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Amoryogeveton 1 avityoadt), amoffxevon xou dtovour) The mooUo0g €0Y0olog, €E OAORANQOU 1)
TUNULOTOG aVTHG, YLa epItoQnd oxomd. Emtoéneton ) avotimwor, ammodfxrevon xot dLoavop yuo
O®OTO N %EQO0OXOTUKO, EXTAUOEVTIXNG 1] €QEVVNTIXNG ¢UONG, VIO TNV TEOLTOOEoN Vo
avad£QeToL 1 TYT) TQOEAEVONG KL VA, dLATNQETOL TO TOQOV UVUUOL.

To meQLexOUeVo avTNG TNG €QYaotlag dev amyel amoQaitnTa Tig amdels Tov Tunuatog, Tov
EmpAémovra, 1] TG ETUTQOTNG TTOV TNV EVERQLVE.

AHACQXH MH AOT'OKAOITHZ KAI ANAAHYHZ ITPOZQITIKHXZ EYOYNHX

Me mANEN €MYVWON TOV OCUVETELMV TOU VOUOU TTEQL TVEVUATIXOV OrAwuUdTov, dNAOVO
eVUTTOYQAdmS OTL elpon amonieloTnds ovyyoadéas g magovoag Itvyiaxng Egyaoiag, yio
™V OAOXAMQWOT TG omotag xdbe Pondela elvor TAMNE®S AVOYVOQLOUEVY] %Ol AVUDEQETOL
AemTOUEQ(MG OTNV €QYaoio vt Exm avadégel TANQms ®at Ue oodels avadoeEg, OLES TIC TNYES
xonong dedouévarv, amdpewv, BEoewV raL TQOTACEMV, LWOEDMV KAl AEXTIXROV AVOPOQOV, E(TE
1OTA ®VQLOAEEIQL €iTe PAOEL EMOTNUOVIXNG TOQAPQAONS. AVAAAUPBAVOD TNV TQOOMIUKY] KO
atounry) evBivvn Ot o mEQIMTWON QTOTLYIOG OTNV VAOTOIMOYN TWV avotéomw OMAwBEévtwy
otoyelmv, elpol VITOAOYOS £VAVTL AOYORAOTING, YEYOVOS OV onuaiver amotvyio oty Ituyiomi
pov Egyoaoia now xatd ovvémelo ammotuyio amdxtnong tov Tithov Zmovdmv, mEQaV TmV AOLTMV
OUVETELMV TOV VOUOU TTEQL TIVEVUOLTIXMYV OXAMUATOV. ANAOV®, OVVETIDS, OTL vt 1 [TTuyiam
Epyaoia mpoetolpndotnxre ®or 0AOxANQMON®E Otd EUEVA TQOOMIUNA RAL OTTORAELOTIRG ®OL OTL,
ovVaAOUPAVD TAMEMG OAES TIG OUVETIELES TOU VOLOU OTNV TEQITTMOT ®OTd TNV omota amodeyOel,
dlayoovird, OTL 1 ggyaoio. auTh 1 TUNUA TS 0eV Hov avirel dLOTL elval OOV AoyorAOTG
AAANG TTVEV LOTLXTG LOLORTNO(OG.

(Ymoyoap)

Zrédpavog [Tovhidng
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Hepiinyn

To avtikeipevo avtig g dtoTpPng elvatl 1 avaALGN TOV POAOL TNG UNYOVIKNG LaBnong oty
TPOPAEYN TOAMCEWDY, KAl GUYKEKPIUEVO TNV TPOPAEYTN TOANCEDV TPOIOVIMOV TaYEIOG KATOVOANOONG LE
xpnon unyovikng kot Padeiog pabnong.

H pnyavucy pabnon etvar éva eEoupetikd epyoireio yio mpoPAéyels, Kabdg £yl ™ duvatdTNTO
v avoAvel og BaBog To mpaypatikd dedopéva Kot ¥povooelpéc Kot va dnpovpyel Pertictomomuéva
povtéda. e avtiBeon pe Tig mapadootakic pebodoroyieg mpoPAeyNng ToANcEY oL oYedalovy Kot
TPOTEIVOVY YEVIKA LOVTEAQ KO TPAKTIKES, YAPT OTN UNYOVIKY HAONGN, UTopoOUE VO avOTTOEOVIE
epyoAEio. TANP®G TPOGOPUOGHEVO OTIS GLVONKEG KOl TA YOPUKINPLOTIKG kaBe emiyeipnong Kot
opyavicpov. Emiéydnke 1o mapov BEpa, S10TL 01 TPoPAEYELS TOANGE®V OTOTELOVY TOVTOYPOVO, LEPIKEG
amd TIG MO ONUAVTIIKEG OTOPAcELS Yoo pio EmLyeipnon, Kot e Tn ¥pNnon Unyaviknig pabnone, vrdpyet
onuovtikd meplidplo Pertioone twv mTPoPAEyemv CLYKPITIKE LE To TOPAOOGLOKE LOVTEAD ANWNG
OTOPAGEMV.

2UYKEKPUEVA, OTNV TTAPOVGH SUTAMUATIKY ovOADovVTOL Ot eEEAEELS GTOV GYETIKO EPELVNTIKG
TOREN Kol KOVOUHE TN O1KN MHOG OVAALON Kol €KTOIOELON HOVIEA®V, HE EUQOCT GTNV TPOPAEYN
TOACEOV Yoo Tpoidvta tayeiog Kataviilmong. O Adyog sivar Otl ta TPoidvTo Toryelog KATAVAAWDGNC
aeopovy pio TANOdpa emyelpioemy, aAAd Kot 1 TPOPAEYN TOANGEWV TOVG, AOY® GLYKEKPLUEVOV
YOPOKTNPIOTIKMY TOVG, £XEL LEYAAN ONUACTO Yi0 TV KEPOOPOPIO TMV CYETIKAOV EMYEPNCEDV.

21OY0¢ elvar TeEMKG M CLYKPLTIKY OvOAVLGoYT HovTEA®V Kol peBOd®V Yoo TV €miAvom Tov
TOPOTAV® TPOPANLOTOG, GAAL KOt 1] KOTOGKELT EVOC LETA-LLOVTEAOD UNYOVIKNG LABNONC e TOAD KOAN|
axkpifela yo v mpdPreyn twincewv tpoidvtwv tayeiog Katavdimons. o va to metdyovpe avtd,
doKipdoape PHePKE amd To To GVYYPOVO KOl OTOO0TIKA LOVTEAN GTNV TPOPAEYN TOANCEWDY KOl TEAIKA
KPOTHOOUE TO KAADTEPO HOVTELD, DYNAOTEPTG aKpiPelag, Kal [e xpNon TEYVIKOV VoMK Mdaonong
(Ensemble learning) kouw Méta-puabnong (Meta-learning) mapd&ope eviaio. cLUYKEVIPOTIKG UOVTEAQ
npoPAéyewv. Acgiéape, Odmwg mePEVOUE, OTL UE HKPO emmAéov KOGTOG, UMOPOVUE Vo €XOVUE
GLUVOLOCTIKE OmOTEAECUATO KOADTEPO amd T empépove omoteréouato KaBe poviéhov. Téloc,
GLYKPIVOUE SLOPOPETIKEG TEYVIKEG GUVOMKNG HAONONG HETOED TOVG, Y10, SoPOPETIKE LovTéLa, Yo Vol
e éyéovpe oo divel Ta KOADTEPA SUVATH OTOTEAECLATO KO, GUVETNDC, TPOTEIVOVLE GE EMYEPIGEIS TOV
YDPOV.

Yuvolkd, 1 pebodoroyio pag KoTdpeps Vo GUYKPIVEL APOPETIKA LOVTEAD TOGO UNYOVIKNIG,
000 Kol Badedg pabnong v v mepinmtwon TpoPAEYNS TOANGEMY TPOIOVTIOV TOXEING KATOVAAMONG
Kol vo Bpoodpe To PBEATIOTO POVTEAD KO TEYVIKEG HE OVAALOT KOGTOVLC-0EI0C YO TO CGLYKEKPLUEVO
npdpAnua. ‘Etol, n pébodog kot o amoteAéopato pog ivol ToAD PN YO TIG EMLYEPNOELS TOL
TOPEYOVV KOl ELITOPEVOVTAL TPOTOVTO TAYEIOG KATOVAAMONG, 0POD dNIOVPYOVLE YLl AVTEG Evay YApTN
Y voL avENGovy TV akpifelo TV LOVTEA®Y TOVC.

Toavtoypova, aEomoIdVTAG TO ATOTEAEGLOTO LOG, LITOPOVV VO, YMTMOGOUY eEQPETIKAE LEYAAO
KOUUATL TNG EMEVOLOTNC TOVG, POV UTOPOVY VO S0VV O SEOUEVA EIVOL OTLLOVTIKE Yia TNV TpOPAeym
TOV TOANCE®Y TOVG Kol IOl aAyOplOpol unyavikng pddnong éivovv v Bértiom akpifeta, Kot dpo
a&iletl vo SoKIHaGTOOY Kot 6TV 01K TOVG TEPIMTMOT).

H pébodoc kot ta amoteAéopatd pag LWropovy va yivouv odnyog yuo Ty avamtuén HovTEA®V
TPOPAEYNC TOANCEDV OTIC €TOUPElEG TPOIOVTIMV TOYEING KATOVOAMONG, OAAG UTOPOOV Kol VO
xpnoworomBobv ¢ onueio avagopds amd emyelpnoel oe dAleg Prounyavieg, aAld kol Tpdcheta
TEPALOTA Kol EpeVVa o€ TPOGOEeTEG Katnyopieg TpoiovTmy.

Aé€erg Kherona: pnyovikr| pdbnon, texvnti vonpocsovi, Babid pdonon, avédivon dedopévmv, unyovikn
oedouévarv, KaBaplopds O0c0OUEVOV, ONTIKOMOINGT OEJOUEVAOV, UNYAVIKT YOPAKTNPIOTIKAOV, ANym
amoQAace®mV, TPOPAEYT TOANCEWV, GTPATNYIKT TIHOAOYNONG, LOVTEAD TILOADYNONG, TPOIOVTO TOYEING

KOTOVIAMONG, CTPATNYIKT ETLYELPTICEDV






Abstract

The object of this thesis is the analysis of the role of machine learning in sales forecasting and,
in particular, of sales forecasting for fast-moving consumer goods.

Machine learning is an excellent tool for forecasting, as it has the ability to analyse in-depth real
data and time-series, and build optimised models. In contrast to traditional sales forecasting
methodologies that design and propose general models and practices, thanks to machine learning, we
can develop tools fully adapted to the conditions and characteristics of each business and organisation.
This topic was chosen because sales forecasting is both a valuable, value-adding tool for some of the
most important business decisions and there is considerable room for improvement by effectively using
machine learning implementations.

Specifically, in this dissertation we analyse the previous work and the developments in the
relevant research field, and we execute our own analysis and model building, with emphasis on sales
forecasting for fast-moving consumer goods (FMCGs). The reason is that fast-moving consumer goods
concern a plethora of companies, but also FMCGs’ sales forecasting is of great importance for the
profitability of these companies.

Our goal was to construct a comparative analysis of models and methods to solve the above
problem, but also the synthesis of machine learning models with very good accuracy to predict sales of
FMCGs. To achieve this, we tested some of the most efficient models in sales forecasting and finally
synthesised the best models (those of higher accuracy), by using Ensemble learning and Meta-learning
techniques. So, we finally produced a single aggregate forecast model based on the champion models of
our earlier analysis. We show that with negligible additional cost, we can have better results with
stacking than with any other individual model and, therefore, meta-learners are an excellent investment
for businesses’ sales forecasting development departments. We also compare different meta-learning
algorithms and techniques, for different models, to test which gives the best possible results and so to
recommend it to the businesses in the FMCGs industries.

Overall, our methodology was able to compare both machine learning and deep learning models
in the case of predicting sales of FMCGs and we present the best models and techniques with a cost-
benefit analysis. Therefore, our method and results are very useful for companies that produce, promote
or sell FMCGs, as they can increase the accuracy of their models for forecasting with smaller
investments, and so achieving much better ROIs in their sales forecasting investments.

Our method and results can be a guide for the development of sales forecasting models and
processes for businesses in the FMCGs industries, but it can also be used by additional experiments and
research, as a reference point for sales forecasting at the same, or additional, product categories.

Keywords: machine learning, artificial intelligence, deep learning, data analysis, data engineering, data
cleaning, data visualisation, feature engineering, decision making, sales forecasting, pricing strategy,

pricing models, business intelligence, fast-moving consumer goods, business strategy
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Evyaprotieg

H mapovca SmAopOTIKY eKTOVAONKE 0TO TTACIGIO TOL TPOTTVUYIUKOD TPOYPALLATOS CTOVOMV TNG
Yyolg Hiektpoddywv Mnyavik®mv Kot Mnyoavikdv Yroloyiotdv tov E6vikod Metcofiov [Tolvteyveio
Y10 TV OAOKANP®OCT) T®V GTOVODV LoV KoL TIV TPOETOLOGIO LoV Y10 GTTOVOES 1O0KTOPLKOD EMITEOOV.
To evdlapEpov oL Yo TNV £PEVVA GTO GYETIKO OVTIKEILEVO, AL KOl YEVIKA 1 ayGmn HOL Yo YVAON
Kol €PELVO, TPOEKLYE amd pio oelpd avBpdnwv mov dev mépacav amAd amd ™ (on pov, dAld e
emmpéacay Kot fondncav onUavtikd. Xe avtovg akpidg Toug avOpdmovg BEAM Vo avoapepdmd o€ avTEG
TIc evyaproties. Tovg evyapiotd Beppd yio ™ PBondeta Kot TV cvvepyacio Hag, TG GLUPOVAEC TOVG, TO
feedback, tic 18é€¢ TOVG, TOV ¥POVO TOVG, KAl TAV® amd OAa, TNV 016001 Toug va pe otnpiéovv kot
vrooTnpiovv.

Apyikd, Bo nBela va guyoplomom tov emPAEmovTa Lov, K. Avipéa-I'edpylo XZtapvromndrn, Kabnynm
E.M.IL., o omoiog pov £0waoe 1 SuVaTHTNTO VO EKTOVIGM TNV GYETIKT SUTAMUATIKY GTO EPYOCTIPLO TOV
Kol Lov mopeiye kabe dvvatn Pondela kot vVTOSTAPIEN OTOTE TNV YPELAGTNKO.

[dwiitepeg evyopiotiec 6w emiong vo amodwow otov k. ['ewdpyro Ziwora, EAIIT E.MUIL, yw tov
TOAVTILO ¥POVO TOV OOV OVTOV TOV Kapd, TOV 0Toio Kot pov £dmae amidyepa. H kabodrynon tov yia
TNV GLYYPAPT OVTAG TNG OMAMUATIKNAG SOTPPNG NToV KaBoploTiky, kabmg pe oTiplée TOG0 VAIKA, LE
mOPoLvg Tov gpyactnpiov Texyvntic Nonupoovvng kal Xvotnpdtov I'vong, 660 Kot ETGTNLOVIKE Kot
TVELLLOTIKA UE €EQPETIKEG TPOTAGELS Yio apBpa, PifAio Kot ONUOGIEVCELS, OAAG KOL ETOIKOOOUNTIKY|
KPLTIKT OTOV TNV €iya avayk.

®a 10eha, emiong, va evyaploTHo® ToVg K.K. Xtépavo KoAiia, Kabnynti E.M.IL. kot 'edpylo Zrdpov,
Kadnynm E.ML.IL ywo v tiun mov pov £kavay va givat PéAN TG EmTPomiG €EETOONC TG OUTAMUATIKNG
Hov gpyociog.

Téhoc, Ba MBeha vo gVYOPIOTAC® TNV OKOYEVELD, TOVG GIAOVE KOl OAOVG TOVG OVOPOTOLE TTOV g

omptéav kot otnpilovv ko avTd Ta YPOVIK KOl Eival, AUESO Kol EUUECH, GLVONLOVPYOL Kot
GUUUETOYOL TNG OOVAELAS [LOV.

Ytépavog [Tovdidng
Ampiiog, 2021
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0. Extetapévn Ilepiinyn

O péhoc ¢ ekteTOpéVNG TEPIANYNC eivol va do0el pio TANPNG mepiinyn TV erUEPOVG
KEQPUAAI®OV TN TopoHGOG STAMUATIKNG gpyociag ota eMnvikd. Ta kepdioio Tov akoiovbovv
TEPILOUPAVOVY TEPIANTTIKA TO TEPLEYOUEVO TNG EPYOCING, TO 0TOI0 oTA EMOUEVO, KEPAAL Oa
avartuyfel oto ayyAMKd. e avTnV TNV eKTETAUEVT TTEPIANYN Aowmdy, TeptlapuPavovtol OAa Ta
KOPLOL KOUUATIO TG EPYOACING, OO TNV TEPLYPUPT| TOV DEMPNTIKOV EVVOIDV TOL TPOYLUTEVETAL
KO TNV 0vaQOopd T®V HOVIEAMY TOL XPNGLULOTOONKAY, UEYPL TO TEWPANATE TOV OUTEAEGTIKAY,
TOL OTTOTEAEGUATO, TTOV TPOEKVYAV KoL TO TEAMKE [LOC GUUTEPUC LLOLTAL.

0.1 Evocayoym

YK0mOG TNE TAPOVCAG STAMUATIKNG EIVOL 1) GUYKPITIKT 0VOAVGT LOVTEA®V UNYOVIKNG Kot Badiig
uéonong yw to mTpoPANUe TG TPOPAEYNG TOANGE®Y TPOIOVTOV TOYXEING KATUVAAMGNG Kot 1
KOTOGKELT] €VOG GUVOMKOD HOVTEAOL UNYOVIKNG udOnong ue moAd vymAn oakpifela, ot
TAVTOYPOVA UIKPO KOGTOG. [0 v To TETOYOVUE OVTO, SOKIUACAUE UEPIKA OO TOL TTLO GUYYPOVA
Kot 0modoTIKG poviéda oty TtpdPreyn moicewy. Ta LovTéAN OV TEMKA KPOTNOUUE Kol GTO
GUUTEPAGILOTO TIC GUYKEKPIUEVIG SUTAMUOTIKNG EPYOCING TPOTEIVOLLLE, Elval TO LOVTEAL LE TN
uéytot dvvartn axpifela and avtd wov dokdotnkoy. H dokiur teptocdtepmv LoviéAmy dgv Oa
aHEave VITOYPEDTIKG TNV OKPIPELD TOV TEMKOD HOVTELOL WOG, TOPA LOVo, edv Ppickape LOVTELD
VYNAOTEPNG akpifelag amd To TOPOVTO KOADTEPO HOVTEAD KOL TOVTOXPOVO HIKPOTEPTG
CUUPOVING UE TO KOADTEPO HOVTEAD, HOG, MOTE TO TEAMKO META-LOVTEAO WOG VO TETLYAIVEL
100N Té KaADTEPO OTOTEAEGUATO, OTTO TO LEPOVOUEVE, povTéra. Eidape, kot deiyvoupe, 0Tl OTmG
TEPIUEVOLLE, TO TEAKC LETA-UOVTEAL [LOC, EXOVV VYNAGTEPN aKpifela amd kdOe GAAO PHELOVOUEVO
HOVTELO Yoo TNV axpifela TpoPAeEYNG TOAMGEDY GTA GLYKEKPIUEVA dedopéva, Kol UeTatd TV
SLOPOPETIKOV HEBOIDY Y10 TNV KATUOKELT META-UOVTEAWDY TOV OOKLUAGOUE, AVOOEIKVOOVUE GTA
OTTOTELECLLOTA [LOC QVTY] TTOV EiYE TNV KAADTEPN ATOS0GN GTNV AVAADGT] KOGTOLC-KEPSOVC.

To np®TO KOl KOPLO OMUOVTIKO TAEOVEKTNIO CVTNG TNG HeBOdov, dNAadT, 1 OPYIKA avaAvcen
povtéhov (Xtddto 1) ko n ovvleon tov kaAdtepav €&’ avtdv oe éva peta-poviélo (Xtdadio 2)
glvar 611 Yo v Bertioon g akpifelog TV HOVTEA®DY TOV ¥PNGIUOTOLEL O KAOE OpyaVIGHOG TO
eMIAL0V KOGTOG TOV TANPOVETOL Eivar To gAdyloTo duvatd. To devtePo KOPLO TAEOVEKTN O, Evat
0Tl, o€ oyéomn pe GhAeg pebodovg, pmopel vo epapuoctel Oyt udvo amd opyaviopohs mov Ogv
&youvv Kot BELoVV va SNUIOLPYNGOVY LOVTEAD Y10, TNV TPOPAEYN TOV TOAGEDY TOVE, OALA Kot
amd opyavicprovs pe Non vrdapyovta povtéra. o mapdderypa, av évag opyoviouds/emyeipnon
éxel NON €mevdVGEL Kal YPNOUOTOLEl LOVTEAD UNYOVIKNG nabnong, av 0éhel va odnynbei oe
Beitioon g akpifelog tov mTpoPfrévemv tov pe TV 0&0TOINGT VEOV KOALTEPOV UOVTIEA®V
unyovikng 1 padeiag udbnong, yo Ty avTikaTdoToon ToV 101 VTOPYXOVIMV TOV, 1| TPOTYOVUEVN
EMEVOLON TOV TEPTEL €V Kevd. QoTOGO, PE TN ¥PNon ¢ nebddov pog yio ) dnuovpyio TV
vrogétaon petd-puoviéA@v, o idlog opyovioudg umopel va avéncel v axpifelo TV
TPOPAEYEDV TOV YOPIG VO YPELOGTEL VO ETOVETEVOVGEL GNUAVTIKG KeQAAato Yoo TV Pelticoon
TOV LOVTEA®V TPOPAEYNC TOV TOAGEDV TOV.

Kabdc mpoywpodpue oe autiv v epyocio mpémel S10pKMG VO, EYOVUE GTO HVOAO pog OTL
avelaptra and TIG PEATIOTES OKAOTLOIKE TPUKTIKEG OOV UTOPEL VA, VITAPYEL O YPOVOS, 1 YVDGN
KoL 01 TOPOL VA, KUV YNGovUE TO OempnTikd PEATIGTO OMOTEAECUA, GTO TAOIGIO EVOG OPYAVIGUOV/
emyeipnong to mpdypoto givar opkeTd dapopetikd. H ypnuoatikny €mévovcn, o GLUVOAKA
OTTOLTOVLEVOG XPOVOC, 1] TKOVOTNTO KOL 1) ATOITOOUEVT EKTAIOEVOT) TOV OVOPOTOV TOL TAPAYOLV,
oLUVTNPOVV Kol YPNOOTOloNV éve. epyaieio eivar kabopiotikng onupoaciog. To tepdotio
TAEOVEKTNHOL TNG MNYOVIKNG udbnong eivor 6t umopovpe vo avtipetomilovpe pobnpotikd
LOVTELDL KOl LEPTKES DLUPOPIKES EELGMGEIS GOV £VO, TOAD YPNGIUO “Uodpo KOuTl”, aAAd avTtd dev
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wyvel ywuo tov avipomwvo mapdyovta. To poviélo pnyovikng pabnong divovv  kdmola
amoteléoparta, VYNAOTEPNS N YaunAotepnc axpifelag, ta. omoia Oa mpémel va amoktnOoldv pe
GLYKEKPIUEVO TPOTO Omd avOpdmovg, dedouéva, unyaviuote Kot dAlovg adyopibuove. Tnv pon
TANpoeopiag Kot VOVVNG TV OPYAVICUOV KOl TPoioVI®V oV eEeTdlovUE TPEMEL VA, LTOPOVUE
TANP®G VO TV TOPOKOAOVONGOVUE TPOKEIUEVOL VO KOTAVOT|GOVLE TIC OTOLTHGELS, TIG OVAYKEC,
Ta TOVE TPOPANLOTO Kol TO TTOL0G EIVOL O TEAMKOG XEIPLOTNG TOV HOVIEA®V UAG. TNV TEPITMOON
™G TPOPAEYN S TOANGE®V Y10, TTPOTIOVTO TOYElNG KaTavaAmong N o cuvnOiouévn doun gival 1
edng:

Marketing &
Sales Team

Input: Sales Forecasting
& Invento

Building Maximise sales & Boost Customer
campaigns revenues Retention

Providing useful
Data Team Data management data to other

Input: Data & Sales Forecasting departments
Output: Datasets

LogisticsTeam  Ensure Efficiency Stock/Inventory
of Process management
Input: Sales Forecasting

Controlling &
Management AUt 99 Maximise profits

Sales Forecasting

Yyqpo 1. Agomoinon povtéAwv tpdPreyng TOAGEOV VA TUNUO. ETLXEIPNONG

To tufuo Mdapketvyk €ival avtd TOL TANPMOVEL YO, TN ONUIOVPYID TOV GYETIKOV EPYOLEIDV
TPOPAEYNC TOANCEDY, 0POD GLYKPITIKA PE OAo TO TUAROTE TOV KOoTilouV YpHoTe o8 Evay
opyavicud (cost centers), o TuRua Mdapketivyk (moAléc Qopég “Mdapketivyk katl IToAnocewv’)
glvat ovtd OV dNUIOVPYEL TA ETAPIKEG £600. KOl Y10 0VTO TO AGY0 €xel Kol onpovTtikd budget kot
gveM&ia yo va TeTHYEL TOVG GTOYOVS TOV.

Yuvenmg, ovvnlwog Olo To gpyadeion unyavikig pabnong yw mpoPreyn TOV TOANGE®V
TANPOVOVTOL 07t TO TUA O MAPKETIVYK TOV EKAGTOTE OPYUVIGUOD Kal Y10 aLTO T0 AdY0 ytilovtan
UE AEITOVPYIKOTITEG KOl YOPAKTNPLOTIKG TTOL TPEMEL TEAK va ELINPETOVV TO, 1010L.

¥t0 mloiclo ¢ mapodoas SIMAMUOTIKAG GULVEPYUOTNKOUE WE ODO WEYOAES EMYEPNOELS
(marketplaces) mov eumopgbovial Kot Tpowhohv TPoldvta Toyeiog KATUVAA®ONG. XVVETMS, M
YVOON UOG €Nl TOV OYETIKOV YMOPOL O&V TOPEUEIVE OTO OTEVA Opla. BepnTikng Kot
KOO UATKOKEVTPIKAG TTPOGEYYIONG, GAAG OO TNV EMAPN UG UE TPAYHOTIKEG ETLYELPTOELS TOV
YDOPOV KATUPEPOLUE VO, ATTOKTIGOVLE [0 TT10 OAOKATNPOUEVT] EIKOVA TOV KAAOOV.

[Ipwv poywpncovpe 6T0 KOUUATL Tov BgwpnTikod vIoPadpov, eival Wilaitepa. CNUAVTIKO Vo
yvopilovue oo ol wPoidvta ukdue Otav YPNOIUOTOOVUE TOV Opo “mpoidvta Toyelog
KOTAVAA®ONG”. XT0, TPOTOVTA TaYEING KOTAVAAMGNG VITAyoVTal Ol €ENG KOTYOPIES TPOIOVIMV:
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* Moda Kot povyiopog

* Hlextpovikd/HAektpovikéc cLOKEVEG
* Poorpota

* Kalivvtcd

+ IIpoidvta mepumoinomng cOUTOG KOl TPOSHTOV
*  ATOppLTOVTIK(

+ KaBapiotikd

* Ilpopayepepéva Kot £TOLLA YELLLOTOL
* Ilpoidvta povpvov

+ Kateyvyuéva

+ Oapuaxo

*  AvoAdoo ypoapeiov

* Al Tpoidvra Toyelag Katavaimaong

Av Kot GuvoAKA Ogv €xel peletnBel ektevdg 0 cuykeKPUEVOS Topéag, £xel oegoybel moAAN
£€peuva otV TPOPAEYN TOANGE®Y Y10 TPOTOVTO LOAG (TEPIOTOTEPD GTO EXOUEVO KEQPAANLML).

Méoa omv egvpela meployn TPoidvtov Tayeiog KotavaAwong, emnéielo vo emkevipwbod ot
OTOPPVLTAVTIKE Kol KOOOPIGTIKA Yo TOLG akdA0VBOLG AdYoLC:

1. Iapdho mov vIdpyel TOAAY £pELVO GYETIKA HE TNV TPOPAEYT TOANGEWV Yo TN Bropnyovia
HOd0C, LTAPYEL OYeOOV UNOEVIKN] €peuva. OYETIKA pE TNV TPOPAEYN TOANGE®V Yo
OTTOPPLTOVTIKA Kol KOOOPIoTIKG.

2. H Bropnyavia amoppumaviik®v Kot kafoaplotdv ivor pio Taxémg avamtuecopevn Bropnyovio
pe CAGR aveo tov 4% YoY (ypévo pe to ypovo).

3. Elvai o Bropmyavia pe peydin svaichnocio otig tipég mov divel akdun peyoidtepn onpocio
OTIG OTPATNYIKEG TIHOAOYNONG KAl GTNV akpiPn TpOPAEYN TOANGE®V Y10 TN HEYIGTONOINGN
TOV E000MV Kol KEPODV.

4. Mmopohv vo.  avTITPOSMOTEDOVY OMOTEAEGUATIKA TO GCUVOAO T®V TPOIOVIWV ToYElNC
KOTOVIA®MOTG.

Me v emdoyr tov Kabopiotikdv kot ATOppLROVIIKOV GOV OVIUTPOGMTEVTIKY OUAdN
TPOIOVTMOV Yo TO TPOIOVTO TAYEING KUTAVAAWDGONG Kol TNV €MOEN HE OVO HEYAAES ELPOTAIKES
EMYEPNOELS, CLAAEEQE TO. amapoitTnTa dEdOUEVA LE TOL OTTOT0 KOl KOTAGKEVAGALE TO LOVTELD
LG KO TTPOLY LLOLTOTTO I GOLE TNV TEPAUOTIKT OVIAVCT| O,

Opyavoon keporaiov Extetapévng Ilepidnyng

Xto emopeva kepdiow Bo koldwovpe to BewpnTikd vrofabpo, Ba mapovcidcovpe TV
OVOALTIKT HEBOOO KOl LOVTEAD 7OV YPNCULOTOUCOLE, TIG LETPNOEIS, TO OEOOUEVH KOl TO
OTOTEAEGILATOL LLOG.

ITo cvykekpéva:

* Y10 Kepalato 0.2 divovpe to Bempntikd vofabpo e tpdPreyne nwAncemy. @a 6yoAdcove
padnuoticd povtéda, Tt epoppdletorl oty mPAn, Kol TNV CGYETIKN £pguva otnv TPOPAeym
TOANGEMV TPOIOVTOV TaYEIOG KATOVIAMOTG.

* Y10 Kepdlaio 0.3 avoidovpe 1o OBempntikd vmdfabpo g pnyovikng pdonong kot tov
HOVTEL®V OV YPT|CLLOTO|GOLLE.

* 270 Kepdrato 0.4 Ba oyoMAGOVLE OVOAVTIKA TO, OTOTEAEGLLOTO, LOG LLE TOVG OYETIKOVG TIVOKES
KOL YPOPTLLOTO Y10 TV EVKOAOTEPT KATAVONOT Kot EMEENYNON TOVG. ZVYKPLTIKA, TAPUTPOVLLE
mv o&io AV TOV HOVTEA®V LAG OVOADOVTOG TO OTO TAOIGLO TG OAYOPIOLIKNG OIKOYEVELNG
TOVG, Kot TNV a&ia TV PETO-HOVTEL®MVY HEGM TNG 0vOAVOT KOGTOVG-a&ing mov dteEdyouple.
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* Y10 Kepdriaio 0.5 avoldovpe T0 GUUTEPACUATO MO KOl TIG UEAAOVTIKEC KOTELOVVOELS NG
doVAELdG oG, TOGO Yl EMEKTOCT TNG £PEVVAG GE TTPOTOVTO TaYEIOG KOTOVAAW®GNG, 0G0 Kot
TOOVEC LEAAOVTIKEG TTPOEKTAGELS TNG £PEVVAG LG OE AALEC KATNYOPIEC TPOIOVIMV.

0.2 Ozopntikoé Yaofabdpo

Xe vty TV evoTNnTo OVOADOLUE TO 1OW0HTEPO. YOPOKTNPIOTIKE TOV TPOIOVIQOV Toyelog
KATOVAA®OOTNG, KaODG kot To Bewpntikd voPabdpo e TpdPreync TOANGEMY.

H npofreym noiicemv propel va €xel kaBoploTikd avTikTumo otV emTvyic Kot TV omddoon
tov etopeldv. Ot avaxpiPeic mpofréyelc moAncemv odnyovv oe peydio omobépata mov
av&dvouv ta k6ot TG droyeiptong kot amobnkevong (logistics) N TV avendpkelo amobepdTmv,
IOV £YOVV MG OMOTEAEGLO TNV OTOAELN KEPODV Y10 TIG EMLYEPNOELS. E1dikdtepa, yia Tig etatpeieg
OV TAPAYOLV KOl EUTOPEVOVTAL TPOTOVTA TOYEIOG KOTOVAAMONG, ONWG MAEKTPOVIKA,
KaBop1oTIKE 1 ATOPPLTAVTIKG Kot Yo TV Propmyoavior TG podog, eitvar amapaitnteg ot akpiPeic
npoPréyel; toinoewv. H onuocio g épevvag ota HOVIEAN TPOPAEYNG TOANGE®Y VYNANG
akpifelag mpokvTTEL amd TO YEYOVOG OTL M TPOPAEYN TOANGE®MY dev glval LOVo KOBOPIGTIKNG
onuaciog v pio tepdotio TANODPO ETAPEIDY, OAAGL KOl TO OTL Ol TEPICCOTEPES EMLYELPNOELS
avTIpETOTILOVV TEPACTIEG TPOKANGELS GTO VO TETVLYXOLV aKPIPElC TPOPAEWYELS.

Ewdwd yro ta mpoidvta Tayeiog KoTovaA®mong auth 1 avaykn ivol TOAAATAAGIONGTIKA QuENUEVT.
INo wopdadetypo, ol EXLYEPNOELS TOV YOPOL TPEMEL VA LTOPAAOVY TO. GYEOL0 TOPAYDYNS TOVG
TPOTOV £YOVV AKPIPELS YVDGELS OYETIKA LE TIC LEAAOVTIKEC TOANCELS TOVC. ALTO amatteital AOy®
TOV YEYOVOTOG OTL TO TEPLGGOTEPX EPYOSTACLA TOPAYWOYNG PpickovTal o YMPES TNG AGLOG KO, (OC
€K TOUTOV, 0 YPOVOG OyOPas, TaPAYWOYNS Kol d1d0eong TV Tpoidovimy eival LeyaAdtepog amd v
EP10d0 TMOANOTG.

Ocov agopd 10 TpoPANUa dnuovpyiog mpofréyemv vymAng akpifelag, mapdyovieg 6mmg ot
HETUPAAAOLEVEG KOPIKES GLVONKES, Ol apyiec, ol dNUOCIEG EKONADOELS KOOMDC Kol 1 YEVIKY
OLKOVOUIKT] KOTAGTOGT, UTOPovV Vo, EX0VV avTikTumo oTig peAloviikég anattnoelg (Thomassey,
2010). Adyo tov pukpdv KOKA®V (oM Kot TG LVYNANG HeTafAntotnTog ot Tpoidvta Toyeiog
KATOVAA®ONG Kol NG yevikng afefaidtntog e (mmong, ot etarpeieg avtipetonilovv cuyva
VYNAEG TPOKANGELS OGOV apopd TG akpPeic TpoPAEWYELC.

EmnAéov mapdyoviec mov cvpPfdiiovv o1n Ovokohio mopaymyng mpoPAdyemv  axpiPeiog
aQopovV T 1010 To. OESOUEVO TOANCEWDY, GTO OTOio. UITOPOVE VO TAPUTIPTICOVUE O1APOPOVG
TOmoVg mopapéTpeov Kot potifov. Mepwkés amd avtég elvar m téorm, M emoyKOTNTA, M
OVTOGLGYETION KOl LOTIPA TOV TPOKOAOVVTOL OTd TNV EMIOPOCT EEMTEPIKAOV TAPAYOVIMV OTMG M
TPOGPOPE, 1 TIHOAOYNCN N 1] CLUTEPLPOPE TOV avToyoVieT®V. Tlapatnpodue eniong onuaviikd
06pvPo ot TOAACES, €OIKA Yo TO WPoidvTa Toyelag katavaiwons. O B6pvPog avtdg
TPOKaAEITOL amd mopdyovteg mov dev meptlouPdvovtor otnv avdAvon pog Kot Umopel vo
aQopovV avOpdmve AdON, adyoplOuikd Kot texvoAoywkd AGOT, eTaipikéG MOMTIKEC GLAAOYNG
dedopévav, TPOKANGELS Kot vouobesieg mov a@opodv GuAAOYN SedOUEV®V, KOl TOAAOVG OKOLLOL
eEwtepikovg mapdyovtes. Emiong, oto dedopéva moANcewy, oyeddv o OAEG TIG MEPUTTMOOELS
€youpe apKeTEG Kataypoapsg e axpaieg Tpég (outliers). Ot outliers pmopel va mpoxinBovv amd
OPLOUEVOVS GUYKEKPLUEVOUG TOPAYOVTEG, T.Y. EKONAMOELS TPOMONONC, UElMON TIH®V, KOUPKEG
ouvOnkeg KA. Edv avtd ta cvuykexkpiuéva cuppdvia exovoiapfavovtot meplodikd, LWIropovE vo
npocBécovpe vEeg dLVOTOTNTEG OTA LOVTEAD Lo oL Ba delyvouy avtd ta 1d1kd cvuPdvto Kot
Ba meprypdpovv Tig axpaieg TIES TG LETAPANTIAS-0TOYOL.

YOVENMS, AV TPEMEL VO, TPOYLLUTOTOGOVIE VYNANG akpifelag mpofAEyelc TOANGEWY, TPETEL VO
AdPBoope vroyy pog Tig afePaidtntec, tov B6pvPo kot Tig axpaieg Twée. Or afefardTnTeg
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oyetilovtal ev HEPEL LE TIG TOANGELS KAl GLYVA 0QeilovTal 6e EAAEIYN YVDCEMV 1 EGOUAUEVESG
mAnpooopiec. EmumAiéov, ot cuyvd petafarlopeveg oepéc mpoidvimv Kot 1 O1apopeTikn {RTnon
AOY® SLOQOPETIKAOV TapayovTov mov ennpedlovyv (emoyloKkés emMPPOES, MOMTIKEG TIUMV Kot
EMAOYOV K.AT.) €lval HOVO peptkol amd mTOAAOVE TapAyovTeS oL KafioTovy SUGKOAN TN Ypron
SLUPATIKOV HOVTEL®V GTOTICTIKOV TpoPAéyeny. EmumAéov, n mpaylatikn cuoyEtion petald tov
TAPAYOVTOV OV enpedlovv eival cuyva SVCKOAO va, Kotavonbel 1] va unv ovoyvoplotel ornd tov
AvOpOTO KOl TNV TOPAOOGLOKT ¥PNON YPOVOGEPADV, YEYOVOS Tov 0dnYel o€ avénuévn emboupio

Kol avENon TS xpNong HeEBOOWV TEXVNTNG VONLOGVUVNG 6TO oxedtacd g {ntmong [2].

Mua épeuva otV omoio GLUUETEIYAY KopLaies eTatpieg dSapdpwv KAASWV £0€1Ee OTL 01 eTapEieg
ov Pacioviar ot Aqyn onoedoewv Pdoet dedopévav (Data Driven Decision Management -
DDDM) emtrvyydvouv kaAivtepa anoteléopata (Provost kot Fawcett, 2013). Katd pécso 6po, ot
ETOPELEG TTOVL YPNOLLOTOI0VV CLGTHATO TPOPAEYN G TOANGE®WV 6T0 DDDM Tovug givor KaAvtepeg
oand 10 péco O6po G Propnyavicg Tovg Kot cvykekpluéva eivor kKatd péco 6po 5% mio
TOPAYOYIKES Kol 6% T10 KEPOOPOPES 0E GVYKPIoN HE ToV avtoymvicpd tovg (Brynjolfsson, Hitt
and Kim, 2011; McAfee and Brynjolfsson, 2012). Ot etaipeiec mov Pacilovioar ot Aqyn
anopdoemv Pdoet dedopéveay (DDDM) ypnoionolovy Kupiog GTOTIGTIKOVG TPOTOVS Yo TNV
TPOPAEYN TOV TOANGEWV TOVS, OTTMG TN LEB0dO Epeuvag epmelpoyvoudvov [21] kot alyopiBuovg
mov oyetilovral pe ypovooepés. H pébodog Epeuvag eumeipoyvoudvov Baciletor mAnpog oty
avBpomvn eumepia kot n axpifela dev eivar apketd otabepn. Amd v dAAN, ot aAyopBuol
YPOVOGEPAOV OV TEPAAUPAVOLY avTdpaty TaAvdpounon [21], exBetikn pnébodo eéopdivvong
[21] ko poviého ARIMA [12], ¥pnOULOTO00V 10TOPIKA OEO0UEVO TOANGEMY Y10, TV KOTACKELT|
povtélmv. Avtég ot péBodot dev HITopovV Vo KAVOLY AP YPNOT CYETIKAOV ToPpAyOVIWV OTI
TOANGELS TPOIOVTOV, OTMG Yo TOPAOELYLLa, TILY], TPO®ONTIKEG EVEPYELES, OPYiEG K.AT., DGTE VO
kaBiotatol duokolo va dacpaiiotel n akpifela twv TpoPréyeny oe chvOeTeg aAlaYEC.

Av1d 10 TOpadoslokd poviéha TpdPreyne Twincemy Aowmdy, mov Pacilovtal otV TPocEyyion
Kot avaivon ypovooelpav (Box-Jenkins, Autoregressive eVemMUATOUEVOG KIVOOUEVOG LEGOC OPOC
(ARIMA), yevikevuéveg avtoektereotikég cuvinkec (GARCH) kt).) €xouv opiopévoug eyyevelg
TEPLOPIGLOVG TOV TPOGEYYIGEMV KOl EKTIUNGEDV YPOVOGEPAV Y10 TIC TPOPAEYELS TOANGEDV KO
€101KE Y10l TIG TEPIMTMOGELS TV TPOTOVIMV TOXELOG KATAVAA®GONG, OTMC:

* [Ipémet vo ExovpLe 10TOPIKA OESOUEVA Y10, LEYAAO YPOVIKO SLAGTILLO Y10 VO KOTOYPAWOVLE TV
enoykdTTa. Q0TOC0, GLYVA dev OlabéTovE 16TOPIKG Ocdopéval Yoo pia PETAPBANTY oTdYOoV,
TOPAOELYLOTOG XAPLY, OTIG TEPITTMOGELS TOL AAVGApoLLLE Eva vEo TPoTov. Mmopel va, Exovpe OULMC
YPOVOGEIPES TOANGEMV Y10l TOPOLOLN, TPOTOVTA KO VO LTOPOVE VO EKTIUGOVUE OTL TO VEO LOG
poiov Ba £yel mopdpolo potifo mTwANGE®Y, 0mATE Kot ot oAydpiBuotl kol povtéia mpdPAeynC
TOANGE®V Hog Ba Empene vo AapPavouy vIToOYY Tovg otV TV TANpoopia. Xe avtiBeon pe to
kaBopd pobnpoatikd poviéAa mov ayvoolv ovTtoh Tov €l00Vg dedopéve (TAnpogopieg Kot
dgdopéva Yoo mopOUol TPOTOVTIO) 1 UNYOViIKn padnon vy v wpdPAeyn TOACEDV
OTOOEIKVOETAL 1010ATEPAL YPNOULN, OPOV UTOPOVLE UE VYNAOTEPT] OKPIPElD VO YPNGUYLOTOLOVLLE
maperBoviikd dedopéva kal oedopéva amd Tapopoln TPoidvta 6TV TPOPAEYN TOV TOANCEDV

Lo

» Ta dedopéva ToAncemv umopel vo £yovv moAAovg outliers kot elhewnn| oedopéva. Ilpémel va
ovtpetonicovpe to akpoio onpeio kot vo eiéyEoope ovalvtikd to dedopéva TPV
YPNOLOTOMCGOVLE ia TPOocyyion ypovoselpdv. Ta pabnpatikd poviéha SuGKOAEDOVTOL APKETA
Vo avTOamokploOV G€ AULTEG TIG TEPIMTMGELS KOl TEPTEL EEQUPETIKG TOAD M axpifela tovg. Xe
avtifeorn, omv Ilpogpyacio Asgdopévov mov kdavovpe (Data Pre-procesing) (Kepdiowo 5.3)
UTOPOVUE VO EXOVLE TNV AvAALGT OV YPelONAGTE KOl Vo divovpe TEMKA KOAEG AVGELS Yo TaL

HOVTELD UNYOVIKNG Labnong.

* [Ipémer va AaPovpe vdyty morAhovg e€myeveic mapdyoviec mov emnpedlovv Tic Towincec. H
TOATAOKOTNTO TOV UAONUATIKOV HovTEA®V ov&dvetor oyxeddv exbetikd pe v adénon tov
eEwyevdv mopaydvtov Kol ETMALOV TOPOUETPOV, OAAG 1 TOADTAOKOTNTO TMV HOVIEAW®V
unyovikng pabnong emmpedleton aodntd AMydtepo. ZVVETMG, OTIC EQAPUOYES UNYOVIKNAG KOl
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Babibg pabnong pmopovue vor £xovpe mOAD MO GOVOETO HOVTEAD TTPOPAEWEDY LE CMUAVTIKA
HUIKPOTEPO KOGTOC,

Adyo tov mopoamdve SvokoMdV, TG TEAELTAlEC TPELG OeKOETIEC TOAAEG EMLYELPOELS
petamnoncay amd T HOVTEAN avAAVONG YPOVOCEPDV O TPOGEYYIoES TAAVOPOUNONG
(Thomassey, 2010). H mpdPreyn moAifcewv sivor pariiov mpdfAnua molvopdunong mopa
mpoPAnuo ypovocselpdv. H mpoktikn deiyvel 1L 1 ypnom TV TPOGEYYIGEDV TOUAMVOPOUNONC
umopel cuyvé vo pog dMGEL KOADTEPO OMOTEAEGLATO GE CUYKPLOT UE TIG LeEBOOOVE ¥POVOCELPDY
Kol ot ahyopiBpot unyavikng pabnong kabiotobv dvvarr| v edpeon potifwv ota dedopéva. Mia
oamd T1g KOpleg mopadoyEs Twv PHeBddmv moAvdpounong eivatl 6t ta potifa tv dedouévav oTo
mopehBov, Ba emavainebodv oto péAAovV, KATL TOV GUVAdEL eENPETIKE KOAG HE Ta POVTEAQ
UNYOVIKNG pdBnong kot yo ovtd kol emAEEQUE Vo SOVAEWOLUE HE HOVTEAD TOAWVOPOUNONG
unyovikng padnong (Machine Learning Regression).

ITpoxeévovu va emttevyBovv o1 aToOYOL HoS Yio akpiPn poviéda TPOPAEYNC LE AUEST] PNION TOVE
oTNV ayopd, ypnotpomolovviot péBodol punyovikng nanong (ML), oAld kot Badiac pdonon (DL)
[4,5]. Kot o1 800 tomot pefdowv pHmopohv va 0pioTovV MG VITOTEPIOYES TNG TEXVNTNG VONUOCUVNG,.
To mleovékmmuo tov uebddwv mov Pacilovtal g TeXVNT VONUOGUVIN &lval Hio. oVTONOT
OVOAVOT TOV TPOTUT®V Kol TOV €EOPTNCEDV OTO OEOOUEVO E1GAYMYNG, TPOKELEVOL Vo
ypnoomomBodv yoo emduevec mpoPréyels. uoikd, OTMC cvuPaivel Kol HE TIC GTOTICTUIKES
pebooove, dev vmdpyel yevikd péBodog Ko POVTEAQ TEYVINTAG VOMUOGUVNG 7OV OMUIOVPYOUV
PeAtiopévn mpdPreyn v KaBe katdotaot. Avtifeta, kdbe pébodog pumopel va ypnopomon el
Yo TV €N{TEVET OLUPOPETIKMV O10THTMV OVAAOYQ LLE TNV EPAPLOYT.

Ov Xia ka1t Wong (2014) mpodtevav T d1apopéc petald tov KAaotkav pefddwv (Pdoet
OO UOTIKOV KOl GTATICTIK®Y HOVTEA®MV) KOl TOV GUYYPOVOV EVPETIKGOV HeBOOV. XtV TpdT
opada, avaeépovv Avoelg Omwg ekBetikn efopdivvon, maAwvdpounon, Box-Jenkins,
OVTOTAALOVPOUEVOC EVOOUOTOUEVOG KivoOpevog pécoc O0poc (ARIMA), yevikevuéveg
avtoektedeotikég ouvOnkec (GARCH) ko dida. Ta mepiocodtepa amd avTd To HLOVTEAX givat
YPOUUIKE Ko Ogv givol oe 0éom Vo OVTILETORIGOUV TNV OGVUUETPIKY] GUUTEPIPOPAE TOV
TEPLOCOTEPOV OEGOUEVODV TIOANGEMY TOV TPUYUOTIKOD KOGpov (Makridakis, Wheelwright, &
Hyndman, 1998). Avtifeta, o1 cOyypoveg gupetikéc nébodot punyavikng uabnong sivar cuvnwg
o 0éon vo avTIHETOMIGOVY OVTEG TIG TPOKANGELS. ZTOV Touén NG TPOPAEYNC TV TPOoidVTMOV
TOYELOG KATOVOAMONG, OVTEG Ol GTUTIOTIKEG TEXVIKEG OTIC OPYIKEG TOVG HOPPES ovTieT®TiovV
TPOKANGELS OtV Topaywyn akplpdv omoterecudtov mpofreyne, AOY® Topaydvtwv OmMC
akovoviota potifo kor vynAn upetopintotnto (Choi, Hui, & Yu, 2011) tov dedouévav
TOANCEDV.

Erniong, mpémetr va Oopduoocte ot 1 wpdPreyn moAincemv eivar éva mpdfinuo mpdPreync
TOALOTIADV  TOPOALAYDY Ypovooelp®dv. Ot Kipleg TPOoKANCELS Tov €pyov TPOPAeYNS givol ot
petafAntéc emppong vynAng owdotaong pe B0pvPo kot ol mepimhokeg oyéoelg PETAED TOV
ypovocelpdv. Ot EMYEPNOEIS OVNGLYOVV OPKADS Yo TNV KEPOOPOPIO TOLG KUl ETOUEVAC,
enedn ol TowAncelg oyetilovran dpeca pe Ta kEPOM, £xovv gpevvnbel eupéws. Ommg avaeépape, M
TPOPAEYN TOANCEWV €lval Pio GNUOVTIKY TPOKANGOT, 0ol oty TPAsén, n cLvOLOCUEVT Opacn
TOV TOAOTAOK®V TOPAYOVTWOV EMPPONGC, TNG EMYEPNUOTIKNG CTPUATNYIKNG KAl TOV KAVOVOV TNG
ayopdg mpocitel dvokorion otnv mPdPreyn tov képdovg (Chi-Jie Lu, “TIpofreyn mowAncewv
TPOIOVTOV VIOAOYICTOV UE PAon HeTafAnTd oyfuo €TAOYNG KAl LIOSTNPIEN TOAVOPOUNONC
oopéa”, 128: 491499, 2014). I'a avtd 10 Adyo, n advvapio KOVOTOMTIKNG TPOPAEYNC TOV
EMYEPNLLATIKOV KEPOOVE, LeTOPIPace TO EpELYNTIKO EVOAPEPOV GTNV TPOPAEYT TOANCEWV.

EWwd yo Tig TEPUTOCELS TOV ETALPEIDV TOL TOPAYOLYV KOl EUTOPEVLOVTAL TPOIOVTA TOYEIOC
KATOVOA®OOTNG, £YovUe eMMALOV SVOKOMEC OTIC TPOPAEYEIS TOANGEWV aPOV £xouv To €ENC
YOPOKTNPICTIKA:
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Xympa 2. poidvta tayeiog katavaioong (FMCGs).

* [ToloOvTal Stopkds Kot 68 SLOPOPETIKEG TOCOTNTES.

* Ayopalovtor omd OAOVG KOl CUVETMS Ol TOANGELS TOvg ennpedlovtol amd eEupeTiKd TOAAOVG
TOPAYOVTEG.

* Ayopalovtor ovyvd, oAAG €lval ayopég YOUNANG GCULUUETOYNG, OMNAMOT TOAD €OKOAO Ol
OYOPOOTEG TV GYETIKMV TPOIOVIMOV LETATNOOVV GE VEQ 1] OVTOYMOVIGTIKG TPOTOVTA TNG 0lyOPAC.

Enmedn 1o mpoidvta tayeiog Kotavalmong £xouv 1060 vyYnAd KUKAO €pYacit®dv Kot eE0peETIKA
YPNYOPES TWANGELS, 1 Oyopd TOVG dev gival dvo ToAD peYdAN, oAAG Kol TOAD OVIOY®VIGTIKY.
Optopéveg amd TG PEYOADTEPES €Taupeieg TOv KOGHOL avtoywvilovtol Yo pepidio ayopds oe
avtdv tov KAAdo, cvumepiiapfovopévav tov Coca-Cola, Unilever, Procter & Gamble, Nestlé,
PepsiCo kot Danone. o avtd 10 Adyo o1 oLYKEKPYEVES EMXEPNOES avoykalovtol va
EMKEVTIPMOOLV TIG TPOSTADELEG TOVG GTO LAPKETIVYK Y10 TO TPOTOVTO TOVG TaXEIG KATAVAAWDGONG
Y vo OEAEAGOLV KOl VO TPOGEAKDGOLV TOVG KOTAVOAMTEG v To ayopdcovv. Ta mpoiovta
Tayelog Katavalmong TmAoOVTIoL o HeydAeg ToooTNTES, Enonéveg Bempovvtor aldomotn Ty
€000mV, OAG avTdG 0 HeYOAOG OYKog TwAnoemv avtiotofuiler and ta younid meplddpla
KEPOOLG O€ peUOVOUEVEG TOANGCELS. o avtd Kot 1 akpipfg mpdPreyn ToAncewv glvar 1660
petlovog onuaociog ywo ovtés. Ta ocvotiuata €POSIOCTIKNG KOl OOVOUNG TOVG OMOLTOOV
TEPAOTIONG TOPOLS KOl 10UTEPT) TTPOCOYN, Kot 1 aKpiécotepn TPOPAEYT TOANCE®VY, TOLG
enmupénel  peyébuvon tov neplBopiov KEPSOLG TOVG, EVA T OMOLGIN KOVOTOMTIKG KAADV
TPoPAEYEDV TOANCE®V TOVG KOoTilel exaToppdplo amd emmAéov KOOTN o1N dayeipion NG
€POJIOOTIKNG TOVG OAVGIOOG.

Av kol vmhpyel éva TEPAOTIO CAOUN AOYOTEYVIOG Kol TEYVOAOYIKNG TPOoOdov 610 Oépa g
npoPreymc (Fildes, Goodwin and Lawrence, 2006; McCarthy, Davis Golicic and Mentzer, 2006;
Armstrong, Green and Graefe, 2015), vrdpyet onpovtiKi advvopio vo EQUpPULOCTEL LIE ETLTVYIN OE
EMEPNUATIKES VAOTOMoELS. O1 vTeEvBuVol AYNG amoPAcE®V TAPAUEVOLY dVGTIGTOL GYETIKE e
TIG GLOTACELS TOV TPOGPEPOLY Ta SLOTHHATO VEOoTNPENS TTpoPAréyemvy (FSS) kat Bacilovron
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oV €QOPUOY TOV OIKOV TOvg StovonTik®v poviédwv (Goodwin, Fildes, Lawrence wot
Stephens, 2011) tov onoiwv ot TpokvATOLGEC TPOPAEYEIC gival cuyvd un Péltiotes. Edv ot
opyoviopol emBupodv va BEATIOGOVY TNV OTOTEAEGUOTIKOTNTA TOVG (ONANON VO LELOCOLV TO
yoopo petald tov mpoPAlyemV Kol TNG TPAYUATOTOINONG), MPEMEL VO CKEPTOVV OVTA TO
ayKvpofoinpéva vonTikd LovtéAa.

Evtuyde, moArol €101kol kon peAetntéc cuvéParay otig peBodovg TpoOPAeYN g TOANCEWY e TNV
TAPOod0 TOV ETMV. AV Kol To 0EO0UEVO TOAMGEDV Elval OEOOUEVO YPOVOCEPDOV, O OVTIKTUTOC TV
TOPAYOVIOV GTIG TOANGELS dgv pmopel vo ayvondel. ['a v enilvon avtod tov TpoPAuatog, To
KAoowo povtélo maAvdpounong epapuoletar, to omoio kot Pacileron otn Afyn edAoywv
TOPAYOVIOV EMPPONG Yo TIG TOAAcES. 201000, givor TOAD dVOKOAO vo, Kotavonfovv Kot
TPOGO10ploBolV 01 TOPAYOVTEG TOV £YOVV YPOUUKY oxéon HE TG ToANoels. 1o Kepdiowo 2
(“Theoretical Background”), e&nyodue o puébodo yo pikpd dsiypoto (Alyo dedopéva) mov
a&lomotel avdAvorn Kot HOVTEAD PNYovikng pdOnong. Mmopel va AVGEL ATOTEAEGLOTIKA TO
TPOPANHOTO LUKPOD SElYHOTOC, U1 YPOUUIKNG Kol DYNANG SLAGTACTG OVOYVAPICTC TPOTLIIMY KOl
umopel vo, epapuooTtel 6 GAL TpofALaTE UNYOVIKNG HABNoNG. AVGTLYDS OUWC, I dvvaTdTNTO
EQOPUOYNG aLTAG TNG MeBOdOVL pew®veETAL, €MEWN Ol TEPLGGOTEPEG TPOPAEYEIS TOANCEWDY
PaciCovior oe peydho aplBud derypdtov dedopévov. Ewdwd yo 1o mpoidvia Toayeiog
KOTOVAAWOOTNG, EKATOUUDPLO 1] KOl SIGEKATOUOPLO TOANGES cupPaivouy kdBe ypdvo ko 10-103
GB nmoMocenv dnpovpyodvion kébe xpovo ava emtyeipnon.

ITpoxeévov va Egxwpilovv amd TOLG AVTOYOVIGTEG, Ol ETOIPEIES EMKEVIPDOVOVTUL TNV EVEMKTN
gEumnpétnon TeELATOV, TNV ToXOTNTA KOl TNV THPNOT TOV NUEPOUNVIOV TapAd0ooNG 6€ AOYIKEG
Tég [7]. Ot suvtopevpévol KokAot {mng TV TpoldvTmV, ol SIOKVUAVGELS TNG CLUTEPLPOPAS TOV
TELOTAOV Kol 1) avAyKn Gureons aviidpaons oTig SIHKVHAVGELS TG ayopds ivorl pepikéc pdvo omd
TIG TPOKANGES 6€ 0vTd To Ba. Tlpokepévov va peltwbovv ot Bpayvrpdbeopec arlayéc oty
oAvoida epodtacuol, eivar (OTIKNG oNUaciag Vo €PUPUOCTOVV  OMOTEAEGUOTIKO HOVTEAQ
TPOPAEYNC TOAMCEDV TOV EMTPEMOVY OTIC ETALPEIEG VO TPOETOUACTOVV YO HEAAOVTIKEC
kataotdoelg ek Tv mpotépwv [11]. Ot dwbéoipuor aryopBpor mpofieyng ot Pifioypapio
kaBmg kot ota gumopikd (ERP) cvotipata avldvovior cuvey®dg amd v dmoyn e mocoTnTog
KOl TNG TOAVTAOKOTNTOLG.

EmmAéov, n vmoloylotik 16y0¢ Kot 1 yopnTtikdtTo amrodnkevone £xovv yivelr moAd Atydtepo
damavnpEc, yeyovog mov avoiyel véeg duvatotnteg tpoPreyng yio etarpeieg [32]. Qotdco, 1660
TO. TOCOTIKG 0G0 KOl TO TOLOTIKGL LLOVTEAD TTPOPAEYNG TOANCEWV GE OPICUEVEG TTEPITTMOGELS OEV
glval KatdAAnio yoo TV Topaywyn TpoPAeYng emapkovg moldTNTOC AOY® TNG LVYNANG Kot
taybtatng dlaxvuavong g ayopds. e avtd to Adyo, Bo peTpiicovUE TO YPOVIKO KOGTOC
ekTéleong OA®V TV HOVIEA®MV HaG, KAvovtog tnv vmdbeorn o011 yperdlovtal tov 1610 ypdvo
TPOETOOGTOG Kol TPOYPappaTiopov. [apamdve yio to BEHaTo VTOAOYIGTIKNG 16Y0¢ Kol TV
avoyKdV TV povtélemv pmopovv va Ppebovv ota Kepdrowo S5 (“Tlepdpota™) xor 6
(“Loumepbopata’) e Topovcag dSoTPPng.

Amhég pébodot Pabeiag pabnong Exovv epappootel otic TpoPAéyelc TwAncemy otn PifAoypapio
Kol £xovv emitevydel vooyopeva amoteléspata. Qotdc0, N aKpifela TPOPAEYNS TOV TOPATAVE®
pueBOdwV dev glval IKOVOTOMTIKY OTAV TO YOPOKTINPIOTIKG TOL TTpoPAnpatoc mpdPreyng eival
acopeic Topdyovteg EMPPONG, TEPAOTIO Oelypato Ue TOADTAOKN OOUN Kol HEYOAQ YPOVIKA
dwotnuata. Me Bdon v avartoén g Pabdidg uabnong, ot R. G. Hiranya Pemathilake et al.
TapEYOLV Eva VPPLOKO HOVTEAO LLE EVEOUATMIEVO KIVOOUEVO HECO OPO KOl ETOVOALUPAVOUEVO
vevpwVvikd Oiktvo [6]. Zuvdvacav TopadoclaKd oTATIOTIKG poviédo pe Pobid pddnon kot
TETVYOV TOAAGQ LTOoYOUEVO amoteAéopata. QoT0C0, OEV VRAPYEL TEPLYPAPT] TOL TPOTOL
OVTILETAOTIONG TOV SVVAUIK®OV HETAPANT®OV €TPPoNG. AvTd Ta TpoPAnpata akpifetag TpoPrewng
TOV LOVTEA®V B0 T AVTILETOTICOVE Kol EMPEPotdoOVE KOl 0T S1KE LG TEPELLATO.

Xuvovyilovtag, eEakoiovBovv va vrdpyovv Tpelg Pacikég duokoAieg oto TPOPANUa TPOPAEYNC
TOANGEDV:
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* Ta palikd dedopéva avédvouvy T SuoKoAo VTOAOYIGHOV Kol LOVIEAOTOINONG,.
* Ymapyel o TEPITAOKN U YPOUUIKT oxéon HeTAED LETAPANTOV EXNPEAGUOD KOl TOACEDV.

* O1 TOAoEIS TPOPAVOG eMNPedlovTal amd ToV Tapdyovia Tov ¥pOvov, dAAd 1 ENIOPACT] TOV
TAPAYOVTO TOV YPOVOL OTIC TOANGCELS Eivol SDGKOAO VO TOGOTIKOTONOEL.

lNo avtd to Adyo ot d1ebvn épevva kal PipAloypagia, €Gdyovtal dAQOPES TOPASOGIUKES
TEYVIKEG Unyavikng expudnong (ML), énwg 1o Tuyaio Adcoc (Random Forest) [31], I'poappiknig
HoAwvdpounong (Linear Regression) [34], XGBoost [5]. Ot mapomdve puédodotl ¥pnciomolovy
OLUVOMKA Tapdyovieg mov oyetilovtol pe TIC TOANCE kol PeEATidvouv v okpifelo Tng
TpoPAeymc. QoT1000, aVTA TO HOVTEAD Oev Umopovv vo emefepyactodv amevbeiog dedopéva
YPOVOGEPQOV, OVTE UTOPOVV Vo €EayAyovv TOVG KPULUUEVOLS KOvOves Tmv oedouévav. Il
TpoopaTo, exivinoay va dokpdlovtat kot ot Teyvikég fadidg pabnong, ortmg to CNN [6] kot to
RNN [7] ot omoieg €xovv amoderydel aviaymvioTikég 6€ avtov Tov Topéd. ATd to RNN povtéia,
0 LSTM [8] eivar avotepo and dAdec pebodovg oty axpifeio tov npoPAéyewyv. o avtd to
AOY0, ota oA poG TEPdpata, HE PACT Kol TV TPONYOVUEVT EPELVNTIKY OOVAEIL TOL £)el
npaypatoronbei, Oa emevducovpe oty ekmaidevon evog LSTM ductvov. Ilepiosdtepa yio 6Aa
o povtéda umopovv vo, PBpebodv oto Kepdiowo 4 (“MéBodor ko Movtéda”) kot S
(“Tlepapota™).

[Micw otic mpokAncelg poag oy wpoPAeyn nwAncewv, Bo oviYeETORTICOVUE TPio. EMTALOV
TPOPAALOTA: 0paLd OEGOUEVE, TPOTIUNGELG YPNOTAOV Kot TV VIapén €vog eviaiov poviélov e
KoAY omddoon).

To, apard dedopéva, epeoavifovral cuyvd oty TpoRAEYn TOANCEDY APOD:

1. Meta&d olmv Tov Tpoidviev, UOVO €va HKPO HEPOG ExEl Kabnuepvég ToAnoels. Xuvidwg
VILAPYEL TOAD UEYAAT OLOKDUOVOT] GTNV GLYVOTITA TOANCEDV KAOE TPOIOVTOG KOl GUVETMG OEV
VIAPYOLV €VKOAOL TPOTOL EEOUAAVVOTNG TOV OESOUEVAOV Y10 KON OVTILETOTION Kol Vmapén
gViOiov Hovtélov yuo OAa To TpoidvTa pog emtyeipnone. o avtd to AdYo, ETIKEVIPOVOLOGTE
uévo ot mpoidvre tayeiog katoviilmong, egetdlovtag mPoidvTa UE TOAD VYNAN cLyvoTNnTo
TOMOEDY. X€ TEPITTOON 7OV Ol GLYKEKPIUEVEG EMYEPNOEIS €XOVV Kol TPOIOVIN 0pyolC
KaTavaAwmong, autd Bempodvion outliers amd o poviéda pag kot eopovvral. Emiong, vy avtod
70 A0Y0, dokipalovpe 600 dropopeTikég pueboddovg yia feature scaling, t6co standardisation, 6o
Kot normalisation TV 6€60UEVAOV HLOG.

2. Oco kpotepn eivar M didotaon Owipeong TV TPOIOVTIOV, TOGO TO EUEOVIG gival 1
apotoOTNTO TOV dS0UEVOV. XPelolONUOTE OUMG LIKPOTEPO SESOUEVO OVOADTIKOTNTOG, O10TL Eivat
akpifn ywo ™ Ayn amopdoemv ¢ kabnuepwvng Aettovpyioc. o avtd to Adyo eivar 1600
OMUOVTIKN M apytKn, akpiPpng avdivon tov dedopévav pog (Data Pre-processing). T ovtd to
OKOTO, Vol oNUOVTIKO KoppdTt Tov Kepolaiov 5, engvdvetan otnv avdAvcn tov 6£d0UEVEOV TOL
glyope oty S1d0eom HOG KOt YPNGIULOTOMGULE Y10, VO ETIAVGOVLLE TO, TOPATAVED TPOPAI LT,

Agdopévon 0Tl Kovéva HOVTELO Ogv pmopel vo metvyel v Bewpnrikny 100% axpifela etvor
Wwitepa onUoOvVTIKO vo emAéyovpe omotd To “bias” TV TPOPAEYEMY TOL HOVTEAOL LOG.
Anrodn, +0.1 kot -0.1 RMSE pmopei Bewpntikd va givol 10060Vap0 GOAANN KATO ATOAVTY TIUN,
oAAG oty TPaEn odnyodv o€ TOAD OPOPETIKA KEPON Yo €VOV OPYOVIGUO, OPOV, Yo
TOPAdEYHD, OTOV TO KOGTOG omobnkevong eival WKPOTEPO OmO TO KOGTOG €EAVIANGNG, M
KOTAAANAN vEEpeKTiUNOT TG TPOPAEYNG EIVOL ETOEEANG Y10 Gpeon emavaeopd. Avtifeta, otav
TO KOGTOG amobfKeLONG Eival HeEYOADTEPO 0O TO KOGTOC EAVTANGNC TV amobeudtmv, T10TE Oa
TPOTWOVCOAUE TO HOVIEAO HOG VO EKTIUG UIKPOTEPES, Amd OTL VYNAOTEPES, TOANGCEL. 6TdG0,
VIapyel eAdytotn Pipiloypopio kot ToAD Alyol edkoi Kot epeuvnTég HEAETODY AVTA TO, OPLOL KO
70 bias katd TNV TPOPAEYN TOANCE®V.
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Agdopévng ¢ mOALTAOKOTNTOC KOl TG GVAyKOLOTNTAG TOV TPOPANUOTOC, S1APOopol GLuYYPaPElg
KOl EPEVVNTEC EXOVV EPYUOTEL GTNV €peuva Y1a. TIG TPOPAEYEIC TOAGE®Y. Xg VT TN dTpLp1],
HEAETAUE TN YPNON HOVTEA®V UNYOVIKNG KEONoNnG vy avaAvTikés TpoPAEWEl TOANGE®V
TPoiovTOV Tayeiog katavaiwone. O kOplog 6ToOY0S eival Vo EEETOGTOVY 01 KVUPLEG TPOGEYYIGELC
KOl Ol HEAETEC TEPMTMOEMV TNG YPNONG UNYOVIKNG kot Padeidg pddnong yo v mpoPieym
TOANGEMY GE TPOTOVTA TaYEING KATOVIAWDOTG.

0.3 Mnyoviki MaOnon

Xe autyv Vv evotnto mapovcstdlovpe T BepéMo TG unyovikng pdnong kot g Pabiic
uébnong Kot TepLypa@ovpe Toug Pactkovg aAyoplBpovg otovg onoiovg Pacifoviotl o povtéia
™G épevvag Hog. Méypt 1o TEAOC 0VTOD TOV KEPOANiIOL, O ovoyvdotng Bo mpémel va, sivon
eEoKEIMUEVOG Ll OAEG TIG EVVOLEC KOl TO, LOVTEAD TTOV YPTCLUOTOLOVVTOL GTHV TOPOVCH, EPYACIA.

ITpoxeévor va emtevyBel axpiPric mpoPreyn mapd TIC VYNAEG OMOLTNGES TNG OYOPAC,
ypnoomotovvton péBoodot pnyavikng (ML) kor Pabeidg (DL) pdbnong. Kor or dvo todmot
HeBOO®V UTOPOVY VO OPLOTOVY MG VILO-TEPLOYES TNG TEXVNTNG VONLOGUVNG. To TAEoVEKTNLLO TV
nebodwv mov Pacilovror e Al givol po avtdHOT OVAAVOT TOV TPOTO®Y Kol TOV £EAPTIGEMV
oT0 0E0OUEVA EIGAYMYNG, TPOKELEVOD VO ETAVAYPNGILOTOINO0VV Y100 LEAAOVTIKES TPOPAEYELC.

210 Kepdaiao 4, 0o culntioovpe Aemtopepdc ™ EB0dO Kol Ta LOVTEAQ PNYOVIKIG Ko Babeiog
HéONoNG TOV YPNOUOTOOVUE GE ATV TN daTpPn}, aALd, TPog T0 Tapdv, Ba SDCOVHE PEPIKES
BempnTucéc mAnpopopieg Yo TNV TEYVNTH VONUOGUVY KOt TV UNYOVIKY Lanon yevikd.

H Teyxvnt) Nonpoovvn (Al), mov avagépetorl eniong MG UNYOVIKY] VONLOGUVY|, TEPTYPAPEL TN
VONUOOUVN TTOV EMOEKVHOLV Ol LUNYOVEG, 1| OTtoiol StapEPEL Omd TN PLGIKY VONUOGVUVY, TO €150¢
TNG VOTLLOGVVIG TTOV EMOEIKVHOLV 01 dvBpmmot.

H Mnyovikq Mdbnon (ML) (] pnyovikn exkpadnon) eivar éva vmo-medio g TeXvNTIG
VONUOoUVNG KOl TNG EMGTHUNG TV VIOAOYICTOV Kol apopd Tovg aAydpiBpovg onovpyiog ot
omoiot, yia va givor ypnoot, Pacilovtal o€ o GLAAOYT SEGOUEVOV KATOL0L PaVOIEVOL. AVTA
T dedopéva, pmopel va mpoépyovtal amd Tn @von, va eivar yewporointa and avBpdmovg i va
dnpovpyodvtar amd Evav dAho alydpBpo. H unyovikn ekpddnon uropet eniong va opiotel ogn
ddwocio enthvong evog TPoKTikoy TPoPANLaTog He 1) cLAAOYY €vOG GUVOAOL SESOUEVMV KOt
2) aAyopBukn onpovpyia evog oTaTIoTIKOD HOVIEAOL PACEL AVTOV TOL GUVOAOL BESOUEVMV.

H pnyovikq pabnon elvar otevd ouvoedepévn) Kot cuyxvl GuyxEetal LE TNV VTOAOYIGTIKN
OTATIOTIKY, €VOG KAAOOC, TOV €MIONG EMIKEVIPAOVETOL otV TPOPAeym HEGH TNG XPNONG TOV
vroAoylot@v. 'Exel 1oxvpolc decpovg pe v pobnuotikny Pertictonoinomn, n onoio g mopEyet
pebooovc, v Bempia kot Topeig ePapproynge.

210 gmdpevo oynua (Zynuo 3) umopovue vo 0ovUE TN POCIKN S10(pOPOTOINGN TNG UNYOVIKIG
pnéOnong pe tov mopadoctakd TPOYPUUHOTIoHS. e aviifeon e Tov Tapadootakd “alyoplOuiko”
TPOYPOUUUATIGHO OOV ONUIOVPYOVHE VO TPOYPOLLE TOV TPOYUOTOTOLEL il GUYKEKPLULEVN
oepd Pnuatov adyopiBpov yioo v emilvon evo¢ TPOPANUATOG, GTNV  pnYoviK pddnon
0ELOTOOVUE OEOOHEVL YlOL VO EKTIOOELGOVIE €vov OAYOPIOUO LNMyOVIKNAG uddnong yuw vo
TPOAYLOTOTOLEL Pl GUYKEKPUEVT gpyacio, OTME TAEIVOUNGN, TOALVOPOUNON K.A.
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Zympa 3. Mnyoavikn Mdaonon [48]

H pnyovikn pdonon agopd v e€oyoyn yvooewnv and dedopéva. Bpioketar omn dtactadpoon
TNG GTOTIGTIKNG, TNG TEXVITNG VONHOGUVIG KOl TNG EMGTIUNG T®V VTOAOYIGTAOV Kot givol emiong
YVOOT| ¢ TPOYVAOOTIKN avdAvon 1 ototiotikn pddnon. H seappoyn peboddov punyoviknig
puédnong €xel yiver ta tekevtaio ypodvio TovTaxoy mopovca otny kobnuepwvn {on. Amd Tig
OVTOUOTEC TPOTAGELS YL TOEG TOWiEG VO mopakolovdnoovpe, HEYPL Tolo QOynTd Vo
mopayyeiloope 1N mola mPOidVTO VO AYOPAGOVUE, £MG TNV avayvOpPlon avOpOTOV oe
ootoypapies. IToAlol cUYYPOVOL 1IGTOTOTOL KOl GUGKEVEG £XOVV GTOV TLPNVA TOVS OAYOPIOLLOVG
unyovikng pénong. Exktoc TV eUmOPIK®OV €QOPHOYDY, N UNYavikny pdbnom elxe tepdotia
EMIOPUCT GTOV TPOTO LIE TOV OTTO10 TTpaypaTomoleiTan 1 Epgvva Pdoet dedouévmv GNEPaL.

EmmAéov, m Mmnyovikn MdéOnon upmopel va Pondnioel tovg avBpomovg vo pdbouvv. o
mopadetypa, 6tav to eIATPo avemBouunTov UNVORATOV €Yl EKTOOEVTEL GE APKETA avemBOUNTO
unvopata, umopel edkoia vo eheyyBel yia va amokoivepBel o KatdAoyog tov AéEemv kal ot
oVVOLOGHOL AEEE@V OV TOTELEL OTL €VOL O1 KAADTEPOL TPOYVAOGTIKOL TOPAYOVTEG TOL Spam.
Mepucéc eopég autd 0o amoKaADWYEL OVUTOYINGTOVG CLUGYETIGHOVE 1 VEEC TAGELS, Kot €161 Ba
00MYNOEL GE KAADTEPT KOTOVONGT TOL TPOPANUATOC.

Study the > Train_ ML >
problem algorithm
[y ;1 Solution
L

I

I

: .:.”o“ »

: Se° Inspect the
: *Lots* of data solution

1

1

1

1

1

Iterate if needed }- - { l;:g;;s:ggézf

Yympoa 4. MaBoaivovtog pe ) gpnomn unyovikng pébnong [48]
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H epappoyn teyvikav unyavikng pdonong yuo tv aglomoinon peydAmv TOGOTATOV O£00UEVOV
umopel va pag fondnoet va avoakaAdyoovpe potifo mwov dev eivar dpeca gpeavn e v xpnon
TOPAOOGLOKOV HOOMUOTIK®OV HeBddmV.

"Etot, n unyovikni pdbnomn etvon doavikn yio:

* IIpofApata yio to omoio o1 VAPYOVCEG AVGELS AMOTOVY TOAAES PLOUICELS YEPOC 1| LEYAAES
Aloteg kovovav (évag odyopiBpog pnyavikng pdbnong pmopel cuyvd va amAomo|GeL TOV
KOOKO, KO Vo, EYEL KAADTEPT amOO00T)).

* TToAbmAoka wpoPAnpota yio to omoio dev LVILdPyel KABOAOL KaAr ADGN YPNCLLOTOIDOVTOS Lol
TOPad0GLOKN TPOGEYYIoT (01 KAADTEPEG TEXVIKES UNYOVIKNG UdBNoNG umopovdv va Bpouvv puio
Aoon).

* Kvpoawopeva mepiBailovia (§va cOGTNIO UNYOVIKNG HABNoNG Wtopel Vo TPocaprocTEL 6E Ve
dedopévar).

* AMyn TANPOPOPLDV GYETIKA LE TOADTAOKA TPOPANLOTA KOl LEYAAES TOCOTNTEG OEOOUEVDV.

H Mnyovikq Mabnon pmopet va EmPiemopevn (Supervised), Hpu-emiPremopevn (Semi-
Supervised), Mn Empienduevn (Unsupervised) kot  Evieyvtikig Mdabnong (Reinforcement
Learning).

Empieropevn MdaOnon (Supervised Learning) eivor n dwadikacic 6mov o aAydpBpoc
Kataokevalel p cuvdptnon mov amekovilel dedopéva €16600V (CUVOAO €KTOIdELONC) OF
YVOOTEG emBLUNTEC €E000VG, HE OTADTEPO GTOYO TN YEVIKELGON TNG GLVAPTNONG CVTNG KOl Yo
€10000V¢ e dyvootr £€000.

Hp-emprenopevn (Semi-Supervised Learning) oty omoia, 10 cOVOAO dedOUEVOV TEPLEYEL
mopadetypota e eTikéta Ko yopic onpavor. Zuvnlwg, 1 TocoOTNTA T®V UN EMCHOCUEVOV
TOPAOELYHLATOV €lvol TOAD peyaAdtepn omd Tov apBpid TOV EMGNUACUEVOV Topadetypudtoy. O
o1oY0G evoc adyopiBuov Hur-emPrendpevn pdbnong eivor o i610¢ pe Tov 6tOY0 TOL OAYy0pifLov
™m¢ emPrenopevng pabnonc. H einida €dd sivar 611 1 ypnion mWOAADY TAPASEYHATOV YOPIC
etkéro pmopel va Pondnoet tov adyoplBpo exkpddnong va Ppel, mopdéer 1 vmwoloyicel éva
KOAVTEPO LOVTELO.

Mn EmBienopevn MaOnon (Unsupervised Learning), 6mov o akydpiBuog kataokevdlel Eva
HoVTELOD Y10 KATO10 GUVOLO €1G00®V LILO HOPPT TOPATPGEDY Y®PIC va yvmpiletl Tic embBountég
gEddovg,.

Evioyvtiky MaOnon (Reinforcement Learning), 6mov o aAyopiBpoc pabaivet pio otpatnykn
gvepyeldv péoa amd Auect aAinAenidpacn pe to nepipdilov. Xpnoiponoteitar kupimg oe
mpofAnuota Xyxediacuov (Planning), dnwg yio wapddstypo o EAeyy0g Kivnong poutoT Kot 1
BeAtioTomoinom £pyacIdY G EPYOSTAGIAKOVS YDPOLG,.

Pnyn vs BaBgwdc MaOnonc (Shallow vs Deep Learning)

‘Evag odyopOpog pnyng nabnong pobaivel tic mapopétpovg tov poviédov amevbeiog and to
YOPOKTNPIGTIKA TOV TOPUdEYUATOV ekmaidevone. Ot mepIooOTEPOL ETOMTEVOUEVOL AAYOPIOUOL
pudbnong eivor pnyoi. Ov daPomreg elapéoeig eivar ot aiyopduol ekudOnong vevpmvikdv
OKTV®V, €10IKG CLTOL TOL OMUIOLPYOLV VEVP®VIKG diKTVLO pE TEPIGCOTEPO, MO £va EMimeda
peta&d e1o6o0v kot e£66ov. Tétown vevpmvikd diktva ovopdloviol fabid vevpovikd diktva. Ztnv
uaOnon evog tétotov diktvov (N mo amAd otny Pfadeld pabnon), o avtibeon pe ™ pyn néonon,
0l TTEPIGGOTEPEC TOPAUETPOL PHOVTELOL HabaivovTol Oyl amevbeiog amd To YOPAKTNPIOTIKG TOV
TOPUOELYLATOV EKTOIOEVLONC, AALY OO TO OTOTEAEGUATO, TOV TPONYOVUEVOV ETITEIDV.
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Tagwvounon vs Harvopopnon (Classification vs Regression)

H to&wvounon etvar éva mpOPANpo g autoOHOTNG EKYOPNONG MO ETIKETAG GE €vol [N
emonuacpévo mopddetypo. H aviyvevon avemBountov ctoyeiov (mapadsiyportog ydptv spam
email) etvar éva dtdonpo Topaderypa tagvounonc.

X pnyoviky ekpddnon, to mpdpAnue taEivopmong emiveTor and Evav alyoplOpo ekpuddnong
ta&vopmong mov AopPaver pio cVAAOYN OO EMICNUAGUEVO TOPUOEIYUATO MG €16000VG Kot
Topayel Eva LOVTEAD OV Hmopel vo Thpel Eva un EMCUOCUEVO TOPAdELYLO G €l0000, OmdTE
Ko gite e€dyel amevBeiog o etikéta eite e€dyetl Evav apBud mov pmopei va ypnoyoromdei ond
£€vay avOoALTY] Y10 VO GUUTTEPAVEL TNV ETIKETA.

e évo TpoOPANa TaEvounoNg, Lo eTIKETA ival LEAOG VO TEMEPACIEVOD GLVOLOL ThEewY. Edv
T0 néyebog Tov cuvorov TV TaEewv givar 600 ("dppwoto"/Mvyiég", "avemBounto"/"embountd™),
plape v dvadikn ta&vounon (Aéyetan ko dtwvopikn). H ta&vounon moAlanidv Katnyopumv

glval éva TpoOPAN A TaEvOUNoNG LE TPEIS 1 TEPLOCOTEPES KATNYOPIES.

Evo pepikoi aiyoptBpotr pnyovikng padnong emitpémovy uotkd meplocdtepe amd 600 Taelc,
dArot givor amd ™ @Oon Tovg dvadikoi alyopiBuol taEvounons. Yrdpyovv GTpoTnyikéG mov
EMTPEMOVLY TN UETOTPOTNY] €VOG aAyopiBpov ekudbnong dvadikng ta&wvéunong oe €vov
TOALOTTADV KOTIYOPLDV.

H moAwopdunon sivor éva mpdfinuo mpdPfrleyme pog mpaypatikng afiog etkérog (ovyva
ovopaletor 6tdY0¢), dedopévon evog Un emonpacpévon apadsiypotoc. H extipnon g tiung
™G KatowKiog PACEL TOV YOPOKTNPIOTIKOV TOV OMToD, OM®MG 1 MEPOYN, O apBRdc TV
vvodwpotiov, 1 torodecio kot 00T Kabelng sivar Eva d1donpo Tapaderypo TaAVOpOUNoNC.

To wpdPinpa mwolvopounong emlvetal ond évav alyoplBuo ekpabnong maAvdpounong mov
maipvel ot GUAAOYN OO ETIOTHAGUEVO TOPAOELYLATA (OC ELGOI0VE KOl TAPAYEL EVO LLOVTEAO TOL
umopel va Thpet Eva P EMGNUOGUEVO TOPAdELYLo G £16000 Kat £xovpe ££000 evOg GTOYOL.

'Eto1, o kaAn avarmapdotact tov ydpov tov Al, ML kot DL 6a ftav 1 akéiovdn:

Deep learning Example:

Shallow Example: Example:

Logistic
regression

Example: autoencoders
MLPs

Representation learning

Machine learning

Yympa S. Teyvnt) vonuoovvn, unyovikni ekpadnon kot fadid pabnon [51]
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Kabng n mpdPreyn noincemv oyetileton dpeca pe to TpofARpoTa TaAVOpOUNoNGS, £0TIAlovpE
OLYKEKPEVO TNV ToAvopounon. Xto Kepdiaio 2, mopovoidlm HePKOVE omd TOLG 7O
Bepelmoelg adydpiBpovg moAvdpdunone (I'papuky maAvdpouncn, AoyloTiky Taivopounon
K.AT.) mov Bo pog Pondncovv va xatavoncovpe oe PaBog tovg aAyopiOuovg mov
YPNOUWOTOUCAUE OTNV gpyoacio poc Yoo v 7poPreyn moAncemv mpoidviemv toyeiog
rkatovaioong (FMCGs).

Ooov apopd T1g TPOKANGELS TOV AVTILETOTILEL KavelS yio TV TpoPAeyn TwAncemy v FMCGs,
Ba ypnoonomcovpe aryopiBuove (Ba eEnynbodv Aemtopepmg oto Kepdiowo 4) pe PBdon tig
KOPLEG 10€eg dnpovpyiog aAyopiBpmv punyavikig Habnong, Tmv EMAEYUEVOV LETPIOEMVY LLOG, KOl
™g a&loAdynong aiyopibumy Baon g vdpyovsag Epevvag kal ipAtoypagpiog.

BaOera Madnon (Deep Learning)

Ot amhol akyopBpotl punyoviknig padnong mov meptypdaeoviotl oto Kepdiaio 4 Aeitovpyohv mold
KOAG o€ o PeYGAN TOKIAIDL OMUOVTIK®OV TPOPANUdTov. Qotdco, dev £YOVV KOTOQEPEL VO
EMADCOVY TO KEVIPIKA TPOPAUOTO TNG TEYXVNTHG VONUOGVHVIG, OTTMG 1] 0VAYVOPLoT oo 1 M
avayvopton avtikeévoy. H avarntoén g Pabidg pdbnong opeileton gv pépel otnv amotuyia
TOV TOPASOCIUK®V aAyopiBumv va yevikeuBovv kaAd o€ T€Toleg epyacies.

AVt 1 evOTNTA OVOQEPETOL GTO TG 1 TPOKANCT NG YEVIKELONG G VEQ TOpPAdEiypoTa
kafioctatol ekfetikd mo SVoKOAN Otav £pyalONacTE HE dEGOUEVE VYNANG SLACTACTG KOl TAG Ol
UNYOVIGUOL TOV YPNCUYLOTO0VVTAL Y10 TNV EMITEVEY TNG YEVIKELONG GTNV TAPASOGIOKT] UNYAVIKY
uéonon eivan avenapkeic ylo vo pébovv mepimhoke Aettovpyieg 6€ YOPOLS LYNADOV S106TACEDV.
Tétoor ympor emPdirovv emiong ocvyvd vVYNAOG vmoAoyloTikd KkoOctog. H Pabid pdbnon
oYeO1A0TNKE Y10 Vo EEMEPAGEL AVTH KOl AAAN EUTOILOL.

H pafié pdbnon eivar éva cuykexpipévo vmo-medio g unyavikng padnong: po véa avainym
pLoOnolokov ovarapootdoemy amd dedopévo mov divel Eppacn otn padnorn ddoyikdv
EMNEOMV OAOEVO, KOl TTLO CMUAVTIKOV avamapactacewv. H og fabog nabnon dev avaepépetor o
omolodnmote €idog PabiTepng KatavonoNng TOL EMTVYYXOVETOL HE MO OPYIKY TPOGEYYION.
Avtifeto, EvoapK®VEL QLT TNV 10£0 TOV SUO0YIKAOV EMTE®V avonapacticemy. [1dca enineda
cuupdAriovv oe €va povtédo Tov dedouévev ovopdietar Babog Tov povtédov. AAla KaTdAANAQ
ovopato yoo To medio o pmopovcav va MTav 1 ekudlnomn ot oTpdoElg kol 1 ekudlnon
epapykav avorapacticemv. H coyypovn Babdid pabnon coyva meprappaver dekddeg 1 akopo
KOl EKATOVTAOEG SL0O0YIKAL CTPOUATO OVOTOPAoTAcE®V Kol OAd pabaivouv avtopate omd Tnv
éxbeom og dedopéva ekmaidoevong.

¥t Babid pdbnon, avtég or moAveninedec avamapactioelg poboivovtar (oxedov mavta) pHECH
LOVTEA®V TOL OVOUALOVTOL VEVP®VIKE OlKkTLO, OOUNUEVO GE KUPIOAEKTIKG OTPMUOTO 7OV
otopalovior 10 éva mive oto GAlo. O Opog vevpwvikd diktvo eival plo avaeopd o
vevpofroroyio, OAAG TapOAO TOL pEPKEG OMO TIG KEVIPKEG €vvoleg oTn Pobud pdbnon
avamTOoyOnKov ev UEPEL QVTAMVTOG EUMVELOT Omd TNV KATAVONOT LG Yo, Tov avOpdmivo
gyképaro, ta povtéda Pabidg nadnong dev givar HOVTEAD TOL £YKEQPAAOV. AEV DTLAPYOLYV GTOLYELN
0TL 0 €YKEPOAOG Ho1alel 1| epapuolel diepyacieg e TOV 1810 TPOTO [LE TOVG UNYOVIGHOVS Habnong
oT0 oOyypova povtéda Babidg pabnong. Haporo Aowmdv mov woArol dvBpwmol motebovy OTL Ta
VEVPOVIKA diKTLO AEITOVPYODV GOV TOV €YKEQOAO T €youv dwopopembel cOpeova pe TOV
avBpOTIVO £YKEPAAO, aVTO gival avoinBEg.

v TparypatikotnTo, £va veupmvikd diktvo (NN), dnwg kot £va povtéAo ToAvopouncng, ival
po pofnuatikn cuvapmnon: y = fan(x). H cvovaptnon fan €xel o cuykekpipévn popon: givol
pio ovvletn cvvaptnon. Avtég ol cUVOIETEG/EPPOAOCUEVES GUVAPTNOELG TYNUOTI{oVY Ta emimedal
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TOV VELP®VIKOD OlkTVOVL. 'ETol, Yoo éva vevpmvikd diktvo 3 emmédwv mov emioTpépel pia
Babuida, n cvvdptnon fn potdlet og e&ng:

y = fw(x) = (f2(f1(x)))

Xmv mapondve eéicwoon, ta 1 ko f2 eivar dtovuouatikég cuvapTioelg TG akOA0LONG LOPPTS:

fi(z) ¥ g(Wiz + b))

H ouvvdpmmon g ovoudletonr cuvvaptnon evepyomoinone. Eivar pia otabepr, ocvvnbwmg pn
YPOUUIKY] GUVAPTNON TOV EMAEYETAL OO TOV AVAALTH O€d0UEVOV TPV EgKvnoel I pdonon. Ot
mapauetpor Wi (utpa) kot bi (popéag) yio kabe otpdpa pabaivovior ypnouonoidvTag T
yvoot dwfdduion PeAtictomoldvtag, ovaAOYo LE TV €PYOCi, LU0 GUYKEKPUUEVT] GUVEAPTN O
Kk6cToVG (0mmwg MAPE, RMSE 1§ MSE).

O Adyog mov ypnoomoteitan évag mivakag Wi kot oyl évag gopéag wi givat OtL To g glvan pua
dtvuopatikn cuvaptnon. Kabe cepd wiu (u yioa povada) tov mivaxa Wi etvar évag gopéag g
0o drdotaong pe to z. H €€0d0¢ tovu fi(z) elvar évag eopéag [gi (a,l), gi (a,2),. . ., g1 (a,sizer)],
Omov 10 g1 eivan Kamoto, Pabuida kot To sizer givol o apBpog povadwv oto eninedo 1. o va to
KGVOLUE O OCLYKEKPUEVO, Oo €EETAGOVLHE 0L OPYITEKTOVIKY] VELVPOVIKOV SIKTO®V OV
ovopaleTol TOAETIMEDT perceptron Kot GLYVAE OVOPEPETOL G TO TTO UTAO VELPOVIKSO SIKTLO.

I'o va 10 wévovpe ovtd, Bo guPabovovpe coe pol GLYKEKPIUEVN OUUOPPOOT VELPOVIKDOV
SkTO®V Tov ovopdlovial Tpo@odotTikd vevpwvikd diktva (FFNN), kot o cuykekpipéva otnyv
apyrrektoviky mov ovopdletar multilayer perceptron (MLP). Ta mapddetypa, ag eEetdoovpe Eva
MLP pe tpia enineda. To diktvd poc AapPavel Eva 0100106TaTO dEVLUGHO MG 16000 Kt ££000
€xel évav apBpd. Avtd to FFNN pmopeil va givar éva povtélo maivdpounong i ta&vounong,
avaroya pe TN Agrtovpyio Evepyomoinong mov ypnoiponoteital 6to Tpito enimedo e£600v. AvTtd
to MLP oamewovifeton oto Zynuo 6. To vevpmvikd SIKTLO OVTITPOCOTEVETUL YPOUPIKE ©OC
GUVOESEUEVOC GLVIVACUOG LOVASMY AOYIKA OpYavVOUEVODVY 6€ éva 1| TeplocoTepa emimeda. Kabe
povada avtimpoownedeTon €ite amd Evav KOKAo gite and €va opBoydvio. To eioepyduevo PErog
OVTUTPOGMOTEVEL 10 £16000 HL0G HOVAdAS Kot DITOJdEWKVVEL 0td Tov TponAbe avtn 1 gicodog. To
eEepyduevo PELOC VTTOdEIKVVEL TV €000 UIOG LOVEADOLG.

H £€£od0¢ «éBe povadag eivar to amotéleopa TG LoBNUaTKAG Aettovpyiog mov Ypaetnke pésa
610 opBoydvio. Ot povadeg KOKAOL O0gv KAVOLV Timoto pe TNV €10000, GTEAVOLY OMADC TNV
€l0000 ToV¢ omevBeio 6TO OMOTEAETLLA.

Ta axolovBa cvpPaivovv oe kdbe opboymvio povéda. Ilpmtov, dheg ot gicodot g povadag
EVAOVOVTOL YlOL VO GYNUOTICOVY £€va, POPEN €1GOO0V. XTI CULVEXEWN, 1| HOVAda epapuolel Evov
YPOUUKO UETOCYNUATICHO O©TO QOpEa €10000V, OTMOC OKPPAOC TO HOVIEAO YPOLUIKNAG
TOAVOPOUNCTG HE TO OIVUGHO YOPOKTNPIOTIKOV €16600v. Télog, M povdada epapuolet puo
GUVEPTNOT EVEPYOTTOINGNG & GTO OMOTEAEGLO TOV YPOUUIKOD LETACYNUATIGHOD Kot AapPdvel Tnv
TN €€600v, évav mpayuatikd apBud. Xe éva anmdd FFNN, 1 tyun e£66ov pog povadag kimotov
eMESOL YiveTol pHE T €0aYOYNG KOOEAG amd TIG HOVAOES TOV EMOUEVOL GTPMLOTOG.
YovnBwc, dheg ol povadeg evOg EMMESOL ¥PNGUYLOTOOVY TV 1010 Agrtovpyio gvepyomoinong,
oAAG Oev elvar xovovag. Kabe otpopa pmopel va €xel dapopetikd aptOpd povadov. Kdabe
LOVAda £YEL TIG TAPAUETPOVS Wi Kot by, OOV U givar o deiktng TG povadag kot 1 givan o deiktng
tov emumédov. To didvuopa yi og kébe povada opiletar wg [y, y@, y®), y#]. To dibdvucua X 6to
TPAOTO eMimedo opileTan wg [x(D), . . ., xD)].
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layer 1 (f1) layer 2 (f3) layer 3 (f3)

2D — go(Wa,1y1 + ba1)

X0 )
V2@ — g2(Waoy1 + br2)

——{x®

x@

2® — ga(Wa3y1 + ba3)

= 1@ — gy (Woay1 + byg)

Yympo 6: 'Eva molveninedo perceptron pe 6160140tatn £6000, 0V0 CTPOUOTA LLE TEGTEPLS
povadeg ko va eminedo €£0d0v e pio povada. [54]

Onwg pmopeite vo deite 610 Zyuo 6, 0€ TOACTPOUATIKO perceptron OAeg ot ££odot evog
emmédov cuvdéovtal e kabe glcodo Tov endpevov emmédov. AVt N APYITEKTOVIKT ovopdleTat
TAMPp®G ovvoedepévn. 'Eva veupovikd dikTvo Hmopel va TePLEYEL TANPOG GUVOESEUEVA EMITEDA.
Avtd glvon ta eminedo TV omoimv o1 povadeg Aappdvouv og g10680vg TG ££0001G KabeULdg amd
TIG LOVAOEG TOV TPONYOVUEVOL EMTESOL.

Eniong, éva amd ta diktva Pabeiog pabnong mov ypnoHOTOMGAUE GTV EPEVVA LOG KOl OTIV
dnpovpyio avTAg TG SMAGUATIKNG ivor To diktva pokpdg Ppayvrpoecunc pviung (LSTM).
To LSTM diktva Eexivinoav ¢ moAdmAokeg AVCELS GE TOAD GULYKEKPUEVO TPOPANLUOTA TOL
aeopoV potifa, aAAd To TeAEvTAin YPOVIK YIVOVTOL OAO KOl 7O XPNOLUE GE €vo VP PACHA
epappoyov. Ewdwkd omv mpofreyn moAncewv ¢oivovtal moAd vrooyoueva kabdg givar €vag
TOMOG TEYVNTOV VELPMOVIKOD OSIKTOVOV ToL €xel oyedlaotel ywo vo ovayvopilel potifa oe
akolovBiec odedopévav, Ommg oplBuntikd dedopéva ypovooelpmv. [ avtdov Tov Adyo,
exnadevoape éva diktvo LSTM yuo tpofréyelg moinoewv yio FMCGs. Avtd mov avakaAvyope
glvar 0T, OMOG OAO. TO TO TPONYUEVE HOVTELD, Kavel over-fit ToAd ypriyopa. H akpifeia tng
TPOPAEYNC OV TOPELYE NTOV TOAD KOAT, aALd dev GEE ToV emTAEOV POVO Kol TNV amopaitnTa
e€edkevpévn yvaon avartuéng tovg.
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0.4 MeéBoooc kol Movtéra

Xe autnv v evotnta, &&etdlovpe kot mapovotdlovpe ovaivtikd v péBodo mov
YPNOOTOO0E, OAAG Kal OA0 TO HOVTEAD TOL Tpoypappaticope kot TpEEape, OT®G TOV
oAy6piBpo mov eeapuolovv, To KOPLOL YOPOKTNPIOTIKA, TO POCIKE TAEOVEKTALATO KOl
LELOVEKTNUOTO TOVC KOl Tr OLYKEKPWEVN Ypnon Touvg oty oebv Piphoypaeia kot
GUYKEKPUYEVO OTIC TEPIMTMOELS TPOPAEYEIS TOANGEWY. DLGIKA, Ol KOAVTEPES TAPAUETPOL TOV
EMAEYOMKAV Y10 0VTE KOTA TNV S1APKELN EKTEAEGNC TOVG, AAAG KOl TOL TEAMKE OTOTEAEGLLOTO TOVG
TopovG1ElovTal OTo ETOUEV KEQAAOLOL.

0.4.1 M¢£0ooog

310 KOTOVOAWOTIKG TPolovTa 1M pepkn dapopikn e&iocwon mov e&nyel T oyéon THoAdynoNc-
ExnTOoNG-toOANoNg ivor dyvootn. Ta avtdv Tov Adyo, n Unyovikn pabnon pmopel vo eivat
wwitepa PO 6 aVTOV TOV TOpé, KOOMG AaUPAvovToag vadyn TiG LVTOKEIUEVES UEPIKEC
SPOoPIKEG EEICMGELG oav £va “padpo KouTi” ydvovpe oxeddv undevikn TAnpoeopia kot akpifela
OTO. UOVTEAQ HOG, OE GUYKPION UE TO TOPOOOCIOKE HOOMUATIKA HOVTEAX YPOVOGEPOV TOL
Bacifovtar oe eflomaelg mpoopopdg kot {Rtnong. Onwg Ba dodpe Kol 6To, TEWPAUATA Hag, M
Unyovikn ekpadnon pmopel vo mopdyet e£apeTikd KOAG HOVTEAD LYNANG akpifelag, To omoia
elvar 1dwitepa ¥pNoIUe TOGO GE GYETIKEG EQAPUOYES EPEVLVOG OGO KOl GtV Prounyavia.

¥toy0G¢ MOg €ivol 1 ovyKpITIK] ovaAvon povTEAov kot peBddwv yioo v emilvon Tov
npoPinquatog IlpoPreyng MHwincewv Yyning Axpifelag, oAAG kot 1 KOTOAGKELT €VOG
EVOTOMUEVOL HOVTEAOL UNYOVIKNG pabnong (meta-learner) pe moAd koAn axpifeia ywo v
TpoOPAeyn ToANcE®V Yoo TTpoidvia tayeing kotavaimong (FMCGs). o va to emitvyovpe,
SOKIUACHLE LEPTKA OO TO TTO LOVTEPVA KOl OTOTEAECUATIKA LOVTEAL GTNV TPOPAEYT TOANCEDY
KO TEAMKG KPOTHOUUE To, KOADTEPA LOVTELD (VTG pe TNV LVYNAOTEPN aKpifela). XN GuVEKELD, UE
™ ypNon TEYViK®V expddnong Ensemble (meta-learning), onpuovpyncole GUYKEVIPOTIKA
povtéha TpoPreync. Asi&ople, OTMG avapevoTay, 0Tl Ue AUEANTED EMITPOCHETO KOGTOC, UTOPOVLLE
VO GUVOVACOVUE Kol TOPAEOVIE KOADTEPO OMOTELEGUATO OE GYECT| LUE OLTE OTOIOVONTOTE OTAOD
povtéhov. Eniong, ouykpivape Tig teyviKég peta-pdinong yio S1opopetikd LovTEAD Y10 Vo S0VE
7oto divel Ta KaAOTEPA dVVOTE ATOTEAEGLOTO KO, MG EK TOVTOV, VO, SNUIOVPYTCOVUE EVOL TEAKO
HoVTELO Kot peBOdOAOYiOL YO TNV KOTOOKELT €VOG OLYKEKPIUEVOL meta-learner yuwo vo
TPOTEIVOVLE GE EMYEIPTOELS GTOV GUYKEKPLUEVO TOUEC.

KaBawc ta FMCGs eival mpoiovto pe palikn mopaymyn, KOUTAVIEG Kol TOANGELS, LIOPYEL 1M
avaykn vo €govpe eapeTikd ypnyopeg TpoPAyelg pe ) péyiotn odvvarty okpifelo. H telm
dwdtkacio TPOPAEYNC TOANCEMY TOL TAPEYETOL MG GLUPBOVAN GE EMYEPNGEIS OTIS PLopnyovieg
tov FMCG Aappdver vadyv g 1060 Tov ¥povo 660 Kot TNV axkpifela Tov HoviEAmv, Kot €161
TOPEXEL OTOV TEMKO HETO-UaONTA pog PEATIOOEG otV akpifela, ARG TavTOYpOVa, TETVYOIVEL
oXe0OV UNdEVIKT “TOV)” GTOV YPOVO OTOA0CTG KAl TV GUVOAIKT 0tdd0oT).

‘Etol, aveldpmrta ond T Oecopntikég PeAtidoelg Tov aAdyopiBuwmv unyovikng kot Poaduig
uébnong, amd owovopkn dmoyrn, 1 puEB0d0G cLYKPITIKNAG 0EI0AGYNONG OPICUEVOV HOVTEA®Y
UNYOVIKNG paBnong kol 1 ooty cuvappoddynon/ctoifaén tov kaAdtepov HOVIEA®V gival M
Béitiom amd amoym KOoTOLC-0PEAOVS. Beltidoelg oty axpifela pmopodv va emrevybodv
YPNOWOTOIOVTOG HovTéda PBabidc pabnong aArd pe onuavtikd npdcsbeto K66T0G. 26TOGO, OO
ta [Tepapotd pog (BA. Kepdhato 5, "Tlepdpata) avtd dev ovpfaivel, kabog ta poviédo Badiig
uaonong vreppoptdvouvy ealpeTikd ypryopa (xpnoyromolovpe early stopping yio vo copfaivet
avtd, oAAG €tol yvopilovpe kol Gg mowo epoch vreppoptd®VOVTAL), KOl, KOTE GULVETEL,
TETLYAIVOUV YAUNADTEPO OTTOTEAECUATO, OTO TOAD TTIO OTAG LOVTEALL.

33



Enopévmg, 1 pé€Bodog pog etvatl ToAd ypnolun yio eTEPNoELS, ol omoieg mpémetl va yvopilovv
oo Hovtélo emTLYXAvVOuV VYNAN okpifela pe yoapmAd KOCTOG, KOl £TGL UTOPOVV Vol
YPNOLOTOU|COVY TO. TEMKE OTOTEAECUATO KOL TO GUUTEPAGUOATO LOG YO VO GLENCOLY TNV
akpifela Twv HovTEA®V TPOPAEYN S TOANCEWDY TOVG LE PUNdeviKd TpdeheTo KOGTOC,.

2UVOMKCQL, TO, OPEAT TG TEAKNG ADONG LLE TN YPNOT LETO-HAONoNG eivat onuavTikd, OTwg:

* Odnyel oe eEoupetikd amoTeAesHOTIKN TPOPAEYN TOANGEWY, KAODS GLUVOLALEL ATOTELECUATIKG
HEPIKE ard TO KOADTEPO LOVTEAN LEpOVOUEVOY ML

* Eyet moAd vynin okpifelo mpoPfreyng, oAAG pe OYETIKA YOUNAO YPOVO EKTOIdELONG,
KafioTOVTag TNV €E0PETIKN EMAOYN Yo ADGELG TPOPAEYNC TOANCED®V GE TPOYUATIKO KOGLO
ov €Qoppolovtal amd ETOIPEIEG OTIS TOYEWDS OVOTTUGGOUEVES Plopunyovieg KoToavolOTIKOV
ayabav.

* Mnopei va ypnowyomombei 1660 and EemMYEPNOES TOL dev £YOLV EMEVOVGEL OKOUN OTN
Swdkacio TpOPAeYNg TOAGEWDV (TT.Y. VEES EMLYEIPTOELS, VEOGVUGTATEG EMYELPNOEIS K.AT.) Kot
oo EMYEPNOELS OV EXOLV Ui dladikacio TpoPreyns mtwincewy Kot BElovv va PeAtidcovy
v okpifelo Tov HoVTEA®Y TOVC, 0ALA Le enévdvon atlog emmAéov KOGTOG.

I'o va olokAnpdoovpe To MEPAUATH HOG KOL VO GUYKPIVOLUE OLOPOPETIKES TEYVIKEC
GUVAPHOAOYNONG, SOKIUAGAUE 3 SUPOPETIKES TEXVIKEC HeTa-PaONnoNg, 2 Tagvountég otoifoag Kot
éva, peiypo epmepoyvopdvov (MoE) mov Ba eEnynbovv Bewpnrtikd ce avtiv v evotnta, aArd
T, AOTEAEG AT TOV oToiwV epavilovtatl avaivtikd oto Kepdiawo 5 (“Tlepdapota”).

0.4.2 Movtéla Tavopounong

Onwg ocvlinmoape omyv evomra 3 (“Mnyoviky MdéOnon”), 1o mpofinpe moAwvdpounong
emwetar amd €vav aiyoplfpo ekpdbnong maAvdpounong mov maipvel po GLAAOYY amd
EMIONUAGUEVO TOPASEYLOTA (OG EIGOS0VS KOl TAPAYEL EVOL LOVTELO OV Umopel va AAPet éva un
EMONUAGUEVO TOpAdeya Kol va eEdyel évav otdyo. Xe vty TNV evotnta, mapovcidlovue ta 5
omAd povtédo moAvOpOUNoNg HE YPNON UMYOVIKNG HAONoNG TOL  YPNOLOTOMCOLE GTA
TEWPAPATA OGS YO TOVG GKOTOVS QLTS TG S TPLPNG.

[HoAwvopopunon Huber (Huber Regression)

To Huber Regression faciletal otn yevikevon g Aettovpyiog anmAeiog Huber, 1 onoia pmopet
va evoopotodel pe ta Fevikevpéva [poppucd Movtéha (GLM) kot glvor KatdAAnin yuo
TPOPANUOTO ETEPOCKEDOOTIKNG MOAVOPOUNONG. XTOXOG €lval vo PEATIGTOTOGOVHE TN
Aertovpyio OTOAENG e OEVTPO EVIGYLUEVNG OUPAOIIONG KOL VO CUYKPIVOVUE T ATOTEAEGHOTA
LE TG KAUGIKEG AELTOVPYIEG AMMAELNG OE £Va TEYVNTO CHVOLO SEGOUEVDV .

H anoiewn Huber givol po ioyvpn cvvaptnon andiewog yio TpofAnpote moAtvopounong Kot
opifetor wg, (1):

: w—9?* ... ly—gl<a
Ly, 1) =
o {|.l/—!]| o ly—gl>a

omov y givon M petaPAnt otdyog, ¥ eivar ot avrtictoryeg mpoPAdyelg kol o a € R* givar o
VIEP-TapAUETPOs. Eivar deleaotikd va dodpe avtiy Ty andAelo g cuvaptnon log-mbavotmrog
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L0G VTTOKEIUEVIC KATOVOUNG CQOAUAT®OV pe peydin ovpd. Ilpdypatt, yio amdAvto c@aiporto
HIKPOTEPO A0 0, T OVTIGTOLY KOTOVOUN HOALEL e TNV KOVOVIKT KOTAVOUN, EKTOG QNG NG
TEPLOYNG CLUTITTEL e TNV To dVoKOAN Kotavoun Laplace. Avtdg axpiBdg etvar o Adyog yio tov
omoio avtn M anmdAgln givorl 1oyvpn vavtt Tov outliers.

2 YPOUUKT ToAvOpounor vrotifetor cuyvd 0Tl 0 OPOG COAALNTOS OTN YPOULUKY GYEoM
HeTaEL TG eEapTOUEVNC LETAPANTAC Y Kot KATOLOL d1VOGLOTOG YOPOKTNPIOTIKGY X S10VELLETOL
KOVOVIKG pe puéomn undevikn kot otabepn dwokdpavon o2, NAadn Y | X~ X T P+epee € N
(0, 6%) ka1 B eivor €va. cOVOLO TTapapETp@V Toporiaync. Evolaeepdpacte Aowmov va Bpodue v
KOADTEPY EKTIUNGCT] TOV EAQYIOTOMOLEL [10L GUVAPTNGOT TETPOYOVIKOD KOGTOVG (TOV OVTIGTOUYEL
oV ThavOTNTO KaTaypaeng TG Katovoung tov €). H ektipunon ¥ yia éva dedopévo X eivar tote
arAd ¥ (X) = E [Y | X]. Znuetdvoope 61t (pe epunveio péytomg mbavotntog) n TaAvopouncn
Huber avtikafiotd tnv kavovikn katovoun pe po o Papid ovpd Kotavouns, aiid egaoiovdel
va avaAiappaver po otabepn Stakdpovor).

H mpocéyyion GLM amd v GAAN TAELPE YOAQPDOVEL TIC TOPAOOYEG TNG YPOUMIKNG
TOAVOPOUNONG E TOV 0KOAOVOO TpOTO:

Mn kavovikdtnto Tov TuYeiov oTotyEiov:
Y|X ~ some distribution from the exponential family
Mn ypoppukdTNTO TOV EIGAYETOL OO L0 GUVAPTNOT GUVOEGHOV g:
J(ElY|X]) = X8

H exBetikn owoyéveln ouvapTNoEOV TEPLEYEL UK TOWKIAO KATOVOUMV KOl GUYKEKPUUEVO
OpPIOUEVEC OOV M SLOKDUOVOT] €IVl GLUVAPTNOT TOL HEGOV OpOoL OTMG M Katavoun Poisson 1 1
Gamma KoTovopun. AVTO TO YOPOUKTNPIOTIKO EIVaL ¥PNGIUO EOIKA Y10, ETEPOKAUCTIKA TPOPANLOTA
OmoVv M TopadoyN MG oTabEpPNg SKVUOVONC TOV OPOVL GEOAAUOTOC OV IOYVEL T, OTMG
ocupPaivet, yio TopAdEIYU, GLUYVA Y10 [0 LETABANTI GTOXOL TNG OToiag To €0POC eKTEIVETAL OF
moAlég Taelg peyébovg. H Aettovpyio cvuvdeong Pertimvel emmAéov TV TOALTAOKOTNTO TOL
LOVTELOL GUUPBAAAOVTOG GE UM YPOUUIKE EQE.

Ynueidvovpe, eniong, 6Tl N Aettovpyia cOvOeoNg dev epuprdletarl TOTE 6T0 Y. AVTO £pYETOL OF
avtifeon pe TNV KON TPOKTIKY| TNG TPOCAPUOYNG EVOG LOVTEAOV OTN UETAPANTIA-GTOYO, 1| OmToid
GLYVA 0ONYEL OTNV VTOEKTIUNGT TOV HEGOVL OPOVL. AVTO POIVETOL OO TNV AVIGOTNTA TOL Jensen
mov dnrmver otL E[g(Y) | X] < g(E[Y | X]) vy omoladnmote koikn cuvdptmon g, 0nmg cupfaivel
pe tov Aoyapifuo i ) cvvaptnon Box-Cox.

Eivar emiong dvvatd va eéaybel po Exepacn KAEIGTAG LOPPNG Yo T GLVAPTNOT TOAVOTNTOC
GLM mov €xel oG amoTELEGLO, [0, EVPELD KOTNYOPIo GUVOPTHCEMY ATMAELNS. 20TOCO, PAIVETL
OTL dgV LVIAPYEL GLVEYNG KOTOVOUN LE APVNTIKY LTOGTNPIEN Kol PN otafepn SUKOUOVGT GTNV
exbetikn owoyévelo cvuvoptioemv. H yevikevpévn Asrtovpyio Huber Loss cvvdvalel v 10éa
pag Aettovpyiog ovvdeong pe v ancdieie Huber, evd efarxoiovbel va €xel o un otobepn
dlokvpaven.

I'evikeopévn Asrtovpyio Anoierog Huber/Generalized Huber Loss (GHL)

INa onoadnmote avactpéyiun cvvaptnon g: R » R opilovpe ™ cvviapton Generalized Huber
Loss (GHL) og (2):

» =972 ... ly—9<a
L(y,y) = . | A|
ly — 9 oo ly—gl>a
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pe o € R*, y m petofintn otdyov kot § ™ ovveyn €080 KATO00 TPOoyveOeTiKoh povtélov. H
O CNUOVTIKN Tapatipnon €0d elvar 41t 1 didkpion mepintmong Aapupdvetor oy «KAipaKo
Cevéne» mov opiletar and 10 g (y), evd t0o €Opog PBploketar oty apykn kiipoka. Avti M
GUVAPTNOT ATMAELNG OV LTOpEl va, petatpanel og Eva Lovo TpoPAnUa petafAntic.

Ag ovi{nmoovpe Topa Tt Ba cuvéParve eqv maipvape g (y) avti v g ! (¥) otn de&1d mhgvpd TG
e&lomong. Avtd Ba avTIoTOKEL OTADG TNV TPAOTN LETAUOPPOGCT TNG HETOPANTNAG GTOXOL Kol KT
'awtdv oV TpdTO oNV ektipnomn tov E [g (Y) | X]. Qotdco, dedopévov 6ti10 E [g (Y) | X] < g (E
[Y | X]) Yo omowadnmote koidn cuvdptnon g (y) Oa kataAiEope vo VTOTILOVE T UECT) TIUN.

H debtepn emroyn g Myng g ' () om de&id mhevpd g e€icwong (2) Kol GUVETMG 1
EQUPUOYN TG duaKplong TG vdbeonc oy apyikn KAipaka dev Oa fonbodoe mord. [lpénel va
AdPovpe voYY pag 0Tt BELOVUE VO, OVTILETOTICOVUE TPOPANUOTO OTTOV TO EVPOG TOV Y UTOpEl
vo TolKiAAeL o€ d1dpopeg TaEelg peyébovg. Xe pia tétolo mepinTmon Yevikd dgv Oa pTOpoVGAE
vo Bpodue TV KOTAAANAN T Tov o Yo vo gyyvnbovue OTL yio OAEC TIG TEPLOYES TOV Y
epappolovtar kot ot dvo dwakpioels. Me drha Adyla, uoévo pe v emdoyn oty e&icwon (2)
£YOvLE KaTOVOUN Un oTafepg SlaKdOVOTG.

H ovvapton anodielog oy e&icwon motdGo £xel acvvE el aipatog ota | g (y) - ¥ | = a mov
umopotv va apapebodv pe Tov va 1 Tov Ao tpomo. H akdlovbn eéoporopévn éxdoon tng
nponyovpevng e&icmong amodelydnKe amoTeEAEGUOTIKY TNV TPAEN:

(y — fuﬂ))%m +
L) — |,,—,—r'1,[T)|> e ey) -9l < a
Aly —g7'(9) - (I‘q’l(.ﬁ/i a) =g 'y +
=979 Fa)) .. lol)—il>a

omov F =sgn (g (y) - 9).

H ovvapmmon & s (y_0, ¥) yia otabepd y 0 dev £xel tomikd erdyioto oA dev gival Kot KupTh.

Emumiéov, to & s (y_0, §) mapovoidlel pia meployn pe Pikpn KAion mov pmopel va odnynoel o
mmuato cvuykong o€ povtiveg Pedtiotonoinong pe faon v kiion. Qotdco, Tétoln (nTiHota
uropoHv cuvnOmg va EEMEPUGTOVV LIE TNV EMAOYN EVOG KOAOD (opéa EKKivoNg.

500 400

350

400 300

o, X 250
3 300 :

=2 200 S 200

J < 150

100 100

0 50

-4 -2 0 2 4 6 0

Yympa 15: Apiotepd: Opoin yevikevpévn Aettovpyio Huber pey 0 =100 ko o = 1. Ag&u:
OpoAn yevikevpévn cuvaptnon Huber yia dtopopetikég Tipég a ey 0 = 100. Kot ot dvo pe
ouvvaptnon {evéng g (x) = sgn (x) log (1+ | x |). [51]



Y10 EZynuo 15, amewoviovpe v mpoavapepbeica avénon g KAipakag P (y, § 0) ue v
avénon ¥ 0. Axpifog avtd 1o yapoktnplotikd kabiotd 1t Aertovpyion GHL 1oyvpn kot
EQUPUOCIUN GE ETEPOOCKEDSAOTIKG TPoPAnpata. Znuewwote 0Tt 1 KAMpoka tov P (y, ¥ 0)
avédveton emiong pe v avénon Tov o O0nwg Qaivetor otn de€d mhevpd Tov oyNuoTog 15.
Inuewwote 6t dev oporomomoape P (y, ¥ 0) O avtictoryog cuvteheotng Kavovikonoinong o

e&optn et amd 10 ¥ 0 xon Bo NTav evolapEpov va dlepevvicovpe edv Ba pmopohoe va TPoKLYEL
Lo EKQPOoT] KAELGTNG LOPPTG.

1.0
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0.6
0.4
0.2
0.0

e_fs(Yr Vo)

-20 -15-10 -5 0 5 10 15 20 20-15-10 -5 0 5 10 15 20
Y =97 (¥o) y =97 (¥o)
Yympoa 16: Apiotepd: (Mn kavovikomomuévn) Katavopun ceoipdtomy yio dto@opetikés Tinég y 0

oe a = 1. Ag&d: (Mn kavovikomonpévn) Katavour| cpaipdtov oy 0= 1 yio d10popeTikég
Tipég o. Ka o1 dvo pe ouvaptnon cuvdéopov g (x) = sgn (x) log (1+ ] x |). [51]

INo va Pedtiotomooovpe 0 & s (y, ¥) pe pebodovg gradient yperaldpocte v KAon Kol TV
Eocuovni g cuvaptnonc.

The gradient of &_s(y, y) is given by

(—‘2(.1/—!71(!))0,,(1 )(L1 |—},‘)
OuLa(yi) = 1~ =9 @) sen(A)5e) o) — 9l <o

—4sgn(y — g '(9)) (0571 (9) — sen(A)A ... [g(y) — gl >a (4)

and the Hessian is found to be

2((0397' @) = (v — 97 (3)(03 *%u))) (& + )
+H(y — g719))(9;97(5))sen(A) 23

OEL'S(!/- 9) =19 +(y — g71(9))? (2% —sgn(A) %LA) Cely) =gl < a
—4sgn(y — g7 '(9)(05971 () — sen(A)3A ... |gy) =gl >a  (5)

where we have defined A = (¢'(y = a) -g'(¥)) and B = (y-g'(g(y) ¥ a))
with ¥ = sgn(g(y) - ).
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Tevikd yperdleton Kdmo10g KaAdg apyLkog PopEaG Yo VoL GUYKAIVEL GTO EAAYLOTO TG GLVAPTNONG
anoAieloag GHL. H extédeon tov aAdyopifuov moivdpdunong Huber Bpioketon oto kepdiato 5
(Kepdrato 5, "Tlepdpata) pali pe tn onpovpyia povtéAmv yio 6Aa ta, povtéda mov e€nyovviat
o€ avtd 10 KeEPAAO10.

HHoMvopopunon KNN

To k-Nearest Neighbours (kNN) etvan évag pn mapopetpikds olyoppog pabnonc. Xe avrtifeon
pe dAAoVG aAdyopiBuovg pabnong mov emTpEMOLV TNV AMOPPIYT TOV OESOUEVOV EKTOIOEVLONG
LETA TNV KaTaoKeLT TOL HovtéAov, To kNN Swutnpel 6Aa ta mopoadelypota ekmaidevong ot
pvniun. MoAg eicélBel éva vEo, TPONYOLUEVMG “a0pato” Tapddetypuo X, o aiydpiBpoc kNN
Bpioker mopadeiypato k mAnciéotepo 010 X KOl EMOTPEPEL TNV ETIKETO TAEOYNPiaG, oF
nepintwon taSvopunong, 1| ™ LECT ETIKETO, OE TEPIMTMOON TAALVIPOUNONC.

H egyyomra 600 moapaderypdrov divetar omd po cvvéptnon andotaonc. o moapdderypa, m
€VKAEIdELD OMOOTOOT TOV QOIVETOL TOPAKAT® YPMOCILOTOLEiTAL GVYVE otV TPA&n. Mo dAin
ONUOPIANG EMAOYN NG GLVAPTNONG amdoTAoNG €ivol 1M APVNTIKY opodTnTe. cvvnuroévov. H
opototnTa cuvnTdVOL opileTal ®g,

D
Z] . EJ) )]

\/Z] (¥ \/Z]  (a9)

Kot glvan éva pétpo opordmrag tev Katevboveewv dvo davooudtov. Edv n yovia peta&y dvo
dtvuopdtov givar 0 poipec, 10te Ta 000 davicopata deiyvovv mpog v idto KaTeLOLVGT KoL M
opototnta tov cuvnuitovov gival ion pe 1. Eqv ov popeig givar opboydvior, n opoidtnrta Tov
cuvnuitovov givor —1. Edv 0élovpe vo pnoLLOTOMGOVLE TNV OUOWOTNTO TOV GUVIHUTOV®OV ©G
LETPNOTN OTOGTAONG, TPEMEL Vo TNV ToAAATAactdoovpe pue —1. AAleg OMUOQIAES LETPNOELG
anootoong mepthapfavovuv v amdotoon Chebychev, v oandotacn Mahalanobis kot v
anootoon Hamming. H emdoyn g pétpnong amdotaons, kabdg kot 1 tiun yw to k, gival ot
EMAOYEG TOV KOVEL O OVOAVLTNG TPlv ekTeEAécel Tov oAyopidpo. Avtd eivalr Aoumodv
vrepropapéTpovs. H pérpnon amodctaong Oa pmopovoe eniong va pudabet amd ta dedopéva, avti
Vo VTOBEGOLLE.

s(xl,xk) = cos(L(xZ,x;c

To KNN Regression emtpénel otovg YpNOTEG TOV VO KOTOVONGOLV KOl VO, EPUNVELGOLV Tt
cvpPaivel péca 6to povTéAo Kot givar moAd ypiyopo va avortuyfel. Avtd kdver to kNN éva
e€opeTikd HOVTELD Yo TOAAEC TEPMTMOEIS YPNOMNG UNYXOVIKNG pdbnong mov dev amoitodv
TOAOTTAOKEG TeEYVIKES. Q0TOGO, TO KUplo pewovéktnua tov kNN elvar 1 wovotntd tov va
wpocapuoletal oe moAdTAoKeG oyéoelg petalhd avedptnrov ko eaptmuévav petafintav. To
kNN eivor Atyotepo mbavo va €yel koA amdooon ce mepimAoKeg epyacieg, aAAG UTOpodLE Vo
mpoomofnoovpe va ovénoovpe Ty amddocn Tov TPOocHETOVTAG GAAES TEXVIKEG UNYOVIKY G
pudonong. Avtdg givar o Adyog yuo Tov omoio cv{ntoope to bagging, kabdg sival évog Tpomog
Beitioong tov mpofréyemv pog Kot o dodue TEPUTEP® GTNV CLVEXELD TG dtaTpiPnig. L2oTd00,
oe £éva ovykekpluévo onpeio moAvmAokotntag, to kNN 0Oa eivor mbBoavog Aydtepo
OTOTELECUATIKO OO ALO PLOVTEAQ, aveEAPTNTO amd TOV TPOTO LE TOV ONOL0 EKMOLOEVCALE TNV

EQPAPHOYN HOC.

210 Kepdhawo 5, "Iepapata” emPePardoape avtég tig Oewpnticég TpoPAdyelg yo v axpifeia
g mahvopounong KNN, kabmdg nTov évag amd toug akydplBpovg Le tn XepdTepT] GUUTEPLPOPE
(axpiBelo yopuming TpoPreymc) oto dedopéva Lo,
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Qot6co, énpene vo ypnoyomowmbel g onueio avagopdc, KoBMOG eivor €voc amd TOvg
TOAOOTEPOVG KOl 7O TOAVYPYGILOTOIOVUEVOVS OAYOPIOLOVE HNYOVIKNAG HaBnong oe o
TAN0dpa mpofAnuatev Kol ypnolwonoteitol amd TOAAEG ONUOGIELGELS OTO KOUUATL TNG
[poépreync IMoioeov oc¢ alyopiOpog avaeopdc (benchmark), xoi, cvvendg, ToOVv
ovumepiAdfape Yo chykpion.

[Hodntikn-EmOetikn [aivopounon

Ot moOntikoi-emBetikol aAyoplBpor eival o owoyévelo, aAyopibumv yo pabnon peyaing
KMpokag. Etvol mapopotol pe 1o Perceptron oto 6t dgv amoutodv mocootd pabnongs. Qotdéco, o
avtifeon pe to Perceptron, mepthapfdvouv tnv mopduetpo Kovovikonoinong C.

O tafntikoi-embetikol alyopifpot ovopdlovtatl £T61 AOY® TV aKOAOLOWOV YUPOKTNPIOTIKMV:

o [TaOntwn: Edv n mpoPreyn sivar cmotn, doTnpioTe TO HOVIEAO KOl UNV KAVETE OAAOYEG.
OMAaod™, To OedOEVO OTO TOPAdELYHO OEV €lvOl OPKETE Y100 VO TPOKOAEGOLV OAANYEC GTO
povtélo.

* Emfetikn: Edv n mpoPreyn eivor AavOacuévn, kdvte aAlayéc oto poviéro. Aniadn, Kamowo
oAhayn oto povtéro pmopet va, to dtopbidcet Kat po BEATIOCEL TV AOd00N.

Ko pe Baon po ehappmg dtapopetikn Aettovpyia anmieiog Hinge (g-pn gvaicOn):
L(6,¢) = max (0, |y, — f(%,.;6)| — €)

H mapdpetpog & kabopiler po avoyn yw opdipoto mpopfreyng. Ov cuvOnkeg evnuépmong
viofetovvtal ot 1d1eg yio. TpofAuaTa TaEVOUNONG Kol 0 KOVOVOS EVIUEPMONG TOL TPOKVTTEL
glvau

max (0, ly, — w7 - x| — &)

1
2
“xt" + ZC

—_ — . _T _ -
Wepp = We + sign(y, —w' - X, )%,

To Scikit-learn epappoletl pio modnTikn-emBeTiKg ToAvdpoun o, onote To amAd HOVIELO Hag Oa
napovoiactel oto Kepdiaio 5 (“Tlepdpota”).

Hoiwvopopunon LASSO (LASSO Regression)

v moiwvdpounon LASSO, to LASSO onuaiver Least Absolute Shrinkage & Selection. H
molvopounon Lasso eivor o teyvikny Kovovikomoinone. Xpnoylomoleitor pécm uebodowv
ToAVOpoOUNoNG Yo o okpPn mpofieym Kot ypnoiponotel cvuppikveon. H cvppikvoon sivar
TIWEG TOV OEOOUEVOV TOV GLPPIKVOVOVTOL TPOG Vo KEVIPIKO omnpeio wg pécoc o6poc. H
ddwcacio LASSO evBappovel amhd, apatd Loviéia, OTmG LOVTELD LE AMYOTEPES TOPULUETPOVG.
AVTOC 0 GLYKEKPILEVOC TOHTTOG TOAMVOPOUNONG Elval KATAAANAOG Yo LOVTEAN TTOV TOPOVGLALOVV
VYNAQ ETITESA TOAVYPAIKOTNTAS I OTAY BELOVLE VO CUTOLLOTOTOUCOVE OPIOUEVD LEPT] TNG
EMAOYNG LOVTEAOD, OTIMG TNV EMAOYN TOV UETAPANTOV 1 TNV €EAAEYT TOV TOPAUETPDV.

To Lasso Regression ypnoiponotei pio teyvikn Kavovikomoinong L1, n omoia ypnoyomotleiton
OTOoV £YOVHE TOAAEC OLVATOTNTEC EMEWDN EKTEAEL OTOUOTO TNV EMAOYN YOPOUKTNPIOTIKOV.
Aopupdvovtog vmoyn UOVo €va YOPOKINPLOTIKO, 1 YPOUUIKY ToAvdpdunon avalntd
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Beitiotomoinon w (kAion) kot b (onueio toung o&dvav) Etol MOTE VO EAAYIOTOMOLEL T
Aettovpyia KOGTOLC.

H ovvéptnon kéctovg pmopet va ypoaptel oc:

Y- =) <y1 - wx IM) (1.2)
=0

i=1 i=1

v mopondve egicmon, vmobécope O0TL T0 oOVOLO dedopévav E£xel oTiyptdotumae M kot
YOPOKTNPIGTIKA p. MOALG ¥PNCULOTOMGOVIE YPOUUIKT TOALVOPOUNGT GE £V GOVOAO SESOUEVMV
OV JlOIPEITOL O OET €KMOIOELONG Kol OOKIU®DY, O VAOAOYIoUOG TV Pobuoroyidv otnv
EKTTOUOEVOT KOl TO GET SOKIUMV UTOPOVV VO LOG ODGOLV 10, YEVIKT 10€0 Y10 TO OV TO UOVTEAO
mhoyxel amd vmrepPoAKr| mpocapuoyn M oamd vmo-mpocapupoyn. Edv éxovpe moAL Alya
YOPOKTNPIGTIKG o€ €vo, GUVOLO dedopévav kol 1 Pabporoyio gival younin 1600 Yo T0 GET
exmaidevong 0G0 Kol Y. TO GET OOKIPNMOV, TOTE €ivor €va TPOPANUE LN IKOVOTOWTIKNAG
EQUPUOYNG. AmO TNV GAAN TAELPE, €4V EYOLUE UEYAAO OPOUO YOPOKTNPICTIKOV KO M
Babuoloyio TV SoKIU®OV gival GyeTIKd YouUNAn o€ cVykplon pe v Poabpoloyia ekmoidgvong,
toTEe €yovpe €va mPOPANUA vrepPoAikng yevikevong 1M vmepPforkng tomobétnong. H
maAwvdopounon Ridge (e€nyeiton mopakdtw) kot n moiwvdpounon Lasso givar pepikég amod Tic
amAég TEYVIKEG Yoo TN pelmom TG mOALTAOKOTNTOG TOL HOVIEAOL KOl TNV TPOANYTN TNg
VIEPPOMKNG TPOSUPUOYNE TOV UTOPEL VO TPOKOWYEL OO OTAN YPOUUIKT TOAVOPOUNGT.

H ocvvaptnon kdctoug yuo tnv molvdpounon Lasso pmopel va ypogtel og:

Z(yi_gi)z:z <y1i_zwj ><I1:j> +/\Z|7~Uj\ (1.4)

i=1 i=1 =0 j=0

Omnov:

* A, T0 ué€yebog TG GLPPIKVOGCTG.

* A = 0, onuaivel 6Tt OAQ TO YOPAKTNPICTIKA AGUPAvVoOVTOL DITOWYT Kot €ivol 1G00VVOUO e T
YPOUUIKY] TOAVOpOUNon Omov HOVo To Vmolowmo dfpolouo TeTpaydvev Bewpeitor 6Tt
dnovpyel £va TPOYVOOTIKO LOVTELO.

* A = 00, ONUOIVEL OTL KAVEVO YOPOKTNPLOTIKO d€V vIoAoYileTal, kaBmg 10 A TElvEL 6TO AmEPO KO
eEadeipel OLO Kot TEPLGGOTEPA YOPUKTIPLOTIKA.

* H npoxatddnyn avéavetal pe v avénen tov A.

* H dwxdpavon av&hvetor pe peimon tov A

Av1d 1000vvopEl e TNV gAayloToTTOiNoN TS GLVAPTNONG KOGTOVG oty e&icmwon 1.2 vd v
TpovTOOEDN:

For some ¢ > 0, 377 |w;| < t

H poévn dwpopd pe ) yevikn mepintoon gival 0tL avti va Anedel vtoyn 10 TeTpdymvo Tmv
oLVTEAESTOV, AapuPdvoviar voyn Ta 0 Ta peyédn. Avtog o tomog kavovikomoinong (L1)
umopel va. odNynoel 6€ UNJEVIKOVG CUVTEAEGTEC, OMAdN OploUéva amd TO YOPOKTNPLOTIKA
TOPOUUEAOVVTOL TANPOG 6TV aSI0AGYNOT TG amdPaveng Tov aAayopifuov. ‘Etol, n modvdpdunon
Lasso 6yt pévo pondd ot peiwon g vaepfoiikng tomobétnong, aArd pag Bondd kol oty
eMAOYN Yopoaktnplotik®v. H mapduetpog kavovikonoinong (Aduda) pmopei va eheyyOel amd gudg
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WG VIEPTOPALETPOS KO ETGL 1 EMAOYN YOPOKTNPIOTIKMY PN CLLOTOIOVTOS TaAvopounon Lasso
umopel va amekoviotel KOAG 0AAGLOVTOG OmAR TV TOPAIETPO KOVOVIKOTOINGTC.

HHoMvopounon Ridge (Ridge Regression)

Mopdpoto pe o Lasso Regression, To Ridge regression givai pio pé00d0g GLVTOVIGUOD HOVTEAOL
OV YPTCLOTOLEITAL Y10t TNV AVAAVCT] TUXOV OEGOUEVAOV TOV TACKOLV OO TOAVYPOUUIKOTNTA.
Avt 1 nébodog extedel kavovikomoinon L2 (og avtibeon pe v xavovikoroinorn L1 g Lasso
nov eényeitan mopandve). Otav gueoviletor o {TnUe g TOALYPUUKOTNTAS, TO TETPAYOVA
glvol opeEPOANTTA Kot 01 SIOKVUAVGELG EIVOL LEYAAES, 0LTO £XEL MG ATOTEAEGLOL O1 TPOPAETOUEVEG
TIUES VO ATEXOVV TTOAD OO TIG TPOLYUATIKES TULES.

v moAwvdpounon Ridge, to mpdto Prpa eivar M tvmomoinomn Tov peTafAntdv (T6c0
eEoptdpeveg 660 Kol aveEApTNTES) APOPAOVTOS TO UEGH TOVG KOl OOUPAOVIONG ME TIG TUTIKEG
OTOKAIGELS TOVG. AVTO TPOoKOAEl o TpdkAnon ot onueloypapio, Kabmg TPETEL KATMG Vo
deilovpe €av ot petaPAnTéG og Evav GLYKEKPLUEVO TUTO gival Tumomoinuéveg | 0yl Ocov apopd
Vv Tumomoinor, OAot ot vmohoyiouoi moAwdpounong Ridge Pocilovior e tvmomompéveg
petapintéc. Otov gppavifovtol ot telkol cuvtedectég moAvopounong, mpocapuoloviat Eovda
oTNV aPYIKN TOLG KAMpoKa. QQ0T060, TO iyVog EIVOL G TUTOTOUNUEVT] KAILOKOL.

H avtiotdduon mpoxkatdAnyng Kot Stakdpoveng ival yevikd mepimlokn 6tav TpoOKEITUL Yl TN
onuovpyior povtéhov mtoAwdpounong Ridge oe éva mpayuatikd cdvoro dedopévov. Qotdco,
aKOAOVOMVTAG TN YEVIKN TAGT OV TPEMEL Vo, Bupdpacte givat:

* H pepoinyia (bias) avéavetar kabmg av&avetal To A.
* H dwaxdpavon petovetol Kadog avEavetat to A.

v moAwdpounon Ridge, n ovvaptnon kdctovg petafdideton wpooHETovrag o, TOwN
1G0OVVOLT LLE TO TETPAYMVO TOV UEYEDOVE TMV GUVIEAEGTMV.

M ‘ M p 2 p
7=0 =0

=1 =1

AVTO 1603VVOLEL [e TNV EANYLOTOTTOINGT TG cLVAPTHOoNG KOoTovg otny e&icmon (1.3) vmd v
pobmdOeon:

For some ¢ > 0, >>0_jw? < ¢

'Eto1, 1o Ridge Regression 6étel meplopiopovc otovg cuvieheotés (w). O 6pog motvng (AGuda)
KOVOVIKOTIOlEL TOVG GUVTIEAESTEG £T0L MOOTE €0V Ol CLUVTEAECTEC TAPOLV HEYOAEC TWEC, M
ovvaptnon PeArtiotonoinong twwpeitar. ‘Etor, n maAwdpounon Ridge ocvppikvidvel tovg
ovvteleotéc Kot Ponbd otn peiwon ™G TOALTAOKOTNTOG TOL HOVTEAOL KOl TNG
moAvypappkotnTag. Amo v e&icmon 1.3 umopel koaveic va del 6t 6tov A — 0, 1 cuvaptnon
KoéoTOoVg Yivetor TapPOUOl UE TN OLUVAPTNON KOGTOLG YPOUMIKNAG ToAwvdpdunonc. ‘Etot
YOUNADVOVLE TOV TEPLOPIOUO (YAUNAO A) OTO YOUPOKTNPIOTIKE KOl TO LOVTELO LOLALEL e LOVTEAD
YPOUUIKNG TOALVOPOUN GG,

IIog 1o LASSO 0dnyel 6tV ETA0Y YOPOKTIPIETIKAOV;
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Méyptr otiyung €yovpe efetdoel ta Pacikd otorein ¢ moAwvopounone Ridge ko g
moAlvopounong Lasso. [pénel dpmg va eEnynbel yuotl einape 6t n moAvdpoéunon Lasso pmopet
vo. 0OONYNOEL GE EMAOYN YOPOKTINPIOTIKAOV, ev®d 1 ToAvdpoéunon Ridge pewwver pudévo tovg
GUVTEAEGTEG KOVTA GTO UNOEV, 0ALA OYL GTO UNOEV.

210 Zyfuo 17, vrobétovue éva vmobetikd cOHVoro dedopévev pe dV0 HOVO YOPAKTNPLIGTIKA.
XPNOYLOTOIDOVTOC TOV TEPLOPIGUO Y10, TOVG GUVTEAESTEC NG moAvopounone Ridge kot Lasso,
UTOPOVLE VO GYESIAGOVLE TO TOPAKATWD GO

Linear Regression Cost function

Z;‘(y’iz:l r)/XuJ
i=1 | j= /

B

“\
Lasso Regression

B+ (B =t

Yympa 17: Tati to LASSO pmopel va peidoet m S146TacT To YOPOov YOPUKTPLOTIKOV;
[Mopdodetypa o€ d160146TATO YDPO YOPOKTNPIOTIKOV.[S5]

I'o évav 5100106TaTO YOPO YOPAKTNPICTIK®VY, Ol TEPLOYEG TEPLOPICHOD oYedALOVIOL Yo TIC
molvopopnoelg Lasso ko Ridge pe kvovo kot mpdowvo ypodpo avtiotowyo. To eldeumtikd
mePLypaupaTo ival n GuVEPTNOT KOGTOLE TG YPOLLUKNG TOAVOPOUNOT|G.

Edv &yovpe yoropéc cLVONKES GTOVE CLUVTEAECTEC, TOTE Ol TEPLOPICUEVES TTEPLOYES UTOPOVY VOl
yivouv peyaAdtepec Kot TeMKE o akovumeovy 1o kKEVIpo NG EAAEYNC. AvTo cupPaivel Otav 1
molvopounorn Ridge wor Lasso teivel oto yopokInplotikd g YPOUUKNG TOAVOPOUNGNC.
Awopopetikd, kat ot 600 puébodot kabopilovv ToVg CLVTELECTEG TOVG PpicKOVTaG TO TPMTO ONELD
OTOV TO EAAEWTIKO TEPTYPOLLLLO. AKOVUTTA TNV TEPLOYN TV TTeploptopdv. To dapdvtt (Lasso) éxet
yovieg otovg d&ovec, o€ avtifeon pe 1o dicko (Ridge), 6mote Kot 1 EAMAETIKY TEPLOYT| KOV
éva t€to10 onpeio, kol éva amd to yopoktnplotikd eapoavifetor eviedms. o vymAdtepo ydPo
dotdoemv Umopel vo vdpyovy mOAAEG ADGEIC oTov GEova pe molvopounon Lasso koi €tot
£€YOVLE LOVO TO. OTLLOVTIKG YOPAKTNPIOTIKA TOV ETAEEQLLE.

42



0.4.3 Movtéla gvioyvong owpaduons (GBDT)

Ta dévtpa amopdoemv mov gvicyvovtol pe kAion (gradient boosting decision trees) eival pua
TEYVIKT] UNYAVIKNG pabnomng yia ) PedtioTonoinon tng Tpoyvmotikng a&iog evog LOVTEAOL PHECH
dwdoywdv Pnudtov ot dwdikocic padnong. Kdébe emavainyrn tov dévipov amopdacewmv
TEPILOUPAVEL TNV TPOCUPUOYN TOV TILDV TOV CLVIEAECTMOV, TOV PApdV 1) TOV TPOKATAANYEDV
mov epappoloviar oe kabepio omd TG PETAPANTEG €600V TOV YPNCIUOTOOVVTOL YL TNV
TPOPAEYN TNG TIUNG GTOYOL, LE GTOYO TNV EAQYLIOTONOINOT] TNG AELTOVPYiOG AMMAELNS (TO UETPO
™G OPopds peta&h NG MPOPAETOUEVIG Kol TPOYUATIKNG TIUNG-otoyxov). H whion sivon m
OTUOWOKY TPOGAPLOY OV YiveTol og KaBe Prpa tng dwdkacioc. H evioyvon sivar pia pébodog
eMTayLVONG NG PEATIOONG TNG TPOYVMOSTIKNG OKPIPELNG O ETAPKMS KOVTIVY| TIUN.

Data Set: (X, Y)

F(X) F(X) Fn(X)

Tree 1 Tree 2 Tree m

®
| | | |

Compute Compute a; Compute Compute a; Compute Compute &;  Compute Compute a,
Residuals Residuals Residuals Residuals
(r1) (r2) (74) ("m)

l l l |
l

Fn(X) = Fpna(X) + amhn (X, rm-1),
where «;, and ; are the regularization parameters and residuals computed with the it tree respectfully, and h;

is a function that is trained to predict residuals, r; using X for the it" tree. To compute c; we use the residuals

m

computed, 7; and compute the following: arg min = Z L(Y;, F; 1(X;) + ah;(X;,ri_1)) where
@ i=1
L(Y, F(X)) is a differentiable loss function.

Ta dévtpo amopdoemv Tov gvicyvovtol pe KAlorn glvar po dnpoeidng nébodog yio tnv emiivon
TpoPAnuaTov mpoPreyng toco og Topelg taSvounong 6co kot og {ntpata moivdopdunong. H
pocéyyon Pertidvel T pobnotokn SdKacio. aTAOTOIOVTINS TOV GTOYO Kol UEIDVOVTOS TOV
aplBpd TV eTOVOANYE®V Yo va TAcovpE o€ pa oxeddv PBértiotn Avon. Ta povtéda mov
gvioyvovtal pe Kiion €yovv amodeifel v atlo Tovg TOAAAKIG G€ S14.POPOVG dAYWOVIGLOVG TOL
Babuoloyovv 1660 TV akpifela 600 KOl TNV OTOTEAECUATIKOTNTO TOV O0pOpwv alyopibuwv,
kafiotoOvTag to Pacikd epyaAeio Kol CNUOVTIKA HLOVIEAQ Y10 TNV OVTLUETOTION TOV CYETIKMV
TPOPANUATOV.

e mpofanuata TpdPreymg mov meptiapfdavooy pun dounuéva dedopéva (ewdveg, Kelevo, K.AT.),
Ta TEYVNTA VELPIKA dikTua TElVOLV Va EEMepVOLV OAOVG TOLG GAAOVG aAyOplBovs. Q2oTOG0, dTav
TPOKEITAL Y10 SOUNUEVOLG Tivakeg dedopévmv HiKpov N pecaiov peyéBovg, ot adydpiBuotl mov
Bacifovtot og dévdpa amopdoemv BempovvTal Ol KAADTEPOL GTNV KATNYOPIio CUTY] TN GTLYL).

Av16 Ba 10 dovpe kau ota mEWPdpaTd pog oto Kepdhato 5, kabdg, mpdyuati, ot adydopiBuot pe
Baon ta cvykekppéva dEvTpa amopacemv TETVYOV T PEATIOT akpifeta.
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XGBoost (Extreme Gradient Boosting)

To XGBoost givatl évag adyopiOpog pnyavikng expddnong Paciopévog oto dEVIPO OmOPAGEDY
7oV ypnoonotet éva mhaicto evioyvong dwfadonc. O adyopBpog XGBoost avartdybnke wc
gpeuvnTIKd épyo amd tovg Tiangi Chen kou Carlos Guestrin o 2016 kot épepe enovacTooTn 6N
pnyovikn udbnon. And v ewcoywyn tov, to XGBoost oyt povo €xel kepdicel TOAAOVG
dwyoviopovg Kaggle, aAld sival kot n kivnriplo S0vapun o€ TOAAES TPMOTOTOPIUKEG EPAPUOYEG
oV KAGSov. Mmopel va ypnoipomombei oe Eva gvpd EAGUA EPAPUOYDOV, OTWOE TOAVIPOUN O,
tagwvounon, kotdtaén kot TpofAnpata TpoPreyng mov kabopilovtar omd Tov ypnHoTh.

Bootstrap aggregating or Models are built sequentiall Obptimized Gradient Boostin
Bagging is a ensemble by minimizing the e?-rors ff°f¥‘ glgorithm through parallel "
meta-algorithm combining previous models while processing, tree-pruning,
predictions from multlﬁle- increasing (or boosting) handling missing values and
d(_eu;lon tr_ees throug X influence Oﬁ\l h-performing |'egu|arization to avoid
majority voting mechanism models overfitting/bias

Trees |, Forest {osy

; Bagging-based algorithm Gradient Boostin
- ¢egs'éanr)t2|tcica>|r1 of w%1gereg only a subset of employs gradien
osgible solutions to features are selected at descent algorithm to
pa décisionbasedon random to build a forest minimize errors in
certain conditions or collection of decision sequential models

trees

Yympoe 18: And ta dévrpa amdpaong Eog 10 XGBoost [56]

* Aévtpo amopaong: Kabe dievbuvrng mpocinyemv €xel éva odvoro kpumpiov. Eva dévipo
amopaceny givor avdioyo pe €vav devBuvtr mpOGANYNG TOL TaipVEL CLVEVTELEN MO
vroyneiovg pe Pdon 1o d1kd Tov GHVOAO KprTnpiev.

* Bagging: Ze avt6 1o Prpa £yovpe KAt cav éva mévek cuvévtevéng dmov kbe cuvevtedKTNg
é&xel o yneo. H ovooopdtmon tov bagging 1 tov bootstrap cvvemdyetol T0 GLVOVAGUO
oTOYEI®V amO OAOVG TOVG £pMTNOEVTIEG Yo TNV TEMKN amdPOoN HECH HOG ONUOKPATIKNG
Sdwadkaciog yneopopiog.

* Random Forest: I[Ipokettar yia Evav adyopduo mov Paciletar oe odkovg (bagging) e facikn
Stapopd 0Tt emhéyeTar Tuyoio LOVO €va VTTOGUVOAO YOPUKTNPIOTIKOV. Me GAlo AdYyla, KOs
gpeuvnTic Bo eetdioel PLOVO TOV EPMTMUEVO G GLYKEKPIUEVE TuYoio emAEYUEVO TPOGOVTA,
OTMOC O TEXYVIKN OLVEVTELEN Yl TOV €AeyY0 O€EOTNTAOV TPOYPOUUATIGHOD 1] pio
GUUTEPIPOPIKT CLVEVTEVEN Yia TV aELOAGYNO U TEXVIK®Y OeE10THTOV.

* Evioyvon: Ilpékertar yio pio eVvOAAOKTIK Tpocéyylon Omov kabe epguvnthg oAralel ta
Kprrpla. aloddynong pe faon ta oxOAle TOL TPOTNYOVUEVOL EpELYNTH. AVTO TO frpa evioydEL
T1 GUVOMKY| OTOTEAECUOTIKOTNTO TNG OOOIKOCING GVVEVTEVENG UE TNV OVATTLEN WOG T
duvapukng dadtkaciog aloldynong.

» Gradient Boosting: IIpdkertar ywo pio €01k zmepintwon evioyvong, O6mov to odApaTo
glayiotomolovvtan amd Evav alyopduo katdfaong kiiong. 'Etot, eivor avdioyo pe pa etapeio
SLUPOVA®V GTPATNYIKYG TOL XPNOLUOTOIEL TOAMEG GUVEVTEDEELS TEpimT®MONG Yo va eEadeiyel
ToVG AMy6TEPO KATAAANLOVS VITOYN PioVG.

* XGBoost: O alyopiBuog XGBoost ypnowonotel eéoupetikn evioyvorn kAlong (omd exel
MPOKLMTEL Kot TO Ovopa Tov oAyopiBuov). Eivor évag T1éAelog ouvovacpdg TeyvVIK®V
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PBeAtioTomoinone AOYIGHIKOD Kol VAKOD Yo TNV emiTevén ovAOTEP®Y OMOTEAECUATOV
YPNOUOTOIDVTAG AYOTEPOVS VTTOAOYIGTIKOVE TOPOVG GTO GLUVTOUATEPO YPOVIKO OACTN LA,

O XGBoost ka1 Gradient Boosting Machines (GBMs) &ivatr ko1 ot 600 pébodol ota Guvora
dEVTpV TTOV €PAPUOLOVV TNV apy1 TNG EVIOYLONG TOV ASOVOU®YV HOONTOV XPTCLOTOIOVTAS TNV
apyrtekToviKy Kotapacng kiiong. Qotoco, 10 XGBoost fedtidveral facel Tov factkod TAGiov
GBM péocwm fertiotonoinong cuoTUAT®Y Kol oAyoplOUKOY BEATIOCE®V.

'Etot, pe 10 XGBoost, TpofAEmovpe TNV ETIKETO-GTOYO YPNOLUOTOIDVTAG OAO TO. OEVIPA LEGO, GTO
ovvolo. Kdabe delypa mepva amd toug KOUPOVS AmOPACTG TOV VEOSYNUATIGUEVOL SEVIPOV UEXPL
va @Tdoel o€ éva dedopévo porvpdo. ‘Exel amoderyfel péow melpapotiopod 0Tt n AqYn PIKpOV
OTOOWK®OV PNUdT®v mpog Tn ADON EMTLYXAVEL GLYKPIGIUN TPOKATOANYTN HE YOUNAOTEPN
GUVOMKT] O1OKDUOVOT) (Lo YOUNAOTEPT] SLKVIOVGT 00MYElL 68 KOAVTEPT aKpifela og delypota
exToC TV dedopévav exkmtaidevong). 'Etol, yio vo amopevybeil n vrepPoiikn tomobétnon, otov
adyopOpo XGBoost elonyOn éva véo vrepmapdueTpo: 10 T060cTo ekpdOnong. Otov kdvovue
po TpoPreyn, kdbe LTOAEWUATIKO TOAAOTANGCIALETOL P TO TOCOGTO eKUAONONG KOl LT
001 YEL GTN YPNON TEPIGGOTEP®V FEVIPMV ATOPACEMV, TO KaBEVH Vo KAveL Eva, LKpd Prina Tpog
TNV TEMKT ADOT).

‘Eto, oy IIpopreyn noincewnv vroloyilovpe Eva vEO GUVOLO VTOAEUUATOV APALPDVTOS TOV
TPOYUATIKO oplBpd koM v ofle T@v ToAcE®V amd TS TPOPAELYELS MOV £YVOV OTO
mponyovpevo Prua. To vmoAeippoto Bo ypnoyomomBodv ot GLVEXEWD YO TO QUAAG TOL
EMOUEVOL OEVTPOV amopdoemv. Kot poig exmadevtel, cuvovaloviog oia ta dEvVTpa 6To GHVOALO,
Kavovpe pio TeMKN TpoPAeyn ¢ wpog v aio TG HETAPANTAG 6TOXOV (GTNV TEPITTOOT T®V
nolocenv pog). H tehikn mpoPreyn Oa givar ion pe 1o péco 6po TOL VTOAOYICUUE GTO TPMTO
Prpo, Kabmg Kot 6Ao To VITOAEIUUATA TOL TPOPAETOVTAL GO TO HEVIPA TOL GLVOETOLY TO BAGOG
TOALOTAQGIOGUEVO LE TO TTOGOGTO EKUAONONG.

®a ypnoiponomoovpe Tov aryoppo XGBoost 1060 6T apyikd cUVOLN SEGOUEVOV HOG OGO Kot
OT0 TEWPANATE pag, dALD Kol oTn doLAEWd oG o€ évav dtayovicpd Kaggle yio v mpdPieyn
TOMGCEWV, Ta omoia eptrapufavovrol oto Kepdiato 5 tng mapovcag datpipng.

IHoAiwvopopunon Tovyeiov Adsovg (Random Forest Regression)

To Random Forest Regression eivat évog emontevdpevog aiydpifuog padnong mov ypnoyomotet
ensemble learning yw maAivopounon. H pébodog ensemble learning eivor pio teyviki mov
ouvdvalel mpoPréyelg amd ToAhamlovs adyoplBpovg unyaviking panong yio vo dnUovpynoet
pio o axpifn tpoPreyn and Eva PLELOVOUEVO LOVTEAO.

Test Sample Input

\ Tree 600
(- : J) o

Prediction 2 ...
*xx_‘ /”’/7

Average All Predictions

v

Random Forest
Prediction

Prediction 1
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To moapamdve Sidypoppo delyvel T doun €vog Tuxaiov ddcovg. Mmopel kavelg va mopatnprioet
0Tl Tl Oévipo TpEYoLV TAPAANAL Ywpis aAinAemidpaon petald tovs. ‘Eva tuyoio ddocog
AELTOLPYEL LLE TNV KATUCKEVT TOAADV JEVTPOV ATOPAGE®Y KATA TN O1dpKeLn TG EKTAidELONG KOt
TNV TOPAYOYN TOL HEGOL OPOL TOV TASEMV MG TPOPAEYT OAMV TV OEVIPOV.

I'o vo katavonoovpe kaAdtepa tov aiyopiBuo Random Forest, umopovue vo 6KePTOVLE TOV
akoAovbo aiydpiBpo:

* AwoAéEte Tuyaia onpueia dedopévov k and 1o ot exmaidevong.
* AnpovpynoTe Eva SEVIPO ATOPACEMY OV GYETILETAL e aVTA To onueia dedopévov k.

* EmiéEte tov apBud N tov dévipov mov Béhete vo dnpiovpynoete kot enavarapete ta fripato
1 xon 2.

* 'l éva véo ompueio dedopévav, Kavte kdbe va amd to dévipa N-0Evopwv Goc va mpoPAEyEL
TNV TN TOV Y Y TO €V Ady® oMUEi0 OEOOUEVMOV KOl VO OVTIGTOLYIoETE TO VEO ONuUElo
dedopévav 6tov PHEGO 0po € OAEG TIC TPOPAETOLEVES TILES .

‘Eva povtého Random Forest Regression egival ioyvpd xon axpiés. Zvvnbwmg éxel eEopetikn
amod00oMN 6€ TOAAG TPOPANLOTO, GUUTEPIAAUPOVOUEV®Y AEITOVPYLDV UE UN YPOUUIKEG GYECELC.
To, PEOVEKTALOTA, OOTOGO, TEPILOUPAVOLY TO. aKOAovOa: dev vrdpyel duvaToOTNTA EPUNVEILNG,
umopel va cuuPei e0KoAo 1 VIEPPOPTMOOT|, TPETEL VO, EMALEOVLE TOV AP0 TV dEVTP®V OV Bat
ocoumeptneBovv oto poviédho. To tuyaio dGc0g Exel GYEdOV TIG 101EC VIEPTOPAUETPOVG UE EVal
dévtpo amopdoewv N &vav tagwvountr. Evtuydcg, dev vdpyet Ad0yog vo cuvdvdoete va dEVTPO
ATOQACEDY UE EVOV TAEIVOUNTI] GVOCOPEVLONG EMELON] UTOPOVUE EVKOAL VO XPTGILOTOUGOVLLE
NV Katnyopio Ta&vounti toxaiov ddcovg. Me toyaio 6G60G, LTOPOVUE EMIONG VO XEPIGTOVUE
gpyaoieg TAAVIPOUNGONG YPTCULOTOIDVTOS TOV TOAVOPOLIKO 0AyOp1OpL0.

To tuyaio 6660¢ TPOGHETEL EMTAEOV TUYOLOTNTA GTO HOVTELD, EVAD UEYUAMDVEL TO dEVTPA. AVTi va
avalnté To MO ONUOVTIKO YOPAKTNPIOTIKO evd dwoywpilel évav koupo, avalntd 1o kaidtepo
YOPOKTNPIGTIKO GE £VOL TUYOLO VTOGVUVOAO YOPAKTNPICTIKAOV. AVTO 001YEl GE ol LEYOAT TOIKIATOL
7oV YeVIKG odnyel og éva KoAVTEPO povtéro. Emopévag, o tuyaio 8G60¢, Hovo €vag Tuyaiog
VTOGVVOLO TOV YOPUKTNPICTIKOV AUUPAVETAL DTTOYT] 0O TOV AAYOPIOLO Y10 TOV SLUOPIGUO EVOG
kopPov. Kdamolog umopei akopn kot vo KGvelL To 0EVTIPOL TO TLYCN YPTCILOTODVTAG EMUTALOV
Toyoio KaTOTOTO Ople Yo KAOE YOPOKTINPIOTIKO TOPE VO WOYVEL Yo TO KOAVTEPO, dUVATA
KaT@TOTO Oplo. (OTMG CLUPOIVEL Pe EVa KAVOVIKO SEVIPO UTOPAGEDY).

Mo, 6AAN e€opeTikn TOLOTNTO TOL TLYAiOL aAyopiBuov dacdv givar 6Tl givol TOAD €0KoAo va
petpnOei n oyetikn onuocio kdbe yapakmmpiotikod oty wpoPieyn. To Sklearn mopéyel éva
e€opeTikd epyaAElo YioL AVTO TO OMOI0 PETPE TN ONUACIN EVOG YOpaKTNPIoTKoD, e&etdlovtag
OG0 Ol KOUPOlL TV OEVIPOV TOL YPNCUOTOOVV OVTO TO YOPAKTNPIOTIKO UELDVOLV TNV
akobopoioc oe OA0 To d€vipa 6TO0 OAC0G. YTOAOYilel avTd TO GKOP OVTOUATH Yo KAOE
YOPOKTNPIGTIKO UETO TNV EKTOIOELOT KOl KALOKOVEL TO OMOTEAECUATA £TGL TO GOpoloua OA®V
TOV GNUOVTIKOV givor 160 pe éval.

E&etalovtag tn omovdaidtnta e SuvatodTNTaG, UTOPOVLE VO OTOPUGICOVUE TOIEG OVVOTOTNTES
mhavov vo mécovv emedn dev ouuPdriovy apkeTd otn dladikacio TpoPAeync. Avtd eivan
ONUOVTIKO €MEWN VO YEVIKOG KOVOVOG OTN UNYOVIK) pabnon eivar 6Tt 0G0 TEPLOGOTEPESG
duvatotnTeg Exovpe 1060 TOAVOTEPO VO, VTOPEPEL TO LOVTELD LOG OO VITEPPOAIKT| TPOGAPUOYT.

Evé® 10 tuyaio ddoog givar pior cuAhoyn SEVIPOV ATOPACE®Y, VIAPYOVV KATolES dropopéc. Edv
€100yAyovpE Eva GUVOLO OEOOUEVOV EKTAIOEVONG UE dUVATOTNTEG KOl ETIKETEG GE €va SEVTIPO
anopdcemy, 0o S0HOPPAOCEL KATOI0 GUVOAO KOvOV@VY, ol omoiotl Ba ypnoiomombovv yio v
Tpoypatoroinon Tv pofréyemv. INa mapadetypa, yio vo Tpofréyovpe gdv éva dropo Ba Kavel
KMK o€ pio SLodIKTVOKT StoprpioT, evOEyeTal vo. cLAAEEOVE TIC PN IIGEIS OTIS omoieg ékave
KMK 670 GTopo 010 TapeAfoV Kol OPICUEVES SLVATOTNTEG OV TEPLYPAPOLV TNV ATOPACT] TOV.
Edv tomofetioovpie T1g SuvOTOTNTES KOl TIC ETIKETEG OE £Va. 0EVTPO AmOPAceE®V, Ba dnuiovpynoet
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OpLopEVOLG Kavoveg mov Ba Bondncovy otnv mpoPreyn edv Ba yivelr Kk otn dtapnon i oyl
2VYKPLTIKE, 0 aAYOPIBLOC TUY0I0V dAGOVE EMALYEL TVLYOIO TAPATIPTCELS KOL YOPOKTPICTIKA Y10l
TN ONUoVPYiN TOAADY OEVIPOV OTOPAGEMVY KOl GTN GUVEXELD LITOAOYILEL TO OMOTEAEGLATOL.

M 6AAN dapopd ivar 6TL Ta fadid dévipa amopdcemy pmopel va LITOPEPOLY amd VITEPPOAIKN
npocopuoyn. Tig mepiocdTEPEC POPEC, TO TVLYOIO dUCOG TO ATOTPENEL ALTO ONLLOVPYDVTOG TVUYOLN
VTOGUVOAD TV YOPOUKTINPIOTIKAOV KOl ONUIOVPYOVTAG HKPATEP, dEVTPO, YPNCILOTOLDVTOG AVTE
TO. LTOGUVOAD. X1 GLVEYELN, GLVOVALEL To VTodEvTpa. Eivar onpoavtikd va onpeimdel 6Tt avtd
dev Aertovpyel KaBe popd Kol KAVEL EMioNG TOV LTOAOYIGUO o apYd, avdloya pe 1o TOsa dEvTpa
dnpovpyet to tvyaio ddcoc.

To tuyaio ddcog eivar Evag moAd KaAOg aAyOpOLog Yio vo ekTondedcoVE VoOpig ot dladikacio
avATTUENG TOL LOVTEAOL LAG, Yio Vo doVpE TG Asttovpyel. Kat ta dvo givat moAd amhd, addd Kot
OTOTEAEGHATIKG, KOODC €xel MOAD kP mMOOVOTNTO KOTAGKELNG TLYOIOL OACOVE YOUNANG
akpipelag. O alyopBuog eival emione (o eEAIPETIKN ETAOYN Y100 OTTOLOV ¥PELALETal VO, AvaTTOEEL
ypRyopo €va HOVTEAD KOl TTOPEYEL L0 OPKETE KOAN €voelEn Tng onuaciag mov amodidel oTiC
SuvaTOTNTEG EMTAVGNG TOV GLYKEKPLUEVOD TPOPATLLATOG.

Ta toyaio ddom etvar cuyvd dvokoro vo Eemepactovy o emddcels. I 'avtd givor and To o
OMUOPIAY] HOVTEAN GLYKPITIKNG a&loAdYNoNG Yo £pya pnyavikng pdonong. dvoikd, mbavotato
umopovue mavro vo Ppodue va poviélo mov pmopel va £xel kaAvtepn amddoom (0nwe Kot Ba
OMNUOVPYACOVE GTNV TOPOVCa, dATPIPn]), OTWC Yo Tapdoelypa £va veupikd dikTvo, OAAG aVTA
ouvnBwg xpetdlovial TEPIEGOTEPO YPAVO Yo VO avarTVYBoDV Kol VoL EKTEAEGTOVV.

Yvvolikd, to Random Forest eivor éva gvélikto epyodeio, Paciouévo oe évav amlo, OAAG
OTOTEAEGUATIKO aAYOPIOpO, dAAG LLE CNUOVTIKOVG TEPLopIopove. Xta melpdapotd pog (Kepdioto
5, "lepapota) emPePordvovpe T BepnTIKEG TAPAOOYES GYETIKA LE TO TVYOi0 dAoN, KaBdg
delyvoupe 6t Ta TVYOIO OGO LTOPOVV VO EPAPLOCGTOVY TOAD EVKOAM, £XOVV EEPETIKG YOUNAD
YPOVO EKTEAEONG Kol £YOoVV OPKETA KaAn axpifeia mpodPreyng oty mpdPreyn TOANGE®V Yo
FMCGs, aALd oiyovpa dev givor to povtéro pe v Bértiom axpifeto cuvolikd. 'Etol, propodv
va xpnoiponombovy og Hovtédo Evaping Kot avapopds o€ avTég TG epapuroyés (benchmarking)
Y0 VO OOGOVV [0l YEVIKT 100 Y10 TNV TPOPAEYT] TOAGE®V Kal Vo avTikaTaotafobv and dAio
HOVTELD TTOV OVOADOVLE GE QLTIV TNV EPYOGIN, TO OO0 EMTVYYXAVOLY TOAD KaAvTEPT aKpifeia
G€ OLPOPETIKA EMIMESD TOGOTNTAG OEOOUEVOV.

Catboost

To CatBoost eivar évag alyopiBuog yioo v evioyvon g KAIonNg oto SEvipa amoPAcEmV.
Avanthybnke amd epeovntég Ko pnyavikovg ¢ Yandex, sivor koBoMKOC kol pmopsl vo
epopuootel og éva evpd QAcH TOUEMV Kot o dtdpopa mpoPfiniuata. I'vopilovpue oM 6T TO
GBDT eivar 1o koA0TEPO POVTEAD UNYAVIKAG HABNONG Y0, ETEPOYEVI] GUVOAL OEQOUEVOV GE
dopég mivaka (6mwg ta dedopéva TOAMGE®V Yo TIG TPoPAEYEIC TOANGE®V). AvTd Ta. LOVTELD
£€youv Kopueaieg emOOGEIC 6TOVS dlayviopovg Kaggle kot evpeia ypnom otn Pounyaviao.

To Catboost, Aouov, emTLYYAVEL EEPETIKG OMOTEAECUATO, KATO HEGO OPO KOAVTEPO A0
moAlovg dAhovg GBDT aAyopiBuovg, oe éva gvpd mhaicto TpoPfAnudtwv. Qotdc0o, dev Exet det
OKOUN HEYOAN E€VOOUAT®OY OTO HOVTEAD LNYOVIKNAG WAONoMg Tov emyelpioemy, Kabdg M
OVTIKOTAGTOOT €VOC AELTOVPYIKOD HOVIEAOL TOpay®YNG TPoPAEYE®mV TOANCE®Y UOVO Yid €val
LUKpO T0c00To Pertioong g mpdPreync dev Bewpeitor EXEVOLTIKN TPOTEPUIOTNTO OO TOAAL
Tuqpato  oedopévav  etatpewmv. EAmiloope vo ddocovpe emmAéov oio kot kivintpo oe
EMYEPNOELS LLE OVTHV TN dtoTtpiPi).
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I'o obvoro dedopévov OTOL TA KOATNYOPNUATIKE Yopoknplotikd mailovv peydio pdlo, m
BeAitimon tov Catboost kafioctotonr aKOUN MO CNUOVTIKY Kol avopeiofritnmn. Avtdg eival o
KOPLOG AOYOC Yo TOV 0moio Tov €EEPELVOVIE GE aLT TN OTPLPY] KOl TOV OVOAVOVUE Kol OTO
TEPANOTE Pag, KaOdg 1 aElomoinoT TV SVVATOTATOV TOV KOTIYOPTLATIKOV YOPAKTNPICTIKAMY
glval eEoupetikd onUOVTIKEG otV TPOPAEYN TOANCEOV KOl OKOUN 7O ONUOVTIKEC Yo TIG
npoPréyelc moinoewy tov FMCGs. H vrdbeon pog 61t to Catboost pmopel va €xel peydio
OVTIKTUTO OTO LEAAOVTIKG LOVTEAD UNYOVIKIG HABNoNg yio TpdPAeyn ToANcEOV eTKVP®ONKE,
KaBMG NTOV TO KAADTEPO LOVTEAO Y10 TO GUVOAO SEDOUEVOV LLOG.

To Catboost £xet T axdAovB0, 1IoyVPA onueio.:

* Evd 0 ypdvoc ekmaidevone umopet va dlopkécel Teptocotepo and dAlovg aryopibuovg GBDT,
0 xpovog TpoPreyng etvar 13-16 popéc tayvtepog amd Tig dAAeg PA0OTKES GOUP®VA pE TO
onueio avapopdc Yandex.

* O wpoemireypéveg mapduetpor tov Catboost éxovv kalbtepo onueio exkivnong oamd OtL ot
aArovg aryopiBpovg GBDT. Kat avtd guoikd eivorl moAd KoAd yio 6covg BELovV €va LovTéAo
plug and play, ®ote va Eekivioovv va SoKIUAlovV GUVOAN OEVIPOV 1| GLUUETEXOLV GOV
apyaptlot o doyovicpovg Kaggle.

* Ot oAMAETOPAOELS YOPOUKTNPIOTIKOV, 1 OCNUAGIL TOV OVTIKEWWEVOL Kol 1 VTOGTHPIEN
oTypoTuov aélorotovvron BéXTiota pe Catboost.

* Extog amd v tagivounon kot tny maivopouncn, to Catboost vwootnpilet tnv katdtaén “out
of the box”.

* To Catboost cvvdvalet 000 oNUAVTIKEG OAYOPOMKEG TPOOSOLE - TNV EQUPUOYT TNG
gvioyvpuévng PBertioone (por evollaktiky Avon mov Paciletar oe mapariayéc oTov KAUGIKO
OAYOp1O0) Kol Evav KOWVOTOUO aAyoplOuo vy TNy emefepyoacio TV KOTYOPTLATIKOV
YOPoKTNPIoTIK®VY. Kot 01 900 TEYVIKES ¥PNOILOTOOVY TVYOIES TAPOAAAYES TV TOPAOELYLATOV
EKTOIGEVLONG Y10 TNV KATATOAEUNGN TS aAAaYNS akpifelag TpofAéyemy mov TpokoAsitarl omd
éva, €101KO €100g dloppong OTOYOL TOV VIAPYEL GE OAEC TIC VTAPYOVOEG VAOTOUOELS
oAyopiBuwv evioyvong dtapdopionc.

YTATIOTIKI] OTOYEVOG KOTA GE1pd

Ot eprocoTEPOL 0md Tovg adlyopdpovg GBDT ypnoipomotodv v 10€a TG GTUTIGTIKNG GTOYOL
(M kodkomoinon pécov 6tdyov). Eivar pia omAr oAAG omoTEAECUATIKN TPOGEYYICT] GTNV Omoid
KOOIKOTOIO0UE KAOE KOTNYOPNUATIKO YOPOKTINPIOTIKO HE TNV EKTIUNGT TOV OVOUEVOUEVOL
oTOYOL Kot g€opTdTol amd TV kKatnyopio. Amodeikvietal, Aowmdy, OTL N EPAPUOYN OVTAG TNG
kwdkomoinong “ompocekta’” (UEoN TN Y TAV® OO T, TOPOSEIYIOTH EKTAIOEVONG e TNV 1010
Katnyopia) odnyei o€ dappor GTOYOL.

Apa, PAEmovpe OTL:
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n

Input: training set {(z;,y; )}, , a differentiable loss function L(y, F(x)), number of iterations M.
Algorithm:

1. Initialize model with a constant value:
n
Fy(z) = argmin ) _ L(y;,7)-
7 i=1

2.Form=1to M:

1. Compute so-called pseudo-residuals:
OL(yi, F(z:)) .
Tim = — | ——— fori=1,..., n.
OF (z;) F(z)=Fp_y(z)

2. Fit a base learner (e.g. tree) h,, () to pseudo-residuals, i.e. train it using the training set {(;, 7im)}™ ;.
3. Compute multiplier ,,, by solving the following one-dimensional optimization problem:

Y = argmin ¥ L (yi, Fon1(2:) + vhm (1)) -
7 i=1

4. Update the model:
Fu(z) = Fpo1(2) + ymhm (z).

3. Output Fyy (J‘)
Gradient Boosting on Wikipedia
7 = <
»/ + / + + \
X

o v xatomoAéunon oavtic g arlayng mpoPAéyewv, 1o CatBoost ypnowpomotel o mio
OTOTEAEGIATIKY oTpatnyiK. Baciletar oty apyn mopayyeiiog Kot UTVEETOL OO SLOSIKTLOKOVG
aAyopiBpovg pdonong mov Aappdvovv mapadsiypota ekmaidevone dadoykd oto ypdvo. Xe
oVTAV TN POBIGN, ot TIHEG ToL XTaTloTikoL XTt0Yov (TS) yio kdbe mapdderypa Pacilovror poévo
GTO TTAPOTNPOVLEVO 1GTOPIKO.

I'o va Tpocappdcel avtv v 10€a 6€ o TVTIKN pHOuLoT extdg cvvdeong, To Catboost gicdyet
évav tevnto ¥povo - o Toxaio TapoAAayn G1 TOV TOPAdELYUATOV EKTOIOELONC. TN GUVEXEL,
yio KaBe mopddetypa, ypnoionotel 6ho to S100EG1o 16TOPIKd Yo VO VTOAOYIGEL TOV GTATIGTIKO
6THY0. ZNUEIDOTE OTL, YPNOLUOTOIDOVTAG HOVO pio Tuyaio PETABEoN, 00nYeital og TPONYOLLEVO
mopadetypota e VYNAGTEPT OLOKVUAVOT] GTO GTATIOTIKO 6TOY0L amd To emdpeva. I'ia to okomd
ovto, to CatBoost ypnoyomolel dpopeTiKeéS TapaAlayEs Yo SlapopeTKd Prnata evicoyvong
™¢ KAlone.

Kodwonoinen One-hot (One-hot coding)
To Catboost ypnoomotel pio HovodK] KOOIKOTOINGOT Yol OAEG TIG dUVATOTNTEG UE TO TOAD
éva_hot max_size povadwkég Tyég. H mpoemdeypévn tiun givor 2. O adyopiBpog tov Catboost

glvar 0 Khoowkog Gradient Boosting akydpiOpoc e ta mpoavapepBEvto TAeoveKTN AT,

Ag pikovpe (o patid otov adyopOuo yo tnv dnuovpyia tov Catboost dévipov:
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Mg Algorithm 2: Building a tree in CatBoost
input : M {y;},,a, L, {0i};_,, Mode
006000600000 grad < CaclGradient(L, M, y);
1 r + random(1, s);
r'(x7,y7) =y, = Mg (x7) G + (grad,(1),...,grad.(n)) for Plain;
G « (grad, ,, (1)1 () for i = 1 to n) for Ordered;
T < empty tree;
foreach step of top-down procedure do
foreach candidate split c do
T. < addsplitcto T';
if Mode == Plain then
L A(i) « avg(grad,(p) for
Algorithm 1: Ordered boosting p: leaf(p) = leaf(i)) foralli;
n if Mode == Ordered then
Xies Y _ 1 ! .
{( * k)}k ! A(l) « avg(gradr,o,.(i)—l(p) for
p: leaf(p) = leaf(i), o (p) < 0+(i)) Vi;

ME!

Figure 1: Ordered boosting principle.

input :

o < random permutation of [1,7] ;
M; + 0fori=1..n;

fort + 1to I do L loss(T) « ||A -Gl
fori «+ 1tondo | T « argming, (loss(T.))
L mi ¢ % = Moy (i) if Mode == Plain then
for i + 1ton do M. (i) + M (i) — aavg(grad, (p) for
AM <+ | p: leaf(p) = leaf(i)) forall v, ;
gail)rzf‘g?del((xr ) : if Mode == Ordered then
M; « M; +AM 5 i AZT: ’Jz(ezi f((_p)lw:' 'l]e((;}(i)?:;‘/’(gp(i]rga(;rfgr(gl)l fro’r o
return M, return 7', M

To CatBoost £yel 600 TpdmOVS Y1 TNV €mA0YN TG doung Tov dévrpov, Ordered ko Plain. H amin
Aettovpyla avtiototyel o€ cLuvOLOGHO TOL TLTKOD aAyopiBuov GBDT pe po ta&vounpévn
GTATIOTIKN OTOYOL. XTNV eVIGYLUEVT Aertovpyio pe TAEN eKTEAODE Lol TUYOi0 TOPOAAXYT TOV
TOPAOELYLATOV EKTOIOEVONC KO O TNPOVUE N SLOPOPETIKE VITOCTNPIKTIKA LovTéda - Mi,..., My
£101 MoTE TO0 HOVTEAD M vou eKTOodeDETOL YPNCILOTOIDOVTOS UOVO TO TPOTO delypota i o
uetébeon. Xe ke Prua, ywo vo Adfovpe to vrorowo yio to deiypa j-th, ypnoiuomolodue to
povtého Mj-1. Avotoy®dg, avtdg o aAydplBpog dev elval PIKTOG OTIG TEPICCOTEPES TPAUKTIKES
gpyaciec AMOy® NG OVAYKNG GLVTNAPNONG N SPOPETIKAOV HOVTEA®V, TO omoia av&dvovv tnv
TOALTAOKOTNTO KOl TIC OmALTHOES MVAUNG katd n @opés. To Catboost epoappoler pio
Tpomomoinon ovtod Tov aAyopiBuov, pe Pdon Tov aAydpiBuo evioyvong Oafaduionc,
YPNOOTOIDOVTAG Mo dopuny O€vipov mov popdletar A0 To HOVIEAD TOL TPOKELTOL VO
KOTOGKELOGTOVV.

[Ipokeyévou va amopevydei n aAlayn tpoPfréyenv, to Catboost ypnoiponotel maparroyés Etot

®oTE 61 = 62. AVTO gyyvdtat 0Tt 0 6TdY0C-y dev ypnotonoteitot Yo TNV eknaidevon Mi ovte y
TOV VTOAOYIGHO TNG GTATIOTIKNG GTOYOV OVTE Y TNV ekTipnon g Padbuidoc.

LightGBM

To LightGBM eivon éva mAaicio gvioyvong g KAlong mov ypnoonolel adyopiBpovg ekpdonong
ue Baon ta dévrpa.

Eivol oyedtacpévo vo SLovELETOL KOt VoL Vol amoTEAECUATIKG LLE TOL AKOAOLON TAEOVEKTALATOL:

* I'pnyopodtepn ToydTNTA EKTOUOEVONG Kol VYNAOTEPT] ATOOOGT.



* Xopnhotepn ypion pvAung.

* KoAvtepn akpifeto.

* Ymootpi&n mapaAANANG, Kataveunuévng expadnong kot ekpddnong GPU.
* AvvatoTnNTo YEPIGLOV OESOUEVMV LEYOANG KAILLOKOC.

H xbdpia dapopd and dirovg aiyopiBuovg GBDT eivar 611 eved ta dévipa GAA@v odyopiOumv
avamtooocovtal opldvtia, o aAdyopifuog LightGBM (LGBM) avamrtocoetonr wdbeta. Avtd
onuaivel 0Tl gvd GAAoL aAyopiBuol avamtvccovior amnd eminedo oe eminedo, 1o LGBM
avantoooetal o€ UAAA. To LGBM emidéyel 10 @OUAAO pE peYGAN omOAEW Yoo avamTTLEN Kot
UTOPEL VO LELMOCEL TN LEYOADTEPT] ATMAELD GE £Vl EMIMESO KOTA TNV avATTLET TOV 16100 EOAAOL.

® ® ®

Semetem sTom 0 *

¢ o oo ..‘.. m) -

Leaf-wise tree growth Level-wise tree growth

og Aevtovpyei To LBGM / [ og Aertovpyodv o dirla GBDT povréra

"Evog amd toug K0p1ovg AOYoug yio TV avEnpévn SnUoTKOTNTd Tov, glval 0Tt £xet yivel OOGKOAO
Y10 TOAAOVG adlyopiBuovg va divouv ypiyopo amoteAécpata yio peydiec 0éopeg dedopévov. To
LightGBM ovopaletar "Light" A0ym g 1600 DITOAOYIGHOD TOL OV £ival TOAD “eAa@pid” Kot
dtver amoteAéopato ypnyopdtepa. Xpewaletar Aydtepn pviun v voo Tpé€el kol pmopel vo
avtueToniost peydiec moodtnreg dedouévmv. ‘Evag dAlog Adyoc yia tov omoio 1o LightGBM
glval INUoPAég etvan emeldn eotialel oty akpifela tov amoterespdtov. To LGBM vrootnpilet
emiong v exkpdBnon GPU kot €101 01 EMGTAIOVES 0E00UEVMVY YPNGILOTOI0VV gvpéms To LGBM
Y10 TV OVATTUEN EQAPLOYDV ETIGTHUNG OEOOUEVWDV.

‘Etol, to LightGBM 6gv mpoopiletar yio pikpd 6yko cuvorwmv dedouévov. Mmopel gvkola va
vrepeoptmBel oto pikpd ocOvora dedopéva Adym TG evalsBnciog tov. Mmopel va
ypnoomonBel yio dedopéva pe meprocdtepeg omd 10.000 cepég (6mwg ta chvola dedopEvVmV
pag v TpdPreymn nwAncemv). Aev vrdapyel otabepd KaTOEAL TOV Vo, Bondd ctov Kabopiopd g
yphong tov LightGBM. Mmopel va ypnoyomondei yio peydhovg 6ykovg de00UEV@VY, E101KE, OTay
Kémolog mpémetl va emtvyel vymin akpifeta. ‘Etol, 1o LGBM oaivetol va gival éva amd to 7o
VITOGYOUEVO LOVTEAQ / VITOYNPLOL Y10 TPOPAEYELG TOANGEDV.

Ewwd oty nepintoon pog, émov peietdue v tpoPreyn toincewv yioo FMCGs, to LGBM
glval éva TOALL VTOCYOUEVO LLOVTEAO OQOV:

* Eivar 10avikd yio peydieg mocdtnreg dedopuévav mov gival Eva amd To KOPLoL YopoKTNPIoTIKA
¢ epyaciog oe FMCGs.

* Aivel amoteléopata eopeTIKA YpNyopa Kot £TGL Eival 1O0VIKO Y10 GUVEYEIG EXOVOANYELS KOl
TOAAOTTAEG TPOTOTOUGELS TOV OalTovVTUL cuVIBmg Otav epydleote pe FMCGs.

* 'Exel 0ha ta mheovektiuata tov aryopibumv GBDT mov givor moAd ypriyopot kot pepikd omd
T KOADTEPO LOVTEAL, GYETIKA LE TNV aKpifeia TV TpoPAEyemV Yo TIC TPOPAEYELS.

* Amodidel eEapeTIKG KOAG OE €TEPOYEVH OPYOVMUEVO GOVOLD OedOUEVOV GE LOPON TIVOKO,
OT®G €lval TO OEOOUEVO TOANCEDV.
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0.4.4 Meto-padnon

Onwg eénynoape oty evotnta tov Bempntikov vrofadpov, to Ensemble Learning sivotl éva
pobnolokd mapdostypo mov, avii va mpoomabel vo “udber” éva eopetikd axpiPég povtéro,
€0T10LEl 6TV EKTOIOELON EVOG LEYAAOV aplOoD HOVTEA®V YOUNANG akpifelag Kot ot cuvE el
0T0 GLVOVOGUO TV TpoPréyemv mov divel 10 kabBéva amd To. addvapo HOVTEAD Yo, Vo
OTOKTIGOVLLE EVOL LETO-UOVTELO VYNANG aKpifetog.

Ye aqUTAV TNV &VOTNTO, WEAETAUE U0 GLYKEKPUEVN katnyopio peboddwv pabnong cuvoiov
(ensemble learning) mov mapdyovv poviéra mov ovopdlovral povtéla peta-padnong (e ov kot o
tithog avtig g evotnrag). [pdkettal yio poviéda wov Tpocmafov va pdbovv amd v £6060 1
va pdbovv g vo cuvdvdlovy kaAdtepa TV £€£000 GAL®Y pOVTEA®V YounAoTEPOL emmédov. H
peta-padnon eivar po dtadikacio padnong amd podntéc / ta&vountéc.

[pokeévon va TpokdYEL €vog UETA-TASIVOUNTHG, TPMTO KOTOPTILOVTOL Kol EKTOISEVOVTOL Ol
PBaocwol to&vountéc (otdowo 1) kot petd o Meta-tagvountg (debtepo o©1Ad10). Ba
TOPOLCIAcoVLE EEYMPIOTA aVTA To 0O GTAdN Y10, TNV EKTAIOELOT LOVTEAWDV PETA-UAONoNG 6TO
Kepdrao 5 («Ilepdpoton).

Yroifan Ta&wvopnonc/Ilaivopopnong (Stacking Classifier/Regressor)

To Stacking eivail por teyvikn pabnong mov cuvdvalel ToALUTAG HOVTELD TOEVOUNONG HECH
evog peta-tasvopnth. Ta pepovouéva poviéha ta&ivopmong ekmodevovrol pe Pdon to mAnpeg
GET EKTOOELONG. XTN GLVEYEL, O HETA-TASIVOUNTAG TpocapuoleTan pe Pdon tic eE6d0vg (LETa-
AELTOLPYIES) TOV PELOVOUEVOY HOVTEA®DV TOEIVOUNONG 6TO GUVOAO. O peta-taivountg propet
glte va, ekmandevTel 6TIG TPoPAenduEVES eTIKETEG KAGONG | 1e Pdon mBavotnteg amd Eva chvoro.

I Aemtopépeteg, avatpéére oto Kepdhato 3 (“3.2 Expddnon Xvvorov (Ensemble Learning)”).

Meiypo gprerpoyvoudvov (Mixture of Experts)

To pelypo epmelpoyvoudvov givar po TEXVIKA HAONoNG Tov ovamthyOnke oTov TOUéd TV
VEVPOVIKOV SIKTO®V.

[lepthiapPdver v amocHVOEST €PYOCIOV TPOYVOOTIKNG LOVIEAOTOINONG GE OELTEPEVOVGEG
gpYOoieg, TNV KATAPTION €VOC LOVIEAOL EUTELPOYVOUOVOV og KABE €va, TNV avamtuén evog
LOVTELOL TOANG TTOL HaBAivEL TOLOG EUTMELPOYVMUOVAG VO EUTIGTEVTEL Le Pdiomn Tnv lopon| mov Ba
poPrepdel kot cuvovalet Tig TpoPAEYELG.

Av Kol M TEYVIKY TEPLYPAPNKE OPYIKE XPTOLULOTOIDVTOG EWOIKOVG VEVPMOVES KOl LOVTELN TOANG,
UTOpEL Vo YEVIKEVTEL 1| XPNOT TOV Yo HovTéAa omolovdnmote TOmov. ¢ ek TovTOL, delyvel o
LEYOAN opowdTNTO pe TOug aAyopiBuovg yevikevpuévng otoifaéng (stacking) xon avrkel otnv
Katnyopia TV pebddwv Hdnong GHVorov TOL AVUEEPOVTAL OC LETO-LLAON o).

Yrdpyovv téocepa otoryeia tng npocéyyiong tov Meitypatoc Epnepoyvopovaov:
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* Awipeon pog epyaciog oe devtepevovoeg epyacies. (Biua 1: Yro-gpyacieg)
* Avantoén evog €1d1koD Yo kdbe devtepedovoa epyacia. (Briua 2: Edikd poviédla)

* Xpnowonoinorn €vog HOVTEAOD TOANG YO VO OTOPAGIGEL TOL0G €101KOG Ba ypnoyomondet.
(Bnpa 3: Gating Movtéio)

* Zuykévipmon TpoPréyenv kal ££060 HOVTEAOL TOANG Yo va KAvel pia TpoPieyn. (Biua 4:
Mé60d0¢ GuYKEVTPOONG)

A
Output
e
Expert 1 Expert 2 Expert 3 Gating
. A 4 —
In[;[lt

Zyqpae 19: Hopdderypo poviéhov MoE pe pédn eldwkadv ko Gating diktvo [54]

Bijpa 1: Agutepevovoss epyacieg

To mpadTo Prpa eivor vo yopicete 10 TpoPANUa TpdPreyng poviehomoinong o deuTEPEHOVCEG
gpyooiec. Avtd cuvendyetol cuyva TN xpnorn yYvacewv topéa. o mapddetypa, po gkova o
UTopovoe Vo YOPLoTel o€ EgmPloTd oToly el OTMG POVTO, TPOCKNVIO, OVIIKEIUEVA, YPDLOT,
YPOUUES K.AT. WIKPOTEPO OgLTEPEVOVTA KOONKOVTH, KOl UEUOVOUEVOL EKTOIOELOUEVOL (TTOV
ovopdlovtat 151K01) EKTALOEVOVTAL Y10, SIPOPETIKEG OEVTEPEVOVOES EPYOCIEG.

lNo ekeivo To, poPAALOTA OTOV M KOTAVOUTN TNG EPYACIOG GE OEVTEPELOVGEG EPYACIEC dEV Elvar
Tpoeavng, Bo umopovoe va ypnopomombel g arkodotepn KOl MO YEVIKY TPocéyyion. o
wapadelypa, Oa pmopodoe Kovelc vo QAVIOOTEL MO TPOGEYYIOT] TOV Jpel TO YDOPO
YOPOKTNPLOTIKOV €16000V HE OHAdec otnAmv 7 daywpilel mopadeiypota o100 YOPO
YOPOKTNPIGTIKAOV PACEL HETPNCEDV UTOCTOONG, ECOTEPIKAOV KOl OKPAIOV TILMV Y10l [0, TUTIKT
dtovopn Kot ToAAG GARa.

Bipa 2: Ewdwkd povréra

2t ovvéygela, oyedualeton évag €dkog yuo. kébe devtepevovoa epyacia. H mpocéyyion tov
LElypoTog EUTEPOYVOUOVOVY avarToxdnke apylkd kot depevvinke o1o medio TV TEYVNTOV
VELPIKOV SIKTO®V, 0TOTE TAPOOOCLOKE, 01 13101 01 £101KO1 EIvol LOVTEAD VELPOVIK®VY SIKTO®V TOV
YPNOULOTOLOVVTOL YioL TV TPOPAEYN LI0G apOUNTIKNAG TG OTNV TEPITTOOT TOAVIPOUNONG 1
Log eTIKETAG KaTnyopiag oty mepintwon g ta&vounong. Ot ewdwkoi Aappdvouv to 1610 potifo
gloaymyng (ogpd) Kot Kavoov pio TpoPieyn).

Bipa 3: Gating Movtélo

‘Eva povtého ypnoipomoteital yuoo v gpunveia tov mtpofAEyemv TOV TPAYULATOTOOVVTAL 0Td
KkéOe gumelpoyvdpova Kot Yo vo fondncel 6tov kaBopiopd Tov €101kov mov Ba eumicTELTEL Yo
pa dedopévn cLpPoAn. Avtd ovopdaletol LovTEAO TOANG, 1 TO OikTLO TOANG, dedouévou OTL gival
TOPAdOGLOKE £vo LOVTEALD VELP®VIKOD dtkTvOoV. To dikTvo TOANG AapPavel w¢ €lcodo To potifo
€10600V OV JOONKE oTA LOVTEAD EUTELPOYVOUOVOV Kot €EAyEL Tr GLUPOAN] TOL TPEMEL va. EXEL
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KkéOe e101KOg otV TPOPAeyn ya v gicodo. 'Etot, ta Bdpn mov kabopilovtor amd 10 dikTvo
TOAMNG eKy@povvTol Suvapukd pe Pdaon t Ogdouévn €icodo, kabdc 10 MOE pobaivet
OTOTEAEGILATIKG TTO10 T TOV YMPOL SLVOTOTHTOV pobaivetal amd kibe LEAOG TOL GLVOAOV.

To diktvo MOANG elvarl To KAEWL Yo TNV TPOGEYYION KOl OVGLOGTIKA TO HovTéAo pabaivel vo
EMALYEL TO OEVTEPEVOV £PYO TOTOV Y10l Lo dedOUEVT 10000 Kat, LE TN GEPA TOV, 0 EOIKOC TOV
TPEMEL VAL EUTGTEVTEL Y100 VoL KAVEL oL .oyvpn TpoPAewr. To MoE propel eniong va Bewpnbel wg
aAyop1Bpog emloyng taSvount, OOV LEUOVOUEVOL TAEIVOUNTEG EKTOOEVOVTOL Y0 VO YIVOUV
€101K01 0€ KATO10 TUNLO TOL YDPOL YUPOUKTNPIOTIKMV.

Otav ¥pNOYOTOOVVTOL HOVTEAD VELPOVIK®V OIKTO®V, TO OiKTLO TOANG Kot Ot €101Kol
exmondevovtal poli £To1 dote To dikTvo TOANG Vo pobaivel TOTE Vo epmioTevETOl KAOE €101KO Yo
va kdvel pia tpofieym. Avt 1 dadikacio exkmaidevong ePupUOGTIKE TOPUOOCIOKA LLE TN YPN O
peyiotonoinong npocsdokiag (EM). To diktvo mwOANG umopel va €xel €£o0do softmax mov divet
Babuoroyio eumotochvng cov THAvOTNTA Yoo KAOE €101KO. Xe YEVIKES YPAUUES, 1 dlodkaciol
ekmaidevong mpoomabel va emiTOXEL OVO OGTOYOVS: YL GUYKEKPILEVOLS ELTEIPOYVMUOVES, VO
Bpouvv ™ PBérTiot Asttovpyion TOANG. Yoo ol OSOOUEVT] AELTOVPYIOL TTOANG, Y10 VO EKTTOOEVOETE
TOVG EOKOVE GYETIKG e T Olavoun mov kabopileTar amd T Agttovpyia TOANG.

Bijpa 4: M€0000¢ 6uYKEVTPOONG

Téhog, Ta LOVTEAD UIYHATOV EUTEPOYVOUOVOV TPETEL VO KAVOLV o TPOPAEYT, Kot ovTod
EMTLYYOVETOL YPNCULOTOUDVTIOG VAV UNYAVICUO GLUYKEVIP®ONG 1| CLYKEVIPWONG. AVTO pmopet
va glval 1660 amhd 0G0 1 ETAOYN TOV EOIKOV LE TN UEYOADTEPN OTOS00T N EUTIGTOGLVN TTOV
mapéyetar and To diktvo TOANC. Evolhoaktikd, Oa propovoe va yivel pio otabucpuévn mpopfieyn
afpoiocpatog mov ocvvdvalel pntd TIc TPoPAEYeElG oL Eyvav omd KkOPe €01KO Kol TNV
EUMGTOOVVN TTOL eKTIUATAL 0td TO dikTvo TOANC. 'ETo1, To 60oTNUA GUYKEVTPOOTG / CLVOVAGLOD
EMAEYEL VOV LOVO TOEWVOUNTN, 0TOV UE TO vymAdtepo Papog 1 vroioyilel éva oTabcuévo
afpotopa TV €£60wV TOV TaSVouUNT Yo kGO Kotnyopio kot emAEYEL TNV KAGGON oL AapPdvet
70 VYNAOTEPO GTabuicUéVo aBpoica.

Mmropovpe eniong vo dovUE pio oxEon UeTadD evOC UEIYUOTOG EUTEIPOYVOUOVOV UE TO dEVTPA
tagvounong Kot maAvdpounong, mov cvyvd avapépovial o CART. Ta dévipa amopdcemv
ToPLalovy YPNCIUOTOIDVTOG Mo TPOCEYYIoN OlaipeEoNg KOl KATAKTINGONG GTO YMPO
yopoktnpoTik@v. Kdabe doywpiopdg emdiéyeton ®g otabepn T Yoo €vo YOPOKTNPLOTIKO
€100y®YNG Kol kaOe devtepevov dévipo umopel va Bempnbel vmo-poviéro. o pmopovoape va
aKOAOVONCOVUE [0 TOPOUOLN OVASPOUIKT] TPOGEYYIoT OmocVVOESNC e TNV amochvOeoT TNg
gpyaciog mpoPAeYNC HOVTEAOTOINGNG G VIOTPOPANUATA KOTE TO GYESOUO TOL UELyHOTOg
EUTEPOYVOUOVOV. AVTO OVOPEPETAL YEVIKA MG LEPAPYIKO LETYLLO EUTELPOYVOUOVDV.

H epopywn pi&n eunepoyvopdoveov (HME) sadikacio pmopetl vo Bewpnbel wg pwo mapailoym
TV 6evopiKedv HeBddmv. H kidplo dapopd eivar 61t o1 daympiopol Tov dEvipmv dev givar
AmOAVTEG AMOPACELS, OALY TOOVOTIKEC. T avtifeon pe To dEVTIPA ATOPACE®V, 1) KATOVOUY TNG
gpyaoiag o 0euTEPEHOVGEG EPYATIEG EIVOL GLYVA PNTY KOl OO TAV® TPOG Ta KAT® (top-bottom).
Emiong, oe avtifeon pe éva dévipo amopdcemv, To elypo eUmEPOYVOUOVOV TpooTadel va
EPELVNOEL OAO TOL VTTO-UOVTELN EUTEPOYVOUOVAOV Kol Oyl VOl LOVO HOVTEAD. YTApYOLV GAAEG
dwpopéc peta&y Tov HME kot g epappoyng CART tov dévipwv. Ze éva HME, éva ypoappo
povtého (1 6TV A0YIGTIKN TaAVOpounon avtiotoya) taiplalel oe kdOe teppatikd koppo, avti
v po. otafepd, 6mwg oto CART. O dwwomdoelg umopodv vo givor mwoAAOmAES, Oyl UOVO
dvadikég, ka1 ot Slupécelg eivar mOOVOLOYIKEG GUVOPTACEIS EVOC YPOUUIKOD CULVOVAGLOV
€1600mV, Tapd Hog LOVO €16000V 0TS oTNV TUTTIKY Yp1ion Tov CART.

H epappoyn g teyvikng dev meplopiletol 6€ HOVIEAD VEVPOVIKOV SIKTOMV, 0pOV UTOpel va
ypnoomonfel o GEPA TLTOTOMUEVOV TEYVIKOV UNYOVIKNG HAnong emdiokoviag €va
TapOpolo amotédecpo. Me avtov Tov Tpomo, 1 nébodog MoE avnikel oe pio evphtepn katnyopio
uefddmv pnabnong ovvoro mov mepirapfavel otoifaypa. Onwg oe £va pelylo EUTELPOYVOUOVOV,
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T0 stacking exmaudevel Evol S1OPOPETIKO GUVOLO LOVTEA®V UNYAVIKNG UAONoNG Kot 6T GUVEKELL
pafaivel éva povtélo vymAdTepNC TAENG Yo va cuvOLALEL KaADTEPA TIC TPOPAEWYELG.

Ye avrtifeon pe évo peiyua eumepoyvoudvov, to poviéha otoifaéng (Stacking Classifier /
Regressors) givar cuyvd 6Aa toapralovv oto 1010 cVOVOAO dedopévmv ekmtaidevong, Ypic Kapio
amoovvheon ¢ epyaciag o€ devtepevovoeg epyaciec. Kai oe avtiBeon pe éva petypo
EUTEPOYVOUOVOV, TO HOVTEAD LYNAOTEPOL EMMEOOV TOL GLVOLALEL TIG TPOPAEYELS amd T
povtéla younAdtepov emumédov cuvnbwg dev AapPavel o potifo €16660v OV TOPEXETAL GTO
HOVTELD YOUNAOTEPOL EMUTEIOL KOl OVT 'anTOV AAUPAVEL O elG0y®YN TIG TPOPAEyelg and Kdbe
povtého youniotepov emmédov. Ov pébodor PETO-EKPAONONG EKTOOSVOVTOL KOUAVTEPO GE
TMEPWMTAOCELS OTIG OTOIEG OPIGUEVOL TAEIWVOUNTES TAEIVOUOVY OMOTA 1 L€ GUVETELD ECQUALEVN
TaEvOUN oM, OPICUEVEG TEPITTMGELS.

Qo1600, dev VIAPYEL KAvEVOS AOYOG YL TOV omoio dev pmopet va avamtuydel vPpidikn otoifaén
Kol pelypo eEe10IKEVHEVOV HOVTEA®MY TOL UTTOPEl Vo EYOuV KaADTEPT amOd00T 0td OTONONTOTE
omd TIC LEHOVOUEVEC TPOGEYYIGEIS GE £vol OEOOUEVO TPOPANLLOL TPOYVIOOTIKNG LOVTEAOTOINOT|G.
Kat v Tovg 000 avtovg Adyovg vrobécape o1t ta povtédo peto-puddnong eivor pio e€opetikd
koA TpocOnkm oty [IpoPreyn moANcE®V Yo TPOidVTO TAYEING KOTAVAAWDGNC.

0.4.5 Movtéra fadrac nadnong

"Exovue de1 1060 10 Bepntikd voPabpo 660 kot Ta facikd poviéha g Pabidg pabnong otnv
evotta tov Bsmpntikod vroPfdbpov. Edd avaidovpe Alyo meplocOTEPO TIG AEMTOUEPELES TOV
povtéhov Pabdibg pabnong mov Ba ypnoyomorcovpe oto Kepdiawo 5 ("llepdpota™) yio v
TpoPAeym ToIncewv Padidg pabnong yio FMCGs.

Keras Regressor

Yrdpyovv moArég Pipitodnkec Pabidg pnabnong, aAld ot mo dnuoeireig ivor ot TensorFlow,
Keras kot PyTorch. Av kot ta TensorFlow kot PyTorch eivon eopeticd dnpogiin, dev givan
€0KOAO OTN ¥PNON Kol £YOVV Ui AmOTOUN KOUTOAN pnabnong. ‘Etot, yio moAlobg enayyehpatieg,
to Keras givotl 1 Tpotipudpevn emiioyn, kot To 1010 Kot Yo udg Aowmov. Xta melpdpato, pog Oo
YPNOUYLOTOCOVE OVOAVTIKA VAOTOMGELS faciopéveg oto Keras.

H pipriobnkn Keras eivar éva AP vyniol emmédov yio tn ompuovpyio poviédmv Pabiic
UaOnong mov £xel kKEPSIGEL TNV EVKOAIN BTN YPNOT KOl TNV ATAOTITO TOL OIEVKOADVEL T YP1Yopn
avamtuén. Xvyvd, n dnuiovpyio evog ToAVTAOKOL dikTvov Padidg padnong pe Keras pmopel va
emtevybel pe Ayeg povo ypappéc kmdika. Qotdco, Tpénel vo, Tovpe 6Tl Oa ¥P1GILOTOUGOVE
eniong to PyTorch ywn vo avamtoéoope 1o poviého LSTM. Ot Adyor yi Tovg omoiovg m
Bprodnkn PyTorch eivar enweeing v to povtédo LSTM pag Ba avaivBodv otig emdpeveg
EVOTITEG.

H Paoikn apyitektovikn Tou veupmvikov diktiov fabidg pabnong, tnv onoia Ha akolovbncovye,
amoteleitol amd tpio facikd oTolyeia.

* Eninedo eio660v: Edd Tpopodotovviar ot mapatnpnoelg ekmaidevone. O apBudg twov
petafintov tpdPreyng kabopilovtor Emiong £0M LECH TOV VEVPDVOV.
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* Kpoppéva enineda: Avtd eivar ta evoldpeca enimedo LeTOED TOV EMITESMV €1GO0V Kol €£000V.
To Babb vevpwvikd diktvo pabaivetl yio Tig 6YEGEIC TOV gUMAEKOVTOL 6 dedoUéva GE AVTO TO
otouyeio.

* Eninedo €£0dov: Avtd eivar 10 emimedo 6mov To TEMKO amotéAecpo eEdyetal omd aVTO OV
ovpPaivel ota Tpornyodueva emineda. Xe mepintmon mpoPfAnudtev moAvdpounong, n ££000g
€xel Evav veupava.

Avtd givon Ta kKOplo frpata yio Ty €papuoyn LoviEAov moAvdpounong ue v Keras:

* Brjpa 1: ®optoon tov arortodpevov PiAodnkdv Kot evotiToy.

* Bijua 2: ®éptmon twv dedopévav Kot EKTEAEST PacIK®V EAEYYWV dES0UEVAV.

* Brjua 3: Anovpyio cuetoytdv yio Tig SuvatdTnTES Kol Tr LETOPANTY amdKpIong.

* Brjpa 4: Anpovpyio cuvorlmv dedopévev ekmaidenong kot SOKIUNG.

* Bijua 5: Opilote, petoyAottiote Kot TpocoprdoTe To HOVTELO TaAvdpounong Keras.
* Brjua 6: [poPAréyte ta dedopéva doKIUNG Kol VTOAOYIOTE TIC LETPNOELS A.E10AOYNONG.

To6co N PAcIK OPYLTEKTOVIKT] TOV VELP®VIKOD d1kTVOV Pabidg pdbnong mov ypnoiponowcape
0G0 Kol T KVplo PrjLoTa Yio TNV EQOPUOYY| LOVIEA®Y TAALVOPOUNONG (O€ QUTHV TNV TEPITTMON
[Ip6Preyn nowinocewv) pe to Keras Oa tapovoiactodv oto Kepdrawo 5 (“Ilepdparta’).

Multilayer Perceptron (MLP)

Adcope o TApn avdivon tov MLP oty gvotnta tov Bewpnrtikod vrofabpov. Qotdco, yia
TANPOTNTA, ag eENYNOOLUE Kol TOAL To facikd yapaktnpiotikd T@v Neural Networks (NN) ko
Multilayer Perceptrons (MLP) ko8¢ mailovv 1epdotio poAo otV avamrTuén TOV GUYYPOVOV
LOVTEL®V Kal SIkTO®V Babidg pabnong.

Eidape €0 611 T0 Perceptron, avtd 1o veupmvikd SiKTLO TOL OTOIOL TO OVOUO, TPOKOAEL TAC
Qaivetol To pHEAAOV amd T okomid Tng dekaetiog Tov 1950, eivan évag amiog aiydpiBpog mov
npoopiletor va ekterécel dvadikn ta&vounon. dnradn TpoPAEREL GV 1| E1GAYMYN OVAKEL GE U0
GULYKEKPIUEVT KaTryopio evdlopépovtog 1 Oxt. To perceptron givot €vag ypop ko ToEvounte,
pe €16000 cuvnOmg €va S1AVUGHO YOPOKTNPIOTIKOY X TOAAATAOCIOCUEVO UE Pdpn W Kot
npootifeton og o peponyia b: y = w*x +b

Ta, Perceptrons moapdyovv po povadikn ££000 Paciouévn og moALEG 10000V TpayLOTIKNG 0&iog
oynuotifovtag £vav YPOUUKO GUVOVOGHO YPTCILOTOIOVTOS Bapn €10600v (Kot PepKEG QOPEG
TepVOVTOG TV €000 HECH HOG UM YPOUMIKAG Aettovpyiog evepyomoinong). O Rosenblatt
dNuovpynoe Eva PHOVOSTPMUOTIKO perceptron. Agv mepleldpufoave ToALATAG emineda, To omoia
EMTPETOVY OTO. VEVP®VIKG OIKTLO VO LOVTEAOTOUCOVV [0 lEpapyic. YapoKTnploTik®v. Hrav,
EMOUEVMG, Eva pNyd vVeELPOVIKO dikTVO, TO omoio katéAnée va eumodilel To perceptron Tov va
exterel un ypopukn to&vounon, 6mwg 1 KAacwkn cvvaptnon XOR Aoyikng (evepyomoinom
yeprot] XOR otav 1 elcodog eppavilel gite Eva yopaxTnploTikod gite AAAO, aAAd Oyl KOl TO SVO
otéketal Yo "amokAelotikn H™).

Ipryopa mpog ta eumpdg oto 1986, o6tav o1 Hinton, Rumelhart ko Williams onpocigvoav po
gpyooio pe Titho «Exmaidevon avomapacTtdoemy HE GOAALNTO TICM», E00YOVING EVVOIEG
backpropagation kot kpuP@®OV eMmESOV kal £T61 yevvniOnkav ta Multilayer Perceptrons (MLP):
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* OmoBoopounon (Backpropagation), pio dtodtkacio Yo, TV ETAVEINUUEVT] TPOCAPUOYT TOV
PBapwv €to1 dote va elaylotomomBel  dSopopd HETAED TG TPAYHOTIKNG €000V Kot TNg
embopuntg €€650V

* Kpoppéva emineda, to omoio givor koppor vevpmvov mov otolfdlovior petald €600V Kot
€£00MV, EMTPEMOVTOG GTO, VEVP®VIKE dikTua Vo pdBovv 1o mepindoka YopaKTNPIoTIKA (OTTMG 1M
Aoy XOR)

Emopévog, éva MLP pmopel va BewpnBet wg éva Pabdv teyvntd vevpikd diktvo. Amotedeitar and
eplocOTEPE OO €vo, perceptron. ATOTEAOVLVTOL OO €vo eMIMESO €10000V Yo TN AWM TOL
oNpaTog, £va eminedo e£660v mov AapPavel o omdeacn 1 TpdPAeyn GYETIKA Ue TV €16000, Kat
petalld oavtmv Tov 600, évav avbaipeto aplBud KpLEOV EMTEd®V TOV €ival M TPAYLOTIKY
VROAOYIGTIKT Unyavi tov MLP.

To moAhamAd oTpdpate amd perceptrons eKTodeHOVIOL 6 £va GOVOAO (eEVYDV €16030V-8£000V
Kot pofaivouv va povtelomolovy T cvoyétion (1 e£opTNoelg) HeTald auTdv TOV E1600MV Kol
egodwv. H exmaidevon mepthapPdvel Ty mIpocaployn TV TopapéTpmv, | TovV Bapdv Kot Tov
TPOKOTAAMWYEWDY, TOV LOVTELOL TPOKELEVOL Vo edaylotomom el To opdipa. To Backpropagation
YPNOWOTOLEITAL Y10 VO KAVEL QVTEG TIG TPOGapUOYES LOyiong Kot LepoANnyiog oe oxEon LE TO
oOAALO KOl TO 1010 TO opdApa pmopel va petpndel pe didpopovg TpOTOVS, GUUTEPIAAUPBOVOLEVOL
oV pov péoov teTpayovikod cedipatog (RMSE). ®vowd, to RMSE eivor po and Tig
Baokég peTpnoelc mov Ba ¥p1GLOTOGOVUE Yo TV 0EOAGYNOT OA®V TOV HOVIEA®V OGS GTO
Kepdrawo 5 ("Iepdpata™).

Ta diktva Tpo@odociog 6mwg T MLP gumiékovrol kupimg og 600 KvioeLs, pio otabepn kivnon
eumpoc Kot Tow (mepdopata EUnPOS Kol Tow):

* 210 UMPOCTIVO TEPOGHO, 1| PON| ONUOTOC UETOKIVEITOL Omd TO OTPOUO €GOS0V HECH TOV
KPLO®OV OTPMGEMV GTO EMIMESO £E0OOV KAl 1] ATOPOCT) TOL GTPOUATOG EE0O0V LETPLETAL EVAVTL
TOV ETIKETOV 0ANOEL0G E6APOVG.

* Y10 mépaocua omioBodpdunone, ypnoonoldviag to backpropagation kot Tov 0AVCO®MTO
KavOVo TOL AOYIGLOV, HEPIKE Tapdywya TG GLVAPTNONG GOAALOTOC OYETIKA Le To didpopa
Bépn kot pepoinyieg avoamapdyoviol micom pécm tov MLP. Avti n mpdén dapopomoinong pag
Otver por KAion 1 €va Tomio CQEAALATOG, KOTA TO OMOi0 Ol TOPAUETPOL UTOPOLV Vo
TPOGOPUOGTOVV KOBMOG petakivouy o MLP éva Pripa mo kovtd 6to eAdloTO TOV GOAALOTOG,
(awtd pmopet va yivel e omolovonmote alyopibuo Bertiotonoinong pe Paon v kiion, 6Twe N
GTOYOOTIKN Katdfaon KAiong).

To diktvo cvveyilel va Kveital unpdg Kot To® €0 OTOV TO GPAAUN PTUCEL GTO EAAYIOTO, KOl
vt €ivol  otiypn g ovykione. duvoikd, o aAyoplOnog OAOKANPOVETAL KOl TEAELMVEL OTOV
@Tdoel 0T GOYKAION.

I va cuykpivovpe ta povtédo unyovikng kot Badiic padnong, dnUovpyncae Eva omAd SikTvo
MLP mov @aivetotl va gival pio omin, oAAd GUVOAIKG GTOTEAEGUATIKY ADON Yia TNV TPOPAey
noincewnv yio FMCGs.

LSTM (Long short-term memory networks)

Ta diktvo pokpdg Ppayumpdbeoung pviung (LSTM) Eexivnoav mg moldmlokeg AGES GE TOAD
GULYKEKPLUEVA TPOPAALLATO TOV apOPOVV HOTiPa, aAAGL YivovTor OAo kot To yproipa. Ewdikd oty
TPOPAEYT TOIMGEDV POAIVOVTOL TOAD VIOCYOUEVA, KAODG gival £vag TOTOG TEXVNTOD VELPIKOV
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OkTOHoL oV Exel oyedaotel Yoo va oavoyvopilel potifo oe akoAovbiec dedopévav, OTMG
aplOUNTIKE OEOOLEVO YPOVOCELPDYV.

Ewwd or aiyopiBpor mov PeAitiwvovv to tumikd diktvo LSTM 1 dnpovpyodv mpdcbeteg
KATOOTAGELS Y10 VO TO, KOTAGTHOOLV TEAELD Y10 TNV TPOPAEYN TOANGE®Y EYOVV KATOOCKEVOOTEL
kot ewooydel ta tedevtaia 2 ypovia. H Anuocicvon twv Yonghe Zhao et al. «BeAtictonoinon
evog mlaucsiov mpoPreyng mAnpovg akoiovBiag pe Pdon tov aryopilBpuo DAE-LSTM» mov
onuootebdnke Alyovg pnveg mpv amd v mopovoa datpiPry aArdlel evieAdg to medio TV
oAyopiBumv katl Tov HeBodoroyIdV TG TPOPAEYNG TOANGE®V.

(Yonghe Zhao et al, «BeAtiotonoinon evog mhaiciov mtpdPreyng mAnpovg akolovbiog pe Pdon
tov aAyopiBuo DAE-LSTM», J. Phys., Conf. Ser. 1746 012087, 2021. https://iopscience.iop.org/
article/10.1088/ 1742-6596 / 1746/1/012087)

I'o avtdv Tov AoYo, énpene va ekmaidehoovpe éva diktvo LSTM yia mpoPAéyelg moAncemy yo
FMCGs. Avtdo mov ovokoAOdyope eivar o0ty, poall pe Olo ta 7O TPONYHEVO HOVTEAQ,
VIEPPOPTMVETAL TOAD Ypryopa. H axpifeta g mpdPreyng mov mapeiye Ntav moid KoAn, aAid
dev d&1le Tov emmAov xpodvo kat TV enévovon delotntmv. Duoikd, dmwg cvpPaivetl pe O A TO
povtéla mov mepthapfavoviol oe avtd 10 Ke@dAaio, ol TEAMKES KOTAGKEVES TOVG, Ol PEATIOTEG
TOPALETPOL TOVG KOl T OMOTEAEGLATA TOVG TTapovstaloviatl 6to Kepdiato 5 («Ilepdpotay).

Ag ddoovpe Aoumdv o Bempntiky] avdAivon Kot GOVIO TV JKTVOV HoKPas BpayvrpoBeounc
pvaung (LSTM) kot Ba to dovpe v dpdoel oto Kepdlato 5, dmov kou Ba dnpovpynocovpe
mpoPAEyeELS Yo TG TpoPAéyelc moAncemvy Yia FMCGs.

To LSTM egival 10 o 1oyvupd Kol yvOOTO VIOCUVOAO TWV ETAVIAAUPBAVOUEVOV VEVPOVIKOV
dwtowv (RNN), ta omola €yovv e&nynbeil Aemtopepmg oto Bewpntikd vwoPabpo. Avtd mov
dwapopomotel to RNN kot LSTM omd diia vevpovikd diktvo eivar 01t Aapfdavovy vrdym tovg
TOV YPOVO Kot TNV akoAovBia dedopévav, £xovv, SnAaoN Lo YPOVIKT SLACTACT).

Mia and tic Pertidoelg Tov RNNs eivar 1 10€a 011 pmopel éva povtédo va eivar oe Béom va
GUVOECEL TPOTYOVUEVEG TANPOPOPIES LE TNV TAPOLGA EPYOsio, OTMC To va Katovondel | ypnon
mponyobuevov kapé evdg Pivteo pe faon v katovonon tov tapdvtog mioisiov. Edv ta RNN
umopovoay vo To Kédvovv autd yio kdbe mepintmon, Oa ftov eEopeTikd ypnoyla, ¥pNnoiudTepa
ond KaBe A0 pHOVTEAO UNYaVIKNG pabnomg. Qotdco, avokaAdednke 0Tl vIdpyel TANOmpa
TEPUTTAOCEWDY OOV dEV UTOPOVV.

Mepucéc popéc, ypeldleTol LOVo Vo KOITAEOVLE TIC TPOGPATEC TANPOPOPIEC Y1 TNV EKTEAECT] TNG
TOPOVCAG EPYACING. € TETOLEG MEPUTTAOGELS, OOV TO YACUO HETAED TMV GYETIKMOV TANPOPOPIDV
Kol Tov 1MoV oL Ypedletan eivar pikpo, o RNN pmopovv vo pabovv va ypnotorotody Tic
TPoNyoOUEVEG TANPOPOpPiES. YTTAPYOLY OUMC KOl TEPIMTMOGEL OOV YPEOlOHOCTE HEYOADTEPO
mAaicto minpogopidv. Elval amoidtwe mhovo 1o yaopa Heta&d TV GYETIKMOV TANPOPOPIDOY Kot
Tov onpeiov dmov yperaletal 1 TAnpoopio va yivel ToAd peydrlo Kat, dpa SuvoTuYdS, KabBmg avtd
t0 KeVH av&avetat, o RNN dev pmropovv va pabouv va GuvoEoLV TIG TANPOQOpieS.

Ocwpntikd, To RNN givar amoAdtog ikova vo ¥eiptotodV TEToEC «LOKPOTPOBeceg EEQPTNOEID.
Anhadn|, katd avaroyia, evag dvBpwmog Bo Pmopovoe TPOGEKTIKE Vo EMAEEEL TAPAUETPOVS Y10
va AoEL TPOPANIATO O VISIOD ALTHG TS LOPENS. 26TOG0, oty Tpdsén, too RNN dev paiveton
Vo Lopovv vo pdbouv.

To mpoPAnua diepevvndnke oe Pdboc amd toug Hochreiter (1991) xar Bengio, et al. (1994), o
omoiot Pprkav Heptkovg mTOAD Bepeldoglg AOYoug Yo Tovg omoiovg pmopel va eivar S0VoKOAO.
Avtdc givar o Adyoc mov ta diktva LSTM fjpbav oto ¢mg, kabmg dev avrtipetonilovv T€T0100
gidoovg mpoPAnuata. Too LSTM eonybnoov omd tovg Hochreiter & Schmidhuber (1997) kot
BeAtimOnkoav kot d1d60nKay and moAlovg avBpamovg petd v epyacia touvg. Ta LSTM €youv
oyedlootel pnTtd Yoo TNV Amo@LYN TOL TpoPANpHaToc pokpompdBeoung e&dptnonc. H
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OTOUVNULOVELGT] TANPOPOPLOV Yi0 HEYAAQ YPOVIKA OdlacTipoTe €ival OVCLOCTIKE 1)
TPOETIAEYLEVT] GUUTEPIPOPA TOVG KOl TO KUPLO KOl EEUIPETIKA GUOVTIKO TOVE TAEOVEKTI|LLOL.

Ola ta emavalapfavopeva vevpovikd diktvo €yovv Tn HOPON HL0G O0Avcidag

EMOVOAUUPOVOLEVOV EVOTHTOV VEVPOV®V. XTa TUTIKA RNN, avt) 1 emavalappavopevn povado
&xel P TOAD oA doun, OTMG £V LOVOSTPOUATIKO tanh.,

() ® ®
t t

©
T

|
&
Yyqpo 20: H emavarapfovouevn povaoda o évo tomikd RNN mepiéyet éva povo otpoua. [S7]

To, LSTM éyovv emiong owtiv v doun oav aAvcido, aAld 1 emavolapupavouevn povado €xet
SlopopeTIkn dour. Avti va EYOvUE €V LOVOTPOUOTIKO VEVP®VIKO SIKTLO, VTTAPYOLY TECOEPQ,
OV AAANAETIOPOVV g EVOv TTOAD 1d10{TEPO TPOTO.
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Yymqpo 21: H emavarapfovopevn povéda oe éva LSTM mepiéyet téocepa aAlnienidpdva
enimeda. [57]

Y10 mapomave Odypaupo, Kabe ypapp @épel €va oAOKANpo dldvucpa, amd v €£000 evoc
KOpPov €mg TIG €16000VG TV GAA®V. Ot pol KOHKAOL OVTITPOGMOTEVOVY TPUKTIKES AELTOLPYIES,
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OT®G M TPOGHN KT SVOCLATOG, EVA Ta KOLTIE LaBaivouy GTPOUATO TOV VELP®VIKOD dikTOoL. Ot
YPOUUEG CUYYDOVEVCTG VITOONADVOUY GUVEVAGT], EVD M0 VPO SoKAAd®mOoNG ONAMVEL OTL TO
TEPLEYOLEVO TNG OVTIYPAPETOL KOL TO OVTIYpOQQ TNYaivouy og d1apopeTikEG Tomobeaie.

To kAedi yio to LSTM eivar ) katdotaon keAmv, 1 optldvtia dnAad Ypouun mov SoTpExel To
Tive PEPOG Tov dlaypaupotoc. H katdotaon kowédng eivor cav petagoptkn touvia. Tpéyet
Kkatevleiav og OAOKANPN TNV 0ALGIOW, [Le HOVO HEPIKES LUKPES YPOUUKEG oA emdpacelc. Eivat
TOAD €DKOAO Y10l TIG TANPOPOPieg Vo pEoVV apeTdfAnta.

Cia C;l

To LSTM éyel ) dvvotomta vo agalpel 1 vo Tpocbétel mAnpogopieg otnv KOTAGTAGN TOL
KEAOV, TOV pLOUIfETOL TPOGEKTIKA OO TIC OMOKOAOVUEVEG TOAEG (cu{NTNoapE Yo TIC TOAES
TponyoLpévac). Ot TOAeG ivarl €vag TPOTOG Y10, VO KOTOYPAWOVUE KO KPOTHGOVUE TPOULPETIKA
TIG TANPOPOPieG. ATOTEAOVVTOL GO £VOL GLYHOEWDES VELPOVIKO GTPOUC KOl [0, AELTovpyio
TOALOTTAOD TToAAOTTAOCI0G100. To oTpdpa G1ypogdoe e&ayel aptOpong HeTa&d undév Kot éva,
TEPLYPAPOVTOC OGN 0O KADE GUVIGTOGO TPEMEL Vo aprveTal. Mia T undév onpaivel “unv
TEPAGEL TIMOTA”, VO oL Ty éva onpaivel “va mepdcovv ta mivta”. 'Eva LSTM €yt tpeig amd
OUTEG TIG TOAEG, Y10 TNV TPOCTAGIN KL TOV EAEYYO TNG KATAGTACTG TV KVTTAP®V.

To, LSTM ftav éva peyddo Priuo oe avtd mov pmopovue vo emtdyovpe pe to RNN. AArG
VIApYEL Ko LeYaro meplidpio Pedtioong. Ot pelhovtkég Pedtidoelg ota diktvo LSTM eaivetat
va eivar 1 Abon oe o Gepd TPOPANUATOV TOL 0EV UTOPOVV VO, OVTIUETOTIGTOVV
OTOTELECUATIKA LE TO TPEYOVTO LOVTEAD KOl STKTLA.

Emiong, ou{ntioape yio t dnuocigven tov Yonghe Zhao et al, 6mov mapovcidotnke €vo vEou
matoio DAE-LSTM Aiyovg punqveg mpv amd v oAokANpmon avtig g oatpipng. To diktva
LSTM «ot ot maporiayég Toug eoivetal va givotl eEalpeTikég yia Tig TpoPfAéyelg Toinoemv. Towg
oyt vy ta. FMCGs, Ady® ToV EW0IKOV YOpAKTNPIOTIKOV TOV TPOIOVI®MV TOXEINS KOTAVIA®GNG,
OTMG TO OTL KIVOUVTOL YPNYopa, AL o€ KAOe mepintmon yio dAAOVG KAGOOVG Kl KOTNYOPieg
TPOTOVTOV OTOL OV EXOVUE ETEPOYEVEIG OoUEG dedopévmv g TTivaka Ko, ™G €K TOVTOV, VITAPYEL
avaykn ypnong povtéAwv Pabidg pabnong.

AvOADOVUE TEPUUTEP® TO, OTOTEAEGLOTO TOV TEPUUATOV LOGC KoL TIG OKEWYEIS UAG Yo TN XPNOT
naporhaydv tov LSTM oce perloviikég epyacieg yio TPoPAEYELS TOANCEDY GTO ETOUEVA
KEPAAOLAL.
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0.5 Amoteléopata

Xe auThv TV evOTNTO TaPoLGLELOVLE TO OMOTEAEGLATO Kot TNV aKpiPela Twv poviéAwy pog podi
LE TOVG OYETIKOVG TIVOKEC KOL YPOONUATO YO0 TNV €UKOAOTEPYT oVykpion tove. Emnl tov
oamotedecpdtov poc 6o Paciotodv Ta copmepdouate Hog, OAAG Kol ot TOAVEG HEAAOVTIKEG
KateLOVLVOELS TNG SLYKEKPIUEVNG epyaciac. [t To Twg KataAnEape o avtd, ocite To Kepdioto 5
(“Iepapota’).

Amo T mepdpote poc, dlamotdcape 0tL to 4 KopU(paiu HOVTELD UNYOVIKNG pabnong yo v

TPOPAEYN TOANGEWV GTIG KaTnyopieg TPoidVTOV TayElng KOTOVAA®GONG ivol Ta:

1. CatBoost
2. LightGBM
3. XGBoost

4. HuberRegression

To KaAOTEPO UETO-UOVTELO oG Eival avTd oL cLVOLALEL Ta dVO KaAbTEP povTéd pog (2-best
Stacking Regressor), ago® cuvvovalet vynin axpifeio mpoPréyewv, tepdotio sveMéio kot
YOUNAO xpOVOo ekmaidevonc, KaoTdVTag TO eEAPETIKN EMAOYT Y1oL AVCELS TPOPAEYTG TOANCEDV

GTOV TPUYHOTIKO KOGLLO.

AvTd glvor To ATOTEAEGLLOTO, KOL TO YOPOKTNPIOTIKA KOOEVOS 0md T LOVTEAD LLOG:

Execution Time

Execution Time

MAPE (%) (Standard) MAPE (%) (Normal) RMSE (Standarc) ~ RMSE (Norma)  MSE(Standard)  MSE (Normal)  ceectdon Bime  Sxecition Tk Best Parameters (Standard) Best Parameters (Normal)
HuberRegression 17,413 19,654 3,59 3516 12,929 12,362 895 1512 {epsilon': 1.4} {'epsilon': 1.4}
KNNReg 520 51240 102 4581 10480 Woer 7 - {metric: ‘manhattan’, 'n_nelghbors': 5, 'weights': {metric’ ‘manhattan’, n_neighbors': 15, ‘weights'
distance distance’}
Pass/AggReg 57,822 64,591 3,590 3,525 12,891 12,425 7 10 {ct 0.1} {cto.1}
LassoRegression 89,261 89,261 4,033 4,038 16,264 16,264 1 1 {'selection’: random’} {'selection’: random’}
RidgeRegression 62,120 57,160 3,49 3,288 12,221 10,809 1 1 {'alpha': 0.2) {'alpha': 0.05}
{oolsamplebytree" 07, tearming.ate: 003,
ight'
XGBoost 4,580 5454 0494 0,822 0244 0676 1634 1792 rnraee L ob]ec e 9
‘regisquarederror’, 'silent': 1, 'subsample’: 0.7} ‘regisquarederror, 'silent’: 1, 'subsample’: 0.7}
{'max_depth': 6, 'max_features': 'sqrt’, {'max_depth': 6, 'max_features': 'sqrt’,
L I A 53,246 42,002 2,081 1,986 4248 3,945 721 721 ‘min_impurity_decrease': 0.001, 'n_estimators": 150} | ‘min_impurity_decrease': 0.001, 'n_estimators': 150}
_reg, param. grid, cv=5, _reg, param. _grid, cv=5,
CatBoost 2,486 1,816 0429 0,566 0,184 0,321 133 178 APACAT S A
LightGBM 2,981 3,075 0514 0655 0,264 0429 17 15 {'boosting_type': ‘goss'} {'boosting_type' ‘goss'}
modelt = ightgom.L.GBMRegressor boosting type | modelt = ihtobm LGBMRegressor boosting type
model2 = GatBoostRegresbor (oss_unction = model2 = GatBoostRsgresbor (oss_unction =
g "RMSE', verbose = 0), estimators = [(lightgbm’, "RMSE', verbose = 0), estimators = [(lightgbm’,
2-best SC 2,000 1,643 0373 0,485 0,139 0235 158 187 o), (oboost. modedl) Tmodelt), (catboost., modei2)
stack_reg = StackingRegressor (estimators = stack_reg = StackingRegressor (estimators =
estimators, final_estimator = HuberRegressor (), cv = | estimators, final_estimator = HuberRegressor (, cv =
rbose = 1)
model1 = xgboost XGBRegressor (objective = ‘reg: | model1 = xgboost XGBRegressor (objective = 'reg:
squarederror', colsample_bytree = 0.7, learning_rate | squarederror', colsample_bytree = 0.7, learning_rate
= 0.0, max_depth = 5, min_child_weight = 4, = 0.03, max_depth = 5, min_child_weight = 4,
n_estimators = 300, nthread = 4, silent = 1, n._estimatrs =300, thread =4, st =1,
subsample = 0.7) ample = 0.
modet2 = ightgbm LGBMRegressor (soostng_type | model2 = ightgbm. LGEMRegrasor(bcostmg type
3-best SC 1,990 1,622 0358 0467 0128 0218 191 249 = goss)) -
model3 = CatBoostRegressor (loss_function = model3 = CatBoostRegressor (loss._f lunctmn =
"RMSE', verbose = 0), estimators = [(xgb_reg’, "RMSE', verbose = 0), estimators = [(xgt
modelt), (lightgbm', model2), (catboost, model3)] | model1), (lightgbm’, model2), ( catboost’, maaela)]
stack_reg = StackingRegressor (estimators = stack_reg = StackingRegressor (estimators =
estimators, final_estimator = HuberRegressor (), cv = | estimators, final_estimator = HuberRegressor (, cv =
5, verbose = 1) 5, verbose = 1)
MoE 24,440 24,264 4,228 4,228 17,878 17,877 850 830 model = MoE(8, 1) model = MoE(8, 1)
model = Sequential 0, model.add (Dense (128, model = Sequential 0, model.add (Dense (128,
input_dim = X_train.shape [1], activation = 'relu?), | input_dim = X_train.shape (1] activation = 'relu’),
model.add (Dropout (0.2)), model.add (Dense (256, | model.add (Dropout (0.2)), model.add (Dense (256,
activation = 'relu’)), model.add (Dropout (0.2)), activation = 'relu’)), model.add (Dropout (0.2)),
e 38,003 38,003 628 653 model.add (Dense (128, activation = 'relu’), model.add (Dense (128, activation = 'relu’),
model.add (Dropout (0.2), model.add (Dense (1)), | model.add (Dropout (0.2)), model.add (Dense (1),
opt = Nadam (1e-2), model.compile (optimizer = opt, | opt = Nadam (1e-2), model.compile (optimizer = opt,
loss = 'mean_squared_error’) loss = 'mean_squared_error’)
mip_reg = MLPRegressor (, param_grid = { mip_reg = MLPRegressor (), param_grid = {
“hidden_layer_sizes': [(100,), (20, 20), (256, 256, “hidden_layer_sizes': [(100,), (20, 20), (256, 256,
128)] 128),
mLP 39,073 34,273 2,100 2470 4,408 6103 2011 1772 ‘activation’ [logistc’, tanh) :
reg_cv = GridSearchCV (estimator = mip_reg, reg_ov =
param_grid = param_grid, cv = 5, n_jobs = -1) param_grid = param_grid, cv = 5, n_jobs
loss_function = nn.L1Loss (, optimizer = loss_function = nn.L1Loss (, optimizer =
torch.optim.Adam (model.parameters (, Ir = 0.001), | torch.optim.Adam (model.parameters () I = 0.001),
LsTM 24,091 24,090 4,231 4,231 17,899 17,899 818 847 epochs = 100, best_mse = np.inf, model = LSTM | epachs = 100, best_mse = np.inf, model = LSTM
(X_train_norm.shape (1], 100), sss_norm = (X_train_norm.shape [1], 100) , sss_norm =
‘ShuffleSpliit (n_splits = 1, test_size = 0.1) ‘ShuffieSplit (n_splits = 1, test_size = 0.1)
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Kat vy va do0pe kKohdTepa TV eKTOIOELOT TOV HOVIEAWDV HOC KOl TIG KOADTEPEG TOPUUETPOVE

TOLG:
Best Parameters (Standard) Best Parameters (Normal)
HuberRegression {'epsilon': 1.4} {'epsilon': 1.4}
KNNReg {'metric': 'manhattan’, 'n_neighbors': 5, 'weights': 'distance'} {'metric": 'manhattan’, 'n_neighbors': 15, 'weights': 'distance'}
Pass/AggReg {'C':0.1} {'C: 0.1}

LassoRegression

RidgeRegression

XGBoost

RandomForestReg

CatBoost
LightGBM

2-best SC

3-best SC

KerasRegressor

MLP

{'selection’: 'random'}
{'alpha': 0.2}

{'colsample_bytree': 0.7, 'learning_rate': 0.03, 'max_depth': 6, 'min_child_weight': 4,
'n_estimators': 300, 'nthread': 4, ‘objective': 'reg:squarederror’, 'silent": 1, 'subsample': 0.7}

{'max_depth": 6, 'max_features': 'sqrt', 'min_impurity_decrease': 0.001, 'n_estimators':
150}

estimator=catb_reg, param_grid=param_grid, cv= 5, n_jobs=-1, verbose=0
{'boosting_type': 'goss'}

model1 = lightgbm.LGBMRegressor (boosting_type = 'goss')
model2 = CatBoostRegressor (loss_function = 'RMSE', verbose = 0), estimators =
[('lightgbm', model1), (‘catboost’, model2)]
stack_reg = StackingRegressor (estimators = estimators, final_estimator = HuberRegressor
(), cv =5, verbose = 1)

model1 = xgboost.XGBRegressor (objective = ‘reg: squarederror', colsample_bytree = 0.7,
learning_rate = 0.03, max_depth = 5, min_child_weight = 4, n_estimators = 300, nthread =
4, silent = 1, subsample = 0.7)
model2 = lightgbm.LGBMRegressor (boosting_type = 'goss’)
model3 = CatBoostRegressor (loss_function = 'RMSE', verbose = 0), estimators =
[('xgb_reg', model1), ('lightgbm', model2), (‘catboost', model3)]
stack_reg = StackingRegressor (estimators = estimators, final_estimator = HuberRegressor
(), cv =5, verbose = 1)

model = MoE(8, 1)

model = Sequential (), model.add (Dense (128, input_dim = X_train.shape [1], activation =
'relu’)), model.add (Dropout (0.2)), model.add (Dense (256, activation = 'relu’)), model.add
(Dropout (0.2)), model.add (Dense (128, activation = 'relu')), model.add (Dropout (0.2)),
model.add (Dense (1)), opt = Nadam (1e-2), model.compile (optimizer = opt, loss =
‘mean_squared_error')

mlp_reg = MLPRegressor (), param_grid = {
‘hidden_layer_sizes': [(100,), (20, 20), (256, 256, 128)],
‘activation': ['logistic', ‘tanh'[}
reg_cv = GridSearchCV (estimator = mlp_reg, param_grid = param_grid, cv = 5, n_jobs =
1)

loss_function = nn.L1Loss (), optimizer = torch.optim.Adam (model.parameters (), Ir =
0.001), epochs = 100, best_mse = np.inf, model = LSTM (X_train_norm.shape [1], 100) ,
sss_norm = ShuffleSplit (n_splits = 1, test_size = 0.1)

{'selection’: ‘random'}
{'alpha': 0.05}

{'colsample_bytree': 0.7, 'learning_rate': 0.03, 'max_depth': 5, 'min_child_weight': 4,
'n_estimators': 300, 'nthread': 4, 'objective': 'reg:squarederror’, 'silent': 1, ‘'subsample': 0.7}

{'max_depth': 6, 'max_features': 'sqrt', 'min_impurity_decrease': 0.001, 'n_estimators': 150}

estimator=catb_reg, param_grid=param_grid, cv= 5, n_jobs=-1, verbose=0
{'boosting_type": 'goss'}

model1 = lightgbm.LGBMRegressor (boosting_type = 'goss')
model2 = CatBoostRegressor (loss_function = 'RMSE', verbose = 0), estimators =
[('lightgbm', model1), (‘catboost', model2)]
stack_reg = StackingRegressor (estimators = estimators, final_estimator = HuberRegressor
(), cv =5, verbose = 1)

model1 = xgboost.XGBRegressor (objective = 'reg: squarederror’, colsample_bytree = 0.7,
learning_rate = 0.03, max_depth = 5, min_child_weight = 4, n_estimators = 300, nthread =
4, silent = 1, subsample = 0.7)
model2 = lightgbm.LGBMRegressor (boosting_type = 'goss')
model3 = CatBoostRegressor (loss_function = 'RMSE', verbose = 0), estimators =
[('xgb_reg', model1), (‘lightgbm', model2), (‘catboost’', model3)]
stack_reg = StackingRegressor (estimators = estimators, final_estimator = HuberRegressor
(), cv =5, verbose = 1)

model = MoE(8, 1)

model = Sequential (), model.add (Dense (128, input_dim = X_train.shape [1], activation =
‘relu')), model.add (Dropout (0.2)), model.add (Dense (256, activation = 'relu)), model.add
(Dropout (0.2)), model.add (Dense (128, activation = 'relu’)), model.add (Dropout (0.2)),
model.add (Dense (1)), opt = Nadam (1e-2), model.compile (optimizer = opt, loss =
'mean_squared_error')

mlp_reg = MLPRegressor (), param_grid = {
‘hidden_layer_sizes': [(100,), (20, 20), (256, 256, 128)],
‘activation': ['logistic', 'tanh']}
reg_cv = GridSearchCV (estimator = mlp_reg, param_grid = param_grid, cv = 5, n_jobs =
-1)

loss_function = nn.L1Loss (), optimizer = torch.optim.Adam (model.parameters (), Ir =
0.001), epochs = 100, best_mse = np.inf, model = LSTM (X_train_norm.shape [1], 100) ,
sss_norm = ShuffleSplit (n_splits = 1, test_size = 0.1)
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0.5.1 AnAd povtého marvopounong (simple Regression models)

Ta povtédo mov KAADTTOVUE £6G &ival:

* HuberRegression
* KNN Regressor

* Passive Aggressive Regressor

» Lasso Regression
* Ridge Regression

Kot éyovpe ta axdAovba amotedéopato:

HuberRegression 17,41 19,65 3,60 3,52 12,93 12,36 895
KNNReg 45,21 51,24 3,19 3,33 10,19 11,10 19542 19722
Pass/AggReg 57,82 64,59 3,59 3,53 12,89 12,43 7 10
LassoRegression 89,26 89,26 4,03 4,03 16,26 16,26 1 1
RidgeRegression 62,12 57,16 3,50 3,29 12,22 10,81 1 1

Kot 0ntmg BAémovpe Kot oo TIC YPoPIKEG TOPUCTAGELS:

90,00

67,50

45,00

MAPE (%)

22,50

0,00

HuberRegression

KNNReg

M MAPE (%) (Standard)

Pass/AggReg

LassoRegression

I MAPE (%) (Normal)

RidgeRegression

4,10

3,07

2,05

RMSE

1,03

0,00

HuberRegression

KNNReg

M RMSE (Standard)

Pass/AggReg

LassoRegression

W RMSE (Normal)

RidgeRegression
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Execution time

17,00
12,75
8,50
4,25

0,00
HuberRegression KNNReg Pass/AggReg LassoRegression RidgeRegression

B MSE (Standard) W MSE (Normal)

* Agv vmdpyovv otofepéc Opopés HETAEL Tov Tvmomomuévov (standardized) ocuvvoiov
dedopévev kal Tov Koavovikomompévov (normalized) poc. Opiopévo HOVTEAN EMTLYYXOVOLV
KaAOTEPT oKpifela og éva amd avtd, oAAG axkOun Kol avutd PAETOLUE OTL Yo SLOPOPETIKES
petpnoeic-oeikteg aAMALOVY TNV TPOTIU®HEV LEBOSO KAMULAKMONG XOPOKTNPLOTIKMV.

» To HuberRegression povtélo €yetl poakpav 1o yauniotepo MAPE, aAld ydvel og dAleg Pacikég
UETPNCELS.

* Me Baon tig avdaykeg tng Propnyoviog kot TL yevikd Bewpeitor ypnoipwo amd v frounyavia,
MAPEs >20% oev eivan apketd kord yio FMCGs. Etol, and amdlodg moivdpdpove, povo 1o
HuberRegression mepvd 10 amodextd opo kot a&ilel vo doKYOoTEL amd TOV EMLYEPNCLOKO
GYEOI0G O TPOPAEYNS TOANGEDY TOV SLUPOP®YV OPYUVIGUAOV.

20000

15000

10000

5000

HuberRegression KNNReg Pass/AggReg LassoRegression RidgeRegression

W Execution Time (sec) (Standard) I Execution Time (sec) (Normal)

* Tnpepa, OA0 avTd To povtéda ektelobvTat 6To Atadiktvo (vnpesieg mov Pacilovtat og cloud).
‘Etor, 1 amélutn T TOL YpOVOL €KTEAEONMG / EKTEAEONG OE TOAAEG TEPIMTAOGCELS &givol
aonuovtn. Avtd mov iomg €xel onuocio ivor 0 OYETIKOC YPOVOG EKTEAEONG YO VO
KOTOVON|OOVUE KOAG TNV avaykn kafe Hoviélov Yl LTOAOYIGTIKOUG TOPOVLS Kot ypovo
EKTELEOTG.

* To KNN ypetaletatr mokd xpovo yio vo, EKTEAECTEL.
» To HuberRegression éyet mepimov 20-30 Aemtd ypovo ektéleong.
O)a to AL, LovTELD EXOVV GYEGOV UNOEVIKO ¥POVO EKTENECT|C.
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0.5.2 Movtéra gvioyvong kriong (GBDT models)

Ta povtédo mov KAADTTOVUE £6G &ival:

* XGBoost

* Random Forest Regressor

» CatBoost

« LightGBM

Kot éyovpe ta axdAovba amotedéopato:

XGBoost 4,580 5,454 0,494 0,822 0,244 0,676 1634

RandomForestReg 53,246 42,002 2,061 1,986 4,248 3,945 727 727
CatBoost 2,486 1,816 0,429 0,566 0,184 0,321 133 178
LightGBM 2,981 3,075 0,514 0,655 0,264 0,429 17 15

MAPE (%)

RMSE

60,000

45,000

30,000

Kot 6mog BAémovpie Kot amd TIG YpoQIKES ToPUCTACELS:

15,000

0,000

XGBoost

B MAPE (%) (Standard)

RandomForestReg

CatBoost

I MAPE (%) (Normal)

LightGBM

2,200

1,650

1,100

0,550

0,000

XGBoost

RandomForestReg

M RMSE (Standard)

CatBoost

¥ RMSE (Normal)

LightGBM



5,000

3,750

& 2,500
S 2

1,250

0,000
XGBoost RandomForestReg CatBoost LightGBM

W MSE (Standard) [ MSE (Normal)

* To tvmomompévo chHvoro dedopévav amodidel Ayo kaAdTEPO OO TO KAVOVIKOTOMUEVO GTO
GBDT povtéra. Edwéd oto XGBoost 1 dtapopd givort onpovTik.

* Ta XGBoost, CatBoost ka1 LightGBM éyovv e€aipetiki] anddoon ce OAeG TIg uetpnoels. Mg
éva MAPE 2.5-5%, 1o GBDT povtéla deiyvovv yiati mpénel va Bpiokoviol 6€ SlopopeTIKT
Kotnyopio amd to amAd poviédra moAwdpoOunong, aArd kar yioti eivar ta mwo
TOAVYPNGUOTOLOVEVE 0Td TNV Prounyavia.

* To RandomForest Regressor givatr to poévo GBDT povtéro pe younin axpifeia tpdpfreyns. Av
Kol eivor OAD omAOd oTtn ypNom Kol EVOEYOUEVOS KOAO Yyl ouykpitikhy a&lodldynon
(benchmarking), dev @aivetot KatdAANAo yo Tic TpoPAéyelg toincemv FMCGs.

1800

1350

900

Execution time

450

XGBoost RandomForestReg CatBoost LightGBM

I Execution Time (sec) (Standard) [ Execution Time (sec) (Normal)

* To XGBoost arattel peyorvtepo ypdvo ektéreong (~ 27-30 Aentd yio ektéAeST).

* Ta CatBoost kot LightGBM 6ivouv moAd kaAd amoteléopata Kot £Xovv miong younAd xpovo
EKTELEDTC.
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0.5.3 Movtéra BaOuac MaOnong (Deep Learning models)

Ta povtédo mov KAADTTOVUE £6G &ival:

» KerasRegressor

« MLP
« LSTM

Kot éyovpe ta axdAovba amotedéopato:

Merpnoape pévo to MAPE yua to KerasRegressor yio va to ypnoiponomaooovpe poévo g onueio

avapopdg DL.

Kot 6mog BAémovpie Kot amd TIG YpoQIKES ToPUCTACELS:

40,000

30,000

20,000

MAPE (%)

10,000

0,000

KerasRegressor

B MAPE (%) (Standard)

MLP

KerasRegressor 38,093 38,093 628 653
MLP 39,073 34,273 2,100 2,470 4,408 6,103 2011 1772
LSTM 24,091 24,090 4,231 4,231 17,899 17,899 818 847

LST™M

¥ MAPE (%) (Normal)

5,000

3,750

2 2,500

1,250

0,000

MLP

M RMSE (Standard)

LSTM

[ RMSE (Normal)
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18,000

13,500

4,500

0,000
MLP LST™

B MSE (Standard) [ MSE (Normal)

* Agv vmapyovv otabepéc oapopéc petaEd Tov Tvmomoinuévov (standardized) ocuvvoiov
dedopévev ka1 Tov Kavovikomompuévov (normalized) pog. Opiopévo POVIEAN EMLTLYYXAVOLV
KaATepn akpifela og évo and avtd, oAAL akoun Kol avtd PAETOVUE OTL Yio SIPOPETIKES
LeTPNOELG-0eikTeg OAMALOVY TV TPOTILMUEVN LEBOSO KAUAKMONG XOPOKTIPLOTIKAV.

* Evd 10 MLP éxet youniotepo RMSE kow MSE, €xet peyodvtepo MAPE a6 to LSTM.

* Me Bdaon ta Prounyovikd mpdtuma, téco to. diktva MLP 6co kai to diktva LSTM Ba
puropovoay va ypnooronovv yuo v tpdPreyn toincemv FMCGs.

* Yg ovyKploN HE Tovg amAovS maAvOpopovs, Ta poviéa Deep Learning divovv axpiéotepa,
OAAG Oyl amopoitnTo KOADTEPO OMOTEAEGUOTH a0 TO VLEOAOWmE HovTéAa kabd¢ eival mo
¥POvoPOpa, TOAD IO ATOLTNTIKE GTNV OVAADGN Kol TOLOTNTO TV SESOUEVOV LLOG KOl GUVOALKE
YEPOTEPQ OO APKETA LOVTEAL UNYOVIKNG LABNOoNG.

2200

1100

Execution time

550

KerasRegressor MLP LSTM

W Execution Time (sec) (Standard) 1 Execution Time (sec) (Normal)

* Onwg mepyévape, 6Aa ta poviéha Deep Learning £yovv onuovtikd ypdvo ektéreons. 261600,
OTmG ovuPaivel 0e OVTEC TIG TMEPWMTAOOELS, Ol EMYEPNGELS YPNOLUOTOOVV EMTALOV
VTOAOYIGTIKOVG TOPOVG.

* To MLP ypeidleton peyakvtepo ypovo extéheong (~ 30-34 Aentd yuo ektédeon).
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Emn)éov amoteréopata kol copnepaopata yio 1o povrére Badiog padnong:

IN'o g emyepnoelg mov BELoVY va epappocovy Avoelg Pabdidg pabnong, oto TEPAUATO oG
(Kepdrato 5) pwmopovpe va 000ue OTL TOALG LOVTEAD PUNYOVIKNAG LABNnong elvatl KaAdTtepa amd Tig
Avoelg pe ypnon povtélmv abeiog padnong.

To tehkd amotéleopo delyvel OTL AKOUN KOl Ol TPOGEYYIGEIS VEVPOVIKAOV SIKTO®V OV gival o€
0éon va Tapéyovy PEATIOOELS 0 GYXEGN HE TO HOVTEAD LUNYOVIKNG HABNONG Y0 TIC TEPUTTAOCELG
Tov mpoPréyenv moANcewv mpoidviov toayelog xatavailoone. Avtd oeeiietol ot
YOPOKTNPIOTIKA TV dedouévav Tov mpoPAnuatoc, O6mwg eivar mn younin owdotaon (low
dimensionality), To, omoio, pwopovv va 0dnyNGovY ce Ypryopn veepeoptmon (overfitting) to oA
gvéMkta povtéda. Emiong, 1o péyeboc e€16d6oov pmopel va emnpedoet v eEayoyn
YOPOKTNPIOTIKOV 610 povtéAo LSTM. T avtdév tov Adyo, mpémel va yivouv meplocOTEPEC
JOKIEG OE OLAPOPETIKA GUVOAN OESOUEV®V, ALY KAOBNDC Ta. cUVOoA dedopévav Hag (TOGO amd Tig
emyelpnoeig/marketplaces 6co kot amd tov Kaggle dtayovioud) civor eEaipetikég
OVOTTOPOCTAGES KOl EKTPOCOTOL T®V GLVOA®MY OEOOUEVOV TOL TPAYHOTIKOD KOGHOVL, TOV
YPNOOTOIOVVTOL Yo TPOPAEYELS TPUYLATIKMDY EMLYEPNCIOKDY TOANCE®V, TO OTOTEAECUATA
pag elvatl g 660 To SVVATOV TLO KOVTE GTNV TPAYLATIKOTNTO.

Qc1060, LETOED TV JOPOPETIKMY VEVPOVIKOV JIKTO®V, pmopel vo mapoatnpndei 6Tt 1o LSTM
mopelye to kaAvtepa amotelécpato. To LSTM xor 10 MoE mapovciocav mapdpola
amoteAéopato oe Oheg T petpnoelc. To povtého Mixture of Experts onueiwoe Peltioon oe
oyéon ue 1o povtédo MLP, to omoio avapévetot Adym Tng OpotdTNTAG TNG OPYLITEKTOVIKTG.

o oVyKplon, OnWg avaEEPOE KOl TOPATAVE, HETAED TV HOVTEA®V pMYOVIKAG uddnong to
KaAvTePo amotéreopa emtedyOnke pe ta povrédo XGBoost, LGBM kot CatBoost, kafdg kot to
peta-povréda mov Pacilovtal oe avtd. Agdopévov 0Tl avtd To Lovtéla eépovy dv0 Pactkoig
TOPAYOVTEG TOV OTOLTOVVTAL Y10, VO GUVOAO LOVTEA®V (VYNAY amdd0ocoN Kol YOUNAT GLUEOVia),
TO TEAMKO HOVTEAO TIPOcQEPEL PerTioon oe oyéom LE TO UELOVOUEVO OMOTEAEGLATO TOL KAOE
povtélov. Avtd ovpfaivel AOYy® NG EMEKTOGHOTNTAG TOL KOl TNG AKPPOVS EPUPUOYNS NG
gvioyvong g KAiong, kabmg dnovpyndnke pe okomd tn PeATioTomoinor 1000 TG Amdd00Ng
000 Kot TNG VIOAOYIoTIKNG moAvmhokdtntac. Emiong, 1o HuberRegression odnyel o€ o moAd
KA mpoPAieyr, n omoia, pe Pdon v avdivon twv dsdouévav pog, cvuPaivel Adym TG
gvasOnoiag Tov akyopiBuov ota akpaio onpeia (outliers).

Apa, teMKd Eyovpe TO EMTAEOV GUUTEPACUATO:

* Oho 1o poviého Deep Learning (KerasRegressor, MLP, LSTM) 6a pmopovcov va
ypnoomonBodv yio tnv TpoPreyn moincewv FMCGs.

* & OUYKPION WE TOVG OMAOVG TOAvOpOpovs, Ta poviéha Deep Learning divouv koivtepa
amoteAéopata, ALl Oyl amapoitnTa kaAvtepa amoteréopato and to povtéAa GBDT kabmg
YPYOPO VITEPPOPTAOVOVTAL AVVNTIKA Ba LTOpovGOY Vo EMTHYOVY aKOUO KOADTEPT] EKTOIOELON
Kot eMOO0ELS OV giyope OOVOAD OESOUEVOV LYNAOTEP®V JlACTACE®Y, OAAL kaBdS TO
TPOPANUA TG TPOPAEYNG TOANCEMY XPNOLUOTOIEL CLUTTAYT] CUVOAD OEJOUEVMV HE YOUNAY
dudotaom, ol ekteréoelc Pabeiog pabnong amodidovv yepotepa 1 oprakd oaéio pe o GBDT
HOVTELD GYEOOV OE OAEG TIC MEPIMTACELS.

* Onwg mepyévape, 6ha ta poviéla Deep Learning éyovv onpoavtiucd ypdvo ektédeong. Evo o
1POVOG ektéleoTg Oev amoterel TPOPANUA YioL AVTAY TNV TEPITTO®ON TPOPANUaTOV (TPoPAeyn
TOAMGEWDV), UTOPEL VO ETNPEAGEL GOPOPA TO KOGTOG TNG OPYIKNG ETEVOLOTG, KaODC ennpedlet
TOV OTOLTOVUEVO YPOVO €PYNCING, TO OMOI0 GTNV TEPIMTMOT TOV UKPOUEGOI®MV EMYEPTICEDV
umopel va gival vyning onpacioc. H ypnon enimiéov vToOAOYIOTIKOV TOP®V Giyoupo PEIDVEL
TOV POVO EKTEAECTC, GALA e VYNAOTEPO KOGTOG Agttovpyiog / enelepyaciog.
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* To povtého MLP exterel avalimon mAéypotog mov oAAdlel tn Asttovpyio gvepyomoinong
KaBdg Ko TIg pLOUIGEIS TV KPLEDOV EMTESWV.

* Onwg emonuaivovpe Topamdve, To OTA0VCTEPO LoVTELD emAéyeTor tavia oto GridSearch. [
mapadetypa, o MLP pog oyxedidommke oo va dokipdost éva 1-hidden emimedo pe 100
vevpwveg, éva 2-hidden ernimedo pe 20 vevpmdveg to kobéva kot 3-hidden eminedo pe 256, 256
Kot 128 vevpadveg (1 10w axpipdg mTpocéyyion mov ypnotponomoape yio to KerasRegressor).
Xto mepdpoto pog, o aAyoplfpog emédeEe va YPNOUYOTOMOEL TV OTAOVGTEPT EPAPLOYN,
dnAadn to 1-hidden ernimedo pe 100 vevpmve.

* To LSTM mov dnpovpyncape eivat éva LSTM evog emmédon mov eEaydyel yopaKTnploTIKe o€
&va TAP®G GLVOESEUEVO EMITEDO.

* To poviého LSTM ovuneproépdnke axpifdg 0mwg mpoPAéyope, onioadn mwoAd ypnyopa
vrepeopt®ONKe. Eidape 6TL akdun Kot o1 amhoVoTEPES OPYITEKTOVIKES ElYOV TPOPANLA LE TNV
veppoptmon/overfitting Aoym tov pikpov dwwotdoewv (dimensionality). IMaipvovue woAd
YOUNAO OKOp OTNV EMKOLPWON TV HOVTEA®V Pabeiog pddnong, Aouwdv, axdun Kot Otov
gpapuolovrar téiela. ‘Eva 1660 1oyvpd, un otatikd poviéro, o6mwg 1o LSTM, elval mwoAd
1GYLPO KA, EMOUEVAOC AOYIKO, VO TPOCAPUOLETaL VITEPPOAIKA KOl VTEPPOPTMOVETAL AKOUN KoL [LE
KOVOVIKOTOiN oM.
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0.5.4 Movtérha Meta-paOnong (Meta-learning models)

Téhog, ypnolonolovpe Tig pebodoroyieg KataokevNg LETA-HOVIEA®V TTOV avapépape. Onwng Oa
avapépovpe ota Kepdiao 2 («Benpntikd lotopkd»), Kepdrato 3 («Ilponyovuevec Epyaciegy)
kot Kepdiaio 4 («MéBodog xar Movtéha»), to Ensemble Learning kot 1 KoTooKELT UETO-
povtéhov tailel tepdotio poAo oty avénon g axkpifelag dAlmv, ariovotepmv, poviélov. [a
avTOV TOV AGYO0, 0POV EKTEAECOVUE T TTEPANATO 1oV XTadiov pe TOVg OmAOVG TAAVIPOUOVG, TO
povtéha GBDT ko ta povtéda Deep Learning, mpoypoppoticope To OYETIKA LETA-LOVTELD GTO
216010 2 Kot €00 TaPovo1AOvLE TO ATOTEAEGLOTA TOVG,.

Xpnoyonooape to akoAovba 3 peTO-HOVTEL:

* 2-best Stacking Classifier/Regressor
* 3-best Stacking Classifier/Regressor
* Mixture of Experts (only for Deep Learning models)

Ko éyovpe to axdéAovba amoteAéopato:

MAPE (%) (Standard) MAPE (%) (Normal) RMSE (St ‘ RMSE MSE (St ‘ MSE (Normal) Time Time
(sec) (Standard) (sec) (Normal)
2-best SC 2,000 1,643 0,373 0,485 0,139 0,235 153 187
3-best SC 1,990 1,622 ' 0,358 \ 0,467 0,128 \ 0,218 191 249
MoE 24,440 24,264 4,228 4,228 17,878 17,877 850 830

MAPE (%)

Kot 01tmg BAémovpe Kot 0o TIC YPOPIKEG TOPUCTAGELC:

30,000

22,500

15,000

7,500

0,000

2-best SC 3-best SC

M MAPE (%) (Standard) M MAPE (%) (Normal)
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0,000
2-best SC 3-best SC
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* Agv vrmdpyovv otobepéc Opopés HETAEL Tov Tvmomomuévov (standardized) ocvvoiov
dedopévav Kot tov Kavovikomompuévou (normalized) poc. Opiopéva HOVTEAQ ETITUYYOVOLV
KaAOTEPT oKpifela og éva amd avtd, 0AAG axkOun Kol avutd PAETOLUE OTL Yo SLOPOPETIKES
petpnoeis-ogikteg aAlalovv v Tpotindpevn pEBodo KMUAK®ONG YOPOKTPLOTIKMV.

* To petypa gumepoyvopudvav (MoE) Ntav Ayotepo amd 1% kaivtepo and To LSTM poviélo oe
oAeg TIc Paoikég petpnoelg yuo v a&loloynon tov povtéAwv Pabesiog udbnong.

* Ot 2vvdvaotég [aivopounong (Stacking Regressor) tov 2 kaldtepmv kol Tov 3 KaAOTEPOV
HovtéLwVv Bpickovtal ToAD Kovtd o€ OAeC TIG PUCIKES LETPNOELC.

* e olOyKplon pe to koAvTEPO OomAd poviédlo pog (CatBoost), o HETO-HOVIEAQ HOG £dmGAV
KaAOTEpO amoteléopata kKatd 25% Kot og cUYKPLoN e TO 3° KOADTEPO HOVIEAD LOG TO LETO-
povtéha pog Edwoay kaAdtepa amotedéopata katd 130%.
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* O 2-kaA0TEPOC GLVOVOCTNG OTOIPAENG, LE TOVE VTOAOYIGTIKOVG TOPOLE 7OV TOV dlnbécaype,
dwpkel mepimov 2,5-3 Aemtd yioo vo exteAectel (MOAD KaAGG ¥pOVOC GUYKPITIKG UE TO
UELOVOUEVO LOVTEAQL).

* To MoE ypeldletar peyaivtepo ypovo exktédeong (~ 14 Aemtd).

* ['a v mpdobetn avénon g akpifelog tov npoPréyewv, to Stacking Classifier ypeialeron
Myo emmAéov ypdvo -emmAéov TV PACIKOV HOVTIEA®V UG- Kol QOiveETOl Vo €lvar TOAD KOAR
eMEVOLOT O Kot OTAV AAUPAVOLUE VITOYIV TNV TPOGHETN VTOAOYIGTIKY| 15YD.

TNa vo. pTop€covpe Vo GUYKPIVOLE KOADTEPA TOVG 600 cLVOLOGTEG oToifadng kot va e&dyovue
CUUTMEPAGLLOTO GYETIKG e TO TOlog etvar o kaAvTepog N-koddtepog SC/R yu yprion ot
Bropmyavia (ne Paon v avénon g akpifeiag TpoPfréyeny, Tov EMTAEOV ¥POVO EKTELECNC KoL
T BePNTIKA PEATIOTO OpLo. TPOPAEYTG), TPENEL VAL TO. SOVUE TAPAAAN AL

2,000

1,500
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MAPE (%)
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Kot dpo pmopodue vo ovumepdavovue 6tL o 2-kovtepog Stacking Classifier/Regressor ival
eEopetikd  amodoTIKOG, aPOV mETVYOivel TV 1010 okpifela pe tov 3-kaAVTEPO, OAAGL e
amAovotepa povtéla, AyoTeEPN TPoEPYUTia Kot KPATEPO YPOVO EKTEAECTG.

EWwd omv pétpo mpog aoynun mepintmon mov To0 30 KOAVTEPO HOVIEAO €XEL GNUOVTIKA
VYNAGTEPO YPOVO ekTéAEONC (0Tt mopadeiypatog ybpwv to XGBoost) 1 cuyKPLTIKY YPOVIKY|
Beitioon ypnong tov 2-kaAvtepov omd tov 3-kahvtepo Stacking Classifier/Regressor yivetat
Wwitepa aioONT.

Emn)iéov amotehéopaTo KoL CUPTEPAGHATA Y10 TO. POVTELQ PETO-NGONONG:

‘Evag amd toug kvplovg otdyovg ouThg TG OTpiPrg, €KTOG a0 TN GUVOAKN UEAETN NG
wpoPreync moicewv yio. FMCGs, ntoav vo e€etdoovpe Kot ovalboovpe T dlodikacio Kot To
Oewpnriko voPadpo dnuovpyiog peta-poviéAmy, kal Wwitepa Tov Xvvdvactov Ta&vounong/
MoAwvdpounong (Stacking Classifier/Regressor), aArd kot to Miyua Epnepoyvopovov (MoE).

Tol amOTEAEGLLOTA KOl CUUTEPAGLLOTO TTOV TPOKVITTOVY OO TO, TEPALATA LG elvat:

* Ov 2-xaidtepor ko ot 3-kodvtepor Zuvvdvaotés Ta&wvounong/Tlaiwvdpopnons (Stacking
Classifier/Regressor) Ppiokovior mold wovtd oe Olec Tic Poowkég petprioeic. 'Etor,
AopBavoviog vmwoOY TNV OvVOALOT XPOVOL EKTEAEONMC, ¢ailvetor OTL 0 2-KAAVTEPOG
StackingRegressor eivan 1 BérTion Abon yio v nepinTmon TV TPoPAEYEnV TOANCEDV Yo
FMCGs.

* Y& ovyKplon HE TO kaAvTEPO omAd poviéro pog (CatBoost), o peta-poviéia pag £dmoav
KaAOTepa amoteléopata katd 25% Kot og cUYKPLoN He TO 3° KAOADTEPO HOVIEAD LOG TO PETO-
povtéha pog édmoav KoAvtepo amoteréopata katd 130%. Avtég eivar Bedtidoelg Leyding
onuaciog kot €tol UmopoVpe vo, KOTAANEOVUE GTO GULUTEPAGHE OTL 1 YXPNON TOL
StackingRegressor etvat amapaitn yia kdbe viomoinomn TpoPAEYE®V TOAMGE®Y.

* 'Evog amd tovg Pacukodg meploplopodc mov €xEl KAmolog oTn xpnorn evoc Meiyuotog
Eunepoyvoudéveov (MoE), sivar 6t ypetdleton poviélo and v idto opdda (m.y. VeEupmVIKA
diktva), evd évag StackingClassifier prmopei va cuykpotndel amd omo10dnToTE €100G LOVTELOD.
‘Etol, kabhg éva m0c0oTd TV dedopévev Hog pmopel mo evkola va, mpoPrepbeil amd o
ovykekpiévn apyrrektoviky (m.y. CatBoost), to stacking Oa £yl to v y€pt 6€ GVYKPION UE
T xpnon evég MoE.

* To povtého pigng epmelpoyvopdvoy mov ypnoonooope Bacileton otig 1dtec puBuiceic MLP,
pe  Aertovpyla softmax oto diktvo wdine. To MoE pog, omwg avapevotav, Pertiooe to
poviého MLP, aAld eiye omhdg €va péco OMOTELECUO GE GUYKPION HE TO TPOTYOUUEVO.
[Ipoonadncape vo Pertidcovpe v epappoyny tov MoE, aAld ta aroteléopata deiyvouv OTL
gtvon kaAvTEPO va emAéovpe éva amhoVGTEPO LOVTELD, KOBMG TO O EVEMKTA LOVTELD glvan
TOAD 10YLPA Kol AOY® NG WIKPNG JAOTAGNG VIEPPOPTOVOVTOL YPNYOPa. XPTGULOTOCULLE
pio iepapykn vAomoinon, 1 omoia Hog £6moe KAAHTEP AMOTEAEGLOTO OO L0 KAVOVIKT AGY®
™G PUONG TOL TPOPANLOTOG.

* To petypo eunepoyvoudvav (MoE) ntav Ayotepo and 1% koivtepo and 1o LSTM ce dheg Tig
Bacucéc petpnoetg yia v aloAdynon poviélmv fabidg pdonong.

Daiveton 6t T0 MOE dgv gival moAd ypnoo oy mpofrleyn ToANce®Y, KaOOC 1 apyLTEKTOVIKY
tov Bacileton og kapmolec Gauss Kat, ETOUEVAOC, Umopel va elvar eEPETIKE EVEAIKTO, KATL TTOV
oVVNBG amoTeAEl TAEOVEKTNLA, OAAG otV Tepintmon ¢ TpdPreync moinoewv yioo FMCGs,
AOY® NG YOUNANG dldoTtaong 16050V, vreppoptmvetal (overfitting). Tvvoikd, 6uwg, PAETOVLE

75



OTL 01 VAOTIOWGELS TOV UETA-LOVTEA®Y, Kol cvykekpéva ot StackingRegressors, £yovv moALd
TAEOVEKTNLOTO, OTTOC:

* Odnyobv ot eéoupetikd akpiPeic mpoPAréyelg noinoemy, eneldr] cuVOVALOVY ATOTELECLATIKA
To KOADTEPO LEPOVOUEVA LOVTELD GE KOAVTEPO GLUVOVOGTIKG LOVTEAQ.

* Zuvdvdlovv v vymAn axpifelo wpoPfAéyewv pe younAd ypdvo ekmaidevong, KabioTOVTOG
TOVG oL EQUPETIKY EMAOYN Yoo ADOELS TTPOPAEYNG TOANCEWV GE TPAYUATIKO KOGUO OV
epopuolovtal amod etalpeieg 6TOVG KAAGOLS TV TPOIOVIMOV TaYEING KATUVIAMOTG.

* Mrmopovv va ypnoyomombovy 1660 and EMYEPNOELS TOL eV EYOVV €MEVOVCEL OKOUN OTIG
Swdikacieg TpoPreync TOANCE®V (.Y, VEEC EMYEIPNOEIS, VEOGVOTOTEG EMYEIPNOELS K.AT.),
OAAG Kot OO EMYEPNOEIS TOV SBETOVY HOVTEL Kot SlodIKaGieg TPOPAEYNG TOANCEDY KoL
0élovv va BerTidcovy TV akpifelo T@V LOVTEAWDY TOVG LE EMTAEOV ETEVOVCELS.
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0.5.5 Xpovor ektéheong

I'vopilovpe 611 dev eivar cuvnbicpévo va cuykpivovpe Tov xpovo EKTEAEGTG YO, EPYUCIES TOL
dev Tpémel va, extehovvTal ToAAES popég. H mpoPreymn noincewy eival, TovAdyiotov OempnTikd,
plo amd ovtéc. QoT000, GE TMPAYUOTIKEG EPUPUOYES, 1 TPOPAEYN TOANCE®V TPEMEL VO
emovaineBel moAhéc popég. Edkd yuo o mpoidvia tayeing Kotavalmons, Ady® g 1010itepng
(@VOTG TOVG, 0 YPOVOG EKTEAECTG TV CYETIKMOV LOVTEAWDV EIvVOl VYNANG onpaciog.

Av16 ovpufaiver 610TL:

* Ot emyepnoelg amoPacilovy vo BEATIOC0VY Ta TOANIOTEPA LOVTELD TPOPAEYN S TOANGEWDV.

* Ot emyeipnoetg aAralovv Tig Stodikacieg TPOPAEYNG TOANGEDV.

* Néa épevva mov mpoteivel o akpipn povtéda PAETEL TO POC Kot o1 EMLYEPNoELg BEAOVY va Ta
SoKIACOoV.

* Ot 0Ah0y€G OTO TPOCOTIKO GTO TUNHOTO LAPKETIVYK 1 OTILG OUAOEG OESOUEVOV 1 GTN
dwyeipion TV enyelpnoemv enNpealovy T HeBOS0VG TPOPAEYTG TOANCEDV KU TIG
E0MTEPIKEG OLAOIKOTIES.

* Anpovpyovvtar véa 6£30UEVA Y10 VTAPYOVTA TPOTOVTAL.

* KvkAopopovv véa mpoidvta.

* Aappdavovtor voyy véa yapaxtnplotika (features).

* Ot emyepnoelg amoeacilovy vo avERcouy TNV ETEVOVGT TOVG GTNV TPOPAEYT TOANGE®V KL,
EMOUEVMG, ETEVOVOVV Y10 VO EKTEAEGOVV EK VEOU KO VO BEATIOCOVY T VTLAPYOVTO. LOVTEAQ,
peBdd0vE Kot S10d1KAGIES TOVG.

Mo avtdv ToV AOY0 PETPHGOLE TOV YPOVO EKTELEGT|G OTO LLOVTEAD LG KOL TOV TAPOVGIAGOLUE OVA
katnyopia povtédov oto Kepdiato 5 ("Tepapoata).

Mia, yp1yopn €16V TOL ¥pOVOD EKTEAECTG OA®V TOV LOVIEAMV HOG:

Model RMSE

CatBoost 3,367

XGBoost 1,435
e LightGBM 2,036

HuberRegression 1,467

2-best SC 1,401

2011

HuberRegression KNNReg Pass/AggReg LassoRegression RidgeRegression XGBoost RandomForestReg CatBoost LightGBM 2-bestSC 3-best SC MoE KerasRegressor ML LsTM

BAémovpe 611 o KNN Regression dtapkel moAAEG POpEG TEPIGGOTEPO YPOVO OO OAaL T GAAQ
povtéha pag. o autdv Tov Adyo, 1o amokieiovpe omd T0 YPOVOSLOYPAUUATO EKTELECT|S.

Me Aipoko ypoppikon agova:
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HuberRegression Pass/AgoReg Lassortegression RidgeRagresion

Me AoyopiBukn| kKAlpoko dEova:

RandomForestieg CatBoost Lightaan

* Eivatl edkoro vo dodue 0Tl Ton povtéda pe Ti¢ kaAvtepeg emoddoelg (CatBoost kot LightGBM)
yperalovratl moAd Alyo ypdvo, Kaf1GTMOVTAS T0. IAVIKOVG DITOYHPLOVE Y10, TPOPAEYEIC TOANCEDY
v FMCGs o¢ kd0e emyeipnon tov kAadov.

* Eniong, 7w va epappdcovue tovg Stacking Regressors, o ypoévog ektéleomng tovg eivol
«EMTAEOVY G€ OAO TOL GAAG LOVTEAQ, KATL TOV TPEMEL Vo, AdPovpe vaoywy poc. Evd n extédeon
OV TOV ALV HOVTEA®V pmopel Bewpntikd va TapaAiniiotel, autd dgv 1oyveL Yo Toug N-
best StackingRegressors kofmg vAomolovvtar o 2 Puate Kot TPEREL TPAOTO VO EYOVV TA
amoteléopata omd OAM To GAAC LOVTEAQ Kol VO EMAEEOLY TA KAADTEPO LOVTELD Y10L EVOTOINGT).

"Etot, éva KoAO TelKo ypdonpa Tov poviélov pog potalet pe outd:
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Kot 01tmg pmopovpe vo dovue:

* Ta CatBoost kot LightGBM dev givar pévo e€opetikd povréda yio TpofAEYELS TOANGE®DY Y10
TPOTOVTA TaYEING KOTOVIA®ONGC, AALA KOl TTOAD Yp1yopa.

* Edv gpappdcovpe povo tig Adoelg yio o CatBoost kot LightGBM povtéra, o 2-koldtepog
StackingRegressor «mepiuévery udvo yio avtd kot pe tov mpdceheto ¥povo vAowmoinong yio
otoifa&n, pmopovue vo, Sovpe ToV TEAIKO Ypovo ektédeonc. Duoikd, avt givar M Bértio
TEPIMTOOT, V10T GE LI TPAYUOTIKY avaAvoT peAétng, Oa elyoue tpé&et TOAAG povtédla kat O
emAEyope Ta 000 KOAVTEPO UOVTEAQ, UE TOOVDG LYNAOTEPO YPOVO eKTEAEONC amd T OO
KoAOTEPO pOVTELD paG. QoToc0, €dv yvopilovpe amd TV apyn ol givol To Kopveaio
HOVTEAQ, TOTE UTOPOVUE amAG va, TpEEove €va 2-kalvtepo StackingRegressor pe fdorn ovtd.
‘Etol, o mpaypatikdg ypdvog Aettovpyiag O eivor avtdg mov ametkovileTol 6To TOPUTAVM
dwypappata, yeyovog mov kabiotd to Stacking Classifier / Regressor éva amd to toybtepa
LOVTEAQL.

* Oupoig pe tov 2-kahdtepo StackingRegressor, o PEATIOTOC Y¥pOVOC Yo 10 3-KAADTEPO
StackingRegressor ivat moAd vyniotepog, kabmg mpémnet vo "nepuével” yioa 1o XGBoost. Kot
AL, GE U0 TPUYUOTIKY] LEAETN TTEPIMTMOONG, O TPUYHATIKOG XpOVOC ektédeons Oa Mtav oAl
peyoAutepog, kobmg Qo Empene Vo TEPUEVEL TEPIGGOTEPO UOVTEAQ. AmO TNV GAAN, av
yvopilope and v apyn o BéATiota poviéda, Oo pumopovoapue vo tpéEovpe Tov 3-KaADTEPO
Stacking Regressor 610 Ztdd10 1. Avtd ivar eEoupetikd evOl0QEPOV Kol GNUAVTIKO, KAO®DC
oAOKANpo to StackingRegressor Qo giye cLVOAIKO ¥POVO EKTEAEONC MIKPOTEPO OO OPLGUEVA
omd TO UEHOVOUEVO LOVTEND, Kot TOwTOYpova omoteléouata vymAotepne axpifelag. ‘Etot,
eaivetol e0M Kol 1 oNUAGio VTAG TNG dtaTpIPnc, Kabmg Exovtag pia akpiPhg apyikn Tpopreyn
OYETIKO, L€ TO TOlM €ivol To KaAOTEPA MOVTEAQ Yoo TNV TPOPAeyn moincemv yio FMCGs,
umopel va ypnooromfel and Tig entyeipnoeis. ATAng évag StackingRegressor, pe peyaAvtepn
akpifelo kol pkpoTEPO KOGTOG amd €va cuvnbicuévo €pyo pmyavikng N Padiag padnong
eaivetol va givar 1 BéEXTioT emiAoy.

* To HuberRegression, 6mtmwg ginape ka1 vopitepa, Hog evivnmoiooe, Kabmg givol £vag amlog
aAyOPIOLOG TOAIVIPOUNGNC TTOV KATAPEPE VAL EXTVYEL TOAD TKOVOTOINTIKY 0KpiPelo o€ Yoaunio
xpovo ektédeong. Eivar oiyovpa éva poviélo mov mpémnel va Aneoel tepiocdtepo vIoOYN, E01KA
oTNV TEPIMTOGN TNG TPOPAEYNG TOANGEWMY, OOV VTLAPYOLV TAVTO oKkpaieg Tiéc. H avriotaon
tov HuberRegression ota axpaio onueio (outliers) 1o kafiotd mold ypnoo, akdun kot 6tov
€yovpe Alya 6€d0UEVO VIO TNV EKTOIOEVGN IO TEPITAOK®Y LOVTEA®V.

79



0.5.6 Avoyoviopog Kaggle yia ovykpion amoteleopdtmv

[pokeyévov va, £ovpe aKOUN TEPLGGOTEPT, OEDOUEVO KO OTOTEAEGLOTOL GYETIKA LE TO, LOVTEAQ
KO PETO-LOVTELD TTOL dniovpynoape, dayoviotnkope o€ évav Kaggle dtoyovioud oyetikd pe
TIg TpoPAréyelg moincewv. Hrtav eniong éva kodd £30¢pog Yo vo. dOVUE €0V TO. LOVTELD TTOL
amodeiyniav ot kopvpoaieg emAoyéc yw TV wpoPreyn mwincewv FMCGs eivol emiong
KOpLQOiEG EMAOYEG YIo. GALOLG TOTOVG TTPOIOVI®V Kol 7o gvpeiec TPoPAéyelg Toincemv. Ta
TPOTEWOUEVE HOVTELN Kot pebodoroyion 0dnyobv ota 101 amoteAécpota, dgiyvoviag OTL 1
axpifeia Tov Stacking Classifier pe Paorn ta dvo 1N tpla KoAOTEPA HOVTIELD €lvol GMUAVTIKA
VYNAOTEPN amd TNV oKpifeia KAOE UPEUOVOUEVOL HOVTEAOL. XTNV TPAYHOTIKOTNTA, 1 ADOT
Bplokotav otig Kopveaieg 50 Moeig tov Kaggle (top 1%), og évav dloyovioud e TEPLGCOTEPESG
a6 10.000 vroPAndeicec Moeig (46m 0éon otov [Tivaka Babuoroying Tov dtaywvicpov).

To, povtého pe v kaAvTEPN axpifeto mpdPreyng yio Tov dayovicpd ftav: a. XGBoost, P.
HuberRegression. To XGBoost £xet e&aipetikn amdd06m AOY® NG ENEKTAGIUOTNTAS TOV KO TNG
akpifods epapuoyng ¢ evioyvong kiiong, meTvyoivovtog VYNANR OmOd00M Kol YOUMAN
VIOAOYIGTIKN ToAvTAokOTNTa. Emiong, o HuberRegression odnyel oe moAd koAl omoteAécUOTO,
AOY® g avtiotoong tov otig akpaieg TwéG. Ocov agopd tov dayovicud Kaggle, Eodéyape
MyOTEPO YPOVO Y10 TNV TPOEMEEEPYAGIO KOL TN UNYOVIKT XOPOKTNPIOTIKDY GE GYECT LE T KOPLOL
povtéha pag, faciopéve oto marketplaces, omote kot givar puoikd to HuberRegression vo éygt
KoAOTEPN OKpifelo and dAla, Mo gEeAyuéva, povtéda. Ymobétovpe OTL, av dgv giyape Kavel
1660 oAOKANpOUEVT emebepyacio SEdOUEVOV KOL AVAADOT] YOPOKTNPIOTIKMOV GTO KOPLL GOVOAL
dedopévav pog, Oa elyope det to id1o amotélecpa amd To HuberRegression. Avtd onpaivel 41t to
HuberRegression 0a £yetl yoapumAdtepn «movip» amod v yEWpotepn Tpoenelepyacio 6ed0UEVOVY KoL
TN AELTOVPYid YOPOUKTNPIOTIKMOV, EMITUYXAVOVTOG TO {10 1 aKOUA KOADTEPH OMOTEAEGUOTO OF
ovykpion pe 1o povtéda GBDT. Qotdéco, pe v mAnpn enefepyocio dedopévov kol
Aertovpyia yopokTnploTK®V, civor @uowd to poviéha GBDT (XGBoost, LightGBM &
CatBoost) va etvat ekTANKTIKG 0TOTEAEGLOTIKAL.

Ondte, T0. LOVTELD TTOV EKTALOEVCALLE Efval:
ML models:

1. HuberRegression
2. XGBoost
3. CatBoost
4. Lightgbm

Movtého peta-pabnong: 2-best Stacking Classifier

O otoy0¢ givar vo dokipdoovue evredmg aveEaptnta Vv a&io Tov Kopveainv Hoviédov pog. o
Vo 10 Kavoupe ovtd, emiiéope avtov tov dayoviopd Kaggle mov powdlel pe ta apykd chvora
dedopévarv pag kat €11, n Pabuoroyia tov poviéAwv ML Oa dokipactel 6 avtd T0 TAYKOGLUO,
aveEaptnro mepBaAlov.

Metpape poévo 10 RMSE «éBe povrédov, kabhg Ba deifovpe oto Kepdhato 5 6t to GBDT

povtéla stvar egapetikd cvvent| og OAeG TIC Pacikéc petpnoelg (€161 11 HETPMON Kot 1| GVYKPLoN
pu6vo tov RMSE 1ov ké0e povtédov ival apketn).

To amoteAéopata fTov:
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Prediction accuracy of ML models for Kaggle’s Predict Future Sales competition
3,400
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1,700
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0,000

CatBoost XGBoost LightGBM HuberRegression 2-best SC

"Etou

* To CatBoost evd fTav 1 KOPLPaio ETIAOYT Yo TO CPYIKO OEGOUEVAL LOG, TOV TOAD XEPOTEPO
o€ 0vtd T0 cHVOLO dedopévav. Onmg eEnynoape, aVTd T0 TEPWEVAUE AOY® TNG LKPOTEPNC
npoenelepyaciog mwov €ywve, aAld ko omd Ty 01 v @von tov mpoPinuatos. Eidape
avaivticd yiati o FMCGs Bonfovy tov CatBoost adyopiBuo va tovg dmoel ta kaAdtepa
duvatd amoteAéGUOTO.

* To HuberRegression omédeiée yuoo dAAN pio @opd o0tL givar évag e€opetikd amhdg, oAAd
e€apeTikd 1oyVPOG oAYOPIOUOG TOAVOPOUNGNG, O 0010 €Yl eEQPETIKT OITOS0GN OKOUT KoL
oe AMyoétepo oupoloyevy oOvoro dedopévav moinoewv. Etol, pmopel va ypnoipomomndel
OTOTELECUATIKA GE GYEAOV 0MOL0ONTOTE €I60G TPOPAEYNC TOANCEDV KOl EIVOL OTTOPAITNTO Yol
™V ovamTuén TpoPréyemv TOANcEMY 0md PEAETNTEG KOl OUAOES OEOOUEVAOV ETLYEIPT|CEDV.

* To XGBoost fitav 1o o akpiPéc povtédo Kat vrepacmtiomke T 06on 10V O¢ éva amd Ta 7O
YPAOULO KoL 7O Y¥PNOIUOTOMUEVE HOVTEAN unyavikng pabnong. Eivar avotepo 1600 otnv
akpifelo 660 kot 6TV TOIKIALL ¥pHong (xPNoUOTNTA) TOL.

* O 2-kolvtepog Stacking Regressor poc odnynoe oe Alyo koADTEPA OATOTEAEGUOTO, OTMG
avapevotay, OAAG Oyl OPKETG Y. VO TKOVOTIOICEL TO EMMALOV €Minedo avamtuéng kot
déopevong ypovov. Biémovpe 0Tt miye polg 2.4% woivtepa. To av avth givar moAvTN
S0QOoPa, TOPAUEVEL ELAPPDS VTOKEYEVIKO. ZVVIGTOVUE Glyovupo og EMYEPNCELS Tov OEAovY
NV KaADTEPN duvorh axpifeia TpoPAeync va SOKIUAGOVY OTMOONTOTE LETO-UOVTEAN, OAAY
PAémovpe €dd OTL pe To va unv dokipudlovpue apketd uovtéda, e un emopkég data pre-
processing, {E TO Va. Uy cuvoLAlovTol APKETE TO, LOVTELN LLOG KoL LE TTOPOLOLN OTOTEAEGLOTO
amd Ta Kopueain poviéra, 1 Pertioon g akpifelog Tov TpoPfréyemv TOL TOPEYOVV TO, LETO-
povtéha umopei va OempnOel oxopa kot apeAntéa.

Daivetar 011 1 dovAEld pog MTAV OPKETA KOAN Yoo va tomobetnOel otig Kopveaieg ADoELG
naykoopimg. Ot mpofAéyels pag avikovv oto top 1% tov vrofol®mv amd 6Ao Tov KOGUO Kol
ovyKeKpIEva TV 46m Tov dyoviouov, pe meplocdtepeg omd 10.000 vmoPoréc (uéypt v
OTLYUN 7OV ANQONKE TO TAPAKAT® GTIYUOTUTO Y10, TV OAOKANP®GN GVTNG TG OUWTAMUOTIKNG
gpyaciag, £xovpe mécel oty 70n BEom, aArd mapapévovpe oto top 1%).
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Predict Future S... 20t

Yuvolkd, oaivetor 6tL 0 ¥povog mov eEotkovouncape SoKIUALOVTOG TO HOVTEAD VYNAOTEPNC
okpifelag amd To Poacwkd dedopéva poc Yoo TV TPOPAEYN TOANGE®V O©TO TANIGIO TOV
Slyoviopoy elval onpoviikd kot 1 okpifelo Tov mpoPAéyemv mov emithyope sivar KT
TOPATAVEO od KOAN. AvTtd deiyvel yuoo AAAN o @opd, 6Tt Bdoet avtig TG dtaTpiPrg umopovv va
ENOQEANO0VV TOAAEG EMLYEIPNOELS, TOCO OVTEC TOV £YOVV MON £QAPUOCEL LOVTEAN TTPOPAEWNG
TOANGEMY Kot dadtkacieg dtovoung mpoPréyewny, oAld Kot ekeiveg Tov Ba avamtdiéovy TéTotn
povtéla Kot dtadikocieg 6to HEAAOV.

I'vapilovtog A0y avtig, Kot GAA®MY €PYOCIOV, OO0 LOVTEAD EXOVV TV PBEATIOTN amOdooT Kot
akpifela wpwv v duovpyia TV SIKAOV TOVG LOVTEA®VY, HEWOVOUV TO, KOGTN €MEVOVONG TOVG
ONUOVTIKA Kol avEGavouy TNy TayOTNTe. VAOTOINONG TOL GOYETIKOV €pyov, efacparilovtag
TautoéYpove TNV ONuUovpyio SdKACIOV KOl HOVIEAW®V HE EKTANKTIKA vymAn axpifsio
TPOPAEYEWV.
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0.6 Xvumepdopoto Kol HEALOVTIKES KATEVOVVOELS

Xe TV TNV EVOTNTA AVOADOVLE TO, COUTEPAGLOTO, oG KOl TIG HEAAOVTIKEG KaTELOVVGELS TN
GYETIKNG OOVAELAG TOGO Y10, TO, TPOIOVTO TaYEIOG KATUVAAMONG, OGO KOl YEVIKOTEPO, LEAAOVTIKEG
TPOEKTAGELG TNG EPELVAG ETL TN TPOPAEYNC TOANGEMV.

Ocov apopd T1g peAloviikég katevBovoelg, og eEeTdoove, TpoTo, MOoVES PEATIOGES oTO
povtélo pog, aAAG Kot TNV avaykn yo emmiéov mepdpota. To Miypo Epmeipoyvopdvov mov
ypnoomomoape, meplopiotnke oty apyttektovikny MLP mov dev ftav kovtd otic PéATioTeg
MEPMTAOCELS. ZTO HEAAOV, B pmopovoav va yivouv TEPICCOTEPES EPYACIES YO TNV LAOTOINGN
evog MoE mov Poaciletoar oe kaAdtepa vevpovikd diktva 1 GBDT povtéha. AmoelOyoue vo
OUYKPIVOLUE AUESH KOl vo. €EAYAYOLUE GULUTEPACUATO OYETIKO HeE TNV amddocT TOV
StackingRegressors pe avtd tov MoE, encdn| Baciotnrav og dapopetikd poviéda. ‘Etot, gival
AOYIKO VO, TAPAYOLV OLOPOPETIKE OTOTEAEGLOTA KOl VO TETVYOIVOLY O10pOPETIKEG aKpifetec.
Qo1660, amd 0VTH TN SPOPH TNV EKTOLOEVOT LOVTEA®MY KOTAPEPOLE VA EMCT|ULAVOVUE OTL EVHD
70 MoE ypetaletar povtéro amd v idio opdda (m.y. vevpwovika diktoa), Evag StackingClassifier
UTOPEL VO EVOMUATMOGEL OTOL0ONTOTE €100G LOVTELOV. Xe KAOE TepimT®OT|, PaiveTal va, amotteitol
TEPLOCOTEPT, OOVAELE YOO TNV KOADTEPN EMAOYN €VOC LETO-HOVTEAOL O OlLQOPETIKEC
TEPMTAOCELG TPOPAEYNG TOANCEWDV.

Amnonteitan eniong meplocoTEPT] d0VAELL Gg TPOShHeTA GhVOLa dedopévmv. Evd ypnopomomoaye
KOAEC AVATOPACTAGELS TNG TPEYOVCOS LIOBEONG TS TPOPAEYNG TOANCEDV GE TPUYUATIKO
EMYEPNUATIKO TEPPAAAOY, OEV TEPANOTIGTAKAUE OPKETE HUE EVIEADS OLUPOPETIKEG
npooeyyioelg. Kamotoc Ba umopovoe va vmootnpier 6T mePloooOTEPO 1] OLOPOPETIKA
yopokTPoTiKd Oa pmopovoav Kot Bo Empene va ypnopomombodv oty TpoOPAEYT TOANCEDV
yio FMCGs kot €161 o1 enyEPNOES TPEMEL VO, KAVOLUV OAAXYEC GTNV TOGOTNTA 1| TV TOLOTNTO
TV O0gdopévov mov dlatnpovv. EmmAéov, o petacynuoatiopds dedouévav, m eneEepyacio
OdoUéVAV KOl 1 HNYOVIKY YOPOKTNPLOTIKOV dtodpapatilouv mavta onpoviikd poAo og
OTOLOONTTOTE £PYO KOl VAOTOINGT UNYOVIKNG EKULEONOMG Kal £TGL Evag TPOTOC Yo va. dElTE Kol Vol
eléyEete yevikd v mpoPleyn TOANCE®V PUNYaviKig nanong eivar va eléyEete dha ta Prpata
W amd TN onuovpyia povtélmv, amd Tn oTnpnorn Kou Olayeipion dedouévav, €wg TV
avaAVoT SedOUEVOV, MG TNV EMYEIPNLOTIKY KOl SLOYEPLIOTIKY YVOOT], KOvVOTNTO, TPOTOBovAia
ka1 evevia. [Tapodro mov gpyaotirape e d00 €idN KMUAKOONS YOPOKTNPIOTIK®OV KoOMOG mailet
onuavTikd poéilo oty mpoenelepyacia, Kot gaiveror 6t n Propnyoavio drydleTon GYETIKA e TO
TO10 VO, YPNGILOTOMGEL, SUVNTIKE aKOUN Kot SPOPETIKES TEXVIKES KMUOKAG YOPOKTNPLIOTIKMOV
UTOPOVOV VO, BEATIOCOVY T UNYOVIKY] YOPAKTNPIOTIKOV Kol PEATIOGOVLV 1] XEWPOTEPEYOLV TNV
anddoon opiopévey poviédmy. BéPata, amd Ta melpapoto pog i00Ue OTL 1 ETIAOYT TNG TEXVIKNG
KMUOKAG YopoKINPLoTIK@V Ogv €mauée onuaviikd poAo, apovd dev VINPEE TEXVIKN OV AMEdMOE
OLOLOHOPPO KAADTEPQ OO KATO1H AAAT.

EmnAéov, evd dokipdoape ta kopu@aio HOVIEAD amd TNV o TPOCOUTY £PEVVO, GTOV TOUED,
VdpyovV AALEC TapOpOLES LEBODOL KOl AALEC APYLTEKTOVIKEG VEVPOVIKAOV OIKTO®MV TOV HITOPOovV
va gpappootovy. I'a mapdaderypo, 1o CNN eaivetal po eEQpeTikn) TpocsOnkn o1 onpovpyio
Kot GUYKPITIKY a&loldynon HoviéA@v vevpavikav diktowy. Tavtoypova, to Facebook Prophet
€xel oeikel ovoloTikn Peltioon o€ epeuvnTIKEG €pyaciec, OAAA KOl GE TOAAEC €QAPLOYEG
unyovikng pabnong. H tpdPreyn tov Prophet gaivetat va givol pio vwoype®tiky] cuumepiinym
o€ omolodnmote €i00¢ HOVTEAOL pNyoviKng Kot Babidc pabnong svykprtikng a&loldynong oto
pEALOV. AVTI TN OTIYUN TOPAYETOL TEPIGGOTEPT] EPEVVOL CYETIKA LLE AVTO, KO TEPYUEVOVUE VEEG
VAOTTOMGELS KOl TPOTACELS, O™G 0 aAydp1Bpog DAE-LSTM.

e KaBe mepintwon, N TpOPAEYN TOANCEWOV YiveTal OAO Kol TTO GMUOVTIKY KAOe uépa oe dha o
TUAHATO Lo emyeipnong Kot cvvtopa Ba sivor amapaitnto epyareio yia etapeiec kdbe kKAAdoL,
OAMG  €WKE Omd TIC EMXEPNOELS TOL TWOPAYOLV Kol gpmopedovtal mpoidvia Toyeiog
KATOVAA®ONG, 6oL 1 TPOPAeyn ToAcewV Tailel akoun mo Bepeddn poro ot PiwoudTnTo
KoL TNV KePAOQOopia Toug.
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Telkd cvpnepdopata

Ot 6106Y01l aVTAG NG JATPIPNG EMTVYYAVOVTOL TANP®G, ENXELDN KATAPEPOLE VO SLOKPIVOVUE TO
HovTéLD TOV AELTOVPYOVV T0CO G€ BempnTiKO TEPIBAALOY OGO KOl GTOV TPOYLATIKO KOGLO Y10 TO
TPOPANUO NS TPOPAEYNG TOANCEWDY Yo Ta TTPoidvTa Toyelng Kotavdiwons. Ta CatBoost kot
LightGBM povtéia givol katamAnktikég emAoyég yio TNy tpofieyn noincewv yioo FMCGs kot
¥PNOWoTOIOVTOC Wovo éve Xvvdvaoth Toa&wounong/Tlelwvdpdunong (Stacking Classifier/
Regressor) pmopovue va eyyvnbovpe TepiocOTEPO GO IKOAVOTOMTIKA ATOTEAEGLATA, GE OXEOOV
omoleconmote cuvinkes. ‘ETol, KOTOOKELAGOUE £va YEVIKA KOAD, €VOmOmUEVO HOVTEAO Yio
ypiyopn kot akpipr mpodPreyn toincemv yioo FMCGs: évav StackingRegressor Boaciouévo ce
CatBoost kot Light GBM.

e MEPIMTOON TOV Ol ENMLYEPNOELS KO 01 GULPOVAOL TOVE TPEMEL VA TEIPOALATICTOVV LLE TOPATAVED
LOVTEAD OE W10 CULYKEKPIWEVT TEpimTmon/épyo yuo. v wpoPfreyn moAncewv, eite Ady®
OMNUOVTIKNG OPOPOTOINGNG TOV TPOPANUOTOC, €iTE S10pOPOTOINCTNG GTNV TOGOHTNTA /KAl TNV
To1dTNTO TOV 0edOUEVA TOVG, UTOPOVLE VO TOVS TTpoTeivovpe TG vVAoTomoelg pe XGBoost kat
HuberRegression, yio, va £xovv TARpn €1kova kot vo, BefatmBovv 6Tt ypnopomoincav férTiota to
¥POVO TOLG Yl VO SOKIHAGoUY To. KoADTEPO duvatd poviéda. Télog, €dv vmépyel avdykn vao
SOKIAOTOOV €TIONG OPYLITEKTOVIKEG VEVLPOVIKOV Oktdmv, t0 LSTM egivoanw pokpdv to o
eAmdopopo. Qotdco, Adywm 10 OTL avtipetonilovpe ek @Uoew £va TPOPANUO  YOUUNADV
dwotdoewv, @aivetar 0Tt dev amodidovy kaAvtepa ot vAomomoelg Pabeiog pabnong oand to
HOVTELD KOl LLETO-LOVTEAQ TTOV TTPOTEIVOLLLE E0.

84



1. Introduction

1.1 Sales Forecasting

Due to the strong and growing competition existing nowadays, the majority of retailers are in a
continuous effort for increasing profits and reducing costs [19]. In addition, the variations in
consumers demand, which are caused by many factors like price, promotion, changing
consumers’ preference, seasonality, or weather changes, contribute to a fluctuating market
behaviour [2]. In that sense, an accurate sales forecasting system is an efficient way to achieve
higher profits and lower costs, by improving customers satisfaction, increasing sales revenue and
designing production plans efficiently [9]. Sales forecasting is the starting point for planning
various phases of a firms operations [13], and a crucial task in supply chain management under
dynamic market demand which, ultimately, affects retailers and other channel members in various
ways [19]. Industry forecasts are especially useful to big retailers who may have a greater market
share [3]. Due to ever-increasing global competition and an environment characterised by very
short product life cycles and high market volatility [2], this subject plays an even more prominent
role in supply chain management when the profitability and the long-term viability of a firm
relies on effective and efficient sales forecasts [6]. In particular, within the retail and consumer-
oriented industries, and especially for fast-moving consumer goods such as the electronic market
or the fashion industry, accurate forecasts are essential.

Companies face several challenges regarding accurate forecasts. For instance, they have to place
their production plans before exact knowledge about future demand is available. This is required
due to the fact that most production plants are located in Asian countries and therefore the time-
to-market is longer than the selling period of fast-moving consumer goods. [5] The production
and distribution of products is longer than the period of sale of other, domestically
produced ,products. In addition, other factors, such as changing weather conditions, holidays,
public events as well as the general economic situation, can have an impact on future demand
(Thomassey, 2010). Summing up, due to short life cycles, high variability in products and
demand uncertainties, businesses in fast-moving consumer goods industries face high challenges
with regard to precise forecasts.

Inaccurate sales forecasts are likely to lead to large inventories that increase management and
logistics costs or stock shortages that result in loss of profits for companies. The importance of
research into high-precision sales forecasting models stems from the fact that sales forecasting is
not only crucial for a huge number of companies, but also that most companies face huge
challenges in achieving accurate forecasts.

Sales prediction is rather a regression problem than a time series problem. Practice shows that the
use of regression approaches can often give us better results compared to time series methods.
Machine-learning algorithms make it possible to find patterns in the time series. We can find
complicated patterns in the sales dynamics, using supervised machine learning methods. One of
the main assumptions of regression methods is that the patterns in the past data will be repeated
in future.

In the sales data, we can observe several types of patterns and effects, such as, trend, seasonality,
autocorrelation, patterns caused by the impact of such external factors as marketing, pricing,
competitors’ behaviour. We also observe noise in the sales. Noise is caused by the factors which
are not included into our consideration. In the sales data, we can also observe extreme values
(outliers). If we need to perform risk assessment, we should to take into account noise and
extreme values. Outliers can be caused by some specific factors, e.g., promotion events, price
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reduction, weather conditions, etc. If these specific events are repeated periodically, we can add a
new feature which will indicate these special events and describe the extreme values of the target
variable.

Also, there are some inherent limitations of time series approaches for sales forecasting:

* We need to have historical data for a long time period to capture seasonality. However, often we
do not have historical data for a target variable, for example in case when a new product is
launched. At the same time we have sales time series for a similar product and we can expect that
our new product will have similar sales pattern.

* Sales data can have a lot of outliers and missing data. We must clean outliers and interpolate
data before using a time series approach.

* We need to take into account a lot of exogenous factors which have impact on sales.

Due to the above limitations, in the last three decades many companies have switched from time
series analysis models to regression approaches (Thomassey, 2010). Nowadays, many businesses
change or want to change to machine learning implementations as, with machine learning, one
can find intricate patterns in sales dynamics and get models with high prediction accuracy at a
fraction of the cost in comparison with traditional sales forecasting analysis.

1.2 Thesis’ Scope

As Sales Forecasting is an extremely big area and is severely impacted by the industry it is
implemented for, and the type of product/service a business offers, I chose to study the fast-
moving consumer goods industries. These include: 1. Fashion, 2. Electronics, 3. Beverages, 4.
Cosmetics, 5. Detergents, 6. Cleaners, 7. Other fast-moving consumer goods. Although, there
isn't enough research on this area, a lot of research has been conducted on Sales Forecasting
specifically for fashion products (see also Chapter 3, “Previous Work™).

As the fast-moving consumer goods area is also very big and diverse, we needed to further focus
on a specific category of FMCGs. We chose to focus to work on Detergents & Cleaners for the
following reasons:

1. Although there is a lot of research on Sales Forecasting for the Fashion industry there is
nearly zero research on Sales Forecasting for Detergents & Cleaners.

The Detergents & Cleaners industry is a very fast growing one with a CAGR of more
than 4% YoY.

They are a heavily price-sensitive industry which gives even more importance to pricing
strategies and accurate Sales Forecasting to maximise revenues and profits.

They can efficiently represent the entirety of the fast-moving consumer goods area.

0D

So, this Thesis’ goal is to evaluate the most promising machine learning and deep learning
models for sales forecasting for FMCGs and to build a unified model (meta-learner) with very
good accuracy for Machine Learning Sales forecasting for fast-moving consumer goods. So, we
research the effectiveness of both individual models and meta-learners for sales forecasting for
FMCGs based on other models’ prediction accuracy (hyper-parameter tuning with the top
models).

The key value proposition is the following: Ensembling/Meta-learning is easy to execute and not
extremely time-consuming. If a simple Meta-learning mechanism, based on our test models, is
efficiently more accurate than every individual model, then we have a value-for-money solution
for increased Sales prediction accuracy.
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So, we created Meta-learners based on the best models on our data. Then we tested whether the
proposed Stacking classifiers/regressors (SC/R) and/or Mixture of Experts (MoE) produce
significant model improvements for this type of Sales Forecasting. It turns out that in the case of
different models based on different algorithms and data, one can get a real gain in accuracy by
using the right ensembling (meta-learning), as it manages to get the benefits from "all the
worlds", combining the individual advantages of each model for the construction of a super-
model.

Of course, at the same time, we conduct a comparison analysis of the most important Machine
Learning and Deep Learning Sales Forecasting models and present our experiments in results in
the next chapters.

1.3 Thesis Outline

In the following chapters we will cover the theoretical background, the previous research work,
the method and models we used, the results and our final conclusions.

* Chapter 2 introduces the main concepts of fast-moving consumer goods (FMCGs), Sales
Forecasting and Machine Learning. We cover some basic terminology, relevant research and
benchmark models. More focus is given on theoretically outlining Sales Forecasting as without
deep understanding of the business case, the already tried solutions and the current
implementations we will not be able to follow the main concept and goal.

* Chapter 3 provides a review of previous work on Machine Learning implementations
specifically for Sales Forecasting and Ensembling and Meta-learning.

* Chapter 4 is wholly focused on the models we used. We provide a thorough theoretical
background of each of the benchmark models we used and of our meta-learners. Reading
Chapter 4 can be optional for Machine Learning engineers and Machine Learning professionals
but it is a must for readers who are not fully accustomed to ML regression models or those who
want to remember specifics and details of some of the ML models we used.

* Chapter 5 presents the details of our actual work. We present all the data analysis, pre-
processing, feature engineering and model training we did. Also, we present the key metrics
which will be used to evaluate every model’s prediction accuracy.

* Chapter 6 concludes the outcomes of our work and presents the final conclusion and ideas
about future work based on this Thesis.

» Chapter 7 is the Bibliography section (references to books, papers and publications we studied
and used for this Thesis).
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2. Theoretical Background

2.1 Fast-moving consumer goods

Fast-moving consumer goods (FMCGs) are consumer goods that have a short shelf life because
of high consumer demand (e.g., soft drinks, cleaners, medicine) or because they are perishable
(e.g., meat, dairy products, and baked goods). These goods are purchased frequently, are
consumed rapidly, are priced low, and are sold in large quantities. They also have a high turnover
when they're on the shelf at the store. For comparison. slow-moving consumer goods, are
consumer goods that have a longer shelf life and are purchased over time, include items like
furniture and appliances. [46]

FMCGs are purchased for consumption by the average consumer. Products, in general, are
divided into three different categories: durable, nondurable goods, and services. Durable goods
have a shelf life of three years or more while nondurable goods have a shelf life of less than one
year. Fast-moving consumer goods are the largest segment of consumer goods. They fall into the
nondurable category, as they are consumed immediately and have a short shelf life.

‘ They have a
short lifespan

05 02

They are purchased

frequently, but they . High turnover (> 50%
are low-involvement FGSt'mOV"‘g & of consumer ’
purchases consumer spending)

Goods (FMCG)

04 03

Purchased & ‘ Low prices and
consumed by sold in large

everyone quantities

Fig. 1. Fast-Moving Consumer Goods (FMCGs)

Because fast-moving consumer goods (FMCGs) have such a high turnover and extremely fast
sales, their market is not only very large, but also very competitive. Some of the world's largest
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companies are competing for market share in this industry, including Coca-Cola, Unilever,
Procter & Gamble, Nestlé, PepsiCo and Danone. For this reason, these companies are forced to
focus their marketing efforts on their fast-moving consumer goods in order to entice and attract
consumers to buy their products.

FMCGs are sold in large quantities, so they can generate extremely high revenues for businesses
in these industries. This large sales volume also offsets the low profit margins in individual sales.
This is why accurate sales forecasting is so important to them. These businesses’ logistics and
distribution systems require huge resources and special attention and having more accurate sales
forecasting allows them to increase their profit margins, while the absence of satisfactory sales
forecasting adds millions of additional costs in their supply chain.

2.2 Sales Forecasting

Sales forecasting refers to the prediction of future sales based on past historical data. Due to
competition and globalisation, sales forecasting plays an even more important role as part of the
commercial enterprise. Accurate sales forecasting is vital for profitable retail operations, because
without good forecasting, either much more or much less stocks would result, directly affecting
revenue and competitive position.

Mentzer and Moon (2005) defines a sales forecast as “a projection into the future of expected
demand, given a stated set of environmental conditions”. A sales forecast can therefore be
explained as a way of using different factors (e.g. sales history, sales promotion, seasonality, and
so on) to predict future sales and then use information from the forecast to develop plans for
resources and capacity to meet the demand in the best possible way (Herbig et al., 1993; Jonsson
& Mattson, 2011; Mentzer & Moon, 2005). Uncertainties are partly sales-related and often the
result of a lack of knowledge or incorrect information. Further, frequently changing product
ranges and varying demand due to different interfering influencing factors (seasonal influences,
price and assortment policies etc.) are only a few of many factors that make it difficult to use
conventional statistical forecasting models. In addition, the actual correlation between the
influencing factors is often difficult to grasp or not recognisable by humans, which leads to an
increased desire for and rising usage of artificial intelligence methods in demand planning [2].

Sales forecasting can also be used in significant managerial decision-making within companies
(Herbig et al., 1993; Lee, 2000; Mentzer & Moon, 2005). If managers get more reliable
information about future demand the simpler the decision-making about customer requirements
is going to be (Herbig et al., 1993; Mentzer & Moon, 2005). For companies to be able to share
the information for their sales forecasting, a well-designed forecasting process must exist. A well-
designed forecasting process helps the company share information within the company, not just
the outgoing data but also information about which data to use when forecasting, for example:
marketing activities, market dynamics, consumer behaviour, and so on (Danese & Kalchschmidt,
2011). With a well-designed forecasting process companies can increase their sales forecasting
accuracy by ensuring that the ingoing data is as accurate as possible (Ramanathan, 2012).
Without sales forecasting, operations can only respond retroactively, leading to poor production
planning, lost orders, inadequate customer service, and poorly utilised resources.

Therefore, companies need to make predictions of the products’ future demand. These predictions
can then be used for the planning, budgeting and scheduling of the companies resources. These
kinds of predictions are also known as sales forecasting (Bovee et al., 2006). Regardless of
industry, whether the company is a manufacturer, wholesaler, retailer or service provider, it is
important to effectively forecast demand. This helps companies identify market opportunities,
increase customer satisfaction, reduce inventory and obsolescence products and make scheduling
more effective (Linderman et al., 2003; Mclntyre et al., 1993). Because of this, forecasting is an
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important part of all industries when it comes to business planning and management (Armstrong
et al., 1997, Fildes & Hastings, 1994) and is in many cases what the basis of the corporate
strategy is built upon (Mentzer et al., 1999). Sales Forecasts accuracy is even more necessary for
Fast Moving Consumer Goods (FMCGs), as these products have large sales volume to offset the
low profit margins in individual sales. Thus, bad forecasting would lead to even lower or even
negative profit margins per individual sale which would make their production and retailing
unattainable.

Sales Forecasting should be a high priority for FMCG businesses’ management, as it includes
decision-making about information gathering, data management and decision making tools. For
instance, what information should be collected and how it should be used. It also includes
organisational issues as to which department is responsible for creating the forecasts. Decisions
also need to be taken in regard to the cooperation of information flow, both between the
companies departments but also within the supply chain. Information from multiple sources can
be used to improve the accuracy of the forecast (Fildes & Hastings, 1994; Fisher et al., 1994;
Remus et al., 1995). This means that; to improve the understanding of how to reduce forecasting
miscalculations companies must study the connections between forecasting techniques and
different factors (Danese & Kalchschmidt, 2011).

These factors can be grouped quantitatively (based on data collected over a longer period of time)
and qualitatively, based on judgment, intuition, and up-to-date (and inherently subjective) views
(Davis and Mentzer, 2007; Kerkkdnen and Huiskonen, 2007; Ingram, LaForge, Avila, Schwepker
and Williams, 2012; Armstrong and Green, 2014). If a company has a large number of stored
transactions, it is possible to use probability estimation techniques based on the development of
opportunities (Lodato, 2006; Duran, 2008; Sohnchen and Albers, 2010). Such an approach is less
applicable when there are fewer sales opportunities. In addition, the size of the opportunity also
matters, as the company must allocate its resources (Duran, 2008).

Despite the advanced tools available over-discussing the models a business should use for sales
forecasting might be unnecessary, or even hurtful. It is common that companies spend too much
time on advanced tools, when focus instead should be on processes, procedures, and educating
forecasters (the developers of a forecast) (Lawrence et al., 2000). It is important that all
departments provide input for the forecast and that all essential data is regarded when making
decisions (Gilmore & Lewis, 2006; Mentzer & Moon, 2005). A common problem in the making
of a forecast is that not all departments realise the advantages and are therefore not interested in
being part of the forecast creation. Thus it is important to make the departments understand in
what way each department can benefit from an accurate forecast. A difficult task is also to
balance it evenly so that the forecast does not become too extensive. It is important to
acknowledge the differences between core needs of sales and wants of sales. The process of
forecasting is often overcomplicated because of these differences (Gilmore & Lewis, 2006).

There are also two types of costs that result from inaccurate forecasting. The first one is if there is
an over-forecast that results in overstock and obsolescence products and the second one is if there
is an under-forecast; which means that the company does not have enough products and the cost
of lost sales increases (Dalrymple, 1987; Huang et al., 2010; Lawrence et al., 2000; Mahmoud et
al., 1988). Sales forecasting is therefore an important factor of a company’s profitability and
market share (Huang et al., 2010; Lee, 2000). Forecasts are also of significance in management
decisions as they are explicitly or implicitly based on predictions about the future (Herbig et al.,
1993; Lee, 2000). For a business to survive it is important to reach the customers at least as fast
as competitors. The more accurate manager decisions about the future are, the more successful
will companies be when adapting to different situations (Herbig et al., 1993). It is therefore
important that all decisions in a company or even the supply chain are based on a single, shared
and accurate forecast (Mentzer & Bienstock, 1998). Technologies in forecasting have developed
from having the same technique for all products to instead using technology that adapts
techniques for each product in order to achieve higher accuracy (Mentzer & Kahn, 1997; Mentzer
& Schroeter, 1993). However, if compared to other areas within the company, the performance of
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forecasts has improved remarkably little, even among more successful companies (Mentzer et al.,
1999; Moon et al., 2003).

Many techniques and solutions support sales forecasting both for the business to consumer (B2C)
and B2B segments. They can be grouped as quantitative (relying on data collected over longer
period of time) and qualitative, based on judgment, intuition and informed opinions (and
inherently subjective) (Davis and Mentzer, 2007; Kerkkdnen and Huiskonen, 2007; Ingram,
LaForge, Avila, Schwepker and Williams, 2012; Armstrong and Green, 2014). If a company has a
large number of stored transactions, it is possible to use probability estimation techniques based
on the development of opportunity, i.e. Sales funnel (Lodato, 2006; Duran, 2008; Sohnchen and
Albers, 2010). A survey of the leading companies in various industries has shown that companies
relying on data-driven decision-making (DDDM) achieve better results (Provost and Fawcett,
2013). On average, the top one-third DDDM companies from their industry are on average 5%
more productive and 6% more profitable compared to their competition (Brynjolfsson, Hitt and
Kim, 2011; McAfee and Brynjolfsson, 2012)

Companies that rely on data-driven decision-making (DDDM) mainly use statistical ways, such
as the expert inquiry method and time-series related algorithms. The expert inquiry method
completely relies on human experience and the accuracy is not stable enough. The time-series
algorithms including auto-regression, exponential smoothing method, and ARIMA model, which
are using historical sales data to construct the model. These methods cannot make full use of
related factors, for example, price, holiday, events/anomalies etc. so that it is hard to guarantee
optimal prediction accuracy in environments’ with complex changes. Various traditional machine
learning (ML) techniques are introduced into the field of sales forecast. These methods can
comprehensively use factors related to sales and improve the prediction accuracy. However, these
models cannot directly process time-series data, nor can they well extract the hidden rules of the
data. More recently, deep learning techniques, such as CNN and RNN have also shown to be
competitive in this domain. And, LSTM [1, 65] is superior to other methods in prediction
accuracy.

Although there is a huge body of literature and technological advancement on the subject of
prediction (Fildes, Goodwin and Lawrence, 2006; McCarthy, Davis Golicic and Mentzer, 2006;
Armstrong, Green and Graefe, 2015), there is a significant impossibility of successfully applying
it to business implementations. Decision makers remain skeptical of the recommendations
provided by forecast support systems (FSS) and rely on the application of their own mental
models (Goodwin, Fildes, Lawrence and Stephens, 2011) whose resulting forecasts are often
inadequate. If organisations want to improve their effectiveness and reduce the gap between
prediction and realisation, they must consider these anchored mental models.

Fortunately, many experts and researchers have contributed to sales forecasting methods over the
years. Although sales data is time series data, the impact of factors on sales cannot be ignored. To
solve this problem, the classic regression model is applied, which is based on taking reasonable
factors of influence for sales. However, it is very difficult to understand and identify the factors
that are linearly related to sales. In order to stand out from the competition, companies focus on
flexible customer service, speed and adherence to delivery dates at reasonable prices [7].
Shortened product life cycles, fluctuations in customer behaviour and the need to respond
immediately to market fluctuations are just some of the challenges in this regard. In order to
reduce short-term changes in the supply chain, it is vital to implement effective sales forecasting
models that allow companies to prepare for future situations in advance [2]. The available
prediction algorithms in the literature as well as in commercial (ERP) systems are constantly
increasing in terms of quantity and complexity.

In addition, computing power and storage capacity have become much less expensive, which
opens up new forecasting possibilities for companies [18]. However, both quantitative and
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qualitative sales forecasting models in some cases are not suitable for producing sufficient quality
forecasting due to the high and rapid market fluctuations.

To sum up, there are still three main difficulties in sales forecasting problem:

a. Massive data increase the difficulty of computing and modelling.

b. There is a complex non-linear relationship between influencing variables and sales.

c. Sales is influenced by a time factor. But the influence of time factor on sales is difficult to
quantify.

2.3 Machine Learning

2.3.1 Introduction to Machine Learning

In order to obtain a precise sales forecasting despite high market requirements, methods of
machine learning (ML) and the subcategory deep learning (DL) are increasingly used [2, 4, 5].
Both method types can be defined as sub-areas of artificial intelligence. The advantage of Al-
based methods is an automatic analysis of patterns and dependencies in the input data, in order to
use them for the subsequent forecast. As is the case with statistical methods, there is no generally
valid Al-based method that generates an improved forecast for every situation. Rather, each
method can be used to achieve different qualities depending on the application.

In Chapter 4, we will discuss in detail the method and ML models we use in this Thesis, but, first,
let’s give some theoretical information on Al and ML in general.

Artificial Intelligence (AI), also referred to as machine intelligence, describes intelligence
demonstrated by machines, which is different from natural intelligence, the kind of intelligence
displayed by humans. [47]

Machine learning (ML) is a subfield of Al, and computer science in that sense, that is concerned
with building algorithms which, to be useful, rely on a collection of examples of some
phenomenon. These examples can come from nature, be handcrafted by humans or generated by
another algorithm. Machine learning can also be defined as the process of solving a practical
problem by 1) gathering a dataset, and 2) algorithmically building a statistical model based on
that dataset. [48]

Launch!

Y
Study the | Train ML Evaluate
problem | algorithm solution
A
Analyze

errors

Fig. 2. Machine Learning approach [54]
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Machine learning is about extracting knowledge from data. It is at the intersection of statistics,
artificial intelligence, and computer science and is also known as predictive analytics or statistical
learning. The application of machine learning methods has in recent years become ubiquitous in
everyday life. From automatic recommendations of which movies to watch, to what food to order
or which products to buy, to personalised online radio and recognising people in photos, many
modern websites and devices have machine learning algorithms at their core. Outside of
commercial applications, machine learning has had a tremendous influence on the way data-
driven research is done today.

Finally, Machine Learning can help humans learn: ML algorithms can be inspected to see what
they have learned (although for some algorithms this can be tricky). For instance, once the spam
filter has been trained on enough spam, it can easily be inspected to reveal the list of words and
combinations of words that it believes are the best predictors of spam. Sometimes this will reveal
unsuspected correlations or new trends, and thereby lead to a better understanding of the
problem.

Study the | Train ML
problem | algorithm
A

=

Solution

A
I l
L
.:. , o.. :‘ .
2e° Inspect the
*Lots* of data solution
Iterate if needed | --- Understand the
problem better

Fig. 3. Learning from Machine Learning [54]

Applying ML techniques to dig into large amounts of data can help discover patterns that were
not immediately apparent. This is called data mining.

So, Machine Learning is great for:

. Problems for which existing solutions require a lot of hand-tuning or long lists of rules:
one Machine Learning algorithm can often simplify code and perform better.

. Complex problems for which there is no good solution at all using a traditional approach:
the best Machine Learning techniques can find a solution.

. Fluctuating environments: a Machine Learning system can adapt to new data.
. Getting insights about complex problems and large amounts of data.

Machine Learning can be based on supervised, semi-supervised, unsupervised and reinforcement
learning.
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Supervised Learning

In supervised learning, the dataset is the collection of labeled examples {(xiyi)}Ni=1. Each
element x; among N is called a feature vector. A feature vector is a vector in which each
dimension j = 1,..., D contains a value that describes the example somehow. That value is called
a feature and is denoted as x0@. For instance, if each example x in our collection represents a
person, then the first feature, x(1), could contain height in cm, the second feature, x®), could
contain weight in kg, x®) could contain gender, and so on. For all examples in the dataset, the
feature at position j in the feature vector always contains the same kind of information. It means
that if x(@ contains weight in kg in some example x;, then xx® will also contain weight in kg in
every example xi, k = 1,..., N. The label y; can be either an element belonging to a finite set of
classes {1, 2,..., C}, or a real number, or a more complex structure, like a vector, a matrix, a tree,
or a graph. Unless otherwise stated, in this book y;j is either one of a finite set of classes or a real
number. One can see a class as a category to which an example belongs.

The goal of a supervised learning algorithm is to use the dataset to produce a model that takes a
feature vector x as input and outputs information that allows deducing the label for this feature
vector. For instance, the model created using the dataset of people could take as input a feature
vector describing a person and output a probability that the person has cancer.

Unsupervised Learning

In unsupervised learning, the dataset is a collection of unlabelled examples {x;}Ni=1. Again, x is a
feature vector, and the goal of an unsupervised learning algorithm is to create a model that takes a
feature vector x as input and either transforms it into another vector or into a value that can be
used to solve a practical problem. For example, in clustering, the model returns the id of the
cluster for each feature vector in the dataset. In dimensionality reduction, the output of the model
is a feature vector that has fewer features than the input x; in outlier detection, the output is a real
number that indicates how x is different from a typical example in the dataset.

Semi-Supervised Learning

In semi-supervised learning, the dataset contains both labeled and unlabeled examples. Usually,
the quantity of unlabeled examples is much higher than the number of labeled examples. The goal
of a semi-supervised learning algorithm is the same as the goal of the supervised learning
algorithm. The hope here is that using many unlabeled examples can help the learning algorithm
to produce a better model.

It seems counter-intuitive that learning could benefit from adding more unlabeled examples, as,
unlabeled examples increase the problem’s uncertainty. However, by adding unlabeled examples,
we add more information: a larger data sample provides a more accurate picture of the probability
distribution function of the labelled data. Theoretically, a learning algorithm should be able to
leverage this additional information.

Reinforcement Learning

In reinforcement learning we have live feedback from the environment our machine runs and
lives in. Here, our implementation is able to perceive the state of its environment as a features’
vector and execute actions in every state. Different actions bring different rewards (or penalties)
and change the environment’s state. The goal of a reinforcement learning algorithm is to learn a

policy.
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A policy is a function (similar to the model in supervised learning) that takes the feature vector of
a state as input and outputs an optimal action to execute in that state. The action is optimal if it
maximises the expected average reward. Reinforcement learning solves a particular kind of
problem where decision making is sequential, and the goal is long-term, such as game playing,
robotics, resource management, or logistics.

Shallow vs. Deep Learning

A shallow learning algorithm learns the model parameters directly from the features of the
training examples. Most supervised learning algorithms are shallow. The characteristic exceptions
are neural network learning algorithms, especially those that create neural networks with more
than one layer between input and output. Such neural networks are called deep neural networks.
In deep neural network learning (or, simply, deep learning), unlike shallow learning, most model
parameters are learnt not directly from the features of the training examples, but from the outputs
of the previous levels. We will dive into Deep Learning and Neural Network architectures at the
end of this chapter.

Classification vs. Regression

Classification is a problem of automatically assigning a label to an unlabelled example. Spam
detection is a famous example of classification.

In machine learning, the classification problem is solved by a classification learning algorithm
that takes a collection of labeled examples as inputs, and produces a model that can receive an
unlabeled example and either directly output a label, or output a number that can be used by the
analyst to deduce the label. In a classification problem, a label is a member of a finite set of
classes. If the size of the set of classes is two (“sick”/“healthy”, “spam”/“not_spam”), we talk
about binary classification (also called binomial). Multi-class classification (also called

multinomial) is a classification problem with three or more classes.

Regression is a problem of predicting a real-valued label (often called a target) given an
unlabeled example. For example, we can estimate a house price valuation based on house
features, such as area, the number of bedrooms, location etc. This kind of target estimation is the
essence of regression algorithms. A regression learning algorithm that takes a collection of
labeled examples as inputs and produces a model that can receive an unlabeled example and
output a target value. It is obvious that forecasting is related to regression (as we have already
pointed out Sales Forecasting is more of a regression than a time-series problem) and, thus, we
will mainly focus on the theoretical background of regression algorithms, as they will be used in
the construction of our forecasting models.

So, a good representation of the Al, ML and DL space would be the following:
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Representation learning
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Fig. 4. Artificial Intelligence, Machine Learning and Deep Learning schematic [49]

Next, we present some of the most fundamental regression algorithms (Linear regression,
Logistic Regression etc.) which will help us understand in depth the algorithms that we used in
our work for FMCGs Sales Forecasting.

2.3.2 Linear Regression

Linear regression is a popular regression learning algorithm that learns a model which is a linear
combination of features of the input example.

Problem Statement

We have a collection of labeled examples {(xiyi)}Ni=1, where N is the size of the collection, xi is
the D-dimensional feature vector of the example i = 1,...,N, y; is a real-valued target and every
feature xi(j), j=1,...,D, is also a real number. We want to build a model fwn(x) as a linear
combination of features of example x:

fup(X) =wx +b @)

where w is a D-dimensional vector of parameters and b is a real number. The notation fw,, means
that the model f is parametrised by two values: w and b.

We will use the model to predict the unknown y for a given x like this: y < fwn(x). Two models
parametrised by two different pairs (w, b) will likely produce two different predictions when
applied to the same example. We want to find the optimal values (w*,b*). Obviously, the optimal
values of parameters define the model that makes the most accurate predictions.
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Linear regression is chosen to be as close to all training examples as possible. This is essential by
looking at the illustration in Figure 5. It displays the regression line (in red) for one-dimensional
examples (blue dots).

10

— linear regression

e training examples

Fig. 5. Linear Regression for one-dimensional examples [54].

We can use this line to predict the value of the target ynew for a new unlabelled input example
Xnew. If our examples are D-dimensional feature vectors (for D > 1), the only difference with the
one-dimensional case is that the regression model is not a line but a plane (for two dimensions) or
a hyperplane (for D > 2). So, this is the reason it is essential to have the requirement that the
regression hyperplane lies as close to the training examples as possible: if the red line in Figure 5
was far from the blue dots, the prediction ynew would have fewer chances to be correct.

Solution

So, that means that the optimisation procedure, which we use to find the optimal values for w*
and b* tries to minimise the following objective function:

% > (Fwn(xi) — wa)*.

i=1...N

The expression (fwp(xi) — yi)? in the above objective is called the loss function. It’s a measure of
penalty for misclassification of example i. This particular choice of the loss function is called
squared error loss. All model-based learning algorithms have a loss function and what we do is to
find the best model by minimising the objective function known as the cost function. In linear
regression, the cost function is given by the average loss, which is also called “empirical risk”.
The average loss, or empirical risk of a model is the average of all penalties obtained by applying
the model to the training data.

Based on different decisions about the form of the model, the form of the loss function, and about
the choice of the algorithm that minimises the average loss to find the best values of parameters,
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we would end up inventing a different algorithm. However, the fact that it’s different doesn’t
mean that it will work better.

We invent new learning algorithms for one of the two main reasons:

1. The new algorithm solves a specific practical problem better than the existing algorithms.

2. The new algorithm has better theoretical guarantees on the quality of the model it
produces.

One practical justification of the choice of the linear form for the model is that it’s simple.
Another consideration is that linear models rarely overfit. Overfitting is the property of a model
such that the model predicts very well labels of the examples used during training but frequently
makes errors when applied to examples that weren’t seen by the learning algorithm during
training. An example of overfitting in regression is shown in Figure 6.

10

regression of degree 10
e training examples

-10 - " - .
—10 X new -5 0 5 10

Fig. 6. Example of Overfitting. [54]

The data used to build the red regression line is the same as in Figure 5. The difference is that this
time, this is the polynomial regression with a polynomial of degree 10. The regression line
predicts almost perfectly the targets almost all training examples, but will likely make significant
errors on new data, as you can see in Figure 5 for xnew. The case of overfitting becomes more and
more relevant the more complicated and models we implement. We will see that especially in
Deep Learning implementations it quickly becomes a problem, as these very flexible solutions
(just like the tenth degree polynomial) tend to easily overfit.

2.3.3 Logistic Regression

Logistic regression has a misguiding name, as it is not really a regression, but a classification
learning algorithm. The name comes from statistics and is due to the fact that the mathematical
formulation of logistic regression is similar to that of linear regression. Here we give an
explanation of logistic regression on the case of binary classification. However, it can naturally
be extended to multi-class classification.
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Problem Statement

In logistic regression, we want to model y; as a linear function of x; (just like in linear regression).
However, with a binary y; this is not straightforward. The linear combination of features such as
wxi t b is a function that spans from minus infinity to plus infinity, while y; has only two possible
values.

At the time where the absence of computers required scientists to perform manual calculations,
they were eager to find a linear classification model. They figured out that if we define a negative
label as 0 and the positive label as 1, we would just need to find a simple continuous function
whose codomain is (0,1). In such a case, if the value returned by the model for input x is closer to
0, then we assign a negative label to x; otherwise, the example is labeled as positive. One
function that has such a property is the standard logistic function (also known as the sigmoid
function):

1

f(x)zm,

where ¢ is the base of the natural logarithm (also called Euler’s number; ex is also known as the
exp(x) function in programming languages).

The logistic regression model looks like this:

def 1
1 + e~ (wx+b)°

Swp(x)

By looking at the graph of the standard logistic function, we can see how well it fits our
classification purpose: if we optimise the values of w and b appropriately, we could interpret the
output of f(x) as the probability of y; being positive. For example, if it’s higher than or equal to
the threshold 0.5 we would say that the class of x is positive; otherwise, it’s negative. In practice,
the choice of the threshold could be different depending on the problem. Now, the main question
is how one finds the optimal w* and b*. In linear regression, the goal was to minimise the
empirical risk which was defined as the average squared error loss, also known as the mean
squared error or MSE (which will be one of the main key metrics in our models too).

Solution

In logistic regression, on the other hand, the aim is to maximise the likelihood of our training set
according to the model. In statistics, the likelihood function defines how likely the observation is
according to a specific model.

Lup € [T fwb(xi)¥ (1 — fuwp(x:)) 4. (4)

i=1...N

The expression fy 5(x)¥ (1 — fw7b(x))(1_yi) may look scary but it’s just a fancy mathematical
way of saying: “fwp(x) when y; = 1 and (1 — fw »(x)) otherwise”. Indeed, if y; = 1, then
(1 — fwp(x))7¥) equals 1 because (1 — y;) = 0 and we know that anything power 0 equals
1. On the other hand, if y; = 0, then fy 5(x)¥: equals 1 for the same reason.

For instance, let’s have a labeled example (xi,y;) in our training data. Assume also that we found
(guessed) some specific values w* and b* of our parameters. By applying our model fw+p+ to Xi we
will get some value 0 < p < 1 as output. If y;is the positive class, the likelihood of y; being the
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positive class, according to our model, is given by p. Similarly, if y; is the negative class, the
likelihood of it being the negative class is given by 1-p.

The optimisation criterion in logistic regression is that of maximum likelihood. Instead of
minimising the average loss, like in linear regression, we maximise the likelihood of the training
data.

You may have noticed that we used the product operator I in the objective function instead of

the sum operator 2. which was used in linear regression. It’s because the likelihood of observing

N labels for N examples is the product of likelihoods of each observation (assuming that all
observations are independent of one another, which is the case). You can draw a parallel with the
multiplication of probabilities of outcomes in a series of independent experiments in the
probability theory. Because of the exp function used in the model, in practice, it’s more
convenient to maximise the log-likelihood instead of likelihood. The log-likelihood is defined
like follows:

LogLuwp % In(L(w(x)) = Z yiln fup(X) + (1 — 33) In (1 — fup(x)).

Because In is a strictly increasing function, maximising this function is the same as maximising
its argument, and the solution to this new optimisation problem is the same as the solution to the
original problem.

Contrary to linear regression, there’s no closed form solution to the above optimisation problem.
A typical numerical optimisation procedure used in such cases is gradient descent. We will see
more about gradient descent in this chapter.

2.3.4 Decision Tree Learning

A decision tree is an acyclic graph that can be used to make decisions. In each branching node of
the graph, a specific feature j of the feature vector is examined. If the value of the feature is
below a specific threshold, then the left branch is followed; otherwise, the right branch is
followed. As the leaf node is reached, the decision is made about the class to which the example
belongs. As the title of the section suggests, a decision tree can be learned from data.

Problem Statement

Like previously, we have a collection of labeled examples; labels belong to the set {0,1}. We
want to build a decision tree that would allow us to predict the class given a feature vector.

Solution

There are various formulations of the decision tree learning algorithm. For the purpose of the
theoretical background of this Thesis, we consider just one, called ID3.
The optimisation criterion, in this case, is the average log-likelihood:

1
N > (Fwn(xi) — wi)*.
i=1...N
where fjj; is a decision tree.
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By now, it looks very similar to logistic regression. However, contrary to the logistic regression
learning algorithm which builds a parametric model f+** by finding an optimal solution to the

optimization criterion, the ID3 algorithm optimizes it approximately by constructing a
nonparametric model fi;(x) = Pr(y = 1[x).

~

S={(x1, y1)> (X2, ¥2), (X3, ¥3),
(X4, ¥4), (X5, ¥5), (X6, Y6)s
(x7,¥7), (xg, ¥g), (X9, ¥9),

(x10, ¥10)> (X115 y11)> (X12, ¥12)}

S_={(x1,¥1), (x2,%2),
(X4,74), (X6, ¥6)> (X7,¥7),
(x3,g), (X9, ¥9)}

S+ =1{(x3,3), (X5, ¥5), (X10,¥10)>
(X1 11) X12, Y12}

Pr(y = 1x) = (v ty2tystystys Pr(y = 11x) = (v;ty2tyy Pr(y = 1|x) =
ty6ty7tystyotyiotyityiz) 12) +y5ty7tystyo)7 0stystyiotyntyi)/s
Pr(y = 1|x) Pr(y = 1|x) Pr(y = 1|x)
(a) (b)

Fig. 7. An illustration of a decision tree building algorithm. The set S contains 12 labeled
examples. (a) In the beginning, the decision tree only contains the start node; it makes the same
prediction for any input. (b) The decision tree after the first split; it tests whether feature 3 is less
than 18.3 and, depending on the result, the prediction is made in one of the two leaf nodes. [54]

The ID3 learning algorithm works as follows. Let S denote a set of labeled examples. In the def
beginning, the decision tree only has a start node that contains all examples: S = {(xi, yi)} Ni-1.

Start with a constant model Sip3 defined as:

def 1
f}SDg = E Z Y.

(x,y)€S

The prediction given by the above model, 3,,.(x), would be the same for any input x. The

corresponding decision tree built using a toy dataset of twelve labeled examples is shown in
Fig.7.a.

Then we search through all features j = 1,..., D and all thresholds t, and split the set S def (j) into
two subsets: S- = {(x,y)|(x,y) € S,x <t} and St = {(x,y)|(x,y) € S,x > t}. The two new subsets
would go to two new leaf nodes, and we evaluate, for all possible pairs (j, t) how good the split
with pieces S_ and Sy is. Finally, we pick the best such values (j, t), split S into S;+ and S_, form

two new leaf nodes, and continue recursively on S+ and S- (or quit if no split produces a model
that’s sufficiently better than the current one). A decision tree after one split is illustrated in
Fig.7.b. In ID3, the goodness of a split is estimated by using the criterion called entropy. Entropy
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is a measure of uncertainty about a random variable. It reaches its maximum when all values of
the random variables are equiprobable. Entropy reaches its minimum when the random variable
can have only one value. The entropy of a set of examples S is given by,

H(S) < —ffpsIn fips — (1 — fips) In(1 — fps)

When we split a set of examples by a certain feature j and a threshold t, the entropy of a split,
H(S-,S+), is simply a weighted sum of two entropies:

def |S_ S
H(S_,8,) & %H(&) n %H(&)

So, in ID3, at each step, at each leaf node, we find a split that minimises the entropy or we stop at
this leaf node.

The algorithm stops at a leaf node in any of the below situations:
. All examples in the leaf node are classified correctly by the one-piece model.
. We cannot find an attribute to split upon.

. The split reduces the entropy less than some ¢ (the value for which has to be found
experimentally).

. The tree reaches some maximum depth d (also has to be found experimentally).

Because in ID3, the decision to split the dataset on each iteration is local (doesn’t depend on
future splits), the algorithm doesn’t guarantee an optimal solution. The model can be improved by
using techniques like backtracking during the search for the optimal decision tree at the cost of
possibly taking longer to build a model.

The most widely used formulation of a decision tree learning algorithm is called C4.5. It has
several additional features as compared to ID3:

* it accepts both continuous and discrete features.
* it handles incomplete examples.
* it solves overfitting problem by using a bottom-up technique known as “pruning”.

Pruning consists of going back through the tree once it’s been created and removing branches that
don’t contribute significantly enough to the error reduction by replacing them with leaf nodes.
The entropy-based split criterion intuitively makes sense: entropy reaches its minimum of 0 when
all examples in S have the same label; on the other hand, the entropy is at its maximum of 1 when
exactly one-half of examples in S is labeled with 1, making such a leaf useless for classification.
The only remaining question is how this algorithm approximately maximises the average log-
likelihood criterion.

2.3.5 Gradient Descent

We will show how gradient descent works as it can effectively provide us with a background to
later discuss most of the algorithms in this Thesis. Our example here, is taken from [54] and it’s
about finding the solution to a linear regression problem, using a dataset with only one feature.
So, the optimisation criterion will have two parameters: w and b. The extension to multi-
dimensional training data is straightforward; instead of having variables w(), w(, and b for two-
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dimensional data, we would have w(D), w(®), w®, and b for three-dimensional data and so on for
higher dimensions.

Sales as a function of radio ad spendings.
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Fig. 8: The Y-axis corresponds to the sales in units (the quantity we want to predict), the X-axis
corresponds to our feature: the spendings on radio ads in M$. [54]

Our dataset has two columns: the spendings of various companies on radio advertising each year
and their annual sales in terms of units sold. We want to build a regression model that can be used
to predict units sold based on how much a company spends on radio advertising. Each row in the
dataset represents one specific company:

Company Spendings, M$ Sales, Units

1 37.8 22.1
2 39.3 10.4
3 45.9 9.3

4 41.3 18.5

We have data for 200 companies, so we have 200 training examples in the form (xiyi) =
(Spendings;i,Sales;). Figure 8 shows all examples on a 2D plot.

Remember that the linear regression model looks like this: f(x) = wx + b. We don’t know what
the optimal values for w and b are and we want to learn them from data. To do that, we look for
such values for w and b that minimize the mean squared error:

N
det 1S wr 4 )2
l—N;@(WﬁW

Gradient descent starts with calculating the partial derivative for every parameter and then we
start to subtract partial derivatives from the values of parameters. If a derivative is positive at
some point, then the function grows at this point. And, so, because we want to minimise the
objective function, when the derivative is positive we know that we need to move our parameter
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in the opposite direction (to the left on the axis of coordinates). When the derivative is negative
(the function is decreasing), we need to move our parameter to the right to decrease the value of
the function even more. Subtracting a negative value from a parameter moves it to the right.

At the next epoch, we recalculate partial derivatives using eq. 1 with the updated values of w and
b; we continue the process until convergence. Typically, we need many epochs until we start
seeing that the values for w and b don’t change much after each epoch; then we stop.

(wz; + b));

i
o 1)
- 3 220

aw

(wz; + b)).

To find the partial derivative of the term (y; — (wz + b))? with respect to w I applied the
chain rule. Here, we have the chain f = fy(f;) where f; = y; — (wz +b) and f, = f2. To find
a partial derivative of f with respect to w we have to first find the partial derivative of f with
respect to fo which is equal to 2(y; — (wz + b)) (from calculus, we know that the derivative

663; z? = 2z) and then we have to multiply it by the partial derivative of y; — (wz + b) with

respect to w which is equal to —z. So overall 2t = L LS N —2z(y; — (wz; +b)). In a similar
way, the partial derivative of [ with respect to b, gé, was calculated.

Gradient descent proceeds in epochs. An epoch consists of using the training set entirely to
update each parameter. In the beginning, the first epoch, we initialize? w < 0 and b « 0.

The partial derivatives, 8‘9—1 and al ; given by eq. 1 equal, respectively, 37 =2 va=1 z;y; and

_72 Zf\;l y;. At each epoch, we update w and b using partial derivatives. The learning rate «
controls the size of an update:

ol
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At the next graph (Figure 9), we see the evolution of the regression line through gradient descent
epochs.
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Fig. 9: The evolution of the regression line through gradient descent epochs [54].

Gradient descent is sensitive to the choice of the learning rate a. It is also slow for large datasets.
Fortunately, several significant improvements to this algorithm have been proposed.

Notice that gradient descent and its variants are not machine learning algorithms. They are
solvers of minimisation problems in which the function to minimise has a gradient (in most
points of its domain).

At the end of this chapter (Chapter 2, “Theoretical Background”) we will also establish Deep
Learning (2.4) which is strongly related to Gradient Descent logic and epochs.

2.3.6 Ensemble Learning

The fundamental algorithms that we have already considered (Linear Regression, Logistic
Regression, Random Trees etc.) have their limitations. Because of their simplicity, sometimes
they cannot produce a model accurate enough for your problem. To achieve higher accuracy, one
can try deep neural networks. However, in practice, deep neural networks require a significant
amount of labeled data which you might not have. Another approach to boost the performance of
simple learning algorithms is ensemble learning. Later, we will talk in detail about ensemble
learning/meta-learning and meta-learners’ building techniques in methodologies.

Ensemble learning is a learning paradigm that, instead of trying to learn one extremely accurate
model, focuses on training a large number of low-accuracy models and then combining the
predictions given by those weak models to obtain a high-accuracy meta-model.

Low-accuracy models are usually learned by weak learners, that is learning algorithms that
cannot learn complex models, and thus are typically fast at the training and at the prediction time.
The most frequently used weak learner is a decision tree learning algorithm in which we often
stop splitting the training set after just a few iterations. The obtained trees are shallow and not
particularly accurate, but the idea behind ensemble learning is that if the trees are not identical
and each tree is at least slightly better than random guessing, then we can obtain high accuracy by
combining a large number of such trees.
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To obtain the prediction for input x, the predictions of each weak model are combined using some
sort of weighted voting. The specific form of vote weighting depends on the algorithm, but,
independently of the algorithm, the idea is the same: if the council of weak models predicts that
the message is spam, then we assign the label spam to x.

Two principal ensemble learning methods are boosting and bagging.

* Boosting consists of using the original training data and iteratively create multiple models by
using a weak learner. Each new model would be different from the previous ones in the sense
that the weak learner, by building each new model tries to fix previous models’ errors. The
final ensemble model is a certain combination of those multiple weak models built iteratively.

» Bagging consists of creating many “copies” of the training data (each copy is slightly different
from another) and then apply the weak learner to each copy to obtain multiple weak models
and then combine them. A widely used and effective machine learning algorithm based on the
idea of bagging is random forest.

Random Forest

Random Forest is the closest algorithm to the most “vanilla’ bagging algorithm. About the
“vanilla” bagging algorithm, consider the following: Given a training set, we create B random
samples Sy (for each b = 1,...,B) of the training set and build a decision tree model f;, using each
sample Sy as the training set. To sample Sp for some b, we do the sampling with replacement.
This means that we start with an empty set, and then pick at random an example from the training
set and put its exact copy to Sy by keeping the original example in the original training set. We
keep picking examples at random until the |Sp| = N.

After training, we have B decision trees. The prediction for a new example x is obtained as the
average of B predictions:
B

ye 0% 23 A
b=1

in the case of regression, or by taking the majority vote in the case of classification.

Random forest is different from the vanilla bagging in just one way. It uses a modified tree
learning algorithm that inspects, at each split in the learning process, a random subset of the
features. The reason for doing this is to avoid the correlation of the trees: if one or a few features
are very strong predictors for the target, these features will be selected to split examples in many
trees. This would result in many correlated trees in our “forest.” Correlated predictors cannot help
in improving the accuracy of prediction. The main reason behind a better performance of model
ensembling is that models that are good will likely agree on the same prediction, while bad
models will likely disagree on different ones. Correlation will make bad models more likely to
agree, which will hamper the majority vote or the average.

The most important hyper-parameters to tune are the number of trees, B, and the size of the
random subset of the features to consider at each split.

Random forest is one of the most widely used ensemble learning algorithms. The reason it is that
popular is that by using multiple samples of the original dataset, we reduce the variance of the
final model. We need to constantly take into account that low variance means low overfitting.
Overfitting happens when our model tries to explain small variations in the dataset because our
dataset is just a small sample of the population of all possible examples of the phenomenon we
try to model. If we were unlucky with how our training set was sampled, then it could contain
some undesirable (but unavoidable) artifacts: noise, outliers and overrepresented or
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underrepresented examples. By creating multiple random samples with replacement of our
training set, we reduce the effect of these artifacts.

Gradient Boosting

Another effective ensemble learning algorithm is gradient boosting. As the name points out, it is
based on the idea of boosting. Let’s first look at gradient boosting for regression. To build a
strong regressor, we start with a constant model f = fy (just like we did in ID3):

dof 1
f=folx)= N;yi
Then we modify labels of each example i = 1,..., N in our training set like follows:

Ui < yi — f(x3)

where yhati, called the residual, is the new label for example xi. Now we use the modified training
set, with residuals instead of original labels, to build a new decision tree model, fi. The boosting
model is now defined as f = fo + afi, where a is the learning rate (hyperparameter).

Then we recompute the residuals and replace the labels in the training data once again, train the
new decision tree model f>, redefine the boosting model as f = fo + afi + af2 and the process
continues until the predefined maximum M of trees are combined.

So, by computing the residuals, we find how well (or poorly) the target of each training example
is predicted by the current model f. We then train another tree to fix the errors of the current
model (this is why we use residuals instead of real labels) and add this new tree to the existing
model with some weight o. Therefore, each additional tree added to the model partially fixes the
errors made by the previous trees until the maximum number M (another hyperparameter) of
trees are combined.

In gradient boosting, we don’t calculate any gradient contrary to what we did for linear
regression. To see the similarity between gradient boosting and gradient descent remember why
we calculated the gradient in linear regression: we did that to get an idea on where we should
move the values of our parameters so that the MSE cost function reaches its minimum. The
gradient showed the direction, but we didn’t know how far we should go in this direction, so we
used a small step o at each iteration and then reevaluated our direction. The same happens in
gradient boosting. However, instead of getting the gradient directly, we use its proxy in the form
of residuals: they show us how the model has to be adjusted so that the error (the residual) is
reduced.

The three principal hyperparameters to tune in gradient boosting are the number of trees, the
learning rate, and the depth of trees. Apart from affecting the model accuracy, the depth of trees
also affects the speed of training and prediction: the shorter, the faster.

It can be shown that training on residuals optimizes the overall model f for the mean squared
error criterion. You can see the difference with bagging here: boosting reduces the bias (or
underfitting) instead of the variance. As such, boosting can overfit. However, by tuning the depth
and the number of trees, overfitting can be largely avoided.

Gradient boosting for classification is similar, but the steps are slightly different. Let’s consider
the binary case. Assume we have M regression decision trees. Similarly to logistic regression, the
prediction of the ensemble of decision trees is modeled using the sigmoid function:
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def 1
where f(x) = %o Zm 1 fm(x) and fy, is a regression tree.

Again, like in logistic regression, we apply the maximum likelihood principle by trying to
find such an f that maximizes L; = 3V In[Pr(y; = 1|x;, f)]. Again, to avoid numerical
overflow, we maximize the sum of log-likelihoods rather than the product of likelihoods.

The algorithm starts with the initial constant model f = fy = p, where p = + Zl 1 Y-

(It can be shown that such initialization is optimal for the s1gm01d function.) Then at each
iteration m, a new tree f,, is added to the model. To find the best f,,, first the partial

derivative g; of the current model is calculated for each i =1,..., N:
dLy
9i = F,

where f is the ensemble classifier model built at the previous iteration m — 1. To calculate g;
we need to find the derivatives of In [Pr(y; = 1|x;, f)] with respect to f for all i. Notice that

14+e—FGi)
equation with respect to f equals to

In [Pr(y; = 1|x;, f)] < [;] The derivative of the right-hand term in the previous

1
ef(xi) 41"
We then transform our training set by replacing the original label y; with the corresponding
partial derivative g;, and build a new tree f,,, using the transformed training set. Then we
find the optimal update step p,, as:

Pm < argmax Ly ,r .
P

At the end of iteration m, we update the ensemble model f by adding the new tree fy,:

f =+ apmfm.
We iterate until m = M, then we stop and return the ensemble model f.

Gradient boosting is one of the most powerful machines learning algorithms. Not just because it
creates very accurate models, but also because it is capable of handling huge datasets with
millions of examples and features. It usually outperforms random forest in accuracy but, because
of its sequential nature, can be significantly slower in training. More about Gradient boosting
algorithms and Ensemble Learning and real-world Ensembling implementations will be shown in
Chapter 3 (“Previous Work™). Also, the power of Gradient boosting algorithms will become
obvious in our Experiments (Chapter 5).

2.3.7 Real-world problems of ML implementations

Regarding our challenges in Sales Forecasting for FMCGs, we will use algorithms (all of which
will be explained in detail in Chapter 4) based on the main ideas of ML algorithm building,
metrics and algorithm evaluation to those that have mentioned here.
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However, we will face three problems: sparse data, user preference and developing a single
model with good performance.

Sparse data appears as:

* Among all the products, only a small part belongs to the best-selling with sales records every
day. Most products only have sales records in certain periods and none in other periods.

* The smaller the division dimension of the products, the more obvious the sparseness of the
data. But we need smaller granularity data because it is accurate for decision-making of daily
operation.

More about the real-world problems of ML Sales Forecasting will be mentioned in Chapter 3
(“Previous Work™), Chapter 4 (“Method & Models”) and Chapter 5 (“Experiments™).

To complete this chapter, we need to give one more aspect of ML Sales Forecasting. Since no
model can achieve the theoretical 100% it is very important to choose the correct "bias" of our
model predictions. That is, +0.1 and -0.1 MSE may theoretically be an equivalent error at an
absolute value, but in practice they lead to very different profits for an organisation, since, for
example, when the storage cost is less than the exhausted cost, the appropriate overestimation of
forecast is beneficial for immediate recovery. Conversely, when the cost of storage is greater than
the cost of depleting inventory, then we would prefer our model to value lower than higher sales.
Also, when the warehousing cost is less than the out-of-stock cost, appropriate overestimate the
prediction is beneficial for promptly restock. However, there is little literature and very few
experts and researchers study these limits and bias when forecasting sales.

In Chapter 5, we will further discuss model bias, as we build, run and evaluate our models. With
a Stacking Classifier/Regressor (SC/R) and a Mixture of Experts (MoE) we will show how we
successfully did fast and improved Ensembling. In a real prediction system, although deep
learning models are effective and can be extremely accurate, they are harder to maintain and need
much more data to start with [37]. A single ML model with good performance is much more
valuable [19]. So, this is the reason this Thesis’ final goal is to build a unified Machine Learning
method with very high accuracy for Sales forecasting for fast-moving consumer goods.

2.4 Deep Learning

The simple machine learning algorithms described in this chapter work very well on a wide
variety of important problems. However, they have not succeeded in solving the central problems
in Al, such as recognising speech or recognising objects. The development of deep learning was
motivated in part by the failure of traditional algorithms to generalize well on such Al tasks.

This section is about how the challenge of generalising to new examples becomes exponentially
more difficult when working with high-dimensional data, and how the mechanisms used to
achieve generalisation in traditional machine learning are insufficient to learn complicated
functions in high-dimensional spaces. Such spaces also often impose high computational costs.
Deep learning was designed to overcome these and other obstacles.

Deep learning is a specific subfield of machine learning: a new take on learning representations
from data that puts an emphasis on learning successive layers of increasingly meaningful
representations. The deep in deep learning isn’t a reference to any kind of deeper understanding
achieved by the approach; rather, it stands for this idea of successive layers of representations.
How many layers contribute to a model of the data is called the depth of the model. Other
appropriate names for the field could have been layered representations learning and hierarchical
representations learning. Modern deep learning often involves tens or even hundreds of
successive layers of representations, and they’re all learned automatically from exposure to
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training data. Meanwhile, other approaches to machine learning tend to focus on learning only
one or two layers of representations of the data; hence, they’re sometimes called shallow
learning. [49]

In deep learning, these layered representations are (almost always) learned via models called
neural networks, structured in literal layers stacked on top of each other. The term neural network
is a reference to neurobiology, but although some of the central concepts in deep learning were
developed in part by drawing inspiration from our understanding of the brain, deep-learning
models are not models of the brain. There’s no evidence that the brain implements anything like
the learning mechanisms used in modern deep-learning models. Many people have the misbelief
that neural networks work like the brain or are modeled after the brain, but that isn’t true. In fact,
a neural network (NN), just like a regression model, is a mathematical function: y = fan(x).

The function fyn has a particular form: it’s a nested function. These nested functions form neural
network layers. So, for a 3-layer neural network that returns a scalar, fnn looks like this:

y = fin (x) = f5(£,(f,(x)))
In the above equation, fi and f> are vector functions of the following form:  fi(z) C q(Wiz + b))

where 1 is called the layer index and can span from 1 to any number of layers. The function giis
called an activation function. It is a fixed, usually nonlinear function chosen by the data analyst
before the learning is started. The parameters Wi (a matrix) and b (a vector) for each layer are
learned using the familiar gradient descent by optimising, depending on the task, a particular cost
function (such as MSE). Compare the equation above with the equation for logistic regression,
where you replace g1 by the sigmoid function, and you will not see any difference. The function f3
is a scalar function for the regression task, but can also be a vector function depending on your
problem.

We use a matrix W instead of a vector wi because giis a vector function. Each row wiu (u for
unit) of the matrix Wi is a vector of the same dimensionality as z. Let ajy = wiuz + bru. The output
of fi(z) is a vector [gi(ai, 1), gi(a1,2), . . ., gi(ai,sizer )], where g1 is some scalar function, and size; is
the number of units in layer 1. To make it more concrete, let’s consider one architecture of neural
networks called multilayer perceptron and often referred to as a vanilla neural network.

To give more details about deep learning, and to focus on the architectures we will use in Chapter
5, let’s have a closer look at one particular configuration of neural networks called feed-forward
neural networks (FFNN), and more specifically the architecture called a multilayer perceptron
(MLP). As an illustration, let’s consider an MLP with three layers. Our network takes a two-
dimensional feature vector as input and outputs a number. This FFNN can be a regression or a
classification model, depending on the activation function used in the third, output layer.

Our MLP is depicted in Figure 10. The neural network is represented graphically as a connected
combination of units logically organised into one or more layers. Each unit is represented by
either a circle or a rectangle. The inbound arrow represents an input of a unit and indicates where
this input came from. The outbound arrow indicates the output of a unit.

The output of each unit is the result of the mathematical operation written inside the rectangle.
Circle units don’t do anything with the input; they just send their input directly to the output.

The following happens in each rectangle unit. Firstly, all inputs of the unit are joined together to
form an input vector. Then the unit applies a linear transformation to the input vector, exactly like
linear regression model does with its input feature vector. Finally, the unit applies an activation
function g to the result of the linear transformation and obtains the output value, a real number. In
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a vanilla FFNN, the output value of a unit of some layer becomes an input value of each of the
units of the subsequent layer.

In Figure 10, the activation function gy has one index: 1, the index of the layer the unit belongs to.
Usually, all units of a layer use the same activation function, but it’s not a rule. Each layer can
have a different number of units. Each unit has its parameters w1, and by, where u is the index of
the unit, and 1 is the index of the layer. The vector y, , in each unit is defined as [y(), y®), y©3),

y@]. The vector x in the first layer is defined as [x(D,..., xD)].

layer 1 (f1) layer 2 () layer 3 (f3)

720 — gy (Wy,1y1 + byp)

X
N )

—— x®

72? — g(Way1 + ba3)

X

23 — go(Wa3y1 + by 3)

Fig. 10: A multilayer perceptron with two-dimensional input, two layers with four units and one
output layer with one unit [54]

As you can see in Figure 10, in multilayer perceptrons all outputs of one layer are connected to
each input of the succeeding layer. This architecture is called fully-connected. A neural network
can contain fully-connected layers. Those are the layers whose units receive the outputs of each
of the units of the previous layer.

Feed-Forward Neural Network Architecture

If we want to solve a regression or a classification problem discussed in previous chapters, the
last (the rightmost) layer of a neural network usually contains only one unit. If the activation
function giast of the last unit is linear, then the neural network is a regression model. If the gas: is a
logistic function, the neural network is a binary classification model.

The data analyst can choose any mathematical function as giu, assuming it’s differentiable. The
latter property is essential for gradient descent used to find the values of the parameters wiu and
by for all 1 and u. The primary purpose of having nonlinear components in the function fan is to
allow the neural network to approximate nonlinear functions. Without nonlinearities, fxn would
be linear, no matter how many layers it has. The reason is that Wiz + by is a linear function and a
linear function of a linear function is also linear.

Popular choices of activation functions are the logistic function, already known to you, as well as
TanH and ReLU. The former is the hyperbolic tangent function, similar to the logistic function
but ranging from —1 to 1 (without reaching them). The latter is the rectified linear unit function,
which equals to zero when its input z is negative and to z otherwise:

ty
¥ —g3(W3,1y2+b31) }“—‘
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e’ —e *

e +e?’

if
relu(z):{o if 2<0

tanh(z) =

z otherwise

As we explained above, Wiin the expression Wiz + by, is a matrix, while by is a vector. That looks
different from linear regression’s wz+b. In matrix Wi, each row u corresponds to a vector of
parameters wiu. The dimensionality of the vector wiu equals to the number of units in the layer
1-1. The operation Wz results in a vector al = [wi1z, Wi2Z, . . . , Wisizeiz]. Then the sum a; + by
gives a vector ci. Finally, the function gi(ci) produces the vector y1 = [y, v,..., y] as output.

Deep learning refers to training neural networks with more than two non-output layers. In the
past, it became more difficult to train such networks as the number of layers grew. The two
biggest challenges were referred to as the problems of exploding gradient and vanishing gradient
as gradient descent was used to train the network parameters.

While the problem of exploding gradient was easier to deal with by applying simple techniques
like gradient clipping and L1 or L2 regularization, the problem of vanishing gradient remained
intractable for decades.

To update the values of the parameters in neural networks the algorithm called backpropagation is
typically used. Backpropagation is an efficient algorithm for computing gradients on neural
networks using the chain rule. During gradient descent, the neural network’s parameters receive
an update proportional to the partial derivative of the cost function with respect to the current
parameter in each iteration of training. The problem is that in some cases, the gradient will be
vanishingly small, effectively preventing some parameters from changing their value. In the
worst case, this may completely stop the neural network from further training.

Traditional activation functions, such as the hyperbolic tangent function we mentioned above,
have gradients in the range (0, 1), and backpropagation computes gradients by the chain rule.
That has the effect of multiplying n of these small numbers to compute gradients of the earlier
(leftmost) layers in an n-layer network, meaning that the gradient decreases exponentially with n.
That results in the effect that the earlier layers train very slowly, if at all.

However, the modern implementations of neural network learning algorithms allow us to
effectively train very deep neural networks (up to hundreds of layers). This is due to several
improvements combined together, including ReLU, LSTM and other gated units, as well as
techniques such as skip connections used in residual neural networks, as well as advanced
modifications of the gradient descent algorithm.

Therefore, today, since the problems of vanishing and exploding gradient are mostly solved (or
their effect diminished) to a great extent, the term “deep learning” refers to training neural
networks using the modern algorithmic and mathematical toolkit independently of how deep the
neural network is. In practice, many business problems can be solved with neural networks
having 2-3 layers between the input and output layers. The layers that are neither input nor output
are often called hidden layers. We will see in Chapter 5 (“Experiments”), that we implement
different neural networks with a different number of (hidden) layers.

Convolutional Neural Network
As we make the network bigger, the number of parameters an MLP can grow exponentially fast.

More specifically, as one adds one layer, there is an addition of (sizei—1 +1)-size; parameters (our
matrix Wi plus the vector bi). That means that if you add another 1000-unit layer to an existing
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neural network, then you add more than 1 million additional parameters to your model.
Optimizing such big models is a very computationally intensive problem.

When our training examples are images, the input is very high-dimensional. If you want to learn
to classify images using an MLP, the optimization problem is likely to become intractable.

A convolutional neural network (CNN) is a special kind of FFNN that significantly reduces the
number of parameters in a deep neural network with many units without losing too much in the
quality of the model. CNNs have found applications in image and text processing where they beat
many previously established benchmarks.

Filter
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1 oo 4|2 100 o1 4|2
4 4|17
1lo]1]o0 1lofl1]o
Conv 1 . Conv 4 2
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Fig. 11: A filter convolving across an image. [54]

One layer of a CNN consists of multiple convolution filters (each with its own bias parameter),
just like one layer in a vanilla FFNN consists of multiple units. Each filter of the first (leftmost)
layer slides -or convolves- across the input image, left to right, top to bottom, and convolution is
computed at each iteration. An illustration of the process is given in Figure 11 steps of one filter
convolving across an image are shown.

The filter matrix (one for each filter in each layer) and bias values are trainable parameters that
are optimized using gradient descent with backpropagation.

A nonlinearity is applied to the sum of the convolution and the bias term. Typically, the ReLU
activation function is used in all hidden layers. The activation function of the output layer
depends on the task.

Since we can have size filters in each layer 1, the output of the convolution layer 1 would consist
of sizel matrices, one for each filter.

If the CNN has one convolution layer following another convolution layer, then the subsequent
layer 1 + 1 treats the output of the preceding layer 1 as a collection of size| image matrices. Such a
collection is called a volume. The size of that collection is called the volume’s depth. Each filter
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of layer 1+ 1 convolves the whole volume. The convolution of a patch of a volume is simply the
sum of convolutions of the corresponding patches of individual matrices the volume consists of.

Volume
3 1 2 4 P 4 3 2 1 4 1 2 Output before nonlinearity
4 1 0 5 -3 1 0 1 2 -1 -1 0 -3
2 2 1 0 1 2 | 38 2 1 0 4 3
1 2 1 2 1 0 2 5 1 3 1 2
Filter Bias

Fig. 12: Convolution of a volume consisting of three matrices. [54]

The value of the convolution, —3, was obtained as (—2:3+3-1+5-4+—1-1)+(—2-2+ 3-(=1)+5-:(-3)+
=1-1)+(=2-1+3-(=1)+5-2+—1-(—1))*+(=2). In computer vision, CNNs often get volumes as input,
since an image is usually represented by three channels: R, G, and B, each channel being a
monochrome picture.

Two important properties of convolution are stride and padding. Stride is the step size of the
moving window. If the stride is 1, this means that the filter slides to the right and to the bottom by
one cell at a time. With stride equals 2, the filter slides two cells at a time. Also, it is obvious that
the output matrix is smaller when the stride is bigger.

Padding allows getting a larger output matrix; it’s the width of the square of additional cells with
which you surround the image (or volume) before you convolve it with the filter. The cells added
by padding usually contain zeroes. When the padding is 0, no additional cells are added to the
image. When the stride is 2 and padding is 1, a square of width 1 of additional cells are added to
the image. We can see that the output matrix is bigger when padding is bigger.

Recurrent Neural Network

Recurrent neural networks (RNNs) are used to label, classify, or generate sequences. A sequence
is a matrix, each row of which is a feature vector and the order of rows matters. To label a
sequence is to predict a class for each feature vector in a sequence. To classify a sequence is to
predict a class for the entire sequence. To generate a sequence is to output another sequence (of a
possibly different length) somehow relevant to the input sequence.

RNNs are often used in text processing because sentences and texts are naturally sequences of
either words/punctuation marks or sequences of characters. For the same reason, recurrent neural
networks are also used in speech processing.

A recurrent neural network is not feed-forward: it contains loops. The idea is that each unit u of
recurrent layer 1 has a real-valued state hiu. The state can be seen as the memory of the unit. In
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RNN, each unit u in each layer I receives two inputs: a vector of states from the previous layer 1 —
1 and the vector of states from this same layer 1 from the previous time step.

To illustrate the idea, let’s consider the first and the second recurrent layers of an RNN. The first
(leftmost) layer receives a feature vector as input. The second layer receives the output of the first
layer as input.

This situation is schematically depicted in Figure 13. As we said above, each training example is
a matrix in which each row is a feature vector. So, let’s illustrate this matrix as a sequence of
vectors X=[x1,x2... xtxt"1,  xlengthX] where lengthX is the length of the input sequence. If our
input example X is a text sentence, then feature vector x; for each t = 1,..., lengthX represents a
word in the sentence at position t.

layer 1 T ¥y layer 2 T y2
by [A,,h5] by [R50
Y, < gV, +¢) Yo —&(Vohy + ¢)
Xt
—
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— X — [xD,x@1] hy — [h 1] h
_>hH‘v' Ry — g (W, x' +uy, bl + b)) Ry —gi(Wo ' + up el + by )
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X! — [xD1,x0)1] by — [/, 0] B
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St gy (Wi X uoht, + by )
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Fig. 13: The first two layers of an RNN. The input feature vector is two-dimensional; each layer
has two units. [54]

As depicted in Figure 13, in an RNN, the feature vectors from an input example are read by the
neural network sequentially in the order of the timesteps. The index t denotes a timestep. To
update the state ht, at each timestep t in each unit u of each layer 1 we first calculate a linear
combination of the input feature vector with the state vector ht-! of this same layer 1,u from the
previous timestep, t-1. The linear combination of two vectors is calculated using two parameter
vectors Wiy, U,y and a parameter biu. The value of ht, is then obtained by applying activation
function g to the result of the linear combination. A typical choice for function g; is tanh. The
output y!t is typically a vector calculated for the whole layer 1 at once. To obtain ylt, we use
activation function g that takes a vector as input and returns a different vector of the same
dimensionality. The function gz is applied to a linear combination of the state vector values hiu
calculated using a parameter matrix Viand a parameter vector ciu. In classification, a typical
choice for g is the softmax function:

def 1 (1) (D) (4 2
o(z) =|oc"/,...,0 where o .
=) =1 7 : ZkD:1 €xp (z(k))
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The softmax function is a generalization of the sigmoid function to multidimensional outputs.
The dimensionality of Vi is chosen by the data analyst such that multiplication of matrix Viby the
vector h!t results in a vector of the same dimensionality as that of the vector ¢. This choice
depends on the dimensionality for the output label y in your training data. (Until now we only
saw one-dimensional labels, but we will see in the future chapters that labels can be
multidimensional as well.)

The values of Wiy, Uiy, biu, Vi, and ciu are computed from the training data using gradient

descent with backpropagation. To train RNN models, a special version of backpropagation is
used called backpropagation through time.

Both tanh and softmax suffer from the vanishing gradient problem. Even if our RNN has just one
or two recurrent layers, because of the sequential nature of the input, backpropagation has to
“unfold” the network over time. From the point of view of the gradient calculation, in practice
this means that the longer is the input sequence, the deeper is the unfolded network.

Another problem RNNs have is that of handling long-term dependencies. As the length of the
input sequence grows, the feature vectors from the beginning of the sequence tend to be
“forgotten,” because the state of each unit, which serves as network’s memory, becomes
significantly affected by the feature vectors read more recently. Therefore, in text or speech
processing, the cause-effect link between distant words in a long sentence can be lost.

The most effective recurrent neural network models used in practice are gated RNNs. These
include the long short-term memory (LSTM) networks and networks based on the gated recurrent
unit (GRU).

The beauty of using gated units in RNNs is that such networks can store information in their units
for future use, much like bits in a computer’s memory. The difference with the real memory is
that reading, writing, and erasure of information stored in each unit is controlled by activation
functions that take values in the range (0, 1). The trained neural network can read the input
sequence of feature vectors and decide at some early time step t to keep specific information
about the feature vectors. That information about the earlier feature vectors can later be used by
the model to process the feature vectors from near the end of the input sequence. For instance, if
the input text starts with the word “she”, a language processing RNN model could decide to store
the information about the gender to interpret correctly the word “their” when it will be seen later
in the text.

Units make decisions about what information to store, and when to allow reads, writes, and
erasures. Those decisions are learned from data and implemented through the concept of gates.
There are several architectures of gated units. A simple but effective one is called the minimal
gated GRU and is composed of a memory cell, and a forget gate.

Let’s look at the math of a GRU unit on an example of the first layer of the RNN (the one that
takes the sequence of feature vectors as input). A minimal gated GRU unit u in layer | takes two
inputs: the vector of the memory cell values from all units in the same layer from the previous
timestep, ht"1, and a feature vector xt. It then uses these two vectors like I follows (all operations
in the below sequence are executed in the unit one after another):

Ef)u +— g1 (Wi xt + ul)uhr1 + b)),
I}, < go(myux’ + 0., W' + a),
hf < Tf ki + (1 =T] )k,

hj « [hf,l, e 7h§,size!]

yi  gs(Vih] + ¢1.4),
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where g1 is the tanh activation function, g is called the gate function and is implemented as the
sigmoid function taking values in the range (0, 1). If the gate I'iu is close to 0, then the memory
cell keeps its value from the previous time step, ht"1. On the other hand, if the gate I'iu is close to
1, the value of the memory cell is overwritten by a new value ht . Just like in standard RNNs, g3
is usually softmax.

A gated unit takes an input and stores it for some time. This is equivalent to applying the identity
function (f(x) = x) to the input. Because the derivative of the identity function is constant, when a
network with gated units is trained with backpropagation through time, the gradient does not
vanish.

Other important extensions to RNNs include bi-directional RNNs, RNNs with attention and
sequence-to-sequence RNN models. The latter, in particular, are frequently used to build neural
machine translation models and other models for text to text transformations. A generalization of
an RNN is a recursive neural network.

We will see implementations of RNNs in Chapter 5 (“Experiments”), as we implemented an
LSTM neural architecture to achieve high accuracy predictions in sales forecasting for FMCGs.
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3. Previous Work

3.1 Machine Learning in Sales Forecasting

From a historical perspective, exponential smoothing methods and decomposition methods were
the first forecasting approaches to be developed back in the mid-1950s. During the 1960s, as
computer power became more available and cheaper, more sophisticated forecasting methods
appeared.

Box-Jenkins [14] methodology gave rise to the ARIMA models Later on, during the 1970s and
1980s, even more sophisticated forecasting approaches were developed including econometric
methods and Bayesian methods.

Time series forecasting models have been widely applied in sales forecasting, such as exponential
smoothing models [2], ARIMA models [2, 6, 7], expert systems [1, 3, 8], fuzzy systems [1, 3, 8,
9], and NN models [23, 24, 25, 49, 53, 54, 55].

So, Sales Forecasting is a well-researched subject, especially in the context of time series.
Although there is a vast body of literature and technological advancement on the topic of
forecasting (Fildes, Goodwin and Lawrence, 2006; McCarthy, Davis Golicic and Mentzer, 2006;
Armstrong, Green and Graefe, 2015), there is a weak evidence on successful business
implementations. Decision makers remain skeptical about recommendations offered by
forecasting support systems (FSS) and rather rely on applying their own mental models
(Goodwin, Fildes, Lawrence and Stephens, 2011) the resulting forecasts are often ‘sub-optimal’
because many judgmental adjustments are made when they are not required.

The research of forecasts now focuses more on how to take the knowledge gained about
forecasting and implement that in companies to improve forecasts (Moon et al., 2003). So as
attention of the importance about forecasting increases, focus is moved from having focused
mainly on different techniques, to focusing on the forecasting process (Bunn & Taylor, 2001).
Previous studies have focused on an adoption between different techniques, both quantitative and
qualitative, to achieve higher accuracy. Moon et al. (2003) showed that technique adoption will
not guarantee a good accuracy and therefore companies should also focus on how the forecasting
process is managed and organised. The main objective of a forecasting process is to maintain a
good information flow within the company and also organise the work around the creation of the
sales forecast (Danese & Kalchschmidt, 2011). According to Danese and Kalchschmidt (2011) a
forecasting process can be divided into four different steps information-gathering and tools (what
information should be collected and how it should be collected), organisational (who should be in
charge of forecasting and what roles should be designed), interfunctional and intercompany
(using different sources of information within the company or supply network and a joint
elaboration of forecasts), and measurement of accuracy (using the proper metric and defining
proper incentive mechanisms). These steps should always be under continuous improvement to
ensure a high sales forecast accuracy. A company that has a well-designed forecasting process
provides a better opportunity to understand market dynamics and consumer behaviour, reduce
uncertainty of future events, and provide the company’s departments with useful analyses and
information (Danese & Kalchschmidt, 2011). If a company can develop a well-designed
forecasting process and use an adoption between different techniques, the company will facilitate
the work to achieving higher sales forecast accuracy (Danese & Kalchschmidt, 2011).

However, regardless the forecasting process, the need for models with higher accuracy for
immediate improvement in prediction accuracy is stronger than ever. In [4], a method for small
samples based on Support Vector Machine is proposed. It can effectively solve the problems of
small sample, nonlinear and high-dimensional pattern recognition, and can be applied to other
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machine learning problems such as function fitting. But regrettably the applicability of this
method is reduced because most sales forecasting is based on a large number of sample data.
Meanwhile, there is a limitation in the above statistical methods: the need to transform qualitative
data into quantitative data. On this foundation, paper [7] puts forward the method combining
sentiment analysis and Bass model which is aimed at processing online review data for sales
forecasting. Moreover, the shallow neural network method has been applied to the sales
forecasting in literature and promising results have been obtained. However, the prediction
accuracy of the above method is not satisfactory when the characteristics of the prediction
problem are fuzzy influence factors, massive samples with complex structure and a large time
interval. It is an urgent challenge that older models of shallow learning (or simply machine
learning) cannot clearly depict the relationship between variables of sales prediction problem.
Based on the development of deep learning, R. G. Hiranya Pemathilake et al. provided a hybrid
model with integrated moving average and recurrent neural network.

To sum up, many publications over the years specifically study Machine Learning in Sales
Forecasting. However, there is no publication (at least to my knowledge) that focuses specifically
on FMCGs. The closest to this are the publications focusing on Sales Forecasting for fashion
goods. But fashion goods are not a good representative of the FMCG industries as, as it was
established in the Theoretical Background (Chapter 2), fashion goods are quite unique in terms of
seasonability and market trends. To give a benchmark of publications on new Machine Learning
solutions for Sales Forecasting, we provide the follow 5 publications:

» Shouwen Ji, Xiaojing Wang, Wenpeng Zhao, Dong Guo, "An Application of a Three-Stage
XGBoost-Based Model to Sales Forecasting of a Cross-Border E-Commerce Enterprise”,
Mathematical Problems in Engineering, vol. 2019, Article ID 8503252, 15 pages,
2019. https://doi.org/10.1155/2019/8503252

* Yonghe Zhao et al, “Optimization of a Comprehensive Sequence Forecasting Framework Based
on DAE-LSTM Algorithm”, J. Phys., Conf. Ser. 1746 012087, 2021. https://iopscience.iop.org/
article/10.1088/1742-6596/1746/1/012087

* Nikolas Ulrich Moroff, Ersin Kurt, Josef Kamphues, “Machine Learning and Statistics: A Study
for assessing innovative Demand Forecasting Models”, Procedia Computer Science, Volume
180, 2021, Pages 40-49, ISSN 1877-0509. https://doi.org/10.1016/j.procs.2021.01.127

* McCarthy, T. M., Davis, D. F., Golicic, S. L. & Mentzer, J. T., “The evolution of sales
forecasting manage- ment: a 20-year longitudinal study of forecasting practices”, Journal of
Forecasting, 2006, 25 (5), 303-324. http://dx.doi.org/10.1002/for.989

* Yun Dai, Jinghao Huang, “A Sales Prediction Method Based on LSTM with Hyper-Parameter
Search”, 2021, J. Phys.: Conf. Ser. 1756 012015. https://doi:10.1088/1742-6596/1756/1/012015

So, we hope that this Thesis feels that gap, focusing specifically on Machine Learning Sales
Forecasting for FMCGs. As we pointed out at this Thesis’ scope, our datasets on Detergents and
Cleaners are excellent representatives of the FMCGs’ class characteristics. More about our
datasets’ characteristics can be found at Chapter 5, “Experiments”, where we show why our data
and data analysis are an adequate representative of the FMCGs industries.

3.2 Ensemble Learning and Meta-Learning

For the purpose of this Thesis, many Ensemble Learning papers have been studied. The main
publications that helped us develop a good idea about Ensemble Forecasting are mainly from
Weather Forecasting and Price Forecasting. To the best of our knowledge the worth-reading
publications in Ensemble Forecasting for Sales Forecasting are amazingly little. The following
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publications helped us develop good idea about Ensemble Forecasting and we should briefly look
into them in this section to get a good idea about the state of research in Ensemble Forecasting
and its historical use in industry applications.

The following publications will be briefly discussed here:

* M. Leutbecher, T.N. Palmer, “Ensemble forecasting”, Journal of Computational Physics,
Volume 227, Issue 7, 2008, Pages 3515-3539, ISSN 0021-9991. https://doi.org/10.1016/
j.jcp.2007.02.014

* Jujie Wang, Xin Sun, Qian Cheng, Quan Cui, “An innovative random forest-based nonlinear
ensemble paradigm of improved feature extraction and deep learning for carbon price
forecasting”, Science of The Total Environment, Volume 762, 2021, 143099, ISSN 0048-9697.
https://doi.org/10.1016/j.scitotenv.2020.143099

* Ling Tang, Lean Yu, Shuai Wang, Jianping Li, Shouyang Wang, “A novel hybrid ensemble
learning paradigm for nuclear energy consumption forecasting”, Applied Energy, Volume 93,
2012, Pages 432-443, ISSN 0306-2619. https://doi.org/10.1016/j.apenergy.2011.12.030

* Guogiang Zhang, Jifeng Guo, “A novel ensemble method for residential electricity demand
forecasting based on a novel sample simulation strategy”, Energy, Volume 207, 2020, 118265,
ISSN 0360-5442. https://doi.org/10.1016/j.energy.2020.118265

* Ramon Gomes da Silva, Matheus Henrique Dal Molin Ribeiro, Sinvaldo Rodrigues Moreno,
Viviana Cocco Mariani, Leandro dos Santos Coelho, “A novel decomposition-ensemble
learning framework for multi-step ahead wind energy forecasting”, Energy, Volume 216, 2021,
119174, ISSN 0360-5442. https://doi.org/10.1016/j.energy.2020.119174

* Sonia Kahiomba Kiangala, Zenghui Wang, “An effective adaptive customization framework for
small manufacturing plants using extreme gradient boosting-XGBoost and random forest
ensemble learning algorithms in an Industry 4.0 environment”, Machine Learning with
Applications, Volume 4, 2021, 100024, ISSN 2666-8270. https://doi.org/10.1016/
j.mlwa.2021.100024

Ensemble Learning refers to the procedures employed to train multiple learning machines and
combine their outputs, treating them as a “committee” of decision makers. The principle is that
the committee decision, with individual predictions combined appropriately, should have better
overall accuracy, on average, than any individual committee member. Numerous empirical and
theoretical studies have demonstrated that ensemble models very often attain higher accuracy
than single models.

The members of the ensemble might be predicting real-valued numbers, class labels, posterior
probabilities, rankings, clusterings, or any other quantity. Therefore, their decisions can be
combined by many methods, including averaging, voting, and probabilistic methods. The
majority of ensemble learning methods are generic, applicable across broad classes of model
types and learning tasks.

An ensemble consists of a set of models and a method to combine them. So, we have a set of
models, generated by any of the learning algorithms in this Thesis; we explore popular methods
of combining their outputs, for classification and regression problems. Following this, we review
some of the most popular ensemble algorithms, for learning a set of models given the knowledge
that they will be combined, including extensive pointers for further reading. Finally, we take a
theoretical perspective, and review the concept of ensemble diversity, the fundamental property
which governs how well an ensemble can perform.

The ensemble learning method found its early origin in a typical human principle for best
decision-making to seek several experts’ opinions in a specific area before concluding (Re &
Valentini, 2012). Ensemble learning is a process that combines several base predictors such as
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individual learning algorithms to produce improved results in terms of accuracy or stability
(Dietterich, 2000; Kuncheva, 2004). In the area of machine learning (ML), various researchers
have given the ensemble learning technique the merit of significantly improving the general
performance of ML models (Dietterich, 2000; Hansen & Salamon, 1990; Kuncheva, 2004; Zhou,
Wu, & Tang, 2002) and producing some of the best learning system prototypes (Fernandez-
Delgado, Cernadas, Barro, & Amorim, 2014; Wu et al., 2008). The worth of ensemble learning
methods has also been experienced in real-life applications producing outstanding results
(Ahneman, Estrada, Lin, Dreher & Doyle, 2018; Lee, Jeong, Lee, & Jeong, 2019). In order to
improve the performance of ML models, the ensemble learning technique exposes the individual
learning algorithms (base predictors) to learn from a different perspective of the dataset either by
heterogeneous ensemble learning (utilising different learning algorithms) or by homogeneous
ensemble learning (using one single-learning algorithm that learns on random subsets coming
from the original training set) (Pham, Kim, Park, & Choi, 2021). It is worth mentioning that base
predictors’ diversity contributes to the result accuracy of the ensemble learning model (Kuncheva
& Whitaker, 2003; Liu, Zhang, Luo, & Cai, 2017). Kuncheva (2004) suggested four levels to
categorise the different ensemble learning methods: classifier level, data level, feature level, and
combination level.

(a) Classifier level: Ensemble learning methods in this category utilise homogeneous or
heterogeneous classifiers created by applying a certain randomness level into the same classifiers.
The final result of the ensemble learning method is a combination of classifiers’ results grouped
by a method that reduces each classifier’s level of bias. The well-known “boosting ensemble
learning algorithm™ falls under this group. Fig. 14 presents an ensemble learning algorithm
introduced to create a powerful classifier model, with accurate classification results, based on
several weaker classifiers. The boosting classifier model is incrementally constructed by
correcting errors of previous weak models.

(b) Data level: In this ensemble learning category, resampling methods such as leave one out,
random selection(with or without replacement) are used to create training sample subsets from
which the base classifiers are trained. Various voting methods are used to combine the base
classifiers results. A prevalent ensemble learning method in the data level is the bagging
algorithm. Breiman (1996) introduced ‘‘the bagging” algorithm to improve model classification
results. He achieved this by combining classification results from several independently trained
classifiers. The independent classifiers originate from the random training set (from the original
dataset). Bagging is a form of “bootstrap aggregating”. The random forest algorithm (RF) used
in this research is a form of a bagging algorithm. It groups several decision trees (from random
training sets) to obtain better classification accuracies (Deng et al., 2020).

In the most common machine learning setting, one predicts the value of a single target attribute,
categorical or numeric. A natural generalisation of this setting is to predict multiple target
attributes simultaneously. The task comes in two slightly different flavours. In multi-target
prediction (Blockeel et al., 1998), all target attributes are (equally) important and predicted
simultaneously with a single model. Multi-task learning (Caruana, 1997), on the other hand,
originally focused on a single target attribute and used the rest for assistance only. Nowadays,
however, multi-task models typically predict each target attribute individually but with at least
partially distinct models.
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Fig. 14. General framework of the hybrid ensemble learning paradigm. [37]

There are many different methods for model combination, such as the linear combiner, the
product combiner, and the voting combiner are by far the most commonly used in practice.
Though a combiner could be specifically chosen to optimise performance in a particular
application, these three rules have shown consistently good behaviour across many problems, and
are simple enough that they are amenable to theoretical analysis.

The linear combiner is used for models that output real-valued numbers, so is applicable for
regression ensembles, or for classification ensembles producing class probability estimates. Here
we only show notation for the latter case. We have a model fi(y|x), an estimate of the probability
of class y given input x. For a set of these, t = {1,...,T }, the ensemble probability estimate is,

T
Flyl) = wifulylx).

If the weights wi =1/T, Vt, this is a simple uniform averaging of the probability estimates. The
notation clearly allows for the possibility of a non-uniformly weighted average. If the classifiers
have different accuracies on the data, a non-uniform combination could in theory give a lower
error than a uniform combination. However, in practice, the difficulty of estimating the w
parameters without overfitting, and the relatively small gain that is available have meant that in
practice the uniformly weighted average is by far the most commonly used. A notable exception,
which will be analysed in detail in Chapter 5 as it is used in our Experiments, is the Mixture of
Experts. In MoE, weights are non-uniform, but are learnt and dependent on the input value x. An
alternative combiner is the product rule:
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Where Z is a normalisation factor to ensure f is a valid distribution. Note that Z is not required to
make a valid decision, as the order of posterior estimates will remain unchanged before/after
normalisation. Under the assumption that the class-conditional probability estimates are
independent, this is the theoretically optimal combination strategy. However, this assumption is
highly unlikely to hold in practice, and again the weights w are difficult to reliably determine.
Interestingly, the linear and product combiners are in fact special cases of the generalised mean
allowing for a continuum of possible combining strategies.

The linear and product combiners are applicable when our models output real-valued numbers.
When the models instead output class labels, a majority (or plurality) vote can be used. Here,
each classifier votes for a particular class, and the class with the most votes is chosen as the
ensemble output. For a two-class problem the models produce labels, hy(x) € {—1,+1}. In this

case the ensemble output for the voting combiner can be written:

H(x) = sign( i wihy (x)) .
=1

The weights w can be uniform for a simple majority vote, or non-uniform for a weighted vote.
We have discussed only a small fraction of the possible combiner rules. Numerous other rules
exist, including methods for combining rankings of classes, and unsupervised methods to
combine clustering results. For details of the wider literature, see references [37] or [38].

A typical example coming from the environmental sciences is the task of predicting species
distribution or community structure (Demsar et al., 2006), where we are interested in predicting
the abundances of a set of different species living in the same environment. These species
represent the target attributes, which might, but need not be related. Examples from other areas,
ranging from natural language processing to bioinformatics and medicine are also plentiful
(Jeong and Lee, 2009; Liu et al., 2010; Bickel et al., 2008).

With multiple targets, a typical solution is to create a collection of single-target models.
Nevertheless, especially if we are interested in the interpretability of the model, the collection of
single-target models is more complex and harder to interpret than a single model that jointly
predicts all target attributes (Blockeel, 1998; Suzuki et al., 2001; Zenko and Dzeroski, 2008).
Furthermore, learning several tasks together may increase the predictive performance for the
individual tasks due to inductive transfer, where the knowledge from one task is transferred to the
other tasks (Piccart et al., 2008; Kocev et al., 2007; Suzuki et al., 2001). An additional benefit of
the multi-target models is that they are less likely to overfit the data than the corresponding
collections of single-target models (Blockeel, 1998; Caruana, 1997).

Rule sets, together with decision trees, are one of the most expressive and human readable model
representations. They are frequently used when an interpretable model is desired. The majority of
rule learning methods are based on the sequential covering algorithm (Michalski, 1969),
originally designed for learning ordered rule lists for binary classification domains. This is also
the case with the existing methods for learning multi-target rules (Zenko and Dzeroski, 2008).
Unfortunately, on both single-target and multi-target regression problems, the accuracy of rule
sets that are learned by the sequential covering approach is considerably lower than that of other
regression methods, like for example, regression trees.
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An alternative rule learning method that performs well also on (single-target) regression problems
is the approach of rule ensembles (Friedman and Popescu, 2005, 2008; Dembczynski et al.,
2008). It creates a collection of rules and uses an optimisation procedure with the purpose of
finding a small (and therefore interpretable) subset of rules. Optionally, rules can be combined
with simple linear functions of descriptive attributes.

In the multi-target prediction task, we are given a set of training examples E of the form (x.y),
where x = (X1,X2,...,xK) is a vector of K descriptive attributes and y = (y1,y2,...,y1) is a vector of T
target attributes. Our task is to learn a model that, given a new unlabelled instance x, can predict
the values of all target attributes y simultaneously. Several standard learning methods such as
neural networks, decision trees, model trees, classification rules and random forests have been
extended towards multi-target prediction (Caruana, 1997; Blockeel et al., 1998; Appice and
Dzeroski, 2007; Suzuki et al., 2001; Zenko and Dzeroski, 2008; Kocev et al., 2007).

An approach related to multi-target learning is multi-task learning (Caruana, 1997; Argyriou et
al., 2008; Chapelle et al., 2010; Jalali et al., 2011; Rakotomamonjy et al., 2011; Parameswaran
and Weinberger, 2011). In multi-task learning, the aim is to solve multiple single-target learning
tasks (x, y)Te=1 with different training sets Et (and in general with different descriptive attributes)
at the same time. Multi-task learning should be able to benefit from relationships between tasks,
just like multi-target prediction. The result of multi-task training is a distinct trained model fi(x;)
for each of the T tasks.

While it is true that multi-target and multi-task learning have some common background, there
are also some clear differences between them. The most obvious one is the number of trained
models: a separate model for each of the tasks versus a single model trained for the entire
problem. Multi-target learning aims to predict the target features and explicitly describe their
relationship with the descriptive features. Moreover, it implicitly describes the relationships
among the target features. The multi-task model, on the other hand, does not specifically aim to
describe the relation- ships between the target features.

Multi-target learning implicitly captures the dependencies among the targets and represents them
in the single model generated. By going through this model, we can determine the effect of the
descriptive features on all the targets, and analyse the relationships, either linear or nonlinear,
between targets (or groups of targets). In case the targets are related, we can obtain information
about these relationships.

To place our final Ensemble model into a broader context, we further analyse the cases of
Stacking Classifier/Regressor and Mixture of Experts in Chapter 4 (“Method and Models™). This
Thesis final Stacking Classifier/Regressor will be discussed in detail in Chapter 5
(“Experiments”). However, we give here information about the latest multi-task linear regression
algorithm to put all the algorithms in perspective.

As our final Meta-learning models are based on combining predictions of the best models
through weighted voting (Stacking Classifier/Regressors), we give some extra information about
rule ensembles. A rule ensemble is understood to be a set of unordered rules whose predictions
are combined through weighted voting, which is the approach introduced by the RULEFIT
(Friedman and Popescu, 2005, 2008) and REGENDER methods (Dembczynski et al., 2008).

Most of the multi-task algorithms are originally designed for classification purposes (Chapelle et
al., 2010; Rakotomamonjy et al., 2011; Parameswaran and Weinberger, 2011), but the method by
Jalali et al. (2011) is readily suitable for our regression tasks. Jalali et al. (2011) tried to find a
compromise between selecting important weights for separate tasks and for all tasks together.

That is, they are searching for both shared features and features important for each task
separately. The authors do this by using both separate element-wise Li and block Li/Lq
regularisation and alternate between the two during optimisation. Here Li/Lq is matrix
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regularisation, with q > 1 in the latter case. Because of mixing up the two “clean” regularisation
terms, Jalali et al. (2011) call their method “dirty”, therefore we refer to their algorithm as
DIRTY.

Since our method learns regression rules, it is closely related to rule learning (Flach and Lavrac,
2003). A method for learning multi-target rules has been recently developed (Zenko and
Dzeroski, 2008). It employs the standard covering approach (Michalski, 1969) and can learn
ordered or unordered rule sets for classification and regression domains. Its accuracy on
classification domains is comparable to other classification methods, such as (multi-target)
decision trees. However, on regression domains, the approach performs significantly worse than
the alternatives (Zenko, 2007).

An alternative approach to rule learning is called rule ensembles (Friedman and Popescu, 2005,
2008; Dembczyn ski et al., 2008). Strictly speaking, any set of (unordered) rules can be called a
rule ensemble, as for example, in Indurkhya and Weiss (2001).

The RULEFIT algorithm starts by generating a set of decision trees in much the same way as
ensembles are generated in methods like bagging (Breiman, 1996) and random forests (Breiman,
2001). Because such large ensembles are hard or even impossible to interpret, all the trees are
transcribed into a collection of rules, and an optimisation procedure is used to select a small
subset of the rules and to determine their weights. As a result, we get a relatively small set of
weighted rules combined in a linear fashion. In addition to rules, we can also use descriptive
attributes in the linear combination if we add them to the initial set of rules, and likewise
determine their weights in the optimisation step. The final prediction for a given example is
obtained by a weighted voting of all linear terms and those rules that apply (cover the example).
The resulting model can thus be written as:

M K
§=f(@) =wo+ Y wiri(@)+ Y was %,
i=1 i=1
'
optional

where wo is the baseline prediction, the first sum is the correction value obtained from the M
rules, and the second sum is the correction value obtained from the (optional) K linear terms. The
rules r; are functions, which have a value of 1 for all examples that they cover, and 0 otherwise.
During the learning phase, all the weights wi are optimised by a gradient directed optimisation
algorithm. The linear terms part of the model is global, that is, it covers the entire example space.

Note that this is different from model trees (Quinlan, 1992; Karalic, 1992; Wang and Witten,
1997), where we may also have local linear models in tree leaves, where each such model only
applies to the specific examples covered by the leaf.

Last but not least, let’s point out once more that our final Stacking classifier will be discussed in
detail in Chapter 5 (“Experiments”). Our method and our final model is based on combining
predictions of the 2-best and 3-best models through weighted voting, and the showcase of
previous work on rule ensembles we hope that helped to provide both the necessary theoretical
background and research perspective. Also, we implement a Mixture of Experts for our Deep
Learning models to showcase its power, but also its weaknesses.

All in all, the analysis of the Previous Work, both about Machine Learning in Sales Forecasting
and Ensemble Learning prepared us to dive into the most important sections of this Thesis. For
more information and details about relevant work, we provide the full list of References
(Bibliography) at the end of this Thesis.
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4. Method & models

4.1 Method

Unlike models that predict option prices by comparing their results with the Black & Scholes
option pricing formula, in consumer products the underlying partial differential equation that
explains the pricing-discount-sales relationship is unknown. For this reason, machine learning
can be particularly useful in this area, as by considering the underlying partial differential
equations a black-box we lose nearly zero information and model accuracy, in comparison with
the traditional mathematical models who are based on supply and demand equations. As we have
seen from Previous Work and we will see in our Experiments too, Machine Learning can produce
extremely good, high-precision models, which are particularly useful in both relevant research
and industry applications.

Our goal is the comparative analysis of models and methods to solve the problem of High
Accuracy Sales Forecasting Predictions, but also the construction of a unified machine learning
model (meta-learner) with very good accuracy to do sales forecasting for fast-moving consumer
goods (FMCGs). To achieve this, we tested some of the most modern and efficient models in
sales forecasting and finally kept the best models (those with the highest accuracy). Then, by
using Ensemble learning techniques (meta-learning) we produced aggregated forecasting models.
We showed, as expected, that with negligible additional cost, we can have combined results better
than any other’s model’s. Also, we compared Ensemble Learning techniques for different models
to test which gives the best possible results and, thus, have a final model and methodology to
recommend to businesses in the field.

As FMCGs are products with massive production, campaigns and sales, there is a necessity for
extremely fast forecasting with the maximum possible accuracy. The final Sales Forecasting
process that is given as an advice to businesses in the FMCG industries takes into account both
time and accuracy, and so it provides our final meta-learner for improvements in accuracy, but at
the same time, with no penalty at execution time and overall performance. So, regardless of
theoretical improvements in ML algorithms, business-wise, the method of benchmarking some
ML models and Ensembling appropriately the best models is the optimal from a cost-benefit
perspective. Improvements in accuracy may be achieved by using Deep Learning models but
with significant additional cost. However, from our Experiments (see Chapter 5, “Experiments”)
this is not the case, as Deep Learning models overfit exceptionally fast and, thus, score lower,
than much simpler models. Therefore, our method is very useful for businesses, who need to
know which models achieve high accuracy with low cost, and so they can use our final results
and conclusions to increase the accuracy of their sales forecasting models at nearly zero cost.

Overall, the benefits of our final Meta-learning solution has many advantages, such as:

* It leads to extremely efficient Sales Forecasting, as it efficiently combines some of the best
single ML models

* It has very high prediction accuracy, but with relatively low training time, making it an
excellent choice for real-world Sales Forecasting solutions implemented by companies in the
fast-moving consumer goods industries.

* It can be used both by businesses who haven’t yet invested in their Sales Forecasting process
(e.g. new businesses, startups etc.) and by businesses that have a Sales Forecasting process and
want to improve the accuracy of their models but with worth-investing additional cost.
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To complete our Experiments and benchmark different Ensembling techniques we tried 3
different Meta-learning techniques, 2 Stacking Classifiers and a Mixture of Experts (MoE) which
will be explained theoretically in this section, but the results of which will be shown in Chapter 5
(“Experiments”).

4.2 Regression Models

As we discussed in Chapter 2, the regression problem is solved by a regression learning
algorithm that takes a collection of labeled examples as inputs and produces a model that can
receive an unlabelled example and output a target. In this section, we present the 5 simple
Regression ML models we used in our experiments for the purpose of this Thesis.

4.2.1 Huber Regression

Huber Regression is based on the generalized version of the Huber loss function which can be
incorporated with Generalized Linear Models (GLM) and is well-suited for heteroscedastic
regression problems. We will start with a brief recap of the Huber loss function and the basics of
Generalized Linear Models (GLM) and then we will show how to optimise this loss function with
gradient boosted trees and compare the results to classical loss functions on an artificial data set.

The Huber loss is a robust loss function for regression problems defined as, (1):

L(y, 7)) = {(U - o ly=9gl<a

ly — 9] o ly—19| > a

where y is the target variable, y are the corresponding predictions and « € R* is a hyper-
parameter. It is tempting to look at this loss as the log-likelihood function of an underlying heavy
tailed error distribution. Indeed, for absolute errors smaller than a the corresponding distribution
resembles the normal distribution, outside this region it coincides with the more heavy-tailed
Laplace distribution. This is precisely the reason why this loss is robust against outliers.

In linear regression one often assumes that the error term in the linear relationship between the
dependent variable Y and some feature vector X is normally distributed with mean zero and
constant variance o2, i.e. Y]X ~ X*T B + ¢ with ¢ € A(0,6°) and P being a set of variational
parameters. One is interested in finding the best estimate Sh.e that minimises a quadratic cost
function (corresponding to the log-likelihood of the distribution of &). The estimate y for a
given X is then simply y(X)=E[Y]|X]. Note that (in a maximum-likelihood interpretation) Huber
regression replaces the normal distribution with a more heavy tailed distribution but still assumes
a constant variance.

The GLM approach on the other hand relaxes the assumptions of linear regression in the
following way:

A. Non-normality of the random S o
component: Y| X ~ some distribution from the exponential family

B. Non-linearity introduced by a link function g: g(E[Y|X])=X"53
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The exponential family contains a variety of distributions and in particular some where the
variance is a function of the mean like the Poisson or Gamma distribution. This feature comes in
handy especially for heteroscedastic problems where the assumption of a constant variance of the
error term does not hold anymore, as is, for example, often the case for a target variable whose
range spans several orders of magnitude. The link function additionally enhances the model
complexity by contributing non-linear effects.

Note also that the link function is never applied to y. This stands in contrast with the common
practice of fitting a model to the transformed target variable, which often leads to
underestimating the mean once the predictions are back-transformed. This can be seen from
Jensen’s inequality which states that E[g(Y)|X]< g(E[Y]X]) for any concave function g, as it is the
case for the logarithm or the Box-Cox function. It is further possible to derive a closed-form
expression for the GLM likelihood function which results in a broad class of loss functions.
However, it seems that there is no continuous distribution with negative support and non-constant
variance within the exponential family. Generalised Huber Loss Function combines the idea of a
link function with the Huber loss, while still having a non-constant variance.

Generalised Huber Loss Function

For any invertible function g: R » R we define the Generalized Huber Loss (GHL) function as
2):

' —9? ... ly—gl<a
L(y,7) = ’ !
|.l/—.l/| |!/—1/| >«

with « € R*, y the target variable and y the continuous output of some predictive model. The
most important observation here is that the case distinction is taken on the “link scale” defined
by g(y), whereas the range is on the original scale. This loss function can not be transformed to a
single variable problem.

Let us now discuss what would happen if we took g(y) instead of g '(¥’) on the right hand side of
the equation. This would simply correspond to first transforming the target variable and thus
estimating E[g(Y)|X]. However, since E[g(Y)|X] < g(E[Y]X]) for any concave function g(y) we
would end up underestimating the mean.

The second option of taking g '(¥) on the right hand side of equation (2) and thus applying the
case distinction on the original scale wouldn’t help much either. Keep in mind that we would like
to address problems where the range of y can vary over several orders of magnitude. In such a
case we would in general not be able to find an appropriate value of a to guarantee that for all
ranges of y both case distinctions are applied. In other words, only by the choice in equation (2)
we do get a distribution of non-constant variance.

The loss function in equation however has jump discontinuities at the lines |g(y) - y|= @ which can

be removed in one way or another. The following smoothed version of the previous equation
turned out to work nicely in practice:

—1/2\\2 1
Y-y 1(y)))(\.«F‘(_&iu)—y"(yll T

1 A
L(y,9) = I;——/’m> e gy) =9l < a
Ay =g @) - (I G+ @) - g7 @) +
\y—ﬂ’l(ﬂ(z/)ﬂFn)I) o lgly) =9l > a

where ¥ = sgn(g(y) - ).
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The function & _s(y_0, y) for fixed y_0 has no local minima but is not convex either. Moreover,

&Z s(y 0, y) exhibits a region of little slope which can lead to convergence issues in gradient

based optimisation routines. However, such issues can typically be overcome by the choice of a
good starting vector.
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Fig. 15: Left: Smoothed generalised Huber function with y 0 =100 and a =1. Right: Smoothed
generalized Huber function for different values of a at y 0 = 100. Both with link function g(x) =
sgn(x) log(1+{x|). [51]

In Figure 15, we illustrate the aforementioned increase of the scale of ZP(y, y 0) with
increasing y 0. It is precisely this feature that makes the GHL function robust and applicable to
heteroscedastic problems. Note that the scale of &P(y, y 0) does also increase with increasing « as

shown on the right hand side of Figure 15. Note that we did not normalise (y, y 0). The

corresponding normalisation factor would depend on y 0 and it would be interesting to
investigate whether or not a closed-form expression could be derived.
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Fig. 16: Left: (Unnormalized) Error distribution for different values of § 0 at o = 1. Right:
(Unnormalized) Error distribution at § 0 =1 for different values of a. Both with link
function g(x) = sgn(x) log(1+[x|). [51]

In order to optimise & _s(y, ¥) with gradient methods we need the gradient and the Hessian of
this function.
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The gradient of &_s(y, ) is given by

(—2(1/‘!1 ()99~ ()
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and the Hessian is found to be
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where we have defined A = (¢'(y = a) -g'(¥)) and B = (y-g'(g(y) ¥ a))
with ¥ = sgn(g(y) -¥).

In general one needs a good starting vector in order to converge to the minimum of the GHL loss
function. Our execution of the Huber Regression algorithm can be found in the next chapter
(Chapter 5, “Experiments”) along with the model building with all the other models that are
explained in this chapter.

4.2.2 KNN Regression

k-Nearest Neighbors (kNN) is a non-parametric learning algorithm. Contrary to other learning
algorithms that allow discarding the training data after the model is built, KNN keeps all training
examples in memory. Once a new, previously unseen example x comes in, the kNN algorithm
finds k training examples closest to x and returns the majority label, in case of classification, or
the average label, in case of regression.

The closeness of two examples is given by a distance function. For example, Euclidean distance
seen above is frequently used in practice. Another popular choice of the distance function is the
negative cosine similarity. Cosine similarity defined as,

ZD (J) (J)

]11

\/211 (J) \/ZJ 1 (J)

is a measure of similarity of the directions of two vectors. If the angle between two vectors is 0
degrees, then two vectors point to the same direction, and cosine similarity is equal to 1. If the
vectors are orthogonal, the cosine similarity is 0. For vectors pointing in opposite directions, the

s(xz,xk) ot cos (£(xi,%x1))
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cosine similarity is —1. If we want to use cosine similarity as a distance metric, we need to
multiply it by —1. Other popular distance metrics include Chebychev distance, Mahalanobis
distance, and Hamming distance. The choice of the distance metric, as well as the value for k, are
the choices the analyst makes before running the algorithm. So these are hyperparameters. The
distance metric could also be learned from data, instead of making a guess.

KNN Regression allows its users to understand and interpret what’s happening inside the model,
and it’s very fast to develop. This makes kNN a great model for many machine learning use cases
that don’t require highly complex techniques. However, the main drawback of kNN is its capacity
to adapt to highly complex relationships between independent and dependent variables. kNN is
less likely to perform well on advanced tasks. We can try to push the performance of kNN as far
as possible, potentially by adding other techniques from machine learning. That is why we
discussed bagging, as it is a way to improve predictive performances. At a certain point of
complexity, though, kNN will probably be less effective than other models regardless of the way
it was tuned.

In Chapter 5, “Experiments” we confirmed these theoretical predictions on the accuracy of kNN
Regression, as it was one of the worst-behaving algorithms (low prediction accuracy). However,
we had to use it as a benchmark, as it is one of the oldest and most used ML algorithms in a
variety of problems and in use by many Sales Forecasting publications as a benchmark algorithm,
and, thus, we included it too for wholeness and comparison.

4.2.3 Passive Aggressive Regression

The passive-aggressive algorithms are a family of algorithms for large-scale learning. They are
similar to the Perceptron in that they do not require a learning rate. However, contrary to the
Perceptron, they include a regularisation parameter C.

Passive-Aggressive algorithms are called so because of the following characteristics:

 Passive: If the prediction is correct, keep the model and do not make any changes. i.e., the data
in the example is not enough to cause any changes in the model.

» Aggressive: If the prediction is incorrect, make changes to the model. i.e., some change to the
model may correct it.

And based on a slightly different Hinge loss function (called e-insensitive):
L(6,¢) = max (0, |yt — f(xy; 9_)| - E)

The parameter € determines a tolerance for prediction errors. The update conditions are the same
adopted for classification problems and the resulting update rule is:

B _ max 0,ly, —wT x| —¢) | e
Wepq = W, + sign(y, —wT - x,)x,

1
2 —
llxell? + 5

Scikit-learn implements a Passive Aggressive Regression, so our simple model building will be
presented in Chapter 5 (“Experiments”).
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4.2.4 Lasso regression

In LASSO Regression, LASSO stands for Least Absolute Shrinkage & Selection Operator. Lasso
regression is a regularisation technique. It is used over regression methods for a more accurate
prediction and it uses shrinkage. Shrinkage is where data values are shrunk towards a central
point as the mean. The LASSO procedure encourages simple, sparse models, such as models with
fewer parameters. This particular type of regression is well-suited for models showing high levels
of multicollinearity or when we want to automate certain parts of model selection, like variable
selection or parameter elimination.

Lasso Regression uses an L1 regularisation technique, which is used when we have a lot of
features because it automatically performs feature selection. Considering only a single feature,
linear regression looks for optimising w (slope) and b (intercept) such that it minimises the cost
function. The cost function can be written as:

o= =) <y1 = wx zu) (1.2)
=0

i=1 i=1

In the equation above, we have assumed the dataset has M instances and p features. Once we use
linear regression on a dataset divided in to training and test set, calculating the scores on training
and test set can give us a rough idea about whether the model is suffering from over-fitting or
under-fitting. If we have very few features on a data-set and the score is poor for both training
and test set then it’s a problem of under-fitting. On the other hand if we have large number of
features and test score is relatively poor than the training score then it’s the problem of over-
generalisation or overfitting. Ridge (explained below) and Lasso regression are some of the
simple techniques to reduce model complexity and prevent over-fitting which may result from
simple linear regression.

The cost function for Lasso regression can be written as:

M M P 2 p
S i =3 @zwj . ) Y 4
=0 =0
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Where,

. A denotes the amount of shrinkage.

. A =0 implies all features are considered and it is equivalent to the linear regression where
only the residual sum of squares is considered to build a predictive model

. A = oo implies no feature is considered i.e, as A closes to infinity it eliminates more and
more features

. The bias increases with increase in A

. variance increases with decrease in A

This is equivalent to saying minimising the cost function in equation 1.2 under the condition:

For some ¢ >0, 37 |w;| < ¢
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The only difference with the general case is that instead of taking the square of the coefficients,
magnitudes are taken into account. This type of regularisation (L1) can lead to zero coefficients
i.e. some of the features are completely neglected for the evaluation of output. So, Lasso
regression not only helps in reducing overfitting but it helps us in feature selection too. The
regularisation parameter (lambda) can be controlled and so feature selection using Lasso
regression can be depicted well by changing the regularization parameter.

4.2.5 Ridge regression

Similar to Lasso Regression, Ridge regression is a model tuning method that is used to analyse
any data that suffers from multicollinearity. This method performs L2 regularization (contrary to
Lasso’s L1 regularization explained above). When the issue of multicollinearity occurs, least-
squares are unbiased, and variances are large, this results in predicted values to be far away from
the actual values.

In ridge regression, the first step is to standardise the variables (both dependent and independent)
by subtracting their means and dividing by their standard deviations. This causes a challenge in
notation since we must somehow indicate whether the variables in a particular formula are
standardised or not. As far as standardisation is concerned, all ridge regression calculations are
based on standardised variables. When the final regression coefficients are displayed, they are
adjusted back into their original scale. However, the ridge trace is on a standardised scale.

Bias and variance trade-off is generally complicated when it comes to building ridge regression
models on an actual dataset. However, following the general trend which one needs to remember
is:

1.  The bias increases as A increases.

2.  The variance decreases as A increases.

In ridge regression, the cost function is altered by adding a penalty equivalent to square of the
magnitude of the coefficients.

M M

Z (yi — Z]i)Z = Z ('yi — ij X :w) + A ij (1.3)
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This is equivalent to saying minimising the cost function in equation (1.3) under the condition:
2
For some ¢ > 0, > 7_jwj < ¢

So Ridge Regression puts constraint on the coefficients (w). The penalty term (lambda)
regularises the coefficients such that if the coefficients take large values the optimisation function
is penalised. So, ridge regression shrinks the coefficients and it helps to reduce the model
complexity and multi-collinearity. Going back to eq. 1.3 one can see that when A — 0 , the cost
function becomes similar to the linear regression cost function. So lower the constraint (low A) on
the features and the model will resemble linear regression model.

How Lasso Regularization Leads to Feature Selection?
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So far we have gone through the basics of Ridge and Lasso regression and seen some examples to
understand the applications. Now, I will try to explain why the Lasso regression can result in
feature selection and Ridge regression only reduces the coefficients close to zero, but not zero.

In Figure 17, we assume a hypothetical data-set with only two features. Using the constrain for
the coefficients of Ridge and Lasso regression, we can plot the figure below:

Linear Regression Cost function

B,

) e Re ssiol
Lasso Regression Ridge Regression

[yl + (B <t

pi+ |‘>j;’ c

Fig. 17: Why LASSO can reduce dimension of feature space? Example on 2D feature space.
Modified from the plot used in ‘The Elements of Statistical Learning’ [55]

For a two dimensional feature space, the constraint regions are plotted for Lasso and Ridge
regression with cyan and green colours. The elliptical contours are the cost function of linear
regression. Now if we have relaxed conditions on the coefficients, then the constrained regions
can get bigger and eventually they will hit the centre of the ellipse. This is the case when Ridge
and Lasso regression resembles linear regression results. Otherwise, both methods determine
coefficients by finding the first point where the elliptical contours hit the region of constraints.
The diamond (Lasso) has corners on the axes, unlike the disk, and whenever the elliptical region
hits such point, one of the features completely vanishes. For higher dimensional feature space
there can be many solutions on the axis with Lasso regression and thus we get only the important
features selected.
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4.3 Gradient Boosting Models (GBDT)

Gradient-boosted decision trees are a machine learning technique for optimizing the predictive
value of a model through successive steps in the learning process. Each iteration of the decision
tree involves adjusting the values of the coefficients, weights, or biases applied to each of the
input variables being used to predict the target value, with the goal of minimising the loss
function (the measure of difference between the predicted and actual target values). The gradient
is the incremental adjustment made in each step of the process; boosting is a method of
accelerating the improvement in predictive accuracy to a sufficiently optimum value.

Data Set: (X, Y)

F(X) B (X) Fn(X)

Tree 1 Tree 2 Tree m

®
| | | |

Compute Compute o Compute Compute a3 Compute Compute &;  Compute  Compute a,
Residuals Residuals Residuals Residuals
(1) (2) (7i) (Tm)

l l l l
l

1‘;,,(X) = 1"m I(X)—amhm(xwrm l),

where «;, and ; are the regularization parameters and residuals computed with the it tree respectfully, and h;

is a function that is trained to predict residuals, 7; using X for the it tree. To compute «; we use the residuals

m

computed, 7; and compute the following: arg min = Z L(Y;, F;_(X;) + ahi(X;,ri_1)) where
@ i=1
L(Y, F(X)) is a differentiable loss function.

Gradient-boosted decision trees are a popular method for solving prediction problems in both
classification and regression domains. The approach improves the learning process by
simplifying the objective and reducing the number of iterations to get to a sufficiently optimal
solution. Gradient-boosted models have proven themselves time and again in various
competitions grading on both accuracy and efficiency, making them a fundamental component in
the data scientist’s tool kit.

In prediction problems involving unstructured data (images, text, etc.) artificial neural networks
tend to outperform all other algorithms or frameworks. However, when it comes to small-to-
medium structured/tabular data, decision tree based algorithms are considered best-in-class right
now. We will see that also in our experiments in Chapter 5, as, indeed, our decision tree based
algorithms achieved the optimal accuracy.

4.3.1 XGBoost

XGBoost is a decision-tree-based ensemble Machine Learning algorithm that uses a gradient
boosting framework. XGBoost algorithm was developed as a research project by Tianqi Chen and
Carlos Guestrin in 2016 and revolutionised machine learning. Since its introduction, XGBoost
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has not only been credited with winning numerous Kaggle competitions, but also for being the
driving force under the hood for several cutting-edge industry applications. It can be used in a
wide range of applications, such as regression, classification, ranking, and user-defined prediction
problems.

Bootstrap aggregating or Models are built sequentially Optimized Gradient Boostin
Baggingisa ensemb%e' by minimizing the errors from Elgorithm through parallel "
meta.-al.gonthm comb!nlng previous models while processing' tree-pru ning'
predictions from mUIt'EIe' increasing (or boosting) handling missing values and
decision trees througha influence of high-performing regularization to avoid
majority voting mechanism models overfitting/bias
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Fig. 18: From Decision Trees to XGBoost [56]

* Decision Tree: Every hiring manager has a set of criteria. A decision tree is analogous to a
hiring manager interviewing candidates based on its own set of criteria.

* Bagging: In this step we have something like an interview panel where each interviewer has a
vote. Bagging or bootstrap aggregating involves combining inputs from all interviewers for the
final decision through a democratic voting process.

* Random Forest: It is a bagging-based algorithm with a key difference that only a subset of
features is selected at random. In other words, every interviewer will only test the interviewee
on certain randomly selected qualifications, such as a technical interview for testing
programming skills or a behavioural interview for evaluating non-technical skills.

* Boosting: This is an alternative approach where each interviewer alters the evaluation criteria
based on the previous interviewer’s feedback. This step boosts the interview process’ overall
efficiency by deploying a more dynamic evaluation process.

* Gradient Boosting: This is a special case of boosting, where errors are minimised by a
gradient descent algorithm. So, it is the analogous to a strategy consulting firm using old case
interviews to weed out less qualified candidates.

* XGBoost: The XGBoost algorithm uses extreme gradient boosting (that is its name origin). It
is a perfect combination of software and hardware optimization techniques to yield superior
results using less computing resources in the shortest amount of time.

XGBoost and Gradient Boosting Machines (GBMs) are both ensemble tree methods that apply
the principle of boosting weak learners using the gradient descent architecture. However,
XGBoost improves upon the base GBM framework through systems optimization and
algorithmic enhancements.

So, with XGBoost, we predict the target label using all of the trees within the ensemble. Each
sample passes through the decision nodes of the newly formed tree until it reaches a given lead.
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It’s been shown through experimentation that taking small incremental steps towards the solution
achieves a comparable bias with a lower overall variance (a lower variance leads to better
accuracy on samples outside of the training data). Thus, to prevent overfitting, in the XGBoost
algorithm a new hyperparameter was introduced: the learning rate. When we make a prediction,
each residual is multiplied by the learning rate and this leads to using more decision trees, each
taking a small step towards the final solution.

So, in Sales Forecasting we calculate a new set of residuals by subtracting the actual number and/
or value of sales from the predictions made in the previous step. The residuals will then be used
for the leaves of the next decision tree. And once trained, by combining all of the trees in the
ensemble we make a final prediction as to the value of the target variable (in our case sales
volume). The final prediction will be equal to the mean we computed in the first step, plus all of
the residuals predicted by the trees that make up the forest multiplied by the learning rate.

We will use the XGBoost algorithm both in our original datasets and experiments and also in our
work for a Kaggle competition for sales forecasting, all of which are in Chapter 5 of this Thesis.

4.3.2 Random Forest Regressor

Random Forest Regression is a supervised learning algorithm that uses ensemble learning method
for regression. Ensemble learning method is a technique that combines predictions from multiple
machine learning algorithms to make a more accurate prediction than a single model.

Test Sample Input

Tree 1 Tree 2 Tree 60‘6;

O O () O

)

Average All Predictions

v

Random Forest
Prediction

Prediction 1

The diagram above shows the structure of a Random Forest. One can notice that the trees run in
parallel with no interaction amongst them. A Random Forest operates by constructing several
decision trees during training time and outputting the mean of the classes as the prediction of all
the trees.

To get a better understanding of the Random Forest algorithm, one can think of the following
algorithm:

* Pick at random k data points from the training set.

* Build a decision tree associated to these k data points.
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* Choose the number N of trees you want to build and repeat steps 1 and 2.

» For a new data point, make each one of your N-tree trees predict the value of y for the data
point in question and assign the new data point to the average across all of the
predicted y values.

A Random Forest Regression model is powerful and accurate. It usually performs great on many
problems, including features with non-linear relationships. Disadvantages, however, include the
following: there is no interpretability, overfitting may easily occur, we must choose the number of
trees to include in the model. Random forest has nearly the same hyperparameters as a decision
tree or a bagging classifier. Fortunately, there's no need to combine a decision tree with a bagging
classifier because you can easily use the classifier-class of random forest. With random forest,
you can also deal with regression tasks by using the algorithm's regressor.

Random forest adds additional randomness to the model, while growing the trees. Instead of
searching for the most important feature while splitting a node, it searches for the best feature
among a random subset of features. This results in a wide diversity that generally results in a
better model. Therefore, in random forest, only a random subset of the features is taken into
consideration by the algorithm for splitting a node. One can even make trees more random by
additionally using random thresholds for each feature rather than searching for the best possible
thresholds (like a normal decision tree does).

Another great quality of the random forest algorithm is that it is very easy to measure the relative
importance of each feature on the prediction. Sklearn provides a great tool for this that measures
a feature's importance by looking at how much the tree nodes that use that feature reduce
impurity across all trees in the forest. It computes this score automatically for each feature after
training and scales the results so the sum of all importance is equal to one.

By looking at the feature importance we can decide which features to possibly drop because they
don’t contribute enough to the prediction process. This is important because a general rule in
machine learning is that the more features we have the more likely our model will suffer from
overfitting.

While random forest is a collection of decision trees, there are some differences. If we input a
training dataset with features and labels into a decision tree, it will formulate some set of rules,
which will be used to make the predictions. For example, to predict whether a person will click
on an online advertisement, we might collect the ads the person clicked on in the past and some
features that describe his/her decision. If we put the features and labels into a decision tree, it will
generate some rules that help predict whether the advertisement will be clicked or not. In
comparison, the random forest algorithm randomly selects observations and features to build
several decision trees and then averages the results.

Another difference is "deep" decision trees might suffer from overfitting. Most of the time,
random forest prevents this by creating random subsets of the features and building smaller trees
using those subsets. Afterwards, it combines the subtrees. It's important to note this doesn’t work
every time and it also makes the computation slower, depending on how many trees the random
forest builds.

Random forest is a great algorithm to train early in the model development process, to see how it
performs. Its both very simple, but also effective, as it makes highly unlikely the possibility of
building a low-accuracy random forest. The algorithm is also a great choice for anyone
who needs to develop a model quickly and it provides a pretty good indicator of the importance it
assigns to your features.

Random forests are also very hard to beat performance wise. That’s why they are the most
popular benchmarking model for machine learning projects. Of course, we can probably always
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find a model that can perform better, like a neural network for example, but these usually take
more time to be developed and executed.

Overall, Random Forest is a flexible tool, based on a simple, yet effective algorithm, but with
significant limitations. At our experiments (Chapter 5, “Experiments”) we validate the theoretical
assumptions about Random Forests, as we show that Random Forests can be implemented really
easily, have extremely low execution time and have rather good prediction accuracy at Sales
Forecasting for FMCGs, but definitely not one of the best accuracies overall. Thus, they can be
used as a start and benchmark model in these applications to give a general idea about the Sales
Forecasting, and be replaced by other models we analyse in this Thesis, which achieve much
better accuracy at different levels of data amounts.

4.3.3 Catboost

CatBoost is an algorithm for gradient boosting on decision trees. It is developed by Yandex
researchers and engineers, it is universal, and it can be applied across a wide range of areas and to
a variety of problems. Gradient Boosted Decision Trees are the best ML models for tabular
heterogeneous datasets (such as our sales data for sales forecasting). These models are the top
performers on Kaggle competitions and in widespread use in the industry.

Catboost achieves the best results on the benchmark. However, it hasn’t yet seen big integration
into businesses’ ML models, as replacing a working production model for only a fraction of a log-
loss improvement alone does not considered as a good investment by big companies data
divisions. We hope to give extra value and motivation to this kind of businesses with this Thesis.

However, for datasets where categorical features play a large role this improvement becomes
even more significant and undeniable. That is the main reason we explore it in this Thesis, as
categorical features are extremely significant in Sales Forecasting and even more important for
FMCGs Sales Forecasting. Our assumption that Catboost can have a big impact in future Sales
Forecasting ML models was validated, as it was the best model for our dataset in our ML Sales
Forecasting.

Catboost’s has the following strong points:

* While training time can take up longer than other GBDT implementations, prediction time is
13-16 times faster than the other libraries according to the Yandex benchmark.

» Catboost’s default parameters are a better starting point than in other GBDT algorithms. And
this is good news for beginners who want a plug and play model to start experience tree
ensembles or Kaggle competitions.

+ Some more noteworthy advancements by Catboost are the features interactions, object
importance and the snapshot support.

* In addition to classification and regression, Catboost supports ranking out of the box.

» Catboost introduces two critical algorithmic advances - the implementation of ordered
boosting, a permutation-driven alternative to the classic algorithm, and an innovative
algorithm for processing categorical features. Both techniques are using random permutations
of the training examples to fight the prediction shift caused by a special kind of target
leakage present in all existing implementations of gradient boosting algorithms.

Ordered Target Statistic

Most of the GBDT algorithms use the idea of Target Statistic (or target mean encoding). It’s a
simple yet effective approach in which we encode each categorical feature with the estimate of
the expected target y conditioned by the category. Well, it turns out that applying this encoding
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carelessly (average value of y over the training examples with the same category) results in a
target leakage.

Input: training set {(z;,y; )}, , a differentiable loss function L(y, F'(x)), number of iterations M.
Algorithm:

1. Initialize model with a constant value:
n
Fy(z) = argmin ) _ L(y:, 7).
7 i=1

2.Form=1to M:
1. Compute so-called pseudo-residuals:
OL(y:, F(z;)) .
Pim=— | fori =1,..., n.
OF (zi) F(z)=Fp_(z)

2. Fit a base learner (e.g. tree) h,, () to pseudo-residuals, i.e. train it using the training set {(z;, 7im ) }7, .
3. Compute multiplier 7,,, by solving the following one-dimensional optimization problem:

n
Ym = argmin Y L (yi, F1(2:) + Yhm (2:)) .
7 i=1

4. Update the model:
F(z) = Fno1(z) + Ymhm(2).
3. Output Fyy(z).

Gradient Boosting on Wikipedia

To fight this prediction shift, CatBoost uses a more effective strategy. It relies on the ordering
principle and is inspired by online learning algorithms which get training examples sequentially
in time. In this setting, the values of the Target Statistic (TS) for each example rely only on the
observed history.

To adapt this idea to a standard offline setting, Catboost introduces an artificial “time”-a random
permutation c1 of the training examples. Then, for each example, it uses all the available history
to compute its Target Statistic. Note that, using only one random permutation, results in preceding
examples with higher variance in Target Statistic than subsequent ones. To this end, CatBoost
uses different permutations for different steps of gradient boosting.

One Hot Encoding
Catboost uses a one-hot encoding for all the features with at most one hot max_size unique

values. The default value is 2. Catboost’s algorithm is the classic Gradient Boosting with the
aforementioned advantages.

Let’s take a look at its algorithm:
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Me™ Algorithm 2: Building a tree in CatBoost
' : input : M {y;},,a, L, {0i};_,, Mode

00600 9 0000 grad < CaclGradient(L, M, y);

A 1 r + random(1, s);
r'(x7,y7) =y, = M{T' (%) G 4+ (grad,(1),...,grad.(n)) for Plain;
G <« (grad, ,,(1y-1(i) for i = 1to n) for Ordered;
T < empty tree;
foreach step of top-down procedure do
foreach candidate split ¢ do

T. < addsplitcto T';
if Mode == Plain then

L A(i) « avg(grad,(p) for
Algorithm 1: Ordered boosting p: leaf(p) = leaf(i)) foralli;
: n if Mode == Ordered then
input : {(xx,y _ 1 ! .
{( * k)}k ! A(z) «~ avg(gradr,o,.(i)—l(p) for

p: leaf(p) = leaf(i),0:(p) < 0r(i)) Vi

Mg™!

Figure 1: Ordered boosting principle.

o < random permutation of [1,7] ;
M; + Ofori=1..n;

fort «+ 1toIdo | loss(Te) + [|A = Gl|2
fori + 1tondo | T « argming, (loss(T.))
L Ti < ¥y — My (3); if Mode == Plain then
fori < 1ton do M,/ (i) <= My (i) — aavg(grad,(p) for
AM <+ | p: leaf(p) = leaf(i)) forall v, ;
Lf‘?)f’éﬂgodel((xj’ rj) if Mode == Ordered then
o) =) M, (i) < M, (i) — aavg(grad,- ;(p) for
M; < M; +AM; | p: leaf(p) = leaf (i), o (p) < j forall 1/, j,i;
return M, return 7', M

CatBoost has two modes for choosing the tree structure, Ordered and Plain. Plain
mode corresponds to a combination of the standard GBDT algorithm with an ordered Target
Statistic. In Ordered mode boosting we perform a random permutation of the training examples -
02, and maintain n different supporting models - My, ... , My such that the model M; is trained
using only the first i samples in the permutation. At each step, in order to obtain the residual for j-
th sample, we use the model Mj—1. Unfortunately, this algorithm is not feasible in most practical
tasks due to the need of maintaining n different models, which increase the complexity and
memory requirements by n times. Catboost implements a modification of this algorithm, on the
basis of the gradient boosting algorithm, using one tree structure shared by all the models to be
built.

In order to avoid prediction shift, Catboost uses permutations such that 61 = o2. This guarantees

that the target-y is not used for training M; neither for the Target Statistic calculation nor for the
gradient estimation.

4.3.4 LightGBM

LightGBM is a gradient boosting framework that uses tree based learning algorithms.
It is designed to be distributed and efficient with the following advantages:

* Faster training speed and higher efficiency.

* Lower memory usage.

* Better accuracy.

* Support of parallel, distributed, and GPU learning.
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* Capable of handling large-scale data.

It’s main difference from other GBDT algorithms is that while other algorithms’ trees grow
horizontally, LightGBM (LGBM) algorithm grows vertically. This means that while other
algorithms grow level-wise, LGBM grows leaf-wise. LGBM chooses the leaf with large loss to
grow and it can lower down more loss than a level wise algorithm when growing the same leaf.

b ® o
¢ ° ‘ ° I Q ® # ,,,,,, ’\ Q
o . o
‘/ \‘\. "" O

Leaf-wise tree growth Level-wise tree growth

How LBGM works / How other GBDT work

One of the main reasons for its increased popularity, is that it has become difficult for a lot of
algorithms to give results fast for big bunches of data. LightGBM is called “Light” because of its
computation power and giving results faster. It takes less memory to run and is able to deal with
large amounts of data. Another reason of why Light GBM is popular is because it focuses on
accuracy of results. LGBM also supports GPU learning and thus data scientists are widely using
LGBM for data science application development.

So, LightGBM is not for a small volume of datasets. It can easily overfit small data due to its
sensitivity. It can be used for data having more than 10,000+ rows (such as our datasets for sales
forecasting). There is no fixed threshold that helps in deciding the usage of LightGBM. It can be
used for large volumes of data especially when one needs to achieve a high accuracy. Thus,
LGBM seems to be one of the most promising models/candidates for Sales Forecasting.

Especially in our case, where we study Sales Forecasting for FMCGs, LGBM is a promising
model as:

* It is perfect for big amounts of data which is one of the main characteristics of working with
FMCGs

» It gives results extremely fast and so it is perfect for constant re-runs and a lot of model
tweaking that is usually required when working with FMCGs

+ It has all the advantages of GBDT algorithms which are very fast and some of the best models,
regarding accuracy of predictions for forecasting
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4.4 Meta-Learning

As we explained in Chapter 2, Ensemble Learning is a learning paradigm that, instead of trying to
learn one super-accurate model, focuses on training a large number of low-accuracy models and
then combining the predictions given by those weak models to obtain a high-accuracy meta-
model.

In this section, we study a specific class of ensemble learning methods which produce models
called meta-learning models (hence the title of this section). That is models that attempt to learn
from the output or learn how to best combine the output of other lower-level models. Meta-
learning is a process of learning from learners/classifiers.

In order to induce a meta-classifier, first the base classifiers are trained (stage one), and then the
Meta-classifier (second stage). We will distinctively show these two stages for training Meta-
Learning models in Chapter 5 (“Experiments”).

4.4.1 Stacking Classifier/Regressor

Stacking is an ensemble learning technique to combine multiple classification models via a meta-
classifier. The individual classification models are trained based on the complete training set;
then, the meta-classifier is fitted based on the outputs (meta-features) of the individual
classification models in the ensemble. The meta-classifier can either be trained on the predicted
class labels or probabilities from the ensemble.

For details see Chapter 3, “3.2 Ensemble Learning”.

4.4.2 Mixture of Experts

Mixture of experts is an ensemble learning technique developed in the field of neural networks.

It involves decomposing predictive modeling tasks into sub-tasks, training an expert model on
each, developing a gating model that learns which expert to trust based on the input to be
predicted, and combines the predictions.

Although the technique was initially described using neural network experts and gating models, it
can be generalized to use models of any type. As such, it shows a strong similarity to stacked
generalization and belongs to the class of ensemble learning methods referred to as meta-
learning.

There are four elements MoE’s approach:

* Division of a task into subtasks. (Step 1: Subtasks)

* Develop an expert for each subtask. (Step 2: Expert Models)

» Use a gating model to decide which expert to use. (Step 3: Gating Model)

* Pool predictions and gating model output to make a prediction. (Step 4: Pooling Method)
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Fig. 19: Example of a MoE Model with Expert Members and a Gating Network [54]

Step1: Subtasks

The first step is to divide the predictive modeling problem into subtasks. This often involves
using domain knowledge. For example, an image could be divided into separate elements such as
background, foreground, objects, colours, lines etc. So, with the MoE we start with a divide-and-
conquer strategy where a complex task is broken up into several simpler and smaller subtasks,
and individual learners (called experts) are trained for different subtasks.

For those problems where the division of the task into subtasks is not obvious, a simpler and
more generic approach could be used. For example, one could imagine an approach that divides
the input feature space by groups of columns or separates examples in the feature space based on
distance measures, inliers, and outliers for a standard distribution, and much more.

Step 2: Expert Models

Next, an expert is designed for each subtask. The Mixture of Experts approach was initially
developed and explored within the field of artificial neural networks, so traditionally, experts
themselves are neural network models used to predict a numerical value in the case of regression
or a class label in the case of classification. Experts each receive the same input pattern (row) and
make a prediction.

Step 3: Gating Model

A model is used to interpret the predictions made by each expert and to aid in deciding which
expert to trust for a given input. This is called the gating model, or the gating network, given that
it is traditionally a neural network model. The gating network takes as input the input pattern that
was provided to the expert models and outputs the contribution that each expert should have in
making a prediction for the input. So, the weights determined by the gating network are
dynamically assigned based on the given input, as the MoE effectively learns which portion of
the feature space is learned by each ensemble member.

The gating network is key to the approach and effectively the model learns to choose the type
subtask for a given input and, in turn, the expert to trust to make a strong prediction. MoE can
also be seen as a classifier selection algorithm, where individual classifiers are trained to become
experts in some portion of the feature space.

When neural network models are used, the gating network and the experts are trained together
such that the gating network learns when to trust each expert to make a prediction. This training
procedure was traditionally implemented using expectation maximization (EM). The gating
network might have a softmax output that gives a probability-like confidence score for each
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expert. In general, the training procedure tries to achieve two goals: for given experts, to find the
optimal gating function; for a given gating function, to train the experts on the distribution
specified by the gating function.

Step 4: Pooling Method

Finally, the Mixture of Experts models must make a prediction, and this is achieved using a
pooling or aggregation mechanism. This might be as simple as selecting the expert with the
largest output or confidence provided by the gating network. Alternatively, a weighted sum
prediction could be made that explicitly combines the predictions made by each expert and the
confidence estimated by the gating network. So, the pooling/combining system chooses a single
classifier, the one with the highest weight, or calculates a weighted sum of the classifier outputs
for each class, and picks the class that receives the highest weighted sum.

We can also see a relationship between a mixture of experts to Classification And Regression
Trees, often referred to as CART. Decision trees are fit using a divide and conquer approach to
the feature space. Each split is chosen as a constant value for an input feature and each sub-tree
can be considered a sub-model. We could take a similar recursive decomposition approach to
decomposing the predictive modeling task into subproblems when designing the mixture of
experts. This is generally referred to as a hierarchical mixture of experts.

The hierarchical mixtures of experts (HME) procedure can be viewed as a variant of tree-based
methods. The main difference is that the tree splits are not hard decisions but rather soft
probabilistic ones. Unlike decision trees, the division of the task into subtasks is often explicit
and top-down. Also, unlike a decision tree, the mixture of experts attempts to survey all of the
expert sub-models rather than a single model. There are other differences between HMEs and the
CART implementation of trees. In an HME, a linear (or logistic regression) model is fit in each
terminal node, instead of a constant as in CART. The splits can be multiway, not just binary, and
the splits are probabilistic functions of a linear combination of inputs, rather than a single input as
in the standard use of CART.

The application of the technique does not have to be limited to neural network models and a
range of standard machine learning techniques can be used in place seeking a similar end. In this
way, the MoE method belongs to a broader class of ensemble learning methods that would also
include stacking. Like a MoE, stacking trains a diverse ensemble of machine learning models and
then learns a higher-order model to best combine the predictions.

Unlike a Mixture of Experts, stacking models (Stacking Classifier/Regressors) are often all fit on
the same training dataset, having no decomposition of the task into subtasks. And also unlike a
mixture of experts, the higher-level model that combines the predictions from the lower-level
models typically does not receive the input pattern provided to the lower-level models and instead
takes as input the predictions from each lower-level model. Meta-learning methods are best suited
for cases in which certain classifiers consistently correctly classify, or consistently misclassify,
certain instances.

Nevertheless, there is no reason why hybrid stacking and mixture of expert models cannot be
developed that may perform better than either approach in isolation on a given predictive
modelling problem. For both of those reasons we assumed that meta-learning models are an
extremely good addition in Sales Forecasting for FMCGs.
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4.5 Deep Learning models

We have seen both the Theoretical Background and the Basics of Deep Learning models in
Chapter 2 (“2.4 Deep Learning”). Here we analyse a bit more on the specifics of the Deep
Learning models we used in Chapter 5 (“Experiments”) for Deep Learning Sales Forecasting for
FMCGs.

4.5.1 Keras Regressor

There are many deep learning libraries out there, but the most popular ones are TensorFlow,
Keras, and PyTorch. Although TensorFlow and PyTorch are immensely popular, they are not easy
to use and have a steep learning curve. So, for many practitioners, Keras is the preferred choice.

The Keras library is a high-level API for building deep learning models that has gained favour for
its ease of use and simplicity facilitating fast development. Often, building a very complex deep
learning network with Keras can be achieved with only a few lines of code. However, we need to
say that we will also use PyTorch to develop our LSTM model. The reasons why the PyTorch
library is beneficial for our LSTM model will be found in the next sections.

The basic architecture of the deep learning neural network, which we will be following, consists
of three main components.

* Input Layer: This is where the training observations are fed. The number of predictor variables
is also specified here through the neurons.

* Hidden Layers: These are the intermediate layers between the input and output layers. The deep
neural network learns about the relationships involved in data in this component.

* Output Layer: This is the layer where the final output is extracted from what’s happening in the
previous two layers. In case of regression problems, the output later will have one neuron.

These are the main steps for implementing Regression models with Keras:

* Step 1: Loading the required libraries and modules.

* Step 2: Loading the data and performing basic data checks.

+ Step 3: Creating arrays for the features and the response variable.
* Step 4: Creating the training and test datasets.

* Step 5: Define, compile, and fit the Keras regression model.

» Step 6: Predict on the test data and compute evaluation metrics.

Both the basic architecture of the deep learning neural network we used and the main steps for
implementing Regression models (in this case Sales Forecasting) with Keras will be shown in
Chapter 5 (“Experiments”).

4.5.2 MLP

We gave a full analysis of MLP in Chapter 2 (“2.4 Deep Learning”). However, for completeness,
let’s explain again the basic characteristics of Neural Networks (NN) and Multilayer Perceptrons
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(MLP) as they play a huge part in the development of the modern deep learning models and
networks.

We've seen here that the Perceptron, that neural network whose name evokes how the future
looked from the perspective of the 1950s, is a simple algorithm intended to perform binary
classification; i.e. it predicts whether input belongs to a certain category of interest or not. The
perceptron is a linear classifier, with input typically a feature vector x multiplied
by weights w and added to a bias b: y = w*x + b.

Perceptrons produce a single output based on several real-valued inputs by forming a linear
combination using input weights (and sometimes passing the output through a non-linear
activation function). Rosenblatt built a single-layer perceptron; it did not include multiple layers,
which allow neural networks to model a feature hierarchy. It was, therefore, a shallow neural
network, which ended up preventing his perceptron from performing non-linear classification,
such as the classic logic XOR function (an XOR operator trigger when input exhibits either one
trait or another, but not both; it stands for “exclusive OR”).

Fast forward to 1986, when Hinton, Rumelhart, and Williams published a paper “Learning
representations by back-propagating errors”, introducing backpropagation and hidden layers
concepts, and so giving birth to Multilayer Perceptrons (MLPs):

» Backpropagation, a procedure to repeatedly adjust the weights so as to minimise the difference
between actual output and desired output

» Hidden Layers, which are neuron nodes stacked in between inputs and outputs, allowing neural
networks to learn more complicated features (such as XOR logic)

Therefore, an MLP can be thought of as a deep artificial neural network. It is composed of more
than one perceptron. They are composed of an input layer to receive the signal, an output layer
that makes a decision or prediction about the input, and in between those two, an arbitrary
number of hidden layers that are the true computational engine of the MLP.

Multilayer perceptrons train on a set of input-output pairs and learn to model the correlation (or
dependencies) between those inputs and outputs. Training involves adjusting the parameters, or
the weights and biases, of the model in order to minimise error. Backpropagation is used to make
those weigh and bias adjustments relative to the error, and the error itself can be measured in a
variety of ways, including by root mean squared error (RMSE). Of course, RMSE is one of the
key metrics we will use in evaluating all of our models in Chapter 5 (“Experiments”).

Feedforward networks such as MLPs are mainly involved in two motions, a constant back and
forth (forward and backward passes):

* In the forward pass, the signal flow moves from the input layer through the hidden layers to the
output layer, and the decision of the output layer is measured against the ground truth labels.

* In the backward pass, using backpropagation and the chain rule of calculus, partial derivatives
of the error function regarding the various weights and biases are back-propagated through the
MLP. That act of differentiation gives us a gradient, or a landscape of error, along which the
parameters may be adjusted as they move the MLP one step closer to the error minimum. (this
can be done with any gradient-based optimization algorithm such as stochastic gradient
descent).

The network keeps moving back and forth until the error reaches a minimum, and this is the
moment of convergence. Of course, the algorithm is completes and finishes when it reaches
convergence.

To benchmark Machine Learning and Deep Learning models, we built a simple MLP network
which seems to be a simple, yet overall effective, solution for Sales Forecasting for FMCGs.
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453 LSTM

Long Short-Term Memory (LSTM) networks started as complicated solutions to very specific
problems involving patterns, but they have become more and more useful. Especially in Sales
Forecasting they seem very promising as they are a type of artificial neural network designed to
recognise patterns in sequences of data, such as numerical times series data.

Especially algorithms that improve the standard LSTM networks or create additional states to
make them perfect for Sales Forecasting have been built and introduced in the last 2 years.
Yonghe Zhao et al publication “Optimization of a Comprehensive Sequence Forecasting
Framework Based on DAE-LSTM Algorithm” that was published just a few months before this
Thesis totally change the field of Sales Forecasting algorithms and methodologies.

(Yonghe Zhao et al, “Optimization of a Comprehensive Sequence Forecasting Framework Based
on DAE-LSTM Algorithm”, J. Phys., Conf. Ser. 1746 012087, 2021. https://iopscience.iop.org/
article/10.1088/1742-6596/1746/1/012087)

For that reason, we had to train an LSTM network for Sales Forecasting for FMCGs. What we
found out is that, along with all the more advanced models, it over-fits really fast. The prediction
accuracy it provided was very good, but not worth the extra time and skills investment. Of
course, as it happens with all the models included in this Chapter, their final built, their optimal
parameters and their results are presented in Chapter 5 (“Experiments”).

So, let’s give a theoretical analysis and background of Long Short-Term Memory (LSTM)
networks and we will see them in action trying to create predictions for Sales Forecasting for
FMCGs in the next Chapter.

LSTMs are the most powerful and well known subset of Recurrent Neural Networks (RNNs),
which have been explained in detail in Chapter 2 (“Theoretical Background”). What differentiates
RNNs and LSTMs from other neural networks is that they take time and sequence into account,
they have a temporal dimension.

One of the appeals of RNNs was always the idea that they might be able to connect previous
information to the present task, such as using previous video frames might inform the
understanding of the present frame. If RNNs could do this, they’d be extremely useful. However,
it was found out that there is a plethora of cases where they can’t.

Sometimes, we only need to look at recent information to perform the present task. In such cases,
where the gap between the relevant information and the place that it’s needed is small, RNNs can
learn to use the past information. But there are also cases where we need more context. It’s
entirely possible for the gap between the relevant information and the point where it is needed to
become very large, and, unfortunately, as that gap grows, RNNs become unable to learn to
connect the information.

In theory, RNNs are absolutely capable of handling such “long-term dependencies.” A human
could carefully pick parameters for them to solve toy problems of this form. However, in
practice, RNNs don’t seem to be able to learn them. The problem was explored in depth
by Hochreiter (1991) and Bengio, et al. (1994), who found some pretty fundamental reasons why
it might be difficult. That’s why LSTM networks came into the light, as they don’t face this kind
of problems. LSTMs were introduced by Hochreiter & Schmidhuber (1997), and were refined
and popularized by many people in following work. LSTMs are explicitly designed to avoid the
long-term dependency problem. Remembering information for long periods of time is practically
their default behaviour and their main and extremely effective advantage.
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All recurrent neural networks have the form of a chain of repeating modules of a neural network.
In standard RNNSs, this repeating module will have a very simple structure, such as a single tanh
layer.
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Fig 20: The repeating module in a standard RNN contains a single layer. [57]

LSTMs also have this chain like structure, but the repeating module has a different structure.
Instead of having a single neural network layer, there are four, interacting in a very special way.

® ®
T t

®

T I
)
t

@ ®
() ®

© ©

Fig 21: The repeating module in an LSTM contains four interacting layers. [57]
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In the above diagram, each line carries an entire vector, from the output of one node to the inputs
of others. The pink circles represent point-wise operations, like vector addition, while the yellow
boxes are learned neural network layers. Lines merging denote concatenation, while a line
forking denote its content being copied and the copies going to different locations.

The key to LSTMs is the cell state, the horizontal line running through the top of the diagram.

The cell state is kind of like a conveyor belt. It runs straight down the entire chain, with only
some minor linear interactions. It’s very easy for information to just flow along it unchanged.
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The LSTM has the ability to remove or add information to the cell state, carefully regulated by
structures called gates (we discussed about gates in Chapter 2). Gates are a way to optionally let
information through. They are composed out of a sigmoid neural net layer and a point-wise
multiplication operation. The sigmoid layer outputs numbers between zero and one, describing
how much of each component should be let through. A value of zero means “let nothing
through,” while a value of one means “let everything through”. An LSTM has three of these
gates, to protect and control the cell state.

LSTMs were a big step in what we can accomplish with RNNs. But a lot of room for
improvement is also there. Future improvements in LSTM networks seem to be the solution in a
raft of problems that cannot be effectively addressed with current models and networks.

We discussed about Yonghe Zhao et al publication of a new DAE-LSTM framework that was
published just few months before the completion of this Thesis. LSTM networks and their
variants seem to be great for Sales Forecasting, maybe not for FMCGs due to the specific
characteristics of fast-moving consumer goods, but for other industries and product categories.
where we don’t have heterogeneous tabular data structures, and, thus, there is a need to use deep
learning models.

We further analyse the results of our experiments and our thoughts of the use of LSTM variants
in Future Work for Sales Forecasting in the next chapters.
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5.1 Data

We managed to gather full data from two big european marketplaces with millions in sales in
detergents and cleaning products. In case you need access to our direct data, feel free to email us
and we will provide them to you.

5. Experiments

The accumulated data's analysis is on the following sections.

5.1.1 EDA & Feature Selection

dtypes: float64(16), int64(10), object(28)

memory usage: 157.0+ MB

Also, we can see that there are no duplicates.

Checking for missing values:

Seller_|
Product | 3
Platform_|

We can see from the heat map above that some columns have missing values (shaded in white).
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We will fill the missing values later in the pre-processing stage (‘5.3 Preprocessing & Feature

Engineering”).
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5.1.2 Individual Columns Analysis

Now, let’s check for outliers.

¢ Outliers in Base Price: In [ ]:

The
The
The
The
The

Box plot of base_price

analyze(df.base_price)

number of outliers is: 39803
mean value is: 283.77861862617914
Median is: 29.41

number of missing values is: 1458
% of the missing values is: 0.38%

Distribution of base_price

190.62579482764735
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* Outliers in Sale Price: In [ ]: analyze(df.sale price)
The number of outliers is: 38148
The mean value is:
The Median is: 25.0
The number of missing values is:
The % of the missing values is: 0.38%
Box plot of sale_price Distribution of sale_price
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* Qutliers in Average Discount: In [ ]: analyze(df.avg discount)

The number of outliers is: 12492

The mean value is: -0.14731612235553615
The Median is: -0.09991019308486748

The number of missing values is: 1465
The % of the missing values is: 0.38%

Box plot of avg_discount Distribution of avg_discount
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Here, it seems that we should do standardising. One of the problems of our datasets is that the
majority of data in those cases do not have big discounts. As FMCGs are products who can be
sold without great effort, extremely fast and in big scales discounts are more rare in comparison
with slow-moving consumer goods. So, the vast majority of datasets, which contain data of the
overall sales, have only a very small percentage of discounts.

So, average discount with standardizing:

In [ ]: # Standardizing a column

sc = StandardScaler()
avg_discount_std = sc.fit_transform(df[['avg_discount']])
analyze(pd.DataFrame (avg_discount_std).iloc[:, 0])

The number of outliers is: 12492

The mean value is: 1.7374504359880938e-14
The Median is: 0.2647511450819803

The number of missing values is: 1465
The % of the missing values is: 0.38%
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¢ Qutliers in Ordered Quantity: In [ ]: analyze(df.ordered quantity)

The number of outliers is: 47286

The mean value is: 2.252977150907903
The Median is: 1.0

The number of missing values is: 0
The % of the missing values is: 0.0%

Box plot of ordered_quantity Distribution of ordered_quantity
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The outliers in the Ordered Quantity seem to be from the difference between B2C and B2B sales.

While B2C customers order relatively small amounts of FMCGs (logical for a household) in B2B
we see bulk purchases (outliers as they are huge ordered quantities).

We will omit these outliers (B2B customers) to be sure that we only take into account B2C
customers/sales in our analysis.

* Qutliers in Average Order Value (AOV): In [ ]: analyze(df.aov)

The number of outliers is: 30343

The mean value is: 73.75259207804608
The Median is: 40.0

The number of missing values is: 0
The % of the missing values is: 0.0%

Box plot of aov Distribution of aov
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Again, the outliers in the Average Order Value (AOV) are the B2B sales. We will omit these
outliers (B2B customers) to be sure that we only take into account B2C customers/sales in our
analysis.
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5.1.3 Categorical Features Analysis

In Chapter 2, we discussed about Categorical Features and how to handle them. Categorical
features handling is extremely important in Sales Forecasting, as usually more than half of
products’ features are categorical.

Our data’s overall features:

e Seller ID

® MKT ID

® Product ID

® Product Name
® Platform ID

® Country ID
®Line

® Division

® Supracategory
® Category

® SubCategory
® SubSubCategory
® Brand

® Product Status
® Order ID

® Order Source
® Traffic Source

® Order Date

® Order Hour

® No of Orders

® Ordered Quantity
® No of Products
® Avg Sale Price

® Ordered Value
® AOV

® Base Price

® Sale Price

® Avg Discount
®|s Active

® s Visible on Site
® Customer Type
® Client Type

® Customer Class
® Order Type

® Visits

® Pageviews

® Product Pageviews

® Conversion Rate

® No of Campaigns

® Min Campaign
Start Date

® Days since min
Campaign Start

® Max Campaign
Start Date

® Days since max
Campaign start

® Min Campaign End
date

® Days since min
Campaign End

® Max Campaign

End Date

® Days since max
Campaign end

® Base Price STD

® Sales Price STD

® AVG Discount STD

® Week

We see that 28 out of our 54 total features are categorical (>50%) as expected. This will help us
to benchmark our experiments and models with publications on Sales Forecasting as we will use
the same (or similar) features to the ones they use for Sales Forecasting for FMCGs.

Further exploring our Data

In Chapter 1 (“Introduction”), we explained that from all the FMCGs product categories we
chose to work on Detergents & Cleaners for the following reasons:

1. Although there is a lot of research on Sales Forecasting for the fashion industry there is

nearly zero research on Sales Forecasting for Detergents & Cleaners.
The Detergents & Cleaners industry is a very fast growing one with a CAGR of more

than 4% YoY.

p 0D

They are a heavily price-sensitive industry which gives even more importance to pricing
strategies and accurate Sales Forecasting to maximise revenues and profits.
They can efficiently represent the entirety of the fast-moving consumer goods area.
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‘count

So, let’s dive even further by taking a look at the exact Subcategories of Detergents & Cleaners

we have at hand:

120000

100000

count

60000

40000

20000

Bathroom cleaning Room freshner Toilet paper Footwear care products and accessories Kitchen cleaning
Subcategory

And, in detail, we have the following amount of products in each Subcategory:

* House cleaning 123405

* Kitchen cleaning 100276

* Laundry 77196

* Room freshner 39751

» Bathroom cleaning 24557

* Footwear care products and accessories 10270
* Toilet paper 5698

House cleaning

Also, apart from having enough amount of data from many different Detergents & Cleaners
subcategories (to have as little bias as possible in choosing the data to work with), we need to

have enough data from many different weeks to avoid cases of bias from extreme seasonality.

The amount of products sold per week is:

12000
10000

8000

0

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 0
Week

As we have, no less than 2000 products sold per week, we seem to have enough data from all
different weeks/periods. Although, we can easily detect a seasonality pattern in Detergents &
Cleaners during the spring and summer, they are products which make sales all year long, which
is an additional reason why they are the optimal choice for studying FMCGs overall.

Last but not least, one of the most important aspects of modern Sales Forecasting is order source
and traffic source. As we study marketplaces, they have a number of different sales and
distribution channels and we want to study the correlation between order/traffic source and actual

51 52
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sales. This analysis is becoming increasingly important to businesses’ marketing departments and
in recent marketing research, especially regarding targeting.
In our data, more than 99% of our order source comes form:

In [ ]: df.Order_ source.value_counts()

Out[ ]: MOBILE APP 143004
SITE 135772
MOBILE 99964

So, the 3 top order sources are the marketplaces’:

* Mobile app (Android & iOS)
» Website (desktop/laptop view)
* Website (mobile view)

Also, more than 90% of our traffic source comes form:

In [ ]: df.Traffic_ Source.value counts()

Out[ ]: Direct Pure 150554
SEO 111930
Direct Unknown 56522
AdWords — PLA 14718
AdWords — Search 11058
Trigger 7024
Facebook Paid 4137

So, the 4 top order sources are the marketplaces’:

* Direct (website & app)
* SEO

* AdWords

» Facebook Ad

5.1.4 Bivariate Analysis/Pearson’s correlation

The Pearson product-moment correlation coefficient (or Pearson correlation coefficient, for short)
is a measure of the strength of a linear association between two variables and is denoted by r.
Basically, a Pearson product-moment correlation attempts to draw a line of best fit through the
data of two variables, and the Pearson correlation coefficient, r, indicates how far away all these
data points are to this line of best fit (i.e., how well the data points fit this new model/line of best
fit).

It can take a range of values from +1 to -1. A value of 0 indicates that there is no association
between the two variables. A value greater than 0 indicates a positive association; that is, as the
value of one variable increases, so does the value of the other variable. A value less than 0
indicates a negative association; that is, as the value of one variable increases, the value of the
other variable decreases. The stronger the association of the two variables, the closer the Pearson
correlation coefficient, r, will be to either +1 or -1 depending on whether the relationship is
positive or negative, respectively. Achieving a value of +1 or -1 means that all your data points
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are included on the line of best fit — there are no data points that show any variation away from
this line. Values for r between +1 and -1 indicate that there is variation around the line of best fit.
The closer the value of r to 0 the greater the variation around the line of best fit.

Our data:

Product_Id
ordered_quantity

avg_sale_price

ordered_value .

aov -10
base_price -0.8
sale_price 06
avg_discount
-04
Visits
-02
Pageviews
Product_Pageviews ~00
conversion_rate --0.2

no_of_campaigns --0.4

Days_since_min_campaign_start

Days_since_max_campaign_start

Days_until_min_campaign_end

Days_until_max_campaign_end

H B
[ L
N
]

Week

Product_Id
aov
base_price
sale price
Visits
Pageviews
Week

avg_discount

ordered value

ordered_gquantity
avg sale price

conversion rate
no_of campaigns

Product Pageviews

Days_since_min_campaign_start

Days_until_min_campaign_end
Days_until_max_campaign_end

Days_since_max_campaign_start

From the matrix above we can make the following conclusions:

* We see that Visits and Pageviews, Visits and Product Pageviews, and Pageviews and
Product Pageviews are closely correlated. Therefore, we can remove Visits and Page Views
columns, keeping Product Pageviews.

* We can also see that base price and sale price are correlated, and therefore we can remove one
of them.

* We notice that Days since min campaign start and Days until max campaign end are
strongly negatively correlated and, therefore, we can also remove one of them (we will remove
the one that is less correlated to the target feature). The same applies to
Days_since max_campaign_start and Days until min_campaign_end.
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From removing the one that is less correlated to the target feature (ordered quantity) we have the
final Pearson’s correlation:

Product_Id

ordered_quantity .
avg_sale_price ..
ordered_value .

-1

.- OVG

base_price - 04
avg-discount ..-... -02
Pmdu‘:t_PageViews ... .
0.0
mnverSion_rate ... .. .
no_of_campaigns

Days since_min.campaion. stare ... ... ..
Days-smce-max—campaign start .. .. - . .
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5.1.5 Target Value & Input Features

Just to complete our data analysis, we provide further visualisations between our target value
(ordered_quantity) and some of the most important Sales Forecasting features (based on other
publications and our Bi-Variate Analysis).

ordered_quantity
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ordered_quantity

ordered_quantity
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Our data have the characteristics we expected. As we work with FMCGs we have small average

price per product and small to medium order sizes (0-100). Excluding the outliers, the vast
amount of data are for products that:

* Have a base price of 0-20€.

* Sold in small to medium quantities (order size).

* The buyers are individuals and maybe small businesses that buy retail.

* We have a diversity of discounts (average discount per product id), but the majority of
campaigns are based on small discounts (<50%).

» Customers don’t buy just one product, which means that by the time they send their order they
have many items in their cart, as it usually happens at marketplaces and especially for FMCGs.
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So, once again we see that our data are an excellent representation of FMCGs’ sales and, thus,
can be effectively used for Sales Forecasting for nearly every FMCG product.

5.2 Key Metrics

To better benchmark our models with the Bibliography’s research and results we need to chose
similar key metrics. Also, we need to choose key metrics that can be used in a variety of models
that we used in our experiments in order to be able to accurately compare them. Thus, the key
metrics that we used are: 1. MAPE, 2. RMSE, 3. MSE

MAPE, RMSE & MSE are some of the most used key metrics in Sales Forecasting.

Evaluation indexes Expression Description

ME ME=1/(b-a+D}, . - The mean sum error
MSE MSE=1/(b-a+ I)ZLu (= }/’\k )i The mean squared error
RMSE RMSE = \/1/ (b-a+DYp, (v -y ) The root mean squared error

MAE MAE=1/(b-a+ I)ZLalyk - };\k | The mean absolute error
i is the sales of the k-th sample. )’/\k denotes the corresponding prediction.
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And because mean_squared _error is a standard function in sklearn we need to define the two
others:

In [ ]: from sklearn.metrics import mean_ squared_error

def mean_ absolute_percentage_error(y_t, y p):
return np.mean(np.abs((y_t - y_p) / y_t)) * 100

def root mean_squared_error(y_ t, y p):
mse = mean_squared_error(y_t, y_p)
return np.sqrt(mse)

So, now we have ready to use for every one of our model our key metrics, which are called with
the following names:

* MAPE: mean_absolute percentage error
* MSE: mean_squared_error
* RMSE: root_mean_squared_error

5.3 Preprocessing & Feature Engineering

Before we start building the ML models with target value the ordered quantity, we have to do
some pre-processing. After that, we will try to transform existing features, and construct new
features to improve the performance of the model.

The data pre-processing we have done includes:

* Handling missing values
» Data encoding

» Removing outliers

* Feature Scaling

For more information about the exact Preprocessing & Feature Engineering we conducted, please
ask for our relevant notebook (.ipynb).

Regarding Feature Scaling, we decided to do double work and double experiments, both with
Standardized and Normalized data. This helped us take everything into account and guarantee
that the results of our experiments will be unbiased from the Feature Scaling technique/case that
will be used from businesses’ data departments. Also, regarding Sales Forecasting it is not clear
which feature scaling technique works best, as we have studied top publications that use either of
these methods. However, there may be a simpler answer to this, which is that Sales Forecasting is
unbiased from the feature scaling method (due to the specific characteristics of the features that
are being used for Sales Forecasting). However, in any case, it seems absolutely necessary to use
a feature scaling technique.

According to our results, the two feature scaling methods had a comparable behaviour, pointing
towards the assumption that Sales Forecasting problems are unbiased to the choice of feature
scaling. Nevertheless, we give some details about both Standardisation and Normalisation for
completeness in our analysis and theoretical background of necessary data science and feature
engineering for ML in Sales Forecasting.
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5.3.1 Standardisation

Standardisation (or z-score normalisation) is the procedure during which the feature values are
rescaled so that they have the properties of a standard normal distribution with p =0 and 6 = 1,
where 1 is the mean (the average value of the feature, averaged over all examples in the dataset)
and o is the standard deviation from the mean. Standard scores (or z-scores) of features are
calculated as follows:

) 20 — @)
0 T AT
g'(.'l )
In [ ]: # 1. Standardisation
sc = StandardScaler()
enc_df_std = enc_df.copy()
enc_df_ std[columns_to_scale] = sc.fit transform(enc_df std[columns_to_scale])
enc_df_std
out[ ]:
Product_Id Subcategory SubSubcategory Brand Product Status Seller_Type Is_Accessory Order_source Traffic_Source ordered_quantity avg_sale
0 45392776 0 20.000000 2495.0 0 1 0 5.0 7.0 1 -0.45
1 45495458 0 20.000000 2222.0 0 1 0 5.0 7.0 1 -0.21
2 56790176 5 11.137896 2357.0 0 1 0 25.0 2.0 1 -0.14
3 26095097 6 11.137896 2357.0 0 1 0 25.0 2.0 1 1.95
4 41344737 5 11.137896 1433.0 0 1 0 4.0 20.0 1 0.34
381148 40923336 0 0.000000 1195.0 0 1 0 5.0 7.0 5 -0.42
381149 17174689 2 10.000000 2222.0 0 1 0 5.0 20.0 1 0.24
381150 17174688 2 10.000000 2222.0 0 1 0 5.0 20.0 1 0.07
381151 16643891 2 10.000000 1296.0 0 1 0 5.0 7.0 1 0.15
381152 31145066 2 10.000000 977.0 0 1 0 4.0 20.0 3 0.57

381153 rows x 27 columns

5.3.2 Normalisation

Normalisation is the process of converting an actual range of values which a numerical feature
can take, into a standard range of values, typically in the interval [—1, 1] or [0, 1]. For example,
suppose the natural range of a particular feature is 120 to 2520. By subtracting 120 from every
value of the feature, and dividing the result by 2400, one can normalise those values into the
range [0, 1]. More generally, the normalisation formula looks like this:

—() z0) — min(?
V= ———————
maz(®) — min(?)

Normalising the data is not a strict requirement. However, in practice, it can lead to an increased
speed of learning. Additionally, it’s useful to ensure that our inputs are roughly in the same
relatively small range to avoid problems which computers have when working with very small or
very big numbers (overflow).

In [ ]: # 2. Normalisation

norm = Normalizer()

enc_df norm = enc_df.copy()

enc_df_norm[columns_to_scale] = norm.fit_ transform(enc_df norm[columns_to_scale])
enc_df_ norm

Out[ ]:
Product Id Subcategory SubSubcategory Brand Product Status Seller_Type Is_Accessory Order_source Traffic_Source ordered_quantity avg_sale_|

0 45392776 0 20.000000 2495.0 0 1 0 5.0 7.0 1 0.05
1 45495458 0 20.000000 2222.0 0 1 0 5.0 7.0 1 0.12
2 56790176 5 11.137896 2357.0 0 1 0 25.0 2.0 1 0.14
3 26095097 6 11.137896 2357.0 0 1 0 25.0 2.0 1 0.41
4 41344737 5 11.137896 1433.0 0 1 0 4.0 20.0 1 0.37
381148 40923336 0 0.000000 1195.0 0 1 0 5.0 7.0 5 0.06
381149 17174689 2 10.000000 2222.0 0 1 0 5.0 20.0 1 0.11
381150 17174688 2 10.000000 2222.0 0 1 0 5.0 20.0 1 0.16
381151 16643891 2 10.000000 1296.0 0 1 0 5.0 7.0 1 0.13
381152 31145066 2 10.000000 977.0 0 1 0 4.0 20.0 3 0.02

381153 rows x 27 columns
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5.4 Initial model training & Results

We do train-test splitting and now we are ready to run our models (which were analysed in detail
in Chapter 4, “Method & Models™).

In order to be able to compare our models (both between each other, and with other publications’

results) we will review them into 4 categories:

* (Simple) Regression Models
* Ensemble models/GBDT
e Meta-Learners

* Deep Learning models/Neural Networks

An additional reason we will do that is that by having 15 models (9 ML, 3 meta-learners, 3 deep
learning models) in total we face the problem of having difficult visual comparisons. So, the only
way to compare our models is by benchmarking them with other models from their “algorithmic

family”

5.4.1 Regression models

First, we use the standard regression models. Relative results and further use of them can be
found in publications [2], [4], [17] and [46] in bibliography.

The models we cover are:

* HuberRegression
* KNN Regressor

* Passive Aggressive Regressor
» Lasso Regression
* Ridge Regression

MAPE (%) (Standard) MAPE (%) (Normal) RMSE (Standard)  RMSE (Normal) ‘ MSE (Standard) MSE (Normal) Time Time
(sec) (Standard) (sec) (Normal)
HuberRegression 17,41 19,65 3,60 3,52 12,93 12,36 895 1512
KNNReg 45,21 51,24 3,19 3,33 10,19 11,10 19542 19722
Pass/AggReg 57,82 64,59 3,59 3,53 12,89 12,43 7 10
LassoRegression 89,26 89,26 4,03 4,03 16,26 16,26 1 1
RidgeRegression 62,12 57,16 3,50 3,29 12,22 10,81 1 1

90,00

67,50

45,00

MAPE (%)

22,50

HuberRegression

KNNReg

B MAPE (%) (Standard)

Pass/AggReg

LassoRegression

[ MAPE (%) (Normal)

RidgeRegression
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Execution time

3,07

2,05

RMSE

HuberRegression KNNReg Pass/AggReg LassoRegression RidgeRegression

I RMSE (Standard) ¥ RMSE (Normal)
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®
o
3

HuberRegression KNNReg Pass/AggReg LassoRegression RidgeRegression

W MSE (Standard) [ MSE (Normal)

We have the following results:
As we see from the barplots above:

» There are no consistent differences between our standardized dataset and our normalised one.
Some models achieve better accuracy for one of them, but even in this case, we see that across
different key metrics, nearly all models change the preferred feature scaling method. So, as we
have predicted, for our FMCGs’ dataset, the choice of feature scaling seems to be irrelevant.

» HuberRegression has by far the lowest MAPE, but loses in other key metrics.

* Based on industry standards, MAPE >20% is not good enough for FMCGs. So, from simple
regressors, only HuberRegression passes the acceptable limit.

20000

15000

10000

5000

HuberRegression KNNReg Pass/AggReg LassoRegression RidgeRegression

M Execution Time (sec) (Standard) I Execution Time (sec) (Normal)
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* Nowadays, all those models are run online (cloud-based services). So, the absolute value of
running/execution time is insignificant. What maybe matters is the relative execution time to
get a good sense about each model’s need for computing resources and time for execution.

* KNN takes an extreme amount of time to be executed.
» HuberRegression has about 20-30 minutes execution time.
+ All the other models have practically zero execution time.

5.4.2 GBDT models

Then, we need to check the experimental results from our GBDT models. Relative results and
further use of them can be found in publications [1], [3], [5], [6], [8], [10], [12], [22], [23], [36],
[37] and [42] in bibliography.

The models we cover are:

* XGBoost

* Random Forest Regressor
» CatBoost

* LightGBM

We have the following results:

MAPE (%) (Standard) MAPE (%) (Normal) RMSE (Standard) ~ RMSE (b )  MSE (Standard) MSE (1 Time Time
(sec) (Standard) (sec) (Normal)
XGBoost 4,580 5,454 0,494 0,822 0,244 0,676 1634 1792
RandomForestReg 53,246 ' 42,002 2,061 1,986 ' 4,248 3,945 727 ‘ 727
CatBoost 2,486 1,816 0,429 0,566 0,184 0,321 133 178
LightGBM 2,981 3,075 0,514 0,655 0,264 0,429 17 ‘ 15

60,000

45,000

30,000

MAPE (%)

15,000

0,000
XGBoost RandomForestReg CatBoost LightGBM

B MAPE (%) (Standard) I MAPE (%) (Normal)

2,200

1,650

1,100

RMSE

0,550

0,000
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]
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XGBoost RandomForestReg CatBoost LightGBM

W MSE (Standard) [ MSE (Normal)

As we see from the barplots above:

* The standardized dataset is doing a bit better than the normalised one in GBDT models.
Especially in XGBoost, the difference is significant. So, XGBoost has a preference for
standardisation.

* XGBoost, CatBoost and LightGBM do extremely well across all metrics. With a MAPE of just
2.5-5% GBDT models show why they are considered the best models for problems with
heterogeneous tabular data structures.

* RandomForest Regressor is the only GBDT model with low prediction accuracy. While it is
very simple to use and potentially good for benchmarking, it doesn’t seem appropriate for
FMCGs Sales Forecasting.

* Based on industry standards, XGBoost, CatBoost and LightGBM are great models for Sales
Forecasting, especially for FMCGs Sales Forecasting.

* We see that GBDT models are extremely consistent across all key metrics, meaning that the
model ranking is the same across all the different key metrics we chose.

1800

1350
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Execution time

450

XGBoost RandomForestReg CatBoost LightGBM

M Execution Time (sec) (Standard) I Execution Time (sec) (Normal)

* XGBoost takes a bigger amount of time to be executed (~27-30min to be executed).
» CatBoost and LightGBM give very good results and have a low execution time too.
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5.4.3 Deep Learning models

Let’s take a look into our Deep Learning models. Relative results and further use of them can be
found in publications [31], [33], [34], [36], [38], [40] and [43] in bibliography.

The models we cover are:

» KerasRegressor
* MLP
« LSTM

It is also important to point out that as the optimization of our Deep Learning models is gradient
based, the standard label encoding we have done for other models can be problematic. This is a
standard data analysis problem, and as we explained in Chapter 2 (“Theoretical Background”) it
happens because the numeric values can be misinterpreted by the deep learning algorithms as
having some sort of hierarchy or order in them. For that reason, as we established earlier, we used
one-hot encoding to troubleshoot this potential issue.

MLP 39,073 34,273 2,100 2,470 4,408 6,103 2011 1772

24,001 24,090 4,231 4,231 17,899 17,899 818 847

40,000
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MAPE (%)

10,000

0,000

KerasRegressor LST™M

B MAPE (%) (Standard) [ MAPE (%) (Normal)

5,000

3,750

w
2 2500
o

1,250
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18,000

13,500

0,000
MLP LST™M

[ MSE (Standard) [ MSE (Normal)
We have the following results:

We only measured MAPE for KerasRegressor to just use it as a DL benchmark.

As we see from the barplots above:

» There are no consistent differences between our standardized dataset and our normalised one.
Some models achieve better accuracy for one of them, but even in this case, we see that across
different key metrics, nearly all models change the preferred feature scaling method. So, as we
have predicted, for our FMCGs’ dataset, the choice of feature scaling seems to be irrelevant.

* While MLP has lower RMSE and lower MSE, it has bigger MAPE than LSTM.

* Based on industry standards all of the aforementioned networks could be used for FMCGs
Sales Forecasting, but, as expected, the LSTM is clearly the most favorable.

* In comparison to simple regressors, Deep Learning models give better results, but not
necessarily better results from GBDT models as they quickly overfit.

2200
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Execution time
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KerasRegressor

M Execution Time (sec) (Standard) [ Execution Time (sec) (Normal)

* As we expected, all Deep Learning models have a significant execution time. However, as it
happens in those cases, businesses use extra computational resources.

* MLP takes a bigger amount of time to be executed (~30-34min to be executed).
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5.5 Ensembling/Meta-Learning

Finally, we use the meta-learners we discussed about. As we discussed in Chapter 2 (“Theoretical
Background”), Chapter 3 (“Previous Work™) and Chapter 4 (“Method and Models”), Ensemble
learning plays a huge part in increasing simple models accuracy. For that reason, after we run our
1st stage experiments with our simple regressors, GBDT models and Deep Learning models, we
need to use and test the relative meta-learners and showcase our results.

For that reason we use the following 3 meta-learners:

+ 2-best Stacking Classifier
* 3-best Stacking Classifier
* Mixture of Experts (only for Deep Learning models)

MAPE (%) (Standard) MAPE (%) (Normal) RMSE (Standard) ~ RMSE (Normal)  MSE (Standard) MSE (Normal) Execution Time  Execution Time
(sec) (Standard) (sec) (Normal)
2-best SC 2,000 1,643 0,373 0,485 0,139 0,235 153 187
3-best SC 1,990 1,622 0,358 0,467 0,128 0,218 191 249
MoE 24,440 24,264 4,228 4,208 17,878 17,877 850 830
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0,000
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And we have the following results:

As we see from the barplots above:

» There are no consistent differences between our standardized dataset and our normalised one.
Some models achieve better accuracy for one of them, but even in this case, we see that across
different key metrics, nearly all models change the preferred feature scaling method. So, as we
have predicted, for our FMCGs’ dataset, the choice of feature scaling seems to be irrelevant.

* The Mixture of Experts (MoE) was about 1% better than LSTM across all key metrics for
evaluating Deep Learning models.

+ 2-best and 3-best Stacking Classifiers are very close across all key metrics.

* In comparison to our best model, our Stacking Classifier/Regressor gave better results by 25%
and in comparison to our 3rd best model, our meta-learners gave better results by 130%.
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Execution time
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2-best SC 3-best SC

M Execution Time (sec) (Standard) I Execution Time (sec) (Normal)

» The 2-best Stacking Classifier, with our computational resources, takes about 2.5-3min to be
executed.

* MoE takes a bigger amount of time to be executed (~14min).

» For the additional increase in prediction accuracy, Stacking Classifiers need little extra time and
seem to be very good investments even when we regard the additional computational power.
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To be able to better compare the two Stacking Classifiers and draw conclusions about which
Stacking Classifier/Regressor is better for industry use (based on the increase in prediction
accuracy, additional execution time and theoretical optimal forecasting limits), let’s see them side
by side:

2-best SC 3-best SC

W MAPE (%) (Standard) W MAPE (%) (Normal)

0,500

0375

0,250

RMSE

0,125

0,000
2-best SC 3-best SC

B RMSE (Standard) I RMSE (Normal)

0,240

0,180

0,120

MSE

0,060

2-best SC 3-best SC

M MSE (Standard) I MSE (Normal)

The 3-best Stacking Classifier is about 0-1% better than the 2-best Stacking Classifier across all
key metrics.
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In the next section, we will use the same method and models for a Kaggle competition. Along
with this analysis, we will present our final experimental results and conclusions in Chapter 6
(“Conclusion”).

5.6 Benchmarking with Kaggle competition

In order to have even more data and results about the meta-learners we tried, we decided to
compete in a Kaggle competition about Sales Forecasting. It was also a good ground to test if the
models that proved to be good top choices for FMCGs Sales Forecasting are also top choices for
other types of products and more diverse Sales Forecasting.

Q Search %%

@) Playgrolhd Prediction Compatitiar N l ’
b ygrouny petitio a

< <

\l’?

3 4
Predict Future Sales <
Final ph{ject for "Howo win a data é}jiénce émpetition" ({oursera ;@ <
) O

11,401 teams * 2 years to go

Overview Data Code Discussion Leaderboard Rules Team My Submissions Submit Predictions

Overview
Description This challenge serves as final project for the "How to win a data science competition" Coursera course.
Evaluation In this competition you will work with a challenging time-series dataset consisting of daily sales data,
kindly provided by one of the largest Russian software firms - 1C Company.
We are asking you to predict total sales for every product and store in the next month. By solving this
competition you will be able to apply and enhance your data science skills.
Launch Close
3 years ago 2 years

To be able to compare the results of our models in a different setting, first let’s take a quick view
about the data (products) in the specific dataset.

Opposite to our original dataset, here we have many different products from many different
categories, and we have the following distribution of items per item category:

Box plot of item_category_id Distribution of item_category_id
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Next, let’s take a look on the prices of the products at hand, and see how much they resemble
FMCGs:

Box plot of item_price Distribution of item_price
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The fact that the huge majority of the products in this dataset have very small price is good for
efficient comparison, as we have products that at least have some common characteristics with
FMCGs.

Last but not least, let’s take a look at the amount of data we have per week:

140000

120000

100000

count

0 1 2 13 4 15 18 17 18 19 220 2 2 23 24 25 26 27 28 2 30 31 R B
date_block_num

It seems that we have enough data from many different weeks (all year round), so, also in that
sense, the Kaggle competition’s data, have some common characteristics to ours.

So, now that we have provided insights about the nature of the competition and the fact that these
data resemble satisfyingly well our initial data, let’s see the model building we did and how it

went.

» We tested the 4 best models from our original data.

* We tested our best meta-learner, the “2-best Stacking Classifier” to test again how efficient it is
to use meta-learners and what kind of meta-learners should someone use for Sales Forecasting.

So, the models we tested are:

* ML models:
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1. HuberRegression
2. XGBoost
3. CatBoost
4. Lightgbm

» Meta-learners:
2-best Stacking Classifier

The goal is to completely independently test the value of our top models from our original
experiments. To do so, we chose this Kaggle competition that resembles our initial datasets, and
so, the score of our ML models will be tested in this globally measured, independent setting. We
only measure each model’s RMSE, as we have shown that GBDT models seem to be extremely
consistent across all key metrics (so measuring and comparing just their RMSE is sufficient).

The results were: |

Model RMSE

CatBoost 3,367
XGBoost 1,435
LightGBM 2,036
HuberRegression 1,467
2-best SC 1,401

Prediction accuracy of ML models for Kaggle’s Predict Future Sales competition
3,400

2,550

1,700

RMSE

0,850

0,000

CatBoost XGBoost LightGBM HuberRegression 2-best SC

So:

» CatBoost, while did extremely well in our data, was by far worse in this dataset.

* HuberRegression proved once more that is an extremely simple, but extremely powerful
regressor, which scores amazingly well even in less homogeneous sales datasets. Thus, it can
be efficiently used in nearly any kind of Sales Forecasting and is a must-go for the Sales
Forecasting development by scholars and businesses’ data teams.

* XGBoost was the most accurate model and defended its position as one of the most useful
and most used ML models, being superior both in accuracy and diversity of use (usefulness).
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» Our 2-best Stacking Regressor did a bit better, as expected, but not enough to satisfy the
extra level of development and time commitment. Here it did just 2.4% better. Whether or
not this is a valuable prediction difference remains is a bit subjective. We definitely
recommend to businesses that want the best possible prediction accuracy to at least try meta-
learners, but we see here that with not enough models to be combined and similar results
from the top models, the prediction accuracy improvement the meta-learners provide may be
regarded as insignificant. As we can see, in a competition setting this improvement, although
small, may be sufficient to skyrocket our performance in the competition’s setting.

It seems that our work was good enough to be placed in the top submitted solutions worldwide.
We scored in the top 1% of submissions from all over the world and specifically 46th out of
more than 10,000 submissions (by the time of the screenshot we have fallen to the 70th place,
but still in the top 1%).

Predict Future S... 20t

All in all, it seems that the amount of time we saved by testing this Thesis’ top scoring models
for Sales Forecasting is significant (as we developed only the top 4 models and the best meta-
learner, not blindly developing countless models as it regularly happens in relevant projects),
and the prediction accuracy we achieved is exquisite.

This shows once more, that on the basis of this Thesis many businesses can be benefitted; both
those who have already implemented Sales Forecasting models and prediction distribution
processes, but also those who will develop such models and processes in the future. By having
a clear idea which methods and which models perform optimally for sales forecasting for
FMCGs, businesses can save a tremendous percentage of their time and investments and
simultaneously develop models with surprisingly high prediction accuracy.
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6. Conclusion

6.1 Results

The main goal was to study in depth the field of Sales Forecasting and the role of Machine
Learning in modern sales forecasting, with a focus on fast-moving consumer goods (FMCGs).

For that reason, we started by providing the theoretical background of both FMCGs and Machine
Learning in Sales Forecasting. This is necessary, as knowing the nature of the problem is
extremely important in Machine Learning and Deep Learning implementations.

By having the full picture about the problem and the previous work was done about it (Chapter 3,
“Previous Work™) we can improve our models (e.g. better data-preprocessing and feature
engineering), but also have good initial assumptions about the accuracy of every solution. As it
happens in every relevant project, we are benchmarking different ML & DL models for our
specific datasets (which, as we have proved, accurately represent the whole field of FMCGs) to
find improvements in Sales Forecasting for FMCGs, draw important conclusions and give useful
recommendations to businesses in these industries. We hope that with this Thesis, businesses can
more effectively build sales forecasting models and sales predictions processes, and so they can
improve their inventory management and modify their products' future prices (give discounts,
create campaigns etc.) to maximise their revenues and profits.

The models with the best prediction accuracy from every category were:

* (simple) Regressors: HuberRegression

* GBDT: Catboost
* Neural Networks: LSTM
* Meta-Learners: 3-best Stacking Regressor

As expected, the Stacking Classifiers/Regressors (2-best SC/R and 3-best SC/R) achieved the
maximum prediction accuracy, as they achieved lower errors than the best models they consist of
and stack (CatBoost, Lightgbm, XGBoost, HuberRegression).

Kaggle competition

In order to have even more data and results about the models and meta-learners we tried in our
main experiments, we competed in a Kaggle competition about Sales Forecasting. It was a good
ground to test if the models that proved to be good top choices for FMCGs Sales Forecasting are
also top choices for other types of products and more diverse Sales Forecasting.

The proposed models and methodology lead to the same outcomes, showing that the accuracy of
the Stacking Classifier based on the the two or three best models is significantly higher than
every individual model's accuracy. As a matter of fact, the solution was in the top 50, top 1%
Kaggle solutions, out of more than 10,000 submitted solutions (46th place at the competition
Leaderboard). Also, the models with the best prediction accuracy for the Kaggle competition
were: a. XGBoost and b. HuberRegression.

XGBoost has excellent performance due to its scalability and accurate implementation of
gradient boosting, optimizing high performance and low computational complexity. Accordingly,
HuberRegression leads to very good results, because of its insensitivity to outliers.
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As we spent less time for pre-processing and feature engineering at our Kaggle datasets, it is
natural that HuberRegression scored better than other, more sophisticated, models, such as
CatBoost and LGBM. We assume that if we haven’t done such elaborate and complete data-
preprocessing and feature engineering in our main datasets, we would have seen the same
relevant scoring by HuberRegression, as HuberRegression would have lower “penalty” from
worse data-preprocessing and feature engineering achieving the same or even better results in
comparison with the GBDT models. However, with complete data-preprocessing and feature
engineering it is natural that the GBDT models (XGBoost, LightGBM and CatBoost) are
amazingly effective (the most effective algorithmic family) for problems with heterogeneous

tabular data.

More detailed Results about our main datasets:

From all our case-studies we have seen that trying our top 4 basic ML models (HuberRegression,
XGBoost, LightGBM and CatBoost) and having a "2-best Stacking Classifier solution" leads to
extremely efficient Sales Forecasting, as it efficiently combines incredibly high prediction
accuracy with relatively low training time, making it an excellent choice for real-world Sales
Forecasting solutions implemented by companies in the fast-moving consumer goods industries.

These are the results and the characteristics of each one of our models:

Execution Time  Execution Time

MAPE (%) (Standard) MAPE (%) (Normal)  RMSE (Standard) ~ RMSE (Normal)  MSE(Standard)  MSE(Norma)  cXeSteon T Execion T Best Parameters (Standard) Best Parameters (Normal)
HuberRegression 17,413 19,654 3,506 3516 12,929 12,362 895 1512 {'epsilon': 1.4} {'epsilon': 1.4}
. e . . - D P - — e’ mantttn, . reighbors 5, weights {metric® mankatan. . nighbor” 1, wigs
Pass/AggReg 57,822 64,591 3,590 3525 12,891 12,425 7 10 {cuo (cto)
LassoRegression 89,261 89,261 4,033 4,033 16,264 16,264 1 1 {'selection’: random’} {'selection’: random’}
RidgeRegression 62,120 57,160 3,496 3,288 12,221 10,809 1 1 {alpha': 0.2} {alpha’: 0.05)
{‘colsample_bytree': 0.7, Ylearning rate': .03, {colsample_bytree': 0.7, learningrate': 0.03,
XGBoost 4,580 5454 0494 0822 0244 0676 1634 1792 e o hild
‘regisquarederror’,‘silent’; 1, ‘subsample’: 0.7} ‘reg:squarederror', silent’: 1, ‘subsﬂmp :0.7)
('max_depth': 6, 'max_features” 'sqrt’, {'max_depth': 6, 'max_features': 'sqrt,
Handomboreatiied 53,248 42,002 2,061 1,986 4248 3,945 21 27 ‘min_impurity_decrease': 0.001, 'n_estimators’: 150} | 'min_impurity_decrease 0.001, 'n_estimators': 150}
CatBoost 2,486 1,816 0,429 0,566 0,184 0,321 133 178 ;ﬁgsgff"::m os::o Lgrid, cv=5, Rﬁgésjwan::m os::O \_grid, cv=5,
LightGBM 2,981 3,075 0,514 0,655 0,264 0,429 17 15 {boosting_type': ‘goss'} {'boosting_type': 'goss'}
modelt = ghtgom LGBMRegresso (b00sting type | model = Ightgbm.LGBMRegressor boosting.ype
mocil2 = CatBoostRsgrestor oss_function = model2 = CatBoostRegressor (loss_function =
g 'RMSE!, verbose = 0), estimators = [(lightgbrm’, ‘RMSE!, verbose = 0), estimators = [(lightgbm’,
2-bestSC 2000 jlsis 0573 085 @ED 0285 3 e model1), (‘catboost', model2)] model1), (‘catboost', model2)]
stack _reg = StackingRegressor (estimators = stack _reg = StackingRegressor (estimators =
estimators, final_estimator = HuberRegressor (, cv = | estimators, final_estimator = HuberRegressor (), cv =
5, verbose = 1) 5, verbose = 1)
modelt = xgboost XGBRegressor (objective = 'reg: | model1 = xgboostXGBRegressor (objective = 'reg:
squarederror’, colsample_bytree = 0.7, learning_rate | squarederror’, colsample_bytree = 0.7, learning_rate
= 0.03, max_depth = 5, min_child_weight = 4, = 0.03, max_depth = 5, min_child_weight = 4,
n_estimators = 300, nthread = 4, silent = 1, n_estimators = 300, nthread = 4, sient = 1,
subsample = 0.7) subsample = 0.7)
model2 = lightgbm.LGBMRegressor (boosting_type | model = ightgbm L GBMRegressor (ocosting type
3-best SC 1,990 1,622 0,358 0,467 0,128 0218 191 249 = goss) oss)
model3 = CatBoostRegressor (loss_function = model3 = CatBoostRegressor (oss_function =
‘RMSE!, verbose = 0), estimators = ((xgb_reg’, "RMSE', verbose = 0), estimators = [(xgb_reg’,
model1), (lightgbm’, model2), (catboost, model3)] | modelt), (lightgbm', model2), (catboost', modei3)]
stack _reg = StackingRegressor (estimators = stack _reg = StackingRegressor (estimators =
estimators, final_estimator = HuberRegressor (, cv = | estimators, final_estimator = HuberRegressor () cv =
5, verbose = 1) 5, verbose = 1)
MoE 24,440 24,264 4228 4228 17,878 17,877 850 830 model = MoE(®, 1) model = MoE(8, 1)
model = Sequential (), model.add (Dense (128, model = Sequential (), model.add (Dense (128,
input_dim = X_train.shape [1], activation = 'relu)), | input_dim = X_train.shape [1), activation = relu),
model.add (Dropout (0.2), model.add (Dense (256, | model.add (Dropout (0.2)), model.add (Dense (256,
activation = 'relu’), model.add (Dropout (0.2), activation = 'relu’), model.add (Dropout (0.2),
KeeasHogreosor 38,003 38,093 628 653 ‘model.add (Dense (128, activation = 'relu’), model.add (Dense (128, activation = ‘relu’),
model.add (Dropout (0.2), model.add (Dense (1), | model.add (Dropout (0.2)), model.add (Dense (1),
opt = Nadam (1e-2), model.compille (optimizer = opt, | opt = Nadam (1e-2), model.compile (optimizer = opt,
loss = 'mean_squared_error’) loss = 'mean_squared_error)
mip. reg = MLPRegressor (, param_grid = { mip_reg = MLPRegressor (, param_grid = {
idden_layr_szes': (100, (20,20, (256, 25, “hidden_layer_sizes': [(100,), (20, 20), (256, 256,
128)], 128)],
MLE 32078 34213 2,100 2470 4.408 6,103 20 o2 ‘actiaton logistic', 'tanh]} ‘activation': [logistic’, 'tanh]}
reg_ov = GridSearchCV (estimator = mip_reg, reg_ov = GridSearchCV (estimator = mip_reg,
param_grid = param_grid, cv = 5, n_jobs = -1) param_grid = param_grid, cv = 5, n_jobs = -1)
loss_function = nn.L1Loss (, optimizer = loss_function = nn.L1Loss (, optimizer =
torch.optim. meters () Ir = 0.001), | torch.optim.Adam (model.parameters () Ir = 0.001),
LsTM 24,001 24,090 4,231 4231 17,890 17,899 818 847 epochs = 100, best_m: ,model =LSTM | epochs = 100, best_mse = np.inf, model = LSTM

Some useful comments:

.inf,
(X_train_norm.shape [1], 100) , sss_norm =
ShuffleSplit (n_splits = 1, test_size = 0.1)

(X_train_norm.shape [1], 100), sss_norm =
‘ShuffleSplit (n_splits = 1, test_size = 0.1)

» The HuberRegression got the best results by having the highest regularization parameter, and
the same happened in the case of MLP. In our experiments, the simplest model was chosen in
most models (we will explain in a bit why).

» HuberRegression impressed us, as it achieved low errors and good prediction accuracy. It is a
very useful model for Sales Forecasting implementations, where there are always significant
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outliers. Its extreme resistance to outliers makes it very useful, even when we have little data.
In those cases, we can see that is better than more complicated models.

* The KNN model could be executed only one time, as, since the prediction is based on finding
the closest elements from the test element, it takes an enormous computational time (5+ hours
execution time, more than any other model). With a quick estimation, we can see that it will
take around 32 billion operations for each prediction fold in each combination. Thus, it is by far
the most computational heavy ML algorithm we tried, and by far slower even than complicated
neural networks implementations.

* We didn’t perform a GridSearch at our Deep Learning models due to the extreme cost, but also
because GridSearch impacts the task at hand (searching for relations at the entire architecture
instead of changing the size of a specific layer). So, instead of doing GridSearch, we
implemented an early-stop technique to prevent overfitting. As we didn’t use any kind of
validation set at our other models, we took a 10% split for GridSearch, but also kept our test set

in pristine condition.

To have a better look at the training of our models and their best parameters:

Best Parameters (Standard) Best Parameters (Normal)
HuberRegression {'epsilon': 1.4} {'epsilon': 1.4}
KNNReg {'metric': 'manhattan’, 'n_neighbors': 5, 'weights": 'distance'} {'metric': 'manhattan’, 'n_neighbors': 15, 'weights': 'distance'}
Pass/AggReg {'C: 0.1} {'C: 0.1}
LassoRegression {'selection': 'random'} {'selection": 'random'}
RidgeRegression {'alpha': 0.2} {'alpha': 0.05}
XGBoost ('c‘olsample_bytree': 0.7, 'Iearning_rgte': 0.03, 'max_depth': 6,.'min_child_weight': 4, ('cglsample_bylree‘: 0.7, 'Iearning_ra}e': 0.03, 'max_depth': 5,"min_child_weight': 4,
'n_estimators": 300, 'nthread': 4, 'objective': ‘reg:squarederror', 'silent': 1, 'subsample’: 0.7} = 'n_estimators": 300, 'nthread': 4, 'objective': ‘reg:squarederror', 'silent': 1, 'subsample': 0.7}
RandomForestReg {‘max_depth’: 6, 'max features': 'sqrt, 'n;igai)mpurity,decrease': 0.001, 'n_estimators': {'max_depth': 6, 'max_features': 'sqrt', ‘min_impurity_decrease': 0.001, 'n_estimators': 150}
CatBoost estimator=catb_reg, param_grid=param_grid, cv= 5, n_jobs=-1, verbose=0 estimator=catb_reg, param_grid=param_grid, cv= 5, n_jobs=-1, verbose=0
LightGBM {'boosting_type': 'goss'} {'boosting_type": 'goss'}
model1 = ligt LG ing_type = 'goss') model1 = lightgbm.LGBMRegressor (boosting_type = 'goss’)
model2 = CatBoostRegressor (loss_function = 'RMSE', verbose = 0), estimators = model2 = CatBoostRegressor (loss_function = 'RMSE', verbose = 0), estimators =
2-best SC [('lightgbm', model1), (‘catboost’, model2)] [('lightgbm', model1), (‘catboost', model2)]

stack_reg = StackingRegressor (estimators = estimators, final_estimator = HuberRegressor
(, cv =5, verbose = 1)

model1 = xgboost.XGBRegressor (objective = 'reg: squarederror', colsample_bytree = 0.7,
learning_rate = 0.03, max_depth = 5, min_child_weight = 4, n_estimators = 300, nthread =
4, silent = 1, subsample = 0.7)
model2 = lightgbm.LGBMRegressor (boosting_type = 'goss')

stack_reg = StackingRegressor (estimators = estimators, final_estimator = HuberRegressor
0, cv =5, verbose = 1)

model1 = xgboost.XGBRegressor (objective = 'reg: squarederror', colsample_bytree = 0.7,
learning_rate = 0.03, max_depth = 5, min_child_weight = 4, n_estimators = 300, nthread =
4, silent = 1, subsample = 0.7)
model2 = lightgbm.LGBMRegressor (boosting_type = 'goss’)

3-best SC model3 = CatBoostRegressor (loss_function = 'RMSE', verbose = 0), estimators = model3 = CatBoostRegressor (loss_function = 'RMSE', verbose = 0), estimators =
[('xgb_reg', model1), (‘lightgbm', model2), (‘catboost', model3)] [('xgb_reg', model1), ('lightgbm', model2), (‘catboost’, model3)]
stack_reg = StackingRegressor (estimators = estimators, final_estimator = HuberRegressor = stack_reg = StackingRegressor (estimators = estimators, final_estimator = HuberRegressor
(, cv =5, verbose = 1) 0, cv =5, verbose = 1)
MoE model = MoE(8, 1) model = MoE(8, 1)
model = Sequential (), model.add (Dense (128, input_dim = X_train.shape [1], activation = model = Sequential (), model.add (Dense (128, input_dim = X_train.shape [1], activation =
'relu’)), model.add (Dropout (0.2)), model.add (Dense (256, activation = 'relu’)), model.add ‘relu’)), model.add (Dropout (0.2)), model.add (Dense (256, activation = 'relu’)), model.add
KerasRegressor (Dropout (0.2)), model.add (Dense (128, activation = 'relu')), model.add (Dropout (0.2)), (Dropout (0.2)), model.add (Dense (128, activation = 'relu’)), model.add (Dropout (0.2)),
model.add (Dense (1)), opt = Nadam (1e-2), model.compile (optimizer = opt, loss = model.add (Dense (1)), opt = Nadam (1e-2), model.compile (optimizer = opt, loss =
‘mean_squared_error') ‘mean_squared_error')
mip_reg = MLPRegressor (), param_grid = { mip_reg = MLPRegressor (), param_grid = {
‘hidden_layer_sizes': [(100), (20, 20), (256, 256, 128), ‘hidden_layer_sizes': [(100,), (20, 20), (256, 256, 128)],
MLP ‘activation': ['logistic', 'tanh'[} ‘activation': ['logistic', 'tanh']}
reg_cv = GridSearchCV (estimator = mlp_reg, param_grid = param_grid, cv = 5, n_jobs = reg_cv = GridSearchCV (estimator = mlp_reg, param_grid = param_grid, cv = 5, n_jobs =
i -1
loss_function = nn.L1Loss (), optimizer = torch.optim.Adam (model.parameters (), Ir = loss_function = nn.L1Loss (), optimizer = torch.optim.Adam (model.parameters (), Ir =
LSTM 0.001), epochs = 100, best_mse = np.inf, model = LSTM (X_train_norm.shape [1], 100) , 0.001), epochs = 100, best_mse = np.inf, model = LSTM (X_train_norm.shape [1], 100) ,

sss_norm = ShuffleSplit (n_splits = 1, test_size = 0.1)

Details about Execution Time:

sss_norm = ShuffleSplit (n_splits = 1, test_size = 0.1)

We know that it is not common to compare execution time for tasks that are not to be performed
multiple times. Sales Forecasting is, at least theoretically, one of them. However, in real-world
implementations Sales Forecasting models need to run several times.

This happens because:

* Businesses decide to improve their older Sales Forecasting models.

* Businesses change their Sales Forecasting processes.
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» New research that proposes more accurate models sees the light, and businesses want to try
them out.

* Changes in personnel in marketing or data teams or in business management impacts Sales
Forecasting methods and interior processes.

* New data about existent products are being created.

* New products are being launched.

» New features are taken into account.

* Businesses decide to increase their investment on their Sales Forecasting and, so, they invest to
re-run and improve their existent models, methods and processes.

For that reason we measured the execution time in our models and presented it per model
category in Chapter 5 (“Experiments”).

To take a quick view of the execution time of all our models:

Average execution time per model

19542

2011

HuberRegression KNNReg Pass/AggPieg LassoRegression  RidgeRegression XGBoost RandomForesteg CatBoost LightGBM 2-best SC 3-best SC MoE KerasRegressor M LsTM

We see that KNN Regression takes nearly infinitely times more time than all our other models.
For that reason, we exclude it from our execution time plots.

With linear axis scale:

HuberRegression Pass/AggReg LassoRegression RidgeRegression RandomForestReg LightGBM
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With logarithmic axis scale:

* It is easy to see that our best performing models (CatBoost and LightGBM) take also very little
time, thus, making them ideal candidates for Sales Forecasting for FMCGs to every business in

the industry.

* Also, please take into account that in order to implement the Stacking Regressors, their
execution time is “extra” to all the other models. While the execution of all the other models
can theoretically be parallelized, that is not the case for N-best StackingRegressors as they are
being implemented in 2-steps, and they first need to have the results from all the other models
and choose the best models to ensemble/stack together.

So, a good bubble plot of our models looks like this:
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And as we can see:

* CatBoost and LightGBM are not just great models for Sales Forecasting for FMCGs, but also
very fast.

* If we have just implemented the CatBoost and LightGBM solutions, the 2-best
StackingRegressor would have waited only for those, and with the extra time-penalty for
stacking/ensembling, we can see its final execution time at the plot above. Of course, this is the
optimal time, because in a real case study, we would have to run multiple models, and choose
the 2-best, but if other models had a higher execution time than our two best models, which is
extremely probable, our total execution time would be higher. However, if we know from the
start which are our top models, then we can just run the 2-best StackingRegressor based on
those. So, the actual running time would be the one depicted in the barplots above, which
makes the Stacking Classifier/Regressor one of the fastest models overall.

* As with the 2-best StackingRegressor, the optimal time for the 3-best StackingRegressor is
higher, as it has to wait for the XGBoost model. Again, in a real case study the actual execution
time would be much bigger as it would have to wait for more models. On the other side of the
coin, if we knew from the start which are the optimal models, we could run the 3-best Stacking
Regressor in Stage 1 (not implementing individual models first, but directly running our
Stacking Regressor). This is extremely interesting and important, as the StackingRegressor
would have had a total execution time lower than some of the individual models, and at the
same time could provide greater results. So, this point also shows why the benchmarking we
conducted is important, as by having an accurate initial prediction about the best models for
Sales Forecasting for FMCGs, a business can build better models; just a StackingRegressor,
with greater accuracy and less costs than a usual ML/DL project. (More on “Details about our
Meta-learners results™).

* From the Deep Learning models, MLP has the worst accuracy, but also the worst execution
time. For that reason, the Mixture of Experts, also is slow as it needs to wait for the MLP neural
network to complete.

* HuberRegression, as we also said earlier, impressed us, as it is a simple regressor that managed
to achieve very satisfying accuracy at a low execution time. It is definitely a model that needs
to be taken more into account, especially in the case of Sales Forecasting where there are
always significant outliers. Its extreme resistance to outliers makes it very useful, even when
we have little data to train more complicated models.

Details about our Deep Learning models’ results:

For the businesses who want to work with Deep Learning implementations, one can see from our
experiments that many machine learning models outperform the DL solutions.

The final results show that even the neural network approaches are not able to provide
improvements over the ensemble models for the cases of Sales Forecasting. This can be due to a
few data and model features, such as low dimension, which can lead to a fast overfitting in very
flexible models. As we said in Chapter 4, Gradient Boosted Decision Trees are the best ML
models for tabular heterogeneous datasets. Also, the input size can impact the feature extraction
on the LSTM model. For that reason, more tests on different datasets need to be done, but as our
datasets (both from our Marketplaces and the Kaggle competition) are excellent representations
of the real-world business datasets that are used for actual real sales forecasting, our results are as
close to reality as possible.

However, among the neural methods, it can be observed that the LSTM provided the best results.
LSTM and MoE presented similar results over all metrics. The Mixture of Experts model made
an improvement over the MLP model, which is expected due to the architecture similarity.
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* All our Deep Learning models (KerasRegressor, MLP, LSTM) could be used for FMCGs Sales
Forecasting.

* In comparison to simple regressors, Deep Learning models give better results, but not
necessarily better results from GBDT models as they quickly overfit. Potentially they could do
better if we had datasets with more features and higher dimensions, but as the problem of Sales
Forecasting uses tabular datasets, DL executions perform worse than GBDT models.

* As we expected, all Deep Learning models have significant execution time. While execution
time is usually not a problem for the cases of sales forecasting, it can severely impact the cost
of the initial investment, as it impacts the amount of working hours needed, which in the case
of small to medium businesses’ may be of high significance. The use of extra computational
resources (as they have become a commodity) definitely lowers the execution time, but at
potentially higher running/processing costs.

* The MLP model performs a GridSearch that change its activation function as well as the hidden
layers settings.

* As we pointed out above, the simplest model is always being chosen in GridSearch. For
instance, our MLP was designed to try a 1-hidden layer with 100 neurons, a 2-hidden layers
with 20 neurons each and 3-hidden layers with 256, 256 and 128 neurons (the exact same
approach we used for our KerasRegressor). It chosen to use the simplest implementation; the 1-
hidden layer with 100 neurons.

* Our LSTM execution is a one-layer LSTM that will extract features to a fully connected layer.

* The LSTM model behaved exactly as we predicted; even its simplest architectures had real
problem with overfitting. This usually happens to non-stationary models, as they can't define a
function to properly represent the data. So, such a powerful, non-stationary model, such as
LSTM, is too powerful for simple sales forecasting, especially that of FMCGs where we have
tabular data, and, thus, it will overfit even with optimal regularisation.

Details about our Meta-learners’ results:

One of the main goals of this Thesis, apart from studying in total the case of Sales Forecasting for
FMCGs, was to take a closer look into meta-learners, and especially Stacking Classifier/
Regressors and Mixture of Experts.

What we have seen from our experiments is that:

 2-best and 3-best Stacking Classifiers/Regressors are very close across all key metrics. So, by
also taking into account our execution time analysis, it seems that the 2-best StackingRegressor
is the optimal solution for the case of Sales Forecasting for FMCGs.

* In comparison to our best model, our Stacking Classifier/Regressor gave better results by 25%
and in comparison to our 31 best model, our meta-learners gave better results by 130%. These
are improvements of great significance and so we can draw the conclusion that the use of
StackingRegressors is a must for every Sales Forecasting implementation.

* One of the main restrictions in using a Mixture of Experts (MoE), is that it needs models from
the same group (e.g. neural networks). However, a StackingClassifier can stack/ensemble any
kind of models. So, as different parts or cases of our data can more easily be predicted by a
specific architecture (e.g. CatBoost) than another that is better in a different part or feature, the
stacking will have the upper hand in comparison with using a MoE.

* The Mixture of Experts model we used is based on the same MLP settings, with softmax
function to the gate network. Our MoE, as expected, improved the MLP model, but didn’t
provide sufficiently good results. However, there is definitely room for improvement as they
seem to be a great investment overall. We tried to improve our MoE implementation, but the
results show that it is better to choose a simpler model, as more flexible models are too
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powerful, and due to low dimensionality overfit quickly. We used a hierarchical one, which
gave us better results than a regular one due to the nature of the problem.

* The Mixture of Experts (MoE) was about 1% better than LSTM across all key metrics for
evaluating Deep Learning models.

It seems that the Mixture of Experts is not very useful in Sales Forecasting, as its architecture is
based on gaussian curves and, thus, it can be extremely flexible, which is usually an advantage,
but in the case of Sales Forecasting for FMCGs, due to low dimensional input and the fact that
we have heterogeneous tabular data structures (as we have many sales, similar prices, specific
features to be taken into account etc.) it overfits very fast. However, overall, we see that meta-
learners’ implementations, and specifically StackingRegressors, have many advantages, such as:

* They lead to extremely accurate Sales Forecasting, because they efficiently combine the best
single models into better unified models.

* They combine high prediction accuracy with low training time, making them an excellent
choice for real-world Sales Forecasting solutions implemented by companies in the fast-moving
consumer goods industries.

* They can be used both by businesses who haven’t yet invested in their Sales Forecasting
processes (e.g. new businesses, startups etc.) and by businesses that have Sales Forecasting
models and processes, but they want to improve the accuracy of their models with additional
optimal investments.

6.2 Future Work

Regarding future work, first, let’s discuss potential improvements to our models and additional
experiments. The Mixture of Experts we used, was limited to the MLP architecture which
performed sub-optimally. In the future, more work could be done to implement a MoE based on
better neural networks, or GBDT models. We avoided to directly compare and draw conclusions
about the performance of StackingRegressors to that of the MoE because they were based on
different models; thus, producing different results and achieving different accuracies. However,
from this difference in model training we were able to point out that while MoE needs models
from the same group (e.g. neural networks), a Stacking Classifier/Regressor can ensemble any
kind of models. Also, it would be a good idea to have a measurement of models agreement with
each other. Meta-learners are strongly influenced by combining models agreement. Having
accurate models with low agreement is the optimal scenario as the ensemble model is much better
than every individual model. The idea of N-best SC/R we used here satisfies per se the
requirement for strong models, but in order to have even better results, a measurement of models’
agreement seems necessary. Maybe a tradeoff between combining the best models and combining
models with low agreement can be beneficial (e.g. combining the 1t and 4th model, if they have
lower agreement than that of the Ist with the 2nd), In any case, more work about the best choice
for a meta-learner in more diverse Sales Forecasting cases, seems very welcome.

More work on additional datasets seems also useful. While we used good representations of the
current case of Sales Forecasting in real-world business settings, we didn’t experimented enough
with completely different approaches. One could argue that more or different features could and
should be used in Sales Forecasting for FMCGs and so businesses need to make changes in the
amount or quality and quantity of data they are keeping.

Additionally, data transformation, data-preprocessing and feature engineering always play a
gargantuan role in any Machine Learning project and implementation, and so one way to view
and review Machine Learning Sales Forecasting models is to review all the steps before model
building; from data keeping to data management to data analysis to business intelligence.
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Although we worked with double data to implementation two feature scaling methods
(standardisation and normalisation) we didn’t find significant differences between the two in our
experiments. However, we had to test both, as feature scaling plays an important role in pre-
processing, and potentially even different feature scaling techniques can improve feature
engineering and the performance of some of our models. So, as it seems that the choice of our
feature scaling method doesn’t play a very important role, the fact that the industry is divided
about which one to use makes perfect sense.

Furthermore, while we tried the top performing models from the most recent research in the field,
there are other similar methods and other neural networks architectures that can be implemented.
For example, CNN seems a fine addition to our neural networks building and benchmarking.
Simultaneously, the Facebook Prophet predictor has shown substantial improvements in
benchmark tasks in many ML implementations. The Prophet predictor seems to be a must-go
inclusion in any kind of Machine Learning and Deep Learning models benchmarking in the
future. Also, GAN models become more and more popular in Forecasting, as they can be perfect
adaptive prediction models. Training a GAN based on the best models found in this Thesis seems
like a great way to go. An N-best GAN with a mixture of generators (MGAN as characterised by
Quan Hoang et. al, 2018), can be the evolution of our N-best SC/R methodology, as it not just
combines the optimal models, but pushes each model to its “prediction limits”, achieving optimal
forecasting. More research about sales forecasting algorithms and methods is currently being
produced and we await new implementations and suggestions, such as the DAE-LSTM
algorithm.

In any case, Sales Forecasting is becoming more and more important every day across all
departments of a business, and soon it will be a must-have tool for companies of all industries,
but especially for businesses in the FMCGs industries where Sales Forecasting plays a
foundational role to these companies’ viability and profitability.

6.3 Conclusion

The goals of this Thesis have being completely met, as we managed to build, test and benchmark
the top methods, models and meta-learners for sales forecasting, that are being used both in a
theoretical environment and in the real world. CatBoost and LightGBM are amazing choices for
Sales Forecasting for FMCGs and by using a StackingRegressor with them, we can guarantee
optimal results, under nearly any circumstances, as long we do sufficient data-preprocessing and
feature engineering. So, there we have it, an overall good, unified model for fast and accurate
Sales Forecasting for FMCGs: a Stacking Classifier/Regressor based on CatBoost and
LightGBM.

In case businesses and consultancies need to experiment more on a specific case/project for Sales
Forecasting, we can recommend them to also use XGBoost and HuberRegression to get the full
picture, and to also be sure that they optimally used their time to build and test the best possible
models. Finally, if there is a need to also try neural networks architectures, LSTM is by far the
most promising. However, due to the problem’s occasional low dimensionality and full tabular
datasets’ availability, it seems that GBDT models are the undisputed champions for FMCGs Sales
Forecasting.
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