EOGNIKO METXZOBIO ITOAYTEXNEIO

2XOAH HAEKTPOAOT'QN MHXANIKQN KATI MHXANIKQN
YTIOAOI'TETQN

TOMEAZ TEXNOAOITAZ TTAHPO®OPIKHZ KAI YITOAOI'TZTQN
EPTAXTHPIO MIKPOYITIOAOI'TZTQN KAI WHOITAKQN ZYZXTHMATQN

Design and Acceleration of Omnitrap lon Storage Device

Instrument Control

AwmAopatikn Epyoacia

Ytavpoc I1. KovBapng

EmBAéTTWV: AnunATPIOg ZOoUVTPNG
KaBnyntig E.M.T1

ABAva, louAiog 2020

EOGNIKO METXZOBIO ITOAYTEXNEIO

2XOAH HAEKTPOAOT'QN MHXANIKQN KATI MHXANIKQN
YTIOAOI'TETQN

TOMEAZ TEXNOAOITAZ TTAHPO®OPIKHZ KAI YITOAOI'TZTQN
EPTAXTHPIO MIKPOYITIOAOI'TZTQN KAI WHOITAKQN ZYZXTHMATQN

1EXNEIO

Design and Acceleration of Omnitrap lon Storage Device

Instrument Control

AwmAopatikn Epyoacia

Ytavpoc I1. KovBapng

EmBAéTTWV: AnunATPIOS Z0oUVTPNG
KaBnyntig E.M.T1

EykpiBnke a1rd TNV TPINEAR e€eTaoTiKA emTpottA TNV 10" louAiou 2020

Anuntpio¢ 2ouvrpng lNavayiwrtng Toavakag lNavAog 2wrtnpiadng
Kabnynrng E.M.TT. Kabnynrtig E.M.TT. Ka6nyntic E.M.TT.

ABAva, louAiog 2020

3

2taupog KouBapng
ArrAwpaTouxog HAekTpoAdyog Mnxavikdg kal Mnxavikdg Ytrohoyiotwy E.M.T1.

Copyright © Ztaupog KouBapng, 2020

Me em@uUAagn TTavtog dikaiwpaTog. All rights reserved

Armrayopeueral n avriypa@n, amobikeuan kai diavour NS mapouoag epyaaiac, €€ 0AOKAHpou 1 TuAUAToC
QauTNAG, VIa EUTTOPIKO OKOTTO. ETiTpémeral n avarumwan, n armobnkeuan Kai diavoun yia OKOTTO un
KEPOOUTKOTTIKO, EKTTAIOEUTIKAC 1 EPEUVNTIKAC QUONG, UTTO TNV TTPOUTTO0e0n va avapéperai n mnyn
TPOEAEUTNC Kal va dlaTnpEital To TTapov unvuua. Epwrhuara mou agopouv ™ xpnon ¢ Epyaociac yia
KEPOOTKOTTIKO OKOTTO TTPETTEI va aTTeuBUvovTal TTPOS TOV GUYYpPagEa.

Or1 aroweis Kai Ta CUUTTEPACLIATA TTOU TTEQIEXOVTAl TE AUTO TO £yypagpo eKQEAlouV ToV ouyypapéa Kai
Ocv MPETTEI va EPUNVEUBET OTI QVTITTPOOWTTEUOUV TIC ETTIONUES BEoEISC Tou EOvikoU MeTadBiou
lNMoAureyveiou.

MepiAnyn

H mayida 16vtov Omnitrap, g etarpeiag Fasmatech, sivar pia didtaén mov emtpénetl Ty moryidevon kot
ene€epyacio 1OVI®OV 68 PUCUATOUETPIKEG EQUPLOYEC. TNV TOPOVGA TEWPANOTIKY dtdtagn To Omnitrap
xpNoponoteitol og tpdcheto e£dptnuo Tov poacpotopéTpov ualog Q-Exactive, g etoupeiog Thermo Fisher
Scientific. H cuykekpiévn dumhopatiky epyoocio agpopd v avamtuén cvotiuatog FPGA mov enttpénet tov
éheyyo g Aettovpyiog Tov Omnitrap pécm tpocwmikod vroAoyioth. Idwitepn Eupaocn divetat og pio amd T1¢
Aertovpyieg tov Omnitrap, mov givotl 1 ATOUOVOGN 1OVI®V GUYKEKPLUEVTS LALOG, 6TO E6MTEPIKO TNG TToyidac, e
TN (PN o1 KOUOTOROPPOV amopdvaoong Sweep kot Filtered-Noise-Field. T tov ckomolg Tov mepdpotog,
vAomoteitar katdAAnAog diowAog emkowvmviag avaueso oe PC kot FPGA. Emumdéov, uébodot yio m yévvnon kot
TOPOUETPOTONGT TOV KLUATOUOPODY OTOUOVOGS VAOTOo10VVToL T060 6to PC 660 kot 6to FPGA. £ cuvéyeia
ovyKpivovTot LETAED TOLG KOl AEI0A0YOVVTOL MG TPOG TV KATAAANAOTITO TOVG Y10, TO GLVOAKSO GUCTNLLOL.
Telkd, TPoKLTTOLY GLUTEPAGLLOTO, Y10 TV TEAKY] LOPPT] TOV GUOTHLOTOG EAEYYOL TOVL OPYAVOV, LLE OPLOTIKO
61HY0 TNV TPOToVTOTOiNoT).

AéEeig Khedia

FPGA, ynowoxn cdvBeon Kopapopope®v, Kopotopopeis Sweep, kopapopoppéc Filtered-Noise Field,
npoiovtomoinon, acpotopstpio palag, Toyida vy, omnitrap

Abstract

The Omnitrap linear segmented ion trap, developed in Fasmatech company, allows enhanced ion
activation and storage in mass spectrometry applications. In the current experimental setup, Omnitrap is
connected in series with Q-Exactive mass spectrometer of Thermo Fisher Scientific company. This diploma thesis
concerns the development of an FPGA system that allows control of Omnitrap operation via a personal computer.
Special emphasis is given on one of the Omnitrap functionalities, which is the isolation of ions of specific mass to
charge ratio by means of Sweep and Filtered-Noise-Field isolation waveforms. For the experimental purposes, an
effective communication port is developed between PC and FPGA. In addition to that, several methods for
waveform generation, both by PC and FPGA, are implemented, compared and evaluated in regard to their
efficiency for the overall system. Finally, conclusions are drawn concerning the final instrument design, towards
productization.

Keywords

FPGA, direct digital synthesis, Sweep waveform, Filtered-Noise Field waveform, productization, mass
spectrometry, ion trap, omnitrap

EuxapioTieg

H mapovoa duthopatiky epyacio ekrovidnke oto Epyactipio Mikpodmoroyiotdv kot Pneaxmy
Svotquatov (Microlab) oto EMII, o cuvepyacio. pe tnv etopeio Fasmatech Science & Technology SA mov
oteyaletor oto Teyvoroyko [lapko Agvkimmog oto EBvikd Kévtpo Epevvag Gvoikdv Emiotnuav « Anpudkpitooy.

Apywcd Oa Bera va, evyapiotnow tov emPAEmovtd pov, kadnyntn tov EMIT Anuntpio Zobvtpn kot tov
CEO ¢ stoupeiog Fasmatech, Anuitpio Iorovactaciov, mov cuvepydotnkay pe exttvyia toco pali pov 6o
Kot LETOED TOVG Y100 TNV OAOKANP®MGN TNG GUYKEKPLULEVTG SIMAMUATIKNG epyacioc. EmumAéov, Oa n0ela va
EVYOPLOTHOM TOV PETOd1daKTOPIKO epguviyth) Tov Microlab T'edpyto Agvtdpn KabdG Kol TOVG UNXOVIKOVE TNG
Fasmatech, Iodvvn Opeoavémovio kot Avipéo Mrolotlion, yio tn fonbeia mov pov tpocéeepay 1060 6€
EMOTNUOVIKO OGO Kol GE TPOCOTIKO EMITEDO.

Téhoc, O NOera Vo eVyaPIETHO® TOVG Yoveig pov, [Tétpo kot Apyvpd Kot thv adepen pov Martiva yuo
TNV d1opkh oTNPIEN KOl KOTOVONGT] TOVG GE GTIYUEC OyXDOELS KO TECTIKEC,

Contents

[E=0e Y0, U7 SRS 5
F N 0111 - Vol S TSP P PP P PO PPPRTUPTPPPOPRPPRN 6
[Yo (o] Lo i § =X <SSR 7
1 ETETOHEVI] TIEPTATIWI] cereiieiee ittt ettt ettt et e s a et e s b e et e e e e bt e s sb e e e nn e e anne e e nnreeennes 9
O O AT« 10)3 4§ PP PTRPP 9
1.2 AVOTTUEN ZUOTILLOTOG « vt eutveeitteeestieeateee sttt ee sttt e e bt easbe e e st e e et e e sabe e e aa bt e e e sb e e abe e e asb et e abb e e e bn e e anbeeennneeenneas 12

P | 111 oo (U ot 1 o] o PSP TSR PP P PR TPPTOPRURTPPN 17
2.1 Mass Spectrometry and eXperimental SEt-UPcooiiiiiiiiiiiiee e 17
N o e € N« [Tt SRS R PR 21
2.3 TIESIS SCOPE ..ttt ettt h ekt b bbbt b et E ettt h bbbt 22

3 SYSIEM DEVEIOPMENT ...ttt bbbt et ekttt e h ettt e ne e 23
3.1 INSEIUMENT CONTIOL ...ttt ettt et et e et e e ne e nneeiees 24
3.2 User Interface for waveform generation...........ccoooiiiiiii it 25
3.2.1 R T o OSSP SOPPRPPUPRN 26
322 | T TSSO R PR UR U PRURUPTUPPRPROON 31

3.3 SYStem 1EVEl IMPIOVEIMENTSviiiiiee ittt st e et e e s be e e st a e e saaeeabaeeeteeesneee e e 34
331 FPGA COMMUNICATION. ...ttt 34

4 FPGA acceleration of waveform generationccooiiii i iiiic e 64
4.1 Sweep DireCt Digital SYNTNESIS.cccvviiiiie i e e et e e s e e e s nreeenes 64
4.2 Filtered Noise Field (FNF) Direct Digital SYNtheSiS.........cccveiiiiiiieeiiii e 67

5 EVAIUALION. ...t bbbt 69
5.1 FPGA DeVelopment BOAIdcoiiiiiiiiiiie ettt et e st e et a e et e e nte e e nnreeenes 69
52 PC - FPGA COMMUNICALION FESUISo.viiiiiiiiiiiiiiei it 70
5.3 Digital waveform generation USING FPGAoooii i 74

6 Lessons learned towards ProdUCTIZAtION.cc.eiiiuiiiiie ettt e e te e e e be e e sareeesaeeas 77
T CONCIUSION. ...tttk E bbb f b h bbbttt R bbbt 79
S = 7101 1ol =1l 0|V ST OUR 80

1 Ekrerapévn MNepiAnyn

1.1 Eicaywyn

H gaoparoperpio paleg sivor pio evaicOntn teyvikn yio tov mo1oTikd Kol T0GOTIKO
TPOGIOPICUO YNUIKDV EVOCENDV KOl BPIoKEL EQAPLOYT GE Ui LEYOAT YKAUO ETIGTNUOVIKOV TES WV
ommg Proroyia, ynueio, GLOIKY, PAPLAKELTIKY], AKOLO KOl 6TV ££EPEVVNGN TOV OULGTILOTOG,
INUAVTIKEG EPOPUOYES TNG PUCHATOUETPIOG LALaG GTOV GUYYPOVO KOGUO, OTTMG OVOOEIKVOOVTOL OO TNV
peyaAvTepT ETOPEiR AVATTLENC Kol TOANGONG PAGLOTOUETPIK®DVY 0pyavav, tn Thermo Fisher Scientific,
OVIKOVV GTO EPEVVITIKA TTESI TG TPOTEIVOUATIKAG (Proteomics), g petaforopikng (metabolomics),
G TEPPAALOVTIKTG OVOAVONG, TNG EYKANUATOAOYIOG KO TOV KAVIKOV 0VOADGEMY KOt EVOEIKTIKG,
KATO1EG 0md AVTEG EIval 0 TPOGIOPIGUOG TPMTEIVIKDOV OOUMV, 1| VOYVAOPLIGT] 0KOAOLOIDV TENTISIMV, 1
dayvmon KapKivov, 0 ToloTiKOg EAEYYOS TOL TOGILOV VEPOD, 1| AVAALGT] VTOAEIUUATOV EKPNKTIKOV
€EOMMGLLOV, M AVATTLEN KAVIKGOV QOPUAK®OV Kol 1] 0VOAVGT 0GOEVELDV.

Mio pacpoatopetpikn oadkacio meptAapPavel kotd Kovovo ToV 10VIoUO TV Hopiwv g
AVOAVTENS OVGTOG, TO JOYMPIGUO TOVS GOUPMOVO LE TOV AOYO0 TNG HALAG TPOG TO GPOPTIO TOVG, TOV
TOGOTIKO TPOGOOPIGUO TNG £vTaomng NG KaOe nalog 6To delypa Kot TEAIKA YP1OT) TV TOPATAVED
dedoUEVDV Y10 TOV KOBOPIoUO TS OOUNG KOl TOV GLGTUTIKMY TOV OVUAVTY.

H nopodoa dumhopatikh epyacia Baciletor otnv mayida 1dvtov Omnitrap mov avortdydnke
KO TEMKA KoToyvphdnke og matévia amd v etaipeio. Fasmatech. H moyida ovtov eivon o didtaén
TETPOTTOAOV 1 OTOL0L EMTPEMEL TNV TAYIOELOT] POPTICUEVOV COUOTIOIIWV GTO KEVTPO CUUUETPIOG TNG, UE
NV EQAPLOYN SVVOUIKOV NAEKTPIKAOV TESIMV GTOVG TEGGEPIC TOAOVS TNG. H maryida 10vimv umopel
emiong va ypnoonomBet kot g eiktpo palmv, OMAadn ®g d1ataln mov ETTPETEL TN O10THPNOT LOVIWOV
OGLYKEKPIUEVOV EVPOVE HaL®V GTO EGMTEPIKO TNG KO ETOUEVMG TV OTOUAKPLVOT) TV VTOAOIT®V
nalov. H ovokevry Omnitrap epiloufavel oktd mayidec oviav, Q1 émg Q8, pe eMhenyosideic mOAOLG,
o€ GEPLOKT O1ATaEN HETAED TOVG, Kol TOPEYEL £VOL VPV PACO SVVATOTNTOV MG TPOS TNV EMEEEPYUTIN
TOV WOVTOV TPV TNV EVApEN TG GUGLOTOUETPIKNG SL0dIKAGTIOGC.

Yy TEPApOTIK d14Toén TG CLYKEKPIUEVNG epyaciag, To Omnitrap aroteAei pio enéktacn Tov
eacpatopetpov nalac Q Exactive tng Thermo Fisher Scientific. Zvykexpiuéva, mapepfdiietor otov
KOKAO Agttovpyiog Tov Kot TpochEtel Evo axopa eninedo enesepyociag TV WOVIOV TPV ETAGOVY GTO
Orbitrap, dnAadn oto tunqua tov Q Exactive oto onoio cuvteAsitol | pacpatiky pétpnon. ‘Evog
emTpanéll0g VITOAOYIGTNG YPNCLOTOELTAL Y10 TOV TPOGOHIOPIGHO TNG TEPAUATIKNG OLOKACTIOS KOt Yo
T0. 600 Opyave KaBdOG Kat yio T ANy TV amoTeEAeSLATOV. To €100¢ VTO TNG POCULATOUETPIKNG
TaENG oV TEPIAAUPAVEL TNV GEPLOKT] GUVOEST] Kol AetTovpyia V0 N TEPIGGOTEPOV GUGKELMOV
avéAivong pnalag, pe okomd v PEATIOON TOV SUVOTOTHTOV TOVG GTNV AVAALGN YNLUKOV OELYHATOV,
givar yvootod pe tov ayyhkod 6po Tandem Mass Spectrometry.

Q¢ mpog T1g Aertovpyieg Tov Omnitrap, kopia Eppacn divetan otig mayideg Q2 kot QS5 otig omoieg
TOPEXETAL 1] SVVATOTNTO EPOUPLOYNG KVUATOUOPO®V OTOUOVOSNS. Ot KOUATOHOPPES AVTES ival o1jHaTa
TAOMG TO OTTOI0L AVOTAPAYOVTOL GTOVS TOAOVS TNG TOYIO0G KOl OVAAOYOL LLE TO GLYVOTIKO TOVG

TEPLEYOUEVO, ATOUAKPHVOLV £va eVPOg LalmV amd T0 ecmTEPKO NG Tayidac. [Tio cuykekpuéva, ot
naleg TV omoimv N 18106VYVOTNTO TOAAVTOONS 08V TEPIAAUPAVETOL GTO GLYVOTIKO TEPLEYOUEVO TNG
KUHOTOHOPPNG OTOUOVMGNG, dtotnpovviot oty ayida. Avtifeta, ot vméiouteg naleg TOAAVTOVOVTAL,
001 YOUVTOL GE GUVTOVIGUO, KOl TEAMKE OTOLOKPVUVOVTAL, TPOSKPOVOVTOS GTOVG TOAOLG TG Ttayidag. H
dnpnon Hovo TV 1IOVTOV evolaeEpovtog oty Tayido cupPdiiel o peyddo Baduo otn Pertioon g
OLOKPITIKNG IKAVOTNTOG TOV POGUUTOUETPOV HALOC.

Yvokev] FPGA

I'o tov édeyyo tov e€optnudtmv tov Omnitrap ypnoonoteitar pia cuokev) FPGA. H cuokeum
FPGA (Field Programmable Gate Array 1| cvototyio enttonio tpoypoppatilOUEV®V TUAMY) AmoTEAEITOL
€0MTEPIKA amd £va SiKTLO TPOYPAUUATICOUEV®Y YNELOKOY “Kuttdpmv” (cells) mov pumopovv va
vAOTOMGOVY YNELokéG cuvaptnoels. Tlpaktikd, pa cvokevr] FPGA emtpénet) oyedioon Ko
VAOTTOINGM EVOS YNPLOKOV KUKAMUOTOG GTOV TPAYLATIKO KOGHO, e TN ¥pNon Aoyioukov. Emuriéov
dlaBétel mOpTEG E16000V — EGOOV Y10 TNV AAANAETIOPOACT TOV KUKADUOTOG HE EEMTEPIKE E0pTLOLTOL.
Mia cvokevr) FPGA ypnowomoteiton Yo tovg e€ng Adyovuc:

e Emupénel v emrdyvvon kot Bertiotonoinon Papémv VITOAOYICU®VY, OTWS 1 YNELOKN
oVVOEGT KLLLOTOUOPPDV.

o IleprhapPavel moépteg 16600V — ££GO0V, EMTPEMOVTAG AUECO EAEYYO TOV TEPIPEPELOKDV
eEAPTNUAT®V TOL 0PYAVOL Kol ETOUEVOS GYEOOV UNOEVIKO YPpOVO avTIdpaoNG O
HeTOPOAES.

o YuuPdAiel 6TV ATOUOVOGT] TOL GUVOAKOD GUGTHUOTOC OO EEMTEPIKES EMPPOES KO
EMTPEMEL VIETEPUIVIOTIKT] GUUTEPLPOPA VYNANG YPOVIKNG axpifelag, Kabdg ot
TEPLOGOTEPES dAOIKAGIEC TOV GVVTEAOVVTOL 6T0 OMNitrap amattovv a&0mGTO Kot
aKp1pn EAeyy0, 0€ EMIMESO TOAUDY POAOYLOV.

2T0Y 0L OUTAMUATIKNG EPYUOLOS

O1 6106%01 TG TAPOVGUS SIMAMUATIKNG EpYyaciog ivarl:

¢ H avantuén evdg TANPOVG GLGTNUATOG TTOV EMTPENEL TOV AUNAOD EMTEIOL EAEYYO TNG
ovokevng Omnitrap kot Topéyet eveMéio 6TOV TPOGIHOPIGUO TG TEWPUUATIKNG
dwdkaciog kabmg o dpyavo Ppicketar akOpLo o€ 6TAOI0 AVATTVUENG KoL VEEG TEYVIKES
Yo xpron g mayidag e€etalovtal GuvEXDC.

e H avantuén evdg anoterespaticod Kot aE0moTov dtadAov enkovaviag petasd PC ko
FPGA , xaBmg 1 cvokeun FPGA anoteAel 1o Tuprva eneEepyaciog Tmv AELITOVPYLOV TOV
Omnitrap.

10

e H e&epehivnon tov dvvatotmitov tov FPGA oyetikd pe v ynoaxn cbveon
KULLOTOLLOPQOV.
e H napoydpnon mpotdoemv yio TV TEAKN HOPPY| TOV 0pYEVOL.

Kot v ekmbévnon g SUTAOUATIKNG EPYACIOC, £YIVAV EKTETAUEVEG TPOSTADELESG Yo TNV EMLTAYVVOT
™G petapopdg dedopévov and to PC oto FPGA. EmimAéov, mpaypoatonomOnke cuykpion HETAED TG
ovvBeong Kopatopopedv amd o PC évavtt g dueonc ohvOeong Kot avamopoymyns Toug ornd 1o
FPGA. ITAeovekTUaTO KO LELOVEKTILOTO KL TOV dV0 TEYVIKAOV AVAPEPOVTOL KOl CUUTEPAGLLOTOL
TPOKVITOVV Ta 07O PpickovY EPaPLOYN G€ OAL TO. GVYYPOVO GLGTHLOTO TOL TEPIAAUPAVOLY
ovokeLég FPGA, kat e101KOTEPA TTOV APOPOVYV EPYUCTNPLOKO EEOTAMGHO KO OPYAVA TELPOUUATIKOV
LETPNCEMV.

11

1.2 AvdarmTtugn ZuoTANATOG

Aema@n xpfoT Y10 6OVOEST]) KOPHATOROP POV

["o Tov TEWPAROTIGUO Kot TNV EQAPUOYT KVLOTOUOPPOV AmoUOvVOons oty Ttoyida Omnitrap,
avamtOyOnke o amapaitnTog aAyoplOuog yio T SnHovpyio TV KUHOTOUOPE®OV KaBmG eTiong Kot TO
avtiotoryo mepiPdArov oto PC péow tov omoiov o xprotg UITopel va TopaUETPOTOMNGEL TO EKAGTOTE
onua. Ot kvpatopopeéc avtég cvvtifevtol oto PC kot 6t cuvéyeta amoctéAloviar oto FPGA yu
OVOTOPOY®YN GTOVG TTOAOVG TOV AVTIGTOLYOV TETPOUTOAOV. Y Thpyovv V0 €101 CNUATOV OTOUOVOCNG, 1
Kopatopopen Sweep kot 1 kopatopoper| Filtered Noise Field.

Kvuotouopen Sweep: H xopatopopen Sweep eivor pio appovikn GuvapTnon Le YPOLLIIKE
avéavopevn ouyvotnto. To cLYVOTIKO NG TEPLEYOUEVO TEPIAAUPAVEL OAES TIC GLYVOTNTEG) o
apykn €o¢ pio telkn Tyun. Evdeiktikd o1 e£16MGE1g VTOAOYIGHOV TN KVUATOHOPPNS (paivovTol
TOPUKAT®:

Sweep(n) = sin [Phase(n)],

6mov 1 edon Phase(n) vroloyileton w¢ €€RG:
Phase(n) = Phase(n — 1) + 2pi = Ts * frequency(n),
pe Ts: n mepiodog detypatoinyiog.

H ovyvomra_Frequency(n) av&dvetot ypoppukd:
frequency(n) = frequency(n — 1) + frequency_step.

O ypNMoNC, LEGM TOL AOYIGHIKOD OVVATOL VO, TOPUUETPOTOM|GEL TV KVUOTOLOPPT) SWEEP ¢ TPOG TO
TAATOG, TNV OPYIKN KOl TNV TEAIKT] GUYVOTNTOL.

["a 10 okomd g dratpnons cvykekpévay palodv otny mayida, divetar duvatdtnTa GTOV
YPNOTN ££AIPEONG OO TO GLYVOTIKO TEPLEYOLEVO TNG KLLATOLOPPTIG SWEEP, EVOG ELPOVS GLYVOTNT®V,
avéroya pe v gpappoyn. Onmg £xet Non avaeepbet, o1 paleg Tmv omoiwv 1 cLYVOTNTO W0 TAAAVTOGNS
dgvV TEPIAAUPAVETOL GTO GLYVOTIKO TEPLEYOLEVO TOV GTLLATOG, TOPAUEVOLV GTNV TToyido LETA TNV
OVOTOPUYMYN TOL SWEep, evd 01 VTOAOUTEG JIEYEIPOVTAL KO ATOLAKPVVOVTOL.

EmumAéov duvatdtnteg og mpog TV mOPOUETPOTOINGT TOL SWeep epeavifovial 6T SlETaQ
XPNOTN OV avamTHYONKE, OTMG 1 EEO0UAALVGT TOL TAATOVS £1GO00V Kot ££000V KAOMDS Kot 0
KaBoplopdG TNG GUVOAIKNG SLAPKELNG TOL SWeep.

Kvuoarouoppn FNF: H xvuotopopen Filtered Noise Field (FNF) cuvtifeton and to d0potopuo
NUTOVOEW DV CLUVOPTICEMV JUPOPETIKTG cLYVOTNTOS. Opoing Kot 0M, N KupaTopopen yopaktnpileton
amo pio opykn Ko pio TEAKN cuVOTNTA, GTIG OMOIEG TPOOTIOETAL Kot 1] TAPAUETPOG TOV PUATOG

12

ovyvotrtag. To Prpa cvyvotntog kabopiletl Tn S10KPITIKY IKOVOTNTO TOV GUYVOTIKOD TEPLEYOUEVOL TOL
FNF onuatog mov mpoxvnret.

Onwg Ko otV TEPITTOOT TS KLUATOHOPPNG SWeep, £Tot Kot €3 0 YpNoTng EXEL T
dvvatdmra va tpochicel cuyvotikd keva otnv FNF xopatopopen. EmimAéov, vrapyovv dvvatdtnteg
TPOTOTOINGNG TOL TAATOVG KOOMG KOl EPOPLOYNG TEYVIKAOV SAUOPO®ONG GAoTG Yo KAADTEP
KOTOVOUT TNG 10Y(VOG KT UKOG TOV G UOTOC.

Boaown dtapopd tov onpatog Sweep pe to ofjua FNF givat to yeyovog 61t 6to mpdTo ot
CLYVOTNTEG AVATOPAYOVTOL GEPLOKE 1) pio HETE TNV AAATY, EVAO GTO dEVTEPO O1 GLYVOTNTES
avamopdyoviot Tautdypova Ko’ oAn) diipkelo g Kopotopopenc. [epapatikd kabe pio
YPNOLOTOIEITOL Y10 SLUPOPETIKEG EPOPUOYES KOl TOPOVGIALEL TOGO TAEOVEKTLATO OGO KOl
LLELOVEKTILOLTOL.

"EAlgyyoc Zvotipatog

I tov éeyyo g TEpouatikig dtadtkooiog tov Omnitrap, o ypfotng KaAeital pEcm AOYIGHIKOD VO
ovvBécoel pia axorlovbio eviodmv. Kédbe evroln oyetiCeton pio Eexmplot evEPYELD TOV OPYAVOL EVD TV
GUVOAO T®V EVTOA®YV TTPOGPEPEL SVVOTOTNTES TPOTOTOW|CEMV TOV TEPAUATOC GE YOUNAO ETITEDO.
Evdewctikd opiopéveg amod Tig onUavIIKOTEPES EVIOAEG OPOPOVV OPAGELS OTTMG:

* AL0OKOTI] TNG TELPOUATIKIG OLUOIKAGLOS PHEYPL TA LOVTO VO TEPAGOVY 07T0 TO Opyavo Q
Exactive otnv mayide wovrov Omnitrap. To yeyovog avtd onpatodoteital omd 1o Oetikd
Ao gvOg ofuotog trigger mov mpoépyetar omd o Q Exactive ko moporapfdverat omd to
FPGA mov eléyyet to Omnitrap.

e Mertakivnon Tov deiypnotog 10vtov ané pio tayido QX og pia dAin mayidoa Qy (vdpyovv
oKT® Tayideg 10vtov dabiotuec, Q1 £mg Q8)

o Avomapay®yl] KOPaTORopeNS omopnéveong (ota tetpdmora Q2 ko Q5). Ot KLUATOHOPPES
amopdvmong dakpivovtal o€ dV0 €idn, To onjpata Sweep ko to. onpoto Filtered Noise Field
(FNF) to x60g éva pe ta S1KG TOV YapaKTNPIOTIKA.

Mo v ektéleom tov TEPALOTOC, Ta dedOUEVA TNG AKOAOVB{NG EVIOADMV KOOKOTOOUVTOL KOTAAANAL
and 1o PC ko otélvovtar oto FPGA, 6mov kot amobnkebovion og ecmtepikn pvniun block RAM. Xt
ovvéyela, pio custom IP gival vevBuvn yuo TNV EKTEAECT] TOV EVIOADV, OTOV O YPNOTNG GNUATOJOTNOEL,
amd 1o Aoywopko oto PC, v évapén g dwdkaciog.

13

Bektiooeig Xvotipatog

Enwowovia ue to FPGA

Mo ™ ovykekpuévn d1dtaln, Ta dedopéva mov yperaletar va petapépovtar omd 1o PC oto FPGA givat
Ta e&Ne:

¢ H xodwomomuévn axorovdio evioddv mov kabopilel Tnv mopeia TOL TEPALOTOG
e To delypata TV YNOKOV KOUATOHOPP®V omopovoong Sweep kot FNF

Ta dedopéva mov ypetdleton vo petagpépovtor amd to FPGA oto PC givan”
e Metpnoelg TacE®V Kot OepLoKpaciog TOL TPOYLATOTO0VVTOL GE 1APOPa GNLEIN TOV OPYAVOL

Mo v dnovpyia dtavrov emkowvoviag peta&d PC kot FPGA viomombnkay kot doKipdotnKoy
TEG0EPIC OPOPETIKEG LEBOJOL 01 OTTOIEC TEPLYPAPOVTOL TEPIANTTIKA TOPOKATM.

USB 2.0 oe mpwtékoriro UART: To mpotoxorro UART (Universal Asynchronous
Receiver/Transmitter) givot éva 6€1p1oK6 acOYYPOVO TPMOTOKOAAO TOV EMITPENEL TN UETAPOPQ
dedopévmv petalh 600 1 TEPICCOTEPMY CLOKEVMOV 01 OTTOIES EIVOL GVYYPOVES GE SUPOPETIKA POADYLOL.
Amontet 600 dkpa 16600V £GO0V Yia TNV £YKATACTOCT TOV HETOED 000 cvuokevdv. Kdbe cuokeum
opeilel va draBéTel Eva akpo AMymg Kot £voL KPO omOGTOANG OEGOUEVM®V.

[Ma v vAomoinon g cLYKEKPEVNC EMKOVOVIOKNS HeBOdoL ypnoiporomOnke to

olokAnpouévo FT2232H g FTDI g Asrtovpyia yépupag USB 2.0 oe UART. H etaipeio mapéyet to
amapaitnto APl yio v avantoén desktop epoappoy®v mov xpnoiorolohy T0 GUYKEKPIUEVO dIOLAO
emkowvaviag. Ta dedopéva petappdlovtal amd 1o USB npwtdéxorrio tov PC 610 amlomomuévo
npotokoAro UART, dote va Angbovv amd 1o FPGA.

[Ma ™ Aqym ko dayeipion tov dedopévov amd 1o FPGA ypnoipomomnkayv kotd kupto Adyo ot

napoakdto IPs:

e Microblaze soft-core : o ene€epyaoctic mov mapaywpeitar amd v XilinX yio ypron ecwtepid
tov FPGA. Y omoteiton pe) ypnon mopwv tov FPGA.

e AXI UARTIite: o gkeyktng mpwtokoilov UART nov mapéyeton and tn Xilinx.

e Memory Interface Generator: o gheyktic eEmtepikng pvnung toyaiog tpocrnéiacng (DDR)
7oL TopExeTon oo tn Xilinx.

Ot IPs gowtepikd tov FPGA enikowvmvodv peta&d toug pécm tov AXI bus. Ta dedopéva amd tov
diavio UART moporappdavovtar and tov Microblaze, o omoiog givar vevBuvog yia tnv tpomOnon toug
otov ekdotote mpoopiopd. EmmAéov, emotpépet ato PC éva byte emiBePainong to omoio onuatodotet
TNV EMTLUYN OAOKANPMOOT) TNG LETAPOPAS TMV dEGOUEVOV. ZE TEPITTWGT TOL T OEGOUEVA AVTIGTOLYOVV
oe onpeio Kopatopope®v, o Microblaze to mpowbei oe e£wtepucn pviun DDR3.

14

USB 2.0 6g cVyypovo mpmtdékoAro FIFO 245: T'o) cvykexpipévn viomoinon
ypnoworomnke Eavd to olokAnpopévo FT2232H g FTDI, avt) ™ @opd oe Asttovpyio yépupag
USB 2.0 og FIFO245. To mpwtdkorro FIFO 245 givat éva cOyypovo TapdAAnio Tp@TtOKOALO e
uéyeboc AéEng 8 bits. I'a ™ Aqyn Tov dedopévav omd to FPGA arateitatl dnpovpyia IP kabnbg dev
napéyetar omd) Xilinx. H emcowvovia tov FPGA pe 10 olokAnpmpévo mpémet va eivar cOyypovn pe
poAOL cuyvotntag 60 MHz 1o omoio mapéyetar amd to chip. e ot v vAOTOINGN deV YPNCIUOTTOIEITOL
o Microblaze alAd ta dedopéva katevBiuvovtal 6tov Tpoopiopnd Tovg pécm custom IP wov
dnuovpyndnke. Me avtd 10V TPOTO OIoPeHYovTOL KABVGTEPTOELS TOV OPEIAOVTOL GTNV OPYITEKTOVIKT
tov Soft-core enefepyactn, Kat ot avtodroyég dedouévmv PeltioTomolovvTaL.

USB 2.0 ue streaming dedouévmv: H viomoinon ot smtysipel va sEodeiyet TiC kaBvuoTEpOEIC
7OV TTPOKVATOLV AT T LETOPOPA LEYIA®V TakéETwV dedopévev amd to PC oto FPGA. T tv
TOPOVCA EQAPLLOYN TO OEOOUEVO KVLOTOLOPPAOV AITOTEAOVV TETOL0V £100V¢ TaKETA. XpNoonotel Eava
10 oAokAnpouévo FT2232H o¢ Aettovpyia yépupag USB 2.0 og FIFO 245. Ta dedopéva KOHOTOHOp®OV
A0V dev amobnkevovTal o EMTEPIKN LVIUN. AVTIOET®G, YPNCILOTOI0VVTOL THVTOYPOVA LLE TNV
amooToAN Tovg amd to PC, evd 1 avamopaymyn TS KOUOTOLOPPNG GTOVS TOAOVG TNG Taryidag EeEKva
HOMG to TpdTo onueio Exel Anedei amd to FPGA. Mia FIFO (First In/ First Out) ecwtepikn pviun
YPNOLOTOIEITOL Y10 TO GUYYPOVIGLO TOV PLOLOV OEYLATOANYIOG KOl TNG TOYVLTNTOS LETOPOPAS TWV
dedopévov. H viomoinon avtn eival ekt Kabdg 1 cuyvotnto derypatoinyiog sivon pikpdtepn omd
ovyvOTNTO TOVL PoAoYLOV TV 60MHZ 6To 0moio €tvan GUYYPOVN N LETAPOPH FEGOUEVMDV.

USB 3.0 6g cOyypovo mpmtdékorro FIFO 245: Téhoc, otn cvykekpévn viomoinon yiveton
avafBaduion tov tpwtokdirov and USB 2.0 oe USB 3.0 pe oxond vyniotepeg tayOTNTES LETOAPOPAS
dedopévov. Xpnowonoteitan to orokAnpopévo FT601Q g FTDI g Asttovpyia yépupag USB 3.0 oe
FIFO 245. H oyetikr ynoeaxn Aoyikn yio ™ Aqym tov dedopévov ard 1o FPGA avoarticoetot evod ta
dedopéva Kopotopopemv arodnkedovtar oe eEmtepikn) DDR pviun. H petapopd tov dedopévey oty
DDR pviun mpaypatoroleiton pe m ypnon AXI Stream tpwtokdAiiov pe otdyo v enitevén
VYNAOTEP®V TOYVTNTWOV EYYPOUPNC.

Emurayvven g mapayoyns Kopotopopeav pe) ypion FPGA

To yeyovdc 611 o1 Paoikég Aettovpyieg Tov opydvov Omnitrap eléyyovton and to FPGA, kobiotd
a&l0Aoy” TV 10€a TG LAOTOINGNG TOV KVUATOUOPPOV amopdveong and o 1010 to FPGA. [TapdAiinia,
ot d1apopeg TapapeTpomooels v Sweep kot FNF kopatopopedv mov mapéyovior 610 Aoyiopkd
pENEL VoL Topapeivouy daBEotpeg Kot otV TEPITTOOT Topay®yNS Tovg amd to FPGA.

Ynowoxn cvvheon kvpatopopeng Sweep 6to FPGA! o v mopaymyn g KOLOTOpOpQTG
Sweep and 1o FPGA ypnoiponomdnke o 16106 ahyoptBpoc vmoroyicpov mov viomotei o Sweep oto PC
KO OVOQEPETOL GE TTPONYOVUEVT evOTNTO. OTTmg QaiveTal, Yl TOV VTOAOYIGUO TOL GNIHOTOS SWeEEP
amoteiTon 0 VIOAOYICUOG TS GLVEAPTNONG TOL MTHVOVL. [0 TO 6KOTO VT YPNGLOTOMONKE N TEYVIKT
tov Look-Up Table katd tnv omoia 10 TeTapmUOplo piog NUITOVIKAG TEPLOSOV dELYUATOANTTEITOL
EMAPKMOG Ko To, onpeio amobnkevovtar oe eowtepikn pviun (distributed RAM) tov FPGA. O apiBudg

15

TOV SEIYUATOANTTNUEVOV onpeinv KaBopilel To EDPOG TOV NUITOVIKOV GLYVOTHTOV TOL UTOPOVY Vi
avamapaybovv, copemva pe tov Bedpnua derypotoinyiog Nyquist.
H mpdén tov moAhamdiaciacion tov epeaviletal otig El0maoelg Tov Sweep eEaieipetan e

KOTAAAN AN KAVOVIKOTOINGT T®V d€d0UEVDV apykomoinonc. 'Etot o adydpiBuog vAomoteitol ecmtepicd
tov FPGA pe ™ ypnom pepkmdv abpototdv, Tov nurtovikod Look-Up Table kot evdc cuykpirr o omoiog
elval vrevHBvvog yia Tov Kabopiopd ToLV TPOGNH OV TOL NULTdVOL KABE popd. To Khximpo Tov
TPOYLLOITOTOLEL TOV DTTOAOYIGHO Sweep anoteleital and otddia, o€ pipeline popen, yio exttdyvvon tov
npaEewv. Me v mpocHnkn emmiéov otadiov pipeline, Tpv 1 petd tov Pacikd adydpibuo, pmwopovv va
vAoTOM 00UV 10 EEEIOIKEVUEVES TTOPOAUETPOTOMGELS TOV SWEEP, OTIMG TPOTOTOINGT TOL TAATOLG KOl
EQOPLOYY] GUYVOTIK®OV KEVDV.

Ynowkn ovvheon kopatopopeng FNF oto FPGA: Mia kvpatopoper; FNF umopei va
VTOAOYIGTEL a6 TO ABPOIGHA NHTOVOV SPOPETIKNG CLYVOTNTAGS, Ol 0Ttoieg kKabopilovTon amd To
emBopuntod evpog cvyvottewv Tov FNF onpatog, kabmg kot amd v embounty cvuyvotikny avaivon. ['a
TOV VTOAOYIGHO TG KupoTopopeng FNF ypnoyomombnke avtiotpoeog petacynuatiopog Fourier. To
oNUo KaTaoKeVALETAL apyIkd 6TO TEHI0 TV GLYVOTHTOV, 0pILovTag ¢ UNOEV TO TAATOG Kol T GpACT
TOV GUYVOTIK®OV TOVOV oL dg BEAov e va cuumeprappdvovior oto ofjpa. Emxiong yuo eEowovounon
xpOVoL kot TOpwv Tov FPGA, 0 avticTpopog HETAGYNUOTIGUOG TPOYUATOTOEITAL Yol pio LdVo TEPI0do
tov FNF ofjpatog evd to telkd onpa dnovpyeiton amd aainiovyio FNF tepiodwv, puéypt va
emtevytel N embount ddpkeLo.

I'o cvykekpipévn viomoinon ypnowomombnke n IP Fast Fourier Transform v9.1 wov mapéyet n
Xilinx. H cvykekpuévn IP extedei tov akyopiBuo Cooley-Turkey yio tov vroloyioud tov
uetaoynuotiopov. To péyebog tov IFFT (Inverse Fourier Transform) kabopiletar amd tn péyiotn
nepiodo evog FNF onuatog 1 onoia dev Eemepvd ta 5 milliseconds. Apov o puOude derypatoinyiog g
napovoag odraing wovtor pe 12.5 MHz, to péyioto anairovpevo péyedog tov LETOUGYNUOTIGHOD
avépyeton ota 21 onueioa.

[IpooBétovtag emmAéov oTad10. 6TNV Tapovoa VAOTOINGY, o€ uopen pipeline, propodv va,

VAOTOMOOVV TEPETAIP® TOPAUETPOTOGELS TOV GNLLOTOG, GE AVTIOTOLYIO LLE OLTEC TOV GUOTOC SWeep.

16

2 Introduction

Mass spectrometry is a powerful analytical technique that finds application in a huge variety of
different fields like biology, chemistry and physics, but also in clinical medicine and even space
exploration. It constitutes one of the most powerful modern physical and chemical methods for
identifying compounds and for studying their structure and reactivity. Namely, some of the most
common applications of mass spectrometry in the modern world, as pointed out by Thermo Fisher
Scientific company, belong to the fields of proteomics (characterization of proteins, sequencing of
peptides), metabolomics (cancer screening and diagnosis, biofuels generation and use), environmental
analysis (drinking water testing, carbon dioxide and pollution monitoring), forensic analysis (analysis of
trace evidence, identification of explosive residues) and clinical purposes (clinical drug development,
clinical tests, disease screening) (1).

2.1 Mass Spectrometry and experimental set-up

A mass spectrometry experimental procedure includes ionization of the analyte’s molecules,
separation according to their mass-to-charge ratio, measurement of the detected ions’ intensity in the
sample and finally use of these data to decide the structure and contents of the analyte of interest. The
mass-to-charge ratio of a cation (ion of negative charge) is defined as the mass of the cation divided by
its charge. The results of a mass spectrometry experimental process are typically presented in a mass
spectrum, a plot of intensity as a function of mass-to-charge ratio. Intensity in general refers to the
quantity of different ions inside a chemical substance and is usually expressed in arbitrary values as its
nature defers according to the mass spectrometry method that is followed.

Fasmatech’s recent accomplishment is the invention and development of Omnitrap (Figure 2).
Omnitrap is a segmented linear quadrupole ion trap which is capable of enhanced ion activation
(ionization) and storage (2). A quadrupole ion trap (Figure 1), in general, is a type of ion trap that uses
dynamic electric fields to trap charged particles. The linear ion trap uses a set of quadrupole rods to
confine ions radially and a static electrical potential on-end electrodes to confine the ions axially. The
linear form of the trap can be used as a selective mass filter, or as an actual trap by creating a potential
well for the ions along the axis of the electrodes.

17

https://en.wikipedia.org/wiki/Ion_trap
https://en.wikipedia.org/wiki/Electric_field
https://en.wikipedia.org/wiki/Linear_ion_trap

Figure 1: Scheme of a Quadrupole ion trap of classical setup with a particle of positive charge (dark red), surrounded by a cloud of
similarly charged particles (light red). The electric field E (blue) is generated by a quadrupole of endcaps (a, positive) and a
guadrupole of endcaps (a, positive) and a ring electrode (b). Picture 1 and 2 show two states during an AC cycle (3).

Linear ion traps are extremely powerful analytical devices, either deployed as stand-alone mass
spectrometers or integrated in hybrid systems. Linear ion traps are also ideal platforms for developing
and testing new techniques for manipulating gas phase ions in radio frequency (RF) trapping fields.
Omnitrap provides multiple methods for sequential manipulation of ions in multiple trapping regions
afforded by fast switching DC electrical potentials for high level control of ion potential energy and
transfer between segments.

Omnitrap is designed with eight segments, Q1 to Q8, and hyperbolic surface electrodes
supported on a stainless-steel structure cell. Differential pumping is provided through gaps between the
bottom set of electrode-poles. A two-layer printed circuit board configuration is connected at the top of
the Omnitrap and DC, RF and other AC signals are distributed to the electrode poles using spring
contacts. A second pulse valve is used to admit fast gas pulses and an additional needle valve is
employed to control background pressure.

Figure 2: Omnitrap (4)

18

Different regions of Omnitrap are configured to support a diverse set of substantially different
functions and the length of each segment is optimized accordingly. Each of the segments is connected to
an independent switching module capable of switching the DC potential between 8 different levels
during the course of an experiment.

Slow heating CID (collisionally activated dissociation, a technique to induce fragmentation of
ions in the gas phase) and ion isolation using the Filtered-Noise-Field (FNF) and Sweep method are
performed on one of the segments, Q2. Another interesting segment is Q5, which is designed with two
apertures on opposite electrode-poles to allow injection of charged particle beams and photons.

For the application that is developed in the specific diploma thesis, Omnitrap constitutes and
external instrument connected to Orbitrap Q Exactive mass analyzer by Thermo Fisher Scientific. Its
components and a brief description of their functionality is given, for the sake of completeness, in Figure
3. The Q Exactive mass analyzer includes six main subcomponents: an ion source (1), an ion guide (2), a
mass filter (3), an ion trap (5), an HCD cell (4) and the Orbitrap analyzer (6).

5: The selected ions (or their collisional fragments)
are stored in the C trap (repeat as desired).

4 (optional): Selected masses may be passed to]
the HCD cell and subjected to fragmentation by ISR NSO 115
energetic collisions . T B Gy o & 0

3: The AQS is used to select a mass range of interest
(20.4 amu range, with resolution of ~1000)

Hyperquad Mass Filter with Bent Falzpole

. T utvon 4 Quadlrapele Seleston (03] kiR 5. All jons are extracted, transferred
' through the bent flatpole, and
(E" I —
b| || e .
1: Analyte is introduced to the

collisionally cooled
l — | Eactanite Y ion source
EVC1on Sowrca —o

L
-

Orbitrap Anatyzer

6: After steps 1-5 are performed 1 or more times,
all ions accumulated in the C trap are injected into el el 11111 111N A
the Orbitrap and observed W = = 4y B M| W

Figure 3: Schematic illustration of the major components of Q Exactive Orbitrap (5)

The Omnitrap platform is connected to the Q Exactive instrument in series with the HCD cell.
lons are processed in the Omnitrap platform and products are redirected back to the Q Exactive
instrument for measuring mass-to-charge using the Orbitrap mass analyzer, as shown in Figure 4. Both
instruments are controlled by the use of a PC which is responsible for both sending configuration data to
them and receiving the corresponding experimental measurements, via USB interface. The technique of
instrumental analysis where two or more mass analyzers are coupled together using an additional

19

https://en.wikipedia.org/wiki/Fragmentation_(chemistry)
https://en.wikipedia.org/wiki/Ion

reaction step to increase their abilities to analyse chemical samples, is knows as Tandem Mass
Spectrometry.

d

gﬁf[”]l]
BS100

0
0
0
I

=Y T
HI:IIIDEI

N
]
]
I

e
-

=
=

|
,Hmu{#}ij

Figure 4: Omnitrap in series with Q Exactive (4)

Strong emphasis is given on the ion isolation methods by the use of Sweep and FNF signals
waveforms. lon isolation is the procedure, which aims to exclude every ion of an ionized analyte inside
the ion trap, with the exception of a selected ion type with specified mass-to-charge ratio. Such a task is
accomplished by applying voltage waveforms of specific frequency content in the poles of the trap. The
frequency content of these waveforms defines the ions that remain in the ion trap and those that are
excluded. To be more specific, ions whose resonance frequency is included in the isolation waveform’s
frequency spectrum, resonate and are consequently excluded from the ion trap. On the other hand, ions
that do not resonate remain inside the trap in a stable state. Under this perspective, the main flow of
experimental operation is predefined: Omnitrap is responsible for receiving an analyte, applying an ion
excitation technique (Sweep or FNF) and afterwards passing the resulting ion substance to Q Exactive
for mass spectrometry analysis and evaluation of results.

20

2.2 FPGA device

FPGAs (Field Programmable Gate Arrays) are devices that allow the design and real-world
generation of digital circuits, by software. In contrast with microcontrollers, which include an already
implemented processing architecture, FPGAs’ circuitry has to be designed by scratch, in order to
implement a desirable functionality. This fact makes FPGAs extremely customizable in comparison to
microcontrollers. In order to program an FPGA and generate a digital logic circuit, hardware description
language has to be used, which as implied by its name, is a programming language that is used to
describe a circuit by code. In the current thesis, the hardware description language that is used is VHDL
and the integrated design environment that is used is the version 18.1 of Vivado Design Suite.

| | | | |

ﬁ 105 Jrios o5 | 105 CB
-.D D._

1 Al
d B
R e

Figure 5: FPGA Configurable Logic Blocks (CLBs) network

An FPGA internally consists of a network of configurable logic blocks (CLBs, Figure 5), which
can be programmed to implement specific digital logic functions while memory cells are also available
for storage purposes. In some FPGAs, DSP slices are also included. Their name stands for Digital Signal
Processing cells which are capable of implementing efficiently signal processing functions. Finally, each
FPGA incorporates a prefixed number of Input-Output ports, so that it can interact with external
circuitry.

21

For the purposes of the current project, an FPGA device is chosen on top of a microcontroller (6),
because:

e It allows acceleration and optimization of heavy task computations, like digital waveform
synthesis.

e Itincludes Input-Output ports that allow direct contact with hardware components and thus,
hardly instant reaction capabilities.

e It contributes to overall system isolation from external interferences and allows deterministic
behavior of high timing precision, as most of the Omnitrap functionality demands accurate,
reliable and high speed timing control.

2.3 Thesis Scope

Omnitrap control by FPGA had been already implemented to some extent before the realization
of this diploma thesis. Omnitrap is controlled by PC software and its actions are configurable by means
of a series of instrument commands, which are summarily described in the first chapters. However,
deficiencies have been present concerning PC — FPGA communication and overall FPGA processing
speed. Overcoming this deficit and upgrading the overall instrument design to a more robust and
efficient one has been a major need. Under this perspective, the main goals of this diploma thesis have
been:

e The development of a complete system that achieves low-level Omnitrap instrument
control and offers high versatility in the experimental process while new techniques of
using the linear trap are still being examined.

e Developing an effective communication method among PC and FPGA, as the FPGA
device constitutes the center module that controls the main hardware components of
Omnitrap.

e FPGA exploration concerning methods of digital signal generation inside the FPGA.

e Ultimately, suggesting a final product design.

Throughout the realization of this thesis, extensive attempts took place concerning FPGA data
transfer acceleration. In addition, a comparison took place between software generation of custom
digital waveforms by PC against their direct digital synthesis by the FPGA device. Advantages and
disadvantages of both techniques are examined and overall conclusions are drawn, which find
application in every modern FPGA system, especially concerning applications in scientific
instrumentation and equipment

22

3 System Development

The whole instrument functionality is controlled via PC application. Through software that is
already developed, Omnitrap user is given a
wide variety of possibilities, concerning
experiment configuration, depending on the
application needs. At the stage of instrument
development, before commercial production
and sale, low-level instrument control by PC
IS necessary so that validation testing is
efficiently performed by specialized
scientists and instrument functionalities are
verified. In addition, the invention and trial
of new mass spectrometry techniques, using
the equipment available, is encouraged.

The main idea for creating a
customizable while comprehensive and
efficient user interface for Omnitrap control
has been based on the fact that the whole
experimental process can be expressed by a
sequence of commands. These commands
are linked to pre-specified instrument
actions and, therefore, a sequence of these
commands represents a series of actions that
the instrument is ordered to deliver. A
different sequence of commands can be
generated each time, depending on the
application purposes. By splitting the
experiment in smaller sub-parts more
precise instrument control is accomplished,
malfunctions are more easily detected and
modifications in the experimental flow are
simpler to implement.

As already mentioned, the

Figure 6: Omnitrap sequence of commands processing core of Omnitrap instrument is
an FPGA. The FPGA is intended to receive
the sequence of commands from PC and execute them accordingly. The FPGA can interact with external
instrument circuitry via Input / Output ports. Thus, every command corresponds to appropriately
controlling the equivalent FPGA 10 ports, each time, which are connected to a specific part of the
instrument.

Bepeat from: 1 step to: 2 step times
Repeat from: 1 step to: 2 step times

23

3.1 Instrument control

For the purpose of providing low-level instrument control and allow Omnitrap user to create a
highly customizable experimental flow, following a different purpose each time, a bank of instrument
actions is available through the User Interface. These actions are referred to as commands or instructions
and each one of them represents a different experimental step. In Figure 6, a screenshot of the main user
interface is presented. There are twenty four commands in total, with the first fourteen representing
instrument functionalities and the remaining ten corresponding to ion transition actions, along the
segmented ion trap, by the use of DC states manipulation. By clicking on a specific instruction, the
corresponding command is added to the instruction list, where its arguments and real time experimental
duration (in milliseconds) are shown. The arguments are also editable by the user in most of the
commands. A brief description of the available instrument commands is given below:

Delay: stalls the execution of the sequence by N milliseconds. As every action is
executed by independent modules inside the FPGA, adding delays between commands is
sometimes necessary, especially in cases where moving to the next action demands the
completion of the previous command.

Gas Pulse 1 to 3: Generates a helium gas pulse of configurable flux and duration inside
the empty space of the ion trap. It is used for pressure management (mainly a gas pulse
increases internal pressure) and speed manipulation of ions. There are three different gas
pulse modules along the segmented ion trap. The main reason for this, is the fact that
every gas pulse module needs a specific amount of time to be available for use again,
while there are cases where multiple gas pulses are necessary to occur in close timing
intervals.

Digital RF (KHz): Sets the frequency of the rectangular RF signal that is being
reproduced on the trap’s electrodes. Different frequency values allow trapping of ions
with different mass-to-charge ratio (m/z).

RF Amplitude (V): Sets the amplitude of the rectangular RF.

Duty Cycle [%]: Sets the duty cycle of the rectangular RF. Modifications on duty cycle
have a determinant impact on the trapping efficiency, depending on the m/z range of the
ions of interest.

Gate/Modulate electrons: Actions that relate to substance ionization process.

Trigger IN: Stall the sequence until a trigger pulse is generated by Q Exactive. This
signal plays an important role on synchronizing the two instruments together. A rising
edge of the trigger signal, notifies that ions are located inside the HCD cell of Q Exactive,
and that they can be received by Omnitrap, if the appropriate DC state is applied.
Dipolar Excitation (Q2 or Q5): Initializes the application of dipolar excitation isolation
waveform on the corresponding segment of Omnitrap. This signal is mainly a sine
waveform with configurable amplitude and frequency. Depending on the frequency of the
dipolar sine wave, ion masses that have matching resonance frequencies are excluded

24

from the trap. The term excitation derives from the fact that all masses, except only a
small mass range, remain inside the trap.

e Isolation Waveform (Q2 or Q5): Initialized the application of isolation waveforms.
These are broadband signals which are distinguished in two kinds, the Filtered-Noise-
Field and the Sweep signal, each one with different properties. Depending on the
frequency content of the isolation waveform, all ion masses except the ones that their
resonance frequency is not included in the signal’s frequency spectrum are excluded from
the trap. The term isolation derives from the fact that only a small range of masses
remains inside the trap, while the rest are excluded.

e DC states: These commands are used to transfer ions between trap segments. lons are
moving from high to low voltage. Therefore, by applying high voltage to source segment
and low voltage to destination segment, ion transfer inside the trap can be accomplished.

Sequence loop capabilities are also provided, in case an experimental process needs to be
repetitively executed. An external and an internal loop and their repetition number are customizable
through the user interface.

After sequence initialization, commands and their arguments are appropriately encoded to binary
form and sent to FPGA, through communication methods that will be extensively examined in the
upcoming chapters. These data are stored inside FPGA block RAM and a custom IP takes over their
execution. Each command triggers an independent module which is responsible for the corresponding
action. Multiple modules can run simultaneously without interfering each other. In this manner, high
timing precision is accomplished, which is plays a major role issue in the success of the experiment.
Finally, Custom digital logic is also responsible for controlling the loops inside the sequence.

3.2 User Interface for waveform generation

Purpose

In order to efficiently experiment with isolation waveforms, like Sweep and FNF, convenient software
User Interface is necessary. It is essential that software allows user to highly customize excitation
waveforms, while Ul remains comprehensive and easy to use. In addition to that, code must be robust,
efficient and as simple as possible so that, potential future modifications will be easier to implement.
Under this perspective, two Windows Forms (see Figure 7) where created to allow Sweep and FNF
waveform synthesis. Their implementation and functionality are analytically described below. All code
is written in C# programming language and user interface is developed using the Visual Studio
environment.

25

A, Waveform Synthesis - Not Saved

[C)open [save ~ | Download to FPGA

ISOWFM Type Hardware Parameters
SWEEP Sample Rate: (125 | Mz
Synthesis Parameters Duration 131072 ~|ms
Frequency Start: [10.0 |2 KHz Frequencies Direction WEMID: | WFMEs ~ z
@ Lowto High <
Frequency Stop: |200.0 |3 KHz QO Highto Low Blectrode: |Q2WFM ~ 7
2
Edges Smoothing 55 3] Kz
Waveform Amplification
Notches < :
Gan: [2000 |2 : : : : :
:fﬁ;rcmm :’Eﬁgcmm Slow Down ﬁg‘gﬁ:g o 200 £00 iTﬂﬂ o 500 1000 1200 14
ime usec
50 60 None No
Frequency Domain
200
=
e
3
2
H
Amplitude Modfications &
H
From (KHz) To (KHz) From (Gain ratic) T (Gain ratie)
0 200 1 05
Freguency(kHz)
<
£ Waveform Synthesis - Not Saved —
[C10pen [save - |) Downlosd to FPGA
ISO-WFM Type Hardware Parameters Time Domain
Filtered Noise Field (FNF) Sample Rate: | 125 ~ | MHz
Synthesis Parameters FNF Info Duration: | 1048576 | ms
s
Frequency Start: [200.0 [2] KHz Number of Tones: 355 WFMID: [WFM#0 > E
o
Frequency Stop: [400.0 12 KHz ENF Period (ms): 4 Bectrode: | Q2 WFM 3
Fr Ste | H: i -~ K ¢
Tequency Step: | 1000 i Calculation Time (s): =26 Waveforn Amplfication : :
Notches Gain: [2000 |3 @, : : i

6
Time (usec) (10°%)

Upper Cut-Off Lower Cut-Off . a0
KH2) KHe) Match Step (Hz) Deka F@ (Kiz) Phase Modulation
320 330 250 20

Peak to Average PR ~ Frequency Domain

Ampltude Modfications

IR

From (KHz) To (KHz) From (Gain ratio) To (Gain ratio) 00+ i
o bt Gl
200

250 300

0 350 400
Frequency(kHz)

Figure 7: Sweep and FNF user interface

3.2.1 Sweep

A sweep waveform is a harmonic function with linearly increasing frequency from an initial frequency
to some final frequency (7). The foundation of the algorithm that generates such a broadband waveform
is described in the following steps and visual representation of the results is also provided. The blue
color represents the time domain while the red color represents the frequency domain:

e Calculation of the sweep signal in the time domain, according to the following
mathematical expressions (where parameter n refers to discrete time):

Sweep(n) = sin [Phase(n)],

26

where Phase(n) is calculated by the formula:
Phase(n) = Phase(n — 1) + 2pi * Ts = frequency(n),
where Ts is the sampling period.

Frequency(n) is increasing linearly:
frequency(n) = frequency(n — 1) + frequency_step.

At its initial state, the shape of a sweep waveform is shown below:

/ﬂ\,fuwvm — mmwﬁﬁ.ww\;

Sweep function is then transformed into Fourier frequency domain, by means of Fast
Fourier Transform. This way, amplitude and phase data are obtained for every discrete
harmonic of the Fourier spectra. Objective of this procedure is to remove unwanted
frequency components off the original sweep function and to obtain a new signal that
does not contain unwanted components, but in other respect looks very similar to the
original sweep. The main goal is to remove frequency components that cause resonance
to the target isolation masses. Such frequency gaps are referred to the Ul as frequency
notches. In order to create a frequency notch that ranges from a frequency f; to a
frequency f, the amplitude of the equivalent harmonics in the frequency domain, is set to
zero. A notch in the frequency domain, should look like this:

27

Then, the signal is transformed back to time domain, by means of Inverse Fourier
Transform (IFFT) :

Extra parameterizations of the sweep waveform are available in Ul for the purpose of
experimenting and optimizing the ion isolation process:

Edge smoothing:

Some amplitude “spikes” near the starting and ending frequencies of the sweep waveform
are obvious by examining the frequency domain plot. Such amplitude spikes are
considered to potentially cause unwanted resonances. Thus, smoothing should be applied
in the sweep edges by multiplying the sweep waveform with a reducing factor, which is
given by the following mathematical expression:

factor(n) = sin [£1.57 * (4)],

smoothingyidth

where positive sign is selected for smoothing the starting part of the sweep and negative
sign is selected for the ending part. The edge smoothing results are shown below for both
time and frequency domain:

28

Through UI, the length and rate of edge smoothing are both configurable.

Slow down around notch areas:

Intense and fast changes in frequency content near notch areas are experimentally shown
to have negative impact in the isolation process. Therefore, reduction of the frequency
change step around notch areas needs to occur. As the sweep duration and frequency
range is initially specified, slowing down the frequency sweep in some regions leads to
inevitable speed up of frequency sweep in every other waveform part. Through the
implemented UI, user can configure the range and rate of the notch slow down as well as
whether it occurs before or after entering the notch (or both).

MM
/ L

The slowing down, as it occurs by the frequency domain plot above, leads to an increase

in the amplitude of the harmonics where the slowdown occurred, and a decrease in the
amplitude of the rest harmonics.

Frequency sweep to opposite direction:
In some occasions, scanning of the required frequency range needs to occur in declining

29

order, from high to low frequencies. Therefore, this capability is also implemented and is
configurable by the user.

Amplitude modifications:

Through the implemented Ul, user is given the possibility of generating his own custom
amplitude modifications. Starting frequency, ending frequency, starting amplitude and
ending amplitude can be configured. Applying an amplitude modification leads to a
linear amplitude increase (if starting amplitude > ending amplitude) or decrease (if
ending amplitude > starting amplitude) in the specified frequency interval. In the
following example, two amplitude modifications are applied and their effect is visualized.

30

e Other configurations:
Sweep waveform generation is also configurable regarding sampling rate, total duration
and target quadrupole (Q2 or Q5). Two sampling rates are available, 12.5 and 25 MHz.

3.2.2 FNF

On the other hand, filtered noise field (FNF) waveforms constitute a completely different kind of
broadband signals. FNF‘s basic feature is the fact that it reproduces all frequencies, inside a configurable
interval, simultaneously, in comparison to sweep waveform which sweeps from smaller to higher
frequencies over time (8). Consequently, its different properties make FNF a quite interesting field of
study and experimentation. The steps for calculating an FNF waveform through software are the
following:

e Configuring the number of frequency harmonics that the FNF waveform will incorporate.
In this stage, harmonics inside desirable frequency notches are removed and thus the
notch is created.

e Summing up all remaining harmonics in the time domain.

As it seems, the construction of an FNF waveform is fairly simple and straightforward. However,
summing up a relatively large number of sinusoids is not computationally efficient and takes an
infeasible amount of time. For this reason, a different approach to this computation is necessary. Finding
the fundamental frequency of the FNF and subsequently summing up the frequency tones for only one
waveform period is a quite efficient way of saving time and computational resources. The complete FNF
waveform then can be calculated by concatenating multiple FNF period waveforms until desirable
duration is achieved. Furthermore, the fact that there is no calculating dependence among FNF
waveform points makes the calculation easy to be parallelized. By applying such contrivances, FNF
calculation time is significantly reduced.

The most important FNF parameters that are configurable in the FNF user interface is the
frequency content of the FNF (starting and ending frequency) as well as the frequency step. The division
of frequency width with the frequency step provides the number of frequency tones which are
incorporated by the FNF waveform. FNF duration, sample rate and target quadrupole are also
configurable, similarly to sweep UI.

31

An example FNF waveform is shown below:

E——0.0 .9V § .JUUWULJE)UJUWU)L ’ Juubbbh deUuL,L__

In comparison to sweep waveforms, this time the frequency domain is not continuous as it only includes
some predefined frequency tones. As the configured frequency step decreases, the frequency spectrum
of the calculated waveform gets denser and the frequency resolution is increased.

As already mentioned, the notch generation occurs by excluding from the summation, the
frequency tones that belong to a desired notch. Apart from that, in most cases higher frequency
resolution around notches is necessary, in order to allow more effective ion excitation in the
corresponding frequencies. This feature is implemented in the FNF calculation code by modifying the
frequency step around these areas. The range of effect as well as the frequency step before and after a
notch area is configurable by the user. Visual representation of the incorporation of a notch in the FNF
calculation is presented below:

32

A

UG AL AL AUUUA A A WU

As it seems in the frequency domain above, the frequency resolution around notches is increased while
the amplitude of all frequency tones inside the notch is zero. Other available FNF configurations are the

following:

Phase modulation:
Adding frequency tones of equal phase results in uneven distribution of voltage levels in
the waveform. In order to achieve even power distribution throughout the FNF signal, a
phase modulation is necessary. There are unlimited choices regarding the mathematical
expression that gives us an effective phase modulation, but the most widely used are the
following:

o Newman Peak To Average Power Ratio:

£ — 2pi, pi)

numberoftones

phase(n) = mod(n? *

o Narahashi Peak To Average Power Ratio:
v
numberoftones

phase(n) = mod(n* (n — 1) * — 2pi, pi)

Besides these two phase modulation techniques, user can specify its own phase
modulation expression, which better suits the application. An example before and after
phase modulation is presented below:

33

Both the above FNF waveforms have similar frequency contents but the second one
makes a superior power distribution and is experimentally feasible.

e Amplitude modifications:
Identical amplitude modification capabilities, as the sweep generation Ul, are also
available for FNF. A visual example is presented below, where the amplitude of
frequency tones is linearly reduced from 100% to 20% of the initial value:

3.3 System level improvements

3.3.1 FPGA Communication

While setting up robust digital logic and circuitry inside the FPGA seems as the most essential aspect of
a digital design, securing solid communication between software (PC) and hardware (FPGA) is equally
important. Data corruption and communication loss with hardware can lead to a series of negative

consequences, from misleading experimental results to even instrument damage. Such events, can cause

34

huge delays to the instrument development process and decrease the overall instrument reliability. In
addition, the fact that mass spectrometry analyzers, like Omnitrap, can be used for long periods of time
(weeks or months) without shutting down, creates the extra requirement of constant data transaction
verification and operation interrupt in case of communication failure. Therefore, the development of a
stable communication channel with FPGA and techniques for real time evaluation of the data transfers is
an urgent need.

For the current project, the data that need to be transmitted to the FPGA device are:

e The sequence of commands, which define Omnitrap’s operational flow.

e Samples of digital voltage waveforms, which correspond to 12.5 MHz sample rate.
These waveform points are generated and configured by developed PC user interface.
These waveforms are intended to be used for ion excitation purposes.

Data that need to be received by the FPGA device are:
e ADC read-back values, which correspond to voltage and temperature measurements.

Nowadays, most products that require an interface to a host computer consider United Serial Bus
(USB) as a primary option. USB is an industry standard that establishes specifications for cables and
connectors, and protocols for connection, communication and power supply between computers and
peripherals. It was firstly released in 1996 and its main purpose was to allow peripheral devices to
connect with computers using a standard and common type of connectors. These connectors would
make the use of peripherals more immediate while no host restart would be necessary for connecting or
disconnecting a slave device.

Until today there have been released the following versions of the USB protocol, from oldest to
latest:

e USB 1.0 (1.5 Mbit/s Low Speed, 12 Mbit/s Full Speed)

e USB 2.0 (1.5 Mbit/s Low Speed, 12 Mbit/s Full Speed, 480 Mbit/s High Speed)
e USB 3.0 (5 Gbit/s SuperSpeed)

e USB 3.1 (10 Gbit/s SuperSpeed+)

e USB 3.2 (20 Ghit/s SuperSpeed+)

e USB4 (40 Gbit/s SuperSpeed+ and Thunderbolt 3)

A USB interface can be added to an FPGA through USB protocol converter ICs. A USB protocol
converter is an external device that incudes USB controller logic and can interact with FPGA, in a
higher level than USB signaling, through a match simpler communication protocol. There are many
choices available in the market regarding the methods that can be followed, with a variety in
performance, ease of configuration, flexibility and time to market length. In the current thesis, some of
the well-known FTDI USB bridge I1Cs are used for USB 2.0 and USB 3.0 connectivity in different

35

approaches and the results are evaluated.

3.3.1.1 USB 2.0 to UART

The FPGA development board that is used for the current thesis incorporates the FT2232H chip by
FTDI (Figure 8). This chip is a USB 2.0 to UART/FIFO bridge. It has two independent communication
channels which can be configured in a variety of industry standard serial or parallel interfaces.

VCC 3V3 IN Channel A 120 MHz BG’;,'ZZZT ¢—ADBUSO
|<—ADBUS1—3»

—ADBUS2—3
Dual Pont TX g
> Balter) «—ADBUSS—@»
<«visour—| 't 4K Bytes |—ADEUS:—
Regulator AR
: Dual Port RX |«—ADBUSE 3
Buffer @ psse [@—ADBUST—gm
e Mut-
pupose 1
URRTIHFO [E—ACBUSO—-
il G |
EEPROM
~§—EESK Intertace = |—ACBUS3—»
EEDATA s | —ACBUSS—3»
- > | —ACBUSS—3»
| —ACBUSE—3
vy |—ACBUST—3»
———O0SCl—p]
~4—0SCOo
~—USEDP —p USB Protocol Engine PWRENS
And FIFO Control >
. UTMI PHY o SUSPENDN o
- 1 D’G—’ ~F £
~—RREF—
CSET) RESET Channel B (identical as Channsi A)
——RESETH -] Caiaratr

——TEST—P>

Figure 8: FTDI FT2232H block diagram

The chip can be easily configured through software. The configuration data are saved into the
EEPROM interface and the configuration occurs on chip boot up. The functionality of each block is
summarily described:

e Multi-Purpose UART/FIFO controller: There are two instances of them inside the chip,
one for each channel. These control the UART or FIFO data.

e USB Protocol Engine and FIFO control: It controls and manages the interface between
UTMI PHY and the FIFO memories. It is also responsible for power management and
USB protocol specification

e Dual Port FIFO TX Buffer: Data coming from the Host PC are stored here until the
channel master is available to receive them (maximum size: 4kBytes per channel)

e Dual Port FIFO RX Buffer: Data coming from the FPGA master are stored here until
USB interface of PC is ready to receive them (maximum size: 4kBytes per channel)

36

e RESET Generator: Provides a reliable reset circuitry for the chip. External reset is also
available if needed.

e Baud rate Generators: There are two of them, one for each channel. They are independent
so that each channel can be configured in a different baud rate.

e UTMI PHY: Its name stands for Universal Transceiver Macrocell Interface. This block
handles the USB SERDES (serialise — deserialise) circuitry, which is compatible to USB
2.0 and backwards compatible to all other USB versions. It also provides the clocks for
the rest of the chip.

Among the different available modes of the chip, the USB 2.0 to RS232 UART is chosen for the
first implementation of the current project. In this mode of operation the chip functions as a protocol
converter, which converts USB to dual wire UART (Rx and Tx wires) interface, to be handled by the
FPGA. The term RS232 refers to the configuration circuitry of the chip and the appropriate voltage
levels to operate.

UART protocol

UART (Universal Asynchronous Receiver/Transmitter, Figure 9) is a serial asynchronous
communication protocol and a circuit that allows data transfer between two (or more) devices that can
be synchronous to different clocks. UART is widely used, due to its simplicity of implementation,
practical ease of use and its general application capabilities.

UART’s asynchronous communication takes place via a wired single bit connection, between the
receiver (RxD), which drives the signal, and the transmitter (TxD) which samples and examines it (9).
The data to be sent are usually whole bytes (8 bits) and are transmitted serially, bit by bit, from the least
significant to the most significant bit. As there is no clock to synchronize the communication between
the two devices, in asynchronous communication the data is preceded by a recognizable start bit. This
signifies the receiver for the beginning of the communication. In a similar way, the transmission of a
byte and the end of the communication is signified by the stop bit.

If needed, the UART bus can be customized so that it also incorporates a parity bit. The parity
bit precedes the stop bit and includes information relative to the number of logic ones in the byte word
that was sent. It is set to logic one by the transmitter, if the number of logic ones in the transmitting byte
is even, and to logic zero if the number is odd.

37

b 7 L & L b t & & & o

—// ——

'

Single Symbal (8 Bits) transmission
Baud Rate=1/T

T=single bit
Figure 9: UART protocol

In order to ensure that no data is lost or multiplied in the UART protocol, the transmitter and the
receiver have to agree in advance regarding the sampling rate of the communication channel. This
sampling rate is expressed in bauds, where each baud is equal to 1 bit per second. The configuration of
baud rate is not part of the protocol and is done at a higher level. The standard and most commonly used
baud rates are the following: 110, 150, 300, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200,
230400, 460800 and 921600.

For a bidirectional communication system between two devices, which use UART protocol, two
wires are needed, one for each data direction.

For the FPGA to interact with the UART bus, two 1/0O pins are necessary, a receiver (Rx) and a
transmitter (Tx). Rx pin is used for data reception from USB to FPGA, while Tx pin is used for data
transmission from FPGA to USB. Internal FPGA logic is also necessary. For this purpose, AXI
UARTIite is used. It is a Xilinx Intellectual Property core which is capable of interacting with UART
interfaces while communicating with FPGA’s Programmable Logic (PL) via an AXI4 Lite slave
interface.

FPGA Design

AXI BUS

AXI, which stands for Advanced eXtensible Interface, is an interface protocol defined by ARM as part
of the AMBA standard (10). AMBA is an open standard for SoC (System-on-Chip) design created by
ARM to allow for high performance, modular, and reusable designs that are reliable while minimizing
both power and silicon. In the current project the AXI4 version of AXI is used (which responds to
AMBA 4.0 version). There are three types of AXI4-interfaces:

o AXI4 (Full AXI14): 1t is used for memory- mapped data transfer. In this communication
protocol, for every data transfer, an address is required, which is followed by the
transaction data. Data size can vary from 1 to 256 words while data word size ranges

38

from 32 to 128 bits. The AXI4 Full can interconnect multiple master to multiple slaves
that correspond to the same bus protocol.

e AXI4-Lite: This protocol is a simplified version of AXI4 Full. It is also a memory-
mapped protocol but it does not allow transactions of multiple data words (burst
transactions). Thus, for each data word transfer, a data address is required. The data word
size ranges from 32 to 128 bits. The implementation of this bus needs less resources,
which is its major advantage in comparison to AXI14 Full

e AXI4-Steam: Is not a memory-mapped protocol. It is used for very fast data transfer
from a single master to a single slave. It supports burst transactions of unlimited size and
it is the fastest of the three AXI4 protocols.

IP cores
AXI UARTIite

This Xilinx Intellectual Property core is shown in Figure 10. It executes serial to parallel data conversion
for data that come from UART interfaces and parallel to serial data conversion for data that come from
AXI4 Lite interfaces. It can be configured to manage data words of 5, 6, 7 or 8 bits. Furthermore, a
parity bit is available if needed. It incorporates a transmit and a receive FIFO, each one of 16 data words
depth. In case receive FIFO is full, data from UART interface are not received. Respectively, if transmit
FIFO is full, AXI data are rejected and an AXI bus error is generated so that it notifies PL that the
transaction failed. Finally the core can accept and assert interrupt signals (11).

UART Control

UART Lite

Registers RX RX
Control
I -
< Receive Data
FIFO
AXI
i BRG
AXl4-Lite Interface | Transmit Data
= FIFO
Interface
Status Register B ™ 1
(STAT_REG) ¥| Control D¢
.| Control Register
"] (CTRL_REG) > Interrupt
Control Interrupt

Figure 10: AXI UartLite block diagram

Two registers are available to give information about the status of the IP and offer IP control
capabilities. More specifically the status register provides the status of the receive and transmit data

39

FIFOs and asserts error bits if an error occurs. On the other side, control register contains the enable
interrupt bit and the reset bit for the receive and transmit FIFOs.

Using the appropriate input clock, the IP can be configured to support all standard UART protocol baud
rates from 110 to 921600. Block diagram of UART ite IP core is shown above.

AXI Interconnect

As mentioned above, AXI Interconnect is a Xilinx Intellectual Property core which is used for
connecting one or multiple master to one or multiple slave interfaces (12). The block diagram of the IP
core is shown in Figure 11.

AXI Interconnect
S| Hemisphere MI Hemisphere
:-____I r___—l Crossbar r---— r--—-l
Master 0 7 Coupler —— Coupler ——— ——— Coupler :—I Coupler : Slave 0
Leeme Eo_-_ Lozt eoas!
L J L]
: X :
] m .
R, T . - l'—_——l P S — - l'————l
1 I 1
Master 1 1 Coupler :—: Coupler :— ——— Coupler :—1 Coupler : Slave 1
e s B e A s
Slavelnterfaces Masterinterfaces

Figure 11: AXI Interconnect block diagram

The core constitutes of three sub-cores, the slave interface (SI), the master interface (M) and the
crosshar IP. AXI14 Master Interfaces are connected to SI while AX14 Slave interfaces are connected to
MI. Through SI masters can issue transaction read or write commands and wait for the related slaves to
respond.

The AXI Interconnect implementation is automatically configured based on the number and kind
of master and slave interfaces that are connected to it. The implementation kinds are the described
below:

e Pass through (1 to 1):
In case only one master and one slave of identical protocol are connected, the AXI
Interconnect IP does not need to implement protocol conversion or pipelining
functionalities. Subsequently, the two interfaces are connected directly and the core does
not occupy hardly any resources.

e Conversiononly (1to 1):
In case a data width conversion, a clock rate conversion, an AXI4-Lite slave adaption or

40

pipelining needs to occur, the implementation only omits the circuitry that is responsible
for arbitration, decoding and command fetching.

e N-to-1 Interconnect:
In case multiple masters are connected to a unique slave, arbitrary circuitry is
implemented so that each time only one master has access to that slave. In addition,
protocol conversion circuitry is included if needed.

e 1-to-N Interconnect:
In case one master has access to multiple slaves there is no need for arbitrary logic.
However, circuitry which decodes and issues the commands each time to the
corresponding slave, is necessary.

e N-to-M Interconnect (Crossbar Mode):
In case multiple masters are connected to multiple slaves, the AXI Interconnect
implements intermediate logic manages the transaction commands, even multiple
commands at a time.

e N-to-M Interconnect (Shared Access Mode):
Same as crossbar mode, except in this mode commands are issued one at a time.
Subsequently, this implementation consumes fewer resources but the AXI transactions
are slower.

Microblaze

Microblaze is the processing core that Xilinx offers to be used for 7-Series FPGA architectures. It is a
soft core which means that it is implemented by the FPGA LUT (Logic Unit Table) cell resources (13).
It incorporates 32bit RISC architecture with pipelining capabilities and it is highly customizable.
Furthermore, it can be customized so that it responds to different kinds of events like resets, interrupts
and exceptions.

Microblaze communicates with others IP cores through the AXI14 bus. For this purpose, AXI
Interconnect IP core is a precious tool as it can connect multiple masters (one of them is obviously
Microblaze) with multiple slaves that correspond to different kinds of AXI4 protocols.

Memory Interface Generator

The Memory Interface Generator constitutes a Xilinx Intellectual Property core. It is a combined pre-
engineered controller for interfacing 7 series FPGA user designs and AXI14 slave interfaces, to DDR3
and DDR2 SDRAM devices (14). This core is used in our design as a memory controller which allows
robust communication from our custom FPGA logic to the DDR3 memory, through AXI14 protocol bus.
It also includes internal logic for monitoring the DDR3 temperature and keeping its functionality within
safety limits.

41

Block Design

The purpose of this FPGA design is to set up a communication channel between PC software and FPGA
hardware which will serve the waveform data download and some extra functionality like setting up
ADC values and reading back DAC values. Creating the FPGA design for this purpose is fairly
straightforward and does not demand custom IP generation. The Xilinx IP cores mentioned above are
enough for our current demands. The FPGA design is shown in Figure 12.

MIG_reset

MOO_AXI 4y
e PR - A DORS p|[fteD dir3
ui_on_sync_rat fo]

8
¥0)¢

+ 4
|
SEs
9

AX

— UM D usb_uan
2o orrupt

Figure 12: Implementation of PC-FPGA communication based on UART protocol

In this block design, a clock wizard is responsible for creating two clocks, clk_outl of 75 MHz and the
clk_out2 of 200 MHz, from the input system clock of 100 MHz. The clock of 75 MHz is the input clock
for AX1 UARTIite IP. Such a clock frequency is selected as it allows configuration of the UART
channel in maximum baud rate of 921600. Microblaze is also clocked at 75MHz.

On the other hand, the 200MHz clock rate is used as the input clock of MIG controller. The MIG
controller is responsible for executing every DDR3 transaction that an AXI4 master requests.
Microblaze soft-core possesses the only AXI4 master interface in the design so it is the only IP that can
initiate DDR3 transactions.

For the purpose of supporting multiple functionalities in the same data channel, it is obvious that
some common rules between software and hardware need to be established. In our case, a convenient
way of achieving this is by setting up a group of identifier bytes. The idea is that the PC through
software will transmit bytes from an “identifier bytes bank” and the hardware will reply by executing the
corresponding action every time. The identifier bytes that are used and a brief description of the action
they are linked to are presented below:

e CONNECT (0xFD): Opens a connection port between the software (PC) and the
hardware (FPGA).

42

e DISCONNECT (0xFE): Closes an already opened connection port between the PC and
the FPGA.

e EXECUTION_START (0x1D): Starts the execution of the commands sequence.

e EXECUTION_STOP (0x1E): Stops the execution of the commands sequence.

¢ READ _SEQUENCE_STATUS (0x3A or 0xF6): Returns the status of the command
sequence (Idle or Running)

e READ LOOP_COUNTER (0x3B): Returns the number of times that the command
sequence has been executed

e DOWNLOAD_SEQ (0x1C): Initializes the command sequence download. This means
that the next bytes that are sent to the FPGA represent command sequence data.

e READ_RTD_X (0xF7 or Ox2F or 0xF9 or OxFA): Returns the measurement of resistance
thermometer X after averaging it in a window of size 16. Four resistance thermometers
are available so integer X can range from values 1 to 4.

e SET_RF_I (OxF8): Set the current (1) value of the RF (radio frequency) Power Supply
Unit.

e READ_RF_V (0x3D): Returns the voltage value of the RF Power Supply Unit.

e READ_RF_I (0x2E): Returns the current value of the RF Power Supply Unit.

e DOWNLOAD_WFM (0xFC): Initializes a waveform data download process. This
means that the next bytes which are sent to the FPGA represent waveform data.

e UPLOAD_WFM (0xFB): Read the waveform data saved to DDR3 (mainly used for
evaluation purposes)

This set of predefined identifier bytes are considered known for both the transmitter (PC) and the
receiver (FPGA), while Microblaze is responsible for executing each functionality. Using Xilinx
Software Development Kit (SDK) a loop process is written in C code, for the Microblaze to execute by
the time the FPGA is powered on. This process is a polling function which waits for data to be available
in the UART channel. When the first byte is available, Microblaze receives it and acts accordingly. By
the time an action is complete, Microblaze is polling until the next request.

This process can be also implemented using interrupts. Each time data are available in UART
interface, an interrupt occurs. Microblaze accepts the interrupt and realizes the equivalent operation,
according to the identifier byte that is received. In this manner, Microblaze is not polling when UART
data are missing and can be used for further operational load. As in our design, Microblaze functionality
is limited to UART demands serve, interrupt logic is excluded so that minimum FPGA resources are
occupied.

For the purpose of executing the actions mentioned above, like triggering execution start or
saving data to DDR3, Microblaze (PS) (programmable Software - Microblaze) needs to communicate
with PL (Programmable Logic - IPs). This communication occurs through AXI14 bus. In order for
Microblaze master to set reading or writing requests to a target slave, functions Xil_In and Xil_Out are
used accordingly. These functions are already implemented in the board support package, which can be
automatically generated by Vivado SDK tool for every FPGA design. They can perform input or output

43

operations of 8, 16, 32 and 64 bits for AXI14 memory mapped registers. More specifically, Xil_In
function takes, as its unique parameter, the AXI4 slave address and returns the corresponding data word.
On the other hand, Xil_Out takes as variables the AXI4 target slave address and the data word to be
written.

3.3.1.2 USB 2.0to FIFO245 Synchronous

For the purpose of creating a more efficient, in terms of speed, design and achieving faster download
speeds, especially concerning waveform data download to FPGA, another communication approach is
tested. The same FT2232H chip is used, but this time it is configured in a different mode of operation. In
this configuration, data that come from (or are intended to be sent to) the USB interface, are stored
internally in the FT2232H chip’s FIFO memory blocks (15). Two separate FIFO blocks are necessary
for this functionality, a receiving and a transmitting one. Data from USB interface (to FPGA) are stored
in the receiving FIFO while data from the FPGA master (to PC) are stored in the transmitting FIFO
block of the chip.

Furthermore, for this mode the chip provides an external 60MHz clock to be used by the FPGA
master. The channel’s control logic has to be synchronous to this clock domain in order to ensure robust
communication. The pins used in a 245 synchronous FIFO mode are the following (16):

e DATAJ7...0]: These are the bidirectional data pins. There used for both input (from PC
host to FPGA master) and output (from FPGA master to PC host) data words.

e RXF#: Output pin, active low. When asserted, it notifies the FPGA master that there is
data available in the receiving FIFO, coming from the PC host.

e TXE#: Output pin, active low. When asserted, it notifies the FPGA master that the
transmitting FIFO is available to be written by the FPGA master, so that a transaction
from FPGA to PC host occurs.

e RD#: Input pin, active low. It should be asserted when FPGA master is about to start a
read operation.

e WR#: Input pin, active low. It should be asserted when FPGA master is about to start a
write operation.

e CLKOUT: Output pin. It is the 60MHz chip output clock.

e OE#: Input pin, active low. When asserted it causes a bus turnaround, so that
DATA[7...0] are driven by the FT2232H chip. It should be driven low at least one clock
cycle before driving RD# low.

44

For a read transaction to occur, the RXF# signal has to be asserted. This assertion notifies the
FPGA master that data are available in the receiving FIFO. For the purpose of receiving the data, OE#
must be asserted by the FPGA master before the assertion of RD#. Thus, two clock cycles are at least
necessary for a reading transaction to begin. After these events, ft2232h chip drives one data word on
each clock cycle that RD# is set to logic zero. FPGA master can either burst read the available data or
receive them in parts by repetitively asserting and deasserting the RD# pin. A read transaction is
visualized in Figure 13.

Read Timing

RXF#

do d1

DATA (Read)

\ fS /S
\) f

Figure 13: FT2232H FIFO 245 read transaction

For a write transaction to occur, TXE# signal has to be asserted. This signal notifies the FPGA
master that the transmitting FIFO is available to receive data. By the time WR# is asserted, channel
master should drive the data bus with the data to be sent. A write transaction ends when TXE# is
deasserted (usually when transmitting FIFO is full) or when master sets WR# to logic one. A write
transaction is visualized in Figure 14.

45

Write Timing

TXE#

DATA (Write)

\ f§ /]

Figure 14: FT2232H FIFO 245 write transaction

FPGA design

The incorporation of the synchronous FIFO 245 communication mode in our FPGA design requires the
creation of a custom IP module which will be responsible for the control of FT2232H signals and
direction of receiving data, each time in the target AXI4 slave interface. This mode is intended to be
used for waveform download to FPGA, thus only reading transaction interface, from PC to FPGA is
implemented and tested here. Sequence data and instrument read-backs transactions will still occur
through the already implemented UART channel. As a result, a new USB cable and extra FPGA
resources are needed for this implementation.

The custom module that is designed for the above purpose should be able to issue writing
transfers to DDR3. Towards that end, our IP is occupied with an AXI4 Lite master interface. In Vivado
environment, AXI bus default logic can be automatically generated. Further modifications are required
so that our custom logic is able to use the AXI interface accordingly. In our case, the AXI signals that
are controlled by custom IP are the AXI target write address (M_AXI_AWADDR), write data
(M_AXI_WDATA) and transaction start trigger pulse (init_txn_pulse). Signal init_txn_pulse is a
single clock pulse which triggers the start of an AXI4 lite transaction of data M_AXI_WDATA to AXI
bus address M_AXI_WADDR.

A block diagram of the Finite State Machine that serves the above purposes is presented in Figure
15.

46

bytes received < 4

bytes received < 4

GET_AXI_TRANSACTIONS AXI_TRANSACTIONS

bytes received = 4

bytes received = 4

DDR_ADDRESS

axi transactions until now < total transactions

[WAIT_AXI_TRANSACTION H TRIGGER_AXI_TRANSACTION H PLACE_DATA_ON_AXI

axi transactions
until now = total
transactions

bytes received = 4

DATA_WORD GET_DATA_WORD

bytes received < 4

Figure 15: FIFO 245 Finite State Machine

Finite State Machine description in words:

The above FSM receives a whole waveform data packet from the USB 2.0 to FIFO interface of
FT2232H chip and saves the received data to DDR3 memory. The size of the waveform as well as the
writing address are both configurable.

To begin with, while data from the USB 2.0 interface are not available, FSM remains in IDLE
condition. By the time data are available in the bus, FSM moves on to the necessary actions to receive
them. The first bytes, by default, represent the DDR3 write address. Every AXI4 address is of size 32
(bits), so 4 bytes are necessary for its configuration. The write address can range from 0x80000000
(DDR3 AXI address) to Ox8FFFFFFF, as our DDR3 memory has 2Gbit of usable space and each AXI
address is mapped to one single byte. After DDR3 write address is configured, the next 4 bytes should
represent the number of AXI transactions. Since each waveform point is represented by 2 bytes (16 bits)
and each AXI transaction has word length of 4 bytes (32 bits), the AXI transactions number should be
equal to waveform points / 2, and therefore represent the waveform’s total size. Subsequently, all
following incoming bytes constitute waveform data, until waveform size is reached. For every 4 bytes,
one AXI transaction is issued and no more data bytes are received before this AXI transaction is
completed.

Finally, when waveform size is reached, waveform download is complete and FSM returns to its
initial IDLE state, waiting for the next data byte to be available in the bus.

Clock domain crossing (CDC)

In the above circuitry, the input signal single_write_done notifies the FSM that the 32 bit write
transaction which was last issued, has been completed, thus next data bytes can be received. This signal
is controlled by the AXI4 bus default logic and it asserts for a unique clock cycle, each time a (reading
or writing) transaction comes to an end. A single rising edge pulse, coming from its clock domain,
would last for a 10ns timing width, as the AXI4 bus clock frequency is synchronous to 100MHz.

47

However, in our design this pulse has to be sampled by the 60 MHz clock of FT2232H chip, which FSM
is synchronous to. It is self-evident that directly sampling a pulse of 10ns with a sample rate of 16.6ns
(60 MHZz) is insufficient. Indeed, after testing this implementation, the single_write_done pulse was
detected by our 60MHz clock in a success rate of about 60%, which coincides to the difference between
the two clock periods.

The above issue constitutes a cross clocking domain problem. More specifically, a clock domain
is a part of a design that has a clock that operates asynchronous to another clock in the design. For
example, in this design we have two clock domains, one at 100 MHz and one at 60 MHz. Furthermore, a
clock domain crossing signal is a signal that is sampled by a register in another clock domain. Therefore,
single_write_done signal is a clock domain crossing signal. Directly sampling signals of a clock domain
synchronously to another clock, which operates asynchronous or has a variable phase relationship with
the prior clock, has a high probability of failure due to flip-flop meta-stability. Flip flop meta-stability
derives from flip-flop’s setup and hold time. These timing properties represent the time in which the
data input is not legally permitted to change before and after a sampling clock edge, accordingly. An
example of a D flip-flop getting in meta-stability is shown in Figure 16.

setup hold

|

-
:

clk

PSR _Sppapepae. B TS

\
!

1

|
i
i
A
[

1

[

[

\

\

:

., e

|

Figufe 16: Flip-Flop setup/hold time

In case input d of the D flip-flop violates the setup and hold time, the output q of the flip-flop
keeps oscillating for an indefinite amount of time. There is a possibility that this unstable value may not
converge to a stable value before the next sampling clock edge arrives.

Entirely avoiding meta-stability issues in a multi-clock design is inevitable. However, there are

certain design techniques that can help to reduce the probability of their appearance asymptotically to
zero. In our design, the main method used is the 2-FF Synchronizer (17). The equivalent circuit is shown
in Figure 17.

data1 data2 data3
data e > L’ >
=> —hD
clk1 |
clk2

Figure 17: 2-FF synchronizer

48

In the 2-FF synchronizer, the first flip-flop samples the asynchronous input signal, datal, into the
destination clock domain, clk2. A second flip-flop buffers the signal once again, synchronous to the
destination clock. The second flip-flop has the intended goal of providing signal data2 sufficient time to
get stable. Circuitry synchronous to clk2 can now safely sample data3. It is important to note that meta-
stability is a probabilistic phenomenon, thus there is always a chance that data3 will still be unstable.
However, this probability is practically minor and not to be taken into consideration.

ILA cores
The digital functionality described above is evaluated using Integrated Logic Analyzers (ILAS) in
Vivado IDE (18). These Xilinx IP cores enable real-time debugging of FPGA designs while they are
running in hardware. Such and evaluation method is highly efficient as it is applied under the actual
system environment and speed conditions. Therefore, through this process, circuit functionality can be
verified while potential timing issues are prevented.

The ILA cores function like digital oscilloscopes. The sampling frequency is defined by the
core’s clock domain. In this case, two clock domains exist in the design; therefore two ILA cores are
necessary for effective design testing. Vivado interface allows setting up the trigger condition of every
ILA core. When trigger condition is met, the corresponding ILA core is activated and signal samplings
are depicted in a waveform viewer. Waveforms from different parts of the FSM logic are given below
(the vertical red line represents the triggering moment):

W s_state[3:0] 2 0
¥ s_prog_d[7:0]

8 5_prog_ncen
@ s_prog_oen

8 s_prog_rdn

& s_single_write_sync
@ s_axi_single_tin

W s_data_byte[1:0]
W|s_starting_write_addr{31:0] 81000000 00000000

W s_num_axi_transactions[31:0] | 00000000 0000) ‘ ‘ ‘1 00020000 ‘
¥ s_write_counter{31:0] 00000000 : :

Figure 18: FIFO 245 FSM - Address configuration

In the digital waveforms of Figure 18 the most important signals of our logic are depicted. This capture is
taken in the configuration phase, where write address and packet size is decided. The ILA triggering
condition is falling edge of the signal rxen which is asserted when read data are available in the USB
bus. The FSM remains between states GET _DDR_ADDRESS and DDR_ADDRESS (0 and 1,
respectively) until 4 bytes are received. For one byte to be read, signal rdn has to be asserted.

Right after that, the DDR_ADDRESS is configured as equal to 0x81000000 and FSM moves on
to states GET_AXI_TRANSACTIONS and AXI_TRANSACTIONS until the size of the waveform is
also configured. In this example (Figure 19), the waveform to be downloaded is represented by the
s_num_axi_transactions signal which is equal to 0x20000 after its configuration. As already
mentioned, the total number of AXI transactions is equal to half the waveform size as with each AXI
writing transfer, two waveform points are saved.

49

W' s_state[3:0]

¥ s_prog_d[7:0]

@ s_prog_rxen

4 s_prog_oen

é s_prog_rdn

o S_single_write_sync

e s_axi_single_txn

W s_data_byte[1:0]

W s_starting_write_addr{31:0] 81000000

¥ s_num_axi_transactions[31:0] | 00000000
¥ s_write_counter{31:0] 00000000

@ s_single_write_sync 0

Figure 19: FIFO 245 FSM: Packet size configuration

The next phase of the packet download is the data transfer. The data points are transferred in words of
four bytes through AXI interface. In the same manner as before, FSM remains between states
GET_DATA_WORD and DATA_WORD (4 and 5 respectively) until a 32 bit AXI data word is created.
Then an AXI transaction demand is issued by asserting the s_single_axi_txn signal. This signal’s rising
edge triggers AXI default logic to take action. When the transaction is done, AXI asserts the
s_single_write signal and FSM moves on to receive the next data point.

Similarly, all waveform points are written to DDR3 memory and FSM returns in IDLE state after
all data points are received.

3.3.1.3 USB 2.0 Streaming Approach

Up until now, storing the necessary data in an external DDR3 memory and latter reading them back to
the FPGA, is the main approach for having large packets of customized data (in our case, signal
waveforms customized by the instrument user) available for use in the hardware. The necessity for
external memory device derives from the fact that the FPGA block ram cells cannot provide enough
available storage space to support instrument functionalities. Inevitably, the instrument’s overall
performance is limited by the rate of data exchange between PC and FPGA.

A potential way of overcoming this limitation is by taking advantage of the fact that not the
whole waveform packet needs to be available at hardware at a given time. Only one waveform point for
every 12.5 MHz clock cycle (DAC sample rate) is needed to replicate our custom signal. Therefore,
streaming each waveform point by PC to FPGA instead of downloading the whole data packet at once
could eliminate the download time limitation.

Description

For implementing this idea the FT2232H chip is used once again in FIFO 245 mode. While the process
of receiving data from chip remains similar, the internal digital logic that manages the incoming data
words is changed. These are no longer directed to DDR3 memory, through AXI bus, but to FPGA
internal block ram. This block ram is implemented as dual port First-In-First-Out (FIFO) memory of 16
bit data width and 2%2 (4096 waveform points) data words depth. The following block diagram
represents the overall idea (see Figure 20):

50

PLAY_WFM

|

Receive data,
direct data to

FIFO CUSTOM IP When
PLAY_WFM
asserts,
forward
points to
— DAC
— PORTA
': S FT2232H v p| LASTIN
. FIFO 245 point_N
===]
point_N-1
point_N-2

FIRSTIN v DAC —
point.1 | poRTB

DUAL- PORT FIFO

Figure 20: Waveform streaming using FT2232H FIFO 245 protocol

The waveform data path begins from PC software. After waveform customization and generation, data
points are downloaded through USB 2.0 port to FT2232H chip. FPGA custom IP receives the data
available and forwards them to internal FIFO block ram through writing port A. In any case, FIFO
storage space is not enough to host a whole waveform signal. As data can be received until the point
when FIFO is full, remaining data are stored inside FT2232H’s internal FIFO block or inside PC
memory. Waveform data remain static in this manner, until PLAY_WFM signal asserts. This signal
signifies that a waveform play demand has been made and custom IP should initialize waveform point
flow to the Digital-to-Analog (DAC) converter, at a rate of 12.5 MHz. As FPGA FIFO gets empty,
custom IP is free to receive new incoming data from FT2232H interface. Considering the fact that the
receiving rate (60 MHz) is faster than the transmitting rate (12.5 MHz) waveform points will always be
available for DAC to reproduce.

There are two FSM processes, each one controlling one port of the FIFO block ram.
FTDI_TO_FIFO_PROC process is responsible for reading the available data from the FT2232H and
writing FIFO. In case FIFO is full, FSM maintains the byte that was received last and was never written
in FIFO, until storage space is available. In this manner, data points are not lost even if FIFO runs out of
memory available.

On the other side of the FIFO, FIFO_TO_DAC_READ_PROC process takes care of the
waveform generation demands. It remains in idle state until play_wfm signal is asserted. Signal
wfm_Q2_Q5 determines the quadrupole where the waveform will be generated (so it is a DAC selector
pin) and wfm_points_num determines the number of waveform points that will be generated. Cases
where no data are available when a play-waveform demand is issued or FIFO runs out of data before
wfm_points_num is reached, are both considered error occasions and error signal is activated.

51

3.3.1.4 USB 3.0 to FIFO245

Up to this point, the main goal is to achieve high download speeds which will not compromise in
reliability and tolerance. This is the reason why an upgrade is examined, regarding the version of the
communication protocol that is being used.

Towards this end, a comparison between USB 2.0 and USB 3.0 communication protocols was
made. More precisely, USB 3.0 is the third major version of the Universal Serial Bus standard for
interfacing computers and electronic devices. Its nominal speed is defined as 4.8 Gbps (Gigabits per
second) while USB 2.0 gives a maximum throughput of 480 Mbps (Megabits per second), namely 10
times slower. In addition to that, a USB 3.0 channel is an asynchronous full-duplex communication port,
which means that it can communicate on both directions at the same time (both send receive data
simultaneously). On the other hand, USB 2.0 consists of a half-duplex polling mechanism which implies
that, at some point, data can be either sent or received, but not both. The better performance of USB 3.0
is achieved against the number of wires within a communication cable (9 for USB 3.0 vs. 4 for USB 2.0)
and power consumption (up to 500mA for USB 2.0 vs. up to 900mA for USB 3.0) (19).

Finding an appropriate chip

The FT60x Series - Superspeed USB 3.0 ICs chips, by FTDI, constitute a great solution for the
incorporation of the USB 3.0 communication for our project. Those chips operate as USB3.0 to FIFO
bridges and are being extensively used for demanding FPGA communication purposes. Two versions
are available, the FT600Q and the FT601Q (20). The main difference between these two solutions is the
size of their parallel FIFO data bus. To be more specific, FT600Q incorporates a 16bit parallel bus while
FT601Q incorporates a parallel bus of 32 bits. The FT601Q version is selected as it can achieve twice
the data bandwidth in comparison to the FT600Q chip.

Furthermore, FTDI provides customers with the associated DLL library files which can be used
for the development of software applications. This way, bidirectional communication between FPGA
and PC client can be accomplished.

FT601Q functionality includes two main modes of operation:

e 245 Synchronous FIFO mode: is a single-channel bidirectional communication protocol.
The internal chip FIFO is divided in two parts, the Receive FIFO and the Transmit FIFO
(4kBytes each). Thus the read and write operations occur independently.

e 600 Synchronous FIFO mode: is a multi-channel bidirectional communication protocol.
The number of communication channels is configurable and can be either 2 or 4. Each
one has its own set of Receive and Transmit FIFOs.

The main goal for the current project is the fast data transfer from a client PC to the DDR3
memory of our development board, through the Artix7 FPGA. A multi-channel configuration would be
of no use for this purpose. Therefore, 245 synchronous mode is chosen as more appropriate for
achieving the highest possible data throughput. The main pin signals of FT601Q that participate in 245
synchronous FIFO mode and that will be controlled by our Artix7 FPGA device, are listed below (21):

52

DATADO...31: the I1/O 32 bit parallel FIFO data bus

RXF_N: is an output signal, Receive FIFO Full. It is active low and when active it
indicates that the Receive FIFO has data available and it is ready to be read by the FIFO
master (FPGA)

TXE_N: is an output signal, Transmit FIFO Empty. It is active low and when active it
indicates the Transmit FIFO has space available and it is ready to receive data from the
FIFO master (FPGA)

OE_N: is an input signal, Output Enable. It is active low and when it is driven low by the
bus master (FPGA), the slave (chip) will drive the data bus.

WR_N: is an input signal, Write Enable. It is active low and when it is driven low by the
bus master, the master has write cycle access.

RD_N: is an input signal, Read Enable. It is active low and when it is driven low by the
bus master, the master has read cycle access.

As far as the waveform data download is concerned, the data will be transferred in one direction,
from the PC client to DDR3 memory, by the FPGA communication master. For this reason, the signals
TXE_N and WR_N are of no use, as their purpose is limited to the opposite data flow (from FPGA
communication master to PC host). Signal WR_N (active low) is set to 1 by the FPGA master and is

never asserted.

A 245 Synchronous FIFO mode bus master read transaction is represented in the diagram of
Figure 21. It is significant to notify that the FT601Q chip provides its own digital clock of 100 MHz. The
FPGA functionality is set to be synchronous to this clock domain.

¢ 0K

e TXEN
e RFMN
e OEN
e RON
® WRN

® DATA[310]

eS|] jmwiey] (smiea]] [emisey] Dlel] [smiSe]] pene] |

\ /

Y oo X o1 ¥ o2 X p3 X o4 X

Figure 21: FT601Q read transaction

53

The block diagram of Figure 22 depicts an FSM (Finite State Machine) logic that could read data from
the FT601Q Receive FIFO. It depicts the same information as above, but in a more comprehensive
manner.

WAIT
RXF_N TO
ASSERT

DEASSERT
OE_N AND
RD_N

DELAY 2
CLOCK CYCLES

RECEIVE DATA
UNTIL RXF_N ASSERT OE_N
DEASSERTS
ASSERT RD_N

Figure 22: FT601Q Finite State Machine for a reading transaction

USB107 Humandata

The first revision of the USB 3.0 connectivity is implemented using the USB-107 FT601
Evaluation Board by Humandata. This board incorporates the FT601Q chip in a way that allows all
possible configurations, such as different supply and 1/0 voltages for the chip (1.8, 2.5 or 3.3 Volts). In
addition to that, it includes all the necessary ESD (electrostatic discharge) and surge protection
components which ultimately eliminate the unwanted noise interference, a major issue in superspeed
communications.

So that it is possible to execute the necessary tests, an intermediate board is designed. On this
PCB, pin connectors for both the Numato Artix7 Neso and the Humandata USB107 are routed so that
the FPGA can communicate with the FT601Q chip and control its functionality. The PCB is designed in
such a way that impedance matching of 50 Ohms among both evaluation boards, is guaranteed. To
achieve this goal several parameters are taken into consideration, but most importantly:

e A 4-layer design is chosen for the intermediate connectivity PCB. Using the impedance
match calculator of Saturn PCB Toolkit Version 7.09, the thickness of each layer is chosen so that it
satisfies the 50 Ohms impedance restriction.

e The rooting copper lines of the signal layer which are connecting the FPGA 1/Os to the
FT601Q pins, are being designed so that they have similar lengths and minimum travel distance on
the board.

54

Block Design

AXI Stream

In the specific design, AXI4 Stream bus protocol is used to transfer data among the FPGA logic
components. The AXI4-Stream protocol is used as a standard interface to connect components that wish
to exchange data. The interface can be used to connect a single master that generates data, to a single
slave, that receives data. The protocol can also be used when connecting larger numbers of master and
slave components. In comparison to the other available AXI4 protocol versions, AX14-FULL and AXI14-
LITE, the AXI4 Stream is the most efficient for accessing consecutive memory addresses. This derives
from the fact that AXI14-LITE demands master- slave signal handshaking and address reference for
every data word transfer, while AX14-FULL allows a maximum of 256 burst length (the term “burst
transaction” defines a transaction of data that consists of only the data and the address of the first data
word). On the other hand, AXI4 Stream allows unlimited burst length and is ideal for sending data to
consecutive memory locations.
AXI4 Stream is not a bidirectional bus which means that data transfer can only happen in one

direction from master to slave. The main AXI4 Stream signals are the following:
Tready: a slave signal, which indicates that the master is ready to accept data.
Tvalid: a master signal, which indicated that a valid data word is available.
Tdata: the data that are streamed from master to slave

e Tlast: a master signal, which asserts every time the last data word of a packet is streamed

For an AXI4 Stream transaction to occur, write address is not necessary. The tdata word is

streamed from master to slave every time both signals tready and tvalid are asserted. Finally, a
streaming packet transaction should complete every time tlast signal is asserted.

The block diagram of the FPGA design is presented in Figure 23.

55

USB3_FT601Q_Controlier_0

stwu_n

wr_n

rd_s
oe_n
xreset_n
BE[3.0]
GPIO[1:0]

00
QU00UU

ox_n

DATA[31:0]
> WAKEUP_N

proc_sys_reset_0

- puise_end fe——— 5 puise_end

rst_mig_7series_0_100M

Figure 23: Implementation of PC-FPGA communication based on USB3.0

It consists of the following blocks:
e AXI DataMover (version 5.1, Xilinx)
e AXI Interconnect (version 2.1, Xilinx)
e Memory Interface Generator (version 4.1, Xilinx)
e USB3 FT601Q Controller (custom IP)
e Data Transfer Check (custom IP)
e Data Transfer Timer (custom IP)

AXI| DataMover

AXI DataMover is a Xilinx IP core whose functionality converts AXI14 Stream to Memory Mapped
AXI4 FULL communication protocol, and vice versa (22). As far is this FPGA design is concerned, this
core is used to convert an AXI4 Stream Protocol , coming from the USB 3.0 Controller, into an AXI4-
FULL protocol bus, so that communication with MIG memory controller can be accomplished.

AXI DataMover is configured via commands of specific format, which are issued through an
AXI4 Stream slave interface. The most crucial information that every DataMover command has to
include is the number of data bytes that are intended for streaming as well as the target write address.

After a command is issued, DataMover is ready to accept the streaming data. Data are transferred
through another AXI14 stream slave interface. When the configured number of bytes is streamed,
DataMover completes the transaction and moves on the execution of the next issued command.

56

In case incorrect number of bytes is provided, DataMover stops the execution of commands and
remains in an error state. Therefore, proper logic that evaluates the DataMover transactions and monitors
its status, is necessary.

Data Transfer Check

This custom IP is constantly sampling the AXI DataMover status AXI14 Stream interface. In case of
transfer malfunction, error output is asserted. Otherwise, pass bit is asserted to notify that AXI
DataMover’s last transaction has been successfully completed.

Data Transfer Timer

This IP is used for data transfer speed measurement purposes. It samples the AXI14 interface of MIG
controller. A pulse is generated on both transfer start and transfer end. Then, using an oscilloscope the
data packet download and transfer to DDR3 memory can be precisely measured.

USB3 FT601Q Controller
The most essential IP core is the controller of the FT601Q chip. This logic core is responsible for both
receiving the USB3 data and controlling the DataMover IP. Its design is being tested so that maximum
data throughput is achieved, while VHDL code remains efficient and customizable in case future

modifications are required.

Finite State Machine Description in words:

The USB3 FT601Q Controller FSM is specifically designed to receive a packet of bytes from the USB3
interface and replicate it to a DDR3 memory location. Both the size of the packet and the DDR3 write
address are configurable. At the end of the transaction, the FSM returns in a stand-by state where it
remains until new write data are available in the USB3 bus.

To begin with, when FPGA power-on occurs, FSM is set in CONFIG_IDLE state. In this state,

the rxf_n bit of FT601Q chip is inspected every clock cycle. When this bit is asserted (set to 0, active
low as already mentioned), FPGA is notified that USB3 data bus is not empty anymore and that FSM
should proceed in receiving the data available. The first 32bit data word represents the transaction
configuration data. More specifically, bits 24 downto 0 specify the packet size in 32 bit words, which is
identical to the USB3 data bus width.

The remaining 7 bits (31 downto 25) represent the DDR3 write location. The available storage
space inside the DDR3 memory is 2 Gb (Giga Bits) and is split into 128 parts of 2 MB (Mega Bytes)
size each. Every memory part has its own ID number. Consequently, ID values range from 0 to 127, so 7
bits are just enough for their representation.

57

After the transaction is configured, FSM is set in DATA_IDLE state and awaits the rxf_n bit to
be asserted once again. When the expected signal assertion occurs, FSM proceeds in receiving every
data available in the USB3 bus, until packet size is reached.

In this phase, it is significant to notify that, FT601Q chip transfers data in small parts of 4kB
(kilo Bytes). This derives from the fact that the specific device incorporates an internal FIFO of 4kB
data depth.

Every FT601Q data packet that is received, is stored temporarily inside the FPGA, in bounded
block ram cells (FIFO) of 4kB maximum capacity. Whenever this block ram space is full, FSM pauses
data receive process and issues a DataMover transaction command. Right afterwards, block ram data are
being streamed to DataMover AXI4 Stream data port. When all 4kB are finally streamed, block ram
should be empty once again. Subsequently, FSM proceeds in receiving more data, until packet size is
reached and eventually the DDR3 write transaction is complete.

A more detailed description of FSM states:
Our FSM can be found in one of the following states (the order is identical to the operation
flow):

TRANSACTION CONFIGURATION(Figure 24)

e CONFIG_IDLE: The beginning state. Assertion of rxf_n is expected.

e STALLZL, STALLZ2: Two consecutive stall clock cycles that are necessary to occur before
FT601Q is able to export the data available.

e SET_CONFIG_OEN: Output enable pin (oe_n) is asserted.

e SET _CONFIG_RD: Read enable (rd_n) is asserted.

e RECEIVE_CONFIG_DATA: The transaction configuration data are received.

e CONFIG_TRANSFERL1: Data type conversion occurs. From ddr3_id_slv (std_logic_vector) to
DDR3_ID (integer) and from data_size_slv (std_logic_vector) to DATA_SIZE (unsigned).

e CONFIG_TRANSFER2: DDR3_ID number is matched to the equivalent DDR3 starting write
address.

58

xf_n=0
.o ‘@—n{ STALL1]—’[STALL2 H SET_CONFIG_OEN SET_CONFIG_RD

RECEIVE_CONFIG_DATA

——————| CONFIG_TRANSFER2 CONFIG_TRANSFER1

Figure 24: FT601Q FSM transaction configuration

DATA PACKET RECEIVE(Figure 25)

e DATA _IDLE: Wait for rxf_n to assert.

e STALL3, STALLA4: same as STALL1, STALL2

e SET_OEN: Output enable pin (oe_n) is asserted.

e SET_RD: Read enable (rd_n) is asserted.

e RECEIVE_DATA: Receive all USB3 data until rxf_n is deasserted. Data are organized in
128bit data width which is identical to the DataMover AXI14 Stream port width.

e CONFIG_DATAMOVER_CMD: The DataMover transaction command is configured.

e FETCH_DATAMOVER_CMD: A trigger pulse is asserted so that the DataMover command is
issued.

e WAIT _DATAMOVER_LDNXT: Wait until the DataMover command fetch phase is
completed. The command is ready when Id_nxt signal of DataMover IP core is asserted.

e CONFIG_DATAMOVER_STREAM: The number of 128bit data words that are about to be
streamed is configured.

e TRIG_DATAMOVER_STREAM: A trigger pulse is asserted so that the DataMover stream
begins.

e WAIT _UNTIL_DONE: Assertion of stream_done, which signifies the end of the data stream, is
expected/ If packet size is reached, FSM returns to CONFIG_IDLE state, else it is set to
DATA _IDLE so that it receives the remaining data.

59

Transaction
Configuration

xf_n=0
EEEE— STALL3 STALL4 SET_OEN SET_RD

WAIT_DATAMOVER_ FETCH_DATAMOVER_ CONFIG_DATAMOVER_
LDNXT cMD cMD RECEIVE_DATA

Id_nxt=1
stream_done = 1

CONFIG_DATAMOVER_ TRIG_DATAMOVER_
STREAM STREAM

stream_done =0

Figure 25: FT601Q FSM packet receive

ILA cores

The sampling frequency is defined by the core’s clock domain, which in our case is chosen to be the
FT601Q clock of 100MHz. This sampling rate is sufficient because our whole digital system is
synchronous to it and no clock of higher frequency exists in the design.

Vivado interface allows setting up the trigger condition of every ILA core. When trigger
condition is met, the corresponding ILA core is activated and signal samplings are depicted in a
waveform viewer. Waveforms from different parts of the FSM logic are given below (the vertical red
line represents the triggering moment):

Transaction Configuration(Figure 26):
ILA Status: Idle

Name
¥ com_state[4:0] 00 0) 0z 04
W DATA_SIZE[24:0) 0000000 ! 0010000
¥ DDR3_ID[6:0] 00 ! 02
¥ current_address[31:0] | 80000000 000 gozom 4 80400000
65_o0e_n

es_rd_n

6 s_nfn

Figure 26: Transaction configuration, ILA cores

When signal rxf_n is asserted, ILA core is activated and results are plotted in the waveform viewer.

60

After two stall clock cycles, signals oe_n and rd_n are asserted. Subsequently, DATA_SIZE and
DDR3_ID are both configured by the first 32 bit data word. In this example, data size is equal to
0x10000 (decimal value: 21 = 65,536) while DDR3_ID is equal to 2. The write ID is matched to write
address 0x80400000 (DDRS3 base address = 0x8000000, ID segment size = 0x200000). Finally, the FSM
is set to state 0x08 (hex equivalent of DATA_IDLE state) waiting for next data to be available in the
USB3 bus.

DATA PACKET RECEIVE (start, Figure 27)

ILA Status: Idle

Name
¥ com_state[4:0] 08
¥ current_address(31:0] 80400000
W' DATA_SIZE[24:0] 0010000
¥ DDR3_ID[6:0] 02
W bytes_rcvd[12:0] 0000
¥ data_rcvd[10:0]
o s_ld_nxt
a|s_send_cmd_trig
o s_send_data_trig
W total_data_rcvd[24:0) 0000000
¥ word_buffer(127:0] 875df921d30defd55015f7
W words_rcvd(8:0] 000
8 s_fifo_wr_en
és_oen
es_rdn

8 u_ila_0_s_fifo_empty

]
1
1
es_ni_n 1
1
0

8 u_ila_0_s_fifo_full

Figure 27: USB 3.0 waveform signal receiving - configuration

After transaction configuration, FSM should stay in an idle state until rxf_n is asserted once
again. Indeed, right after the necessary signal assertion, FSM sets oe_n and rd_n to logical zero so that
USB3 chip moves on to generate the data available. Data received are stored in a local FIFO of 128
write width and 4 kB write depth. Thus, FIFO’s write enable signal is asserted every four data words (of
32bit length), allowing word_buffer (of 128bit length) to be pushed in.

DATA PACKET RECEIVE (end of a random packet, Figure 28)

61

ILA Status: Idle

100

W |com_state[4:0]

W current_address[31:0] 80400000
0010000

3 02

W bytes_rovd[12:0] 0fed

W data_rcvd[10:0]

8 s_ld_nxt

@ s_send_cmd_trig

4 s_send_data_trig

W total_data_rovd[24:0] 000038

¥ word_buffer{127:0] 1f09338db7¢75b7fada7b:

¥ words_rcvd[8:0]

o s_fifo_wr_en

és_oen

és_rdn

e s_nf_n

@ u_ila_0_s_fifo_empty

o u_ila_0_s_fifo_full

Figure 28: USB3.0 waveform data packet receiving - completion

Data are received by the FPGA master until rxf_n signal is deasserted. Right afterwards, a transfer
command is issued to DataMover’s AXI Stream command port by asserting the send_cmd_trig signal.
The moment when signal Id_nxt is set to logical one by the DataMover, indicates that our transfer
command has been successfully issued and that it is ready for execution. Therefore, FSM generates a
send_data_trig pulse to initiate the stream of received data, to DataMover’s AXI Stream data port. The
maximum number of data words that the USB3 chip can generate in one rxf_n assertion — deassertion
event, is 1024 which is equivalent to 4 kB.

DATA PACKET RECEIVE (end of transaction, Figure 29)

ILA Status: Idle

Name
¥ com_state[4.0] 00
W current_address([31:0) 8043f000
W DATA_SIZE[24:0] 0010000
¥ DDR3_ID[6:0]
W |bytes_rcvd[12:0]
¥ data_rcvd[10:0]
o s_Id_nxt
¢ s_send_cmd_trig
¢ s_send_data_trig
W total_data_rcvd(24:0] 0010000
¥ word_buffer{127:0] 3d4d6579f54de95dbf699
¥ words_rovd[8:0] 100
o s_fifo_wr_en

4s_oen

e s_ni_n

¢ u_ila_0_s_fifo_emply

0
1
os_rd_n 1
1
1
0

o u_ila_0_s_fifo_full

Figure 29: USB3.0 waveform signal receiving - completion

62

The unsigned signal total_data_received serves as a counter which represents the total number of data
words of 32bit length that the FPGA master has received. When total_data_received gets equal to
DATA_SIZE the transaction is complete and the FSM should be set to CONFIG_IDLE state, waiting
for the next transaction configuration. The waveform above depicts the moment when the last packet of
4 kB is written to the DDR3 and the FSM resets to its initial state.

63

4 FPGA acceleration of waveform generation

Purpose

Waveform generation and customization constitutes a vital part of the instrument’s functionality. The
fact that Omnitrap’s sequence of actions during and experimental process is primarily controlled by the
FPGA, makes the idea of direct digital waveform synthesis, by the FPGA itself, quite appealing. On the
other side, the same signal configuration capabilities have to remain open to the instrument user, while
speed and robustness cannot be neglected. For the purpose of comparing waveform generation by PC
against direct digital synthesis by FPGA, the latter is also implemented and examined in terms of
practicality, effectiveness and results, in a broader sense, that this modification would have in the overall
instrument design. As already mentioned, there are two kinds of isolation waveforms that are used,
Sweep and Filtered Noise Field (FNF). Each of these signals has its unique properties and thus requires
different approach in the purpose of generating it inside the FPGA.

4.1 Sweep Direct Digital Synthesis

The calculations that are necessary for a sweep waveform generation are already mentioned in chapter
3.2.1 and are also given here for reader convenience:

Sweep(n) = sin [Phase(n)],

where Phase(n) is calculated by the formula:
Phase(n) = Phase(n — 1) + 2pi * Ts * frequency(n),
where Ts is the sampling period.

Frequency(n) is increasing linearly:
frequency(n) = frequency(n — 1) + frequency_step.

These mathematical expressions constitute the base of Sweep generation by the FPGA, too. A new
custom IP is implemented that executes the above calculation process in a pipelining manner so that
high calculation speeds are accomplished. Sweep waveform is still configured by instrument user
through user interface. Starting frequency, frequency step, sweep duration, notch placement and
amplitude modifications are open to user, offering high signal customizability. The configuration data
are sent to FPGA through USB to UART interface. This data size is minor, so speed is not an important
factor here and thus the simple-to-implement UART interface is used.

The design and implementation of FPGA logic that effectively realizes the sweep calculation,
while seeming quite straightforward, includes some points that require additional thinking and attention.
The first issue that initially comes up, is finding a proper way to represent decimal numbers inside the
FPGA. A one-by-one numeric representation is not possible to occur, as the FPGA can only manage

64

integer values in the form of binary vectors. On top of that, additional difficulty occurs by the fact that
sweep calculation includes the mathematical operation of multiplication which is a high cost process that
requires multiple clock cycles to complete and increases the overall design complexity. Finally, an
FPGA sine generator is necessary to be implemented for completing the sweep calculation.

The above issues are approached and solved in a way that minimal FPGA resources are used
while maximum calculation speed is achieved. To begin with, in order to eliminate the need of
multiplication operation, data that are sent to FPGA are normalized in advance by a factor of 2z*Ts.
This way, the sweep calculation is reduced to a series of additions and sine calculation and no resources
for multiplication digital logic are required.

Sine calculation by FPGA is achieved by the use of Look-Up-Table (LUT) (23). A LUT is an
array that replaces runtime computation with a simple array indexing operation. More specifically,
discrete sine values are permanently stored inside FPGA, using either distributed or block ram resources,
and calculation occurs by means of these pre-stored values (24). The sampling resolution of the stored
sine wave can vary depending on the sine wave frequency range that needs to be generated.
Furthermore, not a whole sine wave period needs to be stored. Only one quarter of the total period is
enough to serve the sine calculation for every phase value. This, however, comes with the cost of some
minor digital logic which is responsible for deciding which sine period quarter corresponds to the
specified phase value, every time. This obviously adds an extra pipeline stage to the calculation but
requires little FPGA resources to be implemented. For our purposes, a sine wave quarter is stored in
FPGA distributed memory, with a resolution of 512 points and sine values range from 0 to 8191 (13
bits). The length of the sine values stored is chosen to be 13 bits as an extra bit is needed for sign
representation and the DAC which is used for digital to analog sweep conversion takes 14-bit size words
as inputs.

The main sweep configuration data that are sent to FPGA are:

e The total of sweep points: it is dependent to our sample rate (12.5 MHz) and sweep
duration that is chosen by the user.

e The normalized starting frequency: it is the sweep starting frequency normalized by a
factor N.

e A number K that defines the speed rate of frequency change: this value is related to
the ending frequency of the sweep waveform.

To begin with, an integer counter that ranges from 0 to 220 (reflects to 80ms which is the
maximum waveform duration) represents the discrete timing axis of the signal. For every sweep point
that is generated, timing counter is increased by one and by the time it reaches the sweep points value,
IP stops generating sweep points.

As far as starting frequency is concerned, it is mentioned above that it is pre-normalized by a

factor of N before sent to FPGA. This factor isequal to: N = 1024 4 21nTs * 256

2Tt
where the first term reflects to normalizing data according to the stored sine wave values (256 sine

values from 0 to n/2, first sine quarter), the second term (2z*Ts) is used to replace the multiplication

65

operation, as already mentioned, and the third term (256) is used to cancel out some of the FPGA
rounding error due to the integer phase representation .Multiplication by 256 is easily reversed inside
FPGA by always cutting out the last 8 bits of the phase value (division by 256).

Finally, the last sweep configuration data word is a number that represents the number of sweep
points that the frequency remains stable. This number is inversely proportional to the frequency width.
Large frequency width for a specified sweep duration means that frequency needs to change in a faster

rate so that the whole desirable frequency range is covered. This number is equal to:
1

frequencysiep*N
divided by the total of sweep points. Every time a counter reaches this value, the frequency register is
incremented by one.

The Sweep generator is implemented in a pipeline manner and its functionality, as well as its
major digital components, is represented in the block diagram of Error! Reference source not found.:

round (), where frequency step is calculated in Hz and is equal to frequency width

ADDER + -
ADDER ADDER COMPARATOR DIStRI;:)hl;ted

(14 bit) (14 bit) D flip (14bit)

flop
clk

D flip
flop

increment clk increment

sweep point
5 PP

frequency phase phase
quarter

matching

LUT table for
sine calculation

12.5MHz clk

Figure 30: Sweep generation by FPGA

The pipeline stages are described below:

e Frequency increment: frequency is incremented by one if the corresponding counter
reaches a specified value K.

e Phase increment: the phase of the next sweep point is calculated

e Phase Quarter Matching: digital logic figures out the sine quarter that corresponds to
the current phase and calculates the sine LUT index of the corresponding sine value.

e Sine calculation: Read sine value from sine LUT and generate a sweep point.

Name 1 Slice LUTs Slice Reqgisters lex?es lefes |:S1“5C395 LUT as Logic LUT as Memory LUT Flip Flop Pairs Block RAM Tile
(63400) (126800) (31700) (15850) 0 (63400) (19000) (63400) (135)
Sweep_DDS_... 348 395 42 0 163 346 0 145 0

Figure 31: FPGA resource utilization of Sweep generation circuitry

66

4.2 Filtered Noise Field (FNF) Direct Digital Synthesis

The Filtered Noise Field waveform can be generated by the sum of sine wave signals of different
frequencies with a specified range and frequency step. An FNF waveform can include a large number of
frequency tones from 500 to 1000. It is self-evident that summing up such a significant number of sine
waves is not an operation that can be effectively implemented inside an FPGA. As a result, a different
approach is needed. The main idea is that the FNF calculation can start from the frequency domain,
where the amplitude and phase of all desirable frequency tones will be defined. After signal frequency
content is specified, the resulting signal is transformed to time domain by means of Inverse Fourier
transform, implemented inside the FPGA.

For the purpose of the IFFT implementation, the Fast Fourier Transform Xilinx IP core is used
(25). This IP core implements the Cooley-Tukey FFT algorithm. It can be configured to execute both
direct and inverse FFT (26). The transform size can take powers of two as its value, from 3 to 16 (8 to
65536 points). As far as the IFFT is concerned, which is used in our case, data samples are being fed to
the IP core in complex form, through AXI14 Stream slave interface. The real and imaginary part length of
the input is configurable and can range from 8 to 34 bit precision, each. After the necessary number of
points is provided to the IP core, output data are available after a short period of time, when tvalid signal
of AXI14 Stream master data channel is asserted. The output data format can be either fixed or floating
point, with the latter offering better precision but demanding significantly more resources for the core
implementation and cause a greater delay to the overall computation. In case overflow occurs during
calculation, FFT IP core can be configured to apply a scaling method so that output data remain intact.
The scaling rate is provided by another output master interface, so that precise calculation is attainable.

For the purpose of FNF digital synthesis by the FPGA, a custom IP is created. This IP is
equipped with an AXI4 slave interface and two AXI14 master interfaces. The slave channel is used for
FNF signal customization. Configuration data are specified through user interface and are sent to FPGA
through USB to UART data channel. Microblaze is responsible for receiving the data and feed them to
our custom IP. Among this information, the most important contents are the following:

e Starting/Ending Frequency: they represent the frequency width of the FNF signal.
These values are not given in Hz but in the form of an index, instead. This index reflects
to the first (or last) frequency domain point that has non-zero amplitude and should
correspond to the desirable starting (or ending) frequency. In order to find the frequency
domain point that links to a specific frequency the following formula is used, which

derives from the basic principles of the Fast Fourier Transform:
NFF

Fs
to the FFT size and Fs is the signal sampling rate in Hz.

e Frequency step: it is also given in the form of frequency domain index.

o |IFFT size: it must be a power of two. It represents the Inverse Fourier Transform size.
An FNF signal size can range from 131,072 points (217, 10ms waveform) to 1,048,576
points (22° , 80ms waveform). Such long IFFT transforms are not supported by the FFT

T), where frequency is given in Hz, NFFT corresponds

index = round(frequency *

67

core used. Thus a technique is applied, similar to software FNF generation, so that IFF
transform size is reduced. For this purpose, the FNF period is primarily calculated in
software (it is the least common multiple of the frequency tones that are included in the
waveform) and the final signal occurs by concatenation of multiple FNF periods.
Consequently, the IFFT size is reduced to one FNF period. By choosing appropriate
frequency step, it is quite simple to minimize FNF period size so that it does not exceed
the maximum IFFT width available (65,536 transform size, corresponds to 5ms signal),
without any consequences in the experimental process. However, for the signal
concatenation purposes, storage space of at least one FNF period size, is necessary to be
available, either internally (block ram or distributed ram) or externally (memory module,
i.e. DDR3 chip) of the FPGA.

ADDER + IFFT core Block RAM
COMPARATOR 56kBytes
(14bit)
-> Cooley - Tuk .
..100100100100100... foR?;iX ; & Internal FNF point
Frequency) g f
Domain FNF -> 14-bit fixed point precision msrr:eop’/\];r
-> 32,768 point)
Generator points period
Figure 32: FNF generation by FPGA
Mame .) . F& Slice .))]
1 Slice LUTs Slice Reqisters Muxes Muxes (1585 LUT as Logic LUT as Memaory LUT Flip Flop Pairs Block RAM Tile
(63400) (126800) (31700) (15850)) (63400) (19000) (63400) (135)
> wfft_0 (. 16367 19056 350 168 3987 3804 1473 4630 126

Figure 33: FPGA resource utilization of FNF generation circuitry

68

5 Evaluation

5.1 FPGA Development Board

The FPGA development board that is used is the version 2 of Neso — Artix7 by Numato (Figure
35). It incorporates the XC7A100T version of a Xilinx Artix7 FPGA device. The Artix 7 FPGA is
chosen for the current project, as it incorporates a sufficient amount of programmable resources, namely
logic cells, internal FPGA memory (block ram cells) and DSP slices. Digital signal processing
exploration takes place in this diploma thesis, and therefore the use of an FPGA device which
incorporates DSP slices is appropriate. Moreover, concerning Artix 7, it is considered to be the most
efficient Xilinx FPGA device in terms of performance-per-watt, which can ultimately contribute to a
low consumption overall implementation, as FPGAs in general are characterized as devices with
relatively high power requirements. Subsequently, after making an estimation of the number of 1/O pins
that would be necessary for the final implementation and also taking into consideration some extra I/O
pins for future design extensions, the XC7A100T version of the Artix7 is picked, whose specifications
are shown in Figure 34Error! Reference source not found..

XC7A100T

Logic Cells 101,440

DSP Slices 240

Memory 4,860

GTP 6.6Gb/s Transceivers 8

I/0 Pins 300

Figure 34: Artix 7 XC7A100T FPGA specifications

Finally, the Neso development board is chosen as it incorporates both a USB 2.0 interface and a
2Gbit DDR3 memory module. USB 2.0 interface is necessary for generating a communication port from
PC to FPGA while external DDR3 memory offers extra storage space for the FPGA data and opens a
wide variety of possibilities concerning the FPGA functionality. Using an FPGA development board
instead of a single FPGA device, adds simplicity to the instrument development as the demanding and
time consuming procedure of rooting appropriately the FPGA device, the DDR3 memory and the USB
interface on a custom printed circuit board, is passed over. This practice is ideal in the early stages of
instrument development, where a fast and effective primitive implementation is the main goal.

69

Figure 35: Neso developement board

5.2 PC-FPGA communication results

Attempts were made so that data from PC to FPGA are transferred in an efficient way that
satisfies the timing restrictions and instrument specifications while effectively takes advantage of the
available FPGA resources and contributes to the experimental process acceleration. These
implementations find application in modern laboratory equipment and instrumentation in general that
requires use of FPGA devices and data exchange between PC and FPGA. Details that were derived from
every method’s testing and evaluation are given below (see also Figure 40):

USB 2.0 to UART protocol, Microblaze instantiation for data receive and DDR3 save:
The Microblaze firmware code used while simple on its implementation provides a reliable way of
communicating with the FPGA. For every action, the corresponding identifier byte is sent back to the
PC master as confirmation. In this manner, PC master is always updated concerning the communication
status and can take action in case of failure i.e. a potential case where Microblaze did not respond back
after a specified amount of time or the confirmation byte was wrong. The FPGA resources occupied by
this implementation are shown in Figure 36.

FT F8

Name 1 Slice LUTs Slice Registers Ve Vs Slice LUT as Logic LUT as Memory LUT Flip Flop Pairs Block RAM Tile
(63400) (126800) (31700) (15850) (15850) (63400) (19000) (63400) (135)

» axi_uartlite_0 (omini... 95 106 0 0 39 85 10 64 0

> microblaze_0_local... 21 14 0 0 15 19 2 5 g

» microblaze_0 (omni... 1266 997 11 0 419 1148 118 397 0

» mig_Tseries_1 (om... 5633 4624 6 0 1759 4970 663 2254 0

Figure 36: USB 2.0 to UART protocol, Microblaze instantiation for data receive and DDR3 save resource utilization

While this design is efficient enough for instrument measurement read-backs and small data
transfer in general (like commands sequence download), it lacks high speed capabilities and can cause
long delays in case large packets of data (i.e. a whole waveform) need to be transmitted to the FPGA.

70

Indicatively, downloading a data packet of 512kBytes (which is the average waveform size for the
experimental purposes) and saving it to DDR3 has been counted (through PC software timers) to range
around 8 to 10 seconds, where around 4 to 5 seconds belong to data download time to FPGA using
UART protocol at 921600 baud rate, and the rest 4 to 5 seconds correspond to data transfer from
Microblaze to DDR3 memory module. Nevertheless, the error rate of the data transfer is practically zero.
In addition, after running the instrument under the specific design for a period of 1 month, no issues
were reported. Therefore, the practical evaluation of this implementation adds an extra level of
confidence concerning its reliability.

UART protocol incorporation constitutes the simplest and more straightforward solution for
setting up a robust communication channel from PC to FPGA. Efficient UART controllers are already
provided by Xilinx so no controller implementation is required. Microblaze can be used to receive the
UART data and drive them accordingly. In our case, data are transmitted through AXI bus to DDR3
memory controller, which is also provided by Xilinx. The above facts, drastically reduce the time-to-
market, as no major digital logic needs to be implemented. On the contrary, the largest portion of the
communication development is limited to Microblaze C code. As a result, such a data transmission
method can be potentially expanded to serve purposes other than waveform download, with minor
interference in the overall design. In addition to that, the minimum of 2 FPGA 10 pins, one receiving
and one transmitting data, are needed. Therefore, it is offered for applications that require frequent
modifications, when the FPGA design is still under development, and in cases where FPGA 10 port
saving is a major issue. However, the instantiation of Microblaze and DDR3 controller demand a large
portion of FPGA resources which may not be available in some cases. Moreover, the highest achievable
data transfer bandwidth is limited to approximately 0.11 MB/s which is fairly slow, especially for large
data packet transfer.

USB2.0 to FIFO245 synchronous protocol, custom IP for data receive, AXI4 Lite for DDR3

save:

Using this implementation, significant increase in download speed is achieved. The download time of a
512 kBytes data packet ranges from 50 to 60ms which is of no comparison to the previous
implementation through UART interface. It is important to note that this timing period includes both
data download to FPGA and transfer to DDR3 memory module. The resource utilization is shown in

Figure 37.

Slice LUTs Slice Registers U . Slice LUT as Logic LUT as Memory LUT Flip Flop Pairs Block RAM Tile

Muxes Muxes
(63400) (126800) (34700) (15850) (15850) (63400) (19000) (63400) (135)

> ftdi_axi_0 (omni_b 446 642 32 0 211 446 0 273 0

> mig_7series_1 (om 5633 4624 6 0 1784 4970 663 2228 0

Mame U

Figure 37: USB 2.0 TO FIFO245 synchronous protocol, custom IP for data receive, AXI4 Lite for DDR3 save resource utilization

The reasons that lead to such a great difference are the following: 1) Upgrade of
communication protocol: The serial UART protocol, using AXI UARTIite IP can achieve a maximum
data rate of 0.11 Mbytes / second (921600 Baud rate). On the other hand, the FIFO 245 parallel protocol
can namely achieve data bandwidth of 57.2 MB/s (1 byte / clock cycle of 60MHz), which has been

71

practically measured around 30 MB/s as the FT2232H chip that was used has not been able to deliver a
byte on every clock cycle and stall time intervals were noticed.

2) Microblaze replaced by custom IP: Soft-core utilization can reduce difficulty in FPGA design and
increase time-to-market. On the other hand, an IP module can be precisely customized at a lower level
so that less clock cycles are required for same logic functionality.

In order to verify the efficiency of the communication port, evaluation tests were applied. These
tests included download of waveform data packets in various DDR3 memory locations. Reading back
these data through a UART port (whose error rate is already measured as zero) showed that data are
transferred with practically zero error rates which imply a successful implementation of the
communication logic.

FT2232H FIFO 245 protocol is based on USB 2.0 and takes advantage of the USB 2.0
bandwidth more efficiently than UART protocol. It can achieve maximum data transfer rates of 30
MB/s. The implementation of an FT2232H chip controller is necessary for setting up such a
communication method, as it is not provided by Xilinx. This digital logic can be customized to promote
data directly to an external DDR3 memory, through Xilinx DDR3 controller. Therefore, the use of
Microblaze softcore is unnecessary (although it can be included if needed). By excluding the
instantiation of Microblaze significant FPGA resources are saved. The minimum number of FPGA 10
ports that are needed is twelve, from which eight bits are intended for the 8-bit size FIFO 245 parallel
bus and four pins constitute control signals. It is important to note that this communication method
needs to be synchronous to an external clock generated by the FT2232H chip. This ultimately adds an
extra clock domain to the overall design which is a negative consequence in many cases.

USB2.0 to FIFO245 synchronous protocol, data stream:
The above implementation has both advantages and disadvantages in comparison to the conventional
use of external memory device for saving large data packets. In this design, download time is defined by
the time duration from the moment PC initializes a packet download until the first two bytes are
available in the internal FPGA block ram. This duration is approximated experimentally to range from
0.5 to 1 ms and is mostly dependent to PC operational load and FT2232H chip’s reaction time to
handling data transactions. Reducing download time to such negligible time lengths, is quite important
for the overall instrument performance in terms of speed and practicality. In addition, FPGA resources
(see Figure 38) used are drastically reduced as no external memory controller (like MIG) is necessary.

N , SlicelLUTs Slice Registers ”E;es Slice LUTasLogic LUTasMemory LUTFlipFlop Pairs Block RAM Tile
ame (63400) (126300) (”31?00} (15850) (53400) (19000) (63400) (135)
» [1] ftdi_to_dac_0 (o 512 531 36 289 510 2 194 52

Figure 38: USB 2.0 to FIFO245 synchronous protocol, data stream resource utilization

On the other hand, some downsides and limitations occur. For example, no multiple waveforms
can be available in the hardware at the same time, unless multiple instances of the same logic are
generated inside the FPGA, an effect which burdens FPGA resources and design convenience and
expandability. Furthermore, data processing capabilities inside the FPGA are quite limited by the fact
that only one part of the data packet is available to the hardware, at one time. In addition to these issues,

72

the fact that waveform reproduction gets highly dependent to PC operating system may be the cause of
malfunctions and instabilities, in case a low-performance PC is used to control the instrument. Namely,
this design while highly efficient in terms of speed and FPGA resources lacks customizability and
adaptability to potential future modifications.

In this method FT2232H FIFO 245 protocol is also used. Therefore, the need for implementing
an FT2232H communication controller is present here, too. This communication method represents the
idea of direct data utilization, right after they are downloaded to the FPGA and is highly restricted to
occasions where a big data packet can be used before the whole packet is available in hardware. No
internal memory is needed, except a FIFO module of minor storage space, for the sake of synchronizing
the FT2232H clock with the internal FPGA system clock. This way, minimum FPGA resources are
occupied while download time is minor as data can be utilized by the time the first data word arrives to
FPGA. It is important to note that each data packet can only be used once as all information are disposed
after being processed. Overall, this method is appropriate for streaming interfaces where data are serially
processed while no memory is needed and high download speed is a major factor. Additionally, it can
find application in cases where FPGA resources are limited.

USB 3.0 to FIFO 245 synchronous, custom IP for data receive, AX14 Stream for DDR3

write:

The use of FT601Q for incorporating USB 3.0 connectivity to FPGA design has quite rewarding results.
The average data download speed is approximated at 300 MB/s, which sets the required download time
of a 512kB waveform, to 1.5 ms. Data transfer to DDR3 has been significantly reduced by the use of
AXI4 stream and is approximated around 0.5 ms for the same data packet. This data bandwidth was
measured by means of oscilloscope and is defined by the duration between transaction’s starting and
ending pulse which are controlled by custom IP. PC software timers also confirmed these measurements.
In order to verify the errorless data transfer similar evaluation methods as previous implementations are
used. Data are sent to FPGA, saved to DDR3 and received back to PC through UART interface, in a
loop process. No errors were detected, a fact that implies successful implementation of both FPGA logic
and PCB design. This method both combines high speed data download and allows use of external
DDR3 memory, however is not conservative in terms of FPGA resources (see Figure 39).

F7

o g Slice LUTs Slice Registers e Slice LUT as Logic LUT as Memory LUT Flip Flop Pairs Block RAM Tile
(6:3400) (126800) (31700) (15850) (63400) (18000) (63400) (135)

axi_datamowver_0 1148 1455 0 546 1045 103 760 75

USB3_FT601C_0 469 298] 322 466 3 178 2

mig_Tseries_0_... 4624 4970 0 1045 4970 663 2228 0

TransactionCheck_0 3 2 0 1 3 0 2 0

Figure 39: USB 3.0 to FIFO 245 synchronous, custom IP for data receive, AX14 Stream for DDR3 write, resource utilization

This communication channel is based on USB 3.0 so it can achieve substantially higher
bandwidth, with download speed reaching 300 MB/s, and thus, constitutes the fastest data transfer
method that is presented here. FT601Q controller development and instantiation are necessary. Data are

73

stored in an external DDR3 memory, so resources for memory controller are also occupied. The
FT601Q chip includes a 32-bit parallel data bus. Consequently, by including the four additional control
signals coming from the chip, a total of thirty-six FPGA 10 pins are occupied by this implementation.
The chip also includes a multichannel mode, where up to four communication channels can act
independently from each other. This adds an extra level of customizability to the overall design, under
the cost of slow time-to-market, as higher VHDL complexity is added to the FT601Q controller.
Additionally, an extra clock domain is added to the FPGA design, as data transfer must be synchronous
to a clock generated by the FT601Q chip. Overall, this method fits projects where saving 10 pins is not a
primary issue, while there are high demands concerning data bandwidth, communication channel
multiplexing and design complexity.

Data Download Maximum FPGA resources 10s Time- Customizability
Method Download To-
Speed Market
FT2232H — UART 0.11 MB/s UART controller, 2 Fast High
protocol DDR3 controller,
Microblaze
FT2232H — FIFO 245 30 MB/s FT2232H 12 Slow Medium
protocol (data controller, DDR3
download to DDR3) controller
FT2232H — FIFO 245 Does not FT2232H controller 12 Slow Low
protocol (data exist
streaming)
FT601Q — FIFO 245 300 MB/s FT601Q controller, 36 Slow High
protocol DDR3 controller

Figure 40: Communication methods comparison

5.3 Digital waveform generation using FPGA
Swee

The whole pipeline process, implemented for sweep signal generation, is synchronous to the
sample rate clock of 12.5 MHz. Therefore, the sweep waveform is reproduced by DAC while being
calculated, and thus no calculation delay exists. By adding extra pipeline stages, additional sweep
parameterizations become available (27). For instance, with the aim of applying amplitude modifications
to our signal an extra pipeline stage can be added in the end of the pipeline chain (right after sine
calculation) which is responsible for modifying the output value according to the specified amplitude
modification. Likewise, notch generation can be achieved by interfering in the frequency step of the
frequency increment pipeline stage, so that the corresponding frequency range is excluded from sweep
generation. This method of creating notches is not mathematically identical to eliminating the unwanted

74

frequencies on the frequency domain (by means of Fast Fourier Transform) but it is experimentally
feasible and effective.

In this design, a 14-bit input Digital-to-Analog converter, at a sample rate of 12.5 MHz, is used
for the sweep reproduction in the real world. However, this sweep implementation can be easily
customized to fit any DAC, regardless its digital input size and sample rate. Taking full advantage of
DAC’s potential is a decisive factor which ultimately determines the effectiveness of this
implementation. To begin with, let’s assume a more generic situation where the DAC that is used
receives N-bit digital inputs at a sample rate Fs and the desirable sweep frequency values range from fiin
to fmax. The main goal is for maximum resolution of sweep signal to be achievable, inside a specified
range of frequencies. The minimum frequency fmin that needs to be replicated defines the required sine
resolution, namely the number of sine points that should be available inside FPFGA ROM (LUT table).
The calculation of this value is quite straightforward and occurs by dividing the sample rate Fs with the
minimum required sweep frequency fmin. This computation gives the ideal sampling size of a sine
period. However, as already referred, only one quarter of a sine period is necessary to be stored. In
addition to that, for the sake of memory addressing, it is more convenient for the total of sine points to
be a power of two. Ultimately, the formula that gives the number of necessary sine quarter resolution is
given below:

F
NextPowerOfTwo(f . s* 4)
min

Furthermore, the maximum frequency fmax, must not exceed the half of the DAC’s sampling rate,
according to Nyquist theorem. Finally, sine points should be represented in binary vectors of N-1 bits.
The most significant DAC input bit, responds to the sign of the corresponding sine point, and is
calculated by some additional digital logic, using the phase register value.

For the purpose of this project, where Fs = 12.5 MHz and fmin = 10KHz, 512 points is the optimal
sine quarter resolution. Storing more than the number of sine points that is defined by our minimum
frequency is practically a waste of storage space as such a sine resolution cannot be experimentally
utilized by our DAC.

u

Direct digital synthesis of an FNF waveform is based on the Fast Fourier Transform calculation
inside the FPGA. Additional configuration capabilities can be accessed by generating some extra digital
logic. More specifically, notch application can be realized by excluding frequency tones in the frequency
domain, mainly setting to zero the unwanted values. Additionally, phase modulation for better signal
power distribution can be easily modeled by interfering to the imaginary part of the frequency domain
points of the FNF signal. Finally, amplitude modifications can occur either in the frequency domain, by
changing the amplitude of the complex values, or in the time domain, in a similar manner as sweep
amplitude modifications where applied.

As far as the timing specifications are concerned, for an IFFT of 2%° points, under the specified
FFT core configuration, a delay of approximately 1ms is required. This duration defines the FNF

75

calculation time as any extra signal customizations occur simultaneously with signal reproduction by
DAC, in the real world.

Comparison of Direct Digital Synthesis by FPGA against PC software waveform generation:

In this diploma thesis, methods of digital waveform generation both by PC and by FPGA were
implemented and tested. Each approach is characterized by different features, thus attentive examination
of project needs and specifications is required to take the right decision every time.

One of the main differences is the precision of the calculation that can be potentially achieved in
each case. The maximum precision that is achieved by PC software calculation is taken as the reference
point to measure this variable. Waveform calculation in PC can eventually occur by means of double
precision floating point numbers (64-bit representation of each waveform point). Considering the case of
sweep generation, achieving such a resolution inside the FPGA would mean a substantial increase in the
resources occupied by the sine wave LUT. On the other hand, in case of FNF waveform synthesis, it
would be infeasible by the use of the Xilinx FFT module, as it cannot handle such high precision point
representation. Thus, development and instantiation of a custom FFT module would be necessary, a task
that would vastly increase the time-to-market and design complexity. Therefore, it is evident that signal
resolution comes at no cost in the software waveform synthesis while highly affects the FPGA design in
terms of resources, ease of implementation and practicality. It is important to note that, signal precision
requirements are always relevant to the project needs and are ultimately defined by the available
hardware’s capability of representing the synthesized waveform in the real world. It would be
meaningless to implement a high resolution waveform calculation method which would be subsequently
truncated by the Digital to Analog converter and thus would not have a practical reason of existence.

Furthermore, calculation time, resource utilization and overall design robustness and reliability
are some extra points of interest that can accept further observation. To begin with, FPGA devices allow
direct digital synthesis in a pipelining manner and thus real-time signal generation. Therefore, no
calculation time is necessary and signal is generated and reproduced by DAC on the same time. This is
not possible in all cases. For instance, FNF signal synthesis requires the operation of Fourier Transform
which adds a calculation delay to the overall process. However such a delay is of no comparison to the
inevitable calculation delay and download time required in case of signal generation by software. The
fact that signal generation is highly dependent to communication of FPGA with external devices (PC,
memory modules etc.) adds extra levels of potential instrument failure. On the contrary, direct digital
synthesis by FPGA is a far more trustworthy approach and should be adopted when the product is on its
final stage of mass production. Finally, the major advantage of software signal synthesis is the fact that
it allows direct and effective application of potential modifications and reinforces the trial-and-error
procedure, especially in the early stages of the instrument’s development.

76

6 Lessons learned towards productization

Throughout the long-term process of Omnitrap development, constant upgrades and
experimental testing, some conclusions are drawn concerning the ideal final implementation of an
interface that could set the bases for potential instrument‘s mass production in the future. The main
conditions that such a design should satisfy, as well as corresponding actions that could contribute to
this goal, are described below:

It should effectively manipulate the instrument components while giving user-
friendly and comprehensive high-level access to Omnitrap functionalities. All in all,
it is always important to notify that the instrument is intended for laboratory use by
specialized scientists like biologists and chemists, who are unaware of Omnitrap’s
internal design and working principles. To this end, instrument control via the already
mentioned sequence of commands should be modified and upgraded. More specifically,
user capabilities through software should be condensed to some predefined experimental
processes, that each one represents a unique sequence of commands with a specified
purpose. These discrete experiments should have the form of black boxes in the
software’s user interface, where the term “black box” is used to describe an experimental
procedure with a corresponding name and no further details provided on how it is
implemented. In this way, user is no longer bothered to generate high precision series of
actions by itself in order to use the instrument. Moreover, the instrument’s basic
principles are protected from the public view. Finally, restricting access to instrument’s
low-level functionalities highly reduces the possibility of hardware damage due to misuse
by unspecialized users and make the process of ensuring both users’ and instrument’s
safety much easier.

It has to be robust and resistant to long lasting experimental cycles. It is a fact that
such laboratory instrumentation is common to remain in operation for long periods of
time, like days or weeks and in most cases, system reset can lead in significant loss of
time and even irreplaceable analyte samples. Our system control is based on the
communication between PC and FPGA. The use of a PC for configuring the basis of
parameters of every experimental process and receiving the corresponding results is by
far the most practical for this purpose. Thus, a communication port between PC and
FPGA should always exist and act as a mediator between Omnitrap and user. However,
the responsibilities of PC software should be limited to high-level experiment
configuration, processing of experiment results and visual representations. For multiple
reasons that include human mistakes or operating system failure, connection with PC can
be lost. In such events, the instrument should not remain exposed while a second
protection layer should exist. The FPGA constitutes a far more trustworthy and stable
processing module than a PC, which should always be responsible for controlling the
most important hardware components of Omnitrap, generating the real time data that are
important for the experiment (i.e. isolation waveforms) and taking decisions in case of

77

malfunctions (i.e. a high temperature measurement). To this end, concerning the aspects
of the design that were tested and improved in this diploma thesis, the superspeed USB
3.0 communication method that was followed is considered ideal for fast and efficient
configuration data transfer, while the real time direct digital synthesis of Sweep and FNF
isolation waveform by the FPGA would solve the major issue of large data packet
download to FPGA and lead to a far more stable and consistent implementation.
Instrument’s hardware assembly concerning both electronics and mechanical
components should be simple, strictly organized and effective so that the probability
of errors during assembly process is diminished. For this purpose, concerning the
electronics aspect of the instrument that were included in the realization of the current
diploma thesis, USB 3.0 interface and Artix 7 FPGA should be rooted on already existing
PCB instrument components so their functionality is not dependent to the production and
purchase of development boards from other companies. In addition to that, assembly gets
simpler and hardware malfunction probability is highly reduced.

78

7 Conclusion

To conclude, this thesis attempted to explore and upgrade the overall system that is responsible
for the Omnitrap mass spectrometer device control. Several communication methods between PC and
FPGA were implemented, so that the best approach is reached that fits appropriately the needs of the
experimental process. In addition, for the purposes of ion isolation through excitation, signal direct
digital synthesis methods using PC were also explored and compared. All implementations were tested
under instrument operation for sufficient timing periods, a fact that adds an extra level of assurance for
their efficiency and functionality. Undoubtedly, the overall system is still under development. There is
always room for improvements towards productization.

79

8 Bibliography

1. Scientific, Thermo Fisher. https://www.thermofisher.com/gr/en/home/industrial/mass-spectrometry/mass-
spectrometry-learning-center/mass-spectrometry-applications-area.html. https://www.thermofisher.com/. [Online]
Thermo Fisher Scientific.

2. DIMITRIS PAPANASTASIOU, EMMANUEL RAPTAKIS. Segmented Linear lon Trap for Enhanced lon
Activation and Storage. US20170221694A1 United States, August 3, 2017.

3. en.wikipedia.org. [Online]
4. www.fasmatech.com. [Online]

5. Analysis of molecular isotopic structures at high precision and accuracy by Orbitrap mass spectrometry. John
Eiler a, *, Jaime Cesarb, Laura Chimiaka, Brooke Dallasa, Kliti Griceb,Jens Griep-Ramingc, Dieter
Juchelkac, Nami Kitchena, Max Lloyda, Alexander Makarovc, Richard Robinsd, Johannes Schwietersc.
Pasadena, USA : Elsevier, 2017.

6. Kowalewski, F. Salewski and S. Exploring the Differences of FPGAs and Microcontrollers for their Use in
Safety-Critical Embedded Applications. Antibes Juan-Les-Pins : 2006 International Symposium on Industrial
Embedded Systems, 2006. 10.1109/1ES.2006.357483.

7. Stored waveform inverse Fourier transform (SWIFT) ion excitation in trapped-ion mass spectometry: Theory
and applications. Shenheng Guan, Alan G. Marshall. s.I. : Elsevier, International Journal of Mass Spectrometry
and lon Processes , 1999. S0168-1176(96)04461-8.

8. Filtered noise field signals for mass-selective accumulation of externally formed ions in a quadrupole ion trap.
Douglas E. Goeringer, Keiji G. Asano, Scott A. McLuckey, Don. Hoekman, and Steven W. Stiller. s.I. :
Analytical Chemistry, 1994 . 10.1021/ac00075a001.

9. Universal Asynchronous Receiver and Transmitter (UART). Umakanta Nanda, Sushant Kumar Pattnaik.
Coimbatore, India : International Conference on Advanced Computing and Communication Systems (ICACCS),
2016. 10.1109/ICACCS.2016.7586376.

10. AMBA AXI and ACE Protocol. s.l. : ARM. IHI 0022D (ID102711).

11. AXI UART Lite v2.0. s.I. : Xilinx, 2017. PG142.

12. AXI Interconnect LogiCORE IP Product Guide. s.l. : Xllinx, 2017. PG059.
13. Microblaze Processor Reference Guide. s.lI. : Xilinx, 2018. UG984.

14. 7 Series FPGAs Memory Interface Solutions User Guide. 2012.

15. Dynamic Data Acquisition system using FT2232H. Parmar Pranav, Savitanandan Patidar, Mayursinh
Thakor, Dhaval Patel. New Delhi : IEEE, 2015. 10.1109/INDICON.2015.7443321.

16. FT2232H Dual High Speed USB to Multipurpose UART/FIFO IC Datasheet. s.I. : FTDI. FT_000061.

80

17. Formal Verification of Synhcronizers. Kapschitz, Tsachy : s.n., 2005. 10.1007/11560548_31.
18. Integrated Logic Analyzer v6.1. s.I. : Xilinx, 2016. PG172.
19. www.ush.org. [Online]

20. Research on data transmission application based on USB3.0 bridge chip on FPGA. Dezhuang Ma, Lunhui
Deng. Beijing, China : MATEC Web of Conferences, 2018, Vol. 189. 10.1051/matecconf/201818904002.

21. FT600Q-FT601Q IC Datasheet. s.I. : FTDI. FT_001118.
22. AXI DataMover v5.1. s.l. : Xilinx, 2017. PG022.

23. Implementation of DDS Chirp Signal Generator on FPGA. Heein Yang, Sang-Burm Ryu, Hyun-Chul Lee,
Sang-Gyu Lee, Sang-Soon Yong, Jae-Hyun Kim. Busan : International Conference on Information and
Communication Technology Convergence (ICTC), 2014. 10.1109/ICTC.2014.6983343.

24. A Study on Look-up Table Based Sine Wave Generation. A.J. Salazar, G. Bahubalindruno, G.R. Locharla,
H.S. Mendonga, J.C. Alves, J.M. Da Silva. Porto, Portugal : s.n., 2011.

25. The Design and Implementation of FFT Algorithm Based on The Xilinx FPGA IP Core. Zhu Jin, Luo Jun,
Zhang Shuang. Guilin, China : Atlantis Press, 2012.

26. Fast Fourier Transform v9.1. s.l. : Xilinx, 2020. PG109.

27. Using FPGA to Implement a N-channel Arbitrary Waveform Generator with Various Add-on Functions. Jen-
Wei Hsieh, Guo-Ruey Tsai, Min-Chum Lin. Yun-Kan City, Taiwan : IEEE. 10.1109/FPT.2003.1275761.

81

