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Abstract

The analysis of human emotions is a widely researched topic in the scientific fields
of Psychology and Neuroscience, trying to investigate the nature and elicitation mech-
anisms of our feelings. From a computational perspective, however, it remains rather
underexplored. While Artificial Intelligence has made overwhelming progress in modeling
rational intelligence, there are yet no highly reliable systems to analyze affect, as consid-
erable barriers exist in this process: Emotion expression can be highly subjective and its
interpretation varies depending on the context, whereas it poses an inter-subject variabil-
ity. Yet, most Signal Processing and Machine Learning studies concentrate on behavioral
processing of emotions, through modalities like speech, text and facial expressions. To ad-
dress the challenges of Affective Analysis, in this thesis we choose to process brain signals,
and specifically the Electroencephalogram (EEG), as a means to derive emotional infor-
mation. Recorded physiological and neural signals are capable of being more objective
and reliable affective indicators, whereas they can also contribute to develop human-aid
systems for applications like the treatment or rehabilitation from brain diseases. Impor-
tantly, we consider music as the means to induce emotions for the EEG recordings, since
music is known to have a deep emotional impact on humans.

Our approach can be divided into two main parts: In the first one, we analyze the com-
plex structure of the EEG and examine novel feature extraction schemes that are based
on two multifractal algorithms, namely Multiscale Fractal Dimension and Multifractal
Detrended Fluctuation Analysis. In this way we attempt to quantify the variability of
the observed signals’ complexity across multiple timescales. Our proposed EEG features
surpass widely used baselines on Emotion Recognition, whereas they show competitive
results in challenging subject-independent experiments and recognition of arousal, indi-
cating that it is highly correlated with the EEG’s fragmented structure. In the second
part, we utilize a two-branch neural network as a bimodal EEG-music framework, which
learns common latent representations between the EEG signals and their music stimuli
in order to examine their correspondence. Through this model, we perform supervised
emotion recognition experiments and retrieval of music rankings to EEG input queries.
By applying this system to independent subject data, we also extract interesting patterns
regarding the latent similarity of brain and music signals, the temporal variation of the
music-induced emotions and the activated brain regions in each case. As a whole, this
study deals with core problems regarding the interpretation of complex EEG signals and
illustrates multiple ways that music stimulates the brain activity.

— Keywords: Music Perception, Music Cognition, Emotion Recognition, Electroen-
cephalography, Multifractal Analysis, Cross-Modal Learning, Metric Learning



ITepirndm

H avdiuon twv oavipohmvey cuvancinudtony eivon éva Onuo@ilés epeuvnTind medio Tng
Yuyohoyiag xou 1wV NevpoemoTnu®y, tou tpocnadoly vo BIEREVCOLY TN QUOT) TOUG XL
TOUG UMyoviopols Topaywyng Toug.  Amd umohoyioTixy dmoln, ®woTéo0, TUPUUEVEL EVa
Teplocdtepo avelepelvnto medlo. Eved 1 Teyvnth Nonuoolvrn éyel xdvel ueydhn npdodo
oTNV avdAuon TS avilp®TVNG AoYIXAS, axoud BV €YOUNE OTY BLUECT| oG EUTLOTA EUPUTY)
CUC THUOTOL YLOL TNV VoY VOPELOT) CUVALGUNUETWY, AOY® WIS GELRAS ONUaVTIX®Y eutodiwy: H
cLVUCYNUATIXT EXPEAUOT) EYEL EVIOTE UTOXEWEVIXY| EpUNVELXL, EVK GUVATWE BLPOEETIXE dTOU
amodlBoLY BLapopeTIXd GUVALCVAUATO 1) XL BLUPOPETIXES EXPEACELC TOL (Blou cuvaloYrua-
to¢. Idvtwe, n oyetiny| épeuva oToug Toyelc Tne Enelepyaoctiauc Xrpartog xon tng Mryovixrc
Mdinomne emXEVTIPMOVETOL GTNY CUUTERLPORLXY| AVEAUGT] TOU GUVALCUHUATOS, YETCULOTOL)V-
TAC TOV TROYORIXO 1) YEUTTO AOYO Xl EXPEACELS Tou Tpoowrou. [ vo avtiwetwnicovue Tig
TpoxAoelc Tou VETEL 1) Avdhuon LuvoucUiuotoc, oty epyacior auTh ETAEYOUUE Vo ovaAD-
OOUPE VEUpOhOYWE ofjporta, ouyxexpéva to Hhextpoeyxegpouhoypdpnuo (HEL') w¢ péoo
eCaywync ouvoncOnuatixrc TAneogopioc. Ta @Quotohoyixd xaL VEUPOROYIXG CHUATA UTOPOVY
vou ebvan o avTixelpeVXol OelixTeg ToU CLVAUCYAUATOC EVE 1) AVAAUGY| TOUC UTOREL VoL GUVE-
IOQEREL OTNV AVATTUEY EVPUOY CUCTNUATWY Ylot TNV uToBorinon Tou avipdTou o TNV
xatavonorn tng ddixactag Mdng arogdoewy. o v medxAnon Twv cuvaoUnudtey Yew-
EOUUE HOUCXE OYOTAL, XM 1) HOUCLXN VoL YVWOTA YLoL TNV LOYVEN TNG CUVALCUNUATIXY
en{dpaon oToug avip®roug xou oTN Asttoupyio Tou avipOTIVOU EYXEPIAOL.

H mpooéyyior| yac umopel va donpedel oe 600 Bacxd pépn: Xto Tp®TO, UEAETOUUE TNV
mohOmhoxn dout| Twv HEIN onudtwy xaw e€etdlouye xawvotoueg uetddoug eoymyng yopax-
e TIXWY, Bactouéveg og dVo multifractal aAyopituoug, Toug Multiscale Fractal Dimen-
sion xou Multifractal Detrended Fluctuation Analysis. Envyeipolue étol va tocotixonor-
OOUUE TOCO UETABIAAETOL 1) TOAUTAOXOTNTA AUTOY TOV CNUATOY O BLUPORETIXES XAIUUXES
mopatienons. To mpotevdueva yopoxTnElo Tixd TeTuyafvouy UeyollTeRT axplBela amd eu-
PEMC YPNOWOTOLOUUEVES PED6B0UC 0TV Avory vidplor) LuvotcUUotos, eV anodidouy oruay-
TIXG ATOTEAEOUATO OF TELQAUATO TOAADY CUUUETEYOVTWY XU OTNV AVAYVORLOT| TNG HETEXNS
arousal, umodexviovtag €Tol Twe oyetiletan o peydho Podud ue Ty mepitioxn dour| Tou
HETI'. ¥to 8eltepo pépoc xataoxeudlouue éva molutpomixd dixtuo yioo HED xou pouoixd
OY|LOTOL TPOXEWEVOU VoL AVIAUGOUNE TNV CUCYETION TOUG 6GOV 0popd To GuvalcUnua xou Vo
e&dyoupe xoLvég avamopaotdoeic. Méow autold Tou povtéhou alloAoYOUUE TELRAUAUTO XOTT-
YoploTolnone Yo ETONUEIDOCEL CUVOLOUAUATOS, GAAG ol TEWAUAT €CUYWYNC LOUGIXWY
xoupatiwy, oyetxwy ue HEI eicddouc. Egapuolovtag autd to olotnua eyweltotd ot Oe-
OOUEVAL BLUPORETIXGY aVIPOTMV, EEAYOUNE ONUAVTIXG UOTIBo OYETIXG UE TNV OUOLOTNTO EYXE-
PUALXWY X0 LOUCIXMY ONUATWY, TIC YPOVXES UETUPBOAES TWV CUVALCUNUATIXWY EXPEACEWY
XL TIC EYXEPUMUES TEPLOYEC TIOU EVEQYOTOLOUYVTOL Ve TERITTMOTN.  Xuvolxd, 1 €V AOY®
epyaoio xotamdveton Ue VeEPEADON INTALAT OYETXE PE TNV XATAVONGCT TWV TOMITAOXWY
onudtev HEI' xou amotundver molhamholg TeOTOUG Ue TOUG OToloug 1) Houstxy| ETNEedlel
™V oavipamivn eyxeQaAxy| Aettoupyia.



— AéEearg-KAerdrd: Mouvowr) Avtiindr, Avayvopion XuvoncOuatog, Hhextpoeyxe-
pahoypagpio, ITohugpedxtoah Avdhuon, Awtponxr) Mdinon, Metpuch Mdinon



Euyapiotieg

Me tnv ohoxhipworn TNe Topoloos SITAWUATIXAG €pYAGTAC XAEIVEL EVOL ONUAVTIXG TEOCWTILXO
xeQdAano, autd NG Qoltnong otn LyoAr) Hhextpohdywyv Mnyavixov tou Edvixod Met-
a6fou Hohuteyveiov. Hrav ta mo clvtoua 6 ypdvia tng {whg Uou, YEUATA UE VEES YVOOELS
xau eumelpleg. Me auth) Ty agopun, Vi TNV UTOYEEWOT) VoL ELYAPLO TAC:

Tov emBrénovta xadnyntd x. 1Etpo Mopayxd xou dha o uén-piloug tou Egyactnplou
‘Opaone Troloyiotoy, Emxowvwviag Adyou xou Enclepyaciog Xruatog yio tnv euxonplor xou
TG EQPODLOL TTOU HOL EDWOAY YL VO EXXLVIOW TNV EQEUVNTIXY| UOU TOREld 6TO TAUCIO TNG
OLTAWMATIXAG GAAG XaL TNG YEVIXOTERPNG OUVERYUoiag Hog, €D xou Tepimou 2 ypdvia.
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%100, Wiwe duwe Toug Iavoryiwtn, Mavohn, Xehoto, Nixdho xon Xdor), mou aveytnxoy Ty
eCoeT) wou Teéla mou ovoudletar LHMMTY o napauévouy dimia pou, mévta.

Khedvine ABpouidng
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Dedicated to those 32 people who offered the EEG data I utilized.
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Extetapevn Ilepliindn

Eicaywyn

H Entotriun tTov Yuvacdnudtwy

Yy xodnuepwvi| pag Lo Prddvouye Ui toalopoppia and SlapopeTnd cuvaloAuaTa 1
ouVBLaoUOUS cuvatoOnudTeY (Yaed, Aomn, anoyortevor, éxnminin xir). ‘Eva cuvaicinuo
elvor Lol UTOXEEVIXY| XAUTAG TaoT) 0TNY oTtola Bploxduac te xaL TNV avTAUBovVOUdc TE and TO
¢ vivboupe, amd Quotoloyixr xou uyohoyr drodn. MNtnv ndpodo Tou Yebdvou, TOAES
Yewpleg €youv mpotadel yio vo e€nyfioouy autd to @ouvopevo. Eml mopadetypott, n Yew-
ol v James-Lange [70] opilel mwe T ouvoncVuata TpoxiTTouV and Bloloywéc “eldip-
oec” tou avdpodmvou opyaviopol. ‘Alec Jewpliec [20] npotdocouv v aveloptnoio g
puoLoOAOYIXAC UE TNV Yuyoroywr| avtidpaot. Ye xde teplntwot, aiveTton Twe 1 Quolohoyia
el onuavTnd pdAo elte ot dnuLovpyio ElTE 0TV EVOUVIUWOT) TOU GUVULGUHUTOC.

Ov Neupoemiothipeg xan 1 Wuyoloyia €youv avantilel 2 Pacixéc mpooeyyloelg yio Ty
XATNYOPLOTOINGT) TWV CUVALGUNUATWY: TNV BLUVUGUOTIXY XAl TNV XoTyoptxr|. XopoxTnelo-
TIXO TOPAOELY AL TNG TEWTNG XaTryoplag, Tou Yo ypnoylonotfcouue o€ auty| TNy epyaoia, ei-
va 10 Tewtoxolo Valence-Arousal tou Russel [128], alugpwvo pe to onofo xdie cuvatoinua
opileton w¢ évo anuelo oto BBIdoTATO YWEo Ue deviivoelc apynuxd-Vetxd (valence) xou
drovo-évtovo (arousal). H xotnyopuxs; mpocéyyion, and v dAkn, yenodonotel Soxpitéc
xhdoeig cuvatoInudTey. Mo and TIc TEMOTEC X0t TLO EVEEWS YPETOULOTOLOUUEVES XOTNYOPL-
omotfioelc uéypl xon ofuepa etvor auth tou Paul Ekman (1970), mou eworyorye €€ xadohxd
anodextd ouvanotfuorto [40]: yopd, anéydeta, péBo, Yuud, Exmhngn xor Ao

Y10 mhaioto autd, oTOYOC Uog eival Vo ¥ TlooUUE UTOAOYLOTIXG JOVTENX TTOU Vo ebfval o€
VEom VoL BLEEEUVACOUY ol VoL avary vewpicouy To cuvaloinuo péoa amd Ui BEBOPEV XAUTAO-
taon. Me tov dpo Affective Computing ovagepdpacte oTny UEAETN AUTH TWV CUC TNUATWY
XL GUOXELVWY Tou eneCepydlovTat, avoryvwei{ouy ot XaTavooly To avlp®TVeL GUVILGUT-
MOt UE OXOTO TN PEATIWOT TOV TUPEYOUEVWY UTNEECLOY GAAL XAl TNV oVIAUCT| TNG Ov-
Yowmvne puyohoylag. o va To emtiyoupe auto, ypetaldpaote Yewentind epyohelo, Tou
Yo aVOAUCGOUNE 0TI GUVEYELN, XU UEYIAEC GUAAOYEC BEBOUEVWY, oTIC omoleg [Bploxouue
xatdAnhoug meptypapnTéc. Ot o YVWOTEC LOPPESC BEDOUEVMY YLol AUTO TO GXOTO Efval:

o Exgpdoeig Ilpocwnou: H mo duecn 0ddg Exppaong Twv cuvalcUnudtwy, apo
amotehel T0 x0pLo YEGO ETXOLVGLVING X0t EXPEACTIC. LUCTHUNTA AvdALoTE avieOTVEDY
EXPEACENDY LTAEYOLY auéTENnTo Xat dlaxplvovtor o oTatixd (EMOVES) Xou BuVoXd
(@ivrso), EV( DPOLY OF TEPLYRAPNTES OTIWGE 1) VECT TV OTOLYEWY TOU TEOCMTOU XAl 1)
xivnon toug. H mpdodog otov dyxo twv dedopevemy xat Toug alyopiiuoug Teyvntig
Nonuootvne (Artificial Intelligence - AI) mou €youue ot Siddeor| pog €youv wiroet
TNV €PEUVA OTO CUYXEXPWEVO TEDIO, AhAd X0 TOV OXETTIXIOUO GYETXE UE TO LHTNUA
e xooAXOTNTOG Xat TNS OLVETELNS [11] TwY cuUVUEONUUTIXDY EXPRECEWY.
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o Puowxr MNwooo: O muphvac g avipnhmivng emxowvemviog Baolleton otny Quotxy
YAwooo, yeanth 1 mpogopxr. H avayvoplon tou cuvonciuoatog mou exgedleTol
UECK TOU AGYOU YENOWOTOLETAL OE CUOTAUATO ETIXOVWVING avip®OTOU-UTOAOYIOTH,
OE CGUOTAUNTA CUCTACEWY eV utofontolyv xau emoThuee omwe 1 Wuyohoylo. H
OYETXT) EQEUVAL EYEL LOTOPIAL TELOY BEXUETIOV AAAG oXOUO DEV EYEL ATOBMOEL ATOAUTA
EUTLOTOL OUCTAUATY, Mg Xou évar o opthiag meptéyel mowiheg petafintéc (molog
whdel, oe mowa yAwooo, pe Tt A&AOYIo xAm). Amd Ttnv dAkn, N ypeanth yAOoodo
oxohoudel dhho Bpduo emelepyaoiug TOU CUUTEQLAUPBAVEL YRUUUATIXOUE Xol CUVTOX-
TIXOUE XavOveS oTny avdAucY| tne. Ilpoopdtwe, n Mnyavixr) Mdidnorn, dpcwvtoag mdve
OE TEPUOTIOUEC OYXOUS AEELAOYIXDY DEDOUEVMV X0l EWOXE OLUUOPPWUEVO AVOBEOULXS
HOVTEAQ, Eyel xaTapEpEL Vo CETEPAOEL TTPONYOUUEVES TIROGEYYIOELC.

e ‘Hyoc xow Mouvowxy: Eve violetel opxetd otovyelo and tnv avdiuor opiiog, 1
AVALY VORLOT] CLVALCVAUATOS oo UOUOXE CHUATA Vol AUTOVOUOS XAGDOG UE UEYAAN
oVAMTUEYN TO TEAEUTOUA YEOVIAL  MUVIOTA Lol onuoavTixy) evotnta tne Eneéepyoaoiog
Movourc [Tainpogoplag agpol, 6mwe Yo doUue, 1 pouctxr) utopel Vo TEOXAAEGEL TOAD
évtova cuvouoUfuata o clyYXELon e dhha gouvopeva. Eivor xovde amodextd mwg
TOAAG HOLOIXE GTOLYElN EVEYOLY CUVALCUNUATIXES GUVIGTWOES, YL TUEAOELY UL OL EAJO-
OOVEG XAaXES ONuLouEYoUY cuvatcUuoTa AOTNg 1 xou @oou. O cuyxexpuevog xAd-
do¢ Peloxel e@opuoyy| xupltd¢ OE CUGTAUATO LOUCIXWY GUOTICEWY, oANd UTopel va
Bonifoet xou oTNY avdhucT) TwV PuYOAOYIXOY aVTIBEICEWY ToU avip®Tou.

e Biopetpixnd Srpato: ‘Olec ol mpoavagepieicee Tepintdoelc yenoylonooly ot
HOITOL GUUTIERLPORAS YLoL VaL Tpoadlopicouy To cuvaloinua. Autd wotdco dev elvan mévTa
oxpBéc, wag xan N €xgpaon xou 1 avTiAndn Tng cuvaoUNUUTIXAC XUTdo TaoTS Elvol
UTIOXEWEVIXY|, €V OeV elvan wiaitepa dUoxoho Yl Evay dvilpwro va tpooroiniel 1 va
xpUEL Evar mporyaTd ouvatoUnua. T'io To Adyo autd, o Tekeutaio ypdvio evioppive-
ToL 1) OLlEEENVNOT AVTIC TOLY WY TEPLYPAPNTWY Ot Blochuata, Tou eéeMocovton ywelc Tov
EVOLVEIDNTO €AY Y6 UaC xou dpa UTopoLY Vo elvor To o&LOTIo Ta (ﬁsppoxpuoia, EYXE-
pohixd oo xhm) [139]. H épeuva €8 ypnotponotel xuplwe otatiotind epyahela
YL VO LOVTEAOTIOLACEL TIG WLOTNTES TV Ploonudtony, Ta omolo tédoyouy cuvidwg ard
umepPBohxr) topoucio YoplBou xan amontoly damavner dadixaction xaToryeapnc.

O Avipwnivog Eyxégparog

H éxgppaon xan avtiindn cuvarcdnudtwy elvon pia tponypévn Aettoupyio Tou avipdmivou
EYXEQPSAOU, TOU TLO TOAUTAOXOU 0pYAVOU GTO avlp®TLVO GG, UTELYUVO Yia TI¢ aoUHCELS,
NV %xlvnom xou 11 CUUTERLPORS UaG, Tou ToEd TIg uaxpaiwveg TpooTdieieg Tou avipnou,
TOEOEVEL O xon GAUERa Eva puoThpto. Epsuvntixd oxouund xupleg Ty meployy| Twv
Nevpoemotnuov. Yfuepa woTt600, Ue T Tavioyupa UTOAOYLIGTIXG epyolelor xon alyopiiuoug
Tou €youue ot dddeon| pag, elyacte o Véorn va avahOOUUE TOAAG TEQLGGOTERN BEBOUEVAL
X0l CUVETIOC OIXALOVUAOTE VO AVOUEVOUUE ONUOVTIXES eEMEel 0To eYYUC uéAAoY amd Tov
yweo tne Teyvnthc Nonuooivne xou tne Enotiune Troloyiotody.

‘Onwe 6ha tor avdpadmvar pyava, o eyxépahog amotereiton and xOTTopa tou puiuilouy
TN Bouy| xan T Acttoupyio Tou. Kdmota €€7 autddyv woTt600, Tor VELpd x0TTORN, BOVAELOUY
(OOTE VO UTOPOVUPE VO UOVAVOUUCTE, VO OXEPTOUACTE XL VO OPOUUE, UECK TV TATEO-
poptwyv Tou dlonvoly. Evag avipnmivog eyxégarog amoteheiton amd Toukdytotov 90 dio.
VEUPOVES, XAUEVOC EX TV OTOlWY GUVOEETOL UE NAEXTEOY NULXES OLlEpYaoieg e YIMAOES GA-
houg, pTidyovTag éva uTépueTeo ToAUTAOXO TAEYUA. To veupd x0TTOEO Elval 1) GTOLYELOONG
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dourn) Tou veupol cLoTAUATOS. AToTEAE(Ton A TO COUN TOU VELPMVA, EVaY AEOVA XoL EVaL
oLVOLO amd BEVOPITES, HECW TWV OTOIWY GUVOEETAL UE DEVORITES GAAWY VELPMVKY (ouvd&})ag),
oynuatiCovtag dixTua UETAPORAS TANEOPORIG, UECE NAEXTOOY XDV CTUATOY.

TV TEOTN CUCTAUATINT XATAYRUPT| TWV NAEXTEXOY AUTOY ONUdTLY €xave o Richard
Caton [21] to 1875, 6tav tomotdétnoe 2 nhextpodla 0To eEWTEPIXO TOU Xpaviou EVOC ov-
YomToU Xou YETENOE TNV NAEXTEXT TOU dpacTneloTnTa. Ao TOTE, 0 6pog “HAextpoeyxe-
pahoypdgnue” (HEL) yenotpomoteiton eupéwe yior vor SnAGoeL TNy nAextext| dpaotnetdtn o,
TOU EYXEQPAIOL, 1 YVOOT TN omolag Exel amodety el xplown oe ToAholg LTEolg xou dh-
houg topeic. Xfuepa, to HEI xotorypdpetan dmerond, ye mohhd e€etdixsuuéva nhextpodia
xou axoloudwvtog diedvr standards tonodétnong xan eCoywync. To nhexteind orjua mou
xatorypdpeTon efvan apxetd ac¥evég, eved uéypl var yivouy avtianmtd To avticToryo medio and
ToL NAEXTEOOLAL, OLATEEVOVTAL amtd Loy LEG VOEUPBO PEca 6TO xpavio. MUVETKOS, YENOULOTOLOUV-
Ton TEY VEC amotopufonolnong xou evicyuoric Toug Tty TNy ontold|noTe encéepyacia. Eva
oo To TAEOV OMUAVTIXG YOPUXTNEWOTIXG TNG EYXEQPUAXAS NAEXTELXNAS Dpao TNELOTNTAS El-
val oL ouyvotnTeg 1) puduol mou eugaviCouv xou elvon deixteg plag TANYOEaC aviedTvey
Aertovpyieyv. ‘Eyouv mpoodlopiotel 5 Baoixol eyxepoaixol puduol:

o Aélta (0): Bploxeton ota 0.5-4Hz, oyetileton xuping pe to Bodd vnvo.

e Orja (1): Bploxeton oto 4-7.5Hz xon oyetileton pe hettovpyiec Tou aouVedNTOL Xou
TNV €unvevoT), eve eEeTdleTan WIETEQN AT TNV TEMY Toudixy| nAwia.

o AAga (o): Bploxetan ota 8-13Hz xan anotelel (6w TOV o onuovTixd xou mo cuyvé
TOEATNEOVUEVO PLIUG, £V TEOGdLoplcTNXE TPwToC, To 1929. YTrodewviel Tn yalde-
O, TNV ATOPORTION 1 X0 TNV EVIUOT], TNV TEOCOYT| XAT.

e Brjza (B): Bploxetan ota 13-30Hz. Eivar o xploc pudude mou oyetileton ye vy
EVEQYT] BPAOTNELOTNTA, T1) OXEYN XL TNV TEOCOY Y, EVE AmaVTATAL XURlWwe OE EVAMXEC.

o ['dupa (y): dve and 30Hz, éyel aflomomiel yia T Sidyvewon ey xe@olomodeidy.

H Avtiandn tne Mououxhg

H wovétntd gog var oxolue xou vor enelepyalOUacTe fYOous OQEIAETOL OTO OXOUCTIXG
Hog oVOTNUA, ATOTEAOUMEVO XxURlwe amd TIC AetTovpYieg Tou auToU xou Tou eyxepdiov. Tao
NYNTXE XOUUTA ELOEEYOVTOL GTO oUTEL X0t BOVOUV TN AEYOUEVT] TuTOVIXT UEUBRAVT), 1 oTtola
UE TN OELRd TNG METAPEPEL 0L EVIOYVEL AUTES TLC DOV OELS OTO UYPO TOU ECWTERIXOU AUTLOV
OTOU TO G AVUADETOL XAl UETUTEETETAL OF NAEXTEIXEC OELS TPOG TO AXOUC TIXO TUHUN TOU
eyxe@dhov. Ewdixd otny meplntwon g Houoixic, TOMES BLUQORETIXES EYXEPUANES TEQL-
OYEC QUEVETAL VO UTELCEQYOVTOL GTNY AVIAUGT] TWV CUVICTOOWY TOU doucxol ofuatog. H
xatnyoptonolnon auty yiveton ue Bdom Jeuelndn yopaxTnelo Tixd Tou fyou, OTKS 1 EVIAOoT),
N ouyvoTNnTa, 1 Owpexew, o pLiuoS, To Myoyewud XAT. O avipwmvog eyxépahog emed-
EQYALETAL XL OPYAUVAVEL AUTES TIC TANPOPOPIEC OE O TOAITAOXES EVVOLES, OIS TO UETRO,
1 peAwdior xan 1 opuovio. Tlpdxetton cuvende Yo onuovTind otovyelo xou auETENTES EQEUVES
€Y 0LV AVOAWUEL OTNV EVPECT] TEQPLYPUPNTLV TOU VoL Tol TPOGdLop(ouv e Ny NTIXd BedOUEVAL.

‘Oneg elmope, SLaopETNES EYUEPUAXES TEPLOYES AVAADOLY BLUPORETIXE LOLVOIXY GTOLYEL,
T.Y. O 0XOUGTIXOS AofOg Toug TOVOUS, 1| TaPEYXEPUALDN TO puiG x.0.x. To mo pucTtiplo
YAPUXTNELO TG amd auTd ebvan copng To cuvaloUnua Tou eVEYEL 1| TEOXUAEl Eval LOUGLXO
xouudtt. Amod v eumelplor pog avTthauBavouac e TS 1) HOUOIXT] UTOREL VoI TPOXUAETEL
TOAU toyupd cuvaciuata, cLVHIWS LoYLEOTEPA amd OTL GAAeES pop@éc cpetioudTey. ()¢
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OTOTENEOUA, 1) OYETIXT) EQEUVAL TIAVEL GTNY AVIAUCT) TOV EYXEPUALXDY ATOXPICENY GE LOUGIXS,
epediopata, mou efvon xou To Yéua Tng Tapolous epyactas, €yel ueydho evdlagépov. Mia and
TIC TUO ONUAVTIXEG TORUUETEOUS 0T Houctxr avTiAndm galveton mwg efvon 1 txavdTNTd pog
var ovory vopiCoude o var avoévoupe ypovixd potiBa. Tlpdxerton yior par eyyeve ixavotnta
ToU avipmOTOU 0AAG o1 BACIXG YARUXTNELOTIXG TOV UOUCIXOY CHUATWY, EXPEAULOUEVO UECW
Tou putuol xou tne emavdAndne. Eueic amd tny mheupd poc Yo Bigpeuvricoupe Ty UTogn
CUCYETIOEWY AVAUESH GTA cuVOLoUNUATIXG YopoxTneto Twd Twv HEI onudtwy xou yopox-
TNELOTIXOY TV UOUGLXOY M) NTIXMY XUUATOPORPMY, HECK TEYVIXwY Mnyovixric Mdainone.

Oewpentixd YnoBadeo

Apyég Eneepyaciog Xruatocg

[o vo mpooeyyiooupe cuotnuatixd To v Adyw Véua, Vo yENoLIOTO|COUUE TEYVIXES
and tov topéa e Enclepyacioc Xnudtwy. H ¥ngoxd Enepyooia Xiuatog (VEY) elvo
€vag Tary OTUTOL AVITTUGOOUEVOC ¥AdD0¢ Tou Yepehiwveton ota Madnuatd, ) Puour xon
v Emotiun tov Trohoyiotodv. To Bacixd otovyeio tne avdiuctc pag Ya ebvar to oo
(signal), ONAAdT o QUOIXY| TOGOHTNTA TOU XWoLXoToLEL Evar eldog TAnpogoplag. Av xou opio-
UEvol oTjuotar UTtopoly Vol LovTEAOTOINYOUY VIETEPUIVIO TIX HECL EELOWOEMY, TA TEPLOCOTERA
PUOE CHUUTA CLUVADWE TEPLYPAPOVTOL UOVO a6 GTATIo TH| dmon. Ye xdie nepintwor, éva
oot avohDETOL YOG EVOC cLGTAUNTOS (system), mou Lhomotel pa avtiotolyton (cuvdptnon)
uag €tc0dou o Jior povadixr| é€odo.  Mia tétola cuvdptnon eivon auth Tou TEoodLopileL
TO PUOHATIXG TEPLEYOUEVO EVOS OTuaTog xou xoAeltan Metaoynuatiouds Fourier. O ouy-
HEXPUIEVOC UG AEEL TTOG TA ATOAUTWS OAOXANEWOLIN CHUNTA UTOROUY Vol Tapao Todoly (¢
YEOUUIXOS GLVBUAOHOS (AMELRWY) NUITOVOEBMDY XUUATWY 1 Uy adxmdy exdeTindy:

400 400
x(t) = % X(w)e™'dw, émov X (w) = / x(t)e ¥ dt
O M/X Fourier ypnowonoteitor eupéwe 6Ty avdAUCT ONUETOY UE GNUAVTIXG GUYVOTIXG
TEQLEYOUEVO, OTIWC Elvor YLor TaEEBELYUA 1 LoLoWY| (VOTES) xat Tol eYXEQalxd odata (pu-
VYuol). Avdueca oTic DPEETIXES EXBOYEC TOU PETACYNUATIONOV, aTny Ttapoloa epyacio Yo
emxevtpwlolue atov Awaxprtd M /3 Fourier (DFT) nou egapuéleton tumixd o Pnproxd,
Tenepoouéva ohuaTe péow tou akyoplduou Fast Fourier Transform (FET):

N-1
Xn] =3 a[kle 7T (n=0,1,...,N 1)

k=0

To Quoyatind TEPLEYOUEVO EVOC GHUATOS OE UTOREL, (OTOCO, Vo UG TPOCOWOEL ThNEO-
popla oYETIX PE TNV YEOoVIXY| TOTOVETNON TWV EUPUVICOUEVWY LY VOTHTWY. 'Evac duecog
TEOTOC Y1 VO TPOGEYYICOUUE TO TEOBANUA elvol VoL GTIAGOUNE TO EXACTOTE GHHN OE, THIUVHOS
ETUXOAUTITOUEVA, XOUUGTLOL X0 VOl EQUPUOCOUUE TOV UETACY NUATIOUO o€ xardéva amd autd. H
Teyvixt) auth Aéyeton M/E Fourier Bpoyéoc ypdvou (STFT). Euvevivovtog ot cuvéyeta to
(PAOCUTA TOU TEOXUTITOUY GTOV JEOVOL TOU YPOVOU, XATUAYOUUE OF WLol OLOLAC TATY YPOVO-
OLYVOTIXT] AVATAUEECTACT), TO QUoUATOYPd@NUe (spectrogram). Xuyxexpyléva, SeBoUEévou
evoc Pnproxol ouatog z[n] xar napadleou winl, n padnuoTny éxpeact| Tou etvan 1 e€hc:

o0
STFT{z[n|}(m,w) = X(m,w) = Z z[n]w[n — m]e 7"

n=—0oo

21



22 List of Tables

XpNoWOTOLOVTAS TIG TORATEVL TEYVIXES UTOROUUE VO AVAAUGOUUE ETUEXMS Lol UEYUAN
YU VIETEQUIVIO TIXWY ONUATWY. TIopdh” awtd, tor MEpIocdTEQU GAUNTA OE QPUOIXES GUV-
Ufxeg elvor TOAOTAOXO X0 OTAVIYL UTOEOUY Vol TeoodloploToly e axpifela yéow uadn-
Loty eZlomoewy (. 1 xivnon twv nhextpoviov). T tétowo ofpoato mpotipwolye va
OVUAVOUPE TO GTATIOTIXG TOUG YOQUXTNELOTIXG, YeNoloTolmvTag otolyela and T Jewpla
miavothTwy.  Xuyxexpwéva, Jewpolue mwe xdle eugdvion evog tuyalou chpatog eivon
€vaL EVOEYOUEVO OE Eva BELYUaTNG Ywpeo. TEétolol detypotixol yohpot onudtwy ovoudlovTtol
tuyaies dadikaotes (random processes) xat 10 EXYOTOTE ofua €ivon GTNV oucior Yot Tuy oo
UETABANTH Tou YWeou autol. Ol oTaTio TXéG UETEWES Tou oplloule Yl Tuyaleg UETABANTES
(uéomn Twr, Slomopd ¥AT) Utopovy vo emextadoly dUEcH, eV Uag evOlapépeL WBtlTERA M)
CLVEETNOT AUTOCUGYETIONG OVO TUY WY DLUOXACLOYV:

Rx (tlat2) =E [X (tl) , X (t2)] = / / $1$2fX(t1),X(t2) (I1,$2) dxydry

H cuvdptnon autocucy£tiong anodexvieTon Yooty o TANYmea UToAoYIou®Y, 1Wlng ot
O,TL €YEL VAL XAVEL UE TNV EXTIUNOT TOU QPAOPATOC TUYAWY ONUATWY. AT6 Tr oTiyUY| Tou
OEV UTOPOUUE Vol TEOGOLOPIGOUNE aVaALTIXG €val TUY O GHHA, ETLAEYOUUE VOl EQUOUOGOUUE
tov M/X Fourier 6tnyv cuvdpTtnoy auToGLYETIONG TEOXEWEVOL Vol €YOUUE ELXGVOL TOU Qdo-
wotoc tou. To péyedoc mou mpoxdntel xahelton Tuxvotnra Pdopatoc Ioyvoc (PSD) xou
YPNOWOTOLETOL EUPEMS Yiol TNV €C0YWYY| PUOUATIXGY YUPUXTNOIO TIXWY OE QUOLXE OTINTAL.

XNy mapoloa pYastd Aoy OAOUUAOTE EXTEVOS XoL UE TNV EVVOLX TWV PEAXTIN oYN-
udtowv. O dpoc gedxtol (fractal) mpoépyeton and 0 Aatvixry AéZn fractum (onacpévo)
xou mpotdinxe and tov Mandelbrot [45] mpoxewévou va meprypdder acuvihoto oy fuota
ToL O€ UmopolV vo doviehomoinloly amd €vvolec Tng ouuPaTixhc YewUeTploc. Autd mou
TOQUTACNOE UEAETWVTOG TN UOPYT TNG BReTavixAc axToypuuuhc clvor OTL auidvovTag TNy
oxEifelo TV UETPROEMY, TO TEOXUTTOV Wix0og TG auidveton eniong. AuTtéd UTOBEXVUEL TNV
OHOLOTNTOL TTOU €YEL 1) TOAUTAOXOTNTOL TOU OYHUATOS TNG UXTOYPUUUNG OF DLUPORETIXES XAl
woxeg.  £d¢ ex To0Tou, QEdxTAl ahyopriuoL XaL TEYVIXES ETLVOHUNXOY Yo VoL AVOAUGOUY
tétotou eldoug dopéc auto-opgotdtntag (self-similarity) xou emovahnmtixric TolumhoxdTnTog,
UE %UELOTEEN TNV Evvola Tng @edxtoh dtdotaong. Ilpdyuott, Tor @edxtah oyruata youv
IBLOTNTEC IOV TPOGOUOLELOLY GE Gy AUATA BIAC TUONG UEYANITERNC OO TNV TOTOAOYIXY| TOUC.
IHolhol odyopriuol éyouv Tpotodel yior TOV TEOGBLOPLOUO TNG, EVE xdmotol Tou Yo a&loToLH-
ooupe otnv mapoloa epyacia eivon 1 Minkowski-Bouligand Dimension [41] xou n Higuchi
Dimension [50]. IIoA\& guowd oyfuata SOvavtor vor ELQavicovy QedxTol WBIOTNTES, TOU
UTOPOUV UGALOTO VO DOOOUV YETOWES ONUACIONOYIXES TANPopopies. TEtoln mapadelyuota
elvow 1) Louotxr, To YAVO avdryhugo ohhd xou Tor teptocdtepa Broohuata [150, 39)].

Apyec Mnyavixng Mdadnong

O ywpoc g Teyvntic Nonuooivne (Artificial Intelligence - Al) neprypdpeton yevixd
0C 0 YOEOC UEAETNE TWV EUPUEY TREOXTOPWY (agents), Onhadt| xdlde cuoxeufic Tou unopel vo
avTiAn@Uel To TepBdAAOY TN XL VoL EXTEAEDEL EVEQYEIEC PE GTOYO TN PEYLOTOTOINOT EVOC
0pENOUS, Xt avTioTotylo UE TOV TEOTO TOU AVTIAUUBUVOUACTE TN QUOIXT| Xt ovIEMTLVY
vonuoovvn. H Mnyavix Médnon (Machine Learning - ML) efvon évac undywpog tou Al
TOL Ay OAELTAL UE TNV EXTAU(OEUCT] EUPUMY UTOAOYLO TIXWY UOVTEAWY TdVw o€ dedoueva. Ou
xUpLoTEPOL ahybpLipol pdinone xatnyoptomolobvton o uddnon und eniBredn (supervised
learning), 6mou to Gedouéva GUVOSEDOVTOL OO ETONUELOOELS TOL YENOUNE Vo TpoBhépoupe,
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xou udinon ywelic enifiedn (unsupervised learning), 6mouv autéc amoustdlouy xow xoAov-
MG TE VoL C8YOUPE OTNUUCIONOYIXG XU GTUTIOTIXG GToLyEla amd T (Blor Tor BEdoUEVaL.

To teprocdTepa netpduata ot Mnyovixr) Mddnon yenowonotody alyopibuoug udidnong
ue eniBredm. Buyxexpyéva, Siveton ocuvidwe éva ohvoho Bedopévev T xon €vo alvolo
ETUONUELOOEWY ¥ Yio xde oToyelo Tou GLVOAOU BedoUEVKY. O GTdY0C elvar Vo TEoGOLopLoTEL
ue 600 ueyolbtepn oxpeiBei, Wi ouvdptnon y = f(x) mou vo umopel va yevixeutel o€
audaipeTar dedopéva Tou Blou TOTou.  Avagépouue TEpANTTIXG 2 Baowols ahydpriuoug
aUTAC NG xotnyopioc: T yeauuixr takvdpdunon (Linear Regression) xon tic Mnyavég
Awvuopdtwyv TroothpEne (Support Vector Machines - SVM).

H ypoupur) moaktvdpounon elvon iomg o mo amhog xan maktog aiyoprduog udinong, xou
mepLhopfdver Ty extiunon g mo avTinpocwreuTxrg evdeiag Tou va TepLypdpel TNV TdoT
EVOC GUVOAOU BEDOUEVWY OE EVaV BLVUCUITIXG YOEO. LTNV amhoUcTeRr TEQINTWoT Tou
e&etdloupe, Tar OEBOPEVL LTIOXOVY OE [LoL Yeauuxt| woppn ¥y = b X, odmou:

[ 1 T4 ... Tk hn by

1 z91 ... Zo Y2 b2

X = |1 x31 ... a3 , y=| Y|, b= bs
1 21 ... ZTnk UYn by,

AL OL CUVTEAEOTEG b EXTUMVTOL UECK TNG EAXYLOTOTOMONG TOU GQIAIATOS:

b = arg min|y — bX |3
b

Ou Mnyavéc Awvuoudtwy TrootipEne (SVM) [32] etvan évag amd Toug To anodotixolc oh-
Yopriuoug xatnyoplonolnong, xadoe YENOWOTOLEl TETEUYWVIXO TROYEUUUITIONS TEOXEWIE-
vou Vo Tpocdlopioel BEATIoTA uTEpETTEdN TOL Yot BlorywElCouV TIC XAAOELS TWV BEBOPEVLY
07O YWEo. OewpolUe Ydpy amAoTNTAC To duadWd TEORANUN: Eotw éva cbvoro and N
OLvOoUATOL ELOODOU L1, ..., TN XL AVTIOTOLYEC EMUCNUEIWOEL Y1, ..., YN OTOL T; € R4 »ou
y; € {—1,1}. 'Oha o unepeninedo 670 R¢ UTOPOLY VoL EXPEACTOVY UECHL EVOSG DLAVOOUATOG
w xou wog oTadepdc, OTKS QatveTon oTNV eElOWOT):

w-xr+b=0
‘Evo tétolo unepeninedo (w, b) Yo dtaywpeilel emtuyde tar dedouéva Gtov

xan entiong otay umopel va yevixelel anodoTixd ot vEu dedouéva. To TeTporywvind TedBAnua
mou TpoxOTTEL emAlETL Ye TN fordeia tohamAaciacTov Lagrange. Trdpyouv ouwg mepin-
TWOEIC XUTAVOUWY OEDOUEVKDY Tou Oev elvan “ypauuixd” dloyweloluee and LTEpETineda. e
ouTY TNV TERIMTWOT), Yo Vo yevixeloouue Ty SVM npocéyylor, unopolue va 0plGoule o
avtiotoiyton z = ¢(x) (nuprivac - kernel) yéow tng onolog vo petacynuoticoupe ta Stavio-
HOLTOL TWY OEBOUEVWV GE EVOLY GANO Y 1RO, GTOV OTOLO O BlaYWELOUOE TOUC Efval EUXOAOTEQOC.

Nevpwvixd Aixtua

H mo eupéwe yenowonootuevn uédodoc udinone onuepa otnpileton otny évvola Tev
veupwvixov dixtiwy (Artificial Neural Networks - ANN), evéc povtéhou mou emiyelpet
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VO TPOCOUOLOGEL TG AELTOURYWOTNTES Tou avipnmivou eyxepdhov. H Baowr uroloyio-
T povdda twv ANN eivar o veupwvac (perceptron). Katd avtiototyio ue tov Proloyind
VEUPWVY, TO perceptron 6€yetan évor ovolo €l060wv Tig omoleg adpoilel, epapudlovtog
avéroya Bder, xaL YENOWOTOLEL Uiot GUVERTNOT EVERYOTOMONG TROXEWEVOU Vo DLy wploet
Ti¢ €€600UC OE CUYXEXPUEVES XAdoELC. Evag VEup®vog eXTadedeTon 0TNY XoTnyoptonoinon
dedouévev Péow tou olyopliuou Perceptron [127]. Tlpoxewévou wot660 évo uovtého va Ud-
Vel TOAOTAOXES, UN) YEUUUXES CUVIPTAOELS, YENOULOTOLOUVTOL UEYLTEXTOVIXEC GUVOUAOUEVWY
VEUPOVWY GE BLoxpLtd eNineda, OTOL Xdde VELPWVOEC GUVOEETAL UE GAOUS TOUS VEURWVES TOU
TEOMNYOUUEVOU ETUTEDOU XAl XUVEVAY TOU ETUTEDOL TOU, OTWS Gutvetar oto Figure 1. Tétowx
olxtua exmandevovVTAUL UEGW EVOS ahy0plduou axoAouDiaxo) UTOAOYIOUOY TWY HETABOAMY TWY
Bopdv touc (Back Propagation), evéd n exnoideuor toug eléyyeton and ¢ ETONUEIDTELS
TWV OEBOUEVOY UECE ULIC CLVEETNONG XOGTOUG.

Input layer : Hidden layers i Output layer

Figure 1: Nevpwvixd Aixtuo 5 emmédwy, Tou TepLEYEL n Ll6OB0US, 3 xpuPd eTinEd xou Evar ENTESO
n e£6dwv. Eivon mopdderypa evic Podiod veupmvixol dixtiou (DNN). TIny#: [18].

ITeonyeéva Ocuata Nevpwvixwy Awxtdwy

To vevpwvixd dixtuo tou Figure 1 anoteheltan amd nEpLOGOTERU TOU EVOG xEUPS ETUTEDAL.
Atxtuo pe vt Ty WdtnTa ovopdlovton Bathd Nevpwrikd Aiktva (DNNs) xou o topéag
mou aoyolelton pe TN Yehétn toug ovoudletow Bahd Mdinorn. Adydprduol xan povtéla
Bordide udinone €youv wohc mpdogata yevixeulel otny oyetxr Biioypapia, Aoyw TwV
LOYVPWY TOUG BUVOTOTATLY XL TN XAVOTNTOS Toyelag exTToldEUCT)C TOU TROCHPEPOLY T
o0y ypova utohoytoTixd cucThdata. H xupdtepn dlagopd toug elvor 1 duvatodTnTa Vo €€8-
YOUV YOROXTNEWOTIXG amt6 Tal OEDOUEVA Xou VoL T GUVOUALOUY OTOTEAECUATIXG GTA XQEUPA
TOUC EMUMED, XYTL TOU OTIC S TOPEA HEYOBOUS YIVOTAY YELOOVIXTIXA.

YOVTOU WOTOCO EYLVE AVTIANTTO WS OLPORETIXOL TUTIOL BEBOUEVWY ATAtTOUY OLOPOPE-
TIXO TEOTO AVTWETOTIONG. TNV ENEEERYAGTA XL OV VPLOT| EXOVOY, YIo TURABELY U, TEO-
wWnpay tor Buvehtixd Nevpwvixd Aixtua (CNN) vy v e€aywyr xou xatnyoptonoinon
TV Yopoxtnelo Tixev toug. H 1déa Baotileton otoug xhaotxole akyopiduoug TroloyioTixrg
‘Opoong Tou YENOLOTOLVUCHY TURTVES (kernels) mpoxeyévou va e€dyouv axuéc, ywvieg 1)
dAho yapaxTnelo Tid. Méow twv akyopliuwy Bathde uddnong, Ta CNNs exnandelouy edind
TPOGUPUOCHEVOUC TUPNVEC OTA EXJOTOTE Oedopéva. 'ExTote, 1 yenowotnta Twv dTimy

24



List of Tables 25

aUT®V Eyel eCamhwUel xou TOMES OLapopETXES apyITEXTOVIXES Eyouy mpotaldel otn BBt
oyeapio [140], xdmotec ex twv onoiwy Yo YETNOWOTOLCOUUE OTNY EQYACIN AUTH ¢ TEOTUT.
Mt dhhn, enfong dnuogidrc, xotnyoplor VEUPWVIX®Y BIXTUWY Elvar Tor ovadpouxd dixTuo
(RNNs) to omofa oplotnray mpemtapyxd yior Ty avdAuoT dedouévmy Ue Ypovixh cuoyETion
(ypovooeipée, oetptaxd dedopéva xhr). Ovopdlovton €tal emeldn epapuolovy tny (Bla emed-
epyaota oe xdle oTolyelo pag yeovooelpds, AauldvovTag utodn Tponyolueva GToLYEL.

Téhoc, uio xotnyoplo ahyoplduwy mou Yo Talouy oNUAVTIXG POAO GTO EPELVNTIXG XOU-
udtL tne epyaotag ebvon ) mohutpomxt| wddnon (Multimodal Learning), dniadr n pddnon
ToU TEPLAAUBAVEL BlapopeTind €0 dEdOPEVWLY. TTpdxelton Yior Ylal VAT TUGGOUEVT) EPELVNTIXT)
TEPLOY T, ML X0t OAO %ol TEQLOGOTEPA OEdOUEVY YivovTar Blardéotuo oe OAO xaL TEPLOCOTERES
uoppéc. Emyeipeitan €tol va tpoceyyloTel mo motd o tpémog mou o dvipwrog avTihouBdve-
Tou xou e&dryel otovyeia yio ot xatdo taor. Ou adyopripol Podhdc udidnong Beloxouv wovind
EQUOUOYT) O QUTH TNV TEPLOYT WG XaL €YOUV TN BLVATOTNTA Vo EEAYOUY GUYXEXQWEVAL
Yoo TNEo Td amd xdle eldog TANpogoplag, TEOXEWEVOU QUTA VoL BEOLY CUUTANEWUATIXG
oTa exdoToTE TROBA T xatnyoplonoinone. H ocuminpwuatixdtTnTor ouTy| ETITUY Y dvVETOL
elte Ue TNV amd x0LVoU GUYYWVELUST] Xt ETECERY UGN TOUC WE €V BLAVOOUA YORAUXTNELO TEXMY
elte PETPAOVTOC Xou a&lohoYOVTAC TNV odoldTNnTd Touc. H teyvinr auth ovoudleton Metpwxr
Mddnon (Metric Learning) xou otoyevet, avti vo mpoBAédet pior ouyxexpylévn xotnyopla,
var TeoPAEdeL TNV ouotoTNTa (EUYOY BEBOUEVWY PETK TNG ATOCTUONG TWV BLUVUCUATOY TGV
YUQUXTNPLO TIXGY TOUC OTOV EXAOTOTE DLOUVUGUATIXO Y (QO.

Multifractal Avdivon Xnudtwyv HET

LNy TeOTY EVONTA TEWUUATLY ACYONOVUACTE UE TNV AVATTUET XOUVOTOUWY ohyopliuwy
yioe Ty enelepyasia Twv fractal xow multifractal WiotTwv Twv onudtwy HEL xododc xou pe
TO XUTd TOCO AUTEC OL WOTNTEG UTOOELXVIOLY cuvancUnuatxr TAnpogoplo. To HEIL €yel
eupewe xadepmel g Eva QEIXTUA GHUN Ue TOAOTAOXT DOUT| 0L ONUOVTIXES AANOLWOCELS
AoYw YopUfou, xdtL mou €yel oTadel eunddlo oTIC TEOOTAVEIEC CNUACLOAOYIXNG AVIAUCHG
Tou. Iopd\” autd yenowonositon eupéng otn BiBAtoypapio yioo Avoryviplon Yuvonoifuatog,
%xo00g amodideL Wit LPNATC oxEifelag yEovixnY avdAUCT XL T YPOVOCUYVOTIXG YoUQUXTPLO-
T TV puiuGY Tou Eyouy amodery el onuavTtixol cuvacdnuaTixol delxtec.

Ppodixtah Avaivon oe IToAaniég Khlpoaxeg

Amplitude
=\
Amplitude

)

0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 04 0.6 08 10
Time (sec) Time (sec)

Figure 2: Avanopdotaon tng Mopgoroyuic Kdhudmne Minkowski yio évo Selyuo ofjuatoc HET.

HapdT €youv mpotadel TOMES exBOYEC UTOAOYLOUOU TG QEdxTaA ddoTaorg evog HET,
N YUWONG oL UN YROUUIXT HOP®T] TOU CUYXEXPWEVOL OAuaToc ETBAAAEL TNV avalhTnon
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mo mohOThoxwy TeYVixwy. Eotidlovye cuyxexpéva otny unddeon nwg ta HEL eugavi-
Couv BLUPOPETIHES LOPYES TOAUTAOXOTNTOC O DLUPOPETIXES HAUAUXES, XATL TTOU ETUPEQCEL Lo,
UETABANTOTNTA 6TOV UToAOYLOUS TNg BidoTaong. Lo Ty avtiuetdmion autol Tou {nThRuaTog
TPOTEIVOUNE TNV EQUOUOYY| TNG PEAXTUA BLECTUCTS TOANATAWY XAV (Multiscale Fractal
Dimension - MFD) [90], evog ahyopiduou mou Boacileton otn pétenon tou epfadod tne ova-
TOEAC TUONG TOU ONUATOS O TOMNATAEC Aluaxes, 6Ty auTO XAAUTTETOL Umd €Vl XAAUUUN
dloxwy avdroyng axtivag, HE xEVTEa oTo oTueiot TOU GHUNTOS (xo’()\uppa Minkowski). O
aAyopLiuog elvor YveoTtog og “Médodog popporoynhc xdaudng” (Figure 2):

‘Onwg elvar Aoyixd, To eufiadd Tou xahduPaTog o xde xAlano pog divel uio SlopopeTixy
OTTLXY YLOL TNV TOAUTAOXOTNTA TOU UTO EEETACT OTUATOC. DUYXEXQWUEVAL, ATOOEXVIETOL TG
70 uPodd awtd Ap(s) cuvdEeTan Ue TI UETPOVUUEVYY XAlpoxa s uéow Tne oyéang

log[Ag(s)] = (2 — D)log(s) + constant

omou D n Unroduevn gpdxtah dwdotaon. T vo e€dyoupe TIC TEPLOCOTEQES ONUAVTIXES
ueTaBoAéc otV TOAUTAOXOTNTA, EQPAPUOLOUUE TOV kYoo GE €va Uxpd mapdiupo omd
xhponces (oxtiveg Sloxwy) ot avomoplo TOVUE T QEAXTAA BLEC TUCT| TOU TPOXVUTTEL GUVOETH-
OEL TOU YpoVou (@poxtoypouua - fractogram).

O dedtepog alyopriuog mou Yo yenoiwonotjoouue etvar autog tne Multifractal De-
trended Fluctuation Analysis (MFDFA) [62]. H pédodoc Baociletoar otnv extiunon tou
Hurst exdétn H mou elvon ocupmhnpouatind péyedog tng @pdxtah SEoTaoNG, GUUPWYIL UE
Vv oyéon D = 2 — H. Acdopévrg ec6d0u x[n] ufxoug N, o ahyopriuog unoroy(lel mpohTa
10 ouscLEEUTING dipowoua y[n] = SOV (2[m] — p.) xoun 10 yweilet ot ur-emxaAUTToUEVY
Topdiupa. XTn cUVEYELX, agoupeitar amd xde uTo-orua 1 factxr| Tou Tdon uéow Ipauuinrc
Hohvdpdunone, olTwg OOTE 1) TENXT UOPPY Vo TEQLEYEL UMOXAELO TG TIG UMY QOUMIXES
TOAUTAOXOTNTEC TOL oYjuatog. Téhog, unoroyiletan n RMS tiur xde tétotou turuatog xon
hopBdveton w¢ é€odog 1 péon RMS Ty yio dha tor Stondéotua topddupa.

To amotéheoyo authc TNg dladixaciog elvar €vor Bldvuoua Ty, plo o xdde droadéoyun
xhponcor avdhuong (avtioTtoryo pe To uhixog twv topadipny). o edxtol ofuota, 1 yeopuxh
TOEAOTUOY GTOV GEoVa TwV XAudxwy elvon evdeio oe log-log avamapdotoaoy, utodewviovtog
Vv o0 Tou exteTinol Vopou. Liuguva Ue autdy, 1 xhlon tng eudelag etvon 1 extiunon
Tou exvétn H. T va petafBoldue amd tnv amhy| pédodo DFA oty Multifractal DFA, apxel
omAd vor utohoylooude TV e Ty Oyt xotd RMS adAd xatd uio oepd and pomée g.
(d¢ amoTEAEOUA, TEOXVTTEL Lol DLUPOPETIXT] YEUUUT| Yiot XGUE POTA Tou, GTNY TMERITTWON TWY
pedoctak onudtoy, VYo elvon tapdiinieg eudeieg (xowvd H) eved ota multifractals Yo elvou
ouyxhivouoeg Tpog ueyahiTepES A luaxes, omwe galveton oo Figure 3.
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Figure 3: MFDFA oe delypo HEI: AnewoviCouue 16 DFA ypopuixéc avomopactdoelc tne Fy(s)
poli e ) ypapux teéBredn tne tne xiiong mou npoodiopilet Tov yevixeupévo Hurst exdétn H(q).
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To HEI' wg Multifractal ¥ruo

Téco 1 mopoloa, 660 xou 1 AVIAUCT) TNG ETMOUEVNS evotnTog, Bactlovtoan oTto clvolo
oedouévwv DEAP [65], to omolo mopoucidloupe avohutixd oto Appendix tng epyooioc.
Yuvoruxd, To DEAP ebvar éva eupltata yenowonotoduevo cOVoho BeBOPEVLY Yio TO-
AUTEOTIXT| avary VwpLloT cuvancluaTog, Pe éugact ota Brohoyixd orpota xan Wiaitepa To
HET'. Ta dedopéva mpoépyovton and 32 avidpmnouc mou mopaxorodincoy 40 emheyuévol
HOLOWE XALT TOU EVOC AeTToU V6 YvoTay xatarypagr) Tou HEL, didgopwy dhhwy Bloloyixmy
oNudTLY xooe xou (o€ Yepolc) 1 éxppoon) Tou Tpocntov. Metd v napuxololinor xdie
%NT, 0 ex40TOTE CUUUETEYWY Poduoloyoloe To cuvalcUnua TOL EVIKOE GTY) BLUYUCUATIXT)
avamopdotoon (valence, arousal, dominance, liking, familiarity). To HEL' pyetpridnxe oly-
pwva pe To xadiepwuévo cvotnua 10-20 [58], ue 32 nhextpddia. Eyelc ypnopwonoolye to
mpoenelepyaouéva dedopéva HEL Tou DEAP, ta omola xou €youv unootel uroderypotohnhia
ota 128Hz xan {ovonepatd @uitpdploua oTig PmdvTes O uéyet xou .

o ) Siepelivnon Ty @edxtal yapoxtnelo Tixey Twv HED onudtev npota edetdlouue
Vv otaux6tNTé Toug. XpnowonotoUue to Augmented Dickey-Fuller (ADF) Test [37] xou,
TEOC EXTANET UG, XAUTUANYOUUE OTO OTL Tal BEBOUEVOL Hog Elvol aUoTNEd OToTXd, BNAOH
ol BaoES OTATIOTIXES TOUC PETEXES BV aAAdlouY oe UEYdAN xAluaxa. Metd and ava-
TopoywYr) TN dladixactauc mpoetelepyaciog TwV OEBOUEVWY, ATOBDOUUE TNV TOEATNEOV-
uevn otatixétnTa 6To {wvomepatd @uitedpiopa tou HED, mou anoxheiel tig younhotepeg
ouyvotntee. Boolwoyévol e autd, UTOPOUUE Vol UOVIEAOTOLACOUNE To OEDOUEVI IS (G
fractional yxoouclavé Bépufo (fractional Gaussian noise - fGn) ehdyiotov H. Tlpdyuatt,
Teéyovtac tov DFA ahyopriuo yio tov utohoytlopd tou exdétn, napatnoolue Twe oTr CUV-
TEUmTIXY TASlodnpla TwV 8edouévey, o exdéTne mpooeyyilel To undév. Autd umodeixviel
o eCoEETING UEYAAN PpdxTol OtdoToon xou war Tohd fragmented Sour. H ewdva ouvth
CUUPWVEL UE TNV TopaTNEoLUEVr oTatixoTnTa Twv fGn onudtwy xa @avepmvel apvnTixég
YPOVXES CUOYETIOEIC OTN) BOUT| TOUG.

Elaywyn Ppaxtoah XopaxTnploTixmy

Yy avdhuot| pog a&tonoolue toco ta dotévta HEL 600 xou Eeywplotd Tic ouyvotinég
TOUG UTAVTES, exTOC TNG U Tou Bev avagpépeTtar ot Biloypapio we xplown oe cuvoncin-
wotixolg detxteg. O umdvteg Aapfdvovton ye (wvomepatd QUATEAOIOUN OTO apyixd GHUL.
Xwpllouye enlong o NhexTEodLo ToL Yo e€eTdo0UNE, BlahéyovTag 12 UTEoCTA-0pIoTERY XKoL
12 umpootd-0e&1d nAexteddla, oe cuugmvio ue Ty oyetixd| BiAoypapio [178]. Mta neipduatd
HoG Yot GUYHEIVOUNE TOL YORUXTNELO TIXE TRV TROTEWOUEVLY alyoplduwy ue Boaoctxég uedodoug
TOU YENOLIOTOOUVTAL EVREMS, TNV TUXVOTNTA Gdouatos loyvoc (PSD) tou Sebtepou ool
Tou ofjuartog xou Ty Higuchi gpdyctak Sidctoom tou ofuatog, Yetd and napodupomoino.

Yyetwd pe 1o MED yapoxtneiotind, yweiloupe xar €8¢ to ofua o 7 mapdiupa Tev
15 sec, emxovntopevo xotd 50%. T xdde xoppdtt utohoyilouye T QEAXTOYEOUUO YL
xhipoxeg amod 1 we 274 onueio xou hoBdvouue ooy dSdvuoua yoeaxTneELo Ty 30 yeouuxd
OELYUOTOMTTNUEVES TWES oo xde @poxtdypauua. BEve meipouotiotixaue o Ue autd To
OEOOUEVL, 1) TPOTEWVOUEVY 000G €lvon 1) E€AYWYT) UEOTIC Xou OLIUEOTC TN Xl TNG TUTIXAG
amoxAlong Ty 7 topaddpwy Yo xdie onueio, xataifyovtag oe eva 90D didvuopo. Myetind
ue ta MFDFA yapoxtneiotind, yenowomololue we didvuoua Ti¢ TYWES xot TETUNUEVES TOU
multifractal gpdopatoc D(q), Tou TEOXITTEL PECK TWY OYECEWY:

D(q) = d'h(q) —t(d), h(g.) = t(qu — Ziqnll), t(q) = qH(q) - 1.
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IMetpapatixny AZioAdynom

Hporypatonotolue metpdato 1660 Yo xdie évay cuuuetéyovta Eeywpelotd (subject de-
pendent - SD) 660 xou and xotvol yior Ghoug Toug cuppetéyovtee (subject independent - SI).
Metd tnVv e€ory YT TWV YOQUXTNELO TIXWY, EVOTOLOVUUE TO GUVORO TOV XAVOALOV-NAEXTEODIWY
xou To TEMXS Bidvuopo divetan we eicodog oe ot Minyovr Atavuoudtwy Troothene (SVM).
Qd¢ EMONUELOOELS YENOWOTOOUUE TIg UETEES Valence xau arousal o€ EeywploTd TelpduoTa
duadixric xotnyoplonoinong (high - low) ue épro v evdidueon Boduoroyio (5).

Features H Channels ‘ Raw Signal ‘ Alpha Band ‘ Beta Band ‘ Gamma Band ‘ Combined

PSD 0.642 — 0.652 | 0.598 — 0.645 | 0.629 — 0.639 | 0.635 — 0.620 | 0.631 — 0.648
HFD Front 0.615 — 0.638 | 0.605 — 0.655 | 0.591 — 0.643 | 0.601 — 0.634 | 0.638 — 0.645
MFD Left 0.620 — 0.661 | 0.626 — 0.669 | 0.591 — 0.653 | 0.594 — 0.636 | 0.612 — 0.661
MFDFA 0.577 — 0.662 | 0.571 — 0.643 | 0.577 — 0.649 | 0.592 — 0.651 | 0.586 — 0.658
PSD 0.627 — 0.644 | 0.616 — 0.645 | 0.637 — 0.641 | 0.623 — 0.627 | 0.623 — 0.646
HFD Front 0.606 — 0.644 | 0.604 — 0.655 | 0.595 — 0.633 | 0.572 — 0.627 | 0.623 — 0.644
MFD Right 0.607 — 0.655 | 0.605 — 0.652 | 0.566 — 0.652 | 0.602 — 0.641 | 0.597 — 0.657
MFDFA 0.587 — 0.655 | 0.573 — 0.641 | 0.603 — 0.650 | 0.573 — 0.620 | 0.586 — 0.652

Table 1: AxpiBeia yioo T Subject Dependent meipduoto otn popgr: Valence — Arousal

Features H Channels ‘ Raw Signal ‘ Alpha Band ‘ Beta Band ‘ Gamma Band ‘ Combined

PSD 0.554 — 0.569 | 0.547 — 0.564 | 0.549 — 0.562 | 0.553 — 0.570 | 0.546 — 0.564
HFD Front 0.541 — 0.601 | 0.552 — 0.588 | 0.541 — 0.616 | 0.545 — 0.584 | 0.585 — 0.621
MFD Left 0.553 — 0.606 | 0.566 — 0.631 | 0.545 — 0.618 | 0.554 — 0.580 | 0.559 — 0.615
MFDFA 0.569 — 0.630 | 0.546 — 0.600 | 0.545 — 0.598 | 0.532 — 0.545 | 0.553 — 0.608
PSD 0.553 — 0.580 | 0.557 — 0.560 | 0.558 — 0.573 | 0.552 — 0.579 | 0.555 — 0.575
HFD Front 0.525 — 0.573 | 0.566 — 0.582 | 0.544 — 0.595 | 0.549 — 0.567 | 0.571 — 0.605
MFD Right 0.552 — 0.601 | 0.556 — 0.605 | 0.547 — 0.587 | 0.545 — 0.588 | 0.560 — 0.607
MFDFA 0.555 — 0.619 | 0.552 — 0.580 | 0.549 — 0.591 | 0.539 — 0.584 | 0.544 — 0.599

Table 2: AxpiBeio yio o Subject Independent neipduata otn popen: Valence — Arousal

To amoteréopata TV x0plwv TeEaudTwy napatiievtar ota Tables 1 xon 2. Yrnuewo-
VOUUE XATORY S TNV AVOUEVOUEVT OLdxplon aviueso ota 2 (o mewpopdtonv, SD o SI, tou
avadeviel Ty wiotnTa Twv HED onudtwy va mpocdlopiCovton v moAlolc amd atopxols
mapdyovteg. Ta PSD yapaxtnpiotind gotvetar va amodidouv teptocdtepo ota SD mepduota,
6mou yio To raw signal Aaufdvoupe oxpiBeto 64% otny teéBredn tou valence xou 65.2% tou
arousal. AvtiVeto, 610 BeUTEPO TivaXO TUPUTNEOVUE ONUAVTIXY) TTWOT), CUYXELTIXE UE SAhaL
YAEUXTNELO TG, XYTL TOU UTOBEXVUEL WS T GLYVOTIXG YapaxtneoTixd tou HEID ennped-
Covton omd To ouvaloUnua, arAd Blapépouy and dtouo oe dtoyo. Avtideta, ol multifractal
uedodol amodidovy xaAd xou oTar 2 €ldN TEWAUATOY, Wiwe oTNY avayvmelon Tou arousal,
OTou METUYalvouv 5% avénomn. Xto SD melpoapa, Ta MFD dhga putuol xo tao MEFDFA Twv
HEI" netuyaivouv méve and 66%), eve ta udpmrotepa oxop oto SI ayyilouv 1o 63%.

Emxevtpovovtag meplocotepo oTig pdxTal uedddoug avayvoptong, to multifractal
Yopoxtnelo Td eggaviouy mopduotla anodoor ue v Higuchi didotaon oto valence xou
xohOTEPN amod0oT 610 arousal, EVioy 0OVTUC TEQULTER TNV ELXOVA TS 1) TOAUTAOXOTNTA TWV
HET onudtwy og molamhéc xAdoxes umopel vo etvon BeixTng cuvonoUnuaTixic Expeoons. e
eva Telpaor OEVTEPOU YPOVOL PUUVETAL ETLTAEOY TG O GUVOUNOHOS TWV PEAXTUA BLAC TACEWY
BehTudvel T EMBOOELS TOU HOVTENOU OTNV avary VpLoT) arousal, 1iwg 6cov agopd tov dhga
eudud. Mnopolue mAéov va tpoBhédouue to arousal e axpifBeio 67% xan 64% ota SD xou
ST nepdpata avtiotorya. Téhog, onuoavtixy tapathenon cuvioTd xou 1) BeATiwpévn enidoon
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TWV ONUITWY and TO apleTEPS UEPOS TOU EYXEPAAOL GE OYEaT UE TO Oe&l, EVE 0 GLUVBUNO-
UOC TOUC O (alveTal Vo aLEAVEL TIC BUYATOTNTES TOU HovTéov. Katohnntxd, eivon eugpoavég
mwe to multifractal yopaxtneotind twv HEI' onudtwy xou ol apvntixéc Toug cuoyetioelg
umopolV var Angdoly unddn 6To GYEBIACUO CUC TUATLY AVAYVMELIOTC CUVALCYAUATOS.

Avatponixr) MdaOnon petalb HEI' xow Mouvouxng

H Awrpomxsy Mdinon (Cross-Modal Learning) efvon pia xotnyopior ahyop{Quwy mo-
AuTpoTXAC Udinong Tou anooxomnel oTny e£e0pEDT) GUVOETIXGY GToLYElwY PeTAl) 2 1| TEQLO-
06TEPLV EWOWY dedoUEVWY. Ta dedopéva enelepydlovton wote va TeofAndoly o évay xowvo
BLOVUCUOTIXG Y DEO, amd 6Tou Ho uTtopoloauE, BivovTag el0680Ug £VOC Eldoug, Vo eEAYOUUE
oyeTr) TAnpogopia and dhho eidog dedopévwy. Edow Yo emxevipwiolue otn dlatpomixt)
udinon petald HEI' tou cuvérou DEAP xon Twv Houciney onudtey Tou yenolomotinxoy
0¢ ouvonodnuotixd cpediopato.  Muyxexpiuéva, Tpotelvouue éva poviého mou Yo umopet,
avahOovTag Tor 2 ldn dedopévev, va xdvel axpBéotepec TpofAéelc ouvancViuaTog, ahid
XL VO ETLOTEEPEL EXTYNOELS ouotx®y xoupotiov ot HED “cpwtruota”, dniady| etc6doug
Yo Ti¢ omoleg avalnTOUUE TIC TLO OUOLES AVITUQPUOC TAGELS LOUCIXMY XOUUATIOY OTOV XOLVO
OlovuopaTind ymeo. Me tnyv allonoinom tng cuvduaoTixAg auTrg Thneogopiag yio xadévoy
OO TOUC GUUMETEYOVTEC TOU TEWRAUATOS, €€AYOUNE Yerowda oTolyela oyetxd Ye tn @oon
™G MOVOWAG avTIANPNG xon TIG YPOVIXES TNG METOPBORES.

I'epupwvoviag To Xdopo

Oa ®UTAGKEVAGOUPE EVa WOVTEAD UE 2 Pactxole xAADOUS - VELpWVIXA BixTua, Evay Yid
TOL EYXEPAUALXSL XOU EVOLY YL TO LOUGIXE. GHUATA, €V Vol AELOTOLCOUPE UO XOLYOU TOL XOLVEL
YARUXTNELOTIXG TOUC XL TIS ETULOTNUELOOELS TOUS, OTWE TEOTAINXE GTO [177]. LUYHEXQUIEVAL,
€youpe oTn diddeon poc wa cuAoYT and n Celyn HEI-uovouic, mou dnhdvoupe we T =
{(z¢,2%)}1,, 6mou z¢ etvon to HED otoyeto Tou i-oot00 Lebyoug xou z¥ o avtictolyo
nouowd epéthopa. Kdde Lebyoc ouvodeleton and wo cuvanodnuatix| etxéta y; € R? yio
T xatnyopieg valence xou arousal. I'ta xde Celyog 4, otdyog yag elvon va uddouue uia
Srovuopatie popeh u(i) = f(xf,Y) € R? vy 1o HED xou v(i) = g(2?,Y?) € R? yu
TO HOLCIXO XOUPdTL, 6ToL d Elval 1) BLAOTAGT) TOU XOLVOU BLUVUCHATIXO0) YMEOoU XL Y ¢, y?
Ol TUPAUETEOL TTPOG EXTALOELUCT] TV 2 GUVIRTHOEWY, OUTWE MWOTE VO IXAVOTOLOLYTOL OGO TO
BuvoTov ot e€Xg BLOTNTES: o) 1 opotdTNTo UeTadD oTolyelwy TNne (Blag xatnyoploc va elvou
ueyohUteEn amd auTH YETAEY GTOLYEIDY TOU aviXOUY OE BIIPORETIXES XoTryoples, xat B) 1
OMOLOTNTO TOU EXAGTOTE (EUYOUC BEBOPEVWLY Vol elvan ETlong HEYARDTERT Al TNV OUOLOTN T
Tuyaiev CEuY®Y UETAL) TWV 2 EWBOV DEBOUEVLY.

Urll o Trp1| A3 | 0 [ AF4 [ Fp2] O
rll F7 T3] o [Fz] o | F4 ] Fs
rl{Fes| o [Fca | 0 [ Fc2 | o | Fes
rll 771 c3| o [cz] o | ca | T8
Ur[rllces| o [cpr| o [cP2| o [cps
Pz P3| 0 [Pz] 0 | Pa | P8
0 |0o1|PO3 |0z PO4| 02| O

Figure 4: H apyitextovixy) tou HED' orjuatoc e10660u, ToU avamaploTtd T @uolxr) Totohoyio Tewy
NAEXTEOBIWY GTOV avipnTivo eyxépalo, o éva 9x9 TAéyuo.
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To yopoxtnelo Td TV onudtwy tou Yo allomotfooups eivon onuavTixd, o0TnS WOTE
VO UTIOPOUKE VoL VLY VEUGOUUE CUGYETIOEIC avdueoa ota 2 €lon dedouévwy. ‘Ocov agopd
to HEI', aflomololye tn Blao TotixdTntar TV 32 Xavahldv OOTE VoL Td OPYOVWMOOUUE OF €Val
TAEYUO TOU Vo TEOCOUOWILEL 0TNY Tomohoyla Tou Tov avipmdmivo eYXEParo, OTwS (GauiveTol
oto Figure 4. Kat’ autd tov 10610 umopolue vo e€4youus TOGO YwEixr) OG0 X0l YEOVIXT
mhnpogopio yia Ta HEI' ojuota, yenowonowwvtag éva 3D Xuvehxtind Aixtuo 3 emnédwy.
LYETIA UE TOL HOUCIXE. OTjuATO, XL ETEWDT €lvon TEPLOPIoUEVDL Ot apLiud, emhéyouue va e€d-
YOUUE EVOIIUET YOQUXTNELO TG HECL UETUPORAS Udinomg (transfer learning) ané to Mu-
siCNN [118], éva cuvehixtind BixTuo, EXTUBEUUEVO TaVe OE YIAEOES HouotXd xopudTior and
ueyohUtepa alvoha. To 2 vevpwvixd Bixtua exToudebovToL aEyixd EEYWELOTA ToVL OTIC
EMONUELOOEL TV DEDOUEVMV TOUC XUl OTH CUVEYELXL TEOCURUOLOVTOL WS GUVORO PECK TNG
TEOBOAAC TWV BlavuoUdT®wY E£600U GE €Val X0LV6 ENUITESO SIXTUOU, TTOL AVATUPLE TE TOV XOLVO
Savuopatind ywpeo (Figure 5). Kdde dixtuo exnoudeteton Eeymptotd yia tny teéBredn tou
valence xou Tou arousal, w¢ mpoPAfjuaTta duadhc xutnyopomoinong. ‘Onwg xow oto mpo-
NYOUUEVO TElpoaL, ETOL XL €D YENOLLOTOLOVUE TNV EVOIIUEDT) TWUT TOU EVPOUS TMV ETIXETWY
WS TO Oy weLoTixd dpto oe high xau low xhdoeic.

Label Loss

64D 64D| Triplet Loss

Label Loss

2
D G

Figure 5: To mpoteivouevo 6ixtuo 2 xAddwv yio To HET' xon tar avticTouyo povowd orjota.

H IToAuTtpomixy Aradixacioc Madnong

Y1o)0¢ pog elvon vor TpOGOLORICOUUE €Vl XOLVO Y0 GTOV onolo Ta delyuota TV 2 Ol
QUPOPETIXV ELBMY BEBOUEVLY VL UTOPOVY Vo EPPaVilOUY OUOLOTNTES OYETIXG UE TNV CUVILCVT-
uotixy| Toug TAnpogoplo. XenowwonoloUue Aomdv Evay cuVBUNCHUS 4 CUVIPTACEWY GOAAUA-
TOC YL TOV TPOCAVATOAMGUO TNS Bladxasiag exnaideuone. Ol mpdTol 2 TapdyovTES TEoXTIXd
unoroyilouy To c@dipa TV TEOBAEPEwY Tou BxTOouL Yia Ta 500 £ld1) BeGOUEVWLYV:

J1 = Mi1CE, + A\2oCEy

[t pelwon g andcTaong TWY GUOLLY BEBOUEVWY GTOV XOLVO YMEO TOU dNULoUEYOoUUE,
YPTOUWOTOLOUUE 2 UETEIXES CUVOIPTACELS TELOVY E1060wY. Tlpuxtind, n mpdtn cloodog xahel-
TaL 00Ny oS (anchor) ot ot emopeveg ebvar €var delyuar (Dtag xon SLapopETIN g xatryoplog,
avtioTtorya. Ou cuvopThoelc auTEC PETEOVY TNV amdoTacy YeToll Twv 800éviwy onueiwy
(e8¢ Y ENOHLOTOLOUUE AOC TAUCT, GUVINUITOVOL), ETLYEIRMYTAUC VoL 00NYHOOUY 0T Pelwon Tne
anoG TAoNE UETAEY TOL 081 YOoU ot Tou “OeTnol” Tou BelyHaTOS, TAUTOY POV UEYUALVOVTIC
TNV amOoTooT PE To “apvnTind” tou delyua. Ou 2 cuvapTtioelg dnhwvovTto we eCAC:

Jo = max (cos(u, — v,) — cos(ug — uy), 0)
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Js = max (cos(u, — vp) — cos(ug — vy,), 0)

EVE 1) TEAXT) CLVEETNOY) GPAAUUTOC EIVAL EVAC YRUUUXOS GUYOUAOUOC TGV TROUVAPERUEVTWV:
J =T+ XJ2+ As3Ts

H xOpia mpdxhnon mou xoholUacTe Vo AUGOUPE OTO GUYXEXPUEVO TROBANUa elvon 1
OTNUOCLOAOYIXT) AMOGTACT) TOU ETUBAAAEL 1) BLUPOPETIXOTNTA GTO €00 TV BEDOUEVLYV, XAl
OLYXEXPEVO OTIWE aUTH eExPEAleTal OTIC ETONUELOOELS Toug. To 40 pouoid xouudtia Tou
DEAP éyouv aveldpTtntec EMONUELDOELS, OL OTOIES OE UEPLXES TEPLTTWOELS AVTIXEOVOUY TIC
uéoec Badpohoyleg mou toug €youv avatelel oto melpopo. Emiéloue vo amocUpouye amd
™V avdhuot| pog 6/40 xopudtio e Tic neplocdtepe avavtiotolyiec. ‘Ocov agopd to HET,
a6 T0 1 AemTO TOU TELRIUATOS ATOGUPOVUE TO TEWTA 7 X0 Tol TEAEUTOLO 3 DEUTEPOAETTAL YLt
VoL amopUYOLUE To V6puPo TNG Py IXNC TEOCUPUOYYG IAAS Xot TNE XOTWOTG, EVE Ywetlouue
Ta unohotna 50 Seutepdhenta oe 50 aveldptnTa pépr TOU EVOG OeuTEpOAETTOL.  AXoUT,
OEXATAACIALOUPE TNV TOCOTNTA TWV OEB0UEVWY xdvovTag emadinon péow Yopvfou [162]
00TK¢ WoTe va utooniocouue Ty exntafdeuon Twv Baddv povtédwy. € yapaxTrnoloTind
€L0600U ETLAEYOUUE TO LOVOTAEUEO UETEO TOU ALoxpLToU M/¥ Fourier tou ofjdotoc. Ye xdie
xouudtt HEI' avtiotouy(leton T0 Houoind xopudtt Tou Yenotlotolinxe 0T GUYXEXQUIEVT
AATOYEAPY), TOU (BLOU DEUTEPOAETTOU XoUMG X0k TWYV 2 AUECKS TEOTYOUUEVKV.

To amoTEAEOUATO TWY TERUUATWY alloAoYOUVTOL UE TNV TEOBAEYT TKV cUVICUNUUTIXOY
EMONUELDOEWY, OTOU YENOWOTOWUUE TN UETEWT anAfc oxpBetag, xodmg xou Ty e&ay-
WY1 OYETXWY douoixwy anavticewy oe HEID' eioédouc, omou yenowonotolue 2 UeTeiES
anootdoewy: Precision@10 (P@Q10) xou mean Average Precision (mAP). Ot cuyxexpuéveg
UETEWXES 0CLOAOYOUV TNV GUOYETION UETAL) EVOG OElYUATOC - EQWTAUATOS EIGODOU XL TGV
OYETXGY TOU ATAVTACEWY, XATATACCOVTUS TNV OO TAGT| TOU GTOV XOLVO DLAVUCHUATIXG YO0
ue 6ho tor Sodéotuar (povowxd) Selypoto. H pev npdtn ofohoyel ta 10 xovtvotepa delyporto
eV 1) 6eUTEEN TO GUVolo TNg xotdtadng. Emlong, Ta anoteréopota napovstdlovion xal cuy-
HEVTPOTING avE xoTarypopt|, TokpvovToag TNy TAsoPn@ixy tedBAedn twv 50 Tunudtwy xdie
XOUMATION YLOL TNV UETEWT oXQIBEIOG Xou TNV EVOIGUEST) TYLY| VLol TIG PETEIXES XATATOENS.

Ieipopatinry A&ioAdyno

Dimension | Non-Aggregated Aggregated
Valence EEG 0.610 — 0.604 | 0.633 — 0.632
Arousal EEG 0.645 — 0.641 0.645 — 0.662
Valence MUS 0.680 — 0.646 | 0.743 — 0.689
Arousal MUS 0.838 — 0.837 | 0.833 — 0.838

Table 3: Avayvoplon XuvacUUatog and To TEO-eEXTOUSEVUEVA OTO TEMXE HOVTEAN - UECOOTA-
YUES TWES amd 32 DlaPoRETING LOVTEAN, EVAL VLol XAUE GUUUETEYOVTAL.

o o netpdpartor axohovdeitan n poY| 1) pepovouévn exnaidevon touv xhddou HEL 2) ye-
HOVWUEVT exTtaideUaT ToU XAGBOL HOUCIXAC 3) omd XOLVOU EXTIOUBEUOY) TPOCUPUOYHS TWY 2
xh&dwv. Hapamdve gaivovton Ta amoteréopato tng axpiBelag otny medBiedn cuvonciruatoc.
BAémoupe mog yior T Lououxr Tor amoteAécpoTa efvon apxeTd UYNAS, Tapd To 6Tl BoUAEpoUE
uovo pe 34 xouudtio. Autéd LTOdEXVOEL TNV EMTUYY UETAQORd pdinong mou Yo Bornidfoet
0TI GUVEYELX XL OTNY TEOCEYYLOT TV CUVALGUNUATIXOV YARUXTNOIC TIXGY TWV BEBOUEVLYV.
And v dhhn, Ta HED epgoaviCouv yeydhn petoAntoTnta avd LexmploTé GUUUETEYOVTA,
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divovtag pecootaduxd 63.3% npdBiedn valence xou 64.5% arousal. 'evixde, mopatneolye
WS TA CUYXEVTREOTIXG YOUUERX divouy Wi To xadapr) alotnom Tou exdo ToTe GUVAGUHUTOC.
LUVETOS, TEOYWEMVTIUS 0TNV AflOAGYNOT TNG UTO XOLVOU EXTIA(OEVONS, BAETOUYE Ulal EAapEd
uelwon oty axpifea Tou valence, eve) 1 meoBiedn Tou arousal evioyletan amd TNV omd
xowol udinom, pe 2% Peitioon oto HE xaw xpotdhvtag tor uPnid tocootd ot pouoix.

Valence Accuracy P@10 | mAP
Non-Aggregated | 0.610 — 0.604 | 0.617 | 0.577
Aggregated 0.633 — 0.632 | 0.659 | 0.576
Arousal Accuracy P@10 | mAP
Non-Aggregated | 0.645 — 0.641 | 0.653 | 0.674
Aggregated 0.645 — 0.662 | 0.677 | 0.679

Table 4: Axpifeio avixtnone povowxayv xoppatioy and HEI eiebdoug - yecootoduxés tiuéc.

Yto Table 4 gaivovton emiong To amotehéopata Yo Ti¢ UeTewég xatdtalng. Iopd ™
uxper) peiwon oty TeéBAsdr Tou valence, o x0VOC SLAVUCUATIXOS YMEOS ATOBIOEL Ui TILO
TLOTY AVATORAO TACT TWY CUCYETICEWY Xal UTOBEWVVEL T 1 TAstonpla twv HED onudtwy
Yo unopoloe va eC8YEL CUVALCUNUATING GUVEXTIXES XATUTALELS LOLCIXGY XoppaTiey. o
To valence mapatneolue enlong Wwior oNUOVTIXY améoTaoT) METAUE) TWV 2 UETPIXWY. XE CUV-
OuCOUS UE TIC TEONYOUMUEVES TUQUTNENOELS, PUiVETOL TWSG O XOLVOS YMEOS Ylo To valence
xuplapyeiton and Tomxd clusters peyding opotdtnTog, To onola mdvel povo n PQL0 uetpud.
[ v emBefoncdcoude autdV 1oV LoYLELOUS Vo THpaIECOUUE GTI GUVEYELX OTITIXOTIOLACELS
TV YWEWY Tou TEoxUTTouv. Amd tny dhAn, To arousal defyvel vo amodidel mo cuvex-
TIXEC AVATUPAC TAGELS, €€ 0L %ot Ol AUENUEVES ETUOOCELC OE OAEC TIC XUTNYOPlES, OAAS xon
oTic yevéc xatatdielc (mAP). LUYHEXQUIEVAL, UEYEL XOL TO 68%, uecoo toduxd, twv HED
e&dyouy oUVACVNUATIXG XOVTIVE OUCIXA XOUUATIAL OO TO BIXTUO.

YYEOCUE TOMKSL axOUT) TELRAUATO TROXEYWEVOU VoL DOXLUACOUUE Xal Vo ETBEBadcoupe
TNV ATOBOTIXOTNTA TWV ETAOYQOV JOC OTN MOVTIEAOTONGT Xt EXUEUNOT) TOU GUYXEXQUEVOU
meofBhiuatoc. ‘Onwe goalvetar mopoxdte, ol 4 cuVIPTACELS GPIAUNTOC amodidouy BEATIOTA
otav ouvdudlovtal, UE Tig oLVaPTNOELS ETBAEdNG Vo Eyouv TN peyallTepn emldpaon oTa
TEOXUTTOVTA AMOTEAECHTO. OTint| enidpacn TovhdyloTov 4% patvetan va €yel 1) enadinon
TV 0eB0PEVWY UEow Yoplfou, xadog Ta Sedoueva elvar aptiunTind TEQLOPLOUEVA HOTE VoL
urootneilouy Ty exmaideuct evog Bodiod dixtbou. Axour, To ATOTEAECUATO QUUVETAL VoL
YELROTEREEVOLY UE TNV ATOUGEN TNG UEYIXNAC HELOVOUEVNC EXTIABEUONC TWV 2 SIXTL®Y xo®S
XU PE TNV amouotar TNG HETUPORAS UdINomG Yiol TO LOUGLXE. XOUUGTLOL

ITotoTtixn Avdivorn AnoTeAscUdTWY

Ané ™ otiyur| Tou exmtandeoupE €va LOVTELO Yia xAIE BLUPOPETIXG CUUUETEYOVTA, Elvor
AOYIXO Ta AMOTEAEOUATO VaL EYOUV ONUavTixY| UeTaBAntoTnTa YeTadl Toug. T v e€dyoupe
Yoo oTolyeior oyeTnd Ye TN pouotxn) avtiindn mpooeyyilouue EMAEYUEVES TEQLTTOOELS
CUUUETEYOVTOVY XAl LOUGIXMY XOUUUTIOV. Apy1xd, SiVOUUE OTTIXOTOMNUEVA TOEAUOELYOTO TOU
%0WOoU BLVUGUATIXO) YWEOL TV 2 eV Bedouévwy, uéow tou olyoplduou t-SNE [155].
‘Ocov agopd To valence (Figure 6a) eivou EUQAVES, OE CUYXELOT XaL Ue Ti¢ arousal ava-
TOPUOC TACELS, K TEVOLY Vo oy NuatilovTon TOmXd CUVEXTXOL UTOYWEOL AVAUECH GTo OE-
OoUEVaL XaL UTdEYEL BUGXKOAiD OTNY ouoyevoToinot Toug. Amd TNV GALT, oL aVATEGC TUOELS
v to arousal (Figure 6b) eivon opxetd mo cuvenelc onuactoloyixd, emtuyydvovtag oe
ueydro Bodud tn yepipwon tou ydopotog uetald HEI xou povowrc mhnpogopioc.
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Figure 6: t-SNE avanopdotaon tou xowvol yweou yio ta test delypoto 2 emheyuévov trials yo
a) Valence (ndvw) xou b) Arousal (xdtew). Me teheiec dnhdvovton too HED (évtova ypdpota) xon
e aotepioxoug tor pouotxd Selyuarto (drove ypmuota).

Hopaxdte (Figure 7) @oivovton ot daxuudvoelg e uetpixfic mAP xodog e€eliooeton
XEOVIXE €V UOUCIXO XOUPATL, O UECOCTAOUXT TEOBOAY OAWY TWV CUUUETEYOVIWY XAl
UETE amd @uATEdploua opokotoinong. Eivow cagéc mwe xan 6TIC 2 TEQITTOOELS TELRUUSTWY
UTLBEY OV XOLVES TAGELS OO0V apopd. T1 Ypovixt| eEENET TOU TOpAYOUEVOL GUVALGVUATOC.
To napatneodueva potifo eotidlouy oe LPNAG emimedo avory VEORLONG (VP OTNV 0Py T TEV
HOUMOTIOV, eV @afveton va yTiCouv otadloxd To mapayouevo cuvaloinua. Emnpbécieta
TELQQUOTO ATULTOUYTOL WOTOCO Yl TNV EMPBELAUWOT TNE EMNEATNONG AVTOY TWV UOTPwV.
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Figure 7: mAP téc yia xodéva and to 50 sec. emheypévwy xoupatioy. O Twég elvon yecoota-
VUUES TV 32 CUUPETEYOVTIWVY Ot xdUe sec. ZeywplioTd xou €youv unootel median @uitpdpioua.
Koppdtia 0,8: Anewxdvion Valence, Kopudtia 1,5: Anewdvion Arousal
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Téhoc, oto Figure 8 napouctdlouue xou aneovicelg evoldueowy emmédwy tou 3D cuve-
Ao dixtiou avdhuong twv HED onudtov. Tlépa and tnv anodotixdtnto otny eorymy
YETOWWY YAQUXTNRLOTIXGDY, 1) BouY| aUTH YoC ETITEETEL Vol EEETACOUUE TIC TOTOAOYIXEC TE-
PLOYEC TOU EYXEPANOL TOU EVEQYOTOLOUVTOL TEQIGCOTERO OTN) OUGLXY| X0 CLUVOLCUNUATIXY
avtiindn. Xenowomowolue Ty €€odo tou mpwtou emnédou tou CNN mou Swtneel pa 5X5
Tomohoyixr dour|. Iapatnpolue xadupd mwe To TEQLPEPELOXS XoVAALY EVERYOTIOLOVOVTAL TEQLO-
0OTEPO OE OAEC TIC TEPLTTWOELS, EVE UTERYEL Yol XQT| TdoT evioyuong TwV Tiom-opioTERd
TEPLOY MY 0TO valence xou TV UTpooTd-0ellwy Teptoy v oTo arousal. O nopatnerioelc autéc
emPBefoncyvoval Yo Evor oNUavTIXd aptdud CUUPETEYOVIWY.

Figure 8: Ontuxonoinon twv Bapwv tou mpotou emnédou Tou HEI dixtiou yio Tov cuuuetéyovia
9, v Valence (aptotepd) xar Arousal (8e€id). Hpdxeiton yio pecootadumée tpée twv 50 sec.

2 VUTERACUAT

YuuTEPAOoUATIXG., 1) ToEOUCH ERYUCTa ETLYELEL VoI AVOAUGEL XAl VoL TIROUGLAOEL GTOLYEl
yioe T povoxry avtiAndn Tou avlp®dmou, amd UL UTOAOYLO TIXY| GXOTIA Xou UToREl VoL Y weto Tel
O€ 2 PEYSAEC UTOEVOTNTEG: LTNV TEWTY A0YONOVUAGTE UE TN TOAUTAOXOTNTA TNG HOPPNS
Twv HEI' onudtov xou npoteivouue alyoprduoug molu-@edxtah avdhuong TEOXEWEVOU Vo
eCAYOLUE YOEAXTNELO TIXA TTOL VoL GUVOEOVTOL UE TO CUVAEGUTUA TTOU TEOXAAEL TO HOVCIXG dX-
ovopa. Ot mpoTevOuEVOL aAYOEIIUOL OTOOEVIOVTAL OTOBOTIXO! XOL TO ATOTEAECUATE TOUC
elvo XOAUTERA CLYXEITXE PE dAAOUSC aAYORIDUOUC ECUYWYHC YOQUXTNELO TIXWY TOU YENot-
womoloUvToL cuyvd ot BiBhoypagio. Méoa and to TELRGUTH UTOBELXVIOUNE KOG TOL PEAX-
Toh yapoxtneioTind twv HED' onudtwy yropolv va haufBdvovton unédn otnv Avoryvaopeion
Yuvancuotog, Wwing 6cov agopd TNV UeTEW! arousal ol Tov dAQa eYXEPAALXS pUIUO.

211 06e0TEPN EVOTNTA EMEXTEVOUUE Ta EQYOUAE(O UAC X0 ETILYELOOUUE VOL EXTIULOEUGOUNE Bat-
Vid povtéra udinong e otdyo TNV eEEVPECT) TAURPAYOVTLY TOU VoL GUGYETILOUV ToL EYUEQUAXE
oY|dorTol Ye Ta Houotxd oxouvo Tixd epediouarta. Kotaoxeudlouvye éva povtého mou dEyeTon amd
xowvol dedopéva HED xan avtioTowyo pouoixd epediouata ye 6téy0 TNy €EEUPECT XOLVGOY
OTOLYELLY X0 TNV VoY VORLOT) TOL GLUVALGUUATOE, T600 aneulelag, uéow TNe TEOBAEdNG TKV
EMONUELDOEWY, 600 X0 EUUECKC, UE TNV EEAYWOYT) GYETIXMOY LOLOXKDY xOUpoTiodY and HED
elo0600u¢. Eqopudlovtog To TpoTEWVOUEVO WOVTERD aveldpTnTa OF BEBOUEVA 32 BLUPORPETIXMY
ovlpdTeY, e€8youue evolapépovta HoTBa GYETIXG UE TNV CUCYETIOT LOUGIXC XOL EYXEPA-
Mxfig amOXQEIONG, TIG EYUEPUAIXES TEQLOYES TOU UTELGEQYOVTOL OE QUTH TNV ovaAuaT xoddg
XL TN YEOVIXY| HETUPBANTOTNTA TNG CUVAICUNUXTIXNG EXPEUOTS.

34



Chapter 1

Introduction

1.1 The Science of Emotion

As we move through our daily lives, we experience a variety of emotions (happiness,
surprise, disappointment, anger etc.). An emotion is a subjective state of being that we
often describe as our feelings. The words emotion and mood are sometimes used inter-
changeably, but psychologists use these words to refer to two distinct things. Typically,
the word emotion indicates a subjective, affective state that is relatively intense and occurs
in response to an external stimulus. Mood, on the other hand, refers to the prolonged,
less intense, affective state that does not occur in response to something we experience,
and may as well not be consciously recognized [15].

1.1.1 Theories of Emotion

Our emotional states are comprised of combinations of 3 components: physiological
arousal, psychological appraisal and subjective experiences. Therefore, different people
may have variable emotional experiences even when faced with similar circumstances.
Over time, several theories of emotion have been proposed to explain how the various
components of emotion interact. The James-Lange Theory of Emotion [70] asserts that
emotions arise from physiological arousal. For instance, if you were to encounter some
threat in your environment, such as a robber in your home, your sympathetic nervous
system would initiate significant physiological arousal, which would make your heart race
and increase your respiration rate. According to the James-Lange theory, you would only
experience a feeling of fear after this physiological arousal had taken place. Furthermore,
different arousal patterns would be associated with different feelings.

Other theorists, however, doubted that physiological arousal is distinct enough to re-
sult in the wide variety of emotions that we know. According to the Cannon-Bard Theory
of Emotion, physiological arousal and emotional experience occur simultaneously, yet in-
dependently [20, 69]. These and other theories have each garnered empirical support [27];
however, more recent studies [34] suggest that physiological arousal does not seem to be
necessary for the emotional experience, but this arousal does appear to be involved in
enhancing the intensity of the emotional experience. The Schachter-Singer [133] theory
is another variation that takes into account both physiological arousal and the emotional
experience. According to this theory, emotions are composed of physiological and cogni-
tive factors that, in context, produce the emotional experience. In any case, the takeout
is that studying physiological signals and responses to external stimuli is one of the most
prominent methods to properly study the nature of induced emotions.
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36 1.1. The Science of Emotion

1.1.2 Defining Emotions

Cognitive Science, Neuroscience and Psychology have developed two main approaches
for describing how humans perceive and classify emotion: continuous and categorical. The
continuous approach tends to use dimensions such as negative/positive, calm/aroused etc.
A representative example here is the Plutchik’s emotion wheel [114], shown in Figure 1.1.
However, the most widely used framework in this category is the Valence-Arousal Protocol,
proposed by James Russel (1980) [128]. In this scale, each emotional state can be placed
on a two-dimensional plane with arousal and valence as the horizontal and vertical axes.
While arousal and valence explain most of the variation in emotional states, sometimes
a third dimension of dominance is also included. Arousal can range from inactive (e.g.
uninterested, bored) to active (e.g. alert, excited), whereas valence ranges from unpleasant
(e.g. sad, stressed) to pleasant (e.g. happy, elated). Dominance ranges from a helpless
and weak feeling (without control) to an empowered feeling (in control of everything).

AROUSAL

& 3
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opt\m\sm -

delighted

blissful

(negative) disapointed content | (positive)
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relaxed

(passive)

Figure 1.1: [22] Plutchik’s Emotion Wheel. ~Figure 1.2: [173] The Valence-Arousal Space.

The categorical approach tends to use discrete classes to define emotion. During the
1970s, psychologist Paul Ekman identified six basic emotions that he suggested were uni-
versally experienced in all human cultures [40]. The emotions he identified were happiness,
sadness, disgust, fear, surprise, and anger. He later expanded his list of basic emotions
to include such things as pride, shame, embarrassment, and others, however those first 6
emotions, sometimes along with a 7th neutral class, have been widely utilized in psycho-
logical and computational experiments, either through explicit annotation, or combined
labeling across categories, i.e. a happy-surprised face or a fearful-surprised one.

2222888

Happy Disgust Neutral Anger Surprise

Figure 1.3: [89] The 6 (+neutral) basic emotion categories, according to Paul Eckman.
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1.1.3 Expressing and Perceiving Emotions

In this context, our goal is to build computational models that could recognize the
affective state, based on a variety of possibly available descriptors. With the term Affec-
tive Computing we refer to the study and development of systems and devices that can
recognize, interpret, process, and simulate human affects [151], with the ultimate goal to
decode and make good use of human’s emotional intelligence. The computational and
learning tools we use to this end will be analyzed in detail in Chapter 2. These tools work
on expressive emotion descriptors that we can detect everywhere. Specifically, recognizing
emotional information requires the extraction of meaningful patterns from various forms
of gathered data. Data collection usually begins with passive sensors that capture data
about the user’s physical state or behavior, in an analogous way to how we also per-
ceive emotions in others (camera, microphone, EEG etc.). Below we mention the most
prominent modalities that are considered for emotion perception.

Facial Expressions

Faces are a ubiquitous part of the human life, affecting it immediately after birth.
People greet each other with smiles or nods, have face-to-face conversations on a daily
basis, capture their faces with smartphones and tablets and exchange photos of each
other on social-media platforms. Our face is a predominant medium of communicating
our behavior and particular facial gestures are actually correlated with specific emotion
classes (Figure 1.3). As a result, various facial expression recognition (FER) studies have
been conducted in the fields of Affective Computing and Computer Vision.

FER systems can be divided into two main categories according to the feature repre-
sentations: static image FER and dynamic sequence FER [76]. In static-based methods
[81, 100] the feature representation is encoded with only spatial information from a sin-
gle image, whereas dynamic-based methods [60, 176] also consider the temporal relation
among video frames. The majority of the traditional methods have used handcrafted
features (e.g., local binary patterns [138], optical flow [29], face action landmarks [36]).

However, since 2014, the community has collected relatively sufficient training data
from challenging real-world settings. Additionally, due to the increased chip processing
abilities and well-designed model architectures, studies have begun to transfer to deep
learning methods, which have achieved state-of-the-art recognition performance [140].
However, there is a large debate on whether our faces actually reflect our true affective
states. Some studies show strong evidence on the universality of emotions in specific
contexts [33] while others remain critical and emphasize the use of additional modalities
(speech, context) to correctly identify the affective state [11]. Based on these views, other
modalities, such as audio and biosignals, have also been used in multimodal systems [31].

Natural Language

The core of human communication and emotion expression relies on the use of our
language, either written or spoken. With the term Natural Language we refer to both
speech and text modalities that we use to this end and are crucial in expressing and iden-
tifying affect. Moreover, language data are more easily recorded than facial expressions,
since only a microphone or a typewriter is required. Speech Emotion Recognition (SER)
systems are used in several applications to enhance Human-Computer Interaction, such as
speech synthesis, customer service, forensics and medical analysis [7]. SER is achieved by
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38 1.1. The Science of Emotion

the development of methodologies based on Digital Signal Processing and Machine Learn-
ing. Research here dates three decades back, however the results are still not applicable in
large-scale everyday settings. A speech signal is a complex modality that contains lexical
information, speaker-dependent vocal parameters (such as the fundamental frequency, the
formants and the prosody of the signal), the elicited emotion and the utilized language,
so if one has to recognize particular information in speech, then ideally they should gen-
eralize upon all these parameters. Before the prevail of Deep Learning, a large variety of
features were used to extract emotion semantics from speech. Examples include statistical
measures [72], energy features [9], non-linear and spectral transformations [68], usually
processed sequentially by Hidden Markov Models (HMM) [121]. Modern systems though
can efficiently analyze raw speech data through deep learning models [175].

<user> has forever changed my life ': Written language, on the other hand, re-
quires a fairly different processing frame-

<hashtag> blessed </hashtag> work and research has been conducted in

Emotions: joy, love, optimism the field of Natural Language Processing
(NLP), usually denoted as Sentiment Anal-
seriously about to smack someone in the ysis. Since it is not in the scope of our

study, we shall briefly survey the research
directions in this field. In terms of data,
Emotions: anger, disgust there are a few annotated datasets for the
task (e.g., ISEAR [135], SemEval), however
there is a vast amount of unstructured data,
like social media posts and opinion articles.

face % <hashtag> arsehole </hashtag>

Figure 1.4: Heatmap Visualization of the af-
fect in text. Source: Baziotis et al. [14]

Approaches in literature are generally either rule-based or based on Machine Learn-
ing (or hybrid). The rule-based approach outlines major grammatical and logical rules
to follow in order to detect emotions, which is insufficient though for large amounts of
data. The rule construction approach encompasses keyword recognition (use of dictio-
naries) [148] and lexical affinity [2]. The Machine Learning approach classifies texts into
affective categories using supervised or unsupervised Learning algorithms and has offered
comparatively better detection rates. Recently, deep learning models are being adopted
as approaches to detect emotions from segments of text, because they are more robust,
incorporate vast amounts of data and can extract the intrinsic details text may carry.
Most deep models utilize recurrent networks [163] and attention [122] to emphasize crit-
ical parts in texts. Applications of Sentiment Analysis include conversation monitoring
[119], business-customer interaction, multimedia tagging and more.

Audio and Music

Audio signals that carry emotional information are generally grouped into speech and
music, since naturalistic audio data are generally not used for this purpose. While bor-
rowing methodology from Speech Analysis, Music Emotion Recognition (MER) is a stan-
dalone field that has provided cutting-edge research in the latest years. MER lies in the
intersection of Emotion Analysis, which we discuss here, and Music Information Retrieval,
a field that drives music-related research in various tasks, e.g., Genre Recognition [44],
Automatic Transcription [124], Instrument Classification [66] and more.
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MER is a critical task of Music Information Retrieval as well, since, as we will discuss
later in this chapter, music is one of the most powerful ways to express and induce emo-
tions. In this thesis, we will analyze emotion induction both by relevant musical features
and physiological human responses to music listening. However, most research in MER
deals with the first task, while neuroscience and psychology are utilizing computational
methods to approach the second. Up to this day, several research works have identified
possible correlations between specific musical elements and emotions. One of the most
widely accepted is mode: major modes are frequently related to positive emotional states,
whereas minor modes are often associated with sadness [129]. Other elements include
tempo, articulation, timbre, pitch, tonality, rhythm, loudness or more sophisticated, like
vibrato [108, 107]. Of course, contemporary methods also incorporate Deep Learning
models to automatically extract meaningful features for the task [82]. Most studies in
MER use audio data, however some prefer to analyze symbolic data of music transcrip-
tion (e.g., MIDI files) or even combine and associate these modalities [106]. Emotion
detection from music has many emerging application domains, such as in tagging and
recommendation systems (e.g., Spotify), while it could also serve as a means to analyze
human emotional responses and foster therapeutic methods.

Biomedical Signals

All the aforementioned studies use behavioral signals to determine emotion, having
the advantage of easy large-scale data collection. However, the reliability of this approach
can’t be guaranteed, as the perception of emotions could be highly subjective in some
cases and there is not yet a universal guide into specific indicators for specific emotions.
Moreover, it is relatively easy for people to control their behavior in order to hide their real
emotions, particularly during special social interactions. On the contrary, physiological
measurements are induced without our active interference and could thus depict more
clearly the actual affective state [24]. Apart from recognition purposes, physiological
signals can also be utilized for studying the nature of human emotional responses and our
nervous system, that has invaluable importance for Psychology and Medicine studies.

The researched physiological signals are induced mainly by the Central Nervous System
(CNS) and Autonomic Nervous System (ANS), which is why they are largely involuntarily
activated and therefore cannot be easily controlled. Examples of such signals are elec-
troencephalogram (EEG), temperature (T), electrocardiogram (ECG), electromyogram
(EMG), galvanic skin response (GSR), respiration (RSP), etc. For a comprehensive re-
view for each one of these modalities, the reader can refer to [139]. The tools that are
used for this kind of research are Signal Processing and Statistical Tests or Learning algo-
rithms to handle their properties. Physiological signals, however, inherit a large amount
of noise, both from the recording equipment and other interfering physiological processes,
whereas their extraction is an expensive procedure as well. In contrast to behavioral
signals, biosignals also require extensive domain knowledge to be properly analyzed.

1.2 The Human Brain

Emotion expression and perception are advanced forms of human cognition, governed
by remarkable functions of the human brain, the most complex organ in our bodies.
Weighting less than 1.5 kg, this jelly-like organ is the seat of intelligence, interpreter
of the senses, initiator of the body movement and controller of our behavior. From an

39



40 1.2. The Human Brain

anatomical point of view the brain may be divided into 3 parts: cerebrum, cerebellum,
and brain stem. The cerebrum consists of both left and right lobes of the brain with
highly convoluted surface layers, called the cerebral cortex. The cerebrum includes the
regions for movement initiation, conscious awareness of sensation, expression of emotions
and behaviour. The cerebellum coordinates voluntary movements of muscles and main-
tains balance. The brain stem, on the other hand, controls involuntary functions such
as respiration, heart regulation and biorhythms. For centuries, science and philosophy
have been amazed by the functional complexity of the brain and, until today, it remains
largely incomprehensible. As technology and analysis tools are improving though, the
pace of research in neuroscience and behavioral sciences is accelerating. Indicatively, the
American Congress named the 1990s as the Decade of the Brain. Nowadays, powerful
computing capabilities and advances in Artificial Intelligence have made it possible to
research the brain functionality from a whole new, computational perspective [152], from
which we should expect important breakthroughs in the near future.

Figure 1.5: Illustration of the white matter fiber architecture of the brain, measured from dif-
fusion spectrum imaging (DSI). Shown are the corpus callosum, cerebellum, and others. Source:
https://humanconnectomeproject.org.

1.2.1 Physiology of Neurons

Like all parts of our body, our brain is made up of cells, many of which help regulate
the chemistry and structure of the organ. Some cells, called neuronal cells, or just neurons,
are specialized to do far more. In specific, they are responsible of much of the work needed
for us to think, feel and move. A human brain contains an astonishing number of at least
90 billion neurons [5] that connect through spider-like arms (Figure 1.5) and communicate
through electrochemical signals. In particular, each of these neurons may connect to at
least 1000 other neurons and, in total, the human brain is estimated to have more than
100 trillion connections! Neurons are the building blocks of the nervous system, in which
the brain can be seen as its hub.
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Figure 1.6: The structure of a neuron (adopted from Attwood and MacKay [5]).
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As seen in Figure 1.6, a neuron, or nerve cell, consists of axons, dendrites, and cell bod-
ies. A nerve cell body has a single nucleus and contains most of the nerve cell metabolism,
especially that related to protein synthesis. The proteins created in the cell body are deliv-
ered to other parts of the nerve. An axon is a long cylinder, which transmits an electrical
impulse and can be really long (several meters in some animals). In humans the length
can be a percentage of a millimetre to more than a metre. Dendrites are connected to
either the axons or dendrites of other cells and receive impulses from other nerves or relay
the signals to other nerves. In the human brain, each nerve is connected to thousands of
other nerves, mostly through dendritic connections. The activities in the CNS are mainly
related to the synaptic currents transferred between these connections (called synapses).
A potential of 60-70 mV with negative polarity may be recorded under the membrane
of the cell body and, if it travels along the fibre to a synapse, a post-synaptic potential
occurs in the following neuron. If several action potentials travel simultaneously, there
will be a summation of post-synaptic potentials, producing an action potential on the
postsynaptic neuron, provided that a certain threshold of membrane potential is reached.
This functionality will later lead us to the modeling of perceptrons as artificial neurons.
The information transmitted by a nerve is called an action potential (AP). APs are caused
by a temporary exchange of ions across the neuron membrane and is transmitted along
the axon. It is usually initiated in the cell and lasts between 5 and 10 msec.

1.2.2 The Electroencephalogram (EEG)

The neural activity of the human brain starts between the 17th and 23rd week of
prenatal development. It is believed that from this early stage and throughout life elec-
trical signals generated by the brain represent not only the brain function but also the
status of the whole body. Understanding of the neural processes and neurophysiological
properties of the brain and the mechanisms underlying the generation of these biosignals
is, therefore, vital for those who detect and analyze brain functions.

Carlo Matteucci (1811-1868) and Emil Du Bois-Reymond (1818-1896) were the first
people to register the electrical signals emitted from muscle nerves using a galvanome-
ter and established the concept of neurophysiology [171]. Richard Caton (1842-1926),
a scientist from Liverpool, placed two electrodes over the scalp of a human subject and
thereby first recorded brain activity in the form of electrical signals in 1875. Since then,
the concepts of electro-encephalo-gram were combined so that the term EEG was hence-
forth used to denote electrical neural activity of the brain. The history of EEG has been
continuous and has brought daily development of clinical and computational studies for

41



42 1.2. The Human Brain

discovery, diagnosis, and treatment of a vast number of physiological abnormalities of
the brain and the rest of our CNS. Nowadays, EEGs are recorded digitally, using many
delicate electrodes/channels, a set of differential amplifiers (one for each channel) and
filters. Fortunately, the effective bandwidth for EEG signals is limited to 100 Hz so sam-
pling is easy. Regarding electrode placement, the International Federation of Societies for
Electroencephalography and Clinical Neurophysiology has recommended the conventional
electrode setting [58]. According to this, the closest electrode to each ear should be located
at 10% the distance between the two ears, and all electrodes should have an equidistance
of 20% the same distance. This set-up is commonly called the 10-20 placement system.
In special cases only, like in brain computer interfaces, a single channel may be used.

Electrode Measured potentials
for each electrode

Amplifier

Processing

Figure 1.7: Schematic diagram of an EEG recording experiment. Source: [101]

The produced EEG signal is a measurement of currents that flow during synaptic
excitations of the dendrites of many pyramidal neurons in the cerebral cortex. When
neurons are activated, as we saw, the synaptic currents are produced within the dendrites,
generating a magnetic field, measurable by EMG, and a secondary electrical field over
the scalp, measurable by EEG systems. Differences of electrical potentials are caused
by summed postsynaptic potentials from electrical dipoles between the neuron’s body
and apical dendrites. However, the human head consists of different layers (scalp, skull
etc.) that severely attenuate the electrical signals. Other than that, most of the noise
is generated either within the brain (internal noise) or over the scalp (system/external
noise). Therefore, only large populations of active neurons can generate enough potential
to be recordable, whereas these signals must be greatly amplified in order to be displayed.

Brain Rhythms

In healthy adults, the amplitudes and frequencies of EEG signals change from one state
to another, such as wakefulness and sleep, or age. There are five major brain rhythms,
distinguished by their different frequency ranges, called delta (3), theta (1), alpha (o),
beta (8) and gamma (y). The delta rhythm was introduced by Walter (1936) [159] at 0.5-4
Hz and has been primarily associated with deep sleep. Walter (1944) [160] also introduced
theta waves as those having frequencies within the range of 4-8 Hz. Theta waves have
been associated with access to unconscious material, inspiration and deep meditation,
while they have proved crucial in early childhood as well as in arousal detection [131].
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Figure 1.8: Four typical dominant brain normal rhythms. Source: [131]

The alpha and beta waves were introduced by Berger (1929). Alpha waves appear in
the posterior half of the head and are usually found over the occipital region of the brain.
Their frequency lies within the range of 8-13 Hz, and they commonly appear as round or
sinusoidal signals, to indicate a relaxed awareness. The alpha wave is the most prominent
rhythm in the whole realm of brain activity, it is however weakened by opening the eyes,
by hearing unfamiliar sounds, by anxiety, or at periods of mental concentration. A beta
wave is the electrical activity of the brain varying within the range of 13-30 Hz. It is the
usual waking rhythm of the brain, associated with active thinking, attention, focus on
the outside, or solving concrete problems, found in normal adults. A high-level beta wave
may be acquired when a human is in a panic state. Last, Jasper and Andrews (1938)
used the term “gamma” to refer to the waves of above 30 Hz. Although the amplitudes
of these waves are very low and their occurrence is rare, detection of these rhythms can
be used for confirmation of certain brain diseases. The gamma band has also been proven
indicator of event-related synchronization (ERS) of the brain.

1.3 Music Perception

When Bob Dylan dared to play an electric guitar at the Newport Folk Festival in 1965,
people walked out and many of those who stayed, booed. The Catholic Church banned
music that contained more than one musical part playing at a time, fearing that it would
cause people to doubt the unity of God. The church also banned the musical interval of
an augmented fourth, the distance between C and F-sharp, also known as a tritone. This
interval was considered so dissonant that the church named it Diabolus in musica [73].
Perceiving music is thus a complex process that involves receiving sound signals, analyzing
their structure and eliciting variable psychological or cultural responses.

1.3.1 The Auditory System

The ability to recognize sounds and identify their organization is possible thanks to
the auditory system, consisting of two main parts: the ear and the brain. The ear’s task
is to convert sound energy into neural signals, while our brain has to receive and process
the information those signals contain. The human ear has striking abilities of detecting
and differentiating sounds. It is sensitive to a wide range of frequencies and intensities,

43



44 1.3. Music Perception

having also an extremely high temporal resolution [64]. The ear consists of the outer, the
middle, and the inner ear. The outer ear acts as a receiver and filters sound waves on their
way to the ear drum (tympanic membrane) of the middle ear, amplifying some sounds
and attenuating others, depending on their frequency and direction. Sound waves cause
the tympanic membrane to vibrate, and these vibrations are subsequently amplified and
transmitted on to the oval window of the cochlea, a small membrane-covered opening in
the inner ear. The cochlea is fluid-filled and contains thousands of hair cells that react to
different tones and pitches. The inner ear then translates vibrations into electrical signals,
which are carried into the brain’s cerebral cortex via the cochlear nerve system. Many
areas of the brain are then joining to analyze different musical elements.

1.3.2 Principles of Music Structure

It was pitch and intervals that had the medieval church in an uproar and it was timbre
that got Dylan booed. So before we examine how music affects our brains and emotions,
it is helpful to examine what music is made of, what are its fundamental building blocks
and how do they give rise to music. As the composer Edgard Varese famously defined it,
“Music is organized sound”. The basic elements of any sound are loudness, pitch, contour,
duration (or rhythm), tempo, timbre, spatial location, and reverberation. Our brains or-
ganize these fundamental perceptual attributes into higher-level musical concepts: meter,
harmony, and melody. When we listen to music, we are actually perceiving these multiple
attributes and dimensions, which we briefly summarize below [73]:

e A discrete musical sound is called a tone. The word note is also used, but we usually
reserve that word to refer to something notated on a page or music score. The two
terms describe though the same abstract concept.

e Pitch is a purely psychological construct, related both to the actual frequency of a
particular tone and to its relative position in the musical scale.

e Rhythm refers to the duration of a series of notes and how they relate. In musical
scores we denote that with different subdivisions of a note, as seen in Figure 1.9.

o J 4 D A

Whole Note Half Mote CQuarter Note Eighth Mote Sixteenth Mote

Figure 1.9: Subdivisions of notes’ duration. Source: learnpianoforfree.weebly.com

e Tempo refers to the overall speed or pace of the piece.

e (Contour describes the overall shape of a melody, taking into account only whether
a note goes up or down, not the amount by which it changes.

e Timbre is the tonal color that which distinguishes one instrument from another
(e.g., piano from a guitar) when both are playing the same note.

e Loudness is a psychological term that relates to the physical amplitude of a tone.
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The difference between music and a random set of sounds has to do with the way
the above fundamental attributes combine and the relations that are formed between
them. When these basic elements combine and form relationships with one another in a
meaningful way, they give rise to higher-order concepts like [73]:

e Meter: It is created in our brain by extracting information from rhythm and loud-
ness cues, and refers to the way in which tones are grouped across time.

e Key: It has to do with a hierarchy of importance that exists between tones in a
musical piece; this hierarchy exists only in our minds, as a function of our experiences
with a musical style and musical idioms that we develop for understanding music.

e Melody: The main theme of a musical piece, the part you sing along with. The
notion of melody is different across genres.

e Harmony: It has to do with relationships between the pitches of different tones, and
with tonal contexts that these pitches set up. Harmony can mean simply a parallel
melody to the primary one or it can refer to a chord progression.

The idea of hierarchical building of musical sounds is important since it helps us
relate different parts of the human brain to music processing, for example the auditory
cortex for the analysis of tones, the cerebellum for movements and rhythm perception
and amygdala for emotion induction. Further, this formulation provides us the tools to
identify and quantify those features in music data, in both audio and written form, so
that we could use them for reasoning and classification purposes [107].

1.3.3 Haunted by Music

As we mentioned above, different aspects of music are handled by multiple neural
regions. The most mysterious and deeply researched aspect is the emotional impact of
music on humans. Music is said to evoke strong emotions, usually more powerful than, for
example, static images, and can be used to investigate a wide variety of emotions, as well
as mixed emotions, such as “pleasant sadness” [64]. Due to its temporal structure, music
can be used to study the time course of emotional processes, while it can also be viewed
under the lens of its social influences and consequences of the induced mood states [73].
Studying brain’s responses to music has thus gained a lot of attention, especially nowadays
that there is an upsurge in available neuronal data. Researchers are investigating our
emotions in order to approach the ultimate question of why do we like music.

One of the most important aspects of music perception is the ability to anticipate
future events, in the form of patterns [96]. This is fundamental for our survival and
matches to the structured form of music patterns (intervals, chord progressions, tempo
etc.). Another important factor is the biological reward system that has been tested to
respond not only to basic stimuli, like appetite, but also in various other occasions, such as
music [174]. However, it is not clear yet why the reward system is engaged in such stimuli.
From the neuroscientific perspective, one of the core findings is the correlation between
the frequency and magnitude of neural oscillation patterns and rhythmical patterns in
music [103]. Additionally, Event-Related Potentials (ERP) have been utilized to extract
brain activity patterns that can relate to the structure of musical events, such as note
onsets or pitch [134, 116]. In addition to the well-controlled auditory experiments, modern
approaches gather physiological data from listeners as they enjoy or imagine naturalistic
music [85, 147], in order for instance to examine correlations in temporal structure [157].
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1.4 Thesis Structure & Contributions

This study attempts to offer some further insights into the affective responses of music
listening, from a computational perspective. We begin by analyzing the structure of brain
electrical signals and providing novel feature extraction algorithms, to later proceed into
data-intensive deep learning approaches to correlate brain responses to latent musical
features. The remainder of this thesis is organized in 5 chapters as described below. Note
that each chapter can be considered self-contained in terms of notation and methodology,
however conclusions may be drawn from the results of former chapters.

e Chapter 2 outlines the necessary signal processing and machine learning back-
ground to follow the methods and content of the present study. Specifically, we dive
into fundamental properties of signals and systems, probability theory and fractal
algorithms, as well as provide a detailed overview of supervised learning classifiers
and state-of-the-art deep learning techniques.

e In Chapter 3 we develop algorithms to analyze the fractal and multifractal prop-
erties of EEG signals, as well as investigate to what extent these properties carry
emotional information. In the end, we indicate that multifractal analysis could serve
for the development of robust models for the purpose of Emotion Recognition.

e In Chapter 4 we focus on modeling the relationship between pairs of music tracks
and corresponding EEG recordings. We propose a framework that can be utilized
for emotion recognition both directly, by performing supervised predictions, and
indirectly, by providing relevant music samples from EEG input queries.

e Chapter 5 draws general conclusions on the research sections of our study and
discusses possible future work based on our experiments. The measured multifrac-
tality of EEG signals and the cross-modal EEG and music framework could be the
incentive for further research in music cognition and understanding.

e There are also 2 Appendices in which we provide a detailed description of the
Dataset we use and the articles that we have published in the context of the thesis.

To give a brief summary of our contributions, these can be divided into two main
sections, with respect to our conducted learning experiments. The major theme of our
analysis is the affective perception of music signals through EEG responses. The first
part focuses on feature extraction algorithms based on multifractal signal analysis, and
the second addresses the problem of identifying emotion-related similarities between EEG
and music signals through advanced deep learning techniques. More specifically:

Multifractal Analysis on EEG

e We analyzed the structure of EEG signals and demonstrated their multifractal pro-
perties. In specific, we investigated the effect of signal’s observed stationarity and
quantified the signal’s complexity through the Hurst Exponent. We derived evidence
that EEG signals could be modeled as fractional Gaussian noise realizations.

e We developed two novel algorithms, based on Multiscale Fractal Dimension (MFD)
and Multifractal Detrended Fluctuation Analysis (MFDFA) to derive meaningful
feature vectors for emotion detection.
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e We tested the proposed methods through an SVM classifier, against widely used
baseline frequency and fractal features. We showed that the proposed feature sets
perform strongly, particularly in the subject-independent setting and in arousal
recognition, indicating that arousal is correlated with the structure of the EEG.

e Fractal and multifractal features seem to generalize more easily than frequency-
related ones, which perform better in subject-dependent settings. Further improve-
ments are achieved when the fractal features are aggregated. As a result, the ob-
served multifractality should be considered when processing EEG signals.

EEG-Music Cross-Modal Learning

e We presented a robust 3D deep network to efficiently analyze EEG signals or EEG
features by preserving their temporal and spatial correlation. We additionally pro-
vided ways of dealing with core problems associated with this kind of data, such as
the limited sample size and their noisy structure.

e We proposed a multimodal framework to model the correspondence between human
brain responses and music stimuli. We trained a bi-stream network on pairs of EEG
and corresponding music stimuli, whereas by conditioning the learning process with
emotion tags we constructed a common emotion space.

e Through the produced latent space by the aforementioned network, we performed
emotion recognition both by predicting output annotations and by ranking music
tracks to EEG input queries, based on their cosine distance on the space.

e We performed a qualitative study across 32 subjects by formulating personalized
models. This way we could compare 32 model instances and observed significant
patterns, such as the visualized latent spaces, the temporal variation of recognition
performance and activation patterns on the simulated scalp grid of the EEG network.

Both sets of experiments reveal important affective characteristics of brain signals and
illustrate multiple ways that music influences the functioning of the human mind. While
it provides empirical answers regarding the nature of music and emotion encoding in the
human brain, this study also provides insights for further research in this fascinating field.
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Chapter 2

Theoretical Background

2.1 Signal Processing Fundamentals

Signal Processing, and specifically Digital Signal Processing (DSP) is a set of (digital)
operations that we apply on signals in order to achieve a particular goal, i.e. extract in-
formation. The foundations of DSP lay on Mathematics, Physics, and Computer Science,
and the field has been expanding significantly over the last few decades as a result of rapid
developments in computer architectures and artificial intelligence algorithms. Research
and development in DSP are driving advancements in many areas including telecommu-
nications, multimedia, medicine and human-computer interaction. The 2 main characters
in Signal Processing are Signals and Systems that operate on them.

2.1.1 What is a Signal?

A signal is defined as any physical quantity that carries some kind of information.
Mathematically, it is merely a function of one or more independent variables, such as time
(1D signal) or space (2D or 3D signal). For example, in an electrical system the physical
variables of interest might be a voltage or current, whereas in a mechanical system the
variables of interest might be the velocity, mass or volume of an object. However, there
are many cases where signals cannot be modeled by an explicit mathematical relation,
but are better described via statistical models as random signals, i.e. noise.

In the real world, most signals are continuous-time or analog. That is, the indepen-
dent variable of the function is allowed to take on arbitrary values (perhaps within some
interval) and the value of the signal itself is also allowed to take on arbitrary values (again
within some interval). While convenient in certain cases, in most situations it is preferable
to work with digital signals that can be processed by a computer. The digitization of the
signal domain, so that its values at a discrete set of time instants can be stored, is called
sampling. Further, the process of digitizing its range is called quantization and the digital
signal is only allowed to take a discrete set of values. In the following, continuous-time
signals will be denoted using parentheses, such as x(t), while discrete-time signals and
generally digital signals will be denoted using brackets, such as z[n].

2.1.2 Time - Frequency Representations

A system is defined as a process whose input and output are signals. Common oper-
ations that are applied via simple systems include adding and multiplying signals, differ-
entiation and integration, shifts in time and amplitude, compression and reflection.
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Fourier Analysis

A signal can be viewed as a vector in the vector space of its independent variables.
In particular, each signal can be represented (or expanded) as a linear combination of
elementary signals in the vector space. The most fundamental signal expansion is provided
by the Fourier Transform, stating that absolutely integrable signals can be redefined in
terms of sinusoidal frequencies or complex exponentials:

+oo
X(w)e™'dw, where X(w)—/ x(t)e I dt (2.1)

—00

1 [t
This frequency signal representation has been proven extremely important in Signal Pro-
cessing and Electrical Engineering in general, since many signals are intuitively better
represented in the frequency domain, such as music signals (i.e. notes) or neuronal sig-
nals (i.e. brain rhythms). Among the variants of Fourier Transforms, we will concentrate
on the Discrete Fourier Transform (DFT) that is typically applied to digital signals of
finite duration, using the efficient Fast Fourier Transform (FFT) algorithm.

Let z(t) a continuous signal and a sampling of N points, denoted as z[k]. We could
in principle evaluate this for any frequency w, but we have only N data points and
N significant output points. Additionally, continuous Fourier Transform over a finite-
duration signal would be periodic. Since here a finite number of points would be considered
periodic, we evaluate the DFT equation for the fundamental frequency 1/NT (one cycle
per sequence) and its harmonics. Hence we derive the DFT formula X[n| of x[k]:

X|[n] = w[kle I Nk = oKW (n=0,1,...,N —1) (2.2)

where W = exp(—j27/N) and W = W?¥etc = 1. The time taken to evaluate any
mathematical process on a computer depends principally on the number of multiplications
involved, since these are the slowest operations. Since DFT is calculated as a complex
matrix-vector multiplication, this number is directly related to N?; hence computational
speed becomes a major consideration. Highly efficient algorithms for estimating DFT
have been developed since the mid-60s [30], known as Fast Fourier Transform (FEFT)
algorithms, relying on the fact that DFT involves a lot of redundant calculations. From
Eq. 2.2 it is easy to realise that W2 is a periodic function with only N distinct values
and repeats itself for combinations of n and k. Hence, let us split the single summation
over N samples into 2 summations, one for even values of k, and the other for odd:

N_1 b1
> 2
X[n] =y al2kWR™ + D wf2k+ Wy (2:3)
k=0 k=0
Note that )
WA i) _ it (2.4
W](V2k+1)n — oI % (2kn) =i % () _ Wknyyn (2.5)
Therefore
N_q N_q
) 2
X[n] = 3" aREWE + Wi Y a2k + qwke (2.6)
k=0 k=0
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ie. X[n] = G[n] + WRHn]. Thus, the DFT X[n] can be obtained from two ¥-point
transforms. Although the frequency index n ranges over N values, only half values of G|[n|
and H [n] need to be computed since they have period N/2. Assuming that NN is a power of
2 , we can repeat the above procedure on the two %-point transforms, breaking them down
to %—point transforms, etc., until we come down to 2-point transforms, that require only 1
complex multiplication and 2 complex additions. Thus, FFT is computed by decimating
the sample sequence z[k] into sub-sequences until only 2-point DFTs remain. At each
stage of the FFT, % complex multiplications are required to combine the results of the
previous. Since there are log, N stages, the number of complex multiplications required
is approximately N/2log, N, a tremendous improvement for large-scale data.

Locating the Frequencies

As we saw, the Fourier Transforms give us the frequency spectrum of a signal. How-
ever, the spectrum contains no additional information about the temporal localization
of the various frequencies, therefore we lose the time resolution of the real signal. A
straightforward way to deal with this problem is to divide the original signal into several,
possibly overlapping, parts and separately apply the Fourier Transform to each of them,
a technique called Short-Time Fourier Transform. By then concatenating the resulting
spectra as a function of time, we end up with a 2D time-frequency representation, called
a spectrogram. Let us consider a continuous-time function z(¢). This function is to be
multiplied by a short time window w(t). The Fourier transform of the resulting signal is
calculated as the window slides along the time axis. Mathematically:

STFT{z(t)}(1,w) = X (1,w) = / r(t)w(t — 7)e “dt (2.7)
In the discrete-time case (signal z[n] and window w[n]), the data could be broken up into
overlapping frames to reduce boundary artifacts. Each chunk is Fourier-transformed like
before. In practice, the computation is often done through the FFT algorithm:
STFT{z[n]}(m,w) = X(m,w) = > z[njw[n — mle 7" (2.8)
One of the pitfalls of the STFT is that it has a fixed resolution, which is not intuitive to
how each frequency is represented. In specific, low frequencies require larger time windows
of analysis whereas higher frequencies require smaller time windows. From another per-
spective, a big window would give better frequency resolution but poor time resolution.
A narrower window will of course cause the opposite effects.

10000

Hz

Figure 2.1: An example STFT spectrogram, extracted from a music signal (violin).
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An effective solution to the above-mentioned malfunction is achieved using wavelets.
A wavelet is a wave-like oscillation that is localized in time (Figure 2.2). Wavelets are
governed by 2 basic properties: scale (a) defines how stretched a wavelet is and relates to
the signal’s frequency content, and translation (b) defines where the wavelet is positioned,
thus relates to the signal’s temporal content. The idea here is to compute how much of
a wavelet is in a signal, using convolutions. So, we pick a specific wavelet at a particular
scale and slide it across the entire signal. The product of this multiplication gives us
a wavelet coefficient at each timestep. We then alter the scale and repeat the process,
resulting as well in a 2D time-frequency representation, called scalogram.

MexicanHatWavelet MorletWavelet DGaussianWavelet

Figure 2.2: Example types of wavelets. Source: reference.wolfram.com/language

Wavelet analysis is applied in two main ways, Continuous Wavelet Transform (CWT)
and Discrete Wavelet Transform (DWT). CWT uses a wavelet function 1 (¢) and assumes
every possible wavelet in scale and translation, hence we usually focus on the practical
case of Discretized CWT that uses a particular set of coefficients and is written as:

Yo = [ aOpbusttn (2.9

—00

On the other hand, DWT decomposes a signal into two components: a lowpass signal,
using a scaling function, and a highpass signal using a wavelet function. DW'T recursively
decomposes the lowpass signal with the same scaling and wavelet functions to the desired
level of decomposition. A couple of key advantages of wavelet analysis is that, contrasting
to the STFT approach, it can extract local temporal and spatial information at the same
time, providing scalograms of better resolution. Moreover, it is an easily customizable
approach, since there is a large variety of possible wavelets to try out for each task.

2.1.3 Probability Theory and Statistics

While the methods outlined above are indeed efficient in analyzing the properties of de-
terministic signals, there is a broad range of other signals that cannot be fully determined
by mathematical functions. These random signals are produced by complex physical pro-
cesses like the movement of air particles or electrons within an EEG acquisition device.
Such signals are commonly interpreted as noise or interference to other meaningful signals
and are analyzed through statistical metrics and probabilistic models. Probability theory
is based on the notion of the random experiment, meaning an experiment whose outcome
is random. The set of all possible outcomes of a random experiment S is called the sample
space  and we call event a set A C S. In that context, we define the probability P(A)
as a function of the uncertainty of each possible event A.

An important concept that we will further need is conditional probability. Let a random
experiment S and two events A, B. We denote P(B|A) the conditional probability of event
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B, given that A occurs. The conditional probability is determined by the rule:
P(ANB)
P(A)
We can thus denote the probability of an intersection of events as the product of the

conditional probability of the one given the second and the probability of the second. By
rearranging the above outcome we end up with the Bayes’ Rule:

P(B|A) = — P(ANB) = P(B|A)P(A) = P(A|B)P(B). (2.10)

P(A[B)P(B)
P(B|A) = ——————= 2.11
(14) = =50 2.11)
Of course, if A and B are statistically independent, then B does not depend on A:
P(B|A) = P(B) - P(ANnB)= P(A)P(B) (2.12)

Random Variables

Sometimes it is preferable to assign a numerical value to each of the events of a random
experiment. This kind of function X : Q — R is called a random variable. Now, given a
random variable X, we define the probability of the event X < x as Fx(x) = P(X < z),
where Fx(z) is the cumulative distribution function (CDF) of X. The CDF is a non-
decreasing monotonous function, bounded between 0 and 1. Its derivative fx(z) = F(x)
is called the probability density function (PDF) of the random variable X. Obviously:

:/Oofx(y)dy, / fx(@)de = 1 (2.13)

Now that we can adequately describe random experiments, we need some metrics to
evaluate their behavior. The expected value (mean) of a random variable X is given by:

From this point, we can easily derive the mean of any function of X as follows:
B0 = [ gla)fx(a)ds .15

Especially when g(X) = X", E[g(X)] defines the n'* moment of X. Of particular interest
are the so-called central moments, which are computed on the difference between a random
variable X and its mean px. The 1st central moment is obviously always zero. The 2nd
central moment is known as the variance of X,

o0

var[X] = E[(z — x)?] = / (X — i) fx(2)de (2.16)

—00
whereas the square root of var[X] represents the standard deviation oy of X. Intuitively,
the variance and standard deviation measure the degree of randomness in X. These are
the most fundamental metrics for a single random variable. However, in our analysis we
will need to compare signals and their statistical properties, so we introduce respective
metrics for pairs of random variables X, Y. Their joint moments are given by

BV = [ [y f e )dedy (2.17)

The first joint moment E[XY] represents the correlation of X, Y whereas the first joint
central moment E[(X — ux)(Y — py)] represents the covariance cov[XY] of X, Y.
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Random Processes

We have defined as random signals those that cannot be explicitly described or predicted.
By extending this definition to probability theory, we could state that each occurence
of a random signal is an event in the sample space. Those sample spaces that include
signal occurences are called random processes. A signal is then a realization (event) of the
random process and a point on the signal is itself a random variable. Random processes
also inherit a probability distribution that assigns a specific probability to each realization.
The metrics defined above generalize easily to random processes, as well.

A crucial attribute of a random process is its stationarity. Specifically, a random
process is called first order stationary if its mean and variance are constant in time. We
also define the autocorrelation function of a random process X (t) as:

Rx(tl,tg) = E[X(tl),X(tg)] = / / Qfll'gfx(tl),x(m)(ﬂfl,$2)d231d$2 (218)

A random process is called second order stationary if its autocorrelation is dependent only
on the time difference 7 = t5 — ¢t;. A process that combines those 2 rules can be fully
characterized as wide-range stationary.

Power Spectral Density
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Figure 2.3: Visualization of 3 noisy signals with fundamental frequencies at 100, 300 and 800
Hz. Depicted are their STFT spectrogram (left) and Power Spectral Density (right). Source:
https://ccrma.stanford.edu/ jcaceres/yamaha/

We have already seen that the frequency representation of deterministic signals is
acquired through the Fourier Transform. How could we generalize this principle to random
signals, which, as mere instances of a random process, might not be representative? The
answer is to exploit its autocorrelation function (Eq. 2.18), whose Fourier Transform
constitutes a powerful signal representation called Power Spectral Density (PSD). PSD
describes how power is distributed over the frequency content of a random process and
has found use in many tasks, in which the frequency content and variation is important,
eg. in audio processing [78] and biosignals [105]. In specific:

Sx(f)=F{Rx(1)} = /00 Rx ()e ™7 dr (2.19)
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If X(¢) is a real-valued random process, then Rx(7) is an even, real-valued function of
7. From the properties of the Fourier Transform, we conclude that Sy is also real-valued
and an even function of f. Also, Sx is non-negative for all f. To compute PSD in our
experiments we will exploit the algorithm proposed by Peter D. Welch [169]:

The original N-point signal is split up into K data segments, each of length M, over-
lapping by D points. The overlapping segments are then windowed in the time domain.
Most windowing functions somewhat suppress the edges of a segment, however the infor-
mation is retained when overlapping the segments. For each segment, the periodogram is
computed using the squared magnitude of its DF'T. The individual periodograms are then
averaged, reducing the variance of the individual power measurements. The end result is
an array of power measurements for each frequency bin. Below we visualize an example
of 3 noisy sinusoids at 100, 300 and 800 Hz.

2.1.4 Fractal Signal Analysis

Mathematicians Lewis Fry Richardson and Benoit B. Mandelbrot are credited with
introducing the notion of fractal shapes and dimensions. The term fractal originates from
the latin word fractum, meaning broken, and it was introduced by Mandelbrot [45] to
describe “unusual” shapes that cannot be modeled geometrically. What they found by
measuring the British coastline [88] is that, by increasing the precision of the measure-
ments, the measured total length appears to increase as well. This reflects the self-similar
structure of the coastline across a wide range of length scales. Since traditional geometrical
metrics were inadequate in modeling such a behavior, fractal algorithms and metrics were
introduced to address the property of self-similarity. Some popular self-similar shapes is
the Mandelbrot set, the Koch’s snowflake and the Herpinski Triangle, depicted in Fig-
ure 2.4. However, other than those ideal fractals, a lot of physical processes and signals
demonstrate similar properties. Natural schematic patterns [150], music signals [17, 180]
as well as biomedical signals [39] show indeed a complex structure across timescales.

Figure 2.4: Left to right: the Mandelbrot Set, the Koch’s Snowflake and the Herpinski Triangle.

The complexity of such signals is typically measured through the fractal dimension,
which is higher than their topological dimension. Intuitively, such complex shapes could
resemble, and indeed share properties of, shapes of higher dimensionality. However, there
is no consensus in determining the fractal dimension of a signal and, as a result, various
algorithms have been proposed. Although for some classic fractals all these algorithms
coincide, in general they are not equivalent. The most researched ones are the following:
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Similarity Dimension

Figure 2.5: Visual Inspection of N = P for r = 1,2. Source: [137]

If we take an object residing in Euclidean dimension D and increase its linear size by r
in each spatial direction, its measure (length, area, or volume) would increase to N = r”
times the original. We depict this in Figure 2.5. By taking the logarithm of both sides
we get log N = Dlogr. If we solve for D : D = log N/logr. Now D does not need to
be an integer, in fractal geometry it is actually a fraction. This generalized treatment
of dimension is named after the German mathematician, Felix Hausdorff, and has been
proven useful for describing fractal objects and trajectories of dynamic systems [41].

Box Counting Dimension

Figure 2.6: Estimating the box-counting dimension of the coast of Great Britain [YouTube].

Also known as the Minkowski-Bouligand Dimension [98], the box counting dimension
is a way of determining the fractal dimension of a set .S in a euclidean space R". It is named
after the German mathematician Hermann Minkowski and the French mathematician
Georges Bouligand. To calculate this dimension for a fractal S, imagine this fractal lying
on an evenly spaced grid, and count how many rectangular boxes are required to cover
it. The box-counting dimension is calculated by seeing how this number changes as we
make the grid finer. Suppose that N(e) is the number of boxes of side length e required
to cover the set. Then the box counting dimension is defined as:

. logN(eg)
_Dbox(S) == ll_f)% m (220)
We depict this method in Figure 2.6. The rectangular is not the sole type of kernel that
can be used and, indeed, we will later exploit a more advanced method on this.
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Higuchi Fractal Dimension

Higuchi Fractal Dimension (HFD) was proposed by Higuchi et al. [50] as an approx-
imation for the box-counting dimension of the graph of a real-valued function or time
series. It has many applications in science and engineering eg. in seismograms [43], clini-
cal neurophysiology [59] and Alzheimer’s disease treatment [142]. Given a time-series X,
for each k € {1,..., kmax} and m € {1,...,k} we define the length L,,(k) by:

(252

> 1 Xn(m+ik) = Xn(m+ (i — 1)k)| (2.21)

i=1

N -1

L,(k) = ———
W)= e
The length L(k) is defined by the average value of the k lengths L;(k),. .., Lg(k),

L(k) = % 3" Lo(k) (2.22)

m=1

The slope of the best-fitting linear function through the data points {(log %, log L(k))}
is defined to be the Higuchi Fractal Dimension of the time-series X.

2.2 Machine Learning Fundamentals

Artificial Intelligence (AI) describes intelligence demonstrated by machines, in contrast
to what is described as natural intelligence displayed by humans and animals. The field
of Al is broadly described as the study of intelligent agents: any device that perceives its
environment and takes actions to maximize its chance of successfully achieving its goals.
ATl is also widely considered as the attempt to mimic cognitive functions associated with
the human mind, and has drawn inspiration from the human brain.

Machine Learning (ML) is a subfield of Al It enables computers to learn from data and
predict outputs without being explicitly programmed. In recent years, Al has experienced
a resurgence due to advent of the Deep Learning subfield. Deep Learning utilizes large
amounts of data and networks that can model a plethora of high-level concepts, achieving
state-of-the-art and even superhuman performance on many tasks. ML algorithms are
generally classified into Supervised Learning, in which algorithms are trained based on
annotated data, and Unsupervised Learning, where we want to extract statistical structure
from non-labeled data. A third ML variant is Reinforcement Learning (RL), which is
concerned with how intelligent agents make decisions in order to maximize a type of
reward or minimize respective penalties. RL is deeply connected to the notion of human
learning and the human brain, however it will remain out of this study’s scope.

2.2.1 Supervised Learning Algorithms

The majority of machine learning tasks exploit supervised learning methods. Super-
vised learning involves a set of input variables z and a set of annotations y for each input
sample. The goal is to determine a mapping function y = f(x) such that it general-
izes well upon new, non-labeled input. We can define 2 broad categories of supervised
learning problems: Regression, in which the goal is to estimate a real value (y € R) and
Classification, in which the labels are organized into discrete classes.
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Linear Regression

Maybe the simplest and oldest ML algorithm is the estimation of the best-fit line for
a bunch of data points in a 2D space. In statistics, it is a linear approach to modeling the
relationship between a dependent variable and one or more independent variables. The
case of one dependent variable is called simple linear regression while if more than one
dependent variables exist, the process is called multiple linear regression. Simple linear
regression estimates linearly how much the dependent variable y will change when the
independent variable & changes by a certain amount (Figure 2.7):

In Machine Learning we usually consider the matrix notation y = X b, where rows of X
correspond to data points (samples) and columns to data dimensions (features):

-]_ 11 .- - Zl'lk- -yl- -bl-
1 z91 ... Zo Y2 b2
X=|1 @1 ... 23 |, y=|ys|, b= bs (2.24)
1 21 ... ZTpk Un by

and b coefficients can be estimated by minimizing the sum of squared errors (SSE):

b= argmin|y — bX]||3 (2.25)
b
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Figure 2.7: Visual examples of a linear regression implementation that will be used in De-
trended Fluctuation Analysis (DFA) algorithm (Chapter 3), to determine measures regarding
the EEG complexity. Here we depict the DFA result for two sample 30-sec. EEGs.

Trees and Forests

The Decision Trees algorithm also belongs to supervised learning, with the goal to
create a model that can predict the target variables by learning simple decision rules
inferred from training data. In Decision Trees, to predict a class label for a record, we
start from the root of the tree, which represents the whole dataset. On the basis of
comparison, we follow the branches corresponding to the value in hand and jump to the
respective nodes until we reach a target value (leaf). Each node in the tree acts as a test
query for some attribute, and each edge descending from the node corresponds to the
possible answers to it. This process is repeated for every subtree rooted at the new node.
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Now, a Random Forest, like its name implies, consists of a large number of individual
decision trees that operate as an ensemble. Each individual tree in the random forest
spits out a class prediction and the class with the most votes becomes our model’s final
prediction. The reason that this framework works so well is that, generally, a large number
of relatively uncorrelated models (here trees) operating as a committee will outperform
any of the individual constituent models. The low correlation is the key: uncorrelated
tree models can protect each other from their individual errors. While some trees may be
wrong, many other trees will be right, so as a group they move in the correct direction.

Support Vector Machines

[

Figure 2.8: Illustration of a Linear SVM functionality. Source: [149]

A Support Vector Machine (SVM) [32] is a classification algorithm that is trying to find
maximum-margin hyperplanes in order to create efficient classification boundaries for the
data classes. In specific, let a training set of N input vectors @1, ..., x 5y with corresponding
target values yi, ..., yy where z; € R? and y; € {—1,1}. Now, all hyperplanes in R? are
parameterized by a vector w and a constant b, expressed in the following linear equation:

w-x+b=0 (2.26)
Given such a hyperplane (w,b) that separates the data, this gives the function
f(x) =sign(w - x + b) (2.27)

which correctly classifies the training data and could also generalize well. So we define
the canonical hyperplane as the one that separates the data from the hyperplane by a
margin of at least 1. That is, we consider those that satisfy:

Yi(xi-wH40b)>1 Vi (2.28)

To obtain the geometric distance from the hyperplane to a data point, we must normalize
by the magnitude of w. This distance is simply:

d((w,b),x;) =2 (2.29)

Intuitively, we want the hyperplane that maximizes the geometric distance to the closest
data points. This is accomplished by minimizing ||w|| (subject to the distance constraints),
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using Lagrange multipliers. We can define the matrix (H);; = y;y; (X; - X;) to provide
more compact notation. The problem to solve is eventually transformed into:

min: W(a)=—-a"1+ ta"Ha

subject to:  afy=0, 0<a<C (2.30)

where « is the vector of | non-negative Lagrange multipliers to be determined, and C'
is a regularization term for configuring the penalty of wrongly classified instances. In
addition, the optimal hyperplane can be written as follows:

W = Zaiyixi (2.31)

The solution of the constrained equation system (Eq. 2.30) is given by Lagrange multipli-
ers. However, in many learning problems, feature vectors of different classes may be not
linearly separable in their original embedding space. Presumably, one cannot easily find
a hyperplane to serve as a classification boundary for data belonging to each class. For
this reason, it was proposed that the original space be mapped into a higher-dimensional
one, in which the separation would be easier. We could thus define the mapping z = ¢(x)
that transforms the d-dimensional input vector x into a higher d’-dimensional vector z.
Given a mapping z = ¢(x), to set up our new optimization problem, we simply replace
all occurences of x with ¢(x). The problem now becomes:

1
min:  W(a) = —a’1 + §OzTHOz (2.32)
with (H)i; = viy; (¢ (%) - ¢ (x;)) Then, the optimal hyperplane would be

W = Z i@ (X;) (2.33)

In all necessary computations, ¢ (x,) appears in a dot product with some other ¢ (xy,).
That is, given the kernel for the dot product in the feature space:

K (Xa;Xp) = ¢ (Xa) - ¢ (Xp) (2.34)

the matrix would be (H);; = v;y; (K (xi,%;)), whereas the classifier would be

F(x) = sign (Z iy (K (x:,%)) + b) . (2.35)

We can easily extend the previous formulation of binary decision SVMs in multi-class
problems by simply training separate binary classifiers for all the classes available in the
training data and choosing the one with the highest confidence.

2.2.2 Neural Networks and Optimization

An Artificial Neural Network (ANN) is a biologically inspired computational model
that is modelled after the network of neurons in the human brain. The area of ANNs was
initially developed to model biological neural systems, but has since diverged and become
a matter of engineering and achieving state-of-the-art results in Machine Learning tasks.
The basic computational unit of an ANN is the neuron, or the Perceptron [127].
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From Neurons to Networks

Let us recall the definition of the biological neuron from Section 1.2. Each neuron
receives input signals from its dendrites and produces aggregated output signals along its
axis. If the final sum is above a certain threshold, the neuron can fire, sending a spike along
its axis to the dendrites of other neurons, via synapses. For the Perceptron, we model the
firing rate of the neuron with an activation function (eg. the Sigmoid function). Aside
from that, its functionality resembles the biological neuron at a great extent.

Inputs Weights

w1

Transfer Function L .
Activation Function

net input

OQutput

Figure 2.9: The Rosenblatt’s Perceptron [127].

The perceptron consists of 4 parts: inputs, weights and bias, net sum and activation
function. As shown in Figure 2.9, the input (data) vector © = (z1,...,z,)? is multiplied
with the weight vector of the perceptron w = (wy, ..., w,)? and we refer to the aggregated
value 7w as the weighted sum. The output of the perceptron is the value of the activation
function, evaluated at this sum. Weights are used because they determine the strength
of the respective node of the perceptron, whereas the bias value allows us to control the
influence of the activation function. The purpose of this function is to apply a non-linear
transformation to data points, in order to discriminate them into distinct categories.

The perceptron is comprehended as a binary linear classifier and separates data using
a straight line. The Perceptron Algorithm was proposed to determine that line. The
algorithm has been proven to converge and can adequately implement linearly separable
functions. This is however a relatively narrow set of modeling functions.

Algorithm 1: The Perceptron Algorithm
Result: Weight parameter vector w of the separating line.
Initialize w randomly;
while not converged do

Pop a sample (x,y) from the input set;
if y =1 and 7w < 0 then
‘ W 4— W+ T
end
if y =0 and 7w > 0 then
| W w—
end

end
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In pursuance of learning complex non-linear functions, architectures that combine sev-
eral artificial neurons have been designed and are called Multi-Layer Perceptrons (MLPs).
Instead of MLPs, Feed-Forward Neural Networks (FFNNs) have been implemented, where
each neuron connects with all neurons of the previous layer and there are no connections
between the neurons of the same layer. The network is composed of an input layer, one or
more hidden layers and an output layer as depicted in Figure 2.10. A crucial component
of these neurons is the utilized activation functions. These incorporate non-linearities
in data modeling and help the network adapt and relate linearly invisible dependencies.
The most common activation functions are the Sigmoid function, the Softmax function
(usually on outputs) and the Rectified Linear Unit (ReLU). The question is how could we
train such a network on our data, since the Perceptron algorithm would be insufficient in
fine-tuning so complex networks with so many parameters.

Input layer Hidden layers i Output layer
i h, h, h 0

/ \.d\

Outpug 1

A""'L

Ni%

Figure 2.10: A 5-layer Neural Network containing n inputs, 3 hidden layers and an output
layer with n outputs. It is an example of a Deep Neural Network (DNN). Source: [18].

Back-Propagation Algorithm

The objective of a Neural Network can vary (generative networks, autoencoders etc).
However, in the baseline case of supervised learning, the network will try to minimize

~

N
1
© = argminL(#) = arg min— L(f(x:;0),v; 2.36
gminL(f) = arg} N;l (f (25;0) ,y;) (2.36)

hence, match the output predictions to the respective labels of the input vectors. Train-
ing a neural network translates into minimizing such an objective, something that in-
evitably includes the computation of gradients for the fluctuation of the network pa-
rameters (weights). Iterative gradient-based optimization schemes can be summarized
by 2 steps, namely computing the gradients and updating the weights. These steps are
performed iteratively until convergence is guaranteed (gradients close to zero).

When training deep networks with many stacked layers, the gradient computation at
each layer is not straightforward. The solution is to compute them layer-wise, starting
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from the loss function and moving backwards, hence the Back-Propagation term. Let us
consider the example of an intermediate fully-connected layer described by y = o (WTX),
where x is the input, y the 1D output, w the layer’s weights and ¢ a non-linear activation.
Given the output gradient ¥.J/vYy, we want to compute the gradients ¥.J/YJw and 9.J/9x
in order to update the weights and propagate the gradient error, respectively. The first
one, using the simple chain rule, can be expressed as:

vJ  9J Vo (wix) ¥ (w'x)  9J ,

T
= = — 2.
dw o vy 9 (wTx)  dw 19y0 (W) x (2:37)

while the second one as follows:

T T

. vJ Vo (w'x) ¥ (w'x) = ya’ (wix) w (2.38)
Ux Yy 9 (wlTx)  Ox Yy

The above utilization of gradient chain rule can be used sequentially to the input in order
to calculate every parameter gradient with respect to the objective function 2.36. After
computing the gradients and the aggregated score of the objective function with respect
to the parameters 6 of the entire training dataset, we commonly update them using the
following rule: 6 <— 6 —n - VyJ(0), where n is the learning rate.

2.2.3 Training and Evaluation Issues

Every type of neural network realizes a nonlinear function § = fy(z), where 0 is the
set of all the weights comprising the network. This function can be trained by iteratively
processing the available data, where a single iteration is called an epoch. One should first
define a training set of input samples and a rather small validation set to monitor training.
This data should not influence the training process by any means, however it is useful for
adjusting critical network hyper-parameters. Of course, we also need an independent test
set that will be used only to test the performance of the final trained model. Sometimes
though, and this is the case in our study as well, the quantity of data is insufficient to
properly define the above 3 subsets. In this case, the common practice is to split the
available data in k subsets (folds) and perform k training sessions, in each of which a
single set would be used as the validation set. In the end of this procedure, called k-fold
Cross-Validation, we consider their average scores as indicative of the model’s capabilities.
Below we visually depict the concept of the Cross-Validation method.

Training Sets Test Set
|
Iteration 1 | » ErTor
Iteration 2 > Errorz
" 5
Iteration 3 > Errors L Error = EZ Error;
i=1
Iteration 4 | » Error,
Iteration 5 -» Errors

Figure 2.11: The Cross-Validation concept diagram for k = 5. Source: towardsdatascience.com
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Optimization

Apart from data splitting, we should define the form of the utilized objective, or loss
function, L (y;, y;), that must quantify the proximity of the prediction g; to the target y;.
The loss function is task dependent and its minimization corresponds to having perfect
predictions, i.e. ¢; = y;. There is a large variety of proposed loss functions in the literature
and the selection is critical for the effectiveness of the trained model. First and foremost,
it should reflect the task’s goal. For regression tasks, the most widely used loss function
is the Mean Squared Error (MSE), as it can handle float differences:

|
Lasse (93 i) = > (=)’ (2.39)
i=1
where N is the number of evaluated samples. On the other hand, for classification tasks
we commonly utilize the -categorical- Cross Entropy (CE) loss:

c
Lew (§iyi) = = > vilog (4:) (2.40)
=1

Of course, losses can be complex and can consist of multiple terms when considering multi-
task problems. The only restriction is that the selected loss should be differentiable, so
that a gradient-based optimization scheme (or optimizer) could be considered.

Convergence

The formulation to update the network parameters presented before is impractical
as it is, since calculating the gradients over the entire dataset can introduce significant
computational costs. To address this problem one can use the Stochastic Gradient Descent
(SGD) optimization algorithm. SGD performs a parameter update for each training
sample. The pairs of inputs and targets are fed to the SGD in a different sequence at
each epoch (hence “Stochastic”). What is being used in practice, however, is the mini-
batch alternative of SGD, where the gradients are computed over batches of samples.
Additionally, SGD can be accompanied by a momentum strategy, where a history of
previous gradients is used in order to avoid extreme oscillations or even getting stuck in
local minima. A number of alternate optimization algorithms have been introduced to
ensure or even accelerate convergence, the most popular of them being Adaptive Moment
FEstimation, or Adam [63]. Adam computes adaptive learning rates for each parameter
and keeps an exponentially decaying average of past gradients, resulting in extremely
faster convergence. Last but not least, Batch Normalization has been introduced [56] to
assist convergence. It is used as a separate layer that constrains the range of input/output
values by computing the running mean value and standard deviation, updated at each
batch. The input is then normalized to approximate a standard normal distribution.

What happens, however, when the model does not converge as it should? There are
cases where the class separation is highly dependent on the noise from training data,
making it harder for the model to generalize in test time. This is called overfitting and
has been a common pitfall of many machine learning algorithms. We can avoid overfitting
by keeping well-defined data splits, as mentioned before, by data augmentation and the
introduction of random noise into the model. A form of such noise in neural networks is
the random zeroing of neurons, called Dropout [145]. Tt assists the creation of multiple
information paths and avoids correlating a neuron with a specific input sample, thus
enhancing generalization. Dropout is commonly used in many state-of-the-art models.
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Evaluation Metrics

Once we have trained a machine learning model, the question is how well does that
model behave and how we could quantify this performance. Depending on the task,
one could utilize a bunch of different metrics. Here we will just review the fundamental
confusion metrics that are used in our study and in evaluation protocols in general. Their
concept arises from the following confusion matriz for a binary experiment:

Predicted Class
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Positive Negative
i i
. . False Negative (FN) Sy
Positive True Positive (TP) - nE TP
ype ITOr m
Actual Class
‘< Specificity
B False Positive (FP) .
Negative it True Negative (TN) TN
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\
. Negative Predictive Accuracy
Precision
Value TP+ TN
2 ™ (TP + TN + FP + FN)
(TP + FP) i
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Figure 2.12: Confusion Matrix of a binary classification experiment, along with the definitions
of most common metrics (Precision, Recall / sensitivity). From manisha-sirsat.blogspot.com

True Positives are the correctly predicted positive values and True Negatives (TN) are
the correctly predicted negative values. Together they form the set of correct predictions.
False Positives (FP) and False Negatives (FN) are the wrong predictions made for each
class respectively. These 4 terms form the basic evaluation metrics:

e Accuracy: the ratio of the correct predictions to the total number of predictions.
It is the most straightforward indicator, however misleading in class imbalance.

e Precision: the ratio of the correct positive predictions to the total number of
positive predictions, measures the ability to correctly identify a class.

e Recall: the ratio of the correct positives to the total number of positive samples.

e F1 Score: the weighted average of Precision and Recall, used in the place of Ac-
curacy in the case of imbalanced data for classification.

2.3 Deep into Neural Networks

Figure 2.10 depicts a FFNN comprised of more than a single hidden layer, three in
specific. These networks that incorporate > 1 hidden layers in their structure are called
Deep Neural Networks (DNNs) and the large subfield that is equipped with their analysis
is called Deep Learning. While it has been long suggested, Deep Learning only recently
emerged in the literature, taking advantage of the high computational capabilities of
modern Graphical Processing Units (GPUs) to accelerate the training of heavy networks
by distributing training data in multiple cores and processing them in parallel.
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2.3.1 From Feature Engineering to Deep Learning

Deep Learning has revolutionized the common practice in Machine Learning Research
and Applications, mainly due to the ability of multiple network layers to extract powerful
features from input data. Hence they emerge as efficient feature extractors and help us
not only by avoiding the costly procedure of handcrafted feature extraction, but also
by providing us with features of even better quality. This feature extraction process
is sometimes referred to as Representation Learning. Then, the bottleneck and output
layers transform these features into class predictions, performing the classification stage.
However, it soon became evident that plain DNNs could not analyze efficiently all types
of raw data and especially complex forms like images, videos and time-series.

2.3.2 Convolutional Neural Networks

One of the breakthroughs in Image Analysis, and Machine Learning in general, was
the introduction of Conwvolutional Neural Networks (CNNs) to efficiently handle image
data and learn representative spatial features of high quality. Until then, researchers used
multiple Computer Vision techniques, eg. SIFT [86], SURF [13], or simple MLPs to handle
such data. However, the detectors were either too general or too over-engineered and hard
to generalize. In addition, the amount of MLP weights rapidly became unmanageable
when processing large images, while local information is not retained in them at all.
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Figure 2.13: Kernels for Edge Detection: Roberts (R1, R2), Prewitt (Py, P»), Sobel (S1,.52)

CNNs employ representation learning based on convolutional kernels to automatically
find relevant features that are spatially correlated. Such local kernels (or filters) were
known to the research community and were applied by convolutions in order to provide
handcrafted features like edges or corners (Figure 2.13). CNNs introduced specialized net-
work layers and used trainable filters, which can generate discriminative feature maps that
are optimized with respect to the task in hand. Such networks are commonly comprised of
stacked convolutional layers, which perform the convolution operation Y = XW, where
X and Y are the input and output tensors respectively, while W is the kernel-weight
tensor. Convolution is defined using the 2D cross-correlation operation:

C;
Y[m] = ZX[n] *Wm,n], m=1,...,Cou (2.41)

n=1
(Y c RcoutXHXW’ X c RCWXHXW7 W c RoinxoouthHXkW)

The spatial dimensions H x W and kg X ky correspond to the the feature map and
the kernel size respectively, while C}, and C,y correspond to the number of 2D feature
maps on the input and output of the convolution (commonly called channels). Essen-
tially, convolution layers transform an image feature map, taking into account contextual
information about each pixel’s neighborhood. Layers close to the input generate low-
level features (eg. edges), while layers close to the output generate high-level features,
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like complex shapes or texture. Research on CNN architectures has grown rapidly and
various forms have been proposed (eg. VGG [140], ResNet [48]).
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Figure 2.14: The architecture of an example VGG-16 [140] network for Image Analysis.

2.3.3 Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a class of networks where connections between
nodes form a directed graph along a temporal sequence. They are particularly useful where
the underlying time dependencies are inherent in the nature of the input data. They are
called recurrent because they perform the same task for every element of a sequence,
depending the output on previous inputs. Thus, they demonstrate the ability to have
a “memory” which captures the information calculated so far. As seen in Figure 2.15,
RNNs’ nodes are organized in successive layers. Given the input TN where N is the
length of the input sequence, each layer processes every input vector at time step z,
outputs h; (called the hidden state) and forwards both to the next step. Formally, at
each time step t, the equations that describe the RNN function are:

he = ¢ (Wanay + Wiphi—1 + by)

2.42
Y =T (Whyht + by) ( )

where y; is the output vector at timestep ¢, by, is the bias for i, b, the bias for y and ¢, r the
activation functions for x and h respectively. Finally there are three parameter matrices:
W (input-to-hidden weights), Wy, (hidden-to-hidden), and W), (hidden-to-output).

Y, Y, Y Yy
A
Why [ Why [ Why [ Why
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h, - h, = h, - = h,
A
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)(1 XZ Xa XN

Figure 2.15: Diagram of an RNN cell’s structure.
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Theoretically, RNNs are able to model arbitrarily long dependencies between the input
data. However, the nature of back-propagation training yields the problem of vanishing
or exploding gradients. Precisely, the gradient computation over multiple timesteps tends
to vanish or explode due to the finite-precision calculations when the error is propagated
backwards. LSTM [51] and GRU [26] modules have been proposed to tackle this problem.
Their core functionality is to control the magnitude of gradients via a forget gate that
controls the informational flow from the networks’ memory. The block diagrams of an
LSTM and a GRU cell are displayed in Figure 2.16. These modules have been thoroughly
successful, so vanilla RNN networks are now only rarely employed.

forget gate cell state reset gate

LY
’
.

P

input gate output gate update gate

Figure 2.16: Structure of LSTM (left) and GRU cells (right). Red: Sigmoid, Blue: Tanh.
From towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation

2.3.4 Multimodal and Metric Learning

Our experience of the world is rather multimodal: we see objects, hear sounds, feel
the texture, smell odors and taste flavors, so that, in the end, we come up to a decision.
Multimodal Learning, in its broader sense, suggests that when a number of our senses are
being engaged in the processing of information, we understand and remember more. By
combining these modes, learners can combine complementary information from different
sources. For example, an image depicting a football match would be complemented by a
transcription of a speaker’s description of the highlight.

Deep neural networks have been successfully applied to feature learning for single
modalities, as we have already analyzed. Here, we aim to fuse information from different
modalities to improve our network’s predictive ability. The overall task can mainly be
divided into three phases: individual feature learning, information fusion and testing. A
first step is learning how to represent input modalities and summarizing the data in a way
that expresses the multiple modalities. The heterogeneity of multimodal data makes it
challenging to construct such representations. A second step is to address how to translate
one data modality to another. Not only are the data heterogeneous, but their relationship
is often subjective. To tackle this challenge, we need to measure the similarity between
different modalities and deal with possible long range dependencies and ambiguities. One
of the most popular similarity metrics applied in such tasks is called Canonical Correlation
Analysis (CCA). Given a pair of sample vectors (z,y), CCA aims to find a pair of linear

projections of the two views (w] z,w, y) that are maximally correlated, i.e.,
T
w Y, W
(w;, w,) = max corr(wf:v,wgy) = max z Y Y (2.43)
Wy, Wy Wz, Wy T T
\/'wm meccwy Dy Wy

67


https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

68 2.3. Deep into Neural Networks

where ¥,,,3,, the covariance matrices of the samples and ¥, their cross-covariance
matrix. Inspired by deep representation learning, Deep Canonical Correlation Analy-
sis (DCCA) [4] was introduced to learn complex nonlinear transformations for different
modalities, such that the resulting representations would be highly correlated. DCCA
computes the latent representations of the two views by passing them through multiple
stacked fully-connected layers, optimizing them through a CCA objective.

We then need to build best-suit models to extract features from individual modalities.
Feature extraction from each source is usually independent from the others, at least
initially. For example, in image-to-text translation, the features extracted from images are
in the form of finer details, like edges and environmental surroundings, while corresponding
features extracted from text are in form of tokens. After all the important features are
extracted from all data sources, we then fuse them into a shared representation. This step
can take several possible forms, from simple feature concatenation to complex feature-wise
transformations, that can also be learnable (FiLLM layers [110]).

Metric Learning

O
o 0°°
se” o

e O

Figure 2.17: Concept of a contrastive objective on multimodal output embeddings. Source:
laboratoirehubertcurien.univ-st-etienne.fr/en/teams/data-intelligence

However, information fusion is not achieved only through feature fusion. Instead, one
could parameterize the loss function of a neural network to force an enhanced latent rep-
resentation for all modalities by quantifying and extracting their similarity. The field that
incorporates similarity objective functions is referred to as Metric Learning or, commonly,
Deep Metric Learning, since it is applied predominantly on deep models. Metric Learning
aims to learn feature embeddings in a way that reduces the distance between individual
feature vectors that exhibit (commonly label) similarity (Figure 2.17) or as well increases
the distance between dissimilar ones. The most prominent metric losses are contrastive
losses, which evaluate how similar is a multimodal pair of samples, and triplet losses, that
work on triplets of samples. We will make extensive use of triplet losses in Chapter 4,
where we analyze this concept in further detail. The distance metric used can be the
Euclidean distance, but, because we most times deal with high-dimensional vectors, other
metrics are commonly used, such as the cosine or the Mahalanobis distance.
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Chapter 3

Multifractal Analysis on EEG

In this chapter we examine novel algorithms in order to investigate the fractal and mul-
tifractal properties of EEG signals, as well as to what extent these properties carry emo-
tional information. Emotion Recognition from EEG signals has been densely researched
(Section 1.1), their complex and noisy structure however has proven to be a barrier for
traditional modeling methods. In the end, we indicate that multifractal analysis could
serve as basis for the development of robust models for Emotion Recognition.

3.1 Literature Review

Although Machine Learning has made overwhelming progress in modeling rational
intelligence, there are still many challenges in approaching emotion-driven intelligence,
a fundamental aspect of human’s perception and decision-making processes. The reason
for this is that emotions are highly subjective, and thus really difficult to be labeled
when expressed, as analyzed in Chapter 1. Nevertheless, there is a growing interest in
emotion tagging through physiological signals [24], since those are induced without our
active interference and thus depict more clearly the actual affective state.

The electroencephalogram (EEG) is the most widely researched signal of its kind
and has been highly effective in detecting affective states. A variety of time, frequency
and joint-domain features have been extracted from EEG for that purpose. Indicatively,
Petrantonakis et al. [111] introduces an adaptive filtering method to efficiently extract
emotion-related characteristics from decomposed EEG signals. In addition, Higher Order
Crossings of the signals were employed as feature vectors, with the overall framework
achieving robust performance. Wang et al. [167] utilizes the power spectrum of sepa-
rate EEG rhythms, along with statistical features, to recognize 4 emotion states: joy,
relaxation, sadness, and fear. Other studies incorporate time-frequency and often wavelet
features, like wavelet energy and entropy [57], achieving competitive results on the DEAP
Dataset. Particular attention has also been given to channel connectivity features: Piho
et al. [112] uses mutual information to extract informative EEG segments for Emotion
Recognition, whereas in [38] the authors compare differential entropy features and their
combination on symmetrical electrodes with traditional frequency and energy features,
reporting high scores in literature. Nowadays, various types of deep neural networks
have exceeded the performance of traditional feature-oriented methods. One of the most
prominent efforts in sequential modeling is the bi-hemispheric model [79], proposed to
process asymmetrical features through directed recurrent networks. CNNs have also been
employed to capture both temporal and inter-channel spatial information [168].
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However, processing EEG signals and extracting useful features remain core challenges,
since EEG, like most biological signals, is chaotic, nonlinear and incorporates a large
amount of noise, both from the recording equipment and interfering physiological processes
[67]. Because of the nature of such signals, several nonlinear fractal methods have been
proposed, one of them being the Higuchi Fractal Dimension (HFD) [50], which has been
used extensively in emotion recognition. Liu et al. [83] utilizes the HFD spectrum in
conjunction with statistical measures, while the authors of [156, 80] include HFD among
several non-linear features, to classify emotions using random forests. Yet, due to the
complexity of the EEG [131], such signals do not always share the same structure over
every time scale, hence the fractal characteristics may vary and change dynamically or
accordingly to the examined scale. For this reason, we propose the Multiscale Fractal
Dimension [90] and Multifractal Detrended Fluctuation Analysis [62] to examine the EEG
signals and determine emotional information buried in their fragmented structure. Until
now, several studies have proposed multiscale fractal features for speech extraction[93,
113] as well as for identification of the speaker’s affective state [23]. These take into
consideration the inherent turbulence during speech production [93].

3.2 Multifractal Algorithms

3.2.1 Multiscale Fractal Dimension
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Figure 3.1: Minkowski cover simulation of a sample EEG signal from DEAP. At the up-left of
both diagrams we depict the raw EEG sample waveform.

While many ways have been proposed to measure the fractal dimension (Section 2.1.4),
chaotic and non-linear signals like the EEG and other physiological signals cannot be ad-
equately modeled. Due to their complexity, such signals do not always share the same
structure over every time scale, hence the fractal characteristics may vary and change
dynamically or accordingly to the examined scale. Multiscale analysis should be thus con-
sidered to model these signals. Maragos [90] developed an efficient algorithm to measure
a Multiscale Fractal Dimension (MFD), based on the Minkowski-Bouligand Dimension.
This algorithm measures the multiscale length of a curve by covering it with disks of
varying radius, whose center lies on the curve, referred to as the Minkowski cover. The
developed algorithm is known as the morphological covering method:

1. Create the Minkowski cover (Figure 3.1) by using 2D morphological set dilations of
the graph F' of the signal by multiscale versions sB = {sb : b € B} of a unit-scale
convex symmetric planar set B, where s > 0 represents the scale parameter:

Fo®sB={z+sbeR?:2€ F,be B} (3.1)
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2. Compute the cover area Ag(s) = area(F @ sB). The Fractal Dimension is then:

b i 19845 (5)/57

b Jog[1/s (3.2)

Ideally B is a unit disk. However, D remains invariant as long as B is compact, convex
and symmetric. In the discrete case, we select as B an approximation to the disk by
a unit-radius convex symmetric subset of Z2. Now, Maragos has shown that the above
limit will not change if we approximate Ag(s) with the area of the difference between
the morphological dilation and erosion of the N-sample discrete signal F'[n] by a function
G;[n] that is the upper envelope of the discrete set sB:

N-1
Ap(s) = Y (F®G,) — (F o G,))lnl (3.3)
n=0
for s = 1,...,Smae < N/2. This greatly reduces the complexity by introducing one-
dimensional signal operations, that are simple nonlinear convolutions, instead of complex
two-dimensional set operations. Further reduction to linear complexity is accomplished
by performing the above operations scale-recursive.
Fractal Dimension D can be estimated by least-squares fitting a straight line to and
measuring the slope of the plot log[Ag(s)] versus log(s) because

log[Ap(s)] = (2 — D)log(s) + constant (3.4)

assuming the power law Apg(s) ~ s>~ as s — 0. Our signals however, and most real-

world signals, do not have the same structure over every scale, hence the exponent in the
dominant power s>~ may vary. We therefore compute the slope of the data over a small
scale window of w scales that move along the scale axis s {s,s+ 1, ..., s + w}, creating a
profile of local MFDs D(s,t) (or fractogram) at each time location ¢. The local slope is
now an estimate of 2 — D and gives us the fractal dimension. D ranges between 1 and 2
and the larger it gets, the greater the amount of geometrical fragmentation of the signal.
Figure 3.2 depicts sample EEG fractograms of a certain trial across three signal windows,
where we indeed observe D to appear in the expected interval. It is also evident that D
is high along every scale and even approaches D = 2 at the largest scales.
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Figure 3.2: Fractogram of a sample EEG trial (Subject 8, Track 6, Channel CP1, « band, 0-15,
15-30 and 30-45 sec. windows). The utilized configuration is the one described in Section 3.4.2.
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3.2.2 Multifractal Detrended Fluctuation Analysis

Detrended Fluctuation Analysis (DFA) estimates the Hurst exponent H in time series
data instead of the fractal dimension. In general, the fractal dimension D presents local
features of the signal whereas the Hurst exponent reflects on global properties of the time
series. Additionally, if the time series is self-similar, the fractal dimension is easily derived
from the Hurst exponent. The method takes a time series z[n] of length N as input and
consists of the following steps:

1. Initially, z[n] is replaced by its centered cumulative sum: y[n] = 320 _ (x[m] — i)

2. y[n] is divided into Ny non-overlapping windows yy[k, n], k = 1,..., Ny of length s.
3. For every window, the local trend r[k,n] is obtained through linear regression.
4. yqlk,n] = yn[k,n] — r[k,n] is the detrended version of the k-th profile segment.

5. RMS value of each detrended segment is computed and averaged across segments:

Fils) = || = walk. 2 (35)

The result of the above operations is a vector of s values, one for each chosen scale.
The relationship between F(s) and s is described by the power law F(s) o s¥, which
determines H. In order to acquire its value, we plot these vectors in a (log-RMS, log-scale)
plot. According to the power law, the points should form a line, which is estimated via
linear regression and its slope determines the generalized Hurst exponent.
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Figure 3.3: MFDFA on an EEG: depicting 16 DFA graphs for Fj(s) along with the linear
regression lines, the slopes of which determine the generalized Hurst Exponent H(q).
Multifractal Detrended Fluctuation Analysis (MFDFA) [62] is essentially a general-

ization of DFA, where F'(s) is estimated over multiple moments of Fy(s):

(3.6)

As a result, a separate line is computed for every value of the factor ¢, with ¢ = 2 being
the reduction to classical DFA. MFDFA could prove especially useful in cases where the
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scaling exponents and complexities are dependent on the scale, or change dynamically, in
the context of time series. Figure 3.3 shows an EEG example for 16 q values.

Detrended Cross Correlation Analysis (DXA) [115] and Multifractal DXA (MFDXA)
[179] are generalized versions of the above methods in the context of a pair of time
series that we need to examine their structure and fractal correlations. Two time series
x1[n], xan] of the same length are given as input and the sole change is the detrended
covariance that is used in place of the squared detrended signal:

Fils) = || = S wnlk, nlyslk ) (3.7)

n=1

Of course DXA reduces to DFA when x[n] = x9[n]. Lots of other variants have been
proposed regarding the MFDFA algorithm, one of the most prominent being the replace-
ment of polynomial detrending with Empirical Mode Decomposition (EMD) [52], having
proved to be efficient for biomedical time series that have oscillatory or ramp-like trends
[77]. EMD is a way to decompose a signal into a small number of components that form
a nearly orthogonal basis for the original signal, called Intrinsic Mode Functions (IMF).

3.3 EEG as a Multifractal Signal

Before presenting our analysis, we mention that we work on the DEAP Dataset [65]
which we describe in detail in the Appendix. DEAP is a widely used data source for Emo-
tion Recognition from physiological signals, including preprocessed data from 32 subjects.
Each subject is exposed to forty 60-sec. long music videos as stimuli, while having their
EEG recorded, along with other physiological signals. After watching each video, the
subject rated their induced emotion in valence and arousal. Each video has been also
separately annotated by the authors, this is however not yet among our concerns.

3.3.1 Stationarity of EEG Signals

Physiological signals and EEG are widely researched as noisy and non-stationary
signals and commonly demand heavy pre-processing, since they normally exhibit time-
varying oscillations. The observed structure is partly due to external stimuli or other
physiological operations and mainly indicates the complexity and the states of neural as-
semblies during brain functioning [67]. In our experiments it is crucial to determine the
stationarity of the signals in order to interpret their multifractal properties. We use the
Augmented Dickey Fuller (ADF) Test [37] for that purpose, a test that depends on the
concept of unit root. Suppose we have a time series y; = ay,_1 + ¢; where y, is the value
at time ¢ and e; the error. If we solve the recursive formula we get:

Yr = a"Yrn + Z e’ (3.8)

For a = 1 (unit root) the equation implies that the variance will monotonically increase
in time. Thus, the signal will be non-stationary. The ADF Test is used to determine the
presence of unit root in time series, the presence being the Null Hypothesis.

By applying the test to a limited but randomly sampled set of DEAP signals, to
our surprise, we derived evidence of strict stationarity. Specifically, the examined signals
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appeared non-stationary only at very low scales, up to windows of 100 samples or 0.8 sec.
The same holds when we test the signal profiles, i.e. their cumulative sums. However, a
few signals exhibit non-stationarities at their major frequency bands. In order to find the
source of this stationarity, we reproduced the pre-processing applied in [65] to a sample
raw waveform. This included downsampling to 128 Hz, eye-artefact removal, filtering at
4-45Hz and averaging to the common reference channel. After this procedure, it was
found that the cause of stationarity was the performed bandpass filtering. As a second
experiment we checked the stationarity of the frequency bands of the EEG (theta, alpha,
beta, gamma). We found that, despite the bandpass filtering, a few signals indeed exhibit
non-stationarities and, the lower the band, the more signals appear non-stationary. A
significant difference is that by taking here cumulative sums as input, the vast majority
of signals in every band turns non-stationary, whereas most of them exhibit a trend.

Fractional Brownian motions

H=0.50 H=0.75

Fractional Gaussian noises

sassndusiacs o

H=0.25 H=0.50 H=0.75

Figure 3.4: Graphical examples of fractal time series. The upper graphs represent fractional
Brownian motions (fBm) and the lower graphs, the corresponding fractional Gaussian noises
(fGn), for three typical values of the Hurst Exponent H: 0.25,0.5,0.75. Source: [35]

3.3.2 Hurst Exponent Estimation

Scale-free stationary processes, like EEG signals, can be viewed as fractional Gaussian
noise (fGn) while their increments typically construct non-stationary processes in the form
of fractional Brownian motion (fBm) of the same Hurst Exponent. Thus, the exponent
estimation is crucial in characterizing EEG signals for multifractal analysis [55] and can
be determined by monofractal DFA. If the estimated exponent is less than H = 1, then
it characterizes a stationary process, which can be modeled as fGn with that exponent.
Otherwise, it is assumed to be produced by a non-stationary fBm process with an exponent
of H — 1. The EEG signals of the DEAP dataset provide a very low Hurst Exponent
value that approaches 0, while their profiles and separate bands provide an increased
DFA-estimated exponent, still though below 0.2 at most cases. The results however alter
when we examine the profiles of the filtered bands, particularly theta and gamma, in
which the exponent estimation shows a steady increase (Table 3.1).

These values confirm the evidence from the ADF Test that EEG signals are nega-
tively correlated and their fluctuations are smaller in larger time windows, which is the
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Signal Resolution H Raw Signal ‘ Theta ‘ Alpha ‘ Beta ‘ Gamma

600 samples 0.83 0.24 0.90 | 0.57 0.36
whole signals 0.01 0.03 0.01 | 0.00 0.00
600 (cumsum) 1.28 0.73 | 1.33 | 0.92 0.41
whole cumsum 0.02 0.26 0.13 | 0.09 0.27

Table 3.1: Hurst Exponent of 27 randomly sampled DEAP EEG trials, computed through
monofractal DFA and averaged, with respect to EEG channels and the number of trials.

typical behavior of fGn processes having Hurst exponents below 0.5 [35]. Only when
considering short signal intervals we could measure actual high exponent values. As seen
in Table 3.1, random signal windows of 600 samples introduce very different measures
of complexity, especially the raw signal and the alpha band. This finding indicates that
the EEG fragmented structure can vary significantly according to the examined scale, a
desired property in order to apply multifractal algorithms. In Figure 3.4 we can see how
sample fGn and fBm processes vary their structure according to their H Exponent.

3.4 Extraction of Fractal Features

Each 60-sec. EEG segment is parti-
tioned into its main bands through band-
pass filtering with a 10th order Butterworth
filter. We include alpha (8-13 Hz), beta (14-
29 Hz), and gamma (30-45 Hz) rhythms in
our analysis, as well as raw signals, since
those have been acknowledged as the most
emotion-sensitive [178] and have shown the
largest multiscale variability. We select 12
left (Fpl, AF3, F7, F3, FC5, FC1, T7, C3,
CP5, CP1, P3, P7) and 12 right (Fp2, AF4,
F4, F8, FC2, FC6, C4, T8, CP2, CP6, P4,
P8) channels that have shown competitive
performance, particularly when their asym- Figure 3.5: The configuration of the selected
metry is examined, and we assess the pro- left (blue) and right (red) DEAP channels.
posed features on each set separately.

3.4.1 Baseline Features

A set of widely used baseline features is extracted for comparative reasons and to
assess the combined efficiency of the proposed feature set. These features are

e Power Spectral Density (PSD): As mentioned in Chapter 2, PSD denotes the
Fourier Transform of the EEG signals’ autocorrelation function. It has been widely
exploited in feature extraction algorithms from EEG signals [105] since it is able
to incorporate insights from the available EEG frequency bands. We compute PSD
through the Welch [169] method, resulting in N = fs/2 = 64 features per signal.

e Higuchi Fractal Dimension (HFD): As mentioned in Chapter 2, HFD [50] is an
alternative derivation of the Fractal Dimension and it has been widely exploited to
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analyze neuronal signals. We compute HFD using the PyEEG library [10], resulting
in a scalar feature. In order to derive a feature vector for this case, we first split
cach signal into windows of 15 sec. (1920 samples) with 50% overlap and then we
determine the HFD for each of the 7 windows, resulting in a 7D vector.

3.4.2 MFD Features

Since EEG signals show multifractal properties in rather short windows and, also,
Multiscale Fractal Dimension has been mainly used for short-time analysis, we choose
again to split each 60-sec. EEG signal into 7 windows of 15 sec., with 50% overlap. The
proposed feature set includes 30 linearly sampled features, extracted out of each window’s
MFD. The respective per-window features are then summarized using 3 statistical metrics:
their mean, median and standard deviation across the scale of measurement. In this way,
we end up with a final 90D feature vector that incorporates the signal’s temporal variance.
Every signal is analyzed at discrete scales of s = 1,...,274 samples, thus the maximum
scale is at s = 1/7 of the signals’ length. The fractograms of sample signals along with the
variance of their 7 windows are shown in Figure 3.6. The EEG fractograms reveal a highly
fragmented structure and a high multiscale fractal dimension D > 1.5. This finding is
consistent with the low Hurst Exponent estimations we got from the monofractal DFA
trials, especially in the case of large signal scales. A common characteristic among these
signals is that their MFD shows a steep peak at the first scales of 1-2 sec.
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Figure 3.6: Sample MFD profiles of 2 EEG signals (Subjects 5, 20) along with the mean and
standard deviation features extracted from their 7 subsignals.

3.4.3 MFDFA Features

We additionally acquire 30 features from processing the last half of each EEG waveform
through the computationally expensive MFDFA. We select 10 scales ranging from 30
to 500 samples in a logarithmic scale, along with 16 g-moment values ranging linearly
from —5 to 5. The resulting representation is a set of 16 linear-like graphs of 10 values,
as shown in Figure 3.3. Sixteen (16) Hurst Exponent values are determined through
linear regression, one for each moment. The mass exponent ¢ is then derived through
t(q) = ¢H(q) — 1. A monofractal signal with constant H would produce a linear graph,
since H remains constant, the EEG instead produces a curve that we utilize to produce
the signal’s multifractal spectrum D, characterized by its cap scheme:
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Figure 3.7: t(¢q) and D(q) MFDFA components for a sample EEG signal.

We derive the multifractal spectrum D(q) through the following equations:

D(o) = dh0) ~1ld),  hla) = =) 3.9)

where n = 1,...,15, ¢’ excludes the largest moment value, and h(q) is the singularity
exponent. The resulting curve, determined by 15 h(q) and 15 D(q) values, represents the
MFDFA feature set. In Figure 3.7 we depict t(¢q) and D(q)-h(q) for a sample EEG.

3.5 Experimental Evaluation

We evaluate the features extracted from the multifractal analysis on the emotion
recognition task. The experimental protocol can be divided into two categories: Subject
Dependent, where a unique classifier is trained and tested on the trials of each participant,
with the final score being the average per-subject score, and Subject Independent, where
a classifier is trained on several participants and tested against unseen trials.

3.5.1 Model Formulation

We make use of a single classifier unifying features from all available EEG channels.
The model consists of a Standard Scaler, that standardizes training features by removing
their mean and scaling them to unit variance, and a Support Vector Machine (SVM) with
a radial basis function (RBF) kernel. Experiments consider single labels, i.e. valence or
arousal, in binary format by setting the threshold for binarization in the median score 5.
We perform 5-fold cross validation on stratified splits of the available data: approximately
56.5% of all samples are of high valence and 59% of high arousal annotations.

3.5.2 Results & Discussion

The classification results for all features at the 2 distinct settings are summarized in
Tables 3.2 and 3.3. We notice the accuracy difference between subject dependent and
independent tasks, supporting the claim that brain responses inherit mainly subjective
characteristics. The EEG PSD is shown to be efficient in the subject-dependent setting,
where the raw signal modality achieves 64.2% in valence and 65.2% in arousal. Interest-
ingly, despite the raw signal features are more efficient when taken from the left selected
channels, the per-band scores are actually slightly better for the right channels. All these
scores significantly drop in the subject-independent setting, where the PSD emerges as the
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least efficient feature set, achieving only chance-level scores in arousal, 6% below the top
recorded accuracy of MFD. We can therefore assume that the within-subject variability is
concentrated more on separate spectral characteristics of each participant and therefore,

fractal analysis can prove to be more robust across different subjects.

Features H Channels ‘ Raw Signal ‘ Alpha Band ‘ Beta Band ‘ Gamma Band ‘ Combined

PSD 0.642 — 0.652 | 0.598 — 0.645 | 0.629 — 0.639 | 0.635 — 0.620 | 0.631 — 0.648
HFD Front 0.615 — 0.638 | 0.605 — 0.655 | 0.591 — 0.643 | 0.601 — 0.634 | 0.638 — 0.645
MFD Left 0.620 — 0.661 | 0.626 — 0.669 | 0.591 — 0.653 | 0.594 — 0.636 | 0.612 — 0.661
MFDFA 0.577 — 0.662 | 0.571 — 0.643 | 0.577 — 0.649 | 0.592 — 0.651 | 0.586 — 0.658
PSD 0.627 — 0.644 | 0.616 — 0.645 | 0.637 — 0.641 | 0.623 — 0.627 | 0.623 — 0.646
HFD Front 0.606 — 0.644 | 0.604 — 0.655 | 0.595 — 0.633 | 0.572 — 0.627 | 0.623 — 0.644
MFD Right 0.607 — 0.655 | 0.605 — 0.652 | 0.566 — 0.652 | 0.602 — 0.641 | 0.597 — 0.657
MFDFA 0.587 — 0.655 | 0.573 — 0.641 | 0.603 — 0.650 | 0.573 — 0.620 | 0.586 — 0.652

Table 3.2: Subject Dependent Task Accuracy in the form:

Valence — Arousal

Features H Channels ‘ Raw Signal Alpha Band Beta Band Gamma Band ‘ Combined

PSD 0.554 — 0.569 | 0.547 — 0.564 | 0.549 — 0.562 | 0.553 — 0.570 | 0.546 — 0.564
HFD Front 0.541 — 0.601 | 0.552 — 0.588 | 0.541 — 0.616 | 0.545 — 0.584 | 0.585 — 0.621
MFD Left 0.553 — 0.606 | 0.566 — 0.631 | 0.545 — 0.618 | 0.554 — 0.580 | 0.559 — 0.615
MFDFA 0.569 — 0.630 | 0.546 — 0.600 | 0.545 — 0.598 | 0.532 — 0.545 | 0.553 — 0.608
PSD 0.553 — 0.580 | 0.557 — 0.560 | 0.558 — 0.573 | 0.552 — 0.579 | 0.555 — 0.575
HFD Front 0.525 — 0.573 | 0.566 — 0.582 | 0.544 — 0.595 | 0.549 — 0.567 | 0.571 — 0.605
MFD Right 0.552 — 0.601 | 0.556 — 0.605 | 0.547 — 0.587 | 0.545 — 0.588 | 0.560 — 0.607
MFDFA 0.555 — 0.619 | 0.552 — 0.580 | 0.549 — 0.591 | 0.539 — 0.584 | 0.544 — 0.599

Table 3.3: Subject Independent Task Accuracy in the form: Valence — Arousal

Multifractal methods show indeed strong performance in both experiments, surpassing
chance levels and the baseline features in most cases. In contrast to spectral features that
are sensitive to valence, these features prove efficient mainly in recognizing the arousal
state, in which they achieve 5% to 7% higher scores, in the Subject Dependent setting, and
approximately 3-4% higher scores in the Subject Independent one, compared to the PSD
features. Here, the left hemisphere is shown clearly as more effective than the right one.
An important distinction, compared to other studies, is that the gamma band does not
play a dominant role in recognition performance. At least in the present study, gamma
band features perform well in predicting valence from PSD features and arousal from
MFDFA features. The HFD feature, on the other hand, while being effective in both
settings, it falls behind the multiscale dimension MFD in most experiments. Despite
reporting the same high-level concept of a fractal dimension, HFD inherits a significantly
lower dimensionality as a feature vector and also lacks the analysis of multiscale variablity
that we have observed on the EEG signals, a type of structure variability that is adequately
modeled through multiscale versions of their fractal dimension.

Our results are in accordance with those reported in [80] for PSD and HFD, while the
top scores obtained by MFD and MFDFA surpass most of the ones reported there (Ta-
ble 3.4). At the SD experiment particularly, MFD of the alpha band and MFDFA at the
raw signal yield 66.9% and 66.2% respectively, whereas their highest subject-independent
accuracy yields 63%. These scores are among the state-of-the-art results in the specific
dataset [28], considering feature-oriented studies, although we recognize the additional
difficulty of eliminating all of the trials of a tested participant from training.
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Proposed Features H SD Valence—Arousal Scores
Power Spectral Density [80] 0.617 — 0.621
Higuchi Fractal Dimension [80] 0.632 — 0.622
Higher Order Crossings [80] 0.647 - 0.661
Multiscale Fractal Dimension (ours) 0.626 — 0.669
Multifractal DFA (ours) 0.603 — 0.662
Pearson Correlation Coefficient [80] 0.688 — 0.682
Rational Asymmetry [80] 0.611 — 0.626
Mutual Information [80] 0.708 — 0.687

Table 3.4: Performance Accuracy at the Subject Dependent Setting for various feature types,
presented in [80]. Importantly, features that aggregate the inter-channel correlations seem to
capture the most discriminating emotional information.

Aggregating Features

As shown in Table 3.4, inter-channel correlations seem to be highly discriminative on
the affective state and provide the best feature-wise accuracy scores. While the intent of
our study is not to concentrate on such correlations, but rather on the fragmented struc-
ture of the EEG, an interesting experiment would be the examination of the inter-channel
multifractal correlations through the Multifractal DXA algorithm. However, the high
complexity of the algorithm, having to quantify nearly hundreds of channel combinations,
as well as the length of the DEAP EEG signals made such an experiment computationally
inefficient. It would certainly be though a promising future direction to examine. Other
than that, correlation measures between the extracted features of the left and the right
hemisphere (e.g., differential asymmetry, rational asymmetry) confirm the finding that
no further emotional information can be obtained, as their performance falls between the
scores of the independent experiments, still substantially higher (by 2-5%) than plain
asymmetry measures, utilized in [80].

Another interesting experiment is the aggregation of the different fractal features.
MFD and MFDFA clearly outperform the Higuchi baseline in arousal and perform com-
parably in valence, indicating that the multiscale variability of the EEG can capture
latent emotional information. However, their combined usage reduces performance to-
wards MFDFA-reported scores, indicating lack of complementary information. To this
end, we performed additional MFDFA experiments to determine the source of the insuf-
ficiency, compared to MFD features. Specifically, we tried out input types that alleviate
the effect of the very low Hurst Exponent of the DEAP signals, since it has been stated
[55] that MFDFA can be significantly harmed by extreme exponent values. The most
prominent input type is the cumulative sum of the EEG, that we use to provide random
walk transformations of the EEG signals, in order to increase their H exponent. The
results, shown in Table 3.5, do not indicate a specific pattern, however we can deduce
that brain rhythms of higher frequency tend to benefit from these configurations.

Features H Experiment ‘ Raw Signal ‘ Alpha Band ‘ Beta Band ‘ Gamma Band

Left Subject 0.566 — 0.652 | 0.566 — 0.642 | 0.581 — 0.640 | 0.601 — 0.659
Right Dependent | 0.580 — 0.655 | 0.577 — 0.632 | 0.606 — 0.650 | 0.576 — 0.655
Left Subject 0.556 — 0.639 | 0.548 — 0.612 | 0.540 — 0.600 | 0.550 — 0.581
Right Independent | 0.541 — 0.610 | 0.548 — 0.595 | 0.555 — 0.598 | 0.540 — 0.584

Table 3.5: MFDFA on signals’ cumulative sum Valence—Arousal Accuracy
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Returning to our base results, although the two kinds of fractal dimensions, HFD
and MFD, attempt to record the same signal quantity, they differ in their analysis of
the signal complexity in multiple scales, thus provide different measurements. While
MFD outperforms HFD and performs strong in arousal, the two features provide better
scores in arousal when combined. As we depict in Table 3.6, in both subject dependent
and independent settings we record higher accuracy than the one we obtained from the
individual features in the base study, mainly when testing raw signals or the alpha band.
The differences are significant in the subject independent setting, whereas even the top
scores obtained previously are improved. The model can now predict arousal at 67% and
64% at subject dependent and independent experiments, respectively.

Features H Exp ‘ Raw ‘ Alpha ‘ Beta ‘ Gamma ‘ Comb
Left Subject 0.663 | 0.670 | 0.657 | 0.637 | 0.656
Right Dependent | 0.654 | 0.662 | 0.618 | 0.640 | 0.655
Left Subject 0.613 | 0.641 | 0.612 | 0.580 | 0.614
Right Independent | 0.604 | 0.610 | 0.591 0.582 | 0.615

Table 3.6: MFD-HFD Combined Arousal Accuracy

Other than the above mentioned selected cases, it seems that the selection of a sin-
gle feature type could be adequate and preferable for affective state recognition, since
aggregated sets between the mentioned feature types do not provide a statistically sig-
nificant improvement in recognition. Moreover, our indications regarding the optimal
brain rhythms and channels for the task should be taken into account, since we do not
observe any substantial improvement for the “Combined” classification category, in which
we measure the aggregated performance of the three bands and the raw signal.

Summary

In this section we analyzed the multiscale fractal structure of EEG signals and pro-
posed a feature extraction method utilizing two multifractal algorithms for emotion recog-
nition, that can meet the needs of the observed multiscale variability in the EEG structure.
The proposed features perform strongly against the baselines, particularly in the chal-
lenging subject-independent setting and in arousal recognition, indicating that arousal is
correlated with the fragmented structure of the EEG. Further improvements are achieved
when the fractal dimension features are aggregated, while the efficiency of the alpha fre-
quency band is underlined in all experiments. Our analysis showed that multifractality
and the anti-correlation properties could be considered when processing EEG signals.
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Chapter 4

EEG & Music Cross-Modal Learning

Cross-modal Learning aims to extract the semantic correspondence between different
types of data and project it onto a common space so that an input from one modality can
retrieve information about the other. Here we focus on modeling the relationship between
pairs of music tracks and corresponding EEG recordings. We propose a framework that
can be utilized for emotion recognition both directly, by performing supervised predictions,
and indirectly, by providing relevant music samples from EEG given inputs. By applying
this system independently to all 32 subjects of the DEAP Dataset we extract useful
insights regarding emotion perception and how the human brain processes music.

4.1 Literature Review

4.1.1 Music Cognition

Studying the human brain’s responses to music stimuli has always been a lively field
of research in neuroscience and signal processing [136] that aims to answer fundamental
questions regarding our enjoyment of music (Section 1.3). The field has gained a lot of
attention in recent years, with the upsurge in available neuronal data. Most studies in the
field rely on electroencephalography (EEG) recordings as they provide better temporal
resolution than other techniques, such as functional magnetic resonance imaging (fMRI).
In addition to the traditional, well-controlled auditory experiments, modern approaches
gather physiological data from music listeners as they enjoy or imagine naturalistic music.
Examples include the NMED-T Dataset [85] that aims, along with other studies (Stober
et al. [146], Vinay et al. [157]), to capture beat information, and OpenMIIR [147], that
includes sessions of subjects imagining made-up and naturalistic music samples.

One of the core findings that lead the research on music cognition is the correlation
between the frequency and magnitude of neural oscillation patterns and rhythmical pat-
terns in music [103]. In specific, alpha band [158] and beta band oscillations [42] have
been thoroughly examined for this task. Toiviainen et al. [153] suggest that the audi-
tory cortex is involved in the processing of musical features during continuous listening
to music. Others found that musical features related to timbre and rhythm are also pro-
cessed in the superior temporal gyrus (STG) [130] and Heschl’'s gyrus [141]. This specific
study has also examined the unfolding of musical emotions and their temporal attributes,
something that will be of our interest in the upcoming experiments. Brain connectivity
patterns are important in this process, as also shown by Menon et al. [97], in correlating
brain structures with music listening. Additionally, Event-Related Potentials (ERP) have
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been utilized to extract brain activity patterns that can relate to the structure of musical
events, such as note onsets or pitch [134, 116]. Last, although in the following we avoid
cross-subject experiments, it should be noted that inter-subject correlations of listeners
have been useful as well for brain mapping during listening [170].

Several approaches have been taken to predict emotions encoded in and conveyed by
music [54]. As mentioned in Section 1.1.3, researchers have used chords and other audi-
tory features [107, 108], and have included multimodal approaches, like combining audio
features with information from the lyrics [47], in Music Emotion Recognition (MER). In
parallel to feature-oriented approaches, there has also been a shift towards deep learning
based approaches for information retrieval from music stimuli [53], in which we concen-
trate in the present study. Undoubtedly, the most powerful impact of music on humans
is the induced emotions, thus Emotion Recognition is deeply researched both by Neuro-
science and Behavioral Signal Processing [132]. Several works have also studied affective
musical features [144] (Section 1.3).

4.1.2 Cross-Modal Learning

The task of learning a shared embedding space from different datasets or modalities
is being studied through a variety of approaches, which are predominantly applied to im-
age and text modalities [164]. A widely used baseline is Canonical Correlation Analysis
(CCA). CCA, as mentioned in Section 2.3.4 is non-probabilistic and enables the extrac-
tion of linear components to optimize the correlation of pairs of vectors. One can find in
the literature various non-linear CCA-based frameworks and neural networks, utilized to
learn inter-modal similarities. The most prominent examples of this include Deep CCA
(DCCA) [4], which utilizes processing through neural networks as an intermediate step
to calculating the correlation of a pair of data, and Deep Canonically Correlated Autoen-
coders (DCCAE) [165], a similar technique which further enables cross-signal reconstruc-
tion. Recently, a new variant has been proposed in order to assist cross-reconstruction
tasks between modalities, called Variational CCA (VCCA) [166]. This study utilizes the
concept of a Variational Autoencoder, that attempts to form a meaningful embedding
space, in order to enhance this space by CCA objectives.

Besides CCA, other methods that have been used include an HGR-based maximal
correlation metric [75], that aims to provide correlation measures based on multiple,
non-linear views of the data, and adversarial training [161], focusing mainly on the opti-
mization function of the respective model. Moreover, there have been proposed additional
methods to construct a binarized space for the modalities [164], using techniques from
another major category of Representation Learning that has to do with learning binarized
(or Hammming) latent spaces. CCA in combination with deep networks has been used to
model a shared semantic space between audio and EEG signals [125]. In another study, Li
et al. [74] incorporated music to co-train a shared space with images using a contrastive
loss. Further, in [177] the authors use a state-of-the-art framework for the cross-modal
task and indirectly manipulate the latent space via label supervision, a key concept that
we also follow in our study, to provide more comprehensive measures.
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4.2 Bridging the Semantic Gap

We choose to study brain responses to

music by employing a cross-modal system I | ‘ I | I | | | @@

to identify and analyze the correspondence Y@@
between music and EEG modalities. We P
also constrain the learning process with / \
emotion labels, therefore aiming to derive
important insights regarding the affective -
role that music can play on humans. To A
conduct this experiment we exploit mul-

timodal optimization strategies to extract

EEG and music features in a common la-

tent space, from which we could assess Figure 4.1: Concept of the proposed model:
their similarity. By providing an EEG in- By using EEG data of music listening we at-
put as a query, the model should retrieve tempt to derive embeddings that could resem-
the most similar music embeddings. ble the stimulus and the music-induced affect.

4.2.1 Problem Formulation

Let us assume a collection of n instances of EEG-music pairs, denoted as T =
{(x¢,22)}, where z¢ is the input EEG sample of the it" instance and 2% the input
music stimulus of that sample. Each instance has been assigned an affective annotation
y; € R? for valence and arousal dimensions. Instances of the same pair do not need to
have the same affective labels. For each instance, i, we aim to learn an embedding form
u(i) = f(x%,Y?) € R? for the EEG and v(i) = g(2%,Y?) € R? for the music modality,
where d is the dimensionality of the common representation space and Y%, Y* the trainable
parameters of the two functions, that satisfy the following properties: a) the similarity
of samples from the same category is larger than the similarity of samples from differ-
ent categories, and b) the intra-pair similarity is also larger than the similarity of other
random pairings. The EEG latent representation, the music representation and the label
matrices for all instances in 7" are denoted as U = [uy, ug, ..., uy], V = [v1, 09, ..., 0], Lo =

la1, la2s -y Lan]s, Lo = [lp1, lp2, -, lpn] respectively.

4.2.2 The Issue of Input Representations

- CP5| 0 |CP1 | O |CP2| O |CP6

Figure 4.2: EEG input shape that resembles the channel topology on the scalp.
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The algorithm to extract input features for each modality is crucial, in order to derive
meaningful embeddings that could be correlated in a common EEG-Music embedding
space. For the EEG modality we take advantage of the data dimensionality for each trial
(channels, timesteps) by arranging the available channels in a two-dimensional grid form
that resembles their topology on the human scalp, as shown in Figure 4.2. This way
we can employ a compatible network to analyze both spatial and temporal information
through 3D inputs of the form (grid-x, grid-y, timesteps). On the other hand, the available
music signals are rather limited, being only the stimuli of the corresponding EEG trials.
Hence, we choose to provide pre-trained music embeddings as input to our framework and
to this end we utilize the MusiCNN [118] model.

MusiCNN is a robust CNN network that is pre-trained on the Million Song Dataset
(MSD) [16], takes as input log-mel spectrograms of 3-sec. music signals and produces
high-quality music embeddings. The MSD Dataset considers a 50-tag label vocabulary,
with tags including rock, pop, dance, metal, male/female vocals, 80s, instrumental, indie,
happy etc. Pre-training on these labels using a large amount of music data will compen-
sate for the limited size of our track set and will further assist the cross-modal task. The
utilized model contains a musically motivated CNN [117] that consists of a convolutional
layer with several filter shapes and receptive fields to capture musically relevant context.
It also includes a set of 64 densely connected layers, in charge of extracting higher-level em-
beddings from the low-level CNN features. These layers incorporate residual connections,
in order to aggregate information from different hierarchical levels. Finally, MusiCNN has
a temporal pooling module of 200 units, responsible to produce the output tags (taggram)
from the extracted features. We specifically use the “max-pool” embeddings, produced
just before the reduction to the output tags. A thorough description of MusiCNN model
can be found at github.com/jordipons/musicnn/blob/master/musicnn_example.ipynb.

4.2.3 The Proposed Framework
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Figure 4.3: Framework Architecture: a) EEG net Architecture b) Music net Architecture.

We will use a bi-stream Neural Network with one stream corresponding to each modal-
ity. Both network streams are pre-trained individually on emotion labels and afterwards
we fine-tune the whole network by concatenating their final embeddings, and using them
as input to a common layer of shared weights. From that point, a linear classifier will be
used to predict emotion tags. The EEG branch is a hand-crafted 3D CNN that takes as
input an EEG trial in the shape (channels, timesteps) and converts it into the 3D form we
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described in Section 4.2.2. The network is lightweight in order to better handle the limited
size of the available data and avoid overfitting. It consists of 3 convolutional blocks and
a dense layer as shown in Figure 4.4a. The network is pre-trained with supervision on
Valence and Arousal separately, as binary classification tasks.

For the music branch we utilize the MusiCNN model [118] to extract high-level em-
beddings from the available audio stimuli. These are then fed into a simple 2-layer DNN
to fine-tune on their respective emotion tags, as shown in Figure 4.4b. The bi-modal net-
work emerges by substituting the 2 dense layers of each of the previous networks with a
new common pair of layers (Figure 4.4) — an 64D embedding that constitutes the common
latent space for the 2 modalities, followed by a linear classifier to supervise the co-learning
process through emotion tags.

: > Label Loss
 PAR 64D 64D/ Triplet Loss
E m-i—) Label Loss

Figure 4.4: The proposed bi-stream network. The 2D dense layers shown in Figure 4.3 are
substituted by 64D dense layers and are then connected to the 64D common space.

4.3 The Multimodal Training Procedure

Our goal is to learn a common space where the samples from the same semantic
category should be similar, even though they come from different modalities. To learn
discriminative features we want to minimize the discrimination loss in both the label and
representation space. Simultaneously, we want to reduce the cross-modal discrepancy.

4.3.1 Optimization Methods

> LEARNING >

0
e

Figure 4.5: The function of triplet losses. Here the arrows correspond to cosine distances.
A: anchor, P: positive sample, N: negative sample.
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Our framework will incorporate a combination of several loss terms to fulfill the learn-
ing requirements of the task. Specifically, we use a linear classifier to predict the emotion
labels of the samples projected in the common space. The outputs of each modality
are passed through a softmax activation and a binary cross-entropy loss is computed.
This loss is applied also at the pre-training sessions of each modality, whereas for the
cross-modal task we apply a weighted linear combination of them:

J1 = Mi1CE, + A\2CEy (4.1)

We measure the metric loss of all samples from both modalities in the common represen-
tation space through 2 separate triplet losses. These take as input a triplet of samples:
an EEG anchor a, a positive music example p, that is the stimulus sample of a, and a
negative EEG-music pair example n that contrasts the emotion label of the anchor. The
triplet losses then compare the cosine distances between the three embedding vectors and
apply an objective that minimizes the anchor’s distance to the positive example, while
maximizing its distance to the negative one. The 2 objectives can be denoted as follows:

Jo = max (cos(u, — v,) — cos(ug — uy), 0) (4.2)

Js = max (cos(ug, — v,) — cos(u, — vy,),0) (4.3)

By combining the above terms we obtain the objective function of our proposed model:

J =T+ T2+ N T3 (4.4)

The hyper-parameters \; control the contribution of each separate component and are
determined through trial and error. Our selected final configuration is:

Aip =056, A;p =024, Ay=A3=0.1 (4.5)

4.3.2 Feature Extraction

For this set of experiments, we will again use DEAP [65] to design subject-dependent
training sessions, for each of its 32 subjects. We get the EEG signals in their preprocessed
form. The 40 one-minute music stimuli of DEAP are not included in the dataset, whereas
the YouTube links provided are in most cases corrupted. We therefore proceeded into
locating the video clips of the corresponding tracks and isolating the minute of interest
for each one, according to the metadata provided by DEAP. The task of deriving a
common space for EEG and music faces a crucial challenge: the semantic gap between
the “subjective” affective responses of participants and the “objective” emotion tags of
the songs. Ideally, we need musical stimuli that are in accordance with the participants’
annotations and independent evaluations as well. The DEAP stimuli have been selected
for this purpose and have been separately annotated by the experimenters, as mentioned
in Section 3.3. Nearly every song received average ratings from the participants that
were in accordance with those annotations. We found that only 8/40 songs had such
an inconsistency, from which we only keep 2 of them by altering their “objective” label
to match the average annotation of the subjects. The resulting set of tracks is used to
extract MusiCNN embeddings. In Table 4.1 the reader can inspect the details for the
specific 8 inconsistent tracks, along with the way we chose to process each of them.
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ID Artist Title Inconsistency Operation
8 Lily Allen *FEE You High Arousal Average Rating Discarded

9 Queen I Want to Break Free Low Arousal Label Changed Label
10 | Rage Against The Machine Bombtrack High Valence Average Rating Discarded
11 | Michael Franti & Spearhead Say Hey (I Love You) Arousal Average Rating nearly 5 Discarded
16 The Submarines Darkest Things Valence Average Rating nearly 5 Discarded
21 Diamanda Galas Gloomy Sunday High Arousal Label Changed Label
34 Dj Paul Elstak A Hardcore State of Mind | Valence Average Rating nearly 5 Discarded
36 Sepultura Refuse Resist Valence Average Rating nearly 5 Discarded

Table 4.1: Inconsistent Stimuli of the DEAP Dataset and how we handle them.

EEG & Music Features

EEG and music signals are processed differently in order to end up with an embedding
form suitable for multimodal training. DEAP EEG signals are first cut to 1-sec. chunks.
We choose this temporal resolution, since it can adequately capture emotion-related char-
acteristics and in order to augment the quantity of our dataset. However, it has been
shown that not all seconds of an EEG experiment are important. Qing et al. [120] have
studied the temporal variation of the induced emotion on DEAP, suggesting that partici-
pants tend to use the first seconds of the experiments for a kind of “emotional calibration”.
Therefore, from the entire 63-sec. duration we discard the 3-sec. preparation phase along
with the first 7 and last 3 seconds of each trial, to avoid periods when emotions are not
fully expressed. We end up with 50 signals of 1 sec. for each trial.

Before extracting the input feature vectors, we apply noise augmentation to the EEG
chunks, in order to further increase the data quantity. Noise augmentation has been
proven useful in assisting the convergence of deep learning models, either by applying
additive white noise [162] or by utilizing generative networks [87]. For each chunk, we
produce 10 noisy copies by adding white noise with 0.5 variance. For feature extraction
purposes we tried out several different baselines, like higher order crossings and instanta-
neous energy features, ending up selecting the one-sided DFT signal magnitude, using 64
FFT points (see also Section 2.1.2). Each input vector is then given in 2D form (chan-
nels, features), since a single EEG segment includes samples from all 32 EEG channels.
In Figure 4.6 we depict the extracted features of a sample EEG segment.
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Figure 4.6: Feature vectors of 2 sample EEG trials at different seconds, for channel Fpl. Up:
Subject 8 at the 20th, 30th and 40th seconds (left to right). Down: Subject 8 (same time).
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Music tracks are trimmed as well into the same 50-sec. window by being cut to 3-sec.
chunks with an overlap of 1 sec. This is the input resolution required by the pre-trained
MusiCNN model and it also makes an intuitive match to the corresponding EEG. This is
because when we listen to music, our affective response does not only correspond to what
we hear at that moment, but also takes past stimuli into consideration. Hence, each EEG
segment of the interval [a, (a + 1)) sec. would match to its music stimulus at the interval
[(a—2),(a+ 1)) sec, constituting the positive pairs in the networks. On the other hand,
negative pairs are mined online, during training: at each epoch, an anchor EEG sample of
a certain batch is matched to a random music and a random EEG sample, corresponding
to either 7, or J3. That sample should be of the opposite label.

4.3.3 Evaluation Metrics

We evaluate our proposed method using accuracy to assess the supervised predictions
for each modality and the Precision@10 (P@10) and mean Average Precision (mAP)
metrics for the retrieval of music tracks given EEG queries. Those two metrics have
been widely used to assess retrieval tasks in the literature [172, 177] as they evaluate the
response’s distance-based ranking to each query. In particular, P@Q10 considers the top 10
ranked tracks whereas mAP evaluates the whole ranking. To further clarify the usage of
these metrics we provide the following examples in Figure 4.7. Imagine that we are given
an EEG query of high valence and we want to rank 10 available music samples based
on their cosine distance to the query, from which only 6 are of high valence (dark). To
compute P@n we only consider the first n ranked samples and compute their precision as
shown in the figure. For n =5 we get Py1@5 = 0.8 and Py@5 = 0.4. Average Precision
is acquired by averaging the precision of the correctly retrieved samples. In that case we
would have APy = (1.0 + 0.67 + 0.75 + 0.8 + 0.83 + 0.6)/6 = 0.68 and APy = 0.52,
ending up in the mean Average Precision metric: mAP = (0.68 + 0.52)/2 = 0.6.

Ranking #1 'D....DDD.

Recall 0.17 0.17 0.33 0.5 0.67 0.83 0.83 0.83 0.83 1.0
Precision 1.0 05 0.67 0.75 0.8 0.83 0.71 0.63 0.56 0.6

Ranking #2 DlDD..'D"

Recall 0.0 0.17 0.17 0.17 0.33 0.5 0.67 0.67 0.83 1.0
Precision 0.0 0.5 0.33 0.25 0.4 0.5 057 05 056 06

Figure 4.7: Two ranking examples to clarify the usage of the information retrieval metrics
P@10 and mAP. Adapted from slides of Rada Mihalcea: web.eecs.umich.edu/mihalcea

Results are also presented after trial aggregation: Each pair of music and EEG trials
is composed of 50 segments. For the accuracy we simply denote a prediction as correct
if more than half of the segment-wise predictions are correct. For the retrieval metrics,
since no such voting can be made, we consider the median of the segment-wise scores. In
this way we manage to extract an insightful score for each trial and avoid outliers.
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4.4 Experimental Evaluation

The training procedure can be divided into 3 sessions: a) Pre-training of the EEG
branch b) Pre-training of the Music branch ¢) Multimodal fine-tuning. This workflow is
applied to the data of each of the 32 available subjects, considering supervision on either
valence or arousal. To compensate for possible annotation noise, we binarize the labels by
setting the threshold to the median score 5. In order to deal with the issues of limited data
size and noisy input samples, we apply 5-fold stratified cross validation, on a per-track
basis, on both EEG and music data, where each fold holds 20% of the total data size.

4.4.1 Predicting Emotion Tags

First we present an evaluation of the supervised training sessions on valence and
arousal tags (Table 4.2). We observe that, despite the fact that our music set contains
only 34 tracks, the emotion recognition performance is substantially high, 74.3% average
on valence and 83.3% on arousal, something that indicates the robustness of our transfer
learning module and further assists the metric learning process. On the other hand, EEG
average scores show high variance per participant, reaching up to 63.3% average on valence
and 64.5% on arousal. Generally, aggregating scores per individual track gives a clearer
view of the models’ interpretation of a track, hence the increased scores.

Dimension | Non-Aggregated | Aggregated
Valence EEG 0.610 — 0.604 | 0.633 — 0.632
Arousal EEG | 0.645 — 0.641 | 0.645 — 0.662
Valence MUS | 0.680 — 0.646 | 0.743 — 0.689
Arousal MUS | 0.838 — 0.837 | 0.833 — 0.838

Table 4.2: Emotion Prediction from pre-trained to fine-tuned models - means over 32 subjects.

Moving on to the fine-tuned models and taking trial aggregation into consideration,
we observe a decrease in valence scores for both modalities. We will see below that most
models trained on valence tend to trade prediction scores, especially those of music tracks,
to enhance their performance on the retrieval task, implying poorer correlation between
the modalities. On the other hand, co-training on arousal provides supplementary insights
for EEG predictions, resulting in nearly 2% improvement, preserving at the same time
the efficiency of music embeddings. We now move on to retrieving similar tracks.

4.4.2 Retrieving Tracks from EEG Queries

Table 4.3 summarizes the retrieval scores from the fine-tuned models, acquired by
querying the common embedding space of each model with a test EEG sample and then
evaluating the ranking of music samples based on their distance to the query. Regarding
valence, we have seen that prediction accuracy drops slightly with fine-tuning. On the
contrary, retrieval metrics provide more robust results in both cases, indicating that the
EEG samples are better situated in the common space and the majority of them are
capable of retrieving tracks that are emotionally consistent. In specific, in the case of
induced valence, a P@Q10 value of 65.9% is achieved. We note that this percentage is higher
than the supervised prediction accuracy, while the mAP reported over the whole ranking
is significantly lower (57.6%), implying that the learned valence space is fragmented into
local subspaces of high similarity. We will further explore this observation in Section 4.5.1.
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Valence Accuracy P@10 | mAP
Non-Aggregated | 0.610 — 0.604 | 0.617 | 0.577
Aggregated 0.633 — 0.632 | 0.659 | 0.576
Arousal Accuracy P@10 | mAP
Non-Aggregated | 0.645 — 0.641 | 0.653 | 0.674
Aggregated 0.645 — 0.662 | 0.677 | 0.679

Table 4.3: Retrieval Scores from fine-tuned models - mean values over 32 subjects.

Arousal on the other hand seems to be more consistently represented and this is re-
flected to the improvement in all available metrics. In specific, both mAP and P@10
median retrieval scores indicate that the majority of tested tracks can derive emotionally
consistent music rankings, in contrast to valence where the emotional response similar-
ity seems concentrated to the top-ranked elements. As a result, the correct retrieval
percentage conditioned on arousal approaches 68% on average across subjects.

4.4.3 Ablation Studies

In our study we have incorporated a complex objective function (Eq. 4.4) combining
4 terms that aim to minimize the discrimination loss in both the label space and in the
common latent space. To investigate the impact of each of those on the performance, we
trained separate sessions, each time removing a single term from the objective. The same
optimization procedure is followed in all cases and the results are shown in Tables 4.4 and
4.5 for Valence and Arousal respectively, for the aggregated case.

Metric | J | -CE, | =CE, | =% | ~J;
Acc. 0.632 | 0.562 | 0.645 | 0.630 | 0.628
P@l0 | 0.659 | 0.631 | 0.628 | 0.625 | 0.645
mAP | 0.577 | 0.527 | 0.541 | 0.571 | 0.573

Table 4.4: Ablation on the utilized Objective Function on Valence (aggregated scores).

Metric | J | -CE, | =CE, | =% | ~J;
Acc. [ 0.662 | 0.614 | 0.611 | 0.661 | 0.659
P@10 | 0.677 | 0.505 | 0.661 | 0.661 | 0.632
mAP | 0.679 | 0.622 | 0.564 | 0.673 | 0.666

Table 4.5: Ablation on the utilized Objective Function on Arousal (aggregated scores).

From the results we deduce that in general, our full objective J leads to higher per-
formance on both emotion dimensions, indicating that all the 4 utilized terms contribute
to the final scores. We can also see that the supervised losses affect greatly the accuracy
score in a contrasting manner in Valence. The absence of supervision on EEG inputs de-
creases the respective accuracy by 7% while the absence of supervision on music increases
it slightly by 1.5%. However, both seem to equally contribute in Arousal and both are
important for the retrieval tasks as well. On the other side, metric losses cause slighter
modifications to the final representations, since their contribution in 7 is rather limited
compared to the supervised binary cross-entropy losses. They manage though to bring
slight improvements to all metrics, especially in P@10.
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Function ‘ Without ‘ Proposed
3D Input Representation | 0.614 — 0.646
White Noise Augmentation | 0.600 — 0.620 | 0.632 — 0.662
Pre-training EEG Sessions | 0.591 — 0.601

Table 4.6: Ablation on critical choices in building the EEG model. We depict accuracy scores
in their aggregated format and after the fine-tuning Sessions. Form: Valence — Arousal

Finally, we tested the impact of various critical choices in modeling the proposed
framework (Table 4.6). To ease the procedure, we concentrate on the more complex
EEG model and consider its accuracy scores after fine-tuning. First, the usage of 3D
input representations proves to be beneficial, compared to baseline 2D inputs, by 2% on
average, something that indicates the efficiency of placing EEG channels in an intuitive
topological grid. This form will later enable the extraction of brain map-like activations,
as well. Our second experiment considers the usage of noise augmentation applied to
EEG samples. While bypassing data augmentation during pre-training leads to lowered
accuracy (by 4% on average), we should mention that it does not lead to major changes
when discarding it only during fine-tuning. This points to the pre-training sessions being
crucial to the convergence of the network — and indeed, we notice an average drop in both
accuracy and retrieval scores by more than 5% when omitting them.

4.5 Qualitative Analysis

Each of the 32 included subjects provides different scores so our results are prone to
variation. We depict that in the following Figure 4.8, in which the reader can inspect the
accuracy scores over the entire set of available subjects, after the fine-tuning. In order to
extract qualitative insights from our experiments we consider selected subjects or trials
that reveal interesting observations, which we analyze below.

mm \Blence
=== Arousal

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 17 18 19 20 21 2 2B M4 X 26 27 28 29 0 13

Figure 4.8: Per-Subject Accuracy after the fine-tuning Sessions.

4.5.1 The Common Latent Space

The learning process of the proposed framework aims at constructing a common em-
bedding space where EEG and corresponding music samples could be represented. We
visually inspect the produced latent space using the t-SNE [155] to reduce its 64D dimen-
sion to 2D. T-SNE is a tool for dimensionality reduction, converting similarities between
data points to joint probabilities, so as to minimize the Kullback-Leibler divergence be-
tween the joint probabilities of the low-dimensional embedding and the initial data.
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Figure 4.9: Latent Space t-SNE visualisation for the test data of subjects for Valence. Dots
denote EEG samples (bright colors) while asterisks denote music samples (dim colors).
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Figure 4.10: Latent Space t-SNE visualisation for the test data of subjects for Arousal. Dots
denote EEG samples (bright colors) while asterisks denote music samples (dim colors).

We select one of the 5 trained models for four (4) subjects in Valence and Arousal to
display their results in Figure 4.9 and Figure 4.10 (similar trends are observed for most
subjects). It is evident that both modalities still form separate groups and cannot homog-
enize their embeddings. This is especially visible in the case of valence, with cohesive local
clusters appearing in the learned common space. This provides an explanation towards
the discrepancy we observed between P@Q10 and mAP metrics, since the top-ranked track
retrievals originate from the corresponding local subspace, but there is no coarse bisection
between high- and low- valence samples, in contrast to the case of arousal. Nevertheless,
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the induced emotion is visually discriminated, especially considering music samples. EEG
samples have a rather weak tendency towards the correct music samples, but there are
cases as well where the inter-modal sample embeddings are almost indistinguishable.

4.5.2 Temporal Variation of Recognition
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Figure 4.11: Valence mAP scores over the 50 time samples for specific numbered tracks. The
scores have been averaged across all 32 subjects, for each time sample separately.
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Figure 4.12: Arousal mAP scores over the 50 time samples for specific numbered tracks. The
scores have been averaged across all 32 subjects, for each time sample separately.
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Since each track is segmented into 50 samples of 1 sec, it is expected that the emotion
is not elicited at the same pace throughout the duration of each stimulus. While we
perform aggregation, the temporal variation of these scores is of interest and could indicate
important moments in the track. In Figures 4.11 and 4.12 we present the temporal
evolution of the mAP scores for selected music tracks, averaged across all subjects. While
the raw plots are noisy over time, each song individually exhibits a pattern of variation,
which we depict by applying a 7-sample moving average filter. Scores typically oscillate
on the time axis and emotions are discriminated either at the first moments (10-15 sec)
of the stimulus or gradually as it unfolds (45-50 sec), something that has been observed
in related studies [120]. Additional experiments are needed though to verify this trend
and the use of temporal attention is a plausible research direction for this task.

4.5.3 Scalp Network Activations

Figure 4.13: Post-ReLU Activation of the first CNN block for subjects 5, 9 in Valence. We
present the activation averaged on time and feature axes.

Figure 4.14: Post-ReLU Activation of the first CNN block for subjects 5, 9 in Arousal. We
present the activation averaged on time and feature axes.

As displayed in Figure 4.2, the input form of EEG data is a 3D structure that resembles
the topological orientation of the 32 available electrodes. Besides its intuitive efficiency
during the training sessions, the specific format allows us to derive insights about the
dominant brain regions that are involved in emotion elicitation. We evaluate these regions
by extracting an intermediate representation of the networks” EEG branch, specifically
the activation of the first CNN block that retains a 5 x 5 topological structure. In
Figures 4.13 and 4.14 we depict 4 representative cases. Each plot is derived for a specific
track by averaging the activations of its 50 samples. From the plots it is evident that
the peripheral channels capture the most discriminating information, which is consistent
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with the literature in emotion cognition [178]. We observe that the back-left regions are
more important in valence, while front and right regions are mostly activated in arousal.
Central regions show low means and low variance as well, hence their role proves limited.

Summary

In this section we presented a novel approach to analyze EEG recordings of music
listening and proposed a cross-modal framework to learn common representations for EEG
and music data and retrieve consistent music rankings from EEG queries. The proposed
approach further indicates that distilling information from processed musical stimuli to the
respective EEG signals can lead to interesting insights in personalized emotion analysis.
To the best of our knowledge, this is the first study to propose a complete framework to
model the specific task and dataset, thus our results can be viewed as a concrete baseline.

Moreover, we provided an extended qualitative evaluation of the framework, that
helped us derive interesting evidence regarding critical aspects of music listening, like
the actual latent similarity of EEG and music embeddings, the temporal variation of
the induced emotions, as depicted by the accuracy scores, and the brain regions that
are activated in each case, as simulated by the 3D EEG network. By conducting subject-
dependent experiments for 32 different subjects, we reveal important patterns that should
be taken into account in future studies.
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Chapter 5

Conclusions

This Thesis can be divided into two main sections with respect to the use of machine
learning tools, while the major theme of our analysis is the affective perception of music
signals through EEG responses. The first part focuses on feature extraction algorithms
based on multifractal signal analysis, and the second addresses the problem of identify-
ing emotion-related similarities between EEG and music signals through advanced deep
learning techniques. The main contributions of this study are summarized below.

5.1 EEG Affective Features

e We analyzed the structure of EEG signals and demonstrated their multifractal prop-
erties. In specific, we investigated the effect of signal’s observed stationarity and
quantified the signal’s complexity through the Hurst Exponent. We derived evidence
that EEG signals could be modeled as fractional Gaussian noise realizations.

e We developed 2 novel algorithms, based on Multiscale Fractal Dimension (MFD)
and Multifractal Detrended Fluctuation Analysis (MFDFA) to derive meaningful
feature vectors for emotion detection. In the first case we performed short-time
analysis of rather long EEG sequences and built feature vectors using statistical
measures of the acquired fractograms. In the second case, we utilized the signals’
multifractal spectrum to recognize emotions.

e We tested the proposed methods in classical Machine Learning settings and an SVM
classifier, against widely used baseline frequency and fractal features. We also per-
formed both intra-subject and inter-subject experiments to identify the features’
generalizability. We showed that the proposed feature sets perform strongly against
the baselines, particularly in the subject-independent setting and in arousal recog-
nition, indicating that arousal is correlated with the structure of the EEG.

e Fractal and multifractal features seem to generalize more easily than frequency-
related ones, which perform better in subject-dependent settings. Further improve-
ments are achieved when the fractal features are aggregated. As a result, the ob-
served multifractality should be considered when processing EEG signals.

o We performed an extensive ablation study regarding the EEG channels’ position and
the frequency rhythms that are prone to elicit emotional information. For the DEAP
Dataset, we identified stronger affective characteristics on the left hemisphere, while
the discriminability of the alpha frequency band is underlined in all experiments.

96



5.2. Cross-Modal Learning 97

5.2 Cross-Modal Learning

e We presented a robust 3D deep network to efficiently analyze EEG signals or EEG
features by preserving their temporal and spatial correlation. That is, we provided
sequential input features and arrange the EEG channels in a topological grid. We
additionally provided ways of dealing with core problems associated with this kind
of data, such as the limited sample size and their noisy structure.

e We proposed a multimodal framework to model the correspondence between human
brain responses and music stimuli. We trained a bi-stream network on pairs of EEG
and corresponding music stimuli, whereas by conditioning the learning process with
emotion tags we constructed a common emotion space. To the best of our knowledge,
this is the first study to propose such a framework, seen as a baseline reference.

e Through the produced latent space by the aforementioned network, we performed
emotion recognition both by predicting output annotations and by ranking music
tracks to EEG input queries, based on their cosine distance on the space. We tried
out various forms of prediction aggregation and performed extensive ablation studies
on our choices in building and evaluating this framework.

e We performed a qualitative study across all 32 subjects of DEAP [65], by formulating
personalized models with data from a single participant in training and testing
sessions. This way we could compare 32 model instances and observed significant
patterns, such as the visualized latent spaces, the temporal variation of recognition
performance and activation patterns on the simulated scalp grid of the EEG network.

5.3 Suggestions for Future Work

Our work contributes to the research community in the above-mentioned fields, how-
ever it also paves the way for further investigation of cognitive aspects of music listening.
Regarding the first section, further work could consider feature extraction algorithms for
determining asymmetrical multifractal properties, whereas an interesting direction would
be the examination and comparison of multi-band energy EEG features, obtained through
energy separation algorithms. The Teager-Kaiser operator [92, 61] has provided intuitive
results in fields like speech analysis [91] and one of our next research efforts will be the
analysis of its application to EEG signals for recognizing affect. The Energy Separation
Algorithm (ESA), proposed in [91], could be used to analyze the contribution of each
EEG band, in comparison with other empirical decomposition methods.

Regarding the second section, our field of study is relatively underexplored and, to the
best of our knowledge, this is the first study to propose a complete framework to model
the specific task and dataset, thus our results can be viewed as a concrete baseline. In
particular, future work should incorporate more sophisticated feature extraction methods
to reach state-of-the-art performance and optimally correlate with music stimuli. An
underexplored dimension in this study concerns the temporal dependencies of the induced
emotions. As we saw, in certain time intervals the model performance is relatively higher,
something that could be further researched through a recurrent or attention module.
The combination of fractal feature input vectors is a straightforward proposal. Another
interesting direction would be to enhance the common representation space with a music
database and examine its impact on the retrieved rankings.
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Appendix

The DEAP Dataset

The Database for Emotion Analysis using Physiological Signals (DEAP) is a multi-
modal dataset for the analysis of human affective states. The electroencephalogram (EEG)
and peripheral physiological signals of 32 participants were recorded as each watched 40
one-minute long excerpts of music videos. Participants rated each video in terms of the
levels of arousal, valence and other dimensions. The dataset has been made publicly
available by its curators and can be obtained upon request. Music video clips are used
as the audiovisual stimuli to elicit different emotions. To this end, a relatively large set
of music video clips was gathered using a novel stimuli selection method. A subjective
test was then performed to select the most appropriate test material. For each video, a
one-minute highlight was selected automatically. 32 participants took part in the experi-
ment and their EEG and peripheral physiological signals were recorded as they watched
the 40 selected music videos. Participants rated each video in terms of arousal, valence,
like/dislike, dominance and familiarity. The database contains all recorded signal data,
frontal face videos for a subset of the participants and subjective ratings from the partic-
ipants. Also included are independent track annotations, made by the authors.

Stimuli Selection

Eliciting emotional reactions from test participants is a difficult task and selecting
the most effective stimulus material is crucial. The stimuli used in the experiment were
selected in several steps. First, 120 initial stimuli were selected, half of them using the
Last.fm music website. Last.fm allows users to track their music listening habits, receive
recommendations for new music and assign tags to individual songs. Last.fm offers an
API, allowing one to retrieve tags and tagged songs. A list of 304 emotional keywords was
yielded from psychological studies. Next, for each keyword, corresponding tags were found
in the Last.fm database. For each affective tag, the 10 songs most often labeled with this
tag were selected. This resulted in a total of 1084 songs and, in order to ensure balance,
15 were selected manually for each quadrant in the Valence-Arousal space, according to
various criteria (tag accuracy, video availability etc). The rest of the tracks were selected
manually, again 15 for each of the quadrants. The goal here was to select those videos
expected to induce clear emotional reactions.

For each of the 120 initially selected music videos, a one-minute segment was extracted
for use, so that it contains emotionally stimulating content. To this end, a highlighting
algorithm was used, originally proposed by Soleymani et al. [143], performing linear
regression on the content-based features. The music videos were then segmented into one
minute segments with 55 seconds overlap. Content features were extracted and provided
the input for the regressors. For each video, the segment with the highest emotional score,
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aggregated on valence and arousal, was chosen for the experiment. For few well-known
tracks only, the selection was manual.
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Figure 5.1: [65] Online Assessment Ratings. Selected 40 Videos are highlighted in green.

Given the 120 one-minute music video segments, the final 40 test video clips were
chosen using a web-based subjective emotion assessment interface. Participants watched
music videos and rated them on a discrete 9-point scale for valence, arousal and domi-
nance. The order of the clips was randomized, but preference was given to the clips rated
by the least number of participants, which ensured a similar number of ratings for each
video (14- 16 assessments per video). To maximize the strength of elicited emotions, the
authors selected as final those videos that had the strongest volunteer ratings with small
variation. Figure 5.1 shows the score for the ratings of each video and the selected videos
highlighted in green. The video whose rating was closest to the extreme corner of each
quadrant is mentioned explicitly. Of the 40 videos, 17 were selected via Last.fm tags.

EEG Recording Experiment

The experiments were performed in two laboratory environments with controlled il-
lumination. EEG and peripheral physiological signals were recorded using a Biosemi
ActiveTwo system on a PC. Stimuli were presented using a dedicated stimulus PC | while
for presentation of the stimuli and recording the users’ ratings, the “Presentation” soft-
ware by Neurobehavioral systems was used. The music videos were presented on a 17-inch
screen, at 800 x 600 resolution. Stereo Philips speakers were used and the music volume
was set at a relatively loud level. EEG were recorded at a sampling rate of 512 Hz using
32 active AgCl electrodes, according to the international 10-20 system. 13 peripheral
physiological signals were also recorded. Additionally, for the first 22 participants, frontal
face video was recorded using a Sony DCR-HC27E consumer-grade cam recorder.

32 Healthy participants (50% female), aged between 19 and 37, participated in the
experiment. Prior to the experiment, each participant signed a consent form and filled
out a questionnaire. Next, they were given a set of instructions regarding the experiment
protocol. Afterwards, the sensors were placed and their signals checked, the participants
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performed a practice trial to familiarize themselves with the system. Next, the exper-
imenter started the physiological signals recording and left the room, after which the
participant started the experiment by pressing a keyboard key. The experiment started
with a 2 minute baseline recording, during which a fixation cross was displayed to the
participant. Then the 40 videos were presented in 40 trials, with a break at 20 completed,
each consisting of the following steps:

1. 2-sec display of the current trial number and progress

2. 5-sec baseline recording (fixation cross)

3. 1-min music video stimulus display

4. Self-assessment on arousal, valence, liking and dominance

Self-assessment manikins (SAM) were used, with the numbers 1-9 printed below. For the
liking scale, thumbs down and thumbs up symbols were used. Participants just clicked
the respective manikin to indicate their induced emotion. The valence scale ranged from
sad to joyful, while the arousal scale from calm to excited. The dominance scale ranged
from submissive to dominant. The fourth scale asked for participants’ personal liking of
the video and should not be confused with the valence scale. Finally, participants were
asked to rate their familiarity with each of the songs on a scale of 1 (“Never heard it
before”) to 5 (“Knew the song very well”).

As a side note, since we do not incorporate them in our study, the peripheral phys-
iological signals that were recorded are: GSR, respiration amplitude, skin temperature,
electrocardiogram, blood volume by plethysmograph, electromyograms of Zygomaticus
and Trapezius muscles, and electrooculogram (EOG). GSR provides a measure of the
resistance of the skin by positioning two electrodes on the distal phalanges of the middle
and index fingers. This resistance decreases due to an increase of perspiration, which
usually occurs when one is experiencing emotions such as stress or surprise. Skin temper-
ature and respiration were recorded since they vary with different emotional states. Slow
respiration is linked to relaxation while irregular rhythm, quick variations, and cessation
of respiration correspond to more aroused emotions like anger or fear. Regarding the
EMG signals, the Trapezius muscle (neck) activity was recorded to investigate possible
head movements during music listening.

Subjective Ratings Analysis

Stimuli were selected to induce emotions in the four quadrants of the valence-arousal
space (LALV, HALV, LAHV, HAHV). The stimuli from these 4 conditions generally re-
sulted in the elicitation of the target emotion aimed for when the stimuli were selected,
ensuring that large parts of the arousal-valence plane (AV plane) are covered (see Fig-
ure 5.2). The emotion elicitation worked specifically well for the high arousing conditions,
yielding relatively extreme valence ratings for the respective stimuli. The stimuli in the
low arousing conditions were less successful in the elicitation of strong valence responses,
something that is however commonly observed in related studies [49]. The distribution
of the individual ratings per conditions shows a large variance within conditions, possi-
bly associated with stimulus characteristics or inter-individual differences in music taste,
general mood, or scale interpretation.
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Stimulus locations, dominance, and liking in Arousal-Valence space
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Figure 5.2: [65] The mean locations of the stimuli on the arousal/valence plane. Liking is
encoded by color: dark red is low liking and bright yellow is high liking. Dominance is encoded
by symbol size: small symbols stand for low dominance and big for high dominance.

The distribution of ratings for the different scales and conditions suggests a complex
relationship between ratings. By exploring the scale inter-correlation over participants
(see Table 3), the authors observed high positive correlations between liking and valence,
and between dominance and valence. Seemingly, people liked music which gave them
a positive feeling and/or a feeling of empowerment. Medium positive correlations were
observed between arousal and dominance, and between arousal and liking. Familiarity
correlated moderately positive with liking and valence. As already observed above, the
scales of valence and arousal are not independent, but their positive correlation is rather
low, suggesting that participants were able to differentiate between these two important
concepts. In summary, the affect elicitation was in general successful, though the low
valence conditions were partially biased by moderate valence responses and higher arousal.

Distribution

The described dataset is publicly available for research usage upon request. The
recorded data is given in both their original format and in a pre-processed form which is
the one we select for our study. In particular, the data was first downsampled from 512Hz
to 128Hz. EOG artefacts were removed with a blind source separation technique and a
bandpass frequency filter from 4-45Hz was applied, as to isolate theta, alpha, beta and
gamma rhythms. The data was then averaged to the common reference and segmented
into 60 second trials and a 3 second pre-trial baseline. For detailed information regarding
the dataset, readers can access the respective paper [65] and the official description page:
https://eecs.qmul.ac.uk/mmv/datasets/deap/readme.html.
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List of Publications

The research presented in this Thesis has resulted in 2 article Publications:

e K. Avramidis, A. Zlatintsi, C. Garoufis, and P. Maragos, “Multiscale Fractal Anal-
ysis on EEG Signals for Music-Induced Emotion Recognition”, in Proceedings of the
29th European Signal Processing Conference (EUSIPCO-2021), August 2021.

Emotion Recognition from EEG signals has long been researched as it can assist numerous
medical and rehabilitative applications. However, their complex and noisy structure has
proven to be a serious barrier for traditional modeling methods. In this paper, we employ
multifractal analysis to examine the behavior of EEG signals in terms of presence of fluc-
tuations and the degree of fragmentation along their major frequency bands, for the task
of emotion recognition. In order to extract emotion-related features, we utilize two novel
algorithms for EEG analysis, based on Multiscale Fractal Dimension and Multifractal
Detrended Fluctuation Analysis. The proposed feature extraction methods perform effi-
ciently, surpassing some widely used baseline features on the competitive DEAP dataset,
indicating that multifractal analysis could serve as basis for the development of robust
models for affective state recognition.

e K. Avramidis, C. Garoufis, A. Zlatintsi, and P. Maragos, “Predict or Retrieve: In-
sights from Cross-Modal Learning between EEG and Music Stimuli”, under review

for the Proceedings of the 22th International Society for Music Information Retrieval
Conference (ISMIR), November 2021.

Cross-modal Learning aims to extract the semantic correspondence between different types
of data and project it onto a common space so that an input from one modality can re-
trieve information about the other. In this paper, we focus on modeling the relationship
between pairs of music tracks and corresponding EEG recordings. Brain signals inherit a
highly complex and chaotic structure that makes it difficult to process and thus retrieve
meaningful information. In order to alleviate these disadvantages and identify similarities
between them and their music stimuli, we utilize a bi-modal metric learning framework.
Specifically, we combine a 3D convolution model to process EEG signals with a pre-trained
network for music tagging in order to create a common latent space. We then align the
embeddings of these networks using metric learning, further constraining the whole pro-
cess using emotion labels. The resulting framework can be utilized for emotion recognition
both directly, by performing supervised predictions, and indirectly, by providing relevant
music samples from EEG input queries. By applying this system independently to all 32
subjects of the DEAP Dataset we also extract common patterns for the brain regions that
interpret music stimuli and the temporal variance of the induced emotions.
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There have been also published two articles out of the thesis’ scope:

A. Kratimenos, K. Avramidis, C. Garoufis, A. Zlatintsi, and P. Maragos, “Aug-
mentation Methods on Monophonic Audio for Instrument Classification in Poly-
phonic Music”, in Proceedings of the 28th FEuropean Signal Processing Conference

(EUSIPCO-2020), August 2020.

Instrument classification is one of the fields in Music Information Retrieval (MIR) that
has attracted a lot of research interest. However, the majority of that is dealing with
monophonic music, while efforts on polyphonic material mainly focus on predominant in-
strument recognition. In this paper, we propose an approach for instrument classification
in polyphonic music from purely monophonic data, that involves performing data aug-
mentation by mixing different audio segments. A variety of data augmentation techniques
focusing on different sonic aspects, such as overlaying audio segments of the same genre,
as well as pitch and tempo-based synchronization, are explored. We utilize Convolutional
Neural Networks for the classification task, comparing shallow to deep network architec-
tures. We further investigate the usage of a combination of the above classifiers, each
trained on a single augmented dataset. An ensemble of VGG-like classifiers, trained on
non-augmented, pitch-synchronized, tempo-synchronized and genre-similar excerpts, re-
spectively, yields the best results, achieving slightly above 80% in terms of label ranking
average precision (LRAP) in the IRMAS test set.ruments in over 2300 testing tracks.

K. Avramidis, A. Kratimenos, C. Garoufis, A. Zlatintsi, and P. Maragos, “Deep Con-
volutional and Recurrent Networks for Polyphonic Instrument Classification from

Monophonic Raw Audio Waveforms”, in Proceedings of the 46th International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP 2021), June 2021.

Sound Event Detection and Audio Classification tasks are traditionally addressed through
time-frequency representations of audio signals such as spectrograms. However, the emer-
gence of deep neural networks as efficient feature extractors has enabled the direct use of
audio signals for classification purposes. In this paper, we attempt to recognize musical
instruments in polyphonic audio by only feeding their raw waveforms into deep learning
models. Various recurrent and convolutional architectures incorporating residual connec-
tions are examined and parameterized in order to build end-to-end classi-fiers with low
computational cost and only minimal preprocessing. We obtain competitive classification
scores and useful instrument-wise insight through the IRMAS test set, utilizing a parallel
CNN-BiGRU model with multiple residual connections, while maintaining a significantly
reduced number of trainable parameters.
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