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MepiAnym

H napovoa 1daktopikn Satpifin] HEAETA Taiyvia, SUVOHIKG CUCTIHATA KOl DLTTOAOYIOTIKA TIPOBANHOTX
mov oyetidovran pe T Stapopewor anoymg. H epyacia avt Kiveiton o€ tpeig faocikovg aéoveg. O
TIPAOTOG AEOVAG APOPA OTI HEAET TV IO10TNTAOV GUYKALOT|G aAYOPIB®VY €EMAOYNG OTPATNYIKQOV OE
naiyvia Stpopewong anoymg mov eEeAicoovtan oto Xpovo. Eetalovian eKTeEV®G 01 1810TNTEG
oLYKkAomG o€ 1oopportia Nash otav n avavewon Twv anoYewv (OTpatnyK®V) yivetal faoet
aAyopiBpwv best response Kol no-regret GKOUA KAl O€ TIEPUTTAOTELG TIOV O1 TAIKTEG EXOLV HEPIKT] yVMOON
TV anOYe®V (OTPATNYIKAOV) TV GAA®V TKTwV. O §e0TEPOg AEOVOG XPOPE OTNV EMEKTAOT] TV AVQ
epaypatav yia 1o Tipnpa g Avapyiog o€ maiyvia Stapdppwaong amoymg 0Tav ol anoYielg KAmolwv
TIOKTQOV PTOPEL va oLV amwOnTika yia Tig anoyelg AAA®V TaKtov. Amodelkvieton 0Tt 10 Tipnpa g
Avapyiag ppdooetol and pia kaBoAkn otabepd mov dev e€aptdton and Tov aplBpo TV TAKTOV. LToV
Tpito déova g epyaociag, eCetadeton pia Suvapikn ekdoyn Tov mpofAnpatog k-median otnv onoia ot
Béoeig Twv neAatwv Bpiokovtat oty eubeia ko e&eAiooovtan atov Xpdvo. I'a o mpofANHa avTtd
TIAPOLCAeTal Evag aAyoplBp0Gg TOAVWVLHIKOD XpOVoL 0 omoiog otnpiletal

OTNV €MAVOT] €VOG KATAAANAOL YPOHHIKOU TIPOYPAHHATOG.

A€&erg kKAada: Taiyvia Atapopewong Amoyng, AAyopiduikr Oswpia Toyvieov, Kuppt
BeAtiotonoinon



Abstract

This thesis studies issues related to problems arising in opinion dynamics
and opinion formation games. The way people form their opinions can be
modelled as a no-cooperative game where each selfish agent strategically
selects her opinion so as to minimize her individual disagreement cost. When
such a game is repeatedly played over time, agents repeatedly update their
opinions (according to the opinions of the other) leading to a dynamics of
the opinions.

We examine extensions of the well known opinion dynamics Friendkin
Johnsen model and Hegselmann Krause model. Our variants are motivated
by natural social phenomena, such as limited information exchange, presence
of social structure and influence by global trends, that were not captured by
the original models. In the considered settings the convergence properties of
the original models are seriously under question. Through the use of ideas
and techniques develloped in the context of Convex optimization, we are able
to analyze the dynamic behavior of the opinions and to study the quality of
equilibrium points in terms of social disagreement cost.

Keywords: Opinion Formation Games, Algorithmic Game Theory, Convex
Optimization
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Chapter 1

Extended Abstract in greek

H perétn tou tpdmou ye Tov omnoio ot dvipwnot oynuatiCouy anddels €yel yaxpd
wotopla [92] . H Swpdppmaon andewy etvon pla duvauikn duadikaoia otny onola
XOWWVIXY GUVOESEUEVOL AvIpmTOL AVTUAAGCOUY TANEOYORIEC Xat auTO 0ONYEL
OTNY 0AAXYT] TOV amOPEWY TOUG GTNY TEEO00 Tou YEOVOU. LAUERX, 1) EAEUOT)
TOU BLIOWTUOU XUl TOV UECKY XOWOVIXNAG OXTOWONG XahoTd auTh Tr UeAE-
™ axopo o onuavtixy. H xoatoavonomn twv Suvouixmy dioauoppnong drodng
Beloxel TepdoTiE TEAXTIXES EQPUPUOYEC GTNY TEOBAEYY EXAOYIXOY ATOTEAE-
OUdTOY, TN SLPHULCT) X.A.T. LTNY TEOCTAVEL CUC TNUATOTOINCNG AUTHS TNS
UeAETNG, Tor TEAEUTaloL Ypdvia €youy TpoTadel didpopa pordNuaTIXG LOVTER Yol
v Sabppwon dmodne [60, 79, 89, 59] .

H xow| mapadoyr| Tov TeptocdTeEpwy HOVTEAWY, 1) oTolo YPoVoAoYEliToL oo
t0 DeGroot [60], etvon 611 ot andeic e€ehicooviar we éva duvauikéd oloTnua
emalappavipevov puéoov dpov. 1o cUYREXPIUEVE Ol XOWVWVIXES OVTOTNTES UO-
VTEAOTIOLOUVTOL (G TEUXTOPEC TOU GE Xde Briua avave®vouy Tic amdelc 6To
UECO 6p0 TWV ATOPEWY TOU XOWVWVIXOU TOUG XUxhou. Apyixd o xdie mpdxtopag
E€YEL JlaL TIY) TTOL VTLTEOOWTEVEL TNV 0py | Tou drodn. e xdie yipo, dAot oL
TEAXTOPES LIOVETOUY WE VEU dmolm Eva xUETO GLVBLUOUS TWV ATOPENY TV GA-
AV TEOXTOPMY GTO TEONYOoUUEVOU YUpo. Me autd Tov tpdmo dnuiopyeitar uio
SUYaUIKT) TV amOPewY 6T0 YE6vo. O GUVTEAEGTEC AUTOU TOU XUPTOU GUVBUO-
OUOU UTOPEL Vo BLIPEROUV OO TRAXTOPN OF TEAXTOPA XAl OTNY TEAYHATIXOTNTA
urmopel va oAAGLoLY e TNV TEEOBO TOL YEOVOU.



10 CHAPTER 1. EXTENDED ABSTRACT IN GREEK

Yvothpata enohopBavopevouv wEcou 6pou

1: n mEAXTOpEC.
2: x;(0) € [0, 1], n opyxn dnoln tou mpdxTopa 7.
3: X710 yUpo t > 1, xdle mpdntopac ¢ avavE®VEL TNV drolr Tou:

5(t) = 3Byt~ 1

omou p;(t) > 0 xon 30, pi(t) = 1

O axpifric 0plopdc TwV GUVTEAEGTOV p;;(t) yivetar oto xdle cuyxexpyEévo
wovtého. I mopdderypa oto povtého DeGroot ol cuvteheotéc elvar otadepol
xou opeTdBANTOL aTo Yedvo (pii(t) = pij). Evd oto poviého Hegselmann
Krause o xdle mpdxtopac Peloxel Toug mpdxtopes ue drodn oe andctao To
oAl 1 amd TN duxr} Tou xon uodetel wg véa dmodm To Yéco ORO AUTWV TGV
amoPewy.

Ye TPWTN PoTLd TEToL SUVOUIXE GUCTRUATY (00¢ Lotalouv XAmwe amhoixd
Yoo TV TEELYEAPT TEQITAOXMY PUOLXGY BLABLICLOY OTWS Elvor 1) BlaUOEPWaT)
dmodne. Av xa dev elvon eQavég ot TENOTO YPOVO, TETOL BUVIUIXE GUC TAUATO
€)OUV TEEAC TLAL EXPEAC TXT) DUVOT).

Apyixd mepapaTinég UEAETEC OE XEEC xovVOTNTES 0TV Ivdia €youv emo-
AnUedoel TNV TEOY VWS TXT DUVAUT TETOLWY HOVTIEAWY GTOV TEOTO OYTUATIONOU
v dnoewyv [7]. Enlong tétolou eldoug duvauxd cuothpoto mopovatdlouy
UEYSAN emiTuylor TNV HovTEAOTOINGT BLdPOoPWY PUOLXGY dladaciwy Tou Ce-
pevyoLY amd To GTEVE GpLal TNG Blopoprong dmodng. Mepés Toh) evoLopé-
POUCES EQPUPUOYES APOPOVY GTNV UOVIEAETOINOT TG CUUTERLPORAS TeV LOKV.
H Snuoupyio ounvay and novkid [36, 124], o cuvtoviouds xivnone xomadiody
aro Qdptor [118, 121] xat 0 GUVTOVIGHOE TWY GNUATOV YWTOS TWV TUYOAUUTIOMY
[111] pmopolyv vo Teptypopoly Ue opXETA axptBr] TPOTO amd BUVUUIXE GUGTH-
woter emaAdUBovOUEVOLU HEGOU 6POU, TAUPOUOLY UE AUTE TOU TEQLYPAPOUY TNV
OLOPPWOT TV AOPewY. AN EVOLUPEPOVUOES EPUPUOYES TETOLWY OUC THUY-
TWY APOPOLY GTOV GUVTOVIOUSO STOWY atoUNTARWY, 6TNY eEEMEN XUTTURXOY
TANYUOUMY X0l GTOV GUVTOVIOUS ONUATLY Bruatodotn xoedide [34].

Extéc and tic TepdoTIEC EQUOUOYES TWV UG TNUATWY ETUANUPUAVOUEVOU UE-
ooU OPOU GTNV UOVIEAETOINCT PUOXADY BLABLXACLWY, TETOL GUCTHUNTA Bel-
O%0UV EQUEUOYY XaL 0TO yweo Tng Oswentinic IIAnpogopurc. Liyypeoveg
ETMUOTNUOVIXEG €pYAO{EC DELYVOUY WG TETOL CUC TAUATY UTOPOUY VoL AVGOUY
unohoyto Tixd mpoPBAruatal T topdderyua, otny epeuvntixd| epyooio [12] oye-
odleton Evar TOAD xouhd Buvaixd OO TN ETUAVUBAVOUEVOL UEGOU GEOU TO
omolo AOVeL TO TROBANUA TNne aviyveuong xowdtntoac o ypoagphuata. Erlong
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oty epyaoia [34] anodemvieTon Twe TETOL GLUC THUOTO UTOPOUY VoL EIVIL aXOUN
xou Turing complete! ‘Alhec evoiagpépouoee adyoprOuikéS eQuouoYEC TETOWWY
OUC TNUATWY PTopoly va Beedoly oTic epyaoieg [95, 97].

Abyw TV Topamdve EQUQUOY®Y, 1) LEAETN TNG SUVOUIXHS TOV UOVTEAWY
SlopopPwong dmodng €yel TEOCEAXVOEL EVIOVA TO ETUCTNUOVIXG EVOLUPEQOV.
Auth 1 epeuvnTIny| Ypoppr) TeooTodEl VoL XUTOUVOTIGEL TNV THRUXATE EPWTNOT:

4 Z V4 / V4 /
1I6te ta ev /\O)/C() ovotnuata (TU)/K‘)UVOUV (S Oraﬁepa onueia;

AucTuYOC 1) HEYEAT, EXPEACTIXY) DOVOUT TWV CUCTNUATLY ETUAUBavOUE-
Vou HEGOU 6poU, ETLPEREL WS ATOTEAEGUN TNV BUGKOA(D GTNY AVdAUGTC TOUC.
Muxpeg TopahharyEC TWVY LOVTEAWY 001 YOUV OE EVIEAWS OLUPOPETIXES DUVOLXES
OLUTERLPORES. AV o UTdE)YOUV AmOTEAEGUOTA TTOU YopaxTNeiouy 1BeTNTES
GUYXNONG YEVIXGOV YAAGEWY TETOWY cuoTNUdTLY [91, 105, 35] dev undpyet pia
evoTotnuévn Yewpla TOU VoL TEPLYRAPEL T1 CUUTEQPLPORE TOUG. LTNV TEAYHOTL-
%xOTNTA (40 LOVTENO avoADETOL PE CEYWPLOTO TEPOTO XAl OL LOEEC XL TEYVIXES
OLUPEEOUY CNUAVTIXAL.

H napoloa dbaxtopiny| dlateldr| aoyolelton Ye Ty PEAETN WOLOTATWY GU-
YUMONG YeEVIXEDoEWY TV YovTtéhwy Friedkin Johnsen xar Hegselmann Krause.
To povtéra autd amoTEAODY OO To OTUAVTIXOTEQU X0k TIO EXTEVMS UEAETNHE-
VoL LOVTEADL Yol TNV SLoOe@woT drnodmne. 110 UeYahlTERO UEQOC TNS EPEUVIC
TOL TpayHaTOTOLUNXE G Ta TAdkoLoL AUTHS TNS BB TOPIX|C BLlaTtELBrC, YeToLUo-
Tolfjcoue epyoleior xou TeEYVIXEC Tou €youy avartuydel 6to yweo tne Kuptrc
Beltiotonoinong yia Ty amddelln olyxMong Twy YEVIXEUOEWY TWY TUQUTAVE
wovtédwv. H yevixeboeig mou uelethioouue mpocpyovion amd OSLoucUNTIXES Ta-
EATNENOELC GTOV TEOTO TOU BLUUOPPHOVOVTOL Ol OTOPELS OE UEYTAL XOVOVIXE
olxtua xou Topouctdlovtal 6To TEAOC TOU XEPUAdioL.

To povtélo Friendkin Johnsen xou ITdwyvia Aiopdppwong ‘A-
rogng

‘Evo amd ta onpoavtindtepa ovtéla Slodppwong drodng, mpotdidnxe and toug
Friedkin xou Johnsen to 1990 [79]. To povtého Friedkin Johnsen npotdidnxe
oEy W8 ooy ol Topohhary ) Tou povtehou DeGroot yia vor e€nyfoet To yeYovog
OTL OUOYWViol 0TI ATOPELS ETITUY YAVETAUL CTVLAL

Yougpova ue 1o povtéro, xdlde mpdxtopag @ expedlel Wio Snuoola dmodr
z; € [0, 1], evdd mopdhhnha éyel pa eowtep| dmodn s; € [0, 1] 1 onolo elvou
otadepr| xou aueTABANTN o TNV POt Tou yedvou. To povtélo eniong unolétel
™V Umopén VO YRUPHUTOS G(V, E,w) to onoiu AVUTIUPLO TE TIC XOLVWVIXES
oyéoelg petald twv mpaxtopny. To civoro Twv xouPuv V' aviintpocwredel
TOUC TREAXTORES XAl TO GUVORO TwV oxUwv E Tic xovwvixée toug oyéoec. To



12 CHAPTER 1. EXTENDED ABSTRACT IN GREEK

Bépoc w;; wog oxphc (4,7) € E elvon névta Yeuxd, w;; > 0, xar aviinpo-
OWTEVEL TNV ETEEOY| TOU aoxel 0 TpdxTopug j oTov medxTtopa . Emlong o
xdie mpdtopac ¢ €yel eva Yetxd Bdpoc w; > 0 TOU AMOTUTIWVEL TNV ETLUOVT
TOU TEAXTOPY GTNV ECKTEPXT| TOL dmodm. Apyixd, 6ot ot xéufol Eexvoly e
xamoleg apyixég dNUooLeg amolelg z;(0) xou og xdde yOpo t, AvVaVEDVOULV myv
dnuoota drodm toug z;(t) oto oTadUoUEVO PEGO 6RO TwV dNUOCLHY anddEwY
TWYV YELTOVOY TOUS XL TG ECWTEPLXNG TOUC dmodng.

To wovtéro Friedkin Johnsen

Eva yedgpnua pe Baon, G(V, B, w), [V| =n.
€ [0, 1], n eowtepy| dmodn tou mpdxTopa i.
z;(0) € [0, 1], n apyxr} dnudoto drodrn Tou TedxTopE 0.
270 YUpo t > 1 e TEAXTOROC @ OVAVEWVEL TNV BNOCLYL dmolr) Tou:

Z?:l wijxj(t — ) + w;s;
] 1 Wij + w;

To povtéro Friedkin Johnsen €yet €va ToA) amhd xoVOVOL AVUVEWONE TWV
amoPewy Tou 1o xao T €UAOYO WS UOVTELD, EVEK OL Bacixég TOU TapadoyEg
euduypoupilovTon PE EUTELRIXG ATOTEAEGUAUTO TOU TEOTOU OYNUATIONO) TGV O-
nodeny (2, 102, 7]. To povtélo Friedkin Johnsen éyer yehetniel extevide xou
€yet amodeyVel mwe €yet éva uovodixd otadepd anueio z* € [0, 1]” oto onolo
ouYXAver pe ypaupuré puiud aveZopThtwe Twy opytxey andewy [81].

To 2011 ot Bindel, Kleinberg xou Oren etofjyaryov €vo molyvio Slaldpgpnong
drodne otnerypévo évew oto povtého Friedkin Johnsen [17]. Xto noiyvio autd
#&ie TpdTopag 4 Elval EVOC €YwIoTIKGS TPdKTOPaS TOU OTO{OU 1) GTEAUTNYIXT| TOU
elvon 1 dmodn x; mou dnuoota expedlet. o éva cuyxexpyévo ddvucua dnpo-
olwy anodewy x = (T1,...,2p), 0 TedxTOPIC 1 AofBdvel Eval x6GTOC BLaprviog
Ci(x;,x_;), 6mou

Ci(zs,7_;) wa )2 4+ wi(x; — s4)*

Méoo and autd to Tcoayvtoﬂecopmtxo Tploya, To povtéro Friedkin Johnsen
elvow o simultaneous best response dynamics tou mopandve moalyviou. Il
CLYXEXPUEVDL 0¢ UTOVECOUPE OTL Ol TEdxTOopES ToCouV TO TaPATAVe Towy Vil
oe yUpouc. Av o xdie mpdxTopag Blahéyel we drodn TNy drodn ue To UxpdTERO
%x6070¢ Slopwviag Bdoel Twy Snuocinwy amdPewy TV AWV TEoXTORMY GTOV
mponyoluevo YOpo, téTe TpoxUnTel To Yovtédo Friedkin Johnsen. Enlong to
otoepd tou onpelo z* € [0, 1]™ eivon 1 toopponia Nashtou napondve taiyviou.
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AZ{Cer va emonuaviel 6Tt ov Bindel, Kleinberg xou Oren eioryoryav éva
YEVIXOTEPO TAXICLO Yo TNV UEAETH TWV BLVAUIXWY Bladppwong drodng. To
Thadolo auTd UTTOBEXYUEL OTL 1) Bladlxaola oy NuATIoNoL drodewy urnopel va me-
evypopel we pla duvapikn evog moryviou Sladppwong drodne. Autéd to TAaioio
elvor YEVIXOTEPO XD (G BLUPORETINEG TTUYES TRV DLadIXUGIwY BLUUOPPWENE UTo-
e umopolv elxoha vor yovtehonotoly Ue TNV 0pIOUO XATIAANAWY Towy ViKv.
Emniéov 1o mhaiclo autd emitpénel TNV UEAETN TNG BUVOULXTC CUUTERLPORALC,
YVOOTOY Tonyviodewentixdy otpatnyxody (best response, no-regret, fictitious
play) oe tétotou eldouc Talyvia.

To povtéro Friedkin Johnsen €yel peretniel extevag o teheutada ypo-
vio. ‘Onwg éyoupe NON avagépel atny epyoacio [81] amodelydnxe 1 Onapén evoe
Hovaotxol ctadepol onueiou ¥ xau o ypapuikds pvduds cOYXAoNG TOU po-
viéhou. Lty epyaoia [17], 6mou ewofydn to avtioTtolyo nalyvio Sloapudppwone
drodng, mTocotxomoinxE 1 avamoTEAEoUATIXOTNTA TN tooppoTiag Nash oe
oyéon ue To BEATIOTO GUVOAIXG %60 TOG Blapnviag. Anodelydnxe 6t to Tiun-
pa s Avapyiag eivon 9/8 otny nepintwon 6mov w;; = wj;. Amodelydnxoy
enlong dve gedypata yio to Tiunua s Avapyiag tny nepintwon tov aapy
xateviuvopevwy yeapnudtwy Euler. Ye mo npdogateg epeuvntinée epyaoieg
[15, 47, 38] enéxtddnxoy o dve QeayUata o8 GARES OXOYEVELES YORUPNUATELY
X0 OE THO YEVIXES CLUVAPTYOELS XOG TOUG dlapmviog. NTig epyaoieg [140, 70, 16]
ueheTAONHay drakpités mapahhayeg Tou wovtéhou Friedkin Johnsen otig omoleg
Ol TEAXTOPES UTOEOLY Vol LIVETACOLY (¢ anddne eite To 0 1 1 xou eCeTdoTrHay
ol wotnTeg olYxhiong Toug. Mia mpbdopotn yoouuy| Epeuvac UEAETE GUYOLA-
OTIXA TPOBAAUNTA GYETIXG UE TNV TpoToTolnon Tou oTatepo) onueiou z* Tou
uovtélou Friekdin Johnsen [82, 1, 114].

To poviého Hegselmann Krause

H nohwon tov anddenv elvon éva mohd cbvniec xowvwvixd @ouvouevo.  Mu-
YVvé ot dvdpwrol oynuatilouvy oudoes amdpewy 6mou uéAn TN Blac ouddog
uotpdlovton oyedov TNy (Bia dmodr), eV dTouo amd SLUPOPETIXES OUADES €Y OLV
apxeTd SlapopeTnég ambelc. O Aoyog auTHS TG TOAWOTE Efvan opXETA ATAGC:
Avopa e mapdpoles andpes teivouy va avantiooovy Kowwrikés oyéoelg. Evd
dTopa pe €VTEADS 01aPOPETIKES andPelS Telvouy O1aKOTTOUY TIS TYETEIS TOUS.

To 2002 ot Hegselmann xow Krause npdtewvay va uovtéro yio tn dtauoe-
PWOT| ATOPEWY IOV EVOWUATWOE AUTES TIC WOEEC UE €VaY TOAD aAG TEOTO: OF
x&de yOpo o xdie mpdxnTopag LIVETEL (¢ VEu drolm To uéco dpo g Teéyouoa
drodng Tou xou TwV amOPEWY TOV GAWY TEUXTOTWY TOU Elval GE UIXEY| Amo-
otoon and v duxr) Tou drodn [89]. To mdoo uxen yeerdleton vor ebvar aut 1
amoCTACT, TocoToTolElTa amd TNy Vet otodepd € > O.
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To wovtélo Hegselmann Krause

1: n mEAXTOpEC.
2: x;(0) € [0, 1], n opyxn dnoln tou mpdxTopa 7.
3: X710 YUpo t > 1 xde mpdxTopaC @ OVAVEMVEL TNV drtoln Tou:

DjeNi(t) zi(t —1) +a;(t — 1)

ri(t) = IN;(t)[ + 1

émou N;(t)={j #i: |zt —1)—x;(t— 1) < ¢}

To povtého Hegselmann Krause €yel dneipo otordepd onueio: xde dlopé-
OLOT) TWY TEAUXTOPWY OE GUUTAEYHOTO YVRU®Y (opinion clusters) e omdotao
ueyaAUTepn amo €, etvan éva otadepd onpeilo. Ilapdho mou 1 anddeln Umaping
otadepwv onueiov ebvar TOAD anAy), dev elivon xadorou cagéc av To cLo TN
@Tdvel ToTE o€ €val TETolo oToePd omueio. AGY® TV AMOTEAECUATWY TWYV -
yaowov [91, 105, 113] yvopiloupe twe to clotnua otadeponoteital oe xdmoto
YEOVIXY| OTUYUY|. D€ UETETELTO EPELYNTIXEC DOVAELEG [107, 135, 14] TOEEY OV T
Gve pedrypoTa Yo Tov aptdud Twv Yipwy Tou amoutolvTal Yo T o0yxhion. To
teheutoio amoteAéopata Selyvouy 1o cuotnua ypeetdleton To Tohl O(n®) yipoug
yio vor o tadepormomdet [14]. o mpdogorta, anodelydnxe ott uTdEy oLV TEPLTTG-
oelg oTic onoleg to povtého Hegselmann Krause ypeidleton Tovhdylotov Q(n?)
YOpoug Yt vo gTdoel ot otoepd onueio [139].

To yovtého Hegselmann Krause €yet npoceAxioel T0 EVOLUPEQOV BLdPOpwY
ETUOTNUOVIX®V XAADWY OTws 1) Oswenty IIAnpogopur], n Ytotiotiny| Puoiny
xa 1 Emyepoion Eeeuva. O emiotnuovinég epyaocieg mou agopolv oe ma-
colharyEc xan yevixeuoele Tou yovtéhou Hegselmann Krause eivar 1600 mohhéc
TIOU OVAUPEQOUNE UOVO TIC GUECH OYETILOUEVES UE auTH TN dlaTelr). XTI ep-
yaotec [105, 91, 35] napéyovtour anoteréopata oOYXAONG Yol YEVIXEVOELS TOU
wovtéhou. Ytnv epyaoio [37] amodexvieTon oS ULa YEVIXEUUEVT eXBOYY| TOU
uovtélou Hegselmann Krause ye ypovixd ouetdBAnToug medxtopes GuyXAl-
vel oe otodepd onueio. Emimiéov €yel mpayuatonomniel onuovTiny TELouaTIX
€0ELUVOL OYETXE UE TIC WOLOTNTEC 0VYXALONG TopoAAoy®y Tou povtéhou Hegsel-
mann Krause, xa0d¢ xou Ue TIC TWES TN TUPUUETPOV €, TOU EYXUOVTOL TNV
olyxhon tov andewy ot ogoguvia [72, 106].

Iagouciaor IlpoBAnudtwy tng napoloag AdaxTtopixng Atlo-
TePnis

270 UTOAOLTO TOU XEPAAUOL TaPOLCLALOVTOL TECOEQLS EMEXTACELS TWV HOVTE-
AoV Friedkin Johnsen xou Hegselmann Krause nou yehetdnxay otnv ntopodoo
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OLoTeBr). 2TIC avTioTolYEC EVOTNTES TOEOUCLALETOL 1) GG X0 Tal TYETIXE
amoteAéopaTo TNE XAUE ETEXTAOTC.

Tuyowoxpatixnd IMalyvia Atopndppwong ‘Arnodng

‘Onwe €youue Mo avagéper t6o0 to povtého Friedkin Johnsen 6co xo to
avtioToryo malyvio, elyoy TepdoTio ETEEOY| OTNY HEAETN TWV DUVAUIXWY Olo-
uoppuong drodmne. 20T600 UTEEYOUY CNUAVTIXEC TEQITTWOELS OTIOU TO UOVTEAO
Friedkin Johnsen 6ev meptypdper xatdArAio T Suvaixy Twv amodewy, Aoyw
TOU PEYEAOL TOGO) TANPOPOPLOY TOU UTUTEL VO AVTAAGGCOUY Ol TEAXTOPES.
ITio cuyxexpéva, o xdde YUPO 0 XAVOVIS AVAVEWCTS

Zj#i wija:j(t — 1) + W;S;

>z Wi + W

amoutel amd Tov xdde mpdxTopa Vo podaivel dAe§ TIC AmMOYEIC TOV TEAXTORMY
Tou ToV ETNEEGLOLY, BNAUDY) OAWY TWV TEUXTOPWY j UE w;; > 0. LT GNUEpVd
MEYEA XOWVOVIXS BixTUA OTIOU OL YENOTES €Y 0UY CUVATWC UEXETES EXATOVTADES
pihouc, 1 unddeon 6Tt xdie pépa o xde yeHoTne pordodvel Tic amdPelc OAWY TV
XOWVWVIXWY TOU ETAPOY, EVOL U1 PEUAICTIXT|. XE TETOIEG TEPLTTWOELS [ULOL TTOAY
mo Aoywy| unodeon ebvar 6TL T dTopa GUVAVTOOY Tuyoka EVal UXEd UTOGUVORO
TWY YVOOTWY TOUG Xl AUTES €Vl oL UOVIDIXES amoelC Tou uardalvouy.

[t vo LOVTERETOINCOVUE TIC TOEATAVE LOEES, VEWPOUUE Lol TUYAI0KPATIKT
tapaAdayr) tou malyviou Stapbppwone drnodne mou ewwhydn oto [17]. Xnv
Topahhory ) pag, yio évor Bedouévo didvuopa dnuooiwy andewy z = (x;, r_;) €
[0, 1]™, T0 x6010¢ drapwviog Tov TodxT @ efvor 1 ToEodTe Tuyla HETOBANTY
Ci(xi,x_y):

e O malxtng i ouvavtdel Tuyala wévo €va yeltova tou j e mavotna,
py = M
Zj;ﬁi Wi
e O malxtng i PLdvel x00T0¢ dlapwviag
Ci(wi,x—i) = (1 — ay)(w; — x;) + ay(xi — 5:)?,
omou oy = w; /(X jen, Wij + wy).
To mpomdve TuycLoXEUTIXG TalyVio Sloodpgrong drolne, Baciletu oty

xowr| memoldnom 6Tt 1 eMEEoT| UETAED BUO ATOPMY OE Lol XOVwVia lval 1) GU-
YVoTNTo aAANAETidpooNg Twv atouwy autwy. H wopponia Nash autod tou



16 CHAPTER 1. EXTENDED ABSTRACT IN GREEK

nowyviou (mou opileton oe oyéomn UE TO AVUUEVOUEVO xOGTOG Slapmviag) elvou
o3¢ 1 Bl pe v toopeonio Nash tou naryviou Stopdppuwong drodng mou et-
ofydn oo [17]. Emniéov, to simultaneous best response dynamics (o€ oyéon
UE TO UVOPEVOUEVO XOGTOG SLPmVINS) Yol TO TUYUMOXEATIXG Tk VIO BLaUOp(e-
ong dmodng etvor mdAL to povtéro Friedkin Johnsen.

H cuvelwocpopd wog

Mehetdpue Tic 1O1OTNTEC GUYHAONG PUOIKWY Kal aTodoTIKWY OUVAHIKGY GE AUTO
T0 TUyaioxEaTIXG TatyVio Blaudppwong drodne. Me tov dpo guoikég evvoolue
OTL Ol TEAXTOPES AVAVEDYOLY TIC ONUOCLES AmOEC TOUC O TNV TEOCTAYELd ToUg
VoL EAUYLO TOTIOW|GOLY TO X605 TO¢ dLapuviog Tou Biwvouv. Me tov dpo arodoti-
KE€G EVVOOUUE OTL O XAVOVAS AVAVEWONC TV aTOEWY GEBETOL TOUC TEPLOPLOUOUS
otV avtoAlayr TAnpogopiag mou Vétel To Talyvio pog. Aniadr oe xdde yo-
eo 0 xdie mpdxtopag padalvel udrvo TN YVOUN TOU TEAXTOPA TOU GUVAVTYOE
Tuyota. o mopdderypa,

e To povtého Friedkin Johnsen eivou guoixd: kdle mpditopag emiAéyer
WU TOU eAay10ToTolel To avapuevipero k6oTos Oapwriag.

o To povtého Friedkin Johnsen dev etvar amodotind: ya va vrodoyioer aver
TN droyn o mpdrtopag mpémel va yvwpilel TS andipeis GAwy Twy mpaKTépwy
e w;; > 0.

Y10 Kegdhawo 3, mapouctdloupe éva xavovo avavEénong Tou odnyel oe uio
PUOXH XL ATOBOTIXY) BLUVOIXT| TWV ATOPEWY. AUTOC 0 XAVOVOC AVAVEWOTG
omoutel 0Tt 0 xdde medxTopag podulvel LOVo TNV dmodn Tou TEdXTOEY TOU GU-
vavtnoe Tuyoda xon auTté xorhoTd TNV TopayOPEVY) duvoxr) atodoTixr. Ty
(dtar oTrypn o Blog xavdvag avavénong eCacparilel TNV WLOTNTU no-regret GTOV
xdie mpdwtopa. Me dhha Adylo eCacparilel ToC To0 x0GTOE dlapuviog Tou o
xdde mpdxTopag BLivel xotd TNV Oudpxela Tou Tonyviou elvar To EAGYLOTO duva-
T6. AuTé %o T TOV XoVOVAL HOC LA PUOLXT| ETLAOYT| TTROC EYWLO TEC TEAXTORES
TIOU EVOLUPEQOVTOL UOVO YO TO ATOUIXO x6GTOG Blapwviag Tou Bidvouy. Acl-
YVOUUE OTL oY 0 xavovag uloeTnlel amd GAoUC TOUC TEAXTORES, TOTE Ol ATOPELS
LV TPaXTORLY givar e-xovid oty wopporio Nash tou mowyviou oe O(1/e2)
YUpoug.

TN oLVEYEL, OLEEEUVOUPE TNV UTAEETN GAAWY XOVOVGLY AVAVENMCTS TTOU €-
Eaoporilouv TNV no-regret WOOTNTAL GTO XOGTOC BLUPOVINS TWV TOUXTWY, EVE
TUUTOY POV 1) TUEAYWOUEVY SUVOULIXY| TOV aTOPewY cLUYXAIVEL UE YP1YOROTERO
evdud oty wopporia Nash tou nawyviou. Ytnv npoondieia andvinone oautow
TOU EpWTAUATOS ovaxoAUae €var TOR) EVOLUPEROY QUVOUEVOD. AV 0 xaVOVoQ
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avavéwong e€acparilel TNV no-regret WOLOTNTA, TOTE 1 TAURUYOUEVT, BUVIULXT
yeetdleton Toukdytotov §2(1/e) ylpoug Yyl va elvon e-xovtd oTny tooppoTia
Nash, eve to mopandve amoTEAEoUa BEV LoYUEL Y10t XAVOVES AVOVEWGCTG TIOU OEV
eCacpalilouv TNy no-regret Wi6TNTA. XpnowwonolwvTag Tedcpates stochastic
gradient uedédoug [94, 131, 13] xatapépaye va oyedidooupe éva xovovo avaveé-
0ong Tou dev e€aoPaAilel TNV no-regret WOLOTNTO OAAS 1) TAEOYOUEVT BUVIULXT
v anddeny ouyxhiver ot O(log?(1/¢)) yipouc otny 1ocopomie Nash.

IMaiyvia Siapdppwong dnodng ne cuvddpolon xoL AEVNTIXY| &-
TLeeoN

‘Eva dhho onuelo xprtixrc tou povtéhou Friedkin Johnsen eivon 6tu aryvoet
ETUPPOEC GTOUC TEAXTOPES TOU TPOERYoVTaL and KaloA1kéS 1010TnTES TV On-
wootwy amodewy. Xe moAlolg Touelc, oL ONuocleg amOPES TWY TOMTMOY OEV
emneedlovial HOVO amd OAANAETLOPACELS UE TOV XOWOVIXO TOUG XUXAO Xal TIg
TEOCWTXES TOUG TETOWNOELS, AAAG ot o6 TO GUVORO TwV BNUOGIWY amdenmy
oty xownvio. o topdderypo ol dvipmmol cuyvd extiievial o Ty *OOULES
TAUOELC, OE XOWVOWVIXA TPOTUTA, OF ATOTEAECUUTA EXAOYWY . A.T. Eminhéoy, nok-
AEC POPEC OUAIDES ATOUMY TPETEL VO CUUPWVACOUY OE Lo XOWT DRACT), oXOuN
X0 oY Ol TETOWYOELS TOUG %ol Ot amOELS Elvan EVTIEADG OLUPOPETIXES.

[t vor povTeAOTOINGOUIUE TETOLEG XAUTAC TACELS VEWPOUNE EVaL XAVOVAL GUV-
Vpolong (aggregation rule), o omolog ATOTUTIWVEL TIC ATOPELC TOU XOWOU GE Wial
eviala kowwrikr) dmoypn Tou avTITEOCKWTEVEL TNV YEVIXT drodn yio éva cuyxe-
xpuévo {Rtnua. O mpdxTopee avaévouy Tov avTixTuto Tng dnuoctog dmodng
TOUG O TNV BLUORPWOT) AUTAS TN eriaiag Kowvikng dropng xou To Aaudvouy
umody oty dnudota drodrn mou expedlovy. ‘Etol e€etdlouue Wi yevixeuon
TV Yoy Slopdppwong drong tou eworydnoav oto [17] otnv onolo Yo
éva 6edouévo Bidvuoua dnuocinwy andlewy & = (x;, £_;) 0 TEdxXTOPIS @ BLdVeL
%06 T0¢ dlapuviog

Ci(z) = Z wy;(x; — a:j)2 +wi(x; — 8;)* + ai(aggr(z) — s;)?
j#i

6mou aggr : [0, 1]™ — [0, 1] eivan 1 cuvdptnon Tou eEdyeL TNV eviata Ko wYIK]
dron améd to oivoro Twv andewy Tou xovoL. O bpog a; > 0 TocoTIXOTOLEL
NV €MEOT| Tou aoxel 1 evwaia Kowwvikn drodn cTov TEAXTOPY 1.

Me Bdoer nponyoluevee epyasieg tévw oto wisdom of crowds (92, 83],
ETUXEVTIPWYOUACTE GTNY TERITTWATN TOU 0 xavdvag cuvddpolone aggr(x) etvo
0 U£60C OPOC TWV BNUOGIWY ATOPEWY TV TEAXTOPWY, BNAADT

aggr(z) = Xi: zj/n
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H cuvelocpopd pog

270 xEPIMO 4 PEAETAUE ToL Ty Vol GLVAIEOLOTIC TOU THEOUGLAGOUUE TOUROTAVE.
A&{Cer va onuewwdel Tog ta tokyvia Slopopgpnong drodng mou ey dncay oo
[17], etvon edixn mepintwon twv mofyviwv cuvdibpolone émouv 6lot oL cuvtehe-
o0téc a; = 0. Me wa tpodtn yatid, o tpdodetog 6pog cuvdipolone gafveton vo
UNV €YEL ONUOVTIXG avTiXTUTO OTIC WLOTNTEG Tou Tonyviou. Autd améyel ToAD
am6 Ty akfdeia! Me v mapousio autol Tou amhol 6pou, TOGO oL IWOTNTES
o0Yyxhong 660 xan o dve gedypata oto Tiunua s Avapyiag etvon und co-
Bopt| appioPrtnon. Xe YEVIXEC YPoUPES, auTod ouufalvel e 0 bpog auTog
ELOQYEL APVNTIXT ETLEEOY| HETAE) TWV TROXTOPWYV.

Adyw g eloayOUEVNS dEVTIXHG ETLEEOTC, Ol TEAXTOPES EVOEYETAUL Vo Ve-
Aoouv va ulodetrioouy andng extoéc Tou dlaoThuatog [0, 1]. Av xat oautd Bev
omoTehel €x TWV TEOTAUPWY Uit XoxY| UTOVEST), UTEPYOUV TEQITTWOELS OTKS OL
exhoyéc oTic omoieg oL andelg avaryxao Tixd Peioxovial ot éva xadoplopévo ei-
coc. I var xohbhouye OAeg TIC TEQITTOOELS, VewpolUe T600 TNV unresctricted
case OTOL Ol TEAXTOPES UTOEOUY VoL ETMAEEOUV (C Y VMUY OTOLOONTOTE TEAYUOTL-
%6 apiud xou Ty resctricted case GTNV OTOLL Ol TPAXTOPES OVIXOC TG TEETEL
va emAéCouy pla drodmn 610 Bido TN [0,1]. Ko o1ic 800 TEQPLTTOOELS TUEOU-
o18CoVUE AMOTEAEOUATO TOCO Yo TIC WOTNTES GUYXAONE ToL simultaneous best
response dynamics 660 xou v @edyuata yio 1o Tiunua s Avapyias.

Anodewvioupe 6Tl %dtw and TOAD YEVIXEC UTOVECELC OYETIXG UE TIC TUEC
WV o, 10 simultaneous best response civan e-xovtd oty wopponio Nash
oe O(n*logn/e) ybpouc. To mapandve toyvel TG00 Yoo Ty unresctricted
case 600 xou TNV resctricted case . Acdouévou 6Tl To simultaneous best
response amanTel améd TOUG TEAXTORES VoL YVweilouv TNy uéon onudoia dropn
oe xde yOpo, wa Thnpogopia Tou eivon 50oxolo vo anoxtniet, e€etdlouue yia
outdated €xSoym tou. Twpo ol TpdxTopes Yodalvouv TIC ATOPELC TWV YEITOVOVY
Toug ot xdie YOpo, 0ANS 1) j1éon) OnpuéoIa Ao AVUXOVMVETOL GE 0PI Y POVIXG.
oo Thuato. Actyvouue OTL T (BLor amoTeAETUATA GUYHALOTC TORAUUEVOUY 0XOUN
xoL o€ oUTYH TNV TERIMTLON,.

YN ouvéyew, E6TIALOVUE TNY TEOCOYT| KOG GTNY TOLOTNTA TNG LOOPEOTIAS
Nash o€ oyéon pe 10 BEATIoTO GUVORXO XOGTOC Blapwviag. XeNoWOTOLWVTOG
v teyvixr) Local Smoothness [128], Betyvouue 6t otV unresctricted case to
Tiunua tns Avapyias eivar 9/8 + O(ar/ (wn?)) av w; = w xou oy = . Topdho
mou 1 resctricted case eivon TOA) To dOox0AO v avoulel, delyvouue 6Tl To
Tiunpua s Avapyiag etvar to mohd 3 + V2 oty TeplnTwon Tov w; = a; = 1.

Network Hegselmann Krause model

‘Onwe €youue NON avogépel, 1o Yoviého Hegselmann Krause elye tepdotia
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ETEEOT] O TN UEAETY) TOV SUVOUIX®Y Blouoppnong drodne. 201600 To UovTéLo
Hegselmann Krause uroiétel éuuecnme xdtt udiiov oppiofnthiotuo. oupwva
UE TO UOVTERO, BUO TEAXTORES @, ] aoXOLY ETEEOY| 0 €vac GTov dhhov, xdle
popd Tou €youv mopduoles anddels, |x;(t) — z;(t)] < e. Ltnv mpdén 1 vnapén
TOEOUOLWY amoPewy eV emapxel yiot TNV aAANAeTidpacT 500 ATOUWY XoME X0l
1 UTOEEN XATOLIS XOWVWVIXNC GYEONE Elvol amapolTnTY).

Ewdyouye pia ToA amhy| yevixeuorn tou poviéhou Hegselmann Krause n
oTolol EVOOUUTMVEL Tot Topamdvey {nthAuate. Trodétouue tny Umopdn evog un
xorreuduvopevou yeaghatoc G = (V, E), 6nou ot x6uPol V' avtitpocwrelouy
TOUG TEAXTORES xat oL axéc B Tic xowwvinée oyéoeig petald Toug. XTn ye-
vixevorn yag, mou ovoudleton Nework HK model, xdie npdntopag uiodetel wg
VEa dnodr), To P€co 6po NG TREYOUCA ATOYNG TOU UE TIC ATMOYELC TWV YELTOVMY
Tou 670 G OV Elval £-XOVTA G TNV OIXY| TOU.

Network Hegselmann Krause model

: Mn xatevduvépevoe yedgoe G = (V, E).

: N TEOXTOPEC.

. 2;(0) € [0, 1], n apywr) dmodmn Tou mpdxTopa 0.

: 210 yUpo t > 1, xde mpdxtopag ¢ utodeTel we dmodn:

=W N

Sjeni) Ti(t) + w(t)
N;(t)|+1

omou N;(t) ={j #i: |xi(t) —z;(t)] < exa (i,j) € E}

Efvor €0xolo yia xdmotov va det mtwe to Yovtého Hegselmann Krause etvan
1 €winy| Tepintwon tou Network Hegselmann Krause model, 6mou 1o yedgnua
G etvan xhixa. ‘Onwg xan to apywd povtéro Hegselmann Krause, etot xou to
Network Hegselmann Krause model €yel dnepo apriud ctadepmv onueiwy
aveopthtwe Tne Totoloyiog Tou G. oT6c0, Ta anoTEAESHATA GUYXALONC TOU
wovtéhou Hegselmann Krause dev etvar eixoho va yevixeudolv. H anddeln
obyxhong Tou povtéhou Hegselmann Krause e€optdton oe peydho Badud ond
TNV TR WLoTNToE N didtadn twy mpaktépwy andé apiotepd mpog Ta deiud
oUppwra jie TS andes tous mapauéver ndvta 1 o, AvcTy®S auTh 1) douN
oyVeL uovo o6tay 1o G oelvon wAbxa xon yior auTO 1) amOOELn GUYXAIONS TOU
Network Hegselmann Krause ypeidleton pior eVIEADS SLOPORETIXT TPOCEYYLOT
and TIC PEypeL Tpea amodeiielc olyxAiong Tou xhacoixol uovtélou Hegselmann
Krause.

Y10 xe@dhano 4 amodeixviouue we to Network Hegselmann Krause model
oLYXAVEL TdvTo oE €va oTadepd onueto. Tio Ty amddelln autr Yewpolye tny a-
xohoLBiol un xATEVTUVOUEVGLY YRUPTUETLY TTOU XWOLXOTIOOLY TIC AANETLORACELS
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UETAED TV TEaxTopwY ot xdve YOpo. Aniadh, Tic axuéc Tou G oTIC OTOlES oL
000 TEAxTORPES TNG oS, ExPEdlouy ambdElg Tou elvar e-x0VTd. 3TN CUVEYELX
Yenoonotolue TV évvola Tou weak connectivity, tou ewofydn oo [96], Y
vo. omodei&oupe €lTe To CLVORXO BuvoXG cuCTAUA Ywelletal e aveldoTnTa
UTOCUC THUATOTA EfTE OTL GAOL Ol TEdXTOPES LVETOUY TNV (Bl dmon. Mepixd
omd To AMOTENEGATE [ag cuuTinTouy Ue To amoteléopota (91, 105] oyetxd e
YWOUEVO GTOYACTIXDY TIUVAXWY, WOGTOCO 1) TEOCEYYIOT] Hog Elval amhoUGTEQT
xon TEpLhoBAveL o amAég amodelelc.

Tuyawoxpatixd povtého Hegselmann Krause

‘Onwe oulntricape Tponyouuévns To wovtéio Friedkin Johnsen etvon acortdhin-
MO Y10l TN HOVTEAOTIOINOT) BLABLXACLDY BLUUORPOCTS ATOYNG OE UEYIAL XOVWVIXG.
OlxTUd, AOYW TNG PEYIANG avToAAayric TAnpogoplag mou utovétel. And auti
TN oxomd Tor TRyt Elvar TOAD yewdTepa 6To poviéro Hegselmann Krause.
Tpa xdde mpdntopac TeEmel v udidel Tic amodels dAwy TV GADY TEOXTOPWY
TEOXEWEVOL VOl TpoGOLopioEL TTolol amd auToUC €Y0UY dnodr e-x0vTd TNV Bixn
Tou. ‘Onwe xaw ot Tuyaoxpatikd IHatyvia Aapdppwons Aroypng unodétouue
Twe o€ xdde yOpo xde mpdxTopac cuVAVTA Tuyla k JAAOUC TEEXTORES, TIC
drodelc Twv onolwy podalvel. Xty CUVEYELNL AVAVEMVEL, TNV drodr Tou 6To
UECO 60 TOV ATOPEWY TWV TEAXTORPMY TOL TUY LA CUVAVTNOE XAl VAL £-XOVTA
oTny 8| Tou dmol.

Tuyowoxpatixd pnovtého Hegselmann Krause

1: n TEAXTOPEC.

2: z;(0) € [0, 1], n apywxt| drodn tou mpdxTopd i.

3: X1o yOpo t > 1, xdle mpdxtopac i
4: dhéyel k dhhoug mpdixtopeg opolduoppa tuyala, R;(t) C [n].
5: ovave@ver Ty dmodm tou (1),

() 2ENi() zi(t—1) +x(t — 1)
nl) = IN;(t)] + 1
omou Ni(t) ={j #i: |zi(t — 1) —z;(t —1)] < e xa j € Ri(t)}

210 xe@dhato 33, Oelyvoupe 6TL TO TuyLOXEUTIXO poviélo Hegselmann
Krause ¢@tdvel mdvta oc otadepd onueio. ‘Onwe xou 6to Network Hegselmann
Krause model, n to€wvouion tov mpaxtoépny and 1o oploTEpd Teog To Bedid
oUUpwva P T amdel Toug, eV Blatnpe(ton 6TO YPOVO XaL KOS €X TOUTOU
oL TEYVIXEC Yiot TNV amodelln oUyxAione tou poviéhou Hegselmann Krause
0eV umopoLY va egapuoctoly. To Tuyaloxpoutind poviéro Hegselmann Krause
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evéyel TNV eminpdo¥eTr SuoxoMa TN ACUUUETENG EMLEPOTC. 2XTO TUYOXEUTIXG
uovtéro Hegselmann Krause o mpdxtopog ¢ umopel vo emnpedlel tov mpdxtopa
J, €V 0 j vo unv emneedlel To mpdxtopa . A&iCel va onueiwdel e TéTol
aoLUUETEl OTNY ETLEEOT UETAE) TV TRoXTOpwY Bev Utopel vo utdpéet 6to Net-
work Hegselmann Krause model. Av xau tar Suvouixd cuothdato uéoou 6pou
TOU ETUTEENOUV TETOLN AOUPUETEIN GTOUC OUVTEAECTEC elvar TOAD BUXOAO va
avohudouv [37, 15], otny nepintwon tou tuyatoxpatixob Hegselmann Krause
XOUTUPEQOUE VOL ATOBELEOVUE TS TO UG TNUA CUYXAIVEL o8 GToER OMUElD e
UEYSEAN mdavoTnTa.
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CHAPTER 1.

EXTENDED ABSTRACT IN GREEK




Chapter 2

Introduction

2.1 The Big Picture

This thesis lies on the intersection of algorithmic game theory, dynamical
systems and convex optimization. These areas admit beautiful connections
that have lead to many fertile results over the years. The «motivating um-
brella» of our study comes from the world of opinion formation. The latter
means that all the considered settings thay may be non-cooperative games,
dynamical systems or even combinatorial optimization problems relate to
proposed models on the way people form their opinions. Before deeping into
the details of the opinion formation context, we briefly introduce the above
mentioned connections and how they relate to our work.

Games, Equilibrium and Efficiency

The tremendous success of game theory is based on the fact that most aspects
of everyday’s life can be efficiently captured by appropriate non-cooperative
games. In a non-cooperative game, each agent selects an action from a set
of posible actions so as to maximize her payoff which is a function of her
selected action and the selected actions of the others. The exact definition of
the action sets and the payoff functions depends on each specific setting. For
example in games modelling traffic networks, the action set of an agent is the
set of paths from a destination node to a target node, while her cost' is the
travel time that normally depends on the number of agents usings edges of
her selected path. In games modelling the opinion formation process, each
agent selects an opinion? so as to minimize a disagreement cost function that

!The payoff is the cost multiplied by —1.
2Typically an opinion is a number in [0, 1].
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also depends on the other agents’ opinions. When all players have chosen
actions such that they simultaneously maximize their payoff (none of them
can increase her payoff by selecting a different action), then we say that the
system has reached a Nash Equilibrium.

One can easily find games (even with 2 agents) in which Nash Equilibrium
does not exist if the agents have to deterministically select their actions (pure
strategies). However as John F. Nash proved in his celebrated theorem [116],
at least one Nash Equilibrium exists if the agents are allowed to select their
action according to a probability distribution over a finite action set (mixed
strategies). Unfortunately computing such equilibria is a computationally
hard task, since it was proven to be PPAD-complete even for the 2-agent
case [55, 39].

In an attempt to understand how efficient Nash Equilibria are in terms of
social payoff ?, Koutsoupias and Papadimitriou introduced the notion of Price
of Anarchy [101]. Price of Anarchy is the ratio between the maximum payoff
that the agents can acheive in total over the minimum total payoff acheived at
a Nash Equilibrium. Unfortunately this ratio can be arbitrarily high in gen-
eral, meaning that agents’ selfish nature can result in very bad outcomes for
the overall system. The need for designing systems that remain efficient even
under the impact of selfishness, lead in huge line of reseach studying the inef-
ficiency of equilibrium in various kind of games (see for example the very first
representatives [129, 48] of this research line concerning the price of anarchy
in congestion games). We follow this line through studying the price of an-
archy in opinion formation games with respect to the social disagreement cost.

Game-playing Strategies and Natural Dynamics

Nash Equilibrium has a static nature in the sense that it describes a steady
state of a multiagent system in which none is willing to deviate from. However
in most interesting settings agents do not play the game once and for all, but
they repeatedly play the same game over and over again e.g. the drivers of
a town play the same congestion game every morning of the year. In such
dynamic settings Nash Equilibrium does not provide answers neither to what
a selfish agent should do in order to maximize her long-term payoff nor to
what the dynamic behavior of the overall system will be.

The question on how agents should update their actions in order to
maximize their long-term payoff is tremendously hard and does not admit

3Social payoff typically measures the total happiness of the agents at an equilibrium
which is the total sum of the agents’ payoffs. However in several contexts they are also
other meaningful functions capturing the social payoff.
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a concrete answer. However there are some widely accepted game-playing
strategies based on the following natural principle: agents select the action
maximizing their payoff with respect to the past actions of the other agents.
The most intuitive forms of this principle is fictitious play proposed by Brown
in 1951 [27] and the best response strategy [62]. In the first case, agents select
the action that maximizes their payoff with respect to the actions of the
others in the whole history of the play, whearas in the best response strategy
the payoff - maximizing strategy is computed with respect to the actions of
the others agents in the previous round.

Having determined what is natural for a selfish agent to do in repeatedly
played games, the following question arises: If all agents update their accord-
ing to fictitious play or best response, does the system converges to Nash
Equilibrium? This very reasonable question has initialized a long line of re-
search about the convergence properties of such dynamics in games. Probably
the most celebrated result in this line of research dates back to the result of
Robinson proving that fictitious play converges to mixed Nash Equilibrium
in zero-sum games [125]. The study on the convergence properties of best
response dynamics has mainly focused on an important class of games, called
congestion games. This kind of games admit a potential function meaning
than whenever an agents changes her action for an action with better payoft,
the potential function increases by the same amount of the payoff-increase
[127]. The latter implies that any local minimum of the potential function is
also a Nash Equilibrium and that best response dynamics always converges
to equilibrium. Although computing Nash Equilibrium in congestion games
proved to be a computationally hard problem (PLS-complete) [68] mean-
ing that best response dynamics can take exponentially many rounds before
reaching an equilibrium, there are many positive results for its convergence
properties to approximate Nash equilibrium [112, 49, 46, 31, 30]. Moreover
best response dynamics is known to converge to Nash Equilibrium in polyno-
mial number of rounds for many important special cases of congestion games
[66, 123] or when the instance of the game is contaminated with random noise
[65, 4, 22]. Following this line of research, we provide convergence results for
both fictitious play and best response dynamics in various opinion formation
games.

No-regret Dynamics and Online Convex Optimization

Although both fictitious play and best response dynamics are very natu-
ral behavioral assumptions for selfish agents, one can argue that they do not
properly capture the behavior of fully rational agents. This critique is quite
fair since neither fictitious play nor the best response strategy provide guar-
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antees about the long-term payoff of the agents. This means that although a
myopic agent may select her actions according to them, a perspicacious agent
has no real reason to follow them. To this end a very important connection
between convex optimization and dynamics in games is revealed.

Surprisigly enough for a wide class of games, an agent can select her actions
according to algorithms develloped in the area of online convex optimization
and that do provide guarantees on her experienced payoff. These guarantees
hold no matter the way the other agents select their actions, while the
requirements for such an algorithm to exist are quite mild; convex action
set and convex payoff function [87]. The guarantees that such algorithms
provide, do not relate to the optimal payoff that an agent could aquire
by knowing the actions of the others up front and by selecting her best-
responding action at each round of the game. Obviously this is far too good
to be true! However such algorithms provide quite strong guarantees related
to the payoft of the best fixed action, which are formally expressed with the
notion of regret. The regret of an online convex optimization algorithm is the
time-averaged difference between the algorithm’s acquired payoof and the
payoff of the best fived action®. Algorithms with regret tending to zero as the
rounds of the game increase, are called no-regret. We remark that although
there are several no-regret algorithms (see [87] for an introduction to the
online convex optimization framework), the existence of such algorithms is
far from being trivial. In fact the first no-regret algorithm, the seminal Hedge
algorithm proposed by Hannan in 1957 [85], was a huge scientific surprise
that triggered a vast amount of interest towards the design of no-regret
algorithm. The interested reader can find a tiny subset of such algorithms in
[104, 142, 88, 21, 86, 69].

Apart from designing no-regret algorithms, the algorithmic game theory
community develloped a vast interest towards understanding the dynamic
behavior of systems in which agents play according to no-regret algorithms
[67, 78, 20, 33, 108, 5, 6, 119, 122, 115, 134, 110, 73, 133, 54, 56, 52|. For
example it is known that in n-person finite games, no-regret dynamics converge
to Coarse Correlated Equilibrium [73, 78, 133]. In [67] it was shown that
in a large class of games with infinite strategy spaces and concave utility
functions (socially concave games), no-regret dynamics converge to Pure Nash
Equilibrium. No-regret dynamics are also known to converge to the mixed
Nash Equilibrium of zero-sum games [54, 56] and to locally converge to the
mixed Nash Equilibrium of n-person finite generic games [52].

4The payoff of a fixed action is the aggregated payoff of the agent if she always played
this specific action at all rounds of the game. Notice that the payoff of an action may differ
from round to round since the other agents may change their action from round to round.
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Following this line of research we study the convergence properties of
no-regret dynamics in opinion formation games. We prove convergence to
Nash Equilibrium when agents update their opinions according to a seminal
class of no-regret algorithms, called Follow the Regularized Leader. We also
provide lower bounds on the convergence rate of no-regret dynamics.

Dynamical Systems and Distributed Convex Optimization

There exists a mutual relation between discrete-time dynamical systems
and distributed algorithms. The algorithmic design of distributed protocols
can be based on simple dynamical systems [97, 95, 12|, while at the same time
algorithmic ideas and techniques can be applied in analyzing the behavior of
dynamical systems [35, 14, 36]. Frequently these «algorithmic proofs of con-
vergencey admit a convex optimization flavor. For example in [44, 43, 40, 45]
dynamics in Fisher markets are analyzed through an equivalence with coordi-
nate descent methods. Since the main focus of this thesis is about the study
discrete-time dynamical systems that model the opinion formation process,
the connection between dynamics and convex optimization is apparent in a
great part of this work. The reason is that many considered opinion formation
games admit a convex potential function and thus establishing convergence
properties can be done via proving that the agents collectively find a minimum
of the potential function. As a result, gradient-based methods develloped in
the field of distributed convex optimization [13, 41] and stochastic gradient
descent methods [94, 131] served as irreplaceable conceptual tools in our work.

Multi-stage Combinatorial Optimization and Convex Optimization

The use of convex optimization techiques in the design of efficient com-
binatorial optimization algorithms has been a tremendous success. Over 30
years linear programming and semi-definite programming are used in the de-
sign of approximation algorithms [137], while more recently gradient-descent
methods were introduced in the design of competive online algorithms [28; 10].
These techniques seem to be the only way approach in a recent line of research
studying «classical» combinatorial optimization problems with data that
evolve over time [63, 3, 18]. In this kind of problems data admit different
values from stage to stage and the goal is to produce a time-varying solution
that is «relative stable»®, while remaining efficient at each separate round. For
example the authors in [63] study a dynamic version of the classical facility

5Typically this is measured with an additional switching cost quantifying the change of
the solution from stage to stage
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location problem in which the clients change positions from round to round.
This type of problems admit a very harsh combinatorial structure and thus
the only way for tackling them is via solving an appropriate convex program
(typically a linear program) and then rounding the fractional solution.

We adopt this approach to solve a multistage combinatorial optimization
problem related to the way a political party should select her public positions
over time so as to efficiently cover a set of opinion-changing voters. The
considered problem is a dynamic version of the classical k-median problem
where the requests are located in the real line, but their positions change over
time. We were able to provide a polynonial time algorithm that produces
an optimal solution via solving an appropriate linear program and efficiently
rounding the fractional solution on the time domain.

2.2 How Opinions are Formed?

The study on the way people form their opinions has a long history (see [92]).
Opinion formation is a dynamic process in which socially connected people
(family, friends, colleagues) exchange information and this leads to changes
in their expressed opinions over time. Today, the advent of the internet and
social media makes the study of opinion formation in large social networks
even more important; realistic models of how people form their opinions
by interacting with each other are of great practical interest for prediction,
advertisement etc. In an attempt to formalize the process of opinion formation,
several models have been proposed over the years [60, 79, 89, 59].

The common assumption underlying most of these models, which dates
back to DeGroot [60], is that opinions evolve through a form of repeated
averaging of information collected from the agents’ social neighborhoods.
Initially each agent holds a value that represents her initial opinion. At each
round, all agents simulataneously average their opinion with the opinions of
the other agents, leading to a dynamics of the opinions. The coefficients of
this averaging rule may differ from agents to agent and in fact may change
over time. We remark that the precise definition on how these coefficients are
formed is defined in each specific model. This general modelling framework is
summarized up next.
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Averaging Framework

1: n agents.
2: ;(0) € [0, 1], agent’s ¢ initial opinion.
3: At round t > 1, each agent i updates her opinion:

B(t) = X pit)es(e = 1)

where p;;(t) > 0 and >°7_, pi;(t) = 1

Example 2.1. In the DeGroot model the coefficients are time invariant,
pij(t) = pi; [60]. In the Hegselmann Krause model each agent averages her
opinion with the opinions that are at distance at most 1 from her current
opinion [89].

At a first glance such averaging systems may seem naive and thus incapable
of modelling complex natural processes such as the opinion formation. This
is far from being true! There exists both empirical and theoretical evidence
indicating that averaging systems admit a lot of expressive power.

From the empirical point of view, a strong indication about this expressive
power is that diverse phenomena are efficiently captured by averaging systems
similar in spirit with the ones describing the opinion formation process.
Notable examples come from collective animal behavior such as bird flocking
[36, 124], fish schooling [118, 121] and firefly flashings [111]. Other interesting
applications include the aggregation of measurements in sensor networks data,
the evolution of cell populations and the coordination of heart pacemaker
cell signals [34]. Moreover experimental studies on the formed opinions of
villagers in India about the price of the crops, have verified the predictive
power of these opinion formation models [7].

From the theoretical point of view, this expressive power is indicated by
the fact that such systems can solve computational problems! For example
in [12], the community detection problem is solved through the use of a
distributed algorithm based on a simple averaging system. Moreover such
averaging systems can even simulate Turing machines [34]! Other interesting
algorithmic applications of averaging systems can be found in [95, 97].

This wide range of applications has created an intense scientific interest
towards the convergence properties of such averaging systems [35, 14, 117,
93, 29, 81, 23, 25, 103, 105]. More precisely, this line of research tries to shed
light on the following question:

When do such averaging systems converge to stable points?
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Unfortunately the above question does not admit a concrete answer. Such
averaging models are analyzed more or less in an ad-hoc way and the ideas and
techniques may substantially differ. Although there are results characterizing
the convergence properties for classes of averaging systems [91, 105, 35], there
is not a unified theory describing their dynamic behavior. In fact slight
variations on the models may lead to totally different convergence properties.

This thesis mainly focuses on the convergence properties of generalizations
of the Friedkin Johnsen model and the Hegselmann Krause model which are
averaging systems modelling the opinion formation process. Both the FJ
model and the HK model were seminal in the opinion dynamics literature and
their convergence properties have been extensively studied (both of them are
known to converge to stable points relatively fast). We study several natural
extensions of the above-mentioned models incorporating issues and limitations
arising on the way people form opinions and that have been disregarded by the
original models. Our extensions render the previous known results inapplicable
and thus our work contributes in further understanding their properties.

2.3 Friedkin Johnsen Model and Opinion Forma-
tion Games

One of the most influential models for opinion formation is the one proposed
by Friedkin and Johnsen in 1990 [79]. The F.J model was initially proposed
as a variant of the DeGroot model, capturing the fact that consensus on the
formed opinions of a social group is rarely reached.

According to FJ model each person i has a public opinion z; € [0, 1] and
an internal opinion s; € [0, 1], which is private and invariant over time. There
also exists a weighted graph G(V, E, w) representing a social network. The
set of nodes V' stands for the agents and the set of edges E for their social
relations. The weight w;; of an edge (,j) € E is assumed to be positive
w;; > 0 and quantifies the influence that agent j poses on agent 7. Finally
each agent ¢ admits a positive weight w; > 0 that measures the confidence of
the agent to her internal opinion. Initially, all nodes start with some public
opinions and at each round ¢, update their public opinion z;(t) to the weighted
average of the public opinions of their neighbors and their internal opinion.
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Friedkin Johnsen model

A weighted graph G(V, E, w).

s; € [0, 1], agent’s i internal opinion.

z;(0) € [0, 1], agent’s 7 initial opinion.

w; > 0, agent’s ¢ confidence to her internal opinion.
At round ¢t > 1 each agent ¢ updates her opinion:

>z WigZi(t — 1) + wys;

i(t) =
zilf) D g Wi + w;

The FJ model has a very simple update rule, making it plausible for
modeling natural behavior and its basic assumptions are aligned with empirical
findings on the way opinions are formed [2, 102, 7]. At the same time, it
admits a unique stable point * to which it converges with a [inear rate no
matter the initial opinions [81].

In their seminal work Bindel, Kleinberg and Oren introduced a game
theoretic viewpoint of the FJ model [17]. They interpreted its update rule
as the minimizer of a quadratic disagreement cost function and based on it
they defined the following opinion formation game: Each agent 7 is a selfish
agent whose strategy is the public opinion z; that she expresses, incurring
her a disagreement cost

Ci(l’i, ZL’_Z') = wa(xz — xj)z + U)z(l’z — SZ')Z (21)
j#i

Under this perspective, F.J model is the simultaneous best response dy-
namics and its stable point x* is the unique Nash Equilibrium of this game.
We remark that in [17], a more comprehensive framework for modelling the
opinion formation process was introduced. Instead of modelling the opinion
formation as a precise dynamical process, one can capture the exact same
aspects by an appropriate opinion formation game. The evolvement of the
opinions over time can be modelled as the dynamic behavior of the selfish
agents when iteratively play such an opinion formation game. This modelling
approach offers a fruitful level of abstraction since various opinion dynamics
(for the same opinion formation game) can be produced by considering natural
game-playing strategies such as best response dynamics, no regret dynamics,
fictitious play etc.

There exists a large amount of literature concerning the FJ model. In [81]
it was proven that FJ model always admits a unique stable point to which
it converges with linear rate no matter the initial public opinions. In [17]
where the respective opinion formation game was introduced, they quantified
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the inefficiency of Nash Equilibrium with respect to the total disagreement
cost. They proved that the Price of Anarchy is 9/8 in case w;; = wj;. They
also provided PoA bounds in the case of unweighted Eulerian directed graphs.
Latter works [15, 47, 38] extended the PoA bounds to other graph families and
to more general disagreement cost functions. [140, 70, 16] introduced variants
of the FJ model in which the strategy space of the agents is either O or 1
(capturing binary opinion settings such as referendums) and examine their
convergence properties. In [32] a variant of the FJ model is examined, where
each agent selects her public opinion so as to minimize the maximum distance
of her internal opinion and the opinions of her neighbors. Moreover the social
neighbors are not static, but depend on the expressed public opinions. Another
recent line of research concerns combinatorial problems for influencing the
stable point of the F.J model [82, 1, 114].

2.4 Hegselmann Krause Model

A very common social phenomena is the so-called opinion polarization. Fre-
quently people form opinion groups in which members of the same group
share almost the same opinion, whereas opinions of members of different
groups are quite far away. The reason for this polarization is fairly simple:
People with similar opinions tend to develop social relations. At the same
time, people with totally different opinions interrupt their relations.

In 2002 Hegselmann and Krause proposed a model for opinion formation
that captures this general intuition in a very straightforward way: at each
round each agent averages her opinion with the opinions close to hers [89].
More specifically, the HK model assumes the existence of n agents each one of
which as an initial opinion z;(0) € [0, 1]. At each round, each agent averages
her current opinion with the opinions of the other agents within distance
€ > 0. The parameter ¢ denotes how eager the agents are towards adopting
different opinions.

The Hegselmann Krause model

1: n agents.
2: x;(0) € [0, 1], agent’s ¢ initial opinion.
3: At round t > 1 each agent ¢ updates her opinion:

ZjeNi(t) ffj(t - 1) + %‘(t - 1)
[N;(t)] + 1

z;(t) =

where N;(t) ={j #i: |zt —1)—z;(t — 1) < ¢}
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The HK model admits an infinite number of stable points: any partition
of the agents to opinion clusters with distance greater than ¢ is a stable point.
Moreover the HK model always reaches such an opinion cluster in finite time
[91, 105, 113] and there are also upper bounds on the number of rounds
needed for this to happen [107, 135, 14]. The state of the art result due to
Bhattacharyya et al. is O(n®) [14]. More recently, it was shown that there
are instances in which HK model needs at least 2(n?) rounds in order to
converge [139], while closing this gap remains an interesting open question.

The HK model has attracted the attention of different scientific com-
minities such as theoretical computer science, physics, operation research
and control theory. The amount of scientific work concerning variants and
generalizations of the HK model is so large that we list the results most
relavant to this thesis. The authors in [105, 91, 35] provide convergence
results for generalizations of the HK model. In [37] it was proven that a
generalized version of the HK model with partially stubborn agents, converges
to equilibrium. Moreover, there has been significant experimental work on
the convergence properties on variants of the HK model and on confidence
levels that are sufficient or necessary for consensus [72, 106].

2.5 Problems Considered in this Thesis

In this section we present the problems considered in this thesis. The major
part of our work concerns generalizations of the previously presented Friedkin
Johnsen and Hegselmann Krause model. In Sections 2.5.1 and 2.5.2 we intro-
duce our generalizations of the Friedkin Johnsen model, while in Sections 2.5.3
and 2.5.4 we introduce our generalizations of the Hegselmann Krause model.
In Section 2.5.5, we present our results concerning the facility reallocation
problem [58], which is a dynamic version of the well-studied k-median problem
in which the requests change positions over time. Although this problem
may seem quite out of context with respect to the topic of opinion dynamics
and opinion formation games, it admits a very natural motivation on how
political parties should assign public opinions to their members so as to
efficiently represent voters with dynamically changing opinions over time.
Before presenting each considered setting, we briefly discuss the common
framework of imperfect information that is present in all the considered opin-
ion dynamics and formation games and the connection of our results with
ideas and techniques of convex optimization.
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Imperfect Information

A recent line of research studies multiagent systems in settings where agents
act under imperfect information. The latter means that the agents may not be
aware of the overall state of the system and may have to decide their actions
according to a small piece of information revealed to them. A very illustrative
example, clarifying the notion of imperfect information, comes from the world
of traffic networks. In the classical game-theoretic way of modelling, agents
are assumed to play a congestion game where they select a path in the network
based on the congestion of the paths in the previous round [98]. Here the
following information exchange assumption is made: the agents learn at the
end of each round the congestion of all paths. But how reasonable is this? In
most practical settings, an agent only learns the congestion of the path that
she selected and uses only this information to select a new path in the next
round [99]. Obviously the exact form of imperfect information depends on
the information exchage constraints that each specific setting poses and may
take different forms from setting to setting [90, 53, 109, 26, 52, 98, 99].

In the context of opinion dynamics and opinion formation games, imper-
fect information takes a very natural and concrete form. When an opinion
formation model (such as the F.J model or the HK model) assumes that an
agent averages her opinion with the opinions of some other agents, it implicitly
assumes that a social interaction among them was performed (the agents met,
dicussed etc.). The problem is that such interactions usually come with a cost
in realistic settings and this has been ignored by the proposed opinion models
to greater or lesser extend. As a result, imperfect information in the context
of opinion formation process means that an agent learns a limited amount of
opinions of other agents, possibly much fewer than the opinions of her overall
social circle. We remark that our extensions are motivated by various natural
social phenomena, however all the examined opinion dynamics respect the
above information exchange constraints.

Opinion Dynamics through Convex Optimization

The ideas and techniques develloped in the context of convex optimization
proved to be a very powerful tool for many of the results that we subsequently
present. Although the most straightforward application of these techniques
appears in the design of a polynomial time algorithm for the facility real-
location problem (see Section 2.5.5), the most interesting ones come up in
Sections 2.5.1 and 2.5.2. In these sections the convergence properties of
extensions of the F.J model are analyzed through the use of through the use
of recent gradient descent methods.
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The relation between the FJ model and gradient descent methods comes
out in various levels. At first, a step of the F.J model is equivalent to a step
of the Newton method [24] applied to the quadratic function

CI)([EZ', IE_i) = Z w”(m, — JZj)Q + Z wz(xl — Si)2 (22)
(i.j)EE eV

which was identified by Bindel, Kleinberg and Oren as a potential function of
their game [17]. As a result, one can prove that F.J model converges to Nash
Equilibrium by proving that Netwon method with unit step size converges
to the unique minimizer of the convex potential function ®(z;,z_;). The
equivalence between converging to equilibrium and minimizing a potential
function via a gradient descent method appears in all of our convergence
results presented in Sections 2.5.1 and 2.5.2. For example in Section 2.5.2, we
were able to identify sufficient conditions for convergence in a generalization
of the FJ model with negative influences among the agents by requiring the
convexity of an appropriate potential function. Moreover in Section 2.5.1,
we used techniques develloped in the context of stochastic gradient descent
[94, 131] and distributed gradient descent [13, 41] to analyze variants of the FJ
model in imperfect information settings, where agents learn a small random
subset of the opinions or have some outdated knowledge about the opinions of
their friends. Finally the notion of no-regret develloped in the field of online
convex optimization, proved to be a very meaningful benchmark in order to
formally define natural behaviors for selfish agents in imperfect information
settings.

2.5.1 Random-Payoff Opinion Formation Games

As already mentioned both the FJ model and its respective opinion formation
game were very influential in modeling the opinion formation process. However
there are notable cases in which the FJ model does not appropriately describe
the dynamics of the opinions, due to the large amount of information exchange
that it implies. More precisely, at each round ¢ > 1 its update rule

Zj#i ’LUij.ﬁEj(t — 1) + W;S;

>z Wi + W

requires that every agent learns all the opinions the agents with w;; > 0! In
today’s large social networks where users usually have several hundreds of
friends it is highly unlikely that, each day they learn the opinions of all their
social neighbors. In such environments it is far more reasonable to assume
that individuals randomly meet a small subset of their acquaintances and
these are the only opinions that they learn.
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In order to capture the above motivation, we consider a random payoff
variant of the opinion formation game introduced in [17]. For a given opinion
vector © = (z;,x_;) € [0, 1]", the disagreement cost of agent i is the following
random variable C;(x;, x_;):

o Agent ¢ meets just one of her neighbors j with probability,
wij

2 ———

T Y wi

o Agent ¢ suffers cost
Ci(l'i, iL',i) = (1 — CYZ)(.CCZ — I’j)z -+ Oél'<.’ll'i — SZ')z,
where a; = w; /(X4 wij + w;).

This random payoff variant is based on the natural assumption that the influ-
ence between two individuals in a society is the frequency that these individuals
interact. It is not hard to see that for a given opinion vector (x;,x_;) € [0, 1]"
the expected disagreement cost of agent ¢ is proportional to the disagreement
cost of Equation 2.1 (i.e. E [Cj(x;, 1)) ~ X wij(z; — x;) + wi(w; — 5:)?).
As a result, the Nash Equilibrium of this random-payoff opinion formation
game (defined with respect to the expected disagreement cost) is the same
with the Nash Equilibrium of the opinion formation game defined in [17].
Moreover the simultaneous best response dynamics (with respect to the ex-
pected disagreement cost) is an instance of the F.J model.

Contribution

We study the convergence properties of natural and efficient dynamics in this
random payoff opinion formation game. By the term natural we mean that
the agents update their opinions in their effort to minimize their disagreement
cost. By the term efficient we mean that the update rule of the dynamics
respect the information exchange constraints of the game: at every round
each agent learns just the opinion of the agent that she randomly met.

Example 2.2. e The FJ model is natural: each agent selects the opin-
ton that minimizes her expected disagreement cost with respect to the
expressed opinions of her neighbors in the previous round.

e The FJ model is not efficient: in order to compute her best-response
opinion, agent i must know the opinions of all the agents with w;; >
0. Thus, this update rule does not respect the information exchange
constraints of random-payoff opinion formation game.
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Although the term efficient is very clear (learning just the opinion of the
randomly-met agent), the term natural is totally ambigous in this limited
information exchange setting. Since each selfish agent learns the opinion of
just one of her neighbors at the end of each round, it is not clear at all what is
natural for such an agent to do in her attempt to to minimize her individual
disagreement cost. The online convex optimization framework provides a very
concrete answer to what the agent can do in this limited information setting
and clarifies the word natural dynamics.

An agent can update her opinion so as the disagreement cost that she expe-
riences is smaller than the disagreement cost that she would experience by
expressing any fized opinion. This will hold no matter the opinions of the
randomly-met neighbors.

As already mentioned, the latter guarantee is refered as mo-regret in the
online convex optimization literature and the existence of such no-regret algo-
rithms had a vast influence on online decision making (see also [87] for an
introduction to online convex optimization).

In Chapter 3, we present a limited-information exchange variant of the FJ
model, called Follow the Leader dynamics which is both natural and efficient
in the above-presented sense. Its update rule requires only the opinion of
the randomly-met-agent, making it efficient. At the same time when an
agent uses this rule to update her opinion, she is ensured no-regret to her
experienced disagreement cost even if the opinions of the randomly-met agents
where selected by a malicious adversary. As already discussed, the no-regret
guarantee makes our rule a natural choice for selfish agents that are only
interested in their individual disagreement cost. We show that if this update
rule is adopted by all agents, then the produced opinion dynamics (Follow the
Leader dynamics) is e-close to Nash Equilibrium in O(1/¢%) rounds. We also
remark that this rule is fairly simple (roughly a time-average on the observed
opinions) and it is based on the Follow the Regularized Leader algorithm
develloped for online convex optimization problems [87]. Moreover Follow
the Leader dynamics comes as a very simple and intuitive limited-information
exchange variant of the original F\J model and its convergence property adds
robustness to the predictive power of the Nash Equilibrium z* € [0, 1] of
the FJ model.

We then ask whether there exists an update rule that ensures no-regret
and produces opinion dynamics with faster convergence rate. Motivated by
this question we discover a very interesting phenomena: every dynamics that
is at the same time both natural and efficient, needs at least Q(1/e) rounds to
be e-close to Nash Equilibrium. However this is not true for dynamics that
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are just efficient. We prove this lower bound on the convergence rate of such
dynamics through the use of an information-theoretic argument that connects
no-regret dynamics with the statistical estimation of the success probability
of a Bernoulli random variable.

We finally seek for update rules producing opinion dynamics that are just
efficient and that converge exponentially fast to Nash Equilibrium z*. We
remark that the existence of such dynamics is not excluded by the above lower
bound. Combining ideas from recent stochastic gradient descent methods
[94, 131] and from older distributed gradient descent methods [13], we design
an update rule that does not ensure the no-regret property (the produced
dynamics is not natural), but the produced dynamics is e-close to Nash
Equilibrium in O(log®(1/€)) rounds. The key idea is that learning the opinion
of just one randomly selected neighbor, can be seen as having access to an
oracle producing a random vector with expected value equal to the gradient
of the potential function ®(z;, z_;) of Equation 2.2. Our dynamics can be
seen as a distributed protocol that appropriately uses this «noisy gradient»
to minimize the potential function ®(z;,z_;) in as few rounds as possible.

2.5.2 Opinion Formation Games with Aggregation and Neg-
ative Influence

In many domains, public opinions are not only affected by local interactions
and personal beliefs, but also by influences that stem from global properties
of the opinions present in the society. People are getting exposed to global
trends, societal norms, results from voting and polling, etc., which are usually
interpreted as the consensus view of the society and may crucially affect
opinion formation. Furthermore, groups of people (or networks of agents)
often need to agree on a common action, even if their beliefs and/or their
expressed opinions are totally different. This might happen e.g., when some
network devices need to implement a common action, when people vote over
a set of alternatives, or when a wisdom-of-the-crowd opinion is formed in a
social network.

We capture such situations by assuming that an aggregation rule maps
the public opinions to a global opinion that represents the consensus view on
the issue at hand. The agents anticipate the impact of their public opinions
on the global one and might incorporate it in their opinion selection. This
means that the disagreement cost should also account for the distance of
an agent’s intrinsic belief to the global opinion. To address these issues, we
consider a generalization of the opinion formation game of [17] with opinion
aggregation. The strategy of each agent is her public opinion z; € R, while
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for a given public opinions vector x = (x;,z_;) € R" agent’s ¢ cost is
= wy(w 2+ wi(z; — 8:)® + ag(aggr(x) — s;)?
J#i

where aggr : R" — R maps the public opinion vector to an aggregated global
opinion and the weight a; > 0 quantifies the appeal of this global opinion
aggr(x) to agent ¢. As in the opinion formation game defined in [17], w;; > O
denotes the influence of that agent j poses on agent i and s; € [0, 1] the
internal opinion of agent 7.

Motivated by previous work on the wisdom of the crowd [92, Sec. 8.3,
[83], we concentrate on average-oriented opinion formation games, where the
aggregation rule aggr(z) is the average public opinion

n

avg(z) =Y z;/n

j=1

Contribution

The opinion formation game introduced in [17] is special case of the average-
oriented opinion formation game where all coefficients a; = 0. At a first
glance, the additional aggregation term seems not to have a major impact on
the properties of the game. This is far from being true! As we shall see in
Chapter 4, the presence of this simple aggregation term introduces negative
influence among the agents and this crucially affects both the PoA bounds
and the convergence properties of the simultaneous best response dynamics
(FJ model). The following example reveals that in average-oriented opinion
formation game even the existence of Nash Equilibrium is not guaranteed.

Example 2.3. Let the two-player average-oriented opinion formation game
with

e Wipg =wWe =0

e s5;=0and s, =1

In this instance Cy (1, x2) = (B522)? and Cy(x1,22) = (252 — 1)>. Thus

dc dCy( . .
1((1’;11’12) = 2t gnd 2;;1’12) = &t _ 1. Meaning that there is no vector

dCy (x5 ,x3) dC’z(xl,:c2)
d{l‘]

(z%,23) € R? such as =0 and = 0 at the same time. Since
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the strategy space of the agents is R, at any Nash Equilibrium, W =0
and 2@ 1’12) = 0. The latter implies that there is no Nash Equilibrium for

the above instance of the game.

As Example 2.3 illustrates, there are instances of the average-oriented
opinion formation game in which simultaneous best-response dynamics does
not converge since Nash Equilibrium does not even exist. Thus we examine
under which circumstances the nice properties of the FJ model are restored.
We provide general and intuitive conditions about the coefficients w;, cy; (see
Assumption 1 in Chapter 4) under which not only the existence of Nash
Equilibrium is guaranteed, but also simultaneous best response dynamics
converges fast to it. To provide the high level idea on how these conditions
are derived, we remark that when the game is symmetric i.e. w;; = w;; and
a; = «, the function

(i, w) wa "‘ij +O‘(Z -2« ZSJ%

j#i jev jev ” jev
(2.3)

serves as a potential function of the game, ®(x;, x_;)—P (2}, v_;) = Ci(zs, v—;)—
Ci(z}, z_;). The latter implies that any local minimum of ®(z;, z_;) (if such
exists) is a Nash Equilibrium of the game and vice versa. Moreover the
simulataneous best response dynamics corresponds to a step of the Newton
method in ®(z;,z_;). Roughly speaking, the role of the conditions stated in
Assumption 1 is to is to make ®(z;,z_;) convex so as the Newton method
converges to its unique minimizer. We highly remark that Assumption 1
does not require neither w;; = wj; nor o; = « for all agents ¢, meaning
that simultaneous best-response dynamics converges even if the potential
function of Equation 2.3 does not exist. Our first convergence result states
that under Assumption 1, simultaneous best-response dynamics is e-close to
Nash Equilibrium in O(n?logn/e) rounds.

The simultaneous best response dynamics in the average-oriented opinion
formation games implies even larger amount of information exchange than
the original FJ model. Now an agent must learn at each round not only the
opinions of her friends (w;; > 0), but also the average public opinion in order
to compute her best response. Obviously the average global opinion is an
expensive information to obtain in realistic settings and thus we examine an
outdated version of the simultaneous best response dynamics. Now agents
learn the opinions of their social neighbors at each round, but the average
public opinion is announced to them every now and then. At each round, the
agents compute their best response opinion with respect to the opinions of
her friends in the previous round and the most recently announced average
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public opinion. We show that similar convergence results hold even with
this apparent reduction in the information exchange. More precisely we
show that outdated simultaneous best-response dynamics is e-close to Nash
Equilibrium after O(n?logn/e) announcements of the average public opinion.
This result in based on techniques develloped in the context of distributed
gradient descent methods [13, 41]. In the distributed convex optimization
framework, n processors try to minimize a convex function of n variables
while each processors is responsible for a specific variable of the function.
The basic problem is that a processor may have outdated information about
the value of some variables due to intermediate updates of other processors.
The major difficulty in proving that outdated simultaneous best-response
dynamics converges to Nash Equilibrium despite the fact that agents have
outdated information about the average public opinion, is that the conditions
stated in Assumption 1 do not imply the existence of a potential function
of Equation 2.3 and thus reaching Nash Equilibrium is not equivalent with
minimizing a convex potential function.

The crucial difference between the opinion formation game introduced in
[17] and our average-oriented opinion formation game is that in the second
case there are equilibria in which some agents adopt opinions outside the
[0, 1] interval ([0, 1] is the interval in which the internal opinions s; lie). The
latter is an effect of the negative influence among the agents introduced by
the additional averaging term. Although assuming that the agents can select
any opinion in the real line is not by principle a bad assumption, there are
settings such as voting in which opinions must necessarily lie in a fixed range.
To cover such settings, we consider the restricted version of the game in which
the strategy space of the agents is the [0, 1] interval (and not the entire R).
We prove that under the conditions of Assumption 1, both the simultaneous
best response dynamics and its outdated variant converge to Nash Equilibrium
of the restricted version of the game.

Finally we turn our attention to the quality of Nash equilibrium in terms
of total disagreement cost. Using the Local Smoothness technique introduced
in [128], we show that in the unrestricted version of the game the Price of
Anarchy is 9/8 + O(a/(wn?)) if w; = w and «; = « for all agents 7. For the
restricted version, which is much harder to analyze, we show that the Price
of Anarchy is 3 + /2 if w; = a; = 1 for all agents 1.

2.5.3 Network Hegselmann Krause Model

As already discussed, the HK model had a vast influence on the study of
opinion formation. Howevever the model implicitly assumes something rather
questionable. Whenever two agents 4, j share similar opinions |z;(t) — z;(t)] <
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g, then there are mutually influenced. Apart from having similar opinions
individuals must be in sense socially connected in order to be influenced, at
least they must know each other!

We introduce a very straightforward generalization of the HK model to
capture the above issues. We assume the existence of an undirected graph
G = (V, F) in which V stands for the agents and E for the social relations
among them. In our generalization called Network HK model, each agent
averages her current opinion with the opinions of her neighbors in GG that are
e-close to hers.

Network Hegselmann Krause model
1: An undirected graph G = (V, E), |V| =n
2: z;(0) € [0, 1], agent’s ¢ initial opinion.
3: At round t > 1, each agent ¢ updates her opinion:

Yjeni) Ti(t — 1) + 2 (t — 1)
|Nz(t)’ +1

where N;(t) ={j #i: |zt —1)—z;(t — 1) < eand (i,5) € E}

The HK model is a special case of Network HK model when G is a clique.
Similarly with HK model, the Network HK model admits an infinite number
of stable points no matter the topology of G. Unfortunately the convergence
results of the HK model cannot be easily generalized. The proof of conver-
gence of the HK model heavily relies on the following fact: the ordering of
the agents from left to right according to their opinions is always the same!
[14, 19] This nice structure holds only when G is a clique and thus we devellop
different techniques to analyze the convergence properties of the Network HK
model.

Contribution

In Chapter 5, we show that Network HK model always converges to a stable
state. We consider the sequence of undirected graphs that represent the
influences among the agents at each round, G’ s edges whose endpoints have
opinions that are e-close. We then use the notion of weak connectivity, intro-
duced in [96], to prove that either the overall dynamical systems splits into
independent sub-systems or all the agents adopt the same opinion. Some of
our results coincide with results in [91, 105] concerning products of stochastic
matrices, however our approach provides simpler and more versatile proofs.
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2.5.4 Random Hegselmann Krause Model

In Section 2.5.1 we discussed about the large information exchange that the
FJ model requires, rendering it unsuitable for modeling the opinion formation
process in large social network. Things are much worse in the HK model
from this point of view. Now agents need to learn all the opinions in order to
determine which of the agents are in distance e. We capture these issues with
a straightforward variant called Random HK model: Each agent randomly
meets k other agents and averages her opinion with those opinions that are
e-close to hers.

Random Hegselmann Krause model

1: n agents.

2: ;(0) € [0, 1], agent’s ¢ initial opinion.

3: At round ¢ > 1, each agent i:
4: selects k other agents uniformly at random, R;(t) C [n].
5: updates her opinion,

o jenn Ti(E— 1) + @it — 1)
nill) = IN:(£)] + 1
where N;(t) ={j #i: |z;(t — 1) —z;(t — 1) <eand j € R;(t)}

Contribution

In Chapter 5, we show that Random HK model always reaches a stable
state. As in Network HK model, the ordering of the agents (according to
their opinions) is not preserved and as a result the techniques for proving
convergence in the original HK model do not apply. Random HK model
involves an additional difficulty, since it employs asymmetric influence be-
tween the agents (it may be an agent ¢ influences agent j, while j does not
influence i) and averaging systems that permit directionality are notoriously
difficult to be analyzed [37, 15]. As in the case of Network HK model, we
use a suitably adjusted notion of weak connectivity to prove that with high
probability either the system splits into independent sub-systems or all the
agents adopt the same opinion.

2.5.5 Reallocating Facilities on the Line

In Chapter 6, we present our results concerning a dynamic version of the
well-studied K-median problem called K-facility reallocation problem that
was introduced in [58].
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In the K -facility reallocation, K facilities are initially located at (29, ..., z%)
on the real line. Facilities are meant to serve n agents for the next T' days. At
each day each agent connects to the facility closest to its location, incuring
her a connection cost equal to their distance. The locations of the agents may
change from day to day and thus facilities have to accordingly move in order
to reduce the connection cost. Naturally, moving a facility is not for free, but
comes with the price of the distance that the facility was moved. Our goal is
to specify the exact positions of the facilities at each day so that the total
connection cost plus the total moving cost is minimized over all T" days.

A very motivating application of the K -facility reallocation comes from
the world of opinion selection. Assume that a political with K candidates
wants to win the next T elections. The opinions of the voters are points of
the real time that may change from time to time. A party would like to
adjust the expressed opinions of its candidates so as to represent as many
voters as possible. A voter is more likely to vote for the party at the ¢-th
elections if is at least one of its representatives expresses an opinion similar
to the voter’s opinion at that time. However politicians with constantly
changing opinions may not be taken seriously by the public and this should
be taken into account by the party. As a result, the party should assign opin-
ions to its candidates so as to efficiently cover the political spectrum and at
the same time its candidates do not dramatically change their public positions.

Contribution

We resolve the computational complexity of K-facility reallocation problem
on the real line. In Capter 6, we present an optimal algorithm with running
time polynomial in the parameters n, T and K. This substantially improves
on the complexity of the algorithm, presented in [58], that is exponential in
K. Our algorithm solves a Linear Programming relaxation and then rounds
the fractional solution to determine the positions of the facilities. Our main
technical contribution consists in showing that a simple rounding scheme
yields an integral solution with the exact same cost as the fractional one.

Related work

We can cast the K -facility reallocation problem as a clustering problem on a
temporally evolving metric. From this point of view, K -facility reallocation
problem is a dynamic K-median problem. A closely related problem is the
dynamic facility location problem, [63, 3]. Other examples in this setting are
the dynamic sum radii clustering [18] and multi-stage optimization problems
on matroids and graphs [84]. In [80], a mobile facility location problem was
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introduced, which can be seen as a one stage version of our problem. They
showed that even this version of the problem is N P-hard in general metric
spaces using an approximation preserving reduction to K-median problem.
Online facility location problems and variants have been extensively stud-
ied in the literature, see [74] for a survey. [61] studied an online model, where
facilities can be moved with zero cost. As we have mentioned before, the
online variant of the K -facility reallocation problem is a generalization of the
K -server problem, which is one of the most natural online problems. [100]
showed a (2K — 1)-competitive algorithm for the K -server problem for every
metric space, which is also K-competitive, in case the metric is the real
line [11]. Other variants of the K-server problem include the (H, K)-server
problem (9, 8], the infinite server problem [51] and the K -tazi problem [71, 50].
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Chapter 3

Random-Payoff Opinion
Formation Games

In this chapter we present our results on random-payoff opinion formation
games. We introduced this kind of games in our work [75] in order to capture
the fact that people form opinions by just learning a small number of their
social circle. Such issues have not been considered in the original F\J model
[79] and its respective opinion formation game [17].

We are interested in the convergence properties of simple and natural
variants of the F'.J model that use limited information exchange. More precisely,
each agent learns just one opinion of the other agents at each round. To
address these questions, one could define precise dynamical processes whose
update rules satisfy these information exchange requirements and study their
convergence properties. But what is the modelling power of such processes?
How can we formally define what natural means in order to rule out complex
algorithmic distributed protocols that certainly have nothing to do with the
way people form opinions?

Instead of proposing ad-hoc models that resemble the FJ model to a bigger
or a lesser extend we adopt a more structured approach. We introduce a
random-payoff variant of the opinion formation game defined in [17], capturing
the fact that each agent meets just one other agent, and we assume that
agents iteratively play this game. This way we can define as natural variants
of FJ, update rules that minimize in some sense the disagreement cost of the
agents and to study general classes of dynamics (e.g. no-regret dynamics)
without explicitly defining their update rule.

47
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3.1 Random-Payoff Opinion Formation Games

According to the opinion formation game of Bindel, Kleinberg and Oren [17],
each agent 7 expresses an opinion x; so as to minimize her disagreement cost

(i, w) =) wi(w )2 4+ w;i(w; — 54)° (3.1)

VE

Since the FJ model is the best response dynamics of this game, this opinion
formation game inherits all of its modelling and predictive power on the way
opinions are formed. However at a first glance something fairly unreasonable
seems to be introduced: each agent i somehow interacts with the all the
agents with w;; > 0 in order to experience this disagreement cost. But how
this is done if this number is of several hundreds for each agent?

Random-payoff games provide a simple and intuitive fix to the above
critism. An agent ¢ randomly meets just one of her friends and the weight
w;; describe the probability of meeting her friend j. Now Equation 3.1 can
be interpreted as the expected disagreement cost that an agent experiences.
This comes along with the general belief that we are influenced more by those
we interact more often. The above discussion is formally captured in the
random-payoff game of Definiton 3.1. In these games the disagreement cost
of agent i for expressing the opinion z; is random variable C;(z;, x_;) whose
expected value is given by Equation 3.1.

Definition 3.1. For a given opinion vector v = (x;,x_;) the cost of each
agent i is the random variable C;(z;,x_;) defined as follows:
e Fach agent i randomly meets just one agent W;,
wij
2 j#i Wi
o Faxperiences disagreement

Ci<CCZ‘,[L’_Z‘) = (1 - Oél)(l'z - ZL’WZ.)Z + OZZ‘(ZL’Z' - SZ')Z

where o; = wi/(zjﬂ wij + w;).

The random-payoff game of Definition 3.1 introduces a higher of abstrac-
tion. Both the FJ model and the game in [17] (see Equation 3.1) can be
obtained by assuming that the agents are interested in minimizing the ex-
pected disagreement cost. More precisely consider that the agents iteratively
play the random-payoff game of Definition 3.1. Let’s assume that at the
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end of each round somehow each agent is informed about the opinions of
the others. If the agents update their public opinion so as to minimize their
expected disagreement in the next round based on the opinions that they
learned, then FJ model comes out! At the same time let the opinions of the
agents be the unique Nash Equilibrium z* of the original opinion formation.
Let us assume that the agents are able to change their opinions before the
random meetings take place. Then nobody change her opinion because this
would increase her expected disagreement cost during the random meetings.
This also reveals that the Nash Equilibrium z* of the game in [17] (stable
point of F.J model) is also a meaningful notion in our random-payoff opinion
formation games.

Definition 3.2. An opinion 2* = (z},z*,) € [0, 1|" is a Nash Equilibrium if
and only if for each agent 1

E [C’Z(:pf,x*_z)} >E {Ci(mi,m*_i)} for every z; € [0,1]

Random-payooff games provides us with a holistic framework for studying
the opinion formation proccess under the modelling principles of Friedkin and
Johnsen. The agents are assumed to repeatedly play the game of Definition 3.1
and at the end of each round they update their opinions so as to minimize
their disagreement cost. The exact way this updating is performed and the
exact assumption on what the agents know about the opinions of the others,
leads to different opinion dynamics however all the them respect the modelling
principles that Friendkin and Johnsen initially posed. Obviously the most
natural thing to consider is that the agents learn at each round only the
opinion of the randomly-met-agent and then use this information to minimize
their disagreement cost, but we highly remark that this framework does not
prohibit someone to consider different information exchange assumptions.

Throughout this chapter, we consider that at each round each agent learns
only the opinion of her randomly-met-agent. But now the following question
arises.

Question 1. What is reasonable for the agents to do with such little infor-
mation in order to minimize their disagreement cost?

Clearly the natural choice of best response (that F.J model assumes) is no
longer an option since the agents do not know enough in order to compute it.
However there is something much more reasonable than best response that
the agents can do. They can select their opinions according to a no-regret
algorithm for the following online convex optimization problem:

Definition 3.3. At round ¢ > 0,
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1. the agent selects a value x; € [0, 1].

2. the adversary observes the x; and selects a b; € [0, 1]

3. the agent receives cost (1 — ay)(x; — by)? + (2 — 84)2.
where b, € [0, 1]

Each agent i is very eager to update her opinion according to such a no-regret
algorithm because such algorithms guarantee that the disagreement cost that
the agent experiences during the game play is close to the disagreement cost
that she would experience by selecting the best fized opinion during the whole
game play. In Section 3.4 we formally present the no-regret guarantees and a
brief introduction to the online convex optimization framework.

Our work studies the opinion dynamics when the agents update their
opinion according to such no-regret algorithms. More precisely we shed light
on the following questions:

Question 2. e What is the limiting behavior the opinions if such algo-
rithms are adopted by the agents?

o Are there simple update rules such that

— no-regret is ensured to any agent that adopts them.

— the overall system converges to the Nash Equilibrium x*.

We present a very simple and intuitive update rule that meets the requirements
of Question 2. It ensures no-regret to any agent that adopts and the same
time the produced dynamics converges to Nash Equilibrium x*. These results
are formally stated and proven in Theorem 3.2 and Theorem 3.1 respectively.
We then prove that any opinion dynamics produced by update rules that
ensure no-regret to the agents cannot have much faster convergence rate,
whereas we find an update rule that does not ensure no-regret to the agents,
but its produced dynamics converge to the Nash Equilibrium of the game
exponentially fast.

3.2 QOur Results

Before presenting our results we introduce some necessary notation. For
simplicity we adopt the following notation for an instance of the game of
Definition 3.1.
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Definition 3.4. We denote an instance of the opinion formation game of
Definition 3.1 as triple I = (P, s, «), where

e P is an xn stochastic matriz.
e 5€10,1]" is the internal opinion vector.

e a € (0,1]" the self confidence vector.

Corollary 3.1. For a given instance I = (P,s,a) the Nash equilibrium
x* € [0, 1]" is the unique solution of the following linear system:

x; = (1 —ou) Y pix; + ais;, for every agent i
j#i

The proof of Corollary 3.1 follows directly by the definition of Nash
Equilibrium (Definition 3.2) though some simple algebra, while the fact that
the above linear system always admits a solution follows by matrix norm
properties. Throughout the chapter we study dynamics of the random-payoff
game of Definition 3.1. We denote as W} the neighbor that agent i met
at round ¢, which is a random variable whose probability distribution is
determined by the instance I = (P,s,«) of the game, P[W/} = j] = p;;.
Another parameter of an instance I that we often use is p = min;ey «;.

In Section 3.3, we examine the convergence properties of the opinion
vector z(t) when all agents update their opinions according to the Follow the
Leader principle. Since each agent i must select x;(t), before knowing which
of her neighbors she will meet and what opinion her neighbor will express,
this update rule says «play the best according to what you have observed».
The convergence rate of Follow the Leader dynamics to the unique Nash
Equilibrium z* is stated and proven in Theorem 3.1.
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Follow the Leader dynamics

1: Initially z;(0) = s; for all agents i.

2: At round t > O each agent ¢:
3: Meets neighbor with index W} where P [W/} = j] = p;;
4: Suffers cost disagreement cost

(1 — ;) (wi(t) — 2y (1) + ai(wi(t) — i)

and learns the opinion wy(t).
5: Updates her opinion as follows

zi(t+1) = argmin Y (1 — o)(z — 2wr (7))* + @iz — 5;)° (3.2)

m€[071] 7=0

Theorem 3.1. Let I = (P,s,«) be an instance of the opinion formation
game of Definition 3.1 with equilibrium z* € [0,1|". The opinion vector
x(t) € [0, 1]" produced by update rule (5.2) after t rounds satisfies

(log 1)/

E [Jla(t) — 2%lloc] < Cy/logn iz

where p = mingey a; and C' is a universal constant.

In Section 3.4 we argue that, apart from its simplicity, update rule (3.2)
ensures no-regret to any agent that adopts it and therefore the FTL dynamics
can be considered as natural dynamics for selfish agents. Since each agent @
selfishly wants to minimize the disagreement cost that she experiences, it is
natural to assume that she selects z;(t) according to a no-regret algorithm for
the online convex optimization problem where the adversary chooses a function
fi(x) = (1—a;)(x—b)®+ai(x—s;)? at each round ¢. In Theorem 3.2 we prove
that Follow the Leader is a no-regret algorithm for the above OCO problem.
We remark that this does not hold, if the adversary can pick functions from a
different class (see e.g. chapter 5 in [87]).

Theorem 3.2. Consider an arbitrary sequence (by)°, and the function f :
[0,1]* — [0, 1] with f(x,b) = (1 — a)(x — b)®> + a(x — 5)* for some constants
s,a € [0,1]. Then for all t > 0,

1< 1 4 logt
— < — 1 — .
; > f(xr,b,) < 7 o Tg Of(ac,bf) +0 ( )

7=0 t

where x, = argmin, ¢ ) 3720 f(x,b-)
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On the positive side, the FTL dynamics converges to x* and its update
rule is simple and ensures no-regret to the agents. On the negative side,
its convergence rate is outperformed by the rate of FJ model. For a fixed
instance I = (P, s, ), the FTL dynamics converges with rate O(1/¢™n(»1/2))
while FJ model converges with rate O(e™**) [81].

Question 3. Can the agents adopt other no-regret update rules such that the
resulting dynamics converges fast to x*?

The answer is no. In Section 3.5, we prove that fast convergence cannot
be established for any no-regret dynamics. The reason that FTL dynamics
converges slowly is that rule (3.2) only depends on the opinions of the neighbors
that agent ¢ meets, «;, and s;. This is also true for any update rule that
ensures no-regret to the agents (see Section 3.5). We call the larger class of
update rules that do not use the values p;; graph oblivious (this class includes
all the no-regret algorithms) and we prove that fast convergence cannot be
established for any graph oblivious dynamics.

Definition 3.5 (graph oblivious update rule). A graph oblivious update rule
A is a sequence of functions (A;)2, where A : [0, 1]772 — [0, 1].

Definition 3.6 (graph oblivious dynamics). Let a graph oblivious update rule
A. For a given instance I = (P, s,«) the rule A produces a graph oblivious
dynamics x4(t) defined as follows:

o Initially each agent i selects her opinion z:1(0) = Ao(s;, ;)

i
e At roundt > 1, each agent i selects her opinion

z(t) = Ar(zwo(0), ...,z (t — 1), 85, )

1

where W} is the neighbors that i meets at round t.

Note that FTL dynamics is a graph oblivious dynamics since update
rule (3.2) can be written equivalently, z;(t) = (1 — a;) X0 _g zwr (1) /t + ;.
Theorem 3.3 states that for any graph oblivious dynamics there exists an
instance I = (P, s, ), where roughly ©(1/¢) rounds are required to achieve
convergence within error ¢.

Theorem 3.3. Let A be a graph oblivious update rule, which all agents use
to update their opinions. For any ¢ > O there exists an instance I = (P, s,a)
such that

E [[lza(t) — 27|loc] = Q(1/£7),

where x4(t) denotes the opinion vector produced by A for the instance I =
(P, s, ).
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To prove Theorem 3.3, we show that graph oblivious rules whose dynamics
converge fast imply the existence of estimators for Bernoulli distributions
with «small» sample complexity. The key part of the proof lies in Lemma 3.6,
in which it is proven that such estimators cannot exist. We also briefly discuss
two well-known sample complexity lower bounds from the statistics literature
and explain why they do not work in our case.

In Section 3.6, we present a simple update rule that achieves error rate
e OWVD_ This update rule is a function of the opinions and the indices of the
neighbors that ¢ met, s;, ; and the i-th row of the matrix P. Obviously this
rule is not graph oblivious, due to its dependency on the i-th row and the
indices, and thus does not ensure no-regret to an agent that adopts it (see
Example 3.1 in Section 3.6). However it reveals that slow convergence is not
a generic property of the limited information dynamics, but comes with the
assumption that agents act selfishly.

3.3 Convergence Rate of FTL Dynamics

In this section we prove Theorem 3.1 which bounds the convergence time of
FTL dynamics to the unique equilibrium point z*. At first notice that the
update rule (3.2) of FTL dynamics can be equivalently written in the form of
update rule (3.3).

Follow the Leader dynamics

1: Initially z;(0) = s; for all agents i.

2: At round t > O each agent i:
3: Meets neighbor with index W} where P [W} = j] = p;;
4: Updates her opinion as follows

o 7wy (7)

zi(t) = (1 — o) ; + a;s; (3.3)

Since the opinion vector z(t) is a random vector, the convergence metric
used in Theorem 3.1 is E [||z(t) — 2%||] where the expectation is taken
over the random meeting of the agents. The proof of Theorem 3.1 is quite
technically complicated so we first present the high level idea. We remind
that the unique equilibrium z* € [0, 1]™ of the instance I = (P, s, «) satisfies
the following equations for each agent i € V/,

xp = (1 — o) Y pias + s
j#i
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Since our metric is E [||z(t) — 2*||], we can use the above equations to bound
|z:(t) = 27].

t—1
it — 2] = (1= aq) |FEED S g
J#i
o LWT = jlz;(r) ‘
SICETS]) pp>= LU LTLIN
J#i J#i

< (1 . ai) Z Zi;l() I[WZT = j]ZL‘](T)

J# t

*
= PijT;

> o Wi =] I
Now assume that |===———= — p;;| = 0 for all ¢ > 1, then with simple

algebraic manipulations one can prove that ||z(t) — 2*||oc < e(t) where e(t)
t—1

satisfies the recursive equation e(t) = (1 — p)M, where p = mina,. It

follows that ||z(f) —2*||c < 1/t” meaning that () converges to z*. Obviously

the latter assumption does not hold, however since W/ are independent
) t—1 W™= .
random variables with P [W] = j] = p;;, ]ZT:%[J] — pij| tends to O with
probability 1. In Lemma 3.1 we use this fact to obtain a similar recursive
equation for e(t) and then in Lemma 3.2 we upper bound its solution.

Lemma 3.1. Let 6(t) = \/ln(wzntz/Gp)/t and e(t) the solution of the recur-

ston with 1
eft) = (1) + (1 — p) == 7

where e(0) = ||z(0) — 2*|| w0, and p = min;ey «;. Then,
Pforallt > 1, ||z(t) — 2%l <e(®)] > 1—p

Proof. At first we prove that with probability at least 1 — p, for all £ > 1 and
all agents i:

< \/log(wzntz/@p)) = 8(t). (3.4)

t—1 ZL’*
T=0"WT *
—— =) Dijj
t Z J 9 t

J#

Since W] are independent random variables with P[W] = j| = p;; and

E [x“;vf} = ;= Dijx;. By the Hoeflding’s inequality we get

t—1 %
7=0 xWi" %
ot 2Pt
VE

P

> 5(75)] < 6p/(m*nt?).
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To bound the probability of error for all rounds ¢ > 1 and all agents i, we
apply the union bound

t—1 ¥
T=0 "W
t Zpljx

VE

o0

2P

6 172
LRSS

=1

max > 0t

<y

=1 T

3\"3

As a result with probability at least 1 — p we have that inequality (3.4) holds
for all t > 1 and all agents i. We now prove our claim by induction. Let
|2(7) — 2*||o < e(7) for all 7 <t — 1. Then

t—1
Twr
zi(t) = (1 — ai)TOtVV() T oys;
Ty + el
<(1—qy) S ; —ocl7) + ais; (3.5)
o Ty t-1
(1_041)( (; W +ZT(;6( ))—i_alsl

<26t +(1—p) (Toff(ﬂ>

t

We get (3.5) from the induction step and (3.6) from inequality (3.4). Similarly,

we can prove that z;(t) > zf—4d(t)—(1— p)M Asaresult ||z(t)—z*||o <
e(t) and the induction is complete. Therefore, we have that with probability
at least 1 — p, ||z(t) — 2*||oo < e(t) for all t > 1.

m
Lemma 3.2. Let e(t) be a function satisfying the recursion
t—1
e(t) =0(t) + (1 —p) X_e(r)/t and (0) = [|(0) — ||,
7=0
where §(t) = /In(Dt2°)/t, 6(0) = 0, and D > €*° is a positive constant.

Then
(Int)3/2

Proof. Observe that for all ¢ > 0 the function e(t) the following recursive
relation

e(t+1) = e(t) (1 - p) Lot 1) — o) + 20 (3.7)

t+1 t+1
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For t = 0 we have that
e(1) = (1 —p)e(0)+ (1) = (1 —p)e(0) + VIn D (3.8)

Observe that for D > 625 d(t) is decreasing for all ¢ > 1. Therefore,
5(t+1) —6(t) + 2 < 2W and from equations (3.7) and (3.8) we get that for

all £ >0 t+1 — t+1
p In(D(t+ 1)?) \/2 In(D
e(Hl)ge(t)(l_H 1) (t+1)32 < elt) (1 t+ 1) (t+ )3/2
Now let g(t) = % to obtain for all ¢ > 1
eft) < (1= Delt = 1) + g(0)
< (1= - Lelt—2)+ (1= Dglt = 1) + g0
s<1—f>-~<1—p>e<o>+§g<7>,_n (-5

S tp _|_ Z g pzz:7+l %
T7=1

< eig) " Zg e PUH—Hy)
T7=1
e(0)  _
< tertt Zg(f)epHT
<€ 0) , o
— tp 7—3/2
t
< e(0 ) \/ Z Vint
tP 73/2—p

We observe that

\/ In7 vV 11’17’ 29
7-3/2 p /‘r 1 T73/2— p ( : )
since, T — 5, is a decreasing function of 7 for all p € [0, 1].

o If p<1/2 then

£,V
/ anT< Vint / —dT— (Int)3/2

73/2
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o If p>1/2 then

/t 7_p\/lmT / p—1/2 lan
= T= 1

73/2

=3 Tp 1/2((1n7')3/2) dr

2 2 rt
= ngp_l/z(hﬂzf)?’/2 —(p— 1/2)§/ Tp_3/2(1n7)3/2d7
T=1

%t” 2(Int)3/2

w

Now Theorem 3.1 follows by direct application of Lemma 3.2.

Theorem 3.1. Let I = (P, s,«a) be an instance of the opinion formation
game of Definition 3.1 with equilibrium z* € [0,1|". The opinion vector
x(t) € [0, 1]" produced by update rule (5.2) after t rounds satisfies

3/2

logt
[”CL’( )—l‘ ||0<> <O\/ tmm 4min(1/2,p) °

where p = min;ey a; and C' is a universal constant.

Proof. By Lemma 3.1 we have that for all £ > 1 and p € [0, 1],
Plllz(t) — 27l <ep(t)] 2 1 —p

t—1
where e,(t) is the solution of the recursion, e,(t) = d(t) + (1 — p)w

with §(t) = /BT - Qetting p = 507 we have that

Plllz(t) — 2"l <e(f)] 21—

1
12/t
. . . Ztil ep(T)
where e(t) is the solution of the recursion e(t) = d(t) + (1 — p)==4+—

with 6(¢) = w Since 272 > €*°, Lemma 3.2 applies and e(t) <

logt
C Vl1og nasgays for some universal constant C'. Finally,

* foam 081 o llogt)
E[||lz(t) — 27| o) < 12\/_ 12\/_ )C tmmpl/2 < C+ ) logntmm(p’l/z)

]
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3.4 Follow the Leader Ensures No-Regret

In this section we provide rigorous definitions of no-regret algorithms and
explain why update rule (3.2) ensures no-regret to any agent that repeatedly
plays the game of Definition 3.1. Based on the disagreement cost that the
agents experience, we consider an appropriate online convex optimization
problem. This problem can be viewed as a «game» played between an
adversary and a player. At round t > 0,

1. the player selects a value z; € [0, 1].
2. the adversary observes the x; and selects a by € [0, 1]
3. the player receives cost f(xy,by) = (1 — a)(zy — by)? + oz — 5)%.

where s, a are constants in [0, 1]. The goal of the player is to pick x; based
on the history (b, ...,b;_1) in a way that minimizes her total cost. Generally,
different OCO problems can be defined by a set of functions F that the
adversary chooses from and a feasibility set IC from which the player picks
her value (see [87] for an introduction to the OCO framework). In our case
the feasibility set is K = [0, 1] and the set of functions is Fs, = {z —
(1 —a)(x—b)>+ alz—s)*>:be0,1]}. As a result, each selection of the
constants s, a leads to a different OCO problem.

Definition 3.7. An algorithm A for the OCO problem with Fs, and K =
[0, 1] is a sequence of functions (A;)2, where Ay : [0, 1]F — [0, 1].

Definition 3.8. An algorithm A is no-regret for the OCO problem with Fs 4
and IC = [0, 1] if and only if for all sequences (b;)2, that the adversary may
choose, for allt > 1

t t

> flze,br) < min > f(x,b,) + oft)

= z€0,1] 7=

where xy = A(bo, ..., bi—1)

Informally speaking, if the player selects the value x; according to a no-
regret algorithm then she does not regret not playing any fixed value no matter
what the choices of the adversary are. Theorem 3.2 states that Follow the
Leader i.e. x; = argmin, g S f(x, by) is a no-regret algorithm for all the
OCO problems with Fj .

Returning to the dynamics of the game in Definition 3.1, it is reasonable
to assume that each agent i selects z;(t) according to no-regret algorithm A;



60 CHAPTER 3. RANDOM-PAYOFF OPINION FORMATION GAMES

for the OCO problem with Fj, ,,, since by Definition 3.8,

2 ) mr (7)) <

The latter means that the time averaged total disagreement cost that she
suffers is close to the time averaged cost by expressing the best fixed opinion
and this holds regardless of the opinions of the neighbors that ¢ meets. Meaning
that even if the other agents selected their opinions maliciously, her total
experienced cost would still be in a sense minimal. Under this perspective
update rule (3.2) is a rational choice for selfish agents and as a result FTL
dynamics is a natural limited information variant of the F.J model.

We now present the key steps for proving Theorem 3.2. We first prove that
a similar strategy that also takes into account the value b, admits no-regret
(Lemma 3.3). Obviously, knowing the value b, before selecting z; is in direct
contrast with the OCO framework, however proving the no-regret property
for this algorithm easily extends to establishing the no-regret property of
Follow the Leader.

Lemma 3.3. Let (b)2, be an arbitrary sequence with by € [0, 1]. Then for
allt > 1

t t
> fyrbr) < min > f(z,r)
7=0 z€[0,1] 7=0

where y, = argmin,c (o 1) Xr—o f(2,b7).
Proof. By definition of y;, S _, f(y:, br) = mingefo, 1] St flx,by), so

t

t t
Zf(y7'7b7‘ - ren[(l)nl Zf r,b;) Z (Y-, br) Z (ye, b
7=0 =0
Z y‘m Z yta
< Z (Y-, b Zf Yi—1,b
7=0

The last inequality follows by the fact that y,, = argmin, o} 3725 f (2 br)
Inductively, we prove that >t f(yr, br) < mingep) Sb_g f(2,br). ]

Now we can understand why Follow the Leader admits no-regret. Since the
cost incurred by the sequence y; is at most that of the best fixed value, we can
compare the cost incurred by x; with that of y;. Since the functions in ¥ , are
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quadratic, the extra term f(x,b;) that y, takes into account doesn’t change
dramatically the minimum of the total sum. Namely, x;, 1, are relatively
close.

Lemma 3.4. For all t > 0, f(z,b,) < f(ye, br) + 2552 + ((;f‘))j.

Proof. We first prove that for all ¢,

1l —«o

Ty — < .
|t yt|_t+1

(3.10)

t—1 t
By definition z; = as + (1 — &)# and y; = as + (1 — C“)%'

t t+1
lp. —th
:<1_ )ZT:OT t
t(t—l—l)
1l —«o
—t+1

The last inequality follows from the fact that b, € [0,1]. We now use
inequality (3.10) to bound the difference f(zy, b)) — f(yz, bt).

f(e,b) = oy — )2 + (1 — o) (z — p)*
< aly — s)> + 2y, — s||xe — ye| + |y — yf?
+ (1= a)(ye — ) +2(1 = ) [ye — wel |z — wel + (1 — @) 2y — el
< f(yebe) + 2 2 — ye| + ye — $t|2
l-a (1—-a«)?

< b 2
< f(ye,br) + 1 + t+1)

We are now ready to prove Theorem 3.2.

Theorem 3.2. Consider an arbitrary sequence (by):°, and the function f :
[0, 1] — [0, 1] with f(x,b) = (1 — a)(x — b)®> + ax — s)* for some constants
s,a € [0,1]. Then for all t > 0,
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Proof. Theorem 3.2 easily follows by Lemma 3.3

t

Zf(xT,bT>sio Yrs b +202 Z )

7=0

2

< min Zf z,yr) +2(1 —a)(logt + 1 )—1—(1—04)7;2

z€[0,1]

< min Zf z,y;) + O(logt)

z€[0,1]

]

3.5 Lower Bound for Graph Oblivious Dynamics

In this section we prove that any no-regret dynamics cannot converge much
faster than FTL dynamics produced by update rule (3.2). This is formally
stated in Theorem 3.3 which applies to the more general class of graph
oblivious dynamics.

Definition 3.9 (no-regret dynamics). Consider a collection of no-regret
algorithms such that for each (s,a) € [0,1]* a no-regret algorithm As,'for
the OCO problem with Fs, and K = [0, 1], is selected. For a given instance
I = (P,s,a) this selection produces the no-regret dynamics x(t) defined as
follows:

e Initially each agent i selects her opinion x;(0) = Ag"™ (s, ;)
e At roundt > 1, each agent i selects her opinion

l",(t) = Afi’ai(.’BWio(O), . ,CUW_tﬂ(t — 1), Si, ai)

where W} is the neighbors that i meets at round t.

Such a selection of no-regret algorithms can be encoded as a graph oblivious
update rule. Specifically, the function A; : {0,1}*? — [0, 1] is defined as
Ay(bo, ... b1, 8,00) = AL (bo,...,b—1). Thus, Theorem 3.3 applies and
establishes the existence of an instance I = (P, s, «) such that the produced
x(t) converges at best slowly to z*. For example if agents use the Online

! These s, a are scalars in [0, 1] and should not be confused with the internal opinion
vector s and the self confidence vector a of an instance I = (P, s, ).
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Gradient Descent? to update her opinion i.e.

1

zi(t+ 1) = z;(t) — NG (zi(t) = (1 = a)ape (t) — cus;)

Then we are ensured that fast convergence cannot be established in the
respective no-regret dynamics.

The rest of the section is dedicated to prove Theorem 3.3. In Lemma 5.2
we show that any graph oblivious update rule A can be used as an estimator
of the parameter p € [0, 1] of a Bernoulli random variable. Since we prove
Theorem 3.3 using a reduction to an estimation problem, we shall first briefly
introduce some definitions and notation. For simplicity we will restrict the
following definitions of estimators and risk to the case of estimating the
parameter p of Bernoulli random variables. Given ¢ independent samples
from a Bernoulli random variable B(p), an estimator is an algorithm that
takes these samples as input and outputs an answer in [0, 1].

Definition 3.10. An estimator 0 = (0,)52, is a sequence of functions, 0, :
{0, 1} — o, 1].

Perhaps the first estimator that comes to one’s mind is the sample mean,
that is 6, = le X;/t. To measure the efficiency of an estimator we define
the risk, which corresponds to the expected error of an estimator.

Definition 3.11. Let P be a Bernoulli distribution with mean p and P! be the
corresponding t-fold product distribution. The risk of an estimator 6 = (6;)22,
18

Exxo~p [10:(X0, - Xp) = p]
which we will denote by E, [|0:(X1, ..., X:) —p|] or E, [|6; — p|] for brevity.

The risk E, [|0; — p|] quantifies the error rate of the estimated value
p=6,(Y1,...,Y:) to the real parameter p as the number of samples ¢ grows.
Since p is unknown, any meaningful estimator = (6;)72, must guarantee
that lim;,o E, [|6; — p|] = O for all p. For example, sample mean has error
rate E, [|6; — p[] < 537

Lemma 3.5. Let A a graph oblivious update rule such that for all instances
I =(P s, a),
lim t'"E [||z4(t) — %]« = O.

t—o00

2 Online Gradient Descent is an influential no-regret algorithm proposed by Zinkevic in
[142] for the general OCO problem, where the adversary can select any convex function
with bounded gradient. The latter directly implies that it also ensures no-regret in our
simpler OCO problem with F, ., and K = [0, 1].
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Then there exists an estimator 04 = (0{)32, such that for all p € [0, 1],
limy 0 t°E,, [|0 = p|| = 0.

Proof. We construct an estimator 84 = (61)2, using the update rule A.

Consider the instance I, described in Figure 3.1. By straightforward com-
putation, we get that the equilibrium point of the graph is x} = p/3, 2} =
p/6+1/2 25 = p/6. Now consider the opinion vector x 4(t) produced by the
update rule A for the instance I,. Note that for ¢ > 1,

o 2i(t) = Ay(2.(0),. .., 2. (t — 1),1,1/2)
o 28 (t) = Ay(2.(0),...,2.(t —1),0,1/2)
o 2l(t) = A(zwe(0),..., zy(t —1),0,1/2)

The key observation is that the opinion vector z 4(t) is a deterministic func-
tion of the index sequence W2, ... W!~! and does not depend on p. Thus,
we can construct the estimator 04 with (W2, ... Wi1) = 3z2(t). For
a given instance I, the choice of neighbor W! is given by the value of the
Bernoulli random variable with parameter p (P[W! = 1] = p). As a result,

E, (|6 — pl| = 3E [|zA(t) — p/3|] < SE[||lza(t) — 2*|lc]. Since for any in-
stance I, we have that lim; o t'T°E [||xa(t) — 2*||] = O, it follows that
limy 00 t'°E, [\6;4 — p” =0 for all p € [0, 1].
O e W
1 1—p

ay=1/2,5, =1 a.=1/2,5.=0 ap=1/2,50=0

Figure 3.1
O

In order to prove Theorem 3.3 we just need to prove the following claim.

Claim 3.1. For any estimator 6 = (6,)72, there exists a p € [0, 1| such that
limyo0 t1*°E, |6, — p] > 0.

The above claim states that for any estimator 6 = (6;)2°,, we can inspect
the functions 6; : {0,1}" — [0,1] and then choose a p € [0, 1] such that
the function E, [|0; — p|]] = Q(1/t'1¢). As a result, we have reduced the
construction of a lower bound concerning the round complexity of a dynamical
process to a lower bound concerning the sample complexity of estimating the
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parameter p of a Bernoulli distribution. The claim follows by Lemma 3.6,
which we present at the end of the section.

At this point we should mention that it is known that Q(1/£?) samples
are needed to estimate the parameter p of a Bernoulli random variable within
additive error €. Another well-known result is that taking the average of the
samples is the best way to estimate the mean of a Bernoulli random variable.
These results would indicate that the best possible rate of convergence for
an graph oblivious dynamics would be O(1/+/t). However, there is some fine
print in these results which does not allow us to use them. In order to explain
the various limitations of these methods and results we will briefly discuss
some of them. We remark that this discussion is not needed to understand
the proof of Lemma 3.6.

The oldest sample complexity lower bound for estimation problems is the
well-known Cramer-Rao inequality. Let the function 6, : {0, 1}* — [0, 1] such
that E, [0;] = p for all p € [0, 1], then

E,[(0,—p)?] > p“tp). (3.11)
Since E, [|0; — p|] can be lower bounded by E, [(f; — p)?*] we can apply the
Cramer-Rao inequality and prove our claim in the case of unbiased estimators,
E, [0:] = p for all t. Obviously, we need to prove it for any estimator 6,
however this is a first indication that our claim holds.

Sample complexity lower bounds without assumptions about the estimator
are usually given as lower bounds for the minimaz risk, which was defined *
by Wald in [138] as

i E,[|6, — pl].
min max B, |6, — pl]

Minimax risk captures the idea that after we pick the best possible algorithm,
an adversary inspects it and picks the worst possible p € [0, 1] to generate
the samples that our algorithm will get as input. The methods of Le’Cam,
Fano, and Assouad are well-known information-theoretic methods to establish
lower bounds for the minimax risk. For more on these methods see [141, 136].
As we stated before, it is well known that the minimax risk for the case of
estimating the mean of a Bernoulli is lower bounded by €(1/+/t) and this
lower bound can be established by Le Cam’s method. In order to show why
such results do no work for our purposes we shall sketch how one would apply
Le Cam’s method to get this lower bound. To apply Le Cam’s method, one
typically chooses two Bernoulli distributions whose means are far but their

3 Although the minimax risk is defined for any estimation problem and loss function,
for simplicity, we write the minimax risk for estimating the mean of a Bernoulli random
variable.
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total variation distance is small. Le Cam showed that when two distributions
are close in total variation then given a sequence of samples X,..., X; it is
hard to tell whether these samples were produced by P; or . The hardness
of this testing problem implies the hardness of estimating the parameters of
a family of distributions. For our problem the two distributions would be
B(1/2 —1/+/t) and B(1/2 + 1/+/t). It is not hard to see that their total
variation distance is at most O(1/t), which implies a lower bound Q(1/v/%)
for the minimax risk. The problem here is that the parameters of the two
distributions depend on the number of samples t. The more samples the
algorithm gets to see, the closer the adversary takes the 2 distributions to
be. For our problem we would like to fix an instance and then argue about
the rate of convergence of any algorithm on this instance. Namely, having an
instance that depends on ¢ does not work for us.

Trying to get a lower bound without assumptions about the estimators
while respecting our need for a fixed (independent of t) p we prove Lemma 3.6.
In fact, we show something stronger: for almost all p € [0, 1], any estimator 6
cannot achieve rate o(1/t'7¢). More precisely, suppose we select p uniformly
at random in [0, 1] and run the estimator § with samples from the distribution
B(p), then with probability 1 the error rate E, [|6; — p|] = Q(1/t7°).

Lemma 3.6. Let 0 = (6;)2, be a Bernoulli estimator with error rate
E, (|0, — p|]. For any ¢ > 0, if we select p uniformly at random in [0, 1]
then

}3&““% [16: — pl] >0
with probability 1.

Proof. Since 6; is a function from {0, 1}* to [0, 1], 6; can have at most 2¢
different values. Without loss of generality, we assume that 6, takes the same
value 0;(z) for all € {0,1}" with the same number of 1’s. For example,
05({1,0,0}) = 05({0,1,0}) = 03({0,0,1}). This is due to the fact that for
any p € [0, 1],

0<i<t ||z|1=i - o<i<t

t—1

p'(1—p)

For any estimator # with error rate E, [|f, — p|] there exists another estimator
¢’ that satisfies the above property and E, [|0; — p|] < E,[|6; — p|] for all
p € [0, 1]. Thus, we can assume that 6, takes at most ¢ + 1 different values.
Let A denote the set of p for which the estimator has error rate o(1/t'*¢),
that is

A={pel0,1]: }LfglotHCEp [16; — p|] = O}.
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We show that if we select p uniformly at random in [0, 1] then P [p € A] = 0.
We also define the set

= {peo,1]:forall t >k, t'"°E,[|6, — p|] < 1}.

Observe that if p € A then there exists £, such that p € A; , meaning that
ACURZ, Ak. As a result,

o0

Z p € Ayl

pc U Ay,
k=1

Ppe Al <P

To complete the proof we show that P[p € A;] = O for all k. Notice that
p € Ay implies that for ¢t > k, the estimator  must always have a value 60;(7)
close to p. Using this intuition we define the set

By ={pe€0,1]:forall t >k, t“cormgt 10:(i) — p| < 1},

We now show that A, C By. Since p € A, we have that for all t > k

¢ i e [t , ; _Z.
£ min |60,(7) - pl Z ( ) p) TSy <Z> 10,(4) — p|p'(1 — p)’

=0
=t""E, [|6: — pl]
=1

Thus, P[p € Ay] < Pp € By]. We write the set By, as
- ) : . ) — 1+c
= tDk{p € [0,1]: Join. 10,(i) — p| < 1/t

As a result,

Plpc B <P {()Igjgt 10,(6) — p| < 1/8"¢] for all £ > k.

2 2 2
tite ti+e ti+e

L L 1 AN 4 1 AY L 1 AY ]

0 et(o) Qt(l) e et(t) 1

Figure 3.2: Estimator output at time ¢
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Each value 6,(i) «coversy length 1/t'*¢ from its left and right, as shown in
Figure 3.2, and since there are at most ¢ 4+ 1 such values, by the union bound
we get

Plpe By <2(t+1)/t'" forall t > k

We conclude that P [p € By| = 0. O

Remark 3.1. The only point that we use that the update rules are graph
oblivious is in Lemma 5.2. It is not difficult to see that the reduction still
holds if the update rules also depend on the indices of the neighbors that an
agent meets. As a result, Theorem 3.3 still applies.
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3.6 Limited Information Dynamics with Fast Con-
vergence

We already discussed that the reason that graph oblivious dynamics suffer slow
convergence is that the update rule depends only on the observed opinions.
Based on works for asynchronous distributed minimization algorithms [13, 42],
we provide an update rule showing that information about the graph G
combined with agents that do not act selfishly can restore the fast convergence
rate (update rule (3.12)). Our update rule depends not only on the expressed
opinions of the neighbors that an agent ¢ meets, but also on the i-th row of
matrix P. We have already mentioned that while this update rule guarantees
fast convergence it does not guarantee no-regret to the agents, see Example 3.1.
Agents that select their opinions according to this rule may experience regret
if some other agents play adversarially.

In update rule (3.12), each agent stores the most recent opinions of the
random neighbors that she meets in an array and then updates her opinion
according to their weighted sum (each agent knows row i of P). For a
given instance I = (P, s, «) we call the produced dynamics Row Dependent
dynamics.

Row Dependent dynamics

1: Initially x;(0) = s; for all agent i.
2: Each agent i keeps an array M; of length |N;|, randomly initialized.
3: At round t > O each agent i:

4: Meets neighbor with index W} where P [W} = j] = p;;

5: Suffers disagreement cost

(1= ) (i(t) — 2y (1)” + ailzs(t) — 5:)°

and learns the opinion wy:(1).
6: Updates her array M; and her opinion as follows:

MW 2y (1)

J#i

The problem with this approach is that the opinions of the neighbors that
she keeps in her array are outdated, i.e. the opinion of a neighbor of agent
¢ has changed since their last meeting. The good news are that as long as



70 CHAPTER 3. RANDOM-PAYOFF OPINION FORMATION GAMES

this outdatedness is bounded we can still achieve fast convergence to the
equilibrium. By bounded outdatedness we mean that there exists a number
of rounds B such that all agents have met all their neighbors at least once
from t — B to t. The latter is formally stated in Lemma 3.7.

Remark 3.2. Update rule (5.12), apart from the opinions and the indices
of the neighbors that an agent meets, also depends on the the exact values of
the weights p;; and that is why Row Dependent dynamics converge fast. We
mention that the lower bound of Section 3.5 still holds even if the agents also
use the indices of the neighbors that they meet to update their opinion, since
Lemma 5.2 can be easily modified to cover this case. The latter implies that
any update rule that ensures fast convergence would require from each agent 1
to be aware of the i-th row of matriz P.

Lemma 3.7. Let p = min; a;, and 7;;(t) be the most recent round before
round t, that agent i met her neighbor j. If for allt > B, t — B < m;;(t) then,
forallt > kB,

lz(t) = 27[loe < (1= p)*

In Row Dependent dynamics there does not exist a fixed length window
B that satisfies the requirements of Lemma 3.7. However we can select a
length value such that the requirements hold with high probability. To do
this observe that agent ¢ simply needs to wait to meet the neighbor j with
the smallest weight p;;. Therefore, after log(1/0)/min; p;; rounds we have
that with probability at least 1 — ¢ agent 7 met all her neighbors at least
once. Since we want this to be true for all agents, we shall roughly take
B = 1/miny, o pij.

In the rest of the section we give the detailed argument that leads to
Theorem 3.6, showing that the convergence rate of update rule (3.12) is fast.

Theorem 3.6. Let [ = (P, s,a) be an instance of the opinion formation
game of Definition 3.1 with equilibrium z* € [0, 1]" and let p = miny a;.
The opinion vector z(t) € [0, 1]" produced by update rule (3.12) after t rounds
satisfies

E [H.T(t) . x*Hoo] < 2efpmin¢jp¢j \/Z/(4ln(nt)).

We are now going to state and prove a series of lemmas that culminate in
the proof of Theorem 3.6.
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Proof of Lemma 5.7. To prove our claim we use induction on k. For the
induction base k = 1,

|i(t) — 27| = [(1 = i) Y pigla(mi(t)) — )]

<(1-— CYi)ZpiﬂIj(Wz‘j(t)) — 2}
<(1-p)

Assume that for all t > (k — 1)B we have that ||z(t) — 7%l < (1 — p)* 1.
For k > 2, we again have that

|i(t) — 27| < (1= p) D pijla;(mi;(t)) — ]
i
Since t — B < m;j(t) and t > kB we obtain that m;;(t) > (k — 1)B. As a
result, the inductive hypothesis applies, |z;(m;(t)) — 23] < (1 — p)*~' and
|2i(t) — 7| < (1= p)~. O

We now turn our attention to the problem of calculating the size of window
B, such that with high probability all agents have outdatedness at most B.
We first state a useful fact concerning the coupons collector problem.

Lemma 3.8. Suppose that the collector picks coupons with different probabil-
ities, where n is the number of distinct coupons. Let w be the minimum of
these probabilities. If he selects Inn/w + c/w coupons, then:

1
P [collector hasn’t seen all coupons] < —
e

Lemma 3.9. Let m;;(t) be the most recent round before round t that agent i
met agent j and B = 2In(%)/ min; p;;. Then with probability at least 1 — 6,
for all T > B and for all i,j # 1

T—B <m(r)<7—1.

Proof. For simplicity we denote w = min,; p;;. Consider an agent 4 at round
7 > B where B = 2In(%)/w and assume that there exists an agent j € N;
such that m;;(7) < 7 — B. Agent i can be viewed as a coupon collector that
has buyed B coupons but has not found the coupon corresponding to agent
J. Since N; < n and minjy; p;; > w by Lemma 3.8 we have that

o

P [there exists j € N; s.t. m;;(7) <7 — B] < —t

n
The proof follows by a union bound for all agent ¢ and all round B < 7 < t.
O
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By direct application of Lemma 3.7 and Lemma 3.9, we obtain the following
corollary that will be useful in proving Theorem 3.6.

Corollary 3.2. Let z(t) the opinion vector produced by update rule (3.12)
for the instance I = (P, s, «), then with probability at least 1 — ¢

) — 2t <e| -l
Jo(t) =l < o 21n<¢;>>

where p = min;ey ;.

Proof. Let B = 2In(%)/min;; p;;. By Lemma 3.9 we have that with proba-
bility at least 1 — ¢, for all 4,5 € N; and for all 7 > B,

T — B < m;(7)

As a result, with probability at least 1 — ¢ the requirements of Lemma 3.7
are satisfied, meaning that

_ ptming; pij)

(1) = o < (1= p)F < (50000

We can now prove Theorem 3.6 using the previous results.

Theorem 3.6. Let [ = (P, s,a) be an instance of the opinion formation
game of Definition 3.1 with equilibrium z* € [0,1]" and let p = minecy a;.
The opinion vector x(t) € [0, 1]" produced by update rule (3.12) after t rounds
satisfies

E [H.T(t) _ :U*Hoo] < 2€—pminijpij \/i/(4ln(nt)).

Proof. Let u(t) = ||x(t) — 2*|| and w = min;; p;;. From Corollary 3.2 we

obtain:
eor=(-22)
5

for every probability § € [0, 1]. Also, since all the parameters of the problem
lie in [0, 1], we have

E [u(t)|u(t) >7r] <1
Now, by the conditional expectations identity, we get:

E [u(®)] = E [u(t)|u(t) > r]P[u(t) > r] + E [u(®)[u(t) < r]Pu(t) <7
<d+r
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_21n(%t) 2Innt

pw\/t pwt
Elu(t) <e <_21nnt> e <_21n(’?)>

We now evaluate r for our choice of probability d:

- B pwi
" 2m (g))
pwt

2 ((“))

pwt
2Innt + 22%

21Innt

<e et wt
- 41n(nt)\/t
pw \/t
= c —
41n(nt)
Using the previous calculation, we obtain:

E [u(t)] < e (—j &;@) +e (‘fﬁ(ﬁ)

= (‘ffﬁ(ﬁ))

= 2e (| —pminp;; Vi
B P p”4ln(nt)

where r = e( ”wt). If we set :e(—p““/z), then:

N——

]

Example 3.1. The purpose of this example is to illustrate that the update
rule (3.12) does not ensure the no-regret property. If some agents for various
reasons exhibit irrational or adversarial behavior, agents that adopt update
rule (3.12) may experience regret. That is the reason that Row Dependent
dynamics converge exponetially faster that any no-regret dynamics incluing
the FTL dynamics.
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Consider the instance of the game of Definition 5.1 consisting of two
agents. Agent 1 adopts update rule (5.12) and has s, = 0,a; = 1/2,p1o =1
and agent 2 plays adversarially. Thus, sg, g, pay don’t need to be specified.
By update rule (3.12), x1(t) = xo(t — 1)/2 and thus total disagreement cost
that agent 1 experiences until round t is

O ;(atl(t) )P =Y ;xz(t 124 ;(;xg(t S 1) — o)

7=0 2 7=0

Since agent 2 plays adversarially, she selects xo(t) = O if t is even and 1
otherwise. As a result, the total cost that agent 1 experiences is th:o éxl(t)z +
S(z1(t)—xa(t))? =~ 3t/8. Now agent 1 regrets for no adopting the fized opinion
1/3 during the whole game play. Selecting x,(t) = 1/3 for all t, would incur
him total disagreement cost >.\_y 2(1/3)% + 3(1/3 — x5(t))* ~ 7t/36 which
is less than 3t/8.



Chapter 4

Opinion Formation with
Aggregation and Negative
Influence

In this chapter, we present our results on the average-oriented opinion for-
mation games. This kind of games consist a generalization of the opinion
formation games [17] and were introduced in our work [64] in order to cap-
ture the fact that opinions are oftently affected by global social trends and
phenomena. A more comprehensive introduction on this kind of games can
be found in Section 2.5.2.

4.1 Average-Oriented Opinion Formation Games

Average-Oriented opinion formation games consist of n selfish agents in which
the strategy of each selfish agent ¢, is the opinion z; that she publicly expresses.
For a given opinion vector z = (z;, z_;), each agent i experiences disagreement
cost

Ci(x) = Y wij(z; — 2:)* + wiz; — 8,)* + ay(avg(z) — s;)* (4.1)
j#i
where
e s; € [0, 1] denotes the internal opinion of agent i.
o avg(z) is the average public opinion, avg(r) = >°7_, x;/n.

e w; > 0 is the self-confidence of agent ¢ towards her internal opinion s;.

75
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e w;; > 0 is the influence that agent j poses on <.

e «a; > 0 measures ¢’s sensitivity towards the average opinion.

As already discussed, the opinion formation game of Equation 2.1 ([17]) is
a special case of the average-oriented opinion formation games of Equation 4.1
where o; = 0 for all agents. While the simultaneous best response dynamics
of the average-opinion formation games is a generalization of the FJ model
(consider Equation 4.2 with a; = 0). For a given opinion vector z(t) =
(x;(t),z_;(t)) at round ¢, agent’s i best response is given by Equation 4.2.

Zj;ti (’LUZ‘j — %) ZE](t) + (wz + %) S; .

(t+1)= .

(4.2)

In with chapter we investigate how the aggregation term «;(avg(z) — s;)?
affects the convergence properties of the FJ model and the efficiency of
equilibrium in terms of total disagreement cost.

4.2 Our Results

In Section 2.3 we saw that the FJ model converges to the Nash Equilibrium of
the orginal opinion formation game [17]. The basic challenge in generalizing
these convergece resuls in the average-oriented opinion formation games stems
from the fact that i’s influence from some opinions z; can be negative (see
Equation 4.2). Negative influence is introduced due to the competition of the
agents for dragging the average public opinion close to their intrinsic beliefs.
Despite negative influence, we show that if agents admit a certain level of
self-confidence w;, simultaneous best-response dynamics in average-oriented
opinion formation games converges fast to the Nash equilibrium of the game.
We should highlight that assuming positive self-confidence is necessary for
convergence [79, 81] and that the convergence time decreases as the ratio of
w; to oy and to X5, wi;/(n—1) increases. For clarity, we make the reasonable
assumption that w; > a; and w; > ;. wi;/(n — 1). Namely, we assume
that the self-confidence level of each agent is no less than her influence from
the average public opinion and no less than her average influence from other
agents (this is also consistent with the confidence level assumed in [81]).
Under this condition, we show that simultaneous best-response dynamics
in average-oriented opinion formation games converges to the unique Nash
Equilibrium within distance ¢ > 0 in O(n?log(n/c)) rounds (Lemma 4.1).
Simultaneous best response dynamics assumes that all agents have access
to the average public opinion in each round in order to compute their best
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response. Since the average public opinion is global information and thus
expensive to obtain in large networks, we consider average-oriented opinion
dynamics with outdated information. Here the average public opinion is
announced to all the agents simultaneously every few rounds (e.g. a polling
agency publishes this information in a web page now and then). We prove
(Theorem 4.1) that opinion dynamics with outdated information about the
average public opinion converges to the Nash equilibrium of the game within
distance £ > 0 after O(n?log(n/e)) «announcementsy of the average public
opinion. Both these results are proven for a more general setting with negative
influence between the agents and with partially outdated information about
the agents’ public opinions. We essentially prove that negative influence and
outdated information do not introduce undesirable oscillating phenomena to
opinion dynamics. Our proofs make use of matrix norm properties, which
allow us to deal with negative influence between the agents and with the
difficulties introduced by outdated information.

In Section 4.5, we bound the PoA of average-oriented opinion formation
games. We restrict our attention to the most interesting case of symmetric
games, where w;; = wj;, all agents have the same self-confidence w and the
same influence o from the average. For nonsymmetric games the PoA is Q(n),
even without aggregation if & = 0 [17]. We show (Theorem 4.2) that the PoA
is at most 9/8 + O(a/(wn?)). In general, this bound cannot be improved
since for @ = 0, 9/8 is a tight bound for the PoA [17]. Our proof builds on
the elegant local smoothness approach of [15]. However, local smoothness
cannot be directly applied to symmetric average-oriented games, because the
function (avg(z) — s;)? is not locally smooth. To overcome this difficulty,
we carefully combine local smoothness with the fact that the average public
opinion at equilibrium is equal to the average intrinsic belief, a consequence
of symmetry (Proposition 4.2).

A frequent assumption in the literature on continuous opinion formation is
that agent beliefs and opinions take values in a finite interval of non-negative
real numbers. Then, by scaling, one can assume that beliefs and opinions
lie in [0, 1]. Thus, we always assume that agent beliefs s; € [0,1]. On the
other hand, an important side-effect of negative influence is that the best-
response (and in Nash Equilibrium) opinions may become polarized and be
pushed towards opposite directions, far away from [0, 1]. We believe that
such opinion polarization is natural and should be allowed when negative
influence is considered. Therefore, in Sections 4.4 and 4.5, we assume that the
public opinions take arbitrary real values. Then, in Section 4.6, we consider
restricted average-oriented games, where the strategy space of the agents is
resctricted to [0, 1], and study how convergence properties and the price of
anarchy are affected.



78 CHAPTER 4. OPINION FORMATION WITH AGGREGATION AND NEGATIVE INFLUENCE

Existence and uniqueness of equilibrium for restricted opinion formation
games follow from [126]. We prove (Lemma 4.3 and Theorem 4.3) that
the convergence rate of opinion dynamics with negative influence and with
outdated information is not affected by restriction of public opinions to [0, 1].
The analysis of the convergence rate is similar to that for (unrestricted)
opinion formation games. The only difference is a simple case analysis, in
the final part of the proofs of Lemma 4.3 and Theorem 4.3, which establishes
that the distance of the restricted opinion vector to equilibrium decreases at
least as fast as the corresponding distance in the unrestricted case.

For the PoA of restricted symmetric games, we consider the special case
where w = a = 1 and show that the PoA < 3 +2+/2 + O(2) (Theorem 4.4).
The main technical challenge in the PoA analysis of restricted games is that
the local smoothness argument of Theorem 4.2 does not apply, because the
function (avg(x) — s;)? is not locally smooth and the average public opinion
at equilibrium may be far from the average intrinsic belief. Hence, in the
proof of Theorem 4.4, we need to advance substantially beyond the local
smoothness argument of Theorem 4.2. More specifically, we first show that
if all agents only value the distance of their opinion to the average and to
their belief (w;; = 0) the PoA is at most 1+ 1/n* (Proposition 4.7). Then we
combine the PoA of this simpler game with the local smoothness inequality
of [15] and bound the PoA of restricted symmetric games.

4.3 Definitions and Preliminaries

For an n x n matrix A, ||Al| = max;en 35—, |a] is the infinity norm of A and
capital N denotes the set {1,n}. Similarly, for an n-dimensional vector z,
|z|| = max;en |z;| is the infinity norm of z. We use the standard properties
of matrix norms without explicitly referring to them. Specifically, we use that

o for any matrices A and B, ||AB|| < ||A]| ||B]| and || A+ B|| < || A||+]B||
o for any matrix A and any A € R, || AA|| < |A]]|A]|
o for any matrix A and any integer ¢, ||A°|| < || A]|*

Moreover, we use that for any n x n real matrix A with ||A|| < 1,

i Al =(I—-A)""
£=0
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4.3.1 Average-Oriented Opinion Formation

Without loss of generality, we assume that the vector of agent beliefs s lies
in [0, 1]™. As for the public opinions x, we initially assume values in R and
then, in Section 4.6, explain what changes if we restrict them to [0, 1].

Definition 4.1. An average-oriented opinion formation game G is symmetric
if

1. Wi; = Wy; fOT’ all i + j

2. w; = w for all agents 1.

3. a; = « for all agents i

If Definition 4.1 is not satisfied by G, we call it nonsymmetric. Our convergence
results hold for nonsymmetric games, while the PoA bounds hold only for
symmetric ones.

An opinion vector x* is a Nash equilibrium the agents cannot improve on
their individual cost by unilaterally changing their opinions.

Definition 4.2. An opinion vector x* = (zf,2*,) € [0, 1|" is a Nash equilib-
rium of an opinion formation game. G if for each agent i

Ci(z*) < Ci(xy,x*,) for all x; € R

We highlight that not all opinion formation games G admit Nash equilibrium
(see Example 2.3). However if an average-oriented opinion formation game G
admits Nash Equilibrium x*, then this must be unique since it must be the
solution of the linear system of Equation 4.2.

Definition 4.3. The Price of Anarchy of an opinion formation game G with
Nash Equilibrium z* 1is,

>ien Ci(x*)

PoAlg) = Yien Ci0%)

where 0* is the minimizer of > ;cn Ci(x).

To study the convergence properties of simultaneous best-response dynam-
ics, it is convenient to write (4.2) in matrix form. Let S; = w; + % 4+ 3;; wi;.
We define two n x n matrices A and B. Matrix A has a; = 0, for all
i € N, and a;; = (wi; — %)/S;, for all j # i. Matrix B is diagonal and
has b; = (w; + %£)/S;, for all i € N, and b;; = 0, for all j # i. Note
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d?C;(z)
da?
some entries of A are negative.
The simultaneous best-response dynamics of an average-oriented game G
starts with 2(0) = s and proceeds in rounds. In each round ¢ > 1, the public

opinion vector x(t) is:

= 25; > 0 and thus function C;(z) is strictly convex in x;, even if

z(t) = Az(t — 1) + Bs. (4.3)

We say that simultaneous best response dynamics converges to Nash equilib-
rium z* if for all € > 0, there is a t*(¢), such that for all ¢ > t*(¢),

lo(t) — 2" < e

Iterating (4.3) over ¢, we obtain that for all rounds ¢ > 1,

z(t) = Az(t—1)+Bs = A(Az(t—2)+Bs)+Bs = --- = Ats+§ A‘Bs (4.4)

{=0

Since convergence of the simultaneous best response dynamics implies the
existence of Nash equilibrium x* which may do not exist (Example 2.3), some
necessary assumption must be made. Assuming that agent self-confidence
levels w; are positive is necessary for convergence of the simultaneous best
response dynamics (consider an opinion formation game where w; = o;; = 0
for all agents ¢ and the matrix A corresponds to the adjacency matrix of a
bipartite network). Similarly to [81] and for clarity we make the following
assumption.

Assumption 1. For each agent i:

1. the self-confidence level w; is at least as large as her average influence
from other agents
Zj;ﬁi Wi

w; >
n—1

2. the self-confidence level of any agent is no less than her influence from
the average public opinion
w; > a;

Assumption 1 immediately implies that for any agent ¢,
1
a; <8 < (n+ ﬁ)nwz

Using this inequality on S;, we obtain the following inequality, which is crucial
for the convergence rate of simultaneous best response dynamics:
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Sy — w; 4 2n=2)

Al < S,
S; — Smt 4 Sln2)
< 3
2 1
<1- S+
1
<1-- (4.5)

We use (4.5) in Corollary 4.1 and Corollary 4.2 and show that the
best response dynamics converges to equilibrium within distance ¢ > 0
in O(n?log(n/e)) rounds. However, our analysis of the convergence rate is
more general and can be applied under the weaker assumption that ||A|| < 1.
Then, the convergence time depends on 1 — || A (see also Lemma 4.1 and
Theorem 4.1). We usually refer to matrices similar to A, i.e., with infinity
norm less than 1 and Os in their diagonal, as influence matrices, and to
matrices similar to B, i.e., to diagonal matrices with positive elements, as
self-confidence matrices.

4.3.2 Average-Oriented Opinion Formation with Outdated
Information

We study opinion formation when the agents have outdated information about
the average public opinion. We assume an infinite increasing sequence of
rounds 0 = 79 < 7 < T < --- that describes an update schedule for the
average opinion. At the end of round 7, the average avg(z(7,)) is announced
to the agents. We refer to the rounds between two updates as an epoch.
Specifically, the rounds 7, + 1, ..., 7,41 comprise epoch p. We assume that
the length of each epoch p, denoted by k, = 7,41 — 7, > 1, is finite. The
update schedule is the same for all agents, but the agents do not need to have
any information about it. They only need to be aware of the most recent
value of the average public opinion provided to them.

We now need to distinguish in Equations (4.2) and (4.3) between the
influence from social neighbors, for which the most recent opinions z(¢ — 1)
are used, and the influence from the average public opinion, where possibly
outdated information is used. As such, we now rely on three different n x n
matrices D, E and B. Self-confidence matrix B is defined as before. Influence
matrix D has d; = 0O, for all ¢ € N, and d;; = w;;/S;, for all j # i, and
accounts for the influence from social neighbors. Influence matrix E has
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e;;i =0, for all i € N, and e;; = —a;/(n%S;), for all j # 4, and accounts for
the influence from the average public opinion. By definition, A = D + FE.
Moreover, ||D|| <1 —1/n and that ||E|| < (n — 1)/n>.

At the beginning of the opinion formation process, £(0) = s. For each
round ¢ in epoch p, 7, + 1 < ¢t < 7,44, the agent opinions are updated
according to:

x(t) = Dx(t — 1) + Ex(7,) + Bs (4.6)

We note that at the beginning of each epoch p, every agent ¢ can subtract
z;(1,) from navg(z(7,)) and compute Ex(7,), which is required in (4.6), as

673

n2S; (navg(z(r,)) — (7))

4.3.3 Opinion Formation with Negative Influence

An interesting aspect of average-oriented games is that the influence matrix A
may contain negative elements. Motivated by this observation, we prove our
convergence results for a general domain of opinion formation games that may
have negative weights w;;. Similar to [17, 81], the individual cost function of
each agent i is Cj(z) = 3, wij(z; — ;)* + w;(z; — s;)* and i’s best response
to xz_; is

gy = Tt WS (4.7)

Wi + X5 Wi

The important difference is that now some w;; may be negative. We require
that for each agent 7, w; > 0 and S; = w; + >, wi; > 0 (and thus, Cj(7) is
strictly convex in x;). The matrices A and B are defined as before. Namely,
a;; = w;;/S;, for all i # j, and B has b; = w;/S; for all i. We always require
that ||A|| < 1 — f, for some 5 > 0 (8 may depend on n). Simultaneous
best-response dynamics is again defined by (4.3).

4.4 Convergence of Average-Oriented Opinion For-
mation

For any nonnegative influence matrix A with ||Al| < 1 — 3, (4.3) converges to
the equilibrium point 2* = (I — A)~'Bs within distance ¢ in O(log(%)/ﬁ)
rounds, as shown in [81, Lemma 3]. The following lemma shows that the
same convergence rate holds for average-oriented opinion formation games,
where A may contain negative elements. The proof is very similar to the
proof of [81, Lemma 3] and we include it for completeness. The only minor
difference is that the proof of Lemma 4.1 uses the infinity norm of A, instead
of the largest eigenvalue of A in [81]. This allows for a direct generalization
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of Lemma 4.1 to the case of average-oriented opinion formation games with
outdated information.

Lemma 4.1. Let A be any influence matrix, possibly with negative elements,
such that ||Al| < 1 — 3, for some 8 > 0. Then, for any self-confidence
matriz B, any s € [0,1]" and any € > 0, the opinion formation process
z(t) = Azx(t — 1) + Bs converges to x* = (I — A)~!Bs within distance € in
O(log(%)/ﬁ) rounds.

Proof. By (4.4), we have that for any ¢ > 1, x(t) = Als + Y)_j A*Bs. Since
|A|| < 1-8, ||AY| < (1—B)". Therefore, lim;_,o, Ats = 0 and (4.4) converges
to z* = 302, A*Bs. Using the identity >7°, A* = (I — A)~', we obtain that
z* = (I — A)~'Bs. We note that since |A|| < 1, the matrix I — A is strictly
diagonally dominant and thus non-singular. Moreover,

IT- ) < i A4 < §<1 _ B =1/p.

To bound the convergence time to z*, we define e(t) = ||z(t) — z*|| =
max;ey |z;(t) — xF| as the distance of the opinions at time ¢ to equilibrium.
We next show that e(t) is decreasing in ¢ and obtain an upper bound on
t*(e) = min{t : e(t) < e}. We observe that for any ¢t > 1,

e(t) = ||lz(t) — 2|
= ||[Az(t — 1) + Bs — Ax™ — Bs||
< [JA[Hflx(t = 1) — 27|
<(1- et~ 1) < (1 - BYe(0).

Since s € [0, 1]" and ||(I — A)~'|| < 1/, we obtain that
2"l < (L= A)7"Bs|| < [|[T—=A) [ Bl lIsl < I1B]l/8-

Since z(0) = s, we have that e(0) = ||s — z*|| < 1+ ||B||/8. Hence,
() = O(log(L21)/5). .

Since T — A is nonsingular, z* is the unique opinion vector that satisfies
x* = Ax* + Bs. Thus, z* is the unique equilibrium of the corresponding
opinion formation game. Moreover, since for average-oriented games || Al <
1 —2/n? Lemma 4.1 implies the following:

Corollary 4.1. Any average-oriented game satisfying Assumption 1 admits
a unique equilibrium x* = (I — A)"'Bs, and for any € > 0, (4.3) converges
to x* within distance £ in O(n®log(n/c)) rounds.
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4.4.1 Convergence with Outdated Information

Next, we extend Lemma 4.1 to the case where the agents use possibly outdated
information about the average public opinion in each round. More generally,
we establish convergence for a general domain with negative influence between
the agents, which includes average-oriented opinion formation processes as a
special case.

Theorem 4.1. Let D and E be influence matrices, possibly with negative
elements, such that ||D| < 1 — g1, |E]| < 1 — Ba, for some B,y € (0,1)
with By + Po > 1. Then, for any self-confidence matriz B, any s € [0, 1]",
any update schedule 0 = 79 < 71 < T < --- and any € > 0, the opinion
formation process (/.6) converges to x* = (I — (D + E))~'Bs within distance

£1in O(log(”%,”)/ﬁ) epochs, where = 3, + By — 1 > 0.

Proof. We observe that 2* = (I — (D + E))!Bs is the unique solution of
x* = Dx*+ Ex*+ Bs (as in Lemma 4.1, since ||E4+D|| < 1—4, with 8 > 0, the
matrix [ — (D + E) is non-singular). Hence, if (4.6) converges, it converges to
x*. To show convergence, we bound the distance of x(t) to * by a decreasing
function of ¢ and show an upper bound on t*(¢) = min{t : e(t) < e}.

As in the proof of Lemma 4.1, for each round ¢ > 1, we define e(t) =
||x(t) — *|| as the distance of the opinions at time ¢ to z*. For convenience,
we also define

1—(1-p8)k
Io '

For any fixed value of (3,8, € (0,1) with 8, + B2 > 1, f(B1, B2, k) is a
decreasing function of k. Actually, the derivative of f with respect to k is equal
to log(1—51)(1 —A)"(1 — 1;—;82), which is negative, because 1 > (1 — 33)/f1,
since 31 + 2 > 1.

We next show that:

f(Bry By k) = (1 = B1)* + (1 — Bo)

Claim (i). For any epoch p > 0 and any round k, 0 < k < k,, in epoch p,
e(Tp + k) S f(ﬁlv /827 k)e(Tp) .
Claim (ii). In the last round 7,1, = 7, + k, of each epoch p > 0, e(7p41) <
(1= pe(rp).

Claim (i) shows that the distance to equilibrium decreases from each round
to the next within each epoch, while Claim (ii) shows that the distance
to equilibrium decreases geometrically from the last round of each epoch
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to the last round of the next epoch. Combining Claim (i) and Claim (ii),
we obtain that for any epoch p > 0 and any round k, 0 < k < k,, in
epoch p, e(m, + k) < f(B1,P2,k)(1 — B)Pe(0). Therefore, for any update
schedule 79 < 73 < 75 < -+, the opinion formation process (4.6) converges to
(I—(D+ E))"'Bs in O(log(e(0)/e)/3) epochs.

To prove Claim (i), we fix any epoch p > 0 and apply induction on k. The
basis, where k = 0, holds because f(f31,32,0) = 1. For any round k, with
1 <k <k,, in p, we have that:

e(t, + k) =||Dx(r, + k — 1) + Ex(1,) + Bs — (Dx* + Ex* + Bs)||
< 1D (7 + & = 1) = 27| + [[E] [l2(7,) — 27]]
< (1= PBe(rp + k= 1) + (1 = Fa)e(7,)
< (1= B0)f(Br; B, kb = V)e(mp) + (1 = Bo)e(rp) = [ (B, B2, K)e(T) -

The first inequality follows from the properties of matrix norms. The second
inequality holds because ||D|| < 1—4; and ||E|| < 1— 5. The third inequality
follows from the induction hypothesis. Finally, we use that for any k£ > 1,
(1= B1)f(Br, B2,k — 1) + 1 = By = f(Br, B2, k).

To prove Claim (ii), we fix any epoch p > 0 and apply claim (i) to
the last round 7,4, = 7, + k,, with k, > 1, of epoch p. Hence, e(7,41) =
[2(7p + kp) — 27| < f(Br, B2, kp)e(Tp).

We next show that f(3;, B2, kp) <2 — (81 + fB2) = 1 — 3, which concludes

the proof of the claim. The inequality holds because for any integer £ > 1,
f(B1, Ba, k) is a convex function of 3. For a formal proof, we fix any k£ > 1 and

any 3, € (0, 1), and consider the functions g(z) = (1 —z)* + W(l — Ba)
and h(z) = 2 — By —x, where x € [1 — [, 1] (since we assume that 3, € (0, 1)
and that #; > 1 — ;). For any fixed value of 5 € (0, 1), h(z) is a linear
function of x with h(1 — ) = 1 and h(1) = 1 — 3,. For any fixed value
of k > 1 and f, € (0,1), g(x) is a convex function of z with g(1 — ) =
1 ="h(1—[,) and g(1) = 1 — By = h(1). Therefore, for any g, € [1 — 55, 1],
9(B1) < h(B1) =2 — (b1 + Ba).

To obtain an upper bound on e(0) = ||s — z*||, we work as in the proof
of Lemma 4.1, using the fact that |D + E| < 1 — /3, and show first that
|(T—(D+ E))| <1/ and then that ||z*|| < ||B||/8. Since z(0) = s, we
have that e(0) = ||[s—*|| < 1+||B||/S. Using the fact that for each epoch p >
0 and for every round k, 0 < k < k,, in p, e(1,+k) < f(51, a2, k)(1—)Pe(0),

we obtain that t*(¢) = O(log(%)/ﬁ) epochs. O

For average-oriented opinion formation games, D+F = A, |[D|| < 1-1/n
and ||E|| < (n — 1)/n®. Hence, applying Theorem 4.1 with 5 > 1/n?, we
obtain the following:
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Corollary 4.2. For any update schedule and any e > 0, the opinion formation
process (4.6) with outdated information about avg(x(t)) converges to the
equilibrium z* = (I — A)'Bs of the corresponding average-oriented game
within distance € in O(n*log(n/e)) epochs.

4.5 The Price of Anarchy of Symmetric Average-
Oriented Games

In this section we proceed to bound the PoA of average-oriented opinion
formation games. We concentrate on the most interesting case of symmetric
games, since nonsymmetric opinion formation games can have a PoA of (n),
even if & = 0 [17]. Recall that for symmetric games, w;; = w;; for all agent
pairs 7, 7, and w; = 1 and «o; = «, for all agents i.

Our analysis generalizes a local smoothness argument put forward in [15].
Such arguments have been extensively used in the algorithmic game theory
literature to provide upper bounds on the Price of Anarchy and they are
based on the notion of (A, u)-locally smooth introduced in [128].

Definition 4.4. [128] A game is (), p)-locally smooth if there exist A\ > 0
and pu € (0, 1), such that for all x,z € R"

> Ci(z)+ > (= — xz)d(;if) <AY Ci(z)+p i Ci(z) (4.8)

ieEN €N 1EN 1eEN

Proposition 4.1. If a game is (A, p)—locally smooth, then

A
PoA < ——
L—p
Proof. Let z* the Nash Equilibrium of the game and o* the opinion vector
minimizing the total disagreement cost > ;cy C;(z). Since z* is the Nash

Equilibrium of the game, d%;f*) = 0 for each agent i. Hence, applying (4.8)
for x = 2* and z = o*, we obtain that PoA < \/(1 — p). O

For symmetric games without aggregation (a = 0), it is known [15] that
for any s € [0, 1]", the game is (3/4, 1/4)-locally smooth and thus the PoA
of symmetric opinion formation games without aggregation can be bounded
to at most 9/8 [15]. This is tight as shown in [17].

This elegant approach cannot be directly generalized to symmetric average-
oriented opinion formation games, because the function >, (avg(z) — s;)? is
not (\, p)-locally smooth for any p < 1. To circumvent this difficulty, we use
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the local smoothness technique in a more creative way. Observe that finding
appropriate values of A,y that satisfy (4.8) for all z, z € [0, 1]” may be both
a hard and a redundant task, because (4.8) is applied only for = z* and
z = 0%, where z* denotes the Nash equilibrium and o0* denotes the optimal
vector. Next, we derive appropriate values of A, i so that (4.8) holds for all
opinion vectors z, z € [0, 1]" for which avg(z) = avg(s). In Proposition 4.2,
we show that for symmetric opinion formation games, the average equilibrium
opinion is equal to the average belief, which allows us to bound the PoA.

Proposition 4.2. Let x* be the equilibrium and s the internal opinion vector
of any symmetric average-oriented opinion formation game. Then,

avg(a®) = ave(s)

Proof. The following holds for the opinion z} of any agent ¢ at Nash equilib-
rium x*:

x; +x; Zwij =(14+a/n)s; + Zwijx;‘f — (a/n)avg(z”) .

j#i J#i
By summing up these inequalities for all agents i € [n],

navg(e*) + Y ;Y wi; = (n+ aavg(s) + > Y wya) — aavg(e”) .

1EN J#i 1EN j#i

Since the game is symmetric with w;; = wj; for all 7 # j,

Yoaiywy =y Yy wiyxy =y wy(r] +xj)

iEN J#i iEN j#i 1,5:4<J

Therefore, we obtain that at the equilibrium x*, (n+«)avg(z*) = (n+a)avg(s),
which directly implies the proposition. ]

In the analysis of PoA, we use the following technical proposition repeatedly.
Proposition 4.3. For any v, \, 1 > 0 and z,x € R such that A\ > 2,
2vzr < A2 + pa?

Proof. The claim holds trivially if zx < 0. In case where zx > 0, the claim
follows from:

0< (\/Xz— VET)? = A2 4 pa® — 2\ Apze < A2+ px® — 2z

The last inequality holds because A\ > 2 implies that —/Apu < —. ]
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Based on these properties, we show that the PoA of symmetric average-
oriented games tends to 9/8, which is the PoA of symmetric opinion formation
games without aggregation. The proof is based on the following technical
(and more general) lemma:

Lemma 4.2. Let G be any symmetric average-oriented opinion formation
game with n agents, agent belief vector s and influence o > 0. Then, for all
x,z € R" such that avg(x) = avg(s),

dC
ZCZ Z —.TZ dr. <VIZC —|—I/QZCZ($)

1EN iEN 1EN €N

where v = max{3/4 + p,0} and v, = max{1/3 + p,1 — § + 2X}, for all
A >0 and p € (0,1) such that \p > a/n? and for all 6 > 0.

Proof. We recall that the individual cost of each agent i with respect to
opinions x is

x) =D wi(wi — ;)" + (2 — 5:)* + afavg(z) — 5)*
i#]
and that the social cost is C'(z) = Y;cn Ci(x). We divide agent’s i personal
cost C;(z) into three parts C;(z) = F;(x) + I;(x) + A;(x), where Fi(z) =

S e wij(w; — x5)?, Li(x) = (@; — 5;)* and A;(z) = aavg(x) — s;)°.
Following this notation, we have that:

=Y Fi(x) =3 > wylwi —x;)> =2 Y wy(a — ;)

= Z;Vfi($) = Z]:V(% —s5:)° = (x—s)(x—s)
= EJ:VAZ( =« z;v avg(r) — 5;)% = alavg(x) — )" (avg(z) — s) .

Consequently, the social cost can be written as C'(z) = F(z) + I(z) + A(x).

We introduce
- (45, 40

dx, dzx,,
ooy [ dL(z) dl, ()
I (x) - ( dml ’ ) d,’])n

Ae) = ( SR dfl;i@)
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We observe that A'(z) = (2a/n)(avg(x) — s). For simplicity and brevity,
here and in the proof of Theorem 4.4, we slightly abuse the notation by letting
avg(x) denote a vector with all its coordinates equal to avg(x). The following
two propositions are proven in [15, Sec. 3.1] for more general cost functions.
We provide their proofs here, for the sake of completeness.

Proposition 4.4 ([15]). For any symmetric matric W = (w;;), any x,z € R",
and any A > 0 and p € (0,1) with A > 1/(4p),
F(z)+ (z — 2)TF'(z) < AF(2) + pF(x)

Proof. To establish the proposition, we consider each agent pair i, j, with
i # j, separately. Since for any agent pair 4, j, w;; = wj;, we have that for any
A>0and p € (0,1) with Ay > 1/4,

Fz)+ (2 —a) F'(z) = 2 Z wig((zi — 25)* + (20— @) (@i — 25) + (27 — 25) (x5

=2 3 wiyl(mi — 2)? + (3 — ) (@i — 25) — (i — 2;)%)

For the inequality, we apply Proposition 4.3 with v = 1/2. Therefore, for
any z;,zj, r;,r; € Rand any A,y > 0 with Ay > 1/4, (2, — 2zj)(x; — ;) <
)\(Zi — Zj)2 + ,Uz(.fb'l — l’j)Q. ]

Proposition 4.5 ([15]). For any x,z,s € R", A > 0 and p € (0,1) with
A>1/(p+1),

I(x) + (z — )" I'(2) < N(2) + pl ()

Proof. To establish the proposition, we consider each agent i separately. We

— 7))
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have that for any A > 0 and p € (0, 1) such that \M(u+ 1) > 1,

I@) 4+ (z—2) ' I'(x) = (2 — 8:)> + 2(zi — 23) (2 — s5))

= ’i((mi — 5%+ 2(z — ) (@i — 81) + 2(s: — 1) (@i — 51))
= Z.:N(m — 52+ 2(z — si)(xi — 85) — 2(2 — 5:)?)

= ;N(2(zz si) (@i — si) — (2 — 51)%)

< AEZN(Z — 5"+ “,-GZN(% —s;)

=M (z) + pl(x)

For the inequality, we apply Proposition 4.3 with v = 1 and p + 1 instead of
p. Thus, we obtain that for any z;, z;, s; € R and for any A > 0 and u € (0, 1)
such that M+ 1) > 1, 2(2; — s;) (25 — si) < Mzi — 83)* + (u+ 1) (x; — s4)2,
which implies the inequality above. O

Next, using Proposition 4.2, we obtain a similar upper bound on A(x) +
(z — )T A'(z).

Proposition 4.6. For any o > 0, any x,z,s € R" with avg(z) = avg(s),
any 6 > 0, and any A > 0 and p € (0, 1) such that A\ > a/n?,

Alx) + (z — 2)T Al(2) < SA(2) + pl(2) + (1 — 0+ 2\ A(z) + pl (z) . (4.9)

Proof. Applying first-order optimality conditions, we obtain that any vector
xr € R" with avg(z) = avg(s) minimizes A(z). Therefore, for any = € R",
A(z) < A(x), and for any 6 > 0, A(x) < §A(z) + (1 — 0)A(x).

To complete the proof of (4.9), we observe that for any A > 0, € (0, 1)
with Ay > a/n?,

(2 — @) A'(z) = Y (2a/n)(z — 2;) (ave(x) — 1)

= >_((2a/n)(zi — si)(ave(w) — si) + (20/n)(s; — x:) (avg(r) — si))
< Z(2Aa(avg(x) — )2 + p(zi — 5)% 4 ple; — 5i)?)

=2 A(x) + pl(z) + pl ().

For the inequality, we apply Proposition 4.3, with v = y/a/n, to (2a/n)(z; —
si)(avg(z) —s;) and to (2a/n)(s; —x;)(avg(x) — s;). Hence, we obtain that for
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any A > 0 and p € (0, 1) such that Ay > a/n?, (2a/n)(z; — s;)(avg(z) — s;) <
w(zi — 8:)* + Aa(avg(z) — s;)% and (2a/n)(s; — ;) (avg(x) — s;) < plx; — 8;)* +
Aa(avg(x) — s;)2. O

Applying Propositions 4.4 and 4.5 with A = 3/4 and p = 1/3, and using
(4.9), we obtain that for any § > 0 and for any A > 0 and p € (0, 1) such
that \u > a/n?,

Cla) + (z = 2)C'(x) < 2F(2) + (2 + p) I(z) + 6A(2) + LF () +
(L4 p) I(2)+ (1= 5+ 2))A(2)
<1 C(z) + 1LC(x),
where v; = max{3/4 + u,d} and vy = max{1/3 + p,1 — 0 + 2A}. O

The main result of this section is an immediate consequence of Lemma 4.2.

Theorem 4.2. Let G be any symmetric average-oriented opinion formation
game with n agents and influence o > 0. Then, PoA(G) < 9/8 + O(a/n?).

Proof. Let x* be the Nash equilibrium and let o* be the optimal solution. By
Proposition 4.2, avg(z*) = avg(s). Therefore, Lemma 4.2 implies that

C(z*) + (0" — 2*)TC'(x) < 1, C(0%) + 1uC(z¥)

where v; = max{3/4 + u,0} and v, = max{1/3 + p,1 — § + 2A}, for all
A >0 and p € (0,1) such that A > «/n* and for all § > 0. Since z* is an
equilibrium, C’(2*) = 0. Hence, for all v, € (0,1), PoA(G) < v,/(1 — 1), or
equivalently,
PoA(G) < max{3/4 + u, o}
1 —max{1/3+p,1—35+2\}

If a/n? is small enough, e.g., if a/n? < 1/2400, we use § = 3/4, A = 1/24
and p = 24a/n? in (4.10) and obtain that PoA(G) < 9/8+0(5%). Otherwise,
we use o1 = 1/3, A = 3a/n? and § = 6a/n®+ 1/3, and obtain that PoA(G) =
O(%). O

n2

(4.10)

4.6 Average-Oriented Games with Restricted Opin-
ions

A frequent assumption in the literature on opinion formation is that agent
beliefs come from a finite interval of nonnegative real numbers. Then, by
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scaling we can assume beliefs s; € [0, 1]. If the influence matrix A is nonnega-
tive, then since b; + 377 a;; = 1 for all © € N, we have that the equilibrium
opinions are z* = (I — A)"'Bs € [0,1]". In contrast, for the more general
domain we treat here, an important side-effect of negative influence is that the
best-response (and equilibrium) opinions may not belong to [0, 1]. Motivated
by this observation, we consider a restricted variant of opinion formation
games, where the (best-response and equilibrium) opinions are restricted to
[0, 1]. We strive to understand how this restriction of public opinions to [0, 1]
affects the convergence properties and the price of anarchy of average-oriented
games.

To distinguish restricted opinion formation processes from their unre-
stricted counterparts, we use y(t) to denote the opinion vectors restricted
to [0, 1]". For restricted average-oriented games and restricted games with
negative influence, the best-response opinion y; of each agent i to y_; is again
computed by (4.2) and (4.7), respectively. But now, if the resulting value is
y; < 0, we increase it to y; = 0, while if y; > 1, we decrease it to y; = 1. Since
the individual cost C;(y) is a strictly convex function of y;, the restriction of
y; to [0, 1] results in a minimizer y* € [0, 1] of C;(y, y_;).

Similarly, the restricted opinion formation process is described by

y(t) = [Ay(t — 1) + Bs]joa (4.11)

where [-][0,1) denotes the restriction of public opinions y(t) to [0, 1]" described
above. The influence matrix A (and the influence matrices D and E for
processes with outdated information) and the self-confidence matrix B are
computed as for standard (or unrestricted) opinion formation processes.

4.6.1 Convergence of Restricted Opinion Formation Pro-
cesses

We show results for restricted opinion formation processes that are equivalent
to Lemma 4.1 and Theorem 4.1. As in Section 4.4, we prove our results
for the more general setting of negative influence. Using Lemma 4.3 and
Theorem 4.3, it is straightforward to obtain the results of Corollary 4.1 and
Corollary 4.2 also for restricted average-oriented processes.

Lemma 4.3. Let A be any influence matriz, possibly with negative elements,
such that ||A|| < 1 — 8, for some > 0. Then, for any self-confidence matrix
B, any s € [0,1]" and any € > 0, the opinion formation process

y(t) = [Ay(t — 1) + Bs]jo
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admits a unique equilibrium y* and converges to it within distance € in
O(log()/fB) rounds.

Proof. In the restricted opinion formation game, the agent opinions lie in the
convex set [0, 1]. The individual cost C;(y) of each agent ¢ is a continuous
function of y and strictly convex in y;. Hence, according to the results of [126],
the restricted game admits a unique equilibrium y* which satisfies y* = [Ay* +
Bs 0,1 - Specifically, the existence of an equilibrium y* follows from [126],
since the restricted opinion formation game is a convex game. The uniqueness
of y* follows from [126] and from the fact that the function > ;cy Ci(y) is
diagonally strictly convex. The latter holds because the symmetric matrix
obtained by adding 2B to the Laplacian of A + AT is positive definite.

Next we bound the convergence time to y* as in the proof of Lemma 4.1.
For any ¢ > 1, we define e(t) = ||y(t) — y*|| as the distance of the opinions at
time t to equilibrium. We observe that for any round ¢t > 1,

e(t) = [ly(t) —y*ll < [[Ay(t — 1) + Bs — Ay" — Bs||
< AlHlyE = 1) =yl < (1 = Ble(t — 1) < (1= B)'e(0).

For the first inequality, we recall that y(t) (resp. y*) is obtained by computing
Ay(t — 1) + Bs (resp. Ay* + Bs) and then restricting any negative opinions
to 0 and any opinions larger than 1 to 1. By a straightforward inspection
of all possible 9 cases depending on whether y;(t) and y! are negative, in
[0, 1] or greater than 1, we conclude that opinion restriction to [0, 1] does
not increase |y;(t) — yf| for any i. Since y(0) = s € [0, 1]" and y* € [0, 1]",
e(0) < 1. Hence, after t*(¢) = O(log(£)/8) rounds y(t) is within distance &
to y*. (]

The proof of the following theorem is similar to the proof of Theorem 4.1.

Theorem 4.3. Let D and E be influence matrices, possibly with negative
elements, such that ||D| < 1= By, [|[E|| < 1 = Ba, for some 5y, Ps € (0,1)
with By + Po > 1. Then, for any self-confidence matriz B, any s € [0, 1]",
any update schedule 0 =19 < 1 < Ty < ---, the restricted opinion formation
pProcess

y(t) = [Dy(t = 1) + Ey(7,) + Bs |y

converges to the unique equilibrium point y* of
y'(t) =[(D+ E)y(t— 1)+ Bs]py

For any e > 0, y(t) is within distance € to y* after O(log(L)/B) epochs, where
B=0+p—1.
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Proof. Lemma 4.3 shows that for the restricted opinion formation process
y'(t) = (D + E)y'(t — 1) + Bs]jo], there is a unique equilibrium point
y* € [0, 1]" that satisfies y* = [(D + E)y* 4+ Bs]jo,1). Provided that it exists,
the equilibrium of the restricted opinion formation process with outdated
information y(t) = [Dy(t — 1) + Ey(7,) + Bs|jo,1) must satisfy y* = [Dy* +
Ey* 4 Bs]o,1], due to the existence of infinite update points where all agents
have accurate information about the current public opinion vector. So, if the
process with outdated information admits an equilibrium, it must be unique
and equal to y*. We next show that this is indeed the case, by bounding
from above the distance of y(t) to y* by a decreasing function of ¢t and by
establishing an upper bound on the convergence time.

For every round t > 1, we define e(t) = ||y(t) — y*|| as the distance of the
opinions at time ¢ to y*. We proceed similarly to the proof of Theorem 4.1.
As before, we define

1—(1—p3)"
I '

We recall that for any fixed f;, 5y € (0, 1) with 8; + B2 > 1, f(51, Ba, k) is a
decreasing function of k.
We next show that:

F(Br, Ba k) = (1= B1)" + (1= Bs)

Claim (i). For every epoch p > 0 and every round k, O < k < k,, in epoch

p7
e(rp + k) < f(Br, Bas k)e(my) -

Claim (ii). In the last round 7,1, = 7, + k, of each epoch p > 0, e(7p41) <

(1= Be(mp)-

Claims (i) and (ii) imply that for each epoch p > 0 and every round k,
0 <k < k,, inepoch p, e(r,+k) < f(B1, B2, k)(1—)?e(0). This immediately
implies that for any update schedule 79 < 71 < 75 < - - -, the opinion formation
process y(t) = [Dy(t — 1) + Ey(7,) + Bs]jo,1) converges to y*. Moreover, since
e(0) = [|s — y*|| < 1, y(t) is within distance ¢ to y* in O(log(1)/8) epochs.
The proofs of Claim (i) and Claim (ii) are essentially identical to the
proofs of the corresponding claims in the proof of Theorem 4.1. We include
the details for completeness. To prove Claim (i), we fix an epoch p > 0 and
apply induction on k. The basis, where k& = 0, holds because f(5;, 82,0) = 1.
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For any round &, with 1 <k <k, in p, we have that:

e(rp + k) = lly(mp + k) — vl
= [[Dy(7p + k — 1) + Ey(7p) + Bsljoy — [Dy" + Ey* + BsJjoy||
< |(Dy(r, + k = 1) + Ey(r,) + Bs) — (Dy" + Ey* + Bs)|
< [IDIy(7p + k= 1) = y*[| + [ E][ [y(7) — y*|l
<(1-pF)e(r,+k—1)4+ (1 —py)e(ry)
< (1= B0)f(B1, B2 k= 1)e(ry) + (1 = Ba)e(y)
= f(Br, B, k)e(ry) .

For the first inequality, we use that opinion restriction to [0, 1] does not
increase |y;(t) — yf| for any i, as it is explained in the proof of Lemma 4.3.
The second inequality follows from the properties of matrix norms. The
third inequality holds because ||D|| < 1 — 5, and ||E|| < 1 — 5. The fourth
inequality follows from the induction hypothesis. Finally, we observe that for
any integer k > 1, (1 — 1) f(81, o, kb — 1) + 1 = By = f(B, Ba, k).

To prove Claim (ii), we fix any epoch p > 0 and apply claim (i) to the
last round 7,4, = 7, + k, of epoch p, where k, > 1. Hence, we obtain that:

e(Tp1) = 1y(Tptkp) =yl < F(Br, Ba, kp)e(ry) < (2=Fri=Pa)e(ry) = (1=P)e(7) ,

where 8 = 31 4+ P2 — 1. The last inequality follows from convexity and has
already been proven in the corresponding part of the proof of Theorem 4.1.
O O

4.6.2 The Price of Anarchy of Restricted Average-Oriented
Games

We proceed to bound the PoA of restricted symmetric average-oriented games.
Due to opinion restriction to [0, 1], the average opinion at a Nash Equilibrium
may be far from avg(s). Therefore, we cannot rely on Proposition 4.6 anymore.
Moreover, the PoA of restricted games increases fast with « (e.g., if s =
(0,...,0,1/n), w;; = 0 for all i # j, and o = n?, PoA = Q(n)). Therefore,
we here restrict our attention to the case where o = w = 1 and show that the
PoA of restricted symmetric average-oriented games remains constant. An
interesting intermediate result of our analysis is that if all agents only value
the distance of their opinion to their belief and to the average, i.e., if w;; = 0
for all 7 # j, the PoA of such games is at most 1+ 1/n?.

As in the proofs of Lemma 4.2 and Theorem 4.2, we use a generalized local

smoothness argument. In this case, however, the function ¥ (avg(y) — s;)?
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is not (A, p)-locally smooth and avg(y*) at the equilibrium y* may be far from
avg(s). Hence, to bound the PoA, we need to advance substantially beyond
the local smoothness argument of [15, Sec. 3.1]. The rest of this section is
devoted to the proof of the following:

Theorem 4.4. Let G be any symmetric average-oriented opinion formation
game with w = a = 1, n > 2 agents and opinions restricted to [0, 1]. Then,

POA(G) <3+ V2 +O(-)

Proof. As in the proofs of Lemma 4.2 and Theorem 4.2, we seek to find
appropriate parameters A > 0 and p € (0, 1) such that for all z,y € [0, 1]",

Cly) + (z —y)"C'(y) < AC(z) + uC(y) . (4.12)
where C(y) = X%, Ci(y) and C'(y) = (dCd;(ly), SR dCdeLy))

Next, we show that (4.12) indeed implies PoA(G) < A/(1—p). To this end,
we show that at the equilibrium y* of a restricted game, (z — y*)TC’(y*) > 0.
By definition y* € [0, 1]". In case where y* € (0,1), due to first-order

optimality conditions, dodig(/) = 0 and (z; yf)%y(_y) = 0. If yf = 0 then
%ﬁ’*) > 0. Otherwise, agent ¢ could decrease her cost by increasing y;.

Since x; € [0, 1], (; yl*)dci(y*) > 0. By a symmetric argument, if y = 1,
dCd; J < o0and (z; —y)Y ; > 0. Applying (4.12) for y = y* and = = o*
(recall that the optimal solution o* € [0, 1]™) yields

Cly") < Cy") + (0" —y*) " C'(y") < AC(0") + nC(y").

Therefore, POA(G) = C(y*)/C(0*) < A/(1 — ).

We proceed to establish (4.12). As in Section 4.5, in order to find appro-
priate values for A\ and p, we divide the individual cost of each agent ¢ into
two parts, writing C;(y) = F;(y) + M;(y), and analyze each part separately.
We again have that:

Fly) = Y Fil) = 30 Y wy(

M@—i%@—gwﬁw%wmmﬂm>

=(y—s)"(y — )+ (avg(y) — s)" (avg(y) — s) .
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We again denote

Fiy) = (dFl(y)ym 7an(y)>

dyl dyn
dMi(y) dMn(y)>
dyl ’ 7 dyn

M(y) = (

We also recall that M'(y) = 2(y — s) + (2/n)(avg(y) — s).

Proposition 4.4 provides an appropriate upper bound on the term F(y) +
(z —y)TF'(y). So, we next focus on finding appropriate values of A and  so
that we can bound from above the term M (y) + (z — y)T M'(y).

To this end, we first observe that:

M(y)+ (x—y)"M'(y) = M(y) + (s —y)"M'(y) + (x — 5)" M'(y) .

We first bound M (y) + (s — y)T M'(y) from above using the following propo-
sition. Intuitively, the proposition holds because the left-hand side of (4.13)
is a strictly concave function of y.

Proposition 4.7. For any y,x,s € [0, 1]",
M(y)+ (s —y)"M'(y) < (1+ 5)M(s) < (1 + L)M(z). (4.13)

Proof. Let K,, denote the n x n matrix with all its entries equal to 1/n. Recall
that I is the n x n identity matrix. Clearly, K,y is the vector with all its
coordinates equal to avg(y). Moreover, we observe that K, K, = K,,. Using
matrix notation, we obtain that:

M(y)+ (s —y) " M'(y) = Koy —8) Koy —8)+ (y— )" (y — s)
+2(s—y) (y—5)+ (2/n)(s —y)" (Kpy — 5)
=y (1 - 2K, —Dy+2y"(1+ I - (1 - HK,)s

We observe that the matrix I— (1 — 2)K,, is strictly diagonally dominant, and
thus positive definite. So, the matrix (1 — 2)K,, —I is negative definite. Thus,
M(y) + (s — y)T M'(y) is strictly concave in y and has a unique maximum in
R.

We next show that M (y)+ (s —y)" M'(y) is maximized at y* = (1+2)s—
avg(s)/n. To find the unique maximizer y* of M(y)+ (s —y)" M'(y), we apply
first-order optimality conditions. The gradient of M (y) + (s — y)T M'(y) with
respect to yi, ..., ¥y, is equal to

2((1 - 2)]Kn - H)y + 2((1 + %)H - (1 - %)Kn)s :

n
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So the unique maximizer y* of M(y) + (s — y)T M'(y) satisfies

yi = (1+3)si+ (1= 2avg(y) — (1 — 7)avg(s) -

Summing up these equations for all ¢ € N, we obtain that

navg(y’) = (n+ Dave(s) + (n — 2)ave(y’) — (n — ave(s).,

which implies that avg(y*) = avg(s). Therefore, the maximizer y* of M(y) +
(s —y)"M'(y) has y; = (14 1)s; —avg(s)/n (note in particular that y; does
not need to belong to [0, 1]).

Using that y* = (14 +)s — avg(s)/n and avg(y*) = avg(s), we obtain:

M(y") + (s =y )" M'(y") = —(y" — )" (y" — s) + (avg(s) — s)" (avg(s) — s)
2/n)(y" — )" (avg(s) — s)"
avg(s) — )" (avg(s) — s)
" (avg(s) — s)
s) = s)" (avg(s) = s)"
= (1 + ;5)(avg(s) — s)" (avg(s) — ) .

The proposition follows from the following observations: (i) for any y €
[0,1]", M(y) + (s —y)"M'(y) < M(y*) + (s — y*)" M'(y"), since y* € R" is
the unique maximizer of the strictly concave function M (y) + (s — y)T M'(y);
and (ii) for any z € [0, 1]",

M(y*) + (s —y")"M'(y*) = (1 + ) (avg(s) — )" (avg(s) — s)
S)M(s) < (14 =5)M(x),

where the last inequality holds because s is a minimizer of M (y). O

Remark 4.1. If w;; = 0 for all ¢ # j, the cost of each agent i becomes
Cily) = (yi — si)®> + (avg(y) — y;)*. For this interesting class of restricted
symmetric average-oriented games, Proposition j.7 implies that the PoA is at
most 1 + 1/n?.

We proceed to show an upper bound on (z — s)TM'(y).

Proposition 4.8. For any y,x,s € [0,1]|", and for any A\;,\y > O and
1, o € (0,1) such that A\ypy > 1 and Agpg > 1/n?,

(2 =) M'(y) < (A1 + Ao) M (@) + max{p, u2} M (y) (4.14)
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Proof. We observe that

(z =)' M'(y) =2(x —5)"(y — 5) + (2/n)(z — 5)" (ave(y) — 5) .

Applying Proposition 4.3, with v = 1, for each term 2(z; — s;)(y; — s;) of
2(x—s)T(y—s), we obtain that for any A\; > 0 and u; € (0, 1) with A\, > 1,

2(r—s) (y—s) <Mz —s) (@ —s)+mly—s)(y—s) .

Similarly, applying Proposition 4.3, with v = 1/n, for each term (2/n)(z; —
s;)(avg(y) — s;) of (2/n)(x — s)T(avg(y) — s), we obtain that for any Ay > 0
and py € (0, 1) with Mgy > 1/n?,

(2/n)(z—s)" (ave(y) —s) < Aao(w —s)" (z—s) + pa(avg(y) — )" (ave(y) — s) -

Inequality (4.14) follows from summing up the two inequalities above and
using that M (z) > (z—s)?(z—s) and that M (y) = (y—s)T (y—s)+ (avg(y) —
s)" (avg(y) — s). [

Using Proposition 4.7 and Proposition 4.8, we obtain that for all x,y €
[0,1]", and for all A}, Ay > O and gy, gy € (0, 1) such that A\jp; > 1 and
)\Q[IQ Z 1/’)12,

1
M(y) + (z —y)"M'(y) < (1 st A+ /\2> M (x) + max{py, pa } M(y) .

(4.15)
Applying Proposition 4.4 with A = 1 and g = /2 — 1, and (4.15) with
M=V2+1, A=1/n, = V2 —1and py = 1/n, and summing up the
corresponding inequalities, we obtain that (4.12) holds with A = 2+ /2 + "TJZI

and = /2 — 1. Hence, we conclude that

PoA < (24 V2)?/2 + (V2 + 1)28L .

n
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Chapter 5

Network and Random
Hegselmann Krause Model

In this Chapter, we investigate the convergence properties of the Network
Hegselmann Krause model and the Random Hegselmann Krause model. Both
of these models were introduced in our work [77] to capture different aspects
of the well-known HK model. A brief introduction to Network HK model and
Random HK model can be found in Sections 2.5.3 and 2.5.4 respectively.

5.1 Network Hegselmann Krause Model

In the Network HK model, we are given an undirected graph G(V, E) where
V' stands for the agents and E the social relations among them. Each agent
i € V initially holds an opinion x;(0) € [0, 1]. At each round, each agent
averages her current opinion with the opinions of her neighbors that are
e-close to hers. The parameter ¢ > 0 measures the tolerance of the agents
against different opinions.

Network Hegselmann Krause model

undirected graph G = (V, E).

n agents.

z;(0) € [0, 1], agent 4’s initial opinion.

At round t > 1, each agent ¢ updates her opinion:

e D jeN;(t) zj(t — 1) +x(t — 1)
nilt) = N1

where N;(t) ={jeV: |z;(t—1)—xz;(t — 1) <eand (i,j) € E}

101
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Given the graph G, the initial opinions and the parameter €, one can compute
the opinions of the agents at any round ¢. Such a selection defines an opinion
dynamics z(t).

Definition 5.1. An instance of the Network HK model is denoted by the
triple (G,2(0),¢) and x(t) € [0, 1]" denotes the opinion vector at round t.

In this chapter we shed light on the convergence properties of the Network
HK model. Our results provide a positive answer to the following question.

Question 4. Does the opinion vector x(t) stabilizes to a stable state for any
instance (G, x(0),¢e)?

Every instance of the Network HK model admits an infinite number of
stable opinion vectors. Assume that at some point in time the opinions have
the following form: FEach agent either has opinion x;, or opinion xy where
|z, — x9| > €. Clearly the system will remain in this state forever. The agents
with opinion x, average their opinion with the opinions of their x,-neighbors,
while the same happens with those with opinion x,. Theorem 5.1 states that
such a stable state is always reached by the system.

Theorem 5.1. For any instance (G, x(0),¢) of the Network HK model, the
opinion vector x(t) reaches a stable state.

Section 5.2 is dedicated to the proof of Theorem 5.1.

5.2 Convergence of Network Hegselmann Krause
Model

A crucial step for proving Theorem 5.1 is describing the opinion dynamics as
the following matrix product.

Corollary 5.1. For any instance (G, x(0),¢) of the Network HK model, the
opinion vector x(t) can be written in the following matriz form:

z(t) = Alz(t — 1) = A" --- A'z(0)

1 . -
S R
0 otherwise
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Each matrix A’ is stochastic (has positive elements and the sum of each
row equals 1), has positive diagonal elements and has the following symmetric
property, if Aﬁj > 0 then A;i > 0. As we will see latter, the third property is
of great importance for establishing the convergence properties of the Network
HK model.

Each matrix A’ can also be perfectly represented by an undirected graph
that is an induced subgraph of GG and consists of the activated edges of E at
round ¢. By the term activated edges we mean the pairs (i, j) € E such that
|z;(t) —x;(t)| < e. Probably with some abuse of terminology, throughout this
section we refer to A’ either as a matrix or graph. This «dual» consideration
extremely simplifies things and provide us with a lot of intuition on why
Network HK model always reaches a stable state. This intuition is presented
after Definition 5.2.

Definition 5.2. Let the partition V = (S,V/S) then §'(S,V/S) denotes the
edges of A" between S and V/S or equivalently the set of pairs (i,j) where
i€S,j€eV/S such that Aj; > 0.

Assume that graph G has two connected components GGy, G5. Then the
overall system breaks into two independent subsystems since the agents of
G, are never influenced by the agents of GG, and vice versa. As a result,
without loss of generality we can assume that GG is connected. Describing
the system as a graph-matrix sequence A!, ..., At ... permits us to apply a
similar observation on the time domain. Assume that there exists a round
to such that for all t > to, 6°(S,V/S) = @. The latter means that after ¢,
there is no interaction between any agents in S and V/S and thus the system
breaks into independent subsystems. Since at most |V| — 1 breaks can occur,
after a finite round no break happens. Thus without loss of generality, we
can assume that a break never takes place. Definition 5.3 and Corollary 5.2
establish the above intuition in a formal way.

Definition 5.3. A set of agents S CV is weakly connected if and only if
for any non-empty S" C S and any to € N, there is a round t > to so that A
includes at least one edge connecting an agent in S’ to some agent in S\S'.

Definition 5.3 is the negation of the property that a break takes place. An
instance of Network HK model in which V' is weakly connected, is presented
in Example 5.1.

Example 5.1. Let an instance of the Network HK model where G is connected
and for alli,j € V, |x;(0) — x;(0)| < e. The respective graph-matriz sequence
is G,...G, ... meaning that V is weakly connected.
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Corollary 5.2. Let (G, x(0),e) an instance of the Network HK Model. Then
there exists a round t* and a partition of V.= (Vi, Va, ..., Vi) such that

e cach V; is weakly connected.
o forallt >t*, 6'(Vy, V\V,) = @.

Proof. Corollary 5.2 directly follows by induction on the number of nodes
and by the definition of weak connectivity. O

We can now vividly explain the significancy of the notion of weak connec-
tivity for proving that the Network HK model always reaches a stable state.
The reasoning procceeds as follows: If in the given instance (G, x(0),¢), V
is not weakly connected then at some finite round the system breaks into
independent subsystems that are weakly connected (Corollary 5.2). Thus
without loss of generality we can assume that V' is weakly connected. In case
V' is weakly connected we argue that the influences among the agents are so
strong, that finally all agents adopt the same opinion! This is formally stated
in Theorem 5.2 that is the main result of the section.

Theorem 5.2. Let (G, x(0),¢) an instance of Network HK model such that
V' is weakly connected. Then there exits to € N such that

zi(to) = xj(to), foralli,j eV

As mentioned above, Theorem 5.2 is the major result of the section.
Theorem 5.1 follows by direct application of Lemma 5.2 and Theorem 5.2.
For the sake of completeness we present the proof and then we dedicate the
rest of the section to prove Theorem 5.2.

Theorem 5.1. For any instance (G, x(0),¢) of the Network HK model, the
opinion vector x(t) reaches a stable state.

Proof. By Lemma 5.2 there exists t* and a partition of V = (V1,V,,..., Vj)
such that

o cach V} is weakly connected.
o forallt>t* §'(Vy, V\V}) = @.

Due to the second condition, the opinions of the agents in each V; after round
t*, equal the opinions of the agents of the instance (Gy,, zv,(t*), ). Due to the
first condition in each instance (Gvy,, v, (t*),€) the set V4 is weakly connected
and thus Theorem 5.2 applies. O
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Theorem 5.2 states that if V' is weakly connected then at same point in
time all the agents will adopt the same opinion. In a sense Theorem 5.2 states
that the rank of the matrix-product A*--- A' converges to 1 at ¢ grows. This
intuition is formally stated in Theorem 5.4 which implies Theorem 5.2. Before
presenting Theorem 5.4 we present the notion of the coefficient of ergodicity
[132], which is a very useful tool for studying products of stochastic matrices.

Definition 5.4. Let A be a stochastic matriz then the coefficient of ergodicity

of matriz A,
1 n
T(A) = 5 max Z |Air — Aji|
1

5] ko=

and has the following properties:
e T(A-B)<71(A)-7(B)
e if A has positive elements then T(A) < 1
e 7(A) =0 if and only if rank(A)=1

We are now ready to state Theorem 5.4, which implies the Theorem 5.2.

Theorem 5.4. Let the graph-matriz sequence A, ..., At ... of an instance

(G,2(0),¢) of the Network HK model in which V is weakly connected. Then,

lim 7(A"---A') =0

t—00

Before exhibiting the proof of Theorem 5.4, we present the proof of Theo-
rem 5.2

Theorem 5.2. Let (G, x(0),¢) an instance of Network HK model such that
V' is weakly connected. Then there exits to € N such that

zi(to) = xj(to), foralli,j eV

Proof. Since V is weakly connected by Theorem 5.4, lim;_,o, 7(A"--- A') = 0.
As a result, there exists a round ¢y such that the coefficient of ergodicity of
stochastic matrix C'= A% --- Al is 7(C') < ¢/2. Since x(to) = Cz(0) we have
that for all 7 and j,

[zi(to) — ;(to)] |(Ci = C;)x(0)]
1C: = Gl

27(C) <e

IAINA
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where C; is the i-th row of matrix C'. Since at ¢y all opinions are within
distance € we have that A% equals G (enhanced with self loops). Moreover
T(AV - Ao A < 7(AP - .- AY) < £/2, meaning that for all ¢ > ¢,

Al = Ale

Hence, after round %y, we have essentially an instance of DeGroot’s model
on the undirected connected network G (enhanced with self-loops), which
fulfills the conditions for convergence. Moreover, all agents converge to a
single opinion [92]. O

We complete the section with the proof of Theorem 5.4. The proof follows
directly from the submultiplicative propery of the coefficient of ergodicity
and Lemma 5.1.

Lemma 5.1. Let the graph-matriz sequence A',..., A,... of an instance
(G,2(0),¢) of the Network HK model in which V is weakly connected. Then,
for any to € N there exists ((ty) € N such that

T(AMR) LAY < 1 — (1/n)™

Proof. We will use the fact that V' is weakly connected to prove that for any
to there exists a round £(,), such that the matrix product C'*‘®) has all of its
elements positive (C* = A*--- A%). Then, by the properties of coefficient of
ergodicity 7(C*t)) < 1.

Notice that the element Cj; is positive if and only if there is a (time-
respecting) walk (i = wug, uy,...,u_y, = j) from node i to node j such that
the edge {uy, up,} exists in A% Recall that any matrix A’ has positive
diagonal elements or equivalently every node in the graph A’ has a self loop.
Thus, if C’fj’ !> 0 then C’fj > 0, since the time respecting walk from 7 to j can
use the self loop of node j. The latter implies that Pos;(t—1) C Pos;(t), where
Pos;(t) denotes the positive elements at the i-th row of C* (equivalently the
nodes reachable from i in t —to + 1 steps). Since V' is weakly connected, there
exists a time step ¢’ > ¢ such that A" contains an edge {j, m} traversing the cut
(Pos;(t), V\Pos;(t)). Provided that j € Pos;(t) C Pos;(#') and {j,m} € Ea,
shows that m € Pos(t'). Thus, |Pos;(t)| + 1 < |Pos;(t')| and repeating the
same argument for all the rows of C* proves our claim.

Up next, we prove that 7(C%*)) < 1 — (1/n)”. Observe that in the
previous proof we have implicitly mentioned two types of matrices partic-
ipating in the product A% ... At There are the ones that augment the
total positive elements in the overall product and those who preserve the
positive elements through the use of self loops. We call these two types of



5.3. RANDOM HEGSELMANN KRAUSE MODEL 107

matrices expanding and non-expanding respectively. More precisely, A! is
expanding if and only if Pos(C*™') & Pos(C*, where Pos(M) is the set of
positive elements of matrix M. Recall, from the previous paragraph, that
Ct = A" C" ! and Pos(C*' 1) C Pos(C*'1). At first, we prove that in case A’
is an non-expanding (Pos(C*) = Pos(C*™')) the minimum positive element of
C' is greater than the minimum positive element of C*~!.

Let 0 be the minimum positive element of C*~!. Since Pos(A*- C'™1) =
Pos(C*1), we just need to show that if C{;' > 0 then (A'- C'""');; > 0.
Suppose that C{;' > 0 then

(A =S A = T Ay
=1

t—1
l.Clj >0

We will prove that El;cf_—1>o Al = 1 and this directly implies our claim.
J

Let us assume that 210t 150 AL, < 1. This means that there exists k s.t.
J

Ay > 0 and Cf7' = 0. Since Pos(A" - C'"') = Pos(C* ') and C};' = 0
then (A'C*"');; = 0. Observe that (A'C*"'),; > AL, - Ol ' = A, - Cf71 =

t—1
0 2; Al = 0. Finally we get A%, = 0 and Af, > 0. This can’t be true,
because Al, > 0 implies that {i,k} € F and |z;(t) — zx(t)| < € meaning that
At > 0.

The matrix product Ct) = Alto) ... A% contains at most n? expanding
steps (the number of positive elements in C*%) ig n?). As a result, the
minimum positive element of A% decreases only n? times. Since the minimum
positive element of any martix A* is 1/n, the minimum positive element of
C*") is greater than (1/n)". Combining this with the fact that all elements
of () are positive, we get that 7(C*%)) < 1 — (1/n)™. O

Remark 5.1. We remark that this proof can be generalized to prove con-
vergence of the d-dimensional Network HK model. In this case each agent i
maintains a d-dimensional opinion vector z;(t) € [0, 1]* and the update rule is
defined respectively by the d-dimensional HK model [1}] and a social network
G. The proof is essentially identical, with the only difference that we need
to prove the existence of a time step to such that T(C) < ¢/(2+/d), where
C = Al ... A% But, we have already proven that lim;_,,, 7(A"--- A°%) = 0.

5.3 Random Hegselmann Krause Model

In the Random HK model, each agent 7 initially holds an opinion x;(0) € [0, 1].
At each round ¢, each agent picks k other agents (including herself) uniformly
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at random with replacement. Then she averages her current opinion with the
opinions of those that are e-close to hers.

Random Hegselmann Krause model

1: n agents.

2: 2;(0) € [0, 1], agent ¢’s initial opinion.

3: At round t > 1, each agent i:
4: selects k agents uniformly at random with replacement, R;(t) C [n]
5: updates her opinion,

B > jeN;(t) zi(t — 1) +x(t — 1)
zilt) = INi(t)] + 1
where N;(t) ={j: |z;(t —1) —z;(t —1)| < e and j € R;(t)}

As already discussed, Random HK model is a straightforward variant of
the original HK model, in which each agents meets just a small subset of the
other agents at each round. In this chapter we prove that the convergence
properties of the HK model are preserved even in this random and limited
information exchange setting.

Since Random HK model is a stochastic opinion dynamics, the selection
of the initial opinion, the sampling size of the agents and the parameter ¢
defines a probability distribution over the opinion vector z(t).

Definition 5.5. An instance of Random HK model is denoted by (x(0), k,¢)
and x(t) is the produced opinion vector at round t.

The convergence properties of the Random HK model are depicted in Theo-
rem 5.6. Before presenting it, we introduce some neccessary notions that are
neccessary both in stating Theorem 5.6 and in its subsequent analysis.

Definition 5.6. Let Sy, .S, two disjoint sets of agents, we denote their distance
at round t as
d'(S1,S2) = min_ |z;(t) — z;(t)]

1€851,7€S2
Definition 5.7. A set of agents S is e-connected at round t, if and only if
for any non-empty set S’ C S,
d'(S’,S\S)<e

Definition 5.8. The diameter at round t, denoted Diam(t), is the mazimum
distance |x;(t) — x;(t)| over all pairs of agents i,j in the same e-connected
component at round t.
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Theorem 5.6. Let (2(0),k,e) be any instance of the Random HK model.
For any v,0 > 0 there is a round t* such that for all t > t*:

P[Diam(z(t)) <] >1-9

Theorem 5.6 states that agents form opinion clusters with inter-cluster distance
at least €. More precisely, if we «look» the system after a large number of
rounds: the distance of the opinions of any two agents |z;(t) — x;(t)| will
be either less than v (which can be made arbitrarily small) or greater than
e. Notice that if |z;(t) — z;(t)| € (7,¢] then agents ¢, j must be in the same
e-connected component, meaning that the diameter Diam(z(t)) > -, which
contradicts Theorem 5.2. Moreover these clusters remain the same. Two
different e-connected components can never be merged since the distance of
any two agents from two different components is at least €. At the same time
if v <€, an e-connected component cannot break since the maximum distance
of the opinions is at most v and this cannot increase no matter the random
meetings.

5.4 Convergence of Random Hegselmann Krause
Model

The goal of this section is to prove Theorem 5.6. Although the strategy
proof resembles that of Section 5.2, there are some major differences that are
explained up next. As in Section 5.2, the basic step is to describe the opinion
dynamics as a product of stochastic matrices.

Corollary 5.3. For any instance (z(0), k,e) of the Random HK model, the
opinion vector z(t) can be written in the following matriz form:

z(t) = Alz(t —1) = A" .- A'2(0)

—

| mem FI=0
0 otherwise

Each matrix A is stochastic and has positive diagonal elements. Moreover
these matrices are random variables since they depend of the realization of
the random meetings of the agents. As in Section 5.2, each matrix A’ can also
be represented as graph in which an edge (i, j) exists if and only if Aj; > 0.
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The major difference between the Random HK model and the Network HK
model is that the resulting graph of A! can be directed. For example consider
the case where |z;(t) — z;(t)| < e and 7 picks j, but j does not pick 7. This
asymmetry in the influence does not seem of great importance, but in fact HK
systems with such asymmetric influence are far from being well understood
[37]. From a technical point of view, Lemma 5.1 does not apply since it
requires that if Af; > 0 then A%, > 0, the influence among the agents is
«symmetricy.

In order to study the convergence properties of the Random HK model, we
first seek for conditions under which a subdivision of the system occurs. This
is captured through the notion of e-connectivity introduced in Definition 5.7.
Consider two different e-connected components S, V\S at round ¢,. For all
i€ Sandje V\S, |z;(to) — z;(to)] > €. It is not hard to see that no
matter the random meetings of the agents, |x;(t) — z;(t)| > ¢ for all rounds
t > to. This means that after round %y, the agents in S are not influenced
by the agents in V'\ S and thus the system is separated into two independent
subsystems.

Definition 5.9. A set of agents S breaks at round t if and only if S is
e-connected at round t — 1 and is not e-connected at round t.

As already discussed, once S” and S\ S’ break, they behave as independent
instances of the Random HK model. Notice that at most n — 1 breaks can
occur, meaning that the event of a break, automatically reduces the number
of future breaks. This provides some intuition on how the system performs.
Assume that the system runs for a long period during which a small number
of breaks take place. At the end of the period, the opinions of the nodes in
each e-connected component would be similar, since there would be a great
deal of interaction between them, preventing the event of future breaks. On
the other hand, a large number of breaks (during this time period) reduces
the number of future breaks and consequently the first case applies. The
following definitions and lemmas formalize the above intuition.

Definition 5.10. We denote as Iy the set of all instances (y, k,€) of Random
HK model, in which for all rounds t > 0,

P [at most { breaks occur in {0,t} | x(0) =y] =1

The set I'y consists of all vectors y € [0, 1] such that if the initial opinions
are y, then no matter the random choices of the agents, at most ¢ breaks
occur.



5.4. CONVERGENCE OF RANDOM HEGSELMANN KRAUSE MODEL 111

Example 5.2. Consider the instance (x(0),k, ) such that for all i, 7,
|2:(0) — z;(0)[ < e

In such an instance, max; x;(t) —min; z;(t) < e for all rounds t, no matter the
random meetings. As a result, no break ever occurs and thus (x(0), k,e) € T'y.

In Lemma 5.2 we prove that if no break ever takes place, then there would
be enough influence among the agents that leads them in adopting similar
opinions, which is the first case of the above presented high level intuition.
We show that if an instance (x(0), k, ) € I'g then the agents adopt similar
opinions with high probability.

Lemma 5.2. Let an instance of the Random HK model, (x(0),k,e) € T.
For any v, > 0, there is a round ty such that for all t >ty :

P [Diam(t) <~ >1-0

Proof. Without loss of generality, we assume that there exists a single e-
connected component since otherwise we can amplify the probability over the,
at most n, e-connected components.

We note that if |z;(t) — z;(f)| < e, then the probability that agent j is at
i’s sample set at round ¢, is p = 1 — (1 — 1/n)*. For any round /, we denote
Ct = A+ .. A and D' = A*"1... A'. We claim that there is a fixed > 0
such that for any possible matrix D?,

E [7(C"/M)| D] < 1-7/2

Let Pos;(t) denotes the random set of positive elements of the i-th row of the
matrix C*. Assume that 37, |Pos;(¢)| < n? then there exists i such as

|Pos;(t)| <n—1
Since our instance belongs in I'y then no break ever occurs and thus
d"(Pos;(t), V\Pos;(t)) < e

This implies that there exists u € Pos;(t), 7 € V\Pos;(t) such that |z,(t) —
z;(t)| < e. Since u chooses j with probabilty at least p the expected number
of rounds, before all the elements of C* become positive is at most n?/p. By

Markov Inequality,
P[r(C*/7) <1 D] < 1/2
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where 7(+) is the coefficient of ergodicity (see Definition 5.4 of Section 5.2).
Since C2"*/? is the product of 2n2 /p matrices, there exists a fixed n > 0 such
that if 7(C*) < 1 then

T(C) <1—-7

Thus, we get that for any fixed value of DY,
E [7(CY)|D'] <1-7/2

We can now obtain a matrix C' = A ... A! such that 7(C) < /2 with
probability at least 1 — §, by taking an appropriatelly large number of
rounds. [

Lemma 5.2 provides us with the an efficient primitive for establishing
Theorem 5.6. If the system starts at a ['g state, then Theorem 5.6 follows by
a direct application of Lemma 5.2. In Lemma 5.3, we prove that no matter
the initial opinion vector the system «falls» in a I'g-state with probability 1.
Interestingly its proof uses Lemma 5.2.

Lemma 5.3. Let (2(0), k,e) be any instance of the Random HK model. For
any 6* > 0 there is a round t* such that

Pla(t) €To) > 1 — 6

Proof. Let to be the number of rounds in Lemma 5.2 for 7 = . By definition
if z(0) € Ty then
P[Diam(z(ty)) <e] >1-9

We first present the high level idea of the proof. Assume that the systems
does not start at I'g, but a break cannot occur in the first ¢y steps. This means
that breaks start to appear after t, round. The basic observation is that if
this is true then Lemma 5.2 applies and by definition of ¢y, Diam(x(t)) < e
with probability at least 1 — §. This implies that with probability at least
1 — ) the system falls in a ['g-state. If this is not the case, that is a break
can occur in the first ¢ty rounds, implies that there is at least one sequence
of length k - n -ty describing the random meetings of the agents that leads
the system to a break. Since such a sequence can be seleceted by the agents
with probability at least p = 1/n¥"%  the system goes from a I'; state to a
I'y_, with probability at least p, meaning that we will end up to a I'p-state.
A rigourous version of this informal proof is presented up next.

We claim that P [z(ty) € [y_1]|2(0) € Ty] > (1 — §)p, where p = 1/nFmio.
Notice that p is the probability that a specific random sequence of length ¢,
is selected. In order to prove our claim, we have to examine two mutually
exclusive cases:
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P [a break occurs in {0,to}] = O : Since no break occurs in {0,%,} for all
random choices of the agents, Lemma 5.2 can be applied. By definition
of to, we have that P [Diam(z(ty)) <€ >1—4.

P[z(to) € T'y_1|x(0) € Ty] > P [Diam(xz(ty)) < €|z(0) € T]
>1—-6>(1-90)p

P[a break occurs in {0,to}] > 0 : The latter ensures the existence of a ran-
dom sequence of length ¢ such that a break takes place. This sequence
is selected with probability at least p. Implying the existence of an
opinion vector y € I';_; and P [z(to) = y] > p. Hence,

Pla(ty) € Ty i|2(0) €Tl > p > (1—)p

Until now, we have shown the existence of parameters ¢y, 9, p that depend only
the instance (x(0), k, ) and P [z(to) € I'_1|z(0) € I';] > (1 — 0)p. Because
our process is memoryless P [x(t 4+ to) € I'y_1|x(t) € I'y] > (1 — J)p, holds for
all t € N. Since at most n— 1 breaks can occur, we conclude that z(0) € T',,_;
and the proof follows directly from random walks on a chain graph, see
Figure 5.1. O]

Theorem 5.6. Let ((0),k,c) be any instance of the Random HK model.
For any v,0 > 0 there is a round t* such that for all t > t*:

P [Diam(xz(t)) <] >1-9§

Proof. By Lemma 5.3, for any ¢’ there exists ¢’ such that P [z(t') € o] > 1-¢".
Then Theorem 5.6 follows by direct application of Lemma 5.1. O

We conclude the section by summarize the proof of convergence of the
Random HK model. At first, Lemma 5.2 ensures that there exists t* € N
such that x(t*) € I'y and then Lemma 5.3 ensures convergence to a single
opinion in each e-connected component.



Figure 5.1

Iy



Chapter 6

Reallocating Facilities on the Line

In this chapter we present a polynomial time algorithm for the K-Facility
Reallocation Problem that was introduced in [58]. The presented results are
part of our work in [76]. A brief introduction to this problem can also be
found in Section 2.5.5.

6.1 Problem Definition and Preliminaries

Definition 6.1 (K-Facility Reallocation Problem). We are given a tuple
(z°,C) as input. The K dimensional vector 2° = (29,...,2%) describes the
initial positions of the facilities. The positions of the agents over time are
described by C = (C),...,Cr). The position of agent i at stage t is ol and

Cy= (a},...,al) describes the positions of the agents at stage t.

Definition 6.2. A solution of K-Facility Reallocation Problem is a sequence
x = (2t,...,27). Each a2t = (2%,...,2%) is a K dimensional vector that
gives the positions of the facilities at stage t and x%, is the position of facility
k at stage t. The cost of the solution x is

T K

n
Cost(z) =Y | Y |z — 2 '+ > min |af — 2}
1=1

=1 L=t — 1<k<K

Given an instance (z°, C') of the problem, the goal is to find a solution x
that minimizes the Cost(x). The term Y1 S5 | |ot — 24| describes the
cost for moving the facilities from place to place and we refer to it as moving
cost, while the term Y7, % min, <4< |} — ot | describes the connection
cost of the agents and we refer to it as connection cost.

115
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6.2 Solving the K-Facility Reallocation Problem
in Polynomial Time

Our approach is a typical LP based algorithm that consists of two basic steps.

o Step 1: Expressing the K-Facility Reallocation Problem as an Integer
Linear Program.

e Step 2: Solving fractionally the Integer Linear Program and rounding
the fractional solution to an integral one.

6.2.1 Formulating the Integer Linear Program

A first difficulty in expressing the K-Facility Reallocation Problem as an
Integer Linear Program is that the positions on the real line are infinite. We
remove this obstacle with help of the following lemma proved in [58].

Lemma 6.1. Let (zo,C) an instance of the K-facility reallocation problem.
There exists an optimal solution x* such that for all stagest € {1,T} and
ke{l, K},

thEClu...UCTUxO

According to Lemma 6.1, there exists an optimal solution that locates the
facilities only at positions where either an agent has appeared or a facility
was initially lying (see Figure 6.1). Lemma 6.1 provides an exhaustive search
algorithm for the problem and is also the basis for the Dynamic Programming
approach in [58]. We use Lemma 6.1 to formulate our Integer Linear Program.

The set of positions Pos = C,U...UC7Uz° can be represented equivalently
by a path P = (V, E). In this path, the j-th node corresponds to the j-th

t t t
ay Qg Qs

aj Qg ag

0 0
Ly Ly
-——o o o o o o ¢

Figure 6.1: According to Lemma 6.1, there exists an optimal solution that opens
facilities only to positions in which a facility was initially lying or a request has
appeared at some point in time.
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min Y, | ¥ 3 d(Loc(i,t), j)z!; + 3 Sk

ieC jev keF
> =1 VieCte{1,T}
jEV
ry; < cf VieC,jeVte{1,T}
C§: Zfif;j VieVte{1,T}
keF
> fi=1 Vke F,te{1,T}
JEV
Sk= X d(5,1)S}; Vk e Ft e {1,T}
AIEV
> Sea = fu Vke FileVite{1,T}
JEV
> Sk = fi VEe F.jeV,te{1,T}
lev
'rgjvflijvslilje{oal} \V/kEF,je‘/,tE{l,T}

Figure 6.2: Formulation of K-facility reallocation

leftmost position of Pos and the distance between two consecutive nodes on
the path equals the distance of the respective positions on the real line. Now,
the facility reallocation problem takes the following discretized form: We have
a path P = (V, E) that is constructed by the specific instance (2°,C'). Each
facility k is initially located at a node j € V' and at each stage t, each agent ¢
is also located at a node of P. The goal is to move the facilities from node to
node such that the connection cost of the agents plus the moving cost of the
facilities is minimized.

To formulate this discretized version as an Integer Linear Program, we
introduce some additional notation. Let d(j,{) be the distance of the nodes
j, 1 € Vin P, F be the set of facilities and C' be the set of agents. For each
i € C, Loc(i,t) is the node where agent i is located at stage t. We also define
the following {0, 1}-indicator variables for all ¢ € {1,7}: xf; = 1 if at stage ¢
agent ¢ connects to a facility located at node j, f,ﬁj = 1 if at stage t facility
k is located at node j, Sj; = 1 if facility k& was at node j at stage t — 1
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and moved to node [ at stage t. Now, the problem can be formulated as the
Integer Linear Program depicted in Figure 6.2.

The first three constraints correspond to the fact that at every stage ¢,
each agent ¢ must be connected to a node 5 where at least one facility £ is
located. The constraint 3= ;i fi; = 1 enforces each facility & to be located at
exactly one node j. The constraint S, = 3=, ey d(j,1)S};, describes the cost
for moving facility k£ from node j to node [. The final two constraints ensure
that facility £ moved from node j to node [ at stage t if and only if facility k
was at node j at stage ¢ — 1 and was at node [ at stage ¢ (S, = 1iff f; =1
and fi ' =1).

We remark that the values of f,Sj are determined by the initial positions
of the facilities, which are given by the instance of the problem. The notation
x;; should not be confused with z, which is the position of facility & at stage
t on the real line .

6.2.2 Rounding the Fractional Solution

Our algorithm is a simple rounding scheme of the optimal fractional solution
of the Integer Linear Program of Figure 6.2. This simple scheme produces
an integral solution that has the exact same cost with an optimal fractional
solution.

Theorem 6.1. Let x denote the solution produced by Algorithm 6.1. Then

Cost(x) =Y | > > d(Loc(i,t), )zl + > Sy,

t=1 LieC jev keF

where xf;, Sy denote the values of these variables in the optimal fractional

solution of the Integer Linear Program (6.2).

Theorem 6.1 is the main result of this section and it implies the optimality
of our algorithm. We remind that by Lemma 6.1, there is an optimal solution
that locates facilities only in positions C; U ... U Cp U z°. This solution
corresponds to an integral solution of our Integer Linear Program, meaning
that Cost(z*) is greater than or equal to the cost of the optimal fractional
solution, which by Lemma 6.1 equals Cost(x). We dedicate the rest of the
section to prove Theorem 6.1. The proof is conducted in two steps and each
step is exhibited in Sections 6.2.3 and 6.2.4 respectively.

In section 6.2.3, we present a very simple rounding scheme in the case,
where the values of the variables of the optimal fractional solution satisfy the
following assumption.
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Algorithm 5.1: An Optimal Algorithm for the K-Facility Realloca-
tion
Given the initial positions 2° = {29, ..., 2%} of the facilities and the positions

of the agents C' = {C,...,Cr}.

o Construct the path P and the Integer Linear Program (6.2).
 Solve the relaxation of the Integer Linear Program (6.2).
e Rounding: For each stage t > 1:

— Form=1,..., K, find the node j! such that

=1 Jrm
Z Gg<m-1<Y ¢
/=1 /=1

— Locate facility m at the respective position of node j' on the line

¢ . .
b o+ d(j,1 min
m (]’ ) + peClu...uCTu:cOp

Assumption 2. Let f;k and c§ be either 1/N or 0, for some positive integer
N.

Although Assumption 1 is very restrictive and its not generally satisfied, it
is the key step for proving the optimality guarantee of the rounding scheme
presented in Algorithm 6.1. Then, in section 6.2.4 we use the rounding
scheme of section 6.2.3 to prove Theorem 6.1. In the upcoming sections,
5, w5 fiis Sk, Sk will denote the values of these variables in the optimal

fractional solution of the ILP (6.2).

6.2.3 Rounding Semi-Integral Solutions

Throughout this section, we suppose that Assumption 1 is satisfied; f,ij and
¢} are either 1/N or O for some positive integer N. If the optimal fractional
solution meets these requirements, then the integral solution presented in
Lemma 6.2 has the same overall cost. The goal of the section is to prove
Lemma 6.2.

Definition 6.3. V,© denotes the set of nodes of P with a positive amount of
facility (c}) at stage t,

j € V7 if and only zfcz >0
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We remind that since ¢, = 1/N or 0, |V;"| = K - N. We also consider the
nodes in V;* = {Y{ ... Yx.n} to be ordered from left to right.

Lemma 6.2. Let Sol be the integral solution that at each stage t places the
m-th facility at the (m — 1)N + 1 node of V;" d.e. Y, ) ny,. Then, Sol has
the same cost as the optimal fractional solution.

The term m-th facility refers to the ordering of the facilities on the real line
according to their initial positions {x9,...,2%}. The proof of Lemma 6.2 is
quite technically complicated, however it is based on two intuitive observations
about the optimal fractional solution.

Observation 6.1. The set of nodes at which agent i connects at stage t are
consecutive nodes of Vi*. More precisely, there exists a set {Y/, ..., Vi n_1} C
V;* such that

] HEN-1
> d(Loc(i,t), j)xj; = > d(Loc(i, 1), Yy)
jev N = ¢

Proof. Let an agent i that at some stage t has z'y, > 0,2}, < 1/N and
7 £
zty, > 0 for some j < ¢ < h. Assume that Loc(i,t) < Y/ and to simplify
h
notation consider x; = :E’;fyt, Ty = xfyt. Now, increase z, by € and decrease zy,
¥ h

by €, where € = min(1/N — x4, x). Then, the cost of the solution is decreased
by (d(Loc(i,t), h) — d(Loc(i,t), £))e > 0, thus contradicting the optimality of
the solution. The same argument holds if Loc(i,t) > Y/}. The proof follows
since Y ey af; = 1. O
Observation 6.2. Under Assumption 1, the m-th facility places amount of
facility fl; = 1/N from the (m — 1)N + 1 to the mN node of Vit e to
nodes {Y(, 1\ni1s- s Y}

Observation 6.2 serves in understanding the structure of the optimal fractional
solution under Assumption 1. However, it will be not used in this form in the
rest of the section. We use Lemma 6.3 instead, which is roughly a different

wording of Observation 6.2 and its proof can be found in subsection 6.3 at
the end of the section.

Lemma 6.3. Let S the fractional moving cost of facility k at stage t. Then

izs;:Ntzg Ay

t=1keF

Observations 6.1, and Lemma 6.3 (Observation 6.2) are the key points in
proving Lemma 6.2.
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Definition 6.4. Let Sol, be the integral solution that places at stage t the
m-th facility at the (m — 1)N + p node of V;* i.e. Y(tmfl)Ner.

Notice that the integral solution Sol referred in Lemma 6.2 corresponds to
Sol;. The proof of Lemma 6.2 follows directly by Lemma 6.4 and Lemma 6.5
that conclude this section.

Lemma 6.4. Let S be the moving cost of facility k at stage t in the optimal
fractional solution and let MovingCost(Sol,) be the total moving cost of the
facilities in the integral solution Sol,. Then,

T

N
]17 Z MovingCost(Sol,) =>_ > " 5,

t=1keF

Proof. By the definition of the solutions Sol, we have that:

=
™=
M=
M=

N
]172 MovingCost(Sol,) = (i1 Y, )

(m—1)N+p> * (m—1)N+p

iS]
i
o
o~
I
~
3
I
o

I
=
M=
10
WE
=~

t—1 t
Yv(m—l)N—f—p? Yv(m—l)N—l—p)

t=1 p=1
1] T KN
- Ly yaviyy
N ; et j J
T
= Z St
t=1keF
The last equality comes from Lemma 6.3. [

Lemma 6.4 states that if we pick uniformly at random one of the N integral
solutions {S olp}p 1, then the expected moving cost that we will pay is equal
to the moving cost paid by the optimal fractional solution. Interestingly,
the same holds for the expected connection cost. This is formally stated in
Lemma 6.5 and it is where Observation 6.1 comes into play.

Lemma 6.5. Let ConCostt(Sol,) denote the connection cost of agent i at
stage t in Sol,. Then,

1 N
N Z ConCost(Sol,) =Y d(Loc(i, t), j)x,

JEV
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t t

T

1/3 1/31/3 1/3 1/3 1/3

Z] p opens at each node amount of facility c; =1/3 or 0 (N = 3 and K = 2).

Q

The set Y?! is the set of nodes with c; =1/3. The red acres show the connection

cost that agents 1 and 2 suffer respectively.

t t
ay )
% o g o
Since N = 3 and |Y*| = 6. Sol; opens facilites in Ylt and Y4”. The red acres

show the connection cost that agents 1 and 2 suffer respectively in Sol;.

‘@>
[—

(ﬁtz
i ©
Since N = 3 and |Y!| = 6. Soly opens facilites in th and Yst. The red acres

show the connection cost that agents 1 and 2 suffer respectively in Sols.

t t
a )
¢ — v o
Since N = 3 and |Y!| = 6. Solz opens facilites in Yat and YGt. The red acres

show the connection cost that agents 1 and 2 suffer respectively in Sols.

Figure 6.3: In the depicted instance N = 3 and K = 2. The figure illustrates the
positions in which Sol;, Sols and Sols of Definition 6.4 open facilities. One can
also easily verify Lemma 6.5

As already mentioned, the proof of Lemma 6.5 crucially makes use of
Observation 6.1 and is presented in the subsection 6.3 at the end of the
section. Combining Lemma 6.4 and 6.5 we get that if we pick an integral
solution Sol, uniformly at random, the average total cost that we pay is Zj p,
where Zj p is the optimal fractional cost. More precisely,

N N T
e Cost(Sol,) = 1 > [MovingCost(Sol,) + > > ConCost(Solp)]
N= N3 t=1ieC
T K
= ZZ R+ DD d(Loc(i,t), j)xy)

~+

1
NI
T o~

H

i€C jev
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Since Sol, > Z7 p, we have that Sol; = --- = Soly = Zjp and this proves
Lemma 6.2.

6.2.4 Rounding the General Case

In this section we use Lemma 6.2 to prove Theorem 6.1. As already discussed,
Assumption 1 is not satisfied in general by the fractional solution of the
linear program (6.2). Each S}, will be either 0 or Aj,/Ny;, for positive some
integers Aj;,, Ni,;,. Moreover each positive fi; will have the form Bj;/N,
where N = H52j2>0N’€jf‘ and this is due to the constraint fi; = 3y Sk

Consider the path P" = (V', E’) constructed from path P = (V, E) as
follows: Each node j € V' is splitted into K - N copies {j1, ..., jxn} with zero
distance between them. Consider also the LP (6.2), when the underlying path
is P' = (V', E') and at each stage t, each agent i is located to a node of V' that
is a copy of i’s original location, Loc/(i,t) = ¢ € V' where ¢ € Copies(Loc(i, t)).
Although these are two different LP’s, they are closely related since a solution
for the one can be converted to a solution for the other with the exact same
cost. This is due to the fact that for all j,h € V, d(j,h) = d(j', 1) for
j' € Copies(j) and h' € Copies(h).

The reason that we defined P’ and the second LP is the following: Given
an optimal fractional solution of the LP defined for P, we will construct a
fractional solution for the LP defined for P’ with the exact same cost, which
additionally satisfies Assumption 1. Then, using Lemma 6.2 we can obtain
an integral solution for P’ with the same cost. This integral solution for P’
can be easily converted to an integral solution for P. We finally show that
these steps are done all at once by the rounding scheme of Algorithm 6.1 and
this concludes the proof of Theorem 6.1.

Given the fractional positions {f;}>1 of the optimal solution of the
LP formulated for P = (V, E), we construct the fractional positions of the
facilities in P" = (V’, E') as follows: If f{; = Bj;/N, then facility k puts a
1/N amount of facility in Bj; nodes of the set Copies(j) = {j1,...,jrxn}
that have a 0 amount of facility. The latter is possible since there are exactly
K - N copies of each j € V and cﬁ- < K (that is the reason we required K - N
copies of each node). The values of the rest of the variables are defined in the
proof of Lemma 6.7 that is presented in the end of the section. The key point
is that the produced solution {f.}, ¢\, S, x4, S} will satisfy the following
properties (see Lemma 6.7):

« its cost equals Z7 p

e fit,=1/N or 0, for each £ € V'
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e ¢/ =1/N or 0, for each £ € V'

e b= ¥ ¢ foreachjeV
LeCopies(j)

Clearly, this solution satisfies Assumption 1 and thus Lemma 6.2 can be
applied. This implies that the integral solution for P’ that places the m-th
facility to the (m — 1)N + 1 node of V, * (Y(;Z_I)NH € V') has cost Z5p. So
the integral solution for P that places the m-th facility to the node jt, € V,
such that Y(';FI)NH € Copies(jt,), has again cost Z; p.

A naive way to determine the nodes j! is to calculate N, construct P’ and
its fractional solution, find the nodes Y(;;_l) ~41 and determine the nodes jf,
of P. Obviously, this rounding scheme requires exponential time. Fortunately,
Lemma 6.6 provides a linear time rounding scheme to determine the node jf,

given the optimal fractional solution of P = (V| E)). This concludes the proof
of Theorem 6.1.

Lemma 6.6. The (m — 1)N + 1 node of V" is a copy of the node jt €V
if and only if
Jin—1 Jim

Z czgm—1<Zcz
=1 l=1

Proof. Let (m — 1)N + 1 node of V" be a copy of the node 5!, € V;*. Then

Jm—1

1
Y= Y df<m-DNy=m-1
/=1

£=1 ¢'eCopies(£)

It ;

ZCZ: Z c;,t:((m—l)N—l—l);[>m—1

=1 =1 ¢'€Copies(£)

The above equations hold because of the property ¢, = ¢/ Copies(0) ¢} and
that ¢ is either 0 or 1/N.

Now, let Z{z;l d<m-1< Zii”l ¢y and assume that (m — 1)N + 1-th node
of Vit isacopy of j € V. If j < j¢  then 3)_, ¢l > m — 1 and if j > j¢ |
then Y9, < m — 1. As a result, j = jt,. O

Lemma 6.7. Let {f};, ¢, St ¢} }i=1 the optimal fractional solution for the
LP 6.2 with underlying path P. Then, there exists a solution { f,, ¢!, S, xih, S}z
of the LP 6.2 with underlying path P’ such that

1. Its cost is Zj p.
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2. fi = 1/N or 0, for each £ € V'
3. ¢/ =1/N oro0, for each £ € V'

4. =¥ ¢}, for each j €V
Le Copies(j)

Proof. First, we set values to the variables f,;g Initially, all f,;’; = 0. We
know that if fi; > O, then it equals Bj;/N, for some positive integer By;. For
cach such fi;, we find u,, ... Jupy, € Copies(j) with f,;zh = 0. Then, we set
fit,, = 1/N for h = {1, Bf;}. Since there are KN copies of each node j € V

kuh
and ey fi; < K, we can always find sufficient copies of j with fil, =o.
When this step is terminated, we are sure that conditions 2,3, 4 are satisfied.
We continue with the variables S;,. Initially, all S;’;, = 0. Then, each
positive Sj;, has the form B}, /N. Let B = By, to simplify notation. We

now find B copies of uy,...,up of j and vy,...,vp of £ so that
== = B == = UN
. S,;Zlh:~~:S,;th:S,;§wl :'--:S,;t,wB =0 forall heV’

We then set S, , =+ =S, . =1/N. Again, since >y St;, = fi; and

> jev Skje = fie we can always find By, pairs of copies of j and £ that satisfy
the above requirements. We can now prove that the movement cost of each
facility k is the same in both solutions.

S>3 d(0SL, = Y d5,0)BL,/N

JEV LV JEV LV

= ZZ Z Z Sllcthh’d<hvh/)

JEV £eV heCopies(j) h/€Copies(£)

- Z Z S]:fj’éld(j/’ g/)

JIEVIeev!

The second equality follows from the fact that h, h" are copies of 7, £ respectively
and thus d(h,h') = d(j, 7).

Finally, set values to the variables x% for each j € V’'. Again, each
positive x; equals Bj;/N, for some positive integer. We take Bj; copies of j,

! ! .
Lo o=-..=ux! =1/N. The connection cost of each
1 WUpt

Uy, .- upgt and set x
ij

agent 7 remains the same since
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Zd(LOC(i,t),j)ZUEj = Zd(LOC(i,t),j)ij/N

jev JEV
= YdLoc(i,).g) Y al
jev Jj'€Copies(j)

= > > dLod(i, t),j’)x,i;/

JEV j’€Copies(j)

= Y d(Loc'(i,t), h)z; zl

heV’

The third equality holds since Loc'(i,t) € Copies(Loc(i,t)). O

6.3 Omitted proofs

Lemma 6.3 Let S, the fractional switching cost of facility k at stage t. Then,

T ] T KN
22 Se= 2 2 ALY
t=1keF N t=1 j=1
Proof. By Assumption 1, ¢ = 1/N if j € V7 = {Y{,... Yy} and O
otherwise. Notice that the connection cost of the optimal fractional solution
only depends on the variables c}. As a result, f{;, Sk, Sj; must be the optimal
solution of the following linear program.

. . . T K
minimize Y > S

t=1 k=1
s.t. > fi = Vie Vit te {1,T}
keF
) fk]—l Vk € F,t € {1,T}
]€V+
= ¥ d(j,1)Si;Vk € F,t € {1,T}
]lEV
2 Skjl_fkl Vke File Vi te{1,T}
jevit,
S Sia=fy' VkeFjeVinte{1T}
lev

Instead of proving that the minimum cost of the above linear program

is + Z Z d(y;™! ,Y}), we prove this for the following more convenient
Nz =



6.3. OMITTED PROOFS 127

relaxation of the above LP.

T
minimize Z > d(y, l>F;l
t=1 eyt eVt
>t 16%+ Fy=x VjieVite{1,T} (6.1)
S R-d Mevhte(n)
jevie,

It is easy to prove that the LP (6.1) is a relaxation of the first by setting
Ff) = Yyer Sij- Moreover, the above LP describes a flow problem between
the nodes V;*, where F ﬁ is the amount of flow going from node j € VT, to
node [ € V;* (see Figure 6.4).

We are ready for the final step of our proof. First, observe that F! Yy is

feasible solution for the above LP since |V,5;| = |V,'| = K- N. If we prove
that this assignment minimizes the objective, then we are done. Assume

that in the optimal solution, F* Y-ty < 1/N. Since Y. F t y = %, there
lev;* "

exists Yt such that F! vty > 0. Similarly, by using the second constraint

we obtain that F yi-lyr > 0. Let ¢ = mm(Fyt 1Yt,Ftt lyt> Observe that

if we increase F;HY“ F! by € and decrease F Yty Ft by €, we
1 1

Yyt Yt yt
obtain another feasible solution. The cost difference of the tvvo solutions is
D = e(d(Y{™Y)) +d(Y; 7 YY) —d(Y{H YY) —d(Y; 7, Y))). If we prove
that D is no negative, we are done. We show the latter using the fact that
Y/t < Yffl and Y/ < Y}t. More precisely,

o IfY/7! <Y/ then D > 0 since Y} < Y}
o IfY/™' > Y/} then D> 0since /7! < Y;-t,_l.

Until now, we have shown that in the optimal solution, the node Y{™*
sends all of her flow to the node Yf. Meaning that Y} does not receive flow by
any other node apart from Y/ !. By repeating the same argument, it follows
that in the optimal solution each node Y;-t_l sends all of her flow to th. O

Lemma 6.5 Let ConCosti(Sol,) denote the connection cost of agent i at
stage t in Sol, of Definition 6.4. Then

N
i onCost Sol d(Loc(i, ),
N

i€C jev
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0 i 1 =1l F1T1 7
Y] Y) Y Y;
F. F.
Yzo sz 1 Yv2T— 1 Y'ZT
8 - ) ——Em 0 G »Yin

Figure 6.4: The flow described by LP (6.1).

Proof. We will prove that 3 IJJ\;I ConCost;(Sol,) equals 3 ey d(Loc(i, t), j)t;.
We remind that by Assumption 1, ¢; is 1/N if j € V;" and 0 otherwise. As a
result, in the optimal fractional solution, each agent ¢ finds the N closest to
Loc(i,t) nodes of V;* and receives a 1/N amount of service from each one of
them. Let us call this set N}. By Observation 6.1, the nodes in N} must be

consecutive nodes of V;" i.e. Nf ={Y/,..., Y/ y_,} and
I+N—1
> d(Loc(i,t), j)ai; = > d(Loc(i,t),Y})/N
% 3=l

Since Sol, puts facilities in the positions {Y{, }) x,}m=1, there exists a
unique node Yy(,, € N} in which Sol, puts a facility. Yy, is the closest node
to Loc(i,t) from all the nodes in which Sol, puts a facility. As a result,
ConCostj(Sol,) = d(Loc(i), Yy,). Now, summing over p we get,

1 N 1 Y )
I Z ConCosti(Sol,) = N Zl d(Loc(i), }/llép))
=1 p=

I+N—-1

— ; d(Loc(),Y})/N
— Y d(Loc(i, 1), j)a,

JjeEV



Chapter 7

Open Problems

In this chapter we list several interesting open problems that came out during
this thesis and we did not manage to solve yet. I hope that all of these
question will meet their answers in the near future.

A first interesting question left open by this thesis concerns the compu-
tational complexity of finding Nash Equilibrium in coevolutionary opinion
formation games introduced in [15]. In this kind of opinion formation games
the weights measuring the influence among the agents are not static, but
depend on the agents’ expressed opinions. The existence of Nash Equilibrium
in coevolutionary opinion formation games is guaranteed by the Kakutani
Fized Point Theorem [15, 126] and thus finding one belongs in the Polyno-
mial Parity Arguments on Directed graphs (PPAD) complexity class [120].
Determining the computational complexity class for which this problem is
complete has not yet received an answer, while my conjecture is that this
problem is not PPAD-complete.

A similar open question concerns the computational complexity of finding
equilibria in the FJ model with negative weights among the agents. Although
our results presented in Chapter 4 provide an illustrative picture on the cases
in which simultaneous best response dynamics converges, they do not have
much to say about the cases in which finding an equilibrium is computationally
easy. In its general form this problem is hard (and this indicates an additional
reason for the assumption introduced in Chapter 4) since the PLS-complete
problem Local-MaxCut [130] can be very easily reduced to computing Nash
Equilibrium in instances where all the weights among the agents are negative.
However the mild assumption that the sum of the weights of each agent is
positive breaks down this computational hardness. The reason is that the
latter assumption makes the agents’ disagreement cost functions convex and
thus the existence of equilibrium is implied by the Kakutani Fixzed Point
Theorem [126]. As a result, computing Nash Equilibrium in opinion formation

129
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games in which the above assumption holds, renders the problem at the
interesection of PPAD and PLS complexity classes [57]. I am very intrigued
towards understanding whether this problem can be solved in polynomial
time or it is complete in a complexity class, such as the Continous Local
Search class (CLS) [57], contained inside the intersection of PPAD and PLS.

Another question that I have tried to answer concerns the convergence rate
of Network HK model. Our convergence results presented in Chapter 5 are
asymptotic in the sense that guarantee that at some point in time the overall
system freezes, but the do not provide any kind of guarantees on the number
of steps needed for this to happen. I conjecture that the convergence time of
Network HK is polynomially bounded by the number of agents, something
that is also indicated by our experimental evaluations.

A final problem that is left open by this thesis, concerns the online
version of the k-facility reallocation problem examined in Chapter 6. In the
online version of the problem the requests of the clients at each round are
revealed only after the determinations of the positions of the facilities at the
previous round. With a quite easy argument, one can prove that there is no
deterministic algorithm that can approximate the optimal solution with a
factor smaller than ©(k). We strongly believe that this bound is tight, but
we have not yet managed to find a k-competitive algorithm for this problem.
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