
1

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ

ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Design and Acceleration of Omnitrap Ion Storage Device

Instrument Control

Διπλωματική Εργασία

Σταύρος Π. Κούβαρης

Επιβλέπων: Δημήτριος Σούντρης

 Καθηγητής Ε.Μ.Π

Αθήνα, Ιούλιος 2020

2

3

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ

ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Design and Acceleration of Omnitrap Ion Storage Device

Instrument Control

Διπλωματική Εργασία

Σταύρος Π. Κούβαρης

Επιβλέπων: Δημήτριος Σούντρης

 Καθηγητής Ε.Μ.Π

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 10η Ιουλίου 2020

…………….. …………….. ……………..

Δημήτριος Σούντρης Παναγιώτης Τσανάκας Παύλος Σωτηριάδης

Καθηγητής Ε.Μ.Π. Καθηγητής Ε.Μ.Π. Καθηγητής Ε.Μ.Π.

Αθήνα, Ιούλιος 2020

4

………………………………

Σταύρος Κούβαρης

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © Σταύρος Κούβαρης, 2020

Με επιφύλαξη παντός δικαιώματος. All rights reserved

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή τμήματος

αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, η αποθήκευση και διανομή για σκοπό μη

κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή

προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για

κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα και

δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου

Πολυτεχνείου.

5

Περίληψη

 Η παγίδα ιόντων Omnitrap, της εταιρείας Fasmatech, είναι μία διάταξη που επιτρέπει την παγίδευση και

επεξεργασία ιόντων σε φασματομετρικές εφαρμογές. Στην παρούσα πειραματική διάταξη το Omnitrap

χρησιμοποιείται ως πρόσθετο εξάρτημα του φασματομέτρου μάζας Q-Exactive, της εταιρείας Thermo Fisher

Scientific. Η συγκεκριμένη διπλωματική εργασία αφορά την ανάπτυξη συστήματος FPGA που επιτρέπει τον

έλεγχο της λειτουργίας του Omnitrap μέσω προσωπικού υπολογιστή. Ιδιαίτερη έμφαση δίνεται σε μία από τις

λειτουργίες του Omnitrap, που είναι η απομόνωση ιόντων συγκεκριμένης μάζας, στο εσωτερικό της παγίδας, με

τη χρήση κυματομορφών απομόνωσης Sweep και Filtered-Noise-Field. Για του σκοπούς του πειράματος,

υλοποιείται κατάλληλος δίαυλος επικοινωνίας ανάμεσα σε PC και FPGA. Επιπλέον, μέθοδοι για τη γέννηση και

παραμετροποίηση των κυματομορφών απομόνωσης υλοποιούνται τόσο στο PC όσο και στο FPGA. Στη συνέχεια

συγκρίνονται μεταξύ τους και αξιολογούνται ως προς την καταλληλότητα τους για το συνολικό σύστημα.

Τελικά, προκύπτουν συμπεράσματα για την τελική μορφή του συστήματος ελέγχου του οργάνου, με οριστικό

στόχο την προϊοντοποίηση.

Λέξεις Κλειδία

 FPGA, ψηφιακή σύνθεση κυμαρομορφών, κυματομορφές Sweep, κυμαρομορφές Filtered-Noise Field,

προϊοντοποίηση, φασματομετρία μάζας, παγίδα ιόντων, omnitrap

6

Abstract

The Omnitrap linear segmented ion trap, developed in Fasmatech company, allows enhanced ion

activation and storage in mass spectrometry applications. In the current experimental setup, Omnitrap is

connected in series with Q-Exactive mass spectrometer of Thermo Fisher Scientific company. This diploma thesis

concerns the development of an FPGA system that allows control of Omnitrap operation via a personal computer.

Special emphasis is given on one of the Omnitrap functionalities, which is the isolation of ions of specific mass to

charge ratio by means of Sweep and Filtered-Noise-Field isolation waveforms. For the experimental purposes, an

effective communication port is developed between PC and FPGA. In addition to that, several methods for

waveform generation, both by PC and FPGA, are implemented, compared and evaluated in regard to their

efficiency for the overall system. Finally, conclusions are drawn concerning the final instrument design, towards

productization.

Keywords

 FPGA, direct digital synthesis, Sweep waveform, Filtered-Noise Field waveform, productization, mass

spectrometry, ion trap, omnitrap

7

Ευχαριστίες

Η παρούσα διπλωματική εργασία εκπονήθηκε στο Εργαστήριο Μικροϋπολογιστών και Ψηφιακών

Συστημάτων (Microlab) στο ΕΜΠ, σε συνεργασία με την εταιρεία Fasmatech Science & Technology SA που

στεγάζεται στο Τεχνολογικό Πάρκο Λεύκιππος στο Εθνικό Κέντρο Έρευνας Φυσικών Επιστημών «Δημόκριτος».

Αρχικά θα ήθελα να ευχαριστήσω τον επιβλέποντά μου, καθηγητή του ΕΜΠ Δημήτριο Σούντρη και τον

CEO της εταιρείας Fasmatech, Δημήτριο Παπαναστασίου, που συνεργάστηκαν με επιτυχία τόσο μαζί μου όσο

και μεταξύ τους για την ολοκλήρωση της συγκεκριμένης διπλωματικής εργασίας. Επιπλέον, θα ήθελα να

ευχαριστήσω τον μεταδιδακτορικό ερευνητή του Microlab Γεώργιο Λεντάρη καθώς και τους μηχανικούς της

Fasmatech, Ιωάννη Ορφανόπουλο και Αντρέα Μποζατζίδη, για τη βοήθεια που μου προσέφεραν τόσο σε

επιστημονικό όσο και σε προσωπικό επίπεδο.

Τέλος, θα ήθελα να ευχαριστήσω τους γονείς μου, Πέτρο και Αργυρώ και την αδερφή μου Ματίνα για

την διαρκή στήριξη και κατανόηση τους σε στιγμές αγχώδεις και πιεστικές.

8

Contents

Περίληψη .. 5

Abstract ... 6

Ευχαριστίες .. 7

1 Εκτεταμένη Περίληψη ... 9

1.1 Εισαγωγή ... 9

1.2 Ανάπτυξη Συστήματος ... 12

2 Introduction ... 17

2.1 Mass Spectrometry and experimental set-up ... 17

2.2 FPGA device .. 21

2.3 Thesis Scope .. 22

3 System Development ... 23

3.1 Instrument control .. 24

3.2 User Interface for waveform generation .. 25

3.2.1 Sweep ... 26

3.2.2 FNF .. 31

3.3 System level improvements .. 34

3.3.1 FPGA Communication.. 34

4 FPGA acceleration of waveform generation ... 64

4.1 Sweep Direct Digital Synthesis ... 64

4.2 Filtered Noise Field (FNF) Direct Digital Synthesis .. 67

5 Evaluation.. 69

5.1 FPGA Development Board ... 69

5.2 PC - FPGA communication results ... 70

5.3 Digital waveform generation using FPGA .. 74

6 Lessons learned towards productization.. 77

7 Conclusion ... 79

8 Bibliography .. 80

9

1 Εκτεταμένη Περίληψη

1.1 Εισαγωγή

Η φασματομετρία μάζας είναι μια ευαίσθητη τεχνική για τον ποιοτικό και ποσοτικό

προσδιορισμό χημικών ενώσεων και βρίσκει εφαρμογή σε μια μεγάλη γκάμα επιστημονικών πεδίων

όπως βιολογία, χημεία, φυσική, φαρμακευτική, ακόμα και στην εξερεύνηση του διαστήματος.

Σημαντικές εφαρμογές της φασματομετρίας μάζας στον σύγχρονο κόσμο, όπως αναδεικνύονται από την

μεγαλύτερη εταιρεία ανάπτυξης και πώλησης φασματομετρικών οργάνων, τη Thermo Fisher Scientific,

ανήκουν στα ερευνητικά πεδία της πρωτεϊνωματικής (proteomics), της μεταβολισμικής (metabolomics),

της περιβαλλοντικής ανάλυσης, της εγκληματολογίας και των κλινικών αναλύσεων και ενδεικτικά

κάποιες από αυτές είναι ο προσδιορισμός πρωτεϊνικών δομών, η αναγνώριση ακολουθιών πεπτιδίων, η

διάγνωση καρκίνου, ο ποιοτικός έλεγχος του πόσιμου νερού, η ανάλυση υπολειμμάτων εκρηκτικού

εξοπλισμού, η ανάπτυξη κλινικών φαρμάκων και η ανάλυση ασθενειών.

Μία φασματομετρική διαδικασία περιλαμβάνει κατά κανόνα τον ιονισμό των μορίων της

αναλυτέας ουσίας, το διαχωρισμό τους σύμφωνα με τον λόγο της μάζας προς το φορτίο τους, τον

ποσοτικό προσδιορισμό της έντασης της κάθε μάζας στο δείγμα και τελικά χρήση των παραπάνω

δεδομένων για τον καθορισμό της δομής και των συστατικών του αναλύτη.

Η παρούσα διπλωματική εργασία βασίζεται στην παγίδα ιόντων Omnitrap που αναπτύχθηκε

και τελικά κατοχυρώθηκε ως πατέντα από την εταιρεία Fasmatech. Η παγίδα ιόντων είναι μια διάταξη

τετραπόλου η οποία επιτρέπει την παγίδευση φορτισμένων σωματιδίων στο κέντρο συμμετρίας της, με

την εφαρμογή δυναμικών ηλεκτρικών πεδίων στους τέσσερις πόλους της. Η παγίδα ιόντων μπορεί

επίσης να χρησιμοποιηθεί και ως φίλτρο μαζών, δηλαδή ως διάταξη που επιτρέπει τη διατήρηση ιόντων

συγκεκριμένου εύρους μαζών στο εσωτερικό της και επομένως την απομάκρυνση των υπολοίπων

μαζών. Η συσκευή Omnitrap περιλαμβάνει οκτώ παγίδες ιόντων, Q1 έως Q8, με ελλειψοειδείς πόλους,

σε σειριακή διάταξη μεταξύ τους, και παρέχει ένα ευρύ φάσμα δυνατοτήτων ως προς την επεξεργασία

των ιόντων πριν την έναρξη της φασματομετρικής διαδικασίας.

Στην πειραματική διάταξη της συγκεκριμένης εργασίας, το Omnitrap αποτελεί μία επέκταση του

φασματόμετρου μάζας Q Exactive της Thermo Fisher Scientific. Συγκεκριμένα, παρεμβάλλεται στον

κύκλο λειτουργίας του και προσθέτει ένα ακόμα επίπεδο επεξεργασίας των ιόντων πριν φτάσουν στο

Orbitrap, δηλαδή στο τμήμα του Q Exactive στο οποίο συντελείται η φασματική μέτρηση. Ένας

επιτραπέζιος υπολογιστής χρησιμοποιείται για τον προσδιορισμό της πειραματικής διαδικασίας και για

τα δύο όργανα καθώς και για τη λήψη των αποτελεσμάτων. Το είδος αυτό της φασματομετρικής

διάταξης που περιλαμβάνει την σειριακή σύνδεση και λειτουργία δύο ή περισσοτέρων συσκευών

ανάλυσης μάζας, με σκοπό την βελτίωση των δυνατοτήτων τους στην ανάλυση χημικών δειγμάτων,

είναι γνωστό με τον αγγλικό όρο Tandem Mass Spectrometry.

Ως προς τις λειτουργίες του Omnitrap, κύρια έμφαση δίνεται στις παγίδες Q2 και Q5 στις οποίες

παρέχεται η δυνατότητα εφαρμογής κυματομορφών απομόνωσης. Οι κυματομορφές αυτές είναι σήματα

τάσης τα οποία αναπαράγονται στους πόλους της παγίδας και ανάλογα με το συχνοτικό τους

10

περιεχόμενο, απομακρύνουν ένα εύρος μαζών από το εσωτερικό της παγίδας. Πιο συγκεκριμένα, οι

μάζες των οποίων η ιδιοσυχνότητα ταλάντωσης δεν περιλαμβάνεται στο συχνοτικό περιεχόμενο της

κυματομορφής απομόνωσης, διατηρούνται στην παγίδα. Αντίθετα, οι υπόλοιπες μάζες ταλαντώνονται,

οδηγούνται σε συντονισμό, και τελικά απομακρύνονται, προσκρούοντας στους πόλους της παγίδας. Η

διατήρηση μόνο των ιόντων ενδιαφέροντος στην παγίδα συμβάλλει σε μεγάλο βαθμό στη βελτίωση της

διακριτικής ικανότητας του φασματόμετρου μάζας.

Συσκευή FPGA

Για τον έλεγχο των εξαρτημάτων του Omnitrap χρησιμοποιείται μία συσκευή FPGA. Η συσκευή

FPGA (Field Programmable Gate Array ή συστοιχία επιτόπια προγραμματιζόμενων πυλών) αποτελείται

εσωτερικά από ένα δίκτυο προγραμματιζόμενων ψηφιακών “κυττάρων” (cells) που μπορούν να

υλοποιήσουν ψηφιακές συναρτήσεις. Πρακτικά, μια συσκευή FPGA επιτρέπει τη σχεδίαση και

υλοποίηση ενός ψηφιακού κυκλώματος στον πραγματικό κόσμο, με τη χρήση λογισμικού. Επιπλέον

διαθέτει πόρτες εισόδου – εξόδου για την αλληλεπίδραση του κυκλώματος με εξωτερικά εξαρτήματα.

Μία συσκευή FPGA χρησιμοποιείται για τους εξής λόγους:

• Επιτρέπει την επιτάχυνση και βελτιστοποίηση βαρέων υπολογισμών, όπως η ψηφιακή

σύνθεση κυματομορφών.

• Περιλαμβάνει πόρτες εισόδου – εξόδου, επιτρέποντας άμεσο έλεγχο των περιφερειακών

εξαρτημάτων του οργάνου και επομένως σχεδόν μηδενικό χρόνο αντίδρασης σε

μεταβολές.

• Συμβάλλει στην απομόνωση του συνολικού συστήματος από εξωτερικές επιρροές και

επιτρέπει ντετερμινιστική συμπεριφορά υψηλής χρονικής ακρίβειας, καθώς οι

περισσότερες διαδικασίες που συντελούνται στο Omnitrap απαιτούν αξιόπιστο και

ακριβή έλεγχο, σε επίπεδο παλμών ρολογιού.

Στόχοι διπλωματικής εργασίας

Οι στόχοι της παρούσας διπλωματικής εργασίας είναι:

• Η ανάπτυξη ενός πλήρους συστήματος που επιτρέπει τον χαμηλού επιπέδου έλεγχο της

συσκευής Omnitrap και παρέχει ευελιξία στον προσδιορισμό της πειραματικής

διαδικασίας καθώς το όργανο βρίσκεται ακόμα σε στάδιο ανάπτυξης και νέες τεχνικές

για χρήση της παγίδας εξετάζονται συνεχώς.

• Η ανάπτυξη ενός αποτελεσματικού και αξιόπιστου διαύλου επικοινωνίας μεταξύ PC και

FPGA , καθώς η συσκευή FPGA αποτελεί το πυρήνα επεξεργασίας των λειτουργιών του

Omnitrap.

11

• Η εξερεύνηση των δυνατοτήτων του FPGA σχετικά με την ψηφιακή σύνθεση

κυματομορφών.

• Η παραχώρηση προτάσεων για την τελική μορφή του οργάνου.

Κατά την εκπόνηση της διπλωματικής εργασίας, έγιναν εκτεταμένες προσπάθειες για την επιτάχυνση

της μεταφοράς δεδομένων από το PC στο FPGA. Επιπλέον, πραγματοποιήθηκε σύγκριση μεταξύ της

σύνθεσης κυματομορφών από το PC έναντι της άμεσης σύνθεσης και αναπαραγωγής τους από το

FPGA. Πλεονεκτήματα και μειονεκτήματα και των δύο τεχνικών αναφέρονται και συμπεράσματα

προκύπτουν τα οποία βρίσκουν εφαρμογή σε όλα τα σύγχρονα συστήματα που περιλαμβάνουν

συσκευές FPGA, και ειδικότερα που αφορούν εργαστηριακό εξοπλισμό και όργανα πειραματικών

μετρήσεων.

12

1.2 Ανάπτυξη Συστήματος

Διεπαφή χρήστη για σύνθεση κυματομορφών

Για τον πειραματισμό και την εφαρμογή κυματομορφών απομόνωσης στην παγίδα Omnitrap,

αναπτύχθηκε ο απαραίτητος αλγόριθμος για τη δημιουργία των κυματομορφών καθώς επίσης και το

αντίστοιχο περιβάλλον στο PC μέσω του οποίου ο χρήστης μπορεί να παραμετροποιήσει το εκάστοτε

σήμα. Οι κυματομορφές αυτές συντίθενται στο PC και στη συνέχεια αποστέλλονται στο FPGA για

αναπαραγωγή στους πόλους του αντίστοιχου τετραπόλου. Υπάρχουν δύο είδη σημάτων απομόνωσης, η

κυματομορφή Sweep και η κυματομορφή Filtered Noise Field.

Κυματομορφή Sweep: Η κυματομορφή Sweep είναι μία αρμονική συνάρτηση με γραμμικά

αυξανόμενη συχνότητα. Το συχνοτικό της περιεχόμενο περιλαμβάνει όλες τις συχνότητες από μία

αρχική έως μία τελική τιμή. Ενδεικτικά οι εξισώσεις υπολογισμού της κυματομορφής φαίνονται

παρακάτω:

𝑺𝒘𝒆𝒆𝒑(𝒏) = 𝐬𝐢𝐧⁡[𝑷𝒉𝒂𝒔𝒆(𝒏)],

όπου η φάση Phase(n) υπολογίζεται ως εξής:

𝑷𝒉𝒂𝒔𝒆(𝒏) = 𝑷𝒉𝒂𝒔𝒆(𝒏 − 𝟏) + 𝟐𝒑𝒊 ∗ 𝑻𝒔 ∗ 𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚(𝒏),

με Ts: η περίοδος δειγματοληψίας.

Η συχνότητα Frequency(n) αυξάνεται γραμμικά:

𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚(𝒏) = 𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚(𝒏 − 𝟏) + 𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚_𝒔𝒕𝒆𝒑.

Ο χρήστης, μέσω του λογισμικού δύναται να παραμετροποιήσει την κυματομορφή Sweep ως προς το

πλάτος, την αρχική και την τελική συχνότητα.

Για το σκοπό της διατήρησης συγκεκριμένων μαζών στην παγίδα, δίνεται η δυνατότητα στον

χρήστη εξαίρεσης από το συχνοτικό περιεχόμενο της κυματομορφής Sweep, ενός εύρους συχνοτήτων,

ανάλογα με την εφαρμογή. Όπως έχει ήδη αναφερθεί, οι μάζες των οποίων η συχνότητα ιδιοταλάντωσης

δεν περιλαμβάνεται στο συχνοτικό περιεχόμενο του σήματος, παραμένουν στην παγίδα μετά την

αναπαραγωγή του Sweep, ενώ οι υπόλοιπες διεγείρονται και απομακρύνονται.

Επιπλέον δυνατότητες ως προς την παραμετροποίηση του Sweep εμφανίζονται στη διεπαφή

χρήστη που αναπτύχθηκε, όπως η εξομάλυνση του πλάτους εισόδου και εξόδου καθώς και ο

καθορισμός της συνολικής διάρκειας του Sweep.

Κυματομορφή FNF: H κυματομορφή Filtered Noise Field (FNF) συντίθεται από το άθροισμα

ημιτονοειδών συναρτήσεων διαφορετικής συχνότητας. Ομοίως και εδώ, η κυματομορφή χαρακτηρίζεται

από μία αρχική και μία τελική συχνότητα, στις οποίες προστίθεται και η παράμετρος του βήματος

13

συχνότητας. Το βήμα συχνότητας καθορίζει τη διακριτική ικανότητα του συχνοτικού περιεχομένου του

FNF σήματος που προκύπτει.

Όπως και στην περίπτωση της κυματομορφής Sweep, έτσι και εδώ ο χρήστης έχει τη

δυνατότητα να προσθέσει συχνοτικά κενά στην FNF κυματομορφή. Επιπλέον, υπάρχουν δυνατότητες

τροποποίησης του πλάτους καθώς και εφαρμογής τεχνικών διαμόρφωσης φάσης για καλύτερη

κατανομή της ισχύος κατά μήκος του σήματος.

Βασική διαφορά του σήματος Sweep με το σήμα FNF είναι το γεγονός ότι στο πρώτο οι

συχνότητες αναπαράγονται σειριακά η μία μετά την άλλη, ενώ στο δεύτερο οι συχνότητες

αναπαράγονται ταυτόχρονα καθ’όλη τη διάρκεια της κυματομορφής. Πειραματικά κάθε μία

χρησιμοποιείται για διαφορετικές εφαρμογές και παρουσιάζει τόσο πλεονεκτήματα όσο και

μειονεκτήματα.

Έλεγχος Συστήματος

Για τον έλεγχο της πειραματικής διαδικασίας του Omnitrap, ο χρήστης καλείται μέσω λογισμικού να

συνθέσει μία ακολουθία εντολών. Κάθε εντολή σχετίζεται μία ξεχωριστή ενέργεια του οργάνου ενώ των

σύνολο των εντολών προσφέρει δυνατότητες τροποποιήσεων του πειράματος σε χαμηλό επίπεδο.

Ενδεικτικά ορισμένες από τις σημαντικότερες εντολές αφορούν δράσεις όπως:

• Διακοπή της πειραματικής διαδικασίας μέχρι τα ιόντα να περάσουν από το όργανο Q

Exactive στην παγίδα ιόντων Omnitrap. Το γεγονός αυτό σηματοδοτείται από το θετικό

παλμό ενός σήματος trigger που προέρχεται από το Q Exactive και παραλαμβάνεται από το

FPGA που ελέγχει το Omnitrap.

• Μετακίνηση του δείγματος ιόντων από μία παγίδα Qx σε μία άλλη παγίδα Qy (υπάρχουν

οκτώ παγίδες ιόντων διαθέσιμες, Q1 έως Q8)

• Αναπαραγωγή κυματομορφής απομόνωσης (στα τετράπολα Q2 και Q5). Οι κυματομορφές

απομόνωσης διακρίνονται σε δύο είδη, τα σήματα Sweep και τα σήματα Filtered Noise Field

(FNF) το κάθε ένα με τα δικά του χαρακτηριστικά.

Για την εκτέλεση του πειράματος, τα δεδομένα της ακολουθίας εντολών κωδικοποιούνται κατάλληλα

από το PC και στέλνονται στο FPGA, όπου και αποθηκεύονται σε εσωτερική μνήμη block RAM. Στη

συνέχεια, μία custom IP είναι υπεύθυνη για την εκτέλεση των εντολών, όταν ο χρήστης σηματοδοτήσει,

από το λογισμικό στο PC, την έναρξη της διαδικασίας.

14

Βελτιώσεις Συστήματος

Επικοινωνία με το FPGA

Για τη συγκεκριμένη διάταξη, τα δεδομένα που χρειάζεται να μεταφέρονται από το PC στο FPGA είναι

τα εξής:

• Η κωδικοποιημένη ακολουθία εντολών που καθορίζει την πορεία του πειράματος

• Τα δείγματα των ψηφιακών κυματομορφών απομόνωσης Sweep και FNF

Τα δεδομένα που χρειάζεται να μεταφέρονται από το FPGA στο PC είναι¨

• Μετρήσεις τάσεων και θερμοκρασίας που πραγματοποιούνται σε διάφορα σημεία του οργάνου

Για την δημιουργία διαύλου επικοινωνίας μεταξύ PC και FPGA υλοποιήθηκαν και δοκιμάστηκαν

τέσσερις διαφορετικές μέθοδοι οι οποίες περιγράφονται περιληπτικά παρακάτω.

USB 2.0 σε πρωτόκολλο UART: Το πρωτόκολλο UART (Universal Asynchronous

Receiver/Transmitter) είναι ένα σειριακό ασύγχρονο πρωτόκολλο που επιτρέπει τη μεταφορά

δεδομένων μεταξύ δύο ή περισσότερων συσκευών οι οποίες είναι σύγχρονες σε διαφορετικά ρολόγια.

Απαιτεί δύο άκρα εισόδου εξόδου για την εγκατάσταση του μεταξύ δύο συσκευών. Κάθε συσκευή

οφείλει να διαθέτει ένα άκρο λήψης και ένα άκρο αποστολής δεδομένων.

Για την υλοποίηση της συγκεκριμένης επικοινωνιακής μεθόδου χρησιμοποιήθηκε το

ολοκληρωμένο FT2232H της FTDI σε λειτουργία γέφυρας USB 2.0 σε UART. Η εταιρεία παρέχει το

απαραίτητο API για την ανάπτυξη desktop εφαρμογών που χρησιμοποιούν το συγκεκριμένο δίαυλο

επικοινωνίας. Τα δεδομένα μεταφράζονται από το USB πρωτόκολλο του PC στο απλοποιημένο

πρωτόκολλο UART, ώστε να ληφθούν από το FPGA.

Για τη λήψη και διαχείριση των δεδομένων από το FPGA χρησιμοποιήθηκαν κατά κύριο λόγο οι

παρακάτω IPs:

• Microblaze soft-core : ο επεξεργαστής που παραχωρείται από την Xilinx για χρήση εσωτερικά

του FPGA. Υλοποιείται με τη χρήση πόρων του FPGA.

• AXI UARTlite: ο ελεγκτής πρωτοκόλλου UART που παρέχεται από τη Xilinx.

• Memory Interface Generator: ο ελεγκτής εξωτερικής μνήμης τυχαίας προσπέλασης (DDR)

που παρέχεται από τη Xilinx.

Οι IPs εσωτερικά του FPGA επικοινωνούν μεταξύ τους μέσω του AXI bus. Τα δεδομένα από τον

δίαυλο UART παραλαμβάνονται από τον Microblaze, ο οποίος είναι υπεύθυνος για την προώθηση τους

στον εκάστοτε προορισμό. Επιπλέον, επιστρέφει στο PC ένα byte επιβεβαίωσης το οποίο σηματοδοτεί

την επιτυχή ολοκλήρωση της μεταφοράς των δεδομένων. Σε περίπτωση που τα δεδομένα αντιστοιχούν

σε σημεία κυματομορφών, ο Microblaze τα προωθεί σε εξωτερική μνήμη DDR3.

15

USB 2.0 σε σύγχρονο πρωτόκολλο FIFO 245: Για τη συγκεκριμένη υλοποίηση

χρησιμοποιήθηκε ξανά το ολοκληρωμένο FT2232H της FTDI, αυτή τη φορά σε λειτουργία γέφυρας

USB 2.0 σε FIFO245. Το πρωτόκολλο FIFO 245 είναι ένα σύγχρονο παράλληλο πρωτόκολλο με

μέγεθος λέξης 8 bits. Για τη λήψη των δεδομένων από το FPGA απαιτείται δημιουργία IP καθώς δεν

παρέχεται από τη Xilinx. Η επικοινωνία του FPGA με το ολοκληρωμένο πρέπει να είναι σύγχρονη με

ρολόι συχνότητας 60 MHz το οποίο παρέχεται από το chip. Σε αυτή την υλοποίηση δεν χρησιμοποιείται

ο Microblaze αλλά τα δεδομένα κατευθύνονται στον προορισμό τους μέσω custom IP που

δημιουργήθηκε. Με αυτό τον τρόπο αποφεύγονται καθυστερήσεις που οφείλονται στην αρχιτεκτονική

του soft-core επεξεργαστή, και οι ανταλλαγές δεδομένων βελτιστοποιούνται.

USB 2.0 με streaming δεδομένων: Η υλοποίηση αυτή επιχειρεί να εξαλείψει τις καθυστερήσεις

που προκύπτουν από τη μεταφορά μεγάλων πακέτων δεδομένων από το PC στο FPGA. Για την

παρούσα εφαρμογή τα δεδομένα κυματομορφών αποτελούν τέτοιου είδους πακέτα. Χρησιμοποιεί ξανά

το ολοκληρωμένο FT2232H σε λειτουργία γέφυρας USB 2.0 σε FIFO 245. Τα δεδομένα κυματομορφών

πλέον δεν αποθηκεύονται σε εξωτερική μνήμη. Αντιθέτως, χρησιμοποιούνται ταυτόχρονα με την

αποστολή τους από το PC, ενώ η αναπαραγωγή της κυματομορφής στους πόλους της παγίδας ξεκινά

μόλις το πρώτο σημείο έχει ληφθεί από το FPGA. Μία FIFO (First In / First Out) εσωτερική μνήμη

χρησιμοποιείται για το συγχρονισμό του ρυθμού δειγματοληψίας και της ταχύτητας μεταφοράς των

δεδομένων. Η υλοποίηση αυτή είναι εφικτή καθώς η συχνότητα δειγματοληψίας είναι μικρότερη από τη

συχνότητα του ρολογιού των 60MHz στο οποίο είναι σύγχρονη η μεταφορά δεδομένων.

USB 3.0 σε σύγχρονο πρωτόκολλο FIFO 245: Τέλος, στη συγκεκριμένη υλοποίηση γίνεται

αναβάθμιση του πρωτοκόλλου από USB 2.0 σε USB 3.0 με σκοπό υψηλότερες ταχύτητες μεταφοράς

δεδομένων. Χρησιμοποιείται το ολοκληρωμένο FT601Q της FTDI σε λειτουργία γέφυρας USB 3.0 σε

FIFO 245. Η σχετική ψηφιακή λογική για τη λήψη των δεδομένων από το FPGA αναπτύσσεται ενώ τα

δεδομένα κυματομορφών αποθηκεύονται σε εξωτερική DDR μνήμη. Η μεταφορά των δεδομένων στην

DDR μνήμη πραγματοποιείται με τη χρήση AXI Stream πρωτοκόλλου με στόχο την επίτευξη

υψηλότερων ταχυτήτων εγγραφής.

Επιτάχυνση της παραγωγής κυματομορφών με τη χρήση FPGA

Το γεγονός ότι οι βασικές λειτουργίες του οργάνου Omnitrap ελέγχονται από το FPGA, καθιστά

αξιόλογη την ιδέα της υλοποίησης των κυματομορφών απομόνωσης από το ίδιο το FPGA. Παράλληλα,

οι διάφορες παραμετροποιήσεις των Sweep και FNF κυματομορφών που παρέχονται στο λογισμικό

πρέπει να παραμείνουν διαθέσιμες και στην περίπτωση παραγωγής τους από το FPGA.

Ψηφιακή σύνθεση κυματομορφής Sweep στο FPGA: Για την παραγωγή της κυματομορφής

Sweep από το FPGA χρησιμοποιήθηκε ο ίδιος αλγόριθμος υπολογισμού που υλοποιεί το Sweep στο PC

και αναφέρεται σε προηγούμενη ενότητα. Όπως φαίνεται, για τον υπολογισμό του σήματος Sweep

απαιτείται ο υπολογισμός της συνάρτησης του ημιτόνου. Για το σκοπό αυτό χρησιμοποιήθηκε η τεχνική

του Look-Up Table κατά την οποία το τεταρτημόριο μίας ημιτονικής περιόδου δειγματοληπτείται

επαρκώς και τα σημεία αποθηκεύονται σε εσωτερική μνήμη (distributed RAM) του FPGA. Ο αριθμός

16

των δειγματοληπτημένων σημείων καθορίζει το εύρος των ημιτονικών συχνοτήτων που μπορούν να

αναπαραχθούν, σύμφωνα με τον θεώρημα δειγματοληψίας Nyquist.

Η πράξη του πολλαπλασιασμού που εμφανίζεται στις εξισώσεις του Sweep εξαλείφεται με

κατάλληλη κανονικοποίηση των δεδομένων αρχικοποίησης. Έτσι ο αλγόριθμος υλοποιείται εσωτερικά

του FPGA με τη χρήση μερικών αθροιστών, του ημιτονικού Look-Up Table και ενός συγκριτή ο οποίος

είναι υπεύθυνος για τον καθορισμό του προσήμου του ημιτόνου κάθε φορά. Το κύκλωμα που

πραγματοποιεί τον υπολογισμό Sweep αποτελείται από στάδια, σε pipeline μορφή, για επιτάχυνση των

πράξεων. Με την προσθήκη επιπλέον σταδίων pipeline, πριν ή μετά τον βασικό αλγόριθμο, μπορούν να

υλοποιηθούν πιο εξειδικευμένες παραμετροποιήσεις του Sweep, όπως τροποποίηση του πλάτους και

εφαρμογή συχνοτικών κενών.

Ψηφιακή σύνθεση κυματομορφής FNF στο FPGA: Μία κυματομορφή FNF μπορεί να

υπολογιστεί από το άθροισμα ημιτόνων διαφορετικής συχνότητας, οι οποίες καθορίζονται από το

επιθυμητό εύρος συχνοτήτων του FNF σήματος, καθώς και από την επιθυμητή συχνοτική ανάλυση. Για

τον υπολογισμό της κυματομορφής FNF χρησιμοποιήθηκε αντίστροφος μετασχηματισμός Fourier. Το

σήμα κατασκευάζεται αρχικά στο πεδίο των συχνοτήτων, ορίζοντας ως μηδέν το πλάτος και τη φάση

των συχνοτικών τόνων που δε θέλουμε να συμπεριλαμβάνονται στο σήμα. Επίσης για εξοικονόμηση

χρόνου και πόρων του FPGA, ο αντίστροφος μετασχηματισμός πραγματοποιείται για μία μόνο περίοδο

του FNF σήματος ενώ το τελικό σήμα δημιουργείται από αλληλουχία FNF περιόδων, μέχρι να

επιτευχτεί η επιθυμητή διάρκεια.

Για συγκεκριμένη υλοποίηση χρησιμοποιήθηκε η IP Fast Fourier Transform v9.1 που παρέχει η

Xilinx. Η συγκεκριμένη IP εκτελεί τον αλγόριθμο Cooley-Turkey για τον υπολογισμό του

μετασχηματισμού. Το μέγεθος του IFFT (Inverse Fourier Transform) καθορίζεται από τη μέγιστη

περίοδο ενός FNF σήματος η οποία δεν ξεπερνά τα 5 milliseconds. Αφού ο ρυθμός δειγματοληψίας της

παρούσας διάταξης ισούται με 12.5 MHz, το μέγιστο απαιτούμενο μέγεθος του μετασχηματισμού

ανέρχεται στα 216 σημεία.

Προσθέτοντας επιπλέον στάδια στην παρούσα υλοποίηση, σε μορφή pipeline, μπορούν να

υλοποιηθούν περεταίρω παραμετροποιήσεις του σήματος, σε αντιστοιχία με αυτές του σήματος Sweep.

17

2 Introduction

Mass spectrometry is a powerful analytical technique that finds application in a huge variety of

different fields like biology, chemistry and physics, but also in clinical medicine and even space

exploration. It constitutes one of the most powerful modern physical and chemical methods for

identifying compounds and for studying their structure and reactivity. Namely, some of the most

common applications of mass spectrometry in the modern world, as pointed out by Thermo Fisher

Scientific company, belong to the fields of proteomics (characterization of proteins, sequencing of

peptides), metabolomics (cancer screening and diagnosis, biofuels generation and use), environmental

analysis (drinking water testing, carbon dioxide and pollution monitoring), forensic analysis (analysis of

trace evidence, identification of explosive residues) and clinical purposes (clinical drug development,

clinical tests, disease screening) (1).

2.1 Mass Spectrometry and experimental set-up

A mass spectrometry experimental procedure includes ionization of the analyte’s molecules,

separation according to their mass-to-charge ratio, measurement of the detected ions’ intensity in the

sample and finally use of these data to decide the structure and contents of the analyte of interest. The

mass-to-charge ratio of a cation (ion of negative charge) is defined as the mass of the cation divided by

its charge. The results of a mass spectrometry experimental process are typically presented in a mass

spectrum, a plot of intensity as a function of mass-to-charge ratio. Intensity in general refers to the

quantity of different ions inside a chemical substance and is usually expressed in arbitrary values as its

nature defers according to the mass spectrometry method that is followed.

Fasmatech’s recent accomplishment is the invention and development of Omnitrap (Figure 2).

Omnitrap is a segmented linear quadrupole ion trap which is capable of enhanced ion activation

(ionization) and storage (2). A quadrupole ion trap (Figure 1), in general, is a type of ion trap that uses

dynamic electric fields to trap charged particles. The linear ion trap uses a set of quadrupole rods to

confine ions radially and a static electrical potential on-end electrodes to confine the ions axially. The

linear form of the trap can be used as a selective mass filter, or as an actual trap by creating a potential

well for the ions along the axis of the electrodes.

https://en.wikipedia.org/wiki/Ion_trap
https://en.wikipedia.org/wiki/Electric_field
https://en.wikipedia.org/wiki/Linear_ion_trap

18

Figure 1: Scheme of a Quadrupole ion trap of classical setup with a particle of positive charge (dark red), surrounded by a cloud of

similarly charged particles (light red). The electric field E (blue) is generated by a quadrupole of endcaps (a, positive) and a

quadrupole of endcaps (a, positive) and a ring electrode (b). Picture 1 and 2 show two states during an AC cycle (3).

Linear ion traps are extremely powerful analytical devices, either deployed as stand-alone mass

spectrometers or integrated in hybrid systems. Linear ion traps are also ideal platforms for developing

and testing new techniques for manipulating gas phase ions in radio frequency (RF) trapping fields.

Omnitrap provides multiple methods for sequential manipulation of ions in multiple trapping regions

afforded by fast switching DC electrical potentials for high level control of ion potential energy and

transfer between segments.

Omnitrap is designed with eight segments, Q1 to Q8, and hyperbolic surface electrodes

supported on a stainless-steel structure cell. Differential pumping is provided through gaps between the

bottom set of electrode-poles. A two-layer printed circuit board configuration is connected at the top of

the Omnitrap and DC, RF and other AC signals are distributed to the electrode poles using spring

contacts. A second pulse valve is used to admit fast gas pulses and an additional needle valve is

employed to control background pressure.

Figure 2: Omnitrap (4)

19

Different regions of Omnitrap are configured to support a diverse set of substantially different

functions and the length of each segment is optimized accordingly. Each of the segments is connected to

an independent switching module capable of switching the DC potential between 8 different levels

during the course of an experiment.

Slow heating CID (collisionally activated dissociation, a technique to induce fragmentation of

ions in the gas phase) and ion isolation using the Filtered-Noise-Field (FNF) and Sweep method are

performed on one of the segments, Q2. Another interesting segment is Q5, which is designed with two

apertures on opposite electrode-poles to allow injection of charged particle beams and photons.

For the application that is developed in the specific diploma thesis, Omnitrap constitutes and

external instrument connected to Orbitrap Q Exactive mass analyzer by Thermo Fisher Scientific. Its

components and a brief description of their functionality is given, for the sake of completeness, in Figure

3. The Q Exactive mass analyzer includes six main subcomponents: an ion source (1), an ion guide (2), a

mass filter (3), an ion trap (5), an HCD cell (4) and the Orbitrap analyzer (6).

Figure 3: Schematic illustration of the major components of Q Exactive Orbitrap (5)

The Omnitrap platform is connected to the Q Exactive instrument in series with the HCD cell.

Ions are processed in the Omnitrap platform and products are redirected back to the Q Exactive

instrument for measuring mass-to-charge using the Orbitrap mass analyzer, as shown in Figure 4. Both

instruments are controlled by the use of a PC which is responsible for both sending configuration data to

them and receiving the corresponding experimental measurements, via USB interface. The technique of

instrumental analysis where two or more mass analyzers are coupled together using an additional

https://en.wikipedia.org/wiki/Fragmentation_(chemistry)
https://en.wikipedia.org/wiki/Ion

20

reaction step to increase their abilities to analyse chemical samples, is knows as Tandem Mass

Spectrometry.

Figure 4: Omnitrap in series with Q Exactive (4)

Strong emphasis is given on the ion isolation methods by the use of Sweep and FNF signals

waveforms. Ion isolation is the procedure, which aims to exclude every ion of an ionized analyte inside

the ion trap, with the exception of a selected ion type with specified mass-to-charge ratio. Such a task is

accomplished by applying voltage waveforms of specific frequency content in the poles of the trap. The

frequency content of these waveforms defines the ions that remain in the ion trap and those that are

excluded. To be more specific, ions whose resonance frequency is included in the isolation waveform’s

frequency spectrum, resonate and are consequently excluded from the ion trap. On the other hand, ions

that do not resonate remain inside the trap in a stable state. Under this perspective, the main flow of

experimental operation is predefined: Omnitrap is responsible for receiving an analyte, applying an ion

excitation technique (Sweep or FNF) and afterwards passing the resulting ion substance to Q Exactive

for mass spectrometry analysis and evaluation of results.

21

2.2 FPGA device

FPGAs (Field Programmable Gate Arrays) are devices that allow the design and real-world

generation of digital circuits, by software. In contrast with microcontrollers, which include an already

implemented processing architecture, FPGAs’ circuitry has to be designed by scratch, in order to

implement a desirable functionality. This fact makes FPGAs extremely customizable in comparison to

microcontrollers. In order to program an FPGA and generate a digital logic circuit, hardware description

language has to be used, which as implied by its name, is a programming language that is used to

describe a circuit by code. In the current thesis, the hardware description language that is used is VHDL

and the integrated design environment that is used is the version 18.1 of Vivado Design Suite.

Figure 5: FPGA Configurable Logic Blocks (CLBs) network

An FPGA internally consists of a network of configurable logic blocks (CLBs, Figure 5), which

can be programmed to implement specific digital logic functions while memory cells are also available

for storage purposes. In some FPGAs, DSP slices are also included. Their name stands for Digital Signal

Processing cells which are capable of implementing efficiently signal processing functions. Finally, each

FPGA incorporates a prefixed number of Input-Output ports, so that it can interact with external

circuitry.

22

For the purposes of the current project, an FPGA device is chosen on top of a microcontroller (6),

because:

• It allows acceleration and optimization of heavy task computations, like digital waveform

synthesis.

• It includes Input-Output ports that allow direct contact with hardware components and thus,

hardly instant reaction capabilities.

• It contributes to overall system isolation from external interferences and allows deterministic

behavior of high timing precision, as most of the Omnitrap functionality demands accurate,

reliable and high speed timing control.

2.3 Thesis Scope

Omnitrap control by FPGA had been already implemented to some extent before the realization

of this diploma thesis. Omnitrap is controlled by PC software and its actions are configurable by means

of a series of instrument commands, which are summarily described in the first chapters. However,

deficiencies have been present concerning PC – FPGA communication and overall FPGA processing

speed. Overcoming this deficit and upgrading the overall instrument design to a more robust and

efficient one has been a major need. Under this perspective, the main goals of this diploma thesis have

been:

• The development of a complete system that achieves low-level Omnitrap instrument

control and offers high versatility in the experimental process while new techniques of

using the linear trap are still being examined.

• Developing an effective communication method among PC and FPGA, as the FPGA

device constitutes the center module that controls the main hardware components of

Omnitrap.

• FPGA exploration concerning methods of digital signal generation inside the FPGA.

• Ultimately, suggesting a final product design.

Throughout the realization of this thesis, extensive attempts took place concerning FPGA data

transfer acceleration. In addition, a comparison took place between software generation of custom

digital waveforms by PC against their direct digital synthesis by the FPGA device. Advantages and

disadvantages of both techniques are examined and overall conclusions are drawn, which find

application in every modern FPGA system, especially concerning applications in scientific

instrumentation and equipment

23

3 System Development

 The whole instrument functionality is controlled via PC application. Through software that is

already developed, Omnitrap user is given a

wide variety of possibilities, concerning

experiment configuration, depending on the

application needs. At the stage of instrument

development, before commercial production

and sale, low-level instrument control by PC

is necessary so that validation testing is

efficiently performed by specialized

scientists and instrument functionalities are

verified. In addition, the invention and trial

of new mass spectrometry techniques, using

the equipment available, is encouraged.

The main idea for creating a

customizable while comprehensive and

efficient user interface for Omnitrap control

has been based on the fact that the whole

experimental process can be expressed by a

sequence of commands. These commands

are linked to pre-specified instrument

actions and, therefore, a sequence of these

commands represents a series of actions that

the instrument is ordered to deliver. A

different sequence of commands can be

generated each time, depending on the

application purposes. By splitting the

experiment in smaller sub-parts more

precise instrument control is accomplished,

malfunctions are more easily detected and

modifications in the experimental flow are

simpler to implement.

As already mentioned, the

processing core of Omnitrap instrument is

an FPGA. The FPGA is intended to receive

the sequence of commands from PC and execute them accordingly. The FPGA can interact with external

instrument circuitry via Input / Output ports. Thus, every command corresponds to appropriately

controlling the equivalent FPGA IO ports, each time, which are connected to a specific part of the

instrument.

Figure 6: Omnitrap sequence of commands

24

3.1 Instrument control

For the purpose of providing low-level instrument control and allow Omnitrap user to create a

highly customizable experimental flow, following a different purpose each time, a bank of instrument

actions is available through the User Interface. These actions are referred to as commands or instructions

and each one of them represents a different experimental step. In Figure 6, a screenshot of the main user

interface is presented. There are twenty four commands in total, with the first fourteen representing

instrument functionalities and the remaining ten corresponding to ion transition actions, along the

segmented ion trap, by the use of DC states manipulation. By clicking on a specific instruction, the

corresponding command is added to the instruction list, where its arguments and real time experimental

duration (in milliseconds) are shown. The arguments are also editable by the user in most of the

commands. A brief description of the available instrument commands is given below:

• Delay: stalls the execution of the sequence by N milliseconds. As every action is

executed by independent modules inside the FPGA, adding delays between commands is

sometimes necessary, especially in cases where moving to the next action demands the

completion of the previous command.

• Gas Pulse 1 to 3: Generates a helium gas pulse of configurable flux and duration inside

the empty space of the ion trap. It is used for pressure management (mainly a gas pulse

increases internal pressure) and speed manipulation of ions. There are three different gas

pulse modules along the segmented ion trap. The main reason for this, is the fact that

every gas pulse module needs a specific amount of time to be available for use again,

while there are cases where multiple gas pulses are necessary to occur in close timing

intervals.

• Digital RF (KHz): Sets the frequency of the rectangular RF signal that is being

reproduced on the trap’s electrodes. Different frequency values allow trapping of ions

with different mass-to-charge ratio (m/z).

• RF Amplitude (V): Sets the amplitude of the rectangular RF.

• Duty Cycle [%]: Sets the duty cycle of the rectangular RF. Modifications on duty cycle

have a determinant impact on the trapping efficiency, depending on the m/z range of the

ions of interest.

• Gate/Modulate electrons: Actions that relate to substance ionization process.

• Trigger IN: Stall the sequence until a trigger pulse is generated by Q Exactive. This

signal plays an important role on synchronizing the two instruments together. A rising

edge of the trigger signal, notifies that ions are located inside the HCD cell of Q Exactive,

and that they can be received by Omnitrap, if the appropriate DC state is applied.

• Dipolar Excitation (Q2 or Q5): Initializes the application of dipolar excitation isolation

waveform on the corresponding segment of Omnitrap. This signal is mainly a sine

waveform with configurable amplitude and frequency. Depending on the frequency of the

dipolar sine wave, ion masses that have matching resonance frequencies are excluded

25

from the trap. The term excitation derives from the fact that all masses, except only a

small mass range, remain inside the trap.

• Isolation Waveform (Q2 or Q5): Initialized the application of isolation waveforms.

These are broadband signals which are distinguished in two kinds, the Filtered-Noise-

Field and the Sweep signal, each one with different properties. Depending on the

frequency content of the isolation waveform, all ion masses except the ones that their

resonance frequency is not included in the signal’s frequency spectrum are excluded from

the trap. The term isolation derives from the fact that only a small range of masses

remains inside the trap, while the rest are excluded.

• DC states: These commands are used to transfer ions between trap segments. Ions are

moving from high to low voltage. Therefore, by applying high voltage to source segment

and low voltage to destination segment, ion transfer inside the trap can be accomplished.

Sequence loop capabilities are also provided, in case an experimental process needs to be

repetitively executed. An external and an internal loop and their repetition number are customizable

through the user interface.

After sequence initialization, commands and their arguments are appropriately encoded to binary

form and sent to FPGA, through communication methods that will be extensively examined in the

upcoming chapters. These data are stored inside FPGA block RAM and a custom IP takes over their

execution. Each command triggers an independent module which is responsible for the corresponding

action. Multiple modules can run simultaneously without interfering each other. In this manner, high

timing precision is accomplished, which is plays a major role issue in the success of the experiment.

Finally, Custom digital logic is also responsible for controlling the loops inside the sequence.

3.2 User Interface for waveform generation

Purpose

In order to efficiently experiment with isolation waveforms, like Sweep and FNF, convenient software

User Interface is necessary. It is essential that software allows user to highly customize excitation

waveforms, while UI remains comprehensive and easy to use. In addition to that, code must be robust,

efficient and as simple as possible so that, potential future modifications will be easier to implement.

Under this perspective, two Windows Forms (see Figure 7) where created to allow Sweep and FNF

waveform synthesis. Their implementation and functionality are analytically described below. All code

is written in C# programming language and user interface is developed using the Visual Studio

environment.

26

Figure 7: Sweep and FNF user interface

3.2.1 Sweep

A sweep waveform is a harmonic function with linearly increasing frequency from an initial frequency

to some final frequency (7). The foundation of the algorithm that generates such a broadband waveform

is described in the following steps and visual representation of the results is also provided. The blue

color represents the time domain while the red color represents the frequency domain:

• Calculation of the sweep signal in the time domain, according to the following

mathematical expressions (where parameter n refers to discrete time):

𝑺𝒘𝒆𝒆𝒑(𝒏) = 𝐬𝐢𝐧⁡[𝑷𝒉𝒂𝒔𝒆(𝒏)],

27

where Phase(n) is calculated by the formula:

𝑷𝒉𝒂𝒔𝒆(𝒏) = 𝑷𝒉𝒂𝒔𝒆(𝒏 − 𝟏) + 𝟐𝒑𝒊 ∗ 𝑻𝒔 ∗ 𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚(𝒏),

where Ts is the sampling period.

Frequency(n) is increasing linearly:

𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚(𝒏) = 𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚(𝒏 − 𝟏) + 𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚_𝒔𝒕𝒆𝒑.

At its initial state, the shape of a sweep waveform is shown below:

• Sweep function is then transformed into Fourier frequency domain, by means of Fast

Fourier Transform. This way, amplitude and phase data are obtained for every discrete

harmonic of the Fourier spectra. Objective of this procedure is to remove unwanted

frequency components off the original sweep function and to obtain a new signal that

does not contain unwanted components, but in other respect looks very similar to the

original sweep. The main goal is to remove frequency components that cause resonance

to the target isolation masses. Such frequency gaps are referred to the UI as frequency

notches. In order to create a frequency notch that ranges from a frequency f1 to a

frequency f2, the amplitude of the equivalent harmonics in the frequency domain, is set to

zero. A notch in the frequency domain, should look like this:

28

• Then, the signal is transformed back to time domain, by means of Inverse Fourier

Transform (IFFT) :

Extra parameterizations of the sweep waveform are available in UI for the purpose of

experimenting and optimizing the ion isolation process:

• Edge smoothing:

Some amplitude “spikes” near the starting and ending frequencies of the sweep waveform

are obvious by examining the frequency domain plot. Such amplitude spikes are

considered to potentially cause unwanted resonances. Thus, smoothing should be applied

in the sweep edges by multiplying the sweep waveform with a reducing factor, which is

given by the following mathematical expression:

 𝑓𝑎𝑐𝑡𝑜𝑟(𝑛) = sin⁡[±1.57 ∗ (
𝑛

𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔𝑤𝑖𝑑𝑡ℎ
)],

where positive sign is selected for smoothing the starting part of the sweep and negative

sign is selected for the ending part. The edge smoothing results are shown below for both

time and frequency domain:

29

Through UI, the length and rate of edge smoothing are both configurable.

• Slow down around notch areas:

Intense and fast changes in frequency content near notch areas are experimentally shown

to have negative impact in the isolation process. Therefore, reduction of the frequency

change step around notch areas needs to occur. As the sweep duration and frequency

range is initially specified, slowing down the frequency sweep in some regions leads to

inevitable speed up of frequency sweep in every other waveform part. Through the

implemented UI, user can configure the range and rate of the notch slow down as well as

whether it occurs before or after entering the notch (or both).

The slowing down, as it occurs by the frequency domain plot above, leads to an increase

in the amplitude of the harmonics where the slowdown occurred, and a decrease in the

amplitude of the rest harmonics.

• Frequency sweep to opposite direction:

In some occasions, scanning of the required frequency range needs to occur in declining

30

order, from high to low frequencies. Therefore, this capability is also implemented and is

configurable by the user.

• Amplitude modifications:

Through the implemented UI, user is given the possibility of generating his own custom

amplitude modifications. Starting frequency, ending frequency, starting amplitude and

ending amplitude can be configured. Applying an amplitude modification leads to a

linear amplitude increase (if starting amplitude > ending amplitude) or decrease (if

ending amplitude > starting amplitude) in the specified frequency interval. In the

following example, two amplitude modifications are applied and their effect is visualized.

31

• Other configurations:

Sweep waveform generation is also configurable regarding sampling rate, total duration

and target quadrupole (Q2 or Q5). Two sampling rates are available, 12.5 and 25 MHz.

3.2.2 FNF

On the other hand, filtered noise field (FNF) waveforms constitute a completely different kind of

broadband signals. FNF‘s basic feature is the fact that it reproduces all frequencies, inside a configurable

interval, simultaneously, in comparison to sweep waveform which sweeps from smaller to higher

frequencies over time (8). Consequently, its different properties make FNF a quite interesting field of

study and experimentation. The steps for calculating an FNF waveform through software are the

following:

• Configuring the number of frequency harmonics that the FNF waveform will incorporate.

In this stage, harmonics inside desirable frequency notches are removed and thus the

notch is created.

• Summing up all remaining harmonics in the time domain.

As it seems, the construction of an FNF waveform is fairly simple and straightforward. However,

summing up a relatively large number of sinusoids is not computationally efficient and takes an

infeasible amount of time. For this reason, a different approach to this computation is necessary. Finding

the fundamental frequency of the FNF and subsequently summing up the frequency tones for only one

waveform period is a quite efficient way of saving time and computational resources. The complete FNF

waveform then can be calculated by concatenating multiple FNF period waveforms until desirable

duration is achieved. Furthermore, the fact that there is no calculating dependence among FNF

waveform points makes the calculation easy to be parallelized. By applying such contrivances, FNF

calculation time is significantly reduced.

 The most important FNF parameters that are configurable in the FNF user interface is the

frequency content of the FNF (starting and ending frequency) as well as the frequency step. The division

of frequency width with the frequency step provides the number of frequency tones which are

incorporated by the FNF waveform. FNF duration, sample rate and target quadrupole are also

configurable, similarly to sweep UI.

32

An example FNF waveform is shown below:

In comparison to sweep waveforms, this time the frequency domain is not continuous as it only includes

some predefined frequency tones. As the configured frequency step decreases, the frequency spectrum

of the calculated waveform gets denser and the frequency resolution is increased.

As already mentioned, the notch generation occurs by excluding from the summation, the

frequency tones that belong to a desired notch. Apart from that, in most cases higher frequency

resolution around notches is necessary, in order to allow more effective ion excitation in the

corresponding frequencies. This feature is implemented in the FNF calculation code by modifying the

frequency step around these areas. The range of effect as well as the frequency step before and after a

notch area is configurable by the user. Visual representation of the incorporation of a notch in the FNF

calculation is presented below:

33

As it seems in the frequency domain above, the frequency resolution around notches is increased while

the amplitude of all frequency tones inside the notch is zero. Other available FNF configurations are the

following:

• Phase modulation:

Adding frequency tones of equal phase results in uneven distribution of voltage levels in

the waveform. In order to achieve even power distribution throughout the FNF signal, a

phase modulation is necessary. There are unlimited choices regarding the mathematical

expression that gives us an effective phase modulation, but the most widely used are the

following:

o Newman Peak To Average Power Ratio:

 𝑝ℎ𝑎𝑠𝑒(𝑛) = 𝑚𝑜𝑑(𝑛2 ∗
𝑝𝑖

𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑡𝑜𝑛𝑒𝑠
− 2𝑝𝑖, 𝑝𝑖)⁡

o Narahashi Peak To Average Power Ratio:

 𝑝ℎ𝑎𝑠𝑒(𝑛) = mod(n ∗ (n − 1) ∗
𝑝𝑖

𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑡𝑜𝑛𝑒𝑠
− 2𝑝𝑖, 𝑝𝑖)

Besides these two phase modulation techniques, user can specify its own phase

modulation expression, which better suits the application. An example before and after

phase modulation is presented below:

34

Both the above FNF waveforms have similar frequency contents but the second one

makes a superior power distribution and is experimentally feasible.

• Amplitude modifications:

Identical amplitude modification capabilities, as the sweep generation UI, are also

available for FNF. A visual example is presented below, where the amplitude of

frequency tones is linearly reduced from 100% to 20% of the initial value:

3.3 System level improvements

3.3.1 FPGA Communication

While setting up robust digital logic and circuitry inside the FPGA seems as the most essential aspect of

a digital design, securing solid communication between software (PC) and hardware (FPGA) is equally

important. Data corruption and communication loss with hardware can lead to a series of negative

consequences, from misleading experimental results to even instrument damage. Such events, can cause

35

huge delays to the instrument development process and decrease the overall instrument reliability. In

addition, the fact that mass spectrometry analyzers, like Omnitrap, can be used for long periods of time

(weeks or months) without shutting down, creates the extra requirement of constant data transaction

verification and operation interrupt in case of communication failure. Therefore, the development of a

stable communication channel with FPGA and techniques for real time evaluation of the data transfers is

an urgent need.

For the current project, the data that need to be transmitted to the FPGA device are:

• The sequence of commands, which define Omnitrap’s operational flow.

• Samples of digital voltage waveforms, which correspond to 12.5 MHz sample rate.

These waveform points are generated and configured by developed PC user interface.

These waveforms are intended to be used for ion excitation purposes.

Data that need to be received by the FPGA device are:

• ADC read-back values, which correspond to voltage and temperature measurements.

Nowadays, most products that require an interface to a host computer consider United Serial Bus

(USB) as a primary option. USB is an industry standard that establishes specifications for cables and

connectors, and protocols for connection, communication and power supply between computers and

peripherals. It was firstly released in 1996 and its main purpose was to allow peripheral devices to

connect with computers using a standard and common type of connectors. These connectors would

make the use of peripherals more immediate while no host restart would be necessary for connecting or

disconnecting a slave device.

Until today there have been released the following versions of the USB protocol, from oldest to

latest:

• USB 1.0 (1.5 Mbit/s Low Speed, 12 Mbit/s Full Speed)

• USB 2.0 (1.5 Mbit/s Low Speed, 12 Mbit/s Full Speed, 480 Mbit/s High Speed)

• USB 3.0 (5 Gbit/s SuperSpeed)

• USB 3.1 (10 Gbit/s SuperSpeed+)

• USB 3.2 (20 Gbit/s SuperSpeed+)

• USB4 (40 Gbit/s SuperSpeed+ and Thunderbolt 3)

A USB interface can be added to an FPGA through USB protocol converter ICs. A USB protocol

converter is an external device that incudes USB controller logic and can interact with FPGA, in a

higher level than USB signaling, through a match simpler communication protocol. There are many

choices available in the market regarding the methods that can be followed, with a variety in

performance, ease of configuration, flexibility and time to market length. In the current thesis, some of

the well-known FTDI USB bridge ICs are used for USB 2.0 and USB 3.0 connectivity in different

36

approaches and the results are evaluated.

3.3.1.1 USB 2.0 to UART

The FPGA development board that is used for the current thesis incorporates the FT2232H chip by

FTDI (Figure 8). This chip is a USB 2.0 to UART/FIFO bridge. It has two independent communication

channels which can be configured in a variety of industry standard serial or parallel interfaces.

Figure 8: FTDI FT2232H block diagram

The chip can be easily configured through software. The configuration data are saved into the

EEPROM interface and the configuration occurs on chip boot up. The functionality of each block is

summarily described:

• Multi-Purpose UART/FIFO controller: There are two instances of them inside the chip,

one for each channel. These control the UART or FIFO data.

• USB Protocol Engine and FIFO control: It controls and manages the interface between

UTMI PHY and the FIFO memories. It is also responsible for power management and

USB protocol specification

• Dual Port FIFO TX Buffer: Data coming from the Host PC are stored here until the

channel master is available to receive them (maximum size: 4kBytes per channel)

• Dual Port FIFO RX Buffer: Data coming from the FPGA master are stored here until

USB interface of PC is ready to receive them (maximum size: 4kBytes per channel)

37

• RESET Generator: Provides a reliable reset circuitry for the chip. External reset is also

available if needed.

• Baud rate Generators: There are two of them, one for each channel. They are independent

so that each channel can be configured in a different baud rate.

• UTMI PHY: Its name stands for Universal Transceiver Macrocell Interface. This block

handles the USB SERDES (serialise – deserialise) circuitry, which is compatible to USB

2.0 and backwards compatible to all other USB versions. It also provides the clocks for

the rest of the chip.

Among the different available modes of the chip, the USB 2.0 to RS232 UART is chosen for the

first implementation of the current project. In this mode of operation the chip functions as a protocol

converter, which converts USB to dual wire UART (Rx and Tx wires) interface, to be handled by the

FPGA. The term RS232 refers to the configuration circuitry of the chip and the appropriate voltage

levels to operate.

UART protocol

UART (Universal Asynchronous Receiver/Transmitter, Figure 9) is a serial asynchronous

communication protocol and a circuit that allows data transfer between two (or more) devices that can

be synchronous to different clocks. UART is widely used, due to its simplicity of implementation,

practical ease of use and its general application capabilities.

UART’s asynchronous communication takes place via a wired single bit connection, between the

receiver (RxD), which drives the signal, and the transmitter (TxD) which samples and examines it (9).

The data to be sent are usually whole bytes (8 bits) and are transmitted serially, bit by bit, from the least

significant to the most significant bit. As there is no clock to synchronize the communication between

the two devices, in asynchronous communication the data is preceded by a recognizable start bit. This

signifies the receiver for the beginning of the communication. In a similar way, the transmission of a

byte and the end of the communication is signified by the stop bit.

If needed, the UART bus can be customized so that it also incorporates a parity bit. The parity

bit precedes the stop bit and includes information relative to the number of logic ones in the byte word

that was sent. It is set to logic one by the transmitter, if the number of logic ones in the transmitting byte

is even, and to logic zero if the number is odd.

38

Figure 9: UART protocol

In order to ensure that no data is lost or multiplied in the UART protocol, the transmitter and the

receiver have to agree in advance regarding the sampling rate of the communication channel. This

sampling rate is expressed in bauds, where each baud is equal to 1 bit per second. The configuration of

baud rate is not part of the protocol and is done at a higher level. The standard and most commonly used

baud rates are the following: 110, 150, 300, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200,

230400, 460800 and 921600.

For a bidirectional communication system between two devices, which use UART protocol, two

wires are needed, one for each data direction.

For the FPGA to interact with the UART bus, two I/O pins are necessary, a receiver (Rx) and a

transmitter (Tx). Rx pin is used for data reception from USB to FPGA, while Tx pin is used for data

transmission from FPGA to USB. Internal FPGA logic is also necessary. For this purpose, AXI

UARTlite is used. It is a Xilinx Intellectual Property core which is capable of interacting with UART

interfaces while communicating with FPGA’s Programmable Logic (PL) via an AXI4 Lite slave

interface.

FPGA Design

AXI BUS

ΑΧΙ, which stands for Advanced eXtensible Interface, is an interface protocol defined by ARM as part

of the AMBA standard (10). AMBA is an open standard for SoC (System-on-Chip) design created by

ARM to allow for high performance, modular, and reusable designs that are reliable while minimizing

both power and silicon. In the current project the AXI4 version of AXI is used (which responds to

AMBA 4.0 version). There are three types of AXI4-interfaces:

• AXI4 (Full AXI4): It is used for memory- mapped data transfer. In this communication

protocol, for every data transfer, an address is required, which is followed by the

transaction data. Data size can vary from 1 to 256 words while data word size ranges

39

from 32 to 128 bits. The AXI4 Full can interconnect multiple master to multiple slaves

that correspond to the same bus protocol.

• AXI4-Lite: This protocol is a simplified version of AXI4 Full. It is also a memory-

mapped protocol but it does not allow transactions of multiple data words (burst

transactions). Thus, for each data word transfer, a data address is required. The data word

size ranges from 32 to 128 bits. The implementation of this bus needs less resources,

which is its major advantage in comparison to AXI4 Full

• ΑΧΙ4-Steam: Is not a memory-mapped protocol. It is used for very fast data transfer

from a single master to a single slave. It supports burst transactions of unlimited size and

it is the fastest of the three AXI4 protocols.

IP cores

AXI UARTlite

This Xilinx Intellectual Property core is shown in Figure 10. It executes serial to parallel data conversion

for data that come from UART interfaces and parallel to serial data conversion for data that come from

AXI4 Lite interfaces. It can be configured to manage data words of 5, 6, 7 or 8 bits. Furthermore, a

parity bit is available if needed. It incorporates a transmit and a receive FIFO, each one of 16 data words

depth. In case receive FIFO is full, data from UART interface are not received. Respectively, if transmit

FIFO is full, AXI data are rejected and an AXI bus error is generated so that it notifies PL that the

transaction failed. Finally the core can accept and assert interrupt signals (11).

Figure 10: AXI UartLite block diagram

Two registers are available to give information about the status of the IP and offer IP control

capabilities. More specifically the status register provides the status of the receive and transmit data

40

FIFOs and asserts error bits if an error occurs. On the other side, control register contains the enable

interrupt bit and the reset bit for the receive and transmit FIFOs.

Using the appropriate input clock, the IP can be configured to support all standard UART protocol baud

rates from 110 to 921600. Βlock diagram of UARTlite IP core is shown above.

AXI Interconnect

As mentioned above, AXI Interconnect is a Xilinx Intellectual Property core which is used for

connecting one or multiple master to one or multiple slave interfaces (12). The block diagram of the IP

core is shown in Figure 11.

Figure 11: AXI Interconnect block diagram

The core constitutes of three sub-cores, the slave interface (SI), the master interface (MI) and the

crossbar IP. AXI4 Master Interfaces are connected to SI while AXI4 Slave interfaces are connected to

MI. Through SI masters can issue transaction read or write commands and wait for the related slaves to

respond.

The AXI Interconnect implementation is automatically configured based on the number and kind

of master and slave interfaces that are connected to it. The implementation kinds are the described

below:

• Pass through (1 to 1):

In case only one master and one slave of identical protocol are connected, the AXI

Interconnect IP does not need to implement protocol conversion or pipelining

functionalities. Subsequently, the two interfaces are connected directly and the core does

not occupy hardly any resources.

• Conversion only (1 to 1):

In case a data width conversion, a clock rate conversion, an AXI4-Lite slave adaption or

41

pipelining needs to occur, the implementation only omits the circuitry that is responsible

for arbitration, decoding and command fetching.

• N-to-1 Interconnect:

In case multiple masters are connected to a unique slave, arbitrary circuitry is

implemented so that each time only one master has access to that slave. In addition,

protocol conversion circuitry is included if needed.

• 1-to-N Interconnect:

In case one master has access to multiple slaves there is no need for arbitrary logic.

However, circuitry which decodes and issues the commands each time to the

corresponding slave, is necessary.

• N-to-M Interconnect (Crossbar Mode):

In case multiple masters are connected to multiple slaves, the AXI Interconnect

implements intermediate logic manages the transaction commands, even multiple

commands at a time.

• N-to-M Interconnect (Shared Access Mode):

Same as crossbar mode, except in this mode commands are issued one at a time.

Subsequently, this implementation consumes fewer resources but the AXI transactions

are slower.

Microblaze

Microblaze is the processing core that Xilinx offers to be used for 7-Series FPGA architectures. It is a

soft core which means that it is implemented by the FPGA LUT (Logic Unit Table) cell resources (13).

It incorporates 32bit RISC architecture with pipelining capabilities and it is highly customizable.

Furthermore, it can be customized so that it responds to different kinds of events like resets, interrupts

and exceptions.

 Microblaze communicates with others IP cores through the AXI4 bus. For this purpose, AXI

Interconnect IP core is a precious tool as it can connect multiple masters (one of them is obviously

Microblaze) with multiple slaves that correspond to different kinds of AXI4 protocols.

Memory Interface Generator

The Memory Interface Generator constitutes a Xilinx Intellectual Property core. It is a combined pre-

engineered controller for interfacing 7 series FPGA user designs and AXI4 slave interfaces, to DDR3

and DDR2 SDRAM devices (14). This core is used in our design as a memory controller which allows

robust communication from our custom FPGA logic to the DDR3 memory, through AXI4 protocol bus.

It also includes internal logic for monitoring the DDR3 temperature and keeping its functionality within

safety limits.

42

Block Design

The purpose of this FPGA design is to set up a communication channel between PC software and FPGA

hardware which will serve the waveform data download and some extra functionality like setting up

ADC values and reading back DAC values. Creating the FPGA design for this purpose is fairly

straightforward and does not demand custom IP generation. The Xilinx IP cores mentioned above are

enough for our current demands. The FPGA design is shown in Figure 12.

Figure 12: Implementation of PC-FPGA communication based on UART protocol

In this block design, a clock wizard is responsible for creating two clocks, clk_out1 of 75 MHz and the

clk_out2 of 200 MHz, from the input system clock of 100 MHz. The clock of 75 MHz is the input clock

for AXI UARTlite IP. Such a clock frequency is selected as it allows configuration of the UART

channel in maximum baud rate of 921600. Microblaze is also clocked at 75MHz.

On the other hand, the 200MHz clock rate is used as the input clock of MIG controller. The MIG

controller is responsible for executing every DDR3 transaction that an AXI4 master requests.

Microblaze soft-core possesses the only AXI4 master interface in the design so it is the only IP that can

initiate DDR3 transactions.

For the purpose of supporting multiple functionalities in the same data channel, it is obvious that

some common rules between software and hardware need to be established. In our case, a convenient

way of achieving this is by setting up a group of identifier bytes. The idea is that the PC through

software will transmit bytes from an “identifier bytes bank” and the hardware will reply by executing the

corresponding action every time. The identifier bytes that are used and a brief description of the action

they are linked to are presented below:

• CONNECT (0xFD): Opens a connection port between the software (PC) and the

hardware (FPGA).

43

• DISCONNECT (0xFE): Closes an already opened connection port between the PC and

the FPGA.

• EXECUTION_START (0x1D): Starts the execution of the commands sequence.

• EXECUTION_STOP (0x1E): Stops the execution of the commands sequence.

• READ_SEQUENCE_STATUS (0x3A or 0xF6): Returns the status of the command

sequence (Idle or Running)

• READ_LOOP_COUNTER (0x3B): Returns the number of times that the command

sequence has been executed

• DOWNLOAD_SEQ (0x1C): Initializes the command sequence download. This means

that the next bytes that are sent to the FPGA represent command sequence data.

• READ_RTD_X (0xF7 or 0x2F or 0xF9 or 0xFA): Returns the measurement of resistance

thermometer X after averaging it in a window of size 16. Four resistance thermometers

are available so integer X can range from values 1 to 4.

• SET_RF_I (0xF8): Set the current (I) value of the RF (radio frequency) Power Supply

Unit.

• READ_RF_V (0x3D): Returns the voltage value of the RF Power Supply Unit.

• READ_RF_I (0x2E): Returns the current value of the RF Power Supply Unit.

• DOWNLOAD_WFM (0xFC): Initializes a waveform data download process. This

means that the next bytes which are sent to the FPGA represent waveform data.

• UPLOAD_WFM (0xFB): Read the waveform data saved to DDR3 (mainly used for

evaluation purposes)

This set of predefined identifier bytes are considered known for both the transmitter (PC) and the

receiver (FPGA), while Microblaze is responsible for executing each functionality. Using Xilinx

Software Development Kit (SDK) a loop process is written in C code, for the Microblaze to execute by

the time the FPGA is powered on. This process is a polling function which waits for data to be available

in the UART channel. When the first byte is available, Microblaze receives it and acts accordingly. By

the time an action is complete, Microblaze is polling until the next request.

This process can be also implemented using interrupts. Each time data are available in UART

interface, an interrupt occurs. Microblaze accepts the interrupt and realizes the equivalent operation,

according to the identifier byte that is received. In this manner, Microblaze is not polling when UART

data are missing and can be used for further operational load. As in our design, Microblaze functionality

is limited to UART demands serve, interrupt logic is excluded so that minimum FPGA resources are

occupied.

For the purpose of executing the actions mentioned above, like triggering execution start or

saving data to DDR3, Microblaze (PS) (programmable Software - Microblaze) needs to communicate

with PL (Programmable Logic - IPs). This communication occurs through AXI4 bus. In order for

Microblaze master to set reading or writing requests to a target slave, functions Xil_In and Xil_Out are

used accordingly. These functions are already implemented in the board support package, which can be

automatically generated by Vivado SDK tool for every FPGA design. They can perform input or output

44

operations of 8, 16, 32 and 64 bits for AXI4 memory mapped registers. More specifically, Xil_In

function takes, as its unique parameter, the AXI4 slave address and returns the corresponding data word.

On the other hand, Xil_Out takes as variables the AXI4 target slave address and the data word to be

written.

3.3.1.2 USB 2.0 to FIFO245 Synchronous

For the purpose of creating a more efficient, in terms of speed, design and achieving faster download

speeds, especially concerning waveform data download to FPGA, another communication approach is

tested. The same FT2232H chip is used, but this time it is configured in a different mode of operation. In

this configuration, data that come from (or are intended to be sent to) the USB interface, are stored

internally in the FT2232H chip’s FIFO memory blocks (15). Two separate FIFO blocks are necessary

for this functionality, a receiving and a transmitting one. Data from USB interface (to FPGA) are stored

in the receiving FIFO while data from the FPGA master (to PC) are stored in the transmitting FIFO

block of the chip.

Furthermore, for this mode the chip provides an external 60MHz clock to be used by the FPGA

master. The channel’s control logic has to be synchronous to this clock domain in order to ensure robust

communication. The pins used in a 245 synchronous FIFO mode are the following (16):

• DATA[7…0]: These are the bidirectional data pins. There used for both input (from PC

host to FPGA master) and output (from FPGA master to PC host) data words.

• RXF#: Output pin, active low. When asserted, it notifies the FPGA master that there is

data available in the receiving FIFO, coming from the PC host.

• TXE#: Output pin, active low. When asserted, it notifies the FPGA master that the

transmitting FIFO is available to be written by the FPGA master, so that a transaction

from FPGA to PC host occurs.

• RD#: Input pin, active low. It should be asserted when FPGA master is about to start a

read operation.

• WR#: Input pin, active low. It should be asserted when FPGA master is about to start a

write operation.

• CLKOUT: Output pin. It is the 60MHz chip output clock.

• OE#: Input pin, active low. When asserted it causes a bus turnaround, so that

DATA[7…0] are driven by the FT2232H chip. It should be driven low at least one clock

cycle before driving RD# low.

45

For a read transaction to occur, the RXF# signal has to be asserted. This assertion notifies the

FPGA master that data are available in the receiving FIFO. For the purpose of receiving the data, OE#

must be asserted by the FPGA master before the assertion of RD#. Thus, two clock cycles are at least

necessary for a reading transaction to begin. After these events, ft2232h chip drives one data word on

each clock cycle that RD# is set to logic zero. FPGA master can either burst read the available data or

receive them in parts by repetitively asserting and deasserting the RD# pin. A read transaction is

visualized in Figure 13.

Figure 13: FT2232H FIFO 245 read transaction

For a write transaction to occur, TXE# signal has to be asserted. This signal notifies the FPGA

master that the transmitting FIFO is available to receive data. By the time WR# is asserted, channel

master should drive the data bus with the data to be sent. A write transaction ends when TXE# is

deasserted (usually when transmitting FIFO is full) or when master sets WR# to logic one. A write

transaction is visualized in Figure 14.

46

Figure 14: FT2232H FIFO 245 write transaction

FPGA design

The incorporation of the synchronous FIFO 245 communication mode in our FPGA design requires the

creation of a custom IP module which will be responsible for the control of FT2232H signals and

direction of receiving data, each time in the target AXI4 slave interface. This mode is intended to be

used for waveform download to FPGA, thus only reading transaction interface, from PC to FPGA is

implemented and tested here. Sequence data and instrument read-backs transactions will still occur

through the already implemented UART channel. As a result, a new USB cable and extra FPGA

resources are needed for this implementation.

The custom module that is designed for the above purpose should be able to issue writing

transfers to DDR3. Towards that end, our IP is occupied with an AXI4 Lite master interface. In Vivado

environment, AXI bus default logic can be automatically generated. Further modifications are required

so that our custom logic is able to use the AXI interface accordingly. In our case, the AXI signals that

are controlled by custom IP are the AXI target write address (M_AXI_AWADDR), write data

(M_AXI_WDATA) and transaction start trigger pulse (init_txn_pulse). Signal init_txn_pulse is a

single clock pulse which triggers the start of an AXI4 lite transaction of data M_AXI_WDATA to AXI

bus address M_AXI_WADDR.

A block diagram of the Finite State Machine that serves the above purposes is presented in Figure

15.

47

Figure 15: FIFO 245 Finite State Machine

Finite State Machine description in words:

The above FSM receives a whole waveform data packet from the USB 2.0 to FIFO interface of

FT2232H chip and saves the received data to DDR3 memory. The size of the waveform as well as the

writing address are both configurable.

To begin with, while data from the USB 2.0 interface are not available, FSM remains in IDLE

condition. By the time data are available in the bus, FSM moves on to the necessary actions to receive

them. The first bytes, by default, represent the DDR3 write address. Every AXI4 address is of size 32

(bits), so 4 bytes are necessary for its configuration. The write address can range from 0x80000000

(DDR3 AXI address) to 0x8FFFFFFF, as our DDR3 memory has 2Gbit of usable space and each AXI

address is mapped to one single byte. After DDR3 write address is configured, the next 4 bytes should

represent the number of AXI transactions. Since each waveform point is represented by 2 bytes (16 bits)

and each AXI transaction has word length of 4 bytes (32 bits), the AXI transactions number should be

equal to waveform points / 2, and therefore represent the waveform’s total size. Subsequently, all

following incoming bytes constitute waveform data, until waveform size is reached. For every 4 bytes,

one AXI transaction is issued and no more data bytes are received before this AXI transaction is

completed.

Finally, when waveform size is reached, waveform download is complete and FSM returns to its

initial IDLE state, waiting for the next data byte to be available in the bus.

Clock domain crossing (CDC)

In the above circuitry, the input signal single_write_done notifies the FSM that the 32 bit write

transaction which was last issued, has been completed, thus next data bytes can be received. This signal

is controlled by the AXI4 bus default logic and it asserts for a unique clock cycle, each time a (reading

or writing) transaction comes to an end. A single rising edge pulse, coming from its clock domain,

would last for a 10ns timing width, as the AXI4 bus clock frequency is synchronous to 100MHz.

48

However, in our design this pulse has to be sampled by the 60 MHz clock of FT2232H chip, which FSM

is synchronous to. It is self-evident that directly sampling a pulse of 10ns with a sample rate of 16.6ns

(60 MHz) is insufficient. Indeed, after testing this implementation, the single_write_done pulse was

detected by our 60MHz clock in a success rate of about 60%, which coincides to the difference between

the two clock periods.

The above issue constitutes a cross clocking domain problem. More specifically, a clock domain

is a part of a design that has a clock that operates asynchronous to another clock in the design. For

example, in this design we have two clock domains, one at 100 MHz and one at 60 MHz. Furthermore, a

clock domain crossing signal is a signal that is sampled by a register in another clock domain. Therefore,

single_write_done signal is a clock domain crossing signal. Directly sampling signals of a clock domain

synchronously to another clock, which operates asynchronous or has a variable phase relationship with

the prior clock, has a high probability of failure due to flip-flop meta-stability. Flip flop meta-stability

derives from flip-flop’s setup and hold time. These timing properties represent the time in which the

data input is not legally permitted to change before and after a sampling clock edge, accordingly. An

example of a D flip-flop getting in meta-stability is shown in Figure 16.

Figure 16: Flip-Flop setup/hold time

In case input d of the D flip-flop violates the setup and hold time, the output q of the flip-flop

keeps oscillating for an indefinite amount of time. There is a possibility that this unstable value may not

converge to a stable value before the next sampling clock edge arrives.

Entirely avoiding meta-stability issues in a multi-clock design is inevitable. However, there are

certain design techniques that can help to reduce the probability of their appearance asymptotically to

zero. In our design, the main method used is the 2-FF Synchronizer (17). The equivalent circuit is shown

in Figure 17.

Figure 17: 2-FF synchronizer

49

In the 2-FF synchronizer, the first flip-flop samples the asynchronous input signal, data1, into the

destination clock domain, clk2. A second flip-flop buffers the signal once again, synchronous to the

destination clock. The second flip-flop has the intended goal of providing signal data2 sufficient time to

get stable. Circuitry synchronous to clk2 can now safely sample data3. It is important to note that meta-

stability is a probabilistic phenomenon, thus there is always a chance that data3 will still be unstable.

However, this probability is practically minor and not to be taken into consideration.

ILA cores

The digital functionality described above is evaluated using Integrated Logic Analyzers (ILAs) in

Vivado IDE (18). These Xilinx IP cores enable real-time debugging of FPGA designs while they are

running in hardware. Such and evaluation method is highly efficient as it is applied under the actual

system environment and speed conditions. Therefore, through this process, circuit functionality can be

verified while potential timing issues are prevented.

The ILA cores function like digital oscilloscopes. The sampling frequency is defined by the

core’s clock domain. In this case, two clock domains exist in the design; therefore two ILA cores are

necessary for effective design testing. Vivado interface allows setting up the trigger condition of every

ILA core. When trigger condition is met, the corresponding ILA core is activated and signal samplings

are depicted in a waveform viewer. Waveforms from different parts of the FSM logic are given below

(the vertical red line represents the triggering moment):

Figure 18: FIFO 245 FSM - Address configuration

In the digital waveforms of Figure 18 the most important signals of our logic are depicted. This capture is

taken in the configuration phase, where write address and packet size is decided. The ILA triggering

condition is falling edge of the signal rxen which is asserted when read data are available in the USB

bus. The FSM remains between states GET_DDR_ADDRESS and DDR_ADDRESS (0 and 1,

respectively) until 4 bytes are received. For one byte to be read, signal rdn has to be asserted.

Right after that, the DDR_ADDRESS is configured as equal to 0x81000000 and FSM moves on

to states GET_AXI_TRANSACTIONS and AXI_TRANSACTIONS until the size of the waveform is

also configured. In this example (Figure 19), the waveform to be downloaded is represented by the

s_num_axi_transactions signal which is equal to 0x20000 after its configuration. As already

mentioned, the total number of AXI transactions is equal to half the waveform size as with each AXI

writing transfer, two waveform points are saved.

50

Figure 19: FIFO 245 FSM: Packet size configuration

The next phase of the packet download is the data transfer. The data points are transferred in words of

four bytes through AXI interface. In the same manner as before, FSM remains between states

GET_DATA_WORD and DATA_WORD (4 and 5 respectively) until a 32 bit AXI data word is created.

Then an AXI transaction demand is issued by asserting the s_single_axi_txn signal. This signal’s rising

edge triggers AXI default logic to take action. When the transaction is done, AXI asserts the

s_single_write signal and FSM moves on to receive the next data point.

Similarly, all waveform points are written to DDR3 memory and FSM returns in IDLE state after

all data points are received.

3.3.1.3 USB 2.0 Streaming Approach

Up until now, storing the necessary data in an external DDR3 memory and latter reading them back to

the FPGA, is the main approach for having large packets of customized data (in our case, signal

waveforms customized by the instrument user) available for use in the hardware. The necessity for

external memory device derives from the fact that the FPGA block ram cells cannot provide enough

available storage space to support instrument functionalities. Inevitably, the instrument’s overall

performance is limited by the rate of data exchange between PC and FPGA.

A potential way of overcoming this limitation is by taking advantage of the fact that not the

whole waveform packet needs to be available at hardware at a given time. Only one waveform point for

every 12.5 MHz clock cycle (DAC sample rate) is needed to replicate our custom signal. Therefore,

streaming each waveform point by PC to FPGA instead of downloading the whole data packet at once

could eliminate the download time limitation.

Description

For implementing this idea the FT2232H chip is used once again in FIFO 245 mode. While the process

of receiving data from chip remains similar, the internal digital logic that manages the incoming data

words is changed. These are no longer directed to DDR3 memory, through AXI bus, but to FPGA

internal block ram. This block ram is implemented as dual port First-In-First-Out (FIFO) memory of 16

bit data width and 212 (4096 waveform points) data words depth. The following block diagram

represents the overall idea (see Figure 20):

51

Figure 20: Waveform streaming using FT2232H FIFO 245 protocol

The waveform data path begins from PC software. After waveform customization and generation, data

points are downloaded through USB 2.0 port to FT2232H chip. FPGA custom IP receives the data

available and forwards them to internal FIFO block ram through writing port A. In any case, FIFO

storage space is not enough to host a whole waveform signal. As data can be received until the point

when FIFO is full, remaining data are stored inside FT2232H’s internal FIFO block or inside PC

memory. Waveform data remain static in this manner, until PLAY_WFM signal asserts. This signal

signifies that a waveform play demand has been made and custom IP should initialize waveform point

flow to the Digital-to-Analog (DAC) converter, at a rate of 12.5 MHz. As FPGA FIFO gets empty,

custom IP is free to receive new incoming data from FT2232H interface. Considering the fact that the

receiving rate (60 MHz) is faster than the transmitting rate (12.5 MHz) waveform points will always be

available for DAC to reproduce.

There are two FSM processes, each one controlling one port of the FIFO block ram.

FTDI_TO_FIFO_PROC process is responsible for reading the available data from the FT2232H and

writing FIFO. In case FIFO is full, FSM maintains the byte that was received last and was never written

in FIFO, until storage space is available. In this manner, data points are not lost even if FIFO runs out of

memory available.

On the other side of the FIFO, FIFO_TO_DAC_READ_PROC process takes care of the

waveform generation demands. It remains in idle state until play_wfm signal is asserted. Signal

wfm_Q2_Q5 determines the quadrupole where the waveform will be generated (so it is a DAC selector

pin) and wfm_points_num determines the number of waveform points that will be generated. Cases

where no data are available when a play-waveform demand is issued or FIFO runs out of data before

wfm_points_num is reached, are both considered error occasions and error signal is activated.

52

3.3.1.4 USB 3.0 to FIFO245

Up to this point, the main goal is to achieve high download speeds which will not compromise in

reliability and tolerance. This is the reason why an upgrade is examined, regarding the version of the

communication protocol that is being used.

Towards this end, a comparison between USB 2.0 and USB 3.0 communication protocols was

made. More precisely, USB 3.0 is the third major version of the Universal Serial Bus standard for

interfacing computers and electronic devices. Its nominal speed is defined as 4.8 Gbps (Gigabits per

second) while USB 2.0 gives a maximum throughput of 480 Mbps (Megabits per second), namely 10

times slower. In addition to that, a USB 3.0 channel is an asynchronous full-duplex communication port,

which means that it can communicate on both directions at the same time (both send receive data

simultaneously). On the other hand, USB 2.0 consists of a half-duplex polling mechanism which implies

that, at some point, data can be either sent or received, but not both. The better performance of USB 3.0

is achieved against the number of wires within a communication cable (9 for USB 3.0 vs. 4 for USB 2.0)

and power consumption (up to 500mA for USB 2.0 vs. up to 900mA for USB 3.0) (19).

Finding an appropriate chip

The FT60x Series - Superspeed USB 3.0 ICs chips, by FTDI, constitute a great solution for the

incorporation of the USB 3.0 communication for our project. Those chips operate as USB3.0 to FIFO

bridges and are being extensively used for demanding FPGA communication purposes. Two versions

are available, the FT600Q and the FT601Q (20). The main difference between these two solutions is the

size of their parallel FIFO data bus. To be more specific, FT600Q incorporates a 16bit parallel bus while

FT601Q incorporates a parallel bus of 32 bits. The FT601Q version is selected as it can achieve twice

the data bandwidth in comparison to the FT600Q chip.

Furthermore, FTDI provides customers with the associated DLL library files which can be used

for the development of software applications. This way, bidirectional communication between FPGA

and PC client can be accomplished.

FT601Q functionality includes two main modes of operation:

• 245 Synchronous FIFO mode: is a single-channel bidirectional communication protocol.

The internal chip FIFO is divided in two parts, the Receive FIFO and the Transmit FIFO

(4kBytes each). Thus the read and write operations occur independently.

• 600 Synchronous FIFO mode: is a multi-channel bidirectional communication protocol.

The number of communication channels is configurable and can be either 2 or 4. Each

one has its own set of Receive and Transmit FIFOs.

The main goal for the current project is the fast data transfer from a client PC to the DDR3

memory of our development board, through the Artix7 FPGA. A multi-channel configuration would be

of no use for this purpose. Therefore, 245 synchronous mode is chosen as more appropriate for

achieving the highest possible data throughput. The main pin signals of FT601Q that participate in 245

synchronous FIFO mode and that will be controlled by our Artix7 FPGA device, are listed below (21):

53

• DATA0…31: the I/O 32 bit parallel FIFO data bus

• RXF_N: is an output signal, Receive FIFO Full. It is active low and when active it

indicates that the Receive FIFO has data available and it is ready to be read by the FIFO

master (FPGA)

• TXE_N: is an output signal, Transmit FIFO Empty. It is active low and when active it

indicates the Transmit FIFO has space available and it is ready to receive data from the

FIFO master (FPGA)

• OE_N: is an input signal, Output Enable. It is active low and when it is driven low by the

bus master (FPGA), the slave (chip) will drive the data bus.

• WR_N: is an input signal, Write Enable. It is active low and when it is driven low by the

bus master, the master has write cycle access.

• RD_N: is an input signal, Read Enable. It is active low and when it is driven low by the

bus master, the master has read cycle access.

As far as the waveform data download is concerned, the data will be transferred in one direction,

from the PC client to DDR3 memory, by the FPGA communication master. For this reason, the signals

TXE_N and WR_N are of no use, as their purpose is limited to the opposite data flow (from FPGA

communication master to PC host). Signal WR_N (active low) is set to 1 by the FPGA master and is

never asserted.

A 245 Synchronous FIFO mode bus master read transaction is represented in the diagram of

Figure 21. It is significant to notify that the FT601Q chip provides its own digital clock of 100 MHz. The

FPGA functionality is set to be synchronous to this clock domain.

Figure 21: FT601Q read transaction

54

The block diagram of Figure 22 depicts an FSM (Finite State Machine) logic that could read data from

the FT601Q Receive FIFO. It depicts the same information as above, but in a more comprehensive

manner.

Figure 22: FT601Q Finite State Machine for a reading transaction

USB107 Humandata

The first revision of the USB 3.0 connectivity is implemented using the USB-107 FT601

Evaluation Board by Humandata. This board incorporates the FT601Q chip in a way that allows all

possible configurations, such as different supply and I/O voltages for the chip (1.8, 2.5 or 3.3 Volts). In

addition to that, it includes all the necessary ESD (electrostatic discharge) and surge protection

components which ultimately eliminate the unwanted noise interference, a major issue in superspeed

communications.

So that it is possible to execute the necessary tests, an intermediate board is designed. On this

PCB, pin connectors for both the Numato Artix7 Neso and the Humandata USB107 are routed so that

the FPGA can communicate with the FT601Q chip and control its functionality. The PCB is designed in

such a way that impedance matching of 50 Ohms among both evaluation boards, is guaranteed. To

achieve this goal several parameters are taken into consideration, but most importantly:

• A 4-layer design is chosen for the intermediate connectivity PCB. Using the impedance

match calculator of Saturn PCB Toolkit Version 7.09, the thickness of each layer is chosen so that it

satisfies the 50 Ohms impedance restriction.

• The rooting copper lines of the signal layer which are connecting the FPGA I/Os to the

FT601Q pins, are being designed so that they have similar lengths and minimum travel distance on

the board.

WAIT
RXF_N TO

ASSERT

DELAY 2
CLOCK CYCLES

ASSERT OE_N

ASSERT RD_N

RECEIVE DATA
UNTIL RXF_N
DEASSERTS

DEASSERT
OE_N AND

RD_N

55

Block Design

AXI Stream

In the specific design, AXI4 Stream bus protocol is used to transfer data among the FPGA logic

components. The AXI4-Stream protocol is used as a standard interface to connect components that wish

to exchange data. The interface can be used to connect a single master that generates data, to a single

slave, that receives data. The protocol can also be used when connecting larger numbers of master and

slave components. In comparison to the other available AXI4 protocol versions, AXI4-FULL and AXI4-

LITE, the AXI4 Stream is the most efficient for accessing consecutive memory addresses. This derives

from the fact that AXI4-LITE demands master- slave signal handshaking and address reference for

every data word transfer, while AXI4-FULL allows a maximum of 256 burst length (the term “burst

transaction” defines a transaction of data that consists of only the data and the address of the first data

word). On the other hand, AXI4 Stream allows unlimited burst length and is ideal for sending data to

consecutive memory locations.

AXI4 Stream is not a bidirectional bus which means that data transfer can only happen in one

direction from master to slave. The main AXI4 Stream signals are the following:

• Tready: a slave signal, which indicates that the master is ready to accept data.

• Tvalid: a master signal, which indicated that a valid data word is available.

• Tdata: the data that are streamed from master to slave

• Tlast: a master signal, which asserts every time the last data word of a packet is streamed

For an AXI4 Stream transaction to occur, write address is not necessary. The tdata word is

streamed from master to slave every time both signals tready and tvalid are asserted. Finally, a

streaming packet transaction should complete every time tlast signal is asserted.

The block diagram of the FPGA design is presented in Figure 23.

56

Figure 23: Implementation of PC-FPGA communication based on USB3.0

It consists of the following blocks:

• AXI DataMover (version 5.1, Xilinx)

• AXI Interconnect (version 2.1, Xilinx)

• Memory Interface Generator (version 4.1, Xilinx)

• USB3 FT601Q Controller (custom IP)

• Data Transfer Check (custom IP)

• Data Transfer Timer (custom IP)

AXI DataMover

AXI DataMover is a Xilinx IP core whose functionality converts AXI4 Stream to Memory Mapped

AXI4 FULL communication protocol, and vice versa (22). As far is this FPGA design is concerned, this

core is used to convert an AXI4 Stream Protocol , coming from the USB 3.0 Controller, into an AXI4-

FULL protocol bus, so that communication with MIG memory controller can be accomplished.

AXI DataMover is configured via commands of specific format, which are issued through an

AXI4 Stream slave interface. The most crucial information that every DataMover command has to

include is the number of data bytes that are intended for streaming as well as the target write address.

After a command is issued, DataMover is ready to accept the streaming data. Data are transferred

through another AXI4 stream slave interface. When the configured number of bytes is streamed,

DataMover completes the transaction and moves on the execution of the next issued command.

57

In case incorrect number of bytes is provided, DataMover stops the execution of commands and

remains in an error state. Therefore, proper logic that evaluates the DataMover transactions and monitors

its status, is necessary.

Data Transfer Check

This custom IP is constantly sampling the AXI DataMover status AXI4 Stream interface. In case of

transfer malfunction, error output is asserted. Otherwise, pass bit is asserted to notify that AXI

DataMover’s last transaction has been successfully completed.

Data Transfer Timer

This IP is used for data transfer speed measurement purposes. It samples the AXI4 interface of MIG

controller. A pulse is generated on both transfer start and transfer end. Then, using an oscilloscope the

data packet download and transfer to DDR3 memory can be precisely measured.

USB3 FT601Q Controller

The most essential IP core is the controller of the FT601Q chip. This logic core is responsible for both

receiving the USB3 data and controlling the DataMover IP. Its design is being tested so that maximum

data throughput is achieved, while VHDL code remains efficient and customizable in case future

modifications are required.

Finite State Machine Description in words:

The USB3 FT601Q Controller FSM is specifically designed to receive a packet of bytes from the USB3

interface and replicate it to a DDR3 memory location. Both the size of the packet and the DDR3 write

address are configurable. At the end of the transaction, the FSM returns in a stand-by state where it

remains until new write data are available in the USB3 bus.

To begin with, when FPGA power-on occurs, FSM is set in CONFIG_IDLE state. In this state,

the rxf_n bit of FT601Q chip is inspected every clock cycle. When this bit is asserted (set to 0, active

low as already mentioned), FPGA is notified that USB3 data bus is not empty anymore and that FSM

should proceed in receiving the data available. The first 32bit data word represents the transaction

configuration data. More specifically, bits 24 downto 0 specify the packet size in 32 bit words, which is

identical to the USB3 data bus width.

The remaining 7 bits (31 downto 25) represent the DDR3 write location. The available storage

space inside the DDR3 memory is 2 Gb (Giga Bits) and is split into 128 parts of 2 MB (Mega Bytes)

size each. Every memory part has its own ID number. Consequently, ID values range from 0 to 127, so 7

bits are just enough for their representation.

58

After the transaction is configured, FSM is set in DATA_IDLE state and awaits the rxf_n bit to

be asserted once again. When the expected signal assertion occurs, FSM proceeds in receiving every

data available in the USB3 bus, until packet size is reached.

In this phase, it is significant to notify that, FT601Q chip transfers data in small parts of 4kB

(kilo Bytes). This derives from the fact that the specific device incorporates an internal FIFO of 4kB

data depth.

Εvery FT601Q data packet that is received, is stored temporarily inside the FPGA, in bounded

block ram cells (FIFO) of 4kB maximum capacity. Whenever this block ram space is full, FSM pauses

data receive process and issues a DataMover transaction command. Right afterwards, block ram data are

being streamed to DataMover AXI4 Stream data port. When all 4kB are finally streamed, block ram

should be empty once again. Subsequently, FSM proceeds in receiving more data, until packet size is

reached and eventually the DDR3 write transaction is complete.

A more detailed description of FSM states:

Our FSM can be found in one of the following states (the order is identical to the operation

flow):

TRANSACTION CONFIGURATION(Figure 24)

• CONFIG_IDLE: The beginning state. Assertion of rxf_n is expected.

• STALL1, STALL2: Two consecutive stall clock cycles that are necessary to occur before

FT601Q is able to export the data available.

• SET_CONFIG_OEN: Output enable pin (oe_n) is asserted.

• SET_CONFIG_RD: Read enable (rd_n) is asserted.

• RECEIVE_CONFIG_DATA: The transaction configuration data are received.

• CONFIG_TRANSFER1: Data type conversion occurs. From ddr3_id_slv (std_logic_vector) to

DDR3_ID (integer) and from data_size_slv (std_logic_vector) to DATA_SIZE (unsigned).

• CONFIG_TRANSFER2: DDR3_ID number is matched to the equivalent DDR3 starting write

address.

59

Figure 24: FT601Q FSM transaction configuration

DATA PACKET RECEIVE(Figure 25)

• DATA_IDLE: Wait for rxf_n to assert.

• STALL3, STALL4: same as STALL1, STALL2

• SET_OEN: Output enable pin (oe_n) is asserted.

• SET_RD: Read enable (rd_n) is asserted.

• RECEIVE_DATA: Receive all USB3 data until rxf_n is deasserted. Data are organized in

128bit data width which is identical to the DataMover AXI4 Stream port width.

• CONFIG_DATAMOVER_CMD: The DataMover transaction command is configured.

• FETCH_DATAMOVER_CMD: A trigger pulse is asserted so that the DataMover command is

issued.

• WAIT_DATAMOVER_LDNXT: Wait until the DataMover command fetch phase is

completed. The command is ready when ld_nxt signal of DataMover IP core is asserted.

• CONFIG_DATAMOVER_STREAM: The number of 128bit data words that are about to be

streamed is configured.

• TRIG_DATAMOVER_STREAM: A trigger pulse is asserted so that the DataMover stream

begins.

• WAIT_UNTIL_DONE: Assertion of stream_done, which signifies the end of the data stream, is

expected/ If packet size is reached, FSM returns to CONFIG_IDLE state, else it is set to

DATA_IDLE so that it receives the remaining data.

60

Figure 25: FT601Q FSM packet receive

ILA cores

The sampling frequency is defined by the core’s clock domain, which in our case is chosen to be the

FT601Q clock of 100MHz. This sampling rate is sufficient because our whole digital system is

synchronous to it and no clock of higher frequency exists in the design.

Vivado interface allows setting up the trigger condition of every ILA core. When trigger

condition is met, the corresponding ILA core is activated and signal samplings are depicted in a

waveform viewer. Waveforms from different parts of the FSM logic are given below (the vertical red

line represents the triggering moment):

Transaction Configuration(Figure 26):

Figure 26: Transaction configuration, ILA cores

When signal rxf_n is asserted, ILA core is activated and results are plotted in the waveform viewer.

61

After two stall clock cycles, signals oe_n and rd_n are asserted. Subsequently, DATA_SIZE and

DDR3_ID are both configured by the first 32 bit data word. In this example, data size is equal to

0x10000 (decimal value: 216 = 65,536) while DDR3_ID is equal to 2. The write ID is matched to write

address 0x80400000 (DDR3 base address = 0x8000000, ID segment size = 0x200000). Finally, the FSM

is set to state 0x08 (hex equivalent of DATA_IDLE state) waiting for next data to be available in the

USB3 bus.

DATA PACKET RECEIVE (start, Figure 27)

Figure 27: USB 3.0 waveform signal receiving - configuration

After transaction configuration, FSM should stay in an idle state until rxf_n is asserted once

again. Indeed, right after the necessary signal assertion, FSM sets oe_n and rd_n to logical zero so that

USB3 chip moves on to generate the data available. Data received are stored in a local FIFO of 128

write width and 4 kB write depth. Thus, FIFO’s write enable signal is asserted every four data words (of

32bit length), allowing word_buffer (of 128bit length) to be pushed in.

DATA PACKET RECEIVE (end of a random packet, Figure 28)

62

Figure 28: USB3.0 waveform data packet receiving - completion

Data are received by the FPGA master until rxf_n signal is deasserted. Right afterwards, a transfer

command is issued to DataMover’s AXI Stream command port by asserting the send_cmd_trig signal.

The moment when signal ld_nxt is set to logical one by the DataMover, indicates that our transfer

command has been successfully issued and that it is ready for execution. Therefore, FSM generates a

send_data_trig pulse to initiate the stream of received data, to DataMover’s AXI Stream data port. The

maximum number of data words that the USB3 chip can generate in one rxf_n assertion – deassertion

event, is 1024 which is equivalent to 4 kB.

DATA PACKET RECEIVE (end of transaction, Figure 29)

Figure 29: USB3.0 waveform signal receiving - completion

63

The unsigned signal total_data_received serves as a counter which represents the total number of data

words of 32bit length that the FPGA master has received. When total_data_received gets equal to

DATA_SIZE the transaction is complete and the FSM should be set to CONFIG_IDLE state, waiting

for the next transaction configuration. The waveform above depicts the moment when the last packet of

4 kB is written to the DDR3 and the FSM resets to its initial state.

64

4 FPGA acceleration of waveform generation

Purpose

Waveform generation and customization constitutes a vital part of the instrument’s functionality. The

fact that Omnitrap’s sequence of actions during and experimental process is primarily controlled by the

FPGA, makes the idea of direct digital waveform synthesis, by the FPGA itself, quite appealing. On the

other side, the same signal configuration capabilities have to remain open to the instrument user, while

speed and robustness cannot be neglected. For the purpose of comparing waveform generation by PC

against direct digital synthesis by FPGA, the latter is also implemented and examined in terms of

practicality, effectiveness and results, in a broader sense, that this modification would have in the overall

instrument design. As already mentioned, there are two kinds of isolation waveforms that are used,

Sweep and Filtered Noise Field (FNF). Each of these signals has its unique properties and thus requires

different approach in the purpose of generating it inside the FPGA.

4.1 Sweep Direct Digital Synthesis

The calculations that are necessary for a sweep waveform generation are already mentioned in chapter

3.2.1 and are also given here for reader convenience:

𝑺𝒘𝒆𝒆𝒑(𝒏) = 𝐬𝐢𝐧⁡[𝑷𝒉𝒂𝒔𝒆(𝒏)],

where Phase(n) is calculated by the formula:

𝑷𝒉𝒂𝒔𝒆(𝒏) = 𝑷𝒉𝒂𝒔𝒆(𝒏 − 𝟏) + 𝟐𝒑𝒊 ∗ 𝑻𝒔 ∗ 𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚(𝒏),

where Ts is the sampling period.

Frequency(n) is increasing linearly:

𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚(𝒏) = 𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚(𝒏 − 𝟏) + 𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚_𝒔𝒕𝒆𝒑.

These mathematical expressions constitute the base of Sweep generation by the FPGA, too. A new

custom IP is implemented that executes the above calculation process in a pipelining manner so that

high calculation speeds are accomplished. Sweep waveform is still configured by instrument user

through user interface. Starting frequency, frequency step, sweep duration, notch placement and

amplitude modifications are open to user, offering high signal customizability. The configuration data

are sent to FPGA through USB to UART interface. This data size is minor, so speed is not an important

factor here and thus the simple-to-implement UART interface is used.

The design and implementation of FPGA logic that effectively realizes the sweep calculation,

while seeming quite straightforward, includes some points that require additional thinking and attention.

The first issue that initially comes up, is finding a proper way to represent decimal numbers inside the

FPGA. A one-by-one numeric representation is not possible to occur, as the FPGA can only manage

65

integer values in the form of binary vectors. On top of that, additional difficulty occurs by the fact that

sweep calculation includes the mathematical operation of multiplication which is a high cost process that

requires multiple clock cycles to complete and increases the overall design complexity. Finally, an

FPGA sine generator is necessary to be implemented for completing the sweep calculation.

The above issues are approached and solved in a way that minimal FPGA resources are used

while maximum calculation speed is achieved. To begin with, in order to eliminate the need of

multiplication operation, data that are sent to FPGA are normalized in advance by a factor of 2π*Ts.

This way, the sweep calculation is reduced to a series of additions and sine calculation and no resources

for multiplication digital logic are required.

Sine calculation by FPGA is achieved by the use of Look-Up-Table (LUT) (23). A LUT is an

array that replaces runtime computation with a simple array indexing operation. More specifically,

discrete sine values are permanently stored inside FPGA, using either distributed or block ram resources,

and calculation occurs by means of these pre-stored values (24). The sampling resolution of the stored

sine wave can vary depending on the sine wave frequency range that needs to be generated.

Furthermore, not a whole sine wave period needs to be stored. Only one quarter of the total period is

enough to serve the sine calculation for every phase value. This, however, comes with the cost of some

minor digital logic which is responsible for deciding which sine period quarter corresponds to the

specified phase value, every time. This obviously adds an extra pipeline stage to the calculation but

requires little FPGA resources to be implemented. For our purposes, a sine wave quarter is stored in

FPGA distributed memory, with a resolution of 512 points and sine values range from 0 to 8191 (13

bits). The length of the sine values stored is chosen to be 13 bits as an extra bit is needed for sign

representation and the DAC which is used for digital to analog sweep conversion takes 14-bit size words

as inputs.

The main sweep configuration data that are sent to FPGA are:

• The total of sweep points: it is dependent to our sample rate (12.5 MHz) and sweep

duration that is chosen by the user.

• The normalized starting frequency: it is the sweep starting frequency normalized by a

factor N.

• A number K that defines the speed rate of frequency change: this value is related to

the ending frequency of the sweep waveform.

To begin with, an integer counter that ranges from 0 to 2^20 (reflects to 80ms which is the

maximum waveform duration) represents the discrete timing axis of the signal. For every sweep point

that is generated, timing counter is increased by one and by the time it reaches the sweep points value,

IP stops generating sweep points.

As far as starting frequency is concerned, it is mentioned above that it is pre-normalized by a

factor of N before sent to FPGA. This factor is equal to: N =
1024

2π
∗ 2πTs ∗ 256

where the first term reflects to normalizing data according to the stored sine wave values (256 sine

values from 0 to π/2, first sine quarter), the second term (2π*Ts) is used to replace the multiplication

66

operation, as already mentioned, and the third term (256) is used to cancel out some of the FPGA

rounding error due to the integer phase representation .Multiplication by 256 is easily reversed inside

FPGA by always cutting out the last 8 bits of the phase value (division by 256).

Finally, the last sweep configuration data word is a number that represents the number of sweep

points that the frequency remains stable. This number is inversely proportional to the frequency width.

Large frequency width for a specified sweep duration means that frequency needs to change in a faster

rate so that the whole desirable frequency range is covered. This number is equal to:

round⁡(⁡
1

frequencystep∗N
⁡), where frequency step is calculated in Hz and is equal to frequency width

divided by the total of sweep points. Every time a counter reaches this value, the frequency register is

incremented by one.

The Sweep generator is implemented in a pipeline manner and its functionality, as well as its

major digital components, is represented in the block diagram of Error! Reference source not found.:

Figure 30: Sweep generation by FPGA

The pipeline stages are described below:

• Frequency increment: frequency is incremented by one if the corresponding counter

reaches a specified value K.

• Phase increment: the phase of the next sweep point is calculated

• Phase Quarter Matching: digital logic figures out the sine quarter that corresponds to

the current phase and calculates the sine LUT index of the corresponding sine value.

• Sine calculation: Read sine value from sine LUT and generate a sweep point.

Figure 31: FPGA resource utilization of Sweep generation circuitry

67

4.2 Filtered Noise Field (FNF) Direct Digital Synthesis

The Filtered Noise Field waveform can be generated by the sum of sine wave signals of different

frequencies with a specified range and frequency step. An FNF waveform can include a large number of

frequency tones from 500 to 1000. It is self-evident that summing up such a significant number of sine

waves is not an operation that can be effectively implemented inside an FPGA. As a result, a different

approach is needed. The main idea is that the FNF calculation can start from the frequency domain,

where the amplitude and phase of all desirable frequency tones will be defined. After signal frequency

content is specified, the resulting signal is transformed to time domain by means of Inverse Fourier

transform, implemented inside the FPGA.

For the purpose of the IFFT implementation, the Fast Fourier Transform Xilinx IP core is used

(25). This IP core implements the Cooley-Tukey FFT algorithm. It can be configured to execute both

direct and inverse FFT (26). The transform size can take powers of two as its value, from 3 to 16 (8 to

65536 points). As far as the IFFT is concerned, which is used in our case, data samples are being fed to

the IP core in complex form, through AXI4 Stream slave interface. The real and imaginary part length of

the input is configurable and can range from 8 to 34 bit precision, each. After the necessary number of

points is provided to the IP core, output data are available after a short period of time, when tvalid signal

of AXI4 Stream master data channel is asserted. The output data format can be either fixed or floating

point, with the latter offering better precision but demanding significantly more resources for the core

implementation and cause a greater delay to the overall computation. In case overflow occurs during

calculation, FFT IP core can be configured to apply a scaling method so that output data remain intact.

The scaling rate is provided by another output master interface, so that precise calculation is attainable.

For the purpose of FNF digital synthesis by the FPGA, a custom IP is created. This IP is

equipped with an AXI4 slave interface and two AXI4 master interfaces. The slave channel is used for

FNF signal customization. Configuration data are specified through user interface and are sent to FPGA

through USB to UART data channel. Microblaze is responsible for receiving the data and feed them to

our custom IP. Among this information, the most important contents are the following:

• Starting/Ending Frequency: they represent the frequency width of the FNF signal.

These values are not given in Hz but in the form of an index, instead. This index reflects

to the first (or last) frequency domain point that has non-zero amplitude and should

correspond to the desirable starting (or ending) frequency. In order to find the frequency

domain point that links to a specific frequency the following formula is used, which

derives from the basic principles of the Fast Fourier Transform:

index = round(frequency ∗
NFFT

Fs
), where frequency is given in Hz, NFFT corresponds

to the FFT size and Fs is the signal sampling rate in Hz.

• Frequency step: it is also given in the form of frequency domain index.

• IFFT size: it must be a power of two. It represents the Inverse Fourier Transform size.

An FNF signal size can range from 131,072 points (217 , 10ms waveform) to 1,048,576

points (220 , 80ms waveform). Such long IFFT transforms are not supported by the FFT

68

core used. Thus a technique is applied, similar to software FNF generation, so that IFF

transform size is reduced. For this purpose, the FNF period is primarily calculated in

software (it is the least common multiple of the frequency tones that are included in the

waveform) and the final signal occurs by concatenation of multiple FNF periods.

Consequently, the IFFT size is reduced to one FNF period. By choosing appropriate

frequency step, it is quite simple to minimize FNF period size so that it does not exceed

the maximum IFFT width available (65,536 transform size, corresponds to 5ms signal),

without any consequences in the experimental process. However, for the signal

concatenation purposes, storage space of at least one FNF period size, is necessary to be

available, either internally (block ram or distributed ram) or externally (memory module,

i.e. DDR3 chip) of the FPGA.

Figure 32: FNF generation by FPGA

Figure 33: FPGA resource utilization of FNF generation circuitry

69

5 Evaluation

5.1 FPGA Development Board

The FPGA development board that is used is the version 2 of Neso – Artix7 by Numato (Figure

35). It incorporates the XC7A100T version of a Xilinx Artix7 FPGA device. The Artix 7 FPGA is

chosen for the current project, as it incorporates a sufficient amount of programmable resources, namely

logic cells, internal FPGA memory (block ram cells) and DSP slices. Digital signal processing

exploration takes place in this diploma thesis, and therefore the use of an FPGA device which

incorporates DSP slices is appropriate. Moreover, concerning Artix 7, it is considered to be the most

efficient Xilinx FPGA device in terms of performance-per-watt, which can ultimately contribute to a

low consumption overall implementation, as FPGAs in general are characterized as devices with

relatively high power requirements. Subsequently, after making an estimation of the number of I/O pins

that would be necessary for the final implementation and also taking into consideration some extra I/O

pins for future design extensions, the XC7A100T version of the Artix7 is picked, whose specifications

are shown in Figure 34Error! Reference source not found..

Figure 34: Artix 7 XC7A100T FPGA specifications

Finally, the Neso development board is chosen as it incorporates both a USB 2.0 interface and a

2Gbit DDR3 memory module. USB 2.0 interface is necessary for generating a communication port from

PC to FPGA while external DDR3 memory offers extra storage space for the FPGA data and opens a

wide variety of possibilities concerning the FPGA functionality. Using an FPGA development board

instead of a single FPGA device, adds simplicity to the instrument development as the demanding and

time consuming procedure of rooting appropriately the FPGA device, the DDR3 memory and the USB

interface on a custom printed circuit board, is passed over. This practice is ideal in the early stages of

instrument development, where a fast and effective primitive implementation is the main goal.

70

Figure 35: Neso developement board

5.2 PC - FPGA communication results

Attempts were made so that data from PC to FPGA are transferred in an efficient way that

satisfies the timing restrictions and instrument specifications while effectively takes advantage of the

available FPGA resources and contributes to the experimental process acceleration. These

implementations find application in modern laboratory equipment and instrumentation in general that

requires use of FPGA devices and data exchange between PC and FPGA. Details that were derived from

every method’s testing and evaluation are given below (see also Figure 40):

USB 2.0 to UART protocol, Microblaze instantiation for data receive and DDR3 save:

The Microblaze firmware code used while simple on its implementation provides a reliable way of

communicating with the FPGA. For every action, the corresponding identifier byte is sent back to the

PC master as confirmation. In this manner, PC master is always updated concerning the communication

status and can take action in case of failure i.e. a potential case where Microblaze did not respond back

after a specified amount of time or the confirmation byte was wrong. The FPGA resources occupied by

this implementation are shown in Figure 36.

Figure 36: USB 2.0 to UART protocol, Microblaze instantiation for data receive and DDR3 save resource utilization

While this design is efficient enough for instrument measurement read-backs and small data

transfer in general (like commands sequence download), it lacks high speed capabilities and can cause

long delays in case large packets of data (i.e. a whole waveform) need to be transmitted to the FPGA.

71

Indicatively, downloading a data packet of 512kBytes (which is the average waveform size for the

experimental purposes) and saving it to DDR3 has been counted (through PC software timers) to range

around 8 to 10 seconds, where around 4 to 5 seconds belong to data download time to FPGA using

UART protocol at 921600 baud rate, and the rest 4 to 5 seconds correspond to data transfer from

Microblaze to DDR3 memory module. Nevertheless, the error rate of the data transfer is practically zero.

In addition, after running the instrument under the specific design for a period of 1 month, no issues

were reported. Therefore, the practical evaluation of this implementation adds an extra level of

confidence concerning its reliability.

UART protocol incorporation constitutes the simplest and more straightforward solution for

setting up a robust communication channel from PC to FPGA. Efficient UART controllers are already

provided by Xilinx so no controller implementation is required. Microblaze can be used to receive the

UART data and drive them accordingly. In our case, data are transmitted through AXI bus to DDR3

memory controller, which is also provided by Xilinx. The above facts, drastically reduce the time-to-

market, as no major digital logic needs to be implemented. On the contrary, the largest portion of the

communication development is limited to Microblaze C code. As a result, such a data transmission

method can be potentially expanded to serve purposes other than waveform download, with minor

interference in the overall design. In addition to that, the minimum of 2 FPGA IO pins, one receiving

and one transmitting data, are needed. Therefore, it is offered for applications that require frequent

modifications, when the FPGA design is still under development, and in cases where FPGA IO port

saving is a major issue. However, the instantiation of Microblaze and DDR3 controller demand a large

portion of FPGA resources which may not be available in some cases. Moreover, the highest achievable

data transfer bandwidth is limited to approximately 0.11 MB/s which is fairly slow, especially for large

data packet transfer.

USB2.0 to FIFO245 synchronous protocol, custom IP for data receive, AXI4 Lite for DDR3

save:

Using this implementation, significant increase in download speed is achieved. The download time of a

512 kBytes data packet ranges from 50 to 60ms which is of no comparison to the previous

implementation through UART interface. It is important to note that this timing period includes both

data download to FPGA and transfer to DDR3 memory module. The resource utilization is shown in

Figure 37.

Figure 37: USB 2.0 TO FIFO245 synchronous protocol, custom IP for data receive, AXI4 Lite for DDR3 save resource utilization

The reasons that lead to such a great difference are the following: 1) Upgrade of

communication protocol: The serial UART protocol, using AXI UARTlite IP can achieve a maximum

data rate of 0.11 Mbytes / second (921600 Baud rate). On the other hand, the FIFO 245 parallel protocol

can namely achieve data bandwidth of 57.2 MB/s (1 byte / clock cycle of 60MHz), which has been

72

practically measured around 30 MB/s as the FT2232H chip that was used has not been able to deliver a

byte on every clock cycle and stall time intervals were noticed.

2) Microblaze replaced by custom IP: Soft-core utilization can reduce difficulty in FPGA design and

increase time-to-market. On the other hand, an IP module can be precisely customized at a lower level

so that less clock cycles are required for same logic functionality.

In order to verify the efficiency of the communication port, evaluation tests were applied. These

tests included download of waveform data packets in various DDR3 memory locations. Reading back

these data through a UART port (whose error rate is already measured as zero) showed that data are

transferred with practically zero error rates which imply a successful implementation of the

communication logic.

FT2232H FIFO 245 protocol is based on USB 2.0 and takes advantage of the USB 2.0

bandwidth more efficiently than UART protocol. It can achieve maximum data transfer rates of 30

MB/s. The implementation of an FT2232H chip controller is necessary for setting up such a

communication method, as it is not provided by Xilinx. This digital logic can be customized to promote

data directly to an external DDR3 memory, through Xilinx DDR3 controller. Therefore, the use of

Microblaze softcore is unnecessary (although it can be included if needed). By excluding the

instantiation of Microblaze significant FPGA resources are saved. The minimum number of FPGA IO

ports that are needed is twelve, from which eight bits are intended for the 8-bit size FIFO 245 parallel

bus and four pins constitute control signals. It is important to note that this communication method

needs to be synchronous to an external clock generated by the FT2232H chip. This ultimately adds an

extra clock domain to the overall design which is a negative consequence in many cases.

USB2.0 to FIFO245 synchronous protocol, data stream:

The above implementation has both advantages and disadvantages in comparison to the conventional

use of external memory device for saving large data packets. In this design, download time is defined by

the time duration from the moment PC initializes a packet download until the first two bytes are

available in the internal FPGA block ram. This duration is approximated experimentally to range from

0.5 to 1 ms and is mostly dependent to PC operational load and FT2232H chip’s reaction time to

handling data transactions. Reducing download time to such negligible time lengths, is quite important

for the overall instrument performance in terms of speed and practicality. In addition, FPGA resources

(see Figure 38) used are drastically reduced as no external memory controller (like MIG) is necessary.

Figure 38: USB 2.0 to FIFO245 synchronous protocol, data stream resource utilization

On the other hand, some downsides and limitations occur. For example, no multiple waveforms

can be available in the hardware at the same time, unless multiple instances of the same logic are

generated inside the FPGA, an effect which burdens FPGA resources and design convenience and

expandability. Furthermore, data processing capabilities inside the FPGA are quite limited by the fact

that only one part of the data packet is available to the hardware, at one time. In addition to these issues,

73

the fact that waveform reproduction gets highly dependent to PC operating system may be the cause of

malfunctions and instabilities, in case a low-performance PC is used to control the instrument. Namely,

this design while highly efficient in terms of speed and FPGA resources lacks customizability and

adaptability to potential future modifications.

In this method FT2232H FIFO 245 protocol is also used. Therefore, the need for implementing

an FT2232H communication controller is present here, too. This communication method represents the

idea of direct data utilization, right after they are downloaded to the FPGA and is highly restricted to

occasions where a big data packet can be used before the whole packet is available in hardware. No

internal memory is needed, except a FIFO module of minor storage space, for the sake of synchronizing

the FT2232H clock with the internal FPGA system clock. This way, minimum FPGA resources are

occupied while download time is minor as data can be utilized by the time the first data word arrives to

FPGA. It is important to note that each data packet can only be used once as all information are disposed

after being processed. Overall, this method is appropriate for streaming interfaces where data are serially

processed while no memory is needed and high download speed is a major factor. Additionally, it can

find application in cases where FPGA resources are limited.

USB 3.0 to FIFO 245 synchronous, custom IP for data receive, AXI4 Stream for DDR3

write:

The use of FT601Q for incorporating USB 3.0 connectivity to FPGA design has quite rewarding results.

The average data download speed is approximated at 300 ΜΒ/s, which sets the required download time

of a 512kB waveform, to 1.5 ms. Data transfer to DDR3 has been significantly reduced by the use of

AXI4 stream and is approximated around 0.5 ms for the same data packet. This data bandwidth was

measured by means of oscilloscope and is defined by the duration between transaction’s starting and

ending pulse which are controlled by custom IP. PC software timers also confirmed these measurements.

In order to verify the errorless data transfer similar evaluation methods as previous implementations are

used. Data are sent to FPGA, saved to DDR3 and received back to PC through UART interface, in a

loop process. No errors were detected, a fact that implies successful implementation of both FPGA logic

and PCB design. This method both combines high speed data download and allows use of external

DDR3 memory, however is not conservative in terms of FPGA resources (see Figure 39).

Figure 39: USB 3.0 to FIFO 245 synchronous, custom IP for data receive, AXI4 Stream for DDR3 write, resource utilization

This communication channel is based on USB 3.0 so it can achieve substantially higher

bandwidth, with download speed reaching 300 MB/s, and thus, constitutes the fastest data transfer

method that is presented here. FT601Q controller development and instantiation are necessary. Data are

74

stored in an external DDR3 memory, so resources for memory controller are also occupied. The

FT601Q chip includes a 32-bit parallel data bus. Consequently, by including the four additional control

signals coming from the chip, a total of thirty-six FPGA IO pins are occupied by this implementation.

The chip also includes a multichannel mode, where up to four communication channels can act

independently from each other. This adds an extra level of customizability to the overall design, under

the cost of slow time-to-market, as higher VHDL complexity is added to the FT601Q controller.

Additionally, an extra clock domain is added to the FPGA design, as data transfer must be synchronous

to a clock generated by the FT601Q chip. Overall, this method fits projects where saving IO pins is not a

primary issue, while there are high demands concerning data bandwidth, communication channel

multiplexing and design complexity.

Figure 40: Communication methods comparison

5.3 Digital waveform generation using FPGA

Sweep

The whole pipeline process, implemented for sweep signal generation, is synchronous to the

sample rate clock of 12.5 MHz. Therefore, the sweep waveform is reproduced by DAC while being

calculated, and thus no calculation delay exists. By adding extra pipeline stages, additional sweep

parameterizations become available (27). For instance, with the aim of applying amplitude modifications

to our signal an extra pipeline stage can be added in the end of the pipeline chain (right after sine

calculation) which is responsible for modifying the output value according to the specified amplitude

modification. Likewise, notch generation can be achieved by interfering in the frequency step of the

frequency increment pipeline stage, so that the corresponding frequency range is excluded from sweep

generation. This method of creating notches is not mathematically identical to eliminating the unwanted

75

frequencies on the frequency domain (by means of Fast Fourier Transform) but it is experimentally

feasible and effective.

In this design, a 14-bit input Digital-to-Analog converter, at a sample rate of 12.5 MHz, is used

for the sweep reproduction in the real world. However, this sweep implementation can be easily

customized to fit any DAC, regardless its digital input size and sample rate. Taking full advantage of

DAC’s potential is a decisive factor which ultimately determines the effectiveness of this

implementation. To begin with, let’s assume a more generic situation where the DAC that is used

receives N-bit digital inputs at a sample rate Fs and the desirable sweep frequency values range from fmin

to fmax. The main goal is for maximum resolution of sweep signal to be achievable, inside a specified

range of frequencies. The minimum frequency fmin that needs to be replicated defines the required sine

resolution, namely the number of sine points that should be available inside FPGA ROM (LUT table).

The calculation of this value is quite straightforward and occurs by dividing the sample rate Fs with the

minimum required sweep frequency fmin. This computation gives the ideal sampling size of a sine

period. However, as already referred, only one quarter of a sine period is necessary to be stored. In

addition to that, for the sake of memory addressing, it is more convenient for the total of sine points to

be a power of two. Ultimately, the formula that gives the number of necessary sine quarter resolution is

given below:

NextPowerOfTwo(
Fs

fmin ∗ 4
)

Furthermore, the maximum frequency fmax, must not exceed the half of the DAC’s sampling rate,

according to Nyquist theorem. Finally, sine points should be represented in binary vectors of N-1 bits.

The most significant DAC input bit, responds to the sign of the corresponding sine point, and is

calculated by some additional digital logic, using the phase register value.

For the purpose of this project, where Fs = 12.5 MHz and fmin = 10KHz, 512 points is the optimal

sine quarter resolution. Storing more than the number of sine points that is defined by our minimum

frequency is practically a waste of storage space as such a sine resolution cannot be experimentally

utilized by our DAC.

FNF

Direct digital synthesis of an FNF waveform is based on the Fast Fourier Transform calculation

inside the FPGA. Additional configuration capabilities can be accessed by generating some extra digital

logic. More specifically, notch application can be realized by excluding frequency tones in the frequency

domain, mainly setting to zero the unwanted values. Additionally, phase modulation for better signal

power distribution can be easily modeled by interfering to the imaginary part of the frequency domain

points of the FNF signal. Finally, amplitude modifications can occur either in the frequency domain, by

changing the amplitude of the complex values, or in the time domain, in a similar manner as sweep

amplitude modifications where applied.

As far as the timing specifications are concerned, for an IFFT of 215 points, under the specified

FFT core configuration, a delay of approximately 1ms is required. This duration defines the FNF

76

calculation time as any extra signal customizations occur simultaneously with signal reproduction by

DAC, in the real world.

Comparison of Direct Digital Synthesis by FPGA against PC software waveform generation:

In this diploma thesis, methods of digital waveform generation both by PC and by FPGA were

implemented and tested. Each approach is characterized by different features, thus attentive examination

of project needs and specifications is required to take the right decision every time.

One of the main differences is the precision of the calculation that can be potentially achieved in

each case. The maximum precision that is achieved by PC software calculation is taken as the reference

point to measure this variable. Waveform calculation in PC can eventually occur by means of double

precision floating point numbers (64-bit representation of each waveform point). Considering the case of

sweep generation, achieving such a resolution inside the FPGA would mean a substantial increase in the

resources occupied by the sine wave LUT. On the other hand, in case of FNF waveform synthesis, it

would be infeasible by the use of the Xilinx FFT module, as it cannot handle such high precision point

representation. Thus, development and instantiation of a custom FFT module would be necessary, a task

that would vastly increase the time-to-market and design complexity. Therefore, it is evident that signal

resolution comes at no cost in the software waveform synthesis while highly affects the FPGA design in

terms of resources, ease of implementation and practicality. It is important to note that, signal precision

requirements are always relevant to the project needs and are ultimately defined by the available

hardware’s capability of representing the synthesized waveform in the real world. It would be

meaningless to implement a high resolution waveform calculation method which would be subsequently

truncated by the Digital to Analog converter and thus would not have a practical reason of existence.

Furthermore, calculation time, resource utilization and overall design robustness and reliability

are some extra points of interest that can accept further observation. To begin with, FPGA devices allow

direct digital synthesis in a pipelining manner and thus real-time signal generation. Therefore, no

calculation time is necessary and signal is generated and reproduced by DAC on the same time. This is

not possible in all cases. For instance, FNF signal synthesis requires the operation of Fourier Transform

which adds a calculation delay to the overall process. However such a delay is of no comparison to the

inevitable calculation delay and download time required in case of signal generation by software. The

fact that signal generation is highly dependent to communication of FPGA with external devices (PC,

memory modules etc.) adds extra levels of potential instrument failure. On the contrary, direct digital

synthesis by FPGA is a far more trustworthy approach and should be adopted when the product is on its

final stage of mass production. Finally, the major advantage of software signal synthesis is the fact that

it allows direct and effective application of potential modifications and reinforces the trial-and-error

procedure, especially in the early stages of the instrument’s development.

77

6 Lessons learned towards productization

Throughout the long-term process of Omnitrap development, constant upgrades and

experimental testing, some conclusions are drawn concerning the ideal final implementation of an

interface that could set the bases for potential instrument‘s mass production in the future. The main

conditions that such a design should satisfy, as well as corresponding actions that could contribute to

this goal, are described below:

• It should effectively manipulate the instrument components while giving user-

friendly and comprehensive high-level access to Omnitrap functionalities. All in all,

it is always important to notify that the instrument is intended for laboratory use by

specialized scientists like biologists and chemists, who are unaware of Omnitrap’s

internal design and working principles. To this end, instrument control via the already

mentioned sequence of commands should be modified and upgraded. More specifically,

user capabilities through software should be condensed to some predefined experimental

processes, that each one represents a unique sequence of commands with a specified

purpose. These discrete experiments should have the form of black boxes in the

software’s user interface, where the term “black box” is used to describe an experimental

procedure with a corresponding name and no further details provided on how it is

implemented. In this way, user is no longer bothered to generate high precision series of

actions by itself in order to use the instrument. Moreover, the instrument’s basic

principles are protected from the public view. Finally, restricting access to instrument’s

low-level functionalities highly reduces the possibility of hardware damage due to misuse

by unspecialized users and make the process of ensuring both users’ and instrument’s

safety much easier.

• It has to be robust and resistant to long lasting experimental cycles. It is a fact that

such laboratory instrumentation is common to remain in operation for long periods of

time, like days or weeks and in most cases, system reset can lead in significant loss of

time and even irreplaceable analyte samples. Our system control is based on the

communication between PC and FPGA. The use of a PC for configuring the basis of

parameters of every experimental process and receiving the corresponding results is by

far the most practical for this purpose. Thus, a communication port between PC and

FPGA should always exist and act as a mediator between Omnitrap and user. However,

the responsibilities of PC software should be limited to high-level experiment

configuration, processing of experiment results and visual representations. For multiple

reasons that include human mistakes or operating system failure, connection with PC can

be lost. In such events, the instrument should not remain exposed while a second

protection layer should exist. The FPGA constitutes a far more trustworthy and stable

processing module than a PC, which should always be responsible for controlling the

most important hardware components of Omnitrap, generating the real time data that are

important for the experiment (i.e. isolation waveforms) and taking decisions in case of

78

malfunctions (i.e. a high temperature measurement). To this end, concerning the aspects

of the design that were tested and improved in this diploma thesis, the superspeed USB

3.0 communication method that was followed is considered ideal for fast and efficient

configuration data transfer, while the real time direct digital synthesis of Sweep and FNF

isolation waveform by the FPGA would solve the major issue of large data packet

download to FPGA and lead to a far more stable and consistent implementation.

• Instrument’s hardware assembly concerning both electronics and mechanical

components should be simple, strictly organized and effective so that the probability

of errors during assembly process is diminished. For this purpose, concerning the

electronics aspect of the instrument that were included in the realization of the current

diploma thesis, USB 3.0 interface and Artix 7 FPGA should be rooted on already existing

PCB instrument components so their functionality is not dependent to the production and

purchase of development boards from other companies. In addition to that, assembly gets

simpler and hardware malfunction probability is highly reduced.

79

7 Conclusion

To conclude, this thesis attempted to explore and upgrade the overall system that is responsible

for the Omnitrap mass spectrometer device control. Several communication methods between PC and

FPGA were implemented, so that the best approach is reached that fits appropriately the needs of the

experimental process. In addition, for the purposes of ion isolation through excitation, signal direct

digital synthesis methods using PC were also explored and compared. All implementations were tested

under instrument operation for sufficient timing periods, a fact that adds an extra level of assurance for

their efficiency and functionality. Undoubtedly, the overall system is still under development. There is

always room for improvements towards productization.

80

8 Bibliography

1. Scientific, Thermo Fisher. https://www.thermofisher.com/gr/en/home/industrial/mass-spectrometry/mass-

spectrometry-learning-center/mass-spectrometry-applications-area.html. https://www.thermofisher.com/. [Online]

Thermo Fisher Scientific.

2. DIMITRIS PAPANASTASIOU, EMMANUEL RAPTAKIS. Segmented Linear Ion Trap for Enhanced Ion

Activation and Storage. US20170221694A1 United States, August 3, 2017.

3. en.wikipedia.org. [Online]

4. www.fasmatech.com. [Online]

5. Analysis of molecular isotopic structures at high precision and accuracy by Orbitrap mass spectrometry. John

Eiler a, ∗, Jaime Cesarb, Laura Chimiaka, Brooke Dallasa, Kliti Griceb,Jens Griep-Ramingc, Dieter

Juchelkac, Nami Kitchena, Max Lloyda, Alexander Makarovc, Richard Robinsd, Johannes Schwietersc.

Pasadena, USA : Elsevier, 2017.

6. Kowalewski, F. Salewski and S. Exploring the Differences of FPGAs and Microcontrollers for their Use in

Safety-Critical Embedded Applications. Antibes Juan-Les-Pins : 2006 International Symposium on Industrial

Embedded Systems, 2006. 10.1109/IES.2006.357483.

7. Stored waveform inverse Fourier transform (SWIFT) ion excitation in trapped-ion mass spectometry: Theory

and applications. Shenheng Guan, Alan G. Marshall. s.l. : Elsevier, International Journal of Mass Spectrometry

and Ion Processes , 1999. S0168-1176(96)04461-8.

8. Filtered noise field signals for mass-selective accumulation of externally formed ions in a quadrupole ion trap.

Douglas E. Goeringer, Keiji G. Asano, Scott A. McLuckey, Don. Hoekman, and Steven W. Stiller. s.l. :

Analytical Chemistry, 1994 . 10.1021/ac00075a001.

9. Universal Asynchronous Receiver and Transmitter (UART). Umakanta Nanda, Sushant Kumar Pattnaik.

Coimbatore, India : International Conference on Advanced Computing and Communication Systems (ICACCS),

2016. 10.1109/ICACCS.2016.7586376.

10. AMBA AXI and ACE Protocol. s.l. : ARM. IHI 0022D (ID102711).

11. AXI UART Lite v2.0. s.l. : Xilinx, 2017. PG142.

12. AXI Interconnect LogiCORE IP Product Guide. s.l. : XIlinx, 2017. PG059.

13. Microblaze Processor Reference Guide. s.l. : Xilinx, 2018. UG984.

14. 7 Series FPGAs Memory Interface Solutions User Guide. 2012.

15. Dynamic Data Acquisition system using FT2232H. Parmar Pranav, Savitanandan Patidar, Mayursinh

Thakor, Dhaval Patel. New Delhi : IEEE, 2015. 10.1109/INDICON.2015.7443321.

16. FT2232H Dual High Speed USB to Multipurpose UART/FIFO IC Datasheet. s.l. : FTDI. FT_000061.

81

17. Formal Verification of Synhcronizers. Kapschitz, Tsachy : s.n., 2005. 10.1007/11560548_31.

18. Integrated Logic Analyzer v6.1. s.l. : Xilinx, 2016. PG172.

19. www.usb.org. [Online]

20. Research on data transmission application based on USB3.0 bridge chip on FPGA. Dezhuang Ma, Lunhui

Deng. Beijing, China : MATEC Web of Conferences, 2018, Vol. 189. 10.1051/matecconf/201818904002.

21. FT600Q-FT601Q IC Datasheet. s.l. : FTDI. FT_001118.

22. AXI DataMover v5.1. s.l. : Xilinx, 2017. PG022.

23. Implementation of DDS Chirp Signal Generator on FPGA. Heein Yang, Sang-Burm Ryu, Hyun-Chul Lee,

Sang-Gyu Lee, Sang-Soon Yong, Jae-Hyun Kim. Busan : International Conference on Information and

Communication Technology Convergence (ICTC), 2014. 10.1109/ICTC.2014.6983343.

24. A Study on Look-up Table Based Sine Wave Generation. A.J. Salazar, G. Bahubalindruno, G.R. Locharla,

H.S. Mendonça, J.C. Alves, J.M. Da Silva. Porto, Portugal : s.n., 2011.

25. The Design and Implementation of FFT Algorithm Based on The Xilinx FPGA IP Core. Zhu Jin, Luo Jun,

Zhang Shuang. Guilin, China : Atlantis Press, 2012.

26. Fast Fourier Transform v9.1. s.l. : Xilinx, 2020. PG109.

27. Using FPGA to Implement a N-channel Arbitrary Waveform Generator with Various Add-on Functions. Jen-

Wei Hsieh, Guo-Ruey Tsai, Min-Chum Lin. Yun-Kan City, Taiwan : IEEE. 10.1109/FPT.2003.1275761.

