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Περίληψη
Σε αυτή τη διπλωματική εργασία θα εξετάσουμε τη σύγκλιση no-regret διακριτών αλγορίθμων
σε σημεία Nash ισορροπίας, μελετώντας πεπερασμένα παίγνια N παικτών. Παρά το αυξανόμενο
ενδιαφέρον μελέτης των no-regret αλγορίθμων, λόγω των πολυποίκιλων εφαρμογών τους, λίγα
είναι γνωστά για την πραγματική συμπεριφορά τους (long-run behavior) σε περιβάλλοντα όπου
εμπλέκονται πολλοί παίκτες· ενώ συνήθως τα μέχρι τώρα γνωστά αποτελέσματα αφορούν συ-
γκεκριμένες κλάσεις παιγνίων. Σε αυτή τη διπλωματική αντί να εστιάσουμε σε μία συγκεκριμένη
κλάση παιγνίων, θα εστιάσουμε στις διαφορετικές κατηγορίες σημείων Nash ισορροπίας. Συγκε-
κριμένα, θα μελετήσουμε το σύνολο των αλγορίθμων ”Follow the Regularized Leader” (FTRL) με
διαφορετικές θορυβόδεις ανατροφοδοτήσεις σήματος - από την περίπτωση οπού οι παίκτες έχουν
πρόσβαση σε ενα oracle, μέχρι και την bandit περίπτωση, όπου οι παίκτες έχουν πρόσβαση μόνο
σε μία τιμή. Σε αυτό το πλαίσιο, θα εδραιώσουμε την εξής ισοδυναμία: ένα σήμειο Nash ισορροπίας
είναι ευσταθές αν και μόνο αν είναι ένα strict σημείο Nash ισορροπίας.

Λέξεις κλειδιά: Θεωρία παιγνίων, Follow the Regularized Leader, Εκμάθηση σε περιβάλλοντα
πολλών παικτών, Bandits.
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Abstract
In this diploma thesis, we examine the Nash equilibrium convergence properties of no-regret
learning in general N -player games. Despite the importance and widespread applications of
no-regret algorithms, their long-run behavior in multi-agent environments is still far from
understood, and most of the literature has focused by necessity on certain, specific classes of
games (typically zero-sum or congestion games). Instead of focusing on a fixed class of games, we
instead take a structural approach and examine different classes of equilibria in generic games.
For concreteness, we focus on the archetypal ”follow the regularized leader” (FTRL) class of
algorithms, and we consider the full spectrum of information uncertainty that the players may
encounter – from noisy, oracle-based feedback, to bandit, payoff-based information. In this
general context, we establish a comprehensive equivalence between the stability of a Nash
equilibrium and its support: a Nash equilibrium is stable and attracting with arbitrarily high
probability if and only if it is strict (i.e., each equilibrium strategy has a unique best response).
This result extends existing continuous-time versions of the ”folk theorem” of evolutionary game
theory to a bona fide discrete-time learning setting, and provides an important link between
the literature on multi-armed bandits and the equilibrium refinement literature.

Keywords: Online Learning, Follow the Regularized Leader, Game Theory, Multi-agent Learning,
Bandits.
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Chapter 1

Εκτεταμένη Ελληνική
Περίληψη

Αυτό το κεφάλαιο περιλαμβάνει μία περιληπτική παρουσιάση των περιεχομένων αυτής της διπλωμα-
τικής εργασίας στα ελληνικά. Εισάγουμε όλες τις βασικές έννοιες που παρουσιάζονται στο κύριο
μέρος του κειμένου της διπλωματικής αυτής στα αγγλικά. Ωστόσο, δεν δίνουμε ούτε αποδείξεις
ούτε τεχνικές λεπτομέρειες. Αυτές δίνονται εκτενώς στα appendices.

1.1 Παίγνια Ν-παικτών & Σημεία ισορροπίας
1.1.1 Πεπερασμένα παίγνια σε κανονική μορφή
Σε αυτή τη διπλωματική εργασία θα εστιάσουμε σε πεπερασμένα παίγνια σε κανονική μορφή.

Ορισμός 1. Ένα τέτοιο παίγνιο ορίζεται σαν μία τούπλα Γ = Γ(N ,A, u) με τα εξής στοιχεία:

• Ένα πεπερασμένο σύνολο παικτών που απαριθμείται ως i ∈ N = {1, . . . , N}.

• Ένα πεπερασμένο σύνολο από αμιγείς στρατηγικές που απαριθμείται ως αi ∈ Ai = {1, . . . , Ai},
i ∈ N . Οι παίκτες μπορούν επίσης να παίζουν μικτές στρατηγικές, οι οποίες αναπαριστούν
πιθανοτικές κατανομές πάνω στο σύνολο των αμιγών στρατηγικών τους και συμβολίζονται
ως xi ∈ Xi := ∆(Ai)

1· σε αυτή την περίπτωση, με xiαi
συμβολίζουμε την πιθανότητα με

την οποία ο παίκτης i ∈ N selects αi ∈ Ai. Επιπλέον, αναφερόμενοι στο σύνολο των παι-
κτών, θα γράφουμε x = (x1, . . . , xN ) για ένα μικτό προφίλ στρατηγικών και X :=

∏
i Xi

για το σύνολο στο οποίο ανήκουν όλα τα προφίλ αυτά. Τέλος, όταν θέλουμε να εστιά-
σουμε στην στρατηγική ενός μόνο παίκτη i ∈ N , θα χρησιμοποιούμε τη συντομογραφία
(xi;x−i) := (x1, . . . , xi, . . . , xN ) – και αντιστοίχως, (αi;α−i) για αμιγείς στρατηγικές.

• Ένα σύνολο συναρτήσεων πληρωμής ui : A → R όπου A :=
∏

i Ai είναι ο χώρος όλων των
προφίλ αμιγών στρατηγικών. Η αναμενόμενη πληρωμή του παίκτη i ως πρός ένα προφίλ μικτών
στρατηγικών x ∈ X είναι

ui(x) ≡ ui(xi;x−i) =
∑

α1∈A1

· · ·
∑

αN∈AN

ui(α1, . . . , αN ) · x1,α1
· · ·xN,αN

(1.1)

1Με ∆ συμβολίζουμε το simplex; μία αναπαράσταση του οποίου φαίνεται στην εικόνα 3.1
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2 CHAPTER 1. Εκτεταμένη Ελληνική Περίληψη

όπου ui(α1, . . . , αN ) είναι η πληρωμή του παίκτη i στο προφίλ αμιγών στρατηγικών α =
(α1, . . . , αN ) ∈ A.

Επιπλέον θα γράφουμε viαi
(x) = ui(αi;x−i) για την πληρώμη που ο παίκτης i θα εκλάμβανε αν

επέλεγε να παίξει τη στρατηγική αi ∈ Ai εναντίον του προφίλ μικτών στρατηγικών x−i όλων των
άλλων παικτών. Έτσι, το μικτό διάνυσμα πληρωμών του i−στου παίκτη είναι

vi(x) = (viαi
(x))αi∈Ai

(1.2)

και θα γράφουμε v(x) = (v1(x), . . . , vN (x)) για το σύνολο αυτών. Για απλότητα στο συμβολισμό,
θα ορίσουμε Yi = RAi και Y =

∏
i Yi για το χώρο των διανυσμάτων πληρωμών και των προφίλ

αυτών αντιστοίχως. Τέλος, θα αναγνωρίζουμε την αμιγή στρατηγική αi ως τη μικτή στρατηγική
που αναθέτει πιθανότητα 1 στην αi, και θα ορίσουμε το αντίστοιχο αμιγές διάνυσμα πληρωμής
ως vi(α) = (ui(αi;α−i))αi∈Ai . Η διαφορά μεταξύ αμιγών και μικτών διανυσμάτων πληρωμής θα
αποκτήσει σημασία στη συνέχεια.

1.1.2 Σημεία Nash ισορροπίας
Η πιο γνωστή έννοια λυσης σε παίγια είναι αυτη του σημείου Nash ισορροπίας, δηλαδή ένα προφίλ
μικτής στρατηγικής το όποιο αποθαρρύνει τους παίκτες μονομερώς να επιλέξουν κάποια άλλη
στρατηγική. Ο Nash απέδειξε στο [1] ότι όλα τα πεπερασμένα παίγνια N−παικτών επιδέχονται
τουλάχιστον ένα σημείο Nash ισορροπίας.

Ορισμός 2. Ένα σημείο x∗ είναι ένα σημείο Nash ισορροπίας του παιγνίου Γ αν

ui(x
∗) ≥ ui(xi;x

∗
−i) για κάθε xi ∈ Xi και για κάθε i ∈ N . (NE)

Το σύνολο των αμιγών στρατηγικών που υποστηρίζονται στη συνιστώσα του σημείου ισορροπίας
x∗i ∈ Xi για κάθε παίκτη, θα συμβολίζεται ως supp(x∗i ) = {αi ∈ Ai : x

∗
iαi

> 0}. Αντιστοίχως, τα
σημεία Nash ισορροπίας μπορούν να χαρακτηριστούν μέσω της ανισότητας

viα∗
i
(x∗) ≥ viαi(x

∗) για κάθε α∗
i ∈ supp(x∗i ) και για κάθε αi ∈ Ai, i ∈ N . (1.3)

Απόρροια του παραπάνω χαρακτηρισμού των σημείων Nash ισορροπίας είναι η ακόλουθη ταξινό-
μηση αυτών:

• x∗ είναι ένα αμιγές σημείο ισορροπίας αν το supp(x∗i ) περιέχει μία μόνο στρατηγική για
κάθε παίκτη i ∈ N .

• x∗ είναι ένα σημείο μικτής ισορροπίας σε οποιαδήποτε άλλη περίπτωση· συγκεκριμένα, αν
το supp(x∗i ) = Ai για κάθε i ∈ N , τότε το x∗ καλείται πλήρως μικτό.

Εξ ορισμού, τα σημεία αμιγής ισορροπίας αντιστοιχούν σε κορυφές του χώρου By definition X ,
ένω τα πλήρως μικτά σημεία ισορροπίας βρίσκονται στο σχετικό εσωτερικό ri(X ) του χώρου X ,
και γενικότερα τα σημεία μικτής ισορροπίας βρίσκονται στο σχετικό εσωτερικό του πορτρέτου που
γεννάται από το supp(x∗i ) του κάθε παίκτη.
Μία άλλη ταξινόμηση των σημείων Nash ισορροπίας πηγάζει από την ανισότητα (1.3) και έχει ως
εξής: αν αυτή η ανισότητα 1.3 είναι αυστηρή για κάθε αi ∈ Ai \ supp(x∗i ), i ∈ N , το αντίστοιχο
σημείο ισορροπίας καλείται σχεδόν-αυστηρό [6]. Τα σχεδόν-αυστηρά σημεία ισορροπίας έχουν την
ιδιότητα ότι όλες οι καλύτερες στρατηγικές επιλέγονται με θετική πιθανοητα. Σημειώνεται ότι τα
σχεδόν-αυστηρά σημεία ισορροπίας μπορεί να είναι είτε μικτά είτε αμιγή. Τα αμίγη σχεδόν-αυστηρά
σημεία ισορροπίας θα καλούνται απλώς αυστηρά.

2
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1.2 Ελαχιστοποίηση regret και Εξομάλυνση
Μία βασική απαίτηση στο πεδίο της ενεργούς εκμάθησης είναι η ελαχιστοποίηση του regret των
παικτών, δηλαδή της διαφοράς τωνν συσσωρευμένων πληρωμών μεταξύ της στρατηγικής ενός
παίκτη και της καλύτερης στρατηγικής που θα μπορούσε να έχει διαλέξει εκ των υστέρων σε
βάθος ενός χρονικού ορίζοντα T . Αυστηρά μιλώντας, δοθείσας μίας ακολουθίας του παιγνίου
Xn ∈ X , n = 1, 2, . . . , το (εξωτερικό) regret του κάθε παίκτη i ∈ N ορίζεται ως

Regi(T ) = max
xi∈Xi

T∑
n=1

[ui(xi;X−i,n)− ui(Xi,n;X−i,n)] (1.4)

και θα λέμε ότι ο παίκτης i δεν έχει regret αν Regi(T ) = o(T ).
Ένα από τα πιο γνωστά χρησιμοποιούμενα σχήματα ενεργής εκμάθησης για να επιτευχθεί αυτή
η απαίτηση είναι η οικογένεια αλγορίθμων Follow the Regularized Leader (FTRL) [35, 22]. Συ-
γκεκριμένα, σε κάθε βήμα της διαδικασίας εκμάθησης ο αλγόριθμος (FTRL) αποδίδει τη μικτή
στρατηγική που μεγιστοποιεί τη συσσωρευμένη πληρωμή του παίκτη σε συνδυασμό με έναν εξο-
μαλυντή. Έχουμε λοιπόν της εξής βήμα προς βήμα απεικόνιση

Xi,n = Qi(Yi,n)

Yi,n+1 = Yi,n + γnv̂i,n
(FTRL)

όπου Qi : Yi → Xi είναι η συνάρτηση επιλογής του παίκτη i ∈ N , γn > 0 είναι ο ρυθμός
εκμάθησης, τέτοιος ώστε

∑
n γn = ∞, και v̂i,n είναι ένα ”σήμα πληρωμής” που παρέχει μία εκτίμηση

των μικτών πληρωμών του παίκτη i στο βήμα n. Παρακάτω συζητάμε αναλυτικά όλες αυτές τις
συνιστώσες.

1.2.1 Μοντέλο ανατροφοδότησης
Έχοντας ως στόχο να συμπεριλάβουμε διαφορετικού τύπου ανατροφοδοτήσεις στο μοντέλο μας,
κάνουμε τις παρακάτω συνηθισμένες υποθέσεις το σήμα πληρωμής:

v̂n = v(Xn) + ξn (1.5)
για κάποια γενική διαδικασία λάθους ξn = (ξi,n)i∈N . Για να διαχωρίσουμε μεταξύ του μηδενικής
μέσης τιμής και μη μηδενικής μέσης τιμής λάθος, αναλύουμε περαιτέρω το ξn σε ξn = Zn + bn,
όπου

bn = E[ξn | Fn] and E[Zn | Fn] = 0 (1.6)
όπου Fn περιλαμβάνει γνώση για όλα τα Xn μέχρι και το βήμα n 2. Έτσι για το σήμα ανατροφο-
δότησης v̂n χαρακτηρίζεται μέσω των παρακάτω στατιστικών

a) Συστηματικό σφάλμα: E[‖bn‖∗ | Fn] ≤ Bn (1.7αʹ)
b) Απόκλιση: E[‖v̂n‖2∗ | Fn] ≤M2

n (1.7βʹ)

όπου Bn και Mn είναι ντετερμινιστικά φράγματα του συστηματικού σφάλματος και της απόκλισης
του σήματος ανατροφοδότησης v̂n. Επιπλέον, θεωρούμε ως δεδομένες τις παρακάτω υποθέσεις:
(A1) Έλεγχος του συστηματικού σφάλματος: limn→∞Bn = 0 and

∑
n γnBn <∞.

(A2) Έλεγχος της απόκλισης:
∑

n γ
2
nM

2
n <∞.

2Φυσικά, αφού το σήμα ανατροφοδότησης γεννάται μετά την επιλογή στρατηγικής από τους παίκτες, v̂n
δεν είναι Fn-μετρήσιμο στη γενική περίπτωση.
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(A3) Κοινότυπες παρατηρήσεις λάθους στο σημείο ισορροπίας: Για κάθε μικτό σημείο ισορροπίας
Nash x∗ του Γ και για κάθε n = 1, 2, . . . , υπάρχει ένας παίκτης i ∈ N και στρατηγικές
a, b ∈ supp(x∗i ) τέτοια ώστε

P(|v̂ia,n − v̂ib,n| ≥ β | Fn) > 0 για κάθε επαρκώς μικρό β > 0. (1.8)

Αυτές οι υποθέσεις είναι αρκετά γενικές και επιτρέπουν ένα μεγάλο εύρος διαφορετικών μοντέλων
ανατροφοδότησης.

1.2.2 Εξομάλυνση
Η δεύτερη συνιστώσα του (FTRL) είναι οι συναρτήσεις επιλογής των παικτών Qi : Yi → Xi.
Με στόχο την αποφυγή πρόωρης προσκόλησης σε μία συγκεκριμένη στρατηγική Qi ορίζεται
ως μία “εξομαλυσμένη” εκδοχή της καλύτερης απόκρισης yi 7→ argmaxxi∈Xi

{〈yi, xi〉}. Έτσι,
επικεντρωνόμαστε στις εξομαλυσμένες καλύτερες αποκρίσεις που ορίζονται ως

Qi(yi) = argmax
xi∈Xi

{〈yi, xi〉 − hi(xi)}. (1.9)

Ο εξομαλυντής κάθε παίκτη hi : Xi → R ορίζεται ως hi(xi) =
∑

αi∈Ai
θi(xi) για κάποια συνάρ-

τηση πυρήνα θi : [0, 1] → R που έχει τις εξής ιδιότητες:
(i) θi είναι συνεχής στο [0, 1]

(ii) C2-ομαλή στο (0, 1]

(iii) inf[0,1] θ′′i > 0.
Φυσικά διαφορετικοί εξομαλυντές συνεπάγονται διαφορετικές εκδοχές του (FTRL). Παρακάτω
παρουσιάζουμε δυο χαρακτηριστικά παραδείγματα.
Example 1.2.1 (Multiplicative/Exponential weights update). Μία γνωστή επιλογή εξομα-
λυντή είναι η αρνητική εντροπία hi(x) =

∑
i xi logxi, που οδηγεί στη συνάρτηση επιλογής

Λi(y) = exp(yi)/
∑

j exp(yj) και ακολούθως στον αλγόριθμο γνωστό ως multiplicative weights
update (MWU), cf. [19, 50, 21, 20, 22].
Example 1.2.2 (Euclidean projection). Μία άλλη συνηθισμένη επιλογή εξομαλυντή είναι η τε-
τραγωνική hi(x) =

∑
i xi

2/2, η οποία συνεπάγεται τη συνάρτηση επιλογής �i(y) = argminx∈∆‖y−
x‖2, cf. [23, 25].

1.3 Αποτελέσματα
Στόχος μας είναι να μελετήσουμε τη σε βάθος χρόνου συμπεριφορά του (FTRL). Η ερώτηση που
θα μας απασχολήσει είναι Ποια σημεία Nash ισορροπίας έχουν ιδιότητες σύγκλισης και ευστάθειας
οι οποίες δεν επηρεάζονται από την αβεβαιότητα που περικλείεται στο σήμα ανατροφοδότησης;

1.3.1 Ασυμπτωτική Ευστάθεια
Αρχικά, αξίζει να σημειωθεί ότι σε γενικά παίγνια μπορεί να υπάρχουν πάνω από ένα σημεία Nash
ισορροπίας, είτε μικτά είτε αμιγή ή και τα δύο. Ως εκ τούτου τα αποτελέσματα μας είναι λογικό
να ισχύουν τοπικά· έτσι θα εστιάσουμε στην έννοια της στοχαστικής ασυμπτωτικής ευστάθειας
[7, 8, 9]. Ευριστικά, ένα σημείο ισορροπίας είναι στοχαστικά ευσταθές αν οποιαδήποτε ακολουθία
του παιγνίου, η οποία ξεκινά αρκετά κοντά στο σημείο ισορροπίας παραμένει κοντά με μεγάλη
πιθανότητα· επιπροσθέτως, αν η ακολουθία συγκλίνει εν τέλει στο σημείο ισορροπίας το σημείο
καλείται στοχαστικά ασυμπτωτικά ευσταθές. Αυστηρά μιλώντας:

4
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Ορισμός 3. Έστω x∗ ∈ X ένα σημείο Nash ισορροπίας. Καθορίζοντας κάποιο αυθαίρετο επίπεδο
εμπιστοσύνης δ > 0 και μία γειτονιά U του x∗, τότε το x∗ ∈ X καλείται

1. Στοχαστικά ευσταθές αν υπάρχει γειτονιά U0 του x∗ τέτοια ώστε οποτεδήποτε ισχύει
X0 = Q(Y0) ∈ U0, έχουμε ότι

P(Xn ∈ U για κάθε n = 0, 1, . . .) ≥ 1− δ (1.10)

.
2. Συγκλίνον αν υπάρχει γειτονιά U0 του x∗ τέτοια ώστε

P(limn→∞Xn = x∗) ≥ 1− δ (1.11)

οποτεδήποτε X0 = Q(Y0) ∈ U0.
3. Στοχαστικά ασυμπτωτικά ευσταθές αν είναι στοχαστικά ευσταθές και συγκλίνον.

Ο ορισμός 3 είναι σημαντικός για την ανάλυση μας και για αυτό το λόγο παραθέτουμε κάποιες
παρατηρήσεις.
Παρατήρηση 1. Μία πρώτη λεπτομέρεια που αξίζει να σημειωθεί στον παραπάνω ορισμό είναι
αυτή της μεγάλης πιθανότητας: πράγματι, υπό την επήρεια της αβεβαιότητας, μία και μόνο λάθος
εκτίμηση των διανυσμάτων πληρωμής των παικτών θα μπορούσε να οδηγήσει την ακολουθία Xn

εκτός της γειτονιάς του x∗, πιθανότατα χωρίς να επιστρέψει ποτέ. Έχοντας αυτό στα υπόψιν μας
είναι αναμενόμενο τα αποτελέσματα μας να μην ισχύουν με πιθανότητα 1, αλλά με αυθαίρετα μεγάλη
πιθανότητα.
Παρατήρηση 2. Μία άλλη παρατήρηση που αξίζει να γίνει είναι πως η απαίτηση X0 = Q(Y0) ∈
U0 υπονοεί πως κάποιες στρατηγικές στο χώρο X δεν είναι επιτρεπτές ως αρχικές συνθήκες. Επι-
στρέφοντας πίσω στα δύο χαρακτηριστικά παραδείγματα του (FTRL), MWU 1.2.1, Projection
GD 1.2.2, υπάρχει μία διχοτομία σε ότι αφορά τις ιδιότητες των αντίστοιχων συναρτήσεων επιλογής.
Από τη μία πλευρά, ο πυρήνας του Ευκλίδειου εξομαλυντή είναι παντού παραγωγίσιμος σε όλο το
διάστημα [0, 1]. Από την άλλη πλευρά, η παράγωγος του πυρήνα της αρνητικής Shannon-εντροπίας
πάει στο −∞ καθώς το x πάει στο 0. Αυτό σημαίνει ότι στη δεύτερη περίπτωση τα σύνορα δεν
είναι επιτρεπτά και έτσι κάποιες αρχικές συνθήκες δεν ανήκουν στην εικόνα imQ. Αυτή η διχοτομία
αναλύεται εκτενώς στην ενότητα Βʹ.1.2.

1.3.2 Θεωρήματα
Έχοντας ορίσει όλα τα παραπάνω είμαστε σε θέση να παρουσιάσουμε τα αποτελέσματα μας.

Κύριο θεώρημα. Αν οι υποθέσεις (A1)–(A3) ισχύουν, τότε:
x∗ είναι ένα αυστηρό σημείο Nash ισορροπίας ⇐⇒ x∗ είναι στοχαστικά ασυμπτωτικά

ευσταθές για τον (FTRL)

Θεώρημα 1. Έστω x∗ ∈ X ένα αυστηρό σημείο Nash ισορροπίας του Γ. Αν ο αλγόριθμος
(FTRL) τρέχει με ημιτελές σήμα ανατροφοδότησης που ικάνοποιεί τις υποθέσεις (A1) και (A2), τότε
το σημειο x∗ είναι στοχαστικά ασυμπτωτικά ευσταθές.
Θεώρημα 2. Έστω x∗ ένα σημείο μικτής Nash ισορροπίας του Γ. Αν ο αλγόριθμος (FTRL)
τρέχει με ημιτελές σήμα ανατροφοδότησης που ικάνοποιεί την υπόθεση (A3), τότε το σημείο x∗ δεν
είναι στοχαστικά ασυμπτωτικά ευσταθές.
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Chapter 2

Introduction

The prototypical framework for online learning in games can be summarized as follows:
1. At each stage of the process, every participating agent chooses an action from some finite

set.
2. All agents receive a reward based on the actions of all other players and their individual

payoff functions (assumed a priori unknown).
3. The players record their rewards and any other feedback generated during the payoff

phase, and the process repeats.
This multi-agent framework has both important similarities and major differences with single-
agent online learning. Indeed, if we isolate a single, focal player and abstract away all others, we
essentially recover a multi-armed bandit (MAB) problem – stochastic or adversarial, depending
on the assumptions for the non-focal players [13, 14]. In this case, the most widely used figure
of merit is the agent’s regret, i.e., the difference between the agent’s cumulative payoff and that
of the best fixed action in hindsight. Accordingly, much of the literature on online learning has
focused on deriving regret bounds that are min-max optimal, both in terms of the horizon T
of the process, as well as the number of actions A available to the focal player.
On the other hand, from a game-theoretic standpoint, the main question that arises is whether
players eventually settle on an equilibrium profile from which no player has an incentive to
deviate. In this regard, a “folk” result states that the empirical frequency of play under no-
regret play converges to the game’s set of coarse correlated equilibria (CCE) [27, 28]. However,
there are two key caveats with this result. First, CCE are considerably weaker than Nash
equilibria, to the extent that they fail even the most basic postulates of rationalizability [24]:
as was shown by [29], CCE may be supported exclusively on strictly dominated strategies,
even in simple, symmetric two-player games. Second, the convergence of the empirical mean
does not carry any tangible guarantees for the players’ day-to-day behavior: under this type
of convergence, the player’s best payoff over time could be close to that of a Nash equilibrium,
but the players might otherwise be spending arbitrarily long periods of time on dominated
strategies.
The above is just a well-known example of the convergence failures of no-regret learning in
games with a possibly exotic equilibrium structure. More to the point, even when the underlying
game admits a unique Nash equilibrium, recent works have shown that no-regret algorithms –
such as the popular multiplicative weights update (MWU) method – could still lead to chaotic
[30, 31, 32] or Poincaré recurrent / cycling behavior [33, 16, 34]. From a convergence viewpoint,
all these results can be seen as instances of a much more general impossibility result at play:

7
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there are no uncoupled dynamics leading to Nash equilibrium in all games [Hart and Mas-Colell,
[42]].1 Since no-regret dynamics are by definition unilateral, they are a fortiori uncoupled, so
this result shatters any hope of obtaining a universal Nash equilibrium convergence result for
the players’ day-to-day behavior.

2.1 Our contributions
In view of the above, a critical question that arises is the following: Is there a class of Nash
equilibria that consistently attract no-regret processes? Conversely, are all Nash equilibria equally
likely to emerge as outcomes of a no-regret learning process?
To address these questions in as general a setting as possible, we focus on the “follow the
regularized leader” (FTRL) family of algorithms: this is arguably the most widely used class
of dynamics for no-regret learning in games, and it includes as special cases the seminal
multiplicative weights /EXP3 algorithms [22, 35, 20]. In terms of feedback, we also consider
a flexible, context-agnostic template in which players are only assumed to have access to an
inexact model of their payoff vectors at a given stage. This model for the players’ feedback covers
a broad range of modeling assumptions, such as (αʹ) the case where players can retroactively
compute – or otherwise observe – their full payoff vectors (e.g., as in routing games); and (βʹ) the
bandit case, where players only observe their in-game payoffs and have no other information
on the game being played.
The range of modeling assumptions covered by our framework is quite extensive, so one
would likewise expect different, context-specific answers to these questions – presumably with
equilibria becoming “less stable” as information becomes “more scarce”. This expectation is
justified by the behavior of no-regret learning in single-agent environments: there, the type of
information available to the learner has a dramatic effect on the achieved regret minimization
rate. Nevertheless, we show that this conjecture is false: as far as the algorithms’ equilibrium
convergence properties are concerned, the learning dynamics described above are all equivalent.

In more detail, we show that all FTRL algorithms under study enjoy the following properties:
αʹ) Strict Nash equilibria are stochastically asymptotically stable – i.e., they are stable and

attracting with arbitrarily high probability.
βʹ) Only strict Nash equilibria have this property: mixed Nash equilibria supported on more

than one strategies are inherently unstable from a learning viewpoint.

We are not aware of a similar result in the literature at this level of generality (i.e., including
models with bandit feedback), and we believe that this equivalence represents an important
refinement criterion for the prediction of the day-to-day behavior of no-regret learners in the
face of uncertainty and lack of perfect information.

2.2 Related work
To put our contributions in the proper context, we provide below an account of relevant works
in the literature, classified along the two directions of our main result: “strictness =⇒ stability”
and “stability =⇒ strictness”.

1“Uncoupled” means here that each player’s update rule does not depend explicitly on the payoffs of
other players.
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I. Strictness =⇒ Stability.Analyzing the convergence of game-theoretic learning dynamics
has generated a vast corpus of literature that is impossible to survey here. Nonetheless,
an emerging theme in this literature is the focus on specific classes of games (such as
potential games or 2N games). As a purely indicative – and highly incomplete – list,
we cite here the works of Leslie and Collins [43] and Leslie [44], Cominetti et al. [45],
Kleinberg et al. [41], , Coucheney et al. [46], Syrgkanis et al.[40], and d Cohen et al.[39],
who provide a range of equilibrium convergence results in potential, 2N , and (λ, µ)-
smooth games, under different feedback assumptions – from payoff vector observations
[41, 40] to bandit [43, 44, 45, 39]. By contrast, our focus is determining the stochastic
stability of a class of equilibria – not games.
As far as we are aware, the only comparable results in this literature concern an idealized
continuous-time, deterministic, full-information version of our setting, which is common
in applications to population biology and evolutionary game theory. In this context,
building on earlier results on the replicator dynamics [36, 7], the authors of [16] showed
that strict Nash equilibria are asymptotically stable under the continuous-time dynamics
of FTRL. However, we stress here again that these results only concern continuous-time,
deterministic dynamical systems with an inherent full-information assumption; we are
not aware of a result providing convergence to strict Nash equilibria with bandit feedback.

II. Stability =⇒ Strictness. In the converse direction, a related result in the literature on
evolutionary games is that only strict Nash equilibria are asymptotically stable under
the (multi-population) replicator dynamics [36, 8, 37], a continuous-time, deterministic
dynamical system which can be seen as the “mean-field” limit of the exponential weights
algorithm [38, 47, 33]. In a much more recent paper [48], this implication was extended
to the dynamics of FTRL, but always in a deterministic, full-information, continuous-
time setting. In this regard, our results are aligned with [48]; however, other than
this high-level conceptual link, there is no precise connection, either at the level of
implications or at the level of proofs. Specifically, the analysis of [48] relies crucially on
volume-conservation arguments that are neither applicable nor relevant in a discrete-time
stochastic setting – where the various processes involved could jump around stochastically
without any regard for volume contraction or expansion.

2.3 Proof techniques
Learning with partial information is an inherently stochastic process, so our results are also
stochastic in nature – hence the requirement for asymptotic stability with arbitrarily high
probability. This constitutes a major point of departure from continuous-time models of learning
[16, 48], so our proof techniques are also radically different as a result. The principal challenge
in our proof of stability of strict Nash equilibria comes in controlling the aggregation of error
terms with possibly unbounded variance (coming from inverse propensity scoring of bandit-
type observations). Because of this, stochastic approximation techniques that have been used to
show convergence with L2-bounded feedback [49] cannot be applied in this setting; we achieve
this control by applying a sharp version of the Doob-Kolmogorov maximal inequality to control
equilibrium deviations with high probability. In the converse direction, the crucial argument in
the proof of the instability of mixed equilibria is a direct probabilistic estimate which leverages
a non-degeneracy argument for the noise entering the process; we are not aware of other works
using a similar technique.
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Chapter 3

Preliminaries

3.1 Finite games in normal form
Throughout this diploma thesis we will focus on normal form games with a finite number of
players and a finite number of actions per player.

Figure 3.1: Illustration of the simplex in different dimensions.

Definition 3.1.1. Such a game is defined as a tuple Γ = Γ(N ,A, u) with the following
primitives:

• A finite set of players – or agents – indexed by i ∈ N = {1, . . . , N}.
• A finite set of actions – or pure strategies – indexed by αi ∈ Ai = {1, . . . , Ai}, i ∈ N .

Players can also play mixed strategies, which represent probability distributions xi ∈
Xi := ∆(Ai)

1; in this case, we will write xiαi for the probability that player i ∈ N
selects αi ∈ Ai. Aggregating over all players, we will also write x = (x1, . . . , xN ) for
the players’ mixed strategy profile and X :=

∏
i Xi for the set thereof. Finally, when we

want to focus on the strategy (or action) of a particular player i ∈ N , we will use the
shorthand (xi;x−i) := (x1, . . . , xi, . . . , xN ) – and, similarly, (αi;α−i) for pure strategies.

• An ensemble of payoff functions ui : A → R where A :=
∏

i Ai is the space of all pure
strategy profiles. The expected payoff of player i in a mixed strategy profile x ∈ X is
then given by

ui(x) ≡ ui(xi;x−i) =
∑

α1∈A1

· · ·
∑

αN∈AN

ui(α1, . . . , αN ) · x1,α1
· · ·xN,αN

(3.1)

1With ∆ we symbolize the simplex; an illustration of the simplex is provided in figure 3.1
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where ui(α1, . . . , αN ) is the payoff of player i in the action profile α = (α1, . . . , αN ) ∈ A.

For posterity, we will also write viαi
(x) = ui(αi;x−i) for the payoff that player i would have

gotten by playing αi ∈ Ai against the mixed strategy profile x−i of all other players. In this
way, the mixed payoff vector of the i-th player will be

vi(x) = (viαi(x))αi∈Ai (3.2)

and we will write v(x) = (v1(x), . . . , vN (x)) for the ensemble thereof. For notational convenience,
we will also set Yi = RAi and Y =

∏
i Yi for the space of payoff vectors and profiles respectively.

Finally, in a slight abuse of notation, we will identify αi with the mixed strategy that assigns
all probability to αi, and we will denote the corresponding pure payoff vector as vi(α) =
(ui(αi;α−i))αi∈Ai

. The distinction between pure and mixed payoff vectors will become important
later on, when we discuss the information at each player’s disposal.
This class of games includes any type of games with finite players and finite action sets, for
example zero sum games and potential games. Below we present two well-known examples of
such games:

Example 3.1.1 (Matching pennies). In this game each player flips a coin, if both players’
coins are heads or tails player one wins one coin; in any other case player two wins a coin. This
game is finite game in normal form consisting of 2 players with action sets A1 ≡ A2 ≡ {H,T};
while the payoffs can be seen in the matrix below:

H T
H 1/-1 -1/1
T -1/1 1/-1

where player 1 is the ”row” player and player 2 is the ”column” player. This is an example of
a zero-sum game since for any (pure or mixed) players’ strategies the sum of the payoffs is
always zero.

Example 3.1.2 (Prisoners’ dilemma). In this game, each one of two prisoners who were
working together has two choices; either to confess and thus betray the other or to remain
silent. The years of sentence depend on what both players will do. Let A1 ≡ A2 ≡ {B,S},
where B symbolizes betrayal and S silence, then the payoff matrix of this game is:

S B
S 1/1 9/0
B 0/9 6/6

in which again prisoner/player 1 is the ”row” player and prisoner/player 2 is the ”column”
player. The numbers in the matrix symbolize the years of sentence. In this game the smaller
the number the better thus the players’ payoffs represent losses. In this case we can simply
multiply the matrix by −1 and turn the losses into gains leaving intact the structure of the
game.

3.2 Solution concepts
In terms of solution players need somehow to evaluate the actions they chose to play. It is
taken for granted that the players are rational and thus they chose strategies that result in the
best possible outcome for them. However this concept is susceptible to many interpretations;
below we present two of them.

12



CHAPTER 3. PRELiMiNARiES 13

3.2.1 Dominated strategies
A dominated strategy is a strategy that results in strictly worst payoff than at least some other
strategy no matter what the opponents do. Formally, a strategy α ∈ Ai of player i ∈ N is said
to be dominated by a strategy b ∈ Ai if it holds that

ui(a;x−i) < ui(b;x−i) for all x−i ∈ X−i (3.3)

If the inequality is not strict then we say that the strategy is weakly dominated. For example
looking at example 3.1.2 the strategy S is dominated by the strategy B, since it always results
in a worst payoff.
It is reasonable to expect that players will not choose to play dominated strategies and thus
these strategies can be eliminated. This elimination could lead either in the existence of only
one pure strategy (such as in the example of Prisoners’ dilemma) or to a reduced version of
the game. Iteratively, players continue to eliminate dominated strategies until there are no
dominated strategies.

3.2.2 Nash equilibrium
The most widely used solution concept is that of a Nash equilibrium, i.e., a mixed strategy
profile that discourages unilateral deviations. Nash proved in [1] that all N−player finite games
have at least one Nash equilibrium.

Definition 3.2.1. A point x∗ is a Nash equilibrium of Γ if

ui(x
∗) ≥ ui(xi;x

∗
−i) for all xi ∈ Xi and all i ∈ N . (NE)

The set of pure strategies supported at the equilibrium component x∗i ∈ Xi of each player
will be denoted by supp(x∗i ) = {αi ∈ Ai : x∗iαi

> 0}. Accordingly, Nash equilibria can be
equivalently characterized by means of the variational inequality

viα∗
i
(x∗) ≥ viαi(x

∗) for all α∗
i ∈ supp(x∗i ) and all αi ∈ Ai, i ∈ N . (3.4)

The above characterization gives rise to the following classification of Nash equilibria:
• x∗ is a pure equilibrium if supp(x∗i ) only contains a single strategy for all i ∈ N .
• x∗ is a mixed equilibrium in any other case; in particular, if supp(x∗i ) = Ai for all i ∈ N ,

we say that x∗ is fully mixed.
By definition, pure equilibria correspond to vertices of X , fully mixed equilibria lie in the
relative interior ri(X ) of X , and, more generally, mixed equilibria lie in the relative interior of
the face of the simplex spanned by the support of each player’s equilibrium component.
A further distinction between Nash equilibria that is inherited by the inequality (3.4) is as
follows: if the inequality 3.4 holds as a strict inequality for all αi ∈ Ai \ supp(x∗i ), i ∈ N , the
equilibrium in question is said to be quasi-strict [6]. Quasi-strict equilibria have the defining
property that all pure best responses are played with positive probability; it is also well known
that all Nash equilibria in all but a measure-zero set of games are quasi-strict. For this reason,
the property of having a quasi-strict equilibrium is generic, and games that enjoy this property
are called themselves generic. 2

2Specifically, the set of games with Nash equilibria that are not quasi-strict is meager in the Baire
category sense.

13
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We stress here by looking at examples 3.1.1, 3.1.2 that quasi-strict equilibria could be either
mixed or pure. The equilibrium of Matching Pennies is if both players play each one of their
strategies with probability 1/2. Thus it is fully mixed and quasi-strict since if any of the
two players unilaterally deviates from the equilibrium point results in a strictly worst payoff.
Whereas the equilibrium of the Prisoner’s dilemma is quasi-strict and pure and it is the pure
strategy profile (B,B). In this last case, when a quasi-strict equilibrium is pure, it will be called
strict: any deviation from an equilibrium strategy results in a strictly worse payoff.

3.3 No regret learning and Regularization
Suppose that a person goes everyday to her work and has two possible routes to follow. How
will she decide which one to chose? Suppose that the criterion based on which the choice is
made is the time spend i.e., the fastest route is the best one. However, the person is not able
to know a priori which route will be fastest each day (let aside applications such as google
maps). This problem can be considered as a problem of online learning; the person at each day
T = 1, 2, . . . observes the loss incurred in the previous T −1 days for each one of the two routes
and takes a decision based on this knowledge.

3.3.1 Regret
In this context of online learning, a key requirement is the minimization of the players’ regret,
i.e., the cumulative payoff difference between each player’s chosen action and the best possible
action in hindsight over a given horizon of play T . Formally, given a sequence of play Xn ∈ X ,
n = 1, 2, . . . , the (external) regret of player i ∈ N is defined as

Regi(T ) = max
xi∈Xi

T∑
n=1

[ui(xi;X−i,n)− ui(Xi,n;X−i,n)] (3.5)

and we will say that player i has no regret if Regi(T ) = o(T ). This implies that in the long
run the player does not regret not to have chosen a fixed action. One may think the sequence
X−i,n in the example mentioned above as the others’ people choices of routes.
This definition of regret constitutes the minimum requirement that players would like to satisfy
while it takes for granted that there exists a strategy that performs well for the whole window
of time. For this reason this type of regret is also known as static regret.
Another type of regret, the dynamic regret can be also defined as

Regi(T ) =
T∑

n=1

max
xi,n∈Xi

[ui(xi,n;X−i,n)− ui(Xi,n;X−i,n)] (3.6)

in which the action chosen as a baseline changes at each round. In the rest of this work we will
not focus on this type of regret.

3.3.2 Follow the Regularized Leader (FTRL)
As we have already mentioned, each player needs somehow to choose the strategy that she will
play on each round T = 1, 2, . . .. A simple idea is to chose the strategy that so far has the best
cumulative payoff

Xi,T = argmax
x∈Xi

{
T−1∑
n=0

ui(x;X−i,n)} (FTL)

14
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(αʹ) Negative entropy and Quadratic
regularizer

(βʹ) The reularizers plus a line with
slope = 0.3

(γʹ) The reularizers plus a line with
slope = 2

Figure 3.2: Regularizers

This algorithm is known as Follow the Leader (FTL). However, this algorithm has a linear
worst case regret. It is easy to construct an example to prove this claim.

Example 3.3.1. Suppose that the player (learner) has two strategies H1, L1 and that there
exists an adversary that also has two strategies H2, L2. Let the payoff matrix of the learner to
be

H2 L2
H1 0 1
L1 1− ε 0

Suppose now that she starts with the strategy H1 (without loss of generality) and that the
adversary chooses H2. For the next round, she will choose L1 (since L1 has a cumulative payoff
of 1 and H1 has a cumulative payoff of 0) while the adversary chooses L2. Now the learner
has the incentive to chose again L1 while the adversary plays L2. We continue this game with
the adversary playing in a way always detrimental to the learner. One can easily verify that
indeed in this case Reg(T ) = T .

This regret is due to the construction of (FTL), which permits to the player to abruptly change
her decisions. One solution that ensures the desired regret is to add a regularization penalty,
which ”smooths out” the transitions between two different states. Intuitively, looking at figure
3.2 one can compare the maximum of a linear function (which is normally presented in the

15
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corners) and the maximum when a regularizer i.e., a strongly convex function is added3. Thus
this idea gives rise to a new algorithm known as Follow the Regularized Leader (FTRL), which
can be represented as

Xi,T = argmax
x∈Xi

{
T−1∑
n=1

ui(x;X−i,n)−
1

η
hi(x)

}
(FTRL)

if η is chosen appropriately, no-regret properties of this algorithm can be ensured.

We will present the proof of this statement in the simplest case possible, focusing on one player
that has only two strategies. Below we first prove some auxiliary results.

Lemma 3.3.1 (Closeness of minima). Consider two strongly convex functions f : [0, 1] → R
and g : [0, 1] → R, such that f ′′(x) ≥ 1

η and g′′(x) ≥ 1
η for all x ∈ [0, 1], and such that

h(x) = g(x) − f(x) is an L − Lipchitz function, i.e. |h(x) − h(x
′
)| ≤ L|x − x

′ |. Then, if
xf = argminx∈[0,1] f(x) and xg = argminx∈[0,1] g(x) it holds that: |xf − xg| ≤ ηL.

Proof. First, define the functions

f1(x) = f ′(x)− 1

η
x

g1(x) = g′(x)− 1

η
x

These two functions are apparently increasing. Suppose without loss of generality that xg < xf ,
then from the Mean Value theorem there exists x0 ∈ (xg, xf ) such that

h′(x0)(xg − xf ) = h(xg)− h(xf ) ⇒ (g′(x0)− f ′(x0))(xf − xg) = h(xf )− h(xg) (3.7)

We also have
xg ≤ x0 ≤ xf ⇒ f ′(xg)−

1

η
xg ≤ f ′(x0)−

1

η
x0 ≤ −1

η
xf (3.8)

xg ≤ x0 ≤ xf ⇒ −1

η
xg ≤ g′(x0)−

1

η
x0 ≤ g′(xf )−

1

η
xf (3.9)

Of course f ′(xf ) = 0 and g′(xg) = 0 since xf , xg are minimizers of f, g equivalently. By using
(3.8),(3.9) we get

1

η
(xf − xg) ≤ g′(x0)− f ′(x0) ≤ −1

η
(xf − xg) + g′(xf )− f ′(xg) (3.10)

Combing the above equation with (3.7) and the Lipscitz continuity of h we have

h(xf )− h(xg) = (g′(x0)− f ′(x0))(xf − xg) ≥
1

η
(xf − xg)

2 (3.11)

1

η
(xf − xg)

2 ≤ L|xf − xg| (3.12)

|xf − xg| ≤ Lη (3.13)

■
3The exact assumptions of the regularizers are presented in the next section, but for now think that

h′′ ≥ 1

16
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Proposition 3.3.1. Let i ∈ N be a player that has only two strategies H,L. Let 1n be the
probability of her first strategy at each round n. Then under (FTRL) it holds that

|xn+1 − xn| ≤ 2 ηmax
α∈A

|ui(α)| (3.14)

Proof. We will present the steps to reach in the desired result.
• Player i chooses strategy H at round n = 0, 1, . . . with probability xn and receives a

payoff uH,n, while with probability 1− xn chooses strategy L and receives a payoff uL,n

at each round n = 0, 1, . . .

• Since the player chooses based on the (FTRL) algorithm it holds that

xn+1 = argmax
x∈[0,1]

{x
n∑

k=1

uH,k + (1− x)

n∑
k=1

uL,k − 1

η
hi(x)} (3.15)

= argmin
x∈[0,1]

{−x
n∑

k=1

uH,k − (1− x)

n∑
k=1

uL,k +
1

η
hi(x)} (3.16)

• Notice now that the function Hn(x) = −x
∑n

k=1 uH,k − (1− x)
∑n

k=1 uL,k +
1
ηhi(x) has

second derivative
H ′′

n(x) =
1

η
h′′i(x) ≥

1

η
for all n = 0, 1, . . . (3.17)

• Applying Lemma 3.3.1 with f = Hn and g = Hn−1 we have that

|xn+1 − xn| ≤ ηL (3.18)

where L = 2maxα∈A|ui(α)|.
Indeed let Gn(x) = Hn(x)−Hn−1(x) = −xuH,n − (1− x)uL,n then

|Gn(x)−Gn(x
′)| = |x(uL,n − uH,n)− x′(uL,n − uH,n)| (3.19)

≤ |uL,n − uH,n||x− x′| (3.20)
≤ 2max

α∈A
|ui(α)| (3.21)

■

Our goal is to prove that (FTRL) is no-regret. For convenience of symbolism, we will also define
the following algorithm known as Be the Regularized Leader (BTRL). This is an idealized case
of (FTRL); suppose that player has access to the induced payoffs for all rounds n = 0, 1, . . . , T
in order to make a decision at round T then

X∗
i,T = argmax

x∈Xi

{
T∑

n=1

ui(x;X−i,n)−
1

η
hi(x)

}
(BTRL)

We will now prove that in the simple case, in which the player has only two strategies H,L,
(FTRL) is indeed no-regret.

Theorem 3.3.2. The expected regret of (FTRL) is upper bounded. Specifically,

Reg(T ) ≤
2maxx∈[0,1]|h(x)|

η
+ 2 ηmax

α∈A
|ui(α)|T (3.22)

17
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Proof. Remember that we focus on the case that player i ∈ N has only two strategies H,L.
For convenience we will adopt the following symbolism. Let

fn(x) = xuH,n + (1− x)uL,n (3.23)

FT (x) =

T∑
n=1

xuH,n + (1− x)uL,n (3.24)

and

XT = argmax
x∈Xi

{
FT−1(x)−

1

η
h(x)

}
(3.25)

X̃T = argmax
x∈Xi

{FT−1(x)} (3.26)

X∗
T = argmax

x∈Xi

{
FT (x)−

1

η
h(x)

}
(3.27)

X̃∗
T = argmax

x∈Xi

{FT (x)} (3.28)

We first focus on the regret of (BTRL) which we will symbolize as RegBTRL(T )

RegBTRL(T ) = max
x∈[0,1]

T∑
n=1

fn(x)−
T∑

n=1

fn(X
∗
n) (3.29)

= FT (X̃
∗
T )−

T∑
n=1

(Fn(X
∗
n)− Fn−1(X

∗
n)) (3.30)

= FT (X̃
∗
T )−

T∑
n=1

(Fn(X
∗
n)−

1

η
h(X∗

n)− Fn−1(X
∗
n) +

1

η
h(X∗

n)) (3.31)

= FT (X̃
∗
T )− FT (X

∗
T ) +

1

η
h(X∗

T ) + F0(X
∗
1 )−

1

η
h(X∗

T ) (3.32)

≤ FT (X̃
∗
T )− FT (X̃

∗
T ) +

1

η
h(X̃∗

T )−
1

η
h(X∗

T ) (3.33)

≤
2maxx∈[0,1]|h(x)|

η
(3.34)

We now continue to upper bound the regret of (FTRL). Simply notice that

RegFTRL(T )− RegBTRL(T ) =

T∑
n=1

fn(X
∗
n)−

T∑
n=1

fn(Xn) (3.35)

T∑
n=1

fn(Xn+1)−
T∑

n=1

fn(Xn) (3.36)

Using lemma 3.3.1 and by rearranging we have

RegFTRL(T ) ≤ RegBTRL(T ) + 2ηmax
α∈A

|ui(α)|T (3.37)

≤
2maxx∈[0,1]|h(x)|

η
+ 2ηmax

α∈A
|ui(α)|T (3.38)

■
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Remark 1. By choosing η appropriately (η = 1/
√
T ), no-regret guarantees are achieved for

(FTRL).
Remark 2. All these results can be extended for the general case, in which player has A > 2
strategies. The proof follows the steps above but leverages tools from convex analysis presented
in appendix Αʹ, section Αʹ.2.
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Chapter 4

Analysis and Results

4.1 The algorithm
For the analysis of our results we use an alternative (but equivalent) form of (FTRL). Formally,
we have the round-by-round recursive rule

Xi,n = Qi(Yi,n)

Yi,n+1 = Yi,n + γnv̂i,n
(FTRL)

where Qi : Yi → Xi denotes the “choice map” of player i ∈ N , γn > 0 is a “learning rate”
parameter such that

∑
n γn = ∞, and v̂i,n is a “payoff signal” that provides an estimate for the

mixed payoffs of player i at stage n. We discuss each of these components in detail below.

4.1.1 The feedback model
Depending on the specific framework at play, the modeling details concerning the feedback
received by the players may vary wildly. For example, when modeling congestion in a city, it
is reasonable to assume that commuters can estimate the time it would have taken them to
get to their destination via a different route – e.g., by means of a GPS service or an app like
GoogleMaps or Waze. By contrast, in applications of online learning to auctions and online
advertising, it is not clear how a player could estimate the payoff of actions they did not play.
To account for as broad a range of feedback models as possible, we will take a context-agnostic
approach and assume that each player receives a “black-box” model of their payoff vector of
the form

v̂n = v(Xn) + ξn (4.1)

for some abstract error process ξn = (ξi,n)i∈N . To differentiate between random (zero-mean)
and systematic (non-zero-mean) errors, we will further decompose ξn as ξn = Zn + bn, where

bn = E[ξn | Fn] and E[Zn | Fn] = 0 (4.2)

with Fn denoting the history of Xn up to stage n (inclusive) 1. We may then characterize the
input signal v̂n by means of the following statistics:

1Of course, since the feedback signal is generated only after the player chooses a strategy, v̂n is not
Fn-measurable in general.
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a) Bias: E[‖bn‖∗ | Fn] ≤ Bn (4.3αʹ)
b) Variance: E[‖Zn‖2∗ | Fn] ≤M2

n (4.3βʹ)

In the above, Bn and Mn represent deterministic bounds on the bias and variance of the
feedback signal v̂n. For concreteness, we will also make the following blanket assumptions:
(A1) Bias control: limn→∞Bn = 0 and

∑
n γnBn <∞.

(A2) Variance control:
∑

n γ
2
nM

2
n <∞.

(A3) Generic observation errors at equilibrium: For every mixed Nash equilibrium x∗ of Γ
and for all n = 1, 2, . . . , there exists a player i ∈ N and strategies a, b ∈ supp(x∗i ) such
that

P(|v̂ia,n − v̂ib,n| ≥ β | Fn) > 0 for all sufficiently small β > 0. (4.4)

The formulation of these hypotheses has been kept intentionally abstract because we have
not made any modeling assumptions for how the players’ payoff signals are generated. In this
regard, they are to be construed as an “inexact model” that allows for a wide variety of settings;
as an application, we illustrate below how these assumptions are verified in two widely used
learning frameworks.

Model 1 (Oracle-based feedback). Assume that each player chooses an action based on a given
mixed strategy. Then, once this procedure has been completed, an oracle reveals to each player
the payoffs corresponding to their pure strategies given the other players’ chosen strategies (in
the congestion example, this oracle could be Waze or a GPS device). Formally, at each round
n, every player i ∈ N picks an action αi,n ∈ Ai based on Xi,n ∈ Xi and observes the pure
payoff vector vi(αn) ≡ (ui(αi;α−i,n))αi∈Ai

. Then the player’s feedback signal is v̂i,n = vi(αn),
which is a special case of the model (4.1) with ξn = v(Xn)− v(αn) and bn = 0. In more detail,
we have:
• (A1) is trivial because E[v̂n | Fn] = EXn

[v(αn)] = v(Xn), i.e., bn = 0.
• (A2) is satisfied as long as

∑
n γ

2
n <∞, since ‖Zn‖∗ = ‖v̂n − v(Xn)‖∗ ≤ 2maxX‖v(X)‖∗.

• (A3) is proved in Βʹ.5.

Model 2 (Payoff-based feedback). Assume that each player picks an action based on some
mixed strategy as above; however, players now only observe their realized payoffs ui(αi,n;α−i,n).
This is the standard model for multi-armed bandits [13, 14], and it is also known as the
“bandit feedback” setting. In this case, players can estimate their payoff vectors by means of
the importance-weighted estimator:

v̂iαi,n =
1{αi,n = αi}

X̂iαi,n

ui(αn) (IWE)

where X̂i,n = (1−εn)Xi,n+εn/|Ai| is the mixed strategy of the i-th player at stage n. Compared
toXi,n, the player’s actual sampling strategy is recalibrated by an explicit exploration parameter
εn → 0 whose role is to stabilize the learning process by controlling the variance of (IWE).
The idea is that even if a strategy has zero probability to be chosen under Xn, it will still be
sampled with positive probability thanks to the mixing factor εn. Schematically players act
the following actions:

A standard calculation (that we defer to Βʹ.5) shows that (IWE) can be recast in the general
form (4.1) with Bn = O(εn) and M2

n = O(1/εn). We then have:
• (A1) is satisfied as long as εn → 0 and

∑
n γnεn <∞.
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Compute FTRL’s Yi Compute FTRL’s Xi Compute X̂i

Choose strategy αi based on X̂iEstimate through IWE v̂i

• (A2) is satisfied as long as
∑

n γ
2
nε

−1
n <∞.

• (A3) is proved in Βʹ.5.

Remark. The above conditions for the method’s learning rate and exploration parameters can
be achieved by using schedules of the form γn ∝ 1/np and εn ∝ 1/nq with p + q > 1 and
2p− q > 1. A popular choice is p = 2/3 + δ and q = 1/3 + δ for some arbitrarily small δ > 0 –
or δ = 0 and including an extra logarithmic factor, cf. [15] and references therein.

4.1.2 Regularization
The second component of the FTRL method is the players’ “choice map” Qi : Yi → Xi. Because
the players’ score variables Yi,n essentially represent an estimate of each strategy’s cumulative
payoff over time, Qi is defined as a “regularized” version of the best-response correspondence
yi 7→ argmaxxi∈Xi

{〈yi, xi〉} (the regularization being necessary to avoid prematurely committing
to a strategy). On that account, we will consider regularized best responses of the general form

Qi(yi) = argmax
xi∈Xi

{〈yi, xi〉 − hi(xi)}. (4.5)

In the above, each player’s regularizer hi : Xi → R is defined as hi(xi) =
∑

αi∈Ai
θi(xi) for

some “kernel function” θi : [0, 1] → R with the following properties:
(i) θi is continuous on [0, 1];
(ii) C2-smooth on (0, 1]; and
(iii) inf[0,1] θ′′i > 0.
Of course, different regularizers give rise to different instances of (FTRL); for concreteness, we
present below two prototypical examples thereof.

Example 4.1.1 (Multiplicative/Exponential weights update). A popular choice of regularizer
is the (negative) entropy hi(x) =

∑
i xi logxi, which leads to the logit choice map Λi(y) =

exp(yi)/
∑

j exp(yj) and the algorithm known as multiplicative weights update (MWU), cf.
[19, 50, 21, 20, 22].

Example 4.1.2 (Euclidean projection). Another popular regularizer is the quadratic penalty
hi(x) =

∑
i xi

2/2, which yields the payoff projection choice map �i(y) = argminx∈∆‖y − x‖2,
cf. [23, 25].
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To understand the long-run behavior of (FTRL), we will focus on the following overarching
question: Which Nash equilibria hold convergence and stability properties and how are these
properties affected by the uncertainty in the players’ feedback model?
We provide the technical groundwork for our answers in 4.2 below; subsequently, we state our
results in section 4.3, and present the technical analysis in section 4.4.

4.2 Asymptotic Stability
The first thing to note in this general context is that a game may admit several Nash equilibria,
both mixed and pure. As a result, global convergence to an equilibrium from all initializations
is not possible; for this reason, we will focus on the notion of (stochastic) asymptotic stability
[7, 8, 9]. Heuristically, an equilibrium is stochastically stable if any sequence of play that begins
close enough to the equilibrium in question, remains close enough with high probability; in
addition, if the sequence of play eventually converges to said equilibrium, then we say that it
is stochastically asymptotically stable. Formally, we have the following definition.

Definition 4.2.1. Let x∗ ∈ X be a Nash equilibrium. Fix some arbitrary confidence level
δ > 0 and a neighborhood U of x∗. Then x∗ ∈ X is said to be

1. Stochastically stable if, there exists a neighborhood U0 of x∗ such that whenever
X0 = Q(Y0) ∈ U0, we have

P(Xn ∈ U for all n = 0, 1, . . .) ≥ 1− δ (4.6)

whenever X0 = Q(Y0) ∈ U0.
2. Attracting if there exists a neighborhood U0 of x∗ such that

P(limn→∞Xn = x∗) ≥ 1− δ (4.7)

whenever X0 = Q(Y0) ∈ U0.
3. Stochastically asymptotically stable if it is stochastically stable and attracting.

Definition 4.2.1 will be the mainstay of our analysis and results, so some remarks are in order.

Remark 3. A first intricate detail in the above definition is the high probability requirement:
indeed, under uncertainty, a single unlucky estimation of the players’ payoff vector could drive
Xn away from any neighborhood of x∗, possibly never to return. In this regard, local stability
results cannot be expected to hold with probability 1, hence the requirement to hold with some
arbitrary confidence level in the definition above.

Remark 4. Another remark worth making is the requirement X0 = Q(Y0) ∈ U0 that indicates
that some strategies in X are not admissible as initial states. Going back to the two archetypal
examples of (FTRL), MWU 4.1.1, Projection GD 4.1.2, there is a dichotomy in the properties
of the corresponding mirror maps. On the one hand, the kernel of the Euclidean/quadratic
regularizer is differentiable on all of [0, 1]. On the other hand, the derivative of the kernel of
the negative Shannon-entropy goes to −∞ as x goes to 0. This means that in the latter the
boundaries are off the limits and inevitably some initial conditions do not belong in imQ. We
discuss this dichotomy extensively in section Βʹ.1.2.
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4.3 Main Results
We are now in a position to state our main results. The informal version is as follows.

Main Theorem. Suppose that Assumptions (A1)–(A3) hold. Then:
x∗ is a strict Nash equilibrium ⇐⇒ x∗ is stochastically asymptotically stable under

(FTRL)

Formally, we get the following precise statements and corollaries for the specific feedback models
described in section 4.1.1.

Theorem 4.3.1. Let x∗ ∈ X be a strict Nash equilibrium of Γ. If (FTRL) is run with inexact
payoff feedback satisfying Assumptions (A1) and (A2), then x∗ is stochastically asymptotically
stable.

Theorem 4.3.2. Let x∗ be a mixed Nash equilibrium of Γ. If (FTRL) is run with inexact
payoff feedback satisfying assumption (A3), then x∗ is not stochastically asymptotically stable.

Corollary 4.3.1. Suppose that (FTRL) is run in a generic game with oracle-based feedback
as in model 1 and a sufficiently small step-size γn with

∑
n γ

2
n <∞. Then, a Nash equilibrium

is stochastically asymprotically stable if and only if it is strict.

Corollary 4.3.2. Suppose that (FTRL) is run in a generic game with bandit feedback as in
model 2 and sufficiently small step-size and explicit exploration parameters with

∑
n γ

2
n/εn <∞,∑

n γnεn < ∞. Then, a Nash equilibrium is stochastically asymptotically stable if and only if
it is strict.

These results – and, in particular, the implications for the bandit case – provide a learning
justification to the abundance of arguments that have been made in the refinement literature
against selecting mixed Nash equilibria [17, 6, 24]. In the rest of this work, we present an
outline of the main proof ideas and defer the details to the appendix.

4.4 Our Techniques
4.4.1 The Stochastic Asymptotic Stability of Strict Nash Equilibria
At a high level, the standard tool in FTRL dynamics for questions pertaining to asymptotic
stability of strict Nash equilibria is the construction of a potential – or Lyapunov – function.
However, the analysis and the underlying structural results are considerably more involved
when we shift from the continuous dynamics to discrete algorithms and more importantly in
a stochastic framework with incomplete feedback information. Still, to build intuition we first
recall the continuous and deterministic analogue.

The continuous-time case. In prior work [10, 11, 12], multiple instantiations of Bregman
functions, like the KL-divergence have been employed as a potent tool for understanding
replicator & population dynamics, which are the continuous analogues of MWU/EW (4.1.1).
Unfortunately, Bregman functions are insufficient to cover the full spectrum of regularizers
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studied in this work. This limitation has been sidesteped in [16] by exploiting the information
of the dual space Y of the payoff scores, via the Fenchel coupling:

Fh(x, y) = h(x) + h∗(y)− 〈y, x〉 for all x ∈ X , y ∈ Y (4.8)

where h∗ : Y → R is the convex conjugate of h: h∗(y) = supx∈X {〈y, x〉 − h(x)}. Indeed,
Fh(x

∗, y) ≥ 0 where equality holds if and only if x∗ = Q(y) (Proposition Βʹ.1.4). Therefore,
for the continuous FTRL dynamics ẏ(t) = v(x(t)), x(t) = Q(y(t)), it remains to show that
the time derivative of the Lyapunov-candidate-function Lx∗(y(t)) = Fh(x

∗, y(t)) is negative.
This last key ingredient for the strict Nash equilibria is derived by their variational stability
property. Formally, a point x∗ is variationally stable if there exists a neighborhood U of x∗
such that

〈v(x), x− x∗〉 ≤ 0 for all x ∈ U (VS)
with equality if and only if x = x∗. Roughly speaking, this property states that the payoff
vectors are pointing “towards” the equilibrium in question since in a neighborhood of x∗, it
strictly dominates over all other strategies. Thus by applying the chain rule, (VS) implies that
dLx∗(y(t))/dt ≤ 0 2. Given their usefulness also in the discrete time stochastic case, we present
all the aforementioned properties in detail in the paper’s supplement (Βʹ.1-Βʹ.2).

The discrete time. The core elements of the continuous time proof do not trivially extend
to the discrete time case. Even though we are not able to show that (Fh(x

∗, Yk))
∞
k=1 is a

decreasing sequence, due to the discretization and the uncertainty involved, we prove that
Fh(x

∗, Yk) → 0. This immediately implies that FTRL algorithm converges to x∗, since from
proposition Βʹ.1.4 Fh(x

∗, Yk) ≥ 1
2Kh

‖x∗ −Xk‖.
To exploit again the Fenchel coupling as a Lyapunov function, successive differences have to be
taken among Fh(x

∗, Yn+1), . . . , Fh(x
∗, Y0). In contrast to the continuous time analysis, since

the chain rule no longer applies, we can only do a second order Taylor expansion of the Fenchel
coupling. Additionally, let us recall that in our stochastic feedback model, the payoff vector
v̂n = v(Xn) + Zn + bn including possibly either random zero-mean noise or systematic biased
noise. Combining proposition Βʹ.1.4, definition of v̂n and (FTRL), we can create the following
upper-bound of Fenchel coupling at each round:

Fh(x
∗, Yn+1) ≤ Fh(x

∗, Y0) +

n∑
k=0

γk(driftk + noisek + biask) +
1

2Kh

n∑
k=0

γ2k‖v̂k‖2∗ (⋆)

where driftk = 〈v(Xk), Xk − x∗〉, noisek = 〈Zk, Xk − x∗〉, biask = 〈bk, Xk − x∗〉 are the related
terms with the drift of the actual payoff, the zero-mean noise and the bias correspondingly.
When Xn lies in a variationally stable region UV S of x∗, the first-order term of driftk, which also
appears in the continuous time, corresponds actually to the negative “drift” of the variational
stability which attracts Fenchel coupling to zero.
Having settled the basic framework, we split the proof sketch of theorem 4.3.1 into two
parts: stochastic stability & convergence. Our analysis relies heavily on tools from the convex
analysis and martingale limit theory to control the influence of the stochastic terms in the
aforementioned bound.

Step 1: Stability. Let Uε = {x : Dh(x
∗, x) < ε} and U∗

ε = {y ∈ Y : Fh(x
∗, y) < ε} be the

ε−sublevel sets of Bregman function and Fenchel coupling respectively. Our first observation

2Analytically, dLx∗(y(t))

dt =
dh∗(y(t))

dt − ⟨ẏ(t), x∗⟩ = ⟨ẏ(t),∇h∗(y)⟩ − ⟨ẏ(t), x∗⟩ = ⟨v(x(t)), x(t) −
x∗⟩ ≤ 0.
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is that for all “natural” decomposable regularizers, it holds the so-called “reciprocity condition”
( Βʹ.1.1,Βʹ.1.5): essentially, this posits that Uε and Q(U∗

ε ) are neighborhoods of x∗ in X .
Additionally, since Fh(x

∗, y) = Dh(x
∗, x) whenever Q(y) = x and supp(x) contains supp(x∗),

from proposition Βʹ.1.4, it holds that Q(U∗
ε ) ⊆ Uε and Q−1(Uε) = U∗

ε . Thus, we conclude that
whenever y ∈ U∗

ε , x = Q(y) ∈ Uε.
To proceed, fix a confidence level δ and ε sufficiently small such that (VS) holds for all x ∈ Uε.
Using Doob’s maximal inequalities for (sub)martingales (Αʹ.1.6,Αʹ.1.5) we can prove that with
probability at least 1− δ,
(αʹ) {

∑n
k=0 γknoisek},

(βʹ) {
∑n

k=0 γkbiask} and
(γʹ) { 1

2Kh

∑n
k=0 γ

2
k‖v̂k‖2∗}

are less than ε/4 for all n ≥ 0. For concision, we defer the full proof to the supplement of the
paper in section Βʹ.4.1. For the rest of this part, we condition on this event and rewrite (⋆) as
Fh(x

∗, Yn+1) <
∑n

k=0 γkdriftk + ε.

Following the definition of stability (4.2.1), we prove inductively that if X0 belongs a smaller
neighborhood, namely if X0 ∈ Uε/4 ∩ imQ, then Xn never escapes Uε, Xn ∈ Uε for all n ≥ 0.
• Induction Basis/Hypothesis: Since X0 ∈ Uε/4 ∩ imQ, apparently Fh(x

∗, Y0) < ε/4 and
X0 ∈ Uε. Assume that Xk ∈ Uε for all 0 ≤ k ≤ n.

• Induction Step: We will prove that Yn+1 ∈ U∗
ε and consequently Xn+1 ∈ Uε. Since Uε

is a neighborhood of x∗ in which (VS) holds we have that driftk ≤ 0 for all 0 ≤ k ≤ n.
Consequently Fh(x

∗, Yn+1) < ε which implies that Yn+1 ∈ U∗
ε or equivalently Xn+1 ∈ Uε.

Step 2: Convergence. A tandem combination of stochastic Lyapunov and variational stability
is the following lemma:

Lemma 4.4.1 (Informal statement of Lemma Βʹ.4.1). Let x∗ ∈ A be a strict Nash equilibrium.
If Xn does not exit a neighborhood R of x∗, in which variational stability holds, then there exists
a subsequence Xnk

of Xn that converges to x∗ almost surely.

Indeed, if Xn is entrapped in a variationally stable region Uε of x∗ without converging to x∗,
we can show that

∑∞
k=0 γkdriftk → −∞, while comparatively by the law of the large numbers

for martingales (Αʹ.1.3), the contribution of (αʹ),(βʹ),(γʹ) is negligible. Thus, in limit (⋆) implies
that 0 ≤ lim infFh(x

∗, Yn) ≤ −∞, which is a contradiction.
Our final ingredient to complete the proof is that (Fh(x

∗, Yk))
∞
k=1 behaves like an almost

supermartingale when it is entrapped in a variationally stable region Uε of x∗. So, by convergence
theorem for (sub)-martingales (Αʹ.1.4), (Fh(x

∗, Yk))
∞
k=1 actually converges to a random finite

variable. Inevitably though, lim infn→∞ Fh(x
∗, Yn) = limn→∞ Fh(x

∗, Yn) = 0 and by the
properties of Fenchel coupling Βʹ.1.4, Q(Yn) = Xn → x∗.

4.4.2 The Stochastic Instability of Mixed Nash Equilibria
For the proof of theorem 4.3.2, it is worth mentioning that in this case stability fails for any
choice of step-size. We start by focusing on the assumption of non-degeneracy (A3) of theorem’s
statement.
• From a game-theoretic perspective, (A3) actually demands that with non-zero probability,

when players receive the payoffs corresponding to pure strategy profiles, there exists at least
one player for whom at least two strategies of the equilibrium have distinct payoff signal.
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Note that if for each player, the payoffs corresponding to two different strategies of supp(x∗)
were all equal 3 immediately implies a non-generic game with pure Nash equilibria.

• To illustrate this assumption in our generic feedback model, suppose that this error term
ξn is standard normal random noise ξn. Indeed, the requirement of (A3) is satisfied since
P(|vi,a(Xn) + ξia,n − vi,b(Xn) − ξib,n| ≥ 1/|N |) > 1 − O

(
exp(−1/|N |2)

)
. Such kind of

property can be derived actually for any per-coordinate independent noise since actually
the event of two independent coordinates to be exactly equal has zero measure.

For the bandit models 1, 2 of the previous section, we show that (A3) is satisfied in corrolaries
Βʹ.3.1,Βʹ.3.2 of Βʹ.5.
Moving on to the proof of theorem 4.3.2, we start our analysis by connecting the difference of
the payoff signal between two pure strategies, with the difference of the changes in the output
of the regularizers’ kernels, θi:

Lemma 4.4.2 (Informal Statement of lemma Βʹ.5.1). Let Xi,n be the sequence of play in
(FTRL) i.e., Xi,n = Q(Yi,n) ∈ Xi of player i ∈ N ; and for some round n ≥ 0 let a, b ∈
supp(Xi,n) be two pure strategies of player i ∈ N . Then it holds:

(θ′i(Xia,n+1)− θ′i(Xia,n))− (θ′i(Xib,n+1)− θ′i(Xib,n)) = γn(v̂ia,n − v̂ib,n)

To proceed with the proof of theorem 4.3.2 assume ad absurdum that a mixed Nash equilibrium
x∗ is stochastically asymptotically stable. Since x∗ is mixed, there exist a, b ∈ supp(x∗). Second,
the stochastic stability implies that for all ε, δ > 0 if X0 belongs to an initial neighborhood
Uε, then ‖Xn − x∗‖ < ε for all n ≥ 0, with probability at least 1 − δ. Third, by the triangle
inequality for two consecutive instances of the sequence of play Xi,n, Xi,n+1 for any player
i ∈ N it holds:

|Xia,n+1 −Xia,n|+ |Xib,n+1 −Xib,n| < O(ε) with probability 1− δ (4.9)

Consider ε sufficiently small, such that the probabilities of the strategies that belong to the
support of the equilibrium are bounded away from 0, for all the points of the neighborhood.
Since θi is continuously differentiable in (0, 1], the differences described in 4.4.2 are bounded
from O(ε) due to (4.9). Thus, if the sequence of play Xn is contained to an ε−neighborhood of
x∗, then the difference of the feedback, for any player i ∈ N , to two strategies of the equilibrium
is O(ε/γn) with probability at least 1− δ:

P(|v̂ia,n − v̂ib,n| = O(ε/γn) | Fn) ≥ 1− δ

However, from assumption (A3) for a fixed round n and some player i ∈ N , there exist β, π > 0
such that: P(|v̂ia,n − v̂ib,n| ≥ β | Fn) = π > 0. Thus by choosing ε = O(βγn) and δ = π/2, we
obtain a contradiction and our proof is complete.

3when all other players’ also employ strategies of the equilibrium
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Chapter 5

Future work

The equivalence between strict Nash equilibria and stable attracting states of feedback-limited
(FTRL) implies that any equilibrium that exhibits payoff-indiffirence between different strategies
is inherently unstable. This fragility has already been remarked from an epistemic viewpoint
[17], and our results provide a complementary justification based on realistic models of learning.
In the converse direction, the generality of the feedback models considered also provides
a template for proving stochastic asymptotic stability results in more demanding learning
environments. A particular case of interest arises in online ad auctions where payoffs are
observed with delay (or are dropped completely): depending on the delay, the estimation of the
player’s payoff could exhibit a bias relative to the sampling strategy, and our generic conditions
provide an estimate of how large the delays can be before convergence breaks down. This opens
the door to an array of fruitful research directions that we intend to pursue in the future.
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Appendix Αʹ

Theoretical Basis

Αʹ.1 Elements of martingale limit theory
Αʹ.1.1 Basic definitions
In this part we provide some basic definitions necessary for the rest of this thesis.

Definition Αʹ.1.1. Let Ω be a given set, then a σ− algebra F on Ω is a family F of subsets
of Ω with the following properties

1. ∅ ∈ F
2. F ∈ F ⇒ F c ∈ F , where F c = Ω \ F is the complement of F in Ω

3. A1, A2, . . . ∈ F ⇒ A :=
⋃∞

i=1Ai ∈ F
The pair (Ω,F) is called a measurable space. A probability measure P on a measurable space
(Ω,F) is a function P : F → [0, 1] such that

1. P (∅) = 0, P (Ω) = 1

2. If A1, A2, . . . ∈ F and {Ai}∞i=1 is disjoint (i.e., Ai ∩Aj = ∅ for i 6= j) then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai) (Αʹ.1)

The triple (Ω,F , P ) is called a probability space.
The subsets F of Ω which belong to F are called F−measurable sets. In a probability context
these sets are called events and P (F ) is the probability that the event F occurs. Given a set
V which contains some subsets of Ω, there is a smallest σ−algebra HV containing V:

HV =
⋂

{H;H σ − algebra of Ω,V ⊂ H} (Αʹ.2)

We call HV the σ−algebra generated by V

A special case of the above definition emerges if we consider V the set, containing all the open
sets of Ω = Rn. The σ−algebra generated by V is called Borel σ algebra on Rn. Consider now
a probability space (Ω,F , P ); a random variable X is an F−measurable function X : Ω → Rn.
Every random variable induces a probability measure µX on Rn, defined by

µX(B) = P
(
X−1(B)

)
(Αʹ.3)
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We call µX the distribution of X. The number

E[X] :=

∫
Ω

X(ω)dP (ω) =

∫
Rn

xdµx(x) (Αʹ.4)

is called the expectation of X, if
∫
Ω
X(ω)dP (ω) <∞.

Equivalently, if f : Rn → R is Borel measurable and
∫
Ω
|f(X(ω))|dP (ω) < ∞ then the

expectation of the random variable f(X) is

E[f(X)] :=

∫
Ω

f(X(ω))dP (ω) (Αʹ.5)

Notice that in the finite case, in which X is a random variable and x1, . . . , xn are the possible
outcomes of X, occurring with probabilities p1, . . . , pn the expectation of X is

E[X] =

n∑
i=1

xipi (Αʹ.6)

Definition Αʹ.1.2. Let (Ω,F , P ) be a probability space, then a stochastic process is a collection
of random variables

{Xn}n∈T (Αʹ.7)
for some set T ⊆ [0,∞).

Αʹ.1.2 Conditional Expectation
Let (Ω,F , P ) be a probability space and let X : Ω → Rn be a random variable with finite
expectation i.e., E[|X|] < ∞. If H ⊂ F is a σ−algebra then the conditional expectation of X
given H, which is denoted by E[X |H] is:

Definition Αʹ.1.3. E[X |H] is the almost surely (a.s.) unique function from Ω to Rn satisfying:
• E[X |H] is H−measurable

•
∫
H∈H

E[X |H]dP =

∫
H∈H

XdP

The existence and uniqueness of this function can be proven using Radon-Nikodym theorem.
A proof can be found in [2],[3],[4]. Below we present some basic properties of the conditional
expectation:

Theorem Αʹ.1.1. Let X : Ω → Rn and Y : Ω → Rn be two random variables with finite
expectations and a, b ∈ R. Then

1. E[aX + bY |H] = aE[X |H] + bE[Y |H]

2. E[E[X |H]] = E[X]

3. If X is H−measurable then E[X |H] = X

4. If X is independent of H then E[X |H] = E[X]

5. If Y is H−measurable, then E[〈X,Y 〉 |H] = 〈Y,E[X |H]〉.

Theorem Αʹ.1.2. Let G1,G2 be two σ−algebras such that G1 ⊂ G2 ⊂ F . Then
1. E[E[X | G2] | G1] = E[X | G1]

2. E[E[X | G1] | G2] = E[X | G1]
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Αʹ.1.3 Martingales
Let (Ω,F , P ) be a probability space. We call filtration in this space an increasing sequence
(Fn)n≥0 of σ−algebras which are all subsets of F i.e., Fn ⊂ Fn+1 ⊂ F for all n ≥ 0. A
sequence of random variables (Xn)n≥0 is attached to the filtration (Fn)

∞
n=0, if for all n ≥ 0 Xn

is Fn−measurable.

Definition Αʹ.1.4. A sequence of random variables X = (Xn)n≥0 that satisfies the following
properties

1. (Xn)n≥0 is attached to (Fn)n≥0

2. E[Xn] <∞ for all n ≥ 0

3. E[Xn+1 | Fn] = Xn for all n ≥ 0

is called a martingale with respect to the filtration (Fn)n≥0. If iii) holds as an inequality then
1. Xn is called a submartingale if E[Xn+1 | Fn] ≥ Xn for all n ≥ 0

2. Xn is called a supermartingale if E[Xn+1 | Fn] ≤ Xn for all n ≥ 0

Actually the filtration Fn includes all the information up to round n. As though, if Xn is
Fn−measurable, it holds that E[Xn | Fn] = Xn.

Αʹ.1.4 Martingale limit theorems
Below we first present a simple fact for the reader to keep in mind, followed by the main
theorems that we utilize in the main body of our proofs presented in the next chapters.

Fact 1. Let Rn =
∑n

k=1 rk, where rk is a positive random variable for all k = 0, 1, . . . attached
to the filtration Fk−1. Then Rn is a submartingale.

We begin with the strong law of large numbers for martingale difference sequences:

Theorem Αʹ.1.3. Let Rn =
∑n

k=1 rk be a martingale with respect to an underlying stochastic
basis (Ω,F , (Fn)

∞
n=1,P) and let (τn)∞n=1 be a nondecreasing sequence of positive numbers with

limn→∞ τn = ∞. If
∑∞

n=1 τ
−p
n E[|rn|p | Fn−1] <∞ for some p ∈ [1, 2] almost surely, then

lim
n→∞

τ−1
n Rn = 0 almost surely (Αʹ.8)

The second important result for our analysis is Doob’s martingale convergence theorem:

Theorem Αʹ.1.4. If Rn is a submartingale that is bounded in L1 (i.e., supn E[|Rn|] < ∞),
Rn converges almost surely to a random variable R with E[R] <∞.

Finally, we use the known as Doob’s maximal inequality and one of its variants, presented
below:

Theorem Αʹ.1.5. Let Rn be a non-negative submartingale and fix some ε > 0. Then:

P(sup
n
Rn ≥ ε) ≤ E[Rn]

ε
(Αʹ.9)

Theorem Αʹ.1.6. Let Rn be a martingale and fix some ε > 0. Then:

P(sup
n
|Rn| ≥ ε) ≤ E[R2

n]

ε2
(Αʹ.10)

Proofs of all these results can be found in [5].
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Αʹ.2 Elements of Convex Analysis
In this section we provide basic definitions and results from convex analysis. Many of these are
implicitly used in our proofs

Αʹ.2.1 Basic definitions
Definition Αʹ.2.1 (Convex Set). A subset C of Rd is said to be convex when for every pair
x, y ∈ C ⊆ Rd and every λ ∈ R for which 0 ≤ λ ≤ 1 the following holds:

z = (1− λ)x+ λy ∈ C

Figure Αʹ.1: Depiction of the epigraph of two functions

Let f : Rn → R be a function. We can imagine f as defining a hyper-surface in the joint space of
its input space and its output space, Rn×R. The points above that surface whose perpendicular
projections on Rn remain in dom f form the epigraph of the given function. More formally:

Definition Αʹ.2.2 (Epigraph). An epigraph of a function f : Rn → R is said to be the set
of points (x, µ) such that µ ≥ f(x) and it is noted as:

epif = {(x, µ) |µ ≥ f(x)}

An illustration of the epigraph can be viewed in figure Αʹ.1.

Definition Αʹ.2.3 (Proper function). A function f is called proper if its epigraph is non-empty
and contains no vertical lines.

Definition Αʹ.2.4 (Lipschitz continuity). Let f : Rn → Rm be a vector-valued function over
some open set X ⊂ Rn; we say that f is (a, b)-Lipschitz continuous if there exists a constant
L for norms ‖·‖a,‖·‖b such that for all x, y ∈ X :

‖f(x)− f(y)‖b ≤ L · ‖x− y‖a

The Lipschitz constant, L(a,b)(f,X ), is the infimum over all such all such L. Equivalently, one
can define L(a,b)(f,X ) as

L(a,b)(f,X ) = sup
x,y∈X ,x ̸=y

‖f(x)− f(y)‖b
‖x− y‖a
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Definition Αʹ.2.5 (Differentiability). We say that f is differentiable at x if there exists some
linear operator ∇f(x) ∈ Rn×m such that

lim
h→0

∥∥∥f(x+ h)− f (x)−∇f (x)T h
∥∥∥

‖h‖
= 0

A linear operator such that the above equation holds is defined as the Jacobian.

.

Definition Αʹ.2.6 (Directional derivative). Let f : Rn → Rm be a vector-valued function,
then the directional derivative of f along a direction v ∈ Rn is defined as

δvf(x) := lim
t→0

f(x+ tv)− f(x)

t

We now add the following facts:

Fact 2. Let f : Rn → Rm be a vector-valued function. Then the following hold:
1. If f is Lipschitz continuous, then it is absolutely continuous.
2. If f is differentiable at a point x ∈ Rn, all directional derivatives exist at x. The converse

is not true, however.
3. If f is differentiable at a point x ∈ Rn, then for any vector v ∈ Rn, δvf(x) = ∇f(x)T v.
4. (Rademacher’s Theorem): If f is Lipschitz continuous, then f is everywhere differentiable

except for a set of measure zero ( under the standard Lesbegue measure in Rn) .

Definition Αʹ.2.7 (Subgradient). Let f : Rn → R be a function, then a vector s ∈ Rn is a
subgradient of f at x ∈ domf if for all y ∈ domf it holds

f(y) ≥ f(x) + sT (y − x) (Αʹ.11)

Remark 5. If f is convex and differentiable, then its gradient at a point x is also a subgradient.
But a subgradient can exists even when f is not differentiable at x.

Definition Αʹ.2.8 (Subdifferential). The subdifferential of a function f : Rn → R at a point
x ∈ Rn, denoted by ∂f(x), is the set of subgradients of f at that point x. A function f is
called subdifferential at a point x if there exists at least one subgradient of f at x. If f is
subdifferential at all x ∈ domf then f is called subdifferential.

Definition Αʹ.2.9 (Lipschitz Continuous Gradient). A function f is said to have a L-Lipschitz
continuous gradient if there exists L > 0 such that for all x, y in its domain, it holds:

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖

Αʹ.2.2 Convexity & Duality
In this section we are going to discuss the conjugate transform of functions. It is a transform
that maps the parameters of hyper-planes tangent to the curve of a function to a certain value.
It may not be the first time one sees such a transform, one that shifts our attention to a
parameter space. For example, in traditional computer vision a certain transform, known as
Hough Transform, is used in order to map whole lines of the 2-D space to tuples (ρ, θ); θ being
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the angle that the line perpendicular to the line in question forms with the horizontal axis
and ρ being the distance of the line from the origin. Although this only vaguely resembles
the subject of our discussion – and we regret causing any confusion – we mention it in order
to motivate more ways of thinking of lines than just as a set of points. There are various
implementations based on this premise that help us detect and recognize not only lines but
also regular geometric shapes. Our subject revolves around tangent lines (or hyper-planes for

Figure Αʹ.2: Representing the blue line with parameters ρ, θ

function domains with dimension greater than 1) on a convex function. We will demonstrate a
way that has been devised in order to represent elegantly the whole set of these tangent lines.

Frankly the definition seems a bit awkward. Considering its geometric interpretation could
maybe shed some light as to what this is supposed to mean.

The conjugate transform of a function f is merely a function f∗ that maps slopes α to the
maximum available offset β such that the given line αx+β will be tangent to the curve defined
by f .

40



APPENDiX αʹ. THEORETiCAL BASiS 41

Figure Αʹ.3: Geometric meaning of the conjugate transform

Definition Αʹ.2.10 (Dual space). Given any vector space V over a field F , the (algebraic)
dual space V ∗ is the set of all linear maps ϕ : V → F .

Definition Αʹ.2.11 (Fenchel conjugate). Let X be a real topological vector space and X∗ its
dual space. Then for a function f : X → R, the convex conjugate f∗ : X∗ → R is defined as

f∗(x∗) := sup
x∈X

{〈x∗, x〉 − f(x)|x ∈ X} (Αʹ.12)

Theorem Αʹ.2.1 (Fenchel’s inequality). For any subgradient vector p ∈ f∗(dom f∗) and any
x ∈ dom f the following inequality stands:

f∗(p) + f(x) ≥ 〈p, x〉

Proof. By the definition of the conjugate transform: f∗(p) = supx∈dom f {〈p, x〉 − f(x)} we can
decide that:

f∗(p) ≥ 〈p, x〉 − f(x), for all x (Αʹ.13)
f∗(p) + f(x) ≥ 〈p, x〉 (Αʹ.14)

■

Αʹ.2.3 Convexity and Smoothness
Definition Αʹ.2.12 (Convexity in Rn). A function f : Rn → R is convex, if its domain A is
a convex set and for all x, y ∈ A and for all λ ∈ [0, 1] it holds:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)
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Definition Αʹ.2.13 (Effective Domain of a Convex Function). The effective domain of a
convex function, dom f , is the set of x such that:

dom f = {x | f(x) < −∞}

Lemma Αʹ.2.2 (Equivalence for Convexity). Suppose f : Rn → R with the extended value
extension. Then, the following statements are equivalent:

[1] (Jensen’s inequality): f is convex.
[2] (First order): f(y) ≥ f(x) + sTx (y − x) for all x, y and any sx ∈ ∂f(x).
[3] (Monotonicity of subgradient): (sy − sx)

T
(y − x) ≥ 0 for all x, y and any sx ∈ ∂f(x), sy ∈

∂f(y).

Proof. [1] ⇒ [2] By definition of convexity we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (Αʹ.15)
f(λx+ (1− λ)y)− f(y)

λ
≤ f(x)− f(y) (Αʹ.16)

But, if sx ∈ ∂f(x) then

f (y) ≥ f (x) + sTx (y − x) for all y ∈ domf (Αʹ.17)
f (λx+ (1− λ)y) ≥ f (y) + sTy (λx+ (1− λ)y − y) (Αʹ.18)
f(λx+ (1− λ)y)− f(y) ≥ λsTy (x− y) (Αʹ.19)

where for the first we have substitute y = λx + (1− λ)y, x = y. Combining the above two
results we get

f (x) ≥ f (y) + sTy (x− y) or (Αʹ.20)
f (y) ≥ f (x) + sTx (y − x) (Αʹ.21)

[2] ⇒ [1]

f (y) ≥ f (x) + sTx (y − x) for all x, y (Αʹ.22)

By substituting x = x′, x′ = λx+ (1− λ)y in the above inequality we get

f (y) ≥ f (x′) + sTx′ (y − x′) (Αʹ.23)
(1− λ)f(y) ≥ (1− λ)f(x′) + (1− λ)λsTx′(y − x) (Αʹ.24)

Furthermore, let x′ = λx+ (1− λ)y by renaming we have

f (x) ≥ f (y) + sTy (x− y) (Αʹ.25)
f (x) ≥ f (x′) + sTx′ (x− x′) (Αʹ.26)
λf(x) ≥ λf(x′) + λ(1− λ)sTx′(x− y) (Αʹ.27)

By adding the last two inequalities we get

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (Αʹ.28)
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[2] ⇒ [3]

f (y) ≥ f (x) + sTx (y − x) (Αʹ.29)
f (x) ≥ f (y) + sTy (x− y) + (Αʹ.30)

(sy − sx)
T
(y − x) ≥ 0 (Αʹ.31)

[3] ⇒ [2]
Since the set of subgradients is non-empty for all x, y then [2] is just the definition of the
subgradient. ■

Lemma Αʹ.2.3 (Equivalence for Strong convexity). Suppose f : Rn → R with the extended-
value extension. Then the following statements are equivalent:

[1] f is strongly convex with paremeter µ.
[2] f (αx+ (1− α) y) ≤ αf (x)+(1− α) f (y)− µ

2α(1− α)‖y−x‖2 for any x, y and α ∈ [0, 1].
[3] f (y) ≥ f (x) + sTx (y − x) + µ

2 ‖y − x‖2 for all x, y and any sx ∈ ∂f(x).
[4] (sy − sx)

T
(y − x) ≥ µ‖y − x‖2 for all x, y and any sx ∈ ∂f(x), sy ∈ ∂f(y).

[5] g(x)− µ
2 ‖x‖

2 is convex.

Proof. [5] ⇒ [3], [2], [4]
By definition of convexity of g.
[4] ⇒ [5]
By applying that sgx = sfx − µx and doing the calculations.
[2] ⇒ [3]
It is

f (αx+ (1− α) y) ≤ αf (x) + (1− α) f (y)− µ

2
α(1− α)‖y − x‖2 (Αʹ.32)

f (αx+ (1− α)y) ≥ f (x) + sTx (αx+ (1− α)y − x) (Αʹ.33)

By combining them we get

f(y) ≥ f(x) + sTx (y − x) +
µ

2
α‖y − x‖2 (Αʹ.34)

f (y) ≥ f (x) + sTx (y − x) (Αʹ.35)

where we have set α = 1 [3] ⇒ [2], [3] ⇒ [4]
The proofs are similar to the ones in the previous lemma. ■

Lemma Αʹ.2.4 (Implications of Strong Convexity). Suppose f : Rn → R with the extended-
value extension. The following conditions are all implied by strong convexity with parameter
µ:

[1] 1

2
‖sx‖2 ≥ µ(f(x)− f∗).

[2] ‖sy − sx‖ ≥ µ‖y − x‖.

[3] f(y) ≤ f(x) + sTx (y − x) +
1

2µ
‖sy − sx‖2.

[4] (sy − sx)
T
(y − x) ≤ 1

µ
‖sy − sx‖2 ∀x, y and any sx ∈ ∂f(x), sy ∈ ∂f(y).
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Remark 6. A point x∗ is a minimizer of a function f iff f is subdifferentiable at x∗ and
0 ∈ ∂f(x∗)

Proof. [1] Since f is strong convex, we have

f (y) ≥ f (x) + sTx (y − x) +
µ

2
‖y − x‖2 (Αʹ.36)

By minimizing both parts of this inequality, we get f∗ for the first part and for the second
y = x− sx

µ
and by substituting we get:

f∗ ≥ f(x)− ‖sx‖2

µ
+

‖sx‖2

2µ
(Αʹ.37)

1

2
‖sx‖2 ≥ µ(f(x)− f∗) (Αʹ.38)

[2] Since f is strongly convex:

(sx − sy)
T
(x− y) ≥ µ‖x− y‖2 (Αʹ.39)

‖sx − sy‖‖x− y‖ ≥ µ‖x− y‖2 (Αʹ.40)
‖sx − sy‖ ≥ µ‖x− y‖ (Αʹ.41)

[3]Consider the functions hx(z) = f(z) − sTx z. Then the subgradient of hx(z), say gz, equals
sz − sx. So, we have

(sz1 − sz2)
T
(z1 − z2) ≥ µ‖y − x‖2 (Αʹ.42)

(gz1 − sz2)
T
(z1 − z2) ≥ µ‖z1 − z2‖2 (Αʹ.43)

So hx(z) is strong convex and using the [1] of this lemma for hx we get

h∗x ≥ hx(y)−
1

2µ
‖gy‖2 ⇒ (Αʹ.44)

f(x)− sTx x ≥ f(y)− sT y − 1

2µ
‖sy − sx‖2 (Αʹ.45)

f(y) ≤ f(x) + sTx (y − x) +
1

2µ
‖sy − sx‖2 (Αʹ.46)

[4] It can be derived from [3] with change of variables and adding the two inequalities. ■

Lemma Αʹ.2.5. For a function f with Lipscitz continuous gradient over Rn, the following
relations hold:

[5] ⇔ [7] ⇒ [6] ⇒ [0] ⇒ [1] ⇔ [2] ⇔ [3] ⇔ [4] (Αʹ.47)
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If the function f is convex, then all the conditions [0]-[7] are equivalent.

[0]‖∇f(x)−∇f(y)‖ ≤ L‖y − x‖, ∀x, y. (Αʹ.48)

[1]g(x) =
L

2
xTx− f(x) is convex , for all x. (Αʹ.49)

[2]f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
‖y − x‖2, ∀x, y. (Αʹ.50)

[3](∇f(x)−∇f(y))T (y − x) ≤ L‖x− y‖2, ∀x, y. (Αʹ.51)

[4]f (xy + (1− x) a) ≤ xf (y) + (1− x) f (a)− 1(1− a)L

2
‖x− y‖2, ∀x, y and a ∈ [0, 1].

(Αʹ.52)

[5]f (y) ≥ f (x) + sTx (y − x) +
1

2L
‖∇f(y)−∇f(x)‖2, ∀x, y. (Αʹ.53)

[6](∇f(x)−∇f(y))T (x− y) ≥ 1

L
‖∇f(x)−∇f(y)‖2, ∀x, y. (Αʹ.54)

[7]f(ax+ (1− a)y) ≤ af(x) + (1− a)f(y)− a(1− a)

2L
‖∇f(x)−∇f(y)‖2, ∀x, y and a ∈ [0, 1].

(Αʹ.55)

Proof. [1] ⇔ [2]
It is,

∇g(x) = Lx−∇f(x) (Αʹ.56)

Furthermore (all these steps perform equivalences)

g(y) ≥ g(x) +∇g(x)T (y − x) (Αʹ.57)
L

2
‖y‖2 − f(y) ≥ L

2
‖x‖2 − f(x) + (Lx−∇f(x))T (y − x) (Αʹ.58)

f(y) ≤ f(x) +
L

2
‖y‖2 + L

2
‖x‖2 − LxT y +∇f(x)(y − x) (Αʹ.59)

f(y) ≤ f(x) +∇f(x)(y − x) +
L

2
‖y − x‖2 (Αʹ.60)

[2] ⇒ [3] Interchange x,y and add.
[3] ⇒ [1] Substitute ∇f(x) = Lx−∇g(x) and conclude the monotonicity of gradient for g.
[1] ⇔ [4]

g (ax+ (1− a) y) ≤ ag (x) + (1− a) g (y) ⇔ (Αʹ.61)
L

2
(ax+ (1− a)y)

T
(ax+ (1− a)y)− f(x′) ≤ L

2
a‖x‖2 − af(x) +

L

2
(1− a)‖y‖2 − (1− a)f(y) ⇔

(Αʹ.62)

f(x′) ≥ af(x) + (1− a)f(y)− L

2

[
a(1− a)‖x‖2 + a(1− a)‖y‖2 − 2a(1− a)xT y

]
⇔ (Αʹ.63)

f(x′) ≥ af(x) + (1− a)f(y)− L

2
a(1− a)‖x− y‖2 (Αʹ.64)

[0] ⇒ [3]

(∇f(x)−∇f(y))T (x− y) ≤ ‖∇f(x)−∇f(y)‖‖x− y‖ ≤ L‖y − x‖2 (Αʹ.65)
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[5] ⇒ [6] Change x,y and add.
[5] ⇒ [7] Following the same procedure as to prove that first order implies Jensen’s inequality
we get

f(x′) ≤ af(x) + (1− a)f(y)− 1− a

2L
‖∇f(x)−∇f(x′)‖ − a

2L
‖∇f(x′)−∇f(y)‖ (Αʹ.66)

It also holds ∀x, y

a‖x‖2 + (1− a)‖y‖2 ≥ a(1− a)‖x+ y‖2 ⇔ (Αʹ.67)
a2‖x‖2 − 2a(1− a)xT y + (1− a)

2‖y‖2 ≥ 0 ⇔ (Αʹ.68)
‖ax− (1− a)y‖2 ≥ 0 which is true ∀x, y (Αʹ.69)

Combining the above two results we get [7].
[7] ⇒ [5] We follow the same procedure as the one to prove that Jensen’s inequality implies
first order criterion. [6] ⇒ [0] again by using Cauchy-Swartz inequality.
Also if f is convex it is sufficient to show that one of [1], [2], [3], [4] implies [5] or [7].
[3] ⇒ [5]

As before we will define the function hx(z) = f(z) − ∇f(x)T z and then ∇hx(z) = ∇f(z) −
∇f(x). Then

(∇f(z1)−∇f(z2))T (z1 − z2) ≤ L‖z1 − z2‖2 (Αʹ.70)
(∇hx(z1)−∇hx(z2))T (z1 − z2) ≤ L‖z1 − z2‖2 (Αʹ.71)

hx(z) ≤ hx(y) +∇hx(y)T (z − y) +
L

2
‖z − y‖2 (Αʹ.72)

where we used the fact that [2] ⇔ [3] to go from the second to the third inequality. Since f is
convex from the first order criterion we get that hx(z) attains its minimum when z = x. Also
by taking minimization of the right part of the last inequality we get z = y− 1

L
∇hx(y) and by

applying this minimization two both ends of the inequality we get [5]. ■

Lemma Αʹ.2.6. Consider the following conditions for a general function f:
[1] f∗(s) = sTx− f(x).
[2] s ∈ ∂f(x).
[3] x ∈ ∂f∗(s).

Then, we have
[1] ⇔ [2] ⇒ [3] (Αʹ.73)

Further, if f is closed and convex, then all these conditions are equivalent.

Proof. [1] ⇔ [2]

s ∈ ∂f(x) ⇔ f(y) ≥ f(x) + sT (y − x) (Αʹ.74)
⇔ sTx− f(x) ≥ sT y − f(y) = f∗(s) (Αʹ.75)

Also by the definition of Fenchel congucate f∗(s) ≥ sTx− f(x). [2] ⇒ [3]

s ∈ ∂f(x) ⇒ f(z) ≥ f(x) + sT (z − x) (Αʹ.76)
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Also, [2] ⇒ [3]

f∗(z) ≥ zTx− f(x) ≥ zTx− f(z) + sT (z − x) = f∗(s) + xT (z − s) ⇒ x ∈ ∂f∗(s) (Αʹ.77)

If f is closed and convex [3] ⇒ [2]

Lemma Αʹ.2.7. If f is convex and closed then f∗∗ = f .

Proof. We know that f∗(s) = supx∈domf

(
sTx− f(x)

)
and f∗∗(x) = sups∈domf∗

(
xT s− f∗(s)

)
.

Now suppose that f∗(s) = sT y−f(y) for some y,we know that this holds due to the closeness of
the linear function and f (f is closed ⇒ the sublevel sets of f are closed and so the supremum
can be achieved) which implies that s ∈ ∂f(y). Then,

f∗∗(x) = sup
s

(
sT − f∗(s)

)
≥ sT − f∗(s) ∀s (Αʹ.78)

If we choose s ∈ ∂f(x) ⇒ f∗(s) = sTx− f(x) we have

f∗∗(x) ≥ sTx− f∗(x) ≥ f(x) (Αʹ.79)

Also, from the previous observation we have

f∗∗(x) = sup
s∈∂f(y)

(
sTx− sT y + f(y)

)
s ∈ ∂f(y) (Αʹ.80)

By convexity of f , ∀x, y and s ∈ ∂f(y)

f(x) ≥ f(y) + sT (x− y) (Αʹ.81)

and so f∗∗(x) ≤ f(x), which means that f∗∗(x) = f(x) ■

So,
f(y) ≥ f(x) ≥ xT s− f∗s (Αʹ.82)

x ∈ ∂f∗(s) ⇒ f∗(z) ≥ f∗(s) + xT (z − s) (Αʹ.83)

Finally

f∗∗(z) ≥ zT s− f∗(s) ≥ zT s− f∗(z) + xT (z − s) (Αʹ.84)
f(z) ≥ f(x) + sT (z − x) (Αʹ.85)
s ∈∂f(x) (Αʹ.86)

■

Lemma Αʹ.2.8 (Differentiability). For a closed and strictly convex f ,∇f∗(s) = argmaxx
(
sTx− f(x)

)
Proof. Since f is strictly convex and closed all of the properties from the previous lemma are
equivalent. Also, f∗(s) = supz

{
sT z − f(z)

}
. So, we know that the supremum of sT z − (z) is

achieved when z = x and also

∇f∗(s) = x = argmax
x

(
sTx− f(x)

)
(Αʹ.87)
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Now we only have to show that for two points x1 6= x2 s.t. the x1 ∈ ∂f∗(s) and x2 ∈ ∂f∗(s),
which means that s ∈ ∂f(x1) and s ∈ ∂f(x2). If there were then ∀z

f(z) ≥ f(x1) + sT (z − x1) (Αʹ.88)
f(z) ≥ f(x2) + sT (z − x2) (Αʹ.89)

With strict inequality for z 6= x1 and z 6= x2 equivalently. Then by using z = x2 and z = x1
and adding the two inequalities we conclude that 0 > 0 which a contradiction. ■

Theorem Αʹ.2.9. A function f and its Fenchel conjucate function f∗ satisfy the following
assertions:

1. if f is closed and strong convex with parameter µ, then f∗ has a Lipschitz continuous
gradient with parameter 1

µ .
2. If f is convex and has Lipschitz continuous gradient with parameter L, then f∗ is strong

convex with parameter 1
L .

Proof. We start by proving 1. If f is strong convex and closed and f∗(s) = sTx − f(x) and
f∗(p) = pT y − f(y) then

‖sx − sy‖ ≥ µ‖x− y‖ (Αʹ.90)
1

µ
‖s− p‖ ≥ ‖∇f∗(s)−∇f∗(p)‖ (Αʹ.91)

We now proceed to the proof of the second claim. Again since f is convex all the previous
properties hold and we have

‖∇f(x)−∇f(y)‖ ≤ L‖y − x‖ (Αʹ.92)

‖∇f∗(s)−∇f∗(p)‖ ≥ 1

L
‖p− s‖ (Αʹ.93)

■

These proofs can also be found in [51].
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Appendix Βʹ

Deferred Proofs

Βʹ.1 Bregman Divergence and Fenchel Coupling

Figure Βʹ.1: The level sets of KL-divergence

Βʹ.1.1 Bregman Divergence
Bregman divergence provides a way to measure the distance of two points that belong to the
simplex. Its properties render it a useful tool to prove convergence results. Below we state its
definition and prove these properties that would be crucial in the establishment of our proof.
Given a fixed point p ∈ X then the Bregman divergence of a function h is defined for all points
x ∈ X as

Dh(p, x) = h(p)− h(x)− h′(x; p− x) for all p, x ∈ X (Βʹ.1)

where h′(x; p− x) is the one-sided derivative

h′(x; p− x) ≡ lim
t→0+

t−1[h(x+ t(p− x))− h(x)] (Βʹ.2)

Notice that this definition of the Bregman divergence permits to work also with points on the
boundary. It is possible that the limit of Dh attains the value of +∞ if h′(x; p− x) = −∞, as
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x → p, where p is a point of the boundary. However, the condition below ensures that this is
not the case.

Dh(p;x) → 0 whenever x→ p (Reciprocity)
This is known as the reciprocity condition. What this property actually means is that the
sublevel sets of D(p, ·) are neighborhoods of p. This is illustrated in Βʹ.1, when the function
employed is the negative Shannon-entropy and the induced Bregman divergnce the Kullback–
Leibler divergence. Notice that for most decomposable functions h, this property holds. Below
we present a proof of this statement.

Proposition Βʹ.1.1. If h(x) =
∑

i θ(xi), for some kernel function θ having the properties
described in (reguralizer’s properties) and furthermore it holds that θ′(x) = o(1/x) for x close
to 0, then Dh(p;x) → 0 whenever x→ p for all x, p ∈ X .

Proof. It is sufficient to prove that limx→0(θ(0) − θ(x) − θ′(x)(0 − x)) = 0. The difference of
the first two terms is obviously gives zero. Now, for the last term notice that if θ′(x) = o(1/x)
for x close to 0, then limx→0 xθ

′(x) = 0 and the proof is completed. ■

Additionally, Bregman divergence satisfies the properties described below.

Proposition Βʹ.1.2. Let h be a K-strongly convex function defined on the simplex X = ∆(A),
that has the properties described in reguralizer’s properties and let ∆p be the union of the relative
interiors of the faces of X that contain p i.e.,

∆p = {x ∈ X : supp(p) ⊆ supp(x)} = {x ∈ X : xa > 0 whenever pa > 0} (Βʹ.3)

Then
1. Dh(p, x) <∞ whenever x ∈ ∆p.
2. Dh(p, x) ≥ 0 for all x ∈ X , with equality if and only if p = x, more particularly

Dh(p, x) ≥
1

2
K‖x− p‖2 for all x ∈ X (Βʹ.4)

Proof. For the first part, if x ∈ ∆p then h(x+ t(x− p)) is finite and smooth in a neighborhood
of 0 and thus D(p, x) is also finite.
The second part of the proposition, let z = x− p then strong convexity yields

h(x+ tz) ≤ th(p) + (1− t)h(x)− 1

2
Kt(1− t)‖x− p‖2

t−1(h(x+ tz)− h(x)) ≤ h(p)− h(x)− 1

2
(1− t)K‖x− p‖2

h(p)− h(x)− t−1(h(x+ tz)− h(x)) ≥ 1

2
(1− t)K‖x− p‖2

And by taking t→ 0, we obtain the result. ■

We mention at this point that from (reguralizer’s properties), since for each i ∈ N :
inf∈[0,1] θ

′′
i > 0, there exists Ki > 0 such that for all x, y ∈ [0, 1] and t ∈ [0, 1]

θi(tx+ (1− t)y) ≤ tθi(x) + (1− t)θi(y)−
Ki

2
t(1− t)|x− y|2 (Βʹ.5)

In all the proofs h symbolizes the aggregate function of all the regularizers i.e., h(x) =∑
i hi(xi), with strong convexity parameter K ≡ miniKi.
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Βʹ.1.2 Steep vs non-steep
In this section we elaborate in detail the dichotomy of the properties of different regularizers
mentioned in the remark 4. As we mentioned players may have different regularizers hi employed
in their choice mapsQi(y) = argmaxx∈Xi

{〈x, y〉 − hi(x)}. Depending on the regularizer chosen,
FTRL dynamics may differ significantly. To formally express this difference, it is convenient
to consider that h is an extended-real valued function h : V → R ∪ {∞} with value ∞ outside
of the simplex X . Then the subdifferential of h at x ∈ V is defined as:

∂h(x) = {y ∈ V∗ : h(x′) ≥ h(x) + 〈y, x′ − x〉 ∀x′ ∈ V} (Βʹ.6)

If ∂h(x) is nonempty, then h is called subdifferentiable at x ∈ X . When x ∈ ri(X ) then ∂h(x)
is always non-empty or ri(X ) ⊆ dom ∂h ≡ {x ∈ X : ∂h(x) 6= ∅}. Notice that when the
gradient of h exists, then its subgradient always contains it. With these in mind, we present
a typical separation between the different regularizers. On the one hand, steep regularizers
like the negative Shannon-entropy become infinitely steep as x approaches the boundary or
‖∇h(x)‖ → ∞. On the other hand, non-steep are everywhere differentiable, like the Euclidean,
allowing the sequence of play to transfer between the different faces of the simplex. In the
dual space of payoffs, steepness implies that the choice map is not surjective (since it cannot
map all payoff vectors to points of the boundary), it is however injective (it maps a payoff
vector plus a multiple of (1, 1, . . . , 1) to the same strategy). Non-steep regularizers give rise
to surjective maps, which are not injective, not even up to a multiple of (1, 1, . . . , 1), to the
boundary. Focusing on the more simple case of decomposable regularizers, the kernel of a steep
one is differentiable on (0, 1] while for non-steep the kernel is differentiable in all of [0, 1]. As
a result, when a steep regularizer is employed the mirror map Q : Y → X cannot return any
point of the boundary. In other words, the points of the boundary are infeasible not only as
initial conditions but also as part of the sequence of play.
Remark 7. This dichotomy is important for our analysis since we study the stochastic asymptotic
stability of Nash equilibria, which may lie on the boundary, and we seek a neighborhood
of initial conditions such that the equilibrium to be stable and attracting. Thus, instead
of demanding the existence of a neighborhood U of an equilibrium x∗, such that whenever
X0 ∈ U , x∗ is stable and attracting; we demand the existence of a neighborhood U of x∗ such
that whenever X0 ∈ U ∩ imQ then x∗ is stable and attracting.

Βʹ.1.3 Polar Cone
The notion of the polar cone is tightly connected with the notion of duality. Given a finite
dimensional vector space V, a convex set C ⊆ V and a point x ∈ C the tangent cone TCC(x)
is the closure of the set of all rays emanating from x and intersecting C in at least one other
point. The dual of the tangent cone is the polar cone PCC(x) = {y ∈ V∗ : 〈y, z〉 ≤ 0 for all z ∈
TCC(x)}.
When the under consideration convex set is the simplex of the players’ strategies, the polar
cone corresponding to the boundary differs significantly from the one corresponding to the
interior. Formally, the polar cone at a point x of the simplex is

PC(x) = {y ∈ Y : ya ≥ yb for all a, b ∈ A}1 (Βʹ.7)

An illustration of this is depicted in figure Βʹ.2. When (FTRL) is run, the notion of the polar
cone emerges from the choice map Q : Y → X , connecting the primal space of the strategies
with the dual space of the payoffs. The proposition below presents this exact connection.

1It is always ya = yb whenever a, b ∈ supp(x).
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Figure Βʹ.2: The polar cone corresponding to different points of the simplex. For an
interior point this is a line perpendicular to the simplex. For a point of the boundary,
it is a plane perpendicular to the simplex tangential to the point of the boundary. For
an edge the polar cone corresponds to a cone.

Proposition Βʹ.1.3. Let h be a strong convex regularizer that satisfies the properties described
in reguralizer’s properties and let Q : Y → X be the induced choice map then

1. x = Q(y) ⇔ y ∈ ∂h(x)

2. ∂h(x) = ∇h(x) + PC(x) for all x ∈ X .

Βʹ.1.4 Fenchel Coupling
Even though Bregman divergence is a useful tool, (FTRL) evolves in the dual space of payoffs.
Thus dually to the above the Fenchel coupling2 is defined, Fh : X × Y → R

Fh(p, y) = h(p) + h∗(y)− 〈y, p〉 for all p ∈ X , y ∈ Y (Βʹ.8)

where h∗ : Y → R is the convex conjugate of h: h∗(y) = supx∈X {〈y, x〉 − h(x)}. The fenchel
conjugate is differentiable on Y and it holds that

∇h∗(y) = Q(y) for all y ∈ Y (Βʹ.9)

Fenchel coupling is also a measure that connects the primal with the dual space. As we
mentioned above, (FTRL) evolves in the dual space and thus we use Fenchel coupling to
trace its convergence properties. As the next proposition states, whenever Fenchel coupling
F (p, y) is bounded from above so does ‖Q(y)− p‖. This proposition in its entity, is critical for
our proof, since we first need to find a neighborhood U of attractness (See 4.2.1). For this step,
Bregman divergence is necessary in order to define the aforementioned neighborhood since
‖Q(y)− p‖ < c for some constant c is not necessarily a neighborhood of p (See section Βʹ.1.2).

Proposition Βʹ.1.4. Let h be a K-strongly convex function on X and has the propertied
described in reguralizer’s properties. Let p ∈ X , then

1. Fh(p, y) ≥
1

2
K‖Q(y)− p‖2 for all y ∈ Y and whenever Fh(p, y) → 0, Q(y) → p.

2. Fh(p, y) = Dh(p, x) whenever Q(y) = x and x ∈ ∆p.

3. Fh(p, y
′) ≤ Fh(p, y) + 〈y′ − y,Q(y)− p〉+ 1

2K
‖y′ − y‖2∗.

2The term is due to [16].
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Remark 8. Notice that the first part of the proposition is not implied by the second one, since
it is possible that imQ = dom ∂h is not always contained in ∆p (see sectionΒʹ.1.2).

Proof. For the first part, let x = Q(y) then h∗(y) = 〈y, x〉 − h(x)

Fh(p, y) = h(p)− h(x)− 〈y, p− x〉 (Βʹ.10)

Since y ∈ ∂h(x) (Proposition Βʹ.1.3), it is

h(x+ t(p− x)) ≥ h(x) + t〈y, p− x〉 (Βʹ.11)

and by strong convexity of h, we have

h(x+ t(p− x)) ≤ th(p) + (1− t)h(x)− 1

2
Kt(1− t)‖p− x‖2 (Βʹ.12)

Thus by combining (Βʹ.11),(Βʹ.12) and taking t→ 0 we get

Fh(p, y) ≥ h(p)− h(x)− h(p) + h(x) +
K

2
‖p− x‖2 ≥ K

2
‖p− x‖2 (Βʹ.13)

For the second part of the proposition, notice that x + t(p − x) lies in the relative interior of
some face of X for t in a neighborhood of 0 and thus h(x+ t(p− x)) is smooth and finite. So,
h admits a two-sided derivative along x− p and since y ∈ ∂h(x), 〈y, p− x〉 = h′(x; p− x) and
our claim naturally follows.
Finally for the last part of the proposition, we have

Fh(p, y
′) = h(p) + h∗(y′)− 〈y′, p〉

≤ h(p) + h∗(y) + 〈y′ − y,∇h∗(y)〉+ 1

2K
‖y′ − y‖2∗ − 〈y′, p〉

= Fh(p, y) + 〈y′ − y,Q(y)− p〉+ 1

2K
‖y′ − y‖2∗

where the second inequality follows from the fact that h∗ is 1/K strongly smooth [18]. ■

In terms of Fenchel coupling our reciprocity assumption can be written as

Fh(p, y) → 0 whenever Q(y) → p (Reciprocity)

Again for most of h decomposable, the assumption is turned into a property as we prove below.

Proposition Βʹ.1.5. If h(x) =∑i θ(xi), with θ having the properties described in (reguralizer’s properties)
and furthermore it holds that θ′(x) = o(1/x) for x close to 0, then Fh(p, y) → 0 whenever
Q(y) → p for all p ∈ X .

Proof. Again it is sufficient to prove that whenever Q(y) = x → 0 then Fh(p, y) → 0. Notice
that from Βʹ.1.4 Fh(p, y) = Dh(p, x) whenever x = Q(y) and x ∈ ∆p. Thus by Βʹ.1.1 Q(y) =
x→ 0 implies that Fh(p, y) → 0. ■

53



54 APPENDiX βʹ. DEFERRED PROOFS

Βʹ.2 Variational stability
Definition Βʹ.2.1 (Variational stability). A point x∗ ∈ X is said to be variationally stable if
there exists neighborhood U of x∗ such that

〈v(x), x− x∗〉 ≤ 0 for all x ∈ U (VS)

with equation if and only if x = x∗.
What this property actually states is that in a neighborhood of x∗, it strictly dominates over
all other strategies. Interestingly, strict Nash equilibria hold this property:
Proposition Βʹ.2.1. For finite games in normal form, the following are equivalent:

i) x∗ is a strict Nash equilibrium.
ii) 〈v(x∗), z〉 ≤ 0 for all z ∈ TC(x∗) with equality if and only if z=0.
iii) x∗ is variationally stable.

Figure Βʹ.3: (VS) states that the payoff vectors are pointing ”towards” the equilibrium

Proof. We will first prove that i) ⇒ ii) ⇒ iii) ⇒ i).
i) ⇒ ii) Since x∗ is a Nash equilibrium by definition it holds for each player i that

〈v(x∗), x− x∗〉 ≤ 0 for all x ∈ X (Βʹ.14)

For the strict part of the inequality, by definition of strict Nash equilibria it holds that
〈vi(x∗), xi − x∗i 〉 < 0 whenever xi 6= x∗i and thus

〈v(x∗), z〉 =
N∑
i=1

〈vi(x∗), xi − x∗i 〉 < 0 if xi 6= x∗i for some i or z 6= 0 (Βʹ.15)

ii) ⇒ iii) By definition of the polar cone, we have that v(x∗) belongs to the interior of PC(x∗)3.
Thus by continuity there exists some neighborhood of x∗ such that v(x) also belongs to the
polar cone of PC(x∗) or x∗ is variationally stable.
iii) ⇒ i) Assume now that x∗ is variationally stable but not strict, then there exist for some
player i a,b ∈ Ai such that ui(a;x∗−i) = ui(b;x

∗
−i). Then for xi = x∗i +λ(ea−eb) and x−i = x∗−i

we have
〈v(x∗), x− x∗〉 = 〈vi(x∗), λ(ea − eb)〉 = 0 (Βʹ.16)

which is a contradiction. ■
3Indeed if it belonged to the boundary then the equality in ii) would not hold only for z = 0.
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Βʹ.3 Proofs of assumptions for Model 1, Model 2
Below we provide a proof for our claim in Model 2 that bn = O(εn), M2

n = O(1/εn). Focusing
on one player i ∈ N , notice that

E[v̂i,n | Fn] =
∑

α−i∈A−i

X̂−i,n(ui(αi,1;α−i), . . . , ui(αi,|Ai|;α−i)) = vi(X̂n) (Βʹ.17)

Having this in mind v̂i,n can be viewed as

v̂i,n = vi(Xn) + Zi,n + bi,n (Βʹ.18)

where Zi,n = v̂i,n − E[v̂i,n | Fn] = v̂i,n − vi(X̂n) and bi,n = vi(X̂n)− vi(Xn). Thus, since vi(x)
is multi-linear in x and X̂i,n = (1 − εn)Xi,n + εn/|Ai| it follows that bn = O(εn). Finally,
similarly to (Βʹ.17) we can conclude that M2

n = O(1/εn).
We continue by proving that assumption (A3) is indeed satisfied for both Models 1, 2. This is
due to the genericity of the game. Actually in the following lemma and corollaries we show that
there exist player i ∈ N , strategies a, b ∈ supp(x∗i ) and pure strategy profile α−i ∈ supp(x∗−i),
where x∗ is a mixed Nash equilibrium such that |ui(a;α−i)−ui(b;α−i)| ≥ β for some β > 0. In
order to acquire the exact statement of (A3), we have to take into account the round in which
the game is evolved. Let n > 0 be this round, then when examining the stochastic asymptotic
stability of a mixed Nash equilibrium x∗, the sequence of play is contained in a neighborhood of
x∗ and thus all of the strategies belonging to the support of x∗ have strictly positive probability
to be chosen, verifying the statement of (A3).

Lemma Βʹ.3.1. If the game is generic and has a mixed Nash equilibrium x∗, then there exist
player i ∈ N , pure strategies a, b ∈ supp(x∗i ) (a 6= b) and pure strategy profile α−i ∈ supp(x∗−i)
such that ui(a;α−i) 6= ui(b;α−i).

Proof. Assume that for all players i ∈ N , pure strategy profiles α−i ∈ supp(x∗−i) and pure
strategies a, b ∈ supp(x∗i ) it is

ui(a;α−i) = ui(b;α−i) (Βʹ.19)
Then for each player i, this implies that all of the payoffs corresponding to pure strategy profiles,
which consists of the support of the equilibrium, are equal. Then each pure strategy profile
(αi;α−i) ∈ supp(x∗) is a pure Nash equilibrium, which is a contradiction to the genericity of
the game. ■

Immediate implications of lemma Βʹ.3.1 are:

Corollary Βʹ.3.1. There exists player i ∈ N and pure strategy profile (αi;α−i) ∈ supp(x∗),
such that ui(αi;α−i) 6= 0.

Corollary Βʹ.3.2. There exist β′ > 0, player i, strategies a, b ∈ supp(x∗i ) and pure strategy
profile α−i ∈ supp(x∗−i) such that |ui(a;α−i) − ui(b;α−i)| ≥ β′. There also exist β′′ > 0 and
(αi;α−i) ∈ supp(x∗) such that |ui(αi;α−i)| ≥ β′′.

Βʹ.4 Proofs of Stability
Βʹ.4.1 Deferred Proof of thorem 4.3.1
In the following preliminary result, we focus on the case of (FTRL) with payoff feedback as
described in section 4.1.1 and we show that if x∗ is a strict Nash equilibrium, there exists a
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subsequence of (Xn)
∞
n=0 that converges to it. In order to achieve this convergence result, it is

necessary to assume that the sequence (Xn)
∞
n=0 is contained in a neighborhood of x∗, in which

(VS) holds. Here, we outline the basic steps below:
Step 0: By contradiction, assume that there exists a neighborhood, in which Xn is not contained

for all sufficiently large n and assume without loss of generality that holds for all n =
0, 1, . . ..

Step 1: We start by showing that the terms of the RHS of the third property described in
proposition Βʹ.1.4 are converging almost surely to finite values, except for one. This
term, which is a consequence of x∗ being variational stable, goes to −∞ as n→ ∞ .

Step 2: The next crucial observation is that the Fenchel coupling is bounded from below by 0,
thanks to the first property in proposition Βʹ.1.4, which gives us the contradiction.

Remark. For the interested reader, the assumption (A2),
∑

n γ
2
nM

2
n < ∞, that we use in the

preliminary lemma and in theorem 4.3.1 could be relaxed by using the Hölder inequality to∑
n γ

1+q/2
n Mq

n <∞ for any q ∈ [2,∞).
Lemma Βʹ.4.1. Let x∗ ∈ A be a strict Nash equilibrium. If (FTRL) is run with payoff feedback
of the type (4.1), that satisfies (A1)-(A2) and the sequence of play (Xn)

∞
n=0 does not exit a

neighborhood R of x∗, in which variational stability holds, then there exists a subsequence Xnk

of Xn that converges to x∗ almost surely.
Proof. Suppose that there exists a neighborhood U ⊆ R of x∗ , such that Xn /∈ U for all large
enough n. Assume without loss of generality that this is true for all n ≥ 0. Since variational
stability holds in R, we have

〈v(x), x− x∗〉 < 0 for all x ∈ R, x 6= x∗ (Βʹ.20)
Furthermore, from proposition Βʹ.1.4 we have that for each round n:

Fh(x
∗, Yn+1) ≤ Fh(x

∗, Yn) + γn〈v̂n, Xn − x∗〉+ 1

2K
γ2n‖v̂n‖2∗ (Βʹ.21)

By applying the above inequality for all rounds from 1, ..., n and creating the telescopic sum
we get

Fh(x
∗, Yn+1) ≤ Fh(x

∗, Y0) +

n∑
k=0

γk〈v̂k, Xk − x∗〉+ 1

2K

n∑
k=0

γ2k‖v̂k‖2∗ (Βʹ.22)

Remember that for the payoff vector holds that
v̂n = v(Xn) + Zn + bn

We now rewrite (Βʹ.22)

Fh(x
∗, Yn+1) ≤ Fh(x

∗, Y0) +

n∑
k=0

γk〈v(Xk), Xk − x∗〉+
n∑

k=0

γk〈Zk, Xk − x∗〉

+

n∑
k=0

γk〈bk, Xk − x∗〉+ 1

2K

n∑
k=0

γ2k‖v̂k‖2∗

(Βʹ.23)

Let τn =
∑n

k=0 γk then

Fh(x
∗, Yn+1) ≤ Fh(x

∗, Y0) +

n∑
k=0

γk〈v(Xk), Xk − x∗〉+ τn(

∑n
k=0 γk〈bk, Xk − x∗〉

τn
)

+ τn(

∑n
k=0 γk〈Zk, Xk − x∗〉

τn
+

1
2K

∑n
k=0 γ

2
k‖v̂k‖2∗

τn
)

(Βʹ.24)

56



APPENDiX βʹ. DEFERRED PROOFS 57

We focus on the asymptotic behavior of each particular term of the previous inequality. We
remind that Fn denotes the history of Xn up to stage n (inclusive) and thus the feedback
signal, v̂n is not Fn-measurable in general.

• Let Rn =
∑n

k=0 γ
2
k‖v̂k‖2∗. Then

E[Rn] ≤
n∑

k=0

γ2k E[‖v̂k‖2∗] =
n∑

k=0

γ2k E[E[‖v̂k‖2∗ | Fk]] ≤
n∑

k=0

γ2kM
2
k <∞ (Βʹ.25)

where
∑n

k=0 γ
2
kM

2
k is finite by assumption (A2). Hence by 1 and (Βʹ.25) Rn is an L1

bounded submartingale while Doob’s convergence theorem (Αʹ.1.4) shows that almost
surely

lim
n→∞

τ−1
n Rn = 0 (Βʹ.26)

• Let Sn =
∑n

k=0 γk〈Zk, Xk − x∗〉 and ψk = γk〈Zk, Xk − x∗〉. For the expected value of
ψn we have

E[ψn | Fn] = γn〈E[Zn | Fn], Xn − x∗〉 = 0 (Βʹ.27)
and so Sn is a martingale since E[Sn | Fn] = Sn−1. Moreover, for the expectation of the
absolute value of ψn, Cauchy-Schwarz inequality implies

E[|ψn|2 | Fn] ≤ γ2n E[‖Zn‖2∗‖Xn − x∗‖2 | Fn] (Βʹ.28)
≤ γ2n E[‖Zn‖2∗ | Fn]‖X‖2 (Βʹ.29)
≤ γ2nM

2
n‖X‖2 (Βʹ.30)

since

E[‖Zn‖2∗ | Fn] = E[‖v̂n − E[v̂n | Fn]‖2∗ | Fn] (Βʹ.31)
= E[‖v̂n‖2∗ − 2〈v̂n,E[v̂n | Fn]〉+ ‖E[v̂n | Fn]‖2∗ | Fn] (Βʹ.32)
= E[‖v̂n‖2∗ | Fn]− ‖E[v̂n | Fn]‖2∗ (Βʹ.33)
≤ E[‖v̂n‖2∗ | Fn] ≤M2

n (Βʹ.34)

where M2
n is the upper bound of E[‖v̂n‖2∗ | Fn] described in section 4.1.1.

Obviously,
∑∞

n=0 τ
−2
n E[|ψn|2 | Fn] < ∞ and so by the strong law of large number for

martingales (Αʹ.1.3) yields that almost surely

lim
n→∞

τ−1
n Sn = 0 (Βʹ.35)

• Let Wn =
∑n

k=0 γk〈bk, Xk − x∗〉 then by Cauchy-Schwarz inequality

|τ−1
n Wn| ≤ |τ−1

n

n∑
k=0

γk〈bk, Xk − x∗〉| ≤ τ−1
n

n∑
k=0

γk|〈bk, Xk − x∗〉|

≤ τ−1
n

n∑
k=0

γk‖bk‖∗‖X‖
(Βʹ.36)

Let Jn =
∑n

k=0 γk‖bk‖∗‖X‖. Notice thatWn ≤ Jn and that from 1 Jn is a submartingale
with

E[Jn] = ‖X‖
n∑

k=0

γk E[‖bk‖∗] ≤ ‖X‖
n∑

k=0

γk E[E[‖bk‖∗ | Fk]] ≤ ‖X‖
n∑

k=0

γkBk <∞

(Βʹ.37)
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where Bn is the upper bound of E[‖bn‖∗ | Fn]. Thus, Jn is a L1 bounded submartingale
and by Doob’s convergence theorem (Αʹ.1.4) almost surely

lim
n→∞

τ−1
n Jn = 0 (Βʹ.38)

As a result, τ−1
n Wn → 0.

• Finally, we will examine the term
∑n

k=0 γk〈v(Xk), Xk−x∗〉. Recall that we had assumed
that Xn ∈ R \ U for all n ≥ 0, while variational stability holds in R, so by continuity
there exists c > 0, such that for all n ≥ 0

〈v(Xn), Xn − x∗〉 ≤ −c (Βʹ.39)

We return to (Βʹ.24) and we equivalently we have that

Fh(x
∗, Yn+1) ≤ Fh(x

∗, Y0) +

n∑
k=0

γk〈v(Xk), Xk − x∗〉+ τn(τ
−1
n Wn + τ−1

n Rn + τn−1Sn)

≤ Fh(x
∗, Y0)− cτn + τn(τ

−1
n Wn + τ−1

n Rn + τ−1
n Sn)

(Βʹ.40)

Thus, Fh(x
∗, Yn+1) ∼ −c

∑∞
k=0 γk → −∞.

By proposition Βʹ.1.4 we conclude to a contradiction. This implies that some instance of the
sequence of play is included to every neighborhood U of x∗ and thus there exists subsequence
Xnk

of Xn that almost surely converges to x∗. ■

Theorem Βʹ.4.2 (Restatement of theorem 4.3.1 ). Let x∗ be a strict Nash equilibrium.
If (FTRL) is run with payoff feedback that satisfies (A1)-(A2), then x∗ is stochastically
asymptotically stable.
Proof. Fix a confidence level δ and let Uε = {x : Dh(x

∗, x) < ε} and U∗
ε = {y ∈ Y : Fh(x

∗, y) < ε}.
• By proposition Βʹ.1.2 for all x ∈ Uε it holds that ‖x− x∗‖2 < 2ε/K.
• By proposition Βʹ.1.4 for all x = Q(y), y ∈ U∗

ε it holds that ‖x− x∗‖2 < 2ε/K.
• Notice that from proposition Βʹ.1.4 Q(U∗

ε ) ⊆ Uε and Q−1(Uε) = U∗
ε .

Thus we conclude that whenever y ∈ U∗
ε , x = Q(y) ∈ Uε. Finally, by (Reciprocity) Uε is a

neighborhood of x∗ . Since x∗ is a strict Nash equilibrium, pick ε sufficiently small such that
(VS) holds for all x ∈ U4ε.

(Stability).
Assume now that Y0 ∈ U∗

ε and thus Fh(x
∗, Y0) < ε ≤ 4ε. We will prove by induction that

Yn ∈ U∗
4ε for all n ≥ 1 with probability at least 1 − δ. Suppose that Fh(x

∗, Yk) < 4ε for all
1 ≤ k ≤ n and we will prove that Yn+1 ∈ U∗

4ε and consequently Xn+1 ∈ U4ε.

From proposition Βʹ.1.4 we have

Fh(x
∗, Yn+1) ≤ Fh(x

∗, Yn) + γn〈v̂n, Xn − x∗〉+ 1

2K
γ2n‖v̂n‖2∗ (Βʹ.41)

For the payoff feedback, it holds v̂n = v(Xn)+Zn+bn. Then by telescoping the above inequality
and substituting we get

Fh(x
∗, Yn+1) ≤ Fh(x

∗, Y0) +

n∑
k=0

γk〈v(Xk), Xk − x∗〉+
n∑

k=0

γk〈Zk, Xk − x∗〉

+

n∑
k=0

γk〈bk, Xk − x∗〉+ 1

2K

n∑
k=0

γ2k‖v̂k‖2∗

(Βʹ.42)

58



APPENDiX βʹ. DEFERRED PROOFS 59

We will study each term of the inequality separately.
• Let Rn =

1

2K

∑n
k=0 γ

2
k‖v̂k‖2∗ and Fn,ε =

{
sup0≤k≤nRk ≥ ε

}
. As we discussed in lemma

Βʹ.4.1, Rn is a submartingale with E[Rn] ≤
∑n

k=0 γ
2
kM

2
k . Doob’s maximal inequality

(Αʹ.1.5) yields

P(Fn,ε) ≤
E[Rn]

ε
≤
∑n

k=0 γ
2
kM

2
k

2Kε
(Βʹ.43)

By demanding
∑∞

k=0 γ
2
kM

2
k ≤ 2Kεδ/3 the event Fε =

⋃∞
n=0 Fε,n will occur with probability

at most δ/3.

• Let Sn =
∑n

k=0 γk〈Zk, Xk−x∗〉 and En,ε =
{
sup0≤k≤n Sk ≥ ε

}
. Since Sn is a martingale,

as we discussed in lemma Βʹ.4.1, Doob’s maximal inequality (Αʹ.1.6) yields

P(En,ε) ≤
E[Sn

2]

ε2
≤

‖X‖2
∑n

k=0 γ
2
kM

2
k

ε2
(Βʹ.44)

In order to calculate the above upper bound, we define ψk = 〈Zk, Xk − x∗〉. Notice that
S2
n =

∑n
k=0|ψk|2 + 2

∑n
k<ℓ ψkψℓ. Indeed it holds that

E[|ψk|2] ≤ E[E[‖Zk‖2∗‖Xk − x∗‖2 | Fk]] (Βʹ.45)
≤ E[E[‖Zk‖2∗ | Fk]]‖X‖2 (Βʹ.46)

where,

E[‖Zk‖2∗ | Fk] = E[‖v̂k − E[v̂k | Fk]‖2∗ | Fk] (Βʹ.47)
= E[‖v̂k‖2∗ − 2〈v̂k,E[v̂k | Fk]〉+ ‖E[v̂k | Fk]‖2∗ | Fk] (Βʹ.48)
= E[‖v̂k‖2∗ | Fk]− ‖E[v̂k | Fk]‖2∗ ≤M2

k (Βʹ.49)
≤ E[‖v̂k‖2∗ | Fk] ≤M2

k (Βʹ.50)

Furthermore, for all k 6= ℓ it holds that E[ψkψℓ] = E[E[ψkψℓ | Fk∨ℓ]] = 0.
Thus, by demanding

∑∞
k=0 γ

2
kM

2
k ≤ ε2δ

3‖X‖2
we ensure that the event Eε =

⋃∞
n=0Eε,n

will occur with probability at most δ/3.

• Let Wn =
∑n

k=0 γk〈bk, Xk − x∗〉, Jn =
∑n

k=0 γk‖bk‖∗‖X‖ as we discussed in lemma
Βʹ.4.1

Wn ≤ Jn (Βʹ.51)
where Jn is a submartingale with E[Jn] ≤ ‖X‖

∑n
k=0 γkBk. Similarly to the previous

steps let Dε,n = {sup0≤k≤n Jk ≥ ε}, then Doob’s maximal inequality (Αʹ.1.5) yields

P(Dε,n) ≤
E[Jn]
ε

≤
‖X‖

∑n
k=0 γkBk

ε
(Βʹ.52)

By demanding
∑∞

k=0 γkBk ≤ εδ

3‖X‖
then the event Dε = ∪∞

n=0Dε,n will happen with
probability at most δ/3, which implies that with probability at most δ/3 Wn will exceed
ε for all n ≥ 0.
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• Furthermore, if Xk belongs to a neighborhood in which (VS) holds for all 0 ≤ k ≤ n, we
have

〈v(Xk), Xk − x∗〉 ≤ 0 for all n ≥ 0 (Βʹ.53)

By demanding the parameters of the algorithm to satisfy:
∞∑
k=0

γ2kM
2
k ≤ min

{
ε2δ

3‖X‖2
,
2Kεδ

3

}
&

∞∑
k=0

γkBk ≤ εδ

3‖X‖‖Y‖∗

If all of Ēε, F̄ε, D̄ε hold, this happens with probability P(Ēε

⋂
F̄ε

⋂
D̄ε) ≥ 1 − δ and from

(Βʹ.42) we have Fh(x
∗, Yn+1) < 4ε. This immediately yields that Yn+1 ∈ U∗

4ε and consequently
as we explained in the begin of the proof Xn+1 ∈ U4ε, in which variational stability holds, with
probability at least 1− δ.

(Convergence).
By lemma Βʹ.4.1 there exists a subsequence Xnk

that converges to x∗. By (Reciprocity) we have
that lim infn→∞ Fh(x

∗, Yn) = 0. In order to complete the proof, it is sufficient to prove that
the limit of Fh(x

∗, Yn) exists. Notice that since the sequence of play remains in U4ε variational
stability holds and thus 〈v(Xn), Xn − x∗〉 ≤ 0. Again using proposition Βʹ.1.4 we have:

Fh(x
∗, Yn+1) ≤ Fh(x

∗, Yn) + γn〈v̂n, Xn − x∗〉+ 1

2K
γ2n‖v̂n‖2∗ (Βʹ.54)

E[Fh(x
∗, Yn+1) | Fn] ≤ Fh(x

∗, Yn) + γn E[〈bn, Xn − x∗〉 | Fn] +
1

2K
γ2n E[‖v̂n‖2∗ | Fn] (Βʹ.55)

≤ Fh(x
∗, Yn) + γn E[〈bn, Xn − x∗〉 | Fn] +

1

2K
γ2nM

2
n (Βʹ.56)

Notice that since from proposition Βʹ.1.4 Fh(x
∗, Y ) ≥ 0, if we apply absolute values in the

above inequality we have

E[Fh(x
∗, Yn+1) | Fn] = |E[Fh(x

∗, Yn+1) | Fn]| (Βʹ.57)

≤ |Fh(x
∗, Yn)|+ γn E[|〈bn, Xn − x∗〉| | Fn] +

1

2K
γ2nM

2
n (Βʹ.58)

≤ Fh(x
∗, Yn) + γn E[‖bn‖∗ | Fn]‖X‖+ 1

2K
γ2nM

2
n (Βʹ.59)

≤ Fh(x
∗, Yn) + γnBn‖X‖+ 1

2K
γ2nM

2
n (Βʹ.60)

Let
Rn = Fh(x

∗, Yn) + ‖X‖
∞∑

k=n

γkBk +
1

2K

∞∑
k=n

γ2kM
2
k (Βʹ.61)

Then

E[Rn+1 | Fn] ≤ E[Fh(x
∗, Yn+1) | Fn] +

∞∑
k=n+1

γkBk‖X‖+ 1

2K

∞∑
k=n+1

γ2kM
2
k (Βʹ.62)

≤ Fh(x
∗, Yn) +

∞∑
k=n

γkBk‖X‖+ 1

2K

∞∑
k=n

γ2kM
2
k (Βʹ.63)

= Rn (Βʹ.64)
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Therefore Rn is a supermartingale and it is also L1 bounded (each one of the terms is bounded)
and so from Doob’s convergence theorem (Αʹ.1.4) Rn converges to a finite random variable
and so does Fh(x

∗, Yn). Inevitably, lim infn→∞ Fh(x
∗, Yn) = limn→∞ Fh(x

∗, Yn) = 0 and by
proposition Βʹ.1.4, Q(Yn) = Xn → x∗.
The above analysis shows that whenever Y0 ∈ U∗

ε and thus X0 ∈ Uε ∩ imQ, Xn ∈ U4ε ∩ imQ
and converges to x∗ with arbitrary high probability. Hence, x∗ is stochastically asymptotically
stable.

■

Βʹ.5 Proofs of Instability
Before moving on our proof we first provide some intuition derived from the notion of the polar
cone (Βʹ.1.3). Looking at the figure Βʹ.2, the polar cone corresponding to fully mixed or mixed
Nash equilibria has a key difference with the one corresponding to strict Nash equilibria. The
latter, in contrast to the former, is fully dimensional. Thus intuitively, considering a sufficiently
small neighborhood of a mixed Nash equilibrium, the slightest perturbation in the dual space
of the payoffs, will lead to instability of the system. Our result is based on this intuition; we
prove by contradiction that there exists a sufficiently small neighborhood of a mixed Nash
equilibrium, from which the sequence of play will escape with strictly positive probability.
The decomposability assumption of the regularizers ensures that the proof holds also for steep
regularizers (See Βʹ.1.2).
Below, leveraging the definition of the polar cone in simplex, we prove a useful property for
the difference of the aggregated payoffs of FTRL for a sequence of play that shares common
pure strategies.

Lemma Βʹ.5.1. Let Xi = Q(Yi) ∈ Xi be a mixed strategy profile and a, b ∈ supp(Xi) be two
pure strategies, for some player i ∈ N . Then it holds:

〈Yi, ea − eb〉 = 〈∇hi(Xi), ea − eb〉

Additionally, if (FTRL) is run then for a sequence of play Xi,n1
, . . . , Xi,n2

that maintains in
its support both pure strategies a, b ∈ Ai it holds

〈Yi,k1
− Yi,k2

, ea − eb〉 = 〈∇hi(Xi,k1
)−∇hi(Xi,k2

), ea − eb〉 ∀k1, k2 ∈ {n1, . . . , n2}

Proof. From proposition Βʹ.1.3, Yi can be analyzed as Yi = ∇hi(Xi) +G, G ∈ PC(Xi). Notice
that ∇hi(Xi) = (θi(Xi,α1

), . . . , θi(Xi,α|Ai|
)). Since Xi assigns positive probability to both a, b,

by definition of the polar cone it is Ga = Gb. Thus,

〈Yi, ea − eb〉 = Ga + θ′i(Xi,a)−Gb − θ′i(Xi,b) (Βʹ.65)
= 〈∇hi(Xi), ea − eb〉 (Βʹ.66)

For the second part, by applying (Βʹ.66) for both cases of Yi,k1
, Yi,k2

we have:

〈Yi,k1 , ea − eb〉 = 〈∇hi(Xi,k1), ea − eb〉 (Βʹ.67)
〈Yi,k2 , ea − eb〉 = 〈∇hi(Xi,k2), ea − eb〉 (Βʹ.68)

From the subtraction of the above equations, we derive the desideratum:

〈Yi,k1
− Yi,k2

, ea − eb〉 = 〈∇hi(Xi,k1
)−∇hi(Xi,k2

), ea − eb〉 (Βʹ.69)

■
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Theorem Βʹ.5.2. Let x∗ be a mixed Nash equilibrium. If (FTRL) is run with any feedback
model that satisfies (A3), then x∗ cannot be stochastically asymptotically stable for any choice
of step-schedules.

Proof. We start by determining all the parameters of the algorithm (FTRL) and we assume ad
absurdum that x∗ is a mixed Nash equilibrium, which is stochastically asymptotically stable.
Then for all neighborhoods U of x∗ and δ > 0, there exists some neighborhood U1 such that
whenever X0 ∈ U1, it holds that Xn ∈ U for all n ≥ 0 with probability at least 1 − δ. This
equivalently implies that for all ε, δ > 0 ifX0 ∈ U1, ‖Xn−x∗‖ < ε for all n ≥ 0, with probability
at least 1− δ. We leave ε to be chosen at the end of our analysis, but we will consider it to be
fixed.
For each player i ∈ N and round n if Xi,n, Xi,n+1 are two consecutive instances of the sequence
of play; then ‖Xi,n − x∗i ‖ < ε, ‖Xi,n+1 − x∗i ‖ < ε and by the triangle inequality

‖Xi,n+1 −Xi,n‖ < 2ε (Βʹ.70)

We fix a round n and focus on player i ∈ N who has the property of (A3); Since for two pure
strategies a, b ∈ supp(x∗i ) of player i ∈ N , holds that P(|v̂ia,n − v̂ib,n| ≥ β | Fn) > 0 for all
n ≥ 0, there exists for each round n ≥ 0, πn > 0 such that P(|v̂ia,n − v̂ib,n| ≥ β | Fn) = πn.
Choose δ such that δ < πn and consequently

1− δ > 1− πn (Βʹ.71)

This is possible, since πn is strictly positive and δ can be chosen arbitrarily small.
Consider now the projection of the aggregate payoffs Yi,n, Yi,n+1 in the difference of the
directions of these two strategies. From lemma Βʹ.5.1 we have

〈Yi,n+1 − Yi,n, ea − eb〉 = 〈∇hi(Xi,n+1)−∇hi(Xi,n), ea − eb〉 (Βʹ.72)

However, by definition of (FTRL) Yi,n+1 −Yi,n = γnv̂i,n and by taking into consideration that
the regularizers used are decomposable, we get

(θ′i(Xia,n+1)− θ′i(Xib,n+1)− (θ′i(Xia,n)− θ′i(Xib,n))) = γn〈v̂i,n, ea − eb〉 (Βʹ.73)

By rearranging we have

(θ′i(Xia,n+1)− θ′i(Xia,n))− (θ′i(Xib,n+1)− θ′i(Xib,n)) = γn(v̂ia,n − v̂ib,n) (Βʹ.74)

As a consequence of θi being continuously differentiable in all of (0, 1], θ′i is continuous in
[L(ε), 1], where L(ε) is the lower bound of Xia, Xib whenever ‖Xi − x∗i ‖ < ε. L(ε) can be
guaranteed to be positive for a sufficiently small ε < ε′, which ensures that all the points of
the neighborhood contain the support of the equilibrium for player i. Therefore, from extreme
value theorem in θ′i, there exist finite Ca, Cb corresponding to a, b equivalently, such that

|θ′i(Xia,n+1)− θ′i(Xia,n)| ≤ Ca|Xia,n+1 −Xia,n| < 2 · Ca · ε (Βʹ.75)
|θ′i(Xib,n+1)− θ′i(Xib,n)| ≤ Cb|Xib,n+1 −Xib,n| < 2 · Cb · ε (Βʹ.76)

By applying the triangle inequality in (Βʹ.74) and using (Βʹ.75),(Βʹ.76) we get

γn|v̂ia,n − v̂ib,n| < (2 · Ca + 2 · Cb) · ε (Βʹ.77)

Equivalently,
|v̂ia,n − v̂ib,n| <

2 · Ca + 2 · Cb

γn
· ε (Βʹ.78)
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The above inequality holds with probability 1−δ. Thus, if the sequence of play Xn is contained
to an ε−neighborhood of x∗ i.e., ‖Xn−x∗‖ < ε for all n ≥ 0, then the difference of the feedback,
for some player i ∈ N , to two strategies of the equilibrium is O(ε/γn) with probability at least
1− δ.
We now fix ε to be

ε < min
{
ε′,

γn
2 · Ca + 2 · Cb

β

}
(Βʹ.79)

and consequently
P(|v̂ia,n − v̂ib,n| < β | Fn) ≥ 1− δ (Βʹ.80)

However, from assumption (A3), it holds that

P(|v̂ia,n − v̂ib,n| ≥ β) ≥ πn (Βʹ.81)

Combining (Βʹ.80),(Βʹ.81) we conclude

1 = P [{|v̂ia,n − v̂ib,n| ≥ β} ∪ {|v̂ia,n − v̂ib,n| < β}] (Βʹ.82)
= P [|v̂ia,n − v̂ib,n| ≥ β] + P [|v̂ia,n − v̂ib,n| < β] (Βʹ.83)
≥ πn + 1− δ (Βʹ.84)
> 1 (Βʹ.85)

which is a contradiction.
Thus, a mixed Nash equilibrium cannot be stochastically asymptotically stable, under (FTRL)
for types of payoff feedback described in section 4.1.1. Notice that this analysis holds even
for the first round. Once the parameters of the algorithm have been determined, asymptotic
instability can be derived in whichever finite round. ■
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