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IHepiinyn

YKomdg TG TAPOVGAS EPYOCING EIVALT) LEAETN TOV TPOPANLOTOG TNG LN EMPAETOUEVIG TPOGOPLOYNS
nediov (unsupervised domain adaptation) yio gpapuoyéc eneEepyaciog QLGIKNG YAOCOHG Kol GUYKE-
KPWEVA Yo To TPOPANUA TG avdilvong cuvarcOnuatog (sentiment analysis). Xto npofAnua mpo-
capproyng mediov vdpyovv dedopéva mov £pyovrol amd dV0 KATOVOUES, Hio KaTovour Ty (source
domain) kot pio Kotavoun otdyo (target domain), evd eTonUEIOCELS Elval dtaBéoipeg LOVO Yo TV
rkatovopur] Tnyn. To mpdPAnpa Eykettar oty ekpadnon, pe aflonoinon twv dedopévev and to dHo
media, EVOC LOVTEAOD UNYOVIKNG LABNONG 1e KA YeEVIKELON G€ SEdOUEVA TTOV AVIIKOVY GTNV KATO-
VouT| 6T0Y0. TNV TapoVod SITAOUATIKNY Epyocio peAETANE apyikd To vVEOPadpo punyovikng pdbnong,
0€ EMIMEDO APYLTEKTOVIKOV HOVIEA®MVY, AAyopiBLmy eKmaidevong Kot TEYVIKOY Ladnong. Xty cuvé-
Y0 KOAVTTOVE TO VTOPabpo eEehie@v oTo avtikeipevo tng ene&epyaciog EVOIKNG YADGOAS, HEGM
piaG ovopopag o€ SLovOGHOTA AEEEWMY, GE YAMOOIKA LOVTEAN KOl TEAOG OE TPOEKTOLOEVUEVD YAWG-
oA povTéLa kal To cvotnua ovaropactdcenv Aééewv BERT. Mo v eniivon tov TpofAnuatog
TPOGAPLOYNG TESTOV £yovv TpoTabel pia Totkidia Tpooeyyicewv enilvong. Avtég ympiloviot e Tpelg
KOPLES KOTIYOPIES, 00EG EMIIDOKOVY Vo LABovY TPMTA TAL KOWE YOpOUKTPIOTIKA (pivots) peta&d tov
TEdIWV, EKEIVEG TTOL OVATTUGOLY LOVTELN OKOAOLODVTOG TNV AOYIKT TNG OVTITOPOOETIKNAG UNYOUVIKNG
uéonong peta&y Tov tediov (domain adversarial training) kot TEAOG GTNV KATNYOpPio TPOGEYYICEDV
ue Paon to dedopéva Tov emdmKovy cuVHBmg eite TV ekpddnon etiketdv (pseudo-labels) Tov ma-
POASELYLATOV TNG KATOVOUNG 6TOYOVL €1iTE TNV a&l0TOINGT TPO-EKTALOEVUEVOV YAMCGIKMY LOVIEAMV.

21NV Tapovca EPYOCI0 TPOTEIVOLLE L0l VEX TPOGEYYIOT Y10 TNV ETIAVGN TOL TPOPANUATOS TPO-
capLoYNG Tediov, PACICUEVN GTO TPOEKTOLOEVIEVO cVGTNO avarapaoTdcewy AéEewv BERT. Avtn
amotereitan and dvo Prpoata. To TpdTO PIHE CPOPE TNV CUVEXELD TNG TPOEKTAIOEVONG HECH TNG
YAWGGIKNG LOVTEAOTOINGNG TV OEOOUEVMV TOL TPOEPYOVTOL OO TNV KOTAvVOUn 61dyo. To devtepo
Bpa aroteAeiton amd Ty padnon g TaEVOUNoNG amd To SEGOUEVH OO TV KATAVOUT TTNYT| EVE GL-
veyiletal n YAwooikn povteromoinon ota dedopéva omd v Katavopun otoyo. To melpapatikd pépog
VTG TNG EPYOCiag TEPIAOUPAVEL £VO GUVOLO GUYKPITIKGV TEPOUATOV UETAED TNG TPOTEVOUEVNG
nebdoov, Kot evog cuvOAoL TTponyoLuuevey peBddmv 1 peBddwv Pdong. Ta mepdpata agpopodv 10
multi-domain Amazon reviews dataset Tov wepiEyet Kprtikég amd moAlé Oepotikég evotnreg (Bipiia,
tovieg, NAekTpovikd, €101 kovlivac). Ta amoTeAECUATO TOV TOPATAVE® TEWPAUATOV KATAIEUKVOOLY
ONUAVTIKT BEATIOOT TOV TOCOGTAOV EMTVYING TNE TPOTEWVOUEVNC LEBOSOV GE GYEDN LE TIG GVYKPIVO-
ueves. H epyacio meptiapPdvel akopo avaluon TV amoTEAECUATOV KoL OTTIKOTOINGT TOV YOPOKTT-
PLOTIKAOV TTOL €EAYOVTOL KO YPNCUYLOTOL00VTOL Y10, TaSvounon og kdbe mepintmon. Télog mpayparto-
TOWOVE [0 aviALGT Y100 TOLG AOYOVG amotuyiag Tng Kupiopyng Pproypagucd emioyng Tov domain
adversarial training Boaciopévol otnv oyeTikn Bewpia pddnong omd drapopetikd medio kabdS Kol o
TEPOAUOTIKG LOG ATOTEAEGLOTA.

AgEgaic KAEWOWO

Eneepyacio Duowkng Mdccac, Mn EmiPAienopevn [pocappoyn [ediov, [Tpocappoyn Iediov, Ava-
Avon Zuvaictnuatog, Mnyoviki Mabnon, I'howooikd Movtéra, Mn EmBienopevn Mabnon, Mdéonon
[MoAramidv Epyacuodv






Abstract

The purpose of this diploma dissertation is to study unsupervised domain adaptation for natural lan-
guage processing applications and specifically for the problem of sentiment analysis. In the domain
adaptation problem there is data coming from two distributions, one source domain and one target do-
main, while labels are only available for the source domain. The aim is learning, by using data from
both domains, a model with good generalization on examples belonging to the target domain. In this
dissertation we first study the theoretical background of machine learning, at the level of architectural
models, training algorithms and learning techniques. Then we cover the background of developments
in the subject of natural language processing, making a reference to word vectors, language models
and finally to pretrained language models and BERT (Bidirectional Encoder Representations from
Transformers). To solve the domain adaptation problem, the literature has proposed a variety of ap-
proaches. These are divided into three main categories, those that seek to first learn the common
features (pivots) between domains, those that develop models following domain adversarial training
and finally the category of data-based approaches which usually seek either to learn pseudo-label for
the target domain or the use of pretrained language models.

In the present work we propose a new approach to achieve domain adaptation, based on BERT.
It consists of two steps. The first step is the continuation of pretraining through masked language
modeling on the data derived from the target domain. On a final fine-tuning step we learn the task
on source labeled data, while we keep an auxiliary masked language modeling objective on unlabeled
target data. The experimental part of this work includes a set of comparative experiments between the
proposed method, and a set of previous methods and baselines. The experiments are conducted on the
multi domain (books, movies, electronics, kitchenware) sentiment analysis Amazon reviews dataset.
The results of the above experiments show a significant improvement in the accuracy of the proposed
method compared to the previous state-of-the-art. The work also includes an analysis of the results
and visualization of the features that are extracted and used for classification in each case. Finally,
we discuss the limitations of the dominant approach of domain adversarial training, based on the the
relevant learning theory from different domains and our experimental observations.

Key words

Natural Language Processing, Domain Adaptation, Unsupervised Domain Adaptation, Sentiment
Analysis, Machine Learning, Language Modeling, Unsupervised Learning, Multitask Learning
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Extetapévn EAAnvin Iepiinyn

0.1 Ewoayoym

2TV mopovGa £pYNcio EPEVVOVLLE TO TPOPANILA TNG TPOGAUPLOYNG YAMGGIKOD TEdiov YwPIG EMLTN-
pnon (unsupervised domain adaptation) pLe yp1oN TPOEKTESEVUEVOV YADGGIKMV LOVTEL®V (pretrained
language models) yio epoappoyéc eneéepyaciog puoikng yAdooag (natural language processing). [1po-
tetvoope pia véa néBodo TPOCAPUOYNG TPOEKTALOEVUEVAOV YAMGGIKOV HOVTEA®Y, cVVOVALoVTAG TO
K06T0G Ta&IVOUNOTG KOl TO KOOTOG YAMGGIKNG povighomoinong. H mpotevopevn pébodog entruyyd-
VEL TPOCUPUOYT OTIV KATOVOU GTOYO LE EVP®OTia, akdpo Kot 6tay o otabéotpa dedopéva gival
Mya. Eminpdceto mapabétovpie atoryeio yio yio v enitevén koivtepng emainfevong (validation) pe
YPNOT TNS TPOTEWVOUEVIG LEIKTNG GLVAPTNONG KOGTOVS. TEAOC, TPAYLLOTOTOIOVLLE L0 AVAALGCT) Y10, TOL
opta g PpAoypagikd kupiapyng LeBOS0V OVTAYOVIGTIKNG UNYOVIKNG Ladnong pLeta&d tov nedinv,
Baciopévn og Bempntikd Bepédio Kol TEPAROTIKG AToTEAEGHATO. AOKIHALOVE TNV TPOTEVOLUEVN
péB0d0 ot dDOEKD GEVAPLO TPOGUPLOYNS TOL GUVOALOL SESOUEVOV KPITIKOV 0O TOALEG OEUaTIKEG
evotteg multi-domain Amazon Reviews Sentiment datasest. H péfodoc metvyaivel péon axpipeia
91.73%, to omoio wodvvapei pe 1.10% andivtn Pertiomon o oyéon pe v vIapyovoa PEATIOT
pébodo.

O1 BaBiég apyITEKTOVIKEG VEVPOVIK®Y OIKTO®V £X0VV eMTLYEL BEATIOTO OTOTEAECUATO OE EVOL e~
YOAO €0POG EPAPLOYDV UNYOVIKNG HaBnong. Av Kot 1 peydin mieioyneio tov poviédov fadidg pua-
Onong exmaidedovrol Kot a&loAoyouVToL GE SEGOLEVO TTPOEPYOLEVA OO L0 GUYKEKPILEVT] KOTAVOLLY,
TOL LOVTEAQ OE TIPULYUATIKEG EQAPLOYEG GUYVA XPTCLLOTOLOVVTOL G KOTUGTAGELS OTLG OTOiES Tal €S0~
HEVOL OEV AVIIKOLV GTNV KOTOVOUN EKTOUOEVONG, YEYOVOG oL 0dNYel og pelwon g amddoong TovG.
H cvykévipmon dedopévmy Kot 1 ETIOTILEI®OT] TOVE, Y10 TNV EKTOIOEVON LOVTEAWDV EEEIOIKEVIEVOV
og éva meodio, ivar pia dradikacio vYNAoD KOGTOVG TOL amaltel emmpOcOeTo YpOVO Kot eumodilel Tnv
ETOVOYPNCULOTOINOT) TOV EKTALOEVUEVOV LOVTEL®V, VD avTiBeTa dedopéva xmpig emoneinon eivat
gvkola TpocPacipo. H pun emPrenodpevn npocappoyn YAwootkol nediov eival GUVET®OG £vag EvePYOS
TOHENG £PEVVAG LE DYNAO AVTIKTUTO GTNV TPOYLOTIKY TPOCUPUOYY TV HOVIEAMY UNYOVIKNG LaOn-
ong.

YUyKeEKPIUEVO 1] EPYOGIQ OVTH 0poPd TNV Un ETPAETOUEVT] TPOGAPUOYN eSOV dSIKTH®V Pact-
OUEVOV OE TPOEKTUIOEVEVH YAMGGIKE povtéda. Ta mposkmardevpéva yhowootka poviéla [24, B39,
98, 56, [19] amotelolv pia emavacTtatiKy Toun oty eEEMEN TS Epeuvag Yia TV eneéepyncio QLOIKNG
yAdoooc. [Tpoekmaidevovtal o PeyGAo GUVOAN KEWEVIKDOV OES0UEVOYV, KOIIKOTOIOHV TANPOPOPIES
OYETIKEG LUE TO YOPUKTNPIGTIKA TNG YADGGOG, T0 svuppalopeva, Ty oOVTaén Kol TNV GUacloA0Yid,
Kol 6Tav TPOoouprolovTol LEC® UETAPOPAS LABNONG, EMTPEMOVY GNUOVTIKEG PEATIOCELS G TOAAES
gpyaocieg enelepyaciog YAdooag uécw g Pertiotonoinong toug pe Aiya dedopéva. Avti 1 dadika-
clo BedtioTomoinong etonyoye TV avarykn yo S1adoyiky Letagopd pabnong, n onoia tpocappolel ta
TPOEKTOOELUEVD LOVTELD OE VEX Tedia Kot TEMKEG epyacieg otdyovs. H Beltiotomoinomn tov yAwo-
GIKOV HOVTEAWDV TOPEYEL CLUVETMG VAL ATAO Kol GUEGO TAOIGLO Yo NUI-ETPAETOUEVT] TPOGAPLOYN
nedion, KoTA TNV omoia TapoTL pabaivovpe VEEG EpYOcies Omd EMONUEIOUEVE OEOOUEVA, EKIETAA-
AEVOUAGTE KOL TNV SUVOUIKT TOV YAMGGIKOV LOVTEA®V OC U1 EXPAETOUEVO GUGTHUATO, TOALUTAGDY
gpYOot®V. QoTd60, TOPE TNV KOIKOTOMUEVT YVOON A0 TOAAEC BELATIKEG TOL TEPLEYETAL OE £V
oUYYPOVO TPOEKTAUIOEVUEVO YAWGGIKO LOVTEAOD, 1| LB O™ EpYOoIOV amd dedOoUEVA EKTOG TEGIOV TTaL-
POLEVEL EVOL ATTOLTNTIKO (TN L.

[Ipoteivovpe pio. amAn Kol ATOTEAEGUATIKY TPOGEYYIOT YIOL TNV UN EXIPAETOUEVN TPOGAPULOYN
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1ediov, Tov a&lomolel TIg SuVATOTNTES TOV VYNANG YOPNTIKOTNTOS TPOEKTAUOEVUEVOV YADGGIK®Y 1O~
vtélov ta omoia Pacilovral otnv apyrrextovikn Transformer [92], 6nmg o BERT [24]. Eekivdvtog
amod £vo TPOEKTAOEVIEVO GE YEVIKG KeeVIKE dedopéva poviého BERT, npoteivovpe tnv cuvéyeia
NG OOIKOGTOG TPOEKTAIOELONG HECH TNE YAMOGIKNG LOVIEAOTOINONG LE HAOKESG o€ Alya dtaBéoipa
oYETIKG dedOpEVA Ywpig emonpeimon Tov Tediov otdyov. Katd tnv didpketa g telkng fertioTonol-
none, eva pabaivovpe v epyacio amd Ta 0ed0UEVA TNYNG LLE EMONUEI®OT], O10TPOVLE WG fononTikn
NV €PYACi0 YAWOOIKNG LOVTEAOTOINONG e LACKEG 0TO 0EO0UEVH TOV TTEGIOV GTHYOV.

Ot onpovtikotepeg ouvelsPopéc etvat: (1) mpoteivovpie pia véa, amAn Kol e0pwaotrn néBodo un emt-
PAemdpevn mpocapuoyng Tediov e xpnon YAOGGIKNG LoVTEAOTOINGNG, (2) emttuyydvovpe BEATIOTA
amotehécpoto oto multi-domain Amazon reviews dataset, Eemepvavtag o anddoon To mepimio-
Keg mpooeyyioelg Kat (3) EMYEPMNUOTOAOYOVUE Yo, To OPLoL TNG AVTOYMVIGTIKNG UNXOVIKAG LaOnong
peta&d mediov, Paciopévol otny Bewpio pabnong amd dS1aQopeTIKd TESIO KOl TIC TEWPOLATIKES TOPOL-
TNPNOELS HOG.

0.2 Xyetwcn Prploypogia

Ot Ben-David «.4. [[12, [10] mapéyovv pia Bempia paddnong oand dwopopetikd media. Or Ganin K.4.
[B0, 29] mpoteivouv v ekpdOnon epyacumv, evad 1o dikTvo dev givar o Béom va dtakpivet av To To-
padetypoTo aviKovy 6To TESio TNYN N 6T0 TEdiI0 6TOYO, LE XPN oM EVOG EMITPIGHETOV AVTUYDOVIGTIKOD
KOGTOLC. ZOUe®ve pe Tovg Ramponi kot Plank [[72] n avtayoviotikn padnon peta&d nediov Exe kopi-
apyn Béon oy PAoypaia TG Un EXPAETOUEVNG TPOGUPIOYNG TESIOV Y10 YADOTIKES EPOPUOYEC
[48, 5, 82]. [Ipécearta, ot Du k.4. [26] mpdtetvay TV ¥pfon avIay®VIGTIKNG pibnong peta&d mediov
610 mAaicto evog poviélov BERT. Ot Zhao k.4. [[102] mpoteivovy avtayovioTikng nabnon petald me-
dlov armd ToAra media tnyés. Ot Guo k.4. [BS] ypnoionolovv pia tpocsyyion piEng e0tk@v LOVIELDV
Y TpocapLoyn mediov amd moAdd media mnyéc. Ot Guo k.. [34] diepeuvoiv PETpa ATOGTAONG MG
pocheta KOoTN KOOMS Kot TV (pNomn evog duvapkov greykt tedimv. Ot Shen k.4. [86] pabaivovv
otafepd YopaKINPIOTIKE aveSapTNT®S TEdiov e ypnon g andctaong Wasserstein. Ot Bousmalis
K.4. [[18] etodyovv diktva Staympiopod Tediov LE WIMTIKOVG KOl KOWVOYPTOTOVG KOOIKOTOUTES.

Mio GAAN ypoppun pEVVOC Yo TNV Un ETPAETOUEVN TPOGAPLOYT TESIOV, EMIKEVIPOVETUL OTNV
e&aymyN KOOV YOpOKTNPIOTIKOV HECH TNG ekUaONnong otabepadv otoyyeiov (pivots). To Structural
Correspondence Learning (SCL) [[15] kot to Spectral Feature Alignment [65] eivai peta&d tov apyt-
KOV oxetikav puedddmv. O Ziser kat Reichart [[105, 106, [108] cuvévdlovv 1o SCL pe apyttektovikés
VEVPOVIKAOV SIKTO®V KoL TNV AOYIKN TG YA®GGIKNG povtehomtoinone. O Miller [62] mpoteivel v amd
Kowov ekudOnomn g Pacikng epyaciog kot tov pivot yapaxtnprotik®dv. Ot Li k.d. [53] pabaivovv
TOL PIVOL YOPOKTNPLOTIKG e 1EPaPYIKE dikTvua TPocoyng. Ot uéBodot pe pivot yopaKkInPLoTIKG EX0VV
emiong ypnoiponombei og cuvdvacud pe to BERT oto Ben-David k.4. [9].

O1 teyvikég Wwevdmv emonueidoemv (pseudo-labeling) gival adlyopOpot nu-emPrenodUeEVNg 1A~
Onong mov ypnoiomolovy 10 1d10 HoVTEAD oTNV TTepinTmon ¢ avtoeknaidevong [99, 58, 2] eite
TOAATAG aPYIKO, LOVTELD OTNV TTEPITT®ON TNG TPITANG ekmaidevong [[103, 89] wg odnyd yio tnv emt-
onueimon tov dedopévav Tov mediov otdyov. Ot Saito k.4. [81]] Tpoteivovy pia AGOUUETPN TPOGEY-
yion TpmAng ekmaidgvong. Ot Ruder ko Plank [[79] eicdyovv pia mpocéyyion Tpiming eknaidevong e
AOYIKY| ekmaidevong ToAOTAGY epyactmv. Ot Rotman kot Reichart [[76] kabmdg kot ov Lim «.4. [55]
UEAETOVV TEYVIKEG YEVODV EMICT|UEIDCEDY GE GUVOVAGUO LE OVOTOPUCTACELS AEEEDV OO TOL GULL-
opalopeva. Ot Ye «.4. [[LO1] cuvdvalovv Ty TeYVIKN YELIDV EMCNUEIDCEMVY LLE AVTOEKTAIOELON LLE
TPOEKTOOELUEVA YA®ToKd povtéda (XLM-R [23]) kot mpoteivouv 1o CFd.

H mpoekraidevon kot 1 tedikn Bedtiotonoinon etvon £vag amAdg Kot dpesog TpOTOG Yo TPOGop-
poyn. Otav apketd dedopéva sivon drabéoipa og Eva yYAwoowo Tedio, 1 TPoekTaidevor evog LOVTELOL
oamd TV apyn ivot o oAy Kot omoteAesotiKn 10€0. Movtéda yuo cuykekpipéva medio, fociopéva
oto BERT, 6nwg 1o BioBERT [45] kot to SciBERT [8], T0 £yovv dokipdoet pe emrvyic. Ot Sun k.4.
[91]] mpoteivouv TV cuvéyion g tpoekmaidoevong tov BERT pe dedopéva and 10 medio otdyo Kot
™V xpnomn enmALov oyeTIk®v epyactmv. Ot Xu k.a. [97] etodyovv pio Bondntikn epyocio Katavon-
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OTG KPITIKAOV Kol TPOTEIVOVY TNV cuvEéyion tng mpoeknaidevong tov BERT pe éva tpdobdeto k66TOG
o€ [o gpyocio epoTAoE®V Kal anavinoewy. H cuvéyeia g mpoekmaidevone o€ ToAAEG PACELS, amd
YEVIKG GE GUYKEKPIUEVD DESOUEVA KO OEGOUEVH GUYKEKPIUEVA Y10l TNV EPYUGTN, GTOYO, EMAAEOV or-
0del otV 0mdS00T TOV TPOEKTUOEVUEVOV YAMGGIKMOV LOVTEA®V, COLE®VE Le Tovg Gururangan K.d.
[36]. To AdaptaBERT [B8] mpoteivet éva devtepo Pripo mpoekmaidevong tov BERT yia va emiriyet
un emPrendpevn mpocappoyy mediov. To Multi-Task Learning (MTL) [20] péow g kowig xpriong
TOPALETPOV G VEVPOVIKE dikTva éxst amodeiydei efatpetikng amotehespotucdtrog [77]. H yAwo-
olKN povtelomoinon g fondntikn epyacia Tpoteiveral yio vo amopevydei To catastrophic forgetting
KOTé TV petopopd pabnong [22]. Eniong éxst ypnotponomOei [40] yio tnv enilvon tov mpopAipotog
aVOYVOPIoNS OVIOTHTOV A0 SL0POPETIKE YAMGGIKA TTEdiaL.

0.3 Opwopdg Hpopinpatog

‘Eoto X 0 ydpog 1600wV Kol Y 10 GUVOLO TOV EMIGNUELDGEWDY, Y10, Svadiky tavounon Y =
{0, 1}. Zmv npocappoyn nediov vrdapyovv dvo drapopetikés katavopés oto X X Y, mov ovopdlovrat
nedio nyn source domain Dg kot medio 610)0g target domain Dp. ¥to ceviplo un eniPrendopevng
néOnomng Tapéyovial ETCTUEIMGELS Yio Oelypata Tov Tpoépyovtal amd 0 Dy, evd Ta detypoto Tov
npoépyovral omd to D eivor yopig emonueioon. O ot6x0g gival vo eKmadenTel £vo LOVTEAO TOV
€xel KaAn amddoon o€ detypota mov Tpoépyoviarl omd 1o medio otoyo Dr. Avtd cuvoyiletal oTic
axoAovleg e&lodoelg:

= (24,9i)i= ~ (Ds)"

(z)iZay ~ (D7)

S 0.1
; 0.1)

OTOL D%( glvar ) oplaxn katovour tov D oto X, n gival o aptBpdc derypdtov ond to medio mnyn
Kot m o aplfudc Tov deryudtov and 1o 1Edio 6TOYO.

0.4 TIIpotewvopevn pédodog

| Generalpretaining  Jbomampreamngl>  SNERSERRGD

MM | NsP |
(e 5 ) MR
BERT _:
L ECLE [E_zl Eu.usr-: ] E-‘l ,'_-
[cLE] welcome [MASK] Wikipedia ... [CLS] This movie is [MASK] watching ... E

[cLs] This movie is [MASK]watching ...

English Wikipedia 2500M w. -l -
BookCorpus 800M w. Source Domain
—_— _ ~160K w.

Tyfua 0.1: a) To BERT [24] mpoeknadedeton oty oyyhkhy Wikipedia kot to BookCorpus pe Tig
epyaciec MLM kot NSP. b)Zvveyilovpe v mpoeknaidevon tov BERT oe dedopéva amd v Katavoun
o1oy0 e v gpyacic MLM. ¢) Exmodevovpe Evay ta&vounty pe to dedopéva amod 1o medio anyn,
evo dtatnpovpe Vv gpyacioc MLM ota dedopéva ympic TGN UELDGELG TOL TESIOV GTOYOV.
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To Zyfua 0.1. divel pio EMOKOTNON TG TPOGEYYIONG LLOG Y0 TNV [T EMPAETOUEVT] TPOCUPUOYT TE-
diov, Tov amoteAsital amd dVo BT, EEKIVOVTOG amd £V TPOEKTAULOEVUEVO HOVTELD, cuveyilovpe
VO TO EKTIOLOEVOVUE GE DESOUEVO TOV TTESIOV GTOYOL LE TNV EPYACIN YAMGGIKNG LOVTEAOTOINONG [E
pdokeg. Xe éva 0evtepo Kot tedevtaio Pripa Pedtiotonoinong pobaivovpe v epyacio tagvopnong
oe 6edopéva e emonIei®oT) TOV TESIOV TNYNS, VG ST podLE MG BondnTikn TNV pyacio YA®GGIKNG
povtedomoinong e pdokec ota dedopéva yopic emtonpeivon Tov tediov oToOYOV.

To BERT &ivat Tpoekmatdevuévo Le Yp1on TOV EPYACIOV YAMCGGIKNG LOVTEAOTOINONG LE LACKEG
(MLM task) kot ta&vounong avaioya pe o av €vo, (eEvyapt TpoTicemV 16000V EIVOL GUVEXOUEVEG N
oyt (NSP task). 'Eva mpogkmoidevpévo povtého BERT umopei va feltiotorombei e éva povo eninedo
€£000V Y10 TNV ETIAVOT EVOG EVPEDG PACUATOG EPYACIDOV. AUUPAVOVUE £VO TPOEKTOLOEVUEVO LOVTELD
BERT wg¢ apytkonoinon Kot Tpaylotonotovpie £va 0e0Tepo P tposnelepyasiog yio to medio atd)o.
AvT6 10 Prjna yiveton pe v gpyacio MLM cg dedopéva ympig emtonpeimon tov tediov otoYov. Le
avtifeon pe to AdaptaBERT [B8] kot 1o BERT-DAAT [2€] ypnoiponotodpe dedopéva pdvo amd to
1edio oTOYO KAt TNV JdpKELD 0VTOV TOV BHATOG.

11 GuvEELD, UETAPEPOLLE Ta BApn Tov emmpocheta mpoekmodevpuévov povtéAov BERT kot
pocHETovpe Evov TeAko Ta&tvounty. AkolovBdvtag v Tumikn tpoktikn Yo BERT, tepvdue v
avanopdotact Tov tehkob emmédov [C' LS| otov ta&vounti yia tnv cuykekpyévn epyaoio tavo-
unong. O ta&vountg amoteAeitol amd Eva YPOUUKO GTPOU TPOPOS0GIG TPOS T EUTPAC LE YP1IoN
dropout. Atatnpodye eniong to tedko otpdpa tov BERT yio v gpyoacio YAwoowkng povieAonoinomng
LE LACKEG,

[Ipokeévou va emtevydei 1 Tpocapoyn oto wedio oTdY0 Kot va PeATimbel 1 tkavdtnta yevi-
KEVGONG TOL LOVTEAOV, SLOTNPOVIE TOV GTOXO YAMGGIKNG HOVTEAOTOINOTG UE LACKES GTO TTEdI0 GTOYO,
eved pabaivoope v epyacio oto medio mnyn. To HovTELo ekToudevETAL O TO OEDOWEVO LIE ETION-
peimon oto medio Tyn yo v epyacio Ta&vounong kat ta dedopéva xmpic entonueioon oto medio
GTOYO YO TNV EPYNGI0 YAMOGIKNG LOVIEAOTTOINGNG e HAOKES. XPTCILOTOLOVE LACKES LLOVO YOl TOL
dedopéva oo to medio otdyoc. Katd t didpkela g ekmaidevong, mapepufariovpe dedopéva nnyng
Kol 6TOYOoV, Kot Ta 000 diépyovtan pécsm tov BERT. Ta dedopéva mnyng e emionpeioon tpombodvtan
ooV TagvouNTY, EVM Ta dESOUEVA GTOXOL YWpPiG emtonueimon tpowbodvtat otnv 6060 MLM.

H xown ovvéptnon kdotovg gival To dBpoicpia tng cuvaptnong KOcTovg tavounong Loy Kot
NG CLVAPTNONG KOGTOVG YAWGGIKNG povtelomoinong MLM Ly 1. Exmoidebovpie 1o poviédo oe
piktég Taptideg batch, mov meptlapfavovy dedopéva YNNG Kot GTOYXOV, TOV YPNCLOTOLOVVTOL Yid
TIG avtioTotyeg epyaciec. Alapodpie £va batch og ToAAA SEVTEPELOVTA KO GUYKEVTPMVOVLLE TIG TOPO-
Y®YOLS aVT®V TV sub-batches mpv and Tig EVNUEPDOELG TV TOPAUETPOV. Alvovpe m sub-batches
mYNG pe emonueioon kot n sub-batches otoyov Ywpic emonpeinon o Eva batch. Qg ex tovtov, 1
KOLVI] GUVAPTIOT KOGTOVG LE TNV OTTOoi0, EKTOIOEVETAL TO LOVTELO Eivart:

L(S,t) = )\LCLF(S) + (1 — )\)LMLM(t) (0.2)
OOV 0 GLVTEAESTNG oTAOoNC A vToAoyiletal pe Bdon Tov aptBud source Kot target SEIYHATOV.

n
A= (0.3)

0.5 Ilewpdapota

0.5.1 Xvvoro Agoouévev

AZloloyovue v pébodo oto multi-domain Amazon reviews dataset [|14], éva omd ta yopaktnpl-
OTIKG 6UVOAQ SES0UEV@V avapopdc Yio Tposaproyr] mediov. Ot kprrikés pe 1 M 2 aotépia katatdoco-
VTOL ®G OPVNTIKES, EVA 01 KPITIKES e 4 1 5 aoTtépla Katatdooovtal g Betikéc. To chvoro dedopévev
TEPLEYEL KPITIKEG O€ TEGTEPO Tedial - Oepatikég evotrtes : Books (B), DVDs (D), Electronics (E) kot
Kitchen appliances (K), éivovtag 12 cevipila mpocappoyng. Xpnoporotovpe kot tig 2.000 kprrikég
ue emonpeimon (1.000 Betikég ko 1.000 apvntikég) kot 19809 B, 19798 D, 19937 E, 17805 K, tuyaia
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EMAEYUEVEG KPLTIKEG YPig emonpeioon. Ta dedopéva pe TGN UEI®ON YPTCYOTOOVVTOL Y10, TECT,
oT0 GEVAPLO 0TO OTTO10 TO OvTioTOoLYX0 MEdio Bewpeitat 6TdYOG.

0.5.2 Agrmtopépereg viomoinong

Xpnowonowobue 1o BERTB A5k (uncased) g Paon yuo va EEKIVIIGOVUE TNV TPOEKTAIOEVGT GTO
YA®GGWKO mEdi0 6TOY0. To apyikd ayyAkd poviého BE RT' B AsE €ival pio apylTteKTOVIKT VELPOVIKOD
dkTooV 12 emmédmv, 768 kKpvedv emmédmv, 12 kepaimv, 110 exatoppvpiov TOPAUETPOV, EKTUOEV-
pévn oto BooksCorpus pe 800 exatoppdpia AEEelg kot po ékdoom g ayyikng Wikipedia pe 2.500
eKOTOPUVPLO AEEELS . AKOAOLBOVLE TNV apyIKd TPOTEWVOLEVT] dladtKasio amdkpuyng AEEEV e Ld-
OKEG, OMNAadn TV Tuyaia kdAvyn 15% twv token WordPiece [96]]. Edv éva token og pia cuykekpipévn
Béon €xetemheyel yio va kpo@tel, 80% tov Tepurtdcemy avtikadiotatat pe Eva token [M AS K], 10%
TOV TEPMTOCEMV U Eva Tuyaio token kot katd 10% mapapével apetdfinto. To péyioto pinKog ako-
AovBiog opileton og 512 pe mepwkonn TV 1060wv. Katd tn ddpkelo eKTETAUEVIE TPOEKTAIdELONG
exmodevovie pe péyebog batch 8 yia 3 emoyéc. Katd tn didpreto Tov TeEAKoD Pratog EKTodeVovE
ue péyebog batch 36, amotedovpevo amd 4 deiyparta mnyng kot 8 sub-batches 6tdyov 4 derypdtov to
kaBeva. Evnuepdvouyie Ti¢ mopapéTpous PLeETd and kabe 5 cuocwpevuéva batch.

INa o melpopa avtayoviotikng pébnong pueta&d mediov, opicaple tov cuvteieot Pdpovg o 0.01.
Eniong mepapatiomirape pe A = 1, A = 0.1 kot €va 6x£010 G1yHogd00¢ avENONG TOV A. AVOQEPOLLLE
TO KOADTEPO, ATOTEAEGUOTO.

INo v avartuén tov nepapdtov ypnotponotovpe PyTorch [66] kor HuggingFace Transformers
[95].

0.5.3 Zvykpwvopeves M£Booor

®a cvykpivovpe ™ PEBOSO pag, e TPONYOVLEVEG EPYUCIEC TTOV AVTITPOSHOTEVOVY UEBOOOVG e
™V KeAOTEPN aOS00T] ATd SLOPOPETIKEG TPOGEYYIGELS Y10 TNV UN EXPAETOUEVT TPOGAPUOYT TTESTOV.
2uyKekpIpLéva cvykpivoope to amoteréopata pe 1o faciopévo o€ BERT R-PERL [9], to Paciouévo
oe BERT pe avtayoviotikn pédnon nediov BERT-DAAT [26] kot to Baciopévo oe XLM-R [23]
p+CFd [[101]. EmitAéov VAOTOMGOLLE KOl OVOPEPOVIE OTOTEAECLLATA, Y10 TO OKOAOLO TEPALATA:

e BERT Source Only: BeAtiotomoloope 10 BERTpasE HOVO e d€00UEVO 0md TO TESIO YN
(source).

e DPT BERT: AkxolovBolue to mpmTto Prjpa tng Tpotetvopuevng Ledddov, tnv cuvE el TpoeK-
naidevong e MLM oo medio 6tdy0. Metd BEATIOTOTOI00E TO LOVTEAO HLOVO e OEdOUEVA AT
10 TTedio TNYN.

e DAT BERT: Avtayovictikn eknaidevon tov BERT peta&d tov nediov. ZEckivdpe amd to Tpo-
ekmodevpévo oto medio BERT ot to feltictomolodpe akorlovbmvtag to [29].

e Ilpotswvopevo: H Boaoiopévn oe BERT mpotacn mov cuvovdlel tnv mpoeknaidevon oto nedio
pe v Peitiotomoinom pe xpron TApIAANANG YAOOGIKNG LOVIEAOTOINGONG HE PACKES, OTMG
avaiveTon oty gvotnta 0.4.

0.6 Amoteléoporta Kol Xvifqtnon

0.6.1 ZXvykpron pe 7o state-of-the-art

Hapovoidlovpe amoteréopata yio ta 12 oevipio tpocappoyns tediov atov [ivaxa 0.1. H telev-
taio ypoppn tov Iivaxa 0.1 wepiéyxel ™ péom 6po axpiferag and dAa to cevipilo Tpocapproyns. To
TPOTEWVOLEVO LOVTELOD, TO 0010 GUVOLALEL EKTETAUEVT TPOEKTOIOEVOT) OTO YAMGGIKO TEDIO GTOYO KO
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R-PERL DAAT p+CFd | Source Only = DPT DAT  Proposed
B—D | 878% 909% 87.7% 90.5% 90.7%  90.7% 91.3%
B—FE | 872% 889% 91.3% 91.3% 90.9%  91.1% 91.2%
B—K | 9.2% 88.0% 92.5% 91.6% 923%  92.8% 92.9%
D—DB | 85.6% 89.7% 91.5% 90.2% 90.5%  90.6% 91.4%
D—FE | 893% 90.1% 91.6% 88.5% 91.7%  88.8% 92.9%
D— K| 90.4% 88.8% 92.5% 90.5% 92.0%  92.0% 94.3%
E—B | 90.2% 89.6% 88.7% 87.8% 88.3%  89.4% 90.6%
E—D | 848% 893% 882% 87.2% 87.3%  86.5% 88.4%
E—K | 912% 91.7%  93.6% 92.8% 94.1%  94.6% 94.8%
K—B| 83.0% 90.8% 89.8% 88.6% 89.4%  83.6% 89.4%
K—D | 856% 905% 87.8% 87.1% 88.0%  83.6% 89.2%
K—FE| 912% 932% 92.6% 91.9% 93.1%  92.4% 94.3%
Average | 87.50% 90.12% 90.63% 89.83% 90.69% 89.68%  91.73%

[Mivakag 0.1: Axpifera Tov domain adaptation ota dddeka {evyn Tov Amazon Reviews Multi Domain
Sentiment Dataset.

Beltiotomoinon pe Pondntikd MLM Eemepvd OAeC TIG AALEG TEYVIKES, ATOSIOOVTAG Lo ATTOAVTY PEA-
tioon 1, 90% oe oxéon pe to amAd povrédo BERT. Xvykpivooue amotedéopoto poévo and pebodovg
nov Bacifovtol oe mpoekmaudevpéva povtéra, kupiog BERT. Iapatmpovpe 611 to BERT, 6tav PBelti-
OTOTOLEITOL LOVO LLE TO OEOOUEVO TOV PEPOVV EMOTUEI®ON 0td TO TEDIO TNYN Y®PIG Kapio VDG TOL
nediov oTOYOL elval aPKETE AVTOY®OVIGTIKO Kal L TNV KatdAAnAn eknaidevon Eemepvd 1o R-PERL
[9].

To meipopa avtimapdbeong nediov (Adv.), To omoio mpaypotonomdnke HeTd amd EKTETOUEVO
tuning TV TAPOUETPOV TOL GUVTEAECTN GTAOUONG, TOV PUdTOV ekTaidevong Kot Tov aplfuod Tov
dedoévov amd 10 Tedio 6TOYO TOL YPNCILOTOMONKAY, 0modidel XEPOTEPO, ATOTEAEGUATO OO TO
amhd BERT. AnAadr], axOun Kot Ue TPOGEKTIKY ETAOYN TOV VIEPTAPAUETP®V, 1| EKTAIOEVGN TOL
BERT pe adversarial training givo aotafne kot pmopel va PAAWEL T GLVOAIKT amddoon).

H ovvéysio g mpoexkmaidcvong oto medio otdyo avéavel tn péon axpifea pe pia Petioon
0, 86%. H cuvéyela g Tpoekmaidoevong ota ded0pUEVA TOL TEGIOL GTOYOV TPOCUPUOLEL KAADTEPO, TO
HoVTELO Kal 0dNYel o€ PEATIOUEVT amOd00N. AvTd GUUPUSILEL e TAPOLOIEG TPONYOVLEVEG EPYOTIEG
yw supervised [36, 97, D1]] ko unsupervised settings [38, 26].

Xv tpotevopevn néBodo, 1 Sratnpnon tov MLM kotd to teducod fripa BeATidvel mepoartépm Ty
amO00GT KA EMLTLYYAVEL o TpOcBetn avénomn g péong axpifetac 1.04%. H mpotevopuevn pébodoc,
Eemepvd TNV akpifela LEGOL OPOL OA®V TOV GAA®V TPOTEIVOUEV®V TPOGEYYIGEWDV Y10l TPOGOPLOYN
nediov ympig emitnpnon. Zuykekpéva, 1 tpotevopevn pnéBodog etvar katd 1.10% kaAvtepn and to
p+CFd [101], xatd 1.61% amd to BERT-DAAT [26] kot katd 4.23% tov R-PERL [9].

0.6.2 ATOTELECHOTIKOTNTO OG TPOS TOV UPLONO derypdTov

E&etdlovpe mepartépm Tov avTikTumo TG XPNOoNS SOPOPETIKOD APtOLLOD SESOUEVMV YMPIC EMTION-
LEWDGT TOV TEGIOV 6TOYOL 6NV amddoot TV e&etaldpevoy pedddwv. Iepapatiotirkape pe 500,
2000, 6000, 10000 ko 14000 deiypata, mepropilovrog Toyaio Tov aplduod TV SESOUEVMY YMPIG EMION-
peimon tov mediov otdyov. ['a kébe péyebog dataset mpaypatomromoape Tpio TEPAUOTO UE LOVTELD
BERT: (1) ektetapévn mpoeknaidevon nediov (Domain Pretraining), (2) domain adversarial training
kot (3) v mpotewvopevn péBodo. Kat mwdAl, 6nmg oty Koplo TEPAUOTIKY EVOTNTA, dEV pLOUICOLE
TIG VILEP-TOPALETPOVS Y10 TNV TPOEKTOIOELGN GTO TTEdI0 6TOYO 1 TNV TpoTEVOpEVT PEBODO. To Zynpa
0.3 deiyvel ™ péon axpifelo ota SDOIEKN GEVAPLO TPOGUPLOYNSG TOL GLVOLOV JESOUEVOV TOL HENE-
™mOnke. BAémovpe 6t 1 Tpotevdpevn péBodog etvat 1oyvpr| aKOUN Kot 6€ cevapla Alymv dedopévav,
KkaBdg amodidetl avtiotoryn Pertioon akdun kot oto meipapa pe 500 delypata.
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Zymua 0.2: Méon akpifela tov pedddmv avaroyo pe tov apBud derypdtov ond 1o tedio o1odyo.

0.6.3 Validation

"Eva kowd mpdPAnua yio v un emPAenodpevn npocappoyn nediov givar n EAAEYN ETIOIEL®-
UEVOV SESOUEVMOV TTOV VO, UTTOPOVV VO PN oLHoToinfovy g cuvoro emkvpworg (validation set) Tpo-
KEWEVOL Vo KaBoploTel edv 1 cuvEéyion g dodikaciag ekmaidevong oweeiel 1 PAdrteL T PedtioTo-
noinom g amddoong Tov poviélwv. Emmiéov, katd v ekmaidevon vad aAlayr mediov, 1 PeAti-

GTOTOINGN NG amOO0oNG 0T0 TeEdio TNYN evOE ETAL va UV €xel BEATIOTN 0rdO0o Yo delypata Tov
Aappavovral and To medio oToYO.

] Stopping Criterion Epochs Av. Acc. ‘
Fixed 1 90.98
Fixed 3 91.65
Fixed 10 91.75
Min source loss 10, patience 3 91.30
Min mixed loss 10, patience 3 91.73

MMivaxoag 0.2: Zoykpion g péong akpiperag yio dtdpopeg pebdoddovg validation.

E&etalovpe edv pmopei vo paypatonomei emrvymg validation oto mpotevopevo puktd loss. Xv-
yikpivovue mévte kprtnpia dtakomne: (1) ympic emikdpwon, ekmaidevon yuo 1 emoyn, (2) yopig emkd-
pmoT, ekmaidgvon yia 3 emoyéc, (3) emkdpmaon ota dedopéva tediov Tnyng, exmaidevon yia 10 emoyég
ue early stopping kot patience 3, (4) emkOP®ON 6€ WKTA 6£30UEVA, YPTOLLOTOLDOVTOS TO UIKTO loss
ekmaidevong, ekmaidevon yio 10 emoyég pe early stopping kot patience 3 kot (5) yopig emkvpwon, ek-
naidevon yuo 10 emoyéc. AvagEPouLe To LEGH OTOTEAEGLLOTA TV TEVTE PeBOSMV 6T dDAEKN GEVAPLOL
TPOGOPUOYNHG TOV GLVOAOV dedopévmv Tov peetnOnkay otov Iivaka 0.2. H emtkdpmon dedopévaov
1660 amd o Tedio Ty 600 Kot amd TO MESI0 GTOYO Yo TO LEIKTO loss amopEpetl KaAOTEPO ATOTEAE-
opata Kotd péco 0po. Etol, n ehoyiotomoinom Tov mpotevopevou pikto loss pmopei va ypnoypedoet
WG OTOTELECUATIKO KPLTNPLO SLOKOTNG KOTE TNV 1N EMPAETOUEVT) TPOGOPLOYT TEDIOV.

0.6.4 OnTIKOTOINGY YOPUKTPLOTIKAOV

Hapovoidlovpe avanapactacelc t-SNE tov yapaktnpiotikdv mov to BERT éuabe pe dopopetinég
nebodovg oty oevaplo mpocapuoyng D — K oto Zynua 0.3. Avtég givol ol avamapacTicELg TV
XOPAKTNPOTIKGOV 0o 10 token [C'LS] tov dedopévov mediov mnyng pe emonueioon kot tov test
dedopévov Tov Tediov GTOYOV.

Y10 Zynpa 0.3.a. paivovtol ol avomepacTAGELS OV dMpovpyovvtal katd to domain adversarial
training. 1o Zynpa 0.3.b mapovoidlovpe TG avamapacTdcelg mov dnovpyndnkav and 1o BERT
OTOV EKTOLOEVTNKE [LOVO G dEJOUEVE Ao To medio mnyn. Onwg avapevotay, to, OETIKA Kol apvnTIKA
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Zymua 0.3: t-SNE visualization tov avanapactédoeov tov BERT [C LS| token ya to oevipio D — K.

detyparto tov Tediov mnyn daywpilovror kadd. Aviifétwg, BeTikd Kot apynTikd detypata amd 1o medio
0100, EV® 0KOAOVOOVV YEVIKE TIG AVTIGTOLYEG GVOTASES TMV SEGOUEV®V TNYNG, EMTALOV potpaovtan
pia Kowvn epoyn. Xto Zynpa 0.3.c mapovctdlovie TG OVaTapacTAGELS TOL dNHoLPYHONKAY aTd TO
BERT, e cuvéyeia g mpoeknaidevuong o1o medio otoyo. AvTh 1 0€0TEPT| ONTTIKOTOINGN 0lkolovbel To
TPONYOOUEVO HOTIO, OV KOL TTOPOTNPOVLLE OTL T SLOKPLTH TEPLOYN TOV DETIKMOV KOl 0pVNTIKOY GNUEIDV
TOV eSOV GTOYOV LEUDVETOL GTIUOVTIKG.

210 Zynuo 0.3.d givat o1 ovomopasTaGELS YOPAKTNPIOTIKMY TOV SNUIOVPYHONKAY amd TNV TPOTEL-
vopevn uébodo. Ta pmie Kot kitpvo onpeio dedopévav dtaympiloviotl kKaAvtepo omd OTL GTIC TPON-
YOOUEVES TEPIMTOGELG KO 1) TEPLOYT avaéNG eivon pikpotepn. ‘Etot, ta Betikd kot apvntikd deiypoto
oo To mESi0 0TOYO SLOKPIVOVTOL KOAL KOl ATTOTEAOVY LEPOG TV OVTIGTOLY®V OLAS®V LE TOL oNUeio
a6 T0 TEHIO TNYY. ZVVETMG, TO TPOTEWVOUEVO HOVTEAOD TPOCUPUOGTNKE LLE KAADTEPO TPOTO GTO TEDIO
GTOYO KOl KATAPEPE VO, dLaY®PIGEL KOADTEPQ TO BETIKA aTd TO PVNTIKE dElypLoTaL.
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0.7 Xyetwkd pe Tovg TEPLOPLoN0VS Tov Domain Adversarial Training

0.7.1 Ozopic Madnong amwod S10QoPeTIKA TEdi

Ot Ben-David k.4. [[12, [10] mapovcialovy po Osmpio padnong omd Stapopetikd nedia. Evo ocikd
amoTéLEG O TG SOVAELAG TOVG givat To akOAovBo Bedpnpa.

Oshpnpa  [[12,10]'Ecte H 1o hypothesis space kat Dg, D7 1o 300 media Kot eg, €7 Ol avTioTOryE]
ocuvoptnoelg Aabov. Tote yio kabe h € H:

er(h) < es(h) + %dHAH(D& Dr)+C (0.4)

omov dgan(Ds, Dr) [43] eivar to H A H-divergence peta&d tov nediov.

To nopandve Bedpnua opiletl éva Gve Oplo yio To EKTIUMOUEVO 6OGAL 6TO TEdio 6ToYo e (h) yia
pia vwoeon h. Avtd 10 v Gplo gival To ABpoloUa TPLBY OPOV, TOV EKTILOUEVOV COUALUTOS GTO
nedio myf es(h), To divergence peta&d tov 890 nediov sdgan(Ds, Dr) kat Tov SOEANTOG TG
wavikng kowng vrdbeong C. H wavikn kown vdbeon, gival ) vrobeon ekeivn mov elayiotonolel
TO GOPOICUA TOV EKTILDUEVOL COAALNTOS 0TO TEdio TNYN Kot 6To Tedio otdyo. H vmapén g otnv
avicmon VTOMADVEL TG TPOKEEVOL VO TETOYOVLE Li0 TPOGUPLOYN 6TO TTedio 6TdY0 amd T TESi0
YN, TPETEL VoL VILAPYEL Lio LITOOEST TOL TN YALVEL GYXETIKA KOAG Kot 6Ta S0 media. Otav pio tétota
VITO0ECT VITAPYEL, O GYETIKOC OpOG BepEiTOL OYETIKE LIKPOG KOl TNV Tpdén ayvoeital. O TpdTog 6p0og
QPACEL TO EKTILMWIEVO GPAALN GTO TTEGI0 TTNYY, OVOUEVOVLE VO, EIVOIL GYETIKA LUKPOC 660 pabaivovpe
a6 Ta dedopéva pe emonpeinon Tov mediov. O devtepog 6pog, divel pia aichnon andotaong Leta&d
TV dV0 TTedimV Kot eivat avtdg Tov To domain adversarial training tpooradel vo eAayIGTOTOMOEL.

0.7.2 A-distance

50 Average A-distance and average target error(%) 20

18%
16 8
144
126

et

109

Average A-distance

Aver

Source Only Domain Adversarial Domain Pretraining Proposed

mmm Average A-distance EEE Average target error(%)

Zymua 0.4: Xoykpion tov péoov A-distance Kot Tov HEcOV GEAAUATOG Yo dtdpopeg pnebddovg mpo-
GOpUOYNS.

Topeava pe 1o [[12] to HAH-divergence pmopei va mpooeyyiotel and to proxy A-distance, o
omoio opiletar amd v eicwon 3€d0UEVOL TOV GEAALATOG TAEVOUNONG TOV TTESIMV €.

da =2(1—2min{e, 1 —e}) (0.5)
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Yrohoyilovpe pio Tpocéyyion g andotaong uetaéd tov nediov. Akorovdovrag v PBipioypa-
oilo Onpovpyovue évav ta&vounti SVM mov ta&vopet ta deiypata pe Baon 1o medio amd 1o omoio
npoépyovtal. Eiodyovpe otov tag&vounti Tig avomapaotdoelg tov token [C'LS] tov BERT, petpdpe
TO oA TaEvOUNoNG Kat vtoloyilovpe to A-distance pe fdon tov TOmo. Exmoidevovpe tov to-
Ewountn og 2000 detypoto omd kabe medio. 1o Zynua 0.4 mopabétovpe 1o A-distance, Katd péco
OPO Y1 T0. SMOEKO GEVAPLO TPOTSAPLOYNG, YPNOULOTOIDVTAS OVOTOPAGTACELS Tov eEyONncav amd 4
pebodovg: (1) BERT ota dedopéva mediov mnyng (2) ektetapévn npoekmaidoevon nediov (Ext. PT), (3)
domain adversarial training kot (4) v mpotewvopevn uébodo. To domain adversarial trained BERT
glayiotomolel TN amdotact petald tov nediov. H extetapuévn mpogkmaidevon mediov emiong Leldvel
onpavtikd to A-distance, yopic va givar oxedl0cHEVO OOTE KON VO TO TETVYEL [Tapatnpodue Tmg
1 TPOTEWOLEVN LEBOSOC TUPATL EAUYIGTOTOLEL TO CQAALN OV pewdveL To A-distance. Mmopovue va
vroBécovpe g T0 BERT £€xet v dvvatdtta va emdvet e&icov v emtbount epyacio 6to nedio
GTOYO KOl VO EMLTLYYAVEL TOV SLUWPIGHO T®V detypdTov pe Bdon 1o medio Tpoéhevons. Tuvendd,
YAUNAOTEPT OTOGTACT LETAED TOV TESIMV, TOL EMTVYYAVETAL GKOTLO 1] OYL, OEV EYYLATOL KOADTEPT
amddoom Tov PovtéAov oto medio otdyo. Emmpdobeta, n feltictomoinon g amddoong 6to medio
oT0Y0 Ogv amotTel EAo1oTOMOINGT TG andoTAoNG LeTaEy TV medinv. TeKd, dev TopaTNPOVLE Ko
pia cvoyétion petald Tov A-distance Kot Tng amddoong Tov LOVTEAOL 6T0 TEdio GTOYO.

0.7.3 Aotd0cio Tovo Domain Adversarial Training

To domain adversarial training [30] avtipetonilel 0plopévovg GNUAVTIKOVG TEPLOPICLOVG, TOL KO-
Biotovv TV pébodo dvokoin oto va avorapayel kot actadn. I'a éva povtélo mov exkmadeveTol e
domain adversarial training, pe mapapétpovg 8, 6mov Lo 1 ouvapTnor k66Toug TaSvounong Kot
L Apy M ovvéptnon K66Toug TaEvOUNoNS ToL Tediov TPoEAEVOTG Kal TO Ay va gival évag mapdyo-
vtag otdfong, To domain adversarial training meptypdgeton amd To KPITHPLO EAAYICTOTOINCNG TG
eklowong 1.6.

rngin Lerr(0; Ds) — AaLapv(0; Ds, Dr) (0.6)

0 devtepog 6pog ¢ e&iocwong meptypdpet pia adversarial peyioromoinen g cuvapTONG KOGTOVG
ta&vounong tov mediov tpoéhevong L apy . Kaveic pmopel €bkoAa va mopatnpnoel Tog 1 LEYLIOTO-
noinom tov L 4 py pmopei va emitevyBel amimg tpoPArémovrag Aabog medio yia kdOe deiypo mov diveton
670 povtéro. H emruyng mpdPreyn tov AdBovg mediov, dev kaBIoTA T YOPAKTNPLOTIKA OV pabaivel
T0 povTELO aveEdptnta and to Tedio Tpolevongs, apov To LovTéAO eivar og BEom va dtaympilet ta me-
ol Tpoéhevong pe pio amAn aAlayn Tov ovopdtov Tmv 000 mediov. Eureipucd tapatnprioape avt
NV cupmeplpopd otav mpootadnoape va ektoadgvcovpe 1o BERT pe domain adversarial training.

Ot Shu «.4. [88] avretonifovv tumikd To0 {TNHa, OTOdEKVHOVTOG TG 0TV £VO LOVTEAD f
€xel BepnTIKd Amepn YOPNTIKOTNTO, Kol T0. dVO Tedia elvar dlakpitd, TOTE TO HOVTELD LITOpEl va
emParrel avbaipeTovg LETATYNUATIOHOVG 6TO eSO GTOY0, MOTE VO TAPLALEL LUE TNV KOTOVOLLT TOV
nediov Tyn.

0.8 Xvpnepdopoto ko Merrovtikég [lpoekTacelg

e autnVv TV gpyacio diepguvoipe To TpdPAnua tov unsupervised domain adaptation yia sentiment
analysis kot mpoteivovpe pa véa péBodo yio TV avTIHETMOMION TOV (NTAHOTOC. ALOTICTOCE OTL 1|
dNpoeAng texvikn domain adversarial training avtipetonilel OemprntiKodg Kot EUTEPKoDS TEPLOPL-
GUOVC GTNV EXOYN TOV TPOEKTAUOEVUEVOV YAOOCIK®Y LOVTEA®DY DYNANG YOPNTIKHTNTAG, 00NYDVTOGC
o€ aotdfelec eKTOIdEVLONG KA GE YEPOTEPEVON TNG ATOSOOTG Yo TNV €pyacio mov peretnonie. [po-
tetvoupe pia péBodo, | omoio amoteAeitan amd dvo Prpata, EKTETOUEVT TPO-gkmaidevon oto domain
o010yo kat fine-tuning pe MLM. Ta melpdLoto 610 GOVOAO SESOUEVOV TOV KPITIKGOV Amazon, omodi-
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dovv fertiopéva amoteAéopaTa, ToL EEXEPVOVV TIC TPONYUEVEG HEBOSOVG 0md OAEG TIC KaDIEPOUEVES
TPOGEYYICELS.

H mpotewvopevn puébodog Ba pmopodoe axdpa vo epapuoctel oe GAAES EpYOoieg OTMG TO question
answering Kot to part-of-speech tagging. ‘Eva dAlo medio epappoyng 8o propovoe va givar 1 yYAmo-
OwéG HETAPOAES GTOV YPOVO KOl G€ OTLA. Oa NTav TOAD ONUAVTIKO Vo SIEPEVVI|COVUE TEPULTEPM
oYETIKEG PonONTIKEG epyaciec TOGO Yia TNV TPo-ekmaidevoT 660 Kot Yo PEATIOTONOINGT, KOOMOG Kot
TPOTOVG GUVOVAGHOL OA®V TV losses. 1o péALov Ba OEALLE Vo S1EPEVVIICOVLE T SVVOTOTITO EPOLP-
Hoyng g nebddov pog o emiPrenopeva oevapia, 6mov 1 fondntikn epyacio MLM Ba propovoe va
ypnoomom el og dedopéva Ympic EMONUEI®OT OV TPOEPYOVTAL OO TO 1010 1 TALPOLUOL0 TTEDTO.
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Chapter 1

Introduction

1.1 Motivation

Deep architectures have achieved state-of-the-art results in a variety of machine learning tasks.
While the vast majority of deep learning systems are trained and evaluated on a specific data dis-
tribution, real word models are often used in out-of-domain settings which results in performance
degradation. Collecting and annotating data to train specific models is a costly and time-consuming
endeavor and hinders the re-usability of trained models, while unlabeled data are easily accessible.
Unsupervised Domain Adaptation (UDA) is an active research area with high impact in real world
adaptation of machine learning models.

Recent advances in Language Processing are leaded by pretrained language models, trained on
massive general corpora, with various sources, like web content, Wikipedia, news articles and literary
works. Representations learned by such models achieve strong performance across a great variety of
tasks and data from a variety of sources. Those advances create a question on the relevance of task
text domain when learning a new task. As domain is typically called a data distribution over language
that characterizes a topic, genre or class of data. In particular a question of interest is if such systems
are able to be fine-tuned for a specific task and target domain, from data belonging to a similar but
distinct source domain.

As far as domains are relevant, and given the wide variety of domains that human language
presents, a need arises to collect and curate data for each domain of interest. If a machine learn-
ing system is designed to be used across a wide range of domains, the effort to annotate data for each
domain may be a limitation, especially as language evolves over time.

Moreover, changes in data distributions, between training and deployment data, is a high concern-
ing issue for machine learning algorithms deployed for production. A model is in general expected to
perform well on examples that coming from a similar distribution, outside of the labeled training set.

Natural Language Processing usually suffers from the lack of labeled data in the exact domain
of a certain application. In contrast, unlabeled corpora, are in general accessible via retrieval from
the web. Therefore pretrained language models, is a good fit in order to prepare models for language
processing, as they not require labeled training data, except little task-specific data for fine-tuning.

1.2 Research Objectives & Contribution

Domain adaptation is the ability to apply an algorithm trained in one or more source domains to
a different (but related) target domain. Domain adaptation is a subcategory of transfer learning. In
domain adaptation, the source and target domains all have the same feature space (but different dis-
tributions); in contrast, transfer learning includes cases where the target domain’s feature space is
different from the source feature space. The present study is concerned with the question of whether
domains are still a limitation for natural language and how to develop modern machine learning meth-
ods that successfully adapt to domains.
The main research objective of this work is to develop an approach to unsupervised domain adap-
tation for natural language processing applications, that is inspired and well fitted to the recent cutting
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edge developments to the field. That is achieving adaptation to a language target domain by exploiting
the power of large, transformer based, pretrained language models and the appropriate usage of the
available unlabeled data.

We review the literature on unsupervised domain adaptation for natural language processing, con-
sidering the approaches before the establishment of pretrained models, as also the recent advances
that bring well established methods on the context of pretrained language models. We found the
well-spread domain adversarial technique facing theoretical and empirical limitations in the era of
high-capacity transformer based pretrained language models, leading to training instabilities and to
no improvement for the studied task.

The main contributions are: (a) We propose a novel, simple and robust unsupervised domain
adaptation procedure for downstream BERT models based on multitask learning, (b) we achieve state-
of-the-art results for the Amazon reviews benchmark dataset, surpassing more complicated approaches
and (c¢) we conduct a discussion on the limitations of adversarial domain adaptation, grounded on
theoretical concepts and our empirical observations.

In this work we develop a simple and effective approach to unsupervised domain adaptation, that
leverages the capabilities of the high-capacity, transformer-based, pretrained models, such as in our
case BERT [24]. Our method is based on simultaneously learning the task from labeled data in the
source distribution, while adapting to the language in the target distribution using multitask learning.
The key idea of our method is that by simultaneously minimizing a task-specific loss on the source
data and a language modeling loss on the target data during fine-tuning the model will be able to adapt
to the language of the target domain, while learning the supervised task from the available labeled
data. Starting from a pretrained in general corpora BERT model, we continue the pretraining Masked
Language Modeling on relevant and relevantly small amount of unlabeled target domain data. During
fine-tuning, while learning the task from the labeled source data, we keep the MLM objective on the
target domain data, in multi-tasking manner.

Additionally, we conducted some studies relevant to our main work about the sample efficiency of
our method and on stopping criteria under unsupervised domain adaptation. We investigate the impact
of using different amount of target domain unlabeled data on model performance, to study the sample
efficiency of our model. A common problem when performing UDA is the lack of target labeled data
that can be used for hyperparameter validation. We explore how validation can be performed when
no labeled target data are available and propose the minimization of the mixed training objective as
an effective stopping criterion.

Finally, an important part of that work concerns the domain adversarial training that is based on
the provided theory for learning from many domains [[12, [11] and the relationship of the theory with
our empirical results on the studied task. We examine if minimizing the distance between domains is
sufficient in order to adapt to the target domain and discuss the limitations and training instabilities of
the dominant domain adversarial training.

1.3 Thesis Outline

The thesis is structured as follows:

In Chapter 2 we provide the machine learning background. Specifically, we first introduce the
basic concepts of machine learning and then focus on the deep learning background, that is most
relevant to our work. We also provide insights on basic machine learning concepts and techniques.

In Chapter 3l we discuss main concepts of Natural Language Processing. We present the historical
progress on words representations, embeddings, language modeling and finally BERT, Bidirectional
Encoder Representations from Transformers, that is the base for our approach to unsupervised domain
adaptation.

An extensive literature review of unsupervised domain adaptation in Natural Language Processing
is provided in Chapter l. We explore the basic concepts over the most well spread approaches such as
model based, including pivo-based adaptation, loss based, including the dominant in practice domain
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adversarial training, and data-based approaches that include psuedo-labeling algorithms and the usage
of pretrained language models.

Our main research work is included in Chapter f. The Chapter includes the motivation behind our
approach to unsupervised domain adaptation, an analysis of the main proposed method, experimental
results on the multi-domain Amazon reviews dataset, a theoretical approach and comparison with
related previous methods and finally a discussion on the limitations of domain adversarial training.

Finally, Chapter f includes conclusions inferred from the thesis and provides an outlook into the
future.
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Chapter 2

Machine Learning

2.1 Defining Machine Learning

Machine Learning (ML) is the field of Artificial Intelligence (Al) that studies computer algorithms
that improve automatically through experience. Machine Learning algorithms create mathematical
models based on sampled data in order to make predictions or decisions without being explicitly
programmed to do so. Machine Learning algorithms are used in a wide variety of applications, when
is challenging for a human to manually design the needed algorithms, such as in computer vision and
natural language processing.

The classic machine learning procedure follows the scientific paradigm of induction and deduc-
tion. In the inductive step we learn the model from raw data (so called training set), and in the deductive
step the model is applied to predict the behaviour of new data.

An example is a pair in the form (x, f(x)), where z is the input and f(x) is the output, or the
value of the function, or the image of = by f. Pure inductive inference or induction can be described
as follows: Given a set of examples of f, find a function A that approaches f. The function A is called
hypothesis. The reason why learning is difficult from a conceptual point of view, is that is difficult to
say if a particular function A is a good approach of f. A good hypothesis should generalize, that is it
should predict correctly unseen examples.

2.2 Machine Learning approaches

Machine Learning approaches are usually divided into three broad categories, depending on the
feedback available to the learning algorithm: supervised learning, unsupervised learning and rein-
forcement learning. Other approaches have also developed that do not fit into this categorisation and
some systems use more than one approach, such as in the semi-supervised learning.

Supervised Learning The supervised learning problem involves learning a function from input
and output example pairs. The system is presented with example inputs and their desired outputs
also called labeled training data, given by a teacher, and the goal is to learn a general rule that maps
inputs to outputs. A supervised learning algorithm analyzes the labeled training data and produces
an inferred function, which can be used to map new input examples, and in the optimal scenario will
correctly determine the output for unseen instances.

Unsupervised Learning The unsupervised learning problem involves learning input patterns with-
out given output values (labels). Also known as self-organization, unsupervised learning allows for
modeling of probability densities over inputs.

Semi-supervised Learning Semi-supervised learning is an approach to ML that combines a small
amount of labeled data with a large amount of unlabeled data during training. Semi-supervised learn-
ing combines the unsupervised (with no labeled training data) and supervised learning (with only
labeled training data) approaches. Unlabeled data, when used along with a small amount of labeled
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data, can improve learning performance. Collecting labeled data for a learning problem often re-
quires skilled humans, or a physical experiment. That cost associated with the labeling process may
make large, fully labeled training sets unachievable, while acquisition of unlabeled data is relatively
inexpensive. Therefor, semi-supervised learning can be of great practical value.

Reinforcement Learning Reinforcement Learning is an approach to Machine Learning concerned
with how systems have to take decisions in order to maximize a cumulative reward. Reinforcement
learning differs from supervised learning in not needing labelled input/output pairs to be presented and
any sub-optimal actions to be explicitly corrected. The problem setting is typically stated in the form of
a Markov decision process, as many reinforcement learning algorithms utilize dynamic programming
techniques. Reinforcement Learning algorithms differ from classical dynamic programming methods
in that the first do not assume knowledge of an exact mathematical model of the Markov decision
process and they target such processes where exact methods become impracticable.

2.3 Perceptron, Activations and Feedforward Networks

2.3.1 Perceptron

The perceptron is an algorithm for supervised learning of binary classifiers. It is a type of linear
classifier, a classification algorithm that makes its predictions based on a linear predictor function
combining a set of weights with the feature vector. The perceptron is therefore a function that maps
its input X to an output value f(x), a single binary value:

1 ifw-x+b>0,

f(x) = { 2.1)

0 otherwise

where w is a vector of real weights, w - x is the dot product and b is the bias. The value f(x) is used
to classify x as either positive or negative instance, in the case of a binary classification problem.

The perceptron learning algorithm does not terminate if the set is not linearly seperable. A fa-
mous example of the perceptron’s inability to solve problems with linearly nonseparable vectors is
the Boolean exclusive-or problem.

Figure 2.1: Left: a simple perceptron unit. Right: a percpetron unit with an addition of an activation
function.

2.3.2 Activation Functions

In order to solve linearly nonseperable problems, it is essential to introduce non-linearities into the
algorithms. Non-linearities allow us to approximate arbitarily complex functions. We can achieve

38



such results with activation functions. Activation functions define the output of a node, given the
inputs, and perform the essential task of making a non-linear decision. Common activation functions,
introduce a first non-linearity at zero and some, like sigmoid, use a second non-linearity for large
inputs. Given a perceptron as in Equation (2.1)) and an activation function g we can define a simple
classifier with one node as follows:

g=g(wW-x+b) 2.2)

A simple perceptron unit and a perceptron unit with an activation function is shown in [Figure 2.1].
Some common activation functions follow:

Sigmoid A sigmoid function has a characteristic “S”-shaped curve, also known as sigmoid curve.
A common example of a sigmoid function is defined by the formula:

1 e
— — 2.3
l14+e® er41 23)

o(x)

A sigmoid function is a bounded, differentiable, real function that is defined for all real input values
and has a non-negative derivative at each point. In general, a sigmoid function is monotonic, and
has a first derivative which is bell shaped. A sigmoid function is constrained by a pair of horizontal
asymptotes as x — oo . The sigmoid function is convex for values less than 0, and it is concave
for values more than 0. Because of this, the sigmoid function and its affine compositions can possess
multiple optima.

However, sigmoid as defined by Equation (2.3) has two disadvantages. First of all when its value
is close to 0 or 1, the gradient value is close to 0. Secondly, the sigmoid output is not centered at
0. So, if the data coming to the neuron has always positive values, the gradient of weights will be
either always positive, or always negative and an unwanted alternation of them is introduced into the
network.

Hyperbolic tangent Hyperbolic tangent is defined by the formula:

et —e™”
tanh(z) = pr— (2.4)
The tanh function is a scaled and shifted sigmoid. From Equations (2.3) and (2.4) we can get the
relation tanh(z) = 20(2x) — 1. So, the hyperbolic tangent is a bounded, differentiable, real function
that is defined for all real input values and has a non-negative derivative at each point. The advantage
of tanh over the sigmoid defined by Equation (2.3) is that tanh is zero-centered. Nevertheless, the
disadvantage of the gradient value close to 0 and 1 remains.

Rectified Linear Unit (ReLU) The rectifier is an activation function defined as the positive part of
its argument:

f(x) = 27 = max(0, z) (2.5)

This is also known as a ramp function and is analogous to half-wave rectification in electrical
engineering. A main advantage of ReLU is the sparce activation, as in a randomly initialized network,
only about 50 % of hidden units are activated (have a non-zero output). Other major advantages
are a better gradient propagation, efficient computation and the scale invariant property. Potential
disadvantages of ReLU are the lack of differentiability at zero and zero-center symmetry and the fact
that is unbounded. A well known disadvantage is the so called “dying ReLU” problem, during which
neurons are pushed into states that they become inactive for essentially all inputs, no gradients flow
backward through the neuron, and so the neuron becomes stuck in a perpetually inactive state.
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Leaky ReLLU In order to address the “dying ReLU” problem, the leaky ReL.U is defined as:

o) = {:L‘ ifz >0, (2.6)

ax otherwise.

where a is a small constant, e.g. a = 0.1. So, leaky ReL U gives a small negative value for negative
inputs.

The above mentioned activation functions, sigmoid, tanh, ReLU and leaky ReLU, are shown in

Figure 2.7

(a) ox) (b) tanh(x) (c) max(0,x) (d) max(0.1x,x)

Figure 2.2: Activation functions. (a) The sigmoid function. (b) The tanh function. (¢) The ReLU
function. (d) The leaky ReLU function with a = 0.1 .

2.3.3 Feedforward Networks

Multilayer perceptrons (MLPs), also called feedforward networks, consist of multiple stacked lay-
ers of perceptron units, which are connected without any feedback loops. Each perceptron acts as a
computational unit that takes as input the output of the previous layer and implements a function that
converts the input vector to a scalar. Typically units of a single layer are not connected to each other.
A feedforward network consists of at least three layers of nodes: an input layer, a hidden layer and
an output layer. Such a model is made of an input layer that accepts the input data, hidden layers
that process outputs from the previous layer and an output layer that provides the final output. The
flow of information from the input to the output is called forward propagation. The number of hidden
layers determines the depth of a model, while the number of the units in the hidden layer determines
the width of the model. Its multiple layers and non-linear activation distinguish MLP from a linear
perceptron, as it can distinguish data that is not linearly separable. In is visualized the
difference between a simple neural network and a deep neural network.

Meural network Deep neural network

lnput  Hidden Cutput Input  Hidden Hidden Hidden Cutput

Figure 2.3: A neural network and a deep neural network, with more than 3 hidden layers. Both
consisting of input, hidden and output layers.
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2.4 Training

2.4.1 Quantify Loss

Artificial Neural Networks are trained by an optimization method, that aims to select a set of model
parameters that minimizes the prediction error. The prediction error of a model f with parameters w
is estimated by a loss function J(w). The loss function computes a non-negative value that measures
the inconsistency between the predicted and the target output.

L(f(@D;w),yD) (2.7)

By applying on the entire dataset, we can quantify the total loss over the dataset, also
known as the objective function, cost function or empirical risk.

Tw) = T3 L0 w), ) .8
=0

Binary Cross Entropy Loss For models that output a probability between 0 and 1, a good fit as a
loss function is the binary cross entropy.

Tw) = 137 D tog( f(alM) + (1 ) log(1 — ;W) 29)
1=0

Mean Squared Error Loss For regression models that output continuous real numbers, mean squared
error loss can be used.

Z(y(” — fz®;W))? (2.10)

Loss Optimization Training an artificial neural network is in fact the optimization problem of find-
ing a set of model parameters w that minimizes the objective function J(w) over the training data.
We want to find the network weights that achieve the lowest loss.

1 ¢ : :
w* = argmin — Y L(f(a%;w),y™)
w N ZZ:% (2.11)

= argmin J(w)

2.4.2 Gradient Descent

The above loss optimization problem is usually addressed by the gradient descent algorithm. Gradient
descent is a first-order iterative optimization algorithm for finding a local minimum of a differentiable
function. To find a local minimum of a function using gradient descent, we take steps proportional
to the negative of the gradient, or approximate gradient, of the function at the current point. Gradient
descent is based on the observation that if a multi-variable function f(x) is defined and differentiable
in a neighborhood of a point a, then f(x) decreases fastest if one goes from point @ in the direction
of the negative gradient of f at a, —V f(a). It follows that the next point could be chosen as a,,+1 =
an, — YV f(ay) for v a positive real, small enough, and then it will stand that f(a,) > f(an+1). We
subtract vV f(a) from a in order to move against the gradient, towards the local minimum. Given
this, we can generalize by starting with a random point zq as a guess for a local minimum of f and
to obtain a sequence g, T1,x2, ... such that x, 11 = x, — ¥V f(z,),n > 0. We then get the
monotonic sequence f(xg) > f(x1) > f(z2) > ..., so the sequence (z,,) converges to the desired
local minimum. When f is convex, all local minima are also global minima, so in this case gradient
descent can converge to the global solution.
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With certain assumptions on the function f, such as f being convex and V f being Lipschitz, and
particular choices of ~y, convergence to a local minimum can be guaranteed. Unfortunately, deep
neural networks non-linearity causes the loss surface to become non-convex. This means that there is
no guarantee that a gradient descent based method will converge to a global minimum.

Algorithm 1 Gradient Descent

Initialize weights w randomly ~ N(0, o2)
repeat

Compute gradient, a‘g—svw)

Update weights, w + w — 73;{;75;”)
until convergence
return weights w

Learning Rate The hyper-parameter v used in Gradient Descent algorithm, that scales the gradient
in order to keep each step small enough, is called learning rate. The gradient defines the direction in
which we should update the weights, but it does not provide any information about the magnitude of
the update step. This, the size of each iteration step toward a minimum, is controlled by the learning
rate. Since it determines to what extent newly acquired information overrides old information, it
represents the speed at which a model learns. According to the chosen rate, there is a trade-off between
convergence and overshooting. Small learning rates converge slowly and gets stuck in false local
minima. Large learning rates jump over minima, become unstable and diverge.

In order to deal with the learning rate decision problem, achieve faster convergence, prevent oscil-
lations and getting stuck in undesirable local minima the learning rate is often varied during training.
One way of achieving so, is scheduling the rate based on time or step of training or in an exponential
manner. Another way is by choosing an adaptive learning rate algorithm that calculates it depending
on how large gradient is, how fast learning is happening, size of particular weights etc. Some famous
adaptive gradient descent algorithms are Adam, Adadelta, Adagrad and RMSprop.

Backpropagation In order to use Gradient Descent algorithm to address the loss optimization prob-
lem of deep neural networks, is essential to compute the gradient of the loss function with respect to
the weights of the network. Backpropagation is a widely used algorithm in machine learning, that ef-
ficiently computes the desired gradient of the loss function with respect to the weights of the network
for a single input-output example. The efficiency of the algorithm makes it feasible to use gradi-
ent descent for training multi-layer networks. Backpropagation works by computing the gradient of
the function with respect to each weight by the chain rule, computing the gradient one layer at a time,
iterating backward from the last layer to avoid redundant calculation, in a dynamic programming way.

Let f be the network, with L layers, W' = (wé ;) being the weights between layer [ — 1 and [, where
wé.k is the weight between the k' node in layer I — 1 and the j** node in layer I, ¢ is the activation
function at layer [, x is an input instance and y the target output. The overall model is a combination
of function composition and matrix multiplication and can be written as:

flz) = gh(WEFE WL (W) (2.12)
Given the input - output pair the loss of the model is:
JW) = L(f(D;W),y) (2.13)
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Backpropagation computes the gradient for a fixed input—output pair, where the weights can vary.
Each component of the gradient ;T{’ can be computed by the chain rule, but doing so for each

Jk
weight is inefficient. Backpropagation computes the gradient by avoiding duplicate calculations and
not computing unnecessary intermediate values, by computing the gradient of each layer — specifically,

the gradient of the weighted input of each layer.

Mini batch Stochastic Gradient Descent A huge challenge according gradient descent, also known
as batch gradient descent, is the fact that the gradient computation over the whole dataset can be
very computationally intensive. To address the issue, stochastic gradient descent was introduced, that
proposes to pick on each iteration a single data point ¢, and update the parameters using the gradient
of the loss of just that datum, a‘gfuw) . Although it is faster than batch gradient descent, it can lead to
noisy (stochastic) gradients and cause the loss function to fluctuate.

In practice a third version of the algorithm is used that combines batch and stochastic variants,
named mini batch stochastic gradient descent. A mini batch of B data points are picked and the
average gradient over those B points is calculated and used, which is fast to compute and a much
better estimate of the true gradient. The more accurate estimation of the gradient, makes convergence
smoother and allows for larger learning rates. Moreover the selection of mini-batches lead to fast
training, as the computation can be parallelized and GPU usage enables significant speed increases.

The size of a batch B, known as batch size, is a learning hyper parameter of high importance that
is set empirically. Larger batches provide a more accurate estimate of the gradient, while noisier
estimates of small batches can help by preventing overfitting. The batch size is often limited by the
available memory of the hardware.

Algorithm 2 Stochastic Gradient Descent

Initialize weights w randomly ~ N(0, o)
repeat

Pick single data point ¢

Compute gradient, 8{;71(1}“)

Update weights, w <+ w — 78{571(”“’)
until convergence
return weights w

Algorithm 3 Mini-batch Stochastic Gradient Descent

Initialize weights w randomly ~ N(0, o2)
repeat

Pick batch of B data points

. oJ 1 B 9J
Compute gradient, 6531) = B 2uk=1 gquw)

aJ(w)
ow

Update weights, w < w — v
until convergence
return weights w

2.5 Recurrent Neural Networks

Modeling Sequences A common machine learning task is modeling data that appear in the form of
sequences, such as audio and text. Modeling sequential data can be demanding given dependencies,
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such as lengths, relevant positions and the order of the features. Therefore in order to model sequences
we need to handle variable lengths, track long-term dependencies, maintain information about order
and share parameters across the sequence.

2.5.1 Vanilla RNNs

Recurrent Neural Networks (RNNs) are a type of neural networks that process sequences of data.
Unlike feedforward networks that operate under the assumption that all training instances independent,
RNNs produce their output taking into consideration information previously presented to them. The
core idea of an RNN is to infer the temporal dynamics of the data sequence by keeping an internal state,
also known as hidden layer, and updating it on each time-step, for each new datum of the sequence.

¢ i
- [Al{aHd

b 6

Figure 2.4: A RNN unit as loop over time steps and unfolded over time. Figure from [64].

AI—»

introduces the RNN architecture where each box is the hidden layer at a time-step ¢, h;.
Each layer performs a linear matrix operation on its inputs followed by an non-linear operation. At
each time-step, there are two inputs to the hidden layer: the output of the previous time-step h;—; and
the input at the current time-step x;. Each input is multiplied by a dedicated weight matrix W"* and
Whe to produce the cell hidden state h;. The latter is multiplied with a weight matrix W to obtain
the output prediction .

he = fF(Whhh,_y + Whegy) (2.14)

g = Wehy (2.15)
The above Equations (.14) and (2.13) describe the functionality of a RNN cell, that computes the
hidden layer and output features at each time-step, when the following applies:

® X1, ..., Ty, ..., x7: Sequence of T' input vectors, e.g. a sentence of 7' words.

e z; € R% input vector at time-step Z.

o Wh* ¢ R%*4: weights matrix used to condition the input vector z;.

o Whh ¢ R9>dn: weights matrix used to condition the output of the previous time-step h;_;.

e ;1 € R%: hidden layer at the previous time-step, ¢ — 1.

e hg € R%: initialization vector for the hidden layer when ¢ = 0.

e f(): non-linearity function.

e §; € IR": the output at time-step ¢.

o W € R%*!: weights matrix used to take an output ;.

We should underline that the same weights W and W"* are applied repeatedly at each time-step.
So, the number of parameters of the model is less, and independent of the length of the input.
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Advantages and disadvantages of RNNs RNNs have several advantages, that makes them suitable
for various applications. They can process input sequences of any length. The model size does not
increase for longer input sequence lengths. Computation for each step uses in theory information from
all previous steps. Same weights are applied to every time-step of the input, so there is symmetry in
how inputs are processed. On the other hand computation is slow, as it is sequential it cannot be
parallelized. Moreover, in practice, information from many steps back is difficult to access.

2.5.2 Exploding and Vanishing Gradient Problems

Recurrent neural networks propagate weight matrices from one time-step to the next, while the goal
is to enable propagating context information through faraway time-steps. As described in previous
Eection 2.4, in order to train the network, gradients of the loss with respect to each parameter should
be calculated. Computing the gradient with respect to hg involves many factors of "%,

If many of the intermediate values are greater than one, then the gradient value grows extremely
large and it causes an overflow at training runtime. The issue is called gradient explosion problem. To
solve the problem a simple heuristic solution is used, that clips gradients to small number whenever
they explode. That is, whenever they reach a certain threshold, they are set back to a small number.

On the contrary when many values on the computational chain are between zero and one, the
multiplication of many such small numbers together causes smaller gradients tending to zero and
makes further back time steps irrelevant for the hidden state. That is the vanishing gradients problem,
due to which we cannot distinguish if there is no dependency between two steps in the data or the
dependency is not captured. A usual solution to the problem is the usage of ReLLU as activation
function. ReLU’s derivative prevents the gradients from shrinking, as it is either 0 or 1. Another
technique to face vanishing gradients is that instead of initializing W/ and biases randomly, setting
Wh" equal to the identity matrix and biases to zero.

2.5.3 Gated Recurrent Units (GRU)

Taking into account the above issues, RNNs have been found to perform better with the use of more
complex units for activation, that control what information is passed through. Gated recurrent units
are designed in a manner to have more persistent memory, that makes it easier for the model to capture
long-term dependencies. A Gated Recurrent Unit (GRU) can be mathematically described with the
following four Equations, that correspond to GRU’s core operational stages. A detailed layout of a

GRU can be found on [Figure 2.5.

Reset: Include A1 in new memory? Update: How mueh A1 in next state?
e r - - -1
Pp(-1) ) | [Nzl — plt-1) i
it — XA . A 2] fe— dt) i
W Lt Wi )
S A I N - d
L
""" not
hit-1] [
| A<
Y — W |
- e hit)
New MSmory: (‘tun[n[h‘ NEW Temory hased on '

current word input #% and potentially &'

Figure 2.5: The detailed internal of a GRU. Figure from [57]
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2z = f(W3zs + U hy 1) (2.16)

Tt = f(WTIL’t + Urhtfl) (217)
hy = tanh(ry o Uht_14wa,) (2.18)
ht = (1 - Zt) ©) ﬁt + Zt © htfl (219)

A new memory hy is the combination of the new input x; with the previous hidden state h;—;. Reset
Gate, r;, determines the importance of h;_; for the new memory h; and has the ability to completely
diminish irrelevant past hidden state. Update gate z; is responsible for determining the percentage
of h;_1 to be carried to the next time-step. Hidden state h; is generated as a combination of the past
hidden state h;_; and the new memory h; on the percentage update gate determines.

2.5.4 Long-Short-Term Memories (LSTM)

Long-Short-Term Memories, commonly known as LSTM, is a complex activation unit that has been
used successfully to a wide range of applications. The motivation for using the LSTM architecture is
similar to those for GRUs. The mathematical formulation of LSTMs follows, as well as a figure with
detailed internals of an LSTM cell.

ir = o(Whay + Ulhy_1) (2.20)
fo=o(W/z + U hyy) (2.21)
o = o(W°xy + U hy_q) (2.22)
¢ = tanh W€z, + U hi_1 (2.23)
= fioci1+itod (2.24)
hy = 0y o tanh ¢ (2.25)

® ® ®

| | t
A Lelefl A
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Figure 2.6: The internal of an LSTM. Figure from [64]
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Intuition of the structure of an LSTM can be gained by considering the following stages.

o New memory generation, as the similar stage of a GRU, The input z; and the past hidden state
h¢—1 is used to produce new memory ¢; which includes aspects of the new input x;.

e Input gate function is to check if the new datum is important. The input gate uses the input x;
and the past hidden state h;_; to determine if the input us worth preserving and is used to gate
the new memory. It produces ¢; as an relevant indicator.

e Forget gate is similar to input gate, in the way that determines if the past memory information
is useful for the computation of the current memory. The forget gate takes into consideration
input x; and past hidden state and produces f;.

e Final memory generation uses the forget gate f; advice to keep or forget past memory c¢;_1.
Similarly it takes the advice of the input gate 7; and accordingly gates the new memory ¢;. The
addition of those two results produce the final memory c¢;.

e Output - Exposure gate purpose is to separate final memory ¢; from hidden state h;. Final
memory contains information that is not necessarily required to be saved in the hidden state, so
this gate makes the assessment regarding what parts of the memory c¢; needs to be exposed in
the hidden state.

2.5.5 Bidirectional RNNs

Simple RNNs condition on previous input instances to predict the current output. It is possible to
make predictions based on future input instances, by having the RNN model read input backwards. A
combination of those approaches is called a bi-directional deep neural network, that at each time-step
t maintains two hidden layers, one for the left-to-right propagation and and another for the right-to-left
propagation. Such a network, that maintains two hidden layers at any time, consumes twice as much
memory space for its parameters. The final result g is generated through combining the score results
produced by both RNN hidden layers.

F
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Figure 2.7: A bi-directional RNN. Figure from [64]

In the general case, an RNN can be multi-layered with L layers. shows bi-directional
RNN. At time-step ¢ each intermediate neuron receives one set of parameters from the previous(or
next) time-step (in the same layer), and two sets of parameters from the previous RNN hidden layer,
one that comes from the left-to-right RNN and the other from the right-to-left RNN. A bidirectional

—
RNN with L layers can be described by the following Equations (2.26), (2.27), (2.28), (2.29). k! is
the left-to-right hidden state at layer ¢ and time-step ¢, that takes as input the left-to-right state at layer
layer ¢ — 1 and same time-step ¢ and the left-to-right state at the same layer ¢ and left £ — 1 time-step.
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h 1s the symmetrical for the right-to-left hidden state. At the last layer, f? and h! are combined and
the combination of them is used for the final prediction y; at time-step ¢.

B = fR L VR 4+ b (2.26)
b= p(Vint Vi 4 b 2.27)
he = (b, hF) (2.28)
yt = g(Uht + ¢) (2.29)

2.5.6 Attention Mechanisms

A problem occurred with recurrent neural networks is related with the state used for the next layer
of the network, as the last time-step hidden state or an average of all hidden states may not be the
right choice for various applications. Attention has been established as valuable tool to face that
issue. Originally, attention was used in Neural Machine Translation to dynamically attend over the
representation of the input sequence and predict the next word in the translated sequence. Attention
can be interpreted as focusing on the most relevant elements, e.g. words, of the input by computing
weights of importance for their representations.

The importance of each element is typically measured by their alignment with a query vector q.
Given a sequence of N input vectors x1, ..., zy the attention module uses an alignment function to
score the relevance of each z; to the query ¢q. The alignment scores s; are then normalized using the
softmax function to produce attention weights «, ..., a that sum to 1. The final representation Z is
the weighted average of the inputs.

s; = align(q, x;) (2.30)

a; = softmaz(s;) = S o (2.31)
j J

=Y (2.32)

It turns out that the alignment score function is of high importance, a collection of popular alignment
score functions follows.

General Attention

align(q,z;) = s" Wax; (2.33)
Additive Attention
align(q, z;) = v, tanh(Wyz,1) (2.34)
Dot-Product Attention
align(q, x;) = s"x; (2.35)
Scaled Dot-Product Attention
align(q, z;) = =2 (2.36)

2

48



2.6 Transformers

The Transformer is a deep learning model introduced by Vaswani et al. [92] used primarily in
Natural Language Processing. The Transformer is based in the Attention Mechanism idea, discussed
in bubsection 2.5.6. Like RNNs, Transformers are designed to handle sequential data, however do
not require that the sequential data be processed in order. Since their introduction, Transformers have
become the model of choice for tackling many problems in NLP. As Transformers allows for much
more parallelization than RNNs during training, it has enabled training on larger datasets and led
to the development of pretrained systems such as BERT (Bidirectional Encoder Representations from
Transformers) [24]] and GPT (Generative Pre-trained Transformer) [[19], which have been trained with
huge general language datasets, and can be fine-tuned to specific language tasks.
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Figure 2.8: The Transformer architecture. From [92]

The Transformer is an encoder decoder architecture. he encoder consists of a set of encoding
layers that processes the input iteratively one layer after another and the decoder consists of a set of
decoding layers that does the same thing to the output of the encoder. Encoders and decoders, consists
of identical subsystems, that have different parameter values. Encoders and decoders accept inputs
from the lower layers and carry them to the higher ones. Each encoder consists of two subsystems.
The first is a self-attention layer, that allows the encoder to hold the dependencies that the input under
study may have with the other inputs in the sequence. The second is a feed forward neural network for
additional processing of the outputs, and residual connections and layer normalization units. Similar
is the decoders architecture with an addition of a intermediate encoder-decoder attention mechanism.
This subsystem is responsible to identify and focus on specific elements of the input that has already
been encoded by the encoder.

The feed forward neural network does not retain the correlations between the input units. The
system which is responsible for the correlations between the input units is the self-attention. The
calculation of the outputs of the Self-Attention system is essentially done in two basic steps. The first
step is to create three vectors from the input. Specifically, Query, Key and Value vectors need to be
created. This vectors resulting from the multiplication of inputs with specific arrays, the parameters
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of which are optimized during the training process. Given the three vectors that make up the self-
attention mechanism Query (Q), Key (K) and Value (V), we can define self-attention by Equation
(2.37), where f is a scaling factor, dependant on the dimension of vector K.

QK"
sqrtdy

Attention(Q, K, V') = softmaz( % (2.37)

One set of W, Wi, Wy matrices is called an attention head.In practice multi-head attention is
used. In the original Transformer paper, the architecture has 8 attention heads, that make 8 different
sets of matrices Wg, Wik and Wy, for each self-attention subsystem for each encoder and decoder.
Different heads can give a different form of attention that the model will focus. The output of the
attention mechanism is multiplied by another learnable matrix Wy before feed in the feed forward
neural network subsystem.
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Figure 2.9: Left: Scaled Dot-Product Attention. Right: Multi-Head Attention consists of several
attention layers in parallel. From [92]

Another issue to be addressed is the position of inputs. Some vectors need to be introduced which
will give the system a sense of order in the input sequence. This vectors are known as positional
embeddings. Those embeddings are added to the corresponding input embeddings, and converts the
input to vectors with internal representation of time characteristics. The first encoder takes positional
information and embeddings of the input sequence as its input, rather than encodings.

Transformers typically undergo semi-supervised learning involving unsupervised pretraining fol-
lowed by supervised fine-tuning. Pretraining is typically done on a much larger dataset than fine-
tuning, due to the restricted availability of labeled training data.

2.7 Evaluation of Performance

A learning algorithm fulfills its purpose when produces hypothesis that performs well on predicting
examples that have never been seen before. Obviously, a prediction is good when it turns out to be true.
Therefore we can evaluate the quality of a hypothesis by checking the accordance of the predictions
with the ground truth, when the latter becomes known. We can achieve so by keeping a separate set
of known data, that is named test set. If we train in all available data, we should collect some more
data for testing, therefore is more practical to adopt the following methodology:

e Select a large dataset.

e Split the dataset in two separate sets, a training set and a test set.
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e Apply the learning algorithm on the train set and create an hypothesis h.
e Get predictions of h on test set and compute the performance metrics.

e Repeat steps 2-4 for different sizes of training sets and different random test sets.

learning curve The result of the above procedure is a set of performance metrics, that can be pro-
cessed to draw the mean performance as a function of the training set size, that is known as the learning
curve. As training set size augments, learning curves that are improving are a good sign that there is
a pattern on the data and the learning algorithm recognizes that pattern.

peeking We have to note that the learning algorithm must not be aware of the test set, before the
testing phase. This principle is easy to violate as follows: a learning algorithm may have some levers
that regulate its performance, we create various hypotheses for different settings of that levers, com-
pute performance metrics on a test set and choose the hypothesis with the best performance on the
test set. Unfortunately we selected a hypothesis in a way that information of the test set leaked and
became known to the learning algorithm. This common misbehavior is called peeking. A solution is
to use a new test set to evaluate the performance of the selected hypothesis.

Cross-validation Cross-validation is a technique to reduce overfitting (see also section section 2.§),
that can be applied on all learning algorithms. The key concept is to compute evaluation metrics of a
hypothesis over unseen data. That can be achieved by keeping a subset of data aside and using it for
validating the performance of a hypothesis concluded from the rest data. In K-fold cross-validation
we conduct K experiments, keeping each time as a validation set a different 1/ K part of data, and
extract a mean metric. Popular values for K is 5 and 10.

2.8 Overfitting and Regularization

2.8.1 Overfitting and Underfitting

When there is a large set of possible cases, we must be careful not to use the resulting freedom to
find meaningless normality in the data. This problem is called overfitting. Therefore overfitting is
the production of an analysis that corresponds too closely or exactly to a particular set of data, and
may therefore fail to fit additional data or predict future observations reliably. Overfitting which is a
very general phenomenon, occurs even when the target function is not random and affects all types of
learning algorithms.

Underfitting, on the opposite, occurs when a model cannot sufficiently capture the structure of
the data, or the model does not have the capacity to fully learn the data. In an underfitted model,
some parameters that would appear in a correctly trained model are missing and such a model will
have poor predictive performance. An extreme example of underfitting is fitting a linear model to
non-linear data. On we can observe undrefitting and overfitting compared to an ideal fit.

2.8.2 Regularization

In order to succeed the ideal fit, face overfitting and improve the generalization of a model to unseen
data, various techniques were developed. Regularization refers to a set of techniques used to prevent
overfitting by adding information. Most regularization strategies aim at balancing the bias-variance
trade-off. That means achieving a lower generalization error at the expense of increasing training
error. One way to achieve so is by regulating the model capacity, though determining a fix number
of model parameters does not secures a good fit. The best strategy is to consider complex function
families and use regularization techniques to control complexity.
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Figure 2.10: From left to right: Underfitting, the model does not have capacity to fully learn the data.
Ideal fit, the model learns the underlying data structure. Overfitting, the model is too complex and
learns noise over the training data.

Parameter Norm Penalties A common approach to limit the complexity of a model is to penalize
the norm of the model parameters. This is achieved by adding to the loss function J(w) a regularization
term Q(w), multiplied by a constant A € [0, 1] that controls the amplitude of the regularization. The
overall loss will be:
1 & . .
new(w) = = L(f(2'5w0),y) + AQ(w) (2.38)

n
1=0

Two commonly used penalties are the following:

L, regularization

Qw) = [wlly = Jwi (2.39)
i=1
The update weights rule of gradient descent algorithm will then be

w4 w— 7(8;{9&}) + Asign(w)) (2.40)

L regularization leads the model to be sparse. At each update, a constant factor is subtracted from

all weights with a sign equal to sign(w). As this can drive some of the model wights to zero, L;
regularization acts as a feature selection mechanism.

L regularization, also known as weight decay.
1 2
Qw) = Sl 241)

The update weights rule of gradient descent algorithm will then be

0J (w)
ow

w < w — + Aw) (2.42)

At each update, a term proportional to their magnitude is subtracted from all weights. This causes the
weights to decay over time, so the technique is named weight decay. As large weights are penalized
more than small ones, Lo regularization encourages the weights to remain small.

Sometimes L1 and Lo regularizations are combined, in a technique known as elastic net regular-
ization.

A
Qw) = (1= Nlwlh + vl (2:43)
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Dropout Dropout is a simple yet effective, frequently used regularization method for neural net-
works. Given a probability p > 0, during training each unit is dropped with that probability. Being
dropped means that the unit is ignored during both forward and backward pass and their activations
are set to zero. In we can observe the effect of dropout on a neural network during train-
ing. At test time, all units are employed, but they are scaled by a factor 1/p to account for the missing
activations during training. Dropout forces network to not rely on any node and prevents units from
forming co-dependencies amongst each other. A usual value for p is 0.5.

Given a model with N units, each of which can be dropped. Training that neural network with
dropout can be seen as training a collection of 2V subnetworks that share some of their parameters.
Therefore dropout is a form of ensembling an exponential number of models by training and evaluating
just one model.

(a) Standard Neural Net (b) After applying dropout.

Figure 2.11: The effect of dropout during training.

Data Augmentation A simple way to reduce the risk of overfitting is to use more training data.
Given the that is not possible to primarily collect more data, one ca create synthetic data from the
available dataset. This method is called data augmentation, and the way to create such data points
depends on the specific domain and type of data. Regarding images it is common to use small trans-
forms such as flipping, rotating, re-scaling and cropping. For natural language data augmentation is
less common, yet it can be done by synonym replacement. In general, data augmentation can also be
achieved by adding small random noise to the data in order to improve the model robustness.

Early stopping When an iterative training method is used, a common regularisation technique is
early stopping. As the training progresses, a model tends to fit better the training data. Up to a point,
this also improves the model performance on data outside of the training set. After that point, however,
that comes at the cost of overfitting, as the generalization error increases and the model learn the noise
in the training data. Early stopping rules provide general guidance on the number of iterations to run,
in order to avoid overfit. In practise we monitor at each epoch the performance of the model on a
validation set. Validation set is a part of the original training set, that each time is kept out of the
training process. The error on the validation set is used as a proxy for the generalization error. Early
stopping terminates the training as soon as the validation loss stops decreasing. A visualization of
training and validation errors evolution over time can be observed on [Figure 2.12. Sometimes the
validation loss may start decreasing again after a few epochs, so it is common to allow the model to
continue training for a predefined number of epochs, known as training patience. In essence, early
stopping is tuning the hyperparameter number of epochs.
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Figure 2.12: Training and validation error over time. Early stopping prevents the increase of general-
ization error as measured on validation set.

2.9 Transfer Learning

In the classic supervised learning scenario of machine learning, if we aim to train a model for
a specific task and domain, we assume that we have sufficient labeled data for the same task and
domain. Typically a model is trained on this dataset and is expected to perform well on unseen data of
the same task and domain. It is expected the data to be i.i.d. (independent and identically distributed
random variables). If the task or domain changes, then new labelled data of the same task or domain
are needed in order to train a new domain specific model.

The above traditional learning paradigm breaks down when we do not have sufficient labelled
data for the desired task or domain to train a specific model. Transfer learning faces that limitation
by leveraging data of other task and domains, known as the source task and source domain. The
knowledge gained in solving the source task in the source domain is used to solve the target task in
the target domain.

Transfer learning refer to the situation where what has been learned in one setting is exploited to
improve generalization in another setting. In transfer learning, the learner must perform two or more
different tasks, but we assume that many of the factors that explain the variations in the first task are
relevant to the variations that need to be captured for learning the second task. In the sub-case of
transductive transfer learning, also known as domain adaptation, the task (and the optimal input-to-
output mapping) remains the same between each setting, but the input distribution is slightly different.
We further discuss domain adaptation in Chapter M.

A domain D consists of a feature space X and a marginal probability distribution P(z) over the
feature space, where z € X. Given a domain D = {X, P(X)}, a task T consists of a label space
Y and a conditional probability distribution P(Y|X) that is typically learned from the training data
{zi,yi} with x; € X and y; € Y. Given a source domain Dg, a corresponding source task T’s, as
well as a target domain D7 and a target task 77, transfer learning’s objective is to enable us to learn
the target conditional probability distribution P(Y7|X7) in D7 with the information gained from Dg
and T.

Transfer learning improve performance of models in three ways. First is the initial performance
achievable in the target task using only the transferred knowledge, before any further learning is done,
compared to the initial performance of an ignorant agent. Second is the amount of time it takes to
fully learn the target task given the transferred knowledge compared to the amount of time to learn it
from scratch. Third is the final performance level achievable in the target task compared to the final
level without transfer.

A special case of transfer learning involves a scenario where source task is unsupervised and target

54



task is supervised. This is particularly interesting because we often have large amounts of unlabeled
training data, yet relatively little labeled training data. Training with supervised techniques on the
labeled subset often results in overfitting. By learning good representations from the unlabeled data,
we can perform better in the supervised learning task. This transfer learning case is called unsupervised
pretraining. This procedure is an example of how a representation learned for one task (unsupervised
learning, trying to capture the shape of the input distribution) can sometimes be useful for another task
(supervised learning). It is called pretraining, because it is supposed to be only a first step before a
joint training algorithm is applied to fine-tune all the layers together.
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Chapter 3

Natural Language Processing

3.1 Introduction

Natural Language Processing (NLP) is a subfield of computer science, artificial intelligence and
linguistics concerned with the interactions between computers and human languages. NLP faces the
the computer understanding, analysis, manipulation and generation of language, in written and spoken
form. The goal of NLP is to identify the algorithms and techniques needed for a computer to exhibit
various forms of linguistic behavior. That is to design, implement and test systems that process natural
languages for practical applications. The levels of language that NLP examines are:

Phonology In this first level, the speech sounds of languages are examined.

Morphology This level deals with the componential nature of words, which are composed of mor-
phemes, the smallest units of meaning.

Lexical At lexical level, systems interpret the meaning of individual words.

Syntactic Syntactic level focuses on analyzing the words in a sentence in order to uncover the gram-
matical structure of the sentence.

Semantic Semantic processing determines the meaning of a sentence. This level of processing in-
cludes the semantic disambiguation of the corresponding words, that may have multiple senses.

Discourse The discourse level of NLP works with units of text longer than a sentence. Discourse
focuses on the properties of the text as a whole that convey meaning by making connections between
component sentences, and does not interpret text as just concatenated sentences.

Pragmatic This level is concerned with the purposeful use of language in situations and utilizes
context over and above the contents of the text for understanding. The goal is to explain how extra
meaning is read into texts without actually being encoded in them.

3.2 NLP Tasks

NLP includes a large list of tasks, that are either directly connected to real world applications or
serve as subtasks to aid in solving other tasks. In this section we will shortly present a list of common
tasks and then we will further present sentiment analysis task, which mainly concerns this thesis.

3.2.1 Common Tasks

Tokenization Also known as word segmentation, tokenization is the process of seperating a chunk
of continuous text into separate words.
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Part-of-speech tagging Given a sentence, determine the part of speech (POS) for each word. Many
words, especially common ones, can serve as multiple parts of speech.

Parsing Determine the parse tree (grammatical analysis) of a given sentence. The grammar for
natural languages is ambiguous and typical sentences have multiple possible analyses: perhaps sur-
prisingly, for a typical sentence there may be thousands of potential parses (most of which will seem
completely nonsensical to a human)

Named entity recognition Given a piece of text, determine which items in the text map to proper
names, such as people or places, and what the type of each such name is (e.g. person, location,
organization).

Topic segmentation Given a chunk of text, separate it into segments each of which is devoted to a
topic, and identify the topic of the segment.

Text summarization The process of shortening a set of data computationally, to create a subset (a
summary) that represents the most important or relevant information within the original content.

Machine translation Automatically translate text from one human language to another.

Natural language generation Convert information from computer databases or semantic intents
into readable human language.

Natural language understanding Convert chunks of text into more formal representations such as
first-order logic structures that are easier for computer programs to manipulate.

Question answering Given a human-language question, determine its answer.

3.2.2 Sentiment analysis

Sentiment analysis, also called opinion mining or emotion Al is the field of study that analyzes
people’s opinions, sentiments, evaluations, appraisals, attitudes and emotions towards entities such
as products, services, organizations, individuals, issues, events, topics and their attributes. Sentiment
analysis deals with extracting subjective information usually from a set of documents, often using
online reviews to determine “’polarity” about specific objects. It is especially useful for identifying
trends of public opinion in social media, for marketing. Sentiment analysis in its simplest form, aims
to detect positive or negative feelings from text.

3.3 Word vectors-Embeddings

An essential step in Natural Language Processing is to represent the text, and especially its com-
ponents such as words, in a suitable form to be used as input in the various machine learning models.
The aim is to create vector representations, one for each word, that provide a sense of similarity or
dissimilarity between words that are indeed similar or irrelevant. These vector representations are
known as word vectors or word embeddings. Word embeddings is, therefore, a collective name for a
set of language modeling and feature learning techniques where linguistic entities, words or phrases,
are mapped to vectors of real numbers. Conceptually, embedding, involve a mathematical embedding
from a high dimensionality space to a continuous vector space with a much lower dimension.
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3.3.1 Denotional approach

A semantic approach to word vectors, known as denotional semantics, considers words as unique
symbols and creates sparse representations, from which is difficult to draw a conclusion about simi-
larity between words. Such methods are words as vocabulary indices and one-hot vectors.

3.3.2 Vocabulary indices

The first and most naif, denotional method is to use the indices that correspond to the word in
the vocabulary. Lets consider an example vocabulary V' : V[0] = “‘abate”, V[1] = “abdicate”,
V[2] = “aberrant”, V]3] = “reduce”, V[4] = “‘resign”. The word ‘‘abate” is mapped to the
number 74p4.e = 0 and the word ‘‘reduce” to the number i,.¢q,.c = 3. The similarity of these two
words has not been captured in their indices, and no semantic relation can be extracted from the
arithmetic relation of appointed indices.

3.3.3 One-hot vectors

A one-hot vector is a group of bits among which only a single bit is 1 and all the others are 0.
Therefore, a one-hot word vector is a 1 x |V| vector used to distinguish each word in the vocabu-
lary from every other. Each vector consists of zeros in all cells with the exception of a single one
in a cell that identifies the specific word. A relative advantage of the method when compared with
vocabulary indices, is that representations does not have a meaningless relation among them, but in
fact they have no relation at all. Lets consider again the example vocabulary V' = {abate, abdicate,
aberrant, reduce, resign}. We will have the following one-hot vectors: wgpate = [1 0 0 0 0],
Wabdicate = [O 1 00 O] > Waberrant = [0 010 O] > Wreduce = [0 0 01 0] and
Wresign = [0 0 00 1]. The corresponding matrix that describes the method will be of |V'| x |V/|
dimension and in the following form:

Wabate 10 000
Wabdicate 01000
Waperrant | = |0 0 1 0 0 (3 1 )
Wreduce 00010
Wresign 0000 1

The above matrix is of extreme sparsity, as most of information in it is just zeros. Given also that
the vocabulary size in practice will be big enough to express the language, a memory issue occurs.
The word vectors does not have any dependency on each other, that means no semantic or relational
information can be extracted. The vectors are, in fact, linearly independent, as shown for example in

Equation (B.2).

T T _
WapateWabdicate = Wapdicate Wresign = 0 (32)

3.3.4 Distributional hypothesis

In contrast to denotional semantics, distributional semantics, based in the distributional hypothesis,
create representations based in the context in which a word is found in a corpus, and therefore succeeds
both dimensionality reduction and giving a sense of similarity among similar words. The idea of
the distributional hypothesis is that the distribution of words in a text holds a relationship with their
corresponding meanings. More specifically, the more semantically similar two words are, the more
they will tend to show up in similar contexts and with similar distributions. The hypothesis is also
known as “words that occur in the same contexts tend to have similar meanings”, and as “a word is
characterized by the company it keeps”. Based in the hypothesis, distributional semantics attempt
to capture meanings of linguistic entities from their usage in language. That is two words that are
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considered to be semantically similar are expected to occur in similar contexts, and words that occur
in similar contexts should be considered similar.

3.3.5 Word2Vec

Word2Vec [61]] is a shallow, two-layer neural network which is trained to reconstruct linguistic
contexts of words. Given an input of large corpus of words, it produces a vector space, typically
of some hundred dimensions, with each word in the corpus being assigned a corresponding vector
in the space. Word vectors are located in the space such that words that share common contexts in
the corpus are located in close proximity to one another in the space. Word2Vec has two forms, the
continuous bag of words (CBOW) model and the Skip-Gram model. When the feature vector assigned
to a word cannot be used to accurately predict that word’s context, the components of the vector are
adjusted. The vectors of words judged similar by their context are nudged closer together by adjusting
the numbers in the vector.

INPUT  PROJECTION  OUTPUT INPUT ~ PROJECTION  OUTPUT
w(t-2) w(t-2)
wi(t-1) w(t-1)
\SUM
>] w(t) w(t) [ >
w(t+1) 7 w(te1)
w(t+2) w(t+2)

CcBOW Skip-gram

Figure 3.1: Word2Vec training modes. Figure from [61]]

The continuous bag of words (C'BOW) model is trained to learn word embeddings by predicting
a specific word given its neighbors. Supposing we want to predict a word w;, the input to the model
could be w;_a, w;—1, w;11 and w; 9, the preceding and following words of the target. Skip — Gram
is the exact opposite of C BOW, as now the central word w; is given as input and the output would be
Wi—2, Wi—1, Wi4+1 and w;4o. The Skip-Gram task is therefore to learn word emebeddings by training
a model to predict context given a word. The two models are illustrated in [Figure 3.1].

Given enough data, usage and contexts, Word2vec can make highly accurate guesses about a word’s
meaning based on past appearances. Those guesses can be used to establish a word’s association
with other words (e.g. “king” is to “man” what “queen” is to “woman”). It becomes apparent that
the vectors capture some general, and in fact quite useful, semantic information about words and
their relationships to one another, e.g. male-female, verb tense and even country-capital relationships
between words.
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3.3.6 GloVe

GloVe [68] is an unsupervised learning algorithm for obtaining vector representations for words.
Training is performed on aggregated global word-word co-occurrence statistics from a corpus, and the
resulting representations showcase interesting linear substructures of the word vector space. GloVe
is essentially a log-bilinear model with a weighted least-squares objective. The training objective of
GloVe is to learn word vectors such that their dot product equals the logarithm of the words’ probability
of co-occurrence. The main intuition underlying the model is the observation that ratios of word-word
co-occurrence probabilities have the potential for encoding some form of meaning. The GloVe model
is trained on the non-zero entries of a global word-word co-occurrence matrix, which tabulates how
frequently words co-occur with one another in a given corpus. Populating this matrix requires a single
pass through the entire corpus to collect the statistics.

3.3.7 Contextual Word Embeddings

The distributional approaches aggregate the contexts in which a term occurs in a corpus. The result
is a context-free, or else context-independent word representation. Word embeddings described so
far are static. Nevertheless, usually a particular word can be used in different sentences with a com-
pletely different meaning. Out of context, each word has multiple meanings.An obvious problem that
occurs is that polysemous words (words with obvious multiple senses) cannot be modeled properly.
For example, in the following sentences: “I dream of surfing the perfect wave.” and “Will there be an-
other wave of illness in the fall?”, word “wave” has quite different meaning. So static representations
for words are quite insufficient solutions for understanding text. Therefore, it is proposed to repre-
sent words, depending on the context each time found. A famous algorithm for contextualized word
representation is ELMo (Embeddings from Language Models) [69], that will presented in Section B.3.

3.4 Language Modeling

Language Models (LMs) compute the probability distribution over a sequence of words. Assigning
probabilities to sentences is a task of great importance, used in various applications, such as speech
recognition or spell correction, and in general when the most likely sequence is needed. The proba-
bility of a sequence of K words wy, wa, ..., wk is denoted as P (w1, wa, ..., wk ). Given the definition
of conditional probabilities, the general chain rule and by applying it in order to compute the joint
probability of words in a sentence we get the Equation (B.3) that describes language modeling.

K
P(wy, wa, ... wi) = [ [ Plwilwy, ..., wi 1) (3.3)
=1

Since the number of words coming before a word w; varies, depending on its location in the input,
P(w1,wa, ..., wk) is usually conditioned on an window of n previous words rather than all previous
words.

K K
P(wl,wg, cony wK) = HP(wi\wl, ...,wi_l) ~ HP(wi]wi_n, ...,wi_l) (3.4)
i=1 i=1

Equation (B.4) is used in various applications, such as machine translation and speech recognition,
in order to determine a word sequence that is an accurate interpretation, transcription or translation of
an input sentence.

3.4.1 n-gram Language Models

In order to obtain the probabilities described by Equation (B.4)), we should count and compare the
respective n-grams and word frequencies. This is called an n-gram language model. For instance,
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if we consider a bi-gram, the frequency of each bi-gram would be divided by the frequency of the
corresponding uni-gram of the second term. Equations (B.5) and (B.€) give the respective relations for

bi-gram and tri-gram models.

_ count(wl,w2)
p(wz|wr) = count(wl) (3-5)

count(wl, w2, w3)

p(wslwz,w) = (3.6)

count(wl, w?2)

Those models focus on making predictions based on a fixed window of context, the n) previous
words, used to predict the next word. The selection of an appropriate window length for the context is
an important question to be answered. In some cases the window of past n words may not be sufficient
to capture the context. For example lets consider the sentence ”’I wanted to borrow a book and so |
went to the [MASKED]”. One would reasonably guess that the masked word is ”library”. However,
even a 4-gram language model would try to predict the hidden word from the previous three words
“went to the”. It is obvious that this model ignores the real context of the sentence. There are two
main problems with n-gram language models that occur, sparsity and storage.

Sparsity problems arise due to two issues. Firstly, given the numerator of Equation (B.6), it possible
the tri-gram w1, we, w3 never appear together in the corpus and so the probability will be 0. To solve
the issue it is usual to to add a small § for each word count. This technique is known as smoothing.
Secondly, a problem occurs also with the denominator of Equation (B.6) If w1, ws never occurred as
a bi-gram in the corpus, then the probability cannot be calculated. To solve this a common solution,
called backoff, is to condition on wy alone. Increasing n makes sparsity problems worse.

Storage problems also arise with n-gram language models. We need to store the count for all n-
grams we see in a corpus. As n increases or the corpus size increases or the vocabulary used increases,
the model size increases as well. To overcome both problems, typically is selected n < 5.

3.4.2 Neural Language Models

To address the shortcomings of traditional language models, non-linear neural network models
have been proposed. That models allow conditioning on increasingly large context sizes with a linear
increase in the number of parameters. Such a neural probabilistic language model was proposed by
Bengio et al. [[13]]. This model takes as input vector representations of a word window of n previous
words, which are looked up in a table C'. These vectors are in fact word embeddings. These word
embeddings are then concatenated and given as input to hidden layer, whose output provided to a

softmax layer (Figure 3.2).

z = [C(w1); C(w2); ...; C(wn)]
9 = P(w;|wy.x) = LM (wy.x) = softmaac(hWQ + b2)
= g(zW1 + b1)

C(w) =

(3.7)

where w; € V, E € RIVIXdw 15, ¢ R™wxdn ¢ RI* Wy € RHXIVI by € RIVI. V is a finite
vocabulary.

3.4.3 Perplexity

There are several metrics for evaluating language modeling. A natural evaluation of language mod-
els is using perplexity over unseen sentences. Perplexity is an information theoretic measurement of
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Figure 3.2: The first deep neural network architecture model presented in [[13]

how well a probability model predicts a sample. Low perplexity values indicate a better fit. Given
a text corpus of n words wy, wa, ..., w, and a language model LM assigning a probability to a word
based on its history, the perplexity of a LM with respect to the corpus is:

Perplexity = 93 Lita log2 LM (wilwr:i—1) (3.8)

Good language models, that indeed reflect of real language usage, will assign high probabilities to
the events in the corpus, resulting lower perplexity values. Therefore, perplexity measure is a good
indicator of the quality of a language model. Perplexities are corpus specific, so perplexities of two
language models are only comparable with respect to the same evaluation corpus.

3.5 ELMo

ELMo embeddings [69] are deep contextualized word representations that offer high quality rep-
resentations for language, modeling both complex characteristics of word use and adjusting them in
different linguistic contexts. The vectors are derived from a bi-directional LSTM that is trained with a
coupled language model (LM) objective on a large text corpus. ELMo representations are a function
of all the internal layers of the bi-directional language model. However, the weighting of the ELMo
embeddings needs to be carefully tuned for every different task. Therefore, the proposed method,
although very effective, has some limitations and requires task-specific architectures.
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3.6 BERT

Bidirectional Encoder Representations from Transformers (BERT) [24] is a pre-trained model of
deep bidirectional transformers for language understanding, which is then fine-tuned for a task. BERT
is designed to pretrain deep bidirectional representations from unlabeled text by jointly conditioning
on both left and right context in all layers. As a result, the pre-trained BERT model can be finetuned
with just one additional output layer to create state-of-the-art models for a wide range of tasks, such
as question answering and language inference, without substantial task specific architecture modifi-
cations. During pre-training, the model is trained on unlabeled data over different pre-training tasks.
For BERT pre-training two unsupervised tasks are used, Masked Language Modeling (MLM) and
Next Sentence Prediction. For finetuning, the BERT model is first initialized with the pre-trained
parameters, and all of the parameters are fine-tuned using labeled data from the downstream tasks.
Each downstream task has separate fine-tuned models, even though they are initialized with the same
pre-trained parameters.

ﬁp Mask LM Mask LM \ ﬁ/%‘“’ StarVEnd SpaN
&« &*®

BERT

2 1 P o [

Masked Sentence A > Masked Sentence B Question P Paragraph
\ Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning

Figure 3.3: Pre-training and fine-tuning procedures for BERT. From [24]

BERT’s model architecture is a multi-layer bidirectional Transformer encoder. The original English-
language BERT model comes with two pre-trained general types: (1) the BERTBssE model, a 12-
layer, 768-hidden, 12-heads, 110M parameter neural network architecture, and (2) the BERT sArcE
model, a 24-layer, 1024-hidden, 16-heads, 340M parameter neural network architecture; both of which
were trained on the BooksCorpus with 800M words, and a version of the English Wikipedia with
2,500M words.

BERT input representation is able to unambiguously represent both a single sentence and a pair
of sentences (e.g. Question, Answer) in one token sequence. WordPiece embeddings [] with a 30,000
token vocabulary are used. The first token of every sequence is always a special classification token
([CLS]). The final hidden state corresponding to this token is used as the aggregate sequence represen-
tation for classification tasks. Sentence pairs are packed together into a single sequence. Sentences
are differentiated in two ways, a special token is used ([SEP]) and d a learned embedding to ev-
ery token indicating whether it belongs to sentence A or sentence B is added. For a given token,
its input representation is constructed by summing the corresponding token, segment, and position
embeddings.

Intuitively, it is reasonable to believe that a deep bidirectional model is strictly more powerful than
either a left-to-right model or the shallow concatenation of a left-to-right and a right-to-left model. Un-
fortunately, bidirectional conditioning would allow each word to indirectly “see itself”, and the model
could trivially predict the target word in a multi-layered context. In order to train a deep bidirectional
representation, Masked Language Modeling is proposed, by simply mask some percentage of the in-
put tokens at random. In this case, the final hidden vectors corresponding to the mask tokens are fed
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into an output softmax over the vocabulary, as in a standard LM. In BERT 15% of all WordPiece
tokens in each sequence are masked at random. As masking creates a mismatch between pre-training
and fine-tuning masked words are not always replaced by a mask token, but at 10% chance remains
unchanged and at 10% chance is changed by a random token.

The relationship between sentences, is of high importance in some NLP tasks. In order to train a
model that understands sentence relationships, BERT pre-train for a binarized next sentence prediction
task that can be trivially generated from any monolingual corpus. Specifically, when choosing the
sentences A and B for each pretraining example, 50% of the time B is the actual next sentence that
follows A (labeled as I'sNext), and 50% of the time it is a random sentence from the corpus (labeled
as NotNext).

Fine-tuning is straightforward since the self-attention mechanism in the Transformer allows BERT
to model many downstream tasks, whether they involve single text or text pairs, by swapping out the
appropriate inputs and outputs. At the input, sentence A and sentence B from pre-training are anal-
ogous to (1) sentence pairs in paraphrasing, (2) hypothesis-premise pairs in entailment, (3) question-
passage pairs in question answering, and (4) a degenerate text - () pair in text classification or sequence
tagging. At the output, the token representations are fed into an output layer for token level tasks, such
as sequence tagging or question answering, and the [C'LS] representation is fed into an output layer
for classification, such as entailment or sentiment analysis.
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Figure 3.4: BERT applied in various tasks. From [24]
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Chapter 4

Unsupervised Domain Adaptation in NLP

4.1 Introduction

Domain adaptation is a field of machine learning, a specific sub-case of transfer learning, that arises
when we aim at learning from a source data distribution a well performing model on a different, but
related, target data distribution. As shown in [Figure 4.1, domain adaptation, also called transductive
transfer learning, takes place when source and target marginal distributions are different, but the task
we seek to learn is the same on the two domains. Domain adaptation is the ability to apply an algorithm
trained in one or more source domains to a different, but related, target domain. In domain adaptation,
the source and target domains all have the same feature space, but different distributions. A domain
shift also occurs at deployment of machine learning systems, as usually there is a change in the data
distribution between the training dataset and real data.

_./"'/ \“\
~~ Same source
~ -
o and target \\
Yes 7N marginal " . No
/ “~__distributions? _—" ™
/./ ~ >
~~ Same task on "~ P -~ Same task on "~
- source and ~ — source and ~
~~ target " ~ target —
\___\c\i?mains?/ —~ \__\(jf)mains?/..-/
Yes < No Yes < No
Transductive
“Usual” learning Inductive transfer learning Unsupervised
setting transfer learning (Domain transfer learning
Adaptation)

Transfer Learning

Figure 4.1: Distinction between usual machine learning setting and transfer learning, and positioning
of domain adaptation.

The lack of portability of NLP models to new conditions remains a central issue in NLP. For many
target applications, labeled data is lacking, and even for pretraining general models data might be
scarce. In practice annotation is a substantial time-requiring and costly manual effort and is not easily
scalable to new application targets. Unsupervised domain adaptation mitigates the domain shift issue
by learning only from unlabeled target data, which is typically available for both source and target do-
mains. Unsupervised domain adaptation fits the classical real-world scenario better, in which labeled
data in the target domain is absent, but unlabeled data might be abundant. Therefore it is an elegant
and scalable solution.
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4.2 NLP Tasks for Unsupervised Domain Adaptation

The most studied NLP task under the unsupervised domain adaptation scenario is sentiment analy-
sis. Most works verify their results in the well studied benchmark of multi domain Amazon reviews
[[14]. Other notable tasks used are mostly binary classification and structural prediction tasks. Related
tasks include but are not limited to relation extraction, name entity recognition, dependency parsing,
part-of-speech tagging, natural language inference, duplicate question detection and machine reading.

4.3 Notation — Problem Setting

In general, in domain adaptation we consider classification tasks where X is the input space and
Y ={0,1,..., L — 1} is the set of L possible labels. We have two different distributions over X x Y,
called the source domain Dg and the target domain D7. The unsupervised domain adaptation setting
is then provided with a labeled source sample .S drawn from Dg and an unlabeled target sample 7'
drawn from D% , Where D%( is the marginal distribution of D7 over X.

S = (i, 1)1y ~ (Ds)"; T = ()] 41 ~ (D) (4.1)

with N = n + n’ being the total number of samples.
The goal of the algorithm is to build a classifier n : X — Y with a low target error while having no
information about the labels of Dp.

4.4 Categories

Research in unsupervised domain adaptation for NLP can be categorized in three main categories.
Pivot-based approaches, loss-based approaches and data-based approaches. The most used methods
for unsupervised domain adaptation are based on domain adversarial training. Another category of
methods are those using pivots, cross-domain shared features, to construct a common feature space
across domains. As data-based approaches are considered those using pseudo-labels to annotate data
or selecting most relevant data points or exploiting the usage of pre-trained language models. For a
similar categorization one could consider a recent survey [72].

4.5 Model-based approaches

4.5.1 Pivot-based approaches

Pioneering pivot-based methods for domain adaptation are structural correspondence learning (SCL)
[15] and spectral feature alignment (SFA) [65]. The aim is to find features which are common across
domains by using unlabeled data from both domains.

SCL uses auxiliary functions inspired by Ando and Zhang [6]. The first step of SCL is to de-
fine a set of pivot features to learn a mapping from the original feature spaces of both domains to
a shared low-dimensional space. A high inner product in this new space indicates a high degree of
correspondence. During training, both transformed and original features are used from the source do-
main. During testing, both transformed and original features are used from the target domain. Pivot
features should occur frequently in both domains, in order to calculate the co-variance with non-pivot
features accurately, but they must also be diverse to characterize the task. In practice there are many
features that can serve as pivots, but only some are chosen. For each pivot feature a binary classifica-
tion task is formed, to predict if that exact pivot is part of the instance, given that the feature itself is
hidden. Since pivot features occur frequently in both domains, non-pivot features from both domains
correlate with them. If two non-pivot features are correlated in the same way with many of the same
pivot features, they have a high degree of correspondence.
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A recent line of work by Ziser and Reichart [[L05], [[L07], [L06], [[L08], brings SCL in a neural
network context. Initially an auto-encoder structual correnspodence learning (AE-SCL) was pro-
posed, that combines the pivot-based approach with auto-encoder neural networks. A three layer
feed-forward network is used to learn hidden representations and map non-pivots to pivots, and those
encodings are used to augment the training data. Moreover, given that some pivot features are sim-
ilar to each other and are in conflict with others, it is proposed to use a pre-trained word embedding
model as initialization for the auto-encoder that maps inputs to the hidden layer (AE-SCL-SR). These
embeddings are induced by word2vec [60] trained with unlabeled data from the source and the target
domains. The main drawback of the method, as also in previous pivot-based methods, is that a single,
structure-indifferent and not context-dependent feature representation is learned.

In order to create more accurate representations, SCL is combined with neural language models
and pivot-based language modeling (PBLM) is introduced by Ziser and Reichart [[106] [[107]. PBML
consists of a randomly initialized embedding layer and an LSTM layer. PBML operates similarly
to language models, the basic difference among them is the prediction they make over a given input.
While a language model aims to predict the next input word, PBLM predicts the next word (or bigram)
if it is a pivot, and NONE otherwise. Also it is introduced a k-order PBLM, that predicts the sequence
of the next k words, as long as the sequence includes a pivot or NONE otherwise. After being trained
the PBLM, without the top layer, is combined with LSTM or CNN layers. PBLM-LSTM is therefore
a three-layer model, with the third layer -an LSTM layer- being feed from the PBLM’s hidden rep-
resentations. PBLM-CNN is a similar combination, but the PBLM’s hidden representations are fed
to a CNN layer. A two-step training procedure is employed. First, PBLM is trained with unlabeled
data from both domains. Afterwards, the final model is trained with the source domain labeled data
to preform the classification task. During that step the parameters of the pre-trained PBLM are held
fixed.

A major weakness of pivot-based language model is the need of a huge number of pivot fea-
tures. To tackle this issue, Ziser and Reichart [[108] adopted a task refinement learning approach using
PBLM, called TRL-PBLM. The TRL scheme gradually exposes pivots to PBLM. Pivots are divided
in two subsets, those that in the source domain are more frequent in instances with positive labels and
those that in the source domain are more frequent in instances with negative labels. PBLM is trained
as in previous work on all unlabeled data. The main difference is that in cases where the next uni-
gram or bigram is a pivot, instead of predicting the pivot identity, PBML should predict a positive or
negative label, according the subset that the pivot is part of. After that initial step is completed, TRL
algorithm continues for a predefined number of iterations. At each iteration the PBLM, initialized
with the weights computed on the previous iteration, is exposed to an additional proportional part of
pivots. In the last iteration all pivots are exposed. Pivots are given in a predefined sorted sequence, ac-
cording three ranking methods that are tested. Ranking by mutual information, ranking by frequency
and ranking by similar frequencies protocols are considered.

A common issue with all above mentioned methods is that they indicate two independent steps one
for representation learning and one for task learning. To face the issue Miller [62] suggested to train
the two tasks jointly. The method takes the same model and configuration as AE-SCL of [[105], and
defines a joint loss function as follows in equation Equation 4.2. In the following, the representation
is h(z) = ReLU(Wpx), Wy, € R¥™, task prediction is fiusr(z) = o(Wih(z)), W(t) € R4,
pivot prediction is fpivot(z) = o(Wyrh(z)), W, € RP xd D), is the labeled source data, D, is all data,
0 defines the model parameters, A controls the weight of pivot prediction loss and p is a weight for
the regularization term R.

‘C(Dve): Z BCE(ftask(aj)’y)

z,yeD;

+ A Z BCE( fpivot(x), pivots(x)) (4.2)
zE€D,

+ pR(9)
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During training labeled source data and unlabeled data from both domains are feed in the model
alternately. Validation set consists only of labeled source data.

In the direction of learning pivots and non-pivots, a recent line of work by Li et al., [50], [52],
[54], [51], proposes to learn them automatically via attention. On [50], Adversarial Memory Network
is presented, that consists of two parameter-shared memory networks, with one for sentiment clas-
sification and the other for domain classification. The two networks are jointly trained in a domain
adversarial way, as in DANN, that will presented in the next section. Each memory network con-
tains multiple hops, each of which consists of an attention layer and a linear layer. As not all words
contribute equally in the representation of each example, the attention mechanism extracts important
words for the task and aggregate those word’s representations to form the output. On a similar work,
[52], Hierarchical Attention Transfer Network (HATN) is proposed, that consists of two hierarchical
attention networks, with one (P-net) aiming to find pivots and the other (NP-net) aligning the non-
pivots by using pivots as a bridge. Firstly P-net conducts individual attention learning to provide
positive and negative pivots and then both networks conduct joint attention in a way that HATN can
simultaneously capture pivots and non-pivots.

4.6 Loss-based approaches

4.6.1 Domain Adversarial Training

The most common methods for neural unsupervised domain adaptation are focused on the use of
domain adversaries, as introduced by Ganin and Lempitsky [29], [30]. Inspired by how GANs [31]
minimize the differences between training and synthetic distributions of data, domain adversarial train-
ing goal is to learn latent feature representations, that tend to reduce discrepancy of source and target
distribution. The background behind this approach is based on the theory of domain adaptation in-
troduced by Ben-Devid et al. [[11], which states that cross-domain generalization can be achieved by
extracting features that the domain origin of the input example cannot be identified.

The method boosts those features that are discriminative for the learning task on the source do-
main and indiscriminative with respect to the shift between the domains. Therefore, the goal is to
calculate an accurate task predictor while maximizing the confusion of an auxiliary domain classifier
in distinguishing source and target features. This is achieved by jointly optimizing the underlying
features as well as two classifiers, operating on them, a label predictor for the classification task and
a domain classifier that discriminates between the source and target domains during training. The
task and domain classifiers are competing against each other, in an adversarial way. To do so, the
domain classifier is connected to the feature extractor via a gradient reversal layer, that multiplies the
gradient by a certain negative constant during the backpropagation-based training. Apart from that,
training proceeds as usual and minimizes the label prediction loss for source examples and domain
classification loss for all examples. Gradient reversal layer ensures that the feature distributions over
the two domains are made similar, that is they are indistinguishable for the domain classifier. DANN
architecture is presented in Figure 4.2.

Let G¢(+;0y) be a feature extractor with parameters 6 ¢, that maps an example x (either source or
target) in a hidden layer representation. Also, let Gy (-; 6,) be the part of the network that computes the
label prediction output layer y, with parameters 6,,, while G4(; 64) corresponds to the computation of
the domain prediction output d of the network, with parameters 6;. We can consider the composition
of Gy and G, as a classifier F' = G yoG, and the composition of Gy and G4 as a domain discriminator
D = G o G4. We will note the prediction loss and the domain loss respectively by:

Ly(0h,0y; Ds) = By ypgy” InF ()] (4.3)
Lq(0n,04; Ds, Dr) = sup EinpginD(z)] + Eznpy(in(1 — D(z))] (4.4)
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Figure 4.2: DANN architecture includes a deep feature extractor(green), a deep label predictor (blue),
a domain classifier(red) and a gradient reversal layer. Figure from [30].

Therefore, domain adversarial training minimizes the objective

gmen Ly(0n,0y; Ds) + AaLa(0n; Ds, Dr) (45)
hyYy

where \; is a weighting factor.

Domain Adversarial Neural Networks, is one of the most widely used domain adaptation ap-
proaches in NLP. They have been applied in a range of NLP applications in the last years mainly to
sentiment classification [29], [52], and other tasks like language identification [47], relation extrac-
tion [28], [74], POS tagging [[100], duplicate question detection [84], relevancy identification [4] and
parsing [83].

Du et all. [27] brings domain adversarial training in the context of BERT models, proposes a novel
domain-distinguish task, that predicts during pre-training if two sentences origin from the same target
domain or from different domains. In addition during fine-tuning the proposed BERT based model
is trained jointly with a domain adversarial loss via a GRL unit, as initialy proposed by Ganin et al.

[B0].

4.6.2 Reweighting

Reweighting is another approach for adaptation, that assigns an importance weight to each labeled
example of the source domain in accordance with the similarity of the example to the target domain.
Methods that explicitly reweight the loss based on domain discrepancy information include maxi-
mum mean discrepancy (MMD) by Gretton et al. [32] and its more efficient version called kernel
mean matching (KMM)[33]. KMM reweights the training instances such that the means of the train-
ing and test points in a reproducing a kernel Hilbert space are close to each other. Jiang and Zhai
[42] introduced instance weighting in NLP and proposed to learn weights by first training domain
classifiers. In neural setups, an early study by Plank et al. [[70] reports non-significant improvements
for traditional part-of-speech (POS).
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4.7 Data-based approaches

4.7.1 Pseudo-labeling

Pseudo-labeling, also known as bootstrapping, applies semi-supervised methods such as self-training
[99], [58], co-training [|16] and tri-training [|[L04] by using the same model, multiple models or other
more-accurate models as a guide to produce labels for the target data. Most of these works date back
to traditional non-neural learning methods. This line of work was revised by Ruder and Plank [79],
with neural models usage, showing that approaches like tri-training with neural models is a strong
baseline for domain shift.

Self-training, Yarowsky [99], McClosky et al. [58], is one of the earliest and simplest bootstrap-
ping methods. Fundamentally, it uses model’s own predictions on unlabeled data to obtain additional
information that can be used during training. Usually the most confident predictions are taken into
account. Self-training trains a model m on a labeled training set L and an unlabeled data set U. At
each iteration, the model provides predictions in the form of a probability distribution over classes
for all unlabeled examples in U. If the probability assigned to the most likely class is higher than
a predetermined threshold 7, the example is added to the labeled examples with the corresponding
pseudo-label. Instead of using a fixed threshold, is is usual to to select the top n unlabeled examples
that have been predicted with the highest confidence after every epoch and add them to the labeled
data. The latest variant is called throttling as proposed by Abney [[1]].

Co-training, Blum and Mitchell [|16], takes advantage of two separate views of data. It assumes
that each example is described using two different feature sets that provide different, complementary
information about the instance. The two views are considered as conditionally independent and suf-
ficient for classification. Co-training first learns a separate classifier for each view using any labeled
examples. The most confident predictions of each classifier on the unlabeled data are then used to
iteratively construct additional labeled training data.

Tri-training, Zhi-Hua Zhou and Ming Li [[104], utilizes the agreement of three independently
trained models. Tri-training first trains three models m1, m2 and mgs on samples of the labeled data.
An unlabeled datum is added to the training set of a model in the other two models agree on its label.
Training stops when classifiers do not change anymore.

Tri-training with disagreement, Segaard [89], considers that a model will be strengthened in its
weak points. To achieve this, it alternates the traditional tri-training algorithm, requiring that for a
datum on which two models agree, the third model has to disagree on the prediction. Tri-training with
disagreement is more data-efficient than tri-training.

On Saito et al. [80], classical tri-training has been modified, and asymmetric tri-training is pro-
posed, in a way that two networks are used to learn the labels, and the third is trained in order to learn
target-based representations. The proposed model includes a shared feature extractor F', two clas-
sifiers for labeled samples F}, F5 and a target-specific classifier F; that learns from pseudo-labeled
target samples. The method first trains the network from only labeled source samples and then pseudo-
labels the target samples based on the output of the first two classifiers. The shared feature extractor
learns from all classifiers Fi, F5 and F;. Fy and F'2 are expected to classify samples on different
viewpoints, so a constraint is made for the weight of F;, F'2, to make their inputs different to each
other. Assuming W; and W5 are fully connected layers’ weights of F, Fb, a term ||W] Ws|| is added
to the cost function. In order to pick up reliable pseudo-labels the entire network is trained with
source training set and then a label is given for each target element under the requirements that both
Fy and F agree on the given pseudo-label and the maximizing probability of at least one of them
exceeds a threshold parameter. A linearly growing candidate sampling scheme is proposed. After the
pseudo-labeled training, F), Fy, F5 are updated on the augmented training set and finally F" and F; are
optimized.

On Ruder and Plank [[79], a novel multi-task tri-training method is proposed. Based on multi-task
training idea [21], replaces the three separate models, with models that share their parameters and are
trained jointly as in multi-task learning. The output layers are model specific and are only updated
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for the inputs of the respective model. As the models learn a joint representation, is needed to obtain
features as diverse as possible. In order to achieve the desired diversity, an orthogonality constraint
is introduced as an additional loss term, as proposed by Bousmalis et al [[17]. Given that || - ||% is
the squared Forbenius norm and W,,; and W,,2 are the output parameters of the two models, the
constraint is defined as: Lo4p = ||[W, 1 Wina||%.

Data Selection is another data-based approach that tries to select the best matching data for the new
domain [63], [[7], [71]. This selection is done by using preplexity [63] or domain similarity measures
such as Jensen-Shannon divergence [[71], [73]. Data selection has been studied in machine translation
[63], [94], [[7], [3] and in parsing [71], [78].

4.7.2 Pretrained Language Models

Large pretrained transformer-based language models [39], [69], [25], are recently dominant in Nat-
ural Language Processing. Those models are commonly fine-tuned on down-stream tasks, with a
small amount of labeled data and achieve high performance in a great variety of tasks. Pretraining
and fine-tuning, can be seen as an adaptation procedure.

Taking the pretrained model and use it without any adaptation on the unseen data, can be consid-
ered as an extreme case, that is equivalent to zero-shot learning.

Using a domain specific pretrained model and fine-tune it on relevant data. Such approaches are
developed for example in biomedical NLP, with BioBERT [46] trained on a corpus combination of
general English documents and domain specific biomedical documents.

Using more unsupervised pretraining steps, which are gradually becoming more domain and task
specific, describes a group of works, that can be called multi-phase pretraining. In Gururangan el al.
[B7] a second phase of pre-training in-domain (domain adaprive pre-training DAPT) is considered, as
well as a task-adaptive pretraining (TAPT), in order to adapt to the task’s unlabeled data.

An alternative is auxiliary task pre-training, this method is using relevant labeled auxiliary tasks
in an multi-task learning set or in a supplementary training on labeled-data tasks for transfer.
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Chapter 5

Unsupervised Domain Adaptation of BERT with domain
pretraining and auxiliary masked language modeling

5.1 Introduction

In this work we explore Unsupervised Domain Adaptation (UDA) of pretrained language models
for downstream tasks. We propose a fine-tuning procedure, using a mixed classification and Masked
Language Model loss, that can adapt to the target domain distribution in a robust and sample efficient
manner. We present evidence that the mixed loss can be effectively used for validation during UDA
training. Furthermore, we conduct an analysis about the limitations of the dominant Domain Adversar-
ial training for UDA based on theoretical concepts and experimental results. Our method is evaluated
on twelve domain pairs of the Amazon Reviews Sentiment dataset, yielding 91.73% accuracy, which
is a 1.10% absolute improvement over the current state-of-the-art.

Deep architectures have achieved state-of-the-art results in a variety of machine learning tasks.
However, real world deployments of machine learning systems often operate under domain shift,
which leads to domain degradation. This introduces the need for adaptation techniques, where a
model is trained with data from a specific domain, and then can be optimized for use in new settings.
Efficient techniques for model re-usability can lead to faster and cheaper development of machine
learning applications and facilitate their wider adoption. Especially techniques for Unsupervised Do-
main Adaptation (UDA) can have high real world impact, because they do not rely on expensive and
time-consuming annotation processes to collect labeled data for domain-specific supervised training,
further streamlining the process.

UDA approaches in the literature can be grouped in three major categories, namely pseudo-
labeling techniques (e.g. [L03]), domain adversarial training (e.g. [3(0]) and pivot-based approaches
(e.g. [115, 65]). Pseudo-labeling approaches use a model trained on the source labeled data to produce
pseudo-labels for unlabeled target data and then train a model for the target domain in a supervised
manner. Domain adversarial training aims to learn a domain-independent mapping for input samples
by adding an adversarial cost during model training that minimizes the distance between the source
and target domain distribution. Pivot-based approaches aim to select domain-invariant features (piv-
ots) and use them as a basis for cross-domain mapping. This work does not fall under any of these
categories, rather we aim to optimize the fine-tuning procedure of pretrained language models (LMs)
for learning under domain-shift.

Transfer learning from language models pretrained in massive corpora[24, 39, 98, 56, [19] is a
game changing progress in NLP which has yielded significant improvements across tasks, even when
small amounts of data are used for fine-tuning. The fine-tuning procedure introduces the need for
sequential transfer learning, that is adapting pretrained models to target tasks and new domains. Fine-
tuning of pretrained LMs provides therefore a straightforward framework for semi-supervised domain
adaptation that, although learning tasks from labeled data, exploits the dynamics of language models
as unsupervised multitask learners. Still, besides the multi-domain knowledge encoded in a modern
pretrained model, learning tasks from out-of-domain data remains a challenging issue.

In this work, we propose a fine-tuning method for BERT [24] in order to address the UDA problem.
Our method is based on simultaneously learning the task from labeled data in the source distribution,
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while adapting to the language in the target distribution using multitask learning. The key idea of our
method is that by simultaneously minimizing a task-specific loss on the source data and a language
modeling loss on the target data during fine-tuning the model will be able to adapt to the language of
the target domain, while learning the supervised task from the available labeled data.

Our key contributions are: (a) We propose a novel, simple and robust unsupervised domain adap-
tation procedure for downstream BERT models based on multitask learning, (b) we achieve state-of-
the-art results for the Amazon reviews benchmark dataset, surpassing more complicated approaches
and (c) we conduct a discussion on the limitations of adversarial domain adaptation, grounded on
theoretical concepts and our empirical observations.

5.2 Related Work

Ben-David et al. [|12, 10] provide a theory for learning from different domains. Ganin et al [30] and
Ganin and Lempitsky [29] propose to learn a task while not being able to distinguish if samples come
from the source or the target distribution, through use of an adversarial cost. According to Ramponi
and Plank [72] domain adversarial training is a dominant approach for UDA in literature (Li et al.,
Alam et al., Sano et al.) [48, 5, 82]. Recently, Du et al. [26] pose domain adversarial training in
the context of BERT models. Zhao et al. [[102] propose multi-source domain adversarial networks.
Guo et al. [35] propose a mixture-of-experts approach for multi-source UDA. Guo et al. [34] explore
distance measures as additional losses and a dynamic bandit controller of domains. Shen et al. [86]
learn domain invariant features via Wasserstein distance. Bousmalis et al. []18] introduce domain
seperation networks with private and shared encoders.

Another line of UDA research includes pivot-based methods, focusing on extracting cross-domain
features. Structural Correspondence Learning (SCL) (Blitzer et al. [[15]) and Spectral Feature Align-
ment (Pan et al. [65]) were among the first pivot-based techniques. Ziser and Reichart [[105, [106,
108] combine SCL with neural network architectures and language modeling. Miller [62] proposes
to jointly learn the task and pivots. Li et al. [53] learn pivots with hierarchical attention networks.
Pivot-based methods have also been used in conjunction with BERT (Ben-David et al. [9]).

Pseudo-labeling techniques are semi-supervised algorithms that either use the same model in self-
training (Yarowsky, McClosky et al., Abney [99, 59, 2]) or multiple bootstrap models in tri-training
(Zhou and Li, Segaard [103, 90]) as guide to label the target unlabeled data. Saito et. al [81] pro-
pose an asymmetric tri-training approach. Ruder and Plank [[79] introduced a multi-task tri-training
method. Rotman and Reichart [[76] and Lim et al. [53] study pseudo-labeling with contextualized
word representations. Ye et al. [[101]] combine self-training pseudo-labeling with pretrained language
models (XLM-R, Conneau et al. [23]) and propose CFd, class aware feature self-distillation.

Pretraining and fine-tuning is a plain and uncomplicated adaptation approach. When sufficient
amount of data are available on a domain or application specific corpus, pretrain a model from scratch
is a simple and effective idea. Domain specific models with BERT architecture like BioBERT (Lee
et al. [45]) and SciBERT (Beltagy et al. [8]) do so. Sun et al. [91] propose further pretraining of
BERT with target domain data and multi-tasking with relevant tasks for BERT fine-tuning. Xu et al.
[97] introduce a review reading comprehension task and a post-training approach for BERT with an
auxiliary loss on a question-answering task. Continue pretraining on multiple phases, from general
to domain specific (DAPT) and task specific data (TAPT), further improve performance of PLMs, as
shown by Gururangan et al. [36]. AdaptaBERT (Han and Eisenstein [38]) propose a second phase of
unsupervised pretraining of a BERT based system in a unsupervised domain adaptation context.

Recent works have highlighted the merits of using Language Modeling as an auxiliary task during
fine-tuning. Chronopoulou et al. [22] use an auxialiary LM loss to avoid catastrophic forgetting in
transfer learning and Jia et al. [4(Q] adopt this approach for cross-domain named-entity recognition.
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Figure 5.1: a) BERT [24] is pretrained on English Wikipedia and BookCorpus with the Masked Lan-
guage Modeling (MLM) and the Next Sentence Prediction (NSP) tasks. (b) We continue pretraining
BERT on unlabeled target domain data with the MLM task. (c) We fine-tune the model using both a
classification loss on the labeled source data and MLM loss on the unlabeled target data.

5.3 Problem Definition

Let X be the input space and Y the set of labels, for binary classification tasks Y = {0, 1}. In domain
adaptation there are two different distributions over X x Y, called the source domain Dg and the
target domain Dy. In the unsupervised setting labels are provided for samples drown from Dg, while
samples drown from Dr are unlabeled. The goal is to train a model that performs well on samples
drown from the target distribution D7. This is summarized in the following Equation:

S = (v4,yi)j—y ~ (Ds)" G5.0)
T = (z:)iZ0h ~ (D)™

where D:,)g is the marginal distribution of D7 over X, n is the number of samples from the source
domain and m is the number of samples from the target domain.

5.4 Proposed Method

gives an overview of our approach to Unsupervised Domain Adaptation, consisting of two
steps. Starting from a pretrained model, we keep pretraining it on target domain data by the masked
language modeling task. On a final fine-tuning step we learn the task on source labeled data, while
we keep an auxiliary masked language modeling objective on unlabeled target data.

Figure 5.1| gives an overview of the proposed method. Starting from a pretrained in general corpora
model, we keep pretraining it on target domain data by the masked language modeling task. On the
final fine-tuning step we update the model weights using both a classification loss on the labeled
source data and Masked Language Modeling loss on the unlabeled target data.

BERT [24] is based on the Transformer architecture [92]. It is trained as a Masked Language
Model (MLM), by predicting masked words in the input. Additionally it uses a Next Sentence Pre-
diction (NSP) loss, which classifies whether the pair of input sentences are continuous or not. During
BERT pretraining, input tokens are randomly selected to be masked. The MLM task consists of pre-
dicting the most probable tokens for the masked positions. For fine-tuning, if a labeled dataset is
available, a pretrained BERT model can be fine-tuned for the downstream task in a supervised man-
ner with the addition of an output layer.
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We initialize a model using the weights of a generally pretrained BERT and continue pretraining
on an unsupervised set of in-domain data, in order to adapt to the target domain. This step does not
require use of supervised data, we continue using the MLM objective for training.

For the final fine-tuning step, shown in we perform supervised fine-tuning on the source data,
while we keep the MLM objective on the target data as an auxiliary task. Following standard practice,
we use the [CLS] token representation for classification. The classifier consists of a single feed-
forward layer.

During this procedure the model learns the task through the classification objective using the
labeled source domain samples, and simultaneously it adapts to the target domain data through the
MLM objective. The model is trained on the source domain labeled data for the classification task
and target domain unlabeled data for the masked language modeling task. We mask only the target
domain data. During training we interleave source and target data and feed them to the BERT encoder.
Features extracted from the source data are then used for classification, while target features are used
for Masked Language Modeling.

The joint loss is the sum of the classification loss Lo and the auxiliary MLM loss L.
Lcpris calculated on labeled examples from source domain, while L, 57 is calculated on unlabeled
examples from target domain. We train the model over mixed batches, that include both source and
target data, used for the respected tasks.

The mixed loss is presented in Eq. 5.2.

L(s,t) = ALcrp(s) + (1 = A) Ly (t) (5.2)

We give n labeled source samples s ~ Dg and m unlabeled target samples t ~ D7 on a batch. The
weighting factor A is selected as the proportion of labeled source data over the sum of labeled source
and unlabeled target data, as stated in Eq. 5.3

)\:n—i—m (5.3)

5.5 Experiments

5.5.1 Dataset

We evaluate our method on the Amazon reviews multi-domain sentiment dataset [[14], a standard
benchmark dataset for domain adaptation. Reviews with one or two stars are labeled as negative, while
reviews with four or five stars are labeled as positive. The dataset contains reviews on four domains:
Books (B), DVDs (D), Electronics (E) and Kitchen appliances (K), yielding 12 adaptation scenarios of
source-target domain pairs. Balanced sets of 2000 labeled reviews are available for each domain. We
also use 19809 Books, 19798 DVDs, 19937 Electronics and 17805 Kitchen unlabeled reviews. For
validation we use 20% of both labeled source and unlabeled target data. When a domain is considered
as target for a particular adaptation scenario, all the available labeled data from this domain are used
for testing.

5.5.2 Implementation Details

We use BERTB sk (uncased) as the Language Model on which we apply domain-specific pre-
training. The BE RT'p o5 original English model is a 12-layer, 768-hidden, 12-heads, 110M param-
eter neural network architecture, trained on the BooksCorpus with 800M words and a version of the
English Wikipedia with 2,500M words. We follow the original proposed masking procedure, that is
randomly masking 15% of WordPiece tokens [9€]. If a token in a specific position is selected to be
masked 80% of the time is replaced with a [M ASK]| token, 10% of the time with a random token
and 10% of the time remains unchanged. The maximum sequence length is set to 512 by truncation
of inputs. During extended domain pretraining we train with batch size of 8 for 3 epochs. During the
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fine-tuning step we train with batch size of 36, consisting of 1 source sub-batch of 4 samples and 8
target sub-batches of 4 samples each. We update parameters after every 5 accumulated sub-batches.
For the domain adversarial experiment we set the weight factor of Eq. 5.4 to 0.01. We also exper-
imented with A = 1, A = 0.1 and a sigmoid schedule for A\. We report best results. We do not use
an early stopping criterion, as we found it harming for the performance, instead we train for fixed 10
epochs.
Models are developed with PyTorch [66] and HuggingFace Transformers [93].

5.5.3 Baselines - Compared methods

We select three state-of-the-art methods for comparison. Each of the selected methods represents a
different line of UDA research, namely domain-adversarial training BERT-DAAT [26], self-training
XLM-R based p+CFd [[101] and pivot-based R-PERL [9]. Moreover we report results for the fol-
lowing settings:

e Source only: We fine-tune BERT on source domain labeled data, without using target data.

e Domain Pretraining (DPT): We use the target domain unlabeled data in order to continue
pretraining of BERT with MLM loss and then fine-tune the resulting model on source domain
labeled data. data.

e Domain Adversarial (DAT): Domain Adversarial Training with BERT. Starting from the do-
main pretrained BERT, we then fine-tune the model with domain adversarial training as in
ganin2016domain. For a BERT model with parameters 6, with Lo, g being the prediction loss,
L 4py being the domain loss and )4 being a weighting factor, domain adversarial training con-
sists of the minimization criterion described in Eq. 5.4

mgin Lerr(0; Ds) — AaLapv(8; Ds, Dr) (5.4)

e Proposed: The proposed method, where we fine-tune the model created in the domain pretrain-
ing step using the mixed loss in Eq. 5.2.

5.6 Results and Discussion

R-PERL DAAT p+CFd | BERT SO BERT DAT BERT DPT Proposed
B—D | 8718% 909% 87.7% 90.5% 90.7% 90.7% 91.3%
B—FE | 87.2% 88.9% 91.3% 91.3% 91.1% 90.9% 91.2%
B—-K | 90.2% 88.0%  92.5% 91.6% 92.8% 92.3% 92.9%
D — B | 856% 89.7%  91.5% 90.2% 90.6% 90.5% 91.4%
D—FE | 893% 90.1% 91.6% 88.5% 88.8% 91.7% 92.9%
D — K | 90.4% 88.8%  92.5% 90.5% 92.0% 92.0% 94.3%
E—B | 90.2% 89.6%  88.7% 87.8% 89.4% 88.3% 90.6%
E—D | 848% 89.3% 882% 87.2% 86.5% 87.3% 88.4%
E—-K | 912% 91.7% 93.6% 92.8% 94.6% 94.1% 94.8%
K—=DB | 8.0% 90.8% 89.8% 88.6% 83.6% 89.4% 89.4%
K—D | 8.6% 905% 87.8% 87.1% 83.6% 88.0% 89.2%
K—=FE | 912% 932% 92.6% 91.9% 92.4% 93.1% 94.3%
Average | 87.50% 90.12% 90.63% | 89.83% 89.68% 90.69% 91.73%

Table 5.1: Accuracy of domain adaptation on twelve domain pairs of Amazon Reviews Multi Domain
Sentiment Dataset.
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5.6.1 Comparison to state-of-the-art

We present results for all 12 domain adaptation settings in Table .1. The last line of Table
contains the macro-averaged accuracy over all domain pairs. The proposed method surpasses all
other techniques, yielding an absolute improvement of 1.90% over the SO BERT baseline. For fair
comparison, we compare only with methods based on pretrained models, mostly BERT. We observe
that BERT fine-tuned only with the source domain labeled data, without any knowledge of the target
domain, is a competitive baseline. This source-only model even surpasses state-of-the-art methods
developed for UDA, e.g. R-PERL [9].

We try to reproduce the domain adversarial training procedure and present results in the DAT
BERT column of Table f.1. Adversarial training proved to be unstable in our experiments. After
extensive hyper-parameter tuning of the adversarial loss weighting factor )4, we report the best results.
We note that adversarial training does not manage to outperform the source-only baseline.Note that
we did not have to perform extensive tuning for the other methods, including the proposed.

Domain pretraining increases the average accuracy with an absolute improvement of 0.86% over
the source-only baseline. Continuing MLM pretraining on the target domain data leads to better model
adaptation, and therefore improved performance, on the target domain. This is consistent with previ-
ous works on supervised [36, 97, 91] and unsupervised settings [38, 26].

The proposed method aims to learn the task (i.e. sentiment classification) from the available
labeled data on the source domain, while at the same time adapting to the language of the target domain.
This yields an additional 1.04% absolute improvement of average accuracy over the extended domain
pretraining. Keeping the MLM loss during fine-tuning therefore, leads to better adaptation and acts
as a regularizer that prevents the model from overfitting on the source domain.

The proposed method, surpasses in terms of macro-average accuracy all other proposed approaches
for unsupervised domain adaptation on the Amazon reviews multi-domain sentiment dataset. Specif-
ically, our method is by 1.08% better than the previous state-of-the-art gained by p+CFd [[101], which
is the best pseudo-labeling approach, by 1.59% DAAT [2¢] which is the best proposed domain adver-
sarial method and by 4.21% R-PERL [9].

5.6.2 Sample efficiency
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Figure 5.2: Average accuracy for different amount of target domain unlabeled samples of: (1) Domain
Pretraining (2) Domain Adversarial Training and (3) Proposed.

We further investigate the impact of using different amount of target domain unlabeled data on
model performance, to study the sample efficiency of the proposed method. We experiment with
settings of 500, 2000, 6000, 10000 and 14000 samples, by randomly limiting the number of unlabeled
target domain data. For each setting we conduct three experiments with BERT models: (1) DPT, (2)
DAT and (3) the proposed. When no target data are available, all methods are equivalent to a source
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only fine-tuned BERT. Again, we do not tune the hyper-parameters for DPT or the proposed method.
Fig. shows the average accuracy on the twelve adaptation scenarios of the studied dataset. We
see that the proposed method produces robust performance improvement when we limit the amount
of target data, indicating that it can be used in low-resource settings. However, training BERT in a
domain adversarial manner shows instabilities. This is further discussed in Section 5.7.

5.6.3 On the stopping criteria for UDA training

A common problem when performing UDA is the lack of target labeled data that can be used for
hyperparameter validation. For example, Ruder and Plank [[79] use a small set of labeled target data
for validation, putting the problem in a semi-supervised setting. When training under a domain shift,
optimizing performance on the source data may not yield optimal performance for the target data.

] Stopping Criterion Epochs Av. Acc.
Fixed 1 90.98
Fixed 3 91.65
Fixed 10 91.75
Min source loss 10, patience 3 91.30
Min mixed loss 10, patience 3 91.73

Table 5.2: Comparison of average accuracy for various validation settings.

To illustrate this, we examine if the minimization of the mixed loss can be used as a stopping
criterion for UDA training. We compare five stopping criteria: (1) fixed training for 1 epoch, (2) fixed
training for 3 epochs, (3) fixed training for 10 epochs, (4) stop when the minimum classification loss
is reached for the source data and (5) stop when the minimum mixed loss ( Eq. 5.2) is reached. For (4)
and (5) we train for 10 epochs with patience 3. We report average accuracy of the five stopping criteria
over the twelve adaptation scenarios of Amazon Reviews dataset on Table 5.2, Training for a fixed
number of 10 epochs and stopping when the minimum mixed loss perform best, yielding comparable
accuracies of 91.75 and 91.73 respectively. Note that stopping when the minimum source loss stops
the fine-tuning process too soon and does not allow the model to learn the target domain effectively.
Overall, we observe that the mixed loss can be effectively used for early stopping, regularizing the
model and alleviating the need for extensive search for the optimal number of training steps. We
postulate, this is an indication that the mixed loss can be successfully used for model validation and
low mixed loss is indicative of successful model validation.

5.6.4 Visualization of features

We present t-SNE plots of the representations learned by different methods on D — K task in
re 5.3. These are the [C'LS] token representations of labeled source domain training data and of
target domain test data. In we see that domain adversarial training introduces significant
distortion in the semantic space, which is reflected in model performance. In we present
the representations created by directly fine-tuning BE RT5 4sE on source domain data. As expected
source positive and negative samples are well separated. On the contrary, target positive and target
negative samples, that follow in general the respective source clusters, in addition share a common in-
distinguishable area. In we show the representations obtained from BERT that was firstly
pretrained on target unlabeled data and then fine-tuned on source domain data. That second repre-
sentation follows the previous pattern, although we observe that the indistinguishable area of target
positive and negative data points is significantly reduced. In are the feature representa-
tions obtained by our proposed method. Blue and yellow data points are better separated than in the
previous cases and the region where mix together is smaller. So, positive and negative samples from
the target domain are well distinguished and part of corresponding clusters with training source data
points. That is, the proposed model adapted in a better way to the unsupervised target domain task.
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Figure 5.3: Visualization of BERT features for UDA: Reduced 2D representations of BERT [C'LS]
features using t-SNE for the D — K task.

5.7 On the limitations of Domain Adversarial Training

5.7.1 Background Theory

Ben-David et al. [[12, 10] present a theory of learning from different domains. A key outcome of
their work is the following theorem.

Theorem 1 [[12, [10] Let H be the hypothesis space and let Dg, D7 be the two domains and €g, e
be the corresponding error functions. Then for any h € H:

er(h) < es(h) + %dHAH(DSa Dr)+C (5.5)

where dgap(Dg, Dr) is the HA H-divergence [#3] between the two domains, that is a measure of
distance between domains that can be estimated from finite samples.

Eq. 5.9 defines an upper bound for the expected error er(h) of ahypothesis & on the target domain as
the sum of three terms, namely the expected error on the source domain eg(h), the divergence between
the source and target domain distributions %d uam(Dg, Dr) and the error of the ideal joint hypothesis
C. When such an hypothesis exists, the term is considered relatively small and in practice ignored.
The first term, bounds the expected error on the target domain by the expected error in the source
domain and is expected to be small, due to supervised learning on the source domain. The second
term, gives a notion of distance between the source and target domain extracted features. Intuitively
this Equation states: “if there exists a hypothesis & that has small error on the source data and the
source feature space is close to the target feature space, then this hypothesis will have low error on
the target data”. Domain Adversarial Training aims to learn features that simultaneously result to low
source error and low distance between target and source feature spaces based on the combined loss in

Eq.b4.
5.7.2 A-distance only provides an upper bound for target error

According to [[12] the H A H-divergence can be approximated by proxy A-distance, that is defined
by given the domain classification error e.

da =2(1—2min{e, 1 —e}) (5.6)
We calculate an approximation of the distance between domains. Following prior work [30, 80]
we create an SVM domain classifier. We feed the SVM with BERT’s [C'LS] token representations,

measure the domain classification error, and compute A-distance as in Eq. 5.6. We train the domain
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classifier on 2000 samples from each source and target domains. Fig. 5.4 shows the A-distance in
comparison to the target error, averaged over the twelve available domain pairs using representations
obtained from four methods, namely BERT SO, DAT BERT, DPT BERT and the proposed method.
DAT BERT minimizes the distance between domains. DPT BERT also reduces the A-distance, to
similar levels with the domain adversarial model, without aiming to achieve so. To our surprise we
found that, although it achieves the lowest error rate, the proposed method does not significantly
reduce the proxy A-distance compared to the source-only baseline.

Therefore, lower distance between domains, achieved intentionally or not, does not lead to better
performance on the target domain. Additionally, optimizing performance on the target domain does
not require minimizing the distance between domains. Overall we do not observe any correlation
between the resulting A-distance and model performance on target domain. The above confirms the
results of [88], that states if the feature extraction function has high-capacity then domain adversarial
training is not sufficient for domain adaptation.

Average A-distance and average target error(%) 20

2.0

188
162
144
12 8

et

109

Average A-distance

Aver

[=) I o o]

Source Only Domain Adversarial Domain Pretraining Proposed

Bm Average A-distance EEE Average target error(%)

Figure 5.4: Comparison of average A-distance and average target error rate of different methods over
all source - target pairs of the Amazon reviews dataset.

Domain adversarial trained BERT minimizes the distance between domains. Extended domain
pretrained BERT also reduces the A-distance, to similar levels with the domain adversarial model,
without aiming to achieve so. We surprisingly found that, although extended domain pretraining
reduces distance between domains, our proposed method does not significantly reduce the proxy A-
distance compared to the source-only baseline. We could assume that the BERTp 45 model is of
enough capacity to solve both the desired task on target domain and the domain classification task.
Therefore, lower distance between domains, achieved intentionally or not, does not lead to better
performance on the target domain. Additionally, optimizing performance on the target domain does
not require minimizing the distance between domains. Overall we do not observe any correlation
between the resulting A-distance and model performance on target domain.

Therefore, lower distance between domains, achieved intentionally or not, does not lead to better
performance on the target domain. Additionally, optimizing performance on the target domain does
not require minimizing the distance between domains. Overall we do not observe any correlation
between the resulting A-distance and model performance on target domain.

5.7.3 Instability of Domain Adversarial Training

Domain adversarial training [30] faces some critical limitations that make the method difficult to
be reproduced due to high hyper-parameter sensitivity and instability during training.

Such limitations have been highlighted by other authors in the UDA literature. For example,

according to Shen et al. [86] when a domain classifier can perfectly distinguish target from source
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representations, there will be a gradient vanishing problem. Shah et al. [83] state that domain ad-
versarial training is unstable and needs careful hyper-parameter tuning for their experiments. Wang
et al. [93] report results over three multi-domain NLP datasets, where domain adversarial training in
conjunction with BERT under-performs. Ruder and Plank [[79]found that the domain adversarial loss
did not help for their experiments on the Amazon reviews dataset.

In our experiments we note that domain-adversarial training results to worse performance than
source only training. Furthermore, we experienced the need for extensive tuning of the A; parameter
from Eq. 5.4 every time the experimental setting changed (e.g. when testing for different amounts of
available target data). This can be seen in Figure 5.3, where we see visualizations of BERT features
for UDA performed using Domain adversarial training [Figure 5.34, source only Figure 5.3, domain
pretraining and the proposed method Figure 5.3d. We see that domain adversarial training
introduces significant distortion in the semantic space, which is reflected in model performance.

One could easily observe that the maximization of the L 4 py term could be achieved by predicting
the wrong domain label for each example given to the domain discriminator. Specifically, there is a
failure condition where the model just flips all the domain labels in order to maximize L 4py . Such
a prediction still makes the learned features domain-dependent, as the model achieves distinguishing
domains, and only fails to name the proper label. Empirically we observed that kind of behavior when
trying to train BERT on a domain adversarial manner, and only extensive hyper-parameter tuning
could alleviate this issue.

Therefore, given that the there are no strict theoretical guarantees and the practical considerations,
domain adversarial training may not be the best approach in every UDA scenario.

5.8 Conclusions and Future Work

In this work we explore unsupervised domain adaptation for sentiment classification and propose a
new method to address the issue. We found that the well-spread domain adversarial technique facing
theoretical and empirical limitations in the era of high-capacity transformer based pretrained language
models, leading to training instabilities and to no improvement for the studied task. We propose a
method, consisting of two steps, extended domain-specific pretraining and fine-tuning with auxiliary
masked language modeling. Experiments on the well studied benchmark dataset of multi-domain
Amazon reviews, yield remarkably improved results, that outperform state-of-the art-methods from
all long-established approaches to the matter.

The proposed method could also be applied to other tasks under domain shift, such as sequence
classification, question answering and part-of-speech tagging. Another field of application could be
temporal and style adaptation. Moreover it would be of significant added-value to apply the method
on applications over the observed deployment shift between labeled training and unlabeled real data.
It would be of great importance to further investigate relevant auxiliary tasks for both pretraining
and fine-tuning, as well as ways of combining all losses. In the future we would like to explore the
applicability of our method to supervised scenarios, where the MLM auxiliary task could be used over
unlabeled data coming from the same or a similar domains.
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Chapter 6

Conclusions & Future Work

6.1 Conclusions

Unsupervised Domain Adaptation of pretrained language models is a challenging problem with
direct real world applications. Besides the multi-domain knowledge encoded in a modern pretrained
model, learning tasks from out-of-domain data remains a challenging issue.

Unsupervised Domain Adaptation approaches in the literature can be grouped in three major cate-
gories, namely pseudo-labeling techniques, domain adversarial training, and pivot-based approaches.
This work is not part any of these categories, rather we aim to optimize the fine-tuning procedure
of pretrained language models for learning under domain-shift. Pretraining and fine-tuning provide
a straightforward framework for adaptation, while the usage of language modeling and its variants
exploit the dynamics of models as unsupervised multitask learners.

In this work we propose a plug and play training strategy, which is able to improve performance
in the target domain. That is fine-tuning BERT with a mixed classification and Masked Language
Model loss, that can adapt to the target domain distribution in a robust and sample efficient manner.
The proposed method aims to learn the task (i.e. sentiment classification) from the available labeled
data on the source domain, while at the same time adapting to the language of the target domain.
Keeping the MLM loss during fine-tuning, leads to better adaptation and acts as a regularizer that
prevents the model from overfitting on the source domain

The proposed method achieves state-of-the-art results across 12 adaptation settings in the multi-
domain Amazon reviews dataset. We observe that BERT fine-tuned only with the source domain
labeled data, without any knowledge of the target domain, is a competitive baseline. We found con-
tinue pretraining in domain specific data to help adaptation in accordance to related previous work
and we have incorporated this step into our approach. In contrast we found domain adversarial train-
ing to under-perform the baseline even after extensive parameter tuning. The proposed method, sur-
passes in terms of macro-average accuracy all other approaches for unsupervised domain adaptation
representing respected lines of work and achieved state-of-the-art results, yielding a 1.1% absolute
improvement of average accuracy.

When training under a domain sift, optimizing performance on the source distribution may not
imply optimizing performance on the unlabeled target distribution. Our method produces robust re-
sults with little hyper-parameter tuning and the proposed mixed-loss can be used for model validation,
allowing for fast model development and alleviating the need for extensive experimentation to find
the optimal number of training steps.

Furthermore, the proposed method scales with the amount of available unsupervised data from
the target domain, allowing for adaptation in low-resource settings. Even with little amount of target
data keeping an MLM objective during fine-tuning leads to significantly improved adaptation.

We conclude this work by performing an discussion on the dominant Domain Adversarial training
approach. We find that Domain Adversarial Training under-performs for our experiments, while it
exhibits instability during training. We found minimizing A-distance between domains to be not
sufficient when using a high capacity model like BERT. We do not observe any correlation between
the resulting A-distance, that domain adversarial training minimizes, and model performance on target
domain. Overall we faced various instabilities when training BERT in a domain adversarial manner,
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that are in line with observations mentioned in previous work. We propose that this instability results
from the introduction of the adversarial term and can be alleviated only with careful hyper-parameter
selection, while the under-performance can be due to the lack of strict theoretical guarantees of this
method.

6.2 Future Work

In the future various extensions and variations of our work could be considered. We divide these
works into three major categories. The first is about applicability of our work on domain adaptation
on other tasks, beside sentiment analysis, and other types of adaptation. A second line of work could
explore different settings for domain adaptation. A third category is related with the specific parts of
our proposed method.

The proposed method could be applied to other tasks under domain shift. Evaluation on the bench-
mark Amazon reviews dataset yields promising results, nevertheless it would be useful to explore
applicability to other tasks. Previous work evaluates domain adaptation primarily on sentiment anal-
ysis. Tasks also considered could be language identification [47], natural language inference [36, 73],
part-of-speech tagging [38, 79, 67, [100], dependency parsing [82, [76, 49], name entity recognition
[@4, 41, 67] and relation extraction [28, 87].

To the above list of tasks we would add temporal and style adaptation. Language evolves over
time, but used corpora consist exclusively of text written since the late 20th century. It is therefore
crucial to determine whether pretrained models are transferable to texts from other periods or other
stylistic traditions, such as historical documents. Temporal adaptation, to older or newer versions
of specific data for which labels are unavailable. Even more, the method could be customized for
style adaptation scenarios. Usually large labeled corpora are available on specific styles, for example
Amazon reviews, although there is a need for high accuracy on other styles of text, as for example
tweets or official documents.

Working on the development shift of data distributions would be an approach of high added-
value. While the vast majority of deep learning systems are trained and evaluated on a specific data
distribution, real world models are often used in out-of-domain settings which results in performance
degradation. The used dataset simulates this situation but differs significantly. If available data were
available testing the applicability of the proposed method to real scenarios faced by the industry would
confirm the importance of the unsupervised domain adaptation research.

This work deals specifically with the unsupervised setting of domain adaptation, with a single
source and a singe target, where labeled data are given for the source domain and unlabeled data for
the target domain. In future we plan to expand our research to other settings. A multi-domain setting,
where data from many sources are available, could be considered. Multi-source domain adaptation is a
extension in which the labeled data may be collected from multiple sources with different distributions.

A common problem when performing UDA is the lack of target labeled data that can be used for
hyperparameter validation. Semi-supervised settings, with few labeled data on target domain [[79],
specially used for validation purposes, could be considered. With such labeled samples available it is
of added value to compare the performance of the proposed mixed loss as a stopping criterion with a
classification loss on the target domain, calculated on the available validation set.

Moreover we are interested in source free settings for domain adaptation. In those settings the goal
is to develop an accurate system for a target domain when annotations exist for a related domain but
cannot be distributed and instead a model already trained on that annotations is available. Data sharing
restrictions are common in datasets, specially in clinical NLP, where patient health information must
be protected. Source free domain adaptation aims to develop intelligent systems in the face of data
sharing constraints.

In addition, we plan to extended our work in adapting pretrained models in a supervised setting.
In this work we found beneficial to keep an MLM objective during fine-tuning in order to achieve
unsupervised domain adaptation. Usually some in-domain labeled data are available, while domain
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specific unlabeled data are easily accessible. Those unlabeled data could be used for an unsupervised
task during fine-tuning, in a multitasking manner. Specifically we are interested in checking if aux-
iliary masked language modeling could serve as an effective regularizer during fine tuning of BERT
or other pretrained models on in-domain settings. That could be the case in domains, where some
labeled data are available but also are even more unlabeled data.

Finally, an interesting extension we would like to work on is auxiliary tasks and losses for both
pretraining and fine tuning of language models. BERT is pretrained with the Masked Language Mod-
eling and the Next Sentence Prediction Task. Some models such as RoOBERTa [56] rely solely on a
MLM variant, while others [93]] incorporate one or more different auxiliary loss functions. Multitask-
ing is mainly applied during pretraining, given the results of the present work using more tasks during
fine-tuning is likely to yield positive results. Combining tasks is also a challenging issue during mul-
titasking. Summing is a simple and uncomplicated idea but cannot accommodate tasks that require
different input structures. Alternating losses or incrementally add tasks and summing the losses from
all added tasks, could be investigated among other approaches. Overall we propose exploring possible
auxiliary tasks and different ways to include multiple tasks into pretraining and fine-tuning.
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