>
£

NPOMHOEV S
=
nVPPopOs

EONIKO METXOBIO ITOAYTEXNEIO

TMHMA HAEKTPOAOTQN MHXANIKON KAT MHXANIKQON TIIOAOTIXTON
TOMEAY. YHMATQON EAEI'XOY KAI POMIIOTIKHY

HupiemBAendpevn padnon yia tnv avdAuon

NYOYPAPHOEWY TOVTLXLGDV

AITTAQMATIKH EPT'AXIA

BaocAuxr, Xtobprou

ESwtepixdg EmBAEnwy: Oeddwpoc [Navvaxdmoulog

Enrénwy E.M.II.:

B’ Epevvntic EKE®E Anuodxettoc

Alé€avdpoc Totoudvoc
Avaminewthc Kodnyntic E.M.IL

Ad7va, Tobhiog 2021

EOGNIKO METXOBIO IIOATTEXNEIO

TMHMA HAEKTPOAOI'ON MHXANIKQN

KAI MHXANIKQN TIIOAOT'TETOQN

TOMEAY ¥HMATQN, EAEI'XOT KAI POMIIOTIKHY

HupiemBAenopevn pnadnon yia tnv avdAuon
NYOYPAUPTHCEWY TOVILALDV

AITTAQMATIKH EPT'AXIA

BaocuAuxr, Ytobprou

EEwtepixdg EmBAEnwy: Oeodwpoc [Noavvaxdmoulog
B’ Epeuvntic EKE®E Anuodxeitog

EnpArenwy E.M.IL.: Alé€avdpoc Totouidvoc
Avaminewthc Kodnyntic E.M.IL

Evyxptinxe and v tpyerr) eetaotnt| emtpony| Tnv 51 Touiiou 2021.

Aé€avopoc Hotaudvog Oeddwpog Ytépavog Korag
Avamhnpwtic Kodnyntic [ovvaxomovhog Kodnyntic
E.M.IL. B’ Epeuvntc E.M.IL

EKE®E Anudxeitog

Adrva, Tobhiog 2021

YA

or«no(%;‘ll
HN=E(F
VPpPopos

|
al

N

I A\
W),

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
SIGNALS OF CONTROL AND ROBOTICS

Semi-Supervised learning for mice recordings analysis

DIPLOMA THESIS

Vasiliki Stoumpou

External Supervisor: Theodoros Giannakopoulos
Principal Researcher NCSR Demokritos

NTUA Supervisor: Alexandros Potamianos

Associate Professor at the Electrical and Computer
Engineering Department of NTUA

Athens, July 2021

Baouhixy Ytobunou
Amiwpatolyog Hiextpoldyog Mnyoavindg xar Mnyovixdg Troroyiotwv E.M.IL

Copyright (© Boouuxs Xtobunou, 2021.
Me empOhaln movtog dixanwpatog. All rights reserved.

Arnayopebetar 1 avTiypay), anodixeucT xou dlovour| tng mopoloas epyactog, €€ oAoxAfpou
1) TWAUATOS QUTAG, Yid EUTOEXG ox0oTo. Emteénetan 1 ovatinmo, anoUhxeuoy ol olavour
Yot OXOTO U1 XEPOOOKOTINOG, EXTUDEUTIXAC 1) EQELVITIXAC PUONE, UTO TNV Tpolnddeon va
AVUPERETAL 1) TNYT) TEOEAEUOTC ol Vo BlaTneeiton To mopdy prvuua. EpntAuata mou agopodv
N XeNon TNS EpYCLAS YLl XEPOOOXOTIXO OXOTO TEETEL VAL AMEVYUVOVTAL TEOG TOV GUYYRUPEA.

Ou amdeic xan T CUUTEPAOUATA TOU TEQLEYOVTOL GE AUTO TO €YYEUPO eXPEElOUY TOV GLY-
YoapEa xa dev mEETEL Vo epunveudel 6Tl avTinpoownedouy Tig enionues Yéoeig Tou Edvixod
MeToo6fou Holuteyvelou.

ITepirndm

To novtixia emxovwvoly petall toug pe unepriyouc (USVs (ultrasonic vocalizations)),
ol omolol TOIAAOUY avAAOY L UE TO PUAO TOU TOVTIXIOU X0 TO GTABI0 avaTTUENS, TLC TERBO-
NOVTIXEC XL XOWVWVIXEG CUVUTAXES X UTtopolV va olomoindoly yia Th UEAETY) TWV VEURIXMY
UNYOVIOUMY TTOU EVEQYOTOLOUVTAL XTd TNV moparywyr) Toug. Lo vor yehetniel 1 xowvwvixn
oo taon Twv USVs, éyouv avantuylel epyoleio yiot TOV EVIOTIOUO Xou TNV TAgVOUTNCT| TOUS
oe SpopeTinéc xatnyopleg. IloAAd amd ta cpyolelor mou €youv NdN avamtuyvel meplopi-
Zovtau oe offline npoceyyioeic (nepopiloviac tn duvatdnto TEWOUETWY TEAYUATIXOD Ypb-
VOU UE avaTpo(poddTNoT)), oLy VA EL0ETMVTOL OO CUYXEXPUEVES CUVIRXES My OYRaPNONS Xou
XENOUOTOOLY EMBAETOUEVEC TEOCEYYIOELS TagVOUNOTE VLol THY Xatnyoplomoinon Twv USVs,
HELOVOVTOG TNV TavOTNTO AvaxGAUPNG VEWY XASCEWY.

[vae avtipetonicoupe autd ta {ntAvote, avartulaue éva epyaielo eneepyaociag nyo-
Yeaphioewy movtxomy mou ovoudletar AMVOC (Analysis of Mouse VOcal Communication),
e apytx6 atdyo tnv aviyveuorn USVs (offline xou online hertoupyla) ye cuviixes xotoghien-
ONC OTN QPACUATIXT) EVERYELXL. 2LYXEvOVTaC UE BEGOUEVA TTOL €Y 0LV ETIoNUEIWVE! amd €dix00C,
10 AMVOC eugdvioe udhnr axpBeta otny aviyveuon twv USVs xa Eemépaoe Tig To evpéwg
oladedouéveg uedodoug oe Yopulndelg ouvirxec. H Swdixacio online divel anoteAéopata
600 axplBr) 600 1 offline, avolyovtag Tov Spduo Yo TANYWEN VEWY TELOUATMDY.

H mo onuavtixs) cuvelo@opd tng BOVAELIS Uog EVOL 1) EQUEUOYT Wiag 1N ETBAETOUEVNC
pedodou Baddc udinone. Auth tepthoufdver tn cuctadonoinon USVs yenowuomotdvtog Aov-
Ydvouoeg avanopaotdoelg, Tou e€dyovton Ue Yenor evog convolutional autoencoder. H ev-
TENDC N EMPAETOUEVY TTROCEYYLOT ETUTEETEL EVAAAOXTIXES ouadoTotfoelc Twv USVs yio tnv
eZepelivnon véwy xatnyopidyv. H Swbixactia aliohdynong €deile Behtiwon tne opadonoinong
oE CUYXELOT HE TNV opadonolnom Ue BAom YopoxTneloTixd mou eEAYUUe UE TORUBOCLOXES
TEYVIXEC.

Mot gAAT xouvotopior Tng BoURELdS Yog eivan 1) EQUOUOYT| WAS NUL-ETBAETOUEVNS TEOCEY-
yiong v TV evioyuon tng mowdtnrag e cvotadonoinong. H nu-eniBredn yiveton ue
nop@Y| Teploplouny ot Leuydpta amd USVs, o omolol expedlouy xatd toco JéAouue vor avrix-
ouv otny Bta oudda 1 oyt. H anddoon tne opadonoinone atohoyridnxe xou mdht, delyvovtac
woe cuvohxn Betiwon oe oyéorn Ue TNV dpyxh, U EMBAETOUEVT OUAdOTONOT).

H ocuotadonoinon mou mpoximntel unopel vo yenowwonoindel og Sedopéva exnoldeuong
evog ToEvounty, o onolog otn cuvéyeta Yo yenowonowmiel yio Ty ta&véunor twv USVs
TIOU OVLY VEVOVTOL GE EQPUPUOYES TEAYUATIXOU YPOVOU, TOREYOVTAS YENOWN AvaTeOpodOTN o
oyeTxd ye Tov tumo xdde USV.

Avutd ta anoteréopata Unopoly va yenotuomotndoly yia va eEEEEUVACOLY TO YWVITIXO
eeneptopto Ty movixidy. To AMVOC elvou éva véo epyoelo Tou BLEUXOADVEL TIG PWYNTIXES
AVOAUGELS OE €Val EUPUTEQO QAU TIELQOUATIXWDY CUVITIXWY oL ETULTEETEL GTOUG YPNOTES Vol
ovamTOEoUY VEX TELRAUATO UE TEWTOPAVELS BIEUXOADVOELS.

AgZeig KAedid: USVs moviiniodv, Xovmvixr CUUTERLPORE TOVTIXIOY, UnyovixT uddnon,
Bordd pudrdnom, epoapuoyEg meayuaTinol yedvou, U emBAETOUEVT udinor, cucTadonolno,
opadomoinom, convolutional autoencoder, nui-emBAenoyevn udinon

1

Abstract

Mice communicate using ultrasonic vocalizations (USVs), which vary depending on mouse
gender and development stage, environmental and social conditions. Neural mechanisms
underlying mouse ultrasonic vocalizations (USVs) are a useful model for the neurobiology
of human speech and speech-related disorders, making their study an interesting, promising
and popular field. To study social meaning and dimensions of mice vocalizations, tools
have been developed to detect and classify USVs to different categories.

Many of the tools already developed are generally limited to offline approaches, are often
dependent on specific recording conditions and employ supervised classification approaches
to categorize vocalizations. These methods hinder real-time experimentation with produced
vocalizations feedback and also limit the classification of vocalizations in pre-defined classes,
reducing the likelihood of discovering new USVs types.

To address these issues, we developed a mice recordings processing tool called AMVOC
(Analysis of Mouse VOcal Communication), whose functionalities include USVs detection
in both offline and online modes, by using spectral energy thresholding. Compared to hand-
annotated ground-truth data, AMVOC USVs detection functionality has high accuracy, and
outperforms leading methods in noisy conditions, thus allowing for broader experimental
uses. Real-time detection method gives results nearly as accurate as the offline procedure,
also opening the door to numerous new experiments.

The most important contribution of our work is the implementation of an unsupervised
deep learning method, which involves clustering USVs using latent features, extracted with
the use of a convolutional autoencoder. The completely unsupervised approach we chose
enables alternative groupings of vocalizations compared to predetermined classes, indicating
the possibility of exploring new meaningful classes. Evaluation procedure involving human
annotators showed an improvement of clustering USVs compared to clustering based on
hand-crafted features.

Another novelty of our work is the application of a semi-supervised approach to enhance
the clustering performance and propose an alternative clustering, more recording-focused.
Human intervention comes in the form of pairwise constraints between vocalizations.
The clustering performances were again evaluated, showing an overall refinement of the
completely unsupervised clustering.

Resulting clustering can be used as ground-truth data to train a classifier, which will
then be used to classify test data, i.e. vocalizations that are detected online, providing
useful information about each vocalization’s type in real-time experiments.

These results can be used to explore the vocal repertoire space of the analyzed vo-
calizations. AMVOC is a new tool that facilitates vocal analyses in a broader range of
experimental conditions and allows users to develop previously inaccessible experimental
designs in studies of mouse vocal behavior.

Key Words: mouse vocalization, ultrasonic vocalizations, social behavior, machine
learning, deep learning, automated, real-time, unsupervised learning, clustering,
convolutional autoencoder, semi-supervised learning

3

Euyapiotieg

Oa fileha va euyoploTAow TEWTIoTWS Tov %x. BOcddwpo Tavvoxodmovho, emfBAénovta
e epyaoiog authg, Tou omolou 1 Porldeia, ol Wéeg xan N xadodRynon o xde Bruc YTav
amapaitnteg. To evdlopépov tou Atav cuveyés, 1 Bordeia Tou TOADTIUN xou 1 GUVERYAsTaL Pag
dhoyn amd TNV apy | €we To TENOG.

Enlone, tov unoghgro oiddxtopa César D. M. Vargas, yio tny mopoy TV 600UEVELY xa
YLt TNV oucLao T GUUPBOAT Tou GTIC TANEoopieg Blohoyrc @loewe, xadde xou tn Bordela
TOU OE OO T OTABLL TNG EPYATTag.

Euyopioted mohd tov unodrplo dddxtopa Peter F. Schade yia tig xolplec cuyfouléc xau
TapeUPdoelc Tou.

Téhog, Yo deha va euyopiothiow Toug Rajvi Agravat, Elena Waidmann, Mogihn ¥Xto0-
umou xau Apiototéhn Xuunédepo yia T Porjdeld Toug 0TV AELOAOYNON TWV TELROUATIXGY
OTOTEAECUATODV [HOG.

Contents

IMepirndn

Abstract

Euvyapiotieg

Contents

List of Figures

List of Tables

0 Extetopévn EAAnvixy] Ilepiindmn

0.1
0.2

0.3
0.4

0.5

0.6

0.7

0.8

Ewooaywyh - o o o
OewenTind LTOPadoo L L
0.2.1 Emneepyocio axouoTXOY ONUATGY o o oo
0.2.2 Mnyovixy udinon - CNNs, Autoencoders, Clustering, SDEC
0.2.3 Metowég a€loOAOYNONG « o v v v v v
ABOUEVOL
Aviyveuonn USVso
0.4.1 Offline Aettouvpylor
0.4.2 Online Aettovpylor oL L
0.4.3 Iewpopatxh alohdynomn tne aviyvevong twv USVs
Bohid e€arywyr| yapoxtnetotixwy pe Convolutional Autoencoder
0.5.1 Apyrttextovixr) xan Exnoidevon tou Convolutional Autoencoder
0.5.2 Bobid E€oywyn YopoxTneloTxX®V . . o o oo o
0.5.3 Iapadootomy| e€aywYY| YUPUXTNEIOTINGY .« . .« v o o oo o
0.5.4 XuoTabOTOINGT
0.5.5 Iepopatinr a&tordynon tng cuotadomnoinong ue to AMVOC
HuemPBAenouevn pdinon yia tn Bedtiwon tne cuotadonoinone twv USVs . . .
0.6.1 SDEC
0.6.2 Iepopatixh a&loAdynon TN Teoceyylong pag otov olyoprduo SDEC

0.6.3 Tagwounon twv aviyveuldéviwyv USVs oe online egappoyés
YUUTERAOUATO Xl UEANOVTIXES TPOEXTOACELS .« « « © v v v o v o o o o o oo o
0.7.1 BUPREQAOUOTO . . v v v v v v v e e
MEeMOVTIXEC TPOEXTACELS . . .« o v v v ettt e e e e

1 Introduction

1.1
1.2
1.3
1.4

Motivation L e e e e e
Related Work
Research objective
Thesis outline

11

13

15
15
16
16
16
17
18
18
18
19
20
22
22
23
23
24
24
26
26
27
28
28
28
29

2

1.5 Datasets 35
Background 37
2.1 Audio Signal processing 37
2.1.1 Discrete Time Systems 38
2.1.2 Fourier Transform 39
2.1.3 Spectrogram 40

2.2 Introduction to Machine Learning and Pattern Recognition 41
2.2.1 Supervised learning oo 43
2.2.2 Unsupervised learning oL oL 43
2.2.3 Semi-supervised learning L. 44
2.2.4 Reinforcement learning 0oL 44

2.3 Learning processo e e 44
2.3.1 Lossfunctions 45
2.3.1.1 Regression Loss functions 45

2.3.1.2 Classification Loss functions 45

2.3.2 Optimization 46

2.4 Classifiers 47
2.5 Deeplearning 48
2.5.1 The Perceptron 49
2.5.1.1 Biological neurons vs perceptrons 49

2.5.1.2 Perceptron used in linear classification problems 50

2.5.2 Multilayer Feedforward Neural Networks 51
2.5.2.1 Artificial Neuron 51

2.5.2.2 Activation functions 51

2.5.2.3 Fully Connected Neural Network 52

2.5.3 Deep Convolutional Neural Networks 55
2.5.3.1 Fully Connected Neural Networks v« CNNs 95

2.5.3.2 The spatial convolution 56

2.5.3.3 Forward pass througha CNN 56

2.5.3.4 Applications 60

2.5.4 Autoencoders 60
2.5.4.1 Undercomplete Autoencoders 60

2.5.4.2 Convolutional Autoencoder 61

2.5.4.3 Other types of autoencoders 62

2.5.4.4 Applications 62

2.6 Feature pre-processing 63
2.6.1 Feature selection L 63
2.6.1.1 Variance Thresholder 63

2.6.2 Featurescaling 63
2.6.2.1 Normalization 64

2.6.2.2 Standardization 64

2.6.3 Dimensionality reduction o oL 64
2.6.3.1 Principal Component Analysis (PCA) 65

2.7 Clustering 66
2.7.1 Definition of clustering 66
2.7.1.1 K-Means clustering oL 67

2.7.1.2 Gaussian Mixture Models 68

2.7.1.3 Agglomerative Clustering 71

2.7.1.4 Deep Embedded Clustering 71

2.7.1.5 Semi-supervised Deep Embedded Clustering 73

8

2.8 Evaluation Metricso 74

2.8.1 Confusion Matrix o 74
2.8.2 Metrics for time segments evaluation L. 76
2.8.2.1 Temporal evaluation 76

2.8.2.2 Event evaluation, 76
Vocalization Detection 79
3.1 Offline USV Detection 79
3.2 Online USV Detection 82
3.3 Vocalization Detection Configuration 82
3.4 Experimental evaluation of the AMVOC detection method 83
Deep unsupervised learning for mouse vocalization clustering 87
4.1 Unsupervised learning pipeline 87
4.1.1 Feature generation oL 87
4.1.1.1 Proposed autoencoder architecture and training 87

4.1.2 Feature selection 91
4.1.3 Feature pre-processing 91
4.1.3.1 Featurescaling 0L 91

4.1.3.2 Dimensionality reduction L. 91

4.1.4 Baseline feature extraction Lo 91
4.1.5 Clustering 92
4.1.6 Experimental evaluation of the AMVOC clustering method 94
Semi-supervised learning for refining mice vocalizations clustering 99
5.1 Semi-Supervised Deep Embedded Clustering 99
5.1.1 Parameter initialization, 99
5.1.2 Clustering with KL Divergence 100
5.1.3 Reconstruction Loss Lo 101
5.1.4 Pairwise constraints Lo L L L 101
5.1.5 Trainingo 102
5.1.6 Ewvaluation. 103

5.2 Classification of online detected vocalizations 104
Conclusions and Future Work 107
6.1 Conclusions e 107
6.2 Future work and discussion 108

10

List of Figures

0.1

0.2

0.3

0.4
0.5
0.6
0.7

2.1

2.2
2.3

24
2.5
2.6

2.7

2.8

2.9

2.10
2.11
2.12
2.13
2.14
2.15

3.1

[opadelypata yerone tov 800 xpltnelony xatwAlnwong. Ot npdotveg umdpeg
ToV 600 TEOTOY Yeouuoy detyvouv to USVs tou aviyvebovtan and xdie xpithpto,

EVG Ol UTdpES TNG TELTNG YRUUUNG TNY TOUY TOUG. © .« « v v v v v e e e 20
AMVOC convolutional autoencoder: Apyitextovixr} Tou dxtbou Tou yenol-
MOTIOUAGOUE. v v v v v o o oo e e e e e e e e 22

‘Eva USV (aptotepd) xou 1 xaundhn Ue T oUYVOTNTES YEYLIOTNG EVERYELIC
(8e€id), mou yenowomoleiton Yot TNV EEAYMYT TWV TOPASOCLAXMY YAUPUXTNELO-
TUXOV. o v v v e e e e e e 23
Yovodn tng Sodixactag Bothdc e€aymYg YopoxXTNELOTXGOY XaL cuoTadorolnong. 24

Global xau cluster emonuewoeig.o 25
Méco nocootd anodoyrc twv USVs oto cluster mou €youv avatedel. 25
H mpocéyyion| pag otov ahyopduyo SDEC. 27

Different signal types. a) Analog signal (continuous time and amplitude).
b) Discrete-time and continuous-amplitude signal. ¢) Continuous-time and
discrete-amplitude signal. d) Digital signal (discrete time and amplitude). . 38

A discrete-time system.(Oppenheim and Schafer (2009)) 38
Spectrograms of different signals. It is interesting to note the different

frequency range, apart from their obvious dissimilar shapes. 41
Classification system design pipeline. 43
A biological neuron compared to a perceptron. 49

An artificial neuron, whose inputs are the outputs of preceding neurons and
whose activation function is the sigmoid function. (Gonzalez and Woods
(2008)) 52
Sigmoid, Hyperbolic tangent and ReLLU activation functions. Their deriva-
tives are shown since they are useful for the backpropagation algorithm

discussed in Section 2.5.2.3. (Gonzalez and Woods (2008)) 52
Fully Connected Neural Network. (Gonzalez and Woods (2008)) 53
The convolution operation. 57
A Convolutional Neural Network. (Gonzalez and Woods (2008)) 58
The transposed convolution operation. 59
The structure of a typical autoencoder. 61
Deep Embedded Clustering algorithm. (Xie et al. (2016)) 73
Semi-Supervised Deep Embedded Clustering algorithm. (Ren et al. (2018)) 74
Confusion matrix for a binary classification problem. 75

Examples of two different segments of the spectrogram, from 30-110 kHz.
Here, an actual vocalization (a) and a noisy, high-energy segment (b) are
displayed. 79

3.2

3.3

3.4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8
4.9

5.1
5.2
5.3
5.4

5.5

5.6

Examples of detection criteria: Demonstration of the twofold thresholding
application. The green bars of the first two lines show the detected vocaliza-
tions by each criterion, whereas the third-line green bars are their intersection.
Segments were spliced for purposes of visualization. 81
Effect of changing parameters on precision and recall. A and B) Changes in
precision and recall during offline detection when thresholds ¢ and factors
f are changed. C and D) Changes in precision and recall during online
detection when thresholds and factors are changed. Optimal threshold and
factor were determined to be the same, 0.5 and 3.5, respectively, in both
detection modes. 83
Accuracy of AMVOC and Other Methods A-B) Event and temporal F1 score
vs Realtime Processing Ratio of different USV detection methods compared
against our ground truth data in different qualities of recordings. 84

Histogram of the duration of the vocalizations in time frames Each time

frame corresponds to a 2 ms duration. 88
AMVOC convolutional autoencoder: Architecture used for the autoencoder
In AMVOC. . . 89

Examples of image reconstruction with AMVOC’s autoencoder after training,
using 2, 4 and 8 output filters. Data is extracted from the input image (left)

and used to reconstruct the three images (right). 90
Effect of the number of training epochs on measured training loss. 90
A syllable (left) and its frequency contour (right), used for the extraction of
the hand-crafted features. o 93
Overview of deep feature extraction procedure: Flow diagram of the general
procedures used to take image data from USV spectrograms into clusters. . 93
Cluster example using deep features with K-Means clustering and 6 clusters.
Each point corresponds to a syllable. 94
Global and cluster annotation scores. 95

Mean percentage of approved vocalizations for point annotation evaluation. 97

Use-case scenario. v v v i e e e e e 100
Error function. 102
Our approach of Semi-Supervised Deep Embedded Clustering algorithm. . . 102

Histograms of total processing times of all 750 ms buffers that comprise the
recording, for 1280- and 640-dimensional encoder outputs. In (a), we observe
that processing time of several buffers surpassed 750 ms, which is unacceptable.105
Histograms of total processing times of all 750 ms buffers that comprise the
recording, with and without the classification functionality. 105
Examples of vocalizations of each class. On the right, the vocalizations
are from the recording, whose clustering was used as training data for the
classifier. On the left, the vocalizations are from a different recording, labeled
automatically by the trained classifier. 106

12

List of Tables

0.1
0.2

0.3

3.1
3.2

4.1

4.2

5.1

F1 scores tng yevédou tou AMVOC xou My yedddov.
Real-time Processing Ratio. Ta netpduata yio autolg Toug unoloyiopoig €yt-
Vo YLo 5 OLopopeTnég apyela fyou, 3 gopéc yia To xadéva, xon utoloyioTrxe
0 péooc 6poc vyl xqe pédodo. Lo
Méon tuy) Twv macro F1 scores and 1o 4 apyela flyou. XTiC TEQITTOOELS TOU
yenowonololvton Bordid yapax TneLoTixd UETA amd retraining, 1 Ty avtioTolyet
oTov Wéco 6po twv macro F1 scores mou umohoylotnxoay o 5 Bla@opeTxd
nepdpata (o8 x&e apyelo Ayov).o

F1 scores of our proposed method and other methods.
Real-time Processing Ratio of all compared methods. Real-time processing
ratio is defined as r = ¢, where d is the duration of the recording and p
its processing time and is shown for each method. The processing time is
calculated as the time needed to just detect the USVs. The experiments
carried out to compute the real-time ratio were executed for 5 different
recordings, 3 times for each, and the average time for each method was
calculated. Obviously, a high real-time processing ratio means that a small
processing time is required in order to detect the vocalizations of a certain
signal (e.g. r = 30 means that the respective method is 30 times faster
than real-time, meaning it takes 1 minute to process 30 minutes of audio
information).

Statistical analysis for the global annotation scores. We have performed a
paired t-test to infer the statistical significance of the differences between
deep and simple features. L
Statistical analysis for the cluster annotation scores. We have performed a
paired t-test to infer the statistical significance of the differences between
deep and simple features. L

Mean Macro F1 scores for the three clustering approaches.

13

14

Chapter 0

Extetapevn EAAnvixn TTeplindn

0.1 Ewooywyn

H mapoloa dimiwyotiny epyacia ToyUaTEOETOL TNV AVIAUGT] MY OYRUPHOEWY TOVTIXLOV.
To novtixa emxowvmvolv petald toug ue unepriyous (ta heyopevo USVs (ultrasonic vocal-
izations) (30-110 kHz)), n avdiuon twv onolwy urnogel vo pog Shoet Thnpogopiec oyeTind ue
Ta ouvotciuarta, To TEPYBEANOY, TO QUAO XU TO GTAOW avdmTuUENG Twv Toviwy. Eniong,
UTOPEl Vo AMOTEAECEL TNYT) OTOLYEWY Yiot TIC UTOXEUEVES VELpOPLoAOYIXEC Blepyaoies Tng
outAlag, oL ontoleg amoTeA0UV Eval YEHoWOo LOVTEAD Yo T1) UEAETN NG avipdmivng outhiog xou
OLotoipary (v opAlag.

Ye autd To Thadolo, xplveton yerown N avdntuln epyaheiwy Yio TNV aviyveuon xou Tny
xatnyoplomoinot twv USVs, mou Yo unopodv UeTd vor cLVOEVOUY UE EVOEYOUEVT] XOVWVIXT
CUUTERLPOEE TwV TovTL®Y. Ot teplopiopol Tng TAsodmeloc Twv epyaheiny Tou €youv avor-
Tuydel €m¢ THPA Yot aUTOV TOV o%0T6 elvon 1 BuoxOoAia Yevixeuong Tng aviyvevong twv USVs
oe mouahiar cuvinxmy (V6puBog xhr), To yeYovoe mwe hertoupyolv offline pewdvovtag Tic
BLVUTOTNTES BIEEAYWYNG TELPAUATWY OE TEUYUATIXG YEOVO UE AVATEOPOBOTNOT WS TPOS T
Taparyopevo USVs xan 1) yerion mpoxadoplopéveny XAACE®Y Yia TNV TaEVOUNoT TV TOTWY TwV
USVs, eunodiCovtac tnv mdavotnto xatnyoptonolnong Ue Bdon dhha YopoxTnoto Tixd.

Yty epyaocio auth avartLloue Eva oOAOXANPOUEVO cpYahelo enelepyaoiag xal avahuong
USVs movtuumy, mou otéyog tou eivon vo Eemepdoet Tor tpoavapepdévta tpohfuata. Muy-
XEXPUWEVA, TO epyalelo Tou mpoTelvoupe €xel TIC eEAC BLVATOTNTES:

e Aviyvevorn twv USVs ye udmid mocootd axpBelac mou cuvarywviletar Tic dnuoguieic
ped6doug xan udhiota Tig Eemepvd ot YopuBndelc cuvixeg NyoYedPnoNC.

o Enéxtaon tng uevodou aviyveuvong oe online epapuoyée, mapéyovtag duect TAnpopopia
yioe Tar oviyveudévta USVs oe mporyotind ypdvo.

o Mn emfBAenduevn cuctadomnoinom twv USVs, Bdoet yopaxtnelotiney mou e€dyovton Télt
UE Un EMPBAETOUEVO TEOTO UE TN YpnNon voc convolutional autoencoder. H aglohdynon
TNC CUCTABOTOINONG UE TAL YUPUXTNELOTIXG TTOL TaeryUnoay autouato pe Bodid uddnon
CUYXELTIXG UE TORADOCLAXE. YOQUXTNELOTIXG TOU 0ploTNXaY Amd EUAS Xou 0popolY TN
popph v USVs €8elle onuavTins UTEpoY) NG TeOTNG.

o Auvototnro Pektiwong Tng ToLOTNTAS TNG CUCTABOTONONG UE YEYOT NUETBAETOUEVHY
TEYVIXWY Tou TepthauPBdvouy mopéufacn Tou yeHoTn oTn Swdixacio TG eXTaldEVoTC.
Ko €86d, n a&lohdynon €deile Peltiwon tng mowdtntag tTng cuctadonoinong o oyéon
ue TNy tekeiwe un emPBAenopevn TpocEyyio.

e XprYon twv dedopévev cuctadomoinone (Levydplo: avanapdotaon tou USV - oudda
otnv ool avrxet) ooy dedopéva exnaidevone evoc tadvounth. Autdc o Tadivountic

15

unopel va yenowonowndel yioo tnv ta€vounon USVs mou aviyvebovial o e@upUoYES
TEAYUATIXO) YPOVOL.

0.2 Oeswpntxd vnofadpo

0.2.1 Enefepyacio axoLvoTix®V oNUATOY

Ta ofjuota elvor GUVAPTACELS TOU YEOVOU Tou YopoxTnelloviol and To TAGTOSC TOUC Xol T1)
CLUYVOTNTA TOUG Xol PETAPEEOUY axouc TixT) TAnpopopia. 'evixd eivan avahoyixd, oAAd cToug
utohoYlo TéC amodnxedovian (nploxd CHUNTA TOU €YOUV BLUXELTEC TWEC GTOV YPOVO Xal Ol-
oXELTES TWES OTO TAATOC, GOV [LOVOOLAG TATOL TVAXES TTIOU GTNY TEAYUATIXOTNTA AVTLOTOLY 00V
o€ Ui Ypovixy| oxohoudia THWY TAGTOUC.

Eivou obvnieg to orjuota va e€etdlovton xou vo utoBdilovton ot eneéepyasio oTo medio Tng
CLYVOTNTAC %o OYL OTO TEBLO TOU YEOVOU, AOY® EMVUUNTOV WIOTATWY. AUTO ETTUYYAVE-
ToL PE TN XPNHOM TOU YVwoToL petaoynuatiogol Fourier, mou petacynuatilel to orfua and
ulor oxoroudia TGV 6To TEdLO Tou YEdvou, ot plo axoloudia GUVTEAECTOY GTO TEdO TNG
ouyvotnTog (@dopa).

Emeidr oL lBloTNTES %0l ToL Yoo TNELOTIXG TOV CNUATLY UETUBAAAOVTOL UE TNV TEEO00 TOU
YeOvou, elval cuyvd yerowo avti vo petaoynuatiletar 6Ao To ohua ancudelog and Tov Ypovo
oTN oLYVOTNTA, VoL TO Ywelloulue e Ypovixd Thalola, xaL Vo EQUEUOLOUNE TOV UETUCY NUATIOUO
Fourier oe xdde mhaioto pepgovewpéve. Auth n pédodoc ovopdletar STFT (Short Term
Fourier Transform). Ou oxohoutdiec mou mpoxintouv 610 TEdlO TG CUYVOTNTUS UTOEOVLY
vo. Totodetnioly xddeta n plo Simha otnv dAAN yia xdde ypovixd mhaiclo, €10l HOTE Vo
oyNUaTIoTEl €vag SLodLdoTaToC Tivoxag, Omou o 0pWldVTIog dZovag aVTLOTOLYEL OTOV Ypovo
xan 0 xddetog ot cuyvotnTa. O Twwég Tou expedlouy TNV evépYela Tou €YEL TO OYUo O
#dde ypovixd Thalolo xou o€ xdde Ty oLy voTNTAS. AUTO lvan TO ASYOUEVO PUCUATOYRAPTLOL
TOU ONUATOC, TOU TEPLEYEL YPOVIXT| XAl CUYYOTIXY| TANPOQOpia ot Log OlVEL TN BuVATOTNTA Vol
€YOUUE TNV ETOTTELNL TWV ONUATWY OAY EXOVESC GTOV OLGOLACTUTO YOEO.

0.2.2 Mnyavixy wadnor - CNNs, Autoencoders, Clustering, SDEC

H unyavier pddnon etvon évag parydolar avamTucoOUEVOS TOUENS ToU E0TIALEL OTNY To&-
wounon teotinwy (EmPBAenouevn pdinomn) oe cuyxexpluévec xAdoe X oty ouadoroinon
TEOTUTLY 6TaV oL XAdoelC Bev elvon ex TV TPOTépwY YVOOoTéS (un emPBienouevn uddnon).
Enlong, undpyet xou 1 duvatotnta TNg NUETPBAETOUEVNS uddnong, Tou TepthouBAvel Uepixt
YVOOoT yior ToL 5eBouévar, 1 omtolar aLoToLE(Ton AVAAOY L UE TNV EQURUOYY.

H Bohid pddnon etvon évag xhddog tng unyavixic pdinong mou 6Toyelel Oyt uovo oTny
To&vounoT TeoTiNWY, ahAd XaL oTNY EEEUPECT] TV YAUPAXTNELGTIXWY TOUS Tou Elvol yeroLud
v quTOV Tov oxond. ‘Otav avagepduaste ot Bodid udinor, xuplws avapepduacTte ota
VEUPWVIXS dixTuo (oTpduata omd eNEEepyaoTiXéC HOVEDES, TOUS VEUPMVES, TOU CLUVOEOVTAL
peTol Toug).

‘Evog eupéwe yenolonoloVUevog TOTOC VEUROVIXMY BIXTUMY EVOL T CUVEMXTIXA VEUE-
ovixd dixtua (CNNs), ta onofo 6€yovtoan otny elcodd toug emxdveg xan podoivouy Tor onuay-
TIXG YUEUXTNELOTIXA TOUG, BivovTag oTNY €€000 TOUC OVOTUPAUOCTACELS OUTWOY TV EXOVOV.
Toa CNNs anoterolvtar and dVo eldn otpwudtwy. To mpdTto elvor Tol CUVEAXTIXE GTEM-
wortar Tou €opudlouy TNy TR NG BLoBLACTATNC CUVENENS YPNOILOTIOWOVTAS GikTea OTNnY
aEY XY EOVAL, TV onolwy To Bdpen elvar Tpog exudinon, Ue oToOy0 TNV exdinon TOTXWY
YAUEAXTNELO TIXWY TNG exovag. To dedtepo elvan to oTpduata "pooling” mou Acttovpyolv cov
urmodetypoatorndio tng e€660u Tou cuveAxTo) oTpwUaToc. Me TN Bladixacior auTY, HEWWVOUUE
TOV UTOAOYIGTIXO (POPTO TWV EMOUEVGY CTRWHUATOVY, Xordd¢ Yo TEETEL Var BLaYELRLE TOOY EIXOVES
UxpoTEPOL UeyEDoug, eve amogedyeton xou To overfitting, Aoyw tng uelwong Twv amaitov-

16

HEVWYV TRUUETEWY TRo¢ exmtaldeuot). Enlong, xadde yewdvovion ol BlacTACES TV EXOVWY,
UIXEOl UETACY NUATIONOL, OANOUDCELS 1 TORUUORPWOELS TNG exovag dev Tailouy poro. ‘Etot,
TalEVOUPE it AVAmOPdo TAOT) TNG EXOVOS TEUXTIXA AVEEAOTNTY TNS XAUoXAS.

Ta CNNs umopolv va yenotwormointolv wg pépog twv autoencoders yio Tny eCoywymn
Yehowwy avarapactdoewy. Ou autoencoders eivan uio xotnyopla Podidv veupwvxdy dix-
TV OV YENOLIOToVVTAL 0T YN EMBAETOUEVY udinon yio vo uddouy Aovddvouces ava-
TOEAG TAGELS (YUPUXTNPLOTIXG) TWY TEOTUTWY ELGGB0L, GTay BEV ElVol YVOOTES T.Y Ol XAJOELS
OTLC OTOlEC AVAXOUY QUTH TOL TROTUTIOL LUYXEXQUIEVA, ATOTEAOLYTOL AT EVOV XWOIXOTOLNTY
(encoder) o omnoloc diver oty €Z0do Wi evdidueon avanapdotaon (code) xou évav amox-
wdworomty (decoder), Tou omolou 0 6TEY0OC ElvaL VoL YENOWOTOLACEL QUTH TNV AVATOPEC OO
YL TNV OVOXATAOXELT TNG Ay XS El06Bou. Me 1 olyxplor g e£600U TOU AmoXWOXOTON T
HE TNV apyixt| eloodo emTuyydveTa 1 exntaldeuor Tou autoencoder.

‘Otav évtwe ta CNNs ouvdudlovton pe toug autoencoders (convolutional autoencoders),
t6te xou 0 encoder xou o decoder etvon mpoxTind CNNs. O encoder podoiver yopoxtneloTind
oo TIC EXOVES €L06B0UL o Bivel TNy €006 Tou Tig evildueses avanapaotdoelg. O decoder
YENOWOTOLEL TNV EVOIAUEST] AVATORAGTAOT) YL TNV AVAXATAOXEVY| TNG EXOVIS ELGOBOU.

Ta yopoxtneioTxd mou mapdyovtal oty €€060 Tou encoder, UTOPOUV VoL YENOWOTOL-
ndovyv v cuotadonoinon (clustering) twv mpotinwy. Yrdpyouv didpopot olydpriuol cuo-
Tadomoinong mou axohoudoly dwpopetinéc npooeyyioec (K-Means, GMMs, Agglomerative
XAT), ot ontofol SnuLoLEYOLY L OUUBOTOINCT TWY TEOTUTWY UE BACT TA YUPAUXTNELO TIXE TOUC.

Autég oL avanapaotdoel, xadde xan 1 GUVETOYOuEVT ouadonoinon unopet vo fehtiwidolv
TEPALTERW UE TN Yenon NUemBAenopevne udinonec. Mo ulonoinon auvthc tng Wéag elvar To
SDEC (Semi-supervised Deep Embedded Clustering). Autdc o ahydpripoc enavexmoudevet
evay 1\0m exmoudeupévo encoder, GTOU TOEA AVTL YLOL TNV AVAXATAOXELY| TNE ELGOBOU ATd TOV
decoder, 1 exnaidevon yivetaw ye otéyo 1) tnv ouoyevonoinon twv cuctddwv (clusters)
Tou oynuotilovion amd TIC AVATUPAUCTAGELS TWY TEEXOVIWY E60wY Tou encoder xot 2) Ty
EVOOUATWON XATOLG Hop@Y|c TANeogoplag Tou divouue euelc. MTnv mpoxewévn meplntwon,
ouUTH €YEL TN LOPPT| TEQLOPIOUMY Tou Tilevton PeTal) TEOTUTWY: oV TEETEL VAL AVAXOUY OTNV
{Blar opdda 1y byt Autol ol U0 mapdyovteg xoteLdivouy TNV emavexTaldeuor Tou encoder e
0TOY0 TN PEATIWOTN TV AVATAPACTICEWY XAl TNG CUCTAOOTOINCTG.

0.2.3 Metpuxéc aloAoyYnoNng

Ye éva medPBAnua Taglvounong, 1 aglohdynon tou poviéhou yiveton pe T yerorn tov NxN
nivaxa olyynone (confusion matrix, N o apriudc twv xhdoewv), o onolog anoteheitar ot
ouvnhiouévn mepintwon Twyv 2 dlactdoewy and 4 otouyela: TP (true positive) etvor o aprdude
TV TEOTOTWY Tou TPOBAEPINXE bTL 6woTd avixouv otnv xAhdon 1, TN (true negative) eivou
0 apiude TV TEOTUTKWY ToU owaTd TEOPAEPInxe 6Tl avixouv otnv xhdorn 0, FP (false
positive) eivar 0 aptdudc Twv TEoTUTKY oL TEOBAEPINXE 6TL avixouy otV xhdom 1 eve
oty mparypatxdtnTe. avixouy otny xhdorn 0 xoaw FN (false negative) eivow o aprdudc tov
TEOTUTWY Tou TEOBAEPUNXE OTL avixoLY OTNV XAdon 0 eV GTNY TEAYUATIXOTNTA AV XOUY
otnyv xAdom 1.

Ou 800 Poowxéc yetpixéc Tou ypnotporotolvton eivar 1 avéxinon (recall) (tocootd twv
TEOTUTWY TOU avixoLy oTnV xAdon 1 xar mpoPrépinxe 6TL dviwg avixouv o auth, R =
TP:CF%) xou 1 oxpifela (precision) (06066 TWV TRPOTUTWY TOL TEOBAEPUNXE GTL aviXOUY
otny xAdomn 1 xou dviwg avrixouv e autr, P = j?iipw). YUy v, TEOXEWEVOL VoL €Y OUUE
Lol VTIXELIEVIXT) EXOVOL X0 VoL AaBavouue Lo xou Tig 800 PETEIXEC YENOWOTOLOUUE TOV
appovixd péco touc (F1 score, F1 = %). Ye npoPAfuata U TOAUTAES XAACELS KoL UM
tooppomnuéva dedouéva, urtoroyiCouue To F1 score xdie xAdong xan unoloyilouue Tov péoo
6po touc (macro F1 score).

AuTy| TNV TROGEYYLOT UTOROVUE Vol aXOAOUUAGOUUE XAl Yiol VoL GLUYXEIVOUNE vty VEuDEvTa

17

yeyovota (m.y. USVs) and 800 pedddouc, yenotlonotdvios To Ypovixd ddotnua mou Exel
avatedel o xdie yeyovoc. Tndpyouv 800 BlopopeTinol TpOTOL Vo A€LOTIOLGOUKE TOV THVOXAL
obyyuong: 1 yeovixt| a&tohéynon (temporal evaluation), otnv onola ywpeilouvue tov ypdvo
OE WIXPEC YpOoVIXéC HoVadeS, oTic ontoleg éyouue (xhdon 1) ¥ byt (xhdon 0) xdmoto yeyovog
(mpoPAnuo Tadivéunone xdde ypovixic Lovddog o 2 xhdoelc) xat 1 a&lohOYNoN YEYOVOTWY
(event evaluation), étou we TP opilouye tar avytveudévia yeyovota Twv onolmv To ypovixd
Oudotnua elye emxdhudn ue éva mpaypatixd yeyovoe, wg FP ta aviyveudévta yeyovota mou
oev elyoav emxdAudn e mpayuatind xou we FN elvon to yeyovota mou amétuyoy av aviyveutolv.
Me aut) TV mpoacpuoYT| UTopoUUE Vo UTOAOYICOUUE TAEOV OTOLIONTOTE UETELXY).

0.3 Acodoueva

211 SLdEXELd TOVY TELRUUUTIXDY BABXACIOY aZloAOYNoNS, Yenotuonoiooue Tela cUvola
dedopévev (D1, D2 xou D3).

To clOvoho dedouévewy D1 dnuiovpyrdnxe yio v allohdynon tov uedddwy aviyveuong
v USVs. Ilpdxeitan yio éva oUvoro amd 9 axouotind xopudtio Sidpxelog 5-10 6euteporéTTWY
To xadéva, mou mepiyet 245 USVs ouvohixd. Autd ta USVs emonueiwidnxay and eldixd, o
omolog dploe TNV apy | xat To TEhog Tou xde USV, ue ypovixn avdiuon 1 ms.

To cbvoho dedouévev D2 anoteieiton and 26 StapopeTind apyeio Hyouv xou yenotuonolfinxe
yio TNV exnaldevor tou convolutional autoencoder pog.

To clOvolo Bedouévewv D3 yenowonomidnxe yioa v allohdynorn tng diadxascia cuc-
Tadomoinone. LUyXexpuléva, yenollonotooue éva cUVOho and 72 opyela fyou, dlahéEaue
20 deutepohenTa and To xadéva Tou @povticoue va TEpLEYouY ToLAdyicTov 2.5 USVs avd
OEUTEPOAETITO XOU GTY| GUVEYELO CUVEVWCOHE BLab0yIxd auTd Tol XOpudTLo, oy nuatiloviag cuvo-
Axd 4 véa apyela fyou.

0.4 Aviyvevorn USVs

H npdytn hettoupyio tou uhornotel to AMVOC elvan 1 aviyveuon twv USVs twv TovTioy.
[o tov oxomd autd, YENOWOTOLOVUE TO QUCHATOYEAPNUA Tou UToAoYi{ouue and To GhHUd
fiyou, 1o omolo yevixd enclepyalduacte wovo oto @doua evdlagépovtog (30-110 kHz). H
Yeovixy| avdAuct etvon 2 ms xou 1 cuyvotixy 0.5 kHz. ‘Eyouue vlonowioet tn uédodo pog xou
yio offline eapuoyéc ye ™ yerion oM NYOYEAPNUEVWY CNUATLY, xaddS XoL Yo EQUPUOYES
TEAYHATIXO) YPOVOU, OTIOU TO GTUN XATOYPAPETOL KoL 1) oviy VELUST] YIVETAUL TAUTOYPOVAL.

0.4.1 Offline Asittovpyia

Aqgobl urohoyiotel To gacpatoypdgnua, N aviyvevon twv USVs yiveton ye tnv e@opuoy
0Lo xeLTnElwy.

e To mp®TO %ELITAPLO APOEE XATWPALWST) TNG PACUATIXNG EVEQYELNC aVE YEOVIXO Thai-
ow. ITo ocuyxexpéva, yia xdde ypovixd mhaicto adpolloupe OAeC TIC TWES TOU (Puo-
potoypaghuoatos E mou avtiotololv 6to edio v cuyvothtwy (pdouo):

110kH z

Si= > By (0.1

j=30kHz

6mou o delxtng j augdveton xotd 0.5 kHz. ‘Etot, yia xdde ypovixd mhaioclo i €youvue tny
T TN QPUOPATIXNG EVERYELXS ;. 2TN) CLVEYEL, LToAOYICoUpE Ui SuvaxT| axohoudia

18

XATWPAMWY YL xGE Ypovixd TAaloLo ¢ we eENC:

N-1 K-1
_ 12550 S, 1250 Sie

Ti 2 N 2 K

(0.2)

omou N ebvor 0 oprdudg TV ypovixoky mAwucinv and to onola aroteheltor o @oo-
poatoypdpnua, xou K to yéyedog evog pilteou xvoluevou UEcou Tou eQupuolOVUE OTO
ofua (K = 2 oty nepintwon pog). LUVETAOS 0 TpmToc Gpoc avTioTotyel ot péon goo-
HOTIXT) EVERYELX OAOU TOU GHUATOC X O BEVTEPOS OTNV TUT| TNG PUACUATIXAC EVERYELC
TO Ypovx6 Thaiclo i, ool 1 evépyela cuvelly el Ue Eva IATEO XVOUPEVOU UEGOL Yid
Aoyoug e€opdhuvone (emopévog 1 véo Th oto mhaiclo i xadopiletar xou omd tig K
TEONYOUUEVEC).

e To deltepo %pLTHPLO APOEd TNV XUTAVOUT TNG EVERYELNG OF xde Ypovixd mAalolo 6To
pocuatoyedpnua. Av €youue LPNAEC TWES TOU QUCUATOYRAUPNAUATOS YUPW Ao Uid
ocuyvoTnTa, moavoTtata auTéG ogellovtar oTtny Tapoucia YoplBou. 'V autd, urnoloyi-
Coupe €va VEO BuVAUIXO XATW@PAL, TOU Yol EQUEUOCOVUE OTN UEYLOTH TYT| TN EVERYELC
avd yeovixd mhaioo Py = max;—3o,.. 110kHz Eij. Av oploouue wg p; T cuyvéTnTa TNG
HEYLOTNG EVERYELNG OTO YPOVIXO TAXGLO %, 1) Suvaixy| axohoudior xotwphiny optleto
ano:

1 min(p;+30kH z,110kH z)

=N, > E; (0.3)

j=max(p; —30kHz,30kH z)

M;

Tou ex@edlel T U€om evépyeld 0TIC oLUYVOTNTES YW amd T péytotn (N = 2-(min(p;+
30kHz,110kH z) — max(p; — 30kHz,30kH z)) epboov o petpntic j awddveton xotd
0.5 kHz).

O ocuvifixec xatwpMwong epapudlovian wg eEAC:

_{ 1 av (S;>t-T;) KAL (P, > f-M;), émovt=0.5xun f=3.5 (0.4)

L 0 oAAC

‘Etot, npoxOnter 1 axohoudio V', mou amoteAeitan and 0 xou 1 Ta omola exppdlouv av
To TEEYOV Ypovixo mAalcto avtiotolyel oe USV 7 oyt. Auth n axolouvdio otn cuvéyela
pulTpdpeTon pe éval PIATEo xvolUevou péoou (Sidpxetog 20 ms) yior vo Angdel unddm 7 yertowid
evog miavol USV. Téhog, evivoupe diadoywd USVs mou améyouv xdtw omd 11 ms xou
amoppl{mTouue 6ca €ouv dLdpxeld XdTw and 5 ms, g cuviiwg TEdxelTal Yo YopuBo.

0.4.2 Online Asittovpyia

Y1 Aertovpylo mporypatino) yedvou, £youue T duvatotnTa va tapeyouue feedback otov
yenotn yio to aviyveudévia USVs tn otiyun tne nyoyedgnone. H duadixacior mou axohou-
Yolue elvon (Bl pe tnv offline Aettovpyla, 1 povadnr| dlapopd elvar 0 oploPdS TN TEWTNG
oxohoudlag xatwgiiov Tj, dedouévou oL Tpa dev unopolue vo AdfBouue utddn 6ho To orjua
yiott 8ev elvon axdpo nyoyeapnuévo. Buyxexpléva, enclepyalopacTe To ofjua avd xdde
NYoYeapnuéVo TURAu dtdpxelag 750 ms, to onotlo Yéhaue vor elvon Uxpd Yio Vo UTopoUUE Vo
Tapéyouue yeryopo feedback, wotéco va elvon apxetd yeydho yio va €youv oflomictior o
TWES TOL YENOWOTOLOUVTOL YIo TOV OPLOUO TGV OUVOLXMY XUTWOAY.

H Baown toug Sopopd lvar 6Tt T 1) Teed TN axohoudior xatwAlwy €yel Ty (Blar Ty Yo
OhaL Ta ypovixd mhaiota evog Tapadipou eneepyactag 750 ms xou oplletan Yo xde Topddupo
k wc:

19

criterion 1 (c1)
criterion 2 (c2)
and(cl,c2)

Figure 0.1: Iopadeiypoata yeriong Twv 600 xpttnelony xatw@iiwone. O npdolveg undpee Twv
600 TEOTWYV Yeauuny detyvouv Ta USVs mou aviyvebovtar and xdde xpithplo, eV oL umdpeg
™Ne TeltNS Yeouune TNV Tour Toug.

k
T, = 032]]€1Bj + 0.7 - By, (05)
6mov By, elvan 1 yéon goopatind| evépyeta Tou mopadvpou (block) k. Apoa to xotd@AL
ToOpa UToAoYiCeTar K¢ To oTadUloUEVo dUpoloUd TOV HECWY TIHMV EVEQYELNS OAWY TWYV TPO-
nyoluevewy mapodipmy xou Tne wéong evépyelag Tou Teéyovtog topadvpov. Ta Bden (0.3, 0.7)
eTAEYVNHAY UETE UG TELQOUATIOUO.

Me ™ yeron tov napadipwy Twv 750 ms, ouclICTIXY SLUXOTTOUUE TO OHUN GE XATOLO
Yeovix6 onuelo to onolo evdéyeton vor €youpe éva USV. Autd to USVs dev aviyvebovton ue
auth TNV Tpocéyyion. [tov Adyo autd, extéc and ta 750 ms Tou Tpéyoviog mopadlpou
enelepyalopacte xdde popd Eavd xou to teheutaio 100 ms Tou mponyoLuevou Tapadipeou,
®aote vo egetdoouye evdeyouevo USV mou ydinxe Aoyw Tou TEAOUC TOU TROTYOUUEVOU TTHEO-
YOpou.

A&ilel va avageplet 6Tt T600 1 offline, 660 xou 1 online Aettoupyia emtpénouy TNy enéu-
Boom Tou YeNoTN KE TNV EMAOYT TV CUVTEAEG TGV XxaTw@Alwy t xou f. Ot Twwég mou emhé€aye
euelc oplotnxay ye Bdon doxéc ue To cbvolo dedouévey D1. AGZnon tng TWAC auToY Twv
500 TOPUUETEOY €YEL WG amoTEAEOUA o auoTneY aviyveuon (abénon twv FN Aéyw tou 6Tt
lowe ayvoolvton xdmowa USVs pe mo younhi evépyeta i o€ nepintwon YopuBwdny cuvinxmy)
eV pelwor| toug onuaivel o "yahaphR" aviyveuon (avinon twv FP Adyw tne peyoldtepne
mdoavétnog aviyveuone Yopifou).

0.4.3 Ileipapatiny agtohdynon tng aviyvevong twv USVs

H o&iohdynon tne yedodoroylag aviyveuone twv USVs éyive ouyxpivovtag tny amddoor
1600 tn¢ offline 660 xau tng online mpocéyyiong pe dAAa epyaheta xou cuyxexpyéva to MSA
(Mouse Song Analyzer-2 exd6oeic) (Arriaga et al. 2012; Chabout et al. 2015)), MUPET
(Van Segbroeck et al. 2017), VocalMat (Fonseca et al. 2021), xou DeepSqueak (Coffey
et al. 2019), ta onoio tpé€aye pe tic mpoxadopiopéves (default) mopapérpoug Toug. T
oLYxELOT YeNoYLoToooUE To GUVOLO Bedouévewy D1 nou anotehelton and 9 turuata Sidpxetag

20

5-10 s éxaoto, nou mepLéyel 245 emonueiwuéva USVs cuvohind. Xoplooue auté o ohvolo
OEDOUEVLV OTAL MY OYEAUPNUEVA TUNoTA PE Xt Ywpelg Yopufo.

[v aZlohdynon, yenoylotoioope T ypovixy atohéynon (temoral evaluation) xou
v o€lohdynon yeyovotwy (event evaluation). To anoteréoparta gaivovton otov Hivaxa 0.1.

AMVOC
F1 score offline | online | MSA1 | MSA2 | MUPET | VocalMat | DeepSqueak
Normal 84 85 46 88 85 91 83
Temporal | Noisy 67 68 23 71 53 57 76
Average | 75.5 76.5 34.5 79.5 69 74 79.5
Normal 97 97 66 94 93 90 93
Event Noisy 84 83 33 72 o7 58 81
Average | 90.5 90 49.5 83 75 74 87

Table 0.1: F1 scores tng uetdéddou tou AMVOC xou dAhwv uedddmy.

Hapatneotue 6t to AMVOC éyel xalbtepo event F1 score xou ota Gopufddn xau ota
xadopd ofuata, eve ol uédodor MSA2 xou DeepSqueak elyav Alyo xallbteprn amddoon ot
petew) temporal F1, xuplog Aoyw twv mo edoToywy aviyvéuceny ata YopuBndn onueia.

OewpHoUUE EVOLAPEQOVTU Xl TN MEAETY TNG YPOVIXNC ambd00Ne TwY HEVOdWY Xt Yo
outd unoloyloaue to Realtime processing ratio, mou ouclacTxd LooUToL UE TOV AOYO NG
TEUYUATIXNAC SLdpxelag VS GHUNTOS Bl TOV YedVo Tou YeeldlouacTe Yoo TNy eneepyaoia
Tou ofaTog xou TNV aviyvevon Twv USVs. Tlpogavae, 6co yeyolitepn elvon auth n uetex,
1660 T0 xohOTepo. T mapddetypa, av r = 30, onuaiver 6L 1 pédodog elvar 30 @opég o
Yo Yoen amd Tov TEoyUoTixd Yeovo, dnhadr| oTt yeetdletar 1 Aentd yio Vo ene€epyaoTOOUE
30 Aentd axovotxric Thnpogoptag. To anoteréouata galvovton otov mivoxa 0.2.

Methods Real-time Processing Ratio H

MUPET 324
MSA2 29.9
MSA1 28.1

AMVOC 21.2

DeepSqueak 8.2
VocalMat 4.3

Table 0.2: Real-time Processing Ratio. Ta melpduata yioo autolc Toug UTOAOYIOPOUC EYLvay
yioe 5 drapopeTinég apyeior Yyou, 3 Qopég yior To xadéva, xaL uToAoyioTnxe 0 PEGOS 6RO Yl
xae pédodo.

To AMVOC elye evdidueon enidoon 6cov agopd autrh TN uetex. Tnv mo yeryoen
aviyveuon netuyaivouy To MUPET xan to MSA.

A&ilel enione va onuewwdel, 6t 1 entdoon tng online Aettovpyioc Tou AMVOC cuvay-
ovileton TIC AnoBOCES TWV O SNUOPLNGDY EpYalelny xon dev Lo Tepel oe ayéon pe tnv offline
Aettoupylo.

21

0.5 Boadideaywyn yapoxtneicotixwy e Convolutional Au-
toencoder

Aot aviyveudoly ta USVs, d€houvue var Tar xatatdEoupe o€ XAAOELC 1| VoL To OUOBOTOL -
coupe Je Bdorn xdmota yopoxtneto Tixd toug. H mpocéyylon pag etvon un emBAenoyevr, onladt
VENOUUE VoL EEAYOUUE YUPUXTNELOTIXG OO TN LOPPT TV QUCUATOYRAUPNUATLY TV USVs xau
oTn ouvéyela va opadonotiooupe T USVs. T tnv omtixonoinoyn tng ouadomoinong xou T
duVATOTNTA AELOAOYNONC TNG, EYOUUE UAOTIOLACEL Lol BIETOPT], OTNY oTolal 0 YpNoTne unopel
var emAEEeL xau BlopopeTixés puiuioelc yia T cuotadonoinon (ahybpriyo, oerdud cuoTddwY).

Dot Porhid e€aywyn yopoxTneloTixdy yenotwonoljooue évay conolutional autoencoder.
Autdg Béyeton oty eloodo ta gacuoatoypaghuata Twv USVs, xau 1 é€odog Tou encoder yag
OlVEL Tl BLOVOGUOTOL YORUXTNPLOTIXY.

0.5.1 Apyitextovixy xou Exnaideuon tou Convolutional Autoencoder

INo v exmaldeuon tou LovTéloL Uog Yenowonoioaue To cOvolo dedouévwy D2, mou
anotehelton amod 22,409 USVs. O oo Ttdoels Tov emdvewy Teenel va efvan (Bleg, To omolo Loy el
v Tov d€ova ouyvothtwy (30-110 kHz), odhd éyt yia tov dZova tou ypdvou. Ilpéner va
emAéZoupe otadepd péyedog yio Tov GEova ToU YedVoU ol Vo EELC0PEOTHCOUUE TNV Tidovy
am@AeLo TANpoopiag av oploouue uxed aptdud ypovixwy thociwy xou "xdpouue" Tic edveg
UE TN pelwor TG oNUAclog TWY YoUEaXTNELOTIXMY TV UXEOTERWY GE Ypovixr owdpxeta USVs av
eMEXTE(VOUNE UE UNdeVIXd TIg exoveS. EmhéZaye vo oploouye otadepd péyedog ta 64 ypovixd
mhalolo Tou avTioTolyoly oe 128 ms, AouPdvovtag unddn T didpxeio Tng TAsloPnplag Twy
USVs. Apa, hapBdvovtog unddn tn yeovixh xow cuyvotixs avdhuon (resolution), ot exdveg
€youv dlaotdoelg 64x160 xou eloépyovtan oTto poviého oe batches.

‘Ocov agopd tnv apyttextovixt|, @aiveton oty yeapuxy mapdotacn 0.2. Ko o encoder
xat o decoder amoteholvton and 3 cuveAnTixd otpwuata ue 64, 32 xau 8 @iktpa didoToomng
3x3 avtiotouya (ue TV avtiotpogn oelpd yia tov decoder), tor omola axolovdolvtar amd max
pooling oTp®UATA, TOU UELDOVOLY T1) BIACTACT) TNE EEOBOU TV GUVEAXTIXWDY BIXTUWY GTO ULa0.
Xenowotnololue wg cuvdptnon evepyomoinong tn ReLU, extéc and to tedeutaio otpmua tou
YENOWOTOLEITAL 1) OLYUOEWDHC, UE OTOYO va dwoel Ty Letall 0 xan 1 o xdde ¥éom tng e€odou.
)¢ ouvdptnon opdhuatog yenowonoeiton 1) Binary Cross Entropy, mou €yel otoy0 va uewwoet
TNV onooTACT UETUE) TNG OVOXATAOXEVUCUEVNS EOVIC XOL TNG EXOVOS ELGOBOU.

INPUT 64x160x1 B 32x80x64 B 32x80x64 1 o7 6ax160x1

W 16x40x32 [| D16x40x32
WEx20x8
’

Encoder Code Decoder
Features
(Intermediate Representation)
== Convolution, ReLu activation = Deconvalution and Deconvolution and
and Max Pooling Relu activation Sigmoid activation

Figure 0.2: AMVOC convolutional autoencoder: Apyttextovix} Tou 8ixtiou TOL Yenol-
UOTOLACUE.

‘Olec ov mapdpetpot (oprdudc otpwudtwy, Sotdoelc Qihtewy) emhéydn oy UeTd omd
netpopatiogd. To povtého pog exmoudeltnxe yia 2 emoyés, xadog TopaTnehoaue OTL To

22

oAU BeV eu@aviCel onuovTixy UElWwoN HETA TIC 2 EMOYES, EVK VEAUUE VoL ATOPUYOUUE Ko
evoeyouevo overfitting ota 6edopéva exmaldeuong.

0.5.2 Boadid ESaywyr YoeaxTtnelotixy

Agol o yovtého exmaudeutel, o encoder umopel va yenowonowniel v TNV eloywyr
YopaxTnelo Tixov. Emouéve, yio éva omolodfrote nyntixd ofjua, apol UTOAOYIOTEL TO Qoo-
poToyedpror xon oviyveutolv tor USVs, Tl gaouatoypaphuatd TOUG ELOEEYOVTOL WG EXOVES
otov encoder xou 1) €£086¢ TOU Bivel EVa BLAVUCUO YAUEUXTNELOTIX®Y Yol XAJE ELXOVA ELGOBOU.

Adyw tne peydAng ddoTtaone autol Tou BlavOoUATOS, TEQVAUE TIC AVUTUPAUOTACELS AT
ula eme€epyasio TV TIC YENOWOTOCOUUE Yo cucTadoroinom. Auth nepthopfdvel:

1. Tnv ogolpeon YopaxXTNELOTIXWY TOL €Y0LV Uixpr] SloxdUavor oTo GUVOAO TWV Avo-
Topaotdoewy Twv USVs tou e€etdloupe.

2. Tov YETUCYNUATIONS TWV EVITOUELVEVTIWY YOQUXTNOLCTIXOY AQPUOWVTAS T UECT TN
XA0E YOPUXTNELOTIXOY ol BLLEWVTOG UE T1) SLUoTORd.

3. Tn pelwon twv dwotdoewy ye) pédodo PCA, n onola petaoynuatilel ta dioaviouata
YORAUXTNELOTIXWY OE EVOV YOEO UE UXPOTEPES DO TACELS, OLATNEWVYTIC OGO TO BUVATOV
TEPLOGOTEQO TN OLUXVUOVOT] TV URYLXMV Y UQUXTNELOTIXODV.

0.5.3 Ilopadooioxh eEoywYY| YOAEAXTNELOTIX®Y

ITpoxewévou va a€lOAOYHOOLUE TIC AVATEACTACES Tou Thpoue amd Tn Pothd e€orywyh
YAEAXTNELO TIXWY, FEAOUUE Vo GUYXEIVOUPE TNV ETB0CY| TOUC UE YOQUXTNEICTIXG TOU EMLAE-
yovTow amd eUds xat opopoly Bacixd T Lop®n TwV @uVNTIX®Y "GLAAIBOV" OTKC ATOTUTOVOV-
T oTo pocyotoyedgnua. H mhnpogopla hauBdveton and ula Siodido tortn xaumdAn 6mouv o G-
OVOC T OVTIO TOLYEL 0TOV YpOVO (OTA YPOVIXE TAGIOLY) XAl O Y OTH CUYVOTATA, PE TIC THIES TNG
xopTOANG vou divovTon amd Tov TOTo y; = arg max; Ejj, Snhadn pe Tic TES ouyvoTHT®Y OTou
1 evépyela modpvel TN PEYLOTN TWY OE XGUE YpOVIXO TANICLO TOU (QUCUATOYRAUPHUATOS. LUY-
xeExpWEVa, auTd agopoly T 1) didpxela xdde USV, 2) to ypovixd onueio tne eldytotne tiunc
e xoumOANG, 3) TO YpoVix6 onuelo TNg HEYIOTNG TWAS TNS XoTOANS ot 4) Tn dtapopd uetadd
peylotou xou ehayiotou g xaunving. Kdde yopoxtneiotind yetaoynuotiletol apauomdvTog
TOU TN YEOT TN TOU TOU AVTIOTOLYEL Xou BLopVTS UE T1) Sl TopdL.

Spectrogram of syllable Points of max frequency per time window of syllable

120k 120k

100k 100k

80k 80k

60k

Freq (Hz)
Freq (Hz)

40k 40k

R I o

20k 20k

! Y .
Udcocooooaboasda

1

302 302.05 302.1 302.15 302.04 302.05 302.06 302.07 302.08 302.09
Time (Sec) Time (Sec)

Figure 0.3: "Evo USV (optotepd) xon 1 xoumdhn Ye Tic oLy VOTNTES YEYLoTNG evépyeLas (Selid),
TOL YPNOLLOTIOLEITOL Y10l TNV €E0YWYT| TWV TUPAUBOCLAXWDY Y oROXTNELOTIXOV.

23

0.5.4 Xvotadonoinon

INo T cuoTABOTOMGT) UTOEOVUE VAL YEYCLLOTOLAGOUUE BLAPOPOUS kY 0plOUE TOU 0XOAOU-
Yolv SwupopeTixég mpooeyyloeg. Autol mou emiéloue eivon or Agglomerative, Gaussian
Mixture Models, K-Means, Mini-Batch K-Means xou Birch. Ta arnoteAéopata tng cuota-
domolnong galvovtal ot yeopixT| SIETAQY) TOU EYOUUE avamTOEEL.

Features

Variance
Thresholder

Standard
Scaler

PCA

Clustering
algorithm

Figure 0.4: X0von tneg dwodixactiog Poadide eCorywyhe YApaxTNELoTIXGY X0l CUCTABOTOMNONC.

0.5.5 Ileipapatiny agtohdynor tng cuoctadonoinong we to AMVOC

H aZlohdynon €yive ouyxpivovtog cuyxexpléva setups cuatadonoinong 6mws TEoExuPay
ue Tic dvo xatnyoplec yopaxtneloTixdy (Bahd xou mopadootoxd). O Swatdiec mou ypnot-
womotfoape eivon ou 1) Agglomerative clustering pe 6 clusters, Gaussian Mixture e 6 clusters
xar K-Means ye 6 clusters. Téooepic yeriotec Paduordynooy autd to setups oto 4 apyeio
Tou GLVOAOL BedoPEVLY D3.

Yuyxexpéva, éxavay 3 €ldon allohoyroeny yia xdle apyelo, xdlde setup xar Tic 600
ued6doug e€orywyhAC YoeaxTNELOTIXWY, Ywelc va yvweilouv molo clustering mpoépyetan and
xade pévodo:

1. Global emonueidoeig: O yprotng Boduoroyel 1 cuctadonoinom pe Evay Bodud and to
1 (xoxd) €we xon 10 5 (xohd).

2. Cluster emonueidoeic: O yprotne Padporoyel xdde cluster (opdda) pe évav Bardud amd
10 1 (xox6) €mc xou 0 5 (%ahd).

3. Emonueidoeig onuetwv: O yerotne emiéyer USVs and xde cluster xou emonuaiver av
XD oV XOUV GTO GLUYXEXPWEVO cluster ¥ av Yo €npene vor aviixouy o€ éva dAlo.

Ta mo yehotua aroteréopata @aivovton ota yeapruata 0.5a xou 0.5b, émou galvovta ot
uéool bpol Ty Paduy yia xdde apyelo fyou xau yia xdde yeroT.

‘Onwe nopatnpolye amd to avtioTorya dlayeduuata, 1 uédodog dev mailel Wialtepo oo,
EVO XU OTLC BU0 XUTNYORIEC ETONUELDOEWY, oL Baduoloyieg elvon ulmAdTepee oTIC CLOTO-
domotNoElC oL TEOEXLYAY amd Tal yopoxTNElo Td Botide udinone. Enlong, teédoue xon éva

24

Global annotations Cluster annotations

s deep = deep
e simple e simple

IS
s
>

w
!

w

N
N

~

-
L
-

o
|

o

KMeans-6 GMM-6 Agg-6 KMeans-6 GMM-6 Agg-6

(a) Global emonuewdoeic: Méon tipn xou Tuxf andx- (b) Cluster emonuewdoeic: Méon tiwh xou tumxy
Ao tev Badudy mou 8éInxay oe xdde setup, Aoy~ anoxAon Ty Bodudy tou d6Onxav ot xdde cluster
Bévovtag unddn xou tor 4 apyeia fyou, xou touc 4 and xde setup, hopfdvovtac UTdPr xou o 4 apyeia
XPHOTES. Ay ou, xat Toug 4 yehoTeC.

Figure 0.5: Global xou cluster emonuewwoeic.

t-test mou €6eile LPNAY CTATIC TN ONUAVTIXOTATA TWV EVENUATKY XL Yot TI¢ 800 UOPPES
a&lohdynong.

Enlone, ouyxplvaye to tocootd anodoyfc twv USVs ota clusters toug, 6mme qalvetan
o7o yedapnua 0.6.

Percentage of approved vocalizations

0.8 A
0.6 1
0.4 -
0.2 4
0.0 -
deep

simple

Figure 0.6: Méco nococté amodoync twv USVs oto cluster nou éyouv avatedel.

Etvau cogéc nog neptocdtepa USVs €yivay anodextd ota clusters toug étav to clustering
€YLVE UE TOL YOROXTNELOTXG Tou autoencoder.

ITocoTxomolwvTag aUTEC TI TORUTNENOELS, CUUTERUVOUUE OTL 1 Porthd e€aywYn yopax-
TNELO XY UTEREYEL TNS TORUdOCLAXHC OE OAOUS TOUC TOUE(C:

e Ou Boduoi twv global emonueidoewy eivon 37% udmidtepol yio T Padid mpooéyylon
(Figure 0.5a)

e O Boduol twv cluster emonuerdoewy eivor xotd péco 6po 30% vhmhdtepol yio T Bardid:
npooéyyion (Figure 0.5b)

25

e To péco nocootd anodoyric USVs frav 10% udnidtepo yio) Bodid mpocéyyiom.
(Figure 0.6)

0.6 HupiemBAenopevn uddnon yia tn BeAtiwon tng cvo-
Tadonolnong Twv USVs

To emduevo Priua elvon 1 yerion nuiemiPBrenoyevne puddnong yio tnv mdavr Bertionon tou
clustering mou metOyoue pe TNy Tereiwe un emBAenduevn TeoGEYYION.

0.6.1 SDEC

INo tov oxond autd yenowonoteiton 1 pédodoc SDEC, otnv omola ypnowonotobue évay
H01 exmoudeupévo autoencoder (6mwe otV TEPINTWON Yag), xat oand g €€6doug Tou encoder
urohoyilouye pia apyixt) cuotadonoinom epapuolovtag tov akyopriuo K-Means. H yétodog
ouTy mpoomadel Tautdypova va BedTuinoel Tng dlardéolueg avamapaoTdoelg TG €£660U TO
encoder, divovtag éugacn oto clustering xou hopfBdvovtac unddn neploptopois tou tidevton
ota tpotuna et06dou (USVs) oyetind pe to xatd tdéco Yo Béhaue vo ovixouy oto (Blo cluster
1 o)L

Ye ot To TAaioLo, 1 GUVEETNOT XOGTOUC OplleTon TWEA O)L LOVO UG TO GPAAUO AVOXAUTO-
OXEVAC OIS TNV TUTLXY) exTtoddeuot Tou autoencoder, ohhd xou amd €voy PO TOU ETUOLOXEL
TNV opoyevonoinon tou clustering ntpootodVTAG VoL TANCLICEL TNV XATAVOUT] TV OEBOUEVLY
woc (¢) we mpoc ta xévtpo tou KMeans clustering mou éyouv #0n unoloyiotel pe pio xatovour-
otoyo (p)(amdxhon Kullback Leibler), Sivovtog xatd tn Sidpxeta tng exnaidevong yeyohitepn
Eugaon ota TapadelypaTo Tou avaTéUnxay o xdmolo oudda pe UEYAAN BefoudTnTa, xan Evo
6po mou e€acpolilel Toug Teplopiopols ota Leuydpla Twv USVs. O teleutaiog 6pog €xel wg
0TOY0 va eTBIAAEL OV OTaY 800 AVATOPACTACELS Elvon x0VTd, eV Yo EMPETE Vo AviXOUV
O OLUPOPETIXES OUADES, XS xot OTAY B0 AVATUPUCTACELS ElVOL ATOUAXPUOUEVES, EVE) Vo
EMPETE VAL AVXOUV GTNV (Bl opddaL.

Ta Ceuydpia emiéyovton o xdde batch tou cuvélou exnaldevong xatd TNV TEWTN ETOYN
xal 1) TANpoopia Yot To oV TEETEL Vo avixouy oTo (Blo cluster 7 oyt amovnxeleton oe Evay
oEy G undevixd teTparywvixd Tivaxo A, ue ulo Yetinh) T oto otolyelo a;; av to {euydpl
i — J mpénet vo aviixel oo (Bo cluster xou ye pla apvnted Twwr oto otoyelo a;j oty avtidetn
nepintwon.

Enopévwe, 1 ouvdptnon x6ctoug elvon Topa 1 eEAC:

N N
1
L = - BCELoss(r, #) + 72 - KL(P(|Q) + 75 - 5= D D _aijl2i = 412 (0.6)
€ =1 j=1

omou ne elvon apriude e teéyovoag etoync. Ta Bden v1, y2 xou y3 emAéyovTal anod
Tov yeNotn avdhoyo ue TNy éugacn tou emdupct va dwoel oe xde 6po. H ouvdptnon auth
YENOWOTOLEITAL TOCO Yol TNV EXTUUOEUCT) TOU BIXTOOU, OGO X YOl TNV OVAVEWCT) TV XEVTPWY
TWV CUCTAOWY.

A&ilel va onuewwdel ot 1 Sy pog opadomoinon dev yivETal OTIC AVATOEAC TACEL, €EO-
dou tou encoder, epbdoov vgicTavtal eneepyaoia TELY TEEACOLY GToUG olyopiluouc cuo-
tadomoinone. Emouévee 1 cuctadonolnon mou TEOoXUTTEL UE TNV ToEAmdve dtadixacio dev
XeMouloToLlElTaL TEAXA a6 EUBC, ATADS ETLAEEUUE VO TNV XPATHOOUUE YLl VAL EVIOYUGOUNE TNV
EXTIAUOEVOT| PUE TTPOCAVATOMONO GTO clustering.

26

o A Pairwise
alrwise constraints constraints Los -

input reconstruction
" N
O A O
features

© [—] @ O Reconstruction @D
O - O L(_DJ @ O e ®—— Loss

O O @)

- —/

.
o
q

Figure 0.7: H mpocéyyion yog otov akyoprduo SDEC.

0.6.2 Ileipopatiny] aZlOAOYTNOY TNG TEOCEYYLONS (AC OTOV AAYOEL-
Yuwo SDEC

o v a€lordynon yenowonoiooue o obvoro dedouévwy D3. Tia xdde éva and to
4 nyoyeagpnuéva apyela Tou To anotehoLy, emonueiwooue 1000 Tuyalo emAeypéva Cevydpta
onueiwv ye Ty Thnpogopio av meéneL var avixouy oo (Blo cluster (etéta 1) 1 oyt (eTnéta
-1). Autéc ol emonueEIdoELS PTopoly Vo yenootomdoly we dedopéva ahfdelac. At to clus-
tering, malpvouye ta avtictolyo Leuydpla xou Toug divouue avtioToryo Ty eTixéTa 1 av €youv
tomo¥etniel pall, xan v eTéta -1 Spopetnd. Etot, auth 1 allordynon aviiyetwnriCeto
OTwe ot éva TEOBANUA TAEVOUNoTNG.

Yuyxpldnxav ta clusterings (agglomerative pe 6 clusters) mou gaivovtar otov mivaxa 0.3.
Adyw tou yeyovotog Tl amd Ta dedopéva ahfdelog, to mo mdavo €va Tuyolo EMAEYUEVO
Ceuydpl va €yel Ty eTxéta -1, To TEoBANUa Yewpelton un LoopeOTNUEVD, ETOPEVLS XEIVETAL
oxOTUN 1) XeNoT TN peTexric macro F'1 score.

Clustering approach ‘ Mean Macro F1 (+/- std) (%) ‘
Simple 61.75 (+/- 2.85)
Deep 63.25 (+/- 2.59)
Deep retrained (1 pair/batch) 65.30 (+/- 2.02)
Deep retrained (3 pairs/batch) 65.00 (+/- 1.57)
Deep retrained (5 pairs/batch) 64.95 (+/- 2.61)

Table 0.3: Méon T twv macro F1 scores and ta 4 opyceio Yyou. XTIC TEQITTWOELS TOU
yenowonololvtar Bardd yopaxTneloTixd Yetd and retraining, n T aviiotolyel otov u€co
6po twv macro F1 scores nou unohoylotnxay oe 5 dapopetind mewpdpata (o xdde apyeio

)ou).

Hopatnpolue 6t undpyet Bedtiowon tne t8&ng Tou 2% pe Vv e@opuoYY TS NUETBAETS-
HEVNG TEOCEYYIONS OE Oy€om Ue TNV TAYpewe un emBAenouevn. H ad&norn tou aprduod twv
Ceuyopuody ToU ETONUOVOVTOL UE TEPLOPLOMOUS DELYVEL UiXEY| YEWOTERELUDT] OTO YECO score,
OAAGL To TEELRAATOL OEV Vol AEXETA YL VO UTOPOUKE VoL BYGAOUUE AOPUAT] GUUTERACUATOL VLo
TOCO UXEES DLUPOPEC.

27

Elvan cagéc 6T autdg 0 Tp0Tog a€lohOYNONE THUEEYEL Uiot YEVIXY| UOVO 1A TNE TOLOTNTAC
e ouotadonoinong, xowg AauBdvouue unddn €va TOAD pxed uTocUVoro TV midavmy
Ceuyoptwy. Ye xdie mepintmon, auth 1 uéVodog TPOCPEREL UL EVAANIXTIXT TEOTACY) GTO
clustering twv USVs evég ouyxexpyiévou apyelou, ue tny xododhynon aviemrivou tapdyovTd,
TOU EVOEYETAL VO EIVAL TILO XAUTAAANAT AVEAOYA UE TNV EQPUPUOYTY.

0.6.3 Ta&wvounon twv aviyvevdéviwy USVs oc online spapuoyég

To Bektiwpévo clustering unopel va pog napéyet dedouéva, Snhadn Leuydpio avamapos THoEWY
twv USVs ye 1o avtiotoyo cluster toug, to omolo unopolv va yenoiponomndoly yia tny ex-
rafdevon evog tavounty. Autdg o tadvountic Unopel ot cuvéyela va yenowdoromdel oe
EQUPUOYES TEAYUATIXOU YedVou, Omou yall ye To ypovixd didotnua xdde USV Yo napéyeton
OTOV YEHOTN %o N Xh&on Tou. Auth 1 duvatotnta Yo emiteédel TNy eEEMEN TV TELRUUATWY
Y10 TN CUUTIERLPORE TWYV TOVTLXLOY, xad®e aLEAVEL TG SLIECIUES TANPOYORIESC antd To TOVTIXLAL
O€ TEAYUATIXO YEOVO.

0.7 2UUTEPACUATA KA UEANOVTIXES TEOEXTACELS

0.7.1 Xvpnepdopota

Yuvohixd, avartuoue éva epyaheio yio aviyveuor xou xotnyoptonoinon USVs, mou yopox-
Tneileton and Tic €€ xouvoTopies:

e Offline aviyvevon Twv USVs. H yedodoloyia mou avarti&aue eiye moAD xohn
enidoon xou oe xadapd xou oe YopuBwdn apyelo Nyou, 6Twe tpoéxude and T olyxplon
ue dhhec pedoooug. H mopouetponolnown @born tng emTEENEL aAhayES OTU XELTHARLA
AATWPAWONG, EMTEETOVTOG TNV TEOCUPUOYY| TNG O Towhior cuVINXOY NyoYeEdPnoNg
xot xHoTOVTOC TNV EVEMXTN xou oELOTULOTY).

e Aviyvevon twv USVs o npaypatixd yeovo. H duvatdtnro mou mopéyeton
Yl YeYion Tou €pYUAElOU YOG OF EQPUPUOYES TPaYaTIX0U YeOVOoU, Ue enidooT aviyveuorg
od&ia pe Tig online pedodoug elvon dEXETE TEWTOTOEA, XAVNOC 1) TUEOY T AUECTC TANEO-
poplag Yyl To Toparyoueva USVs and ta movtixio umopel va fondrioel otn uerétn twy
AVTIOPAOEWY TOUC OE oLYXEXEIUEVA epediouaTa.

o Badid eZaywy” YapaxIneloTixwy xo. cuctadonoinor. Xenowonoiooue
évayv convolutional autoencoder ylor TV e€aywy?| YUQUXTNEIO TIXWY AT EIXOVES UE UN
eTPAETOUEVO TEOTO O OTN CUVEYELN TTROYWEVOUUE O cuoTadoTolnon ue Bdon autd.
‘Onwe npoéxude and v netpopatiny ofloAdynon, 1 enidoon e cucTadoroinong Rrov
%ohOTERN OTAY YENOHLOTOWINXAY AUTE TOL YAPOXTNEIO TIXA Yo O)L QUTA TOU TEOEXUPOY
and xhaowée teyvixég enelepyooioc onudtwy. O un emPrenoyevos yopaxtipag 1660
otV €CUYWYN TWV YORUXTNEIOTIXWY, OGO XL OTNV XATNYOPLOTONCT, TMAUPEYEL OTNV
oA dudxacio o eheudepla amd ToUC TEPLOPIGUOUE TWV TEOXAVOPLOUEVKDY HAJCEWY
1 YAUEUXTNELOTIXWY, BVOVTAC TN BUVITOTNTA VEWY, OUOYEVGY OUUBOTOACENDY UE OYL
TOGO TUTIXG. YOPUXTNELO TLXAL.

e HuiemiBAenduevr npocéyyion tng cuctadonoinong. Hevioyvon tng nodtn-
Tag TNG ovoTadonoinong Ymopel var yivel pe yerion xadodrynong and Tov yehotn, o
omnolog mopEyel TAnpogopla yia to av éva Leuydpr USVs Ya énpene vo avixel otny (Bia
oudda 1 oyt. Me Bdon v mewpopoating alohdynomn, mopatneooue Oviwe Beitiwon
oe oyéon Ue 1N un emPAenoyevn dadixactio. Auth n Aettoupyio tou AMVOC umopet
vor amodety Vel yerourn yio SlapopOTOCEIC TG CUCTABOTOINONE oL VoL EEUTNEETOVY
XANVTERA TG AVAYXES TOU YEHOTN 1| UL EQUPUOYTS.

28

o Tagwvounon twv USVs o npaypatind xeovo. H Bertiouévn cuctadonoinon
umopel va mapéyel dedouéva exnaldevong evog Tadvounty, o onotog Yo yenotuonositon
yioe v togwvounon USVs oe egappoyég mpaypatinod ypodvou. Auth 1 duvatdtnta elvor
TEOYUATXG. xouvoTOpa, xodog o yenotne Ya €yel mhnpogoplo yio To TOTE TapryaYe
xamoto USV 1o novtixt, aAAd xar Tt TOnou elvor, avolyoviog Tov 0poUo Yol TEQULTERW
TELRAUATO CUGYETIONG TNS CUUTERPLPORES TWV TOVTIXLOV UE CLYXEXPWEVOLC TOTouc USVs
X0 OTNY OVATTUEY CUUTERLPORIXMY EXTHIRCENY Xt aZlohoYHoEWY XAELGTOL Bpdyou (Ue
oAVATEOPOBOTNOT).

0.8 MeAhoviixég TpOoEXTACELS

Yuvold, €youue avomtiZel éva ohoxAnpwuévo epyoaheto mou eimilouye vo eunvedoel
VEEC UEANOVTIXES XUTEVVUVOELS XL VoL OWOEL ULoL O GOPT| ELXOVAL YL T1) CUUTIERLPOEE oL TNV
ETUXOLVOVIX TV TOVTIXLOV.

Apywxd, Yo prmopoloay vo e€epeuvnloly eVORAAXTIXES ETAOYES YO T U1 ETBAETOUEVT
eCorywyn yopaxtneloTixwy. Avtl tou xhaocixol convolutional autoencoder, o unopodoopue
VO YPNOUWOTOINCOVUE Wiar TapathAaryY), OTKS Yo Topddelypa Tov denoising autoencoder, o
ornofog dev yodaivel péoa amd TNV AVIXACKELT] TOU TEOTUTOU ELGOO0U, dhAd TEOCTA)MOVTAS
vau apatpeael Yopuo and auTd.

Mo tehelwg dagopetin| mpocéyylon Vo fToy 1 aAAoyy|) HOVTIEAOL, OIS 1) YeV oY) EVOS
GAN (Generative Adversarial Network). Toa GANs anotehoOvton and évoy generator (mou
mpoonadel va mopdyel delyuata Omwe To TEdTUTA E16GB0L) o €vay discriminator (mou efvou
€vol 6ixTuo Tou AettoupYel KOS TAEWOUNTAC TV BELYUATWY GE AUTE TOL AVAXOLY OVIWE GTO
oUVOAO BEBOPEVWV EXTIOUBEVGTE Xt GE auUTE Tou €youv mapayVel and Tov generator). O dis-
criminator pyéoo and autr Tr Sladixacion pordalvel yopoxTNEIG TG TV BELYHATOY EXTULBEUOTC
XL oV TIPOUUE TIC OVOTUPAOTACELS TPV TNV QoY) Todvounong, Yo €youue Slaviouota
yapaxtneotxav. H obyxpion tng cuctadonolnong ue autd o€ OyEoT UE TA YR TNELO TIXd
Tou e&dyoue eueic Yo tapouciale evilagépoy.

‘Ocov agopd Ty NUETBAETOUEVY TEOGEYYLOY pag, oty Uropel vo yehetniel mepantépw,
Wlodtepa WS TEOg ToV pOho Tou Tailouv Tor (ELYHPLY TOU ETUONUELDVEL O YEHOTNG XUTA TN
oadixaoior Tng exmatdevong oto cuvohixd clustering. H avaxdiun xdmorou yotifou otny
emhoyn Twv (evyaplody Tou va eacpaiilel Bedtivon Tne ToldtnTag Tou clustering mapouctdlel
LOLETEPO EVOLUPEROV.

Emmiéov, Yo urmopoloay vo doxiuactoly dlapopetinég mdavég uedodohoyieg yio NUIETL-
Bhemouevn pdinon ye dhhou toONou moapéufoct Tou avipdmivou TapdyovTa oTr Sodixacio
exnatdevone. H obyxplon tétoiwy pedddwy pe tn i) oG UAOTOINOT TV TEQLOPLOUMY oV
Cevydpr USVs da Atav eniong evilagépovoa.

Mo dAAn mpdxAnon Ya fray xou 1 mdavr) ebpeon dAlou TedToL a&lOAOYNONE TNS CUGTO-
domoinone Twv USVs, mou Yo ftoy MYOTERO UTOXEWEVIXOS X0 TEPLOGOTEQO AUTOUITOTO -
uévoc.

Enlone, dewpolye mwe molhd urooyoduevn Yo Atav 1 e&epedvnon mavAc ypovixng xau
oxohouvaxhc cuoyEtiong UeTagu Tov Sladoywwy USVs. H avoxdhuln cuyxexpyévoy yotifov
1600 OE UXEEC 660 XA OE UEYONDTEQES, YEOVIXY, Xhipoxeg Yo enétpene Tn oUVOEST) axOohOU-
Vv and USVs e mouxihec GUUTERPLPORES TWV TOVTIXUWMY XOL UL YEVIXOTEQRT XUTAVONTT TNG
YeNONG TNS POYNTIXAS TOUG BRAC TNRLOTNTOG.

Autdc o otdyog Ya unopoloe va emitevy el xou Ue TNV EVOEYOUEVN YoM TOL TAKGlou
(context) tng Nyoypdynons otov olyoprduo xatnyoptonoinone. Auté Yo yivdtav Ue T uopyh
metadata mou Yo agopoloay T.y. CUUTERLPOEES TOL ToVTIXIOL 1| epedioyata Ue Ta omola fove
OE ETMOPH TNV WO TNG NYOYEIPNONS X AMOTEAEL TEOXANCY T600 and dnodr eEeMxTIXAC
Brohoyiag, 600 xan unyavixnc udinong.

29

30

Chapter 1

Introduction

This chapter’s goal is to describe the motivation behind this work and introduce readers
to the actual problem. It also contains previous relevant work, as well as a brief outline of
the rest of the thesis and a description of the data sets used for experiments and tuning
throughout our work.

1.1 Motivation

Vocalizations play a significant role in social communication across species (Bradbury and
Vehrencamp (2011)). It has been discovered that rodents and bats use vocal communication
to exchange information about their current states. This information can give us insight into
mice behavior and actions and help us understand the way mice function. More specifically,
it can possibly be used for the identification of individual mice or groups, structure of a
group (e.g. dominance) and subsequent feelings (e.g. fear, aggression, competitiveness),
next behavior (e.g. play, attack, approach), environment conditions (e.g. presence of
food or enemies/predators) and mother-pup interactions (Hoffmann et al. (2012); Nyby
et al. (1976); Neunuebel et al. (2015); Slobodchikoff et al. (2012); D’Amato et al. (2006)).
This study could then lead in a better understanding of the neural basis of vocalizations
(underlying neurobiological processes) and the role of genes in neuroanatomy, by studying
impact of mice genes on their vocal development ((Grimsley et al. 2011b; Bowers et al.
2013; Chabout et al. 2016; Tabler et al. 2017)). Neural mechanisms underlying USVs are
a useful model for the neurobiology of human speech and speech-related disorders (often
genetically caused) (Ferhat et al. (2016)).

More specifically, mice emit ultrasonic vocalizations (USVs, 30-110 kHz) relative to the
human hearing range (2-20 kHz), meaning that humans cannot hear them. These vocaliza-
tions can be complex and can contain multiple syllables, which are defined as continuous
units of vocal sound not interrupted by a silence period and form sequences(Arriaga et al.
(2012); Holy and Guo (2005)). There are many types of syllables generated by mice; all
syllable types used by a specific mouse in a certain condition comprise a syllable repertoire
(Van Segbroeck et al. (2017)). In general, transitions between syllables, and possible differ-
ences in acoustic structure (e.g. mean frequency, amplitude) vary according to behavioral
and social environments, genetic strain (such that USVs can be used as a phenotyping
marker for different genotypes) and development stage((Chabout et al. (2015); Fonseca et al.
(2021); Grimsley et al. (2011a); Melotti et al. (2021))). Understanding complex vocalization
structure of mice will be crucial to advancing vocal and social communication research.

Exploring the social meaning of USVs has been an interesting task during the past years;
however, although there is strong evidence that they actually play an important role in
mice communication, it is still not clear which characteristics and syllable types are related

31

to certain biological states or social conditions. To assess the social meaning of USVs, it is
necessary to first categorize different syllables and then probably correlate each class to
specific behavioral patterns. Up to now, multiple tools have been developed whose aim is
to firstly detect USVs in an audio recording and then classify them according to specific
features.

USV detection has been especially challenging, since tools are often developed taking
into account certain recording setups and are not always capable of generalizing. Recently,
new tools have employed machine learning and neural networks for detection, which has
increased detection accuracy, though they are quite dependent on data used for their
training and generalizing isn’t necessarily guaranteed. Another concern with these methods
is their detection speed, since involving deep networks in the detection procedure might
indicate considerable latency. An important detail is that in general, developed tools process
mice recordings off-line; though it would be extremely useful to be able to get real-time
feedback of detected USVs and observe the mouse behavior simultaneously, for example
how they respond (vocally) to a specific stimulus.

On the other hand, classification of detected syllables is also tricky. There have been
both supervised and unsupervised approaches. In supervised methods, there are some
manually predefined classes and each syllable is categorized in one of these. In this case, it is
usual to use a neural network which will be trained to classify syllable types. Unsupervised
methods are trying to group vocalizations by some of their features. In this case, it is most
common that hand-crafted (human defined) features are calculated for each syllable and
then syllables are organized in groups (clusters). In both cases, human intervention in the
procedure (either by setting specific classes or defining decisive features) might limit the
exploration possibilities of the tool. In fact, there is no conclusion on which classification
schemes or syllables features provide the best biological insights (Van Segbroeck et al.
(2017)), since features may differentiate across varying conditions.

1.2 Related Work

A broad interest in analyzing behavior and phenotyping with USVs has led to a
proliferation of tools for the detection of mouse vocalizations. Mouse Ultrasonic Profile
ExTraction (MUPET) is a MATLAB open source tool, developed by Van Segbroeck et al.
(2017) to detect syllables, analyze the vocalizations features and cluster the syllables
depending on these features. MUPET first filters the signal to keep high frequencies (25-125
kHz). It then uses spectral subtraction to remove stationary noise, and at last it computes
the power of the spectral energy in the ultrasonic range above a specific threshold. The
vocalizations are converted to representations by using negative matrix factorization (NMF)
and gammatone filters. The filtered spectrograms are then used to cluster vocalizations
based on spectral shape similarities. The clustering is done by using K-Means, and user-
defined number of "repertoire units" (clusters). The authors note that MUPET can also be
used with many non-rodent species’ vocalizations.

DeepSqueak is a software suite for USVs detection and analysis (Coffey et al. (2019)). It
splits the recording into areas, computes the corresponding sonograms and passes them to
a Faster-RCNN (recurrent convolutional Neural Network) object detector, which consists
of two networks. The first network is a region detection network, which proposes sections
of the spectrogram that could contain actual vocalizations. These sections are then used
as inputs to a second network, a convolutional neural network (CNN), and are classified
depending on whether or not the sections contain vocalizations. This process has been
recently updated to use a You Only Look Once (YOLO) network. DeepSqueak can also be
used for clustering the detected syllables, either with a supervised or unsupervised method.
Their unsupervised approach gives the user the opportunity to define three weighted input

32

features: shape, frequency and duration of the vocalization. An important difference from
MUPET is that the clustering of MUPET takes syllable amplitude into account, whereas
DeepSqueak does not, which can be considered an advantage, given that the volume of a
vocalization can also depend on the recording setup, among other factors. DeepSqueak’s
networks can also be trained on new vocalizations, meaning it can potentially be improved
for specific experimental needs.

VocalMat is a MATLAB tool (Fonseca et al. (2021)), which uses image processing
techniques and differential geometry analysis on the spectrogram of a recording to detect
vocalization candidates. It can then classify detected USVs into 12 predefined categories
(including noise), by using a CNN. As with DeepSqueak, VocalMat’s networks can be
retrained as well.

A more recent tool is Deep Song Segmenter (DeepSS), which has been used for annotation
of songs of mice, birds and flies (Steinfath et al. 2021). DeepSS learns a representation of
sounds features directly from raw audio recordings using temporal convolutional networks
(TCNs), based on dilated convolutions. It is a comparatively fast, supervised annotation
method, since the network is trained with manually annotated recordings. It can also
be combined with unsupervised approaches to reduce the amount of manual annotation
required.

Other tools were developed for mouse USV detection that rely more explicitly on the
acoustic parameters of the recordings and do not use machine learning methods or clustering
techniques to classify detected USVs. One such tool is Mouse Song Analyzer (Holy and
Guo 2005; Arriaga et al. 2012; Chabout et al. 2015), which has recently been rewritten and
improved from the original MATLAB implementation to a Python implementation with
added filtering components to improve USV detection rates (cite Peter DOI), hereafter
referred to as MSA1 and MSA2, respectively. MSA1 first generates a spectrogram from
the audio recording, and subsequently thresholds it to remove white noise. Frequencies
outside of mouse USV song range (35-125 kHz) are discarded. USVs are detected in the
spectrogram are determined by surpassing a combination of user-defined thresholds for
frequency, amplitude, spectral purity, and duration. MSA?2 first bandpasses the raw audio
(30-115 KHz) and then generates a spectrogram. The spectrogram is thresholded according
to the signal-to-noise ratio at each frequency. In both MSA1 and MSA2, USVs are detected
in the spectrogram by surpassing a combination of user-defined thresholds for frequency,
amplitude, spectral purity, and duration. The detected USVs are then classified based on
the number of gaps, or "pitch jumps", that are present within the detected USVs (Chabout
et al. 2015).

Another tool is Ax (Neunuebel et al. (2015)), which tries to detect vocal signals by
keeping time-frequency points of the spectrogram that signifcantly exceed noise values.
They mainly focus on matching the recorded vocalizations to the specific mouse that
produced it (when there are multiple mice in the cage) and also correlating the produced
vocalization with a certain social behavior of the mouse. USVSEG (Tachibana et al. (2020))
is also a MATLAB tool used for vocalization detection, emphasizing noise removal of
the spectrogram in the cepstral domain before thresholding to detect whether a segment
contains a vocalization or not.

1.3 Research objective

Taking into consideration the problems and difficulties described in Section 1.1, our
goal is to create a mice vocalizations tool, which will be accurate, efficient and easy-to-use,
both for USVs detection and for their categorization and grouping.

More specifically, we have developed a tool called AMVOC (Analysis of Mouse VOcal
Communication) for mice USVs research. The functionality of AMVOC is twofold:

33

1. USVs detection in audio recordings, by applying dynamical spectral thresholding
similar to MSA, both in off- and online mode

2. Clustering of detected USVs based on a set of features, which are extracted in
completely unsupervised manner from a deep convolutional autoencoder. There is
also the opportunity to enhance clustering performance by a semisupervised approach
used for clustering refinement.

Our proposed method of detection has been extensively evaluated using real recordings
and compared to plenty of the methods presented in Section 1.2, being shown to outper-
form most of these tools in various acoustic environments and having a pretty consistent
performance also in cases of high noise presence. This indicates that AMVOC can be used
for processing of multiple recording set-ups, providing a flexible and reliable option. A
major contribution in this field is our online vocalization detection method, which performs
equivalently well to offline methods and also provides real-time feedback on a less than 1
second basis.

The deep feature extraction procedure, using a deep convolutional autoencoder, allows
the exploration of high and low level features, which are used for clustering, that can
possibly reveal biologically relevant USV clusters. This hypothesis is further supported by
the fact that both feature extraction and clustering procedure are totally unsupervised,
supplying the method with a freedom to discover characteristics as well as patterns that
aren’t manually predefined and specified.

In this case, human intervention can come in the form of providing the feature ex-
traction and clustering algorithm with constraints regarding possible clusters, which can
boost clustering performance depending on the application. Our proposed semisupervised
approach still guarantees clustering freedom, while providing it with a helpful direction.

These improved clusterings (USV and corresponding cluster) can be used as ground
truth training data of a classifier, which can then provide the classes of real-time detected
USVs, further expanding experimentation opportunities.

In general, the combination of these functionalities and features offer a complete mice
recordings processing tool, which can indeed help to better understand and analyze mice
vocal behavior and connect it with social and environmental conditions.

1.4 Thesis outline

Chapter 2 presents the full background, which is helpful for completely understanding
the concept of our ideas and implementations in the following chapters. It involves the
basics of audio signal processing, but the main part of this chapter is undoubtedly machine
learning and pattern recognition. These are analyzed quite extensively, but emphasis is put
on the background of models and procedures we use in our methods, and more specifically
deep neural networks (mostly convolutional neural networks), clustering methods and
semisupervised deep embedded clustering, as well as useful evaluation metrics.

Chapter 3 focuses on the vocalizations detection methods, firstly on offline and then
online processes. Then, a results section follows, presenting the experimental comparisons
and evaluation of our detection methods.

Chapter 4 describes the deep feature extraction procedure by thoroughly going through
model training and parameter tuning. A baseline feature extraction procedure (giving a
set of hand-crafted features per vocalization) is also presented. Clusterings are produced
using both feature types and the two approaches are compared and evaluated using human
annotations and ratings.

Chapter 5 emphasizes the semisupervised extension of the method presented in chapter
4 and the new additions introduced to the typical unsupervised approach, along with a

34

results section, which basically compares the semisupervised to the unsupervised outcomes.
It also refers to the training of a classifier using clustering data, and its subsequent use for
real-time USVs classification.

Chapter 6 is the final chapter, summarizing the conclusions drawn from the total and
the novel contributions of our work.

1.5 Datasets

In the course of our experimental and evaluation procedures, we created three datasets
(D1, D2 and D3).

Dataset D1 was created to evaluate and compare vocalization detection methods. More
specifically, we compiled a ground-truth dataset of 9 audio segments of 5-10 seconds each,
containing 245 syllables in total. The ground-truth annotation was performed by a domain
expert by simply declaring the frames that correspond to actual vocalizations, with a time
resolution of 1 ms.

Dataset D2 consists of 26 different recordings, used as the training set of our convolutional
autoencoder.

Dataset D3 was created for the experimental evaluation of the clustering setups. We
used a dataset of 72 behavioral recordings, 36 in the category FemaleUrineDirected and 36
in the category FemaleLiveDirected (see Methods for details). We have randomly selected
20 s from each recording, where the vocalization rate should be at least 2.5 vocalizations/sec.
We then concatenated the 20 seconds interval from each recording to a new recording.
We generated 4 recordings, 2 from the FemaleUrineDirected category and 2 from the
FemaleLiveDirected category.

35

36

Chapter 2

Background

In this section we are going to present background material, essential for the explanation
and full understanding of the methods we have used in the main part of the thesis. Firstly,
we will go through some audio signal processing basics, and then the major background
part regarding pattern recognition and machine learning.

2.1 Audio Signal processing

Signal is a term used to describe something that carries some sort of information, for
example about the state or behavior of a physical system. Most commonly, though, signals
refer to sound, images or videos.

Signals contain information in a pattern of variations; thus, they are represented as
mathematical functions. A sound signal, for example, is represented as a function of time. In
general, sound is an analog signal, which is basically described by two main characteristics:
amplitude, which shows how loud the sound is, and frequency, which shows how fast the
wave vibrations of sound are.

In order for a sound signal to be represented on computer, it needs to be converted
in digital form. The analog to digital conversion consists of two important operations:
sampling and quantization.

Sampling is the operation of converting a continuous-time signal z.(t), t € R to
a discrete-time signal z[n], n € Z. Continuous-time signals’ independent variable is
continuous, whereas discrete-time signals are defined at discrete times, so they are described
by a sequence of numbers. To convert a continuous-time signal to a discrete-time signal, we
sample the continuous signal every T time units, where T is referred to as sampling period.
We also often refer to the sampling frequency as fs = T% It is obvious that x[n] = z.(nT).

Quantization is the operation of converting a continuous-amplitude signal to a discrete-
amplitude signal. This means that we want the amplitude of the signal to take specific
predefined (quantized) values, which depend on the quantizer we use. Then, every value
of the input signal z[n] is replaced by its closest one of the set of quantized values:
[n] = Q(x[n]).

Signals for which both time and amplitude are discrete are digital signals.

A very useful and commonly used signal is the unit sample sequence §[n], defined as:

0, n#0
1, n=0

5[n] = (2.1)

An interesting property is that every signal x[n] can be written as the weighted sum of
shifted unit sample sequences:

37

Amplitude Amplitude

(A) (A)

g Ve
N\ Y
/
/N /N
j, \) / \

. —_— —
\ / \\ / Time Time

\ / \ / (t))

/
_/ \\ /
Amplitude a Amplitude C
(A) A}

Time Time

U] it

Figure 2.1: Different signal types. a) Analog signal (continuous time and amplitude). b)
Discrete-time and continuous-amplitude signal. ¢) Continuous-time and discrete-amplitude
signal. d) Digital signal (discrete time and amplitude).

2.1.1 Discrete Time Systems

A system is defined as an operation or transformation that maps an input sequence
x[n] into an output sequence y[n]:

yln] = T{z[nl} (2.3)

and is often represented as in Figure 2.2.

— T{) }—=
x[n] y[n]

Figure 2.2: A discrete-time system.(Oppenheim and Schafer (2009))

A very important type of systems is the LTI (linear time invariant) systems, since they
combine two important properties: linearity and time invariance. Linearity is practically
equivalent to superposition. If y; is the output of the system when the input is 1 and o
the output when the input is xo, then a linear system has the following properties:

T{a1[n] + w2[n]} = T{a1} + T{za} = y1[n] + ya[n] (2.4)

and
T{az[n]} = aT{x[n]} = aym] (2.5)

38

where a € R.

Time invariance means that if the input sequence has a time shift or delay, then the
same shift is caused by the system in the output sequence. More specifically, if an input
sequence x[n] results in an output sequence y[n], then for every ng the input sequence
x1[n] = x[n — np] will result in output sequence yi[n| = y[n — no.

LTI systems have a significant property: they are fully defined by their impulse response.
More specifically, if hi[n] denotes the response of the system for the input sequence d[n — k|
then:

+o0
yln] = T{anl} = T{ Y «[Ks[n - K]} (2.6)

k=—0o0

Using the linearity property:

“+o00 —+00

ylnl= Y zMT{8ln—k]} =) alklhln] (2.7)

k=—00 k=—00

Because of the time invariance property, we have:

“+o00

yln)= Y wlklhln — K] (2.8)

k=—00

The operation defined above is called convolution and is represented by the following
notion:

y[n] = z[n] * h[n] (2.9)
It can be proven that
+oo “+oo
yln] = z[n]« hin] = > a[klhln—k] = > x[n— klh[k] (2.10)
k=—o00 k=—0o0

This means that the output of any Linear Time Invariant system can be calculated
using the input sequence and the impulse response.

LTI systems are often used for filtering a signal. For example, a common smoothing
filter which reduces the highest amplitude values is the moving average filter. This filter
replaces every value of the input sequence with the average of its M neighboring values.
Its impulse response is h[n] = ﬁ So, the output sequence is:

| M-l
vinl = 77 > aln— k] (2.11)
k=0
2.1.2 Fourier Transform

If the input sequence is z[n] = /™, then:

+00 +oo
ylnl = Y aln Kbk =) Ak = H(el?)edn (2.12)
k=—0oc0 k=—o00
where H(e/%) = zi'ioo h[k]e?“~* is the frequency response of the system. This means

that /™ is eigenfunction of the system and H(e/*) are the eigenvalues.
This is a fundamental property of LTI systems, which has led to signal representations as
the weighted sum of complex exponentials or sinusoidals of different frequencies. Intuitively,

39

we want to determine the amplitude of the sinusoidal components that make up the signal.
This amplitude is, in fact, a function of frequency.

This representation is achieved through the well known Fourier Transform, which
has different forms, depending on whether the signal is continuous- or discrete-time. In
discrete-time signals, we use the Discrete Fourier Transform (DFT) to define the weights
or coefficients of the sinusoidals. For a finite length signal z[n] with N samples, DFT is the
result of sampling of:

N-1
X () =Y alnlen (2.13)
n=0

The sampling step of the coefficients is equal to % So, if we keep N coefficients, the
discrete-frequency transform is defined by:

SN lanle W, 0<k<N-1

X[k] = (2.14)
0, elsewhere
and the signal can be written as:
1 N-1 ‘Mn
= 1y X|[k]e , 0<n<N-1
aln] ={ N > k=0 X[k]e/N Sns (2.15)

0, elsewhere

The coefficients X [k] describe the signal in frequency domain and have many interesting
properties. For example, the absolute amplitude of X (e/“) informs us about the power
of the signal in frequency w. This is also called the magnitude of the frequency spectrum.
DFT is efficiently calculated with an algorithm named Fast Fourier Transform (FFT).

2.1.3 Spectrogram

Using the Fourier Transform, we can get and process the frequency spectrum of a signal.
However, the properties and characteristics of a signal are non-stationary; thus, we usually
want to get an insight into the spectrum of the signal as it evolves with time. That’s why
we use Short Term Fourier Transform, which means that we split the signal into successive
frames (that can be overlapping) and apply FFT to each frame. So, we have a frequency
spectrum consisting of coefficients X [k] for each frame.

We can use the resulting sequences to form an image, where the horizontal axis cor-
responds to time and the vertical to frequency. For each frame and since the magnitude
spectrum is a function of frequency, it is vertically laid to span all the frequency bins of the
vertical axis. So, the image consists of magnitudes of spectrums laid vertically side by side.
Every resulting value indicates the energy of the signal in the specific time frame and the
specific frequency. This image is called spectrogram and is very useful since it conveys both
temporal and spectral information.

What'’s really interesting is that with a spectrogram we get the chance to explore and
derive features of an acoustic signal (originally represented as an 1D array) with an image
(represented as a 2D array with values in the interval [0,1] or [0,255]). (Oppenheim and
Schafer (2009))

40

Vocalization
10000

8000

Frequency (kHz)

4000 8

0 40 80 120
Time (ms) Time

(a) Spectrogram of a mouse vocalization. (b) Spectrogram of a recorded signal of clas-
sical music.

Figure 2.3: Spectrograms of different signals. It is interesting to note the different frequency
range, apart from their obvious dissimilar shapes.

2.2 Introduction to Machine Learning and Pattern Recogni-
tion

The invention of thinking machines has been an idea of the human kind since ancient
years (Talos, the giant bronze automaton of Greek mythology, is one of the first references
to a robot in human history). However, the conception that a machine can be as intelligent
as humans and even outperform them at specific tasks became realistic hundreds of years
later, when first computers emerged and revolutionized every aspect of people’s lives.

In our days, especially during the last decade, the main focus is on Artificial Intelligence,
whose practical applications and current research topics are increasing and expanding. In
the first steps of artificial intelligence, its goal was to solve problems which were challenging
and intellectually hard for human beings, like complex mathematical operations, with
impressive speed and accuracy. What’s proven really hard though, is to solve problems that
are easy, like automatic, for human brain, and that they can’t be formally described, such
as recognizing similar faces in images or spoken words. (Goodfellow et al. (2016))

In order for this kind of problems to be solved, machines need to learn from experience
and examples. The procedure of running algorithms, that improve the ability of a computer
to solve a specific problem through experience and by the use of data is called Machine
Learning.

Pattern Recognition is the scientific field whose goal is the classification of observed
objects into a number of categories or classes. These objects can be anything that needs
to be classified, from images to signal waveforms and are described by the general term
patterns.

Practical examples and applications of pattern recognition are many and are connected
to multiple other disciplines and fields.

o Computer vision is an area where pattern recognition plays an important role. Com-
puter vision systems take images and then try to analyze them. This analysis can
include their classification to a number of different categories, or the detection and
recognition of several objects depicted.

e Character recognition is another important field of pattern recognition that includes
the recognition of different written characters, such as letters, numbers and other
symbols. Furthermore, it can be used for handwriting and signature identification.

41

o Computer-aided diagnosis is a newly emerging application of pattern recognition,
whose aim is to assist doctors at medical diagnoses. It mostly involves classification of
measurements of patients into two categories: measurements that indicate a healthy
or a problematic condition. These measurements can be scans (X-rays, computed
tomographic images, ultrasound images), ECGs, EEGs etc.

e Speech recognition is another area of interest, which is significantly developed during
the last years. It is associated with recognizing and understanding spoken information.
The most common application is the communication between humans and machines
via speech.

e Data mining and information retrieval from databases is also extremely popular,
since it provides useful information in a wide range of fields, like medicine, financial
analysis, image and music retrieval.

Of course, these are only basic examples that indicate how wide the range of applications
of pattern recognition actually is. (Theodoridis and Koutroumbas (2009))

In order for the different patterns to be classified, the model or the algorithm we use
must get the information that best describes every pattern. Therefore, each pattern is
described by a representation, which carries the most important information about the
pattern; information that makes the patterns distinct from one another. This representation
consists of measurable quantities, known as features. In general, if [features z;, i = 1,...,1
are used, the representation is basically the feature vector

X = [x1, T9, ..., 7] " (2.16)

where T" denotes transpose vector. Every feature vector is a unique identifier of a specific
pattern. (Theodoridis and Koutroumbas (2009))

As mentioned earlier, the goal of pattern recognition is to successfully classify patterns
to different categories. This can be achieved by using a model (classifier), which has to be
trained with a machine learning algorithm, so that it can solve our specific classification
problem. For this purpose, we need a data set of patterns that will be used for the training
of the model. The patterns (feature vectors), whose real class is known and which are used
for the training of the classifier are called training feature vectors. So, each feature vector is
connected to an a-priori known label, which determines its class. The basic issues that arise
when we want to design a classification system are in the same time steps of the design
procedure pipeline. They are described below:

1. How are the features generated? The answer to this question is problem-dependent
and corresponds to the feature generation stage of the design.

2. How do we choose how many and which specifically are the appropriate features that
will make patterns distinct? This concerns the feature selection stage and is very
important because it actually defines which features are the most important for the
classification task. In fact, multiple features are generated and a subset of them is
then chosen to be included in the feature vector.

3. Is the current space of the selected features one that enables an easy solution of the
classification problem? Feature selection is important, though sometimes the selected
features might need some kind of transformation in another space, that will probably
make the classification problem easier to solve. This is called feature pre-processing
stage. This procedure can also speed up computations, because it often employs
dimensionality reduction of feature vectors.

42

Features Features Features Classifier System

Sensor - . . . ;
Patterns generation selection pre-processing design evaluation

Figure 2.4: Classification system design pipeline.

4. How is the classifier designed? This is the classifier design stage, which includes
decisions such as which decision region to generate in the [-dimensional features space,
that will successfully and accurately discriminate the different classes, or what the
best criterion (loss function) that we will optimize is, to ensure the model is trained.
Basically, this stage consists of two parts: the first one is to choose the general form
of model and the second one is to use training samples to learn or estimate the
parameters of the model that are more suitable for our specific problem and data set.

5. How can we measure the performance of the classifier, after its training is finished
(system evaluation stage)? For this purpose, it is most common to use some feature
vectors as input to the model and compare the label predicted from the model to
the actual one. This data set of feature vectors is called test set and is used only for
the evaluation of the already trained model. The ability to categorize correctly new
examples that differ from those used for training is known as generalization.

(Theodoridis and Koutroumbas (2009), Duda et al. (2001), Bishop (2006)) The system
design pipeline is displayed in Figure 2.4.

In general, any method that uses information from a set of training samples in order
to design a model employs learning. That’s because almost every useful and interesting
pattern recognition problem is complex enough, so we can’t define a classification decision
rule or region automatically. Learning refers to an algorithm whose goal is to reduce the
error on a set of training data and can be divided into 3 categories, since pattern recognition

problems are not only classification problems, like the ones we described in previous sections.
(Duda et al. (2001))

2.2.1 Supervised learning

Applications in which the training data consists of the input feature vectors along
with their corresponding target (ground truth) vectors are known as supervised learning
problems. If the target (or label) is one of a specific set of classes, then the problem is a
classification problem, like the one we described in Section 1.3. For example, if the training
samples are handwritten digits (from 0 to 9) and our goal is to recognize them, the target
of each training sample is a number from 0 to 9. So, the goal of the classifier is to predict
the correct number displayed in the input image. If the target is one or more continuous
variables, the problem is a regression problem. For example, if we have a function y = f(x)
and the input features are some z; values, the model is trained to be able to predict the
corresponding y; = f(x;) values. (Bishop (2006))

2.2.2 Unsupervised learning

Another category of pattern recognition problems includes cases where the input feature
vectors don’t have a corresponding target vector. These are unsupervised learning problems.
In this case, the most common problem is to find underlying similarities between the
feature vectors and group them in clusters based on these similarities. This process is called
clustering. Other unsupervised training problems are to determine the distribution of data
in the input space (density estimation) or to project the data from high-dimensional space
to lower dimensions, for example for visualization purposes. An interesting issue that arises

43

in clustering problems is to define and measure the similarity between two feature vectors,
as well as to choose the clustering method that will actually group the samples based on
the measured similarity.(Theodoridis and Koutroumbas (2009), Bishop (2006))

2.2.3 Semi-supervised learning

Semi-supervised pattern recognition problems have the same goal as supervised learning
problems, as far as the classification of patterns is concerned, though the difference is
that in semi-supervised learning only a part of the training samples have known targets
and the rest don’t have corresponding targets. The first ones are called labeled, and the
second unlabeled training samples. Semi-supervised pattern recognition has an application
in cases where we have access to a limited number of labeled data. This can be the case
when we deal with big data sets that need manual annotation of each sample. In case of
classification problems, the unlabeled data can be useful in the system design, because they
can offer additional information regarding the underlying structure of the training data. In
case of clustering problems, labeled data is used as constraints between labeled samples,
in the form of must-links and cannot-links. Samples that are connected with a must-link
constraint (samples with the same label) must belong to the same cluster, whereas samples
that are connected with a cannot-link constraint (samples with different labels) can’t belong
to the same cluster. (Theodoridis and Koutroumbas (2009))

2.2.4 Reinforcement learning

Reinforcement learning is a machine learning technique, whose goal is to solve the
problem of choosing the most suitable action to take in a given environment, in order to
maximize a specific reward. In contrast to traditional supervised learning, reinforcement
learning doesn’t get desired labels of the training inputs, but estimates the best outputs
(actions), based on the reward it yields. Often, the current action not only affects the
immediate reward, but the long-term reward as well. Reinforcement learning is mostly
used to train computers to play games, and they can achieve really high scores compared
to human performance. An important issue of reinforcement learning is the trade-off
between exploration, in which the system experiments with new kinds of actions to check
how profitable or harmful they are, and exploitation, in which the system follows a more
conservative approach of selecting already known actions to achieve a high reward. The
most efficient approach is to maintain a balance between the two strategies, because focusing
on only one of those will result in poor outcomes. Reinforcement learning remains an active
area of machine learning research. (Bishop (2006))

2.3 Learning process

Machine learning algorithms work on the basis of trying to learn from experience and
training examples by optimizing a cost function. This is also called the loss function and is
task-dependent. For example, the most straightforward loss function in a classification task
is the classification error, which the classifier is trained to minimize. So, the loss function
lets us quantify the quality of any particular set of model parameters. An important issue
regarding loss functions is how to incorporate knowledge about the cost and the specific
task, and the question that subsequently arises is how the choice of loss function will affect
the design of the model. (Duda et al. (2001))

44

2.3.1 Loss functions

We will now go through some basic loss functions, that are widely used in machine
learning. Loss functions map an input or some variables to a real number, which represents
the cost to be minimized.

2.3.1.1 Regression Loss functions

We have already described the concept of regression problems. The simplest example is
to train a model in order to fit a curve f(x) on given points. So, the data set consists of
pairs of points of the form (z;, y;), 7 = 1,..., N and the model must learn to map an input
point x; to its corresponding value y; through an appropriate function f(x). So, for each
point x;, the real value is y; and the predicted value from the model is f(z;).

e Squared Error Loss: Squared Error Loss is the squared difference between the actual
and the predicted values

= (y — f(2))? (2.17)

o Absolute Error Loss: Absolute Error Loss is the absolute value of the difference
between the actual and the predicted value:

=y = f(2)| (2.18)

2.3.1.2 Classification Loss functions

In classification problems, every input feature vector has a corresponding label. So the
model takes as input the training sample and predicts its label. The basic loss function in
this kind of problems is Cross Entropy Loss. First of all, entropy is a quantity that gives
information about the uncertainty involved with certain probability distributions; the more
uncertainty /variation in a probability distribution, the larger is the entropy. Entropy of a
(discrete) distribution p is defined as follows:

Zp)log(p (2.19)

The negative sign guarantees that the quantity is positive, since p(z) < 1 = log(p(z)) <
0. Cross Entropy between two distributions p and ¢ is used to quantify their difference. In
terms of information theory, it can be seen as the distance between the two distributions,
from the aspect of the amount of information (bits) that is needed to explain that distance.
It is defined as follows:

H(p,q) = —Ep[log(q)] (2.20)

For discrete distributions, this relation is equal to:
Z p(x)log(q (2.21)

In machine learning, we assume the true probability of each pattern ¢ is p;, and g; is
the predicted value of the model for this particular pattern. For example, if we have to
deal with a classification problem, where each pattern belongs to one of two classes, with
labels 0 and 1 (binary classification problem), the output of the model can be interpreted
as a probability that the current pattern, with input vector x, belongs to class 1. This
probability is modeled through the logistic function

9(z) = (2.22)

where z is the actual output of the model, i.e. a function of the input vector = (z = f(z)).
Thus, the probability that the label of z is 1 is

. 1
e G (2.23)

and as a result, the probability that its label is 0 is
Qy=0=1—17 (2.24)

This means that p € {y, 1 —y} (where y is the actual label, y € {0,1}) and ¢ € {g,1—7}.
The cross entropy of these two distributions can now be used to estimate their difference.

— ZpiZOQ(Qi> = —y-log(y) — (1 —y) - log(1 - §) (2.25)

The greater the difference between y and g, the greater the value of the cross entropy
loss function. For example, if y = 1 and g & 0, then the first term of equation 2.25 will
have a large value. On the other hand, if § ~ 1, the first term is almost equal to zero.

This cross entropy loss function we described is used in binary classification problems.
However, it can be generalized for multi-class classifications problems as follows:

ZPZZOQ Q’L = Zyzlag yz (2‘26)

Of course, it is not necessary that y takes only dlscrete values. If the case is not a
classification task, y can take any value between 0 and 1, just like §. That’s why cross
entropy loss is also used to measure the error of reconstruction in for example an autoencoder
(see Section 2.5.4.2).

Another useful loss function that measures the difference between two distributions p
and ¢ is the so-called Kullback-Leibler divergence:

L(plq) = Zp 10g< ;) (2.27)

This relation is quite obvious; if p and ¢ are similar, their fraction is close to 1 and thus
KL divergence is close to zero indicating p and ¢ have small differences. On the other hand,
if they are quite dissimilar, KL divergence will get larger values.

It is interesting to notice that, in fact:

KL(pllg) = H(p,q) — H(p) (2.28)

and, since p is the target distribution and as a result, H(p) is the same regardless
of distribution ¢, we can ommit this term and just calculate H(p,q) (cross entropy loss).
That’s why it is more common to use cross entropy loss than KL divergence.

2.3.2 Optimization

Optimization is the process of choosing the most suitable model parameters in order
to minimize the loss function, which is scalar. This problem of minimizing a loss function
L(a) with respect to a parameter vector a can be solved by a gradient descent procedure.
The idea behind this iterative method is to use gradient information from the loss function,
in order to update the parameter vector by comprising a small step in the direction of
negative gradient.

So, we start with an arbitrary initial parameter vector a(l) and compute the gradient
vector VL(a(1)). The next value a(2) is obtained by moving some distance from a(1) in the
direction of steepest descent. In general, a(k + 1) is calculated from a(k) by the equation:

46

a(k+1) = a(k) —n(k)VL(a(k)) (2.29)

where 7 is a positive scale factor, called learning rate, which sets the step size, and as a
consequence how "steep" the actual update is. We want this sequence of parameter vectors
to finally converge to a solution minimizing L(a). Thus, the number of updates (iterations)
needed are problem-dependent. A stop criterion often used is that the update quantity
n(k)VL(a(1)) is smaller than a threshold 6, chosen by the user.

One of the most important issues regarding gradient descent procedures is the selection
of the learning rate n(k). In fact, if n(k) is too small, the convergence will be too slow,
whereas if it is too large the update can overshoot and even diverge.

Another interesting issue about gradient descent methods in machine learning, is that
we choose the loss function L based on the training set, so each step requires the use of
the whole data set in order to calculate VL. Techniques that use the whole data set at
each iteration are called batch methods. There is also an online version of gradient descent,
which is very useful for large data sets. This method, also called stochastic gradient descent
updates the parameter vector based on one data point at a time, for example by examining
each point sequentially. The most common, though, is to use a batch of data points to
calculate VL, which combines the advantages of the two aforementioned methods: solves
the problem of large data sets, while incorporating parallelism thanks to using groups of
samples at each step, which speeds up the training process. (Duda et al. (2001), Bishop
(2006))

Gradient descent optimization algorithms are numerous (Adaline, Adamax, Adam,
RMSprop etc), each one inserting a small variation to the classical approach. One of the
most widely used is Adam (Adaptive Moment Estimation), which updates the weights using
estimations of the first two moments of past gradients (mean and standard deviation).

2.4 Classifiers

As already mentioned, classifiers are used in supervised learning applications and their
goal is to classify a sample x to a category y. This means that, for each sample x;,
1 =1,..., N their goal is to find the class y;, £ = 1, ..., M that maximizes the probability
p(yk|xi) (decision theory):

§ = arg max p(yel) (2.30)
Yk
There are two kinds of classifiers trying to calculate this probability, the discriminative
and the generative models.

e Discriminative models determine the posterior class probabilities p(yg|x;) directly and
then apply decision theory (Equation 2.30) to assign each @; to the most probable class.
The most well-known discriminative models are Logistic Regression, Support Vector
Machines (SVMs), perceptrons (see Section 2.5.1) and traditional neural networks
(see Section 2.5.2).

e Generative models also calculate the posterior class probabilities, but with a different
approach. They first determine the class-conditional probability densities p(x;|yx)
for each class yy, and then the prior probabilities p(yx). So, using the Bayes rule, the
posterior probability is calculated as:

pilye)p(ye) _ p(@ilyr)p(yk)
p(xi) >k P(@ilye)p(yk)

p(yklei) = (2.31)

47

Alternatively, they calculate the joint probability p(x;,yr) and then obtain the
posterior probability by normalizing. The most common generative models are Naive
Bayes classifier, Bayesian Networks and Hidden Markov Models (HMMs).

It is obvious that generative models don’t just learn a decision boundary, like discrimi-
native models, but also the underlying distribution of each class. The choice of one of the
two categories depends on the task and the application, but discriminative models are more
common in general. Logistic Regression and SVMs, in particular, are very popular.

Logistic Regression is a linear model which, in a two-class problem, assumes p(y;|x)
can be written as a logistic sigmoid acting on a linear function of the feature vector x:

T

pnlz) = o(w”) (2.32)

This linear function w”z is the decision boundary (discriminant function) of the

classifier, meaning that points that lie on the one side of this hyperplane belong to class
y1 and the others to class y2. Obviously, p(y2|x) = 1 — p(y1|x). The parameters of the
model are the components of vector w and are computed using the Maximum Likelihood
Estimation and the Cross Entropy Loss function (see Section 2.3.1.2).

SVMs are again linear models, trying to determine the weight vector of the linear
discriminant function g(x) = w”x. The goal of SVMs is to find the weights that maximize
the margin between the hyperplane defined by the linear function and the training samples
ls@|

w|
the generalization capability of the classifier. SVMs can also overcome the problem of
non-linearly separable data by transforming the samples to a space where they are linearly
separable, by applying a transform ¢. In this case, z = ¢(x) is the transformed vector, and
the linear discriminant function is g(z) = w”2z. (Bishop (2006), Duda et al. (2001))

of the two classes, which is equal to . In general, the larger the margin, the better

2.5 Deep learning

As discussed above, every model or learning technique requires some input feature
vectors. The feature extraction procedure is problem-dependent, and therefore it is often
tricky to discover the most appropriate representations that will simplify the solution to
the learning problem, regardless if it is supervised or unsupervised. One idea is to employ
machine learning to not only train the computer to map the feature vector to a desired
output, but also to learn the representation itself. Towards this end, deep learning can give
the solution to extracting high-level features from raw data by introducing representations
that are expressed in terms of other, simpler representations. So deep learning enables the
computer to build complex concepts out of simple ones. Deep learning is actually a subfield
of machine learning inspired by the structure and function of the human brain and the way
humans think. (Goodfellow et al. (2016))

The essence of deep learning is the use of a multitude of elemental non-linear computing
elements, known as artificial neurons, organized as networks, such as the structure of their
interconnections resemble the way neurons are interconnected in human brains. These are
the so-called neural networks, which are trained via successive presentations of training
patterns.

The interest in neural networks started way back, with the development of learning
machines called perceptrons during the 1950s and 1960s, that imitated the way brain neurons
work. More specifically, mathematical proofs were found showing that perceptrons, can
converge to a solution after a finite number of steps, when trained with linearly separable
data. The solution took the form of parameters (coefficients) of hyperplanes that were
suitable for separating the data into the classes describing the training samples.

48

Unfortunately, perceptrons could not guarantee successful results in case of non-linearly
separable data. That’s why the idea was to employ multilayers of perceptrons, since they
could possibly learn to separate data with more complex-related representations. True
revolution lies in the fact that these networks could now learn the representations which are
more suitable for recognition of the input data. Each layer of the network actually refines
the representations to more abstract levels. This multilayer training is referred to as deep
learning, and its practical implementations are mostly associated with large data sets.

The effective training method that enables the learning of the representations is called
backpropagation. It hasn’t been proven that this algorithm converges to a solution with the
mathematical rigor achieved in single layer perceptrons, but it has produced remarkable
results for the field of pattern recognition.

Of course, although neural networks might be highly autonomous at their training,
they actually require parameter tuning done by humans. Configurable parameters are the
number of layers, the number of neurons per layer and other problem dependent coefficients.

Deep learning doesn’t always provide the best possible solution; there are numerous
applications that are better handled by more traditional methods. However, it has been
proven extremely useful in applications that have been challenging for other methods. In
fact, it has offered the opportunity to solve many problems in various domains and has
been used in fields like speech recognition, natural language processing and understanding,
genetics etc. (Gonzalez and Woods (2008))

We are now going to get an insight into the way perceptrons work and are then combined
to create neural networks.

2.5.1 The Perceptron

2.5.1.1 Biological neurons vs perceptrons

The perceptron is a mathematical model of a biological neuron.

Neuron
(Dendrites
(e
Soma "*f?: y Axon terminals
4 \\ﬁ ‘ zi‘*‘/"/"‘%}{fi‘/ ”/}/ >
g _ ?/ ; ’i,a +1 or -1
a | | A
| \'R - 3&\ Axon;{ ,./««‘*‘*%a{i % jéﬁi
. i \ g
A N =d
(a) A biological neuron. (b) A perceptron.

Figure 2.5: A biological neuron compared to a perceptron.

e In actual neurons, the dendrite receives electrical signals from axons of other neurons.
These signals are modeled as numerical values in the perceptron case. These values
zi, 1 =1,2,...,n are interpreted as elements of an n-dimensional input vector x.

e At the synapses between the dendrite and the axons of other neurons, electrical
signals are modulated in various amounts. This is modeled in perceptron units by
multiplying each input value z; by a weight w;.

e An actual neuron gives an output signal only if the total strength of the input exceeds
a certain threshold. The total strength in perceptron is modeled as the weighted sum
of the input values. The weighted sum can be expressed in three different ways:

49

n
W1T1 + WaZ2 + ... + WpTpy + Wnp1 = Zwiiﬂi + Wng1 = WX + Wt (2.33)

i=1

We then apply a step function on the sum to determine whether the output will
be equal to 1 (activated) or to -1 (not activated). The output f of the neuron is
described by the following equation:

1 if wl nt1 >0
fy =4 WX (2.34)

-1, if wlx + Wpy1 <0

2.5.1.2 Perceptron used in linear classification problems

It is obvious that the weighted sum calculated in the perceptron corresponds to a linear
boundary (hyperplane) in n-dimensional space:

wlx 4wy =0 (2.35)

where w (also referred to as weight vector, whereas wy, 41 as bias) and x are n-dimensional
column vectors and w’x is their inner product. This means that we can employ a single
perceptron unit to solve a classification problem by learning this linear boundary between
linearly separable pattern classes.

If we add a 1 at the end of every pattern vector, then x = [z, 9, ...,7,,1]7 and
W = [w1, w2, ..., Wn, Wnt1]T. So, the classification problem between two linearly separable
pattern classes ¢; and c3 is to find a set of weights w that, given an input vector x satisfy
the following property:

0, if
wix = % Hhxea (2.36)

<0, ifx€cy

In this formulation, x and w are referred to as augmented pattern and weight vectors,
respectively. The solution to the aforementioned problem is given through an iterative
algorithm, which according to the perceptron convergence theorem will surely converge to a
solution (a set of weights that define a hyperplane) after a finite number of steps, if the
pattern classes are linearly separable.

The so-called perceptron training algorithm is quite simple. We let o denote the learning
rate, which is a parameter defining how steep the weight vector updates will be in each
iteration. The initial values of the weight vector, denoted by w(1), are arbitrary. Let’s say
our data set consists of N patterns x;, j = 1,2,..., N. We do the following for k = 2,3, ...:

For each pattern vector x;, at step k:

1. If x; € ¢; and Wij <0, let:

w(k+1)=w+ ax; (2.37)
2. If x; € cp and waj >0, let:
wk+1)=w—oax; (2.38)
3. Otherwise, let
w(k+1) =w(k) (2.39)

50

The concept behind this algorithm is that if a pattern is misclassified, we are trying to
shift the weight vector to a direction that increases the probability of correct classification
the next time the specific pattern is presented. That’s also why if the classification of a
pattern is correct, no change is applied to the weight vector. The algorithm converges and
terminates at step K when all patterns of our data set can be correctly classified by using
the current weight vector w(K'). (Gonzalez and Woods (2008))

2.5.2 Multilayer Feedforward Neural Networks

In practice, linearly separable data are a rare occasion, which means that the simple
perceptron unit we went through in previous Section can’t provide a solution. The natural
question that comes to mind after this realization is if some sort of combination of multiple
perceptrons can learn decision boundaries (functions) that successfully classify non-linearly
separable data. It has been found that this is actually the case with multilayer feedforward
neural networks.

2.5.2.1 Artificial Neuron

If we combine (connect) perceptron-like units, we can form neural networks. These
units are called artificial neurons and function in the same way as perceptrons, though they
differ in the way they process the result of the computations. More specifically, instead
of using a hard thresholding function (step function), which outputs only two values (1
and -1), they employ a more soft function, as explained below. For example, let z denote
the output of the perceptron before thresholding, i.e. z = >"" , wjz; + wp41 and h the
function employed to calculate the neuron’s final output. We call h the activation function
of the unit. The total output is denoted by a and is the result of passing z to h (a = h(z)).

If the output of a perceptron before thresholding (zx) has a value a little greater than
zero (then a = h(z;) = +1), and another output z; has a value a little smaller than zero
(then a = h(z) = —1), they will result in a big swing in the perceptron’s output, although
zr and z; were quite close. This instability which can occur with perceptrons should be
avoided, since neural networks consist of layers of neurons, in which the output of one
affects the behavior and eventual outputs of all the following neurons.

We can overcome this problem by changing the step activation function to a smoother
function, for example the sigmoid function, described by equation:

B 1

S l4e
where z = Y " | w;z; + wpy1. It is obvious that the only difference between perceptron

and the artificial neuron is the activation function they use for processing z. Now, wy,41 is

denoted by b (bias). (Gonzalez and Woods (2008)) Figure 2.6 shows an artificial neuron

with a sigmoid activation function.

h(z)

(2.40)

2.5.2.2 Activation functions

The sigmoid function is used very frequently as the activation function of artificial
neurons. There are also other functions with the required properties that are often used.
For example, the hyperbolic tangent has the same shape as the sigmoid function, but is
symmetric about both axes (see Figure 2.7).

h(z) = tanh(z) (2.41)

The Rectified Linear Unit (ReLU) activation function has also become very popular.
ReLU keeps all the positive inputs unchanged and sets all negative inputs to zero:

51

a,(£-1)

wi(()

h

w=3 w, (6 a,(£-1) a () = h(z(0))

b0
H}r'nl_l (()
a}r,-,, ((- 1)

—h0
1J

Figure 2.6: An artificial neuron, whose inputs are the outputs of preceding neurons and
whose activation function is the sigmoid function. (Gonzalez and Woods (2008))

Neuron i in layer ¢

h(z) = max(0, z) (2.42)

1.0 Lo

h(z) = tanh(z)
R(z)=1-[h(z)]

h(z) = max(0, z)

1
"(2)27,:
1+ e , 1 ifz>0
H(z) =

R(z) = h(z)[1-h(2)] 0.

n

0 ifz=0

0.5 1 0.0

-0.5

Sigmoid tanh ReLu

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

Figure 2.7: Sigmoid, Hyperbolic tangent and ReLLU activation functions. Their derivatives
are shown since they are useful for the backpropagation algorithm discussed in Section
2.5.2.3. (Gonzalez and Woods (2008))

2.5.2.3 Fully Connected Neural Network

As stated above, artificial neurons are interconnected to form a multilayer feedforward
neural network. The architecture of such a network is presented in Figure 2.8.

The network consists of multiple layers. For example, the network shown in Figure 2.8
consists of L layers, where each layer consists of a custom number of neurons, except for the
first layer, where nodes are just the inputs 1, o, ..., x,, of the network. Since the output of
the neurons in layers 2 to L — 1 aren’t known, these are called hidden layers. The essential
characteristic of the network is that information flows from the left to the right (that’s why
it’s called feedforward) and that each neuron is connected to all preceding and following
neurons, i.e. all neurons of the previous and the next layer, and only them. That’s why it’s
called fully connected.

Forward pass through a Feedforward Neural Network A forward pass through a
Feedforward Neural Network maps the input layer (the values of vector x) to the output

52

a(f— l)j
a,(f-1)

() = .zl'u.'_,-f(f')a!(=1y
)

a(£) =h(z(1))

layer ¢
Layer 1 L HiddemLayers — | Layer L

(Input) (The number of nodes in (Output)

the hidden layers can be
different from layer to layer)

Figure 2.8: Fully Connected Neural Network. (Gonzalez and Woods (2008))

layer.

We use [as the index that describes the layer we are focusing on. Each layer [consists
of m; neurons, where the output of neuron j, j = 1,2,...,n; is denoted by a; . If [=1, the
output of the input layer is the components of the vector x:

aj(l) = Ty, j = 1, 2, ey N (243)

For layers [> 1, each neuron’s i, i = 1,2, ..., n; inputs are the outputs of the neurons

of the previous layer (a;(l —1), j =1,2,...,n;_1). These inputs are then multiplied by a
weight w;; (i is the neuron that receives the signal and j the neuron that sends it). Also,

each neuron ¢ has a bias value b; that is added to the weighted sum. Let z;(I) denote the
output of neuron ¢ in layer [before applying the activation function.

ni—1

z(l) = wi(Daj(l - 1) + bi(l) (2.44)

j=1

fori=1,2,...,n;and [= 2, ..., L. The final output of the neuron is the activation value:

53

a;i(l) = h(z(1)) (2.45)

The output of the whole network is the output of the nodes of the final layer L.

a;i(L) = h(z(L)) (2.46)

fori=1,...,n.

The Backpropagation method A Feedforward Neural Network is fully described by its
weights, biases and activation function; thus, training a neural network refers to employing
training examples to learn these parameters. This training procedure is achieved with the
backpropagation method, which consists of 4 steps:

1. Inputting the training pattern vectors.

2. A forward pass through the network to classify the patterns and calculate the
classification error.

3. A backward (backpropagation) pass that feeds the output error back through the
network in order to compute the necessary quantities to update the parameters.

4. Updating the weights and biases of the network.

The aforementioned steps are repeated until the error is below a specific, accepted
threshold.

Goal of the training process, as is already mentioned in previous sections, is to minimize
an error function, depending on the nature of the problem we are trying to solve (see Section
2.3.1). In case of classification problems, Cross Entropy Loss function is the most common
to use. The procedure of calculating the probability that a specific pattern belongs to a
certain class, described in equations 2.22 - 2.24 is achieved by using the sigmoid activation
function in the last layer of the network.

If r denotes the desired response (r = [r1(L),r2(L), ..., 7, (L)]7) and a(L) the vector
consisting of the outputs of the neurons of the final layer L (a = [a1(L), ag(L), ..., an, (L)1),
the total error function is defined as:

nr

B == r(L)log(ai(L)) (2.47)

=1
In case of a regression problem , the total error function is defined as:

Jj=nr
1

E=3 3 (- a(D) = %Hr —a(m)|? (2.48)
j=1

In order to find the weights and biases that minimize this error, we use the optimization
method gradient descent, which we discussed in Section 2.3.2. According to gradient descent,
the update equations for the weight w;; and bias b; in layer [are:

wij(l) = wij(l) — aé)z(jf(l) (2.49)

where « is the learning rate.

54

However, it is not straightforward to get the gradients of E with respect to the weights
and biases in hidden layers. That’s why we need to propagate the output error back to the
network. Since E isn’t an immediate function of w;;(l), we use the chain rule to calculate
the partial derivative:

OF OE 0z(1) OF

dwi;(1) ~ 9zi(l) dwy(l) azl.(l)aﬂ'(l -1 (2.51)

To calculate 827]31 we use the chain rule again. Since the node i of layer [is connected
to all nodes of layer [+ 1:

OB 0z(i+1) dai(]) Oh(z(1)
82’2 Z 0zij(l+1) 0Oa;i(l) 0z(l) Z 92 l+ Wi 9z(1) (2.52)

The equation 2.52 suggests that the calculation of % is actually recursive, using the
partial derivatives of E with respect to all z;, j = 1,...,m41 of the next layer [+ 1. This is
calculated by starting from the final layer L and going backwards, where:

OE O0FE 0ai(L) OE Oh(%(L)) (2.53)
821(14) - 8ai(L) 622(L> N 8ai(L) 622(L) '

So, the equations above describe the way the error is backpropagated to the network,
and how the update of each weight and bias is calculated, resulting in the network learning
them in order to classify the training patterns as successfully as possible, even if they are
not linearly separable. (Gonzalez and Woods (2008))

2.5.3 Deep Convolutional Neural Networks

Up to this point, pattern features are vectors, that neural networks take as input. For
example, in the case of image classification, it means that features must have been extracted
from images before they are used as input of a neural network. However, the true value of
neural networks lies in the fact that they can learn the features directly from training data,
on their own. In this section we are going to focus on a class of neural networks, called
Deep Convolutional Neural Networks (CNNs), that accept raw images as input, learn the
features of the images and can then be used for image classification or other applications.

Convolutional Neural Networks were inspired by biological processes, since the connec-
tivity of the neurons resemble the organization of animal visual cortex.

2.5.3.1 Fully Connected Neural Networks vs CNNs

Fully Connected Neural Networks and CNNs share both some similarities and some
differences.

Their basic similarity is that the computations performed in both networks are similar:
a sum of products plus a bias is calculated, it passes through an activation function and
the activation value is a single input to the next layer.

The main differences are the following;:

e CNNs accept as inputs 2d arrays (images), while inputs to Fully Connected Neural
Networks are vectors.

e CNNs can learn the important features from raw images and don’t need to get pre-
extracted feature vectors, which is a great advantage, since they don’t require prior
knowledge on the data set of images. CNNs focus on learning the features important
for our specific task.

95

e The layers are connected differently. As already mentioned, in Fully Connected Neural
Networks, the output of a neuron is fed to all neurons of the following layer. In CNNs,
a convolution over the spatial neighborhood in the output of a layer calculates a single
value, which is fed to the following layer. That’s why CNNs are not fully connected,
in the sense described above.

e The 2-D arrays that pass from one layer to another in CNNs are subsampled to reduce
sensitivity to spatial translations of the input.

2.5.3.2 The spatial convolution

The basis of CNN operation is spatial convolution. Spatial convolution calculates the
sum of products between image pixels and a kernel consisting of weights. More specifically,
the convolution of a kernel w of size mxn with an image g(z,y) is written as (w * g)(z,y)
and described by the following equation:

a b
(wrg)(w,y) =Y Y wis,t)glx—sy—1) (2.54)

s=—at=-—b

where a = ”T_l and b = mT_l In simpler words, we have a position (z,y) of the
image, we overlap the kernel on the image so that its center is on (x,y) and every weight
corresponds to an image pixel and then we calculate the sum of the products of each weight
of the kernel with the corresponding image pixel.

The result is a scalar value calculated at every spatial location (z,y) of the input
image. If we add a bias and pass the result through an activation function, the similarities
between this procedure and the way neurons in Feedforward Neural Networks perform their

computations are obvious.

2.5.3.3 Forward pass through a CNN

We consider a CNN consisting of L layers, where operations of each layer are explained
below. As mentioned before, the input of a CNN is a raw image, for example of WxHxDy
dimensions. The depth Dy of the image refers to its different components (e.g. RGB images
consist of 3 components (2-D arrays)).

Convolutional layer The first part of each CNN layer is the convolutional layer, where
the convolution operation is performed. The convolution operation takes place at every
location (z,y) of the image, taking into account a neighborhood of this location. This
neighborhood is called receptive field and selects a region of pixels of the image, around
(x,y). A set of weights, arranged in the same shape as the receptive field and known as a
kernel, slides along with the receptive field over the image and, for each location (x,y), the
image region defined by the receptive field and the kernel are convolved.
Hyperparameters of this layer are the following:

e Number of kernels (also referred to as filters) (D;, where [refers to the current layer).
The number of kernels define the depth of the output of the convolutional layer.

e Filter size (FxF'xDy). The filter size is the same as the size of the receptive field and
the depth is the same as the depth of the input. It is common that the filter has
the same width and height. In general, the filter size declares how many neighbors
of each location we use in order to calculate the new value of the location. So, the
larger the kernel, the more information of the input layer each number in the output
layer carries.

56

e Stride (S). The stride is the number of spatial incremental steps we take when we
slide the receptive field (and the kernel) horizontally and vertically over the input.

e Padding (P). Convolution of the input with the kernel results in an image with
reduced size, because the kernel has to fit inside the input array, meaning that the
kernel can’t be centered on pixels of the first or last row or column, for example. In
order to preserve the size of the output of the convolutional layer equal to the size
of the input, we expand the input array by adding a suitable number (P) of rows
and columns filled with zeros, on its perimeter, before the convolution operation is

performed.
Convolution
p{
* — ead EEEEEE B
(=p)
]'_uput Kernel 1. Add p IU:II[I]J'HI of zeros 2. T?’ue ke'mrl Jumps 8 pi.xl.r',]s when Output
around the image being slided across the image

Figure 2.9: The convolution operation.

If azy q(l — 1) denotes the input value of layer I at position (z,y) and depth d, d =

Di—1, and w;(l), i = 1,..., Dy, denotes the weights of the kernel i, arranged in the
shape of the receptive field, then the convolution result of kernel ¢ with the input image is
calculated as:

N—-1 N—-1

D4 -1 2 2

D wai(l) * agyal — 1) > Wi ge,d,i (D 1,y —k,a (1) (2.55)
=1

d=1 j—_ 1 f—— 1

)

where k and [span the dimensions of the kernel. If we add a bias bg; to the result
above, we get 2 4

D
Zagi(D) = Y _[wai(l) * apyal = 1) + ba,) (2.56)
d=1
In this way, 24, is quite similar to z; we calculated in Feedforward Neural Networks,
since it is simply a weighted sum plus a bias. Then, this result is fed to an activation
function:

agy,i(l) = h(zzy,i(l)) (2.57)
These calculations are done for each of the D; kernels of layer [, resulting in D; different

outputs, which are then stacked (D is the depth of the output of the convolutional layer [).
However, W; and H; of the output depend on the kernel size, the stride and the pooling;:

_1+2P, - F
W,—W/’ﬁ l l+1J (2.58)
S
H_,+2P - F
H,:{“JFSZ l+1J (2.59)
l

o7

Another significant observation is that ag, 4(1) is calculated using information only
from a neighborhood of (z,y) (receptive field), which points out the local connectivity
and spatial locality used and emphasized in CNNs, compared to the full connectivity in
Feedforward Neural Networks.

This procedure (convolution and feeding the output to the next layer) is quite similar
to the way a neuron in visual cortex responds to stimulus. After it is done for all x, y
(x=1,...W,y=1,....H), anew WixH;xD; array a(l) has been filled, which consists of
azy,d(l). This is called a feature map, because through convolution some features of the
image are actually learned. The weights of the kernel and the bias are the same for all
receptive fields of the image, since we want this specific kernel to be responsible for the
detection of one specific feature at all locations of the image. A different set of weights
and a different bias result in constructing a new feature map, which will contain a new set
of features of the initial image. We want the network to learn the weights and biases, so
that the automated feature extraction procedure is optimized. This means that finally, the
output of convolutional layer [consists of D; feature maps, with size W;xH; each.

Convolution + Bias + Activation Convolution

| +

e “-' S I~ a

Y g :._as & @
Activation = C

— =
Receptive field {1 Subsampling ﬁ,
B i E
Input image Feature maps i Pooled Feature Pooled Fully connected

feature maps feature
maps maps

neural net

Figure 2.10: A Convolutional Neural Network. (Gonzalez and Woods (2008))

Pooling layer The second operation of a CNN layer is subsampling the resulting feature
maps, also referred to as pooling. This procedure is useful, because it achieves translational
invariance, meaning that if a small translation occurs, most of the pooled values won’t
change. This property is important, especially if we are interested in whether a specific
feature is present in the image, rather than where exactly it is. Pooling is also beneficial,
because it gradually reduces the amount of data that needs to be processed, as well as
the number of trainable parameters, preventing overfitting. The result of pooling is the
pooled feature maps. Pooling is done by dividing each feature map in non-overlapping
small regions (typically 2x2) and replace this whole area with one new value, depending on
the kind of pooling we choose. There are 3 main kinds of pooling:

e Mazx pooling: the value chosen is the maximum of the elements of the neighborhood
o Average pooling: the value chosen is the average of the elements of the neighborhood

e L2 pooling: the value chosen is the square root of the sum of the squared neighborhood
elements

Hyperparameters used in this layer are:
e Filter size (F). The filter here doesn’t have the same meaning as in the convolutional
layer, since it just defines the region that will be replaced by a single value and doesn’t

contain any trainable parameters.

58

e Stride (S). Again, it refers to the number of steps to use while sliding the filter over
the feature map.

e Padding (P). It refers to how many rows and columns of zeros we use for padding the
feature map, though padding isn’t common in this layer.

It is obvious that if F' = 2 and S = 2, the pooling procedure results in a pooled feature
map of dimensions %Xg For example, in the case of max pooling, using a 2x2 region with
a stride of 2, the pooled feature map derived by feature map aq4(l), d = 1, ..., D; has values:

Pryd(l) = , ax 1a2x+k,2y+l,d(l) (2.60)

J=U,...,

Thus, a CNN layer consists of a convolutional layer and a pooling layer. The equations
presented above are the same for every layer [of the network. The resulting pooled feature
maps are now the input of the next CNN layer.

The most usual application of CNNs is to use the derived features for classification.
That’s why it’s common that the 2-D output of the last pooling layer is vectorized and then
fed to a Fully Connected Feedforward Neural Network, which is responsible for determining
the most likely pattern class for the input image.

Transposed Convolutional Layer Transposed convolutional layers are not used in
typical CNNs. In our architecture, though, they are necessary, as we will describe in Section
2.5.4.2. Goal of transposed convolutional layers is upsampling, i.e. to generate an output
feature map a(l) (W (I)xH(l)) with greater spatial dimensions than the input feature map
a(l —1) (W(l —1)xH(l —1)). Stride (s) and padding (p) also play an essential role in
defining this layer, though they don’t have the same usage as in traditional convolutional
layers.

More specifically, we introduce 3 new quantities, 2z =s—1,p' =k —p — 1 (k = F(size
of the kernel is k x k) and s’ = 1.

At first, we insert z rows and z columns of zeros between every row and column of the
input array respectively. The result of this operation is a new feature map a(l) of shape
(2-W(l—-1)—-1)x(2-H(l—1)—1). So, the stride here determines how fast the kernel
moves on the output layer in contrast to stride in traditional convolutional layers, where it
determines how fast the kernel moves on the input. The kernel size has also a different sense:
here, it defines how much we disperse information from input layer to output layer. This
means that the larger the kernel, the larger the output. We then pad the resulting image
with p’ rows (horizontally) and columns (vertically) and calculate the classical convolution
with stride s’ = 1. In this way, as it is easy to observe from Figure 2.11, the input image is
upsampled.

Transposed Convolution

p{
*), Calculate —) _ >
v v
(s,p) z =s—1
p=k-p-1
s =1
Input Kernel 1. Calculate parameters 2. Insert z zeros between 3. Add p’ number of zeros 4. The kernel always jumps 1 Output

7, and p' the rows and columns around the image pixel when being slided across the
image

Figure 2.11: The transposed convolution operation.

Transposed convolutional layers are especially useful for image upsampling and also
reconstruction in deep architectures, because they involve weights that can be trained to

99

learn which features of the image are important for an efficient reconstruction. This is more
flexible compared to simple interpolation for upsampling.

Backpropagation to train CNNs As already mentioned, CNNs share some similarities
with Feedforward Neural Networks. In this sense, a CNN is also trained with the backprop-
agation method. The error used for training the network is usually the classification error,
taking into account the actual pattern class and the output of the feedforward part of the
network. The chain rule is also applied here, to get the derivatives of the error with respect
to the weights of the kernels and the biases, but since simple multiplication in Feedforward
Neural Networks is substituted by convolution in CNNs, the equations are more complex. It
is important to note that backpropagation affects only the parameters of the convolutional
and not the pooling layer.(Gonzalez and Woods (2008), Goodfellow et al. (2016))

2.5.3.4 Applications

CNNSs can be used for every application that requires feature extraction from images.
Some of them are presented below:

e Image recognition. CNNs are successfully used for fast and accurate object detection
in images. They are also widely used in facial recognition.

e Analyzing documents. CNNs can be used for recognition of handwriting or signatures
in documents.

In general, they have replaced many traditional computer vision techniques for feature
extraction in specific problems, because their use reduces human intervention in the
extraction pipeline.

As mentioned above, it is very common that Convolutional Neural Networks are used
for feature extraction for classification purposes and the error used for training the weights
is the classification error. However, this is not always the case; in our problem for example,
we need to extract features from images, without having a target value. This is achieved by
a type of neural networks called autoencoders.

2.5.4 Autoencoders

Autoencoders are neural networks that are trained to attempt to copy their input to
their output. An autoencoder consists of 3 components: encoder, code and decoder. The
encoder compresses the input and produces the code, the decoder then reconstructs the
input only using this code. The encoder is described by a function h = f(x), where x is
the input and h is the code and the decoder produces a reconstruction r = g(h).

The encoder maps the input to a code that is assumed to contain the most important
information (features) of the input and is used to represent it, and then decoder constructs
the output from this representation. The code is also referred to as the latent-space
representation and can be used as a feature vector to numerous applications.

The goal of the autoencoder is not to just learn the composite function g(f(x)) = x, in
the sense that we don’t want it to learn to recreate the input perfectly. In fact, we want
the autoencoder to learn a useful representation of the input that will contain the most
important information from it. (Goodfellow et al. (2016))

2.5.4.1 Undercomplete Autoencoders

One way to obtain useful features from the autoencoder is to constrain h to have a
smaller dimension than x, since in this way the model is forced to prioritize the aspects

60

Input Output

P~ — 1T
LN S~ -7
\ N~ -~/ /

— \ — =~ Code - — /
v/ \ LN~ ~71 N / Vo
1 o\ SNy N v (A e R
I /o1 N\ \ / /o 1\ (-
\ / / \ \ /
—) H X)Y =
\ / / \ \ /
[/ — \ s\ /N / — \ -
;o\ / \ / \ Iy
— \ 1/ /// \\\ \ 1/ Nl
/ VL \ /. D / "\ vl
_/ \ /! - ~< \ / \
L L ~q [
e “~_)
L~ ~aqa
N J N J
' Yo
Encoder Decoder

Figure 2.12: The structure of a typical autoencoder.

of the input that they will be copied and as a result to learn significant properties of the
input data. An autoencoder whose code dimension is less than the input dimension is
called undercomplete. Learning an undercomplete representation forces the autoencoder to
capture the most salient features of the training data. The learning process is described
simply as minimizing a loss function L(x, g(f(x))), where L is a loss function penalizing
g(f(x)) for being dissimilar from x, like the mean squared error function. (Goodfellow et al.
(2016))

Commonly, the encoder and the decoder are feed forward neural networks, whose task
is to learn the function f and g respectively. In our case, where the inputs are images,
the encoder and the decoder are convolutional neural networks, so the whole network is
referred to as a convolutional autoencoder.

2.5.4.2 Convolutional Autoencoder

A convolutional autoencoder is a type of undercomplete autoencoders, since the inter-
mediate representation has a smaller size than the initial image. The CNN-encoder tries to
learn the weights and biases that will result in a code h, which will contain the most useful
features for a successful reconstruction of the image by the decoder.

In particular, the CNN-encoder is a normal CNN, with convolutional and pooling layers,
as we described in Section 2.5.3. The pooling layers achieve the size reduction of the initial
image as we go deeper into the network, which guarantees that the code will indeed have
lower dimensions compared to the input image. The code can then be flattened and used
as a feature vector which uniquely describes the input image.

The CNN-decoder is again a CNN, but it only consists of transposed convolutional
layers. This makes sense, because the goal of the decoder is to learn the appropriate filters
that will be able to efficiently reconstruct the image from the code. Of course, pooling
layers aren’t a part of this type of CNN, since we want to upsample the feature maps.

The convolutional autoencoder is trained with the backpropagation method, which
affects the weights of both the CNN-encoder and CNN-decoder. The loss function chosen
should represent the reconstruction error, so that the training process will minimize it. In
convolutional autoencoders, but also in every application of CNNs, it is common that input
images have pixel values normalized in the interval [0,1], rather than [0, 255|, since smaller
values guarantee more stability. In this case, if the activation function of the last layer
of the CNN-decoder is the sigmoid function, the output will be an image with the same
dimensions of the input image, and values in the interval [0,1].

Although pixel values don’t correspond to probabilities, we can use the Binary Cross

61

Entropy Loss function as the loss function to be minimized. If the value of the input image
in position (z,y, 2) is 74,y > and the corresponding value of the reconstructed image is 7, -,
BCE loss is:

Ly (1, 7) = =gy 2108(Tey.2) — (1 — ray.2)log(l — oy 2) (2.61)

We are now going to prove that L is a suitable loss function. In other words, we need
to prove that L is minimized when r = # (which is the training goal). To this end, we
calculate the derivative of L with respect to 7# and set it equal to zero:

oL 1
— =0 —r-—(1-r)(— =0 —r(l-")+1-r)r=0&7r=r (2.62)
or 7 -7
which means that L is minimized when the reconstructed image has same values as the
original one.

2.5.4.3 Other types of autoencoders

We will now briefly refer to other variations of autoencoders with interesting properties.

Regularized Autoencoders As already stated above, to achieve a meaningful feature
extraction from the input, we need the code dimension to be lower than the input dimension.
Instead of limiting the code dimensions or the encoder and decoder capacity to ensure
the extraction of meaningful features, we should be able to arrange them according to our
problem and data distribution. This is achieved by regularized autoencoders, the most
important of which are the sparse autoencoder and the denoising autoencoder.

Sparse autoencoders are typical autoencoders, but they add a sparsity penalty to the
reconstruction loss. This is useful for learning features for another task, for example
classification. Autoencoders regularized to be sparse take into account statistical properties
of the training data set and not just learn an identity function, resulting in also learning
useful features in parallel.

Denoising autoencoders use a different approach: instead of adding a sparsity penalty,
they change the reconstruction error term of the loss function. While classical autoen-
coders try to minimize L(x,g(f(x))), the goal of denoising autoencoders is to minimize
L(x,g(f(X))), where X is x corrupted with noise. So, in order to reconstruct the input, the
autoencoder has to remove the noise and not just learn an identity function. In this way, it
learns the structure of pgq¢q (%), thus also learning important properties of the data set as a
byproduct.(Goodfellow et al. (2016))

Stochastic Autoencoders Stochastic autoencoders are a modern type of autoencoders
that have expanded the idea of the encoder and the decoder beyond deterministic functions
to stochastic mappings pencoder (h|X) and pgecoder (h|x). (Goodfellow et al. (2016))

2.5.4.4 Applications

Autoencoders are powerful tools for dimensionality reduction or feature learning. Di-
mensionality reduction was one of the first applications of representation learning and deep
learning in general. It was one of the early motivations for studying autoencoders. Lower
dimensional representations can improve the performance on many different tasks, such as
classification, since models of smaller spaces consume less memory and runtime.

Dimensionality reduction benefits especially information retrieval tasks (finding entries
in a database), since search can become very efficient in some kinds of low-dimensional
spaces.

62

Applications of undercomplete autoencoders include compression, recommendation
systems as well as outlier detection.

Convolutional autoencoders are frequently used in image compression and denoising.
They may also be used in image search applications, since the hidden representation often
carries semantic meaning.

Recently, theoretical connections between autoencoders and latent variable models
have brought autoencoders to the forefront of generative modeling. More specifically, the
variational autoencoder is a generative model which can be trained and used to generate
images. ((Goodfellow et al. 2016))

2.6 Feature pre-processing

2.6.1 Feature selection

Feature selection is an important stage of the system design pipeline (see Section 2.4)
and it refers to choosing which features are the more relevant and important for the solution
of our specific problem. In general, the curse of dimensionality is a problem associated with
pattern recognition, since large representations require time and space resources, increase
computational complexity and also reduce the performance of models trained on them.
This happens because the more the features, the more the model parameters. When we
have many model parameters, we also need a large data set of training samples, otherwise
overfitting of the model on training data is often the case. So, our goal is to reduce features
used and in the same time keep features which contain information that best discriminates
patterns that belong to different classes and also guarantees close representations of patterns
of the same class. In case of unsupervised learning, we can’t use this criterion, so we resort
to different solutions, such as the variance of the features.

2.6.1.1 Variance Thresholder

Variance Thresholder removes features, whose variance doesn’t meet a certain threshold.
Let’s say we have a data set consisting of M N-dimensional feature vectors x;, ¢ =1,..., M.
So, each sample is described by N different features. Mean and variance estimators are
used for the calculation of mean and variance (v) of every feature, respectively:

1 =M
Tj = M Z ;5 (2.63)
=1
1 =M
07 = a7 2 (i~ z;)? (2.64)

1

"
Il

for all j = 1,..., N. Then, we keep only features x;, where:

2
where v, is a threshold set by the user, often taking into account how much dimensionality
reduction we want.
2.6.2 Feature scaling

Feature scaling is important to ensure equal treatment for all features, regardless of their
dynamic range. Its goal is to set all features values in a specific range, to prevent features
with large values from having a greater impact on training a model than the others by

63

affecting the cost function more. In general, gradient descent methods are affected negatively
by this problem, because the step size of the method will be greater for features with large
values, and thus smooth transition towards the function minimum isn’t guaranteed.

Feature scaling is also essential for algorithms that use distance metric between feature
vectors. In case of big range differences between features, there is an imbalance in the
amount of contribution each feature has in the distance calculations. If, for example, an
algorithm tries to calculate the similarity between two feature vectors using their distance,
features with large values will play a more important role. However, these features are not
necessarily more significant for our task.

2.6.2.1 Normalization

A usual type of normalization scales features values in range |0,1]. This is achieved by
changing every feature value according to the following equation:

;o Ty — Milg=1 . M Tij (2.66)

xA .=
K3 .
7 maxi=1,.M Tij — MIN;=1_. M Tij

A benefit of this normalization method is that we always know the exact range in which
feature values lie. On the other hand, it is quite problematic in case of outliers; if a few
feature values are very large compared to the others, the rest will be squeezed in a small
subinterval of 0,1].

2.6.2.2 Standardization

Another very popular scaling procedure is standardization, meaning that we transform
feature values so that they have zero mean and unit variance. This is achieved by the
following transform:

1 Lig — Ty

T = (2.67)

gj

where T; = ﬁzzj\/l zj; and o5 = \/ﬁ SY=M(4; ; — 2;)2. This normalization ap-
proach is suitable in case some features have a large variance. In this case, they might
affect the training process of a model more compared to the rest of the features. For many
models, data with a Gaussian-like distribution are likely to improve their performance after
standardization. Standardization is also beneficial in case we have negative values and isn’t
affected by outliers as much as normalization.

2.6.3 Dimensionality reduction

Although feature selection and scaling are important for all the aforementioned reasons,
there are also plenty of cases where feature vectors contain redundant information. Our
goal is to get compact and informative representations that contain all the useful properties
of the data, while having the less possible dimensions. This is achieved by transforming the
given features to a new set of less features, which will exhibit high information packing
properties. This procedure is referred to as dimensionality reduction. There are many
dimensionality reduction techniques, such as Principal Component Analysis, Independent
Component Analysis, Singular Value Decomposition etc. Here, we will focus on Principal
Component Analysis, which is one of the most widely used.

64

2.6.3.1 Principal Component Analysis (PCA)

PCA is a linear orthogonal transformation, whose goal is to give lower-dimensional data,
while preserving as much of the data’s variation as possible.

In general, a desirable property of features is to be mutually uncorrelated, in order to
avoid information redunduncies. In this way, PCA is basically a transform that wants to
ensure the newly generated features are uncorrelated. Let x denote a feature vector. We
assume the data samples have zero mean for simplicity; otherwise, we just subtract the
mean value. If we apply a linear transform on x, we get y:

y =ATx (2.68)

Since we have supposed that E[x] = 0, then also E[y] = 0. The correlation matrix of y
is:

R, = Elyy'] = E[ATxx" A] = AR, A (2.69)

In practice, if we have a data set consisting of n feature vectors xi, k = 1,...,n, the
correlation matrix R, is estimated as an average:

1 n
Ry = kz_l Tpk (2.70)

We observe that R, is a symmetric matrix. This means that it has mutually orthogonal
eigenvectors. So, if we choose A so that its columns are the eigenvectors a;, ¢ = 0,...,n — 1
of R;, then it can be shown that R, is diagonal, with the respective eigenvalues A;,
1=0,....,n—1 of R, on the diagonal. If we further assume that R, is positive definite, then
the eigenvalues are positive. So, the resulting features are indeed mutually uncorrelated, as
our initial goal was.

We now need to examine how the dimension of these features can be reduced. In other
words, we have to check which of the generated features are the most important to keep.

It can be shown that:

n—1
x=> y(i)a; (2.71)
=0
y(i) = al x (2.72)

If we define a new vector X in the m-dimensional subspace

—

m—

=Y ylia (2.73)

=0
we get the projection of x onto a subspace spanned by the m orthonormal eigenvectors

included in the sum defined above. We can now compare x and its projection by calculating
their mean squared error:

2
E||x-x

2} —E (2.74)

n—1
Z y(i)a;

We now have to choose the eigenvectors that minimize this mean squared error. We
have:

65

2
E

n—1
Z y(i)a;

Since the eigenvectors a;, i = 1,...,n — 1 are orthonormal:

= B> > valy()a (2.75)

1 i
ajaj=1{ "’ ey (2.76)
0, ifij

So, equation 2.75, taking into account equations 2.76 and 2.72 becomes:

n—1 n—1 n—1
E ZZy(i)aiTy(j)ai = Z E[y2(1)] = Z al E[xxT]a; = Z al R,a; (2.77)

Taking into account the definition of eigenvectors and equation 2.74:

n—1 n—1

It is now obvious that, if for the new vector X, defined in equation 2.73, we choose the
eigenvectors that correspond to the m largest eigenvalues, the MSE is minimized, since it
is equal to the sum of the n — m smallest eigenvalues. That’s why the method is called
Principal Component Analysis, since we use the principal components to determine the
new feature vectors.

B ||x-%

PCA has another interesting property. More specifically, if F[x] = 0 and y is the
transformed feature vector after PCA, then the variance of each component of y is o 2 =
E[y?(i)] = A\i. So, the eigenvalues of the correlation matrix of the initial features are equal
to the variances of the transformed features. This means that, since we choose features
which correspond to maximum eigenvalues, the sum of the eigenvalues, and as a result their
variances, is maximized. Thus, the selected m features preserve most of the total variance
associated with the original features. (Theodoridis and Koutroumbas (2009))

2.7 Clustering

We first referred to clustering in Section 2.2.2 as an unsupervised learning method,
whose goal is to create groups of patterns with similar features. In clustering problems, we
don’t know the labels or target values of each pattern; that’s why we want to create an
organization of patterns in groups (clusters), which will reveal similarities and differences
between them and will also give us useful information about their structure.

2.7.1 Definition of clustering

Let’s suppose we have a data set X:

X = [x1,X2, ..., XN] (2.79)

We define the partition of X into m sets (clusters) C1, Cy, ..., Cp, as m-clustering, when
the following conditions are met:

1. Ci#0,i=1,...m

66

2. U?llCi:X
3. CiﬂCj:@,i#j, ,7=1,....m

It is important that vectors that belong to cluster C; are more similar to each other and
less similar to feature vectors that belong to other clusters. This similarity is defined by a
distance measure, depending on the application and the algorithmic approach we choose
for deriving these clusters.

According to condition 3, every feature vector can belong to only one cluster. This
clustering approach is called hard clustering. If we employ a fuzzy approach to clustering,
each feature vector is accompanied by a membership function, quantifying the degree with
which the vector belongs to each cluster (soft clustering).

There are many different categories of clustering algorithms, i.e. learning procedures
whose goal is to identify the characteristics and properties that specify the clusters underlying
the data set. We will refer to the most common categories:

e Sequential algorithms. These algorithms are fast and produce a single clustering. The
feature vectors are presented to the algorithm several times and compact clusters
(often hyperspherical or hyperellipsoid) are usually produced, according to the distance
metric employed. Most of the times, the final result depends on the order in which
feature vectors are presented to the algorithm.

e Hierarchical algorithms. These are further divided into two categories:

— Agglomerative algorithms. These algorithms produce a sequence of clusterings
consisting of a decreasing number of clusters gradually, starting from m different
clusters and merging two resulting clusters at each step.

— Divisive algorithms. These algorithms act in the opposite way; they increase the
number of clusters at each step by splitting one cluster of the previous step.

e Clustering algorithms based on cost function optimization. These algorithms are,
in general, iterative and produce successive clusterings in order to minimize a cost
function J, which is chosen to evaluate the clusterings. Usually, they use a fixed
number of clusters m and they terminate when a local optimum of J is reached.

We are going to go through some of the most popular clustering algorithms; K-Means,
Gaussian Mixture Models and Agglomerative Clustering.

2.7.1.1 K-Means clustering

K-Means is one of the most known and used clustering algorithms. It belongs to the
third category mentioned above, i.e. it’s a clustering algorithm based on the optimization
of a cost function. Let’s suppose we have feature vectors x;, ¢ = 1,...,n and cluster
representatives 6;, j = 1,...,m. Each vector is interpreted as a point representative and
the dissimilarity between vectors and cluster representatives is calculated using the squared
Euclidean distance.

This means that the cost function is defined as:

70) =33 |Ix — 65 (2.80)

i=1 j=1

The cluster representative 6, is the mean vector of the jth cluster. The algorithm is
presented below:

67

e We first choose initial arbitrary cluster representatives 6;(0), j = 1,...,m.
e We repeat:

— Fori=1,..n

* Determine which 6, is closer to x; according to the euclidean distance:
. 2
arg min Hmz - HjH (2.81)
J
% Set b(i) = j, to keep the information of the cluster x; is assigned to.

— End {For}

For j=1,....m

* We update the parameters, i.e. 8}, as the mean of vectors x; which have
been assigned to cluster j (i.e. b(i) = j).

— End {For}.
e We repeat the procedure until there is no change in 6, for every j =1,...,m.

The algorithm converges and gives compact clusters. It is important to observe that
there is a dependence of the final clustering on the initialization of the K-means centroids
0;, though if the features are well selected, this dependence is restricted.

Although K-Means is a very popular algorithm, and easy to understand and implement,
it has some limitations. Since the clusters’ centroids are updated using the mean value,
the resulting clusters have a circular shape. However, this is not always the case; the data
distribution doesn’t necessarily have a circular form. Also, the time complexity of K-Means
is O(n?), which isn’t very suitable for large applications. The next algorithm we are going
to present is distribution-based, rather than distance-based. (Theodoridis and Koutroumbas
(2009))

A modification of typical K-Means algorithm, called Mini-Batch K-Means, uses subsets
of randomly selected samples (mini-batches) in each training iteration to reduce the amount
of computation needed for convergence of the algorithm.

2.7.1.2 Gaussian Mixture Models

This is also a clustering algorithm that optimizes a cost function. In general, it belongs to
the family of Mixture Decomposition Schemes, an algorithmic family based on the Bayesian
philosophy. We assume that there are m distinct clusters Cj, j = 1,...,m underlying the
data set. Each feature vector x; belongs to a cluster C; with probability P(Cj|x;). In this
sense, we can state that each point x; can be derived from any of the j distributions with
probability P(C}):

m

p(@) =Y p(x|C))P(C)) (2.82)

J=1

where >, P(Cj) = 1 and [, p(x|Cj)dx = 1. It can be shown that this model can
approach any continuous probability distribution, if the number of mixture components m
is appropriate and suitable parameters are chosen.

A feature vector x; is appointed to cluster Cj if

P(Cjla;) > P(Chlmi), k=1,.om, k#j (2.83)

68

So, our goal is to calculate all P(Cg|x;), k = 1,...,m and find j; = argmax, P(Cj|x;),
for every i = 1,...,n. Using the Bayes probability rule:

p(xi|Cj)P(Cy) _ plai|Ch)P(C))
p(e;) > i1 p(@:| C) P(C))

This means that we basically need to calculate p(x;|C;)P(Cj) for every j = 1,...,m.
The first step is to choose a set of p(x;|C;) in parametrical form, i.e. p(x;|C};0) and then
we have to use an algorithm to calculate both 8 and P(C}), j = 1,...,m. For the solution
to this problem we need to employ iterative algorithms, since we have no information about
the mixture component (or cluster) from which each sample comes.

So, our initial full data set consists of pairs y =(z;, C;), i = 1,...,n, where Cj is to be
found. The vector of unknown parameters ©7 consists of @ and the unknown probabilities

P = [P(C}), P(Cy),..., P(Cp)]:

P(Cyl) = (2.84)

of = [pT,PT|T (2.85)

In this kind of problems, where Cj is unknown, we can’t just calculate 8 with Maximum
Likelihood Estimation (MLE). More specifically, if we assume that y,, i = 1,..., N are
independent, the goal of MLE is to maximize [[;; p(y;; 0), or > i In(p(y;;0)) so, the
MLE of @ is:

(2.86)

However, we don’t know the full observations y;, which means that now we don’t know
the exact p(y;; 0). That’s why we are going to maximize the expected value of p(y;; 0), with
an iterative algorithm called Expectation Maximization. We first initialize the parameters
©(0). Then, each iteration of the algorithm consists of 2 steps.

In the Expectation Step t 4+ 1 we calculate the expected value of the log-probability
(assuming that y; are independent and taking into account ©(t)):

Q(O;0(t)) = E[Y In(p(xi, C;;0))| X, ©(t)]

i=1

= Eln(p(xs, Cj; 0)|X, ©(t))] (2.87)
1

3

i

=33 PCylas @@)n(p(xi, C;:0)) (2:88)

i=1 j=1

3

Since

p(wi, Cj; 0) = p(xi|Cj; 0) P(C)) (2.89)

Equation 2.88 can be written as:

) => > P(Cjlai; O))In(p(x:|C;; 0) P(Cy))

i=1 j=1

Now, in our case, we want to derive m Gaussian mixture components, where each one
has parameters p;, 35, where 3; is assumed to be a diagonal covariance matrix ¥; = 0]2-1'

69

for simplicity reasons. So, 8; = [u;,0;] and the probability distribution p(x;|Cj;) is
defined as:

2
Pl C;:6) = ezl) (2.90)

—————ex
(27raj2)l/2 p(207%

So, now the final equation of the Expectation step can be written as:

Q©:6(1) = 33 P(Cle 00 - inc? -

@i — g ||° + 1nP(Cj)> (2.91)
i=1 j=1

b |
2012

We are now proceeding to the Maximization Step, whose goal is to maximize Q(©; ©(t))
with respect to p;, O'JQ- and P(Cj). This means that p;(t + 1) is given by:

0Q(0;0(t))

=0 2.92
o (2.92)

which results in:

- SBUEE

In a similar way, we have:

S P(Cilai © (1) |2 — p(t+ 1)

oi(t+1) = ST P (C i O(1) (2.94)
P(C))(t+1) = jbipwsci; o) (2.95)
where -
P(Cjlas; ©(1) = L (x"if(z;%)g()cﬂ(t) (2.96)
P O(1) = f;:p(wi\cj; 0()P(Cy)(1) 2.97)

The algorithm terminates when H@(t +1)— @(t)H <'¢, where || - || is an appropriate
norm and € a small user-defined constant.

After the last iteration, we will now know P(Cj|x;) for each ¢ and j, so vectors are
assigned to clusters according to this probability.

This algorithm takes into account not only the mean, but also the variance of the data,
which makes it more flexible in the shape of data they can group. It can also be interpreted
as a soft clustering algorithm, since for each vector, we have a probability of it belonging
to each cluster. These are two important advantages, compared to K-Means. On the
other hand, it is more complex to understand and to implement than K-Means. As far as
time complexity is concerned, it is O(nmD?3), where D is the problem dimension. This
means that GMM can’t be efficiently used for high-dimensional tasks. (Theodoridis and
Koutroumbas (2009))

70

2.7.1.3 Agglomerative Clustering

Agglomerative clustering is a type of Hierarchical clustering. Hierarchical clustering
algorithms have a different philosophy compared to the clustering methods we have already
presented. They produce a sequence of nested clusterings, instead of a single cluster. A
clustering $; containing k clusters is said to be nested in the clustering Re containing r < k
clusters if every cluster in Ry is a subset of a set in Ry. At least one cluster of R, is a
proper subset of o, in which case we write 1 C Rs.

In agglomerative algorithms, the initial clustering Ry consists of n clusters, each con-
taining a single vector x;. At the first step, R; is produced, for which ¢ C 3y holds, by
merging two of Ry’s clusters. The algorithm proceeds until a unique cluster is produced,
which contains all feature vectors x;. If we define the desired number of clusters, m, the
algorithm terminates after n — m steps (of course m < n).

We are now going to present the general agglomerative scheme. We define as g(Cj, Cj) a
function for all pairs of clusters, measuring the proximity between C; and C}. For example,
it is common that the minimizing of variance of merged clusters is chosen as the proximity
criterion, which means that g is the function that calculates variance (dissimilarity function).

More specifically, the algorithm is presented below, where ¢ denotes the level of hierarchy:

e Initialization:

— Choose Ry = {C; = ;i = 1,...,n} as the initial clustering.

—t=0
e Repeat:
—t=t+1

— Find the pair of clusters C}, C, among all pairs C.., Cs of J;_1 such that:

min, s g(Cr, Cs), if g is a dissimilarity function

9(Cj, Cy) = (2.98)

max, s g(Cr, Cs), if g is a similarity function

— Define the new cluster C; = C; U C}, and update the clustering R = (%1 —
{Cj, C}) U{Cq}-

e Until all vectors lie in the same cluster, or a number of clusters m is predefined, in
which case until we reach n — m steps.

A disadvantage of nested clustering is that in case a "poor" cluster has occurred in an
early stage, it can’t be corrected or improved in the next steps. Time complexity of a naive
implementation of this algorithm is O(n?), though using the most suitable data structures
and other optimizations can reduce the complexity to O(n?). An advantage of this algorithm
compared to K-Means and GMM is that it doesn’t require a random initialization, like the
other two, and thus it results in a deterministic clustering. (Theodoridis and Koutroumbas

(2009))

2.7.1.4 Deep Embedded Clustering

Deep Embedded Clustering is a relatively new approach to clustering, introduced by
Xie et al. (2016). Its goal is to efficiently produce meaningful clusters and simultaneously
improve the pattern representations used for the clustering, using an iterative scheme. We
define the problem as follows:

71

We have a set of n points z;, {z; € X}, that we want to organize in k clusters. Each
cluster is represented by a centroid pu;, j =1, ..., k. Instead of clustering the points directly
in feature space X, we transform the feature vectors to a latent space Z using the mapping
fo : X = Z, where 0 are the learnable parameters.

This mapping is successfully learned and applied by an autoencoder (see Section 2.5.4).
So, DEC basically consists of the following two steps:

1. Initialize the parameters and clusters centroids by training the autoencoder

2. Optimize the parameters and clusters centroids by iterating between computing an
auxiliary target distribution and minimizing the Kullback-Leibler Divergence.

Step 1 is quite straightforward; the training of an autoencoder involves minimizing a
reconstruction loss function. In this way, the parameters 8 of the autoencoder are initialized.
Then, we use the derived representations and the K-Means algorithm to generate a clustering
and get the cluster centroids uj;, j = 1,..., k.

Step 2 is basically an iterative algorithm which alternates between two steps:

1. We want to create a soft assignment of each pattern (more specifically, each embedded
point) to the available clusters. To achieve this, we have to use a similarity metric. The
core of this metric is to use the family of Student’s t distribution, so the assignment
is done based on:

(1+ |l — ") !
(U4 ||z = e %)-1

where z; = fg(x;) € Z is the embedded representation of z;. It is obvious that g¢;;
can be interpreted as the probability of assigning pattern i to cluster j. This makes
sense because, if the embedded representation z; is close to cluster centroid p;, their
Euclidean distance will be small and thus the numerator of g;; will be large, indicating
that pattern ¢ belonging to cluster j is very likely.

2. We now want to refine the pattern latent representations and the resulting clusters
by minimizing a Kullback-Leibler Divergence loss function in order to learn from
high confidence assignments. For this purpose we need two distributions; the pattern
distribution, modeled with ¢, and a target distribution. So, our loss function between
our assignments ¢; and an auxiliary target distribution p; is:

Dii
L=KL(P||Q) =) Zpijlogq# (2.100)
N) i
i
The last pending issue is the selection of distribution p;, which should satisfy some
desired properties. It would be beneficial if it could improve cluster purity by
strengthening the predictions and emphasize mainly the points that are assigned with

high confidence. Taking these into consideration, the proposed target distribution
(Xie et al. (2016)) is:

b= 4/ 1
Y Zj’ q@?j//fj’

where f; =), ¢;j are soft clusters frequencies. This choice of KL Divergence and p
distribution is essential, since it is empirically shown that they guarantee a greater
contribution of points closest to the cluster centers (with higher ¢;;) to the gradient
E%’ thus ensuring an emphasis on high confidence predictions. (Xie et al. (2016))

(2.101)

72

uonosnIsUCIal

0000
(elefe)
(000

(000000]
000000

L = KL(PJ|Q)

0000
000]
[000]

(000000)]

DEC

Figure 2.13: Deep Embedded Clustering algorithm. (Xie et al. (2016))

For the optimization of the parameters 6 and the cluster centroids p; we use a gradient
descent procedure (see Section 2.3.2). The gradients g—i are backpropagated to update
the weights of the autoencoder network, whereas centroids p; are updated using gTLj’ The

iterative scheme described is terminated when the percentage of cluster assignments that
change in each iteration is below a certain threshold.

2.7.1.5 Semi-supervised Deep Embedded Clustering

Up to now, we have presented a completely unsupervised clustering procedure. Now,
the goal is to further improve the resulting clustering by using human intervention in the
training procedure. One way of doing so, is to use partially annotated data in the form of
pairwise constraints. This means that we have some information about pairs of patterns
which are manually annotated as to whether or not they should belong to the same cluster.
These pairwise constraints can lead the direction of clustering and embedding. (Ren et al.
(2018))

For storing these constraints, we employ a square matrix A (NxN), where N is the
number of training samples. This matrix contains must-link and cannot-link connections
between patterns. Must-link means that the two patterns should be assigned to the same
cluster, whereas cannot-link means that the two patterns should be in separate clusters.
For each element a;; we have:

1, if 4 — 7 must-link
a;; = 4 —1, if i — j cannot-link (2.102)
0, if we have no information about ¢ — j
This information has to be integrated in the loss function, which will now consist of
two terms: the KL Divergence and a term regarding the pairwise constraints. The second
term is set bearing in mind that two patterns which are supposed to belong to the same

cluster should have close representations in the latent space, in contrast to cannot-link
pairs, whose representations should lie further away. The new loss function is:

N N
1
L=KLP[Q) + A5 > > aijllz — 2| (2.103)
i=1 j=1

where A is a user defined constant which indicates how much impact the second term will

have on loss computations. This term can be interpreted as follows: If two patterns ¢ and j
are connected with a must-link constraint (a;; = 1), 2; should be close to z;; otherwise, L

73

will increase. On the other hand, if ¢ and j are connected with a cannot-link constraint
(a;j = —1), z; should be far from z;, so that the loss can be significantly reduced.

ﬂ AR il gt T paimisacunsrrainfa
' A 01 0

| ~ I I.“;'.f '_Jl
: : E) or_i___u
: e_o @ (

! o @ |0 U

! ® ., @ =

i O] q

ll X . 1

LY /I
\._‘ ________________ -

Figure 2.14: Semi-Supervised Deep Embedded Clustering algorithm. (Ren et al. (2018))

The backpropagation of the loss in the network and the cluster centroids updates have
no difference compared to DEC. (Ren et al. (2018))

2.8 Evaluation Metrics

In this section we will go through some useful evaluation metrics used in the next
chapters.

2.8.1 Confusion Matrix

Confusion Matrix is very helpful in classification evaluation tasks. In particular, it
examines the confusion that might occur between classes, that’s why it’s called Confusion
Matrix. It is a square matrix Nx/N, where N is the number of classes of the classification
problem.

Each element of the matrix A[i, j] contains the number of samples whose true class
is 7, but they were assigned to class j. For example, suppose that we have a two-class
classification problem, and as a result a 2x2 confusion matrix (see Figure 2.15). T'P stands
for true positive and T'N for true negative. It is obvious that elements of the diagonal of
the matrix correspond to the right model predictions, whereas the rest of the elements to
wrong predictions. F'P stands for false positive predictions and F'N for false negative.

The most important metrics calculated from this matrix are recall, precision and
accuracy.

74

Predicted classes

Negative Positive
0 1
Negative TN FP
0
Actual '
classes
Positive FN TP
1

Figure 2.15: Confusion matrix for a binary classification problem.

Recall Recall R; of class i is the percentage of patterns of class ¢ that were actually
predicted to belong to class 7. For a multiclass classification problem:

_ Al
Zj:l Ali, 7]
In the special case of 2 classes, R; = TPZ—%' Recall provides a measure of missed

positive predictions, and thus of the coverage of the positive class. It is a suitable metric

when false negatives are associated with a high cost (for example, in case of patient diagnosis,
false negatives are dangerous for the health of the patients).

R; (2.104)

Precision Precision P; of class i is the percentage of all patterns that are predicted to
belong to class ¢ that are actually of class 7. For a multiclass classification problem:

AL i]
Sy Aljd]

In the special case of 2 classes, P, = TPZ%. Precision is a measure of the correct
positive predictions that were made, so it is an appropriate measure for cases where false
positives are highly unwanted (for example in spam detection, if an e-mail is falsely classified
as spam, the user might lose important e-mails).

Precision and Recall are metrics that focus on different sides of the problem; our goal is
to generate a metric that provides a more general evaluation of the classification task. This
is partially achieved by accuracy.

P, (2.105)

Accuracy Accuracy Ac is the percentage of correctly classified patterns. For a multiclass
classification problem:

Ao = Zim Al (2.106)

N

In the special case of 2 classes, Ac = w.

Though Accuracy takes into account both false positives and false negatives, it is
also significantly determined by true negatives, which in the majority of the tasks aren’t
particularly important. As a result, we often use the FI1-score of precision and recall, which
is their harmonic mean:

75

2-P-R

F1l=——
P+ R

In case of multi-class classification problems, F1 can be calculated for each class, and

then the result is averaged. An issue arising in these cases is which average metric we
should employ.

(2.107)

e Micro F1 score: We calculate the total TP, FP and FN and then directly calculate
the F1 score. This approach doesn’t favor any particular class.

o Weighted F1 score: For each class i, we calculate the F1 score F; and then their
weighted average, where each weight w; depends on the number of true labels of each
class:

N
F1=> wF, (2.108)
=1

where N is the number of classes. As a result, this approach favors the class with the
most samples.

e Macro F1 score: We calculate the F1 score F; for each of the IV classes and then just

their classical average:
N

F1=>)F (2.109)

In this case, minority and majority classes are equally represented, which makes this
approach more suitable in problems with highly imbalanced datasets.

(Theodoridis and Koutroumbas (2009))

2.8.2 Metrics for time segments evaluation

The confusion matrix and the aforementioned metrics can also be used for the evaluation
of tasks that aren’t clearly classification problems. In our case, if we want to effectively
and accurately compare events detected in a signal by our algorithms to the actual events
(ground truth), we have to find a way to adjust the confusion matrix idea to our problem,
which is a time segment comparison. More specifically, each event is described by a start
and end time; so, for a more complete approach, we do this evaluation on a temporal and
on an event basis.

2.8.2.1 Temporal evaluation

Temporal evaluation refers to per-time unit comparison of time segments. We split
the segments to discrete time units, which are chosen depending on the problem and
the resolution we want to examine. We interpret the time segments comparison as a
classification task of each time unit into two categories (event or no event). Then we
calculate the precision and recall rates by comparing each unit of the detected events to
the ground-truth events. Their harmonic mean is the temporal F1 score.

2.8.2.2 Event evaluation

To compare detected to ground truth events, we will again fill a 2x2 confusion matrix,
though without true negatives (T'N).

76

e True positives (T'P) are the detected events whose time interval overlapped with one
actual event.

e False positives (F'P) are the detected events that did not have an overlap with an
actual event (falsely detected).

e False negatives (F'N) are the actual events that weren’t detected (missed), i.e. didn’t
have an overlap with a detected event.

We then calculate precision and recall and their F1-score (event F1-score).
Another evaluation approach is to measure the event miss rate and the false discovery
rate, defined as:

FN
miss rate:iTP+FN =1-R (2.110)
FP
false discovery rate = TP+ FP =1—-P (2.111)

77

78

Chapter 3

Vocalization Detection

Chapter 2 provided fundamental information, necessary for understanding the core
of our methods in both signal processing and machine learning. We are now going to
focus on AMVOC’s functionalities, starting from the first step to AMVOC’s processing
pipeline, which is to detect the time segments that contain a vocalization. This is achieved
by inspecting and processing information from the spectrogram of the signal. The major
difficulty regarding this task is to discriminate between actual vocalizations and noise (see
Figure 3.1a and 3.1b).

Vocalization

Frequency (kHz)
Frequency (kHz)

0 40 80 120 0 40
Time (ms) Time (ms)

(a) An actual vocalization (b) Noise.

Figure 3.1: Examples of two different segments of the spectrogram, from 30-110 kHz. Here,
an actual vocalization (a) and a noisy, high-energy segment (b) are displayed.

We have developed two separate tools for vocalization detection, the first one working
on offline mode and the second one on online mode. Basically, offline mode means that we
get a pre-existing recording and process it to determine the time segments corresponding
to vocalizations, whereas in online mode the recording and detection procedures take place
simultaneously.

3.1 Offline USV Detection

In order to detect the mice USVs, we first compute the spectrogram of the whole
recording. This is done by splitting the signal to non-overlapping short-term windows
(frames) of duration w = 2 ms (time resolution) and calculating the Short-Term Fourier
Transform (STFT) for each time frame. Frequency resolution f, is calculated as:

79

f} = (3'1)

This means that in our case, if w = 2 ms, f, = 0.5 kHz. In simple terms, the ability of

the 2-dimensional (time & frequency) spectrogram representation to discriminate between
different frequency coefficients is 0.5 KHz (i.e. frequency resolution). This is less fine-scaled
than is typical for human speech analytics methods, but because mice vocalizations usually
range in the frequencies 30-110 KHz, this resolution is more than sufficient.

As soon as the spectrogram is extracted, the USVs are detected on a time frame-basis,

using two separate criteria, time-based thresholding (TT) and frequency-based thresholding
(FT), that take into account the values of the distribution of the signal’s energy at the
different frequencies (Figure 3.2). Both of these criteria are based on the energies, however
they differ in the way the thresholding criteria are calculated and applied. The details of
the two criteria are as follows:

e Time-based thresholding (TT): This involves a simple temporal thresholding of the
spectral energy values. To do this, for each time frame, we calculate the spectral
energy by summing the spectrogram values at each frequency. We do this procedure
for the frequency range of interest, which is, as mentioned above, from 30 kHz to
110 kHz. If we denote the spectrogram value at time frame ¢ and frequency j as Fj;,
spectral energy S; is calculated as:

110kH =z

S= > By (3.2

j=30kHz

where the step of j is equal to 0.5 kHz. We then compute a dynamic sequence of
thresholds for the spectral energy. In particular, for each frame ¢, for which we have
extracted the spectral energy S;, we compute the dynamic threshold:

N-1 K-1
120550 55 1250 Siy
2 N 2 K

T, (3.3)
where N is the number of time frames, so the first term refers to the mean spectral
energy. In the second term, K is the size of a moving average filter in seconds. Here
we use K = 2 seconds, which is convolved with the sequence of spectral energy values.
In other words, the dynamic threshold T is defined at each frame ¢ as the average of
the current spectral energy (5;) and the moving average of the spectral energies of
the last K frames.

Frequency-based thresholding (FT): This second criterion is associated to applying
a thresholding rule, based on the per-frame distribution of energies on the different
frequencies. A simple dynamic threshold at each time frame of the spectrogram (as
described above) is not enough, because there are also time frames where high spectral
energy occurs due to noise. The spectral energy value in these high-noise time frames
may surpass the threshold, but this does not correspond to any vocalization (Figure
3.1a and 3.1b). Our goal is to filter out these false positive vocalizations. For example,
in Figure 3.1b, in the noisy segment each time frame surpasses the spectral energy
threshold (criterion 1), but not the second applied threshold (criterion 2). It is easy
to observe that in the vast majority of cases, noise appears as high energy values,
spread across a large frequency range in each time frame (Figure 3.1b), compared to
the time frame energy distribution in vocalizations, which is concentrated in a small
frequency range in each time frame (Figure 3.1a). Our filtering criterion was to keep

80

criterion 1 (c1)
criterion 2 (c2)
and(cl1,c2)

Figure 3.2: Examples of detection criteria: Demonstration of the twofold thresholding
application. The green bars of the first two lines show the detected vocalizations by each
criterion, whereas the third-line green bars are their intersection. Segments were spliced for
purposes of visualization.

only time frames where the peak energy value P; is larger than the mean spectral
energy (M;) of a 60kHz range around the frequency of the peak energy (truncated if
the range goes below 30kHz or above 110kHz). If E;; denotes the energy value at
time frame 7 and frequency j, the equations describing the two quantities above, are
the following:

P = Ejj (3.4)

max
§=30,...,110kH =
1 min(p; +30kH 2,110k H z)
M; = N > Eij (3.5)
j=max(p; —30kH z,30kH z)
where the step of j is equal to 0.5 kHz and, as a result, Ny = 2 - (min(p; +
30kHz,110kHz) — max(p; — 30kHz,30kHz)), and p; is the frequency of the peak
energy at time frame i, i.e. p; = arg max(£;;).
J
Both criteria TT and FT are applied on each short-term frame ¢ as follows: the threshold
conditions require that the spectral energy is higher than 50 percent of the dynamic threshold
computed in step 1 and that the maximum energy is larger than the mean spectral energy
by a factor of 3.5. Let V be a sequence of frame-level vocalization decisions, i.e. V; =1
if time frame ¢ is part of a vocalization and V; = 0 if not. Then the above rule can be
expressed as follows:

Vi = (3.6)

{ 1 if (S;>t-T;) AND (P, > f-M;), wheret=0.5and f = 3.5
0 else

Both factors t and f have been selected after experimentation and can be considered as
configurable (see Section 3.3).

After the twofold thresholding rule has been applied as described above, we apply a
smoothing step. More specifically, after the thresholding the sequence V' of 1s and 0s occurs,

81

this sequence is smoothed using a moving average filter with a duration of 20 ms, so that
the neighborhood of the possible vocalization is taken into account:

L-1
ijo Vij
L

where L is the size of the filter. As a final step, if successive positive frames found in F
are separated by <11 ms, they are concatenated to form segments of mice vocalizations.
Vocalizations of duration <5 msec, are filtered out, since practical evaluation showed that
in most cases these are false positive detections.

F, = (3.7)

3.2 Online USV Detection

In addition to the offline detection that is standard for most USV analyses, we also
developed an online version of AMVOC (i.e. using streaming sound recorded from the
computer’s soundcard). This is achieved by following the aforementioned analysis steps,
though these cannot be applied to the whole signal at once, since, in a real-time setup,
the signal is recorded simultaneously with the detection procedure. For this process, we
wanted the processing interval to be as small as possible, in order to get the detected
vocalizations fast. On the other hand, if we process the signal more often, the probability of
cutting a vocalization in the border between two successive blocks is increased. Additionally,
the signal statistics that need to be calculated for the detection steps described in the
preceding section will become less robust if they are computed on smaller segments. We
therefore chose to process the signal in blocks of a fixed duration, which for our case has
been set equal to 750 ms. A 750ms window provides a long enough period for multi-syllable
sequences of longer (>100ms) USVs to be captured, while not being so long of a window
that feedback could not be provided quickly enough during a behavioral experiment.

The main algorithmic difference between the online and the offline detection is the
calculation of the dynamic threshold. If we denote k as the current block, the dynamic
threshold is the same for all frames belonging to that block and it is computed as follows:

k
" B
Ty, = 0.329—];] +0.7- By, (3.8)

where B is the total spectral energy block in the 30-110 KHz frequency range (as
described in Section 3.1). In simple terms, the block’s threshold is computed as the
weighted average of the mean of the spectral energies of the blocks recorded up to that
point and the current block’s spectral energy. The exact weights (0.3, 0.7) were chosen
after extensive experimentation. The sequence of thresholds that occurs is then multiplied
by the threshold percentage ¢, exactly as in the offline method (Section 3.1). Another
difference between the offline and the online methodologies is that for the online approach,
we have selected to use an overlapping block. In particular, we always process the newest
750 ms recorded segment plus the last 100 ms of the previous block. In this way we add a
minor computational delay (as we repeat the process for 13% of the data), and we manage
to eliminate the errors caused by USVs being split between two successive blocks, and
therefore lost by the detection method. The rest of the procedure is the same as the offline
method and it is applied every 750 ms.

3.3 Vocalization Detection Configuration

As mentioned earlier, the two parameters which determine the vocalization detection
procedure is the threshold percentage t and the factor f; this would mean that energy of a

82

60 kHz area M; around the frequency of peak energy p; must surpass peak energy F; by a
factor of f. The user can change these values according to the expected recording conditions
and application requirements. Parameters used in our current study were optimized to
include small events while minimizing false positives. To select these parameters, we used
Dataset D1 (Figure 3.3). As expected, increasing either of these parameters results in
a more strict thresholding, which means that temporal precision of detected increases,
and temporal recall decreases. The opposite is observed when either of the parameters is
reduced. From a more qualitative point of view, increasing the threshold might result in
splitting a vocalization with relatively low peak energy in intermediate time frames. On
the other hand, a very low threshold can merge separate vocalizations.

" '_#._/ o
0.82
0.80
w — 0.80
c o7
= 078
v
"'6 078 076
0.74 0.74
—_
o\o 0.72 0.72
~ 070
3 0.0 0.2 0.4 0.6 0.8 1.0 3.0 3.2 3.4 3.6 3.8 4.0
© Thresholds Factors —@— precision
= recall
s C D
O 0.86
o 0.825
0.84
< 0.800
—-o——0—0 0.82

0.775

Online

0.750

0.78
0.725

0.76
0.700 0.74

0.675 0.72

0650 070

0.0 0.2 0.4 0.6 0.8 1.0 3.0 3.2 3.4 3.6 3.8 4.0
Thresholds Factors

Figure 3.3: Effect of changing parameters on precision and recall. A and B) Changes in
precision and recall during offline detection when thresholds ¢ and factors f are changed. C
and D) Changes in precision and recall during online detection when thresholds and factors
are changed. Optimal threshold and factor were determined to be the same, 0.5 and 3.5,
respectively, in both detection modes.

3.4 Experimental evaluation of the AMVOC detection method

Our objective was to design and implement a robust (in terms of detection performance)
but also computationally efficient USV detection method, as our vision was to build a
real-time and online pipeline. In fact, AMVOC’s main value, compared to other methods,
lies in the fact that it can also be used for online vocalization detection. We compared our
proposed detection methodology with MSA (Mouse Song Analyzer-2 versions) (Arriaga
et al. 2012; Chabout et al. 2015) and cite Peter DOI), MUPET (Van Segbroeck et al. 2017),
VocalMat (Fonseca et al. 2021), and DeepSqueak (Coffey et al. 2019). Due to the vast range
of possible parameters that could be tuned in each method, we used default settings, unless
there were other documented settings that were used (Chabout et al. 2017). In order to
evaluate and compare the aforementioned methods, we used Dataset D1, which consists of
9 audio segments of 5-10 seconds each, containing 245 annotated syllables in total (see 1.5).

83

To evaluate the range of experimental contexts recordings could be taken from, we split
the recordings into two categories: normal and noisy. Normal parts of the recording are
the ones where the vocalization detection is relatively straightforward, because the energy
easily surpasses the background energy. Noisy parts contain background noise, which makes
the detection more difficult and ambiguous, even for the human eye observing the raw
spectrograms. The evaluation metrics are calculated separately for the two categories.

For evaluation and comparison we adopted two performance metrics, the temporal F1
and the event F1 score (see Section 2.8):

AMVOC outperforms the other methods with respect to event F1 score, both in clean
and noisy segments of the recordings, whereas MSA2 and DeepSqueak performed slightly
better than the others with respect to temporal F1 score (Table 3.1), largely due to the
more successful detection in the noisy parts of the recordings.

AMVOC
F1 score offline | online | MSA1 | MSA2 | MUPET | VocalMat | DeepSqueak
Normal 84 85 46 88 85 91 83
Temporal | Noisy 67 68 23 71 53 57 76
Average | 75.5 76.5 34.5 79.5 69 74 79.5
Normal 97 97 66 94 93 90 93
Event Noisy 84 83 33 72 57 58 81
Average | 90.5 90 49.5 83 5 74 87

Table 3.1: F1 scores of our proposed method and other methods.

Using Dataset D1, we also assess the trade-off between processing speed and detection
(Table 3.2).

Temporal Accuracy Comparisons

100 Clean Segments 100 Noisy Segments 100 Overall Temporal Accuracy
0, ;ﬂ . ° %0 %0
— Gl ° MsA2 ~ —~
& 80 DeepSqueak AMVOC MUPET £ 80 8 80 g (4
o o @ ® DeepSqueak o MSA2
5 70 s 70 DeepSqueak o S 70 VocalMat AMvVOC °
S 3 ° MSA2 3
a a e @ MUPET
T 60 o 60 5 o 60
°] VocalMat [J ®
® 5 S 50 5 50
é_ cé MUPET é
MSAL
g 40 g 40 g 4
30 30 30
i MSAL
2 5 10 15 20 25 30 35) 5 10 15 20 25 30 35 2 5 10 15 20 25 30 35
Realtime Processing Ratio Realtime Processing Ratio Realtime Processing Ratio
(Data/Time) (Data/Time) (Data/Time)
(a) Temporal F1 score vs Realtime Processing Ratio.
Event Accuracy Comparisons
100 Clean Segments 100 Noisy Segments 100 Overall Event Accuracy
® °
o AMVOC o
90 o MSA2 90 90 L]
k MUPET
Vocalmay DeepSauea UPE ° o AMVOC &
$ 80 = 80 ® AMVOC 8 ®0 L MSA2
o @ DeepSqueak A P °
5 70 s 70 S 70 \vocalMat MUPET
£ 2 MSA2 3
T 60 MSAL T 60 T 60
o o ° ° po
] 3 VocalMat MUPET @
2 50 2 50 2 50
MSAL
40 40 MSA1 40
39 5 10 15 20 25 30 35 30 5 10 15 20 25 30 35 39 5 10 15 20 25 30 35
Realtime Processing Ratio Realtime Processing Ratio Realtime Processing Ratio
(Recording duration/Processing time) (Recording duration/Processing time) (Recording duration/Processing time)

(b) Event F1 score vs Realtime Processing Ratio.

Figure 3.4: Accuracy of AMVOC and Other Methods A-B) Event and temporal F1 score
vs Realtime Processing Ratio of different USV detection methods compared against our
ground truth data in different qualities of recordings.

84

Methods Real-time Processing Ratio H

MUPET 324
MSA2 29.9
MSA1 28.1

AMVOC 21.2

DeepSqueak 8.2
VocalMat 4.3

Table 3.2: Real-time Processing Ratio of all compared methods. Real-time processing ratio
is defined as r = ¢, where d is the duration of the recording and p its processing time
and is shown for each method. The processing time is calculated as the time needed to
just detect the USVs. The experiments carried out to compute the real-time ratio were
executed for 5 different recordings, 3 times for each, and the average time for each method
was calculated. Obviously, a high real-time processing ratio means that a small processing
time is required in order to detect the vocalizations of a certain signal (e.g. 7 = 30 means
that the respective method is 30 times faster than real-time, meaning it takes 1 minute to
process 30 minutes of audio information).

AMVOC had an intermediate real-time processing ratio to detect the vocalizations
(Table 3.2). MUPET was the fastest method, whereas VocalMat and DeepSqueak were the
slowest (Table 3.2). The reason for the latter two methods being slower is likely due to
their image processing steps used to detect USVs. It is also meaningful that we take into
account both of the two aforementioned metrics, since it may be important for particular
experimental requirements that a certain method combines accurate and fast detection.
We compared the average F1 score with the real-time Processing Ratio for both temporal
and event F1 scores (Figure 3.4a and 3.4b). AMVOC, DeepSqueak and MSA2 achieved
the highest temporal and event F1 score, but AMVOC had a considerably better time
performance relative to DeepSqueak and a better event F'1 score in noisy segments compared
to MSA2.

85

86

Chapter 4

Deep unsupervised learning for
mouse vocalization clustering

The goal of this chapter is to present a method for unsupervised clustering of the
detected vocalizations, by using a convolutional autoencoder, from which features are
derived. Our unsupervised approach, both for feature extraction and, of course, for the
clustering, is chosen bearing in mind that we wanted to explore new, possibly meaningful
groupings of USVs, without any limitations imposed by humans. In this Section we describe
the procedure of building and training the autoencoder.

4.1 Unsupervised learning pipeline

The procedure consists of all the steps described in Section 2.2, adjusted to our specific
problem. To better clarify and organize the procedure we followed, we will parallelize it
to the system design pipeline. The first stage refers to the sensor, with in our case is he
microphone since it provides us with the recorded signal. This signal can then be used and
processed for feature generation/extraction.

4.1.1 Feature generation

For this stage, we don’t use the raw signal, but the spectrogram calculated from the
signal, as we have already mentioned. The spectrogram is necessary for the vocalization
detection (see Chapter 3). After the vocalization detection, we have a set of spectrogram
segments (images), each one corresponding to a syllable and our goal is to use these images
to extract features that can best both discriminate and group vocalizations. In order to
achieve this, we use a convolutional autoencoder (see Section 2.5.4.2).

4.1.1.1 Proposed autoencoder architecture and training

To train the autoencoder, we used Dataset D2 (see Section 1.5) and we calculated the
spectrogram for each of its recordings. This dataset contains 22,409 detected syllables.
Each vocalization is represented by a spectrogram in the detected time interval and defined
frequency range. Therefore, these spectrograms vary in width, which corresponds to the
respective syllable duration. So, we have to specify the width of the images that we are
going to feed to the autoencoder, since the frequency y axis is the same for all spectrograms:
80 kHz range (from 30-110 kHz) and 0.5 kHz frequency resolution, resulting in a dimension
of 160. Selecting a fix sized time dimension for our spectrograms requires taking into
consideration a tradeoff between losing important information from the larger spectrograms
(if we crop them) and reducing the importance of the shape and details of the smaller

87

spectrograms (if we zero-pad them), which are more numerous than large spectrograms
(Figure 4.1).

In order to decide the final fix size of the spectrograms to feed the autoencoder, we
plotted a histogram of the initial durations of all the detected syllables in the training set
(Figure 4.1). To ensure uniform sizing, we zero padded small spectrograms, and cropped
larger spectrograms keeping the central part of the image. Based on the histogram we
selected a fix-sized duration of 64 windows since it is larger than both the mean and
the median of the durations (Figure 4.1). Using this size, we noted that it balanced the
information tradeoff mentioned above. It is also a power of 2, which is convenient for
the pooling operations in the autoencoder. This length of 64 frames corresponds to 64
time frames x 0.002 sec/time frame = 0.128 sec = 128 ms. The aforementioned process of
cropping or expanding spectrograms to a fix-sized width of 64 windows leads to spectrograms
of a final resolution of 64 time frames x 160 frequency bins.

Duration of vocalizations in time frames

—— Mean
— Median

800

Number of vocalizations

0 5 50 75 100 125 150 175 200
Time frames

Figure 4.1: Histogram of the duration of the vocalizations in time frames Each time frame
corresponds to a 2 ms duration.

The training set consists of 22,409 images, each one with size 64x160. We fed the images
to the encoder, which is a convolutional neural network with 3 convolutional layers, each
followed by a max pooling layer (Figure 4.2). The first convolutional layer uses 64 filters,
with dimensions 3x3 each.

After that, a max pooling layer decreases the spatial dimensions of the images by a factor
of 2. This means that the output of the max pooling layer is a 32x80x64 representation.
The next convolutional layer consists of 32 filters, with a max pooling layer generating an
output with dimensions 16x40x32. The third and final layer includes 8 filters, and a max
pooling layer, resulting in a convolutional activation map for each image with dimensions
8x20x8. This flattened intermediate representation is the feature vector that uniquely
describes the input image (i.e. the code).

In order for the convolutional encoder to be trained, and because the task is unsupervised,
the second part of the autoencoder (the decoder) is responsible for reconstructing the image
we fed to the encoder from the intermediate representation (Figure 4.2). The decoder
reverts the steps of the encoder, using 32, 64 and 1 filter in the last layer. In each decoder
layer, we use filters of size 2x2 and a stride of 2, so that after each layer the size of the
representation increases by 2 and the final output of the autoencoder is an image with the
same size as the original input. After each convolutional layer, the ReLU activation function
(see Section 2.5.2.2) is used, since we want the activation maps to consist of positive values,
except from the last deconvolution of the decoder, where the Sigmoid activation function
is necessary for the reconstruction of the image and the calculation of the Binary Cross
Entropy Loss function, as it outputs a value between zero and one.

88

INPUT 64x160x1 B 32x80x64 B 32xB0x64) 1o 7 6ax160x1

W 16x40x32 | O16x40x32
WEx20x8
’

Encoder Code Decoder
Features
[Intermediate Representation)
== Convolution, ReLu activation = Deconvolution and Deconvolution and
and Max Pooling Relu activation Sigmoid activation

Figure 4.2: AMVOC convolutional autoencoder: Architecture used for the autoencoder in
AMVOC.

Parameter tuning As described above, the basic parameters for configuring our proposed
autoencoder procedure are the following:

o Number of layers of the encoder. We tested a range of different numbers of layers
(2-5 layers). Using 2 layers was too few to effectively learn the complex structure of
spectrograms. More than 4 layers had too many parameters, which slowed down the
training, resulting in a bigger loss, and required more epochs to be trained, while the
final reconstruction had no considerable differences compared to the one from the
3-layer-encoder.

o Number of filters per layer We used the most filters in the first layers (as is typical
for classical neural networks), and reduced the number of filters as we went deeper
in the network. We tested the autoencoder with varying numbers of layers. Fewer
filters resulted in losing information from the images, while more resulted in too many
parameters to be trained. The critical choice we had to make was the number of
filters in the last encoder layer (that also define the size of the code, since the size
of 3rd dimension is equal to the number of filters), the output of which we use as
the representation for the specific image in the clustering task. We tested 2, 4 and 8
filters. Using 8 filters resulted in smaller loss, as expected, although using 4 filters
were enough for the reconstruction of the images, meaning enough features for the
reconstruction were extracted with fewer filters. We selected 8 filters in our final
design in order to ensure that all the details of the various shapes of the vocalizations
are properly extracted. (see Figure 4.3)

o Filter size We experimented with 3x3, 5x5 and 3x5 kernels. A 3x5 kernel appeared
reasonable because of the non-square shape of the images, but a 3x3 kernel gave us
the best results.

e Size of mazx pooling kernels We experimented with reducing the image size by 2 in
both dimensions, or by 2 in time dimension and by 4 in frequency dimension due to
the non-square image. A 2x symmetrical reduction provided better results.

As far as other hyperparameters are concerned, we used the Adam optimizer, with
learning rate equal to 0.001 and batch size equal to 32.

Training epochs were determined experimentally. In fact, 2 or 3 epochs was enough for
a good reconstruction of the images, and loss did not decrease much after 3 epochs (Figure

89

Autoencoder output with 2 filters
in

Autoencoder output with 4 filters
last encoder layer in

Autoencoder output with 8 filters
last encoder layer in

last encoder layer

Frequency (kHz)
Frequency (kHz)
Frequency (kHz)
Frequency (kHz)

0 20 40 60 8 100 120
Time (ms)

Figure 4.3: Examples of image reconstruction with AMVOC’s autoencoder after training,
using 2, 4 and 8 output filters. Data is extracted from the input image (left) and used to
reconstruct the three images (right).

Training loss

0120 1

0115 1

0.110 1

Loss

0.105 1

0.100 1

0.095 -

2 4 G
Number of epochs

[=-
=
=]

Figure 4.4: Effect of the number of training epochs on measured training loss.

4.4). We also did not want to overfit to the training data. Thus, we elected to train the
model for just 2 epochs.

An example of the input and output of the autoencoder is shown in Figure 4.3. The input
comes from a recording that was not used in the training Dataset D2. The reconstruction
is lossy, likely due to our use of an undercomplete autoencoder.

After the model has been trained in the unsupervised manner described above, it is
ready to be used in the feature extraction procedure. An audio file is selected and converted
to a spectrogram, and individual USVs are detected. The raw spectrograms of the USVs are
fed to the autoencoder in batches of 32 and the intermediate representations are derived.
These are the feature vectors. Each flattened feature vector has a dimension of 1,280
(8x20x8) after a dimensionality reduction from a dimension of 10,240 in the initial flattened
vector, since each image started with a shape of 64x160.

90

4.1.2 Feature selection

The next stage of the pipeline is feature selection. We use a Variance Thresholder (see
Section 2.6.1.1) to exclude features with the smallest variance.

After extensive qualitative experimentation, and supposing we have M N-dimensional
feature vectors x;, ¢ = 1, ..., M we selected a threshold equal to:

1o,
u=12 5> 0] (4.1)
j=1

where (7]2 is defined in Equations 2.63 and 2.64 and refers to the variance of feature
J. So, vt is actually the mean of the features’ variances; features with variance less than
v will be excluded, which results in a dimensionality reduction of a factor approximately
equal to 4.

4.1.3 Feature pre-processing

Before we use the features, we use some pre-processing steps.

4.1.3.1 Feature scaling

First, as far as feature scaling is concerned, we chose to standardize them using a
Standard Scaler (see Section 2.6.2.2), in order to make their values comparable and
succesfully handle outliers.

4.1.3.2 Dimensionality reduction

Next, we used PCA to further reduce the dimensionality of the feature vectors. Since
we do not know the number of components beforehand, we choose the smallest number of
components which maintains 95% of the variance of the features before the PCA. Overall,
our goal was to both extract many features from the images using the encoder, so that
details of the images are taken into account, and simultaneously reduce them as much as
possible by ignoring the non-significant features.

The feature extraction pipeline we described uses a deep architecture which learns the
most significant features. However, features can also be extracted from the spectrogram
"manually". We are now going to present a traditional feature extraction procedure,
resulting in so-called hand-crafted features.

4.1.4 Baseline feature extraction

To evaluate the quality of AMVOC’s deep feature extraction and clustering, we wanted
to compare clustering on deep features against clusters derived from hand-crafted acoustic
parameters. The hand-crafted features were measured as follows:

1. We first calculate the spectrogram in the specific time segment that corresponds to
the vocalization and in the defined frequency range (30-110 kHz).

2. We then perform frequency contour detection:

e Detect the position and the value of the peak energy in each time frame. If
we denote the spectrogram value at time frame ¢ and frequency j as E;;, the
equations describing the two quantities above, are the following:

pi = argmax FEj; (4.2)
j=30,...,110kHz

91

F)z' = max Eij (43)

§=30,...,110kH z
e Use a thresholding condition to keep only the points ¢ where the peak energy is
higher than 20 percent of the highest energy value in the specific time interval:

if P; >t - max P;, where t = 0.2, keep point (i, p;) (4.4)
7

e Train a regression SVM to map time coordinates to frequency values, using the
chosen points (7, p;) as training data.

e Predict the frequencies for the same time range. After that, for each vocalization,
a frequency contour c is created, along with a corresponding time vector v, which
matches every frame ¢ to its actual time of occurrence. This estimated ¢ sequence
captures the "most dominant" frequency in each time frame, so we can think of
it as a spectral shape sequence of each mice vocalization.

3. After the frequency contour c is produced, we proceed to the feature extraction step.
We selected 4 different features, all based on the frequency contour:

e Duration of the vocalization d. If we denote the number of frames of which the
vocalization consists as IV:

fi=d=v[N —1] —v|[0] (4.5)

e Time position of the minimum frequency (of the predicted frequencies) (f3),
normalized by the duration of the vocalization:

/' vlargmin,_ _1¢i|—v|0
:Q: [arg —0,..,N—1Ci] [0] (4.6)

fr=-, p

e Time position of the maximum frequency (of the predicted frequencies) (f3),
normalized by the duration of the vocalization:

/ o el — [0
_ v[argmax;—o -1 ¢] — v[0] (@7)

/3 p] p]

e Bandwidth is calculated as the difference between the first and the last predicted
frequency value (f}), normalized by the mean frequency of the vocalization m:
fi _en—1—co

N1,
fa= my = Ty where my = Zi:ﬁ, (e (4.8)

If we interpret the frequency contour as a 2-dimensional graph, where the x-axis corresponds
to time and the y-axis to frequency, the 2nd feature is the x-position of the minimum of the
curve, the 3rd feature is the x-position of the maximum of the curve and the 4th feature is
the normalized difference between y-positions of first and last point (see Figure 4.5). For
example, the last feature can discriminate contours with different slopes. After the features
are extracted, we scale them using a standard scaler (see Section 2.6.2.2).

4.1.5 Clustering

The next step of the system design pipeline is the Classifier design. Since we deal
with an unsupervised learning problem, this stage refers to training a clustering algorithm
using the extracted features, regardless if they are hand-crafted or extracted using the deep
learning pipeline.

92

Spectrogram of syllable Points of max frequency per time window of syllable

120k 120k

100k 100k

80k 80k

60k 60k

Freq (Hz)
Freq (Hz)

40k 40k

LN/ SRR [pSpSo I

/ U

20k 20k

w
Vdecodbaaabocad=

f1
302 302.05 302.1 302.15 302.04 302.05 302.06 302.07 302.08 302.09

Time (Sec) Time (Sec)

Figure 4.5: A syllable (left) and its frequency contour (right), used for the extraction of the
hand-crafted features.

Each cluster should consist of vocalizations that share some common features that allow
them to belong in the same group. Since we wanted the user to be able to choose the
number of clusters, we chose clustering algorithms where we can predefine this parameter.
We selected testing the following clustering methods: Agglomerative, Gaussian Mixture
Models, K-Means, Mini-Batch K-Means and Birch (often used as alternative to Mini-Batch
K-Means).

For this task to be visualized and to give the users the opportunity not only to select
the clustering settings, but also to inspect the resulting clusters and the syllables assigned
to each cluster, we have implemented a user-friendly GUI, where the user can choose one of
these different clustering methods and the number of clusters, in a range from 2 to 10.

Figure 4.6 presents the whole procedure described in the last sections, regarding the
deep feature extraction approach.

Features

Variance
Thresholder
Standard
Scaler
PCA

Clustering
algorithm

Figure 4.6: Overview of deep feature extraction procedure: Flow diagram of the general
procedures used to take image data from USV spectrograms into clusters.

93

Figure 4.7 presents an example of the produced clustering of syllables using the K-
Means algorithm and 6 clusters. For 2D visualization purposes, we have used the t-SNE
dimensionality reduction method.

Clustered syllables

40

20

-30 =20 -10 0 10 20 30

Figure 4.7: Cluster example using deep features with K-Means clustering and 6 clusters.
Each point corresponds to a syllable.

4.1.6 Experimental evaluation of the AMVOC clustering method

The last pipeline stage is the evaluation of the model we have trained (in our case, the
evaluation of the resulting clustering.) Our primary goal is to compare the deep feature
extraction method (see 4) to the baseline feature extraction method (using hand-crafted
features described in Section 4.1.4) by evaluating the derived clustering of the two kinds of
features. We also want to evaluate how well the different clustering methods perform in
grouping vocalizations with common features. To achieve these two goals, we used data
from four different annotators, two of whom are domain experts, and the remaining two are
not. By using the AMVOC GUI, each annotator evaluated the 4 recordings from Dataset
D3. Specifically, the annotators evaluated 3 different clustering setups for each recording:

1. Agglomerative clustering with 6 clusters
2. Gaussian Mixture clustering with 6 clusters
3. K-Means clustering with 6 clusters

In order to ensure impartiality and objectivity, the annotators evaluated the clustering
derived from both feature extraction methods (named as Method 1 for deep features and
Method 2 for hand-crafted features), without prior knowledge of which Method refers to
the deep features or the hand-crafted. Using a scale from 1 to 5, 5 being the best, the
evaluation metrics used are the following:

1. Global annotations: The annotator defines a score to describe how successful the
whole clustering is.

2. Cluster annotations: The annotator defines a score to describe how successful each
cluster is.

94

3. Point annotations: The annotator selects points from different clusters and declares
whether they should be approved or rejected in the specific cluster to which they have
been assigned. Approximately 100 points were annotated by each user per setup, for
each method.

Global annotations Cluster annotations

m deep = deep
simple simple

" w

—_—
—

" o

KMeans-6 GMM-6 Agg-6 KMeans-6 GMM-6 Agg-6

(a) Global annotation evaluations: Mean and standard (b) Cluster annotation evaluations: Mean and stan-
deviation of global clustering scores for each clustering dard deviation of cluster annotations for each clus-
setup. tering setup.

Figure 4.8: Global and cluster annotation scores.
First we evaluated the global annotations (Figure 4.8a). For each annotator i, we

calculated the mean score u of each setup s (KMeans-6, GMM-6, Agg-6), using the scores
from the 4 recordings:

132
Mis = > Gisy (4.9)
=1

where counter j refers to the 4 recordings and G ; is the global score of setup s, in
recording 7, set by annotator . Then, the mean m and standard deviation d of these mean
scores of the 4 users is calculated (Figure 4.8a).

1 i=Ng
mg = E Z i s (410)
i=1
1 i=N,
do= | 5 > (pis — ms)? (4.11)
@ =1

where Na is the number of annotators (in our case, 4). Based on the annotation results,
deep feature extraction yields better clustering results than simple feature extraction, with
all setups (Figure 4.8a). The setup does not seem to affect the performance of the clustering
very much, as far as the mean values are concerned. However, we note that K-Mmeans and
GMM deep feature extraction scores have a smaller standard deviation than Agglomerative
scores (S.D. values, K-Means = 0.24, GMM = 0.33, and Agglomerative = 0.76), and
compared to their respective simple feature extraction scores (S.D. values, K-Means = 0.78,
GMM = 0.75, and Agglomerative = 0.60). A lower standard deviation means that the
annotators mostly agreed at their scores.

Next we looked at the cluster annotations scores (Figure 4.8b). For each setup and
annotator, we calculated the mean scores p' of all the 6 clusters in the 4 recordings:

95

Global annotation Scores ‘ t value ‘ p value

K-Means-6 5.0 1.7-1074
GMM-6 5.1 1.3-1074
Agglomerative-6 3.1 7.2.1073

Table 4.1: Statistical analysis for the global annotation scores. We have performed a paired
t-test to infer the statistical significance of the differences between deep and simple features.

Cluster annotation Scores ‘ t value ‘ p value

K-Means-6 6.7 1.3-1077
GMM-6 6.5 3.4-1079
Agglomerative-6 5.3 8.3-1077

Table 4.2: Statistical analysis for the cluster annotation scores. We have performed a paired
t-test to infer the statistical significance of the differences between deep and simple features.

1 j=4 k=cs
:U’;,s =1 Z Z Cis,jk (4.12)
-y 4
J=1 k=1
where counter j refers to the 4 recordings, k to the number of clusters of each setup cs (in
our case, 6 for all setups) and Cj s ; is the cluster specific score of cluster k of setup s, in
recording 7, set by annotator 3.
These mean scores were then used to calculate the mean and standard deviation values
for each setup:

R =
mg = F Z :ui,s (413)
¢ =1
U 1 & / 1\2
dy = E Z (Mi,s B mS) (4.14)
=1

where N, is the number of annotators (in our case, 4). The results of the cluster-level
annotation scores are consistent with the ones from the global annotation scores (Figure
4.8a and 4.8b), except for the standard deviation observation. It should be noted that for
cluster annotation scores, the standard deviation metric does not provide much information
about the different feature extraction methods or the different setups.

In order to draw safe conclusions, we ran a paired t test between annotation scores for
the two features types (see Tables 4.1, 4.2). As it is stated in Tables 4.1 and 4.2, both
global and cluster annotation scores have a high t value and a very low p value, indicating
a strong statistical significance of the difference between the scores for deep and simple
features.

We next assessed the percentage of vocalizations each user approved for each cluster
based on their unsupervised assignment for both deep and simple methods (Figure 4.9). If
we denote the approved vocalizations of user i as a;, and the total vocalization annotations
they have made as t¢;, then the mean percentage M of approved vocalizations is calculated
as:

(4.15)

Percentage of approved vocalizations

0.8

0.6

0.4 4

0.2 A

0.0 - T
deep simple

Figure 4.9: Mean percentage of approved vocalizations for point annotation evaluation.

It is clear that users more frequently approved vocalizations clustered by the deep feature
extraction method. The standard deviation of the average approval rate that referred to
this method is also smaller than for hand-crafted features (S.D values, Deep = 0.10 and
Hand-crafted = 0.16), indicating a more confident average value.

Overall, the deep feature extraction method outperforms the simple method in all terms:

e Global clustering evaluation is 37% higher for the deep approach (Figure 4.8a)

e Cluster-specific evaluations are also 30% higher on average for the deep approach(Figure
4.8b)

e Average point-level evaluation was 10% higher for the deep approach (Figure 4.9)

This suggests that the encoder has managed to indeed retrieve useful information of
each image, resulting in feature vectors that enable a better clustering of the vocalizations.
Further, this indicates that there are much more complex similarities and differences
between vocalizations carried by the representations extracted from the encoder than what
is available from hand-crafted features.

97

98

Chapter 5

Semi-supervised learning for refining
mice vocalizations clustering

Up to this point, we have presented a completely unsupervised alternative to tradi-
tional feature extraction procedures for clustering of mice vocalizations, with a significant
performance improvement as stated in Section 4.1.6.

Our goal is to further improve the clustering performance by introducing human
intervention to the training of the autoencoder, by supplying information about the
vocalizations in the form of pairwise constraints. This information will then be integrated
in the loss function used for training the model.

This intervention is recording-specific, in the sense that after the clustering of vocaliza-
tions of a certain recording has been produced, the user of AMVOC tool has the chance to
explore the possibility of improving the clustering by examining pairs of vocalizations and
stating whether or not they should belong to the same cluster. So, we have a pre-trained
model, which is retrained for the specific recording.

The whole process is basically the same as in Semi-Supervised Deep Embedded Clustering
(see Section 2.7.1.5), with adaptations to match our application.

The ultimate goal is to be able to improve the clustering and use each feature vector
along with its cluster label as ground-truth data to train a classifier (supervised task). This
classifier can then be employed to predict the class of new vocalizations, possibly in online
mode, and thus provide the users with information about the class of every detected syllable
in real time.

A use-case scenario (where the user is e.g. a biologist who wants to explore new possible
meaningful groupings) is presented in Figure 5.1.

5.1 Semi-Supervised Deep Embedded Clustering

Semi-supervised Deep Embedded Clustering is thoroughly described and explained in
Section 2.7.1.4. Its primary goal is to further train an already pre-trained autoencoder,
paying attention to clustering purity and human-defined pairwise constraints. The first is
accomplished by integrating a KL Divergence term in the loss function, and the second
by adding a term which penalizes close representations when they are connected with a
cannot-link or distant representations when they are connected with a must-link.

5.1.1 Parameter initialization

The first step of DEC (see Section 2.7.1.4) is the training of the autoencoder and
initializing cluster centroids u; by clustering feature vectors of the output of the encoder.

99

’:I OFFLINE

ONLINE I

USVs Detection

Recording

eatures to be
extracted?

Deep

Clustering

USVs Detection

Clustering

No Yes

=N
Pairwise constraints }(-
e

New Clustering

Train
classifier?

Classification?

™

No Yes

[-
END Real-time
PR~ classification
used for

Figure 5.1: Use-case scenario.

Classifier

In our case, we have trained the autoencoder as described in Section 4.1.1.1 and we can
then proceed to a K-Means clustering with k clusters to derive the cluster centers p;.

5.1.2 Clustering with KL Divergence

To ensure a more clustering-oriented training of the autoencoder, we insert a KL
Divergence term to the loss function, whose goal is to reduce the difference between our
patterns distribution ¢; (calculated using the cluster centroids y;) and a target distribution
p; (both defined in Section 2.7.1.4). This term is based on the clusters calculated using the

100

feature vectors at the output of the encoder and its aim is to emphasize training samples
that were assigned to a cluster with high confidence.

However, as stated in Sections 4.1.1.1, 4.1.2, 4.1.3, the feature vectors dimension at the
output of the encoder in our application is equal to 1280, which is reduced after applying
feature selection and dimensionality reduction methods, meaning that the final clustering
we use is done on the processed features.

Because of that, the clusters computed during the algorithm aren’t finally used in our
case. However, we decided to keep this approach and integrate KL Divergence to the loss
function, since it can be useful for improving the representations for a clustering-oriented
task.

5.1.3 Reconstruction Loss

Another difference to Ren et al. (2018) is that we also integrated the classical BCE
Loss term in the loss function, like in typical autoencoder training, since we don’t want
the model to "forget" the reconstruction features and give very clustering or manually
annotations oriented results. In this way, we hope to make the model more robust to,
perhaps, false or confusing pairwise constraints.

5.1.4 Pairwise constraints

Pairwise constraints are defined by the user simultaneously with the first epoch of
training, making this procedure an active learning task. More specifically, training is done
in batches of 32 vocalizations; a predefined number of pairs per batch is selected and the
two syllables are presented to the user, who declares whether they should or should not
belong to the same cluster. In this way, pairwise constraints are set.

An important issue we dealt with was how to choose the pairs (let’s say we annotate
N pairs per batch). We didn’t want it to be fully deterministic, but we also wanted
to experiment with a non-totally-random choice. So, after some experimentations, we
decided to sort the syllables i according to max; ¢;; (which expresses their most likely
cluster, see Section 2.7.1.4), and therefore choose the N first syllables which belong to their
likeliest cluster with the least confidence (have the smallest max; ¢;;), compared to the
other syllables of the certain batch. The second pattern of each pair is randomly selected.

We also experimented with the choice of a;; (values of pairwise constraints matrix A).
More specifically, we noticed that in general, due to the loss function type which involves
the term sz —zj ‘ (see Equation 2.103), the gradient of the loss function and concesquently
the whole training is more affected by distanced representations, regardless of whether they
are labeled as must-link or cannot-link; so, we wanted to ensure a more fair participation of
pairs in loss definition. To this end, we didn’t set a;; = 1 or -1 as proposed in SDEC, but
we wanted to use a descending function of distance Hzl — 2 H

C

oto) = ert(£ (5.1)

X

where, in our case, we set z = sz — sz and ¢ = +/ — 25 (after experimenting) and erf
is the so-called error function (see Figure 5.2). So:

erf (

ij = § erf

C>, if ¢ — j must-link
o=

), if ¢ — j cannot-link (5.2)

=

0, if we have no information abouti — j

101

erf(x)

0.8
0.6
0.4
0.2

-0.2
-0.4
-0.6
-0.8

-1

Figure 5.2: Error function.

5.1.5 Training

After these alterations, we define the loss function as:

N N
. 1 2
L = v, - BCELoss(r,7) + 72 - KL(P||Q) + 3 - Yo z; ; aij|| 2 — 7| (5.3)
where n, is the current number of epoch (added to reduce the impact of this term
during further epochs, since the representations tend to have an increased magnitude as
epochs proceed). The weights 71, 2 and 73 are configurable parameters and are set by the
user, depending on which term they want to emphasize.

. — Pairwise
alrwise constraints constraints Los B ——

input reconstruction
() =
O 5 0
features

© m @ O Reconstruction @tal)
O - O @ @ O ®) ®_— Loss

O O e

~),

;
o
q

Figure 5.3: Our approach of Semi-Supervised Deep Embedded Clustering algorithm.
Pairwise constraints are determined only during the first epoch of training; the same

102

constraints are used in the next epochs as well. The derivative of loss with respect to the

trainable parameters is backpropagated into the network, and % is used to update the
J

cluster centroids p; using gradient descent.

5.1.6 Evaluation

The important question is whether this semi-supervised retraining of the autonecoder is
really beneficial to the clustering. In order to evaluate this, we used Dataset D3 (Section
1.5), but a different strategy compared to the previous clustering evaluation (see Section
4.1.6).

For each of the 4 recordings that comprise D3, we have annotated 1000 random pairs of
vocalizations by again declaring whether they should belong to the same cluster (label 1) or
not (label -1). These are the ground truth annotations. After a new clustering is produced,
we can compare it to the ground truth annotations by checking the status of the annotated
pairs in the produced clustering; by status, we mean whether they are assigned to the same
cluster (label 1) or not (label -1). We can then compare the ground truth labels to the
clustering-derived labels as in classification tasks, by filling a confusion matrix.

In general, random pairs used for ground truth annotations are most likely to have a -1
label, i.e. to belong to different clusters. This makes the classification task imbalanced,
so the macro F1 metric is the most appropriate for the evaluation (see Section 2.8). We
calculated the macro F1 score of the 4 recordings for Agglomerative clustering with 6
clusters 1) with hand-crafted features, 2) with deep features and 3) with deep features
after retraining, setting a) 1, b) 3 and ¢) 5 pairwise constraints per batch and then their
mean and standard deviation which are presented in Table 5.1. In case 3, since there
is a randomness in the pairs we annotated during the training procedure, the resulting
clustering differs from running to running, so we ran it 5 times per recording and calculated
their mean, before calculating the mean for all recordings. The weights we chose were
v1 = 0.5, 72 = 0.2 and ~3 = 0.001. They were set after experimentation, though the best
combination can vary depending on the recording and the autoencoder used. The retraining
lasted up to 3 epochs, depending on the calculated loss after each epoch.

Clustering approach ‘ Mean Macro F1 (+/- std) (%) ‘
Simple 61.75 (/- 2.85)
Deep 63.25 (+/- 2.59)
Deep retrained (1 pair/batch) 65.30 (+/- 2.02)
Deep retrained (3 pairs/batch) 65.00 (+/- 1.57)
Deep retrained (5 pairs/batch) 64.95 (+/- 2.61)

Table 5.1: Mean Macro F1 scores for the three clustering approaches.

It is obvious that the clustering resulting after retraining the model results in a better
total score by approximately 2% compared to before retraining, also having a smaller
standard deviation.

We can observe that by increasing the number of annotations per batch, there is a slight
deterioration of the performance. However, the number of experiments is probably not big
enough to allow us to draw an actual important conclusion about so small differences. In
general, the more the annotations, the more robust the training is to individual confusing
pairwise constraints (misannotated pairs); on the other hand too much intervention could
destabilize the initial clustering patterns. In any case, we observed that the most suitable
number of annotations varied depending on the recording, indicating that there is no
"perfect number" of annotations. In general, though, 1 annotation per batch is much faster,

103

so it would make sense to try annotating more pairs if the user is not satisfied with this
approach.

An important note is that the autoencoder used for the experiments presented above
uses 4 output filters, instead of 8, for speed issues (explained in Section 5.2 below)

Of course, the metric employed provides only a general idea of the clustering performance,
since we take into account only a very small subset of the total possible pairs of vocalizations.
The best way to actually evaluate the clustering is by qualitative inspection of the clusters.

In any case, the proposed method describes an alternative to typical clustering, where
the user can co-determine the results. It is possible that the user won’t prefer the new
clustering; however this functionality gives them the option of possible refinement of the
already existing clustering. In general, the semi-supervised approach should be better seen
as an alternative cluster proposition which may suit a specific application better and is
more recording-specific.

5.2 Classification of online detected vocalizations

In the beginning of this chapter we mentioned that the ultimate goal would be to derive
the best possible clustering to use it for classification purposes. This means that we will be
able to record a mouse signal and provide the user with 1) detected vocalizations and 2)
their class in online mode.

More specifically, after the clustering is produced, we can save each feature vector of
the patterns (after the already described preprocessing) and its corresponding cluster label
(target): (x;, C;). We then feed these pairs as training data to a classifier (Support Vector
Machine with RBF kernel to be effective in non-linearly separable cases).

The next step is to use this model to classify newly emerging vocalizations to one of
the defined classes simultaneously with detection, so that each category can be possibly
connected with a specific mouse behavior. This means that each online detected vocalization
must "pass" through the autoencoder model and then get preprocessed (again using Variance
Thresholder, Standard Scaler and PCA, all defined by training data). This procedure has
to be short enough in order to not impair the simultaneous recording.

Unfortunately, if we use the autoencoder with an encoder output dimension equal to
1280, the dimensionality reduction procedure of the outputs of the autoencoder is too
slow for the online task, and as a result we had to retrain an autoencoder with output
dimension equal to 640 (4 encoder output filters instead of 8). As stated in Figure 4.3 this
choice deteriorates the features quality, though the clustering results are not much different.
However, it significantly accelerates the dimensionality reduction process during the online
task (see Figure 5.4a and 5.4b). As mentioned in Section 3.2, in online mode we process
the recording using a 750 ms time frame, and since the recording is done simultaneously,
we can’t put up with a total processing time over 750 ms, which is unfortunately observed
in Figure 5.4a. That’s why we had to reduce the features size.

In Figures 5.5a and 5.5b, we also compare the time performance of the online mode
with and without the classification functionality for a specific recording. It is obvious that
the latency inserted with the classification is minor.

We have not evaluated the performance of the classifier on a test dataset, though
training accuracy of the classifier is commonly around 95-97 %. In Figure 5.6 we present
examples from actual clustering (training data) and classified vocalizations of an online
task (test data).

It is obvious that there is a consistency between the results from training and test
dataset, indicating a relatively successful generalization of the classifier.

104

Histogram of total processing time (with classification) (1280)
250 A

Histogram of total processing time (with classification) (640)

400 600 800 1000

70 80 110
Time (ms) Time (ms)
(a) Histogram of processing times with a 1280- (b) Histogram of processing times with a 640-
dimensional encoder output. dimensional encoder output.

Figure 5.4: Histograms of total processing times of all 750 ms buffers that comprise the
recording, for 1280- and 640-dimensional encoder outputs. In (a), we observe that processing
time of several buffers surpassed 750 ms, which is unacceptable.

Histogram of total processing time (with classification) (640)
0

Histogram of total processing time (no classification)

300 4

70 80
Time (ms)

g
60 70 80
Time (ms)

(a) Histogram of processing times with classification(b) Histogram of processing times without classifica-
functionality. tion functionality.

Figure 5.5: Histograms of total processing times of all 750 ms buffers that comprise the
recording, with and without the classification functionality.

105

Label: 0 0 Label: 0 Label: 1 1o Label: 1
110
100 100 100
20
%0 %
¥ = F 80
5 80)
T 80 z k4
> s .
g 70 g g
H 70 I} § %
g z H
£ 60 60 K £ 60
50 50 50
40 40 40
o 4 80
o 40 o 40 80 Time (ms)
Time (ms) Time (ms) Time (ms) e (ms|
. Label: 3
Label: 2 ”(l;abE\v 2 0 Label: 3 10
110
100 100 100
%
%0 %
5) T 80
5 g 80
g e 3 E3
& z H
g % g 70 §m
g H g
£ e £ o0 60 £ 60
50 50 50 50
a0 0 0 40
o 0 o a0
o a0
Time (ms) Time (ms) Time (ms) Time (ms)
e Label: 5
Label: 4 Label: 4 davel:s nd
100 100
%0 920
= o] = T 80
=) g 80
g 3] S
=3 = = =
g g g 7 g
] g g H
£ £ o Eo
50 50
20 a0
o 4 8 1 0 40 80 1 LI
Time (ms) Time (ms) Time (ms) ime (ms

Figure 5.6: Examples of vocalizations of each class. On the right, the vocalizations are from
the recording, whose clustering was used as training data for the classifier. On the left, the
vocalizations are from a different recording, labeled automatically by the trained classifier.

106

Chapter 6

Conclusions and Future Work

In this chapter conclusions are summarized and presented, along with future thoughts,
ideas and prospects for possible continuation and evolution of our work.

6.1 Conclusions

In this thesis we have presented Analysis of Mouse Vocal Communication (AMVOC),
a tool for detecting, processing and analyzing ultrasound mouse vocalizations, which is
characterized by novelties in many aspects. We would like to focus on the significant
contributions of our work in USVs study.

e Offline USVs detection. Our approach has proved to perform very well in both
clean and noisy backgrounds compared to other state-of-the-art tools, while it is also
quite fast. The configurable nature of our methods enables the adjustments of the
thresholding criterias to different recording conditions, thus guaranteeing a flexible
and robust USVs detection tool.

e Real-time USVs detection. The ability of our detection method to be applied with
minor adaptations in real time applications, with detection performance equivalent to
offline approaches is quite revolutionary. Real-time feedback from mice vocal activity
can be proven extremely useful for studying mice social behavior and also conduct
experiments to test mice responses to specific stimuli.

e Deep feature extraction and clustering. We have developed a novel unsupervised
approach for both representing and grouping USVs. Representations are derived from
a deep convolutional autoencoder which we trained and multiple clustering algorithms
can be used; resulting clusters can be thoroughly explored and evaluated by users. We
have proposed a clustering evaluation procedure which involves human annotations
and revealed that deeply extracted features outperform simple hand-crafted features
(>30% in global- and cluster-level annotations), leading to possibly meaningful and
homogeneous clusters, without limitations coming from predefined classes. While
others have used autoencoders to analyze mouse USVs (Goffinet et al. 2021), these
methods were not designed to allow users to explore the deep feature clustering and
evaluate the results themselves.

e Semi-supervised clustering approach. We have presented a procedure for clus-
tering refinement, which involves active learning. This means that the user can
provide the model with information about whether certain USVs should be clustered
together or not, thus providing a guiding line for vocalizations grouping. For the
evaluation of this task we proposed a different approach, again involving some human

107

annotation and showing an improved performance of clustering methods compared to
the completely unsupervised methodology. This functionality can be important for
slightly differentiating clustering depending on the application and the user’s needs.

e Real-time USVs classification. Another novelty is the opportunity of real-time
classification of online detected USVs, using a specific clustering as training data
for a classifier training. This further improves real-time applications, since the user
will get feedback not only about when a mouse vocalized, but also what type of
vocalization it produced, opening the door to associating behavior with syllables types
and developing closed-loop behavioral assessments.

6.2 Future work and discussion

Our tool can be considered a complete USVs processing tool, though we hope that this
work can inspire future directions that will give a helpful insight into mice communication
and behavior understanding. These propositions and thoughts mainly focus on alternatives
of the unsupervised and semi-supervised techniques we employed, and also suggest a broader
exploration of USVs, either by studying whole sequences of syllables or by taking into
account metadata from mice behavior during recording.

First of all, as far as the unsupervised feature extraction is concerned, we used a
convolutional autoencoder. However, there are also other approaches for feature extraction,
for example the use of a denoising autoencoder, which learns important features by trying
to remove the noise from input images.

Another approach would be to use a generative model, e.g. Generative Adversarial
Networks (GANs). These networks consist of a generator and a discriminator. Generators
try to discover the data distribution and produce samples that mimic the inputs, whereas
discriminators try to classify each sample as pure training data or data produced by the
generator. The discriminator is in fact a classifier which has learned features from examples
in the problem domain (Goodfellow et al. (2014)). This means that representations before
the classification head can be useful feature vectors. The comparison between this approach
and the autoencoder for the deep feature extraction can be very interesting.

In addition, the semi-supervised approach could be further studied, in the sense that it
is interesting, and also expected, that the new clustering is heavily dependent on the pairs
of syllables used in the active learning procedure. This makes sense, since they are the
clustering guidelines used for training the model; in this context, the exploration of possible
properties of vocalizations pairs that can ensure clustering performance enhancement is a
promising future task.

In addition, different semi-supervised techniques for clustering improvement could be
studied, which can explore other ways of human intervention in the training procedure.
We have used the approach of imposing pairwise constraints to vocalizations; comparative
analysis between our method and new ideas for semi-supervised learning techniques or
procedures that insert the human factor in the loop would be interesting.

Another interesting subject would be an alternative clustering evaluation procedure;
we have proposed two different methods which involve human annotations, though the
possible discovery of some more automated and less subjective evaluation techniques could
be beneficial and offer new insights into the clustering.

Another interesting aspect worth exploring is the possible temporal correlation between
syllables, indicating standard patterns of occurring vocalizations. It has been known
since mouse USVs were first identified as "songs" (Holy and Guo 2005) that across the
timescale of a recording session mice will use similar sequences of vocalizations. There have
been some attempts to describe the extent to which USV sequencing can be considered

108

patterned (Chabout et al. 2015, 2016), but these analyses have focused on pairwise changes
in sequencing (i.e. how one syllable type follows or precedes another). We propose that
future analyses would be best approached at varying timescales. By doing so, sequences of
vocalizations could be processed and studied, so they can be connected and correlated with
various behaviors in mice with a broader appreciation of vocal behavior.

This goal can also be achieved, if behavioral context is taken into account. This means
that along with pure USVs information, data from experimental conditions during recording
time could be used in machine learning algorithms. For example, the simultaneous use of
metadata from the environment, the stimuli or the behavior of the mice could be integrated
in the learning procedure and provide a context-aware USVs analysis. This approach is, in
our opinion, of great interest, in both machine learning and neurobiology fields and can set
the foundations for new prospects in addressing the social meaning of USVs.

109

110

Bibliography

Gustavo Arriaga, Eric P Zhou, and Erich D Jarvis. Of mice, birds, and men: the mouse ultrasonic
song system has some features similar to humans and song-learning birds. PloS one, 7(10):e46610,
2012.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

J Michael Bowers, Miguel Perez-Pouchoulen, N Shalon Edwards, and Margaret M McCarthy. Foxp?2
mediates sex differences in ultrasonic vocalization by rat pups and directs order of maternal
retrieval. Journal of Neuroscience, 33(8):3276-3283, 2013.

Jack W Bradbury and Sandra Lee Vehrencamp. Principles of animal communication. Sinauer
Associates, 2011.

Jonathan Chabout, Abhra Sarkar, David B Dunson, and Erich D Jarvis. Male mice song syntax
depends on social contexts and influences female preferences. Frontiers in behavioral neuroscience,

9:76, 2015.

Jonathan Chabout, Abhra Sarkar, Sheel R Patel, Taylor Radden, David B Dunson, Simon E Fisher,
and Erich D Jarvis. A foxp2 mutation implicated in human speech deficits alters sequencing of
ultrasonic vocalizations in adult male mice. Frontiers in behavioral neuroscience, 10:197, 2016.

Jonathan Chabout, Joshua Jones-Macopson, and Erich D Jarvis. Eliciting and analyzing male
mouse ultrasonic vocalization (usv) songs. Journal of visualized experiments: JoVE, (123), 2017.

Kevin R Coffey, Russell G Marx, and John F Neumaier. Deepsqueak: a deep learning-based system
for detection and analysis of ultrasonic vocalizations. Neuropsychopharmacology, 44(5):859-868,
2019.

Francesca R. D’Amato, Elisabetta Scalera, Celeste Sarli, and Anna Moles. Pups call, mothers
rush: Does maternal responsiveness affect the amount of ultrasonic vocalizations in mouse
pups? Behavior Genetics, 36(3):471-471, may 2006. doi: 10.1007/s10519-006-9074-7. URL
https://doi.org/10.1007%2Fs10519-006-9074-7.

Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. Wiley, New York, 2
edition, 2001. ISBN 978-0-471-05669-0.

Allain-Thibeault Ferhat, Nicolas Torquet, Anne-Marie Sourd, Fabrice Chaumont, Jean-Christophe
Olivo-Marin, Philippe Faure, Thomas Bourgeron, and Elodie Ey. Recording mouse ultrasonic

vocalizations to evaluate social communication. Journal of Visualized Experiments, 2016, 06
2016. doi: 10.3791/53871.

Antonio HO Fonseca, Gustavo M Santana, Gabriela M Bosque Ortiz, Sérgio Bampi, and Marcelo O
Dietrich. Analysis of ultrasonic vocalizations from mice using computer vision and machine
learning. eLife, 10:e59161, mar 2021. ISSN 2050-084X. doi: 10.7554/eLife.59161. URL
https://doi.org/10.7554/eLife.59161.

Jack Goffinet, Samuel Brudner, Richard Mooney, and John Pearson. Low-dimensional learned

feature spaces quantify individual and group differences in vocal repertoires. bioRzxiv, page
811661, 2021.

111

https://doi.org/10.1007%2Fs10519-006-9074-7
https://doi.org/10.7554/eLife.59161

Rafael C Gonzalez and Richard E Woods. Digital image processing. Prentice Hall, Up-
per Saddle River, N.J., 3 edition, 2008. ISBN 9780131687288 013168728X 9780135052679
013505267X. URL http://www.amazon.de/Digital-Image-Processing-Rafael-Gonzalez/
dp/013168728X/ref=sr_1_67s=books-intl-de&ie=UTF8&qid=1330928076&sr=1-6.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

Tan J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014.

Jasmine M. S. Grimsley, Jessica J. M. Monaghan, and Jeffrey J. Wenstrup. Development of social
vocalizations in mice. PLoS ONE, 6(3):e17460, mar 2011a. doi: 10.1371/journal.pone.0017460.
URL https://doi.org/10.1371%2F journal.pone.0017460.

Jasmine MS Grimsley, Jessica JM Monaghan, and Jeffrey J Wenstrup. Development of social
vocalizations in mice. PloS one, 6(3):e17460, 2011b.

Frauke Hoffmann, Kerstin Musolf, and Dustin J. Penn. Spectrographic analyses reveal signals of
individuality and kinship in the ultrasonic courtship vocalizations of wild house mice. Physiology
& Behavior, 105(3):766-771, 2012. ISSN 0031-9384. doi: https://doi.org/10.1016/j.physbeh.2011.
10.011. URL https://www.sciencedirect.com/science/article/pii/S0031938411004884.

Timothy E Holy and Zhongsheng Guo. Ultrasonic songs of male mice. PLoS Biol, 3(12):e386, 2005.

Luca Melotti, Sophie Siestrup, Maja Peng, Valerio Vitali, Daniel Dowling, Norbert Sachser, Sylvia
Kaiser, and S Helene Richter. Individuality, as well as genotype, affects characteristics and
temporal consistency of courtship songs in male mice. bioRxiv, 2021.

Joshua P Neunuebel, Adam L Taylor, Ben J Arthur, and SE Roian Egnor. Female mice ultrasonically
interact with males during courtship displays. eLife, 4, may 2015. doi: 10.7554/elife.06203. URL
https://doi.org/10.7554%2Felife.06203.

John Nyby, Gerard A. Dizinno, and Glayde Whitney. Social status and ultrasonic vocalizations of
male mice. Behavioral Biology, 18(2):285-289, 1976. ISSN 0091-6773. doi: https://doi.org/10.
1016/S0091-6773(76)92198-2. URL https://www.sciencedirect.com/science/article/pii/
S0091677376921982.

Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal Processing. Prentice Hall Press,
USA, 3rd edition, 2009. ISBN 0131988425.

Yazhou Ren, Kangrong Hu, Xinyi Dai, Lili Pan, Steven Hoi, and Zenglin Xu. Semi-supervised deep
embedded clustering. Neurocomputing, 325, 10 2018. doi: 10.1016/j.neucom.2018.10.016.

C. N. Slobodchikoff, William R. Briggs, Patricia A Dennis, and Anne-Marie C. Hodge. Size and
shape information serve as labels in the alarm calls of Gunnison’s prairie dogs Cynomys gunnisoni.
Current Zoology, 58(5):741-748, 10 2012. ISSN 1674-5507. doi: 10.1093/czoolo/58.5.741. URL
https://doi.org/10.1093/czo00lo/58.5.741.

FElsa Steinfath, Adrian Palacios, Julian Rottschéfer, Deniz Yuezak, and Jan Clemens. Fast and
accurate annotation of acoustic signals with deep neural networks. mar 2021. doi: 10.1101,/2021.
03.26.436927. URL https://doi.org/10.1101%2F2021.03.26.436927.

Jacqueline M Tabler, Maggie M Rigney, Gordon J Berman, Swetha Gopalakrishnan, Eglantine
Heude, Hadeel Adel Al-Lami, Basil Z Yannakoudakis, Rebecca D Fitch, Christopher Carter,
Steven Vokes, et al. Cilia-mediated hedgehog signaling controls form and function in the
mammalian larynx. FElife, 6:¢19153, 2017.

Ryosuke O. Tachibana, Kouta Kanno, Shota Okabe, Kohta I. Kobayasi, and Kazuo Okanoya.
USVSEG: A robust method for segmentation of ultrasonic vocalizations in rodents. PLOS ONE,
15(2):0228907, feb 2020. doi: 10.1371/journal.pone.0228907. URL https://doi.org/10.1371Y%
2Fjournal .pone.0228907.

112

http://www.amazon.de/Digital-Image-Processing-Rafael-Gonzalez/dp/013168728X/ref=sr_1_6?s=books-intl-de&ie=UTF8&qid=1330928076&sr=1-6
http://www.amazon.de/Digital-Image-Processing-Rafael-Gonzalez/dp/013168728X/ref=sr_1_6?s=books-intl-de&ie=UTF8&qid=1330928076&sr=1-6
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1371%2Fjournal.pone.0017460
https://www.sciencedirect.com/science/article/pii/S0031938411004884
https://doi.org/10.7554%2Felife.06203
https://www.sciencedirect.com/science/article/pii/S0091677376921982
https://www.sciencedirect.com/science/article/pii/S0091677376921982
https://doi.org/10.1093/czoolo/58.5.741
https://doi.org/10.1101%2F2021.03.26.436927
https://doi.org/10.1371%2Fjournal.pone.0228907
https://doi.org/10.1371%2Fjournal.pone.0228907

Sergios Theodoridis and Konstantinos Koutroumbas. Pattern recognition. Academic Press, Burling-
ton, MA; London, 2009. ISBN 9781597492720 1597492728 9780080949123 0080949126. URL

http://wuw.books24x7.com/marc.asp?bookid=37213.

Maarten Van Segbroeck, Allison T Knoll, Pat Levitt, and Shrikanth Narayanan. Mupet—mouse
ultrasonic profile extraction: a signal processing tool for rapid and unsupervised analysis of
ultrasonic vocalizations. Neuron, 94(3):465-485, 2017.

Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering
analysis. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of The
33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine
Learning Research, pages 478-487, New York, New York, USA, 20-22 Jun 2016. PMLR. URL
http://proceedings.mlr.press/v48/xieb16.html.

113

http://www.books24x7.com/marc.asp?bookid=37213
http://proceedings.mlr.press/v48/xieb16.html

	
	Abstract
	
	Contents
	List of Figures
	List of Tables
	µ
	
	 ß
	 µ
	 µ - CNNs, Autoencoders, Clustering, SDEC
	

	µ
	 USVs
	Offline
	Online
	µ USVs

	 µ Convolutional Autoencoder
	 Convolutional Autoencoder
	
	
	
	µ µ AMVOC

	µßµ µ ß USVs
	SDEC
	µ µ µ SDEC
	µ USVs online µ

	µµ µ
	µµ

	

	Introduction
	Motivation
	Related Work
	Research objective
	Thesis outline
	Datasets

	Background
	Audio Signal processing
	Discrete Time Systems
	Fourier Transform
	Spectrogram

	Introduction to Machine Learning and Pattern Recognition
	Supervised learning
	Unsupervised learning
	Semi-supervised learning
	Reinforcement learning

	Learning process
	Loss functions
	Regression Loss functions
	Classification Loss functions

	Optimization

	Classifiers
	Deep learning
	The Perceptron
	Biological neurons vs perceptrons
	Perceptron used in linear classification problems

	Multilayer Feedforward Neural Networks
	Artificial Neuron
	Activation functions
	Fully Connected Neural Network

	Deep Convolutional Neural Networks
	Fully Connected Neural Networks vs CNNs
	The spatial convolution
	Forward pass through a CNN
	Applications

	Autoencoders
	Undercomplete Autoencoders
	Convolutional Autoencoder
	Other types of autoencoders
	Applications

	Feature pre-processing
	Feature selection
	Variance Thresholder

	Feature scaling
	Normalization
	Standardization

	Dimensionality reduction
	Principal Component Analysis (PCA)

	Clustering
	Definition of clustering
	K-Means clustering
	Gaussian Mixture Models
	Agglomerative Clustering
	Deep Embedded Clustering
	Semi-supervised Deep Embedded Clustering

	Evaluation Metrics
	Confusion Matrix
	Metrics for time segments evaluation
	Temporal evaluation
	Event evaluation

	Vocalization Detection
	Offline USV Detection
	Online USV Detection
	Vocalization Detection Configuration
	Experimental evaluation of the AMVOC detection method

	Deep unsupervised learning for mouse vocalization clustering
	Unsupervised learning pipeline
	Feature generation
	Proposed autoencoder architecture and training

	Feature selection
	Feature pre-processing
	Feature scaling
	Dimensionality reduction

	Baseline feature extraction
	Clustering
	Experimental evaluation of the AMVOC clustering method

	Semi-supervised learning for refining mice vocalizations clustering
	Semi-Supervised Deep Embedded Clustering
	Parameter initialization
	Clustering with KL Divergence
	Reconstruction Loss
	Pairwise constraints
	Training
	Evaluation

	Classification of online detected vocalizations

	Conclusions and Future Work
	Conclusions
	Future work and discussion

