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Arnayopeleton 1 avtiypapr, amodrixeuon xar Siavoun tne mapoloug gpyaciog, & OhOXAHEOL
1) TUWAUATOC QUTHC, Yia EUTOEX6 oxomo. Emtpéneton 1 avatinwaor, anodrixeuon xat dioavour
Yot OXOTO U] XEEOOOKOTING, EXTUOEUTIXAC 1) EQELVITIXAC PUONE, UTO TNV TpolndleoT va
AVOPERETOL 1) TNYT) TEOEAEUOTC o VoL BlaTneeitan To Topdy urvupa. EpwtAuata tou apopodv

N YeHoM TS epYaotag Yo XEpB0oXOTIXG GXOTO TEENEL VaomeLYOVOVTOL GTOV GUYYEAUPED.

O anddelc xan T CUUTEPAOUATO TOU TEPLEYOVTAL GE UTO TO €YYEAUPO eXPEAlOLY TOV CUY-
Yeapéa xon Oev mEETEL var eppunvevdel 6Tl avTtimpocwnedouy Ti¢ enlonueg Véoeig Tou Edvixold

Mezod6Biou Hohuteyveiou

Yredduvn Aflwon

BePBawdve 6T elpon ouyypagéag autic Tng TTuytaxhc epyaotag, xar 6Tt xde Bordeia Ty omo-
for ebya yia v mpoetoyacio TG elvon TAAROS OVAY VWPLOUEVT XAl OVUPERETOL GTNY TTUYLAXT
epyaoio. Eniong éyw avapépel Tic 0moleg Tnyég amd Tig onoleg Exava Yprion SeBoUEVLY, LOEWY
1 MCewv, elte autég avagépovtar axplBac eite napagppaouévee. Enlong, Befacddved 6TL auth
1 TTUYLOXT) EQYAUCIN TEOETOWACTNXE ATO EUEVA TROCWTLXA ELOIXY YIO TIC ATAULTAOELS TOU TPO-
Yedupotog omoudey Tou Tuduatog HAextpohdywy Mnyovixov xow Mnyovixwy Troloyiotomv

Tou Edvixol MetodBiou Hohuteyveiou.

Anunrteiog I. Xenotou
Amhopatodyog Hhextpohdyog Mnyovixdg xaw Mnyovixde Troroyotov E.MIL






HeptAngm

To yevixeupévo mpoAnua TV k-eEumneetnTdVv elvon Ula oNUovTiXY YEVIXEUGT, TOU TRO-
BAuoTog Twv k-eEunneeTNT®Y, To omolo amotehel €va amd Ta To VEUEALOON TEOBAAUNTA TNS
Yewplog Tov online aAyopliuwy. Av xou o npdBinua v k-eZunneetntdy €yet uehetndel xou
xatavonldel extevig Tig TeheuTaieg dexaetieg, TO YEVIXEUUEVO TROBANUN TwV K-eEUTNEETNTMY
EYEL YIVEL XUTUVONTO OE TOAD UxpdTERO Bordud, Ue To TEPLOCOTERPN OYETIXG ATOTEAEGUOTA VO
APOEOVY UOVO EWDLXEC TIEPLTTWOELS UETPIXWY YWEMY.

Ytoyo¢ g mapoloas SimAwpaTixhc epyactiog eivon 1 UEAETN TOL YEVIXELPEVOU TROPBAT -
T0¢ TV k-e€unnpeTnT®V ot opoLduop@ous UeTpolg yweous. Ioupaxivoluevol amd Ty avti-
o TRIULOT AVEPESA GTOV AOYO AVTOYWVIO TIXOTNTOC XU OTNV UTOAOYLO TIXT| ATOTEAECUATIXOTT)-
To TV oAYopliuwy, YEAETAUE TNV oYL TwV ohyopliuwy ywelc uviun xou delyvouue opLytd
pedryparta g t8Ene O(K!) yia Tov Adyo avtorywvio TixGTNTdS Toug. Luyxexpiuéva, detyvouue
0Tt 0 Appovikds AXydpidjog metuyaivel auTtdV Tov AOYO X amOdEXVOOUUE VT TOLy oL XATE
pedypata. Autéd to anotéleopa BeATidvEL TO R 22" Bimhd exdetind pedyue twv Chiplun-
kar xon Vishwanathan yio tnv mo yevixr mepintomon 1oV oUolOUopY®Y HETRIXMY YWEMY UE

OLapOPETIXS Bdpn.

AgZeic - KAewdid: Online Akyopriuot, I'evixevuévo TpdBrnua k-Eunneetntdyv, Al-
yopripor Xwpelc Mvrun






Abstract

The generalized k-server problem is a far-reaching extension of the k-server problem,
one of the most fundamental problems in the theory of online algorithms. While the k-
server problem has been extensively studied and understood over the last decades, the
generalized k-server problem is much less understood and most results are restricted to
special types of metric spaces.

In this thesis, we consider the generalized k-server problem on uniform metrics. Mo-
tivated by the trade-offs between the competitive ratio and computational efficiency, we
study the power of memoryless algorithms and show tight bounds of ©(k!) on their compe-
titive ratio. In particular we show that the Harmonic Algorithm achieves this competitive
ratio and provide matching lower bounds. This improves the ~ 22" doubly-exponential
bound of Chiplunkar and Vishwanathan for the more general setting of uniform metrics

with different weights.

Keywords: Online Algorithms, Generalized k-Server Problem, Memoryless Algorithms
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Euyapiotieg

Apyd, o fieha vor euyaploThow Tov emBAETOVTA Xoi Xy Ty wou x. Anuften Pwtdxn
yioe TNV anloTeUTn UTOoTAREN Xt xadodHYNOT) TOL GE OAN TN BLAEXELX TNE TEOTTUYLOXNS LOU
Topelag, YL TIC EUXALElEC TTOL oL EBWOE ot XUEIWS Yiot TO EVOLPEPOY TOU Uou €0elEE TO0O
O AXUONUIXG OGO XAl OE TEOCWTIXG ETUNEdO. 1TN cLVEYELX, Vo fleha Vo EUYUELGTACK TOV
I'enydpen Koupoitoo, o onolog enéBiede mpoowmxd tnv exnédvnon tne nopoloos SITAOUATIXC
epyootog xou UTHEEE XATATANATINOS BACKANOC YL EPEVA TOV TeEAEUTAO €val ypovo. Xwplc To
eVOLapEpoY ToU, TNV xoodHYNoY| ToU xou TN GLUUSOAT Tou, 1) TaEOUGH BITAWUATIXY EpYacia
oev Yo elye ohoxhnpwiet.

Oa Hdeha enione va euyaplothow Yepud TNy oudda and to epyaothpto LIP6 tou Sorbonne
University ye tnv omolo €lyot Tnv yoed Vo GUVERYAOTH TEQUOL Xl PETOC GTAL TAXOLL TNG
Teox TG pou, Tov Eupinion Mndunr, tov Bruno Escoffier xau tov Nguyen Kim Thang, yia
v %0001y NOT) TOUC X0 T GUUPETOYT TOUG OTA TTRMTA UOU ERELVNTIXG BruoTaL.

Ko xupiee, Yo deha va euyaploThAom TNV oiXoYEVELD WOU, TOUS YOVELC oL X0t TIC aBEp®EC
KOV, YLl TNV AVLBLOTEAY) oY dTN TOU UOU €YOLV TROCPEREL OAAL AUTE ToL YEOVLAL, TIC YUGIEC TOUC

xou TNy LTOGTHEEY| TOUG GE OAEC UOU TG EMLAOYEC.

Anurteloc Xerotou,
Adrva, Todhiog 2020
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Extetopevn EAAnvixr Ilepiindm

To Booixd oxéhog tng mapoloas BIMAWUATIXAC epyactac €yel anodwiel otny ayyAxn
YAOooo, xuplwg Yoo Adyoug mpooBacdtntog. e auTtod To xoppdTtt Tng, cuvoliloupe To
TEQPLEYOUEVO TNg, OlvovTog €ugacn otoug Pacxols oplouols, Tic uedodohoyleg xou ta Vew-
eruaTa, oA ywpic Tic pardnuatixés anodeléelc. H Soun tne evotntag authc elvor ot €va Tpog

éva avtiotolynomn pe to (ayyAxd) mepteydpevo e Simhwpatixic epyasiog.

Ewcaywyn

Ye éva xhacoxd meoPAnua Beitiotonolnong, Wog olvete pla ouyxexpuévr €lcodog xou
0 otdyoc yag ebvan vo Bpolue pla BEATIoTN Adom yia Tnv eloodo autrh. 2o0tdc0, oE TOANEC
TEOYUATIXES EQOPUOYES, 1) UTo¥eom OTL pog divete xateudeiov ohdxAnen 1 elcodoc dev elvan
ceahiotixr). Tic meplocdtepeg Qopés, ypeewdleton vor Avoupe mpofBAruata BeATicTonolnong
ToEVOVTOG AmOPACELS Y welg VoL EYOUUE TATEN YVWOT NS El0600U. AvVapepoUacTe o TETOLOU
eldoug mpofAuata ye Tov 6po online mpoPBAruato, xou yio vor Tol ETMAUCOUPE YeetdleTon Vol
oyedidoouye online ahyoplduoug ol onolol Ttalpvouy anogdoels yweic vor yvewpilouy To uéAlov.
O Baowdg pog otoyog elvan vo oyedidcoue online odyoplduoug Yo Toug omoloug €youue
EYYUNOELS TTOU apOEOLY TNV and006T| Toug o€ oyéor Ue Ty PBEAtiotn offline Abon n omola €yel
olo¥Ane TNV elcodo otn diddeon Tng and TNV apyn.

To npoPinuo twv k-egumnpetntoy (k-server problem) omotedel éva and ta Pacdrepa
XL TO EXTEVOC UEAETNUEVO TpoBAuata oTny dewplor Twv online ahyopiduwy. e autd to
TEOBANUA, Hog BivETow €Vag UETEIXOC YWOEOS UE M onueiot xau k xtvoluevol eEUTNEETNTES TOU
Beloxovton og xdmolo amd Tor oNuela TOU PETEXOL ywpeou. e xdle BrAua, AouBdvouue éva
oftnuo Tou avtioToly el oE €val amd Tor oMUElD TOU UETELXOV YDEOU, XAl YLl VoL TO EEUTNRETHCOUYE
TEETEL VoL UETAXWVACOUPE XATOLOV amd TOUS EEUTNEETNTES GE aUTO To oTuelo. 2XToy0¢ o elvan
VO EAXYIGTOTIOLACOUNE TNV CUVOAXT] AMOGTACT) TOU BtatvOOLY oL EEUTNEETNTEC.

To mpoBinua twv k-eCunneetntioy anotelel yevixeuon oAy online mpolAnudtwy, ue
o oNuavTixé 1o TEOBANua Twv ceMdwv (paging problem) to omnolo amotehel TV ewdxy
TeplnTon OTou 0 PETEWOS YWeog elvar ouoldpoppos. To mpdfinua twv ceMowy Eyel &-
mAudel TAfpwe: To competitive ratio Tou ebvan k yio vietepuviotixolg olyopldpoug xan
Hj, = O(logk) yw tuyaioug odyopiduouc. Qotbéo0, ot YeEVIX0UE UETEIXOUC YOPOUS 1) XolTo-
VONoT| pog Yot To TeOBANUa Ty k-sEunneetntdy elvon oxodua edMunic: or Koutocoumdg xon

Iamadnuntelov anédetlav tnv Uopdn evog VIeTEpUVIo TIXOU alyoplduou ue competitive ratio

ix



X Extetauévn EAAnvixr} Hepidngn

2k — 1, ev&d yvopllouye 0Tt T0 BéATIoTO e@TO elvon TouldyioTtov k. Ilolhol motebouv 6Tt
TEAYUATL TO 0woTO competitive ratio ylo to mpdBinua etvan k, xou 1 9€omn auty| elvon Yvwo ™)
ot BiBhoypapla wg 1 exacta Ty k-eEutneetntoy. [Na tuyaioug alyopliuoue, motedete 6TL
undpyel akybprdpoc e competitive ratio O(logk) odhd mopd g apétentes npootdleles ta
Tehevtador ypovia, 1) ewxacion auTH TUEUUEVEL avoLy TH.

Ye pla mpoondeta yior xahOTERT XATOVONOT) TOU TROBAAUATOS TwV k-EEUTNEETNTAY, EYOUV
TEOToEL BLAPOPES YEVIXEVTELC TOU OIS Yol TOEABELY U TO TEOPANUA TwV k-eEUTNEETNTAOY UE
Bden xaw to CNN mpdPAnua. Me 6160 vo cuvodicouv T€toleg YEVIXEUOELC TOU TROBAAUNTOS
%4t amd Evoevialo TeoPAnua, ol Koutcouriag xou Taylor tpdtevay to yevixeuuévo mpoBinua
TV k-eEUTNEETNTWY, OTou 0 xdle eEuTNEETNTAC S; PploxeTtal oe Eva EEYWPLOTO PETEXO YWEO
M; xon x&le aitnuo etvon tng pophc (1,72, ..., 7%) He 1 € My v va eZunnpetniel, mpénet
TOUAGLoTOV €vag eEUTNEETNTAC §; Vo ueTafBel oTo anueio r; Tou ueTpol yhpou M;.

To yevixeupévo mpdPinua twv k-eEunneetntoy €yl ula ToAD TAOUCLOTERT, BoUT| amd TO
XANACOIXO TEOBANUO TwV K-eEUTNEETNTMY, XaL Yo YEVIXOUE HETEOUS Ypous dev Exel Bpedel
oaxopa ohyoprduoc ye competitive ratio mou vo eoptdton povo and to k. Ievixd, to péva

aroteréopata Tne PAloypapiog apopoly Tic axdhouleg U0 TEPITTWOELS:

e Ouotdpoppec Metpixéc: ‘Ohot oL petpuol yopol My, . .., My, ebvar ogolouopgol, Ye tny

(B anbotaon (my 1) avdyeoa oe 800 onueio Toug.

e Ouotduoppec Metpuég pe Bden: ‘Olol ol yetpwol yweor My, ..., M}, eivar opgoldpoppot
OAAG €x0UV BlaopeTd Bdon: YLot Vo XOUVACELC TOV eEUTNEETNTY TNE MeTEXAC M; To

x60TOC Elvat w;.

Av xou poldlouv TapOUOLES, Ol TRV ELBIXES TEPLTTWOELS OLUPEROLY ONUAVTIXG UETAUED
touc. T vretepuiviotinole alyoplduoug, ov Bansal et.al. [11] avéluvoav évav ahyderduo
ue competitive ratio O(k2¥) oe opotbuoppouc uetexolc YHpoUe, Evé STV TEpiTTwon TV
OUOLOUOPPWY PETELXWV YOEwY UE Bdorn xdde VIETEpUIVIOTXOC alyoptduog €yel competitive
ratio Touldyioto 227" [10].

‘Evo Bacuixd petovéxtnuo ToAGY ahyopldunmy mou tetuyaivouy To xalltepo competitive
ratio yio xdmowo mpoBAfuato ebvan 6Tl lvon uTohoYLoTXE un-amodoTixol. I'a Tapdderypa, o
Work Function Algorithm twv Koutooumde xou ITomadnunteiou mou netuyoiver to (oyedov
Béhtioto) 2k — 1 competitive ratio yio to npdBinua twv k-eZunnpetntdy, TEEYEL TAVw OE
Oheg Tic mdovég SLoTdEelg TwV EEUTNEETNTWY, ToU Elval (Z)

H rapatipnon auty| odnyel otny YehéTtn Tng ox€omng aVAUESH OTNV ATOBOTIXOTNTA XAl TO
competitive ratio evog online odyopldupou. Eva mpdto Briue oe auth tnv xatebduvon eivon
1 UEAETN aAyoplluwy ywele uvhur, dnAad alyoplduwy tou Taipvouv arogdoel; Bactouévol
uovo oty Teé€youca BLdTadY| TOUS Xal To TEEYOV aftnua Tou AoUPBavouy.

H anédoomn twv ahyoplduwy ywelc uviun €xet yehetniel extevag yior To mpoBinua twv
k-eZummpetntaodyv [16, 55], e Baowdtepo ahydpduo tov Appovind Akybderduo o onolog peto-
xwvel Tov xdie e€unneetnTy pe MUAVOTNTA AVTIOTEOPWS AVAAOYY TNS ATOCTACYC TOL and TO
aftnpo. Ewndleton 611 To competitive ratio tou Apuovixot Alyoptduou etvar O(k?), wotéoo

TO TEOPBANUA AUTO TUPAUUEVEL AVOLYTO UEYPL XU CHUERAL.



Extetouévn EAAnvixr) Hepidngn xi

Yta mhadotlor auThAG TG OtmhwuaTieig epyaciag, Yo UEAETHOOUPE oAy oprdpoug ywpelc uviun
Yoo T0 TEOPBANUA TV k-eEUTNEETNTOY G OUOLOPOPPOUS PETEXOUS Yweouc. 'Evoc tétolog
oAy6prdpoc AauBdver évor altnuo e pop@hc 1 = (71, ..., k) xou ano@uocilel 6E OO PETEIXO
Y®eo Vo xouvnlel clupva pe plor xatoavour| p1,p2, ..., Pk, Omou p; cbvan 1 miavotnta vo
%0LVACEL ToV eEUTNEETNTY) TOL PETEXOU Y®Opou M; oto onuelo outhuotog r;. Xe auTtod To
mhaiclo, o Apgovixde Ahyodprduoc ebvar o ahyoprduog mou Blahéyel uio HETEXT OUOLOpOPYA,
Snhadh éxer mdovbTTES P = 7 Yot XSDE PETPIXG Yo M.

Hpéogata, o Chiplunkar xou Vishnawathan [28] uehétnoay ahydprduous ywplc uviun yio
TO YEVIXELUEVO TEOBANUO TV k-eEUTNEETNTOV OE OUOLOUOR(POUS HETEIXOUS YWeoug UE Bden,
xaL TeoY OLAG exUeTind gpdyuato Yoo To competitive ratio tTétowwy alyopituwy. Egdcov
To TEOPBANUY uE Bden @aiveton var elvon exVETIG BUGKONOTERO amd To TEOPBANUA yweic, ctvan
PUOIXO VoL TIEPWEVOLUE BEATIWOT AUTOY TWV QEUYUATLY OTay Vo UEAETACOLUE TO TEOBATU

OE OUOLOUORPOUS YOEOUC.

Yuvelopopd. X auThHY TNV TTUYLXT ERYACTA UEAETIUE TNV BUVOUT TV ahyopliuwmy Ywelg
UVAUT YL TO YEVIXEUUEVO TROBANUO TV K-EEUTNEETNTMV GE OUOLOPOPPOUS UETELXOUC Y MROUG
xou urohoyilouyue axp3n¢ To competitive ratio auTt®V TwWV ahyopliunmy.

Apywd otpépouue TNV mpocoyy| Yoc oto poviého Ttou adaptive online avtimdiou xau

amodEXVOOUUE To axohoudar:

Ocwpenua 1. O Apuovikés Axydépiduos éxer competitive ratio k - oy, evdvtia o€ adaptive
online avtindAous, émov oy, €ivar n Abon tns avadpouns ax = 1+ (k — 1)ag—1 pe a; = 1.

Oepnua 2. Kdle alydpilos xwpis uvnun éxer competitive ratio touddyiotor k - oy, o€

LETPIKOUS Xpous e n > 3 onueia evdvtia o€ adaptive online avtimdAovs.

Ocdpnua 3. Kdle alydpidjos xwpis uvijun éxet competitive ratio s wdéns ©(2F) oe

METPIKOUS Xpous e n = 2 onueia evdvtia o€ adaptive online avtimdAous.

Ta mapandve telo Yewprjuoata mpoodlopilouv TATewe TNV dUvVon Twv alyoplluwy yo-
plc uvAun oto povtého Ttou adaptive online avtindhou. Emiong, and autd mpoxintel dueoa
6TL 0 Appovixdg Ahyopriuog etvan o BERTIOTOC ahyoprduog ywel UvAuN Yiot TO YEVIXEUPEVO
TEOBANUA TV k-eEUTNEETNTWOY O OUOLOUOPPOUS UETEOUE YWEOUG.

Y1 ouvvéyew ectidloude 6To Yoviélo tou oblivious avTimdhou xou amodeixviouue To

axd ouda:

Ocwpenua 4. O Apuovikés AAydpifuog éxer competitive ratio koy, o€ HeTpikols xwpous

pnen > 2k + 1 onueia evdvtia oe oblivious avtindAous.

Oehpnpa 5. O Appovikés Alydpidjos éver competitive ratio tns tééng ©(2F) oe petpirots

XOPpous ue n = 2 onuela evdvtia o€ oblivious avtimdAovs.

Ovolaotind, o topandve Yewpruata Setyvouy otL 1 amddoon tou Apuovinold Alyopiduou

dev ennpedleton and To £ldog Tou AvVTLTAAOL.
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Yuvodilovtag, T anoTeAEoUTd Hog Belyvouv OTL OE OUOLOUORHPOUC UETEIXOUC YWOPOUSG
utdpyel exdetinr) Behtiwon oe oyEom UE OUOLOUOP(POUS UETEIXOUE YOpoug Ue Bdor. Actloue
enione 6Tl mopd Tor cUVTUT ATOTEAEGUATA Yo OUOLOUOPYES EXDOYEC online tpolAnudtwy, évag
OAYORLILOC Y 0ElC UVAUT VIOl TO YEVIXELUEVO TROBANUA TwV k-eEUTNEETNTOV GE OUOLOUOR(POUG

LETEIXOUE Y hpoug Bev uropel va Tethyet To (VieTepuviotind) competitive ratio 200).

Opvdvwon. Xto Kegdhao 2, divouue toug Boacixols opiopols oto medio Twv online oh-
yopliuwy xar avopépoLue xdmoto amd Ta BocixOTERA XU TO UEAETNUEVA TEOPBAAUAT TNG
TEPLOY S, OVOVTAG EUPIOT| OE XATOLEG ATO TIC TEYVIXES TIOU YENOHIOTOLOUVTAL. 2T GUVEYEL,
oo Kegdhowo 3 dlvouyue to anapaitnto undfadpo ot ahucideg Markov mou amouteiton yio
TNV AVEAUCT] TV OTOTEAECUATWY oS

'Eyxovtog TEAEUOOEL PE Tl TEOATATOVUEVA, TRoywedue oTo Kegpdhoo 4 dnou tapovoidlou-
UE TNV TEOTOTUTY BOUAELS AUTAS TNG TTUYLXC EQYACTUG %ot AmOBEVIOLUE To TEVTE Paoixd
Oewpruato Tou avagépaue vwpitepa. Téhog, oto Kegdhowo 5 cuvodilovyue ta amoteréopotd
wog xon oulntdpe mdoavée xatevdivoel yia €peuva e 0TOYO TNV XAAOTERY XATAVONCT| TOU

YEVIXELUEVOU TEOBAAUITOC TV k-EEUTNEETNTOV.

Online AAvydprOpol

Ye éva online mpofBinua Bedtiotonolnong, 1 elcodog o yweiletar oe wia axorovdio and
UTAUATOL T = O, . . . , O K Qopd mou hofBdvoupe éva altnua o, €vag online alyopriuog
TREMEL VoL ABEL XATOIEC AmOPATELS Ywelc Vo YVwellel Tol UEANNOVTIXG UWTAUOTY O¢q1, - - . 5 Tpy.
‘Evag alyopriuog mou diaf3dler OAn tnv elcodo o xou Uetd moapdyet plor Abon xaheiton offline
alyoeripoc.

Yta mhaiotor auTASC TNE OtmAwpaTixrg, eotidloupe oe online tpoAfuaTa eAdyloTOTOMONG
P. 'Eotw I 10 clvoho 6Aov Twv miavey eicédny Yo éva tpdfinua P. o xdde elcodo
o € I, éoww ALG(0) t0 x6670¢ €v6¢ online ahyopituou xow OPT (o) 10 x65T0¢ TOL BEATIETOU

offline aAyopiduou.

Oplopdg 1. Oa Aéue ot évag vreteppuviotikos online adydpiuos ALG ya éva mpopAnpa
elayiotoroinons P efvai c-competitive, av vndpyer otalepd o tétoia whote ya kdbe €ioodo

o € I vawyla

ALG(o) < c¢-OPT(o) + «a.

Av a = 0 tote Aéue ont o ALG elvar avotnpd c-competitive. To competitive ratio evog
alyoptipov ALG eivar to eddyioto ¢ ya to omolo eivai c-competitive. To competitive ratio
Tov online mpopAnuaros P efvar to eddyioto ¢ ya to omoio vrdpyer c-competitive aAyopidpos

yia to P.

Evodhoxtind, umopolue va oxe@TOLUE OTL UTEPYEL EVag Loyupds aviinahog o omolog mo-
potneel Tov ahyoeriuo xou xaTaoxeLdlel TNV (0060 TOU TEOBAAUATOC HE OTOYO VoL HEYLOTO-
TOWAOEL TOV AOYO TOL x0GTOUG TOoL ahyoplduou TEog T0 x60T0¢ PE To omofo ADVEL AUTOS TNV

eloodo. Av o ahyderduog eivan tuyaiog, tote TideTton To {Tnue Tng méoNg TAnpooplag el
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otny oddecr| Tou o avtinahog otav @Tdyvel Ty elcodo. ‘Eyouv mpotadel didpopa povtéia

avundhewv [14] yio ty avdhuon tuyaiov online aiyopiduwmv:

1. Oblivious Avzinadog: Ye autd 10 poviého, o avtinohog YVwpllel TNV Teptypopt

Tou ahyoplduou aAAd oyt Tig Tuyaieg emAoyég Tou xan emALel offline To mEdBAnuUaL.

2. Adaptive Onmnline Avtinalog: Xe autd 10 poviého, o aviimohog yvwpllel tnv

TepLypapn) Tou ahyoplduou xan Tig Tuyaleg EMAOYEC TOL ot eTAUEL online To TEOBANUAL.

3. Adaptive Offline Avtinahog: e outd to poviélo, o aviinahog yvweller Ty

TepLypapy) Tou akyopituou xou Tig Tuyaleg emhoyég Tou xau emAlel offline to mpoBAnuaL.

Tumixd, o oblivious avtinahoc elvon 0 euxoldtepog, €nelta o adaptive online xou téhog
o adaptive offline. Xtnv avdiuon online ahyoplduwy cuvidwe Yewpolue To PovVTENO TOL
adaptive online avtindiou. Ynuewdvoupe 6tL o adaptive offline avtinarog elvan t6c0 1oYL-
e0¢ TOU amOdEXVUETAL TS 1) TuyaoTnTa dev Ponddet evdvtid tou. e xdle plo and autéc
TIC TEPLTTWOELS, WS HOGTOC TOU oAYOoplHUoU VeEWPOVUE TNV AVOUEVOUEVY Ty NG Tuyolag

HETOPBANTAC Tou Blvel To xOGTOE TOL.

Meé9o6oc Avuvvautxol. ‘Evo and ta mo cuvidn epyalela yioo Ty avdiuon online ai-
yoplduwy etvar 1 uédodog g cuvdptnong duvouxoL. Mio cuvdptnor duvouLxol avTicTolyEl
Evory TRy aTind optdud ot xdie dovd cuVBLIGUO BLETAENS AVAUEGO GTOV AAYOELIUO XaL TOY
avtinoro. Aucintixd, BoAelel Vo OXEPTOUACTE AUTO TO SUVOHIXO WS [ULOL UETELXT) ATOCTACNC
OVAUETH OTOV AhYOELIUO oL TOV avT{moho.

H emhoyn evég xatdAinhou duvopxol amotehel mohd audaipetn Sodixacio xou emopie-
Tar oty Padd xatavonon tng dourc Tou exdotote meofiruatoc. H yevir Wéa elvan mog
av emhéZouye éva xatdhhnho (Yo o TedBhnua) duvauixd xon anodeiloupe Gt Tnpel xdmoteg
WOoTNTES, TOTE Unopolue edxoAa Vo Bel€ouue dvw @edyuato yia To competitive ratio tou
olyoplduou poc. Mio ond tic Baoixdtepes teyvnéc tne ued6dou cuvdptnone duvauxol (Tou
YENOLWOTOLOUUE Xou eueic ot authy TNy epyoaoio) eivon 1 pédodoc v evalhaooduevmy xivioe-
wv. XOugova ye authy Ty puédodo, €0Te OTL Yol GUVEETNOY BUVAUIXO) TOU LXAVOTOLEL TIC

oxOhouleg WOLOTNTES:

1. Av oe éva altnuo peTonavelTal H6Vo O avTIMOUAOG Yo TANEWVEL T, TOTE TO BUVAULIXO

aw&dveTal To TOND xoTd ¢ - X.

2. Av oe éva altnuo yetoave(ton povo o ohydprduog xou TANEGOVEL T, TOTE TO SUVOUIXO

MELOVETAL TOVAAYLOTOV XATA. T.
3. To duvouxo eivon Qporyuévo and xdmoleg auiolpeTeES THIEC.

Téte, punopolye dueca vo anodel&ouye 6Tt 0 ahyopripog elvon c-competitive evdvtio oe

évayv adaptive online avtinolo.



xiv Extetauévn EAAnvixr} Hepidngn

I'vwotd Online ITpoBAApata. To npdfinua twv cehidwy (paging problem) [71] amo-
tehel éva and Ta mpddTar online mpofBAuota Tou yehetHdnxay otn BiBMoypapia. Ye autd To
TEOBANUa, €youue pio pvriun cache peyédoug k ceMdwy xou €va cUVolo and n cehldec. e
xdde obtnuor, pog ntetton plo amd Tic n oekideg xou av dev Peloxetan uéoa otnyv cache meémel
va Bydhoude xdmola dhAn ceAlda amd v cache wote va TNV avTixoTao THOEL.  XLTdY0C Uag
elvol vor EAAYLOTOTIOLACOUKE TOV GUVORXO apldud eEhoewy and tny uviurn cache. I'evixd, to
TEOBANUA TwV GEADBWY €xel xatavoniel TApws, xou YVoEilouUe OTL Yo VIETEPUIVIO TIXOUE A~
yopiduouc to competitive ratio tou mpoPAfuatoc eivar O(k), evéd yior Tuyadoug olyoplduoug
etvar O(logk). Empewdvetar 6Tt yvopilouue ahyopituouc mou metuyaivouy axplBee autd Ta
ey HoTAL.

Apyixd, xdde online mpdBAnua avoahudtay Ue EEBIXEUPEVES TEYVIXES TIOL BEV UTOPOVCAY
vo emextodolv o dAha mpofBAuata. Ye uio mpoomdiela yia evonolnon tou medlou Twv on-
line ohyopiduwv, ot Borodin et al. [17] npdtevay 1o npdBinua twv Metrical Task Systems
(MTS). Xe autd to mpdBAnua Exoupe évay petexd yopeo e N onueio xar ot xdde aitnuo pog
ofveTan €var BLAVUCUN XOOTOUG VW GTo ONUEid UTA. MTH CUVEYEL TEETEL VAL ATOPAGIGOUUE
oe o onpeio Vo IXAVOTOWCOUNE TO alTNUa, TANEWVOVTAS TO XOGTOS Tou oTueiou auTol GUV
TNV amOCTAOT Yo VoL THUE O auTd To onueio and to Teéyov onucio yac. Xtoyoq yoc elvar
VO EAAYLOTOTIOLACOUPE TO GUVOAXO pag x6otog. ['vwplCoupe 6TL vy to MT'S, o vietepul-
vioTix6 competitive ratio etvon 2N — 1 [17] xou to competitive ratio tuyoiwv ahyopiduwy
etvar O(log>NloglogN) [37] xow Q(logN) [17]. Tuvidoc, evlagepduacte i oTLyIdTUTY
tou MTS pe xdmoior cLYXEXEWEVY BouT|, XoL OTOYOC Yac elvon var BOUUE oV UTOPOUUE VoL
netOyoupe competitive ratio mou dev e&aptdton and tov apriud Twv onueinv N.

To npoAnua Twv k-eZUTNEETNTOY anoTeAel TNV To onuavTxn eWdxn tepintworn tou MT'S.
Y auTo TO TEOBANUA, UoC OivEToL €Vag PETEXOS YWeoc Ue n onueia xou k xvoluevol egu-
TNEETNTES oL PBploxovTon o xdmolo and To ONUEio TOL UETELXOU Ywpeou. e xdle Prua,
hoBdvoupe €va afTnua TOU AVTIOTOLYEl OE €var amd Tol ONUEX TOU PETEIXOU YWEOU, ol Yot
VO TO €EUTNEETACOUUE TEETEL VO UETOXLVACOUUE XATOLOV ot TOUS EEUTNEETNTES OE AUTO TO
onueio. Xtdyoc poag elval Vo EAXYIOTOTOCOUUE TNV CUYOAIXT| AMOGTAGT, TOU OLotvOOLY OL
eCumneetntéc. Elvon edxoho va 00pe 6Tt 10 TpoBANua Twv k-eEunneetntdy avTioTolyel 6To
MTS pe éva onueio yia xdde mdavy didtain twv k egutnpetntiv (N = n), anootdoewc
avdueoa ota onuela (0eg PE TNV EAIYLO TN AMOCTUCT, AVAUESH GTIC DLUTAEELS XU AUTHUOTA UE
T 0 oTig Slatdelc mou xovomotoly To aftnuo xo T 00 oTic undlowmes. o vietepuvi-
otxolg akyopiduouc yvwellouue 6Tt To competitive ratio elvar Touhdyiotov k xou to TOAD
2k — 1. T tuyadoug ahydprduous, yvopllouue 6t eivon tovkdytotov O(logk) xon to TON)
O(log®k) [60]. To mpdPBinua autd dev éxet emhuiel oxduo TARPGC xou amotelel avTixeluevo
TEPAG TIOU EVOLAPEPOVTOC GTOV Y(MEO TwV online ahyopliuwy.

Téhog, 10 yevixeuuévo TeoBANUa TV k-eEumneeTtntey amotelel pla yevixeuorn Tou mpo-
BruoTog Twv k-eEumneenTadv xou uio edwr] mepintwon tou MTS. O opoudc tou mpo-
Briuatog €xet 1on dovel mapandvew. To mpdBinua autd anotelel éva amd To TO BUCVOTTA
TeolAAUaTA TOU TES{OU o EAGYLOTA AMOTEAEOUATA EVOL YVWOTA, UOVO YLl CUYXEXPUUEVES

TEPITTAOOEIC. D€ OUOLOUORPOUC PETEIXOUS YWpoug Yvweilouue 6TL To competitive ratio eivou
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Touldyotov 28 — 1 %ot 1o mohs O(k2F) yia vietepuviotinoie ohyopidpoue xor TouRdyLGTOV
O(k) xo 1o mohh O(k?logk) yio Tuyadouc alyopiduouc. e 6Tt apopd ahyopiduouc ywelc
UVAUN Yot TO TROPBANUA, TO UOVO YVOOTO ANOTEAECUA EVOL OTL GE OUOLOUOPPOUS UETEXOVS
Yweoug Ue Bder, To competitive ratio ahyoplduwy ywels uvAun eivar Simhd exdetind. To

tehevtaio anotéleoya ogeileton otnv Sovkeld twv Chiplunkar xou Vishwanathan [28].

Tuyalol Ilepinator

‘Eva and to Bacuixd podnuatind epyaielor tou do YenoWOTOWCOUUE GTNY AVIAUGT oG
elvor oL Tuy ol TepImATOL XAl YEVIXE OL IBLOTNTEC TWY GTOYACTXGDY aveAlZewy. Mia otoyaotiny
aveNEN etvon o oxohoudior amd Tuyaleg yetaBAnTtéc mou e€ehicoeTon Ye xdmolo Tuyolo aAAS
TEOBLAYEYPUUUEVO TEOTO. Xe auThAv TNV epyaoia E0TIULOVUE GE GTOYUOTIXES OVEMEELS TOU
egeMooovton oe doxpttd yeovo (Bruota {0,1, ... }) xou AowPdvouv Tipée and éva dlaxpltd xou
TEMEPUOUEVO GUVOAD X Luyxexpyéva, pog evotapépouy ol aluaidec Markov, mou opllovton

we:

Opwopdg 2. Mia alvoida Markov efvar pia otoyaotikn avéaén X pe d1akpité xwpo ka-
wotdoewr X ka1 Suakpitd ovvolo beiktdyr T = {0,1,...} n omoia 1kavonoiel Ty akérovdn

Mapkopravn) 1016TtnTa:
P(X; =s|Xo =20, X1 =21,..., X41 =241) = P(Xy = s[Xy—1 = 24-1)
yia ke t > 1 ka1 s,xg,..., 01 € X.

O nivoxoc P = [pi;] 6mou pi; = P(X; = j|Xo = i) xohelton mivaxag petdfaone tne
olvotdag Markov xon poall e tnv apyxn xatdotooy, Ty yopaxtnellel mhpws. Ou alucideg
Markov €youv TOAEC xOAEC xan YEHOWIES WIOTNTES, OTKC Yol TOEAdELYMA TNV OTopdn Wlag
oTdoWNG XATovopng 0TV omola cLYXAvouy LT xdmoleg cuvirxes. Erniong, yenowonoobvon
¢ YovTERX o€ uiot TANUOEA EQPAUPUOYDY.

[o Toug oxomolg T gpyaciag authg, Vo ueAeTicoLUE Wla CUYXEXEWEYT XxaTnYopio o-
Auoldwv Markov ot omoleg ebvar yvwotéc we ahualdec I'evvrioewv-Oavdtomv. TTpdxeitou yio
o xhdon ahuoldwy 6mou ol petaPdoelc and €va ornueio Teplopilovtal pévo ot 600 ‘YelTovL-
x4 Tou onuela, ONAadYH o mivaxag yetofdoswy eivon TEimAd Strywwiog. Tumixd, ula aAucida

Fevvrioewv-Oavitwy oplleton vg:

Ogwopde 3. Mia alvoida Markov pe ydpo xataotdoewv X = {0,1,...,k} ya kdnoiwo
k € N ovopdletar alvoida Ievvrioewr-Oavdtwy av yia tov nivake petaPdoedy tng P = [Pyj]

10 VelL:

i g =141

Pijz e j l VZ,jEX
1_10@—% ] =1
0 ,01apopetikd
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omov qo = 0 ka1 pr = 0 Y ta dkpa Tng aAvoidag. Mia ypagikn aneixévion divete oo

Yxnua 1.

1—po l-p—a l—pi—a 1= Pr-1— Qe 1—q
i G2 q Qr+1 Qr—1 Ak
S0 P Ear S @O
~_
Po P Pe-1 Ppe Dk—2 DPk—1

Eyfuo 1: Mio Aduoido levvrioewv-Oavitwy

Av emmiéov pg = 0, 6t 1 xotdoTc X = 0 xoheltow x0TAGTACT, AMOPEOPNONG UE
TNV €VVOLOL TS AV 1) YTACOUPE OE OUTAY TNV XUTAOTUOY OEV UTOPOVUE Vo POYOUUE. X
QUTAHY TNV TEPITTWOT), 1) TOCOTNTA TOU UG EVOLUPEREL VO UEAETHOOUUE EVOL O UEGOG YPOVOS
éxhewme (EET), dnhadh o avoevouevog optdudc Brudtwy, Eextvivtog and xdmola xotdotoon
¢ e {0,1,...,k} péypr va ptdooupe oty xatdotaon onoppdgnone X = 0. BuuPoiilovye
auThY TV TocdTNTa we h(L). Mropolue va UTOAOYICOUUE TNV ExPEooT AUTH OE OYECT| UE TIC

TavOTNTES Pi, ¢; XL VOL BLUTUTIOCOLUE TO oxdloudo Vedpruo:

Ocwpnua 6. O uéoog xpovos éxdewpns pias alvoivas I'evviioewv-BOavdtwy e katdotaon
armoppdgnons X = 0 Lexwvdras and kdnow apyixkny kardotaon £ € {1,...,k} elvar
L N~pip SV ~pipi
L Dig L g i
= R Sy nep,
- .-'qZ Z:1 pln" qln'-]

q
Di j=it1 q
pe h(0) = 0.
Xenowonolmvtog autd o Oewpnua, Yo oploouye 600 edinég ahuoldeg I'evvioewv-Oavdtwmy
xat Yo utohoyloovue to EET toug. Autéc ol alucideg cuvbéovton dueca pe To competiti-

ve ratio tou Apuovixo’ Ahyoplduou yia TO YEVIXELUEVO TEOBANUO TwV Kk-eEUTNEETNTWY G

OUOLOUOPYES UETPIXES XOL YIoL AUTOV TOV AOYO TI 0p{lOUUE %o TIC UEAETAE.

Oedpnua 7. O péoos xpdros éxdenpns tns Apupovikris Alvoidas (Xxnua 2) pe katdotaon

amoppdgnons X = 0 Eexwdvtag and kdnow apxikn kardotaon £ € {1,..., k} elvar

pe h(0) = 0, dmov oy eivar n Abon tng avadpopkng oxéons oy =1+ (£ — 1)oy_;.

1 k=2
k k

1
1 1 1 1 1 1
k k k k k k
) 7 ; -1
k

k=1 k=41
k k

k-1
;A

E—t 2
& k

Eyfuo 2: H Apuovixry Alucida
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Ochpnpa 8. O péoog xpdrog éxdenpns tng Avadikiis Alvoidas (Xyniua 3) e kardotaon

aroppégnons X = 0 Eexwvdvrag and kdrowa apxikn katdotaon £ € {1,...,k} elvar
-1 L g
h(¢) :2’f—1+2“(2’f—z<.>)
= () i=o0
pe h(0) = 0.

x~
|

o

=
|

1
-

1 :
1 1 1 1 1
k k k k k :

k-1 k=41 =
k- : E

k

)N‘
B
Pr‘

2
H 1

Eyfuo 3: H Avodinr; Aluoida

ANyopripol ywelc UWVAUY YL TO YEVIXELUEVO TEOBANUA

Twv k-e&unneetneny

Efuaote mhéov oe 9€om var SLTUTMGOUKE ot VoL amodelEOUPE Tol TEWTOTUTIA AMOTEAEGUATOL
QUTAC NS Otmhwpatixrg epyaotac. ‘Onwe eliroye, ueAetdue T dOVon Twv ahyopiduny ywelc
UVAUN YLl TO YEVIXEUPEVO TROBANU TwV Kk-eEUTNEETNTWV GE OUOLOMOPPOUS Yweous. [
aUTO 1o TEOPBANUA, Evag alyopLriuog ywels wviun yapoxtneiletor TAewe and plo xotavouy
D1, - .-, Pk OTOU p; ebvan 1 mboavdTNTA Ye TNV omola 0 akydpriuog ixavorolel Eva aftnuo oty
petpwery M;.

Apyixd Sivouue €va dve @pdryuo yioo To competitive ratio tou Apuovixod Alyopituou,
oNAad1| ToL alyopiiuou Tou xouviEton ot xde petEwer) M; pe mdovotnTo p; = % Ovoctaotind
TEPLYPAPOUUE TOV TPOTO UE TOV OTOLO AELTOURYEL AUTOC 0 AAYOELIUOC XOL TOV GUVOEOUUE UE TNV
Apuovixr) Ahuoido. ‘Eneita, oplCoupe pla cuvdptnomn duvauixol yia To TedBAnua ntou opiletan
¢ 10 EET tng Appovixiic Alucidog e apyixf) xatdotacn o TARY0C TV eEUTNEETNTHOY TOU 0
alyberipog xan o avtinalog €xouv oe dlagopeTineg Véoelg. Xpnowonowmviog Ty pédodo twv
Evodhaccopevov Kivioewv, urtopolue va deilouue éva dve @edyua k - ag yior Tov Apuovixd
Alyopriuo xou vo anodeilouue to Oehpnua 1.

YN ouvéyela epyalOUAoTE Yiol THY anddelln ToU XdTw QEdyUaTog Tou Oewehuatog 2. e
QUTAY TNV TERIMTWON UEAETHUE OTOLOVONATOTE ohYOELIUO YwElC UVAUN %ol ETOUEVGDS YOUASEL
1 ouupeTplo Tou TEoPAfuaTog. §2¢ cuvEreln, TEENEL va SoUAEPouue ot uia ahucido Markov
uE 2k yotaotdoeic avtl v k. H dueon avdhuon tng aducidog autrg Oev elvon e@XTh yia
vevixée Tég tou k. Qotdoo, epapuoloviag TEYVIEG Topduoleg Ue autég Twv Chiplunkar
xou Vishwanathan [28] unopolue vo tdpoude €vor xdtw Qedyuo, To OTolo ATOBEXVVEL TS
(1) x&de ohybpripoc ywelc wviun éyel competitive ratio toukdytotov k - ay xou (2) uévo o
Apuovixdg Alyoprduoc tetuyadvel auThY TNV Tin, OnAadn etvon o BEATIoTOC olybpriuog ywels
UVAUN YioL TO TROBATUL.
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H teyvixn mou egapudoaue yior TNy anddelln tou Ocwpiuatoc 2 omoutoloe UeTEIXo0g
Yweoug pe n > 3 onuetae. Auto elvor amapaitnTo, apol Yoo n = 2 1 dour| Tou TEOBAAUATOC
amhoToLE(Ton ONUAVTIXG xou TEALXA To competitive ratio Tou Apuovixod Ahyopiduou Behticrve-
T oe O(2F) and O(k!) (Oedpnua 3). T v anodeifouus T0 Oedpnua autéd, GUVBEOUUE TNV
enidoon tou Apuovixod Alyoplduou pe 1o EET tne Avadnfc ANuciBog xat Y enoHLoToWmVTog
TUPOUOLES TEYVIXEC UE QWTEC Tou Oewpruatog 1, talpvouue to {nToluevo.

Téhog, pehetdue v mepintwon oblivious avtindhwy, ol onolot dev elyav peietniel yio
alyopiduouc ywelc uviun éng thpa oe autod To TEoBAnua. Kataoxeudlovtag oblivious ei-
0600UC Ywplc YVOoN TV EmAoY®Y Tou Aguovixod Ahyoplduou, utopolue vo delfouue OTL TO
competitive ratio tou dev aAldlel oe oyéon pe To poviého Tou adaptive online avtindiov,

amodevbovtog ta Oswphuato 4 xou 5.

YuunepdopoTa

Yuvodilovtag, UeEAeTHoOUE Yo TEMOTN Qopd TNV BUVAUT TwV oahyopldumy ywelc uviun yuo
TO YEVIXEUUEVO TROBATUO TwV k-EUTNRETNTOV GE OUOLOUOR(POUE PETEIXOUS YOpous. Evdvtio
oe adaptive online ahyoplduoug, unopéoaue va deiloupe 6T Ta ‘oLyTd BLTAG EXVETIXG PEdY-
poto twv Chiplunkar xou Vishwanathan [28] BeAtuidvovtar oe gpdypoto tne tééne tou kl. O
BérTIoTOC ahyOpLIUOg Ywels UVAUN Tou Ta teTuyadvel eivon o Apuovixdg Aryopriuoc. Ernlong,
ueheTHoOUE EEYWRLOTE TNV TMEPIMTWOT TV UETEIXWY YWOpwY UE n = 2 onueio xou dellaue OTL
exel To competitive ratio tou mpoPhfuatoc eiver O©(2F). Téhoc, efetdoupe xu to poviého
Tou oblivious avtindiou, oo omolo detloue 6Tl 1 emidoon Tou Apuovixol Alyoptduou Bev
oAh&Let, umodevOoVTaC OTL VLol TO CLYXEXPWEVO UovTélo o adaptive online avtinohog dev
€yEL TEQIGGOTERT) OUVON amd Tov oblivious.

Ye ouvdlaopo ue ta anoteréopota twv Chiplunkar xou Vishwanathan, n Sovkeid auty
yopaxtneiler TAfpwe TNV B0voun TV alyopilumy Ywelc UVAUT OE OPOLOUOR(POUS UETEXOVC
X Weoug e N ywel Bden. "Eva enduevo Bruo o Aoy vo eeTdoouue o ToAITAOX0US Y ROV,
OTWS yia ToEddeLyUa doTtea 1) 0évtpa. (2oTOC0, emonUalvoue OTL oL ahyopLIUOL Ywelc Uviun
€youv un-gpeayuévo competitive ratio oe yevixolc yetpixole ydpoug axouo xou Yo k = 2:

auto Exel detyOel aveldptnta and touc Chrobak xaw Sgall [32] xou Koutsoupias xou Taylor [58].
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Chapter 1

Introduction

In classical optimization, we are given a problem and a specific input, and the goal is
to find the optimal solution for the given input. However, in many real life applications,
the assumption that the whole input is available, is not realistic. Most of the times, we
need to solve optimization problems, while taking decisions with incomplete information
about the input. We call such problems online optimization problems, or simply online
problems. To solve problems in online optimization, we need to design online algorithms
which make decisions without knowledge of the future.

The primary objective of this field is the design of online algorithms whose performance
has some specific guarantees compared to the performance of an optimal offline algorithm
that knows the entire input before making any decisions. This is captured by the notion
of competitive ratio used in competitive analysis.

The k-server problem is one of the most fundamental and extensively studied problems
in the theory of online algorithms. In fact, the study of this problem over the last decades
(that continues until this day) has led to the development of many techniques and a deeper
understanding of online algorithms.

In this problem, we are given a metric space of n points and k mobile servers located
at points of the metric space. At each step, a request arrives at a point of the metric space
and must be served by moving a server there. The goal is to minimize the total distance
travelled by the servers.

The k-server problem generalizes various online problems, most notably the paging
(caching) problem, which corresponds to the k-server problem on uniform metric spaces.
Paging, first studied in the seminal work of Sleator and Tarjan [71], is well-understood: the
competitive ratio is k for deterministic algorithms and Hy, = ©(log k) for randomized; those
algorithms and matching lower bounds are folklore results for online algorithms [71, 62, 1].

The k-server problem in general metric spaces is much deeper and intriguing. In a
landmark result, Koutsoupias and Papadimitriou [56] showed that the Work Function
Algorithm (WFA) [56] is (2k — 1)-competitive, which is almost optimal for deterministic
algorithms since the competitive ratio is at least k [61]. For randomized algorithms, it is

believed that an O(logk)-competitive algorithm is possible; despite several breakthrough

1
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results over the last decade [7, 19, 20, 60], this conjecture still remains open.

Due to the massive interest of the scientific community on this problem and our lack
of understanding many of its properties, many variations of the k-server problem have
been proposed, such as (i) the weighted k-server problem [40, 10] where each server has
a different weight that affects its moving cost, (ii) the CNN problem [58, 50] where there
are two servers moving freely in two disjoint lines and (iii) the (h, k)-server problem [54,
71, 79, 53] where the algorithm has k servers but its performance is compared to that of
an optimal offline algorithm that has h < k servers.

In this thesis, we focus on the generalized k-server problem, a far-reaching extension
of the k-server problem, introduced by Koutsoupias and Taylor [58]. Here, each server s;
lies in a different metric space M; and a request is a tuple (rq,...,r), where r; € M;; to
serve it, some server s; should move to point 7;.

The generalized k-server problem has a much richer structure than the classic k-server
problem and is much less understood. For general metric spaces, no f(k)-competitive
algorithms are known, except from the special case of k = 2 [69, 70, 68]. For k > 3,

competitive algorithms are known only for the following special cases:

1. Uniform Metrics: All metric spaces My, ..., My are uniform (possibly with different

number of points), with the same pairwise distance, say 1.

2. Weighted Uniform Metrics: All metrics are uniform, but they have different weights;

the cost of moving in metric M; is w;.

Perhaps surprisingly, those two cases are qualitatively very different. For deterministic
algorithms Bansal et. al. [11] obtained algorithms with (almost) optimal competitive ratio.
For uniform metrics their algorithm is (k - 2k)—competitive, while the best possible ratio
is at least 2% — 1 [58]. For weighted uniform metrics, they obtained a 22""*_competitive
algorithm (by extending an algorithm of Fiat and Ricklin [40] for weighted k-server on
uniform metrics), while the lower bound for the problem is 92"~ [10].

We note that for uniform metrics, if memory is allowed and we compare against oblivi-
ous adversaries, competitive randomized algorithms are known: Bansal et. al. [11] designed
a O(k>log k)-competitive randomized algorithm with memory; this was recently improved
to O(k?log k) by Bienkowski et. al. [15].

The generalized k-server problem is named from the fact that it generalized many
well-known online problems, including the k-server problem. Some well-studied special

cases of the generalized k-server problem are:

e The k-server problem: the standard k-server problem is the very special case of
generalized k-server where all metric spaces are identical, i.e., M; = M and all

requests are of the form (r,r,...,7).

e The weighted k-server problem [40, 10]: this is the weighted variant of the classic k-

server problem where each server has different weight and the cost of moving server



1 by distance d is w; - d. This is the special case of generalized k-server where all
metrics are scaled copies of a fixed metric M, i.e., M; = w;M and all requests are

of the form (r,r,...,r).

e The CNN problem [58, 50]: in this problem we have two servers s, and s,, moving on
the horizontal and the vertical lines respectively and a request is a point r = (ry, 1)
that has to be served by moving s, to r, or s, to r,. This is the special case of

generalized k-server where k = 2 and My, M> are lines.

Memoryless Algorithms: One drawback of the online algorithms achieving the best-
known competitive ratios for the k-server problem is that they are computationally ineffi-
cient. For example, the space used by the WFA is proportional to the number of different
configurations of the servers, i.e., (z), which makes the whole approach quite impractical.

This motivates the study of trade-offs between the competitive ratio and computational
efficiency. A starting point in this line of research, is to determine the competitive ratio of
memoryless algorithms: a memoryless algorithm, decides the next move based solely on
the current configuration of the servers and the given request.

Memoryless algorithms for the k-server problem have been extensively studied (see
e.g., [16, 55] for detailed surveys). The most natural memoryless algorithm is the Harmonic
Algorithm, which moves each server with probability inversely proportional to its distance
from the requested point. It is known that its competitive ratio is O(2* - logk) and
Q(k?) [12]. Tt is conjectured that in fact the Harmonic Algorithm is @ = O(k?)-
competitive; this remains a long-standing open problem. For special cases such as uniform
metrics (paging) and resistive metric spaces, an improved competitive ratio of k£ can be
achieved and this is the best possible for memoryless algorithms [33].

We note that the study of memoryless algorithms for the k-server problem is of inter-
est only for randomized algorithms; it is easy to see that any deterministic memoryless
algorithm is not competitive. Throughout this thesis, we study two different adversar-
ial settings: the adaptive online setting, which is the standard benchmark for evaluating
the performance of randomized online algorithms, and the oblivious setting that usually
allows for better competitive ratios. For a detailed discussion on the different adversary
models and relations between them, see [16, 14]. We also discuss the main definitions and
differences between the adversarial models in Chapter 2.

The primary focus of this thesis is the study of memoryless algorithms for the gener-
alized k-server problem on uniform metrics. A memoryless algorithm for the generalized
k-server problem receives a request r = (r1,...,7;) € [n]¥ and decides which server to
move based only on its current configuration ¢ = (q1,...,qx) € [n]k and r. For the case
of uniform metrics, a memoryless algorithm is fully characterized by a probability distri-
bution p = (p1, ..., px); whenever it needs to move a server, it uses server s; of metric M;
with probability p;. Throughout the thesis we assume for convenience (possibly by rela-

beling the metrics) that given a memoryless algorithm we have that p; > pa > ... > py.
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We also assume that p; > 0 for all i; otherwise it is trivial to show that the algorithm is
not competitive.

In the context of generalized k-server on uniform metrics, the Harmonic Algorithm
is a memoryless algorithm which moves at all metric spaces with equal probability, i.e.,
pi = 1/k, for all i € [k]. Due to the problem’s symmetry, the only “reasonable” memoryless
algorithm is in fact the Harmonic Algorithm; any other memoryless algorithm for the
problem will be more likely to serve a request in some metric space M; over some other
metric space M, without any reason. This is formally shown in our work, by proving
that against adaptive online adversaries, the Harmonic Algorithm has strictly the best
competitive ratio out of all the memoryless algorithms.

Recently Chiplunkar and Vishnawathan [28] studied randomized memoryless algo-
rithms in weighted uniform metrics. They showed tight doubly exponential (= 1.62k)
bounds on the competitive ratio. Interestingly, the memoryless algorithm achieving the
optimal bound in this case is different from the Harmonic Algorithm.

Since the weighted uniform case seems to be much harder than the uniform case, it
is natural to expect that a better bound can be achieved by memoryless algorithms in
uniform metrics. Moreover, in weighted uniform metric spaces the competitive ratios
of deterministic algorithms (with memory) and randomized memoryless algorithms are
essentially the same. Recall that a similar phenomenon occurs for the paging problem
(standard k-server on uniform metrics) where both deterministic and randomized memo-
ryless algorithms have a competitive ratio of k.

Thus, it is natural to guess that for uniform metrics, a competitive ratio of order 2% (i.e.,
same as the deterministic competitive ratio) can be achieved by memoryless algorithms.
However, as we show in this work, this is not the case; the competitive ratio of any

memoryless algorithm for the generalized k-server problem on uniform metrics is Q(k!).

1.1 Contribution

In this thesis we study the power of memoryless algorithms for the generalized k-server
problem in uniform metrics and we determine the exact competitive ratio by obtaining
tight bounds.

We begin by turning our attention to the adaptive online adversarial setting since this
is the standard benchmark to evaluate randomized memoryless algorithms.

First, we determine the competitive ratio of the Harmonic Algorithm on uniform met-

rics.

Theorem 1.1. The Harmonic Algorithm for the generalized k-server problem on uniform
metrics is (k- ay)-competitive against adaptive online adversaries, where oy, is the solution

of the recursion ap =1+ (k — 1)ag_1, with a; = 1.

It is not hard to see that o, = ©((k — 1)!), therefore the competitive ratio of the

Harmonic Algorithm is O(k!). This shows that indeed, uniform metric spaces allow for
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substantial improvement on the performance compared to weighted uniform metric spaces
where there is a doubly-exponential lower bound.

To obtain this result, we analyse the Harmonic Algorithm using Markov Chains and
random walks, based on the Hamming distance between the configuration of the algo-
rithm and the adversary, i.e., the number of metric spaces where they have their servers
in different points. Based on this, we then provide a proof using a potential function,
which essentially captures the expected cost of the algorithm until it reaches the same
configuration as the adversary.

Next we show that the upper bound of Theorem 1.1 is tight in the adaptive online

setting, by providing a matching lower bound.

Theorem 1.2. The competitive ratio of any randomized memoryless algorithm for the
generalized k-server problem on uniform metrics with n > 3 points is at least k- oy, against

adaptive online adversaries.

Here the analysis differs, since the Hamming distance is not the right metric to capture
the “distance” between the algorithm and the adversary: assume that all their servers are
at the same points, except one, say server s;. Then, in the next request, the algorithm
will reach the configuration of the adversary with probability p;; clearly, if p; is large, the
algorithm is in a favourable position, compared to the case where p; is small.

This suggests that the structure of the algorithm is not solely characterized by the
number of different servers (i.e., the Hamming distance) between the algorithm and the
adversary, but also the labels of the servers matter. For that reason, we need to focus on
the subset of different servers, which gives a Markov Chain on 2 states. Unfortunately,
analyzing such chains in a direct way can be done only for easy cases like £k =2 or k = 3.
For general values of &k, we find an indirect way to characterize the solution of this Markov
Chain. A similar approach was taken by Chiplunkar and Vishwanathan [28] for weighted
uniform metrics; we use some of the properties they showed, but our analysis differs since
we need to make use of the special structure of our problem to obtain our bounds.

In fact, as a direct corollary of Theorem 1.2 we are able to show that any memoryless
algorithm other than the Harmonic has competitive ratio strictly larger than k - oy in
metric spaces with n > 3 points against an adaptive online adversary.

Notice that in Theorem 1.2 we require that all metric spaces have at least n > 3
points. We observe that this is necessary, and that if all metric spaces have n = 2
points, the Harmonic Algorithm is O(2¥)-competitive, thus a lower bound of k - aj can
not be achieved. We also show an adaptive online lower bound of Q(2*) for the Harmonic

Algorithm, which leads to determining his competitive ratio.

Theorem 1.3. The competitive ratio of the Harmonic Algorithm for the generalized k-
server problem on uniform metrics with n = 2 points is @(2’“) against adaptive online

adversaries.

The underlying reason behind this difference in competitive ratio is the “limitations”

enforced to the request sequence by the limited number of points; if any algorithm is at any
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configuration ¢ € [2]¥, then the only request that forces it to move is its anti-configuration
r = q. We study this case separately using Markov Chains once again, by proving tight
bounds on the competitive ratio of the Harmonic Algorithm in metric spaces with n = 2
points.

Then, we turn our attention to the oblivious adversarial model. The upper bounds
of Theorems 1.1 and 1.3 for the Harmonic Algorithm clearly extend to the oblivious
adversarial setting since they hold against adaptive online adversaries. We have shown
that in the adaptive online adversarial setting the Harmonic Algorithm is (strictly) the
best memoryless algorithm; we believe that there is no reason for this to change in the
oblivious setting. Thus, we focus on giving lower bounds for the Harmonic Algorithm in

the oblivious setting.

Theorem 1.4. The competitive ratio of the Harmonic Algorithm for the generalized k-
server problem on uniform metrics with n > 2k + 1 is at least k - ap against oblivious

adversaries.

Theorem 1.5. The competitive ratio of the Harmonic Algorithm for the generalized k-

server problem on uniform metrics with n = 2 is Q(2F) against oblivious adversaries.

We have shown oblivious lower bounds that match the upper bounds of the adaptive
online setting; this indicates that for memoryless algorithms for the generalized k-server
problem in uniform metrics, adaptive online and oblivious adversaries have the same power.

Summarizing, on the positive side, our results show that improved guarantees can be
achieved compared to the weighted uniform case. On the other hand, the competitive
ratio of memoryless algorithms (©(k!)) is asymptotically worse than the deterministic
competitive ratio of 20%). This is somewhat surprising, since (as discussed above) in
most uniform metric settings of k-server and generalizations, the competitive ratio of

deterministic algorithms (with memory) and randomized memoryless is (almost) the same.

1.2 Organization

The first part of this thesis is dedicated to establishing the necessary background for
our novel results.

In Chapter 2, we introduce the framework of Online Algorithms. We begin by formally
defining an online problem, the notion of competitive ratio and the different kinds of
adversarial settings. Then, we present the potential-based analysis framework that is
commonly used in competitive analysis; in fact, we also rely on this technique to prove
some of our results. As a concrete example for this framework, we define the paging
problem and prove the main results on this area. The reason we present this problem is
that (i) it has a simple structure that captures the properties of an online problem and (ii)
it is the special case of the k-server problem on uniform metric spaces that are of interest
to this thesis. Next, we discuss some of the most important online problems, namely

the Metrical Task Systems (MTS) problem and the k-server problem, and briefly state
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their history and the known results. We conclude this chapter by formally defining the
generalized k-server problem, the best known algorithms for it and how our work extends
these results.

In Chapter 3, we provide the reader with the necessary background on Random Walks
and random processes in general. After a short introduction on Markov Chains and their
main properties, we study a special class of discrete-time, finite-space Markov Chains
called Birth-Death Chains. This mathematical model is very important for our analysis,
since (as we show) it captures the competitive ratio of the Harmonic Algorithm for the
generalized k-server problem and constitutes the primary source of inspiration for our anal-
ysis. Specifically, we are interested in two special types of Birth-Death Chains, called the
Harmonic Chain and the Binary Chain, that are defined and studied in this thesis. As we
show, the properties of this chains (namely their Expected Extinction Time) immediately
give bounds for the competitive ratio of the Harmonic Algorithm.

After we lay the groundwork for our analysis, in Chapter 4 we present our novel results
on memoryless algorithms for the generalized k-server problem on uniform metrics that this
thesis contributes. We begin by studying the adaptive online adversarial setting. We first
give an upper bound on the competitive ratio of the Harmonic Algorithm in Theorem 1.1.
Then we analyze any memoryless algorithm and show that the Harmonic Algorithm is the
optimal and its competitive ratio is exactly k- ;. as stated in Theorem 1.2. We also handle
the special case of metric spaces with n = 2 points with Theorem 1.3. Next, we turn our
attention to oblivious adversaries and the competitive ratio of the Harmonic Algorithm
in this setting. In Theorems 1.4 and 1.5 we show that the bounds of the adaptive online
setting are also tight in the oblivious setting, indicating that for memoryless algorithms
for the generalized k-server problem in uniform metrics, adaptive online and oblivious
adversaries have the same power.

Finally, in Chapter 5 we conclude this thesis by stating the main message of this
work and how it extends the current knowledge of online algorithms and specifically the
generalized k-server problem. We also discuss open directions in this area and suggest the

next steps towards understanding the generalized k-server problem.






Chapter 2

Online Algorithms

While in traditional optimization, an algorithm is given an instance and needs to com-
pute the best solution for it, in online computation an algorithm must produce a sequence
of decisions based on past events and without information about the future. Online algo-
rithms [16, 52] are a natural topic of interest in many disciplines such as computer science,
economics an operations research, due to the fact that many computational problem are
intrinsically online and that they require immediate decisions on real time.

The standard framework used to evaluate the performance of online algorithms is com-
petitive analysis, which was introduced by Sleator and Tarjan [71]. Here, the performance
of an online algorithm is compared to the optimal offline solution which knows the whole
input in advance. The roots of competitive analysis can be found in classical combinato-
rial optimization problems (i.e., scheduling problem [25, 18]) and in the analysis of data

structures (i.e., list accessing problem [71, 4, 42]).

Organization. In this chapter, we begin by formally defining the framework of com-
petitive analysis in Section 2.1. There, we will define the competitive ratio of an online
algorithm, the competitive ratio of a problem and the different adversarial settings that
are used to evaluate randomized online algorithms. Then, in Section 2.2 we introduce the
potential method technique as a way to prove upper bounds on the competitive ratio of
an online algorithm; in fact, we are going to use this method to prove some of our novel
results, so it is useful to formally define it in this chapter.

After establishing the basic background on competitive analysis, we study some of the

most extensively studied problems in online computation; namely:

1. The paging problem. In this problem, we have a cache memory of size k and n > k
element, some of them occupying a cache cell. We are given requests in the form
of one of the n points, and if this point is not in the cache then we need to move
it in by evicting some other element. The objective is to minimize the cost of the

algorithm which is given by the total number of evictions.
2. The metrical task systems (MTS) problem. This problem is a great generalization of

9
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various well-studied online problems and creates a unifying framework that enables
the study of online algorithms in a systematic way. In the MTS problem we are
given a server which can be in one of IV different states and a metric distance function
d specifying the cost of switching between the states. At each time step, a task r
arrives, represented by a vector r = (1,72, ...,7N) where r; is the cost of processing
r at state . Then, the algorithm needs to decide a state ¢ to process the request r,
paying the processing cost r; and the movement cost (based on d) to move at i from

his current state.

3. The k-server problem. In this problem, we are given a metric space of n points and &
mobile servers located at points of the metric space. At each step, a request arrives
at a point of th metric space and must be served by moving a server there. The goal

is to minimize the total distance travelled by the servers.

In Section 2.3, we present the paging problem since it is an excellent introduction to
the online framework. We state the main results for paging and also their proofs, in order
to higlight some of the techniques used in competitive analysis. Then, in Sections 2.4
and 2.5 we define the MT'S and k-server problems respectively and briefly mention their
history and the main results.

Finally, in Section 2.6 we conclude this chapter by formally giving the definition of the
generalized k-server problem, which is the focus of this thesis. We give a comprehensive
statement of the main results for this problem, the corresponding techniques and how our

work extends these results.

2.1 Competitive Analysis

Formally, in an online optimization problem the input ¢ is divided into requests
o =o01,...,0m. Whenever each request o; is received, some actions must be performed,
without knowledge of the future requests o441, ..., 0. An algorithm that solves an online
optimization problem is called an online algorithm. An algorithm which reads the whole
input ¢ and then produces a solution is called an offline algorithm.

The standard framework used to evaluate the performance of online algorithms is com-
petitive analysis, which was introduced by Sleator and Tarjan [71]. Here, the performance
of an online algorithm is compared to the optimal offline solution which knows the whole
input in advance.

From now on, we focus on minimization problems, since this is the case for all problems
considered in this thesis. Let P be a minimization problem and let I denote the set of all
valid inputs for P. For an instance o € I, let OPT (o) denote the optimal cost on o. For
an online algorithm ALG, let ALG(c) denote the cost of ALG on o.

Definition 2.1 (Competitive Ratio). An online algorithm ALG for an online minimiza-

tion problem P is c-competitive if there exists a constant o such that for any input o € I,
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we have

ALG(0) < ¢-OPT(o) + a.

If o« = 0 we say that algorithm ALG is strictly c-competitive [35]. The competitive ratio of
an algorithm ALG is the infimum value ¢ such that ALG is c-competitive. The competitive
ratio of an online minimization problem P is the infimum value ¢ for which a c-competitive

algorithm for P exists.

Note that in the above definition, the constant « is allowed to depend on the parameters
of the problem P (for example, the number of servers in k-server) but not on the instance
I or on m.

An alternative view of competitive analysis is to think of each online problem as a game
between an algorithm and an all-powerful adversary. The adversary knows the description
of the algorithm and constructs an input in order to maximize the ratio between the
cost of the algorithm and the optimal cost. For deterministic algorithms, the notion of
competitive ratio is well-defined, and is given by the ratio of the algorithm’s cost and
the optimal offline algorithm’s cost. However, a usual approach in the design of online
algorithms is to use randomization. This raises the issue of how much information is
available to the adversary when it constructs the instance. In competitive analysis, there

are various adversary models [14] proposed to evaluate randomized algorithms.

1. Oblivious Adversaries: In this model, the adversary knows the description of
the algorithm, but it does not know its random choices and it has to construct the
whole input before the algorithm starts serving the requests. A randomized online
algorithm ALG for a minimization problem P is c-competitive against oblivious ad-
versaries if there exists a constant «, such that for any request sequence o generated

by an oblivious adversary, that is
E[ALG(0)] < c-OPT(0) + «,

where OPT (o) is used to denote the cost of the optimal offline algorithm on the

instance.

2. Adaptive Online Adversaries: In this model, the adversary knows all the actions
of the algorithm, including its random choices. At each step, the adversary generates
a request in order to maximize the cost incurred by the algorithm. However, the
adversary must also serve the request sequence online. This way, the costs of both
the algorithm and the adversary depend on the random choices of the algorithm. A
randomized online algorithm ALG for a minimization problem P is c-competitive
against adaptive online adversaries, if there exists a constant «a, such that for any

request sequence o generated by an adaptive online adversary ADV,
E[ALG(0)] < c¢-ADV (o) + «,

where ADV (o) is used to denote the cost of ADV to serve o.
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3. Adaptive Offline Adversaries: Similarly to the adaptive online adversary, an
adaptive offline adversary knows all the actions of the algorithm, including its ran-
dom choices, and at each step, it generates a request in order to maximize the cost
incurred by the algorithm. However, in this setting, the adversary is allowed to solve
the problem offline after the instance is constructed. A randomized online algorithm
ALG for a minimization problem P is c-competitive against adaptive offline adver-
saries, if there exists a constant «, such that for any request sequence o generated

by an adaptive offline adversary ADV, that is
E[ALG(0)] < ¢-OPT(0) + a,

where OPT (o) is used to denote the cost of the optimal offline algorithm on the

instance.

Depending on the adversarial setting, the competitive ratio of the same online algo-
rithm might vary drastically. Typically, the oblivious adversary setting is the “easiest”
(often referred to as the ”weak adversary”) since it doesn’t have access to the algorithm’s
random number generator. However, in practise we usually use the adaptive online ad-
versarial setting since it is useful to compare the performance of our algorithm to that of
other online algorithms. The hardest adversarial setting is the adaptive offline, since the
adversary has access to the algorithm’s random choices but it is also allowed to solve the
instance offline. In fact, it has been shown [14] that randomization doesn’t help against
adaptive offline adversaries.

We quote some of the most useful results that show the connection between the different

adversarial settings and highlight their differences.

Theorem 2.1. If there is a randomized algorithm that is c-competitive against any adap-
tive offline adversary then there also exists a c-competitive deterministic algorithm. If
G is a c-competitive randomized algorithm against any adaptive online adversary, and
there is a randomized d-competitive algorithm against any oblivious adversary, then G is

a randomized (c - d)-competitive algorithm against any adaptive offline adversary.

Note that until now, we didn’t mention any restrictions on the computational resources
used by an online algorithm. The reason for this is that in competitive analysis our primary
goal is to understand the importance of knowing the future; the competitive ratio of an
algorithm can be seen as a measurement of the loss due to missing information, assuming
unlimited computational power. For example, the Work Function Algorithm [56] that
achieves the best known deterministic competitive ratio for the k-server problem needs
exponential time.

However, we would obviously prefer to have more "realistic” algorithms that can run
in polynomial (for example) time to the instance. This motivates the study of trade-offs
between the competitive ratio and computational efficiency. A starting point in this line

of research, is to determine the competitive ratio of memoryless algorithms: a memoryless
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algorithm, decides the next move based solely on the current configuration of the servers
and the given request. Memoryless algorithms are typically computationally efficient,
but in some cases their competitive ratio can be much larger than the optimal or even
unbounded; as an example, Chrobak and Sgall [32] and Koutsoupias and Taylor [58]
independently showed that even for k = 2, there is no competitive memoryless algorithm
for the weighted k-server problem in general metric spaces, a result that immediately

transfers to the generalized k-server problem.

2.2 The Potential Method

The potential method [43, 34] is a technique commonly used in competitive analysis
in order to prove upper bounds on the competitive ratio of memoryless algorithms. The
potential method has also been used extensively in the field of data structures [34, 44] as
a method used to analyze the amortized time and space complexity of a data structure;
a measure of its performance over sequences of operations that smooths out the cost of
infrequent but expensive operations.

On a high level, the potential method consists of the definition of an appropriate
potential function that is used to measure the distance between the algorithm and the
adversary; then the analysis shifts to proving some properties for this function that can
immediately yield results for the algorithm’s competitive ratio.

For example, if we find a potential such that (i) when the adversary moves the increase
in the potential is bounded from above and (ii) when the algorithm moves the decrease
in potential is bounded from below, then we get some knowledge on the way that the
requests can affect the ”distance” between the algorithm and the adversary, resulting to

knowledge on the performance of the algorithm.

Configurations. In any online problem, we can define an algorithm’s configuration at
some moment as the state of the algorithm with respect to the outside world. For example,
in the MT'S problem the configuration of an algorithm is simply the point of the metric
that it occupies. In the paging problem the configuration of the algorithm is the labels of
the ”pages” that are in the cache. In k-server, the configuration of an algorithm is the set

of points that are occupied by its servers.

Potential. Now, let Sare and Sapy be the sets of all possible configurations for an
algorithm and an adversary respectively. Formally, a potential function ® is a mapping @ :
Sara X Sapp — R; that is a systematic way to append real numbers for any combination
of the algorithm’s and the adversary’s states. Typically, we wish for the potential to satisfy
some distance properties, in the sense that when the algorithm and the adversary have the
same configuration the potential should be 0, otherwise some real positive number that
reflects how ”far” these two configurations are. This way, the potential can be seen as a

measure of distance between the algorithm and the adversary.
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We will now show that if the potential is selected in order to satisfy some specific
properties, then an upper bound for the competitive ratio of the algorithm can be im-
mediately determined. There are two primary potential based techniques [16] for proving
upper bounds on the competitive ratio of ALG: the Amortized Cost method and the
Interleaving Moves method.

For any online minimization problem P with request sequence ¢ = o1,...,0p,, fix
an online algorithm ALG, an adaptive online adversary ADV and a potential function
®. Let ALG; and ADV; denote the cost incurred by the algorithm and the adversary
respectively. Also, let ®; denote the potential between the configurations of ALG and

ADYV after request o; has been processed.

2.2.1 Amortized Cost

In this method, the potential between the algorithm’s and the adversary’s configura-
tions can be seen as a “bank”. Whenever an algorithm makes a move that increases the
potential (i.e., its distance from the adversary) then it can ”borrow” some money from the
bank in order to pay the cost. Respectively, if the algorithm makes a move than decreases
the potential, then it can ”pay” some of its debt to the bank.

Using this intuition, instead of charging the algorithm with its actual cost, we charge
it with its amortized cost. For each request r;, define the amortized cost of the algorithm
as:

o =ALG; + ®; — P,

The amortized cost of an algorithm is a measure of its performance over sequences of

operations that smooths out the cost of infrequent but expensive operations.

Theorem 2.2. If there exists constant ¢ such that for any request o; it holds
a; <c-ADV;

and ®; is bounded by some constant independent of the request sequence for any i, then

ALG is c-competitive.

Proof. Assume that for all i, a; < ¢- ADV;. Then, summing over ¢ = 1,2,...,m we would

get
> a; <c- ADV(0) = ALG(0) + ®p, — &g < ¢ - ADV (o)
=1

by the telescoping property. Since ®; are bounded by constants, the theorem follows. [

2.2.2 Interleaving Moves

Imagine that the algorithm and the adversary move separately with every request. As
we have already mentioned, the potential can be viewed as a measurement of distance

between the algorithm and the adversary. Since the adversary wished to maximize the
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ratio of the algorithm’s cost to its own, then whenever it moves it wishes to increase the
potential. A “good” algorithm on the other side, wishes to make moves that decrease the
potential.

The method of interleaving moves formalized the above concept.
Theorem 2.3. Let o; be any request and assume that the following properties hold:

1. There exists a constant ¢ such that if only the adversary moves during o; and pays

x, then the potential increases by at most ¢ - x, that is:

A<I>:<I>z—<I>l_1§CADVZ

2. If only the algorithm moves during o; and pays x, then the potential decreases by at

least x, that is:

AP=0,— P, | < -ALG;

3. ®; is bounded by some constant that doesn’t depend on the request sequence.
Then, ALG is c-competitive.

Proof. From properties 1 and 2, we get that if both the algorithm and the adversary move
during oy, then A® < ¢- ADV; — ALG;. Summing over all ¢ = 1,2,...,m and using the

telescoping property on the differences of the potentials, we get:
D, — Py <c-ADV (o) — ALG(0)

and since ®q, ®,, are bounded by some constants independent of the request sequence,

then this immediately gives that ALG is c-competitive, proving the Theorem. O

Both of these techniques have been used extensively in the literature as a simple and
elegant way to prove competitive bounds. Since these techniques are pretty much stan-
dard, the whole weight of the analysis relies on the definitions of an appropriate potential
function that will satisfy the properties of Theorem 2.2 and Theorem 2.3. However, de-
termining what the appropriate potential is can be quite difficult and it relies on a deep
understanding of the underlying problem’s structure and properties.

As an example, in Chapter 4 we will prove that the Harmonic Algorithm is O(k - o )-
competitive for the generalized k-server problem on uniform metrics using the potential
method of interleaving moves. Mathematically speaking, the analysis is quite easy once
the correct potential is defined. However, the potential function we use is inspired by the
problem’s structure and how it translates to random walks on Markov Chains and thus

relies on a deep understanding of the problem’s structure.
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2.3 Paging

The paging (caching) problem is a classical problem in operating systems design [5].
We are given a two-level memory system, composed by the cache and the main memory.
The cache is divided into k parts of equal size, called pages, while the main memory has
larger capacity, but it is much slower. Whenever a page needs to be accessed by the CPU,
it should be in the cache; if it is not, a page fault occurs. The page needs to be fetched
in the cache, possibly by evicting some other page. Thus, any operating system needs a
page eviction policy. Here, the input can be seen as a sequence of requests to pages, and
the goal is to minimize the total number of page faults.

If we see this problem as a classical optimization problem where the entire request
sequence is given in advance, it is easy to find the optimal solution: Whenever a page
eviction is needed, we evict the page that will be requested the latest in the future.

However, in reality the future requests are not known, and the operating system has
to decide which page to evict taking into account only the requests seen so far. An online
algorithm for the paging problem needs to decide on what page it evicts at time ¢, without
knowledge of the pages that will be requested at time t 4+ 1,...,T.

In the context of online algorithms, paging was first studied in the seminal work of
Sleator and Tarjan [71], where the first results for this problem were presented. In this
section, we will present some of these results, since the paging problem has a simple
structure that makes it a good candidate for an introduction to competitive analysis.
This results are considered folklore in the area of online algorithms, but they will allow us

to review some of the main techniques used in competitive analysis.

2.3.1 Deterministic Algorithms for Paging

We begin with the study of deterministic algorithms for this problem. We will first
prove a lower bound of k£ and then present the M ARKING algorithm that achieves the

same bound.

Theorem 2.4. The competitive ratio of any deterministic algorithm for the paging problem

1s at-least k.

Proof. Let p1,po,...,pr be the pages that are initially in the algorithm’s cache memory
and let pry1 be a page that is initially outside the algorithm’s cache. First, we request
page pr+1 and since the algorithm is deterministic, we know that it will evict some page
pi- Then we request page p; and the algorithm evicts some page p;. We repeat this process
for an arbitrary number of requests T', making the algorithm pay a total cost of T

We will now argue that the optimal solution for this request sequence is at most %
Recall that the optimal offline algorithm for paging evicts the page that will be requested
furthest in the future on page fault. Thus, since the cache has a total size of k, whenever

the optimal strategy evicts a page to serve a request, we know that it will surely serve
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the next (k — 1) requests as well. Since the size of the instance is T', the optimal offline
. . T
algorithm will pay at most +.
Thus, we get that

ALG=T=k-—>k-OPT

=

and that the algorithm is at least k-competitive. O

We will now present a deterministic algorithm whose competitive ratio matches this
lower bound of k, known as the M ARKING algorithm. This is a phase based algorithm,
where at the beginning of a phase all the pages are unmarked. Whenever a request is
received, the algorithm marks the requested page (if it isn’t already marked) and if it is
not in the cache, then it evicts an unmarked page (based on some arbitrary deterministic
policy) in order to put it in. If all the pages in the cache are already marked, then a new

phase begins and all the pages become unmarked once again.

Theorem 2.5. The competitive ratio of the MARKING algorithm for paging is at most
k.

Proof. Tt is actually quite simple to analyze the M ARKING algorithm. Fix any phase of
the algorithm. Initially, all the pages are unmarked and the phase ends when all the pages
in the cache are marked. This immediately gives that the M ARKING algorithm evicts
exactly k pages per phase and that a phase has to include exactly k£ distinct requests.
Since the cache has a total size of k, we know that any solution (even the optimal) will
be forced to evict at least one page per phase. Thus, in every phase the MARKING
algorithm evicts k pages and the optimal offline solution evicts at least 1 page, which
gives that the competitive ratio of the M ARKING algorithm is indeed at most k. O

Theorems 2.4 and 2.5 completely solve the deterministic case, since we have a (compu-
tationally efficient) algorithm that achieves the best possible competitive ratio. We note
that there are other algorithms that achieve the same competitive ratio of k with specific
marking policies, such as LRU, CLOCK and FWF [16].

2.3.2 Randomized Algorithms for Paging

We will now focus on randomized algorithms for the paging problem and show that
randomization can indeed improve the competitive ratio of a problem. When studying
randomized algorithms, one has to be careful to define the type of adversary. In this

section, we will mainly focus on oblivious adversaries.

Theorem 2.6. Any randomized algorithm for the paging problem is at least Hy, competitive

in the oblivious adversarial setting, where Hy, is the k-th harmonic number.

Note that since this lower bound holds for the oblivious setting, it clearly extends for

adaptive online and adaptive offline adversaries as well.
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We will now show that the randomized version of the M ARKING algorithm matches
this lower bound (up to a constant) against oblivious adversaries. In the randomized
version, whenever the M ARKING algorithm has to evict a page, instead of picking an
unmarked page based on some deterministic eviction policy, it simply evicts an unmarked

page at random.

Theorem 2.7. The competitive ratio of the randomized MARKING algorithm against

an oblivious adversary is 2H, — 1, where Hy, is the k-th harmonic number.

We note that there are different randomized algorithms that achieve the (optimal)
competitive ratio of Hp. For the proofs of Theorems 2.6 and 2.7 we refer the reader to
Chapter 4 of [16]. These results show that randomization can reduce the competitive ratio
of a problem by an exponential factor, and thus randomized algorithms should be studied
for any online problem.

There are many other results for the paging problem, and it is generally considered to
by one of the best-understood problems in the online framework. For many other results
about different adversarial models and other variations of the paging problem we refer the
reader to [41, 16].

2.4 Metrical Task Systems

The first online algorithms were analyzed in a rather ad-hoc way, using problem specific
techniques that could not be applied in other problems and didn’t contribute much to the
field of competitive analysis. In order to create a unifying framework that would make the
analysis of online algorithms easier and more systematic, Borodin et al. [17] defined the
problem of metrical task systems (MTS) that generalized many of the well-studied online

problems of this period.

Definition 2.2 (MTS). In the MTS problem we are given a server which can be in one of
N different states and a metric distance function d specifying the cost of switching between
the states. At each time step, a task r arrives, represented by a vector r = (r1,...,rn),
where r; is the cost of processing r at state i. The server has to decide in which state it
will process the task. If it switches from state i to state j and processes the task there,
it incurs a cost d(i,j) + rj. Given an initial state and a sequence of tasks, the goal is to

process all tasks at minimum cost.

For MTS, the deterministic competitive ratio is 2N — 1 [17] and for randomized algo-
rithms the competitive ratio is O(log® N loglog N) [37] and Q(log N) [17].

While the study of the MT'S problem is of interest on its own, its main attribute is that
it generalizes many well-studied online problems, more importantly the k-server problem.
To see this, any instance of the k-server problem can be viewed as an instance of MT'S by
appending one state for any configuration of the algorithm’s k-servers (N = n*). Then,

for any request r; we set process cost 0 to all the server configurations that serve it and



2.5 The k-Server Problem 19

process cost oo to all other configurations. Finally, the distance between two states equals
the minimum cost perfect matching between the corresponding configurations. Other
notable special cases of MTS include fundamental data structure problems such as the
list update problem [71, 65, 2] and the binary search tree problem [72, 3, 49].

Thus, the really interesting question is how to exploit the structure of special instances
for MTS in order to go beyond the Q(N) and Q(log N) bounds for the problem. On this
note, in [30, 31, 61] a slight restriction of the MT'S model was introduced, called metrical
service systems (MSS). Here, each component of each task vector is either 0 or oo.
Therefore, each task can be processed only in a subset of the states, whose coefficient is 0
(we call them feasible states for this task).

For MSS, the deterministic competitive ratio is N — 1 [17] and for randomized al-
gorithms the competitive ratio is O(log® N loglog N) [37] and Q(log N) [17]. This shows
that there is not much improvement when restricting the values of the task vectors.

All of the problems considered in this thesis are special cases of MT'S and M SS with
special structure, where usually a competitive ratio independent of the number of states
is possible. It is easy to see that the paging problem is a special case of both MTS
and MSS: states correspond to all possible sets of pages in the cache and the cost of
switching between states equals the number of different pages between the corresponding
sets. Whenever a page p is requested, all the states that contain p in the cache are feasible
and the rest of the states are infeasible. More importantly for this thesis, the generalized

k-server problem in arbitrary metrics can also be seen as a special case of both MT'S and
MSS.

2.5 The k-Server Problem

The k-server problem is one of the most fundamental and extensively studied problems
in the theory of online algorithms. As we mentioned in the previous section, this problem
is one of the most important special cases of the MT'S and M S.S problems. The problem
was first introduced by Manasse et al. [61] as a far-reaching generalization of various online
problems, the most notable of which is the paging problem. In order to solve the k-server
problem, many generic and powerful techniques have been devised that have led to many

landmark results in the area of competitive analysis.

Definition 2.3 (k-server problem). Formally, the k-server problem is defined in a metric
space M = (U, d), where U is a set of n points and d : U?> — R. The fact that M is a metric
space means that d is a non-negative and symmetric distance function which satisfies the
triangle inequality. There are k distinct servers, initially placed at some points of U. The
mput 18 a request sequence r = ri,r9,...,Tm where ry € U is the point requested at time
t. To serve the request, some server must move to point r¢. The goal is to minimize the

total distance traveled by the servers for serving .

As we have already mentioned, the k-server problem is a special case of Metrical Task
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Systems with N = n* stated (one for every server configuration), distance between states
that is equal to the minimum matching distance between the corresponding configurations
and task vectors of value 0 for configurations that serve the request and 0 otherwise.

The paging problem that we studied in Section 2.3 is also a special case of the k-server
problem on uniform metrics of distance 1. Here, the k-servers correspond to the k slots
in the cache, and the pages correspond to the points. Evicting a page from the cache
and bringing a new one maps to moving a server between the corresponding points at
a cost of 1. Equivalently, we can think of a uniform metric as a star graph on n leaves
corresponding to the n pages, where all edges have length %

In their seminal paper, Manasse et al. [61] showed that the competitive ratio of deter-
ministic algorithms is at least k, even if the metric space contains n = k + 1 points. Since
for the special case of paging, deterministic algorithms of competitive ratio k are known
(for example, the M ARKING algorithm), Manasse et al. [61] and many others have con-
jectured that the true competitive ratio for the k-server problem in the deterministic case
is k. In the literature, this is known as the k-server conjecture.

Qualitatively, this means that general metrics are believed to be no harder than the
simplest possible case of uniform metrics. The k-server conjecture attracted a lot of at-
tention and it has influenced the research on online algorithms over the last three decades.

At the time the k-server conjecture was posed, it was not even known whether a
competitive ratio f(k) depending only on k is possible for general metric spaces. The
initial research focused on special metrics like weighted stars, lines and trees, and for many
cases tight k-competitive algorithms were obtained [29, 17, 39, 57]. For general metric
spaces, Fiat et al. [38] obtained the first f(k)-competitive algorithm, with competitive ratio
O((k!)3). Several improvements followed [6, 48, 14], but the ratio was still exponential in
k.

In a breakthrough result, Koutsoupias and Papadimitriou [56] showed that the Work
Function Algorithm (WFA) is (2k —1)-competitive for every metric space, almost resolving
the conjecture. This remains up to date the best known upper bound on the competitive
ratio of the k-server problem. At time ¢, the WFA algorithm solves (optimally) for any
configuration ¢ € [n]* the problem of serving requests r1, ..., and ending up in configu-
ration gq. Then, it moves to the configuration that has the lowest total cost. In the special
case of n = k + 1, the competitive ratio of the WFA is known to be k, matching the lower
bound for the problem. We refer the reader to [16, 13] for an extensive treatment of the
large body of work on the k-server conjecture.

An enormous amount of research has also been done on randomized algorithms for
the k-server problem. Typically, using randomization, an exponential improvement on the
competitive ratio is possible. However, randomized online algorithms are far less under-
stood compared to the deterministic ones. For the k-server problem, it is believed that,
similarly to the deterministic case, the distance function does not affect the competitive
ratio and an O(log k)-competitive randomized algorithm against oblivious adversaries is

possible in any metric space. In the literature, this is known as the randomized k-server
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conjecture

However, this is known to be true only for very special cases. In particular, for the
paging problem several O(logk)-competitive randomized algorithms are known [1, 36,
62]. Nevertheless, even the simple generalization of the weighted paging problem (which
corresponds to the k-server problem on weighted star graphs) remained open for almost
two decades, until Bansal et al. [9] gave an O(log k)-competitive algorithm using the
primal-dual method.

More recently, polylog(k,n) competitive ratios for general metric spaces were ob-
tained [7, 19]. Those bounds are better than the deterministic competitive ratio 2k — 1
in case n is sub-exponential in k. The techniques developed in those works imply an
O(log k)-competitive randomized algorithm for hierarchically separated trees (HSTs) of
constant depth. Recently, an O(log6 k)-competitive algorithm for any metric space was
claimed [60].

2.6 The Generalized k-Server Problem

The study of the k-server problem has been essential in the development of powerful
techniques for online algorithms. For example, the landmark result of Koutsoupias and
Papadimitriou [56] on the k-server conjecture enabled the belief that the WFA (or the
generalized WFA [23]) performs optimally for any metrical task system. Furthermore,
the work on randomized k-server algorithms enabled the development of powerful tech-
niques using the primal-dual method [22, 21, 8, 7] and more recently the mirror descent
method [19].

Despite this progress, several natural variants and generalizations of the k-server prob-
lem are very poorly understood. In particular, they exhibit very different and intriguing
behavior and the techniques for the standard k-server problem do not seem to apply to
them. Getting a better understanding of such problems is a natural step towards building
a deeper theory of online computation. Below we list some examples of server problems

that are not captured by the standard k-server model:

e The weighted k-server problem [63]. Here, each server has a different weight
wy, . .., wy and the cost of moving the i-th server by distance d is w;-d. This problem
is substantially different from the (unweighted) k-server problem. To get a feel for
the problem, for uniform metrics the competitive ratio is 920" [40, 27, 10], and no

competitive algorithms are known for general metrics.

e The CNN problem [58]. In this problem we are given two servers in the euclidean
plane, the one moving in the horizontal axis and the other in the vertical axis. At
each time step a point (r1,72) is requested, and in order to serve the request we
should either move the horizontal server to point z = r; or the vertical server to

y = ro. This problem models the movement of the crew of a news network in
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Manhattan: whenever an event occurs, a camera should be either in the same street

or in the same avenue.

Motivated by all those variants of the k-server problem, Koutsoupias and Taylor [58]
introduced a substantial generalization of the k-server problem, called the generalized k-
server problem. Here, each server s; lies in its own metric space M; , with its own distance
function d; . A request is a k-tuple r = (r1,79,...,7;) and must be served by moving
some server s; to the point r; € M;.

Note that the standard k-server problem corresponds to the special case when all the
metrics are identical, My = My = ... = M} = M, and the requests are of the form
(r,r,...,r), i.e., the k-tuple is identical in each coordinate. Similarly, the weighted k-
server problem corresponds to the case when the metric spaces are scaled copies of each
other, i.e. M; = wy - M for some fixed M, and the requests have the form (r,r,...,r).
Finally, the CNN problem corresponds to the case where k = 2 and both My, Ms are lines.

Sitters [68] highlights that the existence of an f(k)-competitive algorithm is among the
most intriguing and important open problems in online computation. Despite the intense

interest, this problem is poorly understood.

2.6.1 Results on the generalized k-server problem

Initially, competitive algorithms were known only for the special case of k = 2 [70, 68].
For an arbitrary number of servers k, all of the known results apply to the special cases
of uniform metric spaces or uniform metric spaces of equal weights.

For deterministic algorithms, Koutsoupias and Taylor showed that even when the
metric spaces have n = 2 points and are uniform, the competitive ratio of any deterministic
algorithm is at least 2% — 1. For general metric spaces, the best known deterministic lower
bound is 22 [10], and comes from the weighted k-server problem. This also means that
this lower bound also applies to the special case of weighted uniform metric spaces.

The first f(k)-competitive algorithms for the generalized k-server problem were given
by Bansal et.al. [11]. In their work, they presented an O(k2F)-competitive deterministic
algorithm for uniform metric spaces. The basic idea of their algorithm is to partition
the request sequence to phases, and keep the invariant that the configurations of their
algorithm serve the entire (observed) request history of the current phase. A phase ends
when there isn’t a configuration that serves all the request in the previous phase, which
means that even the optimal solution moves at least once per phase. By showing that the
number of distinct requests in a phase can be at most 2¥, they proved their result.

2O(k)—conrlpetitive deterministic algorithm for

In the same work, they also presented a 2
weighted uniform metric spaces as a natural modification of an algorithm due to Fiat and
Ricklin [40] for the weighted k-server on uniform metrics.

Those are the only known results for deterministic algorithms and are (almost) optimal
due to the already existing lower bounds.

Some work has also been done for randomized algorithms. In [11], Bansal et.al. also
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gave an O(k3log k)-competitive randomized algorithm for uniform metric spaces against
oblivious adversaries. This was then improved to O(k?logk) by Bienkowski et. al. [15],
who also gave an (k) lower bound for randomized algorithms on the uniform metric case.
All of these results applied to the oblivious adversarial setting.

Until this point, memoryless algorithms for the generalized k-server problem had not
been studied; in fact, all of the algorithms that achieve the aformentioned results heavily

rely on memory.

2.6.2 Results on memoryless algorithms

Very recently, Chiplunkar and Vishwanathan [28] studied memoryless algorithms for
the generalized k-server on weighted uniform metric spaces and showed tight = 22 hounds
for any memoryless algorithm. In their work, they defined a potential function that
needs to satisfy some properties in the form of a linear program. Then, by studying the
constraints of this problem they were able to prove the existence of a potential that led to
a doubly-exponential upper bound. Interestingly, the memoryless algorithm that achieves
this bound is not the harmonic, i.e., the algorithm that serves each metric space with
probability that is inversely proportional to its weight. With similar arguments, they also
showed that their analysis was tight; the competitive ratio achieved by their algorithm is
the optimal for memoryless algorithms. All of their results apply to adaptive adversaries.

In this section, we will present the main techniques used in their work in order to

highlight how their results were achieved and how our own analysis differs from theirs.

Model. Recall that in the generalized k-server problem on weighted uniform metric
spaces, each of the k metrics M; has a weight w;, which is the cost of moving a server
on M;. Any memoryless algorithm for this problem is fully characterized by a probability
distribution pi, ..., pr on the metric spaces; p; is the probability that a request is served
by moving a server on M;. Throughout their work, they assume that p; > pa... > pr > 0.

At any time ¢, let s; € [n] denote the position of the algorithm’s server in metric space
M; and a; € [n] denote the position of the adversary’s server in metric space M;. Since
the metric spaces are uniform, the state of the algorithm is captured by the metric spaces
where its server and the adversary’s server occupy the same point, that is S = {i : a; = s;}.
Thus, the state space for this problem is 2[¥I (since S € 2[k]).

Potential A potential function for this problem is a mapping ® : 2¥) — R. Instead of
directly defining an appropriate potential, Chiplunkar and Vishwanathan write down the
conditions of the Interleaving Moves method (see Section 2.2) that have to be satisfied in
order to get an upper bound of ~.

Recall that in the Interleaving Moves method, we wish to prove the following two

properties:

1. If only the adversary moves and pays x, the potential increases by at most v - x.
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2. If only the algorithm moves and pays x, the potential decreases by at least .

As we have shown, these two conditions directly imply an upper bound of v. We will
now see how these conditions translate to the generalized k-server problem on weighted
uniform metrics. Without loss of generality, we can assume that the adversary always
makes requests that are not served by the algorithm’s current configuration, forcing it to
constantly move.

Assume that the adversary moves in some metric M; to serve a request r by setting
a; = r;. If i ¢ S (the algorithm’s server in M; isn’t in point s;) then the state doesn’t
change since r; # s; by assumption. Thus, the potential doesn’t increase. If i € S, then
the new state of the algorithm is S\ {¢} and the adversary pays w;. Thus, condition 1

translates to the following:

B(S\ {i}) - ®(S) <v-w; forall SC[k], ieS (2.1)

Now assume that the algorithm receives request r and has to move. Since the adversary
has already served the request and the algorithm doesn’t serve it, r; = a; for some i ¢ S.

We distinguish between the following three cases:
e If the algorithm moves on metric M;, then the new state becomes S U {i}.

e If the algorithm moves on metric M; for some j ¢ S U {i}, then the state doesn’t

change.

e If the algorithm moves on metric M; for some j € S, then the new state becomes
SA\{7}-

Thus, on expectation the decrease in potential is:

pi(®(S) = @(SU{ih)) + D pi(®(S) )+ pi(®(S) — 2(S\ {5}))

je¢SuU{i} jes

while the expected cost of the algorithm is Z;?:l pjw;. Thus, condition 2 translates to the

following;:

Ea

pi(®(S) = 2(SU{i}) =) pi(@(S\{j}) - Z . forall SC k], i ¢S (2.2)
jeSs j=1
Any potential ® and any ~ that satisfy conditions (2.1) and (2.2) directly imply an
upper bound of « for the problem. By changing variables

(S
P(S) = — k (5)

> j=1Pjw;

we can write the optimal upper bound achieved by this method as the solution of the

following linear program:
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Minimize v subject to:

For all S € 2 and i € S:

Zp]w] (S\ {Z}) (23)

w;
For all S € 2/ and i ¢ S:

pi(¢(SU{i}) )= > pi((5) = é(S\ {j}) = (2.4)

jES

9(0) = 0 (2.5)

where (w.l.0.g.) we have set ¢(()) = 0.

Then, they proceed by determining a feasible solution for this linear program. For
that purpose, they focus on constraints (2.4) and (2.5). This is a set of approximately
k2% linear constraints on 2% variables. One of their key contributions is to show that by
focusing on 2% of this constraints as equations, the solution of this system satisfies all of
the constraints. On a high level, they focus on the "hard” constraints that directly imply

all the others. This constraints are the following:

pi(d(SULi}) = 6(5) = D _pi(9(5) —d(S\{j})) =1 VS #I[k], i = min([k]\ S) (2.6)

JES
with ¢(0) =

Theorem 2.8. The solution of (2.6) exists for any distribution p and weights w and
satisfies constraints (2.4) and (2.5).

Proof. This result relies on a rather technical method called the Gauss-Seidel Trick. Using
the matrix form of linear system (2.6) and the fact that is is strictly diagonally dominant,
one can prove convergence of an iterative algorithm that computes its solution (and thus
the existence of this solution). Then, using a monotonicity property on this solutions, we
are able to prove that the chosen constraints are in fact the “hardest”, in the sense all the

other constraints are also satisfied by the solution. O

Having achieved feasibility, they then focus on proving specific properties and bounds

for the solutions of (2.6). We quote the most important ones:

Theorem 2.9 (Supermodularity). For any S C 2I¥l and i,j ¢ S, the solutions of (2.6)
satisfy

P(SU{i}) +o(SU{j}) < o(SU{i,j}) + ¢(5)
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Theorem 2.10 (Bounds). For any S C 2% and i = min([k] \ S), the solutions of (2.6)
satisfy

pi(#(S U{i}) — ¢(5)) < Cs
where the constants Cg are defined recursively by the formula Cy = 1 and Csg = 1 +
> jes Cs\up-1)-

We are now ready to determine the upper bound. From constraints (2.3), the best

upper bound (when the potential is defined as the solution of (2.6)) is given by

S, 1€8 (I

k .
= (5 pyy) ma, 28OS\
j=1

Due to Theorem 2.9, this expression becomes:

k . k .
V=3 ¢([K]) — o([F]\ {2}) _ (> pyw;) pi(o([K]) — o([K] \ {i}))

pjw;) max max
=" e w = i€[k] piw;
and by Theorem 2.10, we get
k
Cluniy
v < pjw;) max
(S p gy Tl

Thus, by selecting p; = %f”, the achieved competitive ratio is upper bounded by:

k
> Copgiy = Cpg — 1=

Jj=1

where ~; is the solution to the recursion v, = 7/%—1 + 3vk—1 + 1 with initial condition
=1

By the definition of 7, it is not hard to prove that this upper bound is doubly-
exponential to k. Of course, this bound is achieved by a specific potential and specific
probabilities p; = C[%\Z{’} Changing the potential or the algorithm could give a better
upper bound for the problem. However this is not the case, as they prove next.

Specifically, they complement their upper bound result by proving that ~; is a lower
bound for the competitive ratio of any memoryless algorithm for the generalized k-server
problem on weighted uniform metric spaces. In fact, they study the weighted k-server
problem, which is a special case of the generalized k-server problem on weighted uniform
metric spaces where the requests are in the form of (r,...,r). Clearly, any lower bound
for weighted k-server immediately transfers to generalized k-server in weighted uniform
metrics. In order to get the lower bound, they construct an adaptive online adversary and
by using many of their results shown for the upper bound, they are able to show that their

analysis was tight and that ~; was in fact the optimal competitive ratio for their setting.
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This work aims to study the case of memoryless algorithms for uniform metrics and
improve the doubly-exponential bound of Chiplunkar and Vishwanathan to a factorial
bound. This is mostly done by using a different analysis that heavily relies on specific
classes of Markov Chains that we can study. Furthermore, we extend some of our results
to the oblivious case, which had not been done before for memoryless algorithms for the

generalized k-server problem.






Chapter 3

Random Walks

In this chapter, we provide the reader with the background on random processes that is
necessary for the analysis of memoryless algorithms for the generalized k-server problem.
We focus on the stochastic model of Markov Chains and study the properties of a random
walk on this model and several of its sub-classes.

In Section 3.1, we give the formal definition of a Markov Chain and state the basic
properties of this model. Then, in Section 3.2 we focus on a special type of Markov Chains,
called Birth-Death Chains, and prove Theorem 3.3 that states the Fxpected Extinction
Time of a random walk on this model. Finally, in Sections 3.3 and 3.4 we define two novel
sub-classes of Birth-Death Chains that we refer to as Harmonic and Binary Chains and
compute their Expected Extinction Times in Theorems 3.4 and 3.5 respectively. As we
show in Chapter 4, these random processes capture the competitive ratio of the Harmonic
Algorithm for the generalized k-server problem and thus, they will be used extensively in

our analysis.

3.1 Markov Chains

A random (or stochastic) process [66] can be viewed as a sequence of random variables
that evolve in some random but prescribed way. A typical random process X is a family
{X; : t € T} of random variables that are indexed by some set 7. If T" is a discrete set
(e.g. the set of integers Z) then the process is called a “discrete-time” process. The set
X = {i: Xy = i} of all the possible values of X, is called the state space of the random
process. We focus on random processes with discrete state spaces.

In the context of this thesis, we are interested in a special class of discrete-time and
discrete-space random processes called Markov Chains [46, 47]. A Markov Chain is a
random process where the probability of an event depends only on the state attained in

the previous event. Formally:

Definition 3.1 (Markov Chain). A Markov Chain is a random process X of discrete
state space S and discrete index set T = {0,1,2,...} that satisfies the following Markov

29
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condition:
]P(Xt = S|X() = JJO,Xl =Ty ,Xt_l = $t_1) = ]P)(Xt = 5’Xt—1 = $t_1)
forallt >1 and s,xg,..., 241 € X.

Markov Chains, named after the Russian mathematician Andrey Markov, have been
extensively studied in the literature due to their nice properties and their applications [75,
24, 78] in numerous fields such as economics, statistics, physics, biology, information theory
and machine learning.

We are interested in homogeneous Markov Chains, where the probabilities of transi-

tioning from some state s € X to some state s’ € X don’t depend on time.

Definition 3.2 (Homogeneous Markov Chain). A Markov Chain X is called homoge-
neous if
P(X; = 8'| X1 = 5) = P(X1 = §'| X = 5)

orallt>1 and s,s' € X.
[

A homogeneous Markov Chain can be fully characterized by an initial state Xg € X

and a transition matrix P = [p;;] such that
P(Xt = jl X1 = i) = pij

for all ¢ > 1. From now on, unless stated otherwise, when we refer to a Markov Chain we
will assume that it is homogeneous.
We will now proceed to classify the states of a Markov Chain based on the transition

matrix P of the chain.

Definition 3.3 (Recurrent and Transient States). A state i € X is called recurrent (or
persistent) if
PEt>0:X;=i|Xo=1)=1

which is to say that the probability of eventual return to state i, having started from it, is

1. If this probability is strictly less than 1, then the state i is called transient.

In order to give another useful classification of the states, we need to define the following

quantity:

Definition 3.4 (Mean Recurrence Time). For any state j € X, let T} be the random
variable defined as T; = min{t > 1: X; = j}, that is the time of the first visit to state j.

Then, the mean recurrence time of state j is defined as
pj = E(T;| X0 = j),
that is the expected time to visit j for the first time, starting from it.

Based on the mean recurrence time of a recurrent state, we can classify it as either

null or positive.
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Definition 3.5 (Null and Positive States). A recurrent state i € X is called null if
i = 00; if pu; < oo then it is called positive.

Finally, we need to define an irreducible set of states.

Definition 3.6 (Irreducible Set of States). A set of states S C X is called irreducible if
for any states v, € S, the probability that we visit state j starting from state i is non-zero.

If the state space X is irreducible, then we say that the Markov Chain is irreducible.

We are now ready to answer the question of how does a Markov Chain behave after
a long time has elapsed. One of the most important properties of Markov Chains is that
under mild assumptions on their structure, the probability of being in a state ¢ € S as
t — oo converges to a fixed value that depends only on the transition matrix P and not

on the initial state.

Definition 3.7 (Stationary Distribution). The vector w is called a stationary distri-
bution of a Markov Chain with state space X and transition matriz P if it has entries
(mj :j € X) such that:

1. TFjZOVjGX,

3. m=nP.

Finally, we conclude with the following theorem that specifies the conditions under
which a Markov Chain has a stationary distribution and associates its mean recurrence

times with its stationary distribution.

Theorem 3.1. An irreducible chain has a stationary distribution w if and only if all the
states are positive recurrent; in this case, w is the unique stationary distribution given by

m = 7mP and it holds that ; = é for any state j € X.

3.2 Random Walks on Birth-Death Chains

For the purposes of this thesis, we only need to study a special class of Markov Chains
called Birth-Death Chains [76]. This is a type of chain that limits transitions from a state
only to its “adjacent” states and is characterized by two terminal states X =0 and X =k

from which there is only one possible next state.

Definition 3.8 (Birth-Death Chain). A Markov process with state-space X = {0,1,...,k}
for some k € N is characterized as a Birth-Death Chain if its transition matriz P = [Py]

has the following form:

Di J=1+1
P’i': & j Z VZ,]GX
J
1_pz_QZ ] =1
0 ,otherwise
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where qo = 0 and pr, = 0 for the end-points of the chain. FEquivalently, a Birth-Death
Chain can be defined as a finite Markov Chain with three-diagonal transition matriz. A

graphical representation of a Birth-Death Chain is given in Figure 3.1.

1 —po Il=-p—aq l—pr—q L —pe1—qra 1 —q
ol P qr Ges1 Qr—1 qk
o oAl i O
\_/v \_/v
Po Y41 Pe—1 Pbe Pr—2 Pk—1

Figure 3.1: A Birth-Death Chain

We refer to ¢; as the forward probability of state ¢ and to p; as the backward probability
of state 7. Furthermore, a Birth-Death Chain will be called absorbing on the state X =0
if po = 0, which means that the random process will remain on the state X = 0 if it ever
reaches it. We are interested in Birth-Death Chains where ¢;, p; > 0 foralli € {1,...,k—1}
and ¢ > 0; in that case, we know that with probability 1 the state 0 will be visited at
some time [59].

This chain’s name is due to the fact that its state space can be used to model the size
of a population of samples; in that case, the forward probabilities correspond to the death
of a sample and the backward probabilities correspond to the birth of a sample. If state
X = 0 is reached, then everyone in the population is dead and obviously no one else can
die. Furthermore, we assume that there are some limitations that don’t allow the number
of samples in the population to exceed some fixed size k € N. Finally, the state X =0 is
usually considered to be absorbing, since a population without members can’t reproduce
to increase its size. Due to this natural interpretation, the model of Birth-Death Chains
has applications in many different areas such as biology [64, 67], queuing systems [26] and
economics [73].

We will now proceed to compute the stationary distributions and the Expected Extinc-
tion Time of a Birth-Death Chain. While these results are by no means novel (e.g. [51]),
the common definition of a Birth-Death Chain considers a (countably) infinite state space
X = N while we are interested in Birth-Death Chains with finite state spaces. It is thus

useful to prove the following results instead of just stating them.

3.2.1 Stationary Distribution of Birth-Death Chains

We begin by computing the stationary distribution of any Birth-Death chain. For
this section we will assume that none of the states are absorbing; that is ¢;,p; > 0 for
all ¢ € {0,1,...k}. Under this assumption, it is clear that all the states are positive
recurrent and the chain is irreducible. Thus, from Theorem 3.1 we know that the stationary

distribution 7 of the chain exists and is unique.

Theorem 3.2. For any Birth-Death Chain with state space X = {0,1,...,k} such that

the forward and backward probabilities satisfy p;, q; > 0, the stationary distribution is given
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by
1

- k  popi-pe—1
1+Z€:1 q1q2-qe

0

on state 0 and
) — Pe—1Pe—2 - Po

deqe—1-"-q1

0
on any other state £ € X\ {0}.

Proof. We could compute the distribution m by solving the linear system of equations
m = P, where P is the transition matrix of the Birth-Death Chain. However, the analysis
can be simplified by a simple argument that exploits the special structure of those chains.

Fix any two adjacent states i, (i +1) € X. As t — oo, we know that the probability of
being in a state converges to the corresponding probability of the stationary distribution,
and thus X; = ¢ with probability m; and X; = ¢ + 1 with probability m; ;. Now, imagine
cutting the chain between those two states. As the random process evolves, the number
of times that the cut is crossed from the left to the right (with probability m;p;) must
become equal to the number of times that the cut is crossed from the right to the left

(with probability m;+1gi+1). This simple observation gives that for all ¢ € {0,1,...,k—1}:
TiPi = Ti+14i+1

By recursively solving the above equation, we immediately get that

_ Pe—1Ppe—2---Po
T =—"""""—

T Ve{l,2,....k 3.1
Qo1 q1 { J (3-1)

Combining (3.1) with the fact that Z?:o mp = 1, we get that
1

- k  popi-pe—1
1+Z€:1 q1q2---qe

o (3.2)
With equations (3.1) and (3.2) we can compute m; for any ¢ € X and the theorem
follows. O

3.2.2 Expected Extinction Time of Birth-Death Chains

We are now ready to formally define and compute the Expected Extinction Time
(EET) of a Birth-Death Chain with an absorbing state X = 0; this is in fact the purpose
of this chapter - to derive a general expression of this quantity and then apply this result
to specific types of Birth-Death Chains that are deeply tied with the competitive ratio of
the Harmonic Algorithm for the generalized k-server problem on uniform metrics.

If a Birth-Death Chain has an absorbing state X = 0, then it is natural to want to
compute the expected time that this state is reached. Clearly, this quantity depends on
the initial state of the chain. If the states of the chain represent the size of a population,
then this can be seen as the expected time that the population becomes extinct; thus the

name Expected Extinction Time.
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Definition 3.9 (Expected Extinction Time). Consider a Birth-Death Chain with state
space X ={0,1,...k} and a single absorbing point X = 0 (pp = 0). Then, for any state
¢ € X, the Expected Extinction Time (EET) of the chain is defined as:

h(¢) =E(N|Xo=¥)
where N = ming>o{X: = 0}.

For the rest of this section we show how to compute the EET of a Birth-Death Chain

and prove the following theorem:

Theorem 3.3. For any Birth-Death Chain with states X = {0,1,...k} and absorbing
state X = 0, the Ezxpected Eztinction Time of any initial state £ € X \ {0} is given by:

l—
b1 b1 pj 1
R e S

j =i+1
with h(0) =

Proof. Using Bayes’ Rule [77] on the conditional expectation [74] h(£), we get that for any
le X:

=1+ pih(j) = 1+ qeh(f = 1) + peh(£+ 1) + (1 — gr — po)h(f)
JjeX

and by re-arranging this equation, we get:

(pe + qo)h(€) =1+ qoh(f — 1) + poh(f +1) Ve {1,2,...,k} (33
h(0) =0 '

Equation (3.3) is a second-order non-homogeneous linear recurrence relation with vari-
able coefficients [45]. First of all, in order to solve it we need a second initial condition
h(1); we will use the properties of the Markov Chain in order to compute it. Then, we
can solve this recurrence relation on the differences A(¢) = h(¢+ 1) — h(¢) instead of h(¢);
this reduces it to a first-order non-homogeneous linear recurrence relation with variable

coefficients that is much easier to solve.

Computation of initial conditions. A second-order recurrence relation typically re-
quires two initial conditions to be solved; however (3.3) only has h(0) = 0. Thus, we need
a way to compute h(1) before trying to solve the recursion.

This can be done by using the stationary distribution of a Birth-Death Chain similar
to the one we study. Since state X = 0 is absorbing (pyp = 0), the stationary distribution is
not defined for our chain. However, imagine a different Birth-Death Chain that is exactly
the same but with py = 1. Then, this chain is clearly irreducible and by Theorem 3.2 the
probability of the stationary distribution on state X =0 is

1

k  popi-Pe—1
1+Z@=1 q192°-qe

T =
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By Theorem 3.1, this immediately gives that the first recurrence time of state 0 is

_ _1+ZP1 “Pe—1

q192 -

since pg = 1.
Observe that g = 1+ h(1). To see this, since pg = 1 we know that the first transition
from state 0 will be to state 1. Then, we can set pg = 0 like before and the (expected)

time until state 0 is reached again is given by h(1). This observation immediately yields

Zpl *De—1 (3.4)

q192 -

and now that we have a second initial condition, we can proceed to solving recurrence
relation (3.3).

Solving the recurrence relation. As we mentioned, instead of solving the second-

order recurrence relation (3.3), we can solve a first-order recurrence relation. Define
A(l) =h(l+1)—h(¢)

for all £ € {0,1,...,k —1}. Then, (3.3) can be written as:

(3.5)

PAWE) =1+ qA(—1) Ve {l1,2,... k—1}
A(0) = h(1)

This is a first-order non-homogeneous linear recurrence relation with variable coeffi-

cients that is much easier to solve. Indeed, observe that:

1
Ay = —+ &
bPe D¢

1 _

4 qe + qeqe 1A(£—2)
Pe  DePe—1 DPePe—1
1 _ _1qQo—

+ 4qe i dedi—1 + qeqe—19¢ 2A(£—3)
DPe  DePe—1 DPePe—1Pe—2  PePe—1Pe—2

A(C—1)

Z qeqe—1 - + qlmqu(O).
pepé 1° -1 pb1---Pe

Finally, since A(¢) = h(¢+1) — h(¥), using telescoping sums and the fact that ~2(0) = 0
we have h({) = Zf;é A(7). Combining this with equations (3.4) and (3.6), the theorem
follows. O
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3.3 Random Walks on the Harmonic Chain

In this section, we define and compute the EET of a special type of Birth-Death
Chain we refer to as the Harmonic Chain and we will use in the analysis of the Harmonic

Algorithm for the generalized k-server problem.

Definition 3.10. The Harmonic Chain is a class of Birth-Death Chains with state
space X = {0,1,...,k} for some k € N, absorbing state X = 0, forward probabilities
Q = % and backward probabilities py = %. A graphical representation of a Harmonic

Chain is given in Figure 3.2.

=

Figure 3.2: The Harmonic Chain

Theorem 3.4. The FExpected FExtinction Time of a Harmonic Chain with state space
X ={0,1,...,k} for some k € N on any initial state ¢ € X is given by

where ,, is the harmonic recursion defined as the solution of o, = 1+ (n — 1)ay,—1

with ovp = 1.

Proof. For ¢; = % and p; = %, from Theorem 3.3 we get that for any ¢ € {1,...,k}:

el
|
N

%

ﬂE:; (3.7)

¢ j=0

| =

h(l) =k + k!

<

k—2
+k Z
—

7

<
I
o

We need a convenient way to write the sums of inverse factorials. By definition of the

harmonic recursion, we have:
1
Ozg=1+(£—1)ag,1:1+(€—1)+(€—1)(€—2)a572:...=(ﬁ—l)!z,—

which gives



3.3 Random Walks on the Harmonic Chain 37

Substituting (3.8) on (3.7), we get

h(l) = k+ R O"“ 1 Hk Z @it

i=k—{
k—2

=k(l+ (k= Dap_1) +k Y i

i=k—¢
k—2
= k‘Oék; + k Z Q41
i=k—{
k
=k Z «;
i=k—f41
as stated by the theorem. ]

We conclude this section by making some observations on the EET of the Harmonic

Chain that will be useful in the analysis of Chapter 4.
Observation 3.1. The EET h({) of the Harmonic Chain is strictly increasing on £.

Proof. For any ¢ € {1,2,...,k}, we have

k k
hO) —h(t—1)=k > ai-k Y o=kap_ep1 >0

i=k—{+1 i=k—{+2

since o; > 0 for all 4 € N. O

Observation 3.2. For any ¢ € {1,2,...,k} the EET of the Harmonic Chain is order of
k!, that is h(£) = O(k!).

Proof. Clearly, the harmonic recursion o; = 1 + (i — 1)ay—; is (strictly) increasing on i.

Thus, we get:

k—1

=kap+k Z o

i=k—l+1
< kap+k(l—1)ak_q
< kap+ k(k—1)ag_1
=koy + k(o — 1)
< 2kay,

By the closed form expression of the harmonic recursion (3.8) we have

W
,_.

~1

ak:(k—l)' il

7

<e(k—1)

I
o
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and thus, we get that for any ¢ € {1,...,k}, h(¢) < 2ek!. Finally, from observation 3.1 we
have that h(¢) > h(1) = kay = k! Zf:_ol & > kl. On conclusion, we get that h(¢) = ©(k!)
forall ¢ € {1,...,k}. O

Observation 3.3. For any ¢ € {1,2,...,k}, %f) < h(1) in the Harmonic Chain, with the
equality holding only for £ = 1.

Proof. Fix any £ € {2,3,...,k}. Then:

h(f)  koy +k Zf:_k?,g aiy1 ko +k(0—Dag_1  kag + (£ — 1)kay
- 7 < 7 < i -

where both inequalities hold from the fact that «; is strictly increasing. O

3.4 Random Walks on the Binary Chain

In this section, we define and compute the EET of another special type of Birth-Death
Chain we refer to as the Binary Chain and we will use in the analysis of the Harmonic

Algorithm for the generalized k-server problem for metric spaces with n = 2 points.

Definition 3.11. The Binary Chain is a class of Birth-Death Chains with state space
X ={0,1,...,k} for some k € N, absorbing state X = 0, forward probabilities q; = % and
backward probabilities py = %. A graphical representation of a Binary Chain is given in
Figure 3.5.

L 2 4 ol k=1
: A/—k\ : A/—k\ - !
k=1 k—t+1 k=t 2 1
k k k k k

Figure 3.3: The Binary Chain

Theorem 3.5. The Fxpected Extinction Time of a Binary Chain with state space X =
{0,1,...,k} for some k € N on any initial state £ € X \ {0} is given by

/-1 1
h(t) =2F -1 +Z(,€11)(2k -3 <§))
i=1 \ i J=0

with h(0) = 0.

Proof. Using ¢q; = % and p; = %, we compute:

pwp2-opi _ (k=1 (k=2)...(k—i)- k=" _G—nf _ (k-1
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Using equation (3.9) on Theorem 3.3, we get that for any ¢ € {1,2,...,k}:

k (k 1 k (k 1)
he)=k+) - + ]J
i=2 i ) j=i+l Tk
k /—1 1 k i
= ; <7,> + v (k;l) ];rl (])

Using the identity > (?) = 2" of the binomial coefficients, we finally get

/—1
h(e) =28 —1 +Z(,€11)(2’f - ZZG))
=1 7

J=0

which concludes the proof of the theorem. O

As we did for the Harmonic Chain, we conclude by making some observations on the
EET of the Binary Chain that will be useful in the analysis of Chapter 4.

Observation 3.4. The EET h({) of the Binary Chain is strictly increasing on £.

Proof. Clearly, h(1) =2¥ — 1 >0 = h(0). For any ¢ € {2,...,k}, we have

_ 1) = 1 k_e_l k 1 kE_ ok—1
h(€) — (¢ 1)_(,;:11)(2 jz:;<j>)>(’§‘i)(2 2F=1y > 0

O
Observation 3.5. For any £ € {1,2,...,k} the EET of the Binary Chain is order of 2%,
that is h(¢) = ©(2F).

Proof. From Observation 3.4, it suffices to show that h(1) = Q(2¥) and h(k) = O(2 )
Since h(1) = 2¥ — 1, the first part clearly holds. Now, we focus on bounding h(k).

have:

h(/-c)2k—1+§1(2k—§:<k>)<2k+2’f§ ! (3.10)
- i=1 ('“Zl) 7=0 J i=1 (kil) .

For the binomial coefficients, we know that (f) > (5) for any i € [2,£ — 2]. Thus

-1

! 2 1 2 k-4 2 2k — 8
; (’ﬁl) _1+k_1+¢§:; (kzl) §1+k_1+(k51) _1+k—1+(k—1)(k:—2) (3.11)

Combining (3.10) and (3.11), we get

2-2F  2.2F(k —4)

iy =6

hik) <2-2F+

for sufficiently large k, and thus h(k) = O(2%), concluding the proof. O]






Chapter 4

Memoryless Algorithms for the

Generalized k-Server Problem

In this section we present the novel results of this thesis about memoryless algorithms
for the generalized k-server problem on uniform metrics. As we have already mentioned,
a memoryless online algorithm responds to a request based only on the request and its
current configuration. In the context of the generalized k-server problem, an algorithm in
configuration ¢ € [n]¥ receives a request r and moves to a new configuration ¢’ in order to
serve it. It makes sense for memoryless algorithms to be lazy, that is to move only when
the new request is not served and to do so by moving only one out of the k servers.

Thus, upon receiving a request that is not served by its current configuration, a mem-
oryless algorithm for the generalized k-server problem picks a metric space and move its
server there to match the request. Furthermore, due to the symmetry of the uniform case
(all metric spaces are identical) the labels of the requested points shouldn’t matter.

These observations can be summarized in the following definition:

Definition 4.1. A memoryless algorithm for the generalized k-server problem on uniform
metrics is fully characterized by a distribution p = [p1,...,px| such that Z§:1 p; =1 and
p; > 0 for all i € [k]. Whenever the algorithm is at a configuration q € [n]* and receives

a request r, one of the following happens:
1. If q serves r (i.e., 3i: r; = q;) then the algorithm doesn’t move.

2. If q doesn’t serve r, then the algorithm randomly picks a metric M; based on its
distribution p and mowves its server in M; from point q; to point r; in order to serve

the request.

Since all the metric spaces are equivalent, the only “reasonable” memoryless algorithm
is the Harmonic Algorithm, i.e., the algorithm that has uniform distribution p; = % for all
i € [k]. Furthermore, it is trivial to show that if p; = 0 for any 4 then the algorithm is not

competitive, thus we assume that p; € (0,1) for all i € [k].

41
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Our contribution is determining the competitive ratio of memoryless algorithms for
the generalized k-server problem on uniform metric spaces based on their distribution p,
in different adversarial settings.

We can summarize our results with the following theorems that were stated in the

introduction:

Theorem 4.1. The Harmonic Algorithm for the generalized k-server problem on uniform
metrics is (k- ax)-competitive against adaptive online adversaries, where ay, is the solution

of the recursion o, = 1+ (k — 1)ag_1, with a; = 1.

Theorem 4.2. The competitive ratio of any randomized memoryless algorithm for the
generalized k-server problem on uniform metrics with n > 3 points is at least k- oy, against

adaptive online adversaries.

Theorem 4.3. The competitive ratio of the Harmonic algorithm for the generalized k-
server problem on uniform metrics with n = 2 points is O(2%) against adaptive online

adversaries.

Theorem 4.4. The competitive ratio of the Harmonic algorithm for the generalized k-
server problem on uniform metrics with n > 2k + 1 s at least k - ap against oblivious

adversaries.

Theorem 4.5. The competitive ratio of the Harmonic algorithm for the generalized k-

server problem on uniform metrics with n = 2 is Q(2F) against oblivious adversaries.

For the rest of this chapter, we will be proving all of these theorems.

4.1 Adaptive Upper Bound for the Harmonic Algorithm

In this section we prove Theorem 4.1. More precisely, we use a potential function argu-
ment to show that for any request sequence, the expected cost of the Harmonic Algorithm

is at most k - ay, times the cost of the adversary.

Organization. In Section 4.1.1, we define a potential between the Harmonic Algorithm’s
and the adversary’s configurations that is inspired by random walks on a special type of
Markov Chains [47] we refer to as the “Harmonic Chain”. The required background of
Markov Chains has already been presented in Chapter 3. Then, in Section 4.1.2 we will use
this potential to prove the upper bound of Theorem 4.1 with a standard potential-based

analysis.

4.1.1 Definition of the Potential Function

We begin by presenting the intuition behind the definition of our potential function.
Our first observation is that since (i) the metrics are uniform with equal weights and (ii) the

Harmonic Algorithm does not distinguish between metrics since it has equal probabilities
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%, it makes sense for the potential between two configurations p,q € [n]* to depend only
on their Hamming distance and not on the labels of their points. In order to come up with
an appropriate potential, we need to understand how the Hamming distance between the
Harmonic Algorithm’s and the adversary’s configurations evolves over time.

Imagine that the adversary moves to an “optimal” configuration of his choice and then
it serves requests until the Harmonic Algorithm reaches this configuration as well. Since
the adversary must serve all the requests using a server from its configuration, we know that
for each request r = (r1, ..., L), at least one of the requested points r; should coincide with
the i-th server of the adversary. In that case, with probability % the Harmonic Algorithm
moves in metric M;, thus it decreases his Hamming distance from the adversary by 1.
On the other hand, assume that ¢ servers of the algorithm coincide with the ones of
the adversary. Then, with probability % it would increase its Hamming distance from
the optimal configuration by 1. This shows that the evolution of the Hamming distance
between the Harmonic Algorithm’s and the adversary’s configurations is captured by a

random walk on the following Markov Chain that we refer to as the Harmonic Chain.

=1 k=2 k=1
1 k k k

1 1 1 1 1 1

k k k k k k

A/_\
~_ W
k=1 k—0+1 k=t 2 1
k k k k %

Figure 4.1: The Harmonic Chain - Here, the states of the chain denote the Hamming

distance between the configurations of the Harmonic Algorithm and the adversary.

Recall that we have already formally defined and studied this class of Markov Chains
in Section 3.3 of Chapter 3. In the scenario we described above, the expected movement
cost of the Harmonic Algorithm until it reaches the adversary’s configuration with an
initial Hamming distance of ¢ would be E[N| Xy = ¢] where N denotes a random variable
defined as N = min,;>o{X; = 0} and X; denotes the state of the Harmonic Chain at time
t. As we discussed in Section 3.2 of Chapter 3, this quantity is known as the Ezpected
Extinction Time (ETT) [47] of a Markov Birth-Death Chain and we use h(¢) to denote
it. Intuitively, h(k) should immediately give an upper bound on the competitive ratio of
the Harmonic Algorithm.

The Harmonic Chain has already been studied in Chapter 3, where we proved The-
orem 3.4. For the convenience of the reader, we re-state the theorem without the proof

here:

Theorem 4.6. For any initial state £ € {0,1,...,k}, the EET of the Harmonic Chain is
given by
k
hO) =k Y o
i=k—l+1

where «; is the solution to the recursion c; = 1+ (i — 1)a;—1.
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We have already shown that h(¢) is strictly increasing (Observation 3.1) and that
h(f) =©() Ve e {1,...,k} (Observation 3.2).

Suppose that the adversary moves ¢ servers whenever the algorithm reaches its con-
figuration and then it doesn’t move until the algorithm reaches its new configuration.
Intuitively, the competitive ratio would be % which is maximized for £ = 1 by Observa-
tion 3.3. This means that h(1) = k- ay is an upper bound for the competitive ratio of the
Harmonic Algorithm. While this intuition is very important, it is not enough to formally
prove Theorem 4.1. However, motivated by it, we will define the potential between two

configurations of Hamming distance ¢ as h(¢). Formally,

Definition 4.2 (Potential Function). The potential between two configurations p,q € [n]”

1s defined as
¢(p,q) = h(du(p, q))-

4.1.2 Bounding the Competitive Ratio

In this section, we will prove the upper bound of Theorem 4.1 by using the potential
we defined in Section 4.1.1. Fix any request sequence 7 = [r!,... rT] for any T € N such
that 7 € [n]* Vt € [T]. Let ¢' € [n]* be the configuration of the Harmonic Algorithm and
At € [n]* the configuration of the adversary after serving request rt. Also, let ¢° = A be
the initial configuration of the instance. We will prove that when the adversary moves x
servers the increase in potential is at most k - a -  and when the Harmonic Algorithm
moves one server, the expected decrease in potential is at least 1. Then, using these
properties, we will prove Theorem 4.1.

To simplify the analysis, we make the following observation for the potential function.

Observation 4.1. For any £,¢' € {0,1,...,k} such that £ < ¢ it holds that

-1

W) =h(t) =k g
=0

Proof. By telescoping we have

-1 -1 k k -1
W) =h(0) = (hi+1) =h@) =Y (k D aj—k > a)=ky o
i=t i=0  j=k—i j=k—i+1 i=t
where the second equality holds by the definition of the potential. O

Using this observation, we are now ready to prove the following lemmata:

Lemma 4.1 (Adversary Moves). For any t € {1,...,T} it holds that
gﬁ(qtil,flt) _ (ﬁ(qtil,Atil) <k- Qg - dH(.At,.Atil).

Proof. Let £'~! = dy(¢'~', A*1) and ¢ = dy (¢!, A?). Clearly, /=1, 0t € {0,1,...,k}.
Since the potential h(¢) is strictly increasing on £, if £/ < ¢'=! then this means that the
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adversary’s move didn’t increase the potential and then the Lemma follows trivially. Thus,

we only need to prove the Lemma for 0 < ¢/~ < ¢! < k. We have:

-1
W) = bl =k Y a; < (0 — 07 kay, (4.1)

i=pt=1
where the equality is given from Observation 4.1 and the inequality from the fact that
the recursion ay is increasing. Thus, we have proven that ¢(¢~!, AY) — ¢(¢'~1, A1) <
(¢t — ¢*=1) . k - ay,. To conclude the proof of the Lemma, by the triangle inequality of the

Hamming distance we have

i (g1, A D) 4 dyg (A1, AY) > d (¢, AY
which gives ¢! — (!=1 < dy (A1, AY). Combined with (4.1), we get the Lemma. O
Lemma 4.2 (Harmonic Moves). For any t € {1,...,T} it holds that

Elp(¢" ", A" — ¢(¢', AN] > du(d" . ¢").

L and the Lemma fol-

Proof. If the Harmonic Algorithm serves the request, then ¢* = ¢'~
lows trivially. Otherwise, by definition, it moves to a configuration ¢* such that dg (¢'~!, ¢') =
1. Let ¢! = dy(q'=1, A) and ¢t = dy(q, AY). Also, let C = |{i : Al = rt}], i.e., the
number of the adversary’s servers that could serve the current request. By definition, A
must serve r! which gives C' > 1. Furthermore, ¢! doesn’t serve the request but A* does,
and thus /=1 > 1.

Recall that the Harmonic Algorithm randomly moves at a metric with equal probabil-
ities in order to serve a request. If it moves in any of the C metrics where the adversary
serves the request, we get ¢/ = ¢/~1—1 and the potential decreases with probability <. If it
moves on any of the k—¢~! metrics where ag = qf_l, we get £¢ = (*~1 4+ 1 and the potential
increases with probability k_f:fl. In any other case, we have ¢/ = ¢*~! and the potential
doesn’t change. To simplify the notation, we define j € {1,...,k}asj=k—£¢"1+1. We

have:

El¢(¢'~", A") = é(q', A")] = E[R(£7) — h())]
C

= T = b - 1) +

=Coj—(J = Daj
=Caj — (o —1)=(C-1)aj +1
>1=dn(¢"".q")

k-

——(h(AY) — R 1))

where the first equality follows from the definition of the potential, the second equality from
the possible changes in the Hamming distance between the algorithm and the adversary,
the third equality follows from Observation 4.1 and the definition of j, the fourth equality

follows from the definition of the recursion oy and the inequality follows from C' > 1. [
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Proof of Theorem 4.1 We are now ready to prove Theorem 4.1. By combining lemmata

4.1 and 4.2, we get that for any ¢ € {1,...,T}, the expected difference in potential is
E[A¢") = E[¢(¢", A") — o(¢" ", ATH)] < kapdu (A", A7) —du (™, ¢")

Now, let ADV = Zthl dp(Af, A1) be used to denote the total cost of the adversary
and ALG = Zle dr(qt,q"™1) be used to denote the expected cost of the Harmonic
Algorithm. Summing over all ¢ € {1,2,...,T} we finally get

T
DAY =", AT) = ¢(¢°, A°) < kay - ADV — ALG
t=1

and since A° = ¢° (i.e., #(¢°, A%) = 0) and ¢(¢", AT) > 0, we get that ALG < k-ay-ADV,

which concludes the proof of Theorem 4.1.

4.2 General Adaptive Lower Bound

In this section we prove Theorem 4.2. More precisely, we construct an adversarial
request sequence against any memoryless algorithm and prove that its competitive ratio
is lower bounded by the solution of a linear system of 2¥ equations. Since solving this
system directly is possible only for easy cases like k = 2 or kK = 3, we show how to
get a lower bound for the solution (similarly to the approach taken by Chiplunkar and
Vishwanathan [28] for weighted uniform metric spaces) and thus the competitive ratio of

any memoryless algorithm.

Organization. In Section 4.2.1 we formally define the adversarial request sequence and
the intuition behind it. In Section 4.2.2 we state the linear system of equations that our
request sequence results to and prove a lower bound on its solution. This leads to the

proof of Theorem 4.2.

4.2.1 Constructing the adversarial instance

Before we state the adversarial instance, it is useful to give the intuition behind it. It
is natural to construct an adversary that moves only when it has the same configuration
with the algorithm.

In fact, we construct an adversary that moves in only one metric space: the one that
the algorithm uses with the smallest probability (ties are broken arbitrarily). Recall that
in the analysis of the harmonic algorithm from Section 4.1, the competitive ratio is also
maximized when in each “phase” the adversary starts with only one different server than
the algorithm and does not move until the configurations (of algorithm and adversary)
match (Observation 3.3).
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Let ALG be any online algorithm and ADV be the adversary. Consider a “phase” to
be a part of the request sequence where in the beginning the configurations of ALG and
ADYV coincide and it ends when ALG matches the configuration of ADV. Since ADV
must serve all requests, in each request r one point r; is such that a; = r;; we say that
the i-th position of ADV is revealed in such a request. Thus every request will reveal
to the algorithm exactly one of the positions of the adversary’s servers in some metric
space M;. The main idea behind our lower bound instance is that, in each request, out
of the metric spaces that servers of ALG and ADV differ, we reveal to the algorithm
the position of ADV in the metric that ALG serves with the highest probability; this
implies that whenever ALG and ADV differ by only one server, this will be in metric M.
Intuitively, this way we exploit best the “assymetries” in the distribution of ALG (this is

formalized in Lemma 4.3).

The instance. Recall that any memoryless algorithm for the generalized k-server prob-
lem on uniform metric spaces is fully characterized by a probability distribution p =
[p1,D2,...,pK] over the k-metric spaces My, Ma, ..., M. W.lo.g., we can assume that
p1 > pa > - > pp. Let ¢¢, A be used to denote the configurations of the algorithm and
the adversary after serving request 7! respectively. Also, let ¢ = A° be used to denote
the initial configuration of both the algorithm and the adversary. We will now construct

the request sequence. For t =1,2,...,T"

1. Observe ¢'~!, i.e., the algorithm’s current configuration.

2. If ¢=1 = A1, then:
At =), 43,...,4) |, Z] for any Z € [n] such that Z # A} ' and Z # g} .
otherwise:

Al = AL
3. Determine m = min({j : qj._l + ,A;})

4. Pick any r* € [n]* such that rf, = Al and rf # AL, rl # q;»_l Vj € [k]\ {m}.

Note that for steps 2 and 4, we need to have at least n > 3 points in order to pick
a point that isn’t occupied by neither the algorithm’s nor the adversary’s servers. As we
explain in Section 4.3, this is a necessary requirement; if all metrics have n = 2 points, then
the competitive ratio of the Harmonic Algorithm is O(2¥) and therefore a lower bound of
order k! is not possible.

As an example of our instance, for k = 4, let A”~! = [0,0,0,0] and ¢~ = [1,0,0,1]
for some t. Clearly, the algorithm and the adversary have different servers in metric M;
and My. From step 3, m = min(1,4) = 1, i.e., Mj is the metric space that the algorithm
serves with highest probability out of the metric spaces that it and the adversary have

their servers in different points. Then, from step 4, rf = [0,2,2,2] (actually, the selection
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of the last three coordinates is arbitrary as long as neither the algorithm nor the adversary
have their server on this point).

Notice that ADV moves one server in metric space M} whenever it has the same con-
figuration with ALG. On the other hand, ALG never serves request r’ with configuration
¢'~! and thus moves at every time step. This means that the competitive ratio of ALG is
lower bounded by the (expected) number of requests it takes for it to reach configuration

of ADV.

4.2.2 Proving the Lower Bound

Our approach. We define the state of the algorithm at time ¢ as S* = {i : ¢¢ # Al},
i.e., the subset of metric spaces with different servers between the algorithm and the
adversary. In this context, h(S) is used to denote the expected number of requests it takes
for the algorithm to reach the adversary’s configuration, i.e. state (), starting from some
state S C [k]. From the request sequence we defined, h({k}) is a lower bound for the
competitive ratio of any memoryless algorithm.

By observing how the state S of the algorithm (and by extension h(S)) evolves under
the request sequence, we can write down a linear system of 2F equations on the 2F variables
h(S) VS C [k]. In fact, these equations give the EET of a random walk in a Markov Chain
of 2% states. We then prove a lower bound on h({k}) and thus the competitive ratio of
any memoryless algorithm. Notice that for the given instance, if we were analyzing the
Harmonic Algorithm, then the Hamming distance between it and the adversary would be

captured by the Harmonic Chain and we would immediately get that h({k}) =k - ..

Analysis. Fix any two different configurations ¢, A for the algorithm and the adversary
that are represented by state S = {i : ¢; # A;} # 0 with min(S) = m. Then, we know that
for the next request r we have constructed it holds that r,, = A, # ¢, and r; # A; #
q; # r; for any j € [k] \ {m}. Recall that the memoryless algorithm will randomly move
to some state M; and move to a different configuration ¢ = [q1,...,¢j—1,7j, ¢j+1s- -+ Q]

that is captured by state S’. We distinguish between the following three cases:
1. If j ¢ S, then this means that ¢; = A; and ¢; = r; # A; and thus §' = SU {j}.
2. If j = m, then ¢; # A; and ¢; = A;j =y, and thus " = S\ {m}.
3. If j € S\ {m} then g; # A; and ¢; # A; and thus ' = S.

Since h(S) denotes the expected number of steps until the state of the algorithm

becomes () starting from S, from the above cases we have that for any state S # ()

h(S) =1+ pm-h(S\{m})+> pj h(SU{GH+ D> pj-h(S), m=min(S).
jg¢s jeS\{m}

Combined we the fact that obviously h(f)) = 0 and 25:1 pj = 1, we get the following

set of 2F linear equations with 2* variables:
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h(0) =0

{ Pm(h(S) = R(S\{m})) =1+ 3 ,0gpj(R(SU{j}) — h(S)), VS # 0, m = min(5) }
(4.2)

Normally, we would like to solve this linear system to compute h({k}) and this would

be the proven lower bound for the memoryless algorithm. However, even for k = 4 it
is hopeless to find closed form expressions for the solutions of this system. Interestingly,
similar equations were studied by Chiplunkar and Vishnawathan [28] for the weighted
uniform metric case. In their study, they showed a monotonicity property on the solutions
of their linear system that directly transfers to our setting and is stated in Lemma 4.3
below. Using this, combined with the special structure of our problem, we show how to

derive a lower bound of k - ay, for h({k}) instead of solving (4.2) to directly compute it.

Lemma 4.3. For any S C [k] with i,j € S such that i < j (and thus p; > p;), the
solutions of linear system (4.2) satisfy

h(S) =S\ {j}) = %(h(s) —h(S\{i}))

J

Proof. We begin by showing that (4.2) is equivalent to the equations studied in [28]. By

introducing a new set of variables ¢, defined as
6(S) = h([k]) — Ak \ S), VS C [k (4.3)
we get that ¢(0) = 0 and V.S # () with m = min(S) we get

Pm(O(([KI\ S) U {m}) = &([K]\ ) = 14> pi(¢([K]\ S) — &([K]\ S\ {5}))
JEs
Lastly, by re-writing the equations using S = [k] \ S, we end up with the following

(equivalent) linear system:

¢(0) =0

{ Pm(@(SU{m}) — &(S) = 1+ 3255 (6(S) = ¢(S\ {5})), VS # [k], m = min([k] \ 5) }

(4.4)

We remark that this is the exact set of equations studied by Chiplunkar and Vish-

nawathan (see equations (6),(7) in [28]). Using the Gauss-Seidel Trick technique, they

prove that the solutions of (4.4) (and thus the solutions of (4.2)) always exist. Then, in

Lemma 3.3 of their paper they proved the following property for the solutions of linear
system (4.4):

Lemma 4.4 (Lemma 3.3 of Chiplunkar et. al.). For any S C [k] with i,j ¢ S and
i < j (thus p; > p;), the solution of linear system (4.4) satisfies

pi(¢(SU{i}) — &(S)) < pi(¢(SU{5}) — #(9))
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By re-writing this lemma for S = [k] \ S, we get that for any S C [k] with i,j € S and

i < j, the solution of linear system (4.4) satisfies

pi(d([K]\ (S\A{i})) — o([k]\ 9)) < pj(([k]\ (S\ {5}) — ¢([k] \ 5))

Lastly, by equation (4.3) we get that for any S C [k] with i,5 € S and ¢ < j, the

solution of linear system (4.2) satisfies

pi(h(S) = h(S\{i})) < p;(h(S) — h(S\ {i}))
that is, we have that Lemma 4.3 holds. ]

Let us first see the intuition behind the inequality of Lemma 4.3. Let S be the subset
of metric spaces where the servers of ALG and ADV occupy different points: then, in
the next move, the expected time to match ADV decreases the most, if ALG matches
first the j-th server of the adversary (i.e., the “state” changes from S to S\ {j}) where
J is the metric with the smallest the probability p;. This explains why in our adversarial
instance we choose to reveal to ALG the location of ADV in the metric it serves with the
highest probability: this makes sure that the decrease in the expected time to reach ADV
is minimized.

Using Lemma 4.3, we can now prove the following:

Lemma 4.5. For any S C [k] with S # 0 and i € S, the solutions of linear system (4.2)
satisfy

pi(h(S) = h(S\{i})) = 1+ > p;(h(SU{j}) — h(S))
igs
Proof. Fix any non-empty set S C [k] and any ¢ € S. Let m = min(S) < ¢. Then, by

Lemma 4.3 we have

pi(h(S) = h(S\ {i})) = pm(R(S) = h(S\ {m}))

Since m = min(S), and we study the solution of linear system (4.2), we have

Pm(h(S) = S\ {m})) = 1+ p;(A(SU{j}) — n(S))
JEs
and the lemma follows. O

We are now ready to prove the main theorem of this section.

Theorem 4.7. The solution of linear system (4.2) satisfies

Proof. In order to prove the theorem, it suffices to show that for any S C [k] such that
S # () and 7 € S, it holds that

pi(h(S) = h(S\ {i})) > 5141
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Then, by setting S = {k} (|S| = 1) and i = k € S, we get pr(h({k}) — h(0)) > oy,
and since h(()) = 0 by definition, the Theorem follows. It remains to prove the desired
property. This can be shown by induction on the size of S.

Base case: If |S| = k (this means that S = [k]) then for any ¢ € S, by (4.2) we have

pi(h(S) = h(S\ {i})) =1 = a1 = ap_ig)11-

Inductive hypothesis: Suppose that for any S C [k] with |S| = ¢ > 1 and any i € S, we

have

pi(h(S) — h(S\ {i})) > ar_ry1.

Inductive step: Let S C [k] be any set with |S| =¢—1 > 0 and ¢ € S be any element
of this set. By Lemma 4.5, we have that

pi(h(S) = h(S\{i}) = 1+ D pm(h(S U{j}) — h(S))

igs

Now, for any j ¢ S we can use the hypothesis on the set S U {j} with size ¢. Thus, we

have
pi(h(SU{j}) — h(S)) > ark—r11 = g

for any j ¢ S. Combining, we get

pi(h(S) = h(S\ {i})) = 1+ (k = [SDar—1s) = u—|s)41-

O

Proof of Theorem 4.2. Since p;1 > ps > --- > pp, we have that pp < % Thus, by
Theorem 4.7 we have that h({k}) > k - oy for any distribution. Since h({k} is a lower

bound for any memoryless algorithm, the Theorem follows.

Corollary 4.1. The Harmonic Algorithm is the only memoryless algorithm with a com-

petitive ratio of k - .

Proof. By Theorem 4.7, the competitive ratio of the Harmonic Algorithm is at least k - ag,
and combined with the upper bound of Theorem 4.1 we get that the Harmonic Algorithm
is (k- oy )-competitive. Assuming p; > -+ > pg, any other memoryless algorithm will have
D < % Thus, by Theorem 4.7 its competitive ratio will be lower bounded by h({k}) >

k - oy, which is strictly worse that the competitive ratio of the Harmonic Algorithm. [
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4.3 Special Case: Two Point Metric Spaces

In this Section, we prove Theorem 4.3 and improve the ©(k!) bound of the Harmonic
Algorithm in uniform metric spaces to ©(2%) in the special case of metric spaces with
n = 2 points. On a high level, we tie the performance of the Harmonic Algorithm with
the EET on a special type of Markov Chain and use the same analysis to prove both the
upper bound and the lower bound on its competitive ratio.

Recall that in the proofs of Theorems 4.1 and 4.2, we made the assumption that at any
time t that the adversary was in configuration A! and the algorithm was in configuration
g # A!, the next request '+ was not served by ¢! and was served by A’ in only one
metric space M;. This can be true in metric spaces with n > 3 points, as we showed in the
construction of the adversarial instance for Theorem 4.2. However, in metric spaces with
n = 2 points, the only request that is not served by ¢! is its anti-configuration r*+! = .

I = ¢ the adversary will serve the request in

This restricts the analysis, since for ri+
dr(qt, A') metric spaces instead of one; this shows that at every time-step there are more
than one ”good” choices for the algorithm.

In the worst case for the algorithm, it starts from the adversary’s anti-configuration
and is continuously requested its anti-configuration until it reaches the adversary. As we
did for the analysis of the general upper bound for the Harmonic Algorithm, we capture
the algorithm’s distance from the adversary using the Hamming distance of their configu-
rations. For any ¢ € {0,1,...,k}, let h(¢) denote the expected number of requests needed
for the algorithm to reach the adversary, starting from a configuration that has Hamming
distance ¢ from it. Clearly h(0) = 0. Then, h(k) is an upper bound for the competitive
ratio of the Harmonic Algorithm.

It remains to formally define and study the Markov Chain that captures the evolution
of the Hamming distance between the algorithm and the adversary. Fix any configuration
A for the adversary and ¢ for the algorithm such that ¢ # A. Also, let £ = dg(q, A) €
{1,2,...,k}. The algorithm is requested r = §. Clearly, A serves r in ¢ metric spaces.

We distinguish between the following two cases:

1. If the Harmonic Algorithm moves in any of the ¢ metric spaces where ¢; # A;,
then its Hamming distance from the adversary decreases by 1. This happens with

probability %.

2. If the Harmonic Algorithm moves in any of the (k — ¢) metric spaces where ¢; = A;,
then its Hamming distance from the adversary increases by 1. This happens with

probability %.

From this, we get that the evolution of the Hamming distance between the Harmonic
Algorithm and the adversary is captured by the Markov Chain of Figure 4.2 that we refer
to as the Binary Chain.

We have already formally defined and studied the Binary Chain in Section 3.4 of
Chapter 3. In this part of the thesis, we computed the general expression for the EET
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Figure 4.2: The evolution of the Harmonic Algorithm’s Hamming distance from the ad-

versary when n = 2.

on the Binary Chain (Theorem 3.5) and proved that for any ¢ € {1,2,...,k}, the EET is
order of 2.

We have already argued that h(k) is an upper bound for the competitive ratio of the
Harmonic Algorithm. Since h(k) = ©(2¥), this gives that the competitive ratio of the
Harmonic Algorithm in metric spaces with n = 2 points is O(2F).

Furthermore, it is easy to see that h(1) is a lower bound for the competitive ratio of
the Harmonic Algorithm. Consider an instance where the adversary (i) moves a server in
metric space M; when it has the same configuration with the algorithm and (ii) always
requests the algorithm’s anti-configuration. Then, for every server the adversary moves,
the algorithm pays (on expectation) a total movement cost of a(1). Since h(1) = 2% — 1,
this gives that the competitive ratio of the Harmonic Algorithm in metric spaces with
n = 2 points is Q(2F).

In conclusion, we get that the competitive ratio of the Harmonic Algorithm in metric

spaces with n = 2 points is ©(2F) and conclude the proof of Theorem 4.3.

4.4 Oblivious Bounds

Up until now, we focused on analyzing memoryless algorithms against adaptive online
adversaries. In this section, we turn our attention to oblivious adversaries. While our
proven upper bounds for the Harmonic Algorithm clearly hold in the oblivious setting,
there is no guarantee that the competitive ratio of the Harmonic Algorithm is Q(k - ay) in
general metric spaces or (2¥) in metric spaces with n = 2 points when the adversary is
oblivious.

In fact, the true competitive ratio of the Harmonic Algorithm might be better in the
oblivious setting. In this part of the thesis we will show that this isn’t true by proving
Theorems 4.4 and 4.5 that state that against the Harmonic Algorithm, the power of

oblivious and adaptive online adversaries is the same.

4.4.1 Oblivious Lower Bound for the Harmonic Algorithm

We will prove Theorem 4.4, that is that in metric spaces with n > 2k + 1 points, the
competitive ratio of the Harmonic Algorithm is at least (k - ay). We will show the lower
bound k-, by constructing a request sequence where the (expected) cost of the Harmonic

Algorithm is at least kay times that of the optimal solution.
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The only (mild) assumption we will need to make is that the metrics My, Ma, ..., My
have at least (2k + 1)-points each. Let {0,1,...,2k} be the labels of each metrics points.
If n > 2k 4+ 1, we can ignore any extra points by never requesting them. Also, w.l.o.g.
by re-labeling the metrics we can assume that the initial configuration for the instance is
¢° =10,0,...,0].

We will now construct an oblivious request sequence (that is, without any assumptions
on the algorithm’s random choices) of T' = 4k L P requests for L, P € N to be defined later.

It will be helpful to define the following sub-sequences of requests, each with 2k-requests.

Request Sub-Sequence A:

o 72kl =2k — 1,2k — 1,2k —1,...,2k — 1,0]

o 2k =2k, 2k, 2k, ..., 2k, 0]

Request Sub-Sequence B

o r2 1 — 2k —1,2k—1,2k—1,...,2k—1,0]

o 2k =2k, 2k, 2k, ..., 2k,0]
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Then, the request sequence we construct is given by 7 = (A*|BX)F. Here, AY|BF
denotes repeating sub-sequence A exactly L-times and then repeating sub-sequence B
exactly L-times, and (AY|BL)? means that we repeat (A*|BY) exactly P-times. We will
refer to the sub-sequence (A”|B') as a phase, and the instance consists by P-phases. Also,
it should be clear that the size of the request sequence is 4kLP.

Notice that request sub-sequence A was constructed in such a way such that the only
configuration that serves the entire sub-sequence A is [1,0,...,0]. To show this, a simple
pigeon principle argument suffices. Respectively, the only configuration that serves the
entire sub-sequence B is [0,0,...,0].

First, we will argue that the optimal cost for this instance is at most 2P. To see this,
we only need to construct a solution with total movement cost 2P and then the claim
follows. Now, consider a solution that serves A” by moving to [1,0,0,...,0] and B” by
moving to [0,0,...,0]. Since the Hamming distance between these configurations is 1
and the starting configuration is [0,0,...,0], the total movement cost of this solution is
indeed exactly 2P. Thus, if we use OPT to denote the cost of the optimal solution we get
OPT < 2P.

We will now show that the expected cost of the harmonic algorithm on this instance

is at least 2Pkay, proving the lower bound. To do so, we begin with the following lemma.

Lemma 4.6. If the harmonic algorithm starts from any configuration other that [1,0. .., 0]

(resp. [0,0,...,0]) then the expected movement cost until it reaches configuration [1,0, ..., 0]
(resp. [0,0,...,0]) when presented with request sub-sequence A" (resp. B) is at least
min(kay, L).

Proof. We will prove the lemma for the first case. Suppose any initial configuration q #
[1,0,...,0] and let £ = dg(q,[1,0,...,0]) > 0 be the initial number of ”wrong” servers in

q. We distinguish between two scenarios:

1. The algorithm never reaches [1,0,...,0] while serving A*. Then, since the only
configuration that serves the entire sub-sequence A is [1,0,...,0], we immediately
get that the algorithm moves at-least once to serve A and thus its total movement
cost will be at least L.

2. The algorithm reaches [1,0,...,0] at some point. Notice that every request in A is
served by exactly one server in [1,0,...,0]. We can ignore any request that is served
by the algorithm without forcing it to move, since they don’t affect the movement
cost. The algorithm initially has ¢ non-optimal points, and in every request it is
presented with only one optimal point. Furthermore, every point that is already
optimal can be moves to a non-optimal position. This forms a Harmonic Chain,
exactly like the one we used for the upper bound of the Harmonic Algorithm, and
we already know that the expected cost (starting from ¢ > 0 non-optimal points) is
at-least kay (tight only for £ = 1).
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Combining both cases, we get that the expected movement cost of the algorithm is at least
min(kay, L). O

We are now ready to bound the total movement cost of the algorithm. From the

previous lemma, in any sub-sequence A or BZ, the algorithm is expected to pay:
e 0 if the initial configuration was the optimal for the sub-sequence.
e At least L if the optimal of the sub-sequence was never reached.
e kaj on expectation if the optimal of the sub-sequence was eventually reached.

Let = be the number of sub-sequences such that case 1 holds (the algorithm pays
nothing). By construction, this does not apply to the first sub-sequence AL Now, we
claim that at least in = sub-sequences case 2 happened. This is true, since if at the
beginning of the sub-sequence the algorithm is already in the optimal configuration (case
1), then this means that the optimal configuration of the previous sub-sequence was never
reached (case 2).

Thus, the total movement cost of the Harmonic Algorithm is on expectation at least
x-0+x-L+ (2P — 2x)kay, = 2Pkay, + x(L — 2kay,)

Here, we have assumed that L > 2kay so that in the best case there are only x sub-
sequences where the algorithm paid L. By setting L = 2kay, we get that the expected
movement cost of the algorithm is lower bounded by 2Pkq; and since OPT < 2P, we get
that the competitive ratio of the Harmonic Algorithm against oblivious adversaries is at

least k - .

4.4.2 Special Case: Two Point Metrics

We will prove Theorem 4.5, that is that in metric spaces with n = 2 points, the
competitive ratio of the Harmonic Algorithm is (2%). We will show this lower bound by
constructing a request sequence where the (expected) cost of the Harmonic Algorithm is
at least ©(2%) times that of the optimal solution.

By re-labeling, we can assume that each metric M; has n = 2 points labeled {0, 1} and
that the initial configuration is ¢° = [0,0,...,0] € {0,1}*.

For any request r € {0,1}*, we will use R(r) = {0,1}* \ {F} to denote a request
sequence with every possible request other that 7 which is the anti-configuration of r. In
the sequence, the requests can be ordered in an arbitrary way (for example in binary order).
Clearly we have |R(r)| = 2 —1. Finally, we fix 2 "central” configurations O; = [1,0,...,0]
and 09 =[0,0,...,0].

Then, for some L, P € N to be defined later, the oblivious request sequence we con-
struct is given by

7= (RM(O1)|RY(02))"
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where RY(0O;) denotes that we repeat R(O;) L-times, R*((0;) denotes that we repeat
R(O3) L-times and (R*(O1)|R*(05))" denotes that we repeat R (O1) followed by R (O5)
exactly P-times.

We first argue that the optimal movement cost for this instance is at most 2P. By
definition of R(r), we know that configuration r is the only configuration that serves the
entire sequence R(r). Thus, we can construct a solution of total movement cost 2P that
interpolates between configurations O and Oj to serve R(O;) and R(O3) respectively.
Since ¢° = O and di(O1,02) = 1, we get that the total movement cost of this solution
(which is an upper bound for the optimal movement cost) is 2P.

We will analyze the (expected) movement cost of the harmonic algorithm in this in-
stance. Assume that the algorithm is at some configuration ¢; and needs to serve the

request sub-sequence R(O1). We distinguish between the following cases:

1. Assume ¢; # O1. Then, the algorithm will either reach O eventually and then pay
nothing for the rest of the sub-sequence, or it will never reach O; and pay at-least
L for the sub-sequence (since only O; can serve the entire R(O;). In order to reach
O, the algorithm will have to pay ©(2¥) on expectation, by the standard binary

chain arguments we have used so far.

2. Assume ¢; = O1. Then, the algorithm will not move for the entire sub-sequence
R¥(0O1). However, this means that the algorithm didn’t reach Oy during the previous
sub-sequence RY(03) and thus paid L.

The exact same case-analysis can be done for the sub-sequence R(Og). Now, let « be
the number of sub-sequences where the harmonic algorithm paid 0. By case 2, this means
that there were at least z sub-sequences where the algorithm paid L. By setting L to
be asymptotically larger that 2% (for example 22k), we get that in the best case the total

movement cost of the harmonic algorithm is on expectation
204222 + (2P — 22)0(2%)

which is at least 2PO(2¥), concluding the lower bound.






Chapter 5

Concluding Remarks

In this thesis, we provided tight bounds on the competitive ratio of randomized mem-
oryless algorithms for generalized k-server in uniform metrics. Combining our results with
the work of Chiplunkar and Vishwanathan [28], the power of memoryless algorithms in
uniform and weighted uniform metrics is completely characterized for the online adaptive
adversarial setting.

We also made significant progress in the study of the oblivious setting, by proving
that the Harmonic Algorithm, which is the optimal memoryless algorithm in the online
adaptive setting, has the same competitive ratio against oblivious and adaptive online
adversaries.

As we have already mentioned, for uniform metrics, if memory is allowed and we com-
pare against oblivious adversaries, competitive randomized algorithms are known: Bansal
et. al. [11] designed a O(k?log k)-competitive randomized algorithm with memory; this
was recently improved to O(k?logk) by Bienkowski et. al. [15]. This is perhaps surpris-
ing, since usually in the uniform case the competitive ratio of deterministic algorithms
(with memory) and memoryless randomized algorithms is essentially the same; this is true
for paging (k-server on uniform metric spaces) and generalized k-server on weighted uni-
form metric spaces. However, our results imply that this doesn’t hold for the generalized
k-server problem on uniform metrics.

It might be interesting to determine the power of memoryless algorithms for other
metric spaces such as e.g., weighted stars. However we note that memoryless algorithms
are not competitive on arbitrary metric spaces, even for k = 2; this was shown by Chrobak
and Sgall [32] and Koutsoupias and Taylor [58] independently.

All of the current results about the generalized k-server problem (for arbitrary k) apply
to uniform metric spaces or weighted uniform metric spaces. The next big step would be
to get competitive algorithms for more general metric spaces such as stars and trees, as it

has already been done for the k-server problem.
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