EONIKO METTOBIO ITOAYTEXNEIO

Y XOAH HAEKTPOAOTON MHXANIKON KAI MHXANIKON YTTIOAOTIZTON
TOMEAY TEXNOAOTIAY [TAHPO®OPIKHE KAI YTIOAOTIETON
EPrastHPIO MIKPOYOAOIIESTON KAI WHIIAKON L YSTHMATON

The ParalOS Framework for Heterogeneous
VPUs: Scheduling, Memory Management &

Application Development

AIIIAOMATIKH EPrAsIA

TOoLV

Eudyyeiou lletpdyyova

EnmBrénwyv: Anurtpoc Xodvreng
Kodnyntic E.M.IL

EPrasTHPIO MIKPOYTIOAOTIETON KAI WHSIAKON L TSTHMATON
Adrva, OxteBetog 2020

Edvixé Metodfio Iloauteyvelo
Eyoh) Hihextpohdywv Mnyavixwy xou Mnyovixodv YTroloyiotoy
Touéag Teyvoroyiog [IAnpogpopurc xa Troloyiotdy

Epyaotfpio Muxpobnoloyiotadv xar Ungoxwmy LucTnudtey

The ParalOS Framework for Heterogeneous
VPUs: Scheduling, Memory Management &
Application Development

AIIAOMATIKH EPrAsIA

ToLV

Evdyyeiou Iletpdyyova

EnBArenwyv: Anurtpoc Xodvreng
Kodnyntic E.M.IL

Eyxpldnxe and v tpiweln eCetactixr emtpony| tny 3n Noeufplou 2020.

(Ymoypagr) (Tmoypagn) (Ymoypagry)
Anurtelog Lolvteng Awoviotog TIveupatindrog Hovaryidtne Toavdxog
Kodnyntic E.M.IL Kodnyntic E.M.IL Kodnynic E.M.IT

Adrva, OxteBerog 2020

(Troypaeri)

EYATTEAOT IIETPOITONAX
Amhopotovyog Hiextoohdyoc Mnyovinde xouw Mnyovixde Troroyotov E.M.IL
(©) 2020 — All rights reserved

Edvixé Metodfio Iloauteyvelo
Eyoh) Hihextpohdywv Mnyavixwy xou Mnyovixodv YTroloyiotoy
Touéag Teyvoroyiog [IAnpogpopurc xa Troloyiotdy

Epyaotfpio Muxpobnoloyiotadv xar Ungoxwmy LucTnudtey

Copyright (©) —All rights reserved Eudyyehoc [etpdyyovae, 2020.

Me emupOhaln novtdg SIXaOUATOS.

Anayopebeton 1 avTiypapr, amodixeuon xou Slovouy| Tng topoloos epyactiog, €€ oAoxAfpou
1) TWAUATOC QUTHG, Yia EUTopX6 oxomo. Emtpéneton 1 avatinwor, anodrixeuon xat dioavour
Yot OXOTO U] XEEOOOKOTINOG, EXTUOEUTIXAC 1) EQELVITIXAC PUONE, UTO TNV TpolndleoT va
AVOPERETOL 1) TNYT) TEOEAEUOTC o VoL BlaTneeitan To mopdy urvupa. EpwtAuata tou apopodv

N XeNoT TNS EpYUsLag VLol XEEOOOXOTIXO OXOTO TEETEL VoL aneudivVOVTAL TEOS TOV GUYYROPEA.

Euyapiotieg

Apywd, Yo fdeha var evyoaplotiow tov emPBrénova xonynth Anuntelo Xolvien tdéco
yioo TNV xadod¥ynon Tou xatd T OidpxeEld TS OtmAWUATIXAS dAA xupiwe yiatl and to 30
AONAG €TOC TWV OTOLBWY UOU, AYUINACE UE UEYIAT TeoYupio TNy emduuio pou vo ooy ohnde
ME To AVTIXEUEVO TOU €YUCTNREIOU, EVE TAUTOYEOVA UE EPEQE OmO VWPIC OE ETUQY UE TOV
"Tporypotixd x6cuo”. BeBaiwe dev yiveta va topodeidhon Toug 600 mo oTevols cUVERYATES, KoL
Théov @ihoug pou, To peTadbaxTopxd epeuvnth I'éwpyio Aevtden xo tov TA Baoctheio Aéwv,
oL ontolol Ue e petétpeday amd €vay avicuyo QOLTNTH O EVay IXAVO XUl GUVELONTOTOINUEVO
unyovixo. ‘Evo yeydho euyopiote ogelley oTtoug @lhoug pwou oL onofol ATy CUUTUEAUC TATES
OTIC EUXOAEC o DUOKONES OTLYUES QUTE Ta 5, ot xdtl... , yeovia, Télog, to peyaldtepo
ELYOPLO T TO OYEIAW OTO CNUAVTIXOTERO dpwYO TNS (WA UOU, OTN UNTépd Uou, NS onolag
1 OVIBLOTEAELOL XaL 1) UNTEWN aydmn elvon BYUAUEVES ATO TOUNTIXH GUANOYT)..., OE ELYOPLO T

TOAD Yot QUTO XOU TO VoL ATOXUAOUPE YO GOU elvor 1) HEYohOTERT THn TNg Lwng Hou.

Tny ouykekpiuévn epyacia Ty a@iepbvew OTOV TATEPA OV, Kal ouvddeA@o Hov mAéov, o

omolog €6¢d kai ToAAd xpovia TAéov e kaboonyel amo YPniAd ...

ITepirandm

Ta etepoYEVT) UTOAOYIC TIXE GUC TAUITO EQYOVTOL AVTIUETMOTO UE EVAL CUVEY WS UETUBAANOUE-
VO TEBlO EPUPUOY®Y, Ol OTOIEC BLETOVTAL Amd OAOEVA UEYUADTERY) UTOAOYLO TIXY| XUl TROY P~
patio Ty mohumhoxdtnTa. Kodwg o vouog tou Moore, xoatagddvel o€ Eva puoxd TENUd, T
ETEPOYEVT) UTOAOYIO TS cuc TAUaTa oe Ynepido SOC xou cUYXEXPWEVA Ol UTOANOYIOTEC OPAOTC
Vision Processing Units (VPUs), avadewviovton we utor elxuotinf npdtaor ot didpopouc
TOUElS €QopUOY®Y. AUTE Tot GUCTAUNTA WOTO00, e€oxohou ol Vo amoutoly TeplmAoxy Xou
povoldr| avamTLEN AoYLoUX0) HOTE VoL ETEUY YOOV amodoTixég VAOTOTELS.

Y10 mhaiolo aUTAC TNG OLMAWUOTIXNG, UE YVOUOVA To TUQAUTEVE YoUQUXTNELOTIXS, ovo-
Oy Onxe €vol TEOYEUUUATIO TG TepBdAhov avdntung eqapuoyv-Framework to omnolo a-
TOOXOTEL GTNY EMTAYUVOT TNC AVATTUENS UTOAOYLOTIXA X0l TEOYRUUUOTIO TIXE. ATOUTNTIXOU
royiopxol oe VPUs, eve emitpénel Ty mhpn EXUETIANEUCT) TOU TOREYOUEVOL UAXOU UECL O
76 YouNnAol emnEdOU BEATIOTOTOACELS UTOAOYIC TIXGY TUEvwy. To mpotewouevo framework
OTOYEVEL ETEPOYEVEIC PYITEXTOVIXES X0 OMOTEAELTOL OO EVOY BUVOIXO ORPOUOAOYNTY QY-
o)y (dynamic task scheduler), éva xouvotépo cvotnua dyeiplone tne Scratchpad pvAung,
Vv npotunonoinon tou cuothuatog Ewwddou/EZ68ou, teyvinéc dueonc xat anoxevipwuévng
emxoVeViog PETAE) TV EQUPUOYOY xou TENog évay ontxd Profiler

[v a€lohdynon g viomoinong emaéydnxe 1 owxoyéveld twv Myriad VPU enelep-
yaotodv e Intel /Movidius xou a&iohoyfinxay téco cuvietind npoypdupata 660 xou meoy-
HOTIXEC EQOPUOYES OTwe 1 LhoTtoinon Luvehixtixdv Nevpovindv Axtiwy (ENA) xa oh-
yopwpot Visual Based Navigation (VBN) and tov topéa tne Steotnuixrc. Ta anotedéoparta
elvon 1tanTépns eviappuYTnd, xadde 6cov aopd TNy TaydTNTa EXTEAEONC TapaTnEEiToL vl
neptoptopévo overhead e téEng tou ~8% évavti BehtioTonomuéwy ulotoinoewy ENA, ev
Behtiwon éwg xou 4.2x epgavicinxe o ahyopldoug Tou eoPTMVTAL A0 TO TEPLEYOUEVO TOV
oedopévmv. ‘Ocov agopd TN yehor tne Scratchpad uvAung to mpotevouevo cUGTNUA 0dnYel
o€ €wg xou 33% PELWUEVES AMAUTAOELS YWPOU CUYXELTIXG UE Topadoataxés Teyvixés Sluyelplong
uvAung, eve téhog to IPC unociotnua napouctdlet emg xon 6X xahltepn enidoor oe oyéon

HE QUTO TOU TOREYETAUL OO TOV XATACEVAC TY.

AéEeic KAeoud

Etepoyevelc Apyitextovixég, Myriad, Framework, Profiling, IPC, Auwuyeipion MyvAung,
Apoporoyntic Epyaouwy, Evowpatwuéva Luotiuata.

3

Iepidngm

Abstract

Embedded systems are presented today with the challenge of a very rapidly evolving
application diversity followed by increased programming and computational complexity.
As the Moore’s Law is reaching a, physics induced, cul-de-sac, customised heterogeneous
System-on-Chip (SoC) and more specifically Vision Processing Units (VPUs) emerge as
an attractive HW solution in various application domains. However, these platforms still
require sophisticated monolithic SW development to provide efficient implementations

In this context, a framework for accelerating the SW development of computationally
intensive applications on VPUs, while still enabling the exploitation of their full HW poten-
tial via low-level kernel optimisations is proposed in this thesis. This framework is tailored
for heterogeneous architectures and integrates a dynamic task scheduler with a high level
transparent API, a novel scratchpad memory management scheme, 1/O standardisation,
inter-process communication (IPC) techniques, and an insightful visual profiler.

The Intel Movidius Myriad family of VPUs is used as an evaluation platform employ-
ing both synthetic benchmarks and real-world applications, which vary from Convolutional
Neural Networks (CNNs) to complex computer vision algorithms for Visual Based Navi-
gation (VBN) targeting the space industry. The results are very promising, showcasing in
terms of execution time, a limited ~8% performance overhead vs manually optimised CNN
programs while achieving up to 4.2x performance gain in content-dependent applications.
Regarding the Scratchpad Memory usage a reduction of up to 33% is recorded compared
to well-established memory allocators and finally the IPC cost is decreased up to 6x vs

the default vendor implementation.

Keywords

Heterogenous Architectures, Myriad, VPU, Framework, Scaratchpad Memory Man-
agement, Task Scheduling, Profiling, IPC, Embedded Systems

Contents

Evyopiotieg

Hepidndn

Abstract

Contents

List of Figures

List of Tables

Listings

Extetopévrn Iepiindn

1 Introduction: The State of the Industry

1.1 A New Era of Computing: Al & Vision Processing
1.2 Nothing is free: The End of General Computing
1.3 Heterogeneity to the Rescue
1.4 Programmability & Heterogeneity: Hitting an impassable Wall?
1.5 Possible Solutions & Motivation

2 Vision Processing Units (VPUs) & Frameworks

2.1 Vision Processing Units: Heterogeneity at its best
2.1.1 A gentle Introduction to VPUs
2.1.2 Myriad 2 VPU
2.1.3 Myriad X . . . L e
2.1.4 GAP application processors: GAP8

2.2 SWFrameworks: There is plenty of room at thetop
2.2.1 Frameworks

2.2.2 Operating Systemso

11

13

15

17

39
39
40
40
41
42

8 Contents
3 The ParalOS Framework 59
3.1 Introduction and Overview 59
3.2 Hermes: 10 Communication Module 61
3.2.1 Roleand Purpose o 61
3.2.2 Structure 61
3.2.3 Implementation L 61
3.3 SMPI: Inter Processor Communication Module 68
3.3.1 Roleand Purpose 68
3.3.2 Structure 68
3.3.3 Management and Control Scheme 69
3.3.4 Virtual Mutex 69
3.3.5 Barrier Synchronisation 0oL 71
3.3.6 Message Passing Lo 72
3.4 Scratchpad Memory Management 73
3.4.1 Roleand Purpose 73
3.4.2 Related Work & Background 73
34.3 Key Concepts 73
3.4.4 Static Allocation 74
3.4.5 Dynamic Memory Management: Introduction 76
3.4.6 Dynamic Memory Management: TLSF Allocator 76
3.4.7 Dynamic Memory Management: Proposed Double Layer Bitfield
Technique 77
3.4.8 SPM Manager Summaryo e e 81
3.5 Computational Unit Manager 82
3.5.1 Role& Purpose. 82
3.5.2 High Level APT 82
3.5.3 Worker Interface Lo 87
3.5.4 System Configuration 88
3.5.5 Scheduling & Dispatcher 90
3.5.6 Development Stages oo 95
3.5.7 Summary e 98
3.6 Visual Profiler 99
3.6.1 Role & Purpose. 99
3.6.2 TImplementation L L 99
3.6.3 Output 100
3.7 Workflow e 105
3.7.1 High Level API Usage Example 105
3.7.2 Low Level Development 105
3.7.3 13 StepstoSuccess e 105
3.8 Reliability & Fault Tolerance: A first approach 107

Contents

4 Appications and Evaluation
4.1 Evaluation using Synthetic Benchmarks
4.1.1 Memory Manager o
4.1.2 IPC Throughput
4.1.3 Computational Unit Manager: Scaling
4.1.4 Computational Unit Manager: Multiple Application Execution . . .
4.2 Visual Based Navigation L oL
4.2.1 Introduction
4.2.2 HIPNOS algorithm & ParalOS
4.2.3 Canny Edge Detection
424 Rendering
4.3 CNN Engine
4.3.1 Introduction & Motivation
4.3.2 TImplementation
4.3.3 Benchmarking o oL
4.4 Devopment Effort
5 Conclusion and Future Work
5.1 Future Work o
5.1.1 Hardware Accelerator Support
5.1.2 Validation and Optimisations
5.1.3 Porting to Different Platforms
5.1.4 Source to Source Compilation oL
5.1.5 Fault Tolerance and Mitigation Techniques
5.2 Thesis Conclusion
5.3 Publications

5.4 The End of a Journey

Bibliography

109
109
109
110
111
111
114
114
114
114
115
119
119
119
122
123

125
125
125
125
125
125
125
126
126
127

129

List of Figures

1.1

1.2
1.3

21
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

The total amount of compute, in petaflops-days, used to train selected

network [1] 39
The establishment of Compute heterogeneity as the new standard [2] 41
The ParalOS Logo« o 42
VPUs in the Spectrum of Embedded Compute Devices.! 43
Myriad 2 Block Diagram L L 45
LEON 4 block diagram 46
Shave v3.0 Block diagram [3] 47
DMA engine Overview 49
ma2450 die [3] 50
Myriad X block architecture [4] Lo 51
GAPS architecture [5] 52
OneAPT architecture [6] 56
The VPU software stack and ParalOS 60
High-level architecture of the ParalOS framework. 60
Hermes 10 Architecture 62
CIF block simplified architecture. 63
Hermes Ethernet Protocol 66
SMPI Architecture Overview 68
Virtual Mutexes Architecture 70
Static SPM Manager Architecture 75
TLSF Structure [7] 7
TLSF Headers [7] o 7
Bitfield Mapping Representation 78
Dynamic SPM Headers 79
SPM Manager Overall Architecture 81
High Level API building block Layers 83
Dynamic Scheduling Algorithm 94
Phase I: Task Pool architecture 95
Normalised Performance of each Development Phase, relative to Phase I . . 97

11

12

List of Figures

3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25

4.1
4.2

4.3
4.4
4.5
4.6
4.7

4.8
4.9
4.10

Computational Unit Manager Architecture 98
Example Console Output 100
Visual Profiler System Configuration 101
Visual Profiler Total Results 101
Visual Profiler Worker Performance 102
Visual Profiler Function and Task Benchmarking 103
Visual Profiler Worker Memory Report 104
Example Workflow Application 106
Scaling of the proposed SMPI IPC w.r.t. the number of workers. 111
Scaling of the proposed Computational Unit Manager Scheduler w.r.t. the

number of tasks 112
Parallel vs serial application execution (CNN) 113
HIPNOS algorithm [8] 115
Speedup of Rendering when using ParalOS optimisations 116
Design Space Exploration for the various number of bands 117

Pareto front of average execution time and deviation for different band

NUMDbErs. e e e e e e 118
CNN engine as part of the ParalOS stack 119
CNN Engine Architecture L 120

Ship Detector Architecture 124

List of Tables

2.1
2.2

4.1
4.2

Myriad 2 Cache system overview 48
Comparisson between the Myriad Platforms. 51
Evaluation of the proposed SPM Manager 110
Evaluation of ParalOS with CNN applications 122

13

Listings

3.1 SMPI Configuration Object, 69
3.2 HW Mutex represenation 70
3.3 Virtual Mutex represenationo 70
3.4 Barrier Synchronisation Implementation 71
3.5 Static Memory allocation 74
3.6 Static Alligned Memory allocation 75
3.7 Proposed Dynamic Allocation Operation 80
3.8 Proposed Dynamic Free Operation 81
3.9 Example Programm to be designed using ParalOS 82
3.10 Multiple Applications Example Flow 89
3.11 Static scheduling Algorithm, 92
3.12 Dispatching Algorithm 93

15

Extetapevn leplindn

Ewcaywyn

H eloaywyr) e@oppoydy TeYvnTric VONUoouyng ot 6paomne UTOAOYIG TRV, EYEL ETULPEREL (Lol
ETOVAOTOON 0TOV x6oUo e unohoyloTixhc. Onwe vnootneiler o Amodei [1] o nopou-
odletor 6T0 oyNuA 1, T6G0 Ol LTOAOYIOTIXEC AMAUTOELS 600 Xt 1 YOO TwV ahyopliuwY

peTodhhovTon o yeryopo and TOTE.

AlphaGoZero
AlphaZero

tere Neural Machine
Translation -
Neural Architecture

Search

TI7 Dota lvl
Xception ota lv

DeepSpeech2

G
Seqzgeq ResNets

Visualizing and

I Understanding Conv
Lenz GoogleNet
AlexNet Nets o

Dropout
3.4-month doubling

DQN

2012 2013 2014 2015 2016 201 2018

YxAua 1: Yuvohxi Trohoylowuxy analtnor oe petaflops-days, mou ypetdotnxe yia tnv exnoldevon

TOL EXAOTOTE VELPWYLXOL Bixtlou [1]

[opadooiaxéc mhatpopues 6mwe 1 CPU, €youv gddoet ot dpta Twv SUVATOTATLY TOUG Xal
EQYOVTOL AVTHETWTES UE OLdpopa TpofArfuata 6twe To Power & Memory Wall. Toutoypova
1 "Bwpedy’ adEnom emdocEnmY andppola, Tng xhwdxwone tou Dennard €yel gpidoel oe Quoixd
6pto. Ov Hennessy & Patterson [9] dhho xoau o Thompson [10] vrnootnpeilouv 6t 1 Adon
Beloxetonw otnv eupeior xApdnwon xou vodétnon tne etepoyévetag (oyhua 2), apol ot dhhec
EVOANAIXTIXES OMEYOLY CNUAVTIXG OO TNV BUVATOTNTA YEHONS TOUS OF gupeiar xh{poma.

H etepoyévela wotd00 €xEL TO EVOOYEVES YUPAUXTNELOTIXO TNG DUOXOANG TEOYPUUUITION-

17

past - homogeneous present - heterogeneous future - post-CMOS extreme

present - CPU+GPU . i .

architectures architectures : heterogeneity

architecture, device and memory
heterogeneity

Z D
crPU cpu crPu cPU < %)
P feibie | NG
o o 5 "R)
CPU cpPU buses. E &x S
P || cou || e | orumse e + 8 P el
o = EEE - (2 e EEie
: = z2
buses o) 17 3}
G BEEE (= ©
uses g
BEE g
=

hybrid

towards extreme heterogeneity

ExAue 2: H eyxadidpuon g etepoyéveiac we 1 véa utohoyiotxy| vopua [2]

uotnrac. Ae Vo elye vonua 1 LOVETNOT TEPITAOXWY UPYLITEXTOVIX®Y oV OEV EVOL EPIXTY 1|
e0x0oAn avamTudn epappoywy oe autéc. H Intel dwtinwoe v drodn étL 1 npoypauuation-
HOTNTA Efvol AVTICTEOPWS AVAAOYT TN eTepoYEvelng. Edv autd oylel tote opdvetan €vag
véog tolyoc autdc Tne Tpoypappationuotntac (Programmability Wall). H enfhvon autod tou
TpoPAfuatoc dnme avapépel o Leiserson [11] xou tavtileton xou o ouyypogpéos, Pploxeton ot
onuovpylo Framework mou otoysbouv TNy SlEUXOALYCT) TOU TEOYPOUUATIONOV.

Ye auté 1o mhaioo yewwhinxe xau to ParalOS , éva Framework mou otoyelel otny
OLEUXONLYOT] TNG YENONG ECAPETING ETEPOYEVMV APYITEXTOVIX®Y OTw¢ ol VPUs. e auth tnv
TpooTAVELd, WOTOCO EYLVE TROOTAELN VoL SLaPUAYVEL 1) THUTOTNTOL AUTEV TOV 0P YITEXTOVIXWY
xat VoL uny BuctaoToly 6To Bwd TNG TEOYEUUUATIONUOTNTAS, Ol EEYWELOTES APETES TNE XAE

TAATQOPUOC.

TroBadeo

Vision Processing Units (VPUs)

Ov ene€epyaotéc Vision Processing Units (VPUs) amoteholy pio veoaguydeioa xotnyopio
EVOOUATWUEVHY GUCXEUGMY TIOU GTOYEVOUY VO ETOVATROGOL0PIGOUY TNV €vvola Tou edge com-
puting. Awnovton and eEoupeTind UPNAN ETEPOYEVELX, YAUUNAT) XATAVIAWGST) Xl O PONOS TOUC
elvon Oyt amAd vo emegpydlovtar TNV TAnpooplio, ahhd Vo THY xatavooly, 6mwe utoo Tneilel
7 Intel Movidius

Y10 oyfua 3 TopoucldleTaL Uidl ATAOTIOLNUEVY) XATTYORLOTIOMNGT] TWV BIAPOPWY GUOKEUWY
TIOL AMAVTOVTOL GTOL EVOWUATOUEVH CUCTAUATA. ‘Onwe patveton amd drodn xadopdy emdOoEwY
vrmoheimovton cuyxprtxd ue GPUs & FPGA, evo npocgépouy apxetd xahltepeg emBOCELS and
g ouuPotinég CPU. Ytov Touéa Tng EVEQYELIS amalTOUY ALY OTERT XUTAVIAWGT) EVEQYELIS ATO
TIC UTOAOLTES EVOANOXTIXES, TOPOUCLELOUY WOTOGO CNUAVTLXY| TEOYQOUUATIOTIX OUOXOALA.
Téhog dtav unelcépyeton 1 uetpiny| Performance per Watt, tote anoteholv evdeyouévme tny
XAAUTERT, ETMAOYY| apOU OF CUYXEXPWEVES xaTtnYopleg TEoPBANudTeY, utepBalvouy o auTh
wwv FPGA.

18

Programmabiliy

Yyxhpo 3: Ta VPUs ot0 @dopa twv Evowpatwpévey TroloyloTindy cuoTngdtwy.

Myriad Family

H owoyévewor tov Myriad [4, 12], enelepyactddv tne Intel amotelel evdeyouévme tov
To avaryvepiowo extpéowto tng xatnyopioc twv VPU. Anoteieltan and tg Myriad 2 &

MyriadX twv onolwy 1 apyitexTovixy| TapoustdleToL GUVOTTIXE GTY CUVEYELI.

I/O Multiplexing (intel')
(SW Controlled)
iI iI Movidius
MIPI Interfaces DDR Memory
(x24 Lanes) (SPI, 12C, USB3, UART, CIF, LCD, ETH, etc.) (512MB)
SIPP HW Neural Compute
Accelerators Engine L1 Cache | L2 Cache
@ @ P LEON OS (64KB) (256KB)
CMX Memory LEONRT | L' Cache | 12 Cache
(2.5MB) Q—rl> (64KB) (256KB)
VLIW SHAVE Processors L1 Cache L2 Shared Cache
(x16) (3KB per core) (256KB)
i:[128 i:[

7

SxAuno 4: H apytextovind| tne MyriadX [4]

ITepthopfdvouy 8Vo yevixol oxonol LEON4 enclepyoactéc mou Bacilovtar otny 32-bit
RISC SPARCVS apyttextovixd, autol eivaw o LEON OS (LOS) xou o LEON RT (LRT). O
Tpitog urtootneiler éva Aettoupyixd clotnua mpaypatikol yeévou (RTEMS) xou o Sedte-
pog elvon ueduvog yior T dtayelpion Twv 10 %o howmwy meppepetoxmy. Ol UTOAOYICTIXES
IXAVOTNTEC TNG CUOXEUNC TROGPEQOVTOL XoTd xVplo Adyo and toug Streaming Hybrid Ar-
chitecture Vector Engines (SHAVES) nuprvec, oL ontotol ehéyyoviar dUECH omd TOUC TpOo-
vapepouevoug Tuprveg yYevixol oxomol. Ou SHAVES ogethouv tnv 1oy 0 toug otnv 128 bit
VLIW SIMD apyttextovixt] Toug. O Myriad diardétouv emnAéov xan gl oelpd and ¢iiteo

yio ene€epyacio emdvoac oe UAxO mou ovopdlovton Streaming Image Processing Pipeline

19

(SIPP).

‘Ocov agopd v epapyta uvAung, o SoC cupnepthapdvet DDR DRAM. H xpta pviun
epyaoiog wotdoo eivar 1 Connection Matrix Memory (CMX) 1 onola hettoupyel v NUMA
ScratchPad. O xdde SHAVE éyet mpotiuntéa mpdooon oe €vo GUYXEXPWWEVO XOUUSTL TNG.
Or petagopéc dedouévny yetald CMX-DDR, npayuoatonototvtar yéow wag Direct Memory
Access pnyovic. Kédde LEON nuprivoc nepthayufdvel anoxieiotinéc L1 (D+I) xou L2 caches,
eved ot SHAVES éyouv anoxheiotini L1 (D41) odhd potpdlovton pia xowr| L2$.

H MyriadX, anotelel tov mo npdc@uto enelepydoTh| TNG OXOYEVELNS XL VAL 1) TEWTN
ouoxeun] Tou meptéyet éval aplepwpévo emtayuvth (NCE) yior ty extéheon Suvehxtixdv
Nevpowvixwv Axtiwy. Ot emdoceg tou @ddvouv to 1TOPs ye pohdt 700Mhz, €yel 16
nuprivec SHAVE, 2.5MB (CMX) xa 512MB DRAM. Téhoc o npbdyovoc tne, n Myriad 2,
Srodéter 12 muprivec SHAVE, 2MB (CMX) xou pord ot 600Mhz.

Frameworks

Y1 ayopd umdpyouv apxetd dtardéoiua Framework yio v tnv napaiinionoinon egap-
HOY®V X0 TNV ETUTEYUVOT TOUG GE ULl EVRELD YXAUo cLUOXELKOY OTwe T OpenMp & MPI,
[13, 14], wotbo0 dev unoctneilovy VPUs. To OpenVINO [15] tou mopéyeton and tnv Intel
€yel Behtiotonoinel yioo TNV EXTEAEDT) VEUPWVIXWY SxTOWY ot MyriadX. Télog wo véa
npoonddeia oand v Intel, etvon n avdntun tou OneAPI [6], éva Framework mou otnpileto
oTn Yhwooo mpoypeaupatiopot DPCH+4 xan undoyeton, Tnv eXTEAECT) TOU (BLOL XMOXA GE ULaL
evpelol YHAUO BLAPOPETIXWY ETEQOYEVWYV CUOXEURY, 0AN Bploxetan axodua o€ apyixd oTddlo

xau Bev unootneiler VPUs.

20

ParalOS Framework

O otdyoc tou ParalOS etvan 1) dnuiovpyio evog Framework mou va emitpénel tov omodotind
Tpoypoupationd xou Design Space Exploration oe VPU. O otdyoq ebvan 1 agolpeon twv
EWOLXWY YOPAUXTNEIOTIXWY TOU CUOCTAUATOS O €VOL IXAVOTOMTIXG oAAd cuvTNeNnTXd Badud,
OOTE VoL ETUTEETEL TN YR Y0P AVATTUEN TROYEAUUUATOY GE AUTO, Ywpeic 1woTdco va vapxodetel
Tic BedTioTOMOOE GE YouNho eninedo.

To Framework anoteheiton and 6Vo uéen to ParalOS: High Level Segment xo to Para-
1OS: Low Level Segment . To npwto mopéyel otov mpoypopuatiotd éva APT yia) dnuiovpyio
TEOYPOUMATOY, DEOUOAOYTTH EpYaoLRY, dayeipion EE, xau évav visual profiler. To dedtepo
amoteheiton amd o) €va xavotopo cvoTnua dayeiptone tng Scratchpad Mvrung ewdixd oye-
Olopévo Yo BEATIOTN yeron Twv caches, To omolo emitpénel TN duvopxy dlayeiplon uviung
HE undevixn yweixr emBdpuvon xou B) eval ATOXEVTPOUEVO GUCTNUA YLOL ETUXOVWVIN EVTOE TOU
SoC.

‘Onwe gaiveton oto oyfua 5, T0 ParalOS dev mpocdoxd vor avTixatac THoEL TIC 101 U-
Tdpyovoeg BiBhodfixec Tou mapéyovion amd Tov xaTtaoxevacTr. Avtidétwe, Tic emexteivel
6mou evtonicTnxay elkelel xou wodyet €va eviidueco eninedo agalpeong mdve oTo onolo

TpoypopuatilovTal xaL EXTEAOUVTOL Ol EQPUPUOYEC.

Application
Level

Midleware
/A
Vendor Devel t Kits 2
enaor bevelopmen ;|7
Myriad 2 | | Myriad X ParalOS: | paralos
Low Level MDK: MDK: Low Level
19_01_05 R12.6 Segment

ExAuna 5: To software stack tou ParalOS

‘Ocov apopd T0 TEOYEUUIUATIO TIXO TORADELY O ToU Topouctdletal ato ayfua 6, otneileto
070 SlaywEoUd TNS avdmTuéng egapuoy®y ot dVo péen. Xto High Level o mpoypoupatiotg
yenowonotel to ParalOS: High Level Segment vy va meptypdibel xou vor mopolhnhomoLfoet
Touc alyoplduouc, To ool EXTEAEITOL GTOUC YEVIXO) GXOTOU ENEEEPYAUTTES, TOU VoL OMOXA-
AoUvton TUEHVEC-OLayERtoTéEC. LT cLvEyewa Ye T Bordeia Tou ParalOS: Low Level Segment
Yo T Broryelpton pviung xou Ty EVOETXOWVMVIA, ETLTAYUVEL THY XEVE GLVEETNOT/UTOAOYIC TI-
%6 TupnvaL e BeATIoToToMoEL YounAol emnédou. Autd To Turo exteleiton otoug SHAVES

TIOU TAEOV Vol AVAPEQOVTOL WG EQPYUTEC.

Hermes 10

To ouyxexpévo utochotnua, anotekel xouudtt Tou ParalOS: High Level Segment xou

exteAelton oTOUC TURTVEC-OlayelptoTe. Eivan unediuvo yio tn dayelplon Twyv Slemap®y yio Ty

21

VPU-Based |
Function Isolation Low-Level | -

- T\

\, for Acceleration Implementation| Optimisations
Original | —— @ [m—

Source Code Y

|
@ |transformations, SIMD,

N |cwstom data gpesete. |

High-Level Parallelizatio

& Device Con[iguratioan Paralos Low-Level
[T ————————— 1 4) Optimisation
|| Computational e =L 7
\’ Unit Manager HERMES 1/0 | High-Level : Power [[Memory /|
| ‘Optumsatzonl Consumption Usage |
w GPios ciocks | "= || Core | | Function |
|| Configuration caches, etc. | |/ Utilization / | Profiling /|
.- e ===

High-Level Segment Visual Profiler

Yynpo 6: High-level Apyitextoviny) tov ParalOS Framework

emxovwvio Ue To TepBdAlov Tou, xadde enione xou yia TNV aEyixomoinoT TNg TAUXETISC TOU
SoC. O unoype®oelc Tou TEPAAUBEVOUY TNV amOGTOAY xou Ahn Bedouévey, TV opYdvwon
%o TNV oamoINXEVCT) TV BESOUEVMY Xl ELVOL ELOIXE SLOUOPPWUEVO YAl TNV ATOTEAEOUATIXOTERT)
otayelpior| dedopévmy exovag. 1o cuyxexpéva, otny oucia TapéyEl Eva TEOTUTOTOLNUEVO
API, napépowo pe autd tou CMSIS [16], to onolo mepdeler Tic cuvPTHOES TOL Elvor dto-
Véoeg anod Tic PBAovxeg Tou xataoxevactr. O dietapéc ywpilovio oe TEelg xatnyoples:
o) ol peyédoug Simhrc xotetduvong, omwe to UART & 12C, B) peydhou yeyédoug uovie
xatevduvong, omwe o LCD & CIF xou) peydhou yeyédoug dimhric xotebduvong mou avo-
pépeTon ot dixtuaxr dlemapn. Autéc Ttapouatdlovion oTo oy 7. Edixd yio to dixtuo €yel
avomtuydel €val eldixd TpwTOXOMAO e Tov avtioTolyo driver yla Tov UTOAOYIGTH, TO OTolo
TEPLAELEL ToL BEQOUEVAL OF Wiar ETUXEPAALDY Tou TepEyel To uéyedog xou To €ldog Tou TOTOU
0edOPEVLY, EVK TRoaEeTd utoo Tneilel xau TNV tpocdrxn evog CRC nedlou yio to éleyyo

TN EYXVPOTNTAC TOU UNVOUATOC.

MV0212 EoT Board Generic Board Host Dev
Al
T . T PP
Board Support
Package Custom Application
Y Protocoll

Camera LS Devices < Hermes 10 > AD Devices
Interface

A

Ethernet-
Network Stack;

SD Devices

UART 12C

Ixfpa 7: H apyitextovinr) tou Hermes 10

22

SMPI: Emuxowvwvio xaw oLy eoviorog UETAE) TwV TUEHV®Y

H avtahhay) 6edopévev uetall Tov enelepyaoTin®y Yovadwy tou VPU urootneileto e
OLdpopeg uedodoug, omwe 1o DMA Engine, 1 uixed register pipes. {lotdéco autéc ot uédodot
elvol oY EBLUOUEVES VLo TUPAAANAC TEOYEOUUATO, GTA OTOLA O TUPUAANAMOUOS ToUG BeV amontel
TNV AvTOAAOY) UNVURATOVY. 2¢ amoTEAEoUO Vol LOOVIXE YLl TNV HETOPOE Uixpol OYxou
dedouévwy (< 128B), | mohl yeydhou (> 2K B). TI'a toug Aéyoug autolc vhonotfiinxe éva
UTOGUGTNUA ETIXOVWVING X0l GLUYYEOVIOHOU PETOED TwV TUEHVWY TOU GUGTAUANTOS, TO OTolo
mpoo@épel évo. APT nopbdpoto autold tou MPT [14].

‘Ocov apopd To cUYYEOVIOUO, 1) TAATPOPUA TUREYEL EVary Uxped aptdud aro hardware mu-
texes. Autd woTHG0 YENCLWOTOVVTAL ATTO BIAPOEO LTOGUG THUOTOL X0l TEOYPUUTA CUVETKS,
oev elvon et 1) eyxadidpucT evog mo euéhixtou xou fine-grained unyaviouol xAeLOOUATOS.
To mpoBinuo autéd emAOINKE Y TNV LAOTIONOT EVOC CUCTAUATOC EXOVIX®Y mutex, to VMu-
tex. O mpoypopuotiothc avtl va yenowonoel anevideiog ta Hardware Mutex yernowomnotel ta
eovixd. ‘Ohat ta eixovind anoteholy yio ouddo. AuTy 1 oudda Ue T Ypror evOg Unyaviopon
Tou mapper, avTtiotory(leton ota TearypaTd. (2¢ anotéheoua Teyvixég fine-grained xheldwua-
TO¢ UnopolV va uhoroindoly, eve mpoyuatixd bottleneck eugavilovton pévo otay amartelton
1 TWTOY POV YehoT TepilocdTepwy Hardware Mutex ano autd mou dwodétel to ohoTnua.

Mo o cuyyeovioud extog and o VMutex, mpoopépeton xou wa uévodog 1 SMPIBarrier.
Autr uhoroiel évar Ppdryuor LETAE) TWV SLaPOPWY EQYATMY BLOXOTTOVTOG TNV EXTEAECT) TOUG,
HEYPLC OTOU 1) EXTENECT) TOU TEOYRAUUITOS VoL PTACEL OE aUTO To onuelo oe dhoug. ‘Otav yivel
auTo 1 extéheon ouveyileton xavovixd. H ulonoinon tou Bacileton oe évav Tpomonoinuévo

alyoprduo mou otneileton oto [17].

Data Exchange Buffers

[|] Buffer1 | | ||

[|] Buffer2 | | ||
SHAVEI write SHAVE]

T

[| |Buffer 12| | ||
. J

~
SPM Memory

Eyhue 8: H oapyrtextoviny) tou SMPI

H avtoddoy?| unvopdtoy yivetow yéow tov cuvaptioewy SMPISend xa. SMPIReceive.
INo xéde epydtn dpleton oty SPM évoc xuxhnde buffer anodoyrc. ‘Otav évag epydtng A,
Vel va otelhel éva urivupa otov B, t61e 0 A eléyyel av undpyet apxetdg yweog otov buffer
Tou. Edv autdg emopxel 6T yedpel Tor dedouéva oTov cuyxexpévo buffer evnuspwvovtag
oTnV Topela dLdpopoug peTENTEG X onualeg. IlpoanpeTind pmopel va yenotwomoiniel va
EOLXO TTPWTOXOMNO ETUXOVWVIOG TOPOUOLO UE AUTO TOU TERLEYEAPY VWRITEPX OTO LTOGUGTNU
Hermes. To dedopéva toTE Tepixhelovtal oe €val Tax€To To omolo SLodETEL Uar XeQAAida, OToU
avapépeton To id Tou amocToréa xan To PEyedog Tou UNVOUATOS.

‘Otav o gpydng B Uéher va diafdoet ta dedopéva and to buffer tou, ehéyyel edv €yel

23

A&BeL xdmolo privupa ouyxelvovTtag 6U0 PETENTEC TOU AVTIGTOLYOUV OTO EYYEYEUUUEVL Xl
avoryvwopéva bytes tou buffer. 3tn cuvéyela Swofdler o Angpiévta unvipota oelploxd. Télog
av €yel yenowonomdel to mpwtdxohho, o B umopel var @uitpdpet Tor elogpyOUEVaL unvouaTa,

AVOAOYWEC TOU ATOGTOAEQ.

Awayeiprotrc SPM uviung

O drayeptotiic g SPM pvrung Aettoupyel wg évag yewoxivitog allocator yio tnv SPM.
Hopéyetan oe 800 exdooels, piot Tou UTOGTNEILEL POVO OTUTIXES DECUEVOELS XAl Lo TIOU EXTEAEL
xan duvopxée. H amoBotiny| Sayeipion tne ouyxexpuyévng elvon xodoplotixhc onuactiog yio
TNV evepyelaxr) GAAa xou yeovixY enidooT oAdxAneou Tou cucTidatoc. o Tov oxomd autd
Vo TUYINXE TO CUYXEXPWEVO UTOGUCTNUA,

Avtl evig xevtpol Blayeplo T Tou eréyyel To alvoro g SPM, 1o ouyxexpiuévo u-
TOcUC TN OTOTEAELTOL a6 E SLoxpltols SLoyelplo Tég 6mou E o aptiudc twv Tunudtony e
SPM, ue to xdle TunAuo vor avixeL AMOXAELOTIXG O €vay epYdTy. (1C AMOTEAECUO OL YPOVL-
xéc emdooelg BerTidovtal, xadde xotd TNV extéleot), To Sidpopa outhuata enelepydlovTal
ToEAAANAL, Ywels Vo amanteltan ohixdg ouyypoviouds. O xdie dloyeipio T Oev elvon Topd Lot
OUN\OYT| a6 Gouég BedoUEvmVY ol oToleg emTnEoLY xou Topoxoioutoly TN yerion tne SPM
uviung. Autéc ol douég eivan totodetnuévee oty DDR uvAun xau eivon mpooBdoweg t6c0
oo TOUG TUPTVES-BLOYELPLOTEC GGO ol amd Toug epYdtec. AuTdg elvon o axpoywviaiog Aldog
TNG EPEVVNTIXC XAUVOTOULNG TTOU ELGAYETAL GTNY TUEOUGU DITAWUATIXY, ONAAOT O PUOLXOS Bla-
ywetopoc etoll twv headers (xe@olidec) xou twv ouctactixwy dedopévmv: Ta npdta elvou
tomo¥etnuéva oty DDR eve) ta dedtepa oty SPM. Q¢ anotéheoya xdlde ywpuxr emBdouv-
on eCogaviletar xan Ye autdv Tov TEoTo emituyydveton 100% yenowonoinon tne xplowng
onuoctiog SPM.

‘Ocov agopd TN oTaTxr] BEGUELOT) UVAUNG, 1] EYLTEXTOVIXY| TaEouGtdlETol 010 oy fua 9.
E&ououdver v Aettoupyio e stack uvAung xou o¢ amotéheoya emTRENETOL HOVO 1) avdleo
UVAUNG Xxou Oyt 1) AmOBECUEUCT) 1) ETavaYenolonoinon authc. Ewidtepa yenotuomoleiton uio
TEYVIXT LETENTOV Yo TNy Topduoto pe outhy tou FreeRTOS level-1 heap allocator [18]. Y-
UELOVETAL OTL 1) OTATIXT) OEGUELOT) TROTEIVETOL WG BladLxacio Xou 0TV TERIMTWOT TOU amonTelTon
0E0PEUOT) CTATIXWY DoV 0Twe buffers xAm, axodua xan €dv €yel evepyonomdel 1 Aettoupyia

NG OLVAUIXAC DloyElploNg TOL TERPLYPAPETOL GTY) GUVEYELXL.

SPM Managers SPM
Structure 1 -
(stack pointer, current size)| Slice 1

[structure 11 -3 Slice 11
[Stucture12 |3 Slice 12
C y;
\4
DDR Memory

Exhpa 9: Apyitextovins| Tou ototixol Awayepioth tne SPM

24

O Beopeupévec xe@olide amotnxedovton oe évo Red Black Tree (RBT) énw¢ xau otov
Jemalloc Allcoator [19], 6mou 10 el yioo TRV TEOoTENAGT, TOU dEVOEOL Elvor 1 apy XA
olevuvor) Tou Beopeuyévou umhox. Xuvenwg dedouévou N aplduo) BeCUELUEVWY UTAOX,
1 dodixacio ewoaywyhc daypaphc anatel O(log(N)) yedvou. Emmiéov Sedouévou 6t to
N elvan dvey @paypévo, AoYw NG EX TWV TREOTEPWY OEGUEVOTS, O YEIPLOTOS BUVATOS YPOVOS
extéleonc (WCET) unopel va npobnohoyiotel. To (RBT), napouotdlouv xahitepec emBOOELS
CUYXELTIXG UE GAAES, BOUESC TTOU YPNOYOTIOLOUVTOL GE Do ELRIOTES UVAHES OTwe T Splay Trees
[20]. Téhoc oyetixd tnv vAoToiNcY Tou 8évdpou, amopelyeTton 1 Yehon avadpounc, 1 omola
elvor xoTe€oy AV ToRdyoVTaS eupdvions TeoBANUdtwy Tou oyetiovton Ue TNy unepyethion tng
otoifog. H cuvolur apyltextovixr) Tou dioyelpioTy| Tapouctdletar oto oyrua 10

I
! Free Headers

|
StaticAIIocator| SLL
ffffff 1 D]
[ackprer]
I
|

malloc()

Bltfleld Mapping

g —— 8 bits | 16 bits 70 bits .
(el 1 ——
I—4 / I
| | 8 bytes | 16 bytes 70 bytes | SPM Slice i
Block k

ExApa 10: H cuvohu| apyttextovixy| Tou dyeiptoth tng SPM

‘Oowv agopd Ty tohtxi tou allocation, extevic épeuva €yel HoN Tpaypotonoimnel [21],
w0600 OeV Exel avadetyVel xdmowa BEATIo TN TeEY V], O cuyypagéag etvon UTEQUY O TNE dTo-
dne mou meprypdpetar oto [22] xau pe Bdomn v omofa pia first-fit-policy mohtxy| emhéydnxe.
Avuty| mpoc@épel xahUTERO YEOVO EXTEAECTC UE TOV %(VOUVO WGTOCGO TOU PEYUADTEQOU XTA-
AEQUATIOUOV TNG UVAUNG.

21N oLuVEYELa TEpLYEAPOVTAL OL dladLxacieg dEcueuong xou aneheLEpmong TNe uviung. ‘O-
TAV 0 TEOYPUUUITIO TG XaAel TN cuvdptnon malloc, tote mpooneladveton To bitfield mpoxel-
uévou va avalntniel To TewTo umhox pviung To omolo tTneet Tig anouthoelg yeyédoug. Edv éva
TETOLO UmAoX UTdpyEL, TOTE To avtioTotya bit Tou bitfield onuadedovton we decucuuéva, ot
OLVEYELDL WiaL xEPAABO eEdyETOL oo TN G TOIBoL TV EAEUTERMY X0 EVIUERMOVETOL UE TNV dEy(txY
oievuvon xan o péyedog tou umhox. ‘Ereita autr npootiVeton oto RBT, dmou Peioxovtar ou
oeopeuuéveg xeparidec. H anehevdépwon elvon 1 avtiotpopn Swadixacio. Apywd avalnteiton
T0 umhox oto RBT xou e€dyetan, eved towtodypova xodopilovton xou ta nepleydpeva tou. To
bitfield evnuep®vetar dote va yopoxtnelotovy To avtiotorya bit we ehediepa xou téhog 1

XEQOAB elodyeton 0T oTolBor TwV eEAeLIEpLV.

Avayeipiotnc Yroloyiotixwy Ilépwy

O Auwyetpiothc Troloylotixdy népwy dtadpapatilel évay tpthd pého. o) Ilpoopépet éva
API vy tyv avdmtuén egapuoywy, B) puduiler auvtdyoto to Bidpopa Yépn TOU GUCTAUATOC
xou y) avohoBdver Ty dpogoldynom xau extéleon Twv mpoypoppdtwy. H apyttextoviny

25

T0U cuoThuatog opovotdletar 6To oy 11 xou amoteheiton xou owtd amd Teio uéen: o)
™V TEPLYPaP TNG EQUPUOYAS, B) TN otatxy| SpoohdyNnon xat EAEYYO GPUAUATOV XAt Y) TN
OLVOUIXT] OPOUOAOYNOY. LNUELOVETOL OTL TAL TEAELTALA BUO TEYUUTOTOLOUVTAL UE AOLOPIVT
Teomo ano to ParalOS |, 10 pev mpodTo %aTd TN OWEXELd TNG QACTS TNE dpyXoTolnong To

0E0TEPO XATY T1) OLIEXELX TNG EXTEAECTG.

Application 1

Worker

Groupl
SHAVES: 1, i, k

Worker
Constraints
3
N SHAVES

TG3

Applica
tion 2

Application Design

Execution Static Scheduling &
Order Error Detection
TG | TG TG Serialised
T4 | T1 | T3 | T2 .
13 4 Ordering
Dispatcher
Dynamic (Cache Coherency &
Scheduling Deadlock Prevention)
w w w w w w
3 |= > > > > > s
- |= < < <4 |= >
2 [T T T T T T N
(%] (%] (%] (%] (%] 1%}
| — Logical Const. <> Worker Const (WC) [_Task Group (TG) 1 Task Priority |
| +—=>Messaging Const () Worker Group (WG) [Task TG Priority |

Ixhpo 11: Apyitextovin] 10U SLaYEPLOTH UTOAOYIOTIXOY TOPWY

API ypdyou yia TNV TEpLYPAPT) EQPAROY OV

[ty TepLypagn TwV TEOYEUUUATWY YENOYLOTOLELTAL EVOL ATAO GTY) YPHOT| WAL TOAD oV
hutd API mou Baoileton oty amewxdvion ye yeron yedpou. O mpoypaupatioThg dnuloveyet
ulor 1) mapamdved EQapUoYES, oL OTOlEC UTOPOUY VoL EXTEAECTOVY ElTE OElploxd elTe TopdAANAa
X0 0T GUVEYELD avard€TEL TNV exTéNETT] Toug oe éva 1 topamdve Worker Groups (WGs). O
eqopuoyEc anoteholvton and éva 1 neplocdtepa Task Groups (T'Gs), to onolo avamapio Tovy
Lol povadery hoyry Aettoupyia, 1 omolo unopet vo Slanpedel oe empépous TopdAANha UTOTEO-
Bruota To xodéva ex Twv onolwy ovoudletar Task. Ta TG yoapoxtnellovton and Evav aprduod
ond meploplopole (constraints). O o) hoyixol neplopiopol, ol onotol opillouv eapthoelc de-

douévwy petalld twv TGs, B) npotepadtntag (priority), mouv xadopilouy 1 cepd extéheong

26

xou y) epyotedv (worker) ta onola xadopilouv to eldog Tov edyloTo aprdud xar TNV TEoTERI-
ot TV epyatedyY. Ouolwe xou Teploplolol TEOTEPAUATNTG Kol AVTUAAXY NS UNVUUSTWY XATE

v extéleon optlovton yio tor Tasks.

Apouwoloynon

‘Otay 0 TEOYPAUUUATICTAS OAOXATIEWAOEL TNV TEQLYQPUPT| TWV EQUQUOYOV EYOVTOC ONULOUE-
yhoer oha T TG, Task xou €yel oploelr xou dhoug Toug meplopiopols, To Framework etvan
€TOWO VoL EQUEUOCEL OpoUoAOYNoT o€ 000 oTtdda. To mpwTo amotelel TNV cTUTIN OPOMO-
AoynoT, N omola etvor uebYuvn yior TV edpeom TNe BEATIOTNG oelptaxhc extéreonc Twy Task
xadwg enlone xan oo Tov éheyyo mboavoy ogaiudtwy. To c@diyota puropel vo etvar A.y.
1 Unopgn neplocttepwy Task e meploplopolc avtahhay g unvupdtoy omd 6Tl ot dlardéayuot
epydTeg, xuxAwol hoywol teplopiopol x.0.x. T'a 0 oelpd Twv TpoypauudTry apyxd to TG
TagvouolvTal pe BAon TNV TEOTEQUUOTNTE TOUC. LTY CUVEYELN OELPLOXd EAEYYOVTOL OAOL Yid
v Umaedn Aoywayv meploplopmy ue xdrowo TG nou Beloxeton mo Yetd oty oelplomy| Togl-
vounon. Xe authy Ty mepintwon 1o TG 1o onolo Beloxeton apydtepa Tonoveteiton mEw TO
QEYIXO HalL ETAVEREYYETOL 1) EYXVEOTNTA TNG OEldS Ue Bdon tny mpotepondtnta. H dradixacio
enavahauPdveton p€ypetc 6tou va un cudfoiy dikeg ahhayéc. Téhog ta Task yetodd twv TG
Tagvouolvtal pe Bdorn Ty mpotepandtntd Touc. Toco ta Task 6co xou o TG Tonodetodvtan
oe FIFO Boyéc yia tnv ypnyopdtepn npdcfact oe autd xatd Tn didpxela tng extéheong. H
YoVl TOANUTAOXGTI T TS oToTixfc Spopordynone ebvor fon pe O(N2M log(M + N)), ué
évo. amortised x6otoc mo xovid oe O(NlogN). To cuyxexpwévo x6c6T0¢ 1GTOGO BEV
elvon 18LdTEP ONUAVTIXG ool auTy| 1 QdoT TG dpopohoynong yiveto eite xatd T0 oTASLO
e apyxonoinong, eite offline xou e€dyeton o éva Buabixd apyeio To omolo ot cuvEyEl
(POPTWVETOL XATY TNV EXTEAEDT).

Ytov avtinoda, 1 duvouLxy SpoUoAOYNoT lval xordoploTixY Yo TNV ETB0CT TOL GUC THKA-
T0¢ yevwotepa. Me oxomd tnv eAoyloTOTOINGT TOU dEQYOU YPOVOU TV EQYATOV oINS
enione xou To @awvouevo tou Task Starvation o alydprduog vhomolel plor non-preemptive mo-
AT Aoy T EAMEUPHiC Tou xatdhAnAou UAo) xadoe oG xon TOU EIBOUE TWV TUTIXWY
eQapUOYY oL extehoUVTL oe auTh. T xde egapuoyy| mou exteheitan, mporypatomoleiton
ocuveyws polling mpoxewévou va eviomioToly ueypel K eheldiepol epydreg, and ta WG mou
€youv avatedel oTnV eQapuoYT. LN cLVEYELXL 0 SpoUdoloyNThS, TpooTael vo avaléoel GToug
epydtec E Task. H teyvur aut) enavaloufdveton oe OAeg TIC EQapUoYES uéypl var avatedoly
oha tae Task. Enuewwveton 6L xotd v avddeon evog Task mou €yel tepoptopoic avtahhoyic
unvupdtwy, anayopeveton 1 extéheon Task mou avixouy e dhho TG. Autd mpayuatonoleiton
Tpoxeévou va amogeuyYoly midoavd deadlock. H mohumhoxdtnta awtol tou alyoplduou etvan

O(AM). 6mou A o oprdude TV eQupuoYGY Tou exteholviar TupdhAnha xan M o apriude
wwv TG oe xdde eapuoy.

Téhog éva oaxdu xooploTIXO XOPPATL TOU CUYXEXPUEVOL UTOCUCTAHUNTOC elvon o dis-
patcher, o omnoloc etvon unedYuvoc va avadéter ta Task otouc Epydtec. ‘Otav mpoypato-

rotelton 1 avdeor), autodg avarouPBdver va diexnepanwoel ke Tic Low Level Aettoupyieg mou

27

amoutoOVTOL Yiot TNV 0pU7 Acttoupyia TOU, OTWC 1) EXXAIIOIOT TV XATUAYWENTWY, APYLIXOTOINCT)
e otolfac. Emmniéov évag software unyoviopoc avohauBdvel va tpoopépel cuvApeLs ueTaED
Twv caches 6hou TOL GUGTAUATOS. DUYXEXPWEVA OTAY TEOCTEAAOVOVTOL OEDOUEVA TTIOU €Y 0LV
Yoo TNEIO Tel €Y YRAPIUA XoU AVOY VOO, TOTE TO UTOGUGC THHOL AUTOUSTWS UXUPWVEL TIC Aav-
YEVOUOES UVAUES TTOU AVTLO TOLY 00V GToug oyetixolg workers, pe Bdon xdmoleg mopopuétpoug
7oL B{BOVTAL UG TOV TEOYRUUUATIOTH TN QAo TNe apyixomoinone. Tétoleg nopduetpol etvar,
o xodoplopdg Twv caches wg UVAUES yiar EVTOAES 1) BEBOUEVA, 1) BLPECT) TOUC GE ETEPOUS
TuAuata to péyedog tou xodevog €€ autwv x.0.x. Téhog o dispatcher eivon uneduvog vo

amEVERYOTOLEl TOUG EQYUTES, OL OTOlOL BEV UTOPOUV TALOV Vo exTEAEGOLY Xdmoto Task.

Visual Profiler

O Visual Profiler otoyelel otnv LTOCTAREN TOV TEOYPUUUATIOTOV XATA TN QACT TNG
eZepelivnone xan BeAtioTonolnong tou o tnuixol oyedlaouol. Kodog ouyxeitixdg ofio-
Aoynong xau deixteg yprone SPM eodyovton avtopata oto framework xoun tor amoteréouarto
TV PeTPNoEwY elvar oelptaxd yenowponowvtac Google’s Flatbuffers. H é€odo¢ unoloyileton
offline 7o host PC xa o yetprioeic mou mapovoidlovton nepthapBdvouy yprion muprva, cu-
VoA ypovo extéheone, framework ye emfBdpuvor, mpogih Aettoupyiog xou péylotn yenon
uvAUnG. e emieyuévoug mivaxeg mou Sladétouy povdda uétenong woybog, o profiler mopéyel

enione Yéomn 1oyd xo GUVOANXE ATOTERECUAUTO XATAVAAWOTG EVERYELNS.

Pov ITpoypappatiocpo

Y10 oyfua 12 napovcidleton éva mopdderyua g yerong tou APT yio v meplypopy| xon
extéleon) evog mpoypedupatoc. Eivor wlitepd onuavtind va Tovotel 6Tt 0 GUVORXOS optdudg
Brudtewy mou anouteiton eivon 13. Autd onualvel apeVOS OTL VLol TOUG EUTELROUS TEOYROUI-
TIOTEG, UELOVETAL OE ONUavVTIXO Badud o Ypovog Tou amouTelTon Yo TNV CLYYEAUPY| EVOC TPO-
Yedupatog xodog enlong xou 1 mavotnto Adoug. Emmiéov yia toug apydploug yenoTeg, To
ouyxexplévo Framework eZopohOvel opxetd tn dladixactio udinong xat duvaton vor amoxelget

To LOLOUTEPOL Y AUPUXTNELO TIXA TNG TAATPORUAC.

28

Example Program

worker_entrypointsA[12]
worker_entrypointsB[12]

1. Create a computational unit
manager instance:
ComputationalUnitMgr em

2. Initialise Framework Options
cm.configFramework(

&smpi conq‘g: &spm_config)

3. Create worker Groups
cm.addWorkerGroup(0, Worker Group 0: Shaves 0-7
SMWGTYPE::SHAVE, 0, 5) Worker Group 1: Shaves 8-10
4. Configure Cache Options

cm.configureCacheOptions(L1 Data Cache Bypassed,
SMOPT_CACHE::LIINSTRUCTION readOnly = false
, SMOPT_CACHE:: L2

Y

5. Configure Cache Paramaters The L2 Cache is configured as

cm.configureCacheParams(Data only, and is divided into 2

SMCP_CG2::SMCP_SIZES::CS128, | segments each with a size of
SMCP_TYPE::L2_INS) 128KB

y

6. Map Entrypoint Tags to functions
N cm.mapEntrypointTags(
worker_entrypointsA, SMTAG:: TAGI1)

y

7. Create an application
Application® app = cm.addApplication(0)

v

8a. Create the Task Groups
TaskGroup* tGroup =app->addTaskGroup(0)
taskArgs argsA[20] .. tGroup->addWorkerConstraint(SMWGTYPE:

taskArgs argsB|[8] .. :SHAVE, 0,5)

The same method is used to
map the other functions B,C,D,
to TAGS 2, 3 respectively

Task Arugments

tGroup->addPriorityConstraint(CM_MAX_EX|
A ;

8b. Create the Task Groups
TaskGroup* tGroup =app->addTaskGroup(0)
SM_DEFAULT_PRIORITY)
tGroup->addLogical Constraint(0)

v

9. Create the Tasks
Task* task = app->addTask(3,
SMTAG:TAG1, (void*) &argsB[0]
P task->addM il raint(2, messid)
task->addPriorityConstraint(4)
app->attachTaskToTaskGroup(3,1)

The same method is used for
the other Task Groups

It is assumed that the task with
id 3 has already been created

10. Static Schedule
app->schedule()

The 2 boolean parameters
refere to print the constraints
of task Groups and
tasksrespectively

11. Optional Application Debug and Export
app->printTaskGroups(true, true)
cm->exportApp()

v

12. Update the task Arguments about the
messagingTasks
cm d: lue(argsA[1] Param)

v

13. Assign Worker Groups to application
cm->assignWorkGroupToApp(0,0)

14. Execute Application
cm->executeApplication(0)

Exfpa 12: Por Hpoypoppatiotinod Hopadelyuatog

29

Table 0.1: A&oléynom tou mpotewvdpevou Atayelploth e SPM

Test Memory Usage (KB) Execution Time (ms)
(n x B) TLSF[7] Proposed Diff (%) TLSF[7] Proposed Diff (%)

5Kx4B 30 20 -33 1.342 1.457 +8.6
1Kx8B 10 8 -20 0.458 0.472 +3.2
500x16B 9 8 -11 0.343 0.362 +5.8
100x128B 13 12.8 -1.5 0.289 0.304 +95.3
10x1KB 10.02 10 -0.2 0.206 0.210 +2.1

AZworoynon & Egoppoyeg

Aoxipég pe Xuvietixd Ipoypdupoto
Awayepiotric SPM

O dayeptothc e SPM tou ParalOS ouyxpivetan pe tov TLSF allocator|7], mou eivon
OLAOTUOC Y10l EVOWUATOUEVO GUC TAUITO XL OYEOLACUEVOS VoL AVTATIOXRIVETAL OE TERLOPLOUOUS
Tparyatieol ypovou. Augdtepol ot allocators eqopudlovtan xou aloloyoivton oty MyriadX
VPU. T v a&lohdynon, a&lonoteiton €va mpdypauuo 50Xl UvAUNG mou anoteheiton and
3n allocations ye péyedoc B bytes. To mpdypoupa allodynone yweileton oc 6Vo @doelc:
1 Teo TN extelel n Swdoyixd allocations, oxohoutoluevrn and Tov Blo dprlud anodecuedoe-
®V, GTOYEVOVTUC OTOV UTOAOYIOHO TNG PEYIOTNG YENOWOTOUNUEVNS UVAUNG KoL TNS YWEWXNAS
am6doong, v 1 0elTepn vhomolel axdua 2n Aettovpyieg oe tuyaio potiBo, dnhadh civon e-
tte malloc eite free, yio va e€etdoouy v ypovixr andédoor. Ta anoteréopato TN oxiung

a&lohoynong mapouctdlovton otov mivoxal.1

LyeTnd Ue TNV YoM TNG UVHUNG, TA ATOTEAECUATA OELYVOUV LG 1) TEOTEWVOUEYT) UE€V0BOG
dev mpoxolel omoladnnote ywewxr enPdpuvon. Emnpbodeta, emtuyydvoupe €nc xon 33%
UELwUEVo amoTOTmue uviune ouyxettixd ue tov TLSE allocator. Ye axpolec mepintwoele,
T.Y., 6tav {nreiton éva uévo byte, 1o mpotewodpevo framework emtuyydver 93% xahitepn
Ywex) amédoon. 201600, auTh 1 Uelwon Telvel va peiwdel 600 audvetar to {ntoluevo

uéyedoc block, nopéyovtag aueAntéa ogéhn oe yeyédn block peyohitepa Tou 1KB.

YyeTnd UE TNV YEOVIXT| anddOsT), TapaTneouVTIL LYNAGTEROL YEOVOL EXTEAEDTC, TO OTolo
xa Ouonoloyeltar amd TNV BLIPORETIXY| QuUOLXT| ToToUECio TWV UETAOEOOUEVWY TOU BLOYELRL-
ot Qotbéoo, auth 1 emPdpuvon eivon otodepd xdtw and to dpto tou 10%, SwTnemdvTog
€101 Toug Ypovoug extéleang ouyxpiotwouc. To meploplouévo xécTog emPBdpuvone amodide-
TaL oTNY eXUETAAAEVOT) NS Lepapyiag tne cache. IIo cuyxexpiéva, ol Souyég eréyyou, mou
ebvan amotnxevpévec ot DDR, etvan tpooBdotues omd tic L1§ xou L2$, napéyovtac étol évay

UNYAVLOUO avTIo TaOULoTNC.

30

T T
1000 T pmaA
—=— Proposed

800 -

Time (ms)

400 -

Workers

EyApa 13: Khyoxoowdtnta tou mpotewvopévou IPC vnocuothiuotog cuvaptioel Tou aptdpod twy

EEYATAV

KApoaxooiwpnotnta SMPI

Y1n ouvvéyew, ofoloyeitaw 1 anddoon tov IPCScheme oty MyriadX. Yuyxplveton
1 XAUEXWON TOu UE TNV TEOETAEYUEVN Yenon DMA cuvodlay®y yio emixovwvieg ypdvou
extéleonc. (2¢ onueio avapopds, Eva CUYXEXPWEVO OTAERO TOGH TWV GUVOAXGDY 0OY XMV
TANREOPORLKY PETUDIBETAL UETOEY TWYV EPYATHV, TO OTOIO YENOWOTOLE! GUYXEXEIIEVOU PEYEVOUG
TOXETAL VL0 VoL UETAUBWOEL BLABOYIXE TO OO TOUC PEPIDLO OEBOPEVWY OE XdVE epYdTn).

To amoteréopata mou napovatdlovial 6To oyrfua 13 LUTOBEXVUOUY WS TO TEOTEWVOUEVO
IPC Scheme npoopépet £m¢ xou 6 popég xahlTERN XAWdXWST. AvahuTixdTepa, 660 0 aELiuoS
TWV EPYATOV AUEAVETOL, O GUVOAIXOC ELUUOC TWV UNVUUATWY UEAVETOL Xl OUTOC TANUUU-
etlovtag ye outruata) povadxr Slodéoiun DMA unyoav) méve oto chip. e avtideon, n
TROTEWVOUEVT amoxevTpwuévn teyvixy| buffering yenowonowel ty SPM 8iacivieon udmiod
bandwidth yio napddhinieg avtarioyéc. ¢ ex todtou, avtl va elvon oyYedOV avdioyr Tou
oLVOAxoU aptduol Twv unvupdtewy (DMA mpooéyyion) o IPC ypbvog e€optdton avahoyixd

HOVO a6 TaL UNVOUATO AVA HEUOVOUEVO EQYOLOUEVO.

KApoxooiphdotnta Tou 8ol oAoYNTYH TOU UTOCUC THUATOS dlayeiplong uTto-

AOYLOTIXOV TOPWY

To enduevo cuvietind npdypouuo eEETALEL TIC BUVATOTNTES XAUAXWOTE TOU TEOTEWOUEVOU
ouvaxol dpouoroynth otn MyriadX. Mia egapuoyr anoteholuevn and n Tasks yernowo-
moufnxe. To Tasks elvon opadonomuéva oe tuyaio Task Groups to onola €youv TeyvnTolg
Aoywole meptopopole (logical constraints) petald touc. Kdée Task eivon pla ouvdptnon
TOU ETOTEEPEL AUEoKC Ywplc xavévay utohoyloud. H cache éyel puduiotel va mepuéver,
read-write dedoyéva, €ToL WoTe va ypnoylonoiniel To TEMTOX0AO GUVOY NS TNG.

To anoteréopota mou napovatdloviar ato oyfua 14 deiyvouv 6Tl 0 SpouoroynthAc mo-
EoUGLALEL YUY XAUEXWOY cuvaETHOEL Tou aptiuol Twyv tasks. Emmiéov, To x6c5T0¢ TOU
dpopohoy Nty yia xdide task qotvetar va elvon avTIoTEOPMS AVIAOYO UE TOV optdud Twv tasks.

Luvidwe, 1 TauTtoyEoVN EXTEAECT EQPUPUOYKY TEGYEL amd eyyevh {nthiuate, 6w dead-

31

130
14| /
I 2%
T /
1 120 2
0.8 - \\ / e 2
15 (©

0.4 %_' i
5

0.2 .

Time (ms)
Time/Task (us)

L [
2 5 10 20 50 100 200 °
Tasks

IxAua 14: Khpgoxwowodtnta tou dpopohoynth) cuvapthoetl tou aptdpol twv Tasks

Serial 11%
Parallel)

Time (ms)

20 |

0.0%

3 4
Applications

ExAue 15: Edyxplon mopdhhning xou oetptoaxic extéleons mpoypapudtwy (ENA)

locks, cuvoyn cache x.A.m. T va Eenepac oy awtd ta bottlenecks, to ParalOS yenowonotet
UNYoVIoHoUS oL oTolol TEOXAAOUY WG TOGO PEYAAUTERT emPBdpuvor. Auty 1 emiPBdpuvor ue-
TELETAL LVAOTIOWOVTAS TOAATAES EEYWELOTES TMEQITTWOELS, X TOEAAANAAL X Blaboyixd, NG
unyovic extéheone Luvelxtixdv Nevpwvixdv Awtiony (ENA) nou Jo neprypogel oe mopa-

XATE EVOTNTOL.

To anoteréopato nopoucidlovion 6To oYU 15, OTOU 1 XUV BLOXEXOUUEVY YEUUUT
amexovilel ToV ypOVo EXTEAEGNC GUVUPTACEL TOL aELiUO TWV EPUPUOYOY TOU EXTEAOUVTOL
otadoyd. Xe avtideon, 1 TopTOXoAl Ypouur| aneixovilel Tov ypdvo eXTEAEONS OTAY O (Blog
aptdpog EQuEUoY®Y exTEAElTaL Towtdypova. ‘Onwe gaiveton, 1 emBdpuvon oTnv EXTEAECT] TOU
TpoYpduUaTog elvon Wwixpr, xowe xuuaivetor petalld 1.7% xou 9.6% oavdhoyo e tov oprdud

EQPAPUOY V.

32

'S
T

w
T

Cumul. Speedup (x)

—
T

Optimisation Step

YxhAua 16: Bektiwon tou Rendering pe) yprotn twv napeyduevwy and to ParalOS Beltioto-

TOLACEWY

Eqappoyeg
Visual Based Navigation (VBN)

H ouyxexpiuévn xoatnyopio €Qopuoydy, apopd TN ¥eHoT OTTIX®Y oucUnThewy, Yo TNV
QUTOVOUT] TAOTIYNOT| 1) ETAVOROUEVGLY oyNudtwy. Evac tétolog akyderiuog etvon o HIPNOS
[23], o onolog ypnowwonotel T yewuetpio evog dopupdpou yia var Tov xdvel track. O cuyxe-
xpuévog alyoprduog exteréotnxe oty Myriad 2 pe) Bordeio Tou ParalOS | amoteheiton
a6 OLdpopa GTABLY WO TOCO TO Mo EVOLAPEPOY Yia TNV allohoynor Tou Framework amotelel
7o rendering

To Rendering agopd tnv nopaywy?| pag emovag, to xdie pixel tng onoloug avamaplotd
woe T Bdidoug, yenoyomolwvTag Eva HOVTEND TElYWVeY xou TN Véon tng xducpag. ‘Evag
olyoprdpog rasterisation yenouonoteitor yior vor teofdhet ol Tplywva Téve 6To TAAGO NG
exovog. Xenowornotel bounding box yia va tpocdlopicel ta pixel mou PBeloxovtar yéoo otnv
TeoPBohn xou ot cuvéyeta Yo xardéva €€ autedv voloyilel TNV Ty Padouc.

Auth n egappoyy ebvar xat” e€oyrv duvouxr agod o yedvoc extéleone efapTdTal O
peydho Baduod, and tn ywvia g xduecpag. 3to oxfua 16, mopoucidletal 0 TEOTOC UE TOV
ornofo 1o ParalOS emtoylvel tnv extéleon autod Tou TpolBARUATOC,

To BhAua A, exppedlel Tnv apywxr) uhonoinon tou ahyoplduou diywe T yerion tou Para-
10S . Yo Brua B yenowonoieiton o duvouixog dpoporoynthc empépovtac wa Bedtinon tne
TéEne tou 2.09x. 1o Briua C npaypatonoteiton DSE, yio tnv ebpeon tou BértioTou nopah-
Anhopol Tne emdvag, augdvovTag To cuvolxd dgehog ot 3.13x. Xto Brua D, e&etdlovton
xat BehTioTonoloUvToL oL BLdpopeES TaEdUETEOL TNS cache, OTwe o apLiudc TwV TUNUATWY NG
%0l 0 XJ0PLOUOS TWV GEBOUEVLY TNG YEWUETEIOG Tou YovTélou w¢ read-only. To tekeutaio
Briua (E) agopd tn ypon cuyxexpluévwy YapoxXTnelo Txmy Tou TeoBAAUaTos, OTwe T.Y. To

YEYOVOS OTL TO XEVTPIXA TUAUATA TNG ELXOVAS Elvol TEPLOGOTERO TIUVE VoL TEQLEYOLY YTOLO

33

250 1

200 A

150 1

Time (ms)

100 -

50 1

0 200 400 600 800 1000
Frame Number

SxMua 17: Design Space Exploration ywa tnv edpeon tou apripol twv Sloupéoenv Tng eixdvac

XOUUATL TOU HovTERoL amd Ta oxptavd. ‘Apa ota Task mou apopolv T xevTpd TuApoTa dideTon
UEYOAUTERY TEOTEPALOTNTO WOTE VAL EXTEAEGTOUY TOWTAL.

Nwpitepa avapépinxe n évvola Tou BEATIOTOU TapahAnAlouoy, autd aopd Tov aptiud Twy
TopdAniov Task oto omolo Yo Sranpetel 0 UTOAOYIOTINGS POETOC TOL dAYOopiluou. X autd
T0 onueio emdpoly duo avtippona yupoxTNEIo TIXd. o) TOAD yeydhog aptdude onuaiver 6L Ya
TEETEL OAN 1) YEWUETPI TOU BOoPLPOEOL Vo EAEY Vel TOMAGIG, PUEVOVTUC GE OTUELD VoL UTER-
%EpAoEL TOUC LTOAOYIOUOUS Xat B) TOhD Uixpde apldude eyxudovel Tov xivduvo celptonoinong
Tou TpofAuaTog. Autd cuufoivel SLOTL €4V TO LOVTEND TEOPBAAAETOL OE Eval UxEd U€EOC TNG
EXOVOG, TOTE OMOC 0 POETOC Vo cLYXEVTPWIEL e Evay TOAD Uixpo aprdud Task, TpoxahdvTag
€TOL TNV U1 AmoBOTIXT| YPHOT OAWY TV UTOAOYLO TIXMY TOPMV.

INo autd to AdYo xatacTe@Unxe To mapoxdte TecT. 1000 SiapopeTinée ywvicg Yéoong
xenowonotinxay, yio vor eAeYyUolv BlapopeTixéc TYES TopoAinhonoinong. Xto oyrfuo 17
ATOTUTOVETOL TO GOVORO TGV AMOTEAECUATLY GUYVAPTHCEL TOU YPOVOU EXTEAECTC.

Apxetéc @opéc oe eQupUOoYEC TEAYHATIXOU Ypovou, clvar WBliktepa onuavTixy exté and
YeNYopo amOTEAEGUATA, 1) TORdYWYY) Toug o oTadepd Ypovo. Xto oyfua 18 mopoucidletan
T0 pétwno Paretto petadd tou péoou ypdvou extéleone xou g Tumixic amoxiong. Ta
amoteAéopata Belyvouv 0Tl 1) TayUTEEY exTéAEDT) TapovaldleTton yia dadpeon oe 22 Turuata,

EVE) Lol XohT) ETAOYT) TOU GUVOLALEL UXEOTERY amOXALOY lvor T 32 TURUoTL.

Mryovr Extéleong Tuvehxtixwyv Nevpovixdy Awxtiwy

Yy neprypopt| Twv VPU avagépinxe 6Tl évag onuavtinds ToPEug EQUpUOY®Y TIOU YeNot-

womotolvTaL ebvon 1) unyavixr uddnomn xou 1 6pact utoroylotdv. Ta Luvektind Nevpwvind

34

® 28 36
® 0 @ 3 V 3
200 n Y 32 Y 4
® 2 VvV xu 50
® x»
180 -
@
E 160
)
£
& 140 4
120 -
° o
100 A
20 22 24 26 28 30
stDev (ms)

Yxhua 18: To yétwno Pareto yio tov y€oo ypovo exTtéAechc xol TNS TUTLXY AMOXAIONG YLot To
Budpopar ueyedT dakpeong TNE EdVoC

Aixtuo anoteholv Lol SLadeSoUEVT) xaTNnYOoplot TEOBANUAT®WY UNyoVIXAC UdUnone mTou oye-
tillovton pe emodveg. T 10 Adyo awtd avantOydnxe uior unyovy extéheone XNA, n onola
otneiletar oto ParalOS . ¥to oyfua 19 napovoldleton 1 apyiTEXTOVIXH TS UNYAVAg Tou

ovom Uy Omxe.

‘Onwe gatveton arnotehelton amd 4 eninedo agalpeong xomg xon €vo UTOGVUCTNUN EXTEAECTC.
H unyavh progetl va yenowonowmdel yio tnv extéleorn dixtiwyv 1000 o VPU 600 xau o€
CPU, ondte 1o didgopa enineda napouctdlouvy dlopopetind PBadud e€dptnone and 1o LAXO.
To mp®to eninedo elvor aUTO TNC YETATEOTHAC, 1 Aettoupyior Tou omolou elvon vo uetateédel
€val povteho amd 1o dnpopiréc Framework Tensorflow oe pa evoldueon neplypopt| xatovonth
am6 To enoduevo eminedo To Description. To cuyxexpévo npoc@épet por BBAOUY XN Yior TNV
Teplypar) OixTOwy xou elvar aveldptnto tng mAatgodpuas extéheonc. To emduevo eninedo,
QUTO TOU core, EUTEPLEYEL TN Aoywr| yiot TNV exTéAeon Twv Olpopwy Layer tou Sixtiou
xou omotelel To entrypoint twv epyatddv, xatd x0plo Aéyo elvon xi autd aveldpTtnTo Tng
mhatpopuac extéreons. To yauniotepo eminedo MEPIEYEL TOUC UTOAOYIGTIXOUE TUPHVEC TTOU
exTeEA0UV TOUC LUTOAOYLOUOUC o elvon SlapopeTixol yio xdde clotnua extéheone. Télog, o
UNYOVIoROS extéreomne Tpooépel Eva xowd APT yia dheg Tic mhatpodpueg, v Toautdypova
avod€Tel TNV eEXTEAEOT TOL BcTLOL oTa YoN utdpyovta Frameowork 6nwe to ParalOS |, yw
Tic VPU

Ytov mivaxa 0.2, mapouctdletar 1 oUYXELON TS CUYXEXPWEVNS UNYAVIC HE JAAES Oruo-
oleuuéveg epyaoiec. ‘Onwg gaiveton to ParalOS |, xatagépvel va dlatnenoel tnv eminhéov

emPBdpuvon xdtw tou 10%, cuyxpltind pe eldxd Pertiotonoinuéves vhonotfoels [24]. H uévn

35

Hardware Aanosic 1

Hardware Agnostic

PC

P Tensorflow
weights.cpp

| Compatibiliy
Layer
Manager Manager | (python)

networkDescription.cpp

Execution Engine . Description

Interface Layer D——

Workers
Execution Engine Core Layer - Logic Hardware U bowere
Core (Worker Entrypoint) Agnostic
Ll
7/
Hardware Specific :/77 —
- ParalQ
Hardware
Specific

X Kernel: X Kernel: X Kernel:
CPU VPU xPU

Eyhpo 19: Apyitextovinr] tou unyoviogol extéieong XNA.

elalpeon amoterel to mopdderyua tou MNIST dmou BéBaor Adyw Tou Wwitepa uixeol Je-
yé9oug Tou dxtLou €xel uodetndel plo eConpeTind avticuuPatiny VAomoinon mou otneileton
oty Omoapdn Ghou Tou xOda ot Twv dedouévwy oty SPM [25]. Méypet xou o€ authv Ty

oplaxh) TEPIMTWOT TAVTKS Ol EMBOCELS XUPAVOVTOL OE amodexTd Eimeda.

ITepl tng peiwong ToL TEOYEPAUUATICTIXNOD POPETOU

M e€oupetind onpovtixr cuvelopopd tou ParalOS | eivon 1 peion tou anatouuévou
XPOVOU Yla TNV AVATTUEY EQUEUOYOY OTIC Wliktepa eTepoYEVElC apyttextovixés twv VPUs.
Yuyxexpwéva, mopatneeiton pla uetwon e tEng tou 2 — 3x oTto yedvo avdmtuéng. E-
Tmhéov, AOY® TOU XAAUTERA BOUNUEVOU TEOYEUUUITIO TIXO) TUQUDEYHATOS, O TOEIYOUEVOS
WOOWOG VoL EUXONOTEROS TN GLVTHENOT XaL AyoTepo Tiavoy va tepiéyel Addn. Télog on-
UELOVETAL OTL 1) UETUPORE TEOYPUUUATLY OO TAATPOPUN OF TAATQOPUI YIVETOL UE EALYICTES

TEOTIOTOLACELS, EV AVTIUEGEL UE TNV TWEVY| XUTAG TAOT 1) OTOlo AMALTEL GNUOVTIXT EVICY OO,

Table 0.2: A&oléynon touv ParalOS pe tn yerion ENA

Execution Time (ms)

CNN Net k
crwor [24] [25] Proposed Diff. (%)

CIFAR-10 7.24 - 7.80 +7.7
Ship-Detection 9.18 - 9.91 +7.9
MNIST - 0.35 0.64 +82.9

36

SIVUTEPAC AT

Ev xataxheldl, otn ouyxexpyévn dimhnuatixy napouvctdotnxe to ParalOS |, éva Frame-
work yia Tov anodotind mpoypaupatiopd xou DSE ce VPUs, 1o omolo emtpénet v mhvien
o€lomoinom TV YoUpUXTNEIoTIXWY NG exdotote mAat@opuas. Ta unocuotiuato Tou elvou
OTOYELUEVA X BEATIOTOTOINUEVOL Ylal TOV EEAULPETIXG ETEQOYEVY] YUPUXTARA OUTWYV TWV CU-
OTNUETLY xou TepthapuBdvouy, éva udmhol emmédou API yio tepLypopy| QopUoY®Y, dBuvouLxd
OPOUONOYMTH, EVaL XOUVOTOUO Bloryelplo T Tne Scratchpad uvAung, évo anoxevipwuévo cOoTn-
pa evdoemxovwviog xou téhog évay ontixd profiler. Ta newpopatind anotehéopato delyvouv
wlat Bertioon g TaEng Tou 4.2X oe €QupUOYES BUVOUIXOU) TIERLEYOUEVOU, EVE) UL TEQLOPIOUEVT|
eMBEVWOT TNG ATOBOCNC CUYXELTIXG UE YELPOTOINTEC VAOTIOLNOELS, EXPEALEL Ulot GUVTENTIXT
avtohhayn enidoone - TEoYEoUUATIO TIXAC euxohiog. TEhoc Yepovwuévo UTOCUCTAUATA TOU
ParalOS moapouctdlouv onuovtixés BEATIOOELS EVaVTL TwV TOREYOUEVKDY BIBAM0INXGY and Tov

AATACHEVAC T 1) GARWY HANEPWUEVWY AUCEWV.

37

Chapter 1

Introduction: The State of the
Industry

1.1 A New Era of Computing: AI & Vision Processing

The emergence of Al, lead to the dawn of a new era in the computing world [9].
Applications like Neural Networks, Computational Photography and overall the concept
of Smart Everything, have revolutionised the industry. This revolution is materialised
at the cost of ever increasing computational demands. Amodei etal [1] suggest that the
AT complexity is increasing exponentially. Even more disturbing is the rate of increase,
which by far surpasses the 18 month one imposed by Moore’s Law; and is calculated to

be between 3-4 months as shown in Fig. 1.1

AlphaGoZero
AlphaZero

Neural Machine

Translation -
Neural Architecture

Search

TI7 Dota lvl
Xception ota lv
DeepSpeech2

VGG
Seqzgeq ResNets

Visualizing and
Understanding Conv

AlexNet Nets GoogleNet

Dropout

3.4-month doubling

DQN

Figure 1.1: The total amount of compute, in petaflops-days, used to train selected network [1]

39

This figure upon closer examination from an algorithmic perspective, reveals one more
truth. It is not just the rapid increase in complexity, but the applications exhibit great al-
gorithmic diversity. These facts signal that a fundamentally different approach is required

for the computing industry.

1.2 Nothing is free: The End of General Computing

Ted Hughes famously said “Nothing is free. Everything has to be paid for. For every
profit in one thing, payment in some other thing. For every life, a death.”. The last
decades Dennard Scaling has allowed a free exponential increase, that was the result of
semiconductor fabrication innovations. Since 2005, the transistor scaling started to ap-
proach its physical limits, therefore the standardisation of multicore systems was adopted.
The next decade is perhaps the time that the payment for all of those years is due and
that payment is expressed via the the Memory & Power Wall.

Regarding the Power Wall [26], Esmaeilzadeh etal concluded, that due to the increased
density of transistors power management will be a limiting factor. More specifically, the
power-per-area has increased, in a way that power dissipation is not feasible. This means
that up to 50% of the chip must be powered off at any time. As a result, nearly a 24-fold
gap from a target of doubled performance per iteration, will be left by 2024.

Regarding the Memory Wall, concerns were expressed as early as 1996 in a work by
Wulf [27]. He identified that the processing capabilities increased at a 50% faster rate
than the memory. This is a trend that was not improved, therefore a huge gap between
computational capabilities and memory performance exists. Sites [28], said the famous
quote “It’s the memory Stupid!” and expressed that over the coming years, the memory
subsystem design will be the only important design issue for processors. History though,
did not validate this prediction and in its core the same architecture designs are still used

today.

1.3 Heterogeneity to the Rescue

The solution to extend the exponential growth of computing capabilities, lies in the
introduction of heterogeneity. Heterogeneous computing [29] refers to systems that use
more than one kind of processors or cores or memory hierarchies. The performance gains
or energy efficiency is achieved not just by adding the same type of processors, but using
dissimilar coprocessors, that incorporate specialised processing capabilities, fine tuned for
specific tasks.

Thompson & Spanuth [10] believe that the introduction of AT applications will reintro-
duce device fragmentation as specialised accelerators appear to be the only way forward
for the time being. Hennessy [9] as well as Intel [30], claim that this is the golden era of
computer architecture, as other more exotic alternatives [2] are not ready for widespread

adoption.

40

past - homogeneous ~ } present - heterogeneous future - post-CMOS extreme

present - CPU+GPU .
architectures heterogeneity

architectures

architecture, device and memory
heterogeneity

cpu cpU cpu cpU

buses
MEM
......

===
EEE

2
:
3
£
g
s
E
E
J0)IYOTE WRISAS
as Ip‘l\‘: red

towards extreme heterogeneity
Figure 1.2: The establishment of Compute heterogeneity as the new standard [2]

This approach is better depicted in Figure 1.2, as the industry transitions from the
introduction of GPUs to totally Heterogeneous Devices, consisting of General Purpose

Cores, GPUs, an array of accelerators and a sophisticated memory hierarchy.

1.4 Programmability & Heterogeneity: Hitting an impass-
able Wall?

The most important question regarding the Heterogeneous Computing is the following
What about the Programmability and the Legacy Code? Before answering this question,
let’s take a step back and answer this question instead Why use Heterogeneity, in the first
place ?

The obvious answer is to compensate for the end of Moore’s Law. On a second thought
this is more of an intermediate step, than the true cause which actually drives the whole
industry the last decades. This root cause is the need to keep delivering exponentially
better products in the same amount of time. The term products refers to both the
industry and research.

The first part of this sentence mentions better products, but what does a product consist
of? A simplified approach is to divide it into two components i) the algorithm and ii) the
computational platform. As established, the algorithms improve with high pace and the
platforms, because of the heterogeneity, manage to keep up.

The second part of this sentence indirectly introduces the concept of programmability
and more specifically the ability to create exponentially more capable software in the same
amount of time. Is this feasible? Intel, at least at first glance, does not seem to believe so
[30] and has actually stated that

Generality « 1/ArchitectureHeterogeneity

Should this allegation be true, it will have ground breaking implications not limited to
the boundaries of the computer society. This relation builds a new Programmability Wall,
which signals the end of a decades old model of constant technological advancements.

These constant advancements have additionally shaped the socioeconomic models that

41

govern modern societies. The cause has become the goal at the same time, leading to a
circular, endless pursuit of innovation. If this circle is disrupted an expanded conversation
between all the stakeholders will need to be initiated, with undefined consequences for the

modern way-of-living,.

1.5 Possible Solutions & Motivation

Returning to the initial question about programmability, the majority of the computer
society, including the author, believes that there is a solution. This solution is found
in new Software Frameworks. Leiserson, paraphrasing Feyman’s famous quote from the
60’s “There is plenty of room at the bottom” [31]; suggests designing new programming
language paradigms and frameworks that are grounded on heterogeneity [11]. These frame-
works like the Popcorn Framework for heterogeneous devices[32] can not only provide the
abstraction required for fluent programming but also mend the implication of Wirth’s Law
regarding the software bloating [33].

In this context, the idea for creating software for emerging embedded heterogeneous
devices, namely Vision Processing Units (VPUs), was conceived. The framework’s target
is to abstract the Hardware Details, provide a foundation for fast and efficient application
development, while enabling low level and platform specific optimisation, which led to the
selection of the VPU in the first place. Taking all of that into consideration and with

strong motivation and dedication ParalOS was born.

L

—

ParalOS

Figure 1.3: The ParalOS Logo

42

Chapter 2

Vision Processing Units (VPUs) &

Frameworks

2.1 Vision Processing Units: Heterogeneity at its best

2.1.1 A gentle Introduction to VPUs

Vision Procesing Units (VPUs) is an emerging class of embedded devices. A VPU at
it’s very core is an inherently heterogeneous device. They employ a number of different
compute units ranging from general purpose cores, specialised SIMD and or VLIW pro-
cessors, to Hardware Filters. The heterogeneity is expanded in the Memory Subsystem as
well. They include both caches and Scratchpad memories, a not very common approach, in
addition to DDR. VPUs excel at Image Processing, Computational Photography and Al,

so their most common usage is as a standalone microcontroller or a vision & Al accelerator.

o
N
X
2
0,
90
\J

Figure 2.1: VPUs in the Spectrum of Embedded Compute Devices.!

!Disclaimer:The figure is for illustrative purposes only and it is focused on the VPUs. The author would

like to raise a waver, should it spark a consist between enthusiastic supporters of the depicted platforms.

43

44 Chapter 2. Vision Processing Units (VPUs) & Frameworks

When comparing this class of platforms, in terms of performance, it is placed between
the CPUs and GPUs, while doing so in the smallest power envelope. Depending on the
application nature, VPUs can outperform in performance/watt even the FPGA. When
asking why VPUs are needed in the best sanwer was provided by Mowidius, during the
launch of Myriad 2. They explained their point by noting that it’s no longer sufficient to

render a complex scene as a GPU does; the device must understand it.

2.1.2 Myriad 2 VPU

The main target platform of this thesis is Intel’s Movidius™ Myriad™ 2 VPU Vision
Processing Unit (VPU) [12], but the concepts that are discussed can be genralised into
other similar platforms. It is developed by Intel’s Perceptual Computing Group to ac-
celerate adoption of visually intelligent devices. Recently [34] Myriad 2 has passes the

radiation tests making it suitable for Low Earth Orbit space missions.

Specifications Overview

The main characteristics of the SoC are the following, while a block diagram is shown
in the figure 2.2:

e Ultra Low Power Design. For mobile and connected devices where battery life
is critical,Intel’s MyriadTM2 VPU provides a way to combine advanced vision ap-
plications in a low powerprofile. This enables new vision applications in small form
factors that could not exist before. Moreover the 20 independent power islands, en-
able fine grained power management. As a result, this low power processor, allows

the use of the device in space applications with extremely tight power envelope.
e Heterogeneous, high throughput, multi-core architecture based on

— 2 x 32 bit LEON 4 SPARC-V8 RISC processors
12 VLIW 128-bit vector SHAVE Processors optimised for machine vision

— Configurable hardware accelerators for image and vision processing, with line-

buffers enabling zero local memory access ISP mode

Homogeneous, centralised memory architecture; 2MB of on-chip memory with

400 GB/sec of sustained internal memory bandwidth

512MB of LPDDR3 main memory

Multi level run-time configurable Cache Infrastructure

e Small-area footprint: To conserve space inside mobile, wearable, and embedded
devices, as well as small satellites (ie. cubesats), Myriad 2 was designed with a very

small footprint that can easily be integrated into existing products

e Rich set of external communication peripherals.

2.1 Vision Processing Units: Heterogeneity at its best 45

— 12 Lanes MIPI, 1.5 Gbps per lane configurable as CSI-2 or DSI.
— CIF, LCD Parallel Interfaces.

— I2C, SPI, UART for control and configuration.

— I2S for audio input.

— Bank of configurable GPIO, PWM.

— USB3 with integrated PHY.

— 2-slot SDIO.

— Debug interface.

— 1 Gbit Ethernet.

g

intel) (1/0 Multiplexing (SW Controlled))
Movidius’ ‘
MIPI Interfaces
(x12 Lanes) (SPI, 12C, USB3, UART, CIF, LCD, ETH, SDIO, etc.)
SIPP HW Accelerators @
(Debayering, Denoising, Sharpening, Feature Detection, etc.) L1 Cache | L2 Cache
@ by EOEE (64KB) (256KB)
CMX Memory LEON RT L1 Cache | L2 Cache
(2MB) <|_| [(8KB) (32KB)
VLIW SHAVE Processors L1 Cache L2 Shared Cache <:> DDR Memory
(x12) (3KB per core) (256KB) (512MB)
g 128 ags

Figure 2.2: Myriad 2 Block Diagram

Despite the fact that the Myriad 2 SoC has a number of subsystems, in the following

subsections a more detailed analysis of the most important of them is presented.

General Purpose Leon Processors

Myriad 2 deploys two high performing LEON4 SPARCv8 General Purpose Processors
each with distinct functionality. A block overview of the LEON 4 processor is provided

below.

e LeonOS or LOS, is the main processor of the Platform as, most often, after booting
the applications entry point is designed to LOS. It belongs to the CPU subsystem
(CSS) and it is been destined as the main communication and control unit with the
outside world via the external communication peripherals: 12C blocks, 12S blocks,
SPI blocks, UART, GPIO, ETH and USB3.0. LOS is supported by relatively large
Caches L1 (32 KB) and L2 (256 KB) caches, which allows booting Real Time Oper-
ating System on it, like RTEMS [35]. This block also offers an AHB DMA engine for

46 Chapter 2. Vision Processing Units (VPUs) & Frameworks

more optimal data transfer via the external peripherals. Finally despite the control-
oriented role of this CPU, it boasts significant compute capabilities, since it employs
high performing ALU and FPU units [36] and currently it is considered one of the
most high performing CPU’s for space applications [8] Beside handling the exter-
nal interfaces and communication Leon OS could also control SHAVE processors

imaging algorithms.

e LeonRT or LRT Is the second of the SPARC CPUs. It belongs to the Media sub-
system(MSS), an architectural unit designed for allowing external connections with
imag-ing devices (camera sensors, LCDs; HDMI controllers etc.) as well as allowing
use of the Hardware (HW) filters available in Myriad2. As such it is comprised by
the MIPI, LCD, CIF interfaces, the SIPP HW filters and well as the AMC block
which enables connections between these and CMX (SRAM) memory. Coordinating
frame input and controlling the pipelines set in place usually require some effort.
As such the Myriad2 platform offers the Leon RT RISC as part of the MSS. LRT
as a co-processor is supported with smaller L2 cache memory (32 KB) than LOS.
LRT is only one arbiter away from any Interface or HW filter register settings so it
can efficiently change any required parameters of the MSS blocks with the minimum

amount of delay due to bus arbitration.

LEON4

4-Port Register File

IEEE 754

7-Stage Flnnt:,nn-tant
Integer Pipeline

Co-Processor

Memory Management
Unit

AMBA AHB Interface n Minimum Configuration

. p I Blocks

}s-mza [l co-Processors

Figure 2.3: LEON 4 block diagram

SHAVES and Microprocessor Array UPA

The majority of the processing power of the Myriad 2 VPU orignates from the 12 pro-
prietary, custom-designed SHAVE v3.0 processors. SHAVE stands for (Streaming Hybrid
Architecture Vector Engine) and it contains wide and deep register-files coupled with a
Variable-Length Long Instruction-Word (VLLIW) controlling multiple functional units in-
cluding extensive SIMD capability for high parallelism and throughput at both a functional
unit and processor level. The SHAVE processor is a hybrid stream processor architecture
combining the best features of GPUs, DSPs and RISC with both 8/16/32 bit integer and

2.1 Vision Processing Units: Heterogeneity at its best 47

16/32 bit floating point arithmetic as well as unique features such as hardware support for
sparse data structures. The architecture is designed to maximise performance-per-watt,
while maintaining ease of programmability, especially in terms of computer vision and
machine learning workloads. In conclusion they adopt a computation-heavy role, while
control and more logic-heavy operations are left for the 2 RISK processors to handle. An

architectural overview is presented on figure 2.4

SHAVE 128 bit SIMD-VLIW Vector Processors

Streaming
2x 64-bit DDR ports Hybrid
Architecture
Vector
| Engine

oo 64Dt Gabit Integer 8/16/32 & FI Pt 16/32 bit support|
pi CMX Fort CMX Port Nominal Clock Freq = 600MHz @ 0.9V

128-bit AXI

e | SHAVE Processor v3.0

| VRF 32x128-bit (12 ports) |
A

| IRF32x32-bit T (18 ports)
U HITITRITIT T U T8 T
- PEU l BRU l LSUO l Lsu1 l IAU l SAU 1 VAU l cMU J
Predication| Branch Unit] Load-Store Load-Store | Integer Unit | Scalar Unit | Vector Unit | Compare-Unit

[\

|

8 parallel SHAVE VLIW Functional Units Supplied with VRF & IRF Data
128-bit Instruction-Fetch (Variable-Length Instructions max 192 bits)

Movidius*& © Copyright Movidius 2014

Figure 2.4: Shave v3.0 Block diagram [3]

Twelve (12) of these processors compose the Microprocessor Array (UPA) and they
share a common 256 KB L2 (I4+D) cache as well each shave has priority access to a CMX

slice. UPA can be controlled from the LEON processors with minimal overhead.

Hardware Filters

The SoC employs more tha 20 programmable Hardware Filters to accelerate Imag-
ing/Vision Kernels line Edge and Convolution Operator [3, 37]. Each accelerator has
multiple memory ports to support the memory requirements and local decoupling buffers
to minimize instantaneous bandwidth to and from the 2-Mbyte multicore memory subsys-
tem. A local pipeline controller in each filter manages the read and writeback of results to
the memory subsystem. The filters are connected to the multicore memory subsystem via

a crossbar, and each filter can output one fully computed pixel per cycle for the input data,

48 Chapter 2. Vision Processing Units (VPUs) & Frameworks

resulting in an aggregate throughput of600 Mpixels per second at 600 MHz.However, pre-
vious work suggest that these filters are designed for reducing power, instead of increasing

performance [38]. They can be controlled via the SIPP framework that is described later.

Memory Subsystem Caches and CMX

e CMX is short for Connection Matriz and it is [37] a 2 MB SRAM user controlled
memory, acting like a scratchpad area. The CMX block comprises 16 blocks (or
slices) of 128 Kbytes, which in turn comprise four 32-Kbyte RAM instances organized
as 4,096 words of 64 bits each, which are independently arbitrated, allowing each
RAM block in the memory subsystem to be accessed independently. The 12 SHAVESs
acting together can move (theoretical maximum) 12 x 128 bits of code and 24 x 64
bits of data, for an aggregate CMX memory bandwidth of 3,072 bits per cycle (1,536
bits of data). Finally it is noted that CMX is NUMA memory meaning that each
SHAVE has higher bandwidth/lower power access to its “own” local slice, however
it is also mentioned that Slice locality is a weak concept, each SHAVE can access
any other slice in CMX at the same cost, but inter-slice routing resources are finite.

In addition, a slave accessing data in its own slice is more energy-efficient [39].

e Cache Infrastructure. The Soc has a number of physically different caches and

cache hierarchies. A map of theese caches is provided below:

L1T | 2KB 2-way 16 bytes | read-only cache
1D | 1 KB Directly 16 bytes write-back or
Mapped write-through
L2 256 KB | 2-way, 1-8 partitions | 64 bytes | write-back
L1T | 32 KB | 2-way 32 bytes | read-only
L1D | 32KB | 2-way 32 bytes | write-through
write-through or
L2 256 KB | 4-way 64 bytes
copy-back
L1T | 4KB 2-way 32 bytes | read-only
L1D |4KB 2-way 32 bytes | write-through
L2 | 32KB | 4-way 64 bytes | Tt through or
copy-back

Table 2.1: Myriad 2 Cache system overview

e DDR is the main memory of the chip and has a size of 512MB. It is a volatile
LPDDR3 and all 14 processors may execute code, as well as access data from the

DDR via the cache infrastructure.

2.1 Vision Processing Units: Heterogeneity at its best 49

Direct Memory Access (DMA) controller

All these processors require cocurent memory access to both CMX and the DDR, as a
result a dedicated DMA unit is required. The SoC’s CMX DMA resides between the 128-
bit MXI bus and CMX memory [39]. It provides high bandwidth data transfers between
CMX and DDR in either direction. It also supports data transfers from DDR back to DDR
or from CMX to CMX, allowing data to be relocated within the same physical location.
shows a high level description of the DMA engine. The unit of work in the DMA engine is
expressed though transaction tasks. Up to four linked lists of transactions are maintained
in system memory, thus the DMA capability of serving transactions is not unlimited and

can be easily flooded with requests if the programmer makes unregulated use of it.

Slice Ports

I Spare Slice Ports CMX Slice III
CMX

CMX DMA Control
Reugisters

MXI Bus

Media Subsystem DDR Subsystem

Figure 2.5: DMA engine Overview

Myriad Development Kit & Build System

The Myriad 2 Development KIT (MDK) comprises common code, which include driver
and components,documentation support and toolchains that are required to develop ap-
plication for the Myriad Family products. Part of the the toolchain is a quite extensive
and complex build system based on GNU Makefile.

The build system is responsible for cross compiling the object code for the various
heterogeneous processors. Afterwards the linker generates the memory map, as per the

instructions of the programmer.

Streaming Image Processing Pipeline Framework (SIPP)

The model used by many image processing libraries, such as OpenCV, consists of per-
forming whole frame operations in series. This leads to high usage of DDR memory since
frames need to be read from and written to the main memory between operations. Even

though platforms with large CPU cache sizes can support this model, it is not suitable

50 Chapter 2. Vision Processing Units (VPUs) & Frameworks

for embedded system where memory size as well as power usage are limiting factors.
Therefore, a different approach is followed by Myriad2 which aims to maximise the usage
of available resources.The model used by SIPP framework consists of a graph of connected
filters. Image data is read from the DDR to the CMX memory via DMA filters and
after the processing the result is written back to the DDR. The processing is achieved by
streaming data from one filter to the other in a scanline-by-scanline basis. The buffers
used to hold the processed lines are located in the low-latency CMX memory, thus avoiding
the need for DDR accesses except for those in the first and the last stage of the graph.
Hence, benefits are gained by the SIPP framework regarding the performance as well as

the power drain of the developed applications.

" ! Ll

EalaT. MIPE MIPI =

‘MIPI

SoC : SIPP Hardware
o - Imaging Accelerators
Subsystem = 1| =MITPI

SHAVE
3 CORE 11

CMX Memory, | |
Arra |

y
(Multiported, 2 MiB)

SHAVE SHAVE SHAVE
CORE 4 CORE 5 CORE 6

Figure 2.6: ma2450 die [3]

2.1.3 Myriad X

Myriad X was introduced in 2017 and is the successor to the Myriad 2[4]. It is the
first VPU that was introduced under Intel’s brand and it is more of an evolution step than
a radical redesign. All the changes that were introduced is the result of transitioning to
TSMC’s 16nm FFC process. The extra space was utilised to add more functional units and
increase the SoC’s Frequency by 100Mhz to 700Mhz. More specifically, it is the first Intel’s
VPU to feature a dedicated hardware accelerator for deep neural network inference, i.e.,
the Neural Compute Engine(NCE). The chip’s performance as a dedicated neural network
accelerator is 1 TOPS for real-world applications. The SoC integrates 2 LEON4s and 16
SHAVESs and provides 512MB LPDDR4 DDR and 2.5MB CMX (Scratchpad) memories.

A comparisson of the two VPUs of the Myriad Family is presented on table 2.2

2.1 Vision Processing Units: Heterogeneity at its best

o1

C

I/O Multiplexing
(SW Controlled)

)

1z

Movidius

MIPI Interfaces DDR Memory
(x24 Lanes) (SPI, I2C, USB3, UART, CIF, LCD, ETH, etc.) (512MB)
SIPP HW Neural Compute
Accelerators Engine L1 Cache | L2 Cache
@ @ LEON OS (64KB) (256KB)
CMX Mernory LEONRT L1 Cache | L2 Cache
(2.5MB) <]_| (64KB) (256KB)
VLIW SHAVE Processors L1 Cache L2 Shared Cache
(x16) (3KB per core) (256KB)
T s

7

Figure 2.7: Myriad X block architecture [4]

Table 2.2: Comparisson between the Myriad Platforms.

Movidius Myriad Family VPUs

Compute Capacity

Vector Processors

CPUs

On-chip Accelerators

Neural Network Capability

On-chip Memory and Bandwidth

DRAM Support

DRAM Configurations

Encoder/Codec

Key Interfaces

Process

Myriad 2

>1 TOPS

12x SHAVE Processors
2x LEON4 cores
(RISC; SPARC V8)

~20 image/vision processing accelerators

1st Gen DNN Support
(Up to 100 GFLOPS)
2 MB

(400GB/sec)

Max: 8Gb

LPDDR2 (533MHz, 32-bit)
LPDDR3 (933MHz, 32-bit)
1Gbit LPDDR2 (MA215X)

4Gbit LPDDR3 (MA245X)

VGA, 720p, 1080p, H.264 (software encoder)

12x MIPI lanes (DPHY 1.1)
USB 3

SPI

128

SD

1GbE

28nm HPC+/HPC/HPM (TSMC)

Myriad X

>4 TOPS

16x SHAVE Processors

2x LEON4 cores

(RISC; SPARC V8)

20+ image/vision processing accelerators

Neural Compute Engine (DNN accelerator)
Neural Compute Engine

(Up to 1 TOPS)

2.5 MB

(450GB/sec)

Max: 16Gb

LPDDR4 (1600MHz, 32-bit)

No in-package memory (MA2085)

4Gbit LPDDR4 (MA2485)
M/JPEG 4K at 60Hz encoder

H.264/H.265 4K at 30Hz encoder
16x MIPI lanes (PHY 1.2)

USB 3.1

Quad SPI

125

2x SD

10GbE

PCle 3.0

16nm FFC (TSMC)

52 Chapter 2. Vision Processing Units (VPUs) & Frameworks

2.1.4 GAP application processors: GAPS8

Intel Movidius is not the sole provider of VPU’s, GreenWave Technologies, a spin-
off of from the PULP (Parallel Ultra-Low-Power Processing Platform) project [40] has
introduced the GAPS8 Al accelerator [5]. It is an IoT application processor that enables
massive deployment of low-cost, battery operated intelligent devices that capture, analyse,
classify and act on fusion of rich data sources such images, sounds, radar signatures and
vibrations.

The architecture is similar to that of the Myriad Family as presented on figure 2.8.

The most important aspects of the SoC are:
e A compute cluster of 8 cores.
e A Convolutional Neural Network accelerator (HWCE)
e A fabric controller (FC) core for control, communications and security functions

e A series of highly autonomous smart I/O peripherals for connection to cameras,

microphones and other capture and control devices.

PMU

Cluster

DC/DC

DMA
RTC

LVDS

Fabric
Controller

Serial 1/1Q

UART

HW
Sync

Dbg

SOC Unit
/I 10b CTRL
Hyper Bus
GPIOS

Figure 2.8: GAPS architecture [5]

<
>
a)
e
L2
=

2 S
3 o

All 9 cores support the same rich extension of the RISC-V Instruction Set Architecture
(ISA). The PULP open-source platform, provides the foundation for GAP8. This gives

GAPS a solid heritage based on several generations of test chips, a vibrant community and

2.1 Vision Processing Units: Heterogeneity at its best 53

a full tool chain to support software development for devices, which enables fast time to
market for integrators. The heterogeneity this time, does not orginate from different ISA
& architectures, but from different extensions and implementation of the same RISC-V
ISA.

All cores and peripherals are power switchable and voltage and frequency adjustable
on demand. DC/DC regulators and clock generators with ultra fast reconfiguration times
are integrated. This allows GAPS8 to adapt extremely quickly to the processing/ energy
requirements of a running application. All elements share access to a L2 memory area.
The cluster cores and HWCE share access to a L1 memory area and instruction cache.
Multiple DMA units allow autonomous, fast, low power transfers between memory areas
in parallel with computation. A memory protection unit is included to allow secured
execution of applications on the fabric controller.

Regarding general performance characteristics, GAP8 promises:

e Up to 250 MHz (FC) 175 MHz (Cluster) internal clock

e 8 GOPS at a few tens of mWs

e 5x5 convolution 16 bit-fixed point in one cycle

e FC delivers 200 MOPS at 10mW @1.2V/250MHz and 4mW @1.0/150MHz.

In terms of of Al and vision performance, the tiny darknet is executed at 0.8fps at
85mW, QVGA Face Detection at 0.4mW avg per fps and for autonomous drone navigation
(DroNet [41]) 15fps using just 84mW is achieved.

Overal when comparing GAPS8, to the Myriad Family of processors, it offers an order of
magnitude less performance but it does in a tenth of the Myriad’s total power evelop, so the
total performance per watt is comparable. GAPS8, however is interesting, due to the multi-
ISA heterogeinety. This paves the way for future architectures that deploy customised
cores with targeted ISA extensions depending the application domain, maximising the

efficiency, while requiring a small power budget [42, 43]

54 Chapter 2. Vision Processing Units (VPUs) & Frameworks

2.2 SWFrameworks: There is plenty of room at the top

2.2.1 Frameworks
OpenMP

OpenMP [13] is an application programming interface (API) that supports multi-
platform shared-memory multiprocessing programming in C, C++, and Fortran on many
systems, instruction-set architectures and operating systems, It consists of a set of compiler
directives, library routines, and environment variables that influence run-time behavior.

In its essence it is an implementation of multithreading, a method of parallelizing
whereby a primary thread (a series of instructions executed consecutively) forks a specified
number of sub-threads and the system divides a task among them. The threads then run
concurrently, with the runtime environment allocating threads to different processors.

A significant limitation though for VPUs is the requirement for direct compiler support,
which as of the time of this thesis is not available. However, OpenMP has been used
for other embedded systems [44], FPGAs and GPGPUs, thus in future VPUs might be
supported.

OmpSS

OmpSS [45] is a programming model that aims to extend OpenMP with new direc-
tives to support asynchronous parallelism and heterogeneity (devices like GPUs, FPGAs).
However, it can also be understood as new directives extending other accelerator-based
APIs like CUDA or OpenCL.

Asynchronous parallelism is enabled in OmpSs by the use of data dependencies between
the different tasks of the program. To support heterogeneity, a new construct is introduced:
the target construct. The goal of this construct is to specify that a given element can be
run in a set of devices. The target construct can be applied to either a task construct,
which means that the task can be executed on a device, or a function definition, which
means that this function has to be present in the device code.

Many heterogeneous architectures are supported including x86, Nvidia GPUs, ARM
and Mali as well as FPGAs [46]. Despite not currently supported, the Mercurium compiler
in which OmpSS is based upon, could be an attractive option for integration with the
VPUs.

MPI

The Message Passing Interface (MPI) is a standardised and portable message-passing
standard that function on a wide variety of parallel computing architectures. The standard
defines the syntax and semantics of a core of library routines useful to a wide range of

users writing portable message-passing programs in C, C++, and Fortran.

2.2 SWFrameworks: There is plenty of room at the top 55

The MPI interface is meant to provide essential virtual topology, synchronisation,
and communication functionality between a set of processes (that have been mapped to
nodes/servers/computer instances) in a language-independent way, with language-specific
syntax (bindings), plus a few language-specific features. MPI programs always work with
processes.

MPI is not very popular, in heterogeneous devices, due to incompatibilities of data
representation and interoperability of differing implementations of the message passing

layer.

OpenCL

OpenCL [47] is a standard for cross-platform, parallel programming of diverse accel-
erators found in supercomputers, cloud servers, personal computers, mobile devices and
embedded platforms. OpenCL greatly improves the speed and responsiveness of a wide
spectrum of applications in numerous market categories including professional creative
tools, scientific and medical software, vision processing, and neural network training and
inferencing.

The Myriad Family of VPUs does not directly support OpenCL, some functionality
though is supported via customised vendor libraries, that offer similar API. In addition
OpenCL support has been recently added for custom layers in OpenVINO, as described

later.

OpenVINO

OpenVINO™ toolkit [15] is a comprehensive toolkit developed by Intel, for quickly
developing applications and solutions on Intel hardware, ranging from CPUs to FPGAs and
VPUs.It accelerates applications with high-performance, Al and deep learning inference
deployed from edge to cloud.

It uses a model Optimiser and compiler that inputs a network from popular frameworks
like TensorFlow [48] and Pytorch [49] and then produces an intermediate representation
of it. This implementation is then optimised depending on the target platform and is
executed via the respective plugin.

The main limitation of this solution, is that only AI and Vision application are sup-
ported, despite the fact that in recent version primitive development of OpenCL based
kernels is added. Perhaps by exploiting this functionality, more complex applications could

be programmed using this framework.

OneAPI

OneAPI [6] is a very promising solution which aims to offer a Unified, Standards-Based
Programming Model that will eventually support all kind of heterogeneous architectures
including CPUs, GPUs, FPGAs, VPUs and other specialised accelerators.

56 Chapter 2. Vision Processing Units (VPUs) & Frameworks

Intel oneAPI products will deliver the tools needed to deploy applications and solutions
across these architectures. Its set of complementary toolkits—a base kit and specialty
add-ons simplify programming and help developers improve efficiency and innovation. It
is based on the DPC++ (data parallel C++) language.

In the current beta state, it ony supports CPUs and some GPUs but, when completed
it will create a common developer experience across compute accelerator architectures,
eliminating the need for developers to maintain separate code bases, multiple programming

languages, and different tools and workflows for each architecture.

oneAPI| for Cross-Architecture Performance

Optimized Applications

oneAPI Open Specification

"“ T

Data Parallel C++ oneAPI Libraries

Hardware abstraction layer

XPUs

OTHER ACCEL.

Figure 2.9: OneAPI architecture [6]

2.2.2 Operating Systems

Yocto Project

The Yocto Project [50] is a Linux Foundation collaborative open source project whose
goal is to produce tools and processes that enable the creation of Linux distributions for
embedded and IoT software that are independent of the underlying architecture of the
embedded hardware.

The project offers different sized targets from ”tiny” to fully featured images which
are configurable and customisable by the end user. The project encourages interaction
with upstream projects and has contributed heavily to OpenEmbedded-Core and BitBake
as well as to numerous other projects, including the Linux kernel. The resulting images
are typically useful in systems where embedded Linux would be used, these being single-
use focused systems or systems without the usual screens/input devices associated with
desktop Linux systems. As well as building Linux systems, there is also an ability to
generate a toolchain for cross compilation and a software development kit (SDK) tailored

to their own distribution, also referred to as the Application Developer Toolkit (ADT).

2.2 SWFrameworks: There is plenty of room at the top 57

The Yocto project does not currently support VPU’s but it will be added in future

versions of VPUs.

Chapter 3

The ParalOS Framework

3.1 Introduction and Overview

ParalOS , aims to facilitate efficient programming and DSE on VPUs. It’s ultimate
goal is to abstract the Hardware spesific features of the platform while allowing quick
deployment without preventing, low-level optimisation and the use of characteristics that
define this category of devices. The framework integrates multiple modules to both im-
prove the development efficiency as well as allow for platform-specific optimisations. These

are:

e SPM manager providing dynamic allocations, without any spatial overhead, that is

tightly integrated with the cache infrastructure

A computational unit manager that provided an intuitive High Level API for faster

application development, a dynamic scheduler and cache coherency mechanism

IO standardisation and Board initialisation support.

Decentralised inter-process communication (IPC) with MPI-like functionality.

a feature-full Visual Profiler

ParalOS Software Stack

The overall software stack for developing Applications for VPUs is presented on Fig.
3.1. It is noted that ParalOS does not substitute or overwrite the Low Level drivers and
APIs that are provided by the Vendors. Instead it complements them with the developed
Low Level segments and then builds upon them using the High Level segment. The later
can be thought as a middleware that provides a more intuitive and elegant foundation for

faster, more efficient and less error-prone application development.

99

60 Chapter 3. The ParalOS Framework

Application
Level

Midleware ParalOS High Level Segment

Vendor Development Kits

Myriad 2 | | Myriad X ParalOS: Paralos
Low Level MDK: MDK: Low Level
19 01_05 R12.6 Segment

Figure 3.1: The VPU software stack and ParalOS

Programming paradigm

The programming paradigm of the proposed ParalOS framework, which is presented at
high-level in Fig. 3.2, is based on dividing the development on the VPUs into two distinct
segments. The first segment, namely ParalOS: Low Level Segment , includes the low-level
implementation & optimisation of the functions that are designated for acceleration while
the second segment, ParalOS: High Level Segment , includes the high-level parallelism

and execution flow as well as the device configuration.

(3 - Low-Level Seqgment _
VPU-Based | SPM |
Function Isolation Low-Level | Manager |
for Acceleration Implementation| Optimisations |
— @ —— wrc |
| Y Scheme |
@ | transformations, SIMD, |
W—J | custom data types, eftc. I
High-Level Parallelizatior[l, "/~ A
& Device Configurati onrg Paralos Low-Level
[~ ———————————— 1 4) Optimisation
|| Computational I | === =
. HERMES I, High-Level
|| Unit Manager S 1/0 lolgmf:;Zin Power Memory /|
| | p Consumptlo Usage |
| Device GPIOs, clocks, l | Function
:— Configuration caches, etc. Ut111zat10n Profiling
High-Level Segment Visual Profiler

Figure 3.2: High-level architecture of the ParalOS framework.

The High-Level segment, which functions as manager and is executed on a GP core
(e.g., Myriad’s LRT), is responsible for orchestrating the Low-Level one. The latter is
executed by the workers, e.g., the SHAVEs. Due to its modular design, ParalOS can
be expanded to support more complicated workers, e.g., the SIPP filters, the NCE of
MyriadX, etc. The other GP core, e.g., LOS, is purposely left unused, so it can be

3.2 Hermes: 10 Communication Module 61

exploited for executing the non-parallelizable tasks with bigger cache and/or enabling any
required RTOS feature.

3.2 Hermes: I0 Communication Module

3.2.1 Role and Purpose

The purpose of this module is to provide a unified and standardised API for interfacing
with the I/O peripherals of the target device as well as providing extensions for the nec-
essary hardware configurations. This module is part of the ParalOS: High Level Segment
and is executed on the manager cores. The industry has adopted various standards and
APIs such as the CMSIS [16], that defines generic tool interfaces and consistent device
support.

3.2.2 Structure

In order to create a cross-platform transparent API, the module which is developed on
C++ consists of various submodules each corresponding to an IO peripheral and a main
object that is coupled with the target board/IC that acts as a board support package. Each
submodules consist of a platform agnostic interface and a platform specific implementation.

The overall idea of interfacing with the peripherals is derived from the Fverything is
a File [51] philosophy of UNIX, but differentiates from it by diving the peripherals into
three classes, based on the typical message size and the communication direction. These

classes are the following

e SD Small Size, Duplex Link. These are interfaces used mainly for commands and
debug messages like 12C & UART.

e LS Large Size, Simplex Link. This class represents the high bandwidth IO (> 1Gbps)
that serves as the primary data communication method. The LCD and Camera

Interfaces are illustrative types of simplex data I0.

e AD Any Size, Duplex Link. This category is dedicated to the Ethernet and the
overlaying network stack. TCP/IP messages can be used both as control and data

bus and in addition they provide two-way communication

3.2.3 Implementation

As mentioned above the developed high level interface is hardware agnostic, but the low
level implementation that was the target of this Thesis is the Myriad 2 IC and particularly
the MV0212 [52] and EoT [53] board. In figure 3.3 the module’s overall architecture is
presented, while an in depth analysis of each submodule is available in the succeding

sections.

62 Chapter 3. The ParalOS Framework

MV0212 EoT Board Generic Board
Host Dev

T—\T!—T ¥

Board Support

Package Custom Application
A Protocoll

Camera . P N . Ethernet-
LS Devices < Hermes IO > AD Devices Network Stack
Y
SD Devices
UART 12C

Figure 3.3: Hermes IO Architecture

Board Support Package

Modern SoCs support GPIO multiplexing [54], offering increased customisation and
functionality. VPUs are no different [55], since the various boards have allocated the
GPIOs in a different way. The configuration of the board is often a quite tedious process,
so it has been simplified through a single API call
int Hermes::Hermes.initialiseBoard(Hermes: :BoardVersion: :<Board Version>)

Internally, the submodule performs the following operations:
1. Internal GPIO multiplexer configuration.

2. 12C Bus initialisation for the auxiliary ICs like the power supply unit.

Small Size, Duplex Link Devices

Two of these peripherals have been implemented on Hermes for the Myriad 2, UART
and I2C. All the peripherals of this family follow the same API, that is described below.
The XXX symbol denotes the interface used (UART or 12C)

1. Hermes: :XXXCommunicator(<configuration parameters>).
This function initialises the peripheral and applies the provided configuration pa-

rameters, like the 12C peripheral or the system speed.

2. Next the int Hermes: :XXXCommunicator.connect(<configuration parameter>)
is called, and the conf. parameter can be the UART baud rate for example. During

this call the last steps of the peripheral configurations are performed and depending

3.2 Hermes: 10 Communication Module 63

on the returned status code, the peripheral is ready to be used.
The following commands are responsible for the data communication and they are

actually wrappers for the underlying vendor provided drivers.

3. Hermes: :XXXCommunicator.sendBytesRaw(void *buffer, int size)

The command transmits size number of bytes from th location pointed by the buffer.

4. Hermes: :XXXCommunicator.receiveBytesRaw(void *buffer, int* sizeRead,
u32 maxSize)
The command receives at most mazSize number of bytes and stores them to the
location, pointed by the buffer. The actual number of bytes read is returned to the
location pointed by the sizeRead.

5. Hermes: :XXXCommunicator.insistReceive(void *buffer, u32 size)
Supplementary to the previous function this call blocks the program execution until

exactly size number of bytes are received.

Large Size, Simplex Link Devices

This category consists of Camera interfaces (CIF), MIPI and LCD. Since the data
handling requirements are very demanding, they usually employ other SoC subsystems
such as the DMA engine for fast memory transactions. Moreover, the protocols for the
referred devices, are much more complex than the ones described on the previous sections.
As a result, the configuration process is less transparent as it will be described below for
the implemented CIF interface.

The (CIF) is a video and still image capture input interface. Its’ basic hardware image
signal processing (ISP) pipeline allows it to interface with simple CMOS image sensors,
with integrated ISP features, or to ISP chips. The main overview of the peripheral’s

architecture is presented in Fig.3.4.

GPIO input -
:
l Y Output AXI
Preprocessing |
Filters
CIF Block

Figure 3.4: CIF block simplified architecture.

The image is acquired via the GPIO pins, then forwarded to a series of primitive

input filters and then using the DMA engine, is forwarded to a specifed DDR location.

64 Chapter 3. The ParalOS Framework

Configuring the device is not a trivial task and for this purpose two layers of drivers are
offered by the MDK [39], namely the CIF' Low Level Driver and CamGeneric module.

Hermes simplifies this process by dividing the configuration and the runtime phase.
During the configuration phase the developers provides the required parameters using the
listed API function Calls

1. Hermes: :CIFCommunicator(CamType camType, u8 **camBuffer,
int numBuffers)
This function initialises the peripheral and provides the number and the memory
location of the buffers where the image will be stored. Multiple buffers are used for
IO masking and high level parallelisation of the the communication. The camType

refers to the predefined camera configurations that are provided by Hermes.

2. camErrorType Hermes::CIFCommunicator.config(I2CM Device *pI2cHandle)
Many of the camera sensors need external configuration by the host device, e.g.
Myriad, and usually this is facilitated by an I12C interface. When using such a
camera this function automatically initialises the 12C peripheral which will be used

later by the module.

3. camErrorType Hermes::CIFCommunicator.config(GenericCamSpec *camSpec,
CamUserSpec *userSpec)
With this function, the programmer provides the camera settings and the module
is responsible to apply them. They are inserted by defining the above parameters
structures. The GenericCamSpec refers to the camera specific settings like the image
size, number of input channels and bit depth, while the CamUserSpec is used to

determine the peripheral’s, primitive filter parameters

The second phase is the runtime phase and most of the functions described below are

self explanatory.

1. camErrorType Hermes::CIFCommunicator.start()

Starts the peripherals and accepts incoming images

2. camErrorType Hermes::CIFCommunicator.stop()

Stops the peripheral and no new images can be received.

3. camErrorType Hermes::CIFCommunicator.standBy(camStatus_type standbyType)
Sets the peripheral into standBy mode, where it does not receive new images, but it

is readily available.

4. camErrorType Hermes::CIFCommunicator.wakeUp()

change the mode from standby to accepting new images.

Finally, the module provides some more information regarding the received images, i.e. the
newFrameFlag, which informs the system that a frame was received and the newCamFrameCtr,

that keeps track of the number of the received frames.

3.2 Hermes: 10 Communication Module 65

Any Size, Duplex Link

This category represents the Ethernet and Network stack. Due to the versatility and
widespread adoption of network applications, support for TCP/IP communication is es-
sential. Managing this Netork stack, however, is not a simple task and thus requires HW
support (for PHY or MAC) in addition to the SW one. As a result this is the only module
of the ParalOS that requires external dependencies and particularly an underlying Oper-
ating System like RTOS, which will provide a BSD sockets API [56]. In the Myriad case
this is provided by the RTEMS RTOS, which is executed on LOS.

The Hermes component provides a simplified High Level API that utilises the underly-
ing OS APIs to provide a more intuitive and tailored for VPU applications set of routines.

The most important of the are the following:

1. Hermes: :EthernetCommunicator (<parameterList>)
This function initialises the Ethernet Communicator based on the parameter list.
The parameters that are specified are the device’s IP Address and subnet and port,

the address of the default gateway and the input buffer size.

2. Hermes: :EthernetCommunicator.connect())

The systems awaits for a client to be connected to the Device.

3. Hermes: :EthernetCommunicator.sendBytes(int size, dataType_t data_type,
void *buffer)
This function uses the custom application protocol to send size number of elements,

that each element is of data_type type which are stored in the buffer memory address.

4. Hermes: :EthernetCommunicator.receiveBytes(void *buffer)
This method call receives the data sent to the device, using the custom application

protocol and stores them to the specified buffer.

Similar functions for exchange of raw data without the application protocol (that is
described below) are available, as well as auxiliary methods to modify the initial configu-

ration parameters.

Hermes Ethernet protocol

The Hermes Ethernet protocol is a lightweight protocol, that provides minimal
encapsulation overhead and greatly simplifies the data exchange process. It is encapsulated
in a TCP/IP package.

A diagram showcasing the protocol is listed below. As shown, the protocol consists three

three distinct parts. The prelude, the payload and the checksum, that are described below

66 Chapter 3. The ParalOS Framework

Number of Datatype Checksum
Elements Payload
(4 bytes) (4 bytes) (4 Bytes)

Figure 3.5: Hermes Ethernet Protocol

Prelude

The prelude is 8 bytes long in total. The first four bytes hold an int, that determines
the payload’s number of elements. The final four, encode an integer which determines
the datatype of the elements. The following datatypes are currently supported, with a

planned extension to accommodate custom defined structs, or class objects.

o unsigned char (1 byte) o 8bit int (1 byte)

float (4 bytes)

o unsigned half (2 bytes) e half int (2 bytes)

double (8 bytes)

int (4 bytes)

e unsigned int (4 bytes) e char (1 byte)

e unsigned long long int * long long int (8 bytes) e string A null termi-
(8 bytes) e half float (2 bytes) nated char array
Payload

The payload consists of the actual message in byte format.

Checksum

A checksum mechanism is used as a final safe guard, to guarantee the message’s in-
tegrity. Currently a simple summing is used, where the total bytes sent/received are
summed and compared to the expected number of bytes. A more robust algorithm could
be potentially used, but further testing required in order to make sure the additional

computation overhead is kept to minimum, since this is a software decode protocol.

PC driver

A PC driver companion is also developed in python, to reduce the PC Client’s devel-
opment time and accelerate development and debugging. The API is similar to the one

written for the Myriad. The module can be install as an external package

Limitations

There are currently some limitations, some of which can be solved after more develop-
ment and some other, are dependent on the RTEMS OS.

3.2 Hermes: 10 Communication Module 67

e Auto Network Configurations. As mentioned earlier the ip address is configured
manually. This could potentially lead to confusion, when the Myriad is connected
to a network where there is no easy way to determine which addresses are already

in use. Unfortunately, the RTEMS BOOTP procedure does not seem to function
properly.

e Myriad Outbound Throughput. The RTEMS defines some buffers used to tem-
porally store the incoming/ outgoing tcp messages before communicating with the
Network. When continuous calls to BSD’s sockets send function are requested, the
following unexpected behaviour is observed. The OS informs the user, that all the
bytes are sent, but actually, they are just sent to the intermediate buffers and not to
the Network. A workaround is implemented, by reducing the buffer’s size to a very
small value. This forces to fragment the output message into more TCP packets,
whose payload is very short. The downside of this fix is, the very low payload to
total_bytes_ratio for the Myriad’s upload.

e User Defined Datatypes. Currently user defined datatypes are not supported,

but this could be fixed in a future version.

e Half Float. Half float is not supported on the PC driver’s side, due to encoding

issues.

e More Clients and Client Usage The communicator can currently act as a server
to a single client. More connections and client usage, could be added, but it is out

of scope for this thesis.

68 Chapter 3. The ParalOS Framework

3.3 SMPI: Inter Processor Communication Module

3.3.1 Role and Purpose

The majority of the algorithms when parallelised, require data exchanges between the
subtasks. The target platforms however, were designed to optimally execute embarrass-
ingly parallel, or very limited communication-wise, algorithms, thus offering basic options

for interprocessor communication (IPC)

In the Myriad case, sharing data between the VPU’s compute units is supported via
different methods such as the DMA engine or small register pipes. However, they are
applicable to either very large data blocks, e.g., more than 2KB, or very small, e.g., < 128
bytes respectively. As a result a module for addressing the gap between the aforementioned
methods is developed, that belongs to the ParalOS: Low Level Segment and is executed

on the worker cores.

3.3.2 Structure

The module’s APT is based on the popular and well established MPI [14] and offers
two main yet overlapping functionalities a) Message Passing and b) Synchronisation. The
algorithms and techniques will be discussed in the following sections, but first the archi-
tecture of the module will be described. The most important choice from the architecutre
prespective, is the implementation of a decentralised system, meaning that the majority of
functions does not require a central management mechanism. A circular buffer is assigned
to each and every worker that resides in the Scratchpad memory and is used as a receiver
for the incoming messages. This buffer is implemented using a two counter technique. In
addition to the SPM, the hardware provided mutexes are used form primitive synchroni-
sation and are expanded with the Virtual Mutex (Sec. 3.3.4) concept. An overview of this

architecture is presented on Fig 3.6

Data Exchange Buffers

S Buffer 1 []
UL Buffer2 []]]
SHAVE /| \rite SHAVE]
| HHI oo T —
| | |Buffer 12| | |
. J
Y
SPM Memory

Figure 3.6: SMPI Architecture Overview

3.3 SMPI: Inter Processor Communication Module 69

3.3.3 Management and Control Scheme

The configuration data for the SMPI Module are stored in the Shared SPM segments,
because of the low memory footprint of the configuration object and the fast uncached

access time on runtime. This object holds the data prepented on Lst:3.1:

struct SMPI_config_t {
// Pointer to the array of Buffer Pointers
// one buffer Struct per Workermlab_2 = [0.8500, 0.3250, 0.0980]

struct SMPI_buffer_t xxbuffers {
// the receiver circular buffer
volatile u8% circularBufferAddr;
// counters for the buffer
volatile u32 counters ...;
// other auxiliary Data and Flags
auxiliaryData ...;
};
// Pointer to the array of Barriers
SMPI_barrier_t *xbarrier {
// a boolean array holding the workers assigned to the barrier
u8*% workersInBarrier;
// other auxiliary Data and Flags as described late
auxiliaryData ...;
};
// Omne Vmutex Struct per VMutex described later
struct VMutexes *x;
// One HWMutex Struct per HW Mutex described later
struct HWMutexes * *;
SMPI_VMutex
// Size of each of the the reception Buffer
int size;
// Number of total Workers

int noWorkers;

Listing 3.1: SMPI Configuration Object

3.3.4 Virtual Mutex

The mutexes provided by the hardware are as expected quite limited and are utilised
by other subsystems and applications, thus prohibit the use of fine grained locking. An
attractive workaround is the introduction of the Virtual Mutex concept. Instead of di-
rectly accessing the hardware mutexes, the module offers virtual/software mutexes, named
VMutexes to the developer. All the defined VMutexes are inserted into a pool and using
a component called mapper, on runtime, they are mapped to hardware ones. Theoreti-

cally infinite number of virtual mutexes can exist, but due to the contention and limited

1

3

1

3

70 Chapter 3. The ParalOS Framework

scalability the performance degrades. The overview of the architecture is depicted on Fig.
3.7

Virtual Software
Mutexes

Hardware
Mutexes

Figure 3.7: Virtual Mutexes Architecture

The number and id of the hardware mutexes available to the mapper, are defined during
the initialisation phase and cannot be altered once the application starts executing. The
hardware mutexes are identified using a simple integer that acts as the id. The HW

mutexes are represented using the following struct (Lst:3.2):

struct HWMutex {
id; // The id of the hardware mutex
swld ; // The id of the virtual mutex that this HW mutex
// assigned to or HWMFREE if not assigned to a mutex

Listing 3.2: HW Mutex represenation

Similarly the virtual mutexes are represented using the struct (Lst:3.3)

struct VMutex {
id; // The id of the hardware mutex
hwld; // The id of the HW mutex that this VMutex
// assigned to or VMXFREE if unlocked

b
Listing 3.3: Virtual Mutex represenation
The API support two functions VMXLock (VMutexId) & VMXUnlock(VMutexId), that

provide the locking utilites. When a call to Lock is performed, the algorithm initially
checks if the VMutex is free by comparing the swld field with the VMX_FREFE value and

3.3 SMPI: Inter Processor Communication Module 71

if locked, it halts the execution via spinlockicng. In the case that is free, the mapper
component is then invoked, which iterates over all the available HW Mutexes for the first
unused one. If such a HW one exists, the corresponding structs are updated and the HW
one is locked. In no free HWMutex exists though, the execution is halted until one is
freed.

The unlock operation is quite simple, as the mapping between the HW and virtual
MXs is established. The HW Mutex is unlocked and then both virtual and HW mutexes

are designated as free.

3.3.5 Barrier Synchronisation

Quite often parallel applications require all the assigned workers to reach the same
point in order to continue the execution. This functionality is offered by the MPI using the
MPI_Barrier call, which blocks until all processes in the communicator have reached this
routine. Similarly, SMPI uses the method SMPIBarrierSync(int id, SMPI_config t
config). In order to support multiple concurrently executing applications, up to 8 dif-
ferent barriers can be used simultaneously. The SMPI_config_t struct is the controller for
the whole module and will be analysed later. The algorithm for the barrier method is

presented in 3.4 and is derived from [17]

counter := total_no_procs;
loop: When Worker reaches the Barrier:
VMutexLock ()
counter := counter 4+ 1;
VMutexUnlock ()
if counter = 0 {all procs reached the barrier} or
resumeFlag = true {a proc has exited the barrier} then
VMutexLock ()
if counter = 0 {first worker entering} then
counter:= total_no_procs;
nrPasses := nrPasses + 1;
resumeFlag := True
else if counter = 0 {last proc to exit} then
reset nrPasses;
reset resumeFlag;
else {generic proc}
nrPasses := nrPasses + 1;
end
VMutexUnlock ()
exit the barrier
end

goto loop

Listing 3.4: Barrier Synchronisation Implementation

In the previous algorithm the nrPasses indicate how many workers have reached the

barrier, the counter variable tracks the number of workers that have not yet reached it

72 Chapter 3. The ParalOS Framework

and the resumeFlag is an indicator that more worker can exit it. The algorithm contains

a couple of critical sections that are protected using the Virtual Mutexes.

3.3.6 Message Passing

The core of this module is the messaging passing functionality that enables the efficient
development and execution of complex algorithms in the examined VPUs. There are two
main function methods a send, which writes a message to another worker and a receive
one, that a worker uses to read the incoming messages. As explained in the Hermes

Ethernet Communicator, either raw data or a custom lightweight protocol can be used.

Custom Message Passing Protocol

The custom Message Passing Protocol consists of a packet that encapsulates the data
and adds a 3 byte header that includes 1 byte for the sender’s id and 2 bytes for the
message size. Optionally a 4 byte Cyclic Redundancy Code for error detection can be

inserted in the end to provide increased fault tolerance.

Sending Data

Sending Data to an other worker is a straightforward task. Initially the function checks
whether the requested data fits in the destinations circular receive buffer. If so the data
are copied to this buffer, otherwise an error code is returned. This procedure is protected
by fain grain locking using the VMutex interface. In case that the custom protocol is used,
the header is generated and is sent prior to the actual data, followed by the optional 4
byte CRC code.

Receiving Data

Receiving the data is a more complex process as additional functionalities are sup-
ported. There are four different receive functions, a) receive raw data, when no protocol
is used and b) receive data with protocol c) receive from sender, d) receive all (both with
and without protocol). The core of the receive function is always the same, the critical
section is locked and when no protocol is utilised the user specifies the number of data to
be read. When the protocol is used, the module self-deduces the number of bytes and the
sender, as a result, the developer can choose to filter the incoming messages, by ignoring
the received messages from other workers. Finally the ”"read all incoming data” function

receives all the available messages in the worker’s buffer.

3.4 Scratchpad Memory Management 73

3.4 Scratchpad Memory Management

3.4.1 Role and Purpose

The Scratchpad memory is one of the most important resources of the system that
greatly contributes both in the reduction of execution time [57] and power [58]. There
are two main issues with the SPM. First multiple applications that run sequentially or in
parallel, require static allocation of data and secondly how is the actual allocation imple-
mented. For this purpose a custom manual memory allocator for the SPM is provided,
which is part of the Paralos: Low Level Segment and is executed on the worker cores. It is
available in two flavours, i.e., only with static allocation, to be compatible with real-time

and mission critical applications, and one with additional support for dynamic allocations.

3.4.2 Related Work & Background

The topic of SPMs is a well established research field with many interesting publica-
tions. Earlier works performed allocation for program code [59, 60], program data[61], or
both [62]. Program code allocation needs to ensure that the program flow is unchanged
and supports recursive SPM allocation schemes can also be classified as compile-time and
runtime techniques based on the time at which SPM contents are decided. However all
the previous publications, have in common that they manage cache as a software con-
trolled cache in systems where implementing a cache coherency protocol, is very expensive
in terms of power and space [63, 64]. Consequently, a new scheme is similar to the one
proposed in [65], which manages both SPM and cache as a unified hybrid memory.

In terms of allocation techniques, multiple allocators are available today ranging from
embedded systems, like the TLSF allocator [7], multi purpose like the Dough Lea allo-
cator [66], and many/multi-core ones used in SotA data-centres like jemalloc Slab and
PHKmalloc as described in [21]. The most prominent of those, for VPUs and embedded

systems in gernealis the TLSF allocator.

3.4.3 Key Concepts
The key concepts of the SPM Manager are the following.

e Data Only. The Scratchpad memory is used only for allocating data and not for
program code. This is deduced from internal comparisons between the available L1
instruction Cache, the available 1.2 Data cache and the size as well as the locality of
the algorithms that are typically executed on VPUs. These comparisons show that
in most cases that the SPM is used for programming code as well, the performance
benefit is negligible, while in others worse execution time and energy consumption

is observed, because the lack of space leads to more memory transactions.

e Manual Allocation. Since all the examined platforms offer a cache system hierar-

chy, automating the data allocations is suboptimal. Therefore, considering yet again

74

Chapter 3. The ParalOS Framework

the nature of algorithms, manual allocation is used instead. The developer, who
has better insight of the execution flow of the application is responsible for deciding
which data shall be placed on the SPM and those that will be accessed using the
Cache Hierarchy.

Decentralised Management. Similar to the previous SMPI module, there is
no main controller for the whole SPM. Instead, each worker, that has preferential
HW access to a specific segment of the SPM, is running a discrete manager and has
exclusive access to the respective segment. This way the runtime memory operations

can be executed concurrently, without requiring course grain locking.

Physical Separation of Data & Headers. This is one of the most important
research-wise design choices presented on this thesis. The control and configura-
tion data on runtime are stored in a physically different memory, thus negating all

memory overheads and achieving complete utilisation of the SPM.

Finally the contents of each discrete manager is clarified. The manager is no more
than a collection of data structures that keeps track of the SPM memory usage and is

located in the DRAM section, being accessible from both manager and worker cores.

3.4.4 Static Allocation

Regarding the static allocation implementation, it emulates the stack memory alloca-

tion, and as a result, no de/reallocations are allowed. Specifically, it integrates a simple

pointer technique, similar to the FreeRTOS level-1 heap allocator [18], as shown in Lst:3.5.

Initially all the available memory of each segment is reserved in a byte array which is man-

aged by the worker’s memory manager.

1 void xCMMMalloc(const u32 size, cmxMemMgrConfig_-t *cmmConfig) {

// 1. Check if static allocations are allowed.
if (StaticAllocationsAllowed ()){
// 2. Check if there is free space available.
if (freeSpaceAvailable()) {
void* returnAddress =
(void*) &(manager.byteArray [manager.stackPointer]);
manager . stackPointer += size;
return returnAddress;
} else {
// error code for Overflow
manager . errorCode = CMM.OVERFLOW; return NULL;}
} else
// error code for invalid static allocation
manager . errorCode =
CMM_STATIC_ ALLOCATION_AFTER DYNAMIC_ALLOC; return NULL; }

Listing 3.5: Static Memory allocation

1

2

3.4 Scratchpad Memory Management 75

As shown the API offers a pseudodynamic allocation scheme where the CMMMalloc is a
function that statically allocates data, but it does so on runtime. As a result, when
employing multiple alogrithms that execute seqquentially and need to reserve space in the
SPM, there is no contention. In the Myriad Case an alternative method is available by
the vendor using the Runtime instantiated applications. This component packages every
different algorithm that is executed on the workers, it is packaged and stored on the DDR.
When an algorithm is called,the component is invoked and loads the data from the DDR
to the SPM, inducing overhead. The proposed method, does not have this overhead and

additionally provides a more user-friendly API.

SPM Managers

Structure 1
(stack pointer, current size)

| Structure 11 f---3
Structure 12
\)
Y
DDR Memory

Figure 3.8: Static SPM Manager Architecture

In addition to the CMMMalloc function a variant of it is provided the CMMMallocAligned
which has an additional argument the alignmentSize. Allocating aligned memory is
important, especially for DMA transactions and vectorised accesses where alignment issues
can cause stalls due to late read return. Moreover, the DMA agent, may be forced to
perform more transactions, than intended due to physical limitation of the size of the
memory line. Finally poorly aligned addresses, have an effect on the efficiency of the cache
subsystem. Appropriately this method allocates memory addresses that are alligned to a
boundary defined by the alignmentSize argument. The implementation is similar to the

one described in Lst:3.5, with the differences being presented on Lst:3.6.

void *CMMDMallocAligned (u32 alignmentSize, ...) {
if (StaticAllocationsAllowed ()){
u32 resiude = manager.byteArray [stackPointer] % alignmentSize

// 2. Check if there is free space available.
if (freeSpaceAvailableWithResidue()) {
void* returnAddress =
(void*) &(manager.byteArray [manager.stackPointer]) +
((residue) ? ((u32)alignmentSize — residue) : 0));
manager . stackPointer +=
(size + ((residue) ? ((u32)alignmentSize — residue) : 0));
return returnAddress;

} else {

76 Chapter 3. The ParalOS Framework

// error code for Overflow
manager . errorCode = CMMOVERFLOW;
return NULL; }
} else
// error code for invalid static allocation
manager . errorCode =
CMM_STATIC_ALLOCATION_AFTER.DYNAMIC_ALLOC;
return NULL;

Listing 3.6: Static Alligned Memory allocation

The static allocation technique is also employed to allocate all the static structures
(e.g., buffers) even if the dynamic allocator described below is used.
The final aspect of the previous codes that has yet to be explained is the configuration

structure, but it will be presented in the end of the section.

3.4.5 Dynamic Memory Management: Introduction

Dynamic Allocation is a technique for allocating data dynamically during running,
without a-priori knowing their size. In many critical and real-time application dynamic
alloc is not allowed, or heavily restricted due to possible unexpected behaviour errors. Two
allocators are presented that can be deployed on such systems the Two-Level Segregated
Fit memory allocator (TLSF) [7] and a custom Double Layer Bitfield Technique.

3.4.6 Dynamic Memory Management: TLSF Allocator

TLSF is a general purpose dynamic memory allocator specifically designed to meet
real-time requirements such as Bounded Response Time. The worst-case execution time
(WCET) of memory allocation and deallocation has got to be known in advance and be
independent of application data. TLSF has a constant cost O(1). The overall architecture
is presented in Fig.3.9

It implements a combination of segregated and bitmap-fits mechanisms. The use of
bitmaps allow to implement fast, bounded-time mapping and searching functions. TLSF
data structure can be represented as a two-dimension array. The first dimension splits free
blocks in size-ranges a power of two apart from each other, so that first-level index i refers
to free blocks of sizes in the range [2¢,2/*!]. The second dimension splits each first-level
range linearly in a number of ranges of an equal width. The number of such ranges, 2% |
should not exceed the number of bits of the underlying architecture, so that a one-word
bitmap Can represent the availability of free blocks in all the ranges. TLSF uses word-size
bitmaps and processor bit instructions to find a suitable list in constant time. The range
of sizes of the segregated lists has been chosen so that a mapping function can be used to
locate the position of the segregated list given the block size, with no sequential or binary
search. Also, ranges have been spread along the whole range of possible sizes in such a way

that the relative width (the length of the range) of the range is similar for small blocks

3.4 Scratchpad Memory Management 7

_______________________ .
First | ELNLERRE

tevel }[22] 27 | 2% Jowwed 20 [2 [2 [20] 1

— e —

[U+233 [[25+2%2 | [25+2° .
28542 P | 2B40 kg | 21549 By

Figure 3.9: TLSF Structure [7]

than for large blocks. In other words, there are more lists used for smaller blocks than for
larger blocks.

However, despite its potential it has the inherent problem of spatial overhead. In
particular, TLSF has a minimum allocation block size of 4 bytes, due to the required

storage for the header data. The contents of the headers are depicted in Fig.3.10

31 23 18 2 Rl |
Size ‘ H A) ,ﬁl
Prev_Phys_Block /{ Free block
Next_free /’/
Prev_free /

Prev Phys Block Used block

T = Last physical block
F = Free block

Figure 3.10: TLSF Headers [7]

3.4.7 Dynamic Memory Management: Proposed Double Layer Bitfield
Technique

The proposed Double Layer Bitfield Technique aims to mitigate the induced overheads
of the previous allocator, while maintaining a bounded and constant Worst Case Execu-
tion Time (WCET). The dynamic memory is performed after the static allocations have

finished. This constraint is placed in order to ensure minimal memory fragmentation.

78 Chapter 3. The ParalOS Framework

All the headers and control data are placed in optimised structures that reside in the
DDR, while a bitfield array is used to directly map the SPM to the DDR. Consequently,
any spatial overhead in the SPM is eliminated, and 100% utilisation is achieved. A more

in depth analysis is provided in the following subsections.

Bitfield Direct Mapping

The remaining memory after the static allocation is mapped with programmable gran-
ularity to a bitfield array that is stored in the DRAM, an idea that was introduced, in a
different context though, in [67]. Each bit of this map represents whether the associated
byte of the SPM is free. Therefore, assuming maximum granularity of 1 byte of minimum
allocation block size, this byte will require 1 bit in the DDR to be mapped. In the Myriad
family of devices, where each segment of the SPM has a size of 128KB, 16KB of DDR
memory will need to be reserved. If we multiply that with the number of workers, (16
in Myriad X), 256 KB will be used in total, or 0.5% of the DDR, quite insignificant in
comparison. Obviously, since the granularity is programmable, this number could be po-
tentially be reduced to facilitate applications with increased DDR memory requirements
and bigger size SPM block allocations.

Scratchpad Segment

Start Address Scratchpad Segment

end Address

0 Total Segment size /

| byte Map granularity

Granularity * 8 Bytes SPM

Figure 3.11: Bitfield Mapping Representation

Headers & Data Structure

In addition to the memory map, the already allocated memory blocks need to be
tracked, in order to know their size for the memory freeing operation. For this purpose a
header system, assuming the role of a ledger is implemented. The headers have different
composition depending on whether, they are allocated or free. If a header has not been
assigned to an allocated block, it is considered free. When a header is allocated, it holds
information regarding the block’s start address and size. Each field is 4 bytes long, so
overall the header has a size of 8 bytes.

All the available headers are pre-allocated in the DRAM during compilation for com-
pliance purposes with mission critical and real time applications. The free headers are
stored in a FIFO data structure, which is organised in a singly linked list (SLL) to guar-
antee O(1) runtime performance. The allocated headers, on the other hand are stored in a
Red-Black Tree (RBT), similar to the jemalloc allocator [19], where the key search index

is the start address of the block’s memory. Therefore, given N number of allocations, an

3.4 Scratchpad Memory Management 79

operation cost of O(log N) is guaranteed, and since N has an upper bound due to the
pre-allocation, the WCET is a-priori known and can be easily calculated. The headers are
encapsulated within a header node structure. This structure, in addition to the header,
has two more fields (Fig.3.12), the pointer-left /next-node, which is used to keep track of
the nodes, the left child in the RBT and the next node in of the SLL, in the stack and
the pointer-right, that points to the right child of the RBT and unused when on stack.
As a result, in terms of space, the node requires 8 more bytes therefore, increasing the
total size to 8 +8 = 16 Bytes. Assuming a total number of possible allocations of 10, 000,
that require an RBT with a height of 17, the memory requirements for the headers is
16KB, which for 16 workers translates to 256KB. Overall the memory requirements for
the memory manager is in the region of 512KB, or 1% of the total available DDR space.

Figure 3.12: Dynamic SPM Headers

An important aspect of the performance of the model is the RBT implementation,
which delivered better performance than other commonly used data, structures (e.g., Splay
Trees) [20]. Implementation wise, it avoids the use of recursion, reducing potential stack
overflow issues. Multiple calls to the same recursion function are a prime candidate for
runtime overflow issues, therefore omitted. In addition the RBTs compared to regular
binary trees, require one more bit of information, to determine whether the node is red or
black. This bit can be masked in the last bit of the pointer-right field, assuming aligned
addresses of the nodes. Moreover, the 16B size of the node is essential to be maintained,
when the Cache line size is also taken into consideration. For the Myriad family of devices
it is 16B for the L1$, thus maximising the cache efficiency, as all the headers and the
bitfield which are stored in the DDR are accesed via the cache insfrastructure. Finally,
due to the large extent of the implementation code no source or algorithms for the RBT

is provided instead a similar yet quite customised approach was derived from [68].

Allocation Policy

Regarding the selected allocation policy, extensive research has already been conducted
[21], nevertheless, no single best policy is found. The author tends to slide with [22], thus,
a first-fit policy is selected, increasing runtime performance with the hazard of higher

fragmentation. In detail, a 4 byte word is selected from the bitfield. The first available

1

80 Chapter 3. The ParalOS Framework

free bit is found and then consequently bits are checked until they amount to the requested
block size. If the end of the word is reached, the search continues to the next block. If
an allocated block, is found before adequate space, the search is reset. The algorithm

terminates when enough space is found, or the whole bitfield is searched.

Malloc & Free Operations

When a worker core calls malloc, it accesses the bitfield map to check if and where the
first valid available block is located. If such memory block exists, the respective bits are
marked as reserved, and a header is popped from the free headers struct, and populated
with the start address & block size. The selected header is inserted into the allocated

headers tree struct. This is pesented on the following source code Lst:3.7

void* CMMDynCBFMalloc(const u32 size , cmxMemMgrConfig.t xcmmConfig) {

// 1. Make sure that static allocation is finished.
checkStaticAllocationFinished ();
// 2. Check that maximum number of allocations is not reached
if (manager.numAllocs > MAXNO_ALLOCATIONS) {

manager . errorCode =

CMM_DYNMAX NO_ALLOCATIONS_EXCEEDED ;

return NULL;
}
// 3. Find a block of at least <size> bytes free
void* returnAddr =

manager. bitfield . findSpace (size);
if (returnAddr = NULL) {

manager . errorCode =

CMM_DYNNO_SUITABLE BLOCK FOUND;

return NULL;
}
// 4. Update the bitfield
manager. bitfield .reserve (returnAddr, size);
// 5. Allocate a new header
headerNode_t* node = manager. freeStack.pop();
// 6. Populate the header
node—>populate (returnAddr, size);
// 7. Insert the header to the RBT allocated data struct.
manager . allocatedRBT . insert (node) ;
// 8. Increase the number of allocations.
manager . numAllocs++;

return returnAddr;

Listing 3.7: Proposed Dynamic Allocation Operation

Freeing a memory is the reversed procedure: Firstly, the header that holds the memory
address is searched and removed from the tree, then the bitfield table is updated and finaly

the header is pushed to the free headers struct, while its contents are cleared. A simplified

1

3.4 Scratchpad Memory Management 81

algorithm is presented in Lst:3.8

void CMMDynCBFFree(void *xmemAddress, cmxMemMgrConfig_t *cmmConfig) {
// 1. Find and remove the header that holds the block to be removed.
headerNode_t* node = manager. allocatedRBT .remove (memAddress);
// 2. If no block is found, an illegal address was passed. Exit.
if (node = NULL) {
code.errorCode =
CMM.DYN_.TREE REMOVAL FAILED;

return;

}

// 3. Update the bitfield .
manager. bitfield . free (memAddress, node—>size);
// 4. Push the header into the free stack structure

manager . freeStack . push (node);

Listing 3.8: Proposed Dynamic Free Operation

3.4.8 SPM Manager Summary

Recapping, each worker has its own discrete manager instance responsible for the SPM
segment that is assigned to the worker. The manager is just a ledger containing the nec-
essary data to keep track of the SPM usage. The data are stored in a cmxMemMgrConfig t
object which resides in the DDR. The contents of the object as well as the functionality

of the manager is presented visually in Fig.3.13.

SPM Manager i Dynamic Allocator

I RB
: Free Headers mallocO)|Tree

|
ic All SLL
‘Tlat—""f—osaiolr'/| Hk— H k] H] " eader
| I '@ start address

[[stack pointer |, | .
|| | Bitfield Mapping e
I=—————" || 8bits | 16bits 70 bits o | A e
e ey e A —————
Ay o
8 bytes | 16 bytes 70 bytes ... |SPM Slice i SEM

Block k

Figure 3.13: SPM Manager Overall Architecture

N

82 Chapter 3. The ParalOS Framework

3.5 Computational Unit Manager

3.5.1 Role & Purpose

The Computational Unit Manager is part of the ParalOS: High Level Segment and is

executed on the manager cores. It serves a triple purpose:

e Developer Interaction & High Level API. It allows the developer to design
application in a graph based manner similar to the the Thread Building Blocks (TBB)
[69] & OpenMP [13], but enriched with an intuitive yet powerfull constraint System.

e Worker Interface and Stadarisation. VPUs are highly heterogeneous Proces-
sors consisting of multiple different computational units. This module provides a
standard interface that hides the inherent complexity of the system and handles
trivial operations, in addition to the initialisation ofa various parameters like the

cache subsystem.

e Scheduling & Execution Handling. The module when given an application
which was described using the provided API, is able to perform static and dynamic
scheduling during initialisation and runtime respectively, while also managing the

seamless execution of it on runtime

These key functions wil be discussed in detail in the following sections.

3.5.2 High Level API

The High Level API is the primary way that the developer interacts with the ParalOS
. The API is developed using an onion architecture. It consists of Building Blocks and
Constraints (Fig 3.14). A collection of building blocks with the constraints that define the
properties of the blocks as well the relationships with its environment, compose a layer of
the architecture. Progressively higher layers range from a single task to applications. The
building blocks and their constraints will be discussed, through an example application.
Assume the following code where functions A, C' & D are embarrassingly parallelisable,

whereas function B can be parallelised with the support of runtime messaging.

outputA = functionA ()
= functionB (outputA)
outputC = functionC (outputA)

e}
el
o+
ie]
=}
-+
vs)
|

outputD = functionD (outputB, outputC)

Listing 3.9: Example Programm to be designed using ParalOS

From the above code, the following characteristics can be deduced. Function A must be
executed prior to the B and C, while the later two can be executed concurrently. Finally

in order for D to be executed, B and C' must have finished.

3.5 Computational Unit Manager 83

P\Op\'\catio,,&

Tasks &
Task
Constraints

Figure 3.14: High Level API building block Layers

Tasks

The most primitive Building Block of the APT is the Task. A single logical function(e.g.
function A) is decomposed into smaller elements, each performing similar operations but
on a usually different set of data. These elements are called tasks. Another perspective
that a task can be thought of, is a simple POSIX thread, that is used by frameworks like
OpenMP.

Each task has also a set of various types of constraints. These are:

e Priority Constraints. The priority constraints express the need for ordering be-
tween tasks. A priority constraint is a number in the range [1,10], with 1 being
the highest priority and 10 the lowest one. Consequently, given N tasks that all
are available for execution, first will be executed those who have priority closer to
1. This is particularly useful for applications with messaging constraints, when the
developer knows a priori, which tasks need to be executed first, or in the case of
content dependent functions, prioritizing the tasks, that have higher probability of

more intensive workload.

e Messaging Constraints. Messaging constraints are used to describe the online
and runtime instant communication needs, between tasks. Each constraint consists
of three fields, i) a different task with which it will need to communicate, as well as a
ii) tag field, which serves as an identifier for he messages and finally iii) a value that
will be populated later by the dispatcher that shows the worker assigned to execute
the dependent task.

The key implementation points will now be discussed. A task as mentioned above
can be approached with a mindset similar to that of a thread. Consequently it has two
attributes, a void pointer to the struct object that holds the function parameters and an
entrypoint Tag. The entrypoint Tag and its necessity will be explained in section 3.5.4
but for now it can considered as the equivalent of the task’s function entrypoint pointer.

Additionally, the priority constraint is just an 8bit signed integer value and the messaging

84 Chapter 3. The ParalOS Framework

constraints are stored using C++ std: :vector container from the STL. In addition, other
auxiliary attributes, include but not limited to flags to determine the execution status of
the task, a vector holding other tasks that have messaging constraints with this task
etc. Finally, a pointer to the Task Group that this it belongs to is stored for performance
reasons.

The Task is represented as a C++ Object, therefore offer a list of various methods to
access interact with the object. This API is not presented, due to the great extend of it,

but is available with the ParalOS Documentation.

Task Groups

The next layer of the building block Layers, is the Task Groups (TG). The Task
Groups represent a single logical function (eg. function A) and consists of the tasks that
this function is decomposed into. In this version of ParalOS for performance optimisations,
the messaging constraints of the tasks are valid only when they refer to other tasks that
belong to the same T'G. Similar to other building blocks, it is decorated using the following

constraints.

e Priority Constraints. Equivalently to the Tasks, TGs have a priority system with
the same parameters, in order to determine the execution ordering between eligible

TGs.

e Logical Constraints. Logical Constraints determine the logical causality between
different TGs. In our example, functions B, C, shall be executed after A has finished
execution, because their input parameters dependent on the results of the later. A
TG can have multiple logical constraints, like the function D. In other words Logical

Constraints are used to define the data dependencies between the TGs.

e Worker Constraints. When having a heterogeneous system like the VPUs there
are many different compute units, that need to be mapped to the executing appli-
cations. An important yet difficult to answer question, in an automated execution
system, is the following: How fine grain should the mapping of the workers to the
algorithms be 2. In ParalOS the granularity is set to the Task Group Level, meaning
that all the Tasks that belong to a TG will be executed by the same collection of
workers. The characteristics of the required workers are defined via the Worker Con-
straints. It is noted that only the worker requirements are defined and no physical
workers are assigned to it in this stage. The worker constraints include the following

parameters:

— Worker Type. In VPUs there are many available worker types ranging from
specialised cores, to Hardware Filters etc. This field is used to determine the
type of workers required. In this version of ParalOS for Myriad 2 & Myriad X,
only SHAVE cores are supported as a worker type.

3.5 Computational Unit Manager 85

— Number of Worker Instances. This parameter specifies the minimum
amount of number of workers that are needed for the TG’s execution with-
out the risk of deadlocks. This is quite important when having tasks with
messaging constraints, in order to avoid scenarios when more tasks need to be
run concurrently, than the available workers, which will lead to a never-ending

program.

— Priority. Maintaining the same reasoning with the other priority constraints,
a TG can have more than one Worker Constraint. For demonstration purposes,
assume that the TG is responsible for executing a Convolution kernel on some
data and the VPU, provides dedicated Hardware accelerators in addition to
DSP cores. The developer using the priority fields, can elect the HW filter as the
preferred computational unit, but if it is busy, instead of stalling, the execution
is assigned to the secondary worker group. Another use case, where the priority
system is beneficial, is the multi-generation platform support. Myriad X is
equipped with a Neural Compute, whereas Myriad 2 is not, so by defining
higher priority to the NCE, supported functions will be execute on NCE in the
MyriadX and on the SHAVESs in the Myriad 2 case.

Regarding the implementation it is important to mention that the Task Group is
just an abstract collection of tasks that is used in order to improve the efficiency of the
scheduling algorithms and dispatching. As a result the Task Group objects consist of
mainly data structures. In particular, C++ std::1ist containers are used to hold the
pointers to other TG’s as part of the logical constraints, the id’s of the tasks that belong
to this TG ,as well as pointer to these Task’s objects.

An experienced reader is perhaps confused about the choice of the list container. An
important caveat is that when allocating objects to a vector using the constructor in
C++, if the size of vector exceeds a predefined value, the whole container will need to
be relocated, thus any pointer that was referencing any element of that vector would be
invalid. A potential workaround for it is the reservation of the container space beforehand,
but still the total number of Tasks and Task Groups is not a-priory known for all the
different applications and allocating extremely large blocks of potentially unused memory
is not efficient, so the vector solution was dismissed.

With lists, however, another important problem arises, Performance. Iterating over
lists and in general list operations, usually have a complexity of O(n), with n being the
total number of elements of the list. In order to compensate that, a mitigation mechanism
was implemented, called Double Representation Method. After all the Task and Task
Groups have created all the constraints are described during the static scheduling phase
(Sec. 3.5.5), the system is fully aware of the total space requirements that will be needed,
so storing pointers to elements of std: :vector is possible. As a result these vectors are
created so all the data are stored in two different containers, ie. in std::vector and

std::1list. This method, shows significant gains performance wise, because it allows a

86 Chapter 3. The ParalOS Framework

mixture of the best from both worlds. During the initialisation, std: :1ist provide very
fast 0(1) insertion and deletion, whereas during execution and runtime the std: :vector
allows for constant access time. In conclusion this tradeoff between the precious execution
time and the more abundant DDR space is justified and thus implemented.

Along that data, the TGs also hold auxiliary data used during execution, like the
number of tasks attached to this TG, finished flags, if all the attached tasks have started
or they have finished execution, the TG’s priority, a vector holding the data constraints,
ete.

Finally the API is not presented due to its size, but it is noted, that the Task Group
API is the most used API since that encapsulates most of the Task API as will become

clear in Section 3.7

Applications

The Application layer is the top layer of the building blocks. Each application consists
of Task Groups and their constraints. Contrary to the other building blocks, it does not
have any constraints as it is an autonomous object. Multiple applications can be executed
simultaneously.

Because of its autonomous nature, each application can be individually handled. In
section 3.5.5 a detailed explanation of the scheduling technique is presented, it is mentioned
though that the majority of information, regarding the task ordering is available during the
initialisation phase, and is independent from the execution flow. As a result optimisations
can be performed during initialisation or een offline. The later paves the way for the
implementation of a Packaging system. With Packages the binary of the applications,
at least the segment that is executed on the manager cores, can be exported during
development and imported on production, thus significantly reducing the initialisation
phase. Such a system is planned for ParalOS , but at the time of writing it is still
in heavy experimental (alpha) phase, as there are pending issues regarding the memory
placement and as result it is not yet officially supported.

The applications object like the Task Groups, adopts mainly a bookkeeping role, as
it holds the task Group object using the previously explained double representation tech-
nique. Moreover various flags are also stored that indicate whether all the tasks that are
part of this applications have been assigned, if the application is finished etc., that are
used by the scheduler. Like the other building blocks applications are uniquely defined by
their identification number.

The full API is once more not presented however some important functions are dis-

cussed below.

e Top level API. The fact that the Application layer is the highest abstraction layer,
it encapsulates the majority of methods provided by the lower levels. As a result
the developer mainly interacts with the Application API. Some of the most used

methods provided are the following:

3.5 Computational Unit Manager 87

— Task *addTask(int Id, SMTAG entryPointTag, void *taskArguments)
This method creates a new task for this application, with the provided Id. The
function to be executed is defined by the entrypoint Tag, while the associated
taskArguments, are located in the memory address pointed by the taskArgu-
ments pointer. It returns a pointer to the created Task, which is useful for

instantly accessing the Tasks API.

— TaskGroup *addTaskGroup(const int taskGroupId);.
Similarly to the above, this method created a new Task Group that belongs to
this application, with the given id. The pointer to the created object is again

returned.

— bool attachTaskToTaskGroup(const int taskId, const int taskGroupId)
This method attaches the previously created Task with the provided taskId, to
the already constructed Task Group object with the respective id.

e scheduleAndValidate(). This method is called after the algorithm is described
using the provided High Level API. The static scheduler (Sec.3.5.5) is invoked, that
performs the offline optimisation. In addition the application is validated, by check-
ing that all the constraints in all layers are valid, the id’s of the objects are unique

etc.

Finally, an additional reason that justifies the application level is Namespacing. The
APIs make heavy use of identifiers to differentiate the various, building blocks. If the
concept of applications was not implemented and many algorithms needed to be executed
concurrently, their respective Tasks and Task Groups, need to have unique ids. This is
particularly hard, or even impossible when considering that these algorithms may have

been developed by a different group of programmers.

3.5.3 Worker Interface

Due to the multiple and different worker types an interface was developed that provides
a unified API. In particular three core utilities must be supported : i) reset, ii) execution
and iii) power management. When the developer wants to use a worker it has to initialise
it. During initialisation a handler object is created which is responsible for managing the
particular worker. The handler depending on the various system parameters prepares the
underlying hardware for execution. Additionally, when a task is dispatched to the worker,
the handler is responsible for resetting, executing as well as shutting it down for power
preservation.

As mentioned this version of ParalOS , only supports SHAVEs. The initialisation/reset
options include preparing and flushing the assigned L2 and L1 caches, set the stack and
stack pointer and integrate the various module utilities. The execution phase, abstracts

the trivial operations that are built on of the provided Low Level SHAVE Drivers.

88 Chapter 3. The ParalOS Framework

3.5.4 System Configuration

The computational unit manager is also responsible for configuring aspects of the
system that will be later managed by the module. These aspects are the SMPI and SPM
Manager modules of the ParalOS: Low Level Segment , as well as the L2 cache subsystem
for the workers. In addition, the Workers and Worker Groups are defined using this API

and finally it provides methods for executing applications.

Module Initialisation

Initialisation of the ParalOS modules is pretty straightforward, as the initialisation is
performed using the predefined available configurations. However, not all modules are re-
quired for all applications, ie. the SMPI module is only used when there are on-the-fly mes-
sage passing requirements. The method void configFrameworkOptions(SMPI_config t
smpi_config, cmxMemMgrConfig t cmm config) based on which of the parameters are
used informs the system about the low level modules used and initialises their configura-

tion object.

Worker & Worker Group Creation

The target SoCs consist of multiple workers not all of which are used every time.
Workers of the same type are organised into Worker Groups. The API call
int addWorkerGroup(int workerGroupId, SMWGTYPE type, u32 workerMask)
creates such a Worker Group. The group is assigned the provided id, the type parameter
determines the Worker Type (currently only SHAVESs are supported) and the worker mask
express which of the workers to be used when multiple instances are available. Depending
on the bits that are set on the workerMask, the respective workers are used. The API
provides addition ways to select workers, like providing the first and last of a series of
worker, or selecting one worker instance per time. A worker can belong to more than
one group at the same time. The first time that a worker is selected, the associated

aforementioned handlers are initialised.

Worker L2 Cache configuration

VPUs have a number of different cache subsystems. One of the most difficult to manage
is the worker’s L2 cache subsystem as it is shared by multiple workers. Consequently,
difficult to handle coherency issues, arise. In addition optimal configuration of the caches,
can lead to significant performance improvements. Because of all these reasons, the L2$
subsystem along with the each worker’s individual L1$ is managed by the module.

The developer specifies the preferred cache configuration using the following functions.

e void configureCacheOptions(const SMOPT_CACHE cache,
bool readOnly = false)
The first parameter specifies which of the L1 instruction, L1 Data and L2 cache will

3.5 Computational Unit Manager 89

be used. The caches that are not selected are powered off, disabled and bypassed.
The readOnly parameter is an optimisation flag, that indicates if the cache will be
used only by read Only data. If this is the case much more relaxed assumptions will

be used during dispatching improving performance.

e int configureCacheParameters(SMCP_GROUPS Dgroups,
MCP_SIZES DsizePerGroup, SMCP_GROUPS Igroups, SMCP_SIZES IsizePerGroup)
This function is used to configure the L2 cache partitions. Before discussing its pur-
pose, it is noted that there is a maximum number of partitions that can be created
and partitions can have certain sizes. These limitations are caused by hardware and
cannot be bypassed. The parameter list is divided into two pairs. The first pair
is responsible for configuring the Data partitions while the second configures the
instruction one. The first parameter of each pair, defines the number of partitions,
while the second the individual size. The partition number can be any number in
the range of [0, 16], while the size can be any of the values: 16, 32, 64, 128 or 256. It
is noted that Myriad 2 can have up to 8 partitions while Myriad X up tp 16. When
calling this function, various validity checks are performed, to ensure that the total
cache size and number of partitions are allowed. If so, the workers are automatically
assigned to their partitions. Finally, the L2$ can be configured to be either data

only or instruction only, by omitting the respective pair in the parameter list.

These functions must be called after creating all the worker groups, since the respec-
tive cache attributes are populates based on the previous settings. Failure to do so

will lead to undefined behaviour and will most propably cach coherency issues.

Application Execution API

The application execution API serves two main purposes. The first being the worker
groups to applications assignment and the actual execution of them.

As mentioned previously when creating applications and especially the Task Groups, no
actual workers are assigned, but instead worker constraints/requirements are defined. The
actual mapping of workers is performed using the bool assignWorkGroupToApplication(
const int workGroupId, const int applicationId). The Worker Group with the ref-
erenced id is attached to the respective application. More than one Worker Group can be
assigned to the same application and similarly a WG can be simultaneously be attached
to many applications.

Application can be executed sequentially, in parallel or a combination of both, depend-
ing on the API call. When int executeApplication(const int applicationId) is
used a single application is executed, whereas int executeApplications(
applicationIdV_t appIds) will execute all the applications in the vector parameter con-

currently. In the Lst:3.10 an example a more complex flow is presented.

V)

90 Chapter 3. The ParalOS Framework

executeApplication (2)
executeApplications (applicationIdV_t::(0,1,3))
executeApplication (4)

Listing 3.10: Multiple Applications Example Flow

The application with id 2, is firstly executed and after it is finished, the apps 0, 1, 3
are started. When all 3 are finished, then app 4 is started.

Entrypoint Tags

In previous sections, the concept of entrypoint Tags was mentioned and described as
the analogous of a thread entrypoint function. A valid question that arises is the following.
Why are the Tags used instead of pointers to the functions. Answering that question is
not a trivial task, as it requires an in-depth understanding of heterogeneous systems.
Different types of workers, may be fundamentally different, supporting different ISAs or
even lack one. In addition workers might not share the same address space. As a result,
when the developer refers to a specific entrypoint function, it will couple this task to
the specific worker, bypassing the whole framework stack. In order to compensate for this
the function void mapEntryPointTags(u32 *entrypoints, SMTAG entrypointTag) is
provided. The developer uses this function to map the different entrypoints for each
worker to a logical Entrypoint Tag. Consequently, this mapping decouples the task from
the workers and the system can freely assign it to the most optimal oneas explained in

section 3.5.5.

3.5.5 Scheduling & Dispatcher
Introduction & Relative Work

Scheduling and task dispatching is perhaps the most important factor regarding the
performance and efficiency of the SoC. Overall scheduling tries to answer the question:
Given a set of tasks, and a collection of workers, what is the most optimal mapping of the
task to workers. This could be described as million dollar question, when considering the
increasingly more complex and heterogeneous systems that are introduced to the market.

Research wise, it is a very active field, the authors of [44] propose a modification of
the popular OpenMP framework for embedded, though homogeneous, devices, while in
[70] a novel method of SPM-based scheduling for many-core NoC SoCs is described. In
[71], a full stack for offline reinforcement learning-based scheduling and mapping of tasks
into processing elements is presented, however, it does not excel in content-dependent
workloads. Also, the scheduler of [72] provides on-the-fly efficient mapping, but uses
complex artificial neural networks for decision making.

For ParalOS a two level scheduler policy is implemented. Static and Dynamic, both
of which are performed transparently via the computational unit manager. The decision

behind this split is reinforced by the typical application nature and the computational

3.5 Computational Unit Manager 91

resources available budget. Most of the ordering decisions for the tasks can be made
during initialisation and offline, where more complex and intensive applications can be
deployed, while the dynamic scheduling algorithm used on runtime, is a faster and more

lightweight one.

Static Scheduling

The static scheduling is responsible for performing the serialised ordering of the tasks
i.e., what is the optimal execution of ordering for a serial processor; and checking for

possible violations. The validation checks include:

e Incompatible Worker Types. This is the first of two parts of the static scheduling
that can not be executed offline and independently of the target VPU. This valida-
tion step checks whether the actual worker groups assigned to the application are
compatible with all the Worker Type constraints of the Task Groups. An example
scenario is if a specific hardware filter is requested, no alternative worker is defined,

but this filter is not assigned to this application, or it is unavailable in this VPU.

e Number of concurrent tasks exceed the number of available workers. This
is the second part that is execution dependent and it is especially important for tasks
that have messaging constraints. If more tasks need to be executed concurrently,
than the available number of workers, it will lead to a potential deadlock, as a task
might stall until it receives a message from another one that is not running, halting

as a result the program’s execution.

e Duplicate IDs. All the other validations are independent of the system. The
module assumes that all building blocks have unique identifications number. As a

result if duplicates are detected, the application is characterised as invalid.

e Tasks belonging to more than one Task Groups. Every task must belong to a
single Task Group, otherwise the logical constraints between different Task Groups

are ambiguous.

e Messaging constraints between task of different Task Groups. Messaging
constraints are difficult to handle and guarantee a deadlock-free execution, thus for
performance reasons associated with the dynamic scheduler, messaging constraints

must be contained within the same Task Group.

e Circular Logical Constraints Overall an application is represented as a direc-
tional graph. If a circle is detected on this graph, this indicates a circular depen-

dency, which will send the program to an infinite loop.

For the serialised ordering, initially, all the T'Gs are sorted based on their priority. Next,
they are sequentially accessed and individually checked for possible logical constraints with

a TG placed later in the serialised order list. In this case, the latter one is placed before

1

92 Chapter 3. The ParalOS Framework

the checked TG and a priority check is performed to ensure that priority ordering is
maintained. This process is iterated until no more changes are performed, or a circular
dependency is detected. Finally, the tasks within a TG are sorted based on their priority.
Both TGs and tasks are placed in FIFO queues. The algorithm is also presented on Lst:

void static_scheduling () {
// 1. Sort the TaskGroups by priority.
allTaskGroups—>sort (priorityComparator);
// 2. Sort the logical constraints by priority. This way all the
// changes that will happen because of the logical constraints
// will still satisfy the priority ordering constraint
for tg : allTaskGroups {
lcs = tg—>getLogicalConstraints ();
lcs—>sort (priorityComparator);
}
// 3. Check That the logical constraints of the TaskGroups are met.
// Example: If taskGroups[3]=A with priority 2 and taskGroups[7]=B
// with priority 3, but A is logically dependent upon B
// then B must be executed prior to A.
changesMade = true;
while (changesMade) {
changesMade = false;
for (tg : allTaskGroups) {
lecs = tg—>getLogicalConstraints ();
testIndex = tg—>position ();
for(le : les) {
lcIndex = lc—>position ();
if (testld < lcIndex) {
allTaskGroups.splice (tg, allTaskGroups);
changesMade = true;
P}
// 4. sort the tasks in each taskGroup based on priority
for (tg : allTaskGroups){
tasks= tg—>getTasks ();
tasks—>sort (priorityComparator);

Listing 3.11: Static scheduling Algorithm

The time complexity, given N tasks and M TGs, is equal to O(N?M log(M + N)),
with an amortised cost closer to O(N log N). This cost, however, is not critical since the
static scheduling is performed during initialisation or even offline, and is exported in a

binary file for runtime use.

Dynamic Scheduling

The dynamic scheduling algorithm is executed on runtime and is responsible for the

fluent task dispatching and aims to minimise the worker’s idle time and task starvation.

1

3.5 Computational Unit Manager 93

An important design choice is the implementation of a non-preemptive policy, since the
lack of native hardware support and the nature of typical VPU workloads do not justify
the additional overhead of a preemptive scheduler.

Initially all the workers assigned to the application are initialised and the various
application’s execution flags are reset. Then for every running application, polling is
continuously performed to identify w free workers from the WGs that are assigned to it.
The polling technique is the only available method for determining the worker execution
status, because of the lack of a direct worker-manager interrupt system. The scheduler
then tries to dispatch to them up to w free tasks. The same technique is applied to all the
applications, until every task is assigned. We note that when a worker executes a task with
messaging constraints, all the workers of the same WG are locked from executing a task
from a different TG, thus avoiding any potential deadlocks. The algorithm is presented
on Fig.3.15

The complexity of this algorithm in both the space and time domain is O(A - M),
where A is the number of parallel executing applications and M the number of TGs per

application.

Dispatcher

A key module that is technically part of the dynamic scheduling is the task dispatcher,
which performs all the required low-level operations, e.g., setting the stack register and
resetting register files, before assigning tasks to workers. Also, a SW mechanism for pro-
viding system-wide cache coherency is implemented. In particular, when read-write data
are accessed, the dispatcher automatically invalidates and flushes the caches associated
with the selected workers w.r.t. configuration parameters provided by the developer, e.g.,
number/size of cache partitions. Moreover the dispatcher is responsible for updating the
execution flags of the assigned tasks. Finally, for power saving purposes, workers that can-
not be assigned to any remaining tasks, are automatically powered off. The dispatching

algorithm is provided on Lst:3.12

void dispatcher (task, work) {
// Step A Populate Messaging Buffers if the task has messaging constraints
if (task—>hasMessagingConst ())
task—>populateMessWorkers (worker—>id ());
// STEP B. Update worker’s, task and TG’s parameters runtime parameters
task—>updateParameters (); worker—>updateParameters ();
task—>getTG()—>updateParameters ();
// Step C reset the workerand prepare it for execution
worker—>reset (); worker—>prepare ();
// Step D Prepare caches
worker—>prepareL1Caches (); worker—>prepareL2Caches ();
// Step E. Execute the task
worker—>start (task—>entrypointTag (), task—>arguments());}

Listing 3.12: Dispatching Algorithm

94

Chapter 3. The ParalOS Framework

Dynamic Scheduling

Initialise assigned
workers

|

Reset Execution
Parameters

Wait v.vc{rkers to ¢ Yes AH‘Apps
finish Assigned
Unassgined Apps
y All Apps Checked
Clean Up For all Apps having™_
Unassigned Tasks -
All TGs checked, check next App
For each app
\ 4 All available workers No all available workers assigned
d Yes checkapps Assigned/checked Poll the Free poll again
En Workers W
For up to W For all TGs having o
[———] —-—"———" dispatched Tasks unassigned Tasks Yes check next TG
No check next TG
All messaging ¢
asks Assgine
Tasks < W

No

Get unassigned
Tasks T
Poll the Free
Workers W

For each TG

-————

_——— ——— TG constraints Ok

Workers Assigned

When the execution
reaches a Task Group
with messaging
constrains, the
execution context s
locked and tasks from
other Task Groups/
I applications cannot be
assigned.

Find the tasks with
messaging
requirements

I
I
I
I All available
I
I
I
|

Messaging
Constraints

Foruptow
dispatched Tasks
OrTifT<W

No

Check Next Tag Check Next Worker

Yes
Check Next Tasl

Erase from
free worker,

Erase from Worker Eligible
| Free Worker:

Checked

unassgined

Worker Egligible

No Check

Next Free Worker

Yes— Dispatch Task

All tasks of this TG assigned
Orno elgibile worker exists
Check next TG

Get Unassigned
Tasks of Tgroup

Has unassigned

Task For All

Unassigned
Tasks &
Dispatched
asks <

Erase from
free worker,

Erase from
unassgined
tasks

Check next Task

Figure 3.15: Dynamic Scheduling Algorithm

3.5 Computational Unit Manager 95

Messaging Handling

This paragraph is dedicated to disambiguate the way that messaging constraints are
handled. When the developer adds a messaging constraint into a task, this is added into
a messaging vector and the Task Group is tagged as a messaging enabled task Group.
During static scheduling it is checked if enough workers are available to satisfy all the
communication needs. When the execution reaches such a task group, the TG is locked
and no other task group can be executed until all the tasks of this TG are assigned.
More efficient ways are perhaps available for coping with the deadlock hazards of non
pre-emptive schedulers, but his is a topic of future work. When a task is dispatched the
worker field of the messaging constraints is populated with the Id of the worker. From the
worker perspective, the tags and worker Ids are available via accessing an object that holds
all the messaging constraints. This object is passed as a pointer to the task’s arguments
and the memory address can be retrieved after the static scheduling is finished. Finally,
it is noted that the messaging functionality is considered to be in beta phase, as more
testing is required to guarantee correctness and there is plenty of room for optimisations

regarding runtime performance.

3.5.6 Development Stages

The discussed Computational Unit Manager version is the last step of a gradual pro-
cess of adding, improving and expanding the module’s functionality. In the following
paragraphs the intermediate versions will be discussed and the needs that pushed towards

the improved versions.

Phase I: Task Pool

Offline Storing
FIFO

Dynamic Assignment LIEON -

ceo SHAVE
SHAVES Control

Figure 3.16: Phase I: Task Pool architecture

Initially the module was able to execute a single taskGroup, which did not have any
constraints. The workflow was the following: The developer creates a task pool by splitting

the workload into small (independent) tasks, and inserts them in a FIFO struct, as shown i

96 Chapter 3. The ParalOS Framework

nFig.3.16. Based on this FIFO policy, the proposed module assigns these tasks to workers
at runtime, i.e., the first inserted task is assigned to the first available SHAVE. This
method was extremely limiting as only very simple algorithms could be executed on the

VPu which was impractical for real world applications.

Phase II: Multiple Task Pools

The next iteration of the module was the ability to execute multiple task groups se-
quentially. This paved the way for supporting the execution of more complex pipelines
like Convolutional Neural Networks, where each layer was represented as a Task Pool.
This was very efficient but yet again limiting as networks with parallel layers could not
be represented. Moreover, since there is no way to determine priorities or data depen-
dencies the developer had to spent considerably time manually configuring the execution
order. Finally, the concept of abstraction layers was not implemented, thus porting the

application to different platforms, was not a trivial task.

Phase III: Constraints & Graph API

This was the major redesign that lead to the API that is presented on this thesis.
All te features previously discussed, were supported on this version, with the exceptions
of messaging constraints. The new graph API that was based on a constraints system,
proved to be a powerful method of expressing very complex algorithms. On the downside
early implementations was a step backwards, performance wise as the overhead in early

iteration reached value of up to 70%.

Phase IV: Double Representation & Optimisations

This version was focused purely in optimisations and ways to reduce the overhead
and no extra functionality was added. The scheduling algorithms were improved and a
smarter more fine grained way of managing the cache subsystems was introduced that took
into consideration the read/write characteristics of the data. Finally the most significant
performance gain was the introduction of the Double Representation Technique which

mitigated the linear operation cost (O(n)) of the used data structures.

Phase V: Messaging Constraints

The last addition, in order to be able to execute the vast majority of applications is
the support for scheduling of applications that are not embarrassingly parallel and require
runtime communication. This functionality is still in beta phase, but it is currently fully
functionally and passed the initial validation tests. However there is plenty of room for
improvement and optimisations, that is one of the top priorities on the future work list.

In Figure 3.17 the relative performance of the computational unit manager normalised

to the performance of Development Phase I is presented. As shown the Graph API (Phase

97

N N N N N N N N N NN NN NN

ATAATIAAIATAN NI ANNANNANNANNANN NN Y
ATIAALAATANAA LA LA N AN N NNN AN NNNNNY
AR TIAAIA AN NN AN N A NN NN N AN AN NN AN
ANNNUNNUNNNNNANNANNUNNANNNNNNN N NN

L N N NN N NN N NANNNNNANNANNNNNANNNNNNNNANANY

A N N N N N N N N N N N NN
A N N TN
A N N N N N NN
A N N N N N
R N N N N N N N N NN
A

AT TA AT TA T A A I AT AT A A AT A LA LA AL A LA LA AN AN LA NN N AN AN NN NN NN N AN Y
I NN
R N N N N TN
N NN
R N N N N N TN

R N WY
R N N N NN
N N N N N N NN
N N N N N N N N R R NN N RN E RN O R RN NN

R N S N S SN S S NS NSNS SNSSSSSNSSNSSSSSISSISINY

A N N N N N N N N N N NN
A N N N TN
R N N N N N N N N RN
A N N N N N N N T
R N N N N N N N N RN

ing

V (wo Msgs)

, may eventually reduce

ion

t

1misa

ble future opt

, possi

11

Development Phase

II
tial straightforward implementation when tasks with messag

mi

Normalised Performance of each Development Phase, relative to Phase 1

R N N N N N N N NNNNY
ATTAAIAALTAALAALAALANIANNAAN NN NN NN AN N AN Y|
R N N N N N N N NN
AATAAIAATANIAALAALANNA NN N NN NN NN AN NN
D N N N RNy
R N N N N N N TN
R N N N N N N N N RN
R N N N N N N N TN
AATAALLATAANAANAANANNANNAANA NN NN NN NN A NN AN

|

3.5 Computational Unit Manager

|
0 —
—

(X) owIL], UOTINIOXG] POSI[RULION

Figure 3.17
25% compared to the first one, which is attributed to the more intelligent cache invalida-

III), caused significant reduction in speed which were mostly fixed on the next iteration.
The latest version, despite all the added functionality shows only around 8% worse execu-
constraints exist. In embarrassingly parallel problems, though, the last version shows a

tion system. Finally it is noted that
the execution time even more.

tion compared to the

98 Chapter 3. The ParalOS Framework

3.5.7 Summary

The Overall design of the Computational Unit Manager is presented on figure 3.18.
The example program is described in the Application Design section using the High Level
API, while the static & dynamic scheduling and dispatcher architecture are also presented.

Application 1

. Worker
Worker
Constraints GrOUpl_
3 SHAVES: 1,i, k
N SHAVES
WG2

TG3

Applica
tion 2

Application Design

Execution Static Scheduling &
Order Error Detection
TG | TG TG Serialised
T4 | T1 | T3 | T2 .
13 4 Ordering
Dispatcher
Dynamic (Cache Coherency &
Scheduling Deadlock Prevention)
w w w w w w
5 = > > > > > s
- |= < =l |= >
2 (T T T T T T N
(%] (%] (%] (%] (%] (%]
| — Logical Const. > Worker Const (WC) || Task Group (TG) 1 Task Priority |
| +—Messaging Const (] Worker Group (WG) [Task TG Priority |

Figure 3.18: Computational Unit Manager Architecture

3.6 Visual Profiler 99

3.6 Visual Profiler

3.6.1 Role & Purpose

In addition to the previous modules an optional Visual Profiler is developed as a
Quality of Life improvement. It aims to support the developers during the design space

exploration and optimisation phase.

3.6.2 Implementation

The Profiler for the ParalOS perspective is implemented as a superclass for the Com-
putational Unit Manager, it uses the exact same API, with the addition of two auxiliary

function calls, that are used to determine the profiler options and are presented below

e proflerOptions(SMPROF_OPTIONS). This method is used to configure the profiling
options. The options include profiling total application time, fine grained task exe-

cution analysis, total power consumption and per worker memory usage.

e int addTagName (SMTAG tag, const std::string& str); This method is purely
for informative purposes, as its’ only use is to assign a name to the entrypoint tags.

This name is shown in the Visual Output instead of the Tag’s Id.

The profiler must be minimally invasive for precise measurements but more importantly
it must not alter the timing of the various tasks executed. If the profiler is slow, this
might mask potential racing issues between the workers or alter the cache behaviour due
to different access patterns.

In this context, benchmarking code and SPM usage indicators are automatically in-
jected in the computational unit module and the SPM Manager. This code consists of just
tracking a hardware timer of the precise moment various events like a task has finished
occurred. Regarding the SPM, counters are used to measure average and maximum usage.
The last part of the profiler is to generate the results. Depending on whether a console or
a visual output is preferred after the application has finished, the developer chooses one

of the following two functions :

e printResults(). This method produces a console output and the results are calcu-
lated in the inside the VPU as a result only a subset of the possible parameters is

presented. An example output is presented on Fig.3.19.

e serialiseResults(). This is the first step for generating a visual report.

Contrary to the console output, in the visual one no calculations are performed on the
target platform. Instead all the measurements are serialised using the Google’s Flatbuffers
[73] and the generated object is transferred via the JTAG debugger to the host PC. In the
host PC a python script is developed that using the numpy [74] & matplotlib [75], calculates

100 Chapter 3. The ParalOS Framework

and visualises the produced results. Finally, using Jinja Templates ! and the Bulma CSS
Framework ? an HTML report is automatically compiled by calling the makefile directive

make profiler_results

3.6.3 Output

Console Output

The Console Output provides a basic yet sufficient breakdown of the system’s execution

characteristics is presented as shown in Figure 3.19

UART: Board MvB212 initialized, revision = 1
UART: Shave 0 Execution Time 9.061000 ms Number of Tasks 14 Execution percentage 98.133%

UART: Shave 1 Execution Time 8.803483 ms Number of Tasks 13 Execution percentage 95.344%
UART: Shave 2 Execution Time 9.233417 ms Number of Tasks 14 Execution percentage 100.000%
UART: Shave 3 Execution Time 9.065742 ms Number of Tasks 14 Execution percentage 98.184%
UART: Shave 4 Execution Time 8.798390 ms Number of Tasks 13 Execution percentage 95.289%
UART: Shave 5 Execution Time 8.736607 ms Number of Tasks 13 Execution percentage 94.619%
UART: Shave 6 Execution Time 9.212227 ms Number of Tasks 14 Execution percentage 99.771%
UART: Shave 7 Execution Time 8.734785 ms Number of Tasks 13 Execution percentage 94.600%
UART: Shave 8 Execution Time 8.751828 ms Number of Tasks 13 Execution percentage 94.784%
UART: Shave 9 Execution Time 8.746145 ms Number of Tasks 13 Execution percentage 94.723%
UART: Shave 10 Execution Time 8.774615 ms Number of Tasks 13 Execution percentage 95.031%
UART: Shave 11 Execution Time 8.779183 ms Number of Tasks 13 Execution percentage 95.081%
UART: Shave 0 Average Memory Usage 112.000 KB
UART: Shave 1 Average Memory Usage 112.000 KB
UART: Shave 2 Average Memory Usage 112.000 KB
UART: Shave 3 Average Memory Usage 112.000 KB
UART: Shave 4 Average Memory Usage 112.000 KB
UART: Shave 5 Average Memory Usage 112.000 KB
UART: Shave 6 Average Memory Usage 112.000 KB
UART: Shave 7 Average Memory Usage 112.000 KB
UART: Shave 8 Average Memory Usage 112.000 KB

UART: Shave 9 Average Memory Usage 112.000 KB
UART: Shave 10 Average Memory Usage 112.000 KB
UART: Shave 11 Average Memory Usage 112.008 KB
UART: Total Time = 9.276261 ms

UART: Total Power = 1144.455 mW

Figure 3.19: Example Console Output

Visual Output

The produced HTML report is organised in a number of cards. The first card (Fig
3.20), shows information regarding the selected profiler results and System’s Configuration.
More specifically the number of workers (SHAVESs) deployed, the system’s frequency and
the maximum possible SPM (CMX) that is available to each worker. In addition the
application’s name and the generation time is also presented.

The Profiler can also measure the VPU’s power consumption. This feature depends
however on the SoC’s board as it requires an external power meter IC that is connected to
the host platform via an I2C interface. Currently only the MA2x50 MV0212 & MV0180
evaluation boards are supported.

The total system’s results (Fig. 3.21) are generated when the total time or power

options are selected. It includes, depending on the developer’s choice, the total application

"https://jinja.palletsprojects.com/en/2.11.x/
https://bulma.io/

3.6 Visual Profiler 101

Visual Profiler Report

Auto Generated on 10/15/2020, 09:55:37
ParalO$

Profiler Options

Task Time Total Time Memory Power
Enabled Enabled Enabled Enabled

System Configuration

Shaves Used System Frequency Max CMX Memory per Shave
12 600000 Khz 120.0 KB

Figure 3.20: Visual Profiler System Configuration

Total Power:

1050.8 mW
.]

Total Time:
682.097 ms

Figure 3.21: Visual Profiler Total Results

execution time and the maximum power consumption of the VPU. The bar below the
power consumption compares the measured power to the platforms power limit.

In Fig. 3.22 the worker related results are presented. These are generated when both
task and total time options are enabled. The first line provides aggregated worker infor-
mation, like the average and maximum task execution time, the average worker utilisation,
and the induced computational unit manager’s overhead. The later is calculated as the
maximum cumulative worker execution time subtracted from the total execution time.
The presented figures include the number of tasks assigned to each worker, a heatmap
to express the shave’s utilisation time and the final figures, that compare the worker’s

execution time.

102 Chapter 3. The ParalOS Framework

Shave Utilisation and Execution Time

Average Execution Time Max Execution Time Max Tasks Average Tasks Average Utilisation Scheduling Overhead
298.043 ms 647.766 ms 9 7.50 43.70 % 1.03324 %
)] Shave Utilisation
Execution Time per Shave (ms)
SHAVE 1 SHAVE 2
600 4 32.80 % 57.57 % 80
5001
W
E SHAVE_4 SHAVE 5
g 400 43.07 % 56.18 % [60
£
c
2 3004
3
o
1)
= =40
200 A SHAVE_6 SHAVE_7 SHAVE_8
42.05 % 35.57 % 16.27 %
100
20
0 B
SHAVE_9 SHAVE_10 SHAVE_11
01234 56 7 8091011 19.46% 52.25 % 49.67 %
Shave Id
0
SHAVE 0

SHAVE_1 SHAVE_11

SHAVE 5
SHAVE 6

Figure 3.22: Visual Profiler Worker Performance

Shave Id

Tasks Executed per Shave

11
10

5]

Number of Tasks

3.6 Visual Profiler 103

Function Profiling and Distribution

Function Distribution among SHAVEs

SHAVE_O SHAVE_1 SHAVE_2

Function System Profiling

SHAVE_3 SHAVE_4 SHAVE_S

SHAVE 6 SHAVE 7 SHAVE 8

SHAVE_9 SHAVE_10 SHAVE_11 ® TAG D
® TAG1
TAG 2

Figure 3.23: Visual Profiler Function and Task Benchmarking

The next card (Fig.3.23) showcases the function profiling when more than one tags/-
functions are used. The left figure indicates how many different tags are executed on each
worker, while the right one presents the total distribution of functions into all the workers.

The last card (Fig.3.24) contains the scratchpad memory usage results, when the re-
spective option is selected. The figure shows the average and maximum SPM usage for
each worker.

Finally, it is mentioned that in the current version of ParalOS only Myriad 2 is sup-

ported and support for Myriad X is scheduled for the next iteration of the framework.

104 Chapter 3. The ParalOS Framework

Shave Memory Usage

Shave Memory Utilisation

CMX Memory in KB

Shave Id

Bl Average Memory
B Max Memory

Evangelos Petrongonas © 2020 ParalOS Visual Profiler for Myriad 2

microlab, School of Electrical and Computer Engineering, National Technical University of Athens

Figure 3.24: Visual Profiler Worker Memory Report

3.7 Workflow 105

3.7 Workflow

3.7.1 High Level API Usage Example

In this section a brief example of how the High Level Segment is used to develop
Applications using the ParalOS High Level Segment. As an example the application
described in section 3.5.2 will be presented in the flowchart of Fig.3.25.

Some of the key usage notes are described below.

e (Step 1) The whole system is managed by a single object of the Computational Unit

Manager class.

e (Step 2) Depending on which of the 2 parameters are provided, the system deduces,

which low level submodules are used and initialises those who are.

e (Step 6) Each of the the worker_entrypointsX array holds the memory address
of the entrypoint of the different functions that thw workers can execute. It is
mentioned, that despite whether all the workers will be used, it is imperative for the

correct system execution that all possible entrypoints are defined for every worker.

e (step 8) The API provides various methods to perform the same operation, like the

priority definition.

e (Step 10) The Static Scheduling can be substituted with the

schedulingAndValidation method during development.

e (Step 12) During this step the information regarding the messaging execution are
passed to the task arguments in order to be available from the worker’s execution

perspective.

3.7.2 Low Level Development

The low level development is pretty straightforward and follows the same paradigm as
the one proposed by the various Programming Guides [39, 76]. The only difference is the

use of ParalOS Low Level Segment modules for memory management and IPC

3.7.3 13 Steps to Success

Despite relating the number 13 with misfortune and a rival football team?, in the Par-
alOS context it represents the maximum number of steps required from the initialisation
of VPU to the application’s execution. This number is of great importance, especially
for beginners, who by simply reusing the same function code, with small alterations, can
execute their programms to the VPUs. Equally important is the ability to speedup Devel-
opment and DSE, without compromising or restricting their ability to perform low level

Ninja Optimisations [77].

3Panathinaikos AO

Chapter 3. The ParalOS Framework

Example Program

1. Create a computational unit
manager instance:

ComputationalUnitMgr cm

2. Initialise Framework Options
cm.configFramework(

&smpi config: &spm_config)

3. Create worker Groups
cm.addWorkerGroup (0,
SMWGTYPE::SHAVE, 0, 5)

106

worker_entrypointsA[12]
worker_entrypointsB[12]

Worker Group 0: Shaves 0-7
Worker Group 1: Shaves 8-10

4. Configure Cache Options
cm.configureCacheOptions(L1 Data Cache Bypassed,
SMOPT_CACHE::L1INSTRUCTION readOnly = false
, SMOPT_CACHE:: L2

v

5. Configure Cache Paramaters
cm.configureCacheParams(
SMCP_CG2::SMCP_SIZES::CS128,

The L2 Cacheis configured as
Data only, and is divided into 2
segments each with a size of

SMCP_TYPE::L2_INS) 128KB
6. Map Entrypoint Tag.s to functions The same method is used to
em.mapEntrypointTags(map the other functions B,C,D,
worker_entrypointsA, SMTAG::TAG1) to TAGS 2, 3 respectively

7. Create an application
Application* app =cm.addApplication(0)

v

8a. Create the Task Groups
Task Arugments TaskGroup* tGroup =app->addTaskGroup(0)
tGroup->addWorkerConstraint(SMWGTYPE:

:SHAVE, 0, 5)

taskArgs argsA|[20] ..
taskArgs argsB|[8] ..
tGroup->addPriorityConstraint(CM_MAX_EX;
A ;

8b. Create the Task Groups
TaskGroup* tGroup =app->addTaskGroup(0))
SM_DEFAULT_PRIORITY) The same method is used for

the other Task Groups

tGroup->addLogical Constraint(0)

y

9. Create the Tasks
Task* task = app->addTask(3,
o id*
SMTAG:TAG 1.' void*) SfargsBIO] It is assumed that the task with
task->addm ingConstraint(2, messid) 1d 3 has already been created
task->addPriorityConstraint(4) v
app->attachTaskToTaskGroup(3,1)
10. Static Schedule
app->schedule()

11. Optional Application Debug and Export The 2 boo{lean paramete'rs
. refere to print the constraints
app->printTaskGroups(true, true)
of task Groups and
cm->exportApp() N
tasksrespectively

v

12. Update the task Arguments about the
messagingTasks
cm->updateMessValue(argsA[1].messParam)

v

13. Assign Worker Groups to application
cm->assignWorkGroupToApp(0,0)

v

14. Execute Application
cm->executeApplication(0)

Figure 3.25: Example Workflow Application

3.8 Reliability & Fault Tolerance: A first approach 107

3.8 Reliability & Fault Tolerance: A first approach

An important aspect of embedded systems design in gerneal, is the concept of reliability
and fault tolerance. Quite often these devices are employed in real-time (RT) and mission
critical scenarios. Vision Processing Units, due to their high performance, are even more
likely to be used in RT applications like Advanced Driver Asistance (ADAS) in autonomous
cars, or for autonomous operations in UAV [78].

The main purpose of ParalOS was not to tackle theese issues however in every step of
development design choices were made in order to facilitate, future extensions that address
these important issues. Nevertheless in its current state ParalOS provides some utilities

to improve reliability these are:

e Hermes & SMPI Protocol checksums. The data exchanges both within the
SoC’s subunits and the various IO Interfaces are a common suspect for execution
abnormalities. A compensation mechanism is provided via the custom message pro-
tocol, via the optional crc mechanism. If the CRC code and the received data do

not match the system can be programmed to request again the data.

¢ SPM Manager & Dynamic Allocations Coding standards , like the JSF Air
Vehicle C++ [79] and MISRA C++08 [80] are adopted. These standards prohibit
the use of dynamic heap memory, while more recent ones [81] permit it under strict
conditions. For compliance’s purposes the SPM Manager is provided in two flavors.
One that only supports static memory allocation and one with dynamic. Even so
the dynamic manager, provided a guaranteed WCET therefore can be utilised with

caution.

e Computational Unit Capabilities The Computational unit manager does not
employ any mitigation techniques. However, it can be manipulated in a way to
increase the application’s robustness. Triplication and polling is very easily devel-
oped, while the cache subsystem can be bypassed. In addition due to its modularity,

developers can add extensions to support more advance functions.

Chapter 4
Appications and Evaluation

The evaluation is performed on Myriad 2 and MyriadX using both synthetic tests,
designed to stress specific aspects of the systems as well as, real applications that are
representative of the algorithms typically deployed in such platforms. The applications
include Convolutional Neural Networks and Visual Based Navigation Algorithms (VBN).

Finally a qualitatevly analysis on the reduction of development effort is presented.

4.1 Evaluation using Synthetic Benchmarks

4.1.1 Memory Manager

The SPM Manager of the ParalOS: Low Level Segment is compared ro the TLSF
[7], the most prominent allocator alternative, as established previously for the VPUs and
embedded systems in general. Both allocators are implemented and evaluated on the
MyriadX VPU. For the evaluation,the following test is employed.

The evaluation program consists of a single task that is executed on one shave, since
the SPM is decentralised. Additionally the L2 cache is configured in 1 partition of 16Bytes
for data, better simulating the real use conditions. Overall it performs 3n allocations each
having a size of B bytes. The test is divided in two phases: In the first phase n successive
allocations are performed, followed by the same number of frees, aiming to measure the
maximum used memory and the overall spatial performance, The second performs another
2n operations in a random pattern, i.e., which they are either malloc or free, in order to
examine the timing performance. It is guaranteed that the pattern will never request to
free a block that has not been allocated, or request to free the same block more than once.
The results of our evaluation test are presented in Table 4.1.

Regarding the memory usage, the results show that the proposed method does not
induce any spatial overhead. Additionally, up to 33% reduced memory footprint is achieved
compared to TLSF. In extreme cases, e.g., when a single byte is requested, the proposed
framework achieves 93% better spatial performance. The latter improvement was observed

when allocating single bytes and it has to be noted that TLSF does not support direct

109

110 Chapter 4. Appications and Evaluation

Table 4.1: Evaluation of the proposed SPM Manager

Test Memory Usage (KB) Execution Time (ms)
(n x B) TLSF[7] Proposed Diff (%) TLSF[7] Proposed Diff (%)

5Kx4B 30 20 -33 1.342 1.457 +8.6
1Kx8B 10 8 -20 0.458 0.472 +3.2
500x16B 9 8 -11 0.343 0.362 +5.8
100x128B 13 12.8 -1.5 0.289 0.304 +95.3
10x1KB 10.02 10 -0.2 0.206 0.210 +2.1

allocations of less than 4 Bytes. In this case a 4 byte block is returned instead. This
reduction, however, tends to decrease as the requested block size increases, providing
negligible benefits for block sizes greater than 1KB.

Regarding the timing performance, higher execution times are recorded which are
justified by the different physical location of the manager’s metadata. Nevertheless, this
overhead is steadily below the 10% mark, maintaining comparable execution times. The
limited overhead cost is attributed to the exploitation of the cache hierarchy. In particular,
the module’s control structures, which are stored in DDR, are accessed via the L1$ & L2$

infrastructure, thus providing a compensation mechanism.

4.1.2 IPC Throughput

The next benchmark, evaluates the performance of the SMPI’s IPC scheme on Myri-
adX. The test’s purpose is to broadcast a fixed amount of total initial information among
workers, which use fixed size packets to transmit sequentially their own share of data to
every other worker. In other words, assuming an image I is spread equally among the
workers, the algorithm’s purpose is at the end of the execution for all workers to have
received the whole image. The comparison relies on the method used to transmit the
messages. On the one hand the default technique provided by the vendor is using, which
involves the DMA Engine for runtime communication and the other is utilise the proposed
SMPI API.

The results presented in Fig. 4.1 indicate that the SMPI’s IPC Scheme offers up to
6x better scaling. In particular, as the number of workers increases, the total number of
messages increases and floods with requests the single DMA engine available on the chip
overloading it and consequently, it becomes the main performance bottleneck. In contrast,
the proposed decentralised buffering technique uses more efficiently the high-bandwidth
SPM interconnect for parallel exchanges. Hence, instead of being almost proportional to
the total number of messages (DMA approach), our IPC time becomes proportional only
to the messages per single worker. This corollary justifies, why the DMA engine surpasses
in performance the SMPI one, when the number of workers is small (2 — 3), the DMA
requests are limited, but each request must handle greater amount of a data, an area that

the DMA engine excels into. Another thesis [82], using a different measurement method

4.1 Evaluation using Synthetic Benchmarks 111

T T
1000 - [—DMA
—s— Proposed
800 -
~
w
g 600
N—
O
e
= 400
200 |-
| | | | | | |

9 1 6) 10 2 14 16
Workers

Figure 4.1: Scaling of the proposed SMPI IPC w.r.t. the number of workers.

has reached the same conclusion that the DMA engine can be easily overloaded.

4.1.3 Computational Unit Manager: Scaling

The next synthetic test examines the scaling capabilities of our dynamic Task Sched-
uler on MyriadX. A test application consisting of n tasks is employed. The tasks are
organised randomly in task groups, which have artificial logical constraints among them.
No messaging constraints are defined for the tasks, so the messaging susbsystem is not
utilised. Finally, it is guaranteed that there will be no circular dependencies. Each task is
a function that returns immediately without any computations. The cache is configured
to expect read /write data, so that the cache coherency protocol is deployed. All the work-
ers are assigned to a the same partition for Data and Instructions. These two partitions
have a size of 128 K B each. By assigning all the workers to the same partition, maximum
congestion and more flushes/invalidations occur, stressing the system even more.

The results presented in Fig. 4.2 show that the scheduler exhibits linear scaling w.r.t
the number of tasks. In addition, the cost of scheduling per task appears to be inversely

proportional to the number of tasks.

4.1.4 Computational Unit Manager: Multiple Application Execution

Typically, the concurrent execution of applications suffers from inherent issues such as
deadlocks, cache coherency, etc. To overcome these bottlenecks, ParalOS employs mech-
anisms, which, however, induce extra overhead, like the deadlock prevention mechanism
that locks the execution of tasks with messaging constraints. In addition, workers that

execute different applications but nevertheless share the same caches, may have undesired

112 Chapter 4. Appications and Evaluation

) / :
TN /
W /

20

Time (ms)
Time/Task (us)

0.2 |-

01 I I | | | [
1 2 5 10 20 50 100 200

Tasks

Figure 4.2: Scaling of the proposed Computational Unit Manager Scheduler w.r.t. the number
of tasks

flushes and invalidation may occur to them.

This overhead is measured by running multiple distinct instances, both in parallel and
sequentially, of the custom CNN engine that is developed and discussed in Section 4.3,
using a ship detection network. The benchmark is executed on Myriad 2 partially for
better comparison with literature and as discussed the CNN engine does not yet support
the NCE unit on MyriadX.

The results are depicted in Fig. 4.3, where the blue dotted bar is the execution time
w.r.t. the number of applications running sequentially.In contrast, the orange dotted bars
indicate the execution time when the same number of applications is executed concurrently.
As shown, the performance overhead is small, i.e., it ranges from 1.7% to 9.6% depending

on the number of applications executed.

113

ion using Synthetic Benchmarks

4.1 Evaluat

/,//,,/,/,,,/,/,,,,,/,,,,,/,,,,,/,,,,//,,/,//,,/,//,,/,///,/,//,,/,//,,/,/,
A T T T L L T A A A Ay
A I T T T A Ay

AR I R R R R R R I I R Y
) = R e R N SN
i
RN
WA
NN
NN
I N N N N N N N N N N NN Ny
22 R I I A A A A Y
NN
Nej ENNNN
R Y
=
SN
(]
3

<

or— a

- vn.w. <]

=
n A =
=
B o
2
Y
2
Y
NN
© 0 <A o™ a —

sw) oW,

Applications

(CNN)

ion

1on execut

icat

Parallel vs serial appli

Figure 4.3

114 Chapter 4. Appications and Evaluation

4.2 Visual Based Navigation

4.2.1 Introduction

Visual-based navigation (VBN) uses computer vision algorithms and optical sensors,
to extract the visual features required to the localisation of the surrounding environment.
Camera sensors, coupled with advanced image processing and tracking algorithms, can
provide accurate sensing capability to obtain full 6 Degrees of freedom (DOF) relative
pose information. A number of existing image processing algorithms for pose estimation
and tracking utilise fiducial markings on the tracked object. However, retrofitting the
existing infrastructure with these fiducial markings is impractical. Other pose estimation
algorithms use an object surface model representation to track the object, avoiding the use
fiducial markings by taking advantage of the known structural configuration [83]. This
kind of complex image processing pipeline that benefits from execution on the edge, is

considered a prime candidate for the VPUs.

4.2.2 HIPNOS algorithm & ParalOS

An algorithm that makes use of such a structural model is HIPNOS [84, 8]. In particu-
lar, pose tracking of a target satellite [23], namely ENVISAT is performed in the following
5 Steps (Fig. 4.4):

1. Edge detection in the input image

2. Depth map rendering

3. Edge detection in the rendered depth image
4. Perpendicular edge matching

5. Pose refinement

This algorithm is implemented in the Myriad 2 VPU with the support of ParalOS
. All the functions apart from pose refinement (executed on LOS), utilise the proposed
SPM Manager for the scratchpad memory allocations. ParalOS , however, is essential.
The efficient implementation of the edge detector and the rendering as explained in the

following sections and in [85].

4.2.3 Canny Edge Detection

The Edge Detection is materialised with a Canny edge detector [86] on both the inten-
sity and depth images. It implements a Sobel convolution for the gradient calculation and
uses hysterisis thressholding to identify the strong edgels and ignore the weak ones. This
last part is a recursive process, as weak edges are labelled as strong when there is a strong

edge in their neighbourhoods. Thus, due to the labelling of new strong edges, the whole

4.2 Visual Based Navigation 115

camera input

model
(100K tr., 50K pts)

image
(1024x1024 8-bit)

imaging rendering
(fetch & preprocess) (create depth map) -
img(t)‘ img’(t-1) ‘

Canny-1 Canny-D
(detect edges) (detect edges)

(perp. matching

map® P (match edgels) ep(t-1)

=

(pose estimation
(solve eq. system)

A

s == S @

output (pose)

Figure 4.4: HIPNOS algorithm [8]

edge map must be re-examined. When parallelised though, messaging constraints arise,
as neighbouring bands must exchange their border strong edgels. This was an important
limitation that was addressed with the SMPI module of the ParalOS: Low Level Segment
. The workers use the SMPISend and SMPIReceive function for messaging. Additionally,
the custom protocol was utilised, in order to identify the band from which the edgels were

received.

4.2.4 Rendering

For Depth Rendering, the algorithm employs a triangle mesh model and the current
6D pose vector to generate an image, which encodes the distance of the modem’s surface
to the camera. A Rasterisation algorithm handles the projection of the model’s triangles
on the frame. Using a bounding box traversal in the projected vertices, the pixels that
reside within the projected triangles can be found and then calculate for each of them
their distance from the model.

This is a characteristic content dependent problem as the execution is determined
mainly by two parameters i) the mesh model which is known and ii) the relative camera
position, that is received on runtime. This position greatly impacts the execution time
because it determines what parts of the model are projected onto the image.

The parallelisation scheme of the renderer is straightforward, as rendering overall is
an embarrassingly parallel application (this is why the GPUs excel at it). The image is

divided into N bands and every band is assigned to a task.

116

Chapter 4. Appications and Evaluation

Cumul. Speedup (%)

77777777777
20077777777

4 - 72707722277
77777777777 77007777777

17777777777 77777777777

17777777777 77777777777

22777777777 77777702727

7777777777 20077777777

10702777777 77200722777

17777777777 77007777777

17777777777 77777777777

17777777777 77777777777

22777777777 77772702277

17777777777 20007777777

70722777777 70707722777

17777777777 77002777777

17777777777 77777777777

17777777777 77777772777

77777777777 22777777777 77777702277

[17777777777 17777777777 70027777777
20000277777 10007777777 77007722277

70007777777 17777777777 77007777777

0027777777 17777777777 77777777777

0027777777 17777777777 77777707777

12227777777 22777777777 77777702277

77777777777 0777777777 20077777777

20007277777 10707777777 77007722777

70027777777 17777777777 77002777777

0077777777 17777777777 77777777777

10027777777 17777777777 77777702777

10222777777 22777777777 77772702277

20000077777 70002777777 77772022277

20007777777 10727777777 77007777777

70077777777 17777777777 77002777777

0027777777 17777777777 77777777777

10227777777 17777777777 77777702777

2 77777777777 00227777777 22277777777 77777002277
[~ 2077777777 20007077777 70002777777 70700022777
77727777777 70007777777 10777777777 77007722777

77777777777 0027777777 17777777777 77002777777

77777777777 10227777777 17777777777 77777777777

77777777777 10227777777 17777777777 77777702777

2777772277 00227777777 22277772777 70077777777

70027777777 70007077777 70002777777 77202772277

77727777777 70007777777 10777777777 72007777777

77777777777 10077777777 17777777777 77777777777

77777777777 10027777777 17777777777 77777777777

77777770777 777720227277 17777777777 77777702777

10777777777 77777727777 7777777777 20077777777

70027777777 20000077777 10002777777 72707722277

77027777777 70007777777 10777777777 77707777777

77777777777 10077777777 17777777777 77777777777

77777777777 10027777777 17777777777 77777777777

77777770777 777720227277 17777777777 77777702777

1 [70777777777 77777727777 17777777777 20007777777
77 7777 70027777777 20002077777 70002777777 77207722277
70007777777 77727777777 70007777777 10777777777 77002777777
70777777777 77777777777 10077777777 17777777777 77777777777
10777777777 77777777777 10027777777 17777777777 77777777777
12277777777 77777777777 7 777777 12777777777 77777702777
27777777777 20777777777 77777727777 777777777 20077777777
20002277777 70227777777 20007077777 10002777777 77707722777
77 77 77727777777 70007777777 10777777777 77007777777
70777777777 77777777777 10027777777 17777777777 77777777777
10777777777 77777777777 10027777777 17777777777 77777777777
2277777777 77777770777 77777022277 12277777777 77777702777
27777777777 10777777777 77777777777 27777777777 20077777777
20002777777 70027777777 20000277777 10002777777 72707722777
20077777777 77777777777 70007777777 10777777777 77702777777
70777777777 77777777777 0077777777 17777777777 77777777777
10777777777 77777777777 0027777777 17777777777 77777772777
22272222277 222222222727 22222222227, 22222222277 22222222722,

Optimisation Step

Figure 4.5: Speedup of Rendering when using ParalOS optimisations

The ParalOS: High Level Segment offers an array of options for performance optimisa-

tions the impact of which are presented on Figure 4.5. Each optimisation step is calculated

as the speedup compared to the static scheduling of Step A.

Step A represents the low-level optimised kernel of rendering, that is executed on the

12 SHAVESs of Myriad2 without using the proposed framework via static scheduling.

Step B employs the ParalOS dynamic scheduler, which delivers a speedup of 2.09x

by minimising the idle time of each worker.

Step C is the result of performing Design Space Exploration using the Visual Pro-

filer, to find the optimal parallelisation scheme increasing the speedup to 3.13x.

Step D reflects the 4x total improvement due to the optimisation of the cache con-
figuration, i.e. exploring the different size and partition configurations. In addition,
the mesh model is only read by the workers thus it can be tagged as read-only hence,

avoiding unnecessary cache flushes.

Step E makes use of application-specific characteristics to deduce the priority of
the tasks. In particular, tasks that are responsible for generating the central frame
bands are more likely to contain the rendered model than the border ones, and thus,
they were assigned a higher priority in order to be executed first. This final step

brings the speedup to a total of 4.18x.

4.2 Visual Based Navigation 117

250 -
{
h! /'A\ / \ Fall
2005, o/ A~ i V{r
/ \
\'N\i \J
0) N
\S/ 150 4 L5 2
) ¥ R, P o
£ b PAS. SR 8
= O G A
100 e F M VS LRSS T
T\
R \:\.\(;f) T
50 A .‘...:: '.":.-: i‘; :‘-\ ";.
e .18 e
= - 20 24

0 200 400 600 800 1000
Frame Number

Figure 4.6: Design Space Exploration for the various number of bands

Another deciding factor is the deviation between the maximum an minimum execution
of time. Due to the implementation, the rendering process shows a preference to the
vertical alignment of the model, i.e. if the angle between the axis of the model and the
horizon, is close to 90°. Therefore ”vertical” images tend to perform better than their
“horizontal” counterparts. For real-time operations though, criticality constraints might
require this deviation to be kept low. For example an implementation with a much faster
average execution time but with high outliers, may be dropped in favour of a slower yet
more stable one.

Taking all the above into consideration, the following experiment was performed to
find the optimal number of bands. 1000 different camera positions were used to render the
model from multiple perspectives and distances. The results are presented on Figure 4.6
showing comprehensive execution time of all the tests & Figure 4.7, which illustrates the
pareto front between the average execution time and standard deviation for the different
band numbers. The collected data suggest that the optimal band number in terms of
performance is 22, but when we also consider the stDev a more attractive solution might
be 32. The smallest possible value due to memory limitation is 18, which interestingly

performs worse than other option.

118 Chapter 4. Appications and Evaluation

® 8 28 36
® 0 @ V 3
200 n Y 2 Y 40
® 2 V 50
® 2
180 A
0
£ 160
)
£
™ 140 -
120 A
° [
100
20 22 24 26 28 30

stDev (ms)

Figure 4.7: Pareto front of average execution time and deviation for different band numbers.

4.3 CNN Engine 119

4.3 CNN Engine

4.3.1 Introduction & Motivation

Convolutional Neural Networks (CNNs) have emerged as one the most characteristic
and desired application for edge devices. CNNs on VPUs have been used for a "myriad”
of applications ranging from space [87] to small scale always-on (AON) scenarios [25, 88].
VPUs have reached the performance capabilities of FPGA based implementations [89, 25,
90, 91] and in terms of performance/watt are in course to surpass them.

CNN execution for the Myriad family of VPUs is already provided via the discussed
OpenVINO Toolkit [15] and using custom implementations [24, 82, 92]. The downside of
all the described solutions, is that they make exclusive use of the whole VPU, thus not
allowing the execution of other algorithms or utilise CNNs as a part of an extended image
processing pipeline.

Consequently, a new CNN engine for inference running is developed, which is built
using the underlying ParalOS infrastructure. With this Engine a CNN is considered
nothing more than an application (Fig.4.8) and is handled as such by the system.

Application

Level
CNN
Engine App

Midleware ParalOS High Level Segment
. 7
Vendor Development Kits =
Myriad 2 | | Myriad X ParalOS: Paralos
Low Level MDK: MDK: Low Level
19_01_05 R12.6 Segment

Figure 4.8: CNN engine as part of the ParalOS stack

4.3.2 Implementation
Overal Design

The implementation design was based on two important key concepts

e Cross Compilable. The engine shall be designed for ease porting between various
platforms, like general purpose conventional CPUs, VPUs etc. Despite the increased

design complexity and development time, it has some very important benefits.

120 Chapter 4. Appications and Evaluation

— FEasier Debugging. Debugging application on CPUs is a much easier process,

than in any other available platform.

— New functionality Adding new functionality or trying new techniques, for re-
search purposes, shall be first checked in an established and guaranteed platform

before attempting porting it to a heterogeneous one.

e Compatible with High Level NN frameworks. The vast majority of CNNs is
developed using industry standard frameworks like TensorFlow [48], PyTorch [49],
Caffe [93]. The proposed CNN engine shall seamlessly support execution of models,
generated from at least on of these platforms. Otherwise manual porting, would be

tedious error-prone and overall reduce the effectiveness of the engine.

Grounded on these guidelines, the CNN Engine was implemented with a modular 4

layer architecture that is presented on figure 4.9 and will be explained below.

Hardware Agnostic

PC

networkDescription.cpp

Execution Engine . Description

Interface Layer]

weights.cpp

Manager

Workers
Execution Engine Core Layer - Logic Hardware VPU power
Core (Worker Entrypoint) Agnostic

Hardware Specific

Fr—————r————

- 0 ParalOs
X Kernel: X Kernel: X Kernel: HSO 'dwf '
pecific
CPU VPU xPU

Figure 4.9: CNN Engine Architecture

Framework Compatibility Layer

The compatibility layer is a python script that is responsible for translating models cre-
ated using the TensorFlow framework, to the Engine’s Immediate Representation (IR).
More specifically a ”.h5” file that stores the model is given as input to the script and
the later automatically outputs three files, namely ” networkDescritption.cpp”, ” network-
Weights.c”, ” networkWeights.h”. The first describes the network, while the other two
define the various weights. In addition to that, the script can also be used, to convert
the weights of the network, to a different precision arithmetic like the 16bit floating point,
that is supported by Myriad.

4.3 CNN Engine 121

Description Layer

The Description Layer, is the top layer of the engine and is executed on the Man-
ager Cores .It is hardware agnostic and developed in C++4. It is used either directly by
the developer or by the Compatibility Layer to describe the network, using the various
supported Network Layers. In this early version a handful yet fundamental layers are
supported, 2D Convolution, Max Pooling, Fully Connected and the activation functions of
ReLU and SoftMax. It is important to clarify that this layer, does not take part in the

actual execution of the network but it used only for its description.

Core Layer

This layer is perhaps the most important one, in terms of performance as it expresses
the logic behind the execution of each layer. Each core layer is couple with its description
counterpart, and is executed on the worker. For this reason the cores are written in C
for better compatibility. The cores for the most part are platform agnostic, although
specific aspects of them like the memory management are dependent on the platform, but

well-thought use of macros, abstract their complexity.

Kernel Layer

The cores despite being the ” brains” of the execution, they do not perform any compu-
tation. These are left to the " muscle” the Kernel Layers. The Kernels are platform depen-
dent but have a common calling convention. In particular, each kernel call is responsible
for producing a single output line, which leads to faster and more efficient programming.
Thy are developed using C or assembly but can support other languages and methods
as well. The kernels for the VPU written in SHAVE assembly are reused from previous
theses [94, 82, 92].

Execution Engine

The execution engine is responsible for orchestrating the actual execution of the engine
and is divided into two parts. The high level part provides a standard interface across all
the platforms to interact with the lower part that is actually responsible for the execution.
The lower part in the VPU case invokes ParalOS to both create the application and
execute, while in the CPU uses a version of the ParalOS: High Level Segment , which is
ported to the CPU. Implementation Details are not important for this particular discussion

therefore omitted.

API
The API for the CNN Engine is pretty straightforward and briefly described:

e CCCN: :Model m

Create an instance of the CNN engine model

122 Chapter 4. Appications and Evaluation

e createModel(m)
This function is automatically generated by the COnversion Script. If it is not used

the developer manually inserts the layers into the model.

e m.finaliseModel()

It freezes the model and prepares it for execution.

e m.executionEngine->initialise(<cm object>)
The underlying engine core is invoked initialising the execution system. For the

VPUs, the translates to creating the application and sceduling it.

e m.executionEngine->execute().
This method executes the network based on the target platform. For the VPU’s it
calls the executeApplication method. When multiple inferences need to be per-
formed, only this function is called without reinitialising the network. An alternative

execution method is using ParalOS API by specifying the network’s application id.

4.3.3 Benchmarking

The evaluation of the CNN engine was performed using three networks, one based one
CIFARR-10 as presented on [94], a MNIST classifier from [25] and a custom ship detector
from satellite images which will be described shortly. The MNIST classifier due to its
small size fits as a whole in the SPM, thus it is a great comparison for measuring the
ParalOS Overhead. This is also valid for the CIFARR-10 engine, because the lower levels
of the proposed CNN Engine are quite similar.

The custom Ship Detector Network consists of 4 Convolution Layers of 32, 16, 64 and
32 filters accordingly followed by two Fully connected layers. Max pooling layers are used
to reduce the spatial dimensions, between the convolutions. The complete architecture is
presented on Fig.4.10. The model was trained in TensorFlow using the dataset from[95],
with 3000 images and validated using 1000. After 12 epochs it achieved an accuracy
of 96.8%. The dataset initially consisted of 80 x 80 RGB images, but were upscaled to
1282128 during preprocessing.

The results are presented on Table 4.2 and show that the performance overhead (%dif-
ference) induced by ParalOS is less than 10%. The only exception is the MNIST classifier.
Its” implementation [25] is highly customised and does not use the DDR. In the proposed

Table 4.2: Evaluation of ParalOS with CNN applications

Execution Time (ms)
[24] [25] Proposed Diff. (%)
CIFAR-10 7.24 - 7.80 +7.7
Ship-Detection 9.18 - 9.91 +7.9
MNIST - 035 0.64 +82.9

CNN Network

4.4 Devopment Effort 123

engine, the network is organised in 59 tasks. When comparing that number with the re-
sults of Fig.4.2, the execution almost matches that of the overhead. As a result, it is clear
that this is perhaps the worst case scenario for te proposed framework, but yet again it

manages to execute the network without exceeding the 1ms mark.

4.4 Devopment Effort

A significant yet difficult to measure aspect of the ParalOS framework is the reduction
of the development effort. The contribution of the framework is evaluated in terms of
both experienced developers that transition from bare metal programming and amateur
programmers in the VPU domain.

Regarding the experienced developers, considerable decrease in development time and
effort is measured. Overall rough estimations suggest a 2 — 3x development acceleration
when deploying new algorithms, which directly translates to to faster time-to-market. The
gain mostly originates from i) the easier Design Space Exploration, ii) the readily available
functions of the ParalOS: Low Level Segment , and iii) the high level system configuration.
Equally important is the reduction in Software Maintainability as the ParalOS: High Level
Segment allows for less error-prone programs due to its simpler programming paradigm.
Finally ParalOS exhibits negligible cost when porting the same application from one VPU
to another.

Regarding newcomers to the VPU world, the learning curve is much smother than the
one provided by the default vendor development kit. The multiple abstraction layers and
the transparent Graph API, provide an interface that the developers are more familiar
with. In particular since the parallelisation scheme is conceptually close to the use of
threading, developers can better utilise their skill-set without worrying fot the overwhelm-

ing details of the platform like cache coherency.

124 Chapter 4. Appications and Evaluation

input: | [(?, 3, 128, 128)]
output: | [(?, 3, 128, 128)]

conv2d_1_input: InputLayer

|

input: | (?, 3,128, 128)
output: | (?, 32, 128, 128)

l

max_pooling2d_1: MaxPooling2D

|

input: | (?, 32, 64, 64)
output: | (?, 32, 64, 64)

conv2d_1: Conv2D

input: | (?, 32, 128, 128)
output: (?, 32, 64, 64)

dropout: Dropout

input: | (?, 32, 64, 64)
output: | (?, 16, 64, 64)

l

max_pooling2d_2: MaxPooling2D

|

input: | (?, 16, 32, 32)
output: | (?, 16, 32, 32)

|

input: | (?, 16, 32, 32)
output: | (?, 64, 32, 32)

l

max_pooling2d_3: MaxPooling2D

l

input: | (?, 64, 16, 16)
output: | (?, 64, 16, 16)

|

input: | (2, 64, 16, 16)
output: | (2, 32, 16, 16)

|

input: | (?, 32, 16, 16)
output: | (?, 32, 16, 16)

|

input: | (?, 32, 16, 16)
output: (?,8192)

l

input: | (?, 8192)
output: (?, 48)

l

dropout_4: Dropout

conv2d_2: Conv2D

input: | (?, 16, 64, 64)
output: | (?, 16, 32, 32)

dropout_1: Dropout

conv2d_3: Conv2D

input: | (?, 64, 32, 32)
output: | (?, 64, 16, 16)

dropout_2: Dropout

conv2d_4: Conv2D

dropout_3: Dropout

flatten: Flatten

dense_1: Dense

input: | (?, 48)
output: | (?, 48)

input: | (?, 48)
output: | (?, 2)

dense_2: Dense

Figure 4.10: Ship Detector Architecture

Chapter 5

Conclusion and Future Work

5.1 Future Work

5.1.1 Hardware Accelerator Support

The current version of ParalOS only support SHAVE worker types. This does not allow
for maximum efficiency of the SoC and total exploitation of its heterogeneity. A future
research direction is the integration of the hardware filters into the worker infrastructure,

along with necessary modifications of the scheduler and dispatcher.

5.1.2 Validation and Optimisations

The pursuit of yet another optimisation is never ending. Every year decades of worthy

publications regarding scheduling and ipc are presented.

5.1.3 Porting to Different Platforms

The Myriad Family of devices are not the only VPUs available. Attractive alternatives
based on the risc-V architecture like the GAP8 Al accelerator are targets for a future

porting of the framework.

5.1.4 Source to Source Compilation

A very interesting future research direction is the development of a source to source
compiler. Essentially this will be a tool, that given a source code in C/C++, with some
pragmas and directives, it will automatically generate optimised code for the Myriad family
of VPU’s using the ParalOS framework.

5.1.5 Fault Tolerance and Mitigation Techniques

VPUs manage to fit very high performance in an quite small power envelope. This
makes them an attractive choice for the ADAS and autonomous navigation market. These

application however, require strict deterministic operation and correctness guarantees.

125

126 Chapter 5. Conclusion and Future Work

Algorithms and methods applicable to ParalOS may be examined in order to mitigate

errors and offer fault tolerance.

5.2 Thesis Conclusion

In this thesis the development and evaluation of , ParalOS framework is presented.
It is a Software Framework for accelerating the development on extremely Heterogeneous
VPUs, while still allowing the exploitation of their full Hardware potential. All the mod-
ules of the framework were fine tuned for heterogeneous embedded architectures and are
organised into two segments. ParalOS: High Level Segment offers an intuitive Graph API
for application development, a dynamic task scheduler & transparent system configura-
tion, 10 standardisation and visual profiling. ParalOS: Low Level Segment features a novel
scratchpad memory management scheme and decentralised inter-process communication
techniques.

The experimental results reveal limited performance overhead vs manually customised
DSE implementations, which can be regarded as a small trade-off towards significant
time-to-market improvement and software maintanability. Overall, ParalOS achieves up
to 4.2x better performance for content-dependent applications, whereas individual sub-
modules deliver considerable gains in SPM space utilisation and communication time vs

the default or well-established solutions.

5.3 Publications

e A. Kyriakos, E. Papatheofanous, B. Charalampos, E. Petrongonas, D. Soudris and
D. Reisis, "Design and Performance Comparison of CNN Accelerators Based on the
Intel Movidius Myriad2 SoC and FPGA Embedded Prototype”, 2019 International
Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO),
Athens, Greece, 2019, pp. 142-147, doi: 10.1109/ICCAIR047923.2019.00030.

A collaboration between NTUA and NKUA comparing VPUs with FPGAs

e E. Petrongonas, V. Leon, G. Lentaris and D. Soudris, ParalOS: A Scheduling &
Memory Management Framework for Heterogeneous VPUs, 2021 Design Automation
and Testing in Europe (DATE) conference. [submitted]

ParalOS Framework Presentation

e V. Leon, T. Paparouni, E. Petrongonas, D. Soudris, K. Pekmestzi, Improving
Power of DSP and CNN Hardware Accelerators using Approzimate Floating-Point
Multipliers, ACM Transactions On Embedded Computing Systems. [under major
revision]

Approximate Computing on Convolutional Neural Network applications.

e V. Leon, G. Lentaris, E. Petrongonas, D. Soudris, G.Furano, A. Tavoularis and

D. Moloney, Improving Performance-Power-Programmability in Space Avionics with

5.4 The End of a Journey 127

Edge Devices: VBN on Myriad2 SoC, ACM Transactions On Embedded Computing
Systems. [under major revision]

A collaboration between NTUA, ESA and Intel, exploring the Myriad 2 VPU Po-
tential for Space Applications.

5.4 The End of a Journey

The conclusion of this thesis marks also the conclusion of a difficult yet exciting 6 year
journey which have taught me invaluable work and life lessons. Some of them I would like
to share.

In a more technical perspective, I have valued the importance of soft skills and commu-
nication, which in some cases eclipses that of the actual product. If its purpose (research
or product-wise) is not clear enough and easily understood, it will most probably be dis-
carded. Another valuable lesson, that comes with the over 20, 000 lines of code of ParalOS
is the significance of Documentation, when expecting to share your work with others. Dur-
ing the ParalOS development I came across various bugs in Intel’s code. My first instinct
was to wonder "How Can Intel Make Mistakes”. To this day, I believe that this was the
point where I officially transitioned from a student to an engineer, because I demystified
the industry. Everything is built by engineers just like us and everyone is capable of
making the same mistakes.

“Fortune favours the Bold” is a life stance rather than a motto. In my experience, I
have gained more benefits, by being determined rather than inactive, as sometimes the
fastest road is the least paved one. I firmly believe that it is better to try something
and fail rather than regret not attempting it in the future. A-posteriori the most pivotal
point in my student-career was an email to the head of the microlab, Prof. Soudris,
expressing my desire to learn, two years earlier than the academic norm would suggest.
He embraced it and the rest is history... Finally, I can not stress enough the importance
of developing a personality that has more dimensions than the engineering one. Try new
things, contribute, socialise and overall become better individuals and better members of

the society, as in the end, we are humans after all ...

Bibliography

[1]

D. Amodei and D. Hernandez, “Al and compute,” https://openai.com/blog/ai-and-
compute/, 2018.

J. Shalf, “The future of computing beyond moore’s law,” Philosophical Transactions
of the Royal Society A, vol. 378, no. 2166, p. 20190061, 2020.

D. Moloney, B. Barry, R. Richmond, F. Connor, C. Brick, and D. Donohoe, “Myriad
2: Eye of the computational vision storm,” in 201/ IEEE Hot Chips 26 Symposium
(HCS), Aug 2014, pp. 1-18.

Intel Movidius, “Myriad X press release,” Aug
2017. [Online]. Available: https://newsroom.intel.com /news/

intel-unveils-neural-compute-engine-movidius-myriad-x-vpu-unleash-ai-edge/

E. Flamand, D. Rossi, F. Conti, I. Loi, A. Pullini, F. Rotenberg, and L. Benini,
“Gap-8: A risc-v soc for ai at the edge of the iot,” in 2018 IEEE 29th International
Conference on Application-specific Systems, Architectures and Processors (ASAP).
IEEE, 2018, pp. 1-4.

Intel, “Distribution of OpenVINO™ toolkit for linux with fpga support,” https://

software.intel.com/content /www /us/en/develop/tools/oneapi.html.

M. Masmano, I. Ripoll, A. Crespo, and J. Real, “TLSF: a new dynamic memory
allocator for real-time systems,” in 16th Furomicro Conf. on Real-Time Systems
(ECRTS), 2004, pp. 79-88.

G. Lentaris, K. Maragos, I. Stratakos, L. Papadopoulos, O. Papanikolaou, D. Soudris,
M. Lourakis, X. Zabulis, D. Gonzalez-Arjona, and G. Furano, “High-performance
embedded computing in space: Evaluation of platforms for vision-based navigation,”

Journal of Aerospace Information Systems, vol. In press, 02 2018.

J. L. Hennessy and D. A. Patterson, “A new golden age for computer architecture,”
Commun. ACM, vol. 62, no. 2, p. 48-60, Jan. 2019.

N. Thompson and S. Spanuth, “The decline of computers as a general purpose tech-
nology: Why deep learning and the end of moore’s law are fragmenting computing,”
SSRN Electronic Journal, Nov 2018.

129

https://newsroom.intel.com/news/intel-unveils-neural-compute-engine-movidius-myriad-x-vpu-unleash-ai-edge/
https://newsroom.intel.com/news/intel-unveils-neural-compute-engine-movidius-myriad-x-vpu-unleash-ai-edge/
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html

130

Bibliography

[11]

[12]

[13]

[14]

[17]

[24]

C. E. Leiserson et al., “There’s plenty of room at the top: What will drive computer

performance after moore’s law?” Science, vol. 368, no. 6495, 2020.

Intel-Movidius, “Myriad 2 ma2xbx vision processor,” https://movidius-uploads.
s3.amazonaws.com/1532512604-1503680554-2016-12-12_VPU _ProductBrief.pdf, ac-
cessed: 16-10-2019.

L. Dagum and R. Menon, “Openmp: an industry standard api for shared-memory
programming,” IEEFE computational science and engineering, vol. 5, no. 1, pp. 46-55,
1998.

S. Huss-Lederman, B. Gropp, A. Skjellum, A. Lumsdaine, B. Saphir, J. Squyres
et al., “Mpi-2: Extensions to the message passing interface,” University of Tennessee,

available online at hitp://www. mpiforum. org/docs/docs. html, 1997.

Intel, “Distribution of OpenVINO™ toolkit for linux with fpga support,” https://

docs.openvinotoolkit.org/latest /index.html.

Arm Ltd., “CMSIS,” https://developer.arm.com/tools-and-software/embedded/
cmsis, accessed: 11-08-2020.

Y. Solihin, Fundamentals of Parallel Multicore Architecture, 1st ed. Chapman &
Hall/CRC, 2015.

R. Barry, “Mastering the freertos real time kernel,” Real Time Engineers Ltd, 2016.

T. B. Ferreira, R. Matias, A. Macedo, and L. B. Araujo, “An experimental study on
memory allocators in multicore and multithreaded applications,” in 12th Int’l Conf.
on Parallel and Distributed Computing, Applications and Technologies, 2011, pp. 92—
98.

E. K. Lee and C. U. Martel, “When to use splay trees,” Software: Practice and
FExperience, vol. 37, no. 15, pp. 1559-1575, 2007.

G. Barootkoob, E. M. Khaneghah, M. Sharifi, and S. L. Mirtaheri, “Parameters
affecting the functionality of memory allocators,” in 2011 IEEE 3rd International
Conference on Communication Software and Networks. IEEE, 2011, pp. 499-503.

M. S. Johnstone and P. R. Wilson, “The memory fragmentation problem: Solved?”
in Int’l Symposium on Memory Management, 1998, p. 26-36.

M. Lourakis and X. Zabulis, “Model-based visual tracking of orbiting satellites us-
ing edges,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 1EEE, 2017, pp. 3791-3796.

F. Tsimpourlas, L. Papadopoulos, A. Bartsokas, and D. Soudris, “A design space ex-

ploration framework for convolutional neural networks implemented on edge devices,”

https://movidius-uploads.s3.amazonaws.com/1532512604-1503680554-2016-12-12_VPU_ProductBrief.pdf
https://movidius-uploads.s3.amazonaws.com/1532512604-1503680554-2016-12-12_VPU_ProductBrief.pdf
https://docs.openvinotoolkit.org/latest/index.html
https://docs.openvinotoolkit.org/latest/index.html
https://developer.arm.com/tools-and-software/embedded/cmsis
https://developer.arm.com/tools-and-software/embedded/cmsis

Bibliography 131

[29]

[30]

[33]

[34]

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 37, no. 11, pp. 2212-2221, 2018.

A. Kyriakos, E.-A. Papatheofanous, B. Charalampos, E. Petrongonas, D. Soudris,
and D. Reisis, “Design and performance comparison of cnn accelerators based on
the intel movidius myriad2 soc and fpga embedded prototype,” in 2019 International
Conference on Control, Artificial Intelligence, Robotics € Optimization (ICCAIRO).
IEEE, 2019, pp. 142-147.

H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger, “Dark sil-

?

icon and the end of multicore scaling,” in 2011 38th Annual International Symposium

on Computer Architecture (ISCA), 2011, pp. 365-376.

W. A. Wulf and S. A. McKee, “Hitting the memory wall: implications of the obvious,”
ACM SIGARCH computer architecture news, vol. 23, no. 1, pp. 20-24, 1995.

R. Sites, “It’s the memory, stupid,” Microprocessor Report, vol. 10, no. 10, pp. 2-3,
1996.

A. Shan, “Heterogeneous processing: a strategy for augmenting moore’s law,” Linux
Journal, vol. 2006, no. 142, p. 7, 2006.

R. Koduri, “No transistor left behind,” in 2020 IEEE Hot Chips 32 Symposium
(HCS). 1EEE Computer Society, 2020, [keynote].

R. P. Feynman, “There’s plenty of room at the bottom,” California Institute of Tech-

nology, Engineering and Science magazine, 1960.

A. Barbalace, M. Sadini, S. Ansary, C. Jelesnianski, A. Ravichandran, C. Kendir,
A. Murray, and B. Ravindran, “Popcorn: Bridging the programmability gap in
heterogeneous-isa platforms,” in Proceedings of the Tenth Furopean Conference
on Computer Systems, ser. EuroSys ’15. New York, NY, USA: Association for
Computing Machinery, 2015. [Online]. Available: https://doi.org/10.1145/2741948.
2741962

N. Wirth, “A plea for lean software,” Computer, vol. 28, no. 2, pp. 64-68, 1995.

European Space Agency and CERN, “Esa myriad 2 radiation tests,”
https://m.esa.int /Enabling_Support/Space_Engineering_Technology /ESA team_
blasts_Intel_s_new_AI_chip_with_radiation_at_CERN, accessed: 16-10-2019.

“RTEMS distribution Homepage,” www.rtems.org, accessed: 17-10-2019.

Cobham Gaisler, “Leon 4 processor,” https://www.gaisler.com/index.php/products/
processors/leond, accessed: 17-10-2019.

https://doi.org/10.1145/2741948.2741962
https://doi.org/10.1145/2741948.2741962
https://m.esa.int/Enabling_Support/Space_Engineering_Technology/ESA_team_blasts_Intel_s_new_AI_chip_with_radiation_at_CERN
https://m.esa.int/Enabling_Support/Space_Engineering_Technology/ESA_team_blasts_Intel_s_new_AI_chip_with_radiation_at_CERN
www.rtems.org
https://www.gaisler.com/index.php/products/processors/leon4
https://www.gaisler.com/index.php/products/processors/leon4

132

Bibliography

[37]

[39]

[40]

[41]

[44]

[46]

B. Barry, C. Brick, F. Connor, D. Donohoe, D. Moloney, R. Richmond, M. O’Riordan,
and V. Toma, “Always-on vision processing unit for mobile applications,” IEEE Mi-
cro, vol. 35, no. 2, pp. 56-66, Mar 2015.

P. Odysseas, “Implementation of computer vision algorithms on embedded archi-
tectures,” http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/13305, ac-
cessed: 17-10-2019.

Intel Movidius Ltd, Movidius Myriad2 Development Kit: Programmer’s Guide, under

non-disclosure licence.

D. Rossi, F. Conti, A. Marongiu, A. Pullini, I. Loi, M. Gautschi, G. Tagliavini,
A. Capotondi, P. Flatresse, and L. Benini, “Pulp: A parallel ultra low power platform
for next generation iot applications,” in 2015 IEEE Hot Chips 27 Symposium (HCS),
2015, pp. 1-39.

A. Loquercio, A. I. Maqueda, C. R. Del-Blanco, and D. Scaramuzza, “Dronet: Learn-
ing to fly by driving,” IEEFE Robotics and Automation Letters, vol. 3, no. 2, pp.
1088-1095, 2018.

P. H. Becker, J. D. Souza, and A. C. Beck, “Tuning the isa for increased heterogeneous
computation in mpsocs,” in 2020 Design, Automation & Test in FEurope Conference
& Ezhibition (DATE). IEEE, 2020, pp. 1722-1727.

J. Balkind, K. Lim, M. Schaffner, F. Gao, G. Chirkov, A. Li, A. Lavrov, T. M.
Nguyen, Y. Fu, F. Zaruba, K. Gulati, L. Benini, and D. Wentzlaff, “Byoc: A ”bring
your own core” framework for heterogeneous-isa research,” in Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 699-714. [Online|. Available:
https://doi.org/10.1145/3373376.3378479

A. Munera, S. Royuela, and E. Quinones, “Towards a qualifiable openmp framework

for embedded systems,” in Design, Automation Test in Europe Conference Fxhibition

(DATE), 2020, p. 903-908.

A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Martorell, and
J. Planas, “Ompss: a proposal for programming heterogeneous multi-core architec-

tures,” Parallel processing letters, vol. 21, no. 02, pp. 173-193, 2011.

J. Bosch, X. Tan, A. Filgueras, M. Vidal, M. Mateu, D. Jiménez-Gonzélez, C. Alvarez,
X. Martorell, E. Ayguadé, and J. Labarta, “Application acceleration on fpgas with

ompss@ fpga,” in 2018 International Conference on Field-Programmable Technology
(FPT). IEEE, 2018, pp. 70-77.

http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/13305
https://doi.org/10.1145/3373376.3378479

Bibliography 133

[47]

[58]

A. Munshi, B. Gaster, T. G. Mattson, and D. Ginsburg, OpenCL programming guide.
Pearson Education, 2011.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-scale machine

learning,” in 12th { USENIX} symposium on operating systems design and implemen-
tation ({OSDI} 16), 2016, pp. 265-283.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmai-
son, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” 2017.

0. Salvador and D. Angolini, Embedded Linux Development with Yocto Project. Packt
Publishing Ltd, 2014.

“The everything-is-a-file principle (linus torvalds),” accessed: 11-08-2020. [Online].
Available: https://yarchive.net/comp/linux/everything_is_file.html

Intel Movidius Ltd, MDK-MA2x5x: MV0212 UserManual, under non-disclosure li-

cence.

O. Deniz, N. Vallez, J. Espinosa-Aranda, J. Rico-Saavedra, J. Parra-Patino,
G. Bueno, D. Moloney, A. Dehghani, A. Dunne, A. Pagani, and et al., “Eyes
of things,” Sensors, vol. 17, no. 5, p. 1173, May 2017. [Online]. Available:
http://dx.doi.org/10.3390/s17051173

J. Beningo, HAL Design for GPIO. Berkeley, CA: Apress, 2017, pp. 167-200.
[Online]. Available: https://doi.org/10.1007/978-1-4842-3297-2_7

Intel Movidius Ltd, Movidius Myriad2 2450 Databook, under non-disclosure licence.

“RTEMS Networking Guide,” Nov 2016. [Online]. Available: https://docs.rtems.
org/releases/rtems-docs-4.11.0/networking.html

V. Suhendra, C. Raghavan, and T. Mitra, “Integrated scratchpad memory
optimization and task scheduling for mpsoc architectures,” in Proceedings of
the 2006 International Conference on Compilers, Architecture and Synthesis
for Embedded Systems, ser. CASES ’06. New York, NY, USA: Association
for Computing Machinery, 2006, p. 401-410. [Online]. Available: https:
//doi.org/10.1145/1176760.1176809

S. Steinke, L. Wehmeyer, Bo-Sik Lee, and P. Marwedel, “Assigning program and data
objects to scratchpad for energy reduction,” in Proceedings 2002 Design, Automation
and Test in Europe Conference and FExhibition, 2002, pp. 409-415.

F. Angiolini, F. Menichelli, A. Ferrero, L. Benini, and M. Olivieri, “A post-compiler

approach to scratchpad mapping of code,” in Proceedings of the 200/ international

https://yarchive.net/comp/linux/everything_is_file.html
http://dx.doi.org/10.3390/s17051173
https://doi.org/10.1007/978-1-4842-3297-2_7
https://docs.rtems.org/releases/rtems-docs-4.11.0/networking.html
https://docs.rtems.org/releases/rtems-docs-4.11.0/networking.html
https://doi.org/10.1145/1176760.1176809
https://doi.org/10.1145/1176760.1176809

134

Bibliography

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[71]

conference on Compilers, architecture, and synthesis for embedded systems, 2004, pp.
259-267.

A. Janapsatya, A. Ignjatovié¢, and S. Parameswaran, “A novel instruction scratchpad
memory optimization method based on concomitance metric,” in Proceedings of the

2006 Asia and South Pacific Design Automation Conference, 2006, pp. 612—617.

S. Udayakumaran and R. Barua, “Compiler-decided dynamic memory allocation for
scratch-pad based embedded systems,” in Proceedings of the 2003 international con-
ference on Compilers, architecture and synthesis for embedded systems, 2003, pp.
276-286.

M. Verma, L. Wehmeyer, and P. Marwedel, “Dynamic overlay of scratchpad memory
for energy minimization,” in Proceedings of the 2nd IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis, 2004, pp. 104-109.

K. Bai and A. Shrivastava, “Heap data management for limited local memory (1lm)
multi-core processors,” in 2010 IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+I1SSS), 2010, pp. 317-325.

V. Venkataramani, M. C. Chan, and T. Mitra, “Scratchpad-memory management
for multi-threaded applications on many-core architectures,” ACM Trans. Embed.
Comput. Syst., vol. 18, no. 1, Feb. 2019.

L. Alvarez et al., “Runtime-guided management of scratchpad memories in multicore
architectures,” in Int’l Conf. on Parallel Architecture and Compilation (PACT), 2015,
pp. 379-391.

D. Lea and W. Gloger, “A memory allocator,” http://web.mit.edu/sage/export/
singular-3-0-4-2+420080405 /omalloc/Misc/dlmalloc/malloc.ps.gz, 1996.

D. Diamantopoulos, S. Xydis, K. Siozios, and D. Soudris, “Mitigating memory-
induced dark silicon in many-accelerator architectures,” IEFEE Computer Architecture
Letters, vol. 14, no. 2, pp. 136-139, 2015.

Xieqing, “xieqing/red-black-tree,” https://github.com/xieqing/red-black-tree.

J. Reinders, Intel threading building blocks: outfitting C++ for multi-core processor
parallelism. 7 O’Reilly Media, Inc.”, 2007.

V. Venkataramani, A. Pathania, and T. Mitra, “Unified thread-and data-mapping for

)

multi-threaded multi-phase applications on spm many-cores,” in Design, Automation

Test in Europe Conference Exhibition (DATE), 2020, p. 1496-1501.

Y. Xiao, S. Nagarian, and P. Bogdan, “Self-optimizing and self-programming com-
puting systems: A combined compiler, complex networks, and machine learning ap-
proach,” IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 6,
pp. 1416-1427, 2019.

http://web.mit.edu/sage/export/singular-3-0-4-2+20080405/omalloc/Misc/dlmalloc/malloc.ps.gz
http://web.mit.edu/sage/export/singular-3-0-4-2+20080405/omalloc/Misc/dlmalloc/malloc.ps.gz
https://github.com/xieqing/red-black-tree

Bibliography 135

[72]

[78]

[80]

[81]

[82]

[84]

A. Edun, R. Vazquez, A. Gordon-Ross, and G. Stitt, “Dynamic scheduling on het-
erogeneous multicores,” in Design, Automation Test in FEurope Conference Exhibition
(DATE), 2019, pp. 1685-1690.

Google, “Flatbuffers,” https://github.com/google/flatbuffers, Oct. 2020.
T. E. Oliphant, A guide to NumPy. Trelgol Publishing USA, 2006, vol. 1.

J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science &
Engineering, vol. 9, no. 3, pp. 90-95, 2007.

Intel Movidius Ltd, Movidius MyriadX Development Kit: Programmer’s Guide, under

non-disclosure licence.

N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyanskiy, M. Girkar,
and P. Dubey, “Can traditional programming bridge the ninja performance gap for
parallel computing applications?” in 2012 39th Annual International Symposium on
Computer Architecture (ISCA), 2012, pp. 440-451.

L. Puglia, M. Ionica, G. Raiconi, and D. Moloney, “Passive dense stereo vision on
the myriad2 vpu,” in 2016 IEEE Hot Chips 28 Symposium (HCS). TEEE Computer
Society, 2016, pp. 1-5.

L. Martin, “Joint strike fighter air vehicle c+4 coding standards for the system

development and demonstration program,” 2005.

C. MISRA, “2008 guidelines for the use of the c++ language in critical systems, june
2008,” 2008.

AUTOSAR, “Guidelines for the use of the c++414 language in critical and
safety-related systems,” https://www.autosar.org/fileadmin/user_upload/standards/
adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf, 2017.

T. Foivos, “Resource management techniques for embedded architectures executing
deep neural networks,” 2018. [Online]. Available: http://artemis.cslab.ece.ntua.gr:
8080/jspui/handle/123456789 /13775

J. M. Kelsey, J. Byrne, M. Cosgrove, S. Seereeram, and R. K. Mehra, “Vision-based
relative pose estimation for autonomous rendezvous and docking,” in 2006 IEEE

Aerospace Conference, 2006, pp. 20 pp.—

G. Lentaris, I. Stratakos, I. Stamoulias, K. Maragos, D. Soudris, M. Lourakis, X. Zab-
ulis, and D. Gonzalez-Arjona, “Project hipnos: Case study of high performance avion-

ics for active debris removal in space,” in IEEE Computer Society Annual Symposium
on VLSI, 07 2017, pp. 350-355.

https://github.com/google/flatbuffers
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/13775
http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/13775

[85]

[86]

(8]

[91]

[92]

[93]

[94]

[95]

V. Leon, G. Lentaris, E. Petrongonas, D. Soudris, G. Furano, A. Tavoularis, and
D. Moloney, “Improving performance-power-programmability in space avionics with
edge devices: VBN on Myriad2 SoC,” ACM Transactions on Embedded Computing
Systems (TECS), pp. 1-22, 2021.

J. Canny, “A Computational Approach to Edge Detection,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679-698, Nov.
1986.

G. Giuffrida, L. Diana, F. de Gioia, G. Benelli, G. Meoni, M. Donati, and L. Fanucci,
“Cloudscout: A deep neural network for on-board cloud detection on hyperspectral

images,” Remote Sensing, vol. 12, no. 14, p. 2205, 2020.

C. Marantos, N. Karavalakis, V. Leon, V. Tsoutsouras, K. Pekmestzi, and D. Soudris,
“Efficient support vector machines implementation on intel/movidius myriad 2,” in

2018 7Tth International Conference on Modern Clircuits and Systems Technologies
(MOCAST), 2018, pp. 1-4.

G. Dinelli, G. Meoni, E. Rapuano, G. Benelli, and L. Fanucci, “An fpga-based hard-
ware accelerator for cnns using on-chip memories only: Design and benchmarking
with intel movidius neural compute stick,” International Journal of Reconfigurable
Computing, vol. 2019, 2019.

V. Leon, S. Mouselinos, K. Koliogeorgi, S. Xydis, D. Soudris, and K. Pekmestzi, “A
tensorflow extension framework for optimized generation of hardware cnn inference

engines,” Technologies, vol. 8, p. 6, 01 2020.

S. Mouselinos, V. Leon, S. Xydis, D. Soudris, and K. Pekmestzi, “Tf2fpga: A frame-
work for projecting and accelerating tensorflow cnns on fpga platforms,” in 2019 8th
International Conference on Modern Circuits and Systems Technologies (MOCAST),
2019, pp. 1-4.

A. Mpartsokas, “ Thonolnomn €viovemy UTOAOYIG TXE BIXTOWY G EVOWUATWHUEVES oY LTE-

ATOVXES UE TEPLOpLoUEVOLS Topoug. ,” 2018.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” in
Proceedings of the 22nd ACM international conference on Multimedia, 2014, pp. 675—
678.

—_ ’ «“ ’ ’ ’ ’
Z0yxme Adavdotog, © Thomolnon CUVEAIXTIXODY DIXTOWY OE EVOWUATWOUEVES URYLITEXTOVL-
xéc.” 2017.

Rhammell, “Ships in satellite imagery,” https://www.kaggle.com/rhammell/
ships-in-satellite-imagery, Jul 2018. [Online]. Available: https://www.kaggle.com/

rhammell /ships-in-satellite-imagery

https://www.kaggle.com/rhammell/ships-in-satellite-imagery
https://www.kaggle.com/rhammell/ships-in-satellite-imagery
https://www.kaggle.com/rhammell/ships-in-satellite-imagery
https://www.kaggle.com/rhammell/ships-in-satellite-imagery

	Ευχαριστίες
	Περιληψη
	Abstract
	englishenglishContents
	englishenglishList of Figures
	englishenglishList of Tables
	englishenglishListings
	Εκτεταμένη Περίληψη
	Introduction: The State of the Industry
	A New Era of Computing: AI & Vision Processing
	Nothing is free: The End of General Computing
	Heterogeneity to the Rescue
	Programmability & Heterogeneity: Hitting an impassable Wall?
	Possible Solutions & Motivation

	Vision Processing Units (VPUs) & Frameworks
	Vision Processing Units: Heterogeneity at its best
	A gentle Introduction to VPUs
	Myriad 2 VPU
	Myriad X
	GAP application processors: GAP8

	SWFrameworks: There is plenty of room at the top
	Frameworks
	Operating Systems

	The ParalOS Framework
	Introduction and Overview
	Hermes: IO Communication Module
	Role and Purpose
	Structure
	Implementation

	SMPI: Inter Processor Communication Module
	Role and Purpose
	Structure
	Management and Control Scheme
	Virtual Mutex
	Barrier Synchronisation
	Message Passing

	Scratchpad Memory Management
	Role and Purpose
	Related Work & Background
	Key Concepts
	Static Allocation
	Dynamic Memory Management: Introduction
	Dynamic Memory Management: TLSF Allocator
	Dynamic Memory Management: Proposed Double Layer Bitfield Technique
	SPM Manager Summary

	Computational Unit Manager
	Role & Purpose
	High Level API
	Worker Interface
	System Configuration
	Scheduling & Dispatcher
	Development Stages
	Summary

	Visual Profiler
	Role & Purpose
	Implementation
	Output

	Workflow
	High Level API Usage Example
	Low Level Development
	13 Steps to Success

	Reliability & Fault Tolerance: A first approach

	Appications and Evaluation
	Evaluation using Synthetic Benchmarks
	Memory Manager
	IPC Throughput
	Computational Unit Manager: Scaling
	Computational Unit Manager: Multiple Application Execution

	Visual Based Navigation
	Introduction
	HIPNOS algorithm & ParalOS
	Canny Edge Detection
	Rendering

	CNN Engine
	Introduction & Motivation
	Implementation
	Benchmarking

	Devopment Effort

	Conclusion and Future Work
	Future Work
	Hardware Accelerator Support
	Validation and Optimisations
	Porting to Different Platforms
	Source to Source Compilation
	Fault Tolerance and Mitigation Techniques

	Thesis Conclusion
	Publications
	The End of a Journey

	Bibliography

