
NATIONAL TECHNICAL UNIVERSITY of ATHENS
DEPARTMENT of ELECTRICAL AND COMPUTER ENGINEERING

DIVISION OF COMPUTER SCIENCE

An Explainable AI Model for ICU admission prediction of
COVID19 patients

DIPLOMA THESIS

Eleni Dazea

Supervisor: Petros Stefaneas
Assistant Professor N.T.U.A.

Athens, July 2021

NATIONAL TECHNICAL UNIVERSITY OF
ATHENS
DEPARTMENT OF ELECTRICAL AND COM
PUTER ENGINEERING
DIVISION OF COMPUTER SCIENCE

An Explainable AI Model for ICU admission prediction of
COVID19 patients

DIPLOMA THESIS

Eleni Dazea

Supervisor: Petros Stefaneas
Assistant Professor N.T.U.A.

Approved by the examining committee on July 9th, 2021

..
P.Stefaneas

Assistant Professor N.T.U.A.

..
N.Papaspyrou

Professor N.T.U.A.

..
A.Pagourtzis

Professor N.T.U.A.

Athens, July 2021

...................................
Eleni Dazea
Electrical and Computer Engineer

Copyright © Eleni Dazea, 2021. National Technical University of Athens.
All rights reserved.

This work is copyright and may not be reproduced, stored nor distributed in whole or
in part for commercial purposes. Permission is hereby granted to reproduce, store and
distribute this work for nonprofit, educational and research purposes, provided that the
source is acknowledged and the present copyright message is retained. Inquiries regarding
use for profit should be directed to the author.The views and conclusions contained in this
document are those of the author and should not be interpreted as representing the official
policies, either expressed or implied, of the National Technical University of Athens.

Περίληψη

Η μηχανική μάθηση είναι ένα πεδίο που συναντάται πλέον σε όλους τους τομείς της
ανθρώπινης ζωής. Παρόλα όμως τα οφέλη που παρέχει, είναι πολύ δύσκολο τα μοντέλα
μηχανικής μάθησης να γίνουν κατανοητά από έναν άνθρωπο. Ειδικότερα σε ιατρικές
εφαρμογές και στα αυτοκίνητα χωρίς οδηγό, είναι πολύ σημαντικό να μπορεί ο χρήστης
να καταλάβει ποια διαδικασία ακολούθησε ακριβώς το μοντέλο για να καταλήξει σε ένα
συμπέρασμα και τη σημασία των χαρακτηριστικών του ίδιου του μοντέλου, έτσι ώστε να
αποφεύγονται λάθη και να βελτιώνεται η χρηστικότητά του.

Στην παρούσα διπλωματική, θα ασχοληθούμε με την ανάπτυξη ενός explainable AI
μοντέλου, για να προβλέψουμε την εισαγωγή ασθενών COVID19 σε ΜΕΘ με βάση τα
συμπτώματά τους. Βασικό χαρακτηριστικό του μοντέλου μας είναι η δυνατότητα ερμη
νείας και αιτιολόγησης της πρόβλεψης με βάση τα συμπτώματα του κάθε ασθενή. Έτσι,
ένας γιατρός που το χρησιμοποιεί θα γνωρίζει ποιοι ασθενείς έχουν τη μεγαλύτερη πι
θανότητα να εισαχθούν σε ΜΕΘ, για να τους έχει υπό παρακολούθηση, και θα μπορεί
ταυτόχρονα να ελέγξει και την εγκυρότητα της πρόβλεψης.

Για την παραγωγή του τελικού προγράμματος, ξεκινήσαμε με την εκπαίδευση πολ
λών μοντέλων με διαφορετικούς αλγόριθμους σε Python, χρησιμοποιώντας δεδομένα από
ασθενείς COVID19 του νοσοκομείου Sirio Libanes στο Σάο Πάολο της Βραζιλίας. Έπει
τα, επιλέξαμε αυτό με την καλύτερη ακρίβεια, στη δική μας περίπτωση ήταν ένα μοντέλο
adaboost με random forest weak learner, και το μεταφέραμε στην R, όπου χρησιμοποι
ήσαμε τη βιβλιοθήκη InTrees για να παράξουμε ένα σύνολο από τους πιο σημαντικούς
κανόνες, με βάση τους οποίους γίνεται ο διαχωρισμός των ασθενών σε αυτούς που θα
εισαχθούν σε ΜΕΘ και εκείνους που θα αναρρώσουν. Τέλος, με τους παραπάνω κανόνες,
δημιουργήσαμε ένα πρόγραμμα σε Prolog, χρησιμοποιώντας τον Γοργία, το οποίο δέχε
ται ως όρισμα κάποια βασικά αποτελέσματα κλινικών εξετάσεων για κάθε ασθενή και
επιστρέφει την πρόβλεψη για την πορεία της υγείας του και τα βασικά συμπτώματα με
βάση τα οποία πήρε αυτή την απόφαση. Για την επικοινωνία του χρήστη με τον Γοργία,
δημιουργήσαμε ένα πρόγραμμα σε Java.

ΛέξειςΚλειδιά: Επεξηγήσιμη τεχνητή νοημοσύνη, Μηχανική Μάθηση, Λογικός προ
γραμματισμός χώρις άρνηση ως αποτυχία, Γοργίας, COVID19

Abstract

Machine Learning is a field that is widely used in all aspects of our lives. However,
despite of the benefits of its use, its function and the process that every model follows
to produce a result can not be easily comprehended by a human. Especially in medical
applications and self driving cars, it is very important for the user to understand the steps
the model takes to reach the solution and the importance of the features of the model, in
order to avoid mistakes and improve the model’s functionality.

In this thesis, we created an explainable AI model that can predict the ICU admission
of COVID19 patients, based on their symptoms and lab results. An important feature of
our model is the interpretation and justification of the prediction to the user. This would
allow for example a doctor that uses the program to know in advance which patients are
more likely to be admitted to the ICU and monitor them and also assess the validity of
such prediction.

For the creation of the program, we first trained models with a variety of different
algorithms in Python, using COVID19 patients’ data from the Sirio Libanes hospital in
Sao Paolo, Brazil. Then, we took the model with the highest accuracy, which in this case
was used an adaboost algorithm with a random forest weak learner and transferred it in
the R language, where we used the InTrees library to create a sum of the most important
rules, which we can use to get a good ICU admission prediction. Finally, with the above
rules, we created a Prolog program, using the Gorgias framework, which takes as an input
some important patient lab results and returns a prediction on whether the patient will be
admitted and the key symptoms based on which the program produced that result. The
framework for the user’s communication with Gorgias was written in Java.

Keywords: Explainable AI, Machine Learning, Logic Programming without Negation as
Failure, Gorgias, COVID19

Ευχαριστίες

Η παρούσα διπλωματική πραγματοποιήθηκε στη σχολή Ηλεκτρολόγων Μηχανικών
και Μηχανικών Υπολογιστών του Εθνικού Μετσόβιου Πολυτεχνείου.

Αρχικά, θα ήθελα να ευχαριστήσω τον Επιβλέποντα Καθηγητή μου κ. Πέτρο Στεφα
νέα για την πολύτιμη βοήθεια και καθοδήγηση του καθ’ όλη τη διάρκεια εκπόνησης αυτής
της διπλωματικής. Επιπλεόν, θα ήθελα να ευχαριστήσω τους καθηγητές κ. Ν. Παπασπύ
ρου και κ. Α. Παγουρτζή για τη διδασκαλία τους και το ενδιαφέρον που μου καλλιέργησαν
για την Επιστήμη των Υπολογιστών.

Ευχαριστώ επίσης και όλους τους φίλους που απέκτησα κατά τη διάρκεια των φοιτητι
κών μου χρόνων που έκαναν την καθημερινότητα μου στη σχολή πιο ευχάριστη. Ιδιαίτερα,
ευχαριστώ τον Παναγίωτη για την υπομονή και τη συνεχή στήριξή του.

Τέλος, θα ήθελα να ευχαριστήσω την οικογένειά μου για την στήριξη που μου παρείχε
σε όλη τη διάρκεια των σπουδών μου.

Ελένη Δαζέα,
Ιούλιος 2021

Contents

1 Εκτεταμένη Περίληψη 16
1.1 Εισαγωγή . 16

1.1.1 Επεξηγήσιμη τεχνητή νοημοσύνη 16
1.1.2 COVID19 . 16
1.1.3 Σκοπός . 17

1.2 Λογικός Προγραμματισμός χωρίς Άρνηση ως Αποτυχία 18
1.3 Γοργίας . 18
1.4 Υλοποίηση . 19

1.4.1 Δεδομένα . 19
1.4.2 Εκπαίδευση . 19
1.4.3 Intrees . 20
1.4.4 Επεξηγήσιμο Μοντέλο . 21
1.4.5 Αποτελέσματα . 23

1.5 Συμπεράσματα και Μελλοντικές Επεκτάσεις 24

2 Introduction 26
2.1 Covid19 . 27
2.2 Contribution of this Thesis . 29

3 Background 30
3.1 Machine Learning . 30
3.2 Supervised Learning . 31

3.2.1 How it works: . 31
3.2.2 Types of supervised learning problems 32

3.3 Supervised Machine Learning Algorithms 34
3.3.1 Logistic Regression . 34
3.3.2 SVM . 35
3.3.3 MLP . 36
3.3.4 Decision Trees . 38

3.4 Precision, Recall and F1 score . 42
3.5 Explainable AI . 43
3.6 Related Work . 45

11

4 Logic Programming without Negation as Failure 46
4.1 The framework . 46
4.2 Proving LPwNF . 48

4.2.1 Example of proof sequence . 48

5 Gorgias 50
5.1 Semantics . 50
5.2 Use of Gorgias . 51
5.3 Knowledge Depiction with Gorgias . 51
5.4 Answering Queries . 52
5.5 Dynamic Preferences . 52

5.5.1 Inheritance with exceptions . 52
5.5.2 HigherOrder Preferences . 54
5.5.3 Abduction . 55

6 Implementation 57
6.1 Purpose . 57
6.2 Dataset . 57
6.3 Training . 59

6.3.1 Fewer Data . 59
6.3.2 All Data . 62

6.4 Intrees . 66
6.4.1 The framework . 66
6.4.2 Use of InTrees . 68
6.4.3 Results . 71

6.5 Gorgias . 77
6.6 Java Interface . 80
6.7 Results . 84

7 Conclusion and Future Work 87

12

List of Figures

1.1 Επεξηγήσιμη τεχνητή νοημοσύνη . 17
1.2 Διαδικασία δημιουργίας τελικού μοντέλου 17
1.3 Σύγκριση όλων των μοντέλων . 20
1.4 Επικοινωνία χρήστη με τον Γοργία μέσω Java framework 22
1.5 Είσοδος επεξηγήσιμου προγράμματος 22
1.6 Αποτελέσματα επεξηγήσιμου προγράμματος 22
1.7 Σύγκριση όλων των μοντέλων που δημιουργήσαμε 24

2.1 Explainable AI . 27
2.2 Cases per 100,000 population of most affected countries by ECDC 28
2.3 Number of cases and healthcare system capacity 29

3.1 R(g) and local minima . 31
3.2 A linear regression example function 33
3.3 Example of image classification . 33
3.4 Logistic Regression with 0.5 decision boundary 34
3.5 SVM in a 3D plane . 35
3.6 Weighted sum and activation function 36
3.7 A multilayer perceptron with one hidden layer 37
3.8 Decision Tree example . 38
3.9 Adaboost example . 41
3.10 Pruning example . 41
3.11 Precision and Recall . 43
3.12 XAI importance . 44

4.1 Proof for fly(T), long arrows symbolize attacks 49

5.1 Inheritance Hierarchy . 53

6.1 Data in time windows . 58
6.2 Training results with data from the first window 62
6.3 Training results with data from all windows 64
6.4 Final algorithm and dataset comparison 65
6.5 Comparison of Adaboost and Random Forest algorithms before and after

intrees . 77

13

6.6 Input on the explainable program . 83
6.7 Result of the explainable program . 83
6.8 User communication with Gorgias through the Java framework 84
6.9 Model creation process . 84
6.10 Comparison of all ml algorithms and explainable models 85
6.11 Comparison of all ml algorithms, explainable models and data sets 86

14

Chapter 1

Εκτεταμένη Περίληψη

1.1 Εισαγωγή

1.1.1 Επεξηγήσιμη τεχνητή νοημοσύνη
Η επεξηγήσιμη τεχνητή νοημοσύνη αποτελείται από ένα σύνολο μεθόδων που εξη

γούν την διαδικασία της ανάλυσης δεδομένων και τα αποτελέσματα διαφόρων αλγορίθ
μων τεχνητής νοημοσύνης. Οι αλγόριθμοι μηχανικής μάθησης μπορούν να χωριστούν σε
δύο κατηγορίες: λευκού κουτιού και μαύρου κουτιού, ανάλογα με την ευκολία κατανόη
σης της λογικής πίσω από κάθε αποτέλεσμα που δίνουν. Η λογική του λευκού κουτιού,
μας δίνει διαφάνεια και ερμηνευσιμότητα στις αποφάσεις του μοντέλου για το εκάστοτε
πρόβλημα. Αντίθετα, οι αλγόριθμοι μαύρου κουτιού δεν μπορούν να γίνουν κατανοητοί
από έναν άνθρωπο. Με βάση όμως το κοινωνικό δικαίωμα στην κατανόηση των αποφά
σεων ενός αλγορίθμου από τους χρήστες, όταν αυτός τους επηρεάζει σε κάποια έκφανση
της ζωής τους, είναι πολύ σημαντικό να είναι κατανοητοί και οι αλγόριθμοι αυτού του εί
δους, τόσο λόγω νομοθεσίας, όσο και για να αποφεύγονται λάθη και να δημιουργείται ένα
κλίμα εμπιστοσύνης των χρηστών στα μοντέλα τεχνητής νοημοσύνης. Ο ρόλος της επε
ξηγήσιμης τεχνητής νοημοσύνης είναι ακριβώς αυτός, να μετατρέπει δηλαδή τα μοντέλα
μαύρου κουτιού σε μοντέλα κατανοητά για τον χρήστη.

1.1.2 COVID19
Το 2019 ξέσπασε η πανδημία κορωνοϊού, η οποία ξεκίνησε το Δεκέμβρη του 2019

από την Wuhan της Κίνας. Μέχρι τον Φεβρουάριο του 2021, υπήρχαν 106 εκατομμύρια
κρούσματα και 2.34 εκατομμύρια θάνατοι από τον ιό. Η μόλυνση διαρκεί γύρω στις δύ
ο εβδομάδες και η θνησιμότητα είναι κατά μέσο όρο γύρω στο 2.2%. Οι ασθενείς που
βρίσκονται σε μεγαλύτερο κίνδυνο είναι όσοι έχουν καρδιαγγειακά προβλήματα, παχυ
σαρκία, προβλήματα στους πνεύμονες, βρίσκονται σε ανοσοκαταστολή ή είναι άνω των
65 ετών.

Ο COVID19 έχει καθηλώσει τα συστήματα υγείας πολλών χωρών, καθώς οι σοβαρά

16

Σχήμα 1.1: Επεξηγήσιμη τεχνητή νοημοσύνη

νοσούντες εισάγονται σε ΜΕΘ για να επιβιώσουν. Αυτό συνέβη και στην Ελλάδα, όπου
σε κάποιες περιοχές, οι ασθενείς που χρειάζονταν διασωλήνωση ήταν περισσότεροι από
της διαθέσιμες ΜΕΘ.

1.1.3 Σκοπός
Στην παρούσα διπλωματική, εκπαιδεύσαμε πολλά διαφορετικά μοντέλα μηχανικής

μάθησης για να προβλέψουν ποιοι ασθενείς θα χρειαστεί να εισαχθούν σε ΜΕΘ, με βάση
τα συμπτώματα και τα αποτελέσματα των εξετάσεών τους. Στη συνέχεια, επιλέξαμε το
μοντέλο με την καλύτερη ακρίβεια και με βάση αυτό δημιουργήσαμε ένα μοντέλο επεξη
γήσιμης τεχνητής νοημοσύνης, το οποίο λαμβάνει ως είσοδο συγκεκριμένα αποτελέσματα
εξετάσεων ενός ασθενή και επιστρέφει την πρόβλεψη για το αν ο ασθενής θα εισαχθεί σε
ΜΕΘ καθώς και τα συμπτώματα με βάση τα οποία κατέληξε σε αυτή την κατηγοριοποί
ηση για τον συγκεκριμένο ασθενή.

Σκοπός είναι το σύστημα αυτό να μπορεί να χρησιμοποιηθεί από το ιατρικό προσω
πικό στα νοσοκομεία, ώστε να προβλέπουν ποιοι ασθενείς θα νοσήσουν σοβαρά για να
έχουν το χρόνο να διαχειριστούν τα κρεβάτια ΜΕΘ ή να στέλνουν τους ασθενείς σε νοσο
κομεία άλλων περιοχών που έχουν περισσευούμενες κλίνες. Παράλληλα, θα μπορέσουμε
να κατανοήσουμε και με βάση ποια συμπτώματα γίνεται η κατηγοριοποίηση των ασθε
νών σε σοβαρά νοσούντες και μη, ώστε οι γιατροί να μπορούν να παρακολουθούν αυτά
τα συμπτώματα.

Σχήμα 1.2: Διαδικασία δημιουργίας τελικού μοντέλου

17

1.2 Λογικός Προγραμματισμός χωρίς Άρνηση ως Α
ποτυχία

Ο λογικός προγραμματισμός χωρίς Άρνηση ως Αποτυχία είναι μία επέκταση του λο
γικού προγραμματισμού που περιλαμβάνει την άρνηση αλλά όχι την άρνηση ως αποτυχία.
Ορίστηκε στη δημοσίευση των Γιάννης Δημόπουλος και Αντώνης Κάκας [8].

Παρακάτω, θα περιγράψουμε συνοπτικά την διαδικασία απόδειξης με βάση αυτό το
είδος λογικού προγραμματισμού. Ο προγραμματισμός αυτός περιλαμβάνει δύο ειδών πα
ραγωγές, την Α και την Β. Ξεκινάμε με την Α η οποία προσπαθεί να αποδείξει τον αρχικό
στόχο, κατασκευάζοντας ένα κομμάτι θεωρίας. Από την Α προκύπτει μία παραγωγή Β,
η οποία προσπαθεί να επιτεθεί στην Α και να αποδείξει την άρνηση μέρους της θεωρίας
που χρησιμοποιήθηκε από την Α. Αντίστοιχα, μέσα από την παραγωγή τύπου Β, παράγε
ται μια άλλη παραγωγή τύπου Α που πάλι προσπαθεί να επιτεθεί στην προηγούμενη. Αν
καταφέρουμε να αποδείξουμε τον αρχικό στόχο από μία παραγωγήΑ αλλά καμία παραγω
γή Β δεν πετύχει τον στόχο της τότε το σύνολο των κανόνων των παραγωγών Α αποτελεί
υποσύνολο κανόνων της θεωρίας και ο αρχικός στόχος είναι ασθενές συμπέρασμα αυτής.
Αν παράλληλα αποτύχουμε να αποδείξουμε και την άρνησή του με την ίδια διαδικασία,
τότε αποτελεί και ισχυρό συμπέρασμα.

1.3 Γοργίας
Ο Γοργίας αποτελεί μία δομή επιχειρηματολογίας, η οποία στηρίζεται στην Prolog

και συνδυάζει την λογική της απαγωγής και τον συλλογισμό με προτιμήσεις [5]. Μπορεί
να παράξει επιχειρηματολογία σε δυναμικά και εξελισσόμενα περιβάλλοντα με ελλιπείς
πληροφορίες. Παράδειγμα τέτοιων εφαρμογών είναι νομικοί συλλογισμοί που βασίζο
νται σε αντικρουόμενους νόμους μερικοί από τους οποίους είναι υψηλότερης τάξης από
άλλους.

Ορισμένα κατηγορήματα του Γοργία είναι:

• O Γοργίας χρησιμοποιεί το κατηγόρημα rule/3 για να αναπαραστήσει έναν κανόνα
της θεωρίας.

• To κατηγόρημα prefer/2 χρησιμοποιείται για να δείξει την σχετική δύναμη ανάμεσα
σε δύο κανόνες της θεωρίας.

• ’Ενα abducible literal αναπαρίσταται με το abducible/2

• Με το conflict/2 δηλώνουμε ότι δύο κανόνες συγκρούονται

Για να υποβάλλουμε ερωτήματα στο σύστημα του Γοργία χρησιμοποιούμε την εντο
λή prove(Goal, Delta), με Goal το ερώτημα που θέλουμε να αποδείξουμε και Delta το
αποδεκτό επιχείρημα που θα στηρίζει το ερώτημά μας.

18

1.4 Υλοποίηση

1.4.1 Δεδομένα
Τα δεδομένα για την εκπαίδευση των μοντέλων τα πήραμε από την ιστοσελίδα Kaggle

(https://www.kaggle.com), η οποία περιείχε δεδομένα COVID19 ασθενών από το νοσο
κομείο SirioLibanes στο Σάο Πάολο της Βραζιλίας [1]. Τα δεδομένα αυτά είχαν κανονι
κοποιηθεί με έναν MinMax Scaler, ώστε να παίρνουν τιμές από 1 εώς 1 και περιείχαν
τις δημογραφικές πληροφορίες των ασθενών, υποκείμενα νοσήματα, αποτελέσματα αιμα
τολογικών εξετάσεων, καθώς και κλινικές μετρήσεις. Συνολικά, είχαμε 54 δεδομένα για
κάθε έναν από τους 385 ασθενείς. Για τις αιματολογικές και τις κλινικές μετρήσεις, τα
δεδομένα είχαν υποστεί περαιτέρω επεξεργασία, καθώς αντί για την τιμή της κάθε μέτρη
σης, είχαμε mean, median, minimum, maximum και relative diff, το οποίο είναι η διαφορά
των minimum και maximum διαιρεμένη με το median. Επίσης, για κάθε ασθενή, είχαμε
δεδομένα για τα εξής χρονικά παράθυρα παραμονής τους στο νοσοκομείο: 02 ώρες, 24
ώρες, 46 ώρες, 612 ώρες και 12 και πάνω, εκτός από την περίπτωση που ο ασθενής ει
σήχθη σε ΜΕΘ πριν από τις 12 ώρες, όπου έχουμε δεδομένα μέχρι το χρονικό παράθυρο
στο οποίο έγινε η εισαγωγή. Με βάση τα παραπάνω, έχουμε 231 στήλες και 1925 γραμμές
στον πίνακα δεδομένων.

Για την εκπαίδευση των μοντέλων χρησιμοποιήσαμε 80% των δεδομένων και για την
αξιολόγησή τους το υπόλοιπο 20%.

1.4.2 Εκπαίδευση
Αρχικά, δοκιμάσαμε να εκπαιδεύσουμε τα μοντέλα μόνο με δεδομένα από το πρώτο

χρονικό παράθυρο και στη συνέχεια επαναλάβαμε την ίδια διαδικασία, χρησιμοποιώντας
όλα τα χρονικά παράθυρα.

Οι αλγόριθμοι που χρησιμοποιήσαμε είναι:

• Logistic Regression

• SVM

• MLP

• Random Forest

• Adaboost

• Adaboost with an SVM weak learner

• Adaboost with a Logistic Regression weak learner

• Adaboost with a Random Forest weak learner

• Extra Trees

Από τη σύγκριση της ακρίβειας όλων των μοντέλων, καταλήξαμε στην επιλογή της
Adaboost με Random Forest weak learner που εκπαιδεύτηκε στο σύνολο των δεδομένων.

19

Σχήμα 1.3: Σύγκριση όλων των μοντέλων

1.4.3 Intrees
Στη συνέχεια, εφαρμόσαμε στο παραπάνω μοντέλο τη βιβλιοθήκη Intrees της R, η

οποία έχει τις παρακάτω δυνατότητες για τα μοντέλα που χρησιμοποιούν δέντρα:

• Εύρεση συχνότητας κανόνων (Measuring)

• Pruning

• Εύρεση σχετικών και μη επαναλαμβανόμενων κανόνων (Select rules)

Μετά την εφαρμογή των παραπάνω συναρτήσεων, παράχθηκε ένα μοντέλο με μόνο
10 κανόνες, οι οποίοι έχουν την εξής σειρά προτεραιότητας:

1. Αν η μέση συγκέντρωση οξυγόνου στις φλέβες > 0.91 και το ελάχιστο της συγκέ
ντρωσης νατρίου <= 0.32→ Όχι ΜΕΘ

2. Αν μέση συγκέντρωση οξυγόνου στις αρτηρίες <= 0.92→ΜΕΘ

3. Αν το μέγιστο γαλακτικό οξύ > 0.36 και η μέση συστολική αρτηριακή πίεση > 0.04
→ Όχι ΜΕΘ

20

4. Αν οι μέσοι καρδιακοί παλμοί > 0.14→ΜΕΘ

5. Αν το μέσο του pH στις φλέβες <= 0.38 και το μέγιστο του pH στις φλέβες > 0.35
και η μέση συγκέντρωση οξυγόνου στις φλέβες > 0.25→ Όχι ΜΕΘ

6. Αν μέση συγκέντρωση γαλακτικού οξέος <= 0.36 και η μέση συγκέντρωση του
ασβεστίου <= 0.34→ΜΕΘ

7. Αν δεν ισχύει τίποτα από τα παραπάνω→ΜΕΘ

Το συγκεκριμένο μοντέλο, έχει τα παρακάτω χαρακτηριστικά με βάση τα δεδομένα
μας:

accuracy = 78.7%
precision = 75%
recall = 61.2%
f1score = 67.4%

1.4.4 Επεξηγήσιμο Μοντέλο
Χρησιμοποιώντας τα παραπάνω, μπορούμε τώρα να κατασκευάσουμε ένα επεξηγή

σιμο μοντέλο στον Γοργία.
Αρχικά, ορίζουμε τα δύο πιθανά αποτελέσματα του μοντέλου μας, ο ασθενής να μπει

ή να μην μπει σε ΜΕΘ

icu(Patient), noticu(Patient)

Έπειτα, ορίζουμε ότι τα δύο αυτά αποτελέσματα είναι αντιφατικά

complement(icu(Patient),noticu(Patient)).
complement(noticu(Patient),icu(Patient)).

Γράφουμε τους 7 κανόνες

rule(r1(Patient),noticu(Patient),[]):-�satvenusmean(Patient,Satvenmean), calciummin
(Patient,Calmin), Satvenmean > 0.91, Calmin =< 0.32 .

...
rule(r7(Patient),icu(Patient),[]):- �satvenusmean(Patient,Satvenmean), Satvenmean <

10.

Τέλος, ορίζουμε την προτεραιότητα μεταξύ των κανόνων με το κατηγόρημα prefer

rule(pr1(Patient), prefer(r1(Patient), r2(Patient)),[]).

21

Για την επικοινωνία με το πρόγραμμα στον Γοργία, χρησιμοποιήσαμε το API του
Gorgias Cloud και δημιουργήσαμε ένα πρόγραμμα σε Java, το οποίο δέχεται από τον
χρήστη τα βασικά στοιχεία για τον κάθε ασθενή, στη συνέχεια τα στέλνει στον Γοργία,
αυτός με τη σειρά του τα επεξεργάζεται και επιστρέφει την πρόβλεψη και τον κανόνα με
βάση τον οποίο κατέληξε σε αυτή την πρόβλεψη. Το πρόγραμμα σε Java τα επεξεργάζεται
και τέλος τα παρέχει στον χρήστη αναλυτικά.

Σχήμα 1.4: Επικοινωνία χρήστη με τον Γοργία μέσω Java framework

Σχήμα 1.5: Είσοδος επεξηγήσιμου προγράμματος

Σχήμα 1.6: Αποτελέσματα επεξηγήσιμου προγράμματος

22

1.4.5 Αποτελέσματα
Το τελικό αποτέλεσμα είχε ακρίβεια 5% χαμηλότερη από το αρχικό, όμως ήταν συ

γκρίσιμη με όλα τα υπόλοιπα μοντέλα που εκπαιδεύσαμε. Συγκεκριμένα, είχε παρόμοια
αποτελέσματα με τα Extra Trees, Adaboost, MLP και SVM, ενώ είχε και τη δυνατότητα
της αναλυτικής επεξήγησης των αποτελεσμάτων που επιστρέφει. Παράλληλα, μας επέ
στρεψε 7 κανόνες σύμφωνα με τους οποίους γίνεται η πρόβλεψη, δίνοντας έτσι τη δυνατό
τητα να συλλέξουμε τα βασικά συμπτώματα με βάση τα οποία μπορούμε να προβλέψουμε
αν κάποιος ασθενής θα νοσήσει σοβαρά. Τα συμπτώματα αυτά είναι:

• Χαμηλή συγκέντρωση οξυγόνου

• Χαμηλή συγκέντρωση ασβεστίου

• Χαμηλή συγκέντρωση γαλακτικού οξέος

• Χαμηλή πίεση

• Ταχυπαλμία

• Χαμηλό pH στο αίμα

Όσον αφορά τη χαμηλή συγκέντρωση του γαλακτικού οξέος, πιστεύουμε πως είναι στα
τιστική ανωμαλία λόγω έλλειψης δεδομένων κατά την διαδικασία της εκπαίδευσης των
μοντέλων. Όλα τα υπόλοιπα αποτελέσματα έχουν συνδεθεί με σοβαρή ασθένεια από διά
φορες μελέτες ή είναι γνωστά συμπτώματα του COVID19 [14] [11] [9].

23

Σχήμα 1.7: Σύγκριση όλων των μοντέλων που δημιουργήσαμε

1.5 Συμπεράσματα και Μελλοντικές Επεκτάσεις
Στην παρούσα διπλωματική, δημιουργήσαμε ένα επεξηγήσιμο μοντέλο που προβλέ

πει την εξέλιξη της ασθένειας ανθρώπων με COVID19 και καταλήξαμε σε κάποια συ
μπεράσματα για τα βασικά συμπτώματα με βάση τα οποία μπορούμε να προβλέψουμε
σοβαρή νόσο. Τα αποτελέσματα αυτά βέβαια θα πρέπει να αντιμετωπιστούν με προσοχή,
κυρίως λόγω των ελάχιστων δεδομένων που είχαμε στη διάθεσή μας για την εκπαίδευση
των μοντέλων (385 ασθενείς). Παραθέτουμε κάποιες προτάσεις για την επέκταση αυτής
της διπλωματικής:

• Εμπλουτισμός του data set με περισσότερα δεδομένα ασθενών με COVID19, ώστε
να έχουμε μεγαλύτερη ακρίβεια και να αποφύγουμε τυχόν στατιστικές ανωμαλίες.

• Χρήση στρατηγικής μείωσης διαστάσεων (dimensionality reduction strategy) για
να μειωθεί ο αριθμός των features των δεδομένων, ώστε να εκπαιδεύσουμε τα μο
ντέλα μόνο στα σημαντικά δεδομένα. Αυτό μπορεί να αυξήσει την ακρίβεια του
μοντέλου αλλά οι στατιστικές ανωμαλίες και οι ελλείψεις του συγκεκριμένου πί
νακα δεδομένων θα παραμείνουν.

• Εφαρμογή της ίδιας διαδικασίας για την πρόβλεψη της πορείας άλλων ασθενειών,

24

όπως π.χ. εμφράγματα.

• Εφαρμογή της ίδιας διαδικασίας με τη χρήση Intrees και Γοργία για τη μετατροπή
άλλων μοντέλων από Adaboost, Random Forest, Extra Trees ή οτιδήποτε χρησιμο
ποιεί Decision Trees σε επεξηγήσιμα.

25

Chapter 2

Introduction

Nowadays, Machine Learning applications are becoming more and more integrated
in all aspects of our everyday lives, from recommendation algorithms for movies to self
driving cars. While Machine Learning as a concept has existed since the 1940s, it only
started to become widely used in the recent years. This was mostly due to the advance
ments in Graphics Processing Units (GPUs) and CPUs, which resulted in an increase of
computers’ processing power. ML algorithms are usually very complex and computation
ally heavy. Deep Neural Networks (DNNs) for instance, consist of multiple layers and
require hundreds of iterations to converge. This makes them very difficult to understand,
because, in order to find out why an algorithm gives a specific label to an input, we need
to follow the entire process of the algorithm’s training and be able to read the layers the
input goes through to get a specific result. Distinguishing possible errors in a trained ML
model that seems to perform well on the training a test set is not an easy task.
With the introduction of ML in various aspects of life, it also begun to be used in the med
ical field, mostly with DNNs in medical imaging. However, in fields like medicine and
selfdriving cars, there is a need for transparency in the decision process. For example,
it’s not enough to know that a patient might have a stroke, we need to understand which
symptoms the MLmodel considered important for that decision and the process that it fol
lowed to reach that conclusion. The reason for this, is that in the above example, making
a wrong classification can cause a patient to be overlooked and result in a life threatening
situation. The initiative of trying to explain how a ML model works to the user is called
Explainable AI (XAI).

26

Figure 2.1: Explainable AI

2.1 Covid19
The coronavirus 2019 pandemic was caused by the severe acute respiratory syndrome

coronavirus 2(SARSCoV2) and was first identified in December 2019 in Wuhan, China.
The World Health Organization(WHO) declared the outbreak a pandemic in March 2020.
As of February 2021, there have been around 106million confirmed cases and 2.34million
deaths from Covid19.

The estimate of the basic reproduction number (R0) is around 5.7, which renders it
extremely infectious [13]. R0 is the expected number of infections generated by one per
son with the virus. The disease lasts typically around two weeks. According to the above
numbers, the death to case ratio is around 2.2%, although it varies by region. Those who
tend to be at greater risk from serious complications are people with underlying medical
conditions, such as serious heart and lung problems, obesity, those who are immunocom
promised and elderly people (over 65 years old)[2].

Most infected people will develop mild to moderate symptoms at around 81%, 14%
will develop serious symptoms, such as dyspnea and hypoxia and 5% will get critical
symptoms (respitory failure, multiorgan dysfunction).Around 95% of people who con
tract COVID19 recover. One third of the infected people will show no symptoms of the
disease, but they will still be able to pass it on[3] .

The infectionfatality ratio (IFR) differs greatly between age groups. The CDC esti
mates for each age group as of September 2020 are the following[6]:

27

Figure 2.2: Cases per 100,000 population of most affected countries by ECDC

Age group IFR
019 0.002%0.01%
2049 0.007%0.03%
5069 0.25%1%
70+ 2.8%9.3%

One of the biggest issues during the pandemic for all countries affected was the capac
ity of the healthcare system. People who show critical symptoms of the disease, which can
be life threatening, need to be treated at the hospital. As a rough estimate, only 5% of the
people that contract COVID19 exhibit critical symptoms and get seriously ill. However,
when the total number of cases in a country is too high, the above percentage results in
a very large number of patients needing hospitalization, which in turn causes the health
care system to be overwhelmed. This has occurred in various countries, including Greece,
where the number of patients requiring an ICU bed was larger than the number of existing
ICU beds. To counter this phenomenon, one goal is to reduce the spread of the disease,
in order for countries to prepare and increase the number of ICU beds and ventilators and
also have time for the distribution of vaccines.

One thing that could prove to be helpful in cases of countries where the overwhelmed
hospitals are on specific regions, is a good prediction of how many patients of a specific
hospital will require intubation in the near future. With this tool, if that hospital has no
more ICU beds left, they would have time to transfer patients efficiently in nearby regions,
where the hospitals may still have some empty ICU beds.

28

Figure 2.3: Number of cases and healthcare system capacity

2.2 Contribution of this Thesis
In this thesis, we train several Machine Learning algorithms, that can predict which

COVID19 hospital patients will end up in the ICU. We compare said algorithms and
choose the one with the highest accuracy. We then take that model and create an Explain
able AI one based on it, that can also predict severe disease in COVID patients. The model
will be able to explain to a user based on which symptoms it has decided on a particular
classification and which signs the medical staff should look for, when they themselves are
trying to predict the course of the disease for each patient.

29

Chapter 3

Background

3.1 Machine Learning
Machine learning is a type of Artificial Intelligence(AI). It also intersects with Com

puter Science, Statistics and Information Theory. Its aim is to allow software applications
to become more accurate at predicting outcomes by learning from existing data, with
out being specifically programmed to do so. This is usually done by labeling the correct
answers as valid, which are then used as training data for the computer to improve its
precision.

The main categories of ML are supervised, unsupervised, semisupervised and rein
forcement learning.

1. In supervised learning, the program is given the inputs and the correct labels for
these inputs (train data set), so that it can learn to predict the output of the given
inputs.

2. In unsupervised learning, the program is given no correct output to the input, so
that it can find patterns and similarities in parts of the data and organize those parts
into clusters.

3. Semisupervised learning is between the two above categories. It can use both la
beled and unlabeled data, though usually more unlabeled than labeled, even though
when taking more labeled data, the accuracy is improved. This technique is nor
mally used when we have a lot of unlabeled data and labeling all of them would
require too much time.

4. In reinforcement learning, the program interacts with an environmentwhich changes
dynamically, in order to achieve a goal. As it navigates, it makes decisions which
are either rewarded or penalized during feedback and the program’s goal is to max
imize the reward. A good example of this would be a selfdriving car.

30

3.2 Supervised Learning
A supervised learning algorithm analyzes the training data and creates an inferred

function in order to map new data. An efficient algorithmwill be able to categorize unseen
instances, so it needs to be able to generalize from the given training data set.

3.2.1 How it works:
Given a set of N training examples {(x1, y1), ...(xN , yN)} where xi is the feature

vector of the ith example and yi the label of said example. The learning algorithm seeks
a function g : X → Y, with X the input and Y the output. We usually represent g using
f : X × Y → IR so that we define g as the function we get when the y value returns the
highest score :

g(x) = argymax f(x, y) (3.1)

To measure how well g maps output to input, we define a loss function L : X×Y → IR≥0

. For (xi, yi) the loss of y′ is L(yi, y′).
We also define a risk function (R(g)), which returns the expected loss of function g :

Remp(g) =
1

N

∑
i

L(yi, g(xi)). (3.2)

What we want is to find the g function that minimizes the risk function Remp(g)

An example of what this function might look like is in the picture below:

Figure 3.1: R(g) and local minima

31

When designing a supervised learning algorithm there are four issues to consider:

1. The biasvariance tradeoff. Bias is the accuracy of the predictions. High bias means
that the algorithm is inaccurate, it is usually a sign of underfitting (the algorithm
is making assumptions without taking into account all the data, or the data is too
few). Variance is the sensitivity to small changes in the input. It causes noise and is
a sign of overfitting (the algorithm is too complicated, so it has taken into account
many features from the data which should not correlated with the result and fails
to generalize for new data). We must find a balace between the two, as usually
lowering the one increases the other.

2. Function complexity and amount of training data. If a function is simple (the func
tion needs only few features to give a correct result), then a highbias lowvariance
program will be enough. However, if the important features are too many and the
function is complex, we need many data for the training algorithm, which will be
lowbias and highvariance.

3. Dimensionality of input. If the input vectors have too many features, the program
will not find the function easily. In this case, we usually remove irrelevant features,
using the dimensionality reduction strategies.

4. Noise in output. If a lot of data have an incorrect output, then the algorithm should
not try to be very precise on its guesses, as that can lead to overfitting. Early stop
ping and detecting are two of the approaches most commonly used to counter this
issue.

The most common supervised learning algorithms are:
Support Vector Machines(SVNs), linear regression, logistic regression, naive Bayes,

linear discriminant analysis, decision trees, knearest neighbor algorithm, Neural Net
works (multilayer perceptron) and similarity learning.

3.2.2 Types of supervised learning problems
Supervised learning problems can be categorized in two types: regression and classi

fication.

Regression

In regression we are trying to find a mapping function f for input x to output y, where y is
a continuous variable. These problems are usually about quantities or sizes. One example
of a regression problem would be to try and find the price of houses according to its size,
number of rooms and location.

Common regression algorithms are linear regression, Support Vector Regression (SVR)
and regression trees.

32

Figure 3.2: A linear regression example function

Classification

In classification algorithms, we are trying to find a mapping function f for input x and
output y, where y values are discrete. In this case, we need to sort inputs into categories.
An example of such a problem would be to deduct from given pictures of animals whether
they are cats or not. Common classification algorithms include logistic regression, naive
Bayes, Decision Trees, Neural Networks and Knearestneighbors.

Figure 3.3: Example of image classification

33

3.3 Supervised Machine Learning Algorithms
In this section, we will analyze the various ML algorithms used in this thesis.

3.3.1 Logistic Regression
Logistic regression is a type of binary regression, in the sense that it has only two val

ues, 0 and 1. It uses a sigmoid function called the logistic function, which takes an input
and returns an output between 0 and 1. The standard one is σ : IR→ (0, 1) :

σ(t) =
1

1 + e−t
(3.3)

where t is a linear function of the input x, such as t = a0 + a1x. This function describes
the probability that P (Y) = 1, with Y a Bernoulli response variable, that this x input will
give a 1 output. The algorithm then tries to find the variables an, so that the model can
have good accuracy.

The cost function is defined as:

cost(hθ(x), y) = −y log(hθ(x))− (1− y) log(1− hθ(x)) (3.4)

and the goal is to minimize said function.
We can choose the decision boundary, according to which the algorithm decides in

what class the input belongs. It is usually set in 0.5, so that if the model returns a number
smaller that 0.5 then it is classified as a 0 and if it is higher than 0.5 it is classified as 1.

Figure 3.4: Logistic Regression with 0.5 decision boundary

34

3.3.2 SVM
Support Vector Machines (SVMs) work by assuming an ndimensional plane, where

n is the number of dimensions of the x input, and trying to separate all the inputs with an
(n1) dimensional hyperplane. A hyperplane in an ndimensional Eulclidean space is a
flat n1 dimensional subset of said space, which divides it into two parts. We choose the
hyperplane by maximizing the distance from the nearest datapoint of each side. This is
called the maximummargin hyperplane.

An example for this in a 3D plane with a 2D maximummargin hyperplane is in the
picture below.

Figure 3.5: SVM in a 3D plane

If we assume training examples: (x1, y1), (x2, y2), ..., (xn, yn) with yi either 1 or 1
and xi an mdimensional vector, then the maximummargin hyperplane consists of all x
points which satisfy:

wTx− b = 0 (3.5)
where ||w|| is the maximum margin.

Using the above, we can then define the cost function which SVM tries to minimize
as:

[
1

n

n∑
i=1

max(0, 1− yi(w
Txi − b))] + λ||w||2 (3.6)

35

Some parameters we can change in this algorithm are gamma, which defines how much
one training example can influence the algorithm, and C, which chooses between a smooth
hyperplane and classifying all inputs correctly.

3.3.3 MLP
Amultilayer perceptron (MLP) is a type of artificial neural network. Neural Networks

(NN) are created to looselymodel the neurons of a biological brain and aremost commonly
used in classification problems. The neurons are arranged in a directed weighted graph,
so that each neuron receives an input and then passes its output on to other neurons. Every
neuron is a node and is linked to other nodes with weighted links, which determine the
links’ importance.

Every neuron has multiple inputs and one output, which may then be passed to other
neurons multiplied by a weight. This output is produced by the weighted sum of every
input to the node:

υk =
m∑
j=0

wkjxj (3.7)

The weighted sum is then passed from an activation function ϕ(), whose purpose is to
introduce nonlinearity to the output.

yk = ϕ(υk) (3.8)

Figure 3.6: Weighted sum and activation function

During the learning process, the weights are adjusted so that the cost function is mini
mized. If the output is different from the label, then the error is transferred to the previous

36

nodes and the weights are adjusted depending on their contribution to the error. As the cost
function result keeps declining, the process continues. The method we use to reevaluate
the weights is called back propagation and it calculates the gradient of the cost function
and updates using gradient descent.

Multilayer perceptrons are one of the most common neural network arrangements.
They consist of at least three layers of neurons, in which the nodes of every layer are all
connected to every node of the previous and the next layer. For that reason, they are called
fully connected. The first layer is the input layer, the last is the output layer and every
other one in the middle is a hidden layer. The hidden layers are the ones responsible for
providing the correct output after training.

Figure 3.7: A multilayer perceptron with one hidden layer

37

3.3.4 Decision Trees
Decision Trees are used in supervised machine learning for both regression and clas

sification problems. It starts with the root and splits into branches recursively. The branch
ends when we have reached a decision and we can’t split any more. The decisions are the
leaves. Classification trees end in one of the options for the y value and regression trees
end in continuous values.

The procedure is the following. At the root, all features are considered and we calcu
late howmuch accuracy a split on each feature will cost. We then choose the one that costs
the least. This continues recursively. When the branch reaches a conclusion the process
ends. The maximum depth of the tree is the length of its longest branch. We usually want
to contain the maximum depth to avoid overfitting.

Figure 3.8: Decision Tree example

Random Forest

The random forest algorithm consists of a large number of individual decision trees.
Each decision tree gives a prediction for an input, and the decision with the most votes of
the trees in the forest is the model’s prediction. In order for random forests to work well,
the individual trees need to not be correlated with each other. This is achieved through
bagging.

Bagging works by selecting random features of the input for the split of each tree, so
that each decision tree works with different data than the rest.

Also, unlike decision trees, the trees of the forest split their nodes by picking from a
random set of features without trying to find the one which provides the lowest cost. This
is done to force even more variation between the trees of the forest.

38

Usually in classification problems, when we have p features, each tree uses about√p
in each split.

The main drawback of random forests in contrast to decision trees is that, even though
they return better results and solve the overfitting issue, they sacrifice the interpretablity of
decision trees, as the latter are one of the easiest to understand compared tomost supervised
ML models.

Extra Trees

Unlike random forest, extra trees fits the entire training dataset to every decision tree.
It randomly selects the feature for the split point and also randomly chooses the point. The
hyperparameters are the number of decision trees, the number of features for the random
split selection and the minimum number of samples for the creation of a split point.

Because of the random selections, extra trees algorithms have higher variance, which
can be reduced by increasing the number of trees in the forest.

Adaboost

Adaboost is a metaalgorithm. It can be used on its own or with another ML algorithm
as a ’weak learner’. For that, it more often uses decision trees.

In order to explain how Adaboost works, we will use a special type of decision trees,
called decision stumps, as a weak learner. Stumps are trees with only one node and two
leaves.

How it works
First, we create another array next to the features which indicates how important it is

for each one to be classified. In the beginning the all have equal weights,
1

N
where N is the

number of features. Then, we create a stump for each feature and check how accurately
it classifies all the input data, based on the weighted features. After this step, we assign
more weight to the stumps that correctly classified more data and also more weight to the
features that were not classified correctly, so that this doesn’t happen in the next iteration.
When all data are correctly classified or we have reached the maximum iteration limit, this
process ends.

Let’s assume training data {(xi, yi)}Ni=1 with xi ∈ IRM and yi ∈ {−1, 1}. We then
define the loss function as:

I(fm(x), y) =

{
0 fm(xi) = yi

1 fm(xi) ̸= yi
(3.9)

The adaboost pseudocode [4] is the following:

39

Algorithm 1 Adaboost psedocode
1: for i = 1 to N do
2: w

(1)
i = 1

3: end for
4: form = 1 toM do

5: ϵm =

∑N
i=1w

(m)
i I(fm(xi)i)∑
iw

(m)
i

▷ Fit weak classifier m to minimize function

6: am = ln
1− ϵm
ϵm

▷ Update weight for mth classifier
7: for i = 1 to N do
8: w

(m+1)
i = w

(m)
i eamI(fm(xi) ̸=yi) ▷ Update feature weights

9: end for
10: end for

The final classifier is the linear combination of all weak classifiers:

g(x) = sign(
M∑

m=1

amfm(x)) (3.10)

Like random forest, adaboost is also not prone to overfitting, it is however sensitive
to noise in the data.

Decision Tree Pruning

Pruning is a data compression technique used in machine learning, which reduces
complexity and removes redundant parts of a classifier. The goal is to reduce the size
of the classifier without reducing the accuracy of the model. There is a topdown and a
bottomup approach.
Bottomup: We start from the leaves and work recursively to the top as we determine the
relevance of every node. If they are not relevant, they are dropped or are replaced by a
leaf.
Topdown: We now start at the root of the tree and work recursively to the leaves. In
every node, we calculate whether it is relevant for all n items. If we prune a middle node,
we might drop an entire subtree despite it being relevant or not.
Some of the most commonly used pruning algorithms are reduced error pruning, cost com
plexity pruning and statisticbased pruning.

40

Figure 3.9: Adaboost example

Figure 3.10: Pruning example

41

3.4 Precision, Recall and F1 score
Thewaywe usually judge if a binary classificationmachine learning algorithm is good

at predicting the correct labels, is by using the accuracy metric, which is the number of
correct guesses divided by the input size. It is however a flawed metric when the dataset is
imbalanced. For example, if we consider a dataset where 95% of the data have a negative
label and the rest a positive one and we create a program that always predicts negative, we
will get a 95% accuracy. To mitigate this issue, we also use two other metrics, precision
and recall.

Precision describes how many of the positive results that we got from the algorithm
are relevant and recall how many of the relevant cases we managed to pick. In proba
bilities, precision is the probability of randomly selecting a positive test case from all the
cases that were categorized as positive and recall is the probability of randomly selecting
a case that was classified as positive from all positive cases. If we divide the results into
four categories: true positive (tp, the positive results that where guessed as positive by
the algorithm), true negative (tn, the negative results that were guessed negative), false
positive (fp, the negative results that were guessed positive) and false negative (fn, the
positive results that were guessed negative), then precision and recall are defined as:

precision =
tp

tp+ fp
(3.11)

recall =
tp

tp+ fn
(3.12)

There is also a measure which combines them and is the harmonic mean of the two, called
F1 score:

F1 score = 2
precision ∗ recall
precision+ recall

(3.13)

Like with accuracy, the highest possible value for the above metrics is 1.0 and the
lowest 0.0.

42

Figure 3.11: Precision and Recall

3.5 Explainable AI
Explainable AI consists of methods that try to explain the process and results of Arti

ficial Intelligence algorithms and applications. Machine learning algorithms can be either
blackbox or whitebox. Whitebox algorithms are already easy to interpret, while black
box are hard to explain and difficult to understand even by their own developers. A good
example for blackbox models are deep neural networks, random forest algorithms etc.

XAI models are algorithms that try to turn all blackbox algorithms into whitebox,
and as such they follow the principles of transparency, interpretability and explainability.

• We have transparency when the designer of the algorithm can describe the model
parameters and labels of the program.

• Interpretability is when the process of solving the problem and the reasoning behind
the output can be understood by a human.

• Explainability is a sum of interpretable features that can be combined to produce a
decision based on an example.

43

Figure 3.12: XAI importance

The main reasons behind XAI development are the social right to explanation, which
is the right of an individual to understand and be given an explanation for the output of
an algorithm that they use or affects them individually, legally or financially, and also to
improve user experience and provide trust to the users for the validity of the results.

An even more important reason for the use of XAI is to predict how well a model
will generalize. Because ML’s operation is very complicated, models might start learning
based on features and patterns which are accidental or useless to us. A good example of
this is bias. If for example we train a ML model for loan approvals based on previous
data of people doing the same job, the algorithm will incorporate the bias of humans in its
programming. If we can then interpret the model, we will notice the bias and fix the data
set.

There are specific industries where XAI is becoming more important. In medical ap
plications, doctors that use a model need to understand how a conclusion was reached and
in some cases come to a different one, because there are cases when human interpretation
is needed. Another example is autonomous vehicles. The programmers need to be able
to understand why the model makes specific predictions, in order to find mistakes in the
program’s reasoning.

The European Union has introduced a right to explanation in GDPR for the above
issues, even though it covers only a small aspect of interpretability.

44

3.6 Related Work
In the paper published in the 19th International Conference on Bioinformatics and

Bioengineering ”Intergrating Machine Learning with symbolic reasoning to build an ex
plainable AI model for stroke prediction”[12], Gorgias and an R library called Intrees were
deployed in order to build an explainable AI model which predicts if a patient will have a
stroke and also explains why according to their medical history.

This is done by taking a random forest algorithm in R, modifing the forest using the
package inTrees, in order to keep only the most important branches of the forest, and then
using those branches to build Prolog rules in Gorgias that return the same result but also
have the ability to explain the proof process.

In said paper, they managed to take a model with a 78% accuracy and turn it into an
explainable AI model with 77% accuracy.

45

Chapter 4

Logic Programming without
Negation as Failure

Logic Programming without Negation as Failure,(LPwNF) is a way to extend logic
programming to use explicit negation but not contain negation as failure (NAF). The latter
is embodied later, in the argumentation based semantics. The following definitions and
proofs are in Logic Programming without Negation as Failure Yannis Dimopoulos and
Antonis Kakas [8] .

4.1 The framework
In LPwNF, logic programs are nonmonotonic theories, in which every program is

considered a collection of default sentences, from which we must choose an appropriate
subset, called extension, to reason with. Those sentences are written in the usual logic
programming language with the exception of the use of the explicit negation instead of
negation as failure. The following program is an example of this particular language:

fly(x)← bird(x)

¬fly(x)← penguin(x)

bird(x)← penguin(x)

bird(Tweety)

with a priority relationship between the rules according to which the second rule is higher
than the first. Nowwe can derive that Tweety can fly, becausewe can derive fly(Tweety),
but not ¬fly(Tweety) .

If we add penguin(Tweety), then we will derive that ¬fly(Tweety), as both fly
and ¬fly can be derived, but as we said before the second rule is higher than the first and
overrides it.

Below are the basic definitions for LPwNF:

46

Definition 4.1.1 (Logic Program or NonMonotonic Theory) A program (K,<) is a set
of rules K along with a priority relation < on those rules K.

Definition 4.1.2 (Attacks) Let’s assume program (K,<) and T,T’⊆ K.Then, T’ attacks T
iff there exist L, T1 ⊆T’ and T2⊆T such that:

(i) T1 ⊢min L and T2 ⊢min¬ L.

(ii) (∃r′ ∈T1, r ∈T2 s.t. r’ < r)⇒ (∃r′ ∈T1, r ∈T2 s.t. r < r’).

where T ⊢min L means that L can be derived from T but no proper subset of T.

Definition 4.1.3 (Consistency) Let K a set of rules. K is consistent iff for any ground
literal k s.t k ⊢ K,then k ̸ ⊢ ¬K.

Definition 4.1.4 (Admissibility) Let (K,<) a program and K a closed subset of K. Then
K is admissible iff:

(i) K is consistent

(ii) for any K’ ⊆ K if K’ attacks K then K’ attacks K’.

Definition 4.1.5 (Nonmonotonic credulous consequence) Let (K,<) be a program and
L a ground literal. Then L is a nonmonotonic credulous consequence of the program iff
L holds in a maximal admissible set of K.

Definition 4.1.6 (Nonmonotonic sceptical consequence) Let (K,<) be a program and
L a ground literal. Then L is a nonmonotonic sceptical consequence of the program iff L
holds in every maximal admissible set of K.

Now let’s consider a program P in NAF:

p← q, not r.

Not r is interpreted as unless r, so this rule will be transformed to:

p← q

¬p← r

with the second rule higher than the first. This is like the above tweety example, so if both
q and r are true, then, since the second rule is higher, ¬p is true.

47

4.2 Proving LPwNF
After presenting the basic definitions we can describe the proof procedure of the LP

wNF framework. It consists of two kinds of derivations, called Type A and Type B, which
are then used to construct an admissible set for any given goal.

Type A derivations generate part of the needed theory that can derive an initial goal,
whilst type B derivations provide sentences to counterattack (defend) the attacks against
the theory. When a type B derivation identifies a new attack, a new type A derivation is
created to find a counterattack to it.

Type A derivations are SLDresolutions that collect rules. Type B derivations are rules
r with body k. These rules have been used before in a type A derivation. In order for a
type B derivation to begin, there needs to exist an r’ rule with a ¬ k body, which is higher
than rule r. This type B derivation then tries to prove this rule and, by doing that, attack
the type A derivation from which it started.

Subsequently, a type B derivation can create type A derivations, which will then try
to defend the rules from derivation B attacks. Those begin with a rule s with head l, that
has been previously used in a type B derivation to prove a rule s’ with head ¬ l. As in type
B derivations, the s rule must be higher than s’.

If the first type A derivation manages to prove the initial goal, while no type B deriva
tion has achieved to prove a goal, then the initial goal has been proven and it is a non
monotonic credulous consequence of the theory. The rules used by the type A derivation
constitute a maximal admissible set of the theory.

In order for the goal to be a nonmonotonic sceptical consequence, it should be both
a nonmonotonic credulous consequence, meaning that the above process should be com
pleted, and at the same time the calculation of its negation must fail.

We must note that rules which have been proven in previous stages of the process
don’t need to be proved again. For example, if in a type A derivation we must prove a rule
r that has been proven in a previous type A derivation, we can accept that it applies and it
doesn’t have to be proved again.

The following calculation is correct, it manages to return the acceptable subset of the
theory every time and the initial goal is a nonmonotonic sceptical consequence of the
theory.

4.2.1 Example of proof sequence
Let’s consider the following logic program:

r1 : fly(x)← bird(x).
r2 : ¬fly(x)← penguin(x).
r3 : penguin(x)← walkslikepeng(x).
r4 : ¬penguin(x)←¬flatfeet(x).
r5 : bird(x)← penguin(x).
r6 : bird(T).
r7 : walkslikepeng(T).

48

r8 : ¬flatfeet(T).
with priorities: r2 > r1, r4 > r3.
If we want to prove that fly(T) the proof is below in the next figure. The square is a type
B derivation, while the other two are type A derivations.

Figure 4.1: Proof for fly(T), long arrows symbolize attacks

According to the above proof process, we start with the type A derivation trying to
prove fly(T), which is r1. However, there is also r2, which attacks r1, as it has the
negation of r1’s head as a head and is also higher. Then, a type B derivation starts, trying
to prove that ¬fly(T). For this we use rules r2 and r3, but because r4 exists, a type A
derivation starts to defend from above attack. This type A derivation manages to prove
¬penguin(T), finds a defence to the type B derivation’s attack and thereby proves the
initial goal of fly(T).

According to the above, fly(T) is a nonmonotonic credulous consequence of the
initial theory and the admissible set is: {r1, r4, r6, r8}.

If we now consider a modifies example where r4 > r3 didn’t exist. Now, if we replace
r4 with r′4 : ¬penguin(x)←¬singslikepeng(x), then r3 and r′4 don’t need to be ordered.
If we also replace r8 : singslikepeng(T), the proof is still valid, since, when we generate
a type A derivation from a B one, the top rule of A does’t have to be higher than that of B,
only not lower. With this change, we can also prove that ¬fly(T) exists too.

49

Chapter 5

Gorgias

Gorgias is a general argumentation framework that uses the ideas of preference rea
soning and abduction while maintaining the benefits of both. It can form the basis for
reasoning about adaptable preference policies in the face of incomplete information from
dynamic and evolving environments. For instance, in house acquisition, one may prefer
certain features over others; in scheduling, meeting some deadlines may be more impor
tant than meeting others; in legal reasoning, laws are subject to higher principles, like lex
superior or lex posterior, which are themselves subject to ”higher order” principles. All
information used are from Gorgias’ tutorial [5].

5.1 Semantics
Gorgias is a Prolog framework. Its predicates can be divided in three categories:

1. abducibles

2. defeasible

3. backround

Gorgias uses prolog symbols followed by predicate symbols to denote rules, conflicts
and preference between rules. The usual syntax is:

rule(Label, Head, Body)

Head is a literal, Body is a list of literals and Label is a compound term composed of a
rule name and selected variables from the Head and Body. We then use prefer to describe
priority relations: prefer(Label1, Label2). In this predicate Label1 is preferred to Label2 in
the case both literals hold. This way, we can encode the relative strength of rules between
contradictory rules. An abducible literal L is specified with the predicate abducible/2, i.e.:

50

abducible(regular_customer(_), []).

Finally, the statement conflict(Label1,Label2). indicates that the two labels are conflicting.
In most cases it will be true iff Label1 and Label2 are contrary literals.

5.2 Use of Gorgias
Gorgias uses SWIProlog. At the beginning of the file we always put the following

two lines of code:

:- compile('../lib/gorgias.pl').
:- compile('../ext/lpwnf.pl').

The first line loads the system, the second one is a collection of rules that define a quali
fication relation between arguments, which is used by the attacking relation to encode the
relative strength of the arguments.

5.3 Knowledge Depiction with Gorgias
We use prolog rules and Gorgias’ predicates as mentioned before for an example in

which a bird can fly but a penguin cannot. This would be depicted as:

rule(r1(X),fly(X),[bird(X)]).
rule(r2(X), neg(fly(X)),[penguin(X)]).

The above two rules denote that if something flies, it’s a bird. Then we say that Tweety is
both a penguin and a bird:

rule(f1, bird(tweety), []).
rule(f2, penguin(tweety), []).

Then we need to solve the conflict:

rule(pr1(X), prefer(r2(X), r1(X)), []).

The above statement means that if X is both a bird and a penguin it doesn’t fly, because r2
is preferred to r1.

51

5.4 Answering Queries
In general, in order to construct a solution for a specific query, we begin from an

initial argument and we add to it a suitable defence. We will concentrate on the admissible
arguments. An argument is admissible if it can stand to any possible attack. Obviously,
an argument that attacks itself is not admissible, as you cannot attack an empty set.

The process of computing whether an argument is admissible can be done in two
phases. In the first phase, a goal is reduced to a closed set that proves it. Then, the initial
argument is expanded with suitable defences from any attack in that set. This expanse
then may result in new conflicts and therefore the systems repeats this process until there
are no more conflicts (meaning that the argument is admissible) or no more defences (and
therefore we couldn’t find an admissible set of arguments).

Queries are submitted in the following format:

prove(Goals, Delta).

where Goals is a list of literals and Delta is an admissible argument for the given query.
Subsequently, in the above example, if we give Gorgias the following query:

prove([neg(fly(tweety))],Delta).

we will get the result:

Delta = [f2, r2(tweety)].

which proves that, if Tweety can’t fly, then it is a penguin. However, the following query:

prove([fly(tweety)],Delta)

has no solution, because r2 attacks r1 and r2 is preferred. However if we comment out the
preference rule, Gorgias will generate two answers, one for r1 and one for r2.

5.5 Dynamic Preferences

5.5.1 Inheritance with exceptions
In the Tweety example, the preference rule was static (The Body of the rule was an

empty List). Now we will get into dynamic preferences, the ones that have exceptions.
Now, let’s say that we have an inheritance hierarchy based on the figure bellow:

52

Figure 5.1: Inheritance Hierarchy

The arrows represent the relation between the classes and subclasses and the dotted
lines the properties of objects that belong to said classes. The dotted arrow denotes the
possible subclass relation between a and d. In order to describe this hierarchy in Gorgias
we use the following rules:
rule(f1, subclass(a,b), []).
rule(f2, subclass(c,b), []).
rule(f3, subclass(d,c), []).
rule(f4, is_in(x1,a), []).
rule(f5, is_in(x2,c), []).
rule(f6, is_in(x3,d), []).

rule(d1(X), has(X,p), [is_in(X,b)]).
rule(d2(X), neg(has(X,p)), [is_in(X, c)]).

rule(pr1, prefer(d2(X), d1(X)), []).

According to the above rules, x1 belongs to class a, x2 to c and x3 to d. has(X,P) denotes
that X has property P. The following two rules represent the general properties of relations
subclass and is_in and the last two, the closed world assumptions for simple hierarchies:
rule(r1(C0,C2), subclass(C0,C2), [C0 \= C1, C1 \= C2, C0 \= C2, subclass(C0,C1),

subclass(C1,C2)]).
rule(r2(X,C1), is_in(X,C1), [subclass(C0,C1), is_in(X,C0)]).

53

rule(d3(X,C), neg(is_in(X, C)), []).
rule(d4(A,B), neg(subclass(A,B)), []).

5.5.2 HigherOrder Preferences
Wewill now extend the previous programwith the rule which states that d is a subclass

of a:
rule(f7, subclass(d,a), []).

and then that d1 is preferred to r2:
rule(d4, prefer(d1(X), d2(X)), [is_in(X,a)]).

Now we can prove both d1(X) < d2(X) and d2(X) < d1(X) for x3 and there is a conflict,
because we can prove that has(x3,p) and neg(has(x3,p)) are true. In order to resolve the
above conflict, we need to rewrite d3 and d4 rules as below:
rule(d3_1(X), prefer(d2(X), d1(X)), [is_in(X,c), neg(is_in(X,a))]).
rule(d4_1(X), prefer(d1(X), d2(X)), [is_in(X,a), neg(is_in(X,c))]).

However, this way of writing rules, increases the possibility of a wrong answer and de
grades the expressiveness of the language, because it increases the number of literals in
the body of priority rules. A better way to write the above is with higher order priorities
as below:
rule(d5(X), prefer(d4(X), d3(X)), [is_in(X,a)]).

According to this, d has p even though d is also a subclass of c.

The above ability can prove useful in the next legal reasoning scenario:

There are two legal principles that apply to one case concerning a security interest of a
certain ship. Those principles are conflicting. The one law is newer than the other but
the second is a federal law. ”Lex Posterior” gives precedence to the newer law but ”Lex
Superior” to the one supported by the higher authority, which is the federal law.
The above can be solved in Gorgias by the following:
rule(lex_posterior(X,Y), prefer(X,Y), [newer(X,Y)]).
rule(lex_superior(X,Y), prefer(Y,X), [state_law(X),federal_law(Y)]).
rule(prpr, prefer(lex_superior(X,Y),lex_posterior(X,Y)), []).

54

We use again the higher order priority, in this case lex posterior is inferior to lex superior,
so the federal law applies.

5.5.3 Abduction
Up until this point, we have seen that Gorgias can return a result when there are con

flicting arguments with different priorities. Sometimes, an argument depends on whether
or not we have specific information about the case we are studying. However, there are
cases in which some information may be missing and therefore we need to make assump
tions in order to build an admissible argument. This information may also be dynamic. To
solve this issue, we use abductive reasoning.

In abduction, we separate a set of predicates, the abducible predicates, which express
the incomplete information. Then, when we send a query to Gorgias, the system extends
the theory with ground abducibles in order to satisfy the given goal.

An example where abducibles can be used is a knowledge base that describes when a
specific user has permission to write in a given file of a UNIX system.
rule(owner_changes_permissions(U,F),
can_change_permissions(U,F),
[is_file_owner(U,F)]).
rule(root_changes_permissions(U,F),
can_change_permissions(U,F),
[is_root(U)]).
rule(change_permissions(U,F),
has_write_permission(U,F),
[can_change_permissions(U,F)]).
rule(write_file(U,F),
can_write_file(U,F),
[has_write_permission(U,F)]).

Then, we need to define the abducibles:
abducible(is_root(_),[]).
abducible(is_file_owner(_,_),[]).
abducible(has_write_permission(_,_),[]).

When we give the following query to Gorgias we will get the result:
?-prove([can_write_file(user,file)],Delta).

Delta = [ass(is_file_owner(user, file)),owner_changes_permissions(user, file),
change_permissions(user, file),write_file(user, file)] ;

Delta = [ass(is_root(user)),root_changes_permissions(user, file),
change_permissions(user, file),write_file(user, file)] ;

55

Delta = [ass(has_write_permission(user, file)),write_file(user, file)] ;
false.

In this process, Gorgias extends the predicates with the abducibles and then it con
structs the admissible arguments which show what a user must do to gain access to the
file.

56

Chapter 6

Implementation

6.1 Purpose
One of the biggest problems that hospitals have during the pandemic is a lack of suffi

cient ICU beds. We wanted to implement an explainable AI algorithm that takes COVID
19 patient data and predicts whether they will be admitted to the ICU. Such an algorithm
would show medical personnel the most important symptoms to look for, which patients
that should be under surveillance for severe complications. This process should also hope
fully give enough time for the stuff to manage ICU beds or if they no longer have any, to
contact other hospitals that may still do.

6.2 Dataset
The data set was chosen from the webpage Kaggle (https://www.kaggle.com). It

contains anonymized data from Hospital SírioLibanês in São Paulo, Brazil [1]. Brazil
was one of the most affected countries by COVID19. The data was scaled by column
with Min Max Scaler to fit between 1 and 1. They consist of the patients demographic
information (3 data), their previous diseases (9 data), blood results (36 data) and vital signs
(6 data). They all add to 54 features, which are then expanded to mean, median, maximum,
minimum, difference and relative difference. Difference is the one between minimum and
maximum : diff = max − min, while relative difference is difference divided by the
median :relative diff = diff/median.

For every patient, there can be more than one row of data, as they are grouped chrono
logically in time from admission windows: 02 hours, 24, 46, 612, 12 and above. Not
all patients reach the 12 hour mark, as many were admitted to the ICU before. The last
column is 0 for nonadmission to the ICU during that specific window and 1 for admission.

57

https://www.kaggle.com

Figure 6.1: Data in time windows

There are a lot of missing data in the data set, as some tests were done more frequently
than others. The ones that are missing are similar to the ones from neighboring windows.
Overall, there are 231 columns in the data set, which are used as features, and 1925 rows,
which however don’t imply that there are as many patients, because we have multiple data
for almost every one of them. The number of patients in this data set is 385.

In order to train our algorithms with this data set, first we had to fill the blank rows
with the previous data, then we need to get rid of the rows in which the patient is already
in the ICU, as those should not be part of the training process.

After preparing the data set, we use the Python function GroupShuffleSplit, in
order to separate it into training and test data, (80% and 20% of the original data set re
spectively), while being grouped by the Patient Identifier, as one patient cannot be both
on the training and the test data.

GroupShuffleSplit function

from sklearn.model_selection import GroupShuffleSplit
def train_test_with_id(test_size,dt_df):
train_inds, test_inds = next(GroupShuffleSplit(test_size=test_size,
n_splits=2, random_state = 7).split(dt_df, groups=dt_df['
PATIENT_VISIT_IDENTIFIER']))

train = dt_df.iloc[train_inds]
test = dt_df.iloc[test_inds]
return train, test

58

The final step is to drop the Patient Identifier column, as the algorithm should not make
decisions based on finding individuals, and the ICU column, because it is the output.

After the above process is finished, we can begin with the training.

6.3 Training
For the training we first tried to use only the 02 hours window to see if we could

produce a good result that way.

6.3.1 Fewer Data
We used a variety of ML algorithms:

1. Logistic Regression

from sklearn.linear_model import LogisticRegression

logisticRegr = LogisticRegression(random_state=0)
logisticRegr.fit(X_train,Y_train)

2. SVM

from sklearn import svm

clf = svm.SVC(kernel='linear')
clf.fit(X_train, Y_train)

In this case the linear kernel worked the best.

3. MLP

from sklearn.neural_network import MLPClassifier

clf = MLPClassifier(solver='adam', alpha=1e-5,hidden_layer_sizes=(29,2),
random_state=1,max_iter=400)

clf.fit(X_train, Y_train)

For the MLP classifier we used the adam optimization algorithm, which is an ex
tension of the stochastic gradient descent algorithm. We also used 2 hidden layers,
the first with 29 and the other with 2 neurons respectively. Finally, we set the max
imum iterations to 400.

59

4. Random Forest

from sklearn.ensemble import RandomForestClassifier

clf = RandomForestClassifier(n_estimators=900, max_depth=None,
min_samples_split=2, random_state=0)

clf.fit(X_train,np.array(Y_train).reshape(Y_train.shape[0],1))

In the random forest classifier we set maximum iterations to 900 and we allowed
the maximum depth of each individual decision tree to be as big as it can.

5. Adaboost

from sklearn.ensemble import AdaBoostClassifier

classifier = AdaBoostClassifier(None,130,0.1,'SAMME.R',10)
classifier.fit(X_train,np.array(Y_train).reshape(Y_train.shape[0],1))

For the simple Adaboost classifier we use decision trees as the base estimator, the
number of estimators is set to 130 and the algorithm used is SAMME.R. SAMME.R
works similar to SAMME but it converges faster and achieves a lower test error. It
also gives all models an equal weight of one and outputs the probability of an item
belonging to a class.

6. Adaboost with SVM as weak learner

clf = svm.SVC(kernel='linear')
classifier = AdaBoostClassifier(clf,200,0.1,'SAMME',10)
classifier.fit(X_train,np.array(Y_train).reshape(Y_train.shape[0],1))

Here we used Adaboost with SVM as a weak learner. The SVM algorithm had the
same parameters as the one used before, but Adaboost here used SAMME and not
SAMME.R, because in order to use SAMME.R, the weak learner must support the
calculation of class probabilities, which isn’t possible with SVM. The number of
estimators was set to 200.

7. Adaboost with Logistic Regression as a weak learner

clf = LogisticRegression(random_state=0)
classifier = AdaBoostClassifier(clf,400,0.1,'SAMME.R',10)
classifier.fit(X_train,np.array(Y_train).reshape(Y_train.shape[0],1))

60

In this instance, we used Adaboost with logistic regression as a weak learner. Lo
gistic regression had the default parameters and Adaboost used the SAMME.R al
gorithm and 400 estimators.

8. Adaboost with Random Forest as a weak learner

rf = RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None
,

criterion='gini', max_depth=10, max_features='auto',
max_leaf_nodes=None, max_samples=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=2, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=100,
n_jobs=None, oob_score=False, random_state=None,
verbose=0, warm_start=False)

classifier = AdaBoostClassifier(rf,50,0.01,'SAMME.R',10)

Here, Adaboost uses random forest as a weak learner. Random forest uses the gini
criterion to measure the quality of the split, which is the default, a maximum depth
of 10 for the decision trees, a minimum of 2 samples required to be at a leaf node
and 100 estimators. Adaboost uses 50 estimators, which is the default, a learning
rate of 0.01, so that each classifier contributes less to the result, and the SAMME.R
algorithm.

9. ExtraTrees Classifier

from sklearn.ensemble import ExtraTreesClassifier

classifier = ExtraTreesClassifier()
classifier.fit(X_train,Y_train.values.ravel())

After training, we tested all those algorithms with the test set, with the results in Figure
6.2.

From those results, we notice that the highest accuracy belongs to the MLP algorithm,
80.5%, even though it was significantly slower than all the other ones. The problem was
complicated enough for the complexity of a neural network to be an asset. The next was
Extra Trees with a maximum accuracy of 79.2%, although it varied, as, because of the
random selection, the result was different every time the algorithm ran. Adaboost didn’t
perform as well and, with this data set, the best weak learner was Logistic Regression,
which gave an accuracy of 77.1%. The worst result was that of logistic regression with an
accuracy of 68.8%, which was to be expected, as the problem is too complex and has too
many features and too little data for the logistic regression algorithm. Adaboost with ran
dom forest and Adaboost with SVM also had a relatively low accuracy (70% and 72.7%
respectively). Finally, the simple SVM, Adaboost and Random Forest algorithms were

61

Figure 6.2: Training results with data from the first window

also not as successful as the first three algorithms.

In order to achieve higher accuracy, we then used data from all five time windows.

6.3.2 All Data
For this training, we used all windows in which the patients were not yet admitted to

the ICU.
We used again the same ML algorithms as previously, but some of them with different
parameters:

1. MLP

from sklearn.neural_network import MLPClassifier

clf = MLPClassifier(solver='adam', alpha=1e-5,hidden_layer_sizes=(31,2),
random_state=1,max_iter=320)

clf.fit(X_train, Y_train)

62

In this instance, we used the same SVM algorithm as before but with 31 neurons
on the first layer and 2 on the second as previously.

2. Adaboost with Random Forest as weak learner
rf = RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None

,
criterion='gini', max_depth=None, max_features='auto'

,
max_leaf_nodes=None, max_samples=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=2, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=200,
n_jobs=None, oob_score=False, random_state=None,
verbose=0, warm_start=False)

classifier = AdaBoostClassifier(rf,50,0.01,'SAMME.R',10)

This algorithm is the same as before but with 200 estimators instead of 100. Ad
aboost uses again 50 estimators and a 0.01 learning rate.

3. Random Forest
clf = RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=

None,
criterion='gini', max_depth=None, max_features='auto'

,
max_leaf_nodes=None, max_samples=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=2, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=250,
n_jobs=None, oob_score=False, random_state=None,
verbose=0, warm_start=False)

clf.fit(X_train,np.array(Y_train).reshape(Y_train.shape[0],1))

This random forest algorithm uses again the default gini criterion, a minimum of 2
samples for a leaf node, a minimum of 2 samples for a split and 250 estimators.

4. Adaboost
classifier = AdaBoostClassifier(None,140,1,'SAMME.R',10)
classifier.fit(X_train,np.array(Y_train).reshape(Y_train.shape[0],1))

In this Adaboost algorithm, we have the SAMME.R algorithm, 140 estimators and
the default learning rate of 1.

63

5. SVM
from sklearn import svm

clf = svm.SVC(kernel='linear',gamma='auto',class_weight='balanced',max_iter
=-1)

clf.fit(X_train, Y_train)

For the SVM algorithm, we used again the linear kernel, the class weight is bal
anced, which means that the weights are automatically adjusted inversely propor
tional to the class frequencies of the input data, and the maximum iterations are
disabled, so that the algorithm finishes only when it has converged.

The results of the next training cycle were the following:

Figure 6.3: Training results with data from all windows

After this training process, the algorithm that exhibited the best accuracy was Ad
aboost with Random Forest as a weak learner (83.3%) and the second best was the simple
Random Forest (81.3%). From that, we can conclude that the Adaboost and Random For
est algorithms achieved a better result when using more data. All other algorithms had
very similar accuracy around 7880% except from Adaboost with SVM as a weak learner,
which had the worst predictions, with an accuracy of 74%.

64

Finally, we have the comparison for each algorithm between the 02 window data and
all windows data from the two training cycles:

Figure 6.4: Final algorithm and dataset comparison

Wenotice an increased accuracy in almost all algorithms, exceptMLP and Extra Trees,
when we increase the training data set size. MLP had a decrease in correct classifications,
although it was not very significant, and it may have been due to the very big number
of features, as the algorithm failed to converge. Extra Trees also had a small decrease,
but due to the algorithm’s random data selection, the difference is not relevant. For all
other algorithms, and especially Adaboost with Random Forest, logistic regression and
Random Forest, the data set with just the first time window did not contain enough data
to train them. It is safe to assume that, if the data set contained data from more patients,
the result for almost all algorithms would have been significantly better.

From the above graph, we conclude that the best ML algorithm in both cycles was
Adaboost with Random Forest as a weak learner using the entirety of the data set, with
an accuracy of 83.3% on the test set and the second best was Random Forest with 81.3%,
and therefore we will try to use these two models to create the explainable AI algorithm
for this thesis.

65

6.4 Intrees
Intrees is an R framework that prunes, measures and selects rules from a tree ensemble,

such as random forests and boosted trees, and calculates the variable interactions [7].

6.4.1 The framework
Extract Rules

The InTrees framework expresses rules as: {C ⇒ T}, where C is the condition and
T is the outcome. It starts from the root of the tree and works its way down until it reaches
the leaves. However, the most informative splits are usually done at the top of the tree, so
the algorithmmay stop when a maximum depth is reached. Then it can assign the outcome
based on the training data. This is more computationally efficient than working all the way
down to every tree.

Algorithm 2 ruleExtract psedocode
1: procedure ruleExtract(ruleSet,node,C)
2: if leafnode = True then
3: currentRule← {C ⇒ prednode}
4: ruleSet← {ruleSet, currentRule}
5: end if
6: for childi = every child of node do
7: C ← C ∧ Cnode

8: ruleSet← ruleExtract(ruleSet, childi, C)
9: end for
10: end procedure

Measure Rules

Here, the InTrees algorithm measures the frequency of a rule, which is the proportion
of the data that satisfy each one, the error (the number of incorrectly classified instances
by the rule divided by the instances that satisfy the condition) and the complexity, which
is the length of the valuevariable pairs condition.

Prune Rules

Pruning strives to reduce the variablevalue pairs of every condition, by getting rid of
the ones deemed irrelevant.

Let’s assume thatE is the Error of a rule andE0 the Error of the original rule {C ⇒ T}
andE−i the E of the rule if we take out the ith pair. We can then measure the effectiveness

66

Algorithm 3 condExtract psedocode
1: procedure condExtract(conSet, node, C, maxDepth, currentDepth) currentDepth =

currentDepth + 1
2: if leafNode = True or currentDepth = maxDepth then
3: condSet← {condSet, currentCond}
4: return condSet
5: end if
6: for childi = every child of node do
7: C ← C ∧ Cnode

8: condSet← condExtract(condSet, childi, C,maxDepth, currentDepth)
9: end for
10: end procedure

of the reduction by using the decay parameter:

decayi =
E−i − E0

max(E0, s)
(6.1)

where s is a very small number, so that we don’t divide with 0 if E0 = 0. Another way
we can define decayi is:

decayi = E−i − E0 (6.2)

If decay is smaller than a given number which is the threshold, the ith pair can be left out.

Select Rules

The select rules function tries to find the top ruleswhich are relevant and nonredundant.
One way to achieve that is by applying feature selection to the conditions by creating a
new data set (I):
Let’s assume {c1, c2, ...cJ} the conditions of a rule set, then Iij denotes whether a condi
tion cj is satisfied by the ith instance:

Iij =

{
1 cjissatisfiedbythei− thinstance

0 otherwise
(6.3)

The new data set is : {[Ii1, Ii2, ..., Iij , ti], i = 1, ..., j} with ti the target value of the ith
instance. Then we can apply feature selection on this data set to find the relevant and
nonredundant rules.

Another way to achieve rule selection is by taking into account the rule complexity
(length of the rule). We can use Regularized Random Forests (RRF) and their information
gain:

GainR(Xi) =

{
λi ×Gain(Xi) Xi /∈ F

Gain(Xi) Xi ∈ F
(6.4)

67

where F is a set of indices used to split previous nodes, it starts as empty at the root,
Gain represents the information gain for a specific metric and λi ∈ (0, 1] is the penalty
coefficient, the number with which we penalize a metric if a variable was not used in
previous nodes. We then add the ith variable to F if it provides new information to the
ones that already exist. All i are the same number in RRF, the smaller it is, the bigger the
penalty. It also depends on the importance score that is calculated by the Random Forest
algorithm, so with higher importance we get a higher λi. Here, the λ variable is calculated
without the importance score:

λi = λ0 ∗ (1− γ ∗ li
l∗
) (6.5)

with li the length of the condition and l∗ the maximum length of all conditions in the set.
γ controls the weight and λ0 is the base coefficient. Here is the λi equation if we include
the importance score:

λi = λ0 ∗ (1− γ ∗ li
l∗

+ β ∗ impi) (6.6)

where impi the importance of the specific condition.

6.4.2 Use of InTrees
As stated before, the InTrees framework is written in R, so we had to take the trained

model from Python and turn it into a format that R can process.
In R, array indentation starts from 1, whereas in Python with 0. Also, array format in

R looks like Array[, 5] as opposed to python’s Array[4].
On this specific model, the random forests were 2 and each one had 400 decision trees.

Because of the SAMME.R algorithm, both random forests have the same weight of 1. The
following Python command gives us the first decision tree of the random forest:

Decision Tree

decision_tree = rand_forest.estimators_[0]

and the next one returns the text representation of said decision tree followed by its format:

68

Text Representation
text_representation = tree.export_text(decision_tree,max_depth=100)
print(text_representation)

|--- feature_201 > -0.33
| |--- feature_205 <= 0.08
| | |--- feature_139 <= 0.38
| | | |--- feature_147 <= -0.46
| | | | |--- feature_114 <= -0.76
| | | | | |--- class: 1.0
| | | | |--- feature_114 > -0.76
| | | | | |--- feature_129 <= -0.63
| | | | | | |--- feature_85 <= -0.95
| | | | | | | |--- class: 0.0
| | | | | | |--- feature_85 > -0.95
| | | | | | | |--- class: 0.0
| | | | | |--- feature_129 > -0.63
| | | | | | |--- class: 1.0
| | | |--- feature_147 > -0.46
| | | | |--- feature_122 <= -0.65
| | | | | |--- class: 1.0
| | | | |--- feature_122 > -0.65
| | | | | |--- class: 0.0
| | |--- feature_139 > 0.38
| | | |--- feature_162 <= 0.10
| | | | |--- class: 1.0
| | | |--- feature_162 > 0.10
| | | | |--- class: 0.0
| |--- feature_205 > 0.08
| | |--- class: 1.0

The number of ”|” on the left of every node represents the depth of that node in the tree.
The nodes above that which have less ”|”, are its parents and the first node is the root.
We now need to take it and turn it into a representation such as the one bellow, which is
the one that R uses to represent decision trees:

Decision Tree in R
X[,202]>0.33 & X[,206]<=0.08 & X[,140]<=0.38 & X[,148]<=0.46 & X[,115]<=0.76
X[,202]>0.33 & X[,206]<=0.08 & X[,140]<=0.38 & X[,148]<=0.46 & X[,115]>0.76

& X[,130]<=0.63 & X[,86]<=0.95
X[,202]>0.33 & X[,206]<=0.08 & X[,140]<=0.38 & X[,148]<=0.46 & X[,115]>0.76

& X[,130]<=0.63 & X[,86]>0.95
X[,202]>0.33 & X[,206]<=0.08 & X[,140]<=0.38 & X[,148]<=0.46 & X[,115]>0.76

& X[,130]>0.63
X[,202]>0.33 & X[,206]<=0.08 & X[,140]<=0.38 & X[,148]>0.46 & X[,123]<=0.65
X[,202]>0.33 & X[,206]<=0.08 & X[,140]<=0.38 & X[,148]>0.46 & X[,123]>0.65
X[,202]>0.33 & X[,206]<=0.08 & X[,140]>0.38 & X[,163]<=0.10
X[,202]>0.33 & X[,206]<=0.08 & X[,140]>0.38 & X[,163]>0.10

69

X[,202]>0.33 & X[,206]>0.08

This is every branch on the right side of the decision tree shown above. In order to do
that, we create a string of all the parents of its leaf using the required format (instead of
feature_number we put X[, number + 1]) and put a ”&” between them.

Format Conversion
node = ("X[,{}]{}{}".format(feature_int, tempstr[1],tempstr[2]))
tree = tree + node + " & "

After this step, the R language can use the above as a one random forest and process
it accordingly.

We use the same train and test sets as before and the list created above, as the extracted
rules of the random forest algorithm. We can use it as metrics with the following command

Rule Metric
ruleMetric <- getRuleMetric(mylist,X_train,Y_train)

then prune those metrics:

Prune Rules
ruleMetric <- pruneRule(ruleMetric,X_train,Y_train)

so that we are left with much fewer paths. Now, we can use the select rules function to
find the top relevant and nonredundant rules:

Select Rule Metric
ruleMetric <- selectRuleRRF(ruleMetric,X_train,Y_train)

Finally, we need to apply those rules on the test set

Apply learner
learner <- buildLearner(ruleMetric,X_train,Y_train)
pred <- applyLearner(learner,X_test)

70

and calculate accuracy, precision, recall and F1score.

Accuracy

precision <- length(which((Y_test=="ICU")&(pred=="ICU")))/length(which(pred
=="ICU"))

recall <- length(which((Y_test=="ICU")&(pred=="ICU")))/length(which(Y_test==
"ICU"))

f1score <- 2*precision*recall/(precision+recall)
accuracy <- length(which(Y_test==pred))/length(Y_test)

6.4.3 Results
Adaboost with Random Forest as weak learner

We first trained the adaboost with random forests algorithm. The selectRuleMetric
command returned the 7 most relevant rules, which were:

metric len freq err
1 2 0.0116906474820144 0
2 1 0.0386690647482014 0.0930232558139535
3 2 0.295863309352518 0.142857142857143
4 1 0.0170863309352518 0.0526315789473685
5 3 0.448741007194245 0.232464929859719
6 2 0.0638489208633094 0.183098591549296
7 1 0.12410071942446 0.463768115942029

metric condition pred
1 X[,159]>0.91 & X[,50]<=0.32 Not ICU
2 X[,154]<=0.92 ICU
3 X[,91]>0.36 & X[,194]>0.04 Not ICU
4 X[,195]>0.14 ICU

5 X[,139]<=0.38 & X[,141]>0.35 & X[,159]>0.25 Not ICU
6 X[,89]<=0.36 & X[,49]<=0.34 ICU
7 X[,1]==X[,1] ICU

”len” is the length of the path, ”freq” represents howmany input instances are satisfied
by the condition , ”err” is the number of incorrectly classified instances and ”pred” the
prediction of whether the patient will be admitted to the ICU or not.

We can now look at the initial data set to see which symptoms correspond to the given
conditions:

71

1st
If Sat02_venous_mean > 0.91 and calcium_min <= 0.32 then "Not ICU"

If the saturation of oxygen in the veins is enough and the minimum of calcium concen
tration is not too high, then the patient is probably not going to get admitted. The oxygen
saturation was a metric that was expected to show up in the results, as COVID19 is a
disease that affects the lungs and it has also been shown in various studies that low oxy
gen saturation in the veins can lead to hospitalization [11]. The minimum of calcium is
probably due to the small sample of the data set, as it doesn’t appear to have medical
meaning.

2nd
If Sat02_arterial_mean <=0.92 then "ICU"

If the oxygen saturation in the arteries is low, then the patient is not getting enough oxygen
and will probably be admitted to the ICU.

3rd
If lactate_max > 0.36 and bloodpressure_sistolic_mean > 0.04 then "Not ICU"

If the lactate maximum is above average and mean of the systolic blood pressure is also
at least above average, then the patient will not be admitted.

4th
If heartrate_mean > 0.14 then "ICU"

If the mean of the heart rate is much higher than average, then the patient will probably
be admitted to the ICU. This was also to be expected, as COVID19 patients have been
reported to have a much higher heart rate than usual and also patients with preexisting
heart conditions have a higher chance of becoming critically ill.

5th
If ph_venus_mean <= 0.38 and ph_venus_max > 0.35 and sat02_venous_mean >

0.25 then "Not ICU"

72

If the mean of the pH of the veins is not too high, the max high and the mean of oxygen
saturation is higher than average, then the patient will no be admitted. Lower pH levels
have been associated with COVID19 and some have linked lower pH with lower survival
rates [9].

6th

If lactate_mean <= 0.36 and calcium_mean <= 0.34 then "ICU"

If the mean of the lactate is relatively low and the mean of calcium is also a bit low, then
the patient might be admitted to the ICU. Low serum calcium has been linked with severe
disease in various studies [14].

7th

If none of the above are true then "ICU"

In the above metrics there was no mention of age, sex or preexisting conditions of patients.
All the metrics were about blood results and vitals which were also tho ones that changed
the most from patient to patient or even for the same patient in different time windows.
Some results, such as lactate levels were the opposite of what would be expected, as higher
lactate levels have been linked to severe symptoms while in the model we saw that lower
lactate levels meant increased chance of ICU admissions. It is important to note that we
are not a medical professionals and therefore not qualified to make assumptions on med
ical data, however most deviations are due to the small sample size of the data set. 385
patients, all from the same hospital during the same period of time, are not enough to draw
conclusions for the symptoms and the severity of a disease.

The accuracy, precision, recall and f1 score of this model were:

accuracy = 78.7%
precision = 75%
recall = 61.2%

f1 score = 67.4%

For the selection of the model, more emphasis was put on finding the one with the higher
possible recall, because, for the selection of possible ICU patients, it’s more important not
to miss a potential critically ill patient, than to not have many false positives or have a
good overall accuracy.

73

Random Forest

Then we tried the same but using the simple random forest algorithm. The selectRule
Metric command returned the following 10 rules:

metric len freq err
1 2 0.0116906474820144 0
2 2 0.0215827338129496 0.0416666666666666
3 2 0.0539568345323741 0.0666666666666667
4 2 0.138489208633094 0.123376623376623
5 2 0.0251798561151079 0.178571428571429
6 1 0.0260791366906475 0.172413793103448
7 2 0.58273381294964” 0.195987654320988
8 1 0.0188848920863309 0.19047619047619
9 2 0.0305755395683453 0.352941176470588
10 1 0.0908273381294964 0.465346534653465

metric condition pred
1 X[,160]>0.91 & X[,139]>0.41 Not ICU
2 X[,166]<=0.05 & X[,207]>0.31 ICU
3 X[,136]>0.26 & X[,140]<=0.53 ICU
4 X[,200]>0.06 & X[,165]>0.05 Not ICU

5 X[,89]<=0.16 & X[,11]>0.50 ICU
6 X[,141]<=0.32 ICU
7 X[,159]>0.34 & X[,160]<=0.47 Not ICU
8 X[,164]>0.08 Not ICU
9 X[,89]<=0.36 & X[,51]<=0.35 ICU
10 X[,1]==X[,1] ICU

Now, let’s find out which symptoms are used on the rules above.

1st

If Sat02_venous_mean > 0.91 and ph_venous_mean > 0.41 then "Not ICU"

If the oxygen saturation in the veins is high and the pH is also high, then the patient will not
be admitted. Just like the first rule of the adaboost algorithm, the most important feature
is the oxygen saturation in the blood and here specifically in the veins. If there is enough
oxygen then the patient’s lungs work well and they do not have severe symptoms. Also,
a low pH in the veins (acidic), as we have mentioned before, has been linked with severe
illness, so here the high pH value is a good sign.

74

2nd
If sodium_max <= 0.05 and heart_rate_min > 0.31 then "ICU"

If the sodium maximum is low and the heart rate high, then the patient will need to go to
the ICU. Low sodium has been linked to severe disease in COVID19 patients [10]. An
elevated heart rate is a common symptom of fever and infection.

3rd
If ph_arterial_max > 0.26 and ph_venous_mean <= 0.53 then "ICU"

If the pH of the blood in the arteries is high and in the veins not as high, the blood gets
more acidic when in the veins, then the patient will probably be admitted to the ICU. As
we stated before, this has been observed in studies.

4th
If bloodpressure_sistolic_median > 0.06 and sodium_min > 0.05 then "Not ICU"

If the blood pressure is above average and the minimum of the sodium measurements is
also above average, the patient is not in danger. As stated before, low blood pressure and
low sodium are usual predictors of serious symptoms.

5th
If lactate_mean <= 0.16 and immunocompromised then "ICU"

If lactate is low and the patient is immunocompromised (the patient’s immune defences
are low and can’t protect them from any illness or infection) then they will probably get
severe symptoms. Lactate here is again not a good indicator for other data sets, but im
munocompromised patients are proven to be high risk in becoming very sick, because their
immune systems can’t fight the virus.

6th
If ph_venous_max <= 0.32 then "ICU"

If the pH of the blood in the veins is low (the blood is acidic), the patient risks going to
the ICU. Again, as we mentioned before, acidic blood is an indicator of severe disease.

75

7th
If sat02_venous_mean > 0.34 and sat02_venous_min <= 0.47 then "Not ICU"

Low oxygen levels in the blood indicate that the patient already has serious symptoms,
therefore high values for oxygen saturation in the veins is again a good sign.

8th
If sodium_mean > 0.08 then "Not ICU"

If sodium on the bloodstream is above average, then the patient is not in any danger.

9th
If lactate_mean <= 0.36 and calcium_max <= 0.35 then "ICU"

If the patient has low lactate and low calcium then they will probably be admitted. As we
stated before, low calcium is an indicator for severe disease [14] but low lactate is not,
so this is probably an error because of the small size of the data set, where some patients
happened to have low lactate while also becoming severely ill.

10th
If none of the above then "Not ICU"

In the above metrics, we used very similar features as in the adaboost with random
forest as a weak learner algorithm. Again, all metrics were about blood results and vi
tals and we also found a correlation between low lactate levels and ICU admission, which
indicates that this is indeed an issue of the data set. The rest of the rules were mostly
about oxygen saturation, as in the previous ones, pH, heart rate and calcium, all of which
were also present in the previous algorithm’s rules. New additions were sodium and im
munocompromised patients, which were all in accordance with studies that agree these
symptoms are important in predicting if a patient will get severely ill. The following are
the accuracy, precision, recall and f1 score of the above rules for the test set.

accuracy = 76.3%
precision = 68%
recall = 64.1%
f1 score = 66%

76

Comparison

The two sets of rules were in a lot of cases similar, the algorithms seemed to agree
on which the important symptoms are. The rules from the adaboost algorithm were a bit
better on the accuracy score (78.8%) than the random forest (76.3%) with a better f1 score
as well. Only recall was a bit better on the random forest algorithm’s rules. It is also
interesting to note that the adaboost algorithm in Python also had a better accuracy than
random forest by about 2%.

Figure 6.5: Comparison of Adaboost and Random Forest algorithms before and after intrees

Reducing the rules to only 7 and 10 respectively in turn reduces the accuracy a bit
on both algorithms. However, when considering how many rules are discarded, a 5%
reduction is not that impactful.

From the two intrees algorithms, we will continue the explainable AI process with the
adaboost one, as it has both higher accuracy and a higher f1 score.

6.5 Gorgias
For the next step, we used Gorgias to depict the 7 rules from the InTrees framework

to an argumentation framework.

77

Since we have only two options for the result, admission to the ICU and non admission
to the icu, for every patient we have the options below:

icu(Patient), noticu(Patient)

The process of constructing the Prolog code is the following:

1 Define all arguments from the 7 rules

:- dynamic �satvenusmean/2, calciummean/2, calciummin/2, phvenousmean
/2, phvenousmax/2, satarterialmean/2, heartratemean/2,
bloodpressuresismean/2, lactatemean/2, lactatemax/2.

2 Define the complementary nature of the two result options

complement(icu(Patient),noticu(Patient)).
complement(noticu(Patient),icu(Patient)).

As stated before, the complement function states that only one of the two results
can be returned as true every time.

3 Define all rules based on the 7 rules we got from InTrees

rule(r1(Patient),noticu(Patient),[]):-�satvenusmean(Patient,Satvenmean),
calciummin(Patient,Calmin), Satvenmean > 0.91, Calmin =< 0.32 .

rule(r2(Patient),icu(Patient),[]):-satarterialmean(Patient,Satartmean),
Satartmean =< 0.92.

rule(r7(Patient),icu(Patient),[]):- �satvenusmean(Patient,Satvenmean),
Satvenmean < 10.

On the right part of the command we put the arguments that have to be satisfied, on
the left, the head is the result we get if all arguments on the right are true, the body
is blank and the name of the rule is rnumber.

4 Resolve conflicts, so that we can respect the order of the rules based on their im
portance

rule(pr1(Patient), prefer(r1(Patient), r2(Patient)),[]).
rule(pr7(Patient), prefer(r2(Patient), r3(Patient)),[]).

In order to resolve conflicts, we use the prefer/2 argument, which states that from
the two rules in the input, if both are satisfied, the first is preferred. In this case, we
use it to keep the hierarchy of rules, as stated in the output of InTrees.

78

The argumentation process

For one patient, we get an input of all the vitals and blood results that we need, for
example:

assert(satvenusmean(patient_number,0.5)).

Then, we get one request to prove that the patient will end up in the icu and one that they
will not.

prove([icu(patient_number)],Delta).
prove([noticu(patient_number)],Delta).

The program returns two answers, one for the correct prediction, with the rule that is the
first to be satisfied from the 7 rules, and the other with False.

ICU:
Delta=[r2,pr5(r2,r3)].
Not ICU:
False.

After verifying that the program responds as expected, we tested it with the entire test set,
to find out if ICU andNotICUwere really complementary (that we can’t have icu(Patient)
and noticu(Patient) be both true or both false). There was no conflict on the test set or
the train set.

We also tested to see if the result for every patient was the same in both the R program
and the Gorgias one.

We tested this by putting the Gorgias results in a csv file, the R results in another csv
file and then we used the linux command diff to find any differences:

diff gorgias_results.csv r_results.csv

There weren’t any so it turns out we have again

accuracy = 78.7%
precision = 75%
recall = 61.2%
f1score = 67.4%

Both programs work the same way.

79

6.6 Java Interface
Gorgias is a cloud application, so, in order to use it locally from a computer, we need

an API to communicate with it. The Gorgias team has a Java code with the API available,
so for the final part of the project we will use the Java programming language to send the
data to Gorgias and receive the results.

We first had to import the API code, initialize the environment, connect to our profile
in the Gorgias cloud and consult the ICU prediction document we created there.

import gr.tuc.gorgiasCloud.client.GorgiasCloud;

GorgiasCloud gorgias = new GorgiasCloud();
gorgias.login("username", "password");
gorgias.consult("ICU_prediction.pl","Corona"); //file under Corona/ICU_prediction.

pl

Now we have the gorgias class, which has all the necessary functions.
After that, we need to send the assert commands of our input data

gorgias.asserta(command);

The assert command will send the command we want to the Gorgias cloud and return an
HTTP 200 OK or an error message if something goes wrong. And finally we will need to
send a proof command

_prove = "[noticu("+number+")],Delta";
it = gorgias.prove(_prove, 10).iterator();

The gorgias prove function sends the prove command and returns either an error if some
thing unexpected happens or a list of Deltas of the rules that satisfy the command we just
sent or the word False of the command can’t be proven.

When we have finally sent everything we want, we finish by

gorgias.unload("ICU_prediction.pl","Corona");
gorgias.logout();

The unload command unloads the prolog file, and logout closes the session.

80

Model verification

We can now check our Gorgias model for its errors and accuracy.
First, we start with the test set, which is in a csv file.

List<String[]> test_data = new ArrayList<>();
try(BufferedReader br = new BufferedReader(new FileReader("X_test_corona.csv")))
{
String line = "";
while ((line = br.readLine()) != null) {

test_data.add(line.split(","));
}

} catch (FileNotFoundException e) {
Some_error_logging

}

and then we do the same for the classifications of the test set inputs.
Then, according to the 7 rules, we choose the specific symptoms from each input

array to create the rules necessary, and then we assert each rule using the Gorgias API, as
described before.
String[] Symptoms = {"�satvenusmean","calciummean","calciummin","phvenousmean","

phvenousmax","satarterialmean","heartratemean","bloodpressuresismean","
lactatemean","lactatemax"};
int[] Values = {158,48,49,138,140,153,194,193,88,90};
String command;
for(int i=0; i<Xarray.length; i++) {

for(int j=0; j<Values.length; j++){
command = (Symptoms[j]+"("+i+","+Xarray[i][Values[j]]+")");
gorgias.asserta(command);

}
}

After we have asserted all rules for a particular patient, we can now request a proof from
Gorgias on whether the patient will not be admitted
_prove = "[noticu("Patient_number")],Delta";
it = gorgias.prove(_prove, 10).iterator();
while(it.hasNext()) {
temp = it.next();
System.out.println("proof not icu \n"+temp);

}

and then the same for the admission with
_prove = "[icu("Patient_number")],Delta";

81

When all results of a patient are sent back from the Gorgias API, we can check for errors by
inspecting if we have received a classification for both ICU admission and non admission
or if we didn’t receive a classification for either. We didn’t spot any errors. Then, we
compare theGorgias classification to the correct classification in order to find the accuracy,
precision, recall and f1 score and they were the same as in R, as we mentioned above.

if (icures == noticures) {
errors++;

} else {
if ((((y_val) == 0) && noticures) || (((y_val == 1)) && icures)) {

correct_assumpt++;
}

}
accuracy = correct_assumpt/test_set_number;

Explainable model

For the explainable java program, we use the same parts to communicate with the
Gorgias API as in the previous one. For the rest, we ask the user from the terminal for the
patient’s blood results we need, according to the 7 rules:

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
System.out.println("Enter the Patient Identifier:");
patient_id = Integer.parseInt(br.readLine());
System.out.println("Enter the mean of venous 02 Saturation:");
temp = Float.parseFloat(br.readLine());
symptoms.add(temp);
System.out.println("Enter the mean of calcium consentration:");
temp = Float.parseFloat(br.readLine());
symptoms.add(temp);

After getting all the necessary data, we create the gorgias’ arguments:

String[] Names = {"�satvenusmean","calciummean","calciummin","phvenousmean","
phvenousmax","satarterialmean","heartratemean","bloodpressuresismean","
lactatemean","lactatemax"};

for (int i=0; i<10; i++){
command = (Names[i]+"("+patient_id+","+symptoms.get(i)+")");

Then, using the same process as previously we send all arguments to Gorgias an get a
result for icu(Patient) and noticu(Patient).

If one of them is false and the other has returned a result, we proceed.
For the final step, we return the result to the user, explaining the reasoning behind the

classification:

82

if (first_icu.equals("false")){
result = first_noicu;
System.out.println("Patient "+patient_id+" will not be admitted to the icu

, because:");

}else {
result = first_icu;
System.out.println("Patient "+patient_id+" will be admitted to the icu,

because:");
}
if (result.charAt(2)=='1') {
System.out.println("the oxygen saturation in the veins is "+symptoms.get

(0)+",greater than 0.91 and the minimum calcium measurement is "+symptoms.get
(1)+", which is less or equal to 0.32. In this case the patient has enough
oxygen in his veins ");
} else if (result.charAt(2)=='2'){
System.out.println("the oxygen saturation in the arteries is "+symptoms.

get(5)+",less or equal to 0.92, which suggests that the patient is not getting
enough oxygen and might need to be intubated.");

....

The following is an example of how the program looks from a user’s perspective.

Figure 6.6: Input on the explainable program

Figure 6.7: Result of the explainable program

83

Figure 6.8: User communication with Gorgias through the Java framework

6.7 Results
To summarise the above process, we managed to take an adaboost with random forest

as a weak learner algorithm and move it through the R language, so that we could use the
inTrees framework and be left with only a few rules. Then, we created a Gorgias program
based on said rules that can decide if a COVID19 patient with the given blood results and
vital signs will end up going to the ICU.

Figure 6.9: Model creation process

The final explainable model that we used had the following accuracy, f1 score, preci
sion and recall:

accuracy = 78.7%
precision = 75%
recall = 61.2%
f1score = 67.4%

The model had about a 5% less accuracy than the normal adaboost one. However, it was
comparable to the other trained models that we tried. Specifically, it had similar accuracy
to Extra Trees,Adaboost with Logistic Regression as a weak learner, Adaboost, MLP and
SVM. Also, by losing some accuracy we gained in explainability. The final model consists
of only 7 rules, as opposed to the standard Adaboost we used which had about 800 decision
trees. We also tested an explainable model on the Random Forest algorithm, which came
back with 76.3% accuracy which is a bit lower that the other models.

84

Figure 6.10: Comparison of all ml algorithms and explainable models

It is also evident that the explainable adaboost model had a better accuracy than the
models we trained on only the first 02 window data from the data set. Now, when compar
ing with those models, the random forest explainable model is also comparable to some,
e.g. Adaboost with SVM trained in the 02 window and performed better that others that
probably didn’t have enough data to converge.

In the explainable model, the important blood results and vitals that indicate that a
patient will get severely ill are:

• Low oxygen saturation

• Low calcium concentration

• Low lactate

• Low blood pressure

• High heart rate

• Low pH in the blood

As we stated before, low lactate is probably a statistical anomaly because of the small data
set. The rest, have all been linked in studies with severe illness.

85

Figure 6.11: Comparison of all ml algorithms, explainable models and data sets

86

Chapter 7

Conclusion and Future Work

In this Thesis, we first created a MLmodel that can predict if a COVID19 patient will
be intubated within a short period of time, based on their medical history, blood results and
vital signs. We used a data set from real COVID patients from SirioLibanes Hospital in
Sao Paolo Brazil and tried several ML algorithms, such as Logistic Regression, SVM,
MLP, Random Forest etc. We then compared them and the one with the best accuracy of
83.3%, wasAdaboost with a RandomForest weak learner. Thismodel can give an accurate
prediction, but could not return to the user why a patient is classified as a potential ICU
patient or the reasoning behind the prediction, as the Adaboost is a very complex blackbox
machine learning algorithm.

In order to solve this issue, we decided to create an explainable model, which could
list the most important symptoms, based on which it classifies patients. For the first part
of the process, we used the InTrees framework in the R language, which has functions that
can prune rules from trees and select the top and non redundant rules from a random forest
model or an Adaboost model with a random Forest weak learner. After using InTrees on
our model, we were left with only 7 rules out of the initial 800, based on which we could
classify the patients with a 78.7% accuracy.

For the next part of the process, we had to create a program that would allow the user
to enter the patient information necessary to make a prediction and would then return the
classification and the reasoning behind it. For this, we used the Gorgias framework, which
is a Prolog based general argumentation framework, that can get rules as an input and com
pute if an argument is admissible. In this case the argument would be icu(Patient) and
noticu(Patient) (whether a patient will be admitted to the ICU or not). This framework
also allows higherorder preferences, which is important in our case, as the 7 rules of the
model are ordered, if the first one is not satisfied, we move to the second etc. Conse
quently, we rewrote the 7 rules in Prolog in the Gorgias framework and tested it with the
test set to see if the accuracy remained the same as with the R Intrees model. It turns out
that the two programs have the exact same results and consequently the same accuracy.

Finally, we wrote a Java program to allow the user to communicate with the Gorgias
framework. This program requires the user to enter the patient id number and only a few
blood results and vitals of the patient, then it sends them to Gorgias and returns to the

87

user the classification for the patient (icu or no icu admission) and the reasoning based
on which Gorgias deduced the result, in this case the exact symptoms based on which the
classification was made.

In conclusion, we have created a process that can give medical professionals informa
tion on which patients might require intubation and which symptoms they should look out
for to predict serious illness in COVID19 patients.

Our work can be extended in various directions. First of all, the same process, from
start to finish, can be applied on many other diseases, such as strokes, heart attacks etc.
as long as there is a good data set with blood results, vitals and medical information. We
could train models that are based on Decision Trees, use the InTrees framework to reduce
the rules to only a few and then create an explainable model that accurately predicts the
course of each disease for every patient and explains its results to the user using Gorgias
or any language of our choice.

Secondly, the explainable part from the R program and forward, can be used to create
an explainable model of any Python trained classification model that came from Decision
Trees, Random Forest, Extra Trees and Adaboost, regardless of what it classifies. We can
take any such model and turn it into an explainable AI one, by changing very little things
in the process we described on this thesis.

Lastly, it would be interesting to reiterate the whole process with a bigger data set
from COVID19 Patients, in order to find all statistically significant symptoms that prog
nosticate which patients will get severely ill and also have a model with a much higher
accuracy and recall. In this case however, it is possible that another algorithm, that is not
based on decision trees, could result in the highest accuracy, so we would have to use
different methods of turning the model to a white box one. In the case that a bigger data
set is hard to find, we could repeat the process after applying a dimensionality reduction
strategy to decrease the number of features of the model to the ones that appear to be im
portant, and then start training with various ML algorithms. This would probably achieve
a higher accuracy, but it would still have some statistical anomalies because of the small
size of the data set.

The Explainable AI techniques are a relatively recent addition to Artificial Intelli
gence, so there is still a lot to experiment with by using any of the existing blackbox
machine learning algorithms.

88

Bibliography

[1] https://www.kaggle.com/S%C3%ADrio-Libanes/covid19.

[2] https://www.nhs.uk/conditions/coronavirus-covid-19/
people-at-higher-risk/whos-at-higher-risk-from-coronavirus/.

[3] https://www.cdc.gov/coronavirus/2019-ncov/hcp/
clinical-guidance-management-patients.html.

[4] https://www.cs.toronto.edu/~mbrubake/teaching/C11/Handouts/
AdaBoost.pdf.

[5] Gorgias Tutorial. https://www.cs.ucy.ac.cy/~nkd/gorgias/tutorial.
html.

[6] CDC. https://web.archive.org/web/20200912034420/https://www.
cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html.

[7] H. Deng, Interpreting tree ensembles with intrees, (2014). https://arxiv.org/
pdf/1408.5456v1.pdf.

[8] Y. Dimopoulos andA. Kakas, Logic programmingwithout negation as failure. Avail
able at: https://www.cs.ucy.ac.cy/~nkd/gorgias/docs/ISLP95-camera.
pdf.

[9] D. Elezagic, W. Johannis, V. Burst, F. Klein, and T. Streichert, Venous blood
gas analysis in patients with covid19 symptoms in the early assessment of
virus positivity, (2020). https://www.degruyter.com/document/doi/
10.1515/labmed-2020-0126/html#j_labmed-2020-0126_ref_013_
w2aab3b7c24b1b6b1ab2b2c13Aa.

[10] Y. Luo, Y. Li, and J. Dai, Low blood sodium increases risk and severity of covid19:
a systematic review, metaanalysis and retrospective cohort study, (2020). https:
//www.medrxiv.org/content/10.1101/2020.05.18.20102509v1.

[11] O. V. Oliynyk, M. Rorat, and W. Barg, Oxygen metabolism markers as predic
tors of mortality in severe covid19. https://www.ijidonline.com/article/
S1201-9712(20)32535-2/pdf.

89

https://www.kaggle.com/S%C3%ADrio-Libanes/covid19
https://www.nhs.uk/conditions/coronavirus-covid-19/people-at-higher-risk/whos-at-higher-risk-from-coronavirus/
https://www.nhs.uk/conditions/coronavirus-covid-19/people-at-higher-risk/whos-at-higher-risk-from-coronavirus/
https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html
https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html
https://www.cs.toronto.edu/~mbrubake/teaching/C11/Handouts/AdaBoost.pdf
https://www.cs.toronto.edu/~mbrubake/teaching/C11/Handouts/AdaBoost.pdf
https://www.cs.ucy.ac.cy/~nkd/gorgias/tutorial.html
https://www.cs.ucy.ac.cy/~nkd/gorgias/tutorial.html
https://web.archive.org/web/20200912034420/https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
https://web.archive.org/web/20200912034420/https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
https://arxiv.org/pdf/1408.5456v1.pdf
https://arxiv.org/pdf/1408.5456v1.pdf
https://www.cs.ucy.ac.cy/~nkd/gorgias/docs/ISLP95-camera.pdf
https://www.cs.ucy.ac.cy/~nkd/gorgias/docs/ISLP95-camera.pdf
https://www.degruyter.com/document/doi/10.1515/labmed-2020-0126/html#j_labmed-2020-0126_ref_013_w2aab3b7c24b1b6b1ab2b2c13Aa
https://www.degruyter.com/document/doi/10.1515/labmed-2020-0126/html#j_labmed-2020-0126_ref_013_w2aab3b7c24b1b6b1ab2b2c13Aa
https://www.degruyter.com/document/doi/10.1515/labmed-2020-0126/html#j_labmed-2020-0126_ref_013_w2aab3b7c24b1b6b1ab2b2c13Aa
https://www.medrxiv.org/content/10.1101/2020.05.18.20102509v1
https://www.medrxiv.org/content/10.1101/2020.05.18.20102509v1
https://www.ijidonline.com/article/S1201-9712(20)32535-2/pdf
https://www.ijidonline.com/article/S1201-9712(20)32535-2/pdf

[12] N. Prentzas, A. Nicolaides, E. Kyriacou, A. Kakas, and C. Pattichis, Integrating ma
chine learning with symbolic reasoning to build an explainable ai model for stroke
prediction, in 2019 IEEE 19th International Conference on Bioinformatics and Bio
engineering (BIBE), 2019, pp. 817–821.

[13] S. Sanche, Y. T. Lin, C. Xu, E. RomeroSeverson, N. Hengartner, and R. Ke, High
contagiousness and rapid spread of severe acute respiratory syndrome coronavirus
2, (2020). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7323562/.

[14] X. Zhou, D. Chen, L. Wang, Y. Zhao, L. Wei, Z. Chen, and B. Yang, Low serum
calcium: a new, important indicator of covid19 patients from mild/moderate to sev
ere/critical. https://pubmed.ncbi.nlm.nih.gov/33252122/.

90

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7323562/
https://pubmed.ncbi.nlm.nih.gov/33252122/

	Εκτεταμένη Περίληψη
	Εισαγωγή
	Επεξηγήσιμη τεχνητή νοημοσύνη
	COVID-19
	Σκοπός

	Λογικός Προγραμματισμός χωρίς Άρνηση ως Αποτυχία
	Γοργίας
	Υλοποίηση
	Δεδομένα
	Εκπαίδευση
	Intrees
	Επεξηγήσιμο Μοντέλο
	Αποτελέσματα

	Συμπεράσματα και Μελλοντικές Επεκτάσεις

	Introduction
	Covid-19
	Contribution of this Thesis

	Background
	Machine Learning
	Supervised Learning
	How it works:
	Types of supervised learning problems

	Supervised Machine Learning Algorithms
	Logistic Regression
	SVM
	MLP
	Decision Trees

	Precision, Recall and F1 score
	Explainable AI
	Related Work

	Logic Programming without Negation as Failure
	The framework
	Proving LPwNF
	Example of proof sequence

	Gorgias
	Semantics
	Use of Gorgias
	Knowledge Depiction with Gorgias
	Answering Queries
	Dynamic Preferences
	Inheritance with exceptions
	Higher-Order Preferences
	Abduction

	Implementation
	Purpose
	Dataset
	Training
	Fewer Data
	All Data

	Intrees
	The framework
	Use of InTrees
	Results

	Gorgias
	Java Interface
	Results

	Conclusion and Future Work

