
Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών

Εργαστήριο Λογικής και Επιστήμης Υπολογιστών (Co.Re.Lab.)

Αλγόριθμοι Χωρίς Μνήμη για το Γενικευμένο

Πρόβλημα των k-Εξυπηρετητών σε

Ομοιόμορφους Μετρικούς Χώρους

Διπλωματική Εργασία
του

Δημητρίου Ι. Χρήστου

Αθήνα, Ιούλιος 2020

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών

Εργαστήριο Λογικής και Επιστήμης Υπολογιστών (Co.Re.Lab.)

Αλγόριθμοι Χωρίς Μνήμη για το Γενικευμένο

Πρόβλημα των k-Εξυπηρετητών σε

Ομοιόμορφους Μετρικούς Χώρους

Διπλωματική Εργασία
του

Δημητρίου Ι. Χρήστου

Επιβλέπων: Δημήτριος Φωτάκης

Αναπληρωτής Καθηγητής Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 13η Ιουλίου 2020.

..

Δημήτριος Φωτάκης Αριστείδης Παγουρτζής Αντώνιος Συμβώνης

Αναπ. Καθηγητής Ε.Μ.Π. Αναπ. Καθηγητής Ε.Μ.Π. Καθηγητής Ε.Μ.Π.

Αθήνα, Ιούλιος 2020

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών

Εργαστήριο Λογικής και Επιστήμης Υπολογιστών (Co.Re.Lab.)

c© 2020, Δημήτριος Ι. Χρήστου (Dimitrios I. Christou)

Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου

ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή

για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να

αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν

τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει νααπευθύνονται στον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγ-

γραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού

Μετσόβιου Πολυτεχνείου

Υπεύθυνη Δήλωση

Βεβαιώνω ότι είμαι συγγραφέας αυτής της πτυχιακής εργασίας, και ότι κάθε βοήθεια την οπο-

ία είχα για την προετοιμασία της είναι πλήρως αναγνωρισμένη και αναφέρεται στην πτυχιακή

εργασία. Επίσης έχω αναφέρει τις όποιες πηγές από τις οποίες έκανα χρήση δεδομένων, ιδεών

ή λέξεων, είτε αυτές αναφέρονται ακριβώς είτε παραφρασμένες. Επίσης, βεβαιώνω ότι αυτή

η πτυχιακή εργασία προετοιμάστηκε από εμένα προσωπικά ειδικά για τις απαιτήσεις του προ-

γράμματος σπουδών του Τμήματος Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

του Εθνικού Μετσόβιου Πολυτεχνείου.

..................................

Δημήτριος Ι. Χρήστου

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Περίληψη

Το γενικευμένο πρόβλημα των k-εξυπηρετητών είναι μία σημαντική γενίκευση του προ-

βλήματος των k-εξυπηρετητών, το οποίο αποτελεί ένα από τα πιο θεμελιώδη προβλήματα της

θεωρίας των online αλγορίθμων. Αν και το πρόβλημα των k-εξυπηρετητών έχει μελετηθεί και

κατανοηθεί εκτενώς τις τελευταίες δεκαετίες, το γενικευμένο πρόβλημα των k-εξυπηρετητών

έχει γίνει κατανοητό σε πολύ μικρότερο βαθμό, με τα περισσότερα σχετικά αποτελέσματα να

αφορούν μόνο ειδικές περιπτώσεις μετρικών χώρων.

Στόχος της παρούσας διπλωματικής εργασίας είναι η μελέτη του γενικευμένου προβλήμα-

τος των k-εξυπηρετητών σε ομοιόμορφους μετρικούς χώρους. Παρακινούμενοι από την αντι-

στάθμιση ανάμεσα στον λόγο ανταγωνιστικότητας και στην υπολογιστική αποτελεσματικότη-

τα των αλγορίθμων, μελετάμε την ισχύ των αλγορίθμων χωρίς μνήμη και δείχνουμε σφιχτά

φράγματα της τάξης Θ(k!) για τον λόγο ανταγωνιστικότητάς τους. Συγκεκριμένα, δείχνουμε

οτι ο Αρμονικός Αλγόριθμος πετυχαίνει αυτόν τον λόγο και αποδεικνύουμε αντίστοιχα κάτω

φράγματα. Αυτό το αποτέλεσμα βελτιώνει το ≈ 22k
διπλά εκθετικό φράγμα των Chiplun-

kar και Vishwanathan για την πιο γενική περίπτωση των ομοιόμορφων μετρικών χώρων με

διαφορετικά βάρη.

Λέξεις - Κλειδιά: Online Αλγόριθμοι, Γενικευμένο Πρόβλημα k-Εξυπηρετητών, Αλ-

γόριθμοι Χωρίς Μνήμη

i

Abstract

The generalized k-server problem is a far-reaching extension of the k-server problem,

one of the most fundamental problems in the theory of online algorithms. While the k-

server problem has been extensively studied and understood over the last decades, the

generalized k-server problem is much less understood and most results are restricted to

special types of metric spaces.

In this thesis, we consider the generalized k-server problem on uniform metrics. Mo-

tivated by the trade-offs between the competitive ratio and computational efficiency, we

study the power of memoryless algorithms and show tight bounds of Θ(k!) on their compe-

titive ratio. In particular we show that the Harmonic Algorithm achieves this competitive

ratio and provide matching lower bounds. This improves the ≈ 22k doubly-exponential

bound of Chiplunkar and Vishwanathan for the more general setting of uniform metrics

with different weights.

Keywords: Online Algorithms, Generalized k-Server Problem, Memoryless Algorithms

iii

Ευχαριστίες

Αρχικά, θα ήθελα να ευχαριστήσω τον επιβλέποντα και καθηγητή μου κ. Δημήτρη Φωτάκη

για την απίστευτη υποστήριξη και καθοδήγησή του σε όλη τη διάρκεια της προπτυχιακής μου

πορείας, για τις ευκαιρίες που μου έδωσε και κυρίως για το ενδιαφέρον που μου έδειξε τόσο

σε ακαδημαϊκό όσο και σε προσωπικό επίπεδο. Στη συνέχεια, θα ήθελα να ευχαριστήσω τον

Γρηγόρη Κουμούτσο, ο οποίος επέβλεψε προσωπικά την εκπόνηση της παρούσας διπλωματικής

εργασίας και υπήρξε καταπληκτικός δάσκαλος για εμένα τον τελευταίο ένα χρόνο. Χωρίς το

ενδιαφέρον του, την καθοδήγησή του και τη συμβολή του, η παρούσα διπλωματική εργασία

δεν θα είχε ολοκληρωθεί.

Θα ήθελα επίσης να ευχαριστήσω θερμά την ομάδα από το εργαστήριο LIP6 του Sorbonne

University με την οποία είχα την χαρά να συνεργαστώ πέρυσι και φέτος στα πλαίσια της

πρακτικής μου, τον Ευριπίδη Μπάμπη, τον Bruno Escoffier και τον Nguyen Kim Thang, για

την καθοδήγησή τους και τη συμμετοχή τους στα πρώτα μου ερευνητικά βήματα.

Και κυρίως, θα ήθελα να ευχαριστήσω την οικογένεια μου, τους γονείς μου και τις αδερφές

μου, για την ανιδιοτελή αγάπη που μου έχουν προσφέρει όλα αυτά τα χρόνια, τις θυσίες τους

και την υποστήριξή τους σε όλες μου τις επιλογές.

Δημήτριος Χρήστου,

Αθήνα, Ιούλιος 2020

v

Acknowledgments

First of all, I would like to thank my supervisor and teacher Prof. Dimitris Fotakis for

his massive support and guidance during the last five years, the opportunities he gave me

and most importantly the interest he has shown in me, both academically and personally.

Next, I would like to express my gratitude towards Grigorios Koumoutsos, who perso-

nally supervised this thesis and was an excellent teacher to me over the last year. Without

his guidance and his participation in this work, this thesis would not be completed.

I would also like to thank the group from the LIP6 lab in Sorbonne University, that

supervised my internships last year and this year as well: Evripidis Bampis, Bruno Escoffier

and Nguyen Kim Thang. Thank you for your guidance and being a huge part of my first

steps in the field of academic research.

But most importantly, I would like to express my gratitude towards my family, my

parents and my sisters, for their selfless love throughout all this years, their sacrifices and

their unlimited support.

Dimitrios Christou,

Athens, July 2020

vii

Εκτεταμένη Ελληνική Περίληψη

Το βασικό σκέλος της παρούσας διπλωματικής εργασίας έχει αποδωθεί στην αγγλική

γλώσσα, κυρίως για λόγους προσβασιμότητας. Σε αυτό το κομμάτι της, συνοψίζουμε το

περιεχόμενό της, δίνοντας έμφαση στους βασικούς ορισμούς, τις μεθοδολογίες και τα θεω-

ρήματα, αλλά χωρίς τις μαθηματικές αποδείξεις. Η δομή της ενότητας αυτής είναι σε ένα προς

ένα αντιστοίχηση με το (αγγλικό) περιεχόμενο της διπλωματικής εργασίας.

Εισαγωγή

Σε ένα κλασσικό πρόβλημα βελτιστοποίησης, μας δίνετε μία συγκεκριμένη είσοδος και

ο στόχος μας είναι να βρούμε μία βέλτιστη λύση για την είσοδο αυτή. Ωστόσο, σε πολλές

πραγματικές εφαρμογές, η υπόθεση ότι μας δίνετε κατευθείαν ολόκληρη η είσοδος δεν είναι

ρεαλιστική. Τις περισσότερες φορές, χρειάζεται να λύνουμε προβλήματα βελτιστοποίησης

παίρνοντας αποφάσεις χωρίς να έχουμε πλήρη γνώση της εισόδου. Αναφερόμαστε σε τέτοιου

είδους προβλήματα με τον όρο online προβλήματα, και για να τα επιλύσουμε χρειάζεται να

σχεδιάσουμε online αλγορίθμους οι οποίοι παίρνουν αποφάσεις χωρίς να γνωρίζουν το μέλλον.

Ο βασικός μας στόχος είναι να σχεδιάσουμε online αλγορίθμους για τους οποίους έχουμε

εγγυήσεις που αφορούν την απόδοσή τους σε σχέση με την βέλτιστη offline λύση η οποία έχει

ολόκληρη την είσοδο στη διάθεσή της από την αρχή.

Το πρόβλημα των k-εξυπηρετητών (k-server problem) αποτελεί ένα από τα βασικότερα

και πιο εκτενώς μελετημένα προβλήματα στην θεωρία των online αλγορίθμων. Σε αυτό το

πρόβλημα, μας δίνεται ένας μετρικός χώρος με n σημεία και k κινούμενοι εξυπηρετητές που

βρίσκονται σε κάποια από τα σημεία του μετρικού χώρου. Σε κάθε βήμα, λαμβάνουμε ένα

αίτημα που αντιστοιχεί σε ένα από τα σημεία του μετρικού χώρου, και για να το εξυπηρετήσουμε

πρέπει να μετακινήσουμε κάποιον από τους εξυπηρετητές σε αυτό το σημείο. Στόχος μας είναι

να ελαχιστοποιήσουμε την συνολική απόσταση που διανύουν οι εξυπηρετητές.

Το πρόβλημα των k-εξυπηρετητών αποτελεί γενίκευση πολλών online προβλημάτων, με

πιο σημαντικό το πρόβλημα των σελίδων (paging problem) το οποίο αποτελεί την ειδική

περίπτωση όπου ο μετρικός χώρος είναι ομοιόμορφος. Το πρόβλημα των σελίδων έχει ε-

πιλυθεί πλήρως: το competitive ratio του είναι k για ντετερμινιστικούς αλγορίθμους και

Hk = Θ(logk) για τυχαίους αλγορίθμους. Ωστόσο, σε γενικούς μετρικούς χώρους η κατα-

νόησή μας για το πρόβλημα των k-εξυπηρετητών είναι ακόμα ελλιπής: οι Κουτσουπιάς και

Παπαδημητρίου απέδειξαν την ύπαρξη ενός ντετερμινιστικού αλγορίθμου με competitive ratio

ix

x Εκτεταμένη Ελληνική Περίληψη

2k − 1, ενώ γνωρίζουμε ότι το βέλτιστο εφικτό είναι τουλάχιστον k. Πολλοί πιστεύουν ότι

πράγματι το σωστό competitive ratio για το πρόβλημα είναι k, και η θέση αυτή είναι γνωστή

στη βιβλιογραφία ως η εικασία των k-εξυπηρετητών. Για τυχαίους αλγορίθμους, πιστεύετε ότι

υπάρχει αλγόριθμος με competitive ratio O(logk) αλλά παρά τις αμέτρητες προσπάθειες τα

τελευταία χρόνια, η εικασία αυτή παραμένει ανοιχτή.

Σε μία προσπάθεια για καλύτερη κατανόηση του προβλήματος των k-εξυπηρετητών, έχουν

προταθεί διάφορες γενικεύσεις του όπως για παράδειγμα το πρόβλημα των k-εξυπηρετητών με

βάρη και το CNN πρόβλημα. Με στόχο να συνοψίσουν τέτοιες γενικεύσεις του προβλήματος

κάτω από ένα ενιαίο πρόβλημα, οι Κουτσουπίας και Taylor πρότειναν το γενικευμένο πρόβλημα

των k-εξυπηρετητών, όπου ο κάθε εξυπηρετητής si βρίσκεται σε ένα ξεχωριστό μετρικό χώρο

Mi και κάθε αίτημα είναι της μορφής (r1, r2, . . . , rk) με ri ∈Mi: για να εξυπηρετηθεί, πρέπει

τουλάχιστον ένας εξυπηρετητής si να μεταβεί στο σημείο ri του μετρικού χώρου Mi.

Το γενικευμένο πρόβλημα των k-εξυπηρετητών έχει μία πολύ πλουσιότερη δομή από το

κλασσικό πρόβλημα των k-εξυπηρετητών, και για γενικούς μετρικούς χώρους δεν έχει βρεθεί

ακόμα αλγόριθμος με competitive ratio που να εξαρτάται μόνο από το k. Γενικά, τα μόνα

αποτελέσματα της βιβλιογραφίας αφορούν τις ακόλουθες δύο περιπτώσεις:

• Ομοιόμορφες Μετρικές: ΄Ολοι οι μετρικοί χώροι M1, . . . ,Mk είναι ομοιόμορφοι, με την

ίδια απόσταση (πχ 1) ανάμεσα σε δύο σημεία τους.

• Ομοιόμορφες Μετρικές με βάρη: ΄Ολοι οι μετρικοί χώροι M1, . . . ,Mk είναι ομοιόμορφοι

αλλά έχουν διαφορετικά βάρη: για να κουνήσεις τον εξυπηρετητή της μετρικής Mi το

κόστος είναι wi.

Αν και μοιάζουν παρόμοιες, οι παραπάνω ειδικές περιπτώσεις διαφέρουν σημαντικά μεταξύ

τους. Για ντετερμινιστικούς αλγορίθμους, οι Bansal et.al. [11] ανέλυσαν έναν αλγόριθμο

με competitive ratio O(k2k) σε ομοιόμορφους μετρικούς χώρους, ενώ στην περίπτωση των

ομοιόμορφων μετρικών χώρων με βάρη κάθε ντετερμινιστκός αλγόριθμος έχει competitive

ratio τουλάχιστο 22k−4
[10].

΄Ενα βασικό μειονέκτημα πολλών αλγορίθμων που πετυχαίνουν το καλύτερο competitive

ratio για κάποια προβλήματα είναι ότι είναι υπολογιστικά μη-αποδοτικοί. Για παράδειγμα, ο

Work Function Algorithm των Κουτσουπιάς και Παπαδημητρίου που πετυχαίνει το (σχεδόν

βέλτιστο) 2k − 1 competitive ratio για το πρόβλημα των k-εξυπηρετητών, τρέχει πάνω σε

όλες τις πιθανές διατάξεις των εξυπηρετητών, που είναι
(
n
k

)
.

Η παρατήρηση αυτή οδηγεί στην μελέτη της σχέσης ανάμεσα στην αποδοτικότητα και το

competitive ratio ενός online αλγορίθμου. ΄Ενα πρώτο βήμα σε αυτή την κατεύθυνση είναι

η μελέτη αλγορίθμων χωρίς μνήμη, δηλαδή αλγορίθμων που παίρνουν αποφάσεις βασισμένοι

μόνο στην τρέχουσα διάταξή τους και το τρέχον αίτημα που λαμβάνουν.

Η απόδοση των αλγορίθμων χωρίς μνήμη έχει μελετηθεί εκτενώς για το πρόβλημα των

k-εξυπηρετητών [16, 55], με βασικότερο αλγόρθμο τον Αρμονικό Αλγόριθμο ο οποίος μετα-

κινεί τον κάθε εξυπηρετητή με πιθανότητα αντιστρόφως ανάλογη της απόστασής του από το

αίτημα. Εικάζεται ότι το competitive ratio του Αρμονικού Αλγορίθμου είναι O(k2), ωστόσο

το πρόβλημα αυτό παραμένει ανοιχτό μέχρι και σήμερα.

Εκτεταμένη Ελληνική Περίληψη xi

Στα πλαίσια αυτής της διπλωματικής εργασίας, θα μελετήσουμε αλγόριθμους χωρίς μνήμη

για το πρόβλημα των k-εξυπηρετητών σε ομοιόμορφους μετρικούς χώρους. ΄Ενας τέτοιος

αλγόριθμος λαμβάνει ένα αίτημα της μορφής r = (r1, . . . , rk) και αποφασίζει σε ποιο μετρικό

χώρο θα κουνηθεί σύμφωνα με μία κατανομή p1, p2, . . . , pk, όπου pi είναι η πιθανότητα να

κουνήσει τον εξυπηρετητή του μετρικού χώρου Mi στο σημείο αιτήματος ri. Σε αυτό το

πλαίσιο, ο Αρμονικός Αλγόριθμος είναι ο αλγόριθμος που διαλέγει μία μετρική ομοιόμορφα,

δηλαδή έχει πιθανότητες pi = 1
k για κάθε μετρικό χώρο Mi.

Πρόσφατα, οι Chiplunkar και Vishnawathan [28] μελέτησαν αλγόριθμους χωρίς μνήμη για

το γενικευμένο πρόβλημα των k-εξυπηρετητών σε ομοιόμορφους μετρικούς χώρους με βάρη,

και πήραν διπλά εκθετικά φράγματα για το competitive ratio τέτοιων αλγορίθμων. Εφόσον

το πρόβλημα με βάρη φαίνεται να είναι εκθετικά δυσκολότερο από το πρόβλημα χωρίς, είναι

φυσικό να περιμένουμε βελτίωση αυτών των φραγμάτων όταν θα μελετήσουμε το πρόβλημα

σε ομοιόμορφους χώρους.

Συνεισφορά. Σε αυτήν την πτυχιακή εργασία μελετάμε την δύναμη των αλγορίθμων χωρίς

μνήμη για το γενικευμένο πρόβλημα των k-εξυπηρετητών σε ομοιόμορφους μετρικούς χώρους

και υπολογίζουμε ακριβώς το competitive ratio αυτών των αλγορίθμων.

Αρχικά στρέφουμε την προσοχή μας στο μοντέλο του adaptive online αντιπάλου και

αποδεικνύουμε τα ακόλουθα:

Θεώρημα 1. Ο Αρμονικός Αλγόριθμος έχει competitive ratio k · αk ενάντια σε adaptive

online αντιπάλους, όπου αk είναι η λύση της αναδρομής αk = 1 + (k − 1)αk−1 με α1 = 1.

Θεώρημα 2. Κάθε αλγόριθμος χωρίς μνήμη έχει competitive ratio τουλάχιστον k · αk σε
μετρικούς χώρους με n ≥ 3 σημεία ενάντια σε adaptive online αντιπάλους.

Θεώρημα 3. Κάθε αλγόριθμος χωρίς μνήμη έχει competitive ratio της τάξης Θ(2k) σε

μετρικούς χώρους με n = 2 σημεία ενάντια σε adaptive online αντιπάλους.

Τα παραπάνω τρία θεωρήματα προσδιορίζουν πλήρως την δύναμη των αλγορίθμων χω-

ρίς μνήμη στο μοντέλο του adaptive online αντιπάλου. Επίσης, από αυτά προκύπτει άμεσα

ότι ο Αρμονικός Αλγόριθμος είναι ο βέλτιστος αλγόριθμος χωρίς μνήμη για το γενικευμένο

πρόβλημα των k-εξυπηρετητών σε ομοιόμορφους μετρικούς χώρους.

Στη συνέχεια εστιάζουμε στο μοντέλο του oblivious αντιπάλου και αποδεικνύουμε τα

ακόλουθα:

Θεώρημα 4. Ο Αρμονικός Αλγόριθμος έχει competitive ratio kαk σε μετρικούς χώρους

με n ≥ 2k + 1 σημεία ενάντια σε oblivious αντιπάλους.

Θεώρημα 5. Ο Αρμονικός Αλγόριθμος έχει competitive ratio της τάξηςΘ(2k) σε μετρικούς

χώρους με n = 2 σημεία ενάντια σε oblivious αντιπάλους.

Ουσιαστικά, τα παραπάνω θεωρήματα δείχνουν ότι η απόδοση του Αρμονικού Αλγορίθμου

δεν επηρεάζεται από το είδος του αντιπάλου.

xii Εκτεταμένη Ελληνική Περίληψη

Συνοψίζοντας, τα αποτελέσματά μας δείχνουν ότι σε ομοιόμορφους μετρικούς χώρους

υπάρχει εκθετική βελτίωση σε σχέση με ομοιόμορφους μετρικούς χώρους με βάρη. Δείξαμε

επίσης ότι παρά τα συνήθη αποτελέσματα για ομοιόμορφες εκδοχές online προβλημάτων, ένας

αλγόριθμος χωρίς μνήμη για το γενικευμένο πρόβλημα των k-εξυπηρετητών σε ομοιόμορφους

μετρικούς χώρους δεν μπορεί να πετύχει το (ντετερμινιστικό) competitive ratio 2O(k)
.

Οργάνωση. Στο Κεφάλαιο 2, δίνουμε τους βασικούς ορισμούς στο πεδίο των online αλ-

γορίθμων και αναφέρουμε κάποια από τα βασικότερα και πιο μελετημένα προβλήματα της

περιοχής, δίνοντας έμφαση σε κάποιες από τις τεχνικές που χρησιμοποιούνται. Στη συνέχεια,

στο Κεφάλαιο 3 δίνουμε το απαραίτητο υπόβαθρο στις αλυσίδες Markov που απαιτείται για

την ανάλυση των αποτελεσμάτων μας.

΄Εχοντας τελειώσει με τα προαπαιτούμενα, προχωράμε στο Κεφάλαιο 4 όπου παρουσιάζου-

με την πρωτότυπη δουλειά αυτής της πτυχιακής εργασίας και αποδεικνύουμε τα πέντε βασικά

Θεωρήματα που αναφέραμε νωρίτερα. Τέλος, στο Κεφάλαιο 5 συνοψίζουμε τα αποτελέσματά

μας και συζητάμε πιθανές κατευθύνσεις για έρευνα με στόχο την καλύτερη κατανόηση του

γενικευμένου προβλήματος των k-εξυπηρετητών.

Online Αλγόριθμοι

Σε ένα online πρόβλημα βελτιστοποίησης, η είσοδος σ χωρίζεται σε μια ακολουθία από

αιτήματα σ = σ1, . . . , σm. Κάθε φορά που λαμβάνουμε ένα αίτημα σt, ένας online αλγόριθμος

πρέπει να λάβει κάποιες αποφάσεις χωρίς να γνωρίζει τα μελλοντικά αιτήματα σt+1, . . . , σm.

΄Ενας αλγόριθμος που διαβάζει όλη την είσοδο σ και μετά παράγει μία λύση καλείται offline

αλγόριθμος.

Στα πλαίσια αυτής της διπλωματικής, εστιάζουμε σε online προβλήματα ελαχιστοποίησης

P . ΄Εστω I το σύνολο όλων των πιθανών εισόδων για ένα πρόβλημα P . Για κάθε είσοδο

σ ∈ I, έστω ALG(σ) το κόστος ενός online αλγορίθμου καιOPT (σ) το κόστος του βέλτιστου

offline αλγορίθμου.

Ορισμός 1. Θα λέμε ότι ένας ντετερμινιστικός online αλγόριθμος ALG για ένα πρόβλημα

ελαχιστοποίησης P είναι c-competitive, αν υπάρχει σταθερά α τέτοια ώστε για κάθε είσοδο

σ ∈ I να ισχύει
ALG(σ) ≤ c ·OPT (σ) + α.

Αν α = 0 τότε λέμε ότι ο ALG είναι αυστηρά c-competitive. Το competitive ratio ενός

αλγορίθμου ALG είναι το ελάχιστο c για το οποίο είναι c-competitive. Το competitive ratio

του online προβλήματος P είναι το ελάχιστο c για το οποίο υπάρχει c-competitive αλγόριθμος

για το P .

Εναλλακτικά, μπορούμε να σκεφτούμε ότι υπάρχει ένας ισχυρός αντίπαλος ο οποίος πα-

ρατηρεί τον αλγόριθμο και κατασκευάζει την είσοδο του προβλήματος με στόχο να μεγιστο-

ποιήσει τον λόγο του κόστους του αλγορίθμου προς το κόστος με το οποίο λύνει αυτός την

είσοδο. Αν ο αλγόριθμος είναι τυχαίος, τότε τίθεται το ζήτημα της πόσης πληροφορίας έχει

Εκτεταμένη Ελληνική Περίληψη xiii

στην διάθεσή του ο αντίπαλος όταν φτιάχνει την είσοδο. ΄Εχουν προταθεί διάφορα μοντέλα

αντιπάλων [14] για την ανάλυση τυχαίων online αλγορίθμων:

1. Oblivious Αντίπαλος: Σε αυτό το μοντέλο, ο αντίπαλος γνωρίζει την περιγραφή

του αλγορίθμου αλλά όχι τις τυχαίες επιλογές του και επιλύει offline το πρόβλημα.

2. Adaptive Online Αντίπαλος: Σε αυτό το μοντέλο, ο αντίπαλος γνωρίζει την

περιγραφή του αλγορίθμου και τις τυχαίες επιλογές του και επιλύει online το πρόβλημα.

3. Adaptive Offline Αντίπαλος: Σε αυτό το μοντέλο, ο αντίπαλος γνωρίζει την

περιγραφή του αλγορίθμου και τις τυχαίες επιλογές του και επιλύει offline το πρόβλημα.

Τυπικά, ο oblivious αντίπαλος είναι ο ευκολότερος, έπειτα ο adaptive online και τέλος

ο adaptive offline. Στην ανάλυση online αλγορίθμων συνήθως θεωρούμε το μοντέλο του

adaptive online αντιπάλου. Σημειώνουμε ότι ο adaptive offline αντίπαλος είναι τόσο ισχυ-

ρός που αποδεικνύεται πως η τυχαιότητα δεν βοηθάει ενάντιά του. Σε κάθε μία από αυτές

τις περιπτώσεις, ως ‘κόστος’ του αλγορίθμου θεωρούμε την αναμενόμενη τιμή της τυχαίας

μεταβλητής που δίνει το κόστος του.

Μέθοδος Δυναμικού. ΄Ενα από τα πιο συνήθη εργαλεία για την ανάλυση online αλ-

γορίθμων είναι η μέθοδος της συνάρτησης δυναμικού. Μία συνάρτηση δυναμικού αντιστοιχεί

έναν παραγματικό αριθμό σε κάθε πιθανό συνδιασμό διάταξης ανάμεσα στον αλγόριθμο και τον

αντίπαλο. Διαισθητικά, βολεύει να σκεφτόμαστε αυτό το δυναμικό ως μια μετρική απόστασης

ανάμεσα στον αλγόριθμο και τον αντίπαλο.

Η επιλογή ενός κατάλληλου δυναμικού αποτελεί πολύ αυθαίρετη διαδικασία και επαφίε-

ται στην βαθιά κατανόηση της δομής του εκάστοτε προβλήματος. Η γενική ιδέα είναι πως

αν επιλέξουμε ένα κατάλληλο (για το πρόβλημα) δυναμικό και αποδείξουμε ότι τηρεί κάποιες

ιδιότητες, τότε μπορούμε εύκολα να δείξουμε άνω φράγματα για το competitive ratio του

αλγορίθμου μας. Μία από τις βασικότερες τεχνικές της μεθόδου συνάρτησης δυναμικού (που

χρησιμοποιούμε και εμείς σε αυτήν την εργασία) είναι η μέθοδος των εναλλασσόμενων κινήσε-

ων. Σύμφωνα με αυτήν την μέθοδο, έστω ότι μια συνάρτηση δυναμικού που ικανοποιεί τις

ακόλουθες ιδιότητες:

1. Αν σε ένα αίτημα μετακινείται μόνο ο αντίπαλος και πληρώνει x, τότε το δυναμικό

αυξάνεται το πολύ κατά c · x.

2. Αν σε ένα αίτημα μετακινείται μόνο ο αλγόριθμος και πληρώνει x, τότε το δυναμικό

μειώνεται τουλάχιστον κατά x.

3. Το δυναμικό είναι φραγμένο από κάποιες αυθαίρετες τιμές.

Τότε, μπορούμε άμεσα να αποδείξουμε ότι ο αλγόριθμος είναι c-competitive ενάντια σε

έναν adaptive online αντίπαλο.

xiv Εκτεταμένη Ελληνική Περίληψη

Γνωστά Online Προβλήματα. Το πρόβλημα των σελίδων (paging problem) [71] απο-

τελεί ένα από τα πρώτα online προβλήματα που μελετήθηκαν στη βιβλιογραφία. Σε αυτό το

πρόβλημα, έχουμε μία μνήμη cache μεγέθους k σελίδων και ένα σύνολο από n σελίδες. Σε

κάθε αίτημα, μας ζητείται μία από τις n σελίδες και αν δεν βρίσκεται μέσα στην cache πρέπει

να βγάλουμε κάποια άλλη σελίδα από την cache ώστε να την αντικαταστήσει. Στόχος μας

είναι να ελαχιστοποιήσουμε τον συνολικό αριθμό εξώσεων από την μνήμη cache. Γενικά, το

πρόβλημα των σελίδων έχει κατανοηθεί πλήρως, και γνωρίζουμε ότι για ντετερμινιστικούς αλ-

γορίθμους το competitive ratio του προβλήματος είναι O(k), ενώ για τυχαίους αλγορίθμους

είναι O(logk). Σημειώνεται ότι γνωρίζουμε αλγορίθμους που πετυχαίνουν ακριβώς αυτά τα

φράγματα.

Αρχικά, κάθε online πρόβλημα αναλυόταν με εξειδικευμένες τεχνικές που δεν μπορούσαν

να επεκταθούν σε άλλα προβλήματα. Σε μία προσπάθεια για ενοποίηση του πεδίου των on-

line αλγορίθμων, οι Borodin et al. [17] πρότειναν το πρόβλημα των Metrical Task Systems

(MTS). Σε αυτό το πρόβλημα έχουμε έναν μετρικό χώρο με N σημεία και σε κάθε αίτημα μας

δίνεται ένα διάνυσμα κόστους πάνω στα σημεία αυτά. Στη συνέχεια πρέπει να αποφασίσουμε

σε πιο σημείο θα ικανοποιήσουμε το αίτημα, πληρώνοντας το κόστος του σημείου αυτού συν

την απόσταση για να πάμε σε αυτό το σημείο από το τρέχον σημείο μας. Στόχος μας είναι

να ελαχιστοποιήσουμε το συνολικό μας κόστος. Γνωρίζουμε ότι για το MTS, το ντετερμι-

νιστικό competitive ratio είναι 2N − 1 [17] και το competitive ratio τυχαίων αλγορίθμων

είναι O(log2NloglogN) [37] και Ω(logN) [17]. Συνήθως, ενδιαφερόμαστε για στιγμιότυπα

του MTS με κάποια συγκεκριμένη δομή, και στόχος μας είναι να δούμε αν μπορούμε να

πετύχουμε competitive ratio που δεν εξαρτάται από τον αριθμό των σημείων N .

Το πρόβλημα των k-εξυπηρετητών αποτελεί την πιο σημαντική ειδική περίπτωση τουMTS.

Σε αυτό το πρόβλημα, μας δίνεται ένας μετρικός χώρος με n σημεία και k κινούμενοι εξυ-

πηρετητές που βρίσκονται σε κάποια από τα σημεία του μετρικού χώρου. Σε κάθε βήμα,

λαμβάνουμε ένα αίτημα που αντιστοιχεί σε ένα από τα σημεία του μετρικού χώρου, και για

να το εξυπηρετήσουμε πρέπει να μετακινήσουμε κάποιον από τους εξυπηρετητές σε αυτό το

σημείο. Στόχος μας είναι να ελαχιστοποιήσουμε την συνολική απόσταση που διανύουν οι

εξυπηρετητές. Είναι εύκολο να δούμε ότι το πρόβλημα των k-εξυπηρετητών αντιστοιχεί στο

MTS με ένα σημείο για κάθε πιθανή διάταξη των k εξυπηρετητών (N = nk), αποστάσεις

ανάμεσα στα σημεία ίσες με την ελάχιστη απόσταση ανάμεσα στις διατάξεις και αιτήματα με

τιμή 0 στις διατάξεις που ικανοποιούν το αίτημα και τιμή ∞ στις υπόλοιπες. Για ντετερμινι-

στικούς αλγορίθμους γνωρίζουμε ότι το competitive ratio είναι τουλάχιστον k και το πολύ

2k − 1. Για τυχαίους αλγόριθμους, γνωρίζουμε ότι είναι τουλάχιστον O(logk) και το πολύ

O(log6k) [60]. Το πρόβλημα αυτό δεν έχει επιλυθεί ακόμα πλήρως και αποτελεί αντικείμενο

τεράστιου ενδιαφέροντος στον χώρο των online αλγορίθμων.

Τέλος, το γενικευμένο πρόβλημα των k-εξυπηρετητών αποτελεί μία γενίκευση του προ-

βλήματος των k-εξυπηρετητών και μία ειδική περίπτωση του MTS. Ο ορισμός του προ-

βλήματος έχει ήδη δοθεί παραπάνω. Το πρόβλημα αυτό αποτελεί ένα από τα πιο δυσνόητα

προβλήματα του πεδίου και ελάχιστα αποτελέσματα είναι γνωστά, μόνο για συγκεκριμένες

περιπτώσεις. Σε ομοιόμορφους μετρικούς χώρους γνωρίζουμε ότι το competitive ratio είναι

Εκτεταμένη Ελληνική Περίληψη xv

τουλάχιστον 2k − 1 και το πολύ O(k2k) για ντετερμινιστικούς αλγορίθμους και τουλάχιστον

O(k) και το πολύ O(k2logk) για τυχαίους αλγορίθμους. Σε ότι αφορά αλγορίθμους χωρίς

μνήμη για το πρόβλημα, το μόνο γνωστό αποτέλεσμα είναι ότι σε ομοιόμορφους μετρικούς

χώρους με βάρη, το competitive ratio αλγορίθμων χωρίς μνήμη είναι διπλά εκθετικό. Το

τελευταίο αποτέλεσμα οφείλεται στην δουλειά των Chiplunkar και Vishwanathan [28].

Τυχαίοι Περίπατοι

΄Ενα από τα βασικά μαθηματικά εργαλεία που θα χρησιμοποιήσουμε στην ανάλυσή μας

είναι οι τυχαίοι περίπατοι και γενικά οι ιδιότητες των στοχαστικών ανελίξεων. Μία στοχαστική

ανέλιξη είναι μια ακολουθία από τυχαίες μεταβλητές που εξελίσσεται με κάποιο τυχαίο αλλά

προδιαγεγραμμένο τρόπο. Σε αυτήν την εργασία εστιάζουμε σε στοχαστικές ανελίξεις που

εξελίσσονται σε διακριτό χρόνο (βήματα {0, 1, . . . }) και λαμβάνουν τιμές από ένα διακριτό και

πεπερασμένο σύνολο X . Συγκεκριμένα, μας ενδιαφέρουν οι αλυσίδες Markov, που ορίζονται

ως:

Ορισμός 2. Μία αλυσίδα Markov είναι μία στοχαστική ανέλιξη X με διακριτό χώρο κα-

ταστάσεων X και διακριτό σύνολο δεικτών T = {0, 1, . . . } η οποία ικανοποιεί την ακόλουθη
Μαρκοβιανή ιδιότητα:

P(Xt = s|X0 = x0, X1 = x1, . . . , Xt−1 = xt−1) = P(Xt = s|Xt−1 = xt−1)

για κάθε t ≥ 1 και s, x0, . . . , xt−1 ∈ X .

Ο πίνακας P = [pij] όπου pij = P(X1 = j|X0 = i) καλείται πίνακας μετάβασης της

αλυσίδας Markov και μαζί με την αρχική κατάσταση, την χαρακτηρίζει πλήρως. Οι αλυσίδες

Markov έχουν πολλές καλές και χρήσιμες ιδιότητες, όπως για παράδειγμα την ύπαρξη μίας

στάσιμης κατανομής στην οποία συγκλίνουν υπό κάποιες συνθήκες. Επίσης, χρησιμοποιούνται

ως μοντέλα σε μία πληθώρα εφαρμογών.

Για τους σκοπούς τη εργασίας αυτής, θα μελετήσουμε μία συγκεκριμένη κατηγορία α-

λυσίδων Markov οι οποίες είναι γνωστές ως αλυσίδες Γεννήσεων-Θανάτων. Πρόκειται για

μία κλάση αλυσίδων όπου οι μεταβάσεις από ένα σημείο περιορίζονται μόνο σε δύο ‘γειτονι-

κά’ του σημεία, δηλαδή ο πίνακας μεταβάσεων είναι τριπλά διαγώνιος. Τυπικά, μία αλυσίδα

Γεννήσεων-Θανάτων ορίζεται ως:

Ορισμός 3. Μία αλυσίδα Markov με χώρο καταστάσεων X = {0, 1, . . . , k} για κάποιο
k ∈ N ονομάζεται αλυσίδα Γεννήσεων-Θανάτων αν για τον πίνακα μεταβάσεών της P = [Pij]

ισχύει:

Pij =

pi , j = i+ 1

qi , j = i− 1

1− pi − qi , j = i

0 ,διαφορετικά

∀i, j ∈ X

xvi Εκτεταμένη Ελληνική Περίληψη

όπου q0 = 0 και pk = 0 για τα άκρα της αλυσίδας. Μία γραφική απεικόνιση δίνετε στο

Σχήμα 1.

0 1 · · · ` · · · k − 1 k

p0 p1 p`−1 p` pk−2 pk−1

qkqk−1q`+1q`q2q1

1− p0 1− p1 − q1 1− p` − q` 1− pk−1 − qk−1 1− qk

Σχήμα 1: Μία Αλυσίδα Γεννήσεων-Θανάτων

Αν επιπλέον p0 = 0, τότε η κατάσταση X = 0 καλείται κατάσταση απορρόφησης με

την έννοια πως αν η φτάσουμε σε αυτήν την κατάσταση δεν μπορούμε να φύγουμε. Σε

αυτήν την περίπτωση, η ποσότητα που μας ενδιαφέρει να μελετήσουμε είναι ο μέσος χρόνος

έκλειψης (EET), δηλαδή ο αναμενόμενος αριθμός βημάτων, ξεκινώντας από κάποια κατάσταση

` ∈ {0, 1, . . . , k} μέχρι να φτάσουμε στην κατάσταση απορρόφησης X = 0. Συμβολίζουμε

αυτήν την ποσότητα με h(`). Μπορούμε να υπολογίσουμε την έκφραση αυτή σε σχέση με τις

πιθανότητες pi, qi και να διατυπώσουμε το ακόλουθο θεώρημα:

Θεώρημα 6. Ο μέσος χρόνος έκλειψης μίας αλυσίδας Γεννήσεων-Θανάτων με κατάσταση

απορρόφησης X = 0 ξεκινώντας από κάποια αρχική κατάσταση ` ∈ {1, . . . , k} είναι

h(`) =
1

q1
+

k∑
i=2

p1 · · · pi−1

q1 · · · qi
+

`−1∑
i=1

(
q1 · · · qi
p1 · · · pi

k∑
j=i+1

p1 · · · pj−1

q1 · · · qj
)

με h(0) = 0.

Χρησιμοποιώντας αυτό το Θεώρημα, θα ορίσουμε δύο ειδικές αλυσίδες Γεννήσεων-Θανάτων

και θα υπολογίσουμε το EET τους. Αυτές οι αλυσίδες συνδέονται άμεσα με το competiti-

ve ratio του Αρμονικού Αλγορίθμου για το γενικευμένο πρόβλημα των k-εξυπηρετητών σε

ομοιόμορφες μετρικές και για αυτόν τον λόγο τις ορίζουμε και τις μελετάμε.

Θεώρημα 7. Ο μέσος χρόνος έκλειψης της Αρμονικής Αλυσίδας (Σχήμα 2) με κατάσταση

απορρόφησης X = 0 ξεκινώντας από κάποια αρχική κατάσταση ` ∈ {1, . . . , k} είναι

h(`) = k

k∑
i=k−`+1

αi

με h(0) = 0, όπου α` είναι η λύση της αναδρομικής σχέσης α` = 1 + (`− 1)α`−1.

0 1 · · · ` · · · k − 1 k

k−1
k

k−`+1
k

k−`
k

2
k

1
k

1
k

1
k

1
k

1
k

1
k

1
k

1
`−1
k

k−2
k

k−1
k

Σχήμα 2: Η Αρμονική Αλυσίδα

Εκτεταμένη Ελληνική Περίληψη xvii

Θεώρημα 8. Ο μέσος χρόνος έκλειψης της Δυαδικής Αλυσίδας (Σχήμα 3) με κατάσταση

απορρόφησης X = 0 ξεκινώντας από κάποια αρχική κατάσταση ` ∈ {1, . . . , k} είναι

h(`) = 2k − 1 +
`−1∑
i=1

1(
k−1
i

)(2k −
i∑

j=0

(
k

j

)
)

με h(0) = 0.

0 1 · · · ` · · · k − 1 k

k−1
k

k−`+1
k

k−`
k

2
k

1
k

1
k

1
k

1
k

1
k

1
k

1
k

1
`−1
k

k−2
k

k−1
k

Σχήμα 3: Η Δυαδική Αλυσίδα

Αλγόριθμοι χωρίς μνήμη για το γενικευμένο πρόβλημα

των k-εξυπηρετηρών

Είμαστε πλέον σε θέση να διατυπώσουμε και να αποδείξουμε τα πρωτότυπα αποτελέσματα

αυτής της διπλωματικής εργασίας. ΄Οπως είπαμε, μελετάμε τη δύναμη των αλγορίθμων χωρίς

μνήμη για το γενικευμένο πρόβλημα των k-εξυπηρετητών σε ομοιόμορφους χώρους. Για

αυτό το πρόβλημα, ένας αλγόριθμος χωρίς μνήμη χαρακτηρίζεται πλήρως από μία κατανομή

p1, . . . , pk όπου pi είναι η πιθανότητα με την οποία ο αλγόριθμος ικανοποιεί ένα αίτημα στην

μετρική Mi.

Αρχικά δίνουμε ένα άνω φράγμα για το competitive ratio του Αρμονικού Αλγορίθμου,

δηλαδή του αλγορίθμου που κουνιέται σε κάθε μετρική Mi με πιθανότητα pi = 1
k . Ουσιαστικά

περιγράφουμε τον τρόπο με τον οποίο λειτουργεί αυτός ο αλγόριθμος και τον συνδέουμε με την

Αρμονική Αλυσίδα. ΄Επειτα, ορίζουμε μία συνάρτηση δυναμικού για το πρόβλημα που ορίζεται

ως το EET της Αρμονικής Αλυσίδας με αρχική κατάσταση το πλήθος των εξυπηρετητών που ο

αλγόριθμος και ο αντίπαλος έχουν σε διαφορετικές θέσεις. Χρησιμοποιώντας την μέθοδο των

Εναλλασσόμενων Κινήσεων, μπορούμε να δείξουμε ένα άνω φράγμα k · αk για τον Αρμονικό

Αλγόριθμο και να αποδείξουμε το Θεώρημα 1.

Στη συνέχεια εργαζόμαστε για την απόδειξη του κάτω φράγματος του Θεωρήματος 2. Σε

αυτήν την περίπτωση μελετάμε οποιονδήποτε αλγόριθμο χωρίς μνήμη και επομένως χαλάει

η συμμετρία του προβλήματος. Ως συνέπεια, πρέπει να δουλέψουμε σε μία αλυσίδα Markov

με 2k καταστάσεις αντί για k. Η άμεση ανάλυση της αλυσίδας αυτής δεν είναι εφικτή για

γενικές τιμές του k. Ωστόσο, εφαρμόζοντας τεχνικές παρόμοιες με αυτές των Chiplunkar

και Vishwanathan [28] μπορούμε να πάρουμε ένα κάτω φράγμα, το οποίο αποδεικνύει πως

(1) κάθε αλγόριθμος χωρίς μνήμη έχει competitive ratio τουλάχιστον k · αk και (2) μόνο ο

Αρμονικός Αλγόριθμος πετυχαίνει αυτήν την τιμή, δηλαδή είναι ο βέλτιστος αλγόριθμος χωρίς

μνήμη για το πρόβλημα.

xviii Εκτεταμένη Ελληνική Περίληψη

Η τεχνική που εφαρμόσαμε για την απόδειξη του Θεωρήματος 2 απαιτούσε μετρικούς

χώρους με n ≥ 3 σημεία. Αυτό είναι απαραίτητο, αφού για n = 2 η δομή του προβλήματος

απλοποιείται σημαντικά και τελικά το competitive ratio του Αρμονικού Αλγορίθμου βελτιώνε-

ται σε Θ(2k) από Θ(k!) (Θεώρημα 3). Για να αποδείξουμε το Θεώρημα αυτό, συνδέουμε την

επίδοση του Αρμονικού Αλγορίθμου με το EET της Δυαδικής Αλυσίδας και χρησιμοποιώντας

παρόμοιες τεχνικές με αυτές του Θεωρήματος 1, παίρνουμε το ζητούμενο.

Τέλος, μελετάμε την περίπτωση oblivious αντιπάλων, οι οποίοι δεν είχαν μελετηθεί για

αλγορίθμους χωρίς μνήμη έως τώρα σε αυτό το πρόβλημα. Κατασκευάζοντας oblivious ει-

σόδους χωρίς γνώση των επιλογών του Αρμονικού Αλγορίθμου, μπορούμε να δείξουμε ότι το

competitive ratio του δεν αλλάζει σε σχέση με το μοντέλο του adaptive online αντιπάλου,

αποδεικνύοντας τα Θεωρήματα 4 και 5.

Συμπεράσματα

Συνοψίζοντας, μελετήσαμε για πρώτη φορά την δύναμη των αλγορίθμων χωρίς μνήμη για

το γενικευμένο πρόβλημα των k-εξυπηρετητών σε ομοιόμορφους μετρικούς χώρους. Ενάντια

σε adaptive online αλγορίθμους, μπορέσαμε να δείξουμε ότι τα ‘σφιχτά’ διπλά εκθετικά φράγ-

ματα των Chiplunkar και Vishwanathan [28] βελτιώνονται σε φράγματα της τάξης του k!. Ο

βέλτιστος αλγόριθμος χωρίς μνήμη που τα πετυχαίνει είναι ο Αρμονικός Αλγόριθμος. Επίσης,

μελετήσαμε ξεχωριστά την περίπτωση των μετρικών χώρων με n = 2 σημεία και δείξαμε ότι

εκεί το competitive ratio του προβλήματος είναι Θ(2k). Τέλος, εξετάσαμε και το μοντέλο

του oblivious αντιπάλου, στο οποίο δείξαμε ότι η επίδοση του Αρμονικού Αλγορίθμου δεν

αλλάζει, υποδεικνύοντας ότι για το συγκεκριμένο μοντέλο ο adaptive online αντίπαλος δεν

έχει περισσότερη δύναμη από τον oblivious.

Σε συνδιασμό με τα αποτελέσματα των Chiplunkar και Vishwanathan, η δουλειά αυτή

χαρακτηρίζει πλήρως την δύναμη των αλγορίθμων χωρίς μνήμη σε ομοιόμορφους μετρικούς

χώρους με ή χωρίς βάρη. ΄Ενα επόμενο βήμα θα ήταν να εξετάσουμε πιο πολύπλοκους χώρους,

όπως για παράδειγμα άστρα ή δέντρα. Ωστόσο, επισημαίνουμε ότι οι αλγόριθμοι χωρίς μνήμη

έχουν μη-φραγμένο competitive ratio σε γενικούς μετρικούς χώρους ακόμα και για k = 2:

αυτό έχει δειχθεί ανεξάρτητα από τους Chrobak και Sgall [32] και Koutsoupias και Taylor [58].

Contents

1 Introduction 1

1.1 Contribution . 4

1.2 Organization . 6

2 Online Algorithms 9

2.1 Competitive Analysis . 10

2.2 The Potential Method . 13

2.2.1 Amortized Cost . 14

2.2.2 Interleaving Moves . 14

2.3 Paging . 16

2.3.1 Deterministic Algorithms for Paging 16

2.3.2 Randomized Algorithms for Paging 17

2.4 Metrical Task Systems . 18

2.5 The k-Server Problem . 19

2.6 The Generalized k-Server Problem . 21

2.6.1 Results on the generalized k-server problem 22

2.6.2 Results on memoryless algorithms 23

3 Random Walks 29

3.1 Markov Chains . 29

3.2 Random Walks on Birth-Death Chains . 31

3.2.1 Stationary Distribution of Birth-Death Chains 32

3.2.2 Expected Extinction Time of Birth-Death Chains 33

3.3 Random Walks on the Harmonic Chain . 36

3.4 Random Walks on the Binary Chain . 38

4 Memoryless Algorithms for the Generalized k-Server Problem 41

4.1 Adaptive Upper Bound for the Harmonic Algorithm 42

4.1.1 Definition of the Potential Function 42

4.1.2 Bounding the Competitive Ratio . 44

4.2 General Adaptive Lower Bound . 46

4.2.1 Constructing the adversarial instance 46

xix

xx Contents

4.2.2 Proving the Lower Bound . 48

4.3 Special Case: Two Point Metric Spaces . 52

4.4 Oblivious Bounds . 53

4.4.1 Oblivious Lower Bound for the Harmonic Algorithm 53

4.4.2 Special Case: Two Point Metrics . 56

5 Concluding Remarks 59

Bibliography 61

Chapter 1

Introduction

In classical optimization, we are given a problem and a specific input, and the goal is

to find the optimal solution for the given input. However, in many real life applications,

the assumption that the whole input is available, is not realistic. Most of the times, we

need to solve optimization problems, while taking decisions with incomplete information

about the input. We call such problems online optimization problems, or simply online

problems. To solve problems in online optimization, we need to design online algorithms

which make decisions without knowledge of the future.

The primary objective of this field is the design of online algorithms whose performance

has some specific guarantees compared to the performance of an optimal offline algorithm

that knows the entire input before making any decisions. This is captured by the notion

of competitive ratio used in competitive analysis.

The k-server problem is one of the most fundamental and extensively studied problems

in the theory of online algorithms. In fact, the study of this problem over the last decades

(that continues until this day) has led to the development of many techniques and a deeper

understanding of online algorithms.

In this problem, we are given a metric space of n points and k mobile servers located

at points of the metric space. At each step, a request arrives at a point of the metric space

and must be served by moving a server there. The goal is to minimize the total distance

travelled by the servers.

The k-server problem generalizes various online problems, most notably the paging

(caching) problem, which corresponds to the k-server problem on uniform metric spaces.

Paging, first studied in the seminal work of Sleator and Tarjan [71], is well-understood: the

competitive ratio is k for deterministic algorithms andHk = Θ(log k) for randomized; those

algorithms and matching lower bounds are folklore results for online algorithms [71, 62, 1].

The k-server problem in general metric spaces is much deeper and intriguing. In a

landmark result, Koutsoupias and Papadimitriou [56] showed that the Work Function

Algorithm (WFA) [56] is (2k − 1)-competitive, which is almost optimal for deterministic

algorithms since the competitive ratio is at least k [61]. For randomized algorithms, it is

believed that an O(log k)-competitive algorithm is possible; despite several breakthrough

1

2 Chapter 1. Introduction

results over the last decade [7, 19, 20, 60], this conjecture still remains open.

Due to the massive interest of the scientific community on this problem and our lack

of understanding many of its properties, many variations of the k-server problem have

been proposed, such as (i) the weighted k-server problem [40, 10] where each server has

a different weight that affects its moving cost, (ii) the CNN problem [58, 50] where there

are two servers moving freely in two disjoint lines and (iii) the (h, k)-server problem [54,

71, 79, 53] where the algorithm has k servers but its performance is compared to that of

an optimal offline algorithm that has h ≤ k servers.

In this thesis, we focus on the generalized k-server problem, a far-reaching extension

of the k-server problem, introduced by Koutsoupias and Taylor [58]. Here, each server si

lies in a different metric space Mi and a request is a tuple (r1, . . . , rk), where ri ∈ Mi; to

serve it, some server si should move to point ri.

The generalized k-server problem has a much richer structure than the classic k-server

problem and is much less understood. For general metric spaces, no f(k)-competitive

algorithms are known, except from the special case of k = 2 [69, 70, 68]. For k ≥ 3,

competitive algorithms are known only for the following special cases:

1. Uniform Metrics: All metric spaces M1, . . . ,Mk are uniform (possibly with different

number of points), with the same pairwise distance, say 1.

2. Weighted Uniform Metrics: All metrics are uniform, but they have different weights;

the cost of moving in metric Mi is wi.

Perhaps surprisingly, those two cases are qualitatively very different. For deterministic

algorithms Bansal et. al. [11] obtained algorithms with (almost) optimal competitive ratio.

For uniform metrics their algorithm is (k · 2k)-competitive, while the best possible ratio

is at least 2k − 1 [58]. For weighted uniform metrics, they obtained a 22k+3
-competitive

algorithm (by extending an algorithm of Fiat and Ricklin [40] for weighted k-server on

uniform metrics), while the lower bound for the problem is 22k−4
[10].

We note that for uniform metrics, if memory is allowed and we compare against oblivi-

ous adversaries, competitive randomized algorithms are known: Bansal et. al. [11] designed

a O(k3 log k)-competitive randomized algorithm with memory; this was recently improved

to O(k2 log k) by Bienkowski et. al. [15].

The generalized k-server problem is named from the fact that it generalized many

well-known online problems, including the k-server problem. Some well-studied special

cases of the generalized k-server problem are:

• The k-server problem: the standard k-server problem is the very special case of

generalized k-server where all metric spaces are identical, i.e., Mi = M and all

requests are of the form (r, r, . . . , r).

• The weighted k-server problem [40, 10]: this is the weighted variant of the classic k-

server problem where each server has different weight and the cost of moving server

3

i by distance d is wi · d. This is the special case of generalized k-server where all

metrics are scaled copies of a fixed metric M , i.e., Mi = wiM and all requests are

of the form (r, r, . . . , r).

• The CNN problem [58, 50]: in this problem we have two servers sx and sy, moving on

the horizontal and the vertical lines respectively and a request is a point r = (rx, ry)

that has to be served by moving sx to rx or sy to ry. This is the special case of

generalized k-server where k = 2 and M1,M2 are lines.

Memoryless Algorithms: One drawback of the online algorithms achieving the best-

known competitive ratios for the k-server problem is that they are computationally ineffi-

cient. For example, the space used by the WFA is proportional to the number of different

configurations of the servers, i.e.,
(
n
k

)
, which makes the whole approach quite impractical.

This motivates the study of trade-offs between the competitive ratio and computational

efficiency. A starting point in this line of research, is to determine the competitive ratio of

memoryless algorithms: a memoryless algorithm, decides the next move based solely on

the current configuration of the servers and the given request.

Memoryless algorithms for the k-server problem have been extensively studied (see

e.g., [16, 55] for detailed surveys). The most natural memoryless algorithm is the Harmonic

Algorithm, which moves each server with probability inversely proportional to its distance

from the requested point. It is known that its competitive ratio is O(2k · log k) and

Ω(k2) [12]. It is conjectured that in fact the Harmonic Algorithm is k(k+1)
2 = O(k2)-

competitive; this remains a long-standing open problem. For special cases such as uniform

metrics (paging) and resistive metric spaces, an improved competitive ratio of k can be

achieved and this is the best possible for memoryless algorithms [33].

We note that the study of memoryless algorithms for the k-server problem is of inter-

est only for randomized algorithms; it is easy to see that any deterministic memoryless

algorithm is not competitive. Throughout this thesis, we study two different adversar-

ial settings: the adaptive online setting, which is the standard benchmark for evaluating

the performance of randomized online algorithms, and the oblivious setting that usually

allows for better competitive ratios. For a detailed discussion on the different adversary

models and relations between them, see [16, 14]. We also discuss the main definitions and

differences between the adversarial models in Chapter 2.

The primary focus of this thesis is the study of memoryless algorithms for the gener-

alized k-server problem on uniform metrics. A memoryless algorithm for the generalized

k-server problem receives a request r = (r1, . . . , rk) ∈ [n]k and decides which server to

move based only on its current configuration q = (q1, . . . , qk) ∈ [n]k and r. For the case

of uniform metrics, a memoryless algorithm is fully characterized by a probability distri-

bution p = (p1, . . . , pk); whenever it needs to move a server, it uses server si of metric Mi

with probability pi. Throughout the thesis we assume for convenience (possibly by rela-

beling the metrics) that given a memoryless algorithm we have that p1 ≥ p2 ≥ . . . ≥ pk.

4 Chapter 1. Introduction

We also assume that pi > 0 for all i; otherwise it is trivial to show that the algorithm is

not competitive.

In the context of generalized k-server on uniform metrics, the Harmonic Algorithm

is a memoryless algorithm which moves at all metric spaces with equal probability, i.e.,

pi = 1/k, for all i ∈ [k]. Due to the problem’s symmetry, the only “reasonable” memoryless

algorithm is in fact the Harmonic Algorithm; any other memoryless algorithm for the

problem will be more likely to serve a request in some metric space Mi over some other

metric space Mj , without any reason. This is formally shown in our work, by proving

that against adaptive online adversaries, the Harmonic Algorithm has strictly the best

competitive ratio out of all the memoryless algorithms.

Recently Chiplunkar and Vishnawathan [28] studied randomized memoryless algo-

rithms in weighted uniform metrics. They showed tight doubly exponential (≈ 1.62k)

bounds on the competitive ratio. Interestingly, the memoryless algorithm achieving the

optimal bound in this case is different from the Harmonic Algorithm.

Since the weighted uniform case seems to be much harder than the uniform case, it

is natural to expect that a better bound can be achieved by memoryless algorithms in

uniform metrics. Moreover, in weighted uniform metric spaces the competitive ratios

of deterministic algorithms (with memory) and randomized memoryless algorithms are

essentially the same. Recall that a similar phenomenon occurs for the paging problem

(standard k-server on uniform metrics) where both deterministic and randomized memo-

ryless algorithms have a competitive ratio of k.

Thus, it is natural to guess that for uniform metrics, a competitive ratio of order 2k (i.e.,

same as the deterministic competitive ratio) can be achieved by memoryless algorithms.

However, as we show in this work, this is not the case; the competitive ratio of any

memoryless algorithm for the generalized k-server problem on uniform metrics is Ω(k!).

1.1 Contribution

In this thesis we study the power of memoryless algorithms for the generalized k-server

problem in uniform metrics and we determine the exact competitive ratio by obtaining

tight bounds.

We begin by turning our attention to the adaptive online adversarial setting since this

is the standard benchmark to evaluate randomized memoryless algorithms.

First, we determine the competitive ratio of the Harmonic Algorithm on uniform met-

rics.

Theorem 1.1. The Harmonic Algorithm for the generalized k-server problem on uniform

metrics is (k ·αk)-competitive against adaptive online adversaries, where αk is the solution

of the recursion αk = 1 + (k − 1)αk−1, with α1 = 1.

It is not hard to see that αk = Θ((k − 1)!), therefore the competitive ratio of the

Harmonic Algorithm is O(k!). This shows that indeed, uniform metric spaces allow for

1.1 Contribution 5

substantial improvement on the performance compared to weighted uniform metric spaces

where there is a doubly-exponential lower bound.

To obtain this result, we analyse the Harmonic Algorithm using Markov Chains and

random walks, based on the Hamming distance between the configuration of the algo-

rithm and the adversary, i.e., the number of metric spaces where they have their servers

in different points. Based on this, we then provide a proof using a potential function,

which essentially captures the expected cost of the algorithm until it reaches the same

configuration as the adversary.

Next we show that the upper bound of Theorem 1.1 is tight in the adaptive online

setting, by providing a matching lower bound.

Theorem 1.2. The competitive ratio of any randomized memoryless algorithm for the

generalized k-server problem on uniform metrics with n ≥ 3 points is at least k ·αk against

adaptive online adversaries.

Here the analysis differs, since the Hamming distance is not the right metric to capture

the “distance” between the algorithm and the adversary: assume that all their servers are

at the same points, except one, say server si. Then, in the next request, the algorithm

will reach the configuration of the adversary with probability pi; clearly, if pi is large, the

algorithm is in a favourable position, compared to the case where pi is small.

This suggests that the structure of the algorithm is not solely characterized by the

number of different servers (i.e., the Hamming distance) between the algorithm and the

adversary, but also the labels of the servers matter. For that reason, we need to focus on

the subset of different servers, which gives a Markov Chain on 2k states. Unfortunately,

analyzing such chains in a direct way can be done only for easy cases like k = 2 or k = 3.

For general values of k, we find an indirect way to characterize the solution of this Markov

Chain. A similar approach was taken by Chiplunkar and Vishwanathan [28] for weighted

uniform metrics; we use some of the properties they showed, but our analysis differs since

we need to make use of the special structure of our problem to obtain our bounds.

In fact, as a direct corollary of Theorem 1.2 we are able to show that any memoryless

algorithm other than the Harmonic has competitive ratio strictly larger than k · αk in

metric spaces with n ≥ 3 points against an adaptive online adversary.

Notice that in Theorem 1.2 we require that all metric spaces have at least n ≥ 3

points. We observe that this is necessary, and that if all metric spaces have n = 2

points, the Harmonic Algorithm is O(2k)-competitive, thus a lower bound of k · αk can

not be achieved. We also show an adaptive online lower bound of Ω(2k) for the Harmonic

Algorithm, which leads to determining his competitive ratio.

Theorem 1.3. The competitive ratio of the Harmonic Algorithm for the generalized k-

server problem on uniform metrics with n = 2 points is Θ(2k) against adaptive online

adversaries.

The underlying reason behind this difference in competitive ratio is the “limitations”

enforced to the request sequence by the limited number of points; if any algorithm is at any

6 Chapter 1. Introduction

configuration q ∈ [2]k, then the only request that forces it to move is its anti-configuration

r = q̄. We study this case separately using Markov Chains once again, by proving tight

bounds on the competitive ratio of the Harmonic Algorithm in metric spaces with n = 2

points.

Then, we turn our attention to the oblivious adversarial model. The upper bounds

of Theorems 1.1 and 1.3 for the Harmonic Algorithm clearly extend to the oblivious

adversarial setting since they hold against adaptive online adversaries. We have shown

that in the adaptive online adversarial setting the Harmonic Algorithm is (strictly) the

best memoryless algorithm; we believe that there is no reason for this to change in the

oblivious setting. Thus, we focus on giving lower bounds for the Harmonic Algorithm in

the oblivious setting.

Theorem 1.4. The competitive ratio of the Harmonic Algorithm for the generalized k-

server problem on uniform metrics with n ≥ 2k + 1 is at least k · αk against oblivious

adversaries.

Theorem 1.5. The competitive ratio of the Harmonic Algorithm for the generalized k-

server problem on uniform metrics with n = 2 is Ω(2k) against oblivious adversaries.

We have shown oblivious lower bounds that match the upper bounds of the adaptive

online setting; this indicates that for memoryless algorithms for the generalized k-server

problem in uniform metrics, adaptive online and oblivious adversaries have the same power.

Summarizing, on the positive side, our results show that improved guarantees can be

achieved compared to the weighted uniform case. On the other hand, the competitive

ratio of memoryless algorithms (Θ(k!)) is asymptotically worse than the deterministic

competitive ratio of 2O(k). This is somewhat surprising, since (as discussed above) in

most uniform metric settings of k-server and generalizations, the competitive ratio of

deterministic algorithms (with memory) and randomized memoryless is (almost) the same.

1.2 Organization

The first part of this thesis is dedicated to establishing the necessary background for

our novel results.

In Chapter 2, we introduce the framework of Online Algorithms. We begin by formally

defining an online problem, the notion of competitive ratio and the different kinds of

adversarial settings. Then, we present the potential-based analysis framework that is

commonly used in competitive analysis; in fact, we also rely on this technique to prove

some of our results. As a concrete example for this framework, we define the paging

problem and prove the main results on this area. The reason we present this problem is

that (i) it has a simple structure that captures the properties of an online problem and (ii)

it is the special case of the k-server problem on uniform metric spaces that are of interest

to this thesis. Next, we discuss some of the most important online problems, namely

the Metrical Task Systems (MTS) problem and the k-server problem, and briefly state

1.2 Organization 7

their history and the known results. We conclude this chapter by formally defining the

generalized k-server problem, the best known algorithms for it and how our work extends

these results.

In Chapter 3, we provide the reader with the necessary background on Random Walks

and random processes in general. After a short introduction on Markov Chains and their

main properties, we study a special class of discrete-time, finite-space Markov Chains

called Birth-Death Chains. This mathematical model is very important for our analysis,

since (as we show) it captures the competitive ratio of the Harmonic Algorithm for the

generalized k-server problem and constitutes the primary source of inspiration for our anal-

ysis. Specifically, we are interested in two special types of Birth-Death Chains, called the

Harmonic Chain and the Binary Chain, that are defined and studied in this thesis. As we

show, the properties of this chains (namely their Expected Extinction Time) immediately

give bounds for the competitive ratio of the Harmonic Algorithm.

After we lay the groundwork for our analysis, in Chapter 4 we present our novel results

on memoryless algorithms for the generalized k-server problem on uniform metrics that this

thesis contributes. We begin by studying the adaptive online adversarial setting. We first

give an upper bound on the competitive ratio of the Harmonic Algorithm in Theorem 1.1.

Then we analyze any memoryless algorithm and show that the Harmonic Algorithm is the

optimal and its competitive ratio is exactly k ·αk as stated in Theorem 1.2. We also handle

the special case of metric spaces with n = 2 points with Theorem 1.3. Next, we turn our

attention to oblivious adversaries and the competitive ratio of the Harmonic Algorithm

in this setting. In Theorems 1.4 and 1.5 we show that the bounds of the adaptive online

setting are also tight in the oblivious setting, indicating that for memoryless algorithms

for the generalized k-server problem in uniform metrics, adaptive online and oblivious

adversaries have the same power.

Finally, in Chapter 5 we conclude this thesis by stating the main message of this

work and how it extends the current knowledge of online algorithms and specifically the

generalized k-server problem. We also discuss open directions in this area and suggest the

next steps towards understanding the generalized k-server problem.

Chapter 2

Online Algorithms

While in traditional optimization, an algorithm is given an instance and needs to com-

pute the best solution for it, in online computation an algorithm must produce a sequence

of decisions based on past events and without information about the future. Online algo-

rithms [16, 52] are a natural topic of interest in many disciplines such as computer science,

economics an operations research, due to the fact that many computational problem are

intrinsically online and that they require immediate decisions on real time.

The standard framework used to evaluate the performance of online algorithms is com-

petitive analysis, which was introduced by Sleator and Tarjan [71]. Here, the performance

of an online algorithm is compared to the optimal offline solution which knows the whole

input in advance. The roots of competitive analysis can be found in classical combinato-

rial optimization problems (i.e., scheduling problem [25, 18]) and in the analysis of data

structures (i.e., list accessing problem [71, 4, 42]).

Organization. In this chapter, we begin by formally defining the framework of com-

petitive analysis in Section 2.1. There, we will define the competitive ratio of an online

algorithm, the competitive ratio of a problem and the different adversarial settings that

are used to evaluate randomized online algorithms. Then, in Section 2.2 we introduce the

potential method technique as a way to prove upper bounds on the competitive ratio of

an online algorithm; in fact, we are going to use this method to prove some of our novel

results, so it is useful to formally define it in this chapter.

After establishing the basic background on competitive analysis, we study some of the

most extensively studied problems in online computation; namely:

1. The paging problem. In this problem, we have a cache memory of size k and n ≥ k

element, some of them occupying a cache cell. We are given requests in the form

of one of the n points, and if this point is not in the cache then we need to move

it in by evicting some other element. The objective is to minimize the cost of the

algorithm which is given by the total number of evictions.

2. The metrical task systems (MTS) problem. This problem is a great generalization of

9

10 Chapter 2. Online Algorithms

various well-studied online problems and creates a unifying framework that enables

the study of online algorithms in a systematic way. In the MTS problem we are

given a server which can be in one of N different states and a metric distance function

d specifying the cost of switching between the states. At each time step, a task r

arrives, represented by a vector r = (r1, r2, . . . , rN) where ri is the cost of processing

r at state i. Then, the algorithm needs to decide a state i to process the request r,

paying the processing cost ri and the movement cost (based on d) to move at i from

his current state.

3. The k-server problem. In this problem, we are given a metric space of n points and k

mobile servers located at points of the metric space. At each step, a request arrives

at a point of th metric space and must be served by moving a server there. The goal

is to minimize the total distance travelled by the servers.

In Section 2.3, we present the paging problem since it is an excellent introduction to

the online framework. We state the main results for paging and also their proofs, in order

to higlight some of the techniques used in competitive analysis. Then, in Sections 2.4

and 2.5 we define the MTS and k-server problems respectively and briefly mention their

history and the main results.

Finally, in Section 2.6 we conclude this chapter by formally giving the definition of the

generalized k-server problem, which is the focus of this thesis. We give a comprehensive

statement of the main results for this problem, the corresponding techniques and how our

work extends these results.

2.1 Competitive Analysis

Formally, in an online optimization problem the input σ is divided into requests

σ = σ1, . . . , σm. Whenever each request σt is received, some actions must be performed,

without knowledge of the future requests σt+1, . . . , σm. An algorithm that solves an online

optimization problem is called an online algorithm. An algorithm which reads the whole

input σ and then produces a solution is called an offline algorithm.

The standard framework used to evaluate the performance of online algorithms is com-

petitive analysis, which was introduced by Sleator and Tarjan [71]. Here, the performance

of an online algorithm is compared to the optimal offline solution which knows the whole

input in advance.

From now on, we focus on minimization problems, since this is the case for all problems

considered in this thesis. Let P be a minimization problem and let I denote the set of all

valid inputs for P . For an instance σ ∈ I, let OPT (σ) denote the optimal cost on σ. For

an online algorithm ALG, let ALG(σ) denote the cost of ALG on σ.

Definition 2.1 (Competitive Ratio). An online algorithm ALG for an online minimiza-

tion problem P is c-competitive if there exists a constant α such that for any input σ ∈ I,

2.1 Competitive Analysis 11

we have

ALG(σ) ≤ c ·OPT (σ) + α.

If α = 0 we say that algorithm ALG is strictly c-competitive [35]. The competitive ratio of

an algorithm ALG is the infimum value c such that ALG is c-competitive. The competitive

ratio of an online minimization problem P is the infimum value c for which a c-competitive

algorithm for P exists.

Note that in the above definition, the constant α is allowed to depend on the parameters

of the problem P (for example, the number of servers in k-server) but not on the instance

I or on m.

An alternative view of competitive analysis is to think of each online problem as a game

between an algorithm and an all-powerful adversary. The adversary knows the description

of the algorithm and constructs an input in order to maximize the ratio between the

cost of the algorithm and the optimal cost. For deterministic algorithms, the notion of

competitive ratio is well-defined, and is given by the ratio of the algorithm’s cost and

the optimal offline algorithm’s cost. However, a usual approach in the design of online

algorithms is to use randomization. This raises the issue of how much information is

available to the adversary when it constructs the instance. In competitive analysis, there

are various adversary models [14] proposed to evaluate randomized algorithms.

1. Oblivious Adversaries: In this model, the adversary knows the description of

the algorithm, but it does not know its random choices and it has to construct the

whole input before the algorithm starts serving the requests. A randomized online

algorithm ALG for a minimization problem P is c-competitive against oblivious ad-

versaries if there exists a constant α, such that for any request sequence σ generated

by an oblivious adversary, that is

E[ALG(σ)] ≤ c ·OPT (σ) + α,

where OPT (σ) is used to denote the cost of the optimal offline algorithm on the

instance.

2. Adaptive Online Adversaries: In this model, the adversary knows all the actions

of the algorithm, including its random choices. At each step, the adversary generates

a request in order to maximize the cost incurred by the algorithm. However, the

adversary must also serve the request sequence online. This way, the costs of both

the algorithm and the adversary depend on the random choices of the algorithm. A

randomized online algorithm ALG for a minimization problem P is c-competitive

against adaptive online adversaries, if there exists a constant α, such that for any

request sequence σ generated by an adaptive online adversary ADV ,

E[ALG(σ)] ≤ c ·ADV (σ) + α,

where ADV (σ) is used to denote the cost of ADV to serve σ.

12 Chapter 2. Online Algorithms

3. Adaptive Offline Adversaries: Similarly to the adaptive online adversary, an

adaptive offline adversary knows all the actions of the algorithm, including its ran-

dom choices, and at each step, it generates a request in order to maximize the cost

incurred by the algorithm. However, in this setting, the adversary is allowed to solve

the problem offline after the instance is constructed. A randomized online algorithm

ALG for a minimization problem P is c-competitive against adaptive offline adver-

saries, if there exists a constant α, such that for any request sequence σ generated

by an adaptive offline adversary ADV , that is

E[ALG(σ)] ≤ c ·OPT (σ) + α,

where OPT (σ) is used to denote the cost of the optimal offline algorithm on the

instance.

Depending on the adversarial setting, the competitive ratio of the same online algo-

rithm might vary drastically. Typically, the oblivious adversary setting is the “easiest”

(often referred to as the ”weak adversary”) since it doesn’t have access to the algorithm’s

random number generator. However, in practise we usually use the adaptive online ad-

versarial setting since it is useful to compare the performance of our algorithm to that of

other online algorithms. The hardest adversarial setting is the adaptive offline, since the

adversary has access to the algorithm’s random choices but it is also allowed to solve the

instance offline. In fact, it has been shown [14] that randomization doesn’t help against

adaptive offline adversaries.

We quote some of the most useful results that show the connection between the different

adversarial settings and highlight their differences.

Theorem 2.1. If there is a randomized algorithm that is c-competitive against any adap-

tive offline adversary then there also exists a c-competitive deterministic algorithm. If

G is a c-competitive randomized algorithm against any adaptive online adversary, and

there is a randomized d-competitive algorithm against any oblivious adversary, then G is

a randomized (c · d)-competitive algorithm against any adaptive offline adversary.

Note that until now, we didn’t mention any restrictions on the computational resources

used by an online algorithm. The reason for this is that in competitive analysis our primary

goal is to understand the importance of knowing the future; the competitive ratio of an

algorithm can be seen as a measurement of the loss due to missing information, assuming

unlimited computational power. For example, the Work Function Algorithm [56] that

achieves the best known deterministic competitive ratio for the k-server problem needs

exponential time.

However, we would obviously prefer to have more ”realistic” algorithms that can run

in polynomial (for example) time to the instance. This motivates the study of trade-offs

between the competitive ratio and computational efficiency. A starting point in this line

of research, is to determine the competitive ratio of memoryless algorithms: a memoryless

2.2 The Potential Method 13

algorithm, decides the next move based solely on the current configuration of the servers

and the given request. Memoryless algorithms are typically computationally efficient,

but in some cases their competitive ratio can be much larger than the optimal or even

unbounded; as an example, Chrobak and Sgall [32] and Koutsoupias and Taylor [58]

independently showed that even for k = 2, there is no competitive memoryless algorithm

for the weighted k-server problem in general metric spaces, a result that immediately

transfers to the generalized k-server problem.

2.2 The Potential Method

The potential method [43, 34] is a technique commonly used in competitive analysis

in order to prove upper bounds on the competitive ratio of memoryless algorithms. The

potential method has also been used extensively in the field of data structures [34, 44] as

a method used to analyze the amortized time and space complexity of a data structure;

a measure of its performance over sequences of operations that smooths out the cost of

infrequent but expensive operations.

On a high level, the potential method consists of the definition of an appropriate

potential function that is used to measure the distance between the algorithm and the

adversary; then the analysis shifts to proving some properties for this function that can

immediately yield results for the algorithm’s competitive ratio.

For example, if we find a potential such that (i) when the adversary moves the increase

in the potential is bounded from above and (ii) when the algorithm moves the decrease

in potential is bounded from below, then we get some knowledge on the way that the

requests can affect the ”distance” between the algorithm and the adversary, resulting to

knowledge on the performance of the algorithm.

Configurations. In any online problem, we can define an algorithm’s configuration at

some moment as the state of the algorithm with respect to the outside world. For example,

in the MTS problem the configuration of an algorithm is simply the point of the metric

that it occupies. In the paging problem the configuration of the algorithm is the labels of

the ”pages” that are in the cache. In k-server, the configuration of an algorithm is the set

of points that are occupied by its servers.

Potential. Now, let SALG and SADV be the sets of all possible configurations for an

algorithm and an adversary respectively. Formally, a potential function Φ is a mapping Φ :

SALG×SADB → R; that is a systematic way to append real numbers for any combination

of the algorithm’s and the adversary’s states. Typically, we wish for the potential to satisfy

some distance properties, in the sense that when the algorithm and the adversary have the

same configuration the potential should be 0, otherwise some real positive number that

reflects how ”far” these two configurations are. This way, the potential can be seen as a

measure of distance between the algorithm and the adversary.

14 Chapter 2. Online Algorithms

We will now show that if the potential is selected in order to satisfy some specific

properties, then an upper bound for the competitive ratio of the algorithm can be im-

mediately determined. There are two primary potential based techniques [16] for proving

upper bounds on the competitive ratio of ALG: the Amortized Cost method and the

Interleaving Moves method.

For any online minimization problem P with request sequence σ = σ1, . . . , σm, fix

an online algorithm ALG, an adaptive online adversary ADV and a potential function

Φ. Let ALGi and ADVi denote the cost incurred by the algorithm and the adversary

respectively. Also, let Φi denote the potential between the configurations of ALG and

ADV after request σi has been processed.

2.2.1 Amortized Cost

In this method, the potential between the algorithm’s and the adversary’s configura-

tions can be seen as a “bank”. Whenever an algorithm makes a move that increases the

potential (i.e., its distance from the adversary) then it can ”borrow” some money from the

bank in order to pay the cost. Respectively, if the algorithm makes a move than decreases

the potential, then it can ”pay” some of its debt to the bank.

Using this intuition, instead of charging the algorithm with its actual cost, we charge

it with its amortized cost. For each request ri, define the amortized cost of the algorithm

as:

αi = ALGi + Φi − Φi−1

The amortized cost of an algorithm is a measure of its performance over sequences of

operations that smooths out the cost of infrequent but expensive operations.

Theorem 2.2. If there exists constant c such that for any request σi it holds

αi ≤ c ·ADVi

and Φi is bounded by some constant independent of the request sequence for any i, then

ALG is c-competitive.

Proof. Assume that for all i, αi ≤ c ·ADVi. Then, summing over i = 1, 2, . . . ,m we would

get

m∑
i=1

αi ≤ c ·ADV (σ)⇒ ALG(σ) + Φm − Φ0 ≤ c ·ADV (σ)

by the telescoping property. Since Φi are bounded by constants, the theorem follows.

2.2.2 Interleaving Moves

Imagine that the algorithm and the adversary move separately with every request. As

we have already mentioned, the potential can be viewed as a measurement of distance

between the algorithm and the adversary. Since the adversary wished to maximize the

2.2 The Potential Method 15

ratio of the algorithm’s cost to its own, then whenever it moves it wishes to increase the

potential. A “good” algorithm on the other side, wishes to make moves that decrease the

potential.

The method of interleaving moves formalized the above concept.

Theorem 2.3. Let σi be any request and assume that the following properties hold:

1. There exists a constant c such that if only the adversary moves during σi and pays

x, then the potential increases by at most c · x, that is:

∆Φ = Φi − Φi−1 ≤ c ·ADVi

2. If only the algorithm moves during σi and pays x, then the potential decreases by at

least x, that is:

∆Φ = Φi − Φi−1 ≤ −ALGi

3. Φi is bounded by some constant that doesn’t depend on the request sequence.

Then, ALG is c-competitive.

Proof. From properties 1 and 2, we get that if both the algorithm and the adversary move

during σi, then ∆Φ ≤ c · ADVi − ALGi. Summing over all i = 1, 2, . . . ,m and using the

telescoping property on the differences of the potentials, we get:

Φm − Φ0 ≤ c ·ADV (σ)−ALG(σ)

and since Φ0,Φm are bounded by some constants independent of the request sequence,

then this immediately gives that ALG is c-competitive, proving the Theorem.

Both of these techniques have been used extensively in the literature as a simple and

elegant way to prove competitive bounds. Since these techniques are pretty much stan-

dard, the whole weight of the analysis relies on the definitions of an appropriate potential

function that will satisfy the properties of Theorem 2.2 and Theorem 2.3. However, de-

termining what the appropriate potential is can be quite difficult and it relies on a deep

understanding of the underlying problem’s structure and properties.

As an example, in Chapter 4 we will prove that the Harmonic Algorithm is O(k · αk)-
competitive for the generalized k-server problem on uniform metrics using the potential

method of interleaving moves. Mathematically speaking, the analysis is quite easy once

the correct potential is defined. However, the potential function we use is inspired by the

problem’s structure and how it translates to random walks on Markov Chains and thus

relies on a deep understanding of the problem’s structure.

16 Chapter 2. Online Algorithms

2.3 Paging

The paging (caching) problem is a classical problem in operating systems design [5].

We are given a two-level memory system, composed by the cache and the main memory.

The cache is divided into k parts of equal size, called pages, while the main memory has

larger capacity, but it is much slower. Whenever a page needs to be accessed by the CPU,

it should be in the cache; if it is not, a page fault occurs. The page needs to be fetched

in the cache, possibly by evicting some other page. Thus, any operating system needs a

page eviction policy. Here, the input can be seen as a sequence of requests to pages, and

the goal is to minimize the total number of page faults.

If we see this problem as a classical optimization problem where the entire request

sequence is given in advance, it is easy to find the optimal solution: Whenever a page

eviction is needed, we evict the page that will be requested the latest in the future.

However, in reality the future requests are not known, and the operating system has

to decide which page to evict taking into account only the requests seen so far. An online

algorithm for the paging problem needs to decide on what page it evicts at time t, without

knowledge of the pages that will be requested at time t+ 1, . . . , T .

In the context of online algorithms, paging was first studied in the seminal work of

Sleator and Tarjan [71], where the first results for this problem were presented. In this

section, we will present some of these results, since the paging problem has a simple

structure that makes it a good candidate for an introduction to competitive analysis.

This results are considered folklore in the area of online algorithms, but they will allow us

to review some of the main techniques used in competitive analysis.

2.3.1 Deterministic Algorithms for Paging

We begin with the study of deterministic algorithms for this problem. We will first

prove a lower bound of k and then present the MARKING algorithm that achieves the

same bound.

Theorem 2.4. The competitive ratio of any deterministic algorithm for the paging problem

is at-least k.

Proof. Let p1, p2, . . . , pk be the pages that are initially in the algorithm’s cache memory

and let pk+1 be a page that is initially outside the algorithm’s cache. First, we request

page pk+1 and since the algorithm is deterministic, we know that it will evict some page

pi. Then we request page pi and the algorithm evicts some page pj . We repeat this process

for an arbitrary number of requests T , making the algorithm pay a total cost of T .

We will now argue that the optimal solution for this request sequence is at most T
k .

Recall that the optimal offline algorithm for paging evicts the page that will be requested

furthest in the future on page fault. Thus, since the cache has a total size of k, whenever

the optimal strategy evicts a page to serve a request, we know that it will surely serve

2.3 Paging 17

the next (k − 1) requests as well. Since the size of the instance is T , the optimal offline

algorithm will pay at most T
k .

Thus, we get that

ALG = T = k · T
k
≥ k ·OPT

and that the algorithm is at least k-competitive.

We will now present a deterministic algorithm whose competitive ratio matches this

lower bound of k, known as the MARKING algorithm. This is a phase based algorithm,

where at the beginning of a phase all the pages are unmarked. Whenever a request is

received, the algorithm marks the requested page (if it isn’t already marked) and if it is

not in the cache, then it evicts an unmarked page (based on some arbitrary deterministic

policy) in order to put it in. If all the pages in the cache are already marked, then a new

phase begins and all the pages become unmarked once again.

Theorem 2.5. The competitive ratio of the MARKING algorithm for paging is at most

k.

Proof. It is actually quite simple to analyze the MARKING algorithm. Fix any phase of

the algorithm. Initially, all the pages are unmarked and the phase ends when all the pages

in the cache are marked. This immediately gives that the MARKING algorithm evicts

exactly k pages per phase and that a phase has to include exactly k distinct requests.

Since the cache has a total size of k, we know that any solution (even the optimal) will

be forced to evict at least one page per phase. Thus, in every phase the MARKING

algorithm evicts k pages and the optimal offline solution evicts at least 1 page, which

gives that the competitive ratio of the MARKING algorithm is indeed at most k.

Theorems 2.4 and 2.5 completely solve the deterministic case, since we have a (compu-

tationally efficient) algorithm that achieves the best possible competitive ratio. We note

that there are other algorithms that achieve the same competitive ratio of k with specific

marking policies, such as LRU , CLOCK and FWF [16].

2.3.2 Randomized Algorithms for Paging

We will now focus on randomized algorithms for the paging problem and show that

randomization can indeed improve the competitive ratio of a problem. When studying

randomized algorithms, one has to be careful to define the type of adversary. In this

section, we will mainly focus on oblivious adversaries.

Theorem 2.6. Any randomized algorithm for the paging problem is at least Hk competitive

in the oblivious adversarial setting, where Hk is the k-th harmonic number.

Note that since this lower bound holds for the oblivious setting, it clearly extends for

adaptive online and adaptive offline adversaries as well.

18 Chapter 2. Online Algorithms

We will now show that the randomized version of the MARKING algorithm matches

this lower bound (up to a constant) against oblivious adversaries. In the randomized

version, whenever the MARKING algorithm has to evict a page, instead of picking an

unmarked page based on some deterministic eviction policy, it simply evicts an unmarked

page at random.

Theorem 2.7. The competitive ratio of the randomized MARKING algorithm against

an oblivious adversary is 2Hk − 1, where Hk is the k-th harmonic number.

We note that there are different randomized algorithms that achieve the (optimal)

competitive ratio of Hk. For the proofs of Theorems 2.6 and 2.7 we refer the reader to

Chapter 4 of [16]. These results show that randomization can reduce the competitive ratio

of a problem by an exponential factor, and thus randomized algorithms should be studied

for any online problem.

There are many other results for the paging problem, and it is generally considered to

by one of the best-understood problems in the online framework. For many other results

about different adversarial models and other variations of the paging problem we refer the

reader to [41, 16].

2.4 Metrical Task Systems

The first online algorithms were analyzed in a rather ad-hoc way, using problem specific

techniques that could not be applied in other problems and didn’t contribute much to the

field of competitive analysis. In order to create a unifying framework that would make the

analysis of online algorithms easier and more systematic, Borodin et al. [17] defined the

problem of metrical task systems (MTS) that generalized many of the well-studied online

problems of this period.

Definition 2.2 (MTS). In the MTS problem we are given a server which can be in one of

N different states and a metric distance function d specifying the cost of switching between

the states. At each time step, a task r arrives, represented by a vector r = (r1, . . . , rN),

where ri is the cost of processing r at state i. The server has to decide in which state it

will process the task. If it switches from state i to state j and processes the task there,

it incurs a cost d(i, j) + rj. Given an initial state and a sequence of tasks, the goal is to

process all tasks at minimum cost.

For MTS, the deterministic competitive ratio is 2N − 1 [17] and for randomized algo-

rithms the competitive ratio is O(log2N log logN) [37] and Ω(logN) [17].

While the study of the MTS problem is of interest on its own, its main attribute is that

it generalizes many well-studied online problems, more importantly the k-server problem.

To see this, any instance of the k-server problem can be viewed as an instance of MTS by

appending one state for any configuration of the algorithm’s k-servers (N = nk). Then,

for any request ri we set process cost 0 to all the server configurations that serve it and

2.5 The k-Server Problem 19

process cost∞ to all other configurations. Finally, the distance between two states equals

the minimum cost perfect matching between the corresponding configurations. Other

notable special cases of MTS include fundamental data structure problems such as the

list update problem [71, 65, 2] and the binary search tree problem [72, 3, 49].

Thus, the really interesting question is how to exploit the structure of special instances

for MTS in order to go beyond the Ω(N) and Ω(logN) bounds for the problem. On this

note, in [30, 31, 61] a slight restriction of the MTS model was introduced, called metrical

service systems (MSS). Here, each component of each task vector is either 0 or ∞.

Therefore, each task can be processed only in a subset of the states, whose coefficient is 0

(we call them feasible states for this task).

For MSS, the deterministic competitive ratio is N − 1 [17] and for randomized al-

gorithms the competitive ratio is O(log2N log logN) [37] and Ω(logN) [17]. This shows

that there is not much improvement when restricting the values of the task vectors.

All of the problems considered in this thesis are special cases of MTS and MSS with

special structure, where usually a competitive ratio independent of the number of states

is possible. It is easy to see that the paging problem is a special case of both MTS

and MSS: states correspond to all possible sets of pages in the cache and the cost of

switching between states equals the number of different pages between the corresponding

sets. Whenever a page p is requested, all the states that contain p in the cache are feasible

and the rest of the states are infeasible. More importantly for this thesis, the generalized

k-server problem in arbitrary metrics can also be seen as a special case of both MTS and

MSS.

2.5 The k-Server Problem

The k-server problem is one of the most fundamental and extensively studied problems

in the theory of online algorithms. As we mentioned in the previous section, this problem

is one of the most important special cases of the MTS and MSS problems. The problem

was first introduced by Manasse et al. [61] as a far-reaching generalization of various online

problems, the most notable of which is the paging problem. In order to solve the k-server

problem, many generic and powerful techniques have been devised that have led to many

landmark results in the area of competitive analysis.

Definition 2.3 (k-server problem). Formally, the k-server problem is defined in a metric

space M = (U, d), where U is a set of n points and d : U2 → R. The fact that M is a metric

space means that d is a non-negative and symmetric distance function which satisfies the

triangle inequality. There are k distinct servers, initially placed at some points of U . The

input is a request sequence r = r1, r2, . . . , rm where rt ∈ U is the point requested at time

t. To serve the request, some server must move to point rt. The goal is to minimize the

total distance traveled by the servers for serving r.

As we have already mentioned, the k-server problem is a special case of Metrical Task

20 Chapter 2. Online Algorithms

Systems with N = nk stated (one for every server configuration), distance between states

that is equal to the minimum matching distance between the corresponding configurations

and task vectors of value 0 for configurations that serve the request and 0 otherwise.

The paging problem that we studied in Section 2.3 is also a special case of the k-server

problem on uniform metrics of distance 1. Here, the k-servers correspond to the k slots

in the cache, and the pages correspond to the points. Evicting a page from the cache

and bringing a new one maps to moving a server between the corresponding points at

a cost of 1. Equivalently, we can think of a uniform metric as a star graph on n leaves

corresponding to the n pages, where all edges have length 1
2 .

In their seminal paper, Manasse et al. [61] showed that the competitive ratio of deter-

ministic algorithms is at least k, even if the metric space contains n = k+ 1 points. Since

for the special case of paging, deterministic algorithms of competitive ratio k are known

(for example, the MARKING algorithm), Manasse et al. [61] and many others have con-

jectured that the true competitive ratio for the k-server problem in the deterministic case

is k. In the literature, this is known as the k-server conjecture.

Qualitatively, this means that general metrics are believed to be no harder than the

simplest possible case of uniform metrics. The k-server conjecture attracted a lot of at-

tention and it has influenced the research on online algorithms over the last three decades.

At the time the k-server conjecture was posed, it was not even known whether a

competitive ratio f(k) depending only on k is possible for general metric spaces. The

initial research focused on special metrics like weighted stars, lines and trees, and for many

cases tight k-competitive algorithms were obtained [29, 17, 39, 57]. For general metric

spaces, Fiat et al. [38] obtained the first f(k)-competitive algorithm, with competitive ratio

O((k!)3). Several improvements followed [6, 48, 14], but the ratio was still exponential in

k.

In a breakthrough result, Koutsoupias and Papadimitriou [56] showed that the Work

Function Algorithm (WFA) is (2k−1)-competitive for every metric space, almost resolving

the conjecture. This remains up to date the best known upper bound on the competitive

ratio of the k-server problem. At time t, the WFA algorithm solves (optimally) for any

configuration q ∈ [n]k the problem of serving requests r1, . . . , rt and ending up in configu-

ration q. Then, it moves to the configuration that has the lowest total cost. In the special

case of n = k+ 1, the competitive ratio of the WFA is known to be k, matching the lower

bound for the problem. We refer the reader to [16, 13] for an extensive treatment of the

large body of work on the k-server conjecture.

An enormous amount of research has also been done on randomized algorithms for

the k-server problem. Typically, using randomization, an exponential improvement on the

competitive ratio is possible. However, randomized online algorithms are far less under-

stood compared to the deterministic ones. For the k-server problem, it is believed that,

similarly to the deterministic case, the distance function does not affect the competitive

ratio and an O(log k)-competitive randomized algorithm against oblivious adversaries is

possible in any metric space. In the literature, this is known as the randomized k-server

2.6 The Generalized k-Server Problem 21

conjecture

However, this is known to be true only for very special cases. In particular, for the

paging problem several O(log k)-competitive randomized algorithms are known [1, 36,

62]. Nevertheless, even the simple generalization of the weighted paging problem (which

corresponds to the k-server problem on weighted star graphs) remained open for almost

two decades, until Bansal et al. [9] gave an O(log k)-competitive algorithm using the

primal-dual method.

More recently, polylog(k, n) competitive ratios for general metric spaces were ob-

tained [7, 19]. Those bounds are better than the deterministic competitive ratio 2k − 1

in case n is sub-exponential in k. The techniques developed in those works imply an

O(log k)-competitive randomized algorithm for hierarchically separated trees (HSTs) of

constant depth. Recently, an O(log6 k)-competitive algorithm for any metric space was

claimed [60].

2.6 The Generalized k-Server Problem

The study of the k-server problem has been essential in the development of powerful

techniques for online algorithms. For example, the landmark result of Koutsoupias and

Papadimitriou [56] on the k-server conjecture enabled the belief that the WFA (or the

generalized WFA [23]) performs optimally for any metrical task system. Furthermore,

the work on randomized k-server algorithms enabled the development of powerful tech-

niques using the primal-dual method [22, 21, 8, 7] and more recently the mirror descent

method [19].

Despite this progress, several natural variants and generalizations of the k-server prob-

lem are very poorly understood. In particular, they exhibit very different and intriguing

behavior and the techniques for the standard k-server problem do not seem to apply to

them. Getting a better understanding of such problems is a natural step towards building

a deeper theory of online computation. Below we list some examples of server problems

that are not captured by the standard k-server model:

• The weighted k-server problem [63]. Here, each server has a different weight

w1, . . . , wk and the cost of moving the i-th server by distance d is wi ·d. This problem

is substantially different from the (unweighted) k-server problem. To get a feel for

the problem, for uniform metrics the competitive ratio is 22Θ(k)
[40, 27, 10], and no

competitive algorithms are known for general metrics.

• The CNN problem [58]. In this problem we are given two servers in the euclidean

plane, the one moving in the horizontal axis and the other in the vertical axis. At

each time step a point (r1, r2) is requested, and in order to serve the request we

should either move the horizontal server to point x = r1 or the vertical server to

y = r2. This problem models the movement of the crew of a news network in

22 Chapter 2. Online Algorithms

Manhattan: whenever an event occurs, a camera should be either in the same street

or in the same avenue.

Motivated by all those variants of the k-server problem, Koutsoupias and Taylor [58]

introduced a substantial generalization of the k-server problem, called the generalized k-

server problem. Here, each server si lies in its own metric space Mi , with its own distance

function di . A request is a k-tuple r = (r1, r2, . . . , rk) and must be served by moving

some server si to the point ri ∈Mi.

Note that the standard k-server problem corresponds to the special case when all the

metrics are identical, M1 = M2 = . . . = Mk = M , and the requests are of the form

(r, r, . . . , r), i.e., the k-tuple is identical in each coordinate. Similarly, the weighted k-

server problem corresponds to the case when the metric spaces are scaled copies of each

other, i.e. Mi = w1 ·M for some fixed M , and the requests have the form (r, r, . . . , r).

Finally, the CNN problem corresponds to the case where k = 2 and both M1,M2 are lines.

Sitters [68] highlights that the existence of an f(k)-competitive algorithm is among the

most intriguing and important open problems in online computation. Despite the intense

interest, this problem is poorly understood.

2.6.1 Results on the generalized k-server problem

Initially, competitive algorithms were known only for the special case of k = 2 [70, 68].

For an arbitrary number of servers k, all of the known results apply to the special cases

of uniform metric spaces or uniform metric spaces of equal weights.

For deterministic algorithms, Koutsoupias and Taylor showed that even when the

metric spaces have n = 2 points and are uniform, the competitive ratio of any deterministic

algorithm is at least 2k−1. For general metric spaces, the best known deterministic lower

bound is 22Ω(k)
[10], and comes from the weighted k-server problem. This also means that

this lower bound also applies to the special case of weighted uniform metric spaces.

The first f(k)-competitive algorithms for the generalized k-server problem were given

by Bansal et.al. [11]. In their work, they presented an O(k2k)-competitive deterministic

algorithm for uniform metric spaces. The basic idea of their algorithm is to partition

the request sequence to phases, and keep the invariant that the configurations of their

algorithm serve the entire (observed) request history of the current phase. A phase ends

when there isn’t a configuration that serves all the request in the previous phase, which

means that even the optimal solution moves at least once per phase. By showing that the

number of distinct requests in a phase can be at most 2k, they proved their result.

In the same work, they also presented a 22O(k)
-competitive deterministic algorithm for

weighted uniform metric spaces as a natural modification of an algorithm due to Fiat and

Ricklin [40] for the weighted k-server on uniform metrics.

Those are the only known results for deterministic algorithms and are (almost) optimal

due to the already existing lower bounds.

Some work has also been done for randomized algorithms. In [11], Bansal et.al. also

2.6 The Generalized k-Server Problem 23

gave an O(k3 log k)-competitive randomized algorithm for uniform metric spaces against

oblivious adversaries. This was then improved to O(k2 log k) by Bienkowski et. al. [15],

who also gave an Ω(k) lower bound for randomized algorithms on the uniform metric case.

All of these results applied to the oblivious adversarial setting.

Until this point, memoryless algorithms for the generalized k-server problem had not

been studied; in fact, all of the algorithms that achieve the aformentioned results heavily

rely on memory.

2.6.2 Results on memoryless algorithms

Very recently, Chiplunkar and Vishwanathan [28] studied memoryless algorithms for

the generalized k-server on weighted uniform metric spaces and showed tight ≈ 22k bounds

for any memoryless algorithm. In their work, they defined a potential function that

needs to satisfy some properties in the form of a linear program. Then, by studying the

constraints of this problem they were able to prove the existence of a potential that led to

a doubly-exponential upper bound. Interestingly, the memoryless algorithm that achieves

this bound is not the harmonic, i.e., the algorithm that serves each metric space with

probability that is inversely proportional to its weight. With similar arguments, they also

showed that their analysis was tight; the competitive ratio achieved by their algorithm is

the optimal for memoryless algorithms. All of their results apply to adaptive adversaries.

In this section, we will present the main techniques used in their work in order to

highlight how their results were achieved and how our own analysis differs from theirs.

Model. Recall that in the generalized k-server problem on weighted uniform metric

spaces, each of the k metrics Mi has a weight wi, which is the cost of moving a server

on Mi. Any memoryless algorithm for this problem is fully characterized by a probability

distribution p1, . . . , pk on the metric spaces; pi is the probability that a request is served

by moving a server on Mi. Throughout their work, they assume that p1 ≥ p2 . . . ≥ pk > 0.

At any time t, let si ∈ [n] denote the position of the algorithm’s server in metric space

Mi and ai ∈ [n] denote the position of the adversary’s server in metric space Mi. Since

the metric spaces are uniform, the state of the algorithm is captured by the metric spaces

where its server and the adversary’s server occupy the same point, that is S = {i : ai = si}.
Thus, the state space for this problem is 2[k] (since S ∈ 2[k]).

Potential A potential function for this problem is a mapping Φ : 2[k] → R. Instead of

directly defining an appropriate potential, Chiplunkar and Vishwanathan write down the

conditions of the Interleaving Moves method (see Section 2.2) that have to be satisfied in

order to get an upper bound of γ.

Recall that in the Interleaving Moves method, we wish to prove the following two

properties:

1. If only the adversary moves and pays x, the potential increases by at most γ · x.

24 Chapter 2. Online Algorithms

2. If only the algorithm moves and pays x, the potential decreases by at least x.

As we have shown, these two conditions directly imply an upper bound of γ. We will

now see how these conditions translate to the generalized k-server problem on weighted

uniform metrics. Without loss of generality, we can assume that the adversary always

makes requests that are not served by the algorithm’s current configuration, forcing it to

constantly move.

Assume that the adversary moves in some metric Mi to serve a request r by setting

ai = ri. If i /∈ S (the algorithm’s server in Mi isn’t in point si) then the state doesn’t

change since ri 6= si by assumption. Thus, the potential doesn’t increase. If i ∈ S, then

the new state of the algorithm is S \ {i} and the adversary pays wi. Thus, condition 1

translates to the following:

Φ(S \ {i})− Φ(S) ≤ γ · wi for all S ⊆ [k], i ∈ S (2.1)

Now assume that the algorithm receives request r and has to move. Since the adversary

has already served the request and the algorithm doesn’t serve it, ri = ai for some i /∈ S.

We distinguish between the following three cases:

• If the algorithm moves on metric Mi, then the new state becomes S ∪ {i}.

• If the algorithm moves on metric Mj for some j /∈ S ∪ {i}, then the state doesn’t

change.

• If the algorithm moves on metric Mj for some j ∈ S, then the new state becomes

S \ {j}.

Thus, on expectation the decrease in potential is:

pi(Φ(S)− Φ(S ∪ {i})) +
∑

j /∈S∪{i}

pj(Φ(S)− Φ(S)) +
∑
j∈S

pj(Φ(S)− Φ(S \ {j}))

while the expected cost of the algorithm is
∑k

j=1 pjwj . Thus, condition 2 translates to the

following:

pi(Φ(S)−Φ(S∪{i}))−
∑
j∈S

pj(Φ(S \{j})−Φ(S)) ≥
k∑
j=1

pjwj for all S ⊆ [k], i /∈ S (2.2)

Any potential Φ and any γ that satisfy conditions (2.1) and (2.2) directly imply an

upper bound of γ for the problem. By changing variables

φ(S) = − Φ(S)∑k
j=1 pjwj

we can write the optimal upper bound achieved by this method as the solution of the

following linear program:

2.6 The Generalized k-Server Problem 25

Minimize γ subject to:

For all S ∈ 2[k] and i ∈ S:

γ ≥ (
k∑
j=1

pjwj)
φ(S)− φ(S \ {i})

wi
(2.3)

For all S ∈ 2[k] and i /∈ S:

pi(φ(S ∪ {i})− φ(S))−
∑
j∈S

pj(φ(S)− φ(S \ {j})) ≥ 1 (2.4)

φ(∅) = 0 (2.5)

where (w.l.o.g.) we have set φ(∅) = 0.

Then, they proceed by determining a feasible solution for this linear program. For

that purpose, they focus on constraints (2.4) and (2.5). This is a set of approximately

k2k linear constraints on 2k variables. One of their key contributions is to show that by

focusing on 2k of this constraints as equations, the solution of this system satisfies all of

the constraints. On a high level, they focus on the ”hard” constraints that directly imply

all the others. This constraints are the following:

pi(φ(S ∪ {i})− φ(S))−
∑
j∈S

pj(φ(S)− φ(S \ {j})) = 1 ∀S 6= [k], i = min([k] \ S) (2.6)

with φ(∅) = 0.

Theorem 2.8. The solution of (2.6) exists for any distribution p and weights w and

satisfies constraints (2.4) and (2.5).

Proof. This result relies on a rather technical method called the Gauss-Seidel Trick. Using

the matrix form of linear system (2.6) and the fact that is is strictly diagonally dominant,

one can prove convergence of an iterative algorithm that computes its solution (and thus

the existence of this solution). Then, using a monotonicity property on this solutions, we

are able to prove that the chosen constraints are in fact the “hardest”, in the sense all the

other constraints are also satisfied by the solution.

Having achieved feasibility, they then focus on proving specific properties and bounds

for the solutions of (2.6). We quote the most important ones:

Theorem 2.9 (Supermodularity). For any S ⊆ 2[k] and i, j /∈ S, the solutions of (2.6)

satisfy

φ(S ∪ {i}) + φ(S ∪ {j}) ≤ φ(S ∪ {i, j}) + φ(S)

26 Chapter 2. Online Algorithms

Theorem 2.10 (Bounds). For any S ⊆ 2[k] and i = min([k] \ S), the solutions of (2.6)

satisfy

pi(φ(S ∪ {i})− φ(S)) ≤ CS

where the constants CS are defined recursively by the formula C∅ = 1 and CS = 1 +∑
j∈S CS\{j}∪[j−1].

We are now ready to determine the upper bound. From constraints (2.3), the best

upper bound (when the potential is defined as the solution of (2.6)) is given by

γ = (
k∑
j=1

pjwj) max
S, i∈S

φ(S)− φ(S \ {i})
wi

Due to Theorem 2.9, this expression becomes:

γ = (

k∑
j=1

pjwj) max
i∈[k]

φ([k])− φ([k] \ {i})
wi

= (

k∑
j=1

pjwj) max
i∈[k]

pi(φ([k])− φ([k] \ {i}))
piwi

and by Theorem 2.10, we get

γ ≤ (
k∑
j=1

pjwj) max
i∈[k]

C[k]\{i}

piwi

Thus, by selecting pi =
C[k]\{i}
wi

, the achieved competitive ratio is upper bounded by:

k∑
j=1

C[k]\{i} = C[k] − 1 = γk

where γk is the solution to the recursion γk = γ2
k−1 + 3γk−1 + 1 with initial condition

γ1 = 1.

By the definition of γk, it is not hard to prove that this upper bound is doubly-

exponential to k. Of course, this bound is achieved by a specific potential and specific

probabilities pi =
C[k]\{i}
wi

. Changing the potential or the algorithm could give a better

upper bound for the problem. However this is not the case, as they prove next.

Specifically, they complement their upper bound result by proving that γk is a lower

bound for the competitive ratio of any memoryless algorithm for the generalized k-server

problem on weighted uniform metric spaces. In fact, they study the weighted k-server

problem, which is a special case of the generalized k-server problem on weighted uniform

metric spaces where the requests are in the form of (r, . . . , r). Clearly, any lower bound

for weighted k-server immediately transfers to generalized k-server in weighted uniform

metrics. In order to get the lower bound, they construct an adaptive online adversary and

by using many of their results shown for the upper bound, they are able to show that their

analysis was tight and that γk was in fact the optimal competitive ratio for their setting.

2.6 The Generalized k-Server Problem 27

This work aims to study the case of memoryless algorithms for uniform metrics and

improve the doubly-exponential bound of Chiplunkar and Vishwanathan to a factorial

bound. This is mostly done by using a different analysis that heavily relies on specific

classes of Markov Chains that we can study. Furthermore, we extend some of our results

to the oblivious case, which had not been done before for memoryless algorithms for the

generalized k-server problem.

Chapter 3

Random Walks

In this chapter, we provide the reader with the background on random processes that is

necessary for the analysis of memoryless algorithms for the generalized k-server problem.

We focus on the stochastic model of Markov Chains and study the properties of a random

walk on this model and several of its sub-classes.

In Section 3.1, we give the formal definition of a Markov Chain and state the basic

properties of this model. Then, in Section 3.2 we focus on a special type of Markov Chains,

called Birth-Death Chains, and prove Theorem 3.3 that states the Expected Extinction

Time of a random walk on this model. Finally, in Sections 3.3 and 3.4 we define two novel

sub-classes of Birth-Death Chains that we refer to as Harmonic and Binary Chains and

compute their Expected Extinction Times in Theorems 3.4 and 3.5 respectively. As we

show in Chapter 4, these random processes capture the competitive ratio of the Harmonic

Algorithm for the generalized k-server problem and thus, they will be used extensively in

our analysis.

3.1 Markov Chains

A random (or stochastic) process [66] can be viewed as a sequence of random variables

that evolve in some random but prescribed way. A typical random process X is a family

{Xt : t ∈ T} of random variables that are indexed by some set T . If T is a discrete set

(e.g. the set of integers Z) then the process is called a “discrete-time” process. The set

X = {i : Xt = i} of all the possible values of Xt is called the state space of the random

process. We focus on random processes with discrete state spaces.

In the context of this thesis, we are interested in a special class of discrete-time and

discrete-space random processes called Markov Chains [46, 47]. A Markov Chain is a

random process where the probability of an event depends only on the state attained in

the previous event. Formally:

Definition 3.1 (Markov Chain). A Markov Chain is a random process X of discrete

state space S and discrete index set T = {0, 1, 2, . . . } that satisfies the following Markov

29

30 Chapter 3. Random Walks

condition:

P(Xt = s|X0 = x0, X1 = x1, . . . , Xt−1 = xt−1) = P(Xt = s|Xt−1 = xt−1)

for all t ≥ 1 and s, x0, . . . , xt−1 ∈ X .

Markov Chains, named after the Russian mathematician Andrey Markov, have been

extensively studied in the literature due to their nice properties and their applications [75,

24, 78] in numerous fields such as economics, statistics, physics, biology, information theory

and machine learning.

We are interested in homogeneous Markov Chains, where the probabilities of transi-

tioning from some state s ∈ X to some state s′ ∈ X don’t depend on time.

Definition 3.2 (Homogeneous Markov Chain). A Markov Chain X is called homoge-

neous if

P(Xt = s′|Xt−1 = s) = P(X1 = s′|X0 = s)

for all t ≥ 1 and s, s′ ∈ X .

A homogeneous Markov Chain can be fully characterized by an initial state X0 ∈ X
and a transition matrix P = [pij] such that

P(Xt = j|Xt−1 = i) = pij

for all t ≥ 1. From now on, unless stated otherwise, when we refer to a Markov Chain we

will assume that it is homogeneous.

We will now proceed to classify the states of a Markov Chain based on the transition

matrix P of the chain.

Definition 3.3 (Recurrent and Transient States). A state i ∈ X is called recurrent (or

persistent) if

P(∃t > 0 : Xt = i|X0 = i) = 1

which is to say that the probability of eventual return to state i, having started from it, is

1. If this probability is strictly less than 1, then the state i is called transient.

In order to give another useful classification of the states, we need to define the following

quantity:

Definition 3.4 (Mean Recurrence Time). For any state j ∈ X , let Tj be the random

variable defined as Tj = min{t ≥ 1 : Xt = j}, that is the time of the first visit to state j.

Then, the mean recurrence time of state j is defined as

µj = E(Tj |X0 = j),

that is the expected time to visit j for the first time, starting from it.

Based on the mean recurrence time of a recurrent state, we can classify it as either

null or positive.

3.2 Random Walks on Birth-Death Chains 31

Definition 3.5 (Null and Positive States). A recurrent state i ∈ X is called null if

µi =∞; if µi <∞ then it is called positive.

Finally, we need to define an irreducible set of states.

Definition 3.6 (Irreducible Set of States). A set of states S ⊆ X is called irreducible if

for any states i, j ∈ S, the probability that we visit state j starting from state i is non-zero.

If the state space X is irreducible, then we say that the Markov Chain is irreducible.

We are now ready to answer the question of how does a Markov Chain behave after

a long time has elapsed. One of the most important properties of Markov Chains is that

under mild assumptions on their structure, the probability of being in a state i ∈ S as

t → ∞ converges to a fixed value that depends only on the transition matrix P and not

on the initial state.

Definition 3.7 (Stationary Distribution). The vector π is called a stationary distri-

bution of a Markov Chain with state space X and transition matrix P if it has entries

(πj : j ∈ X) such that:

1. πj ≥ 0 ∀j ∈ X ,

2.
∑

j∈X πj = 1,

3. π = πP .

Finally, we conclude with the following theorem that specifies the conditions under

which a Markov Chain has a stationary distribution and associates its mean recurrence

times with its stationary distribution.

Theorem 3.1. An irreducible chain has a stationary distribution π if and only if all the

states are positive recurrent; in this case, π is the unique stationary distribution given by

π = πP and it holds that πj = 1
µj

for any state j ∈ X .

3.2 Random Walks on Birth-Death Chains

For the purposes of this thesis, we only need to study a special class of Markov Chains

called Birth-Death Chains [76]. This is a type of chain that limits transitions from a state

only to its “adjacent” states and is characterized by two terminal states X = 0 and X = k

from which there is only one possible next state.

Definition 3.8 (Birth-Death Chain). A Markov process with state-space X = {0, 1, . . . , k}
for some k ∈ N is characterized as a Birth-Death Chain if its transition matrix P = [Pij]

has the following form:

Pij =

pi , j = i+ 1

qi , j = i− 1

1− pi − qi , j = i

0 ,otherwise

∀i, j ∈ X

32 Chapter 3. Random Walks

where q0 = 0 and pk = 0 for the end-points of the chain. Equivalently, a Birth-Death

Chain can be defined as a finite Markov Chain with three-diagonal transition matrix. A

graphical representation of a Birth-Death Chain is given in Figure 3.1.

0 1 · · · ` · · · k − 1 k

p0 p1 p`−1 p` pk−2 pk−1

qkqk−1q`+1q`q2q1

1− p0 1− p1 − q1 1− p` − q` 1− pk−1 − qk−1 1− qk

Figure 3.1: A Birth-Death Chain

We refer to qi as the forward probability of state i and to pi as the backward probability

of state i. Furthermore, a Birth-Death Chain will be called absorbing on the state X = 0

if p0 = 0, which means that the random process will remain on the state X = 0 if it ever

reaches it. We are interested in Birth-Death Chains where qi, pi > 0 for all i ∈ {1, . . . , k−1}
and qk > 0; in that case, we know that with probability 1 the state 0 will be visited at

some time [59].

This chain’s name is due to the fact that its state space can be used to model the size

of a population of samples; in that case, the forward probabilities correspond to the death

of a sample and the backward probabilities correspond to the birth of a sample. If state

X = 0 is reached, then everyone in the population is dead and obviously no one else can

die. Furthermore, we assume that there are some limitations that don’t allow the number

of samples in the population to exceed some fixed size k ∈ N. Finally, the state X = 0 is

usually considered to be absorbing, since a population without members can’t reproduce

to increase its size. Due to this natural interpretation, the model of Birth-Death Chains

has applications in many different areas such as biology [64, 67], queuing systems [26] and

economics [73].

We will now proceed to compute the stationary distributions and the Expected Extinc-

tion Time of a Birth-Death Chain. While these results are by no means novel (e.g. [51]),

the common definition of a Birth-Death Chain considers a (countably) infinite state space

X = N while we are interested in Birth-Death Chains with finite state spaces. It is thus

useful to prove the following results instead of just stating them.

3.2.1 Stationary Distribution of Birth-Death Chains

We begin by computing the stationary distribution of any Birth-Death chain. For

this section we will assume that none of the states are absorbing; that is qi, pi > 0 for

all i ∈ {0, 1, . . . k}. Under this assumption, it is clear that all the states are positive

recurrent and the chain is irreducible. Thus, from Theorem 3.1 we know that the stationary

distribution π of the chain exists and is unique.

Theorem 3.2. For any Birth-Death Chain with state space X = {0, 1, . . . , k} such that

the forward and backward probabilities satisfy pi, qi > 0, the stationary distribution is given

3.2 Random Walks on Birth-Death Chains 33

by

π0 =
1

1 +
∑k

`=1
p0p1···p`−1

q1q2···q`

on state 0 and

π` =
p`−1p`−2 · · · p0

q`q`−1 · · · q1
π0

on any other state ` ∈ X \ {0}.

Proof. We could compute the distribution π by solving the linear system of equations

π = πP , where P is the transition matrix of the Birth-Death Chain. However, the analysis

can be simplified by a simple argument that exploits the special structure of those chains.

Fix any two adjacent states i, (i+ 1) ∈ X . As t→∞, we know that the probability of

being in a state converges to the corresponding probability of the stationary distribution,

and thus Xt = i with probability πi and Xt = i+ 1 with probability πi+1. Now, imagine

cutting the chain between those two states. As the random process evolves, the number

of times that the cut is crossed from the left to the right (with probability πipi) must

become equal to the number of times that the cut is crossed from the right to the left

(with probability πi+1qi+1). This simple observation gives that for all i ∈ {0, 1, . . . , k−1}:

πipi = πi+1qi+1

By recursively solving the above equation, we immediately get that

π` =
p`−1p`−2 · · · p0

q`q`−1 · · · q1
π0 ∀` ∈ {1, 2, . . . , k} (3.1)

Combining (3.1) with the fact that
∑k

`=0 π` = 1, we get that

π0 =
1

1 +
∑k

`=1
p0p1···p`−1

q1q2···q`

(3.2)

With equations (3.1) and (3.2) we can compute π` for any ` ∈ X and the theorem

follows.

3.2.2 Expected Extinction Time of Birth-Death Chains

We are now ready to formally define and compute the Expected Extinction Time

(EET) of a Birth-Death Chain with an absorbing state X = 0; this is in fact the purpose

of this chapter - to derive a general expression of this quantity and then apply this result

to specific types of Birth-Death Chains that are deeply tied with the competitive ratio of

the Harmonic Algorithm for the generalized k-server problem on uniform metrics.

If a Birth-Death Chain has an absorbing state X = 0, then it is natural to want to

compute the expected time that this state is reached. Clearly, this quantity depends on

the initial state of the chain. If the states of the chain represent the size of a population,

then this can be seen as the expected time that the population becomes extinct; thus the

name Expected Extinction Time.

34 Chapter 3. Random Walks

Definition 3.9 (Expected Extinction Time). Consider a Birth-Death Chain with state

space X = {0, 1, . . . k} and a single absorbing point X = 0 (p0 = 0). Then, for any state

` ∈ X , the Expected Extinction Time (EET) of the chain is defined as:

h(`) = E(N |X0 = `)

where N = mint≥0{Xt = 0}.

For the rest of this section we show how to compute the EET of a Birth-Death Chain

and prove the following theorem:

Theorem 3.3. For any Birth-Death Chain with states X = {0, 1, . . . k} and absorbing

state X = 0, the Expected Extinction Time of any initial state ` ∈ X \ {0} is given by:

h(`) =
1

q1
+

k∑
i=2

p1 · · · pi−1

q1 · · · qi
+

`−1∑
i=1

(
q1 · · · qi
p1 · · · pi

k∑
j=i+1

p1 · · · pj−1

q1 · · · qj
)

with h(0) = 0.

Proof. Using Bayes’ Rule [77] on the conditional expectation [74] h(`), we get that for any

` ∈ X :

h(`) = 1 +
∑
j∈X

p`jh(j) = 1 + q`h(`− 1) + p`h(`+ 1) + (1− q` − p`)h(`)

and by re-arranging this equation, we get:{
(p` + q`)h(`) = 1 + q`h(`− 1) + p`h(`+ 1) ∀` ∈ {1, 2, . . . , k}

h(0) = 0

}
(3.3)

Equation (3.3) is a second-order non-homogeneous linear recurrence relation with vari-

able coefficients [45]. First of all, in order to solve it we need a second initial condition

h(1); we will use the properties of the Markov Chain in order to compute it. Then, we

can solve this recurrence relation on the differences ∆(`) = h(`+ 1)−h(`) instead of h(`);

this reduces it to a first-order non-homogeneous linear recurrence relation with variable

coefficients that is much easier to solve.

Computation of initial conditions. A second-order recurrence relation typically re-

quires two initial conditions to be solved; however (3.3) only has h(0) = 0. Thus, we need

a way to compute h(1) before trying to solve the recursion.

This can be done by using the stationary distribution of a Birth-Death Chain similar

to the one we study. Since state X = 0 is absorbing (p0 = 0), the stationary distribution is

not defined for our chain. However, imagine a different Birth-Death Chain that is exactly

the same but with p0 = 1. Then, this chain is clearly irreducible and by Theorem 3.2 the

probability of the stationary distribution on state X = 0 is

π0 =
1

1 +
∑k

`=1
p0p1···p`−1

q1q2···q`

3.2 Random Walks on Birth-Death Chains 35

By Theorem 3.1, this immediately gives that the first recurrence time of state 0 is

µ0 = π−1
0 = 1 +

k∑
`=1

p1 · · · p`−1

q1q2 · · · q`

since p0 = 1.

Observe that µ0 = 1 + h(1). To see this, since p0 = 1 we know that the first transition

from state 0 will be to state 1. Then, we can set p0 = 0 like before and the (expected)

time until state 0 is reached again is given by h(1). This observation immediately yields

h(1) =
k∑
`=1

p1 · · · p`−1

q1q2 · · · q`
(3.4)

and now that we have a second initial condition, we can proceed to solving recurrence

relation (3.3).

Solving the recurrence relation. As we mentioned, instead of solving the second-

order recurrence relation (3.3), we can solve a first-order recurrence relation. Define

∆(`) = h(`+ 1)− h(`)

for all ` ∈ {0, 1, . . . , k − 1}. Then, (3.3) can be written as:

{
p`∆(`) = 1 + q`∆(`− 1) ∀` ∈ {1, 2, . . . , k − 1}

∆(0) = h(1)

}
(3.5)

This is a first-order non-homogeneous linear recurrence relation with variable coeffi-

cients that is much easier to solve. Indeed, observe that:

∆(`) =
1

p`
+
q`
p`

∆(`− 1)

=
1

p`
+

q`
p`p`−1

+
q`q`−1

p`p`−1
∆(`− 2)

=
1

p`
+

q`
p`p`−1

+
q`q`−1

p`p`−1p`−2
+
q`q`−1q`−2

p`p`−1p`−2
∆(`− 3)

...

=

`+1∑
i=2

q`q`−1 · · · qi
p`p`−1 · · · pi−1

+
q1 · · · q`
p1 · · · p`

∆(0).

(3.6)

Finally, since ∆(`) = h(`+1)−h(`), using telescoping sums and the fact that h(0) = 0

we have h(`) =
∑`−1

i=0 ∆(i). Combining this with equations (3.4) and (3.6), the theorem

follows.

36 Chapter 3. Random Walks

3.3 Random Walks on the Harmonic Chain

In this section, we define and compute the EET of a special type of Birth-Death

Chain we refer to as the Harmonic Chain and we will use in the analysis of the Harmonic

Algorithm for the generalized k-server problem.

Definition 3.10. The Harmonic Chain is a class of Birth-Death Chains with state

space X = {0, 1, . . . , k} for some k ∈ N, absorbing state X = 0, forward probabilities

q` = 1
k and backward probabilities p` = k−`

k . A graphical representation of a Harmonic

Chain is given in Figure 3.2.

0 1 · · · ` · · · k − 1 k

k−1
k

k−`+1
k

k−`
k

2
k

1
k

1
k

1
k

1
k

1
k

1
k

1
k

1
`−1
k

k−2
k

k−1
k

Figure 3.2: The Harmonic Chain

Theorem 3.4. The Expected Extinction Time of a Harmonic Chain with state space

X = {0, 1, . . . , k} for some k ∈ N on any initial state ` ∈ X is given by

h(`) = k

k∑
i=k−`+1

αi

where αn is the harmonic recursion defined as the solution of αn = 1 + (n − 1)αn−1

with α1 = 1.

Proof. For qi = 1
k and pi = k−i

k , from Theorem 3.3 we get that for any ` ∈ {1, . . . , k}:

h(`) = k + k!
k−2∑
j=0

1

j!
+ k

k−2∑
i=k−`

i!
i∑

j=0

1

j!
(3.7)

We need a convenient way to write the sums of inverse factorials. By definition of the

harmonic recursion, we have:

α` = 1 + (`− 1)α`−1 = 1 + (`− 1) + (`− 1)(`− 2)α`−2 = . . . = (`− 1)!

`−1∑
i=0

1

i!

which gives ∑̀
i=0

1

i!
=
α`+1

`!
(3.8)

3.3 Random Walks on the Harmonic Chain 37

Substituting (3.8) on (3.7), we get

h(`) = k + k!
αk−1

(k − 2)!
+ k

k−2∑
i=k−`

αi+1

= k(1 + (k − 1)αk−1) + k

k−2∑
i=k−`

αi+1

= kαk + k
k−2∑
i=k−`

αi+1

= k
k∑

i=k−`+1

αi

as stated by the theorem.

We conclude this section by making some observations on the EET of the Harmonic

Chain that will be useful in the analysis of Chapter 4.

Observation 3.1. The EET h(`) of the Harmonic Chain is strictly increasing on `.

Proof. For any ` ∈ {1, 2, . . . , k}, we have

h(`)− h(`− 1) = k
k∑

i=k−`+1

αi − k
k∑

i=k−`+2

αi = kαk−`+1 > 0

since αi > 0 for all i ∈ N.

Observation 3.2. For any ` ∈ {1, 2, . . . , k} the EET of the Harmonic Chain is order of

k!, that is h(`) = Θ(k!).

Proof. Clearly, the harmonic recursion αi = 1 + (i − 1)αi−1 is (strictly) increasing on i.

Thus, we get:

h(`) = k
k∑

i=k−`+1

αi

= kαk + k

k−1∑
i=k−`+1

αi

≤ kαk + k(`− 1)αk−1

≤ kαk + k(k − 1)αk−1

= kαk + k(αk − 1)

≤ 2kαk

By the closed form expression of the harmonic recursion (3.8) we have

αk = (k − 1)!
k−1∑
i=0

1

i!
≤ e(k − 1)!

38 Chapter 3. Random Walks

and thus, we get that for any ` ∈ {1, . . . , k}, h(`) ≤ 2ek!. Finally, from observation 3.1 we

have that h(`) ≥ h(1) = kαk = k!
∑k−1

i=0
1
i! ≥ k!. On conclusion, we get that h(`) = Θ(k!)

for all ` ∈ {1, . . . , k}.

Observation 3.3. For any ` ∈ {1, 2, . . . , k}, h(`)
` ≤ h(1) in the Harmonic Chain, with the

equality holding only for ` = 1.

Proof. Fix any ` ∈ {2, 3, . . . , k}. Then:

h(`)

`
=
kαk + k

∑k−2
i=k−` αi+1

`
<
kαk + k(`− 1)αk−1

`
<
kαk + (`− 1)kαk

`
= kαk = h(1).

where both inequalities hold from the fact that αi is strictly increasing.

3.4 Random Walks on the Binary Chain

In this section, we define and compute the EET of another special type of Birth-Death

Chain we refer to as the Binary Chain and we will use in the analysis of the Harmonic

Algorithm for the generalized k-server problem for metric spaces with n = 2 points.

Definition 3.11. The Binary Chain is a class of Birth-Death Chains with state space

X = {0, 1, . . . , k} for some k ∈ N, absorbing state X = 0, forward probabilities q` = `
k and

backward probabilities p` = k−`
k . A graphical representation of a Binary Chain is given in

Figure 3.3.

0 1 · · · ` · · · k − 1 k

k−1
k

k−`+1
k

k−`
k

2
k

1
k

1
k−1
k

`+1
k

`
k

2
k

1
k

Figure 3.3: The Binary Chain

Theorem 3.5. The Expected Extinction Time of a Binary Chain with state space X =

{0, 1, . . . , k} for some k ∈ N on any initial state ` ∈ X \ {0} is given by

h(`) = 2k − 1 +

`−1∑
i=1

1(
k−1
i

)(2k −
i∑

j=0

(
k

j

)
)

with h(0) = 0.

Proof. Using qi = i
k and pi = k−i

k , we compute:

p1p2 · · · pi
q1q2 . . . qi

=
(k − 1) · (k − 2) . . . (k − i) · k−i

1 · 2 · · · i · · · k−i =

(k−1)!
(k−i−1)!

i!
=

(
k − 1

i

)
(3.9)

3.4 Random Walks on the Binary Chain 39

Using equation (3.9) on Theorem 3.3, we get that for any ` ∈ {1, 2, . . . , k}:

h(`) = k +
k∑
i=2

(
k−1
i

)
k−i
k

+
`−1∑
i=1

1(
k−1
i

) k∑
j=i+1

(
k−1
j

)
k−j
k

=
k∑
i=1

(
k

i

)
+

`−1∑
i=1

1(
k−1
i

) k∑
j=i+1

(
k

j

)

Using the identity
∑n

i=0

(
n
i

)
= 2n of the binomial coefficients, we finally get

h(`) = 2k − 1 +
`−1∑
i=1

1(
k−1
i

)(2k −
∑
j=0

i

(
k

j

)
)

which concludes the proof of the theorem.

As we did for the Harmonic Chain, we conclude by making some observations on the

EET of the Binary Chain that will be useful in the analysis of Chapter 4.

Observation 3.4. The EET h(`) of the Binary Chain is strictly increasing on `.

Proof. Clearly, h(1) = 2k − 1 > 0 = h(0). For any ` ∈ {2, . . . , k}, we have

h(`)− h(`− 1) =
1(
k−1
`−1

)(2k −
`−1∑
j=0

(
k

j

)
) >

1(
k−1
`−1

)(2k − 2k−1) > 0

Observation 3.5. For any ` ∈ {1, 2, . . . , k} the EET of the Binary Chain is order of 2k,

that is h(`) = Θ(2k).

Proof. From Observation 3.4, it suffices to show that h(1) = Ω(2k) and h(k) = O(2k).

Since h(1) = 2k − 1, the first part clearly holds. Now, we focus on bounding h(k). We

have:

h(k) = 2k − 1 +
k−1∑
i=1

1(
k−1
i

)(2k −
i∑

j=0

(
k

j

)
) < 2k + 2k

k−1∑
i=1

1(
k−1
i

) (3.10)

For the binomial coefficients, we know that
(
`
i

)
≥
(
`
2

)
for any i ∈ [2, `− 2]. Thus

k−1∑
i=1

1(
k−1
i

) = 1+
2

k − 1
+
k−3∑
i=2

1(
k−1
i

) ≤ 1+
2

k − 1
+
k − 4(
k−1

2

) = 1+
2

k − 1
+

2k − 8

(k − 1)(k − 2)
(3.11)

Combining (3.10) and (3.11), we get

h(k) < 2 · 2k +
2 · 2k
k − 1

+
2 · 2k(k − 4)

(k − 1)(k − 2)
≤ 6 · 2k

for sufficiently large k, and thus h(k) = O(2k), concluding the proof.

Chapter 4

Memoryless Algorithms for the

Generalized k-Server Problem

In this section we present the novel results of this thesis about memoryless algorithms

for the generalized k-server problem on uniform metrics. As we have already mentioned,

a memoryless online algorithm responds to a request based only on the request and its

current configuration. In the context of the generalized k-server problem, an algorithm in

configuration q ∈ [n]k receives a request r and moves to a new configuration q′ in order to

serve it. It makes sense for memoryless algorithms to be lazy, that is to move only when

the new request is not served and to do so by moving only one out of the k servers.

Thus, upon receiving a request that is not served by its current configuration, a mem-

oryless algorithm for the generalized k-server problem picks a metric space and move its

server there to match the request. Furthermore, due to the symmetry of the uniform case

(all metric spaces are identical) the labels of the requested points shouldn’t matter.

These observations can be summarized in the following definition:

Definition 4.1. A memoryless algorithm for the generalized k-server problem on uniform

metrics is fully characterized by a distribution p = [p1, . . . , pk] such that
∑k

i=1 pi = 1 and

pi ≥ 0 for all i ∈ [k]. Whenever the algorithm is at a configuration q ∈ [n]k and receives

a request r, one of the following happens:

1. If q serves r (i.e., ∃i : ri = qi) then the algorithm doesn’t move.

2. If q doesn’t serve r, then the algorithm randomly picks a metric Mi based on its

distribution p and moves its server in Mi from point qi to point ri in order to serve

the request.

Since all the metric spaces are equivalent, the only “reasonable” memoryless algorithm

is the Harmonic Algorithm, i.e., the algorithm that has uniform distribution pi = 1
k for all

i ∈ [k]. Furthermore, it is trivial to show that if pi = 0 for any i then the algorithm is not

competitive, thus we assume that pi ∈ (0, 1) for all i ∈ [k].

41

42 Chapter 4. Memoryless Algorithms for the Generalized k-Server Problem

Our contribution is determining the competitive ratio of memoryless algorithms for

the generalized k-server problem on uniform metric spaces based on their distribution p,

in different adversarial settings.

We can summarize our results with the following theorems that were stated in the

introduction:

Theorem 4.1. The Harmonic Algorithm for the generalized k-server problem on uniform

metrics is (k ·αk)-competitive against adaptive online adversaries, where αk is the solution

of the recursion αk = 1 + (k − 1)αk−1, with α1 = 1.

Theorem 4.2. The competitive ratio of any randomized memoryless algorithm for the

generalized k-server problem on uniform metrics with n ≥ 3 points is at least k ·αk against

adaptive online adversaries.

Theorem 4.3. The competitive ratio of the Harmonic algorithm for the generalized k-

server problem on uniform metrics with n = 2 points is Θ(2k) against adaptive online

adversaries.

Theorem 4.4. The competitive ratio of the Harmonic algorithm for the generalized k-

server problem on uniform metrics with n ≥ 2k + 1 is at least k · αk against oblivious

adversaries.

Theorem 4.5. The competitive ratio of the Harmonic algorithm for the generalized k-

server problem on uniform metrics with n = 2 is Ω(2k) against oblivious adversaries.

For the rest of this chapter, we will be proving all of these theorems.

4.1 Adaptive Upper Bound for the Harmonic Algorithm

In this section we prove Theorem 4.1. More precisely, we use a potential function argu-

ment to show that for any request sequence, the expected cost of the Harmonic Algorithm

is at most k · αk times the cost of the adversary.

Organization. In Section 4.1.1, we define a potential between the Harmonic Algorithm’s

and the adversary’s configurations that is inspired by random walks on a special type of

Markov Chains [47] we refer to as the “Harmonic Chain”. The required background of

Markov Chains has already been presented in Chapter 3. Then, in Section 4.1.2 we will use

this potential to prove the upper bound of Theorem 4.1 with a standard potential-based

analysis.

4.1.1 Definition of the Potential Function

We begin by presenting the intuition behind the definition of our potential function.

Our first observation is that since (i) the metrics are uniform with equal weights and (ii) the

Harmonic Algorithm does not distinguish between metrics since it has equal probabilities

4.1 Adaptive Upper Bound for the Harmonic Algorithm 43

1
k , it makes sense for the potential between two configurations p, q ∈ [n]k to depend only

on their Hamming distance and not on the labels of their points. In order to come up with

an appropriate potential, we need to understand how the Hamming distance between the

Harmonic Algorithm’s and the adversary’s configurations evolves over time.

Imagine that the adversary moves to an “optimal” configuration of his choice and then

it serves requests until the Harmonic Algorithm reaches this configuration as well. Since

the adversary must serve all the requests using a server from its configuration, we know that

for each request r = (r1, . . . , rk), at least one of the requested points ri should coincide with

the i-th server of the adversary. In that case, with probability 1
k the Harmonic Algorithm

moves in metric Mi, thus it decreases his Hamming distance from the adversary by 1.

On the other hand, assume that ` servers of the algorithm coincide with the ones of

the adversary. Then, with probability `
k it would increase its Hamming distance from

the optimal configuration by 1. This shows that the evolution of the Hamming distance

between the Harmonic Algorithm’s and the adversary’s configurations is captured by a

random walk on the following Markov Chain that we refer to as the Harmonic Chain.

0 1 · · · ` · · · k − 1 k

k−1
k

k−`+1
k

k−`
k

2
k

1
k

1
k

1
k

1
k

1
k

1
k

1
k

1
`−1
k

k−2
k

k−1
k

Figure 4.1: The Harmonic Chain - Here, the states of the chain denote the Hamming

distance between the configurations of the Harmonic Algorithm and the adversary.

Recall that we have already formally defined and studied this class of Markov Chains

in Section 3.3 of Chapter 3. In the scenario we described above, the expected movement

cost of the Harmonic Algorithm until it reaches the adversary’s configuration with an

initial Hamming distance of ` would be E[N |X0 = `] where N denotes a random variable

defined as N = minτ≥0{Xτ = 0} and Xt denotes the state of the Harmonic Chain at time

t. As we discussed in Section 3.2 of Chapter 3, this quantity is known as the Expected

Extinction Time (ETT) [47] of a Markov Birth-Death Chain and we use h(`) to denote

it. Intuitively, h(k) should immediately give an upper bound on the competitive ratio of

the Harmonic Algorithm.

The Harmonic Chain has already been studied in Chapter 3, where we proved The-

orem 3.4. For the convenience of the reader, we re-state the theorem without the proof

here:

Theorem 4.6. For any initial state ` ∈ {0, 1, . . . , k}, the EET of the Harmonic Chain is

given by

h(`) = k

k∑
i=k−`+1

αi

where αi is the solution to the recursion αi = 1 + (i− 1)αi−1.

44 Chapter 4. Memoryless Algorithms for the Generalized k-Server Problem

We have already shown that h(`) is strictly increasing (Observation 3.1) and that

h(`) = Θ(`!) ∀` ∈ {1, . . . , k} (Observation 3.2).

Suppose that the adversary moves ` servers whenever the algorithm reaches its con-

figuration and then it doesn’t move until the algorithm reaches its new configuration.

Intuitively, the competitive ratio would be h(`)
` which is maximized for ` = 1 by Observa-

tion 3.3. This means that h(1) = k ·αk is an upper bound for the competitive ratio of the

Harmonic Algorithm. While this intuition is very important, it is not enough to formally

prove Theorem 4.1. However, motivated by it, we will define the potential between two

configurations of Hamming distance ` as h(`). Formally,

Definition 4.2 (Potential Function). The potential between two configurations p, q ∈ [n]k

is defined as

φ(p, q) = h(dH(p, q)).

4.1.2 Bounding the Competitive Ratio

In this section, we will prove the upper bound of Theorem 4.1 by using the potential

we defined in Section 4.1.1. Fix any request sequence r̄ = [r1, . . . , rT] for any T ∈ N such

that rt ∈ [n]k ∀t ∈ [T]. Let qt ∈ [n]k be the configuration of the Harmonic Algorithm and

At ∈ [n]k the configuration of the adversary after serving request rt. Also, let q0 = A0 be

the initial configuration of the instance. We will prove that when the adversary moves x

servers the increase in potential is at most k · αk · x and when the Harmonic Algorithm

moves one server, the expected decrease in potential is at least 1. Then, using these

properties, we will prove Theorem 4.1.

To simplify the analysis, we make the following observation for the potential function.

Observation 4.1. For any `, `′ ∈ {0, 1, . . . , k} such that ` < `′ it holds that

h(`′)− h(`) = k

`′−1∑
i=`

αk−i

Proof. By telescoping we have

h(`′)− h(`) =
`′−1∑
i=`

(h(i+ 1)− h(i)) =
`′−1∑
i=`

(k
k∑

j=k−i
αj − k

k∑
j=k−i+1

αj) = k
`′−1∑
i=`

αk−i

where the second equality holds by the definition of the potential.

Using this observation, we are now ready to prove the following lemmata:

Lemma 4.1 (Adversary Moves). For any t ∈ {1, . . . , T} it holds that

φ(qt−1,At)− φ(qt−1,At−1) ≤ k · αk · dH(At,At−1).

Proof. Let `t−1 = dH(qt−1,At−1) and `t = dH(qt−1,At). Clearly, `t−1, `t ∈ {0, 1, . . . , k}.
Since the potential h(`) is strictly increasing on `, if `t ≤ `t−1 then this means that the

4.1 Adaptive Upper Bound for the Harmonic Algorithm 45

adversary’s move didn’t increase the potential and then the Lemma follows trivially. Thus,

we only need to prove the Lemma for 0 ≤ `t−1 < `t ≤ k. We have:

h(`t)− h(`t−1) = k
`t−1∑
i=`t−1

αi ≤ (`t − `t−1)kαk (4.1)

where the equality is given from Observation 4.1 and the inequality from the fact that

the recursion α` is increasing. Thus, we have proven that φ(qt−1,At) − φ(qt−1,At−1) ≤
(`t − `t−1) · k · αk. To conclude the proof of the Lemma, by the triangle inequality of the

Hamming distance we have

dH(qt−1,At−1) + dH(At−1,At) ≥ dH(qt−1,At)

which gives `t − `t−1 ≤ dH(At−1,At). Combined with (4.1), we get the Lemma.

Lemma 4.2 (Harmonic Moves). For any t ∈ {1, . . . , T} it holds that

E[φ(qt−1,At)− φ(qt,At)] ≥ dH(qt−1, qt).

Proof. If the Harmonic Algorithm serves the request, then qt = qt−1 and the Lemma fol-

lows trivially. Otherwise, by definition, it moves to a configuration qt such that dH(qt−1, qt) =

1. Let `t−1 = dH(qt−1,At) and `t = dH(qt,At). Also, let C = |{i : Ati = rti}|, i.e., the

number of the adversary’s servers that could serve the current request. By definition, At
must serve rt which gives C ≥ 1. Furthermore, qt−1 doesn’t serve the request but At does,

and thus `t−1 ≥ 1.

Recall that the Harmonic Algorithm randomly moves at a metric with equal probabil-

ities in order to serve a request. If it moves in any of the C metrics where the adversary

serves the request, we get `t = `t−1−1 and the potential decreases with probability C
k . If it

moves on any of the k−`t−1 metrics where ati = qt−1
i , we get `t = `t−1 +1 and the potential

increases with probability k−`t−1

k . In any other case, we have `t = `t−1 and the potential

doesn’t change. To simplify the notation, we define j ∈ {1, . . . , k} as j = k− `t−1 + 1. We

have:

E[φ(qt−1,At)− φ(qt,At)] = E[h(`t−1)− h(`t)]

=
C

k
(h(`t−1)− h(`t−1 − 1)) +

k − `t−1

k
(h(`t−1)− h(`t−1 + 1))

= Cαj − (j − 1)αj−1

= Cαj − (αj − 1) = (C − 1)αj + 1

≥ 1 = dh(qt−1, qt)

where the first equality follows from the definition of the potential, the second equality from

the possible changes in the Hamming distance between the algorithm and the adversary,

the third equality follows from Observation 4.1 and the definition of j, the fourth equality

follows from the definition of the recursion α` and the inequality follows from C ≥ 1.

46 Chapter 4. Memoryless Algorithms for the Generalized k-Server Problem

Proof of Theorem 4.1 We are now ready to prove Theorem 4.1. By combining lemmata

4.1 and 4.2, we get that for any t ∈ {1, . . . , T}, the expected difference in potential is

E[∆φt] = E[φ(qt,At)− φ(qt−1,At−1)] ≤ kαkdH(At,At−1)− dH(qt−1, qt)

Now, let ADV =
∑T

t=1 dH(At,At−1) be used to denote the total cost of the adversary

and ALG =
∑T

t=1 dH(qt, qt−1) be used to denote the expected cost of the Harmonic

Algorithm. Summing over all t ∈ {1, 2, . . . , T} we finally get

T∑
t=1

∆φt = φ(qT ,AT)− φ(q0,A0) ≤ kαk ·ADV −ALG

and since A0 = q0 (i.e., φ(q0,A0) = 0) and φ(qT ,AT) ≥ 0, we get that ALG ≤ k·αk ·ADV ,

which concludes the proof of Theorem 4.1.

4.2 General Adaptive Lower Bound

In this section we prove Theorem 4.2. More precisely, we construct an adversarial

request sequence against any memoryless algorithm and prove that its competitive ratio

is lower bounded by the solution of a linear system of 2k equations. Since solving this

system directly is possible only for easy cases like k = 2 or k = 3, we show how to

get a lower bound for the solution (similarly to the approach taken by Chiplunkar and

Vishwanathan [28] for weighted uniform metric spaces) and thus the competitive ratio of

any memoryless algorithm.

Organization. In Section 4.2.1 we formally define the adversarial request sequence and

the intuition behind it. In Section 4.2.2 we state the linear system of equations that our

request sequence results to and prove a lower bound on its solution. This leads to the

proof of Theorem 4.2.

4.2.1 Constructing the adversarial instance

Before we state the adversarial instance, it is useful to give the intuition behind it. It

is natural to construct an adversary that moves only when it has the same configuration

with the algorithm.

In fact, we construct an adversary that moves in only one metric space: the one that

the algorithm uses with the smallest probability (ties are broken arbitrarily). Recall that

in the analysis of the harmonic algorithm from Section 4.1, the competitive ratio is also

maximized when in each “phase” the adversary starts with only one different server than

the algorithm and does not move until the configurations (of algorithm and adversary)

match (Observation 3.3).

4.2 General Adaptive Lower Bound 47

Let ALG be any online algorithm and ADV be the adversary. Consider a “phase” to

be a part of the request sequence where in the beginning the configurations of ALG and

ADV coincide and it ends when ALG matches the configuration of ADV . Since ADV

must serve all requests, in each request r one point ri is such that ai = ri; we say that

the i-th position of ADV is revealed in such a request. Thus every request will reveal

to the algorithm exactly one of the positions of the adversary’s servers in some metric

space Mi. The main idea behind our lower bound instance is that, in each request, out

of the metric spaces that servers of ALG and ADV differ, we reveal to the algorithm

the position of ADV in the metric that ALG serves with the highest probability; this

implies that whenever ALG and ADV differ by only one server, this will be in metric Mk.

Intuitively, this way we exploit best the “assymetries” in the distribution of ALG (this is

formalized in Lemma 4.3).

The instance. Recall that any memoryless algorithm for the generalized k-server prob-

lem on uniform metric spaces is fully characterized by a probability distribution p =

[p1, p2, . . . , pk] over the k-metric spaces M1,M2, . . . ,Mk. W.l.o.g., we can assume that

p1 ≥ p2 ≥ · · · ≥ pk. Let qt,At be used to denote the configurations of the algorithm and

the adversary after serving request rt respectively. Also, let q0 = A0 be used to denote

the initial configuration of both the algorithm and the adversary. We will now construct

the request sequence. For t = 1, 2, . . . , T :

1. Observe qt−1, i.e., the algorithm’s current configuration.

2. If qt−1 = At−1, then:

At = [q0
1, q

0
2, . . . , q

0
k−1, Z] for any Z ∈ [n] such that Z 6= At−1

k and Z 6= qt−1
k .

otherwise:

At = At−1.

3. Determine m = min({j : qt−1
j 6= Atj}).

4. Pick any rt ∈ [n]k such that rtm = Atm and rtj 6= Atj , rtj 6= qt−1
j ∀j ∈ [k] \ {m}.

Note that for steps 2 and 4, we need to have at least n ≥ 3 points in order to pick

a point that isn’t occupied by neither the algorithm’s nor the adversary’s servers. As we

explain in Section 4.3, this is a necessary requirement; if all metrics have n = 2 points, then

the competitive ratio of the Harmonic Algorithm is O(2k) and therefore a lower bound of

order k! is not possible.

As an example of our instance, for k = 4, let At−1 = [0, 0, 0, 0] and qt−1 = [1, 0, 0, 1]

for some t. Clearly, the algorithm and the adversary have different servers in metric M1

and M4. From step 3, m = min(1, 4) = 1, i.e., M1 is the metric space that the algorithm

serves with highest probability out of the metric spaces that it and the adversary have

their servers in different points. Then, from step 4, rt = [0, 2, 2, 2] (actually, the selection

48 Chapter 4. Memoryless Algorithms for the Generalized k-Server Problem

of the last three coordinates is arbitrary as long as neither the algorithm nor the adversary

have their server on this point).

Notice that ADV moves one server in metric space Mk whenever it has the same con-

figuration with ALG. On the other hand, ALG never serves request rt with configuration

qt−1 and thus moves at every time step. This means that the competitive ratio of ALG is

lower bounded by the (expected) number of requests it takes for it to reach configuration

of ADV .

4.2.2 Proving the Lower Bound

Our approach. We define the state of the algorithm at time t as St = {i : qti 6= Ati},
i.e., the subset of metric spaces with different servers between the algorithm and the

adversary. In this context, h(S) is used to denote the expected number of requests it takes

for the algorithm to reach the adversary’s configuration, i.e. state ∅, starting from some

state S ⊆ [k]. From the request sequence we defined, h({k}) is a lower bound for the

competitive ratio of any memoryless algorithm.

By observing how the state S of the algorithm (and by extension h(S)) evolves under

the request sequence, we can write down a linear system of 2k equations on the 2k variables

h(S) ∀S ⊆ [k]. In fact, these equations give the EET of a random walk in a Markov Chain

of 2k states. We then prove a lower bound on h({k}) and thus the competitive ratio of

any memoryless algorithm. Notice that for the given instance, if we were analyzing the

Harmonic Algorithm, then the Hamming distance between it and the adversary would be

captured by the Harmonic Chain and we would immediately get that h({k}) = k · αk.

Analysis. Fix any two different configurations q,A for the algorithm and the adversary

that are represented by state S = {i : qi 6= Ai} 6= ∅ with min(S) = m. Then, we know that

for the next request r we have constructed it holds that rm = Am 6= qm and rj 6= Aj 6=
qj 6= rj for any j ∈ [k] \ {m}. Recall that the memoryless algorithm will randomly move

to some state Mj and move to a different configuration q′ = [q1, . . . , qj−1, rj , qj+1, . . . , qk]

that is captured by state S′. We distinguish between the following three cases:

1. If j /∈ S, then this means that qj = Aj and q′j = rj 6= Aj and thus S′ = S ∪ {j}.

2. If j = m, then qj 6= Aj and q′j = Aj = rm and thus S′ = S \ {m}.

3. If j ∈ S \ {m} then qj 6= Aj and q′j 6= Aj and thus S′ = S.

Since h(S) denotes the expected number of steps until the state of the algorithm

becomes ∅ starting from S, from the above cases we have that for any state S 6= ∅:

h(S) = 1 + pm · h(S \ {m}) +
∑
j /∈S

pj · h(S ∪ {j}) +
∑

j∈S\{m}

pj · h(S), m = min(S).

Combined we the fact that obviously h(∅) = 0 and
∑k

j=1 pj = 1, we get the following

set of 2k linear equations with 2k variables:

4.2 General Adaptive Lower Bound 49

{
h(∅) = 0

pm(h(S)− h(S \ {m})) = 1 +
∑

j /∈S pj(h(S ∪ {j})− h(S)), ∀S 6= ∅,m = min(S)

}
(4.2)

Normally, we would like to solve this linear system to compute h({k}) and this would

be the proven lower bound for the memoryless algorithm. However, even for k = 4 it

is hopeless to find closed form expressions for the solutions of this system. Interestingly,

similar equations were studied by Chiplunkar and Vishnawathan [28] for the weighted

uniform metric case. In their study, they showed a monotonicity property on the solutions

of their linear system that directly transfers to our setting and is stated in Lemma 4.3

below. Using this, combined with the special structure of our problem, we show how to

derive a lower bound of k · αk for h({k}) instead of solving (4.2) to directly compute it.

Lemma 4.3. For any S ⊆ [k] with i, j ∈ S such that i < j (and thus pi ≥ pj), the

solutions of linear system (4.2) satisfy

h(S)− h(S \ {j}) ≥ pi
pj

(h(S)− h(S \ {i}))

Proof. We begin by showing that (4.2) is equivalent to the equations studied in [28]. By

introducing a new set of variables φ, defined as

φ(S) = h([k])− h([k] \ S), ∀S ⊆ [k] (4.3)

we get that φ(∅) = 0 and ∀S 6= ∅ with m = min(S) we get

pm(φ(([k] \ S) ∪ {m})− φ([k] \ S)) = 1 +
∑
j /∈S

pj(φ([k] \ S)− φ([k] \ S \ {j}))

Lastly, by re-writing the equations using S̄ = [k] \ S, we end up with the following

(equivalent) linear system:

{
φ(∅) = 0

pm(φ(S̄ ∪ {m})− φ(S̄) = 1 +
∑

j∈S̄ pj(φ(S̄)− φ(S̄ \ {j})), ∀S̄ 6= [k], m = min([k] \ S̄)

}
(4.4)

We remark that this is the exact set of equations studied by Chiplunkar and Vish-

nawathan (see equations (6),(7) in [28]). Using the Gauss-Seidel Trick technique, they

prove that the solutions of (4.4) (and thus the solutions of (4.2)) always exist. Then, in

Lemma 3.3 of their paper they proved the following property for the solutions of linear

system (4.4):

Lemma 4.4 (Lemma 3.3 of Chiplunkar et. al.). For any S̄ ⊆ [k] with i, j /∈ S̄ and

i < j (thus pi ≥ pj), the solution of linear system (4.4) satisfies

pi(φ(S̄ ∪ {i})− φ(S̄)) ≤ pj(φ(S̄ ∪ {j})− φ(S̄))

50 Chapter 4. Memoryless Algorithms for the Generalized k-Server Problem

By re-writing this lemma for S = [k] \ S̄, we get that for any S ⊆ [k] with i, j ∈ S and

i < j, the solution of linear system (4.4) satisfies

pi(φ([k] \ (S \ {i}))− φ([k] \ S)) ≤ pj(φ([k] \ (S \ {j}))− φ([k] \ S))

Lastly, by equation (4.3) we get that for any S ⊆ [k] with i, j ∈ S and i < j, the

solution of linear system (4.2) satisfies

pi(h(S)− h(S \ {i})) ≤ pj(h(S)− h(S \ {i}))

that is, we have that Lemma 4.3 holds.

Let us first see the intuition behind the inequality of Lemma 4.3. Let S be the subset

of metric spaces where the servers of ALG and ADV occupy different points: then, in

the next move, the expected time to match ADV decreases the most, if ALG matches

first the j-th server of the adversary (i.e., the “state” changes from S to S \ {j}) where

j is the metric with the smallest the probability pj . This explains why in our adversarial

instance we choose to reveal to ALG the location of ADV in the metric it serves with the

highest probability: this makes sure that the decrease in the expected time to reach ADV

is minimized.

Using Lemma 4.3, we can now prove the following:

Lemma 4.5. For any S ⊆ [k] with S 6= ∅ and i ∈ S, the solutions of linear system (4.2)

satisfy

pi(h(S)− h(S \ {i})) ≥ 1 +
∑
j /∈S

pj(h(S ∪ {j})− h(S))

Proof. Fix any non-empty set S ⊆ [k] and any i ∈ S. Let m = min(S) ≤ i. Then, by

Lemma 4.3 we have

pi(h(S)− h(S \ {i})) ≥ pm(h(S)− h(S \ {m}))

Since m = min(S), and we study the solution of linear system (4.2), we have

pm(h(S)− h(S \ {m})) = 1 +
∑
j /∈S

pj(h(S ∪ {j})− h(S))

and the lemma follows.

We are now ready to prove the main theorem of this section.

Theorem 4.7. The solution of linear system (4.2) satisfies

h({k}) ≥ αk
pk

Proof. In order to prove the theorem, it suffices to show that for any S ⊆ [k] such that

S 6= ∅ and i ∈ S, it holds that

pi(h(S)− h(S \ {i})) ≥ αk−|S|+1

4.2 General Adaptive Lower Bound 51

Then, by setting S = {k} (|S| = 1) and i = k ∈ S, we get pk(h({k}) − h(∅)) ≥ αk,

and since h(∅) = 0 by definition, the Theorem follows. It remains to prove the desired

property. This can be shown by induction on the size of S.

Base case: If |S| = k (this means that S = [k]) then for any i ∈ S, by (4.2) we have

pi(h(S)− h(S \ {i})) = 1 = α1 = αk−|S|+1.

Inductive hypothesis: Suppose that for any S ⊆ [k] with |S| = ` > 1 and any i ∈ S, we

have

pi(h(S)− h(S \ {i})) ≥ αk−`+1.

Inductive step: Let S ⊆ [k] be any set with |S| = `− 1 > 0 and i ∈ S be any element

of this set. By Lemma 4.5, we have that

pi(h(S)− h(S \ {i})) ≥ 1 +
∑
j /∈S

pm(h(S ∪ {j})− h(S))

Now, for any j /∈ S we can use the hypothesis on the set S ∪ {j} with size `. Thus, we

have

pj(h(S ∪ {j})− h(S)) ≥ αk−`+1 = αk−|S|

for any j /∈ S. Combining, we get

pi(h(S)− h(S \ {i})) ≥ 1 + (k − |S|)αk−|S| = αk−|S|+1.

Proof of Theorem 4.2. Since p1 ≥ p2 ≥ · · · ≥ pk, we have that pk ≤ 1
k . Thus, by

Theorem 4.7 we have that h({k}) ≥ k · αk for any distribution. Since h({k} is a lower

bound for any memoryless algorithm, the Theorem follows.

Corollary 4.1. The Harmonic Algorithm is the only memoryless algorithm with a com-

petitive ratio of k · αk.

Proof. By Theorem 4.7, the competitive ratio of the Harmonic Algorithm is at least k ·αk
and combined with the upper bound of Theorem 4.1 we get that the Harmonic Algorithm

is (k ·αk)-competitive. Assuming p1 ≥ · · · ≥ pk, any other memoryless algorithm will have

pk <
1
k . Thus, by Theorem 4.7 its competitive ratio will be lower bounded by h({k}) >

k · αk which is strictly worse that the competitive ratio of the Harmonic Algorithm.

52 Chapter 4. Memoryless Algorithms for the Generalized k-Server Problem

4.3 Special Case: Two Point Metric Spaces

In this Section, we prove Theorem 4.3 and improve the Θ(k!) bound of the Harmonic

Algorithm in uniform metric spaces to Θ(2k) in the special case of metric spaces with

n = 2 points. On a high level, we tie the performance of the Harmonic Algorithm with

the EET on a special type of Markov Chain and use the same analysis to prove both the

upper bound and the lower bound on its competitive ratio.

Recall that in the proofs of Theorems 4.1 and 4.2, we made the assumption that at any

time t that the adversary was in configuration At and the algorithm was in configuration

qt 6= At, the next request rt+1 was not served by qt and was served by At in only one

metric space Mi. This can be true in metric spaces with n ≥ 3 points, as we showed in the

construction of the adversarial instance for Theorem 4.2. However, in metric spaces with

n = 2 points, the only request that is not served by qt is its anti-configuration rt+1 = q̄t.

This restricts the analysis, since for rt+1 = q̄t the adversary will serve the request in

dH(qt,At) metric spaces instead of one; this shows that at every time-step there are more

than one ”good” choices for the algorithm.

In the worst case for the algorithm, it starts from the adversary’s anti-configuration

and is continuously requested its anti-configuration until it reaches the adversary. As we

did for the analysis of the general upper bound for the Harmonic Algorithm, we capture

the algorithm’s distance from the adversary using the Hamming distance of their configu-

rations. For any ` ∈ {0, 1, . . . , k}, let h(`) denote the expected number of requests needed

for the algorithm to reach the adversary, starting from a configuration that has Hamming

distance ` from it. Clearly h(0) = 0. Then, h(k) is an upper bound for the competitive

ratio of the Harmonic Algorithm.

It remains to formally define and study the Markov Chain that captures the evolution

of the Hamming distance between the algorithm and the adversary. Fix any configuration

A for the adversary and q for the algorithm such that q 6= A. Also, let ` = dH(q,A) ∈
{1, 2, . . . , k}. The algorithm is requested r = q̄. Clearly, A serves r in ` metric spaces.

We distinguish between the following two cases:

1. If the Harmonic Algorithm moves in any of the ` metric spaces where qi 6= Ai,
then its Hamming distance from the adversary decreases by 1. This happens with

probability `
k .

2. If the Harmonic Algorithm moves in any of the (k− `) metric spaces where qi = Ai,
then its Hamming distance from the adversary increases by 1. This happens with

probability k−`
k .

From this, we get that the evolution of the Hamming distance between the Harmonic

Algorithm and the adversary is captured by the Markov Chain of Figure 4.2 that we refer

to as the Binary Chain.

We have already formally defined and studied the Binary Chain in Section 3.4 of

Chapter 3. In this part of the thesis, we computed the general expression for the EET

4.4 Oblivious Bounds 53

0 1 · · · ` · · · k − 1 k

k−1
k

k−`+1
k

k−`
k

2
k

1
k

1
k−1
k

`+1
k

`
k

2
k

1
k

Figure 4.2: The evolution of the Harmonic Algorithm’s Hamming distance from the ad-

versary when n = 2.

on the Binary Chain (Theorem 3.5) and proved that for any ` ∈ {1, 2, . . . , k}, the EET is

order of 2k.

We have already argued that h(k) is an upper bound for the competitive ratio of the

Harmonic Algorithm. Since h(k) = Θ(2k), this gives that the competitive ratio of the

Harmonic Algorithm in metric spaces with n = 2 points is O(2k).

Furthermore, it is easy to see that h(1) is a lower bound for the competitive ratio of

the Harmonic Algorithm. Consider an instance where the adversary (i) moves a server in

metric space M1 when it has the same configuration with the algorithm and (ii) always

requests the algorithm’s anti-configuration. Then, for every server the adversary moves,

the algorithm pays (on expectation) a total movement cost of h(1). Since h(1) = 2k − 1,

this gives that the competitive ratio of the Harmonic Algorithm in metric spaces with

n = 2 points is Ω(2k).

In conclusion, we get that the competitive ratio of the Harmonic Algorithm in metric

spaces with n = 2 points is Θ(2k) and conclude the proof of Theorem 4.3.

4.4 Oblivious Bounds

Up until now, we focused on analyzing memoryless algorithms against adaptive online

adversaries. In this section, we turn our attention to oblivious adversaries. While our

proven upper bounds for the Harmonic Algorithm clearly hold in the oblivious setting,

there is no guarantee that the competitive ratio of the Harmonic Algorithm is Ω(k ·αk) in

general metric spaces or Ω(2k) in metric spaces with n = 2 points when the adversary is

oblivious.

In fact, the true competitive ratio of the Harmonic Algorithm might be better in the

oblivious setting. In this part of the thesis we will show that this isn’t true by proving

Theorems 4.4 and 4.5 that state that against the Harmonic Algorithm, the power of

oblivious and adaptive online adversaries is the same.

4.4.1 Oblivious Lower Bound for the Harmonic Algorithm

We will prove Theorem 4.4, that is that in metric spaces with n ≥ 2k + 1 points, the

competitive ratio of the Harmonic Algorithm is at least (k · αk). We will show the lower

bound k ·αk by constructing a request sequence where the (expected) cost of the Harmonic

Algorithm is at least kαk times that of the optimal solution.

54 Chapter 4. Memoryless Algorithms for the Generalized k-Server Problem

The only (mild) assumption we will need to make is that the metrics M1,M2, . . . ,Mk

have at least (2k + 1)-points each. Let {0, 1, . . . , 2k} be the labels of each metrics points.

If n > 2k + 1, we can ignore any extra points by never requesting them. Also, w.l.o.g.

by re-labeling the metrics we can assume that the initial configuration for the instance is

q0 = [0, 0, . . . , 0].

We will now construct an oblivious request sequence (that is, without any assumptions

on the algorithm’s random choices) of T = 4kLP requests for L,P ∈ N to be defined later.

It will be helpful to define the following sub-sequences of requests, each with 2k-requests.

Request Sub-Sequence A:

• r1 = [1, 1, 1, . . . , 1, 1]

• r2 = [1, 2, 2, . . . , 2, 2]

• r3 = [3,0, 3, . . . , 3, 3]

• r4 = [4,0, 4, . . . , 4, 4]

• r5 = [5, 5,0, . . . , 5, 5]

• r6 = [6, 6,0, . . . , 6, 6]

...

• r2k−1 = [2k − 1, 2k − 1, 2k − 1, . . . , 2k − 1,0]

• r2k = [2k, 2k, 2k, . . . , 2k,0]

Request Sub-Sequence B

• r1 = [0, 1, 1, . . . , 1, 1]

• r2 = [0, 2, 2, . . . , 2, 2]

• r3 = [3,0, 3, . . . , 3, 3]

• r4 = [4,0, 4, . . . , 4, 4]

• r5 = [5, 5,0, . . . , 5, 5]

• r6 = [6, 6,0, . . . , 6, 6]

...

• r2k−1 = [2k − 1, 2k − 1, 2k − 1, . . . , 2k − 1,0]

• r2k = [2k, 2k, 2k, . . . , 2k,0]

4.4 Oblivious Bounds 55

Then, the request sequence we construct is given by r̄ = (AL|BL)P . Here, AL|BL

denotes repeating sub-sequence A exactly L-times and then repeating sub-sequence B

exactly L-times, and (AL|BL)P means that we repeat (AL|BL) exactly P -times. We will

refer to the sub-sequence (AL|BL) as a phase, and the instance consists by P -phases. Also,

it should be clear that the size of the request sequence is 4kLP .

Notice that request sub-sequence A was constructed in such a way such that the only

configuration that serves the entire sub-sequence A is [1, 0, . . . , 0]. To show this, a simple

pigeon principle argument suffices. Respectively, the only configuration that serves the

entire sub-sequence B is [0, 0, . . . , 0].

First, we will argue that the optimal cost for this instance is at most 2P . To see this,

we only need to construct a solution with total movement cost 2P and then the claim

follows. Now, consider a solution that serves AL by moving to [1, 0, 0, . . . , 0] and BL by

moving to [0, 0, . . . , 0]. Since the Hamming distance between these configurations is 1

and the starting configuration is [0, 0, . . . , 0], the total movement cost of this solution is

indeed exactly 2P . Thus, if we use OPT to denote the cost of the optimal solution we get

OPT ≤ 2P .

We will now show that the expected cost of the harmonic algorithm on this instance

is at least 2Pkαk, proving the lower bound. To do so, we begin with the following lemma.

Lemma 4.6. If the harmonic algorithm starts from any configuration other that [1, 0 . . . , 0]

(resp. [0, 0, . . . , 0]) then the expected movement cost until it reaches configuration [1, 0, . . . , 0]

(resp. [0, 0, . . . , 0]) when presented with request sub-sequence AL (resp. BL) is at least

min(kαk, L).

Proof. We will prove the lemma for the first case. Suppose any initial configuration q 6=
[1, 0, . . . , 0] and let ` = dH(q, [1, 0, . . . , 0]) > 0 be the initial number of ”wrong” servers in

q. We distinguish between two scenarios:

1. The algorithm never reaches [1, 0, . . . , 0] while serving AL. Then, since the only

configuration that serves the entire sub-sequence A is [1, 0, . . . , 0], we immediately

get that the algorithm moves at-least once to serve A and thus its total movement

cost will be at least L.

2. The algorithm reaches [1, 0, . . . , 0] at some point. Notice that every request in A is

served by exactly one server in [1, 0, . . . , 0]. We can ignore any request that is served

by the algorithm without forcing it to move, since they don’t affect the movement

cost. The algorithm initially has ` non-optimal points, and in every request it is

presented with only one optimal point. Furthermore, every point that is already

optimal can be moves to a non-optimal position. This forms a Harmonic Chain,

exactly like the one we used for the upper bound of the Harmonic Algorithm, and

we already know that the expected cost (starting from ` > 0 non-optimal points) is

at-least kαk (tight only for ` = 1).

56 Chapter 4. Memoryless Algorithms for the Generalized k-Server Problem

Combining both cases, we get that the expected movement cost of the algorithm is at least

min(kαk, L).

We are now ready to bound the total movement cost of the algorithm. From the

previous lemma, in any sub-sequence AL or BL, the algorithm is expected to pay:

• 0 if the initial configuration was the optimal for the sub-sequence.

• At least L if the optimal of the sub-sequence was never reached.

• kαk on expectation if the optimal of the sub-sequence was eventually reached.

Let x be the number of sub-sequences such that case 1 holds (the algorithm pays

nothing). By construction, this does not apply to the first sub-sequence AL. Now, we

claim that at least in x sub-sequences case 2 happened. This is true, since if at the

beginning of the sub-sequence the algorithm is already in the optimal configuration (case

1), then this means that the optimal configuration of the previous sub-sequence was never

reached (case 2).

Thus, the total movement cost of the Harmonic Algorithm is on expectation at least

x · 0 + x · L+ (2P − 2x)kαk = 2Pkαk + x(L− 2kαk)

Here, we have assumed that L ≥ 2kαk so that in the best case there are only x sub-

sequences where the algorithm paid L. By setting L = 2kαk, we get that the expected

movement cost of the algorithm is lower bounded by 2Pkαk and since OPT ≤ 2P , we get

that the competitive ratio of the Harmonic Algorithm against oblivious adversaries is at

least k · αk.

4.4.2 Special Case: Two Point Metrics

We will prove Theorem 4.5, that is that in metric spaces with n = 2 points, the

competitive ratio of the Harmonic Algorithm is Ω(2k). We will show this lower bound by

constructing a request sequence where the (expected) cost of the Harmonic Algorithm is

at least Θ(2k) times that of the optimal solution.

By re-labeling, we can assume that each metric Mi has n = 2 points labeled {0, 1} and

that the initial configuration is q0 = [0, 0, . . . , 0] ∈ {0, 1}k.
For any request r ∈ {0, 1}k, we will use R(r) = {0, 1}k \ {r̄} to denote a request

sequence with every possible request other that r̄ which is the anti-configuration of r. In

the sequence, the requests can be ordered in an arbitrary way (for example in binary order).

Clearly we have |R(r)| = 2k−1. Finally, we fix 2 ”central” configurations O1 = [1, 0, . . . , 0]

and O2 = [0, 0, . . . , 0].

Then, for some L,P ∈ N to be defined later, the oblivious request sequence we con-

struct is given by

r̄ = (RL(O1)|RL(O2))P

4.4 Oblivious Bounds 57

where RL(O1) denotes that we repeat R(O1) L-times, RL(O2) denotes that we repeat

R(O2) L-times and (RL(O1)|RL(O2))P denotes that we repeatRL(O1) followed byRL(O2)

exactly P -times.

We first argue that the optimal movement cost for this instance is at most 2P . By

definition of R(r), we know that configuration r is the only configuration that serves the

entire sequence R(r). Thus, we can construct a solution of total movement cost 2P that

interpolates between configurations O1 and O2 to serve R(O1) and R(O2) respectively.

Since q0 = O2 and dH(O1,O2) = 1, we get that the total movement cost of this solution

(which is an upper bound for the optimal movement cost) is 2P .

We will analyze the (expected) movement cost of the harmonic algorithm in this in-

stance. Assume that the algorithm is at some configuration qi and needs to serve the

request sub-sequence RL(O1). We distinguish between the following cases:

1. Assume qi 6= O1. Then, the algorithm will either reach O1 eventually and then pay

nothing for the rest of the sub-sequence, or it will never reach O1 and pay at-least

L for the sub-sequence (since only O1 can serve the entire R(O1). In order to reach

O1 the algorithm will have to pay Θ(2k) on expectation, by the standard binary

chain arguments we have used so far.

2. Assume qi = O1. Then, the algorithm will not move for the entire sub-sequence

RL(O1). However, this means that the algorithm didn’t reachO2 during the previous

sub-sequence RL(O2) and thus paid L.

The exact same case-analysis can be done for the sub-sequence R(O2). Now, let x be

the number of sub-sequences where the harmonic algorithm paid 0. By case 2, this means

that there were at least x sub-sequences where the algorithm paid L. By setting L to

be asymptotically larger that 2k (for example 22k), we get that in the best case the total

movement cost of the harmonic algorithm is on expectation

x · 0 + x · 22k + (2P − 2x)Θ(2k)

which is at least 2PΘ(2k), concluding the lower bound.

Chapter 5

Concluding Remarks

In this thesis, we provided tight bounds on the competitive ratio of randomized mem-

oryless algorithms for generalized k-server in uniform metrics. Combining our results with

the work of Chiplunkar and Vishwanathan [28], the power of memoryless algorithms in

uniform and weighted uniform metrics is completely characterized for the online adaptive

adversarial setting.

We also made significant progress in the study of the oblivious setting, by proving

that the Harmonic Algorithm, which is the optimal memoryless algorithm in the online

adaptive setting, has the same competitive ratio against oblivious and adaptive online

adversaries.

As we have already mentioned, for uniform metrics, if memory is allowed and we com-

pare against oblivious adversaries, competitive randomized algorithms are known: Bansal

et. al. [11] designed a O(k3 log k)-competitive randomized algorithm with memory; this

was recently improved to O(k2 log k) by Bienkowski et. al. [15]. This is perhaps surpris-

ing, since usually in the uniform case the competitive ratio of deterministic algorithms

(with memory) and memoryless randomized algorithms is essentially the same; this is true

for paging (k-server on uniform metric spaces) and generalized k-server on weighted uni-

form metric spaces. However, our results imply that this doesn’t hold for the generalized

k-server problem on uniform metrics.

It might be interesting to determine the power of memoryless algorithms for other

metric spaces such as e.g., weighted stars. However we note that memoryless algorithms

are not competitive on arbitrary metric spaces, even for k = 2; this was shown by Chrobak

and Sgall [32] and Koutsoupias and Taylor [58] independently.

All of the current results about the generalized k-server problem (for arbitrary k) apply

to uniform metric spaces or weighted uniform metric spaces. The next big step would be

to get competitive algorithms for more general metric spaces such as stars and trees, as it

has already been done for the k-server problem.

59

Bibliography

[1] Dimitris Achlioptas, Marek Chrobak, and John Noga. Competitive analysis of ran-

domized paging algorithms. Theor. Comput. Sci., 234(1-2):203–218, 2000.

[2] Susanne Albers. Improved randomized on-line algorithms for the list update problem.

SIAM J. Comput., 27(3):682–693, 1998.

[3] Susanne Albers and Jeffery Westbrook. Self-organizing data structures. In Online

Algorithms, The State of the Art, pages 13–51, 1996.

[4] Christoph Ambühl. Offline list update is np-hard. In Proceedings of the 8th Annual

European Symposium on Algorithms, ESA ’00, page 42–51, Berlin, Heidelberg, 2000.

Springer-Verlag.

[5] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Operating Systems: Three

Easy Pieces. CreateSpace Independent Publishing Platform, North Charleston, SC,

USA, 2018.

[6] Yossi Azar, Andrei Z. Broder, and Mark S. Manasse. On-line choice of on-line algo-

rithms. In Proceedings of the Fourth Annual ACM/SIGACT-SIAM Symposium on

Discrete Algorithms (SODA), pages 432–440, 1993.

[7] Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph Naor. A

polylogarithmic-competitive algorithm for the k -server problem. J. ACM, 62(5):40,

2015.

[8] Nikhil Bansal, Niv Buchbinder, and Joseph Naor. Towards the randomized k-server

conjecture: A primal-dual approach. In Proceedings of the Twenty-First Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 40–55, 2010.

[9] Nikhil Bansal, Niv Buchbinder, and Joseph Naor. A primal-dual randomized algo-

rithm for weighted paging. J. ACM, 59(4):19:1–19:24, 2012.

[10] Nikhil Bansal, Marek Eliáš, and Grigorios Koumoutsos. Weighted k-server bounds

via combinatorial dichotomies. In 58th IEEE Annual Symposium on Foundations of

Computer Science (FOCS), pages 493–504, 2017.

61

62 Bibliography

[11] Nikhil Bansal, Marek Eliáš, Grigorios Koumoutsos, and Jesper Nederlof. Competitive

algorithms for generalized k -server in uniform metrics. In Proceedings of the Twenty-

Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 992–

1001, 2018.

[12] Yair Bartal and Eddie Grove. The harmonic k -server algorithm is competitive. J.

ACM, 47(1):1–15, 2000.

[13] Yair Bartal and Elias Koutsoupias. On the competitive ratio of the work function

algorithm for the k-server problem. Theor. Comput. Sci., 324(2–3):337–345, 2004.

[14] Shai Ben-David, Allan Borodin, Richard M. Karp, Gábor Tardos, and Avi Wigderson.

On the power of randomization in on-line algorithms. Algorithmica, 11(1):2–14, 1994.

[15] Marcin Bienkowski, Lukasz Jez, and Pawel Schmidt. Slaying hydrae: Improved

bounds for generalized k-server in uniform metrics. In 30th International Sympo-

sium on Algorithms and Computation, ISAAC 2019, pages 14:1–14:14, 2019.

[16] Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cam-

bridge University Press, 1998.

[17] Allan Borodin, Nathan Linial, and Michael E. Saks. An optimal on-line algorithm

for metrical task system. J. ACM, 39(4):745–763, 1992.

[18] Peter Brucker. Scheduling Algorithms. Springer-Verlag, Berlin, Heidelberg, 3rd edi-

tion, 2001.

[19] Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, James R. Lee, and Aleksander

Madry. k-server via multiscale entropic regularization. In Proceedings of the 50th

Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 3–16,

2018.

[20] Niv Buchbinder, Anupam Gupta, Marco Molinaro, and Joseph (Seffi) Naor. k-servers

with a smile: Online algorithms via projections. In Proceedings of the Thirtieth

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, pages 98–116,

2019.

[21] Niv Buchbinder and Joseph Naor. The design of competitive online algorithms via

a primal-dual approach. Foundations and Trends in Theoretical Computer Science,

3(2-3):93–263, 2009.

[22] Niv Buchbinder and Joseph Naor. Online primal-dual algorithms for covering and

packing. Math. Oper. Res., 34(2):270–286, 2009.

[23] William R. Burley. Traversing layered graphs using the work function algorithm. J.

Algorithms, 20(3):479–511, 1996.

Bibliography 63

[24] Ka Chan, C. Lenard, and Terence Mills. An introduction to markov chains, 2012.

[25] Bo Chen, Chris Potts, and Gerhard Woeginger. A Review of Machine Scheduling:

Complexity, Algorithms and Approximability. Springer-Verlag, 01 1998.

[26] Hong Chen and David D. Yao. Birth-Death Queues. Springer New York, 2001.

[27] Ashish Chiplunkar and Sundar Vishwanathan. On randomized memoryless algorithms

for the weighted k-server problem. In FOCS, pages 11–19, 2013.

[28] Ashish Chiplunkar and Sundar Vishwanathan. Randomized memoryless algorithms

for the weighted and the generalized k -server problems. ACM Trans. Algorithms,

16(1):14:1–14:28, 2020.

[29] Marek Chrobak, Howard J. Karloff, Thomas H. Payne, and Sundar Vishwanathan.

New results on server problems. SIAM J. Discrete Math., 4(2):172–181, 1991.

[30] Marek Chrobak and Lawrence L. Larmore. The server problem and on-line games.

In On-line Algorithms, volume 7 of DIMACS Series in Discrete Mathematics and

Theoretical Computer Science, pages 11–64. AMS/ACM, 1992.

[31] Marek Chrobak and Lawrence L Larmore. Metrical Service System: Deterministic

Strategies. Citeseer, 1993.

[32] Marek Chrobak and Jǐŕı Sgall. The weighted 2-server problem. Theor. Comput. Sci.,

324(2-3):289–312, 2004.

[33] Don Coppersmith, Peter Doyle, Prabhakar Raghavan, and Marc Snir. Random walks

on weighted graphs and applications to on-line algorithms. J. ACM, 40(3):421–453,

1993.

[34] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-

troduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[35] Yuval Emek, Pierre Fraigniaud, Amos Korman, and Adi Rosén. On the additive

constant of the k -server work function algorithm. In Approximation and Online Al-

gorithms, 7th International Workshop (WAOA), pages 128–134, 2009.

[36] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel Dominic

Sleator, and Neal E. Young. Competitive paging algorithms. J. Algorithms, 12(4):685–

699, 1991.

[37] Amos Fiat and Manor Mendel. Better algorithms for unfair metrical task systems

and applications. SIAM J. Comput., 32(6):1403–1422, 2003.

[38] Amos Fiat, Yuval Rabani, and Yiftach Ravid. Competitive k-server algorithms. J.

Comput. Syst. Sci., 48(3):410–428, 1994.

64 Bibliography

[39] Amos Fiat, Yuval Rabani, Yiftach Ravid, and Baruch Schieber. A deterministic o(k3)-

competitive k-server algorithm for the circle. Algorithmica, 11(6):572–578, 1994.

[40] Amos Fiat and Moty Ricklin. Competitive algorithms for the weighted server problem.

Theor. Comput. Sci., 130(1):85–99, 1994.

[41] Amos Fiat and Gerhard J. Woeginger, editors. Online Algorithms, The State of the

Art (the book grow out of a Dagstuhl Seminar, June 1996), volume 1442 of Lecture

Notes in Computer Science. Springer, 1998.

[42] Dimitris Fotakis, Loukas Kavouras, Grigorios Koumoutsos, Stratis Skoulakis, and

Manolis Vardas. The online min-sum set cover problem. ArXiv, abs/2003.02161,

2020.

[43] Michael Goodrich and Roberto Tamassia. Algorithm design: Foundations, analysis,

and Internet examples. Wiley Publishing, 01 2002.

[44] Michael T. Goodrich, Roberto Tamassia, and Michael H. Goldwasser. Data Structures

and Algorithms in Java. Wiley Publishing, 6th edition, 2014.

[45] D. Green and D. Knuth. Recurrence Relations, pages 11–30. Birkhäuser Boston,

Boston, MA, 1990.

[46] G.R. Grimmett and D.R. Stirzaker. Probability and random processes, volume 80.

Oxford university press, 2001.

[47] Charles M. Grinstead and J. Laurie Snell. Introduction to Probability. AMS, 2003.

[48] Edward F. Grove. The harmonic online k-server algorithm is competitive. In Proceed-

ings of the 23rd Annual ACM Symposium on Theory of Computing (STOC), pages

260–266, 1991.

[49] John Iacono. In pursuit of the dynamic optimality conjecture. In Space-Efficient

Data Structures, Streams, and Algorithms - Papers in Honor of J. Ian Munro on the

Occasion of His 66th Birthday, pages 236–250, 2013.

[50] Kazuo Iwama and Kouki Yonezawa. Axis-bound CNN problem. IEICE TRANS,

pages 1–8, 2001.

[51] Yuri M. Kaniovski, Georg Ch. Pflug, and Georg Ch. Pflug. Limit theorems for sta-

tionary distributions of birth-and-death processes. Communications in Statistics.

Stochastic Models, 15(1):103–123, 1999.

[52] Richard M. Karp. On-line algorithms versus off-line algorithms: How much is it worth

to know the future? In Proceedings of the IFIP 12th World Computer Congress on

Algorithms, Software, Architecture - Information Processing ’92, Volume 1 - Volume

I, page 416–429, NLD, 1992. North-Holland Publishing Co.

Bibliography 65

[53] G. Koumoutsos. Algorithms for k-server problems. PhD thesis, Department of Math-

ematics and Computer Science, 9 2018. Proefschrift.

[54] Elias Koutsoupias. Weak adversaries for the k-server problem. In Proc. of the 40th

Symp. on Foundations of Computer Science (FOCS), pages 444–449, 1999.

[55] Elias Koutsoupias. The k-server problem. Computer Science Review, 3(2):105–118,

2009.

[56] Elias Koutsoupias and Christos H. Papadimitriou. On the k-server conjecture. J.

ACM, 42(5):971–983, 1995.

[57] Elias Koutsoupias and Christos H. Papadimitriou. The 2-evader problem. Inf. Pro-

cess. Lett., 57(5):249–252, 1996.

[58] Elias Koutsoupias and David Scot Taylor. The CNN problem and other k-server

variants. Theor. Comput. Sci., 324(2-3):347–359, 2004.

[59] Gregory F. Lawler and Vlada Limic. Random Walk: A Modern Introduction. Cam-

bridge Studies in Advanced Mathematics. Cambridge University Press, 2010.

[60] James R. Lee. Fusible hsts and the randomized k-server conjecture. In 59th IEEE

Annual Symposium on Foundations of Computer Science, FOCS 2018, pages 438–449,

2018.

[61] Mark S. Manasse, Lyle A. McGeoch, and Daniel D. Sleator. Competitive algorithms

for server problems. J. ACM, 11(2):208–230, 1990.

[62] Lyle A. McGeoch and Daniel Dominic Sleator. A strongly competitive randomized

paging algorithm. Algorithmica, 6(6):816–825, 1991.

[63] Lee Newberg. The k-server problem with distinguishable servers. Master’s Thesis,

Univ. of California at Berkeley, 1991.

[64] Artem S. Novozhilov, Georgy P. Karev, and Eugene V. Koonin. Biological applica-

tions of the theory of birth-and-death processes. Briefings in Bioinformatics, 7(1):70–

85, 03 2006.

[65] Nick Reingold, Jeffery Westbrook, and Daniel Dominic Sleator. Randomized compet-

itive algorithms for the list update problem. Algorithmica, 11(1):15–32, 1994.

[66] Sidney I. Resnick. Adventures in Stochastic Processes. Birkhauser Verlag, CHE, 1992.

[67] Russell Schwartz. Stochastic Modelling for Systems Biology.Darren J. Wilkinson.

Briefings in Bioinformatics, 8(3):204–205, 02 2007.

[68] René Sitters. The generalized work function algorithm is competitive for the gener-

alized 2-server problem. SIAM J. Comput., 43(1):96–125, 2014.

66 Bibliography

[69] René Sitters, Leen Stougie, and Willem de Paepe. A competitive algorithm for the

general 2-server problem. In ICALP, pages 624–636, 2003.

[70] René A. Sitters and Leen Stougie. The generalized two-server problem. J. ACM,

53(3):437–458, 2006.

[71] Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list update

and paging rules. Commun. ACM, 28(2):202–208, 1985.

[72] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees.

J. ACM, 32(3):652–686, 1985.

[73] J. Steele. Stochastic Calculus and Financial Applications, volume 5. Springer, 01

2001.

[74] R. Steyer and W. Nagel. Probability and Conditional Expectation: Fundamentals for

the Empirical Sciences. Wiley Series in Probability and Statistics. Wiley, 2017.

[75] Philipp Von, Hilgers, and Amy N. Langville. The five greatest applications of markov

chains.

[76] Zikun Wang and Hsiang-chun Yang. Birth and death processes and Markov chains.

Berlin; New York : Springer, rev. edition, 1992. ”Revised edition of the original

Chinese edition”.

[77] Geoffrey I. Webb. Bayes’ Rule, pages 99–99. Springer US, Boston, MA, 2017.

[78] Xinye Yang. Markov chain and its applications, 2020.

[79] Neal E. Young. The k-server dual and loose competitiveness for paging. Algorithmica,

11(6):525–541, 1994.

	Introduction
	Contribution
	Organization

	Online Algorithms
	Competitive Analysis
	The Potential Method
	Amortized Cost
	Interleaving Moves

	Paging
	Deterministic Algorithms for Paging
	Randomized Algorithms for Paging

	Metrical Task Systems
	The k-Server Problem
	The Generalized k-Server Problem
	Results on the generalized k-server problem
	Results on memoryless algorithms

	Random Walks
	Markov Chains
	Random Walks on Birth-Death Chains
	Stationary Distribution of Birth-Death Chains
	Expected Extinction Time of Birth-Death Chains

	Random Walks on the Harmonic Chain
	Random Walks on the Binary Chain

	Memoryless Algorithms for the Generalized k-Server Problem
	Adaptive Upper Bound for the Harmonic Algorithm
	Definition of the Potential Function
	Bounding the Competitive Ratio

	General Adaptive Lower Bound
	Constructing the adversarial instance
	Proving the Lower Bound

	Special Case: Two Point Metric Spaces
	Oblivious Bounds
	Oblivious Lower Bound for the Harmonic Algorithm
	Special Case: Two Point Metrics

	Concluding Remarks
	Bibliography

