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IIepiAnywn

Ze aut) ) SuA@paAtKy epyaocia, acxoloupaote pe dépata otoug Topeis tng
Ivoouxkng Emotiung kat ing Enedepyaociag ®uokrig MNwooag. Epeuvoupe g a-
VATIAPAoTAOElS PUOIKEG YADOOAG OTOV avOp®ITivo eYKEPAAO KAl TI§ OUYKPivoupe e
tapadoo1aKEG avanapaotaoelg YAQOOoAGg TG PNXAviKGG pabnong.

Ze auuv Vv £pyaocia, XPnolponoloupe mpotd £va yvootod ouvolo Sedopévav
fMRI yia va avtototyicoupe rmapadoolakeg avarapaotdoels AECEDV 08 YVWOTIKESG
avanapaoctaoelg. [Tapouoialoupe éva POVIEAO eYKEPAAIKIG EVEPYOITOINONG, HE TIa-
Awdpounon ropugoypappov arneubeiag anod avanapacdoelg Glove, avii ylia éva
evi1dpieco oNactoAoy1KO POVIEAO XAPAKINPEIOTIKGV TIOU Tpoteivetal otn 18Atoypa
ia, To omoio xpnowporiotel Eéva ouvolo A&genmv e Tig avaloyeg petprioelg IMRI yua va
PEL 1A AVTIOTOiX101 METASU ONPao1oAoyiag AEEemV KAl TOMKOV EYKEPAAIKOV EVEPYO-
TIO0E@V. XTI OUVEXELd, OUYKPIVOUE aUTo T0 Poviédo Kod1komoinong, os d1apopeg
napadday£g, pe napadoolakég avarnapaotdoeig Aégewv oe éva ipoBAnNIa onpaciolo-
VKNG Opo10tntag Kat ouprepaivoupe ot 11 arnddoor) tou dev ernnpeddetal OUVOAKA
arno 1o 160G TOU X®POU TRV APXIKAOV AVATIAPACTACEDV.

Z1n ouvexela, SlepeuvoUe IOG Ol YVAOTIKEG AVATIAPACTACELS O PITOPOUoav va
EMNPEACOUV TIG AVATIAPACTACELS £VOG YA®OO1IKOU poviedou. Evoopatovoupe TG yve-
OTIKEG AVATTIAPAOTACELS OTd YA®OOIKA POVIEAd MPOCOLTOVIAGS TIS ®G EPWTHPATA OTO
eninedo mMpPoooyng, MPOKEPEVOU VA ATTOTUTIOOOULE TNV EYKEPAAIKT] TANpopopia au-
TOV IOV avanapaotace®v ot dadikaoia eknaibeuong t1oug. Apou H1armotOooupe Ot
eATIOVETAL 1] IKAVOTTA TOUg va TpoBAErouv debopéva eyredpdlou, dokipaloupe v
andboo1n TV POVIEA®V 08 KAAOOIKA Telpdpata enegepyaociag vokng yAoooag. Ta
arotedéopatd pag 6eixvouv otl, aKOUn Kdl 1 TEPIMAOKT apX1tektovikn tou BERT
ennpeddetal apvnuka ano t1g opuBwdelg eykepaAikeg avanapaotdaoelg. H dour
TOU IEPAPATOS Pag, av Katl €ival moAAd umooXopevr), dev propetl va sekpetadAeutet

MANP®S TV adid TV YVOOTIKG®V avarapactdoemy.

Aételg KAs1b1a

Mnyxavikr) Malnorn, BaBeia Mabnon, Neupwvikd Aiktua, Eykepadikég Avara-
pactaocelg, fMRI, BERT, Ataviopata Aé§ewv, EneSepyaoia duokng Foooag






Abstract

In this diploma thesis, we are concerned with tasks in the domains of Cognitive
Science and Natural Language Processing (NLP). We investigate natural language
representations in human brain and comparing them with traditional machine
learning representations. In this work, we developed a pipeline for extracting
neural representations from fMRI datasets by using machine learning techniques,
following literature’s guideline. Moreover, we evaluate our work on downstream
tasks and provide useful comparative tables.

In this work, we first utilize a well known fMRI dataset to map traditional word
embeddings to cognitive representations. We present a neural activation model,
with ridge regression directly from glove embeddings instead of an intermediate
semantic feature model proposed in the literature, that uses a set words with
available fMRI measurements in order to find a mapping between word seman-
tics and localized neural activations. Then, we compare this encoding model,
in several variations, with traditional word embeddings on a similarity task and
conclude that its performance is not affected overall from the semantic or glove
space.

Thereafter, we investigate how cognitive embeddings could affect a language
model’s representations. We incorporate cognitive embeddings into language
models by adding them as queries in the attention layer, in order to induce the
cognitive bias of these embeddings into their training process. After finding that
their ability to predict brain recordings improves, we test the models’ performance
at NLP tasks. Our results indicate that, even the complex BERT architecture is
negatively affected by the noisy neural representations. Our experiment setup,
although it’s very promising, can not fully exploit the potential of cognitive em-
beddings.

Keywords

Machine Learning, Deep Learning, Neural Networks, Brain Representations,
fMRI, BERT, Word Embeddings, Natural Language Processing
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Euyxaploticg

®a nbela katapxdg va euxaploto® tov kadnynt) AAé§avdpo IMotapiavo mou
HOU €800 TV €UKAlPia VA EKITOVHO® T SUTAG®PATIKI] POU £pyaocia Oto £pyactr)plo
tou. Ot Xprjolpeg oupBouAég Kkatl ta oxoAla tou pe Bonboucav va ouveyilw kat va
Hn ta napatdaw. Emiong 9a r0eda va suxaplotrjom 1oug urmoyneloug H186aKtopeg
IMwpyo [Mapaokeudroudo kat EuBuun Tewpyiou yla 1o xpdvo mou pou apiépwoav
KAl TV UMooTP1§n IMoU Hou Npoctédepav KA OAn 1 Sidpkela g SUA@PATIKAG
pou. ITapdAAnda euxaplot®d toug ouvadedpoug kat @pidoug Nikrta kat Anprtpn ya
OAeG TG EMKOBOUNTIKEG OULNTHOEIS Pag aAAd KAl T WYUXOAOYIKY| TOUG UTTOOTH)P1En).

2 ouvéxela, 9EA® va euxapilotowm tnv owkoyévela pou BaoiAn, Nrtiva, Bayua
KAl PETIEWI TTOU PE £X0UV OTNPISEl KUPIOAEKTIKA OTa MAvVId, KaBog KAl I ylaya
pou Baia n oroia arotéAet 1o peyadutepo urodeiypa avibioteAoug aydarng rmou £X6
OUVAVTIOEL EKET £€§W.

TéAog euxapilotw 1T0Ug MAtd1koug Pou @iAoug ol oroiol arotedouv I Heutepn
oKoyévela pou adAd Kadl ToUg QOottnTikoug pou @idoug ot oroiot onpadeypav Alya
arno ta KaAutepa Xpovia g {eng pou. Ia ocuviopia 6ev Sa avagépwm ta ovopata

T0UG aAAd 6Aot Toug Yvpilouv 1o TTOCO ONPAvIKoi givatl yia péva.

AB1nva, IovAlog 2021

Nwcdfaog Aovkag
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Ke¢dpadaio m

Extetapévn IepiAnyny

Ze autrv v dumdepatikn epyaotd, 9a npoonabrjooupe va ouviudooupe avara-
PAOTAOCELS ALEe®V KAl EYKEPAAOU Yla va PABOUNE KOVEG AVATIAPACTACELS AUTOV TRV
6vo. Zto [9], mpoodata s1oryayav 1o ImP@to PoVIEAo £1801KA 0XeO100HEVO Y1a va OUA-
AdBet Tov TPOTIO HE TOV OTI010 0 EYKEPAAOG avaraplotd I onpaocia g yAwooag. Me
1 PBeAtnotonoinon tou poviedou BERT yia v mpoBAeyn dedopévev eyrepaAikng
EVEPYOITOINONG AvOp®OII®V artod 1o cUvoAo dedopévav tou [10], katéAngav oe avanapa-
OTAOE1S TIOU KOOIKOIIO10UV MEPLO0OTEPES TTANPOPOPIEG OXETIKEG HE T Hpaotnplotnta
TOU £YREPAAOU KaAl €101 BEATIOVOUV TNV TO0TNTA TG TIPOBAEYPNS NG EYKEPAAIKNG
EVEPYOTTOINONG.

EmumA¢ov, 1o [11] Siepeuvnoe g ta yYAwooikd povieda Sa priopovoav va pabouv
ano tov avlporvo eykEPpado. To meipapd 1oug anotedeital amo avanapaotacelg a-
o 4 nipoodata povieda: ELMO, BERT, USE kat T-XL kat dedopéva eyRePAAKOV
evepyortojoenv. Ilapopowa pe ta [6, 7] €xouv XPNOHOMOU0El YPAPHIKY TTAALV-
dpounon ano v avanapdotact) €vog POVIEAOU He pia Ipotaon, S, oG €icodo, yla
va mpoBAEPouv v eyKeEPAAIKY) evepyortoinon tng idtag mpotaong s. Me Baon v
ermuyia avthg g pebodou, pnopscav va mouv eAv £va eminedo 10U POVIEAOU HOot-
padetal mAnpogopieg pe pia meploxr tou eYKEPAAOU KAl MPOYX®PHOAV TEPAITEPRD
TPOITOITOIRVIAG TO EITIEHO TOU POVIEAOU KAl ITAPATPOVIAG MIOG AAAAdet 1) iKavotnta
nipoBAeyng tov eyypadpov fMRI. Ta suprjpatd toug urmodnA®vouv ott 1 aAAayn evog
HOVTIEAOU emepyaoiag QUOIKNG YA®OOAG Yla KAAUTEPT AVIIOTOIX101 HE EYYPAPES €-
yKepdadou propel va 0dnyr|oel oe KaAutepn KATAvONor) g yYA®ooag ard to HoviéAo,
KaOmg mETuav KaAutepr arodoorn o€ MEPAPATA EMESEPYATIAG PUOIKNG YADOOAG e
Vv Tporonolnuévn €ékdoon Tou PovieAou arod tn Paocikn dopur tou BERT.

H npooéyyion pag, pe faon ta napandve, poorabel va Tpornomnorost ta YAwo-
OlKA POVIEAQ EVOOPAT®VOVIAS TIS YVOOTIKEG avarapaoctaocelg ot diadikaoia ekmna-
1deuong. EAéyxoviag nog Bedtidveral 1 Kavotntd 1oug va rpoBAeriouv ) dpaoctn)-
ploInTa tou eykepadou, Ja npoonabrjooupie va EMIUXOURE KAAUTEPT ATIOd00T) TOU
POVIEAOU Oe melpapata enegepyaoiag QUOKNG yAoooag. Qg Paoikn pébodo, mpo-

ortaboupe va npooBicoupe ta dedopéva Amekoviong ToU EYKEPAAOU OTO €rinedo



0. Extetapévn Iepidnyn

IIPOCOXNG TOU poviedou. Me autdv tov Tporo perpladetal n enidpaon T®V KAKOG
ekntadevpévev avanapaotaocewyv. Ileipapatidopaocte emiong pe 1a POvieAa pag mpo-
00£T0VIag TS YVROTIKEG avaTiapaotdoelg o £va 110vo eminedo poooxrg KAabs popd.
H mponyoupevn doudeld amod to [7] deiyvel oAUy eArmbopopa arotedéopata otav
ouvdudadel TIg avanapaotaoelg 10U EYKEPAAOU KaAl TV AECE®V TTOU PdAlota Semepvo-
UV autég v A&gev o KArmowa rnepdpata. And 6oa yvepidoupe, autn n pébodog
TOU OUVOUAOH0U avarapaotace®Vv dev £XE1 XPNOo1ROToN0el TIOTE TIP1V KAl PItopel va
elval o TpoIog yla va ImpoX®prjcoupe €va Prpa maparépa mnpog HovieAa (QUOLKLG

yA®ooag rou avuidapBavovtat ) Aettoupyia tou eyKepAAou.

0.1 XIyxetikrn BiBAwoypagia

AxoloubBovtag ) ouvrOn MPOoEyyion yia petapopd pabnong otnv Ene§epyaoia
duokng 'Awooag, 01 YVOOTIKEG avarnapaotacelg 9a Propouoayv va Xp1notpornotnouv
yla va augfjoouv v anddoor poviédwv @uolkng yAwooag. H armlouotepn mpooéy-
ylon Baoidetatl oe pia péBodo, OTIOU 01 YVOOTIKEG AvATIAPACTACELS XPNOTH10TIO10UVIaAl
@G €10060G pe 1] XwPi§ ouvévwor pe rapadootlakeg Ae€ikég avartapaotdoelg. 'Eva
IPOEKITAIOEUPEVO POVIEAO TIOU AVTIOTOIXETL AEEE1S OE €va YVOOTIKO Xwpo Ya propo-
Uoe €ITioNg va eKMAldeUTel anod AKPO 0 AKPO yld Hld OUYKEKPIPEVH] pyaocia. XTo
[12], xpnoworolouv dedopéva MRI, mou mpogpyovial ano mnpotdoelg, o ouvdua-
OpOo e otolxela KEWPEVOU yla va aughoouv v anodoorn o €va meipapa rmpoobnkng
ETIKETWV.

H xowvn mpooéyylon yla v epunveia avanapaotdoe®Vv YA®OOIKOV HOVIEARV &-
ivat pe n XPr)orn OUYKEKPTHEVRV EPYAOIOV EMESEPYAOIAG PUOIKNAG YA®OOAG, XAPAKTI)-
PLOH0U AéEemV 1] avayvoplong ouprepipopdas. Mepikoi gpeuvntég Xprnotpomnoinoav
EMAVEKTIAIOEUPEVA PNOVIEAA (PUOLKIG YA®OOAGS yia va npoBAéyouv 1) dpaotnplotn-
Ta TOU €YKEPAAOU Kal va a§l0AOYO0UV TG AVATIAPACTACELS TOU EYKEPAAOU. AUTH
n enaveknaideuon eivat éva véo Pripa oty enedepyaoia QUOIKAG yAwooag kat Ba-
otletal otnv Kedikomoinon mAnpodopiev aro dedopéva piag dradikaoiag ripoBAeyng
(IT.X. Ol avarnapaoctdacelg 10U eYKEPAAOU OtV MEPITIOON PaAg) OTIg APAPETPOUG TOU
povtédou. O otdxog eivatl 1 feATIOTONOINOT AUTOV TOV POVIEADV QOOTE VA EMOPEAT-
SouUv arnod moAAég rnyeg MANPOPOPI®V OXETIKA e TNV enegepyacia g yA®ooag otov
EYKEPaAlO.

Yriapyetl edayiotn mponyoupevn doudeld mou a§lodoyei 1 Bedtidvel poviéda @u-
OKNG YA®Oooag Péowm eyypadwv tou eyrkedpdrou. To [13] poteivet va adlodoynBei eav
Hia avarnapdotaocn AEE®V EPIEXEL ONPACIOAOYIA TIOU OXETILETAL PE TV EYKEPAAIKD
Aettoupyla, perpoviag moco Kadd ripoBAErouv dedopéva mapakoAoubnong patiov
Kal eYYpApES AETTOUPYIKOU PayvnTIKou cuvioviopou. ITapopowa to [14] mpoteive €va
mAaiolo ya v a§lodoynorn Ae§Ikdv avanapaotdoe®y Pe BAor 10 IT000 avIiavaKAoUV

) onpaoctodoyia tou eyrkedpdrou. 'E§t tunotl avanapaoctaong Aé§ewv alodoynOnkav
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pe aAwdpopnon oe Sedopéva IMRI, EEG kat mapakodoubnong patiev. AvapEpouv
OUOXETIOT PETadU NG eYKEPAAIKAG a§l0A0YNONG Kal tng arnddoong twv avarapa-
OTdoE®V OTNV AvVAYVOP10T] OVIOTHTOV KAl TI§ EPYACIEG ATIAVINONG EPWTHTERDV.
OtJain kat Huth [15], avtiotoiyioav emtinteda ano éva LSTM poviéAo oe dedopéva
fMRI, aro dtopa rmou akouve 10T0PIieg, Yia va EETACOUV TV ITOOOTNTA ONIIAC10A0Y1-
K1g mAnpogopiag rmou kpateitat oe KAOe meploxn Tou eyrkepadou. Zto [11] xpnowo-
rnoinoav deoopéva eyrkePpaikng dpaoctnplottag ya va dei§ouv ot kabe drapopetikn
avarnapAdotaon ToU POVIEAOU KOSIKOIIOIEL TIANPOPOPIEg OXETIKEG e TNV emeepyaoia
vAc®ooag avaloya pe to péyebog g npotdong 1006ou. Zta [11, 9] mapatpnoav
OTl TPOITOTIOINVTIAG TO TpoeKraldsupévo poviedo BERT yla kaAutepn mpoBAeyn Oe-
dopévav eyrepdlou, nmétuxav KaAutepa anotedéopata oe nelpdpata Ene§epyaoiag
duoikng Mowoocag. Autd urodndmvel 6Tl 1 TPOIOINON £vOg HOVIEAOU erne§epyaociag
(PUOIKNG YA®OOAG yia KaAuteprn) aviiitoixion pe dedopéva eyrepalou aro dtopd 1ou
€KTEAOUV KATTO1A Ag1toupylia NG YAowooag propet va odnyroet oe KAAUTEPT) KATAVOL)-

on g YAwooag aro 1o 1610 1o poviedo.

0.2 ZXuvola Asdopévav

10 IPAOTO PEPOG TOV TTEIPAPATOV PAG CUYKPIVOUE TIG YVOOTIKEG AVATIAPACTACELS
Aé€e@V Xpnopornotmviag to oUuvolo dedopévav o rapouctdotnke arno tov Mitchell
[6] yia Tig eyrepadikég avartapaotaoets. 'Onwg avapépoupe oto KepdaAato 3, auto 1o
ouvolo bedopévav niepiexet dedopéva fMRI and 9 ocuppetExovieg Kat ta epediopata
T0oUg eival okitoa Kal titAot amo 60 €idn avukepévov aro 12 kainyopieg. ‘OAa
1a gpebiopata mmapouvoidotnkav 6 Popeg Katd tn didpkela tng Kabe ouvedpiag, pe
Tuxaia ogpd Kabe @opd. ZninbnkKe Ao T0UG§ CUPHETIEXOVIEG VA OKREPTOUV TG 161eg
1610TTEG Y1a Ta aviikeipeva Kat otig 6 mapouoldoets.

Ma ) oUyKplon OV avarnapaotdos®V XPNOHOIOI0UHRE T0 OUVOAO Gedopévav
MEN. I[lepiéxet U0 ouvoda pe {euyn ayydkov A&gewnv (éva yla exknaideuon xat
éva yia afodoynon) padi pe Pabpoug opoidtntag rou €xouv rpootebel ard av-
9pwroug, péow crowdsourcing xpnowporotwviag to Amazon Mechanical Turk péow
tou CrowdFlower. Auto to ouvolo 6edopévav xprnotponoteitat ouvnOwg yia tr doxt-
PI POVIEA®V OE PEIPTIOEIS ONIAOCI0AOYIKLG OHO10TTAG KAl OUYYEVELQG.

IMa va efaydyoupe 11§ YVOOTIKEG Avanapactdoelg pag yua tug Evounteg 4.5
Kat 4.7, xpnowomnoloupe 1o ouvolo Hedopévav ou mapouciace o Pereira oto [16],
ornou 110sAav va a§lodoyrjocouv apnpnuéveg Evvoleg kat rpotacelg IMRI 6niwg mept-
ypagoupe oto Kepdadao 3. Xpnoworooupe ta dedopéva anod 1o mpoto mneipapa
Toug 110U arnoteAeital ano eyypadégs fMRI and 16 cuppetéyovieg. Ta epebiopata
toug artotedovviat ard 180 Aggelg mou ermAéxOnKav yla va KaAuyouv €va Peyalo
PE€POG TOU onuactoAoyikou xopou. Kabe Aégn avurnpoonmietet éva oupreypa Agge-

®v 110U Baocidetal oto Xwpo twv davuopatev Glove (300 daotdoetg). Ta epebiopata


https://www.mturk.com/
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IIAPOUCIACTNKAV OF Tpia Melpdpata pe IoAAAnAEg eENAvAANPels, ®g pia mpotaon, ©g
EKOVA 1] OGS OUVVEPO AéSemv. Autd ta mpoene§epyaocpéva debopéva ylia kabe oup-
petéxovia arotedouviatl and évav mivaka: Aégelg (180) x voxels (~ 200.000) kat

Xapteg avriotoiyong yia 3D voxel kat diavuopatikoug X®pous.

IMa va Bedtiwooupe ta YA®OOKA pag povieda, xpnotpornotovpe to WikiText
ouvolo dedopévmv [17], to oroio eivatl pia cuddoyr) pe ndve and 100 exkatoppu-
pla tokens mou e§dyovratl aro 1o ouvolo v enaindsupéveov Good and Featured
apBpav tng Wikipedia. To ouvoAo dedopévav auto, eival 6iabeopo pe v adela
g Creative Commons Attribution-ShareAlike. e oUyKkp1o1 HE TtV IPOEMESEPyA-
opévn €xkdoon tou Penn Treebank (PTB), to WikiText-2 eivat mdve amd 2 @opég
peyadutepo kat to WikiText-103 eivat mdve anod 110 @opég peyaiutepo. To ouvodo
debopévav WikiText 51a0£tet eriong €éva oAU peyaAutepo AeS1A0Y10 Kat Statnpel v
apX1Kr KAion, ta onpeia oti§ng kat toug apiBpoug - ta oroia 6Aa apaipouvial oto
PTB. Asdopévou ot amnotedeitat and mAnpn apbpa, to cUvoAdo dedopévav autod e-
tvat kataAAndo yla poviéda rmou propouv va ened@eAnbouv ano tig pakponpofeopeg

eaptroetg PeTady TV AEgewv.

IMa ) dadikaoia poBAeywng IMRI xpnotporolovpe to ouvodo Sedopévav Harry
arto 1o [10] mou neptdapBavet dedopéva MEG kat fIMRI mou kataypdagovtat ano dato-
pa kabwg draBalouv Eva RepaAdato ano 1o rpato B18Aio tou Xdapt [Totep. To repdaAato
rieptedapBave 5176 Aételg kat S1aBaotnKe arod evveéa CUPHETEXOVIEG Yia KAOe meipa-
pa. Ta dedopéva tou nepaparog v MEG yia évav ouppetéyxovia anoxkisiotrayv

Aoy® 1oAAoVv SopubBav, aprjvoviag 8 CUPHETEXOVTES.

0.3 IIelpdapata pe YVOOTIKEG AVANAPACTACELG

Zta akoAouba mielpdpata otoXeUoupe va S1EpeUVIICOUNE T1G HUVATOTTESG TRV YV®-
OTIK@V avarapaotdoe®V OUYKPIVOVTAG Td PE YVOOTEG avarapaotdoelg AESemV Onwg
ta Word2vec [18]. Xpnowporoloupe maAtvépopnorn Kopupoypappov yia va pdabou-
He Vv aviiotoiion KABe AéEng 010 XMOPO TOU YVOOTIK®V AVAIIAPACTACERDY, AKOAOU-
Soviag ) pébodo anod ta [6, 7]. Tha v emdoyr) tov voxel, xpnotponolovpe tov €GO
ouviedeotr] Pearson 0Aev oV enavaAnyemv toU MEPAPATOS Yid va Ta§lvoprcoupe
ta voxels pe Bdon ) otaBepotntd toug Kat otn ouvexela ermAéyoupe ta 500 pe tig

KaAutepeg BabpoAoyieg otabepotntag.

[Tapouotadoupie 1o accuracy OV 0OOTOV IPOBALYPerV yia KAOe cuppetéxovia:



0.3 Ilepdpata pe yVOOTIKEG avaIrtapaoTaoeElg

Subject Ridge Reg. Athanasiou Mitchell

1 0.91 0.84 0.83
2 0.69 0.82 0.76
3 0.80 0.76 0.78
4 0.87 0.79 0.72
5 0.75 0.78 0.78
6 0.60 0.65 0.85
7 0.76 0.75 0.73
8 0.66 0.68 0.68
9 0.76 0.68 0.82
average 0.75 0.75 0.77

Table 1. Avuyrtoiifovue ancsvdeiag ano dwavvouata Glove oe 500 otadepa voxels
Kat ouyKpivouue ue ta anotedéouata v [7] kat [6]

ZUVoAkd, KataAnyoupe Ott 10 HoViEAo K@dikomoinong, €ite P€ow OonpacioAoyt-

KoU eite péow Glove xwpou, dev ernpeddel ornpavika v arodoor).

AT10Adoyoupe 10 POVIEAO eYKEPAAIKIG KOSIKOTIOINONG TOU rapouotadetal mapa-
MAvVe PE YPAPHIKL avtiotoixiorn, oto ouvolo dedopévav opotdtntag MEN. Xpnowo-
noloupe mdaAt to ouvolo dedopévav tou Mitchell kat avanapaoctacelg GloVe yua tig

A£EE1G TOU MEPANATOG OIS AVAPEPONKE TPONYOUREVRG.

Zuykpivoupe v pébodo pag pe pa KAaooikr) pébodo rmou xpnotporotei w2vec
300-dim vectors. Ilapouoialoupe 10 Baociko pag Poviédo KadKormoinong, OIrou
Xpnotwornolovupe naAvépopnon ota dedopéva fMRI evog ouppetExovia Kabe popd,
ermAgyoviag ta kaAutepa 500 voxels, pe v npoavagpepBeioa pebBodo PabpoAoyiag
otaBepotntag. Ta éva amnod ta mepdpatd pag XPrnolonoloUle T0 HOVIEAO KOOIKO-
OINOoNG OTOV P€00 OpO TV dedopévav armd 0Aoug ToUg CUPPETIEXOVIES. ErmmumAéov,
n pébodog Hyperalignment rou e&nyeitat oto Kepadaio 3, xpnotporoleital pe 1o
Shared Response Model ano povn g yua 1o neipapa g onpacioAoy1Krg Opol-
0INTag KAt otn ouvéxela ot ouviuaopo PE avarapaotdoel w2vec pe TIG TEAKEG
avarnapactacelg va givat o PE€cog 6pog 1@V 6vo. Ta amotedéopata mapouoiadovrat

otov riivaxka 2.
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Subset w2vec 500 vox avg (200 vox) SRM SRM - w2vec
All Concrete 0.73 0.67 (0.69) 0.63 0.66 0.74
Most & Least Sim | 0.60 0.57 (0.62) 0.53 0.64 0.65
Least Similar 0.21 0.14 (0.36) 0.06 0.1 0.11
Most Similar 0.09 -0.02 (0.19) 0.20 0.20 0.21

Table 2. O ouvviefeotn¢ Spearman yia ta S1APOPETIKA UTOOUVOia OUCLA0TIK®OV Kal
ya dtagopetikeég avanapaotaocelg. Ilapovowalovue 1o péoo dpo g Baduofoyiag twv
OUUUETEXOVTOV, OL TIUES O TAPEVAEON (+) UTOOEKVUOUD TO UEYLOTO UETAlU TV OUUUETE-
xovtwv. I'a 1ov HEoo Opo TV eykepalikav dedopusvwv (0tnjin avg) apxika THpape tov
UEOO BP0 TV eyypag®v amo OA0US TOUG OUUUETEYXOVTEG KAl 0T OUVEXELA TOOXWPNOA-
ue oe mafwdpounon yia onuaocofoyikn ouowwnra. To SRM avagépetar oto Shared
Response Model yia Hyperalignment [8]

ZuvoAikd, ta odpEAn amod 1) XP1on YVEOOTIKGOV avarapaotdos®v ©g eioodoug yia
UTIOAOY10TIKEG epyaoieg Hev eival onPAvIKA PE AMTOTEAECHA POVO Jia PKPT) augnon
g arodoong. Mia avtiotoixrn avdduon ano 1o [7] deiyvel 611 ta eykepadira Sedo-
HéEva KOHIKOTIOUV XPHO1ES ONIACI0AOYIKEG TIANPOPOPIeg, aAAd P1a TIPOCEYY1oN
ou Paocidetat amld oe aviKtoix1on PEO® YPAPHIKNG TaAtvEpounong PUmopet va punv

etvat o KaAUtepog TPOITOG yla va TG EKPETAAEUTOUE.

0.4 Tpomnomnoinon HOVIEA®V PUOIKNG YADCOAG PE YV®-

OTIREG AVANAPUACTACELG

A@pou doxkipaocape 11§ YVOOTIKEG AVATIAPACTACELG AUTOVOEG O€ KATTIOld TIEIPAPa-
1a, alorolovpe v undpyxouoa PiBAloypadia Katl IPOTEIVOURE TNV TPOTIOIOiNon
YA®OOIK®V PNOVIEA®V MTPOCHETOVIAG YVOOTIKEG AVATIAPAOTACELS OTIS UITAPX0UOES ap-
XIEKTOVIKEG Toug. Ta melpdpata pag eotialouv ot nmpoobnKI 1OV YVROTIK@V ava-
IAPACTACE®V OTO £IIedo MPOooXNS £vog HoviEAou pe dirapopoug tpomoug. Eru-
Aéyoupe autr) ) péBodo Adym tou peydadou SopubBou kat v Alyev detypdtov rmou
xapaktnpifouv ta dedopéva fMRI, kabiotwviag autég T avanapaotdoelg KAKoUg
unoyneioug yla v eknaibeuon 1 v enaveuknaideuorn evog YA®OOIKOU P1OVIEAOU.
Kat apydg, s§dyoupe 11§ YVOOTIKEG AVATIAPACTACELS Pag He TG pebodoug mou mept-
ypdgovial mapandve. Xin ouveéxeld, SoKiaadoue v mpotevopevr) pebodo oe eva
povtédo LSTM, 10 oroio A0ym Tou PIKPOTEPOU PEYEOOUG TOU NAG EMTITPETIEL VA TIPO-
00£00UE TI§ YVROTIKEG avarnapaotdoelg oty dadikaoia eknaideuong Kat O6x1 PoOvo
Katd ) diapkela g enaveknaidevong. Tedog, to BERT [5] tpororoteital pe moAAo-
UG H1a(OoPETIKOUG TPOITOUG KAl OTr) ouvexela enaveknaideutat oto Masked Language
Modeling task.

Ia to LSTM povtédo eknaidsvoupe tpia povieda oto WikiText-2, ndve oto
Masked Language Modeling task.
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1. 'Eva base SHA-RNN poviéAo pe povo €va erinedo mpoooxns.

2. 'Eva povtédo finetuned pe 11g YVOOTIKEG avariapaotdaoelg oto erinedo pooo-

XNS ya 5 enoyég.

3. 'Eva poviédo trained all the way e 11¢ YVOOTIKEG AvaATIAPACTACELG OTO ETHTTIESO

IIPOOOX1S

Input

00

v

Output

Figure 1. To SHA-RNN anotefleitar ano éva RNN povtéflo ue eminedo mpoooxmg,
Kat éva “Boom” feed-forward emninedo ue kavovikonoinon. To CE eminedo mpiv ta Q
avagéepetal otig YUVOOTIKES AVATAPAOTATELS.

ZuvoAikd yua ta arnotedéopata pe to BERT Sa xpnotpomnowjooupe :

1. 'Eva arAo6 poviédo BERT)s ®S Bdon yla ta nepdpata pag.
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2. 'Eva BERTjuse OTIOU TIPOCOETOUNE YVROOTIKEG avarnapaotdoslg oto embedding

layer padi pe ta positional embeddings.

3. 'Eva cognitive-BERT poviéAo eraveknatdeupévo POV e YVOOTIKEG avarapa-

otdacelg otov mivaxka Q.

4. 'Eva cognitive-add-BERT poviédo petd v enaveknaidsuorn ornou npoocOstou-

PE TS YVROOTIKEG AVATIAPACTACELS OTOV Iivaka Q.

5. 'Eva cognitive-BERT-LSTM 110ovtéAo eraveknatdeupévo HOVO 1€ YVOOTIKEG a-
VAmapaotdacel§ otov Tmivaka @, agou Mp®td TS MEPACOUV Ao €va erminedo
LSTM.

6. 'Eva cognitive-add-BERT-LSTM poviéAo petd v enaveknaideuon 6rou npo-
OOLTOUNE TG YVOOTIKEG AVATIAPACTACELS OTOV IMivaka @, adou rmpota TG Ie-

pacouv aro éva erirtebo LSTM.

7. 'Eva cognitive-add-1 povtéAo, pe YVOOTIKEG avarapaotdoelg POVo OTo rirnedo

nipoooxng 1.

8. 'Eva cognitive-add-2 povtédo, pe yVOOTIKEG avarapaotdoelg Povo oto minedo

POCOXNG 2.

9. 'Eva cognitive-add-6 povtédo, pe YVOOTIKEG avarapaotdoelg POVo oto erirnedo

poooxng 6.

10. 'Eva cognitive-add-11 povtéAo, pe YV®OOTIKEG Avartapaotdoelg POVO OTOo ETTire-

60 poooxng 11.

0.5 IIpoBAswn fMRI

Ye autd 1o pépog g Soudeldg pag, adlodoyrioape v anddoorn v HOVIEA®V
LSTM xpnowponowwvtag ) pébodo aro to [11] oto ouvoro debopévav Harry, onwg
avagépoupe mapandve. Xpnotporoloupe povo ta povieda LSTM mou napouot-
Aoaple MPONYOUHEVAG AOY® NIKPOTEP®V XPOVeV eKmaibeuong. X10xX0g pag sivatl va
eAéySoupe eav eloayoviag Sedopéva eykepAalou oe éva YA®OOIKO Povtédo, eivat tba-
VO 01 avarapaotdcel§ TOU va ATtoTeEAOUVTAL ATIO TTEPLOCOTEPES TIANPOPOPIEG OXETIKEG

He tov eyREPaAAO.
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Subject Base Finetuned Trained

1 0.54 0.56 0.57
2 0.61 0.59 0.6
3 0.64 0.64 0.64
4 0.51 0.5 0.5
5 0.56 0.57 0.57
6 0.61 0.6 0.6
7 0.59 0.59 0.59
8 0.6 0.62 0.63
average 0.58 0.58 0.59

Table 3. Zvykpivouue ta tpia puoviéfa puag pe Saon to mooo kaja mpo6ismovv v
eyke@aikn evgpyonoinon.

0.6 Ilsipapata

Meta v tponiontoinon tou BERT kat tou LSTM, Soxkipddoupe g autég ot aA-
Aayég ennpedlouv v Kavotntd toug va rpoBAénouv ) yAoooa dokipddoviag tnv
artvdoor] toug ot tasks eneepyaciag puokng yAoooag. Tpéxoupe ta poviéda pag

oe erta downstream tasks Kal Ouykpivoupe ta anoteAéopatd toug otov rivaka 4.

LSTM Models BERT Models
Task (petpikr) SHA-  fine- train- BERT Emb- Cogn Cogn- Cogn- Cogn-
RNN tuned ed base layer add Istm add-
base Istm

CoLA (Matth.) 0.35 0.09 0.01 0.578 0.0 0.012 0.21 0.0 0.267

SST-2 (Acc.) 0.9 0.73 0.67 0.917 0.777 0.802 0.915 0.813 0.901
MRPC (F1) 0.84 0.713 0.562 0.907 0.82 0.821 0.817 0.815 0.816
STS-B (Pears.) 0.79 0.34 0.13 0.913 0.068 0.105 0.825 0.109 0.841
QNLI (Acc.) 0.798 0.678 0.53 0.893 0.611 0.865 0.87 0.633 0.878
RTE (Acc.) 0.592 0.532 0.511 0.714 0.469 0.537 0.545 0.534 0.588
WNLI (Acc.) 0.651 0.543 0.512 0.436 0.563 0.408 0.422 0.408 0.478

Table 4. XuUyKpi0on TV UOVTEA®V, UE TIC YVDOTIKEG AVATapaoctaoels o€ ofla ta snineda
TOooOX NS ToU Hovtéflou, os emta Sragopetica downstream tasks. I'a ta LSTM po-
vtéfa, 1o finetuned avagéperal oto HOVTENO TTOU EMAVEKTALOEUTNKE UE TG YVDOTIKES
avanapaotaocelg oto eMinedo MPOOOXNGS yia 5 EMOXES, v 1O trained oto povteflo mou
EKTAIOEUTNKE ATO T0 UNOEV UE EVODUATOUEVES TIG YVWOTIKEG avanapaotaocels os 0/In
m 6wabukaoia g eknaibevong. Xta BERT poviéda mapouvowalovpue gva POvtéAo pue
g eyypagég eykepajouv oto embedding layer (otAin Emb-layer) kat otn ovvéxela
&va UOUVTEAD UOVO UE YVOOTIKES avanapaotaoelg otov mivaka Q (otan Cogn) kat éva
OTOU TPOOOETOUUE TIG YVDOTIKEG avanapaotaocelg otov mivaka Q (otin Cogn-add).
TéAog, ot U0 mapandve ap)IEKTOVIKEG enavajaubavovial apov TPEOTA TEPACOUUE
TIC YV@OTIKES avanapdotaocels ano gva eninedo LSTM (otiegc Cogn-lstm kar Cogn-
add-lstm).
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Task (petpikn) | BERT base | Cogn-add-1 Cogn-add-2 Cogn-add-6 Cogn-add-11
CoLA (Matth.) 0.578 0.08 0.397 0.431 0.296
SST-2 (Acc.) 0.917 0.916 0.916 0.913 0.912
MRPC (F1) 0.907 0.82 0.822 0.82 0.82
STS-B (Pears.) 0.913 0.833 0.832 0.832 0.833
QNLI (Acc.) 0.893 0.874 0.877 0.877 0.876
RTE (Acc.) 0.714 0.548 0.555 0.563 0.556
WNLI (Acc.) 0.436 0.464 0.437 0.45 0.422

Table 5. ZXuykpion wov andov BERT povtéAov kat tov OIK@OU uag UOVTEA®V, UE
TG YV@WOTIKEG AvAnapaoctdocly 0 £va UOVO eTMedO TPOOOXNS KADE @Opd, OE EMIA
Swagopetika downstream tasks. I'ia ofa ta poviéfa ypnoyonolovus tm uedobo onou
Ol YVQOTIKEG avanapaoctdoelg mpootidevial uadl ue tg AsEikée avanapaotdoelg Tou
BERT otov nivaka Q. O apiduog otov titjo kade otnjing vmodbniwvet to eninedo tou
UOVTEFIOU OTO OTIOI0 THPOODETOVUE TIG YVWOTIKES AVATIAP AOTATELS.

0.7 Zupnepaopata

ApYX1Kd, Ao 1a MPXOTA MEPAPATA HE TIS YVOOTIKEG AvATapaoTAoelg, CUNIIEQA-
tvoupe OTl 1] arnodoon 10U PoVIEAOU K@O1KOToINoNg, dev ennpeddetal CUVOAIKA ATt
10 onpaoctoAoyiko 1) 1o Glove xopo. ErumAéov, yla 1o neipapa tmg onpactoAoyikng
opolotnTag, 0AeG 01 EKOOOEIG TOU POVIEAOU EMMITUYXAVOUV ITAPOH0ld ATToTeAEopata Pe
10 ouviuaopo twv avanapaoctdoenv Word2vec kat tou Shared Response Model va
epnpavidouv eAappng KaAutepa arotedéopata. [evikd, o1 YVOOTIKEG AvaTIapaoTACElS
dev eival ocadpwg n KaAutepn €mMAOY ©G £pyaléla yla UTOAOYIOTIKEG £pyaoieg, pe
Baon ta npoavadepBivia arotedéopata. Autd ta melpdpatd, av Kat eivat rmoAid u-
OoYOPEvVA, Hev PITOPOUV va EKPETAAAEUTOUV TTANP®G TIS SUVATOTNTES TOV YVOOTIKOV
avanapactace®y.

21 ouvéxeld, adpou e§eTA0APE TEPUTIVOELG OIOU 01 YVAOTIKEG AVATIAPACTACELS
£xouv xpnotporonOei yia va BeAtidoouv poviéda enegepyaotag QUOIKNG YA®oodag,
eotiaoape otn S1epeuUvnon TOU TPOIIOU HE TOV OIOI0 AUTEG Ol avarapaotacelg da
HItopouoav va MnpedcouV £€vd YA®OOIKO PNOVIEAO Kal ITO1EG TPOTIOMO0ELS £ivatl ITo
KataAAnleg yia va avakailuvypoupe tig Suvatotnteg toug. To BERT [5] fjtav to emike-
VIPO G £PeUVAG pag. Zinpifape tny mAelovotnta eV MEPApaT®V Pag otnyv urobeon
OT1 £vag KAAOG TPOTIOG Y1d VA EVOXPIATOCOULE TIS YVRAOTIKEG AvVATIAPAOTACELS OV ap-
XUTEKTOVIKI] £vOG YA®OOIKOU poViEAou, eivatl pe v nmpoodnKn toug otov rivaka Q
Tou erurédou mpoooxng. Me autov tov Tporo, Sa Propoucdaile va EVOOHUAT®OOUE
eykePadikn rAnpodopia otn dradikaoia ekmaibeuong Tou POVIEAOU KAl £miong va
petprdocoupe v emnidpaon tou JopuBou mou cuvavidpe oe dedopéva eyrepdaou.
Aoxypadoupe mpoTa TV MPOOELYYon pag oe éva pikpotepo poviedo LSTM, orou

Xpnotpornoloviag ) pébodo amno to [11], drarmotdvoupe o6t 1) 1KAvOtnTd TOU vad IPOo-



0.7 Zupnepdopata

BAemet edbopéva eyrepalou Bedtimvetatl Kat autd propet va odnyroet oe Pedtioon
g arodoong tou poviedou ot tasks enedepyaoiag Quokng yAwooag.

[Tap’ 0Aa autd, ta amoteAéopata pag os downstream tasks deiyvouv 611 akopn
Kat n repinmdokn apyitektovikr tou BERT ennpedadetal apvnuikd ano tg Sopubmndeig
eYKReEPAAIKEG avanapaotdoelg. Ta melpdpatd pag oe pikpotepa povieda deixvouv ot
yia ta tasks o1mou 1o apx1ko poviédo smruyyxavel 116n kKadd anotedéopara, 1 anodo-
or] tou dlatnpeital akopn Kat Pe TS YVOOTIKEG avarapaotdaoelg oto erinedo 1mpo-
00x1NG. Auto To avaduoupe pe peyadutepn Asrmtopépeta oty Evotnta 4.7, onou ta
potevopeva yvootikd pag poviéda BERT xdvouv eviedog tv anoteAeopatkottd
TOUG Yla OPLOPEVA TTEPAPATA AOY® TOV KAKWV AVATTApACTACE®V TOU eyKedpaiou. Mia
tedevutaia onpeiwon yia ) doudeld pag sivatl ot otav Sokipdoape va ipocHEcoupie
T YVOOTIKEG avariapaotdoelg oe dtapopetikd emineda tou poviedou BERT, aro-
Sei€ape on ta peoaia emineba katavépouv kadutepa ta JopuBmdn dedopéva tou
EYKEPAAOU 0¢ OUYKP101] HE Ta apX1KA Kal ta tedevtaia emineda, arpBwg onwg ixav
avagépet oto [11]. Zuvodikd, n pébodog pag gaivetal va otepeital 1@V anapaitniov
OUOTATIK®V TIOU Xpe1dadovial Ol EYREPAAIKEG AVATIAPACTACELS Y1d vad TIAPEXOUV avia-
Y®OVIOTIKA artoteAéopiata oto rmAaiolo TV oUYXPOVRV TEXVIKOV EMESEPYACIAg QUOIKNG

YAwooag.






Chapter “

Introduction

In this Diploma Thesis, we study methods of incorporating fMRI data into Nat-
ural Language Processing (NLP). Using machine learning methods and freshly
proposed Transfer Learning techniques, we evaluate the performance of brain
data on downstream natural language processing tasks. Our aim is to find ways,

based on the common practices, to utilize the potential of neural representations.

1.1 Motivation

Conceptual Knowledge refers to the knowledge of understanding of concepts,
principles, theories, models, classifications, etc. We learn conceptual knowledge
through reading, viewing, listening, experiencing, or thoughtful, reflective mental
activity. The question of how the human brain represents conceptual knowledge
has been debated in many scientific fields. Brain imaging studies have shown that
different spatial patterns of neural activation are associated with thinking about
different semantic categories of pictures and words (for example, tools, buildings,
and animals).

Several recent studies, on occasion of the successes of self-supervised NLP
models, are trying to investigate these models’ representations in order to study
how people process and understand language. Their approaches had opened ways
to understand the processing of longer word sequences, context and even suggest
that having NLP models specifically designed to capture the way brain represents
language meaning may lead to even more insight about natural language process-
ing. However, there is no prior work that utilizes the actual brain representations
and use them to improve the overall performance of the aforementioned models.

In this work, we propose methods to extend self-supervised natural language
models by combining them with cognitive embeddings and find aspects where the
latter prevail. Futhermore, we experimented on evaluating encoding models for
mapping word embeddings to neural representations and tested how the language

models’ ability to predict brain activity changes after we incorporate cognitive
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embeddings in their training process. In each case, there is imperative need
to discover methods for fMRI data to exploit their full potential. The specific
ways that cognitive embeddings can be used to achieve model architectures that
outperform the current popular models yet remain unclear, even though [7] shows

that cognitive embeddings encode useful semantic information.

1.2 Thesis Contributions

Below, we summarize the main contributions of our work:

e We designed a novel functional pipeline for extracting cognitive embeddings
from fMRI datasets.

e We compared the performance of several cognitive representations with tra-

ditional word emebeddings on a downstream similarity task.

e We fine-tuned language models while incorporating cognitive embeddings in

their training process.

e We tested if the aforementioned fine-tuned models’ representations become

better at predicting brain activity.

e We evaluated the performance of our "cognitive" language models on several
downstream natural processing tasks. We found that models perform better

only in tasks where the base model already achieves great performance.

e We tested adding cognitive embeddings at a different attention layer of the
BERT model each time. We found that the mid layers are better at distribut-

ing new unknown, to the model, information.

1.3 Chapter Outline

In the first part, we describe the necessary theoretical background in order for
the reader to understand the structure and the contribution of this thesis. In par-
ticular, in Chapter 3, we present information regarding the use of cognitive data
in NLP and computational models. We review related work both from a theoreti-
cal and a practical perspective, while describing commonly used datasets as well
as frequently applied methods for voxel selection. In addition, we present neural
alignment methods and different ways of mapping between voxel space and lexical
embeddings. In Chapter 2, we present an overview of machine learning theory,

focusing on the models that we used in this project.
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In the second part, we describe in detail the experiments that we conducted.
More specifically, in Chapter 4, we describe the methodology used and the pre-
processing conducted in order to develop a pipeline for extracting cognitive em-
beddings. We analyze the results of our work and we present comparative tables

in order to illustrate the differences between each of our proposed methods.

Finally, in Chapter 5, we further discuss our findings and present a summary
of this thesis, as well as future directions for inducing neural representations into

natural language processing methods.
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Machine Learning

2.1 Introduction

Machine Learning (ML) is a field of Artificial Intelligence (AI) that creates sys-
tems with the ability to automatically learn and improve without being explicitly
programmed to calculate or solve problems. The ML algorithms allow computers
to be trained on input data and use statistical analysis to extract values that fall
within a specific range. The learning process begins with observations, which are
examples, or empirical results or instructions, so that patterns can be identified
in the data and better decisions can be obtained in the future, based on the exam-
ples we have. The primary purpose is to enable computers to learn automatically,

without human intervention or help, and adjust their actions accordingly.

Machine Learning is divided into three broad categories depending on the way
the learning process takes place. The first category is called Supervised Learning.
During its training phase the corresponding labeled outputs (labels) are listed to-
gether with the available data input. This labeling is usually done by humans and
therefore the process is quite time consuming. The second category, that does not
carry marked data but attempts to discover structures in existing observations,
is called Unsupervised Learning. The third and last category is called Reinforce-
ment Learning and treats the training system as an agent that aims to maximize a
profit, defined by a Reward Function, by interacting with a dynamic environment.
Consequently, the first category seeks to create a model that illustrates input data
to output data, the latter seeks to identify an undercurrent structure in the input

data and the third aims at optimal decision making.

In addition, two interesting categories that are often encountered in the rele-
vant literature is that of Semi-Supervised Learning and Meta Learning. The first is
a mix of Supervised and Unsupervised Learning, where some data are highlighted
while most are not and the second focuses on how a system can learn how to

learn.
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2.2 Types of Machine Learning

Machine Learning algorithms are split in three main categories: Supervised

Learning, Unsupervised Learning and Reinforcement Learning.

2.2.1 Supervised Learning

In Supervised Learning, there are input variables X and output variables y.

The goal is to learn a mapping function from input to output through an algorithm:

y=fX) (2.1)

A Supervised Learning model aims to approach the display function so well
that when new input data X are entered into the model, the corresponding out-
put variables y can be predicted with success. The different types of problems
observed in Supervised Learning arise from the diversity of the output y. In Clas-
sification problems, y is discrete, while in Regression problems the output y is
continuous. In Classification problems, given an input, the model should clas-
sify it into a category, while in Regression problems, the model should return a

continuous value as an output [19], [20].

2.2.2 Unsupervised Learning

In Unsupervised Learning, the training data are vectors X that do not contain
labels for each input data. Therefore, the goal of Unsupervised Learning is to find
patterns when there are no "correct answers", or when they are impossible to be
calculated. Unsupervised Learning mainly solves Clustering problems, where the
goal is to separate input data in different clusters, based on a given metric [20].
In addition, another category of Unsupervised Learning are Generative Models.
These models mimic the process of creating training data. A good Generative
Model should be able to create new data that look like the original.

2.2.3 Reinforcement Learning

Reinforcement Learning differs from the previous two categories because it
focuses on optimal decision making. The core parts of Reinforcement Learning
are an environment, and an agent which interacts with it over time. The agent
performs actions based on observations, and then receives a reward from the
environment. This process continues in a loop. The behavior of the agent depends

on a function that maps the observations of the environment to actions.



2.3 Machine Learning Algorithms

2.3 Machine Learning Algorithms

2.3.1 Cost Function

The goal of any Supervised Learning algorithm is to return a function f() which
accurately matches the input examples to the corresponding labels. To quantify
the loss (error) of the model, a Cost Function is used, that predicts §j when the
actual label is y. Usually, the Cost Function L({j, y) assigns a numeric value to
the predicted output { given the actual output y. It must have an infimum,
which means that the lower the error value the better the prediction. Function
parameters are set in order to minimize L loss in the training examples.

Given a train set (x;.,, Y1.n), @ cost function L per sample and a function f(x; ©),

we define the total loss as the average loss on all training data:

£0) = -2 3 LG 0).y) 2.2
=1

The goal is to find the optimal parameters ® that minimize the total error:

A , 1y '
0® = argy min L(®) = argg min N Z L(f(x;0),y,) (2.3)

i=1

Some common cost functions are the following:

e Mean Squared Error (MSE), which calculates the mean squared prediction

€ITor:

1y 52
J(a)—n;(x P, (2.4)

where the prediction error is the difference between the true value (Y;) and
the predicted value (P;) for an instance and 8 is the parameter vector of the

network. MSE is used with regression models [21].

e Mean Absolute Error (MAE), which calculates the mean of the absolute

prediction error:

1
J@) =~ ) I¥,~Pl 2.5)

where Y; is the true value and P; the predicted value for an instance and &

is the parameter vector of the network [22].
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e Cross Entropy Loss Function, which uses the concept of cross-entropy.

Cross-entropy is mathematically defined as:

H(p.q) = - ) pelog qs. (2.6)
Ik

where p and q are the true and the predicted probability distributions re-
spectively. The more the two distributions differ, the higher the value of the
cross-entropy. Cross-entropy loss function is widely used in classification
problems. Based on the definition of cross-entropy, the goal of the cross-
entropy loss function is to minimize the cross-entropy between the model’s
distribution and the distribution of the given data [23], [20].

2.3.2 Logistic Regression

Logistic Regression is used to solve linear classification problems. It differs
from other simple classifiers on how the probability of an input sample x € R*
belonging to a class, is calculated. In a binary classification problem with classes
y = {0, 1}, we apply the sigmoid function, on the output vector of a function f(),
which compresses the values of the vector in range (0,1).

P(y = 1|x) = (2.7)

1+ ed0
where f(x) could be a linear function. If this probability is greater than 0.5, then
sample x is categorized into the first class. Otherwise, it’s categorized into the
second class with probability P(y = O|x) = 1 — P(y = 1|x). The Cost Function we

aim to minimize, is the cross-entropy, defined by the relationship:
J(w) = —[ylog(P(y = 1|x)) + (1 — y) log(1 — P(y = 1|x))] (2.8)

2.3.3 Word Embeddings

The idea behind Word Embeddings is that we would like vectors of similar
words to have values close to each other. While word similarity is difficult to
determine and depends on the particular problem, modern approaches draw in-
spiration from distributional hypothesis [24], arguing that words have a similar
meaning when they appear in similar context. Word2vec [18] attempts to generate
distributional numerical representations of words, which encode the similarity of
the words. Different methods create supervised training examples, in order to
predict the word based on the context, or to predict the context based on the
word. The most important set of pre-trained word vectors is word2vec. Word2vec

is a language model approach, applied to a finite number of words.



2.3 Machine Learning Algorithms

Word2vec

WordZ2vec consists of four structural elements. The Continuous Bag of Words
(CBOW) and skip-gram are the two suggested algorithms, while Negative Sam-
pling [18] and Hierarchical Softmax are the two suggested training methods. As
shown in Figure ??, the CBOW algorithm given the context of a word, tries to
predict that word. In the Skipgram model, on the other hand, given a word, it
attempts to predict the distribution of the words that compose the context of that
word. Furthermore, Negative Sampling is based on sampling "negative" examples
while Hierarchical Softmax proposes an eflicient tree structure for calculating the

probabilities of each word in the dictionary.

INPUT PROJECTION OUTPUT INPUT PROJECTION  QUTPUT
w(t-2) w(t-2)
w(t-1) w(t-1)
_\SUM
— w(t) w(t) —
w(t+1) / w(t+1)
w(t+2) w(t+2)
cBOw Skip-gram

Figure 2.1. The two suggested Word2Vec algorithms: CBOW (Left) and Skipgram
(Right). Source: [1]

Glove

In contrast to previous methods, Glove [25] is based on a model that predicts
the probability of a word j, that appears in the context of a word i. Learning is
achieved with least squares as the cost function. In addition, with this method, all
text statistics are used and the creation of a vector space that includes important

information of the meanings of the words, is achieved.
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2.4 Deep Learning

Deep Learning belongs to the general field of Machine Learning (ML). Methods,
such as, Deep Neural Networks, Recurrent Neural Networks and Convolutional
Neural Networks have been successfully used in recent years to solve computer
vision, voice recognition, natural language processing, bioscience and forecasting
problems. The term "deep" derives from the existence of multiple layers in these
networks. Deep Learning, is the modern version of Machine Learning. Efficient
network training requires a great load of data, usually thousands of samples.
Also, even though it’s not necessary, the parallel processing of data on a Graph-
ics Card (GPU) with appropriate libraries has greatly accelerated the duration of
training, compared to the execution on a Central Processing Unit (CPU). The expo-
nential growth of data due to the internet, as well as the rapid, driven by the video
game industry, growth in graphics cards, are the reasons why, deep learning is

the state of the art in terms of developing Artificial Intelligence Models.

2.4.1 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are a powerful and robust type of neural
networks, which are particularly useful because of their internal memory. The
connections between the units in an RNN create a directed graph on a sequence.
This allows the network to exhibit dynamic time behavior for a time sequence.
RNNs use their internal state (memory) to process sequential inputs to the net-
work. Intuitively, RNNs have the ability to remember important input information
they've received, which allows them to make accurate predictions for the following
data. As shown in Figure 2.7, the basic RNNs are nodes organized in a sequential
order. The RNN first takes xy from the input sequence and extracts hy (hidden
state). The hidden state hy together with x; are the input for the next step. Re-
spectively, h; together with x, are the input for the next step and so on. Therefore,

an RNN model remembers the context of the entry from the training process.
[—_> A j = A — A A

Figure 2.2. A basic Recurrent Neural Network. Source: [2]

v
v

A
Consequently, for each time point t, the equations that describe the function
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of an RNN are:

hi = fu(Whphioy + Wiexi + bp) (2.9)

Y = fy(Wyrh; + by) (2.10)

where h; denotes the hidden state at time t, x; the input vector at time t, y;
the output vector at time ¢, b, the bias for h, b, the bias for y and f,, f, are
the activation functions for x and h respectively. There are three different weight
tables: W, (weights from the entry to the hidden layer), Wy, (weights from the
hidden layer to the hidden layer), and W, (weights from the hidden layer to the
output layer).

Bi-directional RNN

As we mentioned above, RNNs capture sequential data information which
they've received at time t and encode them in their hidden state. However, they
are also likely to obtain more information by reading a given sequence backwards,
in order to make more accurate predictions.

So, in a bi-directional RNN, we encode the input sequence from beginning to
end (forward RNN), but also the sequence from the end to the beginning (backward
RNN). Then we combine the hidden states of the two RNNs to find the hidden state
for each time point. Specifically, we calculate separately the hidden state of the
forward RNN E at time t, but also the corresponding hidden state of the backward
RNN E and combine them to calculate the final hidden state at each time point.
As aresult, the hidden state at time t is simply the combination of the two vectors:

h; = ﬁzH(ITT_t. The same also applies for all T+ 1 time points of the input sequence.

2.4.2 Long Short Term Memory (LSTM) Neural Networks

A subcategory of Recurrent Neural Networks (RNNs) described above, are the
LSTMs. They were originally proposed by Hochreiter and Schmidhuber in 1997
[26] and theyve been studied and developed by researchers since then. The
results from using these networks in time series data are very promising, offering
solutions to a variety of modern problems.

LSTMs are designed to address one of the key issues of RNNs; learning long-
term dependencies. For example, an RNN designed to accept 3 words from a
sentence in order to predict the next, does not have the ability to "remember"
important previous information from the whole sentence. This problem had been
identified by [27].

The basic idea behind an LSTM, is based on the existence of interconnected
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portals (gates) that control (encourage or not) the flow of information from one
point to another. The structure of this portal contains a sigmoid function through
which an input vector passes, which is then multiplied by a second vector to

produce the final output.

& ® &
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Figure 2.3. The cell structure of a simple Recurrent Neural Network (a) compared
to the structure of an LSTM (b)

The analysis of an LSTM "cell" is presented below step by step:

o Forget gate: At this point, we select the junk information contained in the
previous hidden state h;-; and the new input x;, and we "forget" it through the
portal. A number is produced between [0, 1] which is multiplied by the internal

values of the state C,_,, choosing what information will remain.
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ft=0Wg-[ht—1,2¢] + by)

Figure 2.4. Forget gate of an LSTM.

e Store Update gate: In the next step, we decide what new information we
will store in the internal state C. This is done, first by selecting the values
to be updated (sigmoid) as well as through the tanh portal which produces a

candidate vector C, for these values.

/, i =0 (Wilh—1,2¢] + b;)
Cy = tanh(We - [he—1, ] + be)

Figure 2.5. Store gate of an LSTM.

Then we repeat the first step, forgetting the useless information, and adding

the new information C; multiplied by the percentage i, of their change.

Ciy %

™

@

fi Cy=fr*Ciq +i % Cy

—>®

Figure 2.6. Update gate of an LSTM.

e Output gate: Finally, we decide, what result will be produced at the output. To

achieve this, the state calculated from the previous steps C; is filtered, passed
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through a tanh function and multiplied by the output of a sigmoid gate, so that
we output to the next stage only the parts we decided to.

he A
‘5;" o =0 (Ws [hi—1,2] + bo)
) o] . hy = oy * tanh (C})
t—1 >

A

Figure 2.7. Output gate of an LSTM.

2.4.3 Attention Mechanisms

The basic idea behind the attention mechanism is that not all vectors of a
sequence, contribute the same to the context. So, the model should not use all
the vectors equally to make a prediction, but focus on the parts of the input that
contain the most relevant information about a particular problem. To implement
this approach, we use an attention mechanism [28, 29] to find the relative signif-
icance of each input vector of a sequence. In order to focus on the vectors that
contain the most important information, a weight a; is set in the hidden step,
corresponding to each h; vector. Then, the finite representation r of the entire

input sequence is computed, as the weighted sum of all hidden states.
e; = tanh (W, h; + by), e €[-1,1]

_exple)
a; = a=1
Siiexp(e) Z; (2.11)

r= Z aihi
i=1

where W), and b, are the weights of the attention layer.

2.4.4 Transformers

In this section, we make a general introduction to Transformers [4] since they
form the basis of our models (BERT [5]). Until recently, popular models were
based on recursion or convolutions and they used to connect the Encoder with
the Decoder through an Attention Mechanism. The Transformers rely entirely on
this Mechanism and lead to more efficient implementations by allowing the paral-

lelization of calculations by dramatically reducing training time. Transformers are
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focused on solving machine translation problems and their architecture explains
this fact since the Encoder, encodes information from one language into an inter-
mediate representation, which is then passed to the Decoder and finally ends up
in another language. This architecture, of course, with some modifications can be
applied to a wide range of problems. As shown in Figure 2.8, a transformer con-
sist of a set of 6 encoders connected to another set of 6 decoders. All the encoders
as well as the set of the decoders consists of layers with similar structure but of
course have different weight values. The encoders and decoders accept inputs
from the lower layers and carry them to the higher. Each encoder consists of two
subsystems. The first is a Self-Attention Layer, that allows the encoder to match
the dependencies of each word, with the other words in the sentence. The second
subsystem is a Feed Forward Neural Network. The decoder architecture is similar,
with the only difference, between the two subsystems described above, being an
extra intermediate layer called the Encoder-Decoder Attention. In a similar way,
with the Seq2Seq models [30], this subsystem is responsible to locate and focus
its attention on specific elements of the input that have already been encoded by

the encoder
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Figure 2.8. The general structure of a Transformer. Source: [3]

The next part of the transformer implementation is when the input enters the
first encoder of the set of 6 encoders described before. As discussed in previous
sections, the system needs to receive the words in the form of word vectors.
Every word is transformed into an appropriate vector representation and crosses

a specific path in the network. The Feed Forward Neural Network does not hold
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correlations between these paths and therefore the words. This suggests that
the paths in this system can be paralleled. The system responsible for these
correlations between the words is the Self-Attention layer.

The outputs of the Self-Attention layer are calculated in 2 basic steps. The
first step is to create three (3) vectors from the word vectors of the sentence.
Specifically, the Query, Key and Value matrices are constructed. These vectors,
of size 64, much smaller than the dimensions (512) of hidden vectors, practically
are the result of the multiplication of the input vectors with specific arrays, the
parameters of which are optimized during the training process. Of course, the
size mentioned before is an architectural choice but it is generally proven that
at this size it is possible to have a stable representation, able to gather all the
information between the dependencies of the words of the sentence.

Multi-Head Attention is also a common practice. Specifically, the Transformers
introduced in [4] have 8 attention heads which essentially means that 8 different
sets of W9, WX and WV arrays are generated for each Self-Attention layer of
each encoder and each decoder. Therefore, the optimization parameters increase
significantly but this technique aims to improve performance as the model can
focus better on different parts of the sentence and each head can also give a
different form of attention for the model to focus on. Consequently, multiple
representation subspaces can occur. The Feed Forward Neural Network expects
a different input size from the result of the operations mentioned before. So, once
we concatenate all the results, we multiply this table with another W© table, the
parameters of which are optimized through training phase. Finally, the result of
this operation is passed to the Feed Forward Neural Network.

From the above, one can conclude, that Transformers do not take into account
the actual sequence of the words in a sentence. Therefore, it is necessary to in-
clude vectors that represent the "order" of the words in the sentence. These vec-
tors, called positional embeddings, are learned by the system during the training
process and they essentially indicate the "order" of the words. These embeddings
are added with the corresponding word vectors in order to provide meaningful dis-
tances between the embedding vectors, once they’re projected into Q/K/V vectors

and during dot-product attention.

Self-Attention

Self-Attention utilizes three matrices, K, V and Q to calculate the attention

and is described, as mentioned before, by the equation:

T

. OK
Attention(Q, K, V) = softmaux(

Vs

where dix denotes the dimensionality of the keys and queries.

W (2.12)
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Figure 2.9. The inner structure of a Transformer. Source: [4]

BERT

In 2018, the Natural Language Processing (NLP) community made several im-

portant successes, with the releases of Allen Al ELMo models [31], OpenAl Open-
GPT [32] and Google BERT [5]. Since then, Transfer Learning Techniques have

been the center of attention and they began to see use in a wide range of applica-

tions because with minimal time, effort, data and computing power, researchers

have been able to achieve significantly better results in a variety of problems. The

only difference, is that a pre-trained model is needed, to be adapted and optimized

(finetuning), in many cases together with a small subnet, to solve a specific task.

BERT (Bidirectional Encoder Representations from Transformers) [5] is based
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on several dominant ideas, such as those of Semi-Supervised Sequence Learn-
ing [33], ELMo [31], ULMFiT [34], OpenAl Transformer [32] and Transformers [4].
Specifically, BERT’s training was implemented with the idea of semi-supervised
sequential learning on a huge number of texts from books and Wikipedia, among
other sources. The model during the training process focuses on a specific prob-
lem of language modeling called masked word prediction. This way, it learns to
detect language patterns and obtains the ability to process linguistic texts as well.

In addition to extracting high quality language features from a text, BERT,
along with small neural network add-ons, can solve a variety of classification
problems, entity recognition and question answering, as illustrated in Figure 4.9
below. Furthermore, BERT, like ELMo, can also be used to produce contextual-
ized word embeddings. At this point, it’s worth noting that there are two versions
of BERT. The first is the base model (12 Encoders - 768 hidden size) which is com-
parable in size to that of the OpenAl Transformer and the second is a much larger
model (16 Encoders - 1024 hidden size) which obviously leads to significantly
better results as previously described.

Class Class
Label Label

1T
I

Sentence 1 Sentence 2 Single Sentence

(a) Sentence Pair Classification Tasks: (b) Single Sentence Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC, SST-2, ColLA
RTE, SWAG
Start/End Span (e] B-PER (e]

H
BERT BERT
\

Question Paragraph Single Sentence

(c) Question Answering Tasks: (d) Single Sentence Tagging Tasks:
SQuAD v1.1 CoNLL-2003 NER

Figure 2.10. Examples of BERT’s application in multiple tasks. Source: [5]

For our BERT implementation, we used the publicly available library from
HuggingFace in PyTorch [35]. In particular, for all downstream tasks, we use
the BertForSequenceClassification model [36], which consists of the classic BERT
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model with an extra linear layer for classification.

The first step to pass a text through BERT, is the transformation of this text
into a form that the model identifies. Except from the tokenization of the sentence
(WordPieces [37]), special tokens should be added and each element should be
given the appropriate IDs, which are also the indicators of the dictionary. For
example, in text classification, the sentence is required to start with the token
[CLS] indicating the classification and ending with the token [SEP]. All sentences
should be padded or truncated to a specific preset length, which affects both
the computational and time performance of the system. The maximum sequence
length that the system can accept, as input, is 512 tokens. In addition, the system
expects an attention mask that indicates which input elements correspond to
essential information and which should be ignored by the system due to padding.
Each of the 512 outputs of the base system is represented by a vector of 768
values. The first vector, corresponds to the first token, in this case [CLS], so
is commonly used for classification.It is noteworthy, that the researchers who

published BERT, also give some suggestions on the parameters to be optimized.

2.5 Transfer Learning

Most NLP models today rely on pre-trained word representations, such as
word2vec [18] and GloVe [25], to initialize their embedding layer. While such pre-
trained word vectors are capable of modeling the semantic similarities of words,
they have limitations that do not allow them to model polysemy, or metaphorical
use of language etc. Therefore, they are not able to model all the subtle aspects
and concepts of natural language. To address this problem, pre-trained represen-
tations of language models have been proposed, which give a good representation
of the context [38, 31], and assign a different word vector each time (even for the
same word), depending on its "environment".

A major advantage of Transfer Learning, is related to the faster development
and implementation of applications that use a pre-trained model. These models
are already able to detect language features due to their training and as a result
the engineers or programmers only have to combine them with other smaller net-
works and fine-tune them on each specific problem. Nonetheless, because of their
computationally and financially costly training process with a huge volume of text,
the final pre-trained model requires significantly less data, time and computing
power for fine-tuning. The important advantage that makes these techniques
popular are the state of the art results obtained on a variety of problems.

In conclusion, what has been proposed, is a model which understands basic
features of the language, regardless of the problem, in order to save several hours

of training on each specific task. This direction of Natural Language Processing
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is identical with what happened in recent years in the field of Computer Vision
where large pre-trained models are used that have already learned to separate the

basic "components" of an image, such as lines or angles [39].



Chapter B

Cognitive Background

n this chapter, we present a general overview of the most common methods for
fMRI preprocessing. First, we present some relevant Natural Language fMRI
datasets. Second, We make a detailed analysis on voxel selection techniques and
methods to combine different voxel spaces. Finally, we focus on mapping methods
between language and neural representations. All these methods are the basis

for our work presented in the following chapters.

3.1 Introduction

The seminal work of Mitchell [6] demonstrated that fMRI signals encode mean-
ingful semantic information for concrete nouns, which can be effectively used to
map between distributed semantic representations (DSM) and voxel activations.
This was the first computational model to predict brain patterns associated with
unknown words (lexical expansion). Many others have attempted since to extend
this initial work, and the use of cognitive data in NLP and computational models
remains an open field of research.

In the following subsections we review related work both from a theoretical and
a practical perspective.Specifically, we describe commonly used datasets as well
as frequently applied methods for voxel selection, neural alignhment and mapping
between voxel space and lexical embeddings. In the next chapter, we also compare
the performance of cognitive embeddings and lexical embeddings in downstream
tasks and we review cases where cognitive embeddings have been used to enhance

or improve task-based models.

3.2 Datasets & Stimuli

Generally the most common neuroimaging modality used in semantic map-

ping is functional MRI (fMRI), which records the blood-oxygen response in the
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whole brain. In comparison to other methods (EGG,MEG) fMRI offer good spatial
resolution (= 1-3 mm), with a limited temporal resolution (= 1-2 sec). The infor-
mation signal in MRI is inherently noisy and preprocessing is a crucial step for
extraction of semantic information. The stimuli can be single words, displayed
one at a time as text in an isolated way, or in context as a word cloud or a series
of sentences with a common theme. Whole sentences in the form of narratives
have been commonly used (e.g. reading of a book passage) both as visual (text)
and auditory input. As words tend to evoke visual neural responses, Images have
also been extensively used as an experimental stimulus.

The dataset introduced by Mitchell [6] contains fMRI scans from 9 partici-
pants, and stimuli are line drawings and noun labels of 60 concrete objects from
12 semantic categories. All stimuli were presented 6 times during the scanning
session, in a different random order each time. Participants were asked to think
of the same item properties across the 6 presentations.

Pereira [16] wanted to evaluate abstract concepts and sentence fMRI. Tha
data consists of fMRI scans for three experiments , with 16, 8, 6 participants
respectively. In experiment 1, stimuli consist of 180 concept words selected to
cover the semantic space. Each word represents a cluster of words based on Glove
vector space (300 dim). The stimuli were shown in three paradigms with multiple
repetitions, in a sentence, as an image, or in a word cloud. In experiments 2 and
3, the stimuli consisted of a collection of sentences for different topics, unrelated
to concepts in experiment 1. One fMRI image was captured for each sentence.

The dataset presented in [40] (MOUS) is a massive 204 participant study with
both visual and auditory stimuli. The participants were native speakers of Dutch.
The total stimulus set consisted of 360 sentences in Dutch. The visual subjects
read words one at a time in a sentence, in the correct and in a scrambled order.
60 sentences were shown to each subject in blocks of five sentences alternating
between blocks with sentences and blocks with word lists.

BOLDS5000 [41] is a functional MRI dataset that is based on responses from
almost 5000 diverse real world images that overlap with typical computer vision
datasets (SUN, COCO, ImageNet). Data was collected from four participants and
images are comprised of 1000 indoor and outdoor scenes of 250 categories (SUN),
2000 objects embedded in realistic context (COCO) and 1916 objects of mostly
singular objects (ImageNet).

The dataset by [10] consists of magnetoencephalography (MEG) and functional
magnetic resonance imaging (fMRI) data recorded from people as they read a
chapter from Harry Potter. The chapter included 5176 words and was recorded
from nine participants for each experiment. For the MEG experiment data for one
participant had too many artifacts and was excluded, leaving 8 participants.

The dataset in [42] includes fMRI and EEG acquisitions while participants
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listened to the first chapter of Alice’s Adventure in Wonderland, which comprises
of 2,129 words in 84 sentences and has a reasonable syntactic diversity. For
the fMRI data, there are anatomical and functional scans for 26 subjects and for
the EGG data there are scans for 49 subjects. The dataset is annotated with
predictors that range from prosody to morphology to syntax.

The dataset collection [43, 44, 45, 46] contains high-resolution fMRI data from
20 participants in response to prolonged auditory stimulation with the feature
film “Forrest Gump” in German. In addition, it contains acquisitions, including
raw and structurally aligned data, from the same participants with 25 music
clips, with and without speech content, as stimuli. Moreover, for 7 participants,
empirical ultra high-field fMRI data are included for orientation decoding in visual
cortex. Finally, for 15 participants there are acquisitions for retinotopic mapping,
a localizer paradigm for higher visual areas, and another 2 hour movie recording
with simultaneous 1000 Hz eyetracking.

The dataset [47] includes fMRI scans where 90 participants were reading in
their native language (Farsi, Chinese , English , 30 each) 40 short personal
stories that had been collected from weblogs. Each story was roughly 150 words
and was presented over the course of 3 slides of text, each displayed for 12 sec.
The data is not publicly available.

The dataset [48] when it is released will include a corpus of translations of the
children’s story The Little Prince in 26 languages annotated with dependency
graphs. Additionally, a subset of the corpus will be provided as time-aligned syn-
thetic speech, generated using Google’s Text-to-Speech Synthesis engine, along
with corresponding EEG data for 20 participants.

The dataset [49] contains fMRI acquisitions from 29 Chinese-Japanese bilin-
gual speakers who were asked to assess 48 pairs of images, 48 pairs of cor-
responding Chinese captions and 48 pairs of corresponding Japanese captions
for coherence. The images depicted one or two people performing common daily

activities and each pair was a sequence of coherent or incoherent events.

3.3 Mapping Methods

3.3.1 Voxel Selection

The number of voxels in a brain varies with respect to the voxel size and the
shape of the subject’s brain. The activity measured in many of these voxels is
most likely not related to language processing, and might change due to physi-
cal processes like the noise perception in the scanner. In these cases, learning
a mapping model from the stimulus representation to the voxel activation will

not succeed because the stimulus has no influence on the variance of the voxel
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signal. Whole-brain evaluations of mapping models thus only have limited in-
formative value. For this reason, effective voxel selection is crucial for extracting
semantic information from brain data. In previous work, different voxel selection
models have been applied to analyze only a subset of interesting voxels. We note
that predominantly a gray matter mask is applied beforehand for an initial noise

reduction and computational efficiency.

e Restricting the brain response to voxels that fall within a pre-selected set
of regions of interests can be considered as a theory-driven analysis. In
[11], they reduced the voxels by using previous knowledge about groups of
regions of interests. Past experiments have found that a set of regions in the
temporo-parietal and frontal cortices are activated in language processing
and are collectively referred to as the language network. Group 1 is consis-
tently activated across subjects when they listen to disconnected words or to
complex fragments like sentences or paragraphs and group 2 is consistently
activated only when they listen to complex fragments. Researchers in [50]

select regions related to sentence comprehension.

e A more information-driven approach proposed by [51]. So-called search-
light analyses move a sphere through the brain to select voxels (comparable
to sliding a context window over text) and analyze the predictive power of

the voxel signal within the sphere.

e Mitchell [6] analyze all six brain responses for the same stimulus and select
500 voxels that exhibit a consistent variation in activity across all stimuli.
A voxel can be represented by a matrix M;, = T X N, where T = 6 is the
number of trials, N = 60 is the number of stimuli. Each subject was shown
the same words multiple times. Thus voxel stability s, can be calculated as

the average Pearson coeflicient r for all trial pair combinations :

T

T
PPN AR A ) (3.1)

s = L
) (g) i=1 j=i

As noted by [52] for datasets where trials are not present (i.e. only one
stimulus presentation per participant), a prediction driven metric can be
used to select informative voxels. Notably [15] estimated a separate encoding
model for each voxel and calculated model performance for a single voxel
as the Pearson correlation coefficient between real and predicted responses.
Gauthier and Ivanova [53] recommend to evaluate voxels based on explained

variance. Lastly [12] use 10-PCA for low-dimensional representations.

The above prediction driven approaches are the most commonly adopted

premises in the literature. As [54] mention, each area, represented by a
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voxel, responds largely independently of the other areas, thus a separate

model is needed to fit responses in each cortical voxel.

3.3.2 Combining different voxel spaces

A common problem when working with neuroimaging data is combining acti-
vations across participants, in order to reduce noise and and compute a shared
semantic representation for stimuli. Each subject’s activations belong to a sep-
arate voxel space, and a multi-space alignment must be performed. For this
purpose there are two types of alignment techniques.

(a) Anatomical alignment , to align voxel spaces to a common template using
anatomical features from structural MRI. However shape, size, and spatial loca-
tion of functional areas differ across subjects, motivating a (b) Functional align-
ment that maximises correlation of activations for the same stimulus across par-
ticipants. Most commonly Hyperalignment (HA) [55] methods are used. At their
core a Procrustes transformation maps neural activities in a shared high dimen-
sional space, such as stimuli representations across subjects have the maximal
correlation. It is considered an ‘anatomy free’ method.

Problem formulation : let T = number of stimuli , V = number of voxels, m
= number of subjects. We define {X € RTXV}?:I1 the fmri experiment. We assume
that X; matrices are aligned in time, i.e., row s of each X is recorded under the
same stimulation.

The original HA objective can be expressed as :

m.m
max ;J; tr(R7XT - X,R,) (3.2)

Intuitively we aim to find a rotation R; € RV* of each subject’s i voxel space,
such that the correlation between all subjects is maximum. We assume X; are
noisy rotations of a common neural template Y. Although the mathematical
formulation and goal of the problem are simple, the plethora of alignment methods
across the literature suggest it is a challenging task. We attribute the difficulty
to the highly idiosyncratic nature of brain semantics, and the low signal to noise
ratio of fMRI.

In [8], they cast the problem to a probabilistic setting, with added dimensional-
ity reduction. Each subject’s voxel space X; is modeled as a rotation of the shared
response S plus an error term . The shared response for each stimulus is a latent
variable observed by each subject’s response. The optimization problem is solved
by the EM algorithm. The model referred to as Shared Response Model (SRM) is
used in later works [56] for fMRI sentence classification. Researchers in [57] ob-

served that usually after alignment a supervised classification task is performed



Chapter 3. Cognitive Background

(e.g. regression), their model uses a two term loss function to compute alignment
and fit supervision task at the same time, L = (1-)Lajgn + Lsyp achieving a
small increase in performance.

Following the idea that supervision can increase the quality of alignment, [58]
leverage the class labels of some fMRI datasets by including the within class and
between class covariance matrices in the optimization function. Supervised HA
[59] extends this idea, by first mapping in a supervised space where each class
has a distinct activation across subjects, and then projects to a neural space with
distinct representations for each stimulus. The intermediate space contributes to
better within class correlation with reduced computation. Finally [60], general-
ize to a non-linear transformation of voxel spaces using DNNs. Essentially this
method can find a custom non-linear space for each subject and then align the
neural activities form this non-linear space to a shared space. For an implemen-
tation of many HA methods we refer to easyfmri.

Our general assumption is that brains across subjects share a common se-
mantic representation. Relying instead on the individual or culture-specific way
people process semantic information, we can model cognitive embeddings as a
mixture of cognitive distributions (e.g. a GMM). The individual responses can
be identified by first computing the shared response and then removing it from
each subjects space . Alternatively an eigenvalue decomposition could be used,
concat all fmri images of v voxels to a matrix X € R™" and compute eigenvalue
decompositionof XX .

Commonly, a simple average of activations across subjects or a selection of
the best performing subject is also used in many fMRI experiments. Of course
averaging activations without properly aligning voxel spaces will result in poor
performance. A concatenation of low dimensional representations across subjects

can also result in meaningful diverse features.

3.3.3 Voxel space < Lexical embeddings

Due to the lack of large fMRI datasets, the most common method that is em-
ployed for obtaining lexical cognitive embeddings from fmri data is linear or ridge
regression. However, neural networks have also been used. A model mapping
from a lexical space to a voxel space is referred to as an encoder, and respectively
a decoder in the opposite direction.

In [6, 7], the activation of voxel v for word w is given by

m

y(w) = Y cudfiw), Yv=1---V, (3.3)

i=1

where V is the total number of voxels, fi(w) is a function that estimates the


https://gitlab.com/easyfmri/easyfmri/-/tree/master/Hyperalignment
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association between seed word i and word w and c,; are learned weights that are
estimated via regression by utilising fMRI data for known words. Some authors
(Anderson et al 2016) have also used similarity encoding, where the activation
for an unknown word w is computed as a sum of activations of known words u;,
weighted by the similarity sim(u;, w).

Mitchell, for stimuli representation , used the co-occurrence similarity with 25
seed verbs manually selected with respect to psycholinguistic criteria and their
relatedness to basic sensory and motor activities. Athanasiou [7] follows the same
approach, deriving cognitive embeddings and evaluating their performance in NLP
downstream tasks (MEN, ESSLLI, Sensicon, SNLI).

Several works evaluated the initial mapping by Mitchell, [61] report that by
automatically choosing the set of verbs leads to equally good results. [62, 63]
use WordNet based features for the 25 seed words, achieving comparable resutls.
[64] conclude that no input representation is better overall at predicting brain
activations, although morphological and dependency based models seem to per-
form better. [65] used a 65 experiential attribute that span different aspects of
experience in neurobiological systems, ratings for each semantic dimension were
crowd-sourced. [66] review many semantic models for input represenation, in-
cluding dependency, association and image based. They conclude that visual
information is a stronger predictor of brain activity than linguistic information
for concrete nouns. [67] use low dimensional co-occurence vectors and sentence
fMRI data to map words to cortical areas. They use a generative model, with a
probability distirbution for semantic category clusters in the brain, and emission
probabilities modeled as Gaussians.

Pereira [16] use a ridge regression to predict GloVe vectors from voxel ac-
tivations. They show that a decoder learned in the isolated word setting, can
accurately classify sentences from their fMRI with different levels of granularity.
In contrast with earlier works the stimuli include abstract nouns. Recent works
[68, 14] attempt to map conventional word embeddings (e.g. GloVe) to cognitive
embeddings, using a neural network with one hidden layer. Specifically, [68]
report that by using neural networks, both encoding and decoding accuracy is
improved compared to a linear regression model on the same input.

For many datasets the stimuli consist of sentences, often from large narratives.
Generally due to the low temporal resolution of fMRI no clear word boundaries
exist, and an fmri Image corresponds to a set of words. Due to the sequential
nature of the data, we could use an LSTM to map between word embeddings
and neural activations. The common neural image for a set of words can be
predicted as a function of the corresponding token hidden states . [12] address
the low temporal resolution problem, by sliding a Gaussian window across tokens

(acounting for Haymodynamic delay). They use the resulting representations with
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an HMM to improve performance in POS induction.

Researchers from [69, 70], conclude that LSTM sentence representations cor-
relate well with brain data. [15] use a ridge regression on top of an LSTM pre-
trained for language modeling to map sentence stimuli to fMRI responses. They
notice that LSTMs encode context and are better at predicting activations of indi-

vidual words in a sentence.
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Experiments

4.1 Introduction

In our research, we’ll try to combine word and brain representations to learn
joint word-brain embeddings. In [9], they have recently introduced the first model
specifically designed to capture the way the brain represents language meaning.
By fine-tuning the BERT model to predict recordings of brain activity of people
from the Harry Potter dataset [10], they ended up with representations that encode
more brain-activity-relevant information and thus improve the quality of the brain
activity prediction.

Furthermore [11] investigated how language models could learn from human
brain. Their experiment consists of representations from 4 recent models: ELMO,
BERT, USE and T-XL and data of brain scans from the Harry Potter dataset
from [10]. Similar to [6, 7] they’ve performed linear regression from a model’s
layer with a sentence, s, as input, to predict the brain activation of the same
sentence s. Based on the success of this method they were able to say if a layer
share information with a predicted brain region and then go further to modify the
layer and observing how the ability to predict the fMRI recordings changes. Their
findings suggest that altering an NLP model to better align with brain recordings
may lead to better language understanding by the NLP model, since they achieved
better performance at NLP tasks with the altered version of the model than the
base BERT architecture.

Our approach, based on the above, is trying to modify language models by in-
corporating cognitive embeddings in the training process. By checking how their
ability to predict brain activity improves, we will try to achieve better language
model performance at NLP tasks. As a basic step, we try adding the brain rep-
resentation vector in the attention layer. This way the effect of poorly trained
representations is mitigated. We also experiment with our models by adding the
cognitive embeddings at only one layer at a time. Prior work from [7] shows very

promising results when combining brain and word representations that even out-
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perform the latter in some downstream tasks. To the best of our knowledge, this
setting of combined embedding potential has never been utilized before and it
may could be the way to take a step further towards brain activity aware language

models.

4.2 Related Work

Following the usual approach for transfer learning in NLP, cognitive embed-
dings could be used to augment and increase performance of task-based models.
The simplest approach is future-based, where cognitive embeddings are used as
input with or without fusion with traditional embeddings. A pretrained model
mapping words to cognitive space could also be fine-tuned end-to-end for a spe-
cific task. In [12], they use fMRI features derived from sentences combined with
text features to increase perfomance in a POS tagging task.

The common approach for interpreting language model representations is by
using specific NLP tasks, word annotations or behavioral measures. Some re-
searchers used fine-tuned language models to predict brain activity and evaluate
the brain representations. Such fine-tuning is a new paradigm in learning about
human language processing and it relies on encoding information from targets
of a prediction task (e.g. the brain representations in our case) into the model
parameters. The goal is to optimize these models to take advantage of multiple
sources of information about language processing in the brain.

There is little prior work that evaluates or improves NLP models through
brain recordings. [13] proposes to evaluate whether a word embedding contains
cognition-relevant semantics by measuring how well they predict eye tracking
data and fMRI recordings. Similarly [14] proposed a framework for intrinsic word
embedding evaluation based on how much they reflect brain semantics. Six types
of word embeddings were evaluated by regressing on fMRI, EEG and eye tracking
data. They report corellation between the cognitive evaluation and perfromance
in Named-entity recognition (NER) and Question Answering tasks.

Jain and Huth [15], aligned layers from a Long Short-Term Memory (LSTM)
model to predict fMRI recordings of subjects listening to stories to differentiate
between the amount of context maintained by each brain region. [11] used brain
activity recordings to show that different network representations encode infor-
mation relevant to language processing at different context lengths. Both [11, 9]
observed that by modifying the pretrained BERT model to better capture brain-
relevant language information they achieved higher accuracy results at NLP tasks.
This finding suggests that altering an NLP model to better align with brain record-
ings of people processing language may lead to better language understanding by
the NLP model.
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4.3 Datasets

In the first part of our experiments we compare cognitive and word embeddings
by utilizing the dataset presented by Mitchell [6] for the neural representations.
As we mentioned in Chapter 3, this dataset contains fMRI scans from 9 partici-
pants, and stimuli are line drawings and noun labels of 60 concrete objects from
12 semantic categories. All stimuli were presented 6 times during the scanning
session, in a different random order each time. Participants were asked to think

of the same item properties across the 6 presentations.

For the comparison of the embeddings we use the MEN Test Collection dataset.
It contains two sets of English word pairs (one for training and one for testing)
together with human-assigned similarity judgments, obtained by crowdsourcing
using Amazon Mechanical Turk via the CrowdFlower interface. This collection is

commonly used to test models on semantic similarity and relatedness measures.

To extract our cognitive embeddings for Sections 4.5 and 4.7, we use the
dataset introduced by Pereira [16], where they wanted to evaluate abstract con-
cepts and sentence fMRIs as we described is Chapter 3. We use the data from
the first experiment which consists of fMRI scans from 16 participants. The stim-
uli consist of 180 concept words selected to cover a big part of the semantic
space. Each word represents a cluster of words based on Glove vector space (300
dim). The stimuli were shown in three paradigms with multiple repetitions, in
a sentence, as an image, or in a word cloud. These prepossessed data for each
participant consists of an array : words (180) x voxels (~ 200.000) and mapping

indexes for 3D voxel and vector spaces.

To finetune our language models, we use the WikiText language modeling
dataset [17], which is a collection of over 100 million tokens extracted from the
set of verified Good and Featured articles on Wikipedia. The dataset is available
under the Creative Commons Attribution-ShareAlike License. Compared to the
preprocessed version of Penn Treebank (PTB), WikiText-2 is over 2 times larger
and WikiText-103 is over 110 times larger. The WikiText dataset also features a
far larger vocabulary and retains the original case, punctuation and numbers -
all of which are removed in PTB. As it is composed of full articles, the dataset is

well suited for models that can take advantage of long term dependencies.

For the fMRI prediction task we utilize the Harry dataset by [10] which in-
cludes magnetoencephalography (MEG) and functional magnetic resonance imag-
ing (fMRI) data recorded from people as they read a chapter from Harry Potter.
The chapter included 5176 words and was recorded from nine participants for
each experiment. For the MEG experiment data for one participant had too many

artifacts and was excluded, leaving 8 participants.
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4.4 Experiments with Cognitive Embeddings

In the following experiments we aim to ivestigate the potential of cognitive
embeddings by comparing them with known word embeddings like Word2vec [18].
We use ridge regression to learn the corresponding representation of each word
into the cognitive embeddings vector space, following the pipeline from [6, 7]. For
the voxel selection we use the average Pearson coefficient of all trials to sort the
voxels based on their stability and then choose the 500 with best stability scores.

4.4.1 Encoding Model

For the encoding model, we map the representation of 60 stimuli words from
[6] to fMRI. For the initial model we learn a mapping :
D
Yu = Z Cui* Si 4.1)
i=1

or in matrix form :
y — W . S (4.'.2)

Where y are the voxel activations for 500 stable voxels, s is the glove embedding
vector, W the learned regression matrix.

A voxel can be represented by a matrix M, = T X N, where T = 6 is the number
of trials, N = 60 is the number of stimuli. Each subject was shown the same
words multiple times. Thus voxel stability s, can be calculated as the average

Pearson coefficient r for all trial pair combinations:

T
PCATRRAS) (4.3)

T
=1 j=i

1
Su = —
T
(2) t
We select the 500 most stable voxels for each subject.
We evaluate the mapping as a leave-out 2 procedure: for all (620) pairs, we
train on 58 words and validate on 2 remaining. Correct prediction means that

sum of the cosine similarities of the correct matched pairs is greater than the false

matched pair:

cos(p1, i) + cos(ps, iy) > cos(ps, 1) + cos(p1, ip) (4.4)

where p,, po are the model predictions associated with ground truth fMRI iy, i,

We note that this metric lacks strictness, and could be replaced by strict
matching:

cos(p1, i1) > cos(ps, i1) N cos(psy, iy) > cos(p., iy) (4.5)
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or similar metrics, as noted by [52].

We report the accuracy of correct predictions for each participant:

Subject Ridge Reg. Athanasiou Mitchell

1 0.91 0.84 0.83
2 0.69 0.82 0.76
3 0.80 0.76 0.78
4 0.87 0.79 0.72
5 0.75 0.78 0.78
6 0.60 0.65 0.85
7 0.76 0.75 0.73
8 0.66 0.68 0.68
9 0.76 0.68 0.82
average 0.75 0.75 0.77

Table 4.1. We map directly from Glove embedding vectors to 500 stable voxels and
compare with Athanasiou and Mitchell

Results are comparable with [7]. The Difference in results is attributed to
the different similarity function f;(w) calculation. Athanasiou sets f;(w) as the
(normalized) co-occurrence frequency of the ith seed s; and word w, as shown in

Figure 4.1, estimated on a large corpus of results of web queries to Yahoo.

Overall the encoding model, semantic or glove space, does not greatly affect

performance.
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Figure 4.1. Intermediate semantic feature model, each word w is mapped to a
vector < fi(w), fo(w), ..., foas(w) > , where f(w) is the similarity of w with semantic
feature s;. This is the word representation used for the encoding task in [6]

4.4.2 Comparing Cognitive and Traditional Embeddings

We evaluate our neural encoding model presented above with a linear mapping,
in the MEN similarity dataset. We use the widely tested Mitchell dataset, and
GloVe embeddings for stimuli representation as mentioned before.

The MEN Test Collection contains English word pairs with human-assigned
similarity judgments. Following the work of Athanasiou [7] we calculate the simi-

larity of two words, w,, w, with respect to the neural model as follows:

sim(wy, wy) = Y bu(Yu(wr) = Yu(w,))? (4.6)

u=1
This takes the form of a weighted euclidean distance, where the weights b are
determined by regression on the MEN train-set.

For our experiment we selected only concrete noun pairs , as neural embed-
dings have been shown to work better with concrete words . We used concreteness
ratings in a scale of 5 from (ratings), selecting only words with concreteness > 4.2.
This resulted in 1161 training pairs (547 unique words) and 577 test pairs (455
unique words). We selected 86 similar and 37 disimilar pairs after thresholding
on similarity with 0.85 and 0.1. respectively. The metric for all evaluations is the

Spearman correlation.
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4.5 Modifying Language Models with cognitive embeddings

We compare our approach with a baseline using w2vec 300-dim vectors. We
present our basic encoding model, where we use regression on the fMRI data of
one participant each time, choosing the best 500 voxels with the aforementioned
method of stability scores. For one of our experiments we use the encoding
model on the averaged data from all participants. In addition, the method of
Hyperalignment, explained in Chapter 3, is used with the Shared Response Model
on its own for the similarity task and then in combination with w2vec embeddings
with the finals representations being the average. Results are reported on Table
4.2.

Subset w2vec 500 vox avg (200 vox) SRM SRM - w2vec
All Concrete 0.73 0.67 (0.69) 0.63 0.66 0.74
Most & Least Sim | 0.60 0.57 (0.62) 0.53 0.64 0.65
Least Similar 0.21 0.14 (0.36) 0.06 0.1 0.11
Most Similar 0.09 -0.02 (0.19) 0.20 0.20 0.21

Table 4.2. Spearman coefficient for the test-set for different subsets of concrete
nouns, and different embeddings. We report the mean score across participants,
values in parentheses () indicate the maximum across participants. For the neural
averaged (column avg) we first averaged embeddings from all participants and then
proceeded to regression for similarity. SRM refers to the Shared Response Model
for Hyperalignment [8]

Overall the benefits of using cognitive embeddings as features for computa-
tional task are not substantial resulting in a small increase in performance. A
close analysis of related work by [7] shows that neural data encode useful seman-
tic information, but a feature-based approach with a linear regression mapping
may not be the best way to exploit it. Our experiments are promising but we have
not yet established the unique flavor of neural representation that is complemen-
tary to that of distributional embeddings.

4.5 Modifying Language Models with cognitive em-
beddings

After testing cognitive embeddings on downstream tasks, we leverage from
the existing literature and propose trying to modify Language Models by adding
cognitive embeddings in their existing architectures. Our experiments focus on
adding the cognitive embeddings in the Attention Layer in a variety of ways. We
choose this method due to the great noise and small amount of samples that
defines fMRI data, making these representations a bad candidate for the training
or fine-tuning of a language model. First, we extract our cognitive embeddings

with the methods described in Section 4.4. Then we test our proposed method
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on an LSTM model, which due to its smaller size allows us to add the cognitive
embeddings in the training process and not just during the fine-tuning. Finally,
BERT [5] is altered in many different ways and then fine-tuned on the Masked
Language Modeling task.

4.5.1 Extracting Cognitive Embeddings

To begin with, we have to obtain the congitive embeddings for our experiment.
We use the dataset from the experiment 1 from [16], which consists of 18 par-
ticipants and 180 stimuli words for each one of them. The stimuli were shown
in three paradigms with multiple repetitions, in a sentence, as an image, or in a
word cloud. As a result, we end up with 3 brain representations for each word so
we imitate the approach from [6] and calculate the stability of each voxel as the
average Pearson coefficient between these 3 trials. Thus, in this case each voxel
can be represented by a matrix M,, = T X N, where T = 3 is the number of "trials",
N = 180 is the number of stimuli. We map the representation of the 180 stimuli

words to fMRI, as explained before. For the initial model we learn a mapping:

D
Yu = Z Cui® Si (4.7)

i=1

or in matrix form :
y=W:-s (4.8)

Where y are the voxel activations for 500 stable voxels, s is the glove embedding

vector, W the learned regression matrix.

After training our model, we produce representations for all words in our
models vocabulary. For each subject and each word we select the 500 most
stable voxels, as explained above, since with this method we achieve the best
results overall on the similarity task. Finally for each word we get the mean
representations across all subjects so that we end up with our cognitive word

embeddings.

4.5.2 Condition an LSTM Language Model

For our first experiment, we use an LTSM based language model from [71].
The model uses a single attention layer and a modified feedforward layer similar
to that in a Transformer, which is referred as Boom layer. Scaled dot-product
attention [4] is used, which utilizes three matrices, K, V and Q to calculate the

attention as:



4.5 Modifying Language Models with cognitive embeddings

T

Attention(Q, K, V) = softmax( 9

NP

)\

Given a dictionary we may consider the keys and values be represented by
matrices K and V, while Q is a query that contextualizes the attention weights

(dx denotes the dimensionality of the keys and queries).

We modify this attention mechanism by using the cognitive embeddings of the
input sequence as our query matrix Q. For every input word of our vocabulary we
get its cognitive embedding by utilizing the regression encoding model described

before. In Figure 4.2 we present the complete architecture of our model.

We train three models on WikiText-2, on the Language modeling task. All
three models are trained with batch size 8 for 32 epochs with learning rate 2e — 3
and then fine-tuned for 5 epochs with learning rate e — 3 as proposed by model’s

author .

1. A base SHA-RNN model with a single attention layer.

2. A model finetuned with cognitive embeddings in the attention layer for 5

epochs.

3. A model trained all the way with cognitive embeddings in the attention

layer.

Thttps://github.com/Smerity/sha-rnn
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Figure 4.2. The SHA-RNN is composed of an RNN, pointer based attention, and a
“Boom” feed-forward with layer normalization. The CE layer before Q stands for
the cognitive embeddings.

4.5.3 Condition BERT

For our next experiment, we use BERT [5], one of the widely adopted pre-
training approach for model initialization, the architecture of which is the encoder
of Transformer [4]. In BERT training the authors used two kinds of objective
function: (1) Masked language modeling (MLM), where 15% words in a sentence
are masked and BERT is trained to predict them with their surrounding words.
(2) Next sentence prediction (NSP), where BERT is trained to predict whether two
input sequences are adjacent.

Following the approach we explained before, we aim to modify BERT in order

to incorporate the cognitive embeddings in its structure. Apart from a simple
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BERT).se model, as a baseline, we first try to add cognitive embeddings in the
embedding layer, imitating the concept of positional embeddings [4].

Input [cLs] Al ok? ISEP] Yes [SEP]
Token
) EICLS| E[AN] Elok? E[SEF] EYi E[SEP]
Embeddings ICLS] [All] [ok?] [SEF] [Yes] [SEP]
+ + + + + +
Segment .
E[A] ElA) E[A] E[A] E[B E[E]
Embeddings i 2 R i H A
+ + + + + +
Position
ED E1 E2 B E4 =
Embeddings
+ + + + + +
Cognitive
Embeddings co c1 c2 c3 ca cs

Figure 4.3. Adding cognitive embeddings alongside positional and segment em-
beddings.

We leverage from the pre-trained BERT),s. architecture, which consists of 12
Transformer layers, and we modify each self-attention layer by using our cognitive
embeddings in the query matrix Q. We propose two architectures, one where the
query matrix @ consists only of our cognitive embeddings and one where we add
our embeddings to the existing BERT embeddings.

t

Feed Forward Neural Network ]

coe t —
2 ENCODER
[ ) Self-Attention
1 [ ENCODER J

Cognitive

12 [ ENCODER J

Embeddings

BERT

(a) BERT)qse architecture

(b) Transformer encoder structure

Figure 4.4. We keep the original BERT architecture and just add the cognitive
embeddings in each Self Attention layer.
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Figure 4.5. Detailed analysis of our modifications in BERT’s self-attention layer,
for each of our models.

We also try to reduce the natural noise that exists in fMRI data by passing

our cognitive embeddings, first through an LSTM layer in our two aforementioned

architectures.
Ve B s ™
Self-Attention Self-Attention
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(a) Replacing the embeddings in query matrix{b) Adding cognitive embeddings in query ma-
Q@ with cognitive embeddings, after passingtrix Q, after passing them through an LSTM
them through an LSTM layer layer

Figure 4.6. Architecture of our models after adding an LSTM layer for the cognitive
embeddings to pass through.

Our last approach, is trying to add cognitive embeddings in only one attention
layer of the BERT model each time. A similar set-up was used in [11], where
after observing that the layers in the first half of the base BERT model benefit
from uniform attention for predicting brain activity, they tested how the same
alterations affect BERT’s ability to predict language by testing its performance on
natural language processing tasks. Their findings suggest that it’s better to alter
attention in layers 1 through 6, a single layer at a time. Leveraging from their

work, we add our cognitive embeddings in layers 1,2, and 6. Also a model with
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cognitive embeddings in the attention at layer 11 is used to contrast the perfor-
mance of the other layers. For this modification we use the architecture where
we add cognitive embeddings to the existing BERT embeddings in the attention
layer, since this approach gets better results overall.

All our models are fine-tuned for 4 epochs in the Masked language modeling

(MLM) task, on the WikiText-2 dataset. In conclusion, for our results we’ll use:

1. A simple BERT},s. model as a baseline.

2. A BERT).. where we add cognitive embeddings in the embedding layer

alongside with positional embeddings.

3. A cognitive-BERT model fine-tuned only with cognitive embeddings in the
query matrix Q.

4. A cognitive-add-BERT model after fine-tuning where we add cognitive em-

beddings in the query matrix Q.

5. A cognitive-BERT-LSTM model fine-tuned only with cognitive embeddings
in the query matrix Q, after passing them through an LSTM layer first.

6. A cognitive-add-BERT-LSTM model after fine-tuning where we add cognitive
embeddings in the query matrix Q, where we first pass them through an
LSTM layer.

7. A cognitive-add-1 model, with cognitive embeddings only in the attention

layer 1.

8. A cognitive-add-2 model, with cognitive embeddings only in the attention

layer 2.

9. A cognitive-add-6 model, with cognitive embeddings only in the attention

layer 6.

10. A cognitive-add-11 model, with cognitive embeddings only in the attention

layer 11.

4.6 Predict fMRI’s

In this segment of our work, we’ll evaluate our LSTM models’ performance by
utilizing the setup from [11] on the Harry dataset, as we mentioned in 4.1. We only
use our LSTM models due to smaller training times. Our goal is to check whether
by inducing brain data into a language model, it is possible for its representations

to consist of more brain relevant information.
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The representation of a language model given an input sentence s, is mapped to
the brain activity that corresponds to the same sentence s. The words presented to
the participants one at a time at a rate of 0.5s each and every fMRI was acquired at
a rate of 2s. Therefore, the features of contiguous words are first grouped, by the
interval in which they were presented, and averaged to get one final representation
for each fMRI. Finally, PCA is applied for dimensionality reduction, before we get

the average features.

For the prediction of each neural image we use a concatenated vector z;, formed
of 4 previous features [x;_1, xX;_2, X;_3, X;_4], Where Xx; is the feature of the words cor-
responding to the fMRI y;, at time t. We include these features from previous vol-
umes in order to account for the hemodynamic delay which is measured around
6s. Afterwards, we use a separate ridge regression to predict each voxel acti-
vation, similar to what we’ve done for our cognitive embeddings extraction. The

regularization parameter for each voxel is chosen by a 10-fold CV independently.

Finally, to evaluate our models, we classify a contiguous chunk of real data, of
length 20 time intervals, with a variation of pairwise classification, as commonly
done in [6, 16, 7]. Because our experiment doesn’t have multiple repetitions for
each fMRI, we raise the number of the time intervals we use at a time, to avoid

the close to chance accuracy which the noisy fMRI data are likely to give us.

Subject Base Finetuned Trained

1 0.54 0.56 0.57
2 0.61 0.59 0.6
3 0.64 0.64 0.64
4 0.51 0.5 0.5
5 0.56 0.57 0.57
6 0.61 0.6 0.6
7 0.59 0.59 0.59
8 0.6 0.62 0.63
average 0.58 0.58 0.59

Table 4.3. We compare our three models based on how well they predict brain
activation.

4.7 Downstream Tasks

After modifying BERT we test how these alterations affect its ability to predict
language by testing its performance on natural language processing tasks. We

run our models on seven downstream tasks and compare their results.
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4.7.1 The Corpus of Linguistic Acceptability

CoLA The Corpus of Linguistic Acceptability [72] consists of English accept-
ability judgments drawn from books and journal articles on linguistic theory.
Each example is a sequence of words annotated with whether it is a grammatical
English sentence. Following the authors, we use Matthews correlation coefficient
[73] as the evaluation metric, which evaluates performance on unbalanced binary
classification and ranges from -1 to 1, with O being the performance of uninformed

guessing.

base SHA-RNN | finetuned trained
0.35 0.09 0.01

Table 4.4. Comparing all LSTM models on CoLA.

BERTyuse | Emb-layer Cogn Cogn-add Cogn-lstm Cogn-add-lstm
0.578 0.0 0.012 0.21 0.0 0.267

Table 4.5. Comparing cognitive-BERT models with vanilla BERT on CoLA.

BERT}se | Cogn-add-1 Cogn-add-2 Cogn-add-6 Cogn-add-11
0.578 0.08 0.397 0.431 0.296

Table 4.6. Comparing cognitive-BERT models, with only one modified attention
layer each time, with vanilla BERT on CoLA.

4.7.2 The Stanford Sentiment Treebank

SST-2 The Stanford Sentiment Treebank (Socher et al., 2013) consists of sen-
tences from movie reviews and human annotations of their sentiment. The task
is to predict the sentiment of a given sentence. We use accuracy as the evaluation

metric.

base SHA-RNN ‘ finetuned trained
0.9 | 0.73 0.67

Table 4.7. Comparing all LSTM models on SST-2.

BERTyuse | Emb-layer Cogn Cogn-add Cogn-lstm Cogn-add-lstm
0.917 0.777 0.802 0.915 0.813 0.901

Table 4.8. Comparing cognitive-BERT models with vanilla BERT on SST-2.
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BERTyuse | Cogn-add-1 Cogn-add-2 Cogn-add-6 Cogn-add-11
0.917 0.916 0.916 0.913 0.912

Table 4.9. Comparing cognitive-BERT models, with only one modified attention
layer each time, with vanilla BERT on SST-2.

4.7.3 Microsoft Research Paraphrase Corpus

MRPC The Microsoft Research Paraphrase Corpus [74] is a corpus of sentence
pairs automatically extracted from online news sources, with human annotations
for whether the sentences in the pair are semantically equivalent. Because the
classes are imbalanced (68% positive), we follow common practice and report both

accuracy and F1 score.

metric | base SHA-RNN | finetuned trained
acc. 0.78 0.678 0.543
f1 0.84 0.713 0.562

Table 4.10. Comparing all LSTM models on MRPC.

metric | BERTy,s | Emb-layer Cogn Cogn-add Cogn-lstm Cogn-add-lstm

acc. 0.863 0.703 0.705 0.698 0.691 0.693
f1 0.907 0.82 0.821 0.817 0.815 0.816

Table 4.11. Comparing cognitive-BERT models with vanilla BERT on MRPC.

metric | BERTy,s | Cogn-add-1 Cogn-add-2 Cogn-add-6 Cogn-add-11
acc. 0.863 0.703 0.708 0.705 0.703
f1 0.907 0.82 0.822 0.82 0.82

Table 4.12. Comparing cognitive-BERT models, with only one modified attention
layer each time, with vanilla BERT on MRPC.

4.7.4 Semantic Textual Similarity Benchmark

STS-B The Semantic Textual Similarity Benchmark [75] is a collection of sen-
tence pairs drawn from news headlines, video and image captions, and natural
language inference data. Each pair is human-annotated with a similarity score
from 1 to 5 and the task is to predict these scores. Follow common practice, we

evaluate using Pearson and Spearman correlation coefficients.
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metric | base SHA-RNN | finetuned trained
pears. 0.79 0.34 0.13
spear. 0.79 0.321 0.156

Table 4.13. Comparing all LSTM models on STS-B.

metric | BERT}qs. | Emb-layer Cogn Cogn-add Cogn-lstm Cogn-add-Istm

pears. 0.913 0.068 0.105 0.825 0.109 0.841
spear. 0.91 0.035 0.074 0.823 0.098 0.839

Table 4.14. Comparing cognitive-BERT models with vanilla BERT on STS-B.

metric | BERT,qs. | Cogn-add-1 Cogn-add-2 Cogn-add-6 Cogn-add-11
pears. | 0.913 0.833 0.832 0.832 0.833
spear. 0.91 0.833 0.831 0.831 0.831

Table 4.15. Comparing cognitive-BERT models, with only one modified attention
layer each time, with vanilla BERT on STS-B.

4.7.5 Question NLI

QNLI The Stanford Question Answering Dataset [76] is a question-answering
dataset consisting of question-paragraph pairs, where one of the sentences in
the paragraph (drawn from Wikipedia) contains the answer to the corresponding
question (written by an annotator). [77] converted the task into sentence pair
classification by forming a pair between each question and each sentence in the
corresponding context, and filtering out pairs with low lexical overlap between
the question and the context sentence. The task is to determine whether the
context sentence contains the answer to the question. This modified version of
the original task removes the requirement that the model select the exact answer,
but also removes the simplifying assumptions that the answer is always present
in the input and that lexical overlap is a reliable cue. This process of recasting
existing datasets into NLI is similar to methods introduced in [78] and expanded
upon in [79]. They call the converted dataset QNLI (Question-answering NLI). As

an evaluation metric for this task, we use accuracy.

base SHA-RNN | finetuned trained
0.798 0.678 0.53

Table 4.16. Comparing all LSTM models on QNLI.
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BERTyuse | Emb-layer Cogn Cogn-add Cogn-lstm Cogn-add-Istm
0.893 0.611 0.865 0.87 0.633 0.878

Table 4.17. Comparing cognitive-BERT models with vanilla BERT on QNLI.

BERT}qs. | Cogn-add-1 Cogn-add-2 Cogn-add-6 Cogn-add-11
0.893 0.874 0.877 0.877 0.876

Table 4.18. Comparing cognitive-BERT models, with only one modified attention
layer each time, with vanilla BERT on QNLI.

4.7.6 Recognizing Textual Entailment

RTE The Recognizing Textual Entailment (RTE) datasets come from a series
of annual textual entailment challenges. [77] combined the data from RTE; [80],
RTE, [81], RTE; [82], and RTEs [83]. Examples are constructed based on news
and Wikipedia text. They converted all datasets to a two-class split, where for
three-class datasets they collapsed neutral and contradiction into not_entailment,

for consistency. For our results we use accuracy.

base SHA-RNN | finetuned trained
0.592 0.532 0.511

Table 4.19. Comparing all LSTM models on RTE.

BERTyuse | Emb-layer Cogn Cogn-add Cogn-lstm Cogn-add-Istm
0.714 0.469 0.537 0.545 0.534 0.588

Table 4.20. Comparing cognitive-BERT models with vanilla BERT on RTE.

BERTy4se | Cogn-add-1 Cogn-add-2 Cogn-add-6 Cogn-add-11
0.714 0.548 0.555 0.563 0.556

Table 4.21. Comparing cognitive-BERT models, with only one modified attention
layer each time, with vanilla BERT on RTE.

4.7.7 Winograd NLI

WNLI The Winograd Schema Challenge [84] is a reading comprehension task

in which a system must read a sentence with a pronoun and select the referent
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of that pronoun from a list of choices. The examples are manually constructed to
foil simple statistical methods: Each one is contingent on contextual information
provided by a single word or phrase in the sentence. To convert the problem
into sentence pair classification, [77] constructed sentence pairs by replacing the
ambiguous pronoun with each possible referent. The task is to predict if the
sentence with the pronoun substituted is entailed by the original sentence and

accuracy is recommended as an evaluation metric.

base SHA-RNN | finetuned trained
0.651 0.543 0.512

Table 4.22. Comparing all LSTM models on WNLI.

BERT}use | Emb-layer Cogn Cogn-add Cogn-lstm Cogn-add-lstm
0.436 0.563 0.408 0.422 0.408 0.478

Table 4.23. Comparing cognitive-BERT models with vanilla BERT on WNLI.

BERT}se | Cogn-add-1 Cogn-add-2 Cogn-add-6 Cogn-add-11
0.436 0.464 0.437 0.45 0.422

Table 4.24. Comparing cognitive-BERT models, with only one modified attention
layer each time, with vanilla BERT on WNLI.

4.8 Experimental Discussion

Overall, the method we used in section 4.6, proposed by [11], shows that
natural language models incorporated with cognitive embeddings may contain
some relevant brain information. Our LSTM model’s representations, after a full
training with cognitive embeddings in the attention layer, achieve better results at
predicting brain activity of subjects reading complex natural text. This method of
neural network representations and brain activity alignment, indicates that our
setup may lead to better language understanding by the NLP model.

In section 4.7, we first test the LSTM language models on the CoLA dataset
and notice a drop in the performance after fine-tuning the model with cognitive
embeddings, and an even bigger drop when the model is trained all the way
with the cognitive embeddings in the attention layer. This shows us that the
robustness of the model is negatively affected by the noisy brain data. CoLA

is one of the tasks where even the base SHA-RNN model doesn’t achieve great
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results, thus it struggles to sustain its efficiency when we incorporate these neural
representations in the training process.

The BERT experiments for this task confirm that the cognitive embeddings
play a negative role for the model’s attempt to understand if a sentence is gram-
matically correct. This becomes more clear when we realize that the less the
cognitive embeddings take part in the training process the better the results we
achieve. That’s the reason why the models where we add cognitive embeddings
alongside the actual BERT embeddings manage to achieve slightly better results.

For the SST-2 task, all our models show about as good performance as the
base models. The trained with cognitive embeddings SHA-RNN model seems to be
affected the most from noise existing in the neural representations. Some of the
BERT models achieve approximately the same accuracy as the standard BERT,
but we suspect that this results are due to the fact that the base models are
extremely good at predicting the sentiment of a given sentence on their own. On
the other hand, the almost good results of the cognitive models on this task may
come from the existence of sentiment in the human brain and therefore in the
neural representations as well.

In the same context as before, for the Microsoft Research Paraphrase Corpus,
the base models set great scores as a baseline. Once again the models where the
fMRI data take a bigger role in their training process seem to lose their robust-
ness and efficiency. Even the models with the cognitive embeddings at only one
attention layer each time appear to drop their performance the same.

Furthermore, our models, for this STS-B, need to predict the right score from
1 to 5 with the cognitive embeddings appearing to drop their results even below
random, the more they participate in the whole structure. All the models where
we add the cognitive embeddings with the BERT embeddings manage to achieve
approximately good results.

In addition, the QNLI results are very close for the majority of our models. This
may be due to the congnitive nature of this task since Question Answering is one
of the most familiar tasks of the human brain.

Moreover, one of the tasks where cognitive embeddings gets completely de-
stroyed by the base models is the Recognizing Textual Entailment (RTE). All the
cognitive models reach accuracy close to random with even the models where the
cognitive embeddings were added at only one layer to show equally bad results.

Finally, because of the bad performance of the base BERT model in WNLI task,
we encounter a situation where some of our cognitive models seem to achieve bet-
ter results over all. Although, all the scores are close and even below random
accuracy so we can not judge from this slight improvement to decide if our cogni-

tive embeddings improve the model over all.



Chapter E

Conclusions

In this Diploma Thesis, we investigated the potential of fMRI data in Natural
Language Processing. From our work, presented in the Chapters before, we draw
some conclusions that can be devided into two main categories corresponding to

Sections 4.4 and 4.5 respectively.

5.1 Discussion

5.1.1 Experiments with Cognitive Embeddings

In section 4.4, we extend the work from [6, 7] by utilizing the dataset from
Mitchell [6] and Glove [25] embeddings for stimuli representation. We adopt the
same pipeline for the voxel selection and compare the performance of cognitive
embeddings and lexical embeddings in downstream tasks. First, we test the
encoding model with ridge regression directly from glove embeddings instead of
an intermediate semantic feature model [7], and evaluate it with a leave-out 2
procedure. Then, we compare this encoding model, in several variations, with
traditional word embeddings on the MEN dataset.

We conclude that, the performance of the encoding model, is not affected over-
all from the semantic or glove space. Furthermore, for the similarity task, all the
versions of the model achieve similar results with the combination of Word2vec
and the Shared Response Model representations to attain slightly better scores.
Generally, the cognitive embeddings are not clearly the best candidates as fea-
tures for computational tasks, based on the aforementioned results. These ex-
periments, although they are very promising, can not fully exploit the potential of

cognitive embeddings.



Chapter 5. Conclusions

5.1.2 Modifying Language Models with cognitive embeddings

First, after reviewing cases where cognitive embeddings have been used to
enhance or improve task-based models, we focused on investigating how these
representations could affect a language model and which modifications are a bet-
ter fit in order for them to reveal their potential. BERT [5] was the focal point of
our research. We based the majority of our experiments on the assumption that
a good way to incorporate cognitive embeddings, into a language model’s archi-
tecture, is by adding them as queries in the attention layer. This way, we could
induce the cognitive bias of these embeddings into the training process and also
mitigate the effect of the poor brain representations. We first test our approach
on a smaller LSTM model where, by utilizing the experiment setup from [11], we
find that its ability to predict brain recordings improves and that may leads to an
improvement of the models performance at NLP tasks.

Nonetheless, our results at NLP tasks indicate that, even the complex BERT
architecture is negatively affected by the noisy neural representations. Our exper-
iments on smaller models show that for the tasks where the base model already
achieves good results, its performance is maintained even with the cognitive em-
beddings in the attention layer. We show this in more detail in Section 4.7,
where our proposed cognitive BERT models completely lose their efficiency for
some tasks due to the poor brain representations. One last note for our work is
that when we tested the cognitive embeddings modification on different layers of
the BERT model we demonstrated that the mid layers better distribute the noisy
brain information in comparison with the earlier and the former layers, exactly
as [11] had mentioned. Overall, our setup seems to lack the ingredients that the
neural representations need in order to provide competitive results in the frame

of modern natural language processing techniques.

5.2 Future Work

On the way to discover the potential of cognitive data in Natural Language
Processing, we came across interesting future directions, that may hide an unex-

plored potential. These are briefly described below:

e Incorporate cognitive embeddings into more natural language processing

models with different architectures.

e Extend the work on BERT by trying more complex setups, such as the Mul-
timodal Adaptation Gate they proposed in [85] that allows BERT to accept

multimodal nonverbal data during fine-tuning.



5.2 Future Work

e Explore an evaluation of the cognitive models on tasks that do not require
fine-tuning beyond pretraining to ensure that there is an opportunity to
transfer the insight from the brain interpretations of the pretrained BERT
model. In [11], they used a range of syntactic tasks proposed by [86], in
order to quantify BERT’s syntactic capabilities.

e Develop a pipeline for extracting cognitive embeddings from different {MRI

datasets that present some good results, like the Harry dataset [10].

e Use sentence fMRI’s, such as in [10, 40], in order to extract cognitive em-
beddings. This way, it could be possible to obtain embeddings with natural

language context flavor.
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