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Anayopetetar n avtiypagn, anoinkevon kair dwavoun tns napoloas epyaocias, €& oAokArpou
1 TuNuatog avtng, yia eumopiké okond. Emtpénerar n avarinwon, arodnkevon kar 6iavoun
Yl OKOTO 1) KEPOOTKOTIKS, €KTMAI0EVTIKNG 1] €pevvnTikng @uons, umd tny mpolndleon va
avagépetal n TNyn mpoélevong kai va datnpeital to napdv unvuua. Epwtiuata mov apopoly
TN XPon TS €pyacias yia Kepdookomiké okomo mpémel va arevfivovtal mpos Tov ovyypagéa.
Or andpers ka1 ta ovumepdouata mov mepiéxovtar o€ avtd To €yypago ekppdlovy Tov ouy-
ypagéa ka1 dev mpémer va epunrevlel 6t avtimpoownelovy TS enionpes Yéoes tov Edvikolv

Metodfov Holuteyveiou.



ITepiAndn

H paydoto e€€MEN tng teyvohoyiag, ol uPniéc TaydTnTeg UeTddooNE TNG TAneopoplag, oL
avayxeS Yo UPNAT) AmdBOCT) XOU O AVTAYWVICHOS EYOUV OONYTOEL TNV €pEuva YLo dnuLoupyia
HOVTEPVWY ETEEERPYAOTMV BIXTOOU, UE OXOTO VO IXAVOTIOLACOLY TIC AUENUEVES ATAUTHOELS OF
throughput xau latency, mpoomodmvtag vo xpathoouy 600 yivetal TepccoTERO TNV VAo
woc CPU yevixol oxomol. Iapddinha, 1 dnuoupyio evog open-source ISA eneepyaotn, Tou
RISC-V, 6iver tn duvatdtnta o8 HeYahOTERO HEPOC TNG EPEUVANTIXYC XOWOTNTAS VoL acy ohriel
ue VEpaTo apyLTEXTOVIXTC XL oyEdloomnC.

Yuvdudlovtag autd ta 600, 0T CUYXEXPEVN SimAwuotixy epyacio Yo Tpootodioouue
VoL eXTEAECOLUE AetTovpyieg BixTOou oe cloTnua To omoio cuvddlel tov RISC-V ye VHDL
accelerators eldixol oxomol, dnuoveyodvtag étol pio HW/SW co-processing apyttextovi-
x1} oyedloon. o to oxomd autd Yo mpooeyyloouue ) Aettoupyio evée Network processor
YENOWOTOLOVTOS Uiot and TIC TLO TEPITAOXES XU AVTITPOCKWTEVTIXES AEITOVPYIEC OXTUOU, TO
Packet Classification, xou cuyxexpiuéva tov alydprduo HyperSplit, n extéheon tng duadixnic
avalAtnong tou onofou Va ebvar xat 1 HETEXY TN AmOBOCTE TOL CUCTHUUTOC Hag. Oo EmexTe-
tvouye to instruction subset RV64IAC ISA tou RISC-V mpociétovtag pla véa eviolr) tou Ya
avtinpoowneLel T HyperSplit Suadixy| avalhtnon. o tn oyedloorn tou hardware Yo ypnot-
ponotiooupe tov Rocket Chip Generator, dnuovpy®vtag éva configuration pe évav RISC-V
core xol TNV eEMTAEOV duvatoTNnTa EmXoveviog ue hardware accelerators. ©Oa Snutovpyricouue
évav HyperSplit search hardware accelerator ce VHDL xou Yo yenouonoiicouue 1o RoCC
interface ylo v emxowwvioa Tou pe Tov RISC-V main core.

Thonowsvtag tov accelerator tne HyperSplit duadixfc avalnong oe éva Xilinx Ultra-
scale xcku060 FPGA, autoc xatavardver 5K LUT, 2K DFF, 0 DSP and 570 RAMB (53% tou
FPGA) népouc yia v anodixevon uéyet xou 381K xéuBouc tou dévtpou. Xenowomoudvtog
pipeline ye P=5 stages o accelerator mdvel cuyvétnta fur=227MHz. Avtictowya, o RISC-V
oto (8lo FPGA xatavoraovel 15K LUT, 7K DFF, 0 DSP xo 5 RAMB pe for=143MHz.

H oyediaon pog tednd emtuyaiver 113 gopéc mo yeryopo classification and tov RISC-V
Ywelg tov accelerator, urtootneiCovtag ye Toug utoloylouols poc throughput émg xon 25.4

ex. packets/sec (1 poUtepe e 8.1Gbps traffic).

AéEeig-xAewdid: RISC-V, Network Processors, FPGA, HW/SW Co-design,
Packet Classification, Soft-Processor, HyperSplit, Hardware Accelerator, Bi-

nary Search.






Abstract

Performance demands in communications technology is driving research towards ad-
vanced network processors, which are able to handle huge rates of incoming packets via
application-specific circuits, however, without sacrificing all of the conventional CPU flexi-
bility. At the same time, the advent of RISC-V, an open-source ISA processor developed at
UC Berkeley, is disrupting the industry and academia by opening computer architecture
to a broader research community, allowing more researchers to explore architectural and
implementation issues.

Combining the above, the current work considers placing dedicated VHDL accelerators
next to a RISC-V processor to accommodate network functions via customized HW /SW
co-processing. We deal with the most common and challenging network task, that of Packet
Classification, using the HyperSplit algorithm for performance measurements in our research.
We extend the instruction subset RV64IAC of the RISC-V ISA with a new instruction that
corresponds to the HyperSplit binary search tree operation. For our hardware design we
use the rocket chip generator, creating a configuration that includes one RV64IAC RISC-V
core and the ability for core-accelerator communication. We create a VHDL HyperSplit
search hardware accelerator and we connect it to the main rocket chip RISC-V core using
the RoCC interface.

For rapid prototyping and design exploration, we implement the binary search of
HyperSplit algorithm on an Xilinx Ultrascale xcku060 FPGA. Our VHDL accelerator
consumes 5K LUT, 2K DFF, 0 DSP and 570 RAMB (53% of FPGA) for storing data
structures with up to 381K nodes. By tuning our pipeline, we achieved f. = 227MHz for
P=5 pipeline stages. Our RISC-V utilizes 15K LUT, 7K DFF, 0 DSP and 5 RAMB and
operates at 143MHz.

Adding our new accelerator, the design accelerates Packet Classification task, achieving
113x faster classification than RISC-V alone, sustaining up to 25.4M packets/sec throughput
(e.g., supporting routers with 8.1Gbps traffic).

Keywords: RISC-V, Network Processors, FPGA, HW/SW Co-design, Packet

Classification, Soft-Processor, HyperSplit, Hardware Accelerator, Binary Search.






Euyapiotieg

H exnévnon te AmAouatixic you epyasiag onuatodoTel 10 TENOG TwV TEOTTUYLUXWY
omoLdWV pou ot Lyohny Hiextpordywy Mnyavixey xow Mnyovixoy Trnoloyiotov tou E-
Yvixol MetodBou Ilohuteyveiou. Ilpoyupoatonofinxe ota mhaio tou epyactneiov Mixpo-
Umohoyiotwy xan Unglaxdv Luotnudtwy VLSI tou touéa Teyvohoyiag IThnpogopuxrc xou
Trohoyiotoy, pe emPBAénovio xodnynth Tov x. Anuftelo Xo0vier, oc cuvepyasia PE TO
tufua SSD (System Software Development) tou RnD tn¢ Intracom Telecom, ye emfBAénovta
Tov x. Nixo Koxxohn.

Oa Rieha TEOTIOTWS Vo ELYUPIGTACK ToV XadNYNTH You, Anuntelo Xolvten, yio TNV
guxotplol TOU POV EBWOE VO ACYOANIE UE TO CUYXEXQIIEVO ETLOTNUOVIXO TEDO, AR XL TOV
uévtopd wou otny Intracom Telecom, Nixo KoxoAr, yia tnv mpwtonoplaxs) Tou d€a xaL Tnyv
onuovTer) Bordeld Tou xatd TN BidpxEia TNG TEOCTAVELS UOU.

[Siutépwe Yo fieha vo evyaplotiow tov x. T'wpyo Aevtden tou epyaotneiov Mixpo-
Umohoylotwy xou Ungoxwy Yuotnudtwy VLSI yio tny mohbTun Bordeid tou, Tic 0éeg, Tig
oLPPOVAESC xou xaTeUIUVOELS Tov, pe TNV Pordeia Tou onolou YTdcoue 6To ETIUUNTO ATOTERE-
OUOL XOUL 1) CUYXEXQULEVT] OITAWUATIXT EYLVE TROYUATIXOTNTO X TTROYWENOE GE ONUOCIELsT).

Ou Aieha enlone va evyaplothow tov xodnynty Hoavoryidtn Toovdxa xar tov xadnynt
Awovioto Iveupatixdto mou cuuTAYEWoaY TNV TEWEAY ETLTEOTN.

Oa amoTtehoVoE TUPdAELPT VoL UNy EUYELOTACL GAOLS TOUG PIAOUC UOL TOL UE TNV OTHRIET
Toug Ue Bondoly Ol aUTE Ta YEOVIAL VAL TETUY W TOUS GTOYOUS LoV, TG0 cuveRYalouevn uall
TOug oTa TAAIGLAL TNG OYOAE 6G0 o G PuyohoY o ETUTEDO.

Téhog, evyaploto BodiTata ToUg YOVELS HoU, xadmdE XAk TOV AOERPO LOL YIAL TNV oY AT, TNV
UTIOUOVA %al TNV GTHRLEY TOU UoU €Y0UV TEOCPEREL AL LT TaL YEOVLAL, Ywelg Toug omoloug oL
TEPLOCOTEPOL ATO TOUG GTOYOUG LOoU OE Vot YIVOVTAY TRy LOTIXOTNTO X0l TOUS E(UOL TEAYUATIXG

ELYVOUOY.






Ytoug yovelg pou, Mapio xou T'iwpyo,
Ytov adeppod pou Idvvn,






Extetapevn eAAnvixr neplindn

0.1 Ewaywyn

YN ouyxexpévn epyocia yenowwonowolue pio RISC-V CPU w¢ soft-core oe éva FPGA,
o€ ouvbuooud ue éva hardware design oe out6. To design pog ntpocavatohileton yia yprorn oe
network processing eqapuoyéc xou emtpénet tn dnuovpyio uicc HW /SW apyitextovixic
oc FPGA, nmpdyyo to onolo odnyel og MioeELC Ue OYETIHE YUUNAO XOGTOG OYEBlAOTG OE OYEaT)
ue outh v custom ASICs. Enlong, n oyedloorn autr e€etdlet plar apyiTEXTOVIXY ApriVOVTAS
QVOLY T TNV TEOOTTIXT] Yol LEANOVTIXEC OYEDLAOTIXEC ahhayEC OE eMinEdO ayopdq.

H peyohitepn mpoxAnot| yag elvor 1 tpoondielor EMTdyUVeng ASLTOURYLMY BlxTO0U, Ywelc
VOU UELWVETOL 1) EUXOAOL TROCUPUOGC TIXOTNTAS EVOS POUTER OF AANXYES, XOL 1) ETUTEUEY ONUOVTL-
xg emTdyLvong oc mpaypaTxés ouvirxes. Kevtpxd onucio tng épeuvdg pog elvan 1 enéxtaot
tou RISC-V ISA ue npocavatohloud e@oppoyég dixTOou xou 1) avaTTUEY TOU GUC TAUATOSC

oe FPGA, pe g mpodaypagéc evog Network Processor.

0.1.1 Packet Classification

[Mo vor yropolue vo ayyi&ouue €va €0p0C AELTOLEYLMV BIXTOOU, ETUXEVIPWVOUICTE OTO
meoBAnua Tou Packet Classification, nou elvou plo and Tic mo cuyvég Asttoupyieg oe éva
olxtuo. Xe xdie maxéto Tou Butvou avTioTolyilovian CUYXEXPWEVES EVERYELES UE Bdom éva
obvoho xavovey. 'Etol, yia xdde moxéto yivetan pla avalAtnon oe évav mpoxadoplouévo
mivoxa amd xavoveg, mou Aéyeton classifier, xou xodopileton TeEAd xdmol evépyela o€ AUTO.
Yyedov xde moxéto oe éva dixtuo mepvdel and Packet Classification oe éva 1| nepiocdtepa
oot o mapdderypa, layer-2 (Sxdmnteg) xau layer-3 (Spopohoyntéc), xadode xou tadivo-
unTég ewixol oxomol omwg firewalls xou load balancers, tagivouolv éva moxéto xoog To
TEOWYO0V ATd TOV XEVIPIXO XEVTELXO UTOAOYLO TH) GTOV OLAXOULO TH| Lo TOU.

Trdpyouv didpopeg unneesieg dixtdou mou anartoLy Packet Classification, énwe routing,
routing of policy based, limiting rates, controlling access, locating virtual bandwidth,
balancing loads, providing differentiated qualities of services, and billing traffics [1] [2].
[Mo xdie moaxéto mou @ddver oe €va polTep, Tpénel va TpoodloploTel €dv Yo tpowdniel ¥ Yo
pihtpaptotel (firewall), Tol Yo to Tpowdfoet (Apoporoyntic), N xatnyopio uinpesioc tou Ya
mpénel voe MBel (QoS) # mdoo mpénel var ypewiel N petagopd tou (Xpéwon xuxhogopiog). To

x0pto onueio cUUPOENONE TWV TAUPATAVE EPUOUOYWY lvol To GTAdLO TNG TaEvouNnoNe, dNnAudY

13
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10 Packet Classification. Evog Spopohoyntic tavopel to moxéto yia vo anogacioet mov
Yo T0 mpowifioet xou xodopilel To QoS mou mpénel va AdBel. ‘Evog gopTiothc e€iooppdnnong
TagVOUEL TO TOXETO YLOL VOL TPOCOLOPIGEL TOV BLOXOULGTY| LoTO 0ToV 0Tolo TEETEL VoL TponmUniet.
Y1 ouvéyelwa, éva firewall talivouel to maxéto ye Bdon Tic molTixég ao@aieiog Tou Yl va
anogacioel edv Yo to "ptEelt" 1) oy, ue Bdom 1o chvoho xavovey ctov classifier. Emoyévoc,
to Packet Classification efvan plo amd tig mo onpavtinég SLadixacieg 6To oYeEBIoUO GUOXEVWY

duxtdou [3].

0.1.2  AAlydépuipor xou Aoeig otn BifAoypapia

To Packet Classification, anotekel to bottleneck moA\&v Aertoupyewdyv (filtering, QoS
handling xt\) xaddc 1 xivnon xaw ot egapuoyéc oe éva dixtuo avZdvovtor. Auth 1 evotnta
avallel Tic duoxohieg tou Packet Classification otnv npd&n xou mopoucidlel BlapopeTinég
TEOCEYYIOELC Yo TO TEOPBANuUa, Tou €youv TpoTadel UEypl THOPA.

Yuvidwe, 1 pon xodopileton péow evog ouyxexpyévou nediou atov header tou moxétou.
[N mopdderypa, o xadoplopde Tne porc otny onola teénel vo xododnyndel To maxéto unopel
va e€optdton and v Ty tne source IP xou tnv twwn tne destination IP ¥ cuyxexpyéveg
Tiég Tou port. AloopeTind, To Toxéto Yo umopolioe vo emhéZel pla por| and éva destination
prefix xou éva €éupog amd port values. Mepinéc @opéc, axodun xou o TOTog TewToxdAI oL Yo
umopoloe va yenotporonel yioo Ty emhoyy g pohc[3].

Or dLdpopec Moelg mou tpoteivovtar o to Packet Classification pnopoOv va a€iohoynioiv
e Bdon tov yedvo avalntnone tou lookup table, Toug népoug Tou cuGTHUNTOC TOL YENOLUO-
ToloVVTaL, xadNOS xaL ToV Yeovo eviuépwone (etoaywyh/dtaypapn) Tou Tivaxa xavovey. Tevi-
x4, ywetlovtan oe 3 peydheg xatnyopiec: 1) software-based, mou emxevip®voOvTUL XUEIWS
oty ahyopduxh tohumhoxdtnto g Tadvéunong, 2) hardware-based, mou emxeviphvo-
vtow ot yeron eedixevpgévou HW yio tnv avalAtnon, xou 3) hybrid, nou yenoiponowoly
€VOY GUVOUOHUO TWV TURATAVE).

Ou software-based \oeic eunintouv oe 3 xatnyopiec [1]: Boaoixée Souég dedo-
wévwyv, Geometry-based xa Heuristic. H mpdtn emxevipdvetor otov TpOT0 ovomo-
EAC TIONS %o ATOVAHEUCTC EVOS XAVOVOL GTOV TUVOXA XOVOVOVY Y ETOULOTIOLWVTS (Lol VEX SOUT
dedopévwy, N ontola cuVBEETAL PE Evay GUYXEXPLIEVO olyoprduo avalitnong. H debtepn Aovel
TO TEOPBANUA XATACKELALOVTOC (L0l YEWUETELXY) OVUTUEAC TAGT) TOU GE €VOV N-OLAGTATO Y WEO,
6mou To 1 elvon 0 aELIUOC TwY TEdiWY Tou Tivaxa xavovey. H tpltn xatnyopla Bertidver Tov
YWeo avalhtnong pe Bdon otatiotind otoyeio/potifo mou Beloxoviar oe mparypoTind moxéTa
1) oTov Tivaxa Xovovey, dnhadt, adlomolel yapaxTnelo Tixd xou douéc mou umopel va €youy oL
mparypotixol classifiers.

Ewdwd yia toug ahyodprduous yemuetplag xar Toug eupeTixolg alyopliuoug, Soxplvouue

TIc axdloudec mpooeyyioew [4]:

e Two-dimensional (Set-Pruning tries, Grid-of-Tries) eivor anoteheoyatixol oe Ledyn
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Teo¥EuaTog OleudivoEwY XaL EYOLY YAUUNAT) TOAUTAOXOTNTA YEOVOU OAAS DEV ETEXTE-

tvovton ebxoha o€ aval NTACELS TOAAGDY TEGIWY.

e Divide & Conquer (RFC, HSM [5], Cross-Producting, BV, ABV') cuvfidwg ent-
TUYYAVOLY LPMAY ToybTNTA, ARG pEcw LPNAoL Ypodvou mpoenelepyaciog xou UEYIANG

YWEWXNG TOAUTAOXOTNTOG YEWROTERNS TEPITTWONC.

e Decision Tree (HiCuts [2], HyperCuts, D-Cuts, ExpCuts, HyperSplit) éyouv Bek-
TiwoeL TV Tay 0TI avalATNONS XoL YPNOWOTOOLY EURETIXE O ToyEld Yior TN Uelwon
TWV OMUTACENY AMOVAXEUCNC UEYAANG UVAUNG, GAAL O ypdvog mpoenedepyaolaug eivou

ONUOVTIXA PUEYSAOC.

e Tuple space - Hash table (Tuple Space search, BSOL, FIS-tree) ¢youv amodott-
%6 YpOVO eVvuépwang, VPNAY yeovixy) TOAUTAOXOTNTA, 0ANS UTopel var e€apTdvToL omno
TVAIXES XATUXEPUATIONOD X0 VoL EYOUV UN-VIETEPUIVIOTIXG YpdVO OTiC avalTHOELS/evr-

UEPWOELS.

e Heuristics at bit time (D?BS) éyouv umhétepn amddoon xou enextooudTnTe oané
ta HiCuts xan HSM, enw@erolvton amd €va duvopind eupetixd partition tou cuvorou
xavovwy oe eninedo bit, ahhd €youv LPMAEC amAUTAOEC OTOV YOEO ATOVHAXEUONS Xou

OTOV YPOVO TEOETEEERYUTLOG.

Kadopd HW mpoceyyioec, n.y. TCAM xa Bitmap-Intersection [6] [7], umopolv vo
emtOyouv avalitnon 1 xOxhou pohoyol, duwe uéow trade-offs otov ydhpo arodrxeuong, to
XOOTOC XUk TNV XATAVAAWOT) EVEQYELOC.

Ye oyéon thpa pe Ty UPeLdiny) xatnyopio, mou cuvdudlel ahyopripoug xou HW vhornot-

NOELS, AVAPEEOLUE €8 GUVOTTIXG TIC EENAC AUCELS:

e Parallel Packet Classification (P2C) [6]: avalntd xéde nedlo evog xavdva ye mopdh-
Anho TeoTo, dnuovpynvtac "on-the-fly" avtiotolyion. Me 1o oyfuo BART, avt n
TROGEYYLON EMTLY YAVEL LPNAT TayOTNTOL THEVOUNONG, EYOVTOC OUME TO XOGTOG XOL TNV

ueydhn oy’ tng TCAM, xou tnv emnAéov ouunepiindn SRAM.

o BV-TCAM [8]: doywpilet Tnv to&vounon moxétemv Tohamhody tediny oto dvo. Xerr
oworotel yio tree-bitmap viomnoinomn tou olyopiduou Bit Vector yir v avalrtnon
Tou port mpoéheuomne xou Tpooptopol xat wia T"AM yio Ty avalATnon Twv UTOAOLTLY
medlowv tou header. H emtuylo tou ogetheton oty yenon TCAM uxeol uyeyédoug xou

OTOV GUVBUAOUO TNE UE Evay ahyoptduo oto SW.

o Ahyépipor DIRPE (Database Independent Range PreEncoding) xov MUD (Multi-
match Using Discriminators) [9]: autol ot odybptdpol Ypnothonolody o anoTeAecuo-
wxd ¢ TCAMs xou e€ahelpouv OPIGUEVES AO TIC OBUVOHIES TOUS YETOHLOTOLOVTOG
royiouxd. O DIRPE pewvel to worst-case expansion tou eDpoug TV XavOvmY, VG O

MUD emyepet va Beer moAlamhéc avtioTotyioelg yia éva xAeldl avalhtnong.
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e Field-Split parallel Bit Vector (FSBV) [10]: auth n mpooéyyion ywellet enione tny
TagvounoT moxéTwy Ue Bdor ta didpopa tedla Tou, Tapouola ye o BV-TCAM, oahhd
0 FSBV yenowonoel TCAMs yio tyv te€wéunon twv IP, CAM yuo tny to&véunon
Tou TEBlOU TOU TEMTOXOANOL, xaL Tov alybprduo bit-vector yio Tor uTtéroina Tedio ToU
header tou naxétou. H ulomnoinon mou napoucidleton oto [10] emtuyydvel peimon 4x

OTNY XATAVAAWOT eVEpyeloc oe ayéon ue To BV-TCAM.

o Apyextovikrj decision-tree o FPGA [11]: ewodyel yor apyrtextovixsy ta&vounong
naxétwy oto FPGA nou eqopudlel évav ahyopriuo Bdoet 6évopwy anopdoewy. Belti-
otomolel TN yeNomn NG UVANGS Xat emiTuY Y dvel amodoor 80Gbps throughput yia toxéta
eNdytotou peyédouc. Aoxyaopévo Ue ToAITAoxous xavéves (ue meplocdtepa and b

nediat), emtdyyave ndve and 40Gbps throughput.

Fevixd, 1 yerion CAM é€yet onuavtind xUXAWUUTIXG XO0TOC, UPNAT XUTAVIAWGT), SUGXOA(o
TPOCUEUOY TS € TOAAG €ldn ahyoplduwy xan younAd scalability. Ye avtideon, n Adon nou
mpotelveton 0T ouyxexpévn €peuva cuvoudlet SW xou HW components, anogelyovtag
xerion CAM.

0.1.3 HyperSplit

INa toug oxomolg tne epyaotag, xan €yoviag emhééel to mEdPBAnua tou Packet Classi-
fication, emAéyouye va ypnolonotioouue xou Vo BEATIOCOUUE Tov TOAL anodotixd Packet
Classification oAyoprduo HyperSplit.

O akydprduog autog etvan évag decision-tree ahyopriuog xon cUVBLALEL Ue amodoTixd TEOTO
Toug aryopituoug HSM xan HiCuts, mou eivon avtimpoowneutixol oTic 600 peYahOTERES XOTN-
vopieg Packet Classification aAyoplduwv. O akydprduog autdg ywelletou oe 800 otddlo. To
TEMTO GTABLO APOEE. TNV XATACKELT) EVOS BLAOLXOV GEVTEOL TOU BMULOVEYELTOL PE EEUTVO TEOTO
ue Bdomn tov doopévo mivaxa twv Packet Classification Rules. Auté to 8évtpo avtixatonteilel
To search space tou mpoBAfuatog xau yia xdde ewoepyouevo toxéto Vo yiveton pio avalnitnon
o€ oUTO, UE OXOTO TNV EVPECT TN EVEQYELNS OV AVTIOTOLYI(ETOL OTO CUYXEXPWIEVO TUXETO.
Avth n avalrtnon amotelel o To dedTERO GTASO TOL KAYOpiUUOU.

Emiéyovtag to tomxd BeltioTonomuévo medio oe xdle oTddlo TG ovaBEOUnS Yol TV
amocUvieon Tou Yweou Tou TeoflAfuatog, xou epapuolovtag weighted segment-balanced
CTEATNYIXT, 0 AAYOELIUOG ETUTUY YAVEL IO amoTEAEoHATIXT avalTnoT xou LPnAdTeEn anddoor
6€ 6POUG ATATOVUEVNG UVAUNGS xou Yeovou. e oUyxetor ue to HSM xouw HiCuts, o HyperSplit
Behtudver TV mpdoPaon ot uviun xotd 70% xon to yebévo mpoenelepyooiog xatd 10-100x,
EVO) ETULTUYYAVEL UEYOADTERT AmOBOOT).

‘Eyovrtog éva mapdderyua Packet Classification oe évav 2D nivaxo xavovewy, ta oyfuato 1
xat 2 Belyvouy Ta 6EVTEA oL €YoLY XaTaoxeLaoTel and Toug alyopiduove HSM xou HiCuts
oe oUyxpton pe autd tou odyoplduou HyperSplit [12]. ITo avelutixée mAnpogopies oyetixd
HE TNV ecwTepxr Lhomoinom Tou akyopiduouv HyperSplit undpyouv oo [12].
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Decompasiion on X Decomposifon on Y

Lo

V=00 q <00
Rule | Priority Field-X Field-Y %
o
R1 1 [00.01]  [00.00] o1 1o &
R2 2 [00.01]  [00.11] ! ye
R3 3 [10.10]  [00.11] ) S
R4 4 [1L11]  [11.11] R - ks
i - - /
RS 5 1L11] [00.11 P 2 - ;
Lo e elTol el - lelsla]mk - ®
e -7 Rule list N e
RT | R3 | RS | s producing table -7

Yyhuo 1t IMopadetypota Rule Table, HSM search tree, HiCuts search tree

Yy RI

Rule list
Yyfua 2: HyperSplit Search tree

0.1.4 RISC-V xau Rocket Chip

O RISC-V eivon évac "software encéepyaothc" ye ehediepn xou avolytol xwdwa [SA tou
avartuydnxe oto UC Berkeley. To yeyovog 6ti elvon avolytold x@oixo emiteénel 0 yenon
TOU TO00 GE axadNUoix6 660 xou o€ Plounyovixd miaicto. Tn Swyelpnon Tou €yel To RISC-V
Foundation xou mpoopileton va yiver tpbdtuno 6o yopeo tne Bropnyaviog [13].

‘Eyxet oyediaotel yior vo elvon amhog xon eEapeTnd EMEXTACLUOS X0 ATOPEVYEL TNV KUTEQ-
BolxY| apyLTEXTOVIXHY Lot EVOL GUYXEXQWEVO GTUN Uxpodpyttextovixhc (m.y. mi-crocoded,
in-order, decoupled, out-of-order) 1 teyvoroyio uhonoinong (m.y. full-custom, ASIC, FPGA),
T0 0To{0 EMTEENEL TNV amOTEAEOUATIXY EQaPUOYY| OE OTodNTOTE amd auTd[14].

H RISC-V ISA anoteleltan and éva Pooxd integer instruction set (to omolo mpémel vo
undpyel o€ xdde LIoToiNoY TOU) X DLAPOPES TEOUPETIXES ETEXTAOEIC O aUTd 10 Pooind
ISA. To Boowxo integer ISA elvon moA) mapéuoto ye autd Twv Tpdtwy encéepyastwy RISC,
exto¢ omo6 tar branch delay slots xouw v UTOGTARIEN VLol TEOMEPETIXES HWOLXOTOLACELS EVTO-
AV petoBAntod prxouc. H Bdon autol tou instruction set meplopileton mpooextind oe éva
EAAYLOTO GUVONO EVIOA®Y, ETOEXELC OUWS Yia TNy dnulovpla evog ebhoyou target yio compil-
ers, assemblers, linkers xat operating systems (ue emnAéov privileged operations), xou étou

mopéyet wo Bohxry ISA xaw to amopaitnto software toolchain cav "oxehetd" ylpw and tov
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omolo UnopolV Vo XaTaoXEVUoTOUY ENEEEPYUO TES EWOIXOU oX0ToU[14].

To Boowd ovvolo eviohdv axepaiwy eivar ta RV32I xow RV64I (ovopdlovtan "I"), to
omola TopEyouy Yweoug dlevdivoewy 32-bit 1| 64-bit avtioTouya, xau mepEyouy apriunTtinég
eVIOAES axepalwy, loads xou stores axepduwv, xou control-flow evtoréc. Kde Paoxd integer
ISA ymopet va emextadel ye plo ¥ meplocdTERES amd TIC TUTIIXEC TTPOUPETIXES EMEXTACELS TOU
ouvolou eviohv mou opilovton and to RISCV Foundation ("M", "A", "F'", "D" "C").

To Booixd RV32I oet evioh®v €yel 4 Baowxd instruction formats, avdloyo pe to €idn twv

arguments xou Tov aptiud twv source xou destination registers, 6mwe gofvetar oto oyfua 3.

31 25 24 20 19 15 14 12 11 76 0
| funet? | rs2 | rsl | funct3 | rd | opcode |R.—t.ype
| imm|[11:0] | sl | funct3 | rd | opcode |I-type
| imm][11:5] | rs2 | rsl | funct3 | imm|[4:0] | opcode S-type
| imm[31:12] | rd | opcode | U-type

Yyfua 3: RISC-V base instruction formats.

O ocuvduaoudc tou opcode xou Tou funct tng evioAc unopolyv vo TeplyedPouy TV Ael-
Toupyio Tng povadxd. To oyrua 4 delyver tov Baoixd opcode ydptn yio to PT [14]. Baowd
opcodes mou €youv set ta 3 1| neptocdTEPY amd Tor lower bits elvon reserved yio evtolég ue
uéyedoc peyohltepo twv 32 bits. Baouxd opcodes mou gaivovtar w¢ custom-0 xou custom-1
umopoly va yenowonomdolv and custom instruction-set extensions (to custom-0 Yo ypnot-

pomowndel yior to dixd pac extension).

inst[4:2 000 001 010 011 100 101 110 111

inst[6:5 (> 32b)
00| LOAD LOAD-FP | custom-0| MISC-MEM | OP-IMM | AUIPC | OP-IMM-32 48b
01 | STORE | STORE-FP | custom-1 AMO op LUI OP-32 64b
10| MADD MSUB NMSUB | NMADD OP-FP | reserved | custom-2/rvi28 48b
11 | BRANCH JALR reserved JAL SYSTEM | reserved | custom-3/rvl128 | = 80b

YyAua 4: RISC-V base opcode map, inst[1:0]=11.

O Rocket etvar évog 5-stage in-order scalar muprvoc mou ulornotel ta RV32G xou RV64G
ISA. Awdéter MMU nou unoctneiler page-based ewovixi uvAun, uioe non-blocking data
cache xou dienopy| yia branch prediction. To branch prediction etvor topopetponoioo xat
Topéyeton and évav branch target buffer (BTB), éva branch history table (BHT) xat pa
otoifo dreudivoewy emtotpogrc (return address stack - RAS). O Rocket vrootnpile eniong
Ta machine, supervisor, xou user privilege modes tou RISC-V. Trdpyouv eniong xdmoleg
TORAUETEOL, CUUTERLAUBOVOUEVNS TNE TROUEETIXY S UTOC THRLENG 0pLOUEVWY EMEXTAoEWY ISA
(M, A, F, D), o aprdudc twv floating-point pipeline stages xou to uey€9n tne cache xou tou
TLB [13]. O Rocket unopel enione vo dewpniel we pio BBAod xn otoyelwy enclepyaotdy.
Apxetéc Aeltoupyinéc Yovadeg mou €youv apyxd oyedtaoTel Yo Tov Rocket emavayenoiuo-

ToloLVTAL amd dAAo OyEBLY, OTWS Asttoupyixéc povdoee, caches, TLBs, page table walker,



19

xou 1 vhomoinon e privileged opyttextovixic (.., To control xou status register file). To

pipeline tou Rocket epgaviCetar oto oyfua 5

PC EX MEM  WB
i ITLB m RF [DTLB ] . To RoCC
Int.EX Commit |
Inst | | Accelerat
Gen D |Access | |Deggde Access ccelerator

D FP.RF D FP.EX1 D FP.EX2 D FP.EX3

Yyhua 5: To Rocket Core Pipeline.

To Rocket Chip elvon wa yevvhtpia avolytol xoduxa SoC mou avantiydnxe oto UC
Berkeley xou Bacileton oto RISC-V ISA. Avtl va elvon éva povadixd instance evog SoC
design, To Rocket Chip etvor piar yevvitplor oyedlaouol, txav va tapdyel ToAAd designs amd
uloe wévo high-level "oyedotnd) mnyR". H extetopévn mapouetponoinoy tou 1o xohotd
EVEMXTO, ETUTPENOVTOC TNV EUXOAT| TEOCUQUOYT| TOU OE TO CUYXEXPIIEVES EQuoUoYES. Me tny
ohharyny oaxdpa xou evog wévo configuration, €vog yprotne unopel vo dnuovpynoer SoCs ue
range eqopuoyoyv andé embedded microcontrollers péypt xou multi-core server chips [13].

Téhog, To Rocket Chip pog 6ivel tn duvatdTnTa amouoxpuopévng emixotvoviog evog RISC-
V Rocket Core pe évav 1} teplocdtepoug rocket custom co-enelepyactéc yéow tou Rocket
Custom Co-processor Interface (RoCC). To RoCC interface 8éyeton co-processor eviorég
Tou OnutovpyolvTal ané committed instructions tou Rocket Core. Ou eviohéc autég mepl-
Aofdvouv to instruction word xou Ti¢ TWéS ot €m¢ xou Vo integer registers xou pumopel vo
Yedouv xau évav integer register we response [13]. H oUvdeon pe 1o RoCC emtpénet eniong
GTOV GUVOESEUEVO co-processor va potpdleton tnyv cache tou Rocket Core xou tov mivaxa oe-
MOV TOU, TOEEYEL TN BUVATOTNTO GTOV CO-Processor Vo Saxdpet Tov Tupval (Uéow interrupt)
xa axopa vor ouvoedel ue to e€wTepxd cUCTNUA UVAUNG aneudeiog pEow Tng BlachVEEoTC

TileLink [13]. M amhomomuévn wopen tou interface qaivetar oto oyfua 6 [15].

RISC-V Rocket | [ RoCC )
Interface
cmd el
. »~
Processing.g resp
core |« busy
< interrupt Accelerator
mem.req
g
L1 cache ———
Ll
L S

Eyfuo 6: Amhovotevpévn poppn tou RoCC interface.

Ievixd, ou 32-bit RoCC evioléc xdvouy extend to RISC-V ISA xau €youv 11 yoppt| mou
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(palveton 0TO oYU 7.

31 25 24 20 19 15 14 13 12 11 76 0
l funct? | rs2 [ rsl ‘ xd ‘ xsl \ xs2 I rd ‘ opcode
7 5 5 1 1 1 5 7

Yyfuo 70 To RoCC instruction encoding.

To oyfua 8 delyvel éva instance tou Rocket Chip mou amoteheitan amd xowoig sub-
components (core generator, cache generator, RoCC-compatible coprocessor generator, tile

generator, tile link generator and peripherals) [13].

Tilel Tile2
BOOM RoCC Rocket
L11$ L11$
Accel. ROCC
a Accel.
~—1| | FPU L1D$ FPU L1D$ —\
11 A
4 A A | Core
L1toL2 Network
3 I A4 B | Cache
|
y ! L C | RoCC
R Leisiesd
P L2$ Bank _\ D Tlle
'L * ¢ E |TleLink
L2tolO Network F | Periph.
ﬂleLipk/AXM 5, —
Bridge
AXIl4 Crossbar
DRAM Jigh | | AHB & APB
Controller pee Peripherals
10 Device

Yyfua 8: Rocket Chip SoC instance example.
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0.2 To npotewduevo cLoTNUA

0.2.1 E&wtepwxy HW/SW enioxdénnom

O Baowdg 6T0Y0¢ TOU GUOTAUATOC Uog elvon TEAXE 1) BedTiwon tne anddoong tou Packet
Classification. Ago0 €youue emhé€et Tov ahyderduo tou HyperSplit yia to anoteréoyato otny
EPELVA pag, TO TEWTO Wog Bripa elvon vo Bpolue To critical part Tou akyoptduou, n extéleon
Tou omolou o€ xdmnotov hardware accelerator Yo €otve onuovtixd Bertinon otny anddoor
Tou cuoTAUaTOC. ‘Onwg €xel avageplel To TpLy, o alyopriuog yweileton o 600 GTddLY, GTO
ytlowo tou 6évtpou xar oTny avalrtnon oe auTtd. Av xou To ¥ Tloyo Tou Bévipou e BAoT Toug
XAVOVES TOL OLxTOOU efvan To BUGXOAT xou TOAD To ypovofdpa dadixactia, yivetar TOA) To
omdvia amd TNy avalhtnon o autd, 1 onolo cuufalvel yia xdde moxéTo Tou duxtvou. Omndte
o accelerator mou Yo dnuiovpyooupe Yo extedel To 0TEdI0 TN avalNTNong Tou alyoplduou
HyperSplit, £yovtag goptwoet 1dn 10 8EVTpo MoU ExEl dNULOLEYHOEL O ahYOEWUOC 0T UVAUN
TOL.

‘Etot, o accelerator Yo Aopfdver Eva moxéto”, To onolo VYo elvor 0TNY TEayUATIXOTTA EVOC
cuvduaouog Tne dievuvorg source IP, tne destination IP, tou source port, Tou destination
port xot Tou ool TEMTOXOAAOL, Yo xdvel TNV avalHTNoT| Tou 6To BEVTEO xat Yo EMOTEEPEL
N Véomn tou anoteréopatoc. To anotéhecua Vo elvar SeixTng TwV TEMXOV XAVOVLY GTOUC
omoloug avixeL To TEEYOV TOXETO.

Ta oplopata avalhtnong unopody vo yweécouy o dLo xotaywentés 64-bit, xou we ex
T00t0UL Yo umopoloay va yenoonomdolv we opiopata ot pa véo evtohfy RoCC (arnd mhevpdc
Aoylopxo), xadde xot va oTaholy 6ToV accelerator ypnolomodvTag T 000 xovdhio 64-bit
tou RoCC interface ( ond mheupds vhxol). Koatd cuvéneia, to anotéheopa Yo emotpopel
GTOV XVPLO TUPTVAL YPNOULOTOLWVTAS TO XUVIAL eToTEOPNG 64-bit.

H yevinr| dudtaln tou cuothuatog @aiveton 6To oy 9.

Ethernet
Core Classification Accelerator
= RoCC inst > Memory
RS1[63:0] g
RISC-V § RS263:0] E
RVG4IAC + e N B
5 & E —‘8 Search ) [ Search--——
o = RD[63:0] : 2 Logic -Space Data—
=~ | ) | © 8l .. Structure.--
& adde[31:0] [B| O
(@) wgle:o] | | Tt
11 é wpe20] | | e
D-Cache data[63:0] \f\
cmd[3:0]

Eyfua 9: Ipotevouevn apyitextoviny| tou high-level cuotfuatog
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0.2.2 Customization Touv RISC-V

e qUTAY TNV EVOTNTA TEPLYPAPOUUE TS YENOWOTOLUUE To Stodéotua epyaheior Aoylopl-
%00 XL UAXOU YLol TNV TROCUQUOYT, XATAOXELT xat exTéheon Tou muphvar RISC-V xau tou
Rocket Chip Generator.

X1y npdln, To cLCTNUA Yac GUVOUALEL OAa To G ToLyElo Xat TS PEVOBOUE IOV TERLYEAPTT-
X0V TTRONYOLPEVWLE £PEUOLOVTIC TIS AXOAOVVES AMOPACELS OYEBLICUOY, TEOC ULdl EVOWUATW-

HEVN xa YouNnAoU xOGTOUS AUon:

o An6 v owoyéveio RISC-V, emidéyoupe to unoctvoro eviorddyy RVG4IAC, xadoe ot
o ToYEVUEVES EQupUOYES (BLoryelpton xou enelepyaoio ToxéTwy) dev amantoly TOAITAOXES
Aertovpyieg (tohhamhaotoo téc/Blanpéaets/ yerptouds aptdudy xvntrc UTodo TOAAS) Xat
enopévwe éva omho integer hardware pnopel vo yenotwomoiniel ywpic amdieio duvorto-

THTWY.

o Awpoppivoupe ta ueyédn g cache tou RISC-V (yio tpocoyoiwon Aoylouxol xou
vAxoU) oc e€hc: L1 D-Cache pe 256-sets, 4-ways xaw 64-Byte blocks (cOvoho 64KB)
xow L1 I-Cache pe 64-sets, 4-ways xou 64-Byte blocks (ouvolxd 16 KB). Eniéyoupe
OYETXS PEYSAA PEYEDT) TPOCWEWAG UVAUNG YL EVOL EVOWUATLPEVO oloTtnua. O Adyog
elvon 611 1 amodoor RISC-V Ha etvon 1 Booinr| anddoor), ye tnv onola Yo cuyxpivouue
apYOTERA TNV EMTAYUVOT| Yo, ETol, emAEYOUUE TEQITTOOE avHOTATOU 0plou YLo TOV

ENEYYO NS ACPAAELAS TOU TEAXOD oAy OVToL Amdd00TC.

e Ilpoo¥étouye évav véo oploud evioric tonov R oto RISC-V ISA (Snhady| évav véo
opcode), npocdétovtdc tov eniong otov compiler xou Tov assembler yio vor uTop€couUEe

Vo Tov yenotponotioouue otov C xdoixa.

o Xpnowornothooupe to axohovda xavdita tou RoCC Inteface: to xavdit mou Yo peto-
owaoet Ty Bl Ty RoCC evtolr, 0o xavdha yio Tic Tég v RS1 xou RS2, to xovdt

v TNV T emoteognc Tou RD xau to ofjuata eAéyyou valid xou ready.

o ‘Oha o mopamdive Yo meptypapolyv ot yhwooa Chisel tou Rocket Chip Generator, 7

omota teAxd Yo “yevvroel’ Tov synthesizable verilog xoixa Tou cuoTAuaTOC.

Xpnowonowolue 1o fpga-zyng git repository [16], To onolo neptéyel Gha doa amontodvta
yta o port evoc Rocket Chip oe éva zynq fpga. To zyng-fpga repository nepiéyel to Rocket
Chip Generator git submodule [17], To onolo pe ) oepd tou nepéyel to RISC-V toolchain
git submodule [18]. Autd eivar ta 800 Boaoixd repositories mov amoutel 1 avdntuir poc. To
oo 10 delyver v opydvworn twv Boacixwy repos mou yenoiwworowlvtal. To oyrua ;3
OelyveL T poY| TV EVEPYELWY Woc Yior TN dnwoupyia xou extéleon tou HyperSplit binary (ta
XOUTL U Eva oo TEPL BlmA TOUg avapépovTal oTa onueio Tou €xouv Yivel Bxég pag oahhoryEc).

Oa axolouidnioet uio top-down meplypapr) TV BUdtenv avaTTLEAS HoC.
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opcodes

chisel3 )

riscv-tools
C Rocket-chip gnu-toolchain

proxy kernel

main scala source )

verilator )

isa-sim (spike)

N

tests
Yyfua 10: Opydvwon tou Rocket Chip Repository
Software Side Hardware Side
* — ( Compiler - Assembler ) - B
(ModifyToolchain ) (BuildeSC-VToo]chain IP (Configurec;zieselscurCED ( Deve::)::x:lrsvlit )

= (__Spike ISA Simulator

*
Develop HyperSlet) . m
Compile C code Build RocketChip
ﬂ% Ly Generator

—
Generate RISC-V Binary Generate System’s
- 77 Verilog

Development

Testing o »(Run on Spike 5imu|alo|) (Run on verilator ((ycle)

accurate simulator)

Yyua 11: H mpotewépevn HW/SW avdntugn xou testing tou ovotuatog (flow chart). T
XOUTLY UE aoTERdXL apopolv Ta onueia (customization, design & coding) tne avdntulhc pog .
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0.2.2.1 IIAevpd Tou Software

To RISC-V toolchain git repository nepthopfdver dha tar facixd cuoTatixd Tou yeeldlo-

vt Yo Ty apaywyr) evog RISC-V binary. Autd yivovton highlight oto oyrua 12.

riscv-tools
( Rocket-chip gnu-toolchain )

opcodes )

chisel3 )

proxy kernel

main scala source )

isa-sim (spike)

verilator )

Yyfuo 12: Yogptwope peAATED TUPETS

tests

YuvonTind, amd TNV TAeupd Tou software yivovton tor e€¥¢ Brjuorta:

1. Kdvoupe clone 6ho 1o git repository xou emXevipmVOUACTE apyxd oTo riscv-tools.

Kévouye configure xou build tov cross-compiler, tov proxy kernel xou tov spike simulator
xalL, Aol xdvoupe cross-compile o unit tests, ta Tpéyoupe otov spike ylo vo teatdpoupe

TOV UMY OAVICUO GOV ONOTNTAL.

. Kévoupe clone tov HyperSplit C code [19], tov npooiétouye ota riscv-tests xo,

ool Tov xdvoupe cross-compile, Tov Tpéyouue otov spike yia vo e€dyoupe plo Bdom
e anddoothic tou. (To HyperSplit repository mepthopfdver and pévo tou o xowd

ClassBench classification benchmarks yio va teotopiotel o ahybpripoc [20])

. Aol €youue xdvel Ta Topandve Unopolue oe autéd To Briva va tapéufouue oto RISC-V

toolchain. Ytéyoq pag, and tnv mAeupd Tou software, elvon var dnuLouEYooULPE plor VEa
RISC-V evtolf} xou var yenowonolfjcoupe auth otn 9éon tou binary search ctov C
%o Tou HyperSplit. Ipoxtind, ewodyouue pioa véa RoCC-Type evtorn tnv onola

ovopdletar hypersplit_search xou @aiveton mopaxdte.

31 25 24 20 19 15 14 13 12 11 76 0
funct7 | rs2 rsl | xd ‘ xsl | xs2 ‘ rd ‘ opcode ‘
7 5 5 1 1 1 5 7
1 1 1 0x0b

Enlong, extoc and tov oploud g VEUG EVIOANC, ELOAYOUUE Xou Ulal TEPLYPUpT) TNG OTOV
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RISC-V cross-compiler, tov assembler xou tov debugger. Téloc, eiodyouye ulo soft-
ware Teplypar) Tng Aertovpylac tne otov Spike simulator yio vo yrmogécoupe va Tov

YENOWOTOWCOUNE Xal VoL EXTEAEGOUUE To VEo binary.

‘Ohot Ut pag @Tévouy Yéyet xou To orueio mou uropolue va Teéouue otov Spike To RISC-
V extehéowo ye Ty véa pog evtohr. Kodog ouwe o Spike xdver "software simulation", dniadn
disassambly tou binary xou pétenon twv eviok®yv, utohoy(lel To yedvo pécw Tou apLiuol
QUTOY TV EVTIOA®DY ToL €xouy tpoxlel, apol atov RISC-V xdle evtohr malpvel évav xixho
EOAOYI00. LNV MEQITTWOT HAS OUMC AUTO BV Elvor apxetd yiatl 1 EVIOAT) YaC UaC THEL O

évav RoCC accelerator xou dev yiveton va dlapxel povo évay xUxho pohoytoL.

0.2.3 IIhevpd tou hardware

Me Bdon tnv mponyoluevn evotnta, €xouue pio Ao amdd0oNe TOU AVAVEWUEVOL dAYO-
elduou pag otov Spike, 6uwg pe ™y véa Yog eVTOAR| Vo “xooTilel’ uovo évay xOxAo polo-
ywoU. Ilpénel, emoyévwe, vo dnulovpyfoouue Tov mpaypatixd hardware accelerator xou vo

HETEHOOUUE THoO Yedvo o mdpel 1 avalrtnon tou xdde benchmark ce autdv. To yéern tou

opcodes )

proxy kernel

git repository mou agopolv to hardware gaivovton oto oyrfua 13.

chisel3 )

riscv-tools
C Rocket-chip gnu-toolchain

main scala source )

verilator )

Eyfua 13: Pocxet fiin Penoottopd’c Hopdwape pehated mapte

isa-sim (spike)

tests

S

Y16y oc yag ebvon, apol emhhéZoupe To fpga/board mou Yo yenoonocoupe, vo napdou-
ue T verilog Tou oAxol cucTAuatog pe Bdor o Briwota Tou 11, va tpocdécouue oe auTH
v hardware neprypagy| Tou accelerator poag xou vo Bydhoude tar TEAXS MU CUUTERACUATA

OYETIXA YE:
1. 1 yéylotn ouyvoTnTa POAOYLOU Tou UTopel Vo TdoeL To TeEAxd design

2. Tov TEAO6 apliud TV xOxAwY poAoYloU Tou aroutolvTon yio To HyperSplit search otov

accelerator poc

3. ta fpga resources tou ohxol design
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Yy opyn e€epeuvoipe tov chisel x@oixa tou Rocket Chip xat tov Siopoppdvouue €Tol
wote vo emAélouye to configurations tou RISC-V nou 9éhoupe. Av napdZouue tnyv verilog
autol tou cucTAuatog xar teé€ouue ta HyperSplit benchmarks pe tov Verilator (cycle ac-
curate simulator tou ypnowonotel Tnv topaybuev verilog Tou cuoTAuaToC), emBeBotdvoupe
XAToEY S TI UETENOEIS TNS Baocixr|c anddoong tou alyopiduou Tmou mhpoue xou Ye Tov Spike.

Yav devtepo Bripa, oArdlouue Alyo To configuration tou cuCTAUATOC ETOL WGTE VoL GUV-
oéetan ye RoCC-type accelerator. Xtov verilog x@owa tou accelerator apyuxd eiodyouue
évary dummy accelerator ye oxondé vo petpricouye 1o latency mou ewodyel to RoCC intreface,
onhad mécoug xOxAhoug pohoylol yeeldleTtan yia Vo peTapepdoly Tor oplopata TNG EVIOANG
oTov accelerator xat mécoug Yl Vo emoTpapel To anotéheoua. Ané Ta tests mpoxintel OTL TO
latency auté ot ye 5 xO®AoLg pohoyiol. O TEOTOC ToU YENOWOTO|CUUE QolveTal

XL oTo oy 14.

Create C program with simple ad Create C program with our new
|nstruct|on(s) RoCC |nstruct|on(s)
Compile C program with RISC-V
cross-compiler
( Run on verilator )

( Measure clock cycles )
Galculate RoCC latency clock cycI%

Yyfuo 14: Testing method of measuring RoCC interface latency.

To tekevtaio Bripa ot oyedlooy| pag etvar 1 avdmtuln Tou xuxhoupatog tou HyperSplit
accelerator, €10l MOTE oV UETEACOUUE Xou TN OIXT] TOU AmOBOCT %o GUVOULCOUUE OAaL To
otouyelo pall, Yo €youue plo oAy edva TG amddooTG TOU GUOTAUATOC.

Ta xOpla oTotyela mou yeewdleton o accelerator pog etvou:

o T wvnuwr tou HyperSplit tree. Eyovtag goptdicer ohdxineo o dévipo avalitnong
HyperSplit otov accelerator petd t ¢don tou building Vo yac e€oixovourioel 6Ao tov
YEOVO oL amotTe(ToL YLl TNV TEOCPocT oTn VAN xou To cache misses. Auti| 1 emhoyn

oyedlaopo elvar amd LoV TNE Evag TERAoTIOg TapdyovTag BeATiwong Tng anddoong.

e 'Evoc comparator component. Xe xde otddlo tng duadixrc avaltnong, 1 eloodog

npénel va ouyxeldel e TNV T Tou TEEYoVTog BEVTPOU, TROXEWEVOL Vo XOPIGTEL O
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enouevog xoufBog ot dadacio avaltnong.

o 1 HyperSplit Aoyixh avalrtnong. Xeewalouaote évo Aoyind xOxAnua tou Yo uno-
el v e€arydryel To amapaitnTo HEPOC TNE XEPAAIDBAC ELGODOU Ko VoL EAEYYEL TIC OUVOETELS

xalL Tov cuyyYpovioud tou accelerator.

H eioodoc tou emtayuvty ebvon pio d-tuple mou meprypdepetl to naxéto, m.y. {srclP, dstIP,
stcPORT, dstPORT, protocol}. Kdle xéufog dévtpou meptéyel yior Ty xatwgiiou T xou
Vv avtiotolyn didotoon d tne TAelddoc (oTny onolo avapEpEToL Xl TPETEL Vo oLYXEIVEL e
™V d-oTh T e €Lo6dou).

‘Etot, dnuoupyoiye éva otoyeio ROM otouyeio (ue 380K entries), xdde plo ex tv onolwy

Yo mepLEyEL:

1. v tpéyouca T tne didotaong d;, Tou Teéyovtog xopufou (nedio 5-bit otny nepintwor

poc)

2. v tpéyovoa T T, tou threshold tou tpéyovtoc xéuPou (nedio 32-bit oty nepintwon

poc)

3. v deviuvon tou aplotepol Tawdlol oo dévtpo A, (nedio 19-bit oty meplntwot pag).

H 8iedduvon tou 8edlod mawdtot Yo ebvan otn Sieduvorn A, + 1.

Ernlong, dnuiovpyolue évav 32-bit comparator component tou Yo eivon urteduvo Yo
0 oUyxEoN TNE d-OTAC TWNE TNE EL0600L xan Tng TWhAC 1), oe xde otddlo Tng dadxasiog
avalATnong.

To npécieta PBondnuind otoyelo eivon évag dtol moAumAExtng, uncbhduvog yio TNV
emhoyn) TS TS d-0ThHC TAELABUS ELGOB0L %ot TNV TEOMUNGY| TOU 6TO XOUAWUL CUYXELONS XAl
éva 19-bit adder, ureduvo yia ) dnpovpyio Tng dievuvon oe xdie oTddlo, AauPdvovTag
UTOYT TO AMOTEAEGUA TOU GUYXELTH).

To modular oynuatixé didypopua Tou accelerator gatveton oto oyfua 15.

‘d-tuple input

T 32bit
+ Memory I .

Comparator
{ An
19
Cin

Eyfuo 150 Mynuatind dudypoppa tou HyperSplit Search accelerator

address
register
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To mapandvew elvon 1o Baocixd wixhwua tou accelerator. To xOxhwua autd emOEYETML

OLdpopec Pehtinoele, Tic omoleg eqopuolovue BrAua-Bruc xou eivon ol eEAC:

e Optimization 1: Pipelining & Packet Coalescing : Iopatnpedvtog To xOxAnUA TOU
accelerator ypryopa punopolue vo xatardBouue 6Tl undpyouy idle xxhot, yiotl o xdie
component TeQWEVEL TO AMOTEAECHA TOU TponyoLuevou. 'Etot, unopolue vo oflomol-
AoOLUE TNV TEYVXN Tou pipelining, Tpogodotwvtag Tov accelerator ye 3 moxéto poll,
€10l OoTE xAe Eva amd auTA Vo BEloXETAL OE BLUPOPETIXG GTABIO TOU XUXAWDUATOS GE

xade xOxho. To avavewpévo xOxhwpa golvetar oto oyfua 16.

input packets loop

|d—_tuple inputl

32bit
Comparator

address
register

19

Eyfua 16: Tpotevdpevo oynuatind Sudypauuo tou HyperSplit Search accelerator yia I1=3

e Optimization 2: Eztra parallelization using Dual Data-path Mia Seitepr 1d€a etvou
vor agtontotficoupe T duvatotnta T wviune ROM yio dual-porting. Autéd onuaiver 6Tt
UTOPOUPE VO XAVOUUE access 000 VECEIC UVAUNG TAUTOYEOVA, Xt ETOL To TOXETA TOU

enelepydleton TOUTOYPOVA TO XUXAWUA Yivovton and 3, 6.

e Optimization 3: Continuous stream processing without 10 stalls O yetprioeig pag yéypet
oawTtéd 10 oTddlo TepL ofdvouy xa to overhead twv 5 xUxhwv pohoylol mou npocdETel
yia xde evtohry RoCC to RoCC interface. Yav tpltn Behtiotonoinon oxegptoyoaote
TNV METATEOTY) TWV EVIOAGY Uag Tpog Tov accelerator oe non-blocking evtoiég, xou
v cloaywyn evog interrupt handler mou Yo ewdonoiel tov enelepyacty| 6Tay xdmolog
aptdUOC amOTEAEGUATWY elvo £TOWOG Xt Vot OTEAVEL To ATOTEAEGUATA UEGKL EVOC output

buffer. Me autév tov 1pémo Yo anogiyouye tehelwe 1o RoCC interface latency.
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0.3 ATROTEAECUATA ATODOCTG KO JIVUTERACUATA

MeTd and 81dpopeC TEOGOUOIMTELS ol BEATIGTOTOACELS GTO XUxAhwa Tou accelerator xau

e dedopéva Tar e€ng:

e yerion tou Vivado tne Xilinx 1600 yia 1 oyedlaon xou Tig HETPNOELS TOU XUXADUATOS
Tou accelerator, 660 xou yior TNV ELCAYWYT XOL TIC HETENOELS TNG Toparyouevng Verilog

TOU UTOAOLTIOU GUGTHUATOS

e cmhoyn Tou Tcku060-ffval156-3-e product part tng owoyévewe Kintex Ultra-

Scale.
UETEAUE Tar €G!

e 10 clUotnua tou RISC-V ywpeic tov accelerator oto mapamdvey FPGA metuyaiver cu-

xvotnta ion pwe 143MHz

e 10 TEAO xOxAwua Tou accelerator oto (lo FPGA metuyaiver ouyvotnta lon pe
227MHz

e 10 cVoTnua cuvohxd yenowornotel to 5.7% twv LUTs tou FPGA, 10 1.4% twv FFs,
10 53.2% twv BRAMs xau 0% DSPs

® 0 uéoog ypovog eviéheons Twv benchmarks oto clotnua ye Tov accelerator etvon 113

popég xahOTEPOg amd Tov avticToryo tng extéieong otov RISC-V ywpelc Tov accelerator
Ta cuunepdoyota TOU TEOXUTTOLY Elval:

o civon eQLTO OEVAPLO aPYITEXTOVIXAC Yot network processing o cuvbuacuog tou RISC-V

ue hardware accelerators 0ol oxonol

e 0 RISC-V anotekel moA) oAt epeuvniny| emhoyn o nelpduata oc hardware, €yovrtog

open-source ISA xodcc xou epyoheio yior oyedlaon xow vhomoinon

® 1) TPOTEWOUEYY aEYITEXTOVIXT| UTtopel va yenowonomdel oe poltepe uéypet xou 10Gbps.
Mrnogel va emteuydel axoun yeyohltepn emtdyuvon av to xUxhwua vioroinel o

ASIC.
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Chapter 1

Introduction

1.1 Network processors, RISC-V and FPGAs

Modern telecommunications and the advent of 5G technologies rely on specialized
network processors to meet the increasing demands for throughput and latency optimiza-
tion. The routers are required to support a wide variety of network applications and
forward packets with ever higher efficiency, both in terms of speed and power. The latter
becomes paramount in edge and IOT setups, where processing is additionally constrained
by energy availability. To this end, the research community focuses on designing novel HW
architectures to improve on the performance of the most critical network functions, such as
packet filtering, access control, quality of service differentiation & load balancing, policy
routing, accounting & billing, traffic rate limiting, traffic shaping and MPLS switching.

When considering general purpose HW, the RISC-V from UC Berkeley [14] is a free and
open ISA, gaining ground with a multitude of academic and commercial uses. It enables
SW development via free tools for compilation and simulation. Additionally, it allows HW
developers to modify the ISA and/or implement only a subset of the CPU functionality,
e.g., to omit costly instructions when they are irrelevant to an application field.

A RISC-V CPU can be placed as a soft-core in an FPGA[21] chip, next to any other HDL
design. Thus, fine-tuning a RISC-V core for network processing and implementing HW /SW
architectures on FPGA allows for rapid prototyping bespoke solutions with relatively limited
development costs, i.e., much lower than designing custom ASIC or employing proprietary
ISA tools/chips. Moreover, it facilitates exploration/research at architecture level and

adaptation to future market changes.

1.2 Thesis Motivation & Contributions

The main challenge that we are trying to overcome in the current work is to provide
HW acceleration for network functions without hindering the overall SW flexibility of a

router. Our main research considers RISC-V on FPGA with custom ISA extensions for

37
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accelerating certain network functions.

To accommodate multiple such functions, we focus on their very common Packet
Classification task. In most traffic scenarios, in order to decide actions on packets, the
router creates and utilizes a table of rules named the classifier. For every incoming packet,
the router executes a procedure to search the classifier and match the packet’s features
to a predetermined rule that defines the pending action. This matching operation, i.e.,
Packet Classification, becomes a bottleneck for many of the functions mentioned above
(filtering, QoS handling, etc.) when traffic and network applications grow in numbers. The
complexity increases due to the amount of rules added in the table, especially when rules
belong to multiple match types, which significantly expand the search space.

Hitherto published works tackle Packet Classification at algorithmic level by already
employing a plethora of techniques [22]. Literature begins with linear search having
SPACE/TIME complexity proportional to the amount of rules, while it progresses to decision
trees, hash tables, divide & conquer algorithms, or even heuristics, which altogether strive to
decrease TIME to logarithmic complexity without increasing SPACE to a highly polynomial
complexity. At implementation level, the papers provide either purely SW or purely HW
solutions. The vast majority of works is entirely in SW, whereas the vast majority of
ASIC/FPGA solutions rely on CAM for matching the data in a single cycle. However,
the use of CAM has considerable disadvantages, such as high circuitry cost and power
consumption, low suitability to various algorithms/changes (especially when the match
type is not ezact), and limited scalability.

In contrast to the aforementioned, the solution proposed in this work avoids the use
of CAM and combines HW with SW components. We adopt a very efficient classification
algorithm, namely HyperSplit 12|, exploiting multiple of the literature’s techniques, which
we tailor to our embedded heterogeneous platform. More importantly, we develop a low-
level VHDL architecture to accelerate the crucial stage of tree-searching of HyperSplit.
In a HW/SW co-design approach, we combine a RISC-V soft-core with our own VHDL
component; we tune RISC-V as a low-area/power unit and we interface our soft-core with our
accelerator by introducing our custom RoCC instruction. The resulting architecture allows
us to execute any scarcely invoked function on SW, e.g., tree-building of HyperSplit or other
higher-level OVS[23] functionalities, while we continuously match the incoming packets on
HW in a limited number of cycles. Implemented on a Xilinx Kintex xcku060-2 FPGA and
tested with real benchmarks, our HW /SW solution achieves 113x higher throughput than
the SW-only execution of RISC-V, i.e., it can process up to 25.4M packets/sec.

1.3 Thesis Organization

This document is organised in four main chapters. In chapter 2 we begin by describing
the basic concept in practice, giving the reader the ability to follow the logic of our work,

and we continue by analysing the main tools and algorithms we use. Chapter 3 is the
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main chapter of this thesis, in which we describe our work thoroughly, step-by-step. In
chapter 4, we present the results on every step of our implementation and finally, in chapter
5 we evaluate the results and the performance of the proposed system, we present our

conclusions, and consider scenarios for future development.






Chapter 2

Background

2.1 Network Processors

2.1.1 Definition

A network processor is an integrated circuit which has a feature set specifically targeted
at the networking application domain [24]. Network processors are typically special-purpose
programmable devices that are commonly used as a network architecture component to
construct network systems.

In modern telecommunications networks, information is transferred as packet data, as
opposed to older telecommunications networks that carried information as analog signals.
The processing of these packets has resulted in the creation of integrated circuits that are
optimised to deal with this form of packet data, and so, Network Processors have specific
features or architectures that are provided to enhance and optimise packet processing
within these networks [24|. They have developed from simple designs to complex ICs with
programmable software and a variety of operations and manipulation functions on the data
packet. Network processors are employed in the manufacturing of: Routers and network
switches, packet inspection, session controllers, firewalls, network monitoring systems,
intrusion detection and prevention devices and error detection.

The main tasks and services performed by a Network Processor are:

e Packet Classification/Filtering (Claim/forward/drop decisions, statistics, gather-
ing, firewalling)

e Network Address Translation (Translate between globally routable and private IP

packets. Useful for IP masquerading, virtual web server etc)
e IP Packet Forwarding (Forward IP packets based on routing information)

e TCP connection management ( Traffic shaping within the network to reduce con-

gestion)

41
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TCP/IP (Offload TCP/IP processing from Internet/Web servers)

VPN IP Security (Encryption (DES) and Authentication (MD5))

Duplicate Data Suppression (Reduce superfluous duplicate data transmission over

high cost links)

Data Transcoding (Converting a multimedia data stream from one format to another

within the network)

2.1.2 Common System architecture

The overall architecture of a generic network processor is shown in Figure 2.1 [25]. It

shows the main internal components, as well as the external memory and input/output

interfaces [25].

network processor
_| hardware memoryl— control
accelerator processor
processor | | | | processor
= 8 core " core 3 =
] o
1Rk ] — | |§|| |5
E el Y ; £ £
o = interconnect 1= a
S g | | g S
= @ @ =
o E processor | | | | processor E o
core i core
—{ /O interface |
| network interface | | switch fabric interface |

Figure 2.1: System architecture of network processor.

Although different Network Processor models may have specific architecture character-

istics, their main components typically include the following |25]:

o Multiple processor cores for data path processing. These processors are used
for the processing of network traffic and are typically simple RISC cores, which are

usually very simple and not capable of running their own operating system.

e Single processor core for control operations. This processor is used for control
operations and slow-path handling of packets. It is often based on an embedded RISC

system that is capable enough to run a full-blown embedded operating system.

e On-chip memory. On-chip memory consists of instruction and data memory for

data path processors and control processors. In most cases, on-chip memory uses
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SRAM technology, as a combination of DRAM and processing logic within a single

MPSoC is more difficult to manufacture.

o Several interfaces for off-chip memories. The amount of on-chip memory that
can reasonably be included on network processors usually does not provide enough
storage for packets that need to be buffered or for programs and program state. To
expand the available memory space, off-chip memories are used. Interfaces to access

these memories are included in the network processor chip.

e High-bandwidth interface for network interface(s). The router ports on which
network processors are located typically interface with one or more physical links on
one side and the router switching fabric on the other side. Because network links use
a wide variety of physical layer protocols (e.g., copper wiring, optical fiber), network
processors do not connect directly to the physical medium, but send network traffic to
separate physical interface components. The same interface is also used to interface

with the switching fabric of the router.

o High-bandwidth interconnect between internal components. The various com-
ponents inside the network processor (data path processor cores, control processor
core, memory interfaces, input/output interface) need to be connected to allow for
movement of data through the system. The bandwidth of this interconnect needs to
be sufficiently high to pass network traffic through at full bandwidth as well as to
accommodate memory accesses and other processing-related communication. There

are various approaches on how to design such an interconnect.

e Specialized hardware accelerators. Optional but very commonly used components
of network processors are hardware accelerators. These blocks implement networking-
specific processing tasks in custom logic and achieve much higher performance than
typical software implementations. Examples of common hardware accelerators are
lookup engines (using specialized logic and/or TCAM), cryptographic coprocessors,

content inspection engines, etc.

2.1.3 State-of-the-art architectures

The bandwidth growth of modern networks, the introduction of different protocols and
the variety of network applications reveal the increasing demand for higher performance
and flexibility of Network Processors. Those requirements have made the design of Network
Processors an ongoing research and development field.

Although all of the commercial architectures are based on the elements we described in
the previous section, the past recent decades, numerous techniques have been proposed,
exploiting design alternatives. Some Network Processors are based on the traditional RISC-

based architecture and they are trying to solve the bottleneck problems using function
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portioning, special instructions and cache optimization. Other approaches use special
processor architecture techniques, such as modified co-processor and specific functional
units to improve performance while others massively parallel architectures with modern
RISC [26].

Approaching the design technically, the usage of FPGA is very common for the control
plane part of a Network Processor -combined with an ASIC for the data plane part- and
seems to be the future trend. Other technical choices include parameterizable hardware
for multi-NPs architectures, designing quantitative evaluator software, dedicated operating
systems, asynchronous pipelines, small-scale and ad-hoc networks [26].

All of the proposed architectures have a common feature, which is the fact that they
use special purpose hardware. Design approaches among different commercial Network

Processors are shown in the table 2.2 [26].

NP Special Hardware Special Instructions Layering
Support

Agere Payload- | FFP (Fast Patten Processor), ASI (Agere System in- | For traffic management, QoS | L2-4

Plus terface), RSP (Routing switch processor) and packet modification

Intel IXP 1200 Specialized functional unit for hashing and queue man- | yes L2-4
agement

IBM PowerNP Co-processor to accelerate tree search and frame ma- | yes L2-4
nipulation

Motorola C-5 Fabric processor, table lockup unit, and queue and | yes L2-7
buffer management

Ezchip NP1 Four special processors, MAC queue, and search engine | Each TOP(Task Optimized | L2-7

Processor) has its ISA

Cisco PFX 16 processor packet forwarding function yes L.2-4

Cognigine 16 Processing element or reconfigurable communication | yes L2-7
unit

Alchemy AUlxxx | MIPS processor yes L2-4

BRECIS 2 DSP processor yes L2-4

(MSP5000)

Broadcom(SB- 2 MIPS 64 bit no L3-7

1250)

Applied Micro | Packet transform, search, and policy engines yes (Optimized ins.) L2-4

circuit

ClearSpeed Table lookup engine no L2-4

Virtese Sitera Co-processor for lookup, classification, and queue man- | yes L2-3
agement

Figure 2.2: Network Processor Architectural Comparison

The architecture of a state-of-the-art, high performance Network Processor is shown
in figure 2.3 |27]. It performs integrated traffic management, targeting Carrier Ethernet
Switches and Routers (CESR) and other Carrier Ethernet platforms that require high
performance, flexible packet processing and fine-grained traffic management [27], like
Data-Centers.

Another on-edge thought is that of Smart-NICs (Smart Network Interface Cards). A
SmartNIC is a network adapter that accelerates functionality and downloads it from the
server (or storage) CPU. In other words, some of the Network Processor’s functionality
has been integrated into the network card, which can be ASIC based, FPGA based or
SoC based. Using its own on-board processor, a SmartNIC may be able to perform any
combination of encryption/decryption, firewall, TCP/IP and HT'TP processing. SmartNICs
are ideally suited for high-traffic Web servers [28].
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Figure 2.3: Architecture of a state-of-the-art Network Processor for Data Center Applications

In this work, we investigate an FPGA-based architecture for network functionalities,
using a RISC soft-processor and adding special purpose hardware accelerators, targeting
embedded systems and low power/cost designs. The results of our research can prove
whether such an architecture could be the beginning of a new Network Processor design as
well as whether it could compete with other existing designs in terms of cost (actual and

power), resources and ease of development.

2.2 Packet Classification

2.2.1 Definition

Packet Classification is the main task of a Network Processor. Is the process of
categorizing traffic into predefined classes in the network. These classes are basically buckets
that map to specific traffic properties such as priority and latency for the traffic involved.
Traffic is normally classified as it enters the network, where it is marked for appropriate
treatment. Once the traffic has been classified and marked at the edge of the network, the
network must be set up to provide differential service to the various traffic flows [29].

More specifically, the Packet Classification process matches an incoming packet to the
rules of the classifier and accordingly identifies the type of action to be performed on
the packet. Almost every packet in a network encounters classification at one or more
stages. For example, elements such as layer-2 (switches) and layer-3 (routers), as well as
special-purpose classifiers such as firewalls and load balancers, classify a packet as they
forward it from the end host to the web server.

There are a number of network services that require packet classification, such as routing,

routing of policy based, limiting rates, controlling access, locating virtual bandwidth,
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balancing loads, providing differentiated qualities of services, and billing traffics [1] [2]. In
each case, it is necessary to determine which flow an arriving packet belongs to. For each
arriving packet, it must be determined whether to forward or filter it (Firewall), where to
forward it (Router), the class of service it should receive (QoS), or how much should be
charged for transporting it (Traffic Billing). The main bottleneck of the above applications
is the classification stage. A router classifies the packet to determine where to forward it
and determines the QoS it should receive. A load balancer classifies the packet to identify
the web server to which it must be forwarded. A firewall then classifies the packet based on
its security policies to decide whether to drop it or not, based on the set of rules in the
classifier. Therefore, packet classification is one of the most important processes in the

design of network devices [3].

2.2.2 Existing Approaches and Algorithms

This section analyzes the difficulties in Packet Classification in practice and presents
different approaches to the problem, that have been proposed until now.

Most commonly, the flow is defined through a certain field in the packet header. For
example, classification of flow could depend on the IP source address value and IP destination
address value, or particular transport port numbers. Otherwise flow could be simply defined
by a destination prefix and range of port values. Sometimes, even the protocol type could
be used to define a flow [3].

The classifier, also known as a policy database, is a collection of rules or policies. Each
rule specifies a class (flow) that the arriving packet may belong to based on some criteria
in its header. An action is associated with each rule in the rule set. The packet header
has F fields, that could be used in the classification process. Each rule has F components
which identify all possible combinations of packet headers that match the rule. Accordingly,
a packet will belong to the rule if, and only if, all the fields in that packet belong to the
corresponding field in the rule. The rules can have any match type, i.e., exzact, wild card,
prefiz, range, and are assigned priorities [30], because a packet might satisfy more than one

rules. An example classifier combining various match types is shown in Table 2.1 [11].

Rule src IP | dst IP | src Port | dst Port | Protcol | Priority | Action
R1 * * [2,9] [6,10] * 1 Allow
R2 1% 0* [0,15] [1,4] 10 2 Allow
R3 00* 11* 123 123 u 3 Deny
R4 10%* 1% & 53 & 4 Deny
R5 0* 10% | [100,120] 2 0 5 Allow
R6  001* 1% * * * 6 Deny
R7 * 00* [0,16] 28] 100 7 Deny

Table 2.1: Representative Rule Table for Packet Classification

The several solutions proposed for Packet Classification can be evaluated based on

the rule table lookup time, the system resources used, as well as on the update time
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(insertion/deletion) of the rule table. They fall into 3 major categories: 1) software-based,
concerned mostly with the algorithmic complexity of classification, 2) hardware-based, using
specialized HW for searching, and 3) hybrid, that use a combination of the above.

The software-based solutions fall into 3 categories |1|: Basic data structures, Geometry-
based, and Heuristic. The first focuses on the way of representing and storing the rule table
in memory by using a novel data structure, which is bound to a specific searching algorithm.
The Geometry-based solve the problem by constructing a geometric representation of it in
a d-dimensional space, where d is the number of the fields of the rule table. The Heuristics
prune the search space based on statistics/patterns found on packets or rule table, i.e., by
exploiting characteristics/structure real classifiers may have.

Specifically for Geometry-based and Heuristic algorithms, we distinguish between the

following approaches [4]:

e Two-dimensional (Set-Pruning tries, Grid-of-Tries) are efficient on address prefix

pairs and have low time complexity but do not extend to multiple field searches.

e Divide & Conquer (RFC, HSM [5], Cross-Producting, BV, ABV') usually achieve

high speed, but via considerable preprocessing time and worst case SPACE complexity.

e Decision Tree (HiCuts [2], HyperCuts, D-Cuts, ExpCuts, HyperSplit) have improved
search speed and use heuristics to reduce the high memory storage requirements, but

their preprocessing time is considerable.

e Tuple space - Hash table (Tuple Space search, BSOL, FIS-tree) have efficient
update time, high TIME complexity, but may depend on hash tables and have

non-deterministic lookups/updates.

e Heuristics at bit time (D?BS) have higher performance and scalability than
HiCuts and HSM, take advantage of a dynamic heuristic partition of ruleset at bit

level, but have high requirements in storage and preprocessing.

Purely HW approaches, e.g., TCAMs and Bitmap-Intersection [6] [7], can achieve 1-clock
cycle lookup, however via trade-offs in storage, cost and power consumption.
Regrading the hybrid category that combines algorithms and HW implementations, we

mention here in summary:

e Parallel Packet Classification (P2C) [0] searches each field of a rule in parallel way,
constructing "on-the-fly" matching. With the BART scheme this approach achieves
high classification speed, having the cost and power trade-offs of TCAM and additional
SRAM inclusion.

e BV-TCAM |8] splits the multifield packet classification in two. It uses a tree-bitmap

implementation of the Bit Vector algorithm for the source and destination port lookup
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and a TCAM for the lookup of the remaining header fields. Its success is due to using

a TCAM of small size and combining it with an algorithm in SW.

e DIRPE (Database Independent Range PreEncoding) and MUD (Multi-match Using
Discriminators) Algorithms 9] . These algorithms use TCAMs more efficiently and
eliminate some of its weaknesses by using software. DIRPE reduces the worst-case
expansion of range rules, while MUD attempts to find multiple matches for a search

key.

e Field-Split parallel Bit Vector (FSBV) [10] performs splitting similarly to BV-TCAM,
but FSBV uses TCAMs for IP classification, CAMs for protocol classification and
the Bit Vector Algorithm for the remaining packet header fields. The implementation

presented in [10] achieves 4x reduction in power consumption over the BV-TCAM.

e Decision tree architecture on FPGA [11] introduces a Packet Classification architecture
on FPGA implementing a decision tree based algorithm. It optimizes memory usage
and achieves 80Gbps throughput for minimum size packets. Tested with complex

rules (with more than 5 fields), it sustained over 40Gbps throughput.

2.2.3 HyperSplit Algorithm

Following the literature survey and as mentioned in introduction, we opted for a HW /SW
solution of Packet Classification with a decision-tree based algorithm: HyperSplit. This
section describes the algorithm and reveals the reasons for selecting HyperSplit for our
research.

The HyperSplit algorithm is a combination of the HSM and HiCuts algorithms in a
cost-effective fashion. The algorithm [12] is divided into two procedures/stages: the tree
building and tree searching. Building inputs the Rule Table and outputs a search structure
in the form of a sparse binary tree. Recursively, it decomposes the theoretical search space
into subspaces, which contain subsets of rules, by selecting the local-optimized rule field at
each step via a weighted segmented-balanced strategy. In the end, each node stores a fixed
pointer, d,,, that refers to a dimension of the rule table, as well as a fixed threshold value,
T, that will drive the upcoming search towards the leaves of the tree. That is, searching
becomes a customized binary search of each incoming packet through the created tree.

The procedure inputs a d-tuple describing the packet, e.g., {srcIP, dstIP, srcPORT,
dstPORT, protocol}, and successively compares the d values to the tree nodes’ data. More
specifically, starting from the root, it reads the current node and compares its T}, value to
the d,,-th value of the input tuple. Depending on the comparison’s output, and only if the
current node is internal, searching continues to the left or right child until it reaches a leaf.

By selecting the local-optimized field at each recursion stage for space decomposition
and applying weighted segment-balanced strategy, the algorithm results in more efficient

searching and achieves higher performance in terms of memory storage and time. In
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comparison with HSM and HiCuts, HyperSplit improves memory accessing by 70% and
preprocessing time by 10-100x, hile it achieves greater throughput.

Given an example 2D rule table, figures 2.4 and 2.5 shows tree built by HSM, HiCuts
in comparison with the one of HyperSplit [12]. For further details about the HyperSplit

inner functionality advice [12].

Decompasiion on X Decomposifon on Y

Rule | Priority  Field-X  Field-Y

R1 1 [00.01]  [00.00]

R2 2 [00,01]  [00.11] s

R3 3 [10.10]  [00.11]

R4 4 [11.11]  [11.11] , cal, ; ¥l 1210
RS 5 [11.11]  [00.11] - ’

! 27 i -
Rule list N

- .
R1J RS RS | s producing ble Sl -"

Figure 2.4: Example Rule Table, HSM search tree, HiCuts search tree

Rule list

Figure 2.5: HyperSplit Search tree

2.3 RISC-V and Rocket Chip

2.3.1 RISC-V overview

RISC-V is a free and open-source ISA developed at UC Berkeley. The fact that it is
open-source allows it to be used both in academic and industrial environment. It is under
the governance of the RISC-V Foundation and is intended to become an industry standard
[13]. It is designed to be simple and highly extensible and avoids “over-architecting” for
a particular microarchitecture style (e.g., mi-crocoded, in-order, decoupled, out-of-order)
or implementation technology (e.g., full-custom, ASIC, FPGA), which allows efficient
implementation in any of these [14].

The RISC-V ISA consists of the base integer ISA (which must be present in any

implementation) and optional extensions to this base ISA. The base integer ISAs are very
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similar to that of the early RISC processors except with no branch delay slots and with
support for optional variable-length instruction encodings. A base is carefully restricted
to a minimal set of instructions sufficient to provide a reasonable target for compilers,
assemblers, linkers, and operating systems (with additional privileged operations), and so
provides a convenient [SA and software toolchain “skeleton” around which more customized

processor ISAs can be built [14].

2.3.2 RISC-V ISA description

The base integer instruction sets are RV32I and RV64I (named "I"), which provide
32-bit or 64-bit address spaces respectively and contain integer computational instructions,
integer loads, integer stores, and control-flow instructions. Each base integer ISA can be
extended with one or more of the standard optional instruction-set extensions defined by
the Foundation. The extension named "M" provides integer multiplication and division,
the extension named "A" provides standard atomic instructions, that atomically read,
modify and write memory for inter-processor synchronization, the extension named "F"
adds floating-point registers, single-precision computational instructions and single-precision
loads and stores, the extension named "D" is the standard double-precision floating-point
extension and expands the floating-point registers adding double-precision computational
instructions, loads and stores and, finally, the extension named "C" is the compressed
instruction extension that provides 16-bit forms of common instructions. The ensemble of
“IMAFD” extension is indicated with “G” and the resulting [SAs are called RV32G for the
32-bit version and RV64G for the 64-bit one.

The base RV32I has 4 basic instruction formats, depending on the kind of the instruction

arguments, sources and destination, and they are presented in Figure 2.6.

31 25 24 20 19 1514 1211 76 0
[ funct7 | w2 | sl [funct3| rd | opcode | R-type
| imm][11:0] | sl | funct3 | rd | opcode | I-type
| imm[11:5] [ rs2 | rsl | funct3 | imm[4:0] |  opcode | S-type
| imm[31:12] | rd | opcode | U-type

Figure 2.6: RISC-V base instruction formats.

The combination of the opcode and the funct parts of the instruction can describe its
functionality exclusively. For example, the opcode dedicated for integer register-register
operation is the same for all of the ADD/SLT/SLTU/AND/OR/XOR/LL/SRL instructions
(as the opcode denotes the instruction operation "family"), each one of them having their
own funct3 for extra specialization and identification.

Figure 2.7 presents the major opcode map for RVG [14]. Major opcodes with 3 or more

lower bits set are reserved for instruction lengths greater than 32 bits. Major opcodes marked
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as custom-0 and custom-1 can be used by custom instruction-set extensions (custom-0 will

be used for our extension).

inst[4:2] 000 001 010 011 100 101 110 111

inst[6:5) (> 32b)
00 LOAD LOAD-FP | custom-0 | MISC-MEM | OP-IMM | AUIPC OP-IMM-32 418b
01| STORE |STORE-FP | custom-1 AMO op LUI OP-32 64b

10| MADD MSUB NMSUB | NMADD OP-FP | reserved | custom-2/rvi28 48b
11 | BRANCH JALR reserved JAL SYSTEM | reserved | custom-3/rv128 | = 80b

Figure 2.7: RISC-V base opcode map, inst[1:0]=11.

2.3.3 Rocket Core & Rocket Chip SoC Generator

Rocket is a 5-stage in-order scalar core that implements the RV32G and RV64G ISAs.
It has an MMU that supports page-based virtual memory, a non-blocking data cache, and
a front-end with branch prediction. Branch prediction is configurable and provided by
a branch target buffer (BTB), branch history table (BHT), and a return address stack
(RAS). Rocket also supports the RISC-V machine, supervisor, and user privilege levels. A
number of parameters are exposed, including the optional support of some ISA extensions
(M, A, F, D), the number of floating-point pipeline stages, and the cache and TLB sizes
[13]. Rocket can also be thought of as a library of processor components. Several modules
originally designed for Rocket are re-used by other designs, including the functional units,
caches, TLBs, the page table walker, and the privileged architecture implementation (i.e.,

the control and status register file). Rocket’s pipeline is shown in figure 2.8.

PC EX MEM  WB
PC ITLB nt RF DTLB ; To RoCC
Int.EX Commit |
Inst | D% | Accelerat
Gen |Access | |Deggde AcCoss ccelerator

D FP.RF D FP.EX1 D FP.EX2 D FP.EX3

Figure 2.8: The Rocket Core Pipeline.

Rocket Chip is an open-source SoC generator developed at UC Berkeley and is based
on the RISC-V ISA. Rather than being a single instance of a SoC design, Rocket Chip is
a design generator, capable of producing many design instances from a single high-level
source. Its extensive parameterization makes it flexible, enabling easy customization for
a particular application. By changing a single configuration, a user can generate SoCs
ranging insize from embedded microcontrollers to multi-core server chips [13].

Rocket Chip is implemented in Chisel [31], an open-source hardware construction
language embedded in Scala, which generates synthesizable Verilog code, compatible
for FPGA and ASIC design tools. Chisel can also generate a fast, cycle-accurate RTL

simulator implemented in C++, which is functionally equivalent to but significantly faster
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than commercial Verilog simulators and can be used to simulate an entire Rocket Chip
instance [13].

Figure 2.9 shows an example instance of the chip consisting of common sub-components
(core generator, cache generator, RoCC-compatible coprocessor generator, tile generator,

tile link generator and peripherals) [13].

Tile1 Tile2
BOOM RoCC Rocket
L11$ L1I$
o RoCC
[ | Accel.
g ) L1D$ FPULIl L1Ds )
1[ A
y ¥
A | Core
L1toL2 Network
A A A
"I ] I B | Cache
Y ! l : C | RocC
a2 A
— L2$ Bank Sl D | Tie
¢¢¢ E |TlleLink
L2tolO Network F |Periph.
ﬁleLipk/AXM ) S
- Bridge
AXl4 Crossbar
DRAM SH'gh;’ AHB & APB
Controller pee Peripherals
10 Device

Figure 2.9: Rocket Chip SoC instance example.

2.3.4 The RoCC Co-Processor Interface

The Rocket Custom Co-processor Interface (RoCC) facilitates decoupled communication
between a Rocket processor and attached co-processors. The RoCC interface accepts co-
processor commands generated by committed instructions executed by the Rocket Core.
The commands include the instruction word and the values in up to two integer registers,
and commands may write an integer register in response [13].

The RoCC interface also allows the attached co-processor to share the Rocket core’s

data cache and page table walker, provides a facility for the co-processor to interrupt
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the core and be able to connect to the outer memory system directly over the TileLink

interconnect [13]. A simplified view of the interface is shown in figure 2.10 [15].

RISC-V Rocket | (RoCC )
Interface
cmd >
Processingl.g resp
core e busy
< interrupt Accelerator
< MEem.reg
L1 cache mem.resg o
L S

Figure 2.10: A simplified view of the RoCC interface.

34In general, 32-bit RoCC instructions extend the RISC-V ISA and are formatted as

shown in figure 2.11.

31 25 24 20 19 15 14 13 12 11 76 0
l funct? | rs2 [ rsl ‘ xd ‘ xsl \ xs2 I rd ‘ opcode
7 5 5 1 1 1 5 7

Figure 2.11: The RoCC instruction encoding.

The RoCC instruction is of the R-Type instruction format shown in 2.6. The fields are:

e opcode, can be one of the custom opcodes not used for the base RISC-V instructions
o rs1 & rs2, the two source registers (0-31)

e rd, the destination register (0-31)

e xd, flag indicating if a value need to be written back to the destination register rd

o xs1 & xs2, flags indicating if the current RoCC instruction needs source values from

the registers rsl and rs2 respectively

e funct7, extra specialization for the same opcode.

As mentioned above, when a RoCC type instruction reaches the write-back stage of the
pipeline, rocket uses the RoCC interface to send a command to a dedicated co-processor.
The signals include the RoCC instruction itself, the source register values (if existed) and
several control (value/ready/interrupt) signals. The signals we used for our implementation

will be discussed in Chapter 3.






Chapter 3

The proposed system

3.1 HW/SW architecture overview

The main purpose of our system is to ultimately improve the performance of packet
classification. Once we have selected the HyperSplit algorithm for our research, our first
step is to discover the critical part of the algorithm, whose execution on a dedicated
hardware accelerator would lead to a significant performance improvement.

As explained in the previous chapter, the algorithm is divided into two stages, that of
the building of the search tree -creating the search space using the given rule table- and that
of the tree searching -search needed for every incoming packet to be classified-. Building
the HyperSplit tree is a complicated and time consuming process and is needed when the
rule table changes (rule insertion/deletion etc). Obviously, the searching process is much
more frequent than the building one (since every incoming packet needs to be classified)
and also offers space for additional improvements, such as potential parallelization of the
process for many packets (as it does not modify the tree elements).

Therefore, we will create a hardware accelerator on which, having the tree in memory,
the search for an incoming packet will be performed. Thus, the accelerator will receive
"one packet", which will actually be a combination of the source IP address, destination
IP address, source port, destination port and protocol number, search the tree and return
the result location. The result will be a pointer to the final rules that the current packet
belongs to.

The search arguments can fit into two 64-bit registers, and therefore could be used as
arguments in a new RoCC command (software-side), as well as be send to the accelerator
using the two 64-bit channels of the RoCC Interface (hardware-side). Accordingly, the
result will be send back to the main core using the 64-bit return channel.

Our general system layout is shown in figure 3.1, which also includes the RoCC interface’s
channels for direct accelerator-cache communication. Those will not be used in our final
implementation, as basic channels for RoCC instruction arguments are enough for the data

needed by the accelerator, which will be proved later in the chapter, as well as the internal

95



56

Chapter 3. The proposed system

accelerator functionality.

FPGA

Ethernet
Core Classification Accelerator
= RoCC inst > Memory
RS1[63:0] E
Y1 Rs2ex0 |8
RISC-V E &
= |
RVG4IAC g ~ = Search ) I Search--- -
g | RD[63:0] ?| & . --Space Data
| = é‘; 8 Logic |- Structure---
&) addr[31:0] (8| O
U tagfe:0] .| | [T
L1 é wpel20] || e
D-Cache data[63:0] ___—
cmd[3:0]

Figure 3.1: Proposed high-level system architecture

3.2 Processor Customization

In this section we describe how we use the software & hardware tools available to

customize, build and run the RISC-V core and the Rocket Chip Generator.

In practice, our system combines all the elements and methods described in the previous

chapter applying the following design decisions, towards an embedded and low cost solution:

1. From the RISC-V family, we select the instruction subset RV64IAC, since the

targeted applications (packet management and processing) do not require complex
operations (multipliers/divisions/floating-point number manipulation) and therefore

a simple integer hardware can be used with no loss in capabilities.

We configure the RISC-V cache sizes (for both software and hardware simulation) to
L1 D-Cache of 256-sets, 4-ways and 64-Byte blocks (total 64KB) and L1 I-Cache
of 64-sets, 4-ways and 64-Byte blocks (total 16KB). We choose relatively big cache
sizes for an embedded system. The reason is that the RISC-V performance will be
the base performance, to which we will later compare our accelerator’s one. So, we

choose upper limit cases to control the safety of our final performance factor.

. We add a new R-type instruction definition in the RISC-V ISA (that is, a new opcode),

also adding it to the compiler and assembler in order to be able to use it in our C

code.

. We will use the following channels of the RoCC Inteface: the channel that will

transmit the RoCC instruction itself, two channels for the values of RS1 and RS2,

the channel for the return value of RD and the control signals valid and ready.
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5. All of the above will be described in Chisel language of the Rocket Chip Generator,

which will finally generate a synthesizable verilog code of the system.

We use the fpga-zynq git repository [16], which contains everything needed to port a
Rocket Chip on a zynq family fpga. The zyng-fpga repository contains the Rocket Chip
Generator git submodule [17], which contains the RISC-V toolchain git submodule [18].
These are the two basic repositories our development requires. Figure 3.2 shows the
organisation of the basic repositories used. Figure 3.3 shows the action flow for generating
and running the HyperSplit binary (our customization applies to the boxes with a star next

to them). The rest of this chapter follows a top-down description of our development steps.

opcodes )

chisel3 ) )
riscv-tools
( Rocket-chip gnu-toolchain )

proxy kernel

main scala source )

isa-sim (spike)

verilator )

Figure 3.2: Rocket Chip Repository organisation

tests

Hardware Side
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>
Modify Toolchain Build RISC-V Toolchain Proxy Kernel Configure chisel source Develop HyperSplit
code Hardware

Spike ISA Simulator

*
Develop HyperSplit " = =
Software Compile C code ( Build RocketChip )
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Generate RISC-V Binary Generate System’s
Verilog

Development

|

; T
] |
| /Runon verilator (ydleY |
Testing Run on Spike Simulator ) - 2 4 . Run on Device
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Figure 3.3: Proposed HW/SW System development and testing (flow chart). Starred boxes
apply to the main effort (customization, design & coding) of the current work.
3.2.1 Software Side

The RISC-V toolchain git repository includes all the components needed to generate a
RISC-V binary. They are highlighted in figure 3.4.
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Figure 3.4: Software related parts
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It contains the following submodules [18]:

e riscv-opcodes: enumerates standard RISC-V instruction opcodes and control and

status registers.
e riscv-gnu-toolchain: is the RISC-V C and C++ cross-compiler

e riscv-pk: includes the RISC-V Proxy Kernel (a lightweight application execution
environment that can host statically-linked RISC-V ELF binaries) and the Berkeley
Boot Loader (bbl).

e riscv-isa-sim: builds Spike, the RISC-V ISA simulator.

e riscv-tests: hosts unit tests for RISC-V processors.

We clone all of the above, configure and build the cross-compiler, the proxy kernel and
spike and, after we cross-compile the unit tests, we run them using spike and pk to test
the mechanism as a whole. We then clone the HyperSplit C code [19] and add it to the
riscv-tests. We cross-compile it and run it with Spike too, for a first performance evaluation.

The HyperSplit repository includes a test folder, that contains the common ClassBench
classification benchmarks to test the algorithm [20]. ClassBench includes a Filter Set
Generator that produces synthetic and with variable size filter sets that accurately model
the characteristics of real filter sets. The filter sets range in size from 68 to 4557 entries

and utilize one of the following formats [20]:

1. Access Control List (ACL) - standard format for security, VPN, and NAT filters for

firewalls and routers (enterprise, edge, and backbone).
2. Firewall (FW) - proprietary format for specifying security filters for firewalls.

3. IP Chain (IPC) - decision tree format for security, VPN, and NAT filters for software-

based systems.
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It also includes a Trace Generator that produces a sequence of packet headers to
exercise the synthetic filter set [20]. We can now test HyperSplit using Spike simulator and
ClassBench benchmarks.

Spike performs "ISA simulation", which means that it performs the binary’s disassembly
and uses an object oriented way of simulating the system, keeping control and status
register counters, such as the number of instructions executed for a program. So, that is a
first way of measuring the base performance of the algorithm on a RISC-V core. Detailed

measurements will be presented in the next chapter.

Having configured and used all the RISC-V tools and the HyperSplit codes, we can
now intervene to the toolchain. Our goal is to introduce a new instruction and use it instead

of the binary search in the HyperSplit C code.
e Step 1

Considering the RoCC instruction encoding, we added a new instruction description
in the riscv-opcodes repository. We use one of the custom instructions defined and we
name our new instruction hypersplit search. In practice, we used a new instruction of
RoCC-type, having the bits 12, 13 and 14 set to 1 (our instruction will need two source

registers and a destination register) and the unused opcode 0x0b.

31 25 24 20 19 15 14 13 12 11 76 0
‘ funct7 | rs2 | rsl | xd ‘ xsl | xs2 ‘ rd ‘ opcode ‘
7 5 5 1 1 1 5 7
1 1 1 0x0b
e Step 2

Having our RoCC instruction definition, we included a description of it in the C cross-
compiler, assembler and debugger. Now we are able to use the new instruction and generate
a RISC-V executable.

e Step 3

The last step is to introduce the new instruction to the Spike simulator. So, we add
all the definitions to Spike’s code in order for it to be able to disassembly the instruction
and also add a software description of performing the binary search on a HyperSplit search
tree (to be executed when the new instruction is called). For the purpose of the simulation
at this point, we send as arguments a pointer to the input packet and a pointer to the

HyperSplit tree.
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To measure the performance of HyperSplit using our new instruction, we need to design
the accelerator hardware and measure its latency, including the interface overhead. Spike
simulation is not representative in this case, as it only counts the instructions executed. In
any case, the aforementioned steps have introduced a way for the software to be able to

"call" our accelerator. We can now focus on the hardware design and development.

3.2.2 Hardware Side

This section describes our approach and steps of the system’s hardware generation. The

opcodes )

proxy kernel

parts of the git tools we use in this stage are highlighted in figure 3.5.

chisel3 )

riscv-tools
( Rocket-chip gnu-toolchain

main scala source )

verilator )

Figure 3.5: Rocket Chip Repository’s Hardware related parts

isa-sim (spike)

tests

NI AN AN A

Our goal is, after we choose an fpga/board to use for our design, to generate the verilog
code for our Rocket Chip as shown in hardware steps in 3.3, reconfigure it to include our

accelerator and end up having conclusions about:
1. the maximum clock frequency our final design can reach
2. the final number of clock cycles our accelerator needs for the HyperSplit search

3. the fpga resources our whole design requires

3.2.2.1 HyperSplit performance verification on verilator

We begin by exploring the Rocket Chip chisel source code. Chisel uses scala object
oriented language and "transforms" it into a high level hardware description language. At
first, we build the main source code using the configurations we described in this chapter’s
introductory section (RISC-V subset, cache sizes etc) before adding RoCC interface and
accelerator to hardware description. Using the generated verilog code and the cycle-accurate
hardware simulator in the directory, we run the default generated HyperSplit binary in
order to verify the time we calculated using Spike (because we used the hypothesis of 40
clock cycles for memory accesses). The measurements are really close to that of table 4.3.

So, we can now start modifying the hardware.
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3.2.2.2 Chisel Rocket Chip configuration extension

The repository itself contains some classes for the implementation and use of RoCC-type
accelerators. Using the SmallConfig (that includes only one Rocket Core), configuring the
cache sizes as we want and removing mult/div hardware, we add a new configuration class
that uses the given RoCC interface hardware description and connects a new accelerator to
the main core using that interface. To do that, we also need to add the description of the
instruction (new opcode of the RoCC instruction) that will reach the core’s pipeline. For

extra details about the chisel sources and the modifications please advice Appendixes.

At first, we describe a "dummy" accelerator that only performs the sum of two inte-
gers (given to RS1 and RS2 source registers) and returns the result to the core (to the RD

destination register) after as many clock cycles as the value of RS1.

Applying all of the above, we now:

e Build our code and generate the new system’s verilog.

e Create and compile (with the RISC-V cross-compiler) a C program which uses an

instruction of our new type.

o Run the generated binary using the verilator.

As the main body of our "dummy" accelerator is actually an adder, we measure the
clock cycles of a program that has only add commands. We can measure the clock cycles of
our program with the RoCC command by using different input values to the first instruction
argument. This way we can calculate the exact extra latency clock cycles that the RoCC
interface adds, needed for the communication with the core. This procedure is shown in
figure 3.6.

Using different input examples and for-loops in order to extract efficiently the extra
time added, we concluded that the core-accelerator communication latency is 5 clock

cycles.



62 Chapter 3. The proposed system

Create C program with simple add Create C program with our new
mstructlon(s) RoCC mstructlon(s)
Compile C program with RISC-V
cross-compiler
( Run on verilator )
C Measure clock cycles )
Galculate RoCC latency clock cyc9

Figure 3.6: Testing method of measuring RoCC interface latency.

3.2.2.3 Rocket Chip on Vivado

The last external (before the addition of the accelerator) step is to gather the resources
and frequency of the Rocket Chip with our "dummy" accelerator on the FPGA. We create
a vivado project, in which we include the verilog sources generated so far. For our imple-
mentation we use the xcku060-ffval156-3-e product part of the Kintex UltraScale
product family.

Figures 3.7, 3.8 and 3.9 show the FPGA resources, power and max clock frequency of
the system respectively. The implementation includes only the core (without any wrappers,

and that’s the reason for the increased IO resources).

Utilization Post-Synihesis | Post-Implementation Utilization Post-Synthesis | Post-Implementation
Graph | Table Graph | Table

LuT 4% Resource Utilization Available Utilization %
LUTRAM | 1% T 14367 331680 433
7y ez LUTRAM 1218 146880 0.83

BRAMT 1%
FF 7152 663360 1.08
10 0156

BUFG] 1% BRAM 5 1080 0.46

| T T T T 10 473 520 90.96

0 = 30 7 100 BUFG 1 624 0.16

Utlization (%)
(a) Utilization graph (b) Utilization table

Figure 3.7: Rocket Chip Resources on Vivado
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Power Summary | On-Chip
Power Summary | On-Chip Dynamic 0388W (7%
Total On-Chip Power: 1.058W 37% 9% Clocks 0036 W
Junction Temperature: 26.5°C 26% Signals:  0.101TW (2
Thermal Margin: 73.5°C (500 W) 22% Logic: 0084W (2
Effective BJA: 14 °C/W W BRAM: 0.024 W
Power supplied to off-chip devices: 0 W 1/0: 0143 W (37%
Confidence level: Low 63%
Implemented Power Report Static: 0670 W  (63%)

100% PL Static: ~ 0.670 W (100%)

(a) Power Summary

(b) Power On-Chip

Figure 3.8: Rocket Chip Power on Vivado

when:

| Clock Summary

Clock Waveform(ns) Period(ns) Frequency (MHz)

clock {0.000 3.500} 7.000 142.857

Figure 3.9: RocketChip achieved on fpga frequency

3.2.2.4 Accelerator development

At this point, the only missing part is the performance of the actual HyperSplit search
accelerator. We will develop the accelerator in VHDL separately and we will measure its

performance using vivado.

The main elements that our accelerator needs are:

e the HyperSplit tree memory space. Having loaded the whole HyperSplit search
tree in the accelerator after the building phase will save us all the time needed for
memory acceses and cache misses. This design choice is by itself a huge performance

improvement factor.

e a comparator component. In every stage of the binary search the input needs to
be compared with the value of the current tree node, in order the next node in the

searching process to be defined.

e the HyperSplit search logic. We need a logic circuit that will be able to extract the
needed part of the input header and control the connections and the synchronization

of the accelerator.

The accelerator’s input is d-tuple describing the packet, e.g., {srcIP, dstIP, srtcPORT,
dstPORT, protocol}. Every tree node contains a threshold value 7" and the corresponding
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dimension d of the tuple (that it refers to and needs to be compared with d-th value of the

input tuple).
So, we create a ROM component (with 380K entries), every entry of which will contain:
1. the current node’s value dimension d,, (5-bit field in our case)

2. the current node’s threshold value T,, (32-bit field in our case)

3. the address of the left child in the tree A, (19-bit field in our case). The address of
the right child will be the A, + 1.

We, also, create a 32-bit comparator component that will be responsible for the
comparison of the d-th value of the input tuple and the T, value at every stage of the
searching process.

The extra assistant components are a dtol Multiplexer, responsible for selecting the
d-th value of the input tuple and forward it to the comparator, and a 19-bit adder, re-

sponsible for generating the next address at every stage, considering the comparator’s result.

The modular schematic diagram of the accelerator is shown in figure 3.10.

d-tuple input

32bit
-+ v
Memory D_> Comparator

19

address
register
3 E3

Cin

Figure 3.10: Proposed HyperSplit Search accelerator schematic diagram
Circuit functionality

At every stage of the searching procedure, the current memory element is the main control
factor. The d, value is used as the MUX input in order to extract the needed part of the
input tuple, which will be the first input of the comparator. The T}, threshold value is used

as the second input of the comparator. Depending on the comparator output, the next
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memory address will be generated and be used as the next stage’s memory input. This
procedure continues repeatedly until a tree leaf is reached (tree leaves use the value of zero
as child address).

Synchronization

First of all, we create all the components to be asynchronous, in order to be able to
manage the circuit synchronization externally, using registers where needed. That does not
apply to the memory one, as we use a synchronous custom IP ROM component, which
means 1 clock cycle latency for a read operation. As the MUX component needs the memory
output and the comparator needs both the memory and the MUX output we add one extra
delay register driving the threshold signal. We also need to add an extra register to the
generated address signal and one to the memory input address. These registers are shown
in figure 3.10 in grey boxes, including the internal memory ones. Our design can achieve at
least 12, 05x performance improvement until now. Exact timing results will be shown in

the next chapter.

3.3 Hardware Accelerator Optimizations

This section introduces some improvements to the body of the accelerator, as well as to

the system design, in order to improve performance.

3.3.1 Optimization 1: Pipelining € Packet Coalescing

Observing the accelerator’s design, we can easily conclude that there are idle cycles, as
each component needs the result of other components, and "waits" until it’s ready. That’s
the reason we added the extra registers. Our first thought is to use the pipeline technique
to make use of these registers, by sending 3 input packets to the accelerator instead of one.
More specifically, at each time instant, in a round-robin fashion, each pipeline stage will be
dedicated to a distinct packet: e.g., while a node related to packet P, is being processed by
the comparison stage, a new node related to Py is being fetched from RAMB. Therefore, in
the long term, no empty cycles appear in our pipeline.

The only missing part of the implementation of this idea is the input RoCC instructions
and arguments. If we create, for example, P pipeline stages on our accelerator, we should
have P input packets ready to be searched. We can overcome this problem by coalescing P
packets. Packet coalescing is the grouping of packets, already in use in network systems, as
a way of limiting the number of receive interrupts and, as a result, lowering the amount of
processing required [32]. Having the packets grouped that way, we can send them to the
accelerator using sequent HyperSplit RoCC instructions.

So, now the accelerator will be able to search 3 packets almost simultaneously, and the
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new accelerator schematic is shown in figure 3.11.

input packets loop

|d—_tuple inputl

32bit
Comparator

address
register

19

Figure 3.11: Proposed HyperSplit Search accelerator schematic diagram with P=3

3.3.2 Optimization 2: FExtra parallelization using Dual Data-path

Another idea is to take advantage of the ROM memory IP block ability for dual-porting.
This means that we can access two memory addresses at the same time. Using a dual-port
memory will actually double the accelerator data-path, duplicating all the components
(comparator, mux, registers) but not the memory. This optimization does not add any
significant development overhead, but automatically doubles the number of packets that
can be searched at the same time and therefore doubles the overall throughput of the

accelerator.

3.3.3 Optimization 3: Continuous stream processing without I0 stalls

All our measurements until now include the accelereator latency and the 5 clock cycles
overhead of the core-accelerator communication for every packet (that is every RoCC
instruction). In this section we consider the possibility of a non-blocking HyperSplit RoCC
instruction, that triggers the search execution of the accelerator, enabling the main core to
continue its normal execution without waiting for the accelerator result.

RoCC interface makes this idea possible including an interrupt signal to the core. So,

we proceed to the following changes:

1. We modify our new RoCC-type HyperSplit instruction, having the xd flag bit to zero.
That means that the instruction will not wait for a result to the RD register at the

write-back pipeline stage of RISC-V core and the execution will continue normally.
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2. We add two buffers to the accelerator, one input buffer and one output buffer, which
will collect N (multiple of 10) packets by packet coalescing, and, when the results for

all of them are ready, an interrupt will be sent to the core.

3. An interrupt handler will stop the core’s execution and handle the results for the sent

packets all together.

Notes:

e The input buffer is responsible for sending a new packet to the accelerator when an
empty slot appears in the pipeline. The output buffer will be responsible for sending

an interrupt signal to the core, as soon as there are N packets ready.

e Every packet has a unique id, to keep the input-output order of them, because different

packets need different amount of searching iterations in the searching tree.

e The number of packets that control when the accelerator interrupts the core, as
well as the buffer size, can be found by fine-tuning and depend on the network
(e.g., throughput, interfaces), the device (e.g., frequencies) and the dataset (e.g.,
complexity). So, we can assume safely that this mechanism inserts no stalls to the

implementation.

The rolling 10 will actually "mask" the communication overhead but add the interrupt
overhead. Using the buffers this overhead will be really minor, as it will apply to the N

packets in total, a number really greater than 10.
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Performance Evaluation

4.1 Time and Resources per implementation step

This section presents the results of our implementation, in terms of time and FPGA
resources. The main performance metrics are the clock cycles, the achieved clock frequency,

the FPGA resources and of the HyperSplit binary search.

4.1.1 Baseline performance on RISC-V (Software-only execution)

The performance of the search on RISC-V (i.e, the needed execution clock cycles) is the
base performance and we measure it using Spike simulator. The RISC-V frequency on our
selected platform achieved f. = 143M Hz as described in the previous chapter. Adding
some performance counters to the HyperSplit code, Spike results are shown in table 4.2.
Table 4.1 shows some measurements regarding the HyperSplit’s inputs and building tree.
Table 4.3 shows the performance of HyperSplit search, ignoring the building phase. The
last column represents the clock cycles needed for the search and was calculated using the

following equation:

Instructions for Searching + DCache accesses + 40 x DCache misses (4 1)
Number of trace packets ’

clock cyclesp”_mcket =

Equation interpretation: When simulating with Spike, we assume that the calculated num-

ber of instructions is equal to the clock cycles needed, as in RISC-V every instruction needs
one clock cycle. That is not accurate for the instructions that perform memory accesses,
as there is some extra overhead for fetching the data to the registers. That overhead is
really big when data are not in the cache memory. So, assuming that a data memory access
would take one clock cycle in the case of a D-Cache hit and 40 cycles on average in the
case of a D-Cache miss (average time for accessing a DDR3 memory, common case), the

run time calculation take the form of equation 4.1.

69
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Benchmark | Rules | Tree nodes | Worst depth | Trace packets
acll 753 7931 19 8140
acll 5K 4415 55997 24 45600
acll 10K 9603 121313 24 97000
fwl 270 75157 24 2830
fwl 100 93 7887 20 920
ipcl 1550 381069 26 17020
ipcl 100 100 3439 18 990
ipcl 1K 938 191059 26 9380
Table 4.1:  Binary Trees built by HyperSplit for 8 test cases
Instructions Instructions D-Cache D-Cache
Rule File | for Building (us) | for Searching (us) | accesses | miss rate (%)
acll 95994458 2352326 53743507 1.67
acll 5K 1068626590 15889789 464331366 7.396
acll 10K 3981180850 35737971 1669860057 15.107
fwl 463509968 894466 175877797 1.173
fwl 100 47434372 243735 27280783 2.547
fwl 1K 3214346262 2924736 1148416473 0.941
ipcl 3109391562 6131943 1118471003 1.061
ipcl 100 16033666 236745 16464167 3.619
ipcl 1K 1146605751 3175587 427486317 1.143
Table 4.2: HyperSplit base performance on Spike
Instructions D-Cache D-Cache Clock
Rule File | for Searching (us) | accesses | miss rate (%) | cycles
acll 2352326 474127 6.39 496.14
acll 5K 15889789 3437143 12.12 789.26
acll 10K 35737971 7775447 13.84 892.26
fwl 894466 153736 11.17 613.13
fwl 100 243735 10951 20.98 376.70
fwl 1K 2924736 598052 13.44 837.05
ipcl 6131943 1301909 13.43 847.61
ipcl 100 236745 9457 17.20 314.43
ipcl 1K 3175587 653407 13.31 778.98
Table 4.3:  HyperSplit search performance on Spike

4.1.2 Accelerator performance (HW /SW co-processing)

Now, we can calculate the clock cycles of the HyperSplit binary search on the accel-
erator, for every step of our optimization. We measure this performance using the tree

measurements, our VHDL accelerator design and the interface and other extra overhead
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that may exist.
e Default accelerator

Our accelerator design was described in the previous chapter and is shown in figure 3.10.
Every searching stage needs 3 clock cycles to generate the next memory address. So, the
total clock cycles needed for an incoming packet will depend on the tree depth multiplied
by 3, adding the 5-cycles RoCC communication overhead. Considering the average depth
of the generated tree for every benchmark, new clock cycle measurements are now shown in
4.4. Our design can achieve at least 12.05x performance improvement until now, operating
on the RISC-V frequency (143MHz).

Benchmark | Worst tree depth | Average tree depth | Clock cycles/packet
acll 19 15 50
acll 5K 24 18 59
acll 10K 24 19 62
fwl 24 16 53
fwl 100 20 13 44
ipcl 26 18 59
ipcl 100 18 12 41
ipcl 1K 26 17 56

Table 4.4: Proposed accelerator’s performance

e Optimization 1: Pipelining & Packet Coalescing

Creating a loop in the accelerator input and using the packet coalescing technique as
described in the previous chapter (figure 3.11), we manage to achieve further performance
improvement. The improvement factor goes now from 12.2x to at least 30.4x (operating

on the RISC-V frequency). The renewed clock measurements are shown in table 4.5.

Benchmark | Worst tree depth | Average tree depth | Clock cycles/3 packets
acll 19 15 60
acll 5K 24 18 69
acll 10K 24 19 72
fwl 24 16 63
fwl 100 20 13 54
ipcl 26 18 69
ipcl 100 18 12 51
ipcl 1K 26 17 66

Table 4.5:  Accelerator performance with P=3 pipeline stages

Pipeline will not only solve the problem of idle clock cycles, but also will improve the
clock frequency of the accelerator. So, we will try adding extra registers to the path in order
to decide the ideal number of pipeline stages that gives the maximum frequency /stage
latency factor to the circuit of the accelerator.

After several tries on Vivado, we find P=5 (for P>5 pipeline stages we get no extra

improvement in frequency and only add extra latency to the path). New clock measurements
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are shown in table 4.6 and new accelerator schematic in figure 4.1. For P=5 pipeline
stages, the circuit of the accelerator can operate at fq = 227MHz (for P=3 we measure

far = 190MHz).

Benchmark | Worst tree depth | Average tree depth | Clock cycles/5 packets

acll 19 15 100

acll 5K 24 18 115

acll 10K 24 19 120
fwl 24 16 105

fwl 100 20 13 90
ipcl 26 18 115

ipcl 100 18 12 85

ipcl 1K 26 17 110

Table 4.6:  Accelerator performance with P=5 pipeline stages

input packets loop

32

‘d— tuple input|

RES I:I Memor Tn D I:I I:I 32bit
Y Comparator

address
register

Figure 4.1: Proposed HyperSplit Search accelerator schematic diagram with P=>5

We notice that clock cycles/packet are increased compared with the ones when P=3,
but the new execution supports higher clock frequency (f = 227TM Hz than f = 190M H z)

and so the performance is actually increased.
e Optimization 2: Extra parallelization using Dual Data-path

As described in the previous chapter, we double the circuit data-path by taking advantage
of the ROM memory IP block ability for dual-porting. This way we can automatically
double the number of packets that can be searched at the same time and therefore doubles
the overall throughput of the accelerator. So, the new measurements are shown in table
4.7. Considering only the clock cycles and the communication overhead (not taking into

account the frequency increase) the improvement factor becomes 49.12x.
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Benchmark | Worst tree depth | Average tree depth | Clock cycles/10 packets
acll 19 15 125
acll 5K 24 18 140
acll 10K 24 19 145
fwl 24 16 130
fwl 100 20 13 115
ipcl 26 18 140
ipcl 100 18 12 110
ipcl 1K 26 17 135

Table 4.7:  Accelerator performance with P=>5 pipeline stages and dual-port memory

e Optimization 3: Continuous stream processing without 10 stalls

The continuous IO we described in the previous chapter will actually "mask" the
communication overhead and add the interrupt overhead, which will refer to the N packets
in total (max number of ready packets -found by fine-tuning-, after which the buffer will
send an interrupt signal to the main core). We can achieve at least 70x performance
improvement, only in clock cycle level.

Table 4.8 shows the final calculated clock cycles measurements. Figures 4.2, 4.3 and
4.4 show the implementation resources, power and clock results of the final circuit of the

accelerator on Vivado.

Benchmark | Worst tree depth | Average tree depth | Clock cycles/10 packets
acll 19 15 85
acll 5K 24 18 100
acll 10K 24 19 105
fwl 24 16 90
fwl 100 20 13 75
ipcl 26 18 100
ipcl 100 18 12 70
ipcl 1K 26 17 95

Table 4.8:  Accelerator’s performance with P=5, dual-port memory and continuous 10
streaming

Utilization Post-Synthesis | Post-Implementation Utilization Post-Synthesis | Post-Implementation
Graph | Table Graph | Table

LUTH 1% Resource Utilization Available Utilization %
LUTRAM 1% LuT 4699 331680 142
FFY 1% LUTRAM 112 146880 0.08
Y 3% FF 1952 663360 029
1 = BRAM 570 1080 52.78

BUFG1] 1%
‘ ‘ ‘ | 10 276 520 53.08
o 22 2l s ol BUFG 1 624 0.16
Utilization (%)
(a) Utilization Graph (b) Utilization Table

Figure 4.2: Proposed Accelerator’s Resources on Vivado
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Figure 4.3: Proposed Accelerator’s Power on Vivado
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Figure 4.4: Proposed Accelerator’s Frequency on the FPGA

Period(ns)

Frequency (MHz)

4.400 227.273

4.2 Final Implementation Results

Table 4.9 shows the final calculated clock cycles needed for the searching of 10 packets

on the accelerator in comparison with the ones on RISC-V. Table 4.10 shows the Xilinx

Ultrascale xcku060-3 FPGA resources of the implementation of the proposed system as a

whole.
tot. RISC-V | D-Cache (SW total) D-Cache Cycles per 10 packets
Rule File | instructions accesses miss rate (%) | RISC-V | proposed
acll 2352326 474127 6,40 4961,39 85
acll 5K 15889789 3437143 12,12 7892,64 100
acll 10K 35737971 7775447 13,84 8922,56 105
fwl 894466 153736 11,17 6131,31 90
fwl 100 243735 10951 20,98 3767,02 75
ipcl 6131943 1301909 13,43 8476,08 100
ipcl_100 236745 9457 17,04 3144,26 70
ipcl 1K 3175587 653407 14,31 7789,80 95
Table 4.9:  HyperSplit Searching on RISC-V or proposed VHDL accelerator (+1/F cycles)
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Available | Rocket | HyperSplit Total Total
on FPGA | Chip | Accelerator | Utilization | Utilization (%)
LUTS 331680 14367 4699 19066 5.748
FFs 663360 7152 1952 9104 1.372
BRAMs 1080 ) 970 575 53.24
DSPs 2760 0 0 0 0

Table 4.10: FPGA utilization of the proposed HW/SW system (Kintex Ultrascale xcku060-
3)

Our final implementation gets up to 113x faster processing, on average, than the initial
RISC-V execution. Table 4.11 shows the actual achieved speedup at every step of our
implementation. Graph 4.5 shows the final improvement we get, both in terms of needed

clock cycles and achieved clock frequency.

RISC-V | Default accelerator | P=3 | P=5 | Dual data-path Final
Frequency 143 143 190 227 227 227
Period 7 7 5.26 4.4 44 4.4
Cycles/10 packets (avg)  6385.6 530 210 210 130 90
Time (ns, avg) 44699.2 3710 1104.6 | 924 572 396
Speedup 1 12.05 40.47 | 48.38 78.15 112.88

Table 4.11:  Achieved speedup on every step of the accelerator implementation
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Figure 4.5: HyperSplit search performance comparison during our implementation
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Conclusions & Future work

This work examined the possibility of accelerating Packet Classification, using a RISC-V
core combined with dedicated hardware accelerators. We placed a HyperSplit binary search
VHDL accelerator next to a RV64IAC RISC-V core, using the RoCC interface for the
core-accelerator communication. The proposed HW /SW co-design and presented results

led us to the following conclusions:

e Placing dedicated hardware accelerators next to the RISC-V is a feasible scenario for

a network processing architectural design.

e Functionalities that look inherently sequential can actually be accelerated on FPGA
by improving the memory accesses bottleneck (when there are big data structures

and searches) and clock frequency of a general purpose CPU.

e We tested our implementation using a really common network functionality (Packet
Classification) and managed to get two orders of magnitude higher performance (up

to 113x assuming correctly tuned buffering, e.g., without interrupt overload).

e The current work can be used even in 10Gbps routers. We can get even higher accel-
eration by implementing the design on ASIC, considering that the main acceleration

factor is the memory access rate improvement.

e RISC-V is a great choice for experimenting on hardware design, having open-source

ISA, simulation and implementation tools.
Future work can take into consideration the following actions:

e We can take advantage of high performance FPGA resources, such as the Ultra-
Ram, which is a perfect choice for storing big data structures, without the need of

sophisticated configuration (default configuration is sufficient).

e The actual system integration using a real network (with 10/25G Ethernet MAC
subsystem and optimal feeding of ethernet packets to RISCV).

7
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Chapter 5. Conclusions & Future work

e The acceleration and testing of other common network functionalities on our system,

such as data bitfield manipulation and queue management.

e Given the design testing on a real system, we could proceed to an ASIC implementation,

in order to gain one more order of magnitude.
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Acronyms

CPU  Central Processing Unit

VHDL Very Large Scale Integration

Hw Hardware

SW Software

ISA Instruction Set Architecture
FPGA Field Programmable Gate Array
10T Internet Of Things

MPLS Multiprotocol Label Switching
HDL  Hardware Description Language
ASIC  Application-Specific Integrated Circuit
QoS Quality of Service

CAM Content-Addressable Memory
TCAM Ternary Content-Addressable Memory
1C Integrated Circuits

1P Internet Protocol

TCP  Transmission Control Protocol
TCP  Virtual Private Network

RISC Reduced Instruction Set Computer
SoC System-on-Chip

MPSoC Multi-Processor System-on-Chip
HTTP HyperText Transfer Protocol
MMU Memory Management Unit

TLB Translation Lookaside Buffer

RTL Register-Transfer Level

NAT  Network Address Translation
VPN  Virtual Private Network

10 Input-Output

OVS Open Virtual Switch
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B.1 riscv-gnu-toolchain

In order to add the new instruction to the RISC-V ISA, we firstly need to add a new
opcode decleration to the opcode files and then add the new instruction to the RISC-V

cross compiler. So, we add the following to the corresponing file(s):

1. riscv-tools/riscv-opcodes/opcodes

hypersplit_search rd rsl rs2 31..25=0 14..12=7 6..2=0x02 1..0=3

2. riscv-tools/riscv-gnu-toolchain /riscv-binutils-gdb /include /opcode /riscv-ope.h
#define MATCH_HYPERSPLIT 0x0000700b

#define MASK_HYPERSPLIT 0xfe00707f

DECLARE_INSN (hypersplit_search, MATCH_HYPERSPLIT, MASK_HYPERSPLIT)

3. riscv-tools/riscv-gnu-toolchain /riscv-binutils-gdb /opcodes /riscv-opc.c

riscv_opcodes[] = {

{"hypersplit_search", "I", "d,s,t", MATCH_HYPERSPLIT,
MASK_HYPERSPLIT, match_opcode, O }

Next, we describe the steps for building the tool-chain, in order to generate the cross-

compiler and be able to use it.

1. Init and update all git submodules.

$ git submodule update --init --recursive

2. Install dependency packages.

$ sudo apt-get install autoconf automake autotools-dev curl device
-tree-compiler libmpc-dev libmpfr-dev libgmp-dev gawk build-

essential bison flex texinfo gperf

3. Select installation path

$ export TOP=/home/apnev/fpga-zynq/rocket-chip
$ export RISCV=$TOP/riscv
$ export PATH=$PATH:$RISCV/bin

4. In gnu-toolchain directory:
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$ ./configure --prefix=$RISCV & make)

5. In fesvr directory:

$ mkdir build
$ cd build
$ ../configure --prefix=$RISCV

$ make install

6. In pk directory:

$ mkdir build

$ cd build

$ ../configure --prefix=$RISCV --host=riscv64-unknown-elf
$ make

$ make install)

7. In isa-sim derectory:

$ apt-get install device-tree-compiler

$ mkdir build

$ cd build

$ ../configure --prefix=$RISCV --with-fesvr=$RISCV
$ make

$

[sudo] make install)

8. In tests directory:

$ git submodule update --init --recursive
$ autoconf

$ ./configure --prefix=$RISCV/target

$ make

$ make install

Having cloned the HyperSplit C code into the riscv-tests directory, we cross-compile

the code and then we execute it using spike and pk. An example HyperSplit usage is:

$ spike pk hypersplit -r test/rules/fwl -t test/traces/fwl_trace

B.2 rocket-chip

After we configure our main rocket-chip directory (SROCKETCHIP), we build the
DefaultConfig and run the given tests by:

$ cd $ROCKETCHIP/emulator
$ make -jN run
or

$ make -jN run-asm-tests
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The next step is to add the RoCC HyperSplit "dummy" module (the accelerator circuit)
to the rocket-chip code using the RoCC interface. So, we add our custom descriptions to

the following files:

e Custom Instruction related parts

1. In /home/apnev/fpga-zynq/rocket-chip/src/main/scala/rocket /Instructions.scala:

def HYPERSPLIT = BitPat("b?7?777?777777777777111777770001011")

2. In /home/apnev/fpga-zynq/rocket-chip/src/main/scala/rocket /IDecode.scala:
At class RoCCDecode:

HYPERSPLIT-> List(Y,N,Y,N,N,N,Y,Y,A2_ZERO,A1_RS1,IMM_X,DW_XPR,
FN_ADD,N,M_X,MT_X,N,N,N,N,N,N,Y,CSR.N,N,N,N,N),

e Configuration related

1. In src/main/scala/tile/LazyRoCC.scala:

class HyperSplitSearch(implicit p: Parameters) extends LazyRoCC {
override lazy val module = new HyperSplitSearchModule(this) 1}

2. In src/main/scala/system/Configs.scala:

class HypersplitRoccConfig extends Config(new WithHypersplitRocc
++ new DefaultSmallConfig)

where:

class DefaultSmallConfig extends Config(new WithNSmallCores (1) ++

new BaseConfig)

3. In src/main/scala/subsystem/Configs.scala:

class WithNSmallCores(n: Int) extends Config((site, here, up) => {
case RocketTilesKey => {
val small = RocketTileParams(
core = RocketCoreParams (useVM = false, fpu = None),
btb = None,
dcache = Some(DCacheParams (
rowBits = site(SystemBusKey) .beatBits,
nSets = 256,
nWays = 4,
nTLBEntries = 4,
nMSHRs = O,
blockBytes = 64)),



Appendix B. Toolchain Building steps 85

icache = Some(ICacheParams(
rowBits = site(SystemBusKey) .beatBits,
nSets = 64,
nWays = 4,
nTLBEntries = 4,
blockBytes = site(CacheBlockBytes))))
List.tabulate(n) (i => small.copy(hartId = i))

b

and

class WithHypersplitRocc extends Config((site, here, up) => {
case RocketTilesKey => up(RocketTilesKey, site) map { r =>
r.copy(rocc =
Seq (
RoCCParams (
opcodes = OpcodeSet.hypersplit,
generator = (p: Parameters) => {
val hypersplit_search = LazyModule (new
HyperSplitSearch () (p))
hypersplit_search})
))

1))

e Accelerator Related

1. In /src/main/scala/tile/LazyRoCC.scala, we add the class af the "dummy"

accelerator:

class HyperSplitSearchModule (outer: HyperSplitSearch, n: Int = 4)(
implicit p: Parameters) extends LazyRoCCModule (outer)
with HasCoreParameters {
val count = Reg(UInt(width = xLen))
val wdata = Reg(UInt(width = xLen))
val adderl = Reg(UInt(width = xLen))
val adder2 = Reg(UInt(width = xLen))
val resp_rd = Reg(io.resp.bits.rd)

val s_idle :: s_wait :: s_resp :: Nil = Enum(Bits(), 3)

val state = Reg(init = s_idle)

val finished = Reg(Bool())

io.cmd.ready := (state === s_idle)
io.resp.valid := (state === s_resp)
io.resp.bits.rd := resp_rd

io.resp.bits.data := wdata
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when (io.cmd.fire()) {

adderl := io.cmd.bits.rsl
adder2 := io.cmd.bits.rs2
wdata := io.cmd.bits.rsl + io.cmd.bits.rs2
resp_rd := io.cmd.bits.inst.rd
count := UInt (0)
finished := Bool(false)
state := s_wait
}
when (state === s_wait) {
when (!finished) {
count := count + UInt (1)
}
when (count === adderl) { finished := Bool(true) }
when (count === UInt(3)) {
io.interrupt := Bool (true)
state := s_idle
}
state := Mux(finished, s_resp, s_wait)
}

when (io.resp.fire()) { state
io.busy := (state =/= s_idle)

io.interrupt := Bool(false)

Finally, we can see the system’s configurations

building output. The following instance uses the

:= s_idle %}

of the beginning of the Rocket Chip

configuration including the Dummy

HyperSplit RoCC Accelerator (instruction that waits for rd result).

Interrupt map (1 harts 2 interrupts):
[1, 2] => dut

/dts-v1/;
/ {

#address-cells = <1>;

#size-cells = <1>;

compatible = "freechips,rocketchip-unknown-dev";

model = "freechips,rocketchip-unknown";
L13: cpus {

#address-cells = <1>;

#size-cells = <0>;

L5: cpu@0 {
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clock-frequency = <0>;

compatible = "sifive,rocketO", "riscv";
d-cache-block-size = <64>;

d-cache-sets = <256>;

d-cache-size = <65536>;

device_type = "cpu";
i-cache-block-size = <64>;
i-cache-sets = <64>;
i-cache-size = <16384>;
next-level -cache = <&L7>;
reg = <0>;

riscv,isa = "rv64imac";
status = "okay";

timebase-frequency = <1000000>;

L3: interrupt-controller {
#interrupt -cells = <1>;
compatible = "riscv,cpu-intc";

interrupt -controller;

I3
g
e
L7: memory@80000000 {
device_type = "memory";
reg = <0x80000000 0x10000000>;
+s
L12: soc {
#address -cells = <1>;
#size-cells = <1>;
compatible = "freechips,rocketchip-unknown-soc", "simple-bus";
ranges;

Lli: clint@2000000 {
compatible = "riscv,clintO";
interrupts -extended = <&L3 3 &L3 7>;
reg = <0x2000000 0x10000>;
reg-names = "control";

}

L2: debug-controller@0 {
compatible = "sifive,debug-013", "riscv,debug-013";
interrupts-extended = <&L3 65535>;
reg = <0x0 0x1000>;
reg-names = "control";

};

L10: error-device@3000 {
compatible = "sifive,error0O";
reg = <0x3000 0x1000>;
reg-names = "mem";

}s

L6: external-interrupts {

interrupt -parent = <&LO>;
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interrupts = <1 2>;

}s

LO: interrupt-controller@c000000 {
#interrupt -cells = <1>;
compatible = "riscv,plicO";

interrupt -controller;
interrupts -extended = <&L3 11>;
reg = <0xc000000 0x4000000>;
reg-names = "control";
riscv,max-priority = <7>;
riscv,ndev = <2>;

}s

L8: mmio-port-axi4@60000000 {
#address -cells = <1>;
#size-cells = <1>;
compatible = "simple-bus";
ranges = <0x60000000 0x60000000 0x20000000>;

g

L9: rom@10000 {
compatible = "sifive,romO";
reg = <0x10000 0x10000>;

reg-names = "mem";

Generated Address Map

0 - 1000 ARWX debug-controllerQO
3000 - 4000 ARWX error-device@3000
10000 - 20000 R XC rom@10000
2000000 - 2010000 ARW clint@2000000

c000000 - 10000000 ARW interrupt-controller@c000000
60000000 - 80000000 RWX mmio-port-axi4d@60000000
80000000 - 90000000 RWXC memory@80000000

We can generate system’s verilog in the verilator subdirectory using:

$ cd $ROCKETCHIP/emulator
$ make -jN CONFIG=HypersplitRoccConfig

where N = number of threads used for builing.
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