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Anoayopedeton 1 avTiypagr, amodixeuon xou Slovouy| Tng topoloos epyactiog, €& oAoxAfpou
1) TWAUATOC QUTHG, Yia EUTopX6 oxomo. Emtpéneton 1 avatinwor, anodrixeuon xat dioavour
Yot OXOTO U] XEEOOOKOTINOG, EXTUOEUTIXAC 1) EQELVITIXAC PUONE, UTO TNV TpolnddeoT va
AVOPERETOL 1) TNYT) TEOEAEUOTC o VoL BlaTneeitan To mopdy urvupa. EpwtAuata tou apopodv

N XeNoT TNS EpYUCLag VLol XEPOOOXOTILXO OXOTO TEETEL VoL aneudivVoVTaL TEOS TOV GUYYROPEA.






Euyapiotieg

Oo feha va evyaplothow Tov emPBrénovia xadnynth x. Anuritelo Xolvien vl Tnv
EUTLOTOCVVY) TTROC EPEVA XL TNV EUXLELN TTOL HOU EBMOE Vo Ao OANUM UE EVOL TOCO EVOLUPEROV
Véuo.

Enlong euyapioto wiaitepa Tov petaddaxtopixd cpeuvnty| x. Xpiotogopo Kdyen yio tnv
xad0d1ynon o€ Oha Tal GTABLL EXTOVNONG TNS OIMAWUATIXNAG EpYATlaC.
Téhog Vo ko Vo EUYEIGTACE TNV OXOYEVELL UOU, Yiot OAT) TNV UTOCTAELEY oL oy dmn

TOUC GE UEVOL Xall XURIKS YIoL TNV UTOUOVY| TIoU €0elEay XaTd T OLAPXELXL TV OTIOUBWY UOU.






HeptAngm

Avtixeipevo tng Simwpatixhc epyaotac elvon 1 emitdyuvor Tng Sladixactiog unyavixng
udinong aryoplduwy SVM oe miotgopueg avadtatacoouevng Aoy FPGA, péow tneg Xov-
Yeone Tdmrot Emnédou HLS.

H unyovinr|, wéinon oplleton wg pehétn umohoytoTixdy alyoplduwy, ol omolol €youv
duvatotTnTa Vo pardaivouy and Ty enelepyocia Twv SeGoUEvwY, dNAadY var BEATIOVOUV TNV
am6B00T) TOUC OGOV APOEd. EVal TEOBANUA, APOL ATOXTACOUY YVOOT| ETL TwV DESOUEVMY.

Ov Mnyavée Aloavuoudtov TrootheEng etvar o opddo ahyoplduwmy mou, UeTalld dhhwy,
emALOUY TEOBAAUOTA XUTNYOploTOINoNE X Yeuuix g Tokvdpounong. Meta€d twv Theovex-
TNUdTwY Toug eivan 1) LYNAH ATGBOCT TOL ATOBIBOLY Kol 1) ULXET) AVAYXT| TOUS YO TUPUUETEOTONGT).
Mio amé Ti¢ Moo dnuouAelc VAOTOIOELS TG TapAmdve ouddag ahyopldunmy teoopépel 1 Pi3-
MoUvxn LIBSVM, 7 omola amotehel xou tn Bdon uehétng yior autr Tn Otmhwuatixy epyacio.

H emtdyuvon tou ahyoplduou emituyydveton UEcw TeV epYahelwy Tou Tapéyel 1 Livieon
Tnrot Emnédov (XTE). H XTE eivon pior autopatn dradixaoio, n onola déyetor odnyieg
o€ Yop®n %xwda LPNAOD ETUTEBOL TOLU TEPLYPAPOUV ULal AAYORLIUIXT] CUUTERLPORE Xot TIC
EQPUNVEVEL UE GXOTO TNV TUQAYWYT) UAXOU OE TAATPOPUES OVUBLATACCOUEVNS AOYIXAS.

O oxomdg g dimhwpatxrg gpyaociag dev etvon 1 BeAtiwon tng ulonolnong Tou ahyo-
eldpov SVM tne BiBhodixne LIBSVM, olte xou 0 oyedloouds eZEBIXEVUEVDY XOUUATIOV
UA00U Tpog autd To oxomd. Avtileta elvan 1 eméxtoot xou BeATiwon TwV SUVATOTATWY NG
BBAoIxNg, Ye xplthpto TNV ToyOTNTA TV SBXACIOY Udinong, xdvovtog uio e€epedbvnon,

TWV OLVATOTHTWY ToL pag Tpocgépel ) LTE.

Agleic KAewod

Mnyavée Atavuoudtoy Trootheing, LIBSVM, [Mhatgopueg Avaduatacoouevne Aoy,
Emtdyuvon, Ioapddnin Extéheor, Katnyopomoinoy, Ieopuixy) IoAwdpouncr, Xovieon
T{mrot Emnédou






Abstract

The purpose of this diploma thesis is to develop and implement a solution in order to
accelerate the machine learning training process of the Support Vector Machines algorithm
on Field Programmable Gate Arrays, utilizing High Level Synthesis techniques.

A machine learning algorithm is an algorithm that is able to learn from data, i.e
improve its accuracy and performance regarding the execution of a given task, after having
processed some relevant information.

Support Vector Machines (or Support Vector Networks) are supervised learning models
with associated learning algorithms that analyze data used for classification, regression
analysis and other learning problems. Among their advantages are their high performance
and their low need for tuning. One the most popular implementations of an SVM algorithm
is offered by the LIBSVM library, which is the base of this diploma thesis.

The acceleration of the algorithm is achieved by utilizing the tools the High Level Syn-
thesis offers. HLS is an automated design process that interprets an algorithmic description
of a desired behavior in a high-level language and creates digital hardware, commonly for
FPGAs that implements that behavior.

The goal of the diploma thesis is not the improvement of the implementation of the
SVM algorithm by the LIBSVM library, nor the design of specific hardware modules to
be used by the algorithm. The goal is the expansion and improvement of the capabilities
of the library, in regard to the actual speed of the training process, by exploring the
capabilities that HLS offers.

Keywords

Support Vector Machines, LIBSVM, Field Programmable Gate Arrays, Acceleration,

Parallel Computation, Classification, Linear Regression, High Level Synthesis
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Chapter 1

Eiwocaywyr - Introduction

1.1 Ewaywyn ota eAAnvixd

Ta teheutala ypovia €xel yvwploel ueydn dvinorn o touéag e Mrnyavixic Mddnong. O
TOUEOC AUTOC XATEYEL XEVTEIXO PONO GTNY YEVIXOTERT TpooTddela emelepyaciog TOU TEpdoTIOU
OYX0U BEBOUEVWY, TIOU ToEAYOVTOL XAOMUEQIVA, XOL YENOWEDOLY OTNV TOEUYWYN YVOOTC.
Ytoyog eivan 1 BeATiwon TwV SUVATOTATWY TWV UNYAVEY TOU YENOOTOWUUE, Wa BeATiwon
TIC PEPVEL TO XOVTE GE UTO TOL EVVOOUUE UE TOV 6p0 ‘vonuooivn'. H Mnyovixs Mddnon
apopd TN UEAETN ahyoplduwy mou BeATiwvovTtal auToUUTa UEow TNG eUmelplag.

‘Onwg xan 68 6oL TOUG ETOTNHOVIXOUS TOUEIC, O EMGTAUOVES ETLOLWOXOLY Vo BEATIOGOUY

TIC TREOXTIXES TOLG. 2TV nepintwor e Mnyovixhc Mdidnong autd petagppdleton oe:

o ovanTUEN XUAUTEPWY ohyopitumY
o Bedtinon Twv uTaEYOVTWY ahyoplduwy, 660V aopd TNV TayUTNTA EXTEAECNC TOUS, TNG
oxp{BeLol TWV AMOTEAEGUATWY TOUG, TNV EVERYELNXY| XATAVAAWGCT) And TNV EXTEAEST] TOUC,

Q.

H Behtioon twv utohoyioTix®y cuotnudtwy ebvar cuveyng Ti¢ TeAeuTaleg dexaetieg. Se-
XUVOVTOG OO LOVOTIUENVO CUCTAUATA, EYOUME TAEOV T1 BUVITOTNTA EXTEAECTC TOEAAANAOU
OO OE XAPTES YRAUPUDY X0 TOALTOENVO CUCTAUATY, T oTtola SLtdETOUY POAOYLOL YPOVL-
ouol ue ouyvotntee 3 GHz 1 xou mopandve. Tlopd v adénon tne amddoone autdy Ty
CUCTNUATOV, €Val UELOVEXTNUO TOUC vl Xou 1) ToWTOYeovn aENon NG EVEQYELOXNE TOUS X0
TAVIAWOTNG.

Tn Noon og autd TO TEOBANUL £youv €pUEl Vo BOCOLY Ol TAATPOPUES AVUBIATACCOUEVNC
roywic FPGA. Adyw tng duvatotnrag nopaywyhc UAX0) eZEWBIXEVIEVOU Yo EVOL CUYXEXQL-
HEVO TEOBANUA, €YOUUE PELWOT) TNG TOATAOXOTNTAG TWY XUXAWUATLV XAl CUVETOG UELOUEVT
evepyeton| xatavdhwon. Toutdypova 1 amddocT Tou GUCTAUNTOS TaEUUEVEL o LYNAS emtine-
oa. Ta tedeutaio ypodvia, T0 80ox0A0 €py0 NG oyedioong xou mpoypoupatiopol Tou FPGA
HE o%OTO Vo EXTEAECEL Eval oAYOprdpo €xel Yivel eConpaTxd To amhé Ue TN Ypron e LOv-
Yeone Thnrot Emnédou (XTE - HLS). H ETE Snuovpyel pa eviidueon {dvn yetall tou

UAOU X ToU xWOWOL LYNAOY ETULTEDOL, EMTEENOVTAUS GTOUS TEOYRUUHUATIO TEC VoL EXTEAEGOUV

1



2 Chapter 1. Ewaywyr - Introduction

Ta mpoyedupatd toug 6to FPGA, xdvovtac edyioteg ahharyéc.

1.1.1  Avtuxelpevo g SITAWUATIXAS
YOvtoun meplypapn Tou TEOoBARUATOg

O ohydprduoc SVM apyixd mpotdinxe wg uor pédocdog yioo Ty entluon meofAnudtwy
xatnyoptonoinong 6Vo xhdoewv [2]. "Eyouv tpotadel didpopec tpononotioelc tou, Ye oxond
v enthuon TEOBANUATWY XATNYORLOTOINCNC TOAAGY XAJCEWY, YRUUUMXAC TOUALVOLOUNONS Xl
GAAWV TEOPBANUATOY udinong.

H Birodryn LIBSVM unootneilel Tic mopaxdte) TOTOTOLCELS:

e (C-Support Vector Koatnyoplonoinon

v-Support Vector Katnyoplonoinon

Extipnon Koatavourc (SVM woag xhdong)
e c-Support Vector ITodwdpdunon (e-SVR)
e v-Support Vector ITahwvdpounon (v-SVR)

To mopoamdve etvar GAo TEOBAAUAT TETEOYWVIXNAG EAXYLOTOTOMOTS.
[Mo mapdderypo to C-SVC opiletan wg e€xg.
‘Eotw dwviouata ¢; € R",i = 1,...,[, oc 800 xhdoeig, xan éva didvuoua delxtne y € R!

étoo wote y; € {1, —1}, 1o C-SVC 10 hiver 1o mopaxdtw TedBhnuo ehoylotonoinorg.

l
. 1
my pww+CD G

(1.1)

uné tic ouviiixes  yi(wl (x) +b) > 1 — &,
&>00=1,...,1
6moU TO () UETAUPERPEL TO X OE EvaL YWEo avidtepne ddotaone xar C' > 0 eivor 1 mopdye-

Teo¢ xavovixornoinong. Adyw tou midavol peydiou aptiuol Slac TdoEwmY Tou BlavicUaToS W,

cLVAHWE EMAVOUPE TO TAUPAXETWY BUIXO TEOBATUL.

i 1
min -a’Qa—e’a
a 2

UTO TG CUVUAXES yla =0, (1.2)
0<ag; <C, i=1,...,1
omove =[1,..., Z]T elvow To Bidvuopa pe OAeg Tig SlooTdoels (oeg e 1, @ etvon évag [ x] Yetixd

nuoptouévoc tivoac , Qi = yiy; K (zi, ;) o K(xi, ;) = ¢(x:)T d(x;) ebvor ) ouvdptnon
nuprva. Aol Abcoupe to tpdBinua (1.2), to Béhtioto w ixavomoLel

I
w = Zyiaiqﬁ(azi) (1.3)
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X0l 1) CLVHETNOT ATOPACTS Elval

!
sgn(w’ ¢(x) + b) = sgn <Z yia; K(xi, ) + b)
i=1
H Boaowr) Suoxola otny enihuon autdv Ty Teofinudtwy eivar 6Tt o mivaxog @ mdovodg
elvon TOAD UEYTAOC Yiot Vo amoUnxeuTel 0N WVAUN Tou uToAoYLIoTX0) cuoTiuatoc. To va
avTetwrioel autod To TEOBANUA, N Biiiodnxn LIBSVM egapudlel po yédodo maporyovto-
nolnone n onoio ovoudletan Sequential Minimal Optimization (SMO), n onola {ntdel tnv
enihuorn evoc amholoTepOL TEOBANUNTOSC 600 PETUBANTOY o xdUe Briuo TS EMAVUANTITIXNNC

Otadxactioc.

Yuvelwogpopég

To mo vnoloyio TS amonTNTIXG XOPUATL TOU dAYopldUoUL Elval O UTOAOYLOUOC LG YR~
ufe tou mivoxar Q. Auth ) Simhouotixr tpotelvel wa pédodo emtdyuvone tou oc FPGA.
Kotagépvoupe va exTeAéGOUNE TO TORATAVE XOUUATL Ewg xou 14 gopég To Ypryopa oe oyéon
ue wat tohuvnuatxr extéheon. To anotéheoyo autéd elvon onuovTind yiotl extdg TOL *EEDOUC
OE YPOVO €YOUUE X0l ATOBEGUEUOT) TWV TOPWY TOU GUCTHUNTOS XATOL T1) OLEOXELNL QUTWY TWV

ATOUTNTIXOY UTAOYLOUMY.

1.1.2 Opydvwor avtod TOL TOUOU

To Kegpdhowo 2 anotehel pio extetapévn nepthndn tne Simhwpatixhc epyootog xa etvan
yYeouuévo ota eAAnvixd. To xepdhao autd axohovlel Ty dour) Tou undloimou téyou. H
TANENG Xo avOALTIXT TToEOLGLGT), WOLTERA TWV VEWENTIXMY XOUUATILV, Efvol YRuUUEVn oTa
oy yYAxd xan €xel T Soun mou axoloudel.

To Kegdhawo 3 nepiéyet 1o Yewpntind undfadoo mou yeeldletal HOTE VO XATAVOTICOUUE
ToV ahyOprdpo mou emtyelpelton Vo emitaryUvIEL.

Y10 Kegpdlawo 4 nopoucidlovion xdnoleg yevixée mhnpogoplec oyetind ta FPGA o
oto Ke@dhawo 5 xdvouue wia eloorywyr) otny évvola tne Lovdeong Tdmniod Emnédou.

To Kegpdhowo 6 nepiéyel mhnpogopiec oyetxd ye to hardware mou ypnowonololue oe
ouUTY TN SImAwpaTiX pyaota, TNy xdpta emitdyuvone Xilinx Alveo U200.

To Kegdhowa 7 xou 8 mopoucidlouv 1o xlplo yépog tng dovietdg poc. To Ke-
Q&Aoo 7 aoyoleltan ye TN oyedioor tou emtayuvTty xan To Kegdhowo 8 mopoucidlel ta
amoTeEAECUTA TTOU PETENONXAY.

Y10 Keg@dhowo 9 yiveton avapopd oe oyetixég epyacieg emtdyuvong tou alyoplduou
SVM oce FPGA.

Y10 Kegdhawo 10 xdvouue éva TeAixd oY OO Yiot THY TEOCTAUEL QUTAHS TNE BLTAWUOTI-
NS EpYATLOC XoU AVUPEPOVUE XATOLo OTUElD TTOU UTopel Vo uTdpEet ehhovTixt| BeAtiwon twv

ATOTEAEGUATWY.
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1.2 Introduction in english

We are living in times where high-level technology is available around the world. This
makes extremely trivial the production and consumption of data by the whole of human
population. This mass production of data creates huge amounts of information, that
needs to be processed, in order to produce useful knowledge and create useful services.
Consumers and businesses alike want this volume of data to be utilized in their favor, by
means of improving their lives and achieving success for their enterprises, accordingly.

Its natural that this huge amount of information cannot be processed by man alone,
while at the same time the processing of the data from computing systems is quite complex,
if the goal is not only the interpretation fo the data, but the in-depth comprehension in
order to produces useful knowledge and create prediction models.

During the last years, the scientific field of machine learning is blossoming. This field
has acquired a central roel in the attempt to process data and produce knowledge, with
the goal of improving the capabilities of the computing systems we use. An improvent that
brings the machines closer to what we would refer to as “intelligence”. Machine learning
(ML) is the study of computer algorithms that improve automatically through experience.

The researchers are constantly trying to optimize the results that the machine learning
algorithms produce. The optimization efforts in the whole field are based, as is usually
the case, in two pillars.

e development of better algorithms

e improvement of the currenly established ones, according to metrics like the speed,

energy consumption and accuracy of the produced results

For many years, starting with the use of single-core CPUs in computers, the developed
code was written with sequential execution in mind. Over the years, the research and
development of faster CPU cores provided the ability to execute billions of instructions
per second, utilizing hardware with clock rates of 3 GHz or even boosted to more than 4
GHz. The next step was multi-core CPUs and GPUs. The new capabilities of the systems,
enabled the code to be parallelized, further optimizing the performance of the algorithms.
However, the use of such advanced hardware, in order to achieve better performance,
leads to high power consumption and dissipation, which in turn imposes a limit on the
final achieved performance.

Field Programmable Gate Arrays (FPGAs), attempt to balance the field, between com-
putational performance and power consumption. The ability to produce hardware tailored
for a specific algorithm removes a big part of the design complexity of the hardware re-
garding general purpose algorithm execution, which results in lower power consumption
without losing in performance and often gaining in that regard, as well. In recent years,
the daunting task of programming the FPGA to execute a specific task has become sig-
nificantly easier with the introduction of High Level Synthesis(HLS). HLS creates and
abstraction layer between the hardware and the software, permitting software developers

to execute their programs on FPGAs, applying only minor changes to their code.
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1.2.1 Subject of the diploma thesis
Short description of the problem

The SVM algorithm was introduced as a method to solve two-class classification prob-
lems [2]. Different formulations of the initial algorithm have been proposed in order to
perform multi-class classification, regression analysis and other learning tasks.

The LIBSVM library supports a number of these formulations:
e (-Support Vector Classification

e v-Support Vector Classification

Distribution Estimation (One-class SVM)

e-Support Vector Regression (e-SVR)
e v-Support Vector Regression (v-SVR)

Each of the above is a quadratic minimization problem.
For example C-SVC is defined as follows.
Given training vectors &; € R™,i = 1,...,1, in two classes, and an indicator vector y € R/

such that y; € {1,—1}, C-SVC solves the following primal optimization problem.

l
1
Bt 2vw oS

= (1.4)
subject to  y;(w’ (x;) +b) > 1-&;,

&>0i=1,...,1
where ¢(x;) maps x; into a higher-dimensional space and C' > 0 is the regularization

parameter. Due to the possible high dimensionality of the vector variable w, usually we

solve the following dual problem.

.1
min -a’Qa —e’a
a 2

subject to yla =0, (1.5)
0<a; <C, i=1,...,1
where e = [1,...,1]7 is the vector of all ones, @ is an Ix[ positive semi-definite matrix,

Qi; = viy; K (zi, z;) and K (x;, ;) = ¢(x;)T ¢(x;) is the kernel function. After problem

(1.5) is solved, using the primal-dual relationship, the optimal w satisfies

l
w =" yiai(x;) (1.6)
i=1
and the decision function is

l
sgn(w? ¢(x) + b) = sgn <Z yia; K(x;,x) + b)

i=1
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The definitions of the other SVM formulations can be found in [10].

The main difficulty of solving such problems is that Q may be too large to be stored. To
address that, the LIBSVM library implements a decomposition method called Sequential
Minimal Optimization (SMO), which requires the solution of a simple two-variable problem

for each iteration.

Contributions

The most computationally intensive part of the above algorithm, and according to the
software design of the library, is the computation of one row of the above matrix ). The
diploma thesis proposes a method of accelerating this computation on FPGA. We achieve
execution times up to 14 times smaller that an execution on a multithreaded system.
This result is quite important as, apart from the direct consequence of reduces execution
time, we free the computational resources of our system, since we transfer the most time

consuming part of the algorithm to the programmable logic.

1.2.2 Organization of this volume

Chapter 2 is an extended summary of the diploma thesis written in greek. This
chapter follows the structure of the rest of the book presented in the following lines.

Chapter 3 contains the theoretical background needed in order to understand the
algorithm being accelerated.

In Chapter 4 we provide some general information about Field Programmable Gate
Arrays and in Chapter 5 we make a presentation of the basic elements of High Level
Synthesis.

Chapter 6 has information about the specific hardware we are utilizing in this diploma
thesis, the Xilinx U200 accelerator card.

Chapters 7 and 8 contain the the information related to our work for this diploma
thesis. Chapter 7 dives into the design of the accelerator, while Chapter 8 presents the
acceleration results.

In Chapter 9 we make a brief reference to work related to ours. There is a presentation
of a handful of projects working on accelerating the SVM algorithm on FPGAs.

In Chapter 10 we make a brief comment on our work, as a conclusion, while also

listing our ideas for future improvements.



Chapter 2
Extetapevn lleplindmn

2.1 OczswpenTtxd TrolBadeo

2.1.1 Mnyavixr; Mdadnon

H Mrnyovinr) Madnon acyohetton ue tn WeAETn alyopliiumy mou BEATIOVOVTOL QUTOUUTA UE
v eunetpla. Evoc ahyopriuoc unyovixhc pdidnone unopet va padalver and to dedouévo mou
enelepydleton [1]. H Mnyoviey Mddnon poac Bondder va emhbooupe npofifuoto to ool
elvon TOAD BUoX0AO Vo emALDOUY Pe cupfatixole alyopliuoug.

Tétolo TpOPAAUATA EVOL 1) XATNYORLOTOINGCY], N YEAA XN TAALVEPOWUNOT, 1) -
VY VOELOT AVORAALODY, 1 oOvOeon xou deryatoAndio, x.o.

[ot vor a€loAoYNOOUUE TIC IXavVOTNTES €VOC ahyoplduou unyavixre udinong yeetdleton €vo
TOCOTIXO PETEO NG amddoong Tou. Muvidwe, auTtod To PETEO eCaPTATOL OmO TO TEOBANU. €
TeoAAuaTa OTWS 1 xaTnYoplomoinoT cuvnUeg elvon var UETEAUE TNV axpeifBeta Tou Yovtélou,
ONAad1) TO TOGOGTO TWV TURUDELYUATOY Yid Tat OTolol TO HOVTENO TaEdYEL TN OWOTY| TEOBAEdT.

O ahyoprdyol unyovixhc nainong umopoly va Yweto Toiy ot 6U0 EVRElEC XaTNYoples, TNV
emBAenOUeVY] xou TNy wn emBAenopevn udinon. O nepiocdtepol ahyodpriuol enelep-
yélovtar €var aUvolo Bedouévwy. ‘Eva cOvolo dedopévwy elvon uio oulhoyt amd Selyuara,
TIOU UE TN OELRA TOUC Elval Uiot GUAAOYT) amd yopoxTnEto Tixd. Ou oalydprduol un emBAenouevNC
udinong aoyoholvton Ue GUVORX BECOUEVMYV UE APXETA YORUXTNELO TIXA, Xat axoAoiwe woda-
tvouv yproweg wtoTnTeg awT®V. OL adydprduol emPBAenouevng pdinong acyohobvton ue €va
GUVOAO BEBOUEVMV UE YURUXTNELOTIXG, ARG TaUTOYPOVO XdUe Belypa Eyel xaL Yl ETLXETA,

OnAad”| TAneogopla yior TNV xhdon otnyv omoia BeloxeTan.

2.1.2 Mnyavég Atavuopdtwy Yrootreting

Ou Mnyavée Aravuopdtwy Troothene (Support Vector Machines - SVM) efvor povtéha
emPBAenouevne udinone mou enelepydlovial BeBoUEVE UE OXOTO TNV XATNYORLOTOMNGT ok TNV
oVEAUOT) TAAVOEOUNOTC.

Koatnyopionoinon dedopévwy etvar 1 dladixacio yéow tne onolag, 609éviwy onuelwy xde

EVaL X TV oTolwY avixel ot Wia amd 500 XAACELS, UTOPOVUE Vo ATOPAGIGOVUE GE TOLXL XAJCT)

7
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Eyfua 2.1

Yo aviixel éva véo ompeio. Xty mepintwon twv SVMs, éva onuelo anewoviletar o éva
dévuopa p dootdoewy (pla Aota p oprdumy), xou Vélovpe va uddouue oV UTopolue va
ywploovye autd ta onueio Ye €va umepeninedo p — 1 SwcTdoewy. Autd AéyeTon YRUUUIXT

xaTnyoplomoino.

Mepixd oivolo dedouévwy anoteholvton and onueio/dtaviouota Tou dev eivor ypouuxd
otaywplota oe éva ywpo X. Mo hoon oc autd 10 TEOBANUA €lvon oV oVTIG TOLYOVUE AUTd
Ta onueio o€ Eva GANO YWEO Z UK EVOS UETACY NUATIOULOU XL VO TROCTIOU|COUYE VoL EAEY-
Eoupe av o aUTH TO VEO YWEO elvan Ypouuxd doywelotua. e xdde nepintwon 1 Abon tou
TEOBAAUATOC AUTOU EUTEQIEYEL TOV UTOAOYLOUO TWV ECOTEPLXWY YIVOUEVWY PETOED TWV BLovU-
oudTtwy oto yweo mou gpyalopacte. To oyfua 2.1 anewxoviCel éva cOVOAO ouelwy Tou BeV
elvon ypouuxd dtaywpelodo 6Tov apyixd YOEo, ahhd elvor THovOTATH YEOUUXE Oy welolua

o) AVTIOTOLYIGTOOY GE €V GANO Y WEO.

Avth n Texvn €xel oumg éva PBaoxd ueovéxtnua. H Saduaoio yetaoynuotiogod 1wy
ONUElWY OE €Val GALO YWPEO XU PETA O UTOAOYIOHOS TV AVTIGTOLY WY ECWOTERLXMY YIVOUEVW®Y,
Tou ypeetdlovTal yioL TNV eTAvon Tou TeofAfuaTog, €xel cuyvd auinuévo xoctog. Tmdpyel
TEOTOC OUWS Vo uny To TAnewoouye. To trick Tou mueRva etvor pla pédodog Tou teTuyaivel
axpBoe avtd [7]. To ubvo nou ypeerdletar etvon vo oplooupe wa ouvdptnon K (x, ") xou va
amodel€oupe 6Tl auTr UTOAOYILEL EOMTEPUG YIVOUEVO GE XAMOlo YWpo. ATd Tn oTiypr mou
Yo yiver oautd dev ypetdleton va avtiotolyilouue ta onuela 6TO VEO YO, OAAE ATALS Vol

YENOWOTOLOVUE QUTH TN cUVEETNOY 6TOUS TOTOUE EMALCTE TOU TEOBAAUATOC.

Meguxol amd tou mo dnuoguielc SVM nuprveg ebvou:

e Radial Basis Function (RBF): K (z, z') = ¢ eI’
e Polynomial: K(x,2’) = (¢4 a - xzTa’)?

e Hyperbolic Tangent kernel: K(z,z’) = tanh(c+a - xTx’)
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Eyfuo 2.2: Amd) FPGA apyttextovixy

2.2 IThoatgpopuec Avadiatacocopevns Aoywxrne FPGA

To FPGA clvan évag T0mog ohoxANemuévou xUXAOUATOS TOU UTTOREL VoL TROY ROUATIC TEl
yio SLopopeTixolg alyoplduoug Uetd Ny xotaoxevy| tou. Ou olyypoveg cuoxeuéc FPGA
AmOTEAOUVTOL OO €mC xak 000 EXATOPUUELL AOYWXE XEMA TOU UToEoVY Vo pUUULGTOOY WOTE
VoL UAOTIOOUY BLapopeTixols akyopliuoug hoylouxou. Iapdho mou n napadocioxy| pot| oye-
oloopol oto FPGA elvon mo xovtd 6 authv €vOg %0vo) OROXANEWUEVOLU XUXAOUATOS oo
OTL o aUTHY evog emelepyao Ty, éva FPGA mopéyel onuavtind mheovextiuato x60T0Ug o
oUYXELOT UE ULl TEOCTIAUEL OYEDACUOU EVOC OROXANPOUEVOU XUXADUATOSC XAl TROGPEQREL TO
{dlo eminedo anddoong oTig MeplocdTEpES TEPTOOELS. ‘Eva dhho micovéxtnua twv FPGA,
oe o0OYXQLOT UE T ONOXANEWUEVA XUXADUATO, EVAL 1) IXAVOTNTA TOUS Vol TeoYeoupotilovTot
duvaxd. Auth n Swdixacia, 1 ool elvon (Bl UE TN POPTWOT EVOC TEOYEUUUATOC GE EVOV

enelepyao T, UTOpEl Vo EMNeedoet pépog 1 bhoug Toug Slardéotuoue tépouc oto FPGA [19)].

2.2.1 Apyitextovixy

Kdéde toir FPGA omoteheitan and €vav menepacuévo aptdud mpoxadoplopévmy Topwmy
ue mpoypouuaTilOUEVES BLICUVOESELS Yio TNV LAOTOINGT EVOC ovaBLOpopPOGLUOU PN@loxol
xuxhGuotog xat pmhox E/E nou emitpénouy oto xixhopa vo éyel npdofac otov €€w xboyo.
H Baow dopny evoc FPGA onoteheiton and to oxdrouda otovyeio: Look-up Tables (LUTS),
Flip-Flops (FFs), DSPs, xahéddwa, urhox anodfixeuone xaw umhox E/E.

To oyfua 2.2 delyvel twg autd o oTotyelor cuvdudlovton ot anh FPGA apyitextoviny.

2.2.2 ITapariniwowog ot FPGA

H eupeia yerion twv FPGA ot olyypovn enoyy| otnelleton, uetald dAAwy, oTny euxohio
oyedlaouol Ue oTOY0 TNV eXTENEON ToRdAANAOU X@Bixa.  Autd yiveTton mo xotavontd ov
ouyxplvouue Ty dladxacta eExTéAeanc EVIOADY ot €va enelepyaoty xat éva FPGA.

‘Eva xopudtt xdouxa yio extéheon oe évay enelepyaoTy| YpeldleTol Vo UETayAWTTIo Tel oE

EVIOAES younhoU eminédou. Ou evTohég auTéQ elvon OTEVE GUVOEDEUEVES UE TNV AEYLITEXTOVIXT
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ToU EMEEEQYAC TH o CLY VA 1 amddooT Tou alyoplduou e€aptdtar and authy. Autd dnuloup-
vel TpOCVETEC AMAUTACELS OTOV TEOYQEOUUATIOTH, 0 oTolog elvon yEHoWo Vo a&loTOOEL TIC
ETMUTAEOV SUVITOTNTES WG oUYXEXpLUéVNe apyttextovixrc (m.y caching). H 6hn dwdicaocia
Behtiotonoinong TN amddoone aUEAVEL GE TOAUTAOXOTNTA.

And v AN mhevpd, T FPGA civon oe 9€om vo uhonooy omowdrnote Aoyixn 1 o-
erdunTuy ouvdptnon, ywelc va teplopilovtar oe {ntrota Onwe oL wotpalouevn Uviun 1 n
wotpalbuevn povada aprduntixhc hoyrc (ALU) oe éva enelepyooth. Ltnv npdln, 1 vAomo-
inon evog ahyoptduov oe FPGA opilel aveldptnrec opddeg and LUTS yia xdie Sopopetind
umohoyiopd. Extéc autol, dupépet xou otny mpdcPouon otn uviun oc oyéon ue évay enclep-
yooth. To otoyeio Tng uviung elvon xatoveunuéva Tohd XovVId GTNY UTOAOLTH XUXAWUATIXN

AOYWXT), UE CUVETELX OL YPOVOL TPOcBacng va eivol TOAD UXEOTEQROL.

2.2.3 E@appoyvég

Apyxd, 1o FPGA ypenowonotodvtay oTic TnAemxownvieg xou ta dixtua. Me ta ypdvia, 1
Yo toug enextdinxe xou ot dhhes epopuoyéc tne Brounyavias (BA. autoxivnta). Xtic uépeg
Hog, 1 yenowonoinon tou oe x€vipa dedopévwy eivan auinuévn. Ot obyypovee BuvaTOTNTES
TOUC EUVOOUY T1| YPHOT| TOUS YLOL ETULTEY LVOT) ATOUTTIXWY 0AYOopiduwY, 6TK¢ elvar ot akydpriuot

avalATnong xon ot aAyoprduol Unyavixhc udinong.

2.3 X0vOeorn Ydniol Emnédou (HLS)

[Mahawdtepa, 1 yenowomoinon twv FPGA eiye apxetéc npoxhroeig, pag Rrav anopaitntn
n xotavonor o Badoc e dngroxic oyedlaong vhxol. H Abon oe awtd 1o mpdPBinua Hede
we v yehon e Lovdeone Tdnrod Ennédou (XTE). H ¥TE eivon pa autopatonomuén
Otadxaotar oY EBLAOHOU TOL EQUNVEVEL Uial OAYORLIUIXT) TEQLYPOPT| Xal BNULOURYEL UAXO TTou VoL
v vhornotel. Autd guvoel xou Toug unyavixolc UAX0U, oL omtolol UTopoly Vo EpYIGTOOV OE
unAdTERo ETinedo, Ywelc Vo YEvouy e TOLOTNTA, ALY XAl TOUC TROYRUUUATICTES, OL OToloL

UTOPOUV VoL ETLToy UVOUY TG egapuoyéc Toug o FPGA.

2.3.1 X<tdéddia

H Xerrovpylo tne XTE umopel va ywplotel oe tplo otddLa:

e Scheduling KadopiCel moleg dradixaciec Yo extehectoly ot xdie xixho poroylol Bdoet
METOBANTOV OTWE 1) GLYVOTNTO TOL POAOYI00, O YPOVOS EXTENEOTC xdE BladLxaciog xou
ol vupext{Bec mou opilovial and o yENoTN/TEOYROUUATIOTY.

¢ Binding Kadopilet molog nopog vAod Yo vhomotioet pior Stadixocioa. Autd to otddio
e€apTdToL dUECA A6 TO LOVTEAO TNG CUCGKEUNC TOU YEYCLLOTOLOUE.

e Control Logic Extraction E&dyel tn Aoy eAéyyou yior T dnovpylar uior unyovic

TEMEPUACUEVWY XATACTAOEWY, 1) oTtolor VETEL TNV ahAnAouyia TV SLIBIXACLOY GTO GYEDLO

PTA.
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2.3.2 Teyvuxég

H oOvieon uPnhol emnédou epopudler xdmoleg TeXVIXES TOL BEATIOVOUY TNV anddooT
TWV AAYoRIOUWY EXPETUAAEUOUEVES TNV TOREAANAT oyediaon Twv FPGA. Ot o onuovtixég

ebvou To pipelining xot to dataflow.

Pipelining

To Pipelining emitpénel 0tov oyedlaoth| var anogelyet Tig eCUPTAOELS DEDOUEVKDY XaL VoL
auZdvel To eninedo mapalAnAiool oe pla eqopuoy T olyoplduou o Lo [19].

Oa e&nyfoouue twg Aettovpyel to Pipelining ye éva mapdderypo. Ag unodécouye ot
€Y 0UPE €va oUVONO amd N BedopEva (T.y. €vog mivaxag) xot VENOUUE VoL EXTERECOUUE XATOLES
epyaoia oe xdle otoyelo autol tou mivoxa oe Bpdyo. Autéc ol epyaocieg umopel va elvon
oprdunTnég Tedlels N uetagopd dedouévnv. Enlong ac untodéoouye, 6TL xdie epyacio dlopxel
1 xOxho poloyiol xou umdpyouy 5 amd autéc Tig epyacieg oTto Bpdyo. O oyeTndg dpog ot
authv TNV mepintwon elvan dtL o Pedyoc Exer xoduotépnon (Loop Latency - LL) fon ue 5.
Kéie enavéindn tou Bedyou yeedletar 5 x0xhoug yio vor ohoxhnpwiel xou ¢ anotélecua
ohbxhnpoc o Bedyoc Va yeetaldtav b - n xOxhoug yia vor ohoxhnewiel (BAéne oyfua 5.1). Xe
x&de xOxho pohoytol i epyacio OAOXANEMVETOL amd T GYETIXY Hovada UAxo0. To TpdAnua
elvon OTL avd doa oTIYUY| HOvo plo wovdda elvon evepyn

To Pipelining épyetar vor Aooet autd 1o npdfinue. Emteénel otny enduevr emaveindn,
vo EexvOEL TO GUVTONOTERO BuVATO, WOMG eheudepwiel 1 TEMTN povddo LAXOL amd Tnv
mponyoLuevn emavdindn. O aprdudc Twv xUxhwv pohoylol Tou auTd elvor eQXTO ovoudleTal
Audotnua ‘EvopZne (Initiation Interval - II). Téte o cuvohxde ypdvoc extéheone Yo Ytav
54 (n—1).

Fevixdtepa, umopolue Vo 0plCOUUE TOUC TAEAXATEL TUTOUC YLOL TOV YPOVO ONOXANIRMONSC
Tou Bpodyou:

Xoplc Pipelining: n - LL
Me Pipelining: LL + I1-(n —1)

Ané ta mapamdve elvon xotovontéd ot etvon emuuntd vo petdveton to I doov to duvatdv
neploo6tepo. To Wavixd eivan vo netOyoupe II (oo ye 1, wag xan tote €youpe Ty LPNAdTERN
YENOWOTOINOT TV HOVAOSWY LAXOU ot xdde x0xho poloyio.

Av BéBata 0 ypdvog elvon To povadixd xpltriplo Pedtinone TOTE UTOopOVUE VoL EXTEAECOUUE
bhec g enavakfelc Tou Bedyou tautdypova (av To EMITEETOUY Ol eEUPTHOELC DEBOUEVMV).
Autd Myetan unrolling tou Bedyou xou augdvel TOAD T yENOWOTOINCT TOV TOEWY, KPoL

xeeLalovton SLopopeTixég LoVAdeg LAXOD Yo xdde emovaAndm.

Dataflow

To dataflow elvou piar GAAT Teyviny), Ye mapduola priocopio e To pipelining. ¥tdyoc tou
dataflow eitvon var uhomotioel TopaAAnAloud oe mo Teay Y eninedo, YeTadd TWV CUVIPTHOEWY

EVOC TEOYRAUUATOC. AUTO oNUoivEL OTL ETUBLOXEL TNV TORUAANAN EXTEAECT) TV CUVIRTACEWY.
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Auoxpivoupe 800 xotnyopie Yo 1o tedeutaio. Av ol cuvapTroelS lvon aveEdpTNnTES HETAED
Toug, 10T N XTE dnulovpyel Tic xatdAANAeS LoVEDdES UAXOU Yiot Var EXTEAOVOVTOL TOEEARNAAL.
Ye avtidetn mepintwon, dnAadh ov wia cuvaETNoY €xEl WS elcodo BeBOUEVO TOU TAUEAYEL Lol
AN we €€odo, tote 1 XTE npénel vo uhonotioel xan T Aoywr| emixowvwviog PeTog) Twy
HOVEBWY LAXO Tou LAOTIOWLY Xdle cuvdptnon. Auth n oyéon opllel To aevdpto Hapoywyol-
Kotavahot).

Aut n meplntwon 6éyeton Vo dlaopeTinols TeoToug Tpooéyylong. O mpwtog elvan
OtV 1) CUVEETNOY XATAVUAWTAC TepUével var topoydel 10 cUvolo Twv Bedouévwy amd T
ouVdpETNoN TapPaYWYO TEW Cexwvioel va extereiton. Tote 1 puoévn noparAniiar Tou umopel va
vhomondel elvon, €yovtog TOMAES BLABOYIXES HANOE TV BLwY CUVIRTHOEWY, Vo 0plcouUE
TOEAAANAN EXTENECT) TNG CUVEETNONG XATAVUAWTH Tou eneepydleTtal €Vl GOVORO BEBOUEVLV
UE TN CUVHETNOT TUEAYWYO TOU TUEAYEL TO ENOPEVO GUVOAO Bedouévmvy. O deltepo TPOTOC
elvon 6Tay 1 GLVEETNON XATAVAAWTAG aEY(Cel TNV exTEAEDT] TG UOAC AMOXTHOEL TPOCBAoT) OE
UEPOC TwV BEBOUEVKY oL €xEL TaRdEEL 1) GUVEETNOT xoTavolnTrg. Kot o auth tny meplntwon
oL 500 GUVIPTACELS EXTEAOUVTOL TAUTOYPOVA, OUWS 1) Blapopd elvor 6TL efval LAOTIOL|GLUT oxOua

xan av xdde cuvdptnon xohetton uio povo @opd.

2.3.3 Vivado HLS

To epyoielo Vivado HLS eqopudlel tn XTE vy cuoxevéc FPGA tne Xilinx. Afvel
OLYVAUTOTNTA GTOV TEOYEAUUUATIOTY| VoL XAVEL GUVIEST] OE €Val TEOY PO YRUUUEVO GE YAWCOU
C/C++ xou vor mapdZet TNV xatdAANAN xuxhwpotixh Aoy oto FPGA v tny extéleon tov.
Extéc and Ti¢ autopatonotnuéves Sladxacie mou to epyaheio eQopuolEL, 0 TEOYRUUUATIOTAS
€yEL TN SuVaTOTNTA VoL BWOEL GUYXEXELUEVES 00NYies e TN popph vitpexTiBwy (directives) xou
pragmas.

To directives xau tor pragmas etvar 500 6eig tou Brou voplopatoc. H Biapopd etvar dtu
ta directives opilovton oe Eeywplotéd configuration apyclo, eved Ta pragmas elodyovial GTov

HOOLXOL.

Axoloudel o avagopd ota directives mou yenowonotolue oty LAoTolnoy LAXO) Tou

akyoptduov SVM oe auth Tn Simhwpatixn epyaocto.

array-partition

Xwptlet évav mivaxa oe uxpdtepoug ivaxeg 1 atouixd otolyelo. Autd:

Anuovpyel xUXAOUATIXT AOYIXTH TOMNNES UXEES UVANES, oVTl UL LEYAANG.

AuEdvel tov aptdud v onueinwy E/E tne uviune.

[Tdovede avgavelg Ty anddoone tne oyedloong

Xpeldleton TEPLOGOTERT] UVAUT Xl LOVABES UALXOU.
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dataflow

LOUQWVOL X0 UE QUTA TOU OVUPEQOUE GTNY TEONYOUUEVT EVOTNTA, TO cuyxexpévo di-
rective vhornolel Topalknhomoinoy o€ eMiNEdO CUVIPTACEWY, BIVOVTOC TN BUVATOTNTA GE Uid
CLVAETNOT XATAVOAWTH| VoL opY(oEL TNV EXTENEDT) TNG UOAC amOoXTHOEL TPOGBucT o8 Eval UEPOS

TWV GEBOUEVWV TIOU TORAYEL Ulal GUVEETNOT) TOROY WY OC.

interface

Kotopilet ta mpwtoxohha emxowvemviog v onueiwy eicodou xat e£680u YeTald Twv ou-

VORTHOEMY X TWV OLPOR™Y TUTWY UVAUNG.

pipeline

‘Onwe, éyoupe NON avagépeet, To pipelining eqopudleton ndve oe Bpdyous, GoTe va yiveton

%xoh0TeRT a€lOTOINOT TWV TOPWY XAl VO UEWWVETAL O YPOVOS EXTEAEOTC.

resource

Kadopilel tov tdpo vhixol nou Yo uhomotfoet pa YetoBAnt (tivaxac, aptiuntixh tedn,

TOPAUETRPOS CLUVEETNONG).

stream

YuvAdoc ol mivaxeg (arrays) vlomoovvtar cav RAM. Av, duwc, o dedopéva tou mivono
TOEAYOVTAL 1} XATAVAAWMVOVTUL O GELRE, TOTE EVOC THO OTOO0TIXOG UNYAVIOUOS ETUXOVLVING

elvol VoL YpNOoWOTOCOUUE 01| TwV Bedouévwy, omou yenowonolotue FIFOs avtl yio RAMs.

unroll

LOUQWVOL UE QUTA TIOU AVAPERUUE XL TEOTYOUREVLS, ONUOVEYEL TOANG avTiypopo Twv

HOVABWY LALXOL Tou LAOTOLVY €va Bpdyo.

2.4 YAwxo

Ou xdptec emtdyvvone Xilinx Alveo™ efvar xdptec pe unoothpen PCI Express®) nou
GTOYO €YOLY TNV EMTAYUVOT| UTOAOYLIOTIXG OTOUTTIXWDY EQUOUOYMY OO 1) Ny ovXT uddnon,
1 avdhuon dedouévwy xou 1 eneéepyacia Bivteo [20]. Xe auth ) Simhouatixd xdvoupe yehon
e xdptac Alveo U200.

[Idve oe o cuoxeuy| Tne Xilinx, o TAATQOEUA EXEL Lo DUVOULXT]) XOL L0 OTATIXT TEQLOY .
H otatxn neployn nopéyel tn Bacixr] utodour, woTe 1 xdpTo Vo emixovwvel ye tov host.
H Suvauixy| meployn eivar o yopog 6mou 1omoleTolvTon oL TUPHVES ETLTAYUVOTNS, OOTE Vo
extereotoLy. ‘OAn 1 ahyoptduixy) TOAUTAOXOTNTA TEOXUTTEL ANd TOV YELPIOUO TWV TOPWY

UTAG TNG TEPLOYTC.
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Dynamic
Region
SLR2

Dynamic Static
Region Region

SLR1

848

Sor opane

SLRO

Eyhuo 2.3: Awdtagn U200

Resource SLRO SLR1 SLR2

LUTs 355K 160K 355K
Registers 723K 331K 723K
BRAMs 638 326 638
URAMSs 320 160 320
DSPs 2265 1317 2265

[Tivaxag 2.1: TIépor U200

To oyfua 2.3 pog diver par exdva g didtagng g xdptag U200. Mnopolye vo evio-
nlooupe Ti¢ 4 pviuec DDR nou Siodéter, xadidg xou i teewc nepoyéc SLR (Super Logic
Region) otn duvouixr tne neploy.

O nivaxag 2.1 mapouctdlel toug dadéotuoug Tépous tTne xdptoag avd SLR.

YN oLVEYELX TOEOLGLALK XATOLOL AT TAL YUEAUXTNELOTIXG TNG XAPTAUS X0k TO WS ETUTEETOUY

NV emTdyUVoT) TwV akyoplduwny oto FPGA.

e 4 DDR banks: H napoucia 4 Eeywpiotov uvnuodv DDR emitpénet tny nopdAAnin extéie-
on 4 eviohdv R/W. Autd dnuiovpyel axdua yeyolltepn emtdyuvon tou alyopiduou,
oo’ UTOPOUUE VAl YWEICOUUE TOV UTOAOYIONO OF 4 xopudTio, Too omola Umopoly va
EXTEAEGTOOV TOREARNAAL Xou ave&dpTnTa To €va omd TO GAAO.

e 512-bit yia yeTa@opd SedoPEVLY PETOEY UVAUNG Xou TUpHva. AUTO TO YoEUXTNELOTING
EMTEETEL TNV UETOUPORA TEPICOOTEPWY DEBOUEVKDV ot €va xUxho pohoytoL. T va o
EXUETOUAAEUTOUUE Y ENOWOTOO0UE TOTOUS BEBOUEVKY OTwS ap-uint<512>.

e Metagopd dedopévwv oe pinry (burst): H mpdtn altnon yio read # write otn pviun eivou
oxeB37), ahRd oL emduEVES BeV elvar, oy ToL GEBOUEVOL EIVAL GUVEYOUEVA XAl Ol UETUPORES

yivovton oe pur.

Avoapopd 6T ToRamEve YoeaxTNELOTIXG YIVETOL €X VEOL OTaY TaEouCLdlw TNy oyediaon

TOU ETUTUYLUVTH OTNV ETOUEVT] EVOTNTOL.
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[Tivaxag 2.2: Profiling tng cuvdptnong svim-train

datasets . ..
) a9%a  skin ijennl w8a Avg.
functions
dot 79.03 37.41 63.71 729 | 63.26%
kernel_rbf 8.18 21.63 11.66 12.11 | 13.4%
get_Q 451 2095 10.29 5,65 | 10.35%
select_working_set 531 14.45 831  5.08 | 8.29%

2.5 TYlomoinorn Emtayuvviy

2.5.1 Profiling xow Emthoyr Xuvdpetnong YAuwxod

H Swodixacio péow tne omolo umopolue vo BpoUUe TO O UTOAOYIGTIX AMOLTNTIXO XOUUATL

evog ahyopituou ovoudleton profiling. I'io va o xdvouyue autd yenolponotiooue To epyaleio

gprof.

Profiling

H vhonoinon poc Baoileton otny éxdoon 3.241 tne BiBhodxne LIBSVM. Kdvovroc yehon
Tou gprof TMalpVouUE ol avapopd 6COV aPOEA TOUG YPOVOUS EXTEAECTC Yid BLAPORETIXG GOVO-

Ao dedopévwy. To anoteréopata @aivovton otov Tlivoxa 2.2.

Yuvdpetnon YAuwod

H ouvdptnon mou yeetdleton ToV TEPLOGOTERO YEOVO OE OAEC TIC MEQINTOOELS efvan 1) dot.
Avuth n ouvdptnon nolpvel wg oplopata 2 BelxTeC oE BedoPEVA TWV BELYUATWY TEOTOVAONS Xol
ETUOTEEPEL TO ECWTERIXO TOUG YIVOUEVO.

Apywd, emyeipnoo va dnuovpyhow évav FPGA nuprva mou va xdvel autdv Tov utoho-
Yiou6 Tou E0wTePo Yvouévou. To amoteAéopata dev fTay Tor emduunTd, xodde o Ypodvog
eXTENEOTC AUTOY TOU LUTOAOYLOHOU NTaty TOAD UXPOTEROS AmO TOV YEOVO Tou YeeldleTon Yl
va apyloel va extehelton o muprvag. ‘Etol elyoue doxoneg xaduoteproels.

E¢etalovtog Eavd twv x@dxa xou T avapopés omd to profiling, xatdhaPBa oti o Empene
va aoyohnde Ue xdmola cuVBETNoN avihTEpoU emTEdOU and TN otoifo xhfone (BA. Eyfua
2.4).

H ouvdptnon kernel eivon overloaded xon e€aptdton and T apyixés MaUpauéTEOUS TOU
Tpoypdupatog. Ilalpvel o ecwtepnd yivouevo dVo Blavuoudtwy xo utoloyiler tov SVM
muprva. O Slodéotueg emhoyég ebvan: RBF, tanh, linear and polynomial.

To yeyovog Ot Oheg oL xhfjoelg TN cuvdpTnong dot €pyovTon and TN cuvdpetnor get_Q
onualver 6Tl auTY 1) cLVdETNOT elval xUADTERT Yol ETITdYUVOT 6TO UAXOG. To xouudtt x@owa

TIOU UOC EVOLOPEREL EVOL TO TUEUXITE.

"https://github.com/cjlinl/libsvmm /releases/tag/v324
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Eyfuo 2.4: YtolBa xhfiong ouvoapThoewy

= start; j < len; j++) {
i] = (float)(y[i]*y[]j]*

for (]
al]
(this—>xkernel_function)(i,j));

dat

H Aertovpyla mou emTEAEl AUTO TO XOUUATL XWOXA EVAL O UTOAOYLOUOS TNG YRUUUNS ¢ TOU
mivoxa @, mou napouaidoaue oty Elowon 1.2 tne utoevotnrag 1.1.1. O Bpdyoc Eexwvdel and
Tov Oeixtn start, 616t oL mponyolueveg Tég elvan amoUnxeupéveg otny cache mou ulomolel
o alyopriuoc.

H npotn andmeipa dev oy Vo UAOTOLACOUPE 0AOXATe0 To Bpdyo oto FPGA, ahhd amAde
VO XEVOUUE OGAOUC TOUC UTOAOYIOMOUE TWV ECWTERXWY YVoUEvwy. O unoloyloudc twy SVM
TLENVLY YIvoTay oTov host x@dixa. Aol xotapépope Vo £YOUUE ATOTEAECUATA VLo QUTY| TNV
uhornoinon, axohovdwe xavoue To TEAELTALO Briua o CUUTERLAGBOUE Xl TOV UTOAOYLOUO TV

SVM nuprivwv oto FPGA. Autd €dwoe xou tar xahOTERA AmOTEAEGUATA (PUOLXJ.

2.5.2 Xyedlaoy tou Enttayuvtn

O ot6y0q pog and v apy) NToy vor ahAGEOUUE TOV 0pyd %WBIXA 6O TO BUVITOV Al-
yotepo. Ipoomadnooue vo emitoy OVouUe Tov apyxd ohydetduo yenooToldvTas To dtardéatua
epYOAElor XU Oyl VO XEVOUUE TROTOTOLNTELC TOL Yot UTOPOUGAY VoL BOCOLY CNUAVTIXES ETUTO-
xOvoelg, odhd Go dhhaloy tor faoixd dopwxd uéen tou. To anoteréoyata g VAomoinong yia
FPGA Ya énpene eivon axpiede to (Bl ye tor amoteréopata Tou opyxod Aoyiouixol. Kota-
PEPOUE VoL UAOTIOLACOUKE 800 EXBOTELS TOU XMOIXA TURH VA TOU x8vouy oxpl3ng autéd. H mpwtn
€xdoom anovnxevel ta dedouéva ot uviun tou FPGA oe poper double, oxp3ic omwe xou
0 JPYXOC HWOLXAS o 1) OeUTERT €xdooT Ta amoUnxeLel oe poppn float.

H mpdytn €xdoom mopdyel TUVOUOLOTUTIO ATOTEAEGHUATO. UE TO AEYIXO AOYIOUXO, EVE) 1) OE-
Utepn éxdoaon avtodldooel xdmola oxpifela Ye tayUTnTa (TEpLOcOTERO YIoL TIC AETTOUERELES
oyedlaong unopeite va Peeite otny unoevotnta e oyediaong Tou FPGA mupriva xa yio to
amoteréopata g emtdyuvone oty Evétnra 2.6). EZetdoope xou dhheg exdboeic yua va
expeToAeuTOOUE TEpanTépw awTd To tradeoff, aAhd 1 anwAcia oty axpifeia Yewprinxe av-
Enuévn, xon Yo umopolooE VoL TNV aoPOYOUUE LOVO UE pial TATeN avoadidpiipwaorn Tou apytxo
HOOLXAL.

H vlomoinon poc xdver pévo pio Baowxd oddoyry otov opyixd mnyodo xdduxor (pall pe
xdmotoug dhheg amapaitnTes mpoo¥rixeg yior var Sieuxoluviel outh 1 akhoryy)), N omola elvou

1 OVTIXUTAOTACT TOU XWBxXa ToU Bpdy0ou TOU aVAUPERUUE TEONYOUNEVWLS, UE ULol XANOT OTN
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Yyfua 2.5: Metatpony| cuvoedeuévne AloTag oe array - Oelypo Ue 6 yoooxTnetoTixnd

cuvdptnon callRowKernel xou mpoc¥étel 3 ¥ANOEC CUVAPTACEWY TOU ATOUTOUVTAL YOl T1)

METAPEACT) TNS AOYIXTE 0y X0 TeoYeduuatog Yo extéheon oto FPGA.

Host Kwduxoc

To npdto mpdyua tou énpene va ehéyEouye elvat 0 TpoOTOC ATOINXELONS TWY BLAVUCUATLY
ooV apyd xdoxa. O cuyypageic plyvouv meplocdtepo Bdpog oo apand dedopéva. Autd
odnyel 0T Yprion CUVOEBEUEVWY NOTOVY Yiol TNV anoUxeusT) TV dedopévwy, ue xdide oot
Yelo vor amoUnxeVel Tov OelxTn xou TNV T TWV U1 UNOEVIXWY BlACTACEMY EVOS BlayOOUATOC.
H avdyxn va éyouue xadoplopévo aprdud emavokrfpewy otov Kernel xdduxo yag EXve va
eyxataielpouye auTéY TOV TEOTO Xt anodnxedouue To dedouéva 0TV DMA uviun Tng xdpeTog
YENOUOTOWVTAS arrays, GUUTANPOVOVTAS UE UNOEVIXA OTaY YEetdlETo.

Emmiéov, v va xadbouue tnv mepintwon yenone twv SVM alyopliuwy pe etinéteg
xaTnyoplomoinong ot TNy teplntwon emhoy g Tou tupriva RBF, npociécoue 2 otoiyelo otny
apy”) Twv arrays. To mpwto anodnxedel T0 y; xou T0 6e0TERPO TO GUEOICU TWV TETEAYDVWY
dimensions ) )

>z tou dvbopotog (Bh. LyAua 2.5).

Z’ELO( and ta onuavTiedTepa TheovexTiuata e yehone e Alveo™ U200 eivan to yeyovde
ot ebvor Btordétel 4 pvueg DDR. Autd emtpémel va mporyuatonoolvtow R/W operations and
4 SpopeTnoig muprveg Tawtdypova. o autd ywploaue To dedouéva TV dlavucudtny ot 4
arrays Yo anoUxeuoT| oT Uviun.

‘Eva dAho Paocwd mheovéxtnua ebvar o €0pog Twv 512-bit yio YeTopopés SeBOUEVLY
peto€h tou FPGA xan tng uvAung tng xdptoc. Autd emitpénel T Uetagopd 512 bits o
éva xOxho pohoYLoU. XTov alyoprduo uog autd uetagedleton o Yetopopd 8 doubles avd
%x0%A0 pohoYlol oTny mewTr éxdoon 1 16 floats otn debtepn. o var a€lonoticouvye autd To
YOEAXTNELOTIXG EMEXTEIVOUUE TIC OLUGTACELS TV BLAVUOUATOY PEYPEL TO EMOUEVO TOANATALGLO
Tou 8 (# Tou 16 avtiotoiya), cuumAnedvovtag ue undevixd 6mou ypeetdletar. ‘Etol xdde
METOPOEd (PEQVEL BEBOUEVO TOU AVTIOTOLY0UY OE €Vl Xl UOVO BLEVUCUOL.

Xoplc vo umodue oe AETTOPEREIES TNE OYEDIAONC TOU XWOIXA TUEY Ve, YeetdlETon O UTO
70 onuelo, va avapépouUE TTota EfVaL 1) GUUTERLPOEE TOU, MOTE VO TOPOVCLIGOUUE TOV TEOTO
xhfiong tou omd tov host xddwa. Kdde évag and toug 4 nuprves (kernels) avtiotouyileto
oe wa and Tic 4 pviues e xdptoc. Kdbe muprvag molpvel we¢ elcodo, tov delxtn i Tou
BrovhopaTog Tou avTioTolEl TNy oelpd i Tou Tivoxa (), Wi TopdUETpo start (avtioTouyel
070 TEGTO SLdvucua oL Vot YENOWOTOLGOUNE Yo UToAOYLopoUE Hall UE To apyixd) xou Lo

Topdueteo products (avtiototyel oTov GUVOAXS opLiud Twv uToloylouny). Emiéyovtag
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Transfer Row 1
Transfer Row 2

Kernel Row 1 _
Kernel Row 2 _
Kernel Row 3 _
Kernel Row 4 _

Eyua 2.6: Apyix) TocEyYLon Yo TURIAANAT EXTEAECT) TTUPTVELV
Transfer Row 1 H H H J
Transfer Row 2

Kernel Row 1 [[IN|INFTT
Kernel Row 2 22020 2Y
Kernel Row 3
Kernel Row 4 130 [EHSN ST

Eyfuo 2.7: Tehnh) Tpocé€yylon yio TOEdAANAT EXTEAECT, TUEY VWV

AATEANANAAL QUTES TIC TOEOUETEOUS Yo TOUG 4 TUPHVES UTOPOUUE VoL YWEICOUNE TOUS 0y IxoUg
len - start umoAoyioUOUC OE TEQLOCOTERA XOUMATIAL ToL OTOLA EXTEAOUVTAL TORIAATAAL.

Apynd, yweloaue Toug unohoylopolg o 4 xopudtia, eqv Yo xdie muprva. To TedBAnua
ATAY OTL YLaL UEYIAX GUVOAXL BEBOUEVWY O YEOVOC UETAPORAS TOV AMOTEAECUATOVY AT T UV
tou FPGA nicw otov host ftav moAd yeydhog xou €tol dev elyoue TNy emitdyuvon tou Géhaue
(BA. Eyfuo 2.6).

To avtwetonioaye oautd, yweilovtac ta 4 xouudtior o empépoug uxpdtepa. ‘Etol
uetapopd dedopévev ouuPaivel, xadog exteheiton o TupRvoc pe To embuevo oet (BA. Lyfua

4 ’ : : 7 7, 4
2.7). Ouctootnd, mpdxetton yio pipeline otic ¥AAGEC TOU XOIXA TUEHVOL

Koodwag ITuprva

Kée muprvag opylet diaBdlovtog tor dedouéva amd tn uviun tou FPGA, xdvel toug amo-
eaflTNTOUC UTOAOYIOUOUE XL ETUGTEEPEL Tal amoTeEAEOUATA OTN UVAUTY. And exel uetapépovto
nlow otov host.

Ou Badixaoieg avdyvwong xat eyYpaphic oTn UvAun, xat €yovioc uTody 6Tl H6VOo Lol
DMA petapopd umopel vor cupfalvel avd tdoa oTiypr, YETeL Vo xaTihTERO GpLo Yid TO YeOVO
extéheons. ‘Onwg €youue 1NOn avagépel To data bus pnopel vo petogépet 8 doubles 1| 16
floats avd xUxho pohoylol. Tehixd, n xoaductépnon tng vAomolnong pog elvon TepImou n *
d+ 1§ xOxhol, 6mou n ebvon 0 apriude Twv dlavuoudTey Yl To omola utoloyilouue Toug SVM

nupfveg xau d elvor o apriude twv Slaotdoewy Sapepévoc pe 8 (1 16).
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‘ group 1 H group 2 H group 3‘ ‘group 11H group 12‘

function

Yyfuo 2.8: Dataflow muprva

[Mo voe xatopépoue autd TO AMOTEAESUA, OTIOU O GUVOANXOS YPOVOG EXTENEOTC eCopTdTan
HOVO amd TOV ENAYIGTO YPOVO Yo TN PETAPopd Twv dedopévwy oto FPGA and ) uvAun,
xdvaye ypron twv pipeline, dataflow and unroll directives. 'Eva dhho yopoxtnootind
TNe xdptac mou Borinoe frav ol YeTapopés dedouévny ot e uetoll tne DMA uvAung xou
tou FPGA.

‘Eyoupe 701 avapépet T TpocpEpel Ypnon auTty Twv VIteexTiBwy. ‘Ouwg eivar onuavtind
vo Teplypdtpouue T Sour| Tou x@dxa Tuprva hoc 6cov agopd to dataflow. To Lyruo 2.8
o Bver Wior OmTIXr ovamapdoTaoT) TV CUVAPTACENY/HOVEBWY TIOL Eivor OploUEVES o€ Xdle
TPV

H ocuvdptnomn load dwBdlel dedopéva amd T uviun tne xdptac. I'vwpiloupe Tic Bilotdoeic
%dde BlavOoUATOS, GUVETWE UTOPOUUE VO OUAOOTIOLCOVUE TIG OVOYVWOELS. e Xdde x0OxAo
pohoytol ot 8 (A 16) twéc mou petapépovian tohhamhootdlovton Pe TiG oavTio ToteS THéS TOU
Soviopotog ‘Bdone’ (to Sidvuoua Tou avTioTolyel otny oelpd Tou Ttivaxa ¢ mou utoloyilou-
pe). Do va yivouv autéc ol mpdielc oe éva xOxAo, x8voule yeforn tou unroll directive.

Y1 ouvéyelo mporypatonotolue tedateon autdy twv 8 (1 16) Ty oe devdpuxr didtaln
(3 1} 4 eninedo avtioTorya) xou to dpotoua YeTapépeTon WG stream oe yior ex TV 12 uovédeg
TN ouvdptnone group. Auth 1 cuvdptnon tpoc¥étel Ta adpoloyata TOU AVTIGTOLYOLY GTO
{810 dudvuoua xou UTOAOY(LEL TO E0WTEPXO YIVOUEVO. AuToO ueTapépeton Lovd Ue streaming ot
cuvdpTtnon ue 6voua function, n onoio unoroy(let Tov Tupva SVM. Ané exel to anoteréopata
petapépovton 0T cuVdETNoT Write, 1 onolo ta opadonotel avd 16 (apol eivar oe popgn float)
xaL YedpeL Tiow oTN UVARY NS XEETOG.

To evdugpépov xopudtt tng oyedioaone tou dataflow povtélou otov muprva pog elvon 1)
Topoucio Twy 12 povddwy/avTypdpwy tTng cuvdETNoNg group. LTnV mpoonddelo Hog oyedi-
dooupe Evay Tuprval xovod v eneepyao el SLopopeTXd GOVOAA BESOUEVGLY UE UEYEAO £0POC
S TPOC TOV 0ptIUd TWY YoEUXTNELO TGOV Enpene Vo anopplhoupe TNy WEa yia tpdolecT) Ghwv
TV SlaoTdoewy xdde dlaviouoatog ot devdpxr oudtaln. Kow autd yiatl to epyaieio Vivado
HLS 8ev pnopotoe va xdvel ) BéATiotn ouvieon ywplc mew vo E€pel Tov GUVOAXG apldud
TWYV OLUC TACEMVY.

‘Etol n yovn emdoyy ftav 1 npécdeon oe arinrovylor Ghwv tov Twoyv. To mpdélAnua

TOL UTELOEPYETAL OE oUTYH TNV TeplnTeaon elvor 6Tl uio Tpdoiect) yeetdleton €val xovd apldud
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[Tivaxag 2.3: Tleplopiopol ot yehon mépwy avd Tuprva

ITépoc SLRO SLR1 SLR2 ’Ogio/ITuphva

LUTs 355K 160K 355K 177.5K
Registers 723K 331K 723K 361.5K
BRAMs 638 326 638 319
URAMs 320 160 320 160
DSPs 2265 1317 2265 1132

x0xAwv poloytol Yo va mpaypatonondel, eved eueic elyacte oc Véon va Tpo@odoTovUE TN
ocuvdpTnom Ue Wia Vo Ty avd xOxho. Autéd onuaiver 6TL 1) tpdoveot elodyet éva bottleneck
Tou €mpeme va avTetwnicovye. Me ) yefion twv 12 yovddwy urnopolue vo oTethouye To
OEDOUEVIL TTIOL AVTIGTOLYOVY GE VEO OLAVUGHA GE XouvoURLOL LOVADA, WOTE Vo NV EYOUUE XoU-
otepnoelc Tou pipeline. H emhoyr tou apriuot 12 dev elvan Tuyalo. Berxaye 6Tu uio tpdodeon
double TV dapxoloe 12 xOxhoug. Yuverde, 1 UTapdn 12 yovddny emTeénel TNy avddeo
TV OF BLUPORETLXY| LOVADX, €W OTOU TEAEWWTEL O UTOAOYLONOS TN 1ng povddag. Mo v to
eZnyfoouue autd Alyo xolUtepa ag dolue éva mapdderypo. H ouvdptnon load mopdyetl pla
véo T avd xOxho. Eotw 6t b twéc avtiotoyoly ot éva dtdvuoua (apyinéc dlao TdoeLc:
5-8 =407 5-16 = 80 yi Tic 800 exdboelc). Tdte 6An 1 dwdicacia npboveone ypeetdleton 60
%x0xhoug Yo vor ohoxhnpewiel. Ye autd To BLdo TN OUKS Exouv Tapay el cuvolxd 60 Tiuéc.
Dot var pnv €youpe xaduotephoelc Ti¢ ywpllouue avd 5 xou Tig avordéTOUUE GE BLOPORETIXG
avtiypago tne (Blog cuvdptnone group.

Ano exel xon TépA T ECWTEPIXE YIVOUEVO UETAPEQOVTOL OTNY ouVdpeTNnor function 6mou
yivetan o unoroyiouog Twv SVM muprvev.

Y10 mapdptnua Swtietar 0 xoixag Tuprvar 6Tou @afveTtal OAN auTh 1 oyediacT Tou

HOVTEAOU YLd TOV TTURTVOL LS.

2.5.3 Xpnow.ornoinon Ilépwyv

Ta FPGA €youv xdnotoug meploplools 660V agopd Toug TOEOUE TOU UTOROUUE VA YET)-
owwomotfjooue. Extéc and tov cuvolxd apiud twv mopwy mou eivar Sladéoiuol, LTdEYouV
%0l XAMOIEC TTPOTACELS WOTE 1) AMOBOCT TWV TURHVKY Vo etvor BéATiotn. Mio amd autég elvan
oL x&e muprvoc Vo mpénel vo unopel va tonovetniel €& ohoxAfpou oe uio meployny SLR.
‘Eyovtac unddy v Srodeopdtnta népwmv avé SLR (BA. Hivaxa 2.1) xou ) yerion 4 nuphivewy
oTNY LAoTolnon yog, €youde Toug TEploplopols Tou Ilivaxa 2.3.

H rnopduetpog tou design pog mou ennpedlet tov opidud Twv mopnmv vl 0 PEYIGTOC
optdUoC TV SLICTACEWY avd SLdvuoUo Tou UTooTNE(CouV oL TUENVES. XTNV TERinTwon TNg
double éxdoong autdg o apiude eivan icoc pe 8000, eved oty float etvar 65000. O ITivaxeg
2.4 »ou 2.5 Belyvouv T yenowononon Twv TopnY TS 600 AUTEC TEQITTOOELS.

‘Onwe BAénouye o moépog mou Yétel autd to dpta ebvan oo BRAM. Ot BRAM etvan uvrueg

amofixeuong xau yioe autd 1 avanopdotaor float €yel ueyalitepa neprinpla.
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ivaxog 2.4: Tlopol avd tuphva - éxdoor double

ITépoc Ye xpnon Awdéoiwpwor Xpenoipnornoinon
BRAM_18K 278 319 87.1%
DSP48E 426 1132 37.6%

FF 93777 361686 26%

LUT 62764 177415 35.4%
URAM 8 160 5%

[Tivancag 2.5: TIbpor avd mupriva - éxdoor float

II6pog Ye xpron Awdéoipor Xpenoipnornoinon
BRAM_18K 314 319 98.4%
DSP48E 391 1132 34.5%

FF 93777 361686 23.1%

LUT 62764 177415 31.8%
URAM 8 160 5%

2.6 ArnotsAéopata

e auth TV evotnTa Yo TUPOUGIAGOUUE TIG ETULTAYUVOELS TNG UAOTIONGONG MG OE GUYXELOT
pe v apyxn éxdoor. Ot emitayOvoelg oto FPGA eivon oe alyxplon pe moAuvnuotixny extéhe-
on oe e CPU mou a€lonotel toug 4 didéciwoug tupriveg tne. H CPU mou yenowonow|caue
etvow 1 AMD Ryzen™ 2200G, 1 omnola €yel ouyvotnta 3.5 GHz. Eetdlouye mwe 1o péyedog
TOU GUVOAOU BEBOUEVWY X O dELIUOC TV YURUXTNELOTIXMY TWV BelyHdtwy enneedlel TNV
ETUTAYUVOT).

ITpog to0T0, xdvope pLor e€epelvnan TwV YeovwY extéleons ot Sldtaln TAEéyuatog, doxi-
udlovTog SLopopeTixd UEYEDT CUVORWY Xou BlapopETIX0UE aELdOUE Yoo TNELO Tix@Y. o var
elvow efva 600 TO BUVITOV TO AVTIXEWWEVIXES OL UETPNOELS, Onutovpyrioope custom datasets.
To apyxé frav to dataset Epsilon?. To ouyxexpévo cOvoro éyer 400000 delypoto pe
2000 yopoxtneloTixd to xodéva. Autd Tou xdvope HTaAY Vo THEOUUE €Vol UTOGUYOAO TOU UE
20000 Belyportar xou omd UTO VoL XATACHEVACOUUE Eeywplotd datasets pe Siopopetind apriud
derypdtwyv (20000, 40000, . .., 500000) xou aprduny yapaxtneotxoy (5,10, 25, 50, 75, 100,
200, ..., 2000). Ou ypdvol yétpnone apopolv Tov LTOROYIOUS Ula GELRdS Tou Tivaxa ) 6To
FPGA xa v CPU.

Ta oyfuoata 2.9, 2.10 xou 2.11 noapouctdlouvy Toug YEdOVoUS EXTEAECTC OTIWS UETEUMXALY
Yoo o SlapopeTind olvoha Ue yprion Twv 3 Stapopetixmy ulototioewy (double FPGA, float
FPGA, multithreaded CPU) Ta padpo onueia eivon ameixovilouv Tl Teaypotinés TWES, eve
oL YpopuEg ebval TpooupuooUEVES TdvVL ot autd. Tlapatnpodue tn ypouuxn oyéon 6oV agopd

TOUC YPOVOUC EXTEAECNC OE OAEC TIC TEPLTTWOELS.

2https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html#epsilon
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Eyfua 2.9: Double éxdoon: Ilwg o aprdudc tov deryudtonv ennpedlel To Ypovo EXTENETTG
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Eyfua 2.10: Float éxdoon: Iwe o aprdudg tov detypdtony ennpedlel To YpOVo EXTENEOTC
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Yyhuor 2.11: TTodhamhd vApora: TIeg o apripog tov derypdtwy ennpedlel To ypdvo exTéeong
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12
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8 L
Speedup 6
4
2
0
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Num. of training vectors

Yyfua 2.12: Double éxdoon: Ilwg o apriudc tev detypdtonv enneedlel TNV ETITAYUVOT)

Auth 1 oyéon dnulovpyel uLo EVOLIPELOUCA XATACTACT OGOV APORS TNV ETULTAYLVCT| UETAUED
e extéheonc oe FPGA xou CPU. Ac unodécoupe 6Tt 1 ypour) Tou yedvou eXTEAEOTC OTO
FPGA vy xdnowo ocuyxexpiuévo aptdud yopaxtnetotixody eivon f1(x) = ax + b xou 1 ypauu
e mohuvnuatixy extéheone otnv CPU eivon f2(x) = cz + d, émou z ebvan 1 yetoBAnts mou
expdlel To olVOAO TwV BElYHATWY. XE auTH TNV TMERINTWOT UTOPOVLUE Vo VeweoOUUE OTL

ol otadepéc b xou d exppedlouv 1o Baowxd overhead tng extéleong oe xdde mhatpopua. H

cx+d
ar+b-

otadepn) ebvon ‘UmepBolh’ xou €xel xdmoto BLaiTEPOL YoPUX TNELOTIXAL:

ouvdptnon e emtdyuvone Yo Arav tote f(z) =

Auth n ouvdptnon (av dev ebvou

e lim f(z)= lim f(z)=2¢

T——00 T—++00
_b
e lim f(z)= oo, fl(=a)
st —o0, f1(-2)>0
_ _b
.« dm f@)=] > IS0
PR +oo, fl(-2)>0

Yy neplntomon pag, Wag xou aoy0AoOUAcTE HOVO UE VETIES TWES Xou 1) GUCT| TOU TPO-
Briuartog pog telxd emBdiiet a,b,c,d > 0, ta mopamdve yapaxtneto Txd xodopilouv T
pop®y|) Tng xaumOAing. Av fl(—g) < 0, t6te o Twéc f(x) eivar pxpdtepee xan awEdvovto
wodOC To T awEdveton. Av fl(—g) > 0, t6te oL npée f(x) elvan YEYONDTEPES Xou PELDVOVTOL
xS To T owEdveTou.

Ta oyfuota 2.12 %o 2.13 delyvouv Tic emitaydvoel Twv vAonoioewy o FPGA oe ayéon
ue Tnv CPU. Ilopatnpolue mwg cuyxAlvouy ol TiES, xaddg 0 aptiuog Twy BelYHdTonY augdve-
T, xS oL To OTL 1 CUVIPTHCELS lvon abEouoEC.

Enlong, uropolue vo 8olue OTL 1) H€YLoTN EMITAyUVOT) Slapépet Yia BlapopeTinolg optduoie
YOUEAUXTNELOTIXGY.  XT0 oYU 2.14 mopoucldloupe TIC YRuPIXES TopaoTdcel; Tou opilovTon
and v xhion tov fitted yeouudy twv yeévev extéleone (B, oyAuata 2.9, 2.10, 2.11.

‘Onwg xou oL GUVIRTACELS TNG EMTAYUVONG Elval TNAIXA YEOUUIXOY CUVIPTACEWY, ETCL XAl 1)
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Speedup
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TyAua 2.14: Khion tov ypa@udy topaotdoewy Ypdvou/aptipo) yopax TnetoTixy

oLVEETNON TNG UEYLOTNG EMTAYUVONG, Eivor TNAXO AUTOY TV YRUPIXWY TapacTdoewy (BA.
oyfua 2.15). Auth n oyéon xou ndht xadopiler tn poper| Tne xaunvine (eivon ‘unepBorR’) xou
KOG TANPOQOREL OTL Yol U0 oELIUMY YURAXTNELOTIXWY 1) UEYLOTH ETLTAYUVOT), XS auEAvEL
70 TAUOG TOV BELYUATOV, Eival dpXeTd UEYUAUTERT]. MTNV YEVIXY| TEQIMTMOT), XAl IXOVA UEYIAO
aEtIUO BELYUATLY XU YAPUXTNEIOTIXWY, 1) ETLTAYUVOT] QTAVEL oE Oplo Tou ebvar Tepimou 3.5x

xan 7x yioo Ty double xou tnyv float éxdoorn avtioTtouyo.

2.7 Xuunepdouota

Ye out TN dimhwpatiny gpyacio, tapovoldloval To amoTEAECUATO TN TeooTdlelag ETL-
Téyuvong e Bihodrixne LIBSVM.

H npoondleia pag dev emxevipoinxe otny Pehtinon tou apyixod alyoplduou, xdvoviag
TEOTOTIOLACELS OE oUTOV ot PewpnTxd eninedo, ahhd yenowdomoiwvtag tn Xovdeorn Tmiod
Emnédou dote vau Yivel EXUETIAAEUCT] TV BUVITOTATWY TOU TEOCPEREL 1) XUETA ETUTAYLVONG
(Xilinx®) Alveo™ U200 Data Center). Ytdyoc Aoy v Yivel nopodhnhonoinot tou xoddixa

muefiva 6to FPGA oe ornuelo mou o pévo bottleneck va ebvon 1) petopopéc dedopévamy amd xou
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Yyfua 2.15: Méyiotn Emtdyuvon avdhoya pe Tov aprdud Twy YopoxTNeloTIXmY

TeO¢ TN WVAUN TNe xdeTag xou To FPGA. O pyetprioeic detyvouy dtL emituyydveton emtdyuvon
€we 14x otnv xohltepn TeplnTwoT o€ oyéon PE ULt TOAUVNUATIXY EXTEAECT) TOU ahyoplduou
otov eneZepyoot AMD Ryzen™ 3 2200G.






Chapter 3

Theoretical background

3.1 Machine Learning

Definition

Machine learning (ML) is the study of computer algorithms that improve automatically
through experience. In other words, a machine learning algorithm is an algorithm that is
able to learn from data [1]. But what do we mean by learning? Mitchell [4] provides a

succinct definition:

A computer program is said to learn from experience E with respect to some
class of tasks T" and performance measure P , if its performance at tasks in 7',

as measured by P, improves with experience E.

One can imagine a wide variety of experiences FE, tasks T', and performance measures P.

Machine learning enables us to tackle tasks that are too difficult to solve with fixed
programs written and designed by human beings. In this relatively formal definition of
the word “task,” the process of learning itself is not the task. Learning is our means of
attaining the ability to perform the task.

Some of the most common machine learning tasks include:

e Classification: In this type of task, the computer program is asked to specify which
of k categories some input belongs to.

o Regression: In this type of task, the machine learning system is asked to observe
a relatively unstructured representation of some kind of data and transcribe the
information into discrete textual form.

e Anomaly Detection: In this type of task, the computer program sifts through a
set of events or objects and flags some of them as being unusual or atypical.

e Synthesis and Sampling: In this type of task, the machine learning algorithm is

asked to generate new examples that are similar to those in the training data.

To evaluate the abilities of a machine learning algorithm, we must design a quantitative

measure of its performance. Usually this performance measure P is specific to the task

27
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T being carried out by the system. For tasks such as classification we often measure the
accuracy of the model. Accuracy is just the proportion of examples for which the model
produces the correct output.

Machine Learning algorithms can be broadly categorized as unsupervised or super-
vised, based on the kind of experience they are allowed to have and process. Most machine
learning algorithms simply experience a dataset. A dataset is a collection of examples,
which are in turn collections of features. Unsupervised learning algorithms experience
a dataset containing many features, then learn useful properties of the structure of this
dataset. Supervised learning algorithms experience a dataset containing features, but each

example is also associated with a label or target.

3.2 Support Vector Machines

In machine learning, support-vector machines are supervised learning models with
associated learning algorithms that analyze data used for classification and regression
analysis [6].

Classification of data is the process by which, given a collection of data points each
belonging to one of two classes, we are able to decide which class a new data point will
be in. In the case of support-vector machines, a data point is viewed as a p-dimensional
vector (a list of p numbers), and we want to know whether we can separate such points

with a (p — 1)-dimensional hyperplane. This is called a linear classifier.

Simplest case: linearly-separable data - linear transform

Problem 1. We are given a set of n data points of the form (x;,vy;), yi € {—1,1} denoting
the class of vector x;. We want to find the “marimum-margin hyperplane” that divides
the group of points x; for which y; = 1 from the group of points for which y; = —1, which
1s defined so that the distance between the hyperplane and the nearest point x; from either

group is mazximized.

Solution

Any hyperplane can be written as the set of points x; satisfying w -« + b = 0. Let
Ty be the nearest data point to the hyperplane. We first need to normalize w, so that
|lw -z +0=1]

Let w be a vector perpendicular to the plane and x’, " be two data points of the
plane (see figure 3.1).

Then,

T ’
w -z’ +b=0
— wl . (' —2")=0
wl .z +b=0
Take any point x on the plane. Let w be a vector parallel to w with |w = 1], so

w = HwTH (see Figure 3.2). We consider the projection of x,, — x on w.
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oX,

Figure 3.1

s

Figure 3.2

Then,

~ 1
distance = |@T - (g, — )| = —|wT -zp—w? x| = — |JwT -z, +b—wT 2 -V =

[|wl|

) 1
= distance = ——
||wl|

Based on the above, in order to solve Problem 1 we need to solve

Problem 2. Mazimize Wll\’ subject to min |wT -z, + b =1
n

(note: |wT - xp +b| = yp(wT -z, + 1))
which is equivalent to
Problem 3. Minimize %wTw, subject to y, - (wTaxy +b) > 1, forn=1,2,...,N

The Lagrange formulation of the above problem is

N

Problem 4. Minimize L(w,b,a) = twTw — Zan(yn(wT:I:n +b)—1),
n=1

w.r.t w and b and maximize w.r.t each a, > 0

To solve Problem 4 we set

N
Vwl =w — Zanyna:n =0

n=1
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and N
oL
. — Z anlYn =0
ob —~

Substituting in the Lagrangian we get

N 1 N N
L(a) = Z an — 9 Z Z ynymanammzwm
n=1

n=1m=1

and the problem to solve becomes

Problem 5. Mazimize L(a), w.r.t a subject to a, >0 forn=1,2,...,N and

N
Z anYn =0
n=1

or better suited for a quadratic programming solver

Problem 6. Minimize —L(a), w.r.t a subject to a, >0 forn=1,2,...,N and

N
Z anYn =0
n=1

N
The solution of this problem is a vector a = aj,as,...,ay = w = Z AnYnTn

n=1
The Karush-Kuhn-Tucker conditions of the Lagrangian problem are:

an(Yn(wre, +b)—1)=0, n=1,2,....N
The above means that
an, > 0 = =z, is a support vector

The decision function is then
N

f(z) = sgn(wTz +b) = sgn(z AnYnTnT + b)

n=1

Non-linear transform

Some datasets contain data points that are not linearly separable in space X. A
solution to this problem is to map the data points in another space Z and try to see if
the data are linearly separable in that space. Figure 3.3 depicts a set of data points that
are not linearly separable in the initial space, but can probably be linearly separable after
being mapped to another space.

In this case we don’t compute the inner product azZ:azm in space X, but instead we

compute the inner product z;f Zm in that space. The Lagrangian becomes

N 1 N N
E(a’> = Z an — 9 Z Z ynymanangzm
n=1

n=1m=1
and the decision function becomes
N
f(z) = sgn('me +b) = sgn(z anYnznz + b)

n=1
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Figure 3.3

The kernel trick

The above technique is very useful if the data points are not linearly separable in one
space but can be transformed in another space where they are linearly separable. This
permits any new data point to be classified by simply transforming it to the new space
and computing the new decision function. There is one major disadvantage though. The
process of transforming the data points to another space and then computing the inner
products can have significant costs.

As it turns out we don’t need to pay that cost. The kernel trick is a method to avoid
the explicit mapping [7]. We only need to define a function K (x,z’) and prove that this
function is an inner product in some space.

The lagrangian then becomes

N 1 N N
[,(a) = Z Qp — 5 Z Z ynymanamK($na iB)
n=1

n=1m=1

and the decision function
N

f(l‘) = Sgn(me + b) = Sgn(z anynK(wna m) + b)

n=1
Some of the most popular SVM kernels are:
e Radial Basis Function (RBF): K (z,z’) = e /lle=2II
e Polynomial kernel: K(x,z’) = (c+a-zT2')?

e Hyperbolic Tangent kernel: K (zx, ') = tanh(c+a - xT2’)

Soft-margin SVM

Soft-margin SVM is a formulation of the Support Vector Machine algorithm in order
to be applicable in datasets where the data points are not linearly-separable no matter the
kernel function selected. In that case, we are prepared to accept some outlier data points
that are not correctly classified and we use a error metric function to determine the level

of acceptance for such outliers. The mathematical equations are altered accordingly.
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3.3 LIBSVM

LIBSVM [10] a library for Support Vector Machines training and classification. It is
very popular and widely used for machine learning applications. LIBSVM attempts to
bring the theoretical knowledge of Support Vector Machines to the real computing world.

3.3.1 SVM formulations

Soft-margin SVM is an SVM formulation, but there exist many more in an effort to
expand the capabilities of the original algorithm. LIBSVM supports various SVM formu-
lations for classification, regression and distribution estimation. The list of formulations

supported are:

e (-Support Vector Classification
This is the soft-margin SVM formulation.

e v-Support Vector Classification

This introduces and new parameter v € (0,1]. v is an upper bound of the fraction of
training errors and a lower bound of the fraction of support vectors.

e Distribution Estimation (One-class SVM)
One-class SVM was proposed for estimating the support of a high-dimensional dis-

tribution.

e c-Support Vector Regression (e-SVR)

e v-Support Vector Regression (v-SVR)

Similar to v-SVC, for regression, it used a parameter v € (0,1] to control the number

of support vectors. The parameter € in e-SVR becomes a parameter here.

3.3.2 The quadratic problem - Sequential Minimal Optimization

A general form for one-variable SVM problems (C-SVC, e-SVR) is the following.

min f(a)
subject to yTa=A (3.1)
0<a; <Cit=1,2,...,1

where

fla) = %aTQa +pla

and yy = +1,t=1,2,...,L.

The main problem in trying to solve Problem 3.1 is that matrix () may be too large
to be stored in the computer memory. There have been proposed many decomposition
methods to tackle this difficulty. A decomposition method, splits the original problem

into smaller ones, so that each smaller problem is possible to be stored and solved by the
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computer. In the case of the SVM algorithms, such a method modifies only a subset of
a per iteration, so only some columns of ) are needed. The subsets of variables that
comprises of this smaller problem in each iteration is denoted as the working set B. The
type of decomposition utilized by LIBSVM is called Sequential Minimal Optimization
(SMO) and the smaller problems it creates contain only two variables.

Without going into too much detail about the exact implementation of the algorithm

(see [10], subsection 4.1.1), we can describe the steps.

SMO algorithm

1. Set k =1 for initial iteration

2. Find an initial feasible a'

3. In every iteration k, check the stop condition, which is to check if a® is stationary,
according to the KKT optimization problem conditions. If the condition is met stop
the iteration, else proceed to step 4.

4. Select working set of two variables i, 7 (WSS algorithm)

5. Depending on the value, compared to 0, of a function f(K(x,'),1,7), solve a linear
equations problem with variables a;, a;.

6. Update the value of a**1 according to the results and go to step 3.

KKT stopping condition and WWS algorithm (see [10], subsection 4.1.2)

A feasible vector a is stationary point if and only if there exists a number b and two

non-negative vectors A and £ such that
Vf(a) +by =A—¢, (3-2)

\i@; = 0,§,~(C—ai) =0,\2>0,§2>0,0=1,2,...,1
where V f(a) = Qa + p is the gradient of f(a).
This can be rewritten as
>0, ifa;<C

<0, ifa; >0

Vif(a) + by =

which is equivalent to
Jb:m(a) <b< M(a)

where
m(a) = max —y;V;f(a) and M(a)= min —y;V;f(a)
i€lup(a) i€liow (@)
and
Ip(a) ={tlas < C,yt =1 or a; > 0,y, = —1}

Lipw(a) ={tla; < Ciyp = =1 or a; > 0,y = 1}



34 Chapter 3. Theoretical background

That means that a feasible a is a stationary point if and only if
m(a) < M(a)
and a suitable stop condition is

m(a*) — M(a¥) < e

where ¢ is the tolerance.

The Working Set Selection algorithm steps are:

1. For all ¢, s define
ais = K(t,t) + K(s,s) — 2K (t, s),

bis = —ytvtf(ak) + ySVSf(ak) >0

and
_ ) sy Z.fats >0
ats = )
T, otherwise

2. Select
i €arg mtax{—ytvtf(ak)ﬁ € Iup(ak)}

b2
j € argmint{—=Lt € lipu(a®), —y:Vif(a") < —y;Vif (a")}
it

Other formulations

The two-variable SVM problems follow a similar procedure in order to perform the

SMO algorithm. The exact mathematical equations can be found in [10], section 4.2.

3.3.3 Caching and Shrinking

LIBSVM uses two implementation tricks, i.e caching and shrinking, in order to speed-

up the training process.

Shrinking

An optimal solution a of the SVM dual problem may contain some bounded elements.
These elements may have already been bounded in the middle of the decomposition it-
erations. To save the training time, the shrinking technique tries to identify and remove
some bounded elements, so a smaller optimization problem is solved. This is theoretically
supported, showing that at the final iterations of the SMO algorithm only a small set of

variables is still changed.
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Caching

LIBSVM is using a Least-Recently-Used caching mechanism on software in order to
reduce the number of computations needed. It is observed that especially in the last
iterations of the SMO algorithms the values needed to be computed have already been
done so in previous iterations. By utilizing this caching mechanism the execution time
can be significantly slower.

The cache is implemented using a simple linked list of structures.

struct head_t
{
head_t xprev, snext; // a circular list
Qfloat xdata;
int len; // data[0,len) is cached in this entry

}s
The structure points to the first len elements of a column. Modifying the linked list

(additions, deletions, insertions) is easy enough, with the presence of pointers prev and

next.






Chapter 4
Field Programmable Gate Arrays

An FPGA is a type of integrated circuit (IC) that can be programmed for different
algorithms after fabrication. Modern FPGA devices consist of up to two million logic
cells that can be configured to implement a variety of software algorithms. Although
the traditional FPGA design flow is more similar to a regular IC than a processor, an
FPGA provides significant cost advantages in comparison to an IC development effort and
offers the same level of performance in most cases. Another advantage of the FPGA when
compared to the IC is its ability to be dynamically reconfigured. This process, which is the
same as loading a program in a processor, can affect part or all of the resources available
in the FPGA fabric [19].

4.1 Architecture

Every FPGA chip is made up of a finite number of predefined resources with pro-
grammable interconnects to implement a reconfigurable digital circuit and I/O blocks to
allow the circuit to access the outside world. The basic structure of an FPGA is composed

of the following elements:

Look-up table (LUT): This element performs logic operations.
Flip-Flop (FF): This register element stores the result of the LUT.

Wires: These elements connect elements to one another.

Input/Output (I/O) pads: These physically available ports get data in and out of
the FPGA.

Figure 4.1 shows how these elements combine to form the basic FPGA architecture.
In recent times the architecture of FPGAs has evolved with the inclusion of more
advanced computational and data storage blocks, that increase the computational density

and efficiency of the device. These are:

e Embedded memories for distributed data storage
e Phase-locked loops (PLLs) for driving the FPGA fabric at different clock rates
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Figure 4.1: Basic FPGA architecture

e High-speed serial transceivers
e Off-chip memory controllers

e Multiply-accumulate blocks

These new blocks, together with the traditional ones, form the modern FPGA archi-
tecture shown in Figure 4.2, which provides the FPGA with the flexibility to implement

any software algorithm.

FPGA Components

Let’s provide some more detail about the components of the modern FPGA architec-

ture.

Lookup Table

The LUT is the basic building block of an FPGA and is capable of implementing any
logic function of N Boolean variables. Essentially, this element is a truth table in which
different combinations of the inputs implement different functions to yield output values.

The hardware implementation of a LUT can be thought of as a collection of memory
cells connected to a set of multiplexers. The inputs to the LUT act as selector bits on the
multiplexer to select the result at a given point in time (see Figure 4.3). A LUT can be

used as both a function compute engine and a data storage element.
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Figure 4.4: Structure of a DSP block

Flip-Flop

The flip-flop is the basic storage unit within the FPGA fabric. This element is always
paired with a LUT to assist in logic pipelining and data storage. The basic structure of a
flip-flop includes a data input, clock input, clock enable, reset, and data output. During
normal operation, any value at the data input port is latched and passed to the output
on every pulse of the clock. The purpose of the clock enable pin is to allow the flip-flop
to hold a specific value for more than one clock pulse. New data inputs are only latched

and passed to the data output port when both clock and clock enable are equal to one.

DSP Block

The most complex computational block available in modern FPGAs is the DSP block
(see Figure 4.4). The DSP block is an arithmetic logic unit (ALU) embedded into the
fabric of the FPGA, which is composed of a chain of three different blocks. The compu-
tational chain in the DSP is composed of an add/subtract unit connected to a multiplier
connected to a final add/subtract/accumulate engine. This chain allows a single DSP unit

to implement functions of the form:
P=B-(A+D)+C

or

P+=B-(A+D)

Storage Elements

The FPGA devices usually include embedded memory elements that can be used as

random-access memory (RAM), read-only memory (ROM), or shift registers. These ele-
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ments are block RAMs (BRAMs), UltraRAM blocks (URAMS)!, LUTs, and shift registers
(SRLs).

4.2 FPGA Parallelism

The popularity and great utilization of FPGAs in the current era is based, among
other reasons, upon the promise of ease of design and execution of highly parallelizable
algorithms. In order to understand why this constitutes such a strong point of FPGA
we have to compare the instruction execution process in both common processors and

FPGAs.

Processor execution

Any segment of code written for CPU execution needs to be translated into low level
instructions. Usually this process involves a compiler, who will translate the high-level
language code into assembly code instructions. The assembly code, being close the specific
architecture of the processor, describes the steps that need to be performed on hardware
in order to perform the task intended. The thing is that, even though the task is well
defined, its execution time is not constant, depending on many factors, such the location
of the involving data (hard drive, memory, cache, etc.). This creates an additional need for
optimization. Software engineers need to design their algorithms in such a way that the
data needed during the execution are cached as much as possible. The added complexity

in algorithm design is often overwhelming.

FPGA execution

The FPGA is an inherently parallel processing fabric capable of implementing any
logical and arithmetic function that can run on a processor, while not being hindered by

the restrictions of a cache, a unified memory space and shared arithmetic logic units.

The LUTs used for any computation are exclusive to this operation only. Unlike a
processor, where all computations share the same ALU, an FPGA implementation in-
stantiates independent sets of LUTSs for each computation in the software algorithm. In
addition to assigning unique LUT resources per computation, the FPGA differs from a
processor in both memory architecture and the cost of memory accesses. In an FPGA
implementation, the memory is arranged into multiple storage banks as close as possible
to the point of use in the operation. This results in an instantaneous memory bandwidth,

which far exceeds the capabilities of a processor.

1Xilinx specific
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4.3 Applications

Initially FPGAs were used in telecommunications and networking. After some years,
FPGAs found their way into consumer, automotive, and industrial applications [8]. In
current times, FPGAs the utilization of FPGAs in data centers is really high. Their
modern capabilities permit their usage for acceleration of demanding algorithms, such as

search algorithms and machine learning training and inference.
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High Level Synthesis

In the past, the utilization of FPGAs was a challenging process, because the low-level

FPGA design tools could be used only by engineers with a deep understanding of digital

hardware design. A solution to this problem was introduced in the form of High Level

Synthesis (HLS). HLS is an automated design process that interprets an algorithmic de-

scription of a desired behavior and creates digital hardware that implements that behavior.

This creates some benefits involved with selection of HLS for FPGA programming [17]:

5.1

Improved productivity for hardware designers

Hardware designers can work at a higher level of abstraction while creating high-
performance hardware.

Improved system performance for software designers

Software developers can accelerate the computationally intensive parts of their al-

gorithms on a new compilation target, the FPGA.

HLS Phases

High-level synthesis includes the following phases:

Scheduling

Determines which operations occur during each clock cycle based on

— Length of the clock cycle or clock frequency
— Time it takes for the operation to complete, as defined by the target device

— User-specified optimization directives

If the clock period is longer or a faster FPGA is targeted, more operations are
completed within a single clock cycle, and all operations might complete in one
clock cycle. Conversely, if the clock period is shorter or a slower FPGA is targeted,
high-level synthesis automatically schedules the operations over more clock cycles,
and some operations might need to be implemented as multi-cycle resources.
Binding

Determines which hardware resource implements each scheduled operation. To im-
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Figure 5.1: Execution of loop with no pipelining applied
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Figure 5.2: Execution of loop with pipelining applied

plement the optimal solution, high-level synthesis uses information about the target

device.

e Control logic extraction

Extracts the control logic to create a finite state machine (FSM) that sequences the

operations in the RTL design.

5.2 HLS techniques

High Level Synthesis is able to perform some techniques that greatly improve the

performance of algorithm by exploiting the highly parallel design of FPGAs.

Pipelining

Pipelining allows the designer to avoid data dependencies and increase the level of
parallelism in an algorithm hardware implementation [19].

We will explain what Pipelining does with an example. Let’s suppose we have a set
of n data(e.g an array) and we want to perform some operations on each element of this
set in a loop. These operations may be numerical operations or data transfers. Let’s also
suppose, for ease of explaining, that each operations takes 1 cycle to be completed and
there are 5 of these operations in the loop. The relevant term in this case is that the Loop
Latency (LL) is 5. If we didn’t do anything then each iteration of the loop would take 5
cycles to complete and as a result the whole loop would take 5 - n cycles to complete (see
Figure 5.1). During each clock cycle one operation is completed by the relevant hardware
module. The problem is that at any given time only one module is active while the other
ones are waiting for the next iteration of data to process.

Pipelining comes to solve this problem. It permits the next iteration to begin as soon
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as the first first hardware module needed is freed from the previous iteration (see Figure
5.2). In our example, this is possible after only one cycle. The relevant term here is
that the Initiation Interval (II) is 1. With pipelining the whole time needed for the
execution of the loop would be 5+ (n — 1).
A more general type for computing the pipelined vs non-pipelined loop execution time
in cycles would be
Non-Pipelined: n - LL

Pipelined: LL + I -(n—1)

Considering, that the Loop Latency cannot change, most of the effort while designing
an algorithm for FPGA execution goes into reducing the Initiation Interval as much as
possible. A value of 1 for the II is considered ideal, because it reduces the execution time
as much as possible, while at the same time not needing extra resources. This distinction
is made because it is possible to make it 0. This means that all iterations are executing at
the same time. This in HLS terms is called Loop Unrolling and is not always the best

option for 2 reasons:

e The FPGA design must contain a hardware module for each element. This increases
a lot the resource utilization. In our example the pipelined loop would need only 5
modules (one for each operation lasting a clock cycle), but would need 5-n modules,
if we wanted to unroll the loop.

e The FPGA design must be able to process each data element at the same time.

Dataflow

Dataflow is another digital design technique, which is similar in concept to pipelining.
The goal of dataflow is to express parallelism at a coarse-grain level. In terms of software
execution, this transformation applies to parallel execution of functions within a single
program.

The simplest case of parallelism is when functions work on different data sets and do
not communicate with each other. In this case, HLS allocates FPGA logic resources for
each function and then runs the blocks in independently. The more complex case, which
is typical in software programs, is when one function provides results for another function.
This case is referred to as the consumer-producer scenario.

Dataflow can be achieved with two use models for the consumer-producer scenario.
In the first use model, the producer creates a complete data set before the consumer can
start its operation. Parallelism is achieved by instantiating a pair of BRAM memories
arranged as memory banks ping and pong. Each function can access only one memory
bank, ping or pong, for the duration of a function call. When a new function call begins,
the HLS-generated circuit switches the memory connections for both the producer and
the consumer. This approach guarantees functional correctness but limits the level of

achievable parallelism to across function calls.
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In the second use model, the consumer can start working with partial results from the
producer, and the achievable level of parallelism is extended to include execution within a
function call. The hardware modules for both functions are connected through the use of
a first in, first out (FIFO) memory circuit. This memory circuit, which acts as a extended
to include execution within a function call. The hardware modules for both functions are
connected through the use of a first in, first out (FIFO) memory circuit. This memory
circuit, which acts as a queue in software programming, provides data-level synchronization
between the modules. At any point during a function call, both hardware modules are
executing their programming. The only exception is that the consumer module waits
for some data to be available from the producer before beginning computation. In HLS
terminology, the wait time of the consumer module is referred to as the interval or

initiation interval (II).

5.3 Xilinx Vivado HLS

The Xilinx Vivado HLS tool synthesizes a C function into an IP block that you can
integrate into a hardware system [17].
The Vivado HLS design flow is:

1. Compile, execute (simulate), and debug the C algorithm.

2. Synthesize the C algorithm into an RTL implementation, optionally using user op-
timization directives.

3. Generate comprehensive reports and analyze the design.

4. Verify the RTL implementation using a push-button flow.

5. Package the RTL implementation into a selection of IP formats.

5.3.1 Directives and Pragmas

Directives and Pragmas are two sides of the same coin. In essence, they are instructions
to the Vivado HLS tool in order to optimize the hardware design. Directives are specified
in a configuration file, whereas pragmas are specified in the source code.

Following there is a brief presentation of some common directives that are used in the

hardware implementation of this diploma thesis.

array_partition
Partitions an array into smaller arrays or individual elements. This partitioning:

e Results in RTL with multiple small memories or multiple registers instead of one
large memory.

e Effectively increases the amount of read and write ports for the storage.

e Potentially improves the throughput of the design.

e Requires more memory instances or registers.
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dataflow

Specifies that dataflow optimization be performed on the functions or loops, improving
the concurrency of the RTL implementation. All operations are performed sequentially in
a C description. Data dependencies can limit this. For example, functions or loops that
access arrays must finish all read/write accesses to the arrays before they complete. This
prevents the next function or loop that consumes the data from starting operation. It
is possible for the operations in a function or loop to start operation before the previous
function or loop completes all its operations. When dataflow optimization is specified,
Vivado HLS:

e Analyzes the dataflow between sequential functions or loops.

Seeks to create channels (based on ping-pong RAMs or FIFOs) that allow consumer

functions or loops to start operation before the producer functions or loops have

completed. This allows functions or loops to operate in parallel, which in turn:

Decreases the latency

Improves the throughput of the RTL design

If no initiation interval (number of cycles between the start of one function or loop and
the next) is specified, Vivado HLS attempts to minimize the initiation interval and start

operation as soon as data is available.

interface

Specifies how RTL ports are created from the function description during interface

synthesis. The ports in the RTL implementation are derived from:

e Any function-level protocol that is specified.
e Function arguments

e Global variables (accessed by the top-level function and defined outside its scope)
Function-level handshakes:

e Control when the function starts operation.

e Indicate when function operation:

— Ends
— Is idle

— Is ready for new inputs

pipeline

e Function pipelining

e Loop pipelining
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resource

Specifies the resource (core) to implement a variable in the RTL. The variable can be

any of the following:

e array
e arithmetic operation

e function argument

Vivado HLS implements the operations in the code using hardware cores. When multiple
cores in the library can implement the operation, you can specify which core to use with

this directive.

stream

By default, array variables are implemented as RAM:

e Top-level function array parameters are implemented as a RAM interface port.

e General arrays are implemented as RAMs for read-write access.

¢ In sub-functions involved in dataflow optimizations, the array arguments are imple-
mented using a RAM ping-pong buffer channel.

e Arrays involved in loop-based dataflow optimizations are implemented as a RAM

ping-pong buffer channel.

If the data stored in the array is consumed or produced in a sequential manner, a more
efficient communication mechanism is to use streaming data, where FIFOs are used instead
of RAMs.

unroll

Transforms loops by creating multiples copies of the loop body. A loop is executed
for the number of iterations specified by the loop induction variable. The number of
iterations may also be impacted by logic inside the loop body (for example, break or
modifications to any loop exit variable). The loop is implemented in the RTL by a block

of logic representing the loop body, which is executed for the same number of iterations.
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Hardware

The acceleration of the algorithm presented in this diploma thesis is based upon the
utilization of a specific FPGA accelerator card. This is the Xilinx@) Alveo™ U200

Data Center accelerator card.

6.1 Overview

The Xilinx Alveo™ Data Center accelerator cards are a PCI Express® compliant
cards designed to accelerate compute-intensive applications such as machine learning, data
analytics, and video processing in a server or workstation [20].

On the Xilinx device, a platform consists of a static region and a dynamic region. The
static region of the platform provides the basic infrastructure for the card to communicate

with the host and hardware support for the kernel. It includes the following features:

e Host Interface (HIF): PCle endpoint to enable communication with external PCle
host

e Direct Memory Access (DMA): XDMA IP and AXI Protocol Firewall IP

e Clock, Reset, and Isolation (CRI): Basic clocking and reset for card bring-up and
operation.Reset and Dynamic Function eXchange isolation structure are required for
isolation during partial bitstream download.

e Card Management Peripheral (CMP): Peripherals responsible for board health and
diagnostics,debug, and programming

e Card Management Controller (CMC): UART /I2C communication to satellite con-
troller(MSP432), QSFP, sensors and manages firmware updates from the host (over
PCle)

¢ Embedded RunTime Scheduler (ERT): Schedule and monitor compute units during

kernel execution.

The dynamic region is the place where the accelerated kernels are designed to be stored
and executed. All the algorithmic complexity comes from manipulating the resources of

this region.
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Resource SLRO SLR1 SLR2

LUTs 350K 160K 355K
Registers 723K 331K 723K
BRAMs 638 326 638
URAMs 320 160 320
DSPs 2265 1317 2265

Table 6.1: U200 block resources

6.2 Alveo U200 accelerator card

The Alveo U200 accelerator card is one of the available accelerator cards by Xilinx. It
is a custom-built UltraScale+ FPGA that runs optimally (and exclusively) on the Alveo
architecture. It features the XCU200 FPGA, which uses Xilinx stacked silicon interconnect
(SSI) technology to deliver breakthrough FPGA capacity, bandwidth, and power efficiency.
This technology allows for increased density by combining multiple super logic regions
(SLRs). The XCU200 comprises three such SLRs. The device connects to 16 lanes of
PCI Express@®) that can operate up to 8 GT/s (Gen3). It also connects to four DDR4 16
GB, 2400 MT/s, 64-bit with error correcting code (ECC) DIMMs for a total of 64 GB of
DDRA4. The device connects to two QSFP28 connectors with associated clocks generated
on board [21]. The default clock to run the accelerator is 300 MHz.

Figures 6.3 and 6.4 give an idea of the structure of the device. The static and dy-
namic regions are shown across the FPGA SLRs, along with the available DDR memory
connections associated with each SLR.

Table 6.1 shows the available resources in the dynamic region of each SLR.

As previously mentioned, the Alveo U200 card has a total of four available DDR mem-

ory banks. All but DDR[2] are located in the dynamic region. In addition, it is possible

to use the device logic resources for small, fast,on-chip memory accesses as PLRAM.
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If kernels are factories, then global memory banks are the warehouses through which
goods transit to and from the factories. The SLRs are like distinct industrial zones where
warehouses preexist and factories can be built. While it is possible to transfer goods from
a warehouse in one zone to a factory in another zone, this can add delay and complexity.
Using multiple DDRs helps balance the data transfer loads and improves performance.

This comes with a cost, however, as each DDR controller consumes device resources.

Hands-on description

All of the above are technical details. The following is a list explaining how some of

the U200 features provide great opportunities for algorithm acceleration on the FPGA.

e 4 DDR banks: The presence of 4 individual DDR banks permits the concurrent
execution of 4 R/W transfer operations at the same time. This creates makes possible
the even bigger acceleration of an algorithm, since we can divide the task at hand
in 4 kernels, that can execute at the same, without one interacting with the other
and without one kernel creating delays for the other.

e 512-bit wide memory-kernel transfers: This features permits the transfer of more
data in a single clock cycle. We can exploit this by using 512-bit wide data types,
such as ap_uint<512>. This creates speedup relative to the number of original values
that can fit into the 512-bit margin (e.g 8 double or 16 float values).

e AXI burst transfers: The first read or write request to global memory is expensive,

but subsequent contiguous operations are not. Transferring data in bursts hides the
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memory access latency and improves bandwidth usage and efficiency of the memory

controller.

The above features are mentioned again when we describe the design choices for the FPGA

kernel code in Subsection 7.3.2.






Chapter 7

Accelerator Implementation

7.1 Introduction

FPGAs, as has already been mentioned, provide new opportunities to accelerate older
applications. This happens because they are able to execute highly parallel code, due to
the fact that they can place on the hardware chip and utilize many instances of the same
compute module (e.g an adder, a multiplier, etc.). That means that the only restriction
applied is the number of total resources of the FPGA and the possibilities that are offered
are great. In order to fully take advantage of the capabilities of FPGA design, we first
need to determine the part of the code that is best suited for FPGA execution. That part
has to be:

e computationally intensive

e highly parallelizable

Both are important to be present. It has to make sense to dispatch the execution of the
code to the FPGA, as in most cases there is some overhead in doing so. Dispatching code

that is not that computationally intensive would most certainly result in slower execution.

7.2 Profiling and Hardware Function Selection

The process with which we can determine the part of a algorithm/program that is
most computationally intensive and thus best suited for hardware acceleration is called
profiling.

In order to perform this task one can select among a variety of tools. Our choice was
gprof. This tool is able to analyze the performance of a program by inserting instrumen-
tation code automatically into the program code during compilation. The output consists
of two parts: the flat profile and the call graph. The flat profile gives the total execution
time spent in each function and its percentage of the total running time. Function call
counts are also reported. Output is sorted by percentage, with hot spots at the top of the
list [9].
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Table 7.1: Profiling of svm-train

datasets . ..
) a9%a  skin ijennl wS8a Avg.
functions
dot 79.03 37.41 63.71 72.9 | 63.26%
kernel_rbf 8.18 21.63 11.66 12.11 | 13.4%
get_Q 451 2095 10.29 5,65 | 10.35%
select_working_set 531 1445 831  5.08 | 8.29%

The second part of the output is the textual call graph, which shows for each function
who called it (parent) and who it called (child subroutines).

Both parts of the output are equally important, as we will shortly see.

7.2.1 Original Code

Our implementation is based on version 3.24! of the LIBSVM library.

7.2.2 Profiling

Using gprof we get a timing report from various executions of the svm-train program
using different datasets. The results are presented in Table 7.1. In order to not show not
so useful data, we only present the functions of the report that are most called and take

most of the execution time.

7.2.3 Hardware Function

In this subsection, I will try to explain the process that went behind the selection of the
hardware function. I will not go into detail about the implementation of each attempt.
It is logical that each dataset creates a different division of execution time among the
functions, due to differences mainly in the number of features. Nevertheless, the data of

the table can paint a picture of what is the reality of the situation.

Attempt 1

The function that takes most of the execution time is the dot product function named
dot. This function, as its name implies, takes as arguments two pointers to the training
vector data and returns their dot product.

In this first attempt to accelerate the training process of the LIBSVM, I tried to create
an FPGA kernel that would only compute the dot product of two training vectors. The
achieved execution times were not satisfactory. The problem was, and it is backed by
the timing profiles, that this function has a very small execution time, so the overhead of

dispatching the execution to the FPGA was too much.

"https://github.com/cjlinl/libsvmm /releases/tag/v324



7.2 Profiling and Hardware Function Selection 57

Figure 7.1: Calling stack of most time-consuming functions

Attempt 2

Upon further inspection of the original code and the gprof profiles, I understood the
details of the calling stack of the dot function. This is shown in Figure 7.1

The kernel function is an overloaded function, depending on the initial program pa-
rameters, that takes the dot product of two training vectors and computes the SVM kernel.

The available options are: RBF, tanh, linear and polynomial.

The fact that all calls of the dot function are coming for the get_Q function means
that the latter is a better candidate for hardware acceleration. The relevant code inside

get_Q is as follows.

for(j = start; j < len; j++) {
data[j] = (float)(y[i]xy[j]«
(this—>xkernel _function)(i,j));

The existence of this loop with count len - start (with len in the order of the number
of training vectors) and a variable i that stays constant throughout creates for a nice
setting for FPGA execution. What this code actually does is compute row ¢ of matrix @,
first appearing in Equation 1.5 of Subsection 1.2.1 and of course later explained with more
detail in Chapter 3. The loop starts from index start, because values preceding that and

starting from index 0 are cached in software and are available instantly.

The initial approach was not to compute the whole loop as is. After Attempt 1 and
only computing one dot product in the FPGA kernel, the next step was to compute the
dot products of the whole row and afterwards compute the kernel functions in the host

side code. This gave better results, but of course there was still room for improvement.

Attempt 3 (final)

The whole computation of the above loop was dispatched to the FPGA. This gave the
best possible results for the given implementation of the SVM algorithm by the LIBSVM
library. The following sections provide more insight into how the acceleration of this loop

was possible utilizing the U200 accelerator card.
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7.3 Accelerator Design

In order to explain the design choices that we made we have to take into account:
e the mechanics of the original algorithm
e the capabilities provided to us by utilizing the Alveo™ U200 accelerator card
e the aspect of retaining the existing functionality

Expanding on the last item, our goal from the beginning was to alter the original code as
little as possible. Our attempt was to accelerate the original algorithm using the available
tools and not make modifications that would may give significant speedups, but would
alter core parts of it. The results of our FPGA version would have to match the results
of the original software version.

We were able to produce two versions of the kernel code that are doing exactly that.
The first version stores data in the FPGA global memory in double format, exactly like
the original code, and the second version stores them in float format. The first version
produces identical results to the original software, while the second version trades some
accuracy with speed (more on the design specifics can be found in Subsection 7.3.2 and on
the performance results in Chapter 8). We considered other versions, looking to further
exploit this trade-off, but the loss in accuracy was deemed too much, which would be only
be avoided with a whole restructuring of the original code. This effort would also require
a more detailed accuracy analysis of the training, something that was out of the scope of
our work.

Our implementation does only one basic change to the original source code (along with
some other necessary additions in order to facilitate that change), which is to substitute
the code of the loop in Section 7.2.3, with a call to our Host function called callRowKernel
and add 3 function calls needed to translate the logic of the original program for FPGA
execution.

The design choices will be presented in the following manner. We will provide the
relevant information regarding the original implementation in software and the capabilities
of the accelerator card and then explain our design choices. Subsection 7.3.1 will deal with
the Host side code and Subsection 7.3.2 with the Kernel side code.

7.3.1 Host Code

The first thing we need to address is the way the training vector data was stored in
the original code. The authors, in that version of the code, had decided to put more
weight on sparse data. This lead to the usage of linked lists to store the data, with each
element storing the index and value of the non-zero dimensions of the training vectors.
Consequently, the dot product function has to traverse the relevant linked lists.

If the index of both current nodes is the same, it multiplies their values and adds

this to a sum. Depending on the number of indices that have a non-zero value for both
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Figure 7.2: Linked list to array conversion - 6 feature training vector

training vectors, we have a different number of multiplications and additions. This creates
an unpredictability on the computation, that would not make possible the parallelization
of more that one dot product computation, which was the target in the FPGA kernel
code. The need for repetitiveness inside the Kernel code made us abandon that way and
instead store the data inside the DMA global memory of the accelerator card in sequential
fashion using arrays, padding with zeros where needed.

Furthermore, to cover the case of an SVM formulation using classification labels and

maybe using the RBF Kernel we added 2 elements at the beginning of our arrays. The
first storing y; and the second storing the sum of squares dzmeijswns x? for the given training
vector (see Figure 7.2). =

One of the major advantages of using the Alveo™ U200 is the fact that its global
memory has 4 banks. This permits R//W operations to happen from 4 different kernels
at the same time. To properly use this feature we divided the training vector data in 4
arrays to be stored in the global memory. To give an example of how that is happening,
let’s consider a dataset with 1 million training vectors. The relevant data of the first 250
thousand vectors would be stored in Bank 0, of the next 250 thousand vectors in Bank 1,
etc. In the case where the total number of training vectors is not divisible exactly by 4 we

store the data remaining training vectors in the last bank.

Another major advantage is the 512-bit width of the transfer bus between the FPGA
and the global memory of the accelerator card. This makes possible 512-bit transfers in
one clock cycle. In our algorithm, this translates to the transfer of 8 doubles per clock
cycle on the first version or 16 floats in the second version. To accommodate this feature,
we extend the dimensions of the training vector to a multiple of 8 (or 16 respectively),
padding with zeros when needed. That way, transfers in the Kernel code would never
cross training vector dimension boundaries.

Without explaining how the Kernel code works (see Subsection 7.3.2), we need to
explain what it does, so that we can describe the process of calling it in the Host side.
Fach of the 4 kernels is assigned to one of the 4 banks of the global memory. Each
kernel takes as input parameters the training vector ¢ (supposing we are performing the
computation of row i of matrix @), a start parameter (denoting the first vector in the
bank that we want to compute the SVM kernel function for - this is closely related to the
start variable of the original code) and a products parameter (denoting the number of

training vectors that we want to compute the SVM kernel function for, starting beginning
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Figure 7.3: Initial approach to parallel kernel execution

Transfer Row 1
Transfer Row 2

Kernel Row 1 1|1 |71 1]
Kernel Row 2 [[20]F2H|20 210
Kernel Row 3 8778 |3 3|
Kernel Row 4 (81| 81[8787]

Figure 7.4: Final approach to parallel kernel execution

from start and return the results). Carefully selecting these parameters for the 4 kernels
we can partition the len - start computation of the original loop into more chunks that
can be executed in parallel, thus achieving a good speedup.

The initial approach was to partition the computation in 4 chunks, one for each kernel.
This was fairly logical to do, since we can only execute up to 4 kernels in parallel. The at-
tempt was successful for small datasets, but for large datasets the overhead of transferring
the results from the FPGA global memory back to the host after the kernels had finished
executing was not permitting the acceleration that we had anticipated (see Figure 7.3).

To tackle this problem we further partitioned the computation designated for each
kernel into more chunks. That way the transfer of the results happens in parallel with the
next kernel execution in line (see Figure 7.4). Regarding the size of this chunks, it was
observed that we achieved acceptable results for sizes around 125 thousand vectors. If we
set the limits to a lower value the parallelization of the kernel executions was not optimal,
because the execution times were rather small and the overhead of kernel execution was
big relative to the whole time of execution.

The final item we had to address from the original source code was swapping. The
algorithm at various points during the execution performs a Shrinking procedure. This
procedure marks some training vectors as unnecessary for the rest of the training process.
To do that it swaps these vectors with others from the “end” of the list and reduces
the “working length”. Using a linked list makes this quite easy, by manipulating their
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pointers. What we had to do to update the data in the global memory of the accelerator
card, was keep track of those swaps, and before a new row computation was needed, make
the necessary changes to the arrays and migrate them to the global memory, replacing
the old sequence of values. This creates some overhead, compared to the original software

version, but it happens so rarely that it doesn’t affect the acceleration of the training.

7.3.2 Kernel Code

The functionality of the code was first mentioned in Subsection 7.3.1. What each
kernel does is that it starts reading the training vector values from the global memory,
does the necessary computations and returns the results back to the global memory. From
there they are transferred back to the host.

This process of reading from the memory and writing back to it, and considering that
only one DMA transfer operation can be happening at any given time (read or write),
sets a lower bound regarding the time complexity of the whole task. As mentioned before,
the data bus is able to transfer 8 doubles or equivalently 16 floats per clock cycle.
We took advantage of this feature, not only for the reading process, but for the writing
process as well. The LIBSVM algorithm expects float values to be returned, so we make
writes of 16 floats at a time, so as to not disrupt the reading process that much. The
resulting latency of our implementation is approximately n * d + {¢ cycles, where n is the
number of training vectors to compute the SVM kernel function for and d is the number of
dimensions divided by 8 (or 16 in the case of the second version), as they were selected in
the Host side code. For example, to compute a row of 1 million elements of 32 dimensions
each, each kernel would take a little more than 4.0625 (or 2.0625 for the second version)
million clock cycles.

In order to achieve this result, where the actual time of execution is only determined by
the time needed to read the data and write the results back to the global memory, we made
use of the pipeline, dataflow and unroll directives. In the code these are specified using
#pragma HLS PIPELINE, #pragma HLS DATAFLOW and #pragma HLS UNROLL respectively,
in the required areas.

Another feature that permitted the lowest possible number of cycles was utilizing burst
reads and writes between the FPGA and the DMA memory. The guidelines suggested, and
we implemented that, that in order to achieve that all the reads and the writes should be
contained withing a single loop, in order to show to the HLS tool that these transfers are
to happen in burst.

The pipeline directive permits the parallel execution of a loop’s body, starting each
iteration as soon as possible, even before the previous one has finished. The unroll
directive creates a unique module for every iteration of a loop in order for the loop to
be executed all at once concurrently. The dataflow directive, along with the usage of
hls::streams, facilitates the passing of data from one hardware module to the next (in

code terms, output from one function that is input to another), before the first module
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Figure 7.5: Kernel dataflow

has finished its execution. To better explain the dataflow directive usage we will describe
the passing of data through the hardware modules in our design. Figure 7.5 provides a
visual representation of the functions/modules defined in each kernel.

Module load reads data from the global memory; 8 doubles or 16 floats on every
clock cycle. We know the total dimensions for every training vector, so we know how to
group those reads per training vector. Every clock cycle, each of the 8 (or 16) values is
multiplied with the corresponding value from the base vector (the vector with index 7).
To accomplish the multiplication of all the respective dimensions in one clock cycle we
make use of the unroll directive, by adding #pragma HLS UNROLL in the loop code.

Afterwards, a tree-style addition of the 8 (or 16) results starts (3 levels or 4 levels
respectively) and the result of these is streamed to one of the 12 group modules. These

functions start adding the incoming values in sequential manner in groups of size Zmensions

(or W). These sums are the dot products for every training vector with the base
vector. The sum is streamed to the function module, which computes the SVM kernel
function. From there the results are streamed one by one to the write module, which
groups them by 16 and writes them back to the global memory.

The interesting part of the dataflow model is the presence of the 12 group modules. In
our attempt to make the kernels as general as possible in order to be able to train datasets

with different number of features using the same FPGA bitstream, we had to abandon

dimensions dimensions

(or 16 2*) values coming from the

the notion of a tree-style addition for the
load module, as the Vivado HLS compiler would simply not pipeline the whole process,
not being able to determine the depth of the tree at compile time.

For that reason, a sequential addition process was selected. The problem was that
each addition takes more clock cycles to be completed, while the 1oad module is pipelined
and can produce an output value in every clock cycle. In order to not have the values
of the following training vectors wait idle in a queue and stall the whole pipeline, we
thought about feeding these values to a different module. Each of these group modules is
computing the dot product for a different training vector. The trick is that by the time the
first value of the 13" training vector is ready to passed to a group module, the addition

process of the 15* will have been completed. The math that supports this is simple. The
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compile reports showed that each addition takes at most 12 cycles to be completed. In

that case the dot product of a training vector with the base vector takes 12 - w

(or 12 - %gwns) cycles to be completed. In that time, the 1load module has produced
exactly that many values, corresponding to 12 different training vectors. At the end, the
number of cycles needed to make an addition dictated the number of modules needed to
compute the dot products in parallel.

This is, in my opinion, the single most important design feature in the whole work of the
diploma thesis. Previously, we had the above mentioned restriction, where the HLS tool
would not synthesize correctly the tree-style addition of an unknown number of numbers.
That had made us create a different executable for datasets with different number of
features. That way, generalization was not possible. Our goal from the beginning was
to provide a single executable, able to accelerate the training for many different datasets.
That was what we achieved at the end.

Up to now, we have only described the process of computing the dot product, but the
data stored for each training vector contain also its label y and its sum of squares sq.
These, after being multiplied and added respectively with the corresponding values of the
base vector, are streamed directly from the load module to the function module. The

latter computes one of the following SVM kernel functions:
e Linear: y - dot
e Polynomial: y - (gamma - dot + coe f)4¢97¢
e RBF: y- e—gamma:(sq—2-dot)
e tanh: y - tanh(gamma - dot + coef)

where gamma, degree, coef are parameters of the SVM algorithm.
Appendix A contains the kernel code, along with some comments to guide the reader

in understanding its functionality.

7.4 Resource Utilization

The accelerator card introduces some limitations in the amount of resources we can
utilize. Apart from the total number of resources that are available, there exist some
other practices that are recommended in order to achieve better performance. One such
practice that we took into account while designing was that each FPGA kernel should be
contained in one Super Logic Region (SLR)and not cross the boundaries between them.
Considering the available resources per SLR (first shown in Table 6.1) and our design of
4 FPGA kernels, we are bound by the restrictions shown in Table 7.2.

The only parameter that can be changed and affects the resource usage of the kernels
is the maximum number of dimensions per training vector supported. We found out that

the maximum number of features that can supported by the double FPGA kernel is 8000,
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Table 7.2: U200 resource restrictions per kernel

Resource SLRO SLR1 SLR2 Limit/Kernel

LUTs 355K 160K 355K 177.5K
Registers 723K 331K 723K 361.5K
BRAMs 638 326 638 319
URAMs 320 160 320 160
DSPs 2265 1317 2265 1132

Table 7.3: Resources per kernel - double version

Resource Used Available Utilization

BRAM_18K 278 319 87.1%
DSP48E 426 1132 37.6%
FF 93777 361686 26%
LUT 62764 177415 35.4%
URAM 8 160 5%

while the maximum number of features that can be supported by the float FPGA kernel

is 65000. Tables 7.3 and 7.4 show in detail the resource usage in these two “maximum”

cases.
As we can see the resource that imposes the limit in both cases is the BRAM. BRAMs

are storage units in the FPGA and that’s why the float version is able to support a higher

number of features, because the representation of float is smaller than that of a double.

Table 7.4: Resources per kernel - float version

Resource Used Available Utilization

BRAM_18K 314 319 98.4%
DSP48E 391 1132 34.5%
FF 93777 361686 23.1%
LUT 62764 177415 31.8%

URAM 8 160 5%




Chapter 8

Performance Evaluation

The objective of this chapter is to present the speedups achieved using our implemen-
tation compared to the original software version. The FPGA speedups are relative to
a multithreaded execution on the CPU that utilizes all 4 available cores. The CPU on
which we run the tests was the AMD Ryzen™ 2200G, a CPU with a base clock speed of
3,5GHz. We try to explore how the training set size and the number of features affect
these speedups.

In order to do that, we did a grid-like exploration, defined by different training set
sizes and number of features. To achieve that in an objective manner we created some
custom datasets. The original dataset was Epsilon'. This is a dense dataset that contains
400000 training vectors with 2000 features each. What we did was a take a subset of this
dataset with 20000 training vectors. For each number of features that we wanted to test
(5, 10, 25, 50, 75, 100, 200, ..., 2000), we removed the features that we didn’t need and
we copied this new base set of 20000 training vectors many times in order to create new
custom datasets with (20000, 40000, ..., 500000) training vectors. The final step was to
measure execution times for 1 row computation on the CPU and the FPGA.

Figures 8.1, 8.2 and 8.3 contain information about the execution time measured for
every set of parameters (number of dimensions and training size) for the 3 different versions
we checked (double FPGA version, float FPGA version and multithreaded CPU version).
The black points denote the actual measurements and the lines are fitted to the data in
each case. The fitting of the lines is almost perfect for all 3 versions, with the multithreaded
one having only some minor deviances, that are mostly created by measurement accuracy
errors. There is a linear relationship between the number of features, the training size and
the actual execution time of one row computation.

This relationship creates an interesting situation when it comes to the actual speedup
between the FPGA versions and multithreaded CPU one. Supposing the fitted line of the
FPGA version for a given number of features is f1(z) = az 4+ b and the fitted line for
the multithreaded CPU version is f2(z) = cx + d, where x is the variable of the training

size. In that case, both b and d have the role of the basic overhead of the execution on

"https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html#epsilon
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Figure 8.2: Float version: How the training size affects the execution time
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(supposing that it is not constant) is a hyperbola and has some interesting traits:

the platform. The equation of the speedup would then be f(z) = This function

e lim f(z)= lim f(z)=2¢

r——00 r—r+00
_b
e lim f(z)= oo, fl{=q) <
st —o0, fl(=%)>0
_ _b
e lim f(z)= o0, fl(=a) <
ot —+00, fl(_g) >0

In our case, since we only deal with positive numbers and the nature of the problem
dictates that a,b, c,d > 0, the above traits determine the direction from which the values
come before settling towards the < value. If f1(—2) < 0, then the values f(z) are lower
and are increasing as « increases. If f 1(—2) > 0, then the values f(z) are higher and are
decreasing as x increases.

Figures 8.4 and 8.5 contain the relevant information about the speedup of the two
FPGA versions compared to the multithread CPU execution. We can observe the con-
vergence of the graph to the “limit” value as the training size becomes bigger for every
different number of features. Furthermore, the speedup values are growing as x grows.

We can also observe that the maximum speedup that can be achieved varies different
for every different number of features. In Figure 8.6 we have the graphs of the functions
of the slope of the lines of Figures 8.1, 8.2, 8.3, that show the execution time of the
different version we measured. In the same way that the functions of speedup for every
number of features are fractions of the linear functions of execution time, the function

of the maximum speedup by number of features (see Figure 8.7) is a fraction of these
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linear functions of the slopes. This relationship defines the shape of the graph in Figure
8.7 (again it’s a hyperbola), that shows that for small number of features the maximum

speedup is higher. The limits are about 3.5x and 7x for the double and the float version

respectively.






Chapter 9

Related Work

In this chapter, we will briefly present work similar to ours. To the best of our knowl-
edge and according to the list of “Interfaces and Extensions to LIBSVM” available on the
library website!, there has not been implemented a direct extension to LIBSVM, utilizing
FPGAs. In that regard our work unique. There have been many implementations of the
SVM algorithm for FPGAs, for both training and inference. In this chapter, we will only
present some of the drawbacks of the implementation of LIBSVM regarding its potential
for FPGA acceleration and how some other work has tried to tackle them.

Sequential Minimal Optimization is not well-scalable for huge data applications. In
[11] Stochastic Gradient Descent is used as an alternative. This work also experiments
with both single-precision floating point and fixed-point (5 bits integer and 20 bits fractional
part) numerical representations. Their speedups seem to be very high, but their limitation
is the low number of features supported by their design.

Instead of replacing SMO altogether there have been efforts to improve it for hardware
acceleration. One of the disadvantages of the conventional SMO implementation used in
LIBSVM is the need of data from only 2 row computations in each iteration. Caching
further reduces this amount at times and only one new row computation is needed per
iteration. This prevents the parallelization of more computations in the FPGA and thus
it is technically a bottleneck of the original algorithm. The work in [12] addresses this
limitation, by creating a variant of SMO called Hybrid Working Set (HWS), that creates
working sets of bigger size of which the computations are grouped in columns, thus increas-
ing the spatial locality of data. This work also supports training of training vectors with
a higher number of features (with all the limitations that this enforces on the speedup).

The original SMO algorithm has an additional inefficiency. It checks the optimality of
the remaining samples based on the assumption that the current two optimized samples
satisfy the optimality. Thus it may identify samples satisfying the optimality as violating
ones, and vice versa, which leads to additional iterations. Keerthiet al. [15] uses the
boundaries of the sample subsets to select the samples to be optimized in the modified
SMO (MSMO) algorithm, which surpasses the heuristic selection method of the SMO

"https://www.csie.ntu.edu.tw/ cjlin/libsvm/

71



72 Chapter 9. Related Work

algorithm. The boundaries are also used to check the optimality of the samples, which
avoids the optimality-satisfaction assumption in the SMO algorithm and consequently
requires fewer iterations and performs more efficiently. The work in [14] utilizes this
modified version of the SMO algorithm in order to create a design which energy efficiency
is an important aspect of.

The SVM kernels supported in LIBSVM are not all well-tailored for parallel hardware
execution. Functions such as exp and tanh do not exploit all the capabilities of reconfig-
urable architecture. In [13] an implementation is proposed utilizing the Hardware Friendly
Kernel (HFK). As it name implies, this kernel is better suited for hardware parallelization,
having the advantage of being able to be computed with only shifts and additions rather
than multiplications. This work also produces exciting speedups, but is again limited by
the supported number of features (up to 64) of their design.

Finally, we have to make a reference to a work utilizing techniques similar to ours. In
[16] they are utilizing High Level Synthesis in order to perform training with the SVM
algorithm on a Zynq device. The difference in this case is that they are using a variant of
the SVM algorithm, called Least Square SVM (LS-SVM), which has a lower computational
complexity, as it solves a set of linear equations instead of a quadratic programming for
standard SVM.

Reading the above brief reference of related work, it is evident that there exist many
ways the original SVM algorithm can be improved and customized in order to be exe-
cuted on FPGAs. These possibilities for improvement create a trade-off between speed,
accuracy, utilization of hardware resources and wide support of datasets with different

characteristics.



Chapter 10

Conclusion

In this diploma thesis, we present the results of our work in an attempt to accelerate
the LIBSVM library for Machine Learning training on FPGAs.

Our effort was not centered on improving the original algorithm by ways of making
modifications to it or replacing core parts of it, but instead utilizing High Level Synthesis
in order to exploit as many of the capabilities of the FPGA accelerator card (Xilinx(®)
Alveo™ U200 Data Center) as possible. Extra care was taken in order to parallelize the
FPGA kernel code to a point where the only bottleneck was memory transfer operations to
and from the DM A memory of the accelerator card, a bottleneck that could not be avoided,
since, by providing support for training of a large amount of data, we could not store the
necessary values in the space restricted FPGA local memory. The timing experiments
show that, compared to a multithreaded CPU execution on a Ryzen™ 3 2200G, a CPU
with a base clock speed of 3.5 GHz, we can achieve speedups of about 7x in the general
case of our fastest version and up to 14x in some edge cases. This edge cases refer to

datasets with few number of features and a substantial number of training vectors.

10.1 Future Improvements

The biggest bottleneck of the algorithm is coming from the SMO algorithm, due to
the fact that only one row computation is asked from the FPGA at each time. I would
argue that if anyone wanted to accelerate even more the algorithm, they would have to
improve that part. As shown in Chapter 9 there have been efforts to substitute the SMO
algorithm with another decomposition algorithm, more suited to parallel execution.

Another point of improvement would be the exploration of utilization of different data
representations in the FPGA kernel. In our work, we have shown that it is possible to use
a float representation of data, that doubles the speedup while also not losing in accuracy
that much at the same time. There have been efforts in Machine Learning research to
train networks with INT8 representation of data. Such an improvement would require huge
changes to the original algorithm of the LIBSVM library in order to not compromise the

accuracy of the training. It is even more probable that it would require a completely new
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implementation of the SVM algorithm. In any case, the results would be even better, as
the speedup would be higher and the resource utilization would be lower, making possible

the training of datasets with an even higher number of features.



Bibliography

Ian Goodfellow, Yoshua Bengio and Aaron Courville. Deep Learning. MIT Press, 2016.

Corinna Cortes and Vladimir Vapnik. ”Support-Vector Networks”. Machine Learning
20, 273-297, 1995.

Philippe Coussy and Adam Morawiec. High-Level Synthesis: From Algorithm to Dig-
ital Circuit. Springer, 2008

Tom Mitchell. Machine Learning. McGraw Hill, 1997.

Learning from Data: Course Notes, Lectures 14-15, California Institute of Technology,
2012.

Support Vector Machine https://en.wikipedia.org/wiki/Support_vector_machine

The kernel trick
https://en.wikipedia.org/wiki/Kernel method#Mathematics:_the_kernel trick

Field Programmable Gate Arrays https://en.wikipedia.org/wiki/Field-

programmable_gate_array

The gprof utility
https://en.wikipedia.org/wiki/Gprof

[10] Chih-Chung Chang and Chih-Jen Lin, LIBSVM: a library for support vector ma-

chines. ACM Transactions on Intelligent Systems and Technology, 2:27:1-27:27, 2011.

Software available at

[11] Felipe Fernandes Lopes, Joao Ferreira and Marcelo Fernandes. Parallel Implementa-

tion on FPGA of Support Vector Machines Using Stochastic Gradient Descent. Elec-
tronics. 8. 10.3390/electronics8060631, 2019.

[12] Sriram Venkateshan, Alap Patel and Kuruvilla Varghese. Hybrid Working Set

Algorithm for SVM Learning With a Kernel Coprocessor on FPGA. Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on. 23. 2221-2232.
10.1109/TVLSI.2014.2361254, 2015.

75



76 Bibliography

[13] Daniel Holanda Noronha, Matheus Torquato and Marcelo Fernandes. A Parallel Im-
plementation of Sequential Minimal Optimization on FPGA. Microprocessors and Mi-
crosystems. 69. 10.1016/j.micpro.2019.06.007, 2019.

[14] L. Feng, Z. Li and Y. Wang, VLSI Design of SVM-Based Seizure Detection System
With On-Chip Learning Capability, IEEE Transactions on Biomedical Circuits and
Systems, vol. 12, no. 1, pp. 171-181, Feb. 2018, doi: 10.1109/TBCAS.2017.2762721.

[15] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy, Improvements
to Platt’s SMO algorithm for SVM classifier design, Neural Comput., vol. 13, pp.
637-649, 2001.

[16] M. Ning, W. Shaojun, P. Yeyong and P. Yu, Implementation of LS-SVM with HLS
on Zynq, 2014 International Conference on Field-Programmable Technology (FPT),
Shanghai, 2014, pp. 346-349

[17] Xilinx®) Inc., Vivado Design Suite User Guide: High-Level Synthesis (UG902
v2019.2), January 13, 2020

[18] Xilinx®) Inc., Vitis Unified Software Platform Documentation: Application Acceler-
ation Development (UG1393 v2019.2), February 28, 2020

[19] Xilinx®) Inc., Introduction to FPGA Design with Vivado High-Level Synthesis
(UG998 v1.1), January 22, 2019

[20] Xilinx@®) Inc., Alveo Data Center Accelerator Card Platforms: User Guide (UG1120
v1.2), June 26, 2020

[21] Xilinx®) Inc., Alveo U200 and U250 Data Center Accelerator Cards Data Sheet
(DS962 v1.2.1), December 9, 2019



Appendices

7






© 00 N O Ut b W N

—_
o

11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26

Appendix A

Kernel Code

A.1 Load Function/Module

void row_load (...)
{
uint512 bvector [MAX DIMENSIONS / 8];
#pragma HLS RESOURCE variable=bvector core=XPM_memory uram
load_base:
for (int i = 0; i < dimensions / 8; i++) {
#pragma HLS LOOP_TRIPCOUNT min=dim /8 max=dim/8
#pragma HLS PIPELINE II=1
bvector[i] = base[i];

}

The above part reads the data of the base vector, which corresponds to the line of
matrix ) that we want to compute.

int j = 0;
int s = 0;
load_vectors:
for (int i = 0; i < products * dimensions / 8; i++) {
#pragma HLS LOOP_TRIPCOUNT min=prod*dim/8 max=prodxdim/8
#pragma HLS PIPELINE II=1
uint512 buf = data[i];

This part is the initial part of the loop that reads the data of the other training vectors
and performs the initial processing. By including the reads in a for loop we notify the
HLS tool that the reads need to happen in burst mode.

double y, square;
double r [8];
#pragma HLS ARRAY PARTITION variable=r complete

for (int m= 0; m < 8; mt+) {

#pragma HLS LOOP_TRIPCOUNT min=8 max=8
#pragma HLS UNROLL
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80 Appendix A. Kernel Code

uint64 rbase = bvector[j].range((m + 1)* 64 — 1, m * 64);
uint64 rvector = buf.range((m + 1)* 64 — 1, m % 64);
double base = x(double *)(&rbase);

double vector = x(double x)(&rvector);

if (j = 0 & m=—0) {

y = base * vector;

else if (j = 0&& m = 1) {

square = base + vector;
r{1] = 0;
}
else {
r[m] = base % vector;
}

}

The above part is when we make the necessary computations between each training
vector and the base vector. We multiply the features and the value y, and we add the
sums of the squares of the features. Notice the complex index arithmetic, in order to

process the data coming in 512 bits that need to be divided in doubles.

In order for the computation to happen in one clock cycle we add the unroll directive,
which creates a different hardware module for each iteration of the loop. The trick is that,
in order to be able to write array r at different memory spots at one cycle, we need to
use the partition directive on that array. This makes sure that each element of the array
is stores in registers and a BRAM, thus operations can happen individually

+= 1 [1]
+= 1 [3]
+= 1 [5]
+= 1 [7];
+= 1 [2]
4= 1[6]
+= 1 [4]

Here is the tree-style addition in 3 levels for the double version. In the float version
we add 16 values together in 4 levels.

it () = 0) {
#pragma HLS occurrence cycle=dim/8

ap-uint <128> pair;
uint64 ry = =(uint64 =*)(&y);
uint64 rsquare = *(uint64 #*)(&square);
pair (63, 0) = ry;
pair (127,64) = rsquare;
fStream << pair;

}

Variable j is a counter to check when we start reading data from a new training vector.
If j == 0 that means that the 2 values of this set of data are y and sq, the product of
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ys and the sum of sums between the training vector and the base vector. In that case, it

need to be streamed to the function module.

if (s = 0) {

gStream0 << r[0];

}

else if (s

gStreaml << r[0];

}

else if (s

gStream?2 << r[0];

}

else if (s

gStream3 << r[0];

}

else if (s

gStream4 << r[0];

}

else if (s

gStreamb << r[0];

}

else if (s

gStream6 << r[0];

}

else if (s

gStream?7 << r[0];

}

else if (s

gStream8 << r[0];

}

else if (s

gStream9 << r[0];

}

else if (s

gStreaml0 << r[0];

}

else if (s

gStreamll << r[0];

#pragma HLS occurrence cycle=12

}
j++
if (j = dimensions / 8) {
i =0
s++;
if (s = 12)
s = 0;
}

= 1) {

= 2) {

= 3) {

= 4) {

= 5) {

= 6) {

=7 A

= 8) {

= 9) {

— 10) {

— 11) {
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82 Appendix A. Kernel Code

At last, depending on the counter s at the time, the result of the tree-style addition
is being streamed to one of the 12 group modules, that perform the final addition to

calculate the dot product.

A.2 Group Function/Module

void row_group (...)

{
int j = 0;
double sum = 0;
group_loop:
for (int i = 0; i < products * dimensions / 96; i++) {
#pragma HLS LOOPTRIPCOUNT min=prod*dim /96 max=prodxdim /96
#pragma HLS PIPELINE I11=12
double res = gStream.read ();
sum += res;
i+t
if (j = dimensions / 8) {
sStream << sum;
=0
sum = 0;
}
}
}

This code creates 12 different modules, as explained in Subsection 7.3.2. The purpose

is to not delay the pipeline, while we wait for an addition operation to complete.

A.3 Function Function/Module

void row_function (...)
{
int s = 0;
function_loop:
for (int i = 0; i < products; i++) {
#pragma HLS LOOP_TRIPCOUNT min=prod max=prod
#pragma HLS PIPELINE II=1

ap_uint <128> pair = fStream .read ();
uint64 ry = pair.range(63,0);

uint64 rsquare = pair.range(127,64);
double y = %(double *)(&ry);

double square = x(double x)(&rsquare);

We first receive the y and sq values.
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double tres;
if (s = 0) {

tres = sStream0.read ();
}
else if (s = 1){

tres = sStreaml.read ();
}
else if (s = 2){

tres = sStream?2.read ();
}
else if (s = 3){

tres = sStream3.read ();
}
else if (s = 4){

tres = sStreamd.read ();
}
else if (s = 5){

tres = sStreamb.read ();
}
else if (s = 6){

tres = sStream6.read ();
}
else if (s = 7){

tres = sStream7.read ();
}
else if (s = 8){

tres = sStream8.read ();
}
else if (s = 9){

tres = sStream9.read ();
}
else if (s = 10){

tres = sStreaml0.read ();
}
else if (s = 11){

tres = sStreamll.read ();
}
double res = tres;

if (type = 0) { //linear

res = y % res;
}
else if (type = 1) { //polynomial
res = y # pow(gamma * res + coef,
}

else if (type = 2) { //RBF

res = y % exp(—gamma * (square — 2 % res));

degree);

Afterwards, we receive the dot product depending on the group module it was assigned
to.
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}
else if (type = 3) { //sigmoid

res = y # tanh(gamma % res + coef);
}

float fres = (float)res;
bundleStream << fres;

S+
if (s = 12)
#pragma HLS occurrence cycle=12
s = 0;

At last, we compute the SVM kernel and stream the result to the write module.

A.4 Write Function/Module

void row_write (...)
{
write_loop:
for (int p = 0; p < products/16; p++) {
#pragma HLS LOOP_TRIPCOUNT min=prod /16 max=prod /16
#pragma HLS PIPELINE I11=16
uintb12 s;
bundle_loop:
for (int i = 0; 1 < 16; i++) {
float f = bundleStream.read ();
uint32 rraw = x(uint32 =*)(&f);
s((1 4+ 1) 32 — 1, i % 32) = rraw;
}

row [p] = s;

The write module is simple enough. It bundles the float results in groups of 16, in

order to utilize the full 512-bit width of the bus for memory-kernel transfers.
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