2.5 Locality Sensitive Hashing

Another method of obtaining nearest neighbors is through hashing. To get the reader
familiar with the ideas behind Locality Sensitive Hashing (LSH) [41] we first need to define
Locality Sensitive functions. A hash function h : A — B is (dy, d2, p1, p2)-locality-sensitive
if and only if

L |lz —yll <dv = Pr[h(z) = h(y)] = ;1
2. ||& -yl = dy = Prlh(x) = h(y)] < p2

For instance, if we use MinHash as h and the Jaccard distance as || - || then for 0 <
dy < dy < 1, the family is (di,da,1 — di, 1 — dy)-locality-sensitive. The same doctrine
can be followed for other distance measures such as the Hamming distance, the Eucledian
distance and the Cosine distance. Now we make the above more general and define a family
H = {hi|lhi : A — B,1 < i < n} of (independent) hash functions that is (di, d2,p1,p2)-
locality-sensitive. Defining the AND operator as all the results from the h;’s falling in the
same bucket. Since the h;s are independent then AND is (dy, da, pY, p§)-locality-sensitive.
In the same way the OR operator is (dy,ds2,1 — (1 —p1)™, 1 — (1 — p2)™)-locality-sensitive.
We can chain AND and OR “gates” as boolean circuits to create the desired probabilities,
such that the “good” probability is high and the “bad” probability is low. The nearest
neighbor search using LSH one can chain k hash functions as AND and [ hash functions
as OR to find a neigboring point with probability at least 1 — (1 — p¥)!. Similarly the
failure probability is at most 1 — (1 — p&)!. Letting k = logn/(log(1/ps) and | = n” where
p = logp1/log py one can obtain a point within distance (1 4 €)R from the query point
with preprocessing O(n!*?), space complexity of O(n'*?) and query time of O(n?(kT +1))

if T time is needed to compute h;(x).

6.3 Dynamic Continuous Indexing

Dynamic Continuous Indexing (DCI) is a recent idea on nearest neighbor search that
appeared in [63] and [64]. In DCI/PDCI we choose m random directions vy, ..., v, and
project the n points D = {x; ...,x,} onto them. Given a query point y we define the
candidate points along each random direction to be the nearest points with respect to the

projections

z; = argmingcp (v, ) — (v4, y)| J € [m] (6.17)

The DCI algorithm proceeds as follows using a central min-heap @ and datastructures

that efficiently answer nearest neighbor queries in one dimension. 3

1. Start by initializing an empty heap ) and then add the first round of shortest

projected distances by querying the data structures in O(logn) time.

3Without loss of generality assume that all distances are unique
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2. Between all projections find the z;, which has the minimum distance compared to

the other z;’s, and corresponds to direction j*.

3. At the direction j* find the next nearest point (different from z;,) and add it to the
min-heap Q.

4. Repeat until there is a point which has visited candidate projections among all

directions j € [m].

The correctness of the method is thightly related to the idea of the JL transform,
where the projection along a random dimension serves as an unbiased estimator of the
distance. The construction time is O(m(dn+nlogn)), takes O(nm) space and queries can
be answered at O(dk max{log(n/k), (n/k)'=™/2} + mklog m max{log(n/k), (n/k)}=1/2).
Intuitively an increase in the intrinsic dimensionality A can be compestated by an increase

in the number m of projection directions.
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Chapter 7

Stochastic Opinion Dynamics for
Interest Prediction in Social
Networks

“We should not ignore the fact that in the real world consensus is usually
not reached. Recognizing this, most traditional social network scientists do
not focus on an equilibrium of consensus. They are instead more likely to be
concerned with explaining the lack of consensus (the variance) in beliefs and

attitudes that appears in actual social influence contexts.”

— David Krackhardt, A plunge into Networks [57]

7.1 The Nearest Neighbor Influence Model

We present the NNIM model and the inference algorithm in Algorithm 1. We assume
that the network G(CUU, E, X) consists of a core C, a periphery U with size |U| = n, and
a matrix of initial features X with an d-dimensional binary vector X, for each ¢ € C which
represents the trends that ¢ endorses throughout the iterative process. The core members
serve as steady-state-trend-setters meaning that their interests do not change throughout
the process. NNIM proceeds in steps, where we use the letter ¢ to denote time steps. Each
peripheral user u € U has a d-dimensional vector at time ¢, denoted by Xi(f). FEach u e U
initializes her vector as a Bernoulli trial with a probability equal to the maximum likelihood
estimation (sample mean) given the members of the core she follows. At each step ¢ > 1
each member of the periphery u € U observes her k-nearest neighbors with respect to the
Hamming Norm Z?:l 1 {Xf;) #* Xﬁ?}, which quantifies how much the agent disagrees
with another agent v € U, and constructs the stochastic set ® (u) . Afterwards the
)

which is the average of the observed opinions inside

the set K£® (u) including the user herself, as S&tﬂ) = %ZUE,@»(U) qut). Then each agent

) at time t + 1 drawing a Bernoulli sample from Be( £t+1))7

agent constructs the vector g&t“

updates her opinion Xq(fﬂ

7
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Algorithm 2 Generative Model (NNIM procedure) and Inference (NNIM_INFERENCE proce-
dure). The functions FINDSTOCHNN and FINDNN query the k nearest neighbors of a node
u € U at time ¢ based on their stochastic vectors (with respect to the Hamming Distance)
or their expected values (with respect to the L2 Norm) respectively. In EM jargon, find-
ing the k nearest neighbors is analogous to an E-Step and updating the variational and

macroscopic parameters is analogous to an M-Step.

1: procedure INITIALIZE(X,C, U) 18: end procedure
2: for u € U do 19: procedure IN1TIALTIZE INFER(X, C, U)
3: E&O) = W 2 veN (u)nC X, 20 for u € U do
4 Xl(tO) ~ Be(&(ﬁo)) 21: g)) = W ZUEN(u)ﬁC X,
5 end for 22: end for
6: end procedure 23: end procedure
T 24:
8: procedure NNIM(X7 C,U, k) 25: procedure NNIM,INFERENCE(X, C,U, k)
9 InrrraLize(X,C,U) 26: InrtiaLizE INFER(X, C,U)
10: t<« 0 27: t« 0
11: while no consensus do 28: while no consensus do
12: for v € U do 29: for u € U do
13: K® (u) < FInNDSTOCHNN(u, k, ) 30: K®(u)  FInpNN(u, k, 1)
W Tl m o
15: Xffﬂ) ~ Be( S‘/H)’ te t 4 B2 end for
1 33: t+—t+1
16: end for 34: pl ) ﬁ D el ¢5Lt+1)

17: end while 35: end while

36: end procedure

independently for each coordinate. The process continues until consensus is reached in
expectation. This way, at each step ¢, a stochastic temporal graph G is created, where
each agent has a neighborhood that corresponds to her k-nearest neighbors, in place of

the actual OSN (see the NN1IM procedure in Algorithm 1 for details).

Intuitively, NNIM aims to explain the space of user interests in the network by ho-
mophily. So, NNIM treats the k nearest neighbors of a user wrt. her interests as her
highly homophilic nodes. To test our hypothesis that NNIM explains well the interests
of the peripheral users, we compare the neighborhood of the ground social network with
the k-nearest neighbors for each v € C'U U according to NNIM. Given the un-initialized

directed social network G(C' U U, E,X) (where each user has a binary interest vector),

we define ay, = W ZUEN+(w)U{w} X, and By = ﬁ EvelC(w) X, where N*(w) is

the set of users that w follows and k,, is either |[N*(w)| + 1 or [logn] (depending on

the column of Table 7.1). These vectors represent the average feature vector over a user’s
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Table 7.1: Dataset Statistics and Homophilic Index are reported. We count directed edges
where the network is undirected. The Homophilic Index is calculated after dimensionality

reduction with PCA so that 95% of the original variance is explained after the transfor-

mation.

Network Homophilic Index d

Name Nodes Edges
Type ky=|N*t(u)|+1 k,= [logn]

facebook [60, 62] ego 1.03K 27.8K 93.24 91.03 576
dblp-dyn [27] co-authors 1.23K  4.6K 82.02 83.56 43
fb-pages [60, 94] page-page 22.5K 342K 91.69 92.31 4
github [60, 94] developer  37.7K 578K 85.48 84.41 1
dblp [90] co-authors 41.3K 420K 82.54 85.62 29
pokec [60, 103] social 1.6M 30.6M 66.10 67.72 280

ground-truth neighborhood and her k,,-nearest neighbors in the ground network. For each
user, we measure the Root Mean Squared Error RMSE (v, Bw) = d~'/2||ay, — By for
each node w € C UU. Then, we take a degree weighted average, where the weight of
each node is (1 + |[N*(w)|)/(|E| + |C U U|), and measure the distance from 100%. This
degree-weighted average puts emphasis on the nodes by order of “prestige” in the network
G. We call this quantity the Homophilic Index (HI) of G. Intuitively, the HI measures
how much the aforementioned two neighborhoods look similar in the feature space. We
report the HI for the studied datasets in Table 7.1.

7.1.1 Model Inference through Variational Expectation-Maximization

For the inference problem we are interested in determining the parameters the periph-

eral nodes in the NNIM model, namely the probability vectors {E&t)}ize%

vectors {Xit)}zze% given the initial state of the cores’ interests. We start by forming the

optimization objective (log-likelihood) at each step ¢. Initially, according to our setting we

of the feature

assume that we know the initial values of the peripheral user interests as the samples with
probabilities equal to the sample average of the influencers of the core she is following, as
delineated in the procedure INITIALIZE_INFER Of Algorithm 1. In reference [12], Bindel
et al. view the opinion formation problem for the FJ model under a game-theoretical
viewpoint where each agent suffers a quadratic convex cost for not reaching consensus at
a given time t. Similarly, in our case at each time ¢ is the (instantaneous) log-likelihood
that better explains the distribution of the agents parametrized by & (t+1) ig needed to be

maximized, given the previous state of the agents X, that is

Lét+1) (£(t+1)> — log Z Pr [X(t)‘g(tﬂ)} (7.1)
xX@)
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We observe the initial opinions X (9 of the network and then the opinion vectors are
latent, thus inference requires summation over exponentially many events. The opinion
vectors are assumed to have the Markov property, namely the opinions at a given time
are affected only by the previous step. Observe that the stochastic nature of the model
(t+1)

imposes intractability on the likelihood functions Eg since it requires a summation over
the exponentially-many latent variables X (!) which have binary outcomes. For simplicity,
we assume that the interest distribution is approximated by a wariational distribution

QW that makes the latent variables {X®};>; independent, and approaches the actual
()

t Xi(zi) t 1-X5
parameters {€®};>1 having a form of Q) = [L.co H?Zl (qbfu)) (1 - qbl(u)) where
¢q(f ) are the variational parameters that are the “empirical counterparts” of the actual

parameters Sq(f)l. Using Jensen’s Inequality on the likelihood function E(tH) that is
L'étH) > Eqo log Pr (X ‘f t+1)] 1]+ Eqw [—log Q(X® )], we obtain two terms, the first
of which (Evidence Lower Bound/ELBO) we maximize, since the second term (Entropy) is
positive. Maximizing the ELBO ﬁ(tH) Eq [log Pr[Xx () |§(t+1)]] is a tractable problem
[47, 54] and can be used as a proxy for approximating the actual interest distribution.

Now, the ELBO can be expressed as

LED — R [Z S Y 1{vex} (X log €Y+ (1 x0) tog (1 - £4Y) )]

=1 uelU velU

Computing the expectation over the stochastic set K (u) of the k-nearest neighbors
exactly still poses computational barriers. However, the aforementioned expectation can
be estimated by observing that choosing the k-nearest neighbor random vectors can be
approximated a.a.s. by choosing the k-nearest neighbors with respect to their parameter
vectors. To found our claim, we first prove the following helper lemma about the behaviour
of the distance between two random Bernoulli vectors with respect to an L-Lipschitz Norm.

We state the following Lemma using Talagrand’s Inequality (see Appendix A)

Lemma 3. Let || - || : [0,1] — Ry be a L-Lipschitz and convex norm. Let X =
(X1,...X4) ~ Be(p) and' Y = (Y1,...,Yy) ~ Be(q) be two random vectors such that

the components of X and Y are independent with respect to each other. Then for every

n € (o, +00)

Pr{llp—qll = |X = Y| > 1] < e1exp(—ca(n —m0)?/L?) (7.2)

for some constants c1,co and ng =E[||Z||]] — [|[E [Z] || > 0 where Z = X - Y.

Proof. The proof is derived easily from Talagrand’s Inequality and the triangle inequality.
Let Z = X — Y be the difference of the random vectors with expected value r = E [Z] =
p — q. Since || - || is L-Lipschitz and || Z || < 1, Talagrand’s Inequality we obtain

IThis approach is also known as mean field approzimation [13, 50, 101].
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Pr(||Z]| —E[|IZ|l} | = n] < e1exp(—can?/L?) (7.3)

for every n > 0 and some constants ¢, cs > 0. By triangle inequality

el =2l <o+ [IlZ] = E{lZ]]]| (7.4)

where 19 = E[||Z||]] — ||7]| > 0 (due to convexity). Let n € (1o, 00) and the events
A={we Q[ ZWI =l =nil and B ={w e Q| [[Z(w)| - E[|Z]|]| =1 —m}. By
Eq. 7.4 we obtain that A C B = Pr[A] < Pr[B]. Invoking Eq. 7.3 for t =n—mn9 > 0

we obtain

Pr[A] < Pr[B] < ¢1 exp(—ca(n —1m0)?/L?) (7.5)
OJ

We now specialize the result for the Hamming Norm. The Hamming Norm is 2v/d-
Lipschitz (in [0, 1]%) with respect to the Eucledian Norm and convex as well. The previous

Lemma specializes to the following Corollary

Corollary 2. Let X,Y be two random Bernoulli vectors that satisfy the hypotheses of

Lemma 8 with respect to the Hamming Norm. Then for every ¢ > 0 the following is true

e2d
Prl|X — Y[ ~E[|X — Y[]| > (1 +)d/2 < 2exp (2) (7.6)

Proof. Our proof is based on Lemma 3 and McDiarmid’s Inequality. From Lemma 3 the

quantity 19 wrt. to the Hamming Norm can be given as

d d

m=> pi(l—aq)+al—p) =Y (0i— ) (7.7)

i=1 i=1
The extremum is found at p; = ¢; = 1/2 and therefore 1y < d/2 = O(d). Hence the

bound is simplified as

Prl[| X — Y| - E[|X — Y]] 2 1] < c1exp(—c2(n — d/2)*/(4d)) (7.8)

Now, via McDiarmid’s Inequality [30] one can determine the constants. More specifi-

cally, for the Hamming Norm, the above equality specializes to

_ d)?
Pr|X — Y| —E[|X — Y]] > n] < 2exp (—2(”2)> (7.9)

It is easy to observe that, in order to keep the error probability less than ¢ one should

choose

2n

d< TT1oe@/0) (7.10)
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Moreover, setting n = (1 4 €)d/2 since n € (19, 00) one can get

e2d
Pr||X — Y| —E[|X — Y[} > (1 +)d/2) < 2exp (—2) (7.11)

Setting d — oo we observe that exp(—e?d/2) — 0. In the same way, to keep the error
less than or equal to §, one must set
log(2/6
d=Q <Og<2/>) (7.12)
€

O]

Using Corollary 2, we are able to state that the k-nearest neighbor set of a user wrt. to
the stochastic vectors is near to the k-nearest neighbor set wrt. to their expected values,

for appropriate choices of k.

Theorem 5. Let U be a collection of n Bernoulli d-dimensional vectors that are pairwise
independent, and k < C(4n exp(—de?) + logn) neighbors for C > 1 and € > 0. If K(u) is
the set of stochastic k-nearest neighbors of w € U with respect to the Hamming Norm and
K (u) is the set of k-nearest neighbors of u € U with respect to their parameters measured
in the (squared) Euclidean Norm, then the probability that the two sets contain the same
elements is 1 — O(1/n).

Proof. We are given n independent Bernoulli Variables in d-dimensions, X7, ..., X, dis-
tributed with parameter vectors ¢1,...,¢,. We fix X7 and construct the random set X
of the k-Nearest Neighbors of X; with respect to a total ordering relation <. We also
construct the set K which contains the k-Nearest Neighbors of ¢ as expectations. Our
aim is to provide an exponential bound on the error probability of the symmetric difference
Ke K= (K\K)U(K\K), namely on P, = Pr; [|[K & K| > 1], in order to state that
K =~ K with probability tending to 1.

We first compute a Chernoff bound for the probability p that the k-th neighbor v is
mistaken for an adversary v € K given that the k — 1 neighbors are correctly included in

both K and K. In order for this to happen the following two inequalities must hold

X1 — X < | X1 — X, (7.13)
1 — @l < ll1 — ol (7.14)

Adding both inequalities we get that

P<Prl[| Xy — Xo| = [I¢1 — @l < | X1 — X7 — [ld1 — ¢, ]
<Pr(|| X1 = Xo|l = lI¢1 — @ulll <7 < (| X1 — X[l = |1 — @y Il < 7]
=Pr[|[| X1 = Xo| = |1 = @oll| < 0] Prln < | X1 = X{[| = [[1 — @[ <] (7.15)
<Pr{[| Xy = Xo| = llé1 — ¢olll < ] Pr[[[| Xy — X[l = [[f1 — &y |l < 7]

<dexp(—€*d) = py
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Now, the probability of having 1 < ¢ < k neighbors mistaken is

PmneKw-as(";k)ﬁs(”;“3%—«n—Mm%(®e—(”‘j*m)gwa&

Letting

<k<C (4nexp (—edz) + logn) (7.17)

We have that

1
PrHIC@K|:€]§n—C—>Oasn—>oo (7.18)

By a union bound the total error probability

k
k _ logn
P.=Pr[KoK|>1]<D Pr[KoK|=/{<— <C(4n'"Cexp(—€’d
HICE K| 2 11 S2Prce K] =)< o <0 (an'Cexp(=ctd) + 58
(7.19)
Clearly for C' > 1 we have that lim, . P, = 0.
O

Therefore, via selecting an appropriate value of k we have that the set K (u) ap-
proaches its “expected” set K () (u) in the parameter space, where the distances are consid-
ered between the parameter vectors of the users, and the variational parameters approach
the actual parameters due to Hoeffding’s Inequality [98] since Prgq |:|£1(1? - ¢£3| > e} <
2 exp(—2ke?). Under the above result, the ELBO is almost surely approximated as

d
LSRN N o 0gel 4 (1- 0l ) 1og (1- 01| (7.20)
The optimal solution to the concave optimization problem of Eq. (7.20) is [98, p. 295]

AR S (7.21)

veK® (u)
This system of equations rise by observing the instantaneous likelihood at each time
t.2. Moreover, in order to make our model more “stubborn” to the initial opinions of the
agents we can impose regularization functions w(t) such that the negative cross-entropy

between the current opinions and the initial opinions is maximized, that is

2Similar results, modulo an additive logit term can be deduced if one attempts to maximize the complete
likelihood across all steps. Our approach can be viewed as Pseudo EM on the complete likelihood [42,
97, 70] which sequentially maximizes the likelihood function of samples with observed and missing data
via iteratively replacing the missing data with their expected values and maximizing the known likelihood

given the completed data.
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Z Zd: [ P logd) ( ¢£2)) log (1 - ¢£Z)>} (7.22)
cU i=1

where « is the regularization parameter. Intuitively, we introduce one more sample
to our model that is modeled by the initial conditions. Differentiating the likelihood we

arrive at the recurrence relation

1 o
¢$t+1) _ Z qbff) + 7¢£0) (7.23)
k+a veK® () k+a

This equation is similar to the opinion dynamics model where each agent is “stubborn”
— namely stuck to her initial opinion — with a weight a as an input, such as in the
Friedkin-Johnsen (FJ) Model [38]. While, the system of Eq. 7.21 is shown to converge in

this paper, convergence is not guaranteed for Eq. 7.23.

Additionally, it can be proven that the ELBO improves at each iteration given the
optimal update rule of (7.21). We give the following result for the improvement of the
Evidence Lower Bound (ELBO) at each timestep given the optimal update rule.

Theorem 6. Let .Cz?(tgrl) be the optimal Evidence Lower Bound at time t + 1 defined as

e _ Z SO (6010l + (1 6) tog (1- 6] (7.24)

=1 uelU 'UEK(t)(u)

where qﬁ(tﬂ) = kZUGK(t) ¢ for all i € [d]. Then, at each iteration the bound
improves that is L’ (Hl) > ,C t) for all t > 0.

Proof. Define the helper functions f(z,y) = zlogy + (1 — x)log(l — y), and g(z,y) =
—f(z,y)— f(y,x). The (concave) function f is known as the Negative Entropy of Bernoulli
variables [98] and the (convex) function ¢ is known as the Variation of Information Metric
[5]. We have that
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AR 55 SED SV IR SR

uelU i=1 veK(t)( weK(t)(u)

TS L S p(le)

wel =1 yweK® (u)

YL Y ()

wel i=1 =" 4 we K™ (u)

—*ZZ s 52 g (ol ol
uel i vEK ) (u)

iyy > o (ol

)
wel i=1 pe k™ () U (u

z—fZZ z g((bsﬁ”,cﬁﬁi)

uel i=1 ye K (t-1)

o

\Y

(7.25)
)

AV

Where the last inequality holds from the fact that the total distance between agents
decreases as time passes and that ¢ is a metric (similarly to the proof of Theorem 12).
O

Ending, we define the “macroscopic” distribution which is parametrized by {p®};>1
and has a Bernoulli density over the interests, with parameter vectors defined as p® =
1 =D el E&t) and displays how the agents behave with respect to trends in general, namely if
they adopt (or not) an interest as a whole. Given the calculated parameters ¢+ we can
determine the parameters p*t1) using the same variational approach. More specifically,

the expected log-likelihood Eg) of the macroscopic pammeters 1Y) under the variational
distribution @ is given as E() = > uer Zl 1 ( i log u( ) + ( — qﬁ(t)) log( — (t)))

Invoking the expected value according to the variational parameters and setting 8E(Q u / 8,u(t)
0forall 1 <i<dand1l<t<T. Analogously to (7.21), we obtain the update rule

1
® _ (® 2
=3 @l (7.26)

uelU

Relation to EM. We refer to the above equations as the mean field equations since
the variational parameters are “approximated” with exactly the same model, but now
the process does not involve randomness. From an EM perspective, we can view our
algorithm as having two discrete steps: In the E-step we compute the k nearest neighbors
of each agent whereas in the M-step we update the variational parameters by averaging

and then compute the “macroscopic distribution” by averaging on the new variational
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parameters per dimension. The form of (7.21) is very familiar to the classical opinion

dynamics equations, like the HK model.

7.1.2 Model Convergence and Convergence Rate

We prove that NNIM converges? in finite time and that the convergence rate in total

4

variation distance® is strictly dominated by an exponential with base of 1/ Vk. We start

by proving the following Lemma about the convergence rate

Lemma 4. The total variation distance dry(t) of the 1D NNIM model decreases as
o(k:_t/g) a.a.s. forn — oo and any k € N. More specifically, if we fix some small
5 €1[0,1], and n = Q (671/7) agents where T = [(vVk — 1+ 1)/2] — 1 then with probability
of at least 1 — § the total variation distance dpy (t) decreases as o(k=t?).

Proof. Let Aa(A(t')) represent the second largest eigenvalues of the stochastic matrices
A(t') and let A5 = maxg<y<;—1 A2(A(t")). Then by the Perron-Frobenius Theorem the
convergence rate will be dominated by the second largest eigenvalue of the “slowest”

matrix, i.e.

12" — @(t)[lTv = O ((A3)") (7.27)

We define the matrix sequence { B(t') }o<t<¢—1 such that B(t') = kA(t'). Let xpu)(\)
represent the characteristic polynomial of B(t') and x A()(A) be the characteristic polyno-
mial of A(#') then it is straightforward to show that x 4(»)(\) = 1/k"x ) (\/k). There-
fore the eigenvalues of A(t') are connected with the eigenvalues of B(t’) with the relation
AMA()) = $A(B(')). The matrices {B(t')}o<y<i—1 represent the adjacency matrices of
k-regular graphs. Hence our problem resides in determining an upper bound on the second
largest eigenvalue of a k-regular graph G(t'). This is a well known problem in Spectral
Graph Theory once conjectured by Alon [?] and recently proved by Friedman in reference
[39]. Alon-Friedman’s Theorem states that for any 0 <# <t —1

PrA(B(t) <2Vk—1+¢]>1-0(n"") (7.28)
for some fixed ¢ > 0 and 7 = [(v/k — 1+ 1)/2] — 1. Since the eigenvalues of B(t') are

k times larger than the eigenvalues of A(t')
Prha(A(t) € o(k™Y?)] >1—-0(n™T) (7.29)

Hence

3All our proofs regarding convergence assume that the model has d = 1 dimension (unless otherwise
stated), and the coordinate indices are discarded for ease of notation. The results can be extended to d
dimensions defining the appropriate structures (convex hull) to showcase cluster isolation phenomena as

described below.
4The total variation distance between two measures j, v defined on a countable set Q and a o-algebra

F of the subsets of 2 is given as ||u — v|l7v = sup4c 7 |1(A) — v(A)| = 3{|p — V1.
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Pr[|A3| € o(k™Y?)] >1-0(n™") (7.30)

And for the error probability for dpy (t)

Prldry(t) € Q™3] <On™T) <6 (7.31)

choosing n = Q) (67%> we have that with probability of at least 1 — ¢

Prldry () € o(k™1?)] > 1 -6 (7.32)
O

To prove the finite time convergence we rely in Lyapunov Stability Theory (see Chap-
ter 5). Intuitively, our goal is to define a potential function which is strictly decreasing
away from the equilibrium point (consensus point) of the network and that the agents form
clusters which after a certain (finite) step, do not interact and hence convergence occurs
in finite time. We first start by stating that the ordering of the agents is preserved (in
1D) throughout the process. More specifically, we define the set K (t)(u) of the k nearest
neighbors of u. In case of ties, these ties are broken arbitrarily. However, as we prove
below, the relative ordering of vertices persists from one round to the next, even if ties are

broken arbitrarily

Lemma 5 (Persistence of Relative Ordering). If for two agents u and v at time ty the
relation ¢q(f0) < ngS,tO) holds, then qSl(f) < gbg,t) for all t > ty under arbitrary breaking of ties.

Proof. Order the elements of K(0)(u) and K (v) by their distance from 0. We pick the
lefmost element w € K (o) (u) which is related to the leftmost element z € K ) (v) by the
definition of K (to)(u) as ¢£5°) < qu*’). We remove the two points and repeat. We finally
sum the resulting inequalities to get the result for ¢t = tg + 1. The case for every t > tg

follows inductively from the previous result. O

However, an arbitrary tie-breaking mechanism, does not guarantee that our algorithm
will converge. Hence, we need to devise a systematic ordering under which we resolve
ties which we will use to prove that our algorithm converges. Below we give such a total
ordering relation.

We define the following total ordering on the vertices. We firstly enumerate the vertices
with ids vy, ..., v, according to their distance from 0 and then define for each v; the total
ordering <;; such that, for t > 1

v <ieve == (6 = ¢Vl < 62 — ¢V or (2 — ¢Vl = 62 — ¢ and j < 1)
(7.33)
Indeed, <;; is a total ordering relation and it is straightforward to show that it satisfies

the connexity, antisymmetry and transitivity properties. The sets K *) (u) of the k nearest
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neighbors are defined with respect to the <;; total ordering relation and therefore ties
are eliminated. We also define the set o (u) = {U eU | (;Sq()t) = ,(,t)}. The next theorem

follows as a special case of Lemma 5

Lemma 6. If for two agents u and v at time ty the relation gi)z(fo) < d)z(,to) holds, then
S) < <]51(,t) for all t > tg under the total ordering relation <;

Proof. The proof is the same as Theorem 5 however now the ties are not broken arbitrarily.

Again the leftmost k-th nearest neighbor of w is at most the leftmost k-th neighbor of v. [

However note that v; <;; v¢ #= v; <41 ve. Moreover, we observe that when
two agents “fuse” together at time tg, they remain fused for all ¢ > tg. Equivalently
t) <ty <= o) (u) C o) (u) for all u € U.

Lemma 7 (Termination Condition in 1D). The NNIM algorithm converges at time T €
NU {oo} if and only if |00 (u)| > k for every u € U.

Proof. ( <= ) This direction is trivial. Let |o(T)(u)| > k for all u € U. Then ¢ (u) D
K™ (u) for all uw € U. The result follows by applying the update rule and the definition
of (™) (u).

( = ) Suppose that the NNIM algorithm converges. Equivalently for every ¢ > T and
for every w € U we have ¢§5) = gbq(uT). We will reside in the case that ¢ =T + 1 since the
rest follows by induction. Suppose that there exists some u € U such that |o(7)(u)| < k.
Then the set K (u)\ o) (u) is non-empty. So

sl D D RS DR
K veK (D) (u)no(T) (u) weK D) (u)\o(D) (u)
k=KD @)\ oD ()] ), 1 T
_ T
k weK D) (u)\a(T) (u)
Cony |K(T) () \U(T) (U)|¢(T) _ 1 ¢(T)
k weK (T (u)\o(T) (u)
1
— ¢gT) = (b'E;T)

RO (T)
|K (u) \ o (u)‘ weK @ (u)\o (D (u)

which yields a contradiction since there are no constraints on the values of gbq(,T) which

impose such a relation. Therefore, for every w € U the set o) (w) contains at least k

elements.
O
We also define the distance of two sets W, Z C U as the quantity
oy = min o — o] (7.34)

weW,zeZ

We directly infer the following properties (which are straighforward to prove)
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1. 60, >0forall W,Z CU
2. 60, =0 forall W C U
3. 6%, =6, forall W,Z C U

4.6 <6 460 for all v,W,Z CU

Therefore 51(;/)2 is a metric. Moreover we define that two (non-overlapping) intervals
split if and only if the k-nearest neighbor of each of the closest points are less than 51(;/) 7

for some t > 0.
Lemma 8. If two non-overlapping intervals split at to then they remain split for all t > ty.

Proof. Let W,Z C U be two non-overlapping clusters that have split at to. Let w, 2
be the closest points of W, Z. Without loss of generality let qbgo) < qbgo). Then for all
u € K (w) we have that ¢£f0) < qbgo). By summing up we get ¢g0+1) < (;Sgo). Similarly
(Z5£:,t0) < d)(;OH). Therefore the minimum distance increases. Hence the sets remain split at

to + 1. Inductively the sets remain split for all ¢ > ¢, ]

We define the splitting time of W and Z as the minimum %y that the split occurs. We
also define that a subset of (consecutive) agents W C U of cardinality at least k is said
to be isolated if and only if there exists some ¢y > 0 such that it splits from the left set
(W) = {v e U\ W|¢ < infuew 6%} and the right set r(W) = {v € U\ W|p(®) >
SUP, e ¢§50’}. Now we are ready to state the finite-time-convergence result. To start

with, we write the system in vector format

D(t+1) = A(t)D(t) (7.35)

Where ®(t) is the column vector with elements ¢, (¢) and A(t) is the stochastic matrix
defined as

A(t) = 4" v KO W) (7.36)
- z v e KO (u)

We now make use of the following Theorem from [107]
Lemma 9. Let {A(t)}; be a sequence of stochastic matrices such that there exists some y €

(0,1] such that Ayyu(t) >~ for alli € [n] and some scalar o € (0, 1] such that for every set
S C [n] and its complement S = S\ [n] there holds Y ueswes Auw(t) = ad cs e Aun(l)-

T
Then the dynamics ®(t + 1) = A(t)®(t) has adjoint dynamics I(t) = <771 (t) ...wn(t))
such that I (t + 1) = T (t) A(t) with 7, (t) > p for all u and some 1 > p > 0.

We can now use the aforementioned Theorem on the NNIM model to prove the fol-

lowing
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Lemma 10. The NNIM dynamics admit adjoint dynamics of the form provided by The-

orem 9.

Proof. Invoking the aforementioned theorem for v = 1/k and o = 1/n since

1. Auu(t) =

=

2. For every element of A(t) the following holds
L ® L ®
Aup(t) = El{v e KW(u)} > %1{11 € KW(v)} = adyu(t) (7.37)

Let S C U and S = U \ S. Summing the above equation we arrive at

Z Auv(t)za Z Avu(t) (7'38)

ueS,wes ueSwes

Therefore, by Lemma 9 the NNIM model admits an adjoint sequence.
O

In order to prove that our system converges in finite time 7', we will reside in Lyapunov
theory. More specifically, we first prove that the system has a globally asymptotically

stable point limy_, o, ®(t) = ®*. For this we provide the following Lemma

Lemma 11 (Global Asymptotic Stability). The NNIM model is globally asymptotically
stable.

Proof. By Lemma 9, we assert the existence of the adjoint dynamics. We then define the

Lyapunov function

V()= mu(t)lldu(t) — T (1) (1)][3 (7.39)
i=1
Our approach will follow the methodology presented in [107] and [81]. Note that

V(t) > 0 for all t > 0. Letting H(t) = AT (t)diag(m,(t + 1))A(t) and doing the matrix

operations expressing V' (t) as a quadratic form the function V' (¢) can be written as
V) = Vit +1) + 5 3 Huld)(60) — 60)? (7.40)
since HT(t) = H(t). The elements of H(t) are
Hyy(t) = % > mult+ D1{u € KDw}i{v e KW (w)} (7.41)

Combining everything we arrive at

V) =V - g Somli+1) Y (0 - o) <V(t) (742)

u,weK®) (w)
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Hence the function V(t) is decreasing globally in [0, 1]%. Hence there exists some point
®* such that lim;_,o ®(t) = P*.
O

Another point for proving that our algorithm is indeed practical is to prove that
convergence occurs in finite time. Until now we have assumed that the finish time
Ty = inf{t > 0 | ®(t +1) = ®(¢)} may also be infinite. More specifically, we prove
the following.

Lemma 12. The NNIM Model converges in finite time.

Proof. Eliminating recurrence via observing that the sum telescopes, we arrive at

T
VO =V(0) - o St Y (6 - o) (7.43)

=0 w u,weK ®) (w)

Using the definition for o) (w) we can rewrite the above as

T
VO =VO) - g XSmO P -l (144)

t=0 w u,we K ) (w)\o®) (w)

Since V(t) > 0 for every T, the negative difference term should vanish as T — oc.
More specifically

T
. 1 t N2 _
t=0 w u,we K ®) (w)\o® (w)

Note that m,(t + 1) > p for some p € (0,1) by the definition of the adjoint dynamics
and k > 0, hence we have a sum of squares with positive coefficients vanishing as T' — oc.
In order for this to happen, every individual term of the sum must go to 0. Therefore, for

every w € U, by the squeeze theorem

i (T) _ 4(T)y2 —
Jim > (6 — )2 =0 (7.46)
u,weK (T (w)\o (1) (w)

Again by the same argument for all u,v € limy_,o KT (w) for all w € U
lim ({7 — ¢{") =0 (7.47)
T—o00
By the definition of NNIM the update process is continuous hence
lim ¢ = lim ¢{" (7.48)
T—o00 T—o0

as well as by the monotonicity of V' (¢) we know that there exists some ¢, € [0, 1] such
that



92

@ — lim @) — &
Jim o) = 1im o{7) = ¢, (7.49)

Hence limp_,o ¢1(LT) = ¢y, for all u € limyp_,oo K (T) (w). Therefore for every €, > 0
there exists some Ty, > 0 such that for all ¢t > T,

o) — % | < e Vue KO(w) (7.50)

Now we will prove finite time convergence via choosing the correct values for the €’s.
By Lemma 13 we know that if there exists a unique limiting point then it must be
exactly approached in finite time. Suppose that there are r > 2 distinct limiting points
0<¢] <5 <---< ¢y <1. Now, fix e > 0. We know that for every w € U and ¢, = €
there exists some finite T, > 0 at which w reaches its limiting point within a distance of
e. Hence the maximum distance between two elements of K® (w) for t > T, is at most
2¢, by the triangle inequality, and the same applies for every pair of points that approach
this limit. Let Wy,..., W, C U be the subsets of U that approach their corresponding
limits. From Theorem 5 these sets must contain consecutive agents. In order for finite
convergence to occur we must impose a value of € which splits the sets from each other.
In this way, as we proved in Theorems 13 and 8, we will attain a finite convergence time.
First of all, let 77 = maxi<m<, MaxXyew,, T < 0o and let D = min; 51(/51)%' A
splitting will occur when the maximum distance between two points reaching the same
limit, namely 2¢ is less than the minimum distance D, hence 2¢ < D. A good choice for €
will be the one which satisfies 2¢ + D < mini<;<,-1{¢j,; — #; }. Therefore, by these two
conditions choosing 0 < € < iminlgigr_l{qbfﬂ — ¢r} isolates the sets Wy,..., W, hence
by Lemma 13 there exist 71,...,7, < oo at which each W; reaches its limit point. Now
choose T'=T' + maxi<;<, T; + 1 < 0o and the proof is complete.
O

Determining a rigorous upper bound for the finishing time T'(n, k) can be obtained
via a recursive (divide-and-conquer) proof of the above theorem. More specifically, when
a cluster W; becomes isolated then the sets {(W;) = ;. W; and r(W;) = U;-, W; are
also isolated by the metric properties of the minimum distance. The isolated cluster has
at least k points and the rest has n — k points. Let ny, = [[(W;)|,nr = |r(W;)| such that
nr +nr < n — k and assume that the difference between successive splits is O(7). So,
solving the problem for n agents is at most the running time for solving the problem with
nr, + ngr agents, since the solution treats the two sets as completely independent and does

not need to recurse on each of the two sets. Therefore

T(n, k) < T(ng +ng, k) + O(7) < T(n — k, k) + O(7) (7.51)

If & = O(1) then convergence occurs in O(n7/k) steps and if & = (1 — ¢)n then

convergence occurs in O(7log, /.(n)) steps.
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Lemma 13. Suppose that the NNIM approaches (asymptotically) to a unique point ¢*,
namely limy_,oo ®(t) = ¢*1. Then this point must be reached in finite time, i.e. there
exists some (finite) 0 < T < oo such that ¢(T) = ¢*1.

Proof. At least one of the leftmost point or the rightmost point must have (in order for
the one limit point to exist) a neighbor with different coordinate, to their right or to their
left respectively. Since the points have continuous positions with preserved ordering there
exists some finite time 0 < T < oo at which they reach the same point ¢*.

O

Combining the above Lemmata we can state our main result for the NNIM model. Our
proofs can extend to the multidimensional case by observing the convex-hulls of sets of
agents for the isolation behaviour (instead of looking at the ordering as in 1D) and defining

the same Lyapunov function, which now decomposes to each individual dimension.

Theorem 7. The system of (7.21) converges in finite time under any consistent total
ordering. Moreover, it suffices to perform T = [2log(1/D)/logk] iterations such that the
total variation distance between the current state and the consensus state is strictly less
than d - D.

Proof. We combine the finite time convergence result of Lemma 12 and the convergence
rate of Lemma 4 to obtain a convergence rate of o(k~*/?) a.a.s. for very large n. Moreover
doing at least T'= [2log(1/D)/log k| iterations guarantees a total variation distance (in
1D) strictly of at most D. In the case of the d-dimensional model the guarantee translates
to a total variation distance of d - D.

O

7.1.3 Complexity and Implementation

Table 7.2 gives an overview of the complexities for the various common data structures
used for this problem, such as KD trees, Ball trees, Locality Sensitive Hashing (LSH), Dy-
namic Continuous Indexing (DCI) and Prioritized DCI (PDCI)®. Our implementation is
developed in Python using Numpy, Sklearn, NetworkX and Annoy (for LSH) and exper-
iments have been run on a Colaboratory Notebook. Figure 7.1 shows how NNIM scales
with respect to the number of agents. The log-log plot for the specified hyperparameters
(k = [logn], D = 0.001 and d € {10,100} dimensions) scales as n'-%6%0-03; almost linearly.

7.2 Generalization Example: Multivariate (Gaussian Opin-

ions

The same approach that has been followed throughout the Thesis can be deduced if

the agent’s opinions follow Gaussian opinions. More precisely, as an introductory example

5We redirect the interested reader to Chapter 6 for more material.
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Scaling of the NNIM Model
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Figure 7.1: Log-log plot of the total time taken to perform inference to a network of up to
1M agents and d € {10,100} with binary equiprobable artificial features, D = 0.001 and
k = [logn]. using LSH to obtain the nearest neighbors.

we will consider the case where the mean of each opinion vector is unknown and the
(t+1)
u

covariance matrix is known and equal to X. After computing the parameters &
% ZUEIC(t)(u) Xq()t) — i.e. using the conventional Maximum Likelihood update rule — each

agent draws an opinion from N ( &Hl), E). Again — using the same procedure — one

arrives at the objective function

£4™ =Bqu | ¥ % Uve KO |~ log ((n)5l) - 5 (x00 - €0+0) =71 (x10 - gfr)

uelU vEIC(t) (u)

Using a similar bound for the concentration of the normal variable norm [98] and
performing the algebraic operations as in the previous Section we arrive at the same
result for the variational means q’)q(f) as in the Bernoulli case. Again the mean of opinions

pt) = %Zu v &(f) can be calculated as the mean of the variational parameters and the

covariance matrix S(*) = 1 ZueU(ES) — 1) (&P — p®)T can be calculated as

S — % > (o) - ) (00 - u(t)>T (7.52)

uelU

7.3 Experiments

7.3.1 Datasets

We use the following datasets for evaluating our method on
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Table 7.2: Complexity of nnim with under various data structures (Brute-force, KD-tree,
Metric Ball, LSH) for running the nnim model such that the total variation distance is
at most d - D after execution. State-of-the-art is DCI and Prioritized DCI [63, 64]. The
quantity d' is the intrinsic dimension [64, p.1]. The number m is the number of projection
directions used in the DCI.

Data structure Complexity Notes

Brute-force O (nd(n + k) log(1/D)log ™" k) Efficient for very small n
KD/Ball tree [10, 85] O (nd(n'~Y/4 + k)log(1/D)log™" k) Efficient for d < logn
LSH [41] O (n'+tY/(+9% 4k log(1/D) log ™" k:) (1 + €)-approximation
DCI/PDCI [63, 64] O (mn log (%) + (%)2_%) %&/D)) Efficient for large n and d’

facebook [60, 62]. Contains an ego-network of user 107 in the Facebook network.
Friendships in Facebook are undirected. To avoid the obvious domination by the ego node,
we have removed the outcoming links of the ego node and kept the incoming links.

dblp-dyn [27]. Vertices of the graph are authors and an edge exists between them if
the corresponding authors have written a paper together in a given period of time. Only
authors who had at least 10 publications (in a selected set of 43 conferences/journals)
from 1990 to 2010 are considered. There are in total 2,723 authors. Each vertex at each
time is associated to a set of 43 attributes corresponding to the number of publications
in each conference/journal during the related period. We have chosen to keep the period
between 1994 and 1998.

facebook-pages [60, 94]. A page-page graph of verified Facebook pages, with nodes
representing pages and links are mutual likes between them. The pages belong to four
categories defined by facebook (oliticians, governmental organizations, television shows,
companies).

github [60, 94]. Social network of GitHub developers as of June 2019 who have
starred at least 10 repositories and edges are mutual follower relations between them. All
users in this dataset have one label, whether the user is a web or a machine learning
developer.

dblp [90]. This data set depicts a co-authorship graph built from the DBLP digital
library. Each vertex represents an author who published at least one paper in one of the
major conferences and journals of the Data Mining and Database communities between
January 1990 and February 2011. Each edge links two authors who co-authored at least
one paper (no matter the conference or journal). The labels are the number of publications
in each of the 29 selected conferences or journals.

pokec [60, 103]. Pokec is a popular Slovakian social network, still active, despite the
existence of considerably larger social networks, such as Facebook, containing 1.6 million

users. Datasets contains anonymized data of the whole network. We extracted the labels
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Figure 7.2: Left: Engagement Threshold Effect. Right: Coverage curve for the BGMC
policy for 7 = 4.

of Pokec manually using the information provided by the user profiles. More specifically,
we kept the hobbies column and kept the 280 most common hobbies. We also removed
the nodes that have not disclosed their profile information and connections and had their

public attribute equal to 0.

7.3.2 Influencer Identification

We need a systematic way to identify the core set C' of influencers of the OSN. Our
problem is similar to the Maxzimum Coverage (MC) problem in combinatorial optimization,
since we set a target amount and attempt to maximize the covered users with the number of
influencers in question, which is NP-Hard [83, 34], and the greedy algorithm which proceeds
in rounds and chooses the node with the maximum number of uncovered neighbors yields
an optimal approximation ratio of 1 —1/e. Running the greedy algorithm ad-hoc has a very
high computational cost as the number of nodes increases. For this reason, we reside on a
fork of the original algorithm which we call Bucketed Greedy Bucketed MC (BGMC). In
the BGMC setting, we have an upper bound K of nodes we want to use in our coverage. We
sort the nodes according to their in-degree and put them into log(n/K)/log v non-uniform
buckets Vi,...,V,,... of sizes [YK],...,[7" K| —[y""'K],..., for some v > 1. We then
start by constraining the neighborhoods of vertices to Vi and run the greedy maximum
coverage algorithm on it. If we either cover all the nodes or exshaust the K choices we
return. Otherwise, we continue the same using the set V5, and so on, via removing the
already covered nodes at each iteration. Although it is evident that the BGMC algorithm
does not in general yield a solution set that equals the conventional greedy solution and
has a strictly lesser approximation ratio, the algorithm yields remarkably good results
when run on OSN. More specifically, for a threshold value 7 = 4, a population of n®7
influencers dominate about 74.01 + 14.91% of the networks in question (see Table 7.3)
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7.3.3 Further Processing

To avoid dealing with high dimensionality prior to running the INFERENCE_NNIM proce-
dure, we perform dimensionality reduction (PCA) keeping a 95% of the explained variance.
After running the algorithm, we invert the transformation and clip the variables that fall
outside [0, 1].

7.3.4 Experimental Setting

To test the performance of NNIM, we reside in the multilabel classification task, where
given a partially binary-labeled graph, we aim to predict the missing labels. We perform a
same-input-same-output comparison, where our input consists of the bipartite influencer-
user graph and the influencer labels and the desired output are the scores to be predicted.
More specifically, for each node uw and each label 1 < ¢ < d we attribute a score in
¢iu € [0,1] that represents the probability that the user adopts that label (interest). We
gather the influencers of the network using the BGMC heuristic and keep the bipartite
graph between the influencers and the rest of the network. We use a thresholding value
of 7 = 4 and an exponent of p = 0.7 as shown in Figure 7.2. We run experiments with
k € {[+v/n],[logn]} neighbors, with and without Regularization (where we use the ini-
tial state as weighted extra opinion). In our experiments we have used LSH to infer the
k nearest neighbors. Firstly, we compare our method with the Random HK model de-
scribed in [36] which is the model that most closely resembles our work. Instead of looking
at the k-nearest neighbors, Random HK picks a random subset of k neighbors within a
radius € of the user. Secondly, we train node2vec [43], GraphWave [29] and NodeSketch
[111] embeddings on the same graph and then fit a multilabel logistic regression model.
This kind of benchmark is almost standard, as we discuss in the Related Work Section,
in graph mining. We chose node2vec as a classical random-walk-based approach, Graph-
Wave as a transformation-based approach, and NodeSketch which is a new method based
on recursive sketching. We report the AUC-ROC [32] between the ground-truth values
and the predicted values for 100% of the labels, top-50% and the top-1 interests, the
RMSE between the ground-truth interest distribution (sample means) and the methods’
final interest distribution (means), the coverage percentage of the engaged network by
the members of the core, the number of core members, and the runtime for the pokec
experiment. The AUC-ROC metric quantifies the quality of ranking whereas the RMSE

quantifies the results’ accuracy.

7.3.5 Discussion

We report descent results in terms of AUC-ROC and RMSE in all of our experiments:
In the facebook dataset we have the best performance in terms of RMSE and have AUC

near the other methods; less than 1% for all labels, and similar results for top-50% and
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top-1. In the dblp-dyn, fb-pages and github® dataset we outperform the other methods —
with the exception of the AUC-ROC in top-50% in dblp-dyn where we have a 4% percent
decrease. Moreover, in the fb-pages dataset, GraphWave achieves a very small RMSE
however it yields a low AUC-ROC by far. Finally, in the pokec network, GraphWave and
Random HK fail to run subject to our resources’. Moreover, the NNIM model runs two
orders of magnitude faster with & = [logn]| neighbors and one order of magnitude faster
with k = [y/n] neighbors compared to node2vec and NodeSketch. The PCA step does not
affect the runtime considerably needing only 1 sec since it fits only on the highly influential
nodes that are n%7, which account for 1.92% of the network. We achieve an AUC-ROC of
91.84% and an RMSE of 0.025 where we surpass NodeSketch in terms of RMSE (6 times
lower) and are surpassed in terms of AUC-ROC by 0.3%. Finally, node2vec has a higher
AUC-ROC rate (by a small margin) compared to NNIM with k& = [y/n] neighbors.

7.3.6 More Experiments

Mean-field equations properties

We perform experiments with synthetic data so as to obtain a better understanding
of the convergence properties and the number of clusters of NNIM. We sketch the main
conclusions of the experimental evaluation, which confirm and enhance our theoretical
results. We initialize a set of n = 100 agents with d-dimensional opinions for values of d
between 1 and 10 and number of neighbors k between 2 and 50. We plot the convergence
time versus the number of neighbors k& and the dimension d of the vectors as well as the
final number of clusters that are formed upon convergence. The microscopic properties
of the model, namely the agent positions, the number of clusters and the total variation

t/2 are presented in Figure 7.3. The

distance compared to the strict upper bound k~
macroscopic properties — namely how the convergence time and the number of clusters
change with respect to either varying number of neighbors k — are presented in Figure
7.4 for D=10"".

The behaviour of the NNIM model closely resembles the behaviour of the HK model
[46, 81], the Random HK model and the Network HK model described in [36]. Remarkably,
the convergence time decreases rapidly subject to increasing k in the form of a power law
— namely the number of clusters is proportional to k*. To observe this, we provide a log-
log polynomial fit between the number of clusters and the number of nearest neighbors k
for values of n in the range between 50 and 300 with a step of 50 agents. The observed
values of the slope a are around —1.06 for all the values of the agents and the bias term
increases as n increases which further validate the claim that the model has converged if
and only if every cluster contains at least k agents, hence the total number of clusters is

at most n/k.

5The dataset contains one label hence AUC-ROC results remain the same.
"Denoted by the dagger () symbol. Experiments were run in a Google Colab Notebook.
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Figure 7.3: Microscopic properties of the NNIM model for n = 100 agents, D = 1073, and
k = 3 neighbors.

Variable k, constant d log-log fit between Number of Clusters and k for varying n
4 — n=50, a=-1.04
45 Lso 6 n a
40
t 50 z°]
E tao g ENE
g 30 é E
3 5 °
g 25 30 3 é 34
5 201 l205 2
o = S 27
159 2
10
10 H
Fo
0 20 40 60 80 100 1 2 3 4 5
Number of nearest neighbors k logk
(a) Variable k, constant d (b) log-log plot between number of clusters
and k

Figure 7.4: Macroscopic Properties of the NNIM model. We have run the with D = 1077.
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Sentiment in the Linux Kernel Mailing List

Through this experiment, we evaluate our model’s ability to predict sentiment in dis-
cussions. More specifically, we examine the Linux Kernel Mailing List (LKML) ® archive
between August 2017 and October 2017. The LKML dataset contains 18K email threads
from Linux Kernel developers which are organized in threads and each email posseses had
a timestamp and an author. Initially, in each thread we record the number of participants
in the thread as well as the polarity of each email. We use the open-source Natural Lan-
guage Processing Library TextBlob [66] to extract the polarity sentiment for each email
— after we have removed the nested replies which start with the character >. For each
participant in each thread we record his/her initial opinion upon his/her first message as
well as his/her final opinion upon his final message. We give a value of 1 if the sentiment
— which lies in [—1, 1] — is positive and a value of 0 if the sentiment is negative. In order
to avoid bias in our results, we filter out the threads which contain less than 5 partici-
pants and the threads for which no participant has changed his/her opinion. Moreover, we
perform experiments by letting k& run from 1 to the number of participants in the thread.
We report the average Mean Average Precision (MAP) and compare our model to the
Random HK model with radius ¢ = 1. We report a MAP of 88.07% using NNIM and a
MAP of 81.36% using the Random HK model.

Hyperparameters Effect

We examine how the hyperparameters k& and p affect the AUC-ROC and RMSE met-
rics. For the ego-facebook network we report the AUC-ROC and RMSE metrics for
numbers of p between 0.4 and 0.9 with step 0.1 and &k from 1 to 200 with step 1. Results

are presented in Figure 7.5.

7.4 Further Related Work

Core-periphery structure of networks has mainly gathered attention from socio-
economical [109, 58, 69] and network modeling perspectives [82, 115, 9]. Computer science
literature is mostly concentrated in learning core-periphery models. From an algorithmic
perspective, the closest work to ours is [6], where Avin et al. show how to speed up tasks in
a distributed setting. However, they do not provide an algorithm for efficiently identifying
the core in large networks, as we do in this work.

Opinion Dynamics models have been around for decades, with the best known being
the DeGroot model [24], the Friedkin-Johnsen (FJ) model [38], and the HK model [46].
In [46, 11], the agents’ opinions evolve as a discrete dynamical system and the opinions
at the next timestep are the result of an aggregation of ones and her neighbors’ opinions,
where the neighborhood is built dynamically from the observations of the current timestep.

[36] considers different models with the addition of local interactions between the agents,

Shttp://1kml.org


http://lkml.org
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with the Random HK model being conceptually closest to our model. In the Random
HK model, each agent chooses uniformly at random & neighbors from a ball of radius e
centered at her opinion. Our work develops a stochastic variant of this family of models,

thus generalizing existing deterministic ones.

Multilabel classification in graphs has a relatively long history. To begin with,
the classical work on label propagation [91] infers community memberships in networks
via propagating labels between the nodes until a consensus is reached. Besides, similar
work in [62, 112] devises a random graph model to classify nodes with features within
communities. Moreover, the upsurge of embedding methods, which use random walks,
matrix factorization-based learning objectives, or signal processing transformations [43,
89, 29, 111, 33, 94, 44] has been used for multilabel classification. Multilabel classification
with embeddings as a standardized benchmark task for evaluating embedding methods
uses them as inputs to a supervised model, usually logistic regression. The input graph
nodes typically have features in a high-dimensional space, whereas the target labels lie
in a low-dimensional space. In contrast, in our work, inputs and outputs have the same

dimensionality.

Our work is also related to inference in probabilistic graphical models with latent
variables and with a likelihood that cannot be computed in a computationally efficient
manner, because integration for the latent variables significantly affects the running time.
Some characteristic examples are the MAG Model in OSN [55, 54] and training of HMMs
[8] with the EM algorithm [26]. The EM algorithm maximizes the expectation of the joint
likelihood of the data by imposing a distribution over the latent variables. We use the
mean-field approximation in our paper [50, 101], a technique that is widely used in the

statistical physics community.

7.5 Conclusion

In this Thesis, we benefit from the core-periphery structure of OSN and develop infer-
ence algorithms for interest prediction (equivalently multilabel classification) using partial
information from influential users. Inspired by the strong homophilic properties of OSN,
we introduce the NNIM model. This model considers a core in the steady-state and a
periphery that exchanges opinions according to k nearest neighbors. We develop an algo-
rithm for computationally efficient inference and establish a connection with traditional
models, such as the HK. We prove that our algorithm converges in finite time and strictly
bound the total variation distance from the consensus state. Our method is compared
with others and in networks of various sizes and is capable of performing considerably

faster with similar and most of the times better results.
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7.6 Future Work

This Thesis’ work can be extended to multiple interesting future directions. First
and foremost, the utilization of the core-periphery structure to speedup algorithms can be
extended to other problems as well. Example problems are all-pairs shortest paths (finding
betweenness centrality measures in a network), ranking users in a network (e.g. PageRank)
and speeding random-walk based algorithms. Moreover, concrete understanding of core-
periphery structure through intuitive generative models is also an open line-of-work.

Furthermore, our works gives a statistical explaination for opinion dynamics, extending
the existing game-theoretical understanding of the opinion formation processes [12, 11].
Interestingly, extending this line of work to account for more general settings (e.g. ex-
ponential families) and models could yield significant results in graph learning tasks and

inference algorithms.
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Table 7.3: Experimental results with p = 0.7, v = 2, D = 1073, 7 = 4, and regularization
with a = 1.

~ S o
o A & B
S &F F e ¢ &
& ¥ < g © 9 <
AUC-ROC (all labels)

node2vec 86.35 87.42 84.00 67.23 69.80 96.93  ~ 10°
GraphWave 86.20 86.78 70.96  45.13  69.57 i i
NodeSketch 80.90 81.90 68.68 49.96 58.88 9214 ~ 103
Random HK (k = [logn]) 85.75  86.30  71.90 50.34  68.83 t t
NNIM (k = [logn]) 84.24  88.05 91.86 68.07 7864 85.60 ~ 10
NNIM (k = [y/n]) 85.82  91.16 91.62 67.86 81.65 91.84  ~ 102

NNIM w/ Reg (k = [logn]) 8417  87.39  91.78 72.31 78.86 85.05 ~ 10

AUC-ROC (top 50% of labels)

node2vec 54.98 94.92 78.69  67.23 68.53 96.94 ~ 103
GraphWave 53.97 92.91 40.11  45.13  65.70 T T
NodeSketch 55.91 92.37 46.50 49.96 58.13  92.14 ~ 103
Random HK (k = [logn]) 52.82 93.10 56.14  50.34  64.49 T T
NNIM (k = [logn]) 59.08 79.32 89.00 68.27 78.69 85.80 ~ 10!
NNIM (k = [/n]) 58.30 90.59 88.04 67.86 80.85 91.84 ~ 102

NNIM w/ Reg (k = [logn]) 59.20 81.11 88.65 72.31 79.10 85.05 ~ 10!

AUC-ROC (top-1 label)

node2vec 52.56 62.82 80.17  67.23 60.28 55.87 ~ 103
GraphWave 57.19  67.00  61.37 45.13  52.89 + +
NodeSketch 53.02 63.06 59.07  49.96 49.22  50.78  ~10°
Random HK (k = [logn]) 50.17 48.40 4948  50.34  49.96 T T
NNIM (k = [logn]) 5329 8289  90.18 68.27 70.31 5464 ~ 10!
NNIM (k = [y/a]) 53.62 84.16  90.38 67.86 71.27 5534  ~ 102

NNIM w/ Reg (k = [logn]) 5152 8047  90.35 72.31 70.71 5459 ~ 10%

RMSE (all labels)

node2vec 0.012 0.059 0.093 0438 0.166 0.022 ~ 103
GraphWave 0.010 0.052 Te-6  0.400 0.082 T T
NodeSketch 0.096 0.123 0.098 0.440 0.316 0.128 ~ 103
Random HK (k = [logn]) 0.010 0.056  4e-17  0.412 0.096 T T
NNIM (k = [logn]) 0.011 0062 4e-17 0389 0.143 0026 ~ 10!
NNIM (k = [/n]) 0.010  0.050 4e-17 0.388 0.128 0.025 ~ 10°

NNIM w/ Reg (k= [logn])  0.012  0.066  4e-16 0.388 0.145 0.025 ~ 10%

Coverage (%) 88.36 97.16 72.20  68.61 66.04 51.70 —

Influencers (Core size) (%) 1247 1183 494 423 412 1.92 —




Appendix A

Concentration Bounds

“Years ago a statistician might have claimed that statistics deals with the
processing of data. Today’s statisticians will be more likely to say that
statistics are concerned with decision making in the face of uncertainty.”

— Herman Chernoff

A.1 DMotivation

The study and analysis of algorithms usually requires the study of random variables
that are composed from sums of usually independent and identically distributed random
variables (i.i.d.). The exact distributional properties of the sum variables are usually
difficult to identify analytically. Moreover, the analysis of algorithms usually has to do
with properties referring to the average performance of a quantity. Luckily — for all of us
who analyze algorithms frequently — randomness can be adequately limited, that is that
the random variables usually do not deviate from their mean. The more characteristic
examples are the Weak Law of Large Numbers which states that the sample average of
inifinitely many samples of i.i.d. random variables from a distribution D converges to
the expectation Ep [X]. Intuitively, if we let S = 13" X, where X; ~ D are iid.
with probability density function pg(s), then we will observe that pg(s) contains a very
large amount of probability mass near Ep [X]. Even though we can spend multiple pages
describing similar bounds, we will reside in explaining the idea behind them as well as
introduce the main tool we will use in our analysis — namely Talagrand’s Inequality
— since further describing them is out of the scope of this thesis. For a more detailed
investigation of the Chernoff-type bounds family we redirect the interested reader to [98].

The most intuitive way to study these properties is to study the tail probability, namely
how small is the deviation outside this region. The tail probability of a random variable
is the probability Pr[|X — p| > A] for some p € R and A > 0. The first tool that can be
used to study the tail probabilities is Markov’s Inequality, stated below:

Theorem 8 (Markov’s Inequality). Let X > 0 be a random variable and \ be a positive

105
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real number. Then

HWZMSE&] (A1)

Proof. From basic proability theory we know that
E[X] = / rpx (v)dr > )\/ px(z)dz = APr[X > )
0 A

Rearranging terms we arive at

&=

[X]
Pr[XZ)\]ST

O

This inequality, albeit seeming simple in principle, posseses some very powerful prop-
erties, most importantly its generalization upon a monotone function f(z[t) of x > 0
which is parametrized by t € T. More specifically, using the monotonicity of f inside the

probability we can refer to the more general bound of

E [f(X]t)]
Prif(Xle) 2 fOIO] = sup =70 =

A characteristic example is when f is taken to be the squared distance from the mean,

(A.2)

i.e. f(X)=(X—p)? where u = E [X] is the expectation of the random variable X. Using
A= k2V(X) > 0, we arrive at the well known Chebysev Inequality that is

Theorem 9 (Chebysev’s Inequality). Let X > 0 be a random variable with expectation p
and standard deviation o = \/V(X) and some k > 0. Then
1

Pr(X | > ko] < -

(A.3)

Proof. We study the random variable ¥ = (X — p)? > 0 with E[Y] = V(X) and pick
A= k2V(X). O

Now, we begin to grasp the reason for which this inequality is so strong. More specif-
ically, the study of the moment generating exponential f(X|t) = exp(tX) for some ¢ > 0
leverages Markov’s Inequality power. More precisely, in a similar way, we are going to
introduce the Chernoff-Hoeffdig Bound

Theorem 10 (Chernoff-Hoeffdigg (CH) Bound). Let X7, ..., X, be independent Bernoulli
random variables with parameter B [X;| =p for 1 <i <mn and p = %Z?:l X; and some
€ >0. Then

Pr[|p — p| > ] < 2exp(—2ne?) (A4)

Proof. We have that

A E [etXl]n E [etX1:|n
~ _ tp prel « L7 1 <
P[p>p+e] PF >e ]— ente) = 450 en(ote)
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where E [etXl} = p(e' — 1) + 1. The function at the right hand side has a minimum at

b= 1o L= PP +E)
p(l—p—e¢)

With value
efD(erEHp)n < 672n52

The second inequality is derived from the variable sequence Z; = 1 — X; which are
Bernoulli independent variables with parameter 1 — p. Combining both inequalities we
have that

Prlp—p| >e|=Pr[p>p+eVp<p—c| <Pr[p>p+e]+Pr[p<p—e] <2exp(—2ne?)
O

It is not hard to show that the above tail bound generalizes for i.i.d. random variables
that lie in [0, 1] with the same proof technique as well as in [¢, u], for which we need to
study the normalized variables Y; = Xui__; € [0,1]. Other useful bounds include the bound

for the x? variables which is used to prove the infamous Johnson-Lindenstrauss Random

Projection Lemma which is widely used for dimensionality reduction in database systems,
introduced in reference [3], Bennet’s Inequality, Azuma’s Inequality, Bernstein’s Inequality

and many more [98].

Example: Sample Complexity of the Bernoulli MLE. Suppose that we are run-
ning an election poll with two parties — red and blue — which are represented with the
values 0 and 1 respectively. We are interested in calculating the probability that the blue
party wins the election race. For that reason we ask n people and gather their preferences
X1,...,X, and calculate the sample mean p = %Z?:l X;. The basic question that rises
here is how many people should we ask beyond which we are confident with probability
1 — 4 that p will be within £ > 0 distance from the actual value p. The answer comes via
directly employing the CH Bound and restricting the error probability to be less than or
equal to §. Rearranging terms we arive that n > {%1 samples! are needed to achieve
the desired result.

Finally, we give the tail bound for the x? variables so that we are able to study the
behaviour of random normal vectors. A variable Z is said to follow the y? distribution if

it is composed out of a sum of N'(0, 1) variables.

Theorem 11 (Concentration of y? Variables). Let Z ~ x%(n). Then for all ¢ > 0 we
have
Pr[Z < (1 —¢)n] < exp(—e*n/6) (A.5)

For all € € (0,3) we have that

!The ceiling of z, that is [2], is defined as the value of x rounded up to the nearest integer.
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Pr[Z > (1 + ¢)n] < exp(—&?n/6) (A.6)

and

Pr[|Z — n| > ne] < 2exp(—£*n/6) (A7)

Proof. Let Z =37 | X? where X; are i.i.d. N(0,1)-distributed random variables. From
basic calculus we know that exp(—a) < 1 —a + a?/2 for all a > 0. Therefore

t2 3 3
E [exp(—tX7)] =1 —¢E [X{] + 7 E [(X{]=1-t+ 5152 < exp <—t + 2752) (A.8)

Therefore

E [exp(—tZ)] < exp (—nt + Znt2> (A.9)

For t = £/3 we get the first inequality. For the sencond, inequality we reside in

E [exp(tZ)] < (1 — 2t) /2 (A.10)

for all ¢ < 1/2. Hence Pr[Z > (1 + ¢)n| < exp(—ent). For t = ¢/6 < 1/2. The third
inequality is obtained by applying a Union Bound to the above two inequalities.
O

A.2 Talagrand’s Inequality

Next, we introduce the main inequality upon which we base some of our contributed
theorems. The inequality we are going to study is due to Talagrand [104] and is of special
importance to Measure Theory and subsequently Probability Theory. In layman’s words,
it states that the image of a bounded random variable through a Lipschitz function F
is concentrated around its mean. For completeness purposes, we give the definition of a

Lipschitz function below

Definition 9 (Lipschitz Function). Given two metric spaces (X,dx) and (Y, dy) where
dx and dy are the metrics for each of the spaces, a function f : X — Y is called L-
Lipschitz if there exists a real constant L > 0 such that for all x1,x9 € X the following

condition is true

dy (f(z1), f(22)) < Ldx(z1,22) (A.11)

Intuitively, the images of the points z; and x5 cannot be arbitrarily far apart. When
L € ]0,1) the mapping f is called Lipschitz contraction and when L = 1 the function is
called a short map. Here, it is evident that we are interested in the best (tightest) possible

value of the constant L.
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Example 1: The function f(t) = sint. A simple example to demonstrate Lipschitzness
in 1 Dimension with respect to the absolute value dx(z,y) = dy(z,y) = |x — y| is the
function f(¢t) = sint. To elaborate, the function’s derivative is f’(t) = cost which is

absolutely (and tightly) bounded by 1. By applying the Mean Value Theorem in the

siny—sinx
y—x

Since |f'(£)] < 1 we obtain that |siny — sinz| < |y — x| for all z,y € R and therefore

L=1.

interval [z, y] we have that there exists some ¢ € (z,y) such that f/(§) = cos§ =

Example 2: Contractive Mappings. Contractive mapping demonstrate remarkable
properties. The most notable one is that contraction mappings have fixed points. A fixed
point & € A of a function f : A — A is a point such that f(x) = «. It has been shown by
Banach that contractions have exactly one fixed point *. We state Banach’s Fized Point

Theorem below:

Theorem 12 (Banach’s Fixed Point Theorem). Let (X, d) be a non-empty complete metric
space and f : X — X be a contraction. Then f has a unique fixed point x* such that
f(x*) = x*. Moreover, the fixed point can be found by starting from an initial position

xo € X and then use the update rule T, 11 = f(x,) such that lim, o x, = *.

Recently, a converse to Banach’s Fixed Point Theorem was established by Daskalakis,

Tzamos and Zampetakis in reference [23] which states that

Theorem 13 (Due to [23]). Let (X,d) be a proper metric space and f : X — X be

continuous with respect to d and the following hold
1. f has a fixed point x* € X

2. for every xy € X the sequence x,41 = f(x,) converges to x* with respect to d and
there exists an open neighborhood U of &* such that fIM(U) — {x*}

Then, for every ¢ € (0,1) and € > 0 there exists a function d.. that is topologically

equivalent to d such that
1. f is a contraction with respect to d.
2. dee(x,y) <e = min{d(z,z"),d(z,y),d(y,z*)} < 2¢

We will refer to this theorem later in this Thesis, when we will study the stability of
dynamical systems. It is now evident, that contractive mappings are tightly related with

the convergence of iterative processes; algorithms in our framework.

A.2.1 Statement of Talagrand’s Inequality

The importance of Lipschitz functions comes to the forefront in Probability Theory
as well. The powerful inequality states that the image of a contractive mapping is well-

concentrated around its mean. We state the inequality here
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Theorem 14 (Talagrand’s Inequality (due to [104, 105])). Let X1,... X, be independent
complex random variables — not necessarily identically distributed — and some K > 0
such that | X;| < K for all1 <i<n. Let F': C" — R be a 1-Lipschitz function. Then for
any A > 0 one has

Pr[|F(X1,... X,) —E[F(X1,...,X,)]| > AK] < Cexp(—c\?) (A.12)
For some constants ¢, C > 0.

For the interested reader, the lengthy proof can be found at [105, pp. 86-91], since the
tools and lemmas used to prove it lie beyond the scope of this Thesis. A direct Corollary

of the inequality is the following

Corollary 3. Let X1,... X, be independent complex random variables — not necessarily
identically distributed — and some K > 0 such that |X;| < K for all 1 < i < n. Let
F:C" = R be a L-Lipschitz function for some L > 0. Then for any A > 0 one has

Pr[|F(X1,...X,) —E[F(X1,...,X,)]| > AK] < Cexp(—cA\?/L?) (A.13)
For some constants ¢, C > 0.

Proof. The proof is straightforward. We apply Talagrand’s Inequality to the function
G(Xi,...,X,) = 1 F(Xi,...,X,) and rearrange the terms. The constant A scales to A/L

hence the L? in the denominator. O

Example: Application of Talagrand’s Inequality. An example application for the
inequality can be that X; are i.i.d. Bernoulli with probability p and F(Xi,...X,) =
S, X2, where | X;| < 1. We know that ¥; = X? follow the same distribution — Bernoulli

7

with parameter p — and the function F' is 2/n-Lipschitz with respect to the Euclidean
Norm in [0,1]". Moreover, E [F(Xy,...,X,)] = np. Consequently, for every A > 0 we
have that

cA\?

Pr >\ <Cexp <—> (A.14)

iXiQ —np

i=1

4n

Of course, Talagrands’s Inequality can be used to derive more rigorous bounds. More
precisely, in this work, we prove that the distance between two Bernoulli vectors with
independent components is near to the distance of their parameter vectors with high
probability. This will be later used to show that the k£ nearest neighbors of a Bernoulli
Vector can be approximated by the k nearest parameter vectors in the parameter space

for sufficiently small k£ and sufficiently large number of points.

A.3 McDiarmid’s Inequality

For the analysis of some theorems in this thesis, we reside in McDiarmid’s Inequality.

More, specifically, McDiarmid’s Inequality states the following
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Theorem 15 (McDiarmid’s Inequality). Let X1,...,X,, be independed random variables
where X; € X;. Let also f : X1 x Xy--- X X, = R be a function of the random variables
such that for all1 <i<n

sup ‘f(Xl, ,Xi,...,Xn) — f(Xl,. . .,XZ{,.. . ,Xn)| S C;
Xlr--vxin{ Xn

PRAAAE]

for some constant ¢; > 0. Then the following hold for every e > 0

2¢2

Pr[f(Xh .. 1X7L> —E [f(Xla s 7XTL] > 5} < €xp <_Z:n_162> (A15)
52

Pr[f(le s 7Xn) —E [f(Xla s 7Xn] < _5} < exp <_Z:i_102> (A16)
52

Prl|f(X1, . X)) — E[f(X1... Xn] | > ¢] < 2exp <‘z72nc2> (A.17)

Example: Global Clustering Coefficient of G(n,p). We give an example by proving
that the Global Clustering Coefficient of G(n,p) is p a.a.s. using McDriamid’s Inequality.
The Global Clustering Coefficient is the ratio of the number of triangles to the number of
triplets (open and closed) in a network. Suppose G ~ G(n,p), then the expected number

of closed triangles is 3(g)p3 and the number of connected triplets is 3(§)p2.

It is clear
that the ratio of the two expectations is p. Now we are going to prove that indeed the
Global Clustering Coefficient is p for large enough n. Suppose that we take an edge of
the graph and change it. Then the number of triangles can change by at most ¢; = 3n.
Also 2?21(372)2 = 9n3. Plugging everything to McDriamid’s Inequality we get that the

number of closed triangles T satisfy

Pr{|Te — B [Te] | > €] < 2exp (—49") (A1)

And the number of triplets Tr
an
Pr{|Tr — E[Tr] | > ] < 2exp (9> (A.19)

Therefore T /T = p+O(n~29) with probability of at most 1—4 exp (—%‘). Therefore
Tc/Tr — p with probability 1 as n — oo.

A.4 Nomenclature for the Asymtotic Behaviour of Ran-

domized Algorithms

Frequently, when someone analyzes algorithms and is interested in the asymptotic be-
haviour of some random process, one needs nomenclature for explaining the behaviour
— mainly the asymptotic one — of such processes. For instance, when estimating the

parameter p of a Bernoulli Random Variable with the sample mean p = %Z?:l X;, we



112

say that p — p asymptotically almost surely (a.a.s.) or p approaches p under the “prob-
ability limit” when n — oco. In this section, we give such definitions which are of little
mathematical importance, however they serve as a robust communication basis for the

analysis of randomized algorithms between computer scientists.

Definition 10 (Probability Limit). We say that plim,_, X, = X, or equivalently that
the sequence {X,} approaches X under the probability limit iff

lim Pr[| X, — X|>¢] =0 (A.20)
n—o0
for every € > 0. Equivalently, plim,,_, X, = X.

Definition 11 (With high Probability). We say that an event A(n) happens with high
probability (w.h.p.) iff Pr[A(n)] > 1—O(1/n).

Definition 12 (Asymptotically Almost Surely). In asymptotic analysis, a property is
said to hold asymptotically almost surely (a.a.s.), if over a sequence of sets, the probability

converges to 1.

A desideratum for randomized algorithms? is that the error probability goes to zero
for a large value of some parameter, usually the sample size n. That means that if E is
the erroneous event then lim,, o, Pr[E] = 0. A usual practice is that for some finite n we
bound Pr[E] by O(1/n) and then let n — co. Such requirement will soon be evident when

analyzing our contributed algorithm in the forthcoming sections.

Example: The Random Graph G(n,p,). Inrandom graph theory [14], the statement

G(n,pn) is connected happens a.a.s. when for some ¢ > 0 the probability of connection

(1+€)logn
—

satisfies p, >

2We refer to Monte Carlo algorithms with the term randomized algorithms. In Monte Carlo algorithms
the output of the algorithm is stochastic and the running time of the algorithm is deterministic. The other
large category of randomized algorithms are the Las Vegas algorithms where the output is deterministic
and the runtime is stochastic. For a more detailed introduction, we redirect the interested reader to the

classical textbook of Mitzenmacher and Upfal [77].
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