Efvixo Metoofio IToluteyvelo

Yxoy HhextpoNoywv Mnpyovixv
xou Mnyavixwv Trohoyiotoyv

Nl
| Fo
OEV$

Bl

' F
* 3
U] - L)
7 npomh £
NSH=s|
VP Popos

la

Toyugac Teyvoroylac IIAnpogopxhc
xot Y TONOYLO TGOV

AvdOeon Avtixeipevoy xouw EEwtepixeg
Enwpdoeig o I'pdpoug

Object Allocations and Graph Externalities

AIITAQMATIKH EPTAYTA

YXTYAIANOXY A. KAYXOYPIAHX

EmBrénov 1 Apoteldne Moyovptlhc
Kobnyntic E.ML.IL

AB¥va, ToONog 2021

Efvixo Metoofio IToluteyvelo

Yxoy HhextpoNoywv Mnpyovixv
xou Mnyavixwv Trohoyiotoyv

Toyugac Teyvoroylac IIAnpogopxhc
xot Y TONOYLO TGOV

AvdOBesomn AvTixeitpevoyv xou EEntepixeg

Enwopdoeig o I'pdpoug

Object Allocations and Graph Externalities

AIITAQOMATIKH EPTAYTA

YXTYATANOXY A. KAYOYPIAHX

EmBrénov 1 Apoteldne Moyovptlhc
Kobnyntic E.M.IL

Evxplbnxe and tnv toiwery) e€etactiny emtpont| v 91 Ioviiou 2021.

Apioteidne Hoyovptlhc Anuniteloc Pwtdnng Avtoviog Buufovne
Koafnyntic E.M.IL Av. Koafnyntic E.M.IL Kofnyntic E.M.IL

AB¥va, ToONog 2021

Jtuliavog A. Kaocoupidng
Aimhopatolyoc Hhextpondyog Mnyavixde xar Mnyavixde Troroyiotov E.M.IL

Copyright (©) Xtulavic A. Kaocoupidne, 2021.
Me empiOragn movtoc dixouwyotos. All rights reserved.

Arnoryopeetan 1 avtiypagy, anobrixeuon xou diavour| Tng mopoloog epyasiag, €€ oNoxApou 1
TUAMATOS AUTAG, Yia eumopxd oxonod. Emitpéneton 1 avatinwor, anobdixeuorn xan dwoavour| yia
OXOTO U1 XEEOOOXOTUXO, EXTOUBELTIXNE 1) EQEUVNTLXNC PUONE, UTO TNV TeolndBeoT Vo avapépeTon
N Ty TEOoENEUOTE Xal Vo Satnpeitan To ooy urvuue. Epwthuata mou agopolv T xehon tne
gpyaoiag Yo xepdooxomixd oxond TMEETEL Var aneuBivovTal TEog Tov cuyYpapEa.

O andelg xou oL GUUTERACUATA IOV TEPLEXOVTAL OE AUTO TO EYYEAPO EXPEALOLY TOV CUYYPAUPEN
xa Oev MEETEL var epunveLbel 6Tl avTinpocwnebouy Tic enionueg Béoec Tou Ebvixod Metodfiou
ITo\uteyveiou.

ITepiindm

Ocwpolue TNV eNBEACT] ETEPOYEVOV AVTIXEWEVWY, ToToleTnuévwy oe dLdpopec Tonobeaieg oe
éva dixtuo, oe yertovnd avtixeiyeva f§ ovtotnteg. Ewodyouue xou yehetdue €va WovTéNO, 6TO
omnolo avtxelueva pe VAT o&la aoxolv Betiny e€wtepinn enldpaon o yelTovixd avTixelueva Ue
wxedteen adlo. Xtox0g elvan 1 peylotonoinon authc e Betinic enldpaong, v omola ovoud-
Coupe ouvolur e€wtepiny| enidpaon o To yedpnuaL.

Apywd anodewxvioupe 6Tt 1o tpoPAnua etvar NP-hard, étav o péyiotoc Pobudc etvar 3, allo-
TOWOVTAG TN OXEOT UE TO TROPANUL Tou ENdyIoTOL XUploeyou cuvolo (minimum dominating
set). Xt ouvéyew, delyvouue 6Tl To TEOPANUA elvon ETAVOWO o€ TOAULVUUIXS Xpbvo 6Tay O
uéyotog Pabudc eivon 2. Emmiéov napouoidlouvpe anodotixols axplPel xat Tpoceyyio Tixols
oa\yoplBuouC yiar BLAPORES ELDIXES TEQLTTOCELS X0 TOTONOYIEG. LUYXEXQUEVA, OelyVOuuE OTL oV
UTdEYOLY UOVO B0 BlapopeTnés mbavée a&lec avTIXEWEVDY, TOTE W QUOLONOYLXY) ATANCTN
oTEUTNY W, 1) oTolo TETUYAVEL XUNG amoTENEOUATA Yia TeoPBAAuaT UEYIoTNG XENLYNS, od1yel
o€ Vol TPOCEYYIoTIXO oNYOpLOuo pe atabepd Noyo mpocéyyiong.

Ae&dryouue extetopéva aptuntixd nelpduata, uéow Twv onolwy Belyvouue 6Tl 0 ATANCTOS OA-
vopWuog meTuyadvel TOND XoNd amoTeENEoUATA Yial TN YeEVXN TepinTwon Tou mpofAfuaTog. Oc-
0pOVUE TepaUTépw YEVIXEVOELS TOU TEOPAAUATOS o AN wovTéna e€wtepnnc enibpaons xou

a&LONOYOUUE TNV GTANC TN TEOCEYYLON OE AUTEC TIC TIO YEVIXEC TEQUTTCOOELS.

A€Eeig xAELOLd

aNyopluxn Bewpla, Bewpla ypapnudtwy, eCwtepés emdpdoels, xaNLPeL, xuplapyo clvoXo,
UTTONOYLO TIXT] TONUTAOXOTNTA, Tponyuéva Béuata oyoplbuwy, tpoceyyiotixol anydplBuol, met-

popatix a&loNoYNon onyop(Buwmy

Abstract

We consider the influence of heterogeneous objects placed in various locations in a network
to neighboring objects or entities. We introduce and study a model where elements with high
value exert a positive externality on neighboring elements whose value is lower. We aim at

maximizing this positive influence called graph externality.

We first prove the NP-hardness of the problem, when the maximum degree is 3, by exploiting
a connection to the minimum dominating set problem. We then proceed to show that the
problem is polynomial time solvable when the maximum degree is 2. We also present efficient
exact and approximation algorithms for several special cases and topologies. In particular,
we show that if only two valuations exist, then a natural greedy strategy, which works well

for maximum coverage problems, leads to a constant approximation algorithm.

We conduct extensive numerical experiments that show that the greedy algorithm performs
very well for general valuations. We further consider generalizations of the problem to other

externality models and evaluate the greedy approach under these more general settings.

Key words

algorithm theory, graph theory, externalities, coverings, dominating set, computational complexity,
advanced algorithms, approximation algorithms, experimental evaluation of algorithms

Euyapioticsg

Apyixd, BEX0 va suyaploThHow and xaedids Tov emBAETovTa XadnyNTH TG SIMAOUATIXNAG (oL
epyaoiog, x. Aptoteldn Ioyouptln, téco Yoo v eniPredn, doo xou yio T cuveyn Poribela,
Tic ouveyelc oupPouléc xan v xabodrynon mou pou mopelxe, oe onolo onueio ypelaldTay,
ue ebotoyeg mopeuPdoelc xou SLafEToVToC dPXETO YEOVO, AXOU XUl (PEC, GE TEQITTWON TOU
oL cuvBxec to anartovoayv. Evag e€oupetindg xabnyntic, o onolog otdbnxe dimha You xou Ue
oTpLEe o€ BUOXONES XATAC TACELS, TOTO YOl TNV EEYACIO OGO XAl UE TIG EMNOYES YL TIC OTOVSES
uou, Bonbwvtac pe mdvta va cuveylon To €pyo You, Vo cuveyilo pe SUvaUN xaL Vo Talpve TIC
XONOTEQES ATMOPACEL UE YVOUOVA TEvVTo TO xoAO pou. Tou elpon mporyuaTind euyvouwyY xou
eATilw xou edyouon 1 eEUPETIXY CUVERYSIA UG VO GUVEYICTEL X0 GTO UEANOV.

Emniéov, 0éXo va euyopio thow Bepud tov x. Anuriteo Pwtdxm yio v eniong toXdTyun fordelo
xaL ouUPONT) Tou, TG0 Yyl TNV Topoloa epyacia, 660 o Yo TIC YENOWES WOEeS, GUUBOUNES
xau mopatnenoelc Tou. O x. Pwtdxne fray xou elvar €vag dvbpwnoc mou Ba uropolca avd ndoa
oTUyU Vo oUUBOUNEUT® yia 0TWHTOTE Ypeelaldpouy, YvopllovTag ex Tov Tpotépwy 6Tl Ba you
WANCEL PE -0POTNLOTIXT- ELNLXEivVELa o coPopdTnTa, oxdua xou yiar To o anhd Oéuata. ‘Evog
EXTIANUTINOS X0 YNTAS XAl ETUC THUOVAS, TTOU TAVTOTE EXOUYX O,TL HOU EXEYE UE TIAYEY) TROCOYY),
ue tov onolo BéNw xou eEATilw Vo €0UVUE XU HENNOVTIXEC CUVERYAOIES.

Y10 onuelo autd, BENw va amovelpo Wiaitepeg euyapotiec atov x. Aviovio Lupfovn, évag
xa0nynTtic o omolog €xel eCoupETIXY) UETABOTIXOTNTA GTN BIOUCHANIX TOV, GVTAS EUYVOUWY TOU
fuouv polnthc Tou oto pdbnua tng Ocwploc Ieagnudtwy, Tou éxel dueon oyéor ue TNV Topodod
omopotiny epyacto. ‘Evag evyevéstatog dvbpwnog, o omolog ndvtote e&nyoloe o TAvVTA Ae-
TTOUEQ(C X0 UE COPHVELAL.

Oé\o va euyaploThow ToAD xou Tov x. Laurent Gourves, tou mavemotnuiov Université Paris-
Dauphine, PSL. Eivouw tiun pou nou cuvepydotnxa woll pe tov x. Gourves, tov x. Hayouptln
xat Tov x. Potdxm v N dnuoacievon o1 Bdomn g onoloug extovAdnxe 1 ToEoVCU SITAWUATIXN
gpyaota éyive dexty) 6Tto cuvédplo European Conference of Artificial Intelligence 2020.

OEAw axouT Vo EUYURICTACKH ONOLS TOUS XN YNTES HE TOUG OTOIOUG CUVAVAC TEAPNHAL XAl LoV
METEDWOUV OEXETA TEdypaTo X’ OXn T Oudpxela Twv onoudav wou. H ouufoXr toug elvou
Wlodtepar TONDTIUY Xou Yolpopan Teorydotixd mou elyo TNV T Vo LTdew @oltnThc and tdco

aLONOYOUG ETUO THUOVES.

H napoloo epyacio onuaiver To t€Nog evoc TOND anuavTixol xUxhov e Lwhg pou, Tne @oltn-
ofic pou oo Efvind Metodfio Ilohuteyvelo. OL cuvavac Tpo@éc Hou xat oL GiNoL Tou €xava e
auTH OV XOXNO pou elvon WLaltepa TONUTIIES, xalie Bewp 6Tl €xm Yvmploel avbphroug mou

11

elvon EeywploTol, oL onolol Rtay Simha pou xou o€ BUOXONEC O TLYUES X oe eUxoNeg. Eiuon Buol-
TEQU EUYUPLO TNUEVOS TIOU €Y BUTNENOEL ENAPES UE TOUG AvBPOTOUE UTOUE TaPd TIC LOLUTEPES
ouvOxeg Tng mavdnulag, xou Xoyw auTo), OE GUVOUNCUO UE TO TEAYUATA TOU YOG EVIVOLY, TOV
eVOOUCLUOUO OTIC OUOPPES CTUYUES TOU €YOUUE TEPAOEL, X0l TT) CUUTURACTACT] CTLC BUCKONES
oTIYUES, IO TEV® OTL elvan apxeTd mhovd va datnendoly ol emapéc auTé Tod To YEYOVOS OTL OE
Bo cuvavTidac e 6to tavemo THUO. I'vopllouv dXol autol motol elvar xou BEXN® va euyopic THoO

Tov xoféva Toug EexweloTd.

[Tépa amd TIg YVOPWIES TOU €xava 0TO TAVETLOTHWLO, BEN® Vo euyaploThon Bepud Toug piloug
KoL Tou YVOEWA TEWY TO TOVETLOTAWULO, UE TOUC OTOIOUS OXOUN XAVOUUE TONU LoYUEY| Topéa
xot motedw 6T Ba cuveylooupe va xdvouue yia apxetd xoupd. ‘Hrov mdvta dimka you otoy
ToUg YEEWCOUOUY XL GO0 YEOVLAL XL OV TEPATOLY, YVopllouue OTL apxeTéc GUINTACELS oS Xou
0 ypebdvog mou mepvdue pall Ba cuveyicouv va elvon dnwe dtav Huactay moudd. Autod yog divel
OUVOUT) TOCO OE EUEVA, OGO XU GE AUTOUC, AN XL AUETENTY) XoEdL.

TéNog, 0EN® va Alela Vo euyaElo TAOM LWOWETERA TNV OXOYEVELX OV, TEMTA TOUS YOVE(S Uou, Ol
omolol mépa and To YEYOVOS OTL TAVTA, axdua Xou and TOND wxer) nawia, pe othetllay oe ONeg
TIC AMOPAOELS LoV, PEOVTICAY Vol e GUUPBOVAEDOUV TEVTA YLt TO XUNVTERO Xal VoL UE xadodryodv
UE TO OWOTOTERPO TEOTO OToL YpetaloTay OTL amauteltan. Oewp 6Tl Ywpels avtole, de Ba uouy
0 dvbpwrog mou elyon ofuepa, ot UE €xouv Pondrioel Wiaitepa TOGO GTNV axXadNUAIXT/ o ONXY
pou mopelo, 660 XL GTNV TOPElol YOU WS XoEUXTHEAC. OEN® VoL EUXAPLOTACL Xou TNV odep®n
©ou, N omolol TEVTAL oL Blvel xoEd xou oNUavTiXy oTARLEY, XL og elval AEXETE XEOVIA ULXPOTER),
xaL vor TG euynBo xokn emituylo, xabde Tou xpdvou Bo Bdoel xou auTH TO Bixd NG oYV
ot HaveNhfviec! Euyopioted axduor OXat Tor AN U€XT TNS OLXOYEVELAS WOV, TOV TUTROU UoU,
N yloyd pou, toug Befoug pou, mou mavta NToy xow efvon Blmha pou, voirdlovton TEoryUaTIXd
yior egéva xon TavTa xodpouol Vo Toug BAETe xou vor mepVaw xpovo pall toug. Nidbw Bobid
CUYXWNUEVOS Yot TN oTARLEN xou TNV arydmn mou €xm NAPeL amo Ty owoyéveld pou xou exntilo

VO TOUG XAVG UTERN(PAVOUG.

Ytuhavoe A. Koaooupldng,
Abrva, 9n Touniou 2021

12

ITepieyopeva

IMepidndm

Abstract

Euyapiotieg

Ilepiexbpevao

Katdhoyog oxnudtov

1. Extetopévn Ilepiindn ota EXAnvixa

1.1

1.2

1.3

1.4

Baowiéc ‘Evvoieco
1.1.1 Ocewpla pagprudtwy
1.1.2 A\yopibuol xou ITohumhoxétntar
ITponyoluevn ‘Eeeuvar 0oL

To povtého tne e€wtepinrc enidpaong ot ypapridoTa

1.3.1 Kivnteoo
1.3.2 Opioyol xau mepLypapy| Tou WOVTENOU
1.3.3 OPT-EXT X0 TONUTAOXOTNTOL
To npéfAnuo OPT-EXT pe 800 oleg
1.4.1 Tlepvypap?) xou xbviteo

1.4.2 'Evog mpooeyyiotindg anyoelbuoc e otalepd Noyo npocéyyiong

1.4.3 Yvoyétion pe 1o Mepiare Kuplapyo XOvoro

11

13

17

19

19

19

20

21

21

21

22

23

24

24

25

26

13

14

1.5 To npdPAnua OPT-EXT Ue YEVXEC OEIEC OVTIXEWEVOY o o o o o . .. 27

1.5.1 Tpaghuata ye yéyloto Babud 2o oL 27

152 AGVIQO-XAUTUES . . o v v v o 27
1.6 Ilewpootind ATOTENEGUOTA . . v v v v v v v v v e e e e e e e e e e 28
Basic Notions and Preliminaries 29
2.1 Graphs. L 29
2.2 Algorithms and Complexity 36
State of the Art L 39
3.1 Economics e e 39
3.2 Computer Science Lo 40
Graph Externality Model 43
4.1 Motivation e e 43
4.2 Definitions and Problem Description 43
4.3 Hardness of OPT-EXT« . oo i v ittt e 46
The oPT-EXT Problem with Two Valuations ol
5.1 Description and Motivation, 51
5.2 Constant Approximation Algorithm for opT-EXT(0,1) 54
5.3 Relation with Partial Domination 59
The oPT-EXT Problem with General Valuations 61
6.1 Graphs with Maximum Degree 2 61
6.2 Caterpillar Trees 65
Experimental Results Lo 69
Conclusions - Future Directions 77

A. Appendix — Sourcecode

A.1 CH+ code for externality of DIMACS benchmarks

A.2 C++ code for the generation of dense graphs . . .

15

Katdloyog oxynudtwv

1.1

2.1

2.2

2.3

24

2.5

2.6

2.7

4.1

4.2

4.3

7.1

7.2

O x0pu@Ec v4 XL Vg GUVIOTOUY XURLIEY0 GOVONO o o oo 23
A directed edge, known asarc 30
A simple, undirected, connected graph 30
Graph G, before the contraction of edge {vo,v5} 32
Graph G, after the contraction of edge {vo,vs} 32
An undirected graph with 8 cycles 33
Atree e 33
Anon planar graph 35
A graph with 6 vertices 46
The vertices dominated by Dy oo o 47
The vertices dominated by Do o Lo 47
Percentage of U(G) achieved by Algorithm 4 74
Density of random graphs and Greedy/U(G) for 150 vertices 75

17

Kegdlowo 1

Extetapevn Ilepidndn ota EXANvixd

270 XEPANUO AUTH, TEPLYPAPOVTOL TO CUVOTITIXY U0 TO EMOUEVA XEPINOLAL OL EQEUVNTIXES EV-
voleg g epyootac. ‘Eyxet yivel npoomdbeia to nepleyduevo autod tou xegoraiov va glvo 660
TO BUVATOV ETEENYNUATIXG Xou Vo Bivel Bdom oe ONeC TIC €VVOLES IOV avVONDOVTOL GTNY Epyaoia,
OANG e TEp(mTmon Tou YeyaNUTERT avaAuoT xplBel amapaltnTn amd TOV vy VEOG TY), GUVLC TATOL
AVOBEOUY| GTNY OVANUCT) TWV ETOUEVOY XEPUNLWYV.

1.1 Boowéc 'Evvolec

1.1.1 Ocsowplia 'papnuidtov

Opiloupe wg éva yedpo G = (V, E) wc wo dour| dedouévmv 1 onola LovieNoTolel Tic o EoELS
HETAEY CUYXEXPEVOY CEUYUPLOY AVTIXEWUEVWV. LUYXEXPWEVA, To cUvolo V elvan To cUvoro
TOV X0PLYPWYV 1 XOPWV, VO T0 GOVONO E elvor T0 GUVONO TWV AXUGDV.

‘Evo anth6 yedgpnua oplletar wg éva ypdgpnuo 6To onolo dev umdpyouv 600 BLUPOPETIXES OXUES
Tou GLVBEOLY TIC (Bleg xopLPES. Oa Bewpricouue OTL OXA ToL YEAPHUATI OTNY TUEONCA EQYCiA
elvon am\d.

Av ou axpéc evog ypaphuatog dev €xouv cuyxexpévn xatebBuvon, To yedgnua oplletal we
wn xatevbuvouevo. Av undpyouv xateuBuvoueves axpéc (tic onolec ovoudloupe TOEA), TO
vedpnua Bewpeiton xarteLBLVOUEVO. Mo axpy) TOU CUVOEEL TIC XOPUYPES V1, V2 YEAPETOL UE
oyxONee, {v1,va}, EVO éva TOZ0 and TNV XOPLYR V] OTNY XOPUPT| V2 YPAPETOL UE TapEVBECELS
(v1,v2). Av 300 x0puPEC OE Evar un xATEVBLVOUEVO YEaPNUAL V1, V2 CUVOEOVTOL UE 0N, NEUE OTL
1 Wwa xopupt etvon yeitovag g dAANG. To advolo Twv YelTovey ploag xopughc v oplleTtal wg
vewtovid e v xau cupforiletan pe N (v), eved 1 xXeLoTH yYeELTOVIA TNe ¥ glvan 1) éveon g
v e 1o obvoro N (v) xar cuufoXiletan ye N[v].

O BaBuocg woc xopugpre elvor to TARBOC TwV YeETOVeY Tng. Xe xateubuvoueva ypopriuoTa,
op{Coupe tov €0w BaBd w¢ To TARBOC TV TOEWV TOL XATINYYOLY TN v ot ToV EEw Pabuod
©¢ 10 TARBOC TV TOEwV Tou Eextvoly and TN v.

Aépe 611 undpyeL Eval LOVOTIATL PETAZD 2 XOPUPADY V1, V2, AV HECW BLABOYIXWY aXUMY 1} TOEOVY
UToEOUUE Vo QTACOUNE antd TN v1 0T V2. ‘Eva ypdgnua cto onolo onolecdhrote 2 xopupéc

19

OLUVBEOVTOL YE ULOVOTTL OVOUSLETIL CLVEXTIXO, VK oTtnv avtifetn nepintwon (otnv onola
UTLEEY0UV 2 TOUNAYIOTOV XOpUPES TOU BE GUVOEOVTAL UE LOVOTATL) TO YEdPNUo OVOUGLETOL U1

CUVEXTIXO.

Q¢ vroypedpnua evoc yeapruatoc G opileton éva yedgnua Ga Tou TEOXVUTTEL dloryEdpOoVTaC
OpLoUEVES x0pLPEC) xan axpéc Tou G () xou xoplar). Ltny mepintwon nou €xouv duorypoagel uévo
x0pUPEC (xou ot TpooTintouces ot autéc axués) to Ga eivan ETAYOUEVO LTLOYEAPMUAL,
eV oTNV TEp(TTOOT oL €xouv dlarypapel uévo axuéc (xar oL xopupés etvar ol (Blec) to G elvou
TAEAYOUEVO LTOY PPN, (¢ cOVONLY T wlac axphc {vr, v2 } o éva ypdgnua G opllovue
T Oy EoUPT) TNG OXUNS X TWV XOPUPKY V1, V2, OL OToleg avTixabio Tavtan amd uio véa xoput| v
TIOL €XEL WS AXUES ONEC TIC OXUES IOV TPOCETUTTAY OTIC U1, U2 EXTOC omd TNy axpn {v1, va}. §¢
eEX&oocoV yedgnua evoc yeophuatog G opileton éva yedpnua G mou elvon LTOYEAPNUA TOU
G1 xou evdeyouévag tephayufdver xou cuvONidels axpwy and o Gi.

Q¢ %00 evvoolye éva povondtl To omolo apxilel xaL TepatidveToL TNV (Blot XxopLEPN, Ywelc Vo
TEPLEYEL TNV (BLor o] 1) xdmolar AN xopuen 2 gopée. Eva yedgnua xwpels x0xXoug ovoudleton
devtpeo. Opilovye wia axpn wg xoed7 evoc xOxhou C, av 1 axur cuvdéel 800 XOpLUYES TOU
elvon wéAn tou C' oANd Oy Bladoyixéc o autov. ‘Eva yedgnuo ovoudletol xoedixd ov 6\oL
oL x0x\ot peyéboug ToundytoTov 4 mepléyxouv x0pdY. To clvoro axudv mou npoctifeton yior va
vivel éva ypdgpnua x0pdixd ovoudletal X0edixn) CLUUTAREWOT Tou Yeuphuatos. Mio YoEduxy
CUUTAPWOT) GE €VAL YRAPTUOL EVOEXETAL VoL UNV Elvol 1) LOVOBLXH.

Q¢ %xXixo ovoudloupe éva YedPnUo 1 UTOGUVONO XORUPMY GTO OTolo ovd 2 0L XOPUYES CUV-
oéovton ue axpn. H wéyiotn alixa evoc ypagpruatog eivar to péyioto mABog xopupcv mou
oxnuatilouy x\ixa.

Ye éva ypdgnua, av Bewphooude TN YopdixY) CUMTANPWOY Tou eXayioTonolel To péyebog tng
péytotne xhixac (evdeyopévac dev eivon povadiny) we S, tote n twh |S| — 1 opiletan wc mdyog
dévtpou (ot ayyhixd treewidth), époc otov onoio undpyel extevic PLBAtoypapu LENETN.

‘Evo yedgpnua ovoudleton eninedo av yivetow vo oyedlactel ue TeOTO WOTE OL axpéS Vo Té-
pvovton uévo ot xopugéc. ‘Eva ypdgnuoa ovoudleton eEXayto Tixd i ninedo av undoyEl
XOPUGT|, TOL UE TNV APAPECT) TNS, TO ENMAYOUEVO UTOYpdgpNUa lvon eninedo. ‘Eva yedgnuoa Gy
OVOUAlEToL ALY OPEVILEVO, av P TNy Unapln Tou G ©g eNdocov yedgnua tou G, to G d¢
unopel va €xel oplouévee 1LoTNTES. ot mopdderypa, €vac xOxNog elval amayogevuévo eENdccov
YEAPNUAL Lot ToL DEVTEAL.

TéNog, opllovue we Talpraopa ot éva ypdpnua G = (V, E), éva oivoro M C E GoTe oL axyéc
Tou M va unv mepLéyouv xovég xopugéc. ‘Eva talptaoua uéylotng mAndixdtntag o éva yedpnua
ovoudleton €yLoto Talpracpa, eve éva talplacua M oTo onolo av npoctebel onowdritote
o) mou dev avixel oto M moder va elvan Tolplaopa ovoudleTton EYLO TOTIXO TolpLACUA.

1.1.2 AXyé6pBupor xou ITohunhoxodtnTta

Opllovye wg aXyopeBuo o nencpacuévn Sladixaoio XoNd OPLOUEVWY EVIONMY UNOTOLOLUES
O€ UTONOYLOTY|, ME OoXOTO Vo NUBEl Wiar xAdom TeoPANUdTWY 1) Vo eXTENEC TEL €VAC UTONOYIGUOC.

20

H todtnra tov ohyoplBuwy yehetdton ue 6poUG LUTONOYLO TLXNG TOAUTIAOXOTNTAG. AV
Oewprioovpe wg n 1o péyebog TV avixewévey NG €06d0u, TOTE €vag anyopluog Ue TAT-
foc Prudtwy avdhoyo tou n Bewpeltar oNYOEOUOC YEAUAUANAG TONUTAOROTNTAG, EVOG
aNy6ploc pe mAABoc Brudtov avéhoyo tou n? Bewpelton chybpLuoc TETEAYWVIXAS TTOAL-
TAOXOTNTAG, €vag anybdplbuog pe TAnBoc Prudtwy avdhoyo tou log, Bewpeiton ahyopibuog
AoYoplBULXE TOALUTAOKROTYNTAS X.0.X..

Fevixdtepa, évag alyopluog ue mafdog Prudtwy ye yeyiotofdduio dpo to TOXN) avdhoyo tou
nk Bewpeitor a\y6pLpoc TOALEVLUIXAC TOALTAOXSTNTAS. AXdua X0t oL INY6ELOUOL No-
yopbuxic ToxuT oxoTNTAC DempolvTon adyoEBUOL TOAVWOVUILXYC TONUTAOXOTNTAS, ENEWDY O
XEOVOC EXTENECTC TOUG (PEACOETAL ACUUTTWTIXG A6 X POVOUS TOAUGMVUUXNAC TONUTAOXOTNTOG.
AvtiBeta, alydplbuol mABouc Brudtov avihoywy tou 2" Bewpolvton olyoplfuol exBeTixrg
ToALUTAOoxOTNTAG. Adue 6Tl éva TEOPANU avixel oty xAdon P av undpyel alydelbuog mo-
AVOVUILXAC TOAUTIANOXOTNTOG Tou To eTAVEL 0pBd. H x\don npofAnudtov yio to ool Sev €xel
Beebel morvwvLUIXOG aNyOELOpOC axdua, dANG UTopel 1 0pB6TNTE wiag Nbong va emannBeutel oe
TOAUOVLUXO %e6VOo, ovopdlovton NP-m\rer, eved to mpofAruota yia To onolar dev €xel Ppebel
TOAUOVUUXOG Oy OpLBUOg axduo xou oUTE 1 0pBoTNTd wlog Nbong vo emaanfeutel o ToALwVL-
uxd xeovo, ovoudlovian NP-d0oxolo.

1.2 Ilpomyolpevn ‘Egeuva

‘Eyxet yivel épeuva e mpofAiuota oyeTixd Ye autd mou Bo ENETHOOUUE, TOGO GTOV TOUEN TWY

OLXOVOUXWY OGO X0 GTOV TOUEN TNG EMCTHUNG UTONOYLO TOV.

1.3 To poviélo tng e€wTtepixng ENidpaong O YRAPHUATA

1.3.1 Kivnteo

Ac oxegprolye éva SleuBuvtr TEoYEAUUATOS EVOS TNAEOTTIXOU Xavatol, o ontolog TeéNEL Vo To-
nobethioel 3 TAeonTxd tpoypdupata, é0Ttw A, B, C, 68 XUTINANNES Y pOVIXES OTIYUES, (OO TE VA
ueylotonombel cuvolixr Tniebéaon xou ota 3 mpoyedupata. Ag Bewpricouue 6Tl Ta TEOYEdW-
pota A, B etvan dnuo@uny, eve to npdyeopua C dev ebvan. Eivow mbovd emouévog o dieubuvtrg
va Bedrioer va Bdder to mpdypoupa C' peTtall twv A, B ypovixd,)hoTe vo mdpel «e&wTeplxy
enidpaon.

Me mopduolo Tpémo, UTOROUUE Vo OXEPTOVUE TS EVOG WOLOXTATNG WAC LOTOCENDOG UTOPEL Vo
Tonofetroel Tic eWfoeic ot oeNda. Av 1 1oToceNido BéNel vo mpowbel cuyxexpyuéva dpbpa
va dtafoactodv, uropel var Tor BAreL TOTONOYIXE TO XOVTd o dnpoginécTepa dpbpa. Ilopduoia,
elbioton ov axpiPotepeg dlagnuioeic g oekldag va elvan autég ToL elvon x0VTd G ONUOPINA
Gpbpa (tar omola epgpavilovtar cuvHBKG Ye To dvolypa TS oeXBAS), xabBde avTAoly «eEwTteptnd»
OPENOG Ao AUTAL.

21

1.3.2 Oplopol xaw TEPLYPAPT) TOLU LOVIENOL

Av Bewpricoupe €vo GOVONO M AVTIXEWEVWY (UTOPOUKE VoL ToL OXEPTOUUE Xat ©G «oryoddy),
optopévo wc O = {01, 02, ..., 0 }. Ké&Be avtixeipevo o; € O éxel wa aia v(0;). Oewpolpe axdua
éva ypdgnuo G = (V, E) pe |V| = n, ouc xopugéc tou onolou o avatebolv to avtixelpevo tou
O. Eneldr| ou xopupég Ba mpénel va efvan opxeTég yio Vo umopolv va avateBoly OXat o avTIXelUevaL

ot autée, Bewpolye 6t woyler n = V| < |O| = m.

Ozwpolue 6Tl oe xdbe xopupr| uropel var avatebel To ToXd 1 avtixeiyevo. Opilouye plo avdBesom
oc wo ouvdptnon V. — O U {L}, oty onolo xdbe avtixelpevo €xel axplBde éva npdyovo.
Me 7(v) = {L} opiloupe bTL N x0puEn v dev €xel xavéva avtixelyevo avatedewévo oe auth. H
aviioTpopn cuvdpetnon avdbeong 7 1 eivan pio cuvdptnon -1 : O = V mou opilel ot

oL XopuPT| €xel avatebel éva avTtixeluevo.

OpiCoupe 6T o xopuey) v AauPdver (e€wtepixn) enidpoom and uo xopuEH w VTS wa
avdfeon m o€ mepinTwon Tou o 0TS 2 xopuPEs Exouv avatedel avtixelyeva (éotw m(v) = 01
xou m(v2) = 02), undpyet axph {v, w}, wydel v(o1) < v(o2) xou woybel dTL N w éxel T ueYoNDTEEN
o&lar peTo€) TV YELTOVOVY NG v. Av Bev 1oy lel Xt and To mopamdve, 1 v 0 AouPdvel enidpaon
and ™ w. Adyo TV mopamdve cuvlnxoy, Topatneolue 6Tl xdbe xopuyY| uropel vor NaufBdvet
enidpaoy and 1o moXO wlo xopupy. H enidpacn mou AowPdvel 1 xopupr v Ut TNV avdbeon
oupfoileton pe extr(v).

Yy mepintwon mou n v NauPdvel enidpoon and xdmola xopuph w, N eNideaom AUTH TOU Ao Pdve
ebvon {on pe v(m(w)) — v(m(v)). Awgopetixd, 1 enidpaon mou Naufdver 1 v eivon 0. Opiloupe
TNV CUVOAXY ETBEACY, OTO YEAPNUAL 0S TOo dhpoloua TwV EMUEPOUS ETBPACEMY TOU
Nofdvouy OXec oL xopupéc Tou yeaphuatoc. H cuvoluwy enidpoon ot éva ypdgnua G = (V, E)
unté W avdleon T enouévwg 1ol Ue Y oy extr(v) xou cuuPolileton pe Ext. (G).

[v Tepoutépw XATUVONOT) TV TUPATAVW EVVOLGY, ¢ OEWENICOUUE TO ToEUXATH TUPADELY UL
pe 4 oavTuxelyevo xat TIC avTioTOLES TWES TOUC:

U1 U5
04 03 v(op) =1
I/(Og) =4
v2 v3 (2 v(og) =5
09 01

H avdfeon oty napandve exévo (xat’ avuotoiyio UE TIC X0pUEPES TOL YpuPHUNTOS) Elvar M)
7 = {o4, L, 02,01,03}. H xopuph v éxer avatedewévo to avtixeipevo oy aliac 9. Aev undpyet
X0opLEN GTN YEITOVId TNg e ueyaniteen ofia, dpo Naufdvel enldpaon 0. H xopuen va, emeldy
oev €xel avatebewévo avtixeipevo, haufdver enlong enidpaon 0. o Tic xopugéc vs xan vs,
N X0pUPY UE TO avTxeluevo peyoitepng o&lag oty yertowd etvan 1 vy, dea Naufdvouv agio
v(m(vy)) — v(m(vs)) = 5 xou v(m(v1)) — v(m(vs)) = 4 avtiotowga. TéNog, ye mapduolo TpdTO
TEATNEOVUE OTL 1 x0pUYT V4 AaufBdvel and v xopugn vs enidpaon 5 — 1 = 4. Yuvolixd,
enopévag, 1 enldpaon oto yedpnuo etvon 0 +0+5+4+4 = 13.

22

Bxfuo 1.1: Ou xopupég vy %o Vg CLVLGTOUY XURLIEYO GUVONO

Mmnopolue va oplooupe 6Tt Biépyetan enidpacn and wia axph {v, w} ot teplntwon mou
N xopuen v Naufdvel enldpacn amd TNV x0pLEPY W 1| OE TERINTWOY TOU 1) x0PUPT W NauBdvel

enidpaon and ™ v (to TOND éval and ta dVo unopel vo Loy VEL).

Opilouye emopéve to mpbPANUe OPT-EXT o¢ e&hc: Aobévtog evic ypaghuatoc G = (V, E),
éva cUvVoro avtxelévoy O xou Tic o&leg toug v, va Bpebel 1 avdbeon ™ nou yeyiotonoel to
Ext:(G).

‘Eva otudrvno tou OPT-EXT op{leton wc (G, 0, v), 6mouv G eivon 10 ypdgpnue, O 10 chvolo

AVTIXELIEVOY X0 V OL OVTIOTOLXES OEIEC TV OVTIXELUEVOV.

Mo avédbeon 7* elvar BEXNTLIoTY, 0c nepinTtwor mou 1 cuVONXY ETBPCT GTO YEdPNUo Elvol
péyoTn Lo TNV avdldeon 7. XNy TeEpInTWoT AUTH, 1 CUVONXT ERIBEACT) OTO YEAPNUA OVOUS-
Ceton BEXTIO TN ADOT Yio TO GUYXEXPWEVO GTIydTUTO. LnueiwveTtar 6Tl 1) BENTIo TN avdBeon

unopel vo unv elvan yovadixy.

1.3.3 OPT-EXT %ol TOAUTTAOXOTYTA

OpiCoupe we xuvplapyxo cOvoXlo ot éva ypdgpnua G = (V, E), éva cvoro oto onolo xdbe
xopu@Y| Tou G elte avixel 6Tn cOVoNo, elte €xel €va yelTova 6TO GUVONO.

Y10 TapaxdTe YEdpNUaL, TapaTNEoUUE OTL To 6UvoNo {v4, vg } elvar xuplapyo clvolo, xabne OXeg
OL XOPLYES TOU YRAUPHUATOS ToU DEV Elvol 6TO GUVONO, EVOL YEITOVEC TOUNAYICTOV WG EX TOV

{v4,v6}.

[Topd o yeyovog 6T to va Peebel omolodnnote xuplapyo cUVoXo elvon TETEWUEVO TEOBANUA
(oaxbpa xou to olvoro V' eivon xuplopyo), €xet detybel dtu to va Bpebel xupiopyo civoro TAnbL-
xotNTac To oAU k elvon éva NP-mh\vipec npdBAnua, oxdua xou oty Teplntnon mou o uéyioTtog
Babude tou ypagpAuatog elvan 3, xofde xou 0TS TEPNTOOELS TwV depdv (bipartite) xou twv
dowplotwy (split) yeapnudtwy. To tedfAnua oto onolo ot yedynua G avalnreiton xuplopyo
olvolo TAnBudTTag to ToAL k opiletan wg TedBANua DOMINATING SET(G, k).

Trdpyer obvdeon Tou TEoBAAUATOC OPT-EXT Ue T0 TeOBANUo DOMINATING SET. LUyXEXQUIEVA,
ot mepinTwon nou £youpe éva otrywoturo (G, O,) tou npofAfuatoc OPT-EXT xou évay aptbud
k, to va Beebel av undpyer avdbeon m dote va woyler Ext,(G) > k eivan NP-t\fpec. Autd
TEOXUTITEL AVAYOVTAC TO TEOBANUS Tou DOMINATING SET o€ mpéfAnuo OPT-EXT, ye Bdon Tic

ToEAXATW 600 UETATPOTES:

o Y& mep{nTwon mou €YoUUE €val GTIYULOTUTO TOU TEOBAAUNTOS DOMINATING SET(G, k)

23

oc Bewprooupe 6Tt éxouue k avtixeipeva adioc 1 xau [V — k avuxelpeva ofiog 0 xa éva
xuplapyo civolo D ueyéfoug k. Hapatnpolue ot av xdbe xopuer and Tic k mou avrxouv
o710 xuplopyxo cOvolo €xel éva aviixeipevo ollag 1, Tt ONeg oL GANES XOpLYES €Y OLV
éva avtixelpevo oflag 0. Ouong, xdbe pio and Tic undNoineg xopuPEs €xel we Yeltova Wi
xopuyY) 6to D, mou onuaivel 6Tl 1 enldpaon mou howPdver o etvon 1 — 0 = 1. Apa, 7
cLVOAWXT| eTtidpaoT oT0 Yedpnua B etvon Ext. (G) > |V| — k.

e Avtiotpoga, av éxoupe pla avdbeon T tétola WoTe Extyi(G) > |V | —k, Bewpolue wg D o
oOVONO TV %x0pLPGHY Pe v(m(v)) = 1. Agol yvwpilovue 6t RdN k avtixeipeva éyxouv alia
1, 6T %d0e avtixeipevo mou €xel adio 0 O umopel vor Adfet enidpaon mdvw amd 1 xou 6T
1 oUVOAXT| eTtidpaon oTo yedgnua eivar Touldyotov |V| — k, mpénel OX\a to avtixelyeva
o&lac 0 vo hoPdvouy enidpoon 1. Apa to olvoro D eivar xuplapyo civolo oto G.

Adyow g duoxoiog Tou TEOPAAUNTOC OPT-EXT, YENOWOTOLOUUE TEOGEYYIOTIXOUS aNyopib-
HOUG X0l CUYXEXPUEVES TUPOANXYES yial TN UENETY Tou. Mmopolue Vo TOGOTIXOTO GOVUE TNV
ToldTnTa Woe avdbeone (xa dpo plag NOong) Yo To OPT-EXT, cuyxpivoviac To Ye T BENTIOT
NOoo1 Extr«(G) mou mpoxintel and tn BéNTiotn avdbeon 7%, n onola eivor NP-th\fpec vo umo-
Noyiotel. Opiloupe wa avdbeon m we p-TpooEYYLC TLXA av toylel 6Tl Ext, (G) > pExtr«(G).
‘Evoc aXyoplfuog mou emotpégel wia p-neoceyyioTix) XOOT GE TOAUWVUILXO YeOV0o ovoudleTol
P-TLEOOEYYLO TIXOC.

1.4 To npoPAnua OPT-EXT we 6Vo alicg

1.4.1 ITepvypapr xou xivnTteo

A¢ Bewpricouue Ty mogoNaryry Tou OPT-EXT oTtny omola T avTixelueva umopolv va Adfouyv
uovo 2 mbavéc oieg, elte 0 elte 1 xou ag ovopdooupe autd to TEdBANua OPT-EXT(0,1). And v
avarywyr Tou OPT-EXT oné 10 DOMINATING SET, Oelaue OTL axoua xou oty NEQInTmoT Tou
undpyouv uévo 2 mbavég alieg, To tedPANua elvor NP-80oxolo, enouévwe xou 1o OPT-EXT(0,1)
elvar NP-80oxoNo.

MrnopoUue Vo GXEPTOVUE Yot TO CUYXEXQWEVO TEOPATUA OTL €XOUUE 2 UNACELS AVTIXEWEVWY,
ot «OMuouny (allag 1) xou ta «\iydtepo dnuopinriy (o&iog 0). Xtnv nepintwon e otooe-
ABog, UmopOUUE VoL OXEPTOVUE UL ATAOTONUEVT] EXDOY Y 6oL BéNouue va Tonobethcouye elte
dlapnuioeig eite dnuooiedyota. To dnuociebyota eivon tor «BNUOQN» xou €xouv adio 1, eved ol
dlapnuioeig €xouv agior 0 xar avtholv enidpoon amd To HNUOCIEYUATA, O TEPINTWON ToU elvol

XOVTY TOUC.

Ity npocéyyion tou OPT-EXT(0,1), amodewvietar 6t av éxouve |O1] < |V| o éva otuyuio-
tno Z; = (G, Oy, v1) tou OPT-EXT(0,1), unopolye va npocbétoupe avtixelpeva aiag 0 oto o0-
voho Oy, dnuroupydvtac éva oivoro O e |O2| = |V, dpa xou éva otrywdtuno Iy = (G, Oz, v2)
tou OPT-EXT(0,1), 070 onolo xdbe p-npooeyyioTinds oydpbpos v to Iy eivon eniong p-
TEOCEYYIOTIXOS Yl TO Z1. 'EoTtw 6Tl TE€XOUUE TO CUYXEXPWEVO P-TROCEYYIOTIXO oNyOplbuo
o710 Zy. H anddelln npoxintel dlaxplvovtag 800 TEpINTOOoEL:

24

o Ilopatnpolue 6tL o meplntwor mou €xouue pa avdbeon T yio To Iy 0TV omola TaL v TL-
xetyeva afiog 0 mou de AouPdvouv enidpaom eivon to moNd |O2| — |O1], téTE éoT 6TU
Srorypdipoupe |Oz] — |O1| avtixelpeva o&iog 0 (cUUTERINAUPAVOUEVOY OXWY TOV VTIXELUE-
vov aglag 0 ou 8e hopfdvouv enidpoon). Tote to avtixelpeva adlag 0 Tou amouévouy GXa

AoPdvouv enidpaom, dpa €yxouue pio BEXTIOTN Ndon yio To ;.

o Av Ta avuxelpeva afiag 0 mou de Naufdvouv enidpocn otnv m elvan meplocOHTERA A
|O2| — |01], téte drarypdgovtag axptis Oz — |O1] avuixelyeva, tpoxOTTeL wio eQixTh
avdbeon 7’y t0 Zi. Oewpdvrac wa BéXTIoTn avdbeon T i to I, UnopoUUE VoL GU-
umAnpooouye avtxelyeva alioc 0 6T xopugés v T T YLt T onoieg oylel Ty (v) = L.
‘Etou Ba ndpouye pror avdfeon m mou dev elvan xewpdtepn and v w1 (xabde Tor ovTixei-
wevo o&log 0 tne w7 Ao Pdvouv xau thpa enidpaot), aAXd mou dev elvar xaXUTepn and o
BérTion avdbeon 75 yio to Iy (xabde Sev undpyet xonitepn avdbeon and) BéNTioTn).
HoXhamhaowdlovtag pe p, TeoxinTeL pExtrs (G) > pExtrr (G) xou dpo 0 alydplfpog v
XL P-TEOGEYYIOTIXOS YLot TO 1.

Enopévoc, otn ouvéyeia, 6tay Benpolue otrywdtune tov tpofNiuatoc OPT-EXT(0,1), untopolue
var Bewpolpe (xan Ba Bewpolpe) xoplc PAEPN e yevixdtntag 6TL 10 TARPOC TV AVTIXEWEVLY
elvan (0o Ye T0 TAHBOC TWV xOPLPEDY.

1.4.2 "Evoag npooceyyloTixog olyoplbpoc we ctabespd Noyo
TEOCEYYLONG

O o\ybpbuoc 1 eivon évag alyoplbpoc mou Novel o tedBAnua OPT-EXT(0,1) oe otabepd Noyo
Tpooéyyione, (oo ye (e —1)/(1+ e) ~ 0.46.

Algorithm 1
Eilcobdog: b, r, G ye n xopugéc

"E€o80¢: M e@uxth) AUon yio To mpéfAnuo AUX

1: ‘'OXeg oL xopugéc oto G elvan Aeuxéq.

2: s0l(0) < 0

3: fort=1tobdo

4: XpWUATIOE PE UTAE XPOUAL A XOPUPT ¥ TTOL OEV elvan HON) UTAE, xa oy efvar BUVATOV, YEw-
UATIOE HE XOXUVO YEmUa UEEXOVS Aeuxolg Yeltoveg tng v. Kdve autd dote va peyioto-
Toin0el 0 aElBUOC TWV VEWY XANUTTOUEVWV XORUPEY, UTO TOV TEPLOPLOUS OTL O GUVOAIXOG
aptBUdC (OUAVWY x0PUPEOY Elval TO TOND 7.

5 sol(t) < sol(t — 1) U {oL véec xopugéc mou xoXipdnxav}

6: end for

7. return sol(b)

H onédelln éxet opxetd podnuotind xou Tteplypdpetor avaAuTixd oty evotnta 5.2. Atouchntixd,
ToTo0ETOVUE TO AVTIXEIUEVO UE TN UEYONDTERT TWH amtd auTd Tou elvon SladEauua G TNV XOPUYPY| Ue
TOUG TEPLOCOTEPOUS “VEOUC” YEITOVES, GTOUC OTOlOUG YEITOVEC TOTOOETOVUE To AVTLXEIUEVAL UE TLC

uxpodTepES TWéS amd autd mou elvar Swobéotua. Me tov tpémo autd, and BAua oe Pruc (Snhody

25

%8B popd mou avabétouue éva avuxelyevo peyding ofioc oe pla xopuph), e&acponilovue n
enidpaoT moV UTOEEl VoL AOXNACEL TO CUYXEXPWEVO avTixeluevo Vo efvan 1) ueyoNOTepn duvaTH.

To épro 0.46 dev elvon toued (tight). Autd onuaiver btL dev €xouue Ppet mapddelypa TOU LTTO-
OEVOEL OTL TEAYUATL 1) TEoyUaTXr] ETBOCT) Tou ayoplBuou yio xdmolo otiyuéTuTo Ebval To
0.46 tnc BéEXTiotne Nong. Trdpyet dpwe mopddelyuo aTo omolo 1 enldoon Tou a\yoplBuou eivou
o 2/3 e BéNTIoTNS Nomge:

U1 V2 V3 V4 Uy
oO—O0—0—0—0

Y10 mapamdvew Toedderypa, oav k = 2, o akyoptdpog 1 urnopel vo avabéoel to mpdTo avTixeluevo
oty xopuy| v3. Tote, to deltepo avtixeipevo Bo avatebel oe pla ex TV x0pLPMY vV 1 v (oG
Bewprooupe avbalpeto T v2). Tehxd, umhe Ba elvar oL X0pUEES V2, U3 XAl XOXXIVES OL XOPUPES
U1, U5, UE OTMOTENECUA O ONYOEWOUOC Vo EMIC TEEPEL amoTéENETUA 2, EVE 1) BENTIO TN ADoT B HTay
VoL E(VaL UTIAE OL XOPUPES V2, Vg oL XOXUWVES OL V1, V3, Us, Goo 1 BENTIOTN AUom Ba €xer Tun 3.
Enopévoc, vl 10 ouyxexpyévo napddetypo o okypfuoc éxer Xoyo npooéyyione 2/3.

To xevé petalld tou (1 —e)/(e+ 1) =~ 0.46 xau tou 2/3 dev €xel xorugbel. Tndpyouv TEYVL-
%€ TIOU UTOPOVY VAL YEQUEKGCOUV TO CUYXEXEWEVO Oplo, OANS Tpolnotifeton 4Tt oL avtioTolyES
ocuvapthoelg elval povotoveg xat “submodular”, oAN& amodeVIOUUE OTL 1) CUYUEXQUIEVT] OV TIXEL-
MEVIXT] CUVEETNOT YLot TNV ETUOEACT) OEV AVAXEL O AUTEC TIG XTI YOPlES, EMOUEVLS OE UTOPOUUE
VOL YEPUEMOOUUE UE UTO TOV TEOTO T0 Ydopa uetod tou (1 —e)/(e+ 1) ~ 0.46 xou Tou 2/3.

1.4.3 Xuoyetion pe to Mepuxwg Kuplagyxo X0Ovolo

To mpoPANua ToL PEEXDE XUElUEYOU GUVONOU, YVWO TO X0t ¢ PARTIAL DOMINATING SET, opilel
OTL BedoUEVOL eVOC ypapruatog G xon evog axepatou t > 0, va Peelel éva chvolo xopupnv
TOU YPUPHUATOS G TE Ol XOPUYES GTNV EVIOY) TWV XAELCTOV YELTOVIWY TOV CUVOA®Y Vo Efvor

TOUNGLOTOV t X TowTdyeova 1 TANOOTNT Tou S va ebvon péyiot.

Oewpolye tpa évay aptdud k. Exteldvtac évav ohyoptbuo mou AOvel 1o PARTIAL DOMINATING
SET n @opéc, wa @opd yio xdbe t € [1..n], ye tov neploploud 6tL 1 TANBXSTNTAL TOU GUVONOUL S}
meénel va elvon To TONU K, Bewpolue Ty Ty Tou ¢ yio TNV OTolo Ol XANUPUEVES XOPUYES UEYL-
otonotolvTaL. Apa éxoupe wo Aoon yia 1o OPT-EXT(0,1). Autd ouufaiver xabdg tor avtixeipeva
ToL Bor avrxouy GTIC x0PUPES TOU GUVONOL, Ba elvon Tar avTixelueva TWAS 1, Ve oTo xoNLUUEVAL

avuxeiyeva Bo avabécovue doa avtixelpeva Tiurc 0 uropolye.

‘Etot, éyouye 6TL av évag ohyoplbuog Novel pe axplfeta To medAnua Tou PARTIAL DOMINATING
SET o€ %p6vo T'(n), T61e ENEWDT TOV EXTENOVUPE 1 POPES, EYOUME aNYOpBUO Tou NOvel ue axpiPea
10 TE6PANUa OPT-EXT(0,1) oe xpévo nT'(n). Adyw e épeuvac twv Demaine xou d\hwv, Tpo-
%xOTTEL 6TL €y oupe aNybptBupo mou emhbvel To OPT-EXT(0,1) ot ypdvo n-3L5WROM) iy Yedpoug
ue T og 6€vTpou To moAL 10, eved Noyw Tng €peuvag Tov Fomin xan dN\wv, €xouue alyoplbuo

ou emAvveL to OPT-EXT(0,1) o€ xpbvo n - 200V 1P 0

26

1.5 To npéPAnua OPT-EXT WUE YEVIXEG aleqg AVTIXELLEVOV

Yy nepintoon auth, dev urobétouye otL |O] = |V, xabdc dev nepioptlopacte TAEOV OE HLONLS

2 alec avTxelévoy.

1.5.1 Tepapruate ke wéyioto Pabud 2

Eve) to mpofAnuo OPT-EXT Yo yevixég afle avTixeévoy oe ypopruata e wéytoto fobud 3
xat éve etvon NP-5Uoxoho, uropolue vo amodeloupe 6Tl To TpdfAnua OPT-EXT €AVETOL OE
TONLWYUIIXG Xp6Vo (avixer dnhad otnv x\don P) étav o péyotoc Pabude tou ypagphuatog
elvar To TONY 2, Otay Onhadr) To yedgpnua elvon Uit GUANOYT Amd XOXAOUS XoU LOVOTATLOL.

H omédeln eivan oOvbetn xou mopoucidleton otny evotnta 6.1, 1 wéa duwe ebvon 6TL T0 yEd-
pnua uropel va “uetatpanel” oe €vo BENTIOTO YpdpNUa, oV avalBEGOUUE oEyIXd T AVTIXEUEVAL UE
CUYXEXPLIEVO TEOTIO XAl GTY) CUVEXELL EXTENECOUUE OLADOYIXES TEOTOTOLACELS.

1.5.2 Agvipa-xdunieg

Trevlupilovtac 6Tl €va Bévtpo elvar éva ypdpnua mou dev mepléyel xOxAoug, opllouue ng éva
SEvipo-xdumia éva 8EvTpo 6T0 omolo anotereital amd 800 TUAUATH: TO CTROVEUNO XaL TIC
AAPLAVEG XOPUPEG. LTO BEVIPO-XAUTLA, O OTOVOUNOC Elvor €val LOVOTYTL, GTO OTolo ONES OL

axpLavég xopu@EC elvon Babuod 1 xou €xouv €va yeltova 6To ooOVOUNO.

Apyixd, xdvoupe v mapathpnon Ot av éva yedgnuo eivan plot CUANOYH aoTEpLOY (6mou éval
acTépl elvon €val ypdipnuo Tou €xel tio “wevTeixt| xopuPR” xou ONEC oL SANES x0opLYES elvor Babuod
1 xou oLVBEDEUEVES OTNY XEVTEIXA X0pUYPY)), TO OPT-EXT AUVETOL OE TONUOVUIXO YEOVO YL TO
vyedpnua autd. Autd oupPaivel xabode avabétovtag To avTixelyeva peyanitepng adiog ota x€vtpa
TWV O TERLOY, EEXLVMVTOS A0 TO ACTEPL TOU OTOIOU TO XEVTEO €XEL TOUC TEPLOCOTEPOUC YEITOVES
xa oand To avTtixeluevo pe tn ueyoitepn adio, xar avaldéTovtag 6Toug YEITOVES TOV XEVTPWY TOV
ACTEPLOV TaL AVTIXElUEV UixpoTEENS a&log, EEXVOVTAS TEAL Ad TO Ao TERL TOL OTOloL TO XEVTEO
€XEL TOUC TEPLOCOTEPOUC YEITOVEC Xou Omd TO avTXeluevo Ue TN uxpdtepn olla, 1 CUVONXN
eMiBpAOT TOL YEAPNUATOC TEOXUTTEL OTL efvor 1) H€YLo TN BUVATH.

Arnodexvioupe 6TL undpyel évag 0.5-tpooeyyloTindg aNyoplduog yior Ty enilucT Tou OPT-EXT
OGNV TMEPITTWOT] TOU TO YEAPNUA EVOL €V DEVTRO-XGUTLOL. DUYXEXPLIEV, ETELDY| OL XOPUPES TOU
oTOVOUNOU Elvol €Vor LOVOTATL, dpdl OV ATOUOVMOOUUE TO OTOVOUNO, xdle xopueY| éxel Babud to
TONU 2, yvwpllouye OTL AMOUOVEIVOVTIS TO GTIOVOUNO, UTOROVUE VO AUGOUUE TO TROBANUa Yl
TIC XOPLUYES TOL GTIOVOUNOU GE TONUWYLULIXO XEOVO. AV Twpa BEWEHOOVUE TIG OXPLUVES XOPUYPES,
TO CUYXEXPWEVO LTOYEAPNUA TEOXUTTEL OTL VoL Uit GUNNOYY] AOTEQLOY, OTOTE GUUPWVA UE
TNV TUEATAHPENON TNS TEONYOUHUEVNS TAEXYEAPOL TEOXVTTEL OTL XAl YLl AUTY TNV TEPINTWOT TO
OPT-EXT umnopel vor Aubel oe moluwvupxd yedvo. Enouévag, nalpvoviag tny xoXiTepn and Tig
2 empépoug NOoel, TEoxOTTEL OTL 1) TENXH AUom (yiot TO cuVOAS Bévtpo-xdumia) de Bo elvan
YEROTERN amd To Wod NG xoAlTeENS NOong Tou Bewprooue. Apa o akyoplfuog yio To BévTpo-
xSumio elvan 0.5-tpooeyyloTxoc.

27

1.6 Ileipopatixd AToTEAECUATH

XN ouyxexplévn evotnta, Bewpolue évay anyoelduo yia 1o OPT-EXT xou e&etdlouue Ty emi-
0001 ToU oE CUYXELOT UE €va dvw Oplo NS BENTIOTNG Alorg.

Apyixd, propolpe vo opiooupe éva teTppévo dve dpto T(G) yio n BéXTIoTH ADon Tou OPT-
EXT, 0¢ 1 Teplntworn oTny omola o éva UToBETIXG Ypdpnua, OXNo ToL AVTIXEUEVO UToEOVY Vi
Ao Pdvouy enidpaon and to aviixeipevo péyiotng alloc oto O. To bplo autd dpwe elvon TeTpL-
HEVO xai apXET VYNNG, EMOPEVLC OTIC TEPLOCOTERES TOTONOYIEC eV Tpooeyy(lel emapxOdS TN
BéXTiIoTN Ao,

[t to N6yo autd, Bewpolye éva un tetpiupévo dvw dpto U(G) yio tn BéXNTIo Ty Ao, Tou Bewpel
TIC XOPUPES VO CUUIETEYOLY OE Wat CUANOYT oo Tepladv. To xévtpo xdbe aocteplol, yia vo umdpyet
eYyUTNTA GTO YRAPNUA YLt TO 0Tolo Ydyvouue dvw deto TN BENTIOTNG Adong, éxel Pabud (oo ue
xdbe popd to péyioto Pabud wlac xopuphc mou dev €xel axdua Bewpnbel cov xévtpo actepion.
Me tov tpbéno autd, naipvouue éva véo dve bpwo U(G), mou eivon onuavtixd mo xovtd ot
BéXTIoTN Ao, %0bde e€opTdToL Mo ATS TAL YAPAXTNELO TIXE TOU YpapruaToS, ot avtifeor ue to

T(G)).

Teéyovtag évay dmAnoTto aXyoelbuo Toll mapduotlo Ye Tov 1, TpoxUTTEL OTL Yiol UEXETA TELRO-
HoTiXd amoTENEoUATA, 0 aNyOplBpoc TeTUyadvel anoTéNeopa pe andxhion 1o ToAy 5% and To
U(G).

[MTopatnpolue pdiiota 6Tt 0 a\yoplbuog €xel xaniTepy enldoor cTouc MUxvVolg YEAPOUS, TO
orolo Bewpolye 6Tt mhavoTNTA BEV Elvor ETELDY| 0 Ay OEOUOS BV Tar Ty afvel xaNd G TOUS dpotoUg
Yedpoue, OANS ETEWD GTOUG TUXVOUE YEAPOUS TA ACTERLOL TIOU OOULTOVUVTOL YLl VO XUADPoUUE
ONOXATPO TO YEAPNUA Elvol ALY OTER, XoBOS UTEEYOLY TEPLOGOTERES XOPUYES UEYUNDTEPOL Pub-
nov.

28

Chapter 2

Basic Notions and Preliminaries

2.1 Graphs

Let us consider a group of individuals. Some of them are friends with each other, while some
of them are not. If we think of every individual as a point and draw a line between two
individuals that are friends, we have modeled a simple structure of certain relations among
these points. In daily life, many situations can be modeled in a similar way. If we consider
the map of a country, we can model the cities as the points and the roads between the cities
as the lines, by drawing a line for every two cities that are directly connected with a road.
Again, we have a structure of certain relations among these points. This structure is an

example of a simple graph.

We can therefore think of a graph as a data structure which models the relations between
certain pairs of objects. The objects are referenced as nodes or vertices, while the lines
connecting pairs of vertices are referenced as edges. The definition of a graph follows.

Definition 2.1.1. A graph is a pair G = (V, E), where V is a set of vertices and E is a set

of pairs of vertices, called edges.

A graph is simple when each pair of vertices belongs to |F| only once. That is, when there
are not multiple edges linking the same vertices. Throughout this reading, when referring to
graphs, we will imply simple graphs, unless something different is stated explicitly.

An edge can be either directed or undirected. We call an edge e = {v, w} directed when the
edge shows a direction from vertex v towards vertex w. A directed edge can also be denoted as
an arc. From now on, we will refer to undirected edges as simply edges, and to directed edges
as arcs. Note the distinction in the notation of edges and arcs; we denote an edge connecting
vertices v and w by {v,w} or equivalently {w,v}, but we denote an arc from vertex v to
vertex w as (v, w). In arcs, vertex v is called the initial vertez of the arc, while vertex w is
called the terminal vertex of the arc. Typically, an arc is denoted with an arrow pointing to
the terminal vertex of the edge. A graph that contains only edges is called an undirected
graph, otherwise it is called a directed graph. Note that in the case of a directed graph
with both edges and arcs, an edge e = v,w can be thought as two arcs a; = (v, w) and

az = (w,v).

29

©)

Figure 2.1: A directed edge, known as arc

Figure 2.2: A simple, undirected, connected graph

We can think of a path in a graph as any traversal through consecutively moving through
graph edges. The definition of a path follows.

Definition 2.1.2. A path of length k from vertex vi to vertex vy is a sequence of k vertices
V1,02, ..., Uk for which {{vi,va}, {ve,vs},...,{vk_1,vk}} € E stands.

Let us now introduce some more definitions on concepts mentioned later in the reading.

Definition 2.1.3. A graph is called connected if for any two vertices v,w € V there is a

path from v to w.

If two vertices v, w are connected with an edge, they are called neighbors. The definition
follows.

Definition 2.1.4. A vertex w € V is called a neighbor of a vertex v € V when {v,w} € E
stands.

If we want to denote the whole set of neighbors of a vertex v, the terms neighborhood and
closed neighborhood are useful. A neighborhood is the set of all neighbors of v, while a closed
neighborhood is the neighborhood of v with the vertex v included in it. The definitions
follow.

Definition 2.1.5. The neighborhood N (v) of a vertex v € V is the set S of all vertices w,
for which {v,w} € E stands.

Definition 2.1.6. The closed neighborhood Nv] of a vertex v € V is the set S, formed
as the union of N'(v) and v.

The degree of a vertex v is the number of neighbors of v. Formally, the degree of a vertex v
is the number of elements in its neighborhood. The definition follows.

30

Definition 2.1.7. The degree of a vertex v € V is the number of elements of N'(v), namely
N ()]

Specifically, regarding directed graphs, we usually avoid using the term degree, since it com-
monly raises a question whether we include all the arcs that start from or end to the vertex
in question, or only those that start from the concerned vertex. To avoid this confusion, we
define two new terms, the in-degree and the out-degree of vertices in directed graphs. The
definitions follow.

Definition 2.1.8. In a directed graph G =V, E, the in-degree of a vertex v € V is defined
as |S|, where S :={w eV : (w,v) € A}.

Definition 2.1.9. In a directed graph G =V, E, the out-degree of a vertex v € V is defined
as |S|, where S :={w eV : (v,w) € A}.

Intuitively, we can think of the in-degree of a vertex v as the number of arcs ending to v,
while we can think of the out-degree of a vertex v as the number of arcs starting from v. This
way, when we want to calculate the amount of arcs incident to v (that is, starting from or

ending to v) we just sum the in-degree and the out-degree of v.

Let us now define some terms regarding subgraphs. Intuitively, we define a graph G1 to be a
subgraph of Gy when G contains some of the vertices and some of the edges of Gy (possibly
all or none). We define a graph G; to be an induced subgraph of Go when G; contains some
of the vertices of G2, and all of the edges of G2 that have vertices of G; as endpoints are also
edges of G;. We define a graph G; to be a spanning subgraph of G2 when G and G have
exactly the same vertices, and (G; contains some of the edges of Go. The formal definitions
follow.

Definition 2.1.10. A graph G = (V1, E1) is a subgraph of a graph Gy = (Va, E2) when
Vi CVy or By C Ey (or both).

Definition 2.1.11. A graph G1 = (V1, E1) is an induced subgraph of a graph Gy = (Va, E3)
when Vi C Vi, By C Ey and Ve = {v,,vp} € E2 so that vy, vy € V: e € Ey.

Definition 2.1.12. A graph G = (Vi, E1) is a spanning subgraph of a graph Gy = (Va, E3)
when V1 = V5 and B C Es.

Similarly to the definition of subgraphs, the definition of a minor graph follows.

Definition 2.1.13. A graph G1 = (V1, E1) is a minor of a graph Gy = (Va, E3) if G1 can
be created by deleting edges, vertices and contracting edges of Go. A contraction of an edge
v1,v2 means to delete the edge {vi,v2} and to merge the vertices v1 and va. A merge of two
vertices v1 and vy s to create a new vertez v, with all edges {vi,w} € E or edges {ve,w} € E,
for any w being replaced by new edges {v,w}.

In Figure 2.3, we can see a graph G before the contraction of the edge {va,vs}. In Figure
2.4, a new graph G’ has been formed by contracting the edge {ve,v5} in G. Observe that

31

vertices vy and vs have been merged into a new vertex v/, who has as neighbors every vertex
in the set N'(vy) UN (v5), namely here vertices vy, vs, vg. Therefore, according to Definition
2.1.13, graph G’ is a minor of graph G, since G’ has been formed from G by performing an
edge contraction.

Figure 2.3: Graph G, before the con- Figure 2.4: Graph G, after the contrac-
traction of edge {va, vs} tion of edge {v2, vs}

In an undirected graph, we say that two vertices v, w participate in a cycle, when there are
two different paths (i.e. with all of their vertices different except from v and w that start
from v and end to w. The definition follows.

Definition 2.1.14. In an undirected graph G = (V, E), two vertices v,w € V participate in
a cycle if there are at least two paths Py, Py from v to w, that have only v and w as common
vertices. We then say that the cycle contains all the vertices that belong in Py and Py. We
can denote a cycle as a path, starting an ending at the same vertex. The size of a cycle C' is
the number of edges it contains and is denoted by |C|. A cycle has, by definition, a size of at
least 3.

In Figure 2.5, we observe the following 8 cycles:

e C1 = {(v1,v2), (v2,v3), (v3,v7), (v7,v1)} (size 4)
o (5 = {(v2,v4), (v4,v5), (vs5,v2)} (size 3)

o O3 = {(v2,v4), (v84,v6), (v6,v2)} (size 3)

o Cy = {(v2,v5), (v5,06), (v6,v2)} (size 3)

o U5 = {(va,v5), (v, 6), (v6,va)} (size 3)

o Cs = {(v2,v4), (v4,05), (v5,06), (v, v2) } (size 4)
o C7 = {(v2,v4), (v4,06), (v6,v5), (vs5,v2)} (size 4)
o Cs = {(v2,v6), (v, v4), (va,5), (vs,v2)} (size 4)

Therefore, we can see that while for two cycles C, Cs the vertices can be the same, the edges
can be different, which means that the two cycles might be different even with the same

vertices.

Cycles are crucial for graph theory and whole classes or graphs are formed based on cycles
or their absence. A tree is a subcategory of graphs, denoting the graphs that do not contain
cycles. Trees are a very common data structure in graph theory. The definition for a tree
follows.

Definition 2.1.15. A graph G = (V, E) is a tree if it does not contain any cycles.

32

O =
O

Figure 2.5: An undirected graph with 8 cycles

Figure 2.6: A tree

In figure 2.6 we see an example of a tree.

Let us define a special class of edge, related to cycles named chord. Similarly to geometry,
a chord for a cycle is an edge that is not part of the cycle, but connects two vertices of the
cycle. The definition for the chord follows.

Definition 2.1.16. A chord c for a cycle C in a graph G = (V, E) is an edge ¢ = {v1,v2} € E

connecting two vertices v1,ve € C, so that ¢ ¢ C.

For example, in figure 2.5, the edge {v2,vs} is a chord for the cycle C7, since cycle C7 does
not contain the edge {v2, vg}, but vertices v and vg are both included in cycle C7. Intuitively,
we can think of a chord as an edge connecting two vertices in a cycle that are not adjacent

to each other in the cycle.

Let us now define a new class of graphs, called chordal graphs. Intuitively, chordal graphs
are simple graphs that have as many chords as possible. The definition for a chordal graph
follows.

Definition 2.1.17. A graph G = (V, E) is a chordal graph when every cycle C of G with
|C| > 4 has a chord.

For instance, we can observe that the graph in figure 2.5 is not chordal, since C7 does not
have a chord. The graph of figure 2.5 would become chordal if we added the edge {vi,v3}
(or the edge {va,v4}). The definition of a chordal completion follows.

Definition 2.1.18. A chordal completion for a graph G = (V, E) that is not chordal is a
chordal graph G' = (V, E') that has G as a spanning subgraph.

33

Since Definition 2.1.18 may allow “irrelevant” edges to be added (i.e. edges that do not
contribute to the chordal completion) towards the creation of G’, what really matters is the
minimum chordal completion, which is the chordal completion by adding only as many edges
as necessary. The definition follows.

Definition 2.1.19. A minimum chordal completion for a graph G = (V, E) that is not
chordal is a chordal graph G' = (V, E') that has G as a spanning subgraph and |E'| — |E)| is
minimized.

For example, in Figure 2.5, a chordal completion would be to add edges {v1,v4} and {vy,v3},
but although the resulting graph would be chordal, this chordal completion would not be

minimum, since we can get a chordal graph by adding only one edge (either {vi,vs} or

{v2, v7}).

A clique is a subset of vertices in a graph in which every vertex is connected to every other
vertex. The defintion for the clique follows.

Definition 2.1.20. A clique in a graph G = (V, E) is a set of vertices S C V' for which
VoeS:SCN.

In this manner, we define the mazimum clique in a graph to be a clique, so that there is no
clique with a higher number of vertices. The definition follows.

Definition 2.1.21. A maximum clique in a graph G = (V, E) is a cliqgue S C 'V for which

|S| is mazimum.

Let us now define a different type of chordal completion C, namely a chordal completion
that minimizes the size of the maximum clique in the resulting chordal graph. The size of
the maximum clique in C can be defined as the treewidth of the graph. In other words, the
treewidth of the graph is the infimum of the maximum clique in all possible [minimum| chordal
completions of a graph. The definition of the treewidth follows.

Definition 2.1.22. Consider a graph G = (V, E) and a chordal completion C that minimizes
the size of maximum clique in G. Consider the mazimum clique in C to be S. The treewidth
of G is equal to |S| and is denoted by tw(G).

Much study has been performed on treewidth of graphs as a property and more about

treewidth will be mentioned in the next sections.

Let us now talk about a different category of graphs, namely graphs that can be represented
in a two-dimensional plane. Let us define such graphs as planar graphs. The definition
follows.

Definition 2.1.23. A planar graph is a graph G = (V, E) that can be drawn in such a way
that the edges intersect only at their endpoints.

The graph in Figure 2.3 is planar, while the graph in Figure 2.7 is not planar.

34

Figure 2.7: A non planar graph

If a graph G is not planar for only one vertex (i.e. if one vertex is removed from G along
with the edges incident to it, G becomes planar), G is called an apex graph. The definition
for an apex graph follows.

Definition 2.1.24. A graph G = (V, E) is an apex graph, if there exists a vertexv € V', for
which there is a planar induced subgraph G' = (V \ v, E'), where E' is E without the edges

incident to v.

By characterizing a graph G; as forbidden, we denote that the presence of the graph G;
as subgraph or minor graph of a graph G2, means that Go cannot have certain properties,
forbidden by the existence of graph (G1 as a subgraph. The most simple example is that a
graph G9 cannot be a tree if it contains a cycle as a subgraph. In fact, the graph of Figure
2.7 is a forbidden graph for planar graphs, according to Kuratowski’s theorem [38].

Let us now define the notion of matching vertices. Intuitively, we can think of matching
vertices as pairing vertices in groups of two, which are already neighbors of each other. In
a matching, however, we consider that a vertex belongs to at most one group of two. The
formal definition follows.

Definition 2.1.25. A matching in a graph G = (V, E) is a set of edges M, for which every

vertex v € V is incident to at most one edge of M.

Based on the definition for matching, we can define a maximum matching as a matching with
the maximum possible number of edges. Note that a maximum matching may not be unique
for a given graph G. The definition follows.

Definition 2.1.26. A maximum matching in a graph G = (V, E) is a matching M for
which |M| is mazimum.

Maximum matching should not be confused with mazimal matching, which is a matching
for which the addition of any edge not in the matching leads in a set of edges that is not a
matching. The definition of a mazimal matching follows.

Definition 2.1.27. A mazximal matching in a graph G = (V, E) is a matching M, so that
for any edge e € E\ M, the set M U{e} is not a matching.

While it is clear that a maximum matching is always maximal, it should be noted that a maxi-
mal matching may not be maximum. Considering a simple path of 4 vertices {v1, va}, {va, v3}, {vs, v4},

35

note that the edge {ve,v3} alone is a maximal matching, but not a maximum one, since the

set of edges {{v1,v2}, {vs,v4}} is a matching of larger size.

2.2 Algorithms and Complexity

Let us consider the problem of trying to simplify a fraction. The process we are following is
standard: A fraction consists of a nominator n and a denominator d. If the fraction is not
yet simplified, it means that the greatest common divisor (GCD from now on) of n and d is
larger than 1. In order words, that n and d are not coprime. We can note that if we divide
n and d with their GCD, the new numbers we will get will be coprime, and the fraction will
be simplified.

We can therefore see that the problem is the same as “finding the ged of n and d”. A trivial
way to solve this problem would be to examine all numbers from 1 to the minimum of n and
d, and find the largest number = that is a divisor of both n and d, or, in order words, that
satisfies n mod z = 0 and d mod x = 0. We can formulate this procedure in the following
steps (where “—” indicates an assignment of the value on the right to the variable on the
left):

Procedure 2 A trivial way to find the greatest common divisor of two numbers

Input: Integers n (nominator) and d (denominator)

Output: Integers a and b so that n/d = a/b and ged(a,b) =1
L: minimum_number < min(n,d)

2: for t = 2 to minimum__number do

3: if nmodt=0and d mod ¢t =0 then
4 Tt

5. end if

6: end for

7. a4+ njz

8 b+ d/x

9

: return a,b

This procedure is precisely an algorithm. The definition of an algorithm follows.

Definition 2.2.1. An algorithm is a finite sequence of well-defined, computer-implementable
instructions, typically to solve a class of problems or to perform a computation.

Typically, computers can execute about 10% instructions per second. This means that while
Procedure 1 can be useful for numbers up to 10® — 107, it is not fast enough for numbers much
larger (such as 10'3 or 10%6). This is a matter of computational complexity. Procedure 1
uses linearly as many instructions as the minimum of n and d, since it is going to calculate
if all numbers up to min(n,d) are divisors of n and d. Therefore, Procedure 1 has linear
complexity in the worst case.

In order to upper bound the worst-case complexity of an algorithm, we use big O notation.

36

By using big O notation, the running time of an algorithm is bounded according to a function
with the input size as a parameter. Therefore, execution time that increases linearly as the
input size of min(n,d) increases is denoted O(min(n,d)) and that is the big O notation for
the computational complexity of Procedure 1.

In order to be able to execute quickly Procedure 1 for input sizes larger than 107, we need
to find an algorithm that has significantly lower computational complexity. Since we would
like to calculate numbers up to 10 — 10'® with up to 10® instructions, we need the compu-
tational complexity to be better than linear, i.e. sublinear. Let us introduce the Euclidean
algorithm for the GCD of two numbers, which is the following:

Algorithm 3 Euclidean algorithm for the greatest common divisor of two numbers
Input: Integers n and d

Output: Integers a and b so that n/d = a/b and ged(a,b) =1
a<+n
b«d
while b # 0 do
swap(a, b)
b+« bmod a

end while

return a,b

Algorithm 2 provides the correct result, with a computational complexity much smaller than
Procedure 1, equal to O(logmin(n,d)). The difference in the execution time is so high, that
the execution of Algorithm 2 for numbers up to 10'® takes the same time with the execution
of Procedure 1 for numbers up to 60.

We consider problems to be able to be solved efficiently if they are available to be solved
in polynomial time. We consider an algorithm able to be solved in polynomial time if its
running time is upper bounded by a polynomial expression in the size of the input for the

algorithm. Examples of polynomial time complexities in terms of big O notation are:

e O(n?)

e O(n-y/n)

e O(n*%log(n))

However, there are problems for which no efficient algorithms have been found yet. We call

these problems non-deterministic polynomial time complete, or simply NP-complete.

37

Chapter 3

State of the Art

In this paper, we are going to consider the concept of externality. Intuitively, externality
describes a situation where the value of an object does not depend entirely on it, but also
from the way that the other objects surround it. Let us describe notions of externality already
studied in certain study fields.

3.1 Economics

Research has been conducted regarding the externality of an object in economics. We will

mention a few examples.

In [44], a model of externality regarding communications is described, such that the external
utility that a subscriber derives from a communications is increasing as more users join the
system. Starting with explaining the theory of demand, several econimic analyses are con-
ducted, all taking into consideration the fact that the utility function of an existing subscriber
never decreases with the addition of new subscribers, with no existing subscribers dropping

from the service.

In [33], three cases of positive consumption externalities are mentioned, namely:

e The number of purchasers of the product might have a direct physical effect on the
consumption externalities derived from the product. Presenting the example of the
telephone, the utility derived from the purchase of a telephone (and consequently, the
connection of the user in the telephone network) is clearly dependent on the number of
other households and businesses that have a telephone. This can be explained that in
case many households and businesses already have a telephone number, the purchase of
the telephone will be severely more helpful to the user, as in that way, they can increase
the total convenience (or, externality they will derive from the network.

e Aside from the direct effects, there can be indirect effects that increase consumption
externalities. Let us say that someone purchases a computer C. Let us consider the case
in which 10 persons buy C' and the case in which 10, 000 persons buy C'. It is clear that in
the second case, the number of peripherals and the variety of software created for C' and

39

adjusted to function properly on C will be significantly larger. This hardware-software

example may also apply to video games, video players and phonographic equipment.

e It is possible that the quality of service and technical support after the purchase of goods
depends on the experience and the size of the service network, which may directly or
indirectly depend on the number of units sold, or the number of subscribers in a network.
Taking the automobile market as an instance, the sales of foreign manufacturers were
initially hindered by the lack of experience and the thinness of the service networks that

existed for the new or the less popular brands.

In all of these cases, we can see that the utility that the users of a unit or service derives is
enormously dependent upon the number of the other users in the same “network”. [33] moves
on to develop a model of oligopoly to analyze markets based on the observation of positive
consumption externalities, which shows the impact that externality studies have on academic
research.

In [48], a model with linear externalities is analyzed, in which the welfare of a certain agent
is linearly dependent to the consumption of another agent. It is being assumed that for two
agents 1, j, the effect that the consumption of money of j, let it be x;, is a constant proportion
of x; on the welfare of agent ¢. Note that this does not imply that j is the only agent that
affects the welfare of agent i. The paper moves on to further analyze the matters from an

economic aspect.

3.2 Computer Science

For computer science, externality appears in many problems of interest, including match-
ings, auctions, and fair allocations of divisible or indivisible goods. We will mention some

significant, to our view, related work for this matter conducted in Computer Science.

Externality has been used in matchings from Branzei et al. [7| in a way that is similar to
the notion we desire to deliver. Explicitly, in [7], a matching game with additive externalities
is defined, in a way that the utility of an agent is the sum of the values it receives from
matches it participates it. That is, assigning pairs of agents z1, z9 from two disjoint sets M
and W, a match is being formed, from which both z; and zo derive positive utility, defined

as externality.

In auctions, there are many papers involving externality. For advertisement auctions, Ghosh
and Mahdian [21] suggest that the performance of an item is dependent on which other items
are selected and displayed simultaneously. In this case, it is possible (and often happens)
that the externality derived is negative, since the auction might be a single-item auction,
and a good advertisement displayed next to a weaker one might exert a negative externality
to the weak advertisement, discouraging people to opt for the product or service advertised
from the weak advertisement. Negative externality may also be derived from specific parts
which are worse than others, making it more difficult for the page to yield positive externality
from its position, comparing it to the position of the other advertisements. The category in

40

which positioning matters for the value of the item is regarded as position auctions. Fotakis
et al. |17] used a model for externalities among advertisers used in single-keyword auctions
in sponsored search. In this model, is it assumed that externalities can be both positive
or negative between any pair of advertisers. In this paper, multiple computational results
are computed regarding the Winner Determination problem for Social Welfare maximization,
eventually evaluating the Generalized Second Price mechanism in presence of externalities.
There exist more examples for position auctions |4, 32].

Regarding resource allocation, it is often supposed that the utility of an agent depends solely
on the share allocated to them, usually in respect to a function that values the share the
user gets. When externalities are included, the model is different, since the utility of the
agent is (often heavily) influenced by the shares of other agents as well. Seddighin et al.
[45] considered the problem of fair allocation of certain indivisible objects, with the aim
being to satisfy an adapted notion of the maximin-share criterion. In both [45] and our
model, there exists a social graph whose vertices are the agents and positive externalities are
exerted /derived along the edges/arcs.

The problem that will be presented through our model is named OPT-EXT and is analyzed
further in the following chapter. OPT-EXT bears a stark resemblance to models that attempt
to maximize the influence in social networks, such as that of Kempe et al. [34]. In influence
maximization problems, the goal is to maximize the adoption of a new product through a
social network. This process happens in rounds; in every round, a vertex adopts the product
with a probability proportionate to the fraction of its neighbors that have adopted it. We
can think of it as, when some friends of an individual have a certain interest, it is more likely
for the individual to develop it as well. The goal is to compute a set of k initial adopters,
so as to maximize the expected final number of adopters. Such problems have significant
applications to marketing and pricing in social networks and they have received widespread
attentions, as can be observed in [28, 3, 18| and their references. OPT-EXT does not use
probabilities, but uses deterministic externalities instead that occur during a single round
and deals with the solution regarding different object valuations. A big difference between
the two models is that while in influence maximization models, the objective optimization
function is a monotone submodular one (as defined in section 2.1), we will observe in section
5.2 that this is not necessarily the case for OPT-EXT.

A more specific case of OPT-EXT will be presented in our model as OPT-EXT(0,1), regarding
objects valued only with valuations 0 or 1. This model belongs in the family of covering
problems, in the notion that vertices receiving an object of value 1 “cover” their neighbors
of value 0 by exerting positive externality to them. The goal of the problem is to maximize
the number of “covered” vertices with objects of valuations 0. DOMINATING SET and MAX
COVERAGE are two typical and related coverage problems. In DOMINATING SET, a vertex
v in the set covers (“dominates”) itself and its neighbors, and the goal is to find a set of
minimum cardinality that “dominates” every vertex in the graph. Related papers are [19]
and [10]. The variant of PARTIAL DOMINATING SET for DOMINATING SET exists, where the
goal is to dominate at least ¢ vertices by using the minimum number of vertices [13, 15].
The DOMINATING SET and PARTIAL DOMINATING SET problems are also explained later. In
MAX COVERAGE, we are given a universe U of objects and a collection C of sets. The goal

41

is to cover the maximum possible number of objects in U by using at most k sets of C.
It can be shown that this problem is NP-hard, and can be approximated with a ratio of
(1—(1—1/k)k) >1—1/e[30].

The model we present is also related with the problems studied in [5, 9]. While in these
articles, the allocation of goods in the vertices of a graph is studied, the objective and the
motivation is completely different to that of our model.

42

Chapter 4

Graph Externality Model

4.1 Motivation

Let us consider a TV channel director, who has to arrange the time slots for the programs
to broadcast. It is clear that if show A, which is popular, precedes show B, which is less
popular, some people who will watch show A are also going to watch show B. Compared to
the case where show B succeeds show C, which is much less popular than show A, it is clear
that many more viewers will view show B in the case it broadcasts right after show A. The
same can be said in case show B preceded show A; it is clear that people waiting to watch
show A, have increased probability to watch show B as well while waiting. Therefore, the
TV channel director could benefit from this and schedule the shows so that the less popular
show B gets some “external” audience from the more popular show A, by putting it right
before or right after show A.

Similarly, we can imagine how certain articles in a web page or a newspaper are arranged.
Topology is crucial there, since posts next to popular posts are much more commonly viewed.
Therefore, if the website has an interest to promote certain articles to be viewed, the owner
can put the articles next to the popular ones, so that they gain some “external” clicks. It is
natural that when the reader views a specific post, their interest for the neighboring contents

might be increased.

Since “external” factors might be crucial to the behavior of the public, we introduce a general
model that, by modeling an instance as a graph and the open slots and positions as the
vertices of the graph, we attempt to approach the best possible object allocation so that the
total “external” value for the graph is maximized.

4.2 Definitions and Problem Description

Let us consider a set of m objects (which can also be called goods), denoted as O = oy, ..., op.
Each object has a valuation, which corresponds to the intrinsic value the object has. The
valuation can only affect the neighbors in a positive manner, therefore we consider it to be
non-negative. Therefore, each object 0; € O has a valuation v(o;). We also consider a

43

graph topology, to the vertices of which the objects are assigned. Formally, there exists an
undirected graph G = (V, E) with n vertices, denoted as vy, va, ..., v,. Since the vertices must
be enough to be able to have all the objects assigned to them, n = |[V| > |O| = m must hold.

It is important to note that every vertex can take at most one object, that is, as well as that
every object must be placed on exactly one vertex. We define an allocation as a function
m:V — OU{L}, in which every object has exactly one ancestor, namely, that every vertex
is allocated to at most one object, and by pi(v) = {L} we denote that vertex v does not

receive any object.

As stated in chapter 1, two vertices ¢, 7 which belong to V' are neighbors if they are connected
by an edge, namely if {i,j} € E. The neighborhood of a vertex v is denoted with N (v). The
closed neighborhood of a vertex v is denoted with A[v]. Note that N[v] := N(v) Uw.

In the main model, we consider that a vertex can derive externality from at most one neigh-
bor. Although the externality is derived depending on the valuations of the objects, the
theoretical point concerns the externalities derived from the vertices to which the objects
deriving externality are allocated. We say that a vertex v derives externality from a vertex
w if both vertices receive objects, they are neighbors, the object allocated to w has a greater
value than the object allocated to v, and the object allocated to w is the object with the
greatest externality in the neighborhood of v. Formally, v derives externality from w if
the following conditions are met:

1. 7(v) # L
2. m(w) £ L
3. {v,wl e E
4. w(x(v)) < v(x(w))

5. Yu e N(v) : v(n(u)) < v(n(w))

Conditions 1 and 2 suggest that vertices v and w must both have objects, so that the object
allocated to v be able to derive externality from the object allocated to w. Condition 3
suggests that v and w must be connected with an edge. Condition 4 suggests that v will
derive externality from w and not vice versa, while condition 5 suggests that w has the object
with the highest valuation in the neighborhood of v allocated to it.

As a corollary, if there are no objects allocated to a neighbor of a vertex v, then v does not
derive externality. In case the valuation of the object allocated to a vertex v (the respective
object valuation is v(m(v))) is higher or equal to every neighbor of v that has an object
allocated to it, v does not derive externality. It can be inferred that v derives externality only
if an object has been allocated to v and the externality is derived only from the neighbor
w that has the object with the highest valuation in the neighborhood of v. In this case,
vertex v derives externality equal to v(m(w)) — v(mw(v)), that is, the difference of valuation

44

v(m(v)) from valuation v(m(w)). The definition for the externality a vertex v derives under

an allocation 7 follows.

Definition 4.2.1. The externality a vertex v derives under an allocation 7, denoted as
exty(v) is:
e if(v) =L orVue N(v): m(u) = L, the externality derived is 0
e otherwise, letting w be the vertex for which Yu € Nv| : v(m(u)) < v(r(w)), the
externality derived is v(m(w)) — v(mw(v))
Finally, to define the graph externality of the graph G = (V, E) under an allocation m, we
sum the externalities of all vertices in V. The definition follows.

Definition 4.2.2. The graph externality of a graph G = (V, E) under an allocation ,
denoted as Extr(G), is Y, oy extr(v).

We will now provide two examples to demonstrate the concepts of externality and graph
externality.

Consider the following instance with 4 objects.

U1 Us
04 03 v(o) =1
v(og) =4
U2 U3 V4 v(o3) =5
() v(og) =9
L 02 01

Let the allocation m = (04, L, 02,01,03). We have

o exty(vy) =v(og) —v(os) =0
o extr(vy) =0

o extr(v3) =v(o4) —v(o2) =5
o cxtr(vy) =v(o3) —v(o1) =4
o cxtr(vs) =v(og) —v(og) =4

Therefore, Ext, (G) = extr(v1)+ext,(ve)+exty (vs)+exty(vy)texty(vs) = 04+0+5+4+4 =
13.

The inverse allocation function under an allocation 7 is used to specify the location of an
object o, that is, the vertex in which the object has been allocated under the allocation 7.
The definition follows.

Definition 4.2.3. The location of an object o under an allocation w is the vertex to which
o has been allocated and is denoted by 7 (o).

45

Figure 4.1: A graph with 6 vertices

Since under an allocation we force all objects to be allocated to a vertex, it follows that
771: 0 = V. We can also define the notion of externality along an edge. Externality ex-
ists along an edge when the edge is connecting two vertices v and w, in which one derives
externality from the other. The definition follows.

Definition 4.2.4. There is externality along the edge {v,w} if {v,w} € E and v derives

externality from w.

Having defined all the useful concepts, we can now define the problem OPT-EXT, which is
based on finding the allocation that maximizes the graph externality of a graph, with given
objects and graph topology.

Definition 4.2.5. OPT-EXT: Given a graph G = (V, E), a set of objects O and their valuations

v, find the allocation 7 that maximizes Ext;(G).

We define an instance of OPT-EXT as (G, O, v), where G is the graph, O is the set of objects
and v are the respective valuations of the objects.

4.3 Hardness of OPT-EXT

Before proving the hardness of OPT-EXT, we will define and examine the related DOMINATING
SET problem. Let us firstly describe a dominating set. We say that a set D of vertices of
a graph G is a dominating set (of vertices), when every vertex of G which is not in D has
at least one neighbor in D. In other words, a dominating set D of a graph G is a set, so
that every vertex of G is either in D, or neighbors a vertex in D. The formal definition for a
dominating set follows.

Definition 4.3.1. A dominating set D in a graph G = (V, E) is a set D C V so that every
v € V\ D has a neighbor in D.
An example of a dominating set is demonstrated below.

Example 4.3.2. Consider the following instance:

Let us pick the set D1 = {v1,vs}. The black vertices in the following figure are the ones
included in the set Dy, while the striped vertices are the ones that do not belong in D1, but
neighbor at least one vertex in D;:

46

Figure 4.2: The vertices dominated by D;

We observe that since vg does not neighbor any vertex in Dy and is not included in it, then
Dy is not a dominating set. Now, let us pick the set Dy = {vs,v4}:

Figure 4.3: The vertices dominated by D,

We see that every vertex in V' either belongs in Do, or neighbors a vertex in Ds. Therefore,
Dy is a dominating set for G.

In example 4.3.2, we can see that D is also a minimum size dominating set (there is no
dominating set of size 1, since there is no vertex that neighbors every other vertex). However,
there can also be dominating sets of size more than 2, such as D3 = {v1,v4,v5} (since vy
neighbors v; and w4, vs neighbors v; and vs and vg neighbors vg). Even Dy = V is a
dominating set, since every vertex in V' is in Dy, so every vertex is dominated.

Since finding any dominating set is trivial, the DOMINATING SET problem is focused on finding
a dominating set with at most k vertices, for an integer k. The definition of the DOMINATING
SET problem follows.

Definition 4.3.3. DOMINATING SET: Given a graph G = (V, E) and an integer k, determine
if a dominating set D where |D| < k exists.

We define an instance of DOMINATING SET as (G, k), where G is the graph and k is the integer,
so that we check if a dominating set D with |D| < k exists.

It has been shown that DOMINATING SET is NP-complete, even in the case where G is planar
graph with a maximum vertex degree 3 [19], as well as in bipartite graphs and split graphs
[10]. We will now use the NP-completeness of DOMINATING SET to prove the hardness of
OPT-EXT.

Proposition 1. Given an instance (G,O,v) of OPT-EXT and a number k, determining if an

allocation T so that Ext,(G) > k exists is NP-complete, even when the valuations are 0 or 1.

Proof. Let us consider an instance of DOMINATING SET (G, k) and have k objects with valu-
ation 1 and |V| — k objects with valuation 0. We will prove that there exists an allocation 7

47

so that Ext;(G) > |V| — k iff G has a dominating set of size k. In other words, we will show
that OPT-EXT is an instance of the known NP-complete DOMINATING SET problem.

Let D be a dominating set of size k of G. We assign the k objects of valuation 1 to the
vertices of D. Thus, the remaining |V'| — k vertices will be assigned objects with valuation
0. For every vertex v € D, the valuation allocated to v will be 1, therefore v will have the
highest valuation in A[v], meaning that ext,(v) = 0,Vv € D. For every vertex v ¢ D, the
valuation allocated to v will be 0. Since D is a dominating set, every v ¢ D has at least
one neighbor w € D and since w € D, we get m(w) = 1. This means that Vo ¢ D: Jw s.t.
v derives externality from w. Since m(w) = 1 and 7(v) = 0, we get extr(v) = 1, Vv ¢ D.
Therefore, for every vertex v € V', we have:

o exty(v)=0,ifve D

o extr(v)=1,ifv¢ D

Therefore, in this case, we get Ext,(G) > |V| — k.

Conversely, suppose there exists an allocation 7 so that Ext.(G) > |V| — k. Let D be the
vertex set, so that Vv € D : w(v) = 1. We can observe that the remaining vertices are at
most |V| — k, while we know that Ext;(G) > |V| — k. Since we have considered valuations
of 0 or 1, for every vertex v € V we have ext, (V) < 1. Therefore, every vertex v € V can
contribute up to 1 to Ext;(G). Since Ext,;(G) > |V|—k and already k vertices have a valuation
of 1, therefore an externality of 0, it follows that each of the remaining |V'| — k vertices must
have an externality of 1. Since the remaining |V'| — k vertices are the vertices not in D and
they all have an externality of 1, each one of the vertices v ¢ D is neighboring a vertex in D.
Therefore, D is a dominating set.

Because of the hardness of OPT-EXT, we tackle the problem through approximate solutions
and certain variations. For an instance (G, O, v) of OPT-EXT, we consider an optimal allocation
to be the allocation that maximizes the graph externality. We consider the graph externality
yielded by the optimal allocation to be the optimal solution for the instance. The definitions
follow.

Definition 4.3.4. For an instance (G,0O,v) of OPT-EXT, an optimal allocation, denoted
by 7*, is the allocation so that for every possible allocation 7, we get Exty«(G) > Extz(G).

Definition 4.3.5. For an instance (G,0,v) of OPT-EXT, an optimal solution is the graph
externality Ext.«(QG), yielded by the optimal allocation 7*.

Having defined the optimal allocation and the optimal solution, we can now quantify the
quality of an approximate solution for OPT-EXT, by calculating, for a specific allocation m,
and therefore for a specific Ext,(G), what percentage of the optimal solution it covers. The
definition follows.

48

Definition 4.3.6. For an instance (G,0O,v) of OPT-EXT, an allocation 7 is p-approrimate
if Extz(G) > pExtr«(G).

We can now measure the quality of the approximation algorithms we develop, by stating
that a p-approximation algorithm for OPT-EXT provides a p-approximate solution or better
in polynomial time, for any instance of OPT-EXT. The definition follows.

Definition 4.3.7. For an instance (G,0O,v) of OPT-EXT, a p-approximation algorithm

s an algorithm that produces a p-approrimate solution in polynomial time.

49

Chapter 5

The OPT-EXT Problem with Two Valuations

5.1 Description and Motivation

In this section, we analyze the case where there are only two possible valuations of the
objects, namely 0 or 1. It has already been shown in Proposition 1 that this case is NP-
hard. From now on, to distinguish this problem from OPT-EXT, we will refer to the problem
with valuations of only 0 and 1 as OPT-EXT(0,1) and we will refer to the OPT-EXT problem
analyzed in Section 2 as the general case or simply OPT-EXT.

This problem draws significant attention, since it is intuitive to think about it as having
two classes of objects, the “popular” ones (with valuation 1) and the “unpopular” ones (with
valuation 0). This problem could also be thought as a generalization of instances where there
are objects with a very high valuation and objects with a very low valuation. Note that it is
important for the differences among the valuation of “same-class” objects to be significantly
smaller than any difference between an object of a “low” valuation and an object of a “high”

valuation for the generalization to be correct.

As a motivation for oPT-EXT(0,1), we can think again of the web page motivation example
presented for the general case, but in a simplified version where objects are either advertise-
ments or posts. We assume that posts are the ones that will draw attention from the reader,
while advertisements would not draw attention by themselves, but an advertisement close to

a post might draw attention from readers viewing the post.

Additionally, useful examples for OPT-EXT(0,1) can be derived from agronomy. There are
certain species of plants, such as actinidias, that are male or female. The fruits (in this case,
the kiwis) grow in a special case of fertilization: they grow in female trees, but only if a male
tree is located nearby. This is a useful case for oPT-EXT(0,1), since it could describe a case
where there are fixed locations for planting trees, and the goal is to maximize the number of
female fertilized trees, with objects values 0 and 1 being female and male trees, respectively.

An instance of OPT-EXT(0,1) is quite similar to an instance of OPT-EXT, with a graph G of
n vertices, k objects valued 1 and z objects valued 0. Therefore, there are m objects, with
m = k+ z < n. Before defining the instance of OPT-EXT(0,1), we will show that the instance
we described is equivalent to assuming k + z = n for the approximation of opT-EXT(0,1).

ol

That is, while the result can be different, the approximation algorithm process is the same

as in the case where k 4+ z = n stands, by adding more objects with a valuation of 0.

Proposition 2. Regarding the approzimation of OPT-EXT(0,1), we can always assume that
the number of objects (k + z) is equal to the number of vertices (n). If this is not the case,
we can complete the instance with n — k — z objects with a valuation of 0.

Before moving to the proof, we will provide the definitions of a useless zero and a useful
zero. Generally, a useless zero is an object with a valuation of 0 that has externality 0. The
definitions follow.

Definition 5.1.1. A useless zero for opT-EXT(0,1) is an object o with a valuation v(o) =0,

which, under an allocation m, is allocated to a vertex v for which extr(v) =0 stands.

Definition 5.1.2. A useful zero for opT-EXT(0,1) is an object o with a valuation v(o) =0,

which, under an allocation m, is allocated to a vertex v for which extr(v) =1 stands.
We can now proceed to the proof of Proposition 2.

Proof. Let us consider an instance Z; of opT-EXT(0,1), on a graph G = (V, FE), having k
objects with a valuation of 1 and z; objects with a valuation of 0, so that k + z; < n stands.
This means that there will be some vertices without an object, formally there will be n—k—z;
vertices with L as an object.

Now consider another instance Zy of OPT-EXT(0,1), on the same graph G = (V, E), having
again k objects with a valuation of 1 and 25 objects with a valuation of 0, so that k+ zo =n
stands. Therefore, instance Zy will contain ¢ := 25 — z; > 0 more objects with a valuation of
0 than instance 77.

Consider the optimal allocations for 7Z; and Zy to be 7] and 73, respectively. Let 7 be a
p-approximate solution for oPT-EXT(0,1) on instance Zy, for any p € (0,1]. According to
Definition 4.3.6, we have that

EXt&(G) > pEXtﬂ-; (G) (5.1)

There are two possible cases.

Case 1 — 7 contains at most § useless zeros: In case 7 contains at most J useless
zeros, we can remove d objects with a valuation of 0, including all the useless zeros. This
means that the zeros that will remain after the removal will all be useful zeros. Formally,
let us create a new allocation 7/, by removing § items from 7, firstly the useless zeros (all,
if possible) and, if ¢ items have not yet been deleted, remove zeros until § items have been
removed. The rest of the items will be allocated to the same vertices as in 7.

We observe that the objects in 7’ are the objects of Z, therefore 7’ is feasible for Z;. We also
see that every zero in the allocation 7’ is a useful zero, which means that Extz/(G) for Z; is

52

maximum, therefore 4’ is an optimal allocation and yields an optimal solution for Z;. Since
7/ is an optimal allocation for Zy, it is also p-approximate, therefore in this case we have a

p-approximate solution for 7;. Formally, we get

Extz/ (G) = Extrr (G) > pExtqr (G) (5.2)

which concludes the proof for Case 1.

Case 2 — 7 contains more than § useless zeros: In case the number of useless zeros
in 7 is strictly larger than §, we remove exactly ¢ useless zeros from 7. This way, we get
an allocation 7" that is feasible for Z; (since the objects in 7’ are the ones in Z;) and also
we have that the useful zeros in 7 are the same as 7/, because no useful zeros were deleted.

Formally, in this case we have

Exts/ (G) = Ethr(G). (53)

What remains to be shown is that Extz(G) > pExtr:(G). To prove this, let us construct a
feasible allocation 7 for 7y based on the optimal allocation for Z;, which is 7]. Specifically,
we copy every item allocated to a vertex from 7] to 7, while for any vertex v with =} (v) = L,

we allocate m(v) = 0. Formally, for every v € V:

o if 7 (v) # L, m(v) =0.

o if 7j(v) = L, w(v) = 7] (v).

This way, all the useful zeros in 7] are also useful zeros in 7. Since only useful zeros have
externality, we get that the graph externality for instance Z, under allocation 7 is at least
as high as the graph externality for instance Z; under allocation 7. We also know that, for
instance Zy, the graph externality in 7 is lower or equal to the graph externality in 73, since
allocation 73 is an optimal allocation for Zs. Formally, we get that

EXtﬂ-; (G) > EXtﬁ—(G) > EX’[ﬂ-iF (G) (54)

Multiplying both sides of inequality 5.4 by p, we get

PExtz; (C) > pExta(G) > pExtz; (G). (5.5)

Combining inequalities 5.1, 5.5 and equality 5.3, we get that

Extz (G) > PEXtrx (G) (5.6)

which concludes the proof for Case 2.

By concluding the proof for both cases, we get that if we have a p-approximate solution for
I>, we can always get a p-approximate solution for 7, regardless of the number of useless
zeros in Zo. Therefore, the proof is concluded for Proposition 2.

From the proof, we get that it is sufficient to study cases with k + z = n to calculate
approximation ratios for cases with k + z < n. Because of that, for the rest of this section we
will assume that k + z = n stands, or, in other words, that the objects are exactly as many
as the vertices of every instance of OPT-EXT(0,1).

5.2 Constant Approximation Algorithm for opT-EXT(0,1)

In this subsection, an algorithm for opT-EXT(0,1) with an approximation ratio of (e—1)/(1+
e) =~ 0.46 is presented. Initially we will present the algorithm, then we will proceed in proving

its validity and its approximation ratio.

Let us initially present an auxiliary covering problem in a graph, called AUX. Given an
undirected graph G with n vertices, and two integers b € [0,n] and r € [0, n] so that b+r < n.
Each vertex in the graph can receive one of three colors: blue, red or white. Additionally, at
most b vertices can be blue, at most r vertices can be red, and a vertex can be red only if it
has a blue neighbor. If the vertex is not blue and does not have a blue neighbor, it is white.
We call a vertex covered if it is colored blue or red. The objective is to color every vertex
of G in blue, red, or white, so as the number of covered vertices is maximum. The formal
definition of AUX follows.

Definition 5.2.1. AUX: Given a graph G = (V, E) and two integers b,r so that b+ r < n,
separate the vertices in three vertex sets, B, R,W, so that:

1. |B| <b

2. |R| <r

3. YweR,Jwe B s.t. we N(v)
and the value |B| + |R| is mazimum.

We can see that in order to find an optimal solution for AUX, we have to place the blue
vertices in such a way that the red vertices are as many as possible. Firstly, we will prove
the following helpful proposition.

Proposition 3. Every optimal solution for AUX with less than b blue vertices can be trans-

formed into an optimal solution for AUX with exactly b blue vertices.

o4

Proof. Consider the sets B*, R*, W* to be the sets of an optimal solution of an instance of
AUX on a graph G = (V, E), with B* < b. Assume that there is at least one white vertex v.
By coloring v blue, we will still have |B*Uwv| < b, but we will have |B*Uv|+|R*| > |B*|+|R*,
which means the new solution will be feasible but better than the optimal one. Since this
cannot be true, it follows that W* = (), therefore there are no white vertices and |B*|+|R*| =
|V'|. Therefore, we can change the color for b — | B*| red vertices to blue, with all the vertices
still being covered. Thus, every optimal solution for AUX has or can be transformed to have
exactly b blue vertices. |

Therefore, we can assume without loss of generality that every optimal solution for AUX has
exactly b blue vertices.

We can observe that an instance for AUX can be derived from an instance of OPT-EXT(0,1)
in the following way: G = (V, E) is identical, b = k and r = z. Therefore, a solution for
oPT-EXT(0,1) can be derived from a solution to AUX, by allocating objects with valuation 1 to
blue vertices and objects with valuation 0 to red and white vertices. From Proposition 3, we
can ensure that the number of blue in the solution of AUX will be indeed equal to k, therefore
the number of vertices with a valuation of 1 in the respective instance of OPT-EXT(0,1) will
be equal to k. From Proposition 2, we can also consider without loss of generality that
b+ r = n, since for the respective instance of OPT-EXT(0,1) we consider that the number of
objects is equal to the number of vertices. Moreover, note that red vertices are useful zeros
and white vertices are useless zeros, as stated in definitions 5.1.2 and 5.1.1, respectively, since
red vertices are neighboring a vertex with a valuation of 1, while white vertices are not. This
means that the total graph externality for an instance of OPT-EXT(0,1) is equal to the number
of the red vertices of the solution for an instance of AUX.

Using Algorithm 4, we produce an approximate solution sol(b) to AUX on a graph G = (V, E)
with b=k and r = z.

Algorithm 4
Input: b, r, G of order n
Output: A feasible solution to AUX

1: Every vertex of GG is white.

2: s0l(0) « 0

3: fort=1tobdo

4 Color in blue a vertex v that is not already blue, and if possible, color in red some
white neighbors of v. Do this so as to maximize the number of newly covered vertices,
under the constraint that the total number of red vertices is at most r.

5 sol(t) < sol(t — 1) U {the newly covered vertices}

: end for

@

7. return sol(b)

Theorem 5.2.2. There exists a (e —1)/(1 + e) approzimation algorithm for opT-EXT(0,1).

Proof. Again, consider S* to be the set of covered vertices in an optimal coloring for AUX.
We will initially describe a way to partition S* to b sets.

%)

Take the blue vertex v; that has the largest number of red neighbors (ties can be broken
arbitrarily). Consider the set of the red vertices in N (v) along with v; to be S7. Now, take
the next blue vertex vy having the largest number of red neighbors which are not included
in a previous set. Include these first-appearing next neighbors and the vertex v in another
set denoted as S5. Repeat this process until there are b sets, namely ST, 53, ..., 5. Note that
some sets can have a size of 1, with only the respective blue vertex being in the set. Moreover,
note that the sets S7,S3,...,.S; are disjoint, meaning that every element can only be in at
most one of the sets. Eventually, each one of these b disjoint sets has exactly one blue vertex.
Consider t* < b to be the largest index so that each set in the collection ST, S5, ..., Sf has at
least one red vertex. Note that either t* = b (in which case, every set will contain at least

one red vertex), or none of the sets Si |, Sf o, ..., S; will contain red vertices.

We consider allocations 7 and 7* to be the allocations derived from sol(b) (the approximate
solution for AUX which is the result of Algorithm 4) and S* := | B*|+|R*| (the optimal solution
for AUX), respectively. For allocation 7* we know that the graph externality derived by it is

the size of the sets 57,55, ..., Sj« excluding the blue vertices, since every other vertices (the

red ones) in these sets derive externality, while there are no vertices in the sets S}, S5, ..., S5

that derive externality. Formally. we have

t*
Extr-(G) = || Sf| - t*. (5.7)
=1

For the allocation 71, we know that its externality is at least as high as the coverage yielded
from Algorithm 4 implemented on the vertices of the sets S, S5, ..., S}, if we subtract the

blue vertices. Formally, we have

Extr, (G) > |sol(t*)] —t*. (5.8)

Using a similar method to the one described in [30, Lemma 3.14], we can prove the following

inequality regarding |sol(t*)]:

t*
[sol(t%)] = (1 1/e)] | S7]. (5.9)
i=1
Combining inequalities 5.8 and 5.9, we have
t*
Extr, (G) > (1—1/e)| | Si| - t*. (5.10)
i=1

For any « € (0,1] we can transform inequality 5.10 to

56

Exty, (G) > (1—1/6)\[)5;\ —at' — (1 - a)t. (5.11)

i=1
Let us consider the number § := (3 —e)/(e — 1). We can now consider two cases:

Case 1 — t* < ||J'_, S¥|/(3 4 6). In this case, inequality 5.11 becomes

Extr, (G) > (1—6—3+5>\U5*\— (1-a)t (5.12)

Since we can pick any value of a € (0, 1], using o = (3 +)/e(2 + 0) we get from inequality
5.12 that

Exty, (G) > (1 32155) (| st) +1 (Exty (@) (5.13)

Therefore, in this case, we have a (e — 1)/(1 + e)-approximate solution for opT-EXT(0,1).

Case 2 — t* > | Uf;l S¥|/(3 4+). In this case, the number of red vertices in 7* (which is
] Ule S¥| —t* can be shown to be

S -t < 2+ o). (5.14)

Since the number of red vertices is equal to the total graph externality (from equation 5.7)

we have

Extps (G) < (2 + 8)t*. (5.15)

Consider now a second allocation 7y obtained in the following steps. Firstly, construct a
maximum matching M of G (the definition of a maximum matching is included in section
2.1). Out of the edges of M, choose min(k, z,|M]|) of them arbitrarily. For each edge, allocate
an object of value 1 and an object of value 0 to its adjacent vertices arbitrarily. Then, allocate
the remaining objects arbitrarily to vertices, obtaining the allocation .

In allocation 7y, we can observe that at least one red vertex is attached to each of the t* blue
vertices. Therefore, allocation 7y yields a solution of at least ¢*. But from inequality 5.15 we
have that

Extr+ (G)

tt >
246

(5.16)

57

This means that the solution to OPT-EXT(0,1) yielded from my is a 1/(2 + §)-approximate
solution, with 1/(2+4J) = (e —1)/(1 +€). Therefore we obtain a (e —1)/(1 + e)-approximate
solution in this case as well, which concludes the proof. |

Therefore, by using the allocation out of {7, 72} depending on which case we are at, we
obtain a solution that has a value at least (e — 1)/(1 + e) ~ 0.46 the value of the optimal
solution.

Note that this limit is not ¢ight, meaning that it is not yet proven that the approximation ratio
is indeed (e—1)/(1+e) and not higher. We will now provide an example where the algorithm
performs 2/3 of the optimal solution. This is an upper bound for the approximation ratio of
the algorithm, because it proves that the approximation ratio cannot be higher than 2/3.

Consider the following graph with 2 objects of value 1 and 3 objects with value 0.

V1 V2 U3 V4 Vs
Oo—0—0—0—0

The approximation algorithm can place the objects of value 1 on v3 and vs; the resulting
externality is 2. The optimal solution, of externality 3, places the objects of value 1 on
vertices vy and vg. Thus, the approximation ratio of the algorithm is at most 2/3.

Still, there is a gap between (e — 1)/(1 + e) ~ 0.46 and 2/3, which triggers the question of
determining the exact approximability of oPT-EXT(0,1).

For certain coverage problems, there exist greedy algorithms whose objective function is mono-
tone submodular. An example for that is [41] for a (1 — (1 — 1/k)*-approximation algorithm,
where (1 — (1 —1/k)¥ > 1 —1/e. A monotone function can be thought as an increasing or
a decreasing function over a finite ordered set. A submodular function can be thought as a
function whose the difference of the incremental value brought by an extra element added to
the set decreases as the size of the set increases. The formal definitions for monotone and

submodular functions follow.

Definition 5.2.3. A function ® is monotone over a finite set), if for every X,Y with
XCY CQ, d(X)<P(Y) stands.

Definition 5.2.4. A function ® is submodular over a finite set 0, if for every X, Y with
XCYCQ, foranyueQ\Y, (X U{u}) —®(X) > (Y U{u})—®(Y) stands.

Despite using results for coverage problems in the proof process for Theorem 5.2.2, we are
going to show why oPT-EXT(0,1) does not appear to reduce to the maximization of a monotone

submodular function.

Given an instance (G, O,v) of oPT-EXT(0,1), let us define a function f : 2" — N as follows.
For any S C V so that |S| < k, f(S) is the minimum between z and the number of vertices
in V' '\ S which have a neighbor in S. In other words, if we allocate k objects valued 1 to
vertices of G and we allocate objects valued 0 to at most z of the neighbors of the vertices of

o8

S, we get that f(.S) is the externality of the allocation. In the following instance, we observe

that f is neither monotone nor submodular.

v Vg U3 b4 3 objects with value 1

vs 2 objects with value 0

Let X = {v2}, Y = {v2,v3} and u = v;. Therefore, we get f({vi,v2}) — f({ve}) =1-2<
2—2 = f({v1,v2,v3}) — f({v2,v3}). The violation of monotonicity exists since f({vse}) =2 >
f(2) = 0, but simultaneously f({vi,v2}) =1 < f({v2}) = 2. The violation of submodularity

exists since f({vi,v2}) — f({v2}) < fF({v1,v2,v3}) — f({v2,v3}).

While opT-EXT(0,1) resembles many covering problems, it is important to highlight a key
difference between OPT-EXT(0,1) and other covering problems. In MAX COVERAGE there is a
distinction between elements to be covered and sets that cover them. In DOMINATING SET,
every vertex dominates itself and its neighbors, yielding always “positive” value towards the
percentage of the graph vertices that are dominated. In contrast, a vertex in OpT-EXT(0,1
can either exert externality or derive, but not both.

5.3 Relation with Partial Domination

In this section, we are presenting exact algorithms (and not approximation ones) for OpPT-
EXT(0,1), built upon exact algorithms for PARTIAL DOMINATING SET (PDS for short).

In order to define the algorithms and describe the building process, we need to define PDS as
a problem. Like DOMINATING SET, the concept of dominating vertices stands, but here we
do not need to cover the whole set of vertices V', but we need to cover t vertices using as few
vertices as possible. The definition for PDS follows.

Definition 5.3.1. PARTIAL DOMINATING SET (PDS): Given a graph G = (V,E) and an
integer t > 0, calculate a set of vertices S CV so that |J,cg Nv]| >t and |S| is minimum.

Let D; denote an optimal set of vertices that dominates ¢ vertices of G, that is, let D; be an
optimal solution for PDS. Demaine et al. [13] have shown that D; can be computed in time
315w O where tw and n are the treewidth and the number of vertices in G, respectively.
Later, Fomin et al. [15] proposed a subexponential algorithm for PDS in apex-minor-free
graphs (this class comprises planar graphs) with a running time of 20(/1De]) 0 (1),

Now, we will propose an exact algorithm for opT-EXT(0,1), based on some observations from
PDS.

Theorem 5.3.2. Fvery algorithm that solves PDS in time T'(n) yields a nT(n) time exact
algorithm for opT-EXT(0,1).

99

Proof. Let D, denote an optimal solution for PDs, that is, a minimum size set of vertices
dominating at least ¢ vertices of G. Let us suppose without loss of generality that D; can be
computed in 7'(n) time. Perform the the computation of D; exactly n times, for ¢ from 1 to
n inclusive. For each Dy, consider F}; to be the set of vertices in V' \ D; that are dominated
by at least one vertex of D;. Consider t* to be the index at which F; is maximized under the
constraint |Dy| < k.

Consider an allocation 7 for oPT-EXT(0,1) for the graph G and a set of objects O with their
valuations A as follows. Allocate objects valued 1 to every vertex of Dy«. It is clear that
< k, there will be at least | Dy
Now, allocate objects valued 0 to every vertex of Fi«, until all objects valued 0 are allocated

since | Dy

objects valued 1 to be allocated to these vertices.

or Fi+ has no vertices remaining. If needed, complete the allocation arbitrarily, allocating the
remaining objects to the remaining vertices.

We need to prove the correctness of the algorithm for the following two cases.

Case 1 — All objects valued 0 are allocated to vertices in Fi-. If all objects valued
0 are allocated to vertices in Fy«, it follows that 7 is an optimal allocation, since every object
in O derives the maximum possible externality, since it has a neighbor of valuation 1, so in
this case the algorithm is correct.

Case 2 — At least one object valued 0 does not derive externality. If at least one
object valued 0 does not get externality, then suppose that 7 is not an optimal allocation.
This means that there is another allocation 7 with a higher graph externality. Let D; be
the set of vertices with an object valued 1 in 7 and let F} be the set of vertices with an
object valued 0 and deriving externality 1 in 7. Since |Dj| < k, this means that there exists
a solution for pDs for which |D;| < k and |F;| > |Fj«|. This would mean, however, that
the solution for PDS yielding the set Fi~ is not an optimal solution, which is a contradiction.

Therefore, in this case the algorithm is correct as well, which concludes the proof. |

In section 2.1, we explained the analytical definitions of trecwidth and apex-minor-free graphs.
According to theorem 5.3.1 and based on the work of Demaine et al. and Fomin et al., we
get two exact algorithms for OPT-EXT, described in corollaries 5.3.2.1 and 5.3.2.2.

Corollary 5.3.2.1. There exists an exact algorithm for OPT-EXT for graphs with a treewidth

of at most 10 with a running time of n - 31201,

Corollary 5.3.2.2. There exists an exact algorithm for OPT-EXT for apex-minor-free graphs
with a running time of n - 201Dt OQ).

60

Chapter 6

The OPT-EXT Problem with General Valuations

In this section, we analyze OPT-EXT without the objects being restricted to values 0 and 1.
Proposition 2 is not valid here, so we do not assume that |O| = |V|.

Given an allocation 7 and a graph G = (V, E), we associate a digraph D with vertex set V'
and arc set A, denoted as D = (V, A). There is an arc (v,w) € A if v derives externality
from w. Since a vertex can derive externality from at most one neighbor, the out-degree of
every vertex in D is at most 1. Considering Example 4.2 again, the digraph associated with
the graph in the example has 3 arcs: (v3,v1), (v4,v5), and (vs,v1).

We observe that if a vertex v derives externality from w, the amount by which the arc (v, w)
contributes to Ext,(G) is v(m(w)) — v(m(v)). Summing all the values for all the arcs, we see
that we can formulate the graph externality as a dot product as follows:

Exty(G) := > h(v) - v(r(v)) (6.1)

veV s.t. m(v)#L

where h(v) is defined as the in-degree of v in D minus the out-degree of v in D and v(7(v))
is the valuation of the object allocated to vertex v. In other words, h(v) is the number of

vertices deriving externality from v, minus 1 if v derives externality from one of its neighbors.

6.1 Graphs with Maximum Degree 2

When every vertex in a graph G = (V, E) has a maximum degree of 2, we observe that the
graph is a collection of connected components, with each connected component being a path
or a cycle. We will prove that in this case, we can get an exact polynomial time algorithm
for oPT-EXT. However, when the maximum degree is 3 or more, by Proposition 1 we know
that oPT-EXT is NP-hard.

Theorem 6.1.1. OPT-EXT can be solved in polynomial time for an instance (G,0O,v) when

G has a mazimum degree of at most 2.

Proof. We are going to construct an allocation to prove Theorem 6.1.1. The allocation is

61

going to be constructed in two stages.

In the first stage, we partially cover G with a collection Py, Ps, ..., P, of disjoint paths. Each
path P, has a length of at most 2 (the length of the path is the number of edges it includes,
or, equivalently, the number of vertices it includes minus 1). The collection of paths, in total,
covers exactly |O| vertices. We use algorithm 5 for the first stage of the algorithm.

In the second stage, we construct the final optimal allocation 7 using algorithm 6.

*

First stage: Consider the digraph D* associated with G and 7*, where 7* is an optimal
allocation to OPT-EXT. The digraph is constructed in the way it is described in the start of

section 6.

We are going to describe an operation called Reversal. Suppose D* contains a directed path
of length k, where k is at least 2. Let the path be ((vi,vit1), ..., (Vitr—1,vitr)). Modify
7* by reversing the allocation for the vertices of the path, excluding the last vertex, that is,
excluding vertex v;4x. This means that vertex v;+r—1 will swap objects with vertex vy, vertex
Virk—2 Will swap objects with vy and so on, until no more swaps are available in the path.
We observe that the total externality throughout the path remains the same, since before the
reversal, the total externality in the path was

(7™ (Vitk)) = V(7" (Vitr—1))) + (7" (Vigk-1)) = V(T (Vigp—2))) + ... + (v(7* (v2)) = V(7" (v1)))
(6.2)

while after the reversal, the total externality is

V(" (vigr)) — v(7* (v1)). (6.3)

It is clear that the value in (6.2) is the same as the value in (6.3). We observe, however, that
the number of arcs in the path has been reduced from & to 1.

Repeat Reversal on the allocation 7* until it is no longer possible. It is clear that this is a
finite process, since every time a Reversal is performed, the total number of arcs in the digraph
is strictly smaller than the total number of arcs before the Reversal. After the repetition of
Reversal until it is no longer possible to perform it again, we observe that Ext.«(G) is the
same, therefore 7* remains an optimal allocation. Since every vertex in G has a degree of at
most 2, we observe that the digraph D* associated with 7* has connected components with
up to 3 vertices each. There are now only 4 possible scenarios for every vertex in the digraph
D*:

e In-degree 2 and out-degree 0
e In-degree 1 and out-degree 0

e In-degree 0 and out-degree 0

62

e In-degree 0 and out-degree 1

There scenario of in-degree 1 and out-degree 1 for a vertex is no longer possible, since that
would imply the existence of a path of length at least 2 in the digraph D*, which would mean
that Reversal could be repeated at least once more. Therefore, using the notation of h(v)
from equation 6.1, we get that for every v € V, we have h(v) € {2,1,0,—1}.

We can see if there are two vertices v and w so that v(w(v)) > v(7(w)) and h(v) < h(w), we
can swap their objects and strictly increase Ext;-(G). This can be explained, as the object
with higher valuation will either give more externality to its new neighboring vertices after
the swap, or/and the object with the smaller valuation will derive more externality from its

* is an optimal

new neighbor with the highest valuation after the swap. Therefore, since 7
allocation, it follows that if h(v) < h(w) (for any v,w € V), v(n(v)) < v(m(w)) must hold.
In other words, under the allocation 7*, the objects ordered by non-increasing valuation are
placed on the vertices of G ordered by non-increasing h-value. Using again the dot product
formula of equation 6.1, we can see that under the optimal allocation 7*, the total externality
Extr(G) is a dot product 7-Z, where ¥/ (respectively, &) consists of {v(0) : 0 € O} (respectively,

{h(v) : v € V'}) sorted in non-increasing order.

Now, consider the output 7 of Algorithm 6 and let D* be its associated digraph. As far as the
optimal solution is concerned, it consists of connected components of at most 3 vertices and
the objects ordered by non-increasing valuation are placed on the vertices of G ordered by
non-increasing h-value. Therefore, Ext,(G) is also a dot product # - ¢, where ¥/ (respectively,
) consist of {v(0) : 0 € O} (respectively, {h(v) : v € V'}) sorted in non-increasing order.

The possible difference between # and ¢ comes from the h-values. By definition, the sum of
the coordinates of both & and ¥ is 0. Since ¥ is, by construction, lexicographically larger than
Z, it follows that Ext,(G) = V- § > /- & = Ext;«(G). In other words, algorithms 5 and 6 solve
OPT-EXT optimally. []

The analytical step-by-step description of algorithms 5 and 6 used in the proof follows.

63

Algorithm 5 Algorithm for the first stage of the proof of Theorem 6.1.1

Input: |O| and G which has maximum degree 2

Output: A set of disjoint sub-paths of G, each of length at most 2, which spans exactly |O|

vertices of G

10:
11:

Remove an arbitrary edge of each cycle of G so that G becomes a collection of paths
spn < 0 {spn is the number of vertices spanned so far}
z < 0 {z is the number of sub-paths built so far}
while spn < |O| do
z+—z+1
Let s be the minimum between 3, 1+the length of the longest path of G, and |O| — spn
Choose a sub-path of G on s vertices and call it P, (P, must contain a vertex whose
degree in G is 1)
G+ G\P,
spn < spn — s
end while
return P,..., P,

Algorithm 6 Algorithm for the second stage of the proof of theorem 6.1.1

Input: G, O and a collection Py, ..., P, of paths of length at most 2

Output: An allocation 7

1:

In the collection, each path P, of length 2 consists of 3 contiguous vertices whose center
is denoted by ¢y. Each path P, of length 1 consists of 2 contiguous vertices; choose one
of them arbitrarily to be the center ¢,. Each path of length 0 consists of a single vertex
which is the center
7 is initially empty
for /=1 to z do

Let o* be the object with largest valuation in O

m(cp) < o*

O+ O\ {o*}
end for
Complete m by placing arbitrarily the remaining objects on the free vertices (i.e. the
non-centers) of P, ..., Py
return m

64

6.2 Caterpillar Trees

There are quite a lot NP-hard problems that have polynomial time solutions on certain
graphs such as trees. We remind here that a tree is a graph that does not contain cycles.
For instance, DOMINATING SET has a polynomial time solution for trees. It is meaningful
to consider tree graphs for instances of OPT-EXT, since they represent a hierarchy, while
generally, situations that are represented as tree graphs in real life are quite common.

This section contains certain results for a specific case of tree, the caterpillar tree. Let
us describe the procedure of constructing a caterpillar tree of n vertices. Initially, consider
a path of k < n vertices. We call this path the backbone, with the name backbone being
selected as the path can be thought as the backbone of a caterpillar. The remainining n — k
vertices are called pendant vertices, and each one of them has degree 1, always neighboring
a vertex from the k backbone vertices. Thus, each one of the pendant vertices can be thought
as the legs of a caterpillar, explaining the name caterpillar tree.

We define a star to be a graph with a vertex in the center and every other vertex having a
degree of 1 and neighboring the center vertex. The definition of the star follows.

Definition 6.2.1. A graph G = (V, E) is a star when there is a vertexr v € V of degree
|V| — 1, which is called the center of the star, for which Yw € {V \ {v}}: deg(w) =1 and
{v,w} € E.

The degree of a star is the degree of the center of the star, which equals the number of vertices
in the star minus 1. To derive a result regarding OPT-EXT in caterpillar trees, let us first

prove the following useful proposition.

Proposition 4. OPT-EXT can be solved in polynomial time when G = (V, E) is a collection

of x stars.

Proof. Let us initially order the objects of O in non-increasing order of their respective
valuations and let us order the x stars in non-increasing order of their degree, getting an
ordering 51,59, ...,S;. Consider the list of the non-allocated objects to be the list of non-
allocated objects, denoted by L, getting an ordering o1, 09, ..., 0, for the m objects.

Let us describe a way to create an allocation 7. Consider the first star in the ordering of the
stars, let. Pick the first object (i.e. the one with the highest valuation) in L, assign it to the
center of S, then remove it from L. Start picking elements from the end of L (i.e. the ones
with the lowest valuations) and assign them to the neighbors of the center of Sp, removing
them upon allocation, repeating this up until either all the objects are allocated, or every
vertex in S has an object allocated to it. Note that, if the graph was only 51, the solution
would have been optimal, as the graph externality derived would be the maximum possible,
since the object with the largest valuation is allocated to the center of S; and the objects
with the lowest valuations are allocated to its neighbors. If more objects were remaining, we
repeat this process until all objects are allocated to vertices (|O] < |V| continues to hold).

65

It follows that y < z stars from S, namely Si,S53,...,.Sy, will be the ones with a vertex
allocated in their centers after the formation of 7 is completed. This means that o; is
allocated to the center of Sy, o9 is allocated to the center of Sy and so on. Note that all
x stars may not have been used, since all the objects may have been allocated to vertices
before reaching star x in the aforementioned repetition. In other words, y < z, but it could
also hold that y < x. Since we sorted the objects in non-increasing order, we know that
v(o1) > v(o2) > ... > v(oy). We also know that since we sorted the stars in non-increasing
order of degree, we have deg(m1(01)) > deg(m1(02) > ... > deg(m(0,)) (this regards the
degrees of the centers of the stars). We observe that the objects 0,41, 0y+2, ..., 0p, are going
to be the ones deriving externality, which is optimal, since in the way described, we have as
many objects as possible deriving externality, and in this case we have the objects with the
lowest valuations deriving externality. Note that there is not any other way for more than
m — y objects to derive externality. Since the m — y objects that derive externality are all of
lower or equal valuation to the y objects that yield externality to them, we note that any of
the y highest valuation objects could yield externality to any of the m — y lowest valuation
objects. Formally, we observe that the total graph externality can be formulated as

y—1 n
Extr(G) = (deg(n™"(01)) - v(01)) + f(m (0y)) - v(0y) = Y v(0)), (6.4)
i=1 j=y+1

where f(m1(0,) is equal to the number of objects allocated to neighbors of the y-th star (note
that since it is the last star to be filled, the objects might run out before all the neighbors of
its center have objects allocated to them). Observe that the value in (6.4) remains the same,
even if we randomize the placement of the last m — y objects (among the vertices that are

neighbors of the centers, even among different stars).

We observe that the only value that changes in (6.4) if the placement of the highest valued
y objects is randomized (among the centers) is deg(w~(0;)) for objects from 1 to y — 1
and f(m (o) for the y-th object. Therefore, to maximize the total graph externality, the
optimal solution is to allocate 0; to the vertex with the highest degree, then to allocate o2
to the vertex with the next highest degree and so on. This concludes the proof that 7 is an

optimal allocation. |

We are now going to propose a 0.5-approximation algorithm for the case of the caterpillar
tree, which relies on solving OPT-EXT on a subgraph of G which is a path. We are going to
use the following Lemma to assist the proof of the ratio of the 0.5-approximation algorithm,
with the proof being derived in a similar manner to the one of 6.1.1 of the oPT-EXT(0,1) case.

Lemma 6.2.2. OPT-EXT can be solved in polynomial time on a path having strictly less than

|O| wvertices.

Proposition 5. A 0.5-approximation algorithm exists for OPT-EXT when G is a caterpillar.

Proof. Let us consider an optimal allocation 7* for the caterpillar tree. Let us denote the
externality for the backbone vertices under 7* as &; and the externality for the pendant

66

vertices under 7* as 5;.

Consider vertices vy, vg,...vp to be the backbone vertices and vertices vpi1, Vpt2, ..., Un to be
the pendant vertices. Using Lemma 6.2.2, we know that an optimal allocation m; for the
backbone vertices can be computed in polynomial time. Respectively, using Proposition 4,
an optimal allocation w9 for the pendant vertices can be computed in polynomial time as

well. Therefore, we have that

Extr, ({v1,v2, ..., 00}) > & (6.5)
and
EXtﬂQ({Ub-f—la Vb425 -5 Un}) 2 g; (66)
But we also know that
Ext.(G) = & + 5; (6.7)
which means that either
Extr, (G) > Extr, ({v1, v2, ..., 0p}) > 0.5Ext.+(G) (6.8)
or
Extr, (G) > Extr, ({bt1, Vb2, ..y Un}) = 0.5Ext.«(G). (6.9)

Therefore, selecting the best out of the allocations m; and mo, we get a 0.5-approximate
solution for OPT-EXT in caterpillar trees.

67

Chapter 7

Experimental Results

In this section, we present a greedy algorithm for OPT-EXT and we evaluate experimentally

its performance.

Let us firstly define an upper bound on the optimal solution of OPT-EXT. This means that,
since this number is an upper bound, the optimal solution does not yield a higher graph

externality than this upper bound.

Let us call a trivial upper bound T'(G) on the optimal externality. Given an instance G(V, E)
and O, consider a star St of degree |O| — 1, with the object of maximum valuation in its
center and all other objects on its leaves. Let the objects to be sorted in non-increasing order
of valuation, i.e., v(01) > v(02) > ... > v(oy). Because of the way the leaf is formed, we
have that the externality that a leaf of St that is assigned an object o; derives, is equal to
v(o1) — v(0;). Letting T'(G) be the total externality of St, therefore we have

T(G) = v(o1) - (|0] = 1) = > _ v(0) (7.1)
=2
or, simply
T(G) =v(o1) - [O] =) v(0). (7.2)
i=1

Note that T'(G) is a trivial upper bound, since every object yields the maximum possible
externality. It is clear that there are no other instances with the same object set O that
have a higher graph externality. Therefore, denoting the optimal allocation of an instance
of OPT-EXT as 7*, and denoting the graph externality we get from the optimal allocation as
Ext.« (G), we have that

Extr+ (G) < T(Q). (7.3)

We are now going to define a nontrivial upper bound U(G) for OPT-EXT, which is lower than
T(G), but still an upper bound to the optimal solution. Consider the degrees of V' (where V

69

is the vertex set of G = (V, E)) sorted in non-increasing order, let them be di,ds, ..., d,. Let
the corresponding vertices to the degrees be vy, vo, ..., Up.

We recall that T(G) was derived by considering that all the vertices were able to be the
center and the leaves of one star of size n — 1. We will prove that we can get an upper bound
from a collection of smaller stars, each one having as many leaves as the degrees dy, do, ..., dy.
We will prove that this upper bound yields not higher externality than 7'(G) and not lower
externality than Ext.«(G). Note that we are not going to use n stars, but we are going to use
k stars, which should be enough to fit the k£ highest valued objects in their centers, and the
rest of the objects in their leaves. Formally, consider k£ to be the lowest integer satisfying the
inequality

k
k+Y di>10). (7.4)

i=1

Then, we can consider a collection of stars Sy with centers vy, vo, ..., vy for the stars Sy, 59, ..., Sk,
respectively. It follows that for every star S;, we have

deg(S;) = deg(v;) = d;. (7.5)

Note that by this definition, some vertices of G may appear multiple times in Sy;. In other
words, it is possible (and quite frequent) for the same vertex to appear in different stars of
Su.

Let us create an allocation 7 of O to the vertices of Sy as follows. Let us firstly assign the
objects with the largest k£ valuations to the centers of Sy, in a manner that oq is allocated
to vy, 09 is allocated to wvo, ..., o is allocated to vg. Now, allocate the remaining objects
Ok+1, Ok+2, ---, Om, i Non-decreasing order of valuation to the leaves of the stars, starting with
star S7 and allocating the objects until its leaves all have an object before moving to the next
star. Note that it is possible for some neighbors of v not to get any object. In fact, the only
way for every neighbor of vy to all get an object is for the equation dy +da +...+di = |O| — k
to stand. Additionally, note that since some vertices of G may appear multiple times in Sy,
in this scenario we assume that if the same vertex v € V appears twice in stars S;, S;, that the
vertex from S; is a completely different vertex from the vertex in Sj, therefore two different
objects can be allocated to these vertices.

Let U(G) be the total externality derived from the leaves of under the aforementioned allo-
cation. It is clear that U(G) may not be feasible under the instance of graph G, since the
stars of Sy were created in a manner that could have the same vertex to appear in different
stars. However, we can tell that it provides an upper bound to Ext;«(G), which is usually
better (i.e. closer to the optimal solution) than T'(G). We are going to prove this by proving
the following proposition.

Proposition 6. For any instance (G,O) of OPT-EXT and any allocation 7, we have Ext,(G) <
UG) <T(G).

70

Proof. We have already shown earlier through equation 7.3 that T'(G) is an upper bound of
the optimal solution, since all objects, apart from the one with the highest valuation, derive
the maximum possible externality. The object with the highest valuation cannot derive any
externality by definition, therefore T'(G) is an upper bound of the optimal solution and thus
it is an upper bound for any solution of OPT-EXT. So we have

Ext:(G) < T(G). (7.6)

Now, consider the vertices to which the objects in allocation 7 are allocated. We will convert
the instance of allocation 7 to Sy in the way described as follows. Let us consider k stars
again, centered on the k vertices to which the objects with the k highest valuations are
allocated under 7, namely objects o1, 09, ..., 0; in the aforementioned ordering. Let the new
collection of stars be Ry. This means that m — k objects are left over. Move these leftover
objects to the leaves of these k stars (which include the neighbors of the centers in) in an
arbitrary way.

From the definition of Sy, we know that the total graph externality in Sy was:

k m
UG)=> (di-0i)— Y o (7.7)
i=1 j=k+1

Note that while Sy may not be a feasible externality from G, it is a graph instance using
the object set O, therefore the graph externality of Sy is clearly lower than the trivial upper
bound T'(G). Since the graph externality of Sy is U(G), it follows that

U(G) <T(G) (7.8)
Note that, in this scenario, if a vertex appears in both stars, we do not count it twice, but we
only count it once (we may assume that it derives the highest externality out of its neighbors).
This would result in some leaves of some stars without deriving externality. Note that if a
vertex is both a center of a star and also in leaves of other stars, we will consider the vertex
to appear in the center of the star in which it appears and not in the leaves. Since this would
also mean that a vertex of V would appear in two or more stars in this scenario, we could
have an object o, not appearing at all in these k stars. Formally, the case for o, is one of the
following:

1. op is the center of another star, let it be star k + 1. This means that in Sy, o, was
deriving externality and now it is not, so the externality in this case is lower than o,
deriving externality from a star in Sp.

2. op is a leaf of another star, let it be star £+ 1. This means that another object, let it be
Op+1, is the center of star £ + 1. This means that in Sy, 0,41 was deriving externality
and now it is not, so the externality in this case is lower than o,11 deriving externality
from a star in Sp;.

71

3. There exists no element o, that does not belong in any of the £ stars.

In the first two cases, we can see that graph externality is strictly lower than in the third
case, since we could sequentially reallocate objects that do not belong in any of the k stars
to “empty” vertices in the stars. This procedure would either increase the graph externality,
when we reallocate a vertex that is a center of a star that is not in the k stars (since it will
now derive externality instead of not deriving), and also when we reallocate a vertex that is
a leaf of a star that is not in the k stars (since the objects in the centers of the k stars are the
objects with maximum valuation, the externality the vertex will now derive will be higher
than before). Therefore, by repeating this finite process until we cannot repeat it anymore,
we get the third case with a not lower graph externality.

Having already all the objects within our k£ stars, with the k£ objects of highest valuation
being in the centers of the stars, we observe that the graph externality of Ry is at most

k m
Ext,(G) < Z (0; - deg(m~(v(0;)))) — Z 0j, (7.9)

i=1 j=k+1
with the equality holding iff we did not perform any reallocations beforehand.

We observe that we get the term o; - deg(m~*(v(0;))) since we do not have a guarantee that
the objects are placed to the stars in an order of non-increasing degree, therefore we do not
know if o1 is placed on v; (the vertex with degree di) and so on. We reallocate the objects
01, 02, ..., o throughout the centers of the stars so that they are allocated to the same vertices
as in Sy. We can observe that during these reallocations, the total graph externality can
only increase, since we may move objects that are on centers to other centers of at least the
same degree. Therefore, we have that the graph externality after the reallocations is at least
as high as the graph externality before the reallocations. Formally, we get that

k m k m
> (oi-deg(n ' (v(0:) = D 0, <> (di-o) — > o (7.10)
i=1 j=k+1 i=1 j=k+1

But we observe that the right part of inequality 7.10 is equal to U(G) (equality 7.7). This

means that we have

Ext,(G) < U(G). (7.11)

Combining inequalities 7.11 and 7.8, we get that

Ext,(G) < U(G) < T(G), (7.12)

which concludes the proof.

72

We will move on to propose a greedy algorithm that computes a feasible solution for OPT-EXT
in various classes of graphs. Since U(G) is easy to compute, we can see that U(G) is an upper
bound to the optimal solution that can be used to measure how good the greedy algorithm
performs, in terms of something better than the optimal solution.

The steps of the greedy algorithm are described in the description of Algorithm 7. Intuitively,
Algorithm 7 considers the colorings blue-red-white in the same fashion they are presented in
the analysis for opT-EXT(0,1). Every time, the algorithm selects a non-blue vertex with the
most white neighbors and allocates the highest valuation object to the blue vertex, whilst
allocating the lowest valuation objects to the white vertices. In this manner, all the “low-
valued” white vertices (which are now red) derive externality from the “high-valued” blue

vertex.

Algorithm 7
Input: G, O
Output: An allocation 7

1: Color every vertex of G white

2: Mark all objects in O as available

3: while there exist available objects in O do

4: Let o be the object of largest valuation among available objects in O, and v be the
vertex of G that has the largest number of white vertices in its closed neighborhood

and is either red with a valuation v(7(v)) < v(0), or white

5. if v is red then

6: Mark object 7(v) as available

7. end if

8: m(v) < 0; Color v blue

9: Mark object o as unavailable (allocated)

10: while there exists a white neighbor w of v do

11: Let o' be the object of smallest valuation among available objects in O
12: m(w) < o'; Color w red and mark o’ as unavailable

13: end while
14: end while

15: return =

The source code of Algorithm 7 is listed on Appendix A.1.

We ran Algorithm 7 on 10 DIMACS datasets from the 10th DIMACS Implementation chal-
lenge [14]. We selected valuations of objects that follow the uniform distribution, ranging
from 0 to 4 - |V].

Each benchmark used is presented in Table 7.1, along with its number of vertices |V| and its

number of edges |F|. We can see that these datasets are both sparse and dense.
In Figure 7.1, we can see the percentages of U(G) achieved by running Algorithm 7 in the

73

Benchmark Characteristics

1D Name # Vertices | # Edges
bl karate 34 78
b2 dolphins 62 159
b3 lesmis 77 254
b4 adjnoun 112 425
b5 polbooks2 105 441
b6 chesapeake 39 170
b7 | celegans metabolic 453 2025
b8 football 115 613
b9 celegansneural 297 2148
b10 jazz 198 2742

Table 7.1: List of used benchmarks

benchmarks. We can observe that although U(G) is clearly an overestimation of the optimal
solution, Algorithm 7 provides solutions that differ no more than 5% from U(G). Thus, the
results of Algorithm 7 for the DIMACS benchmarks differ no more than 5% from the optimal
solution.

100

Greedy/U(G)

Figure 7.1: Percentage of U(G) achieved by Algorithm 4

From the results of figure 7.1, we observe that there might be a correlation between the
density of the graph and the achieved ratio of the externality obtained to U(G). This can be
explained from the fact that the denser a graph is, we will need a lower number of stars to
cover Sy;.

For instance, in the complete graph, we know that the optimal solution is achieved by having
only 1 blue vertex, which could also be any vertex. In this case, we will also have that the
optimal solution will be not only equal to U(G), but also to T'(G). We therefore see that
the lower the number of stars required to cover the whole set of vertices in Sy, the lower the
“distortion” of the graph is in the result, and the higher is the likelihood that Algorithm 7.1
will provide a result with very few blue vertices (i.e. closer to a simple star partition).

Certain cases, such as the good result in the karate benchmark (b1), can also be explained.
The Karate dataset is a fundamental example in community detection papers [22, 37, 46],

74

since it describes the case in which we have 2 very popular vertices, let them be v1, v that
have almost every other vertex connected to them, but with the property that these vertices
act as “leaders of different groups”. This means that it is very likely that if a vertex v neighbors
v1, then probably v will not be a neighbor of vy as well. Simultaneously, it is likely that if two
other vertices vs, vy are connected with an edge, then both of them are probably connected
to the same vertex from the set {vy,v2}. We can see that, despite the karate benchmark not
being a dense graph, Algorithm 7 works well for this case, since it is the optimal scenario
to allocate the highest valuation objects to vertices v; and v, having all the other vertices
derive externality from the group leaders.

Focused even more on graph density, we computed several random graphs of different densi-
ties, so as to experimentally determine the performance of Algorithm 7. Let us define h(G)
as a density number, being the ratio of the edges of a graph to the edges of the full graph of
the same number of vertices. Formally, h(G) is defined as

E|

<|V\-(!;/I—1)>

In Table 7.2, we observe the clear correlation between h(G) and the ratio of the result of
the Algorithm 7 to U(G). Note that the graph created is not always the same — that is,
the instance of 170 edges is not the instance of 150 edges with 20 more edges created, but a

hG) =

(7.13)

completely different random graph.

The values of Table 7.2 are some of the values generated from the code, which generates
graphs of 150 vertices, for edges from 150 up to 11000 inclusive, with intervals of 20 edges.
The complete results of the ratio are depicted as a graph in Figure 7.2, including the results
of Table 7.2 but not only limited to them.

Result for variable edges and 150 vertices

P

1.0 4

o 4 g
~ o %)
L L L

Ratio of greedy solution to U(G)
o
o
!

0.5 4

T T T T T
0 2000 4000 6000 8000 10000
Number of edges

Figure 7.2: Density of random graphs and Greedy/U(G) for 150 vertices

()

76

Random graph benchmarks of |V| = 150

Edges | h(G) | Ratio of Algorithm 7 solution to U(G)
150 0.0134 0.7303
170 0.0152 0.7788
190 0.0170 0.8127
210 0.0188 0.8805
230 0.0206 0.8270
250 0.0223 0.8967
270 0.0242 0.8963
290 0.0260 0.9358
390 0.0349 0.9446
690 0.0617 0.9795
1050 0.0940 0.9877
4290 0.3839 0.995
8050 0.7204 0.9999

Table 7.2: Results depending on density of graph

Chapter 8

Conclusions - Future Directions

Positive externality can be exerted from a neighbor to another, as a benefit from the highest
valued neighbor to the lowest valued one. Many real-life examples, such as placing less
popular posts in a news web page, can be modeled through an externality model in graphs.
In our model, an object allocated to a vertex derives positive externality from at most one
neighbor that must have a valuation higher than that of the object. Summing the externality
of all vertices, we get the graph externality. The problem of maximizing the graph externality
for specific graph, objects and valuations is NP-hard and is called OPT-EXT, which can be
shown through proving a relation with the DOMINATING SET problem.

When the available valuations are only 0 or 1, the problem remains NP-hard and is called
opT-EXT(0,1). For this special case, there exists a constant approximation algorithm with
a ratio of at least (e —1)/(1 + e) ~ 0.46 and at most 2/3. Since the externality function is
shown not to be monotone submodular, greedy improvements of the (e — 1)/(1 + e) ~ 0.46
ratio are hindered. Through a connection with the problem of PARTIAL DOMINATING SET,
we get exact algorithms for OPT-EXT(0,1) for graphs with treewidth of at most 10 and apex-

minor-free graphs.

OPT-EXT is in P for graphs of degree at most 2, that is, when the graph is a collection of
paths and cycles. A 0.5-approximation algorithm for caterpillar trees, a special case of trees,

is also presented for OPT-EXT.

We present experimental results for the performance of a greedy algorithm for OPT-EXT.
Running the algorithm on certain DIMACS benchmarks, we get that the greedy result is
better than 95% of a nontrivial upper bound of the optimal solution. The algorithm has a
near-perfect performance on denser graphs, since in this case, the upper bound is closer to
the optimal solution.

As future work, attempts can be made to tighten the approximation ratio for the constant
approximation algorithm for OPT-EXT(0,1), probably using a different approach. A lower
bound for the greedy algorithm used for the experimental evaluation could also be calculated.
Additionally, more variants of the problem can be examined, such as deriving externality from
more neighbors, or deriving externality from non-neighbors, using attenuation factors. Lastly,
variations of the model could be tested in auctions, where buyers make offers for objects, or
where the buyers are the objects and make offer for a desirable placement in the graph.

7

Appendix A

Appendix — Source code

A.1 CH+ code for externality of DIMACS benchmarks

The C+-+ code for the calculation of the performance of DIMACS benchmarks follows. The
benchmark “chesapeake.graph” is the one included in the code by default, but the same code
applies for the other benchmarks.

#include <bits/stdc++.h>
#include <sys/time.h>
using namespace std ;

#define int long long

#define 11 long long

#define rep(i,n) for (int i = 0; i < (n); i++)
#define rrep(i,n) for (int i = (n)—1; i >= 0; i—)
#define rap(i,a,n) for (int i = a; i < (n); i++)
#define rrap(i,n,a) for (int i = (n)—1; i >= a; i—)
#define LL MAX 9223372036854775807

typedef vector<int> vi;

typedef pair<int int> ii;

typedef vector<ii> vii;

typedef list <int> 1i;

typedef unordered map<int ,int> mii;

vector<vi> adj, adj app;
vi colorl, color2, visible, degrees, degrees unsorted;

int32 t main() {
ios base::sync_ with stdio(false);
cin. tie (NULL);

ifstream fin;

ofstream fout ;

fin .open(”chesapeake.graph”);
fout .open(”sbml.out”);

int n,m,x;

fin >> n >> m >> x;
string pp;

79

80

getline (fin ,pp);

adj.assign (n,vi());

adj app.assign(n,vi());

colorl .assign (n,0); //0: white, 1: blue, 2: red, initially all vertices white
color2.assign(n,0); //color2 is for the wvariant with hidden vertices

visible .assign(n,0); //0: hidden, 1: wvisible

//create the initial array (adj)
rep (i) {
getline (fin ,pp);
stringstream ss(pp);
int nn;
while (ss >> nn) {
adj[i].push_back(nn—1);

//generate randomly n wvaluations for objects, between 0 and 4*n, inclusive
//sorting the resulting array decreasingly
int gen;
srand (time (NULL)); //random number depending on second of day
vi vals;
rep(i,n) {
gen = rand()%(4*n + 1);
vals.push back(gen);

}

sort (vals.begin (), vals.end(),greater<int >());

//calculate the degrees for each wvertex and sort them in
//non—increasing order, so that we calculate the upper bounds
rep (i,n) {

degrees unsorted.push back(adj[i]. size ());
}
degrees = degrees unsorted;
sort (degrees.begin () ,degrees.end (), greater<int >());

int il = 0, i2 = n—1, su = 0;
while (il < i2) {
int cur = vals[il|;
int deg = degrees|[il |;
rep (j,deg) {
su += (cur — vals[i2]);
i2 —;
if (il >= i2) break;
}
if (il >= i2) break;
P14+

int res0 = su; //res0 is the upper bound for the algorithm
//solve the problem mnormally

vi availl; //available valuation

availl . assign(n,1);

vi vall; //pointer of wvaluation allocated to wvertex

vall . assign (n, —1);

rep(i,n) {
if (lavaill[i]) continue;
//find the wvertex that is red with a smaller valuation than
//next largest one or white with the most white neighbors

int mx = —1; //the number of white neighbors
int mxv = —1; //the vertez
rep(j,n) {

int cnt = 0;

if (colorl[j] = 1 || (colorl[j] = 2 &

vals|[vall[j]] >= vals[i])) continue;
for (auto x: adj[j]) {
if (colorl[x] = 0) cnt++;

}

if (cnt > mx) {

mx = cnt;
mxv = j;
}

}
if (colorl[mxv] = 2) availl [vall [mxv]] = 1;
colorl [mxv]| = 1;
vall [mxv] = i;
availl [i] = 0;
if (mxv =— —1) break;

for (auto x: adj[mxv]) {
if (colorl[x] = 0) {
colorl [x]| = 2;
rrep (k,n) {
if (availl[k]) {
availl [k] = 0;
vall [x] = k;
break;

}
//calculate total externality
int resl 0;
rep (i n) {
int mx = vals|[vall[i]];
for (auto x: adj[i]) {
if (vals[vall[x]] > mx) mx = vals[vall[x]];

}

if (mx > vals[vall[i]]) {
resl += mx — vals[vall[i]];

fout << res0 << ’'_’ << resl << ’\n’;

return 0;

the

81

A.2 C+-+ code for the generation of dense graphs

The C++ code for the generation of the dense graphs follows. Albeit the calculation of
the graph externality is the same as before, the whole code is being presented, so that the
program can be instantly compiled.

#include <bits/stdc++.h>
using namespace std;

#define int long long

#define 11 long long

#define rep(i,n) for (int i = 0; i < (n); i++)
#define rrep(i,n) for (int i = (n)—1; i >= 0; i—)
#define rap(i,a,n) for (int i = a; i < (n); i++)
#define rrap(i,n,a) for (int i = (n)—1; i >= a; i—)
#define LL MAX 9223372036854775807

typedef vector<int> vi;

typedef pair<int int> ii;

typedef vector<ii> vii;

typedef list <int> 1i;

typedef unordered map<int ,int> mii;

int myrandom (int i) { return std::rand()%i;}
int32 t main() {
ios _base::sync_with stdio(false);
cin. tie (NULL);

srand (time (NULL)) ;

ofstream fout ;
fout .open(”dense0.txt”);

int n,x;
x = 0;
n = 150;

int cnt00 = 0;

for (int m = 50; m <= 11000; m += 20) {
cnt00++;
vi shuf;
vii edg;
vector<vi> adj;
adj.assign (n,vi());

rep(i,n*(n—1)/2) {

shuf.push back(i);

rep(i,n) {
rap(j,i+1,n) {
edg.push back(ii{i,j});

82

random _shuffle (shuf.begin (),shuf.end(),myrandom);

//creating random graph
rep (i,m) {
int ind = shuf[i];
ii x = edg[ind];
int pl = x.first;
int p2 = x.second;
adj[pl].push_back(p2);
adj[p2].push back(pl);

vector<vi> adj app;

vi colorl;

adj app.assign(n,vi());

colorl.assign(n,0); //0: white, 1: blue, 2: red,
//initially all vertices white

//generate randomly n valuations for objects, between 0 and 4*n,
//inclusive , sorting the resulting array decreasingly
int gen;
vi vals;
rep(i,n) {
gen = rand ()% (4*n + 1);
vals.push back(gen);
}

sort (vals.begin (), vals.end (), greater<int >());

//calculate the degrees for each vertexr and sort them in
//non—increasing order, so that we calculate the upper bounds
vi degrees unsorted;
vi degrees;
rep (i ,n) {
degrees unsorted.push back(adj[i].size ());
}
degrees = degrees unsorted;
sort (degrees.begin (),degrees.end (), greater<int >());

int il = 0, i2 = n—1, su = 0;
while (i1 < i2) {
int cur = vals[il];
int deg = degrees|[il|;
rep (j,deg) {
su += (cur — vals[i2]);
i2——;
if (il >= i2) break;
}
if (il >= i2) break;
il4+;

int res0 = su; //res0 is the upper bound for the algorithm

83

//solve the problem mnormally

vi availl; //available valuation

availl . assign(n,1);

vi vall; //pointer of wvaluation allocated to vertex

vall . assign (n,—1);

rep(i,n) {
if (!availl[i]) continue;
//find the wvertex that is red with a smaller valuation than the
//next largest one or white with the most white neighbors

int mx = —1; //the number of white neighbors
int mxv = —1; //the vertex
rep(j,m) {

int cnt = 0;

if (colorl[j] = 1 || (colorl[j] = 2 &&
vals [vall[j]] >= vals|i])) {
continue;
}
for (auto x: adj[j]) {
if (colorl[x] = 0) cnt++;

}

if (ent > mx) {

mx = cnt;
mxv = j;
}

}
if (colorl [mxv] = 2) availl[vall [mxv]|] = 1;
colorl [mxv] = 1;
vall [mxv] = i;
availl [i] = 0;
if (mxv = —1) break;

for (auto x: adj[mxv]) {
if (colorl[x] = 0) {
colorl [x] = 2;
rrep (k,n) {
if (availl[k]) {
availl [k] = 0;
vall [x] = k;
break;

}
//calculate total externality
int resl = 0;
rep (i ,m) {
int mx = vals[vall[i]];
for (auto x: adj[i]) {
if (vals|vall[x]] > mx) mx = vals|vall[x]];
}
if (mx > vals[vall[i]]) {
resl += mx — vals[vall[i]];

fout << n << U7 << m << L
((float)resl)/res0 << ’\n’;

return 0;

I

<< resl <<

bl

—

bl

<< resl <<

)

—

)

<<

85

Bibliography

1]

2]

3]

4]

[5]

(6]

7]

8]

9]

[10]

R. Abebe, J. M. Kleinberg, and D. C. Parkes. Fair division via social comparison. In
Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems,
AAMAS 2017, Sao Paulo, Brazil, May 8-12, 2017, pages 281-289, 2017.

A. A. Ageev and M. Sviridenko. Pipage rounding: A new method of constructing al-
gorithms with proven performance guarantee. Journal of Combinatorial Optimization,

8(3):307-328, 2004.

N. AhmadiPourAnari, S. Ehsani, M. Ghodsi, N. Haghpanah, N. Immorlica, H. Mahini,
and V. S. Mirrokni. Equilibrium pricing with positive externalities. Theor. Comput.
Sci., 476:1-15, 2013.

S. Athey and G. Ellison. Position auctions with consumer search. The Quarterly Journal
of Economics, 126(3):1213-1270, 2011.

A. Beynier, Y. Chevaleyre, L. Gourvés, J. Lesca, N. Maudet, and A. Wilczynski. Local
envy-freeness in house allocation problems. In Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2018, Stockholm,
Sweden, July 10-15, 2018, pages 292-300, 2018.

F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. D. Procaccia, editors. Handbook of
Computational Social Choice. Cambridge University Press, 2016.

S. Branzei, T. P. Michalak, T. Rahwan, K. Larson, and N. R. Jennings. Matchings
with externalities and attitudes. In International conference on Autonomous Agents
and Multi-Agent Systems, AAMAS ’13, Saint Paul, MN, USA, May 6-10, 2013, pages
295-302, 2013.

S. Branzei, A. D. Procaccia, and J. Zhang. Externalities in cake cutting. In IJCAI 2013,
Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing,
China, August 3-9, 2013, pages 5561, 2013.

R. Bredereck, A. Kaczmarczyk, and R. Niedermeier. Envy-free allocations respecting
social networks. In Proceedings of the 17th International Conference on Autonomous
Agents and MultiAgent Systems (AAMAS-18), pages 283-291, Stockholm, Sweden, July
2018. International Foundation for Autonomous Agents and Multiagent Systems.

G. J. Chang. Algorithmic aspects of domination in graphs. Technical re-
port, Department of Mathematics, National Taiwan University, 2011. Available at
http://www.math.ntu.edu.tw/~mathlib/preprint /2011-01.pdf.

87

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

88

M. Chlebik and J. Chlebikova. Approximation hardness of dominating set problems in
bounded degree graphs. Inf. Comput., 206(11):1264-1275, 2008.

E. Cockayne, S. Goodman, and S. Hedetniemi. A linear algorithm for the domination
number of a tree. Information Processing Letters, 4(2):41 — 44, 1975.

E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos. Subexponential
parameterized algorithms on bounded-genus graphs and H-minor-free graphs. J. ACM,
52(6):866-893, 2005.

Dimacs. www.cc.gatech.edu/dimacs10/archive/clustering.shtml.

F. V. Fomin, D. Lokshtanov, V. Raman, and S. Saurabh. Subexponential algorithms for
partial cover problems. Inf. Process. Lett., 111(16):814-818, 2011.

D. Fotakis, L. Gourvés, S. Kasouridis, and A. Pagourtzis. Object allocation and positive
graph externalities. ECAT 2020, 2020.

D. Fotakis, P. Krysta, and O. Telelis. Externalities among advertisers in sponsored
search. In Algorithmic Game Theory, 4th International Symposium, SAGT 2011, Amalfi,
Ttaly, October 17-19, 2011. Proceedings, pages 105-116, 2011.

D. Fotakis and P. Siminelakis. On the efficiency of influence-and-exploit strategies for

revenue maximization under positive externalities. Theor. Comput. Sci., 539:68-86, 2014.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

M. Ghodsi, H. Saleh, and M. Seddighin. Fair allocation of indivisible items with exter-
nalities. CoRR, abs/1805.06191, 2018.

A. Ghosh and M. Mahdian. Externalities in online advertising. In Proceedings of the
17th International Conference on World Wide Web, WWW 2008, Beijing, China, April
21-25, 2008, pages 161-168, 2008.

M. Girvan and M. E. J. Newman. Community structure in social and biological networks.
Proceedings of the National Academy of Sciences, 99(12):7821-7826, 2002.

L. Gourves, J. Lesca, and A. Wilczynski. Object allocation via swaps along a social
network. In Proceedings of the Twenty-Sixzth International Joint Conference on Artificial
Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pages 213-219,
2017.

L. Gourvés, J. Monnot, and L. Tlilane. Approximate tradeoffs on weighted labeled
matroids. Discrete Applied Mathematics, 184:154-166, 2015.

N. Haghpanah, N. Immorlica, V. S. Mirrokni, and K. Munagala. Optimal auctions
with positive network externalities. In Proceedings 12th ACM Conference on Electronic
Commerce (EC-2011), pages 11-20, 2011.

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

K. Haraguchi. An efficient local search for the minimum independent dominating set
problem. In 17th International Symposium on Experimental Algorithms, SEA 2018, June
27-29, 2018, L’Aquila, Italy, pages 13:1-13:13, 2018.

F. Harary and A. J. Schwenk. The number of caterpillars. Discrete Mathematics, 6(4):359
— 365, 1973.

J. Hartline, V. S. Mirrokni, and M. Sundararajan. Optimal marketing strategies over
social networks. In Proceedings 17th Conference on World Wide Web (WWW-2008),
pages 189-198, 2008.

T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, editors. Domination in graphs:
Advanced Topics. Marcel Dekker Inc., New York, NY, USA, 1998.

D. S. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems. PWS Pub-
lishing Company, Boston, MA, USA, 1997.

S. Huang and M. Xiao. Object reachability via swaps along a line. In Proceedings of
the The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19), Honolulu,
Hawaii, USA, January 27 — February 1, 2019, pages x—y, 2019. To appear.

P. Hummel and R. P. McAfee. Position auctions with externalities. In Web and Internet
Economics - 10th International Conference, WINE 2014, Beijing, China, December 14-
17, 2014. Proceedings, pages 417-422, 2014.

M. L. Katz and C. Shapiro. Network externalities, competition, and compatibility. The
American Economic Review, 75(3):424-440, 1985.

D. Kempe, J. M. Kleinberg, and E. Tardos. Maximizing the spread of influence through
a social network. In Proceedings of the Ninth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Washington, DC, USA, August 24 - 27, 2003,
pages 137-146, 2003.

L. G. Khachiyan. Polynomial algorithms in linear programming. USSR Computational
Mathematics and Mathematical Physics, 20(1):53 — 72, 1980.

P. Krysta, T. P. Michalak, T. Sandholm, and M. Wooldridge. Combinatorial auctions
with externalities. In 9th International Conference on Autonomous Agents and Multia-
gent Systems (AAMAS 2010), Toronto, Canada, May 10-14, 2010, Volume 1-3, pages
1471-1472, 2010.

K. Kulkarni, A. Pagourtzis, K. Potika, P. Potikas, and D. Souliou. Community detection
via neighborhood overlap and spanning tree computations. In Algorithmic Aspects of
Cloud Computing - 4th International Symposium, ALGOCLOUD 2018, volume 11409 of
Lecture Notes in Computer Science, pages 13—24. Springer, 2018.

K. Kuratowski. Sur le probléme des courbes gauches en topologie. Fundamenta Mathe-
maticae, 15(1):271-283, 1930.

R. Paes Leme, V. Syrgkanis, and E. Tardos. Sequential auctions and externalities. In Pro-
ceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 869-886, 2012.

89

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

[49]

90

M. Li, J. Zhang, and Q. Zhang. Truthful cake cutting mechanisms with externalities:
Do not make them care for others too much! In Proceedings of the 24th International
Conference on Artificial Intelligence, IJCAT’15, pages 589-595. AAAI Press, 2015.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for
maximizing submodular set functions - I. Math. Program., 14(1):265-294, 1978.

C. T. Nguyen, J. Shen, M. Hou, L. Sheng, W. Miller, and L. Zhang. Approximating the
spanning star forest problem and its application to genomic sequence alignment. STAM
J. Comput., 38(3):946-962, 2008.

E. Pataki, A. Sagi, and K. Jozef. Externalities and the optimal allocation of economic
resources. In 2015 IEEE 13th International Symposium on Intelligent Systems and
Informatics (SISY), pages 185-188, Sep. 2015.

J. Rohlfs. A theory of interdependent demand for a communications service. The Bell
Journal of Economics and Management Science, 5(1):16-37, 1974.

M. Seddighin, H. Saleh, and M. Ghodsi. Externalities and fairness. In The World
Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019, pages
538-548, 2019.

D. Souliou, P. Potikas, K. Potika, and A. Pagourtzis. Weight assignment on edges to-
wards improved community detection. In Proceedings of the 23rd International Database
Applications € Engineering Symposium, IDEAS 2019, pages 3:1-3:5. ACM, 2019.

G. Steiner. On the k-path partition of graphs. Theor. Comput. Sci., 290(3):2147-2155,
2003.

R. A. Velez. Fairness and externalities. Theoretical Economics, 11:381-410, 2016.

Yiyuan Wang, Shaowei Cai, Jiejiang Chen, and Minghao Yin. A fast local search algo-
rithm for minimum weight dominating set problem on massive graphs. In Proceedings
of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI
2018, July 13-19, 2018, Stockholm, Sweden, pages 1514-1522, 2018.

