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>0voYm

To cuoThuato UTOAOYLOTIXOU VEQOUS YivovTon OA0 xou To ONUO@IA yiot TNV @rholevior mowdhwy
EQOPUOY®Y, OTWS OLBPUCTIXES BIXTUOXES EQUOUOYES, uNyovix) pdinon ot LTOAOYLOTIXY LPMAGY
embéoewy. Ilohhol opyovicuol emAéyouy vo Te€YouV TIC EQUPUOYEC TOUG G0TO VEPOUS, xade elval o
EVEMXTO, OWOVOUIXO ot ac@aréc. Tmdpyel TANUWEA TapPOY WY UTNEECIOY VEQPOUS, amd dNUOcLa VEQT
onwe 1o Google Compute Engine, to Microsoft Azure xou too Amazon Web Services péypl oiwtixd
AEVTPA DEDOUEVWY IOV EVORYNC TEOVOVTUL amd cUC THUATA 6Twe To Mesos xau o KuBepvAtng. Ou mdpoyol
UTNEESIWY VEPOUS ETWPEROLYTOL ATd TNV TAUTOYEOVY YeNON TV TOPKY TOUS omd TOANATAOUS EVOiXOUg
xaL TNV Onutoveyior oovouldy xAiuaxog xatd Ty dnuoupyio UEYSAWY XEVTEWY OEOOUEVMYV.

Av a1 oL Tépoy oL UTNEECLOY VEQPOUC TEETEL TEOBOVUY GE TOAD UEYIAES ETEVOUCELS YL VAL XU TAOEUATOLY,
vor eE0TALGOUY XalL VoL AELTOURYHOOLY €val XEVTEO BEBOUEVWLY, oL Sladéaiuol TOpOoL ToUE TaEOVGLALOLY YoUNAN
yenowonoinor. Euaicintec egopuoyéc ¥étouv auotnpolc otdyous we TEog ToV YeOVo amdXploNC TOUG
xan 0 @ofog mapaBiaong TWV CUUPKOVEVEVTWY GTOYWY 0BNYEL TOUC DLUYELPLOTES TWV XEVIPKY OECOUEVMYV
oTnVv unepdpriun avddeorn ToOpWY OTIC EPUPUOYES QUTES, EWBXd OTav dpouoloyolvto xou un evolovnteg
EQAUPUOYESC oo (Bl pnyavipaTa. Xta TEAN g dexoetiar Tou 2000, N Yo yerion TWV UNYOVNUATOY GE
WL TG ®EVTEa Sedopévmy xupguvoTay Yetalld 6% xou 12%, pe to xohbtepa €& Uty VoL QTavouy To
30%. ITo mpdogarta dedouéva Belyvouy 6Tl OL YENOLOTOINOT TV UNYAVAUETWY OE XEVTEa SEQOUEVKY TNC
Google éyouv @tdoet to 60%. ool epeuvntéc éyouv mpoteivel Wéeg yior Ty adnon yenotponoinong
TV TopwV ot TepBdAhovta vépous. Kowvdg tOmog Twv TpoTdoenmy autov elval 1 avTIXATIoTIoT TWY
CTATIXDV BECUEVCEWY TOPWY UE DUVAULXY| TROCUPUOYY| AVAAOYX UE TLS OVEYHES TV EQPUQUOYMV.

H Simhopotin auth epyaota mpoteivel Eval oGTNUO SLYElPLONG TORMY Yol CUCTABES UNYAVIUATWY TOU
ehéyyovton and tov KuBepvitn. Ot yeroteg twv unyavnudtey xodopilouv otéyoug enidoong, avtl va
deopevouy mopouc. To mpotewvouevo choTnua avohouBavel vo Beel ToUg EAAYLOTOUC TOPOUS TOU OTOLTEL
pLor evakoUNTN EQUPUOYT TEOXEWEVOU VOl LXAVOTIOLACEL TOUG 6TOY0US Tou €youv Ttedel. OL undiroitol tépot
avatilevtar oe pla un evolontn egapuoyy. H mpotewoduevn vionoinon allomolel dedopéva and To
cbotnua mapaxorolinong Ipoundéac xou dev amoutel mpdofacy oe UeTENTEC UAXOU. NUYXEIVOUEVO UE
wa cuvtnentixy otadepr Béoucuo TOPWY, TO TEOTEWOUEVO GUCTNUA QUEGVEL TNV YENOWOTOoMoN TwV
unovnudTwy xotd 1,6 @opéc eved ol Tapafldotlc Twv tépny avZdvovtor and 4% oe 11%.

A€Zeig xAedid: utohoyloTnt| vépoug, dayelpiorn topwy, KuPepvitng, containers, xévtpo dedouévemy,
yenowonoinon



Abstract

Cloud computing has become increasingly popular with a diverse set of applications spanning the
areas of web service applications, machine learning and high-performance computing. Many
organizations choose to deploy their applications in the cloud, as it offers flexibility, high availability
and cost efficiency. A wide variety of cloud providers is available, from public clouds like Google
Compute Engine, Microsoft Azure and Amazon Web Services to private clouds orchestrated by
frameworks like Openstack, Apache Mesos and Kubernetes.  Cloud providers benefit from
multi-tenancy, since their resources are shared by multiple users; moreover building large-scale
datacenters across the globe could create economies of scale.

Although cloud providers invest very large amounts of money in building and operating
datacenters, their resources are significantly underutilized. Latency-critical applications operate
under strict latency constraints and the fear of violation leads cloud administrators to be
conservative when scheduling batch jobs on the same servers. In the late 2000s, it was estimated
that the average server utilization ranged between 6% and 12%, with the high-end reaching 30%.
More recent data from 2019 show that server utilization in Google datacenter servers has reached
60%, thanks to increased resource utilization by batch jobs. A plethora of researchers from industry
and academia have proposed ideas, so as to increase the resource utilization in cloud datacenters.
Their efforts are mostly concentrated in moving from a reservation-centric to a performance-centric
resource allocation approach, because reservations tend to be severely overestimated.

This thesis proposes a resource manager for container-based clusters managed by Kubernetes. The
cluster users define performance targets in terms of latency instead of reserving resources. The
resource manager is responsible to find the least amount of vCPUs the latency-critical workload
requires to avoid latency target violations; the remaining vCPUs are allocated to a batch job. The
resource manager leverages measurements from Prometheus monitoring system and does not require
access to hardware counters. Compared to a conservative static resource allocation, the proposed
resource manager increases the server utilization by 1,6x, while increasing the latency target
violations from 4% to 11%.

Keywords: cloud computing, resource management, Kubernetes, containers, datacenter, utilization



Euyaplotieg

H napotooa dimhwpatiny epyacta exmoviidnxe oto Epyacthiplo Troloyiotiney Luctnudtewy. Apyxd,
Yo Aleha var euyaploThow Tov enixoupo xadnynth x. I'ewpyio I'vodua yia v avddeon autod tou TOAD
evdlapépovTog YEUaTog, XS Xt YLol TIC YVOOELS ToU oV UETEDWOE Yéoa amd Tol Lo jUaTd TOU OYETIXA
UE TOL UTOAOYLOTIXG GUOTAUOTA X0t TNV ToedAAnAn enelepyacio. Oo Hlela enlong va euyaploThow Tov
uroripro diddxtopa Iwdvvn Hanaddxn yio Tnv Soexn xou ToAUTun Bordeia Tou, ywelc Ty onola dev VYa
Aty Suvaty 1) ohoxhfpwon authc TNE epyactag. Téhog, Yo Hlela Vo exppdow TNV ELYVELUOGHOVY LOU TEOG
TNV OXOYEVELX OV YIO TNV UTOCTARIEY TIOU OV TROGEPERE XATE T (POLTNTIXG LOU YPOVLOL.
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Kepdhawo 1

Eicoaywyn

To Vo e Simhwpatixrc epyaciog lvon 1 amOTEAEOUATIXY GUVOROUOAOYTOT PopTiwy o éva cluster
Tou eAéyyeton amd Tov KuBepvrtn. Xto mhaicto tng epyaociog autrg, To unoloyiotixd goptia ywellovta
oe dvo xatnyoplec: to evaiodnta (latency-critical / LC) mou €youv auvotnpolc otdyous oyeTxd ue TV
xaduotépnon xon to un evoiodnta (best-effort / BE) mou éyouv mohd yohopolc ¥ xou xoddrou 6tody0oug
Yo Tov ypeovo extéreong toug. Ta evalodnta goptia elvon cLVAWS BLABEACTIXES BIXTLUXES EPUPUOYES
(T L0TOGEND XpaTRoENY Yl EEVOdoyEia), EVE Tol PN euodoUnToL apopoly aVAALCT| LEYIAWY SESOUEVLY
X0l CUCTAUATO CUCTAGEWY.

Agopun yioo TNy evacyOAnon e To VEua anoTEAOLY EMOTNUOVXES ONUOCIEUCELS oL Belyvouv OTL 1)
XENOWOTONoN TWV TOP®Y OTo XEVTEA OEOOUEVKDV elvon Younhn, TapoTL 1 XATooXeLr), 0 eCOTAOUOS Xal
N Aettoupyia evoc xévtpou Oedopévewv amoutel enevdloelc exatoppupiov [3]. Xt téhn tne Sexaetiog
tou 2000, n yenowwonoinon népwyv oe WwTXd xévtpa dedopévov Peroxdtay yetald 6% [7] xa 12%
[29]. Trv B tepiodo, 1 yenotponoinon twv enelepyaotdv ot eZunnpetntéc e Google mou eléyyota
and To cbotnuo Borg avepydtav oe 25-35%. Aedopéva touv 2019 deiyvouv 6Tt to voluepo autd Exel
auéniel oto 60% yden oty avZnuévn Spopohdynon un evaicdntwy epapuoyny [28]. Ta dedouéva yio
Toug eCunneentég e Google amotundvovton 6to Bidypauuo 1.1. To Aoyiouxd Borg mpdxeiton yior éva
OPWO XU XOAE CYEBDACUEVO GUGTNUA BlayElplong ToOpwY xou w¢ ex ToLToU ol eCunneetntég Tne Google
epgaviCouv udmidTepn yenoulonoinon amd Ta TEPLECOTERO XEVTEA DEQOUEVMV.

o
=)

o o 4
» =) 53
o o 4
» =) o
a o

=3
1
o
M

Probability (Machine utilization > x)
Probability (Machine utilization > x)

011

=}
o
=
o

02 04 06 08 0.0 02 04 06 08
x - Machine utilization x - Machine utilization

o
o

(a) CPU utilization (b) Memory utilization

Eyfuo 1.1: Xpnowonoinon népwv oe e€unneetntéc e Google mou eréyyovion and to choTnua
Borg 1o 2019 xot to 2011 [28]

H youniny yenowonoinon nopwv ogeiheton midavedg otny 0€cueuon mopwv yio T evaiodnteg
epapuoYéc.  Ou eQoppoyes auTtée TEEYOUV Ue auoTNEols 6Toyous xaducTépnong xou o @ofog miavrg
ToEoBlooNe TOV OTOYWY AUTOV O TEQINTWOT Wog apvixAc adEnong Tng EoEpyOUEVNS xivnong xdvet
TOUG BLoyELPIO TEC VoL BECUEVOLY TEPLOGOTEPOLS TOPOLE o’ 6ooug amontolvtal medypatt. To oyfua 1.2
Oelyvel Toug BeoUeLPEVOUC o TeEMXd yenolponotniéviee mopoug oe elumnpetntéc tng Twitter mou
ehéyyovtar amd to olotnua Mesos xon yio didotnua 30 nuepwv. H déoueuon enelepyaoctinic toylog
elvon 3 ue 5 popéc uPnhotepn xau 1 6éoueuct uviung 1,5 ye 2 gopéc ueyaritepn. H dnuocicuon Quasar
[11] amodetxvier 6t pévo 1o 10% tev deoueloenmy €xyouv T0 owoto péyedog, evd to 70% autdv elvo

14
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Yyfua 1.2 Aeoueloeig xou ypfion mépwy ot eunnpetntés tng Twitter mou eéyyovton amd 1o
obotnua Mesos [11]

ueyohitepeS amd 6o YeetdleTol.

Av xou umdpyouv TOAAEC epyacieg Tou acyohoUvTon Ye TNV BEATIOTN dloyelplor TOpwY GE UG TAUITA
UTIOAOYLOTIXOU VEQOUS UEYIANG AlUoxag, N TAELOVOTNTA UtV Vewpel OTL Ol EQupUOYEC TEEYOLY OE
EXOVIXEC UNYAVES 1) Ywplc xdmota popen eovornoinone. To teheutaio ypdvia €youv eugoavioTel SuvouLxd
Ta containers, to omofo elvon Lo ehapeld poppt exovornoinong.  Avtl va eixovonololy oAdxhneo To
Aertovpyx6 cUotnua poll Ye TOV TUPHYA TOU, EXOVOTOLOOY UOVO TOV YWEO YPNoTN ol TS Sxpwc
amopoitnTee BBAloUxeg. Luvende Ta containers elvon o eAAQELd AT TIC EXOVIXES UNYAVES, EEXtvolv
o oOVIOHA o O APLIUOC AVTLYRAPWY TOUG XALUAXWOVEL EUXONOTEQA OVIAOYO UE TIG OVAYXESC TNG
epappoyfic. O KuBepvitne [8] ebvan évo amd ta mo Snuogilf) cuoTAUaTo Yl TNV EVopy o Tewaor)
containers, avahauBdvovtag Ty dpopohdynon, dyeipton xou xhudxwor toug. Aoufdvovtog unodn Ta
TOEATAV®, 1) TOEOUCH EpYUsia SLERELVA TEOTIOLE AUENCNEC TNG XENONG TOPWY GE GUOTABEC UTOAOYLIO TGV

nou ehéyyovtar and Tov Kufepvtn yéow tng amoteAecpatixfic cuVOpopoldYNong suaicInTmy xon un
evaloUnTwy popTinv.

15



Kegdhawo 2

DIYETIXEC TEYVOAOYiEG

2.1 Docker

To Docker [12] eivar pior and tic mo dnuoguieic teyvoroyiec containers. ‘Evo container eivor pio
Hovdda Aoylopxol Tou TEpyel OhO TOV xWdWa Wag egopuoyrhc poli dhec Tic efapthoec (m.y.
BiBhoIixec) xan tic puduioec napopétpwy [9]. Ta containers eivon eNopELd XoL ATOUOVOUEVA OO TO
Tep3dAlov oto onolo Teéyouv: €tot, To (Blo container ymopel vo TpéZel oe éva xEVTpo Bedouévev, Ui
TAATPOPUA UTOAOYLOTIXOU VEQOUC 1| AXOUA XUl OE VOV TEOCWTIXO UTOAOYLOTY. LUYXPIVOUEVO UE Ula
ewovixn unyavy (tou ewxovornotel Gho To hertoupyxd cloTnua), évo container TEQLEYEL HOVO TOV YWEO
YeNoTN ToL AElToLEYXO) GLUOTAUNTOS, TiC BBAloUxEC xou TIC UTneeaieg mou elvon amapAiTNTES Yot TNV
eppappoyn. §2¢ ex ToOTOL, TO containers €youv UIXEOTERES ATALTHOEIS GE UVAUY Xl UXPOTEQO YPOVO
exxivnong [10].

2.2 Kubernetes

O KuBepvhtne (Kubernetes 1 K8s) [8] eivor éva ohoxhnpouévo hoyiouxd dayeiptong yio containers,
ToL apyxd oyedtdotnxe and TNy Google. O KuBepvtng avtopatonoiel Ty dnuiovpyio, TNV XAUExwoT xou
TNV Loy Elplon EQUEUOY Y TOL TEEYOUY EVTOE containers e SLopopeTXd TEQIBAANOVTO, OIS ECUTNEETNTES,
ELXOVIXES UMY OVES, UTOAOYLOTIXG VEQT 1) xou LBpdwd cuothpata. Mropel va Soyelpliotel yeydheg cuoTddeg
unyovnudtey mou tepthauBdvouy uéyet 5000 unyaviuata xor 100 container ovd unydvnuo.

O KuPepvAtng avamoplotd TNy XatdoTaoy TNe CUCTADAS UNYOVNUATOY HECW OVIOTATWY AOYLOULXOU
mou ovoudlovton avtixelyeva. Kdlde avtixeipevo anotekeiton and 1o medio spec OmMOuU xoToypd@ETAL 1
emUUNTA XUTACTACT) TOU AVTIXEWEVOL, X TO TEdlo status omou N gaiveton 1 Tp€youca xatdotaor. Ta
BaowdTepa avTixelyeva elvon to e€A:

e Pod: To pod eivon 1 uixpdtepn povada mou pnopel vo yewiotel o KuPepvitng xou amotehel pia
yevixevon tou container. Méow autrg Tng yevixeuong, o KuPepvitng pmopel v Aertoupyet
aveldpTnTa amd T TEYVohoYieg Twv containers.

e Service: Ilpoxeiton yioévay yevixeuuévo tpomo avieong otatixnc IP diebduvong oe pia egoppoyn
TOU TEEYEL OE €Va 1) TEPLOCOTERY containers.

e ReplicaSet: Eva ReplicaSet dioyeipileton mohhanid avtiypopo Tou (Blou pod mou teéyouv ot uia
CUOTAON UNYAVNUATOY. XTOY0C TOU AVTIXEWEVOU auTol elvan 1) Blathenorn evog otadepol aptiuol
VYELDV containers.

e Deployment: To Deployment eivon évo avtixeipevo mou diayeipileton ReplicaSets, mpoxeiuévou
Vo EAEYEEL TNV BNUtovpYia, EVIUERKTT Xl XATACTEOGT pods.

To unyavipato e cuotddag mou dayepiletan o KuBepvitng ywpilovtar oe 800 xatnyopieg: toug
epydtec xan Toug agévteg. Ta unyaviuata - epydteg @uiolevoly ta containers péca oto omoio TEEYOLY
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Ol EQPUPUOYES XL TPETEL VoL EY0UV EYXATECTAUEVO éva TepBdhhov extéheone container (m.y. Docker 7
containerd), to kubelet mou dnuioupyel to véa containers xou gpovtilel va Tpéyouv owotd, xou to kube-
proxy mou mpowlel tar dixtuoxd outhuaTa (TpoepydUEVA EVTOE 1) EXTOC TN CUOTABNG) OTIC EQPUPUOYEC.
To unyaviuarto - agéves @uhoZevoly To eninedo ehéyyou (control plane) xou mpoo@épouv v dlemagt
yioe TV dnurovpyior xou Ty Bloyelplon Tou xUxhou Lwng Twv pods. Kdide cuotdda éxel Touhdytotov éva
apEVTY), o YEYOROTERO TANDOC APEVTWY EYYLATAL AVOYT) OE CQANLITA.

Kubernetes Master Server(s)

API Server

Controller Manager

Linux Server(s)

Kubernetes Node Kubernetes Node Kubernetes Node

Cowcer i oncer Lo Concer L]

Kubernetes Proxy Kubernetes Proxy Kubernetes Proxy

Linux Server Linux Server Linux Server

Yyfua 2.1: Apyttextovin| xat cueTOTIXG Lo cUOTEdaG Tou eAEYyeTan ond tov KuPepvitn [21]

2.3 Prometheus

O Hpoundéac (Prometheus [26]) eivon évo olotnua eAéyyou xou eldonolnong mou yenotgonoteitor cuyvd
oe mepif3dhhovta e containers xou wxpoilnneeoieg. H dnuoguiia Tou ogeiheton 6Ty IXavOTNTAL AVEXTNONG
UETEHOEWY TOoO o€ enimedo LAXOL 600 xou ot eminedo epopuoyhc. O Ilpoundéac mapaxoroudel Ta
CPIAIATA XATE TNV EXTEAEST) TOU AOYLOUIXOU, TNV xaJUCTERNOT TWY EQPUPUOYWY XL TNV YENOWOoTolno
OV OldEouwY TOP®Y, XMaTOVTIC EUXOAGTERT TNV BlayElplon CUCTABWY PEYAANS XAUOXAS TOU EXTEAOVY
HEYSAO aprdUd EQUOUOYOY TAUTOYEOVA.

Ou yetprioeic mou curkéyer o Ilpoundéoac oamodnxedovion oe pio Bdorn Oedouévev Ue TNV Uop®H
xpovooelpwy. M ypovooelpd etvar pior oxohoudior ypovoonuaouévewy dedouévev mou dlayweilovton Ue
Bdon To Ovouo TNg METEXNG xan TIC €Tx€TeC Tou @épouv.  Ou ypovooelpéc amoptiCovion amd Souég
dedopévewy mou mepiéyouv uio Ty oxpelfBelag 64 bit xou wa ypovoogpayida axpiBelac ythilooTod Tou
deuteporéntov.  Ta Bedopévo piog ypovooeds €youv UPMAG apLiud BlacTIcEMY Xt oUTO TO
Yopoxtneloixd ogetheton oTic etixéteg. I mopdderyyor uior ypovooeipd mepéyel 6ha ta HTTP
outhuartor pior Sidotoon dnutoupyeiton amd v etxéta tne pedddou (m.y. POST, GET) xou pio dettepn
Sidotoon amd Y ETETA TOL xwdxol andvtnong (t.y. 200 - OK, 404 - Not Found).
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Kepdharo 3

DIYETIXESG EQYACLEC

Y10 xe@pdhono auTd TaEouctdlovial CUVTOUN ETAEYUEVES EQYAOlEC OV TpaypaTebovTaL TNV dlayeipton
TOPWY O GUGTAUATA VEQOUS PEYAANG xAluoxag. H mpwtn epyaoio mou Yo nopouctactel elvar o clotrua
Heracles [22], éva duvouixd cOoTnua Tearyotixol xedvou Tou anooxonel otny xolUtepn Suyelpion topmv
EMTEENOVTAG TNV GLVBPOUOAGYNOT VoG evaloUnToL QopTiou Ue omolodrmote dhho un evoiointo. XNV
Oidipxetor Tou ypdvou extéleonc, to oclotnua Heracles Sioyeplleton duvapixd morhamhols unyaviopoie
ATOUOVWONS OTO UAXO Xl GTO AOYLOMIXO, OTWE Ol ETEEERYAOTIXOl TUPTVES, 1) XVpLlal UvruY, TO TEAeuTaLo
eninedo xpuEnc UviuNg xou To Vpog LHvng Tou dxtbou. Me autdy Tov TedTo Slc@aiilel 6Tl anodidovta
oL avoyxalol Topol oty evalodnTn e@apuoyY xou 6Tl auth dev mopafidlel Tov oTdYo xaduoTépnong.
Tautdypova peyloTOTOLOOVTAL Ol TOEOL TOU UTopel var yenotwomolfoel 1 un cvalodntn epopuoyy. To
ocLoTNnUa aglohoyOnxe TelpopaTXd Ye egapuoYEs and Ty Google xau SlamoTeinxe OTL UTopel Vo eMLTUYEL
xenotponoinon twv egunnpetnty ot eninedo 90%, anotpénoviag TauTdypova TNy TapoBiacT TV GTOY WY
xaduotépnong.

M mapduola mpoceyyion oxoroudel xou To oclotnua Proctor.  To oclotnuo autd culiéyel
YEOVOOELRES BEBOUEVWY ol TOUG HETENTES UAXOU xdie eEumneetnTr oyetxd ue 4 SlopopeTinols TOpoUS:
bixtuo, eloodog/é€odog, xpupt uvhun xau enelepyaothc. Kotd tov ypdvo extéreons napoxoloudeiton 1
xadUCTERNOT TV EQUPUOYOY oL Yenolonoolvion €vag olyopriuog uelwong Hopdfou xon €vog
oAy 6pLHOC EVTOTIOUOD ATOTOUMY UETUBOADY TEOXEWEVOU Vo EVIOTIGTEL 1) UELWUEVT enidoon xdmolog
epoppoyhc. Agol evtomoTel xdmow uewwpévn enidoor, to cbotnuoe Proctor culiéyel dedouéva amd
TOUC PETENTEC UAXOD Tou e€UTNEETNTA Xl Tal AvohDEL GTUTIO TIXE TTPOXEWEVOU VoL EVTOTIGEL TOLOG TOPOG
€yeL xopeoTel xou Tota e@apuoYr) eLYOVETL Yot TOV x0pecUs auTo. Katémy petaxivel 1 amogovover thy
“evoy Ay’ egopuoyr). ‘Etol Bedtidvel Ty enidoon Twv eQopuoyhc xatd 2 Qopéc UEGOT Tord L.

To oclotnua Quasar [11] oxoloudel plo BlopopeTixf] TEOGEYYLOT, XM AVUAVEL TO TROGIN TV
EQapUOY®V TEoToV T dpouoloyfioetl. Ilo avaiutind, to cbotnua autd CUAAEYEL GEBOUEVA Yiol TIG
VEOEICEQY OUEVES EQPUPUOYES EVE OUTEC TEEYOLY ATOUOVWVOUEVES. AZloTolel XATOTLY TEYVIXES UNYAVIXAC
HAINoNG TEOXEWEVOU Vo EXTIUACEL TNV EMOPAOT NG TOCOTNTUC Xol TOU EBOUC TWV TOPWY, TNG
TOEEVOYANONG amd Tapoxeiueva goptiar xau Tou apLduol avTiypdpny NG EQUpUOYHSC OTNV ENBOCY TNC.
AZonowdvtag ta anoteAéopota TN TedBAedng, anogocilel técol xou molol axeBhe ndpot Yo Sodoly ato
VEOELOEPYOUEVO opTio. Y& Tmeplntwor eo@aiUévne andgoaons, to cbotnua Quasar Teéyel TIAL TOV
alyoprduo unyavixnc udidnone xat oAAdler Toug mépoug Tou €youv avatedel TNy epapuoy. Me authv
v pédodo metuyaivel vor aLEAoEL TNV YeNotonoion Twv unyovnudteny xotd 47%, eved oéfeton toug
oToY0UC xaduoTERNOTG.

To cbotnua Seer aoyoheiton pe TNy TEORAed xoducTépnong oe Yedpoug UixpolTneeainy, a&LOTOLOVTAC
HEYSAOUC GYHOUG DEBOUEVMV AT XATAYEAUPES xou exToudevovTag Bodid vevpwwixd dixtua. To clotrua
XATAYPAPEL TS OURES TOU dNtovpyoLVTAL oty elcodo xdle unneesiag ToEaxOAOUTOVTAG To TOXETA TOU
pTédvouv oTNY xdpTo dxtLou. To dedopéva Yior ToL UEYEDT TV OLEWY TEOPOBOTOLY TO VELPWWIXO BiXTLO,
70 omolo exTd Yo xdde unneesta TV TlavoTNTA Var TopaBlacTel 0 6TOY0C xaYUCTERNONE TN EQUOUOY TS
e€outlag tng umnpeeaiog authg. ‘Otay Teofieiel avgnuévn xaductéenom, To choTnua Seer houBdvel Yétpd,
OTWS 1) EEACPAALOT) ATOXAELGTINNC TEOOPBUONE OF XOUUATL TNG XEUPHE UVAUNG Xt Tou €0poug (wVng Tou
oxtoou Yoo Ty meopévn unneeoto. H melpopatin amotiunon delyvel 6t to cbotnua Seer mpofiénel To
91% 1oV TEPTTWOEWY PELUEVNS entidoong xou anoteénet to 84% autdv.
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Kegdhawo 4

ITeotewvouevo choTnua oltayeiptong
TOPWYV

START

Resources
allocated?

Split vCPUs equally

Shrink BE and grow
LC or converge

SLA satisified?

previously? Node converged

SLA satisfied
previously?

MNode converged Shrink LC and grow

BE or converge

» END i

e

Eyfuor 4.1: Awdrypopor poYic TOU TEOTEWVOUEVOU GUOTAUNTOC Bl elplong Topwy

H epyaotlo auty| mpoteivel éva duvouxd cbotnua v Ty avadeon vOPU oe plo evalodntn xan plo
un evalodnTn eQapUOYY TOU TEEYOLY TaUTOYEOVA GTOoV (Blo x6ufo evog cluster eleyyduevo and Tov
KuBepvitn. H mpotewvouevn viomoinon yenotponotel to API tou KuBepvitn xou dev anoutel yetproelg
and to LAXO. Amoutel duwe ol euaicUnTec eQaprOYES Vo ONAMYOLY TNV xouoTEENON AMdXELONS OTO
oLotnuo Prometheus, wote va yiveton Yvwotod av ixavonotobvTal oL otoyol mou €youv tedel yior xdie
epapuoyy. Ernlone anoutel ol e@apuoyéc vo ixavomolody Toug TopoxdTe TEPLOPLOUOVS:

e To cvalointa Deployment mpénel va €youv tnv etixéta “class = latency-critical” xou o pn
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evaiodnta v etxéta “class = best-effort”, xadw¢ Deployments ywplc etixéta dev ennpedlovton
am6 to oot doyelplone ToOpwY.

o Ilpénel va tpéyel To MOAY €va evaioUnto xar To TOAY éva un evalodnto Deployment oe xdie
pnydvmpe

o Acv mpémel vo undpyouv dUo container e to {Blo Gvoya.

e Kdie Deployment mpénet va €yel to moAl €va avtiypago. I vo dnplovpyndoldv dvo avtiypapa
Tou Bou Pod, mpénel va optotoly 6o dagpopetind Deployments mou cuvdéovta ue éva Service.

Apywnd, To obotnua cuvdéeton ue To APT tou KuBepvitn xan culiéyer dedouéva oyetixd e to cluster.
ITio avohutixd, o 6edopéva Tou GUAREYEL xou amoUnxelel tepthauSdvouy To dvoua xou Ty IP diediuvon
TWV Unyovnudtwy, to Pods pall ye tnv xatdotaom, Tig eTxéTeg Xal TOUC TORPOUE Tou BeGUEoLY, Xal Ui
Aota pe ta Deployments xou to Pods mou ehéyyel xde Deployment.

Yy ouvéyela, to obotnua dayeiptong mopwy e€etdletl xdde unydvnua EeywEloTd xot UAOTOLEL TOV
alyoprduo mou gaivetan 6To Bidypauua pofc Tou oyfuatog 4.1. Av oe éva unydvnua dev Teéyel xapia
EQUPUOYY N} oV TEEYEL UOVO Ula, TOo cUOTNUA BV Xdvel xdmota odhayr). XNV TepinTworn mou TEEYouV
axeBae dVo poptiar mou efvon xouvoUplal XaL OEV €Y0UV TEPLOPLOUONE OYETXE PE TNV Yeron Topwv, O
ahyoprduoc polpdlel egicou Tic diadéaueg vCPUs.

AwpopeTind, to clotnua cuvdéetow ue to API tou Prometheus xauw culhéyer Sedouéva yior Ty
xoduotépnon e evaiointne egappoyrc. To API tou Prometheus Siver dedopéva oyetind pe to 99%
TOGOGTNUOELO xoucTépnong TNe evaioIntng egapuoyrc Ta Tedeutata 30 deutepdienta. To mapddupo
TV 30 BEUTEPOAETTWY Elvol ETUEXES, (OTE Ol UETPHOELS Vo €youv oTaTloTixd vonua. To emduuntd
oedouéva cUAAEYOoVTOL amd To Prometheus uéow tou mopoxdte cpwthApatog:

histogram_quantile (0.99, rate (flask_http_request_duration_seconds_bucket{method="PUST" ,status
="200"}[30s])

Av o otoyoc xaduotépnone tng evaionTtng epapuoync xavonoteitar, To cbotnua molpvet uia vOPU
amd TNV evaloUnTn e@apuoy xou TNV amodldel oty un cvaicdntn.  Av avtidétng Sev avomoleltal o
oToY0C xouoTépnong, To oLotnua  amodlder e emmiedv VCPU oty evaicdntn  egopuoyy.
ITpoxewévou vo unv TohavTOVETOL TO GOOTNUO UETOED YELTOVIXWY XATAOTACEWY, XATAYEAPOVTOL Ol
xopPor uokic @tdcouv oto onueto toopporiag.  To onuelo wwoppotiag evtomiCeton 6tav 0 oTOYOG
xaduotépnone ahAdEel @dom, dnhady) ixavoronldel eved otny mponyoluevn xatdotacn nopaBialotay 1
ToEAPBLIC TEL EVE GTNV TEONYOVUEVY] XATEOTAGT IXAVOTIOLOUTOY (OTNY TEPITTWOT UTH ETIGTREPEL TEWTA O
x6uBoc otny mponyolpevn xatdotoon divovtog wie vCPU oty guaicdntn egopuoyr). O aiydprduoc
@ptavel enflong oe onuelo wwopporiag dTav ixavonolelton 0 oToOY0g xou €yel uelvel puovo pla vOCPU oo
evaionto goptio ¥ 6Tay 0 oTdYOC BeV Wcavorotetitar oAN €xel uelvel uévo ula vCPU oto un evalointo
popTio.
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Kegdhawo 5

ITewpauatinn agloAdynom

Y10 mhalolo TNg gpyactag auThg YiveTon TELopaTIX ACLOAOYNOT BlaPORmY GEVIRIWY GUVBPOUOAOYNONG
evaioInTewy xou un cvaloUntwy epapuoywy oe cluster mou eAéyyovrton amd tov KuBepvAtn. I tov
oxond autd Onuovpyeitar éva cluster amoteholuevo and 1 xéufo-apévtn xan 3 xouPouc-cpydteg. Kdde
epydtng €xet 6 vCPUs biodéoiuoug xou 8 GB uviune. Emlong dnuioupyeiton éva pixpdtepo unydvnuo Ue
3 vCPUs mou 6ev avixer oto cluster xou dnuloupyel tnv ewoepyouevn xivnon. ‘Olot ou xoufol etvou
ELXOVIXGL UMY OVARIOLTOL IO TEEYOUY OTOV (Blo (UOLXO server.

5.1 Merponpoypduuato

Q¢ evaioinTo poptio oyedidotnxe xau LAoTOLUNXE plo eQapuoYY| Tou amodnxedeL xon avaxTd DEdOUEVL
an6 uia Bdon Bedouévmy. Xxondg TNC EPUPUOYNC EVOL 1) OTATIOTIXY AvAAUCT) ot 1) TapaxohoLINoY TG
XATAVOUAWTIXAC CLUUTEQLPORAS TV Tehat@V Wlag ahuoidag supermarket. H Bdorn dedouévev amodnxelel
TOUC TEAATES, TIC oLuvolharyéc xou Ta Tpotdvta Tou supermarket xou €yet uhonoinel ue Ty MySQL [23].
H Bdon éyer 4 nivoxeg (Product, Store, Customer, Transaction) poli ue ta yopoxtnelotixd Toug, Onewe
paivetor 6T0 didypoppa oyéoewv-ovtotAtwy (oyfua 5.1). To Sedopéva tne Bdone napouvotdlovion Yéow
HLog BLadTUOX S EPUPUOY NS Tou oyedidotnxe ue to epyaieio Flask.

[ v o€lohdYNon TOU TEOTELVOUEVOU GUGTAUNTOS Blayelplong Topwy, emAEYInxay 3 BlapopeTixd
EpWTAUATY TPOC TNV Bdom Bedouévmv:

e To "ypryopo” gpwtnua extehel €va amho select:

1 SELECT DATE(start_date), DATE(end_date), amount
2 FROM Price
3 WHERE barcode = <selected barcode>

e To "uecalo” cpwtnua elvon mo mEpiMAOXO xou TEQLAAUBAVEL €Vl XOPTECLVG  YLVOUEVO, Uia
EUPWAELPEVY eTAOYT xou Wiar TaEvounon:

SELECT P.barcode, P.product_name, sum(B.quantity) AS total_quantity

FROM buy_products AS B

INNER JOIN Product AS P ON B.barcode = P.barcode

AND B.transaction_id IN

(SELECT transaction_id FROM Transaction WHERE card_id = <selected_card>)
GROUP BY P.barcode

ORDER BY total_quantity DESC

LIMIT 10

W N U W N

o To "apyd” epdnuo extelel TO XUPTEGLAVO YIVOUEVO OUO TVAXWY, xoévag amd Toug omoloug
TEOXVUTTEL a6 Uit PuoLxy| Evwon:

WITH buy_products_names (barcode, name, transaction_id) AS
( SELECT P.barcode, P.product_name, B.transaction_id
FROM buy_products AS B
NATURAL JOIN Product AS P )
SELECT B1.barcode, Bl.name, B2.barcode, B2.name, COUNT(*) AS pair_freq
FROM buy_products_names AS B1l, buy_products_names AS B2

D U W N
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store-name

opening-hours

i

STORE

category-ID

offers- shop-without-

products
card

CATEGORY shop-with-

card

category-name

00

belongs

transaction-1D

PRODUCT

TRANSACTION ‘total-amount

::‘ current-price .:‘.
PRICE @ @ {_.‘total—pieCes @ payment-method

??

g
5

Lo 5.1 Awdrypapuo oy€cewy - oVTOTHTLY NS Bdonc dedouévmy

7 WHERE B1l.transaction_id = B2.transaction_id and Bl.barcode < B2.barcode
8 GROUP BY B1l.barcode, B2.barcode

9 ORDER BY pair_freq DESC

10 LIMIT 10

Q¢ un evaiodnta poption emhéydnxay ol epappoyég fluidanimate, streamcluster, swaptions and v
BiBrod un PARSEC [27]. Ou egopuoyéc e BiBhodixne PARSEC ypnowonowolyv molhamhd vhporta
AOYLOUIXO) X0 WS €X TOUTOU UTOROLY VoL TEEYOUV GE TOAAATAOUC EMEEERYATTIXOUE TUPTIVES TAUTOYLEOVO.
Tao mpoypduuata TEopyovTaL and SLdPOEOLS ETLGTNUOVIXO0VS TOUEIC XaL Oyl UOVO amd TNV UTOAOYLGTIXY
uPnhaoyv emdocewy. Ilo cuyxexpyéva, 1 epopuoyr fluidanimate anewovilel Ty duvouxr evog peucToU
Bdoel tng urtoloyiotixhc T VNS Actou cwuatidiou. To mpdypouua streamcluster elvon évag ahyodprdiuog
xatnyoplonoinong yio axohoudicc dedouévwy, xou To swaptions extelel plo mpocouolwon Monte Carlo
yioo Ty anotiunon Sonwudtey tpoaipeons enl cuupwdy avtalhoyic (swaptions).

5.2 Ileipapoata

Ipog aglohdynor tou cucTiuatog dlayeipiong mopwY, eEXTEAECTNXE €vag apliuog MEWUUATOY GTO
cluster mou eAéyyetan amd Tov KuBepvAtn yenotuomoidvTog To UETPOTROYRAUUNTA ToU orvohhinxoy
mponyouuevwe. Hpaypatonomdnxay to e€rc nelpdyoras

o ITeipapa Bdone (alone): To mphto meipapa mou mpaypatonotiinxe Arav n extéleon Tng
evaloUnTng xou Twv Un evaoINTwY EQUEUOYWY UOVWY Toug Gt Evay xouBo WoTe va dlamotwidel o
BAVIXOG YPOVOC EXTEAECT|C TOUC.

e EAcOepo neipapa (colocated): Yto enduevo nelpopo 1 evaicntm epapuoyy| dpogoroyrdnxe
uoll pe xodepion amd tig eqapuoyéc PARSEC otov 6lo x6ufo xou agédnxay va Tp€youy ywels
TEQLOPLOUS GTNV YEHOT TOPWV.
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o Ytatixo melpapo (static): Xto meipoapa outd eqopudoTixe plo otoTixd xow cuVTNENTIXN
moltxy| avddeong mopwyv. Ilo avohutixd, mepopiodnxay ta un cvalodnta @optia o plo wdvo
vCPU xan 56Umxay oL utdhoineg 5 oty evadoUnT EQaUpUOY.

e Auvvopixo rnelpopo (dynamic/RM): Yto duvauixd meipapa amotiuridnxe oty mpdén 7
enidoon tou mpotevduEvou cucTRUaTog dayeiptong mopwy. Apywxd ot vOCPU popdlovtar e&icou
LETOEY TV eapuoy®y. e xdde emoavdindn divetow otnv evalodntn cpapuoyy| uio emmAéov
vCPU, péypic 6tou va avornowmiel o otoyog xoductépnone 1 va unv undeyouv dhhec dtadéoiueg
vCPU. Av o otdyoc xoduotépnong ixavornoleitar and v apyr, divovtar napandvey vCPU otny

un evalodnTn epopuoy.

H evalodntn epapuoyy| eCunnpetel autAuata mou mpoépyovion amd e€wTepxols YeNoTeS. XTo TAALoLO
NG TElpooTiXg oloAOYNONG, TOL UTAUATO ONULOUEYOUVTAL oIt VOl EXOVIXO UNYBVNUO TIOU BEV aVHXEL
oto cluster. A&ioloyolvton Tpelc BlagopeTixég unoYéoelg Yoo TNV xivnorn mpog TNy Bdon Bedouévemy:
younhny xivnon (100 epwthyato o hentd), peoota xivnon (250 epwtiato to Aentd) xar udmih xivnon
(400 epwthApata To Aemtd). Xuvohxd, howndy, npoxintouv 9 cevdpta yia x&le Telpayua, TOU TEOXITTOUY
amd Toug duvatolg cuvdbuaouols Twv 3 PARSEC npoypouudtov ye Tic 3 utodéoelg Yo tny xivnon.

[o Ty evododntn egapuoy thievton otdyol xaduotépnong, oL omolol apopoLY TOV YEOVO EXTEAECTC TWV
EpOTNUATWY oTtny Bdon dedopévewy. O otdyol tidevton Bdoet Tou 99% nocootnuopiou tne xaduotépnone
yioo xdde epdTnue oto melpapa Bdoneg (émou 1 evalotnTn epapuoyt teéyel uévn tne oto cluster). H
xaduoTépnon aUTH TOAATAACLELETOL UE EVOY GUVTEAECTY), WS EEAC:

e 1,50 av 1 xivnon elvon younhn (100 epwthpata to Aentd)
e 1,75 av n xivnon eivan pétpla (250 epothuata To AenTo)

e 2,50 av 1 xivnon eivon udmin (400 epwtiuato To Aentd)

| | 100 RPM [ 250 RPM | 400 RPM |

Yeryopo | 0,075 0,090 0,100
uecaio 0,40 0,45 1,00
apYo6 3,00 3,50 6,00

ivoxag 5.1: Xtodyor xaduotépnong ot deuTepOheTa Yiot Xdde GUVOLAUOUS XIVNOTG XU EQWTAUATOS
otV Bdon GedOPEVELY

Ye xdde oevdpio cUMEYOVTAL YETEHOELS Yia TNV a&loAdyNnon Tng enidoong Twv epopuoyoy. Ta xdde

gpTNUa Tou Yivetow oty Bdon dedouévev, utoroyileTal To LOTOYROUUA TOU Yedvou extéleornc. Eniong
GUAAEYOVTOL PETENOELS YLl TOV XUALOUEVO PEGO 6p0 yeriong xdie vOPU oe napddupa Tou evog Aemtou.
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5.3 Amnoteiécuata

O nivaxag 5.2 Selyver tov apudud vCPU mou to clotnua duwiyelpiong mépwy eméhede Vo amodmoet
oTNV evaloUNTN EQPUPUOYY| OTO BLAPOEA GEVARLAL XIVNONG Xl TAUTOYEOVNG EXTEAECTC UE U1 cvoloinTeg
epappoyéc. O apriude dodéoiuwy vCPU etvar 6 xon o aprdudc autev mou anodidovion otny gvaiotnt
EQOPUOYT| xuPolveTol antd 2 €we 5. XNy nepintwon extéieone poli ye to fluidanimate 1 to swaptions,
TO BuVIUIXO GUGTNUO AmOBIBEL AlydTEPOUC TTOPOUS OTaY 1) xivnom elva younhn xat TEPLEGOTEPOUS OTAV 1
xivnon elvon uPNAY. Xty TepinTwor Tou swaptions emiéyel va 8ot Tov (Blo apriud vCPU aveldptnta
and Ty xivnon.

| | Xopnhf) xivnon (100) | Meooda xtvnon (250) | TdnhA xivnon (400) |

swaptions 4 4 4
fluidanimete 2 3 5
streamcluster 4 5 5

ivoxag 5.2: Apiude vOCPU mou avatédnxay otnyv evaicintn epopuoyr and To TEOTELVOUEVO
OUVOIXO CUCTNUA

5.3.1 Amnoteléopata péong xaduotEépnong

To Srypdypato Tou oyfuatog 5.2 delyvouy 1o 99% nocootnuéplo e xaduotépnong extéheons Twy
EPWTNUATOY oTNV Bdon SeBouévwy yior To SLdpopa GeEVApLY TwY TEWUUdTwY. Ot Undpeeg ye TNy avoly
oxloom avTIoTOLY0LY GTO OTUTIXG TElpaua, UE TNV EVToVn oxlaon 6T0 EAEUUERO Xau UE TNV EVOLAUEST) oxloo
oTo duvouxo. H yxpl ypouur oto mapaoxfvio Belyvel Tov 6Tdy0 xoduoTépnong Yol xdle GUVBUACUO
EPWTAUATOS XalL POETOL AivnoTg.

H eledepn yphon népwv eiye ta yewpdtepa anoteréopara, xadne napoBiole tov 6téy0 oto 70% twyv
TeElpaudTwy. Avtrdétng, n ocuvinentixg avdieon mopwv elye o xohltepa amoteléopato TopuBidlovTag
Tov 0tHY0 povo 610 4% twv mepmthoewy. H mpotevouevn duvauxd ulomoinon auZdver eEhappns Tic
ropafidoeic otdywy oo 11%.

MeTafBatixd arvouevo

Xty duvauix) vAomoinon onuoupyeltar €vo PETABATING  QouvOUEVO PEYPLC OTOU Vo GUYXAIVEL O
ahyopripoc.  Kotd to petofatind @avouevo auEdvetal Teoowpelvd 1 xoductépnon tng evaicdntng
eQopUoYN, 0w @alvetan oTo oyrua 5.3. Autd ogelleton 6TO YEYOVOS OTL 6TaV AhAdlouV oL TTOEOL ToU
umopel var yenotwomolfoet pio egapuoyt otov KuBepvitn, To container tng mpénel var xatoc Tpapel xon va
onulovpyndel éva xawvolplo pe Tic véeg puduloeic.  Auth 1 Swadxaocta Sipxel oty mepinTtwon g
MySQL 15 pe 20 deutepdhenta, Ta omolo efval dpXETE Yot VO CUGCWEELTOVY EPWTAUNTA. A(ol OUnS
oLYXAveL 0 akyopLiuog, 1 xaduoTépnon enavépyetal Yeryopa ota emuunTtd enineda.
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Latency distribution (fast query, colocated with streamcluster)
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Meéorn yenoiwrornoinon enclepyacTtwy

To oyfua 5.4 delyver v yéon yenowonoinon twv vOPU xatd tnv extéheon twv nepaudtowy. H
yenowonoinon twv vCPU elvar younhotepn oto otatind nelpayo xow LPniotepn oto ehebiepo melpoya.
H ouvtnenminy| otatin] avdldeor mopwy aghivel LUTOAOYIGTIXOUS AVEXUETIAAEUTOUS XU €TOL TETUYOLVEL
Toug otoyoug xaduotépnonc. Avtudétwe, n eiediepn yeron mopwv and T epopuoyhc TECEL TOUG
ene€epyaotég xou odnyel oe TOMAES Topofidoelg TwV oToywy xaduotépnong. To mpotewvduevo choTnua
otayelpione mopwy meTuyakvel €vay cuPBIBaoUS PETACD TN YENOWOTOMONS TWV SLECIUOY TOPWY %ol
e xoduoTéENomng. LuYXEWOUEVO Ue To oTatixd melpaya, avidvel Ty yenotwonoinon twv vCPU uéyel
2,2 gopéc xan xatd 1,6 popéc xatd uéco 6po.

Average CPU utilization (100 RPM) Average CPU utilization (250 RPM)
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OOR static 00N static
HEN dynamic
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Lyfuo 5.4: Méon yenowonoinon twv vCPU
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5.3.2 Exnidoorn un svalcdning popoYNg

H enldoon tng un evalodntng eqopuoync ota didgpopa mepduoata @atvetow oto oyfua 5.5. Ta tnv
a&loAoY o TS Un evatointng epapuoyhc utoloyileta 1 eMPBEAdUVOT TG OE OYEDT UE TOV LOAVIXO YPOVO
extéheonc (6tav TEéyel HoOVN TNS OE €val UMyAvNUo). 3To TapoXETe Sy PHUUATO O XATAXOPLPOS GEOVIC
TEOVGCLALEL TOV YEOVO EXTEAEONC %o O oEWIUOC T8VK omd TG XOUXXIBEC LUTOBEWUVEL TNV EMPBEAdUVOT).
Aev napouctdleTal 1) SLoToRd TKV UETPNOEWY, BIOTL elval aueAnTE.

H enidoon twv pn evaictntowv PARSEC eqopuoydv eivon xolitepn oto eheliepo meipapa (mdve
oploTepd)” Guwe To Tmelpopo autd  epgoviler cuyvés mopafldoelc Tou oToyou xaduoTépnong NG
evadloInTne eqapuoyhc, mwe avakiinxe tponyoupévee. To otatxd meipapa (mdve 8e€id) neplopilet
unepBolxd Tic un evaioUnteg eQopuoYEéc xou cuven®S 1 emPBedduvon elvar Tohd uPNAY. To Suvouixo
nelpopor (xdtw) metuyaiver pixpdtepn emPBedduvon omd To oTatixd, Ue Alyec wévo mapoPidoels Tomv
OTOY WV xoUC TEPNOTG.
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Eyfuo 5.5: Enldoon twv un evalodntwy egopuoyey. O xatoxdpupog dEovag delyvel Tov ypdvo
extéAeong xou ot apLipol Téve amd TIC XOUXKIDES AVTITPOCWTELOLY TNV EMPBEAOUVOY) O OYETT) UE
TNV OoVIXY| EXTEAEOT).
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Kegdhowo 6

DIVUTEQACUATA KO UEAAOVTIXEG
EQYAOIES

Y10 mhaloto Tng mapovoug epyaciag oYEBLoTNXE Xou allOAOYUNXE TELPoATIXG EVal GOOTNUO BUVAULXTG
avaeone mopwy Yo clusters mou eAéyyovtar and tov KuBepvitn. To olotnua yenowornowel to API
Tou Kufepvitn xauw oflomotel petprioelg xaduotépnong mou mpoépyoviow and to cLotnua Ilpoundéac,
TpoxeWévou vo AdBel anogdoelc. H mepapoting anotiunon €yive o avTOOTOAY PE piot cUVTNENTIXY
otatixy) avdieon nopwv ot containers xan €del€e OTL 1) SUVOUIXT| VAOTIONGY XATAPERVEL VoL AUENTEL TNV
yenowonolnomn towv xouPuv péyetl xa 2,2 gopéc. Tautdypova, ol nopafidoeig Tou oTodyoL xaduoTépnong
yioo T evadodnTny egapuoyh avZdvovton TolD Aiyo, and 4% oe 11%. H duvouix uhonoion rapouciolet
€vol 0OVTOUO PETOPOTIXG QOUVOUEVO, XUTd TO OTolo aLEdveTol TEOCWEWVA 1 xohuaTéenon TNe evaladnTng
EQUpUOYNC Ta TEWTo AeTTd exTtéleoric tng. 'V autd Tov AdYo 1 mpoTelvouevrn duvaixt| uAoroinor eivor
xerown yio @optia Tou Yo TREYoUV Yia HEY SN YPOVIXd Blas THUATA Xou 1 xEvnom Toug 6ev aAAGLEL amdTOuA.

To npotevoyevo choTnuo uropel vo emextodel uehhovtind, wote va a&lomolniel o @don mapaywyhc.
[o tov Aéyo autd, elvan yeriowo va doxwpaotel oe éva mpoyuotixd cluster pe peydho aprdud xoufwyv,
»oTe Vo SlmoTtwiel av To cloTNUo xAoxwvel.  Emmiéov, Yo unopoloe va yenowwonoundel pio Bdon
0edoUEVLY, oTNV ornola Yo amodnxedovion OAa To BEQOUEV OV APOEOVY GTNY xatdoTacy Tou cluster
XL TWV EQUPUOYOY Tou Teéyouv oe autd. To dedopéva autd amodnxedovion oTny TapoLoa LVAOTOIGT OE
TEOCWELVES UETUBANTES.

Téhoc npotelvovtan yepixéc 1déeg yior yehovtixry oyetxr| épeuva.  A&iCel va doxpdotel oe clusters
mou eAéyyovta and tov KuBepvrtn pia tpocéyyion nopdpota e oauth mou mopouctdlovial oS EpYAaieg
Quasar [11] xou Pythia [31]. ITio avahutixd, ol veoeloepybueves eqopuoYés Yo Tpéyouv amogovmuéves
eVG CUMAEYOVTOL BEBOUEVOL YiaL TNV ETUBOOCY TOUG, Xt 1) AmdQacT) BPOPONOYNOHEC TOUC OE XAmolo xOufo
Yo haufBdveton alomoudvrtog ta dedopéva owtd. H mpocéyyion auth aviipetonilel o mpdfinua énhewdng
unyoviopol Lwvtavic yetoxivnone container otov Kuepvhtn. Mio dAAn npdtaon elvan 1 avdntuln evog
TETOLOU UnyoviopoL uetaxiviong, kote T container vo umopolv va yetoxivniolyv e dAlo x6ufo yweig
VO XOTUOTREPOVTOL X0 VAL UTOYPEMVOVTOL VoL Ay (COUV TNV EXTEAECT) TOUC amO TNV oEyH.
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Chapter 7

Introduction

7.1 Overview of cloud computing

Cloud computing has already changed significantly the IT industry and the way new software
products are being developed and deployed. It has also transformed the way computer hardware
is engineered, since the emphasis is now put on large-scale datacenter servers rather than personal
computers and alone-standing servers. The cloud offers computing as a service, and as a result
corporations and organizations in general do not need to invest effort and capital in provisioning
state-of-the-art computing resources for deploying their own software; they can instead rent resources
from public cloud providers.

As a more formal definition [2], cloud computing refers to both the applications delivered as services
over the Internet and the hardware and systems software in datacenters that provide those services.
The services provided are called Software as a Service (SaaS), while the datacenter hardware
and software is called a Cloud. Clouds that are available to the public and users can pay for the
computing resources as they utilize them are called public clouds. Examples of public clouds include
Amazon Web Services, Microsoft Azure and Google Cloud Engine. On the contrary, there are also
private datacenters, the access to which is restricted to the organizations that own them and their
clients.

Advantages of cloud computing

The emergence of cloud computing offers an abundance of privileges to datacenter owners and users.
The advantages include the following:

e Infinite resources on demand
Cloud forms the illusion that there are infinite resources which can be utilized on demand;
thus organizations and users do not need to forecast future needs well in advance and prepare
themselves. Decisions based on possible future demands can be risky and may lead to
underutilized investments, if the demand growth is lower than expected.

e Pay-as-you-go policies
Public cloud providers allow users to pay for the use of computing resources on a short-term
basis. Most cloud providers charge users per-minute or even per-second of resource utilization.

e Economies of scale
Building and operating large datacenters in multiple locations across the globe gives cloud
providers the opportunity to form economies of scale. As a result, they pay computing
utilities, such as hardware, electricity and power to a fraction of the cost offered to
medium-sized datacenters.

e Higher resource utilization
Cloud providers can also benefit from multi-tenancy to increase the utilization of their servers.
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As multiple workloads from different users can be colocated to the same machines, the datacenter
utilization can increase. For example, a datacenter deploying web applications may observe that
the incoming load is low during nighttime and at that time batch jobs could be scheduled on
the servers dedicated to the web apps.

Applications deployed on the cloud

Cloud platforms are very popular with a variety of application types [2]. In this section, the
applications usually deployed on the cloud are split into categories and are briefly presented.

e Mobile interactive applications
A widespread category of applications include web services that respond in real time to
information provided by users. Examples of such services are hotel reservation web sites and
e-banking platforms. Cloud is ideal for these applications, because it ensures high-availability
and can easily handle the large datasets they utilize (often coming from different sources).

e Parallel batch jobs
Except for interactive SaaS, cloud is also a popular place to host massively parallel batch jobs.
These jobs include analytics applications based on frameworks like MapReduce and Handoop,
which leverage very large amounts of data (in the scale of Gigabytes or even Terabytes) to
analyze customer behaviour (recommendation systems) or forecast supply chain needs. They
can benefit from the plethora of computational cores and accelerators like GPUs and FPGAs
to process huge amount of data in parallel and dramatically reduce execution time.

¢ Extension of desktop applications

Another class of cloud applications includes intensive desktop applications that are now being
mitigated to the cloud. Examples range from text processing applications to scientific
applications and 3D animation software. The traditional approach of running the applications
locally required very large initial investments from end users or organizations, if the desktop
applications they wished to run were heavy. However, the expensive infrastructure may be
underutilized, if the heavy workloads are executed infrequently. Moving the application to a
pay-as-you-go public cloud can be cost-efficient and guarantee higher performance.

7.2 Current trends in cloud computing

7.2.1 Multiple models of cloud computing

As the popularity of cloud computing has increased, different models and deployment strategies
have emerged to meet specific needs of various users. In brief the three models of cloud computing
(fig. 7.1) are:

e TaaS Infrastructure-as-a-Service is infrastructure on the cloud. The cloud provider manages the
servers, storage and networking; the users have access over the Internet to cloud storage and
virtual servers, where they can deploy their applications.

e PaaS Platform-as-a-Service goes one step further and provides users with a platform to build
their applications. PaaS vendors offer development tools, middleware, operating systems,
storage and database management, and infrastructure.

e SaaS Software-as-a-Service refers to fully built applications. These applications are offered to
end users over the Internet and are managed and maintained by the service providers. An
example of SaaS is a web-based email where users connect through a web browser.
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Figure 7.1: The three cloud service models [30]

7.2.2 Serverless computing

A recent trend in cloud computing is the adoption of a “serverless” approach [18]. This section aims
at presenting the current condition and the needs driving this swift.

Cloud providers tend to provide their users with low-level virtual machines, which the latter can
customize according to their needs and deploy their applications on. This approach is very flexible,
for it allows the recreation of the local working environment on the cloud to simplify porting already
functional software. However, it also comes with a large administrative overhead. Managing many
instances of virtual machines can be a challenging task, as the system administrator has to tackle with
the following responsibilities:

e Redundancy for high availability of the deployed services, so that a single point of failure does
not result in down time.

e Backing up storage, to prevent a physical disaster from causing irreparable data loss.

e Load balancing to ensure that the incoming traffic is evenly distributed among the running
instances.

e Autoscaling (scale-up or scale-down) to meet the fluctuations in incoming traffic.
e Incident logging for debugging purposes or performance analysis.
e System upgrades, including security patches.

Taking into account the difficulty of completing these administrative tasks, cloud providers have
started to offer serverless computing products. The word “serverless” does not precisely describe this
new trend, since the deployed applications still run on servers. The key difference is that users just write
the code and cloud providers take the responsibility of server provisioning and task administration.
The core of serverless computing is Function as a Service (FaaS); the user provides the software
functions and the cloud providers make sure that the application is successfully deployed and running.
Cloud platforms also provide Backend as a Service (BaaS), which is pre-written software for all
tasks taking place on servers (e.g. user authentication, database management, cloud storage).

The first public cloud to offer serverless computing was Amazon in 2015 with AWS Lambda.
Nowadays there is a large number of serverless platforms, like Google Cloud Functions, IBM Cloud
Functions and Azure Functions. In all these platforms the deployed software functions scale
automatically according to the incoming traffic, without any explicit provisioning, and the users are
billed based on usage.

7.2.3 Microservices

Cloud applications are transitioning from monolithic implementations to a collection of smaller
parts. Each of these parts is called a microservice, as it performs only one service, runs independently
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Amazon Social MNetwork

Figure 7.2: Examples of microservice graphs [14]

of other microservices, operates in its own environment and stores its own data. The individual
microservices are connected in a chain to form a full application, and because a microservice can be
part of different chains, a graph of microservice is generated. Examples of microservice graphs are
presented in figure 7.2. From the end user’s point of view, an application built with microservices has
a single interface and works the same as a monolithic application.

Microservices are gaining popularity due to their advantages. Every microservice can be written in a
different programming language and an already existing microservice can be used in many applications;
these characteristics make the development process more flexible. This modular design approach makes
it also easier to add or modify features of an application. In addition, there is the opportunity to
selectively scale up or down specific parts of an application and thus avoid bottlenecks.

Although not necessary, microservices are usually deployed on cloud platforms. They can be
deployed on PaaS, using the development platform made available by the cloud vendor. Another
option is to deploy the microservices in containers or serverless. Serverless microservices run only
when they are needed by the application, scale automatically and may be split in smaller cloud
functions if a microservice has multiple functionalities.

7.3 Motivation

The topic of this thesis is efficient workload colocation on clusters orchestrated by Kubernetes.
In the scope of this thesis, the workloads are split into two categories: latency-critical (LC) and
best-effort (BE). The LC workloads have strict tail latency targets and are usually interactive web
services. On the contrary, the BE workloads are usually batch jobs created by big data analytics
frameworks or recommendation systems, and have loose or no latency targets. The latency targets for
applications deployed on cloud platforms are specified on formal agreements between cloud providers
and organizations called Service Level Agreements (SLA).

Previous work has shown that resource utilization in datacenters is low, although large amounts of
money should be invested in the construction, equipment and operation of a datacenter [3]. Research
data from the late 2000s show that the resource utilization in private datacenters are between 6% [7]
and 12% [29]. During the same period, the CPU utilization in Google servers managed by the Borg
software was 25 - 35%. More recent data from 2019 show that CPU utilization in Google servers has
increased to 60% on average, as shown in figure 7.3. This figure shows the cumulative distribution
function of the CPU and memory utilization for 8 different Google servers (labeled a-h) and compares
it with equivalent data from 2011. The Borg resource manager is a sophisticated software and thus
Google servers are on the high end, as far as resource utilization is concerned.
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Figure 7.3: Cumulative distribution function for CPU and memory utilization in Google servers
managed by Borg in 2009 and 2019 [28§]

The cause of low utilization may lie in the reservation-centric approach many datacenter
administrators have adopted. The administrators decide themselves the amount of resources every
workload is allowed to use. Due to the strict agreements signed with customers, they are afraid that
LC application might violate their SLA during an unexpected traffic spike. As a consequence, they
allocate more resources than necessary to LC application. Quasar [11] proves than only 10% of the
reservations are right-sized; 70% of them overestimate the reservations by up to 10x. Figure 7.4
compares resource utilization and reservation over 30 days for a large-scale cluster owned by Twitter

and managed by Mesos, and shows that CPU overestimation is 3-5x and memory overestimation is
1,5-2x.
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Figure 7.4: Reservations and actual usage in Twitter servers [11]

Although there are numerous research publications on resource management in datacenters [22]
[11] [20] [31] [14], the majority of them assumes that workload run in virtual machines or bare-metal.
There is a recent trend to run application in containers, which are lighter than VMs, boot very quickly
and can be scaled up and down. Kubernetes [8] is a very popular tool for orchestrating containers;
it is responsible for scheduling, managing and scaling containerized applications. Taking into account
the low resource utilization, this thesis aims at investigating ways to optimize resource usage in a
Kubernetes cluster through the efficient colocation of LC and BE workloads.
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7.4 Contributions

The main contributions of this thesis are the following;:

e The different approaches in resource management for large-scale cloud systems are summarized,
compared and contrasted. A selected collection of relevant research articles is presented; each
of them proposes a complete system for managing shared resources in multi-tenant datacenters.

e A resource management system for Kubernetes clusters is designed, implemented and
evaluated. As opposed to previous work, the proposed system works with containers
orchestrated by Kubernetes rather than virtual machines or bare-metal applications.
Furthermore, it leverages the Kubernetes API functionalities for resource management and
requires no measurements from hardware counters.

7.5 Structure of the thesis

This thesis starts with presenting the technologies that will be used in chapter 8. These technologies
include the container runtime Docker, the container orchestrator Kubernetes and a tool for cluster
monitoring called Prometheus. In chapter 9 selected research articles that deal with the topic of
resource manager in large-scale cloud systems are briefly presented. Chapter 10 presents the dynamic
resource manager this thesis proposes for Kubernetes clusters. The algorithm is thoroughly explained
and the implementation code is presented in detail. The proposed resource manager has been tested
on a small local cluster managed by Kubernetes using a LC application designed for the thesis needs.
Chapter 11 includes the presentation of the LC application and the experiments results. The thesis
concludes with a brief summary and suggestions for future work in chapter 12.
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Chapter 8

Background

8.1 Docker

8.1.1 Containers

A container is a standard unit of software that packs all the code of an application, along with all
necessary dependencies and configuration. [9]. Containers are lightweight and portable, and can be
easily shared. They are isolated from the environment they live in, so the same container can be easily
and consistently deployed in a public cloud, a private datacenter or even a personal computer. This
abstraction allows development teams to focus more on the software itself, rather than bothering about
software version incompatibilities and server configuration; therefore, the development and deployment
of an application is more efficient.

A container has many similarities with a virtual machine, but these two are substantially different
[10]. Both provide isolation from the host machine and other virtualized entities running on the same
machine. Yet, VMs offer a more strict isolation; containerized applications appear in the user space
as isolated processes. Both are fully operational and alone-standing virtualized environments allowing
access to the underlying hardware. A VM virtualizes the whole hardware stack and runs a complete
operating system including the kernel. On the contrary, a container runs only the user portion of the
operating system and includes services and libraries that are necessary for the specific application. As
a result, containers are much more lightweight that VMs, take up less memory and need less time to
boot.

8.1.2 Docker container technology

Docker [12] is one of the most popular container technologies, initially launched in 2013. Docker
makes use of Linux concepts like cgroups and namespaces to separate application dependencies from
infrastructure. Today Docker is used by all major cloud providers and serverless frameworks. It
includes the open-source libcontainer library, which was originally written especially for itself.

Docker containers need a Docker runtime to run successfully. This runtime is called Docker Engine
and it allows containerized applications to run on any infrastructure. It has a wide support for public
cloud and this includes hybrid solutions.
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8.2 Kubernetes

8.2.1 Outline

Kubernetes [8], also known as K8s, is an open-source container orchestration framework originally
developed by Google. Kubernetes automates deployment, scaling and management of containerized
applications in different infrastructure like physical servers, virtual machines, public clouds, or even
hybrid environments. Kubernetes is able to manage large clusters with up to 5000 nodes and 100
containers per node.

It implements the following functionalities:

¢ Load balancing
Kubernetes can expose a containerized application running on one or multiple containers using
a DNS name or IP address; thus the application can be accessible from outside the cluster.
Kubernetes can guarantee that the load assigned to each container is evenly distributed.

e Storage orchestration
Kubernetes is able to deal with storage systems and supports mounting of volumes from local
storage, public cloud providers or network file systems.

e Update of deployment status
The desired state for deployed containerized applications can be easily described with YAML
or JSON files. The actual state can be changed at a controlled rate; for example the number of
deployed containers can be changed.

¢ Resource management
Kubernetes allows cluster administrators to determine the CPU and RAM usage for deployed
applications and places the containers to the nodes so as to use best the available resources.

e High availability
Kubernetes restarts failed containers, replaces them if the desired state is updated, kills non-
responding ones and starts advertising them only when they are ready to serve.

e Security management
Kubernetes puts a strong emphasis on security. For this reason, it includes tools for storing and
managing sensitive information like passwords, OAuth tokens and SSH keys without exposing
them in the application code.

e Disaster recovery
In case the infrastructure fails for any reason, Kubernetes will try to recover the cluster and run
the containerized applications from the latest state.

41



8.2.2 Kubernetes objects

Kubernetes objects are persistent entities used to represent the state of the cluster. They describe
which containerized applications run in the cluster, what resources are available to them and the
policies regarding them (e.g. restart policy). The objects can be created through the Kubernetes
API, which is discussed in paragraph 8.2.3. After they are created, they represent the cluster’s desired
state and Kubernetes will constantly work to move the cluster current state towards the desired state.

Kubernetes objects include fields spec and status, which define the object configuration. The
spec field is completed during the creation of the object and represents its desired state. On the
contrary, the status represents the current state of the object and is updated by Kubernetes and its
components.

A fundamental Kubernetes object is the pod. A pod is

the smallest unit Kubernetes can handle and is basically an

DEPLOYMENT abstraction over containers. With the introduction of pods,

Kubernetes is independent of the container technologies. A

pod can include more than one containers, but usually there

is one container in each pod. Kubernetes creates a virtual

AEPLICASET REPLICA SET REPLICA SET network over the cluster and assigns an unique internal IP

V1 V3 address to each pod; if a pod fails and gets recreated, a

new IP is assigned to it. If a pod has more than one

containers, then all containers share the same IP address

and can communicate with each other via localhost or

other inter-process communication mechanisms like shared
memory and pipes.

The lack of a permanent IP address can be a problem
when different pods try to communicate with each other.
This problem is solved by Kubernetes services, which are
an abstract way to expose an application running on a set
of pods as a network service with a permanent IP address.
For example, a complex application runs the frontend and
backend in different pods and there are multiple replicas
of the backend pod due to high traffic. The frontend
and backend must communicate and this can be done by
creating two services. A user request will be caught by the
frontend service and be forwarded to the frontend pod; a
frontend request will be caught by the backend service and be forwarded to one of the backend pods,
since a service also functions as a load balancer. The frontend does not need to know that there are
multiple backend pods and or if one of them crashed and acquired a new IP address.

Multiple replicas of the same pod (like the ones mentioned in the previous example) are managed by a
ReplicaSet. The purpose of a replicaSet is to maintain a stable number of identical pods. ReplicaSets
are in turn managed by the higher-level concept of Deployment. Deployments use replicaSets as a
mechanism to orchestrate Pod creation, deletion and updates. The Deployment creates automatically
a replicaSet and can update it with server-side rolling updates. In case that one pod replica should
be placed on each node, because it provides a node-level function like node monitoring or logging, a
daemonSet object can be used. The pods created by a daemonSet have a lifecycle tied to the lifecycle
of the node they live in. Finally, pods that are supposed to terminate on their own after execution
(also called batch jobs) can be created with a Job.

For stateful applications, the most suitable object type is StetefulSet. Like deployments,
statefulSets manage a set of identical pods; however pods managed by a statefulSet have a unique
persistent identifier, which remains even if a pod fails and is recreated. These identifiers make it
easier to match storage volumes to new pods replacing failed ones. Kubernetes manages storage by
offering an API that splits storage provision and consumption. PersistentVolume is a piece of
storage in the cluster provided statically by the administrator or dynamically by the cloud provider
(e.g. AWS, Azure etc) or by a cloud infrastracture platform (e.g. Openstack). A persistentVolume

Figure 8.1: ReplicaSets manage
pod replicas and are managed by
deployments [17]
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has a lifecycle independent of any pod that utilizes it. A persistentVolume is consumed by a
persistent VolumeClaim.

Cluster

Persistent Volume Claim
(PVC)

Persistent Volume
(PV)
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e e e e e e e e e e e e e e

Physical Volume

Figure 8.2: Persistent storage on Kubernetes [25]
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8.2.3 Kubernetes components

Kubernetes manages clusters made up of worker machines called nodes, which run the
containerized applications. Every cluster has at least one worker node. Worker nodes host the pods,
which are the components of application workload. Every functional worker node must run the
following components:

e Container runtime
The container runtime is the software responsible for running containers. Kubernetes supports
a number of container runtimes, including Docker and containerd.

e Kubelet
Kubelet interacts with both the container and the node. It is responsible for starting containers
in pods and ensures that the pods follow their specification (PodSpec), are running and remain
healthy.

e Kube-proxy
Kube-proxy forwards the requests coming from network sessions inside or outside the cluster to
the pods. Kube-proxy has intelligent forwarding logic and makes sure that communication is
efficient and with low overhead.

The worker nodes and the pods in the cluster are managed by the control plane. The control plane
is the container orchestration layer that exposes the API and interfaces to define, deploy and manage
the lifecycle of containers. It takes decisions about the whole cluster (e.g. which node a new pod will
be scheduled on), detects and responds to cluster events (e.g. scaling up an application deployment).
The control plane components run on specific machines called masters, which do not run application
containers. Every cluster has at least one master (multiple masters guarantee high availability and
fault tolerance).

Kubernetes Master Server(s)

API Server

Controller Manager

Linux Server(s)

Kubernetes Node Kubernetes Node Kubernetes Node

Concor L] Concer J e

Kubernetes Proxy Kubernetes Proxy Kubernetes Proxy

Linux Server Linux Server Linux Server

Figure 8.3: Kubernetes architecture and components [21]

The control plane is made up of the following components:

e kube-apiserver
The API server exposes the Kubernetes API and can be considered as the frontend of the control
plane. kube-apiserver is the main implementation of the API server. In large clusters, multiple
instances of the API servers can be spawned for load balancing. A Kubernetes user can access
the API server through a user interface (UI) like Kubernetes dashboard, a command line tool
like kubectl or REST requests. The requests coming from the users are validated, so that only
authenticated ones are forwarded to the cluster.
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e kube-scheduler
The scheduler watches for newly created pods that are not assigned to any node and decides
what node they should by placed on. The scheduling decisions are complex, since a variety
of factors should be taken into account (resource requirements, policy constraints, affinity and
anti-affinity, data locality). The scheduler only decides on which node the pod will be placed;
the actual pod is started by the kubelet instance running on the selected node.

e kube-controller-manager
This component runs controller processes. A controller implements a control loop that watches
the shared state of the cluster through the API server and makes the changes needed to move
from the current state towards the desired state. The controller manager runs the following
controllers:

— Node controller: Watches the state of nodes and responds when a node goes down.

— Replication controller: Monitors the desired number of pods and makes sure it matches
the actual number of running pods.

— Endpoints controller: An endpoint is the pod IP address and a port, through which it can
communicate with the cluster and outer world. The endpoints controller watches for new
endpoints (i.e. in new pods or restarted pods which have a new IP).

e etcd
eted is a consistent and highly available key-value store of the cluster state. All cluster changes
(e.g. creation of a new pod) are stored in etcd. It can be described as the “cluster brain”,
because all components retrieve data from etcd and their decisions are based on it. For backup
purposes, a cluster can have multiple master nodes and then etcd forms a distributed storage
across all master nodes.

e cloud-controller-manager
Cloud controller manager links the cluster to the cloud provider API, when the cluster is deployed
on a public cloud like Google Cloud Engine (GCE), Amazon Web Services (AWS) or Microsoft
Azure. It runs the controllers that are dependent on the cloud platform; thus a self-hosted
cluster has no cloud controller manager. It can be scaled to more than one masters, in order to
improve performance or avoid outages. It may run the following controllers:

— Node controller: Checks if a failed node is deleted from the cloud platform
— Route controller: Sets up routes in the underlying cloud infrastructure

— Service controller: Creates, updates and deletes cloud provider load balancers
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8.3 Prometheus

Prometheus [26] is an open-source monitoring and alerting system, based on a custom time series
database implementation. It was originally developed in SoundCloud, but later joined the Cloud
Native Computing Foundation [6] as a hosted project. It has become a popular monitoring system for
container and microservice environments, because it allows administrators to have an insight on what
is happening on hardware and application level. Prometheus reports software errors and exceptions,
service latency, hardware outages and resource utilization, thus making the monitoring of large-scale,
geographically distributed clusters running hundreds of applications more efficient.

The main component of Prometheus is Prometheus server. It is comprised of a time series database,
which stores all metrics data (e.g. CPU usage, number of exceptions in an application). The data
gets stored in the database by a data retrieval worker, which pulls the metrics data from targets (i.e.
applications, services, servers). Finally, there is an HTTP server that accepts queries and forwards
them to the database. The queries are written in a tailor-made query language called PromQL.

Applications

Services,
Servers...

Retrieval Storage HTTP Server

- pulls - stores - accepts

metrics data metrics data queries

Data Retrieval Worker Time Series Database Accepts PromQL queries

Figure 8.4: Prometheus architecture [26]

8.3.1 Time series database

Prometheus stores all the retrieved data as time series. A time series is a stream of timestamped
values identified by a metric name and key-value pairs called labels. The time series is comprised
of data structs called samples with a float64 value and a millisecond-precision timestamp. The data
stored by Prometheus is multi-dimensional and this functionality is enabled by the labels. To be
more specific, any given combination of labels for the same metric name define a particular (possibly
multidimensional) time series; for example all HTTP requests (metric name) that use POST method
and the return status is 200 (labels). Changing, adding or removing a label will result in a different
time series. Given a metric name and a label key-value, a time series is identified using the following
notation:

<metric name>{<label name>=<label value>, ...}

Targets must report metrics in specific formats, else Prometheus server will not be able to retrieve the
data and push them to the time series database. Targets can use Prometheus client libraries which are
available in multiple programming languages like Go, Python, Java and Ruby. The supported metric
types are the following:

e Counter
A counter is a cumulative metric that represents a single monotonically increasing counter whose
value can only increase or be reset to zero on restart. For example, a counter could represent
the number of requests served, tasks completed, or errors.
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e Gauge
A gauge is a metric that represents a single numerical value that can arbitrarily go up and down.
Examples of metrics that can be represented with is a gauge are CPU and memory utilization.

e Histogram
A histogram samples observations (usually request durations or response sizes) and counts
them in configurable buckets. It also provides a sum of all observed values and exposes it as

<metricName>_sum. To access a specific cumulative bucket, the notion
<metricName>{le="<upper inclusive bound>"} is used. There is also the
histogram quantile function that allows the calculation of quantiles from the histogram
data.

8.3.2 PromQL

Prometheus provides a tailor-made query language for the time series database. It is called
Prometheus Query Language (PromQL) and allows users to select and aggregate time series data.
The queries return four different data types:

e Instant vector
An instant vector is a set of time series containing one sample per time series, all sharing the
same timestamp. An instant vector is returned for example by the PromQL query
http_requests_total. This query returns the latest sample for all time series (all possible
label combinations) with metric name http_requests_total.

e Range vector
A range vector is a set of time series containing a range of data points over time for each time
series. Compared to an instant vector, it returns the same time series but not only the latest
sample. For example, a range vector is returned by the query http_requests_totall[im]; it
returns the samples from the last one minutes for all time series with metric name
http_requests_total.

e Scalar
A scalar is a simple numerical floating-point value. A scalar is returned when the PromQL
query returns just one sample from one time series.
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Chapter 9

Related Work

The problem of resource management in large-scale cloud systems has been a popular subject for
numerous computer science researchers and as a result many relevant scientific works have been
published. In this chapter a number of selected articles is briefly presented.

9.1 Heracles

Heracles [22] is a dynamic, mostly online resource manager which allows the colocation of a latency-
critical (LC) application with any best-effort (BE) application. The LC applications operate under
strict service level objectives (SLO) and Heracles aims at eliminating SLO violations while optimizing
the throughput of the BE applications. An instance runs on each server and leverages only local
information. Colocation is a challenging task, because applications running concurrently on a server
compete for shared resources and OS-level scheduling mechanisms - such as Linux’s completely fair
scheduler (CFS) - can lead to SLO violations. Furthermore, static allocation of resources is not a
solution either, because one the one hand the LC might need to utilize all the available during an
unexpected load spike and on the other hand may lead to very low resource utilization.

The authors of Heracles characterized and analyzed the interference on shared resources for LC
benchmarks running on one server and recorded their tail latency under various load scenarios. The
LC application ran along with a tailor-made BE applications that stress a specific resource in isolation.
To be more specific, competition for CPU resources has been observed with the L.C and BE application
running on different HyperThreads. For the last-level cache (LLC) and the memory bandwidth, the
applications were pinned to different cores on the same socket. The same configuration was used for
the power experiments, except that the BE application was power-intensive and forced the CPU to
work on the lowest possible clock frequency. For the network utilization, the TCP congestion control
mechanism was used to throttle excessive BE network usage. These experiments lead to the conclusion
that static allocation for shared resources result in either underutilization or SLO violations.

Heracles’ design allows the dynamic adjustment of hardware and software isolation mechanisms,
namely cpuset cgroups for CPU core isolation, Intel’s cache allocation technology (CAT) for the LLC,
a custom-made software monitor for memory bandwidth (since there are no commercially available
chips with a memory bandwidth partitioning mechanism) which requires offline information, Intel’s
Running Average Power Limit (RAPL) for power consumption and gqdisc scheduler for network
traffic isolation. Heracles tries to solve the high dimension problem of optimal resource allocation for
all isolation mechanisms and for each possible combination of LC and BE application and load as an
optimization problem where the objective is maximizing utilization with the constraint of the SLO.
This problem can be decomposed to easier one or two-dimensional subproblems, as the interference
lead to performance degradation when the shared resource becomes saturated. These subproblems
can be solved with the gradient descent method.

The evaluation of Heracles relies on measurements about the LC application latency and the server
utilization. Experiments are carried out both on a single server and a small cluster. Heracles achieves
no SLO violation in either setup, but leaves a latency slack in many cases. An increase in resource
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utilization and throughput is also achieved, since an average of 90% server utilization is reached.
Furthermore, Heracles puts an emphasis on energy efficiency realizing that increased energy costs
have a negative impact on datacenter operation, and records a gain in energy efficiency from 2.3 to
3.4 times.

9.2 Quasar

Quasar [11] is a centralized cluster management system
that aims at increasing server utilization while maintaining
a high quality of service (QoS). The authors of this
scientific article investigate data from reservation-based
cloud systems and reach the conclusion that only a small
fraction of the resource reservations are right-sized. Most
workloads tend to overestimate the resource they need to
satisfy the QoS, but this strategy leads to low resource
utilization in datacenters. For this reason, Quasar adopts
a performance-centric approach and asks users about the
performance constraints of their applications rather than
the low-level resources they need. These performance
constraints may be expressed in terms of latency or
throughput (i.e. queries per second), depending on the
application type. It is up to Quasar to determine the
optimal amount of resources to be allocated to each
workload.

Quasar uses collaborative filtering to quickly estimate

how the performance of a application is affected by the
amount and type of resources as well as colocation with
other applications. Collaborative filtering is a classification
technique often used in recommendation systems and is  Figure 9.1: Quasar architecture [11]
used as an alternative to exhaustive space exploration.
Every incoming workload is profiled for a short time period on predefined servers. The data
collected is combined with data gathered from applications characterized online and the data collected
from previous applications scheduled on the cluster. Quasar make four independent classifications
in parallel: amount of resources (scale-up), number of nodes (scale-out), server configuration
(heterogeneity) and interference. These classifications are adjusted to the different workload types (i.e.
no scale-out for single-node applications). The decomposition of the original classification problem
in four subproblems might slightly degrade the classification accuracy, but decreases the complexity
significantly.

The classification results are given as input to a greedy scheduler responsible for the resource
allocation and assignment (i.e. the scheduler decides on which servers the workload is scheduled and
how many resources it can take up). The target of the scheduler is to allocate the minimum amount
of resources needed to satisfy the workload’s QoS constraints. FExcept for placing new applications,
Quasar also keeps the per-workload and per-node state. If SLO violations or idling resources (due to
the workload changing phase, varying traffic or classification failure) are detected, Quasar reclassifies
the workload and adjusts the allocation and assignment.

The proposed cluster management system is evaluated with a wide variety of workloads and traffic
scenarios. The experiments are carried out in two large-scale clusters with 40 and 200 server
respectively. The supported workloads include distributed analytics frameworks (e.g. Handoop and
Spark), web-serving applications, NoSQL databases (e.g. memory-based memcached, or disk-based
Cassandra) and single-node batch workloads (e.g. PARSEC, SPEC2006). The evaluated traffic
scenarios are flat traffic, fluctuated and traffic with big spikes. Quasar is compared to the
reservation-based schedulers of the analytics frameworks and to auto-scaling systems. The
experiments show that Quasar manages to speedup workload execution while improving overall
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cluster utilization.

9.3 Proctor

’ Metric ‘ Source ‘

CPU utilization perf
Page faults per second perf
Context switches per second perf

Network throughput (bytes transfered) | netstat
Cache misses (L1, L2, LLC) perf

I/O requests iostat
Branch misses perf

Table 9.1: Metrics gathered by Proctor

Proctor [20] is a real-time, centralized monitoring system for datacenters, that aims at detecting
intrusive virtual machines as well as their victims and the saturated shared resources (network, I/0,
cache, CPU). The authors of this scientific work understand that private datacenters and public clouds
run many new applications with no prior performance data, which makes the detection of performance
degradation a difficult task. Moreover, reduced performance results from one or more stressed shared
resources; therefore effective colocation requires the investigation of the contention source. It is also
clear to the authors that the above mentioned detection and investigation tasks must have a low
performance overhead.

Proctor includes a Performance Degradation Detector (PDD) to detect performance anomalies
leveraging time series data from a QoS metric specific for each application. Applications report their
QoS constraints and their current performance through the Application Heartbeats framework [16].
These time series often contain a significant amount of noise and sharp changes. Although popular
noise reduction techniques like Kalman filtering are not suitable for such time series, median filtering
reduces noise while keeping drastic changes. Afterwards, a signal processing algorithm called step
detection is used to identify sudden changes in the QoS metric time series. These changes represent
the beginning of degraded performance periods.

Having detected the sudden drops in performance, Proctor invokes the Performance Degradation
Identification (PDI) to examine which virtual machines and shared resources are to blame for the
reduced performance. For this reason, Proctor collects time series data from low-level counters for
each VM and correlates them with the metrics from the VM’s primary QoS metric. The metrics utilized
and the software tools they are obtained from appear in table 9.1. Leveraging the whole amount of
data makes the correlation very computationally expensive and time consuming; thus Proctor samples
the available data. The authors put a great emphasis on selecting a representative data population;
they observe that the data are far from normally distributed and choose the y?-test to check if a
sample is representative of the population. They also suggest that a sampling rate of 6.5% is a good
trade-off between accuracy and performance overhead.

When the disruptive VM and the stressed resource have been identified, Proctor applies a simple
mitigation technique - the contentious VM is moved to another core, disk or network channel
depending on the saturated resource. By applying this mitigation method, the workload
performance is improved by a factor of 2 on average, with the performance improvement being
higher for CPU and I/O contention and lower for LLC contention. Proctor has been tested on a
large datacenter setup with 2560 servers and 12800 VMs. With the proposed sampling rate of 6.5%,
Proctor occupies less than 0.5% of the available servers.
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9.4 Pythia

Pythia [31] is a datacenter scheduling manager that estimates the combined contention created when
a LC workload runs concurrently with multiple BE applications. The authors of this scientific work
observe that summing the expected contention caused by each BE workload is a naive approach and
leads to contention overestimations, especially as the number of colocated applications increases. The
naive approach fails, because the colocated BE workloads interfere with and throttle each other, thus
reducing the combined contention on shared resources.

Pythia proposes a simple linear regression model to predict the combined contention from multiple
colocate workloads. This model measures initially the contention caused by each BE workload when
it runs concurrently with the LC one. Then it estimates a weight for each LLC workload that shows the
amount of prevailing contention when other LC workloads are allowed to run concurrently. This weight
depends on the number (but not the combination) of colocated BE workloads and larger values show
resistance to inference. Due to the very large number of possible combinations, only a small fraction
of them (around 5%) are actually profiled; the rest are predicted using least square optimization
to minimize the prediction error. During the profiling the only metric collected is IPC of the LC
application.

The steps described before are completed offline when possible, because for every LC workload 195
seconds are needed on average. For this reason, Pythia is effective if the workloads are repetitively
submitted for scheduling. When a known workload is submitted, the predictive model is used to
determine which cluster nodes will not suffer from performance degradation if the incoming workload
is scheduled there. The workload if finally placed on a node using the best fit algorithm (i.e. the node
with the least available shared resources left). Assuming that the predictive model is created offline, the
online scheduling overhead can be considered negligible (some milliseconds). During runtime, Pythia
adopts PiPo (Phase-in/Phase-out) dynamic mechanism proposed in Bubble-Flux [32] to protect the
LC workload from colocated BE applications running temporarily on high load.

The PiPo mechanism is part of the online flux engine. The flux engine controls the execution of
scheduled workloads using decision intervals. Each interval consists of a phase-in interval, where the
BE workload operates normally and the phase-out interval, where the BE workload is paused. The
IPC of the LC application is continuously measured during the decision interval and at its end the
average IPC is calculated. This average IPC is compared to the QoS metric and then the phase-in
and phase-out intervals are adjusted, so that the average IPC is above the QoS threshold.

A key parameter in evaluating Pythia is the QoS degradation (with reference to the scenario of LC
workload running alone on a server) that the datacenter administrator allows. With a 95% QoS policy,
Pythia achieves an impressive 99% utilization. If the QoS is relaxed further to 90%, the utilization
achieved is 71%. It is worth noting here that the authors deliberately excluded some BE benchmarks
that cause very high contention and that the QoS policy violation rate is not reported.

9.5 Seer

Seer [14] is an online, centralized performance debugging system for cloud systems accommodating
latency-critical microservices. The authors of this article observe that cloud applications are
transitioning from the traditional monolithic design to graphs of loosely-coupled microservices.
Maintaining a strict QoS (in terms of throughput or tail latency) is more challenging for
microservices than for single-binary applications, because performance degradation in one
microservice is going to propagate and amplify across the graph. Furthermore, the QoS constraints
for each individual microservice are far more strict than for traditional cloud applications. Except
for the changes in software design patterns, datacenter hardware is becoming increasingly
heterogeneous due to the introduction of accelerators like GPUs and FPGAs, thus making
predictable performance even more challenging.

Seer actively monitors the application running on the cloud using two-level tracing. First, a
distributed RPC-level tracing system is designed with a view to recording per-microservice latencies.
This system records every incoming request on the network interface controller (NIC), the time it
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Figure 9.2: Seer architecture [14]

spent waiting on the controller and the processing time (i.e. time until the response arrived on the
NIC). Whenever possible, Seer also records any queues created within the microservice; this leads to
more detailed tracing, but requires access to the microservice software code which is only seldom
available. Second, Seer collects on-demand low-level node diagnostics from hardware counters. This
data is used to identify which microservice causes QoS violations and which shared resource has been
saturated.

The data collected from the first level of tracing is used to train a deep neural network (DNN).
The number of input and output neurons is equal to the number of microservices traced before. The
DNN receives as input the NIC queue depths and gives the probability of a given microservice to
cause a QoS violation as output. The DNN consists of a set of convolutional layers (CNN) followed by
a set of long-short term memory layers (LSTM). The CNNs are effective at reducing dimensionality
of large datasets and finding spatial patterns, while LSTMs are good at finding patterns in time.
Seer leverages both types of neural networks, because it aims at finding both spatial (i.e. identifying
problematic clusters of neighboring microservices) and temporal (i.e. using past QoS violations to
forecast future ones) patterns. The training of the DNN is time consuming, happens once and gives
best accuracy when 100 - 200 GB of tracing data is consumed. In case that the microservice is slightly
altered, a short retraining takes place, and when the microservice or datacenter architecture changes
significantly, the DNN needs to be trained from the scratch.

During runtime, Seer signals potential QoS violations and pinpoints the responsible microservice,
using data from the trained DNN. At that point, the second level of tracing is activated and Seer starts
monitoring the utilization of shared resources on the node that host the problematic microservice. The
monitored resources include CPU, memory capacity and bandwidth, network bandwidth, LLC and disk
I/0. In public clouds hardware counters are not available; instead Seer injects benchmarks stressing a
specific shared resource and monitors the behaviour of the microservice. Once the saturated resources
have been detected, Seer notifies the cluster manager who in turn takes actions like resizing the
container of the problematic microservice, activating LLC partitioning and using qdisc to partition
network bandwidth.

Seer has been evaluated on a small private cluster and large-scale public clouds. For the evaluation
process, the authors designed four end-to-end microservice applications implementing a social network,
a media service, an e-commerce website and a banking system, as well as a hotel reservation system
based on Go-microservices [15] architecture. The experiments show that Seer manages to foresee 91%
of QoS violations and avoid 84% of them. The mispredicted QoS violations correlate with application
updates. The authors also try to optimize the DNN training utilizing the hardware accelerators
available in public clouds and reach that conclusion that both Tensor Processing Units (TPUs) on
Google Cloud Engine [19] and FPGA-based Brainwave on Microsoft Azure [4] manage to boost up
the DNN performance significantly.
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Chapter 10

Resource Manager Architecture

10.1 Problem definition

This thesis proposes an online resource manager for Kubernetes. The problem this resource manager
is going to tackle is the colocation of one latency-critical (LC) deployment with one best-effort (BE)
deployment on the same cluster node. A latency-critical deployment has to meet a strict service level
agreement (SLA) on tail latency. For the purpose of this thesis, the SLA is based on the 99%-quantile
latency of HT'TP requests; this definition of the SLA can however be easily adjusted to LC application’s
needs. On the other hand, a best-effort deployment has loose quality of service restrictions.

10.2 Outline

The proposed resource manager checks periodically the performance of the applications running in
the cluster utilizing metrics from Prometheus monitoring tool API. It tries to effectively colocate a
BE and a LC application by allocating a variable number of vCPUs to them. Initially the available
vCPUs on a cluster node are split equally between the two applications. In case that a LC deployment
violates the SLA, one more vCPU is allocated to it. On the contrary, if the SLA is easily met, then one
vCPU is taken from the LC deployment and is allocated to the BE one. This procedure stops when
the SLA status changes (i.e. from violated to satisfied or from satisfied to violated after rolling back
to the previous state). A pseudo-code implementation of this algorithm is presented as Algorithm 1.

The proposed resource manager works with the following restrictions:

e BE deployments must carry the label “class = best-effort” and the LC deployments the label
“class = latency-critical”. Deployments without this label will not be changed by the resource
manager.

e There must be at most one BE and at most one LC deployment on each cluster node.
e The containers running in the cluster must have distinct names.

e Each deployment must create only one pod replica. If two replicas are desired, then two distinct
deployments can be created. The deployments could get connected with a service, with also
acts as a load balancer.

10.3 Implementation

The proposed resource manager has been implemented using the Go programming language. The
specific programming language has been chosen, because Kubernetes itself is written in Go and
exposes a programming interface in Go. This API is called client-go and can be found on GitHub [5].
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Algorithm 1: Resource manager algorithm

for each node in cluster do

Collect node, deployment and pod data;

if resources not allocated then

Split vCPUs equally between LC and BE deployment;

Mark the node as not converged;

else if node not marked as converged then

Collect SLA data;

if SLA is not satisfied then

if BE can be shrunk then
‘ Shrink BE and grow LC;

else
‘ Mark node as converged;

end

if SLA was satisfied in the previous state then
‘ Mark node as converged;

end

else

if SLA was violated in the previous state then
‘ Mark node as converged;

else

if LC can be shrunk then

‘ Shrink LLC and grow BE;

else
‘ Mark node as converged;
end
end
end
end

end

First of all the resource manager connects to the Kubernetes API and retrieves data about the nodes
in the cluster and the running deployments and pods. This connection is possible using the code in
listing 10.1. The code uses the clientcmd package in order to read and parse information about the
cluster (e.g. node name, credentials). Next, the kubernetes.NewForConfig command builds a client
set, which contains clients for all native Kubernetes resources. From this collection of clients, the core
group (which allows access to the cluster nodes and pods) and the apps group (which contains the
deployments) are selected.

1 func connectToAPI() (coreV1API corevl.CoreViInterface, appsV1API appsvl.AppsViInterface) {
2 kubeconfig := flag.String("kubeconfig", "~/.kube/config", "path to kubeconfig")
3 flag.Parse ()

4 config, err := clientcmd.BuildConfigFromFlags ("", *kubeconfig)

5 if err != nil {

6 panic (err.Error ())

7 }

8 clientset, err := kubernetes.NewForConfig(config)

9 if err != nil {

10 panic (err.Error ())

11 ¥

12 coreV1API = clientset.CoreV1 ()

13 appsV1API = clientset.AppsV1()

14 return

15 }

Listing 10.1: Connect to Kubernetes API
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Using the client returned by the connectToAPI function, the resource manager can retrieve the
required data about the cluster and the applications running in it. The collected information is stored
in map data types and include the node names and IPs, the pod names, statuses, labels and resource
lists, as well as a deployment list and the containers belonging to each deployment. The above data
is gathered by the functions presented in listing 10.2. Mapping the pods to the deployments they are
managed by has been a challenging task, as it has been achieved through the containers. To be more
specific, two mappings were created and combined accordingly: the pod each container belongs to and
the deployment each pod is managed by.

func getNodePodData (coreAPI corevl.CoreViInterface)
(IPMap map[string]string,
podMap map([string][]lstring,
resourceMap map[string][]apicorevl.Resourcelist,
labelMap mapl[stringlstring,
containerMap mapl[string]string) {

IPMap = make(map[stringlstring)

nodeNameList := []Istring{}
nodelist, err := coreAPI.Nodes().List(metavl.ListOptions{})
for _,node := range nodelList.Items {
nodeNameList = append(nodeNamelList, node.Name)
IPMap [node.Name] = string(node.Status.Addresses[0].Address)

namespace := "default"
for _,nodeName := range nodeNameList {

podList, err := coreAPI.Pods(namespace).List(metavl.ListOptions{FieldSelector: "spec.
nodeName=" + nodeName})

for _,pod := range podList.Items {
labelMap [pod.Name] = pod.Labels["class"]
podMap [nodeName] = append(podMap[nodeName], pod.Name)
containerMap [pod.Name] = pod.Spec.Containers [0].Name
podResources := pod.Spec.Containers [0].Resources
resourceMap [pod.Name] = append(resourceMap[pod.Name]l, podResources.Requests)
resourceMap [pod.Name] = append(resourceMap[pod.Name], podResources.Limits)

return

}

func getContainerMap (appsAPI appsvl.AppsViInterface)
(containerDeploymentMap map[stringl]lstring) {

containerDeploymentMap = make(map[string]lstring)
namespace := "default"
deploymentList, err := appsAPI.Deployments(namespace).List(metavl.ListOptions{})
for _,deployment := range deploymentList.Items {
for _,container := range deployment.Spec.Template.Spec.Containers {
containerDeploymentMap [container .Name] = deployment.Name
}
}
return

Listing 10.2: Retrieve the necessary cluster data
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The next step is querying the Prometheus API about the tail latency of the LC application. Function
getFromPromQuery (which is presented in listing 10.3) receives as input a query in string format,
queries the Prometheus API and returns the result. The type of the result is model.Value, which is
a Prometheus internal interface for values returned by query evaluation. This actual result can be a
matrix, a vector, a scalar or a string.

Initially getFromPromQuery creates a new client for the Prometheus API. In the cluster used for the
experiments of this thesis, Prometheus exposes the gathered metrics at the address 192.168.122.91 and
port 9090. The query to Prometheus API is basically a HT'TP request, which the Go programming
language handles with the context package [1]. getFromPromQuery declares that the HTTP requests
has a timeout of 10 seconds and gets cancelled if it is not served on time.

func getFromPromQuery (query string) (result model.Value) {
client, err := api.NewClient (api.Config{
Address: "http://192.168.122.91:9090",
B
if err != nil {
fmt.Printf ("Error creating client: %v\n", err)
panic (err.Error ())
¥
api := promvl.NewAPI(client)
ctx, cancel := context.WithTimeout (context.Background(), 10*time.Second)
defer cancel ()
result, warnings, err := api.Query(ctx, query, time.Now())
if err != nil {
fmt.Printf ("Error querying Prometheus: %v\n", err)
panic (err.Error ())
}
if len(warnings) > 0 {
fmt.Printf ("Warnings: %v\n", warnings)
}
return
}

Listing 10.3: Query Prometheus API

The resource manager iterates over the cluster nodes and collects information about them, the
deployments and the pods running on them as described before. If there is one or no pods on the
node, no actions are taken. Otherwise, if there are two pods on the node and at least one of them is
new, then the available vCPUs are split equally between them (as described in listing 10.4.)

if lresourcesAllocated {
deploymentNeedsUpdate = true
latencyCriticalCPU = resource.NewMilliQuantity(availableCores * 500, resource.DecimalSI)
bestEffortCPU = resource.NewMilliQuantity(availableCores * 500, resource.DecimalSI)
fmt.Println ("Resources are not allocated for all pods, going to split them equally")
fmt.Println("Best effort pod vCPUs:", bestEffortCPU)
fmt.Println("Latency critical pod vCPUs:", latencyCriticalCPU)

b

Listing 10.4: Allocate vCPUs equally between new pod

In case there are two pods on the node under investigation and none of them is new, the resource
manager queries Prometheus about the 99%-quantile latency of the LC application during the last 30
seconds. Half a minute is a large enough time frame and thus gives statistically meaningful data. This
information can be retrieved with the following query:
histogram_quantile (0.99, rate(flask_http_request_duration_seconds_bucket{method="POST",status

="200"}[30s1)

Taking into account the answer from Prometheus API and the SLA, the resource manager decides
whether the SLA is violated or not and stores it at the isSLAMet variable. Then the algorithm 1
can be reinforced in order to split the available vCPUs optimally. The implementation should mark
a node as converged when the desired state is reached, with a view to avoiding oscillations between
neighboring states. For this reason a convergenceData struct (see listing 10.5) is declared per node.
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type convergenceData struct {
converged bool
previousState string
convergenceTimestamp time.Time
}

Listing 10.5: convergenceData struct

When the SLA is violated, one vCPU is taken from the BE application and is given to the LC. If,
nevertheless, there is only one vCPU allocated to the BE application, no changes are made and the
algorithm converges. And if in the previous state the SLA was satisfied, then the node deployments
roll back to the previous state and the algorithm converges. This procedure is done with the code in
listing 10.6.

step := resource.NewMilliQuantity (1000, resource.DecimalSI)
if !isSLAMet {
newLatencyCriticalCPU := *xlatencyCriticalCPU
(&newlatencyCriticalCPU) .Add (xstep)
if (&newLatencyCriticalCPU).Cmp(*availableCPU) < 0 {
*latencyCriticalCPU = newLatencyCriticalCPU
bestEffortCPU.Sub (*step)
deploymentNeedsUpdate = true
*nodeConvergeData = convergenceData{false, "violated", time.Now()2}
fmt.Println("SLA is violated, going to restrict best-effort pod")
fmt.Printf ("New best effort pod CPU: %v\n", *bestEffortCPU)
fmt.Printf ("New latency critical pod CPU: %v\n", *latencyCriticalCPU)

} else {
deploymentNeedsUpdate = false
*nodeConvergeData = convergenceData{true, "violated", time.Now()}
fmt.Println("SLA is violated, but no further actions can be taken")

}

if nodeConvergeData.previousState == "SLAMet" {
*nodeConvergeData = convergenceData{true, "violated", time.Now()}
fmt.Println("Going to roll back to previous state and converge")

}

}

Listing 10.6: Actions taken for SLA violations

A similar procedure is followed for the case that the SLA is satisfied (listing 10.7). If in the
previous state the SLA was violated, then the optimal state has been reached and no more changes
are necessary. Else, when possible, one more vCPU is allocated to the BE application. Otherwise
there is convergence.

if isSLAMet {
if nodeConvergeData.previousState == "violated" {
x*nodeConvergeData = convergenceData{true, "SLAMet", time.Now()}
fmt.Println("SLA is now met and the algorithm converged")
} else {
newBestEffortCPU := *bestEffortCPU

(&newBestEffortCPU) . Add (xstep)

if (&newBestEffortCPU).Cmp (*xavailableCPU) < 0 {
*bestEffortCPU = newBestEffortCPU
latencyCriticalCPU.Sub (*step)
deploymentNeedsUpdate = true
*nodeConvergeData = convergenceData{false, "SLAMet", time.Now()}
fmt.Println("SLA is easily met, going to grow best-effort pod")
fmt.Printf ("New best effort pod CPU: %v\n", bestEffortCPU)
fmt.Printf ("New latency critical pod CPU: %v\n", latencyCriticalCPU)

} else {
deploymentNeedsUpdate = false
*nodeConvergeData = convergenceData{true, "SLAMet", time.Now()}

fmt.Println("SLA is easily met, but the best-effort pod cannot be grown")

Listing 10.7: Actions taken for SLA satisfaction
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After all, the variable deploymentNeedsUpdate is true, if and only if the deployments need to be
updated. Despite Kubernetes allowing the update of an existing deployment, this method is not
suitable for the proposed resource manager. By updating the deployment, a new pod is created and
the old one is destroyed after the new is successfully placed on the node. But all the available vCPUs
of the node are allocated to the old pods and as a consequence the new pods cannot be scheduled and
remain on pending mode forever. The approach that was finally adopted is explicitly destroying each
old deployment and creating a new one with the same characteristics, except for the resources. This
method is implemented by the function createNewDeployments, which is shown in listing 10.8.

1 func createNewDeployments (api appsvl.AppsViInterface,

2 bestEffortName string, bestEffortCPU resource.Quantity,

3 latencyCriticalName string, latencyCriticalCPU resource.Quantity,

4 nodeName string) {

5 namespace := "default"

6 deletePolicy := metavl.DeletePropagationForeground

7 deploymentsClient := api.Deployments(namespace)

8

9 /* Get old deployments, keep their specifications and delete them */

10 tmpDeployment ,err := deploymentsClient.Get(bestEffortName, metavl.GetOptions{})

11 bestEffortDeployment := tmpDeployment.DeepCopy ()

12 tmpDeployment ,err = deploymentsClient.Get(latencyCriticalName, metavl.GetOptions{l})

13 latencyCriticalDeployment := tmpDeployment.DeepCopy ()

14 deleteOptions := metavl.DeleteOptions{PropagationPolicy: &deletePolicy,}

15 err = deploymentsClient.Delete(latencyCriticalName, &deleteOptions)

16 err = deploymentsClient.Delete(bestEffortName, &deleteOptions)

17

18 /* Change the resources of the deployments */

19 resourcelist := make(apicorevl.Resourcelist)

20 resourcelist [apicorevl.ResourceCPU] = bestEffortCPU

21 bestEffortDeployment .Spec.Template.Spec.Containers [0].Resources.Limits = resourcelist

22 bestEffortDeployment .Spec.Template.Spec.Containers [0].Resources.Requests = resourcelist

23

24 resourcelist := make(apicorevl.Resourcelist)

25 resourcelList [apicorevl.ResourceCPU] = latencyCriticalCPU

26 latencyCriticalDeployment .Spec.Template.Spec.Containers [0].Resources.Limits = resourcelist

27 latencyCriticalDeployment.Spec.Template.Spec.Containers [0].Resources.Requests =
resourcelList

28

29 /* Make sure that the new pods will be scheduled to the same node as the old ones */

30 nodeSelectorMap := make(map[stringlstring)

31 nodeSelectorMap ["kubernetes.io/hostname"] = nodeName

32 bestEffortDeployment .Spec.Template.Spec.NodeSelector = nodeSelectorMap

33 latencyCriticalDeployment.Spec.Template.Spec.NodeSelector = nodeSelectorMap

34

35 /* The new deployments have the same labels and specifications as the old ones, but new
names */

36 newBestEffortDeployment := &apiappsvl.Deployment{

37 ObjectMeta: metavl.ObjectMeta{

38 Name: bestEffortDeployment.Name + "-1",

39 Labels: bestEffortDeployment.Labels,

40 },

41 Spec: bestEffortDeployment.Spec,

42 }

43 _, err = deploymentsClient.Create(newBestEffortDeployment)

44 newLatencyCriticalDeployment := &apiappsvl.Deployment{

45 ObjectMeta: metavl.ObjectMeta{

46 Name: latencyCriticalDeployment.Name + "-1",

47 Labels: latencyCriticalDeployment.Labels,

48 },

49 Spec: latencyCriticalDeployment.Spec,

50 }

51 _, err = deploymentsClient.Create(newLatencyCriticalDeployment)

52 }

Listing 10.8: Delete old deployments and create new
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Before the resource manager moves to the next cluster node, a sleep period is predicted. The aim of
the sleep period is to provide some time for the new deployment creation, which is a demanding task
for the master node. This period is calculation by the code in listing 10.9, so that all worker nodes are
iterated within a minute (in our cluster there are 3 worker nodes and the sleep period is 20 seconds).
It may need to be adjusted, according to the number of nodes in cluster, the number of master nodes
and their computational power.

1 time.Sleep (60 * time.Second / len(nodeDatalMap))

Listing 10.9: Sleep period
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Chapter 11

Experiment Results

11.1 Latency-critical benchmark

11.1.1 Description

The latency-critical (LC) benchmark is a web application for statistical analysis of the transactions
performed by registered and unregistered customers at a supermarket chain with many stores. All
the data is stored in a database and the application user can modify the database contents. The
application includes a website for data presentation and interaction with the database.

The web application is designed using the Flask [13] micro-framework (version 1.1.2), MySQL
database [23] (version 8.0.19) and the Python programming language (version 3.8.0). The Flask code
is able to connect to the MySQL database using the python-mysql-connector module.

11.1.2 Database architecture

The database is comprised of five entities: Store, Customer, Product, Category and Transaction.
Price is a weak entity, in which the price history of each product can be stored. The above entities
have attributes and are connected to each other with relations, as shown in the E-R model in fig. 11.1.

The relational model (fig. 11.2) of the database can be derived from the E-R model. The five strong
entities correspond to database tables with primary keys. The weak entity (Price) becomes a table
with the combination of barcode (foreign key belonging to Product) and timestamp as the primary key.
Many-to-many relations (offers-products and buy-products) become tables as well and their primary
keys are the combination of the keys belonging to the strong entities they connect. Finally, relations
shop-with-card and shop-without-card do not become database tables; instead Store and Customer
primary keys are added to Transaction as foreign keys.

11.1.3 Selected queries

For the default experiment three different URLs of the web application were chosen. Every time an
external client requests one of the three URLs, a query to the MySQL database is performed. The
fetched data fetched is then formatted and the resulting web page is returned to the client. To make
the result presentation easier, the three HT'TP requests are named “fast”, “medium” and “slow”. The
latency of the requests varies, because each request results in different SQL queries.

e The “fast” request performs a simple selection query:

1 SELECT DATE(start_date), DATE(end_date), amount
2 FROM Price
3 WHERE barcode = <selected barcode>

e The “medium” request performs a more complex query, which includes a cartesian product, a
nested selection subquery and a sorting:

60



store-name

date-of-birth @ @

CUSTOMER
Postal Code

opening-hours

i

STORE

CATEGORY

category-ID

category-name

belongs

W N U W N

© 0 N O U W N

[un
o

offers- shop-without- shop-with-
products i
________ card card
transaction-1D

TRANSACTION

PRODUCT

p AN

timestamp

g
5

Figure 11.1: Database entity-relation model

SELECT P.barcode, P.product_name, sum(B.quantity) AS total_quantity

FROM buy_products AS B

INNER JOIN Product AS P ON B.barcode = P.barcode

AND B.transaction_id IN

(SELECT transaction_id FROM Transaction WHERE card_id = <selected_card>)
GROUP BY P.barcode

ORDER BY total_quantity DESC

LIMIT 10

The “slow” request results in a quite complex query which computes the cartesian product of
two tables that come from a natural join each:

WITH buy_products_names (barcode, name, transaction_id) AS
( SELECT P.barcode, P.product_name, B.transaction_id
FROM buy_products AS B
NATURAL JOIN Product AS P )
SELECT B1l.barcode, Bl.name, B2.barcode, B2.name, COUNT(*) AS pair_freq
FROM buy_products_names AS B1l, buy_products_names AS B2
WHERE B1l.transaction_id = B2.transaction_id and Bl.barcode < B2.barcode
GROUP BY B1l.barcode, B2.barcode
ORDER BY pair_freq DESC
LIMIT 10
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Figure 11.2: Database relational model

11.1.4 Kubernetes deployment

The web application get deployed on the Kubernetes cluster as two separate containers. The
database lives on one container on its own and exposes port 3306 (the default MySQL port) so that
applications living in other containers can connect to it. A Kubernetes internal service is necessary
for fault-tolerance and scalability purposes. The Flask web application is deployed separately and
connects to the database through the internal service. The web application should be reachable from
outside the cluster, therefore an external service (LoadBalancer in Kubernetes jargon) is created as
well.

The database should be able to survive, even if the container it lives on fails and needs to be
recreated. Therefore the data should be stored in permanent storage, which is called “persistent
volume” in Kubernetes terminology. A persistent volume of 5GB is claimed for the database and
the relative container mounts this persistent volume, so as to read data from and write data to the
permanent storage. More technical details about the implementation of the deployment can be found
in the appendix.
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11.2 Best-effort benchmark

Benchmarks from the PARSEC suite [27] [24] have been chosen as the best-effort (BE) tasks that
will run along with latency-critical application. The PARSEC benchmarks are multi-threaded and
can utilize many physical cores simultaneously. They come from a wide range of scientific domains
and are not only focused in the domain of High-Performance Computing (HPC). As a result they can
be considered representative of real-world best-effort applications.

The PARSEC suite contains the following benchmarks:

e blackscholes: A Black-Scholes partial differential equation solver for option pricing

e bodytrack: Body tracking of a person through an image sequence using computer vision
algorithms

e canneal: Optimization for the routing cost of a chip design using the simulated annealing
technique

e dedup: Data stream compression using “deduplication” method, which is also used in modern
backup storage systems

e facesim: Physical simulation of human face motions
e ferret: Content-based similarity search, ideal for non-text data types

e fluidanimate: Animation of fluid dynamics using the Smoothed Particle Hydrodynamics
technique

e freqmine: Data mining method for frequent itemset mining

e raytrace: Real-time raytracing method frequently used in computer games

e streamcluster: An online clustering algorithm for data streams

e swaptions: A Monte Carlo simulation which prices a portfolio of swaptions

e vips: Image processing application based on the VASARI Image Processing System

e x264: An H.264/AVC lossy video encoder
Out of these benchmarks, fluidanimate, streamcluster and swaptions were used for the experiments.

With this choice of benchmarks, a data mining, an animation and a simulation application is used as
the best-effort load.
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11.3 Experiment setup

11.3.1 Experiment description

The aim of the experiments is to measure the latency of the HT'TP requests and to monitor the
utilization of the node resources under varying traffic scenarios. For the first experiments 100 threads
are spawned on the client side and each thread generates an HTTP request per minute (randomly
chosen out of the three possible). The number of requests per minute is increased to 250 during
the second experiment and to 400 suring the third. Every experiment lasts for 10 minutes and
measurements are collected until all threads are finished.

The following experiments have been carried out:

e Baseline (alone) experiment
The first experiment aims at profiling the latency-critical application. The LC application runs
alone on one node and it is free to consume all the available resources.

e Colocated experiment
During the colocated experiment, the latency-critical and the best-effort applications run
concurrently on the same node. Both applications can utilize as many resources as they wish.

e Static experiment
In this experiment a static resource utilization restriction is imposed. To be more specific, the
BE benchmark is pinned to one CPU core, while the LC is allowed to use the rest of the CPU
cores.

¢ Dynamic experiment
The last experiment uses the custom-made resource manager to allocate resources to the LC
and the BE applications. Initially the CPU cores are split equally between the applications.
The LC application is allocated one more core in each iteration, until the SLA is met or there
are no more cores available. If the SLA is easily met from the beginning, the BE benchmark is
grown.

11.3.2 Metrics

The performance of LC and the BE applications is continuously monitored during the experiments.
The following metrics are collected using Prometheus:

e Histogram of the HTTP request latency for each of the three URLs
e 0.99-quantile latency of the above HTTP requests
e l-minute moving CPU utilization for each node processor

e 1l-minute moving average system load for each node

11.3.3 Infrastructure setup

The experiments were conducted on virtual machines (VM) running Ubuntu Linux 18.04. The VM
generation and configuration is controlled by libvirt over Qemu-KVM. The VMs run concurrently on
the same physical server and are organized in a Kubernetes cluster (see Appendix), with one virtual
machine acting as the master node and the other three as workers. There is also a fifth VM, which
does not belong to the cluster and acts as a client that generates HT'TP requests to the LC application.

The server is equipped with Intel Xeon X5650 chips running at a clock frequency of 2.67 GHz.
The server has 12 physical cores organized in 2 NUMA sockets. Each physical core has 2 hardware
threads, so there are 24 logical cores in total. The hypervisor (Qemu-KVM) identifies 24 vCPUs
(virtual centralized processing units) and allocates 6 vCPUs to each worker VM and 3 vCPUs to the
master and the client nodes.
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Every physical core comes with 32KB of L1 instruction cache, 32KB of L1 data cache and 256KB
of 1.2 cache. The L3 cache is 12MB and is shared between the 6 physical cores of each NUMA socket.
The main menory of the server is 48GB and it is shared by all physical cores. Each VM is given 8 GB
of memory.

ag O o ag O o
L] [] L] L] [] L]
ag O o ag O o

] ] ] ] ] ]

Figure 11.3: Topology of the server. The blue elements are the cores, the yellow are L1I and
L1D caches, the violet are L2 caches and the green are L3 caches. The server consists of 2
NUMA sockets.

11.3.4 Service Level Agreements

Latency-critical applications operate with strict service level agreements (SLA) on tail latency.
The SLA in these experiments is determined with reference to the 99%-quantile latency achieved
during the ideal execution - when the LC application run on the node alone. The SLA is determined
by multiplying the ideal 99%-quantile with the following coefficients:

e 1,50 if the traffic is low (i.e. 100 requests per minute)
e 1,75 if the traffic is in between (i.e. 250 requests per minute)

e 2,00 if the traffic is high (i.e. 400 requests per minute)

| | 100 RPM | 250 RPM | 400 RPM (node) | 400 RPM (cluster) |

fast 0,075 0,090 0,100 0,100
medium 0,40 0,45 1,00 0,50
slow 3,00 3,50 6,00 9,00

Table 11.1: SLA for each HTTP request and traffic load (in sec)

11.4 Single-node results

Figure 11.4 shows the number of CPU cores that the resource manager chose to allocate to the
latency-critical application in the various colocation scenarios. The number of available cores is 6 and
the number of allocated cores ranges from 2 to 5. The resource manager opted for less cores when the
traffic load was low and more when the traffic was high, when the LC application run on the same
node as streamcluster and fluidanimate. It is worth noting that the resource manager allocated 4 cores
to LC benchmark when it was colocated with swaptions benchmark, irrespective of the traffic load.
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11.4.1 Average latency results

Bar plots in figure 11.5 show the average 99%-quantile latency of the HTTP requests for all
experiments. The bar with the light shade represents the static experiment, the dark shade
represents the colocation experiment and the medium shade represents the resource manager
experiment. For the resource manager experiment, only the last half of the measurements are taken
into consideration due to a transitional phase that will be discussed later. The grey line on the
background shows the agreed SLA for each configuration (query and traffic load combination).

The SLA is once violated when the BE benchmark is given only 1 CPU core (4%). But when the
resources are freely utilized by both applications, the SLA is violated in 19 out of 27 cases (70%). The
resource manager manages to reduce this number to 3 cases out of 27 (11%).

Cores assigned to the LC container

6

i1 @ @ @
swaptions 5
4
fluidanimate e 3
2
1

streamcluster - e e e
T T T O

100 250 400

Load (RPM)

Figure 11.4: Number of cores assigned to the LC benchmark by the resource manager for all
colocation combinations

11.4.2 Latency results against time

The resource manager decides on how to allocate the CPU resources using a trial-and-error method.
When the number of allocated resources is changed, a new container needs to be created. This
procedure takes less than half a minute, but results in some latency spikes during the first minutes
of the experiment - this period is called transitional phase. But soon the resource manager algorithm
converges, no new containers need to be spawned and the experiment enters its steady phase.

Heatmaps in figures 11.6, 11.7 and 11.8 depict the distribution of the HTTP latency against the
experiment time. Each column on the heatmap represents one minute and the rows show the
distribution of the latency during this minute. The dot shows in which latency bin the 0.99-quantile
latency falls into during this minute.

The first 3 to 4 minutes of the experiment correspond to the transitional phase and the rest to
the steady one. During the transitional phase the 99%-quantile latency increases and the latency
distribution shows greater variance. But after the resource manager algorithm converges, the 99%-
quantile latency decreases quickly and the remains relatively steady.
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Figure 11.5: 99%-quantile average latency
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Latency distribution (fast query, colocated with fluidanimate)
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Figure 11.6: Latency distribution against time when LC is colocated with fluidanimate.
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Latency distribution (fast query, colocated with streamcluster)
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Figure 11.7: Latency distribution against time when LC is colocated with streamcluster. The
dots represent the 99%-quantile latency.
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Latency distribution (fast query, colocated with swaptions)
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Figure 11.8: Latency distribution against time when LC is colocated with swaptions. The dots
represent the 99%-quantile latency.
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11.4.3 Best-effort benchmark performance

The performance of the BE benchmarks (fig. 11.9) is calculated with the reference to the ideal
execution time (when they run alone on one node and are allowed to take up all the available resources).
The following plots show the performance slowdown during the experiments. The y-axis represents
the execution time and the number above the dot shows the average slowdown when compared to the
ideal execution. In order to compute the average, each benchmark was left to complete 5 full runs.
The variance of the measurements is not shown, because it is considered negligible.

The performance of the BE application is best when it is colocated with the LC without any
restrictions. However this scenario results in SLA violations. The static configuration restricts the
BE application very much and degrades its performance significantly. The resource manager achieves
a trade-off with smaller slowdown than the static scenario and only a few SLA violations.
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Figure 11.9: BE benchmark performance. The y-axis shows the average execution time and
the number above the dots represents the slowdown with regard to the ideal execution.
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11.4.4 Average CPU utilization

Figure 11.10 shows the average CPU utilization during the above mentioned experiments. The
CPU utilization is lower during the static experiment and higher during the colocated one. In other
words the static configuration underutilizes the available resources in order to achieve the SLA. On the
contrary the freely colocated configuration cannot control the CPU utilization and thus violates the
SLA. The resource manager achieves a trade-off between resource utilization and latency. Compared
to the conservative static allocation, it increases the CPU utilization up to 2,2x, with the average
increase being 1,6x.

11.4.5 Average system load

The average system load shows how many tasks are in running or waiting mode. When the system
load is 0%, then the system is idle. When the system load is 100%, every processor is occupied by
exactly one task in running or waiting mode. When the system load is more than 100%, waiting
queues are formed and therefore performance problems may start to appear.

Figure 11.11 shows the average system load during the above mentioned experiments. The average
system load is below 50% for most experiments, which means that the CPUs remain idle for more
that 50% of the time. It is worth noting that the system load remains low even when the workloads
are freely colocated and the SLA violations are more than frequent. This behaviour can be explained
by the nature of the workloads: the LC workload is a database generating many I/O time-consuming
requests and the presence of queues can severely degrade its performance.

11.5 Multi-node results

The proposed resource manager has also been tested for applications running on multiple nodes.
As explained in paragraph 10.2, the resource manager will not work if the LC application is scaled
by increasing the number of pod replicas on the same deployment. Instead, more deployments should
be created and the incoming traffic should be distributed by the external service. For the purposes
of the experiment, a second identical (except for the deployment and container names) deployment is
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created, so that the LC application is hosted on nodes worker-1 and worker-2. Moreover two BE
deployments are created, with the one on worker-1 running the streamcluster benchmark and the
one on worker-1 running swaptions.

During the experiment, 400 requests per minute were being served. The number could not be raised,
as the cluster nodes were actually hosted on the same physical machine and larger load led to some
of them failing. The increased pressure to the I/O subsystem is to blame for this behaviour. In
correspondence to the previous experiments, the experiments was made up of the following scenarios:

e The LC ran initially alone on the nodes (“alone”)
e The LC and BE application were colocated freely (“colocated”)

e All but one of the available vCPUs of each node was assigned to the LC application and the
remaining to the BE (“static”)

e The resource manager decided how many vCPUs to allocate to each deployment (“RM”)

The resource manager decided to allocate 4 vCPUs to the LC application and 2 to the BE on both
nodes. The results are presented in figures 11.12 and 11.13. The “colocated” scenario results once
more in increased latency and the resource manager achieves latency one the steady phase comparable
to the “static” scenario. Yet, the transitional phase persists although there is a sleep period between
the investigation of different nodes by the resource. More efforts are needed, so as to eliminate or
minimize this phase.
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Chapter 12

Conclusion & Future Work

12.1 Summary

This thesis discusses the topic of efficient colocation of latency-critical workloads with best-effort
batch jobs in clusters orchestrated by Kubernetes. First, Docker (a container runtime) and Kubernetes
(a container orchestrator) are presented. Moreover, selected scientific reports on this subject are briefly
summarized. Finally, this thesis proposes a resource manager for Kubernetes clusters, explains the
software design details and evaluates it in a small cluster.

The proposed resource manager follows a performance-centric approach and asks users to define a
latency target for their LC applications. The LC workloads should expose latency metrics, so that
Prometheus can scrape them. Understanding that hardware counters are not available in public clouds,
the resource manager requires no measurements and leverages only latency measurements collected
by Prometheus. The resource manager consists of a state exploration algorithm that minimizes the
number of vCPUs assigned to the LC workload, with the constraint that the latency target must be
met. To avoid oscillations, the algorithm converges when the target satisfaction status changes (i.e.
from violated to satisfied or vice versa).

Experiments in a 3-node cluster have been carried out to evaluate the resource manager. The
resource manager achieves a target violation rate of 11%, compared to 4% of a conservative static
approach and 70% of a liberal one with no restrictions in resource usage. In addition, more cores are
assigned to batch jobs in most cases, compared to the static approach and the overall CPU utilization
is improved by 1.6x on average. A transitional period appears until the algorithm converges; during
this phase, latency temporarily increases. Therefore, the proposed resource manager is better suited
for long-running applications.

12.2 Future work

This thesis is endowed with a functional resource manager for Kubernetes clusters, which can be
used as a foundation for future expansions. Some ideas for future work are suggested in this section,
categorized in development optimizations and relevant research topics.

12.2.1 Development optimizations

The proposed resource manager has been evaluated on a small cluster with 3 nodes. It would
be interesting to evaluate its performance on a public cloud cluster with a large number of nodes
and diverse workloads. The scalability and computational needs of the resource manager could be
established through this experiment.

Furthermore, a database could be used to store the cluster and container data. In the proposed
implementation, the container data (e.g. which containers are running on which server and for how
long, and the latency metrics from Prometheus) are temporarily stored in variables. Instead, all this
tracing data could be permanently stored in a database for future analysis.
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12.2.2 Research topics

A topic for future research is the effectiveness of a resource manager that extensively profiles
incoming containers before scheduling them. This approach has already been suggested in Quasar
[11] and Pythia [31], but has not been tested on Kubernetes clusters. A wise scheduling decision
could be valuable, because Kubernetes has no live migration mechanisms allowing disturbing
containers to be moved without losing their progress.

Another suggestion is the development of a such migration mechanism for Kubernetes. This would
allow the migration of contentious containers to other servers when performance degradation is
detected, as proposed in Proctor [20]. Except for this mechanism, one for pausing a container could
be engineered as well. Again, Kubernetes does not allow the pausing of a running container without
losing its state; the only available solution is scaling the deployment to zero replicas, which results in
destroying all the containers.
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Appendix A

Kubernetes setup

Various tools (e.g. kubeadm, Kubespray, minikube) can be used to create and manage a Kubernetes
cluster. In this thesis kubeadm has been chosen. The necessary packages can be installed by running
script A.1.

# Run the following script as root

### Install required packages
apt-get update && apt-get install -y apt-transport-https ca-certificates curl software-
properties-common gnupg?2

### Install Docker runtime

# Add Dockers official GPG key
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | apt-key add -

# Add Docker apt repository.

add-apt-repository \

"deb [arch=amd64] https://download.docker.com/linux/ubuntu \
$(1lsb_release -cs) \

stable"

# Install Docker CE.

apt-get update && apt-get install -y \
containerd.io=1.2.10-3 \
docker-ce=5:19.03.4"3-0"ubuntu-$(1lsb_release -cs) \
docker-ce-cli=5:19.03.4"3-0"ubuntu-$(1lsb_release -cs)

# Setup daemon.
cat > /etc/docker/daemon. json <<EOF

{
"exec-opts": ["native.cgroupdriver=systemd"],
"log-driver": "json-file",
"log-opts": {
"max-size": "100m"
3,
"storage-driver": "overlay2"
}
EOF

mkdir -p /etc/systemd/system/docker.service.d

# Restart docker.
systemctl daemon-reload
systemctl restart docker

### Install kubectl

curl -LO https://storage.googleapis.com/kubernetes-release/release/‘curl \

-s https://storage.googleapis.com/kubernetes-release/release/stable.txt ‘/bin/linux/amd64/
kubectl

chmod +x ./kubectl

sudo mv ./kubectl /usr/local/bin/kubectl

### Install kubeadm

curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -
cat <<EOF | sudo tee /etc/apt/sources.list

deb https://apt.kubernetes.io/ kubernetes-xenial main

EOF
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sudo apt-get update
sudo apt-get install -y kubelet kubeadm kubectl
sudo apt-mark hold kubelet kubeadm kubectl

Listing A.1: Install Kubernetes components

After all the required components have been installed, it is time to create the Kubernetes cluster.
On the master node kubeadm init command should be executed, while worker nodes join the cluster
by run the kubeadm join command. The commands to run on the master can be found on script A.2.

# Disable swap
sudo swapoff -a

# Initialize kubeadm
kubeadm init --pod-network-cidr=10.244.0.0/16 >> cluster_initialized.txt

# Make configuration file available to kubelet

mkdir -p $HOME/.kube

sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

# Install intra-cluster network add-on

# weave-net is used, other alternatives exist

kubectl apply -f "https://cloud.weave.works/k8s/net?k8s-version=$(kubectl version | base64 |
tr _d J\n))u

# Check if the master node is up
kubectl get nodes

# Follow instructions on cluster_initialized to add worker nodes

Listing A.2: Initialize cluster on the master node
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Appendix B

Deployment configuration files

B.1 Backend configuration

First a PersistentVolumeClaim (PVC) and PersistentVolume (PV) should be configured, so that
there is permanent storage for the database. The PVC and PV are configured using the YAML file
in listing B.1.

apiVersion: vi
kind: PersistentVolume
metadata:
name: mysql-pv-volume
labels:
type: local
spec:
storageClassName: manual
capacity:
storage: 5Gi
accessModes:
- ReadWriteMany
hostPath:
path: "/mnt/data"
apiVersion: vi
kind: PersistentVolumeClaim
metadata:
name: mysql-pv-claim
spec:
storageClassName: manual
accessModes:
- ReadWriteMany
resources:
requests:
storage: 5Gi

Listing B.1: PVC and PV configuration

Then the main deployment can be created using the YAML file ... The deployment mounts the
Persistent Volume declared before. Some environment variables need to be declared, so that the
container can connect to MySQL database. The required database are stored in a secret file for
security reasons. Furthermore, an internal service is configured, so that other containers can have
access to the database.

apiVersion: apps/vl
kind: Deployment
metadata:
name: mysql-deployment
labels:
app: mysql
spec:
replicas: 1
selector:
matchLabels:
app: mysql
template:
metadata:
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labels:
app: mysql
spec:
containers:
- name: mysql
image: mysql
imagePullPolicy: IfNotPresent
ports:
- containerPort: 3306
env:
- name: MYSQL_ROOT_PASSWORD
valueFrom:
secretKeyRef :
name: mysql-secret
key: mysql-root-password
- name: MYSQL_USER
valueFrom:
secretKeyRef :
name: mysql-secret
key: mysql-username
- name: MYSQL_PASSWORD
valueFrom:
secretKeyRef :
name: mysql-secret
key: mysql-password
volumeMounts:
- name: mysql-persistent-storage
mountPath: /var/lib/mysql
volumes:
- name: mysql-persistent-storage
persistentVolumeClaim:
claimName: mysql-pv-claim
apiVersion: vi
kind: Service
metadata:
name: mysql-service
spec:
selector:
app: mysql
ports:
- protocol: TCP
port: 3306
targetPort: 3306

Listing B.2: Database deployment and internal service

Since the internal service has been configured, other containers can connect to the database using
the TP of the service. This IP is not static, thus a shortcut to it can be defined on a ConfigMap. The
ConfigMap also contains the name of the database that will be used by the frontend container.
apiVersion: vil
kind: ConfigMap
metadata:

name: mysql-configmap
data:

database -name: supermarketDB
database-url: mysql-service

Listing B.3: ConfigMap with the database IP and name

B.2 Frontend configuration

The frontend part of the application is a Flask container that collects the HT'TP requests, translates
them in SQL queries, sends them to the backend container and presents the returned data. The
frontend container is generated through the Dockerfile shown in listing B.4. The necessary code can
be found on the author’s GitHub account.

# Use an official Python runtime as an image

FROM python:3.8

# The EXPOSE instruction indicates the ports on which a container
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# will listen for connections
# Since Flask apps listen to port 5000 by default, we expose it
EXPOSE 5000

# Sets the working directory for following COPY and CMD instructions

# Notice we havent created a directory by this name - this instruction
# creates a directory with this name if it doesnt exist

WORKDIR /app

# Install any needed packages specified in requirements.txt
COPY requirements.txt /app
RUN pip install -r requirements.txt

# Run app.py when the container launches
COPY src/ /app
CMD python backend.py

Listing B.4: Dockerfile for the frontend container

Flask
mysql -connector -python
prometheus_flask_exporter

Listing B.5: requirements.txt

The resulting container image is stored on DockerHub. The frontend Kubernetes deployment can
now be created using the YAML file in listing... The deployment and the collected Prometheus
metrics are desired to be accessible from outside the cluster and therefore two external services should
be created.

apiVersion: apps/vl
kind: Deployment
metadata:
name: webapp-deployment
labels:
app: webapp
spec:
replicas: 1
selector:
matchLabels:
app: webapp
template:
metadata:
labels:
app: webapp
spec:
containers:
- name: lc-benchmark
image: gkanel/lc-benchmark:vi.6
ports:
- name: flask
containerPort: 5000
- name: metrics
containerPort: 5099
env:
- name: MYSQL_USERNAME
valueFrom:
secretKeyRef :
name: mysql-secret
key: mysql-username
- name: MYSQL_PASSWORD
valueFrom:
secretKeyRef :
name: mysql-secret
key: mysql-password
- name: MYSQL_URL
valueFrom:
configMapKeyRef :
name: mysql-configmap
key: database-url
- name: MYSQL_DATABASE
valueFrom:
configMapKeyRef :
name: mysql-configmap
key: database-name
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46 —---

47 apiVersion: vl
48 kind: Service
49 metadata:

50 name: webapp-service
51 labels:

52 app: webapp

53 spec:

54 selector:

55 app: webapp

56 ports:

57 - name: flask

58 protocol: TCP

59 port: 5000

60 targetPort: 5000
61 externallPs:

62 - 192.168.122.91
63 ——-—

64 apiVersion: vi
65 kind: Service
66 metadata:

67 name: webapp-metrics-service
68 labels:

69 app: webapp

70 spec:

71 selector:

72 app: webapp

73 ports:

74 - name: metrics

75 protocol: TCP

76 port: 5099

77 targetPort: metrics
78 externallPs:

79 - 192.168.122.91

Listing B.6: Configuration for the frontend deployment and external services
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