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Περίληψη

H παρούσα διδακτορική διατριβή μελετά παίγνια, δυναμικά συστήματα και υπολογιστικά προβλήματα 
που σχετίζονται με τη διαμόρφωση άποψης. Η εργασία αυτή κινείται σε τρείς βασικούς άξονες. Ο 
πρώτος άξονας αφορά στη μελέτη των ιδιοτήτων σύγκλισης αλγόριθμων επιλογής στρατηγικών σε 
παίγνια διαμόρφωσης άποψης που εξελίσσονται στο χρόνο. Εξετάζονται εκτενώς οι ιδιότητες 
σύγκλισης σε ισορροπία Nash όταν η ανανέωση των απόψεων (στρατηγικών) γίνεται βάσει 
αλγορίθμων best response και no-regret ακόμα και σε περιπτώσεις που οι παίκτες έχουν μερική γνώση 
των απόψεων (στρατηγικών) των άλλων παικτών. Ο δεύτερος άξονας αφορά στην επέκταση των άνω 
φραγμάτων για το Τίμημα της Αναρχίας σε παίγνια διαμόρφωσης άποψης όταν οι απόψεις κάποιων 
παικτών μπορεί να δουν απωθητικά για τις απόψεις άλλων παικτών. Αποδεικνύεται ότι το Τίμημα της 
Αναρχίας φράσσεται από μία καθολική σταθερά που δεν εξαρτάται από τον αριθμό των παικτών. Στον 
τρίτο άξονα της εργασίας, εξετάζεται μία δυναμική εκδοχή του προβλήματος k-median στην οποία οι 
θέσεις των πελατών βρίσκονται στην ευθεία και εξελίσσονται στον χρόνο. Για το πρόβλημα αυτό 
παρουσιάζεται ένας αλγόριθμος πολυωνυμικού χρόνου ο οποίος στηρίζεται
στην επίλυση ενός κατάλληλου γραμμικού προγράμματος.

Λέξεις κλειδιά: Παίγνια Διαμόρφωσης Άποψης, Αλγοριθμική Θεωρία Παιγνίων, Κυρρτή 
Βελτιστοποίηση



Abstract

This thesis studies issues related to problems arising in opinion dynamics
and opinion formation games. The way people form their opinions can be
modelled as a no-cooperative game where each selfish agent strategically
selects her opinion so as to minimize her individual disagreement cost. When
such a game is repeatedly played over time, agents repeatedly update their
opinions (according to the opinions of the other) leading to a dynamics of
the opinions.

We examine extensions of the well known opinion dynamics Friendkin
Johnsen model and Hegselmann Krause model. Our variants are motivated
by natural social phenomena, such as limited information exchange, presence
of social structure and influence by global trends, that were not captured by
the original models. In the considered settings the convergence properties of
the original models are seriously under question. Through the use of ideas
and techniques develloped in the context of Convex optimization, we are able
to analyze the dynamic behavior of the opinions and to study the quality of
equilibrium points in terms of social disagreement cost.

Keywords: Opinion Formation Games, Algorithmic Game Theory, Convex
Optimization
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Chapter 1

Extended Abstract in greek

Η μελέτη του τρόπου με τον οποίο οι άνθρωποι σχηματίζουν απόψεις έχει μακρά

ιστορία [92] . Η διαμόρφωση απόψεων είναι μια δυναμική διαδικασία στην οποία
κοινωνικά συνδεδεμένοι άνθρωποι ανταλάσσουν πληροφορίες και αυτό οδηγεί

στην αλλαγή των απόψεων τους στην πάροδο του χρόνου. Σήμερα, η έλευση

του διαδικτύου και των μέσων κοινωνικής δικτύωσης καθιστά αυτή τη μελέ-

τη ακόμα πιο σημαντική. Η κατανόηση των δυναμικών διαμόρφωσης άποψης

βρίσκει τεράστιες πρακτικές εφαρμογές στην πρόβλεψη εκλογικών αποτελε-

σμάτων, στη διαφήμιση κ.λ.π. Στην προσπάθεια συστηματοποίησης αυτής της

μελέτης, τα τελευταία χρόνια έχουν προταθεί διάφορα μαθηματικά μοντέλα για

την διαμόρφωση άποψης [60, 79, 89, 59] .
Η κοινή παραδοχή των περισσότερων μοντέλων, η οποία χρονολογείται από

το DeGroot [60], είναι ότι οι απόψεις εξελίσσονται ως ένα δυναμικό σύστημα
επαλαμβανόμενου μέσου όρου. Πιο συγκεκριμένα οι κοινωνικές οντότητες μο-

ντελοποιούνται ως πράκτορες που σε κάθε βήμα ανανεώνουν τις απόψεις στο

μέσο όρο των απόψεων του κοινωνικού τους κύκλου. Αρχικά ο κάθε πράκτορας

έχει μια τιμή που αντιπροσωπεύει την αρχική του άποψη. Σε κάθε γύρο, όλοι οι

πράκτορες υιοθετούν ως νέα άποψη ένα κυρτό συνδυασμό των απόψεων των άλ-

λων πρακτόρων στο προηγούμενου γύρο. Με αυτό τον τρόπο δημιοργείται μία

δυναμική των απόψεων στο χρόνο. Οι συντελεστές αυτού του κυρτού συνδυα-

σμού μπορεί να διαφέρουν από πράκτορα σε πράκτορα και στην πραγματικότητα

μπορεί να αλλάζουν με την πάροδο του χρόνου.
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Συστήματα επαλαμβανόμενου μέσου όρου

1: n πράκτορες.
2: xi(0) ∈ [0,1], η αρχική άποψη του πράκτορα i.
3: Στο γύρο t ≥ 1, κάθε πράκτορας i ανανεώνει την άποψη του:

xi(t) =
n∑
j=1

pij(t)xj(t− 1)

όπου pij(t) ≥ 0 και
∑n
j=1 pij(t) = 1

Ο ακριβής ορισμός των συντελεστών pij(t) γίνεται στο κάθε συγκεκριμένο
μοντέλο. Για παράδειγμα στο μοντέλο DeGroot οι συντελεστές είναι σταθεροί
και αμετάβλητοι στο χρόνο (pij(t) = pij). Ενώ στο μοντέλο Hegselmann
Krause ο κάθε πράκτορας βρίσκει τους πράκτορες με άποψη σε απόσταση το
πολύ 1 από την δική του και υιοθετεί ως νέα άποψη το μέσο όρο αυτών των
απόψεων.

Σε πρώτη ματιά τέτοια δυναμικά συστήματα ίσως μοίαζουν κάπως απλοϊκά

για την περιγράφη περίπλοκων φυσικών διαδιασιών όπως είναι η διαμόρφωση

άποψης. Αν και δεν είναι εφανές σε πρώτο χρόνο, τέτοια δυναμικά συστήματα

έχουν τεράστια εκφραστική δύναμη.

Αρχικά πειραματικές μελέτες σε μικρές κοινότητες στην Ινδία έχουν επα-

ληθεύσει την προγνωστική δύναμη τέτοιων μοντέλων στον τρόπο σχηματισμού

των άποψεων [7]. Επίσης τέτοιου είδους δυναμικά συστήματα παρουσιάζουν
μεγάλη επιτυχία στην μοντελοποίηση διάφορων φυσικών διαδικασίων που ξε-

φεύγουν από τα στενά όρια της διαμόρφωσης άποψης. Μερικές πολύ ενδιαφέ-

ρουσες εφαρμογές αφορούν στην μοντελεποίηση της συμπεριφοράς των ζώων.

Η δημιουργία σμηνών από πουλιά [36, 124], ο συντονισμός κίνησης κοπαδιών
απο ψάρια [118, 121] και ο συντονισμός των σημάτων φωτός των πυγαλαμπίδών
[111] μπορούν να περιγραφούν με αρκετά ακριβή τρόπο από δυναμικά συστή-
ματα επαλαμβανόμενου μέσου όρου, παρόμοια με αυτά που περιγράφουν την

διαμόρφωση των απόψεων. ΄Αλλες ενδιαφέρουσες εφαρμογές τέτοιων συστημά-

των αφορούν στον συντονισμό δικτύων αισθητήρων, στην εξέλιξη κυτταρικών

πληθυσμών και στον συντονισμό σημάτων βηματοδότη καρδιάς [34].
Εκτός από τις τεράστιες εφαρμογές των συστημάτων επαλαμβανόμενου μέ-

σου όρου στην μοντελεποίηση φυσικών διαδικασιών, τέτοια συστήματα βρί-

σκουν εφαρμογή και στό χώρο της Θεωρητικής Πληροφορικής. Σύγχρονες

επιστημονικές εργασίες δέιχνουν πως τέτοια συστήματα μπορούν να λύσουν

υπολογιστικά προβλήματα! Για παράδειγμα, στην ερευνητική εργασία [12] σχε-
διάζεται ένα πολύ κομψό δυναμικό σύστημα επαλαμβανόμενου μέσου όρου το

οποίο λύνει το πρόβλημα της ανίχνευσης κοινότητας σε γραφήματα. Επίσης
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στην εργασία [34] αποδεικνύεται πως τέτοια συστήματα μπορούν να είναι ακόμη
και Turing complete! ΄Αλλες ενδιαφέρουσες αλγοριθμικές εφαρμογές τέτοιων
συστημάτων μπορούν να βρεθούν στις εργασίες [95, 97].
Λόγω των παραπάνω εφαρμογών, η μελέτη της δυναμικής των μοντέλων

διαμόρφωσης άποψης έχει προσελκύσει έντονα το επιστημονικό ενδιαφέρον.

Αυτή η ερευνητική γραμμή προσπαθεί να κατανοήσει την παρακάτω ερώτηση:

Πότε τα εν λόγω συστήματα σύγκλινουν σε σταθερά σημεία;

Δυστυχώς η μεγάλη εκφραστική δύναμη των συστημάτων επαλαμβανόμε-

νου μέσου όρου, επιφέρει ως αποτέλεσμα την δυσκολία στην ανάλυσης τους.

Μικρές παραλλαγές των μοντέλων οδηγούν σε εντελώς διαφορετικές δυναμικές

συμπεριφορές. Αν και υπάρχουν αποτελέσματα που χαρακτηρίζουν ιδιότητες

σύγκλισης γενικών κλάσεων τέτοιων συστημάτων [91, 105, 35] δεν υπάρχει μια
ενοποιημένη θεωρία που να περιγράφει τη συμπεριφορά τους. Στην πραγματι-

κότητα κάθε μοντέλο αναλύεται με ξεχωριστό τρόπο και οι ιδέες και τεχνικές

διαφέρουν σημαντικά.

Η παρούσα διδακτορική διατριβή ασχολείται με την μελέτη ιδιοτήτων σύ-

γκλισης γενικεύσεων των μοντέλων Friedkin Johnsen και Hegselmann Krause.
Τα μοντέλα αυτά αποτελούν από τα σημαντικότερα και πιο εκτενώς μελετημέ-

να μοντέλα για την διαμόρφωση άποψης. Στο μεγαλύτερο μέρος της έρευνας

που πραγματοποιήθηκε στα πλαίσια αυτής της διδακτορικής διατριβής, χρησιμο-

ποιήσαμε εργαλεία και τεχνικές που έχουν αναπτυχθεί στο χώρο της Κυρτής

Βελτιστοποίησης για την απόδειξη σύγκλισης των γενικεύσεων των παραπάνω

μοντέλων. Η γενικεύσεις που μελετήσαμε προέρχονται από διαισθητικές πα-

ρατηρήσεις στον τρόπο που διαμορφώνονται οι απόψεις σε μεγάλα κοινωνικά

δίκτυα και παρουσιάζονται στο τέλος του κεφαλαίου.

Το μοντέλο Friendkin Johnsen και Πάιγνια Διαμόρφωσης ΄Α-
ποψης

΄Ενα από τα σημαντικότερα μοντέλα διαμόρφωσης άποψης, προτάθηκε από τους

Friedkin και Johnsen το 1990 [79]. Το μοντέλο Friedkin Johnsen προτάθηκε
αρχικά σαν μια παραλλαγή του μοντελου DeGroot για να εξηγήσει το γεγονός
ότι ομοφωνία στις απόψεις επιτυγχάνεται σπάνια.

Σύμφωνα με το μοντέλο, κάθε πράκτορας i εκφράζει μία δημόσια άποψη
xi ∈ [0,1], ενώ παράλληλα έχει μια εσωτερική άποψη si ∈ [0,1] η οποία είναι
σταθερή και αμετάβλητη στην πάροδο του χρόνου. Το μοντέλο επίσης υποθέτει

την ύπαρξη ενός γραφήματος G(V,E,w) το οποία αναπαριστά τις κοινωνικές
σχέσεις μεταξύ των πρακτόρων. Το σύνολο των κόμβων V αντιπροσωπεύει
τους πράκτορες και το σύνολο των ακμών E τις κοινωνικές τους σχέσεις. Το
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βάρος wij μιας ακμής (i, j) ∈ E είναι πάντα θετικό, wij ≥ 0, και αντιπρο-
σωπεύει την επιρροή που ασκεί ο πράκτορας j στον πράκτορα i. Επίσης ο
κάθε πράκτορας i έχει ενα θετικό βάρος wi > 0 που αποτυπώνει την επιμονή
του πράκτορα στην εσωτερική του άποψη. Αρχικά, όλοι οι κόμβοι ξεκινούν με

κάποιες αρχικές δημόσιες απόψεις xi(0) και σε κάθε γύρο t, ανανεώνουν την
δημόσια άποψη τους xi(t) στο σταθμισμένο μέσο όρο των δημόσιων απόψεων
των γειτόνων τους και της εσωτερικής τους άποψης.

Το μοντέλο Friedkin Johnsen
1: ΄Ενα γράφημα με βάρη, G(V,E,w), |V | = n.
2: si ∈ [0,1], η εσωτερική άποψη του πράκτορα i.
3: xi(0) ∈ [0,1], η αρχική δημόσια άποψη του πράκτορα i.
4: Στο γύρο t ≥ 1 κάθε πράκτορας i ανανεώνει την δημόσια άποψη του:

xi(t) =
∑n
j=1 wijxj(t− 1) + wisi∑n

j=1 wij + wi

Το μοντέλο Friedkin Johnsen έχει ένα πολύ απλό κανόνα ανανέωσης των
απόψεων που το καθιστά εύλογο ως μοντέλο, ενώ οι βασικές του παραδοχές

ευθυγραμμίζονται με εμπειρικά αποτελέσματα του τρόπου σχηματισμού των α-

πόψεων [2, 102, 7]. Το μοντέλο Friedkin Johnsen έχει μελετηθεί εκτενώς και
έχει αποδειχθεί πως έχει ένα μοναδικό σταθερό σημείο x∗ ∈ [0,1]n στο οποίο
συγκλίνει με γραμμικό ρυθμό ανεξαρτήτως των αρχικών απόψεων [81].
Το 2011 οι Bindel, Kleinberg και Oren εισήγαγαν ένα παίγνιο διαμόρφωσης

άποψης στηριγμένο πάνω στο μοντέλο Friedkin Johnsen [17]. Στο παίγνιο αυτό
κάθε πράκτορας i είναι ένας εγωιστικός πράκτορας του οποίου η στρατηγική του
είναι η άποψη xi που δημόσια εκφράζει. Για ένα συγκεκριμένο διάνυσμα δημο-
σίων απόψεων x = (x1, . . . , xn), ο πράκτορας i λαμβάνει ένα κόστος διαφωνίας
Ci(xi, x−i), όπου

Ci(xi, x−i) =
n∑
j=1

wij(xi − xj)2 + wi(xi − si)2

Μέσα από αυτό το παιγνιοθεωρητικό πρίσμα, το μοντέλο Friedkin Johnsen
είναι το simultaneous best response dynamics του παραπάνω παίγνιου. Πιο
συγκεκριμένα ας υποθέσουμε οτι οι πράκτορες παίζουν το παραπάνω παιχνίδι

σε γύρους. Αν ο κάθε πράκτορας διαλέγει ως άποψη την άποψη με το μικρότερο

κόστος διαφωνίας βάσει των δημοσίων απόψεων των άλλων πρακτόρων στον

προηγούμενο γύρο, τότε προκύπτει το μοντέλο Friedkin Johnsen. Επίσης το
σταθερό του σημείο x∗ ∈ [0,1]n είναι η ισορροπία Nashτου παραπάνω παίγνιου.
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Αξίζει να επισημανθεί ότι οι Bindel, Kleinberg και Oren εισήγαγαν ένα
γενικότερο πλαίσιο για την μελέτη των δυναμικών διαμόρφωσης άποψης. Το

πλαίσιο αυτό υποδεικνύει ότι η διαδικασία σχηματισμού άποψεων μπορεί να πε-

ριγραφεί ως μία δυναμική ενός παιγνίου διαμόρφωσης άποψης. Αυτό το πλαίσιο

είναι γενικότερο καθώς διαφορετικές πτυχές των διαδικασίων διαμόρφωσης από-

ψης μπορούν εύκολα να μοντελοποιηθούν με την ορισμό κατάλληλων παιγνίων.

Επιπλέον το πλαίσιο αυτό επιτρέπει την μελέτη της δυναμικής συμπεριφοράς,

γνωστών παιγνιοθεωρητικών στρατηγικών (best response, no-regret, fictitious
play) σε τέτοιου είδους παίγνια.
Το μοντέλο Friedkin Johnsen έχει μελετηθεί εκτενώς τα τελευταία χρό-

νια. ΄Οπως έχουμε ήδη αναφέρει στην εργασία [81] αποδείχθηκε η ύπαρξη ενός
μοναδικού σταθερού σημείου x∗ και ο γραμμικός ρυθμός σύγκλισης του μο-
ντέλου. Στην εργασία [17], όπου εισήχθη το αντίστοιχο παίγνιο διαμόρφωσης
άποψης, ποσοτικοποιήθηκε η αναποτελεσματικότητα της ισορροπίας Nash σε
σχέση με το βέλτιστο συνολικό κόστος διαφωνίας. Αποδείχθηκε ότι το Τίμη-

μα της Αναρχίας είναι 9/8 στην περίπτωση όπου wij = wji. Αποδείχθηκαν
επίσης άνω φράγματα για το Τίμημα της Αναρχίας την περίπτωση των αβαρών

κατευθυνόμενων γραφημάτων Euler. Σε πιο πρόσφατες ερευνητικές εργασίες
[15, 47, 38] επέκτάθηκαν τα άνω φραγματα σε άλλες οικογένειες γραφημάτων
και σε πιο γενικές συναρτήσεις κόστους διαφωνίας. Στις εργασίες [140, 70, 16]
μελετήθηκαν διακριτές παραλλαγές του μοντέλου Friedkin Johnsen στις οποίες
οι πράκτορες μπορούν να υιοθετήσουν ως απόψης είτε το 0 ή 1 και εξετάστηκαν
οι ιδιότητες σύγκλισης τους. Μία πρόσφατη γραμμή έρευνας μελετά συνδυα-

στικά προβλήματα σχετικά με την τροποποίηση του σταθερού σημείου x∗ του
μοντέλου Friekdin Johnsen [82, 1, 114].

Το μοντέλο Hegselmann Krause

Η πόλωση των απόψεων είναι ένα πολύ σύνηθες κοινωνικό φαινόμενο. Συ-

χνά οι άνθρωποι σχηματίζουν ομάδες απόψεων όπου μέλη της ίδιας ομάδας

μοιράζονται σχεδόν την ίδια άποψη, ενώ άτομα από διαφορετικές ομάδες έχουν

αρκετά διαφορετικές απόψεις. Ο λόγος αυτής της πόλωσης είναι αρκετά απλός:

΄Ατομα με παρόμοιες απόψεις τείνουν να αναπτύσσουν κοινωνικές σχέσεις. Ενώ

άτομα με εντελώς διαφορετικές απόψεις τείνουν διακόπτουν τις σχέσεις τους.

Το 2002 οι Hegselmann και Krause πρότειναν ένα μοντέλο για τη διαμόρ-
φωση απόψεων που ενσωμάτωσε αυτές τις ιδέες με έναν πολύ απλό τρόπο: σε

κάθε γύρο ο κάθε πράκτορας υιοθετεί ως νέα άποψη το μέσο όρο της τρέχουσα

άποψης του και των απόψεων των άλλων πρακτότων που είναι σε μικρή από-

σταση από την δική του άποψη [89]. Το πόσο μικρή χρειάζεται να είναι αυτή η

απόσταση ποσοτικοποιείται από την θετική σταθερά ε > 0.
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Το μοντέλο Hegselmann Krause
1: n πράκτορες.
2: xi(0) ∈ [0,1], η αρχική άποψη του πράκτορα i.
3: Στο γύρο t ≥ 1 κάθε πράκτορας i ανανεώνει την άποψη του:

xi(t) =
∑
j∈Ni(t) xj(t− 1) + xi(t− 1)

|Ni(t)|+ 1

όπου Ni(t) = {j , i : |xi(t− 1)− xj(t− 1)| ≤ ε}

Το μοντέλο Hegselmann Krause έχει άπειρα σταθερά σημεία: κάθε διαμέ-
ριση των πρακτόρων σε συμπλέγματα γνωμών (opinion clusters) με απόσταση
μεγαλύτερη από ε, είναι ένα σταθερό σημείο. Παρόλο που η απόδειξη ύπαρξης
σταθερών σημείων είναι πολύ απλή, δεν είναι καθόλου σαφές αν το σύστημα

φτάνει ποτέ σε ένα τέτοιο σταθερό σημείο. Λόγω των αποτελεσμάτων των ερ-

γασιών [91, 105, 113] γνωρίζουμε πως το σύστημα σταθεροποιείται σε κάποια
χρονική στιγμή. Σε μετέπειτα ερευνητικές δουλείες [107, 135, 14] παρέχονται
άνω φράγματα για τον αριθμό των γύρων που απαιτούνται για τη σύγκλιση. Τα

τελευταία αποτελέσματα δείχνουν το συστημα χρειάζεται το πολύ O(n3) γύρους
για να σταθεροποιηθεί [14]. Πιο πρόσφατα, αποδείχθηκε ότι υπάρχουν περιπτώ-
σεις στις οποίες το μοντέλο Hegselmann Krause χρειάζεται τουλάχιστον Ω(n2)
γύρους για να φτάσει σε σταθερό σημείο [139].
Το μοντέλο Hegselmann Krause έχει προσελκύσει το ενδιαφέρον διάφορων

επιστημονικών κλάδων όπως η Θεωρητική Πληροφορική, η Στατιστική Φυσική

και η Επιχειρισιακή ΄Ερευνα. Οι επιστημονικές εργασίες που αφορούν σε πα-

ραλλαγές και γενίκευσεις του μοντέλου Hegselmann Krause είναι τόσο πολλές
που αναφέρουμε μόνο τις άμεσα σχετιζόμενες με αυτή τη διατριβή. Στις ερ-

γασίες [105, 91, 35] παρέχονται αποτελέσματα σύγκλισης για γενικεύσεις του
μοντέλου. Στην εργασία [37] αποδεικνύεται πως μια γενικευμένη εκδοχή του
μοντέλου Hegselmann Krause με χρονικά αμετάβλητους πράκτορες συγκλί-
νει σε σταθερό σημείο. Επιπλέον έχει πραγματοποιηθεί σημαντική πειραματική

έρευνα σχετικά με τις ιδιότητες σύγκλισης παραλλαγών του μοντέλου Hegsel-
mann Krause, καθώς και με τις τιμές της παραμέτρου ε, που εγκυόνται την
σύγκλιση των απόψεων σε ομοφωνία [72, 106].

Παρουσίαση Προβλημάτων της παρούσας Διδακτορικής Δια-

τριβής

Στο υπόλοιπο του κεφάλαιου παρουσιάζονται τέσσερις επεκτάσεις των μοντέ-

λων Friedkin Johnsen και Hegselmann Krause που μελετήθηκαν στην παρούσα
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διατριβή. Στις αντίστοιχες ενότητες παρουσιάζεται η σημασία και τα σχετικά

αποτελέσματα της κάθε επέκτασης.

Τυχαιοκρατικά Παίγνια Διαμόρφωσης ΄Αποψης

΄Οπως έχουμε ήδη αναφέρει τόσο το μοντέλο Friedkin Johnsen όσο και το
αντίστοιχο παίγνιο, είχαν τεράστια επιρροή στην μελέτη των δυναμικών διαμ-

μόρφωσης άποψης. Ωστόσο υπάρχουν σημαντικές περιπτώσεις όπου το μοντέλο

Friedkin Johnsen δεν περιγράφει κατάλλήλα τη δυναμική των απόψεων, λόγω
του μεγάλου ποσού πληροφοριών που απαιτεί να ανταλάσσουν οι πράκτορες.

Πιο συγκεκριμένα, σε κάθε γύρο ο κανόνας ανανέωσης

xi(t) =
∑
j,iwijxj(t− 1) + wisi∑

j,iwij + wi

απαιτει από τον κάθε πράκτορα να μαθαίνει όλες τις απόψεις των πρακτόρων

που τον επηρεάζουν, δηλαδή όλων των πρακτόρων j με wij > 0. Στα σημερινά
μεγάλα κοινωνικά δίκτυα όπου οι χρήστες έχουν συνήθως αρκετές εκατοντάδες

φίλους, η υπόθεση ότι κάθε μέρα ο κάθε χρήστης μαθαίνει τις απόψεις όλων των

κοινωνικών του επαφών, είναι μη ρεαλιστική. Σε τέτοιες περιπτώσεις μια πολύ

πιο λογική υπόθεση είναι ότι τα άτομα συναντούν τυχαία ένα μικρό υποσύνολο

των γνωστών τους και αυτές είναι οι μοναδικές απόψεις που μαθαίνουν.

Για να μοντελεποίησουμε τις παραπάνω ιδέες, θεωρούμε μια τυχαιοκρατική

παραλλαγή του παίγνιου διαμόρφωσης άποψης που εισήχθη στο [17]. Στην

παραλλαγή μας, για ένα δεδομένο διάνυσμα δημοσίων απόψεων x = (xi, x−i) ∈
[0,1]n, το κόστος διαφωνίας του παίκτη i είναι η παρακάτω τυχαία μεταβλητή
Ci(xi, x−i):

• Ο παίκτης i συναντάει τυχαία μόνο ένα γείτονα του j με πιθανότητα,

pij = wij∑
j,iwij

• Ο παίκτης i βιώνει κόστος διαφωνίας

Ci(xi, x−i) = (1− αi)(xi − xj)2 + αi(xi − si)2,

όπου αi = wi/(
∑
j∈Ni wij + wi).

Το πραπάνω τυχαιοκρατικό παίγνιο διαμόρφωσης άποψης, βασίζεται στην

κοινή πεποίθηση ότι η επιρροή μεταξύ δύο άτομων σε μια κοινωνία είναι η συ-

χνότητα αλληλεπίδρασης των ατόμων αυτών. Η ισορροπία Nash αυτού του
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παιγνίου (που ορίζεται σε σχέση με το αναμενόμενο κόστος διαφωνίας) είναι

ακριβώς η ίδια με την ισορροπία Nash του παιγνίου διαμόρφωσης άποψης που ει-
σήχθη στο [17]. Επιπλέον, το simultaneous best response dynamics (σε σχέση
με το αναμενόμενο κόστος διαφωνίας) για το τυχαιοκρατικό παίγνιο διαμόρφω-

σης άποψης είναι πάλι το μοντέλο Friedkin Johnsen.

Η συνεισφορά μας

Μελετάμε τις ιδιότητες σύγκλισης φυσικών και αποδοτικών δυναμικών σε αυτό

το τυχαίοκρατικό παίγνιο διαμόρφωσης άποψης. Με τον όρο φυσικές εννοούμε

ότι οι πράκτορες ανανεώνουν τις δημόσιες απόψεις τους στην προσπάθειά τους

να ελαχιστοποιήσουν το κόστος διαφωνίας που βιώνουν. Με τον όρο αποδοτι-

κές εννοούμε ότι ο κανόνας ανανέωσης των απόψεων σέβεται τους περιορισμούς

στην ανταλλαγή πληροφορίας που θέτει το παίγνιο μας. Δηλαδή σε κάθε γύ-

ρο ο κάθε πράκτορας μαθαίνει μόνο τη γνώμη του πράκτορα που συνάντησε

τυχαία. Για παράδειγμα,

• Το μοντέλο Friedkin Johnsen είναι φυσικό: κάθε πράκτορας επιλέγει τη
γνώμη που ελαχιστοποιεί το αναμενόμενο κόστος διαφωνίας.

• Το μοντέλο Friedkin Johnsen δεν είναι αποδοτικό: για να υπολογίσει αυτή
τη άποψη ο πράκτορας πρέπει να γνωρίζει τις απόψεις όλων των πρακτόρων

με wij > 0.

Στο Κεφάλαιο 3, παρουσιάζουμε ένα κανόνα ανανέωσης που οδηγεί σε μια

φυσική και αποδοτική δυναμική των απόψεων. Αυτός ο κανόνας ανανέωσης

απαιτεί ότι ο κάθε πράκτορας μαθαίνει μόνο την άποψη του πράκτορα που συ-

νάντησε τυχαία και αυτό καθιστά την παραγόμενη δυναμική αποδοτική. Την

ίδια στιγμή ο ίδιος κανόνας ανανέωσης εξασφαλίζει την ιδιότητα no-regret στον
κάθε πράκτορα. Με άλλα λόγια εξασφαλίζει πως το κόστος διαφωνίας που ο

κάθε πράκτορας βιώνει κατά την διάρκεια του παιγνίου είναι το ελάχιστο δυνα-

τό. Αυτό καθιστά τον κανόνα μας μια φυσική επιλογή προς εγωιστές πράκτορες

που ενδιαφέρονται μόνο για το ατομικό κόστος διαφωνίας που βιώνουν. Δεί-

χνουμε ότι αν ο κανόνας υιοθετηθεί από όλους τους πράκτορες, τότε οι απόψεις

των πρακτόρων είναι ε-κοντά στην ισορροπία Nash του παιγνίου σε Õ(1/ε2)
γύρους.

Στη συνέχεια, διερευνούμε την ύπαρξη άλλων κανόνων ανανέωσης που ε-

ξασφαλίζουν την no-regret ιδιότητα στο κόστος διαφωνίας των παικτών, ενώ
ταυτόχρονα η παραγώμενη δυναμική των απόψεων συγκλίνει με γρηγορότερο

ρυθμό στην ισορροπία Nash του παιγνίου. Στην προσπάθεια απάντησης αυτού
του ερωτήματος ανακαλύψαμε ένα πολύ ενδιαφέρον φαινόμενο. Αν ο κανόνας
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ανανέωσης εξασφαλίζει την no-regret ιδιότητα, τότε η παραγόμενη δυναμική
χρειάζεται τουλάχιστον Ω(1/ε) γύρους για να είναι ε-κοντά στην ισορροπία
Nash, ενώ το παραπάνω αποτέλεσμα δεν ισχύει για κανόνες ανανέωσης που δεν
εξασφαλίζουν την no-regret ιδιότητα. Χρησιμοποίωντας πρόσφατες stochastic
gradient μεθόδους [94, 131, 13] καταφέραμε να σχεδιάσουμε ένα κανόνα ανανέ-
ωσης που δεν εξασφαλίζει την no-regret ιδιότητα αλλά η παραγόμενη δυναμική
των απόψεων συγκλίνει σε O(log2(1/ε)) γύρους στην ισσοροπια Nash.

Παίγνια διαμόρφωσης άποψης με συνάθροιση και αρνητική ε-

πιρροή

΄Ενα άλλο σημείο κριτικής του μοντέλου Friedkin Johnsen είναι ότι αγνοεί
επιρροές στους πράκτορες που προέρχονται από καθολικές ιδιότητες των δη-

μοσίων απόψεων. Σε πολλούς τομείς, οι δημόσιες απόψεις των πολιτών δεν

επηρεάζονται μόνο από αλληλεπιδράσεις με τον κοινωνικό τους κύκλο και τις

προσωπικές τους πεποιθήσεις, αλλά και από το σύνολο των δημοσίων απόψεων

στην κοινωνία. Για παράδειγμα οι άνθρωποι συχνά εκτίθενται σε παγκόσμιες

τάσεις, σε κοινωνικά πρότυπα, σε αποτελέσματα εκλογών κ.λ.π. Επιπλέον, πολ-

λές φορές ομάδες ατόμων πρέπει να συμφωνήσουν σε μια κοινή δράση, ακόμη

και αν οι πεποιθήσεις τους και οι απόψεις είναι εντελώς διαφορετικές.

Για να μοντελοποίησουμε τέτοιες καταστάσεις θεωρούμε ένα κανόνα συνά-

θροισης (aggregation rule), ο οποίος αποτυπώνει τις απόψεις του κοινού σε μια
ενιαία κοινωνική άποψη που αντιπροσωπεύει την γενική άποψη για ένα συγκε-

κριμένο ζήτημα. Οι πράκτορες αναμένουν τον αντίκτυπο της δημόσιας άποψης

τους στην διαμόρφωση αυτής της ενιαίας κοινωνικής άποψης και το λαμβάνουν

υπόψιν στην δημόσια άποψη που εκφράζουν. ΄Ετσι εξετάζουμε μια γενίκευση

των παίγνιων διαμόρφωσης άποψης που εισήχθησαν στο [17] στην οποία για
ένα δεδομένο διάνυσμα δημοσίων απόψεων x = (xi, x−i) ο πράκτορας i βιώνει
κόστος διαφωνίας

Ci(x) =
∑
j,i

wij(xi − xj)2 + wi(xi − si)2 + αi(aggr(x)− si)2 .

όπου aggr : [0,1]n 7→ [0,1] είναι η συνάρτηση που εξάγει την ενιαία κοινωνική
άποψη από το σύνολο των απόψεων του κοινού. Ο όρος αi ≥ 0 ποσοτικοποιεί
την επιροή που ασκεί η ενιαία κοινωνική άποψη στον πράκτορα i.
Με βάσει προηγούμενες εργασίες πάνω στο wisdom of crowds [92, 83],

επικεντρωνόμαστε στην περίπτωση που ο κανόνας συνάθροισης aggr(x) είναι
ο μέσος όρος των δημοσίων απόψεων των πρακτόρων, δηλαδή

aggr(x) =
n∑
j=1

xj/n
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Η συνεισφορά μας

Στο κεφάλιαο 4 μελετάμε τα παίγνια συνάθροισης που παρουσιάσαμε παραπάνω.

Αξίζει να σημειωθεί πως τα παίγνια διαμόρφωσης άποψης που εισήχθησαν στο

[17], είναι ειδική περίπτωση των παίγνιων συνάθροισης όπου όλοι οι συντελε-

στές αi = 0. Με μια πρώτη ματιά, ο πρόσθετος όρος συνάθροισης φαίνεται να
μην έχει σημαντικό αντίκτυπο στις ιδιότητες του παιγνίου. Αυτό απέχει πολύ

από την αλήθεια! Με την παρουσία αυτού του απλού όρου, τόσο οι ιδιότητες

σύγκλισης όσο και τα άνω φράγματα στο Τίμημα της Αναρχίας είναι υπό σο-

βαρή αμφισβήτηση. Σε γενικές γραμμές, αυτό συμβαίνει επειδή ο όρος αυτός

εισάγει αρνητική επιρροή μεταξύ των πρακτόρων.

Λόγω της εισαγόμενης αρνητικής επιρροής, οι πράκτορες ενδέχεται να θε-

λήσουν να υιοθετήσουν απόψης εκτός του διαστήματος [0,1]. Αν και αυτό δεν
αποτελεί εκ των προταίρων μια κακή υπόθεση, υπάρχουν περιπτώσεις όπως οι

εκλογές στις οποίες οι απόψεις αναγκαστικά βρίσκονται σε ένα καθορισμένο εύ-

ρος. Για να καλύψουμε όλες τις περιπτώσεις, θεωρούμε τόσο την unresctricted
case όπου οι πράκτορες μπορούν να επιλέξουν ως γνώμη οποιοδήποτε πραγματι-
κό αριθμό και την resctricted case στην οποία οι πρακτόρες ανακαστικά πρέπει
να επιλέξουν μία άποψη στο διάστημα [0,1]. Και στις δύο περιπτώσεις παρου-
σιάζουμε αποτελέσματα τόσο για τις ιδιότητες σύγκλισης του simultaneous best
response dynamics όσο και άνω φράγματα για το Τίμημα της Αναρχίας.
Αποδεικνύουμε ότι κάτω από πολύ γενικές υποθέσεις σχετικά με τις τιμές

των αi, το simultaneous best response είναι ε-κοντά στην ισορροπία Nash
σε O(n2 log n/ε) γύρους. Το παραπάνω ισχύει τόσο για την unresctricted
case όσο και την resctricted case . Δεδομένου ότι το simultaneous best
response απαιτεί από τους πράκτορες να γνωρίζουν την μέση δημόσια άποψη
σε κάθε γύρο, μια πληροφορία που είναι δύσκολο να αποκτηθεί, εξετάζουμε μια

outdated έκδοχη του. Τώρα οι πράκτορες μαθαίνουν τις απόψεις των γειτόνων
τους σε κάθε γύρο, αλλά η μέση δημόσια άποψη ανακοινώνεται σε αραιά χρονικά

διαστήματα. Δείχνουμε ότι τα ίδια αποτελέσματα σύγκλισης παραμένουν ακόμη

και σε αυτή την περίπτωση.

Στη συνέχεια, εστιάζουμε την προσοχή μας στην ποιότητα της ισορροπίας

Nash σε σχέση με το βέλτιστο συνολικό κόστος διαφωνίας. Χρησιμοποιώντας
την τεχνική Local Smoothness [128], δείχνουμε ότι στην unresctricted case το
Τίμημα της Αναρχίας είναι 9/8 +O(α/(wn2)) αν wi = w και αi = α. Παρόλο
που η resctricted case είναι πολύ πιο δύσκολο να αναλυθεί, δείχνουμε ότι το
Τίμημα της Αναρχίας είναι το πολύ 3 +

√
2 στην περίπτωση που wi = αi = 1.

Network Hegselmann Krause model

΄Οπως έχουμε ήδη αναφέρει, το μοντέλο Hegselmann Krause είχε τεράστια
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επιρροή στη μελέτη των δυναμικών διαμόρφωσης άποψης. Ωστόσο το μοντέλο

Hegselmann Krause υποθέτει έμμεσως κάτι μάλλον αμφισβητήσιμο. Σύμφωνα
με το μοντέλο, δύο πράκτορες i, j ασκούν επιρροή ο ένας στον άλλον, κάθε
φορά που έχουν παρόμοιες απόψεις, |xi(t)− xj(t)| ≤ ε. Στην πράξη η ύπαρξη
παρόμοιων απόψεων δεν επαρκεί για την αλληλεπίδραση δύο ατόμων καθώς και

η ύπαρξη κάποιας κοινωνικής σχέσης είναι απαραίτητη.

Εισάγουμε μια πολύ απλή γενίκευση του μοντέλου Hegselmann Krause η
οποία ενσωματώνει τα παραπάνω ζητήματα. Υποθέτουμε την ύπαρξη ενός μη

κατευθυνόμενου γραφήματος G = (V,E), όπου οι κόμβοι V αντιπροσωπεύουν
τους πράκτορες και οι ακμές E τις κοινωνικές σχέσεις μεταξύ τους. Στη γε-
νίκευση μας, που ονομάζεται Nework HK model, κάθε πράκτορας υιοθετεί ως
νέα άποψη, το μέσο όρο της τρέχουσα άποψης του με τις απόψεις των γειτόνων

του στο G που είναι ε-κοντά στην δική του.

Network Hegselmann Krause model
1: Μη κατευθυνόμενος γράφος G = (V,E).
2: n πράκτορες.
3: xi(0) ∈ [0,1], η αρχική άποψη του πράκτορα i.
4: Στο γύρο t ≥ 1, κάθε πράκτορας i υιοθετεί ως άποψη:

xi(t+ 1) =
∑
j∈Ni(t) xj(t) + xi(t)
|Ni(t)|+ 1

όπου Ni(t) = {j , i : |xi(t)− xj(t)| ≤ ε και (i, j) ∈ E}

Είναι εύκολο για κάποιον να δει πως το μοντέλο Hegselmann Krause είναι
η ειδική περίπτωση του Network Hegselmann Krause model, όπου το γράφημα
G είναι κλίκα. ΄Οπως και το αρχικό μοντέλο Hegselmann Krause, ετσι και το
Network Hegselmann Krause model έχει άπειρο αριθμό σταθερών σημείων
ανεξαρτήτως της τοπολογίας του G. Ωστόσο, τα αποτελέσματα σύγκλισης του
μοντέλου Hegselmann Krause δεν είναι εύκολο να γενικευθούν. Η απόδειξη
σύγκλισης του μοντέλου Hegselmann Krause εξαρτάται σε μεγάλο βαθμό από
την παρακάτω ιδιότητα: η διάταξη των πρακτόρων από αριστερά προς τα δεξιά

σύμφωνα με τις απόψεις τους παραμένει πάντα η ίδια. Δυστηχώς αυτή η δομή

ισχύει μόνο όταν το G είναι κλίκα και για αυτό η απόδειξη σύγκλισης του
Network Hegselmann Krause χρειάζεται μια εντελώς διαφορετική προσέγγιση
από τις μέχρι τώρα αποδείξεις σύγκλισης του κλασσικού μοντέλου Hegselmann
Krause.
Στο κεφάλαιο 4 αποδεικνύουμε πως το Network Hegselmann Krause model

συγκλίνει πάντα σε ένα σταθερό σημείο. Για την απόδειξη αυτή θεωρούμε την α-

κολουθία μη κατευθυνόμενων γραφημάτων που κωδικοποίουν τις αλλεπιδράσεις
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μεταξύ των πρακτόρων σε κάθε γύρο. Δηλαδή, τις ακμές του G στις οποίες οι
δύο πράκτορες της ακμής, εκφράζουν απόψεις που είναι ε-κοντά. Στη συνέχεια
χρησιμοποιούμε την έννοια του weak connectivity, που εισήχθη στο [96], για
να αποδείξουμε είτε το συνολικό δυναμικό συστήμα χωρίζεται σε ανεξάρτητα

υποσυστήματατα είτε ότι όλοι οι πράκτορες υιοθετούν την ίδια άποψη. Μερικά

από τα αποτελέσματά μας συμπίπτουν με τα αποτελέσματα [91, 105] σχετικά με
γινόμενα στοχαστικών πινάκων, ωστόσο η προσέγγιση μας είναι απλούστερη

και περιλαμβάνει πιο απλές αποδείξεις.

Τυχαιοκρατικό μοντέλο Hegselmann Krause

΄Οπως συζητήσαμε προηγουμένως το μοντέλο Friedkin Johnsen είναι ακατάλλη-
λο για τη μοντελοποίηση διαδικασιών διαμόρφωσης άποψης σε μεγάλα κοινωνικά

δίκτυά, λόγω της μεγάλης ανταλλαγής πληροφορίας που υποθέτει. Από αυτή

τη σκοπιά τα πράγματα είναι πολύ χειρότερα στο μοντέλο Hegselmann Krause.
Τώρα κάθε πράκτορας πρέπει να μάθει τις απόψεις όλων των άλλων πρακτόρων

προκειμένου να προσδιορίσει ποιοί από αυτούς έχουν άποψη ε-κοντά στην δική
του. ΄Οπως και στα Τυχαιοκρατικά Παίγνια Διαμόρφωσης ΄Αποψης υποθέτουμε

πως σε κάθε γύρο κάθε πράκτορας συναντά τυχαία k άλλους πράκτορες, τις
άποψεις των οποίων μαθαίνει. Στην συνέχεια ανανεώνει, την άποψη του στο

μέσο όρο των απόψεων των πρακτόρων που τυχαία συνάντησε και είναι ε-κοντά
στην δική του άποψη.

Τυχαιοκρατικό μοντέλο Hegselmann Krause
1: n πράκτορες.
2: xi(0) ∈ [0,1], η αρχική άποψη του πράκτορα i.
3: Στο γύρο t ≥ 1, κάθε πράκτορας i:
4: διαλέγει k άλλους πράκτορες ομοιόμορφα τυχαία, Ri(t) ⊆ [n].
5: ανανεώνει την άποψη του xi(t),

xi(t) =
∑
j∈Ni(t) xj(t− 1) + xi(t− 1)

|Ni(t)|+ 1

όπου Ni(t) = {j , i : |xi(t− 1)− xj(t− 1)| ≤ ε και j ∈ Ri(t)}

Στο κεφάλαιο ;;, δείχνουμε ότι το τυχαιοκρατικό μοντέλο Hegselmann
Krause φτάνει πάντα σε σταθερό σημείο. ΄Οπως και στο Network Hegselmann
Krause model, η ταξινόμιση των πρακτόρων από τα αριστερά προς τα δεξιά
σύμφωνα με τις απόψεις τους, δεν διατηρείται στο χρόνο και ως εκ τούτου

οι τεχνικές για την απόδειξη σύγκλισης του μοντέλου Hegselmann Krause
δεν μπορούν να εφαρμοστούν. Το τυχαίοκρατικό μοντέλο Hegselmann Krause
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ενέχει την επίπρόσθετη δυσκολία της ασύμμετρης επιρροής. Στο τυχαίοκρατικό

μοντέλο Hegselmann Krause ο πράκτορας i μπορεί να επηρεάζει τον πράκτορα
j, ενώ ο j να μην επηρεάζει το πράκτορα i. Αξίζει να σημειωθεί πως τέτοια
ασυμμετρία στην επιρροή μεταξύ των πρακτόρων δεν μπορεί να υπάρξει στο Net-
work Hegselmann Krause model. Αν και τα δυναμικά συστήματα μέσου όρου
που επιτρέπουν τέτοια ασυμμετρία στους συντελεστές είναι πολύ δύκολο να

αναλυθουν [37, 15], στην περίπτωση του τυχαιοκρατικού Hegselmann Krause
καταφέραμε να αποδειξουμε πως το σύστημα συγκλίνει σε σταθερό σημείο με

μεγάλη πιθανότητα.
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Chapter 2

Introduction

2.1 The Big Picture
This thesis lies on the intersection of algorithmic game theory, dynamical
systems and convex optimization. These areas admit beautiful connections
that have lead to many fertile results over the years. The «motivating um-
brella» of our study comes from the world of opinion formation. The latter
means that all the considered settings thay may be non-cooperative games,
dynamical systems or even combinatorial optimization problems relate to
proposed models on the way people form their opinions. Before deeping into
the details of the opinion formation context, we briefly introduce the above
mentioned connections and how they relate to our work.

Games, Equilibrium and Efficiency

The tremendous success of game theory is based on the fact that most aspects
of everyday’s life can be efficiently captured by appropriate non-cooperative
games. In a non-cooperative game, each agent selects an action from a set
of posible actions so as to maximize her payoff which is a function of her
selected action and the selected actions of the others. The exact definition of
the action sets and the payoff functions depends on each specific setting. For
example in games modelling traffic networks, the action set of an agent is the
set of paths from a destination node to a target node, while her cost1 is the
travel time that normally depends on the number of agents usings edges of
her selected path. In games modelling the opinion formation process, each
agent selects an opinion2 so as to minimize a disagreement cost function that

1The payoff is the cost multiplied by −1.
2Typically an opinion is a number in [0,1].

23
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also depends on the other agents’ opinions. When all players have chosen
actions such that they simultaneously maximize their payoff (none of them
can increase her payoff by selecting a different action), then we say that the
system has reached a Nash Equilibrium.

One can easily find games (even with 2 agents) in which Nash Equilibrium
does not exist if the agents have to deterministically select their actions (pure
strategies). However as John F. Nash proved in his celebrated theorem [116],
at least one Nash Equilibrium exists if the agents are allowed to select their
action according to a probability distribution over a finite action set (mixed
strategies). Unfortunately computing such equilibria is a computationally
hard task, since it was proven to be PPAD-complete even for the 2-agent
case [55, 39].

In an attempt to understand how efficient Nash Equilibria are in terms of
social payoff 3, Koutsoupias and Papadimitriou introduced the notion of Price
of Anarchy [101]. Price of Anarchy is the ratio between the maximum payoff
that the agents can acheive in total over the minimum total payoff acheived at
a Nash Equilibrium. Unfortunately this ratio can be arbitrarily high in gen-
eral, meaning that agents’ selfish nature can result in very bad outcomes for
the overall system. The need for designing systems that remain efficient even
under the impact of selfishness, lead in huge line of reseach studying the inef-
ficiency of equilibrium in various kind of games (see for example the very first
representatives [129, 48] of this research line concerning the price of anarchy
in congestion games). We follow this line through studying the price of an-
archy in opinion formation games with respect to the social disagreement cost.

Game-playing Strategies and Natural Dynamics

Nash Equilibrium has a static nature in the sense that it describes a steady
state of a multiagent system in which none is willing to deviate from. However
in most interesting settings agents do not play the game once and for all, but
they repeatedly play the same game over and over again e.g. the drivers of
a town play the same congestion game every morning of the year. In such
dynamic settings Nash Equilibrium does not provide answers neither to what
a selfish agent should do in order to maximize her long-term payoff nor to
what the dynamic behavior of the overall system will be.

The question on how agents should update their actions in order to
maximize their long-term payoff is tremendously hard and does not admit

3Social payoff typically measures the total happiness of the agents at an equilibrium
which is the total sum of the agents’ payoffs. However in several contexts they are also
other meaningful functions capturing the social payoff.
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a concrete answer. However there are some widely accepted game-playing
strategies based on the following natural principle: agents select the action
maximizing their payoff with respect to the past actions of the other agents.
The most intuitive forms of this principle is fictitious play proposed by Brown
in 1951 [27] and the best response strategy [62]. In the first case, agents select
the action that maximizes their payoff with respect to the actions of the
others in the whole history of the play, whearas in the best response strategy
the payoff - maximizing strategy is computed with respect to the actions of
the others agents in the previous round.

Having determined what is natural for a selfish agent to do in repeatedly
played games, the following question arises: If all agents update their accord-
ing to fictitious play or best response, does the system converges to Nash
Equilibrium? This very reasonable question has initialized a long line of re-
search about the convergence properties of such dynamics in games. Probably
the most celebrated result in this line of research dates back to the result of
Robinson proving that fictitious play converges to mixed Nash Equilibrium
in zero-sum games [125]. The study on the convergence properties of best
response dynamics has mainly focused on an important class of games, called
congestion games. This kind of games admit a potential function meaning
than whenever an agents changes her action for an action with better payoff,
the potential function increases by the same amount of the payoff-increase
[127]. The latter implies that any local minimum of the potential function is
also a Nash Equilibrium and that best response dynamics always converges
to equilibrium. Although computing Nash Equilibrium in congestion games
proved to be a computationally hard problem (PLS-complete) [68] mean-
ing that best response dynamics can take exponentially many rounds before
reaching an equilibrium, there are many positive results for its convergence
properties to approximate Nash equilibrium [112, 49, 46, 31, 30]. Moreover
best response dynamics is known to converge to Nash Equilibrium in polyno-
mial number of rounds for many important special cases of congestion games
[66, 123] or when the instance of the game is contaminated with random noise
[65, 4, 22]. Following this line of research, we provide convergence results for
both fictitious play and best response dynamics in various opinion formation
games.

No-regret Dynamics and Online Convex Optimization

Although both fictitious play and best response dynamics are very natu-
ral behavioral assumptions for selfish agents, one can argue that they do not
properly capture the behavior of fully rational agents. This critique is quite
fair since neither fictitious play nor the best response strategy provide guar-
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antees about the long-term payoff of the agents. This means that although a
myopic agent may select her actions according to them, a perspicacious agent
has no real reason to follow them. To this end a very important connection
between convex optimization and dynamics in games is revealed.

Surprisigly enough for a wide class of games, an agent can select her actions
according to algorithms develloped in the area of online convex optimization
and that do provide guarantees on her experienced payoff. These guarantees
hold no matter the way the other agents select their actions, while the
requirements for such an algorithm to exist are quite mild; convex action
set and convex payoff function [87]. The guarantees that such algorithms
provide, do not relate to the optimal payoff that an agent could aquire
by knowing the actions of the others up front and by selecting her best-
responding action at each round of the game. Obviously this is far too good
to be true! However such algorithms provide quite strong guarantees related
to the payoff of the best fixed action, which are formally expressed with the
notion of regret. The regret of an online convex optimization algorithm is the
time-averaged difference between the algorithm’s acquired payoof and the
payoff of the best fixed action4. Algorithms with regret tending to zero as the
rounds of the game increase, are called no-regret. We remark that although
there are several no-regret algorithms (see [87] for an introduction to the
online convex optimization framework), the existence of such algorithms is
far from being trivial. In fact the first no-regret algorithm, the seminal Hedge
algorithm proposed by Hannan in 1957 [85], was a huge scientific surprise
that triggered a vast amount of interest towards the design of no-regret
algorithm. The interested reader can find a tiny subset of such algorithms in
[104, 142, 88, 21, 86, 69].

Apart from designing no-regret algorithms, the algorithmic game theory
community develloped a vast interest towards understanding the dynamic
behavior of systems in which agents play according to no-regret algorithms
[67, 78, 20, 33, 108, 5, 6, 119, 122, 115, 134, 110, 73, 133, 54, 56, 52]. For
example it is known that in n-person finite games, no-regret dynamics converge
to Coarse Correlated Equilibrium [73, 78, 133]. In [67] it was shown that
in a large class of games with infinite strategy spaces and concave utility
functions (socially concave games), no-regret dynamics converge to Pure Nash
Equilibrium. No-regret dynamics are also known to converge to the mixed
Nash Equilibrium of zero-sum games [54, 56] and to locally converge to the
mixed Nash Equilibrium of n-person finite generic games [52].

4The payoff of a fixed action is the aggregated payoff of the agent if she always played
this specific action at all rounds of the game. Notice that the payoff of an action may differ
from round to round since the other agents may change their action from round to round.
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Following this line of research we study the convergence properties of
no-regret dynamics in opinion formation games. We prove convergence to
Nash Equilibrium when agents update their opinions according to a seminal
class of no-regret algorithms, called Follow the Regularized Leader. We also
provide lower bounds on the convergence rate of no-regret dynamics.

Dynamical Systems and Distributed Convex Optimization

There exists a mutual relation between discrete-time dynamical systems
and distributed algorithms. The algorithmic design of distributed protocols
can be based on simple dynamical systems [97, 95, 12], while at the same time
algorithmic ideas and techniques can be applied in analyzing the behavior of
dynamical systems [35, 14, 36]. Frequently these «algorithmic proofs of con-
vergence» admit a convex optimization flavor. For example in [44, 43, 40, 45]
dynamics in Fisher markets are analyzed through an equivalence with coordi-
nate descent methods. Since the main focus of this thesis is about the study
discrete-time dynamical systems that model the opinion formation process,
the connection between dynamics and convex optimization is apparent in a
great part of this work. The reason is that many considered opinion formation
games admit a convex potential function and thus establishing convergence
properties can be done via proving that the agents collectively find a minimum
of the potential function. As a result, gradient-based methods develloped in
the field of distributed convex optimization [13, 41] and stochastic gradient
descent methods [94, 131] served as irreplaceable conceptual tools in our work.

Multi-stage Combinatorial Optimization and Convex Optimization

The use of convex optimization techiques in the design of efficient com-
binatorial optimization algorithms has been a tremendous success. Over 30
years linear programming and semi-definite programming are used in the de-
sign of approximation algorithms [137], while more recently gradient-descent
methods were introduced in the design of competive online algorithms [28, 10].
These techniques seem to be the only way approach in a recent line of research
studying «classical» combinatorial optimization problems with data that
evolve over time [63, 3, 18]. In this kind of problems data admit different
values from stage to stage and the goal is to produce a time-varying solution
that is «relative stable»5, while remaining efficient at each separate round. For
example the authors in [63] study a dynamic version of the classical facility

5Typically this is measured with an additional switching cost quantifying the change of
the solution from stage to stage
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location problem in which the clients change positions from round to round.
This type of problems admit a very harsh combinatorial structure and thus
the only way for tackling them is via solving an appropriate convex program
(typically a linear program) and then rounding the fractional solution.

We adopt this approach to solve a multistage combinatorial optimization
problem related to the way a political party should select her public positions
over time so as to efficiently cover a set of opinion-changing voters. The
considered problem is a dynamic version of the classical k-median problem
where the requests are located in the real line, but their positions change over
time. We were able to provide a polynonial time algorithm that produces
an optimal solution via solving an appropriate linear program and efficiently
rounding the fractional solution on the time domain.

2.2 How Opinions are Formed?
The study on the way people form their opinions has a long history (see [92]).
Opinion formation is a dynamic process in which socially connected people
(family, friends, colleagues) exchange information and this leads to changes
in their expressed opinions over time. Today, the advent of the internet and
social media makes the study of opinion formation in large social networks
even more important; realistic models of how people form their opinions
by interacting with each other are of great practical interest for prediction,
advertisement etc. In an attempt to formalize the process of opinion formation,
several models have been proposed over the years [60, 79, 89, 59].

The common assumption underlying most of these models, which dates
back to DeGroot [60], is that opinions evolve through a form of repeated
averaging of information collected from the agents’ social neighborhoods.
Initially each agent holds a value that represents her initial opinion. At each
round, all agents simulataneously average their opinion with the opinions of
the other agents, leading to a dynamics of the opinions. The coefficients of
this averaging rule may differ from agents to agent and in fact may change
over time. We remark that the precise definition on how these coefficients are
formed is defined in each specific model. This general modelling framework is
summarized up next.
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Averaging Framework
1: n agents.
2: xi(0) ∈ [0,1], agent’s i initial opinion.
3: At round t ≥ 1, each agent i updates her opinion:

xi(t) =
n∑
j=1

pij(t)xj(t− 1)

where pij(t) ≥ 0 and ∑n
j=1 pij(t) = 1

Example 2.1. In the DeGroot model the coefficients are time invariant,
pij(t) = pij [60]. In the Hegselmann Krause model each agent averages her
opinion with the opinions that are at distance at most 1 from her current
opinion [89].

At a first glance such averaging systems may seem naive and thus incapable
of modelling complex natural processes such as the opinion formation. This
is far from being true! There exists both empirical and theoretical evidence
indicating that averaging systems admit a lot of expressive power.

From the empirical point of view, a strong indication about this expressive
power is that diverse phenomena are efficiently captured by averaging systems
similar in spirit with the ones describing the opinion formation process.
Notable examples come from collective animal behavior such as bird flocking
[36, 124], fish schooling [118, 121] and firefly flashings [111]. Other interesting
applications include the aggregation of measurements in sensor networks data,
the evolution of cell populations and the coordination of heart pacemaker
cell signals [34]. Moreover experimental studies on the formed opinions of
villagers in India about the price of the crops, have verified the predictive
power of these opinion formation models [7].

From the theoretical point of view, this expressive power is indicated by
the fact that such systems can solve computational problems! For example
in [12], the community detection problem is solved through the use of a
distributed algorithm based on a simple averaging system. Moreover such
averaging systems can even simulate Turing machines [34]! Other interesting
algorithmic applications of averaging systems can be found in [95, 97].

This wide range of applications has created an intense scientific interest
towards the convergence properties of such averaging systems [35, 14, 117,
93, 29, 81, 23, 25, 103, 105]. More precisely, this line of research tries to shed
light on the following question:

When do such averaging systems converge to stable points?
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Unfortunately the above question does not admit a concrete answer. Such
averaging models are analyzed more or less in an ad-hoc way and the ideas and
techniques may substantially differ. Although there are results characterizing
the convergence properties for classes of averaging systems [91, 105, 35], there
is not a unified theory describing their dynamic behavior. In fact slight
variations on the models may lead to totally different convergence properties.

This thesis mainly focuses on the convergence properties of generalizations
of the Friedkin Johnsen model and the Hegselmann Krause model which are
averaging systems modelling the opinion formation process. Both the FJ
model and the HK model were seminal in the opinion dynamics literature and
their convergence properties have been extensively studied (both of them are
known to converge to stable points relatively fast). We study several natural
extensions of the above-mentioned models incorporating issues and limitations
arising on the way people form opinions and that have been disregarded by the
original models. Our extensions render the previous known results inapplicable
and thus our work contributes in further understanding their properties.

2.3 Friedkin Johnsen Model and Opinion Forma-
tion Games

One of the most influential models for opinion formation is the one proposed
by Friedkin and Johnsen in 1990 [79]. The FJ model was initially proposed
as a variant of the DeGroot model, capturing the fact that consensus on the
formed opinions of a social group is rarely reached.

According to FJ model each person i has a public opinion xi ∈ [0,1] and
an internal opinion si ∈ [0,1], which is private and invariant over time. There
also exists a weighted graph G(V,E,w) representing a social network. The
set of nodes V stands for the agents and the set of edges E for their social
relations. The weight wij of an edge (i, j) ∈ E is assumed to be positive
wij ≥ 0 and quantifies the influence that agent j poses on agent i. Finally
each agent i admits a positive weight wi > 0 that measures the confidence of
the agent to her internal opinion. Initially, all nodes start with some public
opinions and at each round t, update their public opinion xi(t) to the weighted
average of the public opinions of their neighbors and their internal opinion.



2.3. FRIEDKIN JOHNSEN MODEL AND OPINION FORMATION GAMES 31

Friedkin Johnsen model
1: A weighted graph G(V,E,w).
2: si ∈ [0,1], agent’s i internal opinion.
3: xi(0) ∈ [0,1], agent’s i initial opinion.
4: wi > 0, agent’s i confidence to her internal opinion.
5: At round t ≥ 1 each agent i updates her opinion:

xi(t) =
∑
j,iwijxj(t− 1) + wisi∑

j,iwij + wi

The FJ model has a very simple update rule, making it plausible for
modeling natural behavior and its basic assumptions are aligned with empirical
findings on the way opinions are formed [2, 102, 7]. At the same time, it
admits a unique stable point x∗ to which it converges with a linear rate no
matter the initial opinions [81].

In their seminal work Bindel, Kleinberg and Oren introduced a game
theoretic viewpoint of the FJ model [17]. They interpreted its update rule
as the minimizer of a quadratic disagreement cost function and based on it
they defined the following opinion formation game: Each agent i is a selfish
agent whose strategy is the public opinion xi that she expresses, incurring
her a disagreement cost

Ci(xi, x−i) =
∑
j,i

wij(xi − xj)2 + wi(xi − si)2 (2.1)

Under this perspective, FJ model is the simultaneous best response dy-
namics and its stable point x∗ is the unique Nash Equilibrium of this game.
We remark that in [17], a more comprehensive framework for modelling the
opinion formation process was introduced. Instead of modelling the opinion
formation as a precise dynamical process, one can capture the exact same
aspects by an appropriate opinion formation game. The evolvement of the
opinions over time can be modelled as the dynamic behavior of the selfish
agents when iteratively play such an opinion formation game. This modelling
approach offers a fruitful level of abstraction since various opinion dynamics
(for the same opinion formation game) can be produced by considering natural
game-playing strategies such as best response dynamics, no regret dynamics,
fictitious play etc.

There exists a large amount of literature concerning the FJ model. In [81]
it was proven that FJ model always admits a unique stable point to which
it converges with linear rate no matter the initial public opinions. In [17]
where the respective opinion formation game was introduced, they quantified
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the inefficiency of Nash Equilibrium with respect to the total disagreement
cost. They proved that the Price of Anarchy is 9/8 in case wij = wji. They
also provided PoA bounds in the case of unweighted Eulerian directed graphs.
Latter works [15, 47, 38] extended the PoA bounds to other graph families and
to more general disagreement cost functions. [140, 70, 16] introduced variants
of the FJ model in which the strategy space of the agents is either 0 or 1
(capturing binary opinion settings such as referendums) and examine their
convergence properties. In [32] a variant of the FJ model is examined, where
each agent selects her public opinion so as to minimize the maximum distance
of her internal opinion and the opinions of her neighbors. Moreover the social
neighbors are not static, but depend on the expressed public opinions. Another
recent line of research concerns combinatorial problems for influencing the
stable point of the FJ model [82, 1, 114].

2.4 Hegselmann Krause Model
A very common social phenomena is the so-called opinion polarization. Fre-
quently people form opinion groups in which members of the same group
share almost the same opinion, whereas opinions of members of different
groups are quite far away. The reason for this polarization is fairly simple:
People with similar opinions tend to develop social relations. At the same
time, people with totally different opinions interrupt their relations.

In 2002 Hegselmann and Krause proposed a model for opinion formation
that captures this general intuition in a very straightforward way: at each
round each agent averages her opinion with the opinions close to hers [89].
More specifically, the HK model assumes the existence of n agents each one of
which as an initial opinion xi(0) ∈ [0,1]. At each round, each agent averages
her current opinion with the opinions of the other agents within distance
ε > 0. The parameter ε denotes how eager the agents are towards adopting
different opinions.

The Hegselmann Krause model
1: n agents.
2: xi(0) ∈ [0,1], agent’s i initial opinion.
3: At round t ≥ 1 each agent i updates her opinion:

xi(t) =
∑
j∈Ni(t) xj(t− 1) + xi(t− 1)

|Ni(t)|+ 1

where Ni(t) = {j , i : |xi(t− 1)− xj(t− 1)| ≤ ε}
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The HK model admits an infinite number of stable points: any partition
of the agents to opinion clusters with distance greater than ε is a stable point.
Moreover the HK model always reaches such an opinion cluster in finite time
[91, 105, 113] and there are also upper bounds on the number of rounds
needed for this to happen [107, 135, 14]. The state of the art result due to
Bhattacharyya et al. is O(n3) [14]. More recently, it was shown that there
are instances in which HK model needs at least Ω(n2) rounds in order to
converge [139], while closing this gap remains an interesting open question.

The HK model has attracted the attention of different scientific com-
minities such as theoretical computer science, physics, operation research
and control theory. The amount of scientific work concerning variants and
generalizations of the HK model is so large that we list the results most
relavant to this thesis. The authors in [105, 91, 35] provide convergence
results for generalizations of the HK model. In [37] it was proven that a
generalized version of the HK model with partially stubborn agents, converges
to equilibrium. Moreover, there has been significant experimental work on
the convergence properties on variants of the HK model and on confidence
levels that are sufficient or necessary for consensus [72, 106].

2.5 Problems Considered in this Thesis
In this section we present the problems considered in this thesis. The major
part of our work concerns generalizations of the previously presented Friedkin
Johnsen and Hegselmann Krause model. In Sections 2.5.1 and 2.5.2 we intro-
duce our generalizations of the Friedkin Johnsen model, while in Sections 2.5.3
and 2.5.4 we introduce our generalizations of the Hegselmann Krause model.
In Section 2.5.5, we present our results concerning the facility reallocation
problem [58], which is a dynamic version of the well-studied k-median problem
in which the requests change positions over time. Although this problem
may seem quite out of context with respect to the topic of opinion dynamics
and opinion formation games, it admits a very natural motivation on how
political parties should assign public opinions to their members so as to
efficiently represent voters with dynamically changing opinions over time.
Before presenting each considered setting, we briefly discuss the common
framework of imperfect information that is present in all the considered opin-
ion dynamics and formation games and the connection of our results with
ideas and techniques of convex optimization.



34 CHAPTER 2. INTRODUCTION

Imperfect Information

A recent line of research studies multiagent systems in settings where agents
act under imperfect information. The latter means that the agents may not be
aware of the overall state of the system and may have to decide their actions
according to a small piece of information revealed to them. A very illustrative
example, clarifying the notion of imperfect information, comes from the world
of traffic networks. In the classical game-theoretic way of modelling, agents
are assumed to play a congestion game where they select a path in the network
based on the congestion of the paths in the previous round [98]. Here the
following information exchange assumption is made: the agents learn at the
end of each round the congestion of all paths. But how reasonable is this? In
most practical settings, an agent only learns the congestion of the path that
she selected and uses only this information to select a new path in the next
round [99]. Obviously the exact form of imperfect information depends on
the information exchage constraints that each specific setting poses and may
take different forms from setting to setting [90, 53, 109, 26, 52, 98, 99].

In the context of opinion dynamics and opinion formation games, imper-
fect information takes a very natural and concrete form. When an opinion
formation model (such as the FJ model or the HK model) assumes that an
agent averages her opinion with the opinions of some other agents, it implicitly
assumes that a social interaction among them was performed (the agents met,
dicussed etc.). The problem is that such interactions usually come with a cost
in realistic settings and this has been ignored by the proposed opinion models
to greater or lesser extend. As a result, imperfect information in the context
of opinion formation process means that an agent learns a limited amount of
opinions of other agents, possibly much fewer than the opinions of her overall
social circle. We remark that our extensions are motivated by various natural
social phenomena, however all the examined opinion dynamics respect the
above information exchange constraints.

Opinion Dynamics through Convex Optimization

The ideas and techniques develloped in the context of convex optimization
proved to be a very powerful tool for many of the results that we subsequently
present. Although the most straightforward application of these techniques
appears in the design of a polynomial time algorithm for the facility real-
location problem (see Section 2.5.5), the most interesting ones come up in
Sections 2.5.1 and 2.5.2. In these sections the convergence properties of
extensions of the FJ model are analyzed through the use of through the use
of recent gradient descent methods.
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The relation between the FJ model and gradient descent methods comes
out in various levels. At first, a step of the FJ model is equivalent to a step
of the Newton method [24] applied to the quadratic function

Φ(xi, x−i) =
∑

(i,j)∈E
wij(xi − xj)2 +

∑
i∈V

wi(xi − si)2 (2.2)

which was identified by Bindel, Kleinberg and Oren as a potential function of
their game [17]. As a result, one can prove that FJ model converges to Nash
Equilibrium by proving that Netwon method with unit step size converges
to the unique minimizer of the convex potential function Φ(xi, x−i). The
equivalence between converging to equilibrium and minimizing a potential
function via a gradient descent method appears in all of our convergence
results presented in Sections 2.5.1 and 2.5.2. For example in Section 2.5.2, we
were able to identify sufficient conditions for convergence in a generalization
of the FJ model with negative influences among the agents by requiring the
convexity of an appropriate potential function. Moreover in Section 2.5.1,
we used techniques develloped in the context of stochastic gradient descent
[94, 131] and distributed gradient descent [13, 41] to analyze variants of the FJ
model in imperfect information settings, where agents learn a small random
subset of the opinions or have some outdated knowledge about the opinions of
their friends. Finally the notion of no-regret develloped in the field of online
convex optimization, proved to be a very meaningful benchmark in order to
formally define natural behaviors for selfish agents in imperfect information
settings.

2.5.1 Random-Payoff Opinion Formation Games
As already mentioned both the FJ model and its respective opinion formation
game were very influential in modeling the opinion formation process. However
there are notable cases in which the FJ model does not appropriately describe
the dynamics of the opinions, due to the large amount of information exchange
that it implies. More precisely, at each round t ≥ 1 its update rule

xi(t) =
∑
j,iwijxj(t− 1) + wisi∑

j,iwij + wi

requires that every agent learns all the opinions the agents with wij > 0! In
today’s large social networks where users usually have several hundreds of
friends it is highly unlikely that, each day they learn the opinions of all their
social neighbors. In such environments it is far more reasonable to assume
that individuals randomly meet a small subset of their acquaintances and
these are the only opinions that they learn.
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In order to capture the above motivation, we consider a random payoff
variant of the opinion formation game introduced in [17]. For a given opinion
vector x = (xi, x−i) ∈ [0,1]n, the disagreement cost of agent i is the following
random variable Ci(xi, x−i):

• Agent i meets just one of her neighbors j with probability,

pij = wij∑
j,iwij

• Agent i suffers cost

Ci(xi, x−i) = (1− αi)(xi − xj)2 + αi(xi − si)2,

where αi = wi/(
∑
j,iwij + wi).

This random payoff variant is based on the natural assumption that the influ-
ence between two individuals in a society is the frequency that these individuals
interact. It is not hard to see that for a given opinion vector (xi, x−i) ∈ [0,1]n
the expected disagreement cost of agent i is proportional to the disagreement
cost of Equation 2.1 (i.e. E [Ci(xi, x−i)] ∼

∑
j,iwij(xi − xj)2 + wi(xi − si)2).

As a result, the Nash Equilibrium of this random-payoff opinion formation
game (defined with respect to the expected disagreement cost) is the same
with the Nash Equilibrium of the opinion formation game defined in [17].
Moreover the simultaneous best response dynamics (with respect to the ex-
pected disagreement cost) is an instance of the FJ model.

Contribution

We study the convergence properties of natural and efficient dynamics in this
random payoff opinion formation game. By the term natural we mean that
the agents update their opinions in their effort to minimize their disagreement
cost. By the term efficient we mean that the update rule of the dynamics
respect the information exchange constraints of the game: at every round
each agent learns just the opinion of the agent that she randomly met.

Example 2.2. • The FJ model is natural: each agent selects the opin-
ion that minimizes her expected disagreement cost with respect to the
expressed opinions of her neighbors in the previous round.

• The FJ model is not efficient: in order to compute her best-response
opinion, agent i must know the opinions of all the agents with wij >
0. Thus, this update rule does not respect the information exchange
constraints of random-payoff opinion formation game.
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Although the term efficient is very clear (learning just the opinion of the
randomly-met agent), the term natural is totally ambigous in this limited
information exchange setting. Since each selfish agent learns the opinion of
just one of her neighbors at the end of each round, it is not clear at all what is
natural for such an agent to do in her attempt to to minimize her individual
disagreement cost. The online convex optimization framework provides a very
concrete answer to what the agent can do in this limited information setting
and clarifies the word natural dynamics.

An agent can update her opinion so as the disagreement cost that she expe-
riences is smaller than the disagreement cost that she would experience by
expressing any fixed opinion. This will hold no matter the opinions of the
randomly-met neighbors.

As already mentioned, the latter guarantee is refered as no-regret in the
online convex optimization literature and the existence of such no-regret algo-
rithms had a vast influence on online decision making (see also [87] for an
introduction to online convex optimization).

In Chapter 3, we present a limited-information exchange variant of the FJ
model, called Follow the Leader dynamics which is both natural and efficient
in the above-presented sense. Its update rule requires only the opinion of
the randomly-met-agent, making it efficient. At the same time when an
agent uses this rule to update her opinion, she is ensured no-regret to her
experienced disagreement cost even if the opinions of the randomly-met agents
where selected by a malicious adversary. As already discussed, the no-regret
guarantee makes our rule a natural choice for selfish agents that are only
interested in their individual disagreement cost. We show that if this update
rule is adopted by all agents, then the produced opinion dynamics (Follow the
Leader dynamics) is ε-close to Nash Equilibrium in Õ(1/ε2) rounds. We also
remark that this rule is fairly simple (roughly a time-average on the observed
opinions) and it is based on the Follow the Regularized Leader algorithm
develloped for online convex optimization problems [87]. Moreover Follow
the Leader dynamics comes as a very simple and intuitive limited-information
exchange variant of the original FJ model and its convergence property adds
robustness to the predictive power of the Nash Equilibrium x∗ ∈ [0,1]n of
the FJ model.

We then ask whether there exists an update rule that ensures no-regret
and produces opinion dynamics with faster convergence rate. Motivated by
this question we discover a very interesting phenomena: every dynamics that
is at the same time both natural and efficient, needs at least Ω(1/ε) rounds to
be ε-close to Nash Equilibrium. However this is not true for dynamics that
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are just efficient. We prove this lower bound on the convergence rate of such
dynamics through the use of an information-theoretic argument that connects
no-regret dynamics with the statistical estimation of the success probability
of a Bernoulli random variable.

We finally seek for update rules producing opinion dynamics that are just
efficient and that converge exponentially fast to Nash Equilibrium x∗. We
remark that the existence of such dynamics is not excluded by the above lower
bound. Combining ideas from recent stochastic gradient descent methods
[94, 131] and from older distributed gradient descent methods [13], we design
an update rule that does not ensure the no-regret property (the produced
dynamics is not natural), but the produced dynamics is ε-close to Nash
Equilibrium in O(log2(1/ε)) rounds. The key idea is that learning the opinion
of just one randomly selected neighbor, can be seen as having access to an
oracle producing a random vector with expected value equal to the gradient
of the potential function Φ(xi, x−i) of Equation 2.2. Our dynamics can be
seen as a distributed protocol that appropriately uses this «noisy gradient»
to minimize the potential function Φ(xi, x−i) in as few rounds as possible.

2.5.2 Opinion Formation Games with Aggregation and Neg-
ative Influence

In many domains, public opinions are not only affected by local interactions
and personal beliefs, but also by influences that stem from global properties
of the opinions present in the society. People are getting exposed to global
trends, societal norms, results from voting and polling, etc., which are usually
interpreted as the consensus view of the society and may crucially affect
opinion formation. Furthermore, groups of people (or networks of agents)
often need to agree on a common action, even if their beliefs and/or their
expressed opinions are totally different. This might happen e.g., when some
network devices need to implement a common action, when people vote over
a set of alternatives, or when a wisdom-of-the-crowd opinion is formed in a
social network.

We capture such situations by assuming that an aggregation rule maps
the public opinions to a global opinion that represents the consensus view on
the issue at hand. The agents anticipate the impact of their public opinions
on the global one and might incorporate it in their opinion selection. This
means that the disagreement cost should also account for the distance of
an agent’s intrinsic belief to the global opinion. To address these issues, we
consider a generalization of the opinion formation game of [17] with opinion
aggregation. The strategy of each agent is her public opinion xi ∈ R, while
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for a given public opinions vector x = (xi, x−i) ∈ Rn agent’s i cost is

Ci(x) =
∑
j,i

wij(xi − xj)2 + wi(xi − si)2 + αi(aggr(x)− si)2

where aggr : Rn 7→ R maps the public opinion vector to an aggregated global
opinion and the weight αi ≥ 0 quantifies the appeal of this global opinion
aggr(x) to agent i. As in the opinion formation game defined in [17], wij ≥ 0
denotes the influence of that agent j poses on agent i and si ∈ [0,1] the
internal opinion of agent i.

Motivated by previous work on the wisdom of the crowd [92, Sec. 8.3],
[83], we concentrate on average-oriented opinion formation games, where the
aggregation rule aggr(x) is the average public opinion

avg(x) =
n∑
j=1

xj/n

Contribution

The opinion formation game introduced in [17] is special case of the average-
oriented opinion formation game where all coefficients αi = 0. At a first
glance, the additional aggregation term seems not to have a major impact on
the properties of the game. This is far from being true! As we shall see in
Chapter 4, the presence of this simple aggregation term introduces negative
influence among the agents and this crucially affects both the PoA bounds
and the convergence properties of the simultaneous best response dynamics
(FJ model). The following example reveals that in average-oriented opinion
formation game even the existence of Nash Equilibrium is not guaranteed.

Example 2.3. Let the two-player average-oriented opinion formation game
with

• w12 = w21 = 0

• w1 = w2 = 0

• α1 = α2 = 1

• s1 = 0 and s2 = 1

In this instance C1(x1, x2) = (x1+x2
2 )2 and C2(x1, x2) = (x1+x2

2 − 1)2. Thus
dC1(x1,x2)

dx1
= x1+x2

2 and dC2(x1,x2)
dx2

= x1+x2
2 − 1. Meaning that there is no vector

(x∗1, x∗2) ∈ R2 such as dC1(x∗1 ,x∗2)
dx1

= 0 and dC2(x∗1 ,x∗2)
dx2

= 0 at the same time. Since
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the strategy space of the agents is R, at any Nash Equilibrium, dC1(x∗1 ,x∗2)
dx1

= 0
and dC2(x∗1 ,x∗2)

dx2
= 0. The latter implies that there is no Nash Equilibrium for

the above instance of the game.

As Example 2.3 illustrates, there are instances of the average-oriented
opinion formation game in which simultaneous best-response dynamics does
not converge since Nash Equilibrium does not even exist. Thus we examine
under which circumstances the nice properties of the FJ model are restored.
We provide general and intuitive conditions about the coefficients wi, αi (see
Assumption 1 in Chapter 4) under which not only the existence of Nash
Equilibrium is guaranteed, but also simultaneous best response dynamics
converges fast to it. To provide the high level idea on how these conditions
are derived, we remark that when the game is symmetric i.e. wij = wji and
αi = α, the function

Φ(xi, x−i) =
∑
j,i

wij(xi − xj)2 +
∑
j∈V

wj(xj − sj)2 + α(
∑
j∈V

xj
n

)2 − 2α
∑
j∈V

sjxj
n

(2.3)
serves as a potential function of the game, Φ(xi, x−i)−Φ(x′i, x−i) = Ci(xi, x−i)−
Ci(x′i, x−i). The latter implies that any local minimum of Φ(xi, x−i) (if such
exists) is a Nash Equilibrium of the game and vice versa. Moreover the
simulataneous best response dynamics corresponds to a step of the Newton
method in Φ(xi, x−i). Roughly speaking, the role of the conditions stated in
Assumption 1 is to is to make Φ(xi, x−i) convex so as the Newton method
converges to its unique minimizer. We highly remark that Assumption 1
does not require neither wij = wji nor αi = α for all agents i, meaning
that simultaneous best-response dynamics converges even if the potential
function of Equation 2.3 does not exist. Our first convergence result states
that under Assumption 1, simultaneous best-response dynamics is ε-close to
Nash Equilibrium in O(n2 log n/ε) rounds.

The simultaneous best response dynamics in the average-oriented opinion
formation games implies even larger amount of information exchange than
the original FJ model. Now an agent must learn at each round not only the
opinions of her friends (wij > 0), but also the average public opinion in order
to compute her best response. Obviously the average global opinion is an
expensive information to obtain in realistic settings and thus we examine an
outdated version of the simultaneous best response dynamics. Now agents
learn the opinions of their social neighbors at each round, but the average
public opinion is announced to them every now and then. At each round, the
agents compute their best response opinion with respect to the opinions of
her friends in the previous round and the most recently announced average
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public opinion. We show that similar convergence results hold even with
this apparent reduction in the information exchange. More precisely we
show that outdated simultaneous best-response dynamics is ε-close to Nash
Equilibrium after O(n2 log n/ε) announcements of the average public opinion.
This result in based on techniques develloped in the context of distributed
gradient descent methods [13, 41]. In the distributed convex optimization
framework, n processors try to minimize a convex function of n variables
while each processors is responsible for a specific variable of the function.
The basic problem is that a processor may have outdated information about
the value of some variables due to intermediate updates of other processors.
The major difficulty in proving that outdated simultaneous best-response
dynamics converges to Nash Equilibrium despite the fact that agents have
outdated information about the average public opinion, is that the conditions
stated in Assumption 1 do not imply the existence of a potential function
of Equation 2.3 and thus reaching Nash Equilibrium is not equivalent with
minimizing a convex potential function.

The crucial difference between the opinion formation game introduced in
[17] and our average-oriented opinion formation game is that in the second
case there are equilibria in which some agents adopt opinions outside the
[0,1] interval ([0,1] is the interval in which the internal opinions si lie). The
latter is an effect of the negative influence among the agents introduced by
the additional averaging term. Although assuming that the agents can select
any opinion in the real line is not by principle a bad assumption, there are
settings such as voting in which opinions must necessarily lie in a fixed range.
To cover such settings, we consider the restricted version of the game in which
the strategy space of the agents is the [0,1] interval (and not the entire R).
We prove that under the conditions of Assumption 1, both the simultaneous
best response dynamics and its outdated variant converge to Nash Equilibrium
of the restricted version of the game.

Finally we turn our attention to the quality of Nash equilibrium in terms
of total disagreement cost. Using the Local Smoothness technique introduced
in [128], we show that in the unrestricted version of the game the Price of
Anarchy is 9/8 +O(α/(wn2)) if wi = w and αi = α for all agents i. For the
restricted version, which is much harder to analyze, we show that the Price
of Anarchy is 3 +

√
2 if wi = αi = 1 for all agents i.

2.5.3 Network Hegselmann Krause Model
As already discussed, the HK model had a vast influence on the study of
opinion formation. Howevever the model implicitly assumes something rather
questionable. Whenever two agents i, j share similar opinions |xi(t)−xj(t)| ≤
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ε, then there are mutually influenced. Apart from having similar opinions
individuals must be in sense socially connected in order to be influenced, at
least they must know each other!

We introduce a very straightforward generalization of the HK model to
capture the above issues. We assume the existence of an undirected graph
G = (V,E) in which V stands for the agents and E for the social relations
among them. In our generalization called Network HK model, each agent
averages her current opinion with the opinions of her neighbors in G that are
ε-close to hers.

Network Hegselmann Krause model
1: An undirected graph G = (V,E), |V | = n
2: xi(0) ∈ [0,1], agent’s i initial opinion.
3: At round t ≥ 1, each agent i updates her opinion:

xi(t) =
∑
j∈Ni(t) xj(t− 1) + xi(t− 1)

|Ni(t)|+ 1

where Ni(t) = {j , i : |xi(t− 1)− xj(t− 1)| ≤ ε and (i, j) ∈ E}

The HK model is a special case of Network HK model when G is a clique.
Similarly with HK model, the Network HK model admits an infinite number
of stable points no matter the topology of G. Unfortunately the convergence
results of the HK model cannot be easily generalized. The proof of conver-
gence of the HK model heavily relies on the following fact: the ordering of
the agents from left to right according to their opinions is always the same!
[14, 19] This nice structure holds only when G is a clique and thus we devellop
different techniques to analyze the convergence properties of the Network HK
model.

Contribution

In Chapter 5, we show that Network HK model always converges to a stable
state. We consider the sequence of undirected graphs that represent the
influences among the agents at each round, G’ s edges whose endpoints have
opinions that are ε-close. We then use the notion of weak connectivity, intro-
duced in [96], to prove that either the overall dynamical systems splits into
independent sub-systems or all the agents adopt the same opinion. Some of
our results coincide with results in [91, 105] concerning products of stochastic
matrices, however our approach provides simpler and more versatile proofs.
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2.5.4 Random Hegselmann Krause Model
In Section 2.5.1 we discussed about the large information exchange that the
FJ model requires, rendering it unsuitable for modeling the opinion formation
process in large social network. Things are much worse in the HK model
from this point of view. Now agents need to learn all the opinions in order to
determine which of the agents are in distance ε. We capture these issues with
a straightforward variant called Random HK model: Each agent randomly
meets k other agents and averages her opinion with those opinions that are
ε-close to hers.

Random Hegselmann Krause model
1: n agents.
2: xi(0) ∈ [0,1], agent’s i initial opinion.
3: At round t ≥ 1, each agent i:

4: selects k other agents uniformly at random, Ri(t) ⊆ [n].
5: updates her opinion,

xi(t) =
∑
j∈Ni(t) xj(t− 1) + xi(t− 1)

|Ni(t)|+ 1

where Ni(t) = {j , i : |xi(t− 1)− xj(t− 1)| ≤ ε and j ∈ Ri(t)}

Contribution

In Chapter 5, we show that Random HK model always reaches a stable
state. As in Network HK model, the ordering of the agents (according to
their opinions) is not preserved and as a result the techniques for proving
convergence in the original HK model do not apply. Random HK model
involves an additional difficulty, since it employs asymmetric influence be-
tween the agents (it may be an agent i influences agent j, while j does not
influence i) and averaging systems that permit directionality are notoriously
difficult to be analyzed [37, 15]. As in the case of Network HK model, we
use a suitably adjusted notion of weak connectivity to prove that with high
probability either the system splits into independent sub-systems or all the
agents adopt the same opinion.

2.5.5 Reallocating Facilities on the Line
In Chapter 6, we present our results concerning a dynamic version of the
well-studied K-median problem called K-facility reallocation problem that
was introduced in [58].
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In theK-facility reallocation,K facilities are initially located at (x0
1, . . . , x

0
K)

on the real line. Facilities are meant to serve n agents for the next T days. At
each day each agent connects to the facility closest to its location, incuring
her a connection cost equal to their distance. The locations of the agents may
change from day to day and thus facilities have to accordingly move in order
to reduce the connection cost. Naturally, moving a facility is not for free, but
comes with the price of the distance that the facility was moved. Our goal is
to specify the exact positions of the facilities at each day so that the total
connection cost plus the total moving cost is minimized over all T days.

A very motivating application of the K-facility reallocation comes from
the world of opinion selection. Assume that a political with K candidates
wants to win the next T elections. The opinions of the voters are points of
the real time that may change from time to time. A party would like to
adjust the expressed opinions of its candidates so as to represent as many
voters as possible. A voter is more likely to vote for the party at the t-th
elections if is at least one of its representatives expresses an opinion similar
to the voter’s opinion at that time. However politicians with constantly
changing opinions may not be taken seriously by the public and this should
be taken into account by the party. As a result, the party should assign opin-
ions to its candidates so as to efficiently cover the political spectrum and at
the same time its candidates do not dramatically change their public positions.

Contribution

We resolve the computational complexity of K-facility reallocation problem
on the real line. In Capter 6, we present an optimal algorithm with running
time polynomial in the parameters n, T and K. This substantially improves
on the complexity of the algorithm, presented in [58], that is exponential in
K. Our algorithm solves a Linear Programming relaxation and then rounds
the fractional solution to determine the positions of the facilities. Our main
technical contribution consists in showing that a simple rounding scheme
yields an integral solution with the exact same cost as the fractional one.

Related work

We can cast the K-facility reallocation problem as a clustering problem on a
temporally evolving metric. From this point of view, K-facility reallocation
problem is a dynamic K-median problem. A closely related problem is the
dynamic facility location problem, [63, 3]. Other examples in this setting are
the dynamic sum radii clustering [18] and multi-stage optimization problems
on matroids and graphs [84]. In [80], a mobile facility location problem was
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introduced, which can be seen as a one stage version of our problem. They
showed that even this version of the problem is NP -hard in general metric
spaces using an approximation preserving reduction to K-median problem.

Online facility location problems and variants have been extensively stud-
ied in the literature, see [74] for a survey. [61] studied an online model, where
facilities can be moved with zero cost. As we have mentioned before, the
online variant of the K-facility reallocation problem is a generalization of the
K-server problem, which is one of the most natural online problems. [100]
showed a (2K − 1)-competitive algorithm for the K-server problem for every
metric space, which is also K-competitive, in case the metric is the real
line [11]. Other variants of the K-server problem include the (H,K)-server
problem [9, 8], the infinite server problem [51] and the K-taxi problem [71, 50].
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Chapter 3

Random-Payoff Opinion
Formation Games

In this chapter we present our results on random-payoff opinion formation
games. We introduced this kind of games in our work [75] in order to capture
the fact that people form opinions by just learning a small number of their
social circle. Such issues have not been considered in the original FJ model
[79] and its respective opinion formation game [17].

We are interested in the convergence properties of simple and natural
variants of the FJ model that use limited information exchange. More precisely,
each agent learns just one opinion of the other agents at each round. To
address these questions, one could define precise dynamical processes whose
update rules satisfy these information exchange requirements and study their
convergence properties. But what is the modelling power of such processes?
How can we formally define what natural means in order to rule out complex
algorithmic distributed protocols that certainly have nothing to do with the
way people form opinions?

Instead of proposing ad-hoc models that resemble the FJ model to a bigger
or a lesser extend we adopt a more structured approach. We introduce a
random-payoff variant of the opinion formation game defined in [17], capturing
the fact that each agent meets just one other agent, and we assume that
agents iteratively play this game. This way we can define as natural variants
of FJ, update rules that minimize in some sense the disagreement cost of the
agents and to study general classes of dynamics (e.g. no-regret dynamics)
without explicitly defining their update rule.

47
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3.1 Random-Payoff Opinion Formation Games
According to the opinion formation game of Bindel, Kleinberg and Oren [17],
each agent i expresses an opinion xi so as to minimize her disagreement cost

Ci(xi, x−i) =
∑
j,i

wij(xi − xj)2 + wi(xi − si)2 (3.1)

Since the FJ model is the best response dynamics of this game, this opinion
formation game inherits all of its modelling and predictive power on the way
opinions are formed. However at a first glance something fairly unreasonable
seems to be introduced: each agent i somehow interacts with the all the
agents with wij > 0 in order to experience this disagreement cost. But how
this is done if this number is of several hundreds for each agent?

Random-payoff games provide a simple and intuitive fix to the above
critism. An agent i randomly meets just one of her friends and the weight
wij describe the probability of meeting her friend j. Now Equation 3.1 can
be interpreted as the expected disagreement cost that an agent experiences.
This comes along with the general belief that we are influenced more by those
we interact more often. The above discussion is formally captured in the
random-payoff game of Definiton 3.1. In these games the disagreement cost
of agent i for expressing the opinion xi is random variable Ci(xi, x−i) whose
expected value is given by Equation 3.1.

Definition 3.1. For a given opinion vector x = (xi, x−i) the cost of each
agent i is the random variable Ci(xi, x−i) defined as follows:

• Each agent i randomly meets just one agent Wi,

P [Wi = j] = wij∑
j,iwij

• Experiences disagreement

Ci(xi, x−i) = (1− αi)(xi − xWi
)2 + αi(xi − si)2

where αi = wi/(
∑
j,iwij + wi).

The random-payoff game of Definition 3.1 introduces a higher of abstrac-
tion. Both the FJ model and the game in [17] (see Equation 3.1) can be
obtained by assuming that the agents are interested in minimizing the ex-
pected disagreement cost. More precisely consider that the agents iteratively
play the random-payoff game of Definition 3.1. Let’s assume that at the



3.1. RANDOM-PAYOFF OPINION FORMATION GAMES 49

end of each round somehow each agent is informed about the opinions of
the others. If the agents update their public opinion so as to minimize their
expected disagreement in the next round based on the opinions that they
learned, then FJ model comes out! At the same time let the opinions of the
agents be the unique Nash Equilibrium x∗ of the original opinion formation.
Let us assume that the agents are able to change their opinions before the
random meetings take place. Then nobody change her opinion because this
would increase her expected disagreement cost during the random meetings.
This also reveals that the Nash Equilibrium x∗ of the game in [17] (stable
point of FJ model) is also a meaningful notion in our random-payoff opinion
formation games.

Definition 3.2. An opinion x∗ = (x∗i , x∗−i) ∈ [0,1]n is a Nash Equilibrium if
and only if for each agent i

E
[
Ci(x∗i , x∗−i)

]
≥ E

[
Ci(xi, x∗−i)

]
for every xi ∈ [0,1]

Random-payooff games provides us with a holistic framework for studying
the opinion formation proccess under the modelling principles of Friedkin and
Johnsen. The agents are assumed to repeatedly play the game of Definition 3.1
and at the end of each round they update their opinions so as to minimize
their disagreement cost. The exact way this updating is performed and the
exact assumption on what the agents know about the opinions of the others,
leads to different opinion dynamics however all the them respect the modelling
principles that Friendkin and Johnsen initially posed. Obviously the most
natural thing to consider is that the agents learn at each round only the
opinion of the randomly-met-agent and then use this information to minimize
their disagreement cost, but we highly remark that this framework does not
prohibit someone to consider different information exchange assumptions.

Throughout this chapter, we consider that at each round each agent learns
only the opinion of her randomly-met-agent. But now the following question
arises.

Question 1. What is reasonable for the agents to do with such little infor-
mation in order to minimize their disagreement cost?

Clearly the natural choice of best response (that FJ model assumes) is no
longer an option since the agents do not know enough in order to compute it.
However there is something much more reasonable than best response that
the agents can do. They can select their opinions according to a no-regret
algorithm for the following online convex optimization problem:

Definition 3.3. At round t ≥ 0,
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1. the agent selects a value xt ∈ [0,1].

2. the adversary observes the xt and selects a bt ∈ [0,1]

3. the agent receives cost (1− αi)(xt − bt)2 + αi(xt − si)2.

where bt ∈ [0,1]

Each agent i is very eager to update her opinion according to such a no-regret
algorithm because such algorithms guarantee that the disagreement cost that
the agent experiences during the game play is close to the disagreement cost
that she would experience by selecting the best fixed opinion during the whole
game play. In Section 3.4 we formally present the no-regret guarantees and a
brief introduction to the online convex optimization framework.

Our work studies the opinion dynamics when the agents update their
opinion according to such no-regret algorithms. More precisely we shed light
on the following questions:

Question 2. • What is the limiting behavior the opinions if such algo-
rithms are adopted by the agents?

• Are there simple update rules such that

– no-regret is ensured to any agent that adopts them.
– the overall system converges to the Nash Equilibrium x∗.

We present a very simple and intuitive update rule that meets the requirements
of Question 2. It ensures no-regret to any agent that adopts and the same
time the produced dynamics converges to Nash Equilibrium x∗. These results
are formally stated and proven in Theorem 3.2 and Theorem 3.1 respectively.
We then prove that any opinion dynamics produced by update rules that
ensure no-regret to the agents cannot have much faster convergence rate,
whereas we find an update rule that does not ensure no-regret to the agents,
but its produced dynamics converge to the Nash Equilibrium of the game
exponentially fast.

3.2 Our Results
Before presenting our results we introduce some necessary notation. For
simplicity we adopt the following notation for an instance of the game of
Definition 3.1.
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Definition 3.4. We denote an instance of the opinion formation game of
Definition 3.1 as triple I = (P, s, α), where

• P is a n× n stochastic matrix.

• s ∈ [0,1]n is the internal opinion vector.

• α ∈ (0,1]n the self confidence vector.

Corollary 3.1. For a given instance I = (P, s, α) the Nash equilibrium
x∗ ∈ [0,1]n is the unique solution of the following linear system:

x∗i = (1− αi)
∑
j,i

pijx
∗
j + aisi, for every agent i

.

The proof of Corollary 3.1 follows directly by the definition of Nash
Equilibrium (Definition 3.2) though some simple algebra, while the fact that
the above linear system always admits a solution follows by matrix norm
properties. Throughout the chapter we study dynamics of the random-payoff
game of Definition 3.1. We denote as W t

i the neighbor that agent i met
at round t, which is a random variable whose probability distribution is
determined by the instance I = (P, s, α) of the game, P [W t

i = j] = pij.
Another parameter of an instance I that we often use is ρ = mini∈V αi.

In Section 3.3, we examine the convergence properties of the opinion
vector x(t) when all agents update their opinions according to the Follow the
Leader principle. Since each agent i must select xi(t), before knowing which
of her neighbors she will meet and what opinion her neighbor will express,
this update rule says «play the best according to what you have observed».
The convergence rate of Follow the Leader dynamics to the unique Nash
Equilibrium x∗ is stated and proven in Theorem 3.1.
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Follow the Leader dynamics
1: Initially xi(0) = si for all agents i.
2: At round t ≥ 0 each agent i:

3: Meets neighbor with index W t
i where P [W t

i = j] = pij
4: Suffers cost disagreement cost

(1− αi)(xi(t)− xW t
i
(t))2 + ai(xi(t)− si)2

and learns the opinion xW t
i
(t).

5: Updates her opinion as follows

xi(t+ 1) = argmin
x∈[0,1]

t∑
τ=0

(1− αi)(x− xW τ
i
(τ))2 + αi(x− si)2 (3.2)

Theorem 3.1. Let I = (P, s, α) be an instance of the opinion formation
game of Definition 3.1 with equilibrium x∗ ∈ [0,1]n. The opinion vector
x(t) ∈ [0,1]n produced by update rule (3.2) after t rounds satisfies

E [‖x(t)− x∗‖∞] ≤ C
√

log n (log t)3/2

tmin(1/2,ρ) ,

where ρ = mini∈V ai and C is a universal constant.

In Section 3.4 we argue that, apart from its simplicity, update rule (3.2)
ensures no-regret to any agent that adopts it and therefore the FTL dynamics
can be considered as natural dynamics for selfish agents. Since each agent i
selfishly wants to minimize the disagreement cost that she experiences, it is
natural to assume that she selects xi(t) according to a no-regret algorithm for
the online convex optimization problem where the adversary chooses a function
ft(x) = (1−αi)(x−bt)2 +αi(x−si)2 at each round t. In Theorem 3.2 we prove
that Follow the Leader is a no-regret algorithm for the above OCO problem.
We remark that this does not hold, if the adversary can pick functions from a
different class (see e.g. chapter 5 in [87]).

Theorem 3.2. Consider an arbitrary sequence (bt)∞t=0 and the function f :
[0,1]2 7→ [0,1] with f(x, b) = (1− α)(x− b)2 + α(x− s)2 for some constants
s, α ∈ [0,1]. Then for all t ≥ 0,

1
t

t∑
τ=0

f(xτ , bτ ) ≤
1
t

min
x∈[0,1]

t∑
τ=0

f(x, bτ ) +O

(
log t
t

)
.

where xt = argminx∈[0,1]
∑t−1
τ=0 f(x,bτ )
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On the positive side, the FTL dynamics converges to x∗ and its update
rule is simple and ensures no-regret to the agents. On the negative side,
its convergence rate is outperformed by the rate of FJ model. For a fixed
instance I = (P, s, α), the FTL dynamics converges with rate Õ(1/tmin(ρ,1/2))
while FJ model converges with rate O(e−ρt) [81].

Question 3. Can the agents adopt other no-regret update rules such that the
resulting dynamics converges fast to x∗?

The answer is no. In Section 3.5, we prove that fast convergence cannot
be established for any no-regret dynamics. The reason that FTL dynamics
converges slowly is that rule (3.2) only depends on the opinions of the neighbors
that agent i meets, αi, and si. This is also true for any update rule that
ensures no-regret to the agents (see Section 3.5). We call the larger class of
update rules that do not use the values pij graph oblivious (this class includes
all the no-regret algorithms) and we prove that fast convergence cannot be
established for any graph oblivious dynamics.

Definition 3.5 (graph oblivious update rule). A graph oblivious update rule
A is a sequence of functions (At)∞t=0 where At : [0,1]t+2 7→ [0,1].

Definition 3.6 (graph oblivious dynamics). Let a graph oblivious update rule
A. For a given instance I = (P, s, α) the rule A produces a graph oblivious
dynamics xA(t) defined as follows:

• Initially each agent i selects her opinion xAi (0) = A0(si, αi)

• At round t ≥ 1, each agent i selects her opinion

xAi (t) = At(xW 0
i
(0), . . . , xW t−1

i
(t− 1), si, αi)

where W t
i is the neighbors that i meets at round t.

Note that FTL dynamics is a graph oblivious dynamics since update
rule (3.2) can be written equivalently, xi(t) = (1− αi)

∑t−1
τ=0 xW τ

i
(τ)/t+ αisi.

Theorem 3.3 states that for any graph oblivious dynamics there exists an
instance I = (P, s, α), where roughly Ω(1/ε) rounds are required to achieve
convergence within error ε.

Theorem 3.3. Let A be a graph oblivious update rule, which all agents use
to update their opinions. For any c > 0 there exists an instance I = (P, s, a)
such that

E [‖xA(t)− x∗‖∞] = Ω(1/t1+c),
where xA(t) denotes the opinion vector produced by A for the instance I =
(P, s, α).
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To prove Theorem 3.3, we show that graph oblivious rules whose dynamics
converge fast imply the existence of estimators for Bernoulli distributions
with «small» sample complexity. The key part of the proof lies in Lemma 3.6,
in which it is proven that such estimators cannot exist. We also briefly discuss
two well-known sample complexity lower bounds from the statistics literature
and explain why they do not work in our case.

In Section 3.6, we present a simple update rule that achieves error rate
e−Õ(

√
t). This update rule is a function of the opinions and the indices of the

neighbors that i met, si, αi and the i-th row of the matrix P . Obviously this
rule is not graph oblivious, due to its dependency on the i-th row and the
indices, and thus does not ensure no-regret to an agent that adopts it (see
Example 3.1 in Section 3.6). However it reveals that slow convergence is not
a generic property of the limited information dynamics, but comes with the
assumption that agents act selfishly.

3.3 Convergence Rate of FTL Dynamics
In this section we prove Theorem 3.1 which bounds the convergence time of
FTL dynamics to the unique equilibrium point x∗. At first notice that the
update rule (3.2) of FTL dynamics can be equivalently written in the form of
update rule (3.3).

Follow the Leader dynamics
1: Initially xi(0) = si for all agents i.
2: At round t ≥ 0 each agent i:

3: Meets neighbor with index W t
i where P [W t

i = j] = pij
4: Updates her opinion as follows

xi(t) = (1− αi)
∑t−1
τ=0 xW τ

i
(τ)

t
+ αisi (3.3)

Since the opinion vector x(t) is a random vector, the convergence metric
used in Theorem 3.1 is E [‖x(t)− x∗‖∞] where the expectation is taken
over the random meeting of the agents. The proof of Theorem 3.1 is quite
technically complicated so we first present the high level idea. We remind
that the unique equilibrium x∗ ∈ [0,1]n of the instance I = (P, s, α) satisfies
the following equations for each agent i ∈ V ,

x∗i = (1− αi)
∑
j,i

pijx
∗
j + αisi



3.3. CONVERGENCE RATE OF FTL DYNAMICS 55

Since our metric is E [‖x(t)− x∗‖∞], we can use the above equations to bound
|xi(t)− x∗i |.

|xi(t)− x∗i | = (1− αi)
∣∣∣∣∣∣
∑t−1
τ=0 xW τ

i
(τ)

t
−
∑
j,i

pijx
∗
j

∣∣∣∣∣∣
= (1− αi)

∣∣∣∣∣∣
∑
j,i

∑t−1
τ=0 111[W τ

i = j]xj(τ)
t

−
∑
j,i

pijx
∗
j

∣∣∣∣∣∣
≤ (1− αi)

∑
j,i

∣∣∣∣∣
∑t−1
τ=0 111[W τ

i = j]xj(τ)
t

− pijx∗j

∣∣∣∣∣
Now assume that |

∑t−1
τ=0 111[W τ

i =j]
t

− pij| = 0 for all t ≥ 1, then with simple
algebraic manipulations one can prove that ‖x(t)− x∗‖∞ ≤ e(t) where e(t)
satisfies the recursive equation e(t) = (1− ρ)

∑t−1
τ=0 e(τ)
t

, where ρ = min ai. It
follows that ‖x(t)−x∗‖∞ ≤ 1/tρ meaning that x(t) converges to x∗. Obviously
the latter assumption does not hold, however since W τ

i are independent
random variables with P [W τ

i = j] = pij, |
∑t−1

τ=0 111[W τ
i =j]

t
− pij| tends to 0 with

probability 1. In Lemma 3.1 we use this fact to obtain a similar recursive
equation for e(t) and then in Lemma 3.2 we upper bound its solution.

Lemma 3.1. Let δ(t) =
√

ln(π2nt2/6p)/t and e(t) the solution of the recur-
sion with

e(t) = δ(t) + (1− ρ)
∑t−1
τ=0 e(τ)
t

where e(0) = ‖x(0)− x∗‖∞, and ρ = mini∈V αi. Then,

P [for all t ≥ 1, ‖x(t)− x∗‖∞ ≤ e(t)] ≥ 1− p

Proof. At first we prove that with probability at least 1− p, for all t ≥ 1 and
all agents i: ∣∣∣∣∣∣

∑t−1
τ=0 x

∗
W τ
i

t
−
∑
j,i

pijx
∗
j

∣∣∣∣∣∣ ≤
√

log(π2nt2/(6p))
t

:= δ(t). (3.4)

Since W τ
i are independent random variables with P [W τ

i = j] = pij and
E
[
x∗W τ

i

]
= ∑

j,i pijx
∗
j . By the Hoeffding’s inequality we get

P

∣∣∣∣∣∣
∑t−1
τ=0 x

∗
W τ
i

t
−
∑
j,i

pijx
∗
j

∣∣∣∣∣∣ > δ(t)
 < 6p/(π2nt2).
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To bound the probability of error for all rounds t ≥ 1 and all agents i, we
apply the union bound

∞∑
t=1

P

max
i

∣∣∣∣∣∣
∑t−1
τ=0 x

∗
W τ
i

t
−
∑
j,i

pijx
∗
j

∣∣∣∣∣∣ > δ(t)
 ≤ ∞∑

t=1

6
π2

1
t2

n∑
i=1

p

n
= p

As a result with probability at least 1− p we have that inequality (3.4) holds
for all t ≥ 1 and all agents i. We now prove our claim by induction. Let
‖x(τ)− x∗‖∞ ≤ e(τ) for all τ ≤ t− 1. Then

xi(t) = (1− αi)
∑t−1
τ=0 xW τ

i
(τ)

t
+ αisi

≤ (1− αi)
∑t−1
τ=0 x

∗
W τ
i

+∑t−1
τ=0 e(τ)

t
+ αisi (3.5)

≤ (1− αi)
∑t−1

τ=0 x
∗
W τ
i

t
+
∑t−1
τ=0 e(τ)
t

+ αisi

≤ (1− αi)
∑
j,i

pijx
∗
j + δ(t) +

∑t−1
τ=0 e(τ)
t

+ αisi (3.6)

≤ x∗i + δ(t) + (1− ρ)
(∑t−1

τ=0 e(τ)
t

)

We get (3.5) from the induction step and (3.6) from inequality (3.4). Similarly,
we can prove that xi(t) ≥ x∗i−δ(t)−(1−ρ)

∑t−1
τ=0 e(τ)
t

. As a result ‖x(t)−x∗‖∞ ≤
e(t) and the induction is complete. Therefore, we have that with probability
at least 1− p, ‖x(t)− x∗‖∞ ≤ e(t) for all t ≥ 1.

Lemma 3.2. Let e(t) be a function satisfying the recursion

e(t) = δ(t) + (1− ρ)
t−1∑
τ=0

e(τ)/t and e(0) = ‖x(0)− x∗‖∞,

where δ(t) =
√

ln(Dt2.5)/t, δ(0) = 0, and D > e2.5 is a positive constant.
Then

e(t) ≤
√

2 ln(D) (ln t)3/2

tmin(ρ, 1/2) .

Proof. Observe that for all t ≥ 0 the function e(t) the following recursive
relation

e(t+ 1) = e(t)
(

1− ρ

t+ 1

)
+ δ(t+ 1)− δ(t) + δ(t)

t+ 1
(3.7)
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For t = 0 we have that

e(1) = (1− ρ)e(0) + δ(1) = (1− ρ)e(0) +
√

lnD (3.8)

Observe that for D > e2.5, δ(t) is decreasing for all t ≥ 1. Therefore,
δ(t+ 1)− δ(t) + δ(t)

t+1 ≤
δ(t)
t+1 and from equations (3.7) and (3.8) we get that for

all t ≥ 0

e(t+1) ≤ e(t)
(

1− ρ

t+ 1

)
+

√
ln(D(t+ 1)2)
(t+ 1)3/2 ≤ e(t)

(
1− ρ

t+ 1

)
+

√
2 ln(D(t+ 1))
(t+ 1)3/2

Now let g(t) =
√

2 ln(Dt)
t3/2 to obtain for all t ≥ 1

e(t) ≤ (1− ρ

t
)e(t− 1) + g(t)

≤ (1− ρ

t
)(1− ρ

t− 1
)e(t− 2) + (1− ρ

t
)g(t− 1) + g(t)

≤ (1− ρ

t
) · · · (1− ρ)e(0) +

t∑
τ=1

g(τ)
t∏

i=τ+1
(1− ρ

i
)

≤ e(0)
tρ

+
t∑

τ=1
g(τ)e−ρ

∑t

i=τ+1
1
i

≤ e(0)
tρ

+
t∑

τ=1
g(τ)e−ρ(Ht−Hτ )

≤ e(0)
tρ

+ e−ρHt
t∑

τ=1
g(τ)eρHτ

≤ e(0)
tρ

+
√

2
tρ

t∑
τ=1

τ ρ

√
ln(Dτ)
τ 3/2

≤ e(0)
tρ

+
√

2 lnD
tρ

t∑
τ=1

√
ln τ

τ 3/2−ρ

We observe that
t∑

τ=1

√
ln τ

τ 3/2−ρ ≤
∫ t

τ=1

√
ln τ

τ 3/2−ρdτ (3.9)

since, τ 7→
√

ln τ
τ3/2−ρ is a decreasing function of τ for all ρ ∈ [0,1].

• If ρ ≤ 1/2 then
∫ t

τ=1
τ ρ
√

ln τ
τ 3/2 dτ ≤

√
ln t

∫ t

τ=1

1
τ
dτ = (ln t)3/2
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• If ρ > 1/2 then

∫ t

τ=1
τ ρ
√

ln τ
τ 3/2 dτ =

∫ t

τ=1
τ ρ−1/2

√
ln τ
τ

dτ

= 2
3

∫ t

τ=1
τ ρ−1/2((ln τ)3/2)′dτ

= 2
3
tρ−1/2(ln t)3/2 − (ρ− 1/2)2

3

∫ t

τ=1
τ ρ−3/2(ln τ)3/2dτ

≤ 2
3
tρ−1/2(ln t)3/2

Now Theorem 3.1 follows by direct application of Lemma 3.2.

Theorem 3.1. Let I = (P, s, α) be an instance of the opinion formation
game of Definition 3.1 with equilibrium x∗ ∈ [0,1]n. The opinion vector
x(t) ∈ [0,1]n produced by update rule (3.2) after t rounds satisfies

E [‖x(t)− x∗‖∞] ≤ C
√

log n (log t)3/2

tmin(1/2,ρ) ,

where ρ = mini∈V ai and C is a universal constant.

Proof. By Lemma 3.1 we have that for all t ≥ 1 and p ∈ [0,1],

P [‖x(t)− x∗‖∞ ≤ ep(t)] ≥ 1− p

where ep(t) is the solution of the recursion, ep(t) = δ(t) + (1 − ρ)
∑t−1

τ=0 ep(τ)
t

with δ(t) =
√

log(π2nt2/(6p))
t

. Setting p = 1
12
√
t
we have that

P [‖x(t)− x∗‖∞ ≤ e(t)] ≥ 1− 1
12
√
t

where e(t) is the solution of the recursion e(t) = δ(t) + (1 − ρ)
∑t−1

τ=0 ep(τ)
t

with δ(t) =
√

log(2π2nt2.5)
t

. Since 2π2 ≥ e2.5, Lemma 3.2 applies and e(t) ≤
C
√

log n log t3/2

tmin(ρ,1/2) for some universal constant C. Finally,

E [‖x(t)− x∗‖∞] ≤ 1
12
√
t
+(1− 1

12
√
t
)C

√
log n (log t)3/2

tmin(ρ,1/2) ≤ (C+ 1
12

)
√

log n (log t)3/2

tmin(ρ,1/2)
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3.4 Follow the Leader Ensures No-Regret
In this section we provide rigorous definitions of no-regret algorithms and
explain why update rule (3.2) ensures no-regret to any agent that repeatedly
plays the game of Definition 3.1. Based on the disagreement cost that the
agents experience, we consider an appropriate online convex optimization
problem. This problem can be viewed as a «game» played between an
adversary and a player. At round t ≥ 0,

1. the player selects a value xt ∈ [0,1].

2. the adversary observes the xt and selects a bt ∈ [0,1]

3. the player receives cost f(xt, bt) = (1− α)(xt − bt)2 + α(xt − s)2.

where s, α are constants in [0,1]. The goal of the player is to pick xt based
on the history (b0, . . . , bt−1) in a way that minimizes her total cost. Generally,
different OCO problems can be defined by a set of functions F that the
adversary chooses from and a feasibility set K from which the player picks
her value (see [87] for an introduction to the OCO framework). In our case
the feasibility set is K = [0,1] and the set of functions is Fs,α = {x 7→
(1 − α)(x − b)2 + α(x − s)2 : b ∈ [0,1]}. As a result, each selection of the
constants s, α leads to a different OCO problem.

Definition 3.7. An algorithm A for the OCO problem with Fs,α and K =
[0,1] is a sequence of functions (At)∞t=0 where At : [0,1]t 7→ [0,1].

Definition 3.8. An algorithm A is no-regret for the OCO problem with Fs,α
and K = [0,1] if and only if for all sequences (bt)∞t=0 that the adversary may
choose, for all t ≥ 1

t∑
τ=0

f(xτ , bτ ) ≤ min
x∈[0,1]

t∑
τ=0

f(x, bτ ) + o(t)

where xt = At(b0, . . . , bt−1)

Informally speaking, if the player selects the value xt according to a no-
regret algorithm then she does not regret not playing any fixed value no matter
what the choices of the adversary are. Theorem 3.2 states that Follow the
Leader i.e. xt = argminx∈[0,1]

∑t−1
τ=0 f(x, bτ ) is a no-regret algorithm for all the

OCO problems with Fs,α.
Returning to the dynamics of the game in Definition 3.1, it is reasonable

to assume that each agent i selects xi(t) according to no-regret algorithm Ai
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for the OCO problem with Fsi,αi , since by Definition 3.8,

1
t

t∑
τ=0

fi(xi(τ), xW τ
i
(τ)) ≤ 1

t
min
x∈[0,1]

t∑
τ=0

fi(x, xW τ
i
(τ)) + o(t)

t

The latter means that the time averaged total disagreement cost that she
suffers is close to the time averaged cost by expressing the best fixed opinion
and this holds regardless of the opinions of the neighbors that imeets. Meaning
that even if the other agents selected their opinions maliciously, her total
experienced cost would still be in a sense minimal. Under this perspective
update rule (3.2) is a rational choice for selfish agents and as a result FTL
dynamics is a natural limited information variant of the FJ model.

We now present the key steps for proving Theorem 3.2. We first prove that
a similar strategy that also takes into account the value bt admits no-regret
(Lemma 3.3). Obviously, knowing the value bt before selecting xt is in direct
contrast with the OCO framework, however proving the no-regret property
for this algorithm easily extends to establishing the no-regret property of
Follow the Leader.

Lemma 3.3. Let (bt)∞t=0 be an arbitrary sequence with bt ∈ [0,1]. Then for
all t ≥ 1

t∑
τ=0

f(yτ , bτ ) ≤ min
x∈[0,1]

t∑
τ=0

f(x, bτ ).

where yt = argminx∈[0,1]
∑t
τ=0 f(x,bτ ).

Proof. By definition of yt,
∑t
τ=0 f(yt, bτ ) = minx∈[0,1]

∑t
τ=0 f(x, bτ ), so

t∑
τ=0

f(yτ , bτ )− min
x∈[0,1]

t∑
τ=0

f(x, bτ ) =
t∑

τ=0
f(yτ , bτ )−

t∑
τ=0

f(yt, bτ )

=
t−1∑
τ=0

f(yτ , bτ )−
t−1∑
τ=0

f(yt, bτ )

≤
t−1∑
τ=0

f(yτ , bτ )−
t−1∑
τ=0

f(yt−1, bτ )

The last inequality follows by the fact that yt−1 = argminx∈[0,1]
∑t−1
τ=0 f(x,bτ )

Inductively, we prove that ∑t
τ=0 f(yτ , bτ ) ≤ minx∈[0,1]

∑t
τ=0 f(x, bτ ).

Now we can understand why Follow the Leader admits no-regret. Since the
cost incurred by the sequence yt is at most that of the best fixed value, we can
compare the cost incurred by xt with that of yt. Since the functions in Fs,α are
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quadratic, the extra term f(x, bt) that yt takes into account doesn’t change
dramatically the minimum of the total sum. Namely, xt, yt are relatively
close.

Lemma 3.4. For all t ≥ 0, f(xt, bt) ≤ f(yt, bt) + 21−α
t+1 + (1−α)2

(t+1)2 .

Proof. We first prove that for all t,

|xt − yt| ≤
1− α
t+ 1

. (3.10)

By definition xt = αs+ (1− α)
∑t−1

τ=0 bτ

t
and yt = αs+ (1− α)

∑t

τ=0 bτ

t+1 .

|xt − yt| = (1− α)
∣∣∣∣∣
∑t−1
τ=0 bτ
t

−
∑t
τ=0 bτ
t+ 1

∣∣∣∣∣
= (1− α)

∣∣∣∣∣
∑t−1
τ=0 bτ − tbt
t(t+ 1)

∣∣∣∣∣
≤ 1− α

t+ 1

The last inequality follows from the fact that bτ ∈ [0,1]. We now use
inequality (3.10) to bound the difference f(xt, bt)− f(yt, bt).

f(xt, bt) = α(xt − s)2 + (1− α)(xt − yt)2

≤ α(yt − s)2 + 2α |yt − s| |xt − yt|+ α |xt − yt|2

+ (1− α)(yt − yt)2 + 2(1− α) |yt − yt| |xt − yt|+ (1− α) |xt − yt|2

≤ f(yt, bt) + 2 |xt − yt|+ |yt − xt|2

≤ f(yt, bt) + 2
1− α
t+ 1

+ (1− α)2

(t+ 1)2

We are now ready to prove Theorem 3.2.

Theorem 3.2. Consider an arbitrary sequence (bt)∞t=0 and the function f :
[0,1]2 7→ [0,1] with f(x, b) = (1− α)(x− b)2 + α(x− s)2 for some constants
s, α ∈ [0,1]. Then for all t ≥ 0,

1
t

t∑
τ=0

f(xτ , bτ ) ≤
1
t

min
x∈[0,1]

t∑
τ=0

f(x, bτ ) +O

(
log t
t

)
.

where xt = argminx∈[0,1]
∑t−1
τ=0 f(x,bτ )
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Proof. Theorem 3.2 easily follows by Lemma 3.3

t∑
τ=0

f(xτ , bτ ) ≤
t∑

τ=0
f(yτ , bτ ) +

T∑
τ=0

2
1− α
τ + 1

+
t∑

τ=0

(1− α)2

(τ + 1)2

≤ min
x∈[0,1]

t∑
τ=0

f(x, yτ ) + 2(1− α)(log t+ 1) + (1− α)π
2

6

≤ min
x∈[0,1]

t∑
τ=0

f(x, yτ ) +O(log t)

3.5 Lower Bound for Graph Oblivious Dynamics
In this section we prove that any no-regret dynamics cannot converge much
faster than FTL dynamics produced by update rule (3.2). This is formally
stated in Theorem 3.3 which applies to the more general class of graph
oblivious dynamics.

Definition 3.9 (no-regret dynamics). Consider a collection of no-regret
algorithms such that for each (s, α) ∈ [0,1]2 a no-regret algorithm As,α

1for
the OCO problem with Fs,α and K = [0,1], is selected. For a given instance
I = (P, s, α) this selection produces the no-regret dynamics x(t) defined as
follows:

• Initially each agent i selects her opinion xi(0) = Asi,αi0 (si, αi)

• At round t ≥ 1, each agent i selects her opinion

xi(t) = Asi,αit (xW 0
i
(0), . . . , xW t−1

i
(t− 1), si, αi)

where W t
i is the neighbors that i meets at round t.

Such a selection of no-regret algorithms can be encoded as a graph oblivious
update rule. Specifically, the function At : {0,1}t+2 7→ [0,1] is defined as
At(b0, . . . , bt−1, s, α) = Ats,α(b0, . . . , bt−1). Thus, Theorem 3.3 applies and
establishes the existence of an instance I = (P, s, α) such that the produced
x(t) converges at best slowly to x∗. For example if agents use the Online

1 These s, α are scalars in [0,1] and should not be confused with the internal opinion
vector s and the self confidence vector α of an instance I = (P, s, α).
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Gradient Descent2 to update her opinion i.e.

xi(t+ 1) = xi(t)−
1√
t

(
xi(t)− (1− αi)xW t

i
(t)− αisi

)
Then we are ensured that fast convergence cannot be established in the
respective no-regret dynamics.

The rest of the section is dedicated to prove Theorem 3.3. In Lemma 5.2
we show that any graph oblivious update rule A can be used as an estimator
of the parameter p ∈ [0,1] of a Bernoulli random variable. Since we prove
Theorem 3.3 using a reduction to an estimation problem, we shall first briefly
introduce some definitions and notation. For simplicity we will restrict the
following definitions of estimators and risk to the case of estimating the
parameter p of Bernoulli random variables. Given t independent samples
from a Bernoulli random variable B(p), an estimator is an algorithm that
takes these samples as input and outputs an answer in [0,1].

Definition 3.10. An estimator θ = (θt)∞t=1 is a sequence of functions, θt :
{0,1}t 7→ [0,1].

Perhaps the first estimator that comes to one’s mind is the sample mean,
that is θt = ∑t

i=1 Xi/t. To measure the efficiency of an estimator we define
the risk, which corresponds to the expected error of an estimator.

Definition 3.11. Let P be a Bernoulli distribution with mean p and P t be the
corresponding t-fold product distribution. The risk of an estimator θ = (θt)∞t=1
is

E(X1,...,Xt)∼P t [|θt(X1, . . . , Xt)− p|]
which we will denote by Ep [|θt(X1, . . . , Xt)− p|] or Ep [|θt − p|] for brevity.

The risk Ep [|θt − p|] quantifies the error rate of the estimated value
p̂ = θt(Y1, . . . , Yt) to the real parameter p as the number of samples t grows.
Since p is unknown, any meaningful estimator θ = (θt)∞t=1 must guarantee
that limt→∞ Ep [|θt − p|] = 0 for all p. For example, sample mean has error
rate Ep [|θt − p|] ≤ 1

2
√
t
.

Lemma 3.5. Let A a graph oblivious update rule such that for all instances
I = (P, s, α),

lim
t→∞

t1+cE [‖xA(t)− x∗‖∞] = 0.

2 Online Gradient Descent is an influential no-regret algorithm proposed by Zinkevic in
[142] for the general OCO problem, where the adversary can select any convex function
with bounded gradient. The latter directly implies that it also ensures no-regret in our
simpler OCO problem with Fsi,αi

and K = [0,1].
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Then there exists an estimator θA = (θAt )∞t=1 such that for all p ∈ [0,1],
limt→∞ t

1+cEp

[
|θAt − p|

]
= 0.

Proof. We construct an estimator θA = (θAt )∞t=1 using the update rule A.
Consider the instance Ip described in Figure 3.1. By straightforward com-
putation, we get that the equilibrium point of the graph is x∗c = p/3, x∗1 =
p/6 + 1/2, x∗0 = p/6. Now consider the opinion vector xA(t) produced by the
update rule A for the instance Ip. Note that for t ≥ 1,

• xA1 (t) = At(xc(0), . . . , xc(t− 1),1,1/2)

• xA0 (t) = At(xc(0), . . . , xc(t− 1),0,1/2)

• xAc (t) = At(xW 0
c
(0), . . . , xW t−1

c
(t− 1),0,1/2)

The key observation is that the opinion vector xA(t) is a deterministic func-
tion of the index sequence W 0

c , . . . ,W
t−1
c and does not depend on p. Thus,

we can construct the estimator θA with θAt (W 0
c , . . . ,W

t−1
c ) = 3xAc (t). For

a given instance Ip the choice of neighbor W t
c is given by the value of the

Bernoulli random variable with parameter p (P [W t
c = 1] = p). As a result,

Ep

[
|θAt − p|

]
= 3E

[
|xAc (t)− p/3|

]
≤ 3E [‖xA(t)− x∗‖∞]. Since for any in-

stance Ip, we have that limt→∞ t
1+cE [‖xA(t)− x∗‖∞] = 0, it follows that

limt→∞ t
1+cEp

[
|θAt − p|

]
= 0 for all p ∈ [0,1].

C

ac = 1/2, sc = 0

1

a1 = 1/2, s1 = 1

0

a0 = 1/2, s0 = 0

p

1− p1

1

Figure 3.1

In order to prove Theorem 3.3 we just need to prove the following claim.

Claim 3.1. For any estimator θ = (θt)∞t=1 there exists a p ∈ [0,1] such that
limt→∞ t

1+cEp [|θt − p] > 0.

The above claim states that for any estimator θ = (θt)∞t=1, we can inspect
the functions θt : {0,1}t 7→ [0,1] and then choose a p ∈ [0,1] such that
the function Ep [|θt − p|] = Ω(1/t1+c). As a result, we have reduced the
construction of a lower bound concerning the round complexity of a dynamical
process to a lower bound concerning the sample complexity of estimating the
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parameter p of a Bernoulli distribution. The claim follows by Lemma 3.6,
which we present at the end of the section.

At this point we should mention that it is known that Ω(1/ε2) samples
are needed to estimate the parameter p of a Bernoulli random variable within
additive error ε. Another well-known result is that taking the average of the
samples is the best way to estimate the mean of a Bernoulli random variable.
These results would indicate that the best possible rate of convergence for
an graph oblivious dynamics would be O(1/

√
t). However, there is some fine

print in these results which does not allow us to use them. In order to explain
the various limitations of these methods and results we will briefly discuss
some of them. We remark that this discussion is not needed to understand
the proof of Lemma 3.6.

The oldest sample complexity lower bound for estimation problems is the
well-known Cramer-Rao inequality. Let the function θt : {0,1}t 7→ [0,1] such
that Ep [θt] = p for all p ∈ [0,1], then

Ep

[
(θt − p)2

]
≥ p(1− p)

t
. (3.11)

Since Ep [|θt − p|] can be lower bounded by Ep [(θt − p)2] we can apply the
Cramer-Rao inequality and prove our claim in the case of unbiased estimators,
Ep [θt] = p for all t. Obviously, we need to prove it for any estimator θ,
however this is a first indication that our claim holds.

Sample complexity lower bounds without assumptions about the estimator
are usually given as lower bounds for the minimax risk, which was defined 3

by Wald in [138] as
min
θt

max
p∈[0,1]

Ep [|θt − p|] .

Minimax risk captures the idea that after we pick the best possible algorithm,
an adversary inspects it and picks the worst possible p ∈ [0,1] to generate
the samples that our algorithm will get as input. The methods of Le’Cam,
Fano, and Assouad are well-known information-theoretic methods to establish
lower bounds for the minimax risk. For more on these methods see [141, 136].
As we stated before, it is well known that the minimax risk for the case of
estimating the mean of a Bernoulli is lower bounded by Ω(1/

√
t) and this

lower bound can be established by Le Cam’s method. In order to show why
such results do no work for our purposes we shall sketch how one would apply
Le Cam’s method to get this lower bound. To apply Le Cam’s method, one
typically chooses two Bernoulli distributions whose means are far but their

3 Although the minimax risk is defined for any estimation problem and loss function,
for simplicity, we write the minimax risk for estimating the mean of a Bernoulli random
variable.
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total variation distance is small. Le Cam showed that when two distributions
are close in total variation then given a sequence of samples X1, . . . , Xt it is
hard to tell whether these samples were produced by P1 or P2. The hardness
of this testing problem implies the hardness of estimating the parameters of
a family of distributions. For our problem the two distributions would be
B(1/2 − 1/

√
t) and B(1/2 + 1/

√
t). It is not hard to see that their total

variation distance is at most O(1/t), which implies a lower bound Ω(1/
√
t)

for the minimax risk. The problem here is that the parameters of the two
distributions depend on the number of samples t. The more samples the
algorithm gets to see, the closer the adversary takes the 2 distributions to
be. For our problem we would like to fix an instance and then argue about
the rate of convergence of any algorithm on this instance. Namely, having an
instance that depends on t does not work for us.

Trying to get a lower bound without assumptions about the estimators
while respecting our need for a fixed (independent of t) p we prove Lemma 3.6.
In fact, we show something stronger: for almost all p ∈ [0,1], any estimator θ
cannot achieve rate o(1/t1+c). More precisely, suppose we select p uniformly
at random in [0,1] and run the estimator θ with samples from the distribution
B(p), then with probability 1 the error rate Ep [|θt − p|] = Ω(1/t1+c).
Lemma 3.6. Let θ = (θt)∞t=1 be a Bernoulli estimator with error rate
Ep [|θt − p|]. For any c > 0, if we select p uniformly at random in [0,1]
then

lim
t→∞

t1+cEp [|θt − p|] > 0

with probability 1.
Proof. Since θt is a function from {0,1}t to [0,1], θt can have at most 2t

different values. Without loss of generality, we assume that θt takes the same
value θt(x) for all x ∈ {0,1}t with the same number of 1’s. For example,
θ3({1,0,0}) = θ3({0,1,0}) = θ3({0,0,1}). This is due to the fact that for
any p ∈ [0,1],

∑
0≤i≤t

∑
‖x‖1=i

|θt(x)− p| pi(1− p)t−i ≥
∑

0≤i≤t

(
t

i

) ∣∣∣∣∣∣
∑
‖x‖1=i θt(x)(

t
i

) − p

∣∣∣∣∣∣ pi(1− p)t−i.
For any estimator θ with error rate Ep [|θt − p|] there exists another estimator
θ′ that satisfies the above property and Ep [|θ′t − p|] ≤ Ep [|θt − p|] for all
p ∈ [0,1]. Thus, we can assume that θt takes at most t+ 1 different values.
Let A denote the set of p for which the estimator has error rate o(1/t1+c),
that is

A = {p ∈ [0,1] : lim
t→∞

t1+cEp [|θt − p|] = 0}.
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We show that if we select p uniformly at random in [0,1] then P [p ∈ A] = 0.
We also define the set

Ak = {p ∈ [0,1] : for all t ≥ k, t1+cEp [|θt − p|] ≤ 1}.

Observe that if p ∈ A then there exists tp such that p ∈ Atp , meaning that
A ⊆ ⋃∞k=1 Ak. As a result,

P [p ∈ A] ≤ P
[
p ∈

∞⋃
k=1

Ak

]
≤
∞∑
k=1

P [p ∈ Ak] .

To complete the proof we show that P [p ∈ Ak] = 0 for all k. Notice that
p ∈ Ak implies that for t ≥ k, the estimator θ must always have a value θt(i)
close to p. Using this intuition we define the set

Bk = {p ∈ [0,1] : for all t ≥ k, t1+c min
0≤i≤t

|θt(i)− p| ≤ 1}.

We now show that Ak ⊆ Bk. Since p ∈ Ak we have that for all t ≥ k

t1+c min
0≤i≤t

|θt(i)− p|
t∑
i=0

(
t

i

)
pi(1− p)t−i ≤ t1+c

t∑
i=0

(
t

i

)
|θt(i)− p| pi(1− p)t−i

= t1+cEp [|θt − p|]
= 1

Thus, P [p ∈ Ak] ≤ P [p ∈ Bk]. We write the set Bk as

Bk =
∞⋂
t=k
{p ∈ [0,1] : min

0≤i≤t
|θt(i)− p| ≤ 1/t1+c}.

As a result,

P [p ∈ Bk] ≤ P
[

min
0≤i≤t

|θt(i)− p| ≤ 1/t1+c
]
, for all t ≥ k.

0 θt(0) θt(1) θt(t) 1. . .

2
t1+c

2
t1+c

2
t1+c

Figure 3.2: Estimator output at time t
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Each value θt(i) «covers» length 1/t1+c from its left and right, as shown in
Figure 3.2, and since there are at most t+ 1 such values, by the union bound
we get

P [p ∈ Bk] ≤ 2(t+ 1)/t1+c for all t ≥ k

We conclude that P [p ∈ Bk] = 0.

Remark 3.1. The only point that we use that the update rules are graph
oblivious is in Lemma 5.2. It is not difficult to see that the reduction still
holds if the update rules also depend on the indices of the neighbors that an
agent meets. As a result, Theorem 3.3 still applies.
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3.6 Limited Information Dynamics with Fast Con-
vergence

We already discussed that the reason that graph oblivious dynamics suffer slow
convergence is that the update rule depends only on the observed opinions.
Based on works for asynchronous distributed minimization algorithms [13, 42],
we provide an update rule showing that information about the graph G
combined with agents that do not act selfishly can restore the fast convergence
rate (update rule (3.12)). Our update rule depends not only on the expressed
opinions of the neighbors that an agent i meets, but also on the i-th row of
matrix P . We have already mentioned that while this update rule guarantees
fast convergence it does not guarantee no-regret to the agents, see Example 3.1.
Agents that select their opinions according to this rule may experience regret
if some other agents play adversarially.

In update rule (3.12), each agent stores the most recent opinions of the
random neighbors that she meets in an array and then updates her opinion
according to their weighted sum (each agent knows row i of P ). For a
given instance I = (P, s, α) we call the produced dynamics Row Dependent
dynamics.

Row Dependent dynamics
1: Initially xi(0) = si for all agent i.
2: Each agent i keeps an array Mi of length |Ni|, randomly initialized.
3: At round t ≥ 0 each agent i:

4: Meets neighbor with index W t
i where P [W t

i = j] = pij
5: Suffers disagreement cost

(1− αi)(xi(t)− xW t
i
(t))2 + ai(xi(t)− si)2

and learns the opinion xW t
i
(t).

6: Updates her array Mi and her opinion as follows:

Mi[W t
i ]← xW t

i
(t)

xi(t+ 1) = (1− αi)
∑
j,i

pijMi[j] + αisi (3.12)

The problem with this approach is that the opinions of the neighbors that
she keeps in her array are outdated, i.e. the opinion of a neighbor of agent
i has changed since their last meeting. The good news are that as long as
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this outdatedness is bounded we can still achieve fast convergence to the
equilibrium. By bounded outdatedness we mean that there exists a number
of rounds B such that all agents have met all their neighbors at least once
from t−B to t. The latter is formally stated in Lemma 3.7.

Remark 3.2. Update rule (3.12), apart from the opinions and the indices
of the neighbors that an agent meets, also depends on the the exact values of
the weights pij and that is why Row Dependent dynamics converge fast. We
mention that the lower bound of Section 3.5 still holds even if the agents also
use the indices of the neighbors that they meet to update their opinion, since
Lemma 5.2 can be easily modified to cover this case. The latter implies that
any update rule that ensures fast convergence would require from each agent i
to be aware of the i-th row of matrix P .

Lemma 3.7. Let ρ = mini ai, and πij(t) be the most recent round before
round t, that agent i met her neighbor j. If for all t ≥ B, t−B ≤ πij(t) then,
for all t ≥ kB,

‖x(t)− x∗‖∞ ≤ (1− ρ)k

In Row Dependent dynamics there does not exist a fixed length window
B that satisfies the requirements of Lemma 3.7. However we can select a
length value such that the requirements hold with high probability. To do
this observe that agent i simply needs to wait to meet the neighbor j with
the smallest weight pij. Therefore, after log(1/δ)/minj pij rounds we have
that with probability at least 1 − δ agent i met all her neighbors at least
once. Since we want this to be true for all agents, we shall roughly take
B = 1/minpij>0 pij.

In the rest of the section we give the detailed argument that leads to
Theorem 3.6, showing that the convergence rate of update rule (3.12) is fast.

Theorem 3.6. Let I = (P, s, α) be an instance of the opinion formation
game of Definition 3.1 with equilibrium x∗ ∈ [0,1]n and let ρ = mini∈V ai.
The opinion vector x(t) ∈ [0,1]n produced by update rule (3.12) after t rounds
satisfies

E [‖x(t)− x∗‖∞] ≤ 2e−ρminij pij
√
t/(4 ln(nt)).

We are now going to state and prove a series of lemmas that culminate in
the proof of Theorem 3.6.
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Proof of Lemma 3.7. To prove our claim we use induction on k. For the
induction base k = 1,

|xi(t)− x∗i | = |(1− αi)
∑
j,i

pij(xj(πij(t))− x∗j)|

≤ (1− αi)
∑
j,i

pij|xj(πij(t))− x∗j |

≤ (1− ρ)

Assume that for all t ≥ (k − 1)B we have that ‖x(t) − x∗‖∞ ≤ (1 − ρ)k−1.
For k ≥ 2, we again have that

|xi(t)− x∗i | ≤ (1− ρ)
∑
j,i

pij|xj(πij(t))− x∗j |

Since t − B ≤ πij(t) and t ≥ kB we obtain that πij(t) ≥ (k − 1)B. As a
result, the inductive hypothesis applies, |xj(πij(t)) − x∗j | ≤ (1 − ρ)k−1 and
|xi(t)− x∗i | ≤ (1− ρ)k.

We now turn our attention to the problem of calculating the size of window
B, such that with high probability all agents have outdatedness at most B.
We first state a useful fact concerning the coupons collector problem.

Lemma 3.8. Suppose that the collector picks coupons with different probabil-
ities, where n is the number of distinct coupons. Let w be the minimum of
these probabilities. If he selects lnn/w + c/w coupons, then:

P [collector hasn’t seen all coupons] ≤ 1
ec

Lemma 3.9. Let πij(t) be the most recent round before round t that agent i
met agent j and B = 2 ln(nt

δ
)/minij pij. Then with probability at least 1− δ,

for all τ ≥ B and for all i, j , i

τ −B ≤ πij(τ) ≤ τ − 1.

Proof. For simplicity we denote w = minij pij. Consider an agent i at round
τ ≥ B where B = 2 ln(nt

δ
)/w and assume that there exists an agent j ∈ Ni

such that πij(τ) < τ −B. Agent i can be viewed as a coupon collector that
has buyed B coupons but has not found the coupon corresponding to agent
j. Since Ni < n and minj,i pij ≥ w by Lemma 3.8 we have that

P [there exists j ∈ Ni s.t. πij(τ) < τ −B] ≤ δ

nt

The proof follows by a union bound for all agent i and all round B ≤ τ ≤ t.
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By direct application of Lemma 3.7 and Lemma 3.9, we obtain the following
corollary that will be useful in proving Theorem 3.6.

Corollary 3.2. Let x(t) the opinion vector produced by update rule (3.12)
for the instance I = (P, s, α), then with probability at least 1− δ

‖x(t)− x∗‖∞ ≤ e
(
−ρtminij pij

2 ln(nt
δ

)

)

where ρ = mini∈V αi.

Proof. Let B = 2 ln(nt
δ

)/minij pij. By Lemma 3.9 we have that with proba-
bility at least 1− δ, for all i, j ∈ Ni and for all τ ≥ B,

τ −B ≤ πij(τ)

As a result, with probability at least 1− δ the requirements of Lemma 3.7
are satisfied, meaning that

‖x(t)− x∗‖∞ ≤ (1− ρ) t
B ≤ e

(
−ρtminij pij

2 ln(nt
δ

)

)

We can now prove Theorem 3.6 using the previous results.

Theorem 3.6. Let I = (P, s, α) be an instance of the opinion formation
game of Definition 3.1 with equilibrium x∗ ∈ [0,1]n and let ρ = mini∈V ai.
The opinion vector x(t) ∈ [0,1]n produced by update rule (3.12) after t rounds
satisfies

E [‖x(t)− x∗‖∞] ≤ 2e−ρminij pij
√
t/(4 ln(nt)).

Proof. Let u(t) = ‖x(t) − x∗‖∞ and w = minij pij. From Corollary 3.2 we
obtain:

P
[
u(t) > e

(
− ρwt

2 ln(nt
δ

)

)]
≤ δ

for every probability δ ∈ [0,1]. Also, since all the parameters of the problem
lie in [0,1], we have

E [u(t)|u(t) > r] ≤ 1

Now, by the conditional expectations identity, we get:

E [u(t)] = E [u(t)|u(t) > r] P [u(t) > r] + E [u(t)|u(t) ≤ r] P [u(t) ≤ r]
≤ δ + r
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where r = e
(
− ρwt

2 ln(nt
δ

)

)
. If we set δ = e

(
− ρw

√
t

2 lnnt

)
, then:

E [u(t)] ≤ e
(
−ρw

√
t

2 lnnt

)
+ e

(
− ρwt

2 ln(nt
δ

)

)

We now evaluate r for our choice of probability δ:

r = e

− ρwt

2 ln
(
nt
p

)


= e

−
ρwt

2 ln
 nt

e
(
− ρw

√
t

2 lnnt

)


= e

− ρwt

2 lnnt+ 2 ρw
√
t

2 lnnt


≤ e

(
− ρwt

4 ln(nt)
√
t

)

= e
(
− ρw

√
t

4 ln(nt)

)

Using the previous calculation, we obtain:

E [u(t)] ≤ e
(
− ρw

√
t

2 ln(nt)

)
+ e

(
− ρw

√
t

4 ln(nt)

)

≤ 2e
(
− ρw

√
t

4 ln(nt)

)

= 2e
(
−ρmin

ij
pij

√
t

4 ln(nt)

)

Example 3.1. The purpose of this example is to illustrate that the update
rule (3.12) does not ensure the no-regret property. If some agents for various
reasons exhibit irrational or adversarial behavior, agents that adopt update
rule (3.12) may experience regret. That is the reason that Row Dependent
dynamics converge exponetially faster that any no-regret dynamics incluing
the FTL dynamics.
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Consider the instance of the game of Definition 3.1 consisting of two
agents. Agent 1 adopts update rule (3.12) and has s1 = 0, α1 = 1/2, p12 = 1
and agent 2 plays adversarially. Thus, s2, α2, p21 don’t need to be specified.
By update rule (3.12), x1(t) = x2(t− 1)/2 and thus total disagreement cost
that agent 1 experiences until round t is

t∑
τ=0

1
2
x1(t)2 + 1

2
(x1(t)− x2(t))2 =

t∑
τ=0

1
8
x2(t− 1)2 + 1

2
(1
2
x2(t− 1)− x2(t))2.

Since agent 2 plays adversarially, she selects x2(t) = 0 if t is even and 1
otherwise. As a result, the total cost that agent 1 experiences is ∑t

τ=0
1
2x1(t)2 +

1
2(x1(t)−x2(t))2 ' 3t/8. Now agent 1 regrets for no adopting the fixed opinion
1/3 during the whole game play. Selecting x1(t) = 1/3 for all t, would incur
him total disagreement cost ∑t

τ=0
1
2(1/3)2 + 1

2(1/3− x2(t))2 ' 7t/36 which
is less than 3t/8.



Chapter 4

Opinion Formation with
Aggregation and Negative
Influence

In this chapter, we present our results on the average-oriented opinion for-
mation games. This kind of games consist a generalization of the opinion
formation games [17] and were introduced in our work [64] in order to cap-
ture the fact that opinions are oftently affected by global social trends and
phenomena. A more comprehensive introduction on this kind of games can
be found in Section 2.5.2.

4.1 Average-Oriented Opinion Formation Games
Average-Oriented opinion formation games consist of n selfish agents in which
the strategy of each selfish agent i, is the opinion xi that she publicly expresses.
For a given opinion vector x = (xi, x−i), each agent i experiences disagreement
cost

Ci(x) =
∑
j,i

wij(xj − xi)2 + wi(xi − si)2 + αi(avg(x)− si)2 (4.1)

where

• si ∈ [0,1] denotes the internal opinion of agent i.

• avg(x) is the average public opinion, avg(x) = ∑n
j=1 xj/n.

• wi > 0 is the self-confidence of agent i towards her internal opinion si.

75
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• wij ≥ 0 is the influence that agent j poses on i.

• αi ≥ 0 measures i’s sensitivity towards the average opinion.

As already discussed, the opinion formation game of Equation 2.1 ([17]) is
a special case of the average-oriented opinion formation games of Equation 4.1
where αi = 0 for all agents. While the simultaneous best response dynamics
of the average-opinion formation games is a generalization of the FJ model
(consider Equation 4.2 with αi = 0). For a given opinion vector x(t) =
(xi(t), x−i(t)) at round t, agent’s i best response is given by Equation 4.2.

xi(t+ 1) =
∑
j,i

(
wij − αi

n2

)
xj(t) +

(
wi + αi

n

)
si

wi + αi
n2 +∑

j,iwij
. (4.2)

In with chapter we investigate how the aggregation term αi(avg(x) − si)2

affects the convergence properties of the FJ model and the efficiency of
equilibrium in terms of total disagreement cost.

4.2 Our Results
In Section 2.3 we saw that the FJ model converges to the Nash Equilibrium of
the orginal opinion formation game [17]. The basic challenge in generalizing
these convergece resuls in the average-oriented opinion formation games stems
from the fact that i’s influence from some opinions xj can be negative (see
Equation 4.2). Negative influence is introduced due to the competition of the
agents for dragging the average public opinion close to their intrinsic beliefs.

Despite negative influence, we show that if agents admit a certain level of
self-confidence wi, simultaneous best-response dynamics in average-oriented
opinion formation games converges fast to the Nash equilibrium of the game.
We should highlight that assuming positive self-confidence is necessary for
convergence [79, 81] and that the convergence time decreases as the ratio of
wi to αi and to ∑j,iwij/(n−1) increases. For clarity, we make the reasonable
assumption that wi ≥ αi and wi ≥

∑
j,iwij/(n − 1). Namely, we assume

that the self-confidence level of each agent is no less than her influence from
the average public opinion and no less than her average influence from other
agents (this is also consistent with the confidence level assumed in [81]).
Under this condition, we show that simultaneous best-response dynamics
in average-oriented opinion formation games converges to the unique Nash
Equilibrium within distance ε > 0 in O(n2 log(n/ε)) rounds (Lemma 4.1).

Simultaneous best response dynamics assumes that all agents have access
to the average public opinion in each round in order to compute their best
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response. Since the average public opinion is global information and thus
expensive to obtain in large networks, we consider average-oriented opinion
dynamics with outdated information. Here the average public opinion is
announced to all the agents simultaneously every few rounds (e.g. a polling
agency publishes this information in a web page now and then). We prove
(Theorem 4.1) that opinion dynamics with outdated information about the
average public opinion converges to the Nash equilibrium of the game within
distance ε > 0 after O(n2 log(n/ε)) «announcements» of the average public
opinion. Both these results are proven for a more general setting with negative
influence between the agents and with partially outdated information about
the agents’ public opinions. We essentially prove that negative influence and
outdated information do not introduce undesirable oscillating phenomena to
opinion dynamics. Our proofs make use of matrix norm properties, which
allow us to deal with negative influence between the agents and with the
difficulties introduced by outdated information.

In Section 4.5, we bound the PoA of average-oriented opinion formation
games. We restrict our attention to the most interesting case of symmetric
games, where wij = wji, all agents have the same self-confidence w and the
same influence α from the average. For nonsymmetric games the PoA is Ω(n),
even without aggregation if α = 0 [17]. We show (Theorem 4.2) that the PoA
is at most 9/8 + O(α/(wn2)). In general, this bound cannot be improved
since for α = 0, 9/8 is a tight bound for the PoA [17]. Our proof builds on
the elegant local smoothness approach of [15]. However, local smoothness
cannot be directly applied to symmetric average-oriented games, because the
function (avg(x) − si)2 is not locally smooth. To overcome this difficulty,
we carefully combine local smoothness with the fact that the average public
opinion at equilibrium is equal to the average intrinsic belief, a consequence
of symmetry (Proposition 4.2).

A frequent assumption in the literature on continuous opinion formation is
that agent beliefs and opinions take values in a finite interval of non-negative
real numbers. Then, by scaling, one can assume that beliefs and opinions
lie in [0,1]. Thus, we always assume that agent beliefs si ∈ [0,1]. On the
other hand, an important side-effect of negative influence is that the best-
response (and in Nash Equilibrium) opinions may become polarized and be
pushed towards opposite directions, far away from [0,1]. We believe that
such opinion polarization is natural and should be allowed when negative
influence is considered. Therefore, in Sections 4.4 and 4.5, we assume that the
public opinions take arbitrary real values. Then, in Section 4.6, we consider
restricted average-oriented games, where the strategy space of the agents is
resctricted to [0,1], and study how convergence properties and the price of
anarchy are affected.
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Existence and uniqueness of equilibrium for restricted opinion formation
games follow from [126]. We prove (Lemma 4.3 and Theorem 4.3) that
the convergence rate of opinion dynamics with negative influence and with
outdated information is not affected by restriction of public opinions to [0,1].
The analysis of the convergence rate is similar to that for (unrestricted)
opinion formation games. The only difference is a simple case analysis, in
the final part of the proofs of Lemma 4.3 and Theorem 4.3, which establishes
that the distance of the restricted opinion vector to equilibrium decreases at
least as fast as the corresponding distance in the unrestricted case.

For the PoA of restricted symmetric games, we consider the special case
where w = α = 1 and show that the PoA ≤ 3 + 2

√
2 +O( 1

n
) (Theorem 4.4).

The main technical challenge in the PoA analysis of restricted games is that
the local smoothness argument of Theorem 4.2 does not apply, because the
function (avg(x)− si)2 is not locally smooth and the average public opinion
at equilibrium may be far from the average intrinsic belief. Hence, in the
proof of Theorem 4.4, we need to advance substantially beyond the local
smoothness argument of Theorem 4.2. More specifically, we first show that
if all agents only value the distance of their opinion to the average and to
their belief (wij = 0) the PoA is at most 1 + 1/n2 (Proposition 4.7). Then we
combine the PoA of this simpler game with the local smoothness inequality
of [15] and bound the PoA of restricted symmetric games.

4.3 Definitions and Preliminaries
For an n×n matrix A, ‖A‖ = maxi∈N

∑n
j=1 |aij| is the infinity norm of A and

capital N denotes the set {1, n}. Similarly, for an n-dimensional vector x,
‖x‖ = maxi∈N |xi| is the infinity norm of x. We use the standard properties
of matrix norms without explicitly referring to them. Specifically, we use that

• for any matrices A and B, ‖AB‖ ≤ ‖A‖ ‖B‖ and ‖A+B‖ ≤ ‖A‖+‖B‖

• for any matrix A and any λ ∈ R, ‖λA‖ ≤ |λ| ‖A‖

• for any matrix A and any integer `, ‖A`‖ ≤ ‖A‖`

Moreover, we use that for any n× n real matrix A with ‖A‖ < 1,
∞∑
`=0

A` = (I− A)−1
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4.3.1 Average-Oriented Opinion Formation
Without loss of generality, we assume that the vector of agent beliefs s lies
in [0,1]n. As for the public opinions x, we initially assume values in R and
then, in Section 4.6, explain what changes if we restrict them to [0,1].

Definition 4.1. An average-oriented opinion formation game G is symmetric
if

1. wij = wji for all i , j.

2. wi = w for all agents i.

3. αi = α for all agents i

If Definition 4.1 is not satisfied by G, we call it nonsymmetric. Our convergence
results hold for nonsymmetric games, while the PoA bounds hold only for
symmetric ones.

An opinion vector x∗ is a Nash equilibrium the agents cannot improve on
their individual cost by unilaterally changing their opinions.

Definition 4.2. An opinion vector x∗ = (x∗i , x∗−i) ∈ [0,1]n is a Nash equilib-
rium of an opinion formation game. G if for each agent i

Ci(x∗) ≤ Ci(xi, x∗−i) for all xi ∈ R

We highlight that not all opinion formation games G admit Nash equilibrium
(see Example 2.3). However if an average-oriented opinion formation game G
admits Nash Equilibrium x∗, then this must be unique since it must be the
solution of the linear system of Equation 4.2.

Definition 4.3. The Price of Anarchy of an opinion formation game G with
Nash Equilibrium x∗ is,

PoA(G) =
∑
i∈N Ci(x∗)∑
i∈N Cio∗)

where o∗ is the minimizer of ∑i∈N Ci(x).

To study the convergence properties of simultaneous best-response dynam-
ics, it is convenient to write (4.2) in matrix form. Let Si = wi + αi

n2 +∑
j,iwij .

We define two n × n matrices A and B. Matrix A has aii = 0, for all
i ∈ N , and aij = (wij − αi

n2 )/Si, for all j , i. Matrix B is diagonal and
has bii = (wi + αi

n
)/Si, for all i ∈ N , and bij = 0, for all j , i. Note
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d2Ci(x)
dx2
i

= 2Si > 0 and thus function Ci(x) is strictly convex in xi, even if
some entries of A are negative.

The simultaneous best-response dynamics of an average-oriented game G
starts with x(0) = s and proceeds in rounds. In each round t ≥ 1, the public
opinion vector x(t) is:

x(t) = Ax(t− 1) +Bs . (4.3)

We say that simultaneous best response dynamics converges to Nash equilib-
rium x∗ if for all ε > 0, there is a t∗(ε), such that for all t ≥ t∗(ε),

‖x(t)− x∗‖ ≤ ε

Iterating (4.3) over t, we obtain that for all rounds t ≥ 1,

x(t) = Ax(t−1)+Bs = A(Ax(t−2)+Bs)+Bs = · · · = Ats+
t−1∑
`=0

A`Bs (4.4)

Since convergence of the simultaneous best response dynamics implies the
existence of Nash equilibrium x∗ which may do not exist (Example 2.3), some
necessary assumption must be made. Assuming that agent self-confidence
levels wi are positive is necessary for convergence of the simultaneous best
response dynamics (consider an opinion formation game where wi = αi = 0
for all agents i and the matrix A corresponds to the adjacency matrix of a
bipartite network). Similarly to [81] and for clarity we make the following
assumption.

Assumption 1. For each agent i:

1. the self-confidence level wi is at least as large as her average influence
from other agents

wi ≥
∑
j,iwij
n− 1

2. the self-confidence level of any agent is no less than her influence from
the average public opinion

wi ≥ αi

Assumption 1 immediately implies that for any agent i,

αi ≤ Si ≤ (n+ 1
n2 )nwi

Using this inequality on Si, we obtain the following inequality, which is crucial
for the convergence rate of simultaneous best response dynamics:
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‖A‖ ≤
Si − wi + αi(n−2)

n2

Si

≤
Si − Sin

2

n3+1 + Si(n−2)
n2

Si

≤ 1− 2
n2 + 1

n3

≤ 1− 1
n2 (4.5)

We use (4.5) in Corollary 4.1 and Corollary 4.2 and show that the
best response dynamics converges to equilibrium within distance ε > 0
in O(n2 log(n/ε)) rounds. However, our analysis of the convergence rate is
more general and can be applied under the weaker assumption that ‖A‖ < 1.
Then, the convergence time depends on 1 − ‖A‖ (see also Lemma 4.1 and
Theorem 4.1). We usually refer to matrices similar to A, i.e., with infinity
norm less than 1 and 0s in their diagonal, as influence matrices, and to
matrices similar to B, i.e., to diagonal matrices with positive elements, as
self-confidence matrices.

4.3.2 Average-Oriented Opinion Formation with Outdated
Information

We study opinion formation when the agents have outdated information about
the average public opinion. We assume an infinite increasing sequence of
rounds 0 = τ0 < τ1 < τ2 < · · · that describes an update schedule for the
average opinion. At the end of round τp, the average avg(x(τp)) is announced
to the agents. We refer to the rounds between two updates as an epoch.
Specifically, the rounds τp + 1, . . . , τp+1 comprise epoch p. We assume that
the length of each epoch p, denoted by kp = τp+1 − τp ≥ 1, is finite. The
update schedule is the same for all agents, but the agents do not need to have
any information about it. They only need to be aware of the most recent
value of the average public opinion provided to them.

We now need to distinguish in Equations (4.2) and (4.3) between the
influence from social neighbors, for which the most recent opinions x(t− 1)
are used, and the influence from the average public opinion, where possibly
outdated information is used. As such, we now rely on three different n× n
matrices D, E and B. Self-confidence matrix B is defined as before. Influence
matrix D has dii = 0, for all i ∈ N , and dij = wij/Si, for all j , i, and
accounts for the influence from social neighbors. Influence matrix E has
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eii = 0, for all i ∈ N , and eij = −αi/(n2Si), for all j , i, and accounts for
the influence from the average public opinion. By definition, A = D + E.
Moreover, ‖D‖ ≤ 1− 1/n and that ‖E‖ ≤ (n− 1)/n2.

At the beginning of the opinion formation process, x(0) = s. For each
round t in epoch p, τp + 1 ≤ t ≤ τp+1, the agent opinions are updated
according to:

x(t) = Dx(t− 1) + Ex(τp) +Bs (4.6)
We note that at the beginning of each epoch p, every agent i can subtract
xi(τp) from n avg(x(τp)) and compute Ex(τp), which is required in (4.6), as
− αi
n2Si

(n avg(x(τp))− xi(τp)).

4.3.3 Opinion Formation with Negative Influence
An interesting aspect of average-oriented games is that the influence matrix A
may contain negative elements. Motivated by this observation, we prove our
convergence results for a general domain of opinion formation games that may
have negative weights wij. Similar to [17, 81], the individual cost function of
each agent i is Ci(x) = ∑

j,iwij(xi − xj)2 +wi(xi − si)2 and i’s best response
to x−i is

xi =
∑
j,iwijxj + wisi
wi +∑

j,iwij
. (4.7)

The important difference is that now some wij may be negative. We require
that for each agent i, wi > 0 and Si = wi +∑

j,iwij > 0 (and thus, Ci(x) is
strictly convex in xi). The matrices A and B are defined as before. Namely,
aij = wij/Si, for all i , j, and B has bii = wi/Si for all i. We always require
that ‖A‖ < 1 − β, for some β > 0 (β may depend on n). Simultaneous
best-response dynamics is again defined by (4.3).

4.4 Convergence of Average-Oriented Opinion For-
mation

For any nonnegative influence matrix A with ‖A‖ ≤ 1− β, (4.3) converges to
the equilibrium point x∗ = (I− A)−1Bs within distance ε in O(log(‖B‖

εβ
)/β)

rounds, as shown in [81, Lemma 3]. The following lemma shows that the
same convergence rate holds for average-oriented opinion formation games,
where A may contain negative elements. The proof is very similar to the
proof of [81, Lemma 3] and we include it for completeness. The only minor
difference is that the proof of Lemma 4.1 uses the infinity norm of A, instead
of the largest eigenvalue of A in [81]. This allows for a direct generalization
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of Lemma 4.1 to the case of average-oriented opinion formation games with
outdated information.

Lemma 4.1. Let A be any influence matrix, possibly with negative elements,
such that ‖A‖ ≤ 1 − β, for some β > 0. Then, for any self-confidence
matrix B, any s ∈ [0,1]n and any ε > 0, the opinion formation process
x(t) = Ax(t − 1) + Bs converges to x∗ = (I − A)−1Bs within distance ε in
O(log(‖B‖

εβ
)/β) rounds.

Proof. By (4.4), we have that for any t ≥ 1, x(t) = Ats+∑t−1
`=0 A

`Bs. Since
‖A‖ ≤ 1−β, ‖At‖ ≤ (1−β)t. Therefore, limt→∞A

ts = ~0 and (4.4) converges
to x∗ = ∑∞

`=0 A
`Bs. Using the identity ∑∞`=0 A

` = (I− A)−1, we obtain that
x∗ = (I− A)−1Bs. We note that since ‖A‖ < 1, the matrix I− A is strictly
diagonally dominant and thus non-singular. Moreover,

‖(I− A)−1‖ ≤
∞∑
`=0
‖A`‖ ≤

∞∑
`=0

(1− β)` = 1/β .

To bound the convergence time to x∗, we define e(t) = ‖x(t) − x∗‖ =
maxi∈N |xi(t)− x∗i | as the distance of the opinions at time t to equilibrium.
We next show that e(t) is decreasing in t and obtain an upper bound on
t∗(ε) = min{t : e(t) ≤ ε}. We observe that for any t ≥ 1,

e(t) = ‖x(t)− x∗‖
= ‖Ax(t− 1) +Bs− Ax∗ −Bs‖
≤ ‖A‖ ‖x(t− 1)− x∗‖
≤ (1− β)e(t− 1) ≤ (1− β)te(0) .

Since s ∈ [0,1]n and ‖(I− A)−1‖ ≤ 1/β, we obtain that

‖x∗‖ ≤ ‖(I− A)−1Bs‖ ≤ ‖(I− A)−1‖ ‖B‖ ‖s‖ ≤ ‖B‖/β .

Since x(0) = s, we have that e(0) = ‖s − x∗‖ ≤ 1 + ‖B‖/β. Hence,
t∗(ε) = O(log(‖B‖

εβ
)/β).

Since I− A is nonsingular, x∗ is the unique opinion vector that satisfies
x∗ = Ax∗ + Bs. Thus, x∗ is the unique equilibrium of the corresponding
opinion formation game. Moreover, since for average-oriented games ‖A‖ ≤
1− 2/n2, Lemma 4.1 implies the following:

Corollary 4.1. Any average-oriented game satisfying Assumption 1 admits
a unique equilibrium x∗ = (I− A)−1Bs, and for any ε > 0, (4.3) converges
to x∗ within distance ε in O(n2 log(n/ε)) rounds.
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4.4.1 Convergence with Outdated Information
Next, we extend Lemma 4.1 to the case where the agents use possibly outdated
information about the average public opinion in each round. More generally,
we establish convergence for a general domain with negative influence between
the agents, which includes average-oriented opinion formation processes as a
special case.

Theorem 4.1. Let D and E be influence matrices, possibly with negative
elements, such that ‖D‖ ≤ 1 − β1, ‖E‖ ≤ 1 − β2, for some β1, β2 ∈ (0,1)
with β1 + β2 > 1. Then, for any self-confidence matrix B, any s ∈ [0,1]n,
any update schedule 0 = τ0 < τ1 < τ2 < · · · and any ε > 0, the opinion
formation process (4.6) converges to x∗ = (I− (D +E))−1Bs within distance
ε in O(log(‖B‖

εβ
)/β) epochs, where β = β1 + β2 − 1 > 0.

Proof. We observe that x∗ = (I − (D + E))−1Bs is the unique solution of
x∗ = Dx∗+Ex∗+Bs (as in Lemma 4.1, since ‖E+D‖ ≤ 1−β, with β > 0, the
matrix I− (D+E) is non-singular). Hence, if (4.6) converges, it converges to
x∗. To show convergence, we bound the distance of x(t) to x∗ by a decreasing
function of t and show an upper bound on t∗(ε) = min{t : e(t) ≤ ε}.

As in the proof of Lemma 4.1, for each round t ≥ 1, we define e(t) =
‖x(t)− x∗‖ as the distance of the opinions at time t to x∗. For convenience,
we also define

f(β1, β2, k) = (1− β1)k + (1− β2)1− (1− β1)k
β1

.

For any fixed value of β1, β2 ∈ (0,1) with β1 + β2 > 1, f(β1, β2, k) is a
decreasing function of k. Actually, the derivative of f with respect to k is equal
to log(1−β1)(1−β1)k(1− 1−β2

β1
), which is negative, because 1 > (1−β2)/β1,

since β1 + β2 > 1.
We next show that:

Claim (i). For any epoch p ≥ 0 and any round k, 0 ≤ k ≤ kp, in epoch p,

e(τp + k) ≤ f(β1, β2, k)e(τp) .

Claim (ii). In the last round τp+1 = τp + kp of each epoch p ≥ 0, e(τp+1) ≤
(1− β)e(τp).

Claim (i) shows that the distance to equilibrium decreases from each round
to the next within each epoch, while Claim (ii) shows that the distance
to equilibrium decreases geometrically from the last round of each epoch
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to the last round of the next epoch. Combining Claim (i) and Claim (ii),
we obtain that for any epoch p ≥ 0 and any round k, 0 ≤ k ≤ kp, in
epoch p, e(τp + k) ≤ f(β1, β2, k)(1 − β)pe(0). Therefore, for any update
schedule τ0 < τ1 < τ2 < · · · , the opinion formation process (4.6) converges to
(I− (D + E))−1Bs in O(log(e(0)/ε)/β) epochs.

To prove Claim (i), we fix any epoch p ≥ 0 and apply induction on k. The
basis, where k = 0, holds because f(β1, β2,0) = 1. For any round k, with
1 ≤ k ≤ kp, in p, we have that:

e(τp + k) = ‖Dx(τp + k − 1) + Ex(τp) +Bs− (Dx∗ + Ex∗ +Bs)‖
≤ ‖D‖ ‖x(τp + k − 1)− x∗‖+ ‖E‖ ‖x(τp)− x∗‖
≤ (1− β1)e(τp + k − 1) + (1− β2)e(τp)
≤ (1− β1)f(β1, β2, k − 1)e(τp) + (1− β2)e(τp) = f(β1, β2, k)e(τp) .

The first inequality follows from the properties of matrix norms. The second
inequality holds because ‖D‖ ≤ 1−β1 and ‖E‖ ≤ 1−β2. The third inequality
follows from the induction hypothesis. Finally, we use that for any k ≥ 1,
(1− β1)f(β1, β2, k − 1) + 1− β2 = f(β1, β2, k).

To prove Claim (ii), we fix any epoch p ≥ 0 and apply claim (i) to
the last round τp+1 = τp + kp, with kp ≥ 1, of epoch p. Hence, e(τp+1) =
‖x(τp + kp)− x∗‖ ≤ f(β1, β2, kp)e(τp).

We next show that f(β1, β2, kp) ≤ 2− (β1 + β2) = 1− β, which concludes
the proof of the claim. The inequality holds because for any integer k ≥ 1,
f(β1, β2, k) is a convex function of β1. For a formal proof, we fix any k ≥ 1 and
any β2 ∈ (0,1), and consider the functions g(x) = (1− x)k + 1−(1−x)k

x
(1− β2)

and h(x) = 2−β2−x, where x ∈ [1−β2,1] (since we assume that β1 ∈ (0,1)
and that β1 > 1 − β2). For any fixed value of β2 ∈ (0,1), h(x) is a linear
function of x with h(1 − β2) = 1 and h(1) = 1 − β2. For any fixed value
of k ≥ 1 and β2 ∈ (0,1), g(x) is a convex function of x with g(1 − β2) =
1 = h(1− β2) and g(1) = 1− β2 = h(1). Therefore, for any β1 ∈ [1− β2,1],
g(β1) ≤ h(β1) = 2− (β1 + β2).

To obtain an upper bound on e(0) = ‖s− x∗‖, we work as in the proof
of Lemma 4.1, using the fact that ‖D + E‖ ≤ 1 − β, and show first that
‖(I− (D + E))−1‖ ≤ 1/β and then that ‖x∗‖ ≤ ‖B‖/β. Since x(0) = s, we
have that e(0) = ‖s−x∗‖ ≤ 1+‖B‖/β. Using the fact that for each epoch p ≥
0 and for every round k, 0 ≤ k ≤ kp, in p, e(τp+k) ≤ f(β1, β2, k)(1−β)pe(0),
we obtain that t∗(ε) = O(log(‖B‖

εβ
)/β) epochs.

For average-oriented opinion formation games, D+E = A, ‖D‖ ≤ 1−1/n
and ‖E‖ ≤ (n − 1)/n2. Hence, applying Theorem 4.1 with β ≥ 1/n2, we
obtain the following:
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Corollary 4.2. For any update schedule and any ε > 0, the opinion formation
process (4.6) with outdated information about avg(x(t)) converges to the
equilibrium x∗ = (I − A)−1Bs of the corresponding average-oriented game
within distance ε in O(n2 log(n/ε)) epochs.

4.5 The Price of Anarchy of Symmetric Average-
Oriented Games

In this section we proceed to bound the PoA of average-oriented opinion
formation games. We concentrate on the most interesting case of symmetric
games, since nonsymmetric opinion formation games can have a PoA of Ω(n),
even if α = 0 [17]. Recall that for symmetric games, wij = wji for all agent
pairs i, j, and wi = 1 and αi = α, for all agents i.

Our analysis generalizes a local smoothness argument put forward in [15].
Such arguments have been extensively used in the algorithmic game theory
literature to provide upper bounds on the Price of Anarchy and they are
based on the notion of (λ, µ)-locally smooth introduced in [128].

Definition 4.4. [128] A game is (λ, µ)-locally smooth if there exist λ > 0
and µ ∈ (0,1), such that for all x, z ∈ Rn

∑
i∈N

Ci(x) +
∑
i∈N

(zi − xi)
dCi(x)
dxi

≤ λ
∑
i∈N

Ci(z) + µ
n∑
i∈N

Ci(x) (4.8)

Proposition 4.1. If a game is (λ, µ)−locally smooth, then

PoA ≤ λ

1− µ

Proof. Let x∗ the Nash Equilibrium of the game and o∗ the opinion vector
minimizing the total disagreement cost ∑i∈N Ci(x). Since x∗ is the Nash
Equilibrium of the game, dCi(x∗)

dxi
= 0 for each agent i. Hence, applying (4.8)

for x = x∗ and z = o∗, we obtain that PoA ≤ λ/(1− µ).

For symmetric games without aggregation (α = 0), it is known [15] that
for any s ∈ [0,1]n, the game is (3/4,1/4)-locally smooth and thus the PoA
of symmetric opinion formation games without aggregation can be bounded
to at most 9/8 [15]. This is tight as shown in [17].

This elegant approach cannot be directly generalized to symmetric average-
oriented opinion formation games, because the function ∑n

i=1(avg(x)− si)2 is
not (λ, µ)-locally smooth for any µ < 1. To circumvent this difficulty, we use
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the local smoothness technique in a more creative way. Observe that finding
appropriate values of λ, µ that satisfy (4.8) for all x, z ∈ [0,1]n may be both
a hard and a redundant task, because (4.8) is applied only for x = x∗ and
z = o∗, where x∗ denotes the Nash equilibrium and o∗ denotes the optimal
vector. Next, we derive appropriate values of λ, µ so that (4.8) holds for all
opinion vectors x, z ∈ [0,1]n for which avg(x) = avg(s). In Proposition 4.2,
we show that for symmetric opinion formation games, the average equilibrium
opinion is equal to the average belief, which allows us to bound the PoA.

Proposition 4.2. Let x∗ be the equilibrium and s the internal opinion vector
of any symmetric average-oriented opinion formation game. Then,

avg(x∗) = avg(s)

Proof. The following holds for the opinion x∗i of any agent i at Nash equilib-
rium x∗ :

x∗i + x∗i
∑
j,i

wij = (1 + α/n)si +
∑
j,i

wijx
∗
j − (α/n)avg(x∗) .

By summing up these inequalities for all agents i ∈ [n],

n avg(x∗) +
∑
i∈N

x∗i
∑
j,i

wij = (n+ α)avg(s) +
∑
i∈N

∑
j,i

wijx
∗
j − α avg(x∗) .

Since the game is symmetric with wij = wji for all i , j,∑
i∈N

x∗i
∑
j,i

wij =
∑
i∈N

∑
j,i

wijx
∗
j =

∑
i,j:i<j

wij(x∗i + x∗j) .

Therefore, we obtain that at the equilibrium x∗, (n+α)avg(x∗) = (n+α)avg(s),
which directly implies the proposition.

In the analysis of PoA, we use the following technical proposition repeatedly.

Proposition 4.3. For any γ, λ, µ ≥ 0 and z, x ∈ R such that λµ ≥ γ2,

2γzx ≤ λz2 + µx2

Proof. The claim holds trivially if zx < 0. In case where zx ≥ 0, the claim
follows from:

0 ≤ (
√
λz − √µx)2 = λz2 + µx2 − 2

√
λµzx ≤ λz2 + µx2 − 2γzx

The last inequality holds because λµ ≥ γ2 implies that −
√
λµ ≤ −γ.
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Based on these properties, we show that the PoA of symmetric average-
oriented games tends to 9/8, which is the PoA of symmetric opinion formation
games without aggregation. The proof is based on the following technical
(and more general) lemma:

Lemma 4.2. Let G be any symmetric average-oriented opinion formation
game with n agents, agent belief vector s and influence α ≥ 0. Then, for all
x, z ∈ Rn such that avg(x) = avg(s),

∑
i∈N

Ci(x) +
∑
i∈N

(zi − xi)
dCi(x)
dxi

≤ ν1
∑
i∈N

Ci(z) + ν2
∑
i∈N

Ci(x)

where ν1 = max{3/4 + µ, δ} and ν2 = max{1/3 + µ,1 − δ + 2λ}, for all
λ > 0 and µ ∈ (0,1) such that λµ ≥ α/n2 and for all δ > 0.

Proof. We recall that the individual cost of each agent i with respect to
opinions x is

Ci(x) =
∑
i,j

wij(xi − xj)2 + (xi − si)2 + α(avg(x)− si)2

and that the social cost is C(x) = ∑
i∈N Ci(x). We divide agent’s i personal

cost Ci(x) into three parts Ci(x) = Fi(x) + Ii(x) + Ai(x), where Fi(x) =∑
j,iwij(xi − xj)2, Ii(x) = (xi − si)2 and Ai(x) = α(avg(x)− si)2.
Following this notation, we have that:

F (x) =
∑
i∈N

Fi(x) =
∑
i∈N

∑
j,i

wij(xi − xj)2 = 2
∑
i,j:i<j

wij(xi − xj)2

I(x) =
∑
i∈N

Ii(x) =
∑
i∈N

(xi − si)2 = (x− s)T (x− s)

A(x) =
∑
i∈N

Ai(x) = α
∑
i∈N

(avg(x)− si)2 = α(avg(x)− s)T (avg(x)− s) .

Consequently, the social cost can be written as C(x) = F (x) + I(x) + A(x).
We introduce

F ′(x) =
(
dF1(x)
dx1

, · · · , dFn(x)
dxn

)

I ′(x) =
(
dI1(x)
dx1

, · · · , dIn(x)
dxn

)

A′(x) =
(
dA1(x)
dx1

, · · · , dAn(x)
dxn

)
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We observe that A′(x) = (2α/n)(avg(x)− s). For simplicity and brevity,
here and in the proof of Theorem 4.4, we slightly abuse the notation by letting
avg(x) denote a vector with all its coordinates equal to avg(x). The following
two propositions are proven in [15, Sec. 3.1] for more general cost functions.
We provide their proofs here, for the sake of completeness.
Proposition 4.4 ([15]). For any symmetric matrixW = (wij), any x, z ∈ Rn,
and any λ > 0 and µ ∈ (0,1) with λ ≥ 1/(4µ),

F (x) + (z − x)TF ′(x) ≤ λF (z) + µF (x)

Proof. To establish the proposition, we consider each agent pair i, j, with
i , j, separately. Since for any agent pair i, j, wij = wji, we have that for any
λ > 0 and µ ∈ (0,1) with λµ ≥ 1/4,

F (x) + (z − x)TF ′(x) = 2
∑
i,j:i,j

wij((xi − xj)2 + (zi − xi)(xi − xj) + (zj − xj)(xj − xi))

= 2
∑
i,j:i,j

wij((xi − xj)2 + (zi − zj)(xi − xj)− (xi − xj)2)

= 2
∑
i,j:i,j

wij(zi − zj)(xi − xj)

≤ 2λ
∑
i,j:i,j

wij(zi − zj)2 + 2µ
∑
i,j:i,j

wij(xi − xj)2

= λF (z) + µF (x) .

For the inequality, we apply Proposition 4.3 with γ = 1/2. Therefore, for
any zi, zj, xi, xj ∈ R and any λ, µ > 0 with λµ ≥ 1/4, (zi − zj)(xi − xj) ≤
λ(zi − zj)2 + µ(xi − xj)2.

Proposition 4.5 ([15]). For any x, z, s ∈ Rn, λ > 0 and µ ∈ (0,1) with
λ ≥ 1/(µ+ 1),

I(x) + (z − x)T I ′(x) ≤ λI(z) + µI(x)

Proof. To establish the proposition, we consider each agent i separately. We
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have that for any λ > 0 and µ ∈ (0,1) such that λ(µ+ 1) ≥ 1,

I(x) + (z − x)T I ′(x) =
∑
i∈N

((xi − si)2 + 2(zi − xi)(xi − si))

=
∑
i∈N

((xi − si)2 + 2(zi − si)(xi − si) + 2(si − xi)(xi − si))

=
∑
i∈N

((xi − si)2 + 2(zi − si)(xi − si)− 2(xi − si)2)

=
∑
i∈N

(2(zi − si)(xi − si)− (xi − si)2)

≤ λ
∑
i∈N

(zi − si)2 + µ
∑
i∈N

(xi − si)2

= λI(z) + µI(x)

For the inequality, we apply Proposition 4.3 with γ = 1 and µ+ 1 instead of
µ. Thus, we obtain that for any xi, zi, si ∈ R and for any λ > 0 and µ ∈ (0,1)
such that λ(µ+ 1) ≥ 1, 2(zi − si)(xi − si) ≤ λ(zi − si)2 + (µ+ 1)(xi − si)2,
which implies the inequality above.

Next, using Proposition 4.2, we obtain a similar upper bound on A(x) +
(z − x)TA′(x).
Proposition 4.6. For any α > 0, any x, z, s ∈ Rn with avg(x) = avg(s),
any δ ≥ 0, and any λ > 0 and µ ∈ (0,1) such that λµ ≥ α/n2,

A(x) + (z − x)TA′(x) ≤ δA(z) + µI(z) + (1− δ + 2λ)A(x) + µI(x) . (4.9)

Proof. Applying first-order optimality conditions, we obtain that any vector
x ∈ Rn with avg(x) = avg(s) minimizes A(x). Therefore, for any x ∈ Rn,
A(x) ≤ A(x), and for any δ ≥ 0, A(x) ≤ δA(x) + (1− δ)A(x).

To complete the proof of (4.9), we observe that for any λ > 0, µ ∈ (0,1)
with λµ ≥ α/n2,

(z − x)TA′(x) =
∑
i∈N

(2α/n)(zi − xi)(avg(x)− si)

=
∑
i∈N

((2α/n)(zi − si)(avg(x)− si) + (2α/n)(si − xi)(avg(x)− si))

≤
∑
i∈N

(2λα(avg(x)− si)2 + µ(zi − si)2 + µ(xi − si)2)

= 2λA(x) + µI(z) + µI(x).

For the inequality, we apply Proposition 4.3, with γ =
√
α/n, to (2α/n)(zi−

si)(avg(x)−si) and to (2α/n)(si−xi)(avg(x)−si). Hence, we obtain that for
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any λ > 0 and µ ∈ (0,1) such that λµ ≥ α/n2, (2α/n)(zi−si)(avg(x)−si) ≤
µ(zi− si)2 +λα(avg(x)− si)2 and (2α/n)(si−xi)(avg(x)− si) ≤ µ(xi− si)2 +
λα(avg(x)− si)2.

Applying Propositions 4.4 and 4.5 with λ = 3/4 and µ = 1/3, and using
(4.9), we obtain that for any δ ≥ 0 and for any λ > 0 and µ ∈ (0,1) such
that λµ ≥ α/n2,

C(x) + (z − x)TC ′(x) ≤ 3
4F (z) +

(
3
4 + µ

)
I(x) + δA(x) + 1

3F (x) +(
1
3 + µ

)
I(z) + (1− δ + 2λ)A(z)

≤ ν1C(z) + ν2C(x) ,

where ν1 = max{3/4 + µ, δ} and ν2 = max{1/3 + µ,1− δ + 2λ}.

The main result of this section is an immediate consequence of Lemma 4.2.

Theorem 4.2. Let G be any symmetric average-oriented opinion formation
game with n agents and influence α ≥ 0. Then, PoA(G) ≤ 9/8 +O(α/n2).

Proof. Let x∗ be the Nash equilibrium and let o∗ be the optimal solution. By
Proposition 4.2, avg(x∗) = avg(s). Therefore, Lemma 4.2 implies that

C(x∗) + (o∗ − x∗)TC ′(x) ≤ ν1C(o∗) + ν2C(x∗)

where ν1 = max{3/4 + µ, δ} and ν2 = max{1/3 + µ,1 − δ + 2λ}, for all
λ > 0 and µ ∈ (0,1) such that λµ ≥ α/n2 and for all δ > 0. Since x∗ is an
equilibrium, C ′(x∗) = ~0. Hence, for all ν2 ∈ (0,1), PoA(G) ≤ ν1/(1− ν2), or
equivalently,

PoA(G) ≤ max{3/4 + µ, δ}
1−max{1/3 + µ,1− δ + 2λ}

(4.10)

If α/n2 is small enough, e.g., if α/n2 ≤ 1/2400, we use δ = 3/4, λ = 1/24
and µ = 24α/n2 in (4.10) and obtain that PoA(G) ≤ 9/8+O( α

n2 ). Otherwise,
we use µ = 1/3, λ = 3α/n2 and δ = 6α/n2 + 1/3, and obtain that PoA(G) =
O( α

n2 ).

4.6 Average-Oriented Games with Restricted Opin-
ions

A frequent assumption in the literature on opinion formation is that agent
beliefs come from a finite interval of nonnegative real numbers. Then, by
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scaling we can assume beliefs si ∈ [0,1]. If the influence matrix A is nonnega-
tive, then since bii +∑n

j=1 aij = 1 for all i ∈ N , we have that the equilibrium
opinions are x∗ = (I − A)−1Bs ∈ [0,1]n. In contrast, for the more general
domain we treat here, an important side-effect of negative influence is that the
best-response (and equilibrium) opinions may not belong to [0,1]. Motivated
by this observation, we consider a restricted variant of opinion formation
games, where the (best-response and equilibrium) opinions are restricted to
[0,1]. We strive to understand how this restriction of public opinions to [0,1]
affects the convergence properties and the price of anarchy of average-oriented
games.

To distinguish restricted opinion formation processes from their unre-
stricted counterparts, we use y(t) to denote the opinion vectors restricted
to [0,1]n . For restricted average-oriented games and restricted games with
negative influence, the best-response opinion yi of each agent i to y−i is again
computed by (4.2) and (4.7), respectively. But now, if the resulting value is
yi < 0, we increase it to yi = 0, while if yi > 1, we decrease it to yi = 1. Since
the individual cost Ci(y) is a strictly convex function of yi, the restriction of
yi to [0,1] results in a minimizer y∗ ∈ [0,1] of Ci(y, y−i).

Similarly, the restricted opinion formation process is described by

y(t) = [Ay(t− 1) +Bs ][0,1] , (4.11)

where [·][0,1] denotes the restriction of public opinions y(t) to [0,1]n described
above. The influence matrix A (and the influence matrices D and E for
processes with outdated information) and the self-confidence matrix B are
computed as for standard (or unrestricted) opinion formation processes.

4.6.1 Convergence of Restricted Opinion Formation Pro-
cesses

We show results for restricted opinion formation processes that are equivalent
to Lemma 4.1 and Theorem 4.1. As in Section 4.4, we prove our results
for the more general setting of negative influence. Using Lemma 4.3 and
Theorem 4.3, it is straightforward to obtain the results of Corollary 4.1 and
Corollary 4.2 also for restricted average-oriented processes.

Lemma 4.3. Let A be any influence matrix, possibly with negative elements,
such that ‖A‖ ≤ 1− β, for some β > 0. Then, for any self-confidence matrix
B, any s ∈ [0,1]n and any ε > 0, the opinion formation process

y(t) = [Ay(t− 1) +Bs ][0,1]
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admits a unique equilibrium y∗ and converges to it within distance ε in
O(log(1

ε
)/β) rounds.

Proof. In the restricted opinion formation game, the agent opinions lie in the
convex set [0,1]. The individual cost Ci(y) of each agent i is a continuous
function of y and strictly convex in yi. Hence, according to the results of [126],
the restricted game admits a unique equilibrium y∗ which satisfies y∗ = [Ay∗+
Bs ][0,1] . Specifically, the existence of an equilibrium y∗ follows from [126],
since the restricted opinion formation game is a convex game. The uniqueness
of y∗ follows from [126] and from the fact that the function ∑i∈N Ci(y) is
diagonally strictly convex. The latter holds because the symmetric matrix
obtained by adding 2B to the Laplacian of A+ AT is positive definite.

Next we bound the convergence time to y∗ as in the proof of Lemma 4.1.
For any t ≥ 1, we define e(t) = ‖y(t)− y∗‖ as the distance of the opinions at
time t to equilibrium. We observe that for any round t ≥ 1,

e(t) = ‖y(t)− y∗‖ ≤ ‖Ay(t− 1) +Bs− Ay∗ −Bs‖
≤ ‖A‖ ‖y(t− 1)− y∗‖ ≤ (1− β)e(t− 1) ≤ (1− β)te(0) .

For the first inequality, we recall that y(t) (resp. y∗) is obtained by computing
Ay(t− 1) +Bs (resp. Ay∗ +Bs) and then restricting any negative opinions
to 0 and any opinions larger than 1 to 1. By a straightforward inspection
of all possible 9 cases depending on whether yi(t) and y∗i are negative, in
[0,1] or greater than 1, we conclude that opinion restriction to [0,1] does
not increase |yi(t) − y∗i | for any i. Since y(0) = s ∈ [0,1]n and y∗ ∈ [0,1]n,
e(0) ≤ 1. Hence, after t∗(ε) = O(log(1

ε
)/β) rounds y(t) is within distance ε

to y∗.

The proof of the following theorem is similar to the proof of Theorem 4.1.

Theorem 4.3. Let D and E be influence matrices, possibly with negative
elements, such that ‖D‖ ≤ 1 − β1, ‖E‖ ≤ 1 − β2, for some β1, β2 ∈ (0,1)
with β1 + β2 > 1. Then, for any self-confidence matrix B, any s ∈ [0,1]n,
any update schedule 0 = τ0 < τ1 < τ2 < · · · , the restricted opinion formation
process

y(t) = [Dy(t− 1) + Ey(τp) +Bs ][0,1]

converges to the unique equilibrium point y∗ of

y′(t) = [(D + E)y′(t− 1) +Bs ][0,1]

For any ε > 0, y(t) is within distance ε to y∗ after O(log(1
ε
)/β) epochs, where

β = β1 + β2 − 1.
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Proof. Lemma 4.3 shows that for the restricted opinion formation process
y′(t) = [(D + E)y′(t − 1) + Bs ][0,1], there is a unique equilibrium point
y∗ ∈ [0,1]n that satisfies y∗ = [(D + E)y∗ +Bs ][0,1] . Provided that it exists,
the equilibrium of the restricted opinion formation process with outdated
information y(t) = [Dy(t− 1) + Ey(τp) + Bs ][0,1] must satisfy y∗ = [Dy∗ +
Ey∗ +Bs ][0,1], due to the existence of infinite update points where all agents
have accurate information about the current public opinion vector. So, if the
process with outdated information admits an equilibrium, it must be unique
and equal to y∗. We next show that this is indeed the case, by bounding
from above the distance of y(t) to y∗ by a decreasing function of t and by
establishing an upper bound on the convergence time.

For every round t ≥ 1, we define e(t) = ‖y(t)− y∗‖ as the distance of the
opinions at time t to y∗. We proceed similarly to the proof of Theorem 4.1.
As before, we define

f(β1, β2, k) = (1− β1)k + (1− β2)1− (1− β1)k
β1

.

We recall that for any fixed β1, β2 ∈ (0,1) with β1 + β2 > 1, f(β1, β2, k) is a
decreasing function of k.

We next show that:

Claim (i). For every epoch p ≥ 0 and every round k, 0 ≤ k ≤ kp, in epoch
p,

e(τp + k) ≤ f(β1, β2, k)e(τp) .

Claim (ii). In the last round τp+1 = τp + kp of each epoch p ≥ 0, e(τp+1) ≤
(1− β)e(τp).

Claims (i) and (ii) imply that for each epoch p ≥ 0 and every round k,
0 ≤ k ≤ kp, in epoch p, e(τp+k) ≤ f(β1, β2, k)(1−β)pe(0). This immediately
implies that for any update schedule τ0 < τ1 < τ2 < · · · , the opinion formation
process y(t) = [Dy(t−1) +Ey(τp) +Bs ][0,1] converges to y∗. Moreover, since
e(0) = ‖s− y∗‖ ≤ 1, y(t) is within distance ε to y∗ in O(log(1

ε
)/β) epochs.

The proofs of Claim (i) and Claim (ii) are essentially identical to the
proofs of the corresponding claims in the proof of Theorem 4.1. We include
the details for completeness. To prove Claim (i), we fix an epoch p ≥ 0 and
apply induction on k. The basis, where k = 0, holds because f(β1, β2,0) = 1.
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For any round k, with 1 ≤ k ≤ kp, in p, we have that:

e(τp + k) = ‖y(τp + k)− y∗‖
= ‖[Dy(τp + k − 1) + Ey(τp) +Bs ][0,1] − [Dy∗ + Ey∗ +Bs ][0,1]‖
≤ ‖(Dy(τp + k − 1) + Ey(τp) +Bs)− (Dy∗ + Ey∗ +Bs)‖
≤ ‖D‖ ‖y(τp + k − 1)− y∗‖+ ‖E‖ ‖y(τp)− y∗‖
≤ (1− β1)e(τp + k − 1) + (1− β2)e(τp)
≤ (1− β1)f(β1, β2, k − 1)e(τp) + (1− β2)e(τp)
= f(β1, β2, k)e(τp) .

For the first inequality, we use that opinion restriction to [0,1] does not
increase |yi(t) − y∗i | for any i, as it is explained in the proof of Lemma 4.3.
The second inequality follows from the properties of matrix norms. The
third inequality holds because ‖D‖ ≤ 1− β1 and ‖E‖ ≤ 1− β2. The fourth
inequality follows from the induction hypothesis. Finally, we observe that for
any integer k ≥ 1, (1− β1)f(β1, β2, k − 1) + 1− β2 = f(β1, β2, k).

To prove Claim (ii), we fix any epoch p ≥ 0 and apply claim (i) to the
last round τp+1 = τp + kp of epoch p, where kp ≥ 1. Hence, we obtain that:

e(τp+1) = ‖y(τp+kp)−y∗‖ ≤ f(β1, β2, kp)e(τp) ≤ (2−β1−β2)e(τp) = (1−β)e(τp) ,

where β = β1 + β2 − 1. The last inequality follows from convexity and has
already been proven in the corresponding part of the proof of Theorem 4.1.

4.6.2 The Price of Anarchy of Restricted Average-Oriented
Games

We proceed to bound the PoA of restricted symmetric average-oriented games.
Due to opinion restriction to [0,1], the average opinion at a Nash Equilibrium
may be far from avg(s). Therefore, we cannot rely on Proposition 4.6 anymore.
Moreover, the PoA of restricted games increases fast with α (e.g., if s =
(0, . . . ,0,1/n), wij = 0 for all i , j, and α = n2, PoA = Ω(n)). Therefore,
we here restrict our attention to the case where α = w = 1 and show that the
PoA of restricted symmetric average-oriented games remains constant. An
interesting intermediate result of our analysis is that if all agents only value
the distance of their opinion to their belief and to the average, i.e., if wij = 0
for all i , j, the PoA of such games is at most 1 + 1/n2.

As in the proofs of Lemma 4.2 and Theorem 4.2, we use a generalized local
smoothness argument. In this case, however, the function ∑n

i=1(avg(y)− si)2
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is not (λ, µ)-locally smooth and avg(y∗) at the equilibrium y∗ may be far from
avg(s). Hence, to bound the PoA, we need to advance substantially beyond
the local smoothness argument of [15, Sec. 3.1]. The rest of this section is
devoted to the proof of the following:

Theorem 4.4. Let G be any symmetric average-oriented opinion formation
game with w = α = 1, n ≥ 2 agents and opinions restricted to [0,1]. Then,

PoA(G) ≤ 3 +
√

2 +O(1
n

)

Proof. As in the proofs of Lemma 4.2 and Theorem 4.2, we seek to find
appropriate parameters λ > 0 and µ ∈ (0,1) such that for all x, y ∈ [0,1]n,

C(y) + (x− y)TC ′(y) ≤ λC(x) + µC(y) . (4.12)

where C(y) = ∑n
i=1 Ci(y) and C ′(y) = (dC1(y)

dy1
, · · · , dCn(y)

dyn
).

Next, we show that (4.12) indeed implies PoA(G) ≤ λ/(1−µ). To this end,
we show that at the equilibrium y∗ of a restricted game, (x− y∗)TC ′(y∗) ≥ 0.
By definition y∗ ∈ [0,1]n. In case where y∗i ∈ (0,1), due to first-order
optimality conditions, dCi(y∗)

dyi
= 0 and (xi − y∗i )

dCi(y)
dyi

= 0. If y∗i = 0 then
dCi(y∗)
dyi

≥ 0. Otherwise, agent i could decrease her cost by increasing y∗i .
Since xi ∈ [0,1], (xi − y∗i )

dCi(y∗)
dyi

≥ 0. By a symmetric argument, if y∗i = 1,
dCi(y∗)
dyi

≤ 0 and (xi − y∗i )
dCi(y∗)
dyi

≥ 0. Applying (4.12) for y = y∗ and x = o∗

(recall that the optimal solution o∗ ∈ [0,1]n) yields

C(y∗) ≤ C(y∗) + (o∗ − y∗)TC ′(y∗) ≤ λC(o∗) + µC(y∗) .

Therefore, PoA(G) = C(y∗)/C(o∗) ≤ λ/(1− µ).
We proceed to establish (4.12). As in Section 4.5, in order to find appro-

priate values for λ and µ, we divide the individual cost of each agent i into
two parts, writing Ci(y) = Fi(y) +Mi(y), and analyze each part separately.
We again have that:

F (y) =
n∑
i=1

Fi(y) =
∑
i∈N

∑
j,i

wij(yi − yj)2

M(y) =
n∑
i=1

Mi(y) =
∑
i∈N

((yi − si)2 + (avg(y)− si)2)

= (y − s)T (y − s) + (avg(y)− s)T (avg(y)− s) .
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We again denote

F ′(y) =
(
dF1(y)
dy1

, · · · , dFn(y)
dyn

)

M ′(y) =
(
dM1(y)
dy1

, · · · , dMn(y)
dyn

)

We also recall that M ′(y) = 2(y − s) + (2/n)(avg(y)− s).
Proposition 4.4 provides an appropriate upper bound on the term F (y) +

(x− y)TF ′(y). So, we next focus on finding appropriate values of λ and µ so
that we can bound from above the term M(y) + (x− y)TM ′(y).

To this end, we first observe that:

M(y) + (x− y)TM ′(y) = M(y) + (s− y)TM ′(y) + (x− s)TM ′(y) .

We first bound M(y) + (s− y)TM ′(y) from above using the following propo-
sition. Intuitively, the proposition holds because the left-hand side of (4.13)
is a strictly concave function of y.
Proposition 4.7. For any y, x, s ∈ [0,1]n,

M(y) + (s− y)TM ′(y) ≤ (1 + 1
n2 )M(s) ≤ (1 + 1

n2 )M(x) . (4.13)

Proof. Let Kn denote the n×n matrix with all its entries equal to 1/n. Recall
that I is the n × n identity matrix. Clearly, Kny is the vector with all its
coordinates equal to avg(y). Moreover, we observe that KnKn = Kn. Using
matrix notation, we obtain that:

M(y) + (s− y)TM ′(y) = (Kny − s)T (Kny − s) + (y − s)T (y − s)
+ 2(s− y)T (y − s) + (2/n)(s− y)T (Kny − s)

= yT ((1− 2
n
)Kn − I)y + 2 yT ((1 + 1

n
)I− (1− 1

n
)Kn)s− 2

n
sT s .

We observe that the matrix I− (1− 2
n
)Kn is strictly diagonally dominant, and

thus positive definite. So, the matrix (1− 2
n
)Kn− I is negative definite. Thus,

M(y) + (s− y)TM ′(y) is strictly concave in y and has a unique maximum in
R.

We next show that M(y) + (s−y)TM ′(y) is maximized at y∗ = (1 + 1
n
)s−

avg(s)/n. To find the unique maximizer y∗ ofM(y)+(s−y)TM ′(y), we apply
first-order optimality conditions. The gradient of M(y) + (s− y)TM ′(y) with
respect to y1, . . . , yn is equal to

2((1− 2
n
)Kn − I)y + 2((1 + 1

n
)I− (1− 1

n
)Kn)s .
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So the unique maximizer y∗ of M(y) + (s− y)TM ′(y) satisfies

y∗i = (1 + 1
n
)si + (1− 2

n
)avg(y∗)− (1− 1

n
)avg(s) .

Summing up these equations for all i ∈ N , we obtain that

n avg(y∗) = (n+ 1)avg(s) + (n− 2)avg(y∗)− (n− 1)avg(s) ,

which implies that avg(y∗) = avg(s). Therefore, the maximizer y∗ of M(y) +
(s− y)TM ′(y) has y∗i = (1 + 1

n
)si − avg(s)/n (note in particular that y∗i does

not need to belong to [0,1]).
Using that y∗ = (1 + 1

n
)s− avg(s)/n and avg(y∗) = avg(s), we obtain:

M(y∗) + (s− y∗)TM ′(y∗) = −(y∗ − s)T (y∗ − s) + (avg(s)− s)T (avg(s)− s)
+ (2/n)(y∗ − s)T (avg(s)− s)T

= −(1/n2)(avg(s)− s)T (avg(s)− s)
+ (avg(s)− s)T (avg(s)− s)
+ (2/n2)(avg(s)− s)T (avg(s)− s)T

= (1 + 1
n2 )(avg(s)− s)T (avg(s)− s) .

The proposition follows from the following observations: (i) for any y ∈
[0,1]n, M(y) + (s− y)TM ′(y) ≤ M(y∗) + (s− y∗)TM ′(y∗), since y∗ ∈ Rn is
the unique maximizer of the strictly concave function M(y) + (s− y)TM ′(y);
and (ii) for any x ∈ [0,1]n,

M(y∗) + (s− y∗)TM ′(y∗) = (1 + 1
n2 )(avg(s)− s)T (avg(s)− s)

= (1 + 1
n2 )M(s) ≤ (1 + 1

n2 )M(x) ,

where the last inequality holds because s is a minimizer of M(y).

Remark 4.1. If wij = 0 for all i , j, the cost of each agent i becomes
Ci(y) = (yi − si)2 + (avg(y) − yi)2. For this interesting class of restricted
symmetric average-oriented games, Proposition 4.7 implies that the PoA is at
most 1 + 1/n2.

We proceed to show an upper bound on (x− s)TM ′(y).
Proposition 4.8. For any y, x, s ∈ [0,1]n, and for any λ1, λ2 > 0 and
µ1, µ2 ∈ (0,1) such that λ1µ1 ≥ 1 and λ2µ2 ≥ 1/n2,

(x− s)TM ′(y) ≤ (λ1 + λ2)M(x) + max{µ1, µ2}M(y) . (4.14)
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Proof. We observe that

(x− s)TM ′(y) = 2(x− s)T (y − s) + (2/n)(x− s)T (avg(y)− s) .

Applying Proposition 4.3, with γ = 1, for each term 2(xi − si)(yi − si) of
2(x−s)T (y−s), we obtain that for any λ1 > 0 and µ1 ∈ (0,1) with λ1µ1 ≥ 1,

2(x− s)T (y − s) ≤ λ1(x− s)T (x− s) + µ1(y − s)T (y − s) .

Similarly, applying Proposition 4.3, with γ = 1/n, for each term (2/n)(xi −
si)(avg(y)− si) of (2/n)(x− s)T (avg(y)− s), we obtain that for any λ2 > 0
and µ2 ∈ (0,1) with λ2µ2 ≥ 1/n2,

(2/n)(x−s)T (avg(y)−s) ≤ λ2(x−s)T (x−s)+µ2(avg(y)−s)T (avg(y)−s) .

Inequality (4.14) follows from summing up the two inequalities above and
using thatM(x) ≥ (x−s)T (x−s) and thatM(y) = (y−s)T (y−s)+(avg(y)−
s)T (avg(y)− s).

Using Proposition 4.7 and Proposition 4.8, we obtain that for all x, y ∈
[0,1]n, and for all λ1, λ2 > 0 and µ1, µ2 ∈ (0,1) such that λ1µ1 ≥ 1 and
λ2µ2 ≥ 1/n2,

M(y) + (x− y)TM ′(y) ≤
(

1 + 1
n2 + λ1 + λ2

)
M(x) + max{µ1, µ2}M(y) .

(4.15)
Applying Proposition 4.4 with λ = 1 and µ =

√
2− 1, and (4.15) with

λ1 =
√

2 + 1, λ2 = 1/n, µ1 =
√

2− 1 and µ2 = 1/n, and summing up the
corresponding inequalities, we obtain that (4.12) holds with λ = 2+

√
2+ n+1

n2

and µ =
√

2− 1. Hence, we conclude that

PoA ≤ (2 +
√

2)2/2 + (
√

2 + 1)n+1
n2 .
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Chapter 5

Network and Random
Hegselmann Krause Model

In this Chapter, we investigate the convergence properties of the Network
Hegselmann Krause model and the Random Hegselmann Krause model. Both
of these models were introduced in our work [77] to capture different aspects
of the well-known HK model. A brief introduction to Network HK model and
Random HK model can be found in Sections 2.5.3 and 2.5.4 respectively.

5.1 Network Hegselmann Krause Model
In the Network HK model, we are given an undirected graph G(V,E) where
V stands for the agents and E the social relations among them. Each agent
i ∈ V initially holds an opinion xi(0) ∈ [0,1]. At each round, each agent
averages her current opinion with the opinions of her neighbors that are
ε-close to hers. The parameter ε > 0 measures the tolerance of the agents
against different opinions.

Network Hegselmann Krause model
1: undirected graph G = (V,E).
2: n agents.
3: xi(0) ∈ [0,1], agent i’s initial opinion.
4: At round t ≥ 1, each agent i updates her opinion:

xi(t) =
∑
j∈Ni(t) xj(t− 1) + xi(t− 1)

|Ni(t)|+ 1

where Ni(t) = {j ∈ V : |xi(t− 1)− xj(t− 1)| ≤ ε and (i, j) ∈ E}

101
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Given the graph G, the initial opinions and the parameter ε, one can compute
the opinions of the agents at any round t. Such a selection defines an opinion
dynamics x(t).

Definition 5.1. An instance of the Network HK model is denoted by the
triple (G, x(0), ε) and x(t) ∈ [0,1]n denotes the opinion vector at round t.

In this chapter we shed light on the convergence properties of the Network
HK model. Our results provide a positive answer to the following question.

Question 4. Does the opinion vector x(t) stabilizes to a stable state for any
instance (G, x(0), ε)?

Every instance of the Network HK model admits an infinite number of
stable opinion vectors. Assume that at some point in time the opinions have
the following form: Each agent either has opinion x1 or opinion x2 where
|x1−x2| > ε. Clearly the system will remain in this state forever. The agents
with opinion x1 average their opinion with the opinions of their x1-neighbors,
while the same happens with those with opinion x2. Theorem 5.1 states that
such a stable state is always reached by the system.

Theorem 5.1. For any instance (G, x(0), ε) of the Network HK model, the
opinion vector x(t) reaches a stable state.

Section 5.2 is dedicated to the proof of Theorem 5.1.

5.2 Convergence of Network Hegselmann Krause
Model

A crucial step for proving Theorem 5.1 is describing the opinion dynamics as
the following matrix product.

Corollary 5.1. For any instance (G, x(0), ε) of the Network HK model, the
opinion vector x(t) can be written in the following matrix form:

x(t) = Atx(t− 1) = At · · ·A1x(0)

where Atij =


1

|Ni(t)|+1 if j = i
1

|Ni(t)|+1 if j ∈ Ni(t)
0 otherwise
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Each matrix At is stochastic (has positive elements and the sum of each
row equals 1), has positive diagonal elements and has the following symmetric
property, if Atij > 0 then Atji > 0. As we will see latter, the third property is
of great importance for establishing the convergence properties of the Network
HK model.

Each matrix At can also be perfectly represented by an undirected graph
that is an induced subgraph of G and consists of the activated edges of E at
round t. By the term activated edges we mean the pairs (i, j) ∈ E such that
|xi(t)−xj(t)| ≤ ε. Probably with some abuse of terminology, throughout this
section we refer to At either as a matrix or graph. This «dual» consideration
extremely simplifies things and provide us with a lot of intuition on why
Network HK model always reaches a stable state. This intuition is presented
after Definition 5.2.

Definition 5.2. Let the partition V = (S, V/S) then δt(S, V/S) denotes the
edges of At between S and V/S or equivalently the set of pairs (i, j) where
i ∈ S, j ∈ V/S such that Atij > 0.

Assume that graph G has two connected components G1, G2. Then the
overall system breaks into two independent subsystems since the agents of
G1 are never influenced by the agents of G2 and vice versa. As a result,
without loss of generality we can assume that G is connected. Describing
the system as a graph-matrix sequence A1, . . . , At, . . . permits us to apply a
similar observation on the time domain. Assume that there exists a round
t0 such that for all t ≥ t0, δt(S, V/S) = ∅. The latter means that after t0
there is no interaction between any agents in S and V/S and thus the system
breaks into independent subsystems. Since at most |V | − 1 breaks can occur,
after a finite round no break happens. Thus without loss of generality, we
can assume that a break never takes place. Definition 5.3 and Corollary 5.2
establish the above intuition in a formal way.

Definition 5.3. A set of agents S ⊆ V is weakly connected if and only if
for any non-empty S ′ ⊂ S and any t0 ∈ N, there is a round t ≥ t0 so that At
includes at least one edge connecting an agent in S ′ to some agent in S\S ′.

Definition 5.3 is the negation of the property that a break takes place. An
instance of Network HK model in which V is weakly connected, is presented
in Example 5.1.

Example 5.1. Let an instance of the Network HK model where G is connected
and for all i, j ∈ V, |xi(0)− xj(0)| ≤ ε. The respective graph-matrix sequence
is G, . . . G, . . . meaning that V is weakly connected.
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Corollary 5.2. Let (G, x(0), ε) an instance of the Network HK Model. Then
there exists a round t∗ and a partition of V = (V1, V2, . . . , Vk) such that

• each V` is weakly connected.

• for all t ≥ t∗, δt(V`, V \V`) = ∅.

Proof. Corollary 5.2 directly follows by induction on the number of nodes
and by the definition of weak connectivity.

We can now vividly explain the significancy of the notion of weak connec-
tivity for proving that the Network HK model always reaches a stable state.
The reasoning procceeds as follows: If in the given instance (G, x(0), ε), V
is not weakly connected then at some finite round the system breaks into
independent subsystems that are weakly connected (Corollary 5.2). Thus
without loss of generality we can assume that V is weakly connected. In case
V is weakly connected we argue that the influences among the agents are so
strong, that finally all agents adopt the same opinion! This is formally stated
in Theorem 5.2 that is the main result of the section.

Theorem 5.2. Let (G, x(0), ε) an instance of Network HK model such that
V is weakly connected. Then there exits t0 ∈ N such that

xi(t0) = xj(t0), for all i, j ∈ V

As mentioned above, Theorem 5.2 is the major result of the section.
Theorem 5.1 follows by direct application of Lemma 5.2 and Theorem 5.2.
For the sake of completeness we present the proof and then we dedicate the
rest of the section to prove Theorem 5.2.

Theorem 5.1. For any instance (G, x(0), ε) of the Network HK model, the
opinion vector x(t) reaches a stable state.

Proof. By Lemma 5.2 there exists t∗ and a partition of V = (V1, V2, . . . , Vk)
such that

• each V` is weakly connected.

• for all t ≥ t∗, δt(V`, V \V`) = ∅.

Due to the second condition, the opinions of the agents in each V` after round
t∗, equal the opinions of the agents of the instance (GV` , xV`(t∗), ε). Due to the
first condition in each instance (GV` , xV`(t∗), ε) the set V` is weakly connected
and thus Theorem 5.2 applies.
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Theorem 5.2 states that if V is weakly connected then at same point in
time all the agents will adopt the same opinion. In a sense Theorem 5.2 states
that the rank of the matrix-product At · · ·A1 converges to 1 at t grows. This
intuition is formally stated in Theorem 5.4 which implies Theorem 5.2. Before
presenting Theorem 5.4 we present the notion of the coefficient of ergodicity
[132], which is a very useful tool for studying products of stochastic matrices.

Definition 5.4. Let A be a stochastic matrix then the coefficient of ergodicity
of matrix A,

τ(A) = 1
2
·max

i,j

n∑
k=1
|Aik − Ajk|

and has the following properties:

• τ(A ·B) ≤ τ(A) · τ(B)

• if A has positive elements then τ(A) < 1

• τ(A) = 0 if and only if rank(A)=1

We are now ready to state Theorem 5.4, which implies the Theorem 5.2.

Theorem 5.4. Let the graph-matrix sequence A1, . . . , At, . . . of an instance
(G, x(0), ε) of the Network HK model in which V is weakly connected. Then,

lim
t→∞

τ(At · · ·A1) = 0

Before exhibiting the proof of Theorem 5.4, we present the proof of Theo-
rem 5.2

Theorem 5.2. Let (G, x(0), ε) an instance of Network HK model such that
V is weakly connected. Then there exits t0 ∈ N such that

xi(t0) = xj(t0), for all i, j ∈ V

Proof. Since V is weakly connected by Theorem 5.4, limt→∞ τ(At · · ·A1) = 0.
As a result, there exists a round t0 such that the coefficient of ergodicity of
stochastic matrix C = At0 · · ·A1 is τ(C) ≤ ε/2. Since x(t0) = Cx(0) we have
that for all i and j,

|xi(t0)− xj(t0)| = |(Ci − Cj)x(0)|
≤ ‖Ci − Cj‖1

≤ 2τ(C) ≤ ε
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where Ci is the i-th row of matrix C. Since at t0 all opinions are within
distance ε we have that At0 equals G (enhanced with self loops). Moreover
τ(At · · ·At0 · · ·A1) ≤ τ(At0 · · ·A1) ≤ ε/2, meaning that for all t ≥ t0,

At = At0

Hence, after round t0, we have essentially an instance of DeGroot’s model
on the undirected connected network G (enhanced with self-loops), which
fulfills the conditions for convergence. Moreover, all agents converge to a
single opinion [92].

We complete the section with the proof of Theorem 5.4. The proof follows
directly from the submultiplicative propery of the coefficient of ergodicity
and Lemma 5.1.

Lemma 5.1. Let the graph-matrix sequence A1, . . . , At, . . . of an instance
(G, x(0), ε) of the Network HK model in which V is weakly connected. Then,
for any t0 ∈ N there exists `(t0) ∈ N such that

τ(A`(t0) · · ·At0) ≤ 1− (1/n)n2

Proof. We will use the fact that V is weakly connected to prove that for any
t0 there exists a round `(t0), such that the matrix product C`(t0) has all of its
elements positive (Ct = At · · ·At0). Then, by the properties of coefficient of
ergodicity τ(C`(t0)) < 1.

Notice that the element Ct
ij is positive if and only if there is a (time-

respecting) walk (i = u0, u1, . . . , ut−t0 = j) from node i to node j such that
the edge {uk, uk+1} exists in At0+k. Recall that any matrix At has positive
diagonal elements or equivalently every node in the graph At has a self loop.
Thus, if Ct−1

ij > 0 then Ct
ij > 0, since the time respecting walk from i to j can

use the self loop of node j. The latter implies that Posi(t−1) ⊆ Posi(t), where
Posi(t) denotes the positive elements at the i-th row of Ct (equivalently the
nodes reachable from i in t− t0 + 1 steps). Since V is weakly connected, there
exists a time step t′ > t such that At′ contains an edge {j,m} traversing the cut
(Posi(t), V \Posi(t)). Provided that j ∈ Posi(t) ⊆ Posi(t′) and {j,m} ∈ EAt′
shows that m ∈ Pos(t′). Thus, |Posi(t)| + 1 ≤ |Posi(t′)| and repeating the
same argument for all the rows of Ct proves our claim.

Up next, we prove that τ(C`(t0)) ≤ 1 − (1/n)n2 . Observe that in the
previous proof we have implicitly mentioned two types of matrices partic-
ipating in the product A`(t0) · · ·At0 . There are the ones that augment the
total positive elements in the overall product and those who preserve the
positive elements through the use of self loops. We call these two types of
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matrices expanding and non-expanding respectively. More precisely, At is
expanding if and only if Pos(Ct−1)  Pos(Ct, where Pos(M) is the set of
positive elements of matrix M . Recall, from the previous paragraph, that
Ct = At ·Ct−1 and Pos(Ct−1) ⊆ Pos(Ct−1). At first, we prove that in case At
is an non-expanding (Pos(Ct) = Pos(Ct−1)) the minimum positive element of
Ct is greater than the minimum positive element of Ct−1.

Let δ be the minimum positive element of Ct−1. Since Pos(At · Ct−1) =
Pos(Ct−1), we just need to show that if Ct−1

ij > 0 then (At · Ct−1)ij ≥ δ.
Suppose that Ct−1

ij > 0 then

(AtCt−1)ij =
n∑
l=1

AtilC
t−1
lj =

∑
l:Ct−1

lj
>0

AtilC
t−1
lj

We will prove that ∑l:Ct−1
lj

>0 A
t
il = 1 and this directly implies our claim.

Let us assume that ∑l:Ct−1
lj

>0 A
t
il < 1. This means that there exists k s.t.

Atik > 0 and Ct−1
kj = 0. Since Pos(At · Ct−1) = Pos(Ct−1) and Ct−1

kj = 0
then (AtCt−1)kj = 0. Observe that (AtCt−1)kj ≥ Atki · Ct−1

ij =⇒ Atki · Ct−1
ij =

0
Ct−1
ij >0

====⇒ Atki = 0. Finally we get Atki = 0 and Atik > 0. This can’t be true,
because Atik > 0 implies that {i, k} ∈ E and |xi(t)− xk(t)| ≤ ε meaning that
Atki > 0.

The matrix product C`(t0) = A`(t0) · · ·At0 contains at most n2 expanding
steps (the number of positive elements in C`(t0) is n2). As a result, the
minimum positive element of At0 decreases only n2 times. Since the minimum
positive element of any martix At is 1/n, the minimum positive element of
C`(t0) is greater than (1/n)n2 . Combining this with the fact that all elements
of C`(t0) are positive, we get that τ(C`(t0)) ≤ 1− (1/n)n2 .

Remark 5.1. We remark that this proof can be generalized to prove con-
vergence of the d-dimensional Network HK model. In this case each agent i
maintains a d-dimensional opinion vector xi(t) ∈ [0,1]d and the update rule is
defined respectively by the d-dimensional HK model [14] and a social network
G. The proof is essentially identical, with the only difference that we need
to prove the existence of a time step t0 such that τ(C) ≤ ε/(2

√
d), where

C = At0 · · ·A0. But, we have already proven that limt→∞ τ(At · · ·A0) = 0.

5.3 Random Hegselmann Krause Model
In the Random HK model, each agent i initially holds an opinion xi(0) ∈ [0,1].
At each round t, each agent picks k other agents (including herself) uniformly
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at random with replacement. Then she averages her current opinion with the
opinions of those that are ε-close to hers.

Random Hegselmann Krause model
1: n agents.
2: xi(0) ∈ [0,1], agent i’s initial opinion.
3: At round t ≥ 1, each agent i:

4: selects k agents uniformly at random with replacement, Ri(t) ⊆ [n]
5: updates her opinion,

xi(t) =
∑
j∈Ni(t) xj(t− 1) + xi(t− 1)

|Ni(t)|+ 1

where Ni(t) = {j : |xi(t− 1)− xj(t− 1)| ≤ ε and j ∈ Ri(t)}

As already discussed, Random HK model is a straightforward variant of
the original HK model, in which each agents meets just a small subset of the
other agents at each round. In this chapter we prove that the convergence
properties of the HK model are preserved even in this random and limited
information exchange setting.

Since Random HK model is a stochastic opinion dynamics, the selection
of the initial opinion, the sampling size of the agents and the parameter ε
defines a probability distribution over the opinion vector x(t).

Definition 5.5. An instance of Random HK model is denoted by (x(0), k, ε)
and x(t) is the produced opinion vector at round t.

The convergence properties of the Random HK model are depicted in Theo-
rem 5.6. Before presenting it, we introduce some neccessary notions that are
neccessary both in stating Theorem 5.6 and in its subsequent analysis.

Definition 5.6. Let S1, S2 two disjoint sets of agents, we denote their distance
at round t as

dt(S1, S2) = min
i∈S1,j∈S2

|xi(t)− xj(t)|

Definition 5.7. A set of agents S is ε-connected at round t, if and only if
for any non-empty set S ′ ⊂ S,

dt(S ′, S \ S ′) ≤ ε

Definition 5.8. The diameter at round t, denoted Diam(t), is the maximum
distance |xi(t) − xj(t)| over all pairs of agents i, j in the same ε-connected
component at round t.
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Theorem 5.6. Let (x(0), k, ε) be any instance of the Random HK model.
For any γ, δ > 0 there is a round t∗ such that for all t ≥ t∗:

P [Diam(x(t)) ≤ γ] ≥ 1− δ

Theorem 5.6 states that agents form opinion clusters with inter-cluster distance
at least ε. More precisely, if we «look» the system after a large number of
rounds: the distance of the opinions of any two agents |xi(t) − xj(t)| will
be either less than γ (which can be made arbitrarily small) or greater than
ε. Notice that if |xi(t)− xj(t)| ∈ (γ, ε] then agents i, j must be in the same
ε-connected component, meaning that the diameter Diam(x(t)) > γ, which
contradicts Theorem 5.2. Moreover these clusters remain the same. Two
different ε-connected components can never be merged since the distance of
any two agents from two different components is at least ε. At the same time
if γ ≤ ε, an ε-connected component cannot break since the maximum distance
of the opinions is at most γ and this cannot increase no matter the random
meetings.

5.4 Convergence of Random Hegselmann Krause
Model

The goal of this section is to prove Theorem 5.6. Although the strategy
proof resembles that of Section 5.2, there are some major differences that are
explained up next. As in Section 5.2, the basic step is to describe the opinion
dynamics as a product of stochastic matrices.

Corollary 5.3. For any instance (x(0), k, ε) of the Random HK model, the
opinion vector x(t) can be written in the following matrix form:

x(t) = Atx(t− 1) = At · · ·A1x(0)

where Atij =


1

|Ni(t)|+1 if j = i
1

|Ni(t)|+1 if j ∈ Ni(t)
0 otherwise

Each matrix At is stochastic and has positive diagonal elements. Moreover
these matrices are random variables since they depend of the realization of
the random meetings of the agents. As in Section 5.2, each matrix At can also
be represented as graph in which an edge (i, j) exists if and only if Atij > 0.
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The major difference between the Random HK model and the Network HK
model is that the resulting graph of At can be directed. For example consider
the case where |xi(t)− xj(t)| ≤ ε and i picks j, but j does not pick i. This
asymmetry in the influence does not seem of great importance, but in fact HK
systems with such asymmetric influence are far from being well understood
[37]. From a technical point of view, Lemma 5.1 does not apply since it
requires that if Atij > 0 then Atji > 0, the influence among the agents is
«symmetric».

In order to study the convergence properties of the Random HK model, we
first seek for conditions under which a subdivision of the system occurs. This
is captured through the notion of ε-connectivity introduced in Definition 5.7.
Consider two different ε-connected components S, V \S at round t0. For all
i ∈ S and j ∈ V \S, |xi(t0) − xj(t0)| > ε. It is not hard to see that no
matter the random meetings of the agents, |xi(t)− xj(t)| > ε for all rounds
t ≥ t0. This means that after round t0, the agents in S are not influenced
by the agents in V \S and thus the system is separated into two independent
subsystems.

Definition 5.9. A set of agents S breaks at round t if and only if S is
ε-connected at round t− 1 and is not ε-connected at round t.

As already discussed, once S ′ and S \S ′ break, they behave as independent
instances of the Random HK model. Notice that at most n− 1 breaks can
occur, meaning that the event of a break, automatically reduces the number
of future breaks. This provides some intuition on how the system performs.
Assume that the system runs for a long period during which a small number
of breaks take place. At the end of the period, the opinions of the nodes in
each ε-connected component would be similar, since there would be a great
deal of interaction between them, preventing the event of future breaks. On
the other hand, a large number of breaks (during this time period) reduces
the number of future breaks and consequently the first case applies. The
following definitions and lemmas formalize the above intuition.

Definition 5.10. We denote as Γ` the set of all instances (y, k, ε) of Random
HK model, in which for all rounds t ≥ 0,

P [at most ` breaks occur in {0, t} |x(0) = y] = 1

The set Γ` consists of all vectors y ∈ [0,1]n such that if the initial opinions
are y, then no matter the random choices of the agents, at most ` breaks
occur.
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Example 5.2. Consider the instance (x(0), k, ε) such that for all i, j,

|xi(0)− xj(0)| ≤ ε

In such an instance, maxi xi(t)−mini xi(t) ≤ ε for all rounds t, no matter the
random meetings. As a result, no break ever occurs and thus (x(0), k, ε) ∈ Γ0.

In Lemma 5.2 we prove that if no break ever takes place, then there would
be enough influence among the agents that leads them in adopting similar
opinions, which is the first case of the above presented high level intuition.
We show that if an instance (x(0), k, ε) ∈ Γ0 then the agents adopt similar
opinions with high probability.

Lemma 5.2. Let an instance of the Random HK model, (x(0), k, ε) ∈ Γ0.
For any γ, δ > 0, there is a round t0 such that for all t ≥ t0 :

P [Diam(t) ≤ γ] ≥ 1− δ

Proof. Without loss of generality, we assume that there exists a single ε-
connected component since otherwise we can amplify the probability over the,
at most n, ε-connected components.

We note that if |xi(t)− xj(t)| ≤ ε, then the probability that agent j is at
i’s sample set at round t, is p = 1− (1− 1/n)k. For any round `, we denote
Ct = At+` · · ·A` and D` = A`−1 · · ·A1. We claim that there is a fixed η > 0
such that for any possible matrix D`,

E
[
τ(C2n2/p)|D`

]
≤ 1− η/2

Let Posi(t) denotes the random set of positive elements of the i-th row of the
matrix Ct. Assume that ∑n

i=1 |Posi(t)| < n2 then there exists i such as

|Posi(t)| ≤ n− 1

Since our instance belongs in Γ0 then no break ever occurs and thus

dt(Posi(t), V \Posi(t)) ≤ ε

This implies that there exists u ∈ Posi(t), j ∈ V \Posi(t) such that |xu(t)−
xj(t)| ≤ ε. Since u chooses j with probabilty at least p the expected number
of rounds, before all the elements of Ct become positive is at most n2/p. By
Markov Inequality,

P
[
τ(C2n2/p) < 1|D`

]
≤ 1/2
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where τ(·) is the coefficient of ergodicity (see Definition 5.4 of Section 5.2).
Since C2n2/p is the product of 2n2/p matrices, there exists a fixed η > 0 such
that if τ(C`) < 1 then

τ(C`) ≤ 1− η
Thus, we get that for any fixed value of D`,

E
[
τ(C`)|D`

]
≤ 1− η/2

We can now obtain a matrix C = At0 · · ·A1 such that τ(C) ≤ γ/2 with
probability at least 1 − δ, by taking an appropriatelly large number of
rounds.

Lemma 5.2 provides us with the an efficient primitive for establishing
Theorem 5.6. If the system starts at a Γ0 state, then Theorem 5.6 follows by
a direct application of Lemma 5.2. In Lemma 5.3, we prove that no matter
the initial opinion vector the system «falls» in a Γ0-state with probability 1.
Interestingly its proof uses Lemma 5.2.

Lemma 5.3. Let (x(0), k, ε) be any instance of the Random HK model. For
any δ∗ > 0 there is a round t∗ such that

P [x(t∗) ∈ Γ0] ≥ 1− δ∗

Proof. Let t0 be the number of rounds in Lemma 5.2 for γ = ε. By definition
if x(0) ∈ Γ0 then

P [Diam(x(t0)) ≤ ε] ≥ 1− δ
We first present the high level idea of the proof. Assume that the systems
does not start at Γ0, but a break cannot occur in the first t0 steps. This means
that breaks start to appear after t0 round. The basic observation is that if
this is true then Lemma 5.2 applies and by definition of t0, Diam(x(t0)) ≤ ε
with probability at least 1 − δ. This implies that with probability at least
1 − δ the system falls in a Γ0-state. If this is not the case, that is a break
can occur in the first t0 rounds, implies that there is at least one sequence
of length k · n · t0 describing the random meetings of the agents that leads
the system to a break. Since such a sequence can be seleceted by the agents
with probability at least p = 1/nk·n·t0 , the system goes from a Γ` state to a
Γ`−1 with probability at least p, meaning that we will end up to a Γ0-state.
A rigourous version of this informal proof is presented up next.

We claim that P [x(t0) ∈ Γ`−1|x(0) ∈ Γ`] ≥ (1− δ)p, where p = 1/nk·n·t0 .
Notice that p is the probability that a specific random sequence of length t0
is selected. In order to prove our claim, we have to examine two mutually
exclusive cases:
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P [a break occurs in {0, t0}] = 0 : Since no break occurs in {0, t0} for all
random choices of the agents, Lemma 5.2 can be applied. By definition
of t0, we have that P [Diam(x(t0)) ≤ ε] ≥ 1− δ.

P [x(t0) ∈ Γ`−1|x(0) ∈ Γ`] ≥ P [Diam(x(t0)) ≤ ε|x(0) ∈ Γl]
≥ 1− δ ≥ (1− δ)p

P [a break occurs in {0, t0}] > 0 : The latter ensures the existence of a ran-
dom sequence of length t0 such that a break takes place. This sequence
is selected with probability at least p. Implying the existence of an
opinion vector y ∈ Γl−1 and P [x(t0) = y] ≥ p. Hence,

P [x(t0) ∈ Γ`−1|x(0) ∈ Γ`] ≥ p ≥ (1− δ)p

Until now, we have shown the existence of parameters t0, δ, p that depend only
the instance (x(0), k, ε) and P [x(t0) ∈ Γl−1|x(0) ∈ Γ`] ≥ (1 − δ)p. Because
our process is memoryless P [x(t+ t0) ∈ Γ`−1|x(t) ∈ Γ`] ≥ (1− δ)p, holds for
all t ∈ N. Since at most n−1 breaks can occur, we conclude that x(0) ∈ Γn−1

and the proof follows directly from random walks on a chain graph, see
Figure 5.1.

Theorem 5.6. Let (x(0), k, ε) be any instance of the Random HK model.
For any γ, δ > 0 there is a round t∗ such that for all t ≥ t∗:

P [Diam(x(t)) ≤ γ] ≥ 1− δ

Proof. By Lemma 5.3, for any δ′ there exists t′ such that P [x(t′) ∈ Γ0] ≥ 1−δ′.
Then Theorem 5.6 follows by direct application of Lemma 5.1.

We conclude the section by summarize the proof of convergence of the
Random HK model. At first, Lemma 5.2 ensures that there exists t∗ ∈ N
such that x(t∗) ∈ Γ0 and then Lemma 5.3 ensures convergence to a single
opinion in each ε-connected component.
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Chapter 6

Reallocating Facilities on the Line

In this chapter we present a polynomial time algorithm for the K-Facility
Reallocation Problem that was introduced in [58]. The presented results are
part of our work in [76]. A brief introduction to this problem can also be
found in Section 2.5.5.

6.1 Problem Definition and Preliminaries
Definition 6.1 (K-Facility Reallocation Problem). We are given a tuple
(x0, C) as input. The K dimensional vector x0 = (x0

1, . . . , x
0
K) describes the

initial positions of the facilities. The positions of the agents over time are
described by C = (C1, . . . , CT ). The position of agent i at stage t is αti and
Ct = (αt1, . . . , αtn) describes the positions of the agents at stage t.

Definition 6.2. A solution of K-Facility Reallocation Problem is a sequence
x = (x1, . . . , xT ). Each xt = (xt1, . . . , xtK) is a K dimensional vector that
gives the positions of the facilities at stage t and xtk is the position of facility
k at stage t. The cost of the solution x is

Cost(x) =
T∑
t=1

[
K∑
k=1
|xtk − xt−1

k |+
n∑
i=1

min
1≤k≤K

|αti − xtk|
]

Given an instance (x0, C) of the problem, the goal is to find a solution x
that minimizes the Cost(x). The term ∑T

t=1
∑K
k=1 |xtk − xt−1

k | describes the
cost for moving the facilities from place to place and we refer to it as moving
cost, while the term ∑T

t=1
∑n
i=1 min1≤k≤K |αti − xtk| describes the connection

cost of the agents and we refer to it as connection cost.
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6.2 Solving the K-Facility Reallocation Problem
in Polynomial Time

Our approach is a typical LP based algorithm that consists of two basic steps.

• Step 1: Expressing the K-Facility Reallocation Problem as an Integer
Linear Program.

• Step 2: Solving fractionally the Integer Linear Program and rounding
the fractional solution to an integral one.

6.2.1 Formulating the Integer Linear Program
A first difficulty in expressing the K-Facility Reallocation Problem as an
Integer Linear Program is that the positions on the real line are infinite. We
remove this obstacle with help of the following lemma proved in [58].

Lemma 6.1. Let (x0, C) an instance of the K-facility reallocation problem.
There exists an optimal solution x∗ such that for all stages t ∈ {1, T} and
k ∈ {1, K},

x∗tk ∈ C1 ∪ . . . ∪ CT ∪ x0

According to Lemma 6.1, there exists an optimal solution that locates the
facilities only at positions where either an agent has appeared or a facility
was initially lying (see Figure 6.1). Lemma 6.1 provides an exhaustive search
algorithm for the problem and is also the basis for the Dynamic Programming
approach in [58]. We use Lemma 6.1 to formulate our Integer Linear Program.

The set of positions Pos = C1∪. . .∪CT∪x0 can be represented equivalently
by a path P = (V,E). In this path, the j-th node corresponds to the j-th

x0
1 x0

2

a1
1 a1

2 a1
3

at1 at2 at3

Figure 6.1: According to Lemma 6.1, there exists an optimal solution that opens
facilities only to positions in which a facility was initially lying or a request has
appeared at some point in time.
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min∑T
t=1

[ ∑
i∈C

∑
j∈V

d(Loc(i, t), j)xtij + ∑
k∈F

Stk

]
∑
j∈V

xtij = 1 ∀i ∈ C, t ∈ {1, T}

xtij ≤ ctj ∀i ∈ C, j ∈ V, t ∈ {1, T}

ctj = ∑
k∈F

f tkj ∀j ∈ V, t ∈ {1, T}

∑
j∈V

f tkj = 1 ∀k ∈ F, t ∈ {1, T}

Stk = ∑
j,l∈V

d(j, l)Stkjl ∀k ∈ F, t ∈ {1, T}

∑
j∈V

Stkjl = f tkl ∀k ∈ F, l ∈ V, t ∈ {1, T}

∑
l∈V

Stkjl = f t−1
kj ∀k ∈ F, j ∈ V, t ∈ {1, T}

xtij, f
t
kj, S

t
klj ∈ {0,1} ∀k ∈ F, j ∈ V, t ∈ {1, T}

Figure 6.2: Formulation of K-facility reallocation

leftmost position of Pos and the distance between two consecutive nodes on
the path equals the distance of the respective positions on the real line. Now,
the facility reallocation problem takes the following discretized form: We have
a path P = (V,E) that is constructed by the specific instance (x0, C). Each
facility k is initially located at a node j ∈ V and at each stage t, each agent i
is also located at a node of P . The goal is to move the facilities from node to
node such that the connection cost of the agents plus the moving cost of the
facilities is minimized.

To formulate this discretized version as an Integer Linear Program, we
introduce some additional notation. Let d(j, l) be the distance of the nodes
j, l ∈ V in P , F be the set of facilities and C be the set of agents. For each
i ∈ C, Loc(i, t) is the node where agent i is located at stage t. We also define
the following {0,1}-indicator variables for all t ∈ {1, T}: xtij = 1 if at stage t
agent i connects to a facility located at node j, f tkj = 1 if at stage t facility
k is located at node j, Stkjl = 1 if facility k was at node j at stage t − 1
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and moved to node l at stage t. Now, the problem can be formulated as the
Integer Linear Program depicted in Figure 6.2.

The first three constraints correspond to the fact that at every stage t,
each agent i must be connected to a node j where at least one facility k is
located. The constraint ∑j∈V f

t
kj = 1 enforces each facility k to be located at

exactly one node j. The constraint Stk = ∑
j,l∈V d(j, l)Stkjl describes the cost

for moving facility k from node j to node l. The final two constraints ensure
that facility k moved from node j to node l at stage t if and only if facility k
was at node j at stage t− 1 and was at node l at stage t (Stkjl = 1 iff f tkl = 1
and f t−1

kj = 1).
We remark that the values of f0

kj are determined by the initial positions
of the facilities, which are given by the instance of the problem. The notation
xtij should not be confused with xtk, which is the position of facility k at stage
t on the real line .

6.2.2 Rounding the Fractional Solution
Our algorithm is a simple rounding scheme of the optimal fractional solution
of the Integer Linear Program of Figure 6.2. This simple scheme produces
an integral solution that has the exact same cost with an optimal fractional
solution.

Theorem 6.1. Let x denote the solution produced by Algorithm 6.1. Then

Cost(x) =
T∑
t=1

[∑
i∈C

∑
j∈V

d(Loc(i, t), j)xtij +
∑
k∈F

Stk

]

where xtij, Stk denote the values of these variables in the optimal fractional
solution of the Integer Linear Program (6.2).

Theorem 6.1 is the main result of this section and it implies the optimality
of our algorithm. We remind that by Lemma 6.1, there is an optimal solution
that locates facilities only in positions C1 ∪ . . . ∪ CT ∪ x0. This solution
corresponds to an integral solution of our Integer Linear Program, meaning
that Cost(x∗) is greater than or equal to the cost of the optimal fractional
solution, which by Lemma 6.1 equals Cost(x). We dedicate the rest of the
section to prove Theorem 6.1. The proof is conducted in two steps and each
step is exhibited in Sections 6.2.3 and 6.2.4 respectively.

In section 6.2.3, we present a very simple rounding scheme in the case,
where the values of the variables of the optimal fractional solution satisfy the
following assumption.
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Algorithm 5.1: An Optimal Algorithm for the K-Facility Realloca-
tion
Given the initial positions x0 = {x0

1, . . . , x
0
K} of the facilities and the positions

of the agents C = {C1, . . . , CT}.

• Construct the path P and the Integer Linear Program (6.2).

• Solve the relaxation of the Integer Linear Program (6.2).

• Rounding: For each stage t ≥ 1:

– For m = 1, . . . , K, find the node jtm such that

jtm−1∑
`=1

ct` ≤ m− 1 ≤
jtm∑
`=1

ct`

– Locate facility m at the respective position of node jtm on the line

xtm ← d(j,1) + min
p∈C1∪...∪CT∪x0

p

Assumption 2. Let f tjk and ctj be either 1/N or 0, for some positive integer
N .

Although Assumption 1 is very restrictive and its not generally satisfied, it
is the key step for proving the optimality guarantee of the rounding scheme
presented in Algorithm 6.1. Then, in section 6.2.4 we use the rounding
scheme of section 6.2.3 to prove Theorem 6.1. In the upcoming sections,
ctj, x

t
ij, f

t
kj, S

t
kjl, S

t
k will denote the values of these variables in the optimal

fractional solution of the ILP (6.2).

6.2.3 Rounding Semi-Integral Solutions
Throughout this section, we suppose that Assumption 1 is satisfied; f tkj and
ctj are either 1/N or 0 for some positive integer N . If the optimal fractional
solution meets these requirements, then the integral solution presented in
Lemma 6.2 has the same overall cost. The goal of the section is to prove
Lemma 6.2.

Definition 6.3. V +
t denotes the set of nodes of P with a positive amount of

facility (ctj) at stage t,

j ∈ V +
t if and only if ctj > 0



120 CHAPTER 6. REALLOCATING FACILITIES ON THE LINE

We remind that since ctj = 1/N or 0, |V +
t | = K · N . We also consider the

nodes in V +
t = {Y t

1 , . . . , YK·N} to be ordered from left to right.

Lemma 6.2. Let Sol be the integral solution that at each stage t places the
m-th facility at the (m− 1)N + 1 node of V +

t i.e. Y t
(m−1)N+1. Then, Sol has

the same cost as the optimal fractional solution.

The term m-th facility refers to the ordering of the facilities on the real line
according to their initial positions {x0

1, . . . , x
0
K}. The proof of Lemma 6.2 is

quite technically complicated, however it is based on two intuitive observations
about the optimal fractional solution.

Observation 6.1. The set of nodes at which agent i connects at stage t are
consecutive nodes of V +

t . More precisely, there exists a set {Y t
` , . . . , Y

t
`+N−1} ⊆

V +
t such that

∑
j∈V

d(Loc(i, t), j)xtij = 1
N

`+N−1∑
h=`

d(Loc(i, t), Y t
h)

Proof. Let an agent i that at some stage t has xtiY tj > 0, xtiY t
`
< 1/N and

xtiY t
h
> 0 for some j < ` < h. Assume that Loc(i, t) ≤ Y t

` and to simplify
notation consider x` = xtiY t

`
, xh = xtiY t

h
. Now, increase x` by ε and decrease xh

by ε, where ε = min(1/N −x`, xh). Then, the cost of the solution is decreased
by (d(Loc(i, t), h)− d(Loc(i, t), `))ε > 0, thus contradicting the optimality of
the solution. The same argument holds if Loc(i, t) ≥ Y t

` . The proof follows
since ∑j∈V x

t
ij = 1.

Observation 6.2. Under Assumption 1, the m-th facility places amount of
facility f tmj = 1/N from the (m − 1)N + 1 to the mN node of V +

t i.e. to
nodes {Y t

(m−1)N+1, . . . , Y
t
mN}.

Observation 6.2 serves in understanding the structure of the optimal fractional
solution under Assumption 1. However, it will be not used in this form in the
rest of the section. We use Lemma 6.3 instead, which is roughly a different
wording of Observation 6.2 and its proof can be found in subsection 6.3 at
the end of the section.

Lemma 6.3. Let Stk the fractional moving cost of facility k at stage t. Then
T∑
t=1

∑
k∈F

Stk = 1
N

T∑
t=1

K·N∑
j=1

d(Y t−1
j , Y t

j )

Observations 6.1, and Lemma 6.3 (Observation 6.2) are the key points in
proving Lemma 6.2.
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Definition 6.4. Let Solp be the integral solution that places at stage t the
m-th facility at the (m− 1)N + p node of V +

t i.e. Y t
(m−1)N+p.

Notice that the integral solution Sol referred in Lemma 6.2 corresponds to
Sol1. The proof of Lemma 6.2 follows directly by Lemma 6.4 and Lemma 6.5
that conclude this section.

Lemma 6.4. Let Stk be the moving cost of facility k at stage t in the optimal
fractional solution and let MovingCost(Solp) be the total moving cost of the
facilities in the integral solution Solp. Then,

1
N

N∑
p=1

MovingCost(Solp) =
T∑
t=1

∑
k∈F

Stk

Proof. By the definition of the solutions Solp we have that:

1
N

N∑
p=1

MovingCost(Solp) = 1
N

N∑
p=1

T∑
t=1

K∑
m=1

d(Y t−1
(m−1)N+p, Y

t
(m−1)N+p)

= 1
N

T∑
t=1

K∑
m=1

N∑
p=1

d(Y t−1
(m−1)N+p, Y

t
(m−1)N+p)

= 1
N

T∑
t=1

K·N∑
j=1

d(Y t−1
j , Y t

j )

=
T∑
t=1

∑
k∈F

Stk

The last equality comes from Lemma 6.3.

Lemma 6.4 states that if we pick uniformly at random one of the N integral
solutions {Solp}Np=1, then the expected moving cost that we will pay is equal
to the moving cost paid by the optimal fractional solution. Interestingly,
the same holds for the expected connection cost. This is formally stated in
Lemma 6.5 and it is where Observation 6.1 comes into play.

Lemma 6.5. Let ConCostti(Solp) denote the connection cost of agent i at
stage t in Solp. Then,

1
N

N∑
p=1

ConCostti(Solp) =
∑
j∈V

d(Loc(i, t), j)xtij
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at1

1/3 1/3 1/3 1/3

at2

1/3 1/3
Z∗

LP opens at each node amount of facility ct
j = 1/3 or 0 (N = 3 and K = 2).

The set Y t is the set of nodes with ct
j = 1/3. The red acres show the connection

cost that agents 1 and 2 suffer respectively.

at1

1 1

at2

Since N = 3 and |Y t| = 6. Sol1 opens facilites in Y t
1 and Y t

4 . The red acres

show the connection cost that agents 1 and 2 suffer respectively in Sol1.

at1

1

at2

1
Since N = 3 and |Y t| = 6. Sol2 opens facilites in Y t

2 and Y t
5 . The red acres

show the connection cost that agents 1 and 2 suffer respectively in Sol2.

at1

1

at2

1
Since N = 3 and |Y t| = 6. Sol3 opens facilites in Y t

3 and Y t
6 . The red acres

show the connection cost that agents 1 and 2 suffer respectively in Sol3.

Figure 6.3: In the depicted instance N = 3 and K = 2. The figure illustrates the
positions in which Sol1, Sol2 and Sol3 of Definition 6.4 open facilities. One can
also easily verify Lemma 6.5.

As already mentioned, the proof of Lemma 6.5 crucially makes use of
Observation 6.1 and is presented in the subsection 6.3 at the end of the
section. Combining Lemma 6.4 and 6.5 we get that if we pick an integral
solution Solp uniformly at random, the average total cost that we pay is Z∗LP ,
where Z∗LP is the optimal fractional cost. More precisely,

1
N

N∑
p=1

Cost(Solp) = 1
N

N∑
p=1

[MovingCost(Solp) +
T∑
t=1

∑
i∈C

ConCostti(Solp)]

=
T∑
t=1

[
K∑
k=1

Stk +
∑
i∈C

∑
j∈V

d(Loc(i, t), j)xtij]

= Z∗LP
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Since Solp ≥ Z∗LP , we have that Sol1 = · · · = SolN = Z∗LP and this proves
Lemma 6.2.

6.2.4 Rounding the General Case
In this section we use Lemma 6.2 to prove Theorem 6.1. As already discussed,
Assumption 1 is not satisfied in general by the fractional solution of the
linear program (6.2). Each Stkj` will be either 0 or Atkj`/N t

kj` for positive some
integers Atkj`, N t

kj`. Moreover each positive f tkj will have the form Bt
kj/N ,

where N = ΠSt
kj`

>0N
t
kj`. and this is due to the constraint f tkj = ∑

j∈V S
t
kj`.

Consider the path P ′ = (V ′, E ′) constructed from path P = (V,E) as
follows: Each node j ∈ V is splitted into K ·N copies {j1, . . . , jKN} with zero
distance between them. Consider also the LP (6.2), when the underlying path
is P ′ = (V ′, E ′) and at each stage t, each agent i is located to a node of V ′ that
is a copy of i’s original location, Loc′(i, t) = ` ∈ V ′ where ` ∈ Copies(Loc(i, t)).
Although these are two different LP’s, they are closely related since a solution
for the one can be converted to a solution for the other with the exact same
cost. This is due to the fact that for all j, h ∈ V , d(j, h) = d(j′, h′) for
j′ ∈ Copies(j) and h′ ∈ Copies(h).

The reason that we defined P ′ and the second LP is the following: Given
an optimal fractional solution of the LP defined for P , we will construct a
fractional solution for the LP defined for P ′ with the exact same cost, which
additionally satisfies Assumption 1. Then, using Lemma 6.2 we can obtain
an integral solution for P ′ with the same cost. This integral solution for P ′
can be easily converted to an integral solution for P . We finally show that
these steps are done all at once by the rounding scheme of Algorithm 6.1 and
this concludes the proof of Theorem 6.1.

Given the fractional positions {f tkj}t≥1 of the optimal solution of the
LP formulated for P = (V,E), we construct the fractional positions of the
facilities in P ′ = (V ′, E ′) as follows: If f tkj = Bt

kj/N , then facility k puts a
1/N amount of facility in Bt

kj nodes of the set Copies(j) = {j1, . . . , jKN}
that have a 0 amount of facility. The latter is possible since there are exactly
K ·N copies of each j ∈ V and ctj ≤ K (that is the reason we required K ·N
copies of each node). The values of the rest of the variables are defined in the
proof of Lemma 6.7 that is presented in the end of the section. The key point
is that the produced solution {f ′tk`, c

′t
j , S

′t
kj`, x

′t
ij, S

′t
k } will satisfy the following

properties (see Lemma 6.7):

• its cost equals Z∗LP

• f
′t
k` = 1/N or 0, for each ` ∈ V ′
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• c
′t
` = 1/N or 0, for each ` ∈ V ′

• ctj = ∑
`∈Copies(j)

c
′t
` , for each j ∈ V

Clearly, this solution satisfies Assumption 1 and thus Lemma 6.2 can be
applied. This implies that the integral solution for P ′ that places the m-th
facility to the (m− 1)N + 1 node of V ′+t (Y ′t(m−1)N+1 ∈ V ′) has cost Z∗LP . So
the integral solution for P that places the m-th facility to the node jtm ∈ V ,
such that Y ′t(m−1)N+1 ∈ Copies(jtm), has again cost Z∗LP .

A naive way to determine the nodes jtm is to calculate N , construct P ′ and
its fractional solution, find the nodes Y ′t(m−1)N+1 and determine the nodes jtm
of P . Obviously, this rounding scheme requires exponential time. Fortunately,
Lemma 6.6 provides a linear time rounding scheme to determine the node jtm
given the optimal fractional solution of P = (V,E). This concludes the proof
of Theorem 6.1.

Lemma 6.6. The (m− 1)N + 1 node of V ′+t is a copy of the node jtm ∈ V
if and only if

jtm−1∑
`=1

ct` ≤ m− 1 <
jtm∑
`=1

ct`

.

Proof. Let (m− 1)N + 1 node of V ′+t be a copy of the node jtm ∈ V +
t . Then

jtm−1∑
`=1

ct` =
jtm−1∑
`=1

∑
`′∈Copies(`)

c
′ t
`′ ≤ (m− 1)N 1

N
= m− 1

jtm∑
`=1

ct` =
jtm∑
`=1

∑
`′∈Copies(`)

c
′ t
`′ = ((m− 1)N + 1) 1

N
> m− 1

The above equations hold because of the property ct` = ∑
`′∈Copies(`) c

′t
`′ and

that c′t`′ is either 0 or 1/N .
Now, let ∑jtm−1

`=1 ct` ≤ m− 1 <
∑jtm
`=1 c

t
` and assume that (m− 1)N + 1-th node

of V +
t is a copy of j ∈ V . If j < jtm, then

∑j
`=1 c

t
` > m − 1 and if j > jtm,

then ∑jtm
`=1 < m− 1. As a result, j = jtm.

Lemma 6.7. Let {f tkj, ctj, Stkjl, xtij}t≥1 the optimal fractional solution for the
LP 6.2 with underlying path P . Then, there exists a solution {f ′tkj, c

′t
j , S

′t
kjl, x

′t
ij, S

′t
k }t≥1

of the LP 6.2 with underlying path P ′ such that

1. Its cost is Z∗LP .
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2. f ′tk` = 1/N or 0, for each ` ∈ V ′

3. c′t` = 1/N or 0, for each ` ∈ V ′

4. ctj = ∑
`∈Copies(j)

c
′t
` , for each j ∈ V

Proof. First, we set values to the variables f ′tkj. Initially, all f ′tkj = 0. We
know that if f tkj > 0, then it equals Bt

kj/N , for some positive integer Bt
kj. For

each such f tkj, we find u1, . . . , uBt
kj
∈ Copies(j) with f ′tkuh = 0. Then, we set

f
′t
kuh

= 1/N for h = {1, Bt
kj}. Since there are KN copies of each node j ∈ V

and ∑j∈V f
t
kj ≤ K, we can always find sufficient copies of j with f

′t
ku = 0.

When this step is terminated, we are sure that conditions 2,3,4 are satisfied.
We continue with the variables S ′tkj`. Initially, all S ′tkj` = 0. Then, each

positive Stkj` has the form Bt
kj`/N . Let B = Bt

kj` to simplify notation. We
now find B copies of u1, . . . , uB of j and v1, . . . , vB of ` so that

• f
′t
ku1

= · · · = f
′t
kuB

= f
′t
kv1

= · · · = f
′t
kvB

= 1/N

• S
′t
ku1h = · · · = S

′t
kuBh

= S
′t
khv1

= · · · = S
′t
khvB

= 0 for all h ∈ V ′

We then set S ′tku1v1
= · · · = S

′t
kuBvB

= 1/N . Again, since ∑`∈V S
t
kj` = f tkj and∑

j∈V S
t
kj` = f tk` we can always find Bt

kj` pairs of copies of j and ` that satisfy
the above requirements. We can now prove that the movement cost of each
facility k is the same in both solutions.∑

j∈V

∑
`∈V

d(j, `)Stkj` =
∑
j∈V

∑
`∈V

d(j, `)Bt
kj`/N

=
∑
j∈V

∑
`∈V

∑
h∈Copies(j)

∑
h′∈Copies(`)

S
′t
khh′d(h, h′)

=
∑
j′∈V ′

∑
`′∈V ′

S
′t
kj′`′d(j′, `′)

The second equality follows from the fact that h, h′ are copies of j, ` respectively
and thus d(h, h′) = d(j, `).

Finally, set values to the variables x′tij for each j ∈ V ′. Again, each
positive xtij equals Bt

ij/N , for some positive integer. We take Bt
ij copies of j,

u1, . . . , uBtij and set x′tiu1
= · · · = x

′t
iu
Bt
ij

= 1/N . The connection cost of each
agent i remains the same since
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∑
j∈V

d(Loc(i, t), j)xtij =
∑
j∈V

d(Loc(i, t), j)Bt
ij/N

=
∑
j∈V

d(Loc(i, t), j)
∑

j′∈Copies(j)
x
′t
ij′

=
∑
j∈V

∑
j′∈Copies(j)

d(Loc′(i, t), j′)x′tij′

=
∑
h∈V ′

d(Loc′(i, t), h)x′tih

The third equality holds since Loc′(i, t) ∈ Copies(Loc(i, t)).

6.3 Omitted proofs
Lemma 6.3 Let Stk the fractional switching cost of facility k at stage t. Then,

T∑
t=1

∑
k∈F

Stk = 1
N

T∑
t=1

K·N∑
j=1

d(Y t−1
j , Y t

j )

Proof. By Assumption 1, ctj = 1/N if j ∈ V +
t = {Y t

1 , . . . , Y
t
KN} and 0

otherwise. Notice that the connection cost of the optimal fractional solution
only depends on the variables ctj . As a result, f tkj, Stk, Stkjl must be the optimal
solution of the following linear program.

minimize
T∑
t=1

K∑
k=1

Stk

s.t. ∑
k∈F

f tkj = 1
N

∀j ∈ V +
t , t ∈ {1, T}∑

j∈V +
t

f tkj = 1 ∀k ∈ F, t ∈ {1, T}

Stk = ∑
j,l∈V

d(j, l)Stkjl∀k ∈ F, t ∈ {1, T}∑
j∈V +

t−1

Stkjl = f tkl ∀k ∈ F, l ∈ V +
t , t ∈ {1, T}∑

l∈V +
t

Stkjl = f t−1
kj ∀k ∈ F, j ∈ V +

t−1, t ∈ {1, T}

Instead of proving that the minimum cost of the above linear program
is 1

N

T∑
t=1

K·N∑
j=1

d(Y t−1
j , Y t

j ), we prove this for the following more convenient
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relaxation of the above LP.

minimize
T∑
t=1

∑
j∈V +

t−1,l∈V
+
t

d(j, l)F t
jl

s.t. ∑
l∈V +

t

F t
jl = 1

N
∀j ∈ V +

t−1, t ∈ {1, T}∑
j∈V +

t−1

F t
jl = 1

N
∀l ∈ V +

t , t ∈ {1, T}

(6.1)

It is easy to prove that the LP (6.1) is a relaxation of the first by setting
F t
jl = ∑

k∈F S
t
kjl. Moreover, the above LP describes a flow problem between

the nodes V +
t , where F t

jl is the amount of flow going from node j ∈ V +
t−1 to

node l ∈ V +
t (see Figure 6.4).

We are ready for the final step of our proof. First, observe that F t
Y t−1
j Y tj

is
feasible solution for the above LP since |V +

t−1| = |V +
t | = K ·N . If we prove

that this assignment minimizes the objective, then we are done. Assume
that in the optimal solution, F t

Y t−1
1 Y t1

< 1/N . Since ∑
l∈V +

t

F t
Y t−1

1 l
= 1

N
, there

exists Y t
j such that F t

Y t−1
1 Y tj

> 0. Similarly, by using the second constraint
we obtain that F t

Y t−1
j′ Y t1

> 0. Let ε = min(F t
Y t−1

1 Y tj
, F t

Y t−1
j′ Y t1

). Observe that
if we increase F t

Y t−1
1 Y t1

, F t
Y t−1
j′ Y tj

by ε and decrease F t
Y t−1

1 Y tj
, F t

Y t−1
j′ Y t1

by ε, we
obtain another feasible solution. The cost difference of the two solutions is
D = ε(d(Y t−1

1 , Y t
j ) + d(Y t−1

j′ , Y t
1 ) − d(Y t−1

1 , Y t
1 ) − d(Y t−1

j′ , Y t
j )). If we prove

that D is no negative, we are done. We show the latter using the fact that
Y t−1

1 ≤ Y t−1
j′ and Y t

1 ≤ Y t
j . More precisely,

• If Y t−1
1 ≤ Y t

1 then D ≥ 0 since Y t
1 ≤ Y t

j .

• If Y t−1
1 ≥ Y t

1 then D ≥ 0 since Y t−1
1 ≤ Y t−1

j′ .

Until now, we have shown that in the optimal solution, the node Y t−1
1

sends all of her flow to the node Y t
1 . Meaning that Y t

1 does not receive flow by
any other node apart from Y t−1

1 . By repeating the same argument, it follows
that in the optimal solution each node Y t−1

j sends all of her flow to Y t
j .

Lemma 6.5 Let ConCostti(Solp) denote the connection cost of agent i at
stage t in Solp of Definition 6.4. Then

1
N

N∑
p=1

ConCostti(Solp) =
∑
i∈C

∑
j∈V

d(Loc(i, t), j)xtij



128 CHAPTER 6. REALLOCATING FACILITIES ON THE LINE

Y 0
1

Y 0
2

Y 0
K·N

...

Y 1
1

Y 1
2

Y 1
K·N

...

Y t−1
1

Y t−1
j′

Y t−1
K·N

...

Y t
1

Y t
j

Y t
K·N

...

. . .

. . .

F t
Y t−1

1 Y t1

F t
Y t−1

1 Y tj

F t
Y t−1
j′ Y t1

F t
Y t−1
j′ Y tj

F 1
11

F 1
21

Y T−1
1

Y T−1
2

Y T−1
K·N

...

Y T
1

Y T
2

Y T
K·N

...

. . .

. . .

F T11

F T21
... ...

Figure 6.4: The flow described by LP (6.1).

Proof. We will prove that 1
N

∑N
p=1 ConCostti(Solp) equals

∑
j∈V d(Loc(i, t), j)xtij .

We remind that by Assumption 1, cj is 1/N if j ∈ V +
t and 0 otherwise. As a

result, in the optimal fractional solution, each agent i finds the N closest to
Loc(i, t) nodes of V +

t and receives a 1/N amount of service from each one of
them. Let us call this set N t

i . By Observation 6.1, the nodes in N t
i must be

consecutive nodes of V +
t i.e. N t

i = {Y t
l , . . . , Y

t
l+N−1} and

∑
j∈V

d(Loc(i, t), j)xtij =
l+N−1∑
j=l

d(Loc(i, t), Y t
j )/N

Since Solp puts facilities in the positions {Y t
(m−1)·N+p}Km=1, there exists a

unique node Y t
l(p) ∈ N t

i in which Solp puts a facility. Y t
l(p) is the closest node

to Loc(i, t) from all the nodes in which Solp puts a facility. As a result,
ConCostti(Solp) = d(Loc(i), Y t

l(p)). Now, summing over p we get,

1
N

N∑
p=1

ConCostti(Solp) = 1
N

N∑
p=1

d(Loc(i), Y t
l(p))

=
l+N−1∑
j=l

d(Loc(i), Y t
j )/N

=
∑
j∈V

d(Loc(i, t), j)xtij



Chapter 7

Open Problems

In this chapter we list several interesting open problems that came out during
this thesis and we did not manage to solve yet. I hope that all of these
question will meet their answers in the near future.

A first interesting question left open by this thesis concerns the compu-
tational complexity of finding Nash Equilibrium in coevolutionary opinion
formation games introduced in [15]. In this kind of opinion formation games
the weights measuring the influence among the agents are not static, but
depend on the agents’ expressed opinions. The existence of Nash Equilibrium
in coevolutionary opinion formation games is guaranteed by the Kakutani
Fixed Point Theorem [15, 126] and thus finding one belongs in the Polyno-
mial Parity Arguments on Directed graphs (PPAD) complexity class [120].
Determining the computational complexity class for which this problem is
complete has not yet received an answer, while my conjecture is that this
problem is not PPAD-complete.

A similar open question concerns the computational complexity of finding
equilibria in the FJ model with negative weights among the agents. Although
our results presented in Chapter 4 provide an illustrative picture on the cases
in which simultaneous best response dynamics converges, they do not have
much to say about the cases in which finding an equilibrium is computationally
easy. In its general form this problem is hard (and this indicates an additional
reason for the assumption introduced in Chapter 4) since the PLS-complete
problem Local-MaxCut [130] can be very easily reduced to computing Nash
Equilibrium in instances where all the weights among the agents are negative.
However the mild assumption that the sum of the weights of each agent is
positive breaks down this computational hardness. The reason is that the
latter assumption makes the agents’ disagreement cost functions convex and
thus the existence of equilibrium is implied by the Kakutani Fixed Point
Theorem [126]. As a result, computing Nash Equilibrium in opinion formation
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games in which the above assumption holds, renders the problem at the
interesection of PPAD and PLS complexity classes [57]. I am very intrigued
towards understanding whether this problem can be solved in polynomial
time or it is complete in a complexity class, such as the Continous Local
Search class (CLS) [57], contained inside the intersection of PPAD and PLS.

Another question that I have tried to answer concerns the convergence rate
of Network HK model. Our convergence results presented in Chapter 5 are
asymptotic in the sense that guarantee that at some point in time the overall
system freezes, but the do not provide any kind of guarantees on the number
of steps needed for this to happen. I conjecture that the convergence time of
Network HK is polynomially bounded by the number of agents, something
that is also indicated by our experimental evaluations.

A final problem that is left open by this thesis, concerns the online
version of the k-facility reallocation problem examined in Chapter 6. In the
online version of the problem the requests of the clients at each round are
revealed only after the determinations of the positions of the facilities at the
previous round. With a quite easy argument, one can prove that there is no
deterministic algorithm that can approximate the optimal solution with a
factor smaller than Θ(k). We strongly believe that this bound is tight, but
we have not yet managed to find a k-competitive algorithm for this problem.



Bibliography

[1] Rediet Abebe, Jon M. Kleinberg, David C. Parkes, and Charalampos E.
Tsourakakis, Opinion dynamics with varying susceptibility to persuasion,
Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD 2018, pp. 1089–1098.

[2] John R. Alford, Carolyn L. Funk, John R. Hibbing, John R. Alford,
and Carolyn L. Funk, Are political orientations genetically transmitted,
American Political Science Review (2005), 153–167.

[3] Hyung-Chan An, Ashkan Norouzi-Fard, and Ola Svensson, Dynamic
facility location via exponential clocks, ACM Transactions on Algorithms
(TALG) 13 (2017), no. 2, 21.

[4] Omer Angel, Sébastien Bubeck, Yuval Peres, and Fan Wei, Local max-
cut in smoothed polynomial time, Proceedings of the 49th Annual ACM
Symposium on Theory of Computing, STOC 2017, 2017, pp. 429–437.

[5] James Bailey and Georgios Piliouras, Multi-agent learning in network
zero-sum games is a hamiltonian system, Proceedings of the 18th Inter-
national Conference on Autonomous Agents and MultiAgent Systems,
AAMAS 2019, pp. 233–241.

[6] James P. Bailey and Georgios Piliouras, Multiplicative weights update in
zero-sum games, Proceedings of the 2018 ACM Conference on Economics
and Computation, EC 2018, pp. 321–338.

[7] Abhijit Banerjee, Arun Chandrasekhar, Esther Duflo, and Matthew O.
Jackson, Gossip: Identifying central individuals in a social network,
CoRR abs/1406.2293 (2014).

[8] Nikhil Bansal, Marek Eliáš, Łukasz Jeż, Grigorios Koumoutsos, and
Kirk Pruhs, Tight bounds for double coverage against weak adversaries,
vol. 62, Springer, 2018, pp. 349–365.

131



132 BIBLIOGRAPHY

[9] Nikhil Bansal, Marek Eliéš, Łukasz Jeż, and Grigorios Koumoutsos,
The (h, k)-server problem on bounded depth trees, vol. 15, ACM, 2019,
p. 28.

[10] Nikhil Bansal, Anupam Gupta, Ravishankar Krishnaswamy, Kirk Pruhs,
Kevin Schewior, and Clifford Stein, A 2-competitive algorithm for online
convex optimization with switching costs, Approximation, Randomiza-
tion, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2015, pp. 96–109.

[11] Yair Bartal and Elias Koutsoupias, On the competitive ratio of the work
function algorithm for the k-server problem, vol. 324, Elsevier, 2004,
pp. 337–345.

[12] Luca Becchetti, Andrea E. F. Clementi, Emanuele Natale, Francesco
Pasquale, and Luca Trevisan, Find your place: Simple distributed
algorithms for community detection, Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017,
pp. 940–959.

[13] Dimitri P. Bertsekas and John N. Tsitsiklis, Parallel and distributed
computation: Numerical methods, Prentice-Hall, Inc., 1989.

[14] Arnab Bhattacharyya, Mark Braverman, Bernard Chazelle, and Huy L.
Nguyen, On the convergence of the hegselmann-krause system, Innova-
tions in Theoretical Computer Science, ITCS ’13, pp. 61–66.

[15] Kshipra Bhawalkar, Sreenivas Gollapudi, and Kamesh Munagala, Coevo-
lutionary opinion formation games, Symposium on Theory of Computing
Conference, STOC 2013, pp. 41–50.

[16] Vittorio Bilò, Angelo Fanelli, and Luca Moscardelli, Opinion formation
games with dynamic social influences, Web and Internet Economics
(Berlin, Heidelberg), Springer Berlin Heidelberg, 2016, pp. 444–458.

[17] David Bindel, Jon M. Kleinberg, and Sigal Oren, How bad is forming
your own opinion?, IEEE 52nd Annual Symposium on Foundations of
Computer Science, FOCS 2011, pp. 57–66.

[18] Nicolas K. Blanchard and Nicolas Schabanel, Dynamic sum-radii cluster-
ing, International Workshop on Algorithms and Computation, Springer,
2017, pp. 30–41.



BIBLIOGRAPHY 133

[19] Vincent D. Blondel, Julien M. Hendrickx, and John N. Tsitsiklis, On
krause’s multi-agent consensus model with state-dependent connectivity,
IEEE Trans. Automat. Contr. 54, no. 11, 2586–2597.

[20] Avrim Blum, Eyal Even-Dar, and Katrina Ligett, Routing without regret:
On convergence to nash equilibria of regret-minimizing algorithms in
routing games, vol. 6, 07 2006, pp. 45–52.

[21] Avrim Blum and Yishay Mansour, From external to internal regret, J.
Mach. Learn. Res. 8 (2007), 1307–1324.

[22] Shant Boodaghians, Rucha Kulkarni, and Ruta Mehta, Nash equilibrium
in smoothed polynomial time for network coordination games, CoRR
abs/1809.02280 (2018).

[23] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah,
Gossip algorithms: design, analysis and applications, INFOCOM 2005.
24th Annual Joint Conference of the IEEE Computer and Communica-
tions Societies, 2005, pp. 1653–1664.

[24] Stephen Boyd and Lieven Vandenberghe, Convex optimization, Cam-
bridge University Press, New York, NY, USA, 2004.

[25] Stephen P. Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah,
Mixing times for random walks on geometric random graphs, Proceedings
of the Seventh Workshop on Algorithm Engineering and Experiments
and the Second Workshop on Analytic Algorithmics and Combinatorics,
ALENEX /ANALCO 2005, 2005, pp. 240–249.

[26] Mario Bravo and Panayotis Mertikopoulos, On the robustness of learning
in games with stochastically perturbed payoff observations, Games and
Economic Behavior 103 (2017), 41–66.

[27] George W. Brown, Some notes on computation of games solutions,
RAND Corporation Report.

[28] Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, James R. Lee,
and Aleksander Madry, k-server via multiscale entropic regularization,
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2018, pp. 3–16.

[29] M. Cao, D. A. Spielman, and A. S. Morse, A lower bound on convergence
of a distributed network consensus algorithm, Proceedings of the 44th
IEEE Conference on Decision and Control, 2005, pp. 2356–2361.



134 BIBLIOGRAPHY

[30] Ioannis Caragiannis and Angelo Fanelli, On approximate pure nash
equilibria in weighted congestion games with polynomial latencies, 46th
International Colloquium on Automata, Languages, and Programming,
ICALP 2019, pp. 133:1–133:12.

[31] Ioannis Caragiannis, Angelo Fanelli, Nick Gravin, and Alexander Skopa-
lik, Efficient computation of approximate pure nash equilibria in conges-
tion games, IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, pp. 532–541.

[32] Ioannis Caragiannis, Panagiotis Kanellopoulos, and Alexandros A.
Voudouris, Bounding the inefficiency of compromise, Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence,
IJCAI 2017, pp. 142–148.

[33] Nicolò Cesa-Bianchi and Gábor Lugosi, Potential-based algorithms in
on-line prediction and game theory, Machine Learning 51 (2003), no. 3,
239–261.

[34] Bernard Chazelle, The dynamics of influence systems, Proceedings of
the 2012 IEEE 53rd Annual Symposium on Foundations of Computer
Science, FOCS ’12.

[35] Bernard Chazelle, The total s-energy of a multiagent system, SIAM J.
Control and Optimization 49 (2011), no. 4, 1680–1706.

[36] Bernard Chazelle, The convergence of bird flocking, J. ACM 61 (2014),
no. 4.

[37] Bernard Chazelle and Chu Wang, Inertial hegselmann-krause systems,
2016 American Control Conference, ACC 2016, pp. 1936–1941.

[38] Po-An Chen, Yi-Le Chen, and Chi-Jen Lu, Bounds on the price of
anarchy for a more general class of directed graphs in opinion formation
games, Oper. Res. Lett. 44 (2016), no. 6, 808–811.

[39] Xi Chen, Xiaotie Deng, and Shang-Hua Teng, Settling the complexity
of computing two-player nash equilibria, J. ACM 56 (2009), no. 3,
14:1–14:57.

[40] Yun Kuen Cheung and Richard Cole, Amortized analysis of asyn-
chronous price dynamics, 26th Annual European Symposium on Algo-
rithms, ESA 2018, pp. 18:1–18:15.



BIBLIOGRAPHY 135

[41] , Amortized analysis on asynchronous gradient descent, CoRR
abs/1412.0159 (2014).

[42] , A unified approach to analyzing asynchronous coordinate de-
scent and tatonnement, CoRR abs/1612.09171 (2016).

[43] Yun Kuen Cheung, Richard Cole, and Nikhil R. Devanur, Tatonnement
beyond gross substitutes?: gradient descent to the rescue, Symposium
on Theory of Computing Conference, STOC 2013, pp. 191–200.

[44] Yun Kuen Cheung, Richard Cole, and Ashish Rastogi, Tatonnement
in ongoing markets of complementary goods, Proceedings of the 13th
ACM Conference on Electronic Commerce, EC 2012, pp. 337–354.

[45] Yun Kuen Cheung, Richard Cole, and Yixin Tao, Dynamics of dis-
tributed updating in fisher markets, Proceedings of the 2018 ACM
Conference on Economics and Computation, EC 2018, pp. 351–368.

[46] Steve Chien and Alistair Sinclair, Convergence to approximate nash
equilibria in congestion games, Proceedings of the Eighteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, pp. 169–
178.

[47] Flavio Chierichetti, Jon M. Kleinberg, and Sigal Oren, On discrete
preferences and coordination, ACM Conference on Electronic Commerce,
EC 2013, pp. 233–250.

[48] George Christodoulou and Elias Koutsoupias, The price of anarchy of
finite congestion games, Proceedings of the 37th Annual ACM Sympo-
sium on Theory of Computing, STOC 2005, 2005, pp. 67–73.

[49] George Christodoulou, Vahab S. Mirrokni, and Anastasios Sidiropou-
los, Convergence and approximation in potential games, 23rd Annual
Symposium on Theoretical Aspects of Computer Science, STACS 2006,
2006, pp. 349–360.

[50] Christian Coester and Elias Koutsoupias, The online k-taxi problem, To
appear in STOC 2019 (2019).

[51] Christian Coester, Elias Koutsoupias, and Philip Lazos, The infinite
server problem, 44th International Colloquium on Automata, Languages,
and Programming (ICALP 2017), Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2017.



136 BIBLIOGRAPHY

[52] Johanne Cohen, Amélie Héliou, and Panayotis Mertikopoulos, Hedging
under uncertainty: Regret minimization meets exponentially fast con-
vergence, Algorithmic Game Theory - 10th International Symposium,
SAGT 2017, pp. 252–263.

[53] Johannes Dams, Martin Hoefer, and Thomas Kesselheim, Convergence
time of power-control dynamics, Automata, Languages and Program-
ming - 38th International Colloquium, ICALP 2011, pp. 637–649.

[54] Constantinos Daskalakis, Alan Deckelbaum, and Anthony Kim, Near-
optimal no-regret algorithms for zero-sum games, Proceedings of the
Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2011, pp. 235–254.

[55] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadim-
itriou, The complexity of computing a nash equilibrium, Proceedings of
the 38th Annual ACM Symposium on Theory of Computing, STOC
2006, pp. 71–78.

[56] Constantinos Daskalakis and Ioannis Panageas, Last-iterate conver-
gence: Zero-sum games and constrained min-max optimization, 10th
Innovations in Theoretical Computer Science Conference, ITCS 2019,
pp. 27:1–27:18.

[57] Constantinos Daskalakis and Christos Papadimitriou, Continuous local
search, Proceedings of the Twenty-second Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2011, pp. 790–804.

[58] Bart de Keijzer and D. Wojtczak, Facility reallocation on the line,
Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI 2018, 2018, pp. 188–194.

[59] Guillaume Deffuant, David Neau, Frédéric Amblard, and Gérard Weis-
buch, Mixing beliefs among interacting agents, Advances in Complex
Systems 3 (2000), no. 1-4, 87–98.

[60] M.H. DeGroot, Reaching a consensus, Journal of the American Statisti-
cal Association 69 (1974), 118–121.

[61] Gabriella Divéki and Csanád Imreh, Online facility location with facility
movements, Central European Journal of Operations Research 19 (2011),
no. 2, 191–200.



BIBLIOGRAPHY 137

[62] David K. Levine. Drew Fudenberg, The theory of learning in games,
MIT Press, Cambridge, MA, 1998.

[63] David Eisenstat, Claire Mathieu, and Nicolas Schabanel, Facility lo-
cation in evolving metrics, International Colloquium on Automata,
Languages, and Programming, Springer, 2014, pp. 459–470.

[64] Markos Epitropou, Dimitris Fotakis, Martin Hoefer, and Stratis Sk-
oulakis, Opinion formation games with aggregation and negative in-
fluence, Algorithmic Game Theory - 10th International Symposium,
SAGT 2017, pp. 173–185.

[65] Michael Etscheid and Heiko Röglin, Smoothed analysis of local search
for the maximum-cut problem, Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, 2014,
pp. 882–889.

[66] Eyal Even-Dar, Alexander Kesselman, and Yishay Mansour, Conver-
gence time to nash equilibria, Automata, Languages and Programming,
30th International Colloquium, ICALP 2003, pp. 502–513.

[67] Eyal Even-Dar, Yishay Mansour, and Uri Nadav, On the convergence
of regret minimization dynamics in concave games, Proceedings of the
41st Annual ACM Symposium on Theory of Computing, STOC 2009,
2009, pp. 523–532.

[68] Alex Fabrikant, Christos H. Papadimitriou, and Kunal Talwar, The
complexity of pure nash equilibria, Proceedings of the 36th Annual ACM
Symposium on Theory of Computing, STOC 2004, 2004, pp. 604–612.

[69] Zhe Feng, Chara Podimata, and Vasilis Syrgkanis, Learning to bid
without knowing your value, Proceedings of the 2018 ACM Conference
on Economics and Computation,EC 2018, pp. 505–522.

[70] Diodato Ferraioli, Paul W. Goldberg, and Carmine Ventre, Decentralized
dynamics for finite opinion games, Theor. Comput. Sci. 648 (2016),
no. C.

[71] Amos Fiat, Yuval Rabani, and Yiftach Ravid, Competitive k-server
algorithms (extended abstract), 31st Annual Symposium on Foundations
of Computer Science, 1990, pp. 454–463.

[72] Santo Fortunato, On the consensus threshold for the opinion dynamics
of krause-hegselmann, International Journal of Modern Physics C 16
(2004).



138 BIBLIOGRAPHY

[73] Dean Foster and Rakesh Vohra, Calibrated learning and correlated
equilibrium, Games and Economic Behavior 21 (1996), 40–55.

[74] Dimitris Fotakis, Online and incremental algorithms for facility location,
ACM SIGACT News 42 (2011), no. 1, 97–131.

[75] Dimitris Fotakis, Vardis Kandiros, Vasilis Kontonis, and Stratis Sk-
oulakis, Opinion dynamics with limited information, Web and Internet
Economics - 14th International Conference, WINE 2018, pp. 282–296.

[76] Dimitris Fotakis, Loukas Kavouras, Panagiotis Kostopanagiotis, Philip
Lazos, Stratis Skoulakis, and Nikolas Zarifis, Reallocating multiple
facilities on the line, CoRR abs/1905.12379 (2019).

[77] Dimitris Fotakis, Dimitris Palyvos-Giannas, and Stratis Skoulakis, Opin-
ion dynamics with local interactions, Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, IJCAI 2016,
pp. 279–285.

[78] Yoav Freund and Robert E. Schapire, Adaptive game playing using
multiplicative weights, Games and Economic Behavior 29 (1999), no. 1,
79 – 103.

[79] Noah E. Friedkin and Eugene C. Johnsen, Social influence and opinions,
The Journal of Mathematical Sociology 15 (1990), no. 3-4, 193–206.

[80] Zachary Friggstad and Mohammad R Salavatipour, Minimizing move-
ment in mobile facility location problems, ACM Transactions on Algo-
rithms (TALG) 7 (2011), no. 3, 28.

[81] Javad Ghaderi and R. Srikant, Opinion dynamics in social networks
with stubborn agents: Equilibrium and convergence rate, Automatica 50
(2014), no. 12, 3209–3215.

[82] Aristides Gionis, Evimaria Terzi, and Panayiotis Tsaparas, Opinion
maximization in social networks, Proceedings of the 13th SIAM Inter-
national Conference on Data Mining, KDD 2013, pp. 387–395.

[83] Benjamin Golub and Matthew O. Jackson, Naive learning in social
networks and the wisdom of crowds, 2010.

[84] Anupam Gupta, Kunal Talwar, and Udi Wieder, Changing bases: Mul-
tistage optimization for matroids and matchings, International Collo-
quium on Automata, Languages, and Programming, Springer, 2014,
pp. 563–575.



BIBLIOGRAPHY 139

[85] J. Hannan, Approximation to bayes risk in repeated play., contributions
to the Theory of Games 3, 97b•“139.

[86] Jason D. Hartline, Vasilis Syrgkanis, and Éva Tardos, No-regret learning
in bayesian games, Advances in Neural Information Processing Systems
28: Annual Conference on Neural Information Processing Systems,
NIPS 2015, pp. 3061–3069.

[87] Elad Hazan, Introduction to online convex optimization, Found. Trends
Optim. 2, no. 3-4.

[88] Elad Hazan, Amit Agarwal, and Satyen Kale, Logarithmic regret al-
gorithms for online convex optimization, Machine Learning 69 (2007),
no. 2-3, 169–192.

[89] R. Hegselmann and U. Krause, Opinion dynamics and bounded confi-
dence models, analysis, and simulation, Journal Artificial Societies and
Social Simulation 5 (2002).

[90] Amélie Héliou, Johanne Cohen, and Panayotis Mertikopoulos, Learning
with bandit feedback in potential games, Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, pp. 6372–6381.

[91] Julien M. Hendrickx and Vincent D. Blondel, Convergence of linear
and non-linear versions of vicsek’s model, 2006.

[92] M.O. Jackson, Social and economic networks, Princeton University
Press, 2008.

[93] A. Jadbabaie, Jie Lin, and A. S. Morse, Coordination of groups of mobile
autonomous agents using nearest neighbor rules, IEEE Transactions on
Automatic Control 48 (2003), no. 6, 988–1001.

[94] Rie Johnson and Tong Zhang, Accelerating stochastic gradient descent
using predictive variance reduction, Advances in Neural Information
Processing Systems 26: 27th Annual Conference on Neural Information
Processing Systems, NIPS 2013, pp. 315–323.

[95] David Kempe, Alin Dobra, and Johannes Gehrke, Gossip-based com-
putation of aggregate information, 44th Symposium on Foundations of
Computer Science (FOCS 2003), pp. 482–491.



140 BIBLIOGRAPHY

[96] David Kempe, Jon Kleinberg, and Amit Kumar, Connectivity and
inference problems for temporal networks, J. Comput. Syst. Sci. 64
(2002), no. 4.

[97] David Kempe and Frank McSherry, A decentralized algorithm for spectral
analysis, Proceedings of the 36th Annual ACM Symposium on Theory
of Computing,2004, 2004, pp. 561–568.

[98] Robert Kleinberg, Georgios Piliouras, and Eva Tardos, Multiplicative
updates outperform generic no-regret learning in congestion games: Ex-
tended abstract, Proceedings of the Forty-first Annual ACM Symposium
on Theory of Computing, STOC ’09, pp. 533–542.

[99] Robert Kleinberg, Georgios Piliouras, and Éva Tardos, Load balancing
without regret in the bulletin board model, Distributed Computing (2011),
21–29.

[100] Elias Koutsoupias, The k-server problem, Computer Science Review 3
(2009), no. 2, 105–118.

[101] Elias Koutsoupias and Christos H. Papadimitriou, Worst-case equilib-
ria, STACS 99, 16th Annual Symposium on Theoretical Aspects of
Computer Science, STACS 1999, pp. 404–413.

[102] David Krackhardt, A plunge into networks, Science 326 (2009), no. 5949,
47–48.

[103] H. J. Landau and Andrew Odlyzko, Bounds for eigenvalues of certain
stochastic matrices, Linear Algebra and Its Applications 38 (1981),
no. C, 5–15.

[104] Nick Littlestone and Manfred K. Warmuth, The weighted majority
algorithm, Inf. Comput. 108 (1994), no. 2.

[105] Jan Lorenz, A stabilization theorem for dynamics of continuous opinions,
Physica A: Statistical Mechanics and its Applications 355 (2007).

[106] Jan Lorenz and Diemo Urbig, About the power to enforce and prevent
consensus by manipulating communication rules, Advances in Complex
Systems (ACS) 10 (2007), 251–269.

[107] S. Martinez, F. Bullo, J. Cortes, and E. Frazzoli, On synchronous robotic
networks part i: Models, tasks, and complexity, IEEE Transactions on
Automatic Control 52 (2007), no. 12, 2199–2213.



BIBLIOGRAPHY 141

[108] Panayotis Mertikopoulos, Christos H. Papadimitriou, and Georgios
Piliouras, Cycles in adversarial regularized learning, Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pp. 2703–2717.

[109] Panayotis Mertikopoulos and Mathias Staudigl, Convergence to nash
equilibrium in continuous games with noisy first-order feedback, 56th
IEEE Annual Conference on Decision and Control, CDC 2017, pp. 5609–
5614.

[110] Panayotis Mertikopoulos and Zhengyuan Zhou, Learning in games with
continuous action sets and unknown payoff functions, Math. Program.
173 (2019), no. 1-2, 465–507.

[111] Renato E. Mirollo and Steven H. Strogatz, Synchronization of pulse-
coupled biological oscillators, SIAM J. Appl. Math. 50 (1990), no. 6,
1645–1662.

[112] Vahab S. Mirrokni and Adrian Vetta, Convergence issues in competi-
tive games, Approximation, Randomization, and Combinatorial Opti-
mization, Algorithms and Techniques, 7th International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems,
APPROX 2004, and 8th International Workshop on Randomization
and Computation, RANDOM 2004, pp. 183–194.

[113] Luc Moreau, Stability of multiagent systems with time-dependent com-
munication links, IEEE Transactions on Automatic Control 50 (2005),
169–182.

[114] Cameron Musco, Christopher Musco, and Charalampos E. Tsourakakis,
Minimizing polarization and disagreement in social networks, Proceed-
ings of the 2018 World Wide Web Conference on World Wide Web,
WWW 2018, pp. 369–378.

[115] Uri Nadav and Georgios Piliouras, No regret learning in oligopolies:
Cournot vs. bertrand, Algorithmic Game Theory (Berlin, Heidelberg),
Springer Berlin Heidelberg, 2010, pp. 300–311.

[116] J.F. Nash, Non-cooperative games, Annals of Mathematics 54 (1951),
no. 2, 286–295.

[117] Angelia Nedic, Alexander Olshevsky, Asuman E. Ozdaglar, and John N.
Tsitsiklis, On distributed averaging algorithms and quantization effects,
IEEE Trans. Automat. Contr. 54 (2009), no. 11, 2506–2517.



142 BIBLIOGRAPHY

[118] Akira Okubo and Simon A. Levin, Diffusion and ecological problems:
Modern perspectives. 2nd ed, vol. 14, 01 2002.

[119] Gerasimos Palaiopanos, Ioannis Panageas, and Georgios Piliouras, Mul-
tiplicative weights update with constant step-size in congestion games:
Convergence, limit cycles and chaos, Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, pp. 5872–5882.

[120] Christos H. Papadimitriou, On the complexity of the parity argument
and other inefficient proofs of existence, J. Comput. Syst. Sci. 48, no. 3.

[121] Julia Parrish and William Hamner, Animal groups in three dimensions:
How species aggregate, Cambridge University Press, 1997.

[122] Georgios Piliouras and Jeff S. Shamma, Optimization despite chaos:
Convex relaxations to complex limit sets via poincaré recurrence, Proceed-
ings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, pp. 861–873.

[123] Svatopluk Poljak, Integer linear programs and local search for max-cut,
SIAM J. Comput. 24 (1995), no. 4, 822–839.

[124] Craig W. Reynolds, Flocks, herds and schools: A distributed behav-
ioral model, Proceedings of the 14th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’87, ACM, 1987,
pp. 25–34.

[125] Julia Robinson, An iterative method of solving a game, Annals of
Mathematics 54 (1951), no. 2, 296–301.

[126] J. B. Rosen, Existence and uniqueness of equilibrium points for concave
n-person games, Econometrica 33 (1965), no. 3, 520–534.

[127] Robert W. Rosenthal, A class of games possessing pure-strategy nash
equilibria, International Journal of Game Theory 2 (1973), no. 1, 65–67.

[128] Tim Roughgarden and Florian Schoppmann, Local smoothness and the
price of anarchy in atomic splittable congestion games, Proceedings
of the Twenty-second Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’11, Society for Industrial and Applied Mathematics,
pp. 255–267.

[129] Tim Roughgarden and Éva Tardos, How bad is selfish routing?, J. ACM
49 (2002), no. 2.



BIBLIOGRAPHY 143

[130] Alejandro A. Schäffer and Mihalis Yannakakis, Simple local search
problems that are hard to solve, SIAM J. Comput. 20, no. 1, 56–87.

[131] Mark W. Schmidt, Nicolas Le Roux, and Francis R. Bach, Minimizing
finite sums with the stochastic average gradient, Math. Program. 162
(2017), no. 1-2, 83–112.

[132] E. Seneta, Coefficients of ergodicity: Structure and applications, Ad-
vances in Applied Probability 11 (1979), no. 3, 576–590.

[133] Hart Sergiu and Mas-Colell Andreu, A simple adaptive procedure leading
to correlated equilibrium, (2000).

[134] Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, and Robert E. Schapire,
Fast convergence of regularized learning in games, NIPS, 2015, pp. 2989–
2997.

[135] B. Touri and A. Nedic, Discrete-time opinion dynamics, 2011 Conference
Record of the Forty Fifth Asilomar Conference on Signals, Systems and
Computers (ASILOMAR), 2011, pp. 1172–1176.

[136] Alexandre B. Tsybakov, Introduction to Nonparametric Estimation, 1
edition ed., Springer, New York ; London, November 2008.

[137] Vijay V. Vazirani, Approximation algorithms, Springer-Verlag, Berlin,
Heidelberg, 2001.

[138] Abraham Wald, Contributions to the Theory of Statistical Estimation
and Testing Hypotheses, The Annals of Mathematical Statistics 10
(1939), no. 4, 299–326 (EN).

[139] Edvin Wedin and Peter Hegarty, A quadratic lower bound for the
convergence rate in the one-dimensional hegselmann-krause bounded
confidence dynamics, Discrete & Computational Geometry 53 (2015),
no. 2, 478–486.

[140] Mehmet Ercan Yildiz, Asuman E. Ozdaglar, Daron Acemoglu, Amin
Saberi, and Anna Scaglione, Binary opinion dynamics with stubborn
agents, ACM Trans. Economics and Comput. 1 (2013), no. 4, 19:1–19:30.

[141] Bin Yu, Assouad, Fano, and Le Cam, Festschrift for Lucien Le Cam,
Springer, New York, NY, 1997, pp. 423–435.



144 BIBLIOGRAPHY

[142] Martin Zinkevich, Online convex programming and generalized infinites-
imal gradient ascent, Proceedings of the Twentieth International Con-
ference on International Conference on Machine Learning, ICML’03,
AAAI Press, 2003.


	Extended Abstract in greek
	Introduction
	The Big Picture
	How Opinions are Formed?
	Friedkin Johnsen Model and Opinion Formation Games
	Hegselmann Krause Model
	Problems Considered in this Thesis
	Random-Payoff Opinion Formation Games
	Opinion Formation Games with Aggregation and Negative Influence
	Network Hegselmann Krause Model
	Random Hegselmann Krause Model
	Reallocating Facilities on the Line


	Random-Payoff Opinion Formation Games
	Random-Payoff Opinion Formation Games
	Our Results
	Convergence Rate of FTL Dynamics
	Follow the Leader Ensures No-Regret
	Lower Bound for Graph Oblivious Dynamics
	Limited Information Dynamics with Fast Convergence

	Opinion Formation with Aggregation and Negative Influence
	Average-Oriented Opinion Formation Games
	Our Results
	Definitions and Preliminaries
	Average-Oriented Opinion Formation
	Average-Oriented Opinion Formation with Outdated Information
	Opinion Formation with Negative Influence

	Convergence of Average-Oriented Opinion Formation
	Convergence with Outdated Information

	The Price of Anarchy of Symmetric Average-Oriented Games
	Average-Oriented Games with Restricted Opinions
	Convergence of Restricted Opinion Formation Processes
	The Price of Anarchy of Restricted Average-Oriented Games


	Network and Random Hegselmann Krause Model
	Network Hegselmann Krause Model
	Convergence of Network Hegselmann Krause Model
	Random Hegselmann Krause Model
	Convergence of Random Hegselmann Krause Model

	Reallocating Facilities on the Line
	Problem Definition and Preliminaries
	Solving the K-Facility Reallocation Problem in Polynomial Time
	Formulating the Integer Linear Program
	Rounding the Fractional Solution
	Rounding Semi-Integral Solutions
	Rounding the General Case

	Omitted proofs

	Open Problems

