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Anoyopebeton 1 avTiypoapr, anodixeuon xou Slovoun g mopoloos epyaciog, €& oAoxApou
7| TWAUATOC aUTHG, Yo EUTOoELx6 oxom6. Emtpénetar 1 avatdnmon, anoUhxeuon oL olavour)
Yot OXOTO U1 XEEOOOXOTIXOG, EXTOUOEUTIXNG 1) EPELYNTXNC QUoNg, LUTO TNV Teolndveon
VO OVOPERETOL 1) TINYT) TEOEAEUONC Xou Vo BlaTneeltol To Tapdy UAVUUL.
apopoLY TN YeHoM TNG ERYACLUS VLol XEEO0OXOTIXG OXOTO TEETEL Vo AMEVYUVOVTOL TEOG TOV

CUYYPAPEA.

Ov oamdeic xou To CUUTERAOUOTO TIOU TEPLEYOVTOL OE aUTH TO EYYEAPO exPEAlouY TOV
ouyypapéa xou Oev TEETEL Vo gpunvevdel 0Tl avTitpoownebouy TIC enlonuec VEoelc Tou

Edvixol Metodfou Ilohuteyvelou.

EpwthAuota mou



ITepiindm

Avuty| 1 epyaota amotehel pla EAETN Thvew oTNY exudinoT dlatdewy and YopufBworn delyuota
o omolar v Bev Teptéyouy Oha To oTotyela Tpog tadvounon. H expdinon Swotdewy
elvon évar emixonpo mEOPANUa mou cuvdéetar oTevd Ye TN Ocwpio Kowwvixric Emhoynie, o
ocuothuata Wngpogopiag xat, yevixotepa, T Mrnyavixy Mddnorn. To Paocwd npdfinua tvon 1
XATOOXELY] Wlag Bidtaing mou eivon 1 TAEOV EUREWS amodexTY|, U€ow aflonolnong Tng Thnpo-
poplag mou TepIEyeTon o€ Evar GUVOLO BLUTAEEWY €L06B0L ToU YivovTon avTIANTTES WS (ot 1
oelyparto. H évvola tne xodohxric amodoyric amoxtd vonuo OTo EL0AYETOL XATOL0 GTATIOTIXO
HOVTENO TPy WYHS TWV OLUTAEEWY ELGOBOU, WS oVEESETNTAL DELYHATA. LUYXEXPUEVA, OVEE-
00 GE TOAAG HOVTEAA TORAYWYNS OIATAEEWY, EMXEVTPWVOUAOTE 6T Yoviého Mallows, mou
otneiletar Ny WEa TNE Umopdng plag xevtphc Sldtadng mou yapatneilel TNy xotovoun Tng
mdovotntog eupdviong wlag Sidtang, Yéow piog ocuvdeTtnone andoTaong UETUED BIUTAZEwY.
H mdovotnto eygdvione plog didtaing petwveton exdetixd oty andéotaon tne didtoing and
™V xevtpuxn owtaln. ‘Eyouv avamtuydel Sidpopor alyoprduol Yol TNV avoxXaTOoXEUT] TNG
XEVTEWNC OLdTadng N xdmoLog EXTUNCHS TN omd TATPELS BLATAEELS TOU OmOTEAOUY aveddpTnTa
oelyparta tng xatavouric Mallows. dotéco, dev elvon mdvtote peahio x| undeon OTL unopet
xavelc va €yel tpdoPaor oe Belypata mou elvon TANpelS dtatdiels, xadwe ocuvitng To TARdog
TWV EVOAAXTIXGY elvon TOAD peydho. Xtny gpyaocia auty, extég and tnv napoucioon Poaot-
AWV VEWENTIXWY VeEPEMWY Kol OPLOPEVWY ATOTEAECUATWY CYETILOUEVOVY UE TNV Udinon oto
novtého Mallows, mpotelveton éva yevixeupévo wovtélo yio delypota mou dev elvon amapaitn-
Tar TATEELS BlaTdEels, oahhd datneel TNV €vvola Tng xevipwrg owdtaing. Emlong, mopéyovta
QUCTNEA (PEAYMATA YLl T1) OELYUATIXY TOAUTAOXOTNTO UVAXATACKEVNS TNS XEVTEWXNE OdTadng
OE OPLOUEVES TUPUANXYES TOU YEVIXEUPEVOU LOVTEAOU Xoi TopouotdleTton €vag ahyoptdog Yo
TOV amodOTIXG UTOAOYIOUO TN eXTUNONG UEYIOTNG Tdovopdvelag TNg xevipixhc didtang and
YopuPBwdn detypata pe ehhimy TAnpogopia.

AgCeic KAewoid

Yratiotry Manor, Mddnon Katavouov, Oswpla Mdidnong, Oewpla Iravothtwy, Ocwplo
Kowwvixic Emhoync, Katavouée Awtdewv, Movtého Mallows






Abstract

This thesis constitutes a study of learning rankings from noisy and incomplete samples,
in the sense that they may not contain all the alternatives to be ranked. Learning on
rankings is an emergent problem that is closely liked to Social Choice Theory, Voting
Systems and, generally, Machine Learning. The fundamental problem is the construction
of a ranking that is the most widely acceptable, using information provided by a set of
input rankings, that are considered to be votes or samples. In particular, while many
models exist describing the sampling process of rankings, this study focuses on Mallows
model, which is based on the idea of a central ranking that determines the probability
of sampling a ranking through a notion of distance between rankings. The probability
that a specific ranking is sampled diminishes exponentially to its distance from the central
ranking. Many learning algorithms have been developed for estimating the central ranking
under the Mallows model. However, it is often unrealistic to assume that the samples
consist of full rankings, especially when the number of alternatives to be ranked is large. In
this work, except from presenting the fundamental theoretical background and some of the
main results concerning learning the central ranking under the existing models, a new model
is proposed, namely the Selective Mallows model, in which sampling incomplete rankings
is possible, but also the concept of the central ranking is preserved. Furthermore, strong
bounds for sample complexity of learning the central permutation under some variants of
the Selective Mallows model are established, as well as an efficient algorithm for estimating
the maximum likelihood estimation of central ranking under the selective Mallows model.

Keywords

Statistical Learning, Learning Theory, Distribution Learning, Probability Theory, Compu-
tational Learning, Social Choice Theory, Voting Theory, Mallows Model, Ranking Distri-
butions
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Euyapiotieg

Ketvovtag pe v epyacio auth) Tov xOXAO TWV TEOTTUYLAXDY CTIOUBMY UOU, OEV UT0R® TopEd
vou efan EVYVOUOY o€ GAoUG EXEIVOUS TTOU GUVEROAAY EUUECA 1) GUECA GTNY OAOXATPMOT] TOU
%00V QUTOU, ARG X0l TOU EXAVOLY TNV TORE(OL UOU OE UTOY OUGLOON X0l SLUCKESATTIXT.

O Hieha apyxd var euyapLoTHOW Tov Xx0plo PwTdxT, yia OAN TNV UTOGTARLEY, TNV EUTLOTO-
oUVT), 0GR xon TNV EUTVELCT) TOU UOU TAPELYE oxOuUn Xou TPV amd Tr CUVERYISIX WIS, OTO
appriéatpo. Emlong, Yo fieha va euyapiothow depud tov ‘Ahxn Kokofdon yia tnv Slopxi
UTOG TARIEN TOL XuTd TN BLdpxela EXTOVNONG AUTAS TNG epyaciog, TNV éunpax Tty cUUBOAY Tou
og aUTAY AAAG xaL Yl OAeC T evilapépovoeg oulnthoelg pac. Euyopiotd to yéhn tng e-
Eetao T emtponng, Tov xpto Hoyouptln xou Tov xUplo Xulovn, oyt uévo v e€eTao Tég
ARG xaL YL 600 LOL TEOGEPEPAY WS xaNyNTéS wou. [evixdtepa, elyar evyvouwy ot xde
XNy NTY LoU, BLOTL a6 TOV XadEvoL AMOXOULOA VAL BLPORETIXG TEOTIO GHEPNG, 1BEES, YVOOT
xan xbvnTeo yio tpooTdiela.

‘Eneita, 9éAo va guyaploThow Toug GIAOUC JOU Yo TN BLoyEOoViXY TOUC TAEOUGEd ot TOo
eVOLaPEPOV TOUC XIS ot OAOUE TOUS GUUPOLTNTES UOL xal WiadTepa exelvoug Ue Toug onoloug
elya TV guxonplor Voo cLVERYAOT®, Vo cLULNTACL 1) Vo YVwplow Ttpocwmixd. Kodota, Mapiva,
[Iétpo, Anurten X., Anuften =., X€Bn, IIdvo K., Ildvo X., Mdgeie, Apylen, Anunten K.,
Iwdvva, Muyod, Tdvvn M., Baciin, Aré€avope M., I'dvvn A, Tdvvn A, Hhla, ANEEavOpe
Y. oug euyaploTo!

Towg, ouwe, AMyo neplocdtepo, Yo HUEAX VoL EUYOOIGTACK TNV OLXOYEVELL WOV, YLoL TNV OTEQL-
OPLOTY), AVIBLOTEAT| ALY ATn) TOUC.
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Kegpdiaio 1

Extetopévn EAAnvixn Tlepiindn

Y10 xe@diato autd TapouctdlovTan To Bacxdtepa onueio TG Tapovoug epyastag eV cuvTopla.

1.1 Ewoaywyn

Ou xatavouéc xotdtagng anoTeAoly avTIXEUEVO eVTUTIXAC HEAETNG To TEAeUTalol ypovia. Xer-
GLLOTOLOUVTAL YOl TNV LOVTEAOTIOINGT| BLapORmY TEOBANUATWY OTIKC 1) GUVEUEOLCT) TEOTWUNCEWY
xou ot npogopleg. Emouévng, cuvbéovton pe @uoxd Teomo Ue T Yemplor XOWnvIXAC eTho-
YhS, TapoTt dlrdétouy emmiéoy WwiotTNTeS. H dempio tng xowvwvixic emhoyhc otoyelel otny
XU NEEWOT XAVOVKLY GLVAHEOLONE TIOL IXUVOTIOLOVY OPLOUEVO ETLIUUNTE aLWUATO XL oL oTtoloL
UTopoLY Var UTOAOYLETOUY amodotixd. Ou npoTyAoelc Yivovtor avTANmTég we BTdEelc Ve
O€ XATOL0 GUVOAO EVOAAAXTIXWY. 20TOCO, AOYW OPIOUEVV OTOTEAECUTWY OVEPIXTOTNTOC,
OmL yio Topdderypa To Vepehddes anotéieopa tou Arrow (Arrow [1951]), mou xatahfyouv
GTO OTL OEV EVOL BUVATOV VOL LXAVOTIOLOUVTOL TAUTOYEOVA OPLOUEVY GUVOAX AELOUGTWY oo Xa-
VEVLY XovovaL sLYADEOLENE, (EEOLOE €00Pog 1) TAOT) VoL LdwUel TO TEOBANU oo ot SLapOEETIXN
ontixn) Ywvia. Ou mpothoelg Yewpolvtar TAEoV BelyUaTo amd XETOLL XUTUVOUT| XATATAENG
xaL T0 TEOBANUa cuvdipolong avdyetor 6To TEOBANUA UAUNONG AY VDG TV TURUUETEMY TNG
xaTovoung LovieAonolnorng.

Mio and Tic TAéov YeAeTNUéVES XoTavoués xatdtadng etvon 1 xotavour; Mallows. Xto po-
vtého Mallows umdpyel 1 évvola Tng xevtpnc Bidtadng, mou amoTtelel TNV eMxpATOVON TUUT
™NE xatovoung xou 1 TavoTnTo ERPAVIoNS xGE AANG DATOENG UEWWVETOL EXVETIXG OTNV a-
T6GTaoY TNE amd TNV xevipxn oudtaln. Tétoleg xatavouéc xoahodvTtal xaTovoués Baciouéveg
oe anoctdoelc. Trdpyouv didpopec anoctdoelc petadl dlatdéewy. 2oT600, ula and TiC o
YENOWES Xat ouUTH oL Vot YENOWOTOLACOVUE GE QUTHY TNV gpyacia, elvat 1 andctaon Kendall
tau, 1 omola woltow ye t0 TARYOC TwV (eLUYHOY EVORAIXTIXOV oTa oTolo U0 Blatdéelc dla-
pwvolv. To poviého Mallows cuvbéeton eniong pe tov xavova tou Kemeny yia cuvddpoton
TEOTWACEWY, TOU €yel Wtaitepn onuacio oTo mhaiclo Tng Vewplag xowwvixhAc emhoyng, xong
elvon cUVOEDBEUEVOC UE xdmolal €vvola PEATIOTOTNTOC: avVTIoTOLEl 6NV eVpeoT) piog SLdtadng
Yl TV onolat 0 GUVOAIXOC aprdude Leuyo-Blapopty Ue TI BIATIEELS EL0GBOoU Elval EAGYLOTOS.
2071600, 0 UTOAOYLOUOE AUTOY TOL XavoVaL Exel anodely Vel 6Tt elvon Eva NP-8Uoxoho mpdBinua
otnV yewotepn nepintwon. Eivaw evoagpépov va avagépouue 6Tt uttd to povtého Mallows |, to
TEOBANUA YiveTon €0X0NO, TRy TTOL EiVaL EGIXTO WIS XAk BEIOXOUACTE GTNY YEOT) TERITTWOT).

Qot600, N unddeon 6TL oL BLATAEELS EL0OB0L Elvar TAYPELC BeV elvon TdvTa peahloTixy|. Idaltepa
O€ MEPIMTOOELS OTIOU O UELIUOC TWV EVOAAIXTIXGY EVOL TOAU UEYSAOC, TO VoL UTOUVECOUUE OTL



2 1. Extetouévn EAAnvixr Hepidngn

€youpe tpoofaot ot Thrpelg Slatdéel etvan unepBoind aotébogo. O oTodY0C Hag, TAVIWS, To-
eopéVveL Vo udoue TNy TAen xeEVTEXY O1dTalT), Yenor OelypdTwY Tou elvor eAATELS SloTdEELC.
I'V autdv 10 AdYO0, Mpoteivoupe to Selective Mallows povtého, mou yevixelel o poviého Mal-
lows, emitpénovtog derypotondla ey dratdiewy. Ko o autiv tnv nepintwor, undpyet
o xevtpur didtadn, ahhd To VONud Tng elvar eAapeds dlapopeTxd: Aol emiéloupe éva
oUVORO EVOANOXTIXWY TtROg Bidtadn ot €va Belyua, 1 xevtpiny| Sudtaln neplopiletar 6To chvo-
Ao autd xon éva Sebypo AopfBdveton and Ty xatavoury Mallows ye tnv meplopioyévn didtoln
o¢ emxpatoloo Y. ‘Eva Selective Mallows Sefyua Yewpeiton, ev yéver, aveldotnto and ta
UTOAOLTIOL, OEBOUEVV TV CUVOAWY ETLAOYTC TOU TRO@IA detypdtmy. AtagopeTixés dlodixacieg
EMAOY TS CUVOAWY AVTIGTOLYOLY GE BLaOpeTIXd TepBdihova epapuoyng. o mapdderyua, to
cUvVolo unopel vor emAéyovTal amd €vay avTtinaho, Tuyola 1) TEOCUPUOCTIXG, av Ydg Olvetal
évag Selective Mallows Seryyoatorinng, mou haufdvel otny €lcod0 LTOGUVOAX TOU GUVOAOU
ONDV TV EVOANAXTIXOV X0l ETLO TREPEL Evar ave&dpTnTo Belyua T avtiototyne (Teptoptopévne)
Mallows xatovounc.

To selective Mallows povtého haufdver unod autd mou xoholue pepoAnipia Adyw dyvoiag:
Av o derypatoAnTng Oev Olrd€TeEL YVMOON Yol XATol EVOANOXTIXY, TOTE 1 TavOTNToL VoL
tawvopnoel havdaouéva évo (euydpl otolyelwy ebvan ueyahitepn av 1 Yéon g dyvwoTng
evohhaxTixiic ebvon avdueoa oto (euydpl. Auth 1 utddeon elvan yprioyln O TEQITTOOELS TOU
oL VoMo TixéC BeV €youv aTolxés adieg, 1 ot alec Toug elval YEVIXOC ampoadlOPIGTES, OTOTE
xatatdooovtal uovo Ue Bdon ouyxpeloelg (euymy.

Emmiéov, 10 mpoBinua utohoylopol ulag extiunong Uéylotne mUovopavelag yia TNV XEVIPIXT)
O1dToln OTO YEVIXEUUEVO HOVTENO amoTeAel Yevixeuon tou tpolAfuatoc Kemeny. Emoyévoc,
1) YEVIXELUOT) TOU TPOTEVOLUE EiVal XATE XATOLO TEOTO YUGLXT|, aPoU Tal TEOBANUTA EXTIUNONG
uéylotng mavogdvelag €youv xat ouctay TNy (Bla doun.

Erniong, to selective Mallows povtélo eivan ehoytotind, ol mopéyel eAdytotn TAnpogopla, Ue
™V évvola 6Tt 1 0€an TV U1 ETASYUEVEDY EVOANOXTIXWY 0TV XEVTEWXT SLdTalT), dev ennpedlel
v mdavdTnta napatienone xopioc mdavic (teploplopévng) didtalng.

Ye authy TV Simhwpatixy epyaota, Yewpolue To TEOBANU avedpEOTC TNS XEVTEXNE OLdTadng
and eMTr Oelypato xadog xou To TEOBANua avaxataoxeurc wag extiunong yéylotng mwa-
VOQAVELXG YioL TNV XEVTEIXY B1dTolT), Yiot omoodnrote Thdog deryudtwy eioddou. Iapéyouue
O TNE PEAYUATA Yo TNV TEPITTWON AVTITIAOU Xal TNV TUYla TEQITTWOT X YEVIXEVOUUE
Tov ahybprduo mou tpoteiveton omd Toug Braverman and Mossel [2009], yia tny tepintwon ek-
MOV BELYUdTWY. A@Qrivoupe avoixtd To TeoBANUA EVEECTC QUG TNEWY PEAYUATWY BELYUOTIXNS
TOAUTAOXOTNTOG YLl TNV TEOCUQUOC TIXY| TERITTWOT).

1.2 Oswpntixd unoBadpo

Ye autrv Ty evotnta, Topouctdlovue VePeAddEC €vvoleg Tou amoteloly TN Bdor Twv o-
TOTEAECUATWY TOU TAUPOUGCIALOVUE OTIC EMOUEVEC EVOTNTEG.  MUYXEXPUEVA, ToEOUGLACOUUE
apevog oplouéva epyolela amd T ewpla mdovotAtwy xan agetépou, oTolyelo and TN Yewpla
UTOAOYLO TIXHC Udnome.

Ocwpia mdavothtwyv. H dewpio miovotitwy eivar to gpyodelo ue to omoio yivetan
BLVITY| 1) AVEAUGT) XoU 1) YN \OT) TNE TUYAOTNTAS, TOU ATOTEAEL piot EVVola Tou €YEL amacy OANOEL
Tov dvlpwmo and Tig apyéc TN LoToplog.



1.2 Oewpntxdé undBadeo 3

‘Evo and o Bacixdtepa epyarela tne Yewplag mdovothtwy elvon ol avicOTNTES GUYXEVTEW-
onc. Ilpdxertan yio epyoleior Tou yenoiwomoolvTal yior Vo amodetlel xavelc 6Tl oplouéveg
Tuyaleg ueTOBANTES €youv avormounTnd TeofAéguun cuuneptpopd. I'evind, 1 npoBiedyudtn-
Tor oLVOEETAL UE TNV emavdANdn avelapthtwy Telpopdtwy. Tlapadétouue, hotndy, to @edyua
Chernoff-Hoeffding:

Theorem 1.2.1: Chernoff-Hoeffding ppdypo

Forw X1,Xa,...,X,, n € N avebdptnres tuyaies petafAntés Bernoulli. Av X =
Yicfn) Xikar p = E[X], tdre:

PriX > p+a] < e_”DKL(HTM”%),O <a<n—p

Kai

PriX <p—a] < e_"DKL(l_M:aHl_%),O <a < p,

dwou Drcr(pllg) = plog(p/q) + (1 — p) log(:=£),Vp, ¢ € (0,1).

"Evor ooy onuovtind epyodeio eivon 1 miovotin pédodoc. Ipdxeiton yio pla uédodo anddel-
&ne g UoEEng evOC AVTIXELEVOU UE Xdmoleg EMBUUNTES LOLOTNTES. JUYXEXQWEVA, oV UTORE!
Vo 0ploTel évag mavoTidg Yweog omou 1 miavotnta vo emAéEoupue €va oTolyelo Tou €yel
Tic emiuuntéc WLoTNTES Elvan awotned Vetinr, téTe elvon BEPono mwg Eva tétolo avTixeluevo
UTAPYEL.

Ocwpia uToAoYLoTIXYC K&dONong. H pdinon eivon 1 Sladixacio UETATEOTAC TNG EUTEL-
clag oe yvoorn. Eve anotekel yevixd éva Siemotnuovixd medio €peuvag, 1 UEAETN TG udin-
oNg amd YoNUUTIXAC OXOTLAS XATES T OUVATY| PECW Tou HoVTEAOL Tou TeodTEVE o Valiant
[1984]. ErAuepa, undpyouy didpopo HordnUaTIXd TAXCLY TOU YENOULOTOLOUVTOL Yot TNV UEAETT
avtioTolywy TEolANUdTLY udinong. e authY TV pYaoid, EMXEVIPOVOUACTE 0TO TAXCLO
e Mdinone Kotavouwv.

Ocwpolue éva oivoro X xou ula xotavour) D méve oto X. Aoufdvouue ave&dptnto delypato
oné v D. To npdfinua exudinone xatavopody, 6w oplotnxe and Kearns et al. [1994a],
elvon T0 axdlovdo:

Definition 1.2.1 (Md0non katavouav): Eotw ® uia kAdon katavoudy otov X. Tdte
n D keAeftar enapkis KatdAAnAn ya udonon ws mpog kdmow petpikn) d avdueoa oe
katavoués mbavétntas, av ya kdde €, € (0,1), vrdpyer évas akydpidpog moAvwvupikol
Xpovou mou, doouérng mpoofaons o€ éva OeryUaTOANTTI) OTOLTONTOTE OUYKEKPIUEVNS
ad dyvwotns katavouris D € D, emotpépea uia katavour) D' n onola ikavonoel tny
aviootnTa:

Pr{d(D, D) > €] <.
Ay D' € D, tte 0 alydpiipos Aéyetar katdAAnlog (aAdids akatdAAnAog).

Etvor cuving mpoxtnr) vo mapaetpomololue Ty xhdorn unodéoewy D Ue oplopéveg Tapa-
uétpoug. Ta delyyoto L0650U YENOULOTOOVVTOL YL VO EXTILACOUNE TIG TYES TOV TURUUETEWY
TRV, ywels va yeeidletar anopaitnta vo Bpolue Tic oxpiBeic Tiwég Toug. I'evind, éoo ot e-
ATWACELS TV TORUUETEWY TANCLALOUV TIC OWOTEC TWES, TO60 TANGIALEL XU 1) EXTULWOUEVT
xatovoun| Ty oy, Mia BéATiotn pédodog extiunong mapouétowy elvon n uédodog YEYloTng
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mavogdvelag, 6Tou 1 exTiUNoT TNG TUEAUETEOU ETAEYETAL £TOL WOTE 1) TdavoTNTA VoL EpUouy
T OelypaTo ToV ToEATNEOVUE Vo eivan 1) UEYLIO T BUVATY, TAVK OF OAEC TIC BUVITEC EMAOYES
YL TNY TN TNG TUEAUUETEOU.

1.3 Kotavoueg diatdlewy

Trovétouue 6Tt A ebvan éva ahvolo evahhaxtindy mou mepiéyel n € N otouyeio. Mio didtaln
ebvan pior évar mpog éva xou et ouvdptnon T : A — A. ZupPoloude: (i) < w(j) < i =5 j. To
olvoho G 4 eivar 10 6UVOLO Ghwv TwV Slatdiewy ototyelwy tou A. Ilepopiouévn didtaln: m|p
elvon To otowyeio tou B C A v to onolo: sgn(w|p(i)—7|p(j)) = sgn(n(i)—= (7)), Vi,j € B.

Mia ouvdptnon andéctoong petadd STEEemY ToU Elval EUPEWS YENOWOTOWUUEYT, elvon 1
anootaon Kendall tau. Isodton ye 1o mhdoc twv Levyaplodvy mou eivar dlapopeTixd Toa&ivoun-
péva atic dvo Batdéelc. Tumxd, éyouue:

dir(m,n') = [{i <j: (x(i) = w(j)(n' (D) — 7'(j)) <O}

Katavour Mallows. H xotavoyr] Slotd€ewy OmoU EMXEVIPWVOUACTE GE AUTH TNV EQYA-
ola, eivon 1 xatavour; Mallows. Booiletan otnyv évvola tng xevipinic Swdtainge mo € N, mou
ATOTEAEL TNV ETXEATOVCA TWY TNG XATAVOUNG Xat OF Wla TopdueTeo eCdmhwong S > 0, wg

axohoVdme:
1
Prir] = ZefﬂdKT(Woﬂr)’
onou Z eivan plo otadepd xavovixomoinong. Av dadétouye 1 aveldptnto delypato plog xota-
vounc Modhowe, tote 1) extiunon péyiotng mdavopdvelag yior TNy xevTpixr| Sldtodn cuunintel

ue v cuvdpotorn tou Kemeny:

7° = arg max Z dxr (70, 70)
7T€6n
Le]r]

O urnoloyioude tne ouvddpoione Kemeny etvan yevixd éva N P-60oxolo mpdBAnua.

Movztélo selective Mallows. TI'evixeboupe to povtého Mallows taote v unopolue vo
AdBouye un TARELS SloTdEels:

1
—Bdgr(mols,m) v
e Vr e s
Z(s) ’
Kahotye to obvolo S C [n] obvoho emhoyhc. T'evind, oe éva derypotind npogih mou anote-
Aeltow amd meplocdTepe TNg Wlag un mAnpelc Slatdiels, Yewpolue Toug axdroudous TEOTOUS
TOEAYWYNG TV CUVOAWY ETAOYYC:

Pr[rn|mo, 8,S] =

1. Avtaywriotikd: e auTthy TNV TERINTOOT), To GUVOAN ETAEYOVTAL OO XATOLOV OVTITUAO.

Evdeyopévwe va €youv emAeyel pe T€T0l0 TPOTO OGTE Vo €CUQTMVTAL TO €Vol amd TO
ADV

dhho. XupPBohiCoupe to avtioToyo poviero pe Moo,

2. Tuyafa: Oswpolye 6TL T cUVOAA emhoyhC elvon aveEdptntar Selypato amd xdmolor xo-

tavoyur| D eni tou 20", SuuBorilouue o poviéro pe M::Dﬂ(p)
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3. Ilpooapuootikd: Ye authv TNV TERINTOOT), €YOLUE TEOCEUCT, OE EVal OELYUATOAATTY Se-
lective Mallows erypdtwyv, otny lcodo Tou onolou totodeTolue GUVOAL ETAOYNC Ue-
yédoug m < n xaw oty é€odo AopPdvouye Selypoata g avtiotolyng (neploplopévng)

ADP(m)

Mallows xoovoufic. Xupfohouoc: M s

AeBoUEVWY TWV CUVOAWY ETLAOYAC, Xol OE AUTHY TNV TepinTwon, N extiunon péyotne ma-
VOQAVELIS YLOL TNV XEVTELXY) DIATOEY), TEOXUTTEL A6 TNV ETIAUGT) TOU YEVIXEUUEVOU XAVOVA TOU
Kemeny:

7 = arg min E dKT(WO\SpW)
TeS,
Le(r]

1.4 Modaivovtag plo xpUUEVT BLATAEN

XNy evotnTo auTh ToeoucLaLOUPE ATOTEAECUATO TOU APOEOVY TNV BELYUATIXT TOAUTAOXOTTA
Tou TEoPAUaTOC evpeone uiag xpuphc Sdtadng and YopuBnon delypata. Apyixd, mopouct-
dCoupe anoteréopota and T BiBMoypapio avapopixd ue TNV TEpiTTWwor Tou Tor delyuorta efvon
TANEELC OLUTAEEC OAAG xan TNV TepinTwon mou elvon ouyxploeic CEuywy. XTr CUVEYEL, Ta-
pouctdloupe Ta Bixd Yo amoTeAéGUaTA, To omola aopolv To selective Mallows povtého, o
TEELC OLUPORETIXEC TPOTIOTOLACELS TOU: TNV AVTAYWVIOTIXY, TNV Tuyaiol XL TNV TEOGUPUOGC Ti-
x| emhoyn cuVOALY. Tt TNV avTaYWVIG TN XU TNV Tuyola TERITTWOT), TUEEYOUUE UG TNRd
(PEAYLOTOL YL T1) BELYUATIXT) TOAUTAOXOTNTA, EVE YIO TNV TEOCUQUOC TIXY| TERITTWOT] o€y OL-
HE €Vol dve QEdYUo To OTolo elvol amOEEOLX TV UMOTEAECUGTWY Yiot TNV TERITTWOY TOL To
delypara elvan cuyxploeic Leuydy.

Mallows model. Xty epyaocia twv Caragiannis et al. [2013], napéyovtar auotned @edy-
MOLTOL YLoL T1) BELYUATLIXY) TOAUTTAOXOTITAL TOU TEOBANUTOC EVPECTC TNG XEVTEXTS ddtadng and
aveldptnra delypota g xotavours Mallows.  Muyxexpwéva, €youue to axdroudo dtumno
Yewpnua:

Informal theorem 1.4.1

Fotw My, g pia katavour) Mallows pe kevtpikn oidraén my € &,, ka1 tapdpetpo ekdnicw-

ons B > 0. I'a kdOe € > 0, vrdpyer évag akydpidios mov, 6001évou evis derypatiol mpopl

ané v (Mg, g)" yia kdOe v Touldyiotov foo ue rdroa tury O((1 — e=?)~2log(n/e)),

avaxaAbmra Ty kevtpikr) Sidtaén o pe mdavétnta toukdyiotor 1 — €. EmmAéov, av

71" = 0(% log(n/€)), tdte kavévas akydpidpos dev unopel va eyyunlel mbavétnta emrvyiag
=

“(1—e?)"2=0(1/8%) 6tav B =0

O akydpriuoc mou yenouylonotettat yia To dve gedyua, etvat 1) dnuiovpyia evog xateUTUVOUEVOU
YeuPLaTog 6oL xdE xopUYT avTIoTOLYEl O piot EvahhoTixt xat 1) xoTelduvoT xdie oxung
avTioTolyel oTny SLdTan Yo TIC avTIOTOLYES EVUAAAXTIXEC TTOL UTODEXXVUEL 1) TAELOdYNQlal TwV
detyudtwy. Amodetxvieton, Aoyw Tou 6Tt 1 mdavotnta éva Lebyog vo tadvountel Addog eivou
dvey gearypévn and v TR e P /(1 — e78) xou o anotéheopa TEOXUTTEL UE EPapUOYT TNG
aviooTnTag évwong xon Tou @edyuotog Hoeffding.
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To anotéheoya ebvar aoLUTTOTXE oLy To, YTl To Lebyn oTolyeinv mou elvar Simhovd oty
wevtpie didtaln, éyouv miavdTnTa Addog Tafvdunone axpide e /(1—e™?) xon to MRdoc
Toug elvon n. Ilpoxewévou va e€acgaiiotel ot xdde tétolo Levyog Ya Tadvoundel ocwotd,
TeEnel To TAUOG BELYHdTWY Vo efvan apxeTd UEYIAO WOTE Vo BoVUE Tal VYT UTA OPXETES
(POPEC. LNUELOVOUUE OTL EVTOC TNG CLVAETNONG hoyopiluou, To 1 dev Eeywpllel ACUUTTWTIX
amé 0 n?, Tou eivor xou 0 Aéyoc Tou To PEdyud evar oPLYTO.

OopuBwodelg cuyxpioelg. H nepintwon mou xdie delyua armoteheiton amd povodixo Ce-
Oyog otoyelnwv avtioTolyel oto povtého YopuPfwdnv cuyxplocwy. Yto mhaiclo emnthuong
CLYXPLTIXADY TEOPANUATWY e YeHon ouyxpioewy ue VopuBo (xdde ocbyxplon unopel va eivou
Aovioouévn pe mdoavotnto 1/2 — 7, émou v € (0,1/2)), ou Feige et al. [1994], édeilav o
a6 oudo amoTENECUL

Informal theorem 1.4.2

Erapkodv O(nlog(n/e)) BopuBddes ovykpioes cote va pddouue tnr kpuupérn didtaén
pe mavotnTa tovddyiotor 1 — €.

[Tpogoveg, To TapATAVE Gve PEAYHOL VLo T OELYUTLXY) TOAUTAOXOTNTA £iVol AUGTNEO WS TTEOG
n, xooe 1 ovyxprtixd talvéunon yeetdletoa (nlogn) cuyxploeic.

O 1pbémoC Ye TOV OO0 EMTUYYEVETAUL TO TOPATEVL OTOTEAECUN EfVal UE EXUETAAAEUCT| TOU
YEYOVOTOC OTL 1) Buadixy) avalTnoT), axdurn xou oTny tepintwaorn mou €youue YopuBndelg ou-
Yxploewc, unopel va vhonotnlel e tétoo tpono Kote va ypewdlovton O(log(n/e€)) ouyxploeic
yioe voo ohoxhnewdel pe mdavotnto emtuylag TouAdyloTov 1 — €. Luyxexpuuéva, VAOTO0UE
TNV duad| avalATnon wg évay Tuyaio Teplnato 6To 8évTpo Tng duadixnc avalATnong, OTou
xdde xopPoc avtiotoyel oe éva ddotnua. Ot ouyxploeg yivovtow Oyl UOVO Yiol Vo amopo-
oloouye o oo UTOBLEG TN ToL TEEyovTog dlao TAUATOC Yo peTofolue (o0yxpLon Ue eoooio
otouyelo) ok xou yior vor eNéyEoupe, xdde popd Tou YTdvouue ot évav x6uPo, av To oToL-
xelo mpoc avalAtnom avixel oto avtiotoyo Sidotnua (olyxpelon Ue dxpo Tou SLUo TAUATOS):
OLUPOPETIXG, EMOTEEPOVUE OTOV Tapamdvw xouPo. 'Etot, to opdhuota Soptdvovton xon yAL-
TWVOLUE TNV Aoyoptduxr) acuunToTxy emiBdpuvor. MEvel vor exeTUAAEUTOOUE TNV IOLOTNTA
QUTH), XAVOVTOC XATOLA TROETEEERYATIA XAl XATOLL ETMEEEQYATIOL EX TWV UG TEPWV.

Selective Mallows model. Y7o yevixeuuévo povtého anodeviouUe Ta axdhoudo QEdy-
HorTaL.

Apyxd, TapéyOUUE TPLYTA ACUUTTWTIXG QEAYUOTH Yo TNV OELYUITIXY) TOAUTAOXOTNTA OTNV
AVTAY WVLC T TIERITTWOT), GUVOPTACEL TNE TUPAUUETEOU GUYVOTNTAS, TTOU LlGOUTAL UE TOV EAC)YL-
670 Aoyo tou mARYoug eugavicewy xdnolou (ebyoug Teog To TANYOC TwV BeElYUdTeY:

Informal theorem 1.4.3

ADV

H berypanir) moAvrdokdtnza yia wny elpeon) Tns kevpikns owdtagng oo poveélo Moy
pe mbavétnta tovddywtor 1 — € elvar poly(l/ﬁ)@(%log(n/e)), omou p € (0,1] etvar n
napduetpos ovyvétnag, mo € Sy, f> 0 ke € (0,1).

To dvew Qedyu TEOXVTTEL UE TPOTO EVIEAMS TOPOUOLO UE AUTOV TOU YENOWOTOUUNXE Yia TNV
nepintwon mou to detypota eivon mAren. H udvn Swpopd eivon 6TL 1 eyyinon mou €youue ce
aUTAY TNV TERITTOON elvol GUVIETYGEL TOL Pr ot OyL Tou 7.
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To xdtw @edypa TpoxiTTel and TNV TopaTiEnon OTL av 1o TAUOS TwV Sladéoiuwy cuyxploewy
etvar o(n?log(n/e)), 6t undpyel éva cOvoro amd n/2 Lebyn To omola dev éxouv xowvd dxpa
xou to mhidog cuyxploedv Toug ebvon o(log(n/e)). Tote, av 1 xevtpixr Sudtaln eivor tétola
oote xoéva and o Lebyn autd elvon Swaboyixd totovetnuéva (mou eivon epixtd), xavévog
ahyopriuoc Bev pmopel vo eyyundel mbovotnTa emituyloc toukdylotov 1 — €. MmopoUue,
TENOG, VO XUTAOXEUACOUUE VAL OLAVUCHA GUVOA®Y ETIAOYNG UE CUYVOTNTA P TO Omolo BeV
nepéyel méve and 2prn? cuyxploeic.

AvtioTtouyo gedypato amoxToUUe yio TNV Tuyola TERITTMON), OTOU 1) TUPGUETREOS LY VOTNTAS
avTioTotyel otV eAdytotn TiavdTnTa eupdvions evog (edyoug oTotyelwy.

Informal theorem 1.4.4

7 7 ’ z ’ 7 RND(D)
H Serypatikr) roAvmdokdenta ya Ty elpeon s kevtpikns oudtaéng oto poveélo M, -y

pe mbavétnta touddywtor 1 — € elvar poly(l/ﬁ)@(%log(n/e)), onou p € (0,1] etvar n
napduetpos ovyvétntag, mo € Sy, f> 0 kar e € (0,1).

To dvw Qedryuo TEoXOTTEL X0t G AUTAY TNV TEPITTOON UE avTioTolyo TEOTO, Ue TNV TEocV1XT
oL yenowonotolue yia xdie (ebyog Tov vouo ohixic mavotntog Yo To ThAdog eupavicemy
TOL.

To xdtw pedyua TEoxUTTEL av emAéEouUe TNV xatavouy| emAoync D mou emdéyel xdde oot
yelo aveldptnra, €10l Wote xdde (evyog oTolyelwy va emAéyeton ye mdavotnta p. I'evixd,
av éva (ebyog mou amotele(ton amd dladoyixd oTolyelor TNE xeEVTEIXg BidTagng Bev eupovio Tel
TOTE, BeV UmopolUE Topd Vo To Tadivouricoude Tuyaio. Me Bdon authv Tnv nopathenon xau
XATIAANAO TEYVIXO YEWRIOUO, TROXUTITEL TO WG GV ATOTEAEGUOL.

Télog, Yot TNV AvToy WVIOTIXT| TERITTWOT), TEOXVTTEL WG CUUTEQUCUN TWV ATOTEAEGUATMY TOU
napouctdlovta oto Feige et al. [1994] to axdhovdo anotéheouo:

Informal theorem 1.4.5

7 z ’ 7 7 7 ADP(m)
H beryatixn nolvndoxdtnta yia tny elpeon tng kevpikng 01dta&ng oto JLovTéro MWO’ 3
pe mavétnta tovAdyiotov 1 — e etvar O(;: log(n/e)), dnovmy € &y, B> 0 kare € (0,1).

Tuyxexpyéva, opadorololue Tic ouyxploelc Levydyv ot naxéta yeyédouc m/2 Leuymv xou yia
x&de ToxéTo yenoylomololue Eva delypa. Autd elvon duvatdy, SLOTL o alyopLiuog YopuBndoug
to&vounone yenotponotel O(log(n/e)) napdhinha Bruoto, 0TOTE UTOEOVUE VoL OPABOTOCOU-
uE Tic ouyxploelc.

201600, 0NV TEOCUPUOCTIXY TEp(TTWOTN elvol avolyTd To TEOBANUA EVPECNC OCUUTTOTIXG
CPLYTOV QEUYUATWY Yol TN OELYUTIXY) TOAUTAOXOTN T
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1.5 IlpoBAjpota avaxatacxeurc Mallows

Yy mpoondiela Vo eXTUNCOLUE TNV xevTexr Odtaln tng xatoavourc Mallows, n BéAtio
oTpaTNYXY elvan Vo yenoionoltjoouue TN YEYodo uéyiotng miavogpdvelas. ‘Onwe, kwotéco
7on avapépaue, TO TEOBANUN auTod elvan, otV cuyxexplEvn Tepintwor, N P-duoxoho. (-
61000, e Ta Selyuota El6d0L TEopyovTal and TNy xotavour) Mallows, dev Bploxduacte
amopoltnTo 6T YEwdTeEn Tepintwon. T v axpifela, emeidy| yvweilouue 6TL Tor delyporta
Tpoépyovton and TNy xatovour Mallows, unopolye, onwe €deilay xat ot Braverman and Mos-
sel [2009], vo unohoyicouye pla extipnon péyotne mdavopdvelds oe YpGVo TONUWYLUIXO WS
TeOg N

Informal theorem 1.5.1

I'a kdVe o > 0, vndpyer évas akydpiduos o omoiog vrodoyiler pe mavétnta tovAdyiotoy
1 —n™% upia extiunon uéyotng mbavopdveias, doouévwy avebaptntwy deryudtwy Tng
katavouns Mallows, o omolog Tpéyer o€ xpovo:

24«

a 1
T= O(n1+720(5+ﬁ7) log? n)

O ahyopriyog mou EMTUYYAVEL T TOEATAVE AmOTEAE(TOL amd BUO PACELS. MTNV TEWT, UTO-
hoyiCe pio extiunomn tng xevtewxrg Sudtang, n onola ta€ivouet xdde evadhaxtixn oe uio Véon
Tou Beloxeton xovid atny Y€arn Tou oty xevipr| Sdtaln. Autd elvon duvatoy, Adyw Tng ou-
YX*EVTPWoNE Tou eupaviouv ol Tuyaieg ToToVeTACELS TwY oTolyElwy oTa delypata Yopw and
Tic apywég Toug Véoeig. H apynr extiunon mou yenoiwomoolue eivon 1 péon Véon eugpdviong
xdde otouyelov. ‘Eneita, enedr) xou 1 extiunon yéylotne miovopdvelag €yl TNy WOIOTNTA VoL
Tavopel xdle otoyelo xovtd oty apyixy) Tou Véom, avti vo PAZoude oAOXANEO TOV YHOEO
Sy, Pdyvouue péoa o Eva UTOGUVOAS ToL, OTOL YVWEILouPE OTL TEQLAOUBAVEL UE UEYSAN TiL-
Yovotnta xde extiunon wéyiotng miavopdvelag xan UmopolUe Vo Tov oy nuaticovye ue Bdom
Vv extiunon mou Perxaue oty mewtn @don. o Ty Tomxh avalitnom, yenotlomololue
Evory oA YOELIUO BUVOULXOU TEOYEUUUITIONOD, TEdYU TOL Efval BUVATOV AOYW XAl TNG BOUNg
Tou TpofAuaToC BeATioToNoMONG 6TO OoTtolo AvTIoTolYEl 1) UEYIoTOoToiNoT TNE THAVOPAVELXS
o7o poviého Mallows.

[evixebovtag Tov Tapandve alyderiuo otny teplntwor tou selective Mallows povtélou, hay-
Bdvouue OTL:

Informal theorem 1.5.2

I'a kdOe o > 0, vndpyer évas akydpiduog o omoiog vnodoyiler pe mavétnta tovAdyiotoy
1 —n™% upia extiunon uéyiomng mbavopdreas, 6oopévwy avebaptntwy deryudtwy Tns
katavouns selective Mallows, o omoiog Tpéyer oe xpovo:
2+a _1
T =0(n*+ n' et 90(575) log? n),
érou p € (0,1] efvar n mapduetpos ouyrdtnras.
O ahyodpuluog mou yENoLWOTOWUUE OE aUTAY TNV TEpInTwoT €xel avtioTolyn doun pe oautd

TIOU YPTNOWOTOLETOL OTNV TERITTWOT 6oL Tar delyuoTa elvar TAHRELS BIATACELS. DUYXEXPWIEVA,
amoTeAElTOL oo BLO PACELS:

1. Elpeon onuetoxol extiunt g xevipixic oudtadng, omiady ploag dudtagng n onolo To-
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rodetel xdde evadhoxtnr oe pla 9€on mou elvon xovtd oty Vé€ong TS oTNY XEVTEXN
oLdToln.

2. Avalhtnon yoew and uio TEpLOYY) TOU ONUELIXOU EXTIUNTYH OTOV Yweo &,.

oty mpodtn @dom, eldoue 6Tt oty Teplntworn mou To delyyota ebvar TAYen, umopel va
yenowornomlel o extuntic wéong ¥éong. lotdéco, otav To delypata dev elvon mANen, o
EXTIUNTAC auTHC Bev GouAeletl, emeldr) 1 ¥éon omou eppavileton xdmolo evoloxTixr o uia
Teploplouévn SLdtaln Peloxetal oe BAPORETIXG YORO amd TN VEoT TNG GTNV (EVTEIXY OLATAEN.
Emopévee, xdvouue yprion tou onuetaxod extiuntr: H 9éon xdide evahhaxtinrc xadopiletan
a6 T0 TARYOC TWV GAAWY EVUAAAXTIXOY TOU eu@ovi{ovTon TAEVOUNUEVES OF UXPOTEREC VECELS
a6 auTAY oTNY TAsodn@lo Twv delyudtwy Tou aupdtepes eppaviCovtor. O Adyog Tou SouAeleL
QUTOS 0 EXTWNTACS, ebvan YTl o 800 evolhoxTixéc elvon TaEVouNUEVES axeid 1) pio amd Ty
GAAn otV (evBeyouévwe TEploplouévn) xevipix Sdtadn, ToTe 1 mdavoTNTa VoL ERPOVIOTOUY
ue Aovioouévn oelpd elvon pxe.

[o Ty Seltepn @dom, YENOHIOTOLUUE TO YEYOVOS OTL TO TEOBANU YeyloTonomong tne mwda-
VOQAVELNG TOU EXTHINTH TNS XEVTEIXNC Bidtadng oto selective Mallows povtého €yet napduota
doun| ue auTH) Tou TAREoLC povtéhou. 'ETol, umopolue Vo yenoHLOTOLCOUUE ToV (Bl ahyopLd-
MO BUVAULXOL TROYEUUUATIONOU Yiot TNV ToTuxr avaltnon. MAAoTa, umopolue YohopmvoVTog
TOV 0TOY0 pag, WoTe avtl yio pio extiunon péylotne mboavopdvelog var apxoluacTe o uia
extiunon e omnolag 1 mbavogdvelo elval TOLAAYLGTOV {01 PE AUTAY TNG XEVTEXAC Bidtadng
(wag xou yvopilouue 6Tt 0 onuelaxds exTUNTAC elvar oNueElxd XOVTd oTNY XeVTpix didtaln,
e UeYSAn miavotnta), déa mou npotdinxe and touc Rubinstein and Vardi [2017], va emi-
AOoOULUE TO TEOBANUA Ywelg Vo BElEouue OTL 1) exTiunoT UéyioTng mdavopdvelag etvat onuelond
XOVTA 0TV %EVTE BLdTaly, houfBdvovtag To axdhovdo anotéAeoua:

Informal theorem 1.5.3

I'a kdle a > 0, vrdpyer évag akyopidpog o omoiog vrodoyilel pe mbavoTnta TovAdyiotoy
1 —n~% pia extiunon ue mbavopdveia toukdyiotoy ion pe avtr) Tns kKevTpikng oidtaéng,
doouévar avebaptntwy Octyudtwy tns katavouns selective Mallows, o omoiog tpéyer oe

xpovo:
2+a _1
T =0(n*+ n' T or? 920(F2) log? n),

émou p € (0,1] efvar n tapdpetpos ouyrdTnras.

OAoXANE®VOUUE TNV AVAAUCT UAC ATOBEVIOVTAS OTL X0 1) eXTIUNGCT HEYIOTNG THAVOQAVELUS
elvan onueLoxd xovtd oty xevtpwt| dtdtaln (dpa xou oMUELXE XOVTE GTOV GNUELIXS EXTYUNTH),
oS hoBdvoupe pio emiPdpuvon tne TéEne Tou 1/p?, 6mou p elvor 1) TapdueTpoC cUYVOTNTOC.
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1.6 Xvuncpdopata xow LEANOVTLXY] BOLAELX

Oploaye to povtého selective Mallows w¢ plo topepBoly| avdueco oto yoviého Mallows xon
T0 HOVTERO YopuPBWdGY cuyxploewy. Tlpdyuatt, oe xdie pla and TIC TREIC AUTEC TEQLTTWOELS,
1 extiunon péylotne mavopdvelag yior Ty xevipixn Sudtaln €xel oty oucio TNV (Blor doun.

Aqgob oplooue teelg TaEdAoYEC TOU HOVTENOL: TNV QVTOYWVICTIXY, TNV Tuyakol Xou TNy Tpo-
GOPUOCTLXY), ATODBEIEAUUE ACUUTTOTIXG GOLYTA PEAYUOTA YOl TNV OVTOY VLG TIXT X0l TNV Tuyaia
TepinTwom, o onola LTOBEXVOIOLY OTL OTAY BEV EMAEYOUNE eUElc Tot GUVOAX EMLAOYTS, TOTE TO
XAAOTEPO OV UTOPOVUE VoL XAVOULUE €lvon var SoUUE TNV €lc0d0 cay €va aUVolo amd cuyxpeloelg
Ceuyv.

Téhog, deilope OTL umopolue vo unoloyloouyue uio extiunon yéyiotng mdavopdvelag Yo Tny
XEVTEWT OLATAL T UTOAOYLOTIXG aMOBOTIXG, OTAV 1) TUPAUETEOC CLYVOTNTAG OEV ToPVEL TOAD
MIXQEES TUIEC.

(2ot600, UTdEyoLY BUO XuTEVHOVOELC OTIC OTOIEC TO AMOTEAECUATE UUC UTOEOVY VoL EREXTO-
YoOv. Apywd, elvon avolytod To TEOBANUL €0PECTIC ACUUTTOTIXG CPLYTMV PEAYUATOY YLa T1)
OELYHATIXT) TOAUTAOXOTNTA TOU TROPBAAUATOS EVPECTC TNS XEVTEXNAG BLdTaE NS TNV TEOGEUO-
TN TEPITTWOT).

H 8eltepn xoatediuvon avtiotoryel oty BeAtinon Tng xeovixfc TOAUTAOXOTNTAS TWY dAYO-
eliuwy edpeong exTNoE®Y PEYIOTNS 1) UEYIO TS THAVOPAVELXS, OXOUT XAl OTNY TERITTWOT)
TOU 1) TOPAUETEOG ouyvotnTag elvon uixpr. H w0éa elvan otL oty 1 mapduetpog ouyvoTN-
ToG UXEOEVEL, TOTE ol TO TEOBANUO TOU EYOUUE VO ETLAUGOUUE YUAUPWVEL, apol 1) eXTUNOT
péyloTNne mavopdvelog yivetan Ayotepo oxpl3hc. LNy axpola TEpInTwor Tou Wia EVUAAUXTL-
x| Oev eupovileton TOTE 0Tl BelypaTo, VLol TUEABELY U, UTOPOUUE VoL TNV TOTOUETAGOUUE GE
onowdnote Véon o ula extiunon yéyiotng miavopdvelog.



Chapter 2

Introduction

2.1 Problem statement and motivation

Ranking distributions have been thoroughly studied during the last years. They are used
to model many different problems like preference aggregation and voting. Hence, they
are naturally linked to social choice theory, although they go beyond it. Social choice
theory (Brandt et al. [2016]) aims to establish aggregation rules that satisfy some specific
sets of axioms that they ideally should have and which can be computed efficiently. The
preferences are thought of as rankings over a set of possible alternatives. However, due
to some impossibility results, prevalent in which is Arrow’s impossibility theorem (Arrow
[1951]), that state that no aggregation rule can satisfy at the same time some specific
sets of axioms, viewing the problem from a different perspective became motivated. The
preferences are viewed as samples from some ranking distribution and the problem of
preference aggregation was reduced to learning the parameters of the ranking distribution
with which the problem was modelled.

One of the most widely studied ranking distributions is Mallows distribution, which was
introduced by Mallows [1957]. Under Mallows model, there is the notion of central ranking,
which is the mode of the ranking distribution and the probability of sampling each other
possible permutation, diminishes exponentially to the distance of the permutation of the
central ranking. This is the reason why Mallows distributions are called Distance based
ranking distributions. Several metrics between rankings have been proposed. However, one
of the most useful ones, is the Kendall tau distance, which counts the number of inversions
between two permutations. That is, the number of discordant pairs of alternatives in the
two permutations. Mallows model is also linked to Kemeny’s rule for ranking aggregation
(Kemeny [1959]), which, in the context of social choice, exhibits some notion of optimality,
since it corresponds to finding a ranking for which the total number of pairwise disagree-
ments with the input rankings is minimized. However, computing Kemeny’s ranking is
shown to be an NP-hard problem in the worst case. Interestingly, under Mallows model,
the Kemeny’s rule, which in this case corresponds to finding the maximum likelihood esti-
mation of a profile of independent Mallows samples, can be computed efficiently, as shown
by Braverman and Mossel [2009], since Mallows model corresponds to an average case of
the Kemeny’s aggregation problem, where it is, with high probability, easy.

However, assuming that the input samples are complete rankings is not always realistic.
Especially in cases when the number of alternatives is very large, assuming that we have

11



12 Chapter 2. Introduction

access in complete samples is overly optimistic. Nevertheless, our goal is to estimate
the complete central ranking, using incomplete sample rankings. For that reason, we
propose the Selective Mallows model which generalizes the Mallows model, by enabling
the sampling of incomplete permutations. Again, there exists a central ranking, but its
meaning is slightly different: After selecting the set of alternatives to be ranked in a
sample, the central ranking is restricted to the selected set and the sample is drawn from
a Mallows distribution with the restricted central ranking as the distribution’s mode. A
Selective Mallows sample profile is, in general considered independent, conditioned on
the selection sets of each sample it contains. Different selection procedures correspond
to different settings. For example, the sets might be selected by an adversary, randomly
or adaptively, if we are given access to a Selective Mallows sampler that inputs a set of
alternatives and outputs a sample of the corresponding Mallows distribution.

Selective Mallows model takes into account what we call ignorance bias. That is, the prob-
ability of swap of two alternatives in a selective Mallows sample diminishes exponentially
to the number of alternatives that are ranked between them in the central ranking and are
included in the corresponding selection set. This applies to cases where the alternatives
do not have an individual value, or their value is completely unknown, and their ranking
is produced by comparing one with another. Clearly, if one does not know an alternative,
they cannot compare it with another. For ignorance biased sampling agents, the unknown
alternatives’ positions in the (complete) central ranking do not influence the probability
of swap of any pair of selected alternatives.

Furthermore, the problem of computing the maximum likelihood estimation of the central
ranking under the selective Mallows model, conditioned on the selection sets, is shown to be
a generalization of Kemeny’s aggregation problem. Therefore, the Selective Mallows model
can be considered as a natural generalization of the Mallows model, since the maximum
likelihood estimation problems in each case have virtually the same structure.

Also, it is interesting to point out that Selective Mallows model is minimal, not only because
of its simplicity, but also because the information that each sample provides is minimal, in
the sense that the position of the alternatives that are not selected in the central ranking
does not influence the probability of sampling a reduced permutation according to selective
Mallows model. In contrast, under a model where the samples are produced by initially
sampling a complete ranking and then projecting it into a reduced subset of alternatives,
the positions of the alternatives that do not appear in the sample, generally, do influence
the probability of observing a specific reduced ranking.

In this thesis, we consider the problem of retrieving the central ranking from selective
Mallows samples and also reconstructing a maximum likelihood estimation of the central
ranking, for any number of input samples. In other words, we study the statistical and com-
putational complexity of learning the central ranking under the selective Mallows model.
We establish tight sample complexity bounds in the adversarial and random settings and
we generalize the algorithm proposed by Braverman and Mossel [2009] in order to efficiently
compute the maximum likelihood estimation of the central ranking given selective Mallows
samples. We leave open the problem of establishing tight sample complexity bounds for
retrieving the central ranking under the adversarial model.
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2.2 Related work

In statistical analysis of ranking data, the first milestone was the introduction of paramet-
ric models such as Mallows [1957], Plackett [1975] and Fligner and Verducci [1986]. Those
models have been widely studied and many generalizations have been proposed. Another
line of research is nonparametric approaches like Lebanon and Mao [2008]. We are inter-
ested in the problems of modeling and inference on models for incomplete rankings. This
direction has several branches.

First, in works like Huang et al. [2012] and Kakarala [2012], the problem of aggregating
partial rankings is considered, which corresponds to the case when the input consists of
partial rankings, namely partial relations on the alternatives space.

Another branch corresponds to pairwise queries as input. For instance, in the work of
Braverman and Mossel [2007] the Noisy Comparisons model is considered and an efficient
algorithm for computing the maximum likelihood estimation of the underlying ranking is
proposed, while in Feige et al. [1994], the query complexity of retrieving the underlying
ranking under the same model is settled, in the context of providing parallel algorithms
for solving various problems using noisy comparisons between pairs of alternatives. Other
relevant work in this direction includes Wauthier et al. [2013] and Busa-Fekete et al. [2014].

Incomplete rankings can also be viewed as censored data (Lebanon and Mao [2008]). Taking
into consideration the process that projects complete rankings into incomplete ones, pro-
jective models emerge, for example in the work of Fahandar et al. [2017]. Such approaches
are linked to notions like coarse data (Heitjan and Rubin [1991], Gill et al. [1997]), which
in the context of statistics describes data that consist of units that correspond to sets of
extensions. For example, an incomplete ranking corresponds to the set of complete rank-
ings that order the alternatives that appear in the incomplete ranking in the same order.
A particular line of work regards modeling and inference from top-k lists. That is, the
input consists of incomplete rankings that correspond to the highest ranked alternatives.
Relevant results can be found in Busse et al. [2007]|, Meila and Bao [2010], Meila and Chen
[2012], Tang [2018]| and Chierichetti et al. [2018].

Instead of projecting rankings into incomplete rankings (based on the positions) it could
be assumed that the incomplete rankings are created by projections in the alternatives
space. For example we refer to Rajkumar and Agarwal [2014] and Sibony et al. [2015].

In Lu and Boutilier [2011], a generalized sampling method that can describe arbitrary rank-
ing distributions is proposed, and a method for inferring in Mallows model from incomplete
rankings is provided.

Our selective Mallows model is a different formulation of the noisy choice model introduced
in Procaccia et al. [2012], which interpolates between Mallows and Noisy comparisons
model. While the two models have similar structures, their formulation serves different
purposes. In Procaccia et al. [2012], several interesting questions regarding inference from
incomplete rankings are addressed, while we address the problem of retrieving the complete
central ranking, under assumptions that correspond to the structure of the selection sets.

On the technical part, our work is mostly related to Caragiannis et al. [2013], Feige et al.
[1994] and Braverman and Mossel [2009]. In the works of Feige et al. [1994] and Cara-
giannis et al. [2013], the sample complexity of retrieving the hidden ranking under Noisy
comparisons and Mallows model, respectively, is settled. In the work of Braverman and
Mossel [2009], an algorithm for computing the maximum likelihood estimation of the cen-
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tral ranking under the Mallows model that runs in polynomial time with respect to the
number of alternatives is proposed. The algorithm is generalized in Rubinstein and Vardi
[2017], where a relaxed solution concept (likelier than nature estimation) is introduced.

2.3 Related results and our contribution

We examine the problem from two different aspects. First, we propose three different
settings and acquire tight sample complexity bounds for retrieving the central ranking in
two of them. Second, we extend the algorithm presented by Braverman and Mossel [2009]
to solve the maximum likelihood estimation of the central ranking problem from incomplete
samples in the case that each pair of alternatives appears frequently in the samples.

Learning a hidden ranking. In the complete Mallows case, according to the work of
Caragiannis et al. [2013], the central ranking can be retrieved using poly(1/5)©(log(n/e))
samples, where (3 is the spread parameter, n is number of alternatives and € is the accepted
margin in the probability of error. In general, the important dependence is on the number
of alternatives, since we concentrate on cases where the spread parameter does not take
significantly small values. The bound is achieved by using a pairwise majority estimator,
namely creating a ranking where each pair is ordered according to the majority order of
the pair’s comparisons in the samples. This works, because the probability of swap of
any two alternatives is upper bounded by e™?/(1 — ¢=#) and hence the result follows by
applying the union and Hoeffding bounds on the probability of error. Also, the bound is
tight because there are n — 1 pairs that have probability of swap equal to e=? /(1 — e P )
and enough samples are needed in order to be sure about each one of them.

On the other hand, according to Feige et al. [1994], in the Noisy comparisons model, namely
when we have access to noisy pairwise queries (each query may be wrong with some proba-
bility, say e /(1—e~?)(< 1/2)), the number of samples needed to retrieve the hidden rank-
ing (when we pick the queries during the runtime - noisy sorting) is poly(1/3)©(nlog(n/e)).
Interestingly, the sample (query) complexity’s dependence on n is the same as in the case
of noiseless sorting. Observe that in the complete Mallows case, there is a logarithmic
blow up: In the noiseless setting, a single complete ranking is sufficient. The reason that
the logarithmic blow up can be prevented in the noisy comparisons case is that noisy bi-
nary search can be implemented in a way that enables error correction: It can be viewed
as a random walk on the binary search tree, where each time the search reaches a node,
we (noisy) check whether the searched element falls into the corresponding (to the node)
interval (see figure 2.1). The algorithm proposed by Feige et al. [1994] consists of three
parts, the first and last of which are designed in order to exploit the central part (noisy
binary search), without having excessive query cost.

Our constribution: We define three different settings, corresponding to ways of picking r
selection sets:

e Adversarially ( 25"’5) Picked by an adversary. In this case, we consider a frequency

parameter p € (0,1]: Each pair of alternatives appears in at least pr sets. In this
setting, the sample complexity’s dependence on p is crucial, since it might take very
small values. We prove that the sample complexity for retrieving the central ranking
is poly(l/ﬁ)@(%log(n/e)). We use pairwise majority estimators similarly to the
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Figure 2.1: Noisy binary search

complete Mallows case to get the upper bound. The lower bound is a consequence
of the fact that if we are given a fixed selection sets vector with o((n?/3)log(n/e))
pairwise comparisons, then we cannot guarantee to find the central ranking with
probability of error less than €. Then, we just show that one can create a selection
sets vector that is p—frequent, but has no more than 2prn? comparisons. The reason
why the number of pairwise comparisons must be ((n?/3)log(n/¢)) is illustrated
by figure 2.2: Each row contains n/2 disjoint pairs for which any algorithm needs
sufficient information to rank them (£2(nlog(n/€)) queries) and there are n/2 rows.

o Randomly (Mig%w)): Picked according to some selective distribution D, indepen-

dently. We consider a frequency parameter p € (0, 1]:
D(i and j selected) > p

In this case, we get similar bounds to the adversarial case: poly(1/ ﬁ)@(% log(n/e)).
The upper bound is established using the same method, additionally applying the
law of total probability on the number of appearances of a pair. As for the lower
bound, the idea is that if /2 pairs are selected independently with probability p in
a sample (according to D), then it is likely that some of these pairs never appears.
If we pick a central ranking with those pairs adjacent. If an adjacent pair does not
appear we rank it at random at best. The outline of the proof follows:

— Pick any row of figure 2.2. It corresponds to a set R of 2™/2 possible rankings.
(Randomness has negated “vertical attacks” (according to figure 2.2)).
— Pick a central ranking uniformly at random from R.

— Then, observe that if the samples do not contain some of the pairs of the row we
picked: each such pair can be swapped in the central ranking without changing
the probability of observing the samples.

— With a careful handling, we get a bound for the expected success probability of
any algorithm (over uniform distribution in R).

Probabilistic method: There exists a central ranking satisfying the bound.
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Figure 2.2: Possible selections for a “difficult” central ranking

o Adaptively (./\/li(?’z(m)): Picked in the runtime of an algorithm having access to a
selective Mallows sampler. In this case, we define a capacity parameter m < n:
|S| < m, VS picked. A trivial consequence of the algorithm for noisy sorting proposed
by Feige et al. [1994], is that the sample complexity in the adversarial model is
poly(1/8)O(;%log(n/¢)). However, finding tight sample complexity bounds for this
model remains open.

Mallows reconstruction problems. Assume we are given r iid Mallows samples. The
problem of finding the maximum likelihood estimation of the central ranking from these
samples coincides with Kemeny’s aggregation problem, which is known to be NP-hard, even
if » = 4. However, as shown by Braverman and Mossel [2009], there exists an algorithm
that outputs a maximum likelihood estimation with probability at least 1 — n™%, for any
« > 0 that runs in polynomial time to n. This is done by exploiting the structure of
the average case to which Mallows reconstruction problem coincides: the input rankings
are samples from a Mallows distribution. The algorithm consists of two main parts. In
the first part, an estimation of the central ranking that with high probability ranks each
alternative close to its location in the central ranking is computed. This is possible since
the alternatives’ positions are concentrated exponentially around their initial positions,
under Mallows model: the average position is used. In the second part, since it happens
that the maximum likelihood estimation of the central ranking has the same property
regarding the pointwise proximity (every alternative is placed close to its initial position)
to the central ranking, the search space is reduced to a subspace of &,, which includes the
rankings that place each alternative close to its position in the estimator calculated in the
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first part. Additionally, restricted in this subspace, the structure of the problem enables
one more manipulation: use of dynamic programming to move from the initial estimation
to a maximum likelihood one.

Our contribution: We generalize the algorithm described above to solve the maximum
likelihood estimation problem from incomplete samples. First, we need to establish a new
initial estimator, since the average estimation does not work in the case of incomplete
samples, since the positions space of central ranking and that of a sample are different.
Instead, we use the positional estimator, which ranks an alternative according to the
number of other alternatives which are ranked before it in the majority of samples. We
prove that the positional estimator is pointwise close to the central ranking when the
samples are p—frequent for any p € (0, 1], for which: 1/p < logn. Our proof is based
on a notion of neighborhood defined for each alternative i € [n] that includes all other
alternatives that are ranked close to ¢ in many samples. The neighborhood is defined
by two parameters: the first specifies when two positions are considered close, while the
second one specifies the threshold of close appearances in order to include an alternative
in the neighborhood of 7. On the one hand, the neighborhood’s length is bounded and
no the other hand the alternatives not appearing in the neighborhood of an element ¢ are
in many samples most likely ranked correctly with respect to ¢. Therefore, with a careful
handling we prove that the positional estimator ranks each alternative close to its position
in the central ranking.
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2.4 Organization

We organize this thesis into this introductory chapter, four main chapters (3, 4, 5, 6) and
a conclusions chapter (7).

Chapter 3: Theoretical Background. In this chapter, we introduce the theoretical
framework of our work. We begin by presenting elements of probability theory and some
useful tools that it provides. Probability theory is deeply connected with computer science,
since it provides the tools to manage and analyze randomness.

In the second part of the chapter we present the fundamental elements of computational
learning theory. Learning theory is a very active field of research that is relatively young,
having been formally introduced from a mathematical perspective by Valiant [1984].

Chapter 4: Probability and Permutations. In this chapter we introduce the no-
tation that is used throughout the rest of the work and after mentioning some ranking
distributions, focusing in particular on Mallows distribution, as well as several relevant re-
sults of the existing literature, we present, in section 4.2.3, the model we propose, namely
the Selective Mallows model.

Chapter 5: Learning a Hidden Ranking. This chapter concerns the problem of
retrieving the central ranking from complete or incomplete rankings. After presenting the
extant results on statistical complexity of retrieving the central ranking from complete
noisy rankings, under Mallows model (Caragiannis et al. [2013]), as well as from noisy
pairwise comparisons (Feige et al. [1994]), we establish, in section 5.3, our own tight sample
complexity bounds for the adversarial and random settings of selective Mallows model.

Chapter 6: Mallows reconstruction problems. In this chapter, we encounter the
problem of finding maximum (or maximal) likelihood estimations for the central ranking.
We initially present the work of Braverman and Mossel [2009], in which a polynomial
time algorithm for solving the problem with high probability under Mallows model is
introduced. In section 6.3, building on the work just presented, we acquire a generalized
efficient algorithm for the selective Mallows case.

Chapter 7: Conclusions and further work. In the final chapter we summarize our
results and identify some of the relevant problems that are left open.



Chapter 3

Theoretical Background

In this chapter, we present the fundamental concepts that constitute the basis of the work
we present in the following chapters. First, we discuss about probability theory and its
general connections to computer science, meanwhile presenting some of the tools we will
use throughout the rest of this work. Consequently, we describe elements of computational
learning theory and its history, which constitutes the framework of our work. As will
become clear, probability theory and computational learning are closely related, since
computational learning’s development requires the tools that probability theory provides.

3.1 Probability theory

Randomness is a concept that has drawn the interest of humanity from the beginning
of its history. However, a solid theory providing the necessary tools to explore it in a
consistent way has been established relatively recently. As presented by Kolmogorov [1950],
Probability theory, although undoubtedly possessing individual interest, appears to be a
branch of the more general field of Measure theory (Halmos [2013]), in whose development,
prevalent were the contributions of Lebesgue [1918] and Borel [1919], among others.

In this section, after providing some context on measure theory, we focus on describing
some of the strong tools that probability theory offers.

3.1.1 Measure theory

Measure theory emerged as a result from the endeavor of mathematicians to generalize
the Riemann integral (Riemann [1868|) in order to be able to integrate more complex
functions and, generally, acquire a deeper understanding on the limitations of integrability.
In a nutshell, it is known that each function that does not have too many incontinuities is
Riemann integrable. However, the class of functions that are Lebesgue integrable is strictly
wider that those that are Riemann integrable.

The answer to the question of how to increase the width of integrability lied to reversing the
calculation method: the integral was no longer perceived as a sum of the products of the
lengths (area or volume) of infinitesimal intervals with the corresponding approximations
of the value of the function, but as a sum of the products of the values y of the function
with the total length (area or volume) of the subset of the domain that corresponds to
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points where the function takes values close (defined via some partition of the value axis)
to y. The problem reduces to generalizing the concept of length (area or volume) to sets
that are as complex as possible, while the notion of length keeps some of its basic intuitive
properties and also, the length (area or volume) of intervals remains unchanged. This is,
in fact, the core of difficulty of integration and the generalized length (area or volume)
corresponds to what is known as Lebesgue measure.

What turns out to be really surprising, is that the family of the subsets of R that are
Lebesgue measurable is so wide that in order to prove that there exists a subset of R that
is not Lebesgue measurable, one has to use the axiom of choice (for example we refer to
Jech [2013]). This means that one cannot construct a set that is not Lebesgue measurable.

To measure is to project subsets of a set to non negative values (possibly infinite), such that
adding the measures of countable families of independent subsets is equivalent to measuring
their countable union, while the measure of an empty subset cannot be positive. Length,
area and volume are measures. In fact, the way these concepts are intuitively perceived
led to the development of measure theory, in order to examine them in an abstract way.
However, probability is also a measure, with the additional property that the values it
assigns to sets are finite and normalized. It measures the likelihood of subsets of a set
of possible outcomes, which, in some sense, corresponds to the attempt to predict the
unknown. Inheriting all the properties of measure theory, as well as developing some of
its own, it serves to provide tools for analyzing and predicting the behavior of extremely
complex or inherently random systems or even designing such systems in order to solve
problems.

3.1.2 Probabilistic tools

In Section 3.1.1, we presented the foundations of probability theory in the context of
measure theory. Indeed, measure theory is the right tool to study probability theory
from a generic point of view. However, it is often useful to concentrate on specific fields
of probability theory, without the formality of measure theory. In this section, we will
present some useful probabilistic tools as well as some of their applications.

Computer science and randomness are closely related. For one thing, randomness is fre-
quently the most efficient way to model or analyze a problem, but also because designing
algorithms that use randomness often results into simple and elegant solutions.

In general, randomness has the property to negate adversarial input choices. For example,
the algorithm of Quicksort, developed by Hoare [1961], uses randomness to eliminate the
possibility of adversarial selection of the initial permutation of the elements to be sorted.
Another application where this property can be taken advantage of is dimension reduc-
tion, which is the problem of reducing the dimensionality of a set of points in R¢,d € N
to k < d, so that the distance of any two points is not affected significantly by the projec-
tion. In particular, the random projection algorithm of Johnson and Lindenstrauss [1984],
which is virtually as simple as picking a random k—dimensional hyperplane and providing
the projections of the points on that plane to the output, is, remarkably, competitive to
preexisting sophisticated techniques, like Principal Component Analysis (Pearson [1901]
and Hotelling [1933]). Intuitively, what randomness offers in this case is, similarly to the
example of Quicksort, the debilitation of the adversary (who in this case picks the points),
by making it impossible for her to pick a direction along which the elements are stretched
(and therefore this direction’s contribution to the distance of two points is significant) and
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the random projection is probable to ignore this direction’s contribution, because picking
a random hyperplane is the same as making a random rotation. Furthermore, the com-
putation of the random embedding can become more efficient by calculating a projection
matrix with the use of binary coins, which was proposed by Achlioptas [2003].

Another example of the power of randomness is its application to solving the primality
testing problem. Algorithms like the Miller-Rabin test (Miller [1976] and Rabin [1980])
are probabilistic algorithms that use Fermat primality test (we refer to Thomas H. Cormen
[2001]) in order to determine with high probability whether a (large) number is prime. The
high level intuition behind this algorithm is that when repeating independent random trials
(coin flips or Bernoulli trials) that have a non negligible probability of success, the first
successful trial will most probably not appear with much delay.

Furthermore, randomness appears to be useful for solving mathematical problems or ana-
lyzing deterministic algorithms. A method that is frequently used to solve combinatorial
problems is the Probabilistic Method, which was initially introduced by Erdos [1947].

For all these reasons, it is useful to present some of the tools that probability theory
provides. For further reading, we refer to Mitzenmacher and Upfal [2017], Alon and Spencer
[2004] and Motwani and Raghavan [2010]. In this work, we focus on presenting some basic
notions before deriving some methods to prove that sometimes random variables behave
in a highly foreseeable way (also known as concentration inequalities) and conclude by
presenting some elements of the Probabilistic Method.

Moments and moment methods. For the following, let X be a random variable that
is either discrete or (absolutely) continuous. If X is discrete, we will denote with p its
probability mass function and with S its support, while if it is continuous, we will denote
with f its probability density function. The mathematical expectation of a random variable
will be denoted with:

E[X] = Y zes - p(x), if X is discrete,
a fR x - f(x)dz, if X is continuous.

For any function g, it holds that:

Y zes 9(@)p(x), if X is discrete,
fxeR g(x)f(x)dz, if X is continuous.

Elg(X)] = {
In the specific case when g(z) = 2" for some r € N, E[g(X)] is called the r—th moment of
X. To acquire an intuition on why the moments of a random variable are important, we
use the following example:

Pilot example 1. Let X be a discrete random variable and let £ be a set of events that
determine X as follows: X = ) _p 1{e happened}. (Observe that this representation is
in fact very general.) Then, E[X] = )" _5 Prle] and for the second moment we have:

E[X?] = Z Pr[{e happened} N {¢’ happened}] = Z Prle] + Z Pr[e/|e]Pr|e]
ee'elb ecFE e#e’

Observe that while E[X] only depends on Ple], e € E, the second moment requires knowl-
edge about the probability that an event ¢ € FE happens, conditioned on the event
e € E\ {¢'}. Therefore, second moment includes more detail about X.
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We could say that second moment measures the inward pairwise correlations of the random
variable X. In that sense, the importance of variance (Var(X) = E[X?] — (E[X])?) can be
better understood: It is a comparison between a quantity that includes the inward pairwise
correlations of X (E[X?]) and a quantity that is, conceptually, the closest to the first one,
but which is conditioned to ignore inward correlations ((E[X])?). Hence, the quantity
E[X?]/(E[X])? would be an equally useful way to describe a concept like variance.

In the specific case when the number equivalence classes of E x E that correspond to
the equivalence relation: R = {((e1,¢€}), (e2,€})) : Prle}|e1] = Pr[e|es]} is small and the
corresponding value Pr[e|e] of each class is available in a closed form, then E[X?] can be
calculated analytically, which enables the use of the second moment method.

Similar, generalized arguments can be made for the moments of order higher than 2.

As illustrated by Example 1, the moments of a random variable contain information about
it. Therefore, we have managed to partially express a random variable with numerical
values that correspond to its distribution. These values can be used to quantify some
properties of the random variables and, most practically, their concentration.

A basic inequality that involves the first moment of a non negative random variable, is
Markov’s inequality, which is easily derived from the following observation:

{X >a} < X/a,

where X is a non negative random variable and @ > 0. Taking the expectation of both
sides, with respect to X, we get the following theorem:

Theorem 3.1.1: Markov’s Inequality

For any random variable X > 0 and any a > 0:

Pr[X > a] <E[X]/a

As a corollary: Pr[X > aE[X]] < 1/a. Indeed, when the only known parameter of the
distribution of X is its expectation, then Markov’s inequality is the best bound we can
hope for. But, influenced by the discussion up to this point, it is natural to conjecture that
knowing the variance of X would yield a better bound. In fact, this bound can be easily
acquired by applying Markov’s inequality to the random variable Y = (X — E[X])2. This
time, X need not be non negative and we get the following theorem:

Theorem 3.1.2: Chebyshev’s Inequality

For any random variable X and any a > 0:
Pr{|X — E[X]| > a] < Var(X)/a?

As a corollary: Pr[|X —E[X]| > aE[X]] < a%% Using these bounds, we are often able

to obtain interesting results. This process is usually referred to as the moment method.

Application 1. We consider a G, , graph G, which is a random graph with n vertices
that includes each possible edge independently with probability p (we toss a coin with
probability of heads p for every pair of vertices). We are interested in deciding whether we
should bet all of our money (real estate included) on one of the two following statements:
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1. G contains a 4—clique.

2. G does not contain a 4—clique.

One might think that since G is produced randomly, we should be reluctant in accepting
the bet. However, using the second moment method, we can conclude that in some cases,
i.e. when p < n=2/3 or p > n=2/3 and n is very large, we should accept the bet with no
second thoughts.

Let X = X(G) be a random variable that equals to the number of 4—cliques contained in
G. Also let E be the set of events e(vy,va,v3,v4) : G[{v1, v2, v3,v4}] is isomorphic to Ky
for all (v1,ve,vs,v4) € (V(G))*, where G[S] is the subgraph of G induced by S C V and
K, is the 4—clique. Then:
X = Z 1{e happened}
ecll

Therefore, similarly similarly to Example 1, we get:

BIX] = Y Pl = 00 = ()1 = 0s?)

eclk eclR

- If p < n~2/3, then as n — oo, E[X] tends to become zero. Hence, from Markov’s
Inequality: Pr[X > 1] — 0. In this case, we should bet our money on statement 2. - If
p > n~2/3 then E[X] — +oo. But this does not give us any guarantee. The intuitive
reason why this happens is due to lottery effect: the expectation of a random variable can
be arbitrarily high, if the probability of it being zero is not exactly equal to 1. We will
have to use the second moment method.

We omit details and claim that: Using the method described in Example 1, we can show
that:
Var(X) = O(n'p®) + O(n°p'!) + O(n’p”)

Therefore, since E[X] = ©(n*p%), we have: Var(X)/(E[X])? — 0 as n — +oco. Applying
Chebyshev’s inequality: Pr[|X — E[X]| > E[X]] — 0, which gives that Pr[X = 0] — 0.
Therefore, in this case, we should bet on choice 1.

2/3

- In case p =~ n~“/?, we should decline the bet, because we do not have a guarantee.

Chernoff-Hoeffding bounds. We saw that the higher the order of a moment, the
more the information it provides for the random variable, which leads to stronger bounds.
However, while the order increases, the calculation of the corresponding moment becomes
more difficult, because we have to take into consideration the dependencies between longer
sequences of events. However, when X = " __5 1{e happened} and E consists of indepen-
dent events, then it should not be very difficult to increase the order of the moment that
we examine arbitrarily. We also know that the function g(x) = e* contains, in some sense,
the monomials of any order, due to its Taylor expansion: e® = 14z +22/2! +23/3!+ .. ..
Therefore, when E’s events are independent, we are driven to compare, instead of E[X"]
and (E[X])" for some r € N, the exponential moment E[e¥X] and e*X]. This leads us to
the Chernoff-Hoeffding bounds, initially presented by Chernoff [1952] and brought to their
general form by Hoeffding [1963]. However, there is a less strict property than indepen-
dence that can be used instead of it to obtain similar bounds. This property is refered to
as Martingale sequences’ property and the corresponding bound (Azuma’s Inequality) is
attributed to Azuma [1967] and Hoeffding [1963].
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Another way to view Chernoff-Hoeffding bounds is, among others, as a tightened version
of Markov’s Inequality, using knowledge of the structure of X: X = Zie[n] X;, where
(Xi)ig[n) are independent. Then, from Markov’s inequality, for any A > 0, we have:

Pr[X > z] = Pr[e™ > M) < e ME H i
i€[n]

Assuming independence between Xj:
Pr[X > 2] < e H E[e ]
i€[n]

Then A is selected so that the right-hand side of the equation is minimized. The result is
stated in the following theorem:

Theorem 3.1.3: Chernoff-Hoeffding Bound

Let X1,Xo,...,X,, where n € N be independent Bernoulli random variables, X =
Yicfn Xi and p = E[X]. Then:

pta

PriX > p+a] < e PSR where 0 <a <n— p

and:
©w

—ayy
n I n), where 0 < a < u,

where Dicr(p|lg) = plog(2) + (1 — p)log(:=£), Vp, q € (0,1).

PriX < p—a) < e "Pre(l=

Remark 3.1.1: There are several variations of the Chernoff-Hoeffding bound. For ex-
ample, bounds can be derived from the relative distance of X and its expectation.

The Chernoff-Hoeffding bound implies exponential concentration. That is, although the
sum of independent random variables is itself random, its behavior is more or less pre-
dictable for sufficiently large number of summands.

Probabilistic Method. Finally, we present a method that is useful for proving the
existence of objects within a class that satisfy some properties, when explicitly constructing
them is complicated. The main idea is to define a class of objects and select one of its
elements at random. Given that the probability that the random object satisfies the
desired property can be proven to be strictly positive, then one such object must exist
within the class. Interestingly, there exist methods of derandomization (e.g. the method
of conditional expectations) that, in some cases, find an element with the desired property
deterministically.

Probabilistic method should already be familiar to the reader, since it has been in fact
used already in 1. However, it is important to present it separately as a general method
which makes use of various techniques, second moment method included.

The goal of probabilistic method is clear: prove that an object exists. The most obvious
approach is to make use of counting arguments. That is, define a class of objects, measure
its size and compare it with the probability that a random element has the desired property.
Another technique is derived from the following theorem:



3.2 Computational Learning Theory 25

Theorem 3.1.4

Let X be a random wvariable. Then:

PriX > E[X]] > 0 and Pr{X <E[X]] >0

Moment methods can also be used in order to apply probabilistic method. However,
a technique of particular interest is the one introduced by ErdHos and Lovasz [1975],
commonly refered to as the Lovasz Local lemma. The high level intuition of this result
is that if a family of “bad” events cannot cooperate (through dependencies) and also each
event is not very probable, then the probability that none of them happens should be
significant.

Theorem 3.1.5: Lovasz Local lemma (symmetric version)

Let E = ey, e, ..., e, be a family of events such that:
1. Ple] < p,Ve € E for some p € (0,1).

2. For any e € E there exist a subset I of E of size at least n — d — 1, for some
d < n, such that:

Prle| Nerer €] = Prle] (mutual independence).

Then, if 4pd < 1, it holds that: P[N.cp{e did not happen}] > 0.

3.2 Computational Learning Theory

Learning is the process of transforming experience into expertise. Its study has inspired
scientists from various fields like psychology (for example, we refer to Gross [2015], chap-
ter 11), biology and medicine. However, in the recent years, learning is also examined
from a formal, mathematical perspective, which enabled its emergence as a branch of com-
puter science. Formalization of learning had been thought as an impossible task, but,
surprisingly, a formal framework was eventually proposed by Valiant [1984]: the Probably
Approximately Correct Learning model (PAC learning). It was one of the cases when the
important part of a mathematical study is the definition rather than the theorems or their
proofs: The PAC learning model enabled the development of computational learning the-
ory which served as a way to use a machine not only as a tool to apply human expertise in
order to solve problems efficiently, but also as a producer of expertise. There are currently
various frameworks of computational learning theory that share the same principles but
serve different purposes. For example, some of the frameworks of computational learning
theory are: PAC Learning, Distribution Learning, Online Learning, among others.

In this section we will focus on two frameworks: PAC learning and Distribution learning,
defining their main goals and describing some of the techniques often used in each case,
meanwhile providing some examples. For further reading, we refer to Kearns et al. [1994b],
Shalev-Shwartz and Ben-David [2014] and Blum et al. [2020].
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3.2.1 Probably Approximately Correct learning

In order to examine a problem of the real world from a mathematical perspective, it is
necessary to be able to express it in a formal, abstract way. The PAC learning model is
the first such expression for the learning problem.

The context. Assume that X is a set of objects for which one wants to be able to have
some knowledge about and ) a set that quantifies this knowledge, which we call labels
set. In particular, we assume that there is a rule f : X — ) that matches the elements
of X to elements of ). The problem we need to address is approximating f using a finite
number of input data. Note that if nothing is assumed of f, then the best thing that can
be inferred for f is nothing more than what data directly suggest. However, in reality,
each problem has a specific structure, which corresponds to what is called prior knowledge.
Exploiting the structure of the problem and combining it with the input data, one may be
able to sufficiently approximate f.

Definition. In PAC learning model, the input data consist of pairs of the form: (x,y),z €
X,y = f(z) € V. In this case, we say that the input data are labelled, for obvious reasons.
We also assume that there is an unknown distribution D over X from which an independent
sample is drawn each time an input pair is formed. The goal is to find some h : X — Y
for which the following quantity:

Lp ¢(h) = Prgplh(z) # f(z)]

is small. The quantity Lp ¢(h) is called the loss function. Observe that calculating the
value of the loss function is impossible, since f and D are unknown. However, making some
assumptions about f, we can show that for a specified selection of h, the loss function can
be bounded.

Making assumptions about f is in fact unavoidable, if one is interested in deriving useful
results. The following theorem illustrates this observation:

Theorem 3.2.1: No free lunch

Let 6 € (0,1) and € € (0,1/2). Then, if X is not finite, there exist D, f such that any
estimator h of f has loss: Lp r(h) > €, with probability at least §, for any finite sized
input.

Therefore, it is crucial to possess some prior knowledge. The prior knowledge we assume
we have is in the following form: There exists some known class of functions H C Y~
whose minimal loss element’s loss is adequately small. We call such a class of functions
a hypothesis class. The particular case where we assume f € H is called realizability
assumption. We are now ready to formally define the PAC learning framework. For the
following, we focus on the cases when Y = {0,1}.
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Definition 3.2.1 (PAC learnability): Let H C {0,1}*. Then H is called PAC learnable,
if there exists a function r = r(H,€,d), where €,0 € (0,1) such that for any €,0 € (0,1),
every distribution D over X and every function f : {0,1} — Y, there exists an algorithm
that given an input of size at least r, returns with probability at least 1 — § an element

h of H with: Lp (h) < e.

Empirical Risk Minimization. After defining the PAC learning model, one is inter-
ested in designing algorithms that find a hypothesis that minimizes the loss. The funda-
mental tool that helps the design of such algorithms is the Empirical Risk Minimization
(ERM). More specifically, assume that:

o [:(x1,y1),(72,92),..., (¥, yr) is the input.

e h denotes an algorithm that inputs I and outputs an element of H.

Then, the algorithm:

h = arg min % Z 1{h(zi) # 1}

heH ‘
i€[r]

is called the empirical risk minimization algorithm. Note that h might be a subset of H.
ERM returns one of the elements of A at random.

Example: Finite hypotheses classes. In the specific case when H is a finite hypothesis
class and f € H, then the size of input required to find a probably approximately correct
hypothesis i can be bounded from above. In particular, if |[I| = r > Llog(|#|/d), then
ERM returns with probability at least 1 — ¢ an element h of H with:

Lpf(h) <e
Let L(I,h) = %Zie[r] 1{h(x;) # v;} (empirical risk). Since f € H and L(I,f) = 0:

minpey L(I,h) = 0. Hence, the “bad” samples are those that assign zero empirical risk to
hypotheses that have a loss greater than e. Therefore:

Prlerror] < Pryopr[3h € H : Lp g(h) > e A L(I,h) = 0]
From the union bound, we get that:
Prlerror] < |{h € H : Lp s(h) > e}| max{Prrpr[L(I,h) = 0]|h: Lp s(h) > €}

However: |{h € H : Lp(h) > €}| < |H| and Prropr[L(I,h) = 0] < (1 — Lp¢(h))",
therefore:
Prlerror] < |H|(1 —¢€)" < [H]e™,

from which we conclude that if r > Llog(|#|/4), then Prlerror] < 4.
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Vapnik-Chervonenkis dimension. In many interesting problems, the hypotheses class
must be infinite in order to have meaning. A graphic example is the problem of finding a
hyperplane that separates points of R% that are labelled 1 with those labelled 0. Assum-
ing that there exists such a hyperplane, it would be interesting if we could approximate
it satisfyingly using only a finite number of samples. It turns out that we can and, fur-
thermore, there is a systematic way of measuring how “difficult” is a hypotheses class H
with respect to PAC learning. This systematic way is referred to as Vapnik-Chervonenkis
dimnesion (VC dimension) and had already been introduced by Vapnik and Chervonenkis
[1968], before the definition of PAC learning model.

In order to define the VC dimension of a class H, we have to insert some notation. Let
C C X. Then, for any h € H, we define h¢o to be a function defined on C that has the
same values with A on their common domain. Observe that it is possible that there exist
h,h' € H such that h # h’ but hc = hy,. We define the set He = {hc : h € H}. Then:
He| < 2.

Definition 3.2.2: Let H be a hypotheses class and C C X. Then, we say that H shatters
C if:
[He| =2

A hypotheses class H shatters a set C' if H for each labeling of the elements of C' contains
at least one hypothesis that labels the elements of C accordingly. For each hypotheses
class, there exist a maximum number of elements that can be grouped in a set C that H
shatters. This is the VC-dimension of H:

Definition 3.2.3 (VC dimension): Let H be a hypotheses class. Then, the VC dimen-
sion of H is defined as follows:

VC(H) = sup{|C| : H shatters C'}
ccx

The interesting fact is that VC dimension can be shown to provide almost tight bounds
for the sample complexity of learning a hypotheses class H, according to the fundamental
theorem of PAC learning:

Theorem 3.2.2: Fundamental Theorem of PAC learning

Let H be a hypotheses class and VC(H) = d € N. Then, for the sample complezity
r=r(H,d,€), where €, € (0,1), of learning H in the PAC setting, it holds:

= (DY g, o (Hesllfe) o))

€ €

I Remark 3.2.1: The sample complexity of Theorem 3.2.2 can be achieved from ERM.

Therefore, ERM has been proven to be an almost optimal learner, despite its generality.
However, the efficient computation of ERM is not always an easy task and for that reason
various techniques have emerged. Nonetheless, description of such methods exceeds the
goals of this study.
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3.2.2 Distribution learning

Another, slightly different framework of learning is the Distribution learning setting. The
main difference with PAC learning is that instead of learning a rule for labeling data,
we want to learn a rule for predicting which data will arrive, that is, their distribution,
previously denoted with D. In this case, the input data are not labelled.

In the general case, when no information about the distribution is known a priori, we
encounter the same problem as in the PAC learning setting: there is not much we can
learn about D. Therefore, it is a common practice to hypothesize that D belongs to some
family of distributions that is parameterized by some parameters that might or might not
be numerical. For example, in the context of learning ranking distributions, a commonly
used parameter is a central ranking, which is the most probable element of the support of

D (mode).

Another example is assuming that D is a normal distribution. It is widely known that any
multivariate normal distribution can be determined by a vector consisting of the expected
values per dimension and a covariance matrix. Therefore, if we are able to determine these
two structures within some small margin, then we will also have a good estimate of D.

Definition. In order to measure how good an estimate distribution is, one may use some
metric between distributions. One such metric is, for example, Total Variation distance,
which equals to the maximum absolute difference over all possible events between the
measures that each of two probability measures assign to an event. In fact, the distribution
learning setting as introduced by Kearns et al. [1994a| uses the concept of distance between
probability measures:

Definition 3.2.4 (Distribution learning): Let © be a class of distributions over X.
Then ® s called efficiently learnable with respect to some metric between probability
measures d, if for any €,6 € (0,1) there exists a polynomial time algorithm that, given
access to a sampler of any fized but unknown D € D, outputs a distribution D' which
satisfies:

Prid(D,D') > €] < 6.
If D' € © then the algorithm is said to be proper (otherwise: improper).

Definition 3.2.4 is similar to the definition of PAC learning in many ways. In fact, con-
sidering a more general definition of PAC learning setting (which we did not provide),
Distribution learning can be described as a specific case.

Parameter estimation. As we already mentioned, it is common to determine the class
of distributions ® using some parameters. That is, the hardness of learning ® is concen-
trated on some specific quantities that usually live in a discrete or a continuous space.
However, learning a specific parameter might be useful in itself, which is another motive
for pursuing parameter estimation. Hence, we only have to design algorithms for estimat-
ing these parameters, as well as to show that the particular parameterization of ® that
we use is good in the sense that small variations of a parameter imply small variations
to the distance between elements of ©. Furthermore, in the case that a parameter lives
in a discrete space, we can be hopeful that we can design an estimation algorithm that
retrieves the unknown parameter with high probability. In this case, the distance between
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the estimated distribution and the actual one might also be zero, with high probability.

In general, we want to design estimators of the parameters of ® that are:

1. Unbiased: That means that if  is the unknown parameter, 0 is its estimation and S

is a sample of size 7, then: R

2. Consistent (with respect to some metric d'): This means that when r — +o00, given

a metric d’ defined on the space where 6 lives, the probability that d'(6(S),0) > €
tends to zero for any € > 0.

However, the properties described above do not give any guarantee for the number of sam-
ples that might be needed in order to get an accurate approximation. For this reason, we
are usually interested in designing estimation algorithms with bounded sample complexity
for learning a parameter within a small margin of its true value, or even finding it ex-
actly, with high probability. In that context, concentration inequalities are used, as well
as probabilistic analysis of the specific model, namely the family of distributions ©.

Maximum Likelihood Estimation. Like in the case of PAC learning, there is a general
approach to the problem of estimating a parameter. This general approach is called Maxi-
mum Likelihood Estimation and is a special case of the Empirical Risk Minimization. The
concept of Maximum Likelihood Estimation was formally introduced in the first decades
of 20" century, by Ronald Fisher (Pfanzagl [2011]). However, in the context of Distribu-
tion learning, it gained one more interpretation: it is linked to an algorithm (ERM) that
provides nearly optimal sample complexity for a slightly different model.

Assume that s = (z1,x9,...,2,) € X". Also, let D(f) be the distribution in © that
corresponds to selecting the value of the unknown parameter to be 6. Then, the maximum
likelihood estimation of 6 is defined as follows:

0" = arg max Prg.p(g)r[S = 3]

In other words, the maximum likelihood estimation of an unknown parameter is the se-
lection that maximizes the probability to observe the sample that is actually observed.
Therefore, there is some sense of optimality associated with it: It is the best excuse that
the sample can give in order to justify its appearance.

However, there are cases when the maximum likelihood estimation corresponds to a prob-
lem that is believed to be unable to be solved efficiently (that is, in polynomial time).
Nonetheless, we should be aware of the following important fact: We should never forget
the structure of the problem we initially tried to solve - even if the maximum likelihood
estimation corresponds to an NP complete problem, there is the chance that, since the in-
put of our algorithm is created from some specific family of distributions, we are interested
in analyzing the maximum likelihood estimation problem in a corresponding average case
where it might be, in fact, easy.
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Probability and Permutations

In this chapter, we introduce the concept of permutations, identify the domains where they
are useful and present some probabilistic models that involve them either as parameters
or as elements of the support of the corresponding distribution. The reason why such
models are useful is illustrated by what we mentioned in the previous sections: While, in
the context of social choice theory, they provide an alternative point of view that helps
surpass problems encountered in voting, techniques from the learning theory can be used
in order to exploit them as prior information. For further studying, we refer to Marden
[1996].

4.1 Permutations

4.1.1 Definitions and notation

Imagine we have a set A that contains n € N distinct elements. Without loss of generality,
assume that A = {1,2,...,n} = [n]. We call A the set of alternatives (its elements).

Definition 4.1.1: The function ™ : A — A is called a permutation of the elements of
A, if  is a bijection.

In other words, a permutation is a shuffling of the elements of A. The following statements
are equivalent for any 4, j € A:

1. 7(i) < mw(j)

2. i rj

For any set A, we denote with &4 or Sym(A) the set of all permutations of A. In the
particular case that A = [n]: &4 = &,,. For any B C A and any m € &4, we define the
permutation of the elements of B which is induced be 7 as the element v of &g for which:

Ly J=1>n]
and we denote it with: 7|p.

It is interesting to point out that the set &, equipped with the operator of function
composition is a group and in particular it is called the symmetric group. The identity

31
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element of &,, is the permutation m;q : i — m;4(i) = i. For further study on group theory
and abstract algebra we refer to classic literature like Dummit and Foote [2004], as well as
Fraleigh [2003].

For the following, if ¢, j € [n] we denote with m;.,; the permutation that we get if we swap
the positions of ¢ and j in 7.

4.1.2 Distances between permutations

Since permutations are not numerical values, the notion of distance between them does
not appear naturally. However, there are many ways to define a metric in &,,. For the
following, let 7,7’ € &,,.

Hamming distance. The hamming distance between two permutations is defined as
the number of positions at which the two permutations differ. In particular:

djam(m,7") = [{i € [n] s 771 (1) # 7" (D)}

For example, if r =1 > 2 >3 =4 and 7’ =3 > 2 > 1 > 4 then: dgenm(m,7') = 3.
This distance is not very interesting, because it hides the structure of permutations. For
example, rotating all elements to the right (the last element becomes first) would have the
same distance from the initial permutation with that of its inverse.

Spearman’s footrule. A more interesting metric between permutations was introduced
by Spearman [1906] and it corresponds to the absolute dislocation of elements between two
permutations as defined by Diaconis and Graham [1977]:

dss(m, ') =Y |m(i) —='(i)]

1€[n]

Spearman’s footrule is indeed a more illustrative distance, since it takes into account the
proximity between the positions of elements.

Kendall tau distance. The distance which we will use in the biggest part of the rest of
this study is the Kendall tau distance, which corresponds to the number of swaps that the
algorithm of Bubblesort performs in order to sort 7 into 7’ (or reversely). Equivalently, it
equals the number of discordant pairs between the two permutations. Formally, we define:

dr(m, ') = [{i <j: (n(i) = 7(7))(x'(i) — 7'(j)) < O}

In contrast to the aforementioned metrics, the computation of Kendall tau distance is not
straightforward. In fact, it can be computed in O(nlog(n)) time using Mergesort and in
O(ny/log(n)) using more advanced techniques (Chan and Patragcu [2010]).

Although the time complexity of computing Kendall tau distance indicates that it is a
generally complex metric and hence many of its properties are not obvious, it provides a
meaningful interpretation of the distance between rankings, a statement which we hope we
will justify throughout the rest of this work.
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We now provide some properties of the Kendall tau distance. Of course, it can be easily
seen that it satisfies all the properties of a metric: It is symmetric, it satisfies the triangle
inequality and it becomes zero only when the two inputs coincide.

e Relabeling: Another useful property of Kendall tau distance is that it is independent of
relabeling. That is, for any 7, 7’,0 € &, :

dir(m,7') = dgr(ro, 7o),
where 7o(i) = 7w(o(i)),Vi € [n]. In particular, picking ¢ = 7/~!, we conclude that:
dKT(Tl',Td'/> = dKT(Trﬂ'lfl,Trid).

e Swap increasingness: An interesting question is how a distance between permutations
behaves in relation to the swapping of elements in a permutation. More specifically, it
would be interesting to be able to compare the quantities: dxr (7, 7') and dgr(micsj, ')
for some 4, j € [n], where we assume that the pair (4, j) is in the same order in 7 as in 7’.
Without loss of generality, we may assume that i =, j (and ¢ >, 7).

Imagine, first, that ¢ and j are adjacent in m. That is: |7 (i) — 7(j)] = 1. Then, what is
the Kendall tau distance of m;,; and 7’7 Recall that Kendall tau distance is the number
of discordant pairs between two permutations. Then, it is clear that: dxr(misj, ') =
1+ dgp(m, '), since all other pairs preserve their order in each permutation and the pair
(i,7) becomes discordant.

We now concentrate on the case that ¢, j are not adjacent in 7. Of course, the pair 4, j now
becomes discordant. However, the pairs that involve either ¢ or j and some alternative
that is ordered between them in 7, might also become concordant (with respect to 7’),
previously being discordant. Let k € [n] such that: i >, k >, j. Then, if we swap i and
j and (i, k) becomes concordant, that means that: k =, i and since i >,/ j, this implies
that k >,/ j. Therefore, (j,k) becomes discordant after the swap, while previously it was
concordant. Observe that the symmetric argument is equivalent. Hence:

drr(Ticsj,©) > 1+ dgr(m,7')

In other words, Kendall tau distance is swap increasing.
e Aggregation: Suppose that my,ms, ..., 7. € &, where r € N. Then, it holds that:
dKT(T(',Trg) = Z ]l{j >-7TZ Z}
irj

Therefore, if for any i,j € [n], we define q(i > j) as: q(i > j) = qur] 1{i >, j}, we

have:
> dirtmm) = X ati - 1) = (5 )= Y ali- (1)

Le[n] i=rJ i=rj

e Incomplete permutations: Suppose that S C A and v € &g. Then, we define the quantity
drr(m, ) as follows:

dgr(m,v) = dgr(7l|s,7),

which is the Kendall tau distance between the induced subpermutation of 7 on &g and ~.
Therefore:

dgr(m,y) =Y 1{j = i},

i>x]
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where j >, i & 4,5 € SA~v(j) < v(i). Therefore, if S = (51,52,...,S5,), where
S1,82,...,8 € Aand v € 6g,,V0 € [r] and also: ¢(i > j) = ZEE[T] 1{i =, j}, we
have:

> dir(my) =Y q(i - i)

le ['f’ i=r]

We denote with W;; = W;;(S) the number of indexes ¢ in [r] for which ¢, j € S;. Then:

ZdKTW’W ZW’LJ Z Z>—J)

Ze T’] Z>‘7r.7 'L>'7r.7

However, it holds that: W;; = Wj;, therefore:

Z drr(m,ve) ZWW Z i>7) (4.2)

Le(r] 1<j i=nJ

4.2 Probabilistic models of permutations

For the following, we will use the term ranking in order to refer to a permutation. The
term ranking implies that the order of the alternatives in a permutation corresponds to a
preference over them. This is what links permutations to social choice theory. Social choice
theory aims to define properties that the rules used to aggregate public opinion should
ideally satisfy, as well as establish such rules and study them from a computational point
of view. Probabilistic models of permutations have a rather similar goal, but use a different
approach: They hypothesize that each input ranking, instead of a vote, corresponds to a
sample drawn independently from some ranking distribution that belongs to a parametric
family of distributions and its parameters’ values are unknown. The goal is to learn
these parameters, using a small sample. These parameters typically correspond directly
or indirectly to an underlying ranking of the alternatives which is the ideal output of the
aggregation algorithm in terms of social approval. The voters become samplers (or noisy
voters) and vote aggregation reduces to learning a distribution.

4.2.1 Important ranking models

There are many probabilistic ranking models. Perhaps some of the most thoroughly studied
are:

1. The Placket-Luce model, which was introduced independently by Plackett [1975] and
Luce [1959]. In this model, we assume that each alternative ¢ € [n] corresponds to
an individual value w;, which expresses how “valuable” it is, in the sense that higher
w; (relatively to the values of the other alternatives) implies that it is likelier to rank
i higher. In particular, the sampling process is the following:

-Pick an alternative at random, where each alternative i is picked with probability
wi/ > jefn) Wy and place it in the highest available position.
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-Restrict on the rest alternatives and repeat the process until no alternative remains.
Note that the sum of weights in the denominator of the probabilities of selections
includes each time one less summand.

2. Models induced by pairwise comparisons. In this case, for each pair of alternatives
i,j € [n] we define a quantity p;; = 1 — p;; € [0,1]. In order to sample a ranking,
we use the rejection sampling method: First, we create a tournament graph, where
each vertex corresponds to an alternative and the direction of the edge between each
pair of alternatives {i,j} € [n] is selected independently and is from ¢ to j with
probability p;;. If the resulting tournament graph is not acyclic, we reject it and
restart the process. When we eventually create an acyclic tournament graph, we
return the ranking that corresponds to its unique topological ordering.

3. Mallows models or distance based models. The idea behind such models is that there
exists a central permutation which is typically denoted with my and the probability
of sampling a permutation m € &,, is linked with the value of some notion of dis-
tance between 7y and 7. In particular, mg is the mode of the distribution and the
probabilities of sampling diminish exponentially to the distance between 7y and 7.
The Mallows model was introduced by Mallows [1957]. We will focus on the case
when the distance used is the Kendall tau distance and whenever we refer to Mal-
lows model, we will assume that it uses this particular metric. One might think the
Mallows distribution as the Gaussian-equivalent distribution on &,,.

4.2.2 Mallows model

Definition and notation. The probabilistic model for the ranking generation with
which we will work is the Mallows model. The Mallows model is associated with two
parameters:

1. The central ranking my € &,.

2. The spread parameter ¢ = e #, where 8 > 0.

We denote with My g the Mallows distribution with central ranking mp and spread pa-
rameter e ?. For any m € &, we denote with Pr[r|mo, 3] or, when the corresponding
parameters are clear from the context: Pr[r| or Pr[r|mg], the probability that we sample
7 from My, 3. Then, it holds that:

Prir] = %e—ﬁdmwﬂf) (4.3)

Note that Z is a normalization constant that depends on 8 and n and is equal to:

n—1 k

Z=1[> " (4.4)

k=0 t=0

Sampling method. It can be shown that Mallows model is in fact a specific example of

a model induced by pairwise comparisons, as defined in 2. Therefore, a possible sampling
process is based on rejection sampling, where p;; = % for any ¢ >, j, which is

attributed to the French mathematician and philosopher Marquis de Condorcet, during



36 Chapter 4. Probability and Permutations

the Age of Enlightenment. However, this method is not computationally efficient and also
hides some of the structure of Mallows model. For this reason, the so called Repeated
Insertion Model was proposed by Doignon et al. [2004].

The Repeated Insertion Model (RIM) is based on the idea that a permutation can be
constructed by iteratively inserting the alternatives in a way that enables each time to
select the position of the inserted element independently with probabilities that can be
analytically determined a priori.

More specifically, the output ranking is created as follows. We insert the alternatives
according to their order in my. For simplicity, without loss of generality, assume that
o = Tiq. For any ¢ € [n] and any j < i, we define:
) e—B(i—J) (4.5)
pill) = 1 = 4.5
D h—o e PF

Then, we run the following procedure:

Algorithm 1: Repeated Insertion Algorithm

Result: 7
m(l)=1;

(i) = —1,Vi > 1;
fori=2,...,ndo

Pick j € [i] at random, where: Pr[j] = pi(5),Vj € [i];
for any i’ € [i — 1] for which w(i') > j do

‘ (i) ++;
end
m(i) = j;

end

It can be easily seen that the output of Algorithm 1 is always a ranking. Also, it can
be proven that for each m € &, the probability that Algorithm 1 outputs 7 equals the
probability that 7 is sampled from M 3.

Maximum likelihood estimation of central ranking. The central ranking of a Mal-
lows distribution has a specific meaning: It is the “common truth” around which the
sampled rankings fluctuate. Therefore, under Mallows model, the central ranking is a pa-
rameter that we would like to learn. As we analyzed in Section 3.2.2, a common technique
is to compute the maximum likelihood estimation (MLE) of the parameter of interest, in
order to estimate it in an optimal way, given a number of independent samples. It turns
out that finding the MLE of the central ranking given r independent samples of My, 5 is
equivalent to applying Kemeny’s rule (Kemeny [1959]) on the samples. We denote with 7*
the MLE of the central ranking.

Let 71, m2, ..., m ~ Mz, 3, independent. Then, for the MLE of my we have:

" = arg max ele_[[] Pr{my|mo]
r

Due to Eq.(4.3), we get that:

™ = arg 7?61%2;:[} dgr(mo, ) (4.6)
elr
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Unfortunately, the problem of finding 7* as described in Eq.(4.6) is shown to be NP-hard
(Bartholdi et al. [1989]). Even in the particular case that r = 4, the problem remains
NP-hard (Dwork et al. [2001a]). There are constant factor approximation algorithms for
this problem. In Diaconis and Graham [1977] and Dwork et al. [2001b| 2-approximation
algorithms are presented, while in Ailon et al. [2008] a simple algorithm (KwikSort) that
works for a family of related problems is introduced and combined with another simple
algorithm, yields an 11/7—approximation. More complicated techniques can be used in
order to get a PTAS for this problem, as presented by Kenyon-Mathieu and Schudy [2007].

However, we are interested in finding MLE exactly, under the Mallows model. Towards this
direction, there have been proposed various heuristics, for example by Fligner and Verducci
[1990], Cohen et al. [1998] and Meila et al. [2007]. Nevertheless, the first algorithm that
computes 7* in polynomial n—time with high probability was introduced by Braverman
and Mossel [2009], whose work we will present in a following chapter.

Retrieving the central ranking. The maximum likelihood estimation of my is one
way to estimate it. Arguably, among all the possible estimators of 7y, the maximum
likelihood estimation achieves the optimum sample complexity for retrieving mg. However,
as shown by Caragiannis et al. [2013], there exists a wide family of estimators that includes
polynomial time ones, that can achieve optimum sample complexity. In fact, the sample
complexity of retrieving the central ranking of My, 3 has been shown to be ©(log(n/e)),
where € € (0,1/2] is the threshold of error probability. The techniques that achieve this
sample complexity will be discussed in the following chapter.

Estimating the spread parameter. Although our own work is focused on central
ranking estimations under a model that we propose and is a generalized version of Mallows
model, we shall present results concerning the estimation of the spread parameter. The
spread parameter monitors the amount of uncertainty of the model. In fact, when ¢ = e %
tends to become 1, the model degenerates into a state of maximum entropy: the uniform
distribution on &,, while when ¢ — 0, the model becomes deterministic and always
outputs the central ranking my. The technique presented by Mukherjee et al. [2016] can be
used in order to estimate the spread parameter, given a single sample, when the central
ranking is known. As the number of alternatives grows, the estimation of the spread
parameter becomes more accurate. However, the sample complexity for estimating the
spread parameter was settled in the work of Busa-Fekete et al. [2019], where a more general
model was considered, namely Mallows Block model. In both works, the parametric family
of Mallows distributions with the same central ranking and unknown spread parameters,
was viewed as an exponential family, whose properties were exploited in order to acquire
the aforementioned results. In particular, the following theorem holds:

Theorem 4.2.1: (Busa-Fekete et al.)

Let mo € G,, ¢ = e P €0,1] and €,6 € (0,1). If my is known, then there exists an
estimator ¢ of ¢ that can be computed in polynomial time from r i.i.d. samples from
M,.8 such that if v is at least equal to some value that is O(% log(1/9)), then:

P, 16D € [p— e+ e} >1 -0
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Generalizations. Several generalizations of the Mallows model have been proposed.

There is the possibility of considering a different distance metric between permutations, as
proposed by Fligner and Verducci [1986]. For example, a widely used alternative metric
is Cayley distance. The resulting model is called Cayley-Mallows model and some of its
properties are examined for example in Irurozki et al. [2018|. However, depending on
the selection of the metric, the structure of the model varies significantly. Furthermore,
the selection of metric considerably influences the performance of the model in modeling
different problems.

Another generalization that one might naturally consider is the case of mixture models.
As we already mentioned, Mallows distribution is unimodal. However, in many settings,
unimodality is unrealistic. Mixtures of two Mallows distributions have been examined
by Awasthi et al. [2014], while mixtures of any constant number of Mallows models have
been studied by Liu and Moitra [2018]. In De et al. [2018] mixtures of Cayley-Mallows
distributions were studied, among other ranking models, and an algorithm that runs in
quasi-polynomial time to the number of components of the mixture was introduced.

A classic generalization of Mallows model is the Generalized Mallows model, which was
considered in the works of Fligner and Verducci [1986] and Doignon et al. [2004|, among
others. Recall that in the repeated insertion model, each time an alternative i € [n] is
inserted, we calculate the values p;(j),Vj € [i], according to Eq.(4.5). Therefore, there
is the possibility to assign each alternative a different spread parameter ¢; = e ?i, and
acquire a different ranking model, which is called Generalized Mallows model. Intuitively,
this model corresponds to cases where each alternative might be more or less agile relatively
to the others, that is its position in a sample might be more or less uncertain. In Busa-
Fekete et al. [2019], a model that interpolates between Mallows and Generalized Mallows is
introduced: the Mallows Block model. In this case, there are groups (blocks) of alternatives
that have the same corresponding spread parameter. This model fills the gap between
Mallows and Generalized Mallows models and the tight bounds presented in the same
work provide a deeper understanding of the structure of the space between them. The
model we present in this work aims to achieve a similar goal, but for a different kind of
generalization.

Finally, a natural type of generalizations of Mallows model is the one that takes into
account the possibility that the sampled rankings do not include all of the alternatives,
primarily due to the large number of alternatives in many applications. Instead of complete
rankings, we consider incomplete ones: They do not include all the alternatives. A possible
way to generalize the Mallows model in this direction is to assume that only a number of
highest ranked elements are important, while the others are secondary. These models are
referred to as top-t models and are considered in the works of Fligner and Verducci [1986],
Busse et al. [2007], Meila and Bao [2010], Meila and Chen [2012] and Tang [2018|, among
others. In the work of Chierichetti et al. [2018], a model in which each sample includes
only a small number of rankings that correspond to the most preferable ones is introduced
and analyzed. From another point of view, one might consider models that correspond to
projecting Mallows samples to smaller sets of alternatives. That is, for each incomplete
sample observed, there is some underlying complete sample that corresponds to it. How-
ever, each of these perspectives fails to exploit the following possibility: The agents that
actually generate the samples (which we try to model) do not have any information about
some of the alternatives. That is, they are constrained to a specific subset of alternatives
which does not necessarily coincide with the set of their top (or bottom) preferences, but
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with those that they can rank. For example, say that there are three movies A, B, C. Bob
has only watched A and B. Therefore, he is unable to rank C'. It might be the case that
if Bob watched C, it would become either his favorite or his least favorite movie. We are
now ready to introduce our model.

4.2.3 Selective Mallows model

As we already mentioned, the agents that generate the samples might be aware only of
some of the alternatives. In our model, we, again, assume that there exists a central
ranking mg € &,, which is the most socially accepted. However, each sample 7 has access
to a restricted version of 7, according to some set S C [n] for which: 7 € Gg.

Definition and notation. Given the set S, which we call the selection set, we define
the Selective Mallows distribution /\/lfm 3 for which the probability of observing m € Gg is
denoted with Pr{r|m, 8,5] (or without explicit declaration of any parameter that is clear
by the context) and equal to:

1
Pr[r|mo, B, 5] = %6_’8@{“%‘5’”), (4.7)

where Z(S) is a normalization constant such that: > Pr[r|mo, 8, S] = 1, which turns

out to be, according to Eq.(4.4):

T€ECg

IS|-1 &

2(8)=2(s) = I e (18)

k=0 t=0

Observe that under the Selective Mallows model, the alternatives that are not included in
the selection set do not influence the probabilities of appearance of each possible incomplete
permutation. That is, for example, if 79 = m;q, n =5 and S = {1,5}, the probability that
the alternatives 1, 5 swap is equal to the probability of swap of adjacent alternatives in
classic Mallows model. Observe that although 1 and 5 are distant in 7, without knowing
the intermediate alternatives, they do not behave as if they are distant. We attribute this
property to what we call ignorance bias: Due to lack or ignorance of a reliable measure of
the value of the alternatives, the only way to rank them is by comparing one with another.
Our thesis is that: Everything is relative, even relative distance.

Multiple samples. Under this model, the notion of independent samples must be slightly
generalized. In particular, picking a fixed S C [n] and drawing independent samples from
Mﬁo,ﬂ is rather pointless: This is identical to sampling a Mallows distribution on Sg.
Therefore, in order to get a sample of size r € N, we consider a vector of selection sets
S = (51,5,...,8;), where Sy C [n],¥¢ € [r]. We define the set &° = XS5, and
the constrained product selective Mallows distribution Mfm 8 for which the probability of
observing IT = (/) sep, € &° is denoted with Pr[II|m, 3, S] and equals:

Pr[M|m, 8,8] = [[ Prlmelmo, 8, 5] (4.9)

Lelr]

In other words, the samples ()|, are independent conditioned on the selection sets S.
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Selecting the sets. There are three different ways to view the process that generates
the selection sets:

1. Eaxplicitly: This is the general case, where S is defined explicitly. There is no assump-
tion that can be made for the procedure that generates the selection sets. This means
that they might have been picked dependently on one another. Since in this case
the selection sets can be picked adversarially, we denote the corresponding model as
Mz or as Mﬁrg"éﬁs if we want to fix the selection sets vector.

2. Randomly: In this case, we assume that there exists some distribution D over 20"
(which we call selection distribution) that generates selection sets. We denote the

corresponding model as: M;g%(p) . The concept of independent samples is now
clearer:
Pr(I) = [ D(Se)Prim] (4.10)
Le]r]
RND(D,r)

The product distribution is denoted with M 3

3. Adaptively: In this case, one is given access to a Selective Mallows sampler, namely
a random generator that inputs a selection set S C [n] and outputs an element of &g
according to /\/lf()’ g T his implies that there is the possibility of picking the selection
sets in the runtime of an algorithm that aims, for example, to retrieve the central
ranking. However, there is a constraint: Each selection set must be of size no more

ADP(m)

than m < n. We denote the corresponding model with M. 3

Maximum likelihood estimation of central ranking. Suppose we are given a sample
I = (7¢)sepp) drawn from Mfo,ﬁ’ where S = (S¢)eep), Se € [n],¥€ € [r]. Then, the
maximum likelihood estimation of 7y from II is:

7 = arg max Pr[Il|m, 3, S]

ﬂeen

However, due to Eq.(4.7) and (4.9), we get that:

. _ - d ’ 411
m argﬂrglfi%:] KT (mols,, Te) (4.11)
r

Comparing Eq.(4.6) to Eq.(4.11), it becomes clear that the structure of the problem of
finding the maximum likelihood estimation of central ranking under Mallows model is
pretty similar to that of the structure of the problem of finding the maximum likelihood
estimation of central ranking under the Selective Mallows model. We now provide formal
definitions of these problems and a relaxation for each one.

Definition 4.2.1 (MRP): The Mallows Reconstruction Problem (MRP ) is the problem
of finding a ranking ™ € &, given a vector Il of r independent samples from My, 3,
where Ty € G, 8 > 0 for which:

Pr{II|m, B] > Pr{ll|my, 5]
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That is, MRP corresponds to finding a ranking that is at least as likely as the central
ranking. This solution concept was introduced by Rubinstein and Vardi [2017] and is,
arguably, at least as useful as the maximum likelihood estimation of the central ranking.

Definition 4.2.2 (max-MRP): The mazimum-Mallows Reconstruction Problem (MAX-
MRP) is the problem of finding a ranking m € &,,, given a vector II of r independent
samples from My, g, where mo € &, 3 > 0 for which:

Pril|m, 8] > Prill|«’, 8], vn' € &n,

Clearly, the MAX-MRP corresponds to finding the maximum likelihood estimation of the
central ranking.

Similarly, we define the corresponding problems for the case of Selective Mallows model.

Definition 4.2.3 (SMRP): The Selective Mallows Reconstruction Problem (SMRP ) is
the problem of finding a ranking m € &,, given a vector Il of a sample of size r drawn
from M;?o,ﬂ’ where S = (Se)eepr), Se € [n], VL € [r] and for every pair of alternatives
i,j € [n], the number of sets in which: i,j € Sy is at least pr, for some p € (0,1],

mo € Sy, and B > 0 for which:

Pr{l|r, 8,8] > Pr{l|m, 3,S]

The maximum likelihood estimation problem is equivalent to the following:

Definition 4.2.4 (max-SMRP): The mazimum-Selective Mallows Reconstruction
Problem (MAX-SMRP ) is the problem of finding a ranking © € &,,, given a vector
IT of a sample of size r drawn from Mﬁo,ﬂ’ where S = (Se)eefr), Se € [n], VL € [r] and
for every pair of alternatives i,j € [n], the number of sets in which: i,j € Sy is at least
pr, for some p € (0,1], mp € &,, and 5 > 0 for which:

Pr{ll|r, 8,S] > Prill|7’, B,S], V7' € &,

Interpolating between two models. A way to view the Selective Mallows model is
like an interpolation between the classic Mallows model and the Noisy Comparisons model.
While the former is already familiar to the reader, the latter can be thought of as follows:

e Noisy Comparisons model: There exists a central ranking 7y € &,, and some 0 € (0,1/2)
which are the parameters of the model. The output of a Noisy Comparisons generator is
an ordered pair of alternatives. Fix i,j € [n],7 < j and suppose that mg = m;4. Then:

1
Prli > jlmo] = 1 — Pr[j = i|mo] = 3 +0,

under the noisy comparisons model.

Observe that while the Mallows model outputs complete rankings, the Noisy Comparisons
model outputs ordered pairs. Their fundamental difference is that under the Noisy Com-
parisons model, each pair of alternatives swaps with the same probability. However, one
could consider a model that is similar to the Noisy Comparisons model, but for which there
exist different parameters (6;;)i<; that determine the probabilities of swap. Furthermore,
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(0;j)i<;j can be picked in order to correspond to the probabilities of swap of the pair (i, j)
under the Mallows model (which decreases to the distance of 4,j in 7). However, in ei-
ther case, the parameters of swap probability have to be fixed. We argue that this is not
accurate: The swap probabilities must be determined by the selection set.

Revisiting the Noisy Comparisons model, suppose that we are given r ordered pairs
01,09, ...,0, whose order was determined independently from the Noisy Comparisons
model. Then, the maximum likelihood estimation of g is:

= arg m%X(1/2 + 0) i W09) (1 /2 — §) 25 9000)
TebGn

Recall that ¢(i > 7) denotes the number of samples where 7, j are compared and 7 is ranked
before j. From arguments similar to those used in order to get Eq.(4.2), we get that:

7" = arg max
ﬂ'EGn

(1/2 + 6> 2 40-7)

/20 (1/2-0)" = argmax 3 _ q(i - j)

i=r]
Therefore, due to Eq.(4.2):

7 = arg min Z dgr(mo, 0p) (4.12)

TI'GGn

Le]r]

Hence, we have concluded that Eq.(4.11) includes the expressions of MLE of the central
ranking for all three models: Mallows, Selective Mallows and Noisy Comparisons. That
is, the reconstruction problem in all three cases is the same and Selective Mallows model
includes the other models, by appropriately selecting the parameter 8 and the selection
sets vector S: The Selective Mallows model is the natural generalization of the Mallows
model.
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Learning a Hidden Ranking

In this chapter we consider the problem of retrieving the central ranking exactly, from
Selective Mallows samples. In particular, we provide some asymptotic sample complexity
bounds for the problem of retrieving the central ranking with high probability, under the
models MRND( ) and MADVB where mg € &, > 0 and D is a selection distribution. We
also refer to a classic result (by Feige et al. [1994]) that implies a tight sample complexity
bound for the problem under the model MADP , when m = 2. In the case that m > 2,
the problem remains open, as we will dlscuss in a following chapter.

Comment on notation. For the following, II will be used to represent either a fixed
vector of rankings (complete or incomplete) or a random variable (vector), when we use
the following notation: Prr[-]. When II denotes a random variable (vector), then its
distribution will be clear by the context or it will be explicitly declared. For example:

1. Pr[f(II) = x] refers to the probability that the output of (possibly random) process
f equals x, when the (fixed) vector II is provided to its input. In this case the
randomness is included exclusively on f and/or x.

2. Prp[f(II) = z] takes into account the randomness involved in the selection of II.
Here, II is a random variable (vector).

5.1 Learning under Mallows model

In this section we present the work of Caragiannis et al. [2013], in which asymptotically
optimal bounds for the sample complexity of learning the central ranking under Mallows
model were established, by using methods that are also useful for the analysis of learning
under Selective Mallows model.

Upper Bound. The main idea for solving this problem is to consider a tournament graph
where the direction of each edge is determined as the one that is found in the majority of
samples we draw. If this graph turns out to be acyclic, we return its unique topological
ordering as the estimation of central ranking. This defines a family of estimators that
are called pairwise majority consistent estimators. Although Theorem 5.1.1 works for

43
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any pairwise majority consistent (PM-c) estimator, we will focus on the following PM-
¢ estimator, which we call positional estimator and denote with @, for reasons that will
become clear in the following chapter.

) =1+ > 1q(j =) >q(i = §)},Vi€ [n] (5.1)
jem\{i}

Assume that in any possible ties are broken uniformly from left to right. That is, if
(1) =7(2) = 7(3) =1 and (i) > 1,Vi > 3, we pick a uniform permutation of {1,2,3}
which is put on the first 3 positions of 7 and shift any element i > 3 with 7 (i) € {2, 3} to
the position 4. We then repeat the process until 7 becomes a ranking. For the following,
when we refer to 7, we will clarify whether we consider it to be the function defined in
Eq.(5.1) before or after breaking the ties.

Theorem 5.1.1: Caragiannis et al. [2013]

Let My, 3 be a Mallows distribution with central ranking my € &,, and spread parameter
B > 0. For any € > 0, there exists an algorithm that, given a Mallows profile drawn
from (M, 5)" for any r at least equal to some value O((1—e~?)~2log(n/e)), retrieves
the central ranking my with probability at least 1 — €.%

(1 —e?)72 =0(1/B%) when § — 0

Proof. Assume that we draw a sample profile IT € &}, from the product Mallows distribu-
tion (M, g)". Recall that for each pair of alternatives i, j, we let g(i > j) be the number
of rankings in profile II for which ¢ is placed before j. Let & the central ranking estima-
tor using the pairwise statistics ¢(i = j), defined in Eq.(5.1). We will upper bound the
probability of the event 7(II) # m9. Without loss of generality, assume that my = mq4.

For IT ~ (Mg, 5)", it holds that:

Prn(i(ID) # mo) < Pr(3i < jis qli = §) < gl = ) < 3 Prlali = ) < q(j = )

where the second inequality follows from the union bound.

The value of Pr[q(i > j) < q(j > i)] depends on the probabilities of removal of each subset
of [n] from a sample. However, since the probability of swapping two alternatives ¢ and j
in a Mallows sample is maximized When the alternatives are adJacent in the corresponding

central ranking, taking the value if we set Xy ~ Be(£ T B) Ve e [r]and Yy = 1— Xy,

then we get:

1+ B’

Prig(i - ) <q(j = )] <Pr | > (X, —Yy) 20| =

Le(r]
1 e B_1_ 1—¢F
Pr |- X,—-Y)) —
g Te;[]( ¢=Yo) 1+e B = 1+e P
I

Using Hoeffding’s inequality, we get:

—eB\?
Prig(i = j) < q(j = i)] < exp (—2r <1> )

1+e b
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For simplicity, let ¢ := (};2:; )2. Therefore:

Prpy[#(IT) # mo) < n® exp(—2r()

Demanding n? exp(—2r¢) < € and solving for r, the result follows. O

Lower Bound. It turns out that the upper bound of the sample complexity that The-
orem 5.1.1 establishes is tight. This is associated with the fact that in order to learn the
central ranking, one has to learn the order of n/2 adjacent pairs in the central ranking
and in order to do that with high probability, lagarithmic to the number of alternatives
samples are needed.

Theorem 5.1.2: Caragiannis et al. [2013]

For any € € (0,1/2] and any central ranking estimator, there exists a central ranking
mo € &, such that, for any B > 0, the estimator, given a sample profile drawn from
(Mar, 8)", Tetrieves my with probability at least 1 — €, only if r = Q(% log(n/e)).

Proof. Let 7 be any (possibly randomized) estimator of 7y. Assume that:

Priom, ) [F(ID) = 7] > 1 —€,¥7 € &,

Fix ¢ € 6,,. Then, we have:

Priiom, o [F(IT) = o] = > Pr[M|o]Pr(#(1T) = o]
eer,
Let N(o) ={m € &, : dgr(o,m) =1} (|[N(0)] =n —1). Observe that for any II € &7, it
holds:
> PrF) =nx] <1 (5.2)

TeN (o)

Also, it is true that for any m € N(0): Pr[lI|o] > e~ #"Pr[|n], from triangle inequality.

Therefore, if we multiply the parts of Eq.(5.2) with Pr[II|o] and sum over all possible II,
we get that:

l—e+(1—e(n—1)e <1

Solving for r, the result follows.

O

Therefore, the sample complexity of learning the central ranking with probability at
least 1 — €, under the Mallows model is settled to @(poly(%)log(n/e)). However, it
is interesting to point out that the corresponding number of pairwise comparisons is
@(poly(%)n2 log(n/€)), since each sample contains n? comparisons. That is, the Mallows
model is “too rigid”: we cannot choose the pairwise comparisons therefore some of them
are wasted, in the sense that even without knowing them, we could retrieve my with high
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probability. Also, observe that for proving the upper bound we did not need to use the
concentration property of Mallows model: two elements that are for example Q(log(n))
positions away in my are very unlikely to be swapped. We identify two properties here:

1. Flexibility: This property corresponds to the ability to choose which pairwise com-
parisons will be made. In Mallows model, there is now flexibility, while in Noisy
Comparisons model there is complete flexibility. In Selective Mallows model and
specifically, in the model Mfr(?z(m), the flexibility depends on m: when m is high,
there is less flexibility and reversely.

2. Concentration: This property corresponds to the reduced uncertainty of the apparent
ordering of a pair of alternatives in a sample. In Mallows model, two alternatives that
appear many places away in a sample are more likely in the correct order. In Noisy
Comparisons model, each pair of alternatives has the same probability of swap. In
Selective Mallows model Mfrg)’z(m), the concentration property is more intense when

m is high.

There is a trade-off between flexibility and concentration, which Selective Mallows model
is trying to take advantage of, since complete lack of flexibility renders Mallows model
incapable of exploiting its concentration property.

5.2 Learning from Noisy Comparisons

In this section we will briefly discuss in high level the problem of retrieving a hidden ranking
under the Noisy Comparisons model. The problem can be thought of as the problem of
sorting a list with a comparative algorithm, where each comparison has some probability
of failure. Studied among other similar problems, this particular problem was solved by
Feige et al. [1994]. In our presentation, we ignore any other parameter except the number
of alternatives in the central ranking, n € N.

A trivial lower bound for the sample complexity comes from the lower bound of comparisons
in order to sort n elements: Q(nlog(n)). According to the following theorem, surprisingly,
this bound is tight with respect to n (of course there is some dependence on the parameter
of error but the remarkable result is that an initially expected logarithmic to n blow up,
needed for ensuring with high probability that every pair of elements whose order we
assume known is in fact correctly ordered is avoided).

Informal theorem 5.2.1: Feige et al. [1994]

The number of samples needed in order to learn the central ranking with probability at
least 1 — €, under the Noisy Comparisons model is O(nlog(n/e)).

Proof (Sketch). The proof is based on the following observation: Noisy binary search (that
is binary search under noisy comparisons) can be viewed as a walk on the binary search
tree, where each node corresponds to an interval. Then, each time the search reaches a
node, it can compare the element under search with the interval’s limits and if it turns
out that it does not belong in the interval, the search moves to the father of the node.
Interestingly, the number of steps until noisy binary search is completed is O(log(n)), since
the errors cancel out.
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In order to take advantage of this property, the algorithm is separated in three parts:

1. Pick O(n/log(n)) elements at random and sort them using any algorithm of sorting
that uses O(N log(N)) comparisons in the noiseless case (N is the size of input),
repeat each comparison log(/N) times and take the majority order for the pair, in
order to ensure that with high probability each pair is ordered correctly. Since
N = n/log(n), the number of comparisons in this step is O(nlog(n)).

2. This step is the core of the algorithm. Consider each interval between two consecutive
elements of the previous step a bucket and put each of the O(n) other elements in the
correct bucket using noisy binary search. This requires also O(nlog(n)) comparisons.

3. It remains to sort each bucket. Since the pivot elements of the first step are randomly
chosen, it holds with high probability that the size of each bucket is O(log?(n)). With
this observation, and a careful handling, this step also makes O(nlog(n)) compar-
isons.

O

The reason we presented these results is to underline the difference in the query complexity
of Mallows model and Noisy Comparisons model. While in Mallows model the query
complexity is ©(n?log(n)), in Noisy Comparisons model it is ©(n log(n)). Therefore, there
is a gap of order ©(n). This is justified by the lack of flexibility in the Mallows model, as
we described it above. In Selective Mallows model M?E’Pﬁ(m) the query complexity would
at first glance be expected to be O(nmlog(n)) (although it might not be true): In each
of the corner cases (m = 2 and m = n) this assumption seems accurate. In fact, we can,

informally, provide an upper bound of order O(nmlog(n)):

Informal corollary 5.2.1: The sample complezity of retrieving the central ranking with
ADP(m)

probability at least 1 — €, under the adaptive Selective Mallows model ./\/lmﬁ , where
70 € Gy, >0 and m < n is: O(% log(n/e))

Proof (Sketch). Observe that every ranking of size m contains m/2 disjoint pairs (with no
common elements). Also, the algorithm described in Theorem 5.2.1 can be executed in
logn parallel time (with n processors), as shown in Feige et al. [1994]. Therefore, we can
group the comparisons in batches of size ©(m), each of which corresponds to a Selective
Mallows sample, picking the appropriate selection set. O

Therefore, the corresponding query complexity is O(nmlog(n)), since each sample contains
©(m?) comparisons. The interesting open question is whether this bound is tight for any
value of m. The motivation behind this question is that there are two possibilities:

1. The flexibility of adaptive Selective Mallows model can be exploited more efficiently:
for the upper bound we informally provided, we used only ©(m) of the ©(m?) com-
parisons in each sample.

2. The concentration of adaptive Selective Mallows model might be somehow exploited.
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5.3 Learning under selective Mallows model

In this section we provide our own original results on sample complexity of learning under
the selective Mallows model. Consider the problem of retrieving the central ranking from
Selective Mallows samples, where the selection sets cannot be picked, but come from either
an adversary, or a random procedure. In particular, the applications of this setting are the
following;:

1. In the case where we consider an adversary, we essentially search for a parameter that
ensures that we can retrieve the central ranking with optimal sample complexity. The
way we think it is as if an adversary picks the selection sets in order to deprive us
from the ability to retrieve the central ranking. However, we restrict their behavior
by selecting a parameter p € (0, 1) which is interpreted as follows: The selection sets
vector picked by the adversary has to include each pair of alternatives in at least pr
sets, where r is the size of the sample (and of the selection sets vector). Recall that
this model is denoted with MZ2™%.

2. The case where the selection sets are created by a random process (Mig%(p)) corre-

sponds to applications like voting. For example, we might consider the problem of

inferring the optimal ordering of n movies according to a population where each in-
dividual has seen some of the movies and therefore can only rank them. The movies
that somebody has seen is assumed to be an independent random variable drawn

from a selective distribution D over 2. Also, each individual ranks the set S C [n]

of movies they have watched according to the selective Mallows distribution Mf;m 3

(that is the population is characterized by the ignorance bias), where 7y € &,, and

B > 0. In this case, the parameter of interest is called selectivity of the distribution

D and is a value p € (0,1) equal to:

p = minD(i,j are both selected) (5.3)
1<)

The results for each case are summarized in Table 5.1.

Model Sample Complexity

Mays  O(Zlog(nfe)  Q(blog(n/e)  O(log(n/e))
WY O(g-log(nfe)  Q(&log(n/e)  O(Llog(n/e))
MEIP) OG- Tog(n/e)  Q((5 + L) log(n/e)  ©(Llog(n/e))

Table 5.1: Each of the examined cases for the Selective Mallows model and the corre-
sponding sample complexity. The upper bounds refer to the performance of the positional
estimator (and the dependence on f refers to the case when f — 0). The lower bounds
provide qualitative information about each problem. We also illustrate that the bounds
are tight, when the spread parameter is considered constant.

The interesting aspect of these results is that the positional estimator 7 (defined in
Eq.(5.1)) is optimal for each of the considered cases. This is only true for the Selective
Mallows model, since, for example, considering some model that corresponds to projecting
a Mallows sample on a subset of [n], we can understand that there is more information
contained in the samples. In particular, even if an alternative 7 is not selected in any sam-
ple, due to the fact that being in between other elements influences the probability of their
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swap, its position could be estimated. In our model this is not possible and we conclude
that: All the valuable information included in a Selective Mallows sample is the relative
ordering of between the elements of the corresponding selection set. The key observation
is that if: S C [n] such that i ¢ SV j € S for some i,5 € [n],i # j, which are adjacent in
0 €6, 8>0and 7 € &g, then:

Pr[r|o, B, S] = Priw|oiwj, B, S] (5.4)

In other words, when a pair of adjacent alternatives does not appear, no information about
its order is provided. This is not the case, however, for other generalizations of Mallows
model on reduced size rankings.

5.3.1 Learning from adversarially incomplete rankings

In this section we establish asymptotically tight sample complexity bounds for the adver-
sarial Selective Mallows model (M2"%;). We call an adversarial Mallows sample profile

p—frequent if any pair of alternatives is contained in at least a p—fraction of the samples.

Upper Bound. We first provide an upper bound for the sample complexity.

Theorem 5.3.1

Let My, 3 be a Mallows distribution with central ranking mog € &, and spread pa-

rameter 5 > 0. For any € > 0, there exists an algorithm that, given an p-frequent

adversarial Mallows profile induced by My, g of size v which is at least equal to some

1O(mlog(n/e)) value, retrieves the central ranking my with probability at least
— €.

Proof. The estimator we use is the positional estimator 7. The proof is almost the same
as that of Theorem 5.1.1. The difference is that the guarantee we have is that each pair
appears in pr samples, instead of r. Which gives the wanted result. O

Lower Bound. Although the lower bound of sample complexity can be established by
picking a “difficult” p—frequent selection sets vector, as for example one in which each
pair of alternatives appears in at most 2p—fraction of the samples and repeating the proof
of Theorem 5.1.2, we derive it from a more general result that we prove in the following
lemma:

Lemma 5.3.1

Let S be any fized® selection sets profile. Then, for any e € (0,1/2] and any estimator
of the central ranking, there exists mg € &, such that, for any 8 > 0, the estimator
retrieves wo with probability at least 1 — e from a sample profile drawn from M;EO 8 only

if S includes Q(HT; log(n/€)) comparisons between pairs of alternatives.

“It is important to point out that S is fixed because if it is selected randomly or during the runtime
of the algorithm of estimation, the proof techniques we use do not work: We cannot find a ranking
that is “difficult” in each execution of the algorithm.
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Proof. Let % be any estimator of my. Fix 7 € N. Let S = (51, 5s,...,5,) € (2. For
every pair of alternatives i, j € [n], let W;;(S) be the number of sets of S where both i and
j appear. Assume, for simplicity that n/4 € N.

It suffices to show that if 3, Wi;(S) < g5 log( (1 —¢€)/(4€)), then there exists a ranking
my € &, which cannot be retrleved by 7 with probability at least 1 — e.

There is a family {Pk}ke[n /2] of perfect matchings of the set of alternatives, that does not
contain any pair of alternatives twice: (¢,7) € P, = (4,J) € Py, Yk, k' € [n/2],k # K.
We can construct such a family inductively by picking P; = {(1,2),(3,4),...,(n —1,n)},
P, ={(1,4),(3,6),...,(n—1,2)} and Pn/gz{(l n),(3,2),...,(n—1,n—2)}.

Observe that ;.91 2 (i j)ep, Wii(S) < 22;; Wis(S), since we skip pairs of the same
parity. Assuming that >, Wi;(S) < g5 log( (1 - 6)/( €)), there exists k € [n/2] such
that: 3 ¢ sep, Wij(S) < q5log(n(l —€)/(4e)). Since |Py| = n/2, there exist at least n/4
pairs of alternatives (i, j) € Py for which:

< ;log(n(l _ 6)/(46)) (5.5)

We will show that, for such S, it cannot be the case that: Pry_ys ﬁ[ﬁ(ﬂ) = 7| >

1 —¢eVm € &,. Without loss of generality, assume that P, = P an(i) denote P = P;
for simplicity. Let R C &,, such that for any m € R the alternatives {1,2} are placed in
positions {1,2}, the alternatives {3,4} are placed in positions {3,4} and so on: {m(2¢ —
1),m(20)} = {2¢,2¢ — 1},¥¢ € [n/2]. For example, if n = 4, then R = {(1 > 2 > 3 >
4),1>2>4>3),2>1>3>4),(2>1>4>3)}

Wi;(S)

Fix mp € R. For any m € R, let D(m) be the set of pairs in P in which 7, my disagree:
D(r) = {{i,j} € P : (n(i) — 7(j))(mo(¢) — mo(j)) < 0}. Then, for any 7 € R and
IT € Sym(S) = xj_,Sym(S;), the probability to observe II conditional on the central
ranking 7y is at least:

Pr(l|mo] > e P2 tiarenm Wis () prI1|7] (5.6)
The above is a consequence of the triangle inequality property of Kendall tau distance,
applied inductively to the pairs in D(7), since each pair in D(w) is adjacent in 7, mp.
For a fixed sample profile IT € Sym(S), it holds:

> Prlr(Il) =] <1 (5.7)

TER

We multiply each term of Ineq. (5.7) with Pr[II|mg], apply Ineq. (5.6) and summing over
IT € Sym(S) to get:

> e iinenm Wil N Py = AlPr(lja] < Y Prfljm) =
TER I1eSym(S) IIeSym(S)
Assume, for contradiction, that Pry_ s 6[7? =7] >1—¢Vr € R. Then:
0,
(1—¢) Z e~ B2t jyepm) Wii(S) <1
TER
However, from Ineq. (5.5), it turns out that: > __p e Bl i@ Wi (S) 5 1 + % 455) =

n(1

1+ %_6 Therefore: 1 — e+ € < 1, contradiction. O
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The lower sample complexity bound for the adversarial Mallows model follows.

Theorem 5.3.2

For any p € (0,1), there exists a p-frequent adversarial set profile S of size r, such that
for any e € (0,1/2] and any central ranking estimator, there exists a central ranking
mo € &, such that, for any B > 0, the estimator, given the corresponding adversarial
sample profile drawn from MAPV;7S | retrieves my with probability at least 1 — e, only if

0,8
= Q(%} log(n/e)).

Proof. Consider a selection sets profile § that is p—frequent and also, the number of
pairwise comparisons between alternatives is no more than 2prn? samples. We can pick
such a profile as follows: S consists of pr complete sets and (1 — p)r sets of length m <

ny/p/(1—p).
Then, the nuzmber of queries @ we make are: Q < 2prn?. However, from Lemma 5.3.1, Q
must be Q% log(n/e)). Therefore: r = Q(% log(n/e)).

O

Note that when p < 1/n?, then, according to our analysis, many sets might have to be
chosen to be empty. However, the interesting case is when p = (m’/n)?, for some m’ € [n].
In this case, after choosing pr complete sets (in order to ensure p—frequency), we can
arbitrarily pick (1 — p)r sets of length m < m/.

5.3.2 Learning from randomly incomplete rankings

In this section we provide more interesting results that consider the case that the selection
sets are formed randomly, under some selection distribution D that is p—frequent, that is,
it satisfies Eq.(5.3).

An interesting observation of the upcoming Theorems 5.3.3 and 5.3.4 is that incompleteness
(x p) and noisiness (x ) affect the hardness of estimating the central ranking indepen-
dently. In particular, the absence of one of these factors that influence the quality of the
sample profile does not necessarily imply a collapse of the sample complexity. Although it
is not clear from the upper bounds, when  — 400, then the number of samples that are
sufficient for the positional estimator to retrieve the central ranking tend to 1, for there
are no swaps expected, when we consider the classic Mallows model and the Adversarial
Selective Mallows model. However, in the random case, even if there is no swap, we have
to draw enough samples to see enough pairs of alternatives.

Upper bound. The upper bound is again derived using the positional estimator 7.

Theorem 5.3.3

Let My, 3 be a Mallows distribution with central ranking my € &,, and spread parameter
B > 0. For any € > 0, there exists an algorithm that, given a p-frequent randomized
Mallows profile induced by My, 3 of size r which is at least equal to some value in
O(m log(n/e)), retrieves the central ranking mo with probability at least 1 — e.
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Proof. Assume that we draw a sample profile II € L", where £ = Ugc[;,&s, from the

selective Mallows model MRND(D) For each pair of alternatives i, j, we let ¢(i > j) be the

number of rankings in proﬁle IT for which i is placed before j. Let 7 the central ranking
estimator using the pairwise statistics ¢(i > j), defined in Eq. (5.1). We will upper bound
the probability of the event 7(II) # mg. Without loss of generality, assume that my = id.

For IT ~ /Vlig%(p’r), it holds that:

Pr[(IT) # o] < Pr[3i < j: q(i = j) < q(j = )] < Prg(i = j) < q(j > 9)]

where the second inequality follows from the union bound.

Consider the random variable W; ; that refers to the number of samples in the profile II
where both ¢ and j are selected. By the law of total probability, the above sum its equal
to:

ZPr iy = KIPrlg(i = 5) < q(j = 0)|Wi; = K] (5.8)

The value of Pr[q(i > j) < q(j > i)|W;; = k| depends on the probabilities of removal
of each subset of [n] from a sample. However, since the probability of swapping two
alternatives ¢ and j in a Mallows sample is maximized When the alternatives are adjacent
in the corresponding central ranking, taking the value if we set Xy ~ Be(+4—=5),¥/ €
[k] and Yy =1 — X/, then we get:

1+ ﬁ? 14+e—B

Prig(i = j) < q(j = ))[Wiy =k <Pr | > (Xe—Y¥) 20| =
Le(k)

e B -1 1—e P
>

1
Pr|= S (X, —Y,) -
rlg 2 (e 1+eP = 1+e P

Lelk]

Using Hoeffding’s inequality, we get:

Prlg(i = J) < a(j = DW= K] < exp(~2h(; )

For simplicity, let ¢ := (} +z B) Therefore, returning to the sum of Eq.(5.8), it is sufficient
to bound:

Ew, ; lexp(—2¢W; ;)]

Let us denote the probability that both ¢ and j are selected under the measure D by p;;.
Observe that W; ;j ~ (r,p;;) and hence:

Ew,; [exp(=2¢)"] = (1 = pij) (1 — exp(=2¢)) + exp(—2¢))" < (1 — p) + pexp(—2())"

Consequently:
Pl 2 ml < (5) (1= )+ pesp(-20))

Demanding (5)((1 — p) + pexp(—2¢))" < € and solving for r, the result follows. O
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Lower bound. The next result derives the bound Q((% + %) log(n/€)) of the randomized
setting under a p-selective distribution. The qualitative difference with the bound provided
by Theorem 5.3.2 originates to the possibility of total absence of comparison between some
pairs of alternatives in the sample profile. If, additionally, the alternatives are adjacent in

the central ranking, then their order cannot be determined better than randomly.

Theorem 5.3.4

For any p € (0,1], there exists a p-frequent selection distribution D, such that for any
e € (0,1/2] and any central ranking estimator, there exists mg € &,, such that, for any
B > 0, the estimator, given a sample profile drawn from M:?%(D’T) of size r, retrieves

mo with probability at least 1 — €, only if:
1 1- p> )
r=Q| (5 +—]log(n/e
((5+552) roetwre)

Proof. Let § = 1 — p. Let © be any estimator of the hidden ranking. More specifically,
7 inputs a sampling profile Il € L", where £ = Ugc[,Ss, from the selective Mallows
distribution M:SDB(D), with unknown central ranking 7y € &,, which will be determined
later, spread parameter S > 0 and selection distribution D and outputs an element of &,

either deterministically or randomly.

The proof consists of two parts. In Part I, we get the term Q(% log(n/e)), while in Part
IT, we get the term Q(m log(n/e)) = Q(% log(n/e€)). Combining them, we obtain the
desired lower bound.

Let ¢ € (0,1). We consider D as follows: Every element ¢ € [n] is selected independently
with probability 1 — q. Set § = 2¢ — ¢%. Obviously, D is (1 — §)—selective. Furthermore, in
every sequence of disjoint pairs, each pair is selected by D independently from the others,
with probability 1 — § = p. Assume, for simplicity, that n/2 € N.

Part I. This is a trivial consequence of the lower bound for complete Mallows samples.

Part II. It remains to show that for the selective distribution D any estimator of the

central ranking requires Q({gigrf//g) samples.

We define the set R as follows:

R={re6,: {m(2),n(2 —1)} ={2i,2i — 1},Vi € [n/2]}.

The set R can be described as follows: Consider the transpositions (1 2),(3 4),...,(n —
1 n). Then, any composition of any number of these permutations with the identity belongs
to R and, obviously, |R| = 2"/2.

The idea is that selecting a random element of R to be the central ranking, the probability
of success of T cannot be higher than that of an estimator that randomly selects an element
of R, due to the structure of the selection distribution D.

Our goal is to compute the expected value of the probability Pr = o, [ (II) = 7] over
7.8

the family {m € R}. Afterwards, using the probabilistic method, we will get the desired
bound.
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Er uni(r) [Prl'[ [7(II) = W]} = Z Pr[W]PrHNM?E(D,T) [7(IT) = 7] =
> Prlx] > Pr[jx|Pr[#(IT) = 7]
TER IIelr

Since we choose uniformly at random from the class R and since the sums are finitely
many:

Ertaiy | Prnlf(T) = 71| =272 3= S PrlttalPeli(n) =
el mreR

We partition the sum ) .. as follows:

1. Let T'={(1,2),(3,4),...,(n — 1,n)}.
2. Select t € {0,1,...,n/2}.
3. Select t distinct pairs p1, ..., ps from the set T.

4. Create the set of profiles £"(p1,...,pt), where for each II € L"(p1,...,pt), the only
pairs that are never observed are the chosen p1, ..., p:.

Hence, the sum ) ;.. is equivalent to the following

n/2

22 2

t=0 p1,...,pt IIEL" (p1,...,pt)

Let us fix such a collection of pairs that never appear in a profile P, = (p1, ..., pt). Now,
we can partition the set of permutations R with respect to that fixed collection in the
following steps:

1. Fistly, there are § — ¢ pairs from T not chosen. Let Q; = Q(FP;) = Q(p1,...,pt) =
T\A{p1,....p}-

2. Viewing each such pair ¢ € (; as a transposition, there are 23t possible choices
to create an ordering among these pairs (for each such ¢ = (i,i + 1), we either let
(i i4+1)or (i+1 7).

3. Denote Sym((i,i 4+ 1)) = {(¢,7 + 1), (i + 1,4)}. More generally, Sym((p1,...,pt)) =
xt_,Sym(p;).
4. For 7 € Sym((p1, ..., pt)), the set [R: 7] is the ‘stabilizer’ group of 7, that is all other

transpositions can be permuted and the cycles of 7 are fixed.

We then have:
B Uni(R) {Prn [m(II) = W]] =
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n/2

2n/2{zz 3 }{ DS }prmﬂpr (1) = 7]

t=0 P, IeLr(P) T€Sym(Q(P;)) n€[R:7]

n/2

272NN Y > ) Pr[Mix]Pr[#(IT) = 7] (5.9)

t=0 P; 7eSym(Q(P:)) HeL"(P;) m€[R:7]

Let 7 € Sym(Q(P;)). Now, observe that, if 7,0 € [R: 7] and II € L"(P;), we have that:

Pr[II|7] = Pr[M|o]

Also, it holds that ) p Pr[7(II) = «] <1, for any fixed II € L"(F;). Therefore, by the
above observation and for any 7’ € [R: 7] :

> Pr[ljx]Pr[#(II) = ] < Pr(M|x’]
mE[R:T]

Summing over all possible II € L"(F;), we get that:

> Y Pra|Pr(F(IT) = 7] < Pry s [T € L7(P)). (5.10)
el (P;) me[R:7] w8

Observe now that Pr [IT € L7 (P;)] is independent from the selection of 7/, since

I~ MRND(D ,T)

!B
the probability of the event that IT € L7 (FP;) is determined from the distribution D. There-
fore, we get that for any m € R:

n/2

E ~uni(r) [Prn [7 (1) = W]] <2723y Ny PrHNMf:”E(D’T) [T e L'(P)] =

t=0 P, 7€Sym(Q(FP;))

n/2
= Z 2™ tz PI‘H MRND(’D r) [H el (Pt)]
t=0 Py

Let X be a random variable that equals to the number of elements of T that do not appear
together in any of r independent samples of D. Due to the structure of D: X ~ (n/2,6").
Observe that: Pr[X =] =3 p Pry;  aw@n[Il € L7(F)]. Therefore:

™8

n/2

ErUni(R) [Prn[ﬁ(ﬂ) = w]] < ZQ_tPr[X =t =E[27 %] = (1-6"+0"/2)"% < e

From the above, we conclude that there exists 7 € R such that: Pr[n = 7] < m

Assuming that Pr[7 = 7] > 1—e and solving for r, we get that: » = Q(log(n/e)/log(1/6)).
g

In order to understand the implications of the bounds we established, we provide the
following example:
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Example. Consider the case when each sample contains m alternatives on average. As-
sume also that all the alternatives are selected independently with the same probability q.
Then, ¢ = m/n. Each pair of alternatives is selected with probability p = ¢> = (m/n)?.
Therefore, from Theorem 5.3.4, we need:

2
Q (:12 log(n/ e)> samples from M:E’DB(D),

where D is the distribution we described, in order to learn my with probability at least 1 —e.
Therefore, since each sample contains ©(m?) pairwise comparisons on average, our result
indicates that even in the randomized case, if the alternatives are selected independently
and with the same probability, then the query complexity lower bound we get is similar to
the one for the case of fixed selection sets (Lemma 5.3.1).



Chapter 6

Mallows reconstruction problems

In this chapter, we consider the reconstruction problems that we defined in Definitions
4.2.1,4.2.2,4.2.3 and 4.2.4, which correspond to the problems of finding the maximum like-
lihood, or a likelier that nature (likelier than the central ranking) estimation of the central
ranking under Mallows or Selective Mallows model. The MRP and MAX-MRP problems’
solutions that we present were introduced by Braverman and Mossel [2009]|. Building on
this work, we provide efficient algorithms for solving the SMRP and MAX-SMRP prob-
lems.

The problem of finding a ranking that minimizes the total Kendall tau distance from each of
at least 4 rankings is known to be NP-hard. However, the Mallows reconstruction problems
correspond to an average case analysis of the rank aggregation problem, in which it can
be solved efficiently. Recall that the rank aggregation problem corresponds to finding a
ranking 7" € G,,, given a set of r rankings 7y, ms,..., T € &,, such that:

7" = arg min > dir(m, m)
Le]r]

The key observation to solve the Mallows reconstruction problems in the average case is
that under Mallows model, the alternatives’ positions are concentrated: the probability of
displacement of an alternative from its position in the central ranking diminishes exponen-
tially to the length of the displacement. Therefore, instead of searching for the maximum
likelihood estimation exhaustively in &,,, we could restrict our search in a local subspace
of &,, consisting of rankings that rank each alternative close to its original location (in the
central ranking). However, since the central ranking is unknown, we first have to specify
the subspace of interest. This can be done efficiently, since the samples are expected to be
concentrated with respect to alternatives’ positions, therefore they can provide the infor-
mation required to construct an approximation ranking of the central ranking, in which
each alternative is with high probability close to its original position.

We next describe the algorithm presented by Braverman and Mossel [2009] in high level, be-
fore providing a more precise analysis and generalizing it to solve SMRP and MAX-SMRP.
The structure of our algorithm is similar to the one for solving MRP ans MAX-MRP, but
with some non trivial generalizations. In Table 6.1, we present the time complexity of the
algorithms in each case.

Observe that as the number of samples grows, the time tends to become linear for MRP and

o7
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Problem Time complexity

MRP OO L 10g2n)

MAX-MRP O(nHO (552)  90(G+70) -log®n)
SMRP O(n? + n' TG 2% G 10g% )
MAX-SMRP  O(n? 1+O(grtja)QO(ﬁQp“)log n)

Table 6.1: Time complexity of solving Mallows reconstruction problems with probability
of failure bounded above by n™%, where o > 0.

MAX-MRP and quadratic for SMRP and MAX-SMRP. This corresponds to the increase in
the quality of the initial estimator of the central ranking, due to the increase in the number
of samples. Also, in the SMRP and MAX-MRP, recall that pr is the minimum number of
appearances of a pair in the samples, where p € (0, 1]. At first glance, one could suppose
that in the selective case pr would substitute r in the expression of time complexity of the
corresponding classic case. However there is a catch: The concentration in the alternatives’
positions is relaxed in the selective case. In particular, even two elements i, j € [n] that are
distant in the central ranking (that is they are Q(logn) positions away), may swap easily
in a sample where the elements that were ranked between them in the central ranking are
absent, which coincides with what we called ignorance bias.

6.1 Algorithm description

In each case, the algorithm consists of two phases. In the first phase, we create an esti-
mation of the central ranking, for which, with high probability, each alternative is ranked
within a small margin of its original position. In the second phase, we search locally with
the use of Dynamic Programming in order to find a ranking that is at least as likely as
the central ranking. In the case that the subspace of G,, includes a maximum likelihood
ranking, then we find it. The two phases are described below with more detail.

Initialization. In this step, we create a polynomial time estimator 7 of the central
ranking 7o, taking advantage of the concentration that Mallows (and selective Mallows
samples display), which, with high probability satisfies (minus the details) the following
property:

[#(i) — moli)] = O(log ), Vi € [n]

In the classic Mallows model, we use the average estimator 7, which ranks each alternative
according to its average position in the samples, breaking ties uniformly. However, in the
Selective Mallows case, the average estimator does not work, since each ranking contains,
in general, different sets of alternatives, which might also be of different lengths. Hence,
we use the positional estimator 7, defined in Eq.(5.1). One problem that the positional
estimator has to face is the ignorance bias, but we will discuss more on this in a following
section. Observe also that the positional estimator 7 is computed in time O(n?), while the
average estimator in just O(n), which is why it was prefered in the classic Mallows case.
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Local Search. After creating the initial estimator 7, we have to implement a local search
on the subspace of &,,, which corresponds to the set of rankings 7 € &,, for which (minus
the details):

|7(1) — w(i)| = O(logn), Vi € [n],

for we already know that mg lies within this subspace. Since the maximum likelihood
estimation 7* can be proven to satisfy the proximity property with high probability:

|7 () — mo(é)| = O(logn), Vi € [n],

adjusting the precise size of the subspace of search, we manage to solve the maximum
reconstruction problems.

The only question remaining unanswered is how the local search will be implemented. The
answer was given by Braverman and Mossel [2009], in the following lemma, which we use
without proof. It uses Dynamic Programming techniques to “sort an almost sorted list”.

Lemma 6.1.1: Braverman and Mossel [2009]

Let f : [n] x [n] — N be a scoring function. Supposing that there exists an optimal
ordering m € &,, that maximizes the score:

s(m) = f(i,4),

ety

such that |7(i) —i| < k,Vi € [n], then 7 can be computed in time O(n - k% - 26F).

Recall that the score in each of the Mallows reconstruction problems we examine is given by
Eq.(4.11). Combining Eq.(4.11) with Eq.(4.2), we get that, equivalently, we can consider
maximizing the score:
s(r) = qli - j),
i=rj

which satisfies the conditions for applying Lemma 6.1.1.

6.2 Solving MAX-MRP

In this section we present the algorithm for solving MAX-MRP (and MRP), as proposed
by Braverman and Mossel [2009].

Initialization. The initial estimator of g that we use in this case is the average estimator

7(i) = = 3 mili), Vi € [n] (6.1)

Le(r]
Clearly, 7 is not necessarily an element of G,,. However, it can be transformed to a ranking

by putting the elements in increasing w—order, breaking ties uniformly.

The following lemma is the basis of our analysis. It states that the probability of displace-
ment of an alternative from its original position decays exponentially to the length of the
displacement.
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Lemma 6.2.1

Let m ~ My, 3, where mg € &, 8> 0. Then:

Pri|m(i) — mo(i)| > K] < 27 PK /(1 — e7P),Vi € [n]

Proof. Assume for simplicity that mg = m;4. According to Algorithm 1, when i is inserted,
the probability that ¢ is ranked in position j, p;(j), is given by Eq.(4.5). In particular, if
j =i —k, then: p;(j) < e P*. Also, after its insertion, i can only be moved to positions
high higher index. Therefore:

Prim(i) <i— K] < PrlUps{n(i) <i—k}| < Y e PP =ePK/1-eF)
E>K

From the symmetry of the problem: Pr[r(i) > i+ K] < e X /(1 — ¢7#) and the result
follows. s

It follows that the average estimator satisfies a proximity constraint:

Lemma 6.2.2: Average estimator proximity

Suppose that L = (m¢)gefy) ~ (Marop)", where mg € &, and B > 0. Then, for suffi-
ciently large n and fized r, it holds that for any o > 0:

2
Pr [Eli € [n]: 7)) —mo(i)| > a; logn| <n™@
r
Proof. Let v = (v1,...,v,) be a vector of non-negative integers. Also, let
Av= () Ame(i) <i—wve}

Le[r]):ve>0
Then, it holds that:
Prim(i) <i— K] <Pr| |J A,
|l =rK

Also, from Lemma 6.2.1: Pr[4,] < e #lI*lh /(1 —¢=#)". From the union bound, a counting
argument and the following inequality:

rK+r—1
5K +1)"
we get that:
o , e Pri
Pr[7(i) <i— K] < (5K +1) (Er=s
Clearly, the symmetric argument also holds and for K = 0‘6—“7‘? logn, with n > r, the result
follows. O

Therefore, the first step of our algorithm is designed successfully. It remains to search
within a neighborhood of the average estimator, in order to find a likelier than nature
estimator.
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Local search. Lemma 6.1.1 provides an efficient way to perform the local search.

e MRP: Applying Lemma 6.1.1 on the average estimator, we get the following Theorem,
which corresponds to an efficient algorithm for solving the MRP.

Theorem 6.2.1: MRP solution

Let 11 be a Mallows profile consisting of independent samples of My, 3, where mp € &,
and > 0. Then, for any o > 0, there exists an algorithm that solves MRP with input
II wn time:

T= O(n”o(%) -log?n)

o

and with probability of failure less than n=¢.

e MAX-MRP: In order to find the maximum likelihood estimation, it remains to show that
7* is also close to the central ranking. This is shown by Lemma 6.2.3. For the proof of this
Lemma we refer to Braverman and Mossel [2009], for we will provide the complete proof
of its generalization to the selective Mallows case in the following section.

Lemma 6.2.3

Let J = 6-r11ax(c“/8—";2 log n, %@H/ﬁ) Then, for the mazimum likelihood ranking 7 that
solves the MAX-MRP problem when the central ranking is mg, it holds:

Pr{3i € [n] : |7*(i) — mo(i)] > 32J] < 2n~“

Therefore, since the property of proximity is transitive (summing the bounds), the average
estimator is proximate to the maximum likelihood estimation and using the algorithm of
sorting an almost sorted list, we conclude to the following theorem:

Theorem 6.2.2: max-MRP solution

Let 11 be a Mallows profile consisting of independent samples of My, g, where mp € &,
and B > 0. Then, for any a > 0, there exists an algorithm that solves MAX-MRP with
mnput 11 in time:

T= O(nHO(%) . 20(%+5%) -log?n)

[0}

and with probability of failure less than n=<.

In the following section, we present our contribution to the direction of solving the SMRP
and MAX-SMRP problems.

6.3 Solving MAX-SMRP

In this section, we present our own, original results on solving the Selective Mallows re-
construction problem. The structure of the algorithm we present is similar to the one
introduced by Braverman and Mossel [2009] for solving the Mallows reconstruction prob-
lem. However, in order to design a solution in the selective Mallows case, non trivial
generalizations were required.
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Initialization. We show that the positional estimator 7, defined in Eq.(5.1) is a good
initialization with high probability. Note that it is probable that 7 is not a bijection
over [n]. We break the ties uniformly at random, e.g. from left to right and get a valid
permutation.

The initialization of the algorithm presented by Braverman and Mossel [2009] is obtained
by estimating the position of each alternative i € [n] by calculating its average position in
the sample profile. However, under selective Mallows model, the average position does not
have the same meaning, since each sample is drawn according to a Mallows distribution
with a different central ranking of smaller size. In contrast, the estimator 7, estimates
the position of each alternative by comparing it with each of the other alternatives, using
information provided by the sample profile. Given that the sample profile contains infor-
mation about the relative position of each pair of elements, then we show that 7 provides
a good approximation for the position of each alternative.

The quality of the approximation is connected to the parameter 8 of the Mallows distribu-
tion, the number of alternatives n, the accepted probability of error € and the frequency p
of the sample profile. Intuitively, as # diminishes, the alternatives are more easily swapped
and therefore, an alternative might appear in a sample far from its position in the central
ranking. Increasing the number of alternatives, the conditions that must hold in order for
T to be accurate are more strict, since more alternatives must be ranked within a small
margin of their positions in the central ranking. Finally, as p diminishes, some pairs of
alternatives are not compared enough times and therefore, their relative position remains
unknown. If the number of such pairs is big enough, then there might be an alternative
that is ranked by 7 far from its position in central ranking.

Assume that S is a vector consisting of elements of 2. We remind the reader that S (and
any corresponding sampling profile of the selective Mallows model) is said to be p—frequent
if for any pair of elements of [n], the ratio of elements of S where they both appear to the
length of S is at least p, where p € [0, 1].

Lemma 6.3.1

Consider a Mallows distribution My, g with central ranking moy and spread parameter
B and let IT be an p-frequent adversarial Mallows profile of size r, induced by gy and (.
Then for any € € (0,1), there exists an algorithm that, computes an estimate 7 of the
central ranking my, such that, for some:

1 1

the probability that there exists i € [n] such that |7 (i) — mo(i)| > N is no more than e.

e Proof of Lemma 6.3.1: The basic observation that supports the idea of approximating
the true position of each alternative is that the probability of displacement of an alterna-
tive decays exponentially to the length of the displacement (which also implies that the
probability of swap between two alternatives decays exponentially to their distance in the
central ranking, since at least one of them must be displaced at least half their distance in
order for them to swap).

In the classic Mallows case, this observation directly implies a notion of neighborhood
N;(K) (see figure 6.1) for each alternative i € [n] which includes all the elements that are
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ranked no more than K (€ [n]) places away from ¢ in my. For the elements outside this
neighborhood there is a probabilistic guarantee that provides a bound for the probability
of their swapping with ¢, which diminishes exponentially with respect to K. Picking K to
be of order O(logn), we can guarantee that, with high probability, the elements outside
the neighborhood of each alternative ¢ will not be swapped with ¢ except within a minority
of the samples. This indicates that the positional estimator 7 is a good initialization in
the classic Mallows case.

Upper Bound of
Probability Mass of

Displacement

T = Tid

Figure 6.1: Neighborhood in classic Mallows case

However, under the selective Mallows model, the distance of two alternatives in the central
ranking might be significantly smaller in a reduced central ranking. Therefore, in order
to take into consideration this possibility, for each sample profile, we define a notion of
neighborhood for each alternative, as follows:

Definition 6.3.1 (Right Neighborhood): Assume we are given a sample profile II
consisting of r independent samples from Mﬁ(‘;"ﬁ_’s, where mp € S, B > 0, § =
(S1,..,8,) € M. For any i € [n], M € [n—1] and A > 1, we denote with
NE(M, ) C [n], each element j of which has the following properties:

1. Wo(i) < 7T0(j)
2. {k:{i,j} € Sk Amols, (7) < mols, (i) + M} = 7r/A

We, similarly, define the left neighborhood N, Vi € [n].
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In the Selective Mallows case, the neighborhood we defined depends not only on mg, but
also on the selection sets vector §: The neighborhood of i consists of the alternatives j
which are ranked M —close to i in at least a fraction (determined by parameter \) of the
reduced central rankings of the samples (see figure 6.2).

\

| ]
- R

Selection Sets

Including ¢

- R

Figure 6.2: Neighborhood in selective Mallows case. Notation: i € [n] and ij =
(mols,) ™1 (i +v)-

Observe that if for some j € [n] with mo(j) > mo(i) it holds that j ¢ NF(M,\), then the
number of samples where ¢ and j have a distance less than M is bounded, which means
that in the rest of the samples where ¢ and j both appear, they will be distant. The
following proposition shows that if we allow the non-neighboring elements to be close in a
nontrivial number of samples, then the neighborhood length is not very large.

I Proposition 6.3.1: It holds that: |INE(M,\)| < AM,i € [n].
Proof. In each sample where ¢ appears there are M places available for candidate neighbors.

Therefore, there are Mr places in total. However, each neighbor takes r/\ places at least.
Therefore, the number of neighbors cannot be higher than AM. O

Obviously, the same holds for the left neighborhood NF¥,i € [n].

We continue with a very useful lemma. Lemma 6.3.2 states that selecting appropriate
parameters for the neighborhoods that we defined, we ensure that with arbitrary high
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probability, for each alternative i, all the alternatives which are not included in its neigh-
borhood are ranked correctly relatively to ¢ in the majority of samples, while the size of
the neighborhood remains small.

Lemma 6.3.2

Assume we are given a sample profile I1 consisting of r independent samples from
MAD‘zf‘S, where g € &, B> 0 and S € (2M)", that is p—frequent for some p € (0, 1].

70,

Then, for any c € (0,1/2], € € (0,1), considering:

2 N 4 N 4
% Bep  Bepr

with probability at least 1 — ¢, for every i € [n], there exists a set CF* C R; = {j € [n] :
mo(j) > mo(i)} such that:

L=Lp) = log(n?/e),

1. For any j € R; \ CE, it holds that q(j > i) < cWj;.

2(14-c
2. |CE| < (C;)L.

Proof. Suppose that i € [n] and j is selected so that m(j) > mo(i) and j & NE(L,\),
where A > 1 will be defined later.

Then there are the following groups of samples (see figure 6.3):
1. The set of all samples, which has cardinality r.

2. The set of the samples where both ¢ and j appear, which includes W;; > rp samples
(since p := inf; ; Wy; /7).

3. The set of the samples (7, S) where both i and j appear and, also, the truncated
central ranking mp|g, ranks them at least L positions away. This set includes W >
W;j — r/X samples, due to the selection of j.

This means that for the chosen j ¢ N, we have that W > W;; —r /.

We denote with ¢(j > i) the number of samples where j is ranked before i (we count only
the samples where both ¢ and j appear) and with ¢(j > i) the number of samples where j
is ranked before 7 and the corresponding restricted central ranking ranks ¢ and j at least
L positions away.

We would like to bound the probability that ¢(j > i) > cWj;;. Note that provided that
W is large enough in relation to W;;, then it would be sufficient to bound the probability
that g(j = i) > W, for some appropriate ¢’. In particular, we would like:

q(j = i) > cWi; = q(j = i) > W,
We choose ¢ < ¢—1/(Ap—1) and get:

qG =) <qG=i)+r/A=q40G =9 >Wi; —r/A>(+1/Ap—1))W —r/A> W
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Samples
< (1 — p)r where ¢ or j is missing
< r/X where j is close to ¢

remaining where 7, j swapped

remaining where z, 5 did not swap

must be > (1 — ¢)W;

Figure 6.3: Sample grouping in order to pick appropriate parameters for the neighborhood
in the selective Mallows case.

It remains to bound the probability that g(j = i) > ¢/W.

For a Mallows sample m ~ M 3, the probability of the event 7 (i) < my(7) — K is bounded
by e X /(1 — e#),VYK (Lemma 6.2.1).

Therefore, in each of the W samples where ¢ and j are distant in the central ranking, the
probability of their swapping is less than p = 2¢~#L/2 /(1— e P ), since in case of swapping,
at least one of them must be misplaced by at least L/2 positions.

We have:

Prig(j <i) > W= > Prlg(j <i)> kW = kPr[W = k|,
k=(p—1/M)r
since W > W, ; —rA > (p — 1/A)r. In the case when W = k, ¢(j < i) is the sum of k
Bernoulli trials, each one of which has a parameter at most p. Therefore:

Pr[q«(.] < Z) > Clklw = k] < Z (];>pt < pclk2k¢ Spc,(p_l/)\)T2T,
t>c'k

since k € [(p— 1/M\)r,r]. We pick ¢ =c¢—1/(Ap—1). In order for the exponent of p to be
positive, the following condition must hold: A > (14 ¢)/(cp).
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Hence:

PI‘[Q(] < Z) > C,W] < p(cp—c/)\—l/)\)'rQT _ (26—BL/2/(1 - 6—5))(cp—c/)\—1/)\)r2'r

We demand that the above quantity is less than en~2, which gives that L must be:

2 o —_e B ;0 ! og(n?/e
Lzﬂ(l g(1/(1 ))+Cp_C/A_1/A1g2+(cp_C/A_1/A)Tlg( /)>

It suffices that L = % + ﬁlZ + B%r log(n?/€), where Z = (cp — c¢/X —1/)). Afterwards, We

pick the set CF = N (L*, )\), where ) is to be chosen.

From the union bound over all possible ¢ and j, since |CZ-R| < AL, due to Proposition 6.3.1.

Finally, we optimize over A. In order to approximately minimize the quantity AL()\), subject
to A > (14 ¢)/(cp), we choose: \* = 2(c+ 1)/(¢ep), which minimizes the function g(\) =
A(L(X\) —2/5%) and the remaining term 2\* /32 is close to its minimum value, since A must
be greater than (1 + ¢)/(cp). Therefore, we get that Z* = ¢p/2 and:

A S
T3 Bz Bz

log(nQ/e)
]

Exactly similar results hold for the symmetric problem (when m(j) < mo(2)). Using the
Lemma 6.3.2 we prove that the estimator 7, extended by breaking ties uniformly provides
an approximation of g, which completes the proof of Lemma 6.3.1:

Proof. We apply Lemma 6.3.2, for any ¢ < 1/2, as well as the similar one which corresponds
to the left neighborhood. Therefore, if L = % + % + =% log(n?/¢), then with probability

Bepr
at least 1 — ¢, for each i € [n], there are at most K = @L elements j € [n], with

mo(i) < mo(j) (mo(j) < mo(4)) which are not ranked correctly in relation to 7 in the samples.
Therefore: |7(i) —mo(i)| < K, with probability at least 1 — ¢, where 7(i) — 1 is the number
of elements of [n] that are ranked before 7 in most samples.

It remains to convert 7 into a ranking # € &,, by breaking ties uniformly. Following the
steps presented by Rubinstein and Vardi [2017]: If 7(5) < #(¢) then: #(j)+ K < 7(i)+ K.
However: j < #(j) + K and 7(i) + K < i+ 2K therefore: j < i+ 2K = j —i < 2K.
Therefore: 7(i) < i+ 2K. Symmetrically: 7(i) > i — 2K. O

Therefore, we have proven that the positional estimator 7 is a good initialization of the
algorithm, as it satisfies the proximity property. Note that parameter p appears squared
in the denominator of the proximity guarantee (Lemma 6.3.1), due to the uncertainty that
selectivity inserts into the distance between a pair of alternatives in the reduced central
rankings that correspond to input samples.
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Local search. We finally present the two main results.

e SMRP: Applying the algorithm of solving an almost sorted list, we immediately get the
following result:

Theorem 6.3.1

Consider a Mallows distribution My, g with central ranking my and spread parameter
B and let II be an p-frequent adversarial Mallows profile of size r, induced by My, 3.
Then for any o > 0, there exists an algorithm that computes an estimate ", that solves
SMRPwith input I in time:

T= O(n2 + n1+o(gz’%)20(ﬁ) log? n>, (6.3)

and with probability of failure at most n=¢.

Proof. First we calculate the estimation 7 in time O(n?), which with probability at least
1 — n™* sorts every element at most N = O(ﬁ + ﬁlog(n)) places away from its
position in mg, by Lemma 6.3.1. Therefore, 7 is an almost sorted list. Using the algorithm

for sorting an almost sorted list (Lemma 6.1.1) we get the result. O

e MAX-SMRP: It remains to show that the maximum likelihood estimation of the central
ranking ranks each alternative close to its position in the central ranking:

Lemma 6.3.3

Assume we are given an p—frequent sample profile TI from Mﬁ(’)’\é, where p € (0,1],

m € &y, and B > 0. Then, for the mazimum likelihood estimator @ of mg from 11, it
holds that for any € € (0,1), there exists some K, such that:

1 1
K=0 (W + Bt log(nQ/e)) ,

and the probability that there exists i € [n] such that |7* (i) — mo(2)| > K is at most 2e.

Proof. The proof follows the same steps presented by Braverman and Mossel [2009], gen-
eralizing them to suit the Selective Mallows model. Assume, without loss of generality,
that mo = id. Let h > 0 and ¢ € (0,1/2), which will be defined later. Assume that for
any 4,7 € [n], ¢(j > i) is the number of samples where j is ranked before i (that is i > j)
and Wj;; is the number of samples where both 7 and j appear. Apparently, it holds that:
q(i = j) +q(j > i) = Wyj. Then, from Lemma 6.3.2, with probability at least 1 — ¢, for
every alternative i € [n], there exists a set C C {i + 1,4+ 2,...,n} such that:

2(1
LJCR| < N =292 4y 4 log(n?/e))
2. je{i+1,i+2,...,n}\CE = q(j = i) < cW;; and W;; > pr

Symmetrically, the same holds for sets CZL , for any i € [n].
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Fix i € [n] such that |7*(i) — i| = K, where K > hN. Without loss of generality,
assume 7*(i) = i + K. It suffices to find values of ¢ and h that contradict the assumption
™) =1+ K.

Let S={jen}:i<7*(j)<i+K]and: Sy ={j€S:j<i}, So={jeS:jeCk}
S3={j€S:j>iandj¢CF}. Apparently: S =53 USyU S;.

Observe that since 7* maximizes the following score function:
s: 6, —=N
T — s(m) = Z q(iy > i2)

11> i2
It must hold that:

0<Y (g0 >=i)—q(i = j)

jes
For any j € S3, from the assumption for CZ-R, it holds that:
q(j = i) < cWij = q(j = i) —q(i > j) < —(1 = 2c)pr
Let |Si| = T. Furthermore: [Sa| < N and |S3] > K — N —T > (h — 1)N — T'. Therefore:
0<rT+rN—-(1-2)pr((h—1)N-T) =

T (1—-2¢)p(h—1)—1

- 14+ (1—2¢)p (64)

Observe that, since there are at least T alternatives j < ¢ such that 7*(j) > 4, say
T) C [n], there must be at least T" alternatives j > i such that 7*(j) < i, say T» C [n]. Let
Hy={1,...,i—1} and Hy = {i,...,n}. We construct m; € &,, by concatenating 7|z, and
7| H,. It remains to select appropriate values for h and ¢ for which s(m1) > s(7*), which
is a contradiction.

Create the following sets:

1. P;: The pairs of elements i1,iy € [n],i1 < i2 for which iy € Cﬁ (or equivalently
i1 € CL) and 7y, 7 disagree on their relative ranking. Note that: |Pi| < 2TN.

2. Py: The pairs of elements i1,iy € [n],i1 < iz for which m,7* disagree, but iy ¢ Ci}f
and i1 & CZ-LQ. Note that 7; has the right answer for this pair and q(i1 > i2) — q(i2 =
i1) > (1 —2¢)pr. Also: |Py| > T(T — N) (select an element of 77 and an element of
T, which is not in the first element’s neighborhood).

Then: 8(7'('1) — s(ﬂ'*) = Z(il,i2)€P1 (q(i1 - ’ig) — q(ig - 11)) + Z(il’i2)€P2 (q(il - ig) - q(ig -
i1)) > =2rTN + (1 = 2¢)prT(T — N) = rT((1 — 2¢)pT — ((1 — 2¢)p + 2)N)
Using Ineq. 6.4, we get that:

(1 =2¢)p((1 —2¢)p(h — 1) — 1)

s(m) — s(7*) > rTN 1+ (1—2¢)p

— (24 (1 —2¢)p)

We search for values of ¢ and A such that the quantity inside the brackets is positive. After

analysis, we choose ¢ < 1/4 (constant) and h = 2 + 8/p + 8/p* = O(I%).

O
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We are now ready to prove Theorem 6.3.2:

Theorem 6.3.2: max-SMRP solution

Consider a Mallows distribution My, g with central ranking my and spread parameter
B and let 11 be an p-frequent adversarial Mallows profile of size r, induced by My, 3.
Then for any o > 0, there exists an algorithm that computes an estimate 7, that solves
MAX-SMRPwith input 11 in time:

T = O(n2 + nHO(;ﬁ‘)QO(B;P“) log? n), (6.5)

and with probability of failure at most n=<.

Proof. First we calculate the estimation # in time O(n?), which with probability at least
1 — n~% sorts every element at most N = O(@ + 55 log(n)) places away from its
position in 7y, by Lemma 6.3.1. Therefore, 7 is an almost sorted list. The solutions of
MAX-SMRP are also almost sorted lists. Therefore, 7 is also an almost sorted list with
respect to the maximum likelihood estimation. Using the algorithm for sorting an almost
sorted list (Lemma 6.1.1), we get the result. O



Chapter 7

Conclusions and further work

We introduced the Selective Mallows model as an interpolation between two models: Mal-
lows model and Noisy Comparisons model. Indeed, as we showed in Chapter 4, Selective
Mallows Reconstruction problem is a generalized version of the Reconstruction problems
that correspond to each of these models; in other words, the problem of finding the maxi-
mum likelihood estimation of the central ranking is the same in these models.

Furthermore, in Chapter 5, we established tight sample complexity bounds for retrieving
the central ranking in the case that selection sets are picked adversarially or randomly,
introducing the notion of frequency of selectivity. These bounds indicate that when one
cannot pick the selection sets, an optimal option is to focus only on the information pro-
vided by the samples in the form of pairwise comparisons. That is, it is an optimal strategy
to view the sample profile as a collection of noisy comparisons.

Finally, in Chapter 6, we showed that under the Selective Mallows model, if a sample
profile is rich in pairwise information - that is, each pair of alternatives appears frequently
in the samples - then, the maximum likelihood estimation of the central ranking can be
reconstructed efficiently. This is a consequence of the fact that rich pairwise information
enables estimating each alternative’s position in the central ranking and also of the simi-
larity in the structure of Selective Mallows reconstruction problem and the classic Mallows
Reconstruction problem, for which Braverman and Mossel [2009] have already provided an
efficient algorithm.

However, there are still two directions in which our results can be extended. The first one
regards central ranking’s retrieval. In particular, although in the case that we do not pick
the selection sets, the Selective Mallows model does not have an advantage over the Noisy
Comparisons model with respect to retrieving the central ranking, it might be true that
in the adversarial model, namely when we pick the selection sets in the runtime of the
estimation algorithm, the concentration property of the Selective Mallows model could be
exploited. The results we already have are presented in table 7.1.

Queries Noiseless Setting Noisy Setting
Pairwise comparisons O(nlogn) O(nlogn)
Incomplete Rankings of length m  O(;:log(n/m))  O(;s log(n))
Complete Rankings 1 O(logn)

Table 7.1: Query complexity for sorting and noisy sorting.

71



72 Chapter 7. Conclusions and further work

However, in the incomplete ranking queries case, it remains open to establish lower bounds
of the query complexity or improve the bounds we provided.

The second direction corresponds to improving the time complexity of the algorithms cor-
responding to Theorems 6.3.1 and 6.3.2, taking advantage of the observation that when
the selectivity parameter p is small, then the maximum likelihood estimation is also in-
fluenced, by becoming less precise. In the extreme case that an alternative never appears
in the samples, picking an arbitrary position for the alternative does not influence the
likelihood of the proposed solution.
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