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IMepirndn

H nopotoa SIMAWUATIXG XATATLAVETAL UE TO OYEDAOUO UNYAVIOUOY UE omodoTixy| e€a-
YY1 TAnpogopiag and toug maixteg. ITo cuyxexpéva, o Bacixdc pog otdyog elvon 1
ehaytoTomolnom Tou cuvolixol TAfdoug and bits mou hoPBdvouue amd Toug yeRHoTEC,
Ywplc vou Yuctdoouue TauTdypova GAAES EMIUUNTES WOLOTNTES TOU UNYOVICUOD OIS
elvon 1 prhakdeta xardde xon to social welfare mou emtuyydvetan.

Apyixd, Belyvoupe mwe unopolv va vhonotdoly évo GOVORO amd TOEABELYUATIXES
ONUOTEOGIESC UE ACUUTTOTIXG BEATIO TN emixovwvio. Ewbixdtepa, Eexwvdue tn Yehétn
uog pe single-parameter domains, mepihopBdvovtog single item xou multi-unit au-
ctions. I o mpdTEPO, Belyvouue 6Tl To Vickrey’s auction unopel va uhomomndel ye
1 + € avopevouevo communication complexity, yia xdde € > 0, Yewpwvtog 6Tl xdde
valuation unopel va avanopactadel pe éva constant mAdoc and bits. 'Etot, npote-
tvoupe pla amoteheopotiny pédodo mpocoupuoync tng Trg oc éva English auction.
Y1 ouvéyeld, oyedldlouE ATOBOTIXA Y AUATA XWOLXOTOINCNC MOTE Vol TETOYOUUE
70 (610 BéATIoTO (Pedrypa yioo multi-item auctions e additive valuations xou constant
mhfdog amd avtixelyeva, aAAd xou multi-unit auctions ye unit demand bidders. Ta
ATOTEAEGUATY oS ETOVTOL OO AMAEG TEYVIXES OetypatoAndlag xou Sev amontoly emi-
TeO0oUETEG LUTOVETELC VLo TEOTERY) YVWOT WG TEOS TIC TURUUETEOUS TWV TOUXTEV.

Y70 8e0TEPO PEPOC TNE BOUAELAS Yog €0 TIECOUKE OTO YEVIXEUUEVO median unyav-
oéd tou Moulin oe petpxolc yopouc epodcpévouc ue v L1 vépua. O ouyixe-
XPWEVOC UNyovIopog Exel Wialtepn onuacio otny neployr tou Social Choice xadde
mapoxduntel 1o Gibbard-Satterthwaite impossibility theorem yir 1o moAd @uoxd
cevdplo Twv single-peaked preferences. Actyvoupe 611 plo yédodoc deryuatorndiog
unopel va tpoceyyioel 10 BEATIOTO xO0TOC UE TOAD ULXEO XOUUYTL TNG CUVONXTS AT
cogopioac. To Boaocixd yoc anotéreoua Pactleton GTOV YALAXTNEIOUO Ul XATAVOUNC,
xou Lo TELOUPE OTL TEOLCLALEL aveEdPTNTO EVOLUPEQOV.

AéEerigc KAerdrd— Xyedooude Mnyoaviouov, Facility Location Games, Com-
munication Complexity, Anodotix E€aywyy [Iinpogopioac, Vickrey’s auction, En-
glish auction, Multi-Unit auctions, Multi-item auctions, I'evixevyévoc Median,
Aevypatorndio



Abstract

This thesis is concerned with efficient preference elicitation in the field of Algo-
rithmic Mechanism Design. More precisely, our goal is to minimize the elicited
number of bits from the agents without sacrificing the other desired properties
of the mechanism, namely the incentive compatibility guarantee and the social
welfare. In this context, our main contribution is twofold.

First, we show how to implement a series of well-known mechanisms from Auc-
tion Theory with asymptotically optimal communication. Specifically, we initially
turn our attention to single-parameter domains, namely single item and multi-unit
auctions. For the former, we show that Vickrey’s auction can be implemented with
an expected communication complexity of at 1 + € bits — on average — per bidder,
for any € > 0, assuming that the valuations can be represented with a constant
number of bits. As a corollary, we provide a compelling method to increment the
price in English auctions. Moreover, we design efficient encoding schemes in order
to obtain the same asymptotic bound for multi-item auctions with additive bid-
ders and a constant number of items, and for multi-unit auctions with unit demand
bidders. Our results follow from simple sampling schemes and do not require any
prior knowledge on the agents’ parameters.

Moreover, we consider Moulin’s generalized median mechanism on metric spaces
endowed with the L' norm. This mechanism is of fundamental importance in the
realm of Social Choice as it circumvents the Gibbard-Satterthwaite impossibility
theorem for the natural setting of single-peaked preferences. We show that a sam-
pling approximation of the median achieves a 1 4 € approximation of the optimal
social cost, for any € > 0, with a constant sample ¢ = ¢(¢). Thus, our sampling
approximation incurs an arbitrarily small error with an arbitrarily small fraction
of the total information. Our main result is established based on the asymptotic
characterization of a distribution, and could be of independent interest.

Keywords— Mechanism Design; Facility Location Games; Communication
Complexity; Preference Elicitation; Vickrey’s auction; English auction; Multi-unit
auctions; Multi-item auctions; Generalized Median mechanism; Sampling



Euyapiotiec

Me tnv ohoxAfipewon Tng Topolous SITAWUATIXAG UGUEVOUIL TNV AVaY XY VoL EUY o
PO THoW €val GOVORO amd dToua TOL Uou TeocEpepay TN Bordeia xou TN cuuTaEdo o
TOUG, TOOO OTO TAXCLOL EXTIOVNONG TNG DIMAWUATIXC OG0 Xl GUVOMXE GTOV XUXAO
TWV TEOTTUYLAXWY U0V GTOUSWY.

Hpdtor amd Oha, Yo Adelo va evyaptothion Baditata Tov xodnynty Anunten
Pwtdnn, o onolog eniBiede Ty Simhwpater) wou. Iho cuyxexpyéva, H€hw va Tov
ELYUPIOTACK YLt TNV XAOONYNOT OTU TEWTU EEELVITIXG oL BAUATY, YL TOV TO-
AOTWo yedvo mou Sidoe, ahAd xan TNV UTOCTARIEN Xou Tol EVIdPEUVTIXA TOU AoYLdL
oxouo xou 6tay oL WEeg mou mpdTeva dev fTay Wiaitepa xohéc. Tov evyaplothow
eniong mou e éxave péhog tou epyaotneiou (CoReLab), npoopépovtag pio povodixr
eunelpior oTol TEAEUTALN €T TV TROTTUYLOXGY UouU oToudwy. Emmiéov, Yo el va
euyaptoThow Vepud Tov Havayuntn Hatouvdxo, o onolog mparypatomolel S1duxTopIO
ue tov x. Pwtdxn, yio T Porideia TOU YoU TEOGEPERE XUTA TNV BLIEXELN EXTIOVNONC
e Bimhwpatixig. O€hw va evyopto THow eniong Toug xonyntéc Apn Hayouptln xou
Evdyyeho Mapxdxn mou aglépmwoay ToAITIIO YeOVo »¢ UEAT TNE EEETACTIXAC ETLTEO-
TS TNS OLmALUOTIXNG pou. Oplopévo amd To UAXO Tou TEPLEYEL 1) TaP0VoN BOVAELY
TPOLCLAc TNXE 6To PeTvé Symposium of Algorithmic Game Theory, xa enopéveg,
VEAW VoL EUYOPIGTACE TOUG AVMVUMOUG reviewers yia To ToAU Bondntind oyohior xou
Tig umodeiEelc mou Poryinoay va Pertindel n napousiaon Tng SoVAELIS Yog.

Emmiéoyv, ¥éhe vo euyaplotiow depud dAoug Toug @iloug xal Toug GUUGOLTNTES
MOV YLt TS TOAY OUORYES OTLYUES TIOU TEQUCUUE XUTA T1) DLIPXEL TWV TEOTTUY LAWY
Hou oToLdWY. BOa Hiela entlong vor avaryvwplow TNV avextiuntn enidpaon xou emppon
OAWY TV UTEROY WV X1y NT®V Tou elya Ty TOYTN Vol YVop{ow Ohot auTd ol YEOVIAL.
Téhog, H€Aw VoL ELYOPIOTACEL TNV OXOYEVELDL LOU YIXL TNV XUTAVONON XOL TNV UTOUOVY,
xat xURlwg ToV AdERPO LoL L THEN YL TNV AOLEXOT CLUUTUEACTACT), Bofielo xat TioTn
ONOL QUTEL TOL Y EOVLAL.
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Kegdiawo 1

Eiocaywyr ota EAAnvixd

To communication complexity anotekel éva xevipwd (ATNUR 0TNY TEELOYY| TOU
Yyedaouol Mnyoaviopmyv. Mio mentn yeauur €peuvag UEAETAEL TNV eMXOV®Vio TOU
amanTeELTAL VLol TNV TEOCEYYIOT] WIAS OVTIXEWEVIXC CUVAETNOTNG, OTKC EVOL TOL AVOE-
voueva €coda 1) o social welfare' 1o nedlo Twv combinatorial auctions amoteel éva
YORAUXTNEIC TIXO TOPADELYUOL OTIOU LoYLEA aEVNTIXd anoTeAéouata €youv xaepwiel.
IMpdryautt, To communication complexity framework yenotwuonoteiton Tumxd yior Ty
an6delln lower bounds oe dnuonpaciec. Mia deltepn neployn uerétne mpoomodel va
oyedidoel TN dtadixacior IANAETBPAUOTC UE TOUC TAXTES ETOL OTE 1) ATOTEAEGUOTIXY
emxovwVio va efvat EYYEVES YopoXTNELOTIXG Tou unyaviopol. Axolouddvtag oauty
YEUUUT EQEUVOC, OTNY ToEoVCN SITAWUATIXY TEOCTIOVUE Vo avamTUEOUUE EVaL PUOL-
%0 TAAUGLO YLl TNV OVATTUEY ACUUTITOTIXG BEATIO TV UNYAVIOUWY GE TURUOELYUATIXY
TepBdihovto and to Lyediaoud Mnyaviouoy.

Auth 1 dugaocn oty emovovia evog pnyoviouol e€nyeiton and toAholg Adyoug.
[Tewtov, undpyel 1 ovdyxn OYESLICUOD UNYAVIOUMY UE LOYURES EYYUNOELS amddoong
O€ TEPLTTWOELS UE TEPLOPLOUEVT] ETUXOVLVIAL X0t TIAVKE TEQLOPLOUEVOL Y HDEOL 0pdoT.
Emnmiéov, 1 e€aywyr| 0edouévmv o xataveunuéva neptBdAlovta uropet va eivon Tohd
axpBrc. ‘Exel enlong avayvwpetotel 6tL 0 dyxog Tng emxovwviag evILAAXOVEL Xl TO
Bardud TAnpoopiog Tou HETAPERETOL UG TOUG YPNOTESC. LTO TAXCLO AUTO, 1) e€aywYT
TAnpeogoplag amawtel UYNAS cognitive cost, xou ol maixTeg eVBEYETAUL Vo BIOTAGOLY Vol
amoxoAUPouY OAOXANEWTIXE TNV WBIWTXY Toug TAnpogopla. Ipdyuatt, o teploplonds
NS TANEoYopiag Tou eEAdyEToL Amd TOUC YPNOTEC MPOCQEREL TO LOYURES EYYUNOES
WBLOTIXOTNTAS Yol TOUG YPHOTES.

Etvor gavepd Aowmdv 6tL dev elvon mpaxtind vor AdBeL 0 unyoviopog OAES TIC TRO-
TNOEIC TV YENOTWYV, Xt 0 OYEBIO TS eMVUUEL Var AABEL AmOXAEIGTIXG TO XOUMATL
NS CLYOALXNE TANEOGORiag ToL amanTelTon YLt TNV LAOTOINGT Tou UnyYaviopol. Autodg
axpBae elvar o otoyog Tou preference elicitation, piog xevtpwhc yYeouuhc peuvag
oto Social Choice.

Yoy mopdderyua Yempolue éva single item auction xou cuyxexpyéva Tic aduva-
uleg mou mapatneolvTal ota o xadiepwuéva formats, onAwd oto Vickrey’s auction
xan oto English auction. Apyuxd, eivan onuovtind vor emonudvoude 6Tt av xan xdde
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unyoviopog uropet vo uhonondet pe direct revelation — 6nwe éneton and to revela-
tion principle — auty| 1 WoodLvaula Exet aupioBnTniel yia toAhoUg Adyoug. Tlpdyuartt,
EXTOC TV GAAwV 1 Bovketd pog Yo detlel 6Tl To communication complexity evog
sealed-bid auction eivon paxpeid and to értioto. Emniéov, nopd Tic ToAAES emduun-
€ 1010TNTEC Tou Yapaxtneilouv éva sealed-bid auction, to English auction yernot-
UOTIOLE(TOL EXTEVME O TEAXTIXES EPUPUOYES, OTOL Xai eu@avilel xahltepn anddoo.
Iap” 6hat autd, 1 vhomoinoT evog second price rule pyéoo and €va Tumixd ascending
auction anoutel ot yewdTEEN TEPinTOON EXVETINY EMIXOVLDVAL.

270 6e0TERO UEPOC TNE BOVAELIC UAC AOYONOVUOGTE UE TNV TEYVIXY) TNG OELYHATO-
Andlag, pio xhaoowr pédodog mou yenowonoleiton 6Ttnv teptoyr) Tou Social Choice.
Hpdrypatt, €yel avayvwplolel oe TOMES TEAXTIXEC EQUOUOYES OTL Elval AVEPIXTO Vo
OUMEEEL xavelc OAeC TIC TROTWACELS TwV TouxTwy. Emmiéov, oc dAAeC TEQITTMOELS
emtdupolye vo teofBAédouye To anotéheoua eVOS EXAOYIX00 GYNUATOS Ywelc Vo Teay-
UOTOTIOLACOVUE TIC EXAOYEC. XE oUTO TO TAXCLO, YENOLWOTOWUUE detypatoAndla e
oxomd va Tpooeyyioouue tov generalized median mechanism, delyvovtag 6tL axdua
xa Ue "Wxed’ uey€ln Selyotog Umopolue Vo TETUYOUNE OYEBOV BEATIO TN TEOGEY YIoN.

1.1 H Xvuvewocgopd pog

H 8ur) poag dovheld mpoopépel TOMES VEEC GUVELC(PORES W¢ TEOS TO communi-
cation complexity mou amouteiton yior TV LVAOTOINCT VEUEAWOWY UNYAVIOUOY OO TO
Yyediaopd Mnyovioud. Av xou 1 SOUAELS pog AmoTEAEL QUOLXY| GUVEYELN EPELVIS OTNY
neploy ) Tou preference elicitation, oyvpomololue xan BeATidyvoupe TEoNyoOUEVAL O-
TOTEAEOUOTA PE OLAPOPOUE TEOTOUS, €VG ETIONG TMOTEVOUUE OTL aVOlyOuUE xaL VEEG
%xateLDOVOELC Yiot LEAAOVTIXT EQEUVAL.

1.1.1 Anuonpacieg

Apywd, yehetdue éva cUvolo amd dnuponpacieg, xou delyvouue 6Tl o xdde me-
plntwon uropolue aouunTwTIXd va tpoceyyicouue To BéATioto lower bound w¢ mpog
To average communication complexity, oniadr) To mAloc twv bits mou uetagpépel
evog Tuyalog YeHoTNG OTO UNyYAVIouo.

Single Item Auction

Ipwta, oyedidlovye plo maparioyy) Tou English auction pe plo Suvouixd mpo-
capuolouevn Twi. 1o ouyxexpwéva, oe xde yOpo vhonotolue éva sub-auction —
UAOTIONUEVO UEGW eVOC ahyopituou A — oe €va Selypo amoTeAoVUEVO amtd ¢ YEHOTEC.
Me autédv tov Tp0T0, 1 TIY Tou avaxoVKOVETL 6To YUpo anoteiel To market clea-
ring price oto sub-auction. H Bacuxn poc mopathenon ivon 61t xodode audvoupe to
uéyedog Tou BelyUaTog TO TOGOGTH TWV YENCTWY TOL Vo TUEUUEVEL EVERYH GTAUOLXS
uewovetar. Ewduxotepa, delyvouue 6TL yior xde € > 0, Yo undipyel €va opxeTd UEYTAO



péyevoc delypatoc ¢ = c(€) étol dhote To average communication complexity tne on-
nonpactiag mou mpotelvoupe va eivon 14-€. I'iot To cuyxexpuévo entyeionua utodétouue
ot xde valuation pnopel va avanapaoctadel pe éva constant tAfdoc and k bits. Em-
Théov, elvor povepd OTL xde dnuompacio tou Teocdlopilel Tov yeNoTn Ue To YAdTERO
valuation — pe miavotnra 1 — anoutel TovAdyiotov 1 bit and xdde yenot. 'Etot,
1 dnuomnpacia Tou elodyouus TEOCEYYI(EL ACUUTTOTIXG UTO TO XdTe Qedypa. 1o
Ao TNEd, ot cUVEYEL Tapouatdlouue To ascending auction péow Serypoatorndiog,
%xo0dS %ot TIC Pacinég IBOTNTEC TOU AMOOEEoE.

Algorithm 1: Ascending Auction péow Acvypotorndiog

Input: X0voro N, yéyedoc delypatog ¢, ahyopripoc A
while |N| > ¢ do

S 1= tuyalo Belypa and ¢ yproteg and 1o N

w = vuntic oto A(S)

Avoxotvwoe p 1= Ty ato A(S)

Avovéwoe toug yprotec: N :={i e N\ S |v; > p} U {w}

end

if |[N| =1 then

| eméotpede w,p
else

| eméotpee A(N)
end

Ocpnua 1.1.1. Trodérortag éti o1 maiktes eivar prraAnier, to ascending auction
Héow deryuatodmpiag vAomorel pe mbavétnra 1 to VCOG allocation rule.

Ocdpnua 1.1.2. Ay o adydpifuog A vloroieitar péow evog sealed-bid auction, to
ascending auction péow derypatoAnpias efvar strategy-proof.

Ocedpnpa 1.1.3. Eotw dut(n;c, k) eivar to avapevduevo communication comple-
xity tov ascending auction péow deryuatohnpiag, e to k va Jewpeirar constant. Tore,
yia kde € > 0,3cy = co(€) dote Ve > ¢y,

t(n;e k) Sn(l+e). (1.1)

ES¢ Yo mpéner vor avagépoupe 6L o oupPoloude f(n) S g(n) eivon loodivapog
pe to lim, o f(n)/g(n) < 1. Eivor onuavtixd va emonudvouue eniong didpopes
emnpocieteg WOTNTES TN dnuompaciag yac. Apyixd, o TpéTog mou eE8yOuuE TANO-
popopia etvan Evtova U cuPUETELXOC, xalng 660 To xovTtd’ Beloxeton €vag yeRotng
GTO Vo xEEDIoEL TO AVTIXElPEVO TOCO To TOAD TAnpogopia meémel Vo amoxohlpel. Emi-
TAEOV, TUEATNEOVUE OTL O UMY OVICUOG Log Vot ElYE TEUXTIXG EVOLAPEROY OF TEPLTTWOOELS
6mou 6ev dlardéToude TEOTERT TANEOPOEIA WS TEOS TIC TROTYHCELS TWV TOUXTV.



Multi-unit auction

Emniéov, dewpolye apxetéc enextdoelc Tou mponyoluevou cevoplou. Ilpwta,
oyewdlouye multi-unit auction ye unit-demand bidders mou avoxtd xou ndAL To (Blo
BérTioTo Pedrypa Tou 1+ € bits, yia omowdnrote € > 0. Ilio cuyxexpwéva, oe éva Tu-
mxo ascending auction avoxowdveto oe xdde yYopo uio . Avtidétwe, n W0éa yag
elvor vor uetadidouye dVo dlapopetinég Twwég. Ot maixteg mou elvan ugnidtepa and Ty
LMY T Vo YEwEoDVTOL AUTOUATO VIXNTES, EVE OL YPNOTES ToL efvan YaunAdTepa o-
76 TN YounAh Ty Yo amoxAelovion and Tn cLVEYEL Tng dnponpaciag. Emonuatvouue
ot 1 TN mou Yo TAnewoouy oL YenoTeg elvar xow), xat xadopiletar 6To TENOS NG
onuonpacioc. 'Etot, otov enduevo Y0po elvon opxeTtd VoL EGTIACOVUE TNV TEOCOY N oG
oToug Yenoteg mou PBeloxovton evildueca otic 8o Twég. H Paowr| pog nopatrienon
elvon 6TL av oL 500 TS elvon x0VTd, TOTE TO TOGOGTO TWV YPNOTWYV Tou Peloxovia ev-
otdueca Yo elvon avtiotorya wxed. Me autdy Tov Tpomo Ho unopoloaue Vo ELodYOUUE
€VoL AmOBOTIXO Oy XwdxoTolnoNg.

Algorithm 2: M(N,m): Multi-unit Auction péow Acvypororndiog

Input: X0voho nouxtov N, TARHoc avTiXEEVRY m 1= yn
Apyxornoinoe toug vixntée W = 0 xou Touc nrTnuévoug L = 0
Ph = EXTWOUEVO AV QEAYUN GTNY T
Pr 1= EXTWOUEVO XATW PEAYHN OTNV THUN
Avaxolvwoe py xou p,
Avavéwoe toug vixntée: Wi=W U{i e N |v; > pp}
Avavéwoe toug nrtnuévouc: L= LU{i € N |v; < pe}
if p;, = p; then
‘ enéotpede W, pp
else
N:=N\(WUL)
Avavéwoe 1o TAflOC TV avTIXEPEVDY M
enéotpede M(N,m)
end

H Baowr duoxohion Tng cuyxexpyévng Uedod0u EYXELTOL GTOV TROCOLOPLOUO TV
0Vo TwoYV €tol wote va eivon tight gedyuoata we meog to market clearing price. I'a
T0 o%0T6 aUTO, TEOTEVOUNE Evay TOAD Quoxd akyopriuo. Ilo cuyxexpyéva, Yew-
polpE €va Buadxd BEVTEo mou avamoptotd To discretized valuation space. Zextvdye
oo ) etlo Tou Bévtpou xar oe xdie eninedo exTywolue éva axdpa bit yéoo amd devy-
uotoAndia. Ewbixdtepa, pwtdue xdie ypriotn mou avixel oo delypa av to valuation
Tou Eemepvdet uio xatdAAnAa emAeYUEVN T, ‘Eva onuovtind onueio e8¢ elvon 61t T0
Oelypo evoEyetan var unyv odnyel o exddapo branch, pe v évvola 6Tl Tepinou pool
XENOTES TEOTLIOUY TNV GV eMAOYT. X auTNV TNV TERINTWOT elvon apxeTd 1) Younin
TR vor axohoLDNGEL TO YouNAG povomdtt xon 1 Y Ty To uPnhé povondti. Me



yerion Chernoff bounds, Setyvoupe 61t autdc 0 alyopriuog Vo Tepuotioet e peydhn
mavoTnTor o€ 6V0 BLAPOPETIXEG OTAVUES, €TOL WOTE TO TOGOGTO TWV YENOTWY TOU
Beloxovtow evdidueoa va etvan wixpd. Elvon onuovTtind vo avopépouye €8¢ OTL Elvor Ti-
Yoo Yo évay TalxTr Tou GUPPETEYEL oTo Belyua 1 UAoA el vor uny efvar dominant
strategy. 'Etot, anodexviouye €va weaker guarantee tng pop@ric Tou ex-post ince-
ntive compatibility. ITo cuyxexpiuéva, n dnponpacia yag Topouctdlel T axdhouvdeg
WBLOTNTES:

Ocpnua 1.1.4. To multi-unit auction péow Seryuatodmpiag eilvar ex-post ince-
ntive compatible.

Ocecwenua 1.1.5. Eoww du t(n;c, k) elvar to avapevduevo communication comple-
ity tov multi-unit auction péow SetypazoAmpias, pe k € O(n'=*), yia xdrow £ > 0.
Téte, ya kdde € > 0,3y = co(€, k) dote Ve > cp,

t(n;e, k) Sn(l+e). (1.2)

Multi-item auction

Y1 ouvéyela, yehetdue multi-item auctions pe additive valuations. Av urmo-
Yéoouue 6Tt m elvan To0 TARYOC TV AVTIXEWEVLY, Elval Qovepd OTL UTOPOUUE VoL Te-
TOyoupe @pdyua m(l + €) bits yio évav tuyaio yehotn Pe yeHomn m SNUOTEUCLOY
olpgpwva pe to format mou oplooue mponyolvwe. Ilug” dha autd, 1 Pacuxn yog Topo-
THENON Elvol OTL UTOROVUE VoL UELWCOUUE CNUOVTIXGA TNV ETUXOVGVIX oV UAOTIOL\COUUE
1 dnponpacieg mapdAAnia, oyedidlovtag éva amodotnd ayfua xwdixonoinong (6mwe
ouuPBduver yia mapdderyua oto Huffman coding). "Etot, Seiyvoupe 6t étav to nhfdog
TWV OVTXEWEVODY elval constant umopolue va tethyouue Eovd To @edypa Twv 1 + €
bits. ITo cuyxexpwéva, delyvoupe to axdrouvdo Vewpnua:

Ocwenua 1.1.6. Eotww t(n;m, ¢, k) to avauevé communication complezity mov a-
Taeital yia Tny vAomoinon m tapdAAnAwy ascending auctions péow derypatoAnpiag,
e m kai k va ewpodvtar constant. Tote, vndpyel katdAAnAo oxnua kwdikomoinons
wote ya kdbe € > 0,3cy = cp(€) dote Ve > ¢,

t(n;m,c, k) Sn(l+e). (1.3)

YUVETOS, TUEOUCLACOVUE DNUOTPACIES UE AOLUUTTWTIXG BEATIOTH EMXOVWVIN Yo
TIC OXOAOUTES TIEQITTAOELS:

e single item auction
e multi-unit auction ye unit-demand bidders
e mutli-item auction ye additive valuations

Etvor onuovtind var oavopépoude 0Tl UE OEB0UEVA OPLOUEVA JEVNTIXE ATOTEAECUATO
oe combinatorial auctions, undpyouv TOA) UG EuTOBLAL Yiar TNV eNiTELEN aTOdO-
TIXAC ETXOVWVING OF o YeVxd domains.



1.1.2 TIlpooeyyilovtag Tov Median

Hpoywenvtoag ota anoteréoyatd pag oto Social Choice, Yewpolye tov gene-
ralized median mechanism oto mhaicto facility location games. O cuyxexpwévoc
unyoviopog €yel Waltepn onuaoio xadoe napaxduntel to Gibbard-Satterthwaite i-
mpossibility theorem ce single-peaked domains. H oouxr| pag cuveisgopd etvar va
oet€ouye 6Tt 0 median emdéyeton oyedoV BENTIO TN TEOGEYYLION Héow BeryUoTonlag.

Ye mhaiowo facility location games, o median unyoviouog tonotetel ula eyxo-
TAoTAON 0T OIIPECO TwV VEoEwy Twv Tauxtwy. Etol, av x; elvou 1 tonoveoio Tou
yenotn 4, Tote To social cost piog eyxatdotaone otn Véon x opileton we Y d(z, x;).
Puowd, 0 oToY0C TOL UNYAVIGUOD Elvar Var ENayto TOTO|OEL To social cost, dnhady| va
ToTOVETNOEL TNV EYXATACTACT OGO YIVETOL XOVTE GTOUC YENOTES.

Apyind avolboupe to povodidotato median. H mpdtn yag nopatrenon eivon 6t
o median elvou sensitive w¢ mpog Tto social cost. Ipdypatt, Setyvouue 6TL évag mo-
ixtne umopel vo ennpedoet to social cost tou median xatd O(1/n), 6mou n elvar to
madoc Ty Tauxtov. ‘Etol, xodog 1o miploc Twv yenotov auvgdveton 1 enidpoon
omolodhrote TodxTn Yo elvon opeAntéa. Av xan TéTolEG WBIOTNTES EYouV TopaTnenUel
O€ OMAGL OYUATA EXAOYWY, EIUACTE OL TEMOTOL TOU XAVOUUE TETOWOUL €lB0UC GOVOEDT)
oe facility location games. Ilio cuyxexpléva, anodeiloue To axdroudo Hewenuo:

Oecwpnua 1.1.7. Eotw 6t 2o € R efvar o median tng ewdédov ka1 x € R efvar
pia tomoUeoia tétowa ote To mOAU € -n XproTeS va Ppiokovtal avdpeoa 0To X Kal 0To
Zopt- T6te, av Doy €fvar to eAddyroto social cost, toroletdvtag tny tomoleoia oto x
dtver social cost D wote

4e
D < Dyy (1 : 1.4
= Opt( +1—2e) (1.4)

Y11 ouvéyeta, YewpolUE TNV XAToVoUT ToL TEOXOTTEL EXTIMOVTAS To rank X, —
WS TPOC TOV GLVOAXO TANYuoUS — Tou median tou delypatog, pe mbdovotnTo pdlog
TavoTNTOC OPLOUEVY K¢

</<; — z) (KJ + z)
v P P
Pr{X,=—-|=

! ( " /i) 2k +1 ’

2p+1

omou ¢ =2p+ 1 xou n =2k + 1. To nponyoluevo sensitivity emyeionuo avdyet tnv
avaxtnon plog oyeddv BEATIOTNG TROGEYYIoNG TNV UPMAY cUYXEVTEWOT TNG TEOT-
yoluevne xotavounc. o to oxond autd, delyvouue 6Tt dTary 0 TANIUGUOS TOU PNy o-
ViooU elvor UPNAGS, 1 TEONYOVUEVT XUTOVOUT] CUUTIEQLPERETOL CaY [lal UETACY TUATL-
ouévn xatavour Brita. ‘Etot, divouue éva TOAD oxpl31] YopoxTNEIono TNS CLYXEVTEW-
ofc ne. 1o ouyxexpuéva, anodelaue ta oxdrouvdo YewphuoTas

(1.5)

Oedenua 1.1.8. Ia k — 00, n katavoun tns tuyaias petafAntis X, ovykiive
o€ pia petaoynuatiopévn Pnta katavoun pe tny axdlovdn ouvvdptnon katavouns



mdavéTnTag:
(2p+1)! 9
f(t) = (p!)222p+1 (1 =) (16)
Ochpnpa 1.1.9. Ia kdbe € > 0 ka1 6 > 0, vndpyer pia oradepd p = p(e,d) doTe
ya kdOe p > po,

Pr(|X| > €) < 4, (1.7)

omov n tuyaia petafAnt) X axolovOel tn petaoxynuatiopuérvn Prta katavoun mov
oploajie ato mponyoluevo Decypnua.

Ocwenua 1.1.10. O npooeyyiotikés povodidotatos median punxaviopos éxer ka-
wd péon tun 1 + € Aéyo mpooéyyons ws mpog to social cost Tov unyaviopod mov
xpnoonolel oAékAnpn tny mAnpogopia, ya kdle € > 0 ka1 yia otalepd puéyedos
detyparos ¢ = c(e), evdd n — oo.

Emonudvoupe 611 8ev ypnotlomololue TEOTERT) YVMOT OC TEOE TIC TROTIUHACELS TWV
mouxtov. Enlong, yevixebouye to anotéheoya o xdie UETEIXO YDPO EQOBLICUEVO UE
v L' véppa. Tho ouyxexpiéva, detyvoupe to axéroudo Yempruo:

Ocpnua 1.1.11. O npooeyyiotikds yevikeupéros median junxaviouos éxer katd
péon nun 14 € Aéyo mpooéyyions ws mpos to social cost tov unyaviopol mov xpnoi-
pomoiel oASkAnpn TNy TAnpogopia, yia kdbe € > 0 ka1 y1a otalepd uéyedos detyparos
¢ = c(e), evdh n — oo.

‘Eva evilopépov epdtnua efvar xatd 1660 Tol AmOTEAEGUATA UAS UTOPOVUE VoL YE-
VIXEUTOUV OF TO YEVIX0UG PETEIXOUS YWpeoug 6mou o median urnopel vo unv etvon xary
OpPLOUEVOC.



Chapter 2

Introduction

Communication complexity has been a primary concern from the inception of
Mechanism Design. The first consideration relates to the tractability of the com-
munication exchange required to approximate an underlying objective function,
such as the social welfare or the expected revenue; the domain of combinatorial
auctions provides such an example where strong negative results have been es-
tablished [DV13]. Indeed, the communication complexity framework is commonly
used to establish lower bounds in Auction Theory. A second active area of research
endeavors to design the interaction process so that efficient communication is an
inherent feature of the mechanism [CS02]. Following this line of work, we aim to
establish a natural framework for developing asymptotically optimal mechanisms
in well-studied environments from Mechanism Design.

This emphasis is strongly motivated for a number of reasons. First, there is a
need to design mechanisms with strong performance guarantees in settings with
communication restrictions and possibly truncated action spaces, due to technical,
behavioral or regulatory purposes [BNS07; AT06]. Moreover, extracting data from
distributed parties can be burdensome, an impediment magnified in environments
with vast participation. It has been also understood that the amount of commu-
nication captures the extent of information leakage from the participants. In this
context, behavioral economists have recognized that soliciting information requires
a high cognitive cost (e.g. [PUF99; Lil7]) and bidders may be even reluctant to
completely reveal their private valuation. Finally, truncating the information dis-
closure would provide stronger information privacy guarantees [SDX11] for the
agents.

Indeed, it should be intuitively clear that having every agent communicate all
of her preferences is impractical, and the designer aims to elicit only the relevant
parts of the information. This endeavor lies at the heart of preference elicitation,
a central theme in Social Choice and Mechanism Design that has engendered a
vast and diverse literature; we refer to the pivotal works of Conitzer [Con09] and
Oren et al. [OFB13], as well as references therein.

As a motivating example, we consider the single item auction, and in particu-
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lar, the shortcomings of the most well-established formats, namely the sealed-bid
and the English auction. First, it is important to point out that although every
mechanism can be simulated with direct revelation — as implied by the revelation
principle, this equivalence has been heavily criticized in the literature of Eco-
nomics, not least due to the communication cost of revealing the entire valuation
space. Indeed, our work will show that the communication complexity of Vickrey’s
sealed bid auction [Vic61] is suboptimal. Moreover, despite the theoretical appeal
of Vickrey’s auction, the ascending or English auction exhibits superior perfor-
mance in practice [Aus04; KHL87; KL.93; AMO06], for reasons that mostly relate to
the simplicity, the transparency and the privacy guarantees of the latter format.
However, a faithful implementation of Vickrey’s rule through a standard English
auction requires — in the worst case — exponential communication and indeed, time
complexity since the auctioneer has to increment the price by a single bit. In prin-
ciple, the lack of prior knowledge on the agents’ valuations would dramatically
impede its performance.

One of the issues we address in this thesis is how to increment the price in an
ascending auction, without any prior knowledge, so that the communication cost is
minimized and the desirable properties of each format are retained. More broadly,
we apply sampling techniques in order to establish mechanisms with asymptoti-
cally optimal communication complexity guarantees, without sacrificing the social
welfare and the incentive properties of the interaction process. In particular, we
employ random samples of agents and we either request the full information, or
we query on whether their valuations exceed a particular threshold. In this way,
our mechanism elicits — asymptotically — only the necessary information in order
to implement the optimal allocation rule.

In the second part of our thesis we are concerned with a particular branch of
preference elicitation; namely sampling approximations [CEG95; DB15], a stan-
dard technique employed in Social Choice. Indeed, it has been recognized that in
many real-world scenarios it may be infeasible to gather the preferences from all of
the agents; online surveys serve as such an example. Moreover, in many applica-
tions we want to predict the outcome of a voting rule without actually holding the
election for the entire population of voters; for instance, we are quite familiar with
polls and exit polls in political elections and beyond. In this context, we employ
a sampling framework in order to approximate the celebrated median mechanism,
which circumvents the Gibbard-Satterthwaite impossibility theorem in the natural
domain of single-peaked preferences. This setting is motivated — among others — in
political spectrum theory and facility location games. Surprisingly, we show that
even a sample of constant size can yield an allocation with near-optimal social
cost.



2.1 Related Work

Communication efficiency has been a cardinal desideratum in the literature
of Algorithmic Mechanism Design. The first consideration relates to the interplay
between communication constraints and incentive compatibility; in particular, Van
Zandt [Van07] articulated conditions under which they can be studied separately,
while the authors in [Rei84; FS09] investigated the communication overhead in-
duced in truthful implementations, i.e. the communication cost of truthfulness. In
a closely related direction, Blumrosen et al. [BNS07] (see also [MT14]) considered
the design of optimal single-item auctions under severely bounded communica-
tion: every bidder can only transmit a limited number of bits. One of their key
results was a 0.648 social welfare approximation for 1-bit auctions and uniformly
distributed valuations. In addition, the design of optimal — with respect to the ob-
tained revenue — bid levels in English auctions was addressed in [Dav+05], where
the authors had to posit known prior distributions.

Moreover, the solution concept of efficient preference elicitation has induced a
significant amount of research in the field of Social Choice. In particular, Segal
[Seg07] provided bounds on the communication required to realize a social choice
rule through the notion of budget sets, with applications in resource allocation tasks
and stable matching. Furthermore, the boundaries of computational tractability
and the strategic issues that arise were investigated by Conitzer and Sandholm
in [CS02], while the same authors established in [CS05] the worst-case number
of bits required to execute common voting rules. Efficient aggregate preference
in social networks was considered in [DN13], where they elicited preferences from
a small subset of critical nodes in the network. The trade-off between accuracy
and information leakage in facility location games was tackled by Feldman et.
al [FFG16], where they investigated the behavior of truthful mechanisms with
truncated input space — ordinal and voting information models — and constitutes
the main focus of our work as well. Finally, our approximation scheme is founded
on Moulin’s generalized median rule [Mou80] (see also [Bla48]).

2.2 Overview of Contributions

Our thesis provide several new insights with regards to the communication com-
plexity required to implement fundamental mechanisms from Mechanism Design.
Although our work constitutes a natural continuation of research in preference
elicitation, we strengthen and improve prior results along several lines, while we
believe that our work also opens several interesting avenues for future research.
Specifically, our contribution lies in the following.



2.2.1 Communication in Auctions

We first consider a series of environments from Auction Theory, and we show
that for every instance we can asymptotically match the lower bound with respect
to the average communication complexity, i.e. the number of bits a bidder trans-
mitted on average during the interaction process. We first design a variant of the
English auction with an adaptive ascending price. Specifically, in every round of
the ascending auction we simulate a sub-auction on a sample of size ¢ from the
active agents. Then, the announced price of the round in the ascending auction
will simply be the market clearing price in the simulated sub-auction. The main
intuition behind our algorithm is that the fraction of the agents that will remain
active in the following round scales as O(1/c); thus, as we augment the size of the
sample most of the agents will withdraw from a given round of the auction. In
other words, in our auction most of the agents will transmit in total a single bit.
In fact, we show that for any € > 0, there will be a sufficiently large ¢ = ¢(e) such
that the average communication complexity will be 1 + e. For this argument we
make the hypothesis that every valuation can be represented with a constant num-
ber of bits (e.g. 32 bits), although it can be relaxed. Naturally, this assumption
is well motivated in single-parameter domains. Moreover, a trivial lower bound
implies that every bidder has to transmit a single bit to the mechanism, so that
the agent with the highest valuation can be recovered with probability 1. As such,
our simple mechanism asymptotically matches this lower bound.

It is important to point out several features of our proposed single item auction.
First, it introduces an interaction process that very naturally couples different for-
mats. For instance, it would be natural to implement the sub-auction through a
sealed-bid format. Moreover, the information elicitation is highly asymmetrical, as
the closer a bidder is to winning the item, the more information she has to reveal.
We argue that this property is actually desirable, and has been motivated for ex-
ample in deferred acceptance auctions. We also remark that our auction would be
of practical relevance in settings where the auctioneer does not possess adequate
prior information with regards to the agents’ valuations. Indeed, a strong feature
of our mechanism is that no prior information is required to recover the optimal
bound, unlike some prior work [Dav-+05]. Therefore, we establish a compelling
method to increment the price of an English auction, strongly supplementing the
findings of Blumrosen, Nisan, and Segal [BNS07] in a symmetric model of com-
munication.

Furthermore, we consider several extensions of the previous setting. First,
we design a multi-unit auction with unit-demand bidders that obtains the same
bound of 1 + ¢ bits — on average — per agent for any ¢ > 0. In particular, in a
typical ascending auction the auctioneer maintains a single price per round; in
contrast, we propose a natural variant in which we announce two separate prices.
The agents that are above the high price are automatically declared winners and
guarantee obtaining the good at the end of the auction, while the agents that lie
below the low price will withdraw from the remainder of the auction. We remark



that the price of the good will be determined only at the end of the auction, (and
lies between the two announced prices), a feature which is essential in order to
guarantee the incentive compatibility of the mechanism. Thus, we simply recurse
on the agents that lie in-between. Our main observation is that if the announced
prices are "tight”, these agents will constitute only a small fraction of the total
participation. This would allow us to introduce a very efficient encoding scheme.
More precisely, the agents that are above the high price will have to send a bit
of 0, the agents that are below the low price a bit of 1 — or vice-versa, while the
in-between agents some arbitrary 2-bit code, so that the encoding is non-singular.
Notice that the overhead incurred from using 2-bits will be negligible, as long as
the fraction of the agents in-between in small. It should be noted that this idea
is reminiscent to standard techniques in Information Theory, such as the Huffman
coding [Knu85].

The crux of the aforementioned method is to determine the two prices so
that they are tight upper and lower bounds with respect to the market clearing
price. To this end, we propose a very natural algorithm. In particular, consider
a binary tree that represents the discretized valuation space. On a high level, we
commence from the root of the tree and at each level we ”learn” an additional
bit through sampling. In particular, we simply query on whether their valuations
exceed the price that corresponds to the current node. A subtle point here is that
the sample could provide a rather ”ambiguous” answer, in the sense that roughly
half the agents in the sample prefer each choice. However, we notice that in every
such node it suffices to let the upper price follow the upper path, while the lower
price the lower path. This process will terminate at two separate leaves, so that
with high probability the fraction of the agents in-between is arbitrarily small.
More precisely, we prove this through standard Chernoff bounds. However, we
remark that unlike our proposed single item auction, this mechanism sacrifices
the dominant strategy equilibria due to the sampling phase; indeed, we show
a weaker incentive compatibility guarantee through the notion of ex-post Nash
equilibria. Finally, although we introduced this method in the context of multi-
unit auctions, our algorithm determines rankings of an arbitrary unsorted list with
optimal communication [Hoa61], and could be of independent interest.

Next, we consider the setting of multi-item auctions with additive valuations.
If we let m denote the number of items, it is clear that we can obtain a bound
of m(1 + €) bits per bidder if we simply perform m sequential auctions according
to the previously introduced format. Yet, our main insight here is that we can
substantially truncate this complexity through a simultaneous implementation. In
particular, we design a very efficient encoding scheme that employs a very sim-
ple property of our single item auction, namely, a random agent will most likely
withdraw from a given round of the auction. In light of this, a sequential imple-
mentation corresponds to a very inefficient coding scheme as we map events with
very different measures to codes with the same length. In contrast, a simultaneous
implementation of the m auctions, where all of the m rounds are executed in par-



allel, allows us to design an encoding scheme that exploits this asymmetry. Thus,
we show that when the number of items m is a constant, we can again guarantee
the bound of 1 + € bits per bidder.

As a result, we design auctions with asymptotically optimal communication
for the following exemplar settings:

e Single item auction,
e Multi-unit auction with unit demand bidders.

e Multi-item auction with additive valuations.

It should be noted that in light of well-established lower bounds in combi-
natorial auctions [NS06], there are natural impediments when one studies more
involved settings. Yet, we believe that our results are of practical significance due
to their simplicity and their communication efficiency.

2.2.2 Information Requirements of the Median

Turning our attention to Social Choice, we consider the generalized median
mechanism in the context of facility location games. This mechanism has receive
substantial attention given that it circumvents Gibbard-Satterthwaite impossibil-
ity theorem for the well-motivated setting of single-peaked preferences. Our main
contribution is to show that a sampling approximation of the median obtains al-
most the same social cost guarantee.

To be more precise, we first analyze the one-dimensional median in which
the allocated facility is placed to the median of the reported instance. Our first
observation is that unlike the median itself, the social cost of the median presents
a surprising sensitivity. Indeed, we prove that a unilateral deviation from a single
agent can only alter the social cost by a factor of O(1/n), where n is the number
of agents. Thus, as the number of agents increases the impact of any player —
with respect to the cumulative distances from the allocation — will be gradually
negligible. Although properties of this kind have been observed in simple voting
schemes in prior works (e.g., see [DB15]), we are the first make such as a connection
in facility location games.

Next, we consider the distribution that arises from estimating the rank — with
respect to the entire population — of the sample’s median. The previous sensitivity
argument reduces obtaining a near-optimal guarantee to showing that this distri-
bution is concentrated around the actual median. However, standard techniques
appear to be of no use in this context. For this reason, we establish concentration
by showing that when the participation is large, the aforementioned distribution
behaves as a transformed beta distribution. As such, we are able to provide a
very precise characterization of its concentration. We believe that this result is of
independent interest as it supplements several characterizations in the regime of
ranking distributions.



As a result, we show that for any € > 0, a sample of size ¢ = ¢(¢) guarantees a
1+ € social cost with respect to the full information mechanism. We stress that we
do use any prior knowledge on the agents’ valuations. We also establish the same
characterization in every metric space endowed with the L' norm. An intriguing
question that arises from our results relates to the guarantees of a sampling ap-
proach in more general metric spaces where the median may not be defined (e.g.
a circle). It appears to us that our insights can be extended to broader settings.
Indeed, our approach fits very naturally to the recently introduced framework of
distortion [ABP15; SE17; MW19; Kem20; GHS20].

Broader Context More broadly, communication complexity has been a pri-
mary consideration in Game Theory. A series of works have established tractable
communication procedures in order to reach an approximate Nash equilibrium in
two-player games [GP12; Czu+18; BR17]. Moreover, important work by Nisan
and Segal [NS06] has illustrated the limitations, and in particular the exponential
communication requirements in the domain of submodular bidders, as well as in
combinatorial allocation problems — even when 2 players compete for m indivisible
items. There has been also extensive research devoted in designing incentive com-
patible and efficient preference elicitation mechanisms in combinatorial auctions
[HS04; CS01; Blu+04].

Roadmap In chapter 2 we introduce some basic notions from Game Theory,
as well as several fundamental mechanisms from Mechanism Design and Social
Choice that are related to our work. In chapter 4 we introduce the framework of
Communication Complexity, before we present our results in Auction Theory and
facility location games in chapters 5 and 6 respectively.



Chapter 3

Algorithmic Mechanism Design

3.1 Introduction

Game Theory is the field that studies mathematical models of strategic inter-
action between rational and selfish agents; as such, it provides a rigorous frame-
work to understand the phenomena we observe when decision-makers interact.
The main assumption that characterizes the theory is that decision-makers pursue
some well-defined objective — rationality hypothesis — based on their knowledge or
expectations of the behavior of the other players. Ever since the inception of the
field by Von Neumann’s and Morgenstern [NMR44], Game Theory has played a
vital role in Economics, Political Science, and more recently in Computer Science,
underlined with the advent of the Internet.

The models employed in Game Theory are abstractions of a wide range of
real-life phenomena. Indeed, the development of the theory was motivated by
issues that arose in practical applications. Typical examples include oligopolistic
and political competition, market equilibria, stability in large-scale economies, and
many others. The fundamental question in Game Theory is how to formalize the
meaning of ”rationality” and ”rational behavior”, and how to argue in a rigorous
sense about interacting and competing agents in the context of a ”game”. The
first consideration has been addressed by the theory of Rational Behavior, through
notions such as wtility and preference, while for the latter issue various models
have been proposed in the literature in order to capture different types of strategic
situations.

Of course, we have extensive experience from participating in games, either
directly or in many cases indirectly. An instance of the former scenario would be
a game of chess, while indirect participation occurs, for example, when one has to
decide on the most efficient route to reach a certain destination, which crucially
depends on the amount of traffic congestion — i.e. the number of other commuters
whose select among interfering routes. Before we proceed with a formal treatment
of the fundamental notions of Game Theory, we present a simple and familiar
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example.

Example 3.1.1 (Rock — Paper — Scissors). This game typically consists of 2
players with identical strategies. In each round, the players simultaneously form
one of 3 possible shapes, namely rock, paper and scissors, each corresponding to
an action available to each agent. According to the rules of the game, a player who
decides to play rock will beat anyone who chose scissors, but will lose to anyone
who has played paper. Furthermore, a player who chose scissors will beat a player
who formed paper. On the other hand, if both players select the same shape, the
round is considered to be tied.

Cooperative and Non-Cooperative Games In every game-theoretic model
the basic entity is the player. A player may be construed as a single individual
or as a group of individuals making collective decisions. Based on this dichotomy,
we distinguish two types of models, namely ”non-cooperative” and ”cooperative”
respectively. It should be noted that in recent years, the overwhelming research
focus — and indeed the topic of this thesis — has been on non-cooperative models.

In the following sections we are closely following the notation of Osborne and
Rubinstein [OR94].

3.1.1 Rational Behavior

The models we consider in Game Theory assert that every agent acts rationally
in the sense that based on the possible alternatives or actions at her disposal and
the expectations about any unknown information, she selects her strategy after
some optimization process. In the absence of uncertainty, rational choice consists
of the following ingredients:

e A set of actions A from which the agent makes a decision.
e A set of possible consequences C for each action.
e A consequence function g : A — C that maps every action to a consequence.

e A preference relation 7~ over the consequences C.

In many cases the agents’ preferences are specified through a wutility function
U : C — R, which induces a preference relation - by the condition that x = y if
and only if U(x) > U(y). We remark that the preference relation is assumed to
be complete, transitive, and reflexive.

For a given feasible set of actions B C A, a rational decision-maker selects an
action a* that is feasible — i.e. a* € B — and optimal in the sense that g(a*) 7 g(a)
for all a € B. Equivalently, every rational agent solves the optimization problem
maxgep U(g(a)). However, in many settings individuals have to make decisions
under conditions of uncertainty; typical causes of uncertainty include the following:



e Lack of information about the reasoning of the other players.

e Uncertainty due to the randomization in their environment or in the actions
of other players.

e Imperfect knowledge about the parameters of the game, such as the imposed
rules and the parameters of the environment.

The standard approach to address uncertainty or randomization is to assume
that agents are maximizing over the expected value (von Neumann-Morgenstern
utility) according to some prior beliefs or distribution over the unknown informa-
tion. We remark that the rationality hypothesis has been extensively questioned
by experimental psychologists.

3.1.2 Modeling a Game

In this section we provide a rigorous definition of a game, a central object in
Game Theory that captures the model of interaction between competing agents.
In particular, the strategic form is appropriate as a model in situations where the
players perform their moves simultaneously. In such games, players select their
strategies without knowing those of the other players. The canonical example in
this context is the Rock — Papers — Scissors game we illustrated in our introduction.
Formally, a simultaneous-move, strategic form game consists of the following:

1. A set of n players {1,2,...,n}.
2. A set of possible strategies for each player .

3. A utility function u; : S — R, where S =57 x Sy--- X .S),.

In some cases instead of employing a utility function we model a player’s pref-
erences through a preference relation 7;, such that Vs,s’ € S it follows that
s i 8 <= wui(s) > ui(s’). We will represent a strategic form game as the

~

triple (n, (S;), (u;))-

Representing Strategic Form Games A crucial consideration in Game
Theory is how to encode the aspects of the game through an efficient and succinct
representation. In a so-called matrixz form, we represent explicitly the value of the
utility function for every possible strategy vector. Although this representation is
quite standard, it is unsuited when the number of possible actions is exponential.
Instead, application-specific representations such as graphical games or congestion
games are typically employed.



3.1.3 Nash Equilibrium

The most commonly used solution concept in Game Theory is the notion of
Nash equilibrium. This concept captures a steady state of the play of a strategic
game in which every player holds the correct expectation about the other players’
behavior. Yet, it does not attempt to consider the process by which a steady state
is reached.

Pure Nash Equilibrium

Definition 3.1.1 (Pure Nash Equilibrium). Let (n, (S;), (u;)) be a strategic form
game. A strategy vector s* is said to be a pure Nash equilibrium of the game if for
all i € [n],

wi(s],s%;) > ui(si, s*;),Vsi € S;. (3.1)

In words, a strategy vector constitutes a pure Nash equilibrium if no player has
an incentive to unilaterally deviate from her strategy. Unfortunately, a pure Nash
equilibrium may not exist. Consider for example the matching-pennies game, in
which every player chooses either "head” or ”tail”. If the choices are different, the
first player pays the second player one dollar; otherwise, the second player pays
the first player one dollar. Even in this simple example it is easy to see that no
pure Nash equilibrium exists. We remark that a matching pennies game is an
example of a strictly competitive game given that the interests of the players are
diametrically opposed, while in the assumed form it also constitutes a zero-sum
game — the sum of every entry in the matrix of the game is zero.

Mixed Nash Equilibrium Let us denote with A(S;) the set of probability
distributions over the strategies in S;, and U; the expected value of the utility
of player ¢ given the mized strategies of all players. For a given strategic game
(n, (S;), (u;)), we define its mixed extension as the game (n, (A(S;)), (U;)).

Definition 3.1.2 (Mixed Nash Equilibrium). A mized Nash equilibrium of a
strategic form game is a pure Nash equilibrium of its mized extension.

Going back to the matching pennies game, notice that if both players random-
ize uniformly over their pure strategies the game reaches a mixed Nash equilibrium.
In fact, Nash’s celebrated work [Nas50] established that every finite game has an
equilibrium point.

Theorem 3.1.1 ([Nas50]). Any game with a finite set of players and finite set of
strategies has a mized Nash equilibrium.

Nash presented a very elegant proof of this theorem through an application of a
fized point theorem due to Kakutani [Kak41]'. A question that arises immediately

!Similarly, Von Neumann’s proof of the min-max theorem employed Brouwer’s fixed
point theorem.



from Nash’s theorem is whether efficient algorithms for finding the equilibrium
exist. This issue is of central importance given that the predictive power of an
equilibrium concept crucially depends on that the agents may actually reach it
after a reasonable amount of time. Unfortunately, there is strong evidence that
computing a Nash equilibrium is computationally intractable even for a two-player
general games, and more precisely it was shown to be PPAD-complete [DGP06].

Mechanism Design Mechanism Design [Hur45; Hur73; HR06; Arrl12; Hur77,
LLR89; MDHT79] is a subfield of Game Theory that endeavors to design systems
that implement desired social choices with good performance guarantees in strate-
gic environments — assuming that every participant will act rationally in a game-
theoretic sense. Naturally, taking into account incentive issues is crucial given
that the agents’ preferences are private, i.e. unknown to the mechanism. Typical
environments of interest include the following:

¢ Political Elections [Moul6]: Every voter has her own preferences among a
set of candidates, and the mechanism has to aggregate the agents’ preferences
in order to determine a set of winners.

e Judgment Aggregation [Lis12]: The goal is to determine the truth-value
of logically related propositions that depend on individual judgments or
opinions; as such, it is applicable in consensus reaching problems in multi-
agent systems.

e Auctions [Mas92; Mye81; RS81]: An auctioneer has to dispose or sell a set
of items to competing bidders.

Mechanism Design has emerged as the primary tool for rigorously studying
and predicting the behavior of multi-agent systems, and has found a myriad of
applications on the Internet where multiple parties with widely different goals
operate and interact. In this context, the focus is to aggregate the preferences of
the different participants into a social choice, while the main desideratum is that
the algorithm will perform well assuming strategic and selfish behavior from each
agent; in other words, the underlying mechanism should be incentive-compatible —
non-manipulable — to potential misreports from the agents.

3.2 Social Choice

Social Choice is concerned with the evaluation of alternative methods of collec-
tive decision-making. The inception of this field can be traced back to antiquity,
and the first organized communities where multiple individuals had to make de-
cisions for their common cause. Indeed, a study of the principles of collective
decision-making was already articulated by Aristotle in his book entitled Politics,
dating back almost two and a half millenniums ago. Yet, a rigorous theoretical



and mathematical investigation had to wait until the European Enlightenment,
where the pioneering contributions of Marquis de Condorcet and Jean-Charles de
Borda laid the foundations of modern Social Choice theory.

3.2.1 Condorcet’s Paradox

Perhaps the most natural and common voting rule is the so-called majority rule,
where each voter selects a single candidate among a set of alternatives. However,
in 1785 Condorcet observed that the majority rule is problematic in the presence
of three or more candidates. More precisely, let us denote with a,b, and ¢ the
alternatives, and consider three voters {1, 2,3} with the following preferences:

(i) a=-1b=1cC
(ii) bo2c>=9a

(iii) c>3a>3b,

where the notation a »>; b implies that agent i prefers candidate a to b. In this
setting, note that a majority of voters (1 and 3) prefers candidate a to candidate b,
a majority (1 and 2) prefers b to ¢, and finally a majority (2 and 3) prefers ¢ to a.
Thus, the ”joint majority” choice is a >= b > ¢ > a, which is inconsistent. In other
words, the method of pairwise majority voting may yield a social preference cycle.
Indeed, for any chosen candidate in Condorcet’s example there will be a majority
of voters who would favor altering the outcome of the election. One of the logical
implications of Condorcet’s paradox is that when a majority cycle occurs in the set
of social alternatives — there exists no Cordorcet winner, i.e. a feasible alternative
which is undefeated by any other feasible alternative, the possibility of basing
the social choice to a simple majority rule is excluded. It should be noted that
Condorcet’s paradox was taken from voting on economic policy, and it seems to
have been inspired by an earlier work of Borda (1781)?, who proposed what came
to be known as the Borda count. In particular, this method assings for each voter
a score of zero to the last ranked alternative, a score of one to the penultimate
alternative, and so on until the top ranked candidate. These individuals scores are
added for each candidate over all voters, and the candidate who earned the largest
total score becomes the overall winner in the contest. Unfortunately, this procedure
suffers from strategic vulnerability, since an elector has an incentive to place the
strongest opponents to their favorite candidates at the foot of their submitted list.
In fact, when Borda was confronted with this shortcoming he replied by saying
that his scheme is "only intended for honest men” ([Bla58]).

2It should be noted that the same scheme was independently studied by Pierre-Simon
de Laplace.



3.2.2 Impossibility Results

A large number of different voting rules have been suggested throughout the
years by the pioneering studies of Marquis De Condorcet, Jean-Charles Borda,
Charles Dodgson (better known by his pen name Lewis Carroll), Duncan Black,
and many others. Important these celebrated works are, they were concerned
exclusively with some specific voting scheme. In sharp contrast, Arrow devel-
oped a unified framework which allowed him to characterize all conceivable voting
schemes. In particular, Arrow pioneered an axiomatic approach in Social Choice
by imposing a set of natural axioms. Then, he showed that these axioms are
logically incompatible.

Moreover, a central difficulty that arises in social choice is strategic voting.
For instance, consider a voter ¢ with preferences a >=; b >=; ¢ who knows that
candidate a is unpopular and hence will not be selected; it is clear that such
a voter has an incentive to strategically vote for b instead of a. Unfortunately,
strategic vulnerability is unavoidable for every reasonable voting rule, as stated by
the celebrated Gibbard-Satterthwaite theorem.

Formally, consider a set of candidates A and a set of n voters I. Let us denote
with L the permutations — or linear orderings — of A, so that <€ L is a total
order — antisymmetric and transitive — on A. The preferences of a single voter i
are given by >;€ L, where recall that a >; b implies that agent i prefers a to b.

Definition 3.2.1. A mapping F' : L' — L is called a social welfare function, while
a mapping f: L™ — A is called a social choice function.

Thus, a social welfare function aggregates the preferences of all voters into a
common preference, while a social choice function accumulates the preferences of
all voters into a single candidate.

Arrow’s Impossibility Theorem

The first axiom that will be implied in the forthcoming analysis is that every
participant can express — or is free to express — any preference ordering, while
the social welfare function has to be able to aggregate the profile of any set of
profiles into a social preference ordering. The second axiom requires that the
social welfare function faithfully reflects the unanimous preference expressed by
all the individuals, as stated in the following definition:

Definition 3.2.2. A social welfare function F satisfies unanimity if for every
<€ L, F(<,...,<)==<.

The next axiom requires that two social states can be compared based solely
on the preferences of the individuals on the two alternatives.

Definition 3.2.3. A social welfare function satisfies independence of irrelevant
alternatives if the social preferences between any two alternatives a and b depends



only on the voters’ preferences between A and B. More precisely, for every a,b € A
and every <1i,...,=<n,<4,...,<n€ L, if we denote <= F(<1,...,<y,) and <'=
F(<],...,=<)) thena <; b <= a <} b for all i implies that a < b < a <’ b.

The final axiom is that there should be no dictator in the society. In particular,
we introduce the following definition:

Definition 3.2.4. A voter i is a dictator in a social welfare function F if for all
<1y, =n€ L, F('<1,...,-<n) ==.

Before we prove Arrow’s theorem we state a preliminary lemma.

Lemma 3.2.1. Let >1,...,>, and >',..., =1 be two agents’ profiles such that
for every player i, a =; b <= ¢ >, d. Then, a = b <= ¢ >' d, where
==F(~1,...,7n) and ='=F(~1,...,>]).

Theorem 3.2.1 ([MAS+14]). Every social welfare function over a set of more
than 2 candidates (|A| > 3) that satisfies unanimity and independence of irrelevant
alternatives is a dictatorship.

Proof. Fix some F' that satisfies unanimity and independence of irrelevant alter-
natives. Take any a,b € A with a # b, and for every i € {0,1,...,n} define a
preference profile 7% in which exactly the first i players rank a above b. By una-
nimity, in F(7°) we have b = a, while in F(7") we have a > b. In the sequence
of profiles 70, 7!, ..., 7" the ranking between a and b flips, so for some j we have
that F(7/~1), b = a, while in F(77), a = b. It suffices to show that j is a dictator.

Take any c,d € A with ¢ # d. We will show that if ¢ >; d then ¢ > d, where
== F(>1,...,>n). Indeed, consider some alternative e which is different from
c and d. For i < j move e to the top in >;, for ¢ > j move e to the bottom
in >;, and for j move e so that ¢ =; e =; d. It follows from independence of
irrelevant alternatives that we have not changed the social ranking between ¢ and
d. Moreover, notice that the players’ preferences for the ordered pair (c,e) are
identical to their preferences for (a,b) in 77, but the preferences for (e,d) are
identical to the preferences for (a,b) in 77~! and hence, using Lemma 3.2.1 we
obtain that ¢ = e and e = d, implying that ¢ = d (by transitivity).* |

We remark that the method of simple majority voting we discussed previously
satisfies all of these conditions, except that the generated social preference relation
lacks the general assurance of transitivity by virtue of the Condorcet paradox.
Arrow’s impossibility theorem serves as a clear indicator of the need to the rigorous
scrutiny in search of resolutions of the identified contradiction. A notable sufficient
condition on the agents’ preferences was proposed by Black [Bla48], in the form of
single-peaked preferences. This assumption has a simple geometric representation
to the effect that the social alternatives can be represented by a one-dimensional

3This proof is due to Geanakoplos [Gea05].



variable. Black’s theorem is the first possibility result of this nature in Social
Choice, and it served as the prelude of the modern development of the theory of
voting.

Gibbard-Satterthwaite Theorem

It turns out that Arrow’s theorem dramatically impedes the design of strategy-
proof mechanisms. Let us first formally define the notion of strategic manipulation.

Definition 3.2.5. A social choice function F' can be strategically manipulated by
voter i if for some <1,...,<p€ L and some <,€ L we have that a <; o/, where
a=F(<1,...,=<i,...,=p) and ' = F(=<q,...,<,,...,<y). F is called incentive
compatible if it cannot be manipulated.

Definition 3.2.6. A social choice function F' is monotone if F(<1,..., <4, ..., =<n
)=a#d =F(<1,...,=<},...,=<y) implies that o’ <; a and a <} da’.
Proposition 3.2.1. A social choice function is incentive compatible if and only
if it is monotone.

The obvious example of an incentive compatible social choice function over
two candidates is the majority rule. However, when the number of alternatives is
larger than 2, only trivial social functions are incentive compatible.

Definition 3.2.7. Voter i is a dictator in social choice function F if for all <1
yooy =n€ L, Yb# a,a -; b = F(<1,...,=<p) =a. F is called a dictatorship if
there exists a dictator 1.

Theorem 3.2.2 (Gibbard-Satterhwaite [Gib73; Sat75]). Let F be an incentive
compatible social choice function onto A, where |A| > 3; then, F' is a dictatorship.

Given that the validity of the Gibbard-Satterthwaite theorem on the ubiquity
of strategic manipulation in voting schemes, a vast literature has been developed
in search for either an escape route from the Gibbard-Satterthwaite impossibility
theorem, or directions in which the theorem may be generalized. Indeed, Mech-
anism Design was funded exactly in order to devise rules so that individuals will
actually express their true preferences, even when they are acting rationally.

3.3 Mechanisms with Money

In the previous section, we modeled an agent’s preference as an ordering of the
possible candidates. In particular, a =; b implies that i prefers a to b, but it does
not capture the degree that a is preferred to b. In this section, we redefine our
setting, and we assume that the preference of an agent ¢ is given by a valuation
function v; : A — R, where v;(a) represents the value that i assigns to alternative a;
this value can be thought in terms of some currency. Then, if player ¢ additionally
commits some quantity of money m, i’s utility is u; = v;(a) — m. Utilities of this
form are called quasilinear preferences.



3.3.1 Vickrey’s Second Price Auction

Before we proceed to the general setting, we study a simple example, namely
a single item auction. More precisely, consider that a single (indivisible) item to
be disposed for sale to one of n players. Every player i has a scalar value v; which
represents her maximum willingness to pay for the item. Thus, if ¢ wins the item
at a price of p, her utility for obtaining the item will be v; — p; naturally, the utility
of every player that did not obtain the item is 0. If we place this scenario into the
terms of our general setting, the set of alternatives A here is the set of possible
winners. The only natural social choice would be to allocate the item to the player
who values it the most. However, the main challenge is that the auctioneer does
not know in advance the valuations of the players and hence, the payments we
impose should incentivize truthful behavior by the agents. Let us first focus on a
simple auction format, namely a sealed-bid auction, which occurs as follows:

(1) Every bidder ¢ privately communicates a bid b; to the auctioneer
(2) The auctioneer determines the agent that obtains the item

(3) The auctioneer determines the payment, i.e. the selling price

Given that we allocate the item to the highest bidder, the only degree of
freedom we have is the payment we impose. In this context, let us first consider
some unsuitable choices of payment.

e No payment: We simply allocate the item for free to the player that de-
clared the highest bid b;. It is clear that this method is susceptible to
strategic behavior, as every player has an incentive to exaggerate her actual
valuation.

e Pay you bid: The winner of the auction will simply pay the declared bid.
This system is also open to manipulation, since a player who sincerely reports
her valuation will always obtain a total utility of 0. Thus, every agent will
attempt to declare a somewhat lower value. In particular, if ¢ knows the
value of the second highest bid, her optimal response is to declare a value
just above it.

Our final observation motivates the following format:

Definition 3.3.1 ([Vic61]). Vickrey’s second price auction: Allocate the item to
the highest bidder i, and let her pay p = max;; b;.

Proposition 3.3.1 ([Vic61]). Let by,...vp, b, € R, w; and u} the utility of player
i for a bid of v; and b; respectively in a Vickrey’s auction. Then, u; > u}, that is
misreporting can only reduce her utility.



Proof. Assume that player ¢ wins the item with a report of v;, and the second
highest report valuation is p*. Then, u; = v; — p* > 0. For any attempted
manipulation b; > p*, it follows that u; = ;. On the other hand, if b; < p*, then
i would lose the item and ) = 0 < w;.

Moreover, if i loses the item by bidding v;, then u; = 0. Let j # ¢ represent
the winner of the auction, with b; > v;. If b; < b;, @ would still lose the item and
hence u] = u;. Likewise, for b; > b;, ¢ would win but overpay for the item, and her
utility would be ] = v; —b; <0 = u;. [ |

3.3.2 Incentive Compatible Mechanisms

A mechanism has to select an alternative from a set A, as well as decide on
payments. The preference of each player i is modeled by a valuation function
v; : A — R, where v; € V; for commonly known set of possible valuations functions
for player 1.

Definition 3.3.2. A mechanism is a social choice function f: Vi X -+ xV, — A
and a vector of payment functions p1,...,pn, where p; : V1 XV, — R is the amount
that players © pays to the mechanism.

Definition 3.3.3. A mechanism (f,p1,...,pn) is called dominant strategy incen-
tive compatible if for every player i, every vy € Vi,...,v, € V,, and every v} € V;,
if a = f(vi,v—) and d’ = f(vj,v_;), then vi(a) — pi(vi,v—;) > vi(a') — pi(vj, v—).

Intuitively, any player ¢ prefers telling the truth to the mechanism rather than
any possible misreport.

3.3.3 Vickrey-Clarke-Groves Mechanisms

The main result in this section is an incentive compatible mechanism for the
most natural social choice function, namely the social welfare. More precisely, the
social welfare of an alternative a € A is defined as >, v;(a).

Definition 3.3.4 (VCG Mechanism). A mechanism (f,pi,...,pn) is called a
Vickrey-Clarke-Groved (VCG) mechanism if f mazximizes the social welfare, i.e.
f(vi,...,vn) € argmax,cy > ,vi(a), and for some functions hi,...,h,, where
h; : V_; = R, we have that for all vi € Vi,...,v, € V,, pi(v1,...,0,) =

hilv-i) = Sy 03 (F (01, vm)).

Thus, in a VCG mechanism every player pays an amount equal to the sum of
the values of all other players. As a result, when this term is added to her own
value, the sum becomes exactly the social welfare. Intuitively, this mechanism
aligns all players’ incentives with the goal of maximizing social welfare. The other
term in the payment has no implication for player ¢ since it does not depend on
her actions.



Theorem 3.3.1 ([Vic61; Cla7l; Gro73]). Every VCG mechanism is dominant
strateqy incentive compatible.

Proof. Fix i,v_;,v; and v}. It suffices to show that for player ¢ with valuation v;,
the obtained utility when declaring v; is not less than the utility when declaring
vl. Let a = f(vi,v—;) and o' = f(v},v_;). The utility of ¢ when declaring v; is
vi(a) + >2;4;vj(a) — hi(v—;); similarly, the utility when declaring v; is v;(a’) +
>z vi(a’) = hi(v—;). But, given that a = f(v;, v—;) maximizes the social welfare
over all alternatives, vi(a) + 32, vj(a) > vi(a') + 32,4 vj(a’), concluding the

proof. |

3.3.4 Clarke Pivot Rule

A fundamental question in the VCG mechanism is how to select the functions
h;. In particular, we impose the following natural conditions:

Definition 3.3.5. A mechanism is individually rational if for every v, ..., v, we
have that v;(f(vi,...,vn))—pi(v1,...,v5) >0, i.e. players always get non-negative
utility from the mechanism.

Definition 3.3.6. A mechanism has no positive transfers if for every vi,...,v,
and every i, p;(vi,...,vy) > 0, i.e. no player is ever paid.

In this context, the following choice of h;’s provides the aforementioned prop-
erties:

Definition 3.3.7 (Clarke’s pivot rule). The choice hi(v—;) = maxpea D, 4; vi(b)
s called the Clarke pivot payment. Under this rule the payment of player i is
pi(v1,.. ., vp) =maxp i, vi(b) — 325, via), where a = f(vi,...,vn).

Intuitively, every player ¢ pays an amount equal to the total social welfare loss
that incurs to the other agents.

Proposition 3.3.2. A VCG mechanism with Clarke pivot payments makes no
positive transfers. Moreover, if vi(a) > 0 for every v; € V; and a € A, then it is
also individually rational.

Proof. Let a = f(v1,...,v,) be the alternative maximizing >, vj(a) and a’ be the
alternative maximizing > . ,; vj(a’). The utility of a player i is v;(a)+>_,; vj(a)—
>z vi(a) =32 vi(a) =32, vi(b) > 0 thus, the individual rationality follows. To
show no positive transfers, notice that >_.; vi(a’) > 3=, vi(a). |

3.3.5 Examples

Single Item Auction The Vickrey auction is a special case of a VCG mecha-
nism with the Clarke pivot rule. Indeed, finding the player with the highest value
is exactly equivalent to maximizing ), v;(i), since only a single player gets non-
zero value. Moreover, the Clarke pivot rule gives exactly Vickrey’s second price
auction.



Multi-unit Auctions In a multi-unit auction, m identical units of some good
are sold. We consider the simple case where every bidder is interested in obtaining
a single unit. Maximizing social welfare means allocating the items to the m
highest bidders, and in the VCG mechanism with the pivot rule, each of them
should pay the m 4+ 1-th highest reported price.

Public Project Consider a government project — e.g. infrastructure such as
libraries, schools, roads, and so on — that has a commonly known cost C', and
is valued by every citizen ¢ at a privately known value v;. The project will be
undertook if and only if ) . v; > C, the constituents value the project more than
its actual cost. According to the VCG mechanism with the Clarke pivot rule a
player ¢ — with a positive value for the project v; > 0 — will pay a non-zero amount
only if 4 is pivotal, i.e. Z#i v; < C but Ej v; > C, in which case i will pay
pi = C =3 ,,;v;. 1t should be noted that >, p; < C' and hence, the collected
payments do not cover the project’s cost.

3.3.6 The Revelation Principle

Our focus so far has been on direct revelation protocols, that is every agent
reveal the entire private valuation to the mechanism. This emphasis in Mechanism
Design is usually justified by the revelation principle, as stated in the following
theorem.

Theorem 3.3.2 (Revelation Principle). For every mechanism M in which ev-
ery participant has a dominant strategy, there is an equivalent direct revelation
dominant strateqy incentive compatible mechanism M’.

Proof. For the proof we use a simulation argument (Figure 3.1). By assumption,
every participant with any private valuation v; has a dominant strategy s;(v;)
in the given mechanism. Consider a direct revelation mechanism M’ to which
the agents delegate the responsibility of playing their dominant strategies. In
particular, M’ accepts sealed bids by,...,b, from the players, and it submits the
bids s1(b1),- .-, 8n(by) to mechanism M. Finally, M’ outputs the outcome of
mechanism M. It is clear that M’ is dominant strategy incentive compatible.
Indeed, if an agent ¢ submits a bid other than wv;, it would result in playing a
strategy other than s;(v;) in M, which can only decrease i’s utility. |
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Figure 3.1: Construction of the direct revelation mechanism M’ given a
mechanism M with dominant strategies.

3.4 Ascending Implementations in Auction The-
ory

3.4.1 English Auction

Let us first illustrate an ascending auction through an example. Consider that
we want allocate m identical items to wunit-demand bidders. The basic idea in
an ascending format is to increment the proposed selling price until the demand
equals the supply. More precisely, consider some parameter € that serves as the
step of the ascend — typically assumed a priori fixed; the English auction consists
of the following steps:

1. Set the initial price p := 0
2. Let Sy the set of agents
3. Fort=1,2,...

e Let S; the agents that remain active for a price of p + €
o If |S¢| > m increment p by €

e Otherwise, sell the items at price p to the agents in Sy; if there are items
leftover, sell them to an arbitrary subset of the bidders of S;_; \ S; at

price p
An English auction is an indirect auction, that is it does not explicitly elicit

the valuation of a bidder. Naturally, there is a number of reasons for employing
an indirect auction format [Lil7; Aus04; AM06; MW8&2]:



1. Privacy Guarantees: The winner in an English auction does not reveal her
private valuation — but only that it exceeds the second highest bidder, while
parameter € also conceals the private information of every other participant.

2. Cognitive Cost: In many cases deriving the actual valuation can be bur-
densome for a bidder and an ascending auction is easier for the participants.
This point is connected to the notion of obvious strategy-proofness.

3. Transparency: Indeed, ascending auctions are typically open and a bidder
is able to keep track of the progress, unlike sealed-bid auctions.

4. Higher Revenue: Empirical studies suggest that indirect formats induce
higher revenue, a point that relates to the so-called ”bidding wars”.

Return to the analysis of the English auction, it is important to point that
sincere bidding in an iterative auction means that a player answers to all queries
truthfully. Our first proposition is that the incentive guarantee of the English
auction is almost as good as the Vickrey’s auction.

Proposition 3.4.1. In an English auction, sincere bidding is a dominant strategy
for every bidder, up to an €.

Thus, as € — 0, sincere bidding becomes a dominant strategy for every player.
Finally, it should be clear that the social welfare of the outcome is within m - € of
the optimal social welfare; thus, as € — 0 the English auction obtains the optimal
welfare.

3.4.2 Additive Valuations

As a second example in the regime of ascending auctions, consider a set of m
items — in general non-identical. Every bidder i has a private valuation v;; for
every item j, while our main assumption in this subsection is that the valuations
are additive, that is for any non-empty bundle of items S, the obtained value for
agent ¢ is

vi(S) =Y ;. (3.2)
jes

The additivity assumption implies that a bidder’s value for an item does not
depend on the other received items; hence, there are no substitutes or complements.
In this case, the direct revelation solution for this domain is straightforward: per-
form a separate Vickrey auction for each of the m items. It is easy to show that
the induced mechanism is dominant strategy incentive compatible, as an instance
of the general VCG mechanism. However, the main observation here is that the in-
centive guarantee does not transfer for parallel English auctions. Indeed, consider

the following example:



Example 3.4.1. Consider two bidders and two items with vi1 = 5,v12 = 3,v91 =
4, and voo = 1. If both players bid sincerely, the first bidder will win both items at
prices 4 and 1 respectively. However, it is possible that the second player adopts
the following action: If the first player starts bidding on the first item, retaliate
by bidding on both items until termination; otherwise, bid sincerely for the entire
auction. If the first agent bids sincerely, her received utility will be 0, given the
action of her opponent. On the other hand, if the first agent completely abandons
the first item and commits only to the second item, the obtained utility is 2. Thus,
for the first player sincere bidding is not a best response.

As it is illustrated in the previous example, iterative auctions have a much
richer action space than sealed-bid formats, necessitating a relaxed notion incentive
compatibility. More precisely, consider n agents with Vi,...,V,, representing the
sets of possible private valuations, and Aq,..., A, the sets of possible actions. A
strategy s; is a function from V; to A;; for instance, sincere bidding in an iterative
auction is a potential strategy.

Definition 3.4.1. A strategy profile (si,...,Sn) is an ex-post Nash equilibrium
if for every bidder i and valuation v; € V;, the action s;(v;) is a best response to
every action profile s_;(v_;).

Definition 3.4.2. We call a mechanism ex-post incentive compatible if sincere
bidding constitutes an ex-post Nash equilibrium.

Proposition 3.4.2. Parallel English auctions are ex-post incentive compatible.

3.4.3 Unit-Demand Bidders

Continuing our survey in ascending auctions, in this subsection we introduce a
setting that strictly generalizes the multi-unit scenario with identical items. More
precisely, we consider a set U of m non-identical items, while every bidder ¢ has
a private valuation v;; for each item j. The main assumption here is that every
bidder i has unit-demand, meaning that her value for a non-empty bundle of items
SCUis

vi(9) = r;leagi Vij. (3.3)

Notice that the case of identical items is the special case where v;; = v;, i.e.

independent of j. A prominent example captured by this model are housing and
automobile markets [SS71].

Direct Revelation Solution As a thought experiment, assume that all of
the private valuations v;; are known to the mechanism. The main observation is
that welfare-maximization in this scenario is tantamount to the maximum-weight



bipartite matching of the induced graph. More precisely, consider a weighted bi-
partite graph (N, U, E,w), where the vertex set N corresponds to the n bidders,
the vertex set U corresponds to the m items, and for every i € N, j € U, there is
an edge (i,7) € E with weight v;;. It is clear that a matching in the induced graph
corresponds to particular allocations; subsequently, every maximum-weight match-
ing yields a welfare-maximizing allocation. Thus, the solution can be obtained in
polynomial time via Linear Programming, or several celebrated combinatorial al-
gorithms such as the Hungarian method. Next, employing the VCG mechanism
yields that every bidder should be charged its externality, that is the welfare loss
incurred to the other agents by her presence, leading to a dominant strategy in-
centive compatible mechanism that maximizes the social welfare in polynomial
time.

In the following analysis, the goal will be to establish an ascending auction with
analogously strong guarantees. In this context, first notice that the termination
condition in an ascending auction is essentially that ”supply equals demand”. Yet,
in this setting it’s not trivial to even guarantee this property. For this reason, we
will introduce the concept Walrasian equilibrium, which is in a sense the natural
outcome of an ascending auction.

Walrasian Equilibrium

Definition 3.4.3. A Walrasian equilibria (WE) with unit-demand bidders is a
price vector p and an allocation M such that:

1. For every bidder i, M (i) € arg max{v;; — p(Jj)};
2. An item j € U remains unmatched in M only if p(j) = 0.

It is important to point that WE is essentially the natural termination point
in an ascending auction; hence, it is crucial to characterize WE and correlate
them with the VCG outcome in order to understand the limits of an ascending
implementation.

Theorem 3.4.1 (First Welfare Theorem). Consider an auction with unit-demand
bidders; if (p, M) is a Walrasian equilibria, then M induces a welfare-mazximizing
allocation.

Proof. Let M* be a welfare maximizing allocation. Given that (p, M) constitutes
a Walrasian equilibria, it follows that for every bidder 4,

vi(M (i) = p(M (i) > vi(M*(i)) — p(M*(i)). (3.4)
Summing this inequality over all biders ¢ yields that
Do ui(M(i) =Y p(M(i) = Y vw(M*(i) = Y p(M*(i)). (3.5)
i=1 i=1 i=1 i=1

Finally, the claim follows from >, p(M*(2)) < Y1, p(M(2)). |



The first welfare theorem can be thought of as a justification for the efficient-
markets hypothesis, which maintains that market prices fully reflect all available
information. In fact, this theorem can be extended for an e-WE, in which case the
welfare of M is within € - min{n, m} of the maximum possible.

The next step is to correlate the payment predicted by the VCG mechanism
to price vectors that participate in a Walrasian equilibria. It should be noted that
while the former are uniquely defined, the latter are not. Indeed, notice that for
a single-item auction, the Walrasian price vectors are [vg,v1], where v; and v are
the first and second highest valuations among the agents respectively.

First, consider some bidder ¢, and let us denote with M~ the matching that
leaves ¢ unmatched. Then, the payment of ¢ according to the VCG mechanism is

pi= S oM (k) = S (M (R)). (3.6)
ki ki

Thus, the VCG outcome induces a price vector q of item prices. Indeed, if an
item j is sold we define its price as the VCG payment of the agent that is assigned
to the item; otherwise, we let q(j) = 0.

Proposition 3.4.3. Consider an instance with unit-demand bidders. If q is the
VCG price vector and p a Walrasian price vector, it follows that q(j) < p(j) for
every item j.

Proof. Let us denote with M the allocation computed by the VCG mechanism. If
an item j is not sold, it follows that q(j) = 0 < p(j). Moreover, consider an item
j allocated to a bidder 4, and let M ¢ represents a welfare-maximizing allocation
that leaves bidder ¢ unmatched. For every bidder k # i, it follows that

vk (M (k)) — a(M (k) > o (M (k)) — a(M ™" (k)). (3.7)

Summing this inequality over all bidders k # i yields that

Do oe(M(k) =D a(M(k) =Y op (MU (k) = Y a(M (k). (3.8)
ki ki ki ki

Finally, rearranging these terms yields that

P(j) =D wk (M7 (k) = > w(M(k)) = a(y)- (3.9)
ki ki

Proposition 3.4.4. Consider an instance with unit-demand bidders. If M and
q represent the allocation and the induced price vector of the VCG outcome, it
follows that (q, M) is a Walrasian equilibria.



As a result, we deduce that the VCG outcome coincides with the ”smallest”
Walrasian equilibria, i.e. the one that is component-wise in the payment vector
smaller than any other. This property is crucial in order to obtain an incentive
compatibility guarantee for the ascending auction, since it is necessary to terminate
with the VCG payments.

The Crawford-Knoer Auction In this context, we analyze an auction that
was proposed by Crawford and Knoer [CK81]| (see also [ZSP08; DGS86; Leo83]).

1. Initialize the price of every item j to p(j) =0

2. Query the demand of every unassigned agent j € D;(p+e¢) = arg max{v;(j)—

(P(7) +€)}-

3. If no unassigned bidder submits a bid, terminate the auction

4. Otherwise, pick some unassigned bidder ¢ with preferred item j, and assign
item j to ¢. If the item was previously assigned to some bidder k, mark k as
unassigned and set p(j) := p(j) + €.

Notice that in the Crawford-Knower (henceforth CK) auction a bidder cannot
relinquish the item, unless some other agent outbids her. Thus, once an item
has been requested, it will be assigned to some agent at termination. Moreover,
assuming sincere reporting the CK auction terminates in a pseudo-polynomial
number of iterations. Before we establish the main theorems concerning the CK
auction, we first state some preliminary lemmas.

Lemma 3.4.1. Assuming sincere reporting, the CK auction terminates at an e-
WE (p, M).

This lemma follows easily from the definition of the Walrasian equilibria and
the termination condition of the CK auction. Moreover, recall that this lemma
implies that the allocation obtains a welfare within €-m of the maximum possible.

Lemma 3.4.2. Let p the price vector of the CK auction at termination with
sincere reporting, and q the induced price vector of the VCG mechanism. Then,

p(j) < a(y) + - min{n, mj.

Thus, the prices computed by the CK auction are no higher that the VCG
prices, up to some small error.

Lemma 3.4.3. Let p the price vector of the CK auction at termination with
sincere reporting, and q the induced price vector of the VCG mechanism. Then,

p(j) > q(j) — € min{n,m}.

Thus, the previous lemmas directly imply the following theorem:



Theorem 3.4.2. Assuming sincere reporting, the outcome of the CK auction sim-
ulates — up to € — the VCG outcome under truthful revelation.

Finally, we state the incentive guarantee of the Crawford-Knower auction:

Theorem 3.4.3. The CK auction is ex-post incentive compatible up to 2¢-min{n, m}
error.

3.5 Mechanisms Without Money

The Gibbard-Satterthwaite impossibility theorem asserts that on general do-
main preferences only dictatorial rules can be implemented in dominant strategies.
However, in many scenarios the agents’ preferences are not completely unrestricted,
as it was assumed in the previously studied voting context. For instance, in the
previous section we showed that monetary transfers allows for a rich strategy-proof
mechanism, namely the VCG mechanism. Nonetheless, there are many important
applications where there are significant incentive issues, but monetary transfers
between the mechanisms and the agents are considered infeasible, unethical or
illegal. Mechanism Design without money is relevant for designing and under-
standing methods for environments such as voting, organ donation and school
choice.

3.5.1 Facility Location Games

The facility location class of problems models a large number of important
problems that occur in practice, ranging from traditional areas such as urban
planning, to more recent ones such as computer networking. In particular, we
are concerned with the placement of facilities that will supply services to clients
in order to minimize some function of cost; this cost function may be defined in
different ways, depending on each specific problem.

Uncapacitated Facility Location Problem Let F be a set of facilities,
T a set of terminals, ¢y opening costs for each facility f € F, and d;; connection
costs for connecting terminal ¢ € T to facility f € F. The problem is to find a
subset of facilities to open and establish connections from terminals to this subset
such that the sum of all costs is minimized. An integer program formulation for
this problem is presented below:

minimize Z cryf + Z Z digyf,

feF fEF teT



subject to Z Ty =1Vt €T,
feF

yr < ayp,Vf € FVEE T,
yr,xip €4{0,1},Vf e F,¥Vt € T.

In this formulation, ys is a boolean variable that indicates whether a facility f
is opened, while the boolean variable x;; indicates whether terminal ¢ is connected
to facility f. Many possible variants may arise from this problem. In particular,
there might be capacities or quotas associated with each facility, or the facilities
can be selected in any point on a metric space [Shm00; Lil13]. In Game Theory, we
are interested in a scenario where the clients select their strategies independently in
order to minimize their connection cost. Mechanism Design is employed in order to
design games with desired properties, or be used to measure the inefficiency arising
from selfish behavior (Price Of Anarchy). Indeed, there have been significant
advancements in designing truthful mechanisms for such games [DMV05; LSWO05;
FT10; LS04; PT03; Thalo].

The Median Mechanism Here we analyze the median mechanism, an al-
location rule proposed by Moulin [Mou80]. Taking a step back, the Gibbard-
Satterthwaite theorem implies that if the preference of the agents on the set of
alternatives can be any ordering (a condition usually referred to as unrestricted
domain), then apart from dictatorial rules every decision scheme will include an
incentive for strategic misreporting of preferences for at least one preference pro-
file. Moulin investigated a relaxation of the unrestricted domain assumption when
the preferences of the agents are all single-peaked along the real line. In this con-
text, it is natural to consider only the voting schemes where every agent simply
announces her peak-alternative. Moulin showed that every strategyproof, efficient
and anonymous voting scheme is obtained by adding n — 1 fixed ballots to the n
voters’ ballots — here n represents the number of agents — and then choosing the
median of this larger set of ballots.

We are interested in the implications of this characterization in facility location
games with strategic agents. Consider a metric space (M, d(:,)), and let x; € M
denote the preferred location of agent 7. In this case, the social cost of an allocation
F is defined as

SC(F) = 2 %lgd(x“f)' (3.10)

We will first present the median mechanism and its properties for a one-
dimensional instance, and we will then extend our analysis for a high-dimensional
Euclidean space. For the one-dimensional case, the location of agent ¢ will be

denoted with z;. The median mechanism allocates a facility on the median of



the reported instance. It should be clear that assuming truthful reporting this
mechanism obtains optimal social cost. Moreover, we can prove the following
proposition:

Proposition 3.5.1. The one-dimensional median mechanism is strategyproof.

Proof. Consider some agent 4, some arbitrary vector z’ ; indicating the reports
from the other agents and z* = median(z’ ;, z;) the location of the facility when i
reports truthfully. If x; < a*, then ¢ could only alter the allocation with a report of
x, > z*; however, this could only increase her distance from the allocated facility.

A similar argument applies for x; > x*, concluding the proof. |

Next, we extend the analysis on any metric space (R?, || - ||;). The basic idea
is to consider a set of axes that constitute a basis for the vector system; then, the
generalized median allocation derives from the median projected to each of the
axes.

Proposition 3.5.2. The generalized median is strategyproof.

Proposition 3.5.3. The generalized median minimizes the social cost in the L'
norm.

Proof. If we denote with superscripts the coordinates of each vector, then

n n d . .
min ZHX—XiHl =  min ZZM‘J—xﬂ
x€R? 1 (z1,...,z4)€RY

i=1 j=1

n .
= Z (minzmj —xf]) .
= \PERH

As a result, it follows that allocating z/ = median(:p{,m%, b)), Vi o€ [d]

minimizes the social cost. [ |



Chapter 4

Communication Complexity

The increasing importance of distributed computing, networking, and VLSI
routing have highlighted the importance of communication as a resource. Indeed,
in many applications communication is the real bottleneck, as it is significantly
slower and more expensive than local computation. In this context, the field of
communication complexity endeavors to study the number of bits that the partic-
ipants of a communication system need to exchange in order to perform certain
tasks [KN96]. More precisely, Yao’s pivotal work [Yao79] introduced an elegant
mathematical model for studying these type of questions, in which only two par-
ties (Alice and Bob) have to evaluate a function f(z,y), where x is Alice’s input
and y is Bob’s input. Despite the simplicity of this formulation, it turns out that
it already captures many of the fundamental issues related to complexity of com-
munication, and the results proven in this model can be often extended to more
complicated settings. In the following sections, we closely follow the notation of
Kushilevitz’s survey [Kus97].

4.1 Two-Party Model

In this section we describe the two-party communication complexity model, as
defined by Yao [Yao79]. Perhaps the most appealing feature of this model is its
simplicity; indeed, it considers a scenario where only two communicating parties
have to compute a two argument Boolean function, with each argument known
to only a single party. It is important to point out that this model completely
ignores the computational resources required by each party, and it focuses solely
on the amount of communication exchanged between the parties. More precisely,
consider a two-argument, Boolean function f : {0,1}" x {0,1}" — {0,1}. Alice
is given an input = € {0,1}" and Bob an input y € {0,1}", while their goal is to
compute the value of f(x,y). Some examples which have attracted considerable
attention in the literature include:

e Equality: EQ(x,y) is defined to be 1 if and only if z = y.
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e Greater than: GT(z,y) is defined as 1 if and only if 2 > y, where x and y are
viewed as the binary representation of numbers in the range 0,1,...2" — 1.

e Disjointness: DISJ(z,y) is defined as 1 if and only if there is no index ¢ such
that z; = y; = 1. One should think of z and y as subsets of {1,...,n},
represented by their characteristic vectors. In this case, DISJ(z,y) = 1 only
if these subsets are disjoint, i.e. x Ny = (.

Despite the simplicity of these functions, they represent natural functionalities
that are often performed and required in distributed systems; e.g. consistency
regulation typically employ the equality function.

The computation of the value of f(z,y) is performed through a communica-
tion protocol. Specifically, during the execution of the procedure the two parties
alternate roles in transmitting messages, where each message consists of a string of
bits, and the protocol determines what message the sender should transmit next,
as a function of its current input and of the communication performed so far.

Of course, every function can be computed by the following trivial protocol:
Alice sends her entire input  to Bob (n bits of communication), and then Bob —
knowing both x and y — computes f(x,y) and sends it back to Alice. However, we
general think of n as a large number and hence, sending the entire input is very
burdensome. Indeed, in many cases there are much more efficient protocols. In
this context, the complexity measure of a protocol P is the minimal number of
bits that must be sent in order to compute function f. Formally, we let sp(z,y) =
(mq, ma,...,m,) represent the communication exchanged during the execution of
P, where m; denotes the i-th message sent in the protocol. We will also use
|m;| to refer to the length — i.e. the number of bits — of m;. The deterministic
communication complexity D(P) of a given protocol P is the worst-case number
of bits exchanged by the protocol. Moreover, the deterministic communication
complexity D(f) of a function f is the communication complexity of the most
efficient protocol that computes f. By employing the trivial protocol we described
earlier it follows that for any function f, D(f) <n + 1.

4.1.1 Lower Bounds

Our main concern in this subsection is to establish lower bounds on the com-
munication complexity of specific functions. Naturally, the task of proving lower
bounds is usually much more involved than proving upper bounds, since the former
task has to reference any possible solution to the problem. The main motivation
for proving lower bounds is to know the limits of our communication protocols,
and whether the complexity of a given procedure can be improved. In particu-
lar, we shall analyze the combinatorial structure imposed by protocols. The basic
combinatorial element is called a rectangle.

Definition 4.1.1 ([Kus97]). A rectangle is a subset of {0,1}" x {0, 1}" of the form
A x B, where each of A and B is a subset of {0,1}". A rectangle R = A x B is



called f-monochromatic if for every x € A and y € B the value of f(x,y) is the
same.

As an example, consider the equality function EQ. If A is the set of all strings
in {0, 1}" whose first bit is 1 and B the set of all strings in {0, 1}" whose first bit
is 0, then A x B is EQ-monochromatic rectangle. Indeed, for every x € A and
y € B, we have that x # y and hence EQ(z,y) = 0.

The following lemma shows that the inputs for which the communication is
the same form an f-monochromatic rectangle.

Lemma 4.1.1. Let P be a protocol that computes a function f and (mq,...m,) be
a sequence of messages. The set of inputs (x,y) for which sp(z,y) = (my,...,m;)
forms an f-monochromatic rectangle.

Proof. First, we show by induction that the set of inputs for which the communi-
cation starts with (mq,...,m;) is a rectangle. For i = 0 this set if {0, 1}" x {0, 1}",
which is clearly a rectangle. Let R be the set of inputs for which the communica-
tion starts with (mq,...,m;). By the induction hypothesis, R forms a rectangle
A x B. Let us assume — without any loss of generality — that the message m;41 is
sent by Alice. If A’ is the set of inputs # € A for which given my, ..., m; the mes-
sage sent by Alice is m;41, then the set of inputs consistent with (my,...,m;11)
is A’ x B, which is a rectangle. As a result, the set of inputs (z,y) for which
sp(xz,y) = (m1,...,m,) is rectangle, concluding the proof. [ |

For a function f : {0,1}" x {0, 1}" + {0,1}", we define C”(f) as the minimum
number of f-monochromatic rectangles that partition the space of inputs {0, 1}" x

{0,1}™.
Lemma 4.1.2. For every function f:{0,1}" x {0,1}" — {0,1}",
D(f) > logy C7(f). (4.1)

Proof. By Lemma 4.1.1, every protocol P partitions the space of inputs {0,1} x
{0,1}" into f-monochromatic rectangles. The number of these rectangles, that is
the number of possible communications, is at most 2°(P) and D(f) < D(P); thus,
CP(f) < 2P¥) and the lemma follows. u

Lemma 4.1.2 implies that for proving lower bounds on the communication
complexity of f, it is sufficient to establish lower bounds on the number of f-
monochromatic rectangles that partition the space of inputs. In this context, we
shall first present the fooling set method, an approach for proving lower bounds
on CT(f), developed in [Yao79; LS81].



Fooling Set Method

Definition 4.1.2. A set of input pairs {(x1,y1), (x2,Y2), ..., (xe,ye)} is called a
fooling set of size £ with respect to f if there exists b € {0,1} such that

1. For alli, f(zi,y;) =b.

2. For all i # j, either f(x;,y;) # b or f(zj,y;) #b.

Lemma 4.1.3. If there exists a fooling set of size £ with respect to f, then
D(f) > log, . (1.2)

Proof. By Lemma 4.1.2 it suffices to show that C¥(f) > £. In particular, we will
show that in any partition of {0, 1}"x{0,1}" into f-monochromatic rectangles, the
number of rectangles is at least £. For the sake of contradiction, suppose that the
number of f-monochromatic rectangles is smaller than £. In this case, there exist
two pairs in the fooling set (x;,v;) and (x;,y;) that belong to the same rectangle
A x B. Thus z;,z; € A and y;,y; € B, which means that (z;,y;) and (x;,v;)
also belong to the rectangle A x B. However, by the definition of the fooling set,
f(xi,yi) = f(zj,y;) = b, while at least one of f(x;,y;) and f(z;,y;) is different
from b; this implies that the rectangle A x B is not f-monochromatic. |

Theorem 4.1.1. The deterministic communication complexity of EQ is at least
n bits.

Proof. By Lemma 4.1.3 it suffices to find a fooling set of size 2" for the function
EQ. Specifically, consider the following set:

{(ov,a) - @ € {0,1}"}. (4.3)

It is clear that this set is of size 2. Moreover, note that EQ(a,a) = 1 for
every «, while EQ(«, o) = EQ(d/, o) = 0, for every a # . [ |

Theorem 4.1.2. The deterministic communication complexity of DISJ is at least
n bits.

Proof. For the DISJ we observe that the following is a fooling set of size 2™:
{(A,A):Ag{l,...,n}}. (4.4)
|

Theorem 4.1.3. The deterministic communication complexity of GT is at least
n bits.

Proof. The proof is analogous to Theorem 4.1.1. |



Algebraic Method

The second method for establishing lower bounds has an algebraic flavor, and
employs known results and tools from Linear Algebra. In particular, we map every
function f to a 2" x 2" zero-one matrix, denoted as My, so that every row of My
is associated with a string « € {0,1}" and each column of My is associated with
a string y € {0,1}". Naturally, the (z,y) entry of matrix M contains the value

f(z,y).
Lemma 4.1.4 ([MS]). For any function f :{0,1}"™ x {0,1}" — {0, 1},

D(f) > logRank(My). (4.5)

Proof. By Lemma 4.1.2, it suffices to show that C”(f) > Rank(My). Let Ry, ..., Ry
be the 1-monochromatic rectangles of an optimal cover of {0,1}" x {0,1}" with
f-monochromatic rectangles. We associate every rectangle R; to a 2" x 2" ma-
trix M;, whose (z,y) entry is 1 if (z,y) € R;, and 0 otherwise. By construction,
we have that My = Zle M;. Moreover, given that the rank is sub-additive, we
obtain that

t
Rank(My) <)~ Rank(Mj). (4.6)

i=1
But, since R; is a l-monochromatic rectangle it follows that Rank(M;) = 1,
for all 4, and the lemma follows directly from 4.6. [ ]

Theorem 4.1.4. The deterministic communication complexity of EQ is at least
n bits.

Proof. The matrix My that corresponds to the equality function has an entry 1 in
its main diagonal, and 0 elsewhere. Thus, it follows that Rank(M) = 2", and the
theorem follows from Lemma 4.1.4. |

The algebraic method has everything one could hope for in a lower bound
technique. Indeed, it frees us from studying the communication protocols and lets
us consider the properties of matrix My as a linear operator between Euclidean
spaces. In this context, we should mention the log rank conjecture, one of the most
prominent open problems in communication complexity. In particular, analogously
to matrix My, the sign matrix A of a function f is a 2" x 2" and {+£1}-valued
matrix where its entry (z,y) is —1 if f(x,y) = 1, and 0 otherwise. The log rank
conjecture is stated as follows:

Conjecture 4.1.1 ([LS88]). There exists a constant ¢ such that for every sign
matriz Ay,

D(f) < (logRank(Af))“ + 2. (4.7

The additive term is needed because a rank-one sign matrix can require two
bits of communication; see [NW95] for progress in the conjecture.



4.1.2 Randomized Communication Complexity

In this subsection, we strengthen the two-party model we previously defined
by allowing the two parties to make randomized choices in order to decide which
messages they will send. In particular, our goal is to show that at least for spe-
cific functions, randomized protocols have a significantly smaller complexity than
deterministic ones.

In this context, every message sent by Alice or Bob is a probabilistic function
of the transmitter’s input and the communication so far. We will also allow the
protocol to make errors; in particular, we say that a protocol P computes the
function f if for every input (z,y) the probability that the output of P on (z,y)
equals f(x,y) is at least 3/4. The randomized communication complexity of P,
denoted with R(P) is the worst-case — over all inputs (x,y) — number of bits
exchanged between the parties. We illustrate the power of randomization with the
following theorems:

Theorem 4.1.5. The randomized communication complexity of EQ is O(logn).

Proof. Let us denote with a = agay ... a,_1 the input of Alice and bgb; . ..b,_1 the
input of Bob. We think of these inputs as polynomials over the field GF|[p], consist-
ing of the numbers 0, 1, ..., p—1 with the operations of addition and multiplication
modulo p, where p is a prime number such that 4n3 < p8n3; that is,

A(J,‘) =ay+a1x+---+ an—lzni1 mod b, (48)

B(x) =by+bix+ -+ bn_lgpn_l mod p. (4'9)

Alice picks uniformly at random a number ¢ € GF[p| and sends Bob the values
t and A(t). Bob outputs 1 if A(t) = B(t) and 0 otherwise. The number of bits
exchanged is 2-logp = O(logn). If a = b then A(t) = B(t) for all ¢t and the output
is always 1. On the other hand, if a # b we have to distinct polynomials A and B
of degree n — 1. Such polynomials can be equal on at most n — 1 elements of the
field. Indeed, note that their difference is a non-zero polynomial of degree at most
n — 1. Thus, the probability of error is at most
n J—
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Theorem 4.1.6. The randomized communication complexity of GT is O(logn).

Proof. Let us assume that Alice and Bob operate based on two variables: L, the left
border of search initiated as 1, and R, the right border of search initiated as n. In
every step of the protocol, Alice and Bob both compute M = |(L+R)/2] and make
the equality test EQ(xr ... X, yr - .- yar) based on the protocol we introduced in



Theorem 4.1.5. If the strings are equal they set L = M + 1; otherwise, Alice and
Bob set R = M. If at some stage L = R, they simply exchange the bits z; and
yr, and decide on the value of GT based on the bit which is larger.

If the output of the protocol for EQ is correct in every iteration the correctness
of the protocol is obvious. Thus, given that the probability of error of the EQ
protocol is bounded by 1/(4n?), it follows that the probability of error in the GT
protocol is at most logn/(4n?) < 1/(4n) (by the union bound). |

In fact, it is known that the upper bound for the GT function can be improved
to O(logn). In contrast, for other functions randomized protocols are not more
efficient than deterministic protocols. For example, it has been established that
R(DISJ) = Q(n); see [Raz92].

4.2 Applications

In this section, we show that lower and upper bounds in communication com-
plexity can be employed to other domains. Remarkably, this approach applies for
problems in which communication does not seem to appear in the problem at all.

4.2.1 Finite Automata

A deterministic finite automaton A has a finite set of states ), an alphabet
>, and a transition function ¢ : @ x X +— ) which determines for each state
and for each character in the alphabet what should be the next state. An input
w = wiws ... Wy, induces a sequence of m + 1 states as follows: commence with
the initial state gy € @, and in the i-th step transition to the state defined by d
with input the current state ¢ and character w;. If at the end the state of the
automaton belongs to the set of accepting states F© C @, then we say that the
sequence w is accepted by A, or equivalently that w belongs to the language of
A. Otherwise, we say that w is rejected by A or that w does not belong to the
language of A.

In this context, the basic goal is to show lower bounds on the number of states
required for a given language Y. For simplicity, we assume that the alphabet is
binary, i.e. ¥ = {0, 1}. The following lemma relates this problem to an appropriate
communication complexity problem.

Lemma 4.2.1. Let f : {0,1}"x{0,1}" — {0, 1} be a function, L C ¥* a language,
and A an automaton. If we assume that

L0, 12" = {ay : |a] = |y| = n, f(2,y) = 1}, (4.11)
then D(f) <log|Q| + 1.



Proof. Consider the following communication protocol: On input (x,y) Alice sim-
ulates the path taken by the automaton A on her input. Then, she transmits
the last state in this path to Bob (log|@| bits). Subsequently, Bob simulates the
automaton A with initial state ¢ and his input string y. Finally, Bob simply trans-
mits to Alice whether the final state of his sequence belongs to the set of accepting
states. By construction, if zy is accepted then f(z,y) = 1, while if xy is rejected
then f(x,y) =0. |

Now consider a language L, = {xx : |z| = n}, for a fixed n. This language can
be expressed as

Ly ={ay: |z| = [y| = n,EQ(z,y) = 1}. (4.12)

The previous lemma implies that an automaton for L,, has a set of states of size

Q| > 201, (4.13)

However, we have already shown that D(EQ) > n, implying that every au-
tomaton for L, has size |Q| > 2". As a result, we conclude that the language
L = {zz : x € ¥*} has no finite automaton, i.e. L is not a regular language. A
similar argument shows that every automaton for the language L = {zy : |z| =
ly| = n,x # y} also has size at least 2. One the other hand, it is easy to construct
a non-deterministic automaton for L, of size O(n) (e.g. see [HMUOT]).

4.2.2 Decision Trees

A decision tree is a binary tree such that every node is labeled by a variable
from x1,...,xy, and from every node there are two outgoing towards the children
of the node labeled 0 and 1; the leaves of the tree are labeled either 0 or 1. A
decision tree determines a function f : {0,1}™ + {0, 1} with the following process:
for a boolean assignment to the m variables, we commence from the root of tree;
whenever we reach a node labeled by some variable x; we proceed by the edge
whose label matches the label of variable z;. Finally, when we reach a leaf, we
simply return its label as the value of f on the given assignment.

It is clear that for every function f : {0,1}™ +— {0,1} there exists a decision
tree of depth (the longest path from the root to a leaf) m, where each of the 2™
leaves corresponds to a single assignment, and subsequently the label of the leaf is
the value of f on that assignment. Naturally, the goal is to find decision trees with
as small depth as possible. The following lemma provides lower bounds through
communication complexity lower bounds.

Lemma 4.2.2 ([Nis94; GT91]). Let f : {0,1}?" + {0,1} be a function. If f has
a decision tree of depth d, then the function f(x1...Zn,Tnt1 ... T2,) has commu-
nication complexity D(f) < d.



Proof. For a given decision tree, Alice and Bob can simulate its computation as
follows: Commencing from the root of the tree, whenever they encounter a node
the players examine the label z; of the node, and the player that holds the value
of variable x; announces it to the other party. Then, the value of x; determines
the next node. The simulation terminates when they reach a leaf of the tree, in
which case the label of the corresponding leaf is the desired value of f. Thus, the
number of bits exchanged is at most d. ]

4.2.3 VLSI chips

A VLSI chip can be viewed as an a x b grid with n input ports and a single
output port. On some of the vertices of the grid there are gates, while wires
connect the gates with other gates on the chip or with the ports. Our main goal
here is to show how communication complexity bounds can be employed to provide
area-time trade-offs for VLSI chips.

The most important complexity measures for a VLSI chip are the area of the
chip A = a - b, and the time T, i.e. the number of steps required to determine
the result in the output port from the time the input is provided. The designer
of a chip that computes a function f(z1,...,Z,) has to decide what gates to use,
and how to connect them. The following lemma shows that at least for certain
functions, a VLSI chip should either have a ”large” area or require "many” time
steps.

Lemma 4.2.3 ([Len90]). Assume that we have to compute a function f : {0,1}*"
{0,1} through a VLSI chip with area A and time T to perform the computation.
Then,

AT? > (D(f))*. (4.14)

Proof. For a given chip, we construct a two-party protocol as follows. Assume —
without any loss of generality — that a < b. We can always split the chip into two
pieces in a way that partitions the input ports of the chip into two equal size sets,
and with at most a wires connecting the two pieces. We assign each of Alice and
Bob one of the two pieces of the chip; hence, we partition the input bits between
Alice and Bob in the same way that the input bits are partitioned among the two
pieces. Then, Alice and Bob will have to simulate the computation of the chip. In
particular, in step ¢ of the protocol each of the two players evaluates the output of
all the gates in his piece of the chip in time 7. The parties only exchange the values
which are going on the wires connecting the two pieces. Thus, since the number
of wires is at most a and the number of steps to compute the output is at most
T, it follows that the total number of bits exchanged is at most a - T < VA - T,
concluding the proof. [ |

For more applications of communication complexity we refer to [Mur71; ROK94;



Pat96; NW93; NW94; LT80; Mil94; Mil4+95; AUY83; BKLI5], and referecnes
therein.



Chapter 5

Communication in Auctions

In this chapter we present asymptotically optimal protocols for a series of ex-
emplar auction formats. Importantly, at the same time we retain the incentive
compatibility of the mechanism as well as the obtained social welfare. Our ap-
proach combines ideas employed in sampling with techniques from Information
Theory. In this way, we guarantee optimal communication for the following set-
tings:

e Single-item auction.

e Multi-unit auctions with unit-demand bidders.

e Multi-item auctions with additive valuations.

5.1 Preliminaries

In the following we denote with n the number of participants in the game. In
single parameter environments the rank of agent ¢ corresponds to the index of her
private valuation in ascending order (and indexed from 1 unless explicitly stated
otherwise). In the case of identical valuation profiles we accept some arbitrary but
fixed order among the agents — e.g. lexicographic order. We also assume that an
agent remains active in the auction only when positive utility can be obtained;
that is, if the announced price for the item is greater or equal to the valuation of
some agent i, then ¢ will withdraw from the forthcoming rounds of the auction,
while we remark that in Mechanism 4 we will assume that the agents’ valuations
are distinct.

A mechanism will be referred to as strategy-proof or incentive compatible if
truthful reporting is a universally dominant strategy — a best response under any
possible action profile and randomized realization — for every agent. A strategy s;
is obviously dominant if, for any deviating strategy s;, starting from any earliest
information set where s; and s; disagree, the best possible outcome from s is
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no better than the worst possible outcome from s;. A mechanism is obviously
strategy-proof (OSP) if it has an equilibrium in obviously dominant strategies.
We use the standard notation of f(n) ~ g(n) if lim, 4~ f(n)/g(n) = 1 and
fn) < g(n)if lim, 100 f(n)/g(n) < 1, where n will be implied as the asymptotic
parameter. Moreover, in order to analyze the bit complexity the valuation space
will be assumed discretized and every valuation will be represented with k bits;
we will mostly consider k& to be a constant. Finally, communication complexity
is defined as the cumulative amount of bits elicited from the participants; our
analysis will be worst-case with respect to the input — i.e. the agents’ valuations —
and average-case with respect to the introduced randomization in the procedure.

5.2 Single Item Auction

Our implementation is established based on a black-box algorithm; in particu-
lar, let A be an algorithm that faithfully simulates a second-price auction; that is,
A interacts with a set of agents and returns the VCG outcome, without actually
allocating items and imposing payments. However, the agents that are excluded
by A will be also automatically eliminated from the remainder of the auction.
Naturally, we assume that ¢ > 2, so that the second-price rule is properly imple-
mented. It should be noted that our mechanism induces a format that couples the
auction that is simulated by A with an ascending auction.

Algorithm 3: Ascending Auction through Sampling

Result: Winner & VCG payment

Input: Set of agents N, size of sample ¢, algorithm A

while |N| > ¢ do
S := random sample of ¢ agents from N
w := winner in A(S)
Announce p := payment in A(.S)
Update the active agents: N :={i € N\ S |v; > p} U{w}

end
if [N| =1 then
‘ return w, p
else
| return A(N)
end

Proposition 5.2.1. Assuming truthful bidding, Mechanism 3 implements — with
probability 1 — the VCG allocation rule.



Proof. First, if after the termination of some round only a single agent ¢ remains
active, it follows that the announced price p — that coincides with the valuation of
some player — exceeds the valuation of every player besides i; thus, by definition,
the outcome implements the VCG allocation rule. Moreover, the claim when 2 <
|N| < cfollows given that A faithfully simulates a second-price auction. Otherwise,
in a given round — with |[N| > ¢ — only agents that are below or equal to the second-
highest valuation will withdraw from the auction. Thus, the allocation rule over
the active players remains invariant between rounds, concluding the proof. [ |

Proposition 5.2.2. If A simulates a sealed-bid auction, Mechanism 3 is strategy-
proof.

Proof. Consider some round of the auction and some agent ¢ that has been selected
in the sample S; if we fix the reports from the agents in the sample besides ¢ we can
identify the following two cases. First, if v; > z;,Vj € S\ {i}, with x; representing
the report of agent j, then sincere bidding is a best response for ¢ given that
her valuation exceeds the announced price. Indeed, note that since A simulates
a second-price auction the winner in the sample does not have any control over
the announced price of the round. In the contrary case, agent ¢ does not have an
incentive to misreport and remain active in the auction given that the reserved
price will be greater or equal to her valuation. Let p the market clearing price in
A and 7 some agent that was not selected in the sample. It is clear that if v; < p
then a best response for 7 is to withdraw from the auction, while if v; > p then i’s
best response is to remain active in the forthcoming round. [ ]

Proposition 5.2.3. If A simulates an English Auction, Mechanism 3 is OSP.

Proof. The claim follows from the OSP property of the English auction. In par-
ticular, note that we simply perform an English auction without interacting with
every active agent in each round, but instead with a small sample; when only a
single player survives from the sample, we announce the price to the remainder of
the agents. [ ]

Before we establish the communication complexity of the induced auction, we
should point out that a trivial lower bound to recover the optimal social welfare
— with probability 1 — is n bits. Indeed, since the information is distributed to n
parties and the goal is to allocate the item to the agent with the highest utility,
every player has to commit at least 1 bit to the procedure. Through this prism, we
will show that our mechanism reaches this lower bound with arbitrarily small error,
assuming that k is a constant. We should also note that the information leakage
in Mechanism 3 is asymmetrical, in the sense that statistically, the agents that are
closer to winning the item have to reveal relatively more bits from their private
valuation. It is clear that in order to truncate the communication complexity of
the mechanism, one has to guarantee small inclusion rate — in expectation — for
each round of the auction; this property is implied by the following lemma:



Lemma 5.2.1. Let X, the proportion of the agents that remain active in a given
round of the auction; then

2
E[X,.] < .
[ a]NC+1

(5.1)

Before we proceed with the proof of this lemma, we first state the following

auxiliary lemmas:
n n®

P ~ ~ S (= 1) (5.3)

Lemma 5.2.4. Consider n active players in the auction and X, = X,(n,c) the
rank - among all the active agents - of the player with the second highest valuation
in the sample; then

Lemma 5.2.2.

Lemma 5.2.3.

c—1
c+1°

E[X,] ~ n (5.4)

Proof. First, if we apply simple combinatorial arguments it follows that

S )] -
(2

As a result, we have that

c(c—1) <nc+1 n“’I)

c _c+1



where we have applied the asymptotic results from Lemma 5.2.2 and Lemma 5.2.3.
Also note that we used Cesaro’s means theorem in the fourth line and we ignored
the lower-order magnitude terms in the third. ]

Finally, Lemma 5.2.1 follows from X, < (n — X, )/n. Note that the inequality
derives from the fact that multiple agents could have the same valuation with the
second highest bidder in the sample and we have assumed that every such agent
will withdraw from the auction.

Let us assume that Q(n;k) is the (deterministic) communication complexity
of A with n players. In particular, when A is a sealed-bid auction it follows
that Q(n;k) = n - k. On the other hand, the worst-case communication cost of
an English auction is Q(n,k) = 2¥n. Indeed, given that A faithfully simulates
a second-price auction, the auctioneer has to cover every possible point on the
valuation space. If T'(n;c, k) is the (randomized) communication complexity of
the induced Mechanism 3, it follows that when n > ¢

E[T(n;c, k)] =E[T(nXg; ¢, k)] + Q(c; k) +n —c. (5.6)

Solving recursions of such form are standard in the analysis of randomized
algorithms (see [Cor4-09]); in particular, we can establish the following theorem.

Theorem 5.2.1. Let t(n;c, k) the expected communication complexity of Mecha-
nism 3 with k assumed constant; then, Ye > 0,3co = co(€) such that Ve > ¢

t(n;e, k) Sn(l+e). (5.7)

In order to simplify the exposition, we will assume that the agents’ valuations
are discrete; note that under this assumption we will obtain an upper bound on
the communication complexity of our mechanism.

Lemma 5.2.5. Let X, the proportion of the agents that remain active in a given
round of the auction; then, assuming discrete valuations, it follows that

2(c—1)

Var[X,] ~ T

(5.8)

Proof. The proof of this claim follows analogously to Lemma 5.2.1; in particular,
if we consider the proxy random variable X, as defined in Lemma 5.2.4, we have
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As aresult, the claim follows given that Var[X,] = E[X?]—(E[X,])? and Var[X,] =
Var[X,]/n?%. [ |

Having established this lemma, we proceed with a sketch proof of Theorem 5.2.1.

Proof. Consider a fixed round of the auction with n active agents. If we let u =
E[X,] and ¢ = y/Var[X,], Chebyshev’s inequality implies that Pr[|X, — p| >
Veo] < 1/c. Moreover, we have that pu + /co < 4//c, for ¢ > 2. As a result, if
t(n;c, k) = E[T(n; ¢, k)], it follows from (5.6) that

1 4n 1
ttnie, k) < (1—-|t| —=:¢k —t(n;c k k), 5.9
o) (1= 1) ¢ (Shick) + Tme ) +nt @k, (659
where we used the fact that ¢(n;c, k) is decreasing with respect to n. Given that
this inequality holds asymptotically, it will also hold with up to an € multiplicative
error, for any € > 0 and for sufficiently large n > ng = ng(e). Thus, solving the
induced recursion completes the proof. |

Note that our asymptotic guarantee is invariant on the communication com-
plexity of the second-price algorithm .4, assuming that k& is a constant. On the
other hand, if we allow k to depend on n our guarantee crucially depends on A
(see Theorem 5.4.1).

5.3 Multi-Item Auctions with Additive Val-
uations

As a direct extension of the previous setting, let us assume that the auctioneer
has to allocate m (indivisible) items and the valuation space is additive, that is for
every agent i and for a bundle of items S, v;(S) = ZjeS v;;. In this setting, we



shall perform an auction for each item using Mechanism 3; it is clear that assuming
truthful bidding, the induced auction will implement — with probability 1 — the
VCG allocation rule, as implied by Proposition 5.2.1. Moreover, the following
proposition holds.

Proposition 5.3.1. The mechanism induced by employing m auctions as described
in Mechanism 3 is ex-post incentive compatible.

However, we will illustrate that a simultaneous implementation can signifi-
cantly truncate the communication exchange — relatively to a sequential format —
through an efficient encoding scheme. First, we assume that m is arbitrary and
that we have to perform a separate and independent auction for each of the m
items. Under this assertion, the optimality condition yields the lower bound of
n - m bits, which can be again asymptotically reached with arbitrarily small error:

Proposition 5.3.2. Let t(n;m,c, k) the expected communication complezity of
implementing m sequential auctions as described in Mechanism 3 with k assumed
constant; then, Ye > 0,3co = co(€) such that Ve > ¢

t(n;m,c, k) S nm(l+e). (5.10)

On the other hand, if we assume that m is constant and that we perform
the auctions simultaneously, we will show that we can reach the bound of n bits
with a very simple coding scheme. To be precise, recall that — asymptotically
— the expected inclusion rate in Mechanism 3 is at most 2/(¢ + 1) and thus, as
the sample size increases the overwhelmingly most probable scenario is that some
random agent will drop from the next round of the auction; we shall exploit this
property by considering the following encoding. An agent i — that remains active
in at least one auction — will transmit the bit 0 in the case of withdrawal from every
auction; otherwise, ¢ will transmit an m bit vector that will indicate the auctions
that she wishes to remain active. Although the latter part of the encoding is clearly
sub-optimal, we will show that in fact, we can asymptotically obtain an optimality
guarantee. In particular, consider a round of the auction with n players that
remain active in at least one auction and p the expected probability that a player
will withdraw from every auction in the current round. Since every player is active
in at most m auctions, it follows from the union bound that 1 —p < 2m/(c+1).
As a result, if N, denotes the total number of bits transmitted in the round, we
have that

E[Nb]:n(l.p+m-(1—p))§n<<1— 2m > +m< 2m >> (5.11)

c+1 c+1

As a result, since m is a constant it follows that E[Ny] < n(1446), for any 6 > 0
and for a sufficiently large constant c¢. Moreover, the expected inclusion rate — the
proportion of agents that remain active in at least one auction — is asymptotically
at most 2m/(c + 1) and thus, we can establish the following theorem.



Theorem 5.3.1. Let t(n;m,c, k) the expected communication complexity of imple-
menting m simultaneous auctions as described in Mechanism 3 with the aforemen-
tioned encoding scheme and k and m assumed constant; then, Ve > 0,3co = co(e)
such that ¥e > ¢

t(n;m,c, k) Sn(l+e). (5.12)

5.4 Multi-Unit Auctions with Unit Demand

Consider that we have to allocate m identical items to n unit demand bidders.
We are interested in the non-trivial case where m < n; in this setting, our approach
will differ depending on the asymptotic value of m.

First, we consider the canonical case where m is constant. In this setting, we
can extend Mechanism 3 as follows. In each round, we invoke an algorithm .4 that
simulates the VCG outcome ' for a random sample of active agents ¢ = xm + 1
for k € N. Next, the market clearing price in the sample will be announced in
order to 'prune’ the active agents. Through parameter x, we are able to restrain
the inclusion rate in the following rounds. As a result, we can prove statements
analogous to Propositions 5.2.1, 5.2.2, 5.2.3 and Theorem 5.2.1. The analysis is
very similar to the single item mechanism and therefore it can be omitted.

Next, we study the case where m = - n for v € (0,1). Our main goal is
to design an interaction process that shrinks the remaining or active agents very
rapidly; however, unlike the previously studied cases, the winners from the auction
could constitute a large fraction of the participation and thus, a different approach
is required. In particular, we introduce the following ingredients.

First, instead of announcing a single price — as in a standard ascending auction
— we shall broadcast 2 distinct prices, p, and py,. The agents that are willing to
pay pn will guarantee to obtain an item, not for a price of pp, but for a price
that will be later determined in the process; this of course is essential in order
to obtain the incentive compatibility guarantee. On the other hand, the agents
that are not willing to bid py or more will be automatically excluded from the
forthcoming rounds. Hence, we are able to recurse on the agents that lie in the
intermediate region between p; and p. As a result, an agent should be able to
broadcast 3 distinct signals and hence, a single bit does not suffice. Let us assume
that for bidder ¢, the bit 1 corresponds to v; > pp, bit 0 to v; < py and some
2-bit code for the complementary case. Although this encoding could augment
the communication complexity, we will select the prices py and p, in a way that
the agents in-between are very few and as a corollary, the overhead of the 2-bit
representation will be negligible. This approach resembles the techniques used in

'The VCG outcome for this auction consists of allocating a single unit to each of the
m-highest bidders for a price coinciding with the m + 1-highest bid



Coding Theory (e.g. see Huffman coding [Huf52]). On a high level, our mechanism
consists of the following steps:

Algorithm 4: M(N,m): Multi-Unit Auction through Sampling
Result: Winners & VCG payment
Input: Set of agents N, number of items m := yn
Initialize the winners W := () and the losers L := ()
pn, := estimated upper bound on the price
p¢ = estimated lower bound on the price
Announce p,; and py,
Update the winners: W :=W U {i € N | v; > ps}
Update the losers: L:=LU{i € N | v; < pe}
if Ph = Dr then
‘ return W, p,
else
N:=N\(WUL)
Update the number of items m
return M(N, m)
end

Proposition 5.4.1. Mechanism 4 is ex-post incentive compatible.

However, we remark that Mechanism 4 is not strategyproof and in particular,
answering sincerely to the queries is not necessarily a dominant strategy for the
agents in the sample due to potential retaliation strategies.

The crux of the algorithm is to determine the prices p, and py such that py
is at most en-ranked higher than the m + 1-ranked player and py is at least en-
ranked lower. Consider a perfect binary tree with k levels, with each level adding
an additional bit to the representation, starting from the most significant bit and
leading to each of the 2* leaves, each representing a single valuation profile. This
structure can be seen in figure 5.1.

The basic idea is to perform stochastic binary search; to be precise, in each
level of the tree we will estimate an additional bit. Formally, let x1, xo,...x, be
the predicted bits after r levels. In the next level we consider a sample of size ¢ in
order to estimate the proportion of the agents for which v; < z1zo...2,011...1.
Let X, denote the estimation as derived from the sample and some parameter e.
Recall that we want to create two different estimations on the tree that correspond
to py and py,.

For simplicity, a sample will be called e-ambiguous if |X'C — | < e. Intuitively,
the smaller the € the less clear the next branching becomes. In every ambiguous
branch, the "high” estimation will predict a bit of 1, whilst the ”lower” estimation
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Figure 5.1: Representation of the valuation space

will predict a bit of 0. If the sample is not e-ambiguous, then we predict bit 1
if X, < v and bit 0 if X, > 7. In other words, we can imagine that the two
estimations will coincide in the first levels, until they separate when a ”close”
decision arises. We claim that this algorithm will terminate with high probability
with the desired payment range. For the purpose of the analysis we will use the
following lemma:

Lemma 5.4.1 (Chernoff-Hoeffding bound). Let X1, Xs,..., X, i.i.d. random
variables with X; ~ Be(p) and X, = (X1 + Xo+ - + X.)/c; then

Pr(|X, —p| > €) < 272", (5.13)

It is easy to see that if all of the k samples have at most € error, then pj
will be at most 2en-ranked higher than the m + 1 ranked player and p, will be at
least 2en-ranked lower. Moreover, the probability p. that — for a single estimate
and after k rounds — there exists a sample with more than e error can be upper
bounded using the union bound: p. < 2ke2%¢. As a result, Vo > 0, there exists
co = co(6, €, k) such that p. < J, namely

1 2k
co = ﬁlog <5> . (5.14)

Moreover, the union bound implies that the probability of error for either of the
two estimates is at most 20. Let denote with ¢(n; ¢, k) the expected communication
complexity of the mechanism with n active players. We have established the
following bound:

t(n;e k) < 2ck 4+ (1 —28) (n(1 4 4e) + t(4en; ¢, k)))
+20(2n +t(n; ¢, k)),

where the term 2ck corresponds to the communication complexity of the sampling
process, the next term in the first line to the communication complexity of the



round if all of the 2k samples have at most € error and the term in the second
line to the worst-case cost when at least one of the samples exceeds an € error.
Thus, solving the recursion and recalling that k € O(n'~*) implies the following
theorem:

Theorem 5.4.1. Let t(n; ¢, k) the communication complexity of Mechanism 4 with
k€ O(n'=Y) for some £ > 0; then, Ve > 0,3co = co(e, k) such that Ve > o

t(n;e, k) Sn(l+e). (5.15)

Note that for this theorem we allowed k to depend on the (initial) number of
agents.



Chapter 6

Information Requirements of
the Median

In this chapter we consider Moulin’s median mechanism in the context of fa-
cility location games. We show that when the median is estimated through a
random sample of constant size the obtained social cost is near optimal. Our
result is inherently asymptotic and applies to settings with large participation.

The Median Mechanism Consider that we have to allocate a single facility
on a metric space (R% || - ||1) and n agents, with x; € R? the preferred location
of agent i. The social cost of an allocation x is defined as SC = " | d(x,x;).
In this context, the generalized median [Mou80] is a strategyproof and optimal —
with respect to the social cost in L' — mechanism that allocates the facility to the
coordinate-wise median of the reported instance.

6.1 Approximating the Median

Before we proceed to our analysis, we remark that when k£ — the number of bits
that can represent any valuation — is assumed constant our result can be obtained
with an iterative process — analogously to our approach in multi-unit auctions —
and Chernoff bounds in order to correlate the accuracy of the approximation with
the size of the sample. Nonetheless, our approach here is more robust since we
do not even need the discretized valuation space hypothesis. More precisely, our
mechanism will simply employ the generalized median scheme M for a random
sample of ¢ agents.

Proposition 6.1.1. The approximate median Mechanism 5 is strategyproof.

Proof. The claim follows from the incentive compatibility of the median mecha-
nism. |
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Our analysis commences with the one-dimensional case —i.e. allocating a single
facility on the line; the extension to any metric space (R, || -|[1) will then follow
easily. We conclude this section by illustrating why our sampling approach cannot
be efficiently applied for allocating multiple facilities. In order to make the analysis
more concise — and without any loss of generality — we assume that n = 2k 4+ 1
and ¢ = 2p + 1 for some &, p € N. Let X, be the rank — among all of the agents —
of the sample’s median; in this section we shall assume that X, is normalized in
the domain [—1,1]. Thus, when X, = 0 the median of the sample coincides with
the median among the entire instance. Through this prism, we can determine the
probability mass function with simple combinatorial arguments as follows:

K=\ (K +i
Pr <X;)< 222E15’ ) (6.1)
20+ 1

As a result, we note that the normalization constraint of the probability mass
function (6.1) yields a variant of the Chu-Vandermonde identity:

Z”: <m_i><m+¢):§:<i><%_i>:@Hi) 62)
I=—kK P P i=0 P p p+

For this reason, the distribution defined in (6.1) shall be referred to as Chu-
Vandermonde distribution. One of the key aspects of our analysis is that we are

oblivious to the agents’ individual valuations and instead, we rely solely on their
relative rank. This approach is justified by the following lemma:

Lemma 6.1.1. Let xopr € R be the optimal location - i.e. the median of the
instance - and x € R some location, such that only at most € - n agents reside in
the interval from x to xopt. Then, if Doyt is the minimum social cost, allocating a
facility on x yields a social cost D such that

4e
< . .
D_Dopt<1+1_2€> (6.3)

Proof. Let d = dis(z, Topt) = | — xopt|; shifting the facility from x to xp; can only
reduce the social cost by at most 2end, that is D < D, + 2end. Moreover, it is

Algorithm 5: Approximate Median through Sampling
Result: Facility’s Location € R?
Input: Set of agents N, size of sample ¢
S := random sample of ¢ agents from N

return M(S)




clear that
2

Ent (6.4)

Dopt > (g —en)d <= d < Doy

As a result, if we combine the previous bounds the lemma will follow. We
should mention that the analysis and subsequently the obtained bound is tight for
certain instances. |

As a corollary, obtaining a near-optimal approximation ratio is tantamount to
accumulating the probability mass close to the median. The main challenge is to
quantify this concentration as a function of the sample’s size. To this end, we prove
that for kK — +oo the Chu-Vandermonde distribution converges to a continuous
function, allowing for a concise characterization of the concentration.

Theorem 6.1.1. If we let kK — oo, the Chu-Vandermonde distribution converges
to a transformed beta distribution with the following probability density function:

(2p+1)!

ft) = W(l —t2)°. (6.5)

Before we prove this theorem, we commence our analysis with the following
auxiliary lemmas:

Lemma 6.1.2. Let I'(-) denote the Gamma function; then, for every a € R

lim 7]?(71 +a) n_?

Jim s ~1. (6.6)

Lemma 6.1.3. Let f be an integrable function and x € [—1,1]; then

n—-+o00 n

lim $+1Zf(—1+i-$:;1>:/xlf(t)dt. (6.7)
=1 -

We are now ready to prove Theorem 6.1.1.

Proof. Consider some arbitrary x € (—1,1) and m = |kx + £; then
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where we have applied Lemma 6.1.2 in the fourth line and Lemma 6.1.3 in the last
line. Also note that we used Cesaro’s means theorem in the fourth line and we
ignored the lower-order magnitude terms in the fifth. ]

The distribution (6.5) derives from the Beta family, having applied a quadratic

transformation. Indeed, recall that for any =,y € RT, the Beta function B is
defined as

B(z,y) = /01 " 11—ty ldt = Ll@)Tly) (6.8)

Moreover, we remark the following useful lemma:



Lemma 6.1.4. For any n € N we have that
1 (2n)!
Thus, we can verify the normalization constraint using Lemma 6.1.4 and the
quadratic transformation v = t? as follows.

1 B 1 1 B 1 _22p+1(p!)2
/_1(1—t2)pdt_/0u (1 u)pdu—B<2,p+1>—(2p+1)!. (6.10)

We let X represent a random variable that follows distribution (6.5). Next, we
correlate the concentration of the distribution with parameter p.

Theorem 6.1.2. For any € > 0 and for any 6 > 0, there exists some constant
po = po(€, d) such that Vp > po

Pr(|X| >¢) <. (6.11)
We commence the proof by determining the moments of | X|:

Lemma 6.1.5. Let j € N; we can express the j™ moment of | X| as

B Z+1m+1
E[|X}] = <2 2 ) (6.12)

1
B(z,p+1

This lemma follows from standard techniques in integration; moreover, we can
establish the following trivial bound.

1 22011 (pl)2 2 1
B (,p+1> = ()" > . (6.13)
2 2p+1)! —2p+1 7" p+1

Having established these auxiliary results we provide the proof of Theorem 6.1.2.

Proof. For simplicity, we consider some j = 2¢ — 1 > 3; then, it follows from
Lemma 6.1.5 and (6.13) that

B i+}m+1
<2 2 ) < (= 1) (6.14)

EHXV]: B(l,p—{—1> _(p+€)...(p+2)'

2

Moreover, if we apply Markov’s inequality for the j* moment of X we have that

(€ —1)!
(p+0)---(p+2)

As a result, for sufficiently large p = p(e, ) the last bound will be also upper
bounded by § and the claim follows. |

Pr(|X|>¢) =Pr(| X} >¢) < e (6.15)



Having established the concentration of the distribution, we apply Lemma 6.1.1
to prove the following theorem:

Theorem 6.1.3. The approrimate one-dimensional median Mechanism 5 obtains
in expectation a 1 + € approximation of the optimal social welfare, for any e > 0
and with constant input ¢ = c(€), while n — oo.

Proof. Consider a random variable X that follows the distribution 6.5 with some
parameter p and let g : (0,1) 3 z — 2|z|/(1—|x|); we know from Lemma 6.1.1 that
the approximation error in the social welfare can be upper bounded by E[g(X)];
but, it follows that

E[g(X)] = 4c(p) /01 L(l —t3)Pdt < 82”2:1c(p —1) /01 t(1 —t%)P~1dt, (6.16)

1—-1t
where ¢(p) represents the normalization constant of 6.5. As a result, if X’ repre-
sents a random variable that follows the transformed beta distribution 6.5 with
parameter p — 1, Theorem 6.1.2 implies that the mean value of |X’| can be upper
bounded by any € > 0 — for sufficiently large p; hence, the claim follows. ]

This result can be easily extended for the generalized median scheme that ap-
plies to any metric space (R, ||-||1); to be precise, let us consider some basis for the
metric space. Then, we can invoke the one-dimensional sampling approximation
for each of the principal axes individually. As a result, we can prove the following
proposition.

Corollary 6.1.1. The approximate generalized median Mechanism 5 obtains in
expectation a 1 + € approzimation of the optimal social welfare, for any € > 0 and
with constant input ¢ = c(e), while n — oo.

Finally, we illustrate why a sampling approach — with a constant sample size —
cannot provide meaningful guarantees when allocating multiple facilities. In par-
ticular, we consider the family of the percentile mechanisms, namely strategyproof
allocation rules on the line that partition the agents’ reports into particular per-
centiles; the median can be clearly classified in this family. We will also assume
that at least 2 facilities are to be allocated and that the leftmost percentile contains
at most (1 — «) - n of the agents, for some a > 0. Let us imagine a dynamic in-
stance where the agents from the entire leftmost percentile — including the pivotal
agent — have gradually smaller valuations x — —oo, while the other agents remain
fixed at a finite distance; then, any sampling approximation has in expectation
an unbounded competitive ratio with respect to the full information mechanism.
Indeed, there will always be a positive probability, albeit exponentially small, that
we fail to sample a single agent from —oo, whilst the full information percentile
mechanism will allocate a facility to accommodate the divergent agents. Thus, a
sampling approach cannot provide a meaningful approximation of the percentile



mechanisms — at least with respect to the expected social cost. An interesting open
question is whether this limitation can be overcome if we impose additional restric-
tions on the instance, such as stability conditions or bounded valuation space.

6.1.1 Chu-Vandermonde Distribution

To the best of our knowledge, the distribution defined in (6.1) — which we
refer to as the Chu-Vandermonde distribution — has not been rigorously studied
in the literature; one of our key results establishes an asymptotic characterization
of the distribution and an inherent nexus with the family of Beta distributions.
Additional analysis could be of independent interest and illuminate further inter-
esting properties. The following figures provide a graphical representation of the
distribution and illustrate its behavior for gradually extended samples, as well as
the convergence that occurs when x gently increases.

Chu-Vandermonde PMF: & = 1000
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Figure 6.1: Augmenting p accumulates the probability mass close to the
median

Although our main result in Theorem 6.1.1 has an asymptotic flavour, the last
figure — as well as additional experimental findings — indicate that the convergence
of the distribution occurs with a substantial rate, even for relatively small values
of k.



Chu-Vandermonde CDF: p = 10
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Figure 6.2: The rapid convergence of the distribution while  increases
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