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Abstract

The proliferation of connected devices has led to very strict requirements for
next-generation wireless networks, taking into consideration environmental as well
as economic concerns. In particular, one of the primary goals in the design of fifth-
generation (5G) wireless networks is to satisfy the extremely high data rate (traffic
demand) of users with the minimum energy consumption. For this purpose, a new
performance indicator, namely, energy efficiency (EE), has been proposed in the lit-
erature which is measured in bits/Joule and expresses the amount of information that
can be reliably transmitted per unit of consumed energy.

This Dissertation deals with the design of efficient optimization algorithms for
next-generation wireless networks, including terrestrial as well as satellite communi-
cation systems. More specifically, the theory of sequential convex optimization (SCO)
is applied to solve challenging optimization problems, such as the maximization of
several EE-metrics, so as to develop energy-efficient power allocation strategies. SCO
is a powerful mathematical tool that can be used to solve nonconvex optimization
problems by solving a sequence of convex optimization problems. This method is
theoretically guaranteed to converge for any initial feasible point and, under suitable
constraint qualifications, achieves a stationary point (i.e., a point that satisfies the
Karush-Kuhn-Tucker (KKT) conditions) of the original problem.

Furthermore, we study some combinatorial optimization problems in satellite net-
works (SatNets), which are proven to be NP-hard. In particular, we focus on the
optimum selection of ground stations (GSs) in SatNets with site diversity (SD), satis-
fying given availability requirements. SD technique is used to improve the availability
of satellite systems by mitigating the atmospheric impairments, such as rain (for ra-
dio frequencies) and cloud coverage (for optical frequencies). Moreover, we present
global optimization algorithms, based on the branch-and-bound (B&B) method and
dynamic programming (DP), as well as a polynomial-time approximation algorithm
with provable performance guarantee.

Finally, we examine a load-sharing smart gateway diversity (LS-SGD) architec-
ture in SatNets, which has been recently proposed in the literature. For this diversity
scheme, we define the system outage probability (SOP) based on the Poisson bino-
mial distribution (PBD) and taking into account the traffic demand as well as the
gateway (GW) capacity. In addition, we present several methods for the exact and
approximate calculation of SOP.

Keywords: wireless networks, satellite communications, energy efficiency, resource
allocation, site diversity, smart gateway diversity, outage probability, ground station
selection, sequential convex optimization, combinatorial optimization, computational
complexity, NP-hardness, branch-and-bound method, dynamic programming.
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Abstract in Greek – Περίληψη

Η ταχεία αύξηση των συνδεδεμένων συσκευών έχει οδηγήσει σε πολύ αυστηρές

απαιτήσεις για τα ασύρματα δίκτυα επόμενης γενιάς, λαμβάνοντας υπόψη τόσο περι-

βαλλοντικά όσο και οικονομικά ζητήματα. Συγκεκριμένα, ένας από τους πρωταρχικούς

στόχους στο σχεδιασμό των ασύρματων δικτύων πέμπτης γενιάς (5G) είναι η ικανοποίη-

ση του εξαιρετικά υψηλού ρυθμού δεδομένων των χρηστών με την ελάχιστη κατανάλωση

ενέργειας. Για το σκοπό αυτό, έχει προταθεί ένας νέος δείκτης επίδοσης στη βιβλιο-

γραφία, που ονομάζεται ενεργειακή απόδοση (ΕΑ), ο οποίος μετριέται σε bits/Joule
και εκφράζει την ποσότητα πληροφορίας που μπορεί να μεταδοθεί αξιόπιστα ανά μονάδα

καταναλισκόμενης ενέργειας.

Η παρούσα Διδακτορική Διατριβή ασχολείται με τη σχεδίαση αποδοτικών αλγορίθ-

μων βελτιστοποίησης για ασύρματα δίκτυα επόμενης γενιάς, συμπεριλαμβανομένων των

επίγειων καθώς και των δορυφορικών συστημάτων επικοινωνίας. Πιο συγκεκριμένα, ε-

φαρμόζεται η θεωρία της διαδοχικής κυρτής βελτιστοποίησης (ΔΚΒ) για την επίλυση

δύσκολων προβλημάτων βελτιστοποίησης, όπως η μεγιστοποίηση διαφόρων μετρικών

ΕΑ, ώστε να αναπτυχθούν ενεργειακά-αποδοτικές στρατηγικές κατανομής ισχύος. Η

ΔΚΒ είναι ένα ισχυρό μαθηματικό εργαλείο που μπορεί να χρησιμοποιηθεί για την επίλυ-

ση μη-κυρτών προβλημάτων βελτιστοποίησης επιλύοντας μια ακολουθία κυρτών προβλη-

μάτων βελτιστοποίησης. Αυτή η μέθοδος είναι θεωρητικά εγγυημένη να συγκλίνει για

οποιοδήποτε αρχικό εφικτό σημείο και, υπό κατάλληλες προϋποθέσεις, επιτυγχάνει ένα

στάσιμο σημείο (δηλαδή, ένα σημείο που ικανοποιεί τις συνθήκες Karush-Kuhn-Tucker
(KKT)) του αρχικού προβλήματος.

Επιπλέον, μελετάμε ορισμένα συνδυαστικά προβλήματα βελτιστοποίησης σε δορυφο-

ρικά δίκτυα, τα οποία αποδεικνύεται ότι είναι NP-δύσκολα. Συγκεκριμένα, εστιάζουμε

στη βέλτιστη επιλογή επίγειων σταθμών (ΕΣ) σε δορυφορικά δίκτυα με διαφορισμό

θέσης (ΔΘ), ικανοποιώντας δεδομένες απαιτήσεις διαθεσιμότητας. Η τεχνική ΔΘ χρη-

σιμοποιείται για τη βελτίωση της διαθεσιμότητας των δορυφορικών συστημάτων αμ-

βλύνοντας τα ατμοσφαιρικά φαινόμενα, όπως η βροχή (για τις ραδιοσυχνότητες) και η

κάλυψη από νέφη (για τις οπτικές συχνότητες). Ακόμη, παρουσιάζουμε αλγόριθμους

ολικής βελτιστοποίησης, με βάση τη μέθοδο διακλάδωσης-και-φράγματος (Δ&Φ) και

τον δυναμικό προγραμματισμό (ΔΠ), καθώς και έναν προσεγγιστικό αλγόριθμο πολυω-

νυμικού χρόνου με αποδεδειγμένη εγγύηση επίδοσης.

Τέλος, εξετάζουμε μια αρχιτεκτονική διαφορισμού έξυπνων πυλών (ΔΕΠ) βασισμένη

στο διαμοιρασμό φορτίου σε δορυφορικά δίκτυα, η οποία έχει προταθεί πρόσφατα στη

βιβλιογραφία. Για αυτό το σχήμα διαφορισμού, ορίζουμε την πιθανότητα διακοπής του

συστήματος (ΠΔΣ) βάσει της διωνυμικής κατανομής Poisson και λαμβάνοντας υπόψη

τη ζήτηση δεδομένων καθώς και τη χωρητικότητα κάθε πύλης. Επίσης, παρουσιάζουμε

διάφορες μεθόδους για τον ακριβή και προσεγγιστικό υπολογισμό της ΠΔΣ.

Λέξεις Κλειδιά: ασύρματα δίκτυα, δορυφορικές επικοινωνίες, ενεργειακή απόδοση,

κατανομή πόρων, διαφορισμός θέσης, διαφορισμός έξυπνων πυλών, πιθανότητα διακο-

πής, επιλογή επίγειου σταθμού, διαδοχική κυρτή βελτιστοποίηση, συνδυαστική βελτι-

στοποίηση, υπολογιστική πολυπλοκότητα, NP-σκληρότητα, μέθοδος διακλάδωσης-και-

φράγματος, δυναμικός προγραμματισμός.
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Extended Abstract in Greek – Εκτεταμένη Περίληψη

Κατ’ αρχάς, παρουσιάζεται μια συνοπτική περιγραφή της Διδακτορικής Διατριβής και

των σημαντικότερων συνεισφορών της.

Ενοποιημένη μεθοδολογία για τη μεγιστοποίηση της ενεργειακής

απόδοσης σταθμισμένου αθροίσματος σε ασύρματα δίκτυα

Η ενεργειακή απόδοση σταθμισμένου αθροίσματος (ΕΑΣΑ) είναι μια βασική μετρική

επίδοσης στα ετερογενή δίκτυα, όπου οι κόμβοι ενδέχεται να έχουν διαφορετικές απαι-

τήσεις ενεργειακής απόδοσης. Παρ’ όλα αυτά, η μεγιστοποίηση της ΕΑΣΑ είναι ένα

δύσκολο πρόβλημα λόγω της μη-κυρτής μορφής του. Σε αντίθεση με την υφιστάμενη

έρευνα, παρουσιάζουμε μια συστηματική προσέγγιση για τη μεγιστοποίηση της ΕΑΣΑ

θεωρώντας όχι μόνο περιορισμούς ισχύος, αλλά και περιορισμούς ρυθμού δεδομένων,

χρησιμοποιώντας μια γενική έκφραση για το λόγο σήματος-προς-παρεμβολή-και-θόρυβο

(SINR). Συγκεκριμένα, το αρχικό πρόβλημα μετασχηματίζεται σε ένα ισοδύναμο πρόβλη-

μα και στη συνέχεια προτείνεται ένας αλγόριθμος διαδοχικής κυρτής βελτιστοποίησης

(ΔΚΒ). Αυτός ο αλγόριθμος είναι εγγυημένος να συγκλίνει για οποιοδήποτε αρχικό

εφικτό σημείο και, υπό κατάλληλες προϋποθέσεις, επιτυγχάνει μια λύση που ικανοποιεί

τις συνθήκες Karush-Kuhn-Tucker (KKT).

Επιπλέον, παρέχουμε αξιοσημείωτες επεκτάσεις της προτεινόμενης μεθοδολογίας,

συμπεριλαμβανομένων των συστημάτων με πολλαπλά μπλοκ πόρων, καθώς και ένα γε-

νικότερο μοντέλο κατανάλωσης ισχύος που δεν είναι απαραίτητα κυρτή συνάρτηση των

ισχύων εκπομπής. Τέλος, σύμφωνα με την αριθμητική ανάλυση, ο αλγόριθμος παρουσι-

άζει γρήγορη σύγκλιση, χαμηλή πολυπλοκότητα και ευρωστία στα αρχικά σημεία.

Νέος συμβιβασμός μεταξύ δικαιοσύνης και συνολικής επίδοσης του

συστήματος από την άποψη της ενεργειακής απόδοσης

Η συνολική ενεργειακή απόδοση (ΣΕΑ), που ορίζεται ως ο λόγος του συνολικού

ρυθμού δεδομένων προς τη συνολική κατανάλωση ενέργειας, θεωρείται η πιο σημαντική

μετρική επίδοσης από την άποψη της ενεργειακής απόδοσης (ΕΑ). Ωστόσο, δεν εξαρ-

τάται άμεσα από την ΕΑ κάθε ζεύξης και η μεγιστοποίηση της οδηγεί σε μη-δίκαιη
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κατανομή ισχύος. Από την άλλη πλευρά, η μεγιστοποίηση της ελάχιστης ενεργειακής

απόδοσης (ΕΕΑ), δηλαδή της ελάχιστης ΕΑ όλων των ζεύξεων, εγγυάται την πιο δίκαιη

κατανομή ισχύος, όμως δεν περιέχει σαφή πληροφορία σχετικά με τη συνολική επίδοση

του συστήματος.

Η κύρια τάση στην τρέχουσα έρευνα είναι η μεγιστοποίηση της ΣΕΑ ή της ΕΕΑ

ξεχωριστά. Σε αντίθεση με τις προηγούμενες συνεισφορές, παρουσιάζουμε μια γενική

πολυκριτηριακή προσέγγιση για τη βελτιστοποίηση της ΕΑ που λαμβάνει ταυτόχρονα

υπόψη τόσο την ΣΕΑ όσο και την ΕΕΑ. Λόγω της μη-κυρτής μορφής του εξεταζόμε-

νου προβλήματος, προτείνουμε έναν αλγόριθμο χαμηλής πολυπλοκότητας που βασίζεται

στη θεωρία της διαδοχικής κυρτής βελτιστοποίησης (ΔΚΒ). Τέλος, παρέχουμε ένα νέο

θεωρητικό αποτέλεσμα για την πολυπλοκότητα των αλγορίθμων ΔΚΒ.

Ενεργειακά-αποδοτική κατανομή ισχύος σε δορυφορικά συστήματα

με πολλαπλές δέσμες

Η κατανάλωση ενέργειας αποτελεί κύριο περιοριστικό παράγοντα για την κατερχόμε-

νη ζεύξη (downlink) στα δορυφορικά συστήματα με πολλαπλές δέσμες, καθώς έχει ση-

μαντικό αντίκτυπο στη μάζα και τη διάρκεια ζωής του δορυφόρου. Σε αυτό το πλαίσιο,

μελετάμε ένα νέο πρόβλημα κατανομής ισχύος που στοχεύει στην από κοινού ελαχιστο-

ποίηση της μη-ικανοποιημένης χωρητικότητας συστήματος και της συνολικής ακτινο-

βολούμενης ισχύος μέσω της πολυκριτηριακής βελτιστοποίησης.

Κατ’ αρχάς, μετασχηματίζουμε το αρχικό μη-κυρτό μη-διαφορίσιμο πρόβλημα σε μια

ισοδύναμη μη-κυρτή διαφορίσιμη μορφή εισάγοντας βοηθητικές μεταβλητές. Στη συ-

νέχεια, σχεδιάζουμε έναν αλγόριθμο διαδοχικής κυρτής προσέγγισης (ΔΚΠ) προκει-

μένου να επιτύχουμε ένα στάσιμο σημείο με εύλογη πολυπλοκότητα. Λόγω της γρήγο-

ρης σύγκλισής του, αυτός ο αλγόριθμος είναι κατάλληλος για δυναμική κατανομή πόρων

σε μελλοντικά συστήματα όπου ο δορυφόρος θα μπορεί να προσαρμόζει την ισχύ εκπο-

μπής του. Επιπλέον, αποδεικνύουμε ένα νέο αποτέλεσμα σχετικά με την πολυπλοκότητα

της μεθόδου ΔΚΠ, στη γενική περίπτωση, το οποίο συμπληρώνει την υπάρχουσα βι-

βλιογραφία όπου η πολυπλοκότητα αυτής της μεθόδου αναλύεται μόνο αριθμητικά.
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Ολικά βέλτιστη επιλογή επίγειων σταθμών σε δορυφορικά συστήματα

με διαφορισμό θέσης

Η διαθεσιμότητα των δορυφορικών συστημάτων επικοινωνίας περιορίζεται σε σημα-

ντικό βαθμό από ατμοσφαιρικά φαινόμενα, όπως η βροχή (για τις ραδιοσυχνότητες) και

η κάλυψη από νέφη (για τις οπτικές συχνότητες). Μια λύση σε αυτό το πρόβλημα είναι

η τεχνική διαφορισμού θέσης (ΔΘ), όπου ένα δίκτυο από γεωγραφικά κατανεμημένους

επίγειους σταθμούς (ΕΣ) μπορεί να διασφαλίσει, με μεγάλη πιθανότητα, ότι τουλάχι-

στον ένας ΕΣ είναι διαθέσιμος για σύνδεση με τον δορυφόρο σε κάθε χρονική περίοδο.

Ωστόσο, η εγκατάσταση περιττών ΕΣ επιφέρει μη-αναγκαίο πρόσθετο κόστος για τον

διαχειριστή του δικτύου. Σε αυτό το πλαίσιο, μελετάμε ένα πρόβλημα βελτιστοποίησης

που ελαχιστοποιεί τον αριθμό των απαιτούμενων ΕΣ, ικανοποιώντας συγκεκριμένους

περιορισμούς διαθεσιμότητας.

Αρχικά, το πρόβλημα μετασχηματίζεται σε πρόβλημα δυαδικού (ακέραιου) γραμμι-

κού προγραμματισμού, το οποίο αποδεικνύεται ότι είναι NP-δύσκολο. Στη συνέχεια,

σχεδιάζουμε έναν αλγόριθμο διακλάδωσης-και-φράγματος (Δ&Φ), με εγγύηση ολικής

βελτιστοποίησης, ο οποίος βασίζεται στη χαλάρωση γραμμικού προγραμματισμού καθώς

και σε μια άπληστη μέθοδο. Τέλος, τα αριθμητικά αποτελέσματα δείχνουν ότι ο προ-

τεινόμενος αλγόριθμος υπερτερεί σημαντικά των υφιστάμενων μεθόδων και έχει χαμηλή

πολυπλοκότητα μέσης-περίπτωσης.

Ελαχιστοποίηση του κόστους εγκατάστασης των επίγειων σταθμών

σε δορυφορικά δίκτυα

Εδώ, μελετάμε τη βέλτιστη επιλογή επίγειων σταθμών (ΕΣ) σε RF/οπτικά δορυ-

φορικά δίκτυα προκειμένου να ελαχιστοποιηθεί το συνολικό κόστος εγκατάστασης υπό

δεδομένη απαίτηση πιθανότητας διακοπής, υποθέτοντας ανεξάρτητες καιρικές συνθήκες

μεταξύ των ΕΣ. Πρώτα, δείχνουμε ότι το πρόβλημα βελτιστοποίησης μπορεί να διατυπω-

θεί ως πρόβλημα δυαδικού γραμμικού προγραμματισμού και μετά δίνουμε μια θεωρητική

απόδειξη της NP-σκληρότητας του. Επιπλέον, σχεδιάζουμε έναν αλγόριθμο δυναμικού

προγραμματισμού ψευδο-πολυωνυμικής πολυπλοκότητας με εγγύηση ολικής βελτιστο-

ποίησης, καθώς και έναν προσεγγιστικό αλγόριθμο πολυωνυμικού χρόνου με αποδεδειγ-
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μένη εγγύηση επίδοσης. Τέλος, η επίδοση των προτεινόμενων αλγορίθμων επαληθεύεται

μέσω αριθμητικών προσομοιώσεων.

Ακριβής και προσεγγιστικός υπολογισμός της πιθανότητας διακοπής

σε δορυφορικά δίκτυα με διαφορισμό έξυπνων πυλών

Η χρησιμοποίηση εξαιρετικά υψηλών συχνοτήτων (ΕΥΣ) μπορεί να επιτύχει πολύ

υψηλή ρυθμαπόδοση στα δορυφορικά δίκτυα. Ωστόσο, η σοβαρή εξασθένηση λόγω βρο-

χής στις ΕΥΣ επιβάλλει αυστηρούς περιορισμούς στη διαθεσιμότητα του συστήματος. Ο

διαφορισμός έξυπνων πυλών (ΔΕΠ) θεωρείται απαραίτητος προκειμένου να διασφαλιστεί

η απαιτούμενη διαθεσιμότητα με εύλογο κόστος. Σε αυτό το πλαίσιο, εξετάζουμε μια αρ-

χιτεκτονική ΔΕΠ βασισμένη στο διαμοιρασμό φορτίου, η οποία έχει προταθεί πρόσφατα

στη βιβλιογραφία. Για αυτό το σχήμα διαφορισμού, ορίζουμε την πιθανότητα διακοπής

του συστήματος (ΠΔΣ) χρησιμοποιώντας μια αυστηρή πιθανοτική ανάλυση βάσει της

διωνυμικής κατανομής Poisson και λαμβάνοντας υπόψη τη ζήτηση δεδομένων καθώς και

τη χωρητικότητα κάθε πύλης.

Επιπλέον, παρέχουμε διάφορες μεθόδους για τον ακριβή και προσεγγιστικό υπολο-

γισμό της ΠΔΣ. ΄Οσον αφορά τον ακριβή υπολογισμό της ΠΔΣ, δίνεται μια έκφραση

κλειστής μορφής και ένας αλγόριθμος βασισμένος σε έναν αναδρομικό τύπο, και οι δύο με

τετραγωνική πολυπλοκότητα ως προς τον αριθμό των πυλών. Τέλος, οι προσεγγιστικές

μέθοδοι περιλαμβάνουν γνωστές κατανομές πιθανότητας (διωνυμική, Poisson, κανονική)

και ένα φράγμα Chernoff. Σύμφωνα με τα αριθμητικά αποτελέσματα, η διωνυμική και η

Poisson κατανομή είναι μακράν οι πιο ακριβείς προσεγγιστικές μέθοδοι.
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Το κύριο μέρος αυτής της Διατριβής μπορεί να χωριστεί σε τρία μέρη. Το 1
ο
μέρος

ασχολείται με στρατηγικές κατανομής ισχύος και περιλαμβάνει τα Κεφάλαια 2, 3 (μεγι-

στοποίηση ενεργειακής απόδοσης σε ασύρματα δίκτυα) καθώς και το Κεφάλαιο 4 (βελτι-

στοποίηση δορυφορικών συστημάτων λαμβάνοντας υπόψη την κατανάλωση ενέργειας).

Το 2
ο
μέρος μελετά τη βέλτιστη επιλογή επίγειων σταθμών σε RF/οπτικά δορυφορι-

κά δίκτυα με διαφορισμό θέσης και αποτελείται από τα Κεφάλαια 5 και 6. Το 3
ο
μέρος

είναι το Κεφάλαιο 7, το οποίο καλύπτει την τεχνική διαφορισμού έξυπνων πυλών (ΔΕΠ)

βασισμένη στο διαμοιρασμό φορτίου σε δορυφορικά συστήματα. Πιο συγκεκριμένα, η

Διδακτορική Διατριβή είναι οργανωμένη ως εξής.

Αρχικά, το Κεφάλαιο 1 αποτελεί την εισαγωγή και περιλαμβάνει: το κίνητρο και το

σκοπό, μια σύνοψη των κύριων συνεισφορών και τη δομή της Διδακτορικής Διατριβής.

Στο Κεφάλαιο 2, παρουσιάζουμε ένα πλαίσιο για τη μεγιστοποίηση της ενεργειακής

απόδοσης σταθμισμένου αθροίσματος (ΕΑΣΑ) σε συστήματα ασύρματης επικοινωνίας,

θεωρώντας μια γενική έκφραση του λόγου σήματος-προς-παρεμβολή-και-θόρυβο (SINR)

που περιλαμβάνει παρεμβολή τόσο από τους υπόλοιπους χρήστες όσο και από τον ίδιο τον

χρήστη (αυτο-παρεμβολή). Ειδικότερα, προτείνεται ένας αλγόριθμος διαδοχικής κυρτής

βελτιστοποίησης (ΔΚΒ) και παρέχονται επίσης αξιοσημείωτες επεκτάσεις που απορρέουν

από αυτήν τη μεθοδολογία.

Στο Κεφάλαιο 3, εισάγεται ένας νέος συμβιβασμός μεταξύ της δικαιοσύνης και της

συνολικής επίδοσης του συστήματος σε όρους ενεργειακής απόδοσης. Συγκεκριμένα,

παρουσιάζουμε μια γενική πολυκριτηριακή προσέγγιση για τη βελτιστοποίηση της ενερ-

γειακής απόδοσης που λαμβάνει υπόψη τη συνολική ενεργειακή απόδοση (ΣΕΑ) καθώς

και την ελάχιστη ενεργειακή απόδοση (ΕΕΑ). Επιπλέον, σχεδιάζουμε έναν αλγόριθμο

χαμηλής πολυπλοκότητας χρησιμοποιώντας τη θεωρία της διαδοχικής κυρτής βελτιστο-

ποίησης (ΔΚΒ) προκειμένου να αντιμετωπίσουμε το μη-κυρτό πρόβλημα. Τέλος, δίνεται

ένα θεωρητικό αποτέλεσμα για την πολυπλοκότητα των αλγορίθμων ΔΚΒ.

Στο Κεφάλαιο 4, μελετάμε ένα πρόβλημα ενεργειακά-αποδοτικής κατανομής ισχύος

σε δορυφορικά συστήματα με πολλαπλές δέσμες, το οποίο στοχεύει στην από κοινού

ελαχιστοποίηση της μη-ικανοποιημένης χωρητικότητας συστήματος και της συνολικής
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ακτινοβολούμενης ισχύος μέσω της βελτιστοποίησης πολλαπλών κριτηρίων. Συγκεκρι-

μένα, σχεδιάζουμε έναν αλγόριθμο διαδοχικής κυρτής προσέγγισης (ΔΚΠ) προκειμένου

να επιτύχουμε ένα στάσιμο σημείο με χαμηλή πολυπλοκότητα. Επιπλέον, αποδεικνύουμε

ένα νέο αποτέλεσμα σχετικά με την πολυπλοκότητα της μεθόδου ΔΚΠ (σημειώνεται ότι

η ΔΚΠ είναι μια ειδική περίπτωση της ΔΚΒ, όπου όλες οι συναρτήσεις του αρχικού

προβλήματος μπορούν να εκφραστούν ως διαφορά δύο κυρτών συναρτήσεων).

Στο Κεφάλαιο 5, εστιάζουμε στην ελαχιστοποίηση του αριθμού των επίγειων σταθ-

μών ικανοποιώντας δεδομένες απαιτήσεις διαθεσιμότητας σε δορυφορικά συστήματα

με διαφορισμό θέσης. Αρχικά, αποδεικνύουμε ότι το πρόβλημα βελτιστοποίησης

είναι NP-δύσκολο και, στη συνέχεια, σχεδιάζουμε έναν αλγόριθμο διακλάδωσης-και-

φράγματος (Δ&Φ) με εγγύηση ολικής βελτιστοποίησης και χαμηλή πολυπλοκότητα

μέσης-περίπτωσης.

Το Κεφάλαιο 6 έχει να κάνει με τη βέλτιστη επιλογή επίγειων σταθμών σε δορυ-

φορικά συστήματα ώστε να ελαχιστοποιηθεί το συνολικό κόστος εγκατάστασης, υπό

δεδομένη απαίτηση πιθανότητας διακοπής. Αυτό το πρόβλημα βελτιστοποίησης αποδει-

κνύεται θεωρητικά ότι είναι NP-δύσκολο. Επιπλέον, παρουσιάζονται ένας αλγόριθμος

ολικής βελτιστοποίησης που βασίζεται στο δυναμικό προγραμματισμό (ΔΠ) και ένας

προσεγγιστικός αλγόριθμος πολυωνυμικού χρόνου.

Το Κεφάλαιο 7 αφιερώνεται στην ανάλυση του διαφορισμού έξυπνων πυλών (ΔΕΠ)

βασισμένου στο διαμοιρασμό φορτίου σε δορυφορικά δίκτυα. Συγκεκριμένα, ορίζου-

με την πιθανότητα διακοπής του συστήματος (ΠΔΣ) βάσει της διωνυμικής κατανομής

Poisson και λαμβάνοντας υπόψη τόσο τη ζήτηση δεδομένων όσο και τη χωρητικότητα

κάθε πύλης. Επιπλέον, παρέχουμε διάφορες μεθόδους για τον ακριβή και προσεγγιστικό

υπολογισμό της ΠΔΣ.

Τέλος, το Κεφάλαιο 8 ολοκληρώνει τη Διατριβή με μια γενική περίληψη των συ-

νεισφορών της και μια παρουσίαση ανοιχτών προβλημάτων, ανοίγοντας το δρόμο για

μελλοντική έρευνα.
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Εν κατακλείδι, παρουσιάζουμε τα γενικά συμπεράσματα της Διδακτορικής Διατριβής.

Σε αυτή τη Διατριβή, θέτοντας τον άνθρωπο και τη φύση ως βασικούς πυλώνες,

έχουμε ασχοληθεί με τη σχεδίαση των ασύρματων δικτύων έχοντας επίγνωση του φυ-

σικού περιβάλλοντος, πράγμα το οποίο αδιαμφισβήτητα αποτελεί μια νέα κατεύθυνση

έρευνας. Συγκεκριμένα, οι προτεινόμενοι αλγόριθμοι βελτιστοποίησης της ενεργειακής

απόδοσης στοχεύουν στην ικανοποίηση του ρυθμού δεδομένων των χρηστών με την

ελάχιστη κατανάλωση ενέργειας. Με άλλα λόγια, ο πρωταρχικός στόχος είναι η δημιουρ-

γία πράσινων δικτύων επικοινωνίας τα οποία μπορούν να παρέχουν υψηλής-ποιότητας

υπηρεσίες, διατηρώντας παράλληλα την ηλεκτρομαγνητική ακτινοβολία σε ασφαλή επίπε-

δα και μειώνοντας τις εκπομπές διοξειδίου του άνθρακα (χαμηλό αποτύπωμα άνθρακα).

Επιπλέον, οι λειτουργικές δαπάνες των παρόχων τηλεπικοινωνιακών υπηρεσιών καθώς

και η μάζα των δορυφόρων μπορούν να μειωθούν σημαντικά. Επίσης, οι σχεδιαζόμενοι

αλγόριθμοι έχουν τη δυνατότητα να παρατείνουν τη διάρκεια ζωής της μπαταρίας των

συσκευών των χρηστών και μπορούν να χρησιμοποιηθούν σε εφαρμογές με αυστηρές

απαιτήσεις υπολογιστικού χρόνου (λόγω της χαμηλής πολυπλοκότητας και της γρήγο-

ρης σύγκλισης τους). Σε κάθε περίπτωση, η συνεισφορά της Διατριβής είναι μόνο ένα

μικρό κομμάτι του παζλ και θα πρέπει να συνδυαστεί με περαιτέρω έρευνα ώστε αυτή η

επιστημονική πρόκληση να γίνει πραγματικότητα.

Επιπρόσθετα, έχουμε αποδείξει ότι η βέλτιστη επιλογή επίγειων σταθμών σε

RF/οπτικά δορυφορικά δίκτυα με διαφορισμό θέσης (υπό περιορισμούς διαθεσιμότη-

τας) είναι ένα NP-δύσκολο πρόβλημα. Ακόμη, έχουμε αναπτύξει αλγόριθμους ολικής

βελτιστοποίησης (μέθοδος Δ&Φ και ΔΠ) καθώς και έναν προσεγγιστικό αλγόριθμο πο-

λυωνυμικού χρόνου με αποδεδειγμένη εγγύηση επίδοσης. Αυτοί οι αλγόριθμοι θα μπο-

ρούσαν να είναι χρήσιμοι κατά τον αρχικό σχεδιασμό του δικτύου, αφού είναι σε θέση να

παρέχουν σημαντική εξοικονόμηση κόστους όσον αφορά την εγκατάσταση των επίγειων

σταθμών. Τέλος, έχουμε μελετήσει λεπτομερώς την επίδοση του διαφορισμού έξυπνων

πυλών βασισμένου στο διαμοιρασμό φορτίου σε δορυφορικά δίκτυα, παρουσιάζοντας δι-

άφορες μεθόδους για τον υπολογισμό της πιθανότητας διακοπής του συστήματος.
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Glossary of Technical Terms – Γλωσσάρι Τεχνικών ΄Ορων

5G Wireless Networks: Ασύρματα Δίκτυα 5
ης

Γενιάς

Adaptive Coding and Modulation: Προσαρμοστική Κωδικοποίηση και

Διαμόρφωση

Approximation Algorithm: Προσεγγιστικός Αλγόριθμος

Availability: Διαθεσιμότητα

Base Station: Σταθμός Βάσης

Branch-and-Bound Method: Μέθοδος Διακλάδωσης-και-Φράγματος

Computational Complexity: Υπολογιστική Πολυπλοκότητα

Cumulative Distribution Function: Αθροιστική Συνάρτηση Κατανομής

Data Rate: Ρυθμός Δεδομένων

Device-to-Device: Συσκευή-προς-Συσκευή

Downlink: Κατερχόμενη Ζεύξη

Dynamic Programming: Δυναμικός Προγραμματισμός

Energy Efficiency: Ενεργειακή Απόδοση

Fade Mitigation Techniques: Τεχνικές ΄Αμβλυνσης Διαλείψεων

Generating Function: Γεννήτρια Συνάρτηση

Geostationary (GEO) Satellite: Γεωστατικός Δορυφόρος

Ground Station: Επίγειος Σταθμός

Information and Communications Technology: Τεχνολογία της Πληροφο-

ρικής και των Επικοινωνιών

Integer Programming: Ακέραιος Προγραμματισμός

Linear Programming: Γραμμικός Προγραμματισμός

Low-Earth-Orbit (LEO) Satellite: Δορυφόρος Χαμηλής Τροχιάς

Medium-Earth-Orbit (MEO) Satellite: Δορυφόρος Μέσης Τροχιάς

Multibeam Satellite Systems: Δορυφορικά Συστήματα με Πολλαπλές Δέσμες

Multi-Objective Optimization: Πολυκριτηριακή Βελτιστοποίηση

Orthogonal Frequency Division Multiple Access: Ορθογώνια Διαίρεση

Συχνότητας Πολλαπλής Πρόσβασης
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Outage Probability: Πιθανότητα Διακοπής

Probability Density Function: Συνάρτηση Πυκνότητας Πιθανότητας

Probability Mass Function: Συνάρτηση Μάζας Πιθανότητας

Quality of Service: Ποιότητα Υπηρεσίας

Radio Frequency: Ραδιοσυχνότητα

Random Variable: Τυχαία Μεταβλητή

Recursive Formula: Αναδρομικός Τύπος

Satellite Communications: Δορυφορικές Επικοινωνίες

Sequential Convex Optimization: Διαδοχική Κυρτή Βελτιστοποίηση

Signal-to-Interference-plus-Noise Ratio: Λόγος Σήματος-προς-Παρεμβολή-

και-Θόρυβο

Site Diversity: Διαφορισμός Θέσης

Smart Gateway Diversity: Διαφορισμός ΄Εξυπνων Πυλών

Successive Convex Approximation: Διαδοχική Κυρτή Προσέγγιση

Unmet System Capacity: Μη-ικανοποιημένη Χωρητικότητα Συστήματος

Uplink: Ανερχόμενη Ζεύξη

User Equipment: Συσκευή Χρήστη
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Chapter 1

Introduction

1.1 Motivation and Scope

As the number of connected devices is expected to increase significantly in the

next few years, energy consumption has become a fundamental issue in the design of

fifth-generation (5G) wireless networks. Specifically, one of the primary requirements

is to achieve extremely higher data rates compared to the existing cellular systems [1].

Obviously, increasing accordingly the transmit power would give rise to prohibitively

high energy demand. As a result, the network energy efficiency has to be considerably

improved in order to achieve this goal.

Furthermore, environmental concerns impose power control strategies that take

into account the energy consumption of wireless communication systems. In particu-

lar, information and communications technology (ICT) causes a significant amount of

the global carbon-dioxide (CO2) emissions nowadays [2, 3]. The situation may dete-

riorate, since the number of connected devices grows exponentially. Moreover, given

the high capacity requirements of 5G networks, electromagnetic radiation will exceed

safety limits if the appropriate measures are not taken.

Apart from the ecological concerns, economic reasons related to energy cost are

crucial for both telecommunication service providers and users. In this context, energy

efficiency optimization plays an important role, because it can reduce the operational

expenditure (OPEX) and prolong the battery lifetime of users’ devices as well. In ad-
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dition, energy consumption is a major limitation in the downlink of satellite systems,

since it has a great impact on the mass and lifetime of satellites.

Energy efficiency (EE) is a key performance indicator for 5G networks which

is measured in bits/Joule and expresses the amount of information that can be

reliably transmitted per unit of consumed energy [1, 4]. This performance indi-

cator is widely used in the literature for several types of wireless networks. In

[5], for instance, the EE is maximized in order to determine the transmit pow-

ers in a multi-carrier system. Further studies that consider the concept of EE are

[6–12] for orthogonal-frequency-division-multiple-access (OFDMA) networks, [13–18]

for multiple-input multiple-output (MIMO) systems, [19] and [20] for device-to-device

(D2D) communications, [21] for relay-assisted systems, [22] and [23] for cognitive net-

works, and [24] for distributed antenna systems.

Moreover, a unified framework for the design of both centralized and decentral-

ized (distributed) energy-efficient power allocation strategies is proposed in [25]. A

distributed approach for EE optimization is also presented in [26] and [27]. As re-

gards spectrum-sharing networks with one common frequency channel, the authors

in [28] investigate power control mechanisms for maximizing proportional, max-min

and harmonic fair EE. By applying appropriate transformation, each of the three

problems, which is initially nonconvex, can be converted into an equivalent convex

problem and then globally solved by standard convex optimization methods.

The total/global EE is defined as the network benefit-cost ratio (the total data

rate divided by the total power consumption) and is considered the most meaningful

EE metric. However, the total EE does not depend directly on each link’s EE and

its maximization results in low fairness between the links from the perspective of EE,

because it tends to favor the links with better propagation conditions [4,29]. An alter-

native way to study EE is through multi-objective optimization (MOO) by defining a

goal function that explicitly depends on the links’ energy efficiencies. MOO is a math-

ematical tool to solve optimization problems with multiple conflicting objectives [30].

Following this approach, we can define the weighted-sum EE, the weighted-product

EE and the weighted-minimum EE. If all weights are equal, then the fairest optimal

2
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solution in terms of EE is achieved by maximizing the weighted-minimum EE [29].

Nevertheless, none of these three goal functions contains explicit information about

the total system performance, i.e., the total EE.

In addition to terrestrial networks, satellite communication systems offer world-

wide coverage and connectivity by providing telecommunication services to users in

rural and remote areas, where the terrestrial networks are not able to do so; maritime

and aerial users benefit from this large coverage as well. In mobile-user scenarios,

satellite broadcasting can be used to offload the terrestrial network, thus reducing

the backhaul requirements. Furthermore, satellites are a key technology for broad-

band services (e.g., distance learning/education, especially for developing countries

with limited terrestrial internet access) and e-health that ensures high-quality care

for patients (i.e., accurate diagnosis by experts in a short time). Other applications

include earth observation (e.g., remote sensing, landscape imaging, weather forecast-

ing), global navigation/positioning/tracking (for cars, ships and aircrafts) as well as

emergency management services for better responses to natural and man-made dis-

asters (e.g., timely alerts, pre-event preparation, and post-event recovery) [31, 32].

Recently, the traffic demand in high throughput satellite (HTS) systems has ap-

proached the Tbps, so the challenge is to utilize more wisely the available resources

(e.g., bandwidth, transmit power). Shifting to higher frequency bands in order to

achieve more spectrum, the signal experiences higher attenuation. The standard fade

mitigation techniques (FMTs), such as uplink power control (ULPC) and adaptive

coding and modulation (ACM), are not sufficient to cope with the severe signal degra-

dation. So far, there are two solutions to this problem: the (classical) site diversity

(SD) and the smart gateway diversity (SGD) techniques, which can achieve very high

network availability at the expense of installing additional ground stations (GSs). An

extremely high availability is of paramount importance, especially for safety/security

applications and critical/emergency communications in order to support timely rescue

efforts during natural disasters (e.g., floods, earthquakes and hurricanes), where hu-

man life is in danger. Since terrestrial networks are frequently affected and disrupted

in case of natural disasters, satellites are the preferred medium for communication

3
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due to their resilience to ground events.

In this PhD Thesis, we leverage the theory of sequential convex optimization

(SCO) in order to tackle nonconvex optimization problems in next-generation wire-

less networks, including terrestrial and satellite systems; this technique has been used

in [33, 34] for data rate maximization and in [12, 15, 18, 25, 35] for EE maximiza-

tion as well. In particular, SCO is a powerful mathematical tool that can be used

to solve difficult (nonconvex) optimization problems by solving a sequence of easier

(convex) optimization problems [36]. Although this method does not guarantee global

optimality, it converges to a point that satisfies the Karush-Kuhn-Tucker (KKT) con-

ditions (i.e., a stationary point) of the original problem with affordable computational

complexity. Furthermore, some advanced algorithm design techniques, the branch-

and-bound (B&B) method and dynamic programming (DP), are used in order to find

globally optimal solutions to NP-hard combinatorial problems in satellite networks

(SatNets) with SD. Finally, we analyze the performance of load-sharing SGD-based

SatNets using probability theory.

1.2 Overview of Main Contributions

The main contributions of this Dissertation are summarized as follows:

1. A framework for weighted-sum energy efficiency maximization in

wireless networks: Weighted-sum energy efficiency (WSEE) is a key per-

formance metric in heterogeneous networks, where the nodes may have dif-

ferent energy-efficiency requirements. Nevertheless, WSEE maximization is a

challenging problem due to its nonconvex sum-of-ratios form. Unlike previ-

ous work, we present a systematic approach to WSEE maximization under not

only power constraints, but also data rate constraints, using a general signal-to-

interference-plus-noise-ratio (SINR) expression. In particular, a sequential con-

vex optimization (SCO) algorithm is proposed, which is theoretically guaranteed

to converge for any initial feasible point, and, under suitable constraint qualifi-

cations, achieves a Karush-Kuhn-Tucker (KKT) solution with low complexity.

4
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Furthermore, we provide remarkable extensions of the proposed methodology,

including systems with multiple resource blocks as well as a general power con-

sumption model, which is not necessarily a convex function of the transmit

powers. Finally, numerical analysis reveals that the proposed algorithm ex-

hibits fast convergence, low complexity, and robustness (insensitivity to initial

points).

2. A new trade-off between fairness and total system performance in

terms of energy efficiency: The total energy efficiency (TEE), defined as

the ratio between the total data rate and the total power consumption, is consid-

ered the most meaningful performance metric. Nevertheless, it does not depend

directly on the EE of each link and its maximization leads to unfairness between

the links. On the other hand, the maximization of the minimum energy effi-

ciency (MEE), i.e., the minimum of the EEs of all links, guarantees the fairest

power allocation, but it does not contain any explicit information about the

total system performance. The main trend in current research is to maximize

TEE and MEE separately. Unlike previous contributions, we present a gen-

eral multi-objective approach for EE optimization that takes into account both

TEE and MEE at the same time, and thus achieves various trade-off points

in the MEE-TEE plane. In this way, network designers are able to make a

compromise between fairness and total system performance according to their

needs and preferences. Due to the nonconvex form of the resulting problem,

we propose a low-complexity algorithm using the theory of sequential convex

optimization (SCO). Last but not least, we provide a novel theoretical result

for the complexity of SCO algorithms.

3. Dynamic energy-efficient power allocation in multibeam satellite

systems: Power consumption is a major limitation in the downlink of multi-

beam satellite systems, since it has a significant impact on the mass and lifetime

of the satellite. In this context, we study a new energy-aware power allocation

problem that aims to jointly minimize the unmet system capacity (USC) and

5
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the total radiated power by means of multi-objective optimization. First, we

transform the original nonconvex-nondifferentiable problem into an equivalent

nonconvex-differentiable form by introducing auxiliary variables. Subsequently,

we design a successive convex approximation (SCA) algorithm in order to at-

tain a stationary point with reasonable complexity. Due to its fast convergence,

this algorithm is suitable for dynamic resource allocation in emerging on-board

processing technologies. In addition, we formally prove a new result about the

complexity of the SCA method, in the general case, that complements the exist-

ing literature where the complexity of this method is only numerically analyzed.

4. Globally optimal selection of ground stations in satellite systems

with site diversity: The availability of satellite communication systems is

extremely limited by atmospheric impairments, such as rain (for radio frequen-

cies) and cloud coverage (for optical frequencies). A solution to this problem

is the site diversity technique, where a network of geographically distributed

ground stations (GSs) can ensure, with high probability, that at least one GS is

available for connection to the satellite at each time period. However, the instal-

lation of redundant GSs induces unnecessary additional costs for the network

operator. In this context, we study an optimization problem that minimizes the

number of required GSs, subject to availability constraints. First, the problem is

transformed into a binary-integer-linear-programming (BILP) problem, which is

proven to be NP-hard. Subsequently, we design a branch-and-bound (B&B) al-

gorithm, with global-optimization guarantee, based on the linear-programming

(LP) relaxation and a greedy method as well. Finally, numerical results show

that the proposed algorithm significantly outperforms state-of-the-art methods

and has low complexity in the average case.

5. Minimization of the installation cost of ground stations in satellite

networks: Here, we study the optimum selection of ground stations (GSs)

in RF/optical satellite networks (SatNets) in order to minimize the overall in-

stallation cost under an outage probability requirement, assuming independent
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weather conditions between sites. First, we show that the optimization prob-

lem can be formulated as a binary-linear-programming problem, and then we

give a formal proof of its NP-hardness. Furthermore, we design a dynamic-

programming algorithm of pseudo-polynomial complexity with global optimiza-

tion guarantee as well as an efficient (polynomial-time) approximation algorithm

with provable performance guarantee on the distance of the achieved objective

value from the global optimum. Finally, the performance of the proposed algo-

rithms is verified through numerical simulations.

6. Computation and approximation of outage probability in satellite

networks with smart gateway diversity: The utilization of extremely high

frequency (EHF) bands can achieve very high throughput in satellite networks

(SatNets). Nevertheless, the severe rain attenuation at EHF bands imposes

strict limitations on the system availability. Smart gateway diversity (SGD)

is considered indispensable in order to guarantee the required availability with

reasonable cost. In this context, we examine a load-sharing SGD (LS-SGD)

architecture, which has been recently proposed in the literature. For this di-

versity scheme, we define the system outage probability (SOP) using a rigorous

probabilistic analysis based on the Poisson binomial distribution (PBD), and

taking into consideration the traffic demand as well as the gateway (GW) ca-

pacity. Furthermore, we provide several methods for the exact and approximate

calculation of SOP. As concerns the exact computation of SOP, a closed-form

expression and an efficient algorithm based on a recursive formula are given,

both with quadratic worst-case complexity in the number of GWs. Finally, the

proposed approximation methods include well-known probability distributions

(binomial, Poisson, normal) and a Chernoff bound. According to the numer-

ical results, binomial and Poisson distributions are by far the most accurate

approximation methods.
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1.3 Thesis Outline

The core of this Dissertation can be divided into three parts. The 1st part deals

with power allocation strategies and includes Chapters 2, 3 (energy efficiency max-

imization in wireless networks) as well as Chapter 4 (energy-aware optimization in

satellite systems). The 2nd part studies the optimum selection of ground stations

in RF/optical satellite networks with site diversity and consists of Chapters 5 and 6.

The 3rd part is Chapter 7, which covers the load-sharing smart gateway diversity (LS-

SGD) technique in satellite systems. More specifically, the rest of this PhD Thesis is

organized as follows.

In Chapter 2, we present a framework for weighted-sum energy efficiency (WSEE)

maximization in wireless communication systems, considering a general signal-to-

interference-plus-noise-ratio (SINR) expression which includes inter-user interference

as well as self-interference terms. In particular, a sequential convex optimization

(SCO) algorithm is proposed and remarkable extensions stemming from this method-

ology are also provided.

In Chapter 3, a new trade-off between fairness and total system performance,

in terms of EE, is introduced. In particular, we present a general multi-objective

approach for EE optimization that takes into consideration both the total energy

efficiency (TEE) and the minimum energy efficiency (MEE) at the same time. More-

over, we develop a low-complexity algorithm using the theory of sequential convex

optimization (SCO) in order to address the resulting (nonconvex) problem. Finally,

a theoretical result for the complexity of SCO algorithms is given.

In Chapter 4, we study an energy-efficient power allocation problem in multibeam

satellite systems, which aims to jointly minimize the unmet system capacity (USC)

and the total radiated power by means of multi-objective optimization. Specifically,

we design a successive convex approximation (SCA) algorithm in order to achieve

a stationary point with reasonable complexity. In addition, we prove a new result

about the complexity of the SCA method (note that SCA is a special case of SCO,

where the objective and constraint functions of the original problem can be written as

8
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the difference of two convex functions).

In Chapter 5, we focus on the minimization of the number of ground stations (GSs)

satisfying given availability requirements in satellite systems with site diversity. First,

we show that the optimization problem is NP-hard, and then we design a branch-

and-bound (B&B) algorithm with global-optimization guarantee and low average-case

complexity.

Chapter 6 has to do with the optimal selection of GSs in satellite systems so

as to minimize the total installation cost, under a given outage probability require-

ment. This optimization problem is theoretically proven to be NP-hard. Further-

more, a global optimization algorithm based on dynamic programming (DP) and a

polynomial-time approximation algorithm are presented.

Chapter 7 is devoted to the analysis of a load-sharing smart gateway diversity

(LS-SGD) scheme in satellite networks. In particular, we define the system outage

probability (SOP) based on the Poisson binomial distribution (PBD) and taking into

consideration the traffic demand as well as the gateway (GW) capacity. Moreover,

we provide several methods for the exact and approximate calculation of SOP.

Finally, Chapter 8 concludes the Dissertation with a general summary of its con-

tributions and a presentation of open problems, paving the way for future work.
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Chapter 2

A Framework for Weighted-Sum

Energy Efficiency Maximization

in Wireless Networks1

Weighted-sum energy efficiency (WSEE) is a key performance metric in hetero-

geneous networks, where the nodes may have different energy efficiency (EE) re-

quirements. Nevertheless, WSEE maximization is a challenging problem due to its

nonconvex sum-of-ratios form. Unlike previous work, this chapter presents a system-

atic approach to WSEE maximization under not only power constraints, but also data

rate constraints, using a general SINR expression. In particular, the original problem

is transformed into an equivalent form, and then a sequential convex optimization

(SCO) algorithm is proposed. This algorithm is theoretically guaranteed to converge

for any initial feasible point, and, under suitable constraint qualifications, achieves

a Karush-Kuhn-Tucker (KKT) solution. Furthermore, we provide remarkable exten-

sions to the proposed methodology, including systems with multiple resource blocks

as well as a more general power consumption model which is not necessarily a convex

function of the transmit powers. Finally, numerical analysis reveals that the proposed

1Copyright c○ 2018 IEEE. Reprinted, with permission, from: C. N. Efrem and A. D. Panagopou-
los, “A framework for weighted-sum energy efficiency maximization in wireless networks,” IEEE
Wireless Communications Letters, vol. 8, no. 1, pp. 153-156, Feb. 2019. Personal use of this
material is permitted, but republication/redistribution requires IEEE permission.
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Chapter 2 2.1. Introduction

algorithm exhibits fast convergence, low complexity, and robustness (insensitivity to

initial points).

2.1 Introduction

Recently, energy efficiency (EE) maximization has become a primary issue in the

design of next generation wireless networks due to economic, operational and envi-

ronmental concerns. Although the network global energy efficiency (GEE), namely,

the ratio between the total achievable data rate and the total power consumption,

has the most meaningful interpretation as a benefit-cost ratio of the whole network,

it does not contain any explicit information about the individual energy efficiencies of

the links. An alternative approach in order to overcome this limitation, while main-

taining high global performance, is to maximize the WSEE defined as the weighted

sum of the links’ energy efficiencies [1].

WSEE maximization belongs to the family of sum-of-ratios optimization problems,

which are often difficult to solve. In the special case where all the ratios are in concave-

convex (CC) form (assuming the case of maximization problems) and the feasible set

is convex, the optimization method presented in [2] can be used to globally solve the

problem. On the other hand, if at least one ratio of the sum is not in CC form and/or

the feasible set is nonconvex, the optimization problem becomes more challenging.

In this case, the use of standard global optimization algorithms is quite limited in

practice, since they exhibit high computational complexity (generally exponential in

the worst case).

An energy efficient multicell multiuser precoding technique is presented in [3],

where the WSEE maximization problem is transformed into a parametrized subtrac-

tive form, and then a two-layer optimization is used to solve the problem. Later, the

authors in [4] investigate the design of centralized and distributed energy-efficient

coordinated beamforming in multiple-input single-output (MISO) systems with a

general rate-dependent power consumption model. Furthermore, a pricing-based

distributed algorithm for WSEE maximization in Ad hoc networks is given in [5].
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2.2. System Model and Problem Formulation Chapter 2

Moreover, the authors in [6] consider the downlink of a cellular OFDMA (orthogo-

nal frequency-division multiple-access) network with base station coordination, and

propose a joint scheduling and power allocation algorithm to maximize the WSEE

under maximum power constraints. Finally, the joint downlink and uplink resource

allocation in time division duplex (TDD) systems with carrier aggregation is studied

in [7].

The remainder of this chapter is organized as follows. In Section 2.2 we introduce

the system model and formulate the WSEE maximization problem. An optimization

algorithm is developed in Section 2.3, and then interesting extensions are reported in

Section 2.4. Finally, simulation results are provided in Section 2.5, while Section 2.6

concludes this chapter.

2.2 System Model and Problem Formulation

We consider a wireless network with 𝑁 transmitters (users), Λ receivers, and

communication bandwidth 𝐵. Without loss of generality, we assume that each trans-

mitter is associated to exactly one receiver, and thus 𝑁 ≥ Λ. Based on [1], the

signal-to-interference-plus-noise-ratio (SINR) experienced by user 𝑖 (1 ≤ 𝑖 ≤ 𝑁) at

its intended receiver is given by the following general expression:

𝛾𝑖(p) = 𝜔𝑖,𝑖𝑝𝑖

⧸︂(︂∑︁
𝑗 ̸=𝑖

𝜔𝑗,𝑖𝑝𝑗 + 𝜑𝑖𝑝𝑖 + 𝒩𝑖

)︂
(2.1)

where p = [𝑝1, 𝑝2, . . . , 𝑝𝑁 ]𝑇 is the vector of users’ transmit powers, 𝒩𝑖 is the equiva-

lent noise power, while 𝜔𝑗,𝑖 and 𝜑𝑖 are non-negative parameters that do not depend

on p (note that the self-interference term 𝜑𝑖𝑝𝑖 may be zero). Next, the achievable

data rate and power consumption (assuming the power amplifier operates in the lin-

ear region) of the 𝑖𝑡ℎ user are given respectively by: 𝑅𝑖(p) = 𝐵 log2 (1 + 𝛾𝑖(p)) and

𝑃𝑐,𝑖(𝑝𝑖) = 𝜇𝑖𝑝𝑖 +𝑃𝑠𝑡,𝑖, where 𝜇𝑖 = 1/𝜂𝑖, with 0 < 𝜂𝑖 ≤ 1 the power amplifier efficiency,

and 𝑃𝑠𝑡,𝑖 > 0 is the static dissipated power in all other circuit blocks of the 𝑖𝑡ℎ trans-

mitter and its intended receiver. Moreover, the EE of user 𝑖 (measured in bit/Joule)
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is defined as follows: 𝐸𝐸𝑖(p) = 𝑅𝑖(p)/𝑃𝑐,𝑖(𝑝𝑖). Now, we can formulate the WSEE

maximization problem:

max
p∈𝑆

WSEE(p) =
∑︁𝑁

𝑖=1 𝑤𝑖𝐸𝐸𝑖(p) (2.2)

with feasible set 𝑆 = {p ∈ R𝑁 : 0 ≤ 𝑝𝑖 ≤ 𝑃max
𝑖 and 𝑅𝑖(p) ≥ 𝑅min

𝑖 , 1 ≤ 𝑖 ≤ 𝑁},

where 𝑤𝑖, 𝑃max
𝑖 and 𝑅min

𝑖 are the priority weight, the maximum transmit power

and minimum required data rate of user 𝑖, respectively (note that 𝑤𝑖 ≥ 0 and∑︀𝑁
𝑖=1 𝑤𝑖 = 1). It can be observed that the objective function is not in sum-of-CC-

ratios form (𝑅𝑖(p) is not concave), and therefore the optimization method in [2] can-

not be used. Nevertheless, by applying the variable transformation p = 2q (𝑝𝑖 = 2𝑞𝑖 ,

1 ≤ 𝑖 ≤ 𝑁 with q = [𝑞1, 𝑞2, . . . , 𝑞𝑁 ]𝑇 ), and due to the fact that the objective is an

increasing function of each user’s EE, we can equivalently reformulate problem (2.2)

as follows:

max
(q,v)∈𝑍

𝑓(v) =
∑︁𝑁

𝑖=1 𝑤𝑖 2𝑣𝑖 (2.3)

with feasible set 𝑍 = {(q,v) ∈ R2𝑁 : 2𝑞𝑖 ≤ 𝑃max
𝑖 , 𝑅𝑖(2q) ≥ 𝑅min

𝑖 and

𝐸𝐸𝑖(2q) ≥ 2𝑣𝑖 , 1 ≤ 𝑖 ≤ 𝑁}, where v = [𝑣1, 𝑣2, . . . , 𝑣𝑁 ]𝑇 is the vector of auxiliary vari-

ables. In addition, after some mathematical operations we get

𝑍 = {(q,v) ∈ R2𝑁 : 2𝑞𝑖 ≤ 𝑃max
𝑖 , 𝜗𝑖(q) ≥ 0 and 𝜙𝑖(q, 𝑣𝑖) ≥ 0, 1 ≤ 𝑖 ≤ 𝑁},

where 𝜗𝑖(q) = log2 (𝜔𝑖,𝑖/𝛾min
𝑖 ) + 𝑞𝑖 − log2

(︁∑︀
𝑗 ̸=𝑖 𝜔𝑗,𝑖2𝑞𝑗 + 𝜑𝑖2𝑞𝑖 + 𝒩𝑖

)︁
, with 𝛾min

𝑖 =

2(𝑅min
𝑖 /𝐵) − 1 (𝛾min

𝑖 ≥ 0, since 𝑅min
𝑖 ≥ 0), and 𝜙𝑖(q, 𝑣𝑖) = 𝑅′

𝑖(q) − 𝜇𝑖 2𝑞𝑖+𝑣𝑖 − 𝑃𝑠𝑡,𝑖2𝑣𝑖 ,

with 𝑅′
𝑖(q) = 𝑅𝑖(2q). The first and the second constraints in 𝑍 are convex (the log-

sum-exp function is convex [8]), whereas the third constraint is nonconvex, and 𝑓(v)

is a strictly convex function.

2.3 WSEE Maximization Algorithm

In the sequel, we leverage the theory of SCO, [9, 10], in order to solve problem

(2.3). In particular, if we have a nonconvex maximization problem 𝒢 with objective

𝑔0(x) and compact feasible set {x ∈ R𝑛 : 𝑔𝑖(x) ≥ 0, 1 ≤ 𝑖 ≤ 𝐼}, then we can achieve
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a KKT solution of 𝒢 by solving a sequence of convex maximization problems { ̃︀𝒢𝑗}𝑗≥1

with objective ̃︀𝑔0,𝑗(x), compact feasible set {x ∈ R𝑛 : ̃︀𝑔𝑖,𝑗(x) ≥ 0, 1 ≤ 𝑖 ≤ 𝐼},

and global maximum x*
𝑗 (x*

0 is any feasible point of 𝒢). Moreover, we would like to

emphasize that 𝑔𝑖(x), ̃︀𝑔𝑖,𝑗(x) (0 ≤ 𝑖 ≤ 𝐼 and 𝑗 ≥ 1) are differentiable functions that

satisfy three basic properties: 1) 𝑔𝑖(x) ≥ ̃︀𝑔𝑖,𝑗(x), ∀x ∈ R𝑛, 2) 𝑔𝑖(x*
𝑗−1) = ̃︀𝑔𝑖,𝑗(x*

𝑗−1),

and 3) ∇𝑔𝑖(x*
𝑗−1) = ∇̃︀𝑔𝑖,𝑗(x*

𝑗−1).

In order to lower-bound the function 𝜙𝑖(q, 𝑣𝑖) we use the following logarithmic

inequality [11]:

log2(1 + 𝛾) ≥ 𝛼 log2𝛾 + 𝛽, ∀𝛾, 𝛾′ ≥ 0 (2.4)

where 𝛼 = 𝛾′/(1 + 𝛾′) and 𝛽 = log2(1 + 𝛾′) − 𝛼 log2𝛾
′. Notice that 𝛼 ≥ 0, while

the left-hand side and the right-hand side of inequality have equal values and first-

derivatives (with respect to 𝛾) at 𝛾 = 𝛾′. Therefore, it holds that 𝑅′
𝑖(q) ≥ ̃︁𝑅′

𝑖(q),

with ̃︁𝑅′
𝑖(q) = 𝐵 [𝛽𝑖 + 𝛼𝑖log2(𝜔𝑖,𝑖)]+𝐵𝛼𝑖

[︁
𝑞𝑖 − log2

(︁∑︀
𝑗 ̸=𝑖 𝜔𝑗,𝑖2𝑞𝑗 + 𝜑𝑖2𝑞𝑖 + 𝒩𝑖

)︁]︁
, which

implies that 𝜙𝑖(q, 𝑣𝑖) ≥ ̃︁𝜙𝑖(q, 𝑣𝑖), where ̃︁𝜙𝑖(q, 𝑣𝑖) = ̃︁𝑅′
𝑖(q) −𝜇𝑖 2𝑞𝑖+𝑣𝑖 −𝑃𝑠𝑡,𝑖2𝑣𝑖 . Due to

the convexity of the log-sum-exp function and 2ℎ(x) (assuming ℎ(x) is convex) [8], both̃︁𝑅′
𝑖(q) and ̃︁𝜙𝑖(q, 𝑣𝑖) are concave functions. Furthermore, it is known that any convex

and differentiable function is lower-bounded by its first-order Taylor expansion at any

point [8], and therefore we have 𝑓(v) ≥ 𝑓(v′) + ∇𝑓(v′)𝑇 (v − v′) = ̃︀𝑓(v), ∀v,v′ ∈ R𝑁

(observe that 𝑓(v′) = ̃︀𝑓(v′) and ∇𝑓(v′) = ∇ ̃︀𝑓(v′)). More precisely, the affine (and

thus concave) function ̃︀𝑓(v) is expressed as follows:

̃︀𝑓(v) =
∑︁𝑁

𝑖=1 𝑤𝑖 2𝑣′
𝑖 + ln(2)

∑︁𝑁

𝑖=1 𝑤𝑖 2𝑣′
𝑖(𝑣𝑖 − 𝑣′

𝑖) (2.5)

Consequently, we can formulate the following convex maximization problem which

depends on the parameters 𝛼 = [𝛼1, 𝛼2, . . . , 𝛼𝑁 ]𝑇 , 𝛽 = [𝛽1, 𝛽2, . . . , 𝛽𝑁 ]𝑇 , and the point

v′ = [𝑣′
1, 𝑣

′
2, . . . , 𝑣

′
𝑁 ]𝑇 :

max
(q,v)∈Ω

̃︀𝑓(v) ⇔ max
(q,v)∈Ω

𝜋(v) =
∑︁𝑁

𝑖=1 𝑤𝑖 2𝑣′
𝑖𝑣𝑖 (2.6)

with feasible set Ω = {(q,v) ∈ R2𝑁 : 2𝑞𝑖 ≤ 𝑃max
𝑖 , 𝜗𝑖(q) ≥ 0 and ̃︁𝜙𝑖(q, 𝑣𝑖) ≥ 0,
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Algorithm 2.1 WSEE Maximization
1: Choose a sufficiently small tolerance 𝜀 > 0, and a feasible point p
2: Set ℓ = 0, 𝑣𝑖 = log2 (𝐸𝐸𝑖(p)) for 1 ≤ 𝑖 ≤ 𝑁 , and 𝑓 (0) = 𝑓(v)
3: repeat
4: Compute the parameter vectors 𝛼, 𝛽 with 𝛾′ = 𝛾(p)
5: Solve the convex maximization problem (2.6) with parameters 𝛼, 𝛽,

and v′ = v in order to obtain a global maximum (q*,v*)
6: Set ℓ = ℓ+ 1, q = q*, v = v*, p = 2q, and 𝑓 (ℓ) = 𝑓(v)
7: until

⃒⃒⃒
𝑓 (ℓ) − 𝑓 (ℓ−1)

⃒⃒⃒⧸︁⃒⃒⃒
𝑓 (ℓ−1)

⃒⃒⃒
< 𝜀

1 ≤ 𝑖 ≤ 𝑁}. It is noted that the two problems in (2.6) are equivalent, since in

the second problem we omit the constant terms of the objective ̃︀𝑓(v). In Algorithm

2.1, we provide an iterative procedure to solve problem (2.3), which is equivalent

to the initial WSEE problem (2.2), using the notation 𝛾′ = [𝛾′
1, 𝛾

′
2, . . . , 𝛾

′
𝑁 ]𝑇 and

𝛾(p) = [𝛾1(p), 𝛾2(p), . . . , 𝛾𝑁(p)]𝑇 .

According to [9] and [10], Algorithm 2.1 monotonically increases the value of the

objective function 𝑓(v) in each iteration (i.e., 𝑓 (ℓ) ≥ 𝑓 (ℓ−1)) and converges. In ad-

dition, assuming suitable constraint qualifications (e.g., Slater’s condition for convex

problems), the final solution (q,v) satisfies the KKT optimality conditions of problem

(2.3). It is noted that Algorithm 2.1 does not necessarily achieve the global optimum,

since KKT are only necessary (provided that some regularity conditions are satisfied),

but not sufficient conditions for optimality in the case of nonconvex problems.

2.4 Extensions to the Proposed Approach

2.4.1 Systems with Multiple Resource Blocks

Firstly, the previous analysis can be straightforwardly extended to wireless net-

works with multiple (𝐾 > 1) resource blocks of bandwidth 𝐵𝑅𝐵 (e.g., OFDMA sys-

tems). Based on [1], the only difference is that the QoS (quality-of-service) constraints

𝐵𝑅𝐵
∑︀𝐾

𝑘=1 log2

(︁
1 + 𝛾

[𝑘]
𝑖

)︁
≥ 𝑅min

𝑖 , with 𝛾[𝑘]
𝑖 = 𝜔

[𝑘]
𝑖,𝑖 2𝑞

[𝑘]
𝑖

⧸︂(︂∑︀
𝑗 ̸=𝑖 𝜔

[𝑘]
𝑗,𝑖 2𝑞

[𝑘]
𝑗 + 𝜑

[𝑘]
𝑖 2𝑞

[𝑘]
𝑖 + 𝒩 [𝑘]

𝑖

)︂
,

are not convex now, and they should be approximated by the convex constraints

𝐵𝑅𝐵
∑︀𝐾

𝑘=1

(︁
𝛼

[𝑘]
𝑖 log2𝛾

[𝑘]
𝑖 + 𝛽

[𝑘]
𝑖

)︁
≥ 𝑅min

𝑖 .
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2.4.2 General Power Consumption Model

Secondly, we consider a more general rate-dependent power consumption model

with non-linear power terms:

𝑃𝑐,𝑖(p) =
∑︁𝑀

𝑚=1 𝜇𝑖,𝑚𝑝
𝑚
𝑖 + 𝜉𝑖(𝑅𝑖(p))𝛿𝑖 + 𝑃𝑠𝑡,𝑖 (2.7)

where 𝑀 is the order of non-linear power terms, 𝜇𝑖,𝑚 ≥ 0 measured in W1−𝑚

(𝜇𝑖,1 = 𝜇𝑖 = 1/𝜂𝑖), 0 < 𝛿𝑖 ≤ 1, and 𝜉𝑖 ≥ 0 measured in W/(bit/s)𝛿𝑖 . In conven-

tional systems, we have 𝑀 = 1 (absence of non-linear power terms) and 𝜉𝑖 = 0,

i.e., 𝑃𝑐,𝑖(𝑝𝑖) = 𝜇𝑖𝑝𝑖 + 𝑃𝑠𝑡,𝑖. The term ∑︀𝑀
𝑚=2 𝜇𝑖,𝑚𝑝

𝑚
𝑖 is useful in the case of transmit

signals with high peak-to-average power ratio (PAPR), and/or power amplifiers with

very narrow linear region. Now, the WSEE maximization problem is formulated as

follows:

max
p∈𝑆

WSEE′(p) =
∑︁𝑁

𝑖=1 𝑤𝑖 𝜓𝑖 (𝑝𝑖, 𝑅𝑖(p)) (2.8)

where 𝜓𝑖(𝑝𝑖, 𝜌𝑖) = 𝜌𝑖

⧸︁(︁∑︀𝑀
𝑚=1 𝜇𝑖,𝑚𝑝

𝑚
𝑖 + 𝜉𝑖𝜌

𝛿𝑖
𝑖 + 𝑃𝑠𝑡,𝑖

)︁
. Notice that 𝜓𝑖(𝑝𝑖, 𝜌𝑖) is a strictly

increasing function of 𝜌𝑖 for 𝑝𝑖, 𝜌𝑖 ≥ 0, since:

𝜕𝜓𝑖(𝑝𝑖, 𝜌𝑖)
𝜕𝜌𝑖

=
∑︀𝑀

𝑚=1 𝜇𝑖,𝑚 𝑝𝑚
𝑖 +𝜉𝑖(1−𝛿𝑖)𝜌

𝛿𝑖
𝑖 +𝑃𝑠𝑡,𝑖(︁∑︀𝑀

𝑚=1 𝜇𝑖,𝑚 𝑝𝑚
𝑖 +𝜉𝑖𝜌

𝛿𝑖
𝑖 +𝑃𝑠𝑡,𝑖

)︁2 > 0 (2.9)

(recall that 1 − 𝛿𝑖 ≥ 0 and 𝑃𝑠𝑡,𝑖 > 0). Hence, we can rewrite problem (2.8) in the

following form:

max
(p,𝜌)∈Γ

∑︁𝑁

𝑖=1 𝑤𝑖 𝜓𝑖(𝑝𝑖, 𝜌𝑖) (2.10)

with feasible set Γ = {(p,𝜌) ∈ R2𝑁 : p ∈ 𝑆 and 𝑅𝑖(p) ≥ 𝜌𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑁},

where 𝜌 = [𝜌1, 𝜌2, . . . , 𝜌𝑁 ]𝑇 is the vector of additional variables. Using the variable

transformation p = 2q, 𝜌 = 2y (𝜌𝑖 = 2𝑦𝑖 , 1 ≤ 𝑖 ≤ 𝑁 with y = [𝑦1, 𝑦2, . . . , 𝑦𝑁 ]𝑇 ), and

because the objective is an increasing function of each 𝜓𝑖(𝑝𝑖, 𝜌𝑖), problem (2.10) is

equivalent to:

max
(q,y,v)∈T

𝑓(v) =
∑︁𝑁

𝑖=1 𝑤𝑖 2𝑣𝑖 (2.11)
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with feasible set T = {(q,y,v) ∈ R3𝑁 : 2𝑞𝑖 ≤ 𝑃max
𝑖 , 𝜗𝑖(q) ≥ 0, 𝑅′

𝑖(q) ≥ 2𝑦𝑖

and 𝜀𝑖(𝑞𝑖, 𝑦𝑖, 𝑣𝑖) ≤ 0, 1 ≤ 𝑖 ≤ 𝑁}, where 𝜀𝑖(𝑞𝑖, 𝑦𝑖, 𝑣𝑖) = ∑︀𝑀
𝑚=1 𝜇𝑖,𝑚 2𝑚𝑞𝑖+𝑣𝑖−𝑦𝑖 +

𝜉𝑖2𝑣𝑖− (1−𝛿𝑖)𝑦𝑖 + 𝑃𝑠𝑡,𝑖2𝑣𝑖−𝑦𝑖 − 1 (the fourth constraint is derived from 𝜓𝑖(2𝑞𝑖 , 2𝑦𝑖) ≥ 2𝑣𝑖).

Note that only the third constraint in T is nonconvex. Therefore, we can obtain a

KKT solution for problem (2.11), which is equivalent to (2.8), by solving a sequence

of convex problems of the following form:

max
(q,y,v)∈Ψ

̃︀𝑓(v) ⇔ max
(q,y,v)∈Ψ

𝜋(v) =
∑︁𝑁

𝑖=1 𝑤𝑖 2𝑣′
𝑖𝑣𝑖 (2.12)

with feasible set Ψ = {(q,y,v) ∈ R3𝑁 : 2𝑞𝑖 ≤ 𝑃max
𝑖 , 𝜗𝑖(q) ≥ 0, ̃︁𝑅′

𝑖(q) ≥ 2𝑦𝑖

and 𝜀𝑖(𝑞𝑖, 𝑦𝑖, 𝑣𝑖) ≤ 0, 1 ≤ 𝑖 ≤ 𝑁}.

2.5 Numerical Results

Consider a relay-assisted multiple-input multiple-output (MIMO) network, where

𝑁 transmitters communicate with 𝑁 receivers through a single-antenna amplify-and-

forward relay (receiver 𝑖 is the intended receiver of transmitter 𝑖). We denote by 𝐿𝑇 ,

𝐿𝑅 the number of antennas at each transmitter and receiver, respectively. Moreover,

b𝑖 (with ‖b𝑖‖ = 1) is the 𝐿𝑇 × 1 beamforming vector of transmitter 𝑖 (assume that

𝑝𝑖 is equally divided between the transmit antennas, i.e., b𝑖 =
(︁
1
⧸︁√

𝐿𝑇

)︁
1𝐿𝑇 ×1, with

1𝐿𝑇 ×1 the 𝐿𝑇 × 1 vector of ones), h𝑖 is the 1 × 𝐿𝑇 channel vector from transmitter 𝑖

to the relay, g𝑖 is the 𝐿𝑅 × 1 channel vector from the relay to receiver 𝑖, and c𝑖 is the

𝐿𝑅 ×1 combining vector of receiver 𝑖. Also, suppose the receivers perform maximum-

ratio combining (MRC), i.e., c𝑖 = g𝑖h𝑖b𝑖. The received signal at the relay is given

by 𝑥𝑟 = ∑︀𝑁
𝑗=1

√
𝑝𝑗 h𝑗b𝑗𝑠𝑗 + 𝑛𝑟, where 𝑠𝑗 is the information symbol of transmitter 𝑗

(𝐸{𝑠𝑗} = 0, 𝐸{|𝑠𝑗|2} = 1), and 𝑛𝑟 ∼ 𝒞𝒩 (0, 𝜎2
𝑟) is the relay thermal noise. Thus,

the total input power at the relay is 𝑃𝑟,𝑖𝑛 = ∑︀𝑁
𝑗=1 𝑝𝑗|h𝑗b𝑗|2 + 𝜎2

𝑟 . Then, the received

signal at the relay is normalized by
√︁
𝑃𝑟,𝑖𝑛, before being amplified by a factor

√
𝑃𝑟

(𝑃𝑟 is the relay transmit power) and forwarded to the receivers, in order to ensure

that the relay power amplifier operates within the linear region (the signal transmitted
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by the relay is 𝑦𝑟 =
√
𝑃𝑟𝑥𝑟

⧸︁√︁
𝑃𝑟,𝑖𝑛). The signals at receiver 𝑖 before and after the

diversity combining unit are x′
𝑖 = g𝑖𝑦𝑟 + n𝑖 and 𝑥𝑖 = c𝐻

𝑖 x′
𝑖, respectively, where

n𝑖 ∼ 𝒞𝒩 (0𝐿𝑅×1, 𝜎
2
𝑖 I𝐿𝑅

) is the receiver thermal noise (0𝐿𝑅×1 is the 𝐿𝑅 × 1 zero

vector, and I𝐿𝑅
is the 𝐿𝑅 × 𝐿𝑅 identity matrix). Finally, the SINR takes the form

in (2.1) with 𝜔𝑖,𝑖 =
⃒⃒⃒
c𝐻

𝑖 g𝑖h𝑖b𝑖

⃒⃒⃒2
, 𝜔𝑗,𝑖 =

⃒⃒⃒
c𝐻

𝑖 g𝑖h𝑗b𝑗

⃒⃒⃒2
+ 𝜎2

𝑖 ‖c𝑖‖2|h𝑗b𝑗|2
⧸︁
𝑃𝑟 (𝑗 ̸= 𝑖),

𝜑𝑖 = 𝜎2
𝑖 ‖c𝑖‖2|h𝑖b𝑖|2

⧸︁
𝑃𝑟, and 𝒩𝑖 =

(︂ ⃒⃒⃒
c𝐻

𝑖 g𝑖

⃒⃒⃒2
+ 𝜎2

𝑖 ‖c𝑖‖2
⧸︁
𝑃𝑟

)︂
𝜎2

𝑟 .

As concerns the simulation parameters, we set𝑁 = 5, 𝐿𝑇 = 𝐿𝑅 = 2, 𝑃𝑟 = 30 dBm,

𝜀 = 10−4, carrier frequency 2 GHz, 𝐵 = 2 MHz, 𝜎2
𝑖 = 𝜎2

𝑟 = 𝐹𝒩0𝐵 (with noise

figure 𝐹 = 3 dB and power spectral density 𝒩0 = −174 dBm/Hz), 𝜇𝑖 = 𝜇 = 5,

𝑃max
𝑖 = 𝑃max, 𝑃𝑠𝑡,𝑖 = 𝑃𝑠𝑡 = 375 mW, and 𝑤𝑖 = 1/𝑁 for 1 ≤ 𝑖 ≤ 𝑁 . The distance

of each transmitter/receiver from the relay is uniformly distributed in the interval

[200,300] m. A path loss model with reference distance 100 m, path-loss-exponent

3.5, and standard deviation of log-normal shadowing 8 dB has been used, assuming

Rayleigh fading. In addition, the QoS requirements are set as follows: 𝑅min
𝑖 = 𝑟𝑖𝑅̄𝑖,

where 𝑟𝑖 ≥ 0 (for simplicity, 𝑟𝑖 = 𝑟 for 1 ≤ 𝑖 ≤ 𝑁), and 𝑅̄𝑖 = 𝐵 log2 (1 + 𝛾𝑖) with

𝛾𝑖 = 𝛾𝑖(𝑝1𝑁×1)|𝒩𝑖= 0 = 𝜔𝑖,𝑖

⧸︁(︁∑︀
𝑗 ̸=𝑖 𝜔𝑗,𝑖 + 𝜑𝑖

)︁
the SINR of user 𝑖 when all the transmit

powers are equal and the equivalent noise power is zero. Unless otherwise stated, the

initial point is selected as p = 𝑃max1𝑁×1 (we assume 0 ≤ 𝑟 < 1, since this point is

infeasible when 𝑟 ≥ 1). All the results are derived from the statistical average of 104

independent problem instances.

First of all, we examine the convergence speed of Algorithm 2.1 through numerical

analysis, since it is difficult to be studied analytically. Fig. 2-1 shows that Algorithm

2.1 always generates an increasing sequence and converges very fast within only a

few iterations. Thus, Algorithm 2.1 exhibits low complexity because the number of

iterations until convergence is quite small and the convex problem in each iteration

can be globally solved in polynomial time using standard convex optimization tech-

niques, such as interior-point methods [8]. Furthermore, Algorithm 2.1 is robust since

different initialization points achieve slightly different final objective values, and also

the convergence speed remains almost the same.
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Figure 2-1: Convergence of Algorithm 2.1 (WSEE maximization), with 𝑃max =
20 dBm, for different QoS requirements and initial point p = 𝜆𝑃max1𝑁×1.

Subsequently, for the sake of comparison, we introduce a baseline scheme, namely,

weighted-sum rate (WSR) maximization defined as follows:

max
p∈𝑆

WSR(p) =
∑︁𝑁

𝑖=1 𝑤𝑖𝑅𝑖(p) (2.13)

This problem is solved by SCO, using again the transformation p = 2q, where the

convex problems take the form:

max
q ∈Θ

∑︁𝑁

𝑖=1 𝑤𝑖
̃︁𝑅′

𝑖(q) (2.14)

with feasible set Θ = {q ∈ R𝑁 : 2𝑞𝑖 ≤ 𝑃max
𝑖 and 𝜗𝑖(q) ≥ 0, 1 ≤ 𝑖 ≤ 𝑁}.

Figs. 2-2 and 2-3 illustrate respectively the achieved WSEE and WSR versus 𝑃max

for different QoS requirements. In Fig. 2-2, we can observe that: 1) for each scheme,

the increase of QoS requirements leads to the decrease of WSEE because the fea-

sible set becomes smaller, and 2) for low 𝑃max, WSEE and WSR maximization are

almost equivalent, since WSEE(p) ≈ (1/𝑃𝑠𝑡)WSR(p) (𝜇𝑝𝑖 ≤ 𝜇𝑃max ≪ 𝑃𝑠𝑡 ⇒

𝑃𝑐,𝑖(𝑝𝑖) ≈ 𝑃𝑠𝑡), while WSEE increases with 𝑃max. Similar observations can be made

in Fig. 2-3. Nevertheless, for larger values of 𝑃max, it can be seen that: 1) in Fig. 2-2,

WSEE remains constant when maximizing the WSEE, whereas decreases with 𝑃max

when maximizing the WSR because of the higher required transmit power, and 2) in
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Figure 2-2: Achieved WSEE versus 𝑃max by maximizing: a) the WSEE (Algorithm
2.1), and b) the WSR (baseline scheme) for different QoS requirements.

Figure 2-3: Achieved WSR versus 𝑃max by maximizing: a) the WSEE (Algorithm
2.1), and b) the WSR (baseline scheme) for different QoS requirements.

Fig. 2-3, WSR maximization achieves slightly higher WSR than WSEE maximiza-

tion, while both schemes reach a peak value (note that WSR is upper-bounded when

𝜑𝑖 ̸= 0: WSR(p) ≤ ∑︀𝑁
𝑖=1 𝑤𝑖𝐵 log2 (1 + 𝛾max

𝑖 ) with 𝛾max
𝑖 = lim

𝑝𝑖→∞
𝛾𝑖 (p) = 𝜔𝑖,𝑖/𝜑𝑖).

23



Chapter 2 2.6. Conclusion

2.6 Conclusion

In this chapter, we have presented a general methodology for WSEE maximization

in wireless networks. More specifically, we have developed a low-complexity and

robust algorithm that is theoretically guaranteed to converge and is able to achieve a

KKT solution. Finally, we have studied notable extensions of the proposed approach

to systems with multiple resource blocks and general power consumption model as

well.
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Chapter 3

Energy Efficiency Optimization: A

New Trade-Off Between Fairness

and Total System Performance2

The total energy efficiency (TEE), defined as the ratio between the total data

rate and the total power consumption, is considered the most meaningful performance

metric in terms of energy efficiency (EE). Nevertheless, it does not depend directly on

the EE of each link and its maximization leads to unfairness between the links. On the

other hand, the maximization of the minimum EE (MEE), i.e., the minimum of the

EEs of all links, guarantees the fairest power allocation, but it does not contain any

explicit information about the total system performance. The main trend in current

research is to maximize TEE and MEE separately. Unlike previous contributions,

this chapter presents a general multi-objective approach for EE optimization that

takes into account both TEE and MEE at the same time, and thus achieves various

trade-off points in the MEE-TEE plane. Due to the nonconvex form of the resulting

problem, we propose a low-complexity algorithm leveraging the theory of sequential

convex optimization (SCO). Last but not least, we provide a novel theoretical result

2Copyright c○ 2019 IEEE. Reprinted, with permission, from: C. N. Efrem and A. D. Panagopou-
los, “Energy efficiency optimization: A new trade-off between fairness and total system perfor-
mance,” IEEE Wireless Communications Letters, vol. 8, no. 3, pp. 853-856, June 2019. Personal
use of this material is permitted, but republication/redistribution requires IEEE permission.
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for the complexity of SCO algorithms.

3.1 Introduction

Energy efficiency expresses the amount of information that can be reliably trans-

mitted per Joule of consumed energy (measured in bit/Joule), and is recently charac-

terized as a key performance indicator for 5G networks. Zappone et al. [1] propose a

unified framework for the design of both centralized and distributed energy-efficient

power control algorithms. Furthermore, power allocation strategies for maximizing

the proportional, max-min, and harmonic fair EE in spectrum-sharing networks are

given in [2]. The optimization of various EE performance metrics is also investi-

gated in [3] and [4] for MIMO (multiple-input multiple-output) and OFDMA (or-

thogonal frequency division multiple access) systems, respectively. Finally, the recent

study [5] presents a systematic approach to weighted-sum EE maximization in wireless

networks.

In summary, the existing approaches maximize the total/global, sum, product

and minimum EE individually. The TEE, albeit the most important EE metric, does

not depend directly on the links’ EEs and its maximization results in low fairness.

On the other hand, the last three EE metrics explicitly depend on the links’ EEs,

but none of them contains specific information about the total system performance

(i.e., TEE). Moreover, the fairest resource allocation is achieved by maximizing the

MEE. Consequently, in this chapter, we introduce a new multi-objective approach

that takes into consideration the two extremes (TEE and MEE) at the same time,

and thus providing a set of MEE-TEE operating points which are not achievable with

existing approaches.

The remainder of this chapter is organized as follows. Section 3.2 introduces the

system model and formulates the general EE optimization problem. Subsequently,

an EE optimization algorithm is developed and analyzed in Section 3.3. Finally,

numerical results are provided in Section 3.4, while concluding remarks are given in

Section 3.5.
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3.2 System Model and Problem Formulation

We consider a wireless network with 𝑁 transmitters/users, 𝑀 receivers and 𝐾

mutually orthogonal resource blocks of bandwidth 𝐵𝑅𝐵. In addition, we assume that

each transmitter is associated to exactly one receiver (its intended receiver), and

therefore it holds that 𝑁 ≥ 𝑀 .3 The Signal-to-Interference-plus-Noise-Ratio (SINR)

experienced by user 𝑖 (1 ≤ 𝑖 ≤ 𝑁) at its intended receiver on resource block 𝑘

(1 ≤ 𝑘 ≤ 𝐾) is given by the following formula:4

𝛾
(𝑘)
𝑖 = 𝜔

(𝑘)
𝑖,𝑖 𝑝

(𝑘)
𝑖

⧸︂(︂∑︁
𝑗 ̸=𝑖

𝜔
(𝑘)
𝑗,𝑖 𝑝

(𝑘)
𝑗 + 𝒩 (𝑘)

𝑖

)︂
(3.1)

where 𝑝(𝑘)
𝑗 is the transmit power of user 𝑗, 𝒩 (𝑘)

𝑖 is the noise power at the 𝑖𝑡ℎ user’s

intended receiver, and 𝜔
(𝑘)
𝑗,𝑖 is the channel gain between 𝑗𝑡ℎ transmitter and 𝑖𝑡ℎ user’s

intended receiver, all on resource block 𝑘. For convenience, we denote the vector

of transmit powers by p =
[︁
p𝑇

1 ,p𝑇
2 , . . . ,p𝑇

𝑁

]︁𝑇
, where p𝑖 =

[︁
𝑝

(1)
𝑖 , 𝑝

(2)
𝑖 , . . . , 𝑝

(𝐾)
𝑖

]︁𝑇
with

1 ≤ 𝑖 ≤ 𝑁 .

The 𝑖𝑡ℎ user’s and total achievable data rate (in bit/s) are given respectively by:

𝑅𝑖(p) = 𝐵𝑅𝐵
∑︀𝐾

𝑘=1 log2

(︁
1 + 𝛾

(𝑘)
𝑖

)︁
and 𝑅𝑡𝑜𝑡(p) = ∑︀𝑁

𝑖=1 𝑅𝑖(p). Next, assuming that the

transmit power amplifiers operate in the linear region and the hardware dissipated

power is fixed, the 𝑖𝑡ℎ user’s and total power consumption can be modeled respectively

as follows: 𝑃𝑐,𝑖(p𝑖) = 𝜇𝑖
∑︀𝐾

𝑘=1 𝑝
(𝑘)
𝑖 +𝑃𝑠𝑡,𝑖 and 𝑃𝑐,𝑡𝑜𝑡(p) = ∑︀𝑁

𝑖=1 𝑃𝑐,𝑖(p𝑖), where 𝜇𝑖 = 1/𝜉𝑖,

with 𝜉𝑖 ∈ (0, 1] the efficiency of the power amplifier of transmitter 𝑖, and 𝑃𝑠𝑡,𝑖 is

the static dissipated power in all other circuit blocks of the 𝑖𝑡ℎ transmitter and its

intended receiver (e.g., cooling, filtering, signal up and down conversion, digital-to-

analog and analog-to-digital conversion). Furthermore, the 𝑖𝑡ℎ user’s and total EE (in

bit/Joule) are defined respectively as the following ratios: 𝐸𝐸𝑖(p) = 𝑅𝑖(p)/𝑃𝑐,𝑖(p𝑖)

and 𝐸𝐸𝑡𝑜𝑡(p) = 𝑅𝑡𝑜𝑡(p)/𝑃𝑐,𝑡𝑜𝑡(p).

3Without loss of generality, we make this assumption to reduce the amount of notation needed
to express the SINR in (3.1). Similar formula can be obtained when each transmitter is associated
to more than one receiver.

4The proposed methodology can be straightforwardly modified to include a self-interference term
in the denominator of (3.1), as in [1] and [5].
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Now, we introduce the following nonconvex maximization problem, based on the

multi-objective optimization theory:

max
p∈𝑆p

𝐺(p) = 𝐹
(︂
𝐸𝐸𝑡𝑜𝑡(p), min

1≤𝑖≤𝑁
𝐸𝐸𝑖(p)

)︂
(3.2)

with feasible set 𝑆p = {p ∈ R𝑁𝐾
+ : ∑︀𝐾

𝑘=1 𝑝
(𝑘)
𝑖 ≤ 𝑃max

𝑖 , and 𝑅𝑖(p) ≥ 𝑅𝑡ℎ
𝑖 for

1 ≤ 𝑖 ≤ 𝑁}, where 𝑃max
𝑖 and 𝑅𝑡ℎ

𝑖 are the 𝑖𝑡ℎ user’s maximum transmit power and min-

imum required data rate, respectively. Moreover, we assume that: 1) the objective

𝐹 (𝑥, 𝑦) is an increasing function of 𝑥 and 𝑦, 2) 𝐹 (2𝑢, 2𝑣) > 0, ∀(𝑢, 𝑣) ∈ R2, and

3) 𝑓(𝑢, 𝑣) = log2𝐹 (2𝑢, 2𝑣) is a differentiable concave function.

In the sequel, we transform the original nonconvex problem (3.2) into an equiva-

lent problem in a more tractable form. Due to the fact that 𝐹 (𝑥, 𝑦) is an increasing

function and 𝐸𝐸𝑡𝑜𝑡(p), min
1≤𝑖≤𝑁

𝐸𝐸𝑖(p) ≥ 0, ∀p ∈ R𝑁𝐾
+ , problem (3.2) can be equiva-

lently written as follows:

max
(p,𝜂𝑡ℎ

𝑡𝑜𝑡,𝜂𝑡ℎ
min)∈T

𝐹
(︁
𝜂𝑡ℎ

𝑡𝑜𝑡, 𝜂
𝑡ℎ
min

)︁
(3.3)

with feasible set T = {(p, 𝜂𝑡ℎ
𝑡𝑜𝑡, 𝜂

𝑡ℎ
min) ∈ R𝑁𝐾+2

+ : p ∈ 𝑆p, 𝐸𝐸𝑡𝑜𝑡(p) ≥ 𝜂𝑡ℎ
𝑡𝑜𝑡, and

𝐸𝐸𝑖(p) ≥ 𝜂𝑡ℎ
min for 1 ≤ 𝑖 ≤ 𝑁}, where 𝜂𝑡ℎ

𝑡𝑜𝑡 and 𝜂𝑡ℎ
min are auxiliary variables. Notice

that the set of constraints 𝐸𝐸𝑖(p) ≥ 𝜂𝑡ℎ
min (1 ≤ 𝑖 ≤ 𝑁) is equivalent to min

1≤𝑖≤𝑁
𝐸𝐸𝑖(p) ≥

𝜂𝑡ℎ
min, and the maximum objective value is obtained when 𝐸𝐸𝑡𝑜𝑡(p) = 𝜂𝑡ℎ

𝑡𝑜𝑡 and

min
1≤𝑖≤𝑁

𝐸𝐸𝑖(p) = 𝜂𝑡ℎ
min.

Subsequently, by applying the variable transformation p = 2q (𝑝(𝑘)
𝑖 = 2𝑞

(𝑘)
𝑖 ,

1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑘 ≤ 𝐾), 𝜂𝑡ℎ
𝑡𝑜𝑡 = 2𝑢, 𝜂𝑡ℎ

min = 2𝑣, and after a few mathematical

operations, we get the following nonconvex problem (note that the maximization of

𝐹 is equivalent to the maximization of log2𝐹 ):

max
(q,𝑢,𝑣)∈𝑍

𝑓(𝑢, 𝑣) = log2𝐹 (2𝑢, 2𝑣) (3.4)

with feasible set 𝑍 = {(q, 𝑢, 𝑣) ∈ R𝑁𝐾+2 : ∑︀𝐾
𝑘=1 2𝑞

(𝑘)
𝑖 ≤ 𝑃max

𝑖 , 𝑅′
𝑖(q) ≥ 𝑅𝑡ℎ

𝑖 ,
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𝜓𝑖(q, 𝑣) ≥ 0 for 1 ≤ 𝑖 ≤ 𝑁, and 𝑔(q, 𝑢) ≥ 0}, where 𝑅′
𝑖(q) = 𝑅𝑖(2q),

𝑅′
𝑡𝑜𝑡(q) = 𝑅𝑡𝑜𝑡(2q), 𝜓𝑖(q, 𝑣) = 𝑅′

𝑖(q)−𝜇𝑖
∑︀𝐾

𝑘=1 2𝑞
(𝑘)
𝑖 +𝑣 −𝑃𝑠𝑡,𝑖2𝑣, and 𝑔(q, 𝑢) = 𝑅′

𝑡𝑜𝑡(q)−∑︀𝑁
𝑖=1 𝜇𝑖

∑︀𝐾
𝑘=1 2𝑞

(𝑘)
𝑖 +𝑢 −

(︁∑︀𝑁
𝑖=1 𝑃𝑠𝑡,𝑖

)︁
2𝑢.

3.3 Energy Efficiency Optimization Algorithm

In this section, we leverage the theory of SCO (see Appendix 3.6) so as to achieve

a Karush-Kuhn-Tucker (KKT) solution for the equivalent problem (3.4).

3.3.1 Algorithm Design and Complexity

In order to satisfy the properties of Theorem 3.1 in the Appendix 3.6, we use the

following inequality with logarithms [5] (log20 = −∞ and 0 · log20 = 0): 𝐴(𝛾) =

log2(1 + 𝛾) ≥ 𝑎 · log2𝛾 + 𝑏 = 𝐵(𝛾, 𝛾′), ∀𝛾, 𝛾′ ≥ 0, where 𝑎, 𝑏 are given by:

𝑎 = 𝛾′/(1 + 𝛾′), 𝑏 = log2(1 + 𝛾′) − 𝑎 · log2𝛾
′ (3.5)

Observe that 𝑎 ≥ 0, 𝐴(𝛾)|𝛾=𝛾′ = 𝐵(𝛾, 𝛾′)|𝛾=𝛾′ , and 𝑑𝐴(𝛾)
𝑑𝛾

⃒⃒⃒
𝛾=𝛾′

= 𝜕𝐵(𝛾,𝛾′)
𝜕𝛾

⃒⃒⃒
𝛾=𝛾′

.

Consequently, we can construct the following lower bounds: 𝑅′
𝑖(q) ≥ 𝐵𝑅𝐵 ·∑︀𝐾

𝑘=1

[︂
𝑏

(𝑘)
𝑖 + 𝑎

(𝑘)
𝑖 log2

(︁
𝜔

(𝑘)
𝑖,𝑖

)︁
+ 𝑎

(𝑘)
𝑖 𝑞

(𝑘)
𝑖 − 𝑎

(𝑘)
𝑖 log2

(︂∑︀
𝑗 ̸=𝑖 𝜔

(𝑘)
𝑗,𝑖 2𝑞

(𝑘)
𝑗 + 𝒩 (𝑘)

𝑖

)︂]︂
= ̃︁𝑅′

𝑖(q),

𝑅′
𝑡𝑜𝑡(q) ≥ ∑︀𝑁

𝑖=1
̃︁𝑅′

𝑖(q) = ̃︂𝑅′
𝑡𝑜𝑡(q), 𝜓𝑖(q, 𝑣) ≥ ̃︁𝑅′

𝑖(q)−𝜇𝑖
∑︀𝐾

𝑘=1 2𝑞
(𝑘)
𝑖 +𝑣 −𝑃𝑠𝑡,𝑖2𝑣 = ̃︁𝜓𝑖(q, 𝑣),

and 𝑔(q, 𝑢) ≥ ̃︂𝑅′
𝑡𝑜𝑡(q)−∑︀𝑁

𝑖=1 𝜇𝑖
∑︀𝐾

𝑘=1 2𝑞
(𝑘)
𝑖 +𝑢 −

(︁∑︀𝑁
𝑖=1 𝑃𝑠𝑡,𝑖

)︁
2𝑢 = ̃︀𝑔(q, 𝑢), where 𝑎(𝑘)

𝑖 and

𝑏
(𝑘)
𝑖 are given by (3.5) with 𝛾′ = 𝛾′(𝑘)

𝑖 . Notice that ̃︁𝑅′
𝑖(q), ̃︂𝑅′

𝑡𝑜𝑡(q), ̃︁𝜓𝑖(q, 𝑣), and ̃︀𝑔(q, 𝑢)

are all concave functions (the log-sum-exp, 2𝑥+𝑦, and 2𝑥 are convex functions [6]).

Based on the previous analysis, we can formulate the following convex problem which

depends on the parameters 𝑎(𝑘)
𝑖 and 𝑏

(𝑘)
𝑖 :

max
(q,𝑢,𝑣)∈Ω

𝑓(𝑢, 𝑣) = log2𝐹 (2𝑢, 2𝑣) (3.6)

with feasible set Ω = {(q, 𝑢, 𝑣) ∈ R𝑁𝐾+2 : ∑︀𝐾
𝑘=1 2𝑞

(𝑘)
𝑖 ≤ 𝑃max

𝑖 , ̃︁𝑅′
𝑖(q) ≥ 𝑅𝑡ℎ

𝑖 ,̃︁𝜓𝑖(q, 𝑣) ≥ 0 for 1 ≤ 𝑖 ≤ 𝑁, and ̃︀𝑔(q, 𝑢) ≥ 0}.
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Algorithm 3.1 Energy Efficiency Optimization
1: Choose a tolerance 𝜀 > 0, and an initial point p ∈ 𝑆p

2: Set 𝑙 = 0, 𝑢 = log2 (𝐸𝐸𝑡𝑜𝑡(p)), 𝑣 = log2

(︂
min

1≤𝑖≤𝑁
𝐸𝐸𝑖(p)

)︂
,

and 𝑓0 = 𝑓(𝑢, 𝑣)
3: repeat
4: Compute the SINR vector 𝛾 according to (3.1), and then the

parameter vectors 𝑎, 𝑏 according to (3.5) with 𝛾′ = 𝛾
5: Solve the convex optimization problem (3.6) with parameters 𝑎, 𝑏

in order to obtain a globally optimal solution (q*, 𝑢*, 𝑣*)
6: Set 𝑙 = 𝑙 + 1, q = q*, 𝑢 = 𝑢*, 𝑣 = 𝑣*, p = 2q and 𝑓𝑙 = 𝑓(𝑢, 𝑣)
7: until |𝑓𝑙 − 𝑓𝑙−1|/|𝑓𝑙−1| < 𝜀

Algorithm 3.1 provides an iterative SCO procedure using the following notation:

𝜎 =
[︁
𝜎𝑇

1 ,𝜎
𝑇
2 , . . . ,𝜎

𝑇
𝑁

]︁𝑇
for 𝜎 ∈ {p,q,𝛾,𝛾′,𝑎, 𝑏}, where 𝜎𝑖 =

[︁
𝜎

(1)
𝑖 , 𝜎

(2)
𝑖 , . . . , 𝜎

(𝐾)
𝑖

]︁𝑇
with 1 ≤ 𝑖 ≤ 𝑁 . Based on Theorem 3.1 in the Appendix 3.6, Algorithm 3.1 monoton-

ically increases the objective 𝑓(𝑢, 𝑣) in each iteration and, under suitable constraint

qualifications, converges to a point that satisfies the KKT conditions of problem (3.4).

Finally, the complexity of Algorithm 3.1 depends on the number of iterations

until convergence as well as on the complexity of each iteration (which is mainly

restricted by the optimization of a convex problem). According to Theorem 3.2

in the Appendix 3.6, the overall complexity of Algorithm 3.1 is 𝑂 ((𝜆/𝜀)𝜑(𝑁,𝐾)),

where 𝜆 = 𝑓*/𝑓0 ≥ 1, with 𝑓* being the globally maximum value of problem (3.4),

and 𝜑(𝑁,𝐾) is the complexity of problem (3.6). If this convex problem is solved by

an interior-point method, then 𝜑(𝑁,𝐾) is polynomial in the number of variables and

constraints (which are 𝑁𝐾 + 2 and 3𝑁 + 1, respectively), and thus polynomial in 𝑁

and 𝐾.

3.3.2 Applications

Afterwards, we examine two special applications of Algorithm 3.1,

namely, the weighted product (WP) and the weighted minimum (WM) of TEE and

MEE, which are respectively defined by: 𝐹𝑊 𝑃 (𝑥, 𝑦) = 𝑥𝑤𝑦1−𝑤 and 𝐹𝑊 𝑀(𝑥, 𝑦) =

min (𝑥/𝑤, 𝑦/(1 − 𝑤)), with 𝑥 = 𝐸𝐸𝑡𝑜𝑡(p) and 𝑦 = min
1≤𝑖≤𝑁

𝐸𝐸𝑖(p). Note that 𝑤

and 1 − 𝑤 are the priority weights of TEE and MEE, respectively (0 ≤ 𝑤 ≤ 1).
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Specifically, 𝑤 = 1 corresponds to TEE maximization, while 𝑤 = 0 corresponds to

MEE maximization. Moreover, we have that: 𝑓𝑊 𝑃 (𝑢, 𝑣) = 𝑤 𝑢 + (1 − 𝑤) 𝑣, and

𝑓𝑊 𝑀(𝑢, 𝑣) = min (𝑢− log2𝑤, 𝑣 − log2(1 − 𝑤)) since min(2𝑟, 2𝑠) = 2min(𝑟,𝑠). Observe

that 𝑓𝑊 𝑃 (𝑢, 𝑣) and 𝑓𝑊 𝑀(𝑢, 𝑣) are both concave functions (the minimum of concave

functions is also a concave function [6]).

Concerning the WM maximization, we cannot consider the KKT conditions of

problem (3.4) directly, since the objective 𝑓𝑊 𝑀(𝑢, 𝑣) is not differentiable. However,

Algorithm 3.1 converges to a point that satisfies the KKT conditions of the follow-

ing problem (equivalent epigraph form of problem (3.4)): max
(q,𝑢,𝑣,𝑡)∈Γ

𝑡 with feasible set

Γ = {(q, 𝑢, 𝑣, 𝑡) ∈ R𝑁𝐾+3 : (q, 𝑢, 𝑣) ∈ 𝑍, 𝑢 − log2𝑤 ≥ 𝑡, and 𝑣 − log2(1 − 𝑤) ≥ 𝑡}.

This statement can be easily proved if we write problem (3.6) in its equivalent epi-

graph form: max
(q,𝑢,𝑣,𝑡)∈Θ

𝑡 with feasible set Θ = {(q, 𝑢, 𝑣, 𝑡) ∈ R𝑁𝐾+3 : (q, 𝑢, 𝑣) ∈ Ω,

𝑢− log2𝑤 ≥ 𝑡, and 𝑣− log2(1 −𝑤) ≥ 𝑡}, and observe that the properties of Theorem

3.1 in the Appendix 3.6 are satisfied.

3.4 Numerical Results

Consider the uplink of a cellular network with a single micro-cell, where 𝐾 = 5

resource blocks allocated to one cellular UE (User Equipment) are reused by 4 D2D

(Device-to-Device) transmitter/receiver-pairs (𝑁 = 5). The cellular UE is associated

to the BS (Base Station) and each D2D transmitter is associated to its intended D2D

receiver (𝑀 = 𝑁). In addition, the D2D link distance, namely, the distance between

the transmitter and receiver of one D2D pair, is considered the same for all D2D

pairs and is denoted by 𝑑𝐷2𝐷. As concerns the simulation parameters, the cellular

UE as well as the D2D pairs are uniformly distributed in [30,100] m from the BS.

Moreover, we assume a carrier frequency of 5 GHz, 𝜀 = 10−3, 𝐵𝑅𝐵 = 500 KHz,

𝒩 (𝑘)
𝑖 = 𝐹𝒩0𝐵𝑅𝐵 (with receiver noise figure 𝐹 = 3 dB, and power spectral density

of the thermal noise 𝒩0 = −174 dBm/Hz), 𝜇𝑖 = 𝜇 = 1, 𝑃𝑠𝑡,𝑖 = 𝑃𝑠𝑡 = 10 dBm,

𝑃max
𝑖 = 𝑃max = 23 dBm, and 𝑅𝑡ℎ

𝑖 = 𝑅𝑡ℎ = 0 for 1 ≤ 𝑖 ≤ 𝑁 (in the sequel we study

the fairness, so it is preferable not to consider the data rate constraints). Unless
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Figure 3-1: TEE and JFI versus D2D link distance for different priority weights.

otherwise stated, the initial feasible point is selected as p = (𝑃max/𝐾) 1𝑁𝐾×1, where

1𝑁𝐾×1 is the 𝑁𝐾 × 1 vector of ones. Furthermore, all the results (except for Fig.

3-2) are obtained by averaging over 103 independent simulations, and the following

analysis refers to Algorithm 3.1 specialized to maximize the WP of TEE and MEE.

For the evaluation of fairness, we make use of Jain’s fairness index (JFI) as a

function of users’ EEs: 𝒥 = (∑︀𝑁

𝑖=1 𝐸𝐸𝑖)2

𝑁
∑︀𝑁

𝑖=1 𝐸𝐸2
𝑖

with 0 ≤ 𝒥 ≤ 1. In general, the closer JFI is

to 1, the fairer the power allocation is in terms of EE. In the special case where 𝑤 = 0

(MEE maximization) all the EEs are equal at the maximum point [7], and therefore

𝒥 = 1 and TEE=MEE.

First of all, Fig. 3-1 shows the TEE and JFI versus the D2D link distance for

different weights. For fixed 𝑑𝐷2𝐷, it is clear that TEE increases while JFI decreases

as the weight 𝑤 increases, since higher priority is given to TEE and lower to MEE.

According to the left figure, TEE decreases with the D2D link distance for all 𝑤. In

addition, as shown in the right figure, JFI decreases with the D2D link distance for

𝑤 ̸= 0, whereas it remains equal to 1 for 𝑤 = 0 as already mentioned.

Afterwards, Fig. 3-2 illustrates the Pareto operating points in the MEE-TEE plane

achieved by: a) the proposed approach for 200 equally-spaced values of the weight 𝑤

in [0, 1], b) product-EE maximization [4] with 𝑃𝐸𝐸(p) = ∏︀𝑁
𝑖=1 𝐸𝐸𝑖(p), and c) sum-
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Figure 3-2: Pareto operating points in the MEE-TEE plane for a specific simulation
scenario with 𝑑𝐷2𝐷 = 10 m.

Figure 3-3: Convergence of Algorithm 3.1 (WP maximization) for different priority
weights and initial point p = 𝜁 (𝑃max/𝐾) 1𝑁𝐾×1 with 𝑑𝐷2𝐷 = 20 m.

EE maximization [5] with 𝑆𝐸𝐸(p) = ∑︀𝑁
𝑖=1 𝐸𝐸𝑖(p). As can be seen, the proposed

approach for 0 < 𝑤 < 1 achieves several trade-off points which are not attainable by

maximizing TEE, SEE, PEE and MEE individually. Moreover, we can observe that all

the Pareto points lie on or above the line TEE=MEE, since it can be easily proved that

𝐸𝐸𝑡𝑜𝑡(p) ≥ min
1≤𝑖≤𝑁

𝐸𝐸𝑖(p), ∀p ∈ R𝑁𝐾
+ .

Finally, we examine the convergence of Algorithm 3.1 for different priority weights
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and initial points. According to Fig. 3-3, Algorithm 3.1 exhibits fast convergence

and insensitivity to initial points for all simulation scenarios, and requires a quite

small number of iterations to converge. In particular, given the tolerance 𝜀 = 10−3

(𝜀 = 10−4), it converges within approximately 4, 5 and 9 (5, 6 and 10) iterations for

𝑤 = 0, 0.7 and 1, respectively.

3.5 Conclusion

In this chapter, we have developed a unified methodology for EE optimization

that incorporates a new trade-off between fairness and total system performance.

Furthermore, an efficient SCO algorithm has been proposed which can be applied

to practical scenarios of wireless networks. Finally, we have presented a general

complexity analysis for SCO algorithms.

3.6 Appendix: Sequential Convex Optimization

Let ℱ be a nonconvex maximization problem with objective 𝑓0(x), and nonempty,

compact feasible set 𝑆 = {x ∈ R𝑛 : 𝑓𝑖(x) ≥ 0, 1 ≤ 𝑖 ≤ 𝐼}. Also, let {ℋ𝑗}𝑗≥1 be

a sequence of convex maximization problems with objective ℎ0,𝑗(x,x*
𝑗−1), compact

feasible set 𝑆𝑗 = {x ∈ R𝑛 : ℎ𝑖,𝑗(x,x*
𝑗−1) ≥ 0, 1 ≤ 𝑖 ≤ 𝐼}, and global maximum x*

𝑗 .

Let x*
0 be any feasible point of problem ℱ , that is, x*

0 ∈ 𝑆. Moreover, assume that

𝑓𝑖(x) and ℎ𝑖,𝑗(x,x*
𝑗−1), 0 ≤ 𝑖 ≤ 𝐼 and 𝑗 ≥ 1, are differentiable functions. The next

theorem follows directly from [8].

Theorem 3.1 (Convergence). Suppose that the functions ℎ𝑖,𝑗(x,x*
𝑗−1), 0 ≤ 𝑖 ≤ 𝐼 and

𝑗 ≥ 1, satisfy the following three properties (where ∇ = [𝜕/𝜕𝑥1, 𝜕/𝜕𝑥2, . . . , 𝜕/𝜕𝑥𝑛]𝑇 ):

(𝑎) ℎ𝑖,𝑗(x,x*
𝑗−1) ≤ 𝑓𝑖(x), ∀x ∈ 𝑆𝑗

(𝑏) ℎ𝑖,𝑗(x,x*
𝑗−1)

⃒⃒⃒
x=x*

𝑗−1
= 𝑓𝑖(x*

𝑗−1)

(𝑐) ∇ℎ𝑖,𝑗(x,x*
𝑗−1)

⃒⃒⃒
x=x*

𝑗−1
= ∇𝑓𝑖(x*

𝑗−1)

Then, the sequence
{︁
𝑓0(x*

𝑗 )
}︁

𝑗≥0
is monotonically increasing (𝑓0(x*

𝑗 ) ≥ 𝑓0(x*
𝑗−1),

𝑗 ≥ 1) and converges to a finite value 𝐿 ( lim
𝑗→∞

𝑓0(x*
𝑗 ) = 𝐿 < ∞). In addition, every
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accumulation/limit point x̄ of the sequence
{︁
x*

𝑗

}︁
𝑗≥0

achieves the objective value 𝐿

(𝑓0(x̄) = 𝐿) and, assuming suitable constraint qualifications, satisfies the KKT con-

ditions of the initial problem ℱ .

A rigorous mathematical analysis for the complexity of SCO is very challenging

since the convergence rate depends on the particular structure of the problem, and no

theoretical results are available so far. Nevertheless, we provide the following general

theorem exploiting the monotonicity of SCO.

Theorem 3.2 (Complexity). Assume that: 1) the properties of Theorem 3.1 are

satisfied, 2) SCO terminates when
⃒⃒⃒
𝑓0(x*

𝑗 ) − 𝑓0(x*
𝑗−1)

⃒⃒⃒⧸︁⃒⃒⃒
𝑓0(x*

𝑗−1)
⃒⃒⃒
< 𝜀, where 𝜀 > 0

is a predefined tolerance, and 3) 𝑓0(x*
0) > 0. Then, the number of iterations until

convergence is 𝑂 (𝜆/𝜀), where 𝜆 = 𝑓0(x*)/𝑓0(x*
0) ≥ 1 and x* is a global maximum

of problem ℱ . In addition, the overall complexity of SCO is 𝑂 ((𝜆/𝜀)𝜙(𝑛, 𝐼)), where

𝜙(𝑛, 𝐼) is the complexity of the method used to solve each convex problem with 𝑛

variables and 𝐼 constraints.

Proof. By virtue of Theorem 3.1, we have that 𝑓0(x*
𝑗 ) ≥ 𝑓0(x*

𝑗−1) ≥ 𝑓0(x*
0) > 0,

𝑗 ≥ 1. Next, let 𝑘 ≥ 1 be the number of iterations until convergence, that is,

the smallest integer for which
(︁
𝑓0(x*

𝑘) − 𝑓0(x*
𝑘−1)

)︁⧸︁
𝑓0(x*

𝑘−1) < 𝜀. Hence, before

the termination of the algorithm, it holds that 𝜀 ≤
(︁
𝑓0(x*

𝑗 ) − 𝑓0(x*
𝑗−1)

)︁⧸︁
𝑓0(x*

𝑗−1) ≤(︁
𝑓0(x*

𝑗 ) − 𝑓0(x*
𝑗−1)

)︁⧸︁
𝑓0(x*

0), and thus 𝜀𝑓0(x*
0) ≤ 𝑓0(x*

𝑗 ) − 𝑓0(x*
𝑗−1) for 1 ≤ 𝑗 ≤ 𝑘 − 1

(if 𝑘 = 1, there is no such 𝑗). Now, by taking the sum from 𝑗 = 1 to 𝑘 − 1, we

get ∑︀𝑘−1
𝑗=1 𝜀𝑓0(x*

0) ≤ ∑︀𝑘−1
𝑗=1 𝑓0(x*

𝑗 ) − ∑︀𝑘−1
𝑗=1 𝑓0(x*

𝑗−1) ⇒ (𝑘 − 1)𝜀𝑓0(x*
0) ≤ ∑︀𝑘−1

𝑗=1 𝑓0(x*
𝑗 ) −∑︀𝑘−2

𝑗=0 𝑓0(x*
𝑗 ) = 𝑓0(x*

𝑘−1) − 𝑓0(x*
0). Due to Property (𝑎) of Theorem 3.1, every fea-

sible point of problem ℋ𝑗 is also feasible for problem ℱ (𝑆𝑗 ⊆ 𝑆, 𝑗 ≥ 1), and

therefore 𝑓0(x*
𝑗 ) ≤ 𝑓0(x*) for 𝑗 ≥ 0 (x* is a global maximum of problem ℱ).

This implies that 𝑓0(x*
𝑘−1) ≤ 𝑓0(x*), and thus (𝑘 − 1)𝜀𝑓0(x*

0) ≤ 𝑓0(x*) − 𝑓0(x*
0)

⇒ 𝑘 ≤ 1 + (𝜆− 1)/𝜀 = 𝑂 (𝜆/𝜀), where 𝜆 = 𝑓0(x*)/𝑓0(x*
0) ≥ 1. Since the number

of iterations until convergence is 𝑂 (𝜆/𝜀) and in each iteration a convex problem is

solved with complexity 𝜙(𝑛, 𝐼), Theorem 3.2 follows immediately.

In general, a global optimum of a convex problem can be obtained in polynomial
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time, using standard convex optimization techniques such as interior-point methods

[6] (i.e., 𝜙(𝑛, 𝐼) is a polynomial function of 𝑛 and 𝐼). Note that the best upper-

complexity-bound for a generic convex problem, known so far, is 𝑂(𝑛4) and is yielded

by interior-point methods [9].
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Chapter 4

Dynamic Energy-Efficient Power

Allocation in Multibeam Satellite

Systems5

Power consumption is a major limitation in the downlink of multibeam satellite

systems, since it has a significant impact on the mass and lifetime of the satellite.

In this context, we study a new energy-aware power allocation problem that aims

to jointly minimize the unmet system capacity (USC) and total radiated power by

means of multi-objective optimization. First, we transform the original nonconvex-

nondifferentiable problem into an equivalent nonconvex-differentiable form by intro-

ducing auxiliary variables. Subsequently, we design a successive convex approxima-

tion (SCA) algorithm in order to attain a stationary point with reasonable complexity.

Due to its fast convergence, this algorithm is suitable for dynamic resource allocation

in emerging on-board processing technologies. In addition, we formally prove a new

result about the complexity of the SCA method, in the general case, that comple-

ments the existing literature where the complexity of this method is only numerically

analyzed.

5Copyright c○ 2019 IEEE. Reprinted, with permission, from: C. N. Efrem and A. D. Panagopou-
los, “Dynamic energy-efficient power allocation in multibeam satellite systems,” IEEE Wireless
Communications Letters, vol. 9, no. 2, pp. 228-231, Feb. 2020. Personal use of this material is
permitted, but republication/redistribution requires IEEE permission.
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Chapter 4 4.1. Introduction

4.1 Introduction

Multibeam satellite systems (MSS) provide flexibility and efficient exploitation of

the available resources in order to satisfy the (potentially asymmetric) traffic demand

of users. Due to the fact that the satellite power is quite limited, resource allocation

mechanisms should take into consideration not only the co-channel interference (CCI),

but also the satellite power consumption in the downlink transmission.

The joint problem of routing and power allocation in MSS is examined in [1], using

Lyapunov stability theory. Moreover, the studies [2] and [3] deal with several resource

allocation problems in MSS with and without CCI, respectively. In [4], a dynamic

power allocation algorithm is proposed exploiting a rain attenuation stochastic model.

A comparison between non-orthogonal frequency reuse (NOFR) and beam-hopping

(BH) systems is presented in [5], where various capacity optimization schemes are

reported. Furthermore, linear and nonlinear precoding techniques are investigated

in [6] and [7].

Unlike previous works, a multi-objective approach that minimizes the USC to-

gether with the satellite power consumption is presented in [8]. In particular, a

two-stage optimization is proposed to attain a set of Pareto optimal solutions using

metaheuristics. However, these algorithms do not provide any optimality guarantee,

and their performance is heavily affected by the optimization parameters. Besides,

although this method is suitable for offline power allocation, it is rather inappropriate

for online/real-time power allocation since it requires a lot of computation time to

find nearly-optimal solutions.

In this chapter, we introduce a new performance metric, which has not been sys-

tematically studied so far, including both the USC and total power consumption. This

is in contrast to the majority of recent studies that solely minimize either the former

or the latter objective. Moreover, we develop an optimization algorithm which always

converges and, assuming appropriate constraint qualifications, achieves a stationary

point (first-order optimality guarantee) with relatively low complexity. In addition,

numerical results show that the algorithm performance is almost independent of the
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initialization point. Consequently, the proposed algorithm can be used in dynamic

wireless environments where the resource allocation should be decided in a very short

time. Finally, a formal proof about the complexity of the SCA method is also given.

The rest of this study is organized as follows. In Section 4.2, the optimization

problem is formulated and then transformed into an equivalent differentiable form.

Afterwards, based on the SCA method, we design an energy-efficient power allocation

algorithm in Section 4.3. The performance of this algorithm is analyzed through

simulations in Section 4.4, and some conclusions are provided in Section 4.5.

4.2 Problem Formulation and Transformation

Consider a multibeam satellite system with a geostationary satellite using

𝑁 beams (𝒩 = {1, 2, . . . , 𝑁}) and 𝐾 subcarriers (SCs) of bandwidth 𝐵𝑆𝐶

(𝒦 = {1, 2, . . . , 𝐾}). For notation simplicity and without loss of generality, it is

assumed that: 1) the total bandwidth, 𝐵𝑡𝑜𝑡 = 𝐾𝐵𝑆𝐶 , is reused by all beams, i.e., the

frequency reuse factor is equal to 1 (worst-case scenario), and 2) during a specific time

slot, each beam serves only one user within its coverage area (user 𝑖 is served by the

𝑖𝑡ℎ satellite beam, ∀𝑖 ∈ 𝒩 ). Moreover, we focus on the downlink (data transmission

from the satellite to users) considering ideal, without noise and interference, feeder

links between the gateways and the satellite.

The signal to interference-and-noise ratio (SINR) of the 𝑖𝑡ℎ user (𝑖 ∈ 𝒩 ) on the

𝑘𝑡ℎ SC (𝑘 ∈ 𝒦) is expressed by: 𝛾[𝑘]
𝑖 = 𝑔

[𝑘]
𝑖,𝑖 𝑝

[𝑘]
𝑖

⧸︃(︃ ∑︀
𝑗∈𝒩 ∖𝑖

𝑔
[𝑘]
𝑗,𝑖𝑝

[𝑘]
𝑗 + 𝜎2

𝑖,𝑘

)︃
, where 𝑝[𝑘]

𝑗 is

the transmit power of the 𝑗𝑡ℎ satellite beam, 𝜎2
𝑖,𝑘 is the thermal noise power of the

𝑖𝑡ℎ user, and 𝑔[𝑘]
𝑗,𝑖 is the channel power gain between the 𝑗𝑡ℎ satellite beam and the 𝑖𝑡ℎ

user, all over the 𝑘𝑡ℎ SC. More precisely, 𝑔[𝑘]
𝑗,𝑖 includes free-space path loss (FSPL),

rain attenuation, transmit antenna gain of satellite beam as well as receive antenna

gain of user. For the sake of convenience, the transmit power vector is denoted by

p =
[︁
p[1],p[2], . . . ,p[𝐾]

]︁
, where p[𝑘] =

[︁
𝑝

[𝑘]
1 , 𝑝

[𝑘]
2 , . . . , 𝑝

[𝑘]
𝑁

]︁
, ∀𝑘 ∈ 𝒦. In addition, the
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USC [9] is defined by:

𝑈𝑆𝐶(p) =
∑︁
𝑖∈𝒩

max (𝐶𝑟𝑒𝑞
𝑖 − 𝐶𝑖(p), 0) (4.1)

where 𝐶𝑟𝑒𝑞
𝑖 and 𝐶𝑖(p) = 𝐵𝑆𝐶

∑︀
𝑘∈𝒦

log2

(︁
1 + 𝛾

[𝑘]
𝑖

)︁
are the 𝑖𝑡ℎ user’s requested and offered

capacity (in bps), respectively.6 Moreover, the total radiated power is given by:

𝑃𝑡𝑜𝑡(p) =
∑︁
𝑖∈𝒩

∑︁
𝑘∈𝒦

𝑝
[𝑘]
𝑖 (4.2)

Focusing on the multi-objective optimization, we study the following nonconvex

minimization problem:

min
p∈𝑍

𝑓(p) = 𝑈𝑆𝐶(p) + 𝑤𝑃𝑡𝑜𝑡(p) (4.3)

with convex feasible set 𝑍 = {p ∈ R𝑁𝐾
+ : ∑︀

𝑘∈𝒦
𝑝

[𝑘]
𝑖 ≤ 𝑃max

𝑖 , ∀𝑖 ∈ 𝒩 and∑︀
𝑖∈𝒩

∑︀
𝑘∈𝒦

𝑝
[𝑘]
𝑖 ≤ 𝑃max

𝑡𝑜𝑡 }, where 𝑃max
𝑖 is the maximum transmit power of the 𝑖𝑡ℎ satel-

lite beam, and 𝑃max
𝑡𝑜𝑡 is the maximum total radiated power of the satellite.7 The

fixed/predefined weight 𝑤 ∈ [0,+∞) is measured in bps/W, and expresses the prior-

ity of the total radiated power with respect to USC. Consequently, a trade-off between

the USC and total power consumption (which is proportional to the total radiated

power) can be achieved for a specific value of 𝑤. In particular, 𝑤 = 0 corresponds to

USC minimization. Moreover, it can be proved that problem (4.3) is NP-hard by fol-

lowing similar arguments as in [8]. Nevertheless, as will be seen later, we can obtain a

stationary point of the equivalent differentiable problem with reasonable complexity.

Afterwards, by applying the transformation p = 2y (𝑝[𝑘]
𝑖 = 2𝑦

[𝑘]
𝑖 , ∀𝑖 ∈ 𝒩 , 𝑘 ∈ 𝒦),

where y =
[︁
y[1],y[2], . . . ,y[𝐾]

]︁
with y[𝑘] =

[︁
𝑦

[𝑘]
1 , 𝑦

[𝑘]
2 , . . . , 𝑦

[𝑘]
𝑁

]︁
, ∀𝑘 ∈ 𝒦, we obtain the

6In case of adaptive coding and modulation (ACM), the offered capacity can be approximated by
𝐶𝐴𝐶𝑀

𝑖 (p) ≈ 𝐵𝑆𝐶

∑︀
𝑘∈𝒦

log2

(︁
1 + 𝜁𝛾

[𝑘]
𝑖

)︁
without altering the methodology, where 𝜁 ∈ (0, 1) is obtained

through curve fitting (offered capacity versus SINR).
7It is possible to have additional minimum-capacity constraints for each user (𝐶𝑖(p) ≥ 𝐶𝑚𝑖𝑛

𝑖 ,
∀𝑖 ∈ 𝒩 ) in order to increase the system availability (the methodology remains the same).
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equivalent nonconvex problem:

min
y∈𝑆

𝑓(2y) = 𝑈𝑆𝐶(2y) + 𝑤𝑃𝑡𝑜𝑡(2y) (4.4)

with convex feasible set 𝑆 = {y ∈ R𝑁𝐾 : ∑︀
𝑘∈𝒦

2𝑦
[𝑘]
𝑖 ≤ 𝑃max

𝑖 , ∀𝑖 ∈ 𝒩 and∑︀
𝑖∈𝒩

∑︀
𝑘∈𝒦

2𝑦
[𝑘]
𝑖 ≤ 𝑃max

𝑡𝑜𝑡 }. Notice that the above transformation reduces the number

of constraints by 𝑁𝐾 (lower complexity), since p ∈ R𝑁𝐾
+ becomes y ∈ R𝑁𝐾 .

Finally, in order to remove the non-differentiability of the objective function, we

rewrite problem (4.4) in its equivalent epigraph-form [10] using the auxiliary variable

t = [𝑡1, 𝑡2, . . . , 𝑡𝑁 ]:

min
(y,t)∈Ω

𝐹 (y, t) =
∑︁
𝑖∈𝒩

𝑡𝑖 + 𝑤
∑︁
𝑖∈𝒩

∑︁
𝑘∈𝒦

2𝑦
[𝑘]
𝑖 (4.5)

with nonconvex feasible set Ω = {(y, t) ∈ R𝑁𝐾+𝑁 : 𝑡𝑖 ≥ 0, 𝑡𝑖 ≥ 𝐶𝑟𝑒𝑞
𝑖 − 𝐶𝑖(2y),

∀𝑖 ∈ 𝒩 and y ∈ 𝑆}. Observe that the new objective 𝐹 (y, t) is convex now, and

the first two constraints in Ω are equivalent to 𝑡𝑖 ≥ max (𝐶𝑟𝑒𝑞
𝑖 − 𝐶𝑖(2y), 0), ∀𝑖 ∈ 𝒩 .

Furthermore, problem (4.5) is equivalent to problem (4.4) in the following sense:

(y, t) is a global optimum of (4.5) if and only if y is a global optimum of (4.4) and

𝑡𝑖 = max (𝐶𝑟𝑒𝑞
𝑖 − 𝐶𝑖(2y), 0), ∀𝑖 ∈ 𝒩 .

4.3 Energy-Efficient Power Allocation

Subsequently, we utilize the mathematical tool of SCA (refer to the Appendix 4.6)

in order to tackle problem (4.5) with relatively low complexity. Firstly, the offered

capacity can be written as follows: 𝐶𝑖(2y) = 𝐵𝑆𝐶
∑︀

𝑘∈𝒦

[︁
𝜙

[𝑘]
𝑖

(︁
y[𝑘]

)︁
− 𝜗

[𝑘]
𝑖

(︁
y[𝑘]

)︁]︁
, where

𝜙
[𝑘]
𝑖

(︁
y[𝑘]

)︁
and 𝜗

[𝑘]
𝑖

(︁
y[𝑘]

)︁
are convex functions given by (note that the log-sum-exp

function is convex [10]):

𝜙
[𝑘]
𝑖

(︁
y[𝑘]

)︁
= log2

⎛⎝∑︁
𝑗∈𝒩

𝑔
[𝑘]
𝑗,𝑖 2𝑦

[𝑘]
𝑗 + 𝜎2

𝑖,𝑘

⎞⎠ (4.6)
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Algorithm 4.1 Energy-Efficient Power Allocation
1: Select a starting point p ∈ 𝑍, and a tolerance 𝜖 > 0
2: Set ℓ = 0, y = log2(p), 𝑡𝑖 = max (𝐶𝑟𝑒𝑞

𝑖 − 𝐶𝑖(p), 0), ∀𝑖 ∈ 𝒩
and 𝐹0 = 𝐹 (y, t)

3: repeat
4: Solve the convex minimization problem (4.8) with approximation

point ȳ = y in order to achieve a global optimum (y*, t*)
5: Set ℓ = ℓ+ 1, y = y*, t = t*, p = 2y and 𝐹ℓ = 𝐹 (y, t)
6: until |𝐹ℓ − 𝐹ℓ−1| ≤ 𝜖 |𝐹ℓ−1|

𝜗
[𝑘]
𝑖

(︁
y[𝑘]

)︁
= log2

⎛⎝ ∑︁
𝑗∈𝒩 ∖𝑖

𝑔
[𝑘]
𝑗,𝑖 2𝑦

[𝑘]
𝑗 + 𝜎2

𝑖,𝑘

⎞⎠ (4.7)

Now, for a given approximation point ȳ ∈ R𝑁𝐾 , we can construct the next convex

minimization problem:

min
(y,t)∈Θ(ȳ)

𝐹 (y, t) =
∑︁
𝑖∈𝒩

𝑡𝑖 + 𝑤
∑︁
𝑖∈𝒩

∑︁
𝑘∈𝒦

2𝑦
[𝑘]
𝑖 (4.8)

with convex feasible set Θ(ȳ) = {(y, t) ∈ R𝑁𝐾+𝑁 : 𝑡𝑖 ≥ 0, 𝑡𝑖 ≥ 𝐶𝑟𝑒𝑞
𝑖 − ̃︁𝐶𝑖(y, ȳ),

∀𝑖 ∈ 𝒩 and y ∈ 𝑆}, where:

̃︁𝐶𝑖(y, ȳ) = 𝐵𝑆𝐶

∑︁
𝑘∈𝒦

[︂̃︂
𝜙

[𝑘]
𝑖

(︁
y[𝑘], ȳ[𝑘]

)︁
− 𝜗

[𝑘]
𝑖

(︁
y[𝑘]

)︁]︂
(4.9)

̃︂
𝜙

[𝑘]
𝑖

(︁
y[𝑘], ȳ[𝑘]

)︁
= 𝜙

[𝑘]
𝑖

(︁
ȳ[𝑘]

)︁
+ ∇𝜙[𝑘]

𝑖

(︁
ȳ[𝑘]

)︁
·
(︁
y[𝑘] − ȳ[𝑘]

)︁𝑇
(4.10)

Observe that ̃︁𝐶𝑖(y, ȳ) is a concave function of y. In addition, the elements of

∇𝜙[𝑘]
𝑖

(︁
ȳ[𝑘]

)︁
are given by:

𝜕𝜙
[𝑘]
𝑖

(︁
ȳ[𝑘]

)︁
𝜕𝑦

[𝑘]
𝑙

=
𝑔

[𝑘]
𝑙,𝑖 2𝑦

[𝑘]
𝑙∑︀

𝑗∈𝒩
𝑔

[𝑘]
𝑗,𝑖 2𝑦

[𝑘]
𝑗 + 𝜎2

𝑖,𝑘

, ∀𝑙 ∈ 𝒩 (4.11)

Algorithm 4.1 presents an iterative process based on the SCA method. In particu-

lar, we provide the next proposition which readily follows from Theorems 4.1 and 4.2

in the Appendix 4.6. Note that the number of variables and constraints of problem

(4.8) is polynomial in 𝑁 and 𝐾 (𝑁𝐾 +𝑁 and 3𝑁 + 1, respectively).
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Proposition 4.1. Algorithm 4.1 generates a monotonically decreasing sequence {𝐹ℓ}ℓ≥0

(i.e., 𝐹ℓ+1 ≤ 𝐹ℓ) and converges to a finite value 𝐿 ( lim
ℓ→∞

𝐹ℓ = 𝐿 > −∞). Moreover,

assuming suitable constraint qualifications, 𝐿 = lim
ℓ→∞

𝐹ℓ = 𝐹
(︁
ŷ, t̂

)︁
for some sta-

tionary point
(︁
ŷ, t̂

)︁
of problem (4.5). Finally, the complexity of Algorithm 4.1 is

𝒪 ((𝜉/𝜖)ℎ(𝑁,𝐾)), where 𝜉 = 𝐹0/𝐹* ≥ 1, with 𝐹* being the globally minimum objec-

tive value of problem (4.5), and ℎ(𝑁,𝐾) is the complexity of the convex problem (4.8)

which is polynomial in 𝑁 and 𝐾.

4.4 Numerical Simulations and Discussion

In this section, we examine a MSS with the parameters given in Table 4.1. Unless

otherwise specified, the tolerance and the starting point of Algorithm 4.1 are selected

as 𝜖 = 10−3 and p = (𝑃max
𝑡𝑜𝑡 /(𝑁𝐾)) 11×𝑁𝐾 , where 11×𝑁𝐾 is the all-ones 1×𝑁𝐾 vector.

As concerns the requested capacities of the users, we have assumed an asymmetric

traffic distribution according to the linear model: 𝐶𝑟𝑒𝑞
𝑖 = 𝑟 𝑖, ∀𝑖 ∈ 𝒩 , where 𝑟 is

the traffic slope measured in bps. Furthermore, each satellite beam antenna has

the following radiation pattern [6], [8]: 𝐺(𝜃) = 𝐺max
(︁

𝐽1(𝑢)
2𝑢

+ 36𝐽3(𝑢)
𝑢3

)︁2
, where 𝜃 is

the angle between the corresponding beam center and the user location with respect

to the satellite, 𝐺max is the maximum satellite beam antenna gain (𝐺(0) = 𝐺max),

𝑢 = 2.07123 sin(𝜃)
sin(𝜃3dB) with 𝜃3dB the 3-dB angle (𝐺(𝜃3dB) = 𝐺max/2), and 𝐽1(𝑢), 𝐽3(𝑢)

are respectively the first and third order Bessel functions of the first kind.

All graphs, except for Fig. 4-3, present statistical averages derived from 200 inde-

pendent Monte Carlo simulations, where each user is uniformly distributed within its

beam coverage area. For the sake of comparison, we have used a conventional scheme,

namely, uniform power allocation (UPA), where 𝑝
[𝑘]
𝑖,𝑈𝑃 𝐴 = 𝑃max

𝑡𝑜𝑡 /(𝑁𝐾), ∀𝑖 ∈ 𝒩 ,

𝑘 ∈ 𝒦.

Firstly, we investigate the convergence speed of the proposed algorithm for

𝑤 = 0, 10 Mbps/W and different starting points. As shown in Fig. 4-1, Algorithm 4.1

achieves nearly the same convergence rate and final objective value regardless of the

starting point. Given the tolerance 𝜖 = 10−3, the proposed algorithm requires about
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Table 4.1: System Parameters

Parameter Value
Beam radius 150 km

Frequency band Ka (20 GHz)
Number of beams and SCs 𝑁 = 7, 𝐾 = 4

Subcarrier bandwidth (𝐵𝑆𝐶) 125 MHz
Thermal noise power (𝜎2

𝑖,𝑘 = 𝜎2, ∀𝑖 ∈ 𝒩 , 𝑘 ∈ 𝒦) −124 dBW
Maximum beam power (𝑃max

𝑖 = 𝑃max, ∀𝑖 ∈ 𝒩 ) 100 W
Maximum total power (𝑃max

𝑡𝑜𝑡 ) 500 W
Free-space path loss 210 dB

Rain attenuation mean and standard deviation 2.6 dB, 1.63 dB
User antenna gain 41.7 dBi

Maximum satellite beam antenna gain (𝐺max) 52 dBi
3-dB angle (𝜃3dB) 0.2∘

Figure 4-1: Convergence of Algorithm 4.1 for 𝑟 = 0.7 Gbps, and starting point
p = 𝜇 (𝑃max

𝑡𝑜𝑡 /(𝑁𝐾)) 11×𝑁𝐾 or random initialization.

10 iterations to converge for both values of 𝑤 and for all the starting points under

consideration.

Secondly, Fig. 4-2 illustrates the USC and total radiated power achieved by the

conventional scheme and Algorithm 4.1 (for two different weights) versus the traffic

slope. Although the UPA scheme makes full use of the available power, it has the

highest USC. On the other hand, for 𝑤 = 0 (USC minimization) we have the lowest

USC using less power than UPA. In addition, the last scheme with 𝑤 = 10 Mbps/W
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Figure 4-2: USC and total radiated power versus the traffic slope.

Figure 4-3: Performance comparison with the two-stage approach [8] for a particular
system configuration with 𝑟 = 0.7 Gbps.

achieves an USC that lies between the other two schemes, but with much less power

(high energy savings). This is expected because higher priority is given to the total

radiated power as the weight 𝑤 increases.

Last but not least, Fig. 4-3 compares the performance of the proposed method

with the two-stage approach [8]. In particular, the 5 operating points attained by

the proposed approach belong to the Pareto boundary obtained from [8]. It has been
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observed that many values of 𝑤 achieve operating points on the Pareto boundary,

but we only present 5 points for better illustration. Therefore, the proposed method

shows similar performance with [8]. Note that in multi-objective optimization, there

is no objectively optimal solution, but only Pareto/subjectively optimal solutions.

In summary, [8] presents a posteriori method where the network designer selects an

operating point after the computation/visualization of the Pareto boundary, while this

chapter introduces a priori method where the weight 𝑤 is specified before any com-

putation, and then a single solution is obtained. Finally, we would like to emphasize

that the former approach is appropriate for offline power allocation (no strict limita-

tions on processing time), whereas the latter approach is suitable for online/dynamic

power allocation due to its rapid convergence.

4.5 Conclusion

In this chapter, we have designed a SCA-based optimization algorithm with high

convergence speed, which is suitable for real-time power allocation in MSS with strict

computation/processing-time requirements. The proposed multi-objective approach

enables network designers to achieve a compromise between the USC and total power

consumption. Numerical simulations have also verified the advantage of this ap-

proach. Moreover, the complexity of the SCA method, in its general form, has been

studied theoretically.

4.6 Appendix: Successive Convex Approximation

SCA is an iterative method that attains a stationary point of a nonconvex opti-

mization problem by solving a sequence of convex problems [11]. Despite the fact that

the achieved solution may or may not be globally optimal, this technique has reason-

able computational complexity. More specifically, the following theorem is provided,

where all the functions are assumed to be differentiable (and therefore continuous).
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Theorem 4.1 ([11]). Let 𝒫 be a nonconvex minimization problem with objective

𝜓0(𝑥), and nonempty-compact feasible set 𝐷 = {𝑥 ∈ R𝑛 : 𝜓𝑖(𝑥) ≤ 0, 1 ≤ 𝑖 ≤ 𝑚},

with 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝑛]. Moreover, suppose that 𝜓𝑖(𝑥) = 𝑢𝑖(𝑥)−𝑣𝑖(𝑥) for 0 ≤ 𝑖 ≤ 𝑚,

where 𝑢𝑖(𝑥) and 𝑣𝑖(𝑥) are convex functions. Let
{︁̃︁𝒫𝑗

}︁
𝑗≥1

be a sequence of convex min-

imization problems with objective ̃︂𝜓0,𝑗(𝑥,𝑥*
𝑗−1), compact feasible set 𝐷𝑗 = {𝑥 ∈ R𝑛 :̃︂𝜓𝑖,𝑗(𝑥,𝑥*

𝑗−1) ≤ 0, 1 ≤ 𝑖 ≤ 𝑚}, and global minimum 𝑥*
𝑗 (with 𝑥*

0 ∈ 𝐷).

If ̃︂𝜓𝑖,𝑗(𝑥,𝑥*
𝑗−1) = 𝑢𝑖(𝑥) − ̃︀𝑣𝑖(𝑥,𝑥*

𝑗−1) for 0 ≤ 𝑖 ≤ 𝑚 and 𝑗 ≥ 1, where ̃︀𝑣𝑖(𝑥,𝑥*
𝑗−1) =

𝑣𝑖(𝑥*
𝑗−1)+∇𝑣𝑖(𝑥*

𝑗−1)·
(︁
𝑥 − 𝑥*

𝑗−1

)︁𝑇
, with ∇𝑣𝑖(𝑥) = [𝜕𝑣𝑖(𝑥)/𝜕𝑥1, . . . , 𝜕𝑣𝑖(𝑥)/𝜕𝑥𝑛], then:

(a) 𝑥*
𝑗−1 ∈ 𝐷𝑗 ⊆ 𝐷 and 𝜓0(𝑥*

𝑗) ≤ 𝜓0(𝑥*
𝑗−1), ∀𝑗 ≥ 1, (b) lim

𝑗→∞
𝜓0(𝑥*

𝑗) = 𝜓0(⌢
𝑥) =

𝐿 > −∞ for all the accumulation/limit points ⌢
𝑥 of the sequence

{︁
𝑥*

𝑗

}︁
𝑗≥0

, and

(c) assuming suitable constraint qualifications, all the accumulation points ⌢
𝑥 are sta-

tionary points of 𝒫 (i.e., satisfy the corresponding Karush-Kuhn-Tucker conditions),

and 𝐿 = lim
𝑗→∞

𝜓0(𝑥*
𝑗) = 𝜓0(𝑥̂), where 𝑥̂ is some stationary point of 𝒫.

Taking advantage of the fact that SCA generates a monotonically decreasing se-

quence of objective values, and using the property of telescoping sums:∑︀𝑀
𝑙=1 (𝑎𝑙−1 − 𝑎𝑙) = 𝑎0 − 𝑎𝑀 for any integer 𝑀 ≥ 1, we introduce and prove the

following result concerning the complexity of the SCA method.

Theorem 4.2. Suppose that the SCA method terminates when
⃒⃒⃒
𝜓0(𝑥*

𝑗) − 𝜓0(𝑥*
𝑗−1)

⃒⃒⃒
≤

𝜖
⃒⃒⃒
𝜓0(𝑥*

𝑗−1)
⃒⃒⃒

for some predefined tolerance 𝜖 > 0, and 𝜓0(𝑥*) > 0, where 𝑥* is a global

minimum of 𝒫. Then, the complexity of the SCA method is 𝒪 ((𝜉/𝜖)ℎ(𝑛,𝑚)), where

𝜉 = 𝜓0(𝑥*
0)/𝜓0(𝑥*) ≥ 1 and ℎ(𝑛,𝑚) is the complexity of each convex optimization

problem which is a polynomial function of the number of variables and constraints

(𝑛 and 𝑚, respectively).

Proof. According to Theorem 4.1, it holds that 𝜓0(𝑥*
0) ≥ 𝜓0(𝑥*

𝑗−1) ≥ 𝜓0(𝑥*
𝑗) ≥

𝜓0(𝑥*) > 0, ∀𝑗 ≥ 1. As concerns the number of iterations until convergence, if

we denote by 𝜈 the smallest integer such that
⃒⃒⃒
𝜓0(𝑥*

𝜈) − 𝜓0(𝑥*
𝜈−1)

⃒⃒⃒
≤ 𝜖

⃒⃒⃒
𝜓0(𝑥*

𝜈−1)
⃒⃒⃒

⇔

𝜓0(𝑥*
𝜈−1) − 𝜓0(𝑥*

𝜈) ≤ 𝜖 𝜓0(𝑥*
𝜈−1), then for all integers less than 𝜈 the last inequality

does not hold: 𝜓0(𝑥*
𝑙−1) − 𝜓0(𝑥*

𝑙 ) > 𝜖𝜓0(𝑥*
𝑙−1) ≥ 𝜖 𝜓0(𝑥*) ⇒ 𝜓0(𝑥*

𝑙−1) − 𝜓0(𝑥*
𝑙 ) >

𝜖𝜓0(𝑥*), ∀𝑙 ∈ {1, 2, . . . , 𝜈 − 1}. By summing from 1 to 𝜈 − 1, we obtain
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∑︀𝜈−1
𝑙=1

(︁
𝜓0(𝑥*

𝑙−1) − 𝜓0(𝑥*
𝑙 )
)︁
>
∑︀𝜈−1

𝑙=1 𝜖 𝜓0(𝑥*) ⇒ 𝜓0(𝑥*
0) − 𝜓0(𝑥*

𝜈−1) > (𝜈 − 1) 𝜖 𝜓0(𝑥*).

Since 𝜓0(𝑥*
𝜈−1) ≥ 𝜓0(𝑥*), we get (𝜈 − 1) 𝜖 𝜓0(𝑥*) < 𝜓0(𝑥*

0) − 𝜓0(𝑥*), and therefore

𝜈 < 1 + (𝜉 − 1)/𝜖 < 1 + 𝜉/𝜖 = 𝒪 (𝜉/𝜖). Hence, the SCA method requires 𝒪 (𝜉/𝜖)

iterations to converge. Moreover, each convex optimization problem can be globally

solved with polynomial complexity in the number of variables and constraints [10],

and thus Theorem 4.2 follows directly.
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Chapter 5

Globally Optimal Selection of

Ground Stations in Satellite

Systems with Site Diversity8

The availability of satellite communication systems is extremely limited by at-

mospheric impairments, such as rain (for radio frequencies) and cloud coverage (for

optical frequencies). A solution to this problem is the site diversity technique, where

a network of geographically distributed ground stations (GSs) can ensure, with high

probability, that at least one GS is available for connection to the satellite at each time

period. However, the installation of redundant GSs induces unnecessary additional

costs for the network operator. In this context, we study an optimization problem that

minimizes the number of required GSs, subject to availability constraints. First, the

problem is transformed into a binary-integer-linear-programming (BILP) problem,

which is proven to be NP-hard. Subsequently, we design a branch-and-bound (B&B)

algorithm, with global-optimization guarantee, based on the linear-programming (LP)

relaxation and a greedy method as well. Finally, numerical results show that the

proposed algorithm significantly outperforms state-of-the-art methods and has low

8Copyright c○ 2020 IEEE. Reprinted, with permission, from: C. N. Efrem and A. D. Panagopou-
los, “Globally optimal selection of ground stations in satellite systems with site diversity,” IEEE
Wireless Communications Letters, vol. 9, no. 7, pp. 1101-1104, July 2020. Personal use of this
material is permitted, but republication/redistribution requires IEEE permission.
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complexity in the average case.

5.1 Introduction

Site diversity technique is used to improve the availability of satellite communi-

cation systems by mitigating the atmospheric effects [1]. In particular, multiple GSs

separated over long distances receive the same signal from the satellite, and in this

way the probability of all GSs experiencing severe weather conditions simultaneously

is reduced. A joint optimization method for the design of optical satellite networks

is proposed in [2], which consists of two parts. The first part is the optical-GS po-

sitioning optimization performed by an iterative greedy procedure, while the second

part is the backbone network optimization taking into consideration the optical fiber

cost. In [3], a network optimization method with reduced complexity is presented,

exploiting the single-site availabilities as well as the correlation between sites.

Furthermore, the optimal location of optical GSs for low-earth-orbit (LEO) satel-

lite missions is examined in [4] through multi-objective optimization, using genetic

algorithms (GAs) and considering three performance metrics: system availability, la-

tency, and network cost. GAs are also used in [5] to minimize two different objective

functions in extremely-high-frequency (EHF) satellite networks with smart-gateway

(SG) diversity. In addition, the selection of the minimum number of GSs in opti-

cal satellite networks with a medium-earth-orbit (MEO) or a geostationary (GEO)

satellite is investigated in [6] and [7], respectively. Both studies present heuristic al-

gorithms of low complexity, taking into account the spatial correlation as well as the

monthly variability of cloud coverage.

The main contributions of this chapter compared to existing approaches are the

following: 1) rigorous mathematical formulation of the optimization problem with

a formal proof of its NP-hardness, 2) system availability guarantee for several time

periods (e.g., months), not only for a year, and 3) unlike existing methods that

provide suboptimal solutions without any performance guarantee, the designed B&B

algorithm achieves global optimality with low average-case complexity (i.e., good
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trade-off between performance and complexity).

The remainder of this chapter is structured as follows. Section 5.2 presents the

system model and formulates the optimization problem, which is transformed into an

NP-hard BILP problem in Section 5.3. Afterwards, a global optimization algorithm

is given in Section 5.4, while its performance is numerically analyzed in Section 5.5.

Finally, Section 5.6 concludes this chapter.

Mathematical notation: The absolute value of a real number 𝑥 is denoted by |𝑥|,

while |𝒟| = 𝐷 represents the cardinality of a set 𝒟. Also, 0𝑁/1𝑁 stands for the

𝑁 -dimensional zero/all-ones vector respectively, and ⌈·⌉ is the ceiling function.

5.2 System Model and Problem Formulation

We consider a satellite system with a geostationary satellite and a ground station

network employing site diversity. Specifically, 𝒦 = {1, 2, . . . , 𝐾} is the set of avail-

able locations for installing a GS (or, equivalently, the set of candidate GSs), and

𝒯 = {1, 2, . . . , 𝑇} denotes the set of time periods (e.g., months). In addition, 𝑝out
𝑘,𝑡 is

the outage probability of GS 𝑘 in time period 𝑡,9 and 𝑃 out,req
𝑡 is the maximum required

system outage probability in time period 𝑡.

Moreover, we make the following assumptions: a) {𝑝out
𝑘,𝑡 }𝑘∈𝒦 are probabilities of

mutually independent events, ∀𝑡 ∈ 𝒯 ,10 b) the system availability is defined as the

probability of having at least one GS available, c) {𝑝out
𝑘,𝑡 }𝑘∈𝒦, 𝑡∈𝒯 are supposed to be

accurate (i.e., without uncertainty); the uncertainty in the calculation of outage prob-

abilities is beyond the scope of this chapter, and d) without loss of generality we

assume that 𝑝out
𝑘,𝑡 , 𝑃

out,req
𝑡 > 0, ∀𝑘 ∈ 𝒦 and ∀𝑡 ∈ 𝒯 .

In order to reduce the cost of installing and operating the GSs, we study the

9In radio-frequency (RF) satellite systems, a GS is in outage when the rain attenuation exceeds
a specific threshold [5], which is determined by the required bit-error-rate (BER). In optical satellite
networks, a GS is in outage when experiencing cloud blockage [8,9]. Otherwise, the GS is available.

10This can be achieved if the distance between any two distinct GSs is sufficiently large, and
therefore the spatial correlation of weather conditions is negligible. Furthermore, this case is quite
common and preferable in practice, so as to take full advantage of site diversity by attaining the
highest availability.
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following cardinality minimization problem:

min
𝒮⊆𝒦

|𝒮| = 𝑆

s.t. 𝑃 avl
𝑡 (𝒮) ≥ 𝑃 avl,req

𝑡 , ∀𝑡 ∈ 𝒯
(5.1)

where 𝒮 denotes the set of selected GSs, 𝑃 avl
𝑡 (𝒮) = 1− ∏︀

𝑠∈𝒮
𝑝out

𝑠,𝑡 is the system availability

in time period 𝑡 achieved by the set 𝒮 of GSs (or, equivalently, the probability of

having at least one GS in 𝒮 available in time period 𝑡), and 𝑃 avl,req
𝑡 = 1−𝑃 out,req

𝑡 is the

minimum required system availability in time period 𝑡. Notice that 𝑃 avl
𝑡 (𝒮) ≥ 𝑃 avl,req

𝑡

⇔ ∏︀
𝑠∈𝒮

𝑝out
𝑠,𝑡 ≤ 𝑃 out,req

𝑡 , ∀𝑡 ∈ 𝒯 .

5.3 Equivalent BILP Problem and NP-hardness

Subsequently, we introduce the vector z = [𝑧1, 𝑧2, . . . , 𝑧𝐾 ] of binary (0-1) variables.

In particular, 𝑧𝑘 = 1 if 𝑘 ∈ 𝒮, i.e., the 𝑘th GS is selected (or, equivalently, a GS is

installed at the 𝑘th location), otherwise 𝑧𝑘 = 0. Based on this definition, we have that

|𝒮| = ∑︀
𝑘∈𝒦

𝑧𝑘 and ∏︀
𝑠∈𝒮

𝑝out
𝑠,𝑡 = ∏︀

𝑘∈𝒦
(𝑝out

𝑘,𝑡 )𝑧𝑘 . As a result, problem (5.1) can be written as

follows:
min

z

∑︁
𝑘∈𝒦

𝑧𝑘

s.t.
∏︁
𝑘∈𝒦

(𝑝out
𝑘,𝑡 )𝑧𝑘 ≤ 𝑃 out,req

𝑡 , ∀𝑡 ∈ 𝒯

𝑧𝑘 ∈ {0, 1}, ∀𝑘 ∈ 𝒦

(5.2)

By taking the logarithms on both sides of the inequality-constraints and then

multiplying by −1, we obtain an equivalent BILP problem:

min
z

𝑔(z) =
∑︁
𝑘∈𝒦

𝑧𝑘

s.t.
∑︁
𝑘∈𝒦

𝛼𝑡,𝑘𝑧𝑘 ≥ 𝛽𝑡, ∀𝑡 ∈ 𝒯

𝑧𝑘 ∈ {0, 1}, ∀𝑘 ∈ 𝒦

(5.3)

with 𝛼𝑡,𝑘 = log(1/𝑝out
𝑘,𝑡 ) and 𝛽𝑡 = log(1/𝑃 out,req

𝑡 ), ∀𝑡 ∈ 𝒯 and ∀𝑘 ∈ 𝒦. Note that
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𝛼𝑡,𝑘, 𝛽𝑡 ≥ 0, since 0 < 𝑝out
𝑘,𝑡 , 𝑃

out,req
𝑡 ≤ 1.

Theorem 5.1. The equivalent BILP problem (5.3) is NP-hard.

Proof. In order to prove the NP-hardness of problem (5.3), the following property

is exploited: if a special case of a problem is NP-hard, so is the general problem. Now,

we consider the minimum node cover problem (MNCP): Given a graph 𝐺(𝒩 , ℰ), with

𝒩 and ℰ being the sets of nodes and edges respectively, find a minimum-cardinality

set of nodes 𝒩 ′ ⊆ 𝒩 such that {𝑛,𝑚} ∈ ℰ ⇒ 𝑛 ∈ 𝒩 ′ or 𝑚 ∈ 𝒩 ′. Furthermore, the

MNCP is known to be NP-hard [10] and can be formulated as the following BILP

problem:
min

z

∑︁
𝑛∈𝒩

𝑧𝑛

s.t. 𝑧𝑛 + 𝑧𝑚 ≥ 1, ∀{𝑛,𝑚} ∈ ℰ

𝑧𝑛 ∈ {0, 1}, ∀𝑛 ∈ 𝒩

(5.4)

Obviously, the NP-hard problem (5.4) constitutes a special case of the general problem

(5.3), and so we have Theorem 5.1.

5.4 Global Optimization Algorithm

Since problem (5.3) is proven to be NP-hard, it cannot be solved in polynomial

time unless P=NP. In other words, it is rather unlikely that there is an algorithm

which finds an optimal solution and has polynomial complexity in the worst case.

Nevertheless, we will design a global optimization B&B algorithm of low average-case

complexity. B&B is an intelligent technique which recursively splits the search space

into smaller spaces (branching), and uses appropriate bounds on the optimum value

(bounding) to avoid, as much as possible, the exhaustive enumeration of candidate

solutions [10].
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Next, consider problem (5.3) with some variables being fixed:

min
z𝒱

𝑔(z𝒱 ; z̄𝒞) =
∑︁
𝑣∈𝒱

𝑧𝑣 +
∑︁
𝑐∈𝒞

𝑧𝑐

s.t.
∑︁
𝑣∈𝒱

𝛼𝑡,𝑣𝑧𝑣 ≥ 𝛽′
𝑡, ∀𝑡 ∈ 𝒯

𝑧𝑣 ∈ {0, 1}, ∀𝑣 ∈ 𝒱

(5.5)

where the sets 𝒱 and 𝒞 contain the indices of free and constant variables respectively

(𝒱 ∪ 𝒞 = 𝒦, 𝒱 ∩ 𝒞 = ∅), z𝒱 = [𝑧𝑣]𝑣∈𝒱 , z̄𝒞 = [𝑧𝑐]𝑐∈𝒞 (with 𝑧𝑐 ∈ {0, 1}, ∀𝑐 ∈ 𝒞), and

𝛽′
𝑡 = 𝛽𝑡 − ∑︀

𝑐∈𝒞
𝛼𝑡,𝑐𝑧𝑐, ∀𝑡 ∈ 𝒯 . Notice that when 𝒱 = 𝒦 and 𝒞 = ∅, problem (5.5)

is identical to the original problem (5.3). Also, zopt
𝒱 denotes an optimal solution of

problem (5.5), and |𝒱| = 𝑉 ≤ 𝐾.

Moreover, the following statements can be easily proven: a) 𝑔* ≤ 𝑔(zopt
𝒱 ; z̄𝒞),

where 𝑔* is the optimum value of problem (5.3), b) if z𝒱 is a feasible solution of

problem (5.5), then [z𝒱 ; z̄𝒞] is a feasible solution of problem (5.3), and c) necessary-

and-sufficient feasibility condition: problem (5.5) is feasible ⇔ ∑︀
𝑣∈𝒱

𝛼𝑡,𝑣 ≥ 𝛽′
𝑡, ∀𝑡 ∈ 𝒯

(i.e., 1𝑉 is a feasible solution).

Now, in order to construct a lower bound on the optimum value of problem (5.5),

the LP relaxation is exploited, where the binary constraints (𝑧𝑣 ∈ {0, 1}, ∀𝑣 ∈ 𝒱) are

relaxed:
min

z𝒱
𝑔(z𝒱 ; z̄𝒞) =

∑︁
𝑣∈𝒱

𝑧𝑣 +
∑︁
𝑐∈𝒞

𝑧𝑐

s.t.
∑︁
𝑣∈𝒱

𝛼𝑡,𝑣𝑧𝑣 ≥ 𝛽′
𝑡, ∀𝑡 ∈ 𝒯

0 ≤ 𝑧𝑣 ≤ 1, ∀𝑣 ∈ 𝒱

(5.6)

An optimal solution zLP
𝒱 of the LP relaxation (problem (5.6)) can be obtained in poly-

nomial time, using interior-point methods [11]. In addition, note that: a) the feasibil-

ity of problem (5.5) implies the feasibility of the LP relaxation,

b) if zLP
𝒱 ∈ {0, 1}𝑉 , then 𝑔(zopt

𝒱 ; z̄𝒞) = 𝑔(zLP
𝒱 ; z̄𝒞), and c) 𝑔(zLP

𝒱 ; z̄𝒞) ≤ 𝑔(zopt
𝒱 ; z̄𝒞),

and because 𝑔(zopt
𝒱 ; z̄𝒞) is an integer, we have that

⌈︁
𝑔(zLP

𝒱 ; z̄𝒞)
⌉︁

≤ 𝑔(zopt
𝒱 ; z̄𝒞).

In the sequel, we develop a greedy method to provide an upper bound on the

optimum value of problem (5.5). This method is based on the following cost function
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Algorithm 5.1 CF-based Greedy Method
Input: The BILP problem (5.5) with ∑︀

𝑣∈𝒱
𝛼𝑡,𝑣 ≥ 𝛽′

𝑡, ∀𝑡 ∈ 𝒯

Output: A feasible solution z𝒱 of problem (5.5)
1: z𝒱 := 0𝑉 , ℛ := 𝒱 , 𝑑𝑡 = 𝛽′

𝑡 ∀𝑡 ∈ 𝒯 , 𝑓 := ∑︀
𝑡∈𝒯

max(𝑑𝑡, 0)

2: while 𝑓 > 0 do
3: 𝑛 := arg min

𝑟∈ℛ

∑︀
𝑡∈𝒯

max(𝑑𝑡 − 𝛼𝑡,𝑟, 0), 𝑧𝑛 := 1, ℛ := ℛ∖{𝑛}

4: 𝑑𝑡 := 𝑑𝑡 − 𝛼𝑡,𝑛 ∀𝑡 ∈ 𝒯 , 𝑓 := ∑︀
𝑡∈𝒯

max(𝑑𝑡, 0)

5: end while

(CF): 𝑓(z𝒱) = ∑︀
𝑡∈𝒯

max(𝑑𝑡, 0), with 𝑑𝑡 = 𝛽′
𝑡 − ∑︀

𝑣∈𝒱
𝛼𝑡,𝑣𝑧𝑣, ∀𝑡 ∈ 𝒯 , which quantifies

the total violation of inequality-constraints induced by the vector z𝒱 . Observe that:

a) 𝑓(z𝒱) ≥ 0, and b) 𝑓(z𝒱) = 0 ⇔ ∑︀
𝑣∈𝒱

𝛼𝑡,𝑣𝑧𝑣 ≥ 𝛽′
𝑡, ∀𝑡 ∈ 𝒯 .

Algorithm 5.1 presents the CF-based greedy method, where ℛ = {𝑣 ∈ 𝒱 : 𝑧𝑣 = 0}.

In particular, z𝒱 is initialized to the zero vector, and in each iteration we find the

index in ℛ which minimizes the CF when the corresponding 0-variable changes to

1. Then, this variable is set equal to 1 and its index is removed from the set ℛ.

The algorithm terminates when the CF equals 0, i.e., all the inequality-constraints

are satisfied. In addition, 𝑔(zopt
𝒱 ; z̄𝒞) ≤ 𝑔(zCF

𝒱 ; z̄𝒞), where zCF
𝒱 is a feasible solution of

problem (5.5) obtained from Algorithm 5.1.

Complexity of Algorithm 5.1: The complexity of the 𝑖th iteration is Θ(𝑇 (𝑉 + 1 − 𝑖)),

since |ℛ| = 𝑉 + 1 − 𝑖. From the input assumption of Algorithm 5.1 (feasibility con-

dition), we have that 𝑓(1𝑉 ) = 0, and therefore Algorithm 5.1 requires a maximum of

𝑉 iterations to terminate. Consequently, the worst-case complexity of Algorithm 5.1

is
𝑉∑︀

𝑖=1
𝑇 (𝑉 + 1 − 𝑖) = 𝑇

𝑉∑︀
𝑗=1

𝑗 = 𝑇𝑉 (𝑉 + 1)/2 = Θ(𝑇𝑉 2), i.e., polynomial in the size

of the input.

As concerns the branching procedure in the B&B method, we choose a branching

variable 𝑧𝑏 (𝑏 ∈ 𝒱) such that 𝑧LP
𝑏 is the most “uncertain” fractional variable, i.e.,

closer to 0.5 than any other variable in zLP
𝒱 . Afterwards, problem (5.5) is decomposed
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into two subproblems by setting either 𝑧𝑏 = 0 or 𝑧𝑏 = 1:

min
z𝒱∖{𝑏}

𝑔(z𝒱∖{𝑏}; z̄𝒞∪{𝑏}) =
∑︁

𝑣∈𝒱∖{𝑏}
𝑧𝑣 +

∑︁
𝑐∈𝒞

𝑧𝑐

s.t.
∑︁

𝑣∈𝒱∖{𝑏}
𝛼𝑡,𝑣𝑧𝑣 ≥ 𝛽′

𝑡, ∀𝑡 ∈ 𝒯

𝑧𝑣 ∈ {0, 1}, ∀𝑣 ∈ 𝒱∖{𝑏}

(5.7)

min
z𝒱∖{𝑏}

𝑔(z𝒱∖{𝑏}; z̄𝒞∪{𝑏}) =
∑︁

𝑣∈𝒱∖{𝑏}
𝑧𝑣 +

∑︁
𝑐∈𝒞

𝑧𝑐 + 1

s.t.
∑︁

𝑣∈𝒱∖{𝑏}
𝛼𝑡,𝑣𝑧𝑣 ≥ 𝛽′

𝑡 − 𝛼𝑡,𝑏, ∀𝑡 ∈ 𝒯

𝑧𝑣 ∈ {0, 1}, ∀𝑣 ∈ 𝒱∖{𝑏}

(5.8)

These subproblems have the same form as problem (5.5), with 𝑧𝑏 = 0/1 for subprob-

lem (5.7)/(5.8), respectively. Moreover, if 𝑔opt
0 and 𝑔opt

1 are respectively the optimum

values of subproblems (5.7) and (5.8) (assuming that the optimum value of an infea-

sible problem equals +∞), then 𝑔(zopt
𝒱 ; z̄𝒞) = min(𝑔opt

0 , 𝑔opt
1 ).

The proposed B&B method is given in Algorithm 5.2, where 𝑈 is the best global

upper bound found so far by the algorithm (𝑔* ≤ 𝑈), and ℒ is the list of active sub-

problems that controls the order in which the subproblems are examined (a generated

subproblem is called active if it has not been examined yet). Note that ℒ is a first-

in-first-out (FIFO) list; this is preferable when “good” upper bounds are available in

order to “prune” the search space as early as possible.

Furthermore, the B&B method performs three fundamental operations, where no

further investigation is needed for the examined subproblem: 1) Infeasibility: the

examined subproblem is infeasible, 2) Pruning: the examined subproblem cannot

produce a better solution (𝑈 ≤
⌈︁
𝑔(zLP

𝒱 ; z̄𝒞)
⌉︁
), and 3) Fathoming: an optimal solu-

tion of the examined subproblem is found; this occurs when the solution of the LP

relaxation is integer (zLP
𝒱 ∈ {0, 1}𝑉 ), or when

⌈︁
𝑔(zLP

𝒱 ; z̄𝒞)
⌉︁

= 𝑔(zCF
𝒱 ; z̄𝒞) which implies

𝑔(zopt
𝒱 ; z̄𝒞) = 𝑔(zCF

𝒱 ; z̄𝒞). Finally, Algorithm 5.2 produces a nonincreasing sequence

of global upper bounds 𝑈 , and after its termination 𝑈 = 𝑔* since all the generated

subproblems have been examined (ℒ = ∅).
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Algorithm 5.2 LP&CF-based B&B Method
Input: The original BILP problem (5.3) with ∑︀

𝑘∈𝒦
𝛼𝑡,𝑘 ≥ 𝛽𝑡, ∀𝑡 ∈ 𝒯

Output: A (globally) optimal solution z* of problem (5.3)
1: z* := 1𝐾 , 𝑈 := 𝐾, ℒ := {problem (5.3)}
2: while ℒ ≠ ∅ do
3: Remove the front subproblem from the list ℒ,

which has the form of problem (5.5)
4: if ∃𝑡 ∈ 𝒯 : ∑︀

𝑣∈𝒱
𝛼𝑡,𝑣 < 𝛽′

𝑡 then {continue} end if ◁ Infeasibility

5: Compute an optimal solution zLP
𝒱 of the LP relaxation (in the form

of problem (5.6)), using a LP-solver of polynomial complexity
6: if 𝑈 ≤

⌈︁
𝑔(zLP

𝒱 ; z̄𝒞)
⌉︁

then {continue} end if ◁ Pruning
7: if zLP

𝒱 ∈ {0, 1}𝑉 then ◁ Fathoming (integer solution), given that
𝑈 >

⌈︁
𝑔(zLP

𝒱 ; z̄𝒞)
⌉︁

= 𝑔(zLP
𝒱 ; z̄𝒞) = 𝑔(zopt

𝒱 ; z̄𝒞)
8: 𝑈 := 𝑔(zLP

𝒱 ; z̄𝒞), z* := [zLP
𝒱 ; z̄𝒞], continue

9: end if
10: Compute a feasible solution zCF

𝒱 of the examined subproblem,
using the CF-based greedy method (Algorithm 5.1)

11: if 𝑔(zCF
𝒱 ; z̄𝒞) < 𝑈 then {𝑈 := 𝑔(zCF

𝒱 ; z̄𝒞), z* := [zCF
𝒱 ; z̄𝒞]} end if

12: if
⌈︁
𝑔(zLP

𝒱 ; z̄𝒞)
⌉︁

= 𝑔(zCF
𝒱 ; z̄𝒞) then {continue} end if ◁ Fathoming

13: Select a branching variable 𝑧𝑏

(︃
𝑏 := arg min

𝑣∈𝒱

⃒⃒⃒
𝑧LP

𝑣 − 0.5
⃒⃒⃒)︃

, and then

generate two new subproblems in the form of problems (5.7) and (5.8)
14: Insert the generated subproblems at the end of the list ℒ
15: end while

Complexity of Algorithm 5.2: The complexity of each iteration is mainly restricted

by the LP-solver (polynomial complexity 𝑂((𝑇 + 𝑉 )1.5𝑉 2) [11]) as well as Algorithm

5.1, so it is 𝑂((𝑇 + 𝑉 )1.5𝑉 2 + 𝑇𝑉 2) = 𝑂((𝑇 + 𝑉 )1.5𝑉 2) = 𝑂((𝑇 +𝐾)1.5𝐾2). Fur-

thermore, in each iteration we examine one subproblem, while we generate at most

two new subproblems by fixing one of the free variables. Therefore, the number of

iterations/subproblems is ≤
𝐾∑︀

𝑗=0
2𝑗 = 2𝐾+1 − 1 = 𝑂(2𝐾). Overall, the worst-case

complexity of Algorithm 5.2 is 𝑂(2𝐾(𝑇 +𝐾)1.5𝐾2), i.e., exponential in the size of the
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input. Although the original BILP problem (5.3) is probably intractable in the worst

case (due to its NP-hardness), the most difficult problem instances may rarely occur

in practice (because of their special structure), so the average-case complexity may

be a more appropriate measure of an algorithm’s efficiency. Specifically, assuming a

probability distribution over problem instances, the average-case complexity of Algo-

rithm 5.2 is 𝑂(𝑀(𝑇 +𝐾)1.5𝐾2), where 𝑀 is the mean/average number of iterations.

Observe that if 𝑀 = poly(𝑇,𝐾), where poly(𝑇,𝐾) is some polynomial in 𝑇 and

𝐾, then Algorithm 5.2 will have polynomial-time complexity in the average case.11

Nevertheless, the average-case complexity of the B&B method is very challenging to

study theoretically, so we resort to a numerical analysis in Section 5.5.

5.5 Numerical Results and Discussion

In this section, the performance of the designed B&B algorithm is evaluated

through a series of problem instances. More specifically, the following simulation

parameters have been considered: 𝐾 ∈ {10, 15, 20, 25, 30}, 𝑇 = 12, 𝑃 avl,req
𝑡 = 99.9%,

∀𝑡 ∈ 𝒯 , and 200 independent scenarios (for each value of 𝐾) with the outage proba-

bilities {𝑝out
𝑘,𝑡 }𝑘∈𝒦, 𝑡∈𝒯 being uniformly distributed in the interval [0.1, 1].

Firstly, we compare Algorithm 5.2 with state-of-the-art methods. As shown in

Table 5.1, GHA exhibits the lowest performance, while Algorithm 5.2 achieves ex-

actly the same performance with ESA and significantly outperforms GHA and CHA.

Moreover, for 𝐾 ∈ {15, 20, 25, 30}, GHA and CHA attain a globally optimal solu-

tion in less than 70% of cases.12 On the other hand, Algorithm 5.2 finds the global

optimum in all cases, since it is theoretically guaranteed to do so.

Furthermore, we examine the complexity of Algorithm 5.2 in terms of the required

iterations (recall that each iteration has polynomial-time complexity). According to

11Note that an exhaustive-enumeration algorithm, despite its global optimality, requires

𝑇
𝐾∑︀

𝑗=1

(︀
𝐾
𝑗

)︀
𝑗 = 𝑇𝐾2𝐾−1 = Θ(2𝐾𝐾𝑇 ) comparisons in all cases, thus having exponential complex-

ity in both the worst and the average case.
12Although the worst-case complexity of both GHA and CHA is Θ(𝑇𝐾2), these heuristic methods

do not provide any performance guarantee.
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Table 5.1: Performance Comparison with Existing Methods: Average
# of Selected GSs & Percentage of Problems Optimally Solveda

𝐾

METHOD
ESA [7] GHAb [7] CHAb [7] Algorithm 5.2

10 9.84 9.89 (96%) 9.87 (97%) 9.84 (100%)
15 11.36 11.89 (55%) 11.70 (68%) 11.36 (100%)
20 10.33 11.15 (33%) 10.74 (60%) 10.33 (100%)
25 9.62 10.62 (17%) 10.00 (63%) 9.62 (100%)
30 9.23 10.14 (24%) 9.65 (58%) 9.23 (100%)

a This percentage is calculated using the global minimum obtained
from the exhaustive-search algorithm (ESA) given in [7].

b GHA and CHA select up to 3 and up to 2 redundant GSs, respec-
tively.

Table 5.2: Iterations Required by Algorithm 5.2

𝐾

Total # of
iterations

[mean (standard
deviation)]

# of iterations until a
global minimum is found

for the 1st time [mean
(standard deviation)]

Upper bound on
the total # of

iterations
[= 2𝐾+1 − 1]

10 1.93 (2.37) 0.22 (0.71) > 2 × 103

15 14.23 (15.61) 6.04 (10.30) > 6 × 104

20 41.37 (57.01) 15.86 (38.91) > 2 × 106

25 87.74 (117.14) 27.52 (75.55) > 6 × 107

30 117.90 (204.85) 28.42 (121.32) > 2 × 109

Table 5.2, the B&B method requires extremely few iterations on average (with small

standard deviation) compared to the upper bound 2𝐾+1 −1. Thus, Algorithm 5.2 has

low average-case complexity.

Finally, Fig. 5-1 illustrates the progress of the B&B method for a specific problem.

In particular, we can observe: 1) the nonincreasing sequence of global upper bounds

𝑈 , and 2) that the number of active subproblems |ℒ| = 𝐿 is equal to 1 at the beginning

of the algorithm, and becomes 0 in the last iteration.
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Figure 5-1: Progress of Algorithm 5.2 for a simulation scenario with 𝐾 = 20. Global
minimum = 10, total number of iterations = 85, and number of iterations until a
global minimum is found for the 1st time = 77.

5.6 Conclusion

In this chapter, we have studied the optimal selection of GSs in satellite systems

with site diversity. Furthermore, we have developed a global optimization algorithm,

which can provide significant cost savings for the network operator. Finally, accord-

ing to the numerical results, the proposed B&B method exhibits low average-case

complexity, while achieving much higher performance than existing algorithms.
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Chapter 6

Minimizing the Installation Cost

of Ground Stations in Satellite

Networks: Complexity, Dynamic

Programming and Approximation

Algorithm13

In this chapter, we study the optimum selection of ground stations (GSs) in

RF/optical satellite networks (SatNets) in order to minimize the overall installa-

tion cost under an outage probability requirement, assuming independent weather

conditions between sites. First, we show that the optimization problem can be for-

mulated as a binary-linear-programming problem, and then we give a formal proof

of its NP-hardness. Furthermore, we design a dynamic-programming algorithm of

pseudo-polynomial complexity with global optimization guarantee as well as an effi-

cient (polynomial-time) approximation algorithm with provable performance guaran-

13Copyright c○ 2020 IEEE. Reprinted, with permission, from: C. N. Efrem and A. D. Panagopou-
los, “Minimizing the installation cost of ground stations in satellite networks: Complexity, dynamic
programming and approximation algorithm,” IEEE Wireless Communications Letters, vol. 10, no. 2,
pp. 378-382, Feb. 2021. Personal use of this material is permitted, but republication/redistribution
requires IEEE permission.
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Chapter 6 6.1. Introduction

tee on the distance of the achieved objective value from the global optimum. Finally,

the performance of the proposed algorithms is verified through numerical simulations.

6.1 Introduction

The availability of satellite networks (SatNets) is heavily affected by atmospheric

impairments, especially rain in radio-frequency (RF) and clouds in optical SatNets.

Site diversity techniques are able to improve the network availability by mitigating

the extremely high attenuation induced by rain and clouds [1]. An optimization

method for selecting optical GSs is proposed in [2], taking into consideration the

single-site availabilities and the spatial-correlation between sites as well. In [3], a

joint optimization algorithm for the design of optical SatNets is presented, which is

divided into two parts: the GS positioning and the backbone network optimization

considering the optical fiber cost.

Moreover, [4] and [5] present low-complexity heuristic algorithms, which exploit

the spatial correlation and the monthly variability of cloud coverage, in order to se-

lect the minimum number of GSs in optical SatNets with a geostationary (GEO)

or a medium-earth-orbit (MEO) satellite, respectively. A multi-objective optimiza-

tion approach that achieves various tradeoffs between availability, latency and cost

is examined in [6], so as to determine the optimal location of optical GSs for low-

earth-orbit (LEO) SatNets. In addition, as concerns the smart gateway diversity

optimization in extremely-high-frequency (EHF) SatNets, [7] presents another multi-

objective approach using genetic algorithms.

Recently, [8] provides an efficient gradient-projection method to select a given

number of GSs maximizing the availability of free-space optical (FSO) SatNets. Fi-

nally, a branch-and-bound (B&B) algorithm with global optimization guarantee and

low average-case complexity is developed in [9] to select the minimum number of GSs

under availability requirements for each time period.

In this chapter, we develop useful optimization algorithms for selecting GSs with

the minimum installation cost satisfying an outage probability constraint. More
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specifically, the main contributions of this chapter are summarized as follows:

∙ Mathematical formulation of the optimization problem in binary-linear-program-

ming form with a rigorous proof of its computational complexity (NP-hardness).

∙ Design of a dynamic-programming algorithm with pseudo-polynomial complexity,

which is theoretically guaranteed to find the global optimum.

∙ Design of a polynomial-time approximation algorithm with provable performance

guarantee on the distance between the objective value of the achieved solution

and the global optimum (thus achieving a reasonable performance-complexity

tradeoff).

∙ Unlike existing approaches that minimize just the number of GSs (cardinal-

ity minimization problem, assuming implicitly the same cost for each GS), the

proposed algorithms minimize the overall installation cost allowing possibly dif-

ferent costs of GSs.

The remainder of this chapter is organized as follows. Section 6.2 presents the

formulation of the optimization problem with a theoretical proof of its NP-hardness.

Subsequently, a global optimization algorithm using dynamic programming is given in

Section 6.3, while a polynomial-time approximation algorithm is presented in Section

6.4. Finally, Section 6.5 provides some numerical results and Section 6.6 concludes

this chapter.

Mathematical notation: The set of positive integers is denoted by

Z+ = {1, 2, 3, . . .}, while 0𝐾 and 1𝐾 are respectively the 𝐾-dimensional all-zeros

and all-ones vectors. Moreover, ⌊·⌋ and ⌈·⌉ stand for the floor and ceiling functions,

respectively.

6.2 Problem Formulation & NP-Hardness

Consider an RF/optical SatNet with site diversity, consisting of a GEO satellite

and a network of geographically distributed GSs. In particular, 𝒦 = {1, 2, . . . , 𝐾}
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denotes the set of candidate locations/sites for installing a GS (𝐾 ∈ Z+). In addition,

we assume that: 1) the network outage probability is defined as the probability of

having all GSs in outage and 2) the distance between any two distinct locations is large

enough so that the spatial correlation between sites can be ignored, without significant

error on the calculation of network outage probability; this implies (approximately)

independent weather conditions between the candidate locations.

In this context, we study the minimization of the total installation cost of GSs

satisfying a given outage probability requirement:

minimize
𝒮

∑︁
𝑠∈𝒮

𝑐𝑠 (6.1a)

subject to 𝑃out(𝒮) ≤ 𝑃 th
out (6.1b)

𝒮 ⊆ 𝒦 (6.1c)

where 𝒮 is the set of selected locations, 𝑐𝑘 ∈ Z+ denotes the cost of installing a GS

at the 𝑘th location , ∀𝑘 ∈ 𝒦 (without loss of generality, we assume that 𝑐1 ≤ 𝑐2 ≤

· · · ≤ 𝑐𝐾 ; this requires an extra complexity of 𝑂(𝐾 log𝐾) for sorting the sites in

ascending-cost order),14 𝑃out(𝒮) = ∏︀
𝑠∈𝒮 𝑝𝑠 is the network outage probability achieved

by the set 𝒮, with 𝑝𝑘 ∈ (0, 1] being the outage probability of a GS installed at the 𝑘th

location, ∀𝑘 ∈ 𝒦,15 and 𝑃 th
out ∈ (0, 1] is the (network) outage probability threshold.

Herein, [𝑝𝑘]𝑘∈𝒦 and 𝑃 th
out are defined on an annual basis, and therefore the proposed

approach does not take into account the monthly/seasonal variability of weather

conditions. Note that in the special case where 𝑐𝑘 = 1, ∀𝑘 ∈ 𝒦, we have a cardinality

minimization problem.

Afterwards, by introducing the vector z = [𝑧1, 𝑧2, . . . , 𝑧𝐾 ] of binary (0/1) variables

(𝑧𝑘 = 1 if and only if 𝑘 ∈ 𝒮), we can equivalently formulate problem (6.1) as follows

14Note that the coefficient 𝑐𝑘 may include the cost of fiber-optic cables needed to connect the 𝑘th

GW to the existing access points (points of presence) of the terrestrial backbone network.
15The outage probability of each GS can be obtained from experimental data (when available) or

using time-series synthesizers. Moreover, in RF SatNets a GS is in outage when the rain attenuation
is higher than a specific threshold [7], whereas in optical SatNets when experiencing cloud blockage
[2].
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(note that ∑︀𝑠∈𝒮 𝑐𝑠 = ∑︀
𝑘∈𝒦 𝑐𝑘𝑧𝑘 and 𝑃out(𝒮) = ∏︀

𝑘∈𝒦 (𝑝𝑘)𝑧𝑘):

minimize
z

𝑓(z) =
∑︁
𝑘∈𝒦

𝑐𝑘𝑧𝑘 (6.2a)

subject to
∏︁
𝑘∈𝒦

(𝑝𝑘)𝑧𝑘 ≤ 𝑃 th
out (6.2b)

𝑧𝑘 ∈ {0, 1}, ∀𝑘 ∈ 𝒦 (6.2c)

Exploiting the fact that 𝑥 ≤ 𝑦 ⇔ log(𝑥) ≤ log(𝑦), ∀𝑥, 𝑦 > 0, the constraint∏︀
𝑘∈𝒦 (𝑝𝑘)𝑧𝑘 ≤ 𝑃 th

out is equivalent to ∑︀𝑘∈𝒦 𝑧𝑘 log(𝑝𝑘) ≤ log(𝑃 th
out). Consequently, prob-

lem (6.2) can be written as a binary-linear-programming problem:

minimize
z

𝑓(z) =
∑︁
𝑘∈𝒦

𝑐𝑘𝑧𝑘 (6.3a)

subject to
∑︁
𝑘∈𝒦

𝑎𝑘𝑧𝑘 ≥ 𝑏 (6.3b)

𝑧𝑘 ∈ {0, 1}, ∀𝑘 ∈ 𝒦 (6.3c)

where 𝑎𝑘 = − log(𝑝𝑘) ≥ 0, ∀𝑘 ∈ 𝒦, and 𝑏 = − log(𝑃 th
out) ≥ 0. Let ℱ ={︁

z ∈ {0, 1}𝐾 : ∏︀𝑘∈𝒦 (𝑝𝑘)𝑧𝑘 ≤ 𝑃 th
out

}︁
, or equivalently ℱ =

{︁
z ∈ {0, 1}𝐾 : ∑︀𝑘∈𝒦 𝑎𝑘𝑧𝑘 ≥ 𝑏

}︁
,

be the feasible set and z* ∈ arg minz {𝑓(z) : z ∈ ℱ} be a (globally) optimal solution

of problem (6.2)/(6.3). Since 𝑎𝑘 ≥ 0, ∀𝑘 ∈ 𝒦, the following necessary and sufficient

feasibility condition applies: problem (6.2)/(6.3) is feasible (i.e., ℱ ̸= ∅) if and only

if ∏︀𝑘∈𝒦 𝑝𝑘 ≤ 𝑃 th
out or, equivalently, ∑︀𝑘∈𝒦 𝑎𝑘 ≥ 𝑏 (i.e., 1𝐾 ∈ ℱ).

Theorem 6.1 (NP-hardness). The binary-linear-programming problem (6.3) is

NP-hard.

Proof. In order to prove the NP-hardness of problem (6.3), it is sufficient to show

that a special case of this problem is NP-hard. Firstly, let consider the 0-1 knapsack

problem which is a well-known NP-hard problem [10]:
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maximize
x

∑︁
𝑘∈𝒦

𝑣𝑘𝑥𝑘 (6.4a)

subject to
∑︁
𝑘∈𝒦

𝑤𝑘𝑥𝑘 ≤ 𝑊 (6.4b)

𝑥𝑘 ∈ {0, 1}, ∀𝑘 ∈ 𝒦 (6.4c)

where 𝑊 ∈ Z+ is the knapsack capacity, and 𝑣𝑘, 𝑤𝑘 ∈ Z+ are the value and weight of

the 𝑘th item, respectively, ∀𝑘 ∈ 𝒦. Moreover, applying the polynomial-time, Θ(𝐾),

variable transformation 𝑥𝑘 = 1 − 𝑧𝑘, ∀𝑘 ∈ 𝒦, we get the following equivalent prob-

lem:16

minimize
z

∑︁
𝑘∈𝒦

𝑣𝑘𝑧𝑘 (6.5a)

subject to
∑︁
𝑘∈𝒦

𝑤𝑘𝑧𝑘 ≥ 𝑊 ′ (6.5b)

𝑧𝑘 ∈ {0, 1}, ∀𝑘 ∈ 𝒦 (6.5c)

where 𝑊 ′ = ∑︀
𝑘∈𝒦 𝑤𝑘 − 𝑊 . Without loss of generality, we can assume that the

integer 𝑊 ′ ≥ 0; otherwise the optimal solution of problem (6.5) is trivially equal to

0𝐾 . Obviously, the NP-hard problem (6.5) is a subcase of problem (6.3), and this

completes the proof.

6.3 Global Optimization Using Dynamic

Programming

Due to the fact that problem (6.3) is NP-hard, it cannot be (globally) solved in

polynomial time unless P=NP. Nevertheless, we can use a powerful optimization tech-

nique, namely, dynamic programming (DP), in order to achieve the global minimum

with pseudo-polynomial complexity.
16Note that the optimum objective values of problems (6.4) and (6.5) differ only by a constant,

i.e.,
∑︀

𝑘∈𝒦 𝑣𝑘𝑥*
𝑘 =

∑︀
𝑘∈𝒦 𝑣𝑘 −

∑︀
𝑘∈𝒦 𝑣𝑘𝑧*

𝑘.
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DP performs an intelligent enumeration of all the feasible solutions, thus providing

a global optimization guarantee. In particular, DP follows a bottom-up approach by

decomposing the problem into “smaller” subproblems and combining their optimal

solutions (using a recursive formula) in order to find an optimal solution to the

original problem; this is known as the principle of optimality and such problems are

said to have optimal substructure [10]. Furthermore, DP is a tabular method where

each subproblem is solved only once and then its solution is stored in a table, so that

it can be readily used (without re-computation) by “larger” problems when needed.

Let 𝐶 be an integer upper bound on the optimum value of problem (6.3), i.e.,

𝑓(z*) ≤ 𝐶, where 𝐶 ∈ {0, 1, . . . , 𝐶} with 𝐶 = ∑︀
𝑘∈𝒦 𝑐𝑘 (this is the “worst” upper

bound that can be used). In addition, we define the following bivariate function

∀𝑖 ∈ 𝒦0 = {0, 1, . . . , 𝐾} and ∀𝑗 ∈ 𝒞0 = {0, 1, . . . , 𝐶}:

𝑅(𝑖, 𝑗) = max
zℐ

{︃∑︀
𝑘∈ℐ

𝑎𝑘𝑧𝑘 : ∑︀
𝑘∈ℐ

𝑐𝑘𝑧𝑘 = 𝑗, zℐ ∈ {0, 1}𝑖

}︃
(6.6)

where ℐ = {1, 2, . . . , 𝑖} and zℐ = [𝑧1, 𝑧2, . . . , 𝑧𝑖], with 𝑖 = 0 ⇒ ℐ = ∅ and ∑︀𝑘∈∅ 𝑎𝑘𝑧𝑘 =∑︀
𝑘∈∅ 𝑐𝑘𝑧𝑘 = 0. If this maximization problem is infeasible, then 𝑅(𝑖, 𝑗) = −∞.

Theorem 6.2 (Computation of the global optimum). Assuming that problem

(6.2)/ (6.3) is feasible, its global minimum can be found as follows:

𝑓(z*) = min {𝑗 ∈ 𝒞0 : 𝑅(𝐾, 𝑗) ≥ 𝑏}.

Proof. Firstly, observe that when 𝑖 = 𝐾, we have ℐ = 𝒦 and zℐ = z. Secondly, we

know that 𝑓(z*) ∈ 𝒞0 and 𝑅(𝐾, 𝑓(z*)) ≥ ∑︀
𝑘∈𝒦 𝑎𝑘𝑧

*
𝑘 ≥ 𝑏. Now, suppose that 𝑓(z*) ̸=

𝑗*, where 𝑗* = min {𝑗 ∈ 𝒞0 : 𝑅(𝐾, 𝑗) ≥ 𝑏}. Let examine two cases: 1) 𝑓(z*) < 𝑗*

and 2) 𝑓(z*) > 𝑗*. In the former case, we would have that 𝑅(𝐾, 𝑓(z*)) < 𝑏, which

leads to a contradiction. Moreover, the latter case contradicts the global optimality

of 𝑓(z*). Hence, 𝑓(z*) = 𝑗* and Theorem 6.2 has been proven.

Subsequently, we partition the feasible set of problem (6.6), by setting 𝑧𝑖 = 0 and

𝑧𝑖 = 1, respectively (note that ℐ∖{𝑖} = {1, 2, . . . , 𝑖− 1}):
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max
zℐ

⎧⎨⎩∑︁
𝑘∈ℐ

𝑎𝑘𝑧𝑘 :
∑︁
𝑘∈ℐ

𝑐𝑘𝑧𝑘 = 𝑗, zℐ ∈ {0, 1}𝑖, 𝑧𝑖 = 0

⎫⎬⎭ =

= max
zℐ∖{𝑖}

⎧⎨⎩ ∑︁
𝑘∈ℐ∖{𝑖}

𝑎𝑘𝑧𝑘 :
∑︁

𝑘∈ℐ∖{𝑖}
𝑐𝑘𝑧𝑘 = 𝑗, zℐ∖{𝑖} ∈ {0, 1}𝑖−1

⎫⎬⎭ =

= 𝑅(𝑖− 1, 𝑗)

(6.7)

max
zℐ

⎧⎨⎩∑︁
𝑘∈ℐ

𝑎𝑘𝑧𝑘 :
∑︁
𝑘∈ℐ

𝑐𝑘𝑧𝑘 = 𝑗, zℐ ∈ {0, 1}𝑖, 𝑧𝑖 = 1

⎫⎬⎭ =

= 𝑎𝑖 + max
zℐ∖{𝑖}

⎧⎨⎩ ∑︁
𝑘∈ℐ∖{𝑖}

𝑎𝑘𝑧𝑘 :
∑︁

𝑘∈ℐ∖{𝑖}
𝑐𝑘𝑧𝑘 = 𝑗 − 𝑐𝑖, zℐ∖{𝑖} ∈ {0, 1}𝑖−1

⎫⎬⎭ =

= 𝑎𝑖 +𝑅(𝑖− 1, 𝑗 − 𝑐𝑖)

(6.8)

Therefore, we have the following recursive formula ∀𝑖 ∈ 𝒦 = {1, 2, . . . , 𝐾} and

∀𝑗 ∈ 𝒞0 = {0, 1, . . . , 𝐶}:

𝑅(𝑖, 𝑗) =

⎧⎪⎨⎪⎩
max {𝑅(𝑖− 1, 𝑗), 𝑎𝑖 +𝑅(𝑖− 1, 𝑗 − 𝑐𝑖)} , if 𝑗 ≥ 𝑐𝑖

𝑅(𝑖− 1, 𝑗), otherwise
(6.9)

with initial conditions: a) 𝑅(0, 0) = 0 and b) 𝑅(0, 𝑗) = −∞, ∀𝑗 ∈ 𝒞 = {1, 2, . . . , 𝐶}.

Observe that if 𝑗 < 𝑐𝑖, then problem (6.8) is definitely infeasible, so 𝑅(𝑖− 1, 𝑗− 𝑐𝑖) =

−∞; this explains the 2nd branch in (6.9).

Algorithm 6.1 presents a DP procedure based on the previous analysis. First, we

compute the coefficients [𝑎𝑘]𝑘∈𝒦 and 𝑏 (line 1), and then a greedy method is used in

order to calculate the upper bound 𝐶 (lines 2-5). In essence, this method sequentially

selects GSs in ascending-cost order and finds a feasible solution to problem (6.3),

which is certainly an upper bound on the optimum value. Afterwards, the algorithm

stores the 𝑅(𝑖, 𝑗) values in a (𝐾 + 1) × (𝐶 + 1) table, whose entries are computed in

row order from left to right (lines 6-15). Moreover, the global optimum can be found

by checking the last row, since 𝑓(z*) = 𝑗* = min {𝑗 ∈ 𝒞0 : 𝑅(𝐾, 𝑗) ≥ 𝑏} according to

Theorem 6.2. Finally, an optimal solution can be deduced from the generated table

by starting at 𝑅(𝐾, 𝑗*) and tracing where the optimal values come from (lines 16-23).

In particular, if 𝑅(𝑖, 𝑗) = 𝑅(𝑖 − 1, 𝑗), then 𝑧*
𝑖 = 0, and we continue tracing with
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Algorithm 6.1 Dynamic Programming (DP)

Input: 𝐾 ∈ Z+, c = [𝑐1, 𝑐2, . . . , 𝑐𝐾 ] ∈ Z𝐾
+ where 𝑐1 ≤ 𝑐2 ≤ · · · ≤ 𝑐𝐾 ,

p = [𝑝1, 𝑝2, . . . , 𝑝𝐾 ] ∈ (0, 1]𝐾 , 𝑃 th
out ∈ (0, 1] with ∏︀

𝑘∈𝒦
𝑝𝑘 ≤ 𝑃 th

out

Output: z* ∈ arg min
z

{︃ ∑︀
𝑘∈𝒦

𝑐𝑘𝑧𝑘 : z ∈ ℱ
}︃

1: 𝑎𝑘 := − log(𝑝𝑘), ∀𝑘 ∈ 𝒦, 𝑏 := − log(𝑃 th
out)

2: 𝐴 := 0, 𝐶 := 0, 𝑘 := 1
3: while 𝐴 < 𝑏 do ◁ Calculation of the upper bound 𝐶

4: 𝐴 := 𝐴+ 𝑎𝑘, 𝐶 := 𝐶 + 𝑐𝑘, 𝑘 := 𝑘 + 1
5: end while
6: 𝑅(0, 0) := 0, 𝑅(0, 𝑗) := −∞, ∀𝑗 ∈ 𝒞
7: for 𝑖 := 1 to 𝐾 step +1 do ◁ Computation of the table 𝑅
8: for 𝑗 := 0 to 𝐶 step +1 do
9: if 𝑗 ≥ 𝑐𝑖 then

10: 𝑅(𝑖, 𝑗) := max {𝑅(𝑖− 1, 𝑗), 𝑎𝑖 +𝑅(𝑖− 1, 𝑗 − 𝑐𝑖)}
11: else
12: 𝑅(𝑖, 𝑗) := 𝑅(𝑖− 1, 𝑗)
13: end if
14: end for
15: end for
16: 𝑗* := min {𝑗 ∈ 𝒞0 : 𝑅(𝐾, 𝑗) ≥ 𝑏}, 𝑞 := 𝑅(𝐾, 𝑗*), 𝑗 := 𝑗*

17: for 𝑖 := 𝐾 to 1 step −1 do ◁ Reconstruction of an optimal solution
18: if 𝑞 = 𝑅(𝑖− 1, 𝑗) then
19: 𝑧*

𝑖 := 0, 𝑞 := 𝑅(𝑖− 1, 𝑗)
20: else
21: 𝑧*

𝑖 := 1, 𝑞 := 𝑅(𝑖− 1, 𝑗 − 𝑐𝑖), 𝑗 := 𝑗 − 𝑐𝑖

22: end if
23: end for

𝑅(𝑖 − 1, 𝑗). Otherwise 𝑧*
𝑖 = 1, and we continue tracing with 𝑅(𝑖 − 1, 𝑗 − 𝑐𝑖). This

process is repeated for each 𝑖 from 𝐾 down to 1 (with step −1). Therefore, Algorithm

6.1 is theoretically guaranteed to find a (globally) optimal solution.

Complexity of Algorithm 6.1: The complexity of computing the coefficients [𝑎𝑘]𝑘∈𝒦
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and 𝑏 is Θ(𝐾). Moreover, the greedy method used to find an upper bound on the

optimum value requires at most 𝐾 iterations (since 1𝐾 ∈ ℱ), thus having 𝑂(𝐾)

complexity. In addition, the computation of the table 𝑅 requires Θ(𝐾𝐶) arithmetic

operations in total. Finally, the computation of 𝑗* requires 𝑂(𝐶) comparisons, while

the complexity of reconstructing/tracing the solution is Θ(𝐾) since it starts in row

𝐾 of the table and moves up one row at each step. Ultimately, the overall complexity

of Algorithm 6.1 is Θ(𝐾𝐶) = 𝑂(𝐾𝐶) = 𝑂(𝐾2𝑐max), because 𝐶 ≤ 𝐶 ≤ 𝐾𝑐max where

𝑐max = max𝑘∈𝒦{𝑐𝑘} = 𝑐𝐾 . As a result, the proposed DP algorithm has pseudo-

polynomial time complexity [10].

Remark 6.1. Strictly speaking, Algorithm 6.1 is an exponential-time algorithm, since

the size of the input is upper bounded by 𝑂(𝐾 log 𝑐max) = 𝑂(𝐾 log𝐶), because

𝑐max ≤ 𝐶. Nevertheless, under certain conditions, this algorithm is practical despite

its exponential worst-case complexity. For example, if 𝐶 = 𝑂(𝐾𝑑) for some constant

𝑑 ≥ 0 (which is usually the case in practice), then the running time of Algorithm 6.1

will be polynomial in 𝐾. In any case, the optimization problem under consideration

does not need to be solved in real time, but during the initial network design.

Remark 6.2. In Algorithm 6.1, due to the fact that 𝐶 = ∑︀
𝑢∈𝒰 𝑐𝑢 for some 𝒰 ⊆ 𝒦

depending on [𝑎𝑘]𝑘∈𝒦 and 𝑏, we can divide all coefficients [𝑐𝑘]𝑘∈𝒦 with their greatest

common divisor (i.e., 𝑐′
𝑘 = 𝑐𝑘/𝜁 ∈ Z+, ∀𝑘 ∈ 𝒦, where 𝜁 = gcd(𝑐1, 𝑐2, . . . , 𝑐𝐾) ∈ Z+)

without altering the set of optimal solutions. In this way, the complexity of Algorithm

6.1 can be reduced, since 𝐶 ′ = ∑︀
𝑢∈𝒰 𝑐

′
𝑢 = 𝐶/𝜁 ≤ 𝐶.

6.4 Polynomial-Time Approximation Algorithm

Subsequently, a practical and efficient (polynomial-time) approximation algorithm

with provable performance guarantee is given. The design of the approximation al-

gorithm is based on the idea of trading accuracy for running time, thus achieving a

reasonable tradeoff between performance and complexity.

The approximation algorithm utilizes Algorithm 6.1 and is shown in Algorithm

6.2. Specifically, Algorithm 6.2 is similar to the fully polynomial-time approximation
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Algorithm 6.2 DP-based Approximation Algorithm (DPAA)

Input: 𝐾 ∈ Z+, c = [𝑐1, 𝑐2, . . . , 𝑐𝐾 ] ∈ Z𝐾
+ where 𝑐1 ≤ 𝑐2 ≤ · · · ≤ 𝑐𝐾 ,

p = [𝑝1, 𝑝2, . . . , 𝑝𝐾 ] ∈ (0, 1]𝐾 , 𝑃 th
out ∈ (0, 1] with ∏︀

𝑘∈𝒦
𝑝𝑘 ≤ 𝑃 th

out, 𝜖 > 0

Output: z̃* ∈ ℱ such that 𝑓(z*) ≤ 𝑓(z̃*) ≤ 𝑓(z*) + min(⌊𝜖𝑐max⌋ , 𝐶)
1: 𝜗 := 𝜖𝑐max/𝐾, where 𝑐max = max

𝑘∈𝒦
{𝑐𝑘} = 𝑐𝐾

2: 𝑐𝑘 := ⌈𝑐𝑘/𝜗⌉, ∀𝑘 ∈ 𝒦
3: Run Algorithm 6.1 with input [𝐾, c̃, p, 𝑃 th

out] and return the optimal
solution z̃*, where c̃ = [𝑐1, 𝑐2, . . . , 𝑐𝐾 ] ∈ Z𝐾

+ (𝑐1 ≤ 𝑐2 ≤ · · · ≤ 𝑐𝐾)

scheme (FPTAS) for the knapsack problem provided in [11], which is inspired by the

work of Ibarra and Kim [12]. Moreover, note that 𝜗 > 0, and therefore 𝑐𝑘 ∈ Z+,

∀𝑘 ∈ 𝒦.

Theorem 6.3 (Performance guarantee). Assuming that problem (6.2)/ (6.3) is

feasible, Algorithm 6.2 takes a parameter 𝜖 > 0 as input and produces an approximate

solution z̃* ∈ ℱ such that 𝑓(z*) ≤ 𝑓(z̃*) ≤ 𝑓(z*) + min(⌊𝜖𝑐max⌋ , 𝐶), where the term

min(⌊𝜖𝑐max⌋ , 𝐶) is the absolute-error bound. In addition, for any 0 < 𝜖 < 1/𝑐max,

Algorithm 6.2 always finds an optimal solution, i.e., it becomes an exact optimization

algorithm.

Proof. Obviously, z̃* ∈ ℱ and thus 𝑓(z*) ≤ 𝑓(z̃*). Now, it is sufficient to prove

that 𝑓(z̃*) ≤ 𝑓(z*) + min(⌊𝜖𝑐max⌋ , 𝐶). First, we will show that 𝑓(z̃*) ≤ 𝑓(z*) + 𝜖𝑐max.

Due to the fact that 𝑥 ≤ ⌈𝑥⌉ < 𝑥 + 1, we have 𝑐𝑘/𝜗 ≤ 𝑐𝑘 < 𝑐𝑘/𝜗 + 1 ⇒ 𝑐𝑘 ≤ 𝜗𝑐𝑘 <

𝑐𝑘 + 𝜗. Also, let us define the function 𝑔(z) = ∑︀
𝑘∈𝒦 𝑐𝑘𝑧𝑘. From 𝜗𝑐𝑘 < 𝑐𝑘 + 𝜗, we

deduce that 𝜗𝑐𝑘𝑧
*
𝑘 ≤ 𝑐𝑘𝑧

*
𝑘 + 𝜗𝑧*

𝑘, ∀𝑘 ∈ 𝒦 (because 𝑧*
𝑘 ≥ 0). By taking the sum for

all 𝑘 ∈ 𝒦, we obtain 𝜗𝑔(z*) ≤ 𝑓(z*) + 𝜗
∑︀

𝑘∈𝒦 𝑧
*
𝑘 ≤ 𝑓(z*) + 𝜗𝐾 = 𝑓(z*) + 𝜖𝑐max.

Since z* ∈ ℱ , we conclude that 𝑔(z̃*) ≤ 𝑔(z*) ⇒ 𝜗𝑔(z̃*) ≤ 𝜗𝑔(z*) because 𝜗 > 0, and

therefore 𝜗𝑔(z̃*) ≤ 𝑓(z*) + 𝜖𝑐max. In addition, from 𝑐𝑘 ≤ 𝜗𝑐𝑘 ⇒ 𝑐𝑘𝑧
*
𝑘 ≤ 𝜗𝑐𝑘𝑧

*
𝑘, ∀𝑘 ∈ 𝒦

(because 𝑧*
𝑘 ≥ 0). By taking the sum for all 𝑘 ∈ 𝒦 once more, we get 𝑓(z̃*) ≤ 𝜗𝑔(z̃*).

Consequently, 𝑓(z̃*) ≤ 𝑓(z*) + 𝜖𝑐max. Afterwards, due to the fact that 𝑓(z̃*) and

𝑓(z*) are integers, we have 𝑓(z̃*) − 𝑓(z*) ≤ ⌊𝜖𝑐max⌋. Moreover, since 𝑓(z̃*) ≤ 𝐶 and

𝑓(z*) ≥ 0, we obtain 𝑓(z̃*) − 𝑓(z*) ≤ 𝐶. Hence, 𝑓(z̃*) − 𝑓(z*) ≤ min(⌊𝜖𝑐max⌋ , 𝐶),
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Table 6.1: Performance & Complexity of Optimization Algorithms

Optimization
Algorithm

Performance
Guarantee

Computational
Complexity

Exhaustive Search Global Optimization Θ(2𝐾𝐾)

Dynamic
Programming (DP) Global Optimization Θ(𝐾𝐶) = 𝑂(𝐾𝐶) =

= 𝑂(𝐾2𝑐max)
DP-based

Approximation
Algorithm (DPAA)

𝑓(z*) ≤ 𝑓(z̃*) ≤
≤ 𝑓(z*) + min(⌊𝜖𝑐max⌋ , 𝐶)

𝑂(𝐾2 ⌈𝐾/𝜖⌉) =
= 𝑂(𝐾3/𝜖)

because it holds that: 𝑥 ≤ 𝑢 and 𝑥 ≤ 𝑣 ⇔ 𝑥 ≤ min(𝑢, 𝑣).

Furthermore, if 0 < 𝜖 < 1/𝑐max ⇒ 0 < 𝜖𝑐max < 1 ⇒ ⌊𝜖𝑐max⌋ = 0, and thus

𝑓(z*) ≤ 𝑓(z̃*) ≤ 𝑓(z*) ⇒ 𝑓(z̃*) = 𝑓(z*). In other words, for any 0 < 𝜖 < 1/𝑐max, the

approximation algorithm will be forced to produce an optimal solution.

Complexity of Algorithm 6.2: The complexity of DPAA is mainly due to Algorithm

6.1, so it is 𝑂(𝐾2𝑐max) = 𝑂(𝐾2 ⌈𝐾/𝜖⌉) = 𝑂(𝐾3/𝜖), where 𝑐max = max𝑘∈𝒦{𝑐𝑘} =

⌈𝑐max/𝜗⌉ = ⌈𝐾/𝜖⌉. As a result, Algorithm 6.2 has polynomial complexity in 𝐾 and

1/𝜖. Observe that, for any fixed 𝜖 > 0, DPAA has cubic complexity 𝑂(𝐾3).

Finally, the performance and complexity of all optimization algorithms are sum-

marized in Table 6.1. The exhaustive search algorithm simply checks all subsets of

𝒦 and selects that with the minimum objective value satisfying the outage proba-

bility constraint. Therefore, it requires ∑︀𝐾
𝑖=0

(︁
𝐾
𝑖

)︁
𝑖 = 𝐾2𝐾−1 = Θ(2𝐾𝐾) arithmetic

operations to find the global minimum.

6.5 Numerical Simulations and Discussion

In this section, we examine the performance of the proposed optimization algo-

rithms through numerical simulations. In particular, the following system parame-

ters have been used: 𝐾 = 25 and 𝑐𝑘 = ⌈𝑘/5⌉, ∀𝑘 ∈ 𝒦 (𝐶 = ∑︀
𝑘∈𝒦 𝑐𝑘 = 75 and

𝑐max = 5). Moreover, we generate 100 independent (feasible) optimization prob-

lems where the outage probabilities of GSs, [𝑝𝑘]𝑘∈𝒦, are uniformly distributed in the
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Figure 6-1: Performance comparison between optimization algorithms.

interval (0.25, 0.75). For the sake of comparison, we consider two baseline greedy al-

gorithms, namely, GD-c and GD-p: first, sort the candidate locations in ascending

order of installation cost (respectively, outage probability), and then select the loca-

tions {1, 2, . . . , 𝑛} so that 𝑛 is the smallest integer for which the outage probability

threshold is met.

Fig. 6-1 illustrates the average installation cost, versus the outage probability

threshold, achieved by a) the exhaustive search, b) DP (Algorithm 6.1), c) DPAA

(Algorithm 6.2) for different values of the parameter 𝜖, and d) the baseline algo-

rithms. More specifically, DP and DPAA with 𝜖 = 0.1 have identical performance

with the exhaustive search; this is in agreement with the theory presented in the

previous sections, since DP is a global optimization algorithm and DPAA is forced to

produce an optimal solution when 0 < 𝜖 < 1/𝑐max = 0.2 (see Theorem 6.3). Further-

more, as expected, DPAA leads to higher installation cost (with lower complexity)

by increasing the parameter 𝜖. It is interesting to note that, for 𝜖 ∈ {10, 15}, the

actual distance of the objective value achieved by DPAA from the global minimum

is much less than the absolute-error bound, i.e., 𝑓(z̃*) − 𝑓(z*) ≪ min(⌊𝜖𝑐max⌋ , 𝐶).

Finally, for relatively small outage probability thresholds, the baseline algorithms
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have lower performance than the proposed algorithms, even for large values of 𝜖 (e.g.,

𝜖 = 𝐶/𝑐max = 15).

Indicatively, for 𝑃 th
out = 10−4 and using a computer with Intel Core i7-4790 CPU

(3.6 GHz) and 16 GB RAM, the average runtime of the exhaustive search is 2.85

minutes, whereas that of all the other algorithms shown in Fig. 6-1 is less than 0.025

seconds.

6.6 Conclusion

In this chapter, we have dealt with the minimization of the installation cost of GSs

in RF/optical SatNets satisfying an outage probability constraint. In particular, the

examined problem has been theoretically proven to be NP-hard. Moreover, we have

presented a global optimization algorithm with pseudo-polynomial complexity as well

as a polynomial-time approximation algorithm with provable performance guarantee.
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Chapter 7

On the Computation and

Approximation of Outage

Probability in Satellite Networks

with Smart Gateway Diversity17

The utilization of extremely high frequency (EHF) bands can achieve very high

throughput in satellite networks (SatNets). Nevertheless, the severe rain attenuation

at EHF bands imposes strict limitations on the system availability. Smart gate-

way diversity (SGD) is considered indispensable in order to guarantee the required

availability with reasonable cost. In this context, we examine a load-sharing SGD

(LS-SGD) architecture, which has been recently proposed in the literature. For this

diversity scheme, we define the system outage probability (SOP) using a rigorous

probabilistic analysis based on the Poisson binomial distribution (PBD), and taking

into consideration the traffic demand as well as the gateway (GW) capacity. Further-

more, we provide several methods for the exact and approximate calculation of SOP.

17Copyright c○ 2020 IEEE. Reprinted, with permission, from: C. N. Efrem and A. D. Panagopou-
los, “On the computation and approximation of outage probability in satellite networks with smart
gateway diversity,” IEEE Transactions on Aerospace and Electronic Systems, vol. 57, no. 1, pp.
476-484, Feb. 2021. Personal use of this material is permitted, but republication/redistribution
requires IEEE permission.
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As concerns the exact computation of SOP, a closed-form expression and an efficient

algorithm based on a recursive formula are given, both with quadratic worst-case

complexity in the number of GWs. Finally, the proposed approximation methods

include well-known probability distributions (binomial, Poisson, normal) and a Cher-

noff bound. According to the numerical results, binomial and Poisson distributions

are by far the most accurate approximation methods.

7.1 Introduction

Next-generation broadband SatNets require very high data-rates (up to 1 Tbps)

that can be accomplished by utilizing EHF bands (above 30 GHz) in the feeder links.

Although the frequency shift from Ka (20/30 GHz) to Q/V (40/50 GHz) or W (75-

110 GHz) bands provides more spectrum, the high levels of rain attenuation (tens of

dB) cannot be tackled by the standard fade mitigation techniques (FMTs), such as

uplink power control (ULPC), adaptive coding and modulation (ACM) and data rate

adaptation (DRA). As a result, gateway diversity (GD) is necessary to achieve high

system availability, since it is a more effective and powerful FMT (at the expense of

installing additional GWs) [1–5]. Nevertheless, the conventional GD (where the same

signal is transmitted by a group of GWs) is economically prohibitive for reaching the

Tbps due to the large number of required GWs [6]. An alternative solution to achieve

high availability with reasonable cost is the smart gateway diversity (SGD), where a

user beam can be served by different GWs depending on the propagation conditions

and the traffic load. In particular, if a GW experiences deep fades then its traffic can

be rerouted to other GWs with better propagation conditions.

7.1.1 Related Work

In [6], two SGD techniques are examined, namely, the frequency multiplexing

diversity and the 𝑁 + 𝑃 diversity. The performance analysis of these schemes is

based on a simple probabilistic model, assuming the same outage probability for each

GW (although unusual in practice) as well as independent propagation conditions over
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the GW locations. Moreover, the authors in [7] study the 𝑁 -active diversity (with

time or frequency multiplexing, taking into account the spatial correlation between

the GWs) and the 𝑁 + 𝑃 diversity (where there are 𝑁 active plus 𝑃 redundant or

idle GWs). In the former scheme, all the 𝑁 GWs are active and each user beam is

served by a group of GWs, whereas in the latter scheme each user beam is served by

only one GW and switches to a redundant GW in case of outage.

A novel GW switching scheme for the 𝑁 + 𝑃 scenario is proposed in [8], using a

dynamic rain attenuation model and considering two key performance indicators: the

average outage probability and the average switching rate. Furthermore, a different

SGD scheme, where there are no redundant GWs but each GW should have some

spare capacity, is analyzed in [9]. Specifically, in nominal clear-sky conditions all

GWs are active and operate using a maximum fraction of their full capacity, while

if some GWs experience heavy rain attenuation then their traffic is served by the

remaining GWs using their extra capacity. Finally, an extension of the well-known

𝑁 -active and 𝑁 + 𝑃 diversity schemes to multiple-input-multiple-output (MIMO)

architectures is presented in [10].

7.1.2 Contribution

The main contributions of this chapter, in comparison with existing approaches,

are as follows:

∙ In this chapter, we analyze in detail a SGD architecture operating in load-

sharing mode, where the GWs do not necessarily have equal outage probabilities.

To the best of our knowledge, the concept of LS-SGD has been firstly introduced

in [9], assuming that all GWs utilize the same fraction of their full capacity in

clear-sky conditions; our analysis, however, does not make such an assumption.

∙ Unlike previous research, we present a system-level approach taking into account

the traffic demand as well as the GW capacity. In particular, we are interested in

the system outage probability (SOP), defined as the probability of not satisfying

the overall traffic demand, which is a stricter performance metric than the
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user outage probability (UOP), i.e., the probability of not satisfying the traffic

demand of a specific user.

∙ Furthermore, we study the performance improvement (in terms of SOP) that

can be achieved by increasing the number of GWs in the LS-SGD scheme. For

this purpose, we define two comparative metrics, namely, the SOP-improvement

factor and the generalized SOP-improvement factor.

∙ In addition, exact methods for the computation of SOP are given, including a

closed-form expression and an efficient algorithm based on a recursive formula.

The worst-case complexity of both methods is quadratic in the number of GWs.

∙ Finally, we provide some approximation methods for the estimation of SOP.

More specifically, the SOP can be approximated by various probability distri-

butions (binomial, Poisson, normal) as well as a Chernoff bound. Ultimately,

we conclude that binomial and Poisson distributions are the most appropriate

approximation methods for SGD systems operating in EHF bands.

7.1.3 Chapter Organization

The remainder of this chapter is organized as follows. Section 7.2 describes and

analyzes in detail the LS-SGD architecture. Moreover, Sections 7.3 and 7.4 present

exact and approximation methods for calculating the SOP, respectively. In addition,

the performance of LS-SGD as well as the accuracy of approximation methods are

examined in Section 7.5. Finally, concluding remarks are given in Section 7.6.

7.1.4 Mathematical Notation & Conventions

Mathematical notation: Z+ = {1, 2, 3, . . .}, Z+
0 = {0, 1, 2, . . .}, 𝒩 = {1, 2, . . . , 𝑁}

and 𝒩 0 = {0, 1, . . . , 𝑁}, where 𝑁 ∈ Z+. Moreover, P(·) and E(·) denote probabil-

ity and expectation, respectively. ⌊·⌋ and ⌈·⌉ are respectively the floor and ceiling

functions. In addition, |𝑥| represents the absolute value of a real number 𝑥, while
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|𝒮| stands for the cardinality of a set 𝒮. 0𝑁 and 1𝑁 denote the 𝑁 -dimensional all-

zeros and all-ones vectors, respectively. Furthermore, 𝜙(𝑥) =
(︁√

2𝜋
)︁−1

𝑒−0.5𝑥2 is the

probability density function (PDF), Φ(𝑥) =
∫︀ 𝑥

−∞ 𝜙(𝑢)𝑑𝑢 is the cumulative distribu-

tion function (CDF), and 𝑄(𝑥) = 1 − Φ(𝑥) is the complementary CDF (CCDF) of

the standard normal distribution. Finally, the total variation distance between two

(discrete) random variables (RVs) 𝑋 and 𝑌 on Z+
0 is defined as follows:

𝑑TV(𝑋, 𝑌 ) = sup
𝒜⊆Z+

0

|P(𝑋 ∈ 𝒜) − P(𝑌 ∈ 𝒜)| =

= 1
2

∑︁
𝑚∈Z+

0

|P(𝑋 = 𝑚) − P(𝑌 = 𝑚)|
(7.1)

Mathematical conventions: ∑︀
𝑖∈∅
𝑎𝑖 = 0 and ∏︀

𝑖∈∅
𝑎𝑖 = 1.

7.1.5 Preliminaries on Discrete Probability Distributions

7.1.5.1 Bernoulli Distribution

A binary (0/1) RV follows a Bernoulli distribution with parameter 𝑝 ∈ [0, 1],

𝑋 ∼ Bern(𝑝), if and only if (iff) its probability mass function (PMF) is given by:

P(𝑋 = 1) = 1 − P(𝑋 = 0) = 𝑝.

7.1.5.2 Binomial Distribution

A discrete (integer-valued) RV 𝑋 ∼ Bin(𝑁, 𝑝), where 𝑁 ∈ Z+ and 𝑝 ∈ [0, 1], iff

its PMF is:

P(𝑋 = 𝑚) =
(︃
𝑁

𝑚

)︃
𝑝𝑚(1 − 𝑝)𝑁−𝑚, ∀𝑚 ∈ 𝒩 0 (7.2)

The binomial distribution is a generalization of the Bernoulli distribution, because

Bin(1, 𝑝) ≡ Bern(𝑝). Furthermore, if {𝑋𝑛}𝑛∈𝒩 is a set of independent and identically

distributed (i.i.d.) Bernoulli RVs (𝑋𝑛 ∼ Bern(𝑝), ∀𝑛 ∈ 𝒩 ), then 𝑆 = ∑︀
𝑛∈𝒩

𝑋𝑛 ∼

Bin(𝑁, 𝑝).
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7.1.5.3 Poisson Binomial Distribution

A discrete RV 𝑋 ∼ PoisBin(p), where p = [𝑝1, 𝑝2, . . . , 𝑝𝑁 ] ∈ [0, 1]𝑁 with 𝑁 ∈ Z+,

iff its PMF is given by:

P(𝑋 = 𝑚) =
∑︁

𝒜∈𝒞𝑚

∏︁
𝑖∈𝒜

𝑝𝑖

∏︁
𝑗∈𝒩 ∖𝒜

(1 − 𝑝𝑗), ∀𝑚 ∈ 𝒩 0 (7.3)

where 𝒞𝑚 = {𝒜 ⊆ 𝒩 : |𝒜| = 𝑚} (i.e., the set of all subsets of 𝒩 having 𝑚 elements)

with |𝒞𝑚| =
(︁

𝑁
𝑚

)︁
= 𝑁 !

𝑚!(𝑁−𝑚)! . The binomial distribution is a special case of the PBD,

since PoisBin(𝑝1𝑁) ≡ Bin(𝑁, 𝑝). Moreover, if {𝑋𝑛}𝑛∈𝒩 is a set of independent, but

not necessarily identically distributed, Bernoulli RVs (𝑋𝑛 ∼ Bern(𝑝𝑛), ∀𝑛 ∈ 𝒩 ), then

𝑆 = ∑︀
𝑛∈𝒩

𝑋𝑛 ∼ PoisBin(p).

7.1.5.4 Poisson Distribution

A discrete RV 𝑋 ∼ Pois(𝜆), where 𝜆 ≥ 0, iff its PMF is expressed by:

P(𝑋 = 𝑚) = 𝑒−𝜆𝜆𝑚(𝑚!)−1, ∀𝑚 ∈ Z+
0 .

7.2 Smart Gateway Diversity Architecture

In this section, we describe and analyze a load-sharing SGD (LS-SGD) scheme,

where the unused capacity of available (not in outage) GWs can be exploited to serve

the users of the remaining GWs (which are in outage). To the best of our knowledge,

this SGD architecture has been firstly proposed and analyzed in [9]. Nevertheless,

our approach is somewhat different, since it explicitly takes into consideration the

traffic demand as well as the GW capacity.

7.2.1 System Model

Consider a SatNet consisting of a geostationary satellite and a ground network of

𝑁 ∈ Z+ (geographically distributed) GWs, which are denoted by the set

𝒩 = {1, 2, . . . , 𝑁}. All the GWs are connected to a network control center (NCC)
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through dedicated terrestrial links. The NCC performs, when necessary (in case of

deep fading), the traffic switching/rerouting between the GWs.18 Furthermore, the

following analysis focuses on the feeder links (data transmission from the GWs to the

satellite), considering ideal (without noise and interference) satellite-user links.19

In addition, the distance between any two different GWs is large enough (some

hundreds of km), and thus the spatial correlation of the propagation impairments at

the GW locations is extremely small [6, 13]. As a result, the rain attenuations/fades

experienced by the GWs can be considered (mutually) independent. It is also assumed

that there is no ACM, so each feeder link is either available at full capacity or com-

pletely unavailable.20 Therefore, the feeder links can be mathematically modeled as a

set {𝑋𝑛}𝑛∈𝒩 of independent, but not necessarily identically distributed, Bernoulli RVs

(𝑋𝑛 ∼ Bern(𝑝𝑛), ∀𝑛 ∈ 𝒩 ), where 𝑝𝑛 ∈ [0, 1] is the outage/exceedance probability

of the 𝑛th link/GW (i.e., the probability that the rain attenuation exceeds a specific

threshold); some methods for calculating 𝑝𝑛 are discussed in [9]. Moreover, we define

the RV 𝑆𝒩 = ∑︀
𝑛∈𝒩

𝑋𝑛 ∼ PoisBin(p𝒩 ), with p𝒩 = [𝑝1, 𝑝2, . . . , 𝑝𝑁 ], which is the total

number of GWs that are in outage in the set 𝒩 .21 The expectation, the standard

deviation, and the 3rd central moment of 𝑆𝒩 are given respectively by:

𝜇𝒩 = E(𝑆𝒩 ) =
∑︁

𝑛∈𝒩
𝑝𝑛 (7.4)

𝜎𝒩 =
√︂
E
(︁
(𝑆𝒩 − 𝜇𝒩 )2

)︁
=
√︃∑︁

𝑛∈𝒩
𝑝𝑛(1 − 𝑝𝑛) (7.5)

18The details on the switching/handover procedure are beyond the scope of this chapter; see
[6, 8, 11] for more information on this important topic.

19As concerns the downlink of multibeam satellite systems, an energy-efficient power allocation
in order to jointly minimize the unmet system capacity and the total radiated power is proposed
in [12].

20Classical FMTs, such as ULPC, ACM and DRA, can tackle impairments of a few dB (e.g.,
gaseous absorption and cloud attenuation). However, in EHF bands these techniques alone are no
longer effective, because the rain attenuation can reach tens of dB. Hence, SGD has to be used in
order to keep SOP at the required levels. In essence, due to the intense rain attenuation in EHF
bands, SGD is the primary FMT, whereas ULPC, ACM and DRA are secondary/supplementary
FMTs. As a result, the absence of ACM in the analysis of SGD is quite reasonable. In any case, our
approach provides a lower bound on the performance of a more realistic system that utilizes SGD
together with standard FMTs.

21According to Section 7.1.5.2, if 𝑝𝑛 = 𝑝, ∀𝑛 ∈ 𝒩 (i.i.d. Bernoulli RVs), then 𝑆𝒩 ∼ Bin(𝑁, 𝑝).
Note that this is rarely the case in practice.
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𝜈𝒩 = E
(︁
(𝑆𝒩 − 𝜇𝒩 )3

)︁
=
∑︁

𝑛∈𝒩
𝑝𝑛(1 − 𝑝𝑛)(1 − 2𝑝𝑛) (7.6)

Note that 𝜇𝒩 ≥ 𝜎2
𝒩 , 𝜇𝒩 ∈ [0, 𝑁 ], 𝜎2

𝒩 ∈ [0, 𝑁/4], and 𝜈𝒩 ∈ [−𝑁/(6
√

3), 𝑁/(6
√

3)].

7.2.2 System Outage Probability

In the sequel, suppose that the 𝑛th GW can offer a maximum data-rate (capacity)

𝑅max
𝑛 > 0, and the total requested data-rate (traffic demand) is 𝑅req

tot = ∑︀
𝑢∈𝒰

𝑅req
𝑢 > 0,

where 𝒰 = {1, 2, . . . , 𝑈} is the set of users and 𝑅req
𝑢 ≥ 0 is the requested data-

rate of user 𝑢. Moreover, the operation of NCC ensures the following load-sharing

property: all users receive their requested data-rate if and only if (iff) the overall

capacity of the available (not in outage) GWs is greater than or equal to the traffic

demand. Equivalently, there is at least one user that receives inadequate data-rate iff

the overall capacity of the available GWs is less than the traffic demand.

Definition 7.1 (General SOP expression). The SOP is defined as follows:

𝑃 sys
out =

∑︁
𝒜∈ℱ

∏︁
𝑖∈𝒜

𝑝𝑖

∏︁
𝑗∈𝒩 ∖𝒜

(1 − 𝑝𝑗) (7.7)

where ℱ =
{︃

𝒜 ⊆ 𝒩 : ∑︀
𝑗∈𝒩 ∖𝒜

𝑅max
𝑗 < 𝑅req

tot

}︃
. In other words, ℱ contains all the subsets

𝒜 of the 𝑁 GWs such that: if the GWs in 𝒜 are all in outage and the remaining GWs

in 𝒩 ∖𝒜 are all available (not in outage), then the traffic demand cannot be satisfied by

the latter group of GWs. In essence, the SOP expresses the probability of not satisfying

the traffic demand of all users (or, equivalently, the probability that there is at least

one user that receives inadequate data-rate). Similarly, we can define the system

availability (SA) as the probability of the complementary event: 𝑃 sys
avail = 1 − 𝑃 sys

out.

For simplicity, we assume that all GWs have the same capacity, 𝑅max
GW > 0, in the

rest of the chapter ; this is not such a strong assumption in practice, since the same

frequency band is fully reused in each feeder link and the clear-sky link budget is

almost identical for all GWs.
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Theorem 7.1 (Special SOP expression). Suppose that all GWs have the same capac-

ity, i.e., 𝑅max
𝑛 = 𝑅max

GW > 0, ∀𝑛 ∈ 𝒩 . Then, (7.7) reduces to the following expression:

𝑃 sys
out = 𝑃 sys

out(𝐿,𝑁) =
𝑁∑︁

𝑚=𝐿

∑︁
𝒜∈𝒞𝑚

∏︁
𝑖∈𝒜

𝑝𝑖

∏︁
𝑗∈𝒩 ∖𝒜

(1 − 𝑝𝑗) (7.8)

where 𝒞𝑚 = {𝒜 ⊆ 𝒩 : |𝒜| = 𝑚} and 𝐿 is given by:

𝐿 = 𝑁 − ⌈𝑟⌉ + 1 (7.9)

where 𝑟 > 0 is the ratio of the traffic demand to the GW capacity, that is:

𝑟 = 𝑅req
tot/𝑅

max
GW (7.10)

Proof. Under the condition of equal GW capacities, we have that

ℱ = {𝒜 ⊆ 𝒩 : (𝑁 − |𝒜|)𝑅max
GW < 𝑅req

tot }. In addition, (𝑁 − |𝒜|)𝑅max
GW < 𝑅req

tot ⇔

𝑁 − |𝒜| < 𝑟 ⇔ 𝑁 − |𝒜| < ⌈𝑟⌉ ⇔ 𝑁 − |𝒜| ≤ ⌈𝑟⌉ − 1 ⇔ |𝒜| ≥ 𝑁 − ⌈𝑟⌉ + 1.

Consequently, ℱ = {𝒜 ⊆ 𝒩 : |𝒜| ≥ 𝐿} =
𝑁⋃︀

𝑚=𝐿
𝒞𝑚 and then (7.8) follows immediately

from (7.7).

Remark 7.1. According to Section 7.1.5.3, 𝑃 sys
out(𝐿,𝑁) =

𝑁∑︀
𝑚=𝐿

P(𝑆𝒩 = 𝑚) =

P(𝑆𝒩 ≥ 𝐿), i.e., the SOP is the probability of having at least 𝐿 out of 𝑁 GWs in

outage.22

Although in general 𝐿 ∈ 𝒩0, for the diversity system under consideration 𝐿 ∈ 𝒩

due to the fact that ⌈𝑟⌉ ∈ 𝒩 , since a) 𝑟 > 0 ⇔ ⌈𝑟⌉ ≥ 1, and b) 𝑁𝑅max
GW ≥ 𝑅req

tot ⇔

𝑁 ≥ 𝑟 ⇔ 𝑁 ≥ ⌈𝑟⌉ (note that 𝑁min = ⌈𝑟⌉ is the minimum required number of GWs).

Finally, we provide a result about the monotonicity of SOP.

22Similar formula is also given in [9] and [14], however, without explicit dependence on the traffic
demand and the GW capacity. Herein, this dependence is clearly expressed by (7.9) and (7.10).
Note that this SOP definition is a generalization of the classical SOP (i.e., the probability of having
all GWs in outage), which is obtained when ⌈𝑟⌉ = 1 ⇒ 𝐿 = 𝑁 ⇒ 𝑃 sys

out =
∏︀

𝑛∈𝒩
𝑝𝑛; the classical SOP

is used in [15] to select the (globally) minimum number of GWs satisfying SOP-requirements.
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Proposition 7.1 (SOP monotonicity). For a given set 𝒩 of GWs, the SOP is an

increasing function of 𝑟.

Proof. Let 𝑟1 ≥ 𝑟2 ⇒ ⌈𝑟1⌉ ≥ ⌈𝑟2⌉ ⇒ 𝐿1 ≤ 𝐿2 ⇒ 𝑃 sys
out(𝐿1, 𝑁) ≥ 𝑃 sys

out(𝐿2, 𝑁).

7.2.3 SOP-Improvement Factor

Subsequently, we study the performance improvement (in terms of SOP) achieved

by an 𝑁 -GW diversity system in comparison with a single-GW system.

Definition 7.2 (SOP-improvement factor). Assuming the same ⌈𝑟⌉ = 1 and that

𝑃 sys
out(𝑁,𝑁) > 0, the SOP-improvement factor is defined as follows:

𝐼 = 𝑃 sys
out(1, 1)

𝑃 sys
out(𝑁,𝑁) = 𝑝1∏︀

𝑛∈𝒩
𝑝𝑛

=
(︃

𝑁∏︁
𝑛=2

𝑝𝑛

)︃−1

(7.11)

Obviously, it holds that 𝐼 ≥ 1.

Next, consider a diversity system with 𝑁 + 𝐾 GWs (𝐾 ∈ Z+
0 ) all of which have

the same capacity 𝑅max
GW > 0, and ⌈𝑟⌉ ∈ 𝒩 (since 1 ≤ ⌈𝑟⌉ ≤ min(𝑁,𝑁 + 𝐾) = 𝑁).

Furthermore, let 𝒦 = {𝑁 + 1, 𝑁 + 2, . . . , 𝑁 +𝐾} be the set of additional GWs, and

p𝒩 ∪𝒦 = [p𝒩 ,p𝒦] = [𝑝1, 𝑝2, . . . , 𝑝𝑁+𝐾 ] be the vector of GW outage probabilities, where

p𝒦 = [𝑝𝑁+1, 𝑝𝑁+2, . . . , 𝑝𝑁+𝐾 ]. Suppose also that {𝑋𝑖}𝑖∈𝒩 ∪𝒦 is a set of independent,

but not necessarily identically distributed, Bernoulli RVs (𝑋𝑖 ∼ Bern(𝑝𝑖), ∀𝑖 ∈ 𝒩 ∪𝒦).

Besides 𝑆𝒩 , we define the RVs 𝑆𝒦 = ∑︀
𝑘∈𝒦

𝑋𝑘 ∼ PoisBin(p𝒦) and 𝑆𝒩 ∪𝒦 = ∑︀
𝑖∈𝒩 ∪𝒦

𝑋𝑖 =

𝑆𝒩 +𝑆𝒦 ∼ PoisBin(p𝒩 ∪𝒦) denoting the total number of GWs which are in outage in

the sets 𝒦 and 𝒩 ∪ 𝒦, respectively. For this diversity system 𝐿′ = 𝑁 +𝐾− ⌈𝑟⌉ + 1 =

𝐿+𝐾, with 𝐿′ ∈ {𝐾 + 1, 𝐾 + 2, . . . , 𝐾 +𝑁}.

Proposition 7.2 (SOP reduction). Let 𝑃𝒩
out = 𝑃 sys

out(𝐿,𝑁) = P(𝑆𝒩 ≥ 𝐿) and 𝑃𝒩 ∪𝒦
out =

𝑃 sys
out(𝐿′, 𝑁 +𝐾) = P(𝑆𝒩 ∪𝒦 ≥ 𝐿′) stand for the SOP of the 𝑁-GW and (𝑁 +𝐾)-GW

diversity systems, respectively. Then, it holds that 𝑃𝒩 ∪𝒦
out ≤ 𝑃𝒩

out.

Proof. See Appendix 7.7.
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In view of this fact, we can generalize the definition of SOP-improvement factor.

Definition 7.3 (Generalized SOP-improvement factor). Assuming the same ⌈𝑟⌉ ∈ 𝒩

and that 𝑃𝒩 ∪𝒦
out > 0, we define the generalized SOP-improvement factor of the (𝑁+𝐾)-

GW over the 𝑁-GW diversity system as follows:23

𝐼g = 𝑃𝒩
out

𝑃𝒩 ∪𝒦
out

= 𝑃 sys
out(𝐿,𝑁)

𝑃 sys
out(𝐿+𝐾,𝑁 +𝐾)

⃒⃒⃒⃒
⃒
𝐿=𝑁−⌈𝑟⌉+1

(7.12)

According to Proposition 7.2, we have that 𝐼g ≥ 1.

Notice that by setting 𝑁 = 1 and 𝐾 = 𝑁 ′ − 1 (thus ⌈𝑟⌉ = 1 and 𝐿 = 1), we

obtain 𝐼g = 𝑃 sys
out(1,1)

𝑃 sys
out(𝑁 ′,𝑁 ′) = 𝐼. Finally, we would like to emphasize that by increasing

the number of GWs the SOP decreases, but higher GW connectivity is required;

such connectivity issues are very important in the design and optimization of SatNets

[16]. In other words, there is a trade-off between performance improvement and

connectivity complexity.

7.3 Exact Methods for Computing SOP

In the sequel, several techniques for the exact computation of SOP are presented.

The time complexity of these methods is summarized in Table 7.1.

7.3.1 Direct Computation

The direct computation of SOP is based on the analytic formula (7.8), which

requires
𝑁∑︀

𝑚=𝐿
|𝒞𝑚|𝑁 = 𝑁

𝑁∑︀
𝑚=𝐿

(︁
𝑁
𝑚

)︁
≤ 𝑁

𝑁∑︀
𝑚=0

(︁
𝑁
𝑚

)︁
= 2𝑁𝑁 = 𝑂(2𝑁𝑁) arithmetic oper-

ations. Because of its exponential worst-case complexity, this method is practicable

only for very small 𝑁 .

23The generalized SOP-improvement factor 𝐼g can be estimated using the approximation methods
provided in Section 7.4.
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Table 7.1: Complexity Comparison Between Exact Methods

Exact
Method

Direct
Computation CFE RF

(Algorithm 7.1)
FFT-based

Algorithm [20]
Time

Complexity 𝑂(2𝑁𝑁) Θ(𝑁2) Θ(𝐿(𝑁 − 𝐿+ 1))
= 𝑂(𝑁2) 𝑂(𝑁(log𝑁)2)

7.3.2 Closed-Form Expression

According to [17], the SOP can be calculated, using polynomial interpolation and

discrete Fourier transform (DFT), by the following closed-form expression (CFE):

𝑃 sys
out(𝐿,𝑁) = 1 − 1

𝑁+1

(︃
𝐿+ ∑︀

𝑛∈𝒩

1−𝑐−𝑛𝐿

1−𝑐−𝑛

∏︀
𝑚∈𝒩

(1 + (𝑐𝑛 − 1)𝑝𝑚)
)︃

(7.13)

where 𝑐 = 𝑒𝑗2𝜋/(𝑁+1), with 𝑗 =
√

−1 being the imaginary unit. It is interesting to

note that the CFE comprises a sum of complex numbers, but the overall outcome is a

real number in [0, 1]. The same formula is also derived in [18], using the characteristic

function of the PBD as well as the DFT. Furthermore, the computational complexity

of (7.13) is Θ(𝑁2).

7.3.3 Recursive Formula

In this part, we explore the power and beauty of recursion.

Theorem 7.2 (SOP recursive formula). The SOP is given by the following recursive

formula (RF):

𝑃 sys
out(𝐿,𝑁) = (1 − 𝑝𝑁)𝑃 sys

out(𝐿,𝑁 − 1) + 𝑝𝑁𝑃
sys
out(𝐿− 1, 𝑁 − 1) (7.14)

with initial/boundary conditions: a) 𝑃 sys
out(0, 𝑁) = 1 and b) 𝑃 sys

out(𝑁 + 1, 𝑁) = 0,

∀𝑁 ∈ Z+.

Proof. See Appendix 7.8.

It can be verified, using mathematical induction, that (7.8) is the solution of

(7.14). To the best of our knowledge, this RF is derived for the first time in [19],
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Algorithm 7.1 Exact Computation of SOP
Input: 𝑁 ∈ Z+, 𝐿 ∈ 𝒩0, and p = [𝑝1, 𝑝2, . . . , 𝑝𝑁 ] ∈ [0, 1]𝑁

Output: 𝑃 sys
out = 𝑃 sys

out(𝐿,𝑁)
1: 𝐷 := 𝑁 − 𝐿, 𝑀 := 𝐿+ 1, 𝛼 := 0𝑀 , 𝛼1 := 1, ℓ := 1
2: for 𝑖 := 1 to 𝑁 step +1 do
3: ℎ := 𝑖

4: if 𝑖 > 𝐷 + 1 then ℓ := 𝑖−𝐷 end if
5: if 𝑖 > 𝐿 then ℎ := 𝐿 end if
6: for 𝑗 := ℎ to ℓ step −1 do ◁ ℎ,ℓ: high/low index
7: 𝛼𝑗+1 := (1 − 𝑝𝑖) · 𝛼𝑗+1 + 𝑝𝑖 · 𝛼𝑗

8: end for
9: end for

10: 𝑃 sys
out := 𝛼𝑀

making use of symmetric switching functions. Our proof, however, is much simpler.

Algorithm 7.1 presents an efficient method to compute the SOP using the RF,

which follows directly from the algorithm given in [19]. The time complexity of Algo-

rithm 7.1 is Θ(𝐿(𝑁−𝐿+1)) = 𝑂(𝑁2), with best-case complexity Θ(1) for 𝐿 = 0, and

worst-case complexity Θ(𝑁2) for 𝐿 = ⌊𝑁/2⌋ and 𝐿 = ⌈𝑁/2⌉. Moreover, notice that

the complexity is Θ(𝑁) for 𝐿 = 1 and 𝐿 = 𝑁 . As a result, Algorithm 7.1 has lower

complexity in some cases than the CFE which requires Θ(𝑁2) operations regardless

of 𝐿. Finally, the space complexity of Algorithm 7.1 is Θ(𝑁 + 𝐿) = Θ(𝑁).

7.3.4 FFT-based Algorithm

An even more efficient and advanced algorithm for computing the SOP is pro-

vided in [20]. This method recursively applies the fast Fourier transform (FFT) to

compute generating function (GF) products, thus achieving an overall complexity of

𝑂(𝑁(log𝑁)2).
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In particular, the PMF of 𝑆𝒩 ∼ PoisBin(p𝒩 ) can be written in the following form:

[P(𝑆𝒩 = 0) P(𝑆𝒩 = 1) · · · P(𝑆𝒩 = 𝑁)] =

= [𝑞1 𝑝1] * [𝑞2 𝑝2] * · · · * [𝑞𝑁 𝑝𝑁 ]
(7.15)

where * stands for the convolution operation and 𝑞𝑛 = 1 − 𝑝𝑛, ∀𝑛 ∈ 𝒩 . In addition,

the GF of the Poisson-binomial PMF is given by:

𝑔(𝑧) =
∑︁

𝑛∈𝒩0

P(𝑆𝒩 = 𝑛) 𝑧𝑛 =
∏︁

𝑛∈𝒩
(𝑞𝑛 + 𝑝𝑛𝑧) =

= 𝑔𝜋

∏︁
𝑛∈𝒩

(1 + 𝑎𝑛𝑧) = 𝑔𝜋 (1 + 𝐴(𝑧))
(7.16)

where 𝑔𝜋 = ∏︀
𝑛∈𝒩

𝑞𝑛 and 𝑎𝑛 = 𝑝𝑛/𝑞𝑛, ∀𝑛 ∈ 𝒩 . Obviously, the SOP is simply the sum

of the coefficients of 𝑧𝑚 from 𝑚 = 𝐿 to 𝑁 (see Remark 7.1). Since the product of two

GF is equivalent to the convolution of two sequences formed from the GF coefficients,

the FFT can be used to compute GF products more efficiently compared to the term-

by-term calculation. The basic idea of the algorithm proposed in [20] is to apply the

FFT to compute the GF 𝐴(𝑧) using a divide-and-conquer approach. More details on

the implementation of the algorithm can be found therein.

Remark 7.2. Despite the fact that the FFT-based algorithm is more sophisticated

and has lower asymptotic complexity, CFE and Algorithm 7.1 are sufficient in the

context of SGD, where the number of GWs 𝑁 is relatively small.

7.4 Approximation Methods for Estimating SOP

Afterwards, we introduce some useful methods to approximate the SOP, exploiting

the fact that 𝑃 sys
out(𝐿,𝑁) = P(𝑆𝒩 ≥ 𝐿) = 1 − P(𝑆𝒩 ≤ 𝐿 − 1), ∀𝐿 ∈ 𝒩0. These

techniques consist of probability distributions (binomial, Poisson, normal) as well as

a Chernoff bound. For convenience, a summary of approximation methods is given in

Table 7.2.
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Table 7.2: Summary of Approximation Methods

Approximation Method SOP Approximation
Formula ̃︀𝑃 sys

out(𝐿,𝑁) Parameters/Range of 𝐿 Condition for
Higher Accuracy

Binomial Approximation (BA)a 1 −
𝐿−1∑︀
𝑚=0

(︁
𝑁
𝑚

)︁
𝑝𝑚𝑞𝑁−𝑚 𝑝 = 1

𝑁

∑︀
𝑛∈𝒩

𝑝𝑛, 𝑞 = 1 − 𝑝 (𝑁𝑝𝑞)−1𝜎2
𝒩 → 1

Poisson Approximation (PA)b 1 − 𝑒−𝜇𝒩
𝐿−1∑︀
𝑚=0

𝜇𝑚
𝒩 (𝑚!)−1 — ∑︀

𝑛∈𝒩
𝑝2

𝑛 → 0

Normal Approximation (NA) 1 − Φ (𝜁) = 𝑄 (𝜁)
𝜁 = (𝐿− 𝜇𝒩 − 0.5)𝜎−1

𝒩 𝜎2
𝒩 → ∞

Refined Normal
Approximation (RNA) min (max (1 −𝐺(𝜁), 0) , 1)

Chernoff Bound (CB) (𝜇𝒩/𝐿)𝐿𝑒𝐿−𝜇𝒩 ∀𝐿 ∈ {⌊𝜇𝒩 ⌋ + 1, ⌊𝜇𝒩 ⌋ + 2, . . . , 𝑁} —
a,b According to the numerical results (Section 7.5), BA and PA are the most appropriate approximation methods for

SGD systems operating in EHF bands.

7.4.1 Binomial Approximation (BA)

The PBD can be approximated by the binomial distribution [24] in the following

sense, defining 𝑝 = 1
𝑁

∑︀
𝑛∈𝒩

𝑝𝑛, 𝑞 = 1 − 𝑝, and assuming 𝑝 ∈ (0, 1):

a) 𝑑TV(𝑆𝒩 , 𝑌 ) ≤ (𝑁/(𝑁 + 1))(1 − 𝑝𝑁+1 − 𝑞𝑁+1)𝛿𝒩 , where 𝑌 ∼ Bin(𝑁, 𝑝) and

𝛿𝒩 = 1 − (𝑁𝑝𝑞)−1𝜎2
𝒩 , and b) 𝑑TV(𝑆𝒩 , 𝑌 ) → 0 if and only if (iff) 𝛿𝒩 → 0 (or,

equivalently, (𝑁𝑝𝑞)−1𝜎2
𝒩 → 1). It is interesting to note that when 𝑝𝑛 = 𝑝, ∀𝑛 ∈ 𝒩 ,

it holds that: 𝑝 = 𝑝, 𝑞 = 1 − 𝑝 and 𝜎2
𝒩 = 𝑁𝑝𝑞 ⇒ 𝛿𝒩 = 0 ⇒ 𝑑TV(𝑆𝒩 , 𝑌 ) = 0 ⇒

𝑆𝒩 ∼ Bin(𝑁, 𝑝), which is in agreement with Section 7.1.5.2. Hence, the BA is given

by:

𝑃 sys
out(𝐿,𝑁) ≈ 1 − P(𝑌 ≤ 𝐿− 1) = 1 −

𝐿−1∑︀
𝑚=0

(︁
𝑁
𝑚

)︁
𝑝𝑚(1 − 𝑝)𝑁−𝑚 (7.17)

7.4.2 Poisson Approximation (PA)

In 1960, Le Cam [25] established a remarkable inequality: 𝑑TV(𝑆𝒩 , 𝑍) ≤ ∑︀
𝑛∈𝒩

𝑝2
𝑛,

where 𝑍 ∼ Pois(𝜇𝒩 ). It is obvious that if ∑︀
𝑛∈𝒩

𝑝2
𝑛 → 0, then 𝑑TV(𝑆𝒩 , 𝑍) → 0. As

reported in [26], Le Cam’s theorem/inequality admits various proofs using different

techniques. Consequently, we have that:

𝑃 sys
out(𝐿,𝑁) ≈ 1 − P(𝑍 ≤ 𝐿− 1) = 1 − 𝑒−𝜇𝒩

𝐿−1∑︀
𝑚=0

𝜇𝑚
𝒩 (𝑚!)−1 (7.18)
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7.4.3 Normal Approximation (NA)

According to [21], the central limit theorem (CLT) for the PBD states that:

lim
𝑁→∞

Δ𝒩 = 0 (asymptotic normality of (𝑆𝒩 − 𝜇𝒩 )𝜎−1
𝒩 ) iff lim

𝑁→∞
𝜎2

𝒩 = ∞, where

Δ𝒩 = sup
𝑠∈R

⃒⃒⃒
P(𝑆𝒩 ≤ 𝑠) − Φ

(︁
(𝑠− 𝜇𝒩 )𝜎−1

𝒩

)︁⃒⃒⃒
. Therefore, by applying a continuity cor-

rection,24 the SOP can be approximated by:

𝑃 sys
out(𝐿,𝑁) ≈ 1 − Φ(𝜁) = 𝑄(𝜁) (7.19)

where 𝜁 = (𝐿− 𝜇𝒩 − 0.5)𝜎−1
𝒩 .

7.4.4 Refined Normal Approximation (RNA)

Consider the following function:

𝐺(𝑥) = Φ(𝑥) + 𝜈𝒩 (6𝜎3
𝒩 )−1(1 − 𝑥2)𝜙(𝑥) (7.20)

According to [21–23], there exists a constant 𝐶 < ∞ such that Δ′
𝒩 =

sup
𝑠∈R

⃒⃒⃒
P(𝑆𝒩 ≤ 𝑠) −𝐺

(︁
(𝑠− 𝜇𝒩 )𝜎−1

𝒩

)︁⃒⃒⃒
≤ 𝐶𝜎−2

𝒩 = 𝑂(𝜎−2
𝒩 ). Observe that lim

𝑁→∞
Δ′

𝒩 = 0,

when lim
𝑁→∞

𝜎2
𝒩 = ∞. As a result, by applying the continuity correction once more,

we obtain the following approximation:

𝑃 sys
out(𝐿,𝑁) ≈ min

(︁
max

(︁ ̂︀𝑃 sys
out(𝐿,𝑁), 0

)︁
, 1
)︁

(7.21)

where ̂︀𝑃 sys
out(𝐿,𝑁) = 1 − 𝐺(𝜁) and 𝜁 = (𝐿 − 𝜇𝒩 − 0.5)𝜎−1

𝒩 . Note that we make use

of the above min-max formula in order to ensure that 𝑃 sys
out(𝐿,𝑁) ∈ [0, 1], becausê︀𝑃 sys

out(𝐿,𝑁) may be outside the interval [0, 1] in some cases.

24In probability theory, a continuity correction is an adjustment that is made when a discrete
(probability) distribution is approximated by a continuous distribution. In particular, suppose that
the continuous RV 𝑌 approximates the discrete RV 𝑋. Then, P(𝑋 ≤ 𝑚) = P(𝑋 ≤ 𝑚 + 0.5) ≈
P(𝑌 ≤ 𝑚 + 0.5), ∀𝑚 ∈ Z.
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7.4.5 Chernoff Bound (CB)

A Chernoff (upper) bound can be constructed using a result given in [27] which

states that: P (𝑆𝒩 ≥ (1 + 𝛿)𝜇𝒩 ) ≤
(︁
𝑒𝛿/(1 + 𝛿)1+𝛿

)︁𝜇𝒩 , ∀𝛿 > 0. Specifically, by setting

(1 + 𝛿)𝜇𝒩 = 𝐿 and assuming 𝜇𝒩 > 0, we obtain:

𝑃 sys
out(𝐿,𝑁) ≤ (𝜇𝒩/𝐿)𝐿𝑒𝐿−𝜇𝒩 (7.22)

which holds ∀𝐿 ∈ {⌊𝜇𝒩 ⌋ + 1, ⌊𝜇𝒩 ⌋ + 2, . . . , 𝑁}, since 𝛿 > 0 ⇔ 𝐿 > 𝜇𝒩 ⇔ 𝐿 > ⌊𝜇𝒩 ⌋

⇔ 𝐿 ≥ ⌊𝜇𝒩 ⌋ + 1.

7.5 Numerical Results and Discussion

In this section, all results present statistical averages derived from 103 independent

system configurations, where the GW outage probabilities {𝑝𝑖}𝑖∈𝒩 ∪𝒦 are uniformly

distributed in (0, 0.02), i.e., 98% to 100% link availability.

7.5.1 SOP Analysis

Firstly, we study the SOP as a function of the number of GWs, 𝑁 , and the ratio

of the traffic demand to the GW capacity, 𝑟. As shown in Fig. 7-1, the SOP increases

with ⌈𝑟⌉ for all values of 𝑁 , which is in accordance with Proposition 7.1. Moreover,

for any fixed ⌈𝑟⌉, we can observe that the SOP decreases with the increase of 𝑁 (see

Proposition 7.2). Nevertheless, as mentioned at the end of Section 7.2.3, this SOP

improvement is achieved in exchange for higher connectivity complexity.

Secondly, we examine the performance enhancement achieved by a (5 + 𝐾)-GW

compared to a 5-GW diversity system by means of the generalized SOP-improvement

factor (where 𝐾 ∈ {1, 2, 3, 4} is the number of additional GWs). Specifically, as

illustrated in Fig. 7-2, 𝐼g decreases with the increase of ⌈𝑟⌉ for every value of 𝐾.

Furthermore, for a given ⌈𝑟⌉, larger number of additional GWs results in higher

performance improvement.

99



Chapter 7 7.5. Numerical Results and Discussion

Figure 7-1: System outage probability, 𝑃 sys
out , (calculated using Algorithm 7.1) versus

the ceiling of 𝑟 (the ratio of the traffic demand to the GW capacity).

Figure 7-2: Generalized SOP-improvement factor, 𝐼g, (computed using Algorithm
7.1), in comparison with a diversity system consisting of 𝑁 = 5 GWs, versus the
ceiling of 𝑟 (the ratio of the traffic demand to the GW capacity).

7.5.2 Performance of Approximation Methods

In order to evaluate the accuracy of a probability distribution and the tight-

ness/sharpness of the Chernoff bound, we define the maximum absolute error (maxAE),
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the root-mean-square error (RMSE), and the mean absolute error (MAE) as follows:

𝜖max(𝑁) = max
𝐿∈𝒮

⃒⃒⃒
𝑃 sys

out(𝐿,𝑁) − ̃︀𝑃 sys
out(𝐿,𝑁)

⃒⃒⃒
(7.23)

𝜖rms(𝑁) =
√︃

1
|𝒮|

∑︁
𝐿∈𝒮

(︁
𝑃 sys

out(𝐿,𝑁) − ̃︀𝑃 sys
out(𝐿,𝑁)

)︁2
(7.24)

𝜖mean(𝑁) = 1
|𝒮|

∑︁
𝐿∈𝒮

⃒⃒⃒
𝑃 sys

out(𝐿,𝑁) − ̃︀𝑃 sys
out(𝐿,𝑁)

⃒⃒⃒
(7.25)

where ̃︀𝑃 sys
out(𝐿,𝑁) is the approximate SOP. Moreover, for probability distributions

𝒮 = 𝒩0 (with |𝒮| = 𝑁 + 1), while for CB 𝒮 = {⌊𝜇𝒩 ⌋ + 1, ⌊𝜇𝒩 ⌋ + 2, . . . , 𝑁} (with

|𝒮| = 𝑁 − ⌊𝜇𝒩 ⌋ ≥ 1). In general, it holds that 𝜖max(𝑁) ≥ 𝜖rms(𝑁) ≥ 𝜖mean(𝑁).

Fig. 7-3 presents the accuracy of approximation methods, in terms of maxAE,

RMSE and MAE, versus the number of GWs. It can be observed that the approxi-

mation methods in descending-performance (or, equivalently, ascending-error) order

are as follows: {BA, PA, NA, RNA, CB}. More specifically, BA and PA significantly

outperform the other methods (the achieved errors are of the order of 10−4 or 10−5),

while CB exhibits the lowest accuracy. At this point, we would like to give an ex-

planation of the performance of BA, PA, NA and RNA. In practice, the number of

GWs is relatively small (𝑁 ≈ 4 to 7) and all the GW outage probabilities are very

close to zero (i.e., 𝑝𝑛 ≈ 0, ∀𝑛 ∈ 𝒩 ⇒ 𝑝1 ≈ 𝑝2 ≈ · · · ≈ 𝑝𝑁). As a result, the variance

𝜎2
𝒩 = ∑︀

𝑛∈𝒩
𝑝𝑛(1 − 𝑝𝑛) and the quantity ∑︀

𝑛∈𝒩
𝑝2

𝑛 are quite small, while 𝜎2
𝒩 ≈ 𝑁𝑝𝑞 (see

Section 7.4.1). Finally, according to Table 7.2, it is clear that the condition for higher

accuracy of BA/PA is well satisfied, whereas that of NA/RNA is not. In summary,

BA and PA are the most suitable approximation methods for SGD systems.

7.6 Conclusion

In this chapter, we have studied in depth the LS-SGD scheme, which has been

recently introduced in SatNets. Furthermore, a number of useful mathematical tools

have been presented in order to compute and approximate the SOP. Finally, based on

the numerical results, we conclude that the SOP can be well approximated by BA and
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(a) (b)

(c)

Figure 7-3: Accuracy comparison of approximation methods: (a) maximum absolute
error, (b) root-mean-square error, and (c) mean absolute error versus the number of
GWs.

PA, since these methods achieve remarkable accuracy. Such approximations may be

useful for simplifying and solving hard optimization problems with SOP-constraints

in SGD-based SatNets.

102



7.7. Appendix-A: Proof of Proposition 7.2 Chapter 7

7.7 Appendix-A: Proof of Proposition 7.2

By virtue of the law/theorem of total probability, we obtain:

𝑃𝒩 ∪𝒦
out = P(𝑆𝒩 + 𝑆𝒦 ≥ 𝐿+𝐾) =

=
𝐾∑︁

𝑗=0
P(𝑆𝒦 = 𝑗)P(𝑆𝒩 + 𝑆𝒦 ≥ 𝐿+𝐾|𝑆𝒦 = 𝑗) =

=
𝐾∑︁

𝑗=0
P(𝑆𝒦 = 𝑗)P(𝑆𝒩 ≥ 𝐿+𝐾 − 𝑗) =

=
𝐾∑︁

𝑗=0
P(𝑆𝒦 = 𝑗) [P(𝑆𝒩 ≥ 𝐿) − P(𝐿 ≤ 𝑆𝒩 ≤ 𝐿+𝐾 − 𝑗 − 1)] ≤

≤ P(𝑆𝒩 ≥ 𝐿)
𝐾∑︁

𝑗=0
P(𝑆𝒦 = 𝑗)

⏟  ⏞  
=1

= P(𝑆𝒩 ≥ 𝐿) = 𝑃𝒩
out

(7.26)

and the proposition follows.

7.8 Appendix-B: Proof of Theorem 7.2

Firstly, the initial conditions of the RF are trivially true. Secondly, from the

law/theorem of total probability, the SOP 𝑃 sys
out(𝐿,𝑁) = P(𝑆𝒩 ≥ 𝐿) can be written as

follows:

𝑃 sys
out(𝐿,𝑁) =

1∑︁
𝑗=0

P(𝑋𝑁 = 𝑗)P(𝑆𝒩 ≥ 𝐿|𝑋𝑁 = 𝑗) =

=
1∑︁

𝑗=0
P(𝑋𝑁 = 𝑗)P(𝑆𝒩 ∖{𝑁} ≥ 𝐿− 𝑗) =

= P(𝑋𝑁 = 0)P(𝑆𝒩 ∖{𝑁} ≥ 𝐿) + P(𝑋𝑁 = 1)P(𝑆𝒩 ∖{𝑁} ≥ 𝐿− 1)

(7.27)

where 𝑆𝒩 ∖{𝑁} = ∑︀
𝑛∈𝒩 ∖{𝑁}

𝑋𝑛 = 𝑆𝒩 − 𝑋𝑁 . Due to the fact that P(𝑋𝑁 = 0) = 1 − 𝑝𝑁

and P(𝑋𝑁 = 1) = 𝑝𝑁 , we get (7.14) and this completes the proof.
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Chapter 8

General Conclusions

and Open Problems

8.1 General Conclusions

In this Doctoral Thesis, setting human and nature as the key pillars, we have

dealt with the environmentally-aware design of wireless networks, which definitely

constitutes a new research direction. By taking into consideration environmental

factors, the proposed EE-optimization algorithms aim to satisfy the traffic demand

of users with the lowest energy consumption. In other words, the primary goal is to

build green communication networks that provide high-quality services, while keeping

the electromagnetic radiation at safety levels and reducing the carbon-dioxide (CO2)

emissions (low carbon footprint). Moreover, the operational expenditure (OPEX) of

network service providers as well as the mass of satellites can be significantly reduced.

In addition, the designed algorithms are able to prolong the battery lifetime of users’

devices and can be used in applications with strict computation-time requirements

(due to their low complexity and fast convergence). In any case, the contribution

of this Dissertation is just a small piece of the puzzle and should be combined with

further research in order to make this scientific challenge a reality.

Furthermore, we have showed that the optimum selection of GSs in RF/optical

satellite networks with site diversity (under availability constraints) is an NP-hard
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problem. Also, we have developed global optimization algorithms (B&B and DP) as

well as a polynomial-time approximation algorithm with provable performance guar-

antee. These algorithms might be useful in the initial network design, since they can

provide significant cost savings in terms of the installation of GSs. Finally, we have

studied in detail the performance of a load-sharing SGD (LS-SGD) architecture in

satellite networks, which has been recently proposed in the literature. For this di-

versity scheme, several methods for the exact and approximate calculation of system

outage probability (SOP) have been presented.

8.2 Open Problems

The algorithms presented in this Dissertation can be applied in several types of

wireless networks as well as in other scientific fields. Subsequently, some interesting

research directions stemming from this work are discussed.

∙ Design of new EE-optimization algorithms: The SCO method achieves a KKT

solution (first-order optimality guarantee), which is a necessary (provided that

some regularity conditions are satisfied) but not a sufficient condition for global

optimality. As a result, it would be very useful to design optimization algorithms

with higher-order guarantees, or even global optimization algorithms that can be

used as a benchmark in order to evaluate the performance of suboptimal algo-

rithms. Recently, the successive incumbent transcending (SIT) algorithm [1],

the framework of mixed monotonic programming (MMP) which generalizes

monotonic optimization [2], and the branch-and-bound (B&B) method [3] have

been used to develop global optimization algorithms (with exponential com-

plexity) for various EE-metrics in wireless networks. In summary: Are there

low-complexity algorithms with higher-order optimality guarantees or global op-

timization algorithms with faster convergence?

∙ Joint resource allocation for EE maximization: Due to the fact that next-

generation wireless networks require full exploitation of the available resources,
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an important research direction is the study of joint resource allocation problems

(in this Thesis, we have only dealt with power control strategies). For exam-

ple, transmit power could be optimized together with other resources, such as

SC/time-slot allocation and BS/relay selection. In general, these mixed-integer

optimization problems (i.e., with integer and continuous variables) are NP-hard

and probably very difficult to solve.

∙ Design of global optimization algorithms for GSs selection in SatNets, consid-

ering the spatial correlation between sites: In this Dissertation, the weather

conditions in the candidate locations are assumed independent. Nevertheless,

the spatial correlation between sites is very important in practice, since it may

have a significant impact on the network availability (especially when the GSs

are relatively close to each other) [4]. Due to the fact that the optimization

problem with independent weather conditions has been proven to be NP-hard,

the general problem with spatially-correlated sites is NP-hard as well. Moreover,

the existing methods that take into account the spatial correlation between sites

are heuristic algorithms without performance guarantees [5–7]. Consequently, it

would be very useful to develop global optimization algorithms for GSs selection

in spatially-correlated SatNets.

∙ Optimal selection of GWs in SGD-based SatNets: In Chapter 7, we have stud-

ied the load-sharing SGD architecture, which has been recently proposed in the

literature [8, 9] in order to provide very high availability and throughput with

reasonable cost. An interesting research direction is the selection of smart-GWs

that minimize the total installation cost, satisfying given SOP-requirements.

This combinatorial problem might be solved using advanced algorithm design

techniques and the approximation formulas of SOP presented in Chapter 7.

Therefore, the following questions should be answered: 1) What is the compu-

tational complexity of this problem? and 2) Are there global optimization algo-

rithms or approximation algorithms (i.e., with provable performance guarantees)

that achieve remarkable trade-offs between performance and complexity?
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