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Amayopebetar 1 avTiypagy, amodrixevon xou davour tng mapoloug epyaciog, & oho-
XANPOL 1) TUANITOS AUTAS, Yot EUTopxd oxond. Emtpéneton 1 avatinewon, anodfxeuon
%0l OLVOUT) Yot GXOTO U XEEOOGKOTUXG, EXTAUDEVTIXNC 1 EQEUVNTIXNG PUONG, UTO TNV
TeoUTOUEsT Vo avopERETOL 1) TYY| TEOEAEUOTG O VoL OLUTNEE(TOL TO TAPOV VUL
Epwthpata mou agopoly TN yeNnon Tng EpYAclag Yol XEEO0OXOTUIXO GXOTO TEETEL Vo

ameLIOVOVTUL TPOS TOV GUYYQPUPEQ.

Ou andec xon o GUUTERIOUATA TOU TEQLEYOVTOL GE QUTO TO EYYEAUPO EXPEALOUV TOV
oLYYEaPEd xou BeV TEETEL var punveLdel OTL avTimpocwTeloLy TI¢ enionuec VEoel Tou

Edvixol Metoéfou Iloauvteyveiou.






“The road to wisdom? Well, it’s plain and simple to express:

Err and err and err again, but less and less and less.”

— Piet Hein






Abstract

The proliferation of connected devices has led to very strict requirements for
next-generation wireless networks, taking into consideration environmental as well
as economic concerns. In particular, one of the primary goals in the design of fifth-
generation (5G) wireless networks is to satisfy the extremely high data rate (traffic
demand) of users with the minimum energy consumption. For this purpose, a new
performance indicator, namely, energy efficiency (EE), has been proposed in the lit-
erature which is measured in bits/Joule and expresses the amount of information that
can be reliably transmitted per unit of consumed energy.

This Dissertation deals with the design of efficient optimization algorithms for
next-generation wireless networks, including terrestrial as well as satellite communi-
cation systems. More specifically, the theory of sequential convex optimization (SCO)
is applied to solve challenging optimization problems, such as the maximization of
several EE-metrics, so as to develop energy-efficient power allocation strategies. SCO
is a powerful mathematical tool that can be used to solve nonconvex optimization
problems by solving a sequence of convex optimization problems. This method is
theoretically guaranteed to converge for any initial feasible point and, under suitable
constraint qualifications, achieves a stationary point (i.e., a point that satisfies the
Karush-Kuhn-Tucker (KKT) conditions) of the original problem.

Furthermore, we study some combinatorial optimization problems in satellite net-
works (SatNets), which are proven to be NP-hard. In particular, we focus on the
optimum selection of ground stations (GSs) in SatNets with site diversity (SD), satis-
fying given availability requirements. SD technique is used to improve the availability
of satellite systems by mitigating the atmospheric impairments, such as rain (for ra-
dio frequencies) and cloud coverage (for optical frequencies). Moreover, we present
global optimization algorithms, based on the branch-and-bound (B&B) method and
dynamic programming (DP), as well as a polynomial-time approximation algorithm
with provable performance guarantee.

Finally, we examine a load-sharing smart gateway diversity (LS-SGD) architec-
ture in SatNets, which has been recently proposed in the literature. For this diversity
scheme, we define the system outage probability (SOP) based on the Poisson bino-
mial distribution (PBD) and taking into account the traffic demand as well as the
gateway (GW) capacity. In addition, we present several methods for the exact and
approximate calculation of SOP.

Keywords: wireless networks, satellite communications, energy efficiency, resource
allocation, site diversity, smart gateway diversity, outage probability, ground station
selection, sequential convex optimization, combinatorial optimization, computational
complexity, NP-hardness, branch-and-bound method, dynamic programming.
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Abstract in Greek — ITepiindn

H royeio adinon twv cuvoedeuévwy cuoxeU®Y EYEl 0dNYHOEL Ge TOAD AUOTNEES
ATOUTACELS YLo ToL aoUpUaTol BixTua EMOUEVNS YEWLAS, Aaufdvovtag umodn tdéco mepr-
PaAdovtikd 660 xon otkovoptkd CNTHUOTOL MUYXEXQOHIEVA, EVOC OO TOUS TEMTUOYIXOVS
OTOYOUC OTO GYEDICUO TV ACUQUATWY OIXTUMY TEUTTNG YEVIAS (5G) eivon 1 txavoToln-
om Tou e€onEETIXd UPNAOU PUTUOU BESOUEVLY TWV YENOTOVY UE TNV EAGYLO TN XATAVIANCT)
evépyewc. T o oxomd autod, €yel mpotoel Evag véog delxtng emldoong oty Pi3iio-
Yeopio, mou ovoudletar evepyelakny anédoon (EA), o omolog petpiéton oe bits/Joule
xa exedlel TV ToooTNTA TANEOYopiag Tou Utopel vo petadolel allomioTa ovd Lovada
HATOUVOAOXOUEVNG EVEQYELOG.

H rapotoo Awaxtopixry Awotei3y| acyoheiton ye T oyedioon amodotikdy akyopil-
Howv BeATioTOTOMONS Y10 AGUPUUTA BIXTU ETOUEVNS YEVIAS, CUUTEQLAUPBAVOUEVLY TWV
enlyelwy xaddg xoL TV 50pUPOPIHKY CUCTNUATKY emxovwviag. TIo cuyxexpéva, e-
papuoleton 1 Yewpla e dadoyikris Kuptrs PeAniotonoinons (AKB) yio tyv enfhuon
BLOXOALY TEOBANUATLY BeATIoTOTOMONG, OTWS 1) UEYICTOTOINGCT] DLUPORKY UETEXODY
EA, dote va avantuyolv evepyElond-anodoTnES OTRATNYIXES xaTavOURC oyvog. H
AKB eivon éva toyupd padnuoatind pyoieio mou unopel vo yenoylomomdet yia tny eniiv-
O™ UN-%VET®V TEOBANUATKY BelTioTonolnong emAbovtog uLor oxohovdior xupTY TEOBAN-
udtwyv Beitiotomoinone. Auth 1 uédodog eivan Yewpnuixd eyyunuévn va cuyxhiver yia
0T0100NTOTE APY1KS EPIKTO ONUELD %o, UTO XATIANAES Tpolmodéaelc, emTuyydvel €va
otdouo onueio (Bn)\o@ﬁ, eva ornuelo mou ixavorotel tig cuvifixeg Karush-Kuhn-Tucker
(KKT)) tou apyxol npofAfuatoc.

Emuniéov, uehetdue oplopéva cuVOLNO TS TeoBAY Lot BEATIOTOTOINOTE OE BOPUPO-
e dixtua, Tor onofo amodevieTon OTL elvon NP-0UokoAa. Xuyxexpyéva, eoTdCouue
ot Béltiotn emhoyy entyeiwv otadundy (EX) oe Sopupopxd dixtuo ue Owepopioud
0éong (AB), wavoroudvtag dedopéveg anathoelc dadeotpotnrag. H teyviny AO yen-
owornoteltar yioo T Pedtiwon tng SlodecudTNTUC TWV BOPUPOPIXWY CUC TNUNTWY O-
BAOVovTOC T oTooPaEXd. ponvopeva, 6Twe N Beoyn (Yl Tic pablocuyVOTNTES) Xou 1)
xdhudm and véen (yio Tic omuxéc ouyvotnTeg). Axoun, mapouctdlovue alydpiiuovs
o\ikri§ BeAtiotomoinong, e Bdon tn pédodo Stxhddwone-xa-gedyuatos (A&kP) xou
Tov duvoxd mpoypappationd (AIL), xadde xou évav pooeyyotiké akydpiipo moAvw-
VUKoV Xpovou e amodedelYHEVN €YY 0o eTldoong.

Téhoc, e€etdloupe o apyLtextovixy| diagopiopol ébvmvwr tuAdy (AEII) faowopévn
oto dauopacud optiov o dopLPoEd dixTua, 1 omola €yel tpotalel TEdGPIUTH OTN
BuBhoypapio. o oautd To oy fua Slapoptopon, opiCoupe Ty mbavdTnta Owakomrs ToU
ovotrjuatos (LIAY) Bdoer tng drwvuuic xatavourc Poisson xon AaufBdvovtoag unédn
0 {fTnom Bedouévey xaddg xon T ywenTtixétnTa xdle ToAne. Eriong, ntapouvoidlouvue
OLdpopeg PeVEO0UC Yiar ToV oxpl31] xou TEooEYYLoTXd uTohoyioud tng IIAY.

AéEerg KAer61d: aclppota 6ixTud, B0pUPORIXES ETXOVWVIES, EVEQYELNXY| AmOOOGT),
XATOVOUT TOPWY, Blapoplods €one, Blapoplonds EEUTVLY TUAGY, TiovoTnTo dlaxo-
Thg, emhoyr| entyeou otaduol, dwadoyn xupTy PeAtiotoroinoy, cuvdbuacTixh BelTi-
otomoinoy, unoAoyloTix ToAuthoxotnta, NP-oxhnedtnta, uédodog draxAddmorng-xo-
PEAYHATOC, DUVOULXOS TIEOY QUUHUATIOUOG.
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Extended Abstract in Greek — Extetapévn Ilepiindn

Kat” apydc, mapovoidleton yior cuvontt| meptypapr tne Awoxtopuhc Atatplhc xa

TWV ONUAVTIXOTEPWY GUVELCPORKOY TNG.

Evormoinuévn uefBodoloyia pyia tn peYIOTOTOINON TNG €VEPYEIAKTS
anédboong oraduiouévov allpoiouatog o€ aopuara diktva

H evepyeiaxny anédoon orabnouévov alpoioparos (EAXA) etvon pa Boow| yetpux
enidoong ot ETEPOYEVH BixTUA, GTIOU OL XOUBOL EVOEYETAL VoL EYOUV DLUPOPETINES AT~
Toelg evepyelaxrc amodoong. Ilup” dha autd, 1 peyotonoinon tng EAYXA ebvar éva
0UoX0AO TEOBANUL AOYW TNG UN-XVETASC MOopPNC Tou. Y& avtiieon ue TNV UYL TAPEYN
€pEUVaL, TOEOUGCIACOUPE Plal CUCTNUATIXT TROCEYYLON Yl TN ueylotonoinon g EAYA
YewEOVTAC O)L UOVO TERLOPLoUoUC Loy og, oAhd xor TEpLoploolc puiUol BEboUEVLY,
YETOULOTOLOVTOS o YEVIXT) EXPEUOT) YLOL TO AOYO GHUATOC-TEOC-TUREUBOAY-xou-00pufo
(SINR). Xuyxexpwéva, to apyxd mpéBhnuoe yetooynuatiletar o€ éva loodUvopo TEoBAN-
Mo xaL 6T oLVEYELN TpoTelveTal Evag alybpriuog OdoyiknS KupTHS PeAtioTonoinons
(AKB). Autéc o ahydprduog eivor eyyunuévog va oUyXALVEL YLol OTIOLOBATOTE oEYIX6
eQTO oNUEio xot, UTO XATIAANAES TEOUTOVECELS, EMTUYYAVEL Utal AOGT| TOU LXAVOTIOLEL
¢ ouvirixeg Karush-Kuhn-Tucker (KKT).

Emuniéov, mapéyouue ofloonuelnTee EMEXTACEIC TNC TEOTEWOUEVNC pedodoloyiog,
CUUTEQLAUUPBUVOUEVLY TV CUCTNUATWY UE TOAAXTAS UTAOX TOPWY, XoiG xou EVaL YE-
VIXOTEPO OVTENO XAUTAVIAWGNS LOoY YOS TOU OEV Elvor amopadTnTor XUETY| CUVEETNCT] TWV
oy wyv exnounic. Télog, olupwva pe TNV apriuntixr avdAuor), o akydpriuog Topoust-

alet ypriyoen olyxAoT, younAy TOAUTAOXOTNTO XAl EVPWO Tio OTAL 0Py XE oTueiaL.

Néog ovupiBaocuds petat dikaroovrng kar ouvroAikng €nidboong Tou
ovoTnuarog and TNy droihn TNgG €vepyerakng arééoong

H ouvolixr) evepyeiaxn) anédoon (XEA), mou opiletar wg 0 AdYoS T0U GUVORXOU
eLUUOU BEBOUEVWY TTPOC T GUVOAXY| XATAVAAWGCT) EVERYELNS, VewpelTon 1 To GNUoVTLXN
uetpxr enidoong omd v drodn tne evepyetoxfic andédoone (EA). Qotdoo, dev elup-

Tdton dueca and v EA xdide (edéng xan 1 yeylotonoinon tng odnyel oe un-dixoun

v



xatavoun| woybog. And v GAAN TAEUR, 1) UEYICTOTOMNOT TNS €AdYI0TNS €vepyealarns
anédoons (EEA), dnhadn tng ehdytotne EA 6hov tov (edéewy, eyyudton tny mo dixoun
xaTorvolT| Loy 00g, OUWS BEV TEPLEYEL CUPT) TANEOYORIA CYETIXA UE T GLUVOAXT| ETLOOOT)
TOU GUC THHUATOC.

H »dpio tdon otnv tpéyovca €peuva eivon 1 peyiotonoinon e YEA # e EEA
CeywploTd. Xe avtiieon Ue TIC TPONYOUUEVES GUVEIGPORES, TOPOUCIALOUUE Lol YEVIXN
ToAuxpiTnplaxt| Teocéyyion yio TN Beitiotonoinon g EA mou hopfdver Toutodypova
unodn t6co TNy XEA 600 xan tnv EEA. Adyw tne un-xupthc poppric tou e&etalodue-
vou TpofBAuaTog, TeoTelvoulE Evay ahydetipo youniric TohutAoxdtntag mou Poactleto
ot Yewplo e dadoyiknis kuptrs Pedtiotonoinons (AKB). Téhoc, napéyouue éva véo

VewpnTind amotéAeoya yiol TV ToAUTAOXOTATA TwV ahyopituny AKB.

Evepyerakd-anodotiki) katavoun woxvog o€ 6opvgopikd ocvornuata
M€ TOAAATAES déo €S

H xotavdhwon evépyetlag anotelel x0plo TEPLOPIGTIXO TOREYOVTOL YIo TV XATEQRY OUE-
vn Lebgn (downlink) oo Sopupopixd cuo THUaTa Ue TOMATAES BEoUES, Xxadwg el or-
HovTiG avtixtumo otn wdla xan T Sdpxela (om1ig Tou BopupoéeoL. e autd To TANLCLO,
UEAETAUE €var VEO TEOBANUa xaTavounc oY 00g TOU GTOYEVEL OTNV OT6 XOWVOU EAXYICTO-
TolnNom NG UN-1kavoTomnUérns YwpnTIKOTNTAS OCUOTHATOS XKoL TNG OUVOAIKTS aKTIVO-
PoAoluerng 10y 00S U€Gw TNG ToAuxpLTnELonS BeATioToToinoTG.

Kot” apydc, yetaoynuotiCouue T0 apyixd Un-xuptd un-otpoploylo tpéBAnuc oe Uia
LloOOLYAUT UN-%UETY| dlaopiown popgt| elodyovtag Ponintixée petofSAnté. XTn ou-
véyeta, oyedidlouue évay ahybdprduo Owdoyikns kuptrs mpooéyyions (AKII) mpoxet-
uEvou va emtOyoulE Eva oTdouo onpeio Ye eV oY ToAuTthoxotnTa. Adyw Tng Yeryo-
eNS CUYUMGHC TOU, AUTOS 0 ohyYOELIUOC Elvor XUTAAANAOC YLl BUVOULXT| XUTAVOUY| TORMVY
0€ PEMNOVTIXG CUG TAUOTA OTIOL 0 80pUPOEOC Vo UTOREL Vor TPOCaPUOLEL TNV Loyl EXTO-
umrc Tou. Emmiéov, anodevioupe €va VEO amOTEAEOUN GYETIXS UE TNV TOANUTAOXOTNTA
e pevdédou AKII, otn yevinr nepintworn, to omolo cuumAnedvel Tnv uTdpyouca PBi-

Bhoypagpia 6Tou 1 ToAuTAoxOTN T AUTHS TNG MEVOBOU arvahlETOL LOVO aiprdumnTixd.
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OMikd BéATioTn emAoyn) entyeiwv otaludy oe 6opuvpopikd ocvoTnuata
ue drapoproud 9éong

H SadeoyudtnTa TV 50pugopinmy GUCTNUATLY ETxovwviag Teptopl(etoul o oTuo-
vid Bodud and atuoopaipixd govoueva, 6mwe 1 Beoyn (Yo Tic pablocuyveTnTeS) Xat
1 %x8Audn amd véen (yior Tic omTixég ouxvérmsg). Mo Moo og autd To TEdBANu elvor
N e ViXn Sragopiopol Déong (AG), 6mou éva BixTLO O YEWYEAUPIXE XUTUVEUNUEVOUS
entyetoug otodpole (EX) umopel vo Sraocgahioet, e peydhn miovétnto, 6Tt ToUuldyL-
otov evag EX elvon dradeoyog yio olvdeoT pe tov dopupopo ot xdle ypovixr teptodo.
Qdot600, 1 eyxatdoTaon TepitTwy EX empéoel un-avoyxalo npécieto x6oT0¢ Yior Tov
OLoyELELO TY) Tou dxTUoU. Xe auTtéd To TAdlCLo, UEAETAUE Eva TEOPBANU BehtioTonolnong
mou ehaytoTonolel Tov apriud Twv anoutoluEveyY EX, ixavomoumviac cuyxexptuévoug
TEPLOpLIoUoUS dtardeoydTnToC.

Apyird, to mpdBhnuo petooynuatiletar oe TeoBANUa Suadixol (axéponou) yeouL-
%00 TPOYpoUPTIoNoY, To onofo amodeixvieTon 6Tt elvon NP-0Uokolo. 11 cuvéyel,
oyedidlovde évay ahybdprduo dakAddwons-kar-gpdypatos (AED), ue eyyimon olxic
Behtiotonolnong, o onolog Bactletar 0T YAdE®OT YRUUUXOU TEOYPUUUATIONO) Xa)(S
xan og o drinotn pédodo. Téhog, to apriuntind anoteAéopota detyvouv 6Tl 0 Tpo-
TEWVOUEVOS oY OIIUOC UTERTEQEL ONUOVTING TWV UPLG TAUEVLY UEVOBWY ot EYEL YOoUNAN

TOANUTIAOXOTNTA UECTG-TIEQITTWOTG.

EAayiotonoinon touv k60ToUS €ykatdoTaons twy entyeiwy oraludv
o€ dopuvpopikd SikTUVA

E8¢, pehetdue ) BéAtiotn emhoyy| enbyeiwv otaduody (EX) oe RF/ontind Sopu-
popxd BixTLA TEOXEWEVOL Vo EAyLo ToTOMNIEL TO GUVOAXO XOGTOC EYXATACTACTC UTO
dedopévn analtnon miavotnTag dlaxonrc, utodétovTag aveldotnTes xatpixéc cuvIrxeg
uetall v EX. Ilpota, delyvouue 611 To mpdinua Beitictonoinong urnopet va Slatume-
Vel ¢ TeoAnUo BUUdIXOU YEUUUIXO) TEOYPUUUATIOUOD %ot UETH OiVOUUE Lo YewenTixn
am6den tne NP-orkAnpdtnrtag tou. Emmiéov, oyedidlouue évav alydpifuo duvvapiikol
TPOYPaAUMaTIO OV (PELBO-TONUGVUIXAC TOAUTAOXOTNTOS UE €YYONoT olxig BEATioTO-

molnong, xadwe xou évay mpooeyyiotiké alydpidpo TOAVWVLIIXO) YEOVOU UE UTOBEDELY-
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uevn eyyonor enidoons. Télog, 1 enidoom Twv TEoTEVOUEVGLY ahyopliuwy entainiedeTo

UEC opLIUNTIXGDY TEOCGOUOLOCEMY.

Axp1B1S kar TPooE Y YITTIKOS VUToA0YIoUOS TnG mibavdtnTag drakornig
o€ dopuvpopikd dikTva Me 61aPopPIoud EEVTvwY TUAGY

H yenowonoinon e€oupetind udgmiwy cuyvotitwy (ETE) urogel vo emtdyel mohd
v puduanddoon ot Bopugopixd dixtua. 26T600, 1 cofupt efacVévnon Aoyw Beo-
xfc otic EYY emBddher avotnpoic teptopiopole otn dlondeoiudtnta Tou cuothuatog. O
drapoprouos éEumvawr Tuddy (AEID) Yewmpeiton anapoftnTtog TROXEWWEVOU Vo BLoc@olGo Tl
1 amontoLuevr dtardeoydTnTo Ye €DA0YO x60TOC. e auTé To TAAlGL0, EEETALOLUE Uior op-
yrextovwry AEIL Baoojévn ato diapoipaciué poptiov, 1 omoia €yel mpotadel mpdopota
ot Pihoyeapio. o autd To oyrua diagopiouol, opiCovue v mibavétnta OwaKkomng
tou ovothuatos (IIAY) yenowonowdvtog ua avotnen mdovotxy| avdivon Bdoel tng
OLwvuXc xatavourc Poisson xou Aapfdvovtog unodn tn {itnorn dedouévmy xadoe xou
™ YwenTxoTNTA Xde TOANC.

Emunicov, nopéyouue didpopeg puedodoug Yo Tov axplf3n) xow TOCEYYLoTIXG UTOAO-
yioud tne IIAX. ‘Ocov agopd tov axei3y| utoroyioud tne IIAX, diveton uio Exgppaon
HAEIG TS LORPTC xou Evag oy detduog Bactlopévog ot Evay avadpouxd TOTo, Xt oL 800 Ue
TETPAY VLX) TOAUTAOXOTNTA G TEOG TOV 0Pl Twv TUAGY. TEhog, oL Tpocey Yo TIXEG
uédodol nephauBdvouy Yvno tég xatavopés miovotntoc (Swvuuxt, Poisson, xavovixn)
xan éva pedypa Chernoff. Xougwvo e tar apriuntixd anoTeAéouaTa, 1) SLVUULXY| XL 1)

Poisson xotoavopr| etvon poxpdy ot mo axpifelc npoceyyloTnég pévodol.
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To xbpo pépog autrc e AwteBric umopel va yweiotel o Tpla wéen. To 1° uépog
ooy ohelton UE oTpatnyikés Katavours 1y vos xat tepthopfdver ta Kegdhona 2, 3 (ueyt-
0 TOTOINON EVERYELAXTC ATODOCTG GOE ACUQUOT dixtua) xadde xon to Kegdhawo 4 (Bs)m—
O TOTOINGT| BOPUPOPIXGY CUCTNUATOY AaUPEvovTag LTOYN TNV XATAVIAKOT) EVEPYELNC).
To 2° pépog ueletd tn Pédtiotn emAoyn entyeiwy otaduwy oe RF /omtind 00PUPOPL-
%4 dixTua ue dlapoploud Yéong xan anoteleiton amd ta Kegdhouo 5 xou 6. To 3° uépog
etvou t0 Kegdhato 7, 1o omolo xohbnter Ty texvikn) diagopiopiol ébunvawy tuddy (AEIL)
Paciouévn oo dwapoipacid poptiov oe dopuopixd cuoThidata. Ilo cuyxexpyeva, 1

Awbaxtopin] Awtelf) etvon opyaveuévn g egnc.

Apyind, to Kegpdhawo 1 anotehel Ty eloorywyr xou mepthopfdvel: to xivnteo xo o

OXOTO, Lo GUYOPN TV XVELWY GUVELS(OP®Y Xl T dopr e Awuxtopurc Awteific.

Y10 Kegdhao 2, mapouctdloupe éva Thadolo ylol Tn HEYIOTOTOINGY TNG EVERYEWIXT|S
anédoone otaduopévou adpoiopatoc (EAXA) oe cuotiuata aclpuatne emxovwviog,
VewpdVTaC pa YEVIXT EXppoor Tou AOYou GhuoTtoc-Teoc-TopeUBofi-xa-topuBo (SINR)
Tou TepL oUPdvel TapeUBoAT 1660 amd ToUg UTOAOLTOUS YPNOTEC OGO Xou o6 ToV (Blo Tov
Xeot (oturo—nocpspﬁo)\r’]). Ewwotepa, mpotelvetar Evag alyoprduog dladoytxig xupThg
Behtiotonoinong (AKB) xau mopéyovton eniong o€loonuelnwtes ENEXTACELS TOU 0moppéouy

am6 auThy TN Yedodoroyia.

Y10 Kegdhato 3, ciodyeton évag véoc cupfiBoaoudc uetalld tng dxonocivng ot Tng
OLVOMXNAG EMUDOONE TOU CUOTHUNTOS G GPOUS EVEQRYELUXNG OTODOOTG. LUYXEXPWEVA,
TOEOUGCIACOUPE Lol YEVIXY) TOAUXELTNELXY TEOCEYYIoN Yo T BEATIoTOTOINoT TN EVER-
yetoxnc an6doone mou hopfdver utddn ) cuvohxt evepyetaxy| anédoon (XEA) xadde
xou Ty eN&ytotn evepyetoaxty anddoon (EEA). Emniéov, ayedidlouue évav alyopripo
YOUNATS TOAUTAOXOTNTOS YenoudoTolnvTog Tr Yewplo Tng dladoyxrg xupTthg BeATioTo-
noinone (AKB) npoxeuévou va avtigetownicoupe 1o un-»xuptoé npdBinua. Téhog, divetan

éval JewpenTind anotéheoyo yior TNV ToAUTAOXOTNTO TwV ahyopiduwy AKB.

Y10 Kegdhawo 4, yehetdye €vo mpdBAnuo evepyelaxd-amodoTixnc xotovoung 1oy 0og
OE DOPUPOPXE CUCTAUATY PE TOAATAEG DECUES, TO OTolo OTOYEVEL OTNY Amd X000

ENOYIOTOTOINGT] TNG UN-IXAVOTIOMNUEVNE YWENTIXOTNTAS CUCTHUNTOS XAl TNG CUVOMXTG

X



axtvoPoroluevng oy og ueow tng BeATioTonolnong TOAATAGOY XpLtnelwy. Luyxexpl-
uéva, oyedidlouue évay ahydprduo dradoyixric xupthc mpocéyyione (AKII) npoxeipévou
VoL ETLTUYOUNE EVOL OTACLIO OTUElo Ue younAY toluthoxdtnta. Emimhéov, amodetvbouue
éva VEo amoTtéheopa oyeTixd Ue TNy tohumhoxdtnto Tne pedodou AKII (onuetdveton 6t
n AKII eivar pna edixr) mepintwon s AKDB, 6mov 0Ae§ o1 ouvaptioes tou apyiiol
mpoPARatog umopoly va ekppactoly ws diagopd 6Vo KUpTdy ourapTioewy).

Y10 Kegdhawo 5, ectidloupe otny ehaylotonoinom tou apripod twv entyeinv otol-
UGV IXOVOTOLOVTOG OEDOMEVES AMUUTHOELS OLAECUOTNTAG O BOPLUYOELXS GUC THUTA
ue Olupoploud Véonc.  Apywd, amodetxvioupe OTL To TEOPANua BeiticTonoinong
elvoar NP-0Uoxolo xau, otn cuvéyeia, oyedidlouue évay ohyootduo BlaxAddmong-xol-
pedypotoc (A&P) e eyyinon olxhc Peltiotonoinone xou younhf TOAUTAOXOTNTOL
uEong-teplnTwong.

To Kegdhowo 6 €yel va xdvel ye 1 BEATIOT) emAoyY| enlyelnv oTadudy oE dopu-
PopLXd CUCTAUNTA WOTE Vo EAdyloToTOINUEL TO GUVOMXO XOGTOG EYXUTAGTAONG, UTO
oedouévn amaitnon miavotntag dlaxomrc. Autd To meélinua BektioTonolnong amodel-
xvoetan Yewpntixd 6t eivoar NP-60oxoho. Emmiéov, nopouvoidlovtar évag alyoprduog
ohxric Peltiotonoinone nov Pooileton oto duvopxd mpoypauuationd (AIL) xon évac
TPEOCEYYLOTIXOC oAy OELIUOC TOAUYUUIXO) YEOVOU.

To Kegpdhawo 7 agpiepidveton otny avdAuar tou Sapoptogol €unvey ntukey (AEID)
Bootopévou GTO BlUUoLEAoUs QopTiou GE BopUPOEIXE BixTua.  Muyxexpluéva, opilou-
ue tnv mdavdTnTa Stoxomhc Tou cuothatog (ITA) Bdoel TNS BLWVLUXAS XATAVOUTIS
Poisson xow Aaufdvovtag unén 1600 1 {ATNom Sedouévwy 600 Xal TN YWwENTIXOTNTA
x«&de mOAne. Emmiéov, moapéyouue Sudpopeg UeVdB0oUC Yia TOV axELB3T| X0l TPOCEYYIG TIXO
umohoytouo tne IIAX.

Téhog, 10 Kegpdhowo 8 oroxhnpdyver ) Awotpl3y) ye Wi yevixy| mepthndn twv ou-
VELOQOPMY TNG X0 UL TOEOUGEATT] AVOLY TV TROBANUATOY, ovolyovTag To 0poUo Ylo

uehhovTixt| €peuva.



Ev xotoxheid, mapouctdloupe o yevixd ocuunepdopota tng Awaxtopinic AlateiBng.

Ye auth) ™ AwteiBn, Yétoviag Tov drfpwmo xau T @lon o¢ Bacixols TUAGDVES,
€youpe aoyolniel ye tn oyediaon Twv aclpUATwY BIXTOWY E€YovTac ENlY VWO TOU (u-
ool mepdhhoviog, Tedyuo To omolo adlou@ofritnTa amotehel o VEo xateduvon
€0ELVOG. LUYXEXPWEVA, Ol TEOTEWVOUEVOL alyoprduol BehtioTonolnong Tng evepyetaxthc
am6B00TG GTOYEVOLY OTNV LXAvVOToiNoT Tou EPUUUOY BEBOUEVLY TWV YENOTWOV UE TNV
eNdylo T xoTavdAwon evépyetag. Me dAlo AdyLa, 0 TeWTAURY KOS 0TOY0G efval 1) dnutove-
yio mpdowwy Oiktlwy emkovwriag o onolo UToEoVY Vo TaEEYOLY UPNANC-TOLOTNTAS
UTNEEGIES, BIATNEOVTAUS TORIAANAL TNV NAEXTEOUXY VITIXY| axTvoBoAld o€ ac@aly| entine-
Oor xoi UELWYVOVTOG TIC exToUTéS BLogetdiou tou dvipaxa (yaunAd arotinwua dvipaxa).
EmunAcov, ol AEToUpYIXES BATEVES TWV TUROY WY TNAETUXOVWVIIX®Y UTNRECLOY Xadag
xou 1) walar Twv 80puPdEWY UTopEolY v uewwdolv onpavtxd. Enlong, ot oyedalousvol
alyoprduol €youv TN BuVATOTNTA Vo Topatelvouy T Bidpxeta (whc TNg umataplog Tov
CUOXEUGMY TV YENOTOV X0l UTOR0UV Vo Yenoylonointoly 68 EQUPUOYES UE QUCTNEES
OMAUTACELS UTOAOYIOTIX0) Yedvou (AOYw TNg xaunAns moAvmAokdtntag xou g yprj)yo-
pns ovyrhions toug). Ye xdle nepintwon, 1 ouvelspopd tne AtatplBiic elvor wévo éva
H1Kpd Kopudt Tov malA xon Vol TEENEL Vor GUVOUG TEL UE TTEPATERL EQEUVIL (OOTE QUTY| 1)
ETUC TNUOVIXY| TEOXANON Vo YIVEL TEAYUATIXOTN T

Emnpoodeta, €youue amodeller 6Tt 1 PEATIOT emhoyn emlyeuwv oTodumy o€
RF /onuxd Sopugoptxd dixtua pe Stagopioud Véone (und meptoptopolc Sadeotudtn-
toc) ebvan évar NP-60okodo mpéBhnuo.  Axoun, €éyouue avontiiet adydpiiuovs odikiis
Pernioronoinons (uébodog AEP ka1 AII) xadde xar évoy mpooeyy1otiké akydprduo mo-
AV UHIKOU Ypdrou Pe amodedetyuévn eyyunon enidoong. Autol ot akydprduol Yo umo-
polGaY VoL eval YEHOLOL XoTd TOV apytxd oyedlaciud Tou BixThou, apol etvar oe Véon va
TOREYOLY GNUUYTIXT ECOIXOVOUNOT] XOGTOUS OO0V APORd TNV EYXATAC TACT| TWV ENLYELDY
otaduwy. Térog, éyouue YeheTrioel AenTOUERMS TNV ETLBOGT) TOL Olapopiojiol éEunvawy
TUAGY Baciopévov oto d1auolpacud goptiov oe dopLPOEXE dixTud, TaEOUCLELoVTuC Ot

depopeg UeV6doUS Yior TOV UTOAOYLOUG TG mbavétnTag 01aKoTNS TOU TUTTHUATOS.
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Chapter 1

Introduction

1.1 Motivation and Scope

As the number of connected devices is expected to increase significantly in the
next few years, energy consumption has become a fundamental issue in the design of
fifth-generation (5G) wireless networks. Specifically, one of the primary requirements
is to achieve extremely higher data rates compared to the existing cellular systems [1].
Obviously, increasing accordingly the transmit power would give rise to prohibitively
high energy demand. As a result, the network energy efficiency has to be considerably
improved in order to achieve this goal.

Furthermore, environmental concerns impose power control strategies that take
into account the energy consumption of wireless communication systems. In particu-
lar, information and communications technology (ICT) causes a significant amount of
the global carbon-dioxide (CO2) emissions nowadays [2,3]. The situation may dete-
riorate, since the number of connected devices grows exponentially. Moreover, given
the high capacity requirements of 5G networks, electromagnetic radiation will exceed
safety limits if the appropriate measures are not taken.

Apart from the ecological concerns, economic reasons related to energy cost are
crucial for both telecommunication service providers and users. In this context, energy
efficiency optimization plays an important role, because it can reduce the operational

expenditure (OPEX) and prolong the battery lifetime of users’ devices as well. In ad-



Chapter 1 1.1. Motivation and Scope

dition, energy consumption is a major limitation in the downlink of satellite systems,

since it has a great impact on the mass and lifetime of satellites.

Energy efficiency (EE) is a key performance indicator for 5G networks which
is measured in bits/Joule and expresses the amount of information that can be
reliably transmitted per unit of consumed energy [1,4]. This performance indi-
cator is widely used in the literature for several types of wireless networks. In
[5], for instance, the EE is maximized in order to determine the transmit pow-
ers in a multi-carrier system. Further studies that consider the concept of EE are
[6-12] for orthogonal-frequency-division-multiple-access (OFDMA) networks, [13-18]
for multiple-input multiple-output (MIMO) systems, [19] and [20] for device-to-device
(D2D) communications, [21] for relay-assisted systems, [22] and [23] for cognitive net-

works, and [24] for distributed antenna systems.

Moreover, a unified framework for the design of both centralized and decentral-
ized (distributed) energy-efficient power allocation strategies is proposed in [25]. A
distributed approach for EE optimization is also presented in [26] and [27]. As re-
gards spectrum-sharing networks with one common frequency channel, the authors
in [28] investigate power control mechanisms for maximizing proportional, max-min
and harmonic fair EE. By applying appropriate transformation, each of the three
problems, which is initially nonconvex, can be converted into an equivalent convex

problem and then globally solved by standard convex optimization methods.

The total/global EE is defined as the network benefit-cost ratio (the total data
rate divided by the total power consumption) and is considered the most meaningful
EE metric. However, the total EE does not depend directly on each link’s EE and
its maximization results in low fairness between the links from the perspective of EE,
because it tends to favor the links with better propagation conditions [4,29]. An alter-
native way to study EE is through multi-objective optimization (MOO) by defining a
goal function that explicitly depends on the links’ energy efficiencies. MOO is a math-
ematical tool to solve optimization problems with multiple conflicting objectives [30].
Following this approach, we can define the weighted-sum FE, the weighted-product
EFE and the weighted-minimum FE. If all weights are equal, then the fairest optimal
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solution in terms of EE is achieved by maximizing the weighted-minimum EE [29].
Nevertheless, none of these three goal functions contains explicit information about

the total system performance, i.e., the total EE.

In addition to terrestrial networks, satellite communication systems offer world-
wide coverage and connectivity by providing telecommunication services to users in
rural and remote areas, where the terrestrial networks are not able to do so; maritime
and aerial users benefit from this large coverage as well. In mobile-user scenarios,
satellite broadcasting can be used to offload the terrestrial network, thus reducing
the backhaul requirements. Furthermore, satellites are a key technology for broad-
band services (e.g., distance learning/education, especially for developing countries
with limited terrestrial internet access) and e-health that ensures high-quality care
for patients (i.e., accurate diagnosis by experts in a short time). Other applications
include earth observation (e.g., remote sensing, landscape imaging, weather forecast-
ing), global navigation/positioning/tracking (for cars, ships and aircrafts) as well as
emergency management services for better responses to natural and man-made dis-

asters (e.g., timely alerts, pre-event preparation, and post-event recovery) [31,32].

Recently, the traffic demand in high throughput satellite (HTS) systems has ap-
proached the Thps, so the challenge is to utilize more wisely the available resources
(e.g., bandwidth, transmit power). Shifting to higher frequency bands in order to
achieve more spectrum, the signal experiences higher attenuation. The standard fade
mitigation techniques (FMTs), such as uplink power control (ULPC) and adaptive
coding and modulation (ACM), are not sufficient to cope with the severe signal degra-
dation. So far, there are two solutions to this problem: the (classical) site diversity
(SD) and the smart gateway diversity (SGD) techniques, which can achieve very high
network availability at the expense of installing additional ground stations (GSs). An
extremely high availability is of paramount importance, especially for safety/security
applications and critical /emergency communications in order to support timely rescue
efforts during natural disasters (e.g., floods, earthquakes and hurricanes), where hu-
man life is in danger. Since terrestrial networks are frequently affected and disrupted

in case of natural disasters, satellites are the preferred medium for communication
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due to their resilience to ground events.

In this PhD Thesis, we leverage the theory of sequential conver optimization
(SCO) in order to tackle nonconvex optimization problems in next-generation wire-
less networks, including terrestrial and satellite systems; this technique has been used
in [33,34] for data rate maximization and in [12, 15, 18, 25, 35] for EE maximiza-
tion as well. In particular, SCO is a powerful mathematical tool that can be used
to solve difficult (nonconvex) optimization problems by solving a sequence of easier
(convex) optimization problems [36]. Although this method does not guarantee global
optimality, it converges to a point that satisfies the Karush-Kuhn-Tucker (KKT) con-
ditions (i.e., a stationary point) of the original problem with affordable computational
complexity. Furthermore, some advanced algorithm design techniques, the branch-
and-bound (B&B) method and dynamic programming (DP), are used in order to find
globally optimal solutions to NP-hard combinatorial problems in satellite networks
(SatNets) with SD. Finally, we analyze the performance of load-sharing SGD-based
SatNets using probability theory.

1.2 Overview of Main Contributions
The main contributions of this Dissertation are summarized as follows:

1. A framework for weighted-sum energy efficiency maximization in
wireless networks: Weighted-sum energy efficiency (WSEE) is a key per-
formance metric in heterogeneous networks, where the nodes may have dif-
ferent energy-efficiency requirements. Nevertheless, WSEE maximization is a
challenging problem due to its nonconvex sum-of-ratios form. Unlike previ-
ous work, we present a systematic approach to WSEE maximization under not
only power constraints, but also data rate constraints, using a general signal-to-
interference-plus-noise-ratio (SINR) expression. In particular, a sequential con-
vex optimization (SCO) algorithm is proposed, which is theoretically guaranteed
to converge for any initial feasible point, and, under suitable constraint qualifi-

cations, achieves a Karush-Kuhn-Tucker (KKT) solution with low complexity.

4
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Furthermore, we provide remarkable extensions of the proposed methodology,
including systems with multiple resource blocks as well as a general power con-
sumption model, which is not necessarily a convex function of the transmit
powers. Finally, numerical analysis reveals that the proposed algorithm ex-
hibits fast convergence, low complexity, and robustness (insensitivity to initial

points).

2. A new trade-off between fairness and total system performance in
terms of energy efficiency: The total energy efficiency (TEE), defined as
the ratio between the total data rate and the total power consumption, is consid-
ered the most meaningful performance metric. Nevertheless, it does not depend
directly on the EE of each link and its maximization leads to unfairness between
the links. On the other hand, the maximization of the minimum energy effi-
ciency (MEE), i.e., the minimum of the EEs of all links, guarantees the fairest
power allocation, but it does not contain any explicit information about the
total system performance. The main trend in current research is to maximize
TEE and MEE separately. Unlike previous contributions, we present a gen-
eral multi-objective approach for EE optimization that takes into account both
TEE and MEE at the same time, and thus achieves various trade-off points
in the MEE-TEE plane. In this way, network designers are able to make a
compromise between fairness and total system performance according to their
needs and preferences. Due to the nonconvex form of the resulting problem,
we propose a low-complexity algorithm using the theory of sequential convex
optimization (SCO). Last but not least, we provide a novel theoretical result

for the complexity of SCO algorithms.

3. Dynamic energy-efficient power allocation in multibeam satellite
systems: Power consumption is a major limitation in the downlink of multi-
beam satellite systems, since it has a significant impact on the mass and lifetime
of the satellite. In this context, we study a new energy-aware power allocation

problem that aims to jointly minimize the unmet system capacity (USC) and

5
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the total radiated power by means of multi-objective optimization. First, we
transform the original nonconvex-nondifferentiable problem into an equivalent
nonconvex-differentiable form by introducing auxiliary variables. Subsequently,
we design a successive conver approzimation (SCA) algorithm in order to at-
tain a stationary point with reasonable complexity. Due to its fast convergence,
this algorithm is suitable for dynamic resource allocation in emerging on-board
processing technologies. In addition, we formally prove a new result about the
complexity of the SCA method, in the general case, that complements the exist-

ing literature where the complexity of this method is only numerically analyzed.

4. Globally optimal selection of ground stations in satellite systems
with site diversity: The availability of satellite communication systems is
extremely limited by atmospheric impairments, such as rain (for radio frequen-
cies) and cloud coverage (for optical frequencies). A solution to this problem
is the site diversity technique, where a network of geographically distributed
ground stations (GSs) can ensure, with high probability, that at least one GS is
available for connection to the satellite at each time period. However, the instal-
lation of redundant GSs induces unnecessary additional costs for the network
operator. In this context, we study an optimization problem that minimizes the
number of required GSs, subject to availability constraints. First, the problem is
transformed into a binary-integer-linear-programming (BILP) problem, which is
proven to be NP-hard. Subsequently, we design a branch-and-bound (BéB) al-
gorithm, with global-optimization guarantee, based on the linear-programming
(LP) relaxation and a greedy method as well. Finally, numerical results show
that the proposed algorithm significantly outperforms state-of-the-art methods

and has low complexity in the average case.

5. Minimization of the installation cost of ground stations in satellite
networks: Here, we study the optimum selection of ground stations (GSs)
in RF /optical satellite networks (SatNets) in order to minimize the overall in-

stallation cost under an outage probability requirement, assuming independent
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weather conditions between sites. First, we show that the optimization prob-
lem can be formulated as a binary-linear-programming problem, and then we
give a formal proof of its NP-hardness. Furthermore, we design a dynamic-
programming algorithm of pseudo-polynomial complexity with global optimiza-
tion guarantee as well as an efficient (polynomial-time) approximation algorithm
with provable performance guarantee on the distance of the achieved objective
value from the global optimum. Finally, the performance of the proposed algo-

rithms is verified through numerical simulations.

6. Computation and approximation of outage probability in satellite
networks with smart gateway diversity: The utilization of extremely high
frequency (EHF) bands can achieve very high throughput in satellite networks
(SatNets). Nevertheless, the severe rain attenuation at EHF bands imposes
strict limitations on the system availability. Smart gateway diversity (SGD)
is considered indispensable in order to guarantee the required availability with
reasonable cost. In this context, we examine a load-sharing SGD (LS-SGD)
architecture, which has been recently proposed in the literature. For this di-
versity scheme, we define the system outage probability (SOP) using a rigorous
probabilistic analysis based on the Poisson binomial distribution (PBD), and
taking into consideration the traffic demand as well as the gateway (GW) ca-
pacity. Furthermore, we provide several methods for the exact and approximate
calculation of SOP. As concerns the exact computation of SOP, a closed-form
expression and an efficient algorithm based on a recursive formula are given,
both with quadratic worst-case complexity in the number of GWs. Finally, the
proposed approximation methods include well-known probability distributions
(binomial, Poisson, normal) and a Chernoff bound. According to the numer-
ical results, binomial and Poisson distributions are by far the most accurate

approximation methods.
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1.3 Thesis Outline

The core of this Dissertation can be divided into three parts. The 15 part deals
with power allocation strategies and includes Chapters 2, 3 (energy efficiency max-
imization in wireless networks) as well as Chapter 4 (energy-aware optimization in
satellite systems). The 2" part studies the optimum selection of ground stations
in RF /optical satellite networks with site diversity and consists of Chapters 5 and 6.
The 3™ part is Chapter 7, which covers the load-sharing smart gateway diversity (LS-
SGD) technique in satellite systems. More specifically, the rest of this PhD Thesis is

organized as follows.

In Chapter 2, we present a framework for weighted-sum energy efficiency (WSEE)
maximization in wireless communication systems, considering a general signal-to-
interference-plus-noise-ratio (SINR) expression which includes inter-user interference
as well as self-interference terms. In particular, a sequential convex optimization
(SCO) algorithm is proposed and remarkable extensions stemming from this method-

ology are also provided.

In Chapter 3, a new trade-off between fairness and total system performance,
in terms of EE, is introduced. In particular, we present a general multi-objective
approach for EE optimization that takes into consideration both the total energy
efficiency (TEE) and the minimum energy efficiency (MEE) at the same time. More-
over, we develop a low-complexity algorithm using the theory of sequential convex
optimization (SCO) in order to address the resulting (nonconvex) problem. Finally,

a theoretical result for the complexity of SCO algorithms is given.

In Chapter 4, we study an energy-efficient power allocation problem in multibeam
satellite systems, which aims to jointly minimize the unmet system capacity (USC)
and the total radiated power by means of multi-objective optimization. Specifically,
we design a successive convex approximation (SCA) algorithm in order to achieve
a stationary point with reasonable complexity. In addition, we prove a new result
about the complexity of the SCA method (note that SCA is a special case of SCO,

where the objective and constraint functions of the original problem can be written as
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the difference of two convex functions).

In Chapter 5, we focus on the minimization of the number of ground stations (GSs)
satisfying given availability requirements in satellite systems with site diversity. First,
we show that the optimization problem is NP-hard, and then we design a branch-
and-bound (B&B) algorithm with global-optimization guarantee and low average-case
complexity.

Chapter 6 has to do with the optimal selection of GSs in satellite systems so
as to minimize the total installation cost, under a given outage probability require-
ment. This optimization problem is theoretically proven to be NP-hard. Further-
more, a global optimization algorithm based on dynamic programming (DP) and a
polynomial-time approximation algorithm are presented.

Chapter 7 is devoted to the analysis of a load-sharing smart gateway diversity
(LS-SGD) scheme in satellite networks. In particular, we define the system outage
probability (SOP) based on the Poisson binomial distribution (PBD) and taking into
consideration the traffic demand as well as the gateway (GW) capacity. Moreover,
we provide several methods for the exact and approximate calculation of SOP.

Finally, Chapter 8 concludes the Dissertation with a general summary of its con-

tributions and a presentation of open problems, paving the way for future work.
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Chapter 2

A Framework for Weighted-Sum
Energy Efficiency Maximization

in Wireless Networks!

Weighted-sum energy efficiency (WSEE) is a key performance metric in hetero-
geneous networks, where the nodes may have different energy efficiency (EE) re-
quirements. Nevertheless, WSEE maximization is a challenging problem due to its
nonconvex sum-of-ratios form. Unlike previous work, this chapter presents a system-
atic approach to WSEE maximization under not only power constraints, but also data
rate constraints, using a general SINR expression. In particular, the original problem
is transformed into an equivalent form, and then a sequential convex optimization
(SCO) algorithm is proposed. This algorithm is theoretically guaranteed to converge
for any initial feasible point, and, under suitable constraint qualifications, achieves
a Karush-Kuhn-Tucker (KKT) solution. Furthermore, we provide remarkable exten-
sions to the proposed methodology, including systems with multiple resource blocks
as well as a more general power consumption model which is not necessarily a convex

function of the transmit powers. Finally, numerical analysis reveals that the proposed

LCopyright © 2018 IEEE. Reprinted, with permission, from: C. N. Efrem and A. D. Panagopou-
los, “A framework for weighted-sum energy efficiency maximization in wireless networks,” IEEE
Wireless Communications Letters, vol. 8, no. 1, pp. 153-156, Feb. 2019. Personal use of this
material is permitted, but republication/redistribution requires IEEE permission.
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Chapter 2 2.1. Introduction

algorithm exhibits fast convergence, low complexity, and robustness (insensitivity to

initial points).

2.1 Introduction

Recently, energy efficiency (EE) maximization has become a primary issue in the
design of next generation wireless networks due to economic, operational and envi-
ronmental concerns. Although the network global energy efficiency (GEE), namely,
the ratio between the total achievable data rate and the total power consumption,
has the most meaningful interpretation as a benefit-cost ratio of the whole network,
it does not contain any explicit information about the individual energy efficiencies of
the links. An alternative approach in order to overcome this limitation, while main-
taining high global performance, is to maximize the WSEE defined as the weighted
sum of the links’ energy efficiencies [1].

WSEE maximization belongs to the family of sum-of-ratios optimization problems,
which are often difficult to solve. In the special case where all the ratios are in concave-
convex (CC) form (assuming the case of maximization problems) and the feasible set
is convex, the optimization method presented in [2] can be used to globally solve the
problem. On the other hand, if at least one ratio of the sum is not in CC form and/or
the feasible set is nonconvex, the optimization problem becomes more challenging.
In this case, the use of standard global optimization algorithms is quite limited in
practice, since they exhibit high computational complexity (generally exponential in
the worst case).

An energy efficient multicell multiuser precoding technique is presented in [3],
where the WSEE maximization problem is transformed into a parametrized subtrac-
tive form, and then a two-layer optimization is used to solve the problem. Later, the
authors in [4] investigate the design of centralized and distributed energy-efficient
coordinated beamforming in multiple-input single-output (MISO) systems with a
general rate-dependent power consumption model. Furthermore, a pricing-based

distributed algorithm for WSEE maximization in Ad hoc networks is given in [5].
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Moreover, the authors in [6] consider the downlink of a cellular OFDMA (orthogo-
nal frequency-division multiple-access) network with base station coordination, and
propose a joint scheduling and power allocation algorithm to maximize the WSEE
under maximum power constraints. Finally, the joint downlink and uplink resource
allocation in time division duplex (TDD) systems with carrier aggregation is studied
in [7].

The remainder of this chapter is organized as follows. In Section 2.2 we introduce
the system model and formulate the WSEE maximization problem. An optimization
algorithm is developed in Section 2.3, and then interesting extensions are reported in
Section 2.4. Finally, simulation results are provided in Section 2.5, while Section 2.6

concludes this chapter.

2.2 System Model and Problem Formulation

We consider a wireless network with N transmitters (users), A receivers, and
communication bandwidth B. Without loss of generality, we assume that each trans-
mitter is associated to exactly one receiver, and thus N > A. Based on [1], the
signal-to-interference-plus-noise-ratio (SINR) experienced by user i (1 < i < N) at

its intended receiver is given by the following general expression:

Yi(p) = wi,ipi/(z#i wjiPj + Qipi + M) (2.1)

where p = [p1,po, .. -, pN]T is the vector of users’ transmit powers, N; is the equiva-
lent noise power, while w;; and ¢; are non-negative parameters that do not depend
on p (note that the self-interference term ¢;p; may be zero). Next, the achievable
data rate and power consumption (assuming the power amplifier operates in the lin-
ear region) of the i'" user are given respectively by: R;(p) = Blog, (1 +7:(p)) and
P.i(p;) = pipi + Py, where p; = 1/n;, with 0 < n; < 1 the power amplifier efficiency,
and Py ; > 0 is the static dissipated power in all other circuit blocks of the ith trans-

mitter and its intended receiver. Moreover, the EE of user i (measured in bit/Joule)
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Chapter 2 2.3. WSEE Maximization Algorithm

is defined as follows: EE;(p) = Ri(p)/P.i(p;). Now, we can formulate the WSEE

maximization problem:

max WSEE(p) =" w.EE(p) (2.2)

pes

with feasible set S = {p € RY : 0 < p; < P™* and R;(p) > R™», 1 <i < N},
where w;, P™>* and RM™" are the priority weight, the maximum transmit power
and minimum required data rate of user i, respectively (note that w; > 0 and
SN w; = 1). It can be observed that the objective function is not in sum-of-CC-
ratios form (R;(p) is not concave), and therefore the optimization method in [2] can-
not be used. Nevertheless, by applying the variable transformation p = 29 (p; = 2%,
1 <i< N withq = [q1,¢,-.. ,qN}T), and due to the fact that the objective is an

increasing function of each user’s EE, we can equivalently reformulate problem (2.2)

as follows:
N

max  f(v) = Zi:l w; 2" (2.3)

(av)ez
with feasible set Z = {(q,v) € R* . 26 < pmax. R(24) > RMn and
EE;(29) > 2 1 <i< N}, where v = [v],vg,... ,UN]T is the vector of auxiliary vari-
ables. In addition, after some mathematical operations we get
Z = {(q,v) € R*N : 2% < P™* 9;(q) > 0 and gi(q,v;) > 0, 1 < i < N},
where 95(q) = logy (wii/%™) + ¢ — log, (Z#i w;i2% + ;2% +/\/}), with ™ =
o(RI™/B) _ (ymin > 0, since R™™ > 0), and ¢;(q,v;) = Ri(q) — ;2% — Py, ;2%
with Ri(q) = R;(2%). The first and the second constraints in Z are convex (the log-
sum-exp function is convex [8]), whereas the third constraint is nonconvex, and f(v)

is a strictly convex function.

2.3 WSEE Maximization Algorithm

In the sequel, we leverage the theory of SCO, [9,10], in order to solve problem
(2.3). In particular, if we have a nonconvex maximization problem G with objective

go(x) and compact feasible set {x € R" : ¢;(x) > 0, 1 < i < I}, then we can achieve
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2.3. WSEE Maximization Algorithm Chapter 2

a KKT solution of G by solving a sequence of convex maximization problems {g] }is1

with objective gp;(x), compact feasible set {x € R" : g;;(x) > 0, 1 < i < I},

*

% (xg is any feasible point of G). Moreover, we would like to

and global maximum x
emphasize that ¢;(x), ¢;(x) (0 < i < I and j > 1) are differentiable functions that
satisfy three basic properties: 1) gi(x) > gij(x), Vx € R", 2) gi(x;_,) = gi;(x} 1),

and 3) Vgi(xj_1) = Vi ;(xj_,)-

In order to lower-bound the function ¢;(q,v;) we use the following logarithmic
inequality [11]:
logs(1+7) > alogyy + 8, V7,7 >0 (2:4)

where v = 7//(1++') and 8 = logy(1 + +') — alogyy’. Notice that a > 0, while
the left-hand side and the right-hand side of inequality have equal values and first-
derivatives (with respect to 7) at v = 7. Therefore, it holds that R](q) > R.(q),
with Rv;(q) = B[f; + ailogy(w; )]+ By {qi — log, (Z#i w24 + ;2% +/\/’i)}, which
implies that ;(q,v;) > @;(q, v;), where @i(q, v;) = Ri(q) — p1; 2977 — Py ;2. Due to
the convexity of the log-sum-exp function and 2"*) (assuming h(x) is convex) [8], both
R!(q) and &;(q, v;) are concave functions. Furthermore, it is known that any convex
and differentiable function is lower-bounded by its first-order Taylor expansion at any
point [8], and therefore we have f(v) > f(v/)+ Vf(v)T(v—=v') = f(v), ¥v,v' € RY

(observe that f(v') = f(v/) and Vf(v') = Vf(v')). More precisely, the affine (and

thus concave) function f(v) is expressed as follows:
N V! N vl /
f(v) = Zizl w; 2% +1n(2) Zi:l w; 2" (v; — v;) (2.5)

Consequently, we can formulate the following convex maximization problem which

depends on the parameters a = [y, g, . . . ,aN]T, B =[5, B - - ,BN]T, and the point
V=[], o), o]
~ N ’
max v) & max 7w(v)=)» . w;2%vy; 2.6
(a,v)€Q ) (a,v)€Q (v) ZZZI (2:6)

with feasible set Q = {(q,v) € R* : 2% < pma_ ¢,(q) > 0 and @;(q,v;) > 0,
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Chapter 2 2.4. Extensions to the Proposed Approach

Algorithm 2.1 WSEE Maximization

1: Choose a sufficiently small tolerance € > 0, and a feasible point p

2: Set £ =0, v; = log, (EE;(p)) for 1 <i < N, and f© = f(v)

3: repeat

4:  Compute the parameter vectors e, 8 with v/ = ~v(p)

5:  Solve the convex maximization problem (2.6) with parameters a, 3,
and v/ = v in order to obtain a global maximum (q*, v*)

Set t=(+1,q=q* v=v",p=29 and f = f(v)

: until ‘f(f) — f(g_l)’/‘f(e_l)’ <e

N

1 < i < N}. It is noted that the two problems in (2.6) are equivalent, since in
the second problem we omit the constant terms of the objective f (v). In Algorithm
2.1, we provide an iterative procedure to solve problem (2.3), which is equivalent
}T

to the initial WSEE problem (2.2), using the notation v = [¥1,7%,...,7y] and

v(P) = (), 2®). - P

According to [9] and [10], Algorithm 2.1 monotonically increases the value of the
objective function f(v) in each iteration (i.e., f© > fU=Y) and converges. In ad-
dition, assuming suitable constraint qualifications (e.g., Slater’s condition for convex
problems), the final solution (q, v) satisfies the KKT optimality conditions of problem
(2.3). It is noted that Algorithm 2.1 does not necessarily achieve the global optimum,
since KKT are only necessary (provided that some regularity conditions are satisfied),

but not sufficient conditions for optimality in the case of nonconvex problems.

2.4 Extensions to the Proposed Approach

2.4.1 Systems with Multiple Resource Blocks

Firstly, the previous analysis can be straightforwardly extended to wireless net-
works with multiple (K > 1) resource blocks of bandwidth Bgp (e.g., OFDMA sys-
tems). Based on [1], the only difference is that the QoS (quality-of-service) constraints
Brs SIS log, (1+41) > Rn, with 4 = wfHge" / (2#1. wiflon” 4 gMod” 4 /\/}’“]>,

are not convex now, and they should be approximated by the convex constraints

Brp $isy (0 Mogyn ! + 81M) > Ry,
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2.4.2 General Power Consumption Model

Secondly, we consider a more general rate-dependent power consumption model

with non-linear power terms:

M .
Pei(p) = Zm:l pimp + &(Ri(D))" + Par (2.7)

where M is the order of non-linear power terms, fp;, > 0 measured in wi-m
(in = i = 1/m), 0 < §; < 1, and & > 0 measured in W/(bit/s)%. In conven-
tional systems, we have M = 1 (absence of non-linear power terms) and & = 0,
ie., P.i(p;) = pipi + Pa;. The term 2%22 tim Py is useful in the case of transmit
signals with high peak-to-average power ratio (PAPR), and/or power amplifiers with
very narrow linear region. Now, the WSEE maximization problem is formulated as

follows:

max WSEE'(p) = Zjil w; i (pi, Ri(p)) (2.8)

pes

where ¥;(p;, pi) = pi/(zn]\le Wim P+ &pfi + Pst,i). Notice that 1;(p;, pi) is a strictly

increasing function of p; for p;, p; > 0, since:

a¢z (piv pz) . Zle Hi,m D} +£i(1_6i)pji+Pst,i

>0 (2.9)
apl (Zle Hi,m p;n +£7,pr +Pst,i> ’

(recall that 1 —9; > 0 and Py; > 0). Hence, we can rewrite problem (2.8) in the

following form:

max Zj\;l w; ¥i(pi, pi) (2.10)

(P.p) €T
with feasible set I' = {(p,p) € R?" : p€ S and Ri(p) > p; >0, 1 <i < N},
where p = [p1, po, - - ,pN]T is the vector of additional variables. Using the variable
transformation p =29, p =2Y (p; = 2%, 1 <i < N with y = [y1,¥2, ... ,yN]T), and
because the objective is an increasing function of each ;(p;, p;), problem (2.10) is

equivalent to:
N

max f(v) = Zi:l w; 2" (2.11)

(qy,v)eT
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with feasible set T = {(q,y,v) € R : 24 < pmax_ 9.(q) > 0, Ri(q) > 2¥
and €;(qi,yi,v;) < 0, 1 < i < N}, where (g, yi,v;) = M| g g 2MGF07% 4
&2y =0y 4 P, 2v=¥i — 1 (the fourth constraint is derived from (2%, 2¥%) > 2%).
Note that only the third constraint in T is nonconvex. Therefore, we can obtain a

KKT solution for problem (2.11), which is equivalent to (2.8), by solving a sequence

of convex problems of the following form:

N ’
max v) & max w(v)=)» _w;2%y; 2.12
(q,y,V)E‘Iff( ) (Qy,v)e¥ v) ZZ:l ( )
with feasible set ¥ = {(q,y,v) € RN : 26 < pmax 9.(q) > 0, Ri(q) > 2%
and &;(g;, ¥i,v;) <0, 1 <i < N}

2.5 Numerical Results

Consider a relay-assisted multiple-input multiple-output (MIMO) network, where
N transmitters communicate with IV receivers through a single-antenna amplify-and-
forward relay (receiver ¢ is the intended receiver of transmitter ¢). We denote by L,
Ly the number of antennas at each transmitter and receiver, respectively. Moreover,
b; (with ||b;]] = 1) is the Ly x 1 beamforming vector of transmitter i (assume that
p; is equally divided between the transmit antennas, i.e., b; = (1 / \/L_T) 17«1, with
1,,x1 the Ly x 1 vector of ones), h; is the 1 x Ly channel vector from transmitter i
to the relay, g; is the Lr x 1 channel vector from the relay to receiver ¢, and c; is the
Ly x 1 combining vector of receiver i. Also, suppose the receivers perform maximum-
ratio combining (MRC), i.e., ¢; = g;h;b;. The received signal at the relay is given
by x, = Zé-v:l VPihb;s; + n,, where s; is the information symbol of transmitter j
(E{s;} = 0, E{]s;|*} = 1), and n, ~ CN (0,0?) is the relay thermal noise. Thus,
the total input power at the relay is P, = Y0, p;lhb;|*> + 02, Then, the received
signal at the relay is normalized by m, before being amplified by a factor /P,
(P, is the relay transmit power) and forwarded to the receivers, in order to ensure

that the relay power amplifier operates within the linear region (the signal transmitted
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2.5. Numerical Results Chapter 2

by the relay is vy, = /P, x, / \/Prin). The signals at receiver i before and after the

/

diversity combining unit are x; !

= gy, + n; and z; = c;'x;, respectively, where
n; ~ CN (0p,.x1,021;,) is the receiver thermal noise (0p,x; is the Lr x 1 zero
vector, and I, is the Lr x Lp identity matrix). Finally, the SINR takes the form
in (2.1) with wy = |clghby|, w = [Mghb,| + o?cl? b, /P (G # ),
65 = o2l "Ihibif* /Py and A = ([elgi] + o]/ 7) o2

As concerns the simulation parameters, we set N =5, Ly = L = 2, P, = 30 dBm,

e = 1071, carrier frequency 2 GHz, B = 2 MHz, 0? = 02 = FNyB (with noise

r

H
C; 8

figure F = 3 dB and power spectral density Ny = —174 dBm/Hz), p; = p = 5,
PP = Pax, Psti = Py = 375 mW, and w; = 1/N for 1 < i < N. The distance
of each transmitter/receiver from the relay is uniformly distributed in the interval
[200,300] m. A path loss model with reference distance 100 m, path-loss-exponent
3.5, and standard deviation of log-normal shadowing 8 dB has been used, assuming
Rayleigh fading. In addition, the QoS requirements are set as follows: R™" = r;R;,
where r; > 0 (for simplicity, 7; = r for 1 < i < N), and R; = Blog, (1 +7;) with
Yi = %i(PInx)lp—o = wi,i/(zj# Wi + qbz) the SINR of user ¢ when all the transmit
powers are equal and the equivalent noise power is zero. Unless otherwise stated, the
initial point is selected as p = Ppaxlyx1 (we assume 0 < r < 1, since this point is
infeasible when r > 1). All the results are derived from the statistical average of 10*
independent problem instances.

First of all, we examine the convergence speed of Algorithm 2.1 through numerical
analysis, since it is difficult to be studied analytically. Fig. 2-1 shows that Algorithm
2.1 always generates an increasing sequence and converges very fast within only a
few iterations. Thus, Algorithm 2.1 exhibits low complexity because the number of
iterations until convergence is quite small and the convex problem in each iteration
can be globally solved in polynomial time using standard convex optimization tech-
niques, such as interior-point methods [8]. Furthermore, Algorithm 2.1 is robust since
different initialization points achieve slightly different final objective values, and also

the convergence speed remains almost the same.
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Figure 2-1: Convergence of Algorithm 2.1 (WSEE maximization), with Pp., =
20 dBm, for different QoS requirements and initial point p = APpax1n«1-

Subsequently, for the sake of comparison, we introduce a baseline scheme, namely,

weighted-sum rate (WSR) maximization defined as follows:

max  WSR(p) =Y. wiRi(p) (2.13)

pEeS
This problem is solved by SCO, using again the transformation p = 29, where the
convex problems take the form:

max Zjil wiR(q) (2.14)

qEeo®

with feasible set © = {q € RY : 2% < Pmax and 9,(q) > 0, 1 < i < N}
Figs. 2-2 and 2-3 illustrate respectively the achieved WSEE and WSR versus P, .
for different QoS requirements. In Fig. 2-2, we can observe that: 1) for each scheme,
the increase of QoS requirements leads to the decrease of WSEE because the fea-
sible set becomes smaller, and 2) for low P,.c, WSEE and WSR maximization are
almost equivalent, since WSEE(p) ~ (1/Py)WSR(p) (up; < pPnax < Py =
P.,(p;) = Ps), while WSEE increases with P.. Similar observations can be made
in Fig. 2-3. Nevertheless, for larger values of Py, it can be seen that: 1) in Fig. 2-2,
WSEE remains constant when maximizing the WSEE, whereas decreases with P, .

when maximizing the WSR because of the higher required transmit power, and 2) in
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Figure 2-2: Achieved WSEE versus Pp.x by maximizing: a) the WSEE (Algorithm
2.1), and b) the WSR (baseline scheme) for different QoS requirements.
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Figure 2-3: Achieved WSR versus Py, by maximizing: a) the WSEE (Algorithm
2.1), and b) the WSR (baseline scheme) for different QoS requirements.

Fig. 2-3, WSR maximization achieves slightly higher WSR than WSEE maximiza-

tion, while both schemes reach a peak value (note that WSR is upper-bounded when

¢; # 0: WSR(p) < SN, w;Blog, (1 + %) with v = p}ilg)o vi (P) = wii/di)-
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2.6 Conclusion

In this chapter, we have presented a general methodology for WSEE maximization
in wireless networks. More specifically, we have developed a low-complexity and
robust algorithm that is theoretically guaranteed to converge and is able to achieve a
KKT solution. Finally, we have studied notable extensions of the proposed approach
to systems with multiple resource blocks and general power consumption model as

well.

Bibliography

[1] A. Zappone and E. Jorswieck, “Energy efficiency in wireless networks via frac-
tional programming theory,” Foundations and Trends in Communications and
Information Theory, vol. 11, no. 3-4, pp. 185-396, 2015.

[2] Y. Jong, “An efficient global optimization algorithm for nonlinear sum-of-ratios
problem,” May 2012. [Online|. Available: http://www.optimization-online.
org/DB_FILE/2012/08/3586.pdf

[3] S. He, Y. Huang, L. Yang and B. Ottersten, “Coordinated multicell multiuser
precoding for maximizing weighted sum energy efficiency,” IEEE Trans. Signal
Process., vol. 62, no. 3, pp. 741-751, Feb. 2014.

[4] O. Tervo, A. Tolli, M. Juntti and L. N. Tran, “Energy-efficient beam coordination
strategies with rate-dependent processing power,” IEEE Trans. Signal Process.,
vol. 65, no. 22, pp. 6097-6112, Nov. 2017.

[5] C. Pan, W. Xu, W. Zhang, J. Wang, H. Ren and M. Chen, “Weighted sum
energy efficiency maximization in Ad hoc networks,” IEEE Wireless Commun.
Lett., vol. 4, no. 3, pp. 233-236, June 2015.

[6] L. Venturino, A. Zappone, C. Risi and S. Buzzi, “Energy-efficient scheduling and
power allocation in downlink OFDMA networks with base station coordination,”
IEEE Trans. Wireless Commun., vol. 14, no. 1, pp. 1-14, Jan. 2015.

[7] G. Yu, Q. Chen, R. Yin, H. Zhang and G. Y. Li, “Joint downlink and uplink re-
source allocation for energy-efficient carrier aggregation,” IEEE Trans. Wireless
Commun., vol. 14, no. 6, pp. 3207-3218, June 2015.

[8] S.Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK: Cambridge
Univ. Press, 2004.

24


http://www.optimization-online.org/DB_FILE/2012/08/3586.pdf
http://www.optimization-online.org/DB_FILE/2012/08/3586.pdf

Bibliography Chapter 2

9] B. R. Marks and G. P. Wright, “A general inner approximation algorithm for
non-convex mathematical programs,” Operations Research, vol. 26, no. 4, pp.
681-683, 1978.

[10] B. K. Sriperumbudur and G. R. Lanckriet, “On the convergence of the concave-
convex procedure,” in Proc. Adv. Neural Inf. Process. Syst., 2009, pp. 1759-1767.

[11] J. Papandriopoulos and J. S. Evans, “SCALE: A low-complexity distributed
protocol for spectrum balancing in multiuser DSL networks,” IEEE Trans. Inf.
Theory, vol. 55, no. 8, pp. 3711-3724, Aug. 2009.

25



26



Chapter 3

Energy Efficiency Optimization: A
New Trade-Off Between Fairness

and Total System Performance?

The total energy efficiency (TEE), defined as the ratio between the total data
rate and the total power consumption, is considered the most meaningful performance
metric in terms of energy efficiency (EE). Nevertheless, it does not depend directly on
the EE of each link and its maximization leads to unfairness between the links. On the
other hand, the maximization of the minimum EE (MEE), i.e., the minimum of the
EEs of all links, guarantees the fairest power allocation, but it does not contain any
explicit information about the total system performance. The main trend in current
research is to maximize TEE and MEE separately. Unlike previous contributions,
this chapter presents a general multi-objective approach for EE optimization that
takes into account both TEE and MEE at the same time, and thus achieves various
trade-off points in the MEE-TEE plane. Due to the nonconvex form of the resulting
problem, we propose a low-complexity algorithm leveraging the theory of sequential

convex optimization (SCO). Last but not least, we provide a novel theoretical result

2Copyright © 2019 IEEE. Reprinted, with permission, from: C. N. Efrem and A. D. Panagopou-
los, “Energy efficiency optimization: A new trade-off between fairness and total system perfor-
mance,” IEEE Wireless Communications Letters, vol. 8, no. 3, pp. 853-856, June 2019. Personal
use of this material is permitted, but republication/redistribution requires IEEE permission.
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for the complexity of SCO algorithms.

3.1 Introduction

Energy efficiency expresses the amount of information that can be reliably trans-
mitted per Joule of consumed energy (measured in bit/Joule), and is recently charac-
terized as a key performance indicator for 5G networks. Zappone et al. [1] propose a
unified framework for the design of both centralized and distributed energy-efficient
power control algorithms. Furthermore, power allocation strategies for maximizing
the proportional, max-min, and harmonic fair EE in spectrum-sharing networks are
given in [2]. The optimization of various EE performance metrics is also investi-
gated in [3] and [4] for MIMO (multiple-input multiple-output) and OFDMA (or-
thogonal frequency division multiple access) systems, respectively. Finally, the recent
study [5] presents a systematic approach to weighted-sum EE maximization in wireless
networks.

In summary, the existing approaches maximize the total/global, sum, product
and minimum EE individually. The TEE, albeit the most important EE metric, does
not depend directly on the links” EEs and its maximization results in low fairness.
On the other hand, the last three EE metrics explicitly depend on the links’ EEs,
but none of them contains specific information about the total system performance
(i.e., TEE). Moreover, the fairest resource allocation is achieved by maximizing the
MEE. Consequently, in this chapter, we introduce a new multi-objective approach
that takes into consideration the two extremes (TEE and MEE) at the same time,
and thus providing a set of MEE-TEE operating points which are not achievable with
existing approaches.

The remainder of this chapter is organized as follows. Section 3.2 introduces the
system model and formulates the general EE optimization problem. Subsequently,
an EE optimization algorithm is developed and analyzed in Section 3.3. Finally,
numerical results are provided in Section 3.4, while concluding remarks are given in

Section 3.5.
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3.2 System Model and Problem Formulation

We consider a wireless network with N transmitters/users, M receivers and K
mutually orthogonal resource blocks of bandwidth Brg. In addition, we assume that
each transmitter is associated to exactly one receiver (its intended receiver), and
therefore it holds that N > M.3 The Signal-to-Interference-plus-Noise-Ratio (SINR)
experienced by user i (1 < ¢ < N) at its intended receiver on resource block k

(1 <k < K) is given by the following formula:*

k k) (k k) (k k
7 = wpl? / (Z#i wyi P+ N )) (3.1)

is the transmit power of user j, N*® is the noise power at the i user’s

where p(.k) ;
)

J

intended receiver, and w](l is the channel gain between ;™ transmitter and ** user’s

intended receiver, all on resource block k. For convenience, we denote the vector
of transmit powers by p = [plT, pi,... ,p%]T, where p; = [pgl),p?), e ,pz(»K)]T with
1<i<N.

The " user’s and total achievable data rate (in bit/s) are given respectively by:
Ri(p) = Brp X1, log, (1 + %(k)> and Ry (p) = N, Ri(p). Next, assuming that the
transmit power amplifiers operate in the linear region and the hardware dissipated
power is fixed, the i user’s and total power consumption can be modeled respectively
as follows: P.;(pi) = Z,Ilepl(-k)—szt,i and P, (p) = >N P.;(p;), where p; = 1/§,,
with & € (0,1] the efficiency of the power amplifier of transmitter i, and Py ; is
the static dissipated power in all other circuit blocks of the i** transmitter and its
intended receiver (e.g., cooling, filtering, signal up and down conversion, digital-to-
analog and analog-to-digital conversion). Furthermore, the i user’s and total EE (in

bit/Joule) are defined respectively as the following ratios: EE;(p) = R;(p)/P.:(p:)
and EEtot(p) - Rtot(p)/Pc,tot(p)'

3Without loss of generality, we make this assumption to reduce the amount of notation needed
to express the SINR in (3.1). Similar formula can be obtained when each transmitter is associated
to more than one receiver.

4The proposed methodology can be straightforwardly modified to include a self-interference term
in the denominator of (3.1), as in [1] and [5].
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Now, we introduce the following nonconvex maximization problem, based on the

multi-objective optimization theory:

max G(p) = F (EEwt(m, min EE,-(p)) (3.2)

PESp

with feasible set S, = {p € RVE . vK p¥) < pmax and Ri(p) > R for
1 <i < N}, where P and R are the i*" user’s maximum transmit power and min-
imum required data rate, respectively. Moreover, we assume that: 1) the objective
F(x,y) is an increasing function of x and y, 2) F(2*,2°) > 0, V(u,v) € R?, and
3) f(u,v) =log,F(2%,2") is a differentiable concave function.

In the sequel, we transform the original nonconvex problem (3.2) into an equiva-
lent problem in a more tractable form. Due to the fact that F(x,y) is an increasing
function and EFE,,(p), min, EE;(p) > 0, Vp € RYX, problem (3.2) can be equiva-

lently written as follows:

max  F (gl nth,) (3.3)

(Pt mth )eT

with feasible set T = {(p, 70, i) € RfK—ﬂ : p € Sy, EEn(p) > nily, and
EE;(p) > n for 1 < i < N}, where 0!, and n!"  are auxiliary variables. Notice

min

that the set of constraints EE;(p) > nth (1 <i < N) is equivalent to min EE;(p) >

ntt . and the maximum objective value is obtained when EFE(p) = n!* and
1 . = th.

12%1;1]\7 EEZ (p) nmln'
Subsequently, by applying the variable transformation p = 29 (pz(k) = 2‘11@,

1<i< Nand 1<k < K), pih =2v pt = 2v and after a few mathematical
operations, we get the following nonconvex problem (note that the maximization of

F is equivalent to the maximization of log, F'):

max  f(u,v) = log, F'(2“,2") (3.4)
(qu,v)€Z
with feasible set Z = {(q,u,v) € RNE2 . T 20" < pmax . Ri(q) > R,
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Yi(qv) > 0 for 1 < ¢ < N, and g¢(q,u) > 0}, where Ri(q) = R;(29),
(k)
Rigi(a) = Rior(29), ¥i(q, v) = Ri(a) — s gy 20+ — P27, and g(q, u) = Riyy(q) —
(k)
Zz’]\ilﬂi 5:12% +u_( ij\iIPSt,i) 2.

3.3 Enmnergy Efficiency Optimization Algorithm

In this section, we leverage the theory of SCO (see Appendix 3.6) so as to achieve

a Karush-Kuhn-Tucker (KKT) solution for the equivalent problem (3.4).

3.3.1 Algorithm Design and Complexity

In order to satisfy the properties of Theorem 3.1 in the Appendix 3.6, we use the
following inequality with logarithms [5] (log,0 = —oo and 0 - log,0 = 0): A(y) =
logo(1+7) > a-logyy + b= B(v,7), Vv, > 0, where a, b are given by:

a=79/(1+7), b=logy(1+7) —a-logyy (3.5)
dA dB(,Y
Observe that a > 0, A(y),_, = B(v,7)|,=,» and # = g%” o
Consequently, we can construct the following lower bounds: R.(q) > Bgp -
(k) o
S (b + aflog, (@i ) + ") — aflog, (Z#i Wy 24 +N¢(k))] = Ri(q),

Riy(@) = S, Ri(@) = Ri(a), vila.v) 2 Rila)—pus S5, 207+ = P2’ = vila,v),
and g(q, u) > Egt(Q) — 200 i ke i (Zi]\il Pstﬂ') 2" =g(q,u), where az('k) and
bgk) are given by (3.5) with 7/ = 7’5’“). Notice that }A%Z(q), Zt(q), Vi(q, v), and §(q, u)
are all concave functions (the log-sum-exp, 2*7¥ and 2* are convex functions [6]).
Based on the previous analysis, we can formulate the following convex problem which
depends on the parameters al(k) and bl(»k):

(qg},%)}ég f(u,v) =log, F(2%,2%) (3.6)
with feasible set Q = {(q,u,v) € RVNE+2 . K 24" < prax Ri(q) > RIM
%(q,v) >0for1 <i<N, and g(q,u) > 0}.
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Chapter 3 3.3. Energy Efficiency Optimization Algorithm

Algorithm 3.1 Energy Efficiency Optimization

1: Choose a tolerance ¢ > 0, and an initial point p € S,
2: Set 1= 0, u = log, (EEw(p)), v = log, (min EE:(p)),

and fo = f(u,v)

repeat

4:  Compute the SINR vector « according to (3.1), and then the
parameter vectors a, b according to (3.5) with v/ =~

5: Solve the convex optimization problem (3.6) with parameters a, b
in order to obtain a globally optimal solution (q*, u*, v*)

6: Setl=1I0+1,q=q"u=u"v=0v"p=2%and f; = f(u,v)

7: until ‘fl — fl—1|/|fl—1| <e€

&

Algorithm 3.1 provides an iterative SCO procedure using the following notation:
o= [UIT,O'QT,...,UMT for o € {p,q,7,v’,a,b}, where o; = [02(1),052), e ,JZ-(K)}T
with 1 <7 < N. Based on Theorem 3.1 in the Appendix 3.6, Algorithm 3.1 monoton-
ically increases the objective f(u,v) in each iteration and, under suitable constraint
qualifications, converges to a point that satisfies the KKT conditions of problem (3.4).

Finally, the complexity of Algorithm 3.1 depends on the number of iterations
until convergence as well as on the complexity of each iteration (which is mainly
restricted by the optimization of a convex problem). According to Theorem 3.2
in the Appendix 3.6, the overall complexity of Algorithm 3.1 is O ((A\/e) ¢(N, K)),
where A = f./fo > 1, with f, being the globally maximum value of problem (3.4),
and ¢(N, K) is the complexity of problem (3.6). If this convex problem is solved by
an interior-point method, then ¢(N, K) is polynomial in the number of variables and

constraints (which are NK + 2 and 3N + 1, respectively), and thus polynomial in N
and K.

3.3.2 Applications

Afterwards, we examine two special applications of Algorithm 3.1,

namely, the weighted product (WP) and the weighted minimum (WM) of TEE and

w

MEE, which are respectively defined by: Fyp(z,y) = 2%y and Fyy(z,y) =

min (z/w,y/(1 —w)), with z = EFE,,(p) and y = 1r<n,i<n]\[EEi(p). Note that w
and 1 — w are the priority weights of TEE and MEE, respectively (0 < w < 1).
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Specifically, w = 1 corresponds to TEE maximization, while w = 0 corresponds to
MEE maximization. Moreover, we have that: fiyp(u,v) = wu + (1 — w)v, and
fwar(u,v) = min (u — logyw, v — logy(1 — w)) since min(2",2°) = 2min("s) Observe
that fyp(u,v) and fy(u,v) are both concave functions (the minimum of concave
functions is also a concave function [6]).

Concerning the WM maximization, we cannot consider the KKT conditions of
problem (3.4) directly, since the objective fyyn(u,v) is not differentiable. However,
Algorithm 3.1 converges to a point that satisfies the KKT conditions of the follow-
ing problem (equivalent epigraph form of problem (3.4)): (qglsg)(ert with feasible set
I = {(q,u,v,t) € RNE®3 . (q,u,v) € Z, u—logaw > t, and v — logy(1 — w) > t}.
This statement can be easily proved if we write problem (3.6) in its equivalent epi-
graph form: (q,ﬁ%iit})ie@t with feasible set © = {(q,u,v,t) € RNEF3 . (q,u,v) € Q,

u—logyw > t, and v —logy(1 —w) > t}, and observe that the properties of Theorem
3.1 in the Appendix 3.6 are satisfied.

3.4 Numerical Results

Consider the uplink of a cellular network with a single micro-cell, where K = 5
resource blocks allocated to one cellular UE (User Equipment) are reused by 4 D2D
(Device-to-Device) transmitter/receiver-pairs (N = 5). The cellular UE is associated
to the BS (Base Station) and each D2D transmitter is associated to its intended D2D
receiver (M = N). In addition, the D2D link distance, namely, the distance between
the transmitter and receiver of one D2D pair, is considered the same for all D2D
pairs and is denoted by dpsp. As concerns the simulation parameters, the cellular
UE as well as the D2D pairs are uniformly distributed in [30,100] m from the BS.
Moreover, we assume a carrier frequency of 5 GHz, ¢ = 1073, Brg = 500 KHz,
M(k) = FNyBgp (with receiver noise figure F' = 3 dB, and power spectral density
of the thermal noise Ny = —174 dBm/Hz), p; = p = 1, Py, = Py = 10 dBm,
prmax = p =23 dBm, and RI" = Ry, = 0 for 1 <4 < N (in the sequel we study

the fairness, so it is preferable not to consider the data rate constraints). Unless
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Figure 3-1: TEE and JFI versus D2D link distance for different priority weights.

otherwise stated, the initial feasible point is selected as p = (Ppax/K) Lnk 1, Where
1nkx1 is the NK X 1 vector of ones. Furthermore, all the results (except for Fig.
3-2) are obtained by averaging over 10% independent simulations, and the following
analysis refers to Algorithm 3.1 specialized to maximize the WP of TEE and MEE.

For the evaluation of fairness, we make use of Jain’s fairness index (JFI) as a
function of users’ EEs: J = %f}g: with 0 < J < 1. In general, the closer JFI is
to 1, the fairer the power allocatiz)zlll is ;n terms of EE. In the special case where w = 0
(MEE maximization) all the EEs are equal at the maximum point [7], and therefore
J =1 and TEE=MEE.

First of all, Fig. 3-1 shows the TEE and JFI versus the D2D link distance for
different weights. For fixed dpsp, it is clear that TEE increases while JFI decreases
as the weight w increases, since higher priority is given to TEE and lower to MEE.
According to the left figure, TEE decreases with the D2D link distance for all w. In
addition, as shown in the right figure, JFI decreases with the D2D link distance for
w # 0, whereas it remains equal to 1 for w = 0 as already mentioned.

Afterwards, Fig. 3-2 illustrates the Pareto operating points in the MEE-TEE plane
achieved by: a) the proposed approach for 200 equally-spaced values of the weight w
in [0, 1], b) product-EE maximization [4] with PEE(p) = [, FE;(p), and c) sum-
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Figure 3-2: Pareto operating points in the MEE-TEE plane for a specific simulation
scenario with dpsp = 10 m.
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Figure 3-3: Convergence of Algorithm 3.1 (WP maximization) for different priority
weights and initial point p =  (Puax/K) Inkx1 with dpap = 20 m.

EE maximization [5] with SEE(p) = ), EE;(p). As can be seen, the proposed

approach for 0 < w < 1 achieves several trade-off points which are not attainable by

maximizing TEE, SEE, PEE and MEE individually. Moreover, we can observe that all

the Pareto points lie on or above the line TEE=MEE;, since it can be easily proved that

EFEix(p) > min

Finally, we examine the convergence of Algorithm 3.1 for different priority weights
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and initial points. According to Fig. 3-3, Algorithm 3.1 exhibits fast convergence
and insensitivity to initial points for all simulation scenarios, and requires a quite
small number of iterations to converge. In particular, given the tolerance e = 1073
(e = 107%), it converges within approximately 4, 5 and 9 (5, 6 and 10) iterations for
w =0, 0.7 and 1, respectively.

3.5 Conclusion

In this chapter, we have developed a unified methodology for EE optimization
that incorporates a new trade-off between fairness and total system performance.
Furthermore, an efficient SCO algorithm has been proposed which can be applied
to practical scenarios of wireless networks. Finally, we have presented a general

complexity analysis for SCO algorithms.

3.6 Appendix: Sequential Convex Optimization

Let F be a nonconvex maximization problem with objective fy(x), and nonempty,
compact feasible set S = {x € R": fi(x) >0, 1 <4 < I}. Also, let {#H;}., be
a sequence of convex maximization problems with objective ho,j(x,x;ffl), compact
feasible set Sj = {x € R" : h;;(x,x;_ ;) >0, 1 <i < I}, and global maximum x;.
Let x{; be any feasible point of problem F, that is, xj € S. Moreover, assume that
fi(x) and h;j(x,x;_;), 0 <4 < I and j > 1, are differentiable functions. The next

theorem follows directly from [8].

Theorem 3.1 (Convergence). Suppose that the functions h; j(x,x}_;), 0 <i < I and
J > 1, satisfy the following three properties (where V = [0/0x1,0/0xs,...,0/0x,)"):
(@) hij(x,xj_4) < fi(x), Vx € ;
0) higlox, x|, . = 1ix)
. =V i(X;—l)

) jfl
(C) VhiJ‘ (X, X;_1> ’x:xA

Then, the sequence {fo(x;f)},>0 is monotonically increasing (fo(x;) > fo(xj_,),
3>

J = 1) and converges to a finite value L (lim fo(x;) = L < 00). In addition, every
j—00
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accumulation/limit point X of the sequence {X}‘} 0 achieves the objective value L
J=Z
(fo(X) = L) and, assuming suitable constraint qualifications, satisfies the KKT con-

ditions of the initial problem F.

A rigorous mathematical analysis for the complexity of SCO is very challenging
since the convergence rate depends on the particular structure of the problem, and no
theoretical results are available so far. Nevertheless, we provide the following general

theorem exploiting the monotonicity of SCO.

Theorem 3.2 (Complexity). Assume that: 1) the properties of Theorem 3.1 are
satisfied, 2) SCO terminates when ’fo(x;) - fo(xj_l)’/‘fo(xj_l)‘ < ¢, where ¢ > 0
is a predefined tolerance, and 3) fo(x3) > 0. Then, the number of iterations until
convergence is O (A/e), where X = fo(x*)/fo(x5) > 1 and x* is a global mazximum
of problem F. In addition, the overall complexity of SCO is O ((\/e) ¢(n,I)), where
w(n, I) is the complexity of the method used to solve each convex problem with n

variables and I constraints.

Proof. By virtue of Theorem 3.1, we have that fo(x}) > fo(xj_;) = fo(xg) > 0,
j > 1. Next, let k¥ > 1 be the number of iterations until convergence, that is,
the smallest integer for which ( fo(x3) — fo(Xzfl)) / fo(x5_;) < e. Hence, before
the termination of the algorithm, it holds that ¢ < (fo(x;) — fo(x;-‘_l))/fo(x;‘_l) <
(fo(x;f) - fg(x;‘f_l)>/f0(x(’§), and thus efy(x5) < fo(x;f) - fo(x;f_l) for1<j<k-1
(if & = 1, there is no such j). Now, by taking the sum from j = 1 to k — 1, we
get MMl efo(xg) < S5C fo(x)) — X521 fo(x5_y) = (k= Defo(xg) < X021 fo(x)) —
Z?;g fo(x}) = fo(x5_1) — fo(x5). Due to Property (a) of Theorem 3.1, every fea-
sible point of problem #; is also feasible for problem F (S; € S, j > 1), and
therefore fo(xj) < fo(x*) for j > 0 (x* is a global maximum of problem F).
This implies that fo(x;_;) < fo(x*), and thus (k — 1)efo(x§) < fo(x*) — fo(x5)
=k <1+ (A=1)/e = O(Ne), where A = fo(x*)/fo(x5) > 1. Since the number
of iterations until convergence is O (A/e) and in each iteration a convex problem is

solved with complexity ¢(n, I), Theorem 3.2 follows immediately. [
In general, a global optimum of a convex problem can be obtained in polynomial
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time, using standard convex optimization techniques such as interior-point methods

[6] (i.e., ¢(n,I) is a polynomial function of n and I). Note that the best upper-

complexity-bound for a generic convex problem, known so far, is O(n?) and is yielded

by interior-point methods [9)].
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Chapter 4

Dynamic Energy-Efficient Power
Allocation in Multibeam Satellite

Systems®

Power consumption is a major limitation in the downlink of multibeam satellite
systems, since it has a significant impact on the mass and lifetime of the satellite.
In this context, we study a new energy-aware power allocation problem that aims
to jointly minimize the unmet system capacity (USC) and total radiated power by
means of multi-objective optimization. First, we transform the original nonconvex-
nondifferentiable problem into an equivalent nonconvex-differentiable form by intro-
ducing auxiliary variables. Subsequently, we design a successive convex approxima-
tion (SCA) algorithm in order to attain a stationary point with reasonable complexity.
Due to its fast convergence, this algorithm is suitable for dynamic resource allocation
in emerging on-board processing technologies. In addition, we formally prove a new
result about the complexity of the SCA method, in the general case, that comple-
ments the existing literature where the complexity of this method is only numerically

analyzed.

5Copyright © 2019 IEEE. Reprinted, with permission, from: C. N. Efrem and A. D. Panagopou-
los, “Dynamic energy-efficient power allocation in multibeam satellite systems,” TEEE Wireless
Communications Letters, vol. 9, no. 2, pp. 228-231, Feb. 2020. Personal use of this material is
permitted, but republication/redistribution requires IEEE permission.
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4.1 Introduction

Multibeam satellite systems (MSS) provide flexibility and efficient exploitation of
the available resources in order to satisfy the (potentially asymmetric) traffic demand
of users. Due to the fact that the satellite power is quite limited, resource allocation
mechanisms should take into consideration not only the co-channel interference (CCI),

but also the satellite power consumption in the downlink transmission.

The joint problem of routing and power allocation in MSS is examined in [1], using
Lyapunov stability theory. Moreover, the studies [2] and [3] deal with several resource
allocation problems in MSS with and without CCI, respectively. In [4], a dynamic
power allocation algorithm is proposed exploiting a rain attenuation stochastic model.
A comparison between non-orthogonal frequency reuse (NOFR) and beam-hopping
(BH) systems is presented in [5], where various capacity optimization schemes are
reported. Furthermore, linear and nonlinear precoding techniques are investigated
in [6] and [7].

Unlike previous works, a multi-objective approach that minimizes the USC to-
gether with the satellite power consumption is presented in [8]. In particular, a
two-stage optimization is proposed to attain a set of Pareto optimal solutions using
metaheuristics. However, these algorithms do not provide any optimality guarantee,
and their performance is heavily affected by the optimization parameters. Besides,
although this method is suitable for offline power allocation, it is rather inappropriate
for online/real-time power allocation since it requires a lot of computation time to

find nearly-optimal solutions.

In this chapter, we introduce a new performance metric, which has not been sys-
tematically studied so far, including both the USC and total power consumption. This
is in contrast to the majority of recent studies that solely minimize either the former
or the latter objective. Moreover, we develop an optimization algorithm which always
converges and, assuming appropriate constraint qualifications, achieves a stationary
point (first-order optimality guarantee) with relatively low complexity. In addition,

numerical results show that the algorithm performance is almost independent of the
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initialization point. Consequently, the proposed algorithm can be used in dynamic
wireless environments where the resource allocation should be decided in a very short

time. Finally, a formal proof about the complexity of the SCA method is also given.

The rest of this study is organized as follows. In Section 4.2, the optimization
problem is formulated and then transformed into an equivalent differentiable form.
Afterwards, based on the SCA method, we design an energy-efficient power allocation
algorithm in Section 4.3. The performance of this algorithm is analyzed through

simulations in Section 4.4, and some conclusions are provided in Section 4.5.

4.2 Problem Formulation and Transformation

Consider a multibeam satellite system with a geostationary satellite using
N beams (N = {1,2,...,N}) and K subcarriers (SCs) of bandwidth Bgc
(K = {1,2,...,K}). For notation simplicity and without loss of generality, it is
assumed that: 1) the total bandwidth, By, = K Bgc, is reused by all beams, i.e., the
frequency reuse factor is equal to 1 (worst-case scenario), and 2) during a specific time
slot, each beam serves only one user within its coverage area (user i is served by the
i" satellite beam, Vi € N'). Moreover, we focus on the downlink (data transmission
from the satellite to users) considering ideal, without noise and interference, feeder

links between the gateways and the satellite.

The signal to interference-and-noise ratio (SINR) of the i user (i € N) on the
k" SC (k € K) is expressed by: %W = gl[ﬁ-]pgk] / ( %}/ ‘g][-]fgpgk] + azk>, where pg-k] is
the transmit power of the j* satellite beam, 02-27 & i;Eth\é thermal noise power of the
ith user, and g][kl] is the channel power gain between the j** satellite beam and the 7
user, all over the k" SC. More precisely, gj[kj includes free-space path loss (FSPL),
rain attenuation, transmit antenna gain of satellite beam as well as receive antenna
gain of user. For the sake of convenience, the transmit power vector is denoted by

p = [p[l],pp],...,p[Kq, where pl¥l = [p[lk],pgk],...,p%] , Vk € K. In addition, the
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USC [9] is defined by:

USC(p) = ZA:/maX (G = Ci(p), 0) (4.1)

(2

where C;“? and C;(p) = Bsc Y log, (1 + 'y[k]) are the i user’s requested and offered
kek

capacity (in bps), respectively.® Moreover, the total radiated power is given by:

Put(p) = > 3 pl (4.2)

ieEN kek

Focusing on the multi-objective optimization, we study the following nonconvex

minimization problem:

min - f(p) = USC(p) + w ot () (4.3)
with convex feasible set Z = {p € RYF : ¥ P < pmaxyi e A and
kek

DY pgk] < Prmaxlwhere P™* is the maximum transmit power of the it satel-
iletj\e/ kgelcam, and P is the maximum total radiated power of the satellite.” The
fixed /predefined weight w € [0, +00) is measured in bps/W, and expresses the prior-
ity of the total radiated power with respect to USC. Consequently, a trade-off between
the USC and total power consumption (which is proportional to the total radiated
power) can be achieved for a specific value of w. In particular, w = 0 corresponds to
USC minimization. Moreover, it can be proved that problem (4.3) is NP-hard by fol-
lowing similar arguments as in [8]. Nevertheless, as will be seen later, we can obtain a
stationary point of the equivalent differentiable problem with reasonable complexity.

Afterwards, by applying the transformation p = 2¥ (pgk} = Zyz[k], Vie N, k e K),

where y = {y[l],ym, . ,y[K]} with y* = {yyﬂ, gl ,yg\’ﬂ, Vk € K, we obtain the

6In case of adaptive coding and modulation (ACM), the offered capacity can be approximated by
CAM(p) =~ Bsc Y. log, (1 + C%[k]) without altering the methodology, where ¢ € (0, 1) is obtained
kek

through curve fitting (offered capacity versus SINR).
It is possible to have additional minimum-capacity constraints for each user (Ci(p) > CM™",
Vi € ) in order to increase the system availability (the methodology remains the same).
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equivalent nonconvex problem:

min  f(2%) = USC(2") + wPior(2”) (4.4)

y

with convex feasible set S = {y € RVK . > o’ < prax o Vi e N and
kek

[k] . .
> o> v < PpPaxt Notice that the above transformation reduces the number
ieN kek

of constraints by NK (lower complexity), since p € Rﬂf K becomes y € RVE,

Finally, in order to remove the non-differentiability of the objective function, we
rewrite problem (4.4) in its equivalent epigraph-form [10] using the auxiliary variable

t= [tl,tg,...7tN]2

min  F(y,t)=> t;+w> >, ou.” (4.5)

(y.t)€Q ieN iEN kek

with nonconvex feasible set Q = {(y,t) € RNV« ¢, >0, ; > O — Cy(2Y),
Vi € N and y € S}. Observe that the new objective F(y,t) is convex now, and
the first two constraints in Q are equivalent to ¢; > max (C;“! — C;(2Y),0), Vi € N.
Furthermore, problem (4.5) is equivalent to problem (4.4) in the following sense:
(y,t) is a global optimum of (4.5) if and only if y is a global optimum of (4.4) and
t; = max (C;* — C;(2Y),0), Vi € N

4.3 Energy-Efficient Power Allocation

Subsequently, we utilize the mathematical tool of SCA (refer to the Appendix 4.6)
in order to tackle problem (4.5) with relatively low complexity. Firstly, the offered
capacity can be written as follows: C;(2Y) = Bse k%:’c M’“] (y[k]> — M (y[k])}, where
cpgk] (y[’“]> and 19?] (y[k]) are convex functions given by (note that the log-sum-exp

function is convex [10]):

[k]
A (v4) Z g, (z Mkt | ) w6

JEN
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Chapter 4 4.3. Energy-Efficient Power Allocation

Algorithm 4.1 Energy-Efficient Power Allocation

1: Select a starting point p € Z, and a tolerance € > 0

2: Set £ =0,y =logy(p), t; = max (C;“* — Ci(p),0), Vi e N

and Fy = F(y,t)

repeat

4:  Solve the convex minimization problem (4.8) with approximation
point ¥ =y in order to achieve a global optimum (y*, t*)

5: Setl=/(+1,y=y*, t=t*, p=2Yand F, = F(y,t)

6: until |Fg - Fg_1| S € ’Fg_1’

oy

JEN\©

ﬂ[k] (y ) log, (Z g[ ]Qy o? ) (4.7)

RNK

Now, for a given approximation point y € , we can construct the next convex

minimization problem:

min - Fy.t) =Y ttw) Y o (4.8)

(y,t)eo(y) ieN iEN ke

with convex feasible set O(§) = {(y,t) € RVNEHN - ¢ >0, ¢, > Cr* — Ci(y, ),
Vi e N and y € S}, where:

Ci(y,¥) = Bsc Y. { ( ",y ]> — 9} (Y[k]ﬂ (4.9)

ke

L .5) = (5) £ 9 (54 (- 54)T o

Observe that @}(y,y) is a concave function of y. In addition, the elements of

o (y[k) are given by:

agpgk] (— [k]) gl[kj 24k]

, VleN (4.11)
8y[k] Z g[ o, + 07

Algorithm 4.1 presents an iterative process based on the SCA method. In particu-
lar, we provide the next proposition which readily follows from Theorems 4.1 and 4.2
in the Appendix 4.6. Note that the number of variables and constraints of problem

(4.8) is polynomial in N and K (NK + N and 3N + 1, respectively).
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Proposition 4.1. Algorithm j.1 generates a monotonically decreasing sequence {Fg}ezo
(i.e., Fyy1 < Fy) and converges to a finite value L GH?O Fy =L > —o00). Moreover,
assuming suitable constraint qualifications, L = elggo F, = F (y,E) for some sta-
tionary point (37, f) of problem (4.5). Finally, the complexity of Algorithm 4.1 is
O (({/e) h(N, K)), where § = Fy/F. > 1, with F, being the globally minimum objec-
tive value of problem (4.5), and h(N, K) is the complezity of the convex problem (4.8)
which is polynomial in N and K.

4.4 Numerical Simulations and Discussion

In this section, we examine a MSS with the parameters given in Table 4.1. Unless
otherwise specified, the tolerance and the starting point of Algorithm 4.1 are selected
ase =102 and p = (P2 /(NK)) 11x K, Where 1y is the all-ones 1 x NK vector.
As concerns the requested capacities of the users, we have assumed an asymmetric
traffic distribution according to the linear model: C;*! = ri, Vi € N, where r is
the traffic slope measured in bps. Furthermore, each satellite beam antenna has

the following radiation pattern [6], [8]: G(f) = Gmax(‘h?(;‘) + 36%)2, where 6 is

the angle between the corresponding beam center and the user location with respect
to the satellite, Gpayx is the maximum satellite beam antenna gain (G(0) = Gpax),

u = 2.071235121(122?13) with 345 the 3-dB angle (G(A3q5) = Guax/2), and Jy(u), J3(u)

are respectively the first and third order Bessel functions of the first kind.

All graphs, except for Fig. 4-3, present statistical averages derived from 200 inde-
pendent Monte Carlo simulations, where each user is uniformly distributed within its
beam coverage area. For the sake of comparison, we have used a conventional scheme,
namely, uniform power allocation (UPA), where pgk[]] pa = PP=/(NK), Vi € N,
ke K.

Firstly, we investigate the convergence speed of the proposed algorithm for
w =0, 10 Mbps/W and different starting points. As shown in Fig. 4-1, Algorithm 4.1
achieves nearly the same convergence rate and final objective value regardless of the

starting point. Given the tolerance e = 1073, the proposed algorithm requires about
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Chapter 4 4.4. Numerical Simulations and Discussion

Table 4.1: System Parameters

Parameter Value
Beam radius 150 km
Frequency band Ka (20 GHz)
Number of beams and SCs N=7 K=4
Subcarrier bandwidth (Bsc) 125 MHz
Thermal noise power (07, =0°,Vi e N, k€ K) | —124 dBW
Maximum beam power (PP = P_... Vi € N) 100 W
Maximum total power (Phe) 500 W
Free-space path loss 210 dB
Rain attenuation mean and standard deviation | 2.6 dB, 1.63 dB
User antenna gain 41.7 dBi
Maximum satellite beam antenna gain (Gmax) 52 dBi
3-dB angle (634B) 0.2°
Ths 0 (USC minimization) 18 w =10 Mbps/W
“-u=01 “-1=01
—+u=04 —+—u=04
14 =u=07 177 |-e-u=0.7
U= 1 u= 1
a2 random initialization 2. random initialization
= 134 216
Tt O ui
£ £ 4
= =
5 12 5 15
= = \
11 '\ 14 ®,
N ‘ ,.,\"\
L oo A A AL ';"\'&H;-:- a2
10 13 B
0 3 6 9 12 15 0 3 6 9 12 15
Iteration number Iteration number

Figure 4-1: Convergence of Algorithm 4.1 for » = 0.7Gbps, and starting point
p = p(PRax/(NK))11xnyk or random initialization.

10 iterations to converge for both values of w and for all the starting points under
consideration.

Secondly, Fig. 4-2 illustrates the USC and total radiated power achieved by the
conventional scheme and Algorithm 4.1 (for two different weights) versus the traffic
slope. Although the UPA scheme makes full use of the available power, it has the
highest USC. On the other hand, for w = 0 (USC minimization) we have the lowest
USC using less power than UPA. In addition, the last scheme with w = 10 Mbps/W
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~6-w =10 Mbps/W rS 5004 & -6 -8 -8 =B =0 =0 =0 -4
=@-w =0 (USC minimization) .
18 |- Uniform Power Allocation Pl ,p 450 ___e_.-e--—O
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Figure 4-2: USC and total radiated power versus the traffic slope.

17 \ ‘ ,
- — Two-stage approach [8]
g 16 - O Proposed approach, w = 0 (USC minimization) |-
g, A Proposed approach, w = 7 Mbps/W
215 ¢ ¢ Proposed approach, w = 10 Mbps/W .
'S B> Proposed approach, w = 30 Mbps/W
% 14 - O Proposed approach, w = 90 Mbps/W 4
(]
;53 13+ -
£,
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-
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0 50 100 150 200 250 300 350 400 450

Total Radiated Power (W)

Figure 4-3: Performance comparison with the two-stage approach [8] for a particular
system configuration with » = 0.7 Gbps.

achieves an USC that lies between the other two schemes, but with much less power
(high energy savings). This is expected because higher priority is given to the total
radiated power as the weight w increases.

Last but not least, Fig. 4-3 compares the performance of the proposed method
with the two-stage approach [8]. In particular, the 5 operating points attained by
the proposed approach belong to the Pareto boundary obtained from [8]. It has been
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observed that many values of w achieve operating points on the Pareto boundary,
but we only present 5 points for better illustration. Therefore, the proposed method
shows similar performance with [8]. Note that in multi-objective optimization, there
is no objectively optimal solution, but only Pareto/subjectively optimal solutions.
In summary, [8] presents a posteriori method where the network designer selects an
operating point after the computation /visualization of the Pareto boundary, while this
chapter introduces a priori method where the weight w is specified before any com-
putation, and then a single solution is obtained. Finally, we would like to emphasize
that the former approach is appropriate for offline power allocation (no strict limita-
tions on processing time), whereas the latter approach is suitable for online/dynamic

power allocation due to its rapid convergence.

4.5 Conclusion

In this chapter, we have designed a SCA-based optimization algorithm with high
convergence speed, which is suitable for real-time power allocation in MSS with strict
computation/processing-time requirements. The proposed multi-objective approach
enables network designers to achieve a compromise between the USC and total power
consumption. Numerical simulations have also verified the advantage of this ap-
proach. Moreover, the complexity of the SCA method, in its general form, has been

studied theoretically.

4.6 Appendix: Successive Convex Approximation

SCA is an iterative method that attains a stationary point of a nonconvex opti-
mization problem by solving a sequence of convex problems [11]. Despite the fact that
the achieved solution may or may not be globally optimal, this technique has reason-
able computational complexity. More specifically, the following theorem is provided,

where all the functions are assumed to be differentiable (and therefore continuous).
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Theorem 4.1 ([11]). Let P be a nonconvexr minimization problem with objective
Yo(x), and nonempty-compact feasible set D = {x € R" : ¢;(x) <0, 1 < i < m},
with x = [Ty, Tg, ..., x,|. Moreover, suppose that ¥;(x) = u;(x)—v;(x) for 0 <i < m,
where u;(x) and v;(x) are convexr functions. Let {75;}]'>1 be a sequence of convex min-
imization problems with objective 1y j(x, x; ), compact feasible set D; = {x € R" :
%(w,azjfl) < 0, 1 < i < m}, and global minimum =z} (with x5 € D).
If @Z;(m,mj_l) = ui(x) — v(x, x;_y) for 0 <i < m and j > 1, where v3(x, x;_,) =
vi(w;f_l)—i-Vvi(w;f_l)-(a: — a:;'f_l)T, with Vv;(x) = [0vi(x)/0xy, ..., 0v;(x)/0x,], then:
(a) ©;_y € Dj € D and vo(x;) < do(xj_y), Vj = 1, (b) jh_{glo%(w;) = Yo(®) =
L > —oo for all the accumulation/limit points x of the sequence {m;}po’ and
(¢) assuming suitable constraint qualifications, all the accumulation points x are sta-

tionary points of P (i.e., satisfy the corresponding Karush-Kuhn-Tucker conditions),

and L = lim +o(x}) = o(&), where & is some stationary point of P.
j—00

Taking advantage of the fact that SCA generates a monotonically decreasing se-
quence of objective values, and wusing the property of telescoping sums:
SM (a1 —a;) = ag — ay for any integer M > 1, we introduce and prove the

following result concerning the complexity of the SCA method.

Theorem 4.2. Suppose that the SCA method terminates when ‘wo(w;‘) — wo(w}[l)’ <
€ ‘@Uo(m;_l)‘ for some predefined tolerance € > 0, and o(x*) > 0, where * is a global
minimum of P. Then, the complezity of the SCA method is O (({/€) h(n,m)), where
€ = o(x) /vo(x*) > 1 and h(n,m) is the complexity of each convex optimization
problem which is a polynomial function of the number of variables and constraints

(n and m, respectively).

Proof. According to Theorem 4.1, it holds that vo(xj5) > vo(xj_;) > Yo(x}) >
o(x*) > 0, ¥j > 1. As concerns the number of iterations until convergence, if
we denote by v the smallest integer such that ‘wo(wl’j) - 1/10(:1:;71)‘ <e \wo(wll)\ &
Yo(xh_1) — vo(x) < eho(x!_,), then for all integers less than v the last inequality
does not hold: o(@_y) — Yo(@]) > do(@hy) > evo(@*) = Yoleiy) — dolei) >
eo(x*), VI € {1,2,...,v—1}. By summing from 1 to v — 1, we obtain

49



Chapter 4 Bibliography

o (Yol 1) = dola)) > S edo(a) = dola) — dolay 1) > (v = D eho(a).
Since o(x}_y) > Yo(x*), we get (v — 1) etho(x*) < Yo(x§) — Yo(x*), and therefore
v<1l+(—-1)/e <1+4+E/e =0(/e). Hence, the SCA method requires O (£/¢)
iterations to converge. Moreover, each convex optimization problem can be globally
solved with polynomial complexity in the number of variables and constraints [10],

and thus Theorem 4.2 follows directly. O]
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Chapter 5

Globally Optimal Selection of
Ground Stations in Satellite

Systems with Site Diversity®

The availability of satellite communication systems is extremely limited by at-
mospheric impairments, such as rain (for radio frequencies) and cloud coverage (for
optical frequencies). A solution to this problem is the site diversity technique, where
a network of geographically distributed ground stations (GSs) can ensure, with high
probability, that at least one GS is available for connection to the satellite at each time
period. However, the installation of redundant GSs induces unnecessary additional
costs for the network operator. In this context, we study an optimization problem that
minimizes the number of required GSs, subject to availability constraints. First, the
problem is transformed into a binary-integer-linear-programming (BILP) problem,
which is proven to be NP-hard. Subsequently, we design a branch-and-bound (B&B)
algorithm, with global-optimization guarantee, based on the linear-programming (LP)
relaxation and a greedy method as well. Finally, numerical results show that the

proposed algorithm significantly outperforms state-of-the-art methods and has low

8Copyright © 2020 IEEE. Reprinted, with permission, from: C. N. Efrem and A. D. Panagopou-
los, “Globally optimal selection of ground stations in satellite systems with site diversity,” IEEFE
Wireless Communications Letters, vol. 9, no. 7, pp. 1101-1104, July 2020. Personal use of this
material is permitted, but republication/redistribution requires IEEE permission.
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Chapter 5 5.1. Introduction

complexity in the average case.

5.1 Introduction

Site diversity technique is used to improve the availability of satellite communi-
cation systems by mitigating the atmospheric effects [1]. In particular, multiple GSs
separated over long distances receive the same signal from the satellite, and in this
way the probability of all GSs experiencing severe weather conditions simultaneously
is reduced. A joint optimization method for the design of optical satellite networks
is proposed in [2], which consists of two parts. The first part is the optical-GS po-
sitioning optimization performed by an iterative greedy procedure, while the second
part is the backbone network optimization taking into consideration the optical fiber
cost. In [3], a network optimization method with reduced complexity is presented,
exploiting the single-site availabilities as well as the correlation between sites.

Furthermore, the optimal location of optical GSs for low-earth-orbit (LEO) satel-
lite missions is examined in [4] through multi-objective optimization, using genetic
algorithms (GAs) and considering three performance metrics: system availability, la-
tency, and network cost. GAs are also used in [5] to minimize two different objective
functions in extremely-high-frequency (EHF) satellite networks with smart-gateway
(SG) diversity. In addition, the selection of the minimum number of GSs in opti-
cal satellite networks with a medium-earth-orbit (MEO) or a geostationary (GEO)
satellite is investigated in [6] and [7], respectively. Both studies present heuristic al-
gorithms of low complexity, taking into account the spatial correlation as well as the
monthly variability of cloud coverage.

The main contributions of this chapter compared to existing approaches are the
following: 1) rigorous mathematical formulation of the optimization problem with
a formal proof of its NP-hardness, 2) system availability guarantee for several time
periods (e.g., months), not only for a year, and 3) unlike existing methods that
provide suboptimal solutions without any performance guarantee, the designed B&B

algorithm achieves global optimality with low average-case complexity (i.e., good
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trade-off between performance and complexity).

The remainder of this chapter is structured as follows. Section 5.2 presents the
system model and formulates the optimization problem, which is transformed into an
NP-hard BILP problem in Section 5.3. Afterwards, a global optimization algorithm
is given in Section 5.4, while its performance is numerically analyzed in Section 5.5.
Finally, Section 5.6 concludes this chapter.

Mathematical notation: The absolute value of a real number z is denoted by |z|,
while |D| = D represents the cardinality of a set D. Also, Oy/1y stands for the

N-dimensional zero/all-ones vector respectively, and [-] is the ceiling function.

5.2 System Model and Problem Formulation

We consider a satellite system with a geostationary satellite and a ground station
network employing site diversity. Specifically, L = {1,2,..., K} is the set of avail-
able locations for installing a GS (or, equivalently, the set of candidate GSs), and
T ={1,2,...,T} denotes the set of time periods (e.g., months). In addition, p} is

t . . .
P4 is the maximum required

the outage probability of GS k in time period ¢,° and
system outage probability in time period ¢.
Moreover, we make the following assumptions: a) {pzﬁt rex are probabilities of
mutually independent events, Vt € T,'° b) the system availability is defined as the
probability of having at least one GS available, c¢) {p'} Yrex,teT are supposed to be
accurate (i.e., without uncertainty); the uncertainty in the calculation of outage prob-
abilities is beyond the scope of this chapter, and d) without loss of generality we

assume that ppy, P9 > 0, Vk € IC and Vt € T

In order to reduce the cost of installing and operating the GSs, we study the

%In radio-frequency (RF) satellite systems, a GS is in outage when the rain attenuation exceeds
a specific threshold [5], which is determined by the required bit-error-rate (BER). In optical satellite
networks, a GS is in outage when experiencing cloud blockage [8,9]. Otherwise, the GS is available.

10This can be achieved if the distance between any two distinct GSs is sufficiently large, and
therefore the spatial correlation of weather conditions is negligible. Furthermore, this case is quite
common and preferable in practice, so as to take full advantage of site diversity by attaining the
highest availability.
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following cardinality minimization problem:

min |S|=S
sk (5.1)
st. P(S8) > P e T

where S denotes the set of selected GSs, P*Y(S) = 1— [] p‘s’}f is the system availability
in time period ¢ achieved by the set S of GSs (or, Séecfuivalently, the probability of
having at least one GS in S available in time period t), and Pf¥"°% = 1— PP""*% i5 the
minimum required system availability in time period ¢. Notice that P*}(S) > P¥rd

P H pg%t S Ptout,req7 Vit € 7—
seS

5.3 Equivalent BILP Problem and NP-hardness

Subsequently, we introduce the vector z = [z1, 2, .. ., zx] of binary (0-1) variables.
In particular, 2, = 1 if k € S, i.e., the k*" GS is selected (or, equivalently, a GS is
installed at the k*® location), otherwise z; = 0. Based on this definition, we have that
|S| = k;lc 2z, and ];[Spg};t = I1 (p2%)™. As a result, problem (5.1) can be written as

ke
follows:

lein Z 2k

st. H (pzlét)zk < Ptout,req’ Vte T (52)
kek

2z €40,1}, Vke K
By taking the logarithms on both sides of the inequality-constraints and then
multiplying by —1, we obtain an equivalent BILP problem:

min 9(z) =z

keK

s.t. Z Qppzr > By, VEET (5.3)

kel

2 €{0,1}, Vke Kk

with ayy = log(1/ppy) and By = log(1/P™"™), vt € T and Vk € K. Note that
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. t
Quk, B > 0, since 0 < ppf, P71 <1

Theorem 5.1. The equivalent BILP problem (5.3) is NP-hard.

Proof. In order to prove the NP-hardness of problem (5.3), the following property
is exploited: if a special case of a problem is NP-hard, so is the general problem. Now,
we consider the minimum node cover problem (MNCP): Given a graph G(N, £), with
N and & being the sets of nodes and edges respectively, find a minimum-cardinality
set of nodes N/ C N such that {n,m} € € = n € N/ or m € N'. Furthermore, the
MNCP is known to be NP-hard [10] and can be formulated as the following BILP

problem:

mzin Z Zn
neN

st. zZpnt+zm>1, Y{n,m}e& (5.4)

2z, € {0,1}, VneN

Obviously, the NP-hard problem (5.4) constitutes a special case of the general problem
(5.3), and so we have Theorem 5.1. O

5.4 Global Optimization Algorithm

Since problem (5.3) is proven to be NP-hard, it cannot be solved in polynomial
time unless P=NP. In other words, it is rather unlikely that there is an algorithm
which finds an optimal solution and has polynomial complexity in the worst case.
Nevertheless, we will design a global optimization B&B algorithm of low average-case
complexity. B&B is an intelligent technique which recursively splits the search space
into smaller spaces (branching), and uses appropriate bounds on the optimum value
(bounding) to avoid, as much as possible, the exhaustive enumeration of candidate

solutions [10].
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Next, consider problem (5.3) with some variables being fixed:

mm gzv,zc sz—i—ZzC
veY ceC

st Y ez >0, VteT (5.5)

veY

z, € {0,1}, Yo eV

where the sets ¥V and C contain the indices of free and constant variables respectively
(YucC=K,VvnC =0), zy = [2o]vev, Zc = [Zc)eec (With z. € {0,1}, Ve € C), and
B = Br — X aucze, V¥t € T. Notice that when V = K and C = (), problem (5.5)
is identicalcicc) the original problem (5.3). Also, zyY" denotes an optimal solution of
problem (5.5), and |[V|=V < K.

Moreover, the following statements can be easily proven: a) g* < g(z%pt;ic),
where ¢* is the optimum value of problem (5.3), b) if zy is a feasible solution of
problem (5.5), then [zy;Z¢] is a feasible solution of problem (5.3), and ¢) necessary-
and-sufficient feasibility condition: problem (5.5) is feasible & > oy, > ], Vt € T
(i.e., 1y is a feasible solution). <

Now, in order to construct a lower bound on the optimum value of problem (5.5),

the LP relazation is exploited, where the binary constraints (z, € {0,1}, Vv € V) are

relaxed:
mln gzv,zc sz—i—z,zc
veY ceC
SN ez > B, VLET (5.6)

veY

0<2z <1, YweV

An optimal solution z4" of the LP relaxation (problem (5.6)) can be obtained in poly-
nomial time, using interior-point methods [11]. In addition, note that: a) the feasibil-
ity of problem (5.5) implies the feasibility of the LP relaxation,
b) if zi¥ € {0,1}V, then g(z\%";2c) = g(z4";2c), and ) g(zi;2c) < g(z%"; Zc),
and because g(z'; Z¢) is an integer, we have that [g(z{;P; Zcﬂ < g(z3";Z¢).

In the sequel, we develop a greedy method to provide an upper bound on the

optimum value of problem (5.5). This method is based on the following cost function
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Algorithm 5.1 CF-based Greedy Method
Input: The BILP problem (5.5) with Y oy, > 5, Vt € T
veV

Output: A feasible solution zy of problem (5.5)

lizy =0y, R:=V,d, =0, Yt €T, f:= 3 max(dy,0)
teT
2: while f > 0 do
3: n:=argmin Y max(d; — as,,0), 2, := 1, R := R\{n}
reR teT
4 dy=dy— oy, YEET, fi= Y max(d,0)
teT

5: end while

(CF): f(zy) = X max(d;,0), with d; = 8, — > a2, YVt € T, which quantifies
teT vEY
the total violation of inequality-constraints induced by the vector zy,. Observe that:

a) f(zy) > 0,and b) f(zy) =0 X a2, > B, VEET.
veY

Algorithm 5.1 presents the CF-based greedy method, where R = {v € V : z, = 0}.
In particular, zy is initialized to the zero vector, and in each iteration we find the
index in R which minimizes the CF when the corresponding 0-variable changes to
1. Then, this variable is set equal to 1 and its index is removed from the set R.
The algorithm terminates when the CF equals 0, i.e., all the inequality-constraints

opt

are satisfied. In addition, g(z\}";Z¢) < g(z3";Z¢), where z$F

is a feasible solution of

problem (5.5) obtained from Algorithm 5.1.

Complezity of Algorithm 5.1: The complexity of the it? iteration is ©(T'(V + 1 — 1)),
since |[R| =V + 1 —i. From the input assumption of Algorithm 5.1 (feasibility con-
dition), we have that f(1y) = 0, and therefore Algorithm 5.1 requires a maximum of
V iterations to terminate. Consequently, the worst-case complexity of Algorithm 5.1
is {: TV4+1—-49)=T {: j=TV(V +1)/2 =0O(TV?), ie., polynomial in the size
of Zt:hle input. -

As concerns the branching procedure in the B&B method, we choose a branching
variable z, (b € V) such that z}¥' is the most “uncertain” fractional variable, i.e.,

closer to 0.5 than any other variable in z};". Afterwards, problem (5.5) is decomposed
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into two subproblems by setting either z, = 0 or 2z, = 1:

Jnin 9(Zv\(v}; Zeugpy) = Z Zy + Z Zc
Ve veV\{b} ceC

s.t. > ez, =B, VEET (5.7)
veV\{b}

2, € 0,1}, Yo e V\{b}

min - g(zwpyiZeopy) = Y, Aty Ze+l
VAL veV\{b} ceC

s.t. Z Qo2 > P, —ayy, YEET (5.8)
veV\{b}

2 € {0,1}, Yo € V\{b)

These subproblems have the same form as problem (5.5), with z, = 0/1 for subprob-
lem (5.7)/(5.8), respectively. Moreover, if gi** and ¢{* are respectively the optimum
values of subproblems (5.7) and (5.8) (assuming that the optimum value of an infea-
sible problem equals +00), then g(zy"; Z¢) = min(gg™, ¢5°").

The proposed B&B method is given in Algorithm 5.2, where U is the best global
upper bound found so far by the algorithm (¢* < U), and L is the list of active sub-
problems that controls the order in which the subproblems are examined (a generated
subproblem is called active if it has not been examined yet). Note that £ is a first-
in-first-out (FIFO) list; this is preferable when “good” upper bounds are available in
order to “prune” the search space as early as possible.

Furthermore, the B&B method performs three fundamental operations, where no
further investigation is needed for the examined subproblem: 1) Infeasibility: the
examined subproblem is infeasible, 2) Pruning: the examined subproblem cannot
produce a better solution (U < [g(zﬁp;ic)b, and 3) Fathoming: an optimal solu-
tion of the examined subproblem is found; this occurs when the solution of the LP
relaxation is integer (z3;" € {0,1}"), or when [g(z{jp; Zcﬂ = g(2z$¥; Z¢) which implies
9(z3"7¢) = g(2$F;Zc). Finally, Algorithm 5.2 produces a nonincreasing sequence
of global upper bounds U, and after its termination U = ¢* since all the generated

subproblems have been examined (£ = ().
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Algorithm 5.2 LP&CF-based B&B Method
Input: The original BILP problem (5.3) with Y oy > 0, VE €T
ke

Output: A (globally) optimal solution z* of problem (5.3)
1:z*:=1g, U := K, L := {problem (5.3)}
: while £ # () do
3:  Remove the front subproblem from the list L,
which has the form of problem (5.5)
4: if I eT: %:v ai,y < [ then {continue} end if > Infeasibility

[\]

5:  Compute an optimal solution z" of the LP relaxation (in the form
of problem (5.6)), using a LP-solver of polynomial complexity
6: if U< [ (zi" ,Zc)—‘ then {continue} end if > Pruning
7. if ziF € {0,1}" then > Fathoming (integer solution), given that
U> ( (Z\L;Pazc)w = g(zy";2¢) = 9(2y}" Zc)

[z3"; Zc|, continue

*

U:=g(z;zc), z° =
end if
10:  Compute a feasible solution zJF of the examined subproblem,
using the CF-based greedy method (Algorithm 5.1)
11: if g(z5F;%¢) < U then {U = g(2$¥;Z¢), z* = [23F;Z¢]} end if
12: if [ (z3" ,Zc)—‘ = g(z$"; Z¢) then {continue} end if > Fathoming

LP

13: Select a branching variable z,

vey

) , and then

generate two new subproblems in the form of problems (5.7) and (5.8)
14: Insert the generated subproblems at the end of the list £
15: end while

Complexity of Algorithm 5.2: The complexity of each iteration is mainly restricted
by the LP-solver (polynomial complexity O((T + V)!*V?) [11]) as well as Algorithm
5.1, so it is O(T + V)5V2+TV?) = O(T +V)5V?) = O(T + K)'5K?). Fur-
thermore, in each iteration we examine one subproblem, while we generate at most
two new subproblems by fixing one of the free variables. Therefore, the number of
iterations/subproblems is < f} 2/ = 2K+ 1 = O(2K). Overall, the worst-case

complexity of Algorithm 5.2 is O(25 (T + K)'5K?), i.e., exponential in the size of the
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input. Although the original BILP problem (5.3) is probably intractable in the worst
case (due to its NP-hardness), the most difficult problem instances may rarely occur
in practice (because of their special structure), so the average-case complexity may
be a more appropriate measure of an algorithm’s efficiency. Specifically, assuming a
probability distribution over problem instances, the average-case complexity of Algo-
rithm 5.2 is O(M (T + K)'5K?), where M is the mean/average number of iterations.
Observe that if M = poly(T, K), where poly(T, K) is some polynomial in 7" and
K, then Algorithm 5.2 will have polynomial-time complexity in the average case.'!
Nevertheless, the average-case complexity of the B&B method is very challenging to

study theoretically, so we resort to a numerical analysis in Section 5.5.

5.5 Numerical Results and Discussion

In this section, the performance of the designed B&B algorithm is evaluated
through a series of problem instances. More specifically, the following simulation
parameters have been considered: K € {10,15,20,25,30}, T' = 12, PR — 99.9%,
Vt € T, and 200 independent scenarios (for each value of K) with the outage proba-
bilities {pR'} }rex, ter being uniformly distributed in the interval [0.1, 1].

Firstly, we compare Algorithm 5.2 with state-of-the-art methods. As shown in
Table 5.1, GHA exhibits the lowest performance, while Algorithm 5.2 achieves ex-
actly the same performance with ESA and significantly outperforms GHA and CHA.
Moreover, for K € {15,20,25,30}, GHA and CHA attain a globally optimal solu-
tion in less than 70% of cases.!? On the other hand, Algorithm 5.2 finds the global
optimum in all cases, since it is theoretically guaranteed to do so.

Furthermore, we examine the complexity of Algorithm 5.2 in terms of the required

iterations (recall that each iteration has polynomial-time complexity). According to

UNote that an ezhaustive-enumeration algorithm, despite its global optimality, requires
K

T 21 (I;) j = TK2K-1 = ©(2KKT) comparisons in all cases, thus having exponential complex-
j=

ity in both the worst and the average case.
12 Although the worst-case complexity of both GHA and CHA is ©(T'K?), these heuristic methods
do not provide any performance guarantee.
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Table 5.1: Performance Comparison with Existing Methods: Average
# of Selected GSs & Percentage of Problems Optimally Solved®

. M EsA 7| GHAP[7 | CHAP[7] | Algorithm 5.2
10 0.84 | 9.89 (96%) | 9.87 (97%) | 9.84 (100%)
15 1136 | 11.89 (55%) | 11.70 (68%) | 11.36 (100%)
20 1033 | 1115 (33%) | 10.74 (60%) | 10.33 (100%)
25 0.62 | 10.62 (17%) | 10.00 (63%) | 9.62 (100%)
30 023 | 10.14 (24%) | 9.65 (58%) | 9.23 (100%)

# This percentage is calculated using the global minimum obtained
from the exhaustive-search algorithm (ESA) given in [7].

b GHA and CHA select up to 3 and up to 2 redundant GSs, respec-
tively.

Table 5.2: Iterations Required by Algorithm 5.2

Total # of # of iterations until a | Upper bound on
K iterations global minimum is found | the total # of
[mean (standard | for the 1% time [mean iterations
deviation)] (standard deviation)] [= 2K+ —1]
10| 1.93 (2.37) 0.22 (0.71) > 2 x 103
15 14.23 (15.61) 6.04 (10.30) > 6 x 10%
20 | 41.37 (57.01) 15.86 (38.91) > 2 x 10°
25 | 87.74 (117.14) 27.52 (75.55) > 6 x 107
30 | 117.90 (204.85) 28.42 (121.32) > 2 x 10°

Table 5.2, the B&B method requires extremely few iterations on average (with small
standard deviation) compared to the upper bound 25! —1. Thus, Algorithm 5.2 has

low average-case complexity.

Finally, Fig. 5-1 illustrates the progress of the B&B method for a specific problem.
In particular, we can observe: 1) the nonincreasing sequence of global upper bounds
U, and 2) that the number of active subproblems |£| = L is equal to 1 at the beginning

of the algorithm, and becomes 0 in the last iteration.
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25 T T T T
—Global upper bound U
Number of active subproblems L

20 y

10 - I E—

0 1 1 1 1
0 10 20 30 40 50 60 70 80 90

[terations

Figure 5-1: Progress of Algorithm 5.2 for a simulation scenario with K = 20. Global
minimum = 10, total number of iterations = 85, and number of iterations until a
global minimum is found for the 1% time = 77.

5.6 Conclusion

In this chapter, we have studied the optimal selection of GSs in satellite systems
with site diversity. Furthermore, we have developed a global optimization algorithm,
which can provide significant cost savings for the network operator. Finally, accord-
ing to the numerical results, the proposed B&B method exhibits low average-case

complexity, while achieving much higher performance than existing algorithms.
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Chapter 6

Minimizing the Installation Cost
of Ground Stations in Satellite
Networks: Complexity, Dynamic
Programming and Approximation

Algorithm'

In this chapter, we study the optimum selection of ground stations (GSs) in
RF /optical satellite networks (SatNets) in order to minimize the overall installa-
tion cost under an outage probability requirement, assuming independent weather
conditions between sites. First, we show that the optimization problem can be for-
mulated as a binary-linear-programming problem, and then we give a formal proof
of its NP-hardness. Furthermore, we design a dynamic-programming algorithm of
pseudo-polynomial complexity with global optimization guarantee as well as an effi-

cient (polynomial-time) approximation algorithm with provable performance guaran-

13Copyright (© 2020 IEEE. Reprinted, with permission, from: C. N. Efrem and A. D. Panagopou-
los, “Minimizing the installation cost of ground stations in satellite networks: Complexity, dynamic
programming and approximation algorithm,” IEEE Wireless Communications Letters, vol. 10, no. 2,
pp. 378-382, Feb. 2021. Personal use of this material is permitted, but republication/redistribution
requires IEEE permission.
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tee on the distance of the achieved objective value from the global optimum. Finally,

the performance of the proposed algorithms is verified through numerical simulations.

6.1 Introduction

The availability of satellite networks (SatNets) is heavily affected by atmospheric
impairments, especially rain in radio-frequency (RF) and clouds in optical SatNets.
Site diversity techniques are able to improve the network availability by mitigating
the extremely high attenuation induced by rain and clouds [1]. An optimization
method for selecting optical GSs is proposed in [2], taking into consideration the
single-site availabilities and the spatial-correlation between sites as well. In [3], a
joint optimization algorithm for the design of optical SatNets is presented, which is
divided into two parts: the GS positioning and the backbone network optimization
considering the optical fiber cost.

Moreover, [4] and [5] present low-complexity heuristic algorithms, which exploit
the spatial correlation and the monthly variability of cloud coverage, in order to se-
lect the minimum number of GSs in optical SatNets with a geostationary (GEO)
or a medium-earth-orbit (MEQ) satellite, respectively. A multi-objective optimiza-
tion approach that achieves various tradeoffs between availability, latency and cost
is examined in [6], so as to determine the optimal location of optical GSs for low-
earth-orbit (LEQO) SatNets. In addition, as concerns the smart gateway diversity
optimization in extremely-high-frequency (EHF) SatNets, [7] presents another multi-
objective approach using genetic algorithms.

Recently, [8] provides an efficient gradient-projection method to select a given
number of GSs maximizing the availability of free-space optical (FSO) SatNets. Fi-
nally, a branch-and-bound (B&B) algorithm with global optimization guarantee and
low average-case complexity is developed in [9] to select the minimum number of GSs
under availability requirements for each time period.

In this chapter, we develop useful optimization algorithms for selecting GSs with

the minimum installation cost satisfying an outage probability constraint. More
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specifically, the main contributions of this chapter are summarized as follows:

e Mathematical formulation of the optimization problem in binary-linear-program-

ming form with a rigorous proof of its computational complexity (NP-hardness).

e Design of a dynamic-programming algorithm with pseudo-polynomial complexity,

which is theoretically guaranteed to find the global optimum.

e Design of a polynomial-time approximation algorithm with provable performance
guarantee on the distance between the objective value of the achieved solution
and the global optimum (thus achieving a reasonable performance-complexity

tradeoff).

e Unlike existing approaches that minimize just the number of GSs (cardinal-
ity minimization problem, assuming implicitly the same cost for each GS), the
proposed algorithms minimize the overall installation cost allowing possibly dif-

ferent costs of GSs.

The remainder of this chapter is organized as follows. Section 6.2 presents the
formulation of the optimization problem with a theoretical proof of its NP-hardness.
Subsequently, a global optimization algorithm using dynamic programming is given in
Section 6.3, while a polynomial-time approximation algorithm is presented in Section
6.4. Finally, Section 6.5 provides some numerical results and Section 6.6 concludes
this chapter.

Mathematical notation: The set of positive integers is denoted by
Z, = {1,2,3,...}, while O and 1j are respectively the K-dimensional all-zeros
and all-ones vectors. Moreover, |-| and [-] stand for the floor and ceiling functions,

respectively.

6.2 Problem Formulation & NP-Hardness

Consider an RF /optical SatNet with site diversity, consisting of a GEO satellite
and a network of geographically distributed GSs. In particular, £ = {1,2,..., K}
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denotes the set of candidate locations/sites for installing a GS (K € Z). In addition,
we assume that: 1) the network outage probability is defined as the probability of
having all GSs in outage and 2) the distance between any two distinct locations is large
enough so that the spatial correlation between sites can be ignored, without significant
error on the calculation of network outage probability; this implies (approximately)

independent weather conditions between the candidate locations.

In this context, we study the minimization of the total installation cost of GSs

satisfying a given outage probability requirement:

minimize Y ¢, (6.1a)

S s€S
subject to Py (S) < P (6.1b)
SCK (6.1c)

where S is the set of selected locations, ¢, € Z, denotes the cost of installing a GS
at the k'™ location , Vk € K (without loss of generality, we assume that ¢; < ¢y <

- < cg; this requires an extra complexity of O(K log K) for sorting the sites in
ascending-cost order),' P,.(S) = [Ises ps is the network outage probability achieved
by the set S, with p € (0, 1] being the outage probability of a GS installed at the k'
location, Vk € K, and P™ € (0,1] is the (network) outage probability threshold.
Herein, [pylrex and P are defined on an annual basis, and therefore the proposed
approach does not take into account the monthly/seasonal variability of weather
conditions. Note that in the special case where ¢, = 1, Vk € K, we have a cardinality

minimization problem.

Afterwards, by introducing the vector z = [21, 29, . . ., zk| of binary (0/1) variables

(2, = 1 if and only if £ € S), we can equivalently formulate problem (6.1) as follows

4Note that the coefficient ¢; may include the cost of fiber-optic cables needed to connect the k"
GW to the existing access points (points of presence) of the terrestrial backbone network.

15The outage probability of each GS can be obtained from experimental data (when available) or
using time-series synthesizers. Moreover, in RF SatNets a GS is in outage when the rain attenuation
is higher than a specific threshold [7], whereas in optical SatNets when experiencing cloud blockage

2].
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(note that Y ,cs s = Sper ke and Pow(S) = [Tiex (r)™):

minimize  f(z) = Y cp2k (6.2a)
* kek
subject to ] (k)™ < Pl (6.2b)
kek
2z €{0,1}, Vk e K (6.2¢)

Exploiting the fact that z < y < log(z) < log(y), Vo,y > 0, the constraint
[Teex (pp)™ < P is equivalent to Ypex 21 log(pr) < log(PHh). Consequently, prob-

lem (6.2) can be written as a binary-linear-programming problem:

minimize  f(z) = Y ¢k (6.3a)
i kek
subject to > agzp > b (6.3b)
kek
2z € {0,1}, Vk e K (6.3¢)
where a;, = —log(py) > 0, Vk € K, and b = —log(P) > 0. Let F =

{z € {0, 1} 1 Tlhex (o)™ < Pgﬂt}, or equivalently F = {z € {0, 1} Shex apzr > b},
be the feasible set and z* € argmin, {f(z) : z € F} be a (globally) optimal solution
of problem (6.2)/(6.3). Since ax, > 0, Vk € I, the following necessary and sufficient
feasibility condition applies: problem (6.2)/(6.3) is feasible (i.e., F # 0) if and only

if ke pe < P or, equivalently, Siexcar > b (e, 1x € F).

Theorem 6.1 (NP-hardness). The binary-linear-programming problem (6.3) is
NP-hard.

Proof. In order to prove the NP-hardness of problem (6.3), it is sufficient to show
that a special case of this problem is NP-hard. Firstly, let consider the 0-1 knapsack
problem which is a well-known NP-hard problem [10]:
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maximize Y vz (6.4a)
* kek

subject to > wyzy < W (6.4Db)
kek

xp € {0,1}, VE e K (6.4¢)

where W € Z, is the knapsack capacity, and v, wy € Z, are the value and weight of
the k' item, respectively, Vk € K. Moreover, applying the polynomial-time, ©(K),

variable transformation x, = 1 — 2, Vk € K, we get the following equivalent prob-

lem: !0
minimize Y vy (6.5a)
’ kek
subject to > wyzp > W (6.5b)
kek
2z € {0,1}, Vk e K (6.5¢)
where W' = >, ccwp — W. Without loss of generality, we can assume that the

integer W' > 0; otherwise the optimal solution of problem (6.5) is trivially equal to
Ox. Obviously, the NP-hard problem (6.5) is a subcase of problem (6.3), and this
completes the proof. O

6.3 Global Optimization Using Dynamic
Programming

Due to the fact that problem (6.3) is NP-hard, it cannot be (globally) solved in
polynomial time unless P=NP. Nevertheless, we can use a powerful optimization tech-
nique, namely, dynamic programming (DP), in order to achieve the global minimum

with pseudo-polynomial complexity.

6Note that the optimum objective values of problems (6.4) and (6.5) differ only by a constant,
e, Dohex UkTh = Dpekc Vk — Dk VkZk-
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DP performs an intelligent enumeration of all the feasible solutions, thus providing
a global optimization guarantee. In particular, DP follows a bottom-up approach by
decomposing the problem into “smaller” subproblems and combining their optimal
solutions (using a recursive formula) in order to find an optimal solution to the
original problem; this is known as the principle of optimality and such problems are
said to have optimal substructure [10]. Furthermore, DP is a tabular method where
each subproblem is solved only once and then its solution is stored in a table, so that
it can be readily used (without re-computation) by “larger” problems when needed.

Let C' be an integer upper bound on the optimum value of problem (6.3), i.e.,
f(z*) < C, where C € {0,1,...,C} with C = S,cx e (this is the “worst” upper
bound that can be used). In addition, we define the following bivariate function

Vie Ko=4{0,1,...,K} and Vj € C, ={0,1,...,C}:

R(i, j) = max { > agzr: X gz = J, 27 € {0, 1}1} (6.6)
kel

Zz ke

where Z = {1,2,...,i} and z7 = [21, 29,..., 2], with i =0 = Z = 0 and 3 ,cp arzr =

> reo ckzx = 0. If this maximization problem is infeasible, then R(i,j) = —oc.

Theorem 6.2 (Computation of the global optimum). Assuming that problem
(6.2)/(6.3) is feasible, its global minimum can be found as follows:
f(z*) =min{j € Cy: R(K,j) > b}.

Proof. Firstly, observe that when i = K, we have Z = K and z7z = z. Secondly, we
know that f(z*) € Cy and R(K, f(z*)) > Y ek arzp > b. Now, suppose that f(z*) #
j*, where j* = min{j € Cy : R(K,j) > b}. Let examine two cases: 1) f(z*) < j*
and 2) f(z*) > j*. In the former case, we would have that R(K, f(z*)) < b, which
leads to a contradiction. Moreover, the latter case contradicts the global optimality

of f(z*). Hence, f(z*) = j* and Theorem 6.2 has been proven. O

Subsequently, we partition the feasible set of problem (6.6), by setting z; = 0 and
z; = 1, respectively (note that Z\{i} = {1,2,...,i —1}):
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I%%X{Zakzk: chzk:j, zz € {0,1}', zi:()} =

kel ke

, i 6.7

s Yoo owz Y, ez =J, 2oy €1{0,1} = (67)
Y ke {3} keT\{i}

H;?X{Zakzk: > cwze = j, zz € {0, 1}, zi—l} =

keT kel
= @i + max D oawzm: Y, vz =Jj— ¢, 2oy € {0, 1 = (6.8)
M L kez\ (1) keT\ (i}

=a;+R(i—-1,j —¢)

Therefore, we have the following recursive formula ¥i € K = {1,2,..., K} and
A2 660:{0,1,...70}2

max {R(i —1,7),a; + R — 1,7 —c)}, ifj > ¢
R(i,j) = (6.9)
R(i —1,7), otherwise

with initial conditions: a) R(0,0) =0 and b) R(0,7) = —o0, Vj € C={1,2,...,C}.
Observe that if j < ¢;, then problem (6.8) is definitely infeasible, so R(i —1,j —¢;) =
—o0; this explains the 2°¢ branch in (6.9).

Algorithm 6.1 presents a DP procedure based on the previous analysis. First, we
compute the coefficients [ax]rex and b (line 1), and then a greedy method is used in
order to calculate the upper bound C' (lines 2-5). In essence, this method sequentially
selects GSs in ascending-cost order and finds a feasible solution to problem (6.3),
which is certainly an upper bound on the optimum value. Afterwards, the algorithm
stores the R(7, j) values in a (K + 1) x (C 4 1) table, whose entries are computed in
row order from left to right (lines 6-15). Moreover, the global optimum can be found
by checking the last row, since f(z*) = j* = min{j € Cy : R(K,j) > b} according to
Theorem 6.2. Finally, an optimal solution can be deduced from the generated table
by starting at R(K, j*) and tracing where the optimal values come from (lines 16-23).

In particular, if R(i,j) = R(i — 1,7), then zf = 0, and we continue tracing with
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Algorithm 6.1 Dynamic Programming (DP)

Input: K € Z,, c=lci,c9,...,ck] € fo where ¢; < ¢y <--- < g,
pP= [p17p27 s 7pK] € (07 1]K7 Pgllllt € (07 1] Wlth H Pk S Potllllt
ke

Output: z* € arg min{ > ey z € .7:}
z kel

:ay = —log(py), Vk € K, b= —log(Ph)
A=0,C=0,k=1
: while A < b do > Calculation of the upper bound C
A=A+a, C=CHc,, k=k+1
: end while
: R(0,0) :==0, R(0,j) = —o00, ¥j €C
:for::=1 to K step +1 do > Computation of the table R
for j =0 to C step +1 do
if 7 > ¢; then
R(i,j) =max{R(i—1,7),a;, + R(i— 1,7 — )}
else
R(i,j) == R(i — 1,)
end if

end for
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: end for
cj =min{j € Cy: R(K,j) > b}, ¢ = R(K,j*), j=j*
:for i = K to1step —1do > Reconstruction of an optimal solution
if g=R(i—1,j) then
zf:=0,q:=R(i—1,j))

else
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: end for

R(i — 1,7). Otherwise z; = 1, and we continue tracing with R(i — 1,5 — ¢;). This
process is repeated for each ¢ from K down to 1 (with step —1). Therefore, Algorithm
6.1 is theoretically guaranteed to find a (globally) optimal solution.

Complezity of Algorithm 6.1: The complexity of computing the coefficients [ay|rex

5
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and b is ©(K). Moreover, the greedy method used to find an upper bound on the
optimum value requires at most K iterations (since 1x € F), thus having O(K)
complexity. In addition, the computation of the table R requires ©(K (') arithmetic
operations in total. Finally, the computation of j* requires O(C') comparisons, while
the complexity of reconstructing/tracing the solution is ©(K) since it starts in row
K of the table and moves up one row at each step. Ultimately, the overall complexity
of Algorithm 6.1 is O(KC) = O(KC) = O(K*ciay), because C' < C' < Kcppay where
Cmax = Maxpex{ck} = cx. As a result, the proposed DP algorithm has pseudo-

polynomial time complexity [10].

Remark 6.1. Strictly speaking, Algorithm 6.1 is an exponential-time algorithm, since
the size of the input is upper bounded by O(Klogcma,) = O(Klog(C), because
cmax < C. Nevertheless, under certain conditions, this algorithm is practical despite
its exponential worst-case complexity. For example, if C = O(K?) for some constant
d > 0 (which is usually the case in practice), then the running time of Algorithm 6.1
will be polynomial in K. In any case, the optimization problem under consideration

does not need to be solved in real time, but during the initial network design.

Remark 6.2. In Algorithm 6.1, due to the fact that C = Y, o, ¢, for some U C K
depending on [ag|rex and b, we can divide all coefficients [cx]rex With their greatest
common diwisor (i.e., ¢, = cx/C € Zy, Vk € K, where ¢ = ged(cy, ca, ..., cx) € Zy)
without altering the set of optimal solutions. In this way, the complexity of Algorithm

6.1 can be reduced, since C' =3, ¢, = C/C < C.

6.4 Polynomial-Time Approximation Algorithm

Subsequently, a practical and efficient (polynomial-time) approximation algorithm
with provable performance guarantee is given. The design of the approximation al-
gorithm is based on the idea of trading accuracy for running time, thus achieving a
reasonable tradeoff between performance and complexity.

The approximation algorithm utilizes Algorithm 6.1 and is shown in Algorithm

6.2. Specifically, Algorithm 6.2 is similar to the fully polynomial-time approximation
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Algorithm 6.2 DP-based Approximation Algorithm (DPAA)

Input: K € Z,, c = [cy,¢9,...,CK] GZf where ¢; < ¢y <--- < g,

p = [p1, D2, ..., pk] € (0,1]5, P € (0,1] with ] pp < P% e >0
ke
Output: z* € F such that f(z*) < f(z*) < f(z*) + min(| ecmax | , C)
1: ¥ == €Cpax/ K, where cpax = Iilg]é({ck} = cx
2: ¢ =[x /U], VE €K
3: Run Algorithm 6.1 with input [K, &, p, P®

] and return the optimal

solution Z*, where € = [¢1,¢2, ..., Cx] € ZEK (¢1 < &y < -++ < k)

scheme (FPTAS) for the knapsack problem provided in [11], which is inspired by the
work of Ibarra and Kim [12]. Moreover, note that ¢ > 0, and therefore ¢, € Z.,
Vk € K.

Theorem 6.3 (Performance guarantee). Assuming that problem (6.2)/(6.3) is
feasible, Algorithm 6.2 takes a parameter € > 0 as input and produces an approximate
solution z* € F such that f(z*) < f(z*) < f(z*) + min(|ecmax | , C), where the term
min(|€cmax | , C) is the absolute-error bound. In addition, for any 0 < € < 1/cpax,
Algorithm 6.2 always finds an optimal solution, i.e., it becomes an exact optimization

algorithm.

Proof. Obviously, z* € F and thus f(z*) < f(z*). Now, it is sufficient to prove
that f(z*) < f(z*) 4+ min(|€cmax | , C). First, we will show that f(z*) < f(z*) + €Cmax-
Due to the fact that © < [x] <z + 1, we have ¢, /0 < &, < /9 + 1 = ¢ <0G, <
¢k + V. Also, let us define the function g(z) = Y ek Crzr. From 96, < ¢ + 0, we
deduce that J¢,z; < cpzj + Uz}, Vk € K (because z; > 0). By taking the sum for
all k& € IC, we obtain Yg(z*) < f(z*) + U X pex 2k < f(z") + VK = f(2%) + €Cmax-
Since z* € F, we conclude that g(z*) < g(z*) = Jg(z*) < Yg(z*) because ¥ > 0, and
therefore ¥g(z*) < f(z*) + €cmax. In addition, from ¢, < V¢, = cx2f < V&2, Yk € K
(because z; > 0). By taking the sum for all & € K once more, we get f(z*) < Jg(z*).
Consequently, f(Z*) < f(z*) 4+ €Cmax. Afterwards, due to the fact that f(z*) and
f(z*) are integers, we have f(z*) — f(z*) < |€Cmax]. Moreover, since f(z*) < C and

f(z*) > 0, we obtain f(z*) — f(z*) < C. Hence, f(z*) — f(z*) < min(|écmax],C),

7
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Table 6.1: Performance & Complexity of Optimization Algorithms

Optimization Performance Computational
Algorithm Guarantee Complexity
Exhaustive Search Global Optimization O(28K)
Dynamic o O(KC)=0(KC) =
Programming (DP) Global Optimization — O(K )
DP-based X =
Approximation flz)<f@) < O(K?[K/e]) =
< f(z*) + min(|ecmax ] , C) = O(K3/e)

Algorithm (DPAA)

because it holds that: z <wu and z < v < x < min(u,v).
Furthermore, if 0 < € < 1/¢pax = 0 < €Cpax < 1 = |€Cmax] = 0, and thus
f(z*) < f(z*) < f(z*) = f(z") = f(z"). In other words, for any 0 < € < 1/¢pax, the

approximation algorithm will be forced to produce an optimal solution. O

Complexity of Algorithm 6.2: The complexity of DPAA is mainly due to Algorithm
6.1, so it is O(K?Cnax) = O(K?[K/€]) = O(K3/¢), where oy = maxpex{cr} =
[Cmax /U] = [K/€]. As a result, Algorithm 6.2 has polynomial complezity in K and
1/e. Observe that, for any fixed ¢ > 0, DPAA has cubic complexity O(K?).

Finally, the performance and complexity of all optimization algorithms are sum-
marized in Table 6.1. The exhaustive search algorithm simply checks all subsets of
KC and selects that with the minimum objective value satisfying the outage proba-
bility constraint. Therefore, it requires > ([f)z = K251 = 9(2FK) arithmetic

operations to find the global minimum.

6.5 Numerical Simulations and Discussion

In this section, we examine the performance of the proposed optimization algo-
rithms through numerical simulations. In particular, the following system parame-
ters have been used: K = 25 and ¢, = [k/5], Vk € K (C = Tjexcr = 75 and
Cmax = D). Moreover, we generate 100 independent (feasible) optimization prob-

lems where the outage probabilities of GSs, [pk|rex, are uniformly distributed in the
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Figure 6-1: Performance comparison between optimization algorithms.

interval (0.25,0.75). For the sake of comparison, we consider two baseline greedy al-
gorithms, namely, GD-c and GD-p: first, sort the candidate locations in ascending
order of installation cost (respectively, outage probability), and then select the loca-
tions {1,2,...,n} so that n is the smallest integer for which the outage probability
threshold is met.

Fig. 6-1 illustrates the average installation cost, versus the outage probability
threshold, achieved by a) the exhaustive search, b) DP (Algorithm 6.1), ¢) DPAA
(Algorithm 6.2) for different values of the parameter €, and d) the baseline algo-
rithms. More specifically, DP and DPAA with ¢ = 0.1 have identical performance
with the exhaustive search; this is in agreement with the theory presented in the
previous sections, since DP is a global optimization algorithm and DPAA is forced to
produce an optimal solution when 0 < € < 1/¢pax = 0.2 (see Theorem 6.3). Further-
more, as expected, DPAA leads to higher installation cost (with lower complexity)
by increasing the parameter e. It is interesting to note that, for e € {10,15}, the
actual distance of the objective value achieved by DPAA from the global minimum
is much less than the absolute-error bound, i.e., f(z*) — f(z*) < min(|écmax],C).

Finally, for relatively small outage probability thresholds, the baseline algorithms
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have lower performance than the proposed algorithms, even for large values of € (e.g.,
€ = C/cmax = 15).

Indicatively, for Pt = 107" and using a computer with Intel Core i7-4790 CPU
(3.6 GHz) and 16 GB RAM, the average runtime of the exhaustive search is 2.85

minutes, whereas that of all the other algorithms shown in Fig. 6-1 is less than 0.025

seconds.

6.6 Conclusion

In this chapter, we have dealt with the minimization of the installation cost of GSs
in RF /optical SatNets satisfying an outage probability constraint. In particular, the
examined problem has been theoretically proven to be NP-hard. Moreover, we have
presented a global optimization algorithm with pseudo-polynomial complexity as well

as a polynomial-time approximation algorithm with provable performance guarantee.
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Chapter 7

On the Computation and
Approximation of Outage

Probability in Satellite Networks

with Smart GGateway Diversity!’

The utilization of extremely high frequency (EHF) bands can achieve very high
throughput in satellite networks (SatNets). Nevertheless, the severe rain attenuation
at EHF bands imposes strict limitations on the system availability. Smart gate-
way diversity (SGD) is considered indispensable in order to guarantee the required
availability with reasonable cost. In this context, we examine a load-sharing SGD
(LS-SGD) architecture, which has been recently proposed in the literature. For this
diversity scheme, we define the system outage probability (SOP) using a rigorous
probabilistic analysis based on the Poisson binomial distribution (PBD), and taking
into consideration the traffic demand as well as the gateway (GW) capacity. Further-

more, we provide several methods for the exact and approximate calculation of SOP.

17Copyright (© 2020 IEEE. Reprinted, with permission, from: C. N. Efrem and A. D. Panagopou-
los, “On the computation and approximation of outage probability in satellite networks with smart
gateway diversity,” IEEFE Transactions on Aerospace and FElectronic Systems, vol. 57, no. 1, pp.
476-484, Feb. 2021. Personal use of this material is permitted, but republication/redistribution
requires IEEE permission.
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As concerns the exact computation of SOP, a closed-form expression and an efficient
algorithm based on a recursive formula are given, both with quadratic worst-case
complexity in the number of GWs. Finally, the proposed approximation methods
include well-known probability distributions (binomial, Poisson, normal) and a Cher-
noff bound. According to the numerical results, binomial and Poisson distributions

are by far the most accurate approximation methods.

7.1 Introduction

Next-generation broadband SatNets require very high data-rates (up to 1 Thps)
that can be accomplished by utilizing EHF bands (above 30 GHz) in the feeder links.
Although the frequency shift from Ka (20/30 GHz) to Q/V (40/50 GHz) or W (75-
110 GHz) bands provides more spectrum, the high levels of rain attenuation (tens of
dB) cannot be tackled by the standard fade mitigation techniques (FMTs), such as
uplink power control (ULPC), adaptive coding and modulation (ACM) and data rate
adaptation (DRA). As a result, gateway diversity (GD) is necessary to achieve high
system availability, since it is a more effective and powerful FMT (at the expense of
installing additional GWs) [1-5]. Nevertheless, the conventional GD (where the same
signal is transmitted by a group of GWs) is economically prohibitive for reaching the
Tbps due to the large number of required GWs [6]. An alternative solution to achieve
high availability with reasonable cost is the smart gateway diversity (SGD), where a
user beam can be served by different GWs depending on the propagation conditions
and the traffic load. In particular, if a GW experiences deep fades then its traffic can

be rerouted to other GWs with better propagation conditions.

7.1.1 Related Work

In [6], two SGD techniques are examined, namely, the frequency multiplexing
diversity and the N + P diversity. The performance analysis of these schemes is
based on a simple probabilistic model, assuming the same outage probability for each

GW (although unusual in practice) as well as independent propagation conditions over
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the GW locations. Moreover, the authors in [7] study the N-active diversity (with
time or frequency multiplexing, taking into account the spatial correlation between
the GWs) and the N + P diversity (where there are N active plus P redundant or
idle GWs). In the former scheme, all the N GWs are active and each user beam is
served by a group of GWs, whereas in the latter scheme each user beam is served by
only one GW and switches to a redundant GW in case of outage.

A novel GW switching scheme for the N + P scenario is proposed in [8], using a
dynamic rain attenuation model and considering two key performance indicators: the
average outage probability and the average switching rate. Furthermore, a different
SGD scheme, where there are no redundant GWs but each GW should have some
spare capacity, is analyzed in [9]. Specifically, in nominal clear-sky conditions all
GWs are active and operate using a maximum fraction of their full capacity, while
if some GWs experience heavy rain attenuation then their traffic is served by the
remaining GWs using their extra capacity. Finally, an extension of the well-known
N-active and N + P diversity schemes to multiple-input-multiple-output (MIMO)

architectures is presented in [10].

7.1.2 Contribution

The main contributions of this chapter, in comparison with existing approaches,

are as follows:

e In this chapter, we analyze in detail a SGD architecture operating in load-
sharing mode, where the GWs do not necessarily have equal outage probabilities.
To the best of our knowledge, the concept of LS-SGD has been firstly introduced
in [9], assuming that all GWs utilize the same fraction of their full capacity in

clear-sky conditions; our analysis, however, does not make such an assumption.

e Unlike previous research, we present a system-level approach taking into account
the traffic demand as well as the GW capacity. In particular, we are interested in
the system outage probability (SOP), defined as the probability of not satisfying

the overall traffic demand, which is a stricter performance metric than the
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user outage probability (UOP), i.e., the probability of not satisfying the traffic

demand of a specific user.

e Furthermore, we study the performance improvement (in terms of SOP) that
can be achieved by increasing the number of GWs in the LS-SGD scheme. For
this purpose, we define two comparative metrics, namely, the SOP-improvement

factor and the generalized SOP-improvement factor.

e In addition, exact methods for the computation of SOP are given, including a
closed-form expression and an efficient algorithm based on a recursive formula.

The worst-case complexity of both methods is quadratic in the number of GWs.

e Finally, we provide some approximation methods for the estimation of SOP.
More specifically, the SOP can be approximated by various probability distri-
butions (binomial, Poisson, normal) as well as a Chernoff bound. Ultimately,
we conclude that binomial and Poisson distributions are the most appropriate

approximation methods for SGD systems operating in EHF bands.

7.1.3 Chapter Organization

The remainder of this chapter is organized as follows. Section 7.2 describes and
analyzes in detail the LS-SGD architecture. Moreover, Sections 7.3 and 7.4 present
exact and approximation methods for calculating the SOP, respectively. In addition,
the performance of LS-SGD as well as the accuracy of approximation methods are

examined in Section 7.5. Finally, concluding remarks are given in Section 7.6.

7.1.4 Mathematical Notation & Conventions

Mathematical notation: Z+ = {1,2,3,...}, Z§ ={0,1,2,...}, N ={1,2,..., N}
and Mo = {0,1,..., N}, where N € Z*. Moreover, P(-) and E(-) denote probabil-
ity and expectation, respectively. [-] and [-] are respectively the floor and ceiling

functions. In addition, |z| represents the absolute value of a real number z, while
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|S| stands for the cardinality of a set S. Ox and 1y denote the N-dimensional all-
—1 2

zeros and all-ones vectors, respectively. Furthermore, p(z) = (\/2 ) e 997 ig the

probability density function (PDF), ®(z) = [* ¢(u)du is the cumulative distribu-

tion function (CDF), and Q(x) = 1 — ®(x) is the complementary CDF (CCDF) of

the standard normal distribution. Finally, the total variation distance between two

(discrete) random variables (RVs) X and Y on Z{ is defined as follows:

dry(X,Y)= sup |IP(X € A) —P(Y € A)| =

Acz

=1 3 [B(X =m) ~B(Y = m)|

mGZSr

(7.1)

Mathematical conventions: >, a; = 0 and [] a; = 1.
i€ i€

7.1.5 Preliminaries on Discrete Probability Distributions
7.1.5.1 Bernoulli Distribution

A binary (0/1) RV follows a Bernoulli distribution with parameter p € |0, 1],
X ~ Bern(p), if and only if (iff) its probability mass function (PMF) is given by:
P(X =1)=1-P(X =0) = p.

7.1.5.2 Binomial Distribution

A discrete (integer-valued) RV X ~ Bin(N, p), where N € Z* and p € [0,1], iff
its PMF is:
N
P(X =m) = <m>pm(1 —p)VT" ¥m e N (7.2)

The binomial distribution is a generalization of the Bernoulli distribution, because
Bin(1,p) = Bern(p). Furthermore, if {X,, },en is a set of independent and identically
distributed (i.i.d.) Bernoulli RVs (X,, ~ Bern(p), Vn € N), then S = n;./\/’Xn ~
Bin(N, p).
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7.1.5.3 Poisson Binomial Distribution

A discrete RV X ~ PoisBin(p), where p = [p1,p, ..., py] € [0,1]" with N € Z*,
iff its PMF is given by:

PX=m)= > [lr: II (@A—pj), YmeN, (7.3)

AECm i€A  jEN\A
where C,,, = {A C N : |A] = m} (i.e., the set of all subsets of A/ having m elements)
with |C,,| = (an) = % The binomial distribution is a special case of the PBD,
since PoisBin(ply) = Bin(V, p). Moreover, if { X, },en is a set of independent, but
not necessarily identically distributed, Bernoulli RVs (X, ~ Bern(p,), ¥n € N), then

S = Y X, ~ PoisBin(p).
neN

7.1.5.4 Poisson Distribution

A discrete RV X ~ Pois(A), where A > 0, iff its PMF is expressed by:
P(X =m) =e*X*(m!)~L, Ym € Z§.

7.2 Smart Gateway Diversity Architecture

In this section, we describe and analyze a load-sharing SGD (LS-SGD) scheme,
where the unused capacity of available (not in outage) GWs can be exploited to serve
the users of the remaining GWs (which are in outage). To the best of our knowledge,
this SGD architecture has been firstly proposed and analyzed in [9]. Nevertheless,
our approach is somewhat different, since it explicitly takes into consideration the

traffic demand as well as the GW capacity.

7.2.1 System Model

Consider a SatNet consisting of a geostationary satellite and a ground network of
N € 7% (geographically distributed) GWs, which are denoted by the set
N ={1,2,...,N}. All the GWs are connected to a network control center (NCC)
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through dedicated terrestrial links. The NCC performs, when necessary (in case of
deep fading), the traffic switching/rerouting between the GWs.'® Furthermore, the
following analysis focuses on the feeder links (data transmission from the GWs to the
satellite), considering ideal (without noise and interference) satellite-user links.

In addition, the distance between any two different GWs is large enough (some
hundreds of km), and thus the spatial correlation of the propagation impairments at
the GW locations is extremely small [6,13]. As a result, the rain attenuations/fades
experienced by the GWs can be considered (mutually) independent. It is also assumed
that there is no ACM, so each feeder link is either available at full capacity or com-
pletely unavailable.?Y Therefore, the feeder links can be mathematically modeled as a
set { X, fnen of independent, but not necessarily identically distributed, Bernoulli RVs
(X,, ~ Bern(p,), Vn € N), where p, € [0,1] is the outage/exceedance probability
of the n'" link/GW (i.e., the probability that the rain attenuation exceeds a specific
threshold); some methods for calculating p,, are discussed in [9]. Moreover, we define
the RV Sy = ¥ X, ~ PoisBin(py), with pyr = [p1,pa, ..., pn|, which is the total
number of GWnEAtfhat are in outage in the set N'.?' The expectation, the standard

deviation, and the 3™ central moment of Sy are given respectively by:

pun =E(Sy) = Z Dn (7.4)
neN

neN

on = B ((Sw — m)?) = ¢zpn ~ 1) (7.5)

18The details on the switching/handover procedure are beyond the scope of this chapter; see
[6,8,11] for more information on this important topic.

19 As concerns the downlink of multibeam satellite systems, an energy-efficient power allocation
in order to jointly minimize the unmet system capacity and the total radiated power is proposed
n [12].

20Classical FMTs, such as ULPC, ACM and DRA, can tackle impairments of a few dB (e.g.,
gaseous absorption and cloud attenuation). However, in EHF bands these techniques alone are no
longer effective, because the rain attenuation can reach tens of dB. Hence, SGD has to be used in
order to keep SOP at the required levels. In essence, due to the intense rain attenuation in EHF
bands, SGD is the primary FMT, whereas ULPC, ACM and DRA are secondary/supplementary
FMTs. As a result, the absence of ACM in the analysis of SGD is quite reasonable. In any case, our
approach provides a lower bound on the performance of a more realistic system that utilizes SGD
together with standard FMTs.

21 According to Section 7.1.5.2, if p, = p, ¥n € N (i.i.d. Bernoulli RVs), then Sy ~ Bin(N,p).
Note that this is rarely the case in practice.
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vn =E ((Sy — p)?) = > pull = pa)(1=2p1) (7.6)

Note that py > o3, uy € [0, N], 03, € [0, N/4], and vy € [-N/(6v/3), N/(6v/3)].

7.2.2 System Outage Probability

In the sequel, suppose that the n'® GW can offer a mazimum data-rate (capacity)
R™x > (), and the total requested data-rate (traffic demand) is Rigg = Y. R4 > 0,
where U = {1,2,...,U} is the set of users and R’ > 0 is the reqq:febéted data-
rate of user u. Moreover, the operation of NCC ensures the following load-sharing
property: all users receive their requested data-rate if and only if (iff) the overall
capacity of the available (not in outage) GWs is greater than or equal to the traffic

demand. Equivalently, there is at least one user that receives inadequate data-rate iff

the overall capacity of the available GWs is less than the traffic demand.

Definition 7.1 (General SOP expression). The SOP is defined as follows:

P =S 1Ip 1] (1—p)) (7.7)

AcFicA  jeN\A

where F = ACN 1 ¥ R < Rif ¢. In other words, F contains all the subsets
A of the N GWs such gielgft\:Aif the GWs in A are all in outage and the remaining GWs
in N\ A are all available (not in outage), then the traffic demand cannot be satisfied by
the latter group of GWs. In essence, the SOP expresses the probability of not satisfying
the traffic demand of all users (or, equivalently, the probability that there is at least
one user that receives inadequate data-rate). Similarly, we can define the system

availability (SA) as the probability of the complementary event: Py =1 — P,

avail =

For simplicity, we assume that all GWs have the same capacity, R&y > 0, in the
rest of the chapter; this is not such a strong assumption in practice, since the same
frequency band is fully reused in each feeder link and the clear-sky link budget is
almost identical for all GWs.
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Theorem 7.1 (Special SOP expression). Suppose that all GWs have the same capac-

ity, i.e., RM* = R&X > (0, Yn € N. Then, (7.7) reduces to the following expression:

Poi = Poe(L,N) = > > Ilwe 11 (1=p)) (7.8)

m=L AeC i€ A jEN\A

where Cp, = {ACN : |A| =m} and L is given by:
L=N-[r]+1 (7.9)
where r > 0 is the ratio of the traffic demand to the GW capacity, that is:
r = RS /RES (7.10)

Proof. Under the condition of equal GW capacities, we have that
F = {ACN: (N —|A)RES < Rio}. In addition, (N — |A|)REX < Rt <
N-A <reN-JA <[rleN-JA <|rl-1< |A > N—-[r]+ L
Consequently, F ={ACN : |A| > L} = ]LVJ Crm, and then (7.8) follows immediately
from (7.7). " O

N
Remark 7.1. According to Section 7.1.5.3, Pyi(L,N) = Y P(Sy=m) =
m=L
P(Sy > L), i.e., the SOP is the probability of having at least L out of N GWs in

outage.??

Although in general L € N, for the diversity system under consideration L € N
due to the fact that [r] € N, since a) r > 0 < [r] > 1, and b) NRE& > R <
N >r < N > [r] (note that Ny, = [r] is the minimum required number of GWs).

Finally, we provide a result about the monotonicity of SOP.

22Similar formula is also given in [9] and [14], however, without explicit dependence on the traffic
demand and the GW capacity. Herein, this dependence is clearly expressed by (7.9) and (7.10).
Note that this SOP definition is a generalization of the classical SOP (i.e., the probability of having

all GWs in outage), which is obtained when [r] =1 = L =N = P,>{ = [] pn; the classical SOP
neN
is used in [15] to select the (globally) minimum number of GWs satisfying SOP-requirements.
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Proposition 7.1 (SOP monotonicity). For a given set N of GWs, the SOP is an

increasing function of r.

Proof. Let r1 > ro = [r1] > [ro] = L1 < Ly = Pyi(Ly,N) > P (Lo, N). O

7.2.3 SOP-Improvement Factor

Subsequently, we study the performance improvement (in terms of SOP) achieved

by an N-GW diversity system in comparison with a single-GW system.

Definition 7.2 (SOP-improvement factor). Assuming the same [r] = 1 and that
PN, N) > 0, the SOP-improvement factor is defined as follows:

-1

Poui(1,1) P < i )
= owlh ) =TT pn 7.11

Pogt<N7 N) Han 711;[2 ( )
ne

Obuviously, it holds that I > 1.

Next, consider a diversity system with N + K GWs (K € Zg) all of which have
the same capacity Rgay > 0, and [r] € N (since 1 < [r] < min(N,N + K) = N).
Furthermore, let £ = {N + 1, N +2,..., N 4+ K} be the set of additional GWs, and
pyvuk = [Pas P] = [P1, P2, - - -, PN+ k| be the vector of GW outage probabilities, where
P = [PN+1,PN+2,s - - - PN+K|. Suppose also that {X;}ienuc is a set of independent,
but not necessarily identically distributed, Bernoulli RVs (X; ~ Bern(p;), Vi € NUK).
Besides Sys, we define the RVs Sk = lgc X} ~ PoisBin(pyx) and Syux = ie/\;ulc X; =
Sy + Sk ~ PoisBin(paux) denoting the total number of GWs which are in outage in
the sets I and N UK, respectively. For this diversity system L' = N+ K —[r]+1 =

L+K, with ! e{K+1,K+2,..., K+ N}.

Proposition 7.2 (SOP reduction). Let PY, = P (L, N) = P(Sy > L) and PNVF =

P(L', N+ K) =P(Syuc > L') stand for the SOP of the N-GW and (N + K)-GW
diversity systems, respectively. Then, it holds that PN < PN

out out*
Proof. See Appendix 7.7. m
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In view of this fact, we can generalize the definition of SOP-improvement factor.

Definition 7.3 (Generalized SOP-improvement factor). Assuming the same [r] € N
and that PNYF > 0, we define the generalized SOP-improvement factor of the (N+K)-

out

GW over the N-GW diversity system as follows:*?

;o P Pot(L, N)

8T PNUKE T PYS(L+ K, N+ K)

(7.12)
L=N—-[r]+1

According to Proposition 7.2, we have that I, > 1.

Notice that by setting N = 1 and K = N’ — 1 (thus [r] = 1 and L = 1), we

obtain I, = % = [. Finally, we would like to emphasize that by increasing

out

the number of GWs the SOP decreases, but higher GW connectivity is required;
such connectivity issues are very important in the design and optimization of SatNets
[16]. In other words, there is a trade-off between performance improvement and

connectivity complexity.

7.3 Exact Methods for Computing SOP

In the sequel, several techniques for the exact computation of SOP are presented.

The time complexity of these methods is summarized in Table 7.1.

7.3.1 Direct Computation

The direct computation of SOP is based on the analytic formula (7.8), which
N N N

requires > [Cu| N =N 3 (g) <N Y (ﬁ) = 2V N = O(2"V N) arithmetic oper-
m=L m=L m=0

ations. Because of its exponential worst-case complexity, this method is practicable

only for very small N.

23The generalized SOP-improvement factor I, ¢ can be estimated using the approximation methods
provided in Section 7.4.
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Table 7.1: Complexity Comparison Between Exact Methods

Exact Direct CFE RF FEFT-based
Method Computation (Algorithm 7.1) | Algorithm [20]

Time N o | O(L(N — L+1)) 9
Complexity O(27N) ON7) = O(N?) O(N (log N)7)

7.3.2 Closed-Form Expression

According to [17], the SOP can be calculated, using polynomial interpolation and
discrete Fourier transform (DFT), by the following closed-form expression (CFE):

PES(LN) =1— 55 (L + 5 e (1 (e = 1)pm)> (7.13)

N+1)

where ¢ = e/27/(N+1)  with j = v/—1 being the imaginary unit. It is interesting to

note that the CFE comprises a sum of complex numbers, but the overall outcome is a
real number in [0, 1]. The same formula is also derived in [18], using the characteristic
function of the PBD as well as the DFT. Furthermore, the computational complexity
of (7.13) is ©O(N?).

7.3.3 Recursive Formula

In this part, we explore the power and beauty of recursion.
Theorem 7.2 (SOP recursive formula). The SOP is given by the following recursive

formula (RF):

out out

P(L,N) = (1—pN)P2i(L,N — 1)+ pyPosi(L— 1, N — 1) (7.14)

with initial/boundary conditions: a) Pog(0,N) = 1 and b) Pyg(N + 1,N) = 0,
VN € Z*.

Proof. See Appendix 7.8. n

It can be verified, using mathematical induction, that (7.8) is the solution of

(7.14). To the best of our knowledge, this RF is derived for the first time in [19],
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Algorithm 7.1 Exact Computation of SOP
Input: N € ZT, L € Ny, and p = [p1,ps, ..., pn] € [0, 1]V
Output: P2; = Po(L, N)

1.D=N-L M=L+1,a=0y,ay=1,0=1

2: for 1 :=1to N step +1 do

3 h=1

4: if 1> D+ 1then /:=i— D end if

5: if ¢ > L then h := L end if

6: for j:=h to ( step —1 do > h,0: high/low index
T ajy1 = (L —=pi) - ajp +pi-qy

8: end for

9: end for

10: Pgﬁ: = Q)

making use of symmetric switching functions. Our proof, however, is much simpler.

Algorithm 7.1 presents an efficient method to compute the SOP using the RF,
which follows directly from the algorithm given in [19]. The time complexity of Algo-
rithm 7.11is ©(L(N — L+1)) = O(N?), with best-case complexity ©(1) for L = 0, and
worst-case complexity ©(N?) for L = | N/2] and L = [N/2]. Moreover, notice that
the complexity is ©(N) for L = 1 and L = N. As a result, Algorithm 7.1 has lower
complexity in some cases than the CFE which requires ©(N?) operations regardless

of L. Finally, the space complexity of Algorithm 7.1 is ©(N + L) = O(N).

7.3.4 FFT-based Algorithm

An even more efficient and advanced algorithm for computing the SOP is pro-
vided in [20]. This method recursively applies the fast Fourier transform (FFT) to
compute generating function (GF) products, thus achieving an overall complexity of

O(N(log N)?).
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In particular, the PMF of Sy ~ PoisBin(pyr) can be written in the following form:

[P(Sy=0) P(Sy=1) --- P(Sy=N)] = (7.15)

= [fh pl]*[(h p2}*"‘*[QN pN]

where * stands for the convolution operation and ¢, = 1 — p,, Vn € N. In addition,

the GF' of the Poisson-binomial PMF is given by:

9(z) = Z P(Sy =n) 2" = H (Gn + pnz) =

o neN (7.16)
=g, 11\[(1 +a,2) = g- (1 4+ A(2))

where g, = [I ¢, and a,, = p,/qn, Yn € N. Obviously, the SOP is simply the sum
of the coefﬁc?ggts of 2™ from m = L to N (see Remark 7.1). Since the product of two
GF is equivalent to the convolution of two sequences formed from the GF coefficients,
the FFT can be used to compute GF products more efficiently compared to the term-
by-term calculation. The basic idea of the algorithm proposed in [20] is to apply the
FFT to compute the GF A(z) using a divide-and-conquer approach. More details on

the implementation of the algorithm can be found therein.

Remark 7.2. Despite the fact that the FFT-based algorithm is more sophisticated
and has lower asymptotic complexity, CFE and Algorithm 7.1 are sufficient in the
context of SGD, where the number of GWs N is relatively small.

7.4 Approximation Methods for Estimating SOP

Afterwards, we introduce some useful methods to approximate the SOP, exploiting
the fact that Py (L,N) = P(Syy > L) = 1 —=P(Sy < L —1), VL € Ny. These
techniques consist of probability distributions (binomial, Poisson, normal) as well as

a Chernoff bound. For convenience, a summary of approximation methods is given in

Table 7.2.
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Table 7.2: Summary of Approximation Methods

Approximation Method

SOP Approximation
Formula P (L, N)

Parameters/Range of L

Condition for
Higher Accuracy

L-1

Refined Normal
Approximation (RNA)

min (max (1 — G(¢),0),1)

Binomial Approximation (BA)? 1- (f:)ﬁmqufm P=% X Pu, G=1-9 (Npg)~toir — 1
m=0 > neN
L-1
Poisson Approximation (PA)? | 1 —e ¥ S yt(m!)~! S pn—=0
m=0 neN
Normal Approximation (NA) 1-2()=Q()
(= (L~ py —0.5)03 iy — 00

Chernoff Bound (CB)

(/L) et

VL e{|lpn] + 1, un] +2,...,N}

&b According to the numerical results (Section 7.5), BA and PA are the most appropriate approximation methods for
SGD systems operating in EHF bands.

7.4.1 Binomial Approximation (BA)

The PBD can be approximated by the binomial distribution [24] in the following

sense, defining p =

a) dpv(Sy,Y) < (N/(N + 1)1 — pN+!

o =

1 —
N Z ) =
N nean q

I - ]57
— @16y, where Y ~ Bin(N,p) and
1 — (Npg)~to%,, and b) dpv(Sy,Y) — 0 if and only if (iff) o — 0 (or,

and assuming p €

(0,1):

equivalently, (Npg)~'oi, — 1). It is interesting to note that when p, = p, Vn € N,

it holds that: p =p, ¢ =1 —p and o3 = Npg = oy = 0 = drv(Sy,Y) =0 =

Sy~ Bin(N, p), which is in agreement with Section 7.1.5.2. Hence, the BA is given

by:

PY(LN)~1-PY<L-1)=1—%

out

L-1

m=0

7.4.2 Poisson Approximation (PA)

(Mm@ —p)N

(7.17)

In 1960, Le Cam [25] established a remarkable inequality: drv(Sy, Z) < 3 p?,
neN

where Z ~ Pois(uy). It is obvious that if Y- p2 — 0, then dry(Sy, Z) — 0. As

neN

reported in [26], Le Cam’s theorem/inequality admits various proofs using different

techniques. Consequently, we have that:

out
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7.4.3 Normal Approximation (NA)

According to [21], the central limit theorem (CLT) for the PBD states that:
]\}im Ay = 0 (asymptotic normality of (Sy — pa)on') iff ]&im 0%, = oo, where
—00 —00

Ay = sup ‘IP)(SN <s)—o ((s — MN)JX/I)‘. Therefore, by applying a continuity cor-
seR
rection,?* the SOP can be approximated by:

Four(L, N) =~ 1= @(¢) = Q(¢) (7.19)

where ¢ = (L — jin — 0.5)0 57

7.4.4 Refined Normal Approximation (RNA)

Consider the following function:
G(x) = ®(x) + vn(603,) (1 — 2%)p(2) (7.20)

According to [21-23], there exists a constant C' < oo such that A, =
sup ’IP’(SN <s)—-G ((s - uN)JX/I)‘ < Cop? = O(0)?). Observe that lim A), = 0,
sER N—o00

when A}im 0%, = oco. As a result, by applying the continuity correction once more,
— 00

we obtain the following approximation:

P3Yi(L, N) ~ min (max (P (L, N),0) 1) (7.21)
where P3¥¥(L,N) = 1 — G(¢) and ¢ = (L — py — 0.5)03*. Note that we make use
of the above min-max formula in order to ensure that P (L, N) € [0,1], because

P¥¥(L, N) may be outside the interval [0,1] in some cases.

24In probability theory, a continuity correction is an adjustment that is made when a discrete
(probability) distribution is approximated by a continuous distribution. In particular, suppose that
the continuous RV Y approximates the discrete RV X. Then, P(X < m) = P(X < m+0.5) =
P(Y <m+0.5), Ym € Z.
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7.4.5 Chernoff Bound (CB)

A Chernoff (upper) bound can be constructed using a result given in [27] which
states that: P (Sy > (14 0)un) < (66/(1 + 5)1”)“/\[, Vo > 0. Specifically, by setting
(14 §)upn = L and assuming py > 0, we obtain:

Poi(L,N) < (par/L) et (7.22)

out

which holds VL € {|un| + 1, [un] +2,..., N}, since d >0 < L > uy < L > |uy]
& L> |pv] +1

7.5 Numerical Results and Discussion

In this section, all results present statistical averages derived from 10% independent
system configurations, where the GW outage probabilities {p;}ieaux are uniformly

distributed in (0,0.02), i.e., 98% to 100% link availability.

7.5.1 SOP Analysis

Firstly, we study the SOP as a function of the number of GWs, N, and the ratio
of the traffic demand to the GW capacity, . As shown in Fig. 7-1, the SOP increases
with [r] for all values of N, which is in accordance with Proposition 7.1. Moreover,
for any fixed [r], we can observe that the SOP decreases with the increase of N (see
Proposition 7.2). Nevertheless, as mentioned at the end of Section 7.2.3, this SOP
improvement is achieved in exchange for higher connectivity complexity.

Secondly, we examine the performance enhancement achieved by a (5 + K)-GW
compared to a 5-GW diversity system by means of the generalized SOP-improvement
factor (where K € {1,2,3,4} is the number of additional GWs). Specifically, as
illustrated in Fig. 7-2, I, decreases with the increase of [r] for every value of K.
Furthermore, for a given [r], larger number of additional GWs results in higher

performance improvement.
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System Outage Probability

] > 3 s 5
[r]
Figure 7-1: System outage probability, Py, (calculated using Algorithm 7.1) versus
the ceiling of r (the ratio of the traffic demand to the GW capacity).

oK =1

Generalized SOP-Improvement Factor

Figure 7-2: Generalized SOP-improvement factor, I,, (computed using Algorithm
7.1), in comparison with a diversity system consisting of N = 5 GWs, versus the
ceiling of 7 (the ratio of the traffic demand to the GW capacity).

7.5.2 Performance of Approximation Methods

In order to evaluate the accuracy of a probability distribution and the tight-

ness/sharpness of the Chernoff bound, we define the maximum absolute error (maxAE),
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the root-mean-square error (RMSE), and the mean absolute error (MAE) as follows:

emax(V) = max | P33 (L, N) = PE(L,N)| (7.23)
Sys Sys 2
umal(V) = ¢ LY (P(L,N) — PRS(LLN)) (7.24)
LeS

Emean |S\ Z

LeS

PS(L,N) = PS5 (L,N)| (7.25)

where P? (L, N) is the approximate SOP. Moreover, for probability distributions
S = Ny (with |[S| = N + 1), while for CB S = {|un] + 1, [n] +2,..., N} (with
S| = N — |jne] > 1). In general, it holds that emax(N) > €rms(N) > €mean(N).

Fig. 7-3 presents the accuracy of approximation methods, in terms of maxAE,
RMSE and MAE, versus the number of GWs. It can be observed that the approxi-
mation methods in descending-performance (or, equivalently, ascending-error) order
are as follows: {BA, PA, NA, RNA, CB}. More specifically, BA and PA significantly
outperform the other methods (the achieved errors are of the order of 10~* or 1079),
while CB exhibits the lowest accuracy. At this point, we would like to give an ex-
planation of the performance of BA, PA, NA and RNA. In practice, the number of
GWs is relatively small (N ~ 4 to 7) and all the GW outage probabilities are very
close to zero (i.e., p, ~0,Vn € N = p; & py &~ --- ~ py). As a result, the variance
o3 = ngN pn(1 = p,) and the quantity ngN p? are quite small, while o3, ~ Npq (see
Section 7.4.1). Finally, according to Table 7.2, it is clear that the condition for higher
accuracy of BA/PA is well satisfied, whereas that of NA/RNA is not. In summary,

BA and PA are the most suitable approximation methods for SGD systems.

7.6 Conclusion

In this chapter, we have studied in depth the LS-SGD scheme, which has been
recently introduced in SatNets. Furthermore, a number of useful mathematical tools
have been presented in order to compute and approximate the SOP. Finally, based on

the numerical results, we conclude that the SOP can be well approximated by BA and
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-8-BA 4-PA-6-NA 4 RNA > CB|
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Figure 7-3: Accuracy comparison of approximation methods: (a) maximum absolute
error, (b) root-mean-square error, and (c) mean absolute error versus the number of

GWs.

PA, since these methods achieve remarkable accuracy. Such approximations may be
useful for simplifying and solving hard optimization problems with SOP-constraints

in SGD-based SatNets.
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7.7 Appendix-A: Proof of Proposition 7.2

By virtue of the law/theorem of total probability, we obtain:

PYR =P(Sy+ Sk > L+ K) =

out

K
=Y P(Sk = j)P(Sw+ Sk > L+ K|Sk =j) =
=0
K
=Y P(Sk=j)P(Sv > L+ K —j) =
=0 (7.26)
K
— S P(Sk =) [P(Sy > L) ~P(L< Sy <L+ K —j—1)<
j=0
K
<P(Sy > L)Y P(Sc =j) =P(Sy > L) = P,
=0

and the proposition follows.

7.8 Appendix-B: Proof of Theorem 7.2

Firstly, the initial conditions of the RF are trivially true. Secondly, from the
law/theorem of total probability, the SOP Poyi(L, N) = P(Sy > L) can be written as

follows:

1
Poi(L,N) :Z (Xn =J)P(Sy > L| Xy =j) =

1
Z (Xn =)P(Smnvy = L —J) = (7.27)

P(Xy = 0)P(Sany = L) + P(Xy = )P(Spynvy = L — 1)

where Spnqnvy = X X, = Sy — Xn. Due to the fact that P(Xy =0) =1 —pn
neN\{N}
and P(Xy = 1) = py, we get (7.14) and this completes the proof.
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Chapter 8

General Conclusions

and Open Problems

8.1 General Conclusions

In this Doctoral Thesis, setting human and nature as the key pillars, we have
dealt with the environmentally-aware design of wireless networks, which definitely
constitutes a new research direction. By taking into consideration environmental
factors, the proposed EE-optimization algorithms aim to satisfy the traffic demand
of users with the lowest energy consumption. In other words, the primary goal is to
build green communication networks that provide high-quality services, while keeping
the electromagnetic radiation at safety levels and reducing the carbon-dioxide (CO)
emissions (low carbon footprint). Moreover, the operational expenditure (OPEX) of
network service providers as well as the mass of satellites can be significantly reduced.
In addition, the designed algorithms are able to prolong the battery lifetime of users’
devices and can be used in applications with strict computation-time requirements
(due to their low complexity and fast convergence). In any case, the contribution
of this Dissertation is just a small piece of the puzzle and should be combined with
further research in order to make this scientific challenge a reality.

Furthermore, we have showed that the optimum selection of GSs in RF /optical

satellite networks with site diversity (under availability constraints) is an NP-hard
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problem. Also, we have developed global optimization algorithms (B&B and DP) as
well as a polynomial-time approximation algorithm with provable performance guar-
antee. These algorithms might be useful in the initial network design, since they can
provide significant cost savings in terms of the installation of GSs. Finally, we have
studied in detail the performance of a load-sharing SGD (LS-SGD) architecture in
satellite networks, which has been recently proposed in the literature. For this di-
versity scheme, several methods for the exact and approximate calculation of system

outage probability (SOP) have been presented.

8.2 Open Problems

The algorithms presented in this Dissertation can be applied in several types of
wireless networks as well as in other scientific fields. Subsequently, some interesting

research directions stemming from this work are discussed.

e Design of new EE-optimization algorithms: The SCO method achieves a KKT
solution (first-order optimality guarantee), which is a necessary (provided that
some regularity conditions are satisfied) but not a sufficient condition for global
optimality. As a result, it would be very useful to design optimization algorithms
with higher-order guarantees, or even global optimization algorithms that can be
used as a benchmark in order to evaluate the performance of suboptimal algo-
rithms. Recently, the successive incumbent transcending (SIT) algorithm [1],
the framework of mixed monotonic programming (MMP) which generalizes
monotonic optimization [2], and the branch-and-bound (B&B) method [3] have
been used to develop global optimization algorithms (with exponential com-
plexity) for various EE-metrics in wireless networks. In summary: Are there
low-complexity algorithms with higher-order optimality guarantees or global op-

timization algorithms with faster convergence?

e Joint resource allocation for EE maximization: Due to the fact that next-

generation wireless networks require full exploitation of the available resources,
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an important research direction is the study of joint resource allocation problems
(in this Thesis, we have only dealt with power control strategies). For exam-
ple, transmit power could be optimized together with other resources, such as
SC/time-slot allocation and BS/relay selection. In general, these mized-integer
optimization problems (i.e., with integer and continuous variables) are NP-hard

and probably very difficult to solve.

e Design of global optimization algorithms for GSs selection in SatNets, consid-
ering the spatial correlation between sites: In this Dissertation, the weather
conditions in the candidate locations are assumed independent. Nevertheless,
the spatial correlation between sites is very important in practice, since it may
have a significant impact on the network availability (especially when the GSs
are relatively close to each other) [4]. Due to the fact that the optimization
problem with independent weather conditions has been proven to be NP-hard,
the general problem with spatially-correlated sites is NP-hard as well. Moreover,
the existing methods that take into account the spatial correlation between sites
are heuristic algorithms without performance guarantees [5-7]. Consequently, it
would be very useful to develop global optimization algorithms for GSs selection

in spatially-correlated SatNets.

e Optimal selection of GWs in SGD-based SatNets: In Chapter 7, we have stud-
ied the load-sharing SGD architecture, which has been recently proposed in the
literature [8,9] in order to provide very high availability and throughput with
reasonable cost. An interesting research direction is the selection of smart-GWs
that minimize the total installation cost, satisfying given SOP-requirements.
This combinatorial problem might be solved using advanced algorithm design
techniques and the approximation formulas of SOP presented in Chapter 7.
Therefore, the following questions should be answered: 1) What is the compu-
tational complezity of this problem? and 2) Are there global optimization algo-
rithms or approximation algorithms (i.e., with provable performance guarantees)

that achieve remarkable trade-offs between performance and complexity?
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