VpPopos

MpOMHOEVS

SHi

EONIKO METZOBIO ITOAY TEXNEIO
TMHMA HAEKTPOAOTON MHXANIKOQN KAI MHXANIKOQN YITOAOTIZTON

TOMEAX TEXNOAOTI'TAYZ [TAHPOOOPIKHE KAI YIIOAOT'TETQN
EPTAXTHPIO YIIOAOTI'IETIKQN XYXTHMATOQN

Teyvikég ovpmicong BaBE@v vELPOVIKAOV SIKTVMV €
moAVTOPN VO emeEePYaoTIKO TEPLPALLOV

AIIIAQMATIKH EPTAXIA

Havaywotg laraysopyiov

EmpAiénov: I'eopyrog ['codpog
Enikovpog KaOnynmg E.M.IL

ABMva, Oxtopprog 2020

EGNIKO METXOBIO IIOAYTEXNEIO
TMHMA HAEKTPOAOT'QN MHXANIKQN KAI
MHXANIKOQN YITOAOTI'TETQN

TOMEAX TEXNOAOTI'TAX ITAHPOOOPIKHX KAI

YIIOAOI'TETQN
EPTAXTHPIO YIIOAOI'TETIKQN XYXTHMATQN

~
o
£
o
b
&
>
(=

Teyvikég Zopmiconc Babéowv Nevpovik®@v AtkTomV o€
TOAVTOPNVO emEEEPYAOTIKO TEPLPALLOV

AITIAQMATIKH EPTAXIA

Hoavayiotng Morayswpyiov

Empiénov: I'eopyrog ['kodpog
Enikovpog KabOnynmc E.M.IL.

Eykpifnke and v tpipein egetaotikn emrponn v 221 OxtwBpiov 2020 .

T'T'kovpag N.Kolbpng A Tlvevpatikdrog
Enikovpog Kabnyntmg E.M.IT Kabnyntig E.M.IT Kabnyntig E.M.IT

ABMva, OxtoPproc 2020.

Hoavayiotng lorayswpyiov
Authopatovyoc Hiextpoldyog Mnyavikog kot Mnyovikdg Yroroylotov E.M.IL.

Copyright © TTavayuwtng Harayewpyiov, 2020. EBvikdé Metadfio [Tolvteyveio.
Me empOroén kdOe dikaumdpotog. All rights reserved.

Amayopegbetaln avTrypoen, amofKevon Kot SIevoL TG TOpoVG oG EPYACIOC, €5 OAOKAN-
pOL 1 TUNHOTOS OVTNG, YO EUTOPIKO oKomo. Emitpémeton 1 avatvmwon, amodnkevon
Kol SLOVOUT Y10 GKOTO LT KEPOOGKOTIKO, EKTULOEVLTIKNG 1| EPEVVNTIKAG PUOTG, VIO TNV
TpolmdOeoT Vo avaQEPETOL 1| TNYN TPOEAELONG KoL Vo Slatnpeital To mapov UiVoua.
Epotiuota mov agopodv TN ¥pnon g epyaciog yio KEPOOGKOMIKO GKOMO TPEMEL VA,
amgvfvvovTaL TPOG TN GLYYPAPEX.

Ot amdyelg KoL To GUUTEPAGLLOTA TOV TEPLEYOVTOL GE AVTO TO EyYpago ekepdlovv
GLYYPOPED, KOl OEV TPEMEL VAL EPUNVEVTEL OTL AVIITPOSMOTEDOVV TIG MioNUEG BEGELG TOV
EBvikov MetodBiov TToAvteyveiov.

Mepiinyn

21N onUePVI €MOYN £xEL TPOKVYEL 1 avaykn To fadid vevpwvikd diktva, (DNN) va
xpNoorombodv cg o TANOOPA EVEOUOTOUEVOY CUGKELMOV AOY® TNG TOAD KOANG TOVG
axpifetoc. To DNN katdeepayv vo KUPLOPYRoOVV LE TNV TOAD KAA Tovg akpifela o
TOALOVG TOUELG TNG UNYOVIKNG Labnomng, Heta&d GAA®V Kol GTOV TOPEN TNG OPOCTG VITO-
Aoyotdv. To PEloVEKTNIA TOVG ival TG £X0VV HEYOAEG AVAYKES OO VTOAOYIGTIKOVG
TOpovc. 2g amTOTEAESILA O1 VTOAOYIOTIKEG oot oels Twv DNN Eemepvouv Katd ToAD TiC
SVVATOTNTEG TOV CLGKELMV OVTAOV GE EMIMESO LUVIUNG, VITOAOYIGTIKNG IKOVOTITOG KOl €-
vepyelakng avtovopiog. 'Etot éva koppdtt g €pguvag emkevipmbnke o€ Te(VIKEG DOTE
va propotv To DNN va, ypnoipomoin8ovv oTic mapandved cuGKEVES.

H Simlopotikn ovt enkevipdvetal ot peiétn g Kpavtomoinong (quantization)
pe opadomoinon (clustering) w¢ pebddov cuvumicong towv DNN povtédwov. Apyikd pele-
Thpe TOG Kot o€ oo Pabud 1 KPavTomoinotn T@V GUVEMKTIKOV GTPOUATOV ETITVYYOVEL
ocovumieon datnpavog v akpipelo Tov poviédmv. ‘Enetta eEetdlovpe g ennpedletal
1 VTOAOYIOTIKN amdd0oM Tove. Bedtiotonotopie Ty omddoomn Pacilopevol 1060 TeXVIKEG
OV VITAPYOLY NN GTNV Epevva. OGO Kot TEYVIKEG TOV Tpoteivovue gueic. H mpoonddeia
QT OPYIKE ETIKEVIPAOVETOL GTO VO KPOWOLLLE TIG KOBVOTEPNGELS TOV EIGEYOVV TO. U1 KO-
vovikd potifa tpdcfacng otn viun Tov gicayet | Kpavtomoinom. o va to methyovpe
avtd e&etalovpe texvikég Ommc loop optimizations kabmg kot Just In Time compilation.
INa va avénoovpie TepoITEP® TNV 0TOS00T, AVOTTOGGOVLE Hia O1kn pog BiAodnkn Just
In Time compilation. Xpnoiponowdvrog tn Pipritodnkn avt tpoteivovpe emiong o pé-
0000 Yo TNV e&dAeym TV U1 Kovovikov potifov. Télog cuykpivovTog Tig VAOTOMGELS
HOG LE CUYYPOVES BEATIOTOTTOM UEVES CUVEMEELS TOPATNPOVILE TS TETVYOIVOLV TOPOLOL0L
N HEPIKEG POPEC KAADTEPT) OITOSOGN.

AéEarc-Kiewona: Babid Mabnon, Zovélén, KBavtonoinon, k-means, Just in Time compilation

Abstract

Nowadays the need has emerged to deploy deep neural networks (DNN) on a variety
of embedded devices due to their high performance. DNNs have dominated, with their
state-of-the-art accuracy, a variety of Machine Learning domains and among others, com-
puter vision tasks. Their drawback is however their computational intensity. As a result
their computational demands far surpass the capabilities of edge devices in terms of mem-
ory, computational power and energy autonomy. Therefore extensive research is being
conducted in developing techniques to make DNNs deployable in such devices.

This thesis focuses on studying clustering quantization as a DNN compression tech-
nique. We first study the compression achieved with clustering convolution layers while
retaining model accuracy. Then we study the effects of clustering on computational per-
formance. We optimize the performance of the DNN models, with methods inspired from
existing research as well as with methods we propose. First we focus on improving per-
formance by hiding the latency from irregular memory access patterns that quantization
introduces. To achieve that, we investigate loop optimization techniques, as well as Just
In Time compilation. To further increase performance, we also develop a Just In Time
compilation library. Using the above library we also propose a method to eliminate the
irregular access patterns altogether. Finally by comparing our implementations with con-
temporary optimized convolutions we observe that they achieve similar and sometimes
better levels of performance.

Keywords: Deep learning, Convolution, Quantization, k-means, Just in Time compilation

Evyoprotieg

Apyikd BEAm va evyapiotow tov Enikovpo Kadnynti E.M.IL. I'edpyro 'kodpa mov
HOV £0MGE TNV EVKOIPI0 VO EKTOVIC® TNV Tapovod SIMAMUOTIKY epyacia oto Epyaoth-
P10 YTOAOYIOTIKGOV Z0OTNHATOV TNG ZYoAng HAektpoddywv Mnyovikdv Kot Mnyovikov
Ynoioyiotdv tov EBvikov MetodBiov [Horvteyveiov.

®a NBera eniong vo guyoplotnow toug kabnyntég pov k. Kolopn kot k. ITvevportt-
KdTo Y1 TN S1BUCKUALR TOVG KoL TIG YVAOELS TOL LoV Tpocépepav. Evyapiotd emiong v
vroyn e d1dxtopa ABnva EAappol yia tn cuvvelopopd g, tnv kKabodnynon, tnv fon-
Og10. Kot TIg GUUPOVAEG TOV OV E6M0E G€ OAQ, TOL GTAALN TNG EKTOVIONG TNG OITAMUOTIKNG
TG,

AV 1 SMAGUOTIKT €PYOGI0 ONUOTOSOTEL TNV OAOKANP®ON TV GToLddV [ov. Eival
70 TEAOG €vOC Bepatikod KOKAOV Tng {®NG MoV Kol amoTeAel Evav EMIAOYO GTIS TOAAEG
GEMOEC TV OITNTIK®V oL ¥pdvmv. I't avtd BEA® va gvyaploTiowm OA0VG OGOV EKavaY
avTa To YPpovia a&éyaota. Olovg EKEIVOVG TOV KAUTOTE TEPTATCULE GTO, 1010 LOVOTATLA,
TOVG PIAOVE Kot YV®OGTOVC,.

Evyapiotod opmg Eeyopiotd exeiva o moudid ota tpomeldkio, toug ANe&dptnTovg
Aprotepovg Gounrég Hiektpoddyovs. Mali ovokaADWaLE T GUVIPOPIKOTNTA, TNV OA-
AnAeyyom, tnv cvAdoyuotnte. Mabape v a&io Tov Vo 0y®VOLOGTE Y10 VO PTICYVOVLE
évav kocpo Kohvtepo. Ta va Aeyopacte Alyo Topamdave avOpwmot.

Evyopiotd toug yoveig Lov mov movto oy SimAa pov, pe fonbovcay kat pe otnploy.
Xwpig avtovg de Ba elxo PTacel O £5G.

Télog evyapiotm v 'EAeva mov pe otpi&e kat davtege) ykpivia pov 6Ao avtd To
SloTnuaL.

Hovaywdtg Harayempyiov,
OktmPprog 2020

Contents

1 Eicayoyn

[[.1 Zvvehktucd Nevpovicd ATKToo] . . . o o o o o e e
[[.2 AlydpBuock-meang oo

2 KBavromoinon

R.1 KBovtomoinot
2.2 Mebodoroyia KBavtomoinond
2.3 AROTEAEGUOTO . .« o v v v o e e e e e
B BelticTomoinon tov inference yio KBavromompéva povtéid
...............................
B2 Loopordel
...............................
B.4 JustIn Time Compilation v v v v v i
B.5 Loopunrolling
B.6 Uniquefilters
B.7 AROTEAEGLOTO . . .« o v v v v e e e e e e

U ToumwepaonoTo KoL REAMOVTIKEC TPOEKTAGELD

5 Introduction

5.1 DNN Quantization| oo
5.2 Contribution of this Thesiy o v v v v v it .

6 Background

.1 Machine Learning
6.2 Neural Networks
6.3 Convolutional Neural Networky
6.3.1 Convolutionlayer.
6.3.2 Poolinglavet
6.3.3 Fully Connected Laverd
6.3.4 Batch Normalization Layed
6.4 K-meansclustering

19
19
20

22
22
22
23

27
27
29
29
32
34
34
34

47

49
54
55

7 DNN Quantization 67

[7.1 _Quantization Methodology| 67
7.2 Compression ratd v v i 68
[7.3 Quantization NOISE i e e 69
[7.4 Experimental Setup oo 69
[7.4.1 Deep Learning Frameworks 69
............................... 69

[7.43 CNNModeld o 70

[[.4.4 Datapreprocessing ov et 72

[7.4.5 Performingk-means 73

[7.4.6 Evaluating accuracylo 74

[7.4.7 _Computer specificationg 75

[7.5 Evaluation 76
8 Optimization of Inference for Quantized Model 79
................................... 79
B2 Loopordel o 81
................................... 82
8.4 JustIn Time Compilation o v i i 85
B.4.1 Asmijit frameworkl 86

B.4.2 EasylJitframeworkl 88

B.4.3 Generating C++codeatruntimg 89

B.4.4 Generating convolutions from template filed 91

B.5 Loopunrolling 93
B.6 Uniquefilterd 93
B.7 Experimental Setup 95
B.7.1 Computer specificationy 95

B.72 Testbenchmarkg 96

B.7.3 Blocksizd. 97

B.7.4 Compilerd. 98

B.7.5 Vectorizationl 98
............................... 99

B.7.7 Implementationnamey 100

B.8 Evaluation o o 101
B.8.1 Codebooklength 101
............................... 102

B.8.3 Reordered convolutiony 102

B.8.4 Blocking 103

8.8.5 Comparision of Jit implementationd 105

B.8.6 Loopunrollind 106

B.8.7 UniqueFilterd. 110

B.8.8 Total comparison with all compilery 112

B.8.9 Parallel implementation 121

9 Conclusions and Future Workl 123

12

List of Figures

1.1 Svvélén evoc kernel ue o eicodo [117 20
[1.2 To BAuate tov k-means [24]. (a) K&Oe T avatifetor o éva cluster]
(b) Ta centroids emavvmoroyilovrar. (¢) Kdfe Tiuf avatifetor oe éva véd
cluster. (d) To centroids vmoloyilovron Eavé] 21
R.1 Tlopaderyuo clustering Bapmv pe 2-bit codebook [18] 23
2.2 Emidpoon Tov kmeans pe Sia@opec opy1koTomGELS 6TV okpifEia TV 1o
................................... 24
2.3 AxpiBeia tov clustered poviéhov kadog pikpaiver To péyedog tov codebookl 25
R.4 To Bapn tov mpmrov emmédov tov AlexNet kafdc ypnowomoovue oA
kot Myotepa bit otnv kfavtomoinon 26
B.1 Anuovpyio- Compile- EXTEAEON KOOWKO . . . « o o v o v o 34
B.2 ¥oykpion teyvikdv padding otnv omAf cuvEMEN kot 6T cuvEMEN ue clustering
(Benchmark 8.3 oto unyévnuo. Desktop) 37
B.3 Reordered exd0ym cuvéhEng ue kot ympic clustering 6to Desktop kot Benchmark]
..................................... 38
B.4 Emidoon twv blocking vAomomcemv Kot temv ovtictorywy un blocking (I1i
vaxoc 3.5 oto unyévnua Desktop) L 39
B.5 Emnidoon twv blocking vAomomcenmv kot Tov avtictorymv un blocking (ITi4
voxoc 3.5 6to unyévnua Server) 39
B.6 Emidoon twv blocking vAomomcemv Kot tmv ovtictorymy un blocking (ITi
voxoc 3.5 oto pnyévnua Edge) 40
B.7 Amddoon tov vanilla, cluster asmjit and easyjit vAomomjcewv 6to Benchmark
............................... 41
B.8 Xvykpion 1oV jit vAomowcewv ue v Biiodnkn pnog 6to benchmark 8.4
pto unyévnua Desktop) 42
B.9 Xpdvoc cuvoptioet aplduod kernel L. 42
B.10 Xvykpion unique filters ota benchmark 8.3 ka1 8.4 6to Desktop 43
B.11 Xvykevipotikd n amddoon oto Desktop yio to benchmark 8.4 43
B.12 Yvykevipwtiké n anddoon 6to Server yio. to benchmark 8.4 44
B.13 Xvykevipotikd n anddoon oto Edge unydvnuo yo to benchmark 8.4 . . 44
B.14 Amddoon oto Edge unydvnua yopic vectorization yio To benchmark 8.4 . 44
B.15 TMopdAAnin oamddoon Tov Server 6to benchmark 8.4 46

13

5.1 Example of image classificationusing CNN 50
5.2 Performance of traditional computer vision vs Deep Learning 51
5.3 Train on powerful GPUs, compress and then deploy on embedded device§ 52
5.4 Topl accuracy vs operations. The size of the blobs is proportional to thd
number of network parameters [4] 52
5.5 Deep compression pipeline [18] 53
b.1 Modelofaneuron 57
6.2 Multilayer perceptron with 2 hidden layerd 58
6.3 2-D representation of local connections between convolution layery . . . 59
6.4 Lenet architecture [291 59
6.5 An RGB image consists of 3 channels red, green and blug 60
6.6 Example of a convolution of a single kernel with a single channel input [11] 60
6.7 Example of a convolution of N filters with a 3 channel input(reb image)] . 61
6.8 Example of convolution with zero padding [117 62
6.9 Example of average and max pooling [52] 64
6.10 Alternating steps of k-means [24]. (a) Each value is assigned to a cluster]
(b) The cluster centers are calculated. (c) Each value is assigned to a new
cluster. (d) The cluster centers are calculated again} 66
[7.1 Example of clustering kernel weights using 2-bits [18] 68
[7.2 Example of clustering whole kernels [54] 68
7.3 AlexNet architecturd o v v o i 70
[7.4 GoogleNet architecture and inception module detail 71
[7.5 (a) Normal convolution (b) Depthwise separable convolution 72
[7.6 Weight distributions of AlexNet convolution layedd 74
[7.7 Quantization pipeline (a) For compression. (b) For inferencd 75
[7.8 kmeans effect on accuracy with linear, random, gaussian and inverse log{
prithmic centroid initializations 76
[7.9 Accuracy vs bits used for clustering 77
[7.10 Visualization of the effect of weight quantization on the first convolution
layer of AlexNel 78
B.1 8 fused multiply adds using Intel vfmadd instruction with 256bit vecto
................................... 82
B.2 Code generation pipeling 92
B.3 Comparing different codebook sizes for various clustering convolutior]
implementations on Benchmark Table 8.3 on Desktog 101
B.4 Comparing padding approaches on vanilla and clustering convolution im-
plementations on Table 8.3 onDesktop 102
B.5 Effects of clustering in vanilla and reordered convolution on Table 8.3 on
D D . e 103
8.6 Performance of blocking implementations and their non blocking coun-
terparts on Table 8.4 on Desktop 104

B.7 Performance of blocking implementations and their non blocking coun4
terparts Table 8.4 on Server
8.8 Performance of blocking implementations and their non blocking coun
terparts Table 8.4 onEdgd
B.9 Performance of vanilla, cluster asmjit and easyjit implementations on Ta{
ble 8.3 onDesktof e
8.10 Comparing previous jit implementations with our code generation schemg
bn Table 8.3 on Desktop]
B.11 Comparing jit implementations with our code generation scheme on Tablg
...............................

B.12 Comparing jit implementations with our code generation scheme on Tabld

...............................

8.13 Comparing jit implementations with our code generation scheme on Tabld

.................................

B8.14 Comparing jit implementations with our code generation scheme on Tabld

.................................
8.15 Comparing jit implementations with our code generation scheme on Tabld

.................................
B.16 Execution and compilation time vs the number of filterd
8.17 Comparison of unique filters on Table 8.3 and 8.4 on Desktop
B.18 Comparison on Table 8.3 and 84onServerl
8.19 Comparison on Table 8.3 and 84onEdgd
B.20 Performance with all the compilers on Desktop Table 8.4
B.21 Performance with all the compilers on Server Table 8.4
8.22 Performance with all the compilers on Edge Table 8.4

116

8.23 Performance without vectorization with all the compilers on Edge Table 8.4117

8.24 Parallel performance while threads increase on Desktop Table 8.4
8.25 Parallel performance while threads increase on Server Table 8.4

15

. 121

122

List of Algorithms

1 O aAydpOUOC TNGOUVEMEND .« © « v v o o o e e e 20
R SuvEMEN pe EAEYY0 GUVOPIOKDV TULDY . « © v v v v v oo e e e e e 28
B TuvéMén pe odlayr S106TAGEMY TNC EIGOO0Y o . o o o .. 28
B TuvéMEn pe odayn tneoepdctovlood . . L. L L L 29
5 YuvéMén pe blocking 6Tic YyopIKéG S10GTAGEL] .« «o ... 30
b YvvéhEn pe blocking otic yopucéc Stootdoelc kot oto channely 31
7 SOVvEMEN LE oAAayn TS oelpdc Tov loop kat blocking 31
B Convolution algorithm 63
D Convolution with soft padding 80
[L0_Convolution with physical (hard) padding 80
11 Reordered Convolution o o v v . 82
[[2 Convolution with blocking on spatial dimensiong 84
[[3 Convolution with blocking on spatial dimensions and channeld 84
[[4 Reordered convolution with blockind 85

16

List of Tables

R.1 Méyiot ovurnigon yopic mtoon axkpifeog] L. 25
B.1 MeyéOnblock 30
B.2 Machine specifications) 35
B.3 CPUspecifications] 35
B.4 Benchmark pe tic cuvehi€eic tov AlexNet 35
B.5 Benchmark pe peyddecovvediewc| L. 35
B.6 Benchmark mov 6toygbet 1o tedevtaio eninedo cache oto unyovipoto Toy
................................. 36
B.7 YAOTOWGELC KO OVOLOTO GTO SWOYPOUUOTOl . « « o o v o o oo e e e 36
[7.1 Machine specifications] 75
[7.2 CPU specifications] o o v v v v i i i 75
[7.3 Compression of models while retaining their accuracy] 77
B.1 Machine specifications] 95
B.2 CPU specifications] o v v v v v i i i 96
8.3 Benchmark with AlexNet convolutions) 96
B.4 Benchmark with large convolutions| 96
8.5 Benchmark targeting last level cache for each machine in Table 8.1/. . . . 97
B.6 Element bounds for efficient FMA| 97
B.7 Blocksizes forblocking 98
B.8 Compilers). 98
8.9 Compiler options for vectorization| 99
B.10 Implementations and namesinlegends 100
B.11 Existence of single and vector FMA instructions on the Desktop machine] 118
8.12 Existence of single and vector FMA instructions on the Server machine] . 119
B.13 Existence of single and vector FMA instructions on the Edge machine] . . 120

17

Kepaiawo 1

Ewoayoyn

21N cvvExEln TapovGtaloVLLE TO dVO TTEPAATA, TN OUOIKAGT TOV akoAoVBOVLE, Ta
amoTEAEGLOTO KOOMG Kol LEALOVTIKEG EMEKTAGELG.

1.1 Xvvemktikd Nevpovikd Aiktoo

Ta Zvvelktikd Nevpwvikd Alktvo (CNN) etvon puo vrokotryopio DNN mov e€edt-
KEHOVTOL OTNV avayvedpLlon ekovas. OTmg To KaVOVIKA VELPOVIKA SIKTVO, Ol VEVPOVEG
TOVG AapPEvouy €16080VG, EKTELODV [io ponuatikny Tpdén pe To fapn Kot 6T GuVEXELD
epoppolovv pia cuvaptnon evepyomoinong. Ta Papn aAralovv pe Tov 1010 TpOTO KOTd
T dbpketn g ekmaidevonc. H dapopd givarl 6tt too CNN anodidovv kaddtepa pe gi-
KOVEC G E1GOO0VC, EMELON 01 cLVIESEIC LETOED dV0 oTpmpdtwv (layers) meplopilovtal o€
TOTIKEG TTEPLOYEC. AVTO PEIDVEL OPACTIKA TOV 0PlOUO TOV TOPAUETP®V.

H Bgpehddng pobnpotiky mpdén tov CNN eivor 1 cuvéMEn. Ot cuverilelg epap-
poélovron petald pog 166d0v kot Tov mivako tov Papodv. To Bdpn kabe cuvelicTikon
OTPOUATOC Elval opyavmpéva og Tivakeg mov mepiéyovv 3-D eidtpa. Kabe giltpo amote-
Agiton amd 2-D kernels kd0e éva and to onoio ToAAanAac1aleTon S1d0YIKA e TUALLO TOV
EKAOTOTE KAVAAOD TG EWKOVaC Y10, vor ddoet Ty £6080 (Zyx. [L1)). "Enetta ot enti pépovg
£€odot tav kovalmv abpoiloviat Kot To amotédespa eivat Eva Kavail £6d0v. Avtd ema-
vohappaverot yio 0da ta @idtpa kot £Tot oynuatiletor n é€odoc. O apBuog tov eiltpav
glval i60¢ e Tov apldpd TV ETBLUNTOV KOVOA®V TG €£600V.

TUyKeVIpOTIKG N Sradicosio thg cuvEMENG paivetal otov akydpdpo [Il. Omov ot Sa-
otaoelg g £600v vrroAoyilovtot g e&ng:

(H; — H, + 2 % pad)

H. —
° stride

+1 (1.1)

(Wi — Wi + 2 % pad)
stride

Omnov Cyye, Hy, W, givor To kaval, To Hyog Kot 1o mAdtog g e£o6dov, Cyy, H;, Wi glvan

TO KOVAAL, TO VYOG KOl TO TAATOG TG €16600V ko Hy, Wy ival to Dyog kot 1o TAdTog

W, =

+1 (1.2)

19

tov kernel. Stride ovopdletor | omdotacn KATA TV 0ol PETAKIVEITOL TO PIATPO TAV®D
otV €icodo og kdbe emavainymn tov adyopiBuov. Pad eivor po teyviky pe v omoio M
gloodog yepilel” pe pndevikd oTig AKPEG TOL VYOV Kot TAATOVG TN MOTE 1 £10000¢ Kol
N €£060¢ va £0uV TiG 11€G SLOCTAGEIS VYOLS TAATOVC.

e®e

Tympa 1.1: Svvéhén evoc kernel pe pa icodo [[11]

Algorithm 1 O aAyo6p1Buog g cuvEMENG

1: fori =0to Cin — 1do

2: for j = 0to Cout — 1 do

3: fork=0to H,—1do

4. forl=0toW,—1do

5: form =0to H, — 1do
6: forn=0toW; —1do
7.
8
9

kin = stride X k +m — pad
lin, = stride X | +n — pad
Output[7][k][l|4+ = Input|i][kin][lin] X Kernelli][j][m][n]

1.2 AkyopOpog k-means

O olyop1Buog k-means givar £vog mavoAnmTiKdg alyoplOpog U exiPAemoevng -
xovikng padnong. Opadomotel éva chvoro mapatnpriceov (X = {z1,x9,...,x,}) o€
dokprég un epomtopeves opades (clusters) C = {C1, Co, ..., C}. Kabe cluster avti-
TPOCHOTEVETOL amd o T mov ovopdletat centroid. Olo ta centroids amotedodv éva
codebook. O arydpiBuog ehayiotomotel To teTpdywvo g EukAeideiag andotaong tov
otoyeiov Kabe cluster amd Tn HEST TIUR TOVS ;.

To. centroids apytomolohvTol Ge KUTOLEG TIES KOl ETELTO. akoAovOovVTOL EVOAAGE TOl

e&hg Brpara(y. [[.2:

* Kda0fe maparpnon avarifetol oto cluster pie 1o centroid tov omoiov €yel To eAdyL-
o1o0 teTpdywvo ¢ Evkeidelog andctaong.

Ci={zr € X tl|ap—my |I> < ||z —mi |°5,1 < j <k} (1.3)

20

* H T tov centroid kB¢ cluster (m;) emavomoroyiletar mg n péon Ty OAwv TV
mopatnpioemv Tov cluster.

1
== 3 g 1.4
mi = z; (1.4)

.T]'Gci

O alyopiBuoc cuveyiler péypt ot Tyég Twv centroids va unv aAddlovv. Tote éxel ov-
yichivet. O adyopiBuog dev eyyvdtor BEATioTn Ao yiati prnopel va cuykAivel 6€ TOmKA
eldyota. I't avtd Kot emavorapPaveTor TOAAEG POPEG LE TUYOIEG OPYLKOTOUGELS.

(C)) (b) (©) ()

Zynne 1.2: Ta Puoata tov k-means [24]. (a) KaBe tym avatibeton oe éva cluster. (b) Ta centroids
emavonoroyilovrat. (c) Kabe tyun avarifeton o éva véo cluster. (d) Ta centroids vmoloyilovtat
Eava.

21

Kepdaiaro 2

KBavtomoinon

2.1 KpPpavromoinon

H kPavtomoinon givat pio tpocéyyion yio t ovurnieon DNN. H kBavtomoinon ypnot-
pomotet Atydtepa bit yio vo vo avamapacsTioel Toug optfpovc. Avtd mpokaAel amOKAIoT
amo NG apPyIKES TIUEG Kot EYEL avTikTumo oty akpifela tov poviéhov. H kPavtomoin-
on cuvnbmg emrvyydvetal pe 600 Tpdémovg. O TPDTOC Eival N UETATPOTH TOV 0plOUdY
KWVNTNG VOdGTOANG o€ aptBpovg otabepng vrodtootoine. H B€om tng vmodiostodng
kaBopiletar €161 MOTE VO LTLAPYEL TO ALYOTEPO SLVATO CPAAUA amd TIG apyKEG THEG. O
devTePOC eivar 1 opadomoinon twv fapwv Bdoetl kamolov kprnpiov. Kdbe opdda €xet pia
OVTUTPOCMTEVTIKY TIUN Kot £TCL TO BApT KATAANYOLV VoL gval AtyoTepal.

2.2 MeBoooroyia KBavromoinong

[Mpaypatomolovpe v KPavTomoinon OoTe Vo, OLLUSOTONGOVLE TIC TIUEG TOV Bapdv
o€ o0UadEC, He KABs opdda VoL EYEL L0l AVTITPOCOTEVTIKN TIUY. AQoD Tparypotomotnei
kPavtomoinon ot mivakeg TV Bapdv TeptEyovv TAEOV indexes 6To TivaKa LLE TIG AVTUTPO-
cOTELTIKEC TG oV ovopdletat codebook (Zy. R.1). To péyedoc tov eéaptdrar amd 0
nooa bit embopovpe va katalopfavel o péyedog, To omoio vohoyiletat wg 207,

"Etoryio va éxovpe mpdoPac oTig TYEG TOV Papidv TPETEL TPAOTO VO, BPOVLE TNV TN
tov index kot Bdoel avtod va emiééovpe To KatdAinio otoryeio Tov codebook. ‘Etot o
E0MTEPIKOG VTOAOYIGUOG 6TOV AdyopBpo [l yiveto:

Output[j][k][l]+ = Input[i][kin][lin] X Codebook|K ernel[i][j][m][n]] (2.1)

22

weights cluster index
(32 bit float) (2 bit uint) centroids

1.48 | 0.09 3 0 2 1 3:.

-0.98

-1.08 cluster 1 1 0 3 21 1.50
0 |-1.03 0 3 1 0 1:| 0.00
1.53 | 1.49 3 1 2 2 0:| -1.00

Tymna 2.1: Hopadstypo clustering Papdv pe 2-bit codebook [[1 8]

Metd) ovumieon kabe Papog eivan €va integer index otov mivaxo codebook. E-
01 kaBe Papog Exel pewwbé oe logy (k) (6mov k to péyebog tov codebook) kat o Adyog
ovumigong vwoAoyileTol oc:
B n*s
 nxlogyk+k*s

(2.2)

Omov n gival o apBpdg tov Bopov kot s = sizeof(float). o peydro apBud Papdv to
péyebog tov codebook pmopei vo OempnBei apeintéo. Agdopévov emiong 0tL 1o péyebog
Tov codebook eivar 2°its 1 Tponydvpevn oxéon yiverat:

S

= 2.3
" bits (2-3)

Enopévag yia float apBpote 32bit o peyiotog Adyog cvpmieong givar 32 pe 1bit codebook.

oty aéoddynon g axpipetog emhéyovpe to Caffe framework [26] yio to meipoyids
pag. Xto caffe vépyovv moALd poviéha 101 exkmadevpéva. Epeig Oa doxypdoovpe v
kPovtomoinon oto AlexNet [28], GooleNet [45], Mobilenet [23] kot Mobilenet v2 mov
éyovv exmatdevdei Tavo oto Imagenet [[10].

Hpaypotomoovpe Tov adydpduo k-means pe v BipitodiKn scipy g python [41]]
K0l GUYKPIVOLLE SLUPOPETIKES APYIKOTOMGELS (YPOLLUKT], OLOLOLOPON, OVTICTPOPN AO-
yapOkn). Emeidn 1o caffe dev vmootnpilel mpaéeic pe kfavromomuéva Bapn, aviiko-
Owotovpe o Bapn pe Tig TWEG Tov deiyvouy oto codebook yio va mhpovpe PETPNGELS.
Aoxipaloope peyédn codebook amd 1 €wg 8 bit.

2.3 Amoteréoporo

Ao 10 Zy. .2 Prémovpe T enidpaon SLapopeTikOY apytkomotioemy otV aKkpipeto
v mpoPréyenv. [Mapatnpodue 6t Yo To peydia poviéda GoogleNet kot AlexNet m

23

emidpoaomn sivor apeintéa. Ia to pukpdtepa Mobilenets mapatnpovpe StOKVUAVOELS OAANL
Kopio péBodog dev givar otabepd mavta 1 kaAvtepn. 'Etol emidéyovpe va ta cvykpivoope
olo pali oV YPOUULKT apyLtKoToinoT.

accuracy

accuracy

accuracy

accuracy

o
®

54
o

o
IS

o
N

o
o

o
©

o
o

o
IS

o
N

o
=}

o
®

o
o

1N
IS

o
N

o
o

o
®

o
o

1N
IS

o
N

o
=}

k-means AlexNet
topl accuracy

k-means GoogleNet
topl accuracy

1 =& lin 0.8 4 = lin
| = inviog ¢ inviog
=~ gauss — 5. 0.6 =~ gauss
= rand T 9 = rand
5044
S
®
0.2 4
0.0 1
T T T T T T T T T T T T T T T T T T
top5 accuracy top5 accuracy
B
0.8 1
> 0.6 1
9
1 s
H 0.4
®
] 0.21
/\
1 T T T T T T T T T 0.01 T T T T T T T T T
1bit 2bit 3bit 4bit 5bit 6bit 7bit 8bit original 1bit 2bit 3bit 4bit Sbit 6bit 7bit 8bit original
model model
k-means Mobilenet_fold k-means Mobilenet_v2_fold
topl accuracy topl accuracy
1= !in 0.8 4 = lin
> invlog ~> invlog
] ¢ gauss | —=¢ gauss
—¢ rand 2 061 5 rana
3 0.4
S
®
0.24
0.0 1
T T T T T T T T T T T T T T T T T T
top5 accuracy top5 accuracy
0.8
> 0.6
9
e
g 041
®
0.21
0.0 1
T T . T T T T T T T T T T T T T T T
1bit 2bit 3bit 4bit 5bit 6bit 7bit 8bit original 1bit 2bit 3bit 4bit Sbit 6bit 7bit 8bit original
model model

Yypa 2.2: Enidpacn tov kmeans pe Si0popeg apyIkomTotoelg oty oKPiPEa TV HOVTELDV.

"Encuta oo Xy, 2.3 ovykpivovpe ™y enidpaon tov k-means oty axpifela kaddg
ta. codebook yivovtat pukpdtepa. Ilapatnpovpe mog ta peydro poviéda GoogleNet kot
AlexNet uropotv va kfavroromBodv £mg Sbit yopig va Exovv peydin amdKiion and v
apykn axpifeta. Avto coppaiver yiati Exovv moAld meptttd Pdpn. AvrtiBeta ta Mobilenet
ov gival NON apKeETA pKOTEPO KaTapépvouy va Kpavtomombodv uéypt 8bit yopic va
¥AoOoLV oMOVTIKT aKpipeta.

24

k-means clustering
topl accuracy

—> AlexNet
087 GoogleNet
=> Mobilenet i e — =
> 0.6) -
o —¢ Mobilenet_v2 —X
—_ o
3 0.4-) =il
@
0.2 4
0.0 ¢ a 3¢

top5 accuracy

/— H— ¢

I

©
[o)]
L

o
ESN
!

accuracy

o
N
1

©
o
1

1bit 2bit 3bit 4bit 5bit 6bit 7bit 8bit original
model

Xympa 2.3: Akpifea tov clustered poviédmv kabmg pikpaiver o péyedog tov codebook

Yto mepdpatd pog ¥pNoLomotovie To 1010 pnkog bit yia ta codebooks 6Amv TV
layers. ‘Etot) e&icoon R.3 meptypdpet tov Adyo cvpmicong yio 61o o poviého. Bdoet
avt@v vroioyilovpe otov ivaxa 2.1 tnv péyiom Bewpnrtiky copmieon yopic TtdoN TG
aKpifelog TV HovVTEA®V.

Mivekag 2.1: Méyiot cvpnieon yopic ntdon akpifetog.

Movtého Apycd | Teho Yvumieon | MéyeBog
péyeboc | péyeboc | (Gewpntikn) | Codebook
AlexNet 233MB | 36.4MB 6.4 Sbits
GoogleNet 5IMB | 7.9MB 6.4 Sbits
Mobilenet 17MB | 4.25MB 4 8bits
Mobilenet v2 | 14MB | 3.5MB 4 8bits

ITpaktikd n cvpmieon givor pikpotepn. Avtod yuoti To UKPOTEPO KOUUATL WVIUNG TTOL
umopel va dtevbuvetodot el eivan 8bits. Mia software Avor Oa eledyel Topondve Kabvo-
GTEPN O 6TO GUGTNUA. M0 0VGLOGTIKTY AVGT GE 0VTO TO TPOPAN LA Elvar vTocTHPIEN OTd
€1d1cd hardware (my. pe fpga 1 asic) ov sub byte indexing. Téhog oto Zy. R.4 pmopodype
Vo S0VE TAOG 0L TIUEG TV PapdV amoKAMVOUY GTASIHKA OO TIG OPYLIKES TOVG TILEC.

25

ﬂllﬂﬂmuﬂﬂl

EEAENNSEE

S N S5

Xyqpa 2.4: To Bépn tov TtpdTov emmédov tov AlexNet kabdg xpnoLomoodie OA0 Kot Aydtepa

bit 6TnVv kPavtomoinon.

26

Kepaiaro 3

Beltiotomoinon tov inference ywo
Kpavromomuéva povréia

>0 caffe dev pmopovue va aE10A0YNGOVLE TIC ETTTAOGELS TNV ATAS00T YTl OV V-
mootpilel mpaéelc pe kPoviomomuéva Bapn. ‘Etot dnpuovpyodue kdmoleg vAOTOOELS
oV aAyopiBupov g cuvéléng oe C++ yuo va Tig peaetoovpe. To Clustering mpokodel
LN GUVEYEIC KO UM KOVOVIKEC TPOGPRACELG otV vnun kabng kdbe tpocPacn sivor pia
£UUEDT] AVOPOPE OTNV TTPAYHOTIKT T TOV Bapovc. [Tpdta Ppicketon) Tyun Tov Tepiéyet
to Bapog (wov eivar index) kot Emetta fdon TS 1 KATAAANAN T oto codebook. Avtd
Kkabiotd TV TpodcPact wving Tuyaia kot gival Kokd 1060 Yo v enidoon g cache 6o
KoL Yo TV duvatdtnto vectorization. MeAETALE KOl TPOTEIVOLLLE KATOLEC VEES PEATIOTO-
TOWGELS Y10, VO, KpOWOLLE 1 va amoAgiyovpe Ty KabBvotépnor Tov e16dyet To clustering.

3.1 Padding

To padding pmopei eite vo viomomBei 6nwg stov Adydpipo B, dmov pe v cvvorkn
”if” eléyyetan edv kKaOe index givar péca ota Oplo TOV TIVOKO EIGOS0V, EITE |LE TPOYUOTIKY
oAy 6TIC SI06TAGELS TNG £16030V dmmwe oTov Adyopopo B,

27

Algorithm 2 ZuvéMEn pe Eleyyo GLVOPLOKOV TILOV

1: fori =0to Cin —1do

2: for j = 0to Cout — 1 do

3: fork=0to H,—1do

4. forl=0toW,—1do

5: form =0to H. — 1do

6: forn=0toW, —1do

7. if 0 <k;,, < H;and 0 < [;,, < W; then
8 kin = stride X k +m — pad

9 lin = stride X | +n — pad

0

10 Outputlj] K1+ = Inputlillkun)] x Kernel[i)j]m]ln]

Algorithm 3 Zovélén pe oAdayn SlooTdcE®V TG 16000V

: fori =0to Cin —1do
for j = 0to Cout — 1 do
fork=0to H, — 1do
for{=0to W, —1do
form =0to Hp — 1do
forn =0to W, — 1do
kin = stride x k +m
lin = stride X L +n
Output[j][k][l|+ = Inputpeqli][kin][lin] X Kernel[i][j][m][n]

A A A e

28

3.2 Loop order

O aAyopBpog g cVVEMENG dev glval TOAD amodoTIkdC. [l avTd Kot To dEdOUEVE TNG
TPOTOTOLOVVTOL £TGL MGTE VO, UTOPEL VO VITOAOYIGTEL e TOAD amod0TIKOVG alyopifiovg
moALomAacaooy mivaka pe tivako (GEMM). Avtd yio va emtevyfel mpénet Ta dedope-
va v aAAGEOVY popon (LéBodog im2col) kdtt mov yperdleton mopamdve pviun. Emiong
N omddoon tov GEMM pe t1g cuveriéelg dev givan n péyiotn duvaty Ady® T@v d106TA-
CEMV TOV TIVAK®V. X€ avTd T0 TPOPANUa pia Ao sivon 1 fertictomoinom e apyikng
ouvéMENg t0c0 wote 1 GEMM vo pnv eivan avaykaio [56]. Avtd to emitoyydvouy oA-
Adlovtag ™ ogpd twv loop otov alyopilBpo, Kabdg Kot T oelpd TV SGTAGE®V TOV
mvakmv. Avtd eaivetor otov Alyopiduo B. Avti n oeipd Eocpaiilet ko emidoon g
cache kaBa¢ &yovpe ToAAEG mpooPdoelg oe cuveyelg Béoeilg pvnune. Emiong dev vmdp-
youv eE0pTNOEIS 0T0 TehevTaio loop kol emopévog pumopovv vo ypnoiorombovv Fused
Multiply-Add(FMA) gvtoAég mov kévovv évav moAlamiactacud kot pua tpdcheon padll,
kot SIMD vectors mov mpayatomolohv TOAAEG EVTOAES TONTOYPOVO.

Algorithm 4 Zvvélén pe odhayn g oepds twv loop
1: fork=0to H,—1do

2: form =0to H, — 1do
3: forn=0to W, —1do
4: fori=0to Cin—1do
5. forl=0toW,—1do
6
7
8
9

for j = 0to Cout — 1 do

kip, = stride x k+m

lin = stride X l +n

Output[k][l[j]+ = Input[i][kin][lin] X Kernel[m]n][][4]

3.3 Blocking

Onwg avapépnke mpv 1 cuveMEN dev givor 1060 amodotikn. Mo axdpa TpdTacn
v TV Bertioon g etvan) epappoyn blocking ota loops g doTe Vo EY0VIE ATOSOTIKN
EMOVAYPTCILOTOINoN TV dedopévav kat BEATIon xpnor tov FMA SIMD evtoiov [|14]
[56].

Bact(opevotl ota mopandve avartdlape tpeg exdoyéc blocking (akyoppot 12,
ko [14). H anddoon pmopei vo PeATiodel apyticd kobdS ivar EQIKTO Vo KATAPEPOVLLE VL
xwpbier to working set otnv cache. I'o va kpdyovue v kabvotépnon L g, TV EVIOAOV
vector FMA pe Nye. ototyela, tpénel o€ kdbe kOKAo va gival dtubéoio kot vo, elodyo-
VTOL TOVAGYIGTOV L f10 Nyee 0ve€dptnro ototyeio og ke FMA unit. ITopdAinia mpémnet
va gEacpalicovpe 6Tt Ta Ora0éca otoyeia dev Ba eitvat TOGA TOALGL MGTE VO yepioovv
oMot ot SIMD katoywpntés, yio va amopuyovpe to register spilling otn uviun. Boaoilo-
LEVOL OTO, TOPATOAVED SOKIUACOUE SLapopa LeyEOn kot TeAld To katdAAnio blocksize mov

29

TANPEL TOL TOPATAVE KoL TEPUUOTIKG EYEL TNV KaAOTEPN amoddoon eaivetal otov [livaka

Algorithm 5 Zvvélén pe blocking otic yopikés S100TAGELG
1: Hy = H,/Blocksizep
2: Wy, = W, /Blocksizeyw
3: fori =0to Cin — 1do
4: for j = 0to Cout — 1 do
5. for ky, = 0to H, — 1step H,, do
6: forl, =0to W, — 1step W, do
7: form =0to H, — 1do
8 forn=0toW, —1do
9: for k = kyto H,, do

10: for [= [, to W, do

11: kin = stride x kK +m

12: lin = stride X l +n

13:

Output[j][k][l|+ = Inputpeqli][kimn][lin] x Kernel[i][j][m][n]

IMivaxag 3.1: Meyébn block

‘Hb‘Wb‘CZTLb‘ C’outb
16|16 | - -
Ay B | 8 | 16 | Nuee | Nuce
Avy.] - | 16 | 32 | 8*N,.

30

Algorithm 6 ZvvéMén e blocking otig ympikéc daotdoelg kot oto channels

1: Cing = Cin/ Nyec
2: Couty = Cout/Nyec
3: Hypy = H,/Blocksizep
4: Wy, = W, /Blocksizew
5. for iy = 0to C'in — 1 step C'iny do
6: for j, = 0to Cout — 1 step Couty do
7. for ky =0to H, — 1 step H,, do
8. forl, =0to W, — 1step W, do
9: form =0to H, —1do

10: for=0to W, —1do

11: for ¢ = ip to Nye. do

12: for j = jj to Nye. do

13: for k = ky to H,;, do

14: for ! = [, to W, do

15: kin = stride x kK +m

16: lin = stride x l +n

17:

Output[j][k][l]+ = Inputpeq[i][kim][lin] x Kernelli][j][m][n]

Algorithm 7 ZvvéMéEn pe adloyn g oepdc tov loop ko blocking

1: Ciny = Cin/Blocksizec;
2: Couty = Cout/Blocksizec,
3: Wop = W,/ Blocksizew
4: for j, = 0to Cout — 1 step Couty do
5: for i, = 0to Cin — 1 step C'ing do
6: fork=0to H,—1do
7. forl=0to W, — 1step W,, do
8: form =0to H, —1do
9: forn=0toW, —1do

10: for i = i; to C'ing do

11: forl =1,to W,, do

12: for j = j, to Couty, do

13: kin, = stride x k +m

14: lin = stride x l +n

15:

Output[k][l[j]+ = Inputi][kin][lin] X Kernel[m][n][i][j]

31

3.4 Just In Time Compilation

Ywhpyovv TEPMIMGELS TOL 1 ATOO0GT TOV TPOYPAUATOS EEQPTATOL OO TUPULE-
TPOLG OV Yivovtal YVOGTEG apol To Tpdypappa Eekivioetl va tpéxet (oto runtime). T'a
VO ITOPEGOVLLE VO, EKUETAAALEVTOVUE OTL YVOPILOVE AVTEG TIG TOPAUETPOVS Ko va, BEATL-
GTOTOGOVLE TO TPOYPaLA pog ypnotporotovpe Just In Time (JIT) compilation. To JIT
compilation kdvel compile KOUUATIO TOV TPOYPALUATOS, TOPAYEL Kot ekTeAel e&g1d1ke-
HEVO KOOKO BEATIOTO Y10l TIG GUYKEKPLUEVEG TOPUAUETPOVG,.

H cuvéMén pmopet va opeAinbei amd Ty mapandve Texvikni Kabdg poig yvopilovpe
TG S10GTACELS KO TIG TIWEG TOL TTivake TV Bapmv kabmg kot ta codebook avtd dev a-
AGlovv kaB’ 6AN T ddpKeln TNG EKTEALEOTG KOl EMOUEVMG O KMOKOG Pmopel vo BeATioTo-
mombBei. Xpnowomolovpe dvo N vredpyovta framework yio JIT ko €merta emyeipovpe
pia 91K oG vAomoinon.

Xpnotpomolovpe apytkd to asmjit framework [27], to omoio extedel JIT pe kddka
x86-64 assembly. Bac1{opevol 6€ mapopotla £pEuVa. e GTOYO TOVG apAlovg Tivakes, [53]
vAomotovuE TV cuvEMEN PBydalovtag kowvd mapdyovia to codebook. Kdabe oroiyeio tng
GLVEMENG Hmopel Vo, VToAoYLoTEl amd Tov €5NG TOTO.

Cin Wy Hy

out[fI[k][1] = > > > codebook[kernelli][j][m][n] x Input[i][kin][lm] ~ (3.1)

i=1 m=1n=1
Edv avoi&ovpe ta abpoicparta £yovue to €£1G:
out[j][k][l] = codebook[0] x Input[1l] + codebook[3] x Input][2]+ (3.2)
+ codebook[0] x Input[6]
+ codebook[2] x Input[10]
+ ...

=

"Emerta Byalovrag kébe éva codebook koivo mapdyovra:

outlj|[k][l] = codebook[0] x (Input[l] + Input[6] + ...) (3.3)
+ codebook[1](Input[9] + ..)
+ ...
+ codebook |2 — 1)(Input([14] + ..)
TéNOG Y10 VoL LETATPEWYOLLLE TOV TAPUTAV® TOTO TAAL 6€ ABpotoua ypetaletatl va EEpovpe
mow oToLyEla TG 16000V ToALamAacialoval pe Tolo codebook, dote va ta abpoicovye
TPOTO OAd pall Kot vo YAMTOGOVHE TOAAATANGIOOUOVE. AV avTd LAoTOMOEL amd Evov

mivaka m Tov TEPLEXEL AMOTEG LE T oToyEln Tov Bo ToAAamAaciactovV pe kaOe codebook
TPOKVTTEL 0 EENG TOTOC.

obits _q m[i].end
out[j][k][l] = Z (codebook:[i] X Z Input[j]) (3.4)
1=0 j=mli].start

Epeic dnuiovpyodpue 11010 KMOK 6TO runtime:

32

//add every input mapped to codebook[0]
xorps xmml, xmml //sum=0

vaddss xmml, xmml, [rcx+4] //sum+=input[1]
vaddss xmml, xmml, [rcx+32] //sum+=input[8]

vfmadd231ss xmm2, xmml, [rdx] //out[index]+=codebook[0]*sum
//add every input mapped to codebook[1]

xorps xmml, xmml //sum=0

vaddss xmml, xmml, [rcx+8] //sum+=input[2]

vaddss xmml, xmml, [rcx+52] //sum+=input[13]

//perform scalar fused multiply add
vfmadd231ss xmm2, xmmi, [rdx+4] //out[index]+=codebook[1]*sum

//repeat for all codebook elements

21 ovvéxeln xpnoionolovpe to easyjit[3] framework to omoio ypnoiomnotel tov
compiler clang ®ote va PeATioTOMOMGEL Lo GUVAPTNON KAOBMOG TpEYEL TO TpdYpappa. To
puovo mov ypetaleTat £ival va ToL TAPEXOVLE TIG TOPAUETPOVS TNG GLVEAPTNONG TOV BEAOVL-
pe va Pertiotomomost. Avto pog emotpépet évav function pointer oty BeATioTonompévn
GUVAPTNON GO TOV OTOL0 HUTOPOVLLE VA, TNV KUAEGOVUE LE TIG VTOAOUTEG TOPAUETPOVG,.

auto conv_opt = easy::jit(conv, c_in, rows, cols, \
c_out,kRows, kCols, pad, stride, _1 , \
&codebook, &kernel, _2);

conv_opt (&in,&out) ;

Avt 1 vAomoinom gival ToAD e0KOAN Kat dev ¥PedlETOL TOALEG YVAOELS TOV®D 0TO BN
Yo voL xpnoipomotnoet.

Téhog emedn o1 dVO AVTEG VAOTOMGELG SEV KAATTTAV TLG OVAYKES LLOG GE ENITEDO EVKO-
Alag ypriong aAda kai eAevBepia emelepyaciog Tov kKOO VAOTOMGOUE o BiAof1kn
7oV dMpovpyei, Kavel compile, Kot ekTeAEl CUVOPTAOELG 6TO runtime. Apykd to compiler
options e&ayovron kata to build. "Emerta ypdeovpe kddua, C++ 610 mpdypappd pog oe
Lopon string 1/kat ypnoiponotovpe arodnkevpéva templates yio cuvropia. Ta templates
éyovv hooks to omoia UTOPOHIE VO OVTIKOTAGTAGOVE [E stings 6To runtime. ‘Eneita to
TPOYPALLLO aoBnKebETAL GE £va TPOoowPLVO apyeio yo vo yivel compile. TELog To Kdvov-
ue load pe t ovvaptnon dlopen Kot xpnGIULOTOIOVUE TIG GUVAPTNOELS TOV e TNV dlsym.
H dwdwcooia avth paiveton oynpotucd oto Xy, B.1.

33

_ Offline ' Runtime :
Configuration Configuration Execution

Export :
; Read
compilation flags

W:lfe C(;‘de n Replace hooks
string form with generated

code and save to
temporary C++ file

~—

compilation
flags from
CMake

Load library
with dlopen
and functions
with dlsym

Compile
to library

Run
Functions

Write
template
functions

Load template
code

Zyfqpa 3.1: Anpovpyio- Compile- Extéleon kmduka

3.5 Loop unrolling

To loop unrolling pnopei vo BeAtidoet v anddoor g GuVEMENG Kabdg eEAEYyETOL
mo ondvia 1 cvvOnkn e£660v and 1o loop. Emiong o compiler propel va Pektictonot-
Nnoel kaAvTEPO ToV KOdka. O Tpdmog dnpovpyiag KdOKe 6To runtime 7OV OVUQEPOLLE
TOPOTOV® oG ETITPEREL VAL kdvoupe unroll 6do to kernel tng cuvdptnong. Eriong ypnot-
LOTOL0VLLE EVOLAUETEG LETOPANTEC G TapAAANAOVES accumulators KATL TOV EMTPENEL GTOV
compiler va KaveL 0KOWUO TEPIGGOTEPEG PEATIOTOTOWGELS.

3.6 Unique filters

Metd tov adyopiBpo k-means givor mBovo morrd kernels va emavoiopfdavovrat. Av-
TO UTOopPOVE VO TO EKUETOAAELTOVUE KO VO OMLLOVPYHCOVLE [GuvapTnon Yo KaBe
kernel. Kabmg umopovpe va, dnpuovpynocovpe Kddika, 6To runtime [IopovLLE VO TUT®-
covpe TIg TIéG TV codebooks Kot £T61 Vo unv vIdpyovV TAEOV EUUECES AVOPOPES GTO.
Bapn. Axdun umopovpe va ekteAécovpie TIc Tpaelg Pydlovtag Kovd mapdyovta ot Ao-
yueq ™ eéicwong B.4. Zvykpivovpe Ta omotEAECHOTA [1E VAOTOWGELS [E KOVOVIKOVG
TOALOTAOGLOGLOVC,.

3.7 Amoteréopata

draéape benchmarks wévo ota onoio Oo agloloynocovpe Tig vAoTomoelg. Oa Ad-
Bovpe ta amoteléo oo oo pyavipoto tov Iivako B.2. To benchmarks meptypépovron
otovg Mivaxec B.4 B.9 ko B.6. *Qc petpicég Bo ypnopomoricovie Tov xpévo extéleong,
1o Speedup kat ta FLOPS. ®povrticoye eniong va evepyomotcovLE To vectorization aAAd
Kot ta. unsafe math optimizations.

34

Mivaexag 3.2: Machine specifications.

Type | Computer | oS | CPU | RAM

Server Ubuntu 18.04 | 2x Xeon Gold 5218 | 314GB
Desktop | Ideapad 510-15ikb | Ubuntu 16.04 17-7500U 8GB

Edge | Raspberry Pi3 B+ | Ubuntu 18.04 Cortex A53 1GB

Mivaxog 3.3: CPU specifications.

CPU arch speed | cores/ L1,L2,L3 misc
threads

Xeon Gold 5218 | x86-64 | 3.9GHz | 16-32 | 32K, 1M, 22M | avx-512
17-7500U x86-64 | 3.5GHz 2-4 32K, 256K, 4M | avx2
Arm Cortex A53 | aarch64 | 1.4GHz 4-4 16K, 512K neon

Mivexac 3.4: Benchmark pe tig cvveAigeig tov AlexNet.

Cin | Hin | Win | Cows | Hr | Wy | stride | pad
convl | 3 227 | 227 | 96 11 |11 |4 no
conv2 | 96 |27 |27 |256 |5 5 1 yes
conv3 | 256 | 13 |13 | 384 |3 3 1 yes
conv4 | 384 | 13 |13 |[384 |3 3 1 yes
conv5 | 384 | 13 |13 | 256 |3 3 1 yes

Mivaxag 3.5: Benchmark pe peydieg ovveliéels.

Cin | Hin | Win | Cowr | Hi | Wy | stride | pad
benchl | 256 | 128 | 128 | 384 |3 3 1 yes
bench2 | 256 | 128 | 128 | 512 |3 |3 1 yes
bench3 | 384 | 128 | 128 | 384 |3 |3 1 yes
bench4 | 384 | 128 | 128 | 512 |3 |3 1 yes
bench5 | 384 | 112 | 112 | 512 |3 3 1 yes
bench6 | 512 | 56 |56 |[1024 |3 |3 1 yes
bench7 | 512 | 28 |28 |[512 |3 |3 1 yes

35

Mivaxag 3.6: Benchmark mov ctoygbet to tedevtaio eninedo cache oto unyavipata tov Iivaka

Cin | Hin | Win | Couwr | Hp | Wy | stride | pad | memory
Server 512132 |32 |512 |3 3 1 yes | 13MB
(22MB) | 512 |32 |32 |1024 |3 |3 1 yes | 24MB
Desktop | 128 | 32 |32 (256 |3 |3 1 yes | 2.5MB
(4MB) 128 (32 |32 |[768 |3 |3 1 yes | 7TMB
Edge 64 |16 |16 | 128 |3 |3 1 yes | 481KB
(512KB) (64 |16 |16 |[256 |3 |3 1 yes | 609KB
IMivaxoeg 3.7: YLomomoelg Kot OVOULOTO GTOL S0y POLLLOTOL
Implementation Name Implementation Name
Vanilla convolution \ Block reordered Cluster | bl-re-cl
Vanilla convolution (cluster) | v-cl Asmyjit asmjit
Soft padding sft Asmjit Vectorized asmjit-v
Soft padding cluster sft-cl Unique filters unique
Reordered re Unique filters hardcoded hard
Reordered cluster re-cl Unique filters iterator iter
Block Spatial bl-sp Unique filters loop loop
Block spatial cluster bl-sp-cl Codegenv vanilla cgen
Block all dimensions bl-a Codegen unroll cgen-unr
Block all dimensions cluster | bl-a-cl BLAS im2col im2col
Block reordered bl-re

36

To padding gaivetar vo ennppediet v amddoon. And o Xy. B.J. H uébodoc tov Aly.
Qaivetal va 16aYeL TEPLocOTEPESG KaBLoTEPNOELS KOMG EAEYYEL O KAOE eEmAvAANYT TIG
GLVOPLOKEG THpéC. Emopévac Oa ypnotponomoovpe tov Aly. Bl amo S kot oto e&nc.

vanilla

soft padding

vanilla cluster

soft padding cluster

1.0 A

Time(s)

convl conv2 conv3 conv4 convb

Typa 3.2: X0ykpion teyvikov padding oty omAn cvvéMEn kot ot cvvéMEn pe clustering
(Benchmark B.3 oto unydvnua Desktop)

Hopatpovpe ot cvvéyewn Tmg o Ary. B Pertidvel v cvovéMén. BéPaia ommg
pmopovpe va dovpe oto Xy. B.3 1 cluster exdoyn dev Betidveton 1060, KATL TOL PTOPED
va amodobel oTig axavovioTeg TposPacelg Lviung Tov TpokaAei To clustering.

1 ocvvéyela a&loroyovpe tig blocking VAOTOMGEL OTTOV TOPATPOVUE TOC T -
yovipoto Server kot Desktop 1 amddoon Pertiwveror aisbntd otig blocking exdoyés. To
blocking amld otic yopikég dtotdoels Pépvet o pétpro Pedtioon oArd ot AdlyopiBuot
B «on [emoépovy modd peyodbrepn. Avtd eivan avopevopsvo kobog to blocking oto
channels givat mov emttpénet v kaAvtepn aglonoinon t@v FMA units kabmg éxovpe me-
plocdtepn erevbepia otnv emioyn block size. H Peitioon gival 1660 onuavTiki Tov 1
cluster kot 1 non cluster ekdoyég Exovv tnv 010 vYNAN anddoon. Avtd cupPaivel axdpa
kot otov ALy. [l mpéypa mov dev cuvéBorve otov Ady. ll mec eidape mapandvo.

1o unyévnuo Edge vou pev to blocking Beltuidvel v anddoon aild oyt otov 1610
Babuod pe ta mponyovuevo. IMopoatnpovpe 611 oe avtibeon e mapamdve ot cluster ko
non cluster vAomomoel; dev gival Kovtd o€ enimedo amddoong. Avtd umopel vo opeiletan
0TI d1opopéc oTov compiler kabdg Kot 0t0 pikpoTePo vector length mov Tapovsialet To

37

unyavnua. Iopatnpovpe eniong amd to Topamdve 0Tt Kabmg avédvetal to vector length
av&aveton kat 1 amddoon tv blocking vAomomcewy.

0.6

0.5 1

0.4 1

Time(s)
o
w

0.2 1

0.1 1

0.0 -

convl conv?2 conv3 conv4 convh

Tyipa 3.3: Reordered exdoyn ouvéMEnG e kot yopic clustering oto Desktop kot Benchmark 3.4,

38

50
v

v-cl
bl-sp
bl-sp-cl
bl-a
bl-a-cl
re
re-cl
bl-re
bl-re-cl

40

30

Time(s)

20 A

104

benchl bench2 bench3 bench4 bench5 benchl bench2 bench3 bench4 bench5

(a) Time (b) Speedup

Zynna 3.4: Enidoon tov blocking viormowcemv kat tov avtictowv pm blocking (ITivoxag B.3
oto unyavnua Desktop)

10
L")
vl
== blsp
204 == blsp-cl gl
= bla
= bl-a-cl
wore
= re-cl
151 = blre 61
) = blred | S
[7] T
10 1 Y4
5 21
benchl bench2 bench3 bench4 bench5 benchl bench2 bench3 bench4 bench5
(a) Time (b) Speedup

Tympa 3.5: Enidoon tov blocking viormowjoewv kat tov avtictoywv pn blocking (ITivoxag B.3
67O pnyavnuo Server)

39

v-cl

benchl bench2 bench3 bench4 benchs ’ benchl bench2 bench3 bench4 bench5
(a) Time (b) Speedup

Tyfpa 3.6: Enidoon tov blocking viomomoewv kot tov avtictoywv pun blocking (ITivaxag B.3
oto unyavnuo Edge)

40

21 ovvéyela a&loAoyobpLe Kot cvykpivovpe Tig JIT vAomomoelg e v apyikn cuvé-
MEN oALG Ko peTafh Tovg. Amd o Ty, B.7 mapotnpovpe mog 1 viomoinon Tov asmijit
£YEL TEPLOPIOUEV XPNOIUOTNTA GTNV TEPIMT®ON pag. Emtuyydvel amoteléopata cuykpi-
o0 UE TO easyjit aAAG pe ToAd KOmo amd T TAEVPA Tov TpoypaupaTiot). [lapandvem
BelticTtomomoelg Ko vectorization eEaptmvtal emxiong and Tig tkavotnTeg Tov Ypnotn. Ta
TOPATAV® GE GUVOLAGHO LE TNV peYain xprion RAM vy peydAa benchmarks dev) 1é-
VEL KOTAAANAN Y10, TO TpOPANLG pag. Emiong dev paivetar va kepdilovpe kdtL o€ dmoyn
YPOVOL amd TovG Kowvovg Topdyovtee g EE. B.4. Avtd pmopei vo epunvevdei Aoym e
SLOPOPETIKNG APYITEKTOVIKNG TOL TPOPANUATOC pag aAAG Kot amd Ty ¥pion ond eud,
vectorizes EVTIOA®V, 6OV 0 TOAAATANGLOGUOG Kot 1) Tpdcsbeon éxovv v 1610 KabBvoTE-
pnon. To Easyjit av kot amAovotepo Gtn ¥pnor EYEL TO PElOVEKTHUATA Tov. Mmopel va
BeAltiotonomoetl cuvaptioelg mov Exovv amokAslotik@ C++ fundamental data types ko
dev €yovpe ELEYYO OTIG PEATIOTOMOWOELS.

H amin exdoyn g dnuovpyiag kddika (codegen) mpakTikd TPOYLOTOTOLEL OTL Kot
t0 easyjit. 'Eyet 0pwg xaddtepn anddoon yuuti pmopovue vo eréUPovpe To GUESH GTOV
KMo kot vo emléEovpe pdvot pog ta KatdAinia compilation flags. Emopévmg xatodn-
YOULLE 6TO OTL BaL YPNOIUOTOMCOVE TNV SKN pog BPA0ONKN OTIG EMOHEVEG CLYKPIGELS.
Tnv viomoinon avt cvykpivovpe Eretta pe TNy wo nepimiokn unrolling ekdoyn tng (Xy,
B.8). Onw¢ frav avapevopevo eivar kahdtep, kabdg Adym tov unrolling o compiler &xst
TEPIOGOTEPES EVKAUIPIES Y10l PEATICTOTOGELG KO TOPOAANAOTO|CELG.

0.6

-y
. vecl
. easyjit
0.5 1 . asmjit

. asmjit-v
= cgen

Time(s)

convl conv2 conv3 conv4 convs ’ convl conv2 conv3 conv4 convs
(a) Time (b) Speedup

Tyfpe 3.7: An6doon tov vanilla, cluster asmjit and easyjit viomowjoemv oto Benchmark B.3 oto
Desktop

41

50 - mm vanilla
mm vanilla cluster
W= codegen
W= codegen unroll
40 4
— 301
@
T
£
=
201
104

benchl bench2 bench3 bench4 bench5 bench6é bench7

benchl bench2 bench3 bench4 bench5 bench6é bench7
(a) Time (b) Speedup

Zynpo 3.8: Toykpion Tov jit viomomicewv pe v Pipiodikn pag oto benchmark B4 oto pnyd-
vnua Desktop.

Ké0e unique filter £xet v Sk tov cuvdpmon. Kabmg o apBpdg tov giktpov ov-
Eaver mepUéVoLE 0 xpovo yia compile va avéavetat. Amo to Xy. B.9 maparnpodpe g
oV Kot OAEG 01 EKSOYES £XOVV TTEpimov TNV 101 addoao, 1 hard coded givar gEhappdg Ko-
Mtepn. [apamnpodpe exiong Euava Tog dev kepdilovpe KTt 0md TOV KOV TapAyovTa yio
TOVG AOYOLC TOV OVAPEPOE TOPATAV®.

W unique factor hard
= unique factor iter
== unique factor loop
W unique hard
0.05 === unique iter
= unique loop

W unique factor hard
600 1 ™= unique factor iter
=== unique factor loop
== unique hard
500 | ™= unique iter
W= unique loop

0.06

= @
g 0.04 A p
£ £
= F
s 5
-% 0.03 A E
g 2
fnt S

0.02 ©

0.014

000° 2304 4608 9216 18432 2304 4608 9216 18432
Number of Filters Number of Filters
(a) Xpovog ektéheong oto Desktop (b) Xpovog Compilation oto Desktop

Iympa 3.9: Xpdvog cuvoptiost apBpod kernel

42

16 -y

= vcl
W unique
144

121

104

Speedup

0
convl conv2 conv3 conv4 conv5 benchl bench2 bench3 bench4 bench5 bench6é bench7

Zyfpe 3.10: Toykpion unique filters ota benchmark 8.3 kot B.4 oo Desktop

Aéilel va onuelndel Tog omd Tovg compiler TOL SOKYAGAE O iCC TOPTYALYE TOV TTLO
omodoTIKO KMIKA. TN cvvéyetn o clang Kot T€A0g 0 gcc. AvTd 0PEILETOL GTNV IKOVOTNTA
TOVG VO, KAVoVV vectorize 1 Oyt kéfe vAomoinon. Xtn cvvéyela e&etdlovpe GUYKEVTIPMTIKA
TOL ATOTEAECLLOTOL Y10, TIG TTOPATAVE® VAOTOMGELS MOTE Vo, e&dyovpe cvpmepdouata. [To-
POINPOVLE MG Ol unique kKo unrolling vAomooelg ivat o o amodotikég oto Desktop
Ko Server (Zy. kot B.12)) Mapatnpodpe emione mog o Server &xet Ehappmdg KAAITEPN
anodoon mhavadv Adym tov avx-512 evavtt Tov avx2 tov Desktop. Amo tnv dAAN 610 pUn-
yévnpo Edge mopatnpovpe amd to oynuo ¢ 1 anin codegen gival kahvtepn. Avtd
glvar moAd TBavo vo opeidetal 6To HikpoTEPO Vector length tov enelepyaoth, kabdg kat
ot xpfion tov clang compiler. Téhog xopig vectorization 6to id10 pmydvnua (Zxiua B.14)
ot unique kot unroll amodidovv kaAvTEPOQ.

50

N
o
!

-y
vl
re-cl
bl-sp-cl
bl-a-cl
bl-re-cl

w
o
s

40 4

w
o
L

cgen
cgen-unr
unique

N
vl
L

30

Time(s)
GFLOPS
~
o
!

20 A

-
«
L

10 A
10 A

benchl bench2 bench3 bench4 bench5 benchl bench2 bench3 bench4 benchs
(a) Xpodvog (b) FLOPS

Tympa 3.11: Tuykevipotikd 1 anddoon oto Desktop yia to benchmark B4

43

Time(s)

Time(s)

Time(s)

-y
. vecl
. re-cl
204 = bl-sp-cl 40
= bl-a-cl
W Dbl-re-cl
e cgen
= cgen-unr i
154 == unique 30
4
2
104 9 50
54 10

benchl bench2 bench3 bench4 bench5 benchl bench2 bench3 bench4 bench5
(a) Xpovog (b) FLOPS

Zymna 3.12: Svykevipotikd 1 amddoon oto Server yia to benchmark 8.4

-y
400 | == vl 1.4
. re-cl
. bl-sp-cl
350 1 mm bl-a-cl
. bl-re-cl
300 1 === cgen
== cgen-unr
250 4 B unique "
a
S
200 A &
150

100 A

50 A

benchl bench2 bench3 bench4 bench5 ' benchl bench2 bench3 bench4 bench5
(a) Xpdvog (b) FLOPS

Tyfpa 3.13: Svykevipotikd 1 omddoon oto Edge pmydvnpa yio to benchmark .4

L")
400 == vl
- re-cl
= bl-sp-cl
350 1 mmm blacl
bl-re-cl
300 { " cgen
W cgen-unr
250 | = uniaue "
.
S
200 5

150 A
100 A
50 1
o benchl bench2 bench3 bench4 bench5 ’ benchl bench2 bench3 bench4 bench5
(a) Xpodvog (b) FLOPS

Tynpe 3.14: Anodoon oto Edge pnydvnua xopic vectorization yio to benchmark B4

44

TéNog ywo T1g VAo oL e clustering mov Eeydpioay pe TNV Amdd00T TOVS, TNV
codegen unrolling ot tnv unique filters, e&etdlovpe T anddoomn €Yovv Gg TOALTHPNVO
nmepPdAdov pe po amAr vioroinon OpenMP. Tavtdypova TIg GLUYKPIVOLLLE LE TNV TapO-
doactakr vAomoinon yia non clustering cuveAi&elg, OOV TPMTA O TIVOKEG LETACYN LTI~
Covtan og 2-D dote va vmoloyiotel 1 £€£000¢ e TOAATAAGIOGIO TIVAK®OV otd VYNANG
arodoong GEMM functions. [Tapatnpodue apyucd amd 1o oynua OTL 1M ATOS0CT| TV
vAoTOMGEDV Hag ivor cuykpioyn pe iy GEMM vAonoinon. kabmg ta threads av&évo-
VTOL JLEV VTTAPYOLV OVEOUELMGELS OAAY 1) 0TOO0GT TOVEC KALOK®OVEL TEPITOV TOPOLOLN LE
v GEMM vionoinon. Ermiong napatnpodue mwg n unrolling ekdoyn kAUaK®VEL KOAD-
TepoL amd TV unique.

45

GFLOPS.

GFLOPS

GFLOPS

200

°

1 thread(s) 2 thread(s)
- cgen-un
unigue
- im2col —im2col
4
9
&
benchl bench2 bench3 bench4 benchs bench6 bench2 bench3 benchd bench5 benché
4 thread(s) 8 thread(s)
450
- cgen-unr - cgenunr
@
2
S
<)
benchl bench2 bench3 bench4 bench5 benché bench7 bench2 bench3 benchd benchS benché

16 thread(s)

32 thread(s)

benchl bench2

bench3

benchd

benché

GFLOPS

bench?

64 thread(s)

bench2

- cgen-unr
= unique
- im2col

bench3 benchd. benchs. benché bench?

500

GFLOPS

bench2

bench3 benchd.

benchs

benché

- cgen-unr

bench?

Zynpa 3.15: Tapadinin anddoon tov Server oto benchmark B.4

46

Kepaliaro 4

2VUTEPACNOTO KOl HEALOVTIKES
TPOEKTAGELS

e ouT TN SMAGUATIKN OPYIKE LEAETHOOLE T omoTELEG AT TO clustering ¢ pébodo
ovumnieong DNNs kot S0TICTOGAE TOS EMLPEPEL KOAAY ATOTELEGLOTO GTNV GUUTIEST KOl
TAVTOYPOVO. 6T dloTpon TG akpifelog Tov poviéhov. Tlap’ OA” avtd ecdyet Ypovikég
KoBvoTEPNOELS KATL TOL 0QEIAETAL GTOV OKAVOVIGTO TPOTO LE TOV omoio Tpoomelaletal
n pvnun. Ot éupeceg avaopéc otn wvnun tvoar 1 kdpa Iyn yoo TV KoK YPOVIKN
omdd00m KOOGS LELMVEL TV TOTIKOTNTA TV 0E00UEVMV KoL TV duvoTdTnTa vectorization.

2T GLVEYELN EMKEVTPOONKALE GTNV ELOYIGTOTTOINGT T®V KABVGTEPNGEWV AOY® TOV
clustering. Ilepapatiotikape pe d1dpopeg texvikéc PeATiOoNg MOTE Vo KPOWOVUE TIG
kabvotepnoels. Xpnoponoooue loop reordering kot loop blocking. To amoteAéopato
JglyvouV TMG e AVTEG TIG TEYVIKES EIVOL EQPIKTO VO TETVYOVLLE LU0l APKETE LLEYAAT avEnon
oV anddoon. Ot teyvikéc avtég otnpilovrar kupimg oty vmapén SIMD evioldv kot
€lval KOTO CUVETELN YPNOULEC GE 1GYVPOVG VITOAOYIGTEG.

>t ovvéyela mepopatiotikape pe Just In Time compilation. Ilpocappdcope tov
oAyopiOpo tng cuvEMENG Kot gidape adENCN TNV YPOVIKT 0dd0cN. XPNOUOTOUGAUE
dvo framework yio To Topandve, oAAd KABe €va elxe Tovg dukovg Tov eploptopove. 'E-
Tol ovarTOEaE pol Stk pag PipAiodnkn Tapaymync kot ekTédecng Kmdika 6To runtime,
OV KAALTTE TIG OVAYKEC LLOG KOt £TGL NTOV EPIKTO VO, TOPAEOVLLE VAOTOMGELS TOV YOV
KoAOTePN 0moddoot and to mponyovpeve framework. Ot vAomomoelg avTéEG HTopovV va
YPNOLLOTOMO0VV GE SLAPOPES TAATPOPLES AAANL CLUGTILLATA e MYEC VTTOAOYIOTIKES KO-
votnteg Bo weeAnBovv mepiocdTEpO.

Téhog pe v mapomdve Piiodnkn eiyope tnv ehevbepia va anaieiyovpe OAeg TG
éupecec avaeopéc. Avtd Beltiooe onuovikd v anddoon oe 6Aa ta cuatipato. To
petovéKTpa etvor Twg ypetdletal pkpog apBpog kernels yio va eivat KT TETO10 £QIKTO.

YUYKEVIPOTIKA GE QUTY| TN SIMAMUATIKY KOToeEPOpE va cupmiécovpe DNN povtéla
£€m¢ Ko 6.4x ywpic mtdon g axpifeidg tovg. Tavtdypdva, nécm tov JIT compilation, ka-
TAPEPOLLE VO, SLATNPNGOVV KoL TNV TaXDTNTA TOVG Y®pic To memory overhead tov GEMM
convolutions

47

To amoTeEAEGLOTA TG SUMTAMUATIKNG OVTNG LWITOPOVV VAL TPOEKTAOOVV G TOAAES KOTEL-
Buvoeig. Apycd kabe Pedtictomoinom tng cuvEMENG umopel va TpocaprooTel Yo fpo
tov back propagation ¢ ekmaidevong twv DNNs. Ta loops kot otig 600 TEPUTTOOELG
glvar wapopota kot ot fertioTonomoslg fo £xovv Katd TAco TOAVOTNTO TaPOHOL OTO-
Teréopatal.

H Biprobnikn mov avartoope ypnotponomdnie yuo vo kével compile kdmoleg mo-
POUETPOVS HEGH OTN GUVEMEN AL Kot Yo va kévoupe unroll Ta loops Tov kernel. Mg
™V elevbepia mov mapéyel n PiAodnkn vty propei | fertictomoinon va wdet Evo fripta
mapomove pe o fine grained Avoglg oto TPOPANUO €ite GTOYEVOVTOG GUYKEKPLUEVE, LE-
v€0n kernel, eite pe mo wepimhoxo loop transformations. Axopa el evolopEP@Y 1 xpHon
AVTOV TOV BEATIOTOTOMGE®V o€ TapdAinia meptPaiiovia 6mwe ot GPUs.

Télog Teyvikég mov peltdvouy T povadikd kernels w¢ péBodo suumicong vdpyovv
NoN Kol UTOpPovV Vo, OPEANBOVV od TN G0LAEID HOC. ZUYKEKPIUEVO OVTEG Ol OOVAEIEG
EMKEVIPAOVOVTOL GTO VO ADGOLV TO TPOPANLO TOV TEPLOPIGUAOV UVALNG TOV EVODHUOTO-
LEVOY ouokevdv. O1 GVOKEVES VTEG GLUVIBOG £XOVV KO XOUNAT VTOAOYIGTIKY KOVOTN T
KAt 0710 omoio Ba propovse va fondnoel | vAomoinon pe ta povadikd kernel.

48

Chapter 5

Introduction

Machine Learning applications today are becoming widely used and integrated in
products and services (e.g. recommendation algorithms for products or movies). In partic-
ular, Deep Learning has become one of the most researched technologies, achieving near
equal or even better performance than humans for specific tasks. The architecture behind
Deep Learning is called Deep Neural Networks (DNNs). Although they were invented in
the 1980s, their breakthrough was in the 2000s. At that time, the advances on graphics
processing units (GPUs) resulted in a huge increase of computational capabilities. Using
GPUs allowed for fast implementations of the computationally intensive DNN training.
In the recent years DNNs have shown significant improvements in many Al applications.
A particular class of DNNs called Convolutional Neural Networks (CNNs) dominate the
domain of computer vision by achieving state of the art accuracy on tasks such as image
classification[28] (Fig. B.1]), object recognition [39] and image segmentation [32]. CNNs
have already surpassed traditional computer vision techniques as seen (Fig. 5.2). The gen-
eral tendency for improving the accuracy performance of such networks has been to design
networks with more layers (deeper) and more sophisticated architecture. However, as the
networks grow larger and larger, this improvement comes at the cost of high memory con-
sumption, computational requirements and energy consumption. For example AlexNet
[28], has 62.3 million parameters, and needs 1.1 billion operations for the inference of a
single image.

The high performance of DNNs and CNNs in particular has created the demand for
such applications to be integrated on various embedded devices such as smart phones, loT
devices, and self driving cars [48]. The high memory and computational requirements
can be easily satisfied by server grade and even some consumer grade computers but such
demands are way over the range of the capabilities of most embedded devices due to
their low memory, limited computational power and energy constraints. Therefore the
deployment of such DNNS, as they are, is prohibitive on such devices. The need to utilize
such models on resource limited devices has sparked a research effort to overcome the
above limitations .

One approach is to design compact model architectures from scratch. Examples of
this is using more efficient convolution blocks such as multi branched convolutions [45]

49

[(©.31244642, 'n02123045 tabby, tabby cat'),
(0.23797025, 'nB2123159 tiger cat'),

(9.12387885, 'n02124675 Egyptian cat'),
(0.10075199, 'nB2119022 red fox, Vulpes vulpes'),
(0.070957005, 'nB2127052 lynx, catamount')]

100
150
200
250
300

350

Figure 5.1: Example of image classification using CNN

[[19], bottleneck convolutions[[19] and depthwise separable convolutions [{7] [23].

Another approach works by compressing existing models trained on powerful ma-
chines (e.g. GPU clusters) and then deploy them on resource limited devices with mini-
mal accuracy loss (Fig. 5.3). This is based on the fact that contemporary big DNNs (Fig.
b.4) have significant redundancy in weights. This wastes both computational power and
memory because not all of their numerous parameters are needed to correctly perform their
tasks. Hence the the efforts on making the models smaller have been focused on having
less weights and having less numerical accuracy. This is mainly achieved with connection
pruning and quantization.

Quantization and pruning address different sources of redundancy on the models [55].
They are therefore complementary to each other and they even work better when com-
bined, as first reported by Han et al. [[18]. Their work is of the most thorough methods to
compress DNNs for deployment on low resource devices. They propose a three stage com-
pression pipeline consisting of pruning, quantization and Huffman encoding (Fig. B.3).
The three methods are complementary and can be used on top of each other. The com-
bined techniques implemented, resulted in a 35x times reduction in size of the model.

Connection pruning removes less contributing neurons altogether to induce sparsity
to a network. There are different approaches and criteria to determine which neurons are
less important and therefore must be pruned. Some works prune individual weights [[17]
[2], others whole channels [49] [20] and others even whole filters [[15] [49] [51].

Quantization is a process of converting a range of input values into a smaller set of
output values that closely approximates the original data. Quantization uses fewer bits to
represent each weight value of the neurons. This results in the quantized weights deviating
from their original values. This deviation produces noise, which can be tolerated up to a
point, since DNNs are trained to be robust against noise. Quantizaton is the main focus of

50

DEEP LEARNING FOR VISUAL PERCEPTION

CAinag fram ctroanath +A ctranath
Going from strength to strength
IMAGENET
Accuracy Rate
100% -
eTraditional CV ® Deep Learning
90%
80%
.]

70% * - $

[] s ’
60% s .

' L]
50% °

° L
40% '
30% |
20%
10%

0%
2009 2010 2011 2012 2013 2014 2015 2016

Figure 5.2: Performance of traditional computer vision vs Deep Learning

this thesis. A lot of research has focused on this subject which is mentioned in detail in
the following section.

51

Train on powerful GPUs

Model Compression

Deploy on edge devices

Figure 5.3: Train on powerful GPUs, compress and then deploy on embedded devices

Inception-v4
e Xception
Inceptiqg
Darsatioh: ResNet-101 ResNet-152
?E;‘e_"se”ﬁ'lz gL Reshe v VGG-16 VGG-19
Q ResNet-34 ==,
MobileNStV2 |
—_ MobileNet-v1 i
® 701 oﬂ ResNet-18 y
Q @ GoogleNet ik
= ENet
g g5 fd-MobileNet
=
g BN-NIN
= ShuffleNet
60 A 5M 35M 65M 95M 125M 155M
SqueezeNet
<1, BN-AlexNet
i B
551 AlexNet
. _;P
50 v r . r .
0 10 20 30 40 50

Operations [G-Ops]

Figure 5.4: Topl accuracy vs operations. The size of the blobs is proportional to the number of

network parameters [4]

52

original
network

original
size

Quantization: less bits per weight

Pruning: less number of weights

- ~. B
/ AY 1
[! 1
I | Train Connectivity . 1
. | same :
| 1 accuracy |
1 ! |
I | Prune Connections . 1
I 1 9x-13x :
1 :reductiom
! 1
1 . q !
. Train Weights 1 '
\ 1
\ ’ '
N 4 !
e - \

’

4
Cluster the Weights

~

—

Generate Code Book

P § Z—

Quantize the Weights|
with Code Book

Retrain Code Book

N

same
accuracy

—— e —————

| 27x-31x
ireduction

Figure 5.5: Deep compression pipeline [|18]

53

Huffman Encoding

same
accuracy

1 35x-49x
: reduction

5.1 DNN Quantization

Quantization focuses on using fewer bits to represent each the weight value of the
neurons. The various quantization attempts mainly follow two paths to achieve reduced
numerical precision and bit width of weights.

Some works focus on limiting the numerical precision of the parameters by convert-
ing floating point numbers to low precision fixed point number. These are called fixed
point representations. To better represent the original numbers they take into account the
distribution of the values being quantized by using dynamic fixed point. Fixed point quan-
tization is a uniform quantization method. This means that the intervals between each
quantized value are the same. Milde et al. [34] created a low-precision add-on for the
Caffe framework [26] that rounds floating point values and represents them with integers
for both the decimal and fractal part. They used this technique to quantize weights and
activations. Shin et al. [42] optimizes fixed point representation by calculating iteratively
the quantization step for better representing the dynamic range of weights. Miyashita et
al. [36] used base-2 logarithmic representation of models. This way multiplications were
replaced by cheaper shift operations. More aggressive attempts for quantization use even
ternary [58] and binary weights [31]] [8] [35] [21].

On the other hand some works achieve using fewer parameters by using indexed repre-
sentations. The weights are grouped together by some criteria and each group represented
by one value. These methods may not affect numeric precision, but they limit the available
full precision numbers. Chen et al. [6] reduces the bitwidth needed to store the weights
using a hash function to group weights into hash tables. The grouping is not optimal be-
cause it is random and thus doesn’t take into account the weight values across the layer.
This problem is addressed and overcome by Han et al. [[1§] by using k-means clustering
to group weights together. In contrast with the previous work [6] this technique groups
similar weight values together and therefore achieves better accuracy. For their experi-
ments they achieve minimal accuracy loss while using as low as 5 bits for indexing. Other
works experiment with k means clustering by using vector quantization and using vectors
as cluster centers. In [5(] they treat each weight row as a row vector and perform k means
with these vectors as centroids. Other attempts [#3]] [54] even index whole filters with k
means by utilizing k-means and 2D transformations.

De Prado et al. [9] observe that k-means quantization outperforms standard and dy-
namic fixed point quantization on both accuracy and compression rate. That is because
k-means is a non uniform quantization method, meaning the intervals between the quan-
tized values are different with each other. This way the fewer quantized values can more
closely follow the original distribution of the weights.

Quantization introduces noise and that translates to reduced model accuracy. Most
methods require training the models from scratch using the reduced precision weights.
Others require or at least benefit from fine-tuning the models. This means retraining the
network for a small number of iterations until the accuracy recovers from the drop that
quantization introduced.

54

5.2 Contribution of this Thesis

In this thesis we focus specifically on quantization with indexed representations as a
compression technique for CNNs. We investigate the effects of k-means clustering quanti-
zation on the weights of CNNs. We test their classification accuracy and performance. We
then investigate the negative effects of irregular access patterns that clustering introduces
on the performance of the convolution. In order to overcome the drawbacks of clustering
we experiment with different approaches to first hide the latencies they introduce and we
then create the necessary tools to eliminate them.

55

Chapter 6

Background

In this chapter we introduce some fundamental concepts that are mentioned throughout
the thesis.

6.1 Machine Learning

Machine Learning (ML) is a subfield of Artificial Intelligence (AI). The domain of ML
also intersects with Computer Science, Statistics and Information Theory. In general its
aim is enabling computers to learn (or to be trained) from existing data to perform specific
tasks automatically. The concept of learning in this context, means to gradually improve
their performance on carrying out a task, without them being specifically programmed to
do so.

The main Machine Learning algorithm subcategories are Supervised learning, Unsu-
pervised learning, Semi-supervised learning and Reinforcement learning.

* Supervised Learning algorithms use existing data (train dataset) that consist of one
or more inputs and an output or label to learn to predict the outputs of new data(test
dataset) only from their inputs.

» Unsupervised learning algorithms are used when the data are unlabelled(are only
inputs). The goal is to find patterns and commonalities in the data, recognize them
in new data and organize similar data to clusters.

* Semi-supervised learning algorithms are somewhere in between the previous two
categories. They use both labeled and unlabeled data but usually more unlabeled
than labeled data. When unlabeled data are used with a small amount of labeled
data the accuracy is vastly improved. This method is used when labeling the data
requires skill and time, but unlabeled data are easy to obtain.

» Reinforcement learning algorithms interact with the environment with actions that
have errors or rewards, with the goal being to maximize a reward function. This trial

56

and error method enables computers to find the ideal behaviour within a specific
context in order to maximize reward.

6.2 Neural Networks

One of the supervised machine learning methods are neural networks. Neural net-
works are computational models inspired from the biological neurons of humans and other
animals. In that sense they obtain an input and they give an output depending on the im-
portance of the input relative to other neurons. Neural networks are nowadays used in a
variety of classification tasks. The neuron is the fundamental component of neural net-
works. A neuron receives a number of inputs from previous neurons and produces one
output as seen in Fig.

Activation
function

Output

Inputs: X, 0
¢ " y

operation

X
m

Weights
(with bias)

Figure 6.1: Model of a neuron

The output is the weighted sum of the inputs followed by the neuron’s activation function.
In mathematical form this is desribed as:

VE = Zwkjl’j (6.1)
j=0
Yk = d(v) (6.2)

where x; are the inputs and wy,; are the weights of the neuron. by, is the bias. ¢() is the
activation function and its purpose is to introduce non-linearity into the output of a neuron.
This enables the neuron to describe different linear and non-linear functions.

One of the most common arrangement of neurons is the multilayer perceptron (Fig
6.2). They consist of at least three layers of neuron nodes. Each neuron of one layer is

57

connected to all neurons of the next layer and because of that they are called fully con-
nected layers. The first layer is called input layer where the input is passed to the next
layers. The last is called output layer, where we can measure the output. All the layers in
between are called hidden layers and are responsible to predict the correct outputs from the
inputs of the specific task. They learn to do that by adjusting the values of their weights
during the learning process called training. The most common technique for training is
back propagation. The weights are first randomly initialized. Then the model is given
some inputs and predicts some outputs, in a process called inference. These outputs are
compared to the correct outputs, called labels. Every time the label is different from the
prediction, that error is transferred to all previous layers. Then the weights are adjusted
according to how much they contributed to the error. This is done by first obtaining the
gradients of the loss function with respect to each weight on each neuron with the back-
propagation algorithm and using it to adjust the weight with gradient descent.

4\{{ .kﬁ. O
WL RN

LIDO OO
Na/Z N\

Input

—
Il';‘;‘cf; 1st 2nd
iy hidden hidden
layer layer

Figure 6.2: Multilayer perceptron with 2 hidden layers

Deep neural networks are neural networks with a large number of hidden layers be-
tween the input and the output. The number of hidden layers a Neural Network should
have, to qualify as ”deep”, is not universally agreed upon but usually having two or more
hidden layers counts as deep [22].

6.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a sub-category of DNNs that are special-
ized in image recognition. They have a lot in common with regular neural networks. Their
layers also consist of neurons with weights and biases. The weights are also adjusted in
the same manner during training. Neurons receive inputs, perform an operation with the
weights and then apply an activation function. The difference is that CNNs scale better

58

with images as inputs because the connections between two layers are restricted to local
regions (Fig. [6.3) and are not fully connected with each other like regular neural networks
(Fig. 6.2). This vastly reduces the amount of parameters in the network and also enables
CNNss to recognize spatial traits of the input. Because of that they are able to detect im-
portant features of classes if given enough samples of each class.

CNN structure usually follows the pattern of a number of convolutional layers fol-
lowed by max-pooling layers and at the end some fully connected layers(Fig. [6.4). In the
following subsections the most commonly occurring layers on CNNs are briefly described.

Layern

Layer n-1

Figure 6.3: 2-D representation of local connections between convolution layers

- feat C3:f. maps 16@10x10
: feature maps S4: 1. maps 16@5x5
INPUT 6@28x28 2

32x32

S2: 1. maps
B@14x14

Full connection Gaussian connections
Convalutions Subsampling Convolutions ~ Subsampling Full connection

Figure 6.4: Lenet architecture [29]

6.3.1 Convolution layer

The fundemental operation of CNNs is the two dimensional convolution. Such con-
volutions are applied between inputs and weight matrices. Input dimensions are Input
Channel, Height and Width. For example the first layer’s input is usually an RGB image.
The image is represented as a 3-D matrix with three color channels and its height and width
dimensions as seen in Fig. b.3.

59

Blue

Figure 6.5: An RGB image consists of 3 channels red, green and blue

The weights of each layer are organized as 4-D structures (Output Channel, Input
Channel, Height, Width). Esentialy they are an array that contains 3-D filters. A kernel
is the 2-D sub-matrix of weights that slide over and are multiplied with the relevant 2-D
part of the input to give an output (Fig. b.4).

-®e

Figure 6.6: Example of a convolution of a single kernel with a single channel input [[L1]]

A filter consists of multiple kernels, one for every input channel. The output of each
filter is the addition of outputs of each such kernel. Each filter produces a single output
channel. To produce the desired output channels, a number of filters equal to the output
channels, are used (Fig. 6.7). Then the activation function is applied to each element and
this final output is called a feature map.

60

7x7 Input . .
3x7x7 Inpu : N

= Nx5x5 Output

N 3x3 filters

Figure 6.7: Example of a convolution of N filters with a 3 channel input(rgb image).

The number of elements the convolution filter moves vertically or horizontally at each
step is called stride. For example in Fig. .6 the stride is 1. As the stride increases the
feature maps are getting smaller. This is exploited when reduction of the output dimension
size is needed, by using bigger strides to skip some elements.

Usually the size of the feature map ends up smaller than the input because the filter
that slides over the latter is contained by it. We can observe that in Fig. 6.6. This makes it
difficult to preserve the size of feature maps,when needed, because they would gradually
shrink after each layer. To maintain the same size between the input and the output we can
use a technique called zero padding. The input volume is padded with zeroes around its
height and width dimensions Fig6.§. To keep the input and output dimensions the same
the padding is calculated as follows:

F-1

pad = —5 (6.3)

where F is either one of the H or W}, kernel spatial dimensions.

61

Figure 6.8: Example of convolution with zero padding [|L1]

Considering all the above, the output dimensions are calculated as follows:

H;, — Hi + 2 *xpad
H, = (tride) +1 (6.4)

Wi — Wy + 2 % pad)

(
W, =
° stride

+1 (6.5)
Where:

Output channel : C,,;

Input channel: Cj,

Input Height, Width: H;, W;

Output Height, Width: H,, W,

Kernel Height, Width: Hy, Wi
Thus each convolution output element can be computed with the following equation:

Cm Hk Wk
Out(j, k,1) =YY > Kernel(i, j,m,n) « Input(i, kin, lin) (6.6)

=1 m=1n=1

62

By applying the previous equation to find the whole output matrix, we end up with the

algorithm for the convolution operation (Alg. B). To implement padding we check if the
input elements are out of bounds.

Algorithm 8 Convolution algorithm
I: fori =0to Cin —1do
2: for j = 0to Cout —1do
3: fork=0to H,—1do
4. forl=0toW,—1do

5: form =0to H, —1do

6

7

8

9

forn =0to Wy — 1do

kin = stride x k + m — pad

lin, = stride x | +n — pad

Output[j][k][l]+ = Inputli][kin][lin] x Kernel[i][j][m][n]

6.3.2 Pooling layer

Usually a convolution layer is followed by a pooling layer. Pooling helps reduce the
dimensions size and thus the overal computational intensity. Pooling works similarly to
convolution. The filter passes over the image and extracts the most important information
to a smaller sized output. Essentially pooling layers downsample the height and width
dimensions of the feature map. Depending on the criteria of extracting important infor-
mation from the input the two most notable types of pooling are average pooling and max
pooling (Fig. 6.9) with the latter being the most commonly used because it outperforms
other pooling techniques. Pooling tends to be replaced in favour of strided convolutions,
achieving better accuracy with the same reduction in dimensionality (Springenberg et al.

[44]).

63

Max Pooling Average Pooling

29 | 15 | 28 | 184 31| 15 | 28 | 184
0 100 | 70 | 38 0 100 | 70 38
12 | 12 T/ 2 12 | 12 i 2
12 | 12 [F4581NE 12 | 12 (458G
2x2 2x2
pool size pool size
Y
100 | 184 36 | 80
12 | 45 12 [

Figure 6.9: Example of average and max pooling [52]

6.3.3 Fully Connected Layer

After some iterations of convolution/pooling layers, usually the 3-D output of that
process is flattened to one dimension and fed to a series of fully connected layers, just like
in regular DNNGs (Fig. 6.2). The last fully connected layer determines the prediction of the
model. Thus its activation function is a softmax, to keep all predictions between 0 and 1
and their sum to 1. Some CNN models substitute fully connected layers with appropriate
convolution layers because it achieves better performance and also enables models to be
tweaked to perform semantic segmentation [32].

6.3.4 Batch Normalization Layer

DNNs update their weights after evaluating a number of training samples called a
batch. Batch normalization or BatchNorm [25] is a technique that enables each layer of a
network to learn more independently from other layers. It is a separate layer that during
training normalizes each batch by subtracting the batch mean and then dividing in by the
batch standard deviation. This brings the weight values between 0 and 1. To fix that, a
linear transformation is performed with two learnable parameters vy, the scale, and 3, the
shift, of the transformation. Below are the relevant equations, where € is a constant for
numerical stability [25].

1 m
Hbateh = — Z ; (6.7)
=1
1 m
Tiateh = o > (@i = pvaten)? (6.8)
i=1

64

N Ti — Hbatch

Ty = —F/—————
\/ Ugatch te
Yi =i+ B (6.10)

During inference the batch normalization layer acts like a linear transformation. Since the
convolution is also a linear transformation both layers can be, and often are, merged to
save on computation cost and memory footprint. This process is called folding. The new
weights are then calculated as follows:

(6.9)

w
Wiold = V=== (6.11)
o° + €

6.4 K-means clustering

K-means clustering is an iterative unsupervised machine learning algorithm that groups
a set of observations (X = {x1, x9, ..., z,,}) into k distinct non overlapping groups (clus-
ters) C' = {C1, Cy, ..., Cy }. Each cluster is represented by a value called a centroid. These
values together make a codebook. The algorithm minimizes the squared Euclidean dis-
tances of the elements of each cluster from their mean p; [33]. Mathematically this is
expressed as:

k
arggu‘nz >l =l (6.12)

=1 .Z’J'ECI'

Where p; is the mean of cluster C;.
The centroids first have some initial values. Then two alternating steps are performed

(Fig. b.10):

» Assignment step: Each observation is assigned to the cluster with the least squared
Euclidean distance from its centroid.

Ci={zp € X il ap—my |I> < ||z —m; IP5,1 < j <k} (6.13)

» Update step: The centroid value of each cluster (m;) is recalculated as the mean of
all observations assigned to that cluster.

1
mi = > (6.14)
x;€C;
Where n; is the number of elements assigned to cluster C;

The algorithm continues until the assignments no longer change. That is when the
algorithm has converged. The algorithm does not guarantee to find the optimum solution
because it can converge to local minima. That is why to obtain the best results, it is useful
to run it several times with random initializations. K-means is one of the most popular

65

(a) (b) (© (d)

Figure 6.10: Alternating steps of k-means [24]. (a) Each value is assigned to a cluster. (b) The
cluster centers are calculated. (c) Each value is assigned to a new cluster. (d) The cluster centers
are calculated again.

vector quantization algorithms. Vector quantization is a data quantization technique that
originates from signal proccessing [47] and is a lossy data compression. It works by divid-
ing a big set of observations into groups, with each group represented by a centroid value.
K-means achieves the above by minimizing squared Euclidean distances.

66

Chapter 7

DNN Quantization

In this chapter we introduce a quantization methodology for DNNs and evaluate its
effects on model compression and accuracy.

7.1 Quantization Methodology

To perform quantization we encode the weight values to fewer representative values
with clustering. Similar to Han et al. [|1§] we use the k-means algorithm to group the
weights of each layer (kernel matrix) into a number of clusters and find for each one the
representative values (centroids) closest to the original ones. Depending on how many bits
we are using for the codebook size, the number of clusters and therefore distinct entries
available on the codebook matrix is 2%, After performing k-means, the values of the
weight matrix are just indexes that point to the codebook matrix (Fig [7.1)). Instead of
accessing the elements of the weight matrix directly, there is a level of indirection. Thus
the computation of the innermost loop (line 9) of algorithm § becomes:

Output[j][k][l][+ = Input[i][kin][lin] x Codebook|[K ernel[i][j][m][n]] (7.1)

Son et al. [43] performed kernel quantization by using k-means, with the kernel as the
main quantization unit, to cluster whole kernels instead of single weights. They achieve
10x compression with clustering and 30x compression with prunning and clustering ker-
nels. Yu et al. [54] perform the same clustering but focus more on 3x3 kernels. This way
they increase the maximum theoretical compression rate from 32 to 288. Their results
achieve a 5.78 compression rate without accuracy drop.

67

weights

cluster index

Figure 7.2: Example of clustering whole kernels [54]

7.2 Compression rate

After k-means quantization each weight is an index to the codebook matrix. Thus the
size of each weight is reduced to log, (k) where k is the codebook size. The compression

rate r can be calculated as:

n*xs

T:n*log2k+k*s

Where n is the number of weights and s = sizeof{(float),

Assuming that the number of codebook entries is negligible compared to the number
of weights and given that the codebook size is 2%"** the compression rate for each layer is:

s
r=-—
bits

68

(32 bit float) (2 bit uint) centroids

cluster 1 1 0 21 1.50

0 3 1 1:| 0.00

3 1 2 0:(-1.00

Figure 7.1: Example of clustering kernel weights using 2-bits [[18]

Weight Codebook
-0.13| 0.23 [0.74 |-0.35 0.29|0.68 |0.13 | 0.86 | 0.66 -0.14| 0.24| 0.74
0.65 | 0.87 | 0.66 | 0.51 | 0.55|0.01 |0.67 | -0.18| -0.83 0.65| 0.87| 0.68
-0.35|-0.28|-0.10|-0.21 | -0.82|0.83 |-0.25 0.36 | 0.28 Cluster Index -0.35| -0.28) -0.23]
-0.22|0.26 | 0.66 |-0.16| 0.26 [0.72 |-0.12| 0.26 | 0.76| Kermel 0 [1 | 2 -0.23| 0.27| 0.70

Cluster

0.57 | 0.63 | 0.19 | 0.65 | 0.87|0.71 |0.70 | 0.63|-0.01)| ————| 1 [O | 1 0.59 | 0.60| 0.06
-0.27|-0.67 | 0.93 |-0.35 | -0.28|-0.36 |-0.34 | -0.65| 0.97 2122 -0.27| -0.71] 0.91
0.21 | 0.85 [0.63 | 0.20 | 0.910.56 |0.30 | 0.82| 0.56 0.21| 0.86| 0.60
0.79 |-0.28 |-0.90 | 0.63 | -0.24]-0.71 | 0.73 | -0.28| -0.73 0.71| -0.24| -0.79
-0.20| 0.56 | 0.41 |-0.27 | 0.40|0.60 |-0.20| 0.46 | 0.20 -0.23| 0.35| 0.37

(7.2)

(7.3)

For 32bit floating point numbers the maximum theoretical compression rate is 32 if we
use 1 bit length codebooks.

7.3 Quantization noise

Quantization produces quantization noise which results in accuracy loss. Lin et al.
[BQ] proves that if the weights follow a Gaussian distribution, then all the weights and ac-
tivations contribute equally to the total signal to quantization noise ratio (SQNR). Zhou et
al. [57] proved that each layer’s quantization contributes independently to the total accu-
racy degradation because of the quantization noise of a model. Both cases where studying
uniform quantization. K-means performs non-uniform quantization so the relationship be-
tween SQNR and classification accuracy is not well described, but there is a general trend
that as SQNR increases we expect the accuracy to drop.

De Prado et al. [9] using the above trend between SQNR and accuracy loss, optimized
the accuracy versus compression rate problem by finding each layers optimal number of
bits. This required analysing the effect the quantization of each layer has to the total
accuracy. Thus layers contributing more to the accuracy of the model would be given
more precision and to compensate for that, layers that do not contribute as much, would
then be compressed more.

7.4 Experimental Setup

7.4.1 Deep Learning Frameworks

We used Caffe [2€] for a deep learning framework. Caffe is one of the first deep
learning frameworks. In Caffe the architecture of the models is described in a high level
representation (e.g. the model parameters and hyper-parameters), a ”prototxt” file. Then
the model is deployed using input data and the weight values that are stored in caffemodel
files. The weights of the models mentioned in the next sections are available in Caffe as
already trained caffemodels.

To test the accuracy of the quantized models, we created new variants of Convolu-
tional and Fully-Connected Layers that support clustering for the caffe framework. The
data were proccessed, then we performed k-means clustering for various bit lengths and
weight initializations for AlexNet, GoogleNet, Mobilenet and Mobilenet v2 and measured
accuracy.

7.4.2 Datasets

There are various datasets on which to use the CNN models. Since the pre-trained
CNN models availabel for Caffe were trained on Imagenet, we use that to test the accu-
racy of the models. Imagenet is a large scale dataset, containing human annotated images,
designed to be used in visual object recognition [[10]. There are around 14 million images

69

and 21 thousand categories or classes. The dataset is used in the ILSVRC challenge. Mod-
els are trained on a train set of images and then are tested on a separate set of images they
have never encountered before called the test set. The classification accuracy metrics are
Top-1 and Top-5 accuracy. Top-1 accuracy measures the percentage of correctly labeled
images. The Top-5 accuracy measures the percentage of images, where one of the 5 labels
with the highest probability was the correct one (Fig. B.1)).

7.4.3 CNN Models

AlexNet [28] made a breakthrough winning the ImageNet competition in 2012 by a
large margin and demonstrating the potential of large CNNs trained on massive datasets on
the now widely available gaming GPUs. Based on LeNet [29] it expanded on its concept
by utilizing a number of convolution layers with ReLu activations and max-pooling. The
use of dropout and data augmentation (image cropping, rotation, flipping and PCA color
augmentation) prevented overfitting. This gave AlexNet state of the art accuracy of top-1
63.3% and top-5 84.6%

—> —> —> —>
11x11 3x3 5x5 3x3
s=4 s=2 same s=2

55 x55x 96 27 X 27 X 96 27 X 27 x 256 13x 13 x 256

FC FC
— Q> —» = — » —
3x3 3x3 O
s=2 Softmax
1000

9216 4096 4096

227 x 227 x 3

—» —>
3x3 3x3
same

13x 13 x 384 13 x 13 x 384 13 x 13 X 256 6 X6 X256

60M parameters

Figure 7.3: AlexNet architecture

GoogleNet was one implementation that used the inception module [45] which intro-
duced multiple sized filters operating on the same level. Their outputs are concatenated
and passed to the next layer. All parallel paths use the appropriate padding to give the
input and output the same height and width. This was done to overcome the problem of
scale variation in important visual traits of the image that made choosing the correct filter
size for recognizing said important traits difficult. It also reduced overfitting and gradient
loss by using two more predictions across the model together with the final to evaluate
the accuracy loss. Also using smaller stacked convolutions reduced the computational in-
tensity. The pretrained caffe model achieved top-1 accuracy is 63.8% and top-5 85.2%

70

1x1
convolutions

Filter
concatenation

3x3
convolutions

1x1
convolutions

5x5
convolutions

1x1
convolutions

1x1
convolutions

3x3 max
pooling

Previous layer

11
7
11 TeY
IR
anfaafag i baaddgna gy g B0
B 58 g QO . DA

Figure 7.4: GoogleNet architecture and inception module detail

Mobilenets [23] [40] were designed with limited resources in mind. They utilise
Depthwise Separable Convolutions in order to use less parameters to save memory and
computational power. This process is performed in two parts (Fig. 7.3 (b)):

» Depthwise convolution where a single kernel per each input channel is applied but
unlike regular convolutions the outputs are not combined to a single output channel.
This way an intermediate output with size C'in x H, x W, is produced.

* Pointwise convolution, C'out x Cin of simple 1 x 1 convolutions, are then used
for a linear combination of the elements of each channel of the previous output, to
create a linear combination of of the output of the depthwise convolution.

We used two pretrained Mobilenet models [[I], Mobilenet and Mobilenet v2. On Mo-
bilenet we measured 68.2% top-1 accuracy and 88.4% top-5 accuracy and Mobilenet v2
69.6% and 88.8% respectively. The saving in both storage and multiplication operations
is significant. Regarding storage they achieve the same accuracy with AlexNet with just
a fraction of its parameters. AlexNet has 61M and is 233MB in size while the two Mo-
bilenet variants have 17MB and 14MB respectively. In a normal convolution there are:

71

Cout x Cin x Hk x Wi, x Ho x Wo multiplications. In Depthwise Separable Convolu-
tions there are (1 x Cin x Hk x Wk x Hox Wo)+ (Cout x Cin x Hk x Wk x1x 1)
multiplications. For example to get a 256x8x8 output from a 3x12x12 input image with a
normal convolution we need 256x3x5x5x8x8=1 228 800 multiplications. With Depthwise
Separable Convolution we need 1x3x5x5x8x8 = 4800 plus 256x1x1x3x8x8=49152 for a
total of only 53 952 multiplications.

777
\

\//

(a)
T g >
N N

(b)

Figure 7.5: (a) Normal convolution (b) Depthwise separable convolution

7.4.4 Data preprocessing

The Mobilenet models utilize Batchnorm layers after their convolution layers. To be
able to correctly quantize the weights we merge them with the previous convolution layers.
This process is called folding. First we change the model description. Each Batchnorm
layer are removed. Then the next and previous layers each Batchnorm layer was connected
to, are connected with each other. Lastly we substitute the weights values of the previous

72

convolution layer with the result of the linear transformation performed to the weights by
the Batchnorm layer.

7.4.5 Performing k-means

We used the scipy python library [41] to perform k-means on each layer’s flattened
vector of weights. K-means was performed on the weights of both convolution and fully
connected layers when present. Codebook sizes ranges from 8 bits to 1 bit. The weights
initialy contain floating point numbers but after clustering contain integer indexes and the
codebook contains the floating point centroids.

Generally the initialization of the clusters in k-means in conjunction with the distribu-
tion of original values affects the end cluster values. In this case the weight distribution of
each layer of the models is for the most part gaussian and can be seen in Fig. [7.6. Since the
end cluster values affect the accuracy of the quantized model we performed and compared
k-means with linear, gaussian and inverse logarithmic centroid initialization.

73

800 -

600 -

400

40000 4

30000

20000 -

10000 4

Layer:convl Type:Convolution

std:0.058584724
mean:3.359631e-05

-0.2 0.0 0.2 0.4

Layer:conv3 Type:Convolution

std:0.016794698
mean:-0.00082325586

-0.2 0.0 0.2 0.4

Layer:conv2 Type:Convolution

] std:0.025247568
12500 mean:-0.0011855304
10000 -

7500
5000 1
2500
0 : M- . ‘
-0.2 0.0 0.2 0.4
Layer:conv4 Type:Convolution

| std:0.018126322
20000 mean:-0.0011896666
15000 -

10000 -
5000 -

0 R

—-01 00 01

Layer:conv5 Type:Convolution

12500

10000 -

7500

5000

2500

0_
-02 =01 0.0

std:0.01933818
mean:-0.0025485258

01 02 03

02 03 04

Figure 7.6: Weight distributions of AlexNet convolution layer

7.4.6 Evaluating accuracy

Caffe utilizes a General Matrix Multiply (GEMM) function to perform the convolution
operation. In caffe there is no GEMM function that supports clustering weights. Thus
convolution with cluster weights is not possible as is. Before inference the weights that
now contain indexes to the codebook have to be replaced with the codebook values they
point to. The whole pipeline for clustering the weights and then performing accuracy
measurments can be seen in Fig. .7 (b). To have an accurate measurement we measure

each accuracy 100 times.

74

Batchnorm
folding
-~ W e 2
Wy — sl] e fom)
fold 7\/02+5 s]a e v faml
, , s ,/
CNN model Pre-processing K-means Compressed
Clustering model

(a) Compression steps

S PO o
/ \ Wli]=codebook|W][i]] (S

: =] -
2 =
-l | T—> oo aon 10, (—

N - PN
\\7/ / N 2 N
Compressed Assign values to Weights are floating
model codebooks point numbers

(b) Inference steps

Figure 7.7: Quantization pipeline (a) For compression. (b) For inference

7.4.7 Computer specifications
The specifications of the machines used to run the experiments on can be seen in

Tables 7.1 and 7.2.

Table 7.1: Machine specifications.

Computer | OS |CPU | RAM | GPU
Ideapad 510-ikb | Ubuntu 16.04 | i7-7500U | 8GB | GTX-940MX

Table 7.2: CPU specifications.

CPU \ architecture \ speed \ cores-threads \ L1 \ L2 \ L3
i7-7500U | x86-64 | 3.5GHz | 2-4 | 32KB | 256KB | 4MB

75

7.5 Evaluation

From Fig[7.§ we observe that for AlexNet and GoogleNet the effect of the various
initializations to the model accuracy is negligible. For both Mobilenets we observe that
no method is consistently better than the others across the plots but for every x-axis value
an initialization method is usually better. Both above observations make choosing one type
of k-means initializations for the best possible accuracy, inconclusive. This is probably
due to the low dimensionality of the k-means clustering, that in this case is performed in 1
dimension. The accuracy of the models starts to drop significantly on the same codebook
width regardless of initialization, so we choose the linear initialization model to use from
this point onward.

k-means AlexNet k-means GoogleNet
top1 accuracy topl accuracy
0.8 4
= lin 0.8 4 =¢ lin
= invlog =¥ inviog
= 0.6 =~ gauss W, I - 0.6 1 =¥~ gauss
9 =~ rand o = rand
C 044 e
g g 041
® &
0.2 0.2 4
0.0 T T T T 0.01 T T T T
top5 accuracy top5 accuracy
0.8
0.6
> >
[9 9
£ 0.4 £
I+ S
© 0.2 ®
0.0 T T T T T T T T T T T T T T T T T T
1bit 2bit 3bit 4bit 5bit 6bit 7bit 8bit original 1bit 2bit 3bit 4bit 5bit 6bit 7bit 8bit original
model model
k-means Mobilenet_fold k-means Mobilenet_v2_fold
topl accuracy topl accuracy
= lin = lin
08 >~ inviog 081 > invlog
Jd =~ gauss 4 =¥~ gauss
§ 0.6 =¥ rand g 06 = rand
e IS
§ 0.4 {:-,j 0.4+
© ©
0.2 0.21
0.0 T T T T 0.01 T T T T
top5 accuracy top5 accuracy

o o
o ®

accuracy
accuracy

1
IS

o
N

o
=}

1bit 2bit 3bit 4bit 5bit 6bit 7bit 8bit original 1bit 2bit 3bit 4bit 5bit 6bit 7bit 8bit original
model model

Figure 7.8: kmeans effect on accuracy with linear, random, gaussian and inverse logarithmic cen-
troid initializations

Then observe the accuracy of the all the compressed models versus the original model
in Fig. 7.9. We observe that larger models (Googlenet and AlexNet), that have a lot of
redundant weights, can be compressed more before their accuracy deteriorates signifi-
cantly. They can go as low as 5 bit quantization before any noticeable effect in accuracy

76

is observed. In comparison the accuracy of Mobilenets suffers immediately after using
anything lower than 8 bit quantization. If fine tuning is also introduced the accuracy of
the quantized models can recover up to some point as mentioned by Han et al. [[18].

k-means clustering
topl accuracy

0.8 - = AlexNet
’ GoogleNet

> 0.6 1 —>¢ Mobilenet
8 ’ —> Mobilenet_v2
—_
3 0.4 1
]
©

0.2

0.0 4 a 3¢

top5 accuracy

I

|

©
()]
1

o
'S
1

accuracy

o
N
1

©
o
1

1bit 2bit 3bit 4bit Sbit 6bit 7bit 8bit original
model

Figure 7.9: Accuracy vs bits used for clustering

In our experiment we are using the same number of bits across all layers. As a result
Eq. [7.3 also calculates the compression rate for the whole model. At Table 7.3 using Eq.
7.3 and the results of Fig. [7.9, we calculate the maximum compression for each model
using the smallest codebook size that does not affect its accuracy, for 32bit floating point
numbers.

Table 7.3: Compression of models while retaining their accuracy.

Model Original | Final Compression | Codebook
name size size (theoretical) | size
AlexNet 233MB | 36.4MB 6.4 Sbits
GoogleNet 5IMB | 7.9MB 6.4 Sbits
Mobilenet 17MB 4.25MB 4 8bits
Mobilenet v2 | 14MB 3.5MB 4 8bits

However due to the smallest addressable unit of memory being 1 byte the effective

77

compression is lower. Essentialy the smallest a weight can be is 8bits if it is a uint8 type.
One workaround for this limitation could be s ub-byte indexing by storing and extracting
many sub-byte values inside a uint8 type utilizing bit manipulation. Due to the extra
complexity, accessing each value that way requires a number of shifts and other logic
operations and as a result is going to be much slower and thus is not a viable solution.
In our implementation it was at least 2 times slower. A viable solution would be having
support for data types less than 1 byte which would be handled by dedicated hardware
(e.g. asic or fpga) for accelerating the accesses.

Accuracy drops as the codebook size get smaller and the weight values diverge more
and more from the originals. This can be visualized in Fig. where the weights of the
first convolution layer of AlexNet where plotted. We chose the particular filters due to
them being easily visualized as an image since they have 3 channels.

original 5bit

|
|
|
|
E
/]| =
/]
HIES (]
=== i

[HZNE
=~ | HEE SRR
e HEE EAESVENN AL
HER MEE NN
e SRS RN
EE HEE [NRIAY TR4REE
=i= HEE QR aNCNE =S
i) b LY NN I bl b
e 1T} =AM =SS 0AERR=n
o INEC ﬁ%i! =rivE.

Figure 7.10: Visualization of the effect of weight quantization on the first convolution layer of
AlexNet

78

Chapter 8

Optimization of Inference for
Quantized Models

In this chapter, we develop convolutional layer implementations to accompany the
quantization approach proposed in the previous chapter. Clustering introduces indirect
references for accessing the codebooks. This is a common problem for compressed in-
dexed representations in general, e.g CSR format for Sparse matrices [16] [[12]. In order
to access the real value of each weight, which is stored in the codebook, we first have to
access the index stored in the weight matrix, and then find the codebook entry that the
index points to. Accessing a matrix in the above manner requires a lot of pointer chas-
ing and makes the memory accesses irregular. The indirect references makes the memory
accesses from unit strides to random. Since the weight values do not occupy consecutive
memory addresses the compiler optimizations and vectorization are also limited and that
has a penalty on performance.

In this chapter we first investigate how performance optimizations targeting convolu-
tions and indexed representations affect the performance of clustering convolutions. The
goal is to find such optimization techniques to offset the performance penalties mentioned
above. We start by hiding the latency of indirect references by optimizing other aspects of
the code and then we eliminate the indirect references altogether.

8.1 Padding

In literature there are mainly two approaches for implementing padding on a convo-
lution. The first is to check if the indexes convolution elements are out of bounds and in
that case skip them(this is performed with the if statement of Alg.), and the second is to
physically resize the input before the convolution. With the input padded the if statement
is omitted and the input coordinates are recalculated in Alg.

79

Algorithm 9 Convolution with soft padding

1: fori =0to Cin — 1do
2: for j = 0to Cout — 1 do
3: fork=0to H, —1do
4: for!l=0toW,—1do
5: form =0to H. —1do
6: forn=0to W, —1do
7 kin = stride x k +m — pad
8 lin, = stride X l +n — pad
9 if 0 <k;,, < H;and 0 < [;,, < W; then
Output[j|[k][l]4+ = Input[i][kin][lin] x Kernelli|[j][m][n]

1

Algorithm 10 Convolution with physical (hard) padding

: fori=0toCin —1do
for j = 0to Cout — 1 do
fork=0to H, — 1do
for{=0to W, —1do
form =0to Hp — 1do
forn =0to W, — 1do
kin = stride x k +m
lin = stride X L +n
Output[j][k][l]+ = Inputpeali][kin][lin] % Kernel[i][j][m][n]

R A A S e

80

8.2 Loop order

The naive convolution loop (Alg. [) is not very efficient. That is why modern deep
learning frameworks manipulate the data to transform the convolution operation in a ma-
trix multiplication which can utilize the variety of efficient GEMM algorithms that exist.
To achieve that the data has to be flattened to 2 dimensional matrices beforehand using
the im2col operation. This approach introduces additional memory requirements since
the data necessary of each output element have to be copied and the flattened matrices
end up with duplicates of each input element. Moreover the performance of the GEMMs
themselves is below their best achievable performance. That is because, to utilize the full
performance potential of the GEMM, the common dimension between the two input ma-
trices has to be smaller than the dimensions of the output matrix. That is generally not the
case in convolutions where the input matrix is reshaped to (H s x Wy x C;) x (H, x W) and
the kernel matrix to (C,) x (H ¢ x Wy x C;) and their common dimension (H ¢ x W x C)
is usually a lot larger.

Zhang et al. [5€] address the above problem by proposing an optimization to the
vanilla convolution loop to make it a viable alternative to GEMM functions. The optimiza-
tions focus on increasing cache locality the SIMD vectorization potential and the Fused
Multiply-Add (FMA) unit utilization of the convolution. The later is important because
the convolution operation is dominated by multiply adds as seen in Alg. |§ and therefore
can benefit a lot from FMA instructions. Also in new processors many of these instruc-
tions can be performed at the same time using SIMD vectorization. The optimization is
performed by reordering both the convolution loop and the order of the dimensions of the
input, output, and kernel matrix. The innermost dimension and loop are now the output
channel, followed by the input channel and then the matrix dimensions(Alg. [[1). This
ensures the maximum number of elements loaded for one convolution, occupying consec-
utive memory locations. Since the innermost dimension is the output channel, there are
also no dependencies between consecutive elements. That way the Fused Multiply-Add
(FMA) units and SIMD vector registers are used more efficiently. The downside to this
optimization is that the order of the dimensions of the input, output and kernel matrices
needs to be changed for the whole model.

The FMA units perform a multiplication and an addition at the same time, and the vec-
tor registers allow for multiple data to be computed in a single instruction. Intel’s version
of the above can be seen in Fig. B.I. The FMA instruction is faster than performing the
multiplications and additions separately. The accuracy of the computation is also greater.
When multiplying two n-bit numbers the result can be up to 2n bits. To store the result to
a n-bit register a rounding is performed so some accuracy is lost. This loss of accuracy
increases the more operations are performed. When using FMA there is less accuracy loss
because only one rounding is performed to the end result. On the contrary doing a sepa-
rate multiplication and addition introduces a rounding after every computation (e.g. when
computing the expression a*b+c the result will be round(round(a * b) + ¢) without FMA
and round(a * b + ¢) with FMA).

81

vimadd231ps ymm2, ymm1, ymmO

=

Figure 8.1: 8 fused multiply adds using Intel vfmadd instruction with 256bit vector registers

ymm2

Algorithm 11 Reordered Convolution

1: fork=0to H,—1do

2: form =0to H, —1do

3: forn=0to W —1do

4. fori=0toCin—1do

5: forl=0to W, —1do

6: for j=0toCout —1do

7. kip = stride X kK +m

8 i, = stride x l+n

9: Outputlk][l[j]+ = Input[i][kin][lin] X Kernel[m][n][i][j]

8.3 Blocking

As mentioned in the previous section the convolution algorithm is not very efficient.
Georganas et al. [[14] proposes register blocking in the output dimensions in order to
achieve better data reuse. Zhang et al. [56] also propose a blocking variant of the reordered
convolution in order to achieve better data locality as well. In both cases the target is
the same as in the previous section, efficient ’cache friendly’ data reuse and optimized

82

deployment of SIMD FMA instructions.

Inspired from the above works we implement various blocking convolution algo-
rithms. On algorithm |2 we have applied register blocking in the spatial output dimensions
H, and W,. Then in algorithm [13 we also use blocking on the input and output channels.
In this case the block size is equal to the target machine’s vector length. Lastly in algo-
rithm |14 we combine blocking with loop reordering and we perform blocking on the the
input and output channels as well as the output dimension W,,.

Blocking is performed to make sure that the working set is small enough and therefore
cache friendly. This can decrease cache traffic, improve data reuse and performance. It
also makes sure that the resources for the SIMD FMA instructions are optimally used. The
appropriate size of each block is determined by a lot of factors such as the cache size, the
SIMD vector length as well as the latency of the FMA instructions. Block size affects how
many independent elements can be computed by the FMA units. Zhang et al. [56] state
that in order to hide the latency L ¢, of the FMA instructions there have to be at least
NyeeL fimq output elements available to be issued in each cycle. This way one FMA result
can be produced on each cycle for each of the V¢, FMA units. However only NyecVyeqs
element can be stored at vector registers. Having any more elements available will cause
register spilling into memory and this will hinder performance. Considering the above,
the upper and lower bounds of the number £ of independent output elements that have to
be computed in each cycle in order to reach the maximum attainable performance were
expressed mathematically by Zhang et al. [54].

NvecmeaLfma < & < Nvechegs (81)

We have to keep in mind that the above describes the limits for the non clustering con-
volution. Due to the irregular access patterns, more load, store and scatter/gather SIMD
instructions have to be used and they need extra registers for the mask and vector of ad-
dresses. While the exact amount of registers available for storing the results and perform
consecutive FMA operations as efficiently as possible will depend on the compiler and
implementation, we expect the upper bound of Eq. to be lower than what Zhang et al.
expect.

83

Algorithm 12 Convolution with blocking on spatial dimensions

1: Hy,, = H,/Blocksizey
2: Wy, = W, /Blocksizey
3: fori =0to Cin —1do
4: for j = 0to Cout — 1 do
5. for ky, =0to H, — 1 step Hy, do
6: forl,=0to W, — 1step W, do
7. form =0to H, —1do
8 forn=0toW, —1do
9: for k= kyto H, do
10: forl =1, to W, do
11: kin = stride x kK +m
12: lin = stride x l +n
13:

Output [j][k][[]+ = Input paali] [kin][lin] x Kernel[d)[j][m][n]

Algorithm 13 Convolution with blocking on spatial dimensions and channels

1: Cing = Cin/Nyec
2: Couty = Cout/Nyec
3: Hy = H,/Blocksizep
4: Wy, = W, /Blocksizew
5: for i, = 0 to C'in — 1 step Ciny do
6: for j, = 0to Cout — 1 step C'out do
7. for ky = 0to H, — 1 step H,, do
8. forl, =0to W, — 1step W, do
9: form =0to H. —1do

10: for=0to W, —1do

11: for 7 = ip to Ny do

12: for j = j, to Nyec do

13: for k = k, to H,, do

14: for ! = [, to W, do

15: kin, = stride x kK +m

16: lin = stride x l +n

17:

Output[j][k][l]+ = Inputpaali][Kin][lin] x Kernelli][j][m][n]

84

Algorithm 14 Reordered convolution with blocking

1: Ciny = Cin/Blocksizec;
2: Couty, = Cout/Blocksizec,
3: Wop = W,/ Blocksizew
4: for jp = 0to Cout — 1 step Couty do
5. for i, = 0to C'in — 1 step C'ing do
6: fork=0to H,—1do
7. forl=0to W, — 1step W,, do
8: form =0to H, —1do
9: forn=0to W, —1do
10: for i = i; to C'ing do
11: forl =1,to W,, do
12: for j = j, to Couty do
13: ki, = stride x k +m
14: lin = stride x l +n
15 Output[k][l[j]+ = Input[i][kin][lin] X Kernellm|[n][i][J]

8.4 Just In Time Compilation

There are cases where the performance of some code implementations is tied to pa-
rameters which are only known at runtime. If these values are known beforehand the code
can be optimized specifically for these parameters and this usually leads to better perfor-
mance. In such scenarios some form Just In Time (JIT) compilation can be utilized to
optimize the code after it was begun executing. JIT compilation compiles part of the code
after the program starts and produces specialized code that then runs on the fly. The code
is optimized for the specific parameters of that run.

In our case the code to be optimized is the convolution function and the parameters
are the dimensions and values of matrices which are calculated from the arguments when
the program begins. Before the convolution function is called there is a configuration step.
At that time the dimensions of the input, output, kernel and codebook matrices calculated,
memory is allocated for them and then they are initialized. When the configuration step
is over for a particular instance of the program, all the parameters stay the same besides

input and output values. At this point we can use the information of those parameters to
generate and execute optimized code at runtime.

In order to use JIT compilation to optimize part of the convolution function at runtime
we expermented with two JIT frameworks that we deemed suitable for our needs.Then

we adressed thier drawbacks by creating our own runtime code generation and execution
scheme.

85

8.4.1 Asmjit framework

Yilmaz et al. [53] use an assembly JIT framework, the asmjit project [27] to generate
specific multiplication instructions at runtime. They propose and evaluate various opti-
mizations of the Sparse Matrix Vector Multiplication. The sparse matrices are stored using
the CSR (Compressed Sparse Row) format. This is similar to how in our case the data are
compressed using codebooks. The similarity lies to the fact they both require indirect
references to access the values of the matrix for their respective operations because one
matrix’s elements are indexes for another matrix. To counter the effects of indirect index-
ing they substitute indirect references and denote common factors between multiplications
and end up with less multiplication operations.

Doing a similar analysis in our particular problem we observe that each output convo-
lution element can be written as in Eq. B.2 . In that formula the number of the codebook
matrix elements is a few powers of two but the for kernel elements much more.

C’Ln Wk Hk

outlj Z Z Z codebook|kernel[i][j][m][n]] x Input[i][kin][lin] (8.2)

1=1 m=1n=1

In Eq. B.3 we unfold the sums and replace the kernels with their values. For simplicity we
will use the 1D equivalent index for matrices. Input indexes are arbitary. Then Eq. 8.4 in
we can have each codebook as a common factor between the input values it is multiplied
with.
out[j][k][l] = codebook[0] x Input[1l] + codebook[3] x Input]2]+ (8.3)
+ codebook[0] x Input[6]
+ codebook[2] x Input[10]
+ ..

out[j][k][l] = codebook|0] x (Input[1] + Input[6] + ...) (8.4)
+ codebook[1](Input[9] + ..)
+ ...
+ codebook|2"] (Input[14] + ..)
To regroup Eq. B.4 back to a sum we assume a mapping of which specific input ele-
ments are being multiplied with each codebook element so that we can add them together

and perform only one multiplication. Such mapping can be implemented as an index table
that contains lists of input indexes m of size 2. Eq. then is transformed to Eq. B.5.

2bits_1 m[i}.end
outlj][k][l] = Z (codebook:[i] X Z Input[j]> (8.5)
=0 j=mli].start

This limits the total number multiplications that have to be performed. Also the code-
book elements are now referenced directly. To achieve better data locality the channel

86

dimension can be kept and only the 2-D kernels be unfolded.

Cin Qbits 1 m[k‘} [l] .end

outlj|[k][l] = Z Z (codebook:[i] X Z Input[j]) (8.6)
k=1 =0

j=mlk][z].start

To implement this approach we utilize JIT compilation, more specifically the asmjit project
[27], which is a framework that provides an API to generate and run x86-64 assembly
code during runtime. For mapping codebooks with input indexes we used Boost library’s
bimaps [5]. For the multiplications we use Intel’s single fused multiply add instructions.
The code generated for computing the value of one output element would look like this.

//add every input mapped to codebook[0]
xorps xmml, xmml //sum=0

vaddss xmml, xmml, [rcx+4] //sum+=input[1]
vaddss xmml, xmml, [rcx+32] //sum+=input[8]

vfmadd231ss xmm2, xmmi, [rdx] //out[index]+=codebook[0]*sum
//add every input mapped to codebook[1]

xorps xmml, xmml //sum=0

vaddss xmml, xmml, [rcx+8] //sum+=input[2]

vaddss xmml, xmml, [rcx+52] //sum+=input[13]

//perform scalar fused multiply add
vfmadd231ss xmm2, xmmi, [rdx+4] //out[index]+=codebook[1]*sum

//repeat for all codebook elements

To further boost the performance of the generated code, the next step was to vectorize
the computations using SIMD instructions. The CPU this program was tested on supported
the AVX2 x86-64 instruction set. The widest vector registers AVX2 architecture supports
are 256bit. The fma instruction, now packed, it is performed to all elements of the vector
registers as seen in Fig. B.1. This way 8 consecutive 32bit floating point output elements
are computed simultaneously.

An example of such generated assembly instructions can be seen below.

//add every input mapped to codebook[0]
xorps xmmO, xmmO //make sum O

vaddss xmmO, xmmO, [rcx+128]

vaddss xmmO, xmmO, [rcx+60]

xorps xmml, xmml //make sum O
vaddss xmml, xmml, [rcx+100]
vaddss xmml, xmmil, [rcx+44]
xorps xmm2, xmm2 //make sum O
vaddss xmm2, xmm2, [rcx+28]

vaddss xmm2, xmm2, [rcx+40]

xorps xmm7, xmm7 //make sum O

87

vaddss xmm7, xmm7, [rcx+88]

//£ill 256bit register with all sums
vinsertps xmm9, xmmO, xmml, 16
vinsertps xmm10, xmm4, xmm5, 16
vinsertps xmmll, xmm9, xmm2, 32
vinsertps xmm12, xmml0, xmm6, 32
vinsertps xmml13, xmmll, xmm3, 48
vinsertps xmmil4, xmml2, xmm7, 48
vinsertf128 ymmO, ymmi13, xmmil4, 1
//£ill codebook to 256bit register
vmovss xmm3, [rdx+48]

vinsertps xmml, xmm3, xmm3, 16
vinsertps xmm2, xmml, xmm3, 32
vinsertps xmm4, xmm2, xmm3, 48
vinsertf128 ymml, ymm4, xmm4, 1
//load 256bit register with
vmovdqu ymm2, [rax]

//perform packed fused multiply add
vimadd231ps ymm2, ymml, ymmO

//save 8 output elements

vmovdqu [rax], ymm2

//repeat for all codebook elements

8.4.2 Easy Jit framework

We also used the easy-jit[3] framework to optimize the code. Easy jit performs just in
time compilation by calling LLVMs clang compiler during runtime as a plugin. It takes
as input a function and its known arguments and then provides a function pointer of the
optimized function.

Normaly the convolution function would be called like this:

conv(c_in, rows, cols, c_out, kRows, kCols, pad, stride, \
&in, &codebook, &kernel, &out);

All arguments except the inputs and outputs are already known before calling the func-
tion. The function is optimized by compiling the already known arguments and a function
pointer to the optimized function is returned. Then the optimized function can be called
using the rest of the arguments.

auto conv_opt = easy::jit(conv, c_in, rows, cols, \
c_out,kRows, kCols, pad, stride, _1 , \
&codebook, &kernel, _2);

conv_opt (&in,&out) ;

88

This framework provides a "’hassle free” way to compile known parameters into func-
tions. It is a ”plug and play” framework with complicated compilation concepts hidden.
Although good at what it does, it does not allow changes in the source code of the function.
Also it faces problems optimizing functions with struct type arguements or return values.

There are options for levels of performance and code size optimizations but tweaking
individual compiler options is not implemented. SIMD vectorization is supposed to be
performed since the SLP and Loop vectorizer are used [37] when applicable. The SLP
vectorizer combines multiple scalars into vectors and the Loop Vectorizer vectorizes in-
structions in loops to perform multiple same instructions of consecutive iterations [38].

To confirm that vectorization occurs we used the debug options of the framework
to dump the optimized function’s LLVM’s intermediate representation and found FMA
vector operations (Lst. [B.1]).

cat easyjitdump.txt|grep fmul

float> %193, %204
float> %193, %207
float> %193, %226
float> %193, %229
float> %252, %258
float> %255, %258

%208 = fmul reassoc nsz arcp contract <8
%209 = fmul reassoc nsz arcp contract <8
%230 = fmul reassoc nsz arcp contract <8
%231 = fmul reassoc nsz arcp contract <8
%259 = fmul reassoc nsz arcp contract <8
%260 = fmul reassoc nsz arcp contract <8

LT T T

Listing 8.1: Easyjit’s intermediate representation dump containing vector FMA commands.

8.4.3 Generating C++ code at runtime

The previous JIT frameworks were used to improve of the cluster convolution algo-
rithm. Unfortunately they both have their limitations in terms of easiness to use, freedom
on emitting code and memory overheads which are thoroughly described in the evaluation
section. Some key traits that they lack but we require when generating code at runtime
are:

» generating a C++ function at runtime

* memory lightweight just in time compilation
* control over the compilation parameters

* CPU architecture independent

* Compiler independent

We developed a new scheme where C++ functions are generated as a string, saved to
a temporary file, compiled and then run, all during runtime in what is functionaly JIT
compilation. The process is performed in the following steps:

89

Step 1 Export the build’s compilation flags to a file when configuring the build with CMake

‘ file(WRITE build/cxxflags.txt ${CMAKE_CXX_FLAGS})

Step 2 Write C++ code and then save it to a temporary .cpp file

stringstream program;
program << "#include <cmath>\n";
<< "extern \"C\" int 1lib_func(,"
<< "float** input, float** output)\n";

ofstream out("tmpfiles/tmp.cpp");
out << program.str();
out.close();

Step 3 Invoke the compiler compiler with the appropriate flags and compile the file to a

library

stringstream cmd;

cmd << "${CXX} -fPIC -shared" << cxxflags.c_str()
<< " -0 tmpfiles/libtmp.so tmpfiles/tmp.cpp";

system(cmd.str().c_str());

Step 4 Load the library with dlopen and use dlsym to access the desired function(s).

void* handle = dlopen("libtmp.so",RTLD_LAZY);
void (*#func_print_name) (float*,float*);
*(void**) (&func_ptr) = dlsym(handle, "lib_func");

Step 5 Run the desired function(s)

‘ func_ptr(&input,&kernel,&output) ;

The above functionality was implemented in two C++ classes, one responsible for creat-
ing and compiling the C++ file and the other responsible for loading the library and the
functions. By using a temporary file to store the code before compilation this scheme

overcomes the main problems we have with the previous two JIT frameworks.

90

8.4.4 Generating convolutions from template files

To save time and reuse code, in step 2 of the previous section, we extend our code gen-
eration scheme to use user defined templates. We provide template text files as skeletons
for functions. These template files also contain hooks, special words, which we substitute
with desired code on runtime and then produce and compile the C++ files. The entire pro-
cess for generating and executing code at runtime can be seen in Fig. 8.2. An example of
the generating code process can be seen on the following code snippets.

StringCompile sc;

sc.append("../templates/conv_loop.tmp") ;
sc.replace("$c_in",std::to_string(c_in));
sc.replace("$c_out",std::to_string(c_out));
sc.replace("$outrows",std: :to_string(outrows)) ;
sc.replace("$outcols",std: :to_string(outcols));
sc.replace("$krows",std: :to_string(krows)) ;
sc.replace("$kcols",std: :to_string(kcols));
sc.replace("$stride",std::to_string(stride));
sc.replace("$pad",std: :to_string(pad));
sc.replace("$rows",std: :to_string(rows)) ;
sc.replace("$cols",std: :to_string(cols));
sc.save();

Listing 8.2: Replacing hooks with parameters

91

extern "C" int conv() extern "C" int conv()
{ {
int ki,ko,i,j,m,n,ii,jj; int ki,ko,i,j,m,n,ii,jj;
int out_addr,k_addr,in_addr; int out_addr,k_addr,in_addr;
for (ki=0; ki<$c_in; ki++){ for (ki=0; ki<96; ki++){
for (ko=0; ko<$c_out; ko++){ for (ko=0; ko<256; ko++){
for(i=0; i < $outrows; i++){ for(i=0; i < 23; i++){
for(j=0; j < $outcols; j++){ for(j=0; j < 23; j++){
for(m=0; m < $krows; m++){ for(m=0; m < 5; m++){
for(n=0; n < $kcols; n++){ for(n=0; n < 5; n++){
jj = $stride*j + n- $pad; jj = 1xj + n- 0;
ii = $stride*i + m - $pad; ii = 1*%i + m - 0;
out_addr=(ko*$outrows+i)*$outcols+j out_addr=(ko*23+1i)*23+j;
in_addr=(ki*$rows+ii)*$cols+jj; in_addr=(ki*27+ii)*27+jj;
k_addr=((ko*$c_in+ki) *$krows+m) * k_addr=((ko*96+ki) *5+m) *5+n;
$kcols+n;
(*out) [out_addr]+=(*in) [in_addr]* (*xout) [out_addr]+=(*in) [in_addr] *
(*code) [(xkern) [k_addr]]; (*code) [(*kern) [k_addr]l];
} }
} }
} }
} }
} }
} }
return O; return O;
} }
Listing 8.3: Original template Listing 8.4: Generated file with hooks replaced
Offline Runtime

“onficurati u - .
Configuration Configuration Execution

Export :
H Read
compilation flags

v::::: cofg:,:]n Replace hooks
g with generated

code and save to
temporary C++ file

lation

flags from
CMake

Load library
with dlopen
and functions
with dlsym

i

Compile
to library

Run
Functions

Write
template
functions

Load template
code

Figure 8.2: Code generation pipeline

92

8.5 Loop unrolling

Vanhoucke et al. [46] propose loop unrolling to optimize the convolution loop. This
technique improves performance by reducing the overhead of checking for loop termina-
tion and making the code more vectorizable. In addition they also propose using parallel
accumulators for each unrolled computation in order to give the compiler more opportuni-
ties to perform optimizations. Loop unrolling is an optimization that is usually performed
to some extent by the compiler itself, but code generation gives us the freedom to com-
pletely unroll the two innermost loops of the convolution operation. These two techniques
can be seen bellow:

(*out) [out_addr]+=(*code) [(*kern) [k_addr+0]]*(*in) [in_addr+0] ;
(*out) [out_addr]+=(*code) [(*kern) [k_addr+1]]*(*in) [in_addr+1];
(*out) [out_addr]+=(*code) [(*kern) [k_addr+2]]*(*in) [in_addr+2] ;
(*out) [out_addr]+=(*code) [(*kern) [k_addr+3]]*(*in) [in_addr+29] ;
(*out) [out_addr]+=(*code) [(*kern) [k_addr+4]]*(*in) [in_addr+30] ;
(*out) [out_addr]+=(*code) [(*kern) [k_addr+5]]* (*in) [in_addr+31];
(*out) [out_addr]+=(*code) [(*kern) [k_addr+6]]*(*in) [in_addr+58] ;
(*out) [out_addr]+=(*code) [(*kern) [k_addr+7]]*(*in) [in_addr+59] ;
(*out) [out_addr]+=(*code) [(*kern) [k_addr+8]]*(*in) [in_addr+60] ;

Listing 8.5: Loop unrolling

int psO0=(*code) [(xkern) [k_addr+0]]*(*in) [in_addr+0] ;

int psil=(*code) [(*¥kern) [k_addr+1]]*(*in) [in_addr+1];

int ps2=(*code) [(*¥kern) [k_addr+2]]*(*in) [in_addr+2];

int ps3=(*code) [(xkern) [k_addr+3]]*(*in) [in_addr+29];
int ps4=(*code) [(*¥kern) [k_addr+4]]* (*in) [in_addr+30] ;
int psb=(*code) [(*¥kern) [k_addr+5]]*(*in) [in_addr+31];
int ps6=(*code) [(xkern) [k_addr+6]]*(*in) [in_addr+58] ;
int ps7=(*code) [(*¥kern) [k_addr+7]]* (*in) [in_addr+59] ;
int ps8=(*code) [(*¥kern) [k_addr+8]]*(*in) [in_addr+60] ;
(*out) [out_addr]+=ps0+ps1+ps2+ps3+psd+psb+ps6+ps7+ps8;

Listing 8.6: Loop unrolling with parallel accumulators

8.6 Unique filters

After quantization there is the possibility of repeating 2d-kernels existing across the
channels. Ifthe number of unique ones is low enough, they can be shared between channels
to further reduce the size of the model. The above kernel repetition and appearance of
unique filters shared among channels is similar to clustering using kernels as the clustering
unit, performed by Son et al. [43] and Yu et al. [54]. In their case each codebook entry
is a unique filter. Given the promising results of the above works, even if he have a lot
of unique kernels at first, a smaller number could be enforced by utilizing their clustering
methods to end up with less unique kernels.

If we generate one function per filter during runtime with our code generating scheme,
it can even make the computational burden of the above clustering smaller because it can

93

increase the number of repeating kernels even more. Due to our code generation scheme
we have the versatility to bypass the indirect references by unfolding them at configuration
time and directly printing the values of each codebook. We also have the freedom to
perform factorization like Eq. B.9 to avoid multiplications. This removes the problems
introduced by clustering but will increase the compilation time and end executable size
proportionally to the number of unique filters.

void Uniquel(...){
for(int i=0; i < 27; i++){
for(int j=0; j < 27; j++){
int out_idx=i*27+j;
int in_idx=i*29+j*1;
(*out) [out_addr+out_idx]+=(0x1.9£65f8p+7f) * ((*in) [(ki*29+2)*29+0+in_idx])+
(0x1.43e0£f2p+7£)* ((*in) [(ki*29+1) *29+1+in_idx])+
(0x1.be70bep-31f) * ((*in) [(ki*29+2)*29+2+in_idx])+
(0x1.ca9ba8p+6£f)* ((*xin) [(ki*29+0)*29+2+in_idx])+
(0x1.d92f4p-124F) * ((*in) [(ki*29+1)*29+2+in_idx])+
(0x1.2290b4p+7£f)* ((*in) [(ki*29+0) *29+0+in_idx])+
(0x1.791524p+7£) * ((*in) [(ki*29+1)*29+0+in_idx])+
(0x1.9a244ap+7£f)* ((*in) [(ki*29+0)*29+1+in_idx]+(*in) [(ki*29+2)*29+1+
in_idx]);
}
}
}

Listing 8.7: Filter function with factorized multiplications. Codebooks are printed as std::hexfloats
to avoid rounding errors

Each filter function need to perform the convolution operation for the channels that
share that filter. This channel information needs to be provided to the function. We handle
this in two ways:

» The shared channels are hardcoded on the function as a 2d matrix.

void Uniquel(...){
int channels[3][2]={{2,0},{2,2},{4,1}};
for(int c=0;c<3;c++){
ko=channels[c] [0];
ki=channels[c][1];

}

Then we need to call each unique function, stored in a vector, only once.

for(const auto& fnit: map.fvec){
fnit(&in, &out ,&kernel,&codebook,0,0) ;
}

94

* Channel information stored in a hash table and accessed via a loop or an iterator.
The function is called for each channel that shares the filter.

— Loop

for (int ko=0; ko<c_out; ko++){
for (int ki=0; ki<c_in; ki++){
int addr=(c_in*ko+ki)*kRows*kCols;
map . fmap [addr] (&in,&out ,&kernel ,&codebook,ko,ki) ;
}

— Iterator

for(const auto& fnit: map.fmap){
int quot=(fnit.first/(kRows*kCols))/c_in;
int rem=(fnit.first/(kRows*kCols))%c_in;
fnit.second(&in,&out,&kernel,&codebook,quot,rem) ;

We benchmark the above accesses and we perform multiplications normaly and using
Eq. B.5. This produces a total of six different implementations for us to test.

8.7 Experimental Setup

8.7.1 Computer specifications

The specifications of the machines used to run the experiments on can be seen in

Tables and B.2.

Table 8.1: Machine specifications.

Type ‘ Computer ‘ oS ‘ CPU ‘ RAM

Server Ubuntu 18.04 | 2x Xeon Gold 5218 | 314GB
Desktop | Ideapad 510-15ikb | Ubuntu 16.04 17-7500U 8GB

Edge | Raspberry Pi3 B+ | Ubuntu 18.04 Cortex A53 1GB

95

Table 8.2: CPU specifications.

CPU arch speed | cores/ L1,L.2,L3 SIMD
threads
Xeon Gold 5218 | x86-64 | 3.9GHz | 14-28 | 32K, 1M, 22M | avx-512
17-7500U x86-64 | 3.5GHz 2-4 32K, 256K, 4M | avx2
Arm Cortex AS53 | aarch64 | 1.4GHz 4-4 16K, 512K neon

8.7.2 Test benchmarks

As it is common in such benchmarks we first test on the convolution sizes of AlexNet
layers to measure a real convolutional network (Table B.3). Then we test on a synthetic
benchmark Table B.4 to observe the effects of clustering as the layers become narrower
and deeper. For the blocking impementations we will skip the last two test cases due to the
dimensions being non divisible by the blocksize. Lastly Table 8.3 has two layer sizes for
each machine configuration. On the first the working set fits in the last level cache and on
the other it does not. That way we can measure the effect cache have on the convolution.
The working set consists of the input, output, kernel, and codebook matrices.

Table 8.3: Benchmark with AlexNet convolutions.

Cin | Hin | Win | Cowr | Hp | Wy | stride | pad
convl | 3 227 | 227 | 96 11 |11 |4 no
conv2 | 96 |27 |27 |256 |5 5 1 yes
conv3d | 256 | 13 |13 | 384 |3 3 1 yes
convd | 384 | 13 |13 | 384 |3 3 1 yes
convS | 384 | 13 |13 | 256 |3 3 1 yes

Table 8.4: Benchmark with large convolutions.

Cin | Hin | Win | Cowr | Hi | Wy | stride | pad
benchl | 256 | 128 | 128 [384 |3 |3 1 yes
bench2 | 256 | 128 | 128 [512 |3 |3 1 yes
bench3 | 384 | 128 | 128 | 384 |3 |3 1 yes
bench4 | 384 | 128 | 128 | 512 |3 3 1 yes
bench5 | 384 | 112 | 112 | 512 |3 3 1 yes
bench6 | 512 | 56 | 56 | 1024 | 3 3 1 yes
bench7 | 512 |28 |28 |512 |3 3 1 yes

96

Table 8.5: Benchmark targeting last level cache for each machine in Table

Cin | Hin | Win | Cowr | Hp | Wy | stride | pad | memory
Server 512132 |32 |512 |3 3 1 yes | 13MB
(22MB) | 512 |32 | 32 1024 | 3 3 1 yes | 24MB
Desktop | 128 | 32 |32 |256 |3 3 1 yes | 2.5MB
(4MB) 128 {32 |32 |768 |3 3 1 yes | 7MB
Edge 64 |16 |16 | 128 |3 3 1 yes | 481KB
(512KB) [64 |16 |16 |256 |3 3 1 yes | 609KB

8.7.3 Block size

Usually it is optimal for the fastest moving dimension to be a multiple of the vector
length. That is more achievable on the reordered implementation because the innermost
dimension, the output channel, is usually divisible by the vector length (they are both
powers of two). Moreover that dimension it is usually big enough to be able to be divided
with bigger multiples of the vector length.

In order to choose the correct block size for our blocking implementations need to
take some parameters into account. From Eq 8.1 we can find the upper and lower bounds
of the number of elements that need to be computed in each cycle in order for the FMA
to be efficient. In our case the FMA latency is 4 cycles [13]. This gives us a rough
estimate of what block sizes to try when experimenting (Table B.6). Based on Table 8.6
we experiment with block size. The upper bound, especially on the Server machine, are
quite big, sometimes bigger than the loop sizes, so we will have to use smaller block sizes
to efficiently block our loops. This is more of a problem for spatial dimensions that are
usually small and restrict our design. After some tweaks and experimenting the block size
of each algorithm can be seen in Table B.7.

Table 8.6: Element bounds for efficient FMA

‘ Nvec ‘ N’/‘egs ‘ mea ‘ bounds ‘
Server | 16 | 32 1 | [64,512]

Desktop | 8 | 16 2 | [64,128]

97

Table 8.7: Block sizes for blocking

‘ Hb ‘ Wb ‘ Cinb ‘ C’outb
Alg. 16 | 16 | - -

Alg. 13| 8 | 16 | Nyee | Niee
Alg.fld| - | 16 | 32 | 8%N,.

8.7.4 Compilers

The choice of compiler plays also a role in optimizing the code and performing vector-
ization. For our benchmarks we will use a variety of compilers (Table B.§) when needed.
We will compare both the performance and the code produced by the compilers to observe
differences in optimizations.

We use LLVM’s Clang compiler which is needed for some of our implementations
and then compare the results to with the other compilers. Also for some benchmarks it
is usefull to compare results with the gcc compiler. Lastly, for x86-64 cpus we will also
use Intel’s proprietary compiler, icc, because sometimes it handles vectorization better and
thus can potentially produce better optimized code.

Table 8.8: Compilers.

Type | Clang | GCC | ICC
Server - 7.5.0 | 19.0.4.243
Desktop 6.0.0 | 5.5.0 | 19.0.4.243
Embedded | 6.0.0 | 7.5.0 | -

8.7.5 Vectorization

Since many of the optimizations rely on vectorization we make sure to include all the
necessary compiler options for each compiler to generate vectorized code. For icc unsafe
math is enabled by default, but for gcc and clang we have to specifically enable them. Icc
also uses unique flags for AVX2 and AVX512 insructions. For AVX2 we use the -xCORE-
AVX2 flag, but for the AVX-512 we go for the -xCOMMON-AV X512 flag which uses 512
register instructions at higher frequency than -xCORE-AVXS512.

We also have to keep in mind that even though many newer embedded CPUs (like arm
cortex a53) have vectorization capabilities there are still a lot that do not. For that reason
we will also evaluate the benchmarks for the Edge machine with vectorization turned off.
To sum up, for vectorization we use the flags as described in Table B.9.

98

Table 8.9: Compiler options for vectorization.

Type \ General Options, (x86-64 specific)

icc -,(-xCORE-AVX2/-xCOMMONS512)

gee | -funsafe-math-optimization -ftree-vectorize, (-mavx2/512 -mfma)
clang | -funsafe-math-optimization -ftree-vectorize -ffp-contract=fast

8.7.6 Metrics

For performance metrics we will use Execution Time, Speedup and FLOPS.

* Execution Time is the time the convolution takes to run, after any configuration
step.

* Speedup in this case measures is the relative performance of two implementations
processing the same convolution. As a baseline time we use the time of the normal
convolution (Alg. [10.)

Ti
Speedup = # (8.7)
new

» FLOPS are the number floating point operations a processor performs in the unit of
time. There are two floating point operations in the innermost loop of the convolu-
tion, one multiplication and one addition. Given that all the loops in the convolution
increment by one, the total number of Floating point operations is calculated as fol-

lows:
FLOPs = 2H Wt Cout Cin H Wi (8.8)
And the floating point operations per second(FLOPS) are then calculated using
FLOPs.
FLOPS = — LLOPs (8.9)

execution time

In our benchmarks, when a piece of code performs better that others it can be hypoth-
esized that among other things, better vectorization and FMA utilization has taken place.
But in order to confirm that the above optimizations happened we need find FMA instruc-
tions, vectorized or not, using the objdump GNU utility to disassemble the executable
(Listing B.§ and B.9). The appearance of FMA instuctions confirms that the compiler
used, at least performed that optimization. The appearance of vectorized FMA instruc-
tions confirms that vectorization has taken place. Other compiler optimizations may also
take place such as efficient vector memory loads and stores, scatter/gather instructions,
that also can lead to optimal or sub optimal utilization of FMA and SIMD instructions.
When comparing versions of the same implementation built with different compilers the
presence of above instructions are some aspects of the code we can look at in order to
explain any performance variations.

99

objdump

40155b:
401614:
401672:
4016a4:

-d

c4
c4
cd
c4

conv|grep 'vfmadd'

c2 59 99 02

a2 75 a8 04 10
a2 49 99 04 83
a2 41 99 04 83

vimadd132ss
vimadd213ps
vimadd132ss
vimadd132ss

(%r10) , %xmm4 , %xmmO0

(%rax,’%r10,1) ,%ymm1, %ymmO
(%rbx,%r8,4) ,%xmmé , %xmm0
(%rbx,%r8,4) ,%xmm7 , %xmmO0

Listing 8.8: Part of x86-64 assembly code that contains fma instructions. The ones ending in ss
are single and the ones ending in ps are vectorized

objdump -d conv|grep 'fmla\|fmadd'

40189c:
4021d4:
4021d8:
402218:

1£002120
4e21cc03
4e22cc04
1£010800

fmadd
fmla
fmla
fmadd

sO0, s9, sO, s8
v3.4s, v0.4s, vl.4s
v4.4s, v0.4s, v2.4s
sO, s0, s1, s2

Listing 8.9: Part of arm (aarch64) assembly code that contains fia instructions. The fmadd are
single and fmla are vector instructions

8.7.7 Implementation names

On the plots we annotate each implementation with a small string. To better follow
the plots we present each implementation and the respective name in the plot legend.

Table 8.10: Implementations and names in legends

Implementation Name Implementation Name
Vanilla convolution v Block reordered Cluster | bl-re-cl
Vanilla convolution (cluster) | v-cl Asmyjit asmyjit
Soft padding sft Asmjit Vectorized asmjit-v
Soft padding cluster sft-cl Unique filters unique
Reordered re Unique filters hardcoded hard
Reordered cluster re-cl Unique filters iterator iter
Block Spatial bl-sp Unique filters loop loop
Block spatial cluster bl-sp-cl Codegenv vanilla cgen
Block all dimensions bl-a Codegen unroll cgen-unr
Block all dimensions cluster | bl-a-cl im2col & GEMM im2col
Block reordered bl-re

100

8.8 Evaluation

For the first part of the evaluations we will use the clang compiler in order to fairly
compare with the implementations that require clang. Sometimes it will be needed to use
other compilers. In any case all the compiler builds will be compared with each other on
a separate section.

8.8.1 Codebook length

We investigate the effects codebook size has on the performance of the convolution
by comparing the speed of the cluster convolution for 8bits to 1bit codebooks.

vanilla cluster reordered cluster

- 1bit = 1 bit
1.6 1 2 bit 2 bit
= 3 bit 2.5 = 3 bit
1.4 - 4 bit w4 bit
5 bit 5 bit
- 6 bit 6 bit
1.2 == 7 bit 2.0 = 7 bit
8 bit 8 bit
2] 0
] S 15
%5 0.8 1 5
0.6 1 1.04
0.4 4
0.54
0.21
0.0 -
convl conv2 conv3 conv4 conv5 convl conv2 conv3 conv4 conv5
codegen codegen unroll
5 4
= 1 bit = 1bit
2 bit 2 bit
47 e 3bit -3 bit
W 4 bit | =4 pit
5 bit 4 5 bit
= 6 bit == 6 bit
3] . 7bit W 7 bit
8 bit 8 bit
34
w [
(9 o
o]
- -
e fr
G 24 v}
2
14 1

conv4 convs convl conv4 convs

convl

conv2 conv3 conv2 conv3

Figure 8.3: Comparing different codebook sizes for various clustering convolution implementa-
tions on Benchmark Table §.3 on Desktop

In Fig. B.3 we observe that codebook size does not affect the performance of the
convolution on a consistent manner. This means that no codebook size is globaly optimal
for performance. This can be attributed to the small size of the codebook compared to the
working set. It is unlikely it will make a difference on whether the working set fits in the
last level cache or not. For the rest of the experiments we will use 5 bit codebooks since

101

this size was the optimal for accuracy for bigger models as seen in the previous chapter

(Fig. 7.9).

8.8.2 Padding

We measure the performance of padding implemented with ”’if” boundary check (soft
padding) as in Alg. § and with real input padding (hard padding) as in Alg[l(). We
compare these two approaches for vanilla and cluster convolutions in Fig.

Time(s)

convl conv?2 conv3 conv4 convh

Figure 8.4: Comparing padding approaches on vanilla and clustering convolution implementations
on Table B.3 on Desktop

The hard padding method appears superior. The reason is that the soft padding method
utilizes boundary checks on each iteration and this introduces time delays. Thus we will
use the hard padding method for the rest of the experiments.

8.8.3 Reordered convolutions

We perform clustering on reordered convolutions as in Alg. [L1. The reordering of
convolutions maximizes their cache locality, FMA utilization and vectorization potential.
From Fig 8.3 we can conclude that using reordered convolutions for clustering definitely
has a positive impact on performance. But the clustering convolution does not improve as

102

much as the vanilla convolution from reordering. The disparity between the two improve-
ments is indicative of the impact clustering has on convolution performance. Clustering
comes at a cost. Due to the indirect referencing weight values are not in consecutive mem-
ory addresses any more and as a result the vectorization potential and cache benefits are
decreased.

convl conv2 conv3 conv4 convs convl conv2 conv3 conv4 conv5
(a) Time (b) Speedup

Figure 8.5: Effects of clustering in vanilla and reordered convolution on Table B.3 on Desktop.

8.8.4 Blocking

For this section we will used the icc compiler for the x86-64 machines since it yielded
the best results. As we expected blocking improves the convolution significantly on most
cases. For the Server and Desktop machines an important observation is that the overhead
that clustering introduces is not so apparent in the blocking implementations (Fig. 8.4
and B.7). This is more evident in the reordered implementations and their blocking coun-
terparts. The improvement from blocking is so big that the blocking reordered cluster
convolution performs on the same level as the non cluster one.

As someone might expect blocking on the spatial dimensions only (Alg. [12) might
have some benefits, but as previously mentioned the small size of such dimensions does not
allow for bigger block size and that hinders bigger improvements. When we also perform
blocking on the channels (Alg. [13) the performance increases. Lastly when the output
channel is the innermost loop as in reordered implementation (Alg. [14) there is room for
even more performance gain since we have bigger block size on the inner dimension. It
is worth noting that as the number of channels increases Alg. [L3 seem to catch up on Alg.
in performance.

On the Edge device (Fig. B.§) we see that on only Alg. and [13 are beneficial
to the performance of the cluster convolution but not to the same extent as in the Server
and Desktop benchmarks. Contrary to Desktop and Server observations, for Alg. [14 the
blocking and non-blocking cluster reordered convolution perform equally bad. This can

103

be attributed to various factors such as the difference in compilers or the small vector width
that hiders the vectorization potential.

From the above observations we can conclude that blocking in cluster convolutions
improves performance due to data locality in some extent, but the main performance gains
are tied to the better utilization of SIMD FMA instructions. On the Edge machine that
has 128bit SIMD registers there is a moderate performance gain, on Desktop with 256bit
there is a considerable gain and lastly on the Server with 512bit registers we observe the
maximum performance gain.

50

-y
= vecl
. bl-sp
. bl-sp-cl 14 4
== bl-a
= bl-a-cl
e
. re-cl
301 - bl-re

40 A

= bl-re-cl

Time(s)

204

104

benchl bench2 bench3 bench4 bench5 ’ benchl bench2 bench3 bench4 bench5
(a) Time (b) Speedup

Figure 8.6: Performance of blocking implementations and their non blocking counterparts on
Table B4 on Desktop

204 . bl-sp-cl

154

Time(s)
Speedup

10 A

benchl bench2 bench3 bench4 bench5 ’ benchl bench2 bench3 bench4 bench5
(a) Time (b) Speedup

Figure 8.7: Performance of blocking implementations and their non blocking counterparts Table
B4 on Server

104

-y
400 4 ™= vl

m blsp 54
= bl-sp-cl

350 1 mm bla
== blacl

300 1 = re 41

. re-cl

benchl bench2 bench3_ bench4_ bench5) benchl bench2 bench3 bench4 bench5
(a) Time (b) Speedup

Figure 8.8: Performance of blocking implementations and their non blocking counterparts Table
B.4 on Edge

8.8.5 Comparision of Jit implementations

We first compare the asmjit and easyjit frameworks as well as our code generation
against the clustered vanilla convolution. We use the convolution layers of AlexNet to
test (Table B.3). Since easyjit framework relies on clang, we will use it to be able to have
a fair comparison with the other jit implementations. From Fig. B.9 we can conlclude
that the Asmjit framework has limited usefulness for our usage scenario. Firstly the code
needed for the convolution is emitted directly to assembly instead of C or C++. This makes
the process of actually generating the code for the convolution operation more perplexing.
Additionally any code optimizations (vectorization unrolling etc.) must be performed by
the users themselves, which will most likely be inferior to optimizations performed by
a C++ compiler. We can see this in Fig. 8.9 where the vectorized version of the asmijit
implementation actually performs worse than the non vectorized. Secondly the generated
functions are stored to buffers with limited capacity. Using more buffers to overcome the
capacity problem is also prohibitive because it ends up using too much RAM. For this
reason asmyjit framework will not be viable for larger benchmarks.

We do not gain any speed benefits by using the codebooks as common factors. This
does not necessarily contradict the results of Yilmaz et al. [53]. In their case the common
factor method was one of many methods, where the appropriate one was applied based on
profiling. They also state that it was not producing the best results every time, only that
when it did, it produced the best results by far. The improvement in performance could also
be due to the sparsity of the matrix in general. Moreover unlike us they did not use vector
assembly instructions. Regular multiplications have bigger latency than regular additions
and thus by using the common factor trick they use less multiplications and achieve speed
benefits. In our case however the vectorized fused multiply add instruction has the same
latency with the vectorized add and multiply instructions [13]. This means that the benefit
we gain in speed is limited and the sophisticated and time consuming process of finding

105

common factors in order to perform Eq. B.3 might not be worth it.

Easyjit, while being simpler and easier to use, also has its drawbacks. Firstly it can
only optimize functions with arguments of C++ fundamental data types. Secondly only
functions preexisting in the code could be passed for optimization. To unfold the weights
and get rid of the indirect references, as well as to perform the convolution as in Eq. 8.3,
we would need to be able to also generate the function code itself at runtime.

The naive implementation of code generation already adresses all of the above prob-
lems and that is evident by its better performance. As mentioned in subsection func-
tionally performs the same optimizations as easyjit. The reason it performs better in some
cases could be that in code generation we can tweak specific compilation flags. With code
generation the performance can be further increased, thus this is the JIT implementation
we will be using from now on.

0.6
L'
vl
= easyjit
= asmjit
= asmjit-v
= cgen

0.5+

0.4+

0.3+

Time(s)

0.2+

0.1+

0.0 - -
convl conv2 conv3 conv4 conv5 convl conv2 conv3 conv4 conv5

(a) Time (b) Speedup

Figure 8.9: Performance of vanilla, cluster asmjit and easyjit implementations on Table B.3 on
Desktop

8.8.6 Loop unrolling

We compare the novel code generation implementation with its loop unrolling variant
as described in section B.3. Unrolling performs better on all the the benchmarks, for all
the Desktop machine configurations (Fig. 8.10, 8.11 and 8.12))

From Fig. we observe that the unrolling implementation is always better. Its
performance is consistent besides the first convolution where the kernels are big (11x11)
as well as the input (227x227) that produces too many independent output elements and
leads to register spilling.

The naive code generation performs consistently besides the first convolution. On
Fig. the first convolution has the biggest input by far so there is no speedup, and on
Fig. as the input becomes smaller its performance increases. From the above we see
a connection between its performance and the size of the input.

106

0.6
- vanilla
m= vanilla cluster
= codegen
0.5 1 = codegen unroll
0.4
a
[
e 0.3
E
0.2 A
0.1

convl conv2 conv3 conv4 conv5 convl conv2 conv3 convad convs

(a) Time (b) Speedup

Figure 8.10: Comparing previous jit implementations with our code generation scheme on Table
B3 on Desktop.

vanilla
vanilla cluster
codegen

1.4+

codegen unroll
1.21

1.04

0.8

Time(s)

0.6 1

0.4 4

0.2 4

cachel cache2 cachel

cache2

(a) Time (b) Speedup

Figure 8.11: Comparing jit implementations with our code generation scheme on Table B.3 on
Desktop.

107

50 4

vanilla
vanilla cluster 20.01
codegen

codegen unroll

17.5 A

15.0 1

12.5 A

Time(s
Speedup

10.0 A

7.5 A

5.0 1

2.5

0.0 -
benchl bench2 bench3 bench4 bench5 bench6 bench7 benchl bench2 bench3 bench4 bench5 bench6 bench7

(a) Time (b) Speedup

Figure 8.12: Comparing jit implementations with our code generation scheme on Table B.4 on
Desktop.

108

From Fig. .13, 8.14 and B.13 we observe that for the Edge device the naive codegen
improves the convolution a lot, and at some cases the unrolling code generation improves
the performace by a larger margin. At Fig. we can see that the unrolling is superior,
at Fig. they are equally good and at Fig. unrolling performs worse that naive
codegen. This can be attributed to the smaller size of the SIMD registers that the Edge
machine has.

67 -y
-l
= cgen
54 = cgen-unr

Time(s)
w
Speedup

convl conv2 conv3 conv4 conv5 i convl conv2 conv3 conv4 conv5
(a) Time (b) Speedup

Figure 8.13: Comparing jit implementations with our code generation scheme on Table B.3 on
Edge.

0.5 4 m— v-cl

= cgen-unr

cachel cache2 cachel

(a) Time (b) Speedup

Figure 8.14: Comparing jit implementations with our code generation scheme on Table B.3 on
Edge.

109

400 - - v

. vecl
W cgen 74
= cgen-unr

benchl bench2 bench3 bench4 bench5 bench6 bench7 0- benchl bench2 bench3 bench4 bench5 benché bench7
(a) Time (b) Speedup

Figure 8.15: Comparing jit implementations with our code generation scheme on Table B.4 on
Edge.

8.8.7 Unique Filters

Each unique filter is performed by its own function. As the number of filters increases
we expect the compilation time to also increase. We plot the compilation time and execu-
tion time against the number of unique filters present. The compilation step is a heavy load
for embedded machines with limited memory. That is why it was not possible to increase
the number of filters as much as in the other implementations. The unique filter method
can still be a viable solution if the compilation is performed offline for a given model, on
a more powerful machine. Then only the compiled libraries are deployed. Since we have
no indirect references and only a few kernel functions that can be optimized, we expect
the performance to increase significantly from the vanilla convolution B.17.

The code produced performed really well, but we found that the icc compiler produces
the fastest code on x86 platforms and for this section we will use these results. This will
be discussed more extensively on the compilers evaluation section. The differences of the
performance of the different implementations on the Desktop are marginal. That being
said the hardcoded implementations were consistently slightly faster than their respective
counterparts. The factorized implementation performs slightly worse than the unfactorized
which can be attributed to the same reasons discussed in the asmjit evaluation. For the
above reasons to compare with the other optimizations we will be using the hard-coded
non factorized variant. In Fig. 8.17, B.1§ and 8.19 it is evident how much this method
improves the cluster convolution.

110

Execution Time(s)

0.06

0.05

0.04 4

0.03 1

0.02

0.01

unique factor hard
unique factor iter
unique factor loop
unique hard
unique iter
unique loop

4608 9216
Number of Filters

(a) Execution Time on Desktop icc

Compilation Time(s)

=== unique factor hard

600 4| ™= unique factor iter
== unique factor loop
mmm unique hard

500 mm unique iter
W unique loop

400 -

300 1

200

100 A

2304 4608 9216 18432
Number of Filters

(b) Compilation Time on Desktop icc

Figure 8.16: Execution and compilation time vs the number of filters

[
vl
Wm unique

convl conv2 conv3 conv4

conv5

benchl bench2 bench3 bench4 bench5 bench6é bench7

Figure 8.17: Comparison of unique filters on Table B.3 and B.4 on Desktop

111

-y
124 m— v-cl 16
W unique

10 A

Speedup

o
convl conv2 conv3 conv4 conv5 benchl bench2 bench3 bench4 bench5 bench6é bench7

Figure 8.18: Comparison on Table B.3 and B.4 on Server

04
convl conv2 conv3 conv4 convs benchl bench2 bench3 bench4 bench5 bench6 bench7

Figure 8.19: Comparison on Table B.3 and B.4 on Edge

8.8.8 Total comparison with all compilers

In this section we will evaluate the different convolution optimizations targeting clus-
ter convolution and how they perform relative to each other depending on which compiler
we used. We use convolution sizes from Table .4 since we do not observe any differences
with the other benchmarks. While comparing the performance it is useful to take into ac-
count Tables 8.11|, 8.12 and 8.13 in order to correlate performance and vectorization. On
these tables we have documented whether we encountered single and packed (vectorized)
FMA instructions when disassembling each implementation.

Our first observation is that the compilers are able to consistently vectorize the same
implementations across all machines and that these implementations consistently per-
formed better. Secondly every compiler in every platform was able to vectorize the unique
filters and code generation implementations. Thus they consistently perform better than
other implementations regardless of platform or compiler. From the above we can argue
that they are the most versatile implementations for best performance.

112

When looking each compiler individually and in contrast to the others we first oberve
that Icc usually both vectorizes code more efficiently and vectorizes pieces of code that the
other compilers tested here do not. Its usefulness lies to the fact that it can vectorize more
complex code cases that the other compilers. In Table we see that icc vectorizes all
code cases while the other compilers vectorize some of them. The benefits of icc being able
to vectorize the code can be direclty observed in the better performance of the respective
convolution variants over the ones produced by the other compilers (Fig and Fig
B.21)). This is more evident when looking the performance of blocking implementations.
With icc, they perform substantially better than the normal cluster convolution. When
using clang, we observe a moderate improvement in performance. Lastly, when compiled
with gcc, they yield just a slight performance boost. The performance gap is bigger on the
blocked reordered implementation. When looking through its machine code we find that
icc is using a lot of gather instructions that collect the indirect references of the codebooks
into a vector to then perform the FMA with. We believe that this is the main contributing
factor to its better performance against the other compilers.

Clang is not able to vectorize all clustering implementations like icc, but vectorizes
more than gcc, notably blocking Alg. [[2 and [13. For the best performing implementations
clang seems to favor the normal and unrolled codegen implementations but surprisingly
is not able to optimize the unique filter implementations as well as gcc and icc.

Code generated by gce, besides the codegen and unique filter implementations, does
not perform well compared to the other compilers. If we take a look at Tables [B.11],
and we can see why. Gce does not manage to vectorize any clustering implementation
except for the the codegen and unique filter.

On the Edge device (Fig. B.22) we observe that gcc does not handle blocking imple-
mentations very well and clang handles them moderately well which is the same trend
as in Server and Desktop. We also observe that on the Edge machine even though FMA
instructions are used, vectorization does not yield the same improvements as in the other
machines. This can be attributted to a number of things. One possible reason could be
that the vectorized instructions no being as optimized in performance as the x86-64 coun-
terparts. It is worth noting that the SIMD registers of the Edge CPU have a vector length
of only 4 compared to 8 and 16 of Desktop and Server. For that reason we expect it to
be able to perform less operations in parallel. This claim is further reinforced by the fact
that with clang the naive codegen implementation performs better that the unrolled. We
suspect that this is due to the fact that the smaller SIMD registers of the A53 CPU do not
let the unrolling implementation to reach its full potential. Moreover the Edge machine is
not as as powerfull as Desktop and Server in terms of CPU speed. Lastly, it could be due
to the compilers not being able to produce optimized vectorized code the arm64 architec-
ture as in x86-64. This is highly unlikely though since we observed the same trends on the
implementations on different machines.

For the unvectorized implementations on the Edge machine (Fig. B.23) we observe
that the unrolling codegen and unique filters are the only implementations that significantly
increase performance.

113

Time(s)

50 4

40 -

104

vanilla
vanilla cluster

reordered cluster
blocking spatial cluster 25 A
blocking all cluster
blocking reordered cluster
codegen

codegen unroll 20 4
unique

154

GFLOPS

101

benchl bench2 bench3 bench4 bench5 benchl bench2 bench3 bench4 bench5

(a) Time on clang (b) FLOPS on clang

40

351

vanilla
vanilla cluster
reordered cluster 20 4
blocking spatial cluster

blocking all cluster
blocking reordered cluster
codegen

codegen unroll

unique

GFLOPS

benchl bench2 bench3 bench4 bench5 benchl bench2 bench3 bench4 bench5

(c¢) Time on gcc (d) FLOPS on gcc

50 40
-y
v-cl
mm recl 351
| m=m bl-spcl
407 plact
bl-re-cl 30
s cgen
B cgen-unr 25
30 unique
[
a
S 204
s
g
201 154
101
101
54
04
benchl bench2 bench3 bench4 bench5 benchl bench2 bench3 bench4 bench5

(e) Time on icc (f) FLOPS on icc

Figure 8.20: Performance with all the compilers on Desktop Table B.4

114

Time(s)

Time(s)

-y
vl
55 | . reccl 25
= bl-sp-cl
= bl-a-cl
. bl-re-cl |
20 4 W cgen 20
= cgen-unr
e unique
2 151
151 9
s
v}
10 101
51 51
04
benchl bench2 bench3 bench4 bench5 benchl bench2 bench3 bench4 bench5
(a) Time on gcc (b) FLOPS on gcc
-
vl
. re-cl
20 . bl-sp-cl 40 -
== blacl
= bl-recl
e cgen
| W cgen-unr 30 4
15 e unique
%
a
o
e
10 4 © 204
5 101
04
benchl bench2 bench3 bench4 bench5 benchl bench2 bench3 bench4 bench5
(¢) Time on icc (d) FLOPS on icc

Figure 8.21: Performance with all the compilers on Server Table B.4

115

Time(s)

Time(s)

L%
400 { ™= vl 1.4
re-cl
= bl-sp-cl
350 1 mmm bl-a-cl 1.2
= bl-re-cl
300 == cgen
W cgen-unr 1.09
250 4 B unique &
S 0.8
e
200 - [C]
0.6 1
1501
0.4+
1001
50 1 0.27
0 0.0
benchl bench2 bench3 bench4 bench5 benchl bench2 bench3 bench4 bench5
(a) Time on clang (b) FLOPS on clang
400 A
v
v-cl 144
350 1 re-cl
bl-sp-cl
bl-a-cl 1.24
3001 bl-re-cl
cgen 1.0
250 4 cgen-unr
unique 0
0.8
200 4 S
f
0]
150 1 061
1001 0.4
50 1 021
0.0-
benchl bench2 bench3 bench4 bench5 benchl bench2 bench3 bench4 bench5

(¢) Time on gcc (d) FLOPS on gcc

Figure 8.22: Performance with all the compilers on Edge Table B.4

116

Time(s)

400 -

350 4

300 4

2501

200 1

150 -

100 -

v
v-cl

re-cl
bl-sp-cl
bl-a-cl
bl-re-cl
cgen
cgen-unr
unique

GFLOPS

benchl bench2 bench3 bench4 bench5 ’ benchl bench2 bench3 bench4 bench5

(a) Time on clang (b) FLOPS on clang

v
v-cl

re-cl
bl-sp-cl
bl-a-cl
bl-re-cl
cgen
cgen-unr
unique

GFLOPS

benchl bench2 bench3 bench4 bench5 ’ benchl bench2 bench3 bench4 bench5

(¢) Time on gcc (d) FLOPS on gcc

Figure 8.23: Performance without vectorization with all the compilers on Edge Table B.4

117

Table 8.11: Existence of single and vector FMA instructions on the Desktop machine.

Impl. Type Clang | GCC | ICC

Vanilla | Normal | FMA | vyes yes | yes
vector no no yes

Cluster | FMA | yes yes | yes

vector | no no | yes

Reorder | Normal | FMA | yes yes | yes
vector | yes yes | yes

Cluster | FMA | vyes yes | yes

vector no no yes

Blocking | Normal | FMA | yes yes | yes
Spatial vector | yes no | yes
Cluster | FMA | yes yes | yes

vector | yes no yes

Blocking | Normal | FMA | yes yes | yes
All vector | yes no | yes

Cluster | FMA | vyes yes | yes

vector | yes no | yes

Blocking | Normal | FMA | yes yes | yes
Reordered vector | yes yes | yes
Cluster | FMA | vyes yes | yes

vector no no yes

Codegen | Cluster | FMA | yes yes | yes
vector | yes no yes

Codegen | Cluster | FMA | yes yes | yes
Unroll vector | yes yes | yes
Unique | Cluster | FMA | yes yes | yes
vector | yes yes | yes

118

Table 8.12: Existence of single and vector FMA instructions on the Server machine.

Impl. Type GCC | ICC
Vanilla | Normal | FMA | yes | yes
vector | no yes
Cluster | FMA | yes | yes
vector | no | yes
Reorder | Normal | FMA | yes | yes
vector | yes | yes
Cluster | FMA | yes | yes
vector | no yes
Blocking | Normal | FMA | yes | yes
Spatial vector | no | yes
Cluster | FMA | yes | yes
vector | no | yes
Blocking | Normal | FMA | yes | yes
All vector | no | yes
Cluster | FMA | yes | yes
vector | no yes
Blocking | Normal | FMA | yes | yes
Reordered vector | yes | yes
Cluster | FMA | yes | yes
vector | no | yes
Codegen | Cluster | FMA | yes | yes
vector | no | yes
Codegen | Cluster | FMA | yes | yes
Unroll vector | yes | yes
Unique | Cluster | FMA | yes | yes
vector | yes | yes

119

Table 8.13: Existence of single and vector FMA instructions on the Edge machine.

Impl. Type Clang | GCC

Vanilla | Normal | FMA | vyes yes
vector no no

Cluster | FMA | vyes yes

vector no no

Reorder | Normal | FMA | vyes yes
vector | yes yes

Cluster | FMA | vyes yes

vector no no

Blocking | Normal | FMA | yes yes
Spatial vector | yes no
Cluster | FMA | yes yes

vector | yes no

Blocking | Normal | FMA | yes yes
All vector | yes no

Cluster | FMA | vyes yes

vector | yes no

Blocking | Normal | FMA | yes yes
Reordered vector | yes yes
Cluster | FMA | yes yes

vector no no

Codegen | Cluster | FMA | vyes yes
vector | yes no

Codegen | Cluster | FMA | vyes yes
Unroll vector | yes yes
Unique | Cluster | FMA | yes yes
vector | yes yes

120

8.8.9 Parallel implementation

In this section we evaluate how well the two best implementations for cluster convo-
lution scale in parallel and we compare it with traditional GEMM based vanilla convolu-
tion. For the Server machine (Fig. B.23) we can see that the clustering implementations
have comparable performance with the GEMM based implementation. We observe as the
performance increases as the number of threads increase. For 16 threads we see JIT im-
plementations dropping in performance, while the GEMM convolutions increase slows
down. Then for 32 threads the performance increases yet again. This behavior can be
attributed to bad cache usage. We can assume that at 16 threads the working set becomes
too big, and we either have cache misses because the data do not fit in cache or due to the
cache spilling to the second socket. Then at 32 threads where the second socket CPU is
utilized the cache is utilized better. Nonetheless there is a lot of room for improvement in
the parallel section of the JIT implementations. On Desktop (Fig. B.24) we can not really
make a conclusion regarding the scalability because we have only 2 cores. However we
must note that the JIT implementations perform better that the GEMM based ones.

1 thread(s) 2 thread(s)

4 thread(s)

Figure 8.24: Parallel performance while threads increase on Desktop Table B.4

121

GFLOPS.

GFLOPS

GFLOPS

200

°

1 thread(s) 2 thread(s)
- cgen-un
unigue
- im2col —im2col
4
9
&
benchl bench2 bench3 bench4 benchs bench6 bench2 bench3 benchd bench5 benché
4 thread(s) 8 thread(s)
450
- cgen-unr - cgenunr
@
2
S
<)
benchl bench2 bench3 bench4 bench5 benché bench7 bench2 bench3 benchd benchS benché

16 thread(s)

32 thread(s)

benchl bench2

bench3

benchd

benché

GFLOPS

bench?

64 thread(s)

bench2

- cgen-unr
= unique
- im2col

bench3 benchd. benchs. benché bench?

500

GFLOPS

bench2

bench3 benchd.

benchs

benché

- cgen-unr

bench?

Figure 8.25: Parallel performance while threads increase on Server Table B.4

122

Chapter 9

Conclusions and Future Work

In this Thesis we first investigated clustering as a quantization technique Convolu-
tional Layers of DNNs and we observed that it yields good results for DNN model com-
pression. However this method introduces time penalties due to the irregular way data is
accessed. Indirect referencing in clustered convolutions is the main source of performance
drop compared to the regular counterparts. It makes for poor vectorization potential and
data locality.

Therefore we then focused on minimizing the performance penalties that clustering in-
troduced. We experimented, inspired by various techniques present in previous academic
works, and confirmed their usefulness. In order to hide the latency from indirect referenc-
ing, we utilized loop reordering and blocking techniques. Our results indicate that with
restructuring and blocking the loops it is it is possible to achieve a considerable perfor-
mance boost. These techniques seem to benefit a lot from the existence of SIMD vector
instructions and thus are mainly useful on powerful machines when JIT compilation is not
an option.

JIT compilation is the technique we investigated next. We tweaked the convolution
implementation to utilize two available JIT frameworks and we received promising re-
sults. The frameworks lacked some features we needed so we developed our own code
generation and execution library to give us the freedom we needed. With this freedom we
managed to develop implementations that surpassed the performance of the previous JIT
implementations. Using our JIT code generation library we we attempted to remove the
indirect references altogether. We demonstrated that it is possible but also that it yields big
performance boost for all platforms. The caveat is that it is a viable solution only when
the number of unique filters is relatively small.

The JIT implementations had the most positive impact on the cluster convolution algo-
rithm since they exploited data locality and vectorization the most. Even without vector-
ization, JIT implementations make substantial increases to baseline performance. More-
over they perform comparable to traditional GEMM based convolution implementations.
Thus the JIT implementations can be deployed for performance benefits both on powerful
machines with SIMD instructions as well as machines with limited resources and even no
vectorization capabilities.

123

In conclusion, in this thesis we managed to compress DNN models by up to 6.4x while
retaining their accuracy. With JIT compilation they also retained their original speed but
without the memory overheads of GEMM convolutions.

Our work can be extended towards various directions. First the idea behind each con-
volution optimization can be implemented on the back propagation step of the DNN train-
ing process. The back propagation loops are similar to the forward convolution ones and
indirect referencing will most likely have the same effects. Moreover it would be interest-
ing to investigate the performance of the optimizations presented in this work on highly
parallel environments (e.g. GPUs).

We used the code generation library to compile already known parameters to the con-
volution and completely unroll the kernel loops. This approach gives a lot of freedom for
implementations and could be taken one step further by providing a more fine grained solu-
tion, by targeting specific common occurring kernel sizes or by performing more elaborate
loop transforming optimizations.

Lastly, works that attempt to enforce fewer kernels to the models as a means of quan-
tization compression already exist and our unique filters approach could be tweaked to
work with them. These works address the problem of low memory capabilities of em-
bedded devices and could be directly complemented by our approach since it targets the
problem of poor computational performance that is also encountered on said devices.

124

Bibliography

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

URL https ://github. com/shicai/MobileNet-Caffel.

Alireza Aghasi, Afshin Abdi, Nam Nguyen, and Justin Romberg. Net-Trim: Convex
Pruning of Deep Neural Networks with Performance Guarantee. arXiv e-prints, art.
arXiv:1611.05162, November 2016.

Juan Manuel Martinez Caamaiio. Easy::;jit: A just-in-time compiler for C++. URL
bttps ://github.com/jmmart inez/easy—just—in—timd.

Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An Analysis of
Deep Neural Network Models for Practical Applications. arXiv e-prints, art.
arXiv:1605.07678, May 2016.

Matias Capeletto. Boost bimap. 2006. URL https://www.boost.org/doc/
lLibs/1_73_0/libs/bimap/.

Wenlin Chen, James T. Wilson, Stephen Tyree, Kilian Q. Weinberger, and Yixin
Chen. Compressing Neural Networks with the Hashing Trick. arXiv e-prints, art.
arXiv:1504.04788, April 2015.

Francois Chollet. Xception: Deep Learning with Depthwise Separable Convolu-
tions. arXiv e-prints, art. arXiv:1610.02357, October 2016.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Ben-
gio. Binarized Neural Networks: Training Deep Neural Networks with Weights and
Activations Constrained to +1 or -1. arXiv e-prints, art. arXiv:1602.02830, February
2016.

Miguel de Prado, Maurizio Denna, Luca Benini, and Nuria Pazos. QUENN:
QUantization Engine for low-power Neural Networks. arXiv e-prints, art.
arXiv:1811.05896, Nov 2018.

Jia Deng, Wenjun Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. 2009.

Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep
learning. arXiv e-prints, art. arXiv:1603.07285, March 2016.

125

https://github.com/shicai/MobileNet-Caffe
https://github.com/jmmartinez/easy-just-in-time
https://www.boost.org/doc/libs/1_73_0/libs/bimap/
https://www.boost.org/doc/libs/1_73_0/libs/bimap/

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Athena Elafrou, Georgios Goumas, and Nektarios Koziris. Performance Analy-
sis and Optimization of Sparse Matrix-Vector Multiplication on Modern Multi- and
Many-Core Processors. arXiv e-prints, art. arXiv:1711.05487, November 2017.

Agner Fog et al. Instruction tables: Lists of instruction latencies, throughputs and
micro-operation breakdowns for intel, amd and via cpus. Copenhagen University
College of Engineering, 93:110, 2011.

Evangelos Georganas, Sasikanth Avancha, Kunal Banerjee, Dhiraj Kalamkar, Greg
Henry, Hans Pabst, and Alexander Heinecke. Anatomy Of High-Performance
Deep Learning Convolutions On SIMD Architectures. arXiv e-prints, art.
arXiv:1808.05567, Aug 2018.

Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, and Ed-
ward Choi. MorphNet: Fast & Simple Resource-Constrained Structure Learning of
Deep Networks. arXiv e-prints, art. arXiv:1711.06798, November 2017.

Georgios Goumas, Kornilios Kourtis, Nikos Anastopoulos, Vasileios Karakasis, and
Nectarios Koziris. Understanding the performance of sparse matrix-vector multi-
plication. pages 283-292, 03 2008. ISBN 978-0-7695-3089-5. doi: 10.1109/PDP.
2008.41.

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic Network Surgery for Efficient
DNNSs. arXiv e-prints, art. arXiv:1608.04493, August 2016.

Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing Deep
Neural Networks with Pruning, Trained Quantization and Huffman Coding. arXiv
e-prints, art. arXiv:1510.00149, Oct 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning
for Image Recognition. arXiv e-prints, art. arXiv:1512.03385, December 2015.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel Pruning for Accelerating Very
Deep Neural Networks. arXiv e-prints, art. arXiv:1707.06168, July 2017.

Koen Helwegen, James Widdicombe, Lukas Geiger, Zechun Liu, Kwang-Ting
Cheng, and Roeland Nusselder. Latent Weights Do Not Exist: Rethinking Binarized
Neural Network Optimization. arXiv e-prints, art. arXiv:1906.02107, June 2019.

Geoffrey Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm
for deep belief nets. Neural computation, 18:1527-54, 08 2006. doi: 10.1162/neco.
2006.18.7.1527.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. MobileNets: Efficient Con-
volutional Neural Networks for Mobile Vision Applications. arXiv e-prints, art.
arXiv:1704.04861, Apr 2017.

126

[24] Yannick Van Huele. URL https://github.com/yvanhuele/yvanhuele.|

Bithub. id

[25] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. arXiv e-prints, art.
arXiv:1502.03167, February 2015.

[26] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional Architec-
ture for Fast Feature Embedding. arXiv e-prints, art. arXiv:1408.5093, Jun 2014.
URL https://github.com/BVLC/caffd.

[27] Petr Kobalicek. AsmlJit: Complete x86/x64 JIT and AOT Assembler for C++. URL
https://github.com/asmjit.

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. Advances in Neural Information Process-
ing Systems 25, pages 1097-1105, 2012. URL http: //papers.nips.cc/paper/|
A824-imagenet-classification-with-deep-convolutional-neural-networks |
df].

[29] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

[30] Darryl D. Lin, Sachin S. Talathi, and V. Sreekanth Annapureddy. Fixed Point Quan-
tization of Deep Convolutional Networks. arXiv e-prints, art. arXiv:1511.06393,
Nov 2015.

[31] Zhouhan Lin, Matthieu Courbariaux, Roland Memisevic, and Yoshua Bengio. Neu-
ral Networks with Few Multiplications. arXiv e-prints, art. arXiv:1510.03009, Oc-
tober 2015.

[32] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully Convolutional Networks
for Semantic Segmentation. arXiv e-prints, art. arXiv:1411.4038, November 2014.

[33] J. MacQueen. Some methods for classification and analysis of multivariate obser-
vations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, Volume 1. Statistics, pages 281-297, Berkeley, Calif., 1967. Uni-

versity of California Press. URL https://projecteuclid.org/euclid.bsmsp/
1200512992.

[34] Moritz B. Milde, Daniel Neil, Alessandro Aimar, Tobi Delbruck, and Giacomo Indi-
veri. ADaPTION: Toolbox and Benchmark for Training Convolutional Neural Net-

works with Reduced Numerical Precision Weights and Activation. arXiv e-prints,
art. arXiv:1711.04713, Nov 2017.

127

https://github.com/yvanhuele/yvanhuele.github.io
https://github.com/yvanhuele/yvanhuele.github.io
https://github.com/BVLC/caffe
https://github.com/asmjit
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://projecteuclid.org/euclid.bsmsp/1200512992
https://projecteuclid.org/euclid.bsmsp/1200512992

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Asit Mishra, Jeffrey J Cook, Eriko Nurvitadhi, and Debbie Marr. WRPN: Train-
ing and Inference using Wide Reduced-Precision Networks. arXiv e-prints, art.
arXiv:1704.03079, April 2017.

Daisuke Miyashita, Edward H. Lee, and Boris Murmann. Convolutional Neu-
ral Networks using Logarithmic Data Representation. arXiv e-prints, art.
arXiv:1603.01025, March 2016.

LLVM Project. Llvm passmanagerbuilder. . URL https://11vm.org/doxygen/|
lclassllvm_l_lPas sManagerBuilder. htmll.

LLVM Project. Llvm vectorizers. . URL https://1lvm.org/docs/
I\Iectorizers .htmll.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks. arXiv e-prints, art.
arXiv:1506.01497, June 2015.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. MobileNetV2: Inverted Residuals and Linear Bottlenecks. arXiv e-
prints, art. arXiv:1801.04381, January 2018.

Scipy. scipy.cluster.vg.kmeans. URL https ://docs.scipy. org/doc/scipy/l
eference/generated/scipy.cluster.vq.kmeans. htmﬂ.

Sungho Shin, Yoonho Boo, and Wonyong Sung. Fixed-point optimization of
deep neural networks with adaptive step size retraining. arXiv e-prints, art.
arXiv:1702.08171, February 2017.

Sanghyun Son, Seungjun Nah, and Kyoung Mu Lee. Clustering convolutional ker-
nels to compress deep neural networks. In Vittorio Ferrari, Martial Hebert, Cristian
Sminchisescu, and Yair Weiss, editors, Computer Vision — ECCV 2018, pages 225—
240, Cham, 2018. Springer International Publishing.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Ried-
miller. Striving for Simplicity: The All Convolutional Net. arXiv e-prints, art.
arXiv:1412.6806, December 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
Deeper with Convolutions. arXiv e-prints, art. arXiv:1409.4842, September 2014.

Vincent Vanhoucke, Andrew Senior, and Mark Z. Mao. Improving the speed of
neural networks on cpus. In Deep Learning and Unsupervised Feature Learning
Workshop, NIPS 2011, 2011.

128

https://llvm.org/doxygen/classllvm_1_1PassManagerBuilder.html
https://llvm.org/doxygen/classllvm_1_1PassManagerBuilder.html
https://llvm.org/docs/Vectorizers.html
https://llvm.org/docs/Vectorizers.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.vq.kmeans.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.vq.kmeans.html

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

A. Vasuki and P.T. Vanathi. A review of vector quantization techniques. Potentials,
1IEEE, 25:39 — 47, 08 2006. doi: 10.1109/MP.2006.1664069.

Sahar Voghoei, Navid Hashemi Tonekaboni, Jason G. Wallace, and Hamid R. Arab-
nia. Deep Learning at the Edge. arXiv e-prints, art. arXiv:1910.10231, Oct 2019.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning Struc-
tured Sparsity in Deep Neural Networks. arXiv e-prints, art. arXiv:1608.03665, Au-
gust 2016.

Junru Wu, Yue Wang, Zhenyu Wu, Zhangyang Wang, Ashok Veeraraghavan, and
Yingyan Lin. Deep k-Means: Re-Training and Parameter Sharing with Harder
Cluster Assignments for Compressing Deep Convolutions. arXiv e-prints, art.
arXiv:1806.09228, June 2018.

Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler, Vivi-
enne Sze, and Hartwig Adam. NetAdapt: Platform-Aware Neural Network Adapta-
tion for Mobile Applications. arXiv e-prints, art. arXiv:1804.03230, April 2018.

Muhamad Yani, S Irawan, and M.T. S.T. Application of transfer learning using
convolutional neural network method for early detection of terry’s nail. Journal
of Physics: Conference Series, 1201:012052, 05 2019. doi: 10.1088/1742-6596/
1201/1/012052.

Buse Yilmaz, Baris Aktemur, Maria Garzaran, Sam Kamin, and Furkan Kira¢. Au-
totuning runtime specialization for sparse matrix-vector multiplication. ACM Trans-
actions on Architecture and Code Optimization, 03 2016. doi: 10.1145/2851500.

Zhongzhi Yu, Yemin Shi, Tiejun Huang, and Yizhou Yu. Kernel Quantization for
Efficient Network Compression. arXiv e-prints, art. arXiv:2003.05148, March 2020.

Geng Yuan, Xiaolong Ma, Caiwen Ding, Sheng Lin, Tianyun Zhang, Zeinab S. Jalali,
Yilong Zhao, Li Jiang, Sucheta Soundarajan, and Yanzhi Wang. An Ultra-Efficient
Memristor-Based DNN Framework with Structured Weight Pruning and Quantiza-
tion Using ADMM. arXiv e-prints, art. arXiv:1908.11691, August 2019.

Jiyuan Zhang, Franz Franchetti, and Tze Meng Low. High Performance Zero-
Memory Overhead Direct Convolutions. arXiv e-prints, art. arXiv:1809.10170,
September 2018.

Yiren Zhou, Seyed-Mohsen Moosavi-Dezfooli, Ngai-Man Cheung, and Pascal
Frossard. Adaptive Quantization for Deep Neural Network. arXiv e-prints, art.
arXiv:1712.01048, Dec 2017.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J. Dally. Trained Ternary Quan-
tization. arXiv e-prints, art. arXiv:1612.01064, December 2016.

129

	Εισαγωγή
	Συνελικτικά Νευρωνικά Δίκτυα
	Αλγόριθμος k-means

	Κβαντοποίηση
	Κβαντοποίηση
	Μεθοδολογία Κβαντοποίησης
	Αποτελέσματα

	Βελτιστοποίηση του inference για κβαντοποιημένα μοντέλα
	Padding
	Loop order
	Blocking
	Just In Time Compilation
	Loop unrolling
	Unique filters
	Αποτελέσματα

	Συμπεράσματα και μελλοντικές προεκτάσεις
	Introduction
	DNN Quantization
	Contribution of this Thesis

	Background
	Machine Learning
	Neural Networks
	Convolutional Neural Networks
	Convolution layer
	Pooling layer
	Fully Connected Layer
	Batch Normalization Layer

	K-means clustering

	DNN Quantization
	Quantization Methodology
	Compression rate
	Quantization noise
	Experimental Setup
	Deep Learning Frameworks
	Datasets
	CNN Models
	Data preprocessing
	Performing k-means
	Evaluating accuracy
	Computer specifications

	Evaluation

	Optimization of Inference for Quantized Models
	Padding
	Loop order
	Βlocking
	Just In Time Compilation
	Asmjit framework
	Easy Jit framework
	Generating C++ code at runtime
	Generating convolutions from template files

	Loop unrolling
	Unique filters
	Experimental Setup
	Computer specifications
	Test benchmarks
	Block size
	Compilers
	Vectorization
	Metrics
	Implementation names

	Evaluation
	Codebook length
	Padding
	Reordered convolutions
	Blocking
	Comparision of Jit implementations
	Loop unrolling
	Unique Filters
	Total comparison with all compilers
	Parallel implementation

	Conclusions and Future Work

