EoNIKO METTOBIO ITOAYTEXNEIO

Y XOAH HAEKTPOAOTON MHXANIKON KAT MHXANIKON YTIOAOTIETON
TOMEAY TEXNOAOITAY [IAHPO®OPIKHY KAI Y TIOAOTIETON
EPrasTHPIO MIKPOYIIOAOTISTON KAI WHSIAKON YL YSTHMATON

Design and Evaluation of High-Order QAM
Circuits using Hybrid Approximate Techniques
and Arithmetic on FPGAs

AIIAOMATIKH EPrAsiA

TOoLV

FrEQPI'IOY APMENIAKOY

EmBArénwy: Anuftpoc Xodvrene
Kodnyntic E.M.IL

EPrasTHPIO MIKPOYTIOAOTIETON KAI WHSIAKON L TSTHMATON
Adnva, Todhog 2020

Edvixé Metoofio Iloauteyvelo
Lyoh) Hhextpohdywv Mnyavixav xow Mnyovixeyv Troroyiotodv
Toyuéag Teyvohroyiog IIAnpogpopxrc xa Troloyiotdv

Epyaotfpio Muxpobnoloyiotdv xar Ungloxwmy LucTnudtwy

Design and Evaluation of High-Order QAM
Circuits using Hybrid Approximate Techniques
and Arithmetic on FPGAs

AIIAOMATIKH EPrAsIiA

TOoL

FrEQPI'IOY APMENIAKOY

EmBArénwy: Anuftploc Xodvierne
Kodnyntic E.M.IL

Evyxpldnxe and v tpyeln e€etactinr emtpon) v 21 Ioukiou 2020.

(Troypagry) (Troypagrj) (Troypagry)
Anurteloc Xolvterng Havaywdtne Toavdxog Adavdolog A. Hovoydnovhog
Kodnyntic E.M.IL Kodnyntic E.M.IL Avarminpontic Kadnyntic E.M.II

Adnva, Todhog 2020

(Troypagn)

APMENIAKOY IT'EQPTIOX
Awmhopotovyoc Hiextpohdyog Mnyovinde xou Mnyovixde Troroyotov E.M.IL
(©) 2020 — All rights reserved

Edvixé Metoofio Iloauteyvelo
Yy ohfy Hhextpohdywv Mnyovixev xow Mnyovixaov Trohoylotohv
Toyuéag Teyvohroyiog IIAnpogpopxrc xa Troloyiotdv

Epyaotfpio Muxpobnoloyiotdv xar Ungloxwmy LucTnudtwy

Copyright (©)—All rights reserved APMENIAKOY. I'EQPI'IOX, 2020.

Me empOhaln novtdg SIXaOUATOS.

Arnayopeleton 1 avtiypagr, amodrixeuon xat Sioavoun tne mapoloug epyociog, & OhOXAHEOU
1 TWAUATOS QUTHC, Yia EUTopX6 oxomo. Emtpénetan 1 avatinwor, arodixeuon xat dioavour
Yot OXOTO U] XEEOOOKOTINOG, EXTUOEUTIXAC 1) EQELVITIXAC PUONE, UTO TNV TpolnodeoT va
OVOPERETOL 1) TNYT) TEOEAEUOTC o VoL BlaTneeitan To Topdy urvupa. EpwtAuata mou apopodv

N XeHON TNS €RYACLAC VLo XEEOOOXOTUIXO GXOTO TEETEL VoL ameLHUVOVTOL TR0 TOV GUYYRPEL.

ITepiAndn

Ytov onuepvd mgLoxd x60uo, oL TNAETOXIVKOVIES amoTe oDV To Yepéhio Yol Tr GUVOEST) Xou
v xowy| Yeron mineogoplny. H vlonoinon xelowmy Aettoupydy xon xadnxdviwy ce yia
dmeproxry Tnhemixovwvioxy| oducido emPBaiier Tic avotneég évvoleg g «LPNArc amddooncy
xaL TG <ounAhc oyvocy. Ilpog authv tnv xatedduvor, ta Field Programmable Gate
Arrays (FPGAs) Yewpolvton elxuotixég hoelg, xodoe tpoc@épouy egonpetiny avohoyio o-

T6000NC /16y 00C PETUED TWY EVOWUATOUEVMY GUOXEVMYV.

Y auth TN OimAWUATIXY, 0TOXEVOUNE OTN Agltoupyid TNG ATOdLUOPPWOTS, Wo ooty dla-
Ouxaota oto oboTnua Pnplaxody emxovevioy. Ilio cuyxexpyéva, TeayHaToToloUUe Ula Sie-
Eodunt| e€epebivnon yweou, haufdvovtog unddn TNy oELdunTIxh xou TIC TEOCEYYICES GTOUC
UTOAOYLOUOUG, Yl Vo oyeddooupe xuxhopota FPGA ue yenon yAdooag neptypaghc VAXOU
(VHDL). ‘Ocov agopd tnv aprduntxy, Yewpolue fixed-point o floating-point aprdpoic.
Avagopd ue tig mpooeyyioelc, epopudloupe Tepony) Twy bits, avtixothotolue Tov axpl3h
Tolhamhaolaoud ue toranioctac tég Radix xaw uovtehonoloVue Tov TOAATAAGLIUCOUO XVNTAS
UTOOLOG TOATG UE ALYOTERES UTOAOYIOTIXES Aettoupyiec. Tl Toug ahydpLrious amodiaudepe-
ong, egetdotnxay 3 Soft Decision xoau 1 Hard Decision. H ofioldynon twv ahyopliuwy
mpaypotonotiinxe oto MATLAB eetdlovtac to Bit Error Rate (BER) xau to LLR. H
vhonoinon twv ahyoplduwy oto FPGA eivan napapetpomoimnuévn we npog tn yetoBAnth M
v M-ary QAM xou otoyelel o€ TANREC TOUPIAANAES AEYLTEXTOVIXES Ylal TNV ooy UPNAYC
anodoonc. e oUYXELON UE TIG AAAES TEYVIXES DLopoproNg, 0 alyoprduog 64-QAM Approx-
imate LLR mpoo@épet Tic xalUtepeg avtiotaduioeg 6cov agopd népouc-BER. T'o autdy tov
olyoerdpo, o anoteréopata egopuoyhc Tou 6to FPGA Belyvouv 6Tt avdhoya tnv aprduntixy
XU TNV TPOCEYYOTIXH TEYVIXY, oL hoyixol mpol pedvovton €mg xou 15% pe uior opehntéa
oapopd ato BER. T yeyoailtepeg Swopoppnoeic QAM |, dnhadr 256, ol Aoyxol mépot tou
oyedlaouol pedvovton €ng xot 59%, eZowovoumvtog onuavtixols tépoug tou FPGA vy
dAha ototyelor Tou TNAETXOVWVIAX0) cucThuatoc. H ouyvdtnta poloylod xupaiveto and
357 MHz ¢w¢ 555 MHz. Téhoc, mpaypatonoieitar plor ONOXANEOUEVT GUYXEICT UETOEY TWV

TEOCEYYLIOTIXMY TEYVIXWOV X TIG TEPITTWOOELS TOU EAEY Y IHay.

AgCeic KAewod

Uneuone Atodlapdepwa, Awopodppnaor, Atodoor, Nyedotiny| ITohumhoxdtnta, [lopot

ii

Iepidngm

Abstract

In today’s digital world, telecommunication has become the foundation for communities
to seamlessly connect and share information through digital processes. The implemen-
tation of critical functions and tasks of the digital telecommunication chain imposes the
strict constraints of ”high-performance” and ”low-power”. In this direction, the Field
Programmable Gate Arrays (FPGAs) are considered attractive solutions, as they offer

excellent performance/Watt ratio among the embedded devices.

In this thesis, we target the demodulation operation, i.e., a key process in the digital com-
munication system. More specifically, we perform an in-depth design space exploration,
considering arithmetic and approximations in the computations, to design FPGA circuits
with hardware description language (VHDL). Regarding the arithmetic, we consider both
fixed- and floating-point. In terms of approximations, we apply bit truncation, replace
the costly accurate fixed-point multiplication with inexact radix multipliers, and model
the floating-point multiplication with less computational-intensive operations. For the de-
modulation algorithms, we examine 3 Soft Decision and 1 Hard Decision. The evaluation
of the algorithms is performed in MATLAB by examining their Bit Error Rate (BER)
and LLR. The implementation of the algorithms on the FPGA is generic in variable M-
ary QAM and targets full-parallel architectures to provide high-throughput. Compared
to the other modulation techniques, the 64-QAM Approximate LLR algorithm delivers
the best trade-offs in terms of BER-resources. For this algorithm, the FPGA implemen-
tation results show that depending on the arithmetic and the approximation scheme, we
deliver logic resources reduction up to 15% with a negligible difference in BER i.e., almost
the same results with the full-precision algorithm. For higher order QAM, i.e., 256, the
design’s logic resources reduce up to 59%, saving significant FPGA resources for other
components of the telecommunication system. The clock frequency varies from 357 MHz
to 555 MHz. Finally, a comprehensive comparison among all the approximation schemes

and algorithms is performed.

Keywords

FPGA, VHDL, Error Tolerance, Log Likelihood Ratio, Decoding, Hardware Complexity,
BER, Performance, Resources, SNR, Parallel Architecture, QAM Modulation

iii

Euyapiotieg

Apyxd Yo ideha vo euyaplothow Yepud tov emPBAénovia xodnynty wou xdplo Anuntelo
200UVTEN TOU oL EBWOE TN BUVATOTNTO XAl TNV guxotelol Vo EXTOVACE €var YU DITAWUATIXNS

Gxpwe EVOLAPEROY YLl EPEVAL

Eniong 9éhw va euyaplothon Yepud toug vnodrglouc diddxtopec Bacikn Aéwv mou omote
avTipeTOmLa xdmoo TeoBAnua Yo Hray exel xou Yo pe Bondoloe dueca xal ATOTEAEGUATING
xar Tov Iwdvvn Ltpatdxo mou extdg and TNV enAUCT ATOPLOY UOU TEOCEPEPE TAVTOL XAl
TepaUTéPL TANPopoplec. Axdua €vo euyoploTe xou otov Adxtopa I'ideyo Aevtden yio Tig

TapeUPAoelC Tou xou TN CUPBOAT| TOU GE ONUAVTIXG OTUEld TOU €PYOUL.

Puowd, var EuYEIGTHOW TOV ABEPPO LOU XAl TOUS YOVELS oL, xoidS Xl TOUS QIAOUE WOV TTOU

Ywelg TN oTHRIEN OAWY aUT®Y A AUTE Tar YEoVia OEV Vo Bploxduouy e auty| T Yéo.

Contents

[Teendn
[Abstract]

(Euyapioticg)

Contents|

|List of Figures|

[List of Tables|

[Extetapévn egliind)

[1 Introductionl

[2

Theoretical Background|

[2.1 Digital Communication|
[2.2 Digital Modulation Techniques| 0.
[2.2.1 Amplitude Shift-Keying (ASK)|
[2.2.2 Frequency Shift-Keying (FSK)|
[2.2.3 Phase Shift-Keying (PSK)|.
[2.2.4 Quadrature Amplitude Modulation (QAM)[.
2.3 Gray Codel e
[2.4 Forward Error Correction (FEC)|
[2.5 Additive White Gaussian Noise (AWGN)|
2.6 Log Likelihood Ratiol
[2.7 Sott Decision Algorithms|. oL

vii

iii

vii

ix

xiii

XV

viii Contents

2.8 Hard Decision Algorithms| oo 0L 13
[2.8.1 Hamming Distancel 13

2.8.2 Maximum Likelihood Detectionl. 15

[3 Testing and Verification| 17
[3.1 Algorithm Comparison|. o o 17
8.1.1 Circuit Complexity| 17

.12 BER Performancel 0. 20

3.2 LLR Evaluation with Approximation Techniques| 21
(3.2.1 Bit Truncation on Fixed-Point Arithmetic 23

13.2.2 Approximate Radix Multiplication on Fixed-Point Arithmetic|. . . . 25

13.2.3 Approximate RMAC Multiplication on Floating-Point Ar1thmet1c| . 26
13.2.4 Approximate CEFPU Multiplication on Floating-Point Arithmetic| . . 28

[4 FPGA Circuit Design| 29
4.1 Introductionl. 29
4.2 Block Design| 29

4.2.1 Block Diagram of Exact LLR} 29
[4.2.2 Block Diagram of Approximate LLR] 30
4.2.3 Block Diagram of Piecewise LLR| 32
4.3 VHDL Components| 32
4.3.1 Exponentiall o 33
[4.3.2 Natural Algorithm| 35
4.4 Pipeline Parallelization|. o oo oo o 36
4.5 Design Verification| oo 36

[6 Experimental Results| 39
b.1 Hardware Comparison of all Algorithms| 39
b2 Hardware Resultsl. 41

[9.2.1 Truncation Approximation| 41

[5.2.2 Radix Approximation| oL 46

5.3 Approximation Techniques Comparison| 47
5.4 Overall Comparisons in Approximate LLR}. 48
6 Conclusions and Future Work] 51

(Bibliography| 53

List of Figures

[l Amplitude shift-keying (ASK)|.o . XV
2 Frequency shift-keying (FSK)| xvi
[3 Phase shift-keying (PSK)| xvi
4 Iopaoerypa QAM owpoppwone 16 xotootdoewy| oL oL oL xvi
[> Topaoeryua evoc Hard Decision Decoder| xviii
6 lopaodetyuo 4 onuetwy aoTeEQIOUO0| Lo Lo xviii
(7 Yymuoatixo oaypopua Yo QAM amoolauoonwon yenowonowwvtoac Viterbi De-
coder| . . . L xxi
[XOyxpion twv 4 adyoptiuwy yior 206-QAM| ..o o000 xxi
9 YVyxplon twv 4 adyoptduwy yia 64-QAM| . ..o oo xxii
(10 Amoiutn oyetixn anoxion tou LLR yio 64-QAM Exact LLR}. xxiii
11 Amoiutn oyetnn amoxion Tou LLR yio 64-QAM Approx LLR}. xxiii
(12 Amoiutn oyetiny) anoxion tou LLR yio 64-QAM Piecewise LLR| xXxiv
[13 Amoiutn oyetxn amoxiion Tou LLR yia 64-QAM xou 256-QAM Exact Algo- |
Cothml - e o Xxiv
(14 Amoiutn oyetixy) amoxAion tou LLR yio 64-QAM »ou 256-QAM Approx Al- |
gorithm| XXV
(15 Yymuatixd owaypauuo tne vhonoinone tou Exact LLR} 000 XXV
(16 Xynuotixo owrypauua tnhe vhomoinong tou Approx LLR| xXxXvi
(17 Yynuatixd owaypauuo tne vhonoinone tou Plecewise LLRf XXVl
(18 Xuyxplon twv BER anodocewy yetott twv Approx T0, Approx T8, Piecewise |
TO v 64-QAM| . . . oo xxxii
[19 X0yxpwon twv BER arnooocewv petact twv Approx 12, Radix K6 xou Full- |
Precision Approx.|. xxxiii
20 RLR-LMRE tradeoff yix touc mpooeyyiotixoue aiyopivuouc Approx LLR |
TOU ECETOOTNXAY| o . . oL XXXIV
[1.1 Block diagram of a Digital Communication System| 2
[2.1 Original signal in a pulse sequence| 6
[2.2 Amplitude shift-keying (ASK)|. oo 6
[2.3 Original signal in a pulse sequence| 6

ix

List of Figures

[2.4 Frequency shift-keying (FSK)[., 6
[2.5 Original signal in a pulse sequence| 7
[2.6 Phase shift-keying (PSK)| o o 7
2.7 An example of 16-QAM constellation|. 7
[2.8 Simplified block diagram of a QAM modulator] 8
2.9 Example of 16-QAM gray encoding and natural numbering] 9
2.10 64-QAM Constellation example with AWGN| 10
[2.11 Example of 4-QAM Constellation Map| 11
[2.12 Example of Hard Decision Decoding| 14
[3.1 Block diagram for QAM Demodulation with Viterbi Decoding|. 20
[3.2 BER performance comparison of algorithms in 256-QAM| 22
3.3 BER pertormance comparison of algorithms in 64-QAM| 22
3.4 LLR Relative Error for 64-QAM Exact Algorithm and two values of EbNo|. 23
3.5 LLR Relative Error for 64-QAM Approx Algorithm and two values of EbNo| 24
[3.6 LLR Relative Error for 64-QAM Piecewise Algorithm and two values of EbNo| 24
[3.7 i-bit partial product generator based on (a) accurate radix-4 encoding and |

the approximate (b) radix-64, (c) radix-256, and (d) radix-1024 encoding. |

a; : 1-bit of operand A, a; = a; B sign.|.o L 25
[3.8 LLR Relative Error for 64-QAM via Exact Algorithm| 25
3.9 LLR Relative Error for 64-QAM via Approx Algorithm| 26
[3.10 LLR Relative Error for Exact LLR using RMAC approximation|. 27
[3.11 LLR Relative Error for Approx LLR using RMAC approximation|. 27
13.12 LLR Relative Error for Exact LLR using CFPU approximation| 28
13.13 LLR Relative Error for Approx LLR using CFPU approximation| 28
4.1 Block diagram of M-QAM demodulation via Exact LLR] 30
4.2 Block diagram of M-QAM demodulation via Approx LLR] 30
4.3 Schematic diagram for Euclidean Distance component| 31
4.4 Schematic diagram for finding the minimum value of an array| 31
4.5 Block diagram of 2V-QAM demodulation via Piecewise LLR| 32
|4.6 Block diagram of the 2nd degree polynomial in parallel and pipelined version| 34
4.7 'T'ypical workflow of feeding VHDL with Matlab inputs|. 37
4.8 LLR comparison between VHDL code and Matlab code for 64-QAM Approx |

LLR algorithm for 100 samples| 37
[4.9 Comparison of the polarities of LLR between the simulation and the imple- |

mentation for 64-QAM Approx LLR] oo oo 38
5.1 BER performance comparison between Accurate Approx, Approx 1 = 8 |

and Piecewise T'=01in 64-QAM |o 44
5.2 The utilization graph for the 64-QAM using D5SPs as produced by the Vi- |

vado Implementation process| L. 45

List of Figures xi

9.3 The FPGA device utilization as shown from the Vivado Implementation tooll 45
[5.4 BER performance for Approx LLR of Accurate, Truncated (T=8) and |

Radix technique tfor different FEC encoders.|. 46

[5.5 BER comparison of Truncation (T=2) and Radix method (K=6) for Approx |

.. 48
5.6 RLR-LMRE tradeoff of the examined approximated algorithms.. 49

List of Tables

[l Amoteréopota yia 64-QAM Exact LLR armoodwouopgwmon ue vionoinon Cordic |
xou Polynomial cuyxoitixa ue toug axplelc adyoptduoug Tou Matlabl xxviii
[2 AmoteAéopota yia 64 xan 256 QAM Approximate LLR amootauoppwon ou- |
YXELTIXA UE TOUC axPUBElC ahyopiduouc tou Matlabl o0 . xxviii
[3 AmoteAfopata yia 64 xan 256 QAM Approximate LLR amootauoppwon cu- |
YHELTIXA UE TOUC axPUBElC aAyoplduouc tou Matlabl xxviii
4 Amoteiéopata yio 64-QAM Exact LLR anoowauopowon ue vhonoinon Cordic |
OLYXELTIXA UE TOUC axplBelc ahyoptiuouc tou Matlabl. XXiX
[P Amoteiéoparta yioo 64-QAM Exact LLR anooiauoppworn ue vionoinon Poly- |
nomial cuYXpLTIXA UE ToUg axplBelc ahyoptvuouc tou Matlabl XXiX
6 Amotercouarta yia 256-QAM Approx LLR anoowuopowon ue yenon Trunca- |
tion cuYXELTIXA UE TOV axEL31) ahyoprduo tou Matlabl. XXX
[7 AmoteAéopota yio 64-QAM Approx LLR omooiauooowon ue yenon Trunca- |
tion cuYXELTIXA UE TOV axEl31) ahyoprduo tou Matlabl.o XXX
[Amoteréopota yia 256-QAM Piecewise LLR amoowopoppwon pe yenon Trun- |
cation cuYXELTXd UE ToV axpiB1 ahyopwuo tou Matlabl 00 xxxi
[0 AmoteAéopata yio 64-QAM Piecewise LLR amoowopopgwon ue yenon Trun- |
catlon ouyxpltixa Ue Tov axo3n ahyoptduo tou Matlabl xxxi
(10 AmoteAéopata Yo 64-QAM Approx LLR amoowuoppwon ue yenon Radix |
CUYXELTIXA PE TOV axolBn akyoptduo tov Matlabl 00 xxxii
[11 AmoteAcopata yia 64-QAM Approx LLR oaroowuoppwon ota 10db pe 6 bits |
oto oexaoxo Yepoc. Lo LLR cuyxetvovton pye touc aiyoptvuouc tou Matlab, |
evw T LUTs ye ovtolc yio T=0 o000 o000 xxxiii
[b.1 Evaluation of 64-QAM for Exact LLR with Cordic and Polyonomial im- |
plementation for exponent and natural logarithm in comparison with full- |
precision algorithm. oo oo 40
5.2 Accuracy results and Resources Utilization of 64 and 256 QAM for Approx- |
imate LLR in comparison with full-precision algorithm.| 40
5.3 Accuracy results and Resources Utilization ot 64 and 256 QAM for Piecewise |
LLR in comparison with full-precision algorithm. 41

xiii

xiv List of Tables

5.4 Accuracy results and Resources Utilization ot 64 QAM for Exact LLR using |
| CORDIC, in comparison with full-precision algorithm. 42

[5.5 Accuracy results and Resources Utilization of 64 QAM Performance and |

| Utilization for Exact LLR using POLYON, in comparison with full-precision |
| algorithm.| 42
[5.6 Accuracy results and Resources Utilization of 256 QAM for Approximate |

| LLR in comparison with full-precision algorithm.| 43

5.7 Accuracy results and Resources Utilization of 64 QAM tor Approximate |

| LLR in comparison with full-precision algorithm.| 43
[5.8 Accuracy results and Resources Utilization of 256 QAM for Piecewise LLR |
| in comparison with full-precision algorithm.| 43
5.9 Accuracy results and Resources Utilization of 64 QAM for Piecewise LLR |
| in comparison with full-precision algorithm. 44

15.10 Accuracy results and Resources Utilization of 64 QAM for Approx LLR us- |
| ing Radix Multipliers and " = 0, in comparison with tull-precision algorithm.| 46
[5.11 Accuracy results and Resources Utilization of 64 QAM for Approx LLR at |
| 10db with different number of fractional part (6 bits). LLR is compared to |
| the Full-Precision and LUTS to the accurate algorithm (T=0).[. 47

Extetopevn Ilepiindmn

Ewooaywyn

Ta teheutaio ypdvia Exouy Yivel TOMES xavoTouleg xaL TeGodoL oV Ynplaxt) emtxovmvio
XL OTO TOAUPESO. Yoty OMOTEAECUA, 1) AVAYXY) YO TNHAETUXOWOVIOXES EQUPUOYES EYEL QU-
Endel parydata. H oo emixowvwvia €xel yivel €tol amopaitnTn yior T onuepvy xowvmvio,

OLVBEOVTAC TOV XOGUO U éva LPMARS Ty dTNTaG Xou oElOTIGTO BIXTUO.

‘Eva omolodrnote gngioxd cloTnuo EEXVAeL UE TNV TERLYRPT| TOU Xavalloy, To omolo Te-
pthopBéver Tnv AauBavouevn oyl (received power), to Swdéoo edpoc Ldvne (bandwith),
otatioTixd YoplBou xau dhha tpofAfuata onwe to Zedhplaopo xavahol (fading channel).
O puludg BedouEvwY xaL 1 avoyY| GTO COINIUTA EVOL CUYXEXPWUEVES XOL ATUEA(TNTEG TTPO-
Umodéoeic yio éva Pnpraxd clotnuo. Xe autd, To ofua Tou TeoxElTon Vo ueTadovel TemTa
xwdwonotettan. H Swadicacio xwdixomoinone tng mhnpogoplag oe Lop@h XATIAANAY Yol pe-
Ta000T ovoudleTal SLopoe@waoT. Autrh 6co xou 1o eldog Tng xoopllouy aEXETA TEdYUITA
OTWS TNV avToyh 6T VOpUBO XaL TNV TUEUUORPWCT) TOU Xxavahlol, To €0pog {WVNg Tou amal-
Telton yioo TN UETAO0OT TN TANEOYORIAS, TNV TOAUTAOXOTNTO TV CUC TNUATKDY EXTOUTAG XAl

Mg, xan dAda.

Eidn Awopdppwong
[v dnegroo| Braudppnon undpyouv To Tapaxdte Booixd eion:

0

0 1 0 o 1 1 0 o 1 1

=l

YxAwee 1: Amplitude shift-keying (ASK)

XV

o Y1n uetodhay) petatémone mhdtoug (Amplitude Shift Keying) to mAdtog tou @épovtog

ofuatog ohAAleL o€ OYEoT UE TN TANEOPOE(Xou TO UTOAOLTO TORAUUEVEL OTAERO.

0 1 0 o 1 i1 0 0 0 1 1

Y
L

YyAuo 2: Frequency shift-keying (FSK)
o Ytn petahhayy| yetotomone nhdtoue (Frequency Shift Keying) n ouyvétnta ahhdlet
oe oyéon UE TN TANeoopla XaL To UTOAOLTO Tapauével oTadepo.
0

o 1 0 [i 0 o 1 1

Y
L4

YxAuwo 3: Phase shift-keying (PSK)

o Ytn petarhayh) Metotonione ®done (Phase Shift Keying) n gdon odhdlel oe oyéon pe

TN TANEOQOEla XaL TO UTOAOLTO TapaUével oTadepd.

[#]

1000 1001 1011 1010

L ® L] ®
1100 11mm 11 1110

@ ® L] []

|

0100 0101 a1 ano

[)] -] o
o0oo 000 0011 oo

= ® L] ®

Yyxnpo 4: Iapdderypo QAM dioaudppwong 16 xotactdoewy

xXvi

o H dwpoppwon QAM otnyv omnola Yo E0TIACOUUE TEPLOGHTERO GTNY BITAWUATIXY oUTY,
Yenowonolel T660 To TAdToC 660 xou T pdoT Tou pépovioc. Tao bits tou dYnpraxod
ohuatog ouadonolovvTon 6 1 cUUBola dnuoveY®VTaS 2" cuvduaouols yia xdde Evay
am6 Toug onoloug mpolAéneton évar (elyog TGV TAdToC-@dor. Y10 oyfua 4 @alvovtol

ol 16 xatactdoelg oe yio Slapdppwon twv 16-QAM.

ITpoocOetixde Asuxdc I'waovoiavoc Ob6pvBoc (AWGN)

Q¢ VopuPog oplletan xdmolo avemYiunTo €l60g EVERYELNG NAEXTEXN 1) NAEXTROPAY VITIXT
mou Telvel vo avauetydel xotd T AP xou avoamapoywyh Tou. Autd €xel w¢ amoTéAEoua
v aAholwon Tou ofjuatog. YTrdpyouv apxetd €dn YoplBou, aAld otny tapoloa pdon Yo
emxevtpwolpe otov Ipooletind Aeuxd I'aouotavd BObpufo (AWGN). O npoodetindc Aeu-
%x6¢ I'vaouciavog Vopufog enowoTolelTon Yia TNV avaAUCT] TwY BUUORPOCEWY O TOYXOOULO
povtélo xavohol. O cuyxexpiévog BopuBog umdpyet TavTta aveldeTnTa oy UTEEY oLV 1 OYL
EUTOOLOL TS BAROL XOVAALYL TS TERLOELOUOS Tou €0poug 1) eCac¥Evion xon Yl auTO yenoylo-

Toteltan yiar avohOELS TV AMOBOGEWY EVOC GUC THUATOC.

Kwdwxoroinon Gray

Koatd tnv anoxwoixorolnon evog ofuatog sivon miovd Adyw tou Yopdfou xou tng mapo-
Hoppwong mou vpioTtaton vo Angdel Aavdacuévo bit. Ipoxewwévou va ehayiotonomdel autodc
0 aptiuog Aadoyv yenotwomoleiton 1 xwodxonoinorn Gray. XOu@ove ue auTthy xaL OTwS PatveTon
xaL 670 Lyfua 4 ok Tor yertovixd oOuBola dlagépouy peTall Toug xotd éva bit. ‘Etol, oe

TeplmTOoN oL 0 BEXTNE ATOOLUOPPWOEL Adbog To cUpBolo, Ya divel udvo éva Addog bit.

Teyvixég Anoxwdixonoinong

Mio npodxinon otny diopdwon hadwy mou avapépinxe eival 1 antoxwdixonolnon evog cuy-
Bohou mou €yel mapopoppwiel Aoyw YopdBou. Ta dedouéva mpv yetadoVolv dEyovTtal Uia
xwodxonoinon otnyv onola tpoctidevton bits otic xwdixoréEelc (codewords) mou oynuatilouy
TO UAVUPOL. X TN CUVEYEL TO UNVUUS auTod oTEAVETAL Xt ool To Adfel o déxtng mpoomadel
VO TO AMOXWOXOTOLACEL Yol VoL TEREL TO opytxd prvupa mou o tdhn. T v xwdixornoinon
auTy undeyouy 800 TeEYVIXES Tou ovopdlovton Hard Decision Decoding xau Soft Decision

Decoding.

H npwtn uédodog malpvel €va umhox amd bits amd To xaTid@AL TOL BEXTN AL ATOXCOLXOTOLEL
xdde bit Yewpwvtag to weg olyovpa 1 7 0. Iaipvel Toug Angdévteg modpols xo cuyxpeivel TiC
TACEIC TOUC UE TIC THES xatw@hiov. Edv uio tdomn etvan yeyokltepn amd v Ty xatw@iiou,

amoXeOLXOTOLElTOL Ww¢ 1 %o amoxmdLxoToLE(Ton BlaPOopeTIXd w¢ 0.

H 8ettepn pédodog (Soft Decision Decoding) etvou pior xatnyopla odyoptduwmy mouv AauBdvet

Lot poT| BLABLXDY PNeledy xan Tar anoxwdixomolel AauPdvovtog LTOPN Wia oELEd TIUVHDY THIWY

Xvii

mou pmnopet va mdpel. Apa oUugpwva he Ty aflomiotior Tou xdde Tahuol Tou hauBdvel yiar vo

7 7 7 Z 7
oYNUATioEl XAAVTERES EXTIUNOELS TWV BEGOUEVWY ELGOBOL.

Message
10" "101" "1

— Even pari - S,
anc:darty Decoder

Channel Hard decision

Hard Decision
OQutputs

1 1 1

N\

N\ 7\ .
/ i \\// e hresod

u SamTpling 41

Instants

Yyxhue 5: Iopdderypo evoc Hard Decision Decoder

H ouyxexpwévn teyvint| yenowonoel uio pédodo mou Aéyetan Log Likelihood Ratio
(LLR). H pédodoc awth AauBdvel umddy vo GUVORO TUpOUETEWY XoU BUVATEY ATOTEAEGUATLY

xan Bydder tnv avtiotoryn mdavotnta yio xodéva omd oUTA To ATOTEAEGUOTA.

10 00
@ 100% I 0 L
100% 100%
Q
11 1 01
[] 00% W ®
1

YxAue 6: Ilopdderyyo 4 onueinv aotepiogod

xviil

Kdée pio and Tic pmhe xouxxideg elvon to t€ooepa onueio actepiopol. ‘Otay petadideton
éval oUpPolo, undpyel évag VopuBoc 6To xavdhl Tou YeToPBdiAel To apyixd onjua. H xdxxi-
v xouxxida, emouéveg, elvar To uetatomioyévo cluBoro. ‘Onwe galveton oto Xyrua 6, o
Aydtepo onuavtind Pnelo eivan 0 mhve and tov xddeto d€ova xou 1 xdtw and autdv. Autd
onuatver 6TL 0 haPavouevo cluforo €yxel tepiocdtepeg mdavotnTeg Vo ebvon 0. Opolwe to
TEPLo06TERO onuavTxd dmeplo eivon 0 5e&id amd tov oprlovtio d&ova xou 1 aplotepd Tou. Au-
T6 onuatvel 6Tl To haPoavouevo cluforo €yel mepiocdtepeg midavotnTe var elvon 0. Apa o

obupoho eivan o mioavd va etvon to 00

[opaxdtw Yo dolpe tov TeoTo uTohoyiopol tou LLR, xadng xou xdmooug ahydprduoug

TOL YeNoLoToly auth TN puédodo.

ANy opripor Antoxwdixonoinong

Ov ahyopriuol amoxwdwonolnong mou vhomotfinxay xan Yo avoAlutoly TopoxdTe elvor

teelg Soft Decision xou évag Hard Decision.

Exact LLR

O Exact LLR etvor 1) mo xovtiv) tpocéyyion yia tov axei3r) untoloyiopd tou LLR xou amo-
tehel TN Bdomn yia dhoug toug dhhoug LLR ahyoplduoug. Adyw twv civietnv cuvopthoswy
OUWE OV YEELACETOL Yo TOV UTOAOYLOUO TOU, Xaho TOUV TOADTAOXY) TNV LVAOTOINGT] UE UEYAAT|
xatavdiwon evépyetog. O tomog v Tov utohoyloud tou LLR yia to bit b yiog xwduohééng

elvau:

Pses, P~z ((# = 52) + (y — 5)%))

LLR(b) = ln(zsesl exp — 5 ((z — 52)2 + (y — 5,)2))

(0.1)

6mou 02 1) Bloncbpavon 1 petoBAntéTnTe Tou Yoplfou, Sy xo Sy efvor To onNuEla AoTEPLOUOY
mou €youv bit 0 xou 1 avtioTouya xou 55 xou s, etvar oL I xou @ cuvVTETAYUEVES TOU AoBavOUEVOL

4 7
ouuforou avticTorya.

Approx LLR

H teyvur autr utohoyilel to LLR Peloxovtoc ta 0o mo xovtvd onuela amd tov ydetn
aoTeplopon Tou €youy To bit Toug 0 xou 1. Xtn cuvéyeta yivetan yio agalpeon petagd auTOY
Twv 000 onuelwv ye to anotéieoua va xadopilel av to bit etvon mo miavd va etvon 1 7 0.
O ouyxexpévog ahyoprduog amoTehel Uiot TEOCEYYLON TOU TEMTOU, XoMS AT TOV oEYIXO
0N péow NG mEooéyylone Tou hoydprduou adpolopoatog exdetixdv [20], xatahiyel oty
TP YT LOUMUUTIXY EXPEIOT):

LLR() = ——(min((x = 5)* + (y = 5,)®) — min((@ — . + (y = 5,)%) (0.2

Xix

Piecewise LLR

O alyopriupog Piecewise LLR elvon o tepoutépey mpooéyyion tou npornyoluevou ahyopld-
wou, aol yio xdVe bit mpoxintel wio EexwploTh Ypouuxy ouvdptnon olugwva pe to [19).

Ot ypopég auTéC GUVORTAOELS UTOROUY VoL EXPEACTOUY OTLE TAURUXATH:

) k=1

Di= il (0.3)
—[Drgp—1| +drp k>1
7 k=1

Doy = yalil (0.4)

omou To dyf xan dg j UTOBEWVOOLY TN WOT amdoTHoY UETAL) TWV EMPEPOUS 0plwY TwWY
bk xou bg k, xu y 0 Aowfovéuevo cluoro.
Maximum Likelihood Detection

O teheutaiog alyoprduog arotehel Hard Decision, mou onuaiver 6t oe avtideorn ye toug
nponyoluevoug dev utoroyilet LLR. Avtidétng, yenoyomoidviog uior un yeouuxy| uédodo
aviyveuong cuuPérwy extd ta bit xdle xwdixoréEnc. Xougpnva ye to [22], to extyoduevo
oluPoro g M-QAM Swudepuong umopel vo yoauptel wg:

l v M
T = erizl Cn (0.5)

6TOU

. n—1
en =) 2L 27 ed9 Tz om) (0.6)

H pédodoc auth| tetuyatvel axpiBng tnv (Bl amddoom ue o ouufotind alyoprduo tou Max

Likelihood aAAd cuyypdvewe xan Uiot UAOTONOT UE OEXETE UEWWUEVOUS TOPOUG.

Avdivorn oc eninedo Matlab

ITpoxepévou va yeretniel 1 cUVORXT ATOBOGCT) TV TEONYOLUUEVGLY aAYopiluwY yeetaldToy
va yiver xou puar perétn yopow anéd to Bit Error Rate (BER). I to oxoné autd oyedidotnxe
€vol oUOTNUA OTWE QUIVETOL GTO Ly HUo 7, MOTE Vo TOEATNEHooLUE Tot Addn Tou Bydlel xdde

oAy OpLiog BEBOUEVLY GUVITXWY oL Yia Eva eVpog YoplBou.

XX

Bit Error Rate

Random Convolutional

Binary
Generator Encoder

Bit Error
Calculation

QAM modulator |

BER Display AWGN
Channel

QAM

Viterbi Decoder

demodulation

EyApo 7 Eymuotind Sdypoppa yioo QAM anmodiapdppwon yenotponowsvtag Viterbi Decoder

Y1i¢ mpocouotwoelg mou éyvay o YopuPog Hrav Hpootetinde Acuxde I'vaovalavoc Odpu-
Boc (AWGN) ue Swncopaven 1/4/10E/No)/10 . Jogy M. Enione 1 xwdwornoinon éywe ye

generator polynomial (133,171) xou constraint length 7. Ta anoteléopata TV TEOGHEWY

TEoavVAPERLIEVTLY ahyopliuwy @aivovton TopaxdTe.

10° E \ \ \ \ E
- — e - 1
—]
i \\m \\\\4\ |
< ~_
10 A E T~ =
1072 E =
1073 E =
1074 &
E —+—Exact
£ |——Approx
Piecewise b
——ML
10 -5 [| | | | | | | |
0 2 4 6 8 10 12 14 16 18 20 22
Eb/No (dB)

Exhpa 8: Xiyxpion v 4 ohyopiduwy yia 256-QAM

Xx1

10°

/
Ll

Bit Error Rate
=)
n

/

/

|

1078 |- E
| |——Exact |
—*— Approx
r Piecewise N
—+—ML T
1074 | | | | | | |
0 2 4 6 8 10 12 14 16

Eb/No (dB)

Sxhua 9: Xoyxpon twv 4 odyoplluwy yia 64-QAM

‘Onwg gatvetan xon omd o 600 oy AT TaEATAvVE 0 axe3rc uTtohoyloudg Tou LLR divel to
uxedTepo oprtud hadoyv ota bits, onwe tepyévaue. Axohouldel o TpooeyYIoTXOC TUTOC Xou
UETE 1 wéVodog pe TIC Ypouixég ouvapthoels. Téhog, mapatneolue ot o ahyodprduoc Hard
Decision divel ta teplocdtepa A&l xon amd toug Téooepic. Autdg elvan xou 0 Adyog Tou ot
cLvEyel Yo ETXEVTPOUOUUE GTOUC UTOAOITOUG TEElG aAyopiluoug, oe auTtolg dnAady| Tou

umohoyilouv to LLR npoxewévou va aviyvelcouv 1o apyixd cOuolo.

ITpooeyyioTinég TEYVIXES YLaL TOV LUTOAOYLOWO Tou LLR

H ovéryxn yio Yeloyom twv Topmv Tou XATovah@VEL EVar XOXAWUOL EIVOL UEY AT XL CTIUAVTIXT.
[o tov Adyo autd, oc autd T0 GNUEio ELGAYOUUE XATOLEG TROOEYYIOTIXEC TEYVIXES Tou o
Bondroouv oty amhomoinon TwV XUXAOUATLY Yia Tov utohoyioud tou LLR. Ioapoxdtwy
TUPOUCLALOVTAL Ol TPOCEYYIOTIXES TEYVIXEC TIOU EQURUOCTNXOY Xl LAOTOLUNXaY apyoTeEpa

xaw 610 FPGA. O yetprioeic autég mdpinxay and tpocopoldoelc oto Matlab.

ITepuxony Twv bits oe fixed-point aprOunTiny

H oprduntixn mou yenotwomololue yia to anoteréopata autd etvar fixed-point 6mou ot ap-
Y€ eloodol anotehobvton and 16 bits pe 14 bits oo dexadind pépoc. H teyvinn auth Aowndv
avagépeton ato xodo T dmeiev, GoTe Vo Uixplvel 1 TOAUTAOXOTNTA TV EVOLIUECKY TTRdEe-

ov. IopdAAnha, yior vor unv yohdoel 1 oaxpiBela TV anoTeAeoudtmy, 1 TEELXOTH auTy| YiveTon

xxii

amod ta Ayotepo onuoavtied bits. Topaxdtwy, napovoidleton) amdAUTY OYETIXT ATOXALOT) TWV
tehxdv LLR o€ oyéon ye 10 T' ouyxprtixd ye toug axpiBeic akydprduoue (Full Precision)
Y10t OLUPOPETIXES TEPLTTWOELS OLoORPWOTNS, aAydptiuou xar Yoplou.

250

szo
200 |
lT=4
0l DT=8 |
lT=‘I1
100} 4
50— |
0 \
5D
ExApa 10: Andrutn oyetind andxhion tou LLR vy 64-QAM Exact LLR
20
.T=O
20— _
.T=4
Dm
190 — |
.T=11
100 — |
04— _
0 \ |

5DB 10 DB

ExAuer 11: Anéhutn oyxetxr) andxiion tou LLR v 64-QAM Approx LLR

‘Onwe gaiveton and ta Lyuota 10,11,12 o Exact LLR eivow autég mou mapouctdlel 1o
HEYUAUTERO OYETXG O@dAUa. AUTO ogelhetar AOY® TV TOAITAOX®V TEdlewmy ou €xel (ho-
yapripol xon exdetind) xou TNy duoxohia avanapdotachc toug ot apriuntixy fixed point.
O undroinol BYo alyoprduot Tapouctdlouv mopduoles dlapopés e Tov Piecewise va elvou

EAAPEWS HANVTEROC.

xx1ii

140 |- lT=O

|- lT=4

10— DT=8

8- lT=11

0

40—

1 l

0 | [!

5DB 10 DB

EyApa 12: Andiutn oyetin andxhion tou LLR yia 64-QAM Piecewise LLR

IToa\anhaciactric Radix

H ey v auth apopd TNV avTiXaTdoTaoT TV TOAATAACIACTMV TOU EXJCTOTE XUXAWUATOG
ue moMamiaotiaotéc Radix [9]. H Radix xwdixonoinon npoogépet ouyvd pepixh ueiomomn twv
TOpWY oL YEetdleTon Evar XOXAWUO OBNYWOVTAS GE EE0LXOVOUNTT) EVERYELIS XAl OE UEIWOT TNG
xaduotépnong. Xtn cuvéyewa gaiveton 1 oUyxpelor Twv full-precision aAyopiiuwy ue avtole
TIOL YENOWOTOLOLY TOV GUYXEXELWEVO Todamhactaoty. Ta arotedéopota apopolv uévo tov

Exact xou Approx LLR, xad¢¢ o tpltoc 8ev yenotdomolel ToAATAACLIGTES.

IlLow SNR
ElHigh SNR
8 = —

LLR Relative Error (%)

64-QAM 256-QAM

Eyxhpo 13: Andlutn oyetiny) andxhion tou LLR vy 64-QAM xou 256-QAM Exact Algorithm

XX1V

lLow snr
7+ |lHoh sNR i

LLR Relative Error (%)

64-QAM 256-QAM

Iyhpa 14: Andiutn oyetind andxhion tou LLR vy 64-QAM xon 256-QAM Approx Algorithm

Apyrtextovixy, Alyoplduwy

Y10 onueio autod, apol €yve 1 avdAuon xal oUYxpELoN TwV alyopliuwy ot eninedo Matlab,
Yo emixevtpwiolye otny vhomoinoT Toug ot oyedlotixr YAwooa VHDL. T'o to Adyo auto,
oL ahybprduol Tou emAéyTnxay va vhonotndoly ftav ot teewg soft decision(Exact LLR,
Approx LLR, Piecewise LLR), xadd¢ éyouv xolbtepn andédoon and toug Hard Decision.

Iopoxdtey TeRLYEAPETOL 1) ARYLTEXTOVIXT TOU Xdie alyoplduou Tou VAoToLUNXE.

Received
Symbol
Outputs
Distribution 3
i —— Euclidean —> Sum0 —— Log .
| Constellation | Distance | EXponent ——» }LLR bit 0

Point 0 — Sum 1 — Log

(—— Euclidean

; —> Exponent —»
— 1, Distance

! Constellation s =i }LLR bit1
— Sum 1 — Log

HOH N

Point 1

.

. . . . - H .

. . . L]) E .
— Euclidean - = } LLR hit
: i ; ——> Exponent —— ; -

. Constellation Distance P i | les N-1

“.. Point M-1

EyxApo 15: Yynpoatind didypaupa e vhonoinone tou Exact LLR

H ouyxexpipévn pédodog urohoyilel apyxd Ti¢ anootdoelc and 1o hauBavouevo cluoho

xou Tt M onuela aoTEPLOMOY XAl Tl TEQVAEL GTO XOPUATL Tou eXVETIX0U To omolo urohoyilel

XXV

v exdetnd] Ty Toug. Aol xdvel avoxatovour) Twv M omoTeAEoUATLY auT®Y, uTohoyilel

Toug Aoydprduouc Twv loga M adpolopdteny Onwe opilel o apyixdg TOTOC.

Received
Symbol
Outputs
; Distribution '
———> Euclidean —> MinS0 .
! Constellation | Distance | " }LLR bit 0
| Point0 i 7-) > MinS1 |
| i ——— Euclidean — Min S0
Const_eﬂat:on] Distance | | _>LLR bit 1
Point 1 73 ——> Min S1 §
L] L] . i L]
‘ : @ — . .
L—» Euclidean = Min SO | . LLR hit
: Constellation Distance | | —— N-1

~.. Point M-1

Ixfpa 16: Yynpotixd didypauua e vhonoinong tou Approx LLR

H apyrtextovir) autol tou ahyopriuou Lotdlel apreTd Ue TNV TeonyoLUeVn apol eivol xou
Lot XoVTIVY TpocEyylom Tou axei3n tomou. H Siapopd etvan 6Tt €66 mapakeinovton ot ahvieteg
TEAEELC TWV AOYoEUIUIX®Y xou EXVETIXWY Xt avTxodioTavtan amd po Slodixactio tou Peloxet

TS EAAyLOTES Moo Aol Onwe opilel o Tiog tou Approx LLR.

Imapgai;ar)‘_i__» Linear Function1 ————» L LR bit 0

[— Linear Function 2 —-—P LLR bit 0

— Linear Function N/2 4> LLNRIrzbit

) _ ! _ LLRbit
— Linear Function 1 —'—I' N/2 +1

_ . | LLRbit
— Linear Function 2 —> N/2 +2

§::¢I ————> Linear Function N/2 ———»|LRbitN

ExApa 17: Yynuotixd didypouua tng vhonoinong tou Piecewise LLR

XXV1

H tpitn pédodoc tou Piecewise LLR anoteieiton and N = logo M mpoceyyloTinéc cuvap-
Thoelg. Ot Woég amd auTéS Yenoonololy To QavTAcTiXG Pépog Tou hauBavouevou cuuBoiou
xaL oL LTOAoeS To TpaypaTxd. Kdie ypopuixy) cuvdptnon TpoxOnTEL OTKC TEQLYPAPTNHE

OTIC TRONYOUUEVES EELOWOELS.

YAormoinorn Aoyoaprduixol xar exdetixold

‘Onwe avapépdnxe nponyouuévene o Exact LLR yia tov utohoyioud tou LLR yio xdmolo
bit ypetdleton va xdver exdetxolc xar hoyoprduixols utoloyiopols. Ymdpyouv apxetol
TEoTOL Vo LAomointoly ol podnuatixée mpdlelg autéc oe yawooo VHDL. Ytnyv Simhwuott-
x) auTH eEMAEYTNXAY v Yivouv uéow tne pedddou CORDIC xou tou ahyopiduou Remez. H
TEMOTN TEYVIXT apopd TV TEPLoTpoPY| Btaviouatog Bua tpog Briuc e dedouévn ywvio [13].
Booiletar oe utohoyiopols Tou yenoyonololy uovo xataywentés oklotnong xu tpocdéoeic
%0l)L TOANATAAGIAOUOUE TIOL TAVOLY aEXETOUE TOEOUE GE €va xOxAwua. H debtepn uédodog
apopd TNv €0pEST ULog XoVTVAG opoloyixrc TpooEyylone Tne exdoTote cuvdptnone (exte-
w6 1 hoyapduxd) [18]. H mpooéyyion auth anotehel tohudvuuo evoc entduuntod Boduod
X0l TPOGPEREL Lol AMAOVCTERT, X0 YPTYOROTERT) UAOTOINGT) UE OVTEAAAYMA XATOWL OUTEAELL

TNV axpBEla TWV ATOTEAEOUATOY.

Ané to mponyolueva TROXUTTEL Yo ETLTOXTIXY VY XT| VoL BOUUE XoTd TOGO OAES OL TEOCEY-
Yo TES TEYVIXES TTOL avarhbdmxay emneedlouy To TEAMXE amoTeEAEoUoTa Tou Xdde ahyopriuou.
Kou ye tn oglpd Toug autd xotd noéco pueta3dhiouy Tov aptdud Aadoky Tou aviyveloviol oE Uid

TNAETLXOVWVLOXT GAUGEDAL.

Arnoteréopata and TNy oyedicocy xaw LAoToiNoN TV aAyopiduwy

[v ohoxAfipwon tng e€epelvong TV oAYoplduwy GUVBLICTIXG UE TIC TPOCEYYLOTIXES
TEYVIXES, elvon avayxofo vor Yivel PEAETN XoL OTO AMOTEAEOUATO TOU TEOXUTTOUV Omd TNV
vhomoinon toug. AZilel va avagepdel otL 1 oyedlaon €yive pe) yenon tou Vivado Design
Suite 2019.2 xau 1 mhatpopua mou yenowonoinxe Aoy 1 Zynq UltraScale + MPSoC
ZCU106. E&icou onuavtixd etvar axdpo To OTL To THRUX YT ATOTEAEGUATA OEV APOEOVY UOVO
™ yeron v FPGA odd xou xuxhwudtowy ASIC. T owtd 1o héyo yivetan xou pior UEAETT
ywelc ™ xenorn DSPs, @wote ol dlapopéc twv mépwy vo eivon mo Eexdiogec.

Y10 onueio autd opllovtar xdmoleg Yetpég mou Ya yenowonoindolv. Eivow to andiuto
oyeTx6 opdipa oTic LLR tpée, onwe oplotnxe xan mopomdve, xak 1 avTio Teo@pn Tng TOAMXOTN-
tac Toug. H teheutaio mailel onuavtind poho, xoddS T0 TEOCNUO TV TGV Eivol aUTé Tou
xadopler av éva bit eivon mo miavd va etvon 1 1 0, apol TepaoTel and TOV ATOXWOLXOTONTY

aviyveuong Aadov.

xXxXvii

Exact LLR

ITivaxag 1: Anoteréopata yia 64-QAM Exact LLR anodioaudppwon pe viomoinon Cordic xou

Polynomial cuyxpitixd pe toug axpiBeic oadyoplduouc tou Matlab

64-QAM
CORDIC POLYON

10DB | 15DB | 10DB | 15DB

LLR Reversal Polarity | 0.15% | 0.17% | 0.029% | 0.037%
LLR Relative Error 47.25% | 79.42% | 46.25% | 77.94%
DSP 0% 0%
LUTS 53.12% 63.51%
FF 17.73% 37.78%

Edey PAénoupe 61t o Exact LLR nopoucidlet tepdotixa Swpopd and tny oxel3y| full-

precision pop@n tou. Autd ogelheton 0TIC TOMITAOXES TRAEELS TV eXVETNGDY %ot AoyopriuL-

%WV xou TN duoxohior Toug va avanopac tadoly oe fixed-point aprdunTiny.

Approx LLR

ITivaxacg 2: Anoteréopota vy 64 xou 256 QAM Approximate LLR anoSioapdppmwon cuyxettixd

ue toug axpBelc ahyoplduoug Tou Matlab

64-QAM 256-QAM
10DB 15DB 15DB 20DB

LLR Reversal Polarity 0.00075% | 0.000083% 0.0019% 0.00013%
LLR Relative Error 0.14% 0.04% 0.09% 0.023%
BER Variation 1.67 x 1076 0]375%x107% | 1.00 x 1076
DSP 0% 0%
LUTS 24.09% 97.28%
FF 4.69% 22%

Piecewise LLR

ITivaxac 3: Anoteréopota vyl 64 xou 256 QAM Approximate LLR anodioapdppwon cuyxettixd

ue toug axpBelc ahyoplduoug tou Matlab

64-QAM 256-QAM
10DB 15DB 15DB 20DB
LLR Reversal Polarity 0.0013% 0.00025% 0.0036% | 0,00025
LLR Relative Error 0.04% 0.015% 0.073% | 0.024%
BER Variation 3.33x107% | 1.00 x 1076 | 2.00 x 1075 0
DSP 0% 0%
LUTS 0.07% 0.14%
FF 0.05% 0.09%

xxviii

Ov moapamdve mivaxeg mopouctdlouy xAmoleg BLapopes OYETIXA UE TOUS ahyopLipoug Tou
vionoydnxayv oe VHDL xau otoug axpifeic tou Matlab. And autd goivetar edxola 6Tl 0
Exact LLR améyel apxetd and v axpi3n avanapdotact Tou. Paiveton emlong 6Tt ol dAhot
0V0 ahyopriuot etvan apxetd xovtd ue Tic full-precision poppég Toug, To omolo odnyel e YEt

dtopopd o€ eninedo bit error rate (w6€ng 107°).

Arnoteléopata alyoplduwy ne TNy ntpooeyyloTixy teyxvixy Truncation (me-
ewxony| bits)

Exact LLR

ITivaxag 4: Anotedéoparta yioo 64-QAM Exact LLR anodpéppwon ye vhonoinony Cordic ou-
yxpruxd pe toug axpBelc ahyopiduoug tou Matlab

64-QAM
CORDIC
10DB N 15DB
T=0 | T=8 | T=11 T=0 | T=8 | T=11

LLR Reversal Polarity | 0.17% | 0.50% 4.69% 0.15% | 0.21% | 5.60%
LLR Relative Error 47.25% | 60.09% | 197.10% 79.42% | 80.20% | 86.9%

DSP 0% 0% 0%
LUTS 53.12% | 40.21% | 35.55%
FF 17.73% | 16.85% | 16.24%

IMTivaxag 5: Anoteréopata v 64-QAM Exact LLR onodiaudppwon ue viomoinon Polynomial
ouyxpltixd pe touc oxplBelc ahyoplduouc tou Matlab

64-QAM
POLYON
10DB N 15DB
T=0 | T=8 | T=11 T=0 | T=8 | T=11

LLR Reversal Polarity | 0.029% | 0.50% 4.73% 0.037% | 0.052% | 2.02%
LLR Relative Error 46.25% | 60.00% | 200.00% 77.94% | 78.74% | 99.7%

DSP 0% 0% 0%
LUTS 63.51% | 42.2% 27.3%
FF 37.78% | 3.68% 3.21%

Ytoug mivaxeg auTo0g TUEATNEOVUE Xl TIOAL UEYAAN GOANIATA TOCO GTNY ATOXALOT) OGO ol
OTNY OLopPopd TROCHUOU. JAPWS, UTHPYEL UEYIAT UElDOT TWV AOYLXWY UTAOX 0G0 AUEAVETOL
70 T, oAAG TaL GPANIATO TTOU TEOUVAPERUNHAY TTAUPAUUEVOUY PEYdAa xou xdvouv Tov Exact LLR

Evay ahYOELIUO aXATIAANAO Yiot UAOTIOINGT) OE EVAL TNAETOUVWVLOXG GUGTNUOL.

XXIX

Approx LLR

ITivaxac 6: Anotedéopata yio 256-QAM Approx LLR anodiaudppwon ue ypnon Truncation
CUYXELTIXG PE TOV axpB3Y) ahydprduo tou Matlab

256-QAM
15DB B 20DB
T=0 T=8 T=11 T=0 T=8 T=11
LLR Reversal Polarity 0.0019% 0.76% | 8.9% 0.00013% 0.075% 7.35%
LLR Relative Error 0.09% 0.45% | 219% 0.023% 8.6% 74.99%
BER Variation 3.75x 1076 | 3.63 x 107> | 0.0045 1.00 x 1076 | 5.00 x 107% | 3.21 x 1074
DSP 0% 0% 0%
LUTS 97.28% 38.64% | 21.2%
FF 22% 11.5% | 7.85%

ITivaxag 7: Anoteréopota yio 64-QAM Approx LLR anodiopdppuon pe yerion Truncation cu-
yrpruxd ue tov axpl) ahyoprduo tou Matlab

64-QAM
10DB B 15DB
T=0 T=8 T=11 T=0 T=8 T=11
LLR Reversal Polarity 0.00075% 0.48% 4.64% 0.000083% 0.044% | 1.94%
LLR Relative Error 0.14% 15.28% | 142.94% 0.04% 5.31% 44.63%
BER Variation 1.67 x 1076 | 1.30 x 107% | 0.0013 0]333x1077 | 1.52 x 107°
DSP 0% 0% 0%
LUTS 24.09% 8.79% 4.48%
FF 4.69% 2.32% 2.02%

Ytoug mivaxeg autolg BAémouye TOAD wixpdTepa voluepa and Tov Exact LLR. Méypl xou
v T' = 8 Tot GPAAHATO EIVOL AVEXTA XU OGOV APORE TOUE GYEBACTINOVG TOPOUS TURAUTNROVUE
oTL éyoupe pa tepdoTior uelwon and 97.28% oe 38.64% oto 256-QAM, evdd and 24.09% oe
8.79% oto 64-QAM.

XXX

Piecewise LLR

ITivaxac 8: Anoteréoparta yio 256-QAM Piecewise LLR anodiapdppuon e yerorn Truncation
ouYXELTIXE PE Tov axplT) ahyoprduo tou Matlab

256-QAM
15DB] 20DB

T=0 T=8 T=11 T=0 T=8 T=11

LLR Reversal Polarity | 0,0036% 1,66% | 12,99% 0,00025% 0,35% | 12,19%

| LLLin ke 1 0,073% | 38,75% | 185,22% 0,024% | 11,92% | 71,36%

Bit Error Variation 2,00E-05 | 4,38E-05 0,071 0 | 1,25E-06 0,039
DSP 0% 0% 0%
LUTS 0,14% 0,05% 0,03%
FF 0,09% | 0,05% | 0,03%

ITivaxag 9: Amoteréopota yioa 64-QAM Piecewise LLR anodioaudpgpwon pe yerion Truncation
CUYXELTIXG PE Tov axpl3r) aAyderduo Tou Matlab

64-QAM
10DB B 15DB
T=0 T=8 T=11 T=0 T=8 T=11

LLR Reversal Polarity | 0,00125% 0,71% | 6,39% 0,00025% | 0,072% 6,21%
LLR Relative Error 0,04% 13,14% | 93,54% 0,015% 5,64% | 39,37%
Bit Error Variation 3,33E-06 | 1,00E-04 | 0,0045 1,00E-06 | 1,83E-06 | 1,07E-04
DSP 0% 0% 0%
LUTS 0,07% 0,03% 0,02%
FF 0,05% 0,03% 0,02%

Ano autole toug mivaxeg umopolue vo cuunepdvoude OTL 1 YeYodog Truncation amodidel
xewpotepa and 61t otov Approx LLR, xadd¢ o oyetnd o@dhyato eivon yeyaidtepa. Emi-
TAEOV, TOEAUTNEOVUE UXEOTERT UElon oTa Aoyixd umhox, ahhd oL oyedlacTixol ThpoL Tou
amoutolvTal Topopévouy eadytoTol. ‘Etal, eviopépov mopouctdlel vor BOOUE Xl TS EPUN-

VELOVTOL QUTEC OL BLIPOPES Xal AT ToL opdhdorta o€ eminedo BER.

[Mo 6houg Tou AéYoug Tou avapépdnxay UEyel TWEA 0 dAYOPIIUOS TOU ETUAEYTNXE KoL
TEOTWAUNXE Yiot TO GUOTNUG YOG %ol TEPAUTERW EPUEUOYT Tou ToAAamhaclooth Radixrtoay o
Approx LLR. H yédodoc auth| topdro mou anoutel TeplocdTEROUS TOPOUS UTOREL Vo Bey TEL Xa
TEpaTER® PELWoELS ot avtileor ye Tov Piecewise LLR xou anotehél tny mo axpif3r) mpoocéyion

Tou unohoylouol tou LLR. Enopéveg dndéter xou xahitepn anodoon o BER onwg qatvetan

xon oo By [1§

xxxi

Bit Error Rate

AL T _
107 F \\ .
r NS]

r NS]

[™~]

~
L 5 —
|- \\ -
*«
N

102 - 3 E
|- ™~ § -

L N]

\\\\\

10231 e E
r Sk]

[|——Accurate Approx)]

r |-~ -Approx T=8 7

[Piecewise T=0]

104 | | | | | \Jr
0 2 4 6 8 10 12

Eb/No (dB)

SxAra 18: Xiyxpon twv BER anoddcewv petald twv Approx T0, Approx T8, Piecewise TO yua

64-QAM

Arnoterécpata tou Approx LLR pe tnv npooceyyiotixy teyvixy Radix
ITivaxacg 10: Anoteréopata yioa 64-QAM Approx LLR anodiapdepuon ye yeron Radix cuyxettixd

ue tov oxplBr) akyderduo tou Matlab

64-QAM
10DB | 15DB
T=0 K=10 T=0 K=10

LLR Reversal Polarity | 0.00075% | 0.0058% 0.000083% | 0.0013%
LLR Relative Error 0.14% 2.92% 0.04% 2.56%
DSP 0% 0%
LUTS 24.09% 16.37%
FF 4.69% 11.66%
LUTRAM 0% 1.13%

Me v teyvixr; Radix mopotnpeiton xan €8¢ wior o€loonuelntn yelwon otoug ndpoug mou
yeetdleton yioo va vhonoindel o Approx LLR pe ehdyiotn adinon twv LLR twov. ‘Onwg
avapépinxe xar otar Tponyolpeve eivon e&loou onuavtixd va petapedoovue Ty (andhutn)
oyetwr| ab&non aut ot eninedo bit error rate. Eneldy) dunmg pe tnv ooy pog unddeon twy

14 bits oo Sexadind pépog 1 axpllela TV TEAZewy TaURUUEVEL UEYEAT, Boxiudo Txay elcodot

xxxii

pe 6 bits dexadd. Etot, Yo mpoxidel Eva To 0AOXANEOUEVO CUUTEQUCUA Yid TO TOLd TTRO-
oEYYLOTIXY TEY VXN elvan xahOTeEn Xou uTto ToLég cuviixes. Ta anoteréoyata Tou TEoExuPoy

1600 Yy ¢ LLR Tipéc dco xou yio Ty amédoom o BER mapoucidlovton mapaxdte.

ITivaxag 11: Anmoteréopota yia 64-QAM Approx LLR oamodiopdppworn oto 10db ue 6 bits oto
Oexadd pépoc. Ta LLR ocuyxpivovton pe toug odyoplduouc tou Matlab, eve toa LUTSs pe autoic

Bit Error Rate

64-QAM
LLR Reversal Polarity 0.58% 1.18% 1.78%
LLR Relative Error 20.91% 11.23% 54.2%
Relative LUTS-gain 15.36% 9.01% 20.83%
10°F 3
I S |
107 F e E
: SR 1
1021 RN =
= —— Approx ,
K6
T2
1073 | | [| | | | | |
4 5 6 7 8 9 10 11 12 13

vy T=0.

Eb/No (dB)

EyApa 19: Xodyxplon twv BER anoddoewy petadd twv Approx T2, Radix K6 xaw Full-Precision

Approx.

xxxiii

LMRE %

80

70

60

50

30

20

* T2

B 14-bit fractional length
* 6-bit fractional length

RLR %

Sxhua 20: RLR-LMRE tradeoff yio touc npooeyyiotinoie olyoplduoue Approx LLR mou e&e-

Ao T

‘Eyovtac o¢ eloodo fixed-point aprduoie ye 6 bits 6to dexadind pépog, @aiveton Tedyuott
OTL 1) TEY VT UE Toug Torhamiactao Tég Radix anodidel xakltepa o€ bit error rate. Emouévoc,
yio vor e€€Ta0TOOY OE aUTO TO OMUELD Tal TAEOVEXTAUATA TN AVTIXATAC TAOTS TV aXEBOY ah-
Yopliuwy and Toug TEOCEYYIoTIX0VS Toug, elodyovton d0o petpxés. H LLR Mean Relative
Error (LMRL) xou 1 Relative LUTs Reduction (RLR). H mpdtn agopd 10 péco oyetind
oA Twv TiweY Tou LLR 6o oplotnxe xan oo mponyolueva xou 1) 0eUTERY) T1 OYETIXY Ue-
lwomn otoug xatavarkooioug topous. To Eyrua 20 mapouctdlel Tig SLPORETIXES TEYVIXEC TIOU
EQUPUOCTNXAY UTO SLopopeTixd apldud bit otny elcodo. Etot, hauBdvovtoc unddiv xdmoleg
TapaUETEOUC umopel xavel va e€dyel tn BEATIOTH Abom and Tny drolr owovouxr oyediaon

- YOUNAG oA

XXX1V

Chapter 1

Introduction

In the past decade there have been numerous innovations and advances in communi-
cation and multimedia. As a result, the need for digital communication for numerous
applications has grown rapidly. Applications for digital communication include televi-
sion, telephone, digital cinema, radio, military, and internet access [2I]. The transition
to a digital information infrastructure provides the opportunity to remove many limita-
tions of analog communication systems caused by the need for tight coupling between the

acquisition, transmission, and display components [11].

The block diagram of a typical digital communication system is illustrated in Figure
The purpose of channel encoding and decoding is to minimize the possibility of erro-
neous transmission. The error correction code used, as well as the encoding and decoding
processes, define to a large extent the system efficiency. A digital communication system
should be capable of transmitting the information from the source to the destination with
no errors. The channel introduces noise to the transmitted information, thus resulting
in reduced system reliability. In order to improve the reliability of the system and to
protect it from the channel noise, channel encoder adds some redundant information, i.e.,
the so-called parity bits, to the transmitted data (information bits). The channel decoder
undertakes to remove this redundant information and to convert the received sequence

into binary, using a decoding algorithm. This process is called channel decoding.

FPGAs (Field Programmable Gate Arrays) are reconfigurable platforms that provide
excellent performance/Watt ratio for the implementation computational intensive algo-
rithms, e.g., from the field of Digital Signal Processing (DSP). During the last decade, the
FPGA devices have progressed both in terms of resources and performance. The adoption
of ultra-thin chip geometries, down to 14nm, and higher levels of integration, as well as
the use of faster communication links and specialized cores, derive FPGAs that are easily
customizable for DSP, data processing, and system connectivity applications [I]. Wor-
thy competitors of FPGAs remain the ASIC (Application-Specific Integrated Circuit) and

micropro Cessors.

Transmitter

Information Source Channel
Source Encoder Encoder Modklator
Moise —= Channel
— Source Channel
Destination Decoder Decoder Demodulator
Receiver

Figure 1.1: Block diagram of a Digital Communication System

Approximate Computing (AC) [14] is an alternative design approach that exploits the
inherent error tolerance of algorithms and applications from domains such as machine
learning (ML), DSP, numerical analysis, etc, and relaxes the accuracy in the calculations
to provide significant gains in power and/or energy consumption, area, latency, etc. It can
be applied at different layers of the design abstractions, i.e., starting from the application

level and moving to the hardware and VLSI level [3].

1.1 Motivation and Thesis Objectives

This dissertation contributes to the areas of digital telecommunications and integrated
systems design, focusing on the development of error correction systems. Specifically,
extensive research has been conducted on decoding algorithms with approximation tech-

niques.
More explicitly, the current thesis aims at:
e Studying and understanding various algorithms used in digital demodulation.

e Testing and verifying the algorithms, as well as examining their accuracy, through
MATLAB simulations.

e Applying approximation techniques in the computational intensive tasks of the al-

gorithms.

e Comparing the approximate versions of the algorithms with their accurate counter-

parts, by performing a theoretical study of their circuit complexity.

e Efficient implementation and parallelization of the algorithms on FPGA to exploit

its full potential and achieve maximum throughput.

e Analyzing the experimental results and drawing conclusions about the novel imple-

mentations.

1.2 Thesis Outline

In chapter 2 some theoretical mandatory background will be given in order to better
understand the broader meaning of digital communication. More specifically, some mod-
ulation/demodulation schemes will be analyzed and components of a telecommunications

chain will be explained.

In chapter 3 approximation techniques will be introduced. After we verify the proper
operation of our algorithms, these techniques will be added and we will observe the loss of
accuracy each technique causes. The results will be carried out from Matlab simulations

and will be compared to the theoretical ones (full-precision algorithms).

Following, in chapter 4 we will present the architecture of every algorithm and their ap-
proximate form implemented on an FPGA platform. The whole pipeline will be presented

in detail in its parallel form.

Finally, in chapter 5 the experimental results will be displayed and some comparisons
between approximate techniques will be made. The VHDL results will be compared to the
Matlab ones and the trade-offs between utilization of resources and algorithm precision
(BER achieved) will be presented.

Chapter 6 shows some conclusion drawn from the previous results, as well as some

suggestions for future work.

Chapter 2

Theoretical Background

2.1 Digital Communication

Digital communication is the backbone for today’s society, as the percentages of how
many people use digital communication are extremely high, and that’s why the digital

world is growing bigger more powerful.

The design of a digital communication system starts with describing the channel which
includes received power, available bandwidth, channel noise and other impairments such
as fading. The data rate and the error performance are basic requirements of a digital
communication system. The last introduces a level of error during transmission from
the source to a receiver because of the noise in the physical channel. As a result of this
introduction of error, many communication systems are coded in order to limit the number

of errors that appear when decoding a noisy communication signal.

2.2 Digital Modulation Techniques

There are three basic ways in order to convert an analog waveform into a group of
digital bits, by modifying the amplitude, the phase or frequency. Some modern techniques
combine two or more variations to improve spectral efficiency.Most known techniques are

briefly presented below.

2.2.1 Amplitude Shift-Keying (ASK)

Amplitude shift-keying is a form of amplitude modulation that represents digital data
as variations in the amplitude of a carrier wave. In M-ary ASK each group of logoM bits
generates a symbol. The binary signal when ASK modulated, gives a zero value for low

input while it gives the carrier output for high input.

5

Figure 2.1: Original signal in a pulse sequence

-

Figure 2.2: Amplitude shift-keying (ASK)

2.2.2 Frequency Shift-Keying (FSK)

Frequency-shift keying is a frequency modulation scheme in which digital information
is transmitted through discrete frequency changes of a carrier signal. The output of a FSK
modulated wave is high in frequency for a binary high input and is low in frequency for a

binary low input.

Figure 2.3: Original signal in a pulse sequence

w

Figure 2.4: Frequency shift-keying (FSK)

2.2.3 Phase Shift-Keying (PSK)

Phase shift-keying is the digital modulation technique in which the phase of the carrier
signal is changed by varying the sine and cosine inputs at a particular time. At the
receiver, distinguishing between the two segments of sinuids is easier if their phases differ

by as much as possible.

Figure 2.5: Original signal in a pulse sequence

-

Figure 2.6: Phase shift-keying (PSK)

2.2.4 Quadrature Amplitude Modulation (QAM)

Quadrature Amplitude Modulation is a digital modulation technique in which the cre-
ation of symbols are some combination of amplitude and phase. In this way they can
transmit more bits per symbol. For example, 16-QAM uses twelve carrier phases plus
three amplitude levels to transmit 4 bits per symbol. Other popular variations are 64-
QAM and 256-QAM, which they transmit 6 and 8 bits per symbol respectively.

O

1000 1001 1011 1070

.3 @ & 2
1100 111 1111 1110

o - L] E

|

0100 a1 o111 Q110

& - -1 &
0000 0oom 0011 Qo0

= L -] -

Figure 2.7: An example of 16-QAM constellation

As indicated, two controlling signals, known as the in-phase (I) and quadrature (Q) com-
ponents, are required to implement Quadrature Amplitude Modulation. The number of

QAM states is 2V, as determined by the number N of binary bits per symbol.

7

A QAM modulator

A QAM signal can be generated by independently amplitude-modulating two carriers
in quadrature (coswt and sinwt), as shown in Figure [2].

Quadbits —w DA Low-Pass | Channel
i Dibits | converter * Filter
Binary {dibit pairs) - A -
Data MED LSE
Input Serial to ; - .
— | Parallel i our-ievel Bi-phase,
Converter | analog signals cosol pijevel signals
W
LSD
. D/A Low-Pass .
Dibits | converter * Filter
Lse 0 Channel
Sin el

Figure 2.8: Simplified block diagram of a QAM modulator

Fach time four bits are clocked serially into its buffer. The Serial to Parallel Converter

outputs one quadbit in parallel at its four outputs.

2.3 Gray Code

Gray Code is a way ordering bit symbols such that two successive values differ in only
one bit. It is used in order to minimize bit errors while demodulating a symbol, as the
neighbor symbol of every value will be definitely off by one bit. For example, the rep-
resentation of the decimal value ”1” in binary would normally be ”001” and ”2” would
be 7010”. In Gray Code, these values are represented as ”001” and ”7011”. That way,
incrementing a value from 1 to 2 requires only one bit to change, instead of two. In Figure

2.9 an example of 16-QAM gray encoded vs natural numbering is shown.

QAM Signal

16 states
{4 phases,
4 levels)

0000 0100] 1100 1000 Qo000 0100) 1000 1100
o O 0|0

{][31 Ucl)m %@1 1001 0001 El)l:ll 1001 131

[JE}'] OOLLI 611 811 t}%ﬂ %u ltﬂ:;ﬂ 1110

0011 0111 | 1011 1111

00|60 0oo|oo

T I, . I R R = y
160A8M (gray code) 16OAM (natural numbering)

Figure 2.9: Example of 16-QAM gray encoding and natural numbering

2.4 Forward Error Correction (FEC)

Forward error correction works by adding redundant bits to a bitstream to help the
decoder detect and correct some transmission errors without the need for retransmission.
Like most error correction systems, this looks like we are reducing the data throughput
of the system as we are creating redundant bits that do not form part of the specific
stream. However, adding error correction to a system allows us to take advantage of a
reduction in the signal to noise ratio. In telecommunications this results in higher line
speeds as we can send more bits down a cable, in effect increasing the bandwidth and data
throughput. In summary, FEC allows some tolerance for data loss and corruption without
having to provide a reverse tally connection to signal data validity, thus maintaining high

data throughput and integrity.

The transmission data rate of a signal is equivalent to:

Transmission Data Rate = Information rate- (1/FEC rate)

FEC rate is typically in the range 1/2 to 7/8 so the transmission data rate is always

significantly more than the information rate. The formula for the Symbol Rate is :

Symbol Rate = DataRate/(m - FEC) (2.1)

where m is modulation factor (transmission rate bits per symbol) and FEC is forward
error correction code rate (eg. 1/2, 2/3, 3/4, 5/6, 7/8).

Using smaller order FEC rates while keeping the same modulation has shown to have
better performance than decreasing the modulation and increasing the FEC coding rate
[15].

2.5 Additive White Gaussian Noise (AWGN)

All wireless receivers suffer from thermal noise. This noise is added to the received
signal and makes detection of weak signals a difficult challenge. White refers to the idea
that it has uniform power across the frequency band for the information system. It is an
analogy to the color white which has uniform emissions at all frequencies in the visible
spectrum. In simulations this noise is usually modeled as a Gaussian Random Process

(thus called Gaussian).

Ba4-QAM Constellation Bd-QAM with Moise

Figure 2.10: 64-QAM Constellation example with AWGN

2.6 Log Likelihood Ratio

The LLR method is a decoding technique that is used in soft decision algorithms. It
concerns the probability that a bit of a received symbol be 0 or 1, given a set of parameters
and possible outcomes. This prediction is based on symbol’s mapping to a constellation

based on each modulation.

For a better understanding an example of 4-QAM constellation map is shown in the
figure below. Each of the blue dots are the four constellation points. When a symbol
is transmitted there is an amount of noise in the channel that alters the initial signal.

Therefore, the red dot is the relocated received symbol.

10

10 00

@ 100% []
1 0
100% 100%
Q

11 1 01

@ 100% W []
|

Figure 2.11: Example of 4-QAM Constellation Map

The Least Significant Bit (LSB) has a bit value 0 for the symbols above the Q-axis
and a bit value 1 below the Q-axis. That means that the LSB of a transmitted symbol is
expected to be 1 above the Q-axis and 0 below it. So, the received symbol has a higher

probability to have its second bit with a value of 0.

The Most Significant Bit (MSB) has a bit value 0 for the symbols right of the I-axis
and a bit value 1 left of the I-axis. That means that the MSB of a transmitted symbol is
expected to be 0 right of the Q-axis and 1 left of it. So, the received symbol has a higher
probability to have its first bit with a value of 0. Therefore, there is a high probability
that the initial transmitted symbol was ”00”.

2.7 Soft Decision Algorithms

This section is concerned with the performance of binary codes under maximum like-
lihood soft decision decoding. In general, soft decision has better performance than hard
decision decoding and the fact that it is able to estimate the performance of codes makes

it attractive.

2.7.1 Exact LLR

The exact LLR is an algorithm which computes the most accurate values of LLR.
However, this high accuracy results in combination of complex hardware and large power
consumption due to the complicated mathematical operations. In this algorithm, the LLR

for a transmitted bit b is defined as:

11

(2.1)

where r is the received signal with coordinates (x, y) and Pr(b = j|r = (x,y)) is the
probability that the bit value of the transmitted bit bis j (j = 0 or 1) conditioned that x

and y are received.

Assuming equal probability for all symbols, the LLR for an AWGN channel can be

expressed as:

Zseso exp _%«w —52)+ (y — Sy)Q))
Zsesl exp—%((aj —52)% + (¥ — 89)%))

LLR(b) =In ((2.2)

where o2 is the noise variance of baseband signal, Sy and S; are constellation points
with bit 0 and 1 respectively and s, and s, are In-Phase and Quadrature coordinate

respectively.

2.7.2 Approximate LLR

The Approximate LLR is an algorithm that calculates LLR by using only the two clos-
est constellation points with bit value j at the given bit position. The equation (2.2)
is complicated due to the fact that there are terms in both numerator and denominator.
Sub-optimal solution with simplified LLR can be obtained by log-sum-exponential approx-
imation [20] : log) , exp(¢i) = max;(¢;).

LLR() = = (min((= 5. + (= 5,)%) ~ min(e = s+ (=, (2.)

The calculation of the LLR is determined by the LLR of each bit in the symbol. For a
specific bit there is a list of points on the constellation where that particular bit has the
value of one or zero. In order to calculate the LLR for each bit, the points where that bit
has the value of one or zero are separated into two lists — a list of points where the bit
value is zero and a list where the bit value is one. The probability of the bit value of the
received point is determined by the difference between the minimum of the one list when
subtracted from the minimum of the zero list. The result is a value indicating whether
that bit is more likely to be a one or zero. The larger from the list of ones or zeros will

dominate the other and indicate by the magnitude of the result the relative probability.

12

2.7.3 Piecewise LLR

The piecewise LLR is a further approximation of Approximate LLR as every function
of a single bit can be represented as a linear function [19]. After this simplification the

LLRs are expressed as below:

) k=1

Dy, = uli (2.1)
—|Drg—1| +drp k>1
) k=1

Doy = yqli] (2.2)
—|Dg 1| +dor k>1

where dr j and dg ; denote half the distance between the partition boundaries relative
to bit by, and bg i, with & > 1 and y[i] is the received equalized signal.

For example, the approximate expressions for a 64-QAM are given by:

Drq =~ ypli]

Drp ~ —|yrli]| + 4
Dyz =~ —|yrli] — 4| +2
Dq. ~ yqlil

Dq2 ~ —|yqli]| +4
D3~ —lyqli] — 4] +2

2.8 Hard Decision Algorithms

Hard Decision decoders receive a stream or a block of bits and decide whether each
received bit is one or zero by setting the threshold as shown in Figure It compares
samples’ voltages to threshold values and if a voltage is greater than that value it is decoded
as one, otherwise as zero. The decoding is done irrespective of how close the voltage is to
the threshold.

2.8.1 Hamming Distance

A bounded distance decoder that uses Hamming Distance compares the received code-
word with all the possible codewords. Hamming Distance is the number of bits that these

codewords differ. A block of bits with the minimum hamming distance is picked.

13

All possible Codewords | Hard Decision Outputs | Hamming Distance
000 111 3
011 111 1
101 111 1
110 111 1

Assume the message bits are 7107 and applied to parity encoder and we get 71017
as the output codeword. The output codeword “101” is then transmitted through the
channel. The channel attenuates the signal that is being transmitted and the receiver
sees a distorted waveform (red color waveform). At each sampling instant in the receiver
the hard decision decoder determines the state of the bit to be “0” if the voltage level
falls below the threshold and “1” if the voltage level is above the threshold. Therefore,
the output of the hard decision block is “111”. Perhaps this “111” output is not a valid
codeword, which implies that the message bits cannot be recovered properly. The decoder
compares the output with all possible codewords and computes the minimum Hamming
Distance for each case. In our case, as shown below, the min Hamming Distance is 1 and

there are 3 codewords with this distance. So, the decoder picks randomly one of them.

The probability of picking the correct codeword is 1/3.

Message
"q0" : "101" "4 Min Hamming
| Evenparity by I N S—N Dist Val
anc:dary Channel Hard decision Decoder a'rse ﬁg.ff " .:gﬁ?
"110™

Hard Decision
Outputs

N\

1

N //\ Hard Decision

/

\/ Thresold

u SamTpling —1

Instants

Figure 2.12: Example of Hard Decision Decoding

14

2.8.2 Maximum Likelihood Detection

The novel Maximum likelihood (ML) is a non-linear symbol detection method that
has been used for optimal symbol detection in various engineering fields. This algorithm
achieve exactly the same performance as the conventional ML detection with a reduced

implementation of ML detection.

Based on [22] the estimated square M-ary QAM symbol x can be written in a closed

form as a function of the received signal y as:

logzm
n=1
where
3M . n—1
_ 9= 9(Y=320—1 ¢m) 2.2
YIRS (22)

Thus, the novel Maximum likelihood is adopted to have the estimated square QAM symbol

given in a closed form as a function of the received signal and the estimated channel.

15

Chapter 3

Testing and Verification

3.1 Algorithm Comparison

In most digital systems, Exact LLR is considered the best decoding algorithm. However,
it has some drawbacks. Composite computational operations, such as exponential and
logarithmic, make its hardware complexity and power consumption high. In order to
reduce these disadvantages, Approximate LLR was created. This algorithm, although its
large design circuit, is much simpler than Exact LLR, since it does not have the complex
operations of the first one. Its BER performance is quite close to Exact LLR, something
that makes it a worthy soft decision decoder. The third algorithm, Piecewise LLR, tries
to further reduce the complexity of the Approximate LLR, as it introduces piecewise
linear functions that approximate the effect of nonlinearity in Approx LLR function. It is
undoubtedly the least complicated algorithm. The one disadvantage of this method is that
the definition of the piecewise linear functions is not done systematically but heuristically.
In the following, the differences mentioned between the algorithms will be developed and
presented, as well as some other metrics in which some methods lag behind and some

exceed.

3.1.1 Circuit Complexity

The soft decision algorithms are compared considering the number of multipliers re-

quired for their implementation on an FPGA.

Exact LLR Algorithm

The Exact LLR algorithm is described by the equation below. For a M-QAM, equation
involves three multipliers done for M /2 constellation points and three multipliers done for
the rest M /2 constellation points.Therefore, there are a total of 3 - M multipliers for one

symbol.

17

ey @ — 5 (2—52)2+(y—s,)2)
e, XD — 5 (05221 (y—5,)%)

LLR(b) = log(

e Total Number of Multipliers = 3 - % +3- % =3-M

Approximate LLR Algorithm

The Approximate LLR algorithm is described by the equation below. The equation
involves two multiplications, as each real and imaginary component requires an individ-
ual multiplication calculation. Also, there is an additional multiplication included in the

calculation for each bit in the symbol.

LLR(b) = — gz (minses, (v — 52)* + (y — 5)%) — minses, ((z = 50)* + (y = 5)%))

e Total Number of Multipliers = 2 - % +2- % +logoM =2 - M + logoM

Piecewise LLR Algorithm

The piecewise LLR is is described by loga(M) linear functions. These expressions
involves zero multiplications, as shown below in generalized formulae, where d; ;, and dg x
denote half the distance between the partition boundaries relative to bit by and bg,
with k& > 1 and y[i] is the received equalized signal.

D,.— yrli] k=1
Ik —
—‘D[’k_1|+d[’k k>1

D . yQ[i] k=1
Qrk =
—|Dgg-1|+dor k>1

18

Then. the LLR function can be computed as follows, where H (i) is the channel frequency

response (CFR) to the ith subcarrier

LLR(bry) = |H(i)|* - Dr

)

LLR(bgx) = |[H(@)|*- Do

e Total Number of Multipliers = 0

Maximum Likelihood Detection

The Maximum Likelihood Detection with the closed form solution described before is
an algorithm that receives a code word and tries to decode it in the ideal code word. This

estimated M-ary QAM symbol x can be written as:

logQ\/M
n=1
where
3M _ - N1
Cn =y g2 "I T o) (3.2)

Multiplying I9(y=220 2 om) by 27" for n = 1,2,...,logovV M in (3.6) requires 2logav M

total multipliers.

19

e Total Number of Multipliers = 2logav M

The results of the complexity analysis showed the Piecewise Algorithm and Max Like-
lihood Detection use significantly less multiplications than the other two decoders. How-

ever, it is equally important to analyze their BER in order to investigate all performance

metrics.
Total Number of Multipliers
Exact | Approx | PieceWise | ML
64QAM | 192 134 0
256QAM | 768 520 0

3.1.2 BER Performance

One of the main goals of the our design exploration was to find the algorithm with the
best overall performance. For this purpose, the BER (Bit Error Rate) metric is employed
to evaluate three soft decision and one hard decision algorithms for 64-QAM and 256-
QAM.

We assume a transmitter producing random binary digits with a convolutional encoder
having a code rate of 1/2. The system employs a QAM modulation considering a nor-
malized constallation diagram to keep the average symbol energy to unit. The modulated
signal passes through an Additive White Gaussian Noise channel. Our QAM demodulator
computes log-likelihood ratios (LLRs) which are processed by a Viterbi Decoder that is
set up in unquantized mode. After the bit error calculation, the BER performance of our

receiver is computed and displayed.

Random :
Convolutional |
Binary Ee QAM modulator
Generator

Bit Error .
Calculation ASREEN AWGN
Channel

QAM
demodulation

Viterbi Decoder

Figure 3.1: Block diagram for QAM Demodulation with Viterbi Decoding

20

The received symbol corresponding to the kth sample of the transmitted symbol, can

be expressed as:

Y (k) = X (k)H(K) + W (k) (3.1)

H(k) is the channel frequency response at the kth subcarrier, Y (k) is the received sym-
bol, X (k) is the transmitted symbol and W (k) is the complex additive white Gaussian noise
(AWGN) with variance 03. After performing zero-forcing (ZF) frequency equalisation, one

can obtain the following expression:

Z(k) = Y (k)/H(k) = X (k) + W (k) /H (k) = X (k) + V (k) (3.2)

where V(k) is the complex AWGN with variance o2 = o2 /|H (k)|?.

In BER simulations shown below, the channel coefficient h is modeled as a zero mean

circularly symmetric complex Gaussian random variable with unit variance, as well as the

noise w with variance. 1/4/10(E+/No)/10 . [ogo M. The employed convolutional encoder has

the generator polynomial (133,171) and constraint length of 7.

3.2 LLR Evaluation with Approximation Techniques

Approximate computing techniques are employed in the design of efficient digital sys-
tems and circuits for applications that demonstrate inherent error resilience. At circuit-
level, extensive research has been conducted in the design of inexact adders [7, [6 [16] and
multipliers [9, [, [4, 10, §], i.e., the core components of DSP accelerators. Towards this
direction, and in order to simplify the complexity of our circuits we applied approximation
techniques, i.e., bit truncation in our data, approximate multipliers on fixed-point arith-
metic, as well as approximate multipliers on floating-point arithmetic. Each technique
was tested based on MATLAB simulations for each one of the 3 soft decision algorithms
for specific SNR values and 64-,256-QAM.

Next, we evaluate the approximate versions of the examined algorithms by comparing
their LLR outputs with the respective ones of the full-precise algorithms. The proposed

error evaluation metric of the bar diagrams below is LLR Mean Relative Error (LMRE) :

N |LLR(¥)accur—LLR(i)approx|

LMRE = == L aceur -100% (3.1)

21

Bit Error Rate

Bit Error Rate

10°

E [[[E|
: - . . z
\\ —]

|- \& \—~\; -
10 T =
10 2 E =
103 = E
104 E

E ——Exact

t | Approx

L Piecewise il

——ML

105 I | | ! ! | | | | |

0 2 4 6 8 10 12 14 16 18 20 22

Eb/No (dB)
Figure 3.2: BER performance comparison of algorithms in 256-QAM

10° F I]

s S z

L 77‘\\ 7777777777777““*\1 4

L i \x*«\ 4

\\
T~

107 T~ E
1072 = =
1078 =

: —+—Exact

—+— Approx

r Piecewise
104 | | | |

0 2 4 6 8 10 12 14 16

Eb/No (dB)

Figure 3.3: BER performance comparison of algorithms in 64-QAM

22

The presented analysis regards fixed point arithmetic. So we consider our I and Q
signals are fixed point signed numbers with a word length of 16 bits and fraction length 14
bits ([16 14]). Our inputs as mentioned are normalized to unit length and that is why 2
bits in integer part are sufficient. The metric for our bar diagrams below is LLR Relative

Error and it is expressed as a percent. Its formula is:

3.2.1 Bit Truncation on Fixed-Point Arithmetic

The first approximation technique is the conventional Bit Truncation, which variably
truncates the least significant bits (LSB) of the inputs to reduce the complexity of our
computations. Our main goal is to achieve an acceptable trade-off in accuracy depending
on the decoding algorithm and its accuracy limits. In the figures below, the LLR Relative

Error (3.1) is presented for each soft decision algorithm.

250

.T=O
200|-
lT=4
150/ DT=8
.T=11
100/
501
0 |

50B

Figure 3.4: LLR Relative Error for 64-QAM Exact Algorithm and two values of EbNo

23

.T=0
20— -

.T=4

DT=8
180 — |

.T=11
100 — —
50— -

0 | |
5DB 10 DB
Figure 3.5: LLR Relative Error for 64-QAM Approx Algorithm and two values of EbNo

160
140 |— lT=0 -
7= lT=4 -
100 — DT=8 —
8O- lT=11 =
60— -
20— -
m | l |
0 | |

5DB 10 DB

Figure 3.6: LLR Relative Error for 64-QAM Piecewise Algorithm and two values of EbNo

The results show that the Exact Algorithm in contrast with the other two has a signif-
icant relative error in its LLR values. This happens because of its complex computational
operations like exponential and logarithmic. These have been implemented with a Lookup

Table (LUT) and thus, their outputs have a strictly specific range.

24

3.2.2 Approximate Radix Multiplication on Fixed-Point Arithmetic

This technique is an approximate hybrid high radix encoding for designing energy-error
efficient inexact multipliers. High radix encodings offer partial products reduction, and as

a result, their accumulation requires smaller trees, leading to energy, area, and/or delay

savings [9].

In this technique, the most significant bits (MSBs) of the multiplicand B are encoded
using the radix-4 encoding, whereas the k least significant bits (LSBs) are encoded using
a radix-2% (with k& > 4). After this generation of B’ the approximate multiplication A - B’

is performed.

2,
L

sign *1;
a —_) a

PP PP PP

)

sign
A2

(a) (b}

Figure 3.7: i-bit partial product generator based on (a) accurate radix-4 encoding and the
approximate (b) radix-64, (c) radix-256, and (d) radix-1024 encoding. a; : i-bit of operand A,

a; = a; D sign.

Il Low SNR
EHigh SNR
sl u

EN o [
T T T

LLR Relative Error (%)

w
T

64-QAM 256-QAM

Figure 3.8: LLR Relative Error for 64-QAM via Exact Algorithm

25

o sNR
7+ [loh sNR _

LLR Relative Error (%)

64-QAM 256-QAM

Figure 3.9: LLR Relative Error for 64-QAM via Approx Algorithm

The remarkable conclusions in Figures [3.8) and are two. It is shown that the radix
method has almost the same behaviour both in Exact and Approx as concerns the LLR
accuracy. And last but not least, as the SNR increases, the loss in accuracy gets smaller.
This means that in the range of high SNR this method becomes more efficient in a com-
munication system. The 64-QAM was tested under 5db and 10db, while the 256-QAM
under 10db and 20db respectively.

3.2.3 Approximate RMAC Multiplication on Floating-Point Arithmetic

RMAC is a Runtime Configurable Floating Point Multiplier for Approximate Comput-
ing. This approximate method multiplies two floating numbers and yields a high precision
product. RMAC approximates the costly mantissa multiplication to a simple addition
between the mantissa of input operands [5]. Despite the fact that this approximate mul-
tiplier it is worth mentioning for its energy efficiency and low execution time, our main
metric here is again the mean error of LLR. So, some comparisons between this technique

and the full precision algorithms are shown below.

26

LLR Relative Error (%)

45

40

35

W
o

n
3]

n
o

o

llLow SNR
IllHigh SNR

64-QAM 256-QAM

Figure 3.10: LLR Relative Error for Exact LLR using RMAC approximation

In Figures [3.10 [3.11] we can see a higher LLR relative error from the Radix Multiplier

regardless from noise variance and SNR. In addition the same conclusion applies here as

well, as concerns the SNR increasement. As it goes higher the approximate multiplier has

less relative error from the full precision values.

40

35

30

n n
o 3]

LLR Relative Error (%)
o

ILow SNR
Il High SNR

64-QAM 256-QAM

Figure 3.11: LLR Relative Error for Approx LLR using RMAC approximation

27

3.2.4 Approximate CFPU Multiplication on Floating-Point Arithmetic

CFPU is a Configurable Floating Point Multiplier for Energy-Efficient Computing. This
technique works by replacing the most costly step of the operation with a lower energy
alternative [4]. By this way, it significantly reduces energy and improves performance

of multiplication at the expense of accuracy. The diagrams below analyze this loss of

60

[Low SNR
I High SNR

50 — —

N
o

LLR Relative Error (%)
w
o

n
o

64-QAM 256-QAM

Figure 3.12: LLR Relative Error for Exact LLR using CFPU approximation

64-QAM 256-QAM

Figure 3.13: LLR Relative Error for Approx LLR using CFPU approximation

From the figures above we can observe similar accuracy as RMAC approximation.
However, based on [4], RMAC can achieve significantly higher hit rate and efficiency as

compared to CFPU while providing the same level of computation quality.

28

Il Low SNR
[High SNR

Chapter 4

FPGA Circuit Design

4.1 Introduction

Until now, we have theoretically studied and analyzed how these decoding algorithms
behave from MATLAB codes. In this chapter, we are going to focus on their characteristics
and their implementation in VHDL language. The algorithms chosen to be designed and
implemented at this point are the Soft Decision (Exact LLR, Approx LLR and Piecewise
LLR), as in general they have better BER performance. The arithmetic of these circuits
is fixed-point and thus, the approximate techniques that are applied to the algorithms
are Bit Truncation and Radix Multiplication. The tool used for this purpose was Vivado
Design Suite 2019.2 of Xilinx.

4.2 Block Design

As soft decision decoders have generally better performance than hard decision de-
coders, we have chosen to implement the Exact LLR, Approximate LLR and Piecewise
LLR. These three algorithms base upon the LLR values and offer soft bits that are applied
afterwards to the Viterbi decoder. A design abstraction of the way they perform is given

below.

4.2.1 Block Diagram of Exact LLR

In the schematic diagram 4.1 for the M-QAM demodulation there are M constellation
points of the gray coded map which introduced to the Euclidean Distance component.
The last computes the difference d; of the received point and the expected constellation
point. The next component produces the exponent of this result and then the M-distances
are redistributed depending of the M-QAM mapping. In continuously, 2 - N(N = logo M)
sums, as described in (2.2), are produced. After their logarithmic calculation N LLR

values are parallel arise.

29

Received

Symbol

: »
. Constellation |
i Point0
: C Ilati
. Constellation |
: Point 1

L]

L]
! . —
. Constellation

“._ Point M-1

Euclidean
Distance

Euclidean
Distance

Euclidean
Distance

——> [Exponent

Exponent

Exponent

Outputs
Distribution
>
54
i.)
—
D4
&.)
D4
\.)
E—

Sum 0

Sum 1

Sum 0

Sum 1

Sum 0

Sum 1

> LLR bit 0

— Log —
— Log —
— Log —
— Log —
.
.
— Log —
—

> LLR bit 1

LLR bit

Figure 4.1: Block diagram of M-QAM demodulation via Exact LLR

4.2.2 Block Diagram of Approximate LLR

Block Diagram of Approximate LLR looks quite similar to this of Exact. The main

difference is the simplification at the complex operations like exponent and logarithmic.

Instead of these, there is a component that finds the minimum value of some calculated

distances. The rest functions remain as described at Exact’s schematic.

Constellation
Point 0

| Constellation |

Point 1

Constellation
~._Point M-1

Received

Symbol

—T ™

—
—_—>

Euclidean
Distance

Euclidean
Distance

Euclidean
Distance

Distribution

Min SO

Min S1

Min SO

Min S1

Min SO

Min S1

> LLR bit 0

> LLR bit 1

| LLR bit
e N-1

Figure 4.2: Block diagram of M-QAM demodulation via Approx LLR

30

Log —

N-1

a1

Figure 4.3: Schematic diagram for Euclidean Distance component

In Figurethe I/Q data are received and subtracted from the expected ith I/Q point.
The result is squared and the results are added together. The outcome is the distance

from the ith constellation point.

Element Element

Element 1 Element2 | = =« M2 A a2

compare compare

- -

- -

- -
compare

>

i

MIN

Figure 4.4: Schematic diagram for finding the minimum value of an array

For a M-QAM demodulation, Approx LLR tries to find the minimum value of the
M /2 computed distances corresponding to bit 0 and the other M /2 corresponding to bit
1. Every Min-component consists of a fully pipelined tree. A comparison for every two
inputs of the M /2-array is done and after logQ% steps the minimum value is arised and

stored in a register.

31

4.2.3 Block Diagram of Piecewise LLR

The third implemented algorithm consists of N approximate functions. Half of them
get as input the imaginary part of the received symbol and the rest of them the real part
of it. These functions computes N values of LLR as described in equations (2.1-2.2) and

produce them in parallel.

Imapg;;ary—é——b Linear Function1 ———»LLR bit 0

— Linear Function 2 —-—P LLR bit 0

— Linear Function N/2 —h- LLNR;zbit

_ _ . LLRbit
—» Linear Function 1 —'—l' N/2 +1

_ . | LLRbit
— Linear Function 2 —h- N/2 +2

Real
Part

—-——h- Linear Function N2 ————»LLR bit N

Figure 4.5: Block diagram of 2V-QAM demodulation via Piecewise LLR

4.3 VHDL Components

This section concerns only the Exact LLR. This algorithm in order to calculate the
exact value of LLR as expressed in (2.2), we had to implement exponential and natural
logarithmic function. There are several solutions for doing that in VHDL. The first al-
gorithm we chose for this implementation was hyperbolic CORDIC and in fully pipelined
version. The second way is Remez algorithm which converts a function to a polyonomial

of best approximation [I8]. A briefly analysis of their architecture is given below.

32

4.3.1 Exponential
CORDIC

The hyperbolic CORDIC algorithm as originally proposed by Walther allows the com-
putation of hyperbolic functions in an efficient fashion [13]. The original hyperbolic

CORDIC algorithm states the following iterative equations:

Xiv1 =X, +6Y;27"
Yig1 =Y +8,X:27" (4.1)
Ziy1 = Zi — 6ib;

Where §; = tanh™1(27%) and i is the index of the iteration (i = 1, 2, 3, ... N). The

value of §; is either +1 or —1 depending on the mode of operation:

Rotation : 6; = —1 if 2z <0, 41 otherwise (4.2)
Vectoring : 6; = —1 if z;y; >0, 41 otherwise .

To obtain exp function we have to set some parameters according to [13], depending
on the input/output bit width we want. In our circuit, we decided to use an input format
of [24 20] (24 word length - 20 fractional length). The reason we chose this is to achieve

a respectable LLR accuracy without making a huge-cost design.

The specific format means that from all the M distances multiplied by noise variance,
only the ones greater or equal to -7 will be computed and added to the specific sum. This
depends on the fractional length our output has (11 bits) and is predetermined from the
format we choose for the implementation and the tradeoff between accuracy and utilization
we want. Thus, for the rest of these distances the exp function is set to produce a zero
output. By this way, keeping the higher values (> —7) results in a small loss of LLR

accuracy, but in a low cost exponential design too.

Remez Algorithm

This kind of exponent implementation in VHDL concerns the Remez algorithm. The
last can compute the best minimax rational approximation of the wanted degree for a real
function on the interval [a, b]. As mentioned before, we kept again the inputs greater or
equal to -7. Given this fact, the input interval is [-7, 0]. Using the trial and error method
we split this interval into [-7, -5), [-5, -2), [-2, 0] for a smaller loss of accuracy. For each

situation, a 2nd degree polynomial was produced via Mapple and is expressed below:

33

0.068700 + (0.019282 + 0.0013733z)z x € [~7,5)
exp(z) ~ { 0.39881 + (0.17214 + 0.018946z)z = € [—5,2) (4.3)
0.98347 + (0.82344 + 0.203822)r € [-2,0]

where the maxerror for each expression respectively is:
1. maxerror = 0.00011679

2. maxerror = 0.0050554

3. maxerror = 0.016580

As the above equation is already an exponential approach, we had to represent these
three coefficients as [30 29], in order to have a remarkable accuracy. The bit width of

output remained the same as in CORDIC algorithm.

register register
X
register register
C1l ———> ;<> }—» exp(x)
- A L | A
register register
Cc2
register register

C3)’_‘ ;’_‘
L L

Figure 4.6: Block diagram of the 2nd degree polynomial in parallel and pipelined version

As shown in Figure [4.6] the specific polynomial was implemented in parallel so that the
decoding algorithm demonstrates the maximum throughput. At every step a controller

checks the value of z and determines the three coefficients.

34

4.3.2 Natural Algorithm
CORDIC

A fixed-point iterative architecture of the logarithm function based in the expanded
hyperbolic CORDIC algorithm is analyzed at this section. Based on [12],

a—1

In(a) = 2tanh ™! (a 1

) (4.1)
The function In(a) is obtained by multiplying by 2 the final result, provided that Zy = 0,
Xo=a+1and Yy =a — 1 from the equation 4.1.

The fixed-point fractional representation means that there is a strict range in which
values are fluctuate. This implies that the natural logarithmic function has a minimum
value can compute. As the input of In component is strictly positive and has 10 fractional
bits, this minimum value is 2710, Thus, the interval referred before is [271°, 1]. The
output interval, now, is meant to be [In(2719), 0]. As In(2710) needs 4 integer bits, we
picked the output format of [16 12].

Remez Algorithm

As before, the polynomial function of In(z) has domain [0.0009765625, 1]. Again, for a
higher accuracy we split this interval into these three ones: [0.0009765625, 0.1), [0.1, 0.2),

[0.2, 1]. The 2nd degree polynomials for each of these situations are expressed below:

—6.40627 + (124.773 — 901.9762)x = € [0.0009765625,0.1)
In(z) = ¢ —3.03882 + (8.55215 — 7.88225z)x z € [0.1,0.2) (4.2)
—1.5303 + (1.9361 — 0.41872x)x x € [0.2,1]

where the maxerror for each expression respectively is:
1. maxerror = 0.646413

2. maxerror = 0.0407974

3. maxerror = 0.026485

In order to represent each coefficient as a fixed point number with less possible loss of
accuracy we set a format of [30 19]. The schematic diagram is the same as in Figure

but with different coefficients and controller which determines their values.

35

4.4 Pipeline Parallelization

In digital telecommunication systems, decoding algorithms require very high operating
frequencies. In order to compensate the effect of oversampling in feedforward architectures,
parallelization and pipelining methods are applied for implementation of these three algo-
rithms. By utilizing these optimizations, clock frequency of each subsystem is increased

in a remarkable number of MHz.

After the successful connection between the modules, the whole system is synchronous
and fully pipelined, as stated. This means that after the data has passed through the
pipeline we get 1 output at every clock cycle. The latencies that every module has, are
described by the following table.

Latency Cycles
Hardware Module
64-QAM 256-QAM
Exact - CORDIC 43 45
Exact - Polynomial 14 16
Approx LLR 4
Piecewise LLR 2 3
Throughput

The throughput of our circuits computed based on max clock frequency and are shown

below:
B Approx LLR: 357 MSa/s

B Piecewise LLR: 555 MSa/s

4.5 Design Verification

Design verification is an essential step in the development of any circuit. It is a method
of confirmation by examining and providing evidence that the design output meets the

design input specifications.

In order to verify that theoretical simulations on Matlab and behavioral simulation on
the hardware are what we expected, a verification workflow was created (Figure 4.7). It
also helped us to obtain the BER results of the VHDL code. Matlab generates a noisy
signal and converts it to binary data. This data is read by a VHDL testbench through
an input file and then simulation output is written to an output txt file. Finally, Matlab

reads that output and producer BER results through scripts.

36

A MATLAB

0000100111100001
0010000000010110
0111001111010000
0101001111011110
0106111111101000
0011010000010111
1101000100000010
1010011001111100
1101001101100000
0011101001101000

1101000100001111
1111001001110010
1011010011011000
0011001000100100
10111111016601001
1100001100010010
0000110010111110
0001001011001110
0001111100100000
0101000010010011

A MATLAB

Simulation output
obtained using
Xilinx Vivado v19.2 Matlab

Output results are
plotted using

To generate signal
and convert to
binary data files

Binary data files
for input

Figure 4.7: Typical workflow of feeding VHDL with Matlab inputs

For further verifying the proper operation of each algorithm, some LLR values of the
test data of the Matlab results and the FPGA results are compared and the comparison

result is demonstrated as follows in below figures.

80
I Matlab
I VHDL

60 — -

20 —

LLR
o

-80
10 20 30 40 50 60 70 80 90 100

Figure 4.8: LLR comparison between VHDL code and Matlab code for 64-QAM Approx LLR
algorithm for 100 samples

37

error plot

1 1
\—difference between polarity

Figure 4.9: Comparison of the polarities of LLR between the simulation and the implementation
for 64-QAM Approx LLR

38

100

Chapter 5

Experimental Results

5.1 Hardware Comparison of all Algorithms

For the purposes of exploring power consumption and verifying proper operation of
the decoding algorithms, Vivado Design Suite 2019.2 and Zynq UltraScale + MPSoC
7ZCU106 Evaluation Platform were used. The soft decision decoding techniques chosen to
be implemented are Exact LLR, Approximate LLR and Piecewise LLR. These algorithms
tested for 64-QAM and 256-QAM. The arithmetic of these circuits is fixed-point and the

approximate techniques that are applied are Bit Truncation and Radix Multiplication.

In many modulation or demodulation applications high performance, low power con-
sumption and low cost ASIC design is required. For this reason, despite the fact that our
circuits designed to fit on FPGA, we present some results without using DSPs. By this
way, some comparisons and resources deduction can be observed for both of FPGA and
ASIC circuits.

Our metrics for our hardware results are LLR Relative Error as described before (3.1)
and LLR polarity reversal. The change of sign in LLR values makes it an equally impor-
tant metric concerning the lowest values. These values are crucial and worth mentioning
because in these there is a greater probability that the decoder picks the wrong codeword
and thus a wrong decision about the received bit to be made. Greater values of LLR
means higher confidence for the decoder. In addition, we compare these metrics with the
resources that every algorithm needs to be implemented. The tables with the results of

each implementations are shown below.

39

Exact LLR

Table 5.1: Evaluation of 64-QAM for Exact LLR with Cordic and Polyonomial implementation

for exponent and natural logarithm in comparison with full-precision algorithm.

64-QAM
CORDIC POLYON

10DB | 15DB | 10DB | 15DB
LLR Reversal Polarity | 0.15% | 0.17% | 0.029% | 0.037%
LLR Relative Error 47.25% | 79.42% | 46.25% | 77.94%
DSP 0% 0%
LUTS 53.12% 63.51%
FF 17.73% 37.78%

For the Exact Algorithm two implementations were done. The first one concerns com-
puting exponent and natural logarithm by using CORDIC architecture and the second
one by polyonomial expressions. Although the second method would seem to be a more
economical solution, in order to achieve the desired accuracy, more bits were needed to be

used. However, a smaller deviation achieved.

As mentioned the Exact LLR requires complex computational operations. The fact
that more than half of FPGA is required to implement a 64-QAM demodulation, makes

this algorithm more ineffective than the other two.

Approximate LLR

Table 5.2: Accuracy results and Resources Utilization of 64 and 256 QAM for Approximate LLR
in comparison with full-precision algorithm.

64-QAM 256-QAM
10DB 15DB 15DB 20DB
LLR Reversal Polarity | 0.00075% | 0.000083% 0.0019% | 0.00013%
LLR Relative Error 0.14% 0.04% 0.09% 0.023%
BER Variation 1.67 x 1076 0] 3.75%x1076 | 1.00 x 1076
DSP 0% 0%
LUTS 24.09% 97.28%
FF 4.69% 22%

The results from Table 5.2 show that Approximate LLR implementation is really close
to its Full-Precision implementation (matlab). Here, a new metric has been added, called

BER Variation. It concerns the difference between the number of error that these two

40

methods detected after the viterbi decoder. As we expected, this algorithm is much more
economical than the Exact LLR.

Piecewise LLR

Table 5.3: Accuracy results and Resources Utilization of 64 and 256 QAM for Piecewise LLR in

comparison with full-precision algorithm.

64-QAM 256-QAM
10DB 15DB 15DB 20DB
LLR Reversal Polarity 0.0013% 0.00025% 0.0036% | 0,00025
LLR Relative Error 0.04% 0.015% 0.073% | 0.024%
BER Variation 3.33x107% | 1.00 x 107 | 2.00 x 1075 0
DSP 0% 0%
LUTS 0.07% 0.14%
FF 0.05% 0.09%

It is visible from the Table 5.3 that the Piecewise Algorithm is a significantly lower cost
design than all the previous were tested. However, this achievement involves some BER

performance loss.

5.2 Hardware Results

Introducing some approximation techniques, which already referred, to our circuits, we
can analyze the impact and the cost they have. At this section, the following results show

the tradeoff between the accuracy of LLR values and the resources deduction.

5.2.1 Truncation Approximation

In our design implementation and results we consider 16-bits inputs and 14-bits frac-
tional length. In this method, we truncate the LSBs of the fractional part and by test
and try we focus on achieving the desired tradeoff. Below, performance and utilization are
presented for each soft decision algorithm, where T indicates the number of bits truncated

of the internal operations.

41

Exact LLR

Table 5.4: Accuracy results and Resources Utilization of 64 QAM for Exact LLR using CORDIC,

in comparison with full-precision algorithm.

64-QAM
CORDIC
10DB N 15DB
T=0 | T=8 | T=11 T=0 | T=8 | T=11

LLR Reversal Polarity | 0.17% | 0.50% 4.69% 0.15% | 0.21% | 5.60%
LLR Relative Error 47.25% | 60.09% | 197.10% 79.42% | 80.20% | 86.9%

DSP 0% 0% 0%
LUTS 53.12% | 40.21% | 35.55%
FF 17.73% | 16.85% | 16.24%

Table 5.5: Accuracy results and Resources Utilization of 64 QAM Performance and Utilization
for Exact LLR using POLYON, in comparison with full-precision algorithm.

64-QAM
POLYON
10DB N 15DB
T=0 | T=8 | T=11 T=0 | T=8 | T=11

LLR Reversal Polarity | 0.029% | 0.50% 4.73% 0.037% | 0.052% | 2.02%
LLR Relative Error 46.25% | 60.00% | 200.00% 77.94% | 78.74% | 99.7%

DSP 0% 0% 0%
LUTS 63.51% | 42.2% 27.3%
FF 37.78% | 3.68% 3.21%

Here, we observe a significant reduction to the resources needed for the exact to be
implemented. However, the growth of our metric is quite undesirable, as it will definitely
lead to a crucial increase of bit error rate. That is the reason we focus on the next two

soft decision algorithms later on.

42

Approximate LLR

Table 5.6: Accuracy results and Resources Utilization of 256 QAM for Approximate LLR in

comparison with full-precision algorithm.

256-QAM
15DB N 20DB
T=0 T=8 T=11 T=0 T=8 T=11

LLR Reversal Polarity 0.0019% 0.76% | 8.9% 0.00013% 0.075% 7.35%
LLR Relative Error 0.09% 0.45% | 219% 0.023% 8.6% 74.99%
BER Variation 3.75x 1070 | 3.63 x 107° | 0.0045 1.00 x 1076 | 5.00 x 107% | 3.21 x 10~4
DSP 0% 0% 0%
LUTS 97.28% 38.64% | 21.2%
FF 22% 11.5% | 7.85%

Table 5.7: Accuracy results and Resources Utilization of 64 QAM for Approximate LLR in

comparison with full-precision algorithm.

64-QAM
10DB B 15DB
T=0 T=8 T=11 T=0 T=8 T=11
LLR Reversal Polarity 0.00075% 0.48% 4.64% 0.000083% 0.044% | 1.94%
LLR Relative Error 0.14% 15.28% | 142.94% 0.04% 5.31% 44.63%
BER Variation 1.67 x 1076 | 1.30 x 107® | 0.0013 0]333x1077 | 1.52 x 107°
DSP 0% 0% 0%
LUTS 24.09% 8.79% 4.48%
FF 4.69% 2.32% 2.02%

A remarkable conclusion from the tables above is that the resources reduction is even

higher than exact algorithm and with less possible loss of accuracy. Given the fact that

its design cost is lower and has better overall performance, Approximate LLR constitutes

a better solution.

Piecewise LLR

Table 5.8: Accuracy results and Resources Utilization of 256 QAM for Piecewise LLR in com-

parison with full-precision algorithm.

256-QAM
15DB] 20DB

T=0 T=8 T=11 T=0 T=8 T=11

LLR Reversal Polarity | 0,0036% 1,65% 12,99% 0,00025% 0,35% | 12,19%

LLR Relative Error 0,073% | 38,75% | 185,22% 0,024% 11,92% | 71,36%

Bit Error Variation 2.00E-05 | 4,38E-05 | 0,071 0| 1,25E-06 | 0,039
DSP 0% 0% 0%
LUTS 0,14% | 0,05% | 0,03%
FF 0,09% 0,05% 0,03%

43

Table 5.9: Accuracy results and Resources Utilization of 64 QAM for Piecewise LLR in compar-

ison with full-precision algorithm.

64-QAM
10DB N 15DB
T=0 T=8 | T=11 T=0 T=8 | T=11
LLR Reversal Polarity | 0,00125% | 0,71% | 6,39% | | 0,00025% | 0,072% | 6,21%
LLR Relative Error 0,04% | 13,14% | 93,54% 0,015% | 5.64% | 39,37%
Bit Error Variation 3,33E-06 | 1,00E-04 | 0,0045 1,00E-06 | 1,83E-06 | 1,07E-04
DSP 0% 0% 0%
LUTS 0,07% | 0,03% | 0,02%
FF 0,05% | 0,03% | 0,02%

The results here show that the truncation method does not fit well on Piecewise Al-
gorithm, as the increasement of accuracy values are high for our tradeoff in resources.
Nevertheless, this algorithm has no need for urgent approximations due to its low cost

design.

The Chosen Algorithm

The algorithm chosen for further approximation techniques was Approximate LLR.
Piecewise decoding needs zero multiplications and radix encoding cannot be applied there.
Approx LLR has a low complexity compared to the Exact with no exponential and loga-
rithmic and a better BER performance than the third algorithm (Figure .

Bit Error Rate

10%¢ 3
107" E : ‘\\ E
£ NS]
[NS]
[N]
~~
3 & J
102 &\”\\ E
L \\\\N\ 4
L . J
103} NS -
- [~ Accurate Approx \\]
I |~ Approx T=8 h - 1
[Piecewise T=0 \’
104 ! ! ! ! l
0 2 4 6 10 12
Eb/No (dB)

Figure 5.1: BER performance comparison between Accurate Approx, Approx T = 8 and Piece-

wise T =0 in 64-QAM

44

In the next figure the hardware utilization for Approx LLR 64-QAM is derived using
DSPs. It is visible that by using DSPs, LUTs are reduced by about 16%. It is worth

mentioning that Approx LLR uses below 10% of the device’s total resources.

utilization Post-Synthesis Post-implementation
Graph able

LUT A
FF 1
DSP
104

BUFG 1

0 25 50 75 100
Utilization (%)

Figure 5.2: The utilization graph for the 64-QAM using DSPs as produced by the Vivado Im-

plementation process

A schematic overview of the device utilization can be seen at the next Figure The
light blue areas symbolize the utilized fabric while the dark blue areas indicate the unused

fabric. We can clearly see that our design has used least of the FPGA fabric.

Figure 5.3: The FPGA device utilization as shown from the Vivado Implementation tool

45

5.2.2 Radix Approximation

At this point we exam the Radix Approximation on Approx LLR. We replace the
accurate multipliers needed for the parallel euclidean distance calculation, with the radix
multipliers. This supersession leads to energy savings in terms of cost and the results are
presented below.

Table 5.10: Accuracy results and Resources Utilization of 64 QAM for Approx LLR using Radix

Multipliers and 7' = 0, in comparison with full-precision algorithm.

64-QAM
10DB] 15DB
T=0 K=10 T=0 K=10
LLR Reversal Polarity | 0.00075% | 0.0058% 0.000083% | 0.0013%
" LLR Relative Error 0.14% 2.92% 0.04% 2.56%
DSP 0% 0%
LUTS 24.09% 16.37%
FF 4.69% 11.66%
LUTRAM 0% 1.13%

As it is shown from the Table 5.10 we sacrifice a little bit of precision, but the design

cost has been highly decreased. The question that concerns is what its replica to BER

Bit Error Rate

performance.
100
L —+— Accurate
t Bad FEC ——-Trunc
Radix
107 =
~
-
~
~
~
I
\\\
N
N
\\
2| N i
N
Good FEC R
N
\\
1073 |- N =
| | | | | | | A |]
4 5 6 7 8 9 10 11 12 13 14

Figure 5.4: BER performance for Approx LLR of Accurate, Truncated (T=8) and Radix tech-

nique for different FEC encoders.

Eb/No (dB)

46

The answer is that the BER performance degretation is negligible and irrespective to
the FEC encoder, as we can see from Figure Both the truncation method and Radix
approximation have almost the same behavior in terms of bit error rate. This happens
and seems logic because we have a predetermined and sufficient length of fractional part
in our inputs. In the next section, this number of bits will be decreased in order to draw

a conclusion about which technique outperforms the other.

5.3 Approximation Techniques Comparison

Our goal here is to determine in which conditions Radix technique fits better than the
Bit Truncation. For that purpose, we had to decrease the bit-length of input so that we
notice a remarkable difference in BER performance. The fractional part is now 6 bits and

the accuracy results are the following.

Table 5.11: Accuracy results and Resources Utilization of 64 QAM for Approx LLR at 10db with
different number of fractional part (6 bits). LLR is compared to the Full-Precision and LUTS to
the accurate algorithm (T=0).

64-QAM
K=6 T=1 T=2
LLR Reversal Polarity 0.58% 1.18% 1.78%
LLR Relative Error 20.91% 11.23% 54.2%
Relative LUTS-gain 15.36% 9.01% 20.83%

In this situation, when the bit-length of input is decreased we notice a rapid increase
in LLR values as concern the Truncation method. Contrariwise, the Radix approximation
has a more stable change in its values, combining a remarkable gain in LUTs. Although
the difference between the two techniques shown in Figure is quite small (0.2-0.3db), we
can draw a qualitative conclusion regarding how much we can lower the SNR requirement
if we use FEC [17]. Depending on the FEC that we use, one technique may offer a better

performance either in resources deduction or in better accuracy than the other.

47

Bit Error Rate

100

TR il
107" - S .
L ‘\‘\:‘\‘\\ 5]
\\;\\\“*
N
102 s]
L \\ N -
r NG i
L \\ i
L —+— Approx -
~ % -K6
T2
10 -3 | | [| | | | | |
4 5 6 7 8 9 10 11 12 13

Eb/No (dB)

Figure 5.5: BER comparison of Truncation (T=2) and Radix method (K=6) for Approx LLR.

5.4 Overall Comparisons in Approximate LLR

In this section we evaluate both of the approximation techniques over the Approx LLR,
in order to demonstrate the benefits of replacing accurate algorithms with the approxi-
mated ones. At this point, an error evaluation metric and a cost reduction metric are
proposed, being called LLR mean relative error (LMRE) and relative LUTs reduction

(RLR). The expressions for the last metrics are the following:

N |LLR(i)accur—LLR(i)approz|

LMRE = == L aceu] -100% (5.1)
RLR = L0T5ace LUTSappror . 100, (5.2)

where ¢ indicates the ith sample of the total number of N.

48

Figure[5.6shows a comprehensive comparison of all situations by considering both RLR
and LMRE. The purpose of the diagram is to extract the most efficient designs in terms

of low cost-error and depending on the length of our inputs.

Generally, Truncation method attains the biggest RLR value and should be preferred
when input’s fractional length is high (e.g. 14 bits). However, the smaller this length is,
the more efficient Radix method becomes. In this case, when error is of high importance
Radix multiplier is more preferable, as truncating the LSB will lead to a massive reduction
in accuracy. Hence, both the error and the utilization of resources depend on the examined

application and the fixed-point representation we want to apply.

LMRE %

80

70

60

50

30

20

10

X T2
B 14-bit fractional length _
* 6-bit fractional length
* K6 B
xT mT8
K10
]
\ \ \ ™ \ \ \
10 20 30 40 50 60
RLR %

Figure 5.6: RLR-LMRE tradeoff of the examined approximated algorithms.

49

70

Chapter 6

Conclusions and Future Work

In the current thesis some soft decision decoding algorithms with approximate tech-
niques were presented, assessed through simulations and finally implemented on an FPGA
platform. Many telecommunication systems use also ASIC technology where effective solu-
tions with minimum possible hardware overhead are needed. For that purpose, the present
analysis focused on utilization of resources and the reduction of them using approximate

techniques.

Approximate computing forms a design alternative that exploits the intrinsic error
resilience of various applications and produces energy-efficient circuits with small accuracy
loss. In this thesis we picked the most commonly used soft decision algorithms and tried
to achieve a low cost circuit for a small error in accuracy. The algorithms that tested,
simulated and implemented were Exact LLR, Approximate LLR and Piecewise LLR. We
proved that although the last method is clearly lower in complexity than the others, the
cost of Approx LLR design can be significantly reduced using approximate techniques.
In addition, it can be approximated with a negligible loss in BER performance. The
approximations that implemented were Bit Truncation and Radix multipliers. The first
one showed that is generally more efficient when inputs in an application have big bit-
length. The second one becomes more preferable when error is of a high important. This
means that this method can withstand a telecommunication system it uses a bad-low cost
FEC encoder. Thus, depending on the parameters, when implementing such a system

some techniques can be more desirable as they perform just as well in any FEC encoding.

A future project could be an actual FPGA implementation of the approximated algo-
rithms and embodiment to experiment with real telecommunication data and noise. Ad-
ditionally, a more extensive exploration could be done including different FEC encoders

and parameters in a telecommunication system.

o1

Bibliography

1]
2]

[3]

[11]

S. Chandrashekar. Advantages of fpga design methodologies. 2004.
F. Didactic. Quadrature Amplitude Modulation (QAM/DQAM), October 2016.

J. Han and M. Orshansky. Approximate computing: An emerging paradigm for
energy-efficient design. In IEEE European Test Symposium (ETS), pages 1-6, May
2013.

M. Imani, R. Garcia, S. Gupta, and T. Rosing. RMAC: Runtime configurable floating
point multiplier for approximate computing. In International Symposium on Low
Power Electronics and Design (ISLPED), pages 12:1-12:6, Jul. 2018.

M. Imani, D. Peroni, and T. Rosing. CFPU: Configurable floating point multiplier
for energy-efficient computing. In Design Automation Conference (DAC), pages 1-6,
Jun. 2017.

H. Jiang, J. Han, and F. Lombardi. A comparative review and evaluation of approx-
imate adders. In Great Lakes Symposium on VLSI, pages 343-348, May 2015.

A. B. Kahng and S. Kang. Accuracy-configurable adder for approximate arithmetic
designs. In Design Automation Conference (DAC), pages 820-825, Jun. 2012.

V. Leon, K. Asimakopoulos, S. Xydis, D. Soudris, and K. Pekmestzi. Cooperative
arithmetic-aware approximation techniques for energy-efficient multipliers. In Design
Automation Conference (DAC), pages 160:1-160:6, Jun. 2019.

V. Leon, G. Zervakis, D. Soudris, and K. Pekmestzi. Approximate hybrid high radix
encoding for energy-efficient inexact multipliers. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 26(3):421-430, March 2018.

V. Leon, G. Zervakis, S. Xydis, D. Soudris, and K. Pekmestzi. Walking through the
energy-error pareto frontier of approximate multipliers. IEEE Micro, 38(4):40-49,
Jul./Aug. 2018.

Liu and Peiya. An open architecture for digital communication systems. In IEEE
Multimedia, pages 79-84, 1994.

93

[12]

[20]

[21]

[22]

D. Llamocca and C. Agurto. A fixed-point implementation of the natural logarithm
based on a expanded hyperbolic cordic algorithm. In XII Workshop IBERCHIP,
2006.

D. Llamocca and C. Agurto. A fixed-point implementation of the expanded hyperbolic

cordic algorithm. In Latin American applied research, January 2007.

S. Mittal. A survey of techniques for approximate computing. ACM Computing
Surveys, 48(4):62:1-62:33, May 2016.

A. Morello and U. Reimers. Dvb-s2; the second generation standard for satellite
broadcasting and unicasting. In International Journal of Satellite Communications
and Networking, pages 249-268, 2004.

M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel. A low latency generic accuracy
configurable adder. In Design Automation Conference (DAC), pages 1-6, Jun. 2015.

Sackinger and Eduard. Forward error correction. In Analysis and Design of Tran-

simpedance Amplifiers for Optical Receivers, pages 475-482, October 2017.

Tasissa and Abiy. Function approximation and the remez algorithm. Technical report,
2020.

F. Tosato and P. Bisaglia. Simplified soft-output demapper for binary interleaved
cofdm with application to hiperlan/2. In 2002 IEEE International Conference on

Communications, page 3, 2002.

Viterbi and J. Andrew. An intuitive justification and a simplified implementation
of the map decoder for convolutional codes. In IEFEE Journal on Selected Areas in

Communications, pages 260-264, February 1998.

P. J. Woong, S. M. Hoon, K. P. Soo, and C. Dae-Ig. Multi-level modulation soft-
decision demapper for dvb-s2. In IEEE Workshop on Signal Processing Systems,
SiPS: Design and Implementation, pages 13—17, 10 2009.

Yoon and Eunchul. Maximum likelihood detection with a closed-form solution for the

square qam constellation. In IEEE Communications Letters, pages 829-832, 4 2017.

o4

	
	Abstract
	
	englishenglishContents
	englishenglishList of Figures
	englishenglishList of Tables
	µ
	Introduction
	Motivation and Thesis Objectives
	Thesis Outline

	Theoretical Background
	Digital Communication
	Digital Modulation Techniques
	Amplitude Shift-Keying (ASK)
	Frequency Shift-Keying (FSK)
	Phase Shift-Keying (PSK)
	Quadrature Amplitude Modulation (QAM)

	Gray Code
	Forward Error Correction (FEC)
	Additive White Gaussian Noise (AWGN)
	Log Likelihood Ratio
	Soft Decision Algorithms
	Exact LLR
	Approximate LLR
	Piecewise LLR

	Hard Decision Algorithms
	Hamming Distance
	Maximum Likelihood Detection

	Testing and Verification
	Algorithm Comparison
	Circuit Complexity
	BER Performance

	LLR Evaluation with Approximation Techniques
	Bit Truncation on Fixed-Point Arithmetic
	Approximate Radix Multiplication on Fixed-Point Arithmetic
	Approximate RMAC Multiplication on Floating-Point Arithmetic
	Approximate CFPU Multiplication on Floating-Point Arithmetic

	FPGA Circuit Design
	Introduction
	Block Design
	Block Diagram of Exact LLR
	Block Diagram of Approximate LLR
	Block Diagram of Piecewise LLR

	VHDL Components
	Exponential
	Natural Algorithm

	Pipeline Parallelization
	Design Verification

	Experimental Results
	Hardware Comparison of all Algorithms
	Hardware Results
	Truncation Approximation
	Radix Approximation

	Approximation Techniques Comparison
	Overall Comparisons in Approximate LLR

	Conclusions and Future Work
	Bibliography

