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Arnoyopeletar 1 ovTiypopr|, amodfxeuct xou dlavour] Tng mopolcos epyociog, €&
ONOXATIPOU 1) TUAUOTOC QUTHG, Yo eumopxd oxomo.  Emtpenetoun 71 avotinwon,
omo¥rixeuon xon Blovouy| Yl OXOTO UN XEEOOCKOTUXO, EXTOUOELTIXNAC 1) EPELVNTIXAC
puoNG, UTO TNV TEOUTOVEST VoL AVaPEQETAL 1) TINYT| TEOEAEUOTC Xt Vo dlotnpeeiton To
ToEoV urpvuua.  Epwtruota mou agopolv Tn yeron g gpyaciag Yyl XEpB0OXOTIXG
o%0T6 TEETEL VoL ameLYOVOVTAL TPOS TOV GUYYPOPE.

Ov anddelc xar To. CUUTERAOHOTA IOV TEPLEYOVTAL O oUTO TO £YYEAUPO EXPEALOUV TO
OLYYEAUPED Xa DEV TRETEL Vo EpUNVELVEL OTL avTimpocwTebouy Ti¢ enionues VEoelg Tou
Edvixo0l Metoofou [loluteyveiou.









ITepirndm

H guown Siemapn xon ahAnAenidpoor avidpdtou-poundt diadpauatilel xevipxd poho 6Ny -
TOB0Y 1) OUTOTIXWY EQAPUOYRY GTNY xanuepvh Lwr. Ewbixdtepa otny nepintwon egopuoymy
nepldohng xan uroforinone aviednwy Ye xvnTnég 1 dhkeg Suoxohlee, 1 AetTovEYIXY ama-
{tnom @uowrc emaprc avIeOTOU-POUTOT aTOTEAEL Xat Evary amd Toug Bactxole TaEdYOVTIES TOU
%x000pllouy TNV AGPIAEL TOU POUTOTIXOU CUCTAUATOC. XE TETOLES EQUOUOYES dAANAeTiBpa-
one avipdTou-pounoT, amoutelTon £vor GUG TNUA OLaBEAc TIX0) oyedlaouol xivnong Bacllouevo
o€ pla Sopxt| TopoxoholincT Tng XaTdoTaong Tou avilp®mou, yio vo emiTeuy el Evog TApwe
ACPAUANG AL CUVEY WS TROGUPUOLOUEVOS GYEBLICUOC POUTIOTIXWY XIVAGEWY X0l EQYOCLOV.

Me Bdon authy TN YEVIXT 0 TOYELOT), 1) Topo Vo BLaTEL3Y) Ty HaTEDETOL T1) OLUBEAC TIXT| TTat-
QOLYOLY Y1) XOUL TROGUPUOYY| OUTIOTIXWY XIVACEWY, Ol OTOIES €Y 0UV TEOXVPEL HETL XorToryPAUPng
0edoPEVLY avlp®Tivng ETOEENS, XATIAANAES YL EpYACIEC AAANAETIBEUOTNC UE TOROUOPPWAL-
MES ETUPAVELES, OTIC PépT ToL avipwmivou couatog. TTo cuyxexpléva, oTo TeHOTo Pépog TG
OLteB3g, xaL 6TO TAXCLO Wag EVPVTERPTS EPELVNTIXNG TEOCTAIELNG TOU ATOGKOTOVCE OTNV
XATOUGHEVY| EVOC EUXOUTTOU QOUTOTIXOU UMY OVICHOU UTEVIou, avamtuydnxe €vag olyoprduog
oyedlaopol poutoTixAc xivnong, o omolog yenoionolel TNV omTxf TANEOPOoplo WaG XAE-
poc Bddoug xou TV aviioTolyn mhnpogopia avtikndng tng oxnvrc poumotxrc depdong, i
VoL TROCUPUOCEL TEOXAVOPIGUEVES XAl YWEOYPOVIXE XAUAXOVUEVES TROYLES AV OF XAUTOAES
X0l TOROUOPPOOCIIES EMLPAVELES, OTIWC UERT) TOU oVUIPMTILYOU COUATOC, UE TUUTOYPOVY] OTOPU-
YY) EUTOBIWY 1 GUYXEXPLWUEVMV UTIOTEQLOY OV TNG ETLpAvVELas oM NAeTiBpaone (Yo Topdderypa,
Aoy OTopEng TOTUXMY TEALUATIOU®Y, %.o.). H tpocopuoyh emtuyydveton ye tn dnuoupyia
YWDV PETACY NUATIOUMY, UE TIC WOTNTES Tou auguiovoaruoavtou xat ent (bijection), ot
omoloL EMTUYYEVOUY TNV EXPEACT] TOLU TEOBAAUATOS TopaxoAoINonE ot €val BIBIECTATO Xa-
vovixononuévo yoeo. H axpidric napaxorodinon tpoyide mporyaToTOLEToL 0T GUVEYELDL UE
EVOY EAEYXTH] CUVOIRTHOEWY TAOYYNONG UE ATODEDELYHEVT) XAJONXS OUOLOUORYT] ACUUTTLTIXT
oUyxhorn otny emduuntn teoytd. H anddoon tou npotewvouevou ahyopiduou eréyydnxe t6co
o€ GLVITXES EPYUCTNREIOL GO %ot GE TEAYUATING XAWVIXO TEQUSHANOV UE NAIWUEVOUS YEHOTES
oe Enpéc ouvinxes xou oe cLUVIXES UE YENOT VEROD. LUUTANEWUATIXG TpoyHaTOTOINXE Lol
XAV UEAETY), 1) oTolol amooxonoloe TNV AllOAOYNOT| TNG AMOBOY NG XoL TWV BUVATOTATWY
XeNong evOg TETOLU TOAUTAOXOU GUC TAUATOS ATd NAXIWUEVOUS YENOTES.

Y10 enduevo 6Tddlo TNe BlatplBhic, TeotelveTon Evar OAOXANPWUEVO GUG TNUA To oTolo, Boot-
Lopevo otny pédodo twv Auvvopuxay Hpwtoyevdv Kivfoewv (Dynamic Movement Primitives
— DMPs), unopel va udiel xon vor xe0xomoloeL Spdoele YELPLOUOU Xt ETOVIUANTTIXES XIVACELS
ot ornoleg €youv mpoxier xotomY ETBEENE amd X0V (EV TPOXEWEV®™, YOGTAEUTIXG TpO-
owmxd) xou va pundel tn ovuneppopd Touc. Ot cuYXEXPLUEVEVES BPAOELC XaTaYEdPNXOY UE
XeNoM CLUC TNUATWY OTTIXAC XaTaYPAPTc xivnong, xat axohotdwg avahbinxay xaL amocuVTEDT-
XAV OE OUVAUIXEC TEWTOYEVELS XVACELC XUTAAANAES Yo EXTEAEDT) amd pounoTixd cuoTnua. Ot
AWOWOTIONUEVES AUTEC HIVHOELG UTORPOVY OTT GUVEYELN VO TROCUPUOG TOUY GTNY ETULPAVELXL TOU
CWUATOS TOU YEHoTN, aviloTaduilovTag Ty xivnom 1 TNV Topopoe@wot Tou, xadmg XL Vo
HETAPBANIOLY WC TPOG CUYAEXPUIEVES TORUUETEOUS TN %ivNong xatd TNV EXTEAECT TNG QY-
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olag, i v ixavorotdody BEBOUEVES AVAYHES TOU YENOTYN xoTd T1) SLdEXELd TNG OLodixaciag
counotixic urnoforiinonc. To mpotevduevo cLG TN a&LOAOYAUNXKE TELQOUATIXG UE TN XeNoT
evog avipmTOEB00g POUTOT, TO 0TOl0 eEXTEAECE VoL GEVAPLO XAJAPLOUOY ETLPAVELAS, HATADEL-
%xv0OVTOC TNV EPAUPUOCILOTNTA TN LEVOO0U OE TparyHaTind Gevdpla pounoTixrg urtoorinong.
Emmiéov tng pedodou authc, npotetvetar xan uio evadhoetixt| pédodog exudinone xon avomo-
paywyng obVieTwY xwvhoewy and dedopéva enideling HEow NG BLHOEPLONG EVOS UKG TIXOV
duVaIXOD TESIOU GUVIPTACEWY TAOTYNOTC.

Y10 televTalo oTAdIO TN TopoVoug OlatEBNg, TeoTelveTon Vel TEMTOTUTO GG TN Olo-
0pac TIX0U oYedLICoUO) XVNoNG, UE OTOYO TOV AmodoTIXO ol oxpl3T) EAEY YO EVOC POUTOTIXOU
YEWLOTY, 0 omolog eEXTEAEL DLIdEACTIXES EQYAUCIEC OTNY EMPAVELN EVOC TOQUUORPWOUYLOU UVTL-
xewévou. To npotevéuevo chotnua Baoiletar o uio avamapdc TooT TAEYUATOS TOU AVTIXEL-
UEVOL %01l EVOWUUTOVEL Tela amodoTxd otddla mpo-eneiepyaciag dedopévwy, To onola mEQL-
AoBEVoUV TNV OTTIXY XATATUNGCT, TOU AVTIXEWEVOL, TNV TOEaxohoLUTNON TNEG TURAUUORPMONS
TOU QVTIXEWEVOU XOL TNV TOTUXT| TopopETeoTono ) Tou mAyuatoc. H yerion Boapuxevipinmy
CUVTETAYUEVWY, TIou 0pllovTol OTo TELYWVIXE GTOLYEl TOU TAEYUATOC, ETUTOENEL TOV OPLOUO
OPULOVOCSTUAVTOV UETUCY NUATIOUOV YETOEY Tou e€eTalOUEVOL HEPOUC NG ETILPAVELNS TOU O-
VTIXEWEVOU X0 TNG ENUTEONG TUPUUETEOTOMNUEVNS ATEXOVIGHC ToU. O GUVBUAGUOS UTWY TWV
UETOCY NUTIOUOY UE TO apytxd oTddLL ENEEEQYACTOG XAl UE EVOL OYTud EAEYYOU EVEQYOUS 0Xa-
(log yior TOV POUTOTIXG YELRLOTY, ETLTEENEL TOV axEIPT) OYEDIAOUO DLABRUC TIXMY TEOYLOY 0XOUN
xa UTo oLVIES OTTIXNC amdxELYNC UEYSAWY TuNudTeY Tne empaveloc. [opouotdleton pio
extevrc mElpopatiny a&lohdynon tne pedodou, 1 omolo tepthauBAdveL €vol POUTOTIXG YEWRLOTY
o€ OLAdEAOT) HE EVOL NULOPUEIXO UOVTENO TO OTOI0 UTOXELTOL OE EAEYELT TOEOUOPYWOT). Y€
auT6 To Thaloto, adlohoyeltan 1 oaxp(BeElar Tou oy EBLICUOY TNG XIVNONG TOGO XATE TNV EXTEAEOT
OLBEAC TV TEOYUWY OGO XU XATA TNV CLVEYT Tapaxohovdnon eVOC anUelou GTNV EMLPAVELL
Tou avTixeevou. Eréyyinxe enlong n wavdtnTa yeriong tne uedddou Yo TEOYRUUUATIOUO
XAoEWY amd ovlp®mvn emBEEn xou yiar QOUULOT) TV DUVIUEWY ETAPNE UE TO AVTIXEUEVO.



Abstract

Natural human-robot physical interaction has a key role in the acceptance of robotic ap-
plications in everyday life. Especially in the case of applications for the care and assistance
of people with mobility or other impairments, the functional requirement of physical con-
tact between humans and robots is one of the key factors that determine the safety of the
robotic system. Such human-robot interaction applications require an interactive motion
planning system based on a continuous monitoring of the human condition, in order to
achieve a completely safe and continuously adaptable robotic motion and task planning.

Towards this end, this dissertation deals with reactive adaptation and motion gener-
ation of human demonstrated interactive tasks with deformable surfaces, such as those
of the human body parts. Particularly, in the first part of this thesis, and in the con-
text of a broader research effort aimed at building a flexible robotic bath mechanism, a
motion planning algorithm was developed, which uses the visual feedback from a depth
camera and the corresponding scene perception information, in order to adapt predefined,
time scalable trajectories on curved and deformable surfaces, such as the human body
parts, with simultaneous avoidance of obstacle areas, such as injuries. The adaptation is
achieved with the establishment of bijective transformations, which reformulate the track-
ing problem to a 2D Canonical Space. Accurate trajectory tracking is then realized with
a Navigation Function (NF) controller with proven globally uniformly asymptotic conver-
gence. The proposed algorithm was tested both in lab conditions and in a real clinical
environment with elderly users in both dry and humid conditions. A clinical validation
study was conducted, which focused on the acceptance and operation aspects of such a
complex system by elderly users.

In the next phase of the thesis, an integrated system based on Dynamic Motion Prim-
itives (DMP) approach is proposed, which can learn and encode demonstrated washing
actions by professional nursing experts, imitating their actions. The washing actions were
recorded with the use of optical motion tracker systems, analyzed and decomposed into
primitive actions appropriate for robotic execution. The learned motions can then be
adapted to the user’s body parts, compensating their motion or deformation, as well as
on-line modified with respect to their execution parameters, in order to meet the user’s
requirements during of the robotic assistance process. This system was experimentally val-
idated with the use of a humanoid robot, which executed a wiping scenario, demonstrating
the applicability of this method in real world scenarios of assistive robotics. Alternatively
to the DMP approach, a NF method is proposed in order to learn and reproduce the way
an expert clinical carer executes the bathing activities, by means of constructing artificial
repulsive potential fields generated by virtual obstacles, which in essence represent the
demonstrated motions.

In the final stage of this dissertation, an efficient interactive motion planning frame-
work is proposed, to effectively and accurately control a robotic manipulator executing
interactive tasks on the surface of a deformable object. The proposed interactive motion
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planning framework is based on a mesh representation of the object, integrating three
efficient preprocessing algorithmic steps, including visual object segmentation, FEM de-
formation tracking and local mesh parameterization. The use of barycentric coordinates,
defined on the mesh triangles, enables the establishment of bijective transformations be-
tween the deformable part of an object surface and its planar (static and dynamic) pa-
rameterized mapping. By merging these spatial transformations with the preprocessing
steps, in combination with an active stiffness scheme for robot manipulator control, we
are able to achieve accurate and reactive motion planning of interactive trajectories, even
under large and persistent visual occlusions. An extensive experimental evaluation study
is presented, involving a robotic manipulator in interaction with a hemispherical model of
controllable periodic active deformation, which permits precise ground truth derivation.
Motion planning accuracy is evaluated in comparison with the previously described direct
vision-based approach, showing clearly superior performance of the mesh-based approach
under all experimental conditions. The performance of the proposed framework is also
further highlighted in tasks involving physical point tracking, interactive programming by
human demonstration, as well as contact force regulation.



Euyapiotieg

H Siwooxtopnt| dlatei3y) mpopyeton ETULOAOYIXA Ao To Erud Olo-TEiBw, TOLU oNUalvel ooy o-
Ahovuon Wwaitepor 1) uedodind pe xdtt. Elvon emopyévewe wia yedodxn epyaocto mou omoutel xa-
Onuepvy| Te31) e Evvoleg xat TEOPBAAUATA ETOTNUOVIXHC 1) TEYVOROYIXAS QUCTE %ot GUUBAAEL
%xdoploTIXG GTNY VONTIXT WElUoveT 6ToV Bpduo Vo avipdTou amo Tov pOAO TOU (QOLTNTH
OE OAOXANPWUEVO ETOTAUOVO-EPELYNTH. AuTH 1) Topela Tépa Ao TNV EMUOVT, TNV APOCiw-
OT) X0 TOV TPOCWTLXO XOTO OV ATAUTEL, BlaxATEYETAL XU amo Wla TANYWEN GUVULGUNUATWY,
AVOGPIAELNG, AUTNG, AmOYONTENCEWY ARG X BUVATEG GTIYHES YOUPAC XU EVTOVNG IXOVOTIO-
inong, To ool GE BLOEPWVOLY GaY AVIPKOTO Xol ATOTEAOLY TNV XivnThplo S0voun Yo THV
ouvéyela. 2oT600, xortdlovtag Tiow aUTH TNV Topela TOEA TOL VTG TO TAEIBL OAOXATEWVE-
T, OEV Unop vou Yedhw ot ftay povayixd, xoog uthegay tohhol dvipwrol Tou cuVEBahay
xadoploTixd xon Ye LTooTHELEOY TOCO O TEOCWTIXG OGO XUl OE EMCTNUOVIXO EMIMESO X
TOUC OPElA® AUEPLOTY EVYVWUOGUVY GTOV xGUE Evar EEYWELOTA.

Sexvovtag, Yo Heka Vo LY PO THCW ToV YEVTopa Xt Bacind eMBAETOVIA NG TopoLCUC
olateBhc, xodnynt Kovotavtivo Tlagéota, apyxd yia TNV anodoy| »¢ UETATTUYLOXO €-
eeuvnTh) LTO TNV eniBAedr| Tou, xad®E xan Yo TIC xATEVVVVOELS Xat TOADTIIES GUUBOUAES xan
ouvey (et va pou mopéyel yevvanodwpa. H cupfolr) Tou ye Tov yedvo xal Tov YHpOo TOoU UOoU
€0woe WoTE Vo €pUe OE ETAQPY| UE €V UEYAAO €0POC EQELVITIXWY VEUATHOV XATY TNV OLdEXELXL
TWV OLOAXTOPXOY HOL OTIOLBWY, LT EEE xadoploTixr oTNV eEENEN LOL Gy EQEUVITY) ARG Xo
cav dvipwro pe T adldxonn LAY xou Puyoloyxr utooTheEn Tou pou mapelye OAa AUTH
TAL YEOVLOL YLOL VO XOTAUPERE VAL OROXATIPOC TNV BLBOXTOEIXT Lo EpEUVAL.

To ta&ldL oo povomdtia Tng pounotixrc Eextvnoe ano vwpic wall Tou oto yardiuata Twy
TEOTTLUYLOXWY OToLdWY TNV Lyohny Hiextpohdywv Mnyovixdv xan Mnyovixodv Trohoyi-
OTWV XU oTNY Bladxacion OAoXAEWoNS TwV GToLdKOY oy, 6NV onola Uéow cuverBiedng
%0l Tou Tpoypedupatog Erasmus pyou €8maoe Ty SuvatoTNTo EXTOVNONS TNS OITAWUATIXAS EQ-
yaolag oe éva ueydho evpwnaixo navemothuo. Lto I[lohuteyveio Tou Movéyouv (TUM) elya
v euxanpla vo €pUe O TN HE TNV EEELYNTIXY Bladaclor 0TV pouroTixr, BalovTag Tov
Yepého AMdo yio Tnv yeténeita nopeio wou. Autd tor Jeyéhior xou 1) EUTVEUCT) TOU oL BdInxe
OLUOPPWCAY OE UEYIAO Pordud TG METETEITA EMAOYES UOU OF ETOYYEAUATIXO X0l EQEUVNTIXO
eninedo.

"Evo peydho euyaplote ogello xar otov cuvemBAénovta xadnynth Iétpo Mopoyxd xad g
péoa amd Tor HoAUATE TOU OE TEOTTUYLAXO XAl PETATTUYLAXO ETUTEDO UOU EBWOE TOAUTIUES
YV&oeg 6To edio Tng eneepyaoiag oNUATWY XAl 6PACTIC UTOAOYIOTMY, BIUUOpPOVOVTIS TNV
oxédn you oe Yéuato Tou aPopolyV TNV pouroTixh avtiAndm xa povielomoinon Tou meEpL-
BdAAovTOC 1oL BVOVTUC HOU EUNMVEUGT] GTOV GUVOUNGHUO TOUC UE TOV POUTOTIXG EAEYYO. XE
TpoowTix6 eninedo péoo and culntioelc xotoAn Ty Sidexela TS SateBric Yo, fTay TavTa
Tap@YV xai tedYupog va fondnoet o 6ol xoinuepLVE xon EpELYNTIXE TEOBAAUATA TEOEXUTTAY,
TOEEYOVTOS OUCLUCTIXY OTHEEN o xotovonoT. Amotelel yior pévor Taeddelypo Mo THUOVAL
xo BooxGAOL.

YuveyiCovtog, ¥éAw vo mw éva TepdoTio euyaptotd oty Ap. Eavin Hoamayewpeylov, ue
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TNV omola ey TNV TUYT] VAL CUVERY UG TR TOL TRMTA YPOVLOL TV OLOUXTOPLXMY oL 0Toudmy. Me
Bdon Tov pOAO TNC WS PETABLOAXTOELXY| EPELVHTELN OTO gpyacThpto Poumotixfc xan Autouo-
Tiopol avéhaPBe Ty xadnuepvn wou eniBiedn. H ZEoavin evon o Adyog mou xotdpepo vor xave
TAL TEWTOL OV EPELVNTIXG Bridorta, xadme Ye BoUNcE Vo OXEPTOUOL XL VoL CUUTEQLPEROUOL TV
EPELYNTAC, OO TNV TEMTN avalNTNOT TNYWV PEYEL TNV 0RYEVMOT) XU EXTEAECT] TELRUUATIXWY
BLOBIXACLOY XL TNV EEAYWYT) AGPAUAGY CUUTOEUCUATOY. Tny Yowpdle cov emoTidova yia
NV dofnotn epeuvnTixy Ay xot o Bordl emoTnUovix: Tne uTOPBotpo oAk xan TV c€PBoua
cav avlpwro xat yuvaixa yio To HHog xon To YoynTind Tvedua Tou dldétel. Ou tny €xw oTo
HUOAG %L TNV xopedid pou o€ xdie emouevo Brua mou Yo EMLYELR®.

H owoyéveld pou xou mo cuyxexpiéva n untépa pou Bovia, o matépag wou Xprotog xat o
adeppog wou ‘Ayyelog anotérecay Evay Boaoixd TUAGVA oTHEIENG TNV {wh HOL xaL OE OAES TIC
Borduideg e exmandeuTinhc Hou mopelag. Toug ogelhey T YEYUADITERO EUYPIGTE Yiol OAES TIC
Yuolee, TNV UTOUOVT, TIC GUUPBOVAES X0 TNV oY dmy TOUC oL Ue oTApLEay PéypL aUTO TO OTuElo.
Euyvouwy oung eluar xan mpog tor umdhotnar UEAN Tng olxoYEvelds pou, tny Jela wou Ku,
v yroytd pou Mopixor xan tar Eadépgprar wou Mopia xon Oavdon, mou ndvtote e unoctiplay,
ue emBedBeuay xou Ue TapaxtvoLcay va cLveyilo Tic tpoondleléc wou. Iditepeg euyopiotieg
YEAW v 8ow otoug @plhoug wou Tavayiwtn xow Nixo pe toug omoloug yolpdotrxa ToAAES
OTIYMES aUTAC NG BtaTeBrC XL HTay oL XaAUTEPOL GUVOBOLTOPOL GE aUTY TNV Bladpour|, Tov
Xpnoto yio Ty mohlTiun Béndela oe emMOTNHOVIXES €pwTAOES xat TNy utooTheEn woll ue
v LtéMa €0Tw xa ano poxpld, v Tovia, tov Hile, v Kdtio xan tov Muydhn pe toug
omoloug polpdoTnxa TOAES TTUYES TNg Lwng HoU Gho AUTE Tal YEOVLA, TEOCPEROVTAS UOU TIG
amopalTnTES OTIYPES Yopde xou aléyaote oulntioeic. Enlong va euyapiotrion tov Eddeppo
uou Nixo yio Ty forideia Tou WoTE Vo YIVEL 1) BOUAELS LOU OUORPOTERT) KO TLO XATAVOTNTH| LECA
Ao TIG EXOVEC XAl TOL OYAUATA TV ONUOCIELCE®Y. AEV UTOP® OUWS VoL UNV Tw EVa UEYIAO
ELYPLOT PECA ATO TNV XUEOL LOU GTNY XOTEAA Lou MTEAAQ, UE TNV omolo HolpdoTnXa TO
UEYOADTERO UEPOC Mo TIC OXEPELS, dyY N, OmOYONTEVCELS XU ETITUY(EC XU XAUTAPEQVE UE EVal
HOYIXO TEOTO VOL GUYXEVTRMVEL TNV OXEPN Lou xou VoL pou Bivel dUvaur, xivnteo xou xoupdylo
Yoo TNV oUVEYELL. Oa fTay, WoTOC0, TORIAEU)Y) LOU VoL UNV ELYOPIOTACL Xl TOUS YOVE(S
e LtéMag, Innohltn xar Anuocidévn yia TNy SloTnAY xat EUmeoxTr UTooTHEEY ToU Uou
TEOCPEEAY ATAOYEQA ATO TNV TEWOTN CTLYUN.

INo Tic mowbheg emoTnUOVIXES o TpOoWTXES cLLNTACELS V€AW VoL ELYAPLOTACL OAAL To
WEAN o Toug amégoltoug Tou gpyaotrnelov Pounotixnc xau Autoyotioyol, yia péva eivou
AATL TOPEATIEVE A0 GUVABEAPOL xS UE TNV OTARIEN XaL TN QAL TOUC EXOVAY TILO OUOPYES
TIC OPEC OTO €pYaoTARO. Ohw Wialtepa va euyopiothon Ty Fewpyla XarBatldxn, tov
ITden Owovopou, tov IIEtpo Kobtea, tnv Avtiyévn Towdun, tov Havoywwtn Tavvolin, tnv
Nixn Evdupiou, tov avaywstn ®ukvtion, tov Hovoryidtn Mépunyxa, tov Avtadvn Apfovitdnm
xan Tov ['idpyo Petowd. Eniong Yo fideha va euyaiplothom Ti¢ CUVERYATIOES Tou EpyaoTrpiou
Baouwx Ihatitoa, Pwtewvr Ltopérou xou tov 6Lluy6 tne Havayldn, odrd xou tny Aéomowva
Koocowavidon yia v @povtida xar tnv Porjdeia mou mopelyoy Ao To Ypovior o€ xonuepLvd
Véuato xou pn. Oa Aeka va eLyoEloTACW OAL Tl UEAT] TNG EMGTNUOVIXAC XOLVOTNTAC TOU
CUUUETE QY 0TNV €EETOOT TNS EPYSLaG Xot CUVEBOAOY UE TO ETOLXOBOUNTIXE TOUSC Oy OMAL
X0l TIC TPOTACEL TOUC. LUYXEXPHIEVY ey optoTed Tov Kadnynth Kwvotavtivo Kuplaxdnouhro,
Tov Kadnynt Xtégavo Ko, tov Emux. Koadnynt Kwvotaviivo Bhdyo, tov Kodnynti
Avtoovio Apyupd xar tov Kodnynt) Avtovio TCe, vyl Tov ypdvo Tou agiépwooy Yol TNy
uehéTn xou e&€taom TNe Topooag SlaTEBNg.



Extetaupevn llepiindn

Me v yrpavon tou Toryxoououv Thnducuol, Aoyw tne abénong tou tpocddxuou Lwrg, Ya
awEndoly xoL oL avayxeg Yo PeovTida 6TV EXTENETT TV BpacTNEOTATWY Xxadnuepvric dta-
Blwong xaw voonheto. H emuerfc extéheon tng xonueptvic TROCWTIXAC PeovTidag, 1 omola
elvon xplown yior TNV UYIEVY EVOC ATOUOU, EVOL ATTO TIC TEMTES OPAC TNELOTNTES XA NUERIVHC
dtafiwone mou BUGKOAELOLY TNV XAV NUEELVOTNTA EVOS NAIWUEVOU ATOUOU, XIS AMAUTEL Op-
01 ooyt xivntxdtnta. Emniéov 1 nopouéhnon tng npocwrixiic geovtidas arotehel Tov
LOYVEOTERO TTEOY VOO TIXO TORAYOVTOL Yo TNV avay X XAWXAC QRoVTIBS Yiar Evoy NAXIWUEVO
dvipwro. H épeuva mdve oe pounotinég egappoyég unofoRinong €yel wg otdyo TNV avdmTu-
&n ovotnudtey To onolo Yo fondoly nAuawuévoug avlp®droug 1) dToud Y EWXES avVaYXES
OTIC xAOMUEPLVES TOUC Bpao TNELOTNTES, ARG X Hor UELWDVOUY BRao TG TOV EQYACLUXO POETO
TOU VOOTAEUTIXOU TEOCOTIXOU XOIGTOVINS TO ATOTEAECUATIXOTEQD. XTO ENIXEVTIPO QUTHC
NG EPELVITIXAC OTOYEUONC XUk TO CUYXEXPWEVO GTO TAAICLO TOU EQELVNTIXOU TEOYEAUUN-
to¢ I-Support (H2020-EU.3.1.4.“I-SUPPORT - ICT-Supported Bath Robots” - 643666)
avomTOYUNXE Ve XAVOTOUO POUTIOTIXG GUCTNUN OTWS QouveTal 6To My. 1, To omolo Bondd
NALAWPEVOLS aVIPMTOUS VO OAOXANEWCOUY UE AGPIAEL Kol oVEEUPTNOLo SLAPORES CLUATIX
AL YVWO TG AmauTnTIXES Bpao TNELOTNTES Tpoowmixrg uylewnc. O Baocués cuoxevéc mou
amoapTiCouv To GUCTNUN EVOL UL POUTIOTIXG EAEYYOUEVY) XIVOUUEVT] XOPEXAL YIoL TNV ACPOAT

Kinect1

Motorized

(@) b) T (©

EyAua 1: Eyxatdotaon tou cuotiuatog I-Support oe xhvixéd nepBdirov (Nocoxoyeio Fon-
dazione Santa Lucia (FSL) otnv Poun, Itohia) v nepopotind a&iohdynon. O cuoxeuég
mou anoptiouv o cloTnua anewxoviCovtat e oelpd oto (a) Amphiro bl cteOnthpas porc xou
Vepuoxpacioc vepol, (b) To cbvolo tou cuoTAUATOC YE To BAoIUd TOL UTOCLO TAUATA HTKC
TNV QUTOXVOUUEVT] XOPEXAN, TO POUTIOT A0 EUXUUTTA UNXE X0 1) EYXATAC TAGT] TOV XOUUERWY
Kinect, (c) Awodnthpac deppoxpacioc aépa, uypasioc xou putiopol, (d) 'EZurvo pokdl tou
Bondder oty TawTtononon Tou YEHOTN XAl OTNY ToEaxoAoINoT TNG BEAC TNELOTNTAS Tou.

15
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HETOXEVNOT TOU NALXUWUEVOL GTOV YMEO TOU UTAVIOU, EVOC POUTOTIXOS YELRLOTHC XATUCHEUI-
OUEVOC OO EOXOUTTOL UAIXGL Yial Aooht] ETapy| Ue Tov avipwmo xat ol xduepes Kinect ol omoleg
0lvouv Lot TOAUTAEUET) OTTLIXY) TOL YEVOT).

H guow| Siemagy| xou adAAnienidpoom avipwnov-poundt diadpopatilel XeVTpxd pOAO GTNY
amodoy Y| POUTIOTIXWY EQUOUOYWY GTNY xordnuepvy) {wY. Ewddtepa oty tepintwon epopuo-
yov mepldordng xou unoforiinong avlp®drwy Ye xvNTXES 1 GAAEC BUOXOMECS, 1) AELTOURYIXN
amaftnon @uolxic emaprc avlp®Tou-pouToT amotehel xou €vay amd Toug Paocixols Topdyo-
vieg mou xadopilouy TNV Ac@IAELd TOU POUTOTIXO) GUGTAUATOS. € TETOLEG EQUOUOYES OA-
Anhenidpaong avipntou-poundT, amouteiton €va GUCTNUA BLAdEACTIXOU GYEBIACUOU xivnomng
Baowlouevo ot pio Slopxn TopoxoAolINcT TG XATACTACTS TOU avlp®ToU, Yo vo emteuydet
EVOC TATPWS AOPUANG XAl CUVEY NS TROCUPUOLOUEVOC OYEBLICUOS POUTIOTIXMY XIVACEWY Kol
epyaoldyv. O oyedlaoudc Yo npénel vo hopfBdver uddy Tou Ty popporoyio Tou xdlde cwuoTi-
%00 péhoug, avtiotaduilovtag mapdhAnio TNV QUGLXY| TOL XIvNoT), 1 oTtola UTOREL Vo elvor elte
CLCTNRATXY AOYL TNg avamvong eite Tuyalo. Enlong, wa Bacuxy| analtnomn yio Tov oyedlo-
ouod TV dpdoewy TAucipatog etvar vor oxohoLtoly TIC 0dNYIEC xan TNV ETUSEIET XATIAANAWY
HXVACEWY o6 EWB00E YOONAEUTES, Yiar Vo emuTeuyOel war QUALXY Teog TOV YeNOTr POUTOTIXN
Aertovpyio.

Ev Asitovpyla Awxdpactixdg Xyediaouoc Kivnong Po-
proTixoV Xelplo Tt

Exqedlovtag 1o mapandve medfAnua Lmo €vo TexVixd Tplouo, oauTO UETATEENETAUL OF €V
TEOBANUA POUTOTIXNG ToEOXOAOUUNONEG X0l TEOGUPUOY NG TEOXAVOPIGUEVLY XOlL YEOVIXE XAL-
HOXOUUEVWY TROYUMY AV OE XAUUTUAES XU TUPAUUOPPOCIIES ETLPAVELES, OTWS To avdpdmiva
uéen tou cwuatog. Emmiéov, oe meplntwon Onaping TeouUaTIONOU O Xdmold TEQLOYT| TOU
CWOUATOC, TOTE YEELACETOL 1) XATIAANAN UETABOAY) TNC TEOYIAC PE OTOYO TNV AmOQUYT AUTAC
NG TEPLOYME %ot TNV XAV TwV uTohoitwy. ‘Onwe edvnxe xou and ToV TUEATAVE GYESLICUS
Tou ouoTHaTog I-Support xataoxeudoTnXe Evag POUTOTIXOC YERLOTAS U0 EOXOUTTO UALXAL, O
omolog elvol AoQPUAEGTEROS GE GYECT| UE EVal GUUBATIXG POUTIOT YL TNV EXTEAECT) TV dpACEWY
TAUG{paTOg oE duUECT) ETAPT| UE TOV YEHoTY. 20TOGO 1) TOAUTAOXOTNTA TOU EAEYYOU XIVNOYC
Tou o 1) EMELPN xvnuaTieol Yovtélou, odNynoay oTtny emhoyr o ahyoprduog oyedlacuol
VoL eXPEACEL TaL ATOTEAECUOTE TOU GTOV YWEO ERYUCLNS TOU POUTOT UE ahhnhouy o emiuuntody
VE€oewy Yiol To TEAXO aTotyelo dpdone. Baoilouevol oe autolc Toug Teploptopols utodéTouue
OTL TO POUTOT UTOREL VoL TEPLYPAUPEL XIVNHATIXG ATTO TNV TOEoXTw GYEON:

q=u (1)

omou ¢ ebvar To Sdvuoua TNE VEOTC XU TOUS TPOGAVATOMOUOU TOU TEAXOU GToLyElov dpdong
xan w efvat To BLdvuopa TwV ToyLTHTWY €l0ébou. ol TNV TEOGUEUOYT) TWY TEOYLOY XATd TNV
OLdpxeLa TNE EXTEAECTC TOUC TROTAUNXE 0TO TEMOTO PEPOS AUTAHS TNG SLaTELBNC 1) ONUtoueY o Y-
PIXWY PETACYNUATIOUMY Ol 0TIol0L XGUE YEOoVIXY| GTIYUY €Y 0LV TNV LBLOTNTA AUPLLOVOCHUAVTOU
xon e, peTa€l ToU TELEOLEG TATOV YOEOL epYAClUC TOU POUTOT, TNE TEPLOYNG TNS EXOVIS TNG
AAPEEOS TOL AMEWOVILEL TNV EMLPAVELN BRAoNE Xl EVOC DIOBIACTATOU YWEOU UE XAVOVIXOTOL-
NUEVES BLac TdoELS, OTwS Gatveton oTo Xy. 2. [lio cuyxexpyéva, 1 onuacloloYIX XATATUNGT
TWV YEPWY TOL COUATOS TAVW GTNY EXOVA Yivetan pe alyopituoug Bodide unyavixnic udinong,
TO AMOTEAEOUN TV OTOlWY €lvol TO GUVOLO TWV EXOVOCTOLYEIWY ToU amelxovi{ouy To xdle
u€pog Tou opaTog xde ypovixr) oTiyur. Xuvdudlovtag Ty extiunor Bddouc twv cuyxe-
XEWEVWY EXOCTOLYEIWY TN XGUEEAS UE TO AMOTEAECUN UTWY TV oAyopliuwy, utopodue va
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Bijection

(a) Canonical Space (b) Image Space (c) Task Space

Yyfua 2: Teele Slapopetinol Yol Tou TEpLYEEPOVTAL GTNV TNV TEOTEWVOUEVT uedodoroyia.
(a) AoBLEoTATOC YWEXE XAVOVIXOTIONUEVOS YDEOS XUTE TIC X, § OO TAOES 0 Omolog oo~
pépeton oav ‘Kavovixoromuévoc’ yopoc (“Canonical” space). (b) O Siobidotatog ywpeoc tne
eovag evon N eodva g xapepas Kinect ye apyixd uéyedog 512 x 424 ewxovoctoyeio. H
TEQLOYY) TTOL ETUOTULVETAL UE EVal X(TPWVO TETEAY®WVO elval To amoTéAEoUA TOU ohyoplduou xa-
TdTUioNg TNE Exdvag o omolog evronilet To emduuntéd pépog Tou onuatoc. (c) O teledido tatog
Yopeoc dpdone tou poundt (Task Space). H nuitovoedric tpoyia amo tov Kavovixonowmuévo
XWeo avTioToly(leton oTny em@dvela TG TAATNG TG XeroTelg Tou ousthuatog. To xitpl-
VO %0UTL AVTITPOCHTEVEL EVAY UTIOYWEO, 0 0Ttolog TEPLAoBAVEL To OMUEiol TROCUPUOY NS TNS
TEOYIAC.

GUVUEGOUUE TNV TELOBIIC TATY AMEXOVNOT] TNE ETULPAVELNS TOU COUATOS OELYUATOANTTNUEVY) UE
onueio 6mwe gaivetar oo Xy. 2 (c).

Emopévee, 1 tpoyd mou €yet tpoxdeL amo Tty enidEE) EVOC VOOTAEUTH UeTaoy nuatiCetan
otov Kavovivormomuévo yweo 6mou xou yivetar 1 mopoxohotdncy tne. To xdde onueio tne
TEOYLAC OTNV CUVEYELL UETACYNUATICETAL YWEIXA GTO ENUIMESO TNE EXOVIS YPNOWOTOUDVTAC
AVICOTEOTUXT) XAWAXWOT OE GYEON UE TA OPLOL TNG ATELXOVIOTC OWUATOS GTNY ELXOVAL, OTWE
€youv TeoxOYEL amo TNV xaTdTUnoy. LTV cuvéyel To Blo onuelo petaoynuotiletal ywet-
%3 GTOV YWEO BEACNC TOU POUTOT UE TNV YEHON TWV TELOOLEC TUTWY ONUEIWY NS EMLPAVELOC.
Avohutixdtepa ano Ty extiunon Badoug Tou EXOVOGTOLYEOU XL TWV YELTOVIXOY TOU UTO-
EOUUE VAl EXTIUNOOUUE TOTUXE TNV XEVTEWXT VECT XU TOV TEOGUVUTOMOUS NG empdveloc. H
emduuntA olo Tou poundt anopTieTon and TNV XEVTEXY TELoddoTaty Yéomn xal Tov xddeTo
TEOCAUVATOMOUO OTNV ETULPAVELNL YO TNV EXTEAEDT) TWV BPACEWY TALGIIATOC OTWS QaiveEToL GTO
Xy. 3. T v mopoxohobiney Tng TeoYLAC GTOV BIGOLACTUTO XUVOVIXOTOLNUEVO YWEO EYIVE
Yehon evoc eheyxty| ouvapthoewy mhofynone (Navigation Functions) o onoloc oxoloudel
NV apvNnTixY| xhiom TN cuvdpTnoNg TAOYYNONG:

va(q,t)
2)
[V5(g,t) + B(g, 6)] /"

omov k > 0, 74(q,t) ebvar 1 ouvdptnon andotoong and TV BEOLECTUTA EXPEACUEVT] TROYLY
mAuoipotoc xou B(q, t) etvon T YIVOUEVO T0V CUVIPTACEWY EUTODINY (TEPLOYT UE TEaDUA) OTWC
TEOXUTTOUY amo TNV onTixy TAnpogopia. O eAeyxThC €)El AmOOEDELYUEVT X ONXS OUOLOUOE-
@1 ACLUTTOTXNA CUYXAoN oTNy emduunth Teoyio. H anddoon tou mpotewvouevou ahyopiduou
eréyydnxe 1600 o cUVITXES epYacTNEiOL OGO XL GE TEAYHATIXO XAVIXO TEQYBAAAOY UE T-
Awuévoug yenotec oe Enpéc oLV XES xou 68 GUVINXES UE YENOT VEPOU. LUUTANOWUATIXG
TporyUaTonoUnxe plar XAV UEAETY), 1 omolo amooxonoloe GTny afloAdYNoT TN omodo-
YN HOU TWV BUVATOTATOVY YPNONE EVOS TETOLOU TOAUTAOXOU GUCTAUATOS OO NAXLOUEVOUS

xefotes.

©(q,t) =
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(@ (b) (©

Eyua 3: (a) Iepopotind Tpocapoyy| olydoedolc Tpoylds oty TAdth wiag yerotelag Tou
ovothuatoc. (b) Khpdxwon tne anexdviong tne tpoytdc pe EUpaoT) oTny AETTOPERT| OTTIXO-
nolnon e tpocapuoYrc. (¢) Atewdvion e Tpoyldc Ywelc To Vépog anueiny g empdvetag
N TAATNG.

IToocappoyn Ipwroyvevoy Kuwvroswyv oe Avvapixég Emni-
(pAVELES

Me otéy0 v exudidnon Spdoewy TAUGIHATOC QLALXGY TEOC TOV YEHOTY, TEOTAINXE OTOo &-
ToOUEVO 0Tadlo TNne dtatefric éva eviolo olotnua, to omnolo Bacilouevo oty pédodo Twv
Avvapixov Ipwtoyevov Kivioewy, umopel vo pdder xan vor xwdixomotioel dpdoelg TAuciuo-

KIT / 200 350
__ +

Database

350 500 4

Yyfua 4: H Sraduaota expdinone twy nopauéteny evog abothuatoc Auvvauixoy Hpwtoyevov
Kwhoewv pe arhoyy| cuvtetaypévwy CC-DMP mepihopfdver tnv anoctvieon tng xivnong
o Blaxpttd xan TEplodd Wépoc. Apiotepdt: Koataypapr dpdone miuciyatog ano enidelln
voonheuth). Méon: Awywplouds xivnong oe TewToYevelc SLoxeiTEC Xol TEPLOOXES XIVATELS.
AeZid: H avanapoyduevn xivnon and v pédodo CC-DMP (ue unhé ypmua) eivon duoto pe
™y apyxr xivnon (Staxexouuévn).
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To¢ oL onoleg €youv TEoxLPEL xaTdTY ETBEENS amd €0LX0VUE VOONAEUTES o Vo el Tnv
CUUTERLPOPS TOUG. Apyxd €YIVE XaTorypapt| WAS UEYSANG ToLUAAS DpdoEmY TAUGIHATOG UE
XPNo™ CUCTNUATKY OTTIXAC XATHYPAPHE Xivnong, dnutovpyvTag wa Bdor dedouévwy 1 omtola
ewvon dnuodoa dadéotun (KIT whole-body motion database). Qotéco, xotorypdpnxoy Ayo
TopadelyoTar omd xdde xivnom, xahoTdviag TNy exudinon xou yevixeuon tne xdie xivnong
OUOXOAY. LTV CUVEYELL EYLVE ATOGUVIEDT) TV XATAYEYRUUUEVWY XIVACEWY G ATAOUGC TEPES
TEWTOYEVEIC XWWACELS (T.). TEPLOOLXEC Xou DLaXPLTES), oL oTmoleg efvat XUTOAANAOTERES VLol pO-
uToTXY| exTéREDT), OTwe anewoviletar oto XNy. 4. H expdinon xdde npwrtoyevoic xivnong
unopel var xwdxonondel oe aUTO TO GTABIO OTIC MUPUUETEOUS EVOS UN-YPOUULXOD BUVAULIXOD
CUC TAUATOS TN HOPPNS:

7.0 = K-(9—y)—D- v+ scale- f
Ty = v,

(3)

ue to %€pdog Tou bpou Yaong K, To x€pdog Tou dpou ToyvTNTAS D xaL ToV Un Yeouuxd 6po
OUVoNg f, oL TaEduEpTOL TOU OToloL TEOXVUTITOLY ATO EXPAINCT TKV BEBOUEVLY ENDEENS. T
elvan 0 ypovinde mapdyovtag tng xivnong, xou g 1 9éon otdyoc. Axdun, v, ¥ xu y Tpocdlo-
etlouv v TtEéyouoa xatdoTtacn e xivnong. scale eivon €vag ToEdyovVTaS XAUEXWONS TNG
xlvnone oe meplntwon ahhayhc T apytxic xou Tehxnc xatdotaong. H pédodog auty etvon
Yvooth oty Bifhoypapio we pévodoc twv Ipwtoyevdv Auvvauxdy Kivhoewy (Dynamic
Movement Primitives).

Task Space Task Space

Task Space

Reference
DMP

Canonical Space Potential Field _ Canonical Space

Executed |
Path q

Canonical Space Potential Field

Initial Point

Workspace

Yyfua b: Aprotepd: Mia neployr) eunodiou (m.y. évoag TEaUHATIONOS TOU QOIVETOL UE HOUEO)
evroniletan oty emipdvela dpdong tou poundt Task Space xau yetaoynuotiCeto otov Kavov-
xomoinuévo yweo Canonical Space. To duvouixd Tng cuvdpTnong TAONYNONG UEYICTOTOLELTAL
otV meptoy ) auTh Xl xou oTo GUVopo Tou ywpeou cpyaotac. Méom: H xivnon odnyoc
(x6xxvo) mpoabdlopileton xan évor elxtuxd duvouxd tedlo odnyel mpog to onueio otdyo. Ae-
gud: To anotéheopa Tou eAeyxTh) TapaxoAoviNoNG PoivETAL UE TO UTAE UOVOTIATL, TO OTOlO
EXTEAE(TOL QMO TO POUTOT, AMOPELYOVTUGC TNV TEAUMATIOUEVN Teptoyr. Meta tnv amoguyn
eUTOBlOU 1) XIVNOT| TOU POUTOT GUYXAIVEL X0 TIEAL GTNY 0EY XA OYEBLUCUEVT YRouUixT| xivno.

H enavacivieon twv momToyevdyY XVACEWY UE DLUPORETINES TUPUUETEOUS Xivnong Oivel
TNV BLVATOTNTA YA Ulal TAOUCLOTERT] OVTOEAY WYY XIVACEWY QPLAXES Tpog Tov yenotn. Ilo
ouyxexpléva, yio enavacOvieon plog moAbmhoxng dpdone mAucipatog emiéyeton o TEw-
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Yyfuo 6: To ARMAR-IIT avipwnoetdés poundt extehel wia xvnom xuxhixob oxoutioyatog
ulog Tuyodar xwvoluevng emipdvelac. To poumdT xpatdel Eva xITEVO GPouYYdoL UE TO oTolo
XEATAEL CLVEY T ETAPN PE TNV ETPAVELR, XxaddS 1 xivnon oxouticyatog TpocupuoleTal OTNV
xivnon e emgdvetag. ITdvw: Anewodvion ue yerorn vépoug onueiwy oe SlapopeTixéS OTIYHES
eZéhéne e xivnone. Kdtw: Aneixdvion amo mhevpnr| xduepa Tng xivnong tne empaveLog
X0l TNG AVTIGTOLY NS TEOCUPUOYHC OO TO POUTOT.

ToYeVNC xivnom cav 0dnyoc xau ula xivnon cav axérovdog. H Paocir| Swpoponoinon oe
oyéon ue v xhacowr| pédodo Ipwtoyevory Auvouxny Kiwvioewy Bactleton otny expdinon
TWV TUPAUETEMY TOU UN-YRUUULXOU 60U TNE xivnomng axohovou oy€ot Ue TO TAAICLO avapo-
edc tng xbvnomng odnyou, dlapoppavoviag Ty uédodo Ipwrtoyeveyv Auvouxov Kivicewy e
Ay Euvtetaypévwy (Coordinate Change Dynamic Movement Primitives CC-DMP).
‘Etou yia va exgpdooupe tny emduunth xivnon tou poundt ye Bdon tnv xivnon axdrovdo cto
TOYXOOWO GUOTNUN GUVTETOYUEVLY YEEWELETol 1) Tpoodfxn Tou Tivana petaoynuatiopod RE
amo TO TOTXO GUCTNUN CUVTETAYUEVKDY L 610 mayxoouo clotnua dpdong tou pounot G.
'Etol o Tehind duvauixd cUo TN TeoXONTEL W¢ eEAC:

T Ré,y 09 = Ry (K- (99 —y%) — D v+
scale® - f9) (4)
T Ré,t+1 ¢ = Ré,t 0

E&etdlovtac tnv mpocéyyion odnyol-axdiouvdou and pla eupUTERN OXOTLE WS TEOS TG
dpdoelc Thuoluatog, To Blaxeltd pépog Tng xivnong meptypdgel Ty Booixy| xatebduvon tng
dpdione (m.y. and 10 Méve YEEOC TOU GOUATOC TPOS TO XATw) EVE TO TEPLOBIXG Uépog exPpdleL
TO AELTOLRYIXO UEPOg TNG xivnong omwe wia eudela 1y xuxhixr| meptoduxn xivnon. Me tny mpotel-
VOUEVT amOoCUVIEST] TWV XVACEMY Xl TNV €xQeoct Tou xdie uépoug ue tnyv yédodo CC-DMP
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UTAPYEL 1) SUVATOTNTOL OVOTOROY WY NS TWV AEYIXOV XWVACEWY eNBEENS OAAdL XaL TEOCUPUOYT
QUTWV XATd TNV Odpxela TNg Aettoupyiog Tou pounoT, aAAGLOVTOS TIC YPOVIXES TUQUUETEOUS
Tou Buvaulxol cuoThuatog. Evtoltowg, n yeron anoxieistixd g uedédou CC-DMP dev
apxel Yior TNV dnpoupyio eVOg TANIPOUS CUCTAUATOS BLABEAC TIXOL OYEBLICUO) BEACEWY TAU-
oipotog, xadde oTnY Yevxh Tepintwon o uetaoymuatiopds RE, o omolog ebvon amopaitntoc
Yoo TV €xgpact e xivnong axohotlou cTov Yweo, eival dyvwoTog 1 UETOBIAAETOL UE TOV
XPOVo.

Enopévwe elvar amoapoltntn n yeHon tou cuc ThUaTog oaucIntnetaxic avtiAndng tou yweou
0pAONG oL TO CUYXEXQLIEVO TNG OTMTIXNG AvVABEUoNE OmO TIC XAUEPES TOU GUCTHUOTOS YLol
Vv mogoxoholinon g xlvnong Tou cwuatog Tou yeRoTn.  AvohuTixdtepa YE TNV Yeron
TOU CUCTARATOS TPOGUPUOYHC %iNnomg, OTwe TEpLYedpnXE Topamdvew, ivon SuVATH 1) avama-
paywyn g xlvnong odnyod ctov Koavovixomoinuévmy SlacTIoEmY SLo0LAGTATO Y MRO Xl 1)
TEOCUPUOY T TOU OTNV XWVOUUEVT X0l XOUTOAN ETLPAVELL TOU CWUATOS TOU YEHOTN, OTWS Pa-
tvetow ot0 Ly. 5. Mtnv mepintwor Umapdng WG TEAUUATIONEVNS TEPLOY NS OTNV ETLPAVELN
TOU OWUATOS TOTE O EAEYXTAC UETABAAEL TNV OVUTOEOYOUEVT] XIVNOT), ATOPEVYOVTIS TNV CU-
Yxrexpwévn tepoyn. Emmiéov, n avamapaywyr| Tng xvnong odnyol GTOV XAVOVIXOTONUEVO
YWEO, TEOCPEREL QUETT) Y WEXT XAUEXWOT) TNS XIVNONS OTO OLUPORETIXG UEYEVOC TWV UEPMY
TOU oWPATOS XqE YpnoTr, aveldptnTta and TNV xivnor enldellng mou yenowonojdnxe otnv
@pdor expdinong. Metd To oTdd0 TNG TEOGUPUOYHS Xl EXPEACTS TN %ivnong odnyol oTov
Y WO epyaciog Tou poundt, 1 emduunty xivnomn Touv POUTOT TEOXVTTEL ANd TNV AVATUEAYWYT
¢ xbvnong axdhoutou we meog to mhaiclo tne xivnong odnyol. To mpotevduevo cloTnua
aZtohoyrinxe melpaUaTIXd UE TN YpNon eVOg avilpwToedols pounoT, To onolo EXTENECE €val
OEVARLO ®oPLOUO) ETLPAVELNS OTWS PUVETAUL OTO TORABEYUa Tou Xy. 6 omou plor xuxAwt
xlvnon extelelTol TPOCUPUOC TG GTNY %IVNOT TNE EMLPAVELNS, SLATNEWVTAUC GUVEYOUEVT] ETOPT
ue auth. To nopadelyyota Tov EXTEAEG TNXAY XATAOEVVOUY TNV EQUQUOCLUOTNTA TNE HEVOOOU
O€ TEAYUATIXG CEVIPLA pouToTIXTS uToforiinong.

Exuddnon KivAoewv And Enidci&n Me Yuvoptroeic 1Tho-
Ynons

Emmiéov tng pedodou twv Auvvauixov Hewtoyevady Kivioewy, npotdiinxe xou pla evolhoxti-
xf) p€dodog expdinong xou avamopaywyng cOVIETLY xWAcEWY and dedopéva enldellne uéow
NS SLOPPWOTNE EVOS AW TX0V duVaixol Tedlou cuvapthcewy Thofynong. Iho cuyxexpl-
HévaL, 1 ETBEIEN TOV XVACEWY TEAYUATOTOLELTAL GTOV PUOIXO TELGOLAG TATO YOEO OTWE POLVETL
OTO XY. T %Ol TA XUTAYEUPOUEVO DEBOUEVI XIVNONEC TEOPBAANOVTAL TG GTNY ETLPAVELL TOU
CWUATOS XL GTNY GUVEYELL GTOV DLOOLIC TUTO XUVOVIXOTIONUEVO YWEO OTWS TEQLYEAPTXE TToL-
QUTAVE. YE AUTOV TOV ATAOTONUEVO YWEO To HovoTdTio enidelEne anovopufonolobyTon xou To
dloxpLto Toug Pépog yemoulonotettar otny Sadixacio exudinone. H Swodicoacio oauth nepthay-
Bdvel TOV UTOAOYLIOUS TWV GUVIPTHOEMY EXOVIXOY EUTODIWY B, Tol oTolor GUVBLOPPWYOLY
poll pe Tor mporypoTind eUodla OTNV EMLQAVELR, TNV cLVdeTnon mAofynone ¢ tne Edlowonc
2 xou unohoylovtan Ye TV pop@n Ererhne omwg mopatneeiton oto Xy. 7. H éxgpaon twv
TOPAUUETPOY TWV EXOVIXDY EUTOd{0V (XEVTPo ot prixoc Baotxmy aldvwy) urohoyileto and
v enthuon evog un-xuptod meofifuatog BeAticTonolnong ue Ty Bordela EVOE YEVETIXOU
alyopiduou enavinuévou pe plo pédodo xatdBaone xhione (Gradient Descent). Avohuti-
%0TEEA, *AVE TUPIUETEOS TOU EUTOd{oU avTioToLyEl G €var YOVIBLO Tou YEVETIXOU ahyoplduou
xa emNEEdlEL BlapopLXd TNV LOPYPY| TNE TUEAYOUEVNE TEOYLIC Omd TNV CUVARTNOY TAOHYNONG
X0l TNV TWTH TNG CUVAETNONG XOGTOUG, 1) oTtolol EYEL TNV Hop®T:
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Syfuor 70 Awodixaoteg Enidelne, Enclepyasiog, Exudidnone xow Avamapoywync. H Suaduxo-
olo tng Enldei&ne exppdletal U€ow TpOoyMY TOL TROYUUTOTOOUVTAL GTOV TRLEOIAC TUTO (PUOLXO
XWeo amd VOonheuTixd mpocwmixd. To dedouéva emdellne npofdAlovion oTov SlodldoTaTo
XOVOVIXOTIOLNUEVO Y Gpo 6Tou eneepydlovtal. XTny @dorn expdinong ue Bdon v mhnpogo-
olot TwV BEBOUEVODY XATACHEVALOVTOL EXOVIXE EUTIODLI GUUGPOVA UE TNV TEOTEWOUEVT] uéV0do.
Kotd tnv draduacta avamopaywyhc Tng xvnong €vag eEAEY TS CUVIRTHOEWY TAOTYNONS YET)-
OLIOTIOLELTOL YioL TNV ovamoparywY ) Tng Stadixaciog mhuoipatog.

1

(o= .
Tezp

> F(R.E,) (5)
n€Nexp
omou F' elvan 1 andotaon Fréchet petalld tng maporyduevng tpoyide R amd tnv unodgia ou-
VapTnon eumodiny B xou uiag Teoytds enideling Ey, yio 1o 6Ovoho Tov TpoxldY TOEENS Negp.
Me auté tov tpémo ot xde xUxho exnoldeuong UTOROYILETOL 1 OUOLOTNTO TNG TAUPAYOUEVNS
TEOYLAC PE TIC TEOYLES eMBEENC i OAN TNV Ypovixy| Sdpxela tng xivnong Tegp. Emmiéov,
oe xade yevid exmaidevong n avalrtnon tou yevetxol ahyopiduou enaudvetal UE TNV Yenon
e Levodou xatdBaong xAlong yio xdde péhog TG TEEYOUCUS YEVIAS EUTODIWY, MOTE Vo Bpe-
Vel plo Tomxd BEATIoTN AOOT), YENOOTOLOVTAS TNV (Bla CUVAETNOT XOGTOUS UE GTOYO TNV
TayOtepn olyxhion Tou alyopiduou exnaldevong. Metd tnv olyxhion, To ELXoVIXd EUTOdLAL
TOU UTIOAOY{OTNXAY OE GUVOLAOUO UE TOL TTRAYHATIXG EUTOOLO TOU YMEou epyaciog, Bloauop-
POVOUY EVa BUVOHLXO, T xoTdBacn Tou omolou amo ula apyixt| ot plo Tehixy| Véon xatdAAnia
EMAEYUEVES, ToPdYEL piot TPOYLE Opota ue TNV ETBELEN OTwS PatveTal 6To Y. 7, TPocddoVTIC
0TO POUTOTIXG CUCTNUA TIC amopaitnTeg BeElOTNTES Yo Xxdde epyacia TAUGiuaTOC.

"EAeyyogc ANAnAenidpaong Me Iapapoppwoipeg Emigpdveieg

Y10 tehevtaio 0Tddl0 TN moapoloug SlTEBhc, TEOTAUNXE €var UG TN BLIBEAC TIXO) CYE-
oloopol xivnong, To omolo duvaton var auERoel TNV axp{Bela oYEBLIOUOY TV EQYACLOY ok~
Ahemidpaong xon vor pLUULcEL TIC OUVAUELS ETAUPNG XATA TIG POUTOTIXES OPAOELC UE (PUOLXT
enagr). o cuyxexpyéva, 1 aduvapio eyxatdotaone evog allOTIGTOU CUCTARATOS UETENONS
e 0UVOUNG EMUPHC OF TOAAG POUTOTIXA cLUCTHUNTA OTwe To I-Support, odhynoe otnv pe-
AETN POUTIOTIXWV TEYVIXWDY EAEYYOU ETUPNC Ywelc dueon avddpaot. Tétoia oyfuata apopody
Tov éheyyo oxopdiog Tou poumotixol unyaviopol (stiffness control) péow tou eréyyou po-
TC OTOUE XVNTARES Yol A ¥E®TOVUC POUTOTIXOUC YEIRLOTES, 1) EAEY YO CUVOUACUOU UMY AVIOUWY
xbvnong yio ebxaunta poundt. Hopdhhnio n Tpd0BOC TV TEYVIXWY OPUGTC UTOAOYLOTWY GTNY
AVIAUGCT) EOVOC Kol OTIC BUVITOTNTES avTiAndne Tou TepBAAhoVTOC PE YwELXY) HoVTENOTO(N-
oM TELOOLAC TATOU TAEYHATOC, EBMOE XIVNTEO YLol TNV AVATTUEY EVOC ahyopiliou BLaBeac Tixo
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Eyfuo 8: H ouvolunr| apyltextoviny) Tou TeoTeouevng edodou dLabpaoTixol oyedlaouon
xivnong ue Bdon Ty avanopdotacy TAEYUaTog Tou aviixetuévou. H xotdtunon tng emdvag
L0000V, N TaEAX0A0VINGT TNS TOEUUOPPWOTE TOU AVTIXEWEVOU UE TEYVIXES OLOXPLTCY G TOLYE-
{wv xou 1 TapaueTEOTOINCT) TOL TAEYUATOC AMOTEAOLY Tol ahyoptduxd Briuata tpoeneéepyasiog.
Avutd To BuoTa Toeé oLV Uial VITUEAC TACT) TAEYUATOS TOU OVTIXEWEVOU TG0 6Tov Puoind
XWeo, 6mou eopudletar €va oyfua EAEYyoL odnienidpaone duoxaudiog, 600 xau oe 2A
Iopapetenols yOEOUS, OTOL TEAYUATOTOLELTAL O CYEDIAOUOC TWV BLUOEAUC TIXWY EVEQYELMY.

oyedaouol xivnong Poolouevou oe pla Souy| tetodidototou mAéyuatog (3D Mesh).

‘Opota ye Tig mopamdve Teooeyyioelg o Bacixdg 6Téy 0g Tou ahyoplduou oyedlaouol xivn-
one etvan vo emTEEdel oTOV pouToTXG YEWRlo T var TAonyniel mhvew amd éva Uépog TNS ETL-
PAVELAS EVOS VTIXEWWEVOL o Vo €plet oe emapt| uall TOU, EVE TO AVTIXELUEVO TOQUUORPWVE-
Ton evepyd X modnuixd. H e&éMEn tne mopoudp@mong Tou avTXEEVOU OEV TEPLYRAPETOL Amd
XATOLO YPOVIXO HOVTENO, ETOUEVLC 1) OTTIXY) TAnpogopla uiag xduepac Bddouc yenowlonole-
{tan yioo TV cuveyt| ev Aettoupyia poviehomolnoy Tng Topauoepemons ctov Yeovo. Ilupd tnv
ThoLota TANPoQoplor Tou TopEyeTeTon amd Uio TéTol xduepa, ypeetdlovion TOAATAY enineda
enelepyooiog TV EGERPYOUEVKDY BEGOUEVLDY Yiar vor avTAndel 1 yerown TAneogopio yior TOv
TREOTEWVOUEVO OAYORLIUO.

Apywd cav mpdto Priua encéepyaciog lvon amopalTnToc 0 EVIOTOUOS TOU OVTLXELUEVOU
eVOLAPEEOVTOG 6TO ETUMEDD TNG eovag. ‘Onwg Tepypdpnxe TUPATAV™, O GUYXEXPWEVOS E-
VTOTUOUOC TEOYUATOTIOLEITOL PE TEYVIXEC XaTdTong eovag. To dedtepo Briua enelepyaotiag
amoteheltan amd Evay ahyderiuo mapaxohotinong NG TUEUUOPPWONE TOU AVTIXEWWEVOU, O O-
nolog yenowonotel cay elcodo Ta TELOOLAG TarTa GNpEia TOL TaEdyovTAL Ao TNV XauEEd Bdrioug
xdde ypovixy| o TLyUr| xat TeocupuolEl Eva LOVTELD TELOOLIO TATOU TAEYUATOS GTNV LORP@Y) TOUG,
OTwe ofvetar 670 Xy. 8. AT TNV UEAETN TWV TEYVIXWY TARAUUOLPnoNg NS BiBMoypaplag
Eeydploay oL TEYVIXES ToL AaBdvouy LTOPLY TOUC Tal PUOIXE YUEUXTNELOTIXA TOU OVTIXEL-
pévou xat vhomoloUvta Ue pedodoug tenepaouévwy otolyeiwy (Finite Element Method). H
HOVTEAOTIOMNGT] TWV QUOLXWY TUPUUETEMWY TOU AVTIXEWWEVOL ETUTEETEL TOV UTOAOYIOUO XAl TNV
TEOBAEYN TV E6KTEPUDY BUVAUEWY TOU BNULOLEYOUVTOL amd TNV AAANAETBPON YE TO TEpL-
Bdrrov tou. 'Etol xadlotaton epxTOC 0 OYEBIUOUOC XU 1) EXTEAECT) POUTIOTIXYV EPYUCLWY OE
enagy| ue To avtxeipevo. Emmpdoieta, topoxohodiney tne Topauoppmons ToU aVTXELEVOL
Bonidel 0TV AMOTEAEOUATIXY AVTIUETWTLON TNG ATOXEUPNG OTTUXAC ETAPNS TNS HAUEQOS UE
70 avtxelyevo, 1 omolo cupfaivel xotd TNV dldipxel TG POUTOTIXNG EpYaTlog.
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Yyfuo 9: "Ex@paot UETACYNUATIONMY du@uULoVOcHUovTo xou ent YeTall Tou Ltatixol Kavo-
vixornotnuévou Xawpeou, tou Auvauixol Kavovixonomuévou Xwpou xar tou Pucixold ydpeou
0pdone Tou poundT pe TNV YeNon PBopuXEVTEXOY CUVTETAYREVWY UETOEY TV avToToL WY
TELYOVWY TV TELOY YWEMV.

IMopd tor axeiPr) amoteréoyota TopaxohobInong TS TUPUUOPPWONS TOU AVTIXEWEVOU, 1)
meoPBhedn e e€éMEAC TN oToV Ypovo eivon adlvaty yweic éva avtioToryo uadnuatixd po-
viého. Etol elvon amapaitnto éva tpito Brua eneepyaciac to omolo epupudlel xade ypovixt
OTLYUN EVOL UNFYROUUUIXO UETACY NUATIONO TEOBOAAC TOU TELOOIAC TATOU TAEYUATOC OTOV ENine-
80 ypeo, o onolog ovoudleton Auvauixde Kavovixonoinuévoe yopog (Dynamic Canonical
Space) xou amewovileton oty péon tou Ly. 9. O Auvauixiéc Kavovixornomuévoc yweog
Tapaxolovel TIg aAAaYEG OTIC YEWOEOIXES AMOCTAGES oL GUUPBAVOLY GTNV ETLPAVELL TOU
AVTIXEEVOU AOY W TNE Topapoppwone. H éxgpaon autold Tou un-yeoupixol UeTaoy NUATIONOY
TpofoAfc oe ula oTodepn) xou xUTIAANAL ETAEYUEVT YeOoVIXT OTlyUr Onuiovpyel Tov Xtotind
Kavovixonomnpévo yopeo (apiotepd oto Ly. 9). Anodewxvieton H€ow BopuXEVTPIXWY CUVTE-
TAYUEVOY TOV TELYOVWY Tou TAEYUATOS, 0Tl xde onueio tou Mtatixol Kavovixonowuévou
Y wpeou avtioToly(Ceta évo-npoc-éva, ue éva onpeio Tou Auvopixol Kavovixonomuévou yohpou
X0 TOUTOYEOVA UE €Val ONUED OTNV ETLPAVELX TOL aVTLXEWWEVOL aTov Puond Yweo dpdong Tou
eounoT. AUTH 1) AVTICTOLYLOT ETUTEENEL TOV OYEDUOUO UIVACEWY GTOUG ETUTEDOUS YOPEOUS Kol
TNV GUEOT) EXPEACY| TOUC GTNV ETULPAVELL TOU AVTIXEWUEVOL.

O a16y0¢ oL ahyopliuou oyediacuol xivnong elvar o utohoyiouds Tng emtuunthc nolag
Tou TeEhxoU oTolyelou dpdong tou poundt. H emduunth teoyid yio plo pounotiny epyacio
oaMnAenidpaonc oyeddleton apyixd eVIog Twy oplnvy Tou Mtatikod Koavovixonowmuévou yoheou
onwe gaivetow oto Ly. 10y Exgedlovtag to xdie onueio tne tpoyldc oe oyéon pe TiC
X0pUPES TOU avTioTolyou TELYOVOU (EVEpYS TElY®wVO), UTopoUUE aTny cuvéyeta Vo Bpolue
novootiuavta To avtiotolyo onueio Tou 600 otov Auvauxd Kavovixomoinuévo yoheo 6co
xaw otov Puowd ywpeo Spdone tou poundt 100 H xddetn amdotaon tng oyedialouevng
TEOYLAC amd TO ETUNESO Z = 0 TwWV BIoBIAoTATWY YWewY dlatnee(ton (Blor 6TOV UG YWEO
opdiong o€ GYEoT YE TNV emLpdvela Tou avTixewévou. [ va yivel oyedaoudg ulag pounotixig
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normal offset

! 1
Group A I

(o) Puode Xdpoc (B) Auvapixde ywpog (v) Tramxde ydpog

Yy 10: H mpotewouevn pédodog diadpactixol oyedlacuol xivnong. O oyedaouds tne
xivnong yivetaw otoug diodldoTtatous mapopeTEols Yweous (Ntatxd i Auvouixd) xar xdde
Yeovixn oTiypn 1 xbvnom exgedleTtol TNV EMLPAVELD TOU AVTIXEWWEVOU.

epyaotag ue emagn apxel va emhey el yio Véomn e apvnix andoTaon omd To Undevixd eminedo.
Emnpéoieta, o emduuntdc tpocavatohiopds xadopiletar pe Bdon to xdieto Sdvuouo 6Toug
000 BLOOLACTATOUS YMEOUSG XAl AVTIOTOLYO OTO TEIYWVO TOU TELOOWIOTATOU TAEYUATOS GTOV
QUOIXO YEO.

H anédoon tou cuotiuatog ehéyydnxe mewpoauatind oc cuvifxeg epyactnelou, yenol-
HOTIOLOVTOC EVOL QOUTIOTIXG YEIRLOTY YLl TNV EXTEAECT) BLUDPAC TIXWY EQYACUDY UE EVOL TOEA-
noppwoo povtého. MeletRinxe 1 axp{Belor ToU OYEBLACUOY TETOLWY EQYACLOY GUYXELTIXS
ue mponyoUUeveS mpooeyYioelg ol onoleg otnpllovton uévo oe omTiny| mhnpogopta. Ilapou-
odlovton eniong AMOTEAEGUOTA (G TEOS TNV Toeaxoloinoy onueiou oTny empdveld evog
EVERY S TOQOUOPPOUUEVOL OVTIXEWEVOU XU TNV PUUULOT TV BUVIUEWY ETAPNE ET’ AUTOY, Xa-
TABEXVOOVTOC TNV oxQBEL ol ATOTEAECUATIXOTNTOL TOV TEOTEWVOUEVOLU CGUC THUATOS POUTO-
TIX00 OYEBLACUOL %ivNomg xou EAEYYOU OTNV EXTEAEDT) DLUDPAC TIXWY EQYACLOY YEWRIOUO €Tl
TUPUUOPPWOCIUWY ETLPAVELDY.

Stationary A E—- Statim.lary ‘
Experiment . ) Experiment
|
/ F—_—— g ] / b
\ B el |
(a) Front View (b) Top View
Static Canonical Static Canonical
S| .
pace Defonpulg > /j Space Deforming
Experiment = ] Experiment
N 1 A
. Mﬁ | - | ==
(c) Front View (d) Top View (d) Top View
(o) Kuxhue Tpoyid (B") Evdeia Tooyid

Yyfuo 11: Topadetypota extéheons plog xuxhixic xou plag eudelog Tpoytds mdvw and €va
NULCPUEIXO TUEAULORPWOLIO HOVTENO, O €Vl GTATIXG GEVARPLO Xl €V GEVARLO NULITOVOELBOUC
Tapaudepnons. H mapaxoroldinon tng Teoyids oTov uoxd yweo and To poundT yiveton Ue
CUUHOROWOT) TNV TORUUORPWOT] TOU OVTIXEEVOU XU OTIC OAAAYES TV YEWDIECIXWY OTO-
CTACEWY GTNY EMLPAVELL TOU.
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1 Eyxatdotaon tou ocuotiatog I-Support oe xhvixd nepiBdihov (Nocoxoyeio
Fondazione Santa Lucia (FSL) otnv Poun, Itakia) yio ntepopotind oZlohdyn-
on. O cuoxevéc mou amaptilouv to chotnua aneixovilovial Ue oElpd 010
(a) Amphiro bl acdntipoac porc xau deppoxpacioc vepol, (b) To clvoro
TOU GUGTAUATOS HE T BACLXd TOU UTOGUC TAUITA OIS TNV AUTOXWVOUUEVY] X0
EEXAQL, TO POUTIOT OO EUXOUTITOL UAXE Kol 1) EYXUTAC TAOT) TwV xopepwy Kinect,
(c) Awodntipac Vepuoxpaotag aépa, Lypaciac xa pwtiouoy, (d) EEunvo po-
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tpoylo amo tov Kavovixonoinuévo yweo avtiotoylleton oTnyv EMPAVELL TNS
TAATNG TNS YeoTelg Tou cucTAatos. To xitpvo xoutl avtitpocwredel Evay
UTOY (PO, 0 oTtolog TepAaufdvel To onueia TEOCUPUOYNAC TN TEOYIAS. . . . . . 17

3 (a) Hewpopoatixh Tpocouoyy olypoedolc tpoytde oty A& plac yehotetac
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toyevwyv Kivioewv pe ahhayr| cuvtetaypévwy CC-DMP repihopfdver tny ano-
obvieon tne xivnong oe BlaxpLtd xan Tepodixd pépog. Aprotepd: Kataypo-

@1 dpdong mAuciyatog amo enidelln voonheutn. Méom: Alaywpionog xivnong
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owacto e Enldeidng exqedleton p€ow TpoyLmY TOU TEAYUATOTOLOUVTOL GTOV
TELOOLIG TUTO (PUOXO YWEO ATd YOOTAEUTIXO TeoowTXO. To dedouéva emideL-
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Chapter 1

Introduction

Advanced countries with well organized and modern health care systems tend to become
aging societies, according to World Health Organization’s research on health and ageing
[4]. The percentage of population with special needs for nursing attention (including
people with mobility impairments) is significant and due to grow rapidly in the coming
years. More specifically, the total population of older people (ages 65 and over) was 0.9
billion in 2015 and is expected to reach 1.4 billion by 2030 and 2.1 billion by 2050. The
vulnerability of the elderly is most frequently reflected in cognitive, perception, stability
and even functional disability problems [5]. Health care experts are called to support these
people during the performance of Activities of Daily Living (ADLs) such as dressing,
eating and showering, inducing great burden both to the families (mostly financial) [6]
and to the caregivers [7]. Great research effort has been spent over the last decades [8, 9,
10] on studying and classifying the functional disabilities of older adults and associating
the latter with basic factors of morbidity and mortality. Personal care (showering or
bathing), which is crucial for a person’s hygiene, is included among the first ADLs, which
incommode an elderly’s life [11] and ADL difficulties in bathing or showering represent
the strongest predictor of subsequent institutionalization in older adults [12]. In addition
it is among the last that are regained during post-surgery recovery. Older adults require
assistance in bathing or showering more frequently than for any other ADL [13], since
it has increased mobility requirements. Furthermore, since bathing is a highly intimate
ADL, the wish for independence from personal bathing assistance of caregivers, as long
as possible, is not unusual in older adults [14]. This clearly suggests that support in
bathing activities, as an early marker of ADL disability, will foster independent living for
persons prone to loss of autonomy and relieve the caring and nursing burden of the family,
domiciliary services, medical centers and other assisted living environments. Therefore,
as life expectancy continues to increase, care for the elderly is becoming an important
issue in modern societies, given the shortage of nursing staff [15]. Therefore, the use of
technology for medical and daily life support is vital. Robotics seems to naturally fit
into the role of assistance, as it can incorporate features such as support for posture and
stability, communication, health care, etc. This need has led to the emergence of a new
field in robotics, that of Social Robotic Assistance Systems.

1.1 Motivation

Assistive Robotics is the main source of inspiration for this work. Past definitions of as-
sistive robotics referred to robots that assisted people with physical disabilities through
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Figure 1.1: The envisioned transition from a (a) standardized clinical bathroom to (b) a
bathing environment equipped with appropriate robotic and sensorial infrastructure.

physical interaction. The scope of this definition is no longer appropriate, since there is
a large variety of robots that assist through non-contact interaction. Over the last two
decades research on robotic assistive systems has included physical rehabilitation robots,
robotic wheelchairs and other mobility assistance systems, robotic manipulators for people
with disabilities, but also educational robots [16]. Moreover, the users’ requirements for
social interaction with the robots has led to a wider family of robotic systems, socially
assistive robots. Therefore, an adequate definition of an assistive robot is a device that
can collect and process sensory information and perform actions that benefit people with
disabilities and older adults in the activities of their daily lives. These activities include:
bath & shower, dressing, food preparation & feeding, mobility, personal hygiene & groom-
ing, housekeeping, drug taking, money management, shopping, communication, home use,
technology , Exercise, Reading, Relaxing, Socializing, etc. Social Robotics Assistance Sys-
tems aim to achieve effective social interaction with the user in order to provide assistance
and achieve measurable improvement in recovery, rehabilitation, education, etc.

Bathing represents one of the most complex ADLs [17] for which older adults require
personal assistance more frequently than for other ADLs. However, it is complex not only
in terms of functional abilities, but also considering several other aspects as nicely pre-
sented in [18]. More specifically, there are factors affecting the bathing activity related to
the person, such as physical (e.g., strength, balance, pain, limited range of motion), psycho-
logical (e.g., depression), attitudes and preferences about bathing, and cognition. Other
factors are related to the environment, both physical including safety devices, bathroom
hazards and materials, and social, focusing on the support from the family or caregivers,
or related to the bathing task itself, such as specific sub-tasks, timing and actions required
to perform the task. Apart from the aforementioned high level factors of analyzing the
bathing activity, it is highly important for maintaining an individual’s skin integrity and
personal hygiene, thus reducing also the potential for infections and disease [19]. It also
serves the social purpose of maintaining an acceptable standard of cleanliness for social
interactions [20].

From the perspective of a caregiver, bathing of older people or people with a disability
can be a time consuming and physically and psychologically demanding task [21]. At
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the same time, some older adults might wish to be independent from personal assistance
in bathing as long as possible [20], since it is considered by most of them a sensitive and
intimate activity. A person’s dependency in bathing and the caregiver burden in providing
bathing assistance can be reduced through the use of assistive devices (Fig.1.1), such as
grab bars, shower seats, bath chairs, and nonskid mats. However, these bath aids do not
support the entire sequence of bathing tasks (i.e., bathing transfer, water rinsing, soaping,
scrubbing, drying) and thus may often fail to enable users to independently complete the
entire bathing process [22]. Furthermore, the evidence on the effectiveness of bath aids is
still unclear [23]. In this context, assistive bathing robots that can support older adults
in several bathing subtasks have been proposed [24].

The main motivation of this thesis is the use of intelligent robotic systems, which can
monitor and understand the patient’s state, infer the patients’ intentions and needs, and
decide independently to perform assistive actions during the entire bathing sequence. Such
assistive bathing robots could help to preserve independence and privacy of older adults,
but also reduce the burden of caregivers in providing bathing assistance and allow them to
spend more time on other care tasks, which could increase their overall productivity and
quality of care. A bathing robotic assistant needs to integrate important scientific and
technological developments of multiple research fields. The main idea is to develop robotic
assistants which can operate a) proactively and autonomously, performing specific human
monitoring and decision making functions after recognizing user behavior patterns, and b)
adaptively and interactively, analyzing and integrating the knowledge and experience of
the nursing staff with multimodal modeling and learning, for both proper execution of the
bathing sub-tasks and intuitive human-robot communication strategies. The reduction of
cognitive effort for the operation of an assistive robot, especially for an elderly user, is
crucial, not only for its effectiveness in task accomplishment [25], but also the acceptance
and satisfaction of the user with the robot [26].

At the heart of this research targeting and more specifically within the context of the I-
Support research project (H2020-EU.3.1.4.“I-SUPPORT - ICT-Supported Bath Robots” -
643666) an innovative, modular, ICT-supported robotic system was developed, depicted in
Fig. 1.2, which successfully assists frail older adults to safely and independently complete
various physically and cognitively demanding bathing tasks, such as properly washing their
back and their lower limbs. The components of the I-Support system are the following:

e Motorized Chair: A motorized chair has been employed inside the shower to
effectively assist the older adults during sit-to-stand and stand-to-sit tasks and for
safely transfer from the exterior to the interior space of the shower cabin.

¢ Human-Robot Interaction: For the purpose of human-robot communication and
perception, the I-Support system was equipped with Kinect V2 RGB-D cameras.
These sensors are frequently used for visual analysis in assistive robotics [27], as
they are inexpensive, reliable and simple to waterproof. This multi-view setup was
designed so as to be able to deal with two technological tasks of the I-Support
project, namely: a) audio-gestural command and action recognition and b) body
pose estimation for robotic manipulation.

e Context Awareness System: Additional sensorial data coming from different
types of sensors are analyzed by the system, in order to have full environmental
awareness. More specifically, useful data regarding water flow and temperature
are provided to the system (Fig. 1.2(a)), together with air temperature, humidity
and illumination (Fig. 1.2(c)), which are environmental conditions indicative for the
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Figure 1.2: Installation of the I-Support system in clinical environment (Fondazione Santa
Lucia (FSL) Hospital in Rome, Italy) for experimental validation. The devices constituting
the overall system are presented. (a) Amphiro bl water flow and temperature sensor. (b)
General aspect of the system showing the Motorized Chair, the Soft Robotic Arm and the
installation of the Kinect sensors (for audio-gestural communication). (c¢) Air temperature,
humidity and illumination sensors by CubeSensors. (d) Smartwatch for user identification
and activity tracking.

user’s safety and comfort. A smartwatch similar to the one presented in Fig. 1.2(d)
is integrated for user identification and activity tracking purposes.

e Soft Robotic Arm: A soft-arm (Fig. 1.2(b)) has been developed to assist elderly
people in bathing tasks. Soft manipulators can be considered intrinsically safe thanks
to the actuation technologies they are made of. One of their main features is their
compliant body that can deform passively to adapt to environment changes, thus
reducing the complexity of active control.

Among the multitude of research, technological and scientific issues that emerged from
the design and development of I-Support system, this thesis focuses on the development
of a reactive motion planning method which calculates the motion behavior of a robotic
manipulator’s end-effector, operating over a curved deformable surface. Such surfaces
characterize the human body parts, which are systematically or randomly moving and
deforming (e.g. due to users’ breathing motion or due to users’ voluntary motor activity).
In particular, point-cloud data from the system’s depth cameras, combined with enhanced
visual perception data for area of interest segmentation, are used as input to the method.
The design of robotic surface tasks has to adopt the expertise of professional carers for
bathing sequences and appropriate motions, in order to achieve natural, physical human-
robot interaction.

1.2 Problem formulation

In order for an assistive bathing robot to be capable of executing the whole bathing
sequence, it is necessary to process and interpret multi-modal information from a variety
of sensors mounted in the application environment (bathroom space). More specifically,
the rich visual data, obtained from three Kinect v2 sensors of the I-Support system, has
to be segmented into areas with rich semantic information, such as the human body
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(a) Design of Soft-Robot performing Scrubbing (b) Design of Soft-Robot performing Showering

Figure 1.3: Design of a soft-robotic arm performing bathing actions.

parts or obstacles, resulting to full scene understanding. Especially for the bathing tasks,
which require physical interaction of the robotic manipulator with the human body (e.g.,
showering or scrubbing), as depicted in Fig. 1.3, on-line accurate scene perception is
crucial for appropriate action planning. In more detail, the robot should be able to execute
showering or scrubbing tasks and at the same time to be compliant and safely interacting
with with the body part.

Furthermore, those interaction tasks are required to be executed according to nursing
expert’s demonstration and directives and simultaneously according to user’s preferences,
to achieve proper and human-friendly motion behavior. This procedure might raise some
requirements for each task, in terms of contact forces, execution time and motion com-
plexity, which should be met by the motion planning strategy. More specifically, this work
aims to provide a solution for the following problems:

1. Development of a motion planning algorithm, which uses the visual feedback from a
depth camera and the corresponding scene perception information, in order to adapt
predefined, time scalable trajectories on curved and deformable surfaces, such as the
human body parts, while at the same time avoiding the interaction with obstacle
areas, such as injuries.

2. Deployment of an integrated system, which can learn and encode complex, human-
friendly interaction trajectories from demonstration of experts in elderly nursing care
and apply the learned actions on real-life scenarios, imitating the human washing
actions.

3. Apart from the human-friendly execution of interactive tasks, the applied contact
forces are important for proper physical interaction tasks as well. Therefore, a
system that can regulate the contact forces during a physical interaction task on a

deformable surface is required, which should not necessarily rely on the use of force
feedback.

4. Beyond the key motivation related to the development of efficient robotic assistive
devices, a central goal of this thesis, in more general terms, envisions the development
of a fully integrated perception-driven motion planning framework for effectively
controlling a robotic manipulator in the execution of interactive tasks on the surface
of a deformable object, efficiently handling both active and passive deformation
conditions.
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1.3 Related Work

1.3.1 Assistive Nursing Care Robotic Systems

During the last decades, the robotics society is attempting to tackle this challenge of unat-
tended nursing by developing flexible and modular assistive devices that aim to cover the
needs for support of everyday tasks involved in the caring of patients and elderly with
moderate/low mobility, in both clinical and in-house environments. Regarding the latter,
many innovative solutions have been developed, which can be mounted on a wheelchair
or on static structures of the house. In particular, the system KARES-II is presented in
[28], which consists of a mobile and a wheelchair platform with a cable-driven robotic arm
with active compliance and visual servoing capability integrated with various human-robot
interfaces. In addition, the MATS climbing service robot is developed in [29], which is a
lightweight 5-DOF manipulator with on-board control and communications systems, able
to move around the house climbing on multiple docking stations and perform assistance
tasks such as eating and shaving. Various nursing tasks which involve human-robot phys-
ical interaction require sophisticated sensory infrastructure and control strategies. For
example, in [30] the development of a four finger robot hand with a variable stiffness joint
with simultaneous sensing of multidirectional external forces is described. This joint is
made of two types of silicone rubber and enables safe and stable physical interactions
with humans. Bedridden patient transfer is a very physically challenging task in nursing
care, the burden of which is reduced by two robotic solutions. In [31, 32], Mukai et al.
have developed a prototype robot RIBA, with human-type arms equipped with tactile
sensors both for guidance and human posture adjustment, capable of performing heavy
physical tasks requiring human contact. Similarly, in [33] a humanoid mobile robotic nurse
assistant (RoNA) with bimanual dexterous manipulators, is presented.

On the other hand, several skincare and washing tasks require much more delicate
actions by the the robot. A three finger system driven by a 3-DOF parallel translational
mechanism is developed in [34], in order to perform skincare actions on the human body.
The tree finger mechanism is attached on a seven-DOF Mitsubishi Heavy Industries PA-
10 manipulator and is accompanied by a low-cost stereo vision camera for human body
shape estimation. A multi-fingered robot [35] is also employed for washing hair in hos-
pitals or care facilities. Several mechanisms with different end-effectors are controlled by
compliance control, for providing an appropriate sense of pressure. A humanoid robotic
nurse system named Cody [36] was created to assist individuals with disabilities. It was
designed to support human-robot interaction tasks with an emphasis on tasks relevant to
healthcare, such as bed baths. Automated showering assistance is provided by two com-
mercially available solutions. Oasis system [37] has multiple shower jets and soap solutions
distributed properly around a seat, achieving effective washing and rinsing of body parts
without the risk of falls. To minimize the risk of fall, Poseidon system [38], apart from the
showering system, is equipped with a motorized chair, for safe entrance into the shower
cabin. On the downside, both of these solutions completely lack physical interaction with
the user and therefore lack some basic functionalities of the bathing sequence such as
scrubbing and wiping the senior.

The I-Support platform, developed in the context of a European Union funded project!,
constitutes an innovative, modular, ICT-supported robotic system that successfully assists
elderly people, to safely and independently complete various physically and cognitively
demanding bathing tasks, such as properly washing their back and their lower limbs.

'I-SUPPORT EU Project, Grant number: H2020-643666, http://www.i-support-project.eu/
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The main contributions of the project relate to the development and seamless integration
of novel cognitive human-robot interaction technologies and to the evaluation of these
technologies, as individual modules as well as an integrated assistive robotic platform as
a whole, through a series of clinical validation studies in realistic scenarios and under
real operating conditions. These technologies include: human activity monitoring and
recognition, adaptation of a motorized chair for safe transfer of the elderly in and out the
bathing cabin, a context awareness system that provides full environmental awareness, as
well as a prototype soft robotic arm and a set of user-adaptive robot motion planning
and control algorithms. Key features of this assistive robotic platform are supported by
a multimodal modeling and learning system, which aims to enhance the human-robot
communication making it natural, intuitive and easy to use, addressing aspects of smart
assistive HRI.

1.3.2 Interactive Motion Planning Methods

Motion planning strategies should take into account a large variety of aspects of robotic
interactive tasks, such as surface coverage, obstacle avoidance, surface perception and tra-
jectory adaptation to different surfaces. The spectrum of applications, which involve a
robotic manipulator executing surface interactive tasks with the environment using sen-
sorial feedback, is wide. Application examples range from automotive industry, in which
industrial manipulators are responsible for transferring or spraying actions on car parts [39]
to service robotic systems interacting with household environment [40]. Another interest-
ing application field concerns robotic surgery, particularly introducing semi-autonomy in
specific tasks such as the beating heart motion compensation in robot-assisted cardiac
surgery [41]. Considering the accuracy of task execution, many researchers have focused
not only on deriving analytical inverse kinematics for a 5-DOF robot [42], but also on
optimizing the null space of a redundant manipulator [43]. In the latter paper, the PR2
robot is confronted with the task of cleaning the previously known surface of a small car,
implementing a coverage strategy, which is optimized with respect to cost functions de-
fined in the joint-space. The control and trajectory tracking with obstacle avoidance on
known surfaces is also addressed in [44], with the use of a Navigation function controller,
which steers a manipulator while achieving limited joint velocities.

Various sensors are used as feedback for interactive task execution, such as capacitive
sensing technique for human limb estimation [45]. More specifically, a multielectrode
capacitive sensor, which is able to sense the limb through fabrics or wet cloth, is mounted
on the end-effector of a robot and is combined with a neural network model to estimate the
position of the closest point on a person’s limb and the orientation of the limb’s central axis.
The robot is able, using these estimates, to plan a motion of its end-effector with respect to
the limb and perform dressing and bathing tasks. Another bathing robot presented in [36],
uses laser range data with a camera, both mounted on a tilting mechanism, to estimate the
shape of the body part and at the same time locate a colored stain, in order to properly
clean the designated area, using impedance control. A low cost stereo camera is used for
human body part shape estimation, in a skincare interactive task proposed in [34]. The
measurement of the body shape is performed in the beginning of the procedure and the
measured area is divided into small segments, represented by a point. The robot’s path is
planned by connecting the representative points, while the depth data is interpolated by
a spline function. In [46], Leidner et al. have used visual feedback and a generic particle
distribution representation of different materials, in order to design proper motion plans
for surface wiping actions and in [47] contact detection is used in combination with their
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previous approach for task performance inference, incorporating appropriate re-planning
strategies. Dragging actions for dirt removal are also planned in [48], using visual detection
of the dirt distribution on a planar surface. The authors propose a stochastic action plan,
with replanning every few actions exploiting new perception information. Adaptation to
new environmental conditions is implemented with a learning heuristic that updates a
rule model, used for planning. Scene modeling using a Kinect sensor and KinectFusion
algorithm is employed in [49] for calculation of obstacle-avoidance objective functions in
a GPU implementation.

Motion planning strategies for soft robotic manipulators are totally different from the
rigid ones, since the large number and the complexity of possible configurations have to
be taken into account during a task execution. The Kinect sensor is also used as a feed-
back in a planar setup [50], which includes a three segment continuum manipulator, for
planning grasping actions of various objects. In particular, the objects and obstacles are
visually detected and the feasible whole-arm wrapping around grasping and intermediate
avoidance configurations are calculated. A reactive motion planning algorithm is pro-
posed in [51], which is based on potential fields and achieves real-time dynamic obstacle
avoidance for tendon-driven single-segment manipulator. Moreover, an electromagnetic
sensor provides the manipulator’s tip position and the estimation of the pose along its
body is implemented with a non-linear observer based on an Extended Kalman Filter. A
modification of this algorithm is proposed in [52], in such a way that makes it applicable
to a constant-curvature kinematic model. Additionally, the mechanical constraints of the
manipulator are taken into account by introducing a potential field for the actuator space,
improving the smoothness of its motion.

1.3.3 Interactive Motion Learning Methods

Interactive tasks with the environment are usually very complex for robots, owing to their
diversity and high variability of execution conditions. Consequently, many researchers have
shifted their attention to learning-based approaches, to handle these problems. Learning
a complicated motion from human demonstration includes both choosing appropriate mo-
tion representations and corresponding learning strategies. There are many methods that
implement Learning from Demonstration (LfD) with the most common being: Gaus-
sian mixture model (GMM), Hidden Markov model (HMM), Gaussian mixture regression
(GMR) and Dynamic movement primitives (DMPs). A sum of weighted Gaussian kernels
is used in [53] for learning rhythmic motion patterns, mapping an oscillator signal to the
desired movement. The human demonstration is recorded via kinesthetic teaching to a
robotic manipulator and an algorithm autonomously combines the learned movement, in
order to wipe a planar surface. Kinesthetic teaching is also employed in [54] to develop
an integrated method for a small humanoid robot to clean a whiteboard. The authors
use an extension of DMP, described as superposition of basis motion fields, to encode
the skill and extract variation and correlation information across demonstration data. A
set of virtual attractors, learned by weighted least-squares regression, is used to reach a
target. A combination of a modified HMM representation with a Gaussian regression is
used in [55], to generate a continuous window wiping trajectory with online incremental
kinesthetic learning.

Several methods of on-line robotic coaching are surveyed in [56] using second-order and
third-order DMPs. The weights of a periodic DMP are adapted on-line, through different
coaching methods, including visual or stiff force or compliant force feedback. The same ex-
tension of DMP is used in [57], to generate a sequencing of discrete motions, by modifying
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the Gaussian kernel functions, for a wiping task. On-line adaptation of a periodic DMP
for wiping tilted surfaces is presented in [58] and later in [59]. The robot initially estab-
lishes contact with a given surface, maintaining a predefined force of contact through force
feedback. Using this type of feedback, the robot is able to comply with the constraints
set by the environment and at the same time the human can act as tutor, modifying
and correcting parts of the trajectories through physical contact, or through predefined
gestures, transferring reliably knowledge to the robot, without the need of learning new
trajectories from scratch. In [60] a predictive learning mechanism is proposed, which allows
tightly coupled dual-agent systems (like human-robot or robot-robot) to learn an adap-
tive, sensor-driven interaction based on DMPs and execute collaborative tasks. Learning
of interactive tasks by observing human-to-human engagement is proposed in [61] with
interaction primitives build on the framework of DMPs by maintaining a distribution over
the parameters of the DMP, learning the inherent correlations of cooperative activities.
An alternative method for LfD is proposed in [62] based on Navigation Function approach
with application to anthropomorphic grasping. In this approach, the authors propose a
gradient descent method to construct an obstacle space which, when navigated using a
Navigation Function based approach, produces trajectories similar to the learned trajec-
tories. It is obvious from the papers presented above, that LfD techniques have been
successful in mimicking human behavior and generating complex interactive trajectories.
However, they have limited adaptability to interact with new environments without hu-
man intervention. Therefore, researchers have tried to enrich the learning datasets and
turn to supervised learning techniques.

Supervised Learning is the machine learning task that directly derives a mapping be-
tween an input and an output based on a labeled set of training data. Most frequently, it
is used in classification problems or regression processes, in order for the learned data to
apply suitably to unseen situations. Representative methods of this type in robotic skill
learning are the Artificial Neural Network (ANNs), Gaussian process regression (GPR) and
support vector machines (SVMs). In [63], the authors combined learning from demonstra-
tion with supervised learning, to teach a humanoid robot to perform different types of
wiping actions depending on the materials on the table. The authors developed an archi-
tecture of Convolutional Neural Networks (CNN), collecting data for training with the use
of kinesthetic teaching. An imitation learning approach is proposed in [64], which allows
teaching of a robot to observe, generalize, and reproduce interactive tasks from multiple
demonstrations. The instructor manipulates several objects and the relations between its
body parts and objects in the scene are learned. Then, proper actions are estimated by
maximizing the joint probability distribution represented by a dynamic Bayesian network
(DBN) training. A neural network controller with differential extrinsic synaptic plasticity
was developed in [65] and applied to a muscle-tendon driven arm-shoulder system. The
input data to the network comes from a force sensor attached to the robot and the training
activation function is a h-tangent. The output consists of robot arm motion patterns for
wiping a table.

Similarly in [66], the authors used hand-labeled force data to train a classifier, which is
able to distinguish different contact events. The dataset comprised of 460 real-world robot
wiping episodes using a table-mounted robotic manipulator equipped with a force sensor,
training multidimensional time-series shapelets. A relation between the object and action
is investigated in [67] and an internal nonparametric continuous model is generated using
Support Vector Regression (SVR). A learning cycle is suggested linking object properties
(softness and height) and action parameters defined by the interactive task and build the
model from visual sensor data. This model can be used for predictions on the expected
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effects for novel objects and consequently constrain the parameter exploration. Another
class of objects, which presents large variability to interact with, comprises deformable
objects. Langsfeld et al. [68] used a bi-manual robot setup for cleaning of deformable
objects, in which one arm holds the part to be cleaned, while the other holds the clean-
ing tool. During interaction with the object, force and deflection data from the tool are
collected, to build a stiffness model. The stains on the object are detected using visual
feedback, with a k-means classifier, deriving three clusters as clean, dirty and background
on image pixels. Normal forces applied to the surface during cleaning with an appropriate
tool are predicted with the use of GPR. The same group of authors applied similar ap-
proach in [69], focusing on deriving proper planning algorithms for automated cleaning of
hard paint stains on curved surfaces and rust on metal surfaces. Supervised learning shows
some promising results for generalizing interactive tasks for new environmental conditions,
but the training data usually overfit to the conditions that were collected.

1.3.4 Interactive Contact Force Regulation Methods

Direct interaction of a robotic device with the environment constitutes a research topic
that the robotics society has been addressing for many years. There is a large literature
variety in terms of control techniques, many of which rely on hybrid force/position schemes
for rigid robotic manipulators [70]. Taking advantage of the abilities of redundant 7-DOF
manipulators in decoupling force and position task execution, the authors of [71] proposed
an impedance control scheme implemented as an outer-inner loop controller. The inner-
loop is calculating the proper joint torque using joint-space inverse dynamics, whereas the
outer-loop controller applies force feedback to control the end-effector. On the other hand,
the on-line calculation of joint torques problem of a redundant robot is approached recently
in [72], using projection recurrent neural networks (RNN). The reconstruction of motion-
force control and redundancy resolution problem formulates it as quadratic-programming
problem with an additional task of minimizing the joint torques. Then a convergence
provable RNN is established to solve the modified problem online, satisfying multiple
inequality constraints. Ortenzi et al. suggested a projected operational space dynamics
solution [73], in order for a humanoid robot to perform various interactive tasks with
proper contact force. This control technique, which uses force/torque sensor as feedback,
minimizes joint torques by exploiting the environment contact constraints and enables full
decoupling of motion and force control. However, in many cases force feedback is not
available on the wrist of a robot, measuring the end-effector contact forces. For example,
in the case of a standing humanoid robot [74] during wiping a vertical whiteboard, the
decoupling between force and position control is implemented on the lower and upper body
respectively. More specifically, the arms of the upper body are controlled with the use of
a simple proportional derivative (PD) controller for motion tracking purposes, whereas a
force tracking controller is proposed for the ankle of the lower body, which calculated the
hand force using a foot pressure sensor. In another example on a robotic manipulator [75],
the authors propose an algorithm, which combines the interoceptive information obtained
from joint torque sensors with time delay estimation, to estimate external force exerted
on the end-effector. The estimator, which does not require an accurate dynamics model
of the robot, is used for a table wiping task.

Despite the large research effort presented above, interaction with a human being is
a much more delicate action and is considered risky to be executed by a rigid robotic
manipulator, even if it is equipped with the most sophisticated force/impedance control
schemes. On the other hand, the advantage of soft robots [76] lies on their inherent or



1.4 Thesis Approach 51

structural compliance, which gives them the ability to actively interact with the environ-
ment and undergo large deformations. The term soft robotics is not only used to state
that the devices are made of soft materials, but also to underline the shift from robots
with rigid links (even hyper redundant ones [77]) to bio-inspired continuum robots. This
shift is suggested to be gradual by the authors of [78], presenting a novel manipulator
with variable stiffness links. In particular, they use a combination of fabric materials
and silicone based structures for the development of stiffness-controllable links that are
pneumatically actuated. The air pressure inside the structure regulates the stiffness of
the links and the pressure readings from the pressure sensors inside the regulators can
detect collisions between the manipulator body and a human. Another inflatable robotic
manipulator is developed in [79], intended for safe human-robot physical interaction. It
is built using membrane material and McKibben actuators and has contact detection ca-
pabilities based on its structural model. A contact reaction scheme is developed as well,
which can cause the manipulator to move away from the external agent or to execute a
wiping motion using the environment reaction forces. Contact sensing is achieved in [80]
via a 3D printed soft skin with a built-in airtight cavity. In this cavity the air pressure
can be sensed, enabling the robotic system to have very gentle physical interaction with
soft objects. One basic problem of soft robots is the control of position and stiffness at
the same time, given the available actuation [81]. Gillespie et al. in [82] use a Model
Predictive Control (MPC) scheme to simultaneously control stiffness and position for a
pneumatically actuated soft robot. By including the pressure in the soft robot actuation
chambers as state variables, they improve their linearized state space model, achieving
better performance in all control aspects.

1.4 Thesis Approach

In the context of a whole body bathing robot development, natural and effective human-
robot physical interaction is a key characteristic both from system safety and from user
acceptance point of view. To this end, accurate tracking of demonstrated trajectories from
professional caregivers is required with simultaneous avoidance either of obstacle areas on
user’s body parts (such as injuries) or other body parts (such as the hands) of the user
that may interfere to the robot’s motion. Additionally, user friendly robotic action is
not only achieved with proper execution of motions demonstrated by caregivers but also
with on-line adaptation of the motion properties according to user preferences. In user’s
preferences are also included the contact forces experienced during the execution of contact
tasks such as wiping or scrubbing.

Therefore, during the course of this thesis, a motion planning and adaptation system
is developed, which uses the constant user state monitoring information obtained from the
cameras and allows the robot to operate reactively to user’s motion. More specifically,
an on-line motion adaptation algorithm was proposed, which used body part segmenta-
tion visual data combined with Kinect camera’s depth measurements to establish spatial
transformations and simplify the motion tracking problem. For the latter, a trajectory
tracking controller is used, which ensures globally uniformly asymptotic convergence to
the demonstrated motions, while at the same time avoiding restricted areas, such as sensi-
tive skin body areas. Using this approach, the washing actions can be adapted to various
user’s body parts size (e.g. back and legs) and surface shape.

Regarding the washing action learning from professional caregivers, a new dataset of
washing actions was created, enhancing the publicly available KIT whole-body database
[1]. A great variety of actions was recorded with the use of motion capture system, placing
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appropriately markers to the washing tools, the caregiver and the user, as depicted in Fig.
1.4. These data were analyzed in a post-processing procedure and properly decomposed
into simpler primitive motions, such as discrete and periodic, in order to enable robotic
execution. The fusion of such primitive actions with different parameters (e.g. duration,
amplitude e.t.c.) can reproduce more delicate and human-friendly actions. Even though
a large variety of washing actions was recorded, each one of them was not demonstrated
multiple times. Therefore, we compared several motion learning strategies from the lit-
erature and proposed two learning from demonstration methods, which can easily encode
and generalize complex motions from a few demonstration examples.

Another important aspect of human-robot physical interaction are the contact forces
exerted by the robot to the human body. However, the integration of a conventional
6-DOF force torque sensor to the structure of a soft-robotic arm operating in a highly
humid bathroom environment is unattainable. Consequently, robotic control techniques
without the use of force feedback were investigated, which are based on stiffness control
of the robot. Simultaneously, in order to achieve high precision both on task execution
and force, enhanced environment perception abilities had to be incorporated to the sys-
tem. Deformable object modeling with mesh structures has been a common practice in
computer graphics society for decades. Additionally, the development of computer vision
techniques that can accurately determine the shape of the human body from a monocu-
lar camera [3, 83], has provided a wide spectrum of visual perception abilities to robotic
devices. Capitalizing on recent advances regarding real-time deformation modeling, a
fully integrated perception-driven motion planning framework is proposed for effectively
controlling a robotic manipulator when executing interactive tasks on the surface of a
deformable object. The proposed framework combines 3D perception and on-line defor-
mation modeling, with real-time motion planning and interaction control, enabling the
system to efficiently handle both active and passive deformation scenarios. The core of
the approach is based on real-time FEM deformation tracking and efficient local mesh pa-
rameterization which, combined with stiffness control of the robotic manipulator, enables
accurate reactive planning of interactive trajectories and contact force regulation on the
surface of a dynamically deforming object, even in the presence of visual occlusions.

1.5 Contributions

The contributions of this thesis span a wide spectrum of research on interactive task
planning with emphasis on reactive robotic action planning on the surface of deformable
objects, such as the human body parts. Several motion planning methodologies for robotic
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(a) Back showering (b) Hand showering (c) Back wiping (d) Leg scrubbing

Figure 1.4: Examples of washing actions demonstrated from professional caregivers, avail-
able at KIT whole body database [1].
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manipulators in interaction with their environment were investigated both analytic and
learning based.

In the development process of a whole-body bathing robotic system, a motion planning
algorithm was developed, which uses the visual feedback from a depth camera and the
corresponding scene perception information, in order to adapt predefined, time scalable
trajectories on curved and deformable surfaces, such as the human body parts, and at
the same time avoid the interaction with obstacle areas, such as injuries. The proposed
algorithm was tested both in lab conditions and in a real clinical environment with elderly
users in both dry and humid conditions. A clinical validation study was conducted, which
focused on the human-robot interaction aspects of the use of a bathing robot. More
specifically it investigated the ability of elderly users to tele-operate the robot without
direct visual contact and to complete a washing task with the motion adaptation assistance
of the developed algorithm and without it. The majority of the users found the tele-
operation without motion adaptation assistance very difficult and the operation of the
system with it satisfying.

Furthermore, a database of washing actions demonstrated from professional caregivers
was recorded with the use of optical motion trackers systems (Vicon), analyzed and decom-
posed into primitive actions appropriate for robotic execution. Using the analyzed data an
integrated system based on Dynamic Motion Primitives approach was developed, which
can learn and encode the demonstrated actions, imitating the human washing actions.
The learned motions can then be adapted to the user’s body parts compensating their
motion or deformation and their execution parameters can be on-line modified in order to
meet the user’s requirements. This method was experimentally validated with the use of
a humanoid robot, executing a wiping scenario. With the use of the same database, an
alternative LfD method was proposed based on Navigation functions, in order to capture
the way an expert clinical carer executes the bathing activities by means of constructing
repulsive potential fields (“virtual obstacles”). Demonstration of bathing trajectories are
realized in 3D physical space, and these trajectories are then transferred to a 2D spa-
tially normalized space by establishing appropriate transformations. In this space, a set of
virtual obstacles is calculated so that the trajectory produced by a NF based navigation
resembles the human trajectories, in effect, the human trajectory is represented in the
virtual obstacles.

In order to increase the accuracy of the interactive task planning and regulate the
forces in contact tasks, we propose an interactive mesh-based framework integrating 3D
perception and on-line deformation modeling, with real-time motion planning and interac-
tion control. The goal is to effectively and accurately control a robotic manipulator when
executing interactive tasks on the surface of a deformable object. The proposed motion
planning framework is based on three efficient pre-processing algorithmic steps, including
visual object segmentation, FEM deformation tracking, and local mesh parameterization.
A central idea in our approach is the use of barycentric coordinates for the mesh triangles,
in order to establish bijective transformations between the deformable part of the object’s
surface and its planar parameterized versions (static and dynamic). The combination of
spatial transformations with the preprocessing steps and an active stiffness control scheme
for the manipulator, allows for accurate reactive planning of interactive trajectories and
contact force regulation, even in the presence of large and persistent visual occlusions, such
as those caused by the presence of the robot manipulator in the visual scene. Extensive ex-
perimental evaluation results, involving interaction with a dynamically deforming model,
validate the performance of the proposed framework in different experimental conditions.
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1.6 Thesis Structure

In Chapter 2 the theoretical background and the mathematical formulations of several di-
verse techniques derived from the fields of motion planning, computer vision and graphics,
required in the understanding of the proposed methodologies. Chapter 3 introduces an
integrated framework, which is able to learn and encode complex, human-friendly washing
actions from demonstration based on the DMP method and properly adapt the learned
motions on the user’s body parts. The use of DMP formulation enables the on-line modi-
fication of the motion parameters, fitting the user requirements. This learning method is
combined with a perception-based motion planning strategy, which takes as an input the
rich Point-Cloud information of a depth camera and the enhanced scene perception with
human body part segmentation, in order to on-line adapt demonstrated interactive trajec-
tories on the moving and deformable surface of the user’s body. An alternative learning
from demonstration method is presented at the end of the chapter, which aims to encode
the same set of demonstrated actions into the construction of a repulsive potential field
of Navigation functions. In Chapter 4 we propose an interactive mesh-based planning
framework which combines: (a) enhanced visual perception, (b) reactive task planning
and (c) contact force regulation, dealing with both active and passive deformation sce-
narios. This approach is based on real-time FEM deformation tracking and efficient local
mesh parameterization which, combined with stiffness control of the robotic manipulator,
enables accurate reactive planning of interactive trajectories and regulated contact on the
surface of a dynamically deforming object, effectively handling visual occlusions.

In Chapter 5, we present an extensive experimental validation of the perception-based
motion planning approach both in lab and clinical environment. Interactive motions
learned by demonstration of human experts are executed both on the I-Support soft robotic
platform and the ARMAR-III humanoid robotic platform in several experimental scenar-
ios. This approach also serves as a baseline approach for comparative analysis with the
interactive mesh-based planning framework, which is presumably more powerful in terms of
better handling dynamic deformations and occlusions. Comparative experimental analysis
results are presented in Chapter 6. The performance of the mesh-based framework is also
further highlighted in tasks involving physical point tracking, interactive programming by
human demonstration, as well as contact force regulation. Finally, in Chapter 7 we derive
the conclusions from the available experimental results and the future research directions
in the context of assistive robotics and physical interaction of robotic manipulators with
deformable environment.



Chapter 2

Theoretical Background

2.1 Semantic Visual Segmentation and Human Pose Esti-
mation

Image segmentation is a problem, which is widely analyzed in the computer vision soci-
ety, and defines the process of partitioning a digital image into multiple segments (sets of
pixels). The partitioning is implemented by assigning a label to every pixel in an image,
which share certain common characteristics, changing the representation of an image into
something that is more meaningful and easier to analyze. It is applied to a wide spectrum
of applications such as medical imaging, object detection, face recognition, pedestrian
detection and traffic control systems. The contextual importance of the characteristics
shared in image segments (e.g. all pixels representing a car) allows for accomplishment
of more complex visual tasks, leading to semantic visual representations. Most of the
semantic segmentation systems, developed in the end of 00s decade, presented promising
results based on on hand-crafted features combined with flat classifiers, such as Random
Forests [84], Support Vector Machines [85], or Boosting [86]. Major performance boost
have been achieved by containing richer semantic information [87] and structured predic-
tion techniques [88, 89, 90]. However, their performance of has been limited, due to the
use of features with poor expressive power.

The introduction of Deep Convolutional Neural Networks (DCNNs) in the past decade
have pushed the boundaries of computer vision research in a large variety of high-level
problems, achieving better performance, both in image classification [91, 92] and object
recognition [93, 94, 95|, than techniques relying on hand-crafted features. Their suc-
cess mostly relies on the end-to-end training process, allowing them to learn increasingly
abstract data representations. This performance leap has motivated the use of DCNN so-
lutions, to identify the support of human body-parts in the image domain, which coupled
with the depth information from the Kinect cameras of the I-Support system can allow
the 3D pose estimation of body parts. This semantic segmentation task was addressed
using the seminal work proposed in [96], in which a combination of CNNs with struc-
tured prediction techniques is proposed, yielding state of the art semantic segmentation
results, as evaluated on the PASCAL semantic segmentation benchmark. A training a set
of images containing humans was used [97], in which they were manually segmented into
distinct human parts (head, torso, lower and upper arms, lower and upper legs), resulting
in a pixel-wise labelling of the image in terms of the distinct object regions or background
pixels. This approach was evaluated in the tasks of segmenting the torso (Fig. 2.1) and
the legs (Fig. 2.2) of the user, using the mean Intersection over Union (IoU) metric.This

95
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Figure 2.1: Semantic segmentation of human torso visual results in multiple images of a
human user in the I-Support system environment. Up: The segmented body parts labels
shown in different colors. The torso is presented in light green color. Down: The original
images obtained from the I-Support system’s cameras.
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Figure 2.2: Semantic segmentation of human legs visual results in multiple images of a
human user in the I-Support system environment. Up: The segmented body parts labels
shown in different colors. The legs are presented in orange color. Down: The original
images obtained from the I-Support system’s cameras.
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(a) Human pose estimation (b) Human pose estimation

Figure 2.3: Visualization of human pose estimation from multiple points of view from the
cameras of the I-Support system.

is obtained by evaluating the ratio of areas for intersection and union of predicted and
groundtruth regions. The maximum value is 1, where the predicted and groundtruth re-
gions are identical. Its pixel-wise accuracy in terms of IoU was reported 64.4% in [98] and
later was improved to 66.1% in [96].

Another task in visual human perception that has been efficiently accomplished with
the use of DCNNs is whole body pose estimation. More specifically, the goal of this task
is to infer the locations of landmark points of the human body on the image plane. The
accurate inference has a high relation to the whole image visual context, since locally there
are no features distinguishing the left from the right knee, but it is through the propagation
of mutual constraints that one can disambiguate their positions. CNN-based architectures
have been shown able to exploit shape and context implicitly via stacked and learnable
part localization operations, through both non-recurrent [99, 100, 101] and recurrent [102]
refinements. The method integrated to I-Support system is based on the convolutional pose
machines (CPM) approach [101], due to its simplicity and efficiency. The approach uses
sequential prediction convolutional blocks that operate on image and intermediate belief
maps and learn implicit image-dependent spatial models of the relationships between parts.
The quality of the prediction is measured by metrics that involve comparing the predicted
and the ground truth locations in the image plane. In particular, the performance of this
system in pose estimation has been validated based the Percentage of Correctly estimated
body Parts (PCP) commonly used in the pose estimation literature. An estimated body
part is counted as correct if its segment endpoints lie within t% of the length of the
ground-truth segment from their annotated location. Overall performance is evaluated
by a PCP-curve, obtained by varying the accuracy threshold t. The integrated system
achieve a PCP measure of 85.8% and robustly estimates the body pose of the user (Fig.
2.3), operating at 10 frames per second.



58 Chapter 2. Theoretical Background

2.2 Navigation Functions

The definition of robotic motion planning over continuous space can be summarized in
finding a safe path from an initial to a desired configuration [103]. A safe plan not only
includes obstacle avoidance but also convergence to the destination as well. As long as
such a plan is available, trajectory generation and trajectory tracking can be integrated,
by appropriately constructing a feedback control plan. Artificial Potential Fields, initially
introduced by Khatib [104, 105], are a group of closed-loop feedback motion planning
methods, which construct a scalar potential field over the workspace. Following the field’s
negated gradient a robotic agent is driven safely to the target configuration. A large
number of works have followed, which use different ways of constructing potential fields,
such as harmonic function combined with the panel method [106], harmonic functions
constructed by solving partial differential equations [107] and superquadric potential fields
[108]. However, it can be shown that for certain obstacle configurations in the workspace
local minima arise, which can trap the robotic agent in a certain configuration.

Similar structure, i.e. scalar fields over the free space, have the methods of Navigation
Functions (NF), which are proposed by Rimon and Koditschek in [109] and are shown
to overcome the problem of local minima. Initially they show that it is unattainable for
stationary points to disappear and they define an almost globally asymptotically stable
scalar potential field. Under certain conditions, although they show that the existence of
unstable equilibria is a subset of Lebesgue measure zero in the set of remaining saddle
points, in real applications it is practically impossible for an agent to remain in a measure
zero set. They have also proposed the rephrasing of motion planning problem from a
purely geometric to a topological point of view. In particular, a convenient space, which
is topologically equivalent to the original geometric structure, can be used to generate a
safe path, avoiding geometrically complicated obstacles. The latter are diffeomorphically
mapped to their simpler images in topological space, using the forward mapping, and
inversely the generated path can be transformed to the original geometric space. This
method was proposed in [110], in which navigation of mobile robot treated as spherical
agent is achieved by defining the NF potential in on a sphere world and diffeomorphically
mapped to real space. In the original navigation function formulation global knowledge
of the geometric space is required, which is relaxed in [111, 112] by defining polynomial
NFs.

In more detail, we can define the following sets in a sphere world W:

1. Destination point F; £ g4

2. Obstacle free subset 7 C W

3. Obstacle free subset boundary 0F
4. Set of obstacles O € W\ F

. We consider the problem of a holonomic robotic agent in whose state ¢ is governed by
the control law:

q(t) = =(Vq9)q(t) (2.1)

where ¢ is a NF defined below. In [113] it is proven that this control law solves the motion
planning problem in F. A Navigation Functions is defined [113] on a compact connected
analytic manifold with boundary M C R™ as a map ¢ : M — [0, 1] which is:

1. Analytic on M: locally convergent power series exists.
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2. Polar on M: unique minimum exists at ¢q € M.
3. Morse on M: all critical points are non-degenerate.
4. Admissible on M: uniformly maximal on 0F

. More specifically in [113] a NF for sphere worlds, ¢ : F — [0, 1] is a composition of three
functions:

#(q) 2 oqgo0o0 gZ; (2.2)

Starting from the function ¢2 it is defined as
dope 1 (23)

where v(q) =|| ¢ — qa ||?*,k € N\ 0,1 is the function defining the distance from the target
and [B(q) is a product of obstacle functions. The image of ¢ is then modified by the
diffeomorphism o : [0,00) — [0, 1] defined as

A T
14z

(2.4)

o(x)
resulting in a polar, admissible, and analytic function which is non-degenerate on F except

at one point - the destination, which due to the parameter k£ in ¢ is a degenerate critical
point. Therefore, the function o4 : [0,1] — [0, 1] is added

oa(z) 2 (2)%,k € N\ 0,1 (2.5)
resulting in the final form of a Navigation Function:

Ya(q;t)
[75((17 t) + B(CL t)]

p(g,t) = Tn (2.6)

The NF field is shaped by the tunable parameter k, for which there exists a lower bound
as proven in [113], which clears the field of local minima other than the destination.
Later in [114] an algorithm is proposed for online calculation of this tuning parameter.
Furthermore, the sphere world requirement is relaxed in [115] to sufficiently curved worlds
and to partially non-convex ones.

2.3 Dynamic Movement Primitives

Dynamic movement primitives, introduced by Ijspeert et al. [116, 117] are motion control
policies, which are based on nonlinear dynamical system to describe a motion. The system
comprises of second-order differential equations with well-defined attractor dynamics that
contain information about the form and time evolution of a motion. In [118], the method-
ology has been developed for encoding and reproduction from multiple demonstrations of
both discrete and periodic motions, whereas in [119] a single demonstration is required.
Discrete are characterized the motions, which start from one point in space, follow a cer-
tain trajectory, ending at another point, without any repetition, whereas periodic are the
motions, which are repeated at least once during their evolution and are constituted of
oscillations of different widths and frequencies along the coordinate axes.
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2.3.1 Discrete Motions

The formulation of [119] will be used to describe the basis of motion specification for a
single degree of freedom denoted by ¥, which in a robotic system can be either a joint
angle or one of the task-space coordinates, and is summarized in the following set of linear
differential equations:

Ti=0x(B:(9 —y) — 2) (2.7)
TY =2 (2.8)

where «, and (3, are constant coefficients and 7 is a time scaling coefficient, which deter-
mines the duration of the motion. This system has a unique attractor point at y = g,
z = 0, provided that 7 > 0 and the parameters are selected appropriately, e.g. a, = 40,,
for the system to be critically damped. Therefore, it can be used for the realization of
discrete point-to-point motions. It is obvious from the form of Eq. (2.7)—(2.8) that the
set of trajectories which can be encoded is rather limited. To increase this set of point-
to-point trajectories a non-linear term f has to be added to the right hand side of Eq.
(2.7). The function f is a weighted linear combination of N radial basis functions ¥;(z)
as shown in the following equation:

Sy wiWi(x)
YL, W)

where yo and ¢ the starting and end point of the trajectory respectively, ¢; and h; are
the centers and width of radial basis function ¥;(x) respectively. Despite the fact that
Gaussian functions are used as basis functions, there are plenty of methods that use
functions of other forms. The learning phase of the nonlinear term f constitutes of defining
the weight w; of each basis function. With a regression learning algorithm such as locally
weighted regression proposed in [120], the weights of force term can be learned from a
single demonstration. The center ¢; and the width h; of a Gaussian basis function for a
specified number of functions N are calculated using

f(z,9,90) = z(g—yo) , Wi(z)=exp(—hi(z —c;)?) (2.9)

—1 2

¢; = exp (—azl> ;, hi=———= and hy=hy_1, i=1,...,N. (2.10)
N -1 (cit1 —¢i)

A phase variable x is used in 2.9 instead of time to make the dependency of f on time

more implicit. Its dynamics can be defined by

TE = —Qux (2.11)

which is defined as canonical system. Setting the initial value z(0) = 1 the solution of
(2.11) is z(t) = exp(—ayt/T) where oy is a constant which determines the convergence
rate of the variable x to 0. The use of this phase variable instead of explicit time gives the
appealing property to DMPs, which can easily be temporally modulated without requiring
an explicit time recalculation. This property can be effectively used for synchronization or
stopping the evolution of time to account for perturbations during trajectory execution.
This choice of phase variable results in the following system of differential equations:

Ti=:(B.(9 —y) —2) + f(2) (2.12)
TY =2 (2.13)
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Radial basis functions for discrete movements in the time domain Radial basis functions for discrete movements in the x domain
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Figure 2.4: Discrete Radial basis functions for NV = 11 in the (a) time domain for 7 =1
(b) z phase variable domain for o, = 4.6 and 7 = 1.

which is defined as transformation system. The general solution of the system (2.12)
- (2.13), for a, = 4b,, is provided by the equation

_ 2bst 2bsa 2b

y(t)=e "7 [62 — %2 fot xe + (4gbz2 + f(x)) dx + c3t + T%t fote = (Zlgbz2 + f(a:)) dx} , (2.14)

where ¢y and c3 constants with values depending on initial conditions. Chosing y(0) = yo
and ¢(0) =0, Eq. (2.14) is transformed to

2bzx

y(t) = Tize—@ {_ fot ze 2 (4gb22 + f(z)) da —l—tf(;5 e r (4gbz2 + f(x)) dv + T2yo + szTyot} . (2.15)

Since x tends to zero exponentially, the influence of the non-linear term f(x) decreases
with time, as shown by the form of radial basis functions in Fig. 2.4, and the system
(2.12)—(2.13) converges to [0, g]7 just like the system (2.7)—(2.8). The control policy
specified by variable y defines what is called Dynamic Motion Primitive. This policy
specified by Eq. (2.9)—(2.13) is time scalable, if the time constant 7 is replaced by ¢ - T,
then the motion duration will be scaled by the factor c. Additionally, we can scale this
policy in space by substituting the goal value g by c - g, making the system to converge
to ¢ - g with the same motion duration, without modifying the shape of motion. This
property is very important not only for the generation of washing actions in the I-Support
system but also to the adaptation of these actions to different users’ needs.

2.3.2 Periodic Motions

One degree of freedom periodic motions can be generated with the form of an oscillation
around a central value, with variable amplitude and frequency. A similar differential
equations system to (2.12) - (2.13) is used to generate periodic motions, substituting
the term 7, which determines the duration of the motion, with the term Q = %, which
determines the frequency of the oscillation. Moreover, the non-linear term f is changing

to:
N
! T.
(6, = T T,
> i1 Li(9)
where r is the amplitude of the oscilation, ¢; and h; is the center and the width of
the radial basis function I';(¢) respectively. The phase variable ¢ is used, just like x for

Ti(¢) = exp (hi(cos(¢p — ¢i) — 1)) (2.16)
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discrete motions, to make implicit the dependency of f on time and is calculated using
the equation:

¢ =9 (2.17)

which is the respective canonical system of periodic DMPs. Using the initial value ¢(0) = 0
in Eq. (2.17) we have
o(t) =Qt (2.18)

Additionally, especially for periodic motions a different form of canonical system is propose
in later works in the field [121, 122], which allows for on-line calculation of the frequency
of a periodic motion during its execution. The center ¢; and the width h; of a radial basis
function I';(¢) for a certain number of functions N, are defined according to [122] as

i1
ci:27TZT and h; =2,5N for i=1,....N . (2.19)

Comparing Eq. 2.19 with Eq. 2.18 we can see that the center ¢; of radial basis functions
are evenly distributed over the time domain and that of the variable ¢, having equal width,
due to the linear form of the canonical system of periodic DMPs. Therefore we have the
following system of differential equations

¢ =Q(ex(B:(9 —y) — 2) + f(9)) (2:20)
= Q: (2.21)

where g is the center of the oscillation. The system 2.20—2.21 is the respective transfor-
mation system of periodoic DMPs, which can equivalently take the form of second order
differential equation:

1. a.
i+ qu—a:blg—y) = f(9) - (2.22)
The solution of the system 2.20—2.21, for a, = 4b,, is given by the equations 2.14—2.15
by substituting the terms 7 and x with the terms é and ¢ respectively.

2.4 Deformation Tracking

An object undergoes deformations, when its shape is changing during the excretion of
external forces. Categorization of deformations depends on the object response when the
external force is removed. If an object maintains the shape caused by a deforming force,
then a plastic deformation occurred, whereas if its shape returns to its initial form, it is
a case of elastic deformation. All the intermediate situations, in which the object does
not return to its original shape, but it does not preserve its deformable form entirely, are
defined as elasto-plastic. Early attempts to model the behaviour of deformable objects
are made in the field of computer graphics, in order to produce more realistic animations.
Nealen et al. in [123] and Moore et al. in [124] offer a comprehensive introduction to
the computer graphics methodologies of the previous decade in their survey papers. More
specifically, the deformation modeling can be done with a variety of techniques. In most
cases, an object’s shape representation (e.g. a set of particles or a mesh) and a deformation
model synthesize a deformation estimation technique. A mesh representation consists of
a set of points (vertices), edges and faces, which are usually triangles or quadrilaterals, or
elements, the representation of which is commonly tetrahedra or hexahedra. The defor-
mation models are essentially functions, which calculate at each time step the evolution
of the position of every vertex, taking into account both their current state (position and
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velocity) and an input force. In particular, the object deformation parameters, such as
Young’s modulus and the Poisson’s ratio for isotropic objects, are taken into account, in
order to approximate a displacement field through a set of partial differential equations
solved through discretization techniques. This approximation transforms the effect of an
external force into a distribution of internal forces acting on the mesh elements. There
have also been developed deformation models, which do not require a mesh but work
directly on particles either in 2D [125] or in 3D [126].

The categorization of the mesh-based models is formed either as continuous or as
discrete variable models. The main representative of discrete methods is Mass-Spring-
Damper (MSD) systems, in which the vertices of the mesh are treated as mass particles
and the edges are considered as springs modeling the flexibility of the object. On the
other hand, continuum models are usually set up with finite element methods (FEM), in
which the object’s shape is approximated by a set of discrete geometric parts called finite
elements. Although FEM-based models produce more physically realistic deformation re-
sults, MSD models have gained a lot of researchers attention, since they are more intuitive
and simpler to implement. However, the processing power has increased significantly due
to the recent advances in computing and computer vision, making possible the real time
simulation of realistic deformation (e.g. using FEM) of solid objects. This technological
step has also shifted the interest of robotics researchers to the study of various interaction
tasks, such as manipulation, grasping and object identification, with linear (e.g. ropes),
planar (e.g. cloth, paper) and 3D objects (e.g. sponge, tissue). Recent survey papers
[127, 128, 129] present thoroughly the works emerging from this research trend.

The evolution of cameras, especially RGB-D, along with computer vision algorithms
has augmented the perception capabilities of deformable objects by robotic and computer
systems. In [130] Zollhofer et al. registers RGB-D data on a rigid template, in order to
capture the deformations of general shapes, while recently Giiller and Kokkinos demon-
strated in [3] the power of Deep Learning in accurate human body shape reconstruction
even with a monocular camera. Another template-based framework proposed in [131] is
combined with visual features from the texture of the object to track the deformations
of objects, which may undergo topological changes (e.g. paper tearing), whereas Famouri
et al. [132] employ the same ideas for tracking deformations using monocular camera as
an input. Additionally, Willimon et al. integrate classic computer vision techniques with
energy function minimization in [133, 134], to estimate the configuration of a non-rigid
cloth-like object. NURBS functions from computer graphics are also used together with
visual features for deformation tracking in [135, 136]. Recent papers involve a robotic
system into deformation tracking tasks. More specifically, in [137, 138] the authors char-
acterize generic deformable objects by visually observing their interaction with a robotic
hand and in [139] surface variations caused by the contact of a simulated robotic hand
are measured visually on Point Cloud data. Tian and Jia in [140] extend their work on
shape modelling of shell-like objects, which are grasped by a robotic hand. Visual depth
data together with force-torque obtained from a sensor mounted on a probe, are fed into
a neural gas network impemented in [141] to predict the deformation’s characteristics of
an object, without requiring knowledge of the object material. Real-time deformation
tracking, which is the focus of [142] and more recently of [143, 144] is a prerequisite for
closed-loop robotic manipulation of objects such as ropes, clothes or sponges.

Despite the large amount of work focusing on planar or even cloth-like objects, the
robotic manipulation of solid deformable objects (e.g. sponges, plush toys and food) hasn’t
made the same progress, mainly due to the computational cost imposed by the simulation
of 3D objects. However, the development of real-time deformation simulation techniques
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such as FEM and MSD has changed this picture. Examples of such approaches are [145],
in which a FEM-based model is combined with a vision system in order to enable the
object’s shape modification by a robotic arm, and [146], in which the object is modelled
as a mass-spring-damper system undergoing deformations by a robotic system in order to
bring an internal point to a desired position. Object’s internal point control is the main
focus of [147], the authors of which propose a model-free controller with visual feedback for
the estimation of the deformation Jacobian matrix. Another model free method in [148]
introduces the notion of diminishing rigidity in order to approximate the deformation
Jacobian during manipulation tasks. Deformable object grasping is also a challenging
robotic task, since the shape and consequently the grasping forces are modified during the
grasping action. In order to address these problems, the authors of [149, 150] integrate
the FEM modeling of the object with the tactile sensors of a multi-fingered robotic hand,
to pick up objects from a table. Furthermore, visual and force data are combined with
deformation modeling techniques in [151, 152, 153], to estimate with the use of a robotic
arm the physical parameters of an object, which are very important for accurate modeling
and interaction tasks. Caccamo et al. in [154] and Giiler et al. in [155] use similar
procedures with robotic probing on the surface of an object but they implement vision
meshless techniques to estimate the deformality of objects.

Soft tissue is another solid deformable object, which has been extensively studied for
robotic medical applications. The constraints of these applications (e.g. real-time inter-
action with moving organs and limited action space during surgical tasks) are not met
in household or industrial applications. Therefore, the robotic actions during medical
procedures have to be more precise, delicate and well-planned. In order to fulfill the
aforementioned requirements in medical scenarios, robotic systems need an accurate per-
ception layer, which is frequently based on vision, as described in [156]. The main goal
of these vision-based systems is to augment the visualization capabilities of the surgeon
during minimally invasive surgery, with the use of pre-operative CT-scan data combined
with time-of-flight camera for the development of an organ’s surface matching algorithm
in [157], or a stereo endoscope and a biomechanical model for real-time motion tracking of
the liver in [158]. The more challenging problem of monocular 3D reconstruction is faced
in [159], in which a non-linear mechanical elastic model is proposed, to enable the re-
construction of highly deformable objects, presenting some promising results in computer
assisted surgery scenarios, whereas in [160] and more recently in [161] the authors employ
3D template matching and Shape-from-Motion visual techniques for reconstruction of the
peritoneal region and liver respectively. Non-rigid structure from motion is also used in
[162] for tracking the surface of a beating heart, a task which is also studied in [163], by
integrating a temporal heart motion model with visual data and presenting in vivo ex-
periments. Other works [164] propose the combination of visual features with triangular
meshes, to track tissue deformation using a monocular endoscope.

2.5 Mesh Parameterization

It is generally possible to calculate an one-to-one and onto mapping between two given
surfaces with similar topology. This mapping computation problem is referred to as mesh
parameterization, in case one of these surfaces is a piecewise linear triangular mesh. The
other surface, in which the mesh is mapped, is typically mentioned as parameter domain.
There are many different examples of parameter domains presented in literature, such
as simplicial complexes [165, 166], spheres [167] and periodic planar regions [168, 169].
However, the main focus of of this thesis and of the literature, as presented in multiple
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Figure 2.5: Parameterization of a 3D triangular mesh to a planar parameter domain [2].

surveys [170, 171, 172] is the planar parameter domain, an example of which is depicted in
Fig. 2.5. Although the main motivation for the development of the first parameterization
methods was the application to texture mapping [173] in the computer graphics society,
other applications in engineering, geometry processing and medical visualization [174, 175]
quickly emerged, including but not limited to mesh completion [176], mesh compression
[177] for data transmission, surface remeshing [178], surface fitting [179] and material
modeling [180].

Starting form a well-known result from differential geometry initially proven in [181]
and mentions that for a general surface patch there is no distance-preserving (isometric)
parameterization in the plane. Isometric parameterizations can be found only for surfaces
with zero Gaussian curvature (e.g. cylindrical or conical sheets) commonly referred as
developable. Therefore, parameterizations, except for the cases of developable surfaces,
introduce distortions in either angles or areas. Most of the works proposed in the literature
are minimizing angular distortion or shear and are called conformal, whereas less works
presented a minimization of area distortion called authalic, since they have proven less
useful in terms of application. Frequently, conformal maps are also referenced as harmonic,
however as shown in [170] these terms are not equivalent. The previously mentioned
terms are borrowed from differential geometry of smooth surfaces, in which the existence
of conformal maps is guarantied from a Riemann’s theorem, mapping any infinitesimally
small circle on the surface to a circle on the domain. This result shows the existence of a
angle preserving mapping, but allows the scale factor of the transformation to vary across
the map, introducing distortion. Furthermore, there are many applications which can
tolerate a small amount of distortion of either type. Hence, many papers proposed some
parameterization methods, that have a trade-off between angle preservation and area, or
length preservation, called most-isometric parameterizations. Except for distortion, the
evaluation of a parameterization method can be done in terms of boundary assumptions,
robustness and computational cost. In particular, many methods assume a pre-defined
convex boundary in the planar domain, making them simpler and faster in implementation,
whereas boundary-free techniques are usually non-linear and slower computationally, but
generally introduce significantly less distortion. Robustness of a parameterization regards
the guarantee of local or global bijectivity (no triangle flips or boundary self-intersections).

A classic and old method, which shaped the workflow of many later parameterization
methods, is Tutte’s graph embedding method [182]. This method proposes a two stage
procedure, in which the first one maps the boundary vertices of the mesh to a convex
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boundary in 2D and the second one calculates the positions of the rest of the vertices solv-
ing a linear system independently for the 2D coordinates. Similar to this approach several
conformal parameterization techniques [183, 184, 185] use the same boundary mapping
step, but solve a system of equations with weights on each edge of the mesh. The choice
of weights has an impact on both the distortion and the bijectivity of the parameteriza-
tion. The solving of a single linear system makes these techniques efficient and simple,
but the perform poorly if the boundaries of the 3D meshes differ significantly from the
specified boundary of the planar domain. This drawback was one of the motivating factors
for the development of boundary-free methods LCSM [186] and DCP [187]. They used
different formulations of harmonic energy and managed to introduce significantly less dis-
tortion than fixed boundary approaches, especially near the domain boundaries. Later
the HLSCM method [188] proposes a mechanism, which employs a hierarchical solver
to speed up the solution process for LSCM. However, DCP/LSCM introduce more dis-
tance distortion than nonlinear conformal methods like the MIPS method [189], which
optimizes a nonlinear functional that measures mesh conformality. Another popular non-
linear method is ABF [190], which defines planar parameterization in terms of angles of
the planar triangles and specifies a set of constraints that these angle values have to sat-
isfy. The resulting angles are converted into 2D vertex coordinates leading to a guaranteed
local bijectivity without flipped triangles but can contain global overlaps. This problem
was solved later in ABF++ [191] method providing at the same time a large boost in
computational efficiency.

Area preserving parameterizations have not gained so much attention in literature by
themselves, since they initiate large angular and linear distortion [192], but they are usually
combined with angle preservation [193]. On the other hand, several distance preservation
or stretch minimization parameterization techniques have been proposed without confor-
mality properties. Several stretch metrics have been proposed, but the metrics of Sander
et al. [194] are the more commonly used as standard measures of distance preservation.
They were based on the fact that a linear map can be expressed as a translation, a rotation,
and an anisotropic scale along two orthogonal axes. A minimization of a metric including
the singular values of the transformation matrix, or the square roots of the eigenvalues
of the integrated metric tensor, was proposed. Additionally in [195] the basic goal of the
method is to preserve the distances between all pairs of vertices on the surface. Distances
were calculated with the use of geodesics and the embedding of the mesh in the plane was
implemented with multi-dimensional scaling. While this method works well for close to
developable surfaces, it faces robustness issues for more complex ones. These issues were
solved in the isomap method proposed in [196] achieving a computational speedup as well.

Many methods combine the above mentioned techniques in order to achieve a trade-off
between angle and distance or area preservation. More specifically in [193] an extension of
MIPS method is proposed, modifying the functional under minimization in order to take
into account area deformation. Similarly in [190] the authors fist applied the conformal
ABF method and then computed the stretch of the resulting planar mesh and smoothed
it out with an overlay grid. More recent methods referred as most-isometric, since they
are trying to minimize both area and angle distortion, are using minimization of energy
function and at the same time are guarantying the bijectivity of their solution. In [197]
a parameterization algorithm is proposed, in which its local part minimizes the distortion
of each triangle, while its global part uses efficient sparse linear solvers with factorization
to fit together the 2D triangles in a coherent manner. Energy minimization functional is
also used in [2], focusing more on the guaranty of a bijective and less on the search of
a global solution close to isometry. Local parameterization solutions have found a large
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spectrum of applications in computer graphics. For example, the Discrete Exponential
Map (DEM) presented in [198] and later improved in [199] is an algorithm, which focuses
on the computation of normal coordinates of a discrete surface (mesh) using the Dijkstra’s
algorithm with very high computational efficiency. In differential geometry, FEuclidean
normal coordinates can be calculated from radial coordinates, which constitute the natural
parameterization of geodesic discs. The latter are an isometry near the center of the disc
[200]. However, as one moves away from the center, the deviation from isometry depends
on the variation in Gaussian curvature. For developable surfaces, the entire mapping is
an isometry.






Chapter 3

Perception-Based Motion
Planning & Learning from
Demonstration

This chapter deals with reactive adaptation and motion generation of human demonstrated
interactive tasks with deformable surfaces, such as those of the human body parts. Partic-
ularly, and in the context of a broader research effort aimed at building a flexible robotic
bath mechanism, an integrated system based on Dynamic Motion Primitives approach was
proposed, which can learn and encode demonstrated washing actions by professional nurs-
ing experts, imitating their actions. Encoding of nursing experts’ skills allows for natural
human-robot physical interaction, which plays a key role in the acceptance of an assistive
robotic system by the users (Fig. 3.1). The interaction tasks were recorded with the use
of optical motion tracker systems, analyzed and decomposed into primitive actions appro-
priate for robotic execution. The learned motions can then be adapted to the user’s body
parts with the use of a motion planning algorithm, which uses the visual feedback from
a depth camera and the corresponding scene perception information, in order to achieve
the adaptation with simultaneous avoidance of potential obstacle areas, corresponding for
instance to injured or sensitive body parts to avoid. The adaptation is achieved with the
establishment of bijective transformations, which reformulate the tracking problem to a 2D
Canonical Space. Accurate trajectory tracking is then realized with a Navigation function
controller with proven globally uniformly asymptotic convergence. The motion planning
method is structured to be model free and can be adjusted to any robotic manipulator,
provided that all the robot’s workspace and velocity constraints are taken into account.
Furthermore, an alternative to the DMP approach is proposed, which allows for learning
and reproduction of interactive actions demonstrated by an expert clinical carer and is
based on the established bijective transformations and a Navigation Function method, by
means of construction of repulsive potential fields with ”virtual obstacles”.

3.1 Problem Statement

We consider the problem of generation of safe and human-friendly bathing actions with
online adaptation on a moving, curved and deformable surface (e.g. user’s body part).
We assume that the generated washing actions will be executed by a robot which can be
kinematically described by a general equation of the form:

i=u (3.1)

69
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(a) Back washing scenario (b) Leg washing scenario

Figure 3.1: Motion planning method evaluation through a series of clinical validation
studies in realistic clinical validation scenarios of (a) Washing back and (b) Washing legs
conducted in Bethanien Hospital in Heidelberg Germany and Fondazione Santa Lucia
(FSL) Hospital in Rome Italy, respectively.

where ¢ is the vector of end-effector position and orientation, and w is the vector of velocity
inputs. Let the admissible and feasible state space (workspace) for the robot be denoted
as YW C RS. The obstacle free subset of the workspace is denoted Wiree € W.  Let
O € W\ Wypee be the set of all obstacles in 3-D workspace. These obstacles should
be visible by a depth camera, whose field of view should include the workspace of the
robot. Obstacle areas may regard restricted areas, either on the user’s body (e.g. local
injury), which should be avoided during the washing sequence, or on other body parts that
interfere to the robot’s motion (e.g. the hands of the user). Following this requirement,
the core of this motion adaptation task is to calculate at each time step the reference pose
for the end-effector, which will let the robotic manipulator execute proper human-friendly
surface tasks (e.g. wiping the user’s back) and at the same time to be compliant with this
body part. This is a challenging task, since all human body parts are non-planar surfaces,
that are moving and deforming either systematically (e.g. user’s breathing motion) or
randomly. Moreover, the user will have constant communication with the system (e.g.
audio - gestural commands) and will be able to change the state and the parameters of
the system with hand gestures, which may interfere to the robot’s operation. Adaptability
to different users is also a very important feature of the system. Different users have
dissimilar body areas and needs during the washing sequence.

Moreover, each human has unlike preferences and needs during the washing sequence.
It is crucial for the user to feel comfortable and safe during the operation of an assistive
robotic system. Therefore, proper and human friendly washing motions for each subtask
should be learned by demonstrations of health care experts. In this process, a large
variety of washing actions was recorded and are publicly available in KIT whole-body
motion database [1]. However, a few demonstration examples were available for each
motion, making the skill learning and generalization a demanding task. The learning
and reproduction procedure might also raise some requirements for each task, in terms
of execution time and motion complexity. However, decomposition into simpler primitive
motions (e.g. periodic and discrete) is necessary for a robotic device for technical reasons.
The fusion of such primitive actions with different parameters (e.g. duration, amplitude
e.t.c.) can reproduce a large variety of more delicate and human-friendly actions.

In the next section, we will briefly provide the methodology and mathematical back-
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ground, based on which, we develop an integrated perception-based motion planning and
interactive control system, which is able to incorporate the recent advances of visual human
perception algorithms (in particular on-line segmentation and reconstruction of human
body parts) and can simultaneously, in the context of the envisaged assistive application,
imitate and execute proper washing actions.

3.2 Methodology & Mathematical Background

A complete perception-based washing system consists of two main parts, a vision-based
controller and an adaptable motion representation. The former one enables the system
to perceive and handle the change of the environment, especially in our scenario the
moving, curved and deformable washing surface. The latter one introduces the possibility
of imitation learning and reinforcement learning by demonstration of health-care experts
and generates adaptable washing actions.

3.2.1 Interactive Motion Learning & Generation

Instead of hard-coded trajectories, the robot can achieve more human friendly washing
motion by observing human demonstrations. We choose DMP to represent washing move-
ment primitives as mentioned before [201], which can learn and generalize complex wash-
ing skills from a few demonstrations. DMP is a damped-spring system coupled with a
nonlinear term:

70 = K-(9g—y)—D- v+ scale- f

IR (3.2)

with the spring factor K, the damping factor D and the nonlinear force term f, which
can be learned by observing demonstration examples. 7 is the temporal factor, and g is
the goal for discrete movement or the anchor point for periodic movement. Also, v, ¥ and
y specify the current state of the motion. scale is the scaling factor for changed g or start
position yg.

However, the traditional DMP cannot handle interactive actions, such as wiping a
dynamic surface. Hence, a leader-follower framework called Coordinate Change Dynamic
Movement Primitive (CC-DMP) was developed in [202]. The idea of CC-DMP is that it
incorporates the leader’s dynamic motion by learning the follower’s DMP in the leader’s
coordinate system. In order to get the follower’s motion in the global coordinate sys-
tem, a multiplication is required in both sides of the DMP transformation system with
a coordinate transformation Ré, as in (3.3), where the superscript G denotes the global
coordinate and L denotes the local coordinate. The leader’s motion can also be encoded
by another DMP, which, together with the follower’s DMP, constructs a leader-follower
framework realizing the adaptation of the follower’s movements to the leader’s behavior.

T-RE -9 = R, (K- (9% —y%) =D -0+
scale® - f9) (3.3)
T Ré,tﬂ e = Ré,t v

In order to learn a washing action and keep its capacity of generalization, the periodic
pattern of motion is detected and separated from its discrete part by performing signal
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KIT

Database

Figure 3.2: The procedure of learning CC-DMP by human demonstration includes the
separation of the motion into discrete and periodic part. Left: A demonstrated washing
action Middle: Separation of the demonstrated motion into primitive discrete and peri-
odic motions. Right: The reproduced motion by the CC-DMP method (blue) is similar
to the demonstrated one (dashed).

analysis. More specifically, as described in [202], the moving average method with appro-
priately chosen window size is employed for the extraction of the discrete part. Then the
periodic part can be obtained by subtracting the discrete part from the trajectory. The
rest of the signal contains the periodic parts, thus it is analyzed with Fourier transforma-
tion, to detect the dominating frequency, i.e. the frequency with the maximal spectrum.
After frequency calculation, the rest part is cut into several small segments according
to the inverse of the frequency and averaged, to reconstruct the approximated periodic
pattern. In order to reproduce the original wiping trajectory, an amplitude profile is
kept when extracting the periodic pattern. However, the main focus of this approach is
the generalization and skill learning, rather than the exact reproduction of the original
trajectory.

Examining the leader-follower approach from a more abstract point of view, the discrete
part of a washing motion encodes the action direction such as top-down, left-right or some
special movement. The periodic pattern encodes the functional primitive, which can be
a cyclic motion, Fig. 3.2. In the extreme case, a motion whose periodic pattern has zero
amplitude is a simple discrete motion. By this separation and representing both parts with
DMPs, the motion can be modified according to the user’s preference or task constraints.
Fig. 3.2 shows one simple way to extract both parts of a washing action and reproduce
it with CC-DMP. The accuracy of the reproduction is dependent on both separation and
learning. Despite the accurate learning properties of DMP, signal splitting might cause
information loss. Nevertheless, signal splitting can be avoided by customizing the expert’s
demonstration strategy.

Hence, a complete washing system based on CC-DMP has multiple leaders and fol-
lowers. In the high level, the user’s movement is the leader and a periodic motion is
the follower. However, since the user’s movement is not predictable in the general case,
we need sensor feedback to perceive the change of the surface instead of learning user’s
movement with a DMP. In the low level, the discrete part of the motion is leader and
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Bijection

(a) Canonical Space (b) Image Space (c) Task Space

Figure 3.3: Three different spaces described in the proposed methodology. (a) 2D space
normalized in x,y dimensions denoted as “Canonical” space. (b) 2D Image space is the
actual image (of size 512 x 424 pixels) obtained from Kinect sensor. The yellow rectangular
area marks the user’s back region, as a result of a segmentation algorithm. (c) 3D Task
Space is the operational space of the robot. The sinusoidal path form the Canonical space
is fitted on the surface of a female subject’s back region. The yellow box represents a
Cartesian filter, including the points on which the robot will operate.

the periodic pattern is the follower, both of which can be learned by demonstration with
DMPs.

3.2.2 Perception-Based Motion Planning

The basic goal of the perception based motion planning is to adapt each interactive action
on the surface of the user’s body by calculating on the fly the leader reference pose,
around which each learned washing motion will be applied. The adaptation is achieved
by integrating the visual perception of the user’s body parts into the planning procedure.
with the establishment of three different spaces, which reformulate the problem of the
leader motion tracking to the 2D space. More specifically, as shown in Fig. 3.3 we express
the interactive motions in the following three spaces a) a 2D space denoted as “Canonical”
space, b) the 2D Image space, corresponding to the actual image (of size 512 x 424 pixels)
captured by the Kinect image sensor and c) the 3D Task Space, corresponding to the
operational space of the robot. The planning approach commences with the planning of
the leader movement primitive’s path on a fixed 2D “Canonical” space, as depicted in
the right of Fig. 3.3. This space can be considered as a canvas on which any path can
be inscribed, in order for the robot to be able to navigate on any part of the surface that
needs to be washed (e.g. the back of the user). The planned trajectories are tracked by
the controller described in the next section.

Motion Tracking Controller

We make use of the following controller to satisfy both the time constraints imposed by
the health-care specialist, or the user needs (e.g. the user prefers a quicker washing action
than the predefined) and the spatial constraints imposed by the region of action (e.g. the
back of the user) and the obstacle areas from the 3D operating scene. In what follows,
we present the definition and the convergence proof of the motion tracking controller. In
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more detail, we utilize a navigation function of the form:

¢(g,t) = (@, 1) n (34)

(V5 (q,t) + Blg,1)]

where £ > 0, 74 is the distance to the 2D time constrained washing motion, and 3(q) is the
product of obstacle functions coming from visual feedback, [109].We consider convergence
of the system to a small ball of radius > 0 containing the target.

Before defining the control we need some preliminary definitions. We can define the
Hessian of function ¢, as VZp(q,t). Let Amin, Amaz, Oxpin> @0d Oy, be the minimum and
the maximum eigenvalues of the Hessian, and the unit eigenvectors corresponding to the
minimum and maximum eigenvalues of the Hessian, respectively. Then we assume the R
region, as described in [44], to identify sets of points that contain sets of measure zero whose
positive limit sets are saddle points: R = (Amin < 0) A (Amax > 0) A (|0a,,, - Vol < 71),
where r; < min (Ve (9)). If |0y, - V| = 0. The set R consists of the

S={q:lq—qall=r}
measure zero set of initial conditions that lead to saddle point, [44]. Therefore, 1 can
be chosen to be arbitrarily small so the sets defined by R eventually consist of thin sets

containing sets of initial conditions that lead to saddle points.

Proposition 1. The system (3.1), under the control law defined by the following vector

field:
u=—Vo, (3.5)
converges to the set where ||q — qq|| < 7, almost everywheret. We can define V., as:
a
Vor=a+b- (3.6)
fllall?r?) =2 -g(b) - g (lall?)

>

with f(c,s) = { z: z 2 z ,and g (c) = ﬁ, where a = Vi, b= %—f, and ¢ is the defined

navigation function (3.4).

Proof. We form the Lyapunov function:

V=¢(q,t) (3.7)
as described by (3.4), and we can take its derivative:
.0V
VZE—FU-VV:b—Fu-a (3.8)

After substituting the control law (3.5) by using (3.6), and since we pursue convergence
in the set ||¢ — qql| <, we get:

w2 (1 Jalf?
V=—all*+b (1 ||aH2—7”2'9(b)'9(||aH2))

Therefore, we can discriminate the following three cases:

1.b<0=-1<g(b)<0= ‘
lal* < [lal]* = r*- g () - g (llal*) < [lal* +7* =V <0

2.6>0=0<g(b)<1= .
lal> = r* < [|a]> = r* - g (b) - g (la]|?) < [la* =V <0

li.e. everywhere except a set of initial conditions of measure zero.
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3.b=0=>V=—|al|?<0

The sets defined by the set R are by construction repulsive. We make the assump-
tion that the initial conditions of the system are in the set {W}\E, where the set £ =
{g:IVVI <} O

Remark 1. Practically, we have the choice of an 11, such thatry < min {ro, ||[VV (qo, o)},
so we are sure that the system’s initial conditions are not in .

Based on this motion controller the next robot desired pose is extracted and propagated
to 3D Task space for execution.

Reference Motion Reactive Adaptation

In this proposed approach, we use as input the Point-Cloud data received from the depth
sensors, and calculate on-line the reference motion, that the robot should execute in order
to fulfill a washing task, Fig. 3.3. In particular, the data from Kinect depth sensors
are processed initially by Deep learning based algorithms, which provide semantic visual
segmentation of the user’s body parts and human pose estimation, as described in Chapter
2.1. The output of segmentation algorithm is the calculation of human body-parts support
in the image domain (denoted as valid pixels, Fig. 3.4b), which coupled with the depth
information from the Kinect cameras of the I-Support system can allow the 3D pose
estimation of body parts, on which the robot will operate (e.g. the back or the legs of the
user), Fig. 3.3 (¢). Additionally, the human pose estimation algorithm infers the locations
of landmark points of the human body on the image plane.

Therefore, we can define the 2D extends of the body part on the image plane by simply
calculating the minimum and maximum coordinates of the valid pixels along the image
axes, or enhance the visual information by using the detected landmark points for each
body part, as shown in Fig. 3.5b. The learned motion is followed by the controller and
the result is transformed from the 2D “Canonical” space to the image space by performing

(a) Back Showering Motion Planning (b) Visual Semantic Segmentation

Figure 3.4: Adaptation of a showering motion demonstrated by a nursing expert to the
back region of a subject. (a) Point-Cloud view from the system’s depth cameras and a
sequence of positions shown as green spheres, covering the surface of the detected back
region. (b) The output of the visual semantic segmentation algorithm, which identifies
the region of each body part on the image plane, is used in the planning process.
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(a) Leg Showering Scenario (b) Kinect Camera Point-Cloud View

Figure 3.5: Execution of a leg showering scenario from the soft robotic arm. (a) User’s
point of view (b) I-Support depth camera Point-Cloud view. The result of human pose
estimation algorithm is transformed to 3D space and depicted with red spheres. The green
sphere show the result of the motion planning algorithm.

an anisotropic scaling in order to fit to the projection limits calculated in the previous
step, as depicted in up-left side of Fig. 3.6(up). Since scaling is a linear transformation
we have one-to-one correspondence between the points of the motion on the “Canonical”
space and the image space. At each time step one point of the motion is transformed from
the “Canonical” space to the image space and then to the task space, i.e. the 3D space
that the robot will normally operate, as shown in Fig. 3.6(bottom).

Proposition 2. The transformation Ty (which is represented by the camera projection)
from the Image space (i.e. IM = {(u,v):u € [0, ul,v € [0,v]}, where u, v are the image
width and height respectively), to the Task space (i.e. V = {(z,y,z) € FOV}) at each
time step is a bijection.

Proof: We provide a descriptive and intuitive proof. The basic idea results from
the fact that a ray starting from the camera’s optical center passes through the Image
space and meets a point in the Task space. The latter is always true in an indoor en-
vironment, assuming that the areas of interest are visible by the camera. Therefore,
V(u,v) € IM 3 (x,y,z) € V. Using ray-casting technique it is easy to show that this
point is unique, since the same ray cannot meet two points in the Task space at the
same time. From the previous we can conclude that the transformation 75 : IM — V is
one-to-one (injective) and onto (surjective), so it is bijective.

The latter stage of the reactive motion planning workflow is implemented by using the
depth information from the image space. More specifically, from the depth data of the
pixel, which corresponds to the motion point and of its neighboring pixels in the image
space, we are able to directly calculate their 3D position. This group of points in the 3D
task space form a small planar segment of the body part surface. Computing the mean of
this group of points:

— L 7k k k

Pe=[rx Y& =l =py py D

where xg, Yk, 2k, are the Cartesian coordinates for the number of points £ = 1,...,n, and

applying eigenvalue decomposition to the covariance matrix computed from these points,
as follows:

" 1"

Czx Cxy Cxz
C=|Cyx Cyy Cyz|,
Czx Czy Czz
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Figure 3.6: Perception-based motion planning. A leader DMP point (i,j) from the Canoni-
cal space is transformed with bijective transformation 7} to the point (u,v) of Image space

and then with bijective transformation 7, to the point (x,y,z) of the body-part. From the
neighborhood of (x,y,z) we are able to calculate the reference orientation.

where
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with 4,7 = {z,y, 2}, we are capable of determining the 6D reference pose for the robot.
The 3D point, which the robot’s end effector should meet, equals to the mean point of
the group (presented with green spheres in Fig. 3.5b and 3.4a), whereas the orientation
is calculated with the aid of the eigenvectors of the covariance matrix. The eigenvectors
resulting from this decomposition correspond to the principal axis of the 3D data and more
specifically, the normal direction of the planar segment is the axis that corresponds to the
minimum eigenvalue, i.e. the direction of minimum variance of the data. Considering
this set of vectors as the reference orientation for the end-effector of the robot, we are
able to calculate the roll, pitch, yaw angles from the robot base frame, which the robotic
manipulator should follow. The normal vector to the surface is used in the definition of
the desired perpendicular distance, that the robot should keep according to the currently
executed washing task. For showering tasks this distance is planned to be greater than
zero, whereas for scrubbing or wiping tasks this distance should be zero or below zero
adjusting in this way indirectly the contact force. Hence, the aim of this approach is to
provide the appropriate reference position and orientation, in order for the robot to operate
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in a perpendicular direction to the body part surface. The latter will allow smoother and
accurate surface tracking techniques and proper force exertion to the human.

One major issue of this approach is the visual occlusion of the surface, which oc-
curs during the robot’s operation. This problem is tackled by adjusting the size of the
neighborhood of pixels mentioned above. The larger occlusion occurs, the larger the neigh-
borhood should be so we can locally reconstruct the missing depth information from the
surrounding pixel’s depth.

Remark 2. The size of the robotic end-effector should be related to the curvature of the
surface area. For example, if the robotic arm is large and causes a large visual occlusion,
the local estimation of surface’s curvature would be coarse in a highly curved area.

Remark 3. The reconstruction of the missing depth data from Kinect sensor can be solved
with efficient image in-painting techniques presented in [203, 204]. The implementation of
these computer vision algorithms is out of the scope of this thesis. In our implementation
we apply a planar fit in the missing data. In addition, the problem of missing visual data
is highly reduced in multi-camera systems such as the I-Support.

Additionally, the described bijective transformations serve as a feedback to the con-
troller as well. For example obstacle areas in the Task space (e.g. the hands of the user,
or injuries on the back region) which are visible by the camera can be transformed back to
the “Canonical” space by using the inverse procedure. In more detail, the black region in
Fig. 3.7 represents a bandage on a body-part, which covers an injured region. This region
is visually perceived and is transformed back and maximizes the values of the navigation
function vector field in the corresponding coordinates. This modification will affect the

Task Space Task Space

Task Space

Reference
= DMP
Obstacle .

oE 5, ) [
\W s

Canonical Space Potential Field Canonical Space

Executed |
Path q

Canonical Space Potential Field

Initial Point

Workspace

Figure 3.7: Left: An obstacle area (e.g. injury depicted with black patch) is detected in
the Task space and transformed back to the Canonical space. The Navigation Function
potential field is maximized in the corresponding area and the boundary of the workspace.
Middle: The leader DMP path (red) is defined and an attractive vector field leads to
the target point. Right: The controllers output is the blue path and is executed by the
robot, avoiding the sensitive injured area. After the obstacle avoidance the end-effector’s
motion converges again the indicated linear motion primitive.
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execution (blue path) of a demonstrated leader DMP (red path) which passes through
this area, preventing the robot from washing this sensitive area. Therefore, the described
approach provides augmented perception properties to the washing system, which include
user motion compensation, adaptability to different body-part size together with obstacle
avoidance.

3.3 Perception-Based Interaction System

If the desired washing movement is simple and predefined, a vision-based controller de-
scribed in Sec. 3.2.2 can successfully adjust trajectory points one-by-one on a dynamical
surface to generate a desired action. In the meantime, if the surface has known structure
and does not change significantly during the motion evolution, CC-DMP described in Sec.
3.2.1 can flexibly generate complex trajectories learned by demonstration and adapt the
movement to the surface’s already modeled dynamic behavior.

However, in a washing case study, the size of each body-part differs among users and
the body shape may change during the washing procedure, thus, we cannot generate an
appropriate motion by pure imitation learning which cannot generalize for a relatively
large change in the environment. On the other end, a pure perception-based controller
cannot generate human-demonstrated washing trajectories. Furthermore, the preferences
of each user may differ or change during the washing procedure, which requires the online
modifications of motion parameters (e.g. amplitude, velocity). Therefore, this online
motion modification requires the properties of a dynamical system such as CC-DMP.

To cope with the above requirements and constraints, we propose a hierarchical motion
planning system, shown in Fig. 3.8, which merges the above DMP approach with an online
visual perception loop, to achieve more robust behavior and to increase the capabilities of

Leader Motion
Primitive

Body - Part
Boundary

Perception Based

Controller

1 Visual Data

Visual

Follower Motion
Primitive

Segmentation

Figure 3.8: Perception-based motion planning system (implementing a washing sequence).
The output of the body-part visual segmentation and the depth data provided by the
camera is the input of this system, while the output is the target washing action of the
robot’s end-effector.
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Figure 3.9: Adaptation of a linear leader DMP (red) on a deformable surface (PointCloud
view). The normal vector (blue) and the application of a follower periodic washing action
is demonstrated on several segments of the path. Perspective and top views of a surface
are depicted, subject to several unknown levels of deformation. Top: No deformation.
Middle: Medium deformation. Bottom: High deformation.

the system. In this system, we consider the discrete part of a washing action as the leader
and the periodic pattern as the follower. The learned leader’s motion primitive outputs
a reference point in the “Canonical” space, which is followed by the Navigation Function
controller. The output is adjusted in the body-part extends and then transformed on its
surface (see Fig. 3.6). The leader global pose is calculated by the analysis of camera’s
depth data in a small neighborhood of the visually segmented target area as described in
Sec. 3.2.2. In the latter step of this workflow, the follower movement primitive calculates
the next point in the leader’s local coordinate system, then transforms it to the global or
robot’s coordinate system. The final step is to use inverse kinematics to calculate the next
required joint configurations of the robot and its low-level controller to drive the robot’s
end-effector to the next desired pose.

The time and spatial adaptation, together with the decomposition of the learned wash-
ing actions allows for planning of a large repertoire of motions and adaptation on de-
formable surfaces as well. This repertoire includes different combinations of discrete and
periodic actions, which may vary according to the washing sequence (e.g. pouring water,
scrubbing, soaping etc.) decided by the user or the health-care expert. It also includes
the capacity of the perception-based system for on-line adaptation on large and a-priori
unknown surface deformations of the target part. An indicative example is presented in
Fig. 3.9, in which a linear discrete motion (red) is adapted on a surface of unknown, but
visually perceived curvature and deformation. The estimated local vector (blue) and the
execution of a cyclic periodic pattern (green) are also demonstrated in several segments of
the leader’s path. The local curvature estimation at each time step not only compensates
for the surface’s motion and deformation, but also permits the regulation of the perpen-
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dicular distance of the robot’s end-effector to the surface. This regulation enables the
execution of actions that involve physical contact (e.g. scrubbing), thus also indirectly
involving the application of forces without any additional feedback, as well as actions that
involve no contact with the surface (e.g. pouring water).

3.4 Learning from Demonstration Using Navigation Func-
tions

Washing action learning is an interactive task, which combines the execution of a complex
motion relatively to the body part. In Section 3.2.1 a DMP a leader-follower framework
has been described, which takes the environment’s motion into consideration. However,
learning robotic actions with DMPs cannot incorporate multiple demonstrations and the
subsequent planning does not consider the presence of obstacles in the workspace. In pre-
vious works [205, 206, 207] the authors combined DMP approach with Dynamic Potential
Fields in order to achieve obstacle avoidance. However, the appearance of local minima
can trap the agent before reaching its destination.

In this Section, a Navigation Function (NF) approach is proposed as an alternative
approach for learning the way an expert clinical carer executes the bathing activities by
means of constructing repulsive potential fields (“virtual obstacles”). The interactive tra-
jectories demonstration is realized in 3D space and are transformed to the Canonical space
by taking advantage of the appropriate transformations as shown in Section 3.2.2. In this
space, a set of virtual obstacles is calculated so that the trajectory produced by a NF
based navigation resembles the human trajectories, in effect, the human trajectory is rep-
resented in the virtual obstacles. Furthermore, we conclude this chapter be proposing an
extension of our planning framework, in order to smoothly integrate our learning method
into the system.

3.4.1 Learning of Discrete Interactive Motions

In this Section we focus on deriving an alternative learning strategy for the discrete part of
interactive actions, which constitutes the main part of the motion. Following the analysis
presented in Section 3.2.2 analysis the control problem is reduced to an equivalent problem
in the 2D Canonical space. Using this transformation, we shall use this 2D space for our
control and learning schemes.

Assume that we have a set of T, € N* £ N\{0} demonstrated trajectories by nursing
experts, E,, N € Nezp = {1,2,...,Tuyp}. Each of them is a set E, £ {qn(tm)}men,
N, £ {1,2,..,T,}, n € Negp of T, € N* configurations qy(t,) € W C R? recorded in
subsequent time instants ¢,, € [0, +00), which are indexed in increasing order t,, < tm+1,
Vm € N,\{T,,}, ¥n € Negp. Also, assume that the desired destinations qg4, € W, n € Negp
are provided.

The proposed solution is to produce a suitable vector field, the motion under which
replicates the demonstrated data. This approach is clearly advantageous, as the incorpo-
ration of the learned data in a vector field allows their immediate combination with real
obstacles detected by the perception system. The problem can then be stated as depicted
in Fig. 3.10. We intent to use the experimental data £ = {E,, qdn}Ne(L’p in order to find

the obstacle function 8 € C?(E™, R), so that the produced trajectory from the controller
described in Section 3.2.2:

4= —Vaqp(aq) (3.9)
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Figure 3.10: Problem Statement: Find the obstacle functions based on the collected experimental
human like trajectories q(¢,,), to ensure that the new controller-based produced motion will always
remain within the problem’s domain.

is similar to the experimental trajectories, defined by an appropriate similarity measure.
Since it is not a simple path similarity problem, we propose to use the Fréchet distance
[208], as the distance metric between two trajectories in the state space. This is a measure
of similarity between two curves, that takes into account the flow of two curves, because
the pairs of points whose distance contributes to the distance sweep continuously along
their respective curves. This metric is defined as the maximum distance between two
agents moving forward on the two trajectories and actively trying to keep their distance
to a minimum and it is more “natural” way of estimating the distance of two curves, in
a setting such as ours. In layman terms, the output of the controller should approximate
the experimental trajectories. For ease of the reader, the definition of the Fréchet distance
[208] is provided below:

Definition 1. Let S a metric space. A curve A € S is a continuous map from the
unit interval into S, i.e. A :[0,1] — S. A reparameterization « is a continuous, non-
decreasing, surjection o :[0,1] — [0,1]. Let A and A be two given curves in S. Then, the
Fréchet distance between A and A is defined as the infimum over all reparameterizations
a, A € [0,1] of the mazimum over all t € [0,1] of the distance in S between A(«(t)) and
A(X(t)). In mathematical notation, the Fréchet distance F(A,A) is defined as:

F(A,A) =inf max {d(A(a(t)),A(A(¥)))} (3.10)
a,\ telo,1]
where d is the distance function of S. O

This coupling measure takes the value zero when the trajectories are equal and grows
positively as the curves become more dissimilar.
Obstacle Function Resolution Formulation

The main goal is to formulate an appropriate equation, the resolution of which will produce
the unknown obstacle function S (the repulsive field). The proposed problem formulation
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guarantees that the produced potential field, based on the constructed NF, models the
carer’s motions during the washing tasks. In other words, this approach creates the learn-
ing by demonstration procedure of washing models.

We can calculate the derivative of the NF (3.4):

0 0
Vap(d,qq) = g(v,ﬁ) -Vqv(a,qq) + g(v,ﬁ) -VqB(q)
Y B
Therefore, it holds that:
dp O Y
Y _ 4. Y__T1.» —9.(q—
6’)/ B 5 8,3 K 3 V’}/ (q qd)

where A = (7% + 5)_(%1) Also, based on the obstacle function definition, it holds that:

Z s
i i
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In this work, we form an obstacle function structure 5;, for i = 1,...,Q, with Q < P,
where P is the total number of obstacles, for simplicity as ellipsoid function and thus,
the main goal is to compute the necessary parameters in order to construct these “virtual
obstacles”, i.e. their centers and the length of their principal axes.

In [62], the solution is based on a gradient descent method, that produces the obstacle
function. Moreover, the authors use the gradient of the experimental trajectories in order
to compute the cost function to be optimized. This resolution is feasible for convex case
studies, otherwise the gradient descent method may be trapped in local minima.

Non-Convexity of the Inverse Problem

When the workspace contains obstacles in its interior, the NF becomes highly entangled
w.r.t. the position and the general form of the obstacles. Due to this aspect, the estimation
of the appropriate set of parameters for the obstacles that generated a NF with the desired
form equates into solving a problem that is non convex. The proof of this statement is
presented next.

Assume the problem of a point robot motion planning on a 2D workspace. Let us
assume for simplicity that the initial and desired configurations of the robot both lie on
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Figure 3.11: Point robot motion planning problem on a 2D workspace that contains one cyclic
obstacle.
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the y-axis, anti-symmetrically of the x-axis. The optimum path to resolve this motion
planning problem is for the robot to follow a path that lies on the y-axis (following the
line = 0). As one simple cyclic obstacle appears in the workspace, the motion planning
resolution of this case depends on the relative position of the obstacle. Assuming that
x1 is the obstacle’s center on x-axis and xo is the distance of the resulted path from the
y-axis, we can distinguish four general cases for the obstacles relative position w.r.t y-axis,
as described in Fig. 3.11. As the obstacle is away from the y-axis there are two cases,
when the obstacle region is in negative side of y-axis (I), and when it is in the positive
side of y-axis (IV), Fig. 3.11. In these cases the resulted optimal path remain on the
y-axis and therefore the distance zo = 0. In the other two cases of Fig. 3.11, it holds
that for case (II) the distance zo > 0, while for case (III) it switches o < 0. Thus, the
relation between 1 and x3 is described in Fig. 3.12. This figure demonstrates the highly
non-convex character of the optimization problem. On that figure, a point on the left side
of the diagram (with negative xo deflection) cannot move, using gradient descent to the
right side of the diagram (positive xo deflection). If the initial position of the obstacle
is point Initial, Fig. 3.12, a gradient descent will push away the obstacle towards point
Final, i.e. will push the obstacle further away to the left. It is not possible for a gradient
descent method to converge to point Target, i.e. an obstacle to the right of the y-axis.
A gradient descent algorithm will result in the obstacle being “pushed away”. Therefore
there is no way to resolve this problem with a simple gradient descent method.

Non-Convex Inverse Problem Resolution

The recorded experimental data are usually very noisy, as it can be realized from the
second column of Fig. 3.13. A numerical differentiation scheme would result in excessive
noise added to the system. Thus, we propose to resolve the optimization problem in the
entire recorded trajectory, by using the Fréchet distance metric (Definition 1).

Another important issue is that the problem is highly non-convex, as it is described
in the previous subsection. Therefore, the optimization procedure, in order to resolve
the inverse problem, that is based on a simple gradient descent method cannot result
to a feasible solution and requires the use of some kind of heuristic approaches. In this
approach, we used a Genetic Algorithm (GA) solution as the form of the problem is
naturally suited for such an approach. In particular, the parameters of the obstacles are
naturally suited genes for a GA, since, to an extent, the positions of the obstacle, the size
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Figure 3.12: The relation between the the obstacle’s center on x-axis 1 and the distance of the
resulted path from the y-axis xs.
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and its form have a differential effect on the form of the NF trajectory and, therefore, to
the cost of the optimization function.

In order to augment the GA search, a gradient descent method [209] is used, as local
optimization scheme for every member of each generation, as: 2UTD) = 20) — . VC,
minimizing the cost function C, where 27 denotes the obstacle parameter values at the
4t iteration of minimization procedure and w is the design space cost functional gradient
step. Obviously, this augmentation will have the detrimental effect described above for
some sets of solutions (will drive the obstacles away from the correct positions).

Then, it is necessary to formulate the optimization cost function C for the discrete

samples, as following;:
1

Ccz .
Texp

F(R, Ey) (3.11)

NENeap

where F' is the Fréchet distance defined by (3.10), E, is an experimentally measured
trajectory, while R is the estimated trajectory composed by the candidate obstacle function
B. Each estimated point (u + 1) of the trajectory R is computed based on the previous
point (u) by the equation: gt = g 4+ At - q, where At is the time step between the
points and ¢ is calculated as in (3.9). The C code for the Discrete Fréchet Implementation
was adopted from [210]. The GA [211] was also programmed in C/C++ and was adopted
from [212].

3.4.2 Interactive Motion Reproduction

An indicative example of implementing this NF-based approach is illustrated in Fig. 3.13,
where a whole sequence of the motion generation process is shown, including demonstra-
tion, pre-processing, learning, and reproduction, corresponding to a specific washing action
such as water pouring. More specifically, the demonstration is performed in the physical

Demonstration | Processing ; Learning | Reproduction

Canonical Space Image Space

Task Space

Figure 3.13: Demonstration, Processing, Learning and Reproduction procedures. The
Demonstration trajectories are performed in physical space by professional nursing per-
sonnel. The demonstration data are projected into the 2D canonical space, in which are
post-Processed. In the Learning phase virtual obstacles are learned using the demon-
stration data and the proposed NF approach. During the trajectory Reproduction phase
a NF controller is employed to reproduce the washing action. The learned trajectory (red)
is then adapted on the visually segmented back region (PointCloud view) of a subject,
via the image space. Top: A simple showering sinusoidal trajectory is visually recorded,
learned and reproduced. Bottom: A more complex showering trajectory is obtained from
the KIT whole-body human motion database [1], learned and reproduced.
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space, hence a post-processing procedure follows, in which the demonstration examples
are projected in a 2D spatially normalized canonical space, following the notation of Sec-
tion 3.2.2. In this simplified space the demonstration paths are denoised and the discrete
part is separated from any periodic motion, as is described in the second column of Fig.
3.13. In this form the demonstration data are used in the learning procedure, in which
a set of virtual obstacles is generated forming a repulsive landscape, which encodes the
demonstrated washing skill.

The “virtual obstacle” function 8 (structure of repulsive potential field) is then used
in the reproduction phase. At this stage an initial and goal configuration is provided
to the system and fed into the motion tracking controller (Sec. 3.2.2) to generate a
washing action, which satisfies the constraints imposed by the health-care specialist and
the constraints imposed by the region of action (e.g. the back of the user). Based on the
output of the controller, the next desired position is extracted in the 2D canonical space
and propagated to the 3D task space for execution from the assistive robotic device.

3.5 Chapter Outcomes

In this Chapter, the theoretical contributions on learning interactive motions from demon-
stration and reactive motion adaptation on curved and deformable surfaces is presented.
Particularly, we propose an integrated system based on DMP approach, which can learn
and encode the demonstrated actions, imitating the human actions. The learned motions
are then adapted to the user’s body parts compensating for their motion or deformation.
The latter is achieved with a motion planning algorithm, which is based on visual percep-
tion with RGB-D cameras and the establishment of bijective transformations, redefining
the motion tracking problem in a 2D spatially normalized space. Accurate tracking of the
learned actions is then realized with a Navigation function controller with proven globally
uniformly asymptotic convergence.

The description of an alternative Learning from Demonstration method is concluding
this chapter, which is based on Navigation functions, in order to capture the way an expert
human performer (in our case, a clinical carer) executes the desired motions by means of
construction repulsive potential fields (“virtual obstacles”). Demonstration of the desired
trajectories is realized in 3D space and these trajectories are then transformed to a 2D
spatially normalized space with the use of the bijective transformations. In this space,
a set of virtual obstacles is calculated so that the trajectory produced by a NF based
navigation resembles the human trajectories.

This perception-based motion planning approach (based on direct visual feedback from
an RGB-D sensor) has been implemented on the I-Support soft robotic platform (depicted
in Fig. 3.1), and has also been tested on the ARMAR-IIT humanoid robotic platform
developed at KIT (depicted in Fig. 3.7). Experimental results of these implementations
along with preliminary results of the learning with NF method are presented in Chapter
5. This approach also serves as a baseline direct visual planning (DVP) approach for
comparative analysis with a more generic mesh-based interactive approach proposed in the
following chapter, which is presumably more powerful in terms of better handling dynamic
deformations and occlusions. Comparative experimental analysis results are presented in
Chapter 6.



Chapter 4

Mesh-Based Motion Planning and
Interaction Control

Aiming towards smoother and more robust contact not only with the human body but
also with other deformable objects, we describe in this chapter a physical interaction
framework based on deformable object modeling. Due to the fact that the integration
of a conventional force torque sensor to the structure of I-Support system’s soft-robotic
arm, which operates under highly humid conditions in the bathroom environment, is not
feasible, we investigated robotic control techniques without the use of force feedback,
which are based on stiffness control of the robot. Simultaneously, in order to achieve high
precision both on task execution and force, enhanced environment perception abilities has
to be incorporated to the system. In particular, the use of visual information as presented
in the previous chapters cannot guarantee the continuity of the generated motions across
the whole duration of the motion. The bijectivity proof provided in Chapter 3 holds only
for one time step, since the number of pixels associated with a body part will change
if the user changes his position. This performance is acceptable for the purposes of a
bathing robot. However, in an attempt to generalize interactive tasks execution in other
applications, accurate real-time modeling of a deformable object is required. Deformable
object modeling with mesh structures was a common practice in computer graphics society
for decades. Additionally, the recent advances of computer vision techniques, which are
able to accurately determine the shape of the human body from a monocular camera
[3, 83] as depicted in Fig. 4.1, has provided a wide spectrum of visual perception abilities
for human-robot physical interaction tasks. These technological advances have motivated
the development of an algorithm, which effectively uses the results of object modeling
techniques (Sec. 2.4) combined with mesh parameterization (Sec. 2.5) and is able to plan
efficiently both non-contact and contact surface robotic actions.

4.1 Related Work

Autonomous interaction of robotic manipulation systems with various objects constitutes
undoubtedly a vast research topic, which has attracted a lot of attention and research
effort for nearly three decades now. Despite the fact that all these efforts have made
significant progress in the direction of rigid object manipulation, which is now considered
as a mature field in robotics [213], the study of deformable objects still remains limited
and constitutes a challenging research field, as also described in a recent review paper
[214]. In real world applications, the type of materials that a robot is called to interact
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(b) (@) | (e)

Figure 4.1: Human shape estimation from monocular camera. Human shape is presented
in a textured mesh for different instances of human motion in (a) and (b). A multi-person
instance is presented in (c). Detailed views of a mesh representation of human shape in (d)
and (e). The depicted representation can easily be integrated in the proposed approach.
Images used after written consent of the authors of [3].

with are usually non-rigid, since our world is formed mainly of deformable materials, the
flexibility of which varies significantly. In order to achieve accurate and efficient robotic
manipulation, a complete modelling of the manipulated object is required and this has
to be coupled with the control process on-line. Different control and motion planning
strategies have been developed for different kinds of objects. Early work of Tanner et al.
in [215] and later in [216] study the control aspects of two mobile manipulators carrying
a deformable cloth-like object. In general, garments and cloth-like objects have drawn a
lot of research effort, due to their easier modeling than other 3D deformable objects and
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clear visual structure. Yinxiao Li et al. in a series of papers propose solutions for various
interaction tasks with garments such as real-time pose estimation [217], unfolding [218] and
folding [219]. Moreover, a complete pipeline of the autonomous folding task is presented
in [220], which includes a vision-based garment grasping from a pile of clothes by a dual
arm robot, classification and proper unfolding on a table (previously presented in [221])
and a folding technique executed by the robotic system based on dynamic programming.
Additionally, in [222] a geometric approach for garment unfolding is proposed, taking
advantage of the clear visual structure of clothes to estimate appropriate grasping points.
Another challenging task is the autonomous paper origami folding which was implemented
in [223], employing a two-handed multi-fingered robot and depth vision system. A dual
arm robot is also developed in [224] for industrial automatic electronic soldering tasks on
flexible PCBs.

Many surgical tasks require the interaction of a robotic manipulator with the surface
of an organ or tissue. Papers involving robotic manipulators combine visual techniques
with FEM physical simulation and a force sensor [225], in order to develop real-time
tracking system of soft tissues’ deformation produced by a manipulator. However, non-
visual techniques proposed in [226] exploit the motion of a robot and more specifically
motion planning algorithms and a hybrid force-motion controller, to estimate the shape
and impedance parameters of tissue. Motion plans are also computed in [227] for a 6DOF
gripper for automated tissue retraction given the model of tissues in the vicinity of areas
of interest. In a similar context concerning interaction with dynamically deforming organ
tissues in surgical robotics, active motion compensation constitutes another open research
topic, with a lot of effort focusing on beating heart surgery scenarios. In [228] a predictive
force control algorithm is proposed to compensate priorly known motions generated both
from breathing and beating heart, whereas a recent paper [229] proposes an impedance
control scheme both for motion compensation in the slave robot and haptic feedback to
the master robot in a tele-operation scenario. Another tele-operation approach, which
integrates a visual system for motion perception, is presented in [230] using the da Vinci
Research Kit (Intuitive Surgical Inc.). Its perception system estimates the distance from
a rigid object (moved by an external device), which is used as reference for the da Vinci
patient side manipulators to track motion in real time. Another example of visually
guided surgical device is presented in [231]. Leonard et al. have developed STAR system,
which includes a 7TDOF robotic manipulator and a monocular camera and is dedicated to
automate laparoscopic suturing. It uses vision guided system, through which the doctor
can also determine the suturing points, and its accuracy and efficiency was tested on planar
phantoms.

Relevant interactive tasks are also met in industrial applications, with some recent
research work starting to focus on how to handle similar constraints involving real-time
physical interaction with the surface of dynamically deforming objects in a robot cell, like
in [232] where a one dimensional FEM model is used for bimanual robotic cleaning of a
deformable object.

4.2 Problem Formulation

The problem considered in this chapter concerns interaction control of a robotic manipula-
tor executing a task on the surface of a curved and deformable object. The main objective
of the manipulator is to navigate over a part of an object’s surface and physically interact
with it, while the object is actively or passively deforming. Although, the initial shape of
the object may be known, we assume that its deformation (active or passive) evolution over
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time is unmodeled, i.e. there isn’t a function of time describing its motion. There exists a
large variety of typical examples that involve a robot executing a practical task over the
surface or in contact with an object, either rigid (e.g. spraying, polishing, machining or
assembly) or deformable (e.g. soft tissue manipulation, physical interaction with human
body, beating heart robot assisted surgery).

In all the above cases of interactive tasks, the control of the (physical or non-physical)
interaction between the robot manipulator and the surface of the dynamically deforming
object is crucial for the success of the planned task. In particular during contact, the
object sets constraints on the paths that the end-effector can follow. Hence, if the task is
not accurately planned, the use of a pure motion control strategy in constrained motion
scenarios may lead to failure. Accurate planning would, successively, require an accurate
model both of the robot and the object. Although, modelling of the manipulator can be
achieved with high precision based on kinematic and dynamic analysis, the motion model
of a deformable object is difficult to obtain even if the original shape is described in detail.
The modelling errors will give rise to planning errors along time and in turn, contact forces
will be applied on the end-effector causing a deviation from the desired trajectory. At the
same time, the robot’s control system will react to reduce such deviation, resulting in a
build-up of the contact force, until saturation of the actuators is reached or breakage of
the parts in contact eventuates.

The effect of the phenomenon described above can be decreased if a compliant be-
haviour is ensured during the interaction. Compliant interaction behaviour can be achieved
either passively or actively. Passive compliance can be realized via the structural com-
pliance of robot’s links, joints (e.g. soft robot arms [81, 76]) or end-effector (e.g. remote
center of compliance for industrial applications [233]). Despite the fact that the passive
approach is cheap and simple, it can only deal with small position and orientation devia-
tions and cannot guarantee that high contact forces will never occur. On the other hand,
active compliance can be established with either indirect force control schemes or direct
force control schemes, which use as feedback force measurements describing the state of
interaction. However, the lack of reliable force measurements in many real robotic sys-
tems has led us to the adoption of an indirect force control strategy. More specifically,
the geometrically consistent active stiffness control method is adopted, described
in [234], instead of other indirect force control methods such as impedance control, due
to unavailability of an explicit deformation model. For the sake of completeness of this
chapter we will briefly describe this method below.

4.2.1 Mechanical stiffness

Consider the case in which two rigid bodies E representing the end-effector and D for
the desired contact point on the surface are elastically coupled. The reference frames ¥,
and X4, which are attached to E and D respectively, coincide at the equilibrium. The
compliant behaviour near the equilibrium can be described by the linear mapping

K K.
hd:Kéde:<Kz K) 52, (4.1)

where hg is the elastic wrench applied to body D, expressed in frame X4, in case an
infinitesimal twist displacement 6xgd of frame ¥, with respect to frame ¥, (expressed in
frame ;) is present. Equivalently, the twist displacement of Eq. 4.1 can be expressed in
frame 3., since the two frames coincide at equilibrium. Therefore, hg = h§ and 5xgd =
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dx¢,; moreover, for the elastic wrench applied to body E, hf = Kidx§, = —hg being
ox§, = —5x§d. This property of Eq. 4.1 is called port symmetry.

In Eq. 4.1, K € RY%6 is the stiffness matrix, which is symmetric and positive-
semidefinite, consisting of K; € R3*3 and K, € R3*3, which are called translational
stiffness and rotational stiffness respectively and are symmetric as well. Additionally, it
can be shown that if K, € R3*3, which is the coupling stiffness, is symmetric, there is max-
imum decoupling between rotation and translation. In this case, the point corresponding
to the coinciding origins of the frames >, and > is called the center of stiffness. There are
special cases in which no coupling exists between translation and rotation, i. e., a relative
translation of the bodies results in a wrench corresponding to a pure force along an axis
through the center of stiffness; also, a relative rotation of the bodies results in a wrench
that is equivalent to a pure torque about an axis through the center of stiffness.

Since K; and K, are symmetric, there exists a decomposition K; = RtFtR;gr, where
I'y is a diagonal matrix whose elements are the principal translational stiffnessess in the
directions corresponding to the columns of the rotation matrix R; expressed w.r.t the frame
Y. = Y4 at equilibrium, known as the principal axes of translational stiffness. Similarly, K,
can be written as K, = R,I',RL, with T', expressing the principal rotational stiffnessess
around the axes corresponding to the columns of rotation matrix R,, representing the
principal axes of rotational stiffness. Moreover, assuming that the origins of ¥, and ¥,
at equilibrium coincide with the center of stiffness, the expression K. = RCFCRCT can be
found, where the diagonal elements of I'. are the principal coupling stiffnesses along the
direction corresponding to the columns of the rotation matrix R., known as the principal
axes of coupling stiffness.

It is important to mention that the mechanical stiffness defined in Eq. 4.1, describes
an ideal 6-DOF spring, which stores potential energy. An ideal stiffness has a potential
energy function, which depends only on the relative pose of the two attached bodies and
is port symmetric. The predominant behaviour of a physical 6-DOF spring is similar to
an ideal one, however there are always parasitic effects causing energy dissipation.

4.2.2 Geometrically Consistent Active Stiffness

In order to achieve a geometrically consistent 6-DOF active stiffness between the robot’s
end-effector and the deformable object, a suitable control law is required. This control
law should define the behaviour of the end-effector, under the application of an elastic
wrench from the object. The expression and the properties of the elastic wrench (Eq. 4.1)
for small displacements should be extended to the case of finite displacements. A finite
displacement can be expressed, in the problem of robot - surface interaction control, as
the relative pose of a desired frame X ; with respect to the end-effector frame. We can
distinguish two cases: (a) The desired frame is put above the object’s surface and hence the
robot is not in contact with the object and (b) the desired frame is put below the object’s
surface, therefore the robot has contact with the object. Additionally, a suitable potential
elastic energy function must be defined, in order to guarantee asymptotic stability in the
sense of Lyapunov for both cases.

Introducing the robot kinematics and dynamics notation we start with the joint config-
uration and its time derivative is ¢ := [q1, ..., qu]?, 4 := [d1, ..., 4n] € R™. The generalized
velocity of the end-effector is denoted by the twist vector v, = [pl w!]? € RS where p,
is the translational velocity and w. the angular velocity. It can be computed through
the differential kinematics v, = J(q)g [235], where J : R® — R%*" is the robot’s geo-
metric Jacobian. We define also the set D := q € R" : det(J(q)J(q)T) > 0 which contains
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all the singularity free configurations. The force f. and the moment u. applied by the
end-effector to the environment are the components of the wrench he = [fZ ul]7. In addi-
tion, the end-effector pose can be expressed as . = [pl ¢Z]T € R”, where p. denotes the
position and (. denotes the orientation as a unit quaternion ¢, = [¢. €. ] € S® with ¢ € R
and ¢? + eZee = 1, expressed with respect to the robot base frame.

Let us consider the operational space formulation of the dynamic model of a rigid robot
manipulator in contact with the environment

Mz (q)0 + Ca(q, @) + g2(q) = he — he (4.2)

where M,(q) = (JM(q)~'JT)~!1 : D — R™" is the positive definite inertia matrix,
C,=JTC(q,q)J " — My(q)JJ ™" : D x R® — R™™ is the matrix including centrifugal
and Coriolis effects, and g, = J Tg(q) : D — R" is the gravity term. M(q), C(q,¢) and
g(q) are the corresponding quantities defined in joint space. The vector h, = J77 is the
equivalent end-effector wrench corresponding to the input joint torques.

If we make the simplifying assumption that the coupling stiffness matrix is zero, we
can decompose the potential elastic energy in its translational part and its rotational part.
More specifically the translational potential energy can be defined as

1
Vi = S Ak Kb Spac (43)

with Apge denoting the position displacement of the end-effector w.r.t the desired position,
Ky, = %RdK pthT—i— %ReK peRI and Kp; € R3*3 symmetric and positive-definite. Ry and
R, are the rotation matrices corresponding to the desired pose and the end-effector pose
respectively. The use of K}, instead of Kp; in (4.3) guarantees that the potential energy
is port symmetric in the presence of finite displacements as well. K, and Kp; coincide at
equilibrium (i.e., when Ry = R.) and in the case of isotropic translational stiffness (i.e.,
when Kp; = kI. Calculating the derivative of the potential energy we have

Ve = Apge [ + Awgi i (4.4)

where Apf, being the time derivative of the position displacement Ap§, = R (pg — pe)
and Aw§, = RZ(wd — we). The vectors ff, u§ constitute the elastic wrench applied to the
end-effector in the presence of a finite position displacement Apg.. Rewriting this wrench
in the robot base frame we have h; = [f{, uf] in which

fit = KpApge and  py = K, Apge (4.5)

with K}, the same as (4.3) and K}, = 2S(Apge)RaKpiRL where S(-) is the skew-
symmetric operator performing the vector product. The moment p; is null in the case
of isotropic translational stiffness.

The orientation potential energy can be computed similarly with the form

Vo = 2¢5L KpoeS, (4.6)

where Kp, € R3*3 is symmetric and positive-definite and €5, is the vector part of the unit
quaternion (5, = [0, efﬁ], which can be extracted from the rotation matrix Ry = Rsz,
expressing the orientation displacement between the frames ¥; and .. The expression of
V, is port symmetric due to the property of conjugate unit quaternion €5, = —egd. The
computation of the derivative yields

Vo =wiimé with o = Kpyeqe (4.7)

[
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with Kl = 2ET (Gae, €ae) Re K poRL and E(¢ge, €de) = dael — S(€qe). The aforementioned
equations show that an elastic wrench h, = [07, uZ]7 is produced from a finite orientation
displacement €4, = ReTefg expressed in the robot base frame.

Consequently , a finite position and orientation displacement of the desired frame ¥,
with respect to the end-effector frame ¥, produced a total elastic wrench defined in the
robot base frame as

ha = hy + hy (4.8)

Using (4.8) for the computation of the elastic wrench in the case of an infinitesimal twist
displacement dx§, near the equilibrium, and discarding the high-order infinitesimal terms,
yields the linear mapping

he — Kpoaf, — <K0Pt K‘;) 5, (4.9)
It is apparent that the matrix Kp represents the stiffness matrix of an ideal spring with
respect to a frame Y. (coinciding with ¥, at equilibrium) with the origin at the center of
stiffness. Additionally, it can be shown, using (4.8), that the physical/geometrical meaning
of the principal stiffnesses and of the principal axes for the matrices Kp; and Kp, are
preserved also in the case of large displacements. The above discussion imply that the
active stiffness matrix Kp can be set in a geometrically consistent way with respect to the
task at hand.

Hence, if we denote the end-effector error in the operational space as Axge = x4 — xe
and the corresponding velocity error as Ay, = —i., assuming constant x4 i.e. considering
the surface’s deformation as a quasi-static phenomenon, a smooth compliance control with
a geometrically consistent active stiffness can be achieved with the use of the control law

he = ha — Kpve + A(q) (4.10)

where hp is calculated in Eq. 4.8, Kp € R%%6 is symmetric, positive-definite and expresses
the gain of a D term and A(q) is the gravity compensation term which is known from the
robot dynamic model (Eq. 4.2).

In the absence of interaction of the environment (i.e., when w, = 0), the equilibrium
Azge = 0, Azg. = 0 for the closed-loop system is asymptotically stable. The proof of the
stability is based on the positive-definite Lyapunov function

1
V= gul Blgve + Vi + Vo (4.11)
with V; and V, calculated in Eq. 4.3 and Eq. 4.6, whose time derivatives along the
trajectories of the closed-loop system is the negative semidefinite function

in case the frame ¥, is motionless. When the robot is interacting with the environment
(he # 0), a different asymptotycally stable equilibrium can be found, corresponding to a
non-null displacement of the desired frame ¥; with respect to the end-effector frame ..
The new equilibrium is the solution of the equation ha = he.

Considering the analysis above, for the problem of robotic interaction control with a
deformable surface it is sufficient to define the desired frame Y;, which can be used to
define the displacement vectors with respect to the end-effector. The desired frame X,
can be provided to the controller through the proposed framework described in Sec. 4.3.
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4.3 Robot-Surface Interaction Control Framework

This Section presents the proposed interactive motion planning and control framework and
describes in detail its main components. A general overview of the overall architecture
of the proposed framework is provided in Fig. 4.2, which deals both with the on-line
motion planning and the interaction force regulation aspects of the robot control system.
Starting from the assumption that the initial position of the surface and its deformation
evolution (active or passive) over time are unmodelled, a robust perception layer has to
be integrated to the robotic system. The visual (RGB-D) information obtained from a
camera (Fig. 4.2 left) is processed and combined with the mesh representation of the
object in a sequence of preprocessing steps (Fig. 4.2 middle), in order to deduce reliably
the configuration of the object in the physical space, where a stiffness interaction control
scheme is implemented (Fig. 4.2 right-bottom). At the core of the system, a mesh-
based version of object deformable surface is constructed and tracked over time in 2D
parameterized spaces, where the actual planning of interactive actions is realized (Fig. 4.2
right-top). The rest of this section presents all the key algorithmic steps and components
of the system, describing more in detail the mesh-based paramaterization and associated
interactive motion planning phases which constitute the core modules in the proposed
framework.

4.3.1 Preprocessing Steps

The initial key step of the whole system is to process, robustly and in real time, rich visual
data in order to reliably extract information about the configuration of the deformable
target object in the scene. Though this visual pre-processing step does not constitute the
focus of this paper, some critical considerations are discussed hereafter, in order to high-

Interactive
- Local Mesh
Pre-Processmg Steps Parameterization Motion
Planning
)
Input Image

. Image | | PointCloud ;E&fﬁ::ﬁi i | Interaction

Segmentation FExtraction Trackir ] Control

racking '

Segmented Image

Physical Space

Figure 4.2: The overall architecture of the proposed planning framework. Visual object
segmentation, FEM deformation tracking and local mesh parameterization are included in
pre-processing algorithmic steps. These steps provide a mesh representation of the object
both in Physical space, in which a stiffness interaction control scheme is implemented, and
in 2D parameterized spaces, in which the planning of interactive actions is realized.
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(a) System Set-up (b) Camera View (¢) Occlusion Problem

Figure 4.3: A robotic manipulator performing interactive tasks on a hemispherical de-
formable object. (a) Left: The experimental setup used to test the performance of the
proposed approach, which includes an Intel®RealSense™ depth camera. (b) Middle:
View from the system’s depth camera in PointCloud form. (c¢) Right: Tilted view from
the system’s depth camera in PointCloud form, in which the missing scene information
due to occlusions caused by the robot is apparent.

light specific constraints and requirements related to the interactive robotic manipulation
tasks addressed in this work. A camera can provide rich information about the structure
of the surface at high frame rates, however the choice of the camera type is important for
coping with some critical data robustness issues. For instance, tracking a physical land-
mark on the surface is not possible using only the input from a camera, as depicted in Fig.
4.3(a). Although some approaches have been proposed handling this tracking problem by
taking advantage of the image texture [163, 164], these approaches are not suitable for
interaction tasks since the visual information may not be available due to the presence
of the robot in the scene. More specifically, during the execution of an interaction task,
the robot itself might occlude the view of the surface (Fig. 4.3 (c)) or the nature of the
task may modify its visual structure (e.g. polishing), thus disrupting some valuable visual
information. On the other hand, the lack of visual features may infer some ambiguities in
the process of pose identification of a surface in the 3D space. Therefore, in this work we
assume textureless objects, which is a more generic case and more applicable to interaction
control tasks, and consequently rely on an RGB-D sensor (Fig. 4.3 (a)), which can provide
3D visual information and be used to remove the described ambiguities.

Despite the rich 3D visual data obtained from an RGB-D sensor, some critical pre-
processing layers of the input data are required. Firstly, an algorithmic layer performing
object or region of interest detection and visual segmentation is a prerequisite for the
purposes of input data reduction and accurate localization of the target object in the
manipulation scene. Several algorithms exist in the literature which can be used to per-
form these preprocessing steps, such as the ones described in [236, 237], and constitute
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a major topic in computer vision society. Hence, these algorithms fall outside the scope
of this paper and will not be further analysed. Secondly, a deformation tracking al-
gorithm, which can combine the visual information with the elasticity parameters of the
object, constitutes another important preprocessing step. It is important to distinguish
deformation tracking from non-rigid reconstruction performed by methods such as those
proposed in [238, 239, 240], which reconstruct a single mesh at each frame provided by
the vision sensor. This distinction is key to our proposed framework, as will be explained
below, since typical non-rigid reconstruction methods provide no guarantee for constant
cardinality of the reconstructed mesh elements.

On the other hand, the goal of tracking algorithms is to continuously estimate the de-
formations and rigid transformations undergone by an object, which is previously modeled
by a known mesh. Among the deformation tracking algorithms, which use as an input the
Point-Cloud data from an RGB-D sensor, there are some using NURBS parameterization
[136, 130] and others using physics-based methods such as discrete mass-spring-damper
system [142, 241] or Finite Element Method [158, 143, 144] based on continuum mechanics.
These methods register the acquired Point-Cloud data to a mesh with suitable topology as
depicted in Fig. 4.2. Physics-based methods are more suitable for robot-object interaction
and manipulation applications, since an explicit physical modelling permits the reliable
computation and prediction of internal forces undergone by the object and thus to plan
and perform proper force control tasks. Furthermore, the tesselation of the region of in-
terest that a mesh provides gives valuable information about the topology of the surface
locally, both for normal vector estimation and for calculating geodesic distances between
physical points, and is appropriate for the reduction of data noise inserted by the RGB-D
sensor. Additionally, the physical simulation process of the tracking algorithms can han-
dle efficiently the visual occlusion problem, since the position of the mesh elements, which
correspond to the occluded areas, is continuously updated using the calculated internal
forces, even when the Point-Cloud data are not available.

In spite of the accurate deformation estimation achieved with a tracking algorithm at
each time frame, the problem of predicting the evolution of the deformation over time
remains unsolved. This problem makes the definition of a motion planning strategy im-
possible, as explained above. Therefore, another pre-processing step is essential; that is,
the calculation of a non-linear transformation which will project a set of triangles, repre-
senting the area of interaction, to a plane at each time step. We name this planar space
as Dynamic Canonical Space Wy, graphically shown in the middle of Fig 4.4. In case we
take an instance of this dynamic triangular set at an initial time frame, we can define a
static version of the planar space as Static Canonical Space Ws., depicted in the left of
Fig. 4.4.

An ideal property of this projection transformation concerns distance and angle preser-
vation (isometry), which is though not true for general surfaces, since the Gaussian curva-
tures of an arbitrarily triangulated 3D surface and of a planar surface are not equal. How-
ever, extensive literature from computer graphics society exists, [170, 242, 197], proposing
a variety of algorithmic approaches for constructing a global close-to-isometric mesh pa-
rameterization. Most of these approaches are though computationally expensive and
thus not suited for real-time planning and control purposes. Nevertheless, local solutions
also exist which parameterize a part of the object surface, such as the one presented in
[198]. Such solutions have proven both efficient and accurate in terms of isometry, though
applied in a completely different context than the one considered in this paper. In this
work, we employ a local mesh parameterization approach, integrated in the core of the
proposed interactive motion planning framework, ensuring the imposed performance re-
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quirements (bijective transformation properties and computational efficiency), as will be
explained in the rest of this Section.

4.3.2 Mathematical Formulation

The definition of two different parameterized spaces is useful for tracking differentially the
changes of the geodesic distances on the object’s surface, coming from the deformation.
Hence, at this point, it is useful to present an explicit form of the projection transformation
4T which is based on the reference surface in the physical space W,. Practically, part of the
object’s surface in physical space represents a 2D manifold embedded in R3, in which the
reference surface is expressed as a set of connected triangles 7}3’, k =1..N (Fig. 4.4), whose
vertices are given by the points p,lg, pi, pi € W,. This triangular mesh is the result of the
visual segmentation and the deformation tracking preprocessing steps. The above vertices
are projected using a mesh parameterization algorithm to points ugl, uf,uf’ € Wy, on
the Dynamic Canonical Space (DCS), forming the set of triangles 7,%,k = 1...N. This
projection procedure can be expressed as a coordinate transformation ¢, which can be
geometrically constructed piecewise inside the R? subspace Wy, with boundary defined by
the parameterized mesh boundary edges.

Static Canonical Space Dynamic Canonical Space Physical Space

k-th Triangle k-th Triangle k-th Triangle

Figure 4.4: Establishment of bijective transformations between the Static Canonical Space
(SCS), the Dynamic Canonical Space (DCS) and the Physical Space with the use of
barycentric coordinates between the corresponding triangles. The position pg. in the k"
active triangle of DCS corresponds to the position p. in the k' active triangle of SCS
through the transformation 7 and simultaneously on the other side to the position 7,
in the k" active triangle of the physical space through the transformation . A direct
transformation ¢ from the SCS to the Physical Space can also be defined similarly.
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Let pge = (Tde, Yae) € dec be a point in DCS, which can be expressed in barycentric
coordinates b1, b2, b3 of the triangle, in which it lies, as follows

b1
pae = brudt + boul® + baud = [ut, uf? u] - | by (4.13)
b3

with [ugl, ugz, z?’} denoting the edges of the k-th triangle as shown in Fig. 4.4, written as
a row vector. Using the property by + by + bg = 1, (4.13) can be rewritten in the form

) = Tadu s (114)

where the matrix Tig, = (u gl — u‘,?, uzz 23) € R%*2 is invertible since the vertices

forming a triangle are linearly independent (as long as they are assumed not collinear).
The corresponding point r, € 7? in the physical space is calculated using the function
Y T = TP

Tp = Vi (pdc) = T[p}kT[;cl]k(pdc - Ug3) ‘*’p% (4.15)
where we define the matrix Tf,; = (p,lc — p%, pz — pi) € R3*?, with the use of the k-th

triangle’s edges in physical space p,lg,pi,pz (Fig. 4.4). Extending to the entire DSC we
construct the coordinate transformation v : Ukﬁ,dc — UkT,f as follows

N
rp = V(Pac) = Y (T T e Pac — ui®) + p)Ex(pac) (4.16)
k=1

where the selection function £k (pg.) is defined as follows

1 if pg € T

(4.17)
0 elsewhere

&k (pdc) = {

Working similarly in physical space we can express r, barycentric coordinates by, ba, b3 of
the k-th triangle, in which it lies Physical space, as follows

b1
Tp = blpk + b2pk + bSpk [pkapkvpk] b2 (4.18)
b3

Since the matrix [p},p2, pi] € R3*3 is invertible, we can rewrite (4.18) in the following
form

[by, b2, b3]" = [pk, Pk, PR ' (4.19)
Substituting (4.19) into (4.13) we can rewrite (4.13) as follows

Pdc = [uzl’uZQ’uk ][pkvpk’pk] lrp (4'20)

Extending to the entire Physical space we can construct the coordinate transformation
L Ukap — U;ﬂ;dc as follows

N
Pdc = Z uzla qua Ugg [pllgvp%7pi]_1 “Tp- §k (TP) (421)
k=1
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where the selection function & (rp) is defined as follows

() = {1 if r, € T (4.22)

0 elsewhere

It is noteworthy that the summation of equations (4.16) and (4.21) is reduced to a single
term, since pq. and 1, respectively can lie on only one triangle, denoted as active triangle.
In the edges and vertices which constitute the boundaries between two triangles the active
triangle can easily be chosen with the use of a heuristic function. Additionally, the use
of the deformation tracking algorithm described above allows for constant cardinality of
triangles in the mesh structure across all the time frames, which is important for bijectivity
preservation of the transformation v and continuity of the planned interactive tasks on
the surface of the object. We can follow the same procedure to calculate a bijective
coordinate transformation ¢ : Ws. — W, between the Static Canonical Space (SCS) and
the physical space (not presented here for brevity). Using barycentric coordinates we
can also define a bijective transformation 7 between Wi, which is a subspace of R? with
boundary defined by the boundary edges of static parameterized mesh (Fig. 4.4), and Wy,
defined above. In order to express the transformation 1 we need to introduce a point in
SCS, psec = (e, ysc) € ESC, where 7%,k = 1...N is a set of triangles with vertices defined

by the points uj; ,uf, uk € Wgc. Reusing (4.14) we can express 7 : Wy, — W, as follows

N
Psc =1 pdc Z T[sc]k dc]k pdc - gg) + UZS)fk(pdc) (423)
k=1
where we define the matrix Tjg ), = (uft — u33, ui? —u®) € R?*2, which is invertible

similarly to Tjgqy, assuming non-collinear vertices for every triangle. Similar bijectivity
properties have been proven for mesh structures in [243], however the authors have made
the restrictive assumption, that the surface should have a terrain form (or 2.5D map),
which is not appropriate for deformable objects.

4.3.3 Interactive Motion-Planning Approach

The core of our proposed framework for surface interaction control tasks is based on an
online calculation of the desired frame Y;, which is used as an input to the stiffness
controller, as described in Section 4.2. A central idea in this framework is to make use of
the preprocessing steps, described in the previous paragraphs, in order to firstly construct
the spaces denoted as physical and its planar parameterized versions denoted as static
canonical and dynamic canonical. Through the respective coordinate transformations
between these spaces, computed as defined above, it then becomes possible to continuously
update the position and orientation of the desired stiffness control frame X, at each time
step.

Starting from the calculation of the position part in the desired control frame, the
goal would be to achieve both motion planning on the interaction area and regulation of
the interaction force. The first sub-goal can be accomplished by planning the trajectories
in the Static Canonical Space. We take advantage of its 2D static nature and structure,
in order to plan paths suitable for the interaction task, as shown in Fig. 4.5c. The
planning procedure can be realized within the boundary of SCS, using well-known path
planning algorithms [244] with integrated obstacle avoidance techniques, if some areas on
the surface have to be avoided during the robotic interaction. Planning of the interaction
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Figure 4.5: The proposed interaction control framework. (a)Top Left: The result of
a deformation tracking preprocessing step is the mesh model of the object fitted in the
Pointcloud data obtained by the depth camera. Each triangle provides information about
the topology of the surface locally depicted with a blue normal vector and green-red
tangential vectors. The planned path is fitted on the mesh surface depicted as red dots.
The reference pose translated along the normal offset is depicted as a reference frame
at a time instance. (b) Top Right: The flattened mesh surface is the result of the
parameterization preprocessing step. For each time step the parameterization forming the
Dynamic Canonical Space is calculated, which tracks the geodesic changes of the object’s
mesh model. If the object is not actively deforming the DCS equals to the SCS. (c)
Bottom: At an initial time step the parameterized Static Canonical Space is obtained, in
which the robot’s reference motions are planned (depicted as a red path). The tangential
directions can be computed axis aligned (Group A) or can follow the direction of the
principal Gaussian curvatures (Group B). Each planned reference pose is depicted with a
reference frame with the blue vector representing the normal direction and the green-red
the tangential directions. The planning in the parameterized space includes a normal
offset w.r.t. the mesh’s surface.

trajectory is then possible by sampling the paths at proper time steps. At each time step,
the sampled point p,. from the path will lie inside a triangle from the set 7,°¢, defining
the active triangle as described above and marked with green color in Fig. 4.5c. With
the use of transformation ¢ : Wy, — W, we are able to calculate the corresponding point
of the physical space. Hence, the interaction trajectory can be expressed in the physical
space in real-time, since the computational cost of the transformation calculations is low,
requiring only the calculation of barrycentric coordinates.

However, the above strategy is sufficient for planning trajectories only on the reference
surface, which would be sufficient only for contact tasks. For regulation of the contact
force and planning of non-contact tasks, we add a vertical offset in the planning procedure,
which is defined differently between the coordinate spaces. Namely, in SCS the offset is
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set along the z axis of its inertial coordinate frame (Fig. 4.5¢), whereas in physical space
it is set along the direction of the normal vector of the active triangle, whose direction
is calculated with the use of the local barycentric coordinates, as depicted in Fig. 4.5a.
More specifically for the directional part, the mesh’s normal vectors are calculated in its
edges at each time frame by the mesh tracking algorithm as a linear combination of the
neighbouring triangles’ normals. Hence, the barrycentric coordinates calculated by the
transformation ¢ : Ws. — W, also provide a linear combination of the mesh’s normals at
each point inside a triangle, implementing a normal shading algorithm. In terms of offset
values, for positive ones (zs. > 0), the desired position is translated along the direction
of the normal vector above the surface, thus resulting in a non-contact interaction task
between the robot and the surface. In case of negative offset values, the desired position is
set below the surface level, achieving contact with regulated interaction force by adjusting
the offset value and hence the translational displacement error of (4.5). By planning
smooth trajectories including the vertical offset, the robot can navigate across the whole
area of interest, with desired motion and contact force properties defined by the interaction
trajectory.

It is noteworthy that the geodesic distances on the surface of an object, which under-
goes elastic deformations, are changing. This means in practice that the length of one step
along a path planned in SCS is different than the corresponding step in physical space. It
is obvious that, if the requirements of the interaction task include preservation of distance
from a landmark point or of constant velocity on the surface, the motion planning strategy
defined above is not sufficient. In this case, a different planning strategy has to be adopted,
which involves the Dynamic Canonical Space 4.5b. In particular, we keep on planning the
same interaction paths, but inside the DCS in this case, and then perform sampling along
that path at proper time steps, for interaction trajectory planning according to the task
requirements. At each time step, the sampled point pg. from the path will lie inside a
different triangle as compared to the SCS, defining a new active triangle, which is marked
with green color in Fig. 4.5b. The continuous surface parameterization implemented with
a close to isometric surface parameterization algorithm allows for continuous monitoring of
the changes in the surface geodesic distances. In this way, the planned trajectories in DCS
are then transformed to the physical space with the use of transformation ¢ : Wy, — W),
incorporating the distance modifications imposed by the object’s deformation. Moreover,
the vertical offset will be set in DCS along the z axis of its inertial frame, similarly to SCS.

Regarding the calculation of the orientation part, besides computing the local normal
vector, it is also necessary to define appropriately the tangent vectors. Since the path
planning is implemented in SCS, we can set the reference tangent vectors of each triangle
representing the local x and y axes, according to the planning strategy. For example,
we can choose to set all the tangent vectors aligned to the SCS inertial frame, indicated
in Fig. 4.5c as Group A, or to set them along the direction of the principal Gaussian
curvatures (Group B in Fig. 4.5¢), calculated locally from the reference surface at the
time frame the SCS was captured. It is important, for the continuity of the planned
motions, that the direction of reference tangent vectors in neighbouring triangles does not
assume large deviations. The reason for this is that the orientation part of the desired
frame Y4 is calculated relatively to the local reference frame of the active triangle, formed
by the reference tangent vectors and the vertical direction of each space (i.e., the z axis of
SCS and DCS and the local normal vector in the physical space). Similarly to the position
calculation, we plan the desired orientation in the planar spaces with respect to the local
reference frame. By using the proper transformations, we then calculate the corresponding
reference frame in the physical space, which consequently defines the desired orientation
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of the stiffness control frame ;. The computed desired orientation in physical space is
then set as an input in (4.6), for the calculation of the orientation displacement error, as

described in Sec.4.2.



Chapter 5

Experimental Validation of
Perception-Based Interaction
System

In this chapter we present experimental studies, which aim to validate the performance
of the integrated perception-based interaction system presented in Chapter 3. This eval-
uation commences with experiments focusing on the perception based motion planning
subsystem conducted both in the lab and in a clinical realistic environment. The goal
of the former is to evaluate the performance and the accuracy of the proposed motion
planning algorithm from a pure technical point of view, whereas the primary aim of the
clinical study was to evaluate the task effectiveness and user satisfaction of older persons
with different operation modes (autonomous operation, shared control, tele-manipulation)
for a water rinsing task with the soft-robotic arm. The proposed clinical metrics are in-
dicative for human-robot interaction (HRI) objective and subjective study in a cognitively
demanding showering of the back region scenario, especially for older persons. Section 5.3,
focuses on the evaluation of the integrated system, presenting experimental scenarios with
generation and adaptation of more complex interactive primitive motions based on the
leader-follower framework presented in 3.3. The generated motions in the presented sce-
narios are focusing on a wiping task, which is learned by demonstration, using data from
the publicly available KIT whole-body motion database [1]. At the end of this Chapter,
the ability of reproducing interactive washing actions from demonstration, for the alter-
native learning method with Navigation Functions described in Section 3.4, is validated
experimentally with a water pouring scenario.

5.1 Perception-Based Motion Planning

The motion planning method described in 3.2.2 commences with the tracking of predefined,
time scalable trajectories on a fixed 2D “Canonical” space and continues with the
motion adaptation on curved and deformable surfaces, such as the human body parts, by
means of two bijective transformations. In order to test and analyze the performance of the
proposed approach in lab conditions, an experimental setup is used that includes a Kinect-
v2 Camera providing depth data for the back region of a subject, with accuracy analyzed
in [245]. The segmentation of the subjects’ back region is implemented, for the purposes of
this experiment, by simply applying a Cartesian filter to the Point-Cloud data. The setup
also includes a 5 DOF Katana arm by Neuronics, [246] and a HC-SR04 Ultrasonic Range
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Figure 5.1: Visualization of experimental results with the rectangular box. The blue arrows
represent the normal vector to the surface, whereas the green and red arrows represent
the tagential axes to the surface. (a) The rectangular box is stationary and the reference
path is fitted on its surface. The orientation is calculated w.r.t the robot base frame. (b)
A zoomed and segmented version of the box’s front side providing a more clear aspect of
the path fitted on the surface. (c) The box is rotated initially w.r.t. the z (blue) axis and
then w.r.t. the y(green) axis and the calculated path adapts to this motion.

Finder for the distance measurements between the robot end-effector and the object or
the subject. The distance measurement range of the latter is 2cm — 400cm with accuracy
0.3cm.

5.1.1 Validation Strategy in Lab Conditions

The experiments conducted include a trajectory tracking task, for a simple sinusoidal mo-
tion, keeping simultaneously a constant distance and perpendicular relative orientation to
the surface of a rectangular box, that represents a rigid body. Also, the same experiments
are conducted on a female and a male subject’s back region.

For the first and the second experiments we employ a rigid and rectangular object
for the evaluation of the method (Fig. 5.1). In particular, we segment the side of the
object facing the camera as shown in Fig. 5.1(b). The reference orientation of this planar
segment is calculated with the same procedure described in Section 3.2.2; using in the
calculations the total amount of points constituting the front side of the object. Since
the chosen object is non-deformable, the calculated orientation is used as ground-truth,
in order to validate the ability of the proposed algorithm to keep (on-line) perpendicular
relative orientation between the robot’s end-effector and the operational surface. Both
the ground-truth orientation and the on-line calculation of the reference pose subject to
the same camera accuracy constraints (e.g. errors and noise), which are analyzed in more
detail in [245].

During the first experiment the box is stationary, as shown in Fig. 5.1(a), whereas
in the second experiment the box performs rotations around y and z axes, as shown in
Fig. 5.1(c). Furthermore, for evaluation purposes we used an initial set-up including the
Katana robot with the described distance sensor. In the third and fourth experiment,
a female and a male subjects are involved (Fig. 5.2 and 5.3). In these cases, there is
no ground truth data for total rotation of the subject, since the back region is a non-
planar and deformable surface. These experiments were conducted, in order to highlight
the adaptability of the algorithm to different users (a male and a female subject with a
thinner silhouette).
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(a) () ©

Figure 5.2: Experiment on a female subject. (a) Adaptation of the sinusoidal path on
the curved surface of a female subject represented with PointCloud data. (b) A zoomed
aspect of the experiment depicting in more detail the adaptation of the path. (c) A more
clear view of the zoomed path without the PointCloud.

(a) (b) (©)

Figure 5.3: Experiment on a male subject. (a) Adaptation of the sinusoidal path on the
curved surface of a female subject represented with PointCloud data. (b) A zoomed aspect
of the experiment depicting in more detail the adaptation of the path. (c) A more clear
view of the zoomed path without the PointCloud.

5.1.2 Validation Results and Discussion

Based on Fig. 5.1, Fig. 5.3 and Fig. 5.2, the experiments’ resulting path is represented by
orientation vectors. The blue arrows represent the normal vector to the surface, whereas
the green and red arrows represent the tangential axes to the surface. These vectors are
fitted on the object’s front side and a female subject’s back region. In Fig. 5.2(a) and
Fig. 5.3(a) a general aspect of the experimental scene is shown, whereas in Fig. 5.2(b)(c)
and Fig. 5.3(b)(c) a zoomed and more clear view of the same scene is depicted. It is more
clear in the latter view, that the reference path is adapted to the subjects’ back region,
i.e. to the motion and the surface’s deformation.
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Figure 5.4: Perpendicular distance between the Katana end-effector and the experimental
subject.

Therefore, in Fig. 5.5a, 5.5b, the roll, pitch and yaw rotations w.r.t. the robot base
frame are shown. In these plots, the evolution of the object’s rotations and the reference
path orientation are depicted during the experimental procedure. In Table 5.1, the Mean
Absolute Error of the object’s rotations w.r.t. the reference path orientation are presented
in degrees, along with the mean perpendicular distance between the end-effector and
the experimental subject. It is obvious, that the calculated reference path manages to
compensate with the object’s motion, while the under-actuated robotic platform converges
to the reference path. The variance of the Mean Absolute Error is primarily affected by
the roughness of the object’s material.

Table 5.1: Mean Absolute Error in Orientation and Mean Distance

Roll (deg) Pitch (deg) Yaw (deg)  Distance (cm)

Static Object  0.673 £0.443 0.767 £0.553 0.537 £0.408 20.18 £+ 1.055
Moving Object 0.721 +£0.551 1.01£0.711 0.284 £0.212 19.79 £ 0.872

Mean Absolute Error of the calculated reference orientation w.r.t the rotations of the
object. The forth column presents the mean and standard deviation of the perpendicular
distances between the Katana end-effector and the object.

Moreover, in all experiments the perpendicular distance between the Katana end-
effector and the experimental rectangular object is measured with the range-finder sensor
and is presented in Fig. 5.4. Based on these results, the proposed method successfully
keeps bounded distance taking into account the noise inserted by the accuracy of the
Sensor.



5.1 Perception-Based Motion Planning 107

Static Object Moving Object
Roll Roll

-150,

10 20 30 0 50 60 70 El 10 20 30 0 50 60 70 8
Time (sec) Time (sec)

(a) Static Rigid Body (b) Moving Rigid Body

Figure 5.5: Evolution of the box’s rotations and the reference trajectory orientation during
(a) the first experiment that involves the static box and (b) the second experiment that
involves the moving box.

The mean time performance of the proposed algorithm presented over the frames of the
experimental procedure is 6ms. The timing performance of the algorithm is high, making
the proposed approach computationally efficient for on-line procedures. The execution
times were measured in a computer system with Intel(R) Core(TM) i7-6700K CPU @
4.00GHz and 16Gb RAM.

5.1.3 Clinical Validation Study

The main goal of the clinical validation study, conducted at Bethanien Geriatric Hospital
in Heidelberg Germany, was to study the ability of the elderly to control the showering
process using different operation modes of the I-Support system, which provide different
amount of assistance during bathing the upper back region. More specifically, the three
operation modes to be evaluated were:

o Autonomous operation: The soft-arm of the I-SUPPORT bathing robot provides
water pouring fully automatically for a predefined body area (= upper back region)
within a predefined time period and the user has no control over the motion of
the soft-arm after starting the robot. The autonomous soft-arm motion in this
operation mode was based on the proposed motion planning approach, which adapts
the showering path in the limits and motion of the user’s body part.

e Shared control: The participant could use an input device to issue simple motion
commands (i.e. left vs. right and up vs. down), which were translated to a number
of (high-level) discrete commands for the I-Support control system (i.e. soft-arm
moved left/right or up/down), while the system provided assistance in terms of
audio signals indicating that: (1) the participant’s command was recognized and (2)
the command was successfully executed, meaning that the participant could issue
the next motion command. Further assistance was provided by the motion planning
algorithm, in terms of restricting the motion of the soft-arm to the predefined body
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area (i.e., upper back region cannot be exceeded). In this mode, the participant had
predominant, but not full control over the robot motion.

e Tele-manipulation: The participant could issue motion commands (i.e. up vs. down
and left vs. right) using the input device, similar to the shared control mode. In this
mode, however, the system did not provide the audio signals for operating assistance,
nor did it constrain the robot motion to the upper back region. Consequently, the
participant had full control of the robot motion.

Having in mind these different levels of robot autonomy, it is reasonable to expect
that different operation modes will have an effect on the task effectiveness and the user
satisfaction with the assistive robot. No comparative studies between different opera-
tion modes within the research field of assistive bathing robots in older adults have been
published. Previous studies with other assistive robots (e.g., telemedicine robot, robotic
walker, robotic wheelchair) suggest that task effectiveness increases with increasing robot
autonomy in young or older adults with physical impairments [247, 248, 249]. At the same
time, the autonomous operation modes with the highest task effectiveness were not those
with the highest user satisfaction, suggesting that users seem to prefer to retain as much
control as possible when interacting with an assistive robot [247, 249]. Based on these stud-
ies, it was hypothesized that (1) task effectiveness with the bathing robot would be highest
in the autonomous operation mode and would gradually decrease with lower levels of robot
assistance, and (2) user satisfaction would be lower in the autonomous operation mode
than in the more user-controlled operation modes (shared control, tele-manipulation). Po-
tential users of the I-Support bathing robot are persons with (1) dependence in bathing
activities, as defined by a score of 0 points (= person can use a bath tub, a shower, or take
a complete sponge bath only with assistance or supervision from another person) for the
bathing item of the Barthel Index (BI) [250], and (2) no severe cognitive impairment, as
defined by a Mini-Mental State Examination (MMSE) score greater than 17 points [251].
The study was approved by the ethics committee of the Medical Faculty of the Heidelberg
University on September 27, 2016 (S-382/2016) and was conducted in accordance with the
Declaration of Helsinki. Written informed consent was obtained from all participants.

5.1.4 Training and Comparison of Input Devices

The main question during the first stage of this study was the user satisfaction and ac-
ceptability of the input device for the elderly users of the I-Support system. A motion
tracking input method involving technologies, which are available in any smartwatch ver-
sus a more typical button input device were examined. For the first input method a
motion tracking hand-wearable device was constructed that was strapped on the external
side of the palm (Fig. 5.6), containing an Inertial Measurement Unit (IMU) (including
3-axis accelerometers, 3-axis gyroscopes and 1 magnetometer), a micro-controller, and a
bluetooth transmitter for wireless operation. The device could track the motion of the
user’s hand, which was transmitted to a central controller and those motions were then
translated by the motion planner into the desired motion command for the control of the
soft-arm. A thimble with an embedded pressure sensor acted as an activation switch for
the tracker device (Fig. 5.6(b)) and only when the user pressed the thimble, the tracker
was activated and the motion of the hand was recorded and translated into the desired
motion command. The second input device was a commercial waterproof computer key-
board, where the user could issue a motion command for the soft-arm to be controlled by
pressing the appropriate arrow button (e.g. upward movement = up-arrow button).
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Figure 5.6: a) Motion tracking hand-wearable device. b) Thimble with the embedded
pressure sensor for activation).

Both input methods were introduced to the participants as an option for controlling the
soft-arm motion. Participants were initially trained in both options by a short computer
game, which required to catch a red cube by a user-controlled green cube. If the red cube
was caught then it would randomly jump to another field on the “game board” and the
participant was instructed to catch it again as many times and as fast as he/she could for
a time period of 1 min. The participants were asked, which option of the input device
was found easier and thus would like to use in order to control the robot motion of the
soft-arm during the water pouring scenario. After the training on the two input devices,
and independently of the participants’ cognitive status, all (100%) mentioned that (1)
providing motion commands was much easier with the computer keyboard than with the
motion tracking hand-wearable device and (2) they prefer to use the computer keyboard
for controlling the soft-arm in the water pouring scenario. Therefore, the following water
pouring scenario was performed in all participants with the use of the waterproof computer
keyboard.

5.1.5 Water Pouring Experiments

Initially, the participant wearing swimming clothes was seated on the motorized chair
with the back towards the robotic soft-arm (Fig. 5.7) and the water temperature was set
to his/her preferences. Subsequently, the test administrator explained to the participant
that three different operation modes will be tested in the following order: (1) autonomous
operation, (2) shared control and (3) tele-manipulation mode.

For the first, autonomous operation mode, the participant was informed that the soft-
arm will provide water fully automatically for 1 min following a 6-step path on the upper
back with the starting and end point at the top right of the upper body (Fig. 5.8). To
illustrate the movement path of the water stream to the participant, the test administrator
showed a poster that indicated the six target points on the upper back region.

After the water rinsing task with the autonomous operation mode was completed, the
test administrator explained that in the next, shared control mode, the participant must
control the motion of the soft-arm by his-/herself using the arrow keys of the waterproof
computer keyboard, which was placed on the thighs such that the soft-arm motion related
to the direction of the arrow keys. In addition, the participant was told that the I-Support
bathing robot provides some audio assistance as described above (command registration
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Figure 5.7: Water pouring clinical validation study with the I-SUPPORT bathing robot
installed in a typical bathroom of a rehabiliation clinic at a geriatric hospital.

and execution) and that the motion of the soft-arm is restricted to the upper back region.
The test administrator then instructed the participant to cover the entire upper back
region (i.e., all six target points shown on the poster) with water and that 2 min would be
provided to complete the task with the shared control mode. Finally, the participants were
told to use the tele-manipulation mode to cover the entire upper back region with water.
The test administrator explained that in this mode, the soft-arm motion is also controlled
by the arrow keys of the waterproof computer keyboard placed on the participant’s thighs;
however, the I-Support bathing robot does not provide any audio assistance for command
registration and execution, nor does it restrict the motion of the soft-arm to the upper
back region. Also for this mode, each participant was informed that 2 min would be
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Figure 5.8: Upper back region with the six target points for which the soft-arm provided
water rinsing. The dark gray outlined cross represents the starting and final position for
all operation modes, the dotted arrows indicate the optimal 6-step path for the water
rinsing process on the upper back region.

provided to complete the task.

Between testing each operation mode, a sufficient rest period was provided based
on the feedback from the participant. For both user-controlled modes (shared control,
tele-manipulation), the test administrator interrupted the test procedure either after the
participant had successfully provided water for the entire upper back region (i.e., all six
target points) or after 2 min even if the participant was not successful in water rinsing
for the entire upper back region. The longer maximum processing time of 2 min in the
user-control modes was chosen as for command issuing by the user and command recogni-
tion by the I-Support robot automatically more time is required than in the autonomous
operation mode, in which the motion of the robotic soft-arm on the movement path is
fully automatically controlled in smooth and constantly progressive way.

The effectiveness in rinsing water on the upper back region with the different oper-
ation modes was assessed by the following two outcome parameters: (1) coverage [%],
defined as the percentage of the predefined upper back region covered with water (e.g., 3
out of 6 target points covered with water = 50 %) during the standardized time period
(autonomous operation mode = 1 min, shared control and tele-manipulation mode = 2
min) and (2) step effectiveness [%], calculated as the ration of coverage to the number of
steps required divided by the ratio of the maximum possible coverage to the minimum
possible number of steps required for maximum possible coverage. The number of target
points covered with water and the number of the steps performed during the standardized
time periods were objectively calculated from the visual data obtained from the system’s
cameras and the kinematics combined with the behavioral-based motion controller of the
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robotic soft-arm of the I-Support bathing robot.

The After-Scenario Questionnaire (ASQ) [252] was used to assess the user satisfaction
with the three different operation modes. The questionnaire contains three statements
that address the ease of completing the task, the time taken to complete the task, and the
support available when completing the task. For each operation mode, the participants
were asked to rate their level of agreement or disagreement on a 7-point scale, with lower
scores indicating agreement (1 = strongly agree) and higher scores indicating disagreement
(7 = strongly disagree). The scores for the three statements were averaged into a total
ASQ score. The lower the ASQ score, the higher the participants’ satisfaction with the
operation mode. In addition, the participants completed the System Usability Scale (SUS)
to evaluate their subjective perception of the overall usability of the I-Support bathing
robot. The SUS is a well-established, reliable and valid 10-item scale, which can be
quickly and easily administered to determine the user-perceived usability (effectiveness,
efficacy, and satisfaction) of technical systems [253]. Its items are scored on a 5—point
Likert-type scale ranging from “strongly agree” to “strongly disagree”. The combined
scores of the individual SUS items are converted into a total SUS score ranging from 0
to 100, with a higher score indicating better usability. SUS scores can be classified as
“worst imaginable” (0-25 points), “poor” (25-39 points), “acceptable” (39-52 points),
“good” (52-73 points), “excellent” (73-85 points), and “best imaginable” (85-100 points)
perceived usability [254].

5.1.6 Clinical Validation Results and Discussion

The present study aimed to evaluate objectively and subjectively different operation modes
of an assistive bathing robot from a human-robot interaction perspective. Being represen-
tative of potential users of this robot, we recruited older persons with bathing disability and
analyzed the task effectiveness and user satisfaction with three operation modes providing
different levels of assistance during a water rinsing task for the user’s upper back region. In
addition, we explored whether different subgroups of participants were most satisfied with
a specific operation mode. Our results indicate that the autonomous operation mode for
the robotic soft-arm of the bathing robot is highly effective and reliable in providing water
rinsing for a predefined body area. Significantly lower task effectiveness was observed in
the operation modes in which the robot autonomy was lower and the robotic soft-arm
motion was predominantly controlled by the participants. Task effectiveness gradually
decreased along with lower assistance provided by the bathing robot. Similar findings
were observed for the user satisfaction, with the highest level of satisfaction observed for
the autonomous operation mode and also a tendency to a gradually decreasing satisfac-
tion with decreasing robot assistance. Preferences for a specific operation mode were not
observed among different subgroups of participants.

Table 5.2: Differences in the task effectiveness (coverage, step effectiveness) between the
shared control and tele-manipulation modes

Autonomous operation (1) Shared control (2) Tele-manipulation (3)

Coverage (%) 100 £ 0.0 79.4 £ 18.2 64.44+194
Step effectiveness (%) 100 £+ 0.0 51.6 £10.3 43.9 £ 8.6

Data presented as mean and standard deviation.
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In terms of task effectiveness in the autonomous operation mode, maximum cov-
erage of the upper back region and maximum step effectiveness were achieved for all
participants. Task effectiveness was substantially lower in the shared control and tele-
manipulation modes than in the autonomous operation mode (Table 5.2). Only seven
participants (33.3%) in the shared control mode and two participants (9.5%) in the tele-
manipulation mode achieved the maximum possible coverage. Our results confirmed the
primary hypothesis that task effectiveness with the bathing robot would be highest in the
autonomous operation mode and gradually decrease with lower levels of robot assistance.
This finding supports previous studies that compared different operation modes of other
assistive robots in young or older adults and also found the highest task effectiveness in the
most autonomous operation modes. Although the maximum possible time for completing
the water rinsing task was allowed to be twice as long as in the autonomous operation
mode, the body area covered in the user-controlled modes was significantly lower with only
few participants able to provide water rinsing for the whole target body area. The lower
task effectiveness in the user-controlled modes was also revealed by the significant lower
step effectiveness. This suggests that participants issued several inefficient commands not
increasing the body are covered by the water and that some target points on the upper
back region were passed more than once or the water stream even exceeded this region
(tele-manipulation mode).

As expected, among the user-controlled operation modes, task effectiveness was signifi-
cantly higher in the shared control mode than in the tele-manipulation mode. This finding
indicates that the audio signals of the I-Support robot given for command registration and
execution as well as the restriction of the robotic soft-arm motion to the predefined upper
back region effectively assisted the participants in completing the water rinsing task. How-
ever, as the task effectiveness in the shared control mode was still substantially lower than
in the autonomous operation mode, it seems that the robot assistance in this mode was
not optimal and the required interaction was too difficult to handle for the participants.
This might be explained by the fact that participants did not directly see the robotic
soft-arm behind their back during the test procedure but only could imagine its spatial
position and movement based on the water stream felt on the skin of their upper back. As
spatial and tactile sensory abilities decline with age [255], the position determination of
the water stream on the upper back might have been particularly difficult in our sample
of older adults and hampered their ability to accurately distinguish between the target
points on the upper back and to perceive whether all of them were reached. Providing
elderly users additional direct visual or audial assistance on the real-time position of the
water stream might represent a potential option for increasing their task effectiveness in
rinsing water on body parts which cannot be directly seen.

Based on previous studies on user satisfaction, suggesting that users of assistive
robots seem to be more satisfied with operation modes for HRI in which they retain as
much control as possible, we hypothesized that the user satisfaction would be lower in
the autonomous operation than in the user-controlled operation modes (shared control,

Table 5.3: Differences in the user satisfaction between the different operation modes

Autonomous operation (1) Shared control (2) Tele-manipulation (3)

ASQ (%) 20+£1.0 25+1.5 3.0£14

Data presented as mean and standard deviation.
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Figure 5.9: Percentage (%) distribution of participants’ ratings in the different SUS score
categories

tele-manipulation). Surprisingly and in contrast to this hypothesis, our results (Table
5.3) revealed that participants were, however, rather less satisfied with the user-controlled
operation modes than with the autonomous operation mode, in which they had the least
control and the I-Support robot fully autonomously completed the water rinsing task. A
potential explanation for these findings might be the higher age of our participants, which
may be associated with also a higher request for assistance when using technology than in
younger populations, or the higher differences in the task effectiveness between the opera-
tion modes, which could have been perceived much more clearly by our participants during
the test procedure. As the water rinsing task was interrupted by the test administrator
after a maximum of 2 min in the user-controlled operation modes, participants who could
not provide water for the whole target body area might have become aware of their low
task effectiveness, potentially leading to a feeling of overload that may have affected their
satisfaction with these operation modes [26].

Finally, the participants completed the System Usability Scale to evaluate their
subjective perception of the overall usability of the I-Support bath robot system. The
SUS score across participants that completed the “water pouring” scenario (n = 22)
averaged 60.7 +23.0 points, indicating an overall “good” usability of the I-Support system
tested during the validation experiments. The SUS scores ranged from the minimum
of 0 points to the maximum of 100 points, suggesting a large heterogeneity in the SUS
results. However, when averaging the scores into the different rating categories (Fig. 5.9)
most of the participants gave a rather positive feedback on the I-Support usability. More
than 81.8% of the participants rated the I-Support system between “acceptable” to “best
imaginable”, while less than 18.2% rated the I-Support system between “poor” and “worst
imaginable”.

5.2 Learning from Demonstration Using Navigation Func-

tions

Using similar experimental setup that includes a Kinect-v2 camera, we aim in this Section
to test and analyze the performance of the learning with Navigation Functions approach.
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For an initial demonstration procedure in the lab, simple sinusoidal trajectories were
visually captured by the camera. In this setup, the human expert holds a red marker
and performs a pouring water like motion on the specific body part. The subject is
seated and is free to move their back (twist, slight turn, etc.). The only constraint is
to remain seated during the recordings and to avoid extreme movements, in order to
keep the body part region inside the camera’s field of view, top row of Fig. 5.10. A
more complex demonstration example obtained from the publicly available KIT whole-
body human motion database [1], shown in bottom row of Fig. 5.10, is also employed
to demonstrate the performance of the learning approach in a more realistic scenario.
During this validation study the main goal is to imitate the way that the expert clinical
carer executes the task. Therefore, our goal is to reproduce this execution no matter how
effective the carer’s motion is or how complex and comprehensive this activity is (e.g.
coverage percentage).

5.2.1 Validation Results & Discussion

The experimental data consists of trajectory data from demonstration by professional
clinical carers for pouring water sequence in the 3D task space that have been transformed
for learning purposes in the 2D canonical space. In the second column of Fig. 5.10, these
trajectories in the canonical space are depicted with blue scaled colours.

After the proposed learning from the demonstration data approach in the canonical
space (i.e. the “virtual” obstacles have been incorporated), the NF controller estimates
the feasible and optimal trajectory again in the canonical space, by providing to it, just the
initial and destination position and by taking into account the users body structure and
restrictions (i.e. the real obstacles that have been recognized in the task space and they

Demonstration ;  Processing ; Learning | Reproduction

Task Space
Canonical Space Image Space §

Figure 5.10: Demonstration, Processing, Learning and Reproduction procedures in ex-
perimental validation. The Demonstration trajectories are performed in physical space
by professional nursing personnel. The demonstration data are projected into the 2D
canonical space, where they are post-Processed. In the Learning phase virtual obsta-
cles are learned using the demonstration data and the proposed NF approach. During the
trajectory Reproduction phase a NF controller is employed to reproduce the washing
action. The learned trajectory (red) is then adapted on the visually segmented back region
(PointCloud view) of a subject, via the image space. Top: A simple showering sinusoidal
trajectory is visually recorded, learned and reproduced. Bottom: A more complex show-
ering trajectory is obtained from the KIT whole-body human motion database [1], learned
and reproduced.
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Figure 5.11: Comparison of the NF-based produced trajectory (red line) w.r.t. the carer’s demon-
stration (blue line) in the canonical space, based on the Fréchet distance metric.

have been also transformed to the canonical space). The evaluation procedure imposes
the decision of random initial and destination positions in the canonical space.

For testing purposes we decide to use the recorded data in order to compare the
NF-based produced trajectory w.r.t. the carer’s demonstration in the canonical space.
In Fig. 5.11-5.12, both trajectories are plotted. The red lines represent the controller-
based trajectory while with the blue lines are the demonstrated washing task execution.
The discrete Fréchet distances is zero when the two trajectories are equal and grows
positively as the curves become more dissimilar. Based on these results, these trajectories
are very similar (based on the Fréchet distance metric), since this metric take values 0.052
and 0.198, respectively. Furthermore, another qualitative finding is that the resulted
trajectories are very smooth, highly appropriate for execution by any assistive robotic
device.

In the right part of Fig. 5.10 (Reproduction), a learned trajectory (red) is adapted on a
3D deformable back region of a subject, which is visually perceived by the camera (Point-
Cloud view). The estimated local perpendicular vectors (blue) are also demonstrated in
several segments of the executed path. Based on them, the ability of the proposed ap-
proach to apply any learned trajectory in the canonical space to any 3D subject’s body
part surface with unknown curvature, motion and deformation is demonstrated. In Fig.
5.10 (top part of Reproduction), a learned trajectory (red) is adapted on a 3D deformable
male’s subject back region, which is visually perceived by the camera, and also properly
compensates for the presence of a real obstacle (e.g. a restricted area) of a subject’s body
part (PointCloud view).

In conclusion, the experimental results show that the planning system is able to learn
the expert’s skills by producing similar paths with the respective demonstrated trajecto-
ries, providing very smooth, highly appropriate for execution of demonstrated paths by any
assistive robotic device. This approach is also suitable for adapting the variable subject’s
preferences w.r.t. to time constraints of washing tasks execution. Hence we can conclude
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Figure 5.12: Comparison of the NF-based produced trajectory (red line) w.r.t. the carer’s demon-
stration (blue line) in the canonical space, based on the Fréchet distance metric.

from the preliminary results presented in this Section, that the NF learning method can be
used as an alternative to the DMP approach and encode complex motions with a flexible
representation, which has the potential to be applicable in different settings.

An immediate improvement the the learning procedure of the NF learning approach
is to use an iterative algorithm which uses a branch procedure and computes all such
possible obstacle trajectory combinations, since in the current learning procedure the GA
in essence simply “decides” if the trajectory passes right or left from an obstacle. Moreover,
in the current version, the number of the obstacles is set by the user. Despite the fact
that a GA approach could use an open number of obstacles, this choice would drastically
make its efficacy lower. Hence, an approach in which the number of obstacles is estimated
by an efficient algorithmic process based on the experimental data would be beneficial.
Furthermore, a more extensive experimental validation on different interactive actions that
include a periodic component, would also provide a more clear view on the potential of
the method on motion encoding and reproduction from demonstration.

5.3 Adaptation of Motion Primitives to Dynamic Surfaces

In this Section, we present an experimental evaluation of the adaptation method of primi-
tive washing motions, focusing on a surface wiping task, which is learned by demonstration,
using data from the publicly available KIT whole-body motion database.The proposed
leader-follower hierarchical system considers the discrete part of the wiping action as the
leader and the periodic pattern as the follower. An experimental setup (Fig. 5.13), suitable
for validating the performance of the proposed approach with similar configuration to the
I-Support system, is employed that includes a single Kinect-v2 camera providing depth
data for the back region of the subject, with accuracy analyzed in [245]. The segmentation
of the washing surface is implemented, for the purposes of the following experiments with
a color filter to the pixels of the image obtained from Kinect-v2 camera. The setup also
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Figure 5.13: The experimental setup includes a single Kinect-v2 camera providing depth
data and an ARMAR-IIT robot developed at KIT.

includes an ARMAR-III robot developed at KIT [256], in order to take advantage of its
known kinematics structure for accurate execution of the generated actions.

5.3.1 Experimental Scenarios

In order to test the integrated perception-based interaction system, we consider the fol-
lowing experiments:

e Scenario I: ARMAR-III wipes a static whiteboard. The discrete part of this wash-
ing action is a vertical top-down movement. Obstacle avoidance is demonstrated in
this experiment, Fig. 5.14.

e Scenario II: ARMAR-III wipes a dynamic whiteboard, which is held by a person
and rotated/translated from time to time, Fig. 5.15.

e Scenario III: ARMAR-III wipes a male subject’s back. He is moving his back
during the experiment to demonstrate the adaptation of the robot motion to the
subject’s movement. For safety reasons, ARMAR-III has no real contact with the
person, Fig. 5.18- 5.19.

We choose a whiteboard for this experimental procedure in order to bypass difficulties
imposed by image segmentation, which is out of the scope of this thesis, and as a reference
surface for validation purposes.

5.3.2 Experimental Results & Discussion

In Figures 5.14 — 5.19, the results of all experimental scenarios are presented. ARMAR-III
uses all 7 DOF's of its right arm and its hip yaw joint to generate functional washing actions.
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Figure 5.14: Scenario I: ARMAR-III wipes a static whiteboard. Left: Execution of
a wiping motion, which constitutes of a linear leader DMP path (red) and a periodic
circular motion (green), depicted from the system’s camera perspective in Point-Cloud
view. Right: An obstacle area (e.g. injury depicted with black patch) is detected in the
Task space and transformed back to the Canonical space. The leader DMP path (red)
leads to the target point. The controllers output is the blue path and is executed by the
robot, avoiding the sensitive injured area. After the obstacle avoidance the end-effector’s
motion converges to the indicated linear motion primitive.

A washing task with obstacle avoidance (Scenario I) is demonstrated in Fig. 5.14, in which
an obstacle area indicated with a black patch (e.g. an injury on the back region) intersects
with the motion of the robot if a leader top-down path (red) is directly executed. In
particular, the injured area is visually perceived and is transformed back to the Canonical
space using the inverse T, and T, transformations. This information is inserted into the
Navigation function, maximizing the values of the potential field in the corresponding
coordinates. As soon as the leader DMP path (red) is defined, an attractive vector field
is formed and leads to the target point. The robot executes a modified path (blue) and
avoids to wash the obstacle area.

In addition, the results of Scenario II are intuitively visualized in the top of Fig. 5.15,
using the Point cloud view provided by the Kinect camera and a sequence of green points
showing the evolution of the circular motion and its adaptation to the movement of the
whiteboard. In order to validate the performance of the robot during the periodic action,
we compared the reference path computed by the washing system with the end-effector
path calculated from the robot’s forward kinematics. More specifically, Figures 5.16—
5.17 depict the time evolution of the reference pose (position & orientation quaternion)
and the executed robot end-effector pose during the wiping motion of the planar surface
for Scenario I and II is presented. It is apparent, that the robot manages to follow the
surfaces pose compensating with it’s motion and simultaneously execute the wiping action.
Furthermore, the executed path quickly converges to reference with bounded error both
in position and orientation.

In Scenario III, the robot executes the washing trajectory over the back region of a
male subject. In more detail, in Fig. 5.18 the subject moves to the right, while in Fig. 5.19
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he moves backwards. In both cases the robot with the aid of the proposed motion planning
approach manages to compensate with the movement of the subject, without interrupting

Figure 5.15: Scenario IT: ARMAR-III is wiping a dynamic whiteboard and a person
moves the board. ARMAR-III is holding a yellow sponge, which keeps contact with the
surface. The wiping movement is adapted to the surface’s motion. Top: PointCloud view
of the whiteboard and the robot’s end-effector showing instances of the adaptation of the
wiping motion with the green trajectory. Bottom: Side camera view of the wiping action
indicating with the red arrow the motion of the whiteboard implied by the human.
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Figure 5.16: Evolution of the reference position and orientation for the wiping motion and
the executed robot end-effector position, during Scenario I that involves a static planar
surface.
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Figure 5.17: Evolution of the reference position and orientation for the wiping motion
and the executed robot end-effector position, during Scenario II that involves a moving
planar surface.

the washing task indicating the applicability of this approach to real life scenarios.

The experimental results indicate that the proposed vision-based washing system is
capable of adapting the motion of a robotic end-effector to a moving and non-rigid sur-
face, such as the back region of a person. This goal is achieved by merging two methods,
a leader-follower motion primitive framework (CC-DMP) with a visual perception based
controller. This fusion carries out human-friendly washing tasks with imitation learning
techniques, while enabling on-line adaptation to dynamic moving and deformable objects
(in our case, body parts). Using this flexible leader-follower framework it is easy to expand
the repertoire of learned washing actions and smoothly integrate them to a bathing robotic
system. We can also make the system more interactive by applying shared control tech-
niques and by letting the user adjust on the fly the parameters of the robotic motion and
the contact forces according to his/her feeling, affecting only the time scaling parameters
of the trained DMPs.

The former remark confirms that, the choice of a learning from demonstration method
among other learning techniques as described in Sec. 1.3.3, can incorporate effectively
the expertise of health-care experts only from a few examples. However, pure DMPs
have a limitation of flexibility for the new environment and can reproduce noise from
the demonstration. To overcome these issues, the developed system integrates a visual
information with an interactive DMP representation like CC-DMP.
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Figure 5.18: Scenario ITI: ARMAR-III is wiping a male subject’s back region. The
subject is moving to the right and the robot follows the motion. Left: Side camera view
of the subject performing a translation to the right. Right: Zoomed Point cloud view
of the experiment highlighting the adaptation of the wiping motion (green trajectory) to
the movement of the subject. Safe distance is kept between the back and ARMAR-III’s
end-effector.
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Figure 5.19: Scenario ITI: ARMAR-III is wiping a male subject’s back region. The
subject is moving backwards and the robot follows the motion. Top: Side camera view
of the subject performing a translation backwards. Bottom: Point cloud view of the
experiment highlighting the adaptation of the wiping motion (green trajectory) to the
movement of the subject. Safe distance is kept between the back and ARMAR-IIT’s end-
effector.






Chapter 6

Experiments of Interactive Motion
Planning on Deformable Surface

In this chapter, we present the experimental validation of the interaction control framework
presented in Chapter 4. The goal of the conducted experiments is to assess the performance
of the proposed approach in several surface interaction tasks with a deformable object.
The performance criteria include interaction trajectory tracking accuracy, computational
efficiency and contact force regulation. The aforementioned criteria drive our decision for
choosing proper implementations of the preprocessing steps and integrate them to the
overall proposed system.

6.1 Pre-processing Steps

The visual segmentation preprocessing step is used as an input to the deformation tracking
algorithm, in order to detect the object of interest on the image plane and to reduce the
number of points in the acquired point-cloud. For the implementation of this step, we
employ the popular GrabCut method, implemented efficiently in GPU, described in [257].
This algorithm addresses the segmentation task as an energy minimization problem based
on statistical models of the foreground and the background.

For the deformation tracking step, physics based algorithms, are more suitable for
robotic interaction tasks, as described in Section 4.3. For this experimental validation we
employ the FEM based method proposed in [143, 144], because it provides more accurate
deformation tracking for large elastic deformations, as compared to mass-spring-damper
approaches, with real-time computational performance (~35fps). Moreover, this method
relies on a volumetric linear FEM approach, which computes the deformation field over
the elements of a known tetrahedral mesh approximating the object of interest. The use
of tetrahedrons is convenient for meshing volumes with high complexity, since it offers
accurate modelling and computational efficiency at the same time.

Regarding the mesh parameterization, we integrated into our system the Discrete Ex-
ponential Map (DEM) presented in [198]. DEM is a local parameterization algorithm,
which focuses on the computation of normal coordinates of a discrete surface (mesh) using
the Dijkstra’s algorithm with very high computational efficiency (~100 fps).

125
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Figure 6.1: Hemispherical model with known relative position and orientation with respect
to the robot’s base frame. This model is used to derive ground-truth data for position
and orientation accuracy evaluation both of the planned and the executed motion by the
robotic manipulator.

6.2 Experimental Set-Up

In order to test and analyze the performance of the proposed mesh-based framework,
an experimental set-up is used which includes an Intel®RealSense™depth camera and
a Widow-XL robotic manipulator by Trossen Robotics to perform the interactive tasks,
as depicted in Fig. 6.2. The Widow-XL robot is a 5-DoF manipulator equipped with
Dynamixel MX Series Servo motors operated in torque control mode. One of the goals
of this evaluation procedure is to quantitatively measure the accuracy of planning in
interactive tasks (both contact and non-contact), using our proposed framework, and
of its respective execution by a robot manipulator. The planning experiments involve
interactive motion tasks over an object of interest both in a stationary scenario and in a
deforming scenario. In order for the generation of ground truth data to be feasible, the
object’s shape is required to be known at each time step, especially for the deforming
scenarios. Therefore, in this experimental study, we chose to use a hemispherical model,
which can undergo uniform deformations and its center (termed ground truth frame) has
a known relative position and orientation with respect to the robot’s base frame, as shown
in Fig. 6.1.

The hemispherical model is realized with the upper part of a balloon Fig. 6.2. The
shape of the balloon model is controlled with the use of a deformation control mechanism
constructed for this experimental procedure. The air flow which affects the shape of the
balloon model is provided by an air pump. The DC motor of the air pump is controlled by
a PWM speed controller, modifying the resistance of its potentiometer. The potentiometer



6.2 Experimental Set-Up 127

DC Motor PWM
Speed Controller

-} Servo Motor

m Raspberry
Pi

Air Pump

Balloon

(a) Experimental Setup (b) Zoomed View

Figure 6.2: (a) The experimental setup used to test the performance of the proposed
approach, which includes an Intel®RealSense ™depth camera, a Widow-XL robotic ma-
nipulator by Trossen Robotics and the top side of a balloon working as a hemispherical
model. (b) Zoomed aspect of the Widow-XL robotic manipulator performing an physi-
cal interaction task with a hemispherical deformable object. (¢) The deformation control
mechanism is constructed with air pump providing proper airflow to deform a balloon
model. The DC motor of the air pump is controlled via a PWM speed controller, whose
potentiometer is controlled by a servo motor. The servo motor is accurately controlled by
a Raspberry Pi 3 micro-computer.

value at each time step is controlled by an algorithm executed in a Raspberry Pi 3 micro-
computer, with the use of a servo motor. The angle of the servo motor linearly modifies
the resistance value of the potentiometer, which modulates the PWM signal of the speed
controller. With accurate speed control of the air pump’s motor, we are able to control
the air flow inserted to the balloon model through a tube. However as the balloon’s
pressure is increasing and becomes larger than one bar, an outgoing air current is formed
which flows from the balloon to the atmosphere. Consequently, the pneumatic system
finds its equilibrium and the balloons shape doesn’t change. By controlling the speed of
the air pump, we are able not only to control the shape of the balloon model but also its
deformation rate. The relative position of the center of the hemispherical model that is
formed by the upper part of the balloon model with respect to the robot base frame is
measured accurately as: z. = 0.26m, y. = 0.025m, z. = 0.08m, denoted as Ground Truth
Frame in Fig. 6.1.
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Figure 6.3: Meridian path execution in Up: a stationary scenario and Down: a deforming
scenario. The interactive task is planned in the Static Canonical Space (depicted with a
black colored path) and is transformed to the Physical Space with the use of the proposed
framework (also depicted with a black colored path). The yellow path is the executed
interactive task by the robot. (a) Front view of the stationary experiment. (b) Top view
of the stationary experiment. (c) Front view of the deforming experiment. (d) Top view
of the deforming experiment.

6.3 Experimental procedures and results

6.3.1 Interactive Motion Planning Accuracy

We start by expressing each interactive task in spherical coordinates following the ISO
convention, i.e. denoting (r,¢,0) : 7 > 0,0° < ¢ < 360°,0° < 6 < 180°, as the radius,
the azimuthal angle and the polar angle, respectively. The ground truth orientation is set,
without loss of generality, to be perpendicular to the surface of the hemispherical model.
Hence, it is calculated as the orientation of the vector starting from the ground truth
position and passing through the model’s center position, depicted with a black arrow in
Fig. 6.1. The relative planned and executed robot’s position is calculated with respect
to the hemisphere’s center and then expressed in spherical coordinates for comparison
with ground truth data. Considering comparison in terms of the orientation data, the
angle o between the z-axis of the planned reference frame (blue vector in Fig. 6.1) and
the ground truth orientation is calculated at each time step. Similarly for the robot’s
orientation error, the angle  between the z-axis of the robot’s tip frame (orange arrow in
Fig. 6.1) and the ground truth orientation is computed as well. Thus, with the proposed
experimental protocol we are able to measure both the position and orientation errors
and to properly evaluate the interactive motion planning and execution accuracy. For the
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Figure 6.4: Circular path execution in Up: a stationary scenario and Down: a deforming
scenario. The interactive task is planned in the Static Canonical Space (depicted with a
black colored path) and is transformed to the Physical Space with the use of the proposed
framework (also depicted with a black colored path). The yellow path is the executed
interactive task by the robot. (a) Front view of the stationary experiment. (b) Top view
of the stationary experiment. (c) Front view of the deforming experiment. (d) Top view
of the deforming experiment.

deforming scenarios, the balloon model was periodically inflated and deflated between the
spherical radius values Ryax =11cm and Ry, = 10 cm, using two different deformation
rates of 0.25 Hz and 0.5 Hz, in two distinct experimental conditions.

To assess the performance of the proposed framework in a set of indicative experimen-
tal conditions, three different interactive tasks were planned and executed by the robotic
manipulator in both stationary and deforming scenarios. More specifically, the first in-
teractive path starts at 5cm away from the pole of the hemispherical model, in terms of
geodesic distance, crossing the pole and moving towards 5cm on the other side. This path
is denoted as meridian path, as depicted in Fig. 6.3. The second interactive path is a
circular path with geodesic radius 2.5 cm away from the pole, shown in Fig. 6.4. The
third interactive path is a combined path, comprised both of circular (with a geodesic
radius of 2.5cm) and meridian paths (of different azimuthal angles), as shown in detail
in Fig. 6.5. The path requirements regarding the geodesic distance from the pole of the
hemispherical model are set according to the robot kinematic constraints. They are highly
important for this experimental evaluation, since they have to be respected both for the
stationary and the shape deformation scenarios. As it can be deduced from the proposed
evaluation protocol, the value of the polar angle 6 is indicative of the geodesic distance
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Figure 6.5: Random path execution in Up: a stationary scenario and Down: a deforming
scenario. The interactive task is planned in the Static Canonical Space (depicted with a
black colored path) and is transformed to the Physical Space with the use of the proposed
framework (also depicted with a black colored path). The yellow path is the executed
interactive task by the robot. (a) Front view of the stationary experiment. (b) Top view
of the stationary experiment. (c) Side view of the deforming experiment. (d) Top view of
the deforming experiment.

from the polar point, since these two values are linearly dependent with the sphere radius
R. For all the tasks in these experiments, the interactive motion planning goal is to keep
a constant perpendicular distance of 3 cm from the surface of the model.

Figures 6.3 to 6.5 present an overview of indicative results obtained, regarding the plan-
ning and execution of interactive paths, for the three experimental scenarios considered
in this study. The paths are planned in the Static canonical frame following the require-
ments mentioned above. The proposed interactive motion planning framework achieves
accurate transformation of the planned paths to the robot’s physical space despite the
visual occlusion caused by the presence of the robot in the scene, as shown by the black
colored paths in the Figures. By comparing the paths executed in the stationary and
deforming conditions, as depicted by the front views of the experimental scene shown in
the Figures, one can clearly observe the motion adaptation performed to compensate for
the surface deformation. Furthermore, the apparent path similarity between the station-
ary and the deforming scenarios, as shown particularly in the top views of these Figures,
visually demonstrates that, by using the proposed Dynamic canonical space, the planning



6.3 Experimental procedures and results 131

Table 6.1: Planning and execution accuracy errors for three interactive trajectories (Cir-
cular, Meridian, Combined), expressed in spherical coordinates, r (cm), 6 (rad x 1072),
¢ (rad x1072), for the stationary object scenario with spherical radius values Rpax=11cm
and Ry, =10 cm. The planning errors of the current interactive mesh approach (denoted
as IMP) are compared to the planning errors of our previous direct visual planning ap-
proach (denoted as DVP) and to the planning errors of our previous direct visual planning
approach with occlusion from the robot motion (denoted as DVPQO). The robot execu-
tion errors (i.e. evaluated on the path actually executed by the robotic manipulator) are
denoted as Robot.

Stationary Circular Meridian Combined
R = 10cm R =1lcm R = 10cm R =1lcm R = 10cm R =1lcm

IMP  0.25(0.25+£0.02) 0.45(0.47+0.02)  0.24(0.24+0.02)  0.45(0.45+0.04)  0.23(0.23+0.03)  0.45(0.454+0.03)
r DVP 0.33(0.324+0.29) 0.51(0.15+£0.69) 0.32(0.30£0.39) 0.58 (0.13+£0.66)  0.33(0.51£0.37)  0.34(0.19+0.54)
DVPO 2.37(0.64+2.28) 2.54(1.64+1.94) 0.89(0.80+0.39) 0.72(0.61£0.39) 1.18(0.78+0.89) 1.03(0.49-+0.69)
Robot  0.97(0.64+0.27) 1.11(0.784+0.27) 1.03(0.71+0.19)  1.15(0.89£0.22) 0.90(0.56+0.24)  1.14 (0.81£0.24)
IMP 1.25(-1.23£0.25) 1.21(-1.694+0.25) 1.27(-1.04+0.78) 1.41(-1.394+0.85) 1.31(-1.17+0.58) 1.42(-1.48+0.66)
6 DVP 3.83(-3.18+2.14) 3.52(1.18£2.23) 4.01(-3.03£2.63) 3.83(0.45+2.80) 4.40(-1.06+5.30) 3.79(1.03+2.60)
DVPO  9.28(1.5749.15)  10.1(2.634£9.77) 12.7(-6.89+10.7) 11.9(-347+11.4) 12.5(-3.12+12.1) 12.2(0.57+12.2)
Robot  3.87(-2.90£0.90) 3.47(-3.19+0.82) 3.28(-2.54+4.33) 3.17(-2.82+4.24) 4.28(-2.63+£2.93) 4.63 (-2.75+2.74)
IMP  1.76 (-0.56+1.03) 1.15(-0.54+1.02) 1.61(0.04£0.63) 1.42(0.03+0.56) 1.84(1.16+1.43) 1.88(1.2041.45)
¢ DVP  7.59(-0.66+4.68) 6.95(-1.52+£6.01) 8.24(-1.64+5.96) 7.29(-1.79+4.73) 6.10(2.75£7.15)  7.42(4.23+7.70)
DVPO 45.9(23.8+£47.0) 51.5(21.84+56.1) 68.8(6.26+88.7) 74.6(6.50+£84.5) 73.5(54.2+63.6) 71.0(39.3£71.0)
Robot  3.87(0.07+£2.86) 3.47(0.56+2.41) 3.28(0.02+2.68) 3.17(0.03+£2.61) 4.28(0.40+2.24) 4.63 (0.58+2.56)
IMP  2.67(3.67£0.91) 2.16(4.09+0.63) 2.87(2.68£1.05) 2.97(3.06+1.21) 2.95(2.78+£1.01) 3.05(3.14%1.18)
a DVP  5.59(4.41+3.45) 5.83(3.43£7.05) 4.33(3.79+2.12) 3.87(1.56+4.85) 5.35(4.56+2.80) 4.68(2.77+2.43)
DVPO 24.6(23.2£8.09) 25.0(24.0+6.86) 26.6(25.84+6.34) 25.9(25.3+£5.35) 21.8(20.24+8.18)  20.6 (19.5+6.43)
B  Robot 3.82(3.684+1.05) 3.57(3.39+£1.14) 7.63(6.46+4.07) 7.08(6.09£3.63) 6.07(5.53+2.52) 5.52(5.094+2.17)

Data presented as RMSE relative to ground truth data (mean + standard deviation of the error values
are presented in parentheses)

procedure actually manages to properly compensate for the object deformation, despite
the presence of large visual occlusions.

For the purposes of a quantitative performance evaluation, we conducted a compara-
tive study between the proposed interactive framework and the perception-based motion
planning algorithm described in 3, where a planning algorithm was proposed which uses
directly the Point-Cloud data of an RGB-D Camera. The errors in position (measured in
spherical coordinates) and orientation are presented comparatively in Tables 6.1 and 6.2,
for the stationary and the deforming experiment, respectively. For each accuracy metric,
the errors presented in the Tables are measured with respect to the ground truth posi-
tion and orientation data (as explained above, in Section 6.2). The Tables present errors
characterising the accuracy of motion planning in three different experimental conditions:
a) using the interactive mesh approach for motion planning presented in Chapter 4 (de-
noted as IMP), with the robot (and the large induced occlusions) present in the scene,
b) using the direct visual approach for planning from Chapter 3 (denoted as DVP), with-
out occlusions in the scene, and ¢) using the previous DVP approach, further subject to
occlusions from the robot (denoted as DVPO). The Tables also present results regarding
the accuracy of the actual motion executed by the robot when using our proposed IMP
approach (actual motion execution errors are denoted as ‘Robot’ in the Tables). The data
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Table 6.2: Planning and execution accuracy errors for three interactive trajectories (Cir-
cular, Meridian, Combined), expressed in spherical coordinates, r (cm), 6 (rad x 1072),
¢ (rad x 1072), for the deforming object scenario with deformation rate f = 0.25Hz &
f =0.5Hz. The planning errors of the current interactive mesh approach (denoted as
IMP) are compared to the planning errors of our previous direct visual planning ap-
proach (denoted as DVP) and to the planning errors of our previous direct visual planning
approach with occlusion from the robot motion (denoted as DVPO). The robot execu-
tion errors (i.e. evaluated on the path actually executed by the robotic manipulator) are
denoted as Robot.

Deforming Circular Meridian Combined
f=025Hz f=0.5Hz f=0.25Hz f=0.5Hz f=025Hz f=05Hz

IMP 0.26 (0.254+0.03)  0.26 (0.26+0.02)  0.25(0.254+0.02)  0.25(0.24+0.04)  0.24 (0.25+0.03)  0.24 (0.25+0.03)
r DVP 0.75(0.35£0.75)  1.25(0.68+0.64)  0.66 (-0.54+£0.66)  0.94(-0.53+0.79)  0.72(-0.7+£0.37)  1.04(-0.7+0.18)
DVPO  2.67(0.93+£2.76)  2.81(1.93+2.47)  1.38(0.88+0.63) 1.43(0.83+£0.5)  1.44(0.934+0.95) 1.43(0.6940.72)
Robot  0.96 (0.92+0.28)  1.03(0.99+0.30)  1.05(1.04+0.20)  1.05(1.01+0.31)  0.95(0.92+0.28)  0.95(0.93+0.35)
IMP 1.22(-1.14+0.57)  1.22(-1.20£0.25)  1.24(-1.03+0.68)  1.22(-1.01£0.68) 1.27(-1.14£0.57) 1.27(-1.14+0.57)
6 DVP  4.64(-2.30+4.29) 7.48(3.24+3.36) 4.27(-3.12+3.82)  7.33(-2.41£2.76) 5.97(-0.25+£3.28) 8.09 (-0.47+3.74)
DVPO  9.64(1.64+8.56)  10.5(2.78+8.34) 13.0(-5.13+10.35) 12.8(-3.89+11.8) 13.0(-3.63+12.4) 13.3(2.17£12.6)
Robot  2.81(-2.454+2.91) 2.95(-2.76+£1.03) 4.73(-2.71+3.88) 4.44(-2.62+3.59) 3.80(-2.45+£2.91) 3.78(-2.48+2.86)
IMP 2.99 (-0.25+1.61) 1.27(0.32+£1.18 1.26 (0.34+£1.67) 1.62(0.38£1.19) 1.60(-0.23+1.59)

¢ DVP 10.57(-2.83+£8.20) 8.95(0.87+8.93
DVPO  47.8(28.5+48.4)  51.9(25.7+67.6
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Data presented as RMSE relative to ground truth data (mean £ standard deviation of the error values
are presented in parentheses)

presented in the Tables show RMSE values evaluated relative to ground truth data, as
well as as mean and standard deviation values of the errors measured along the whole du-
ration of the interactive tasks (with the mean values denoting a positive or negative error
bias during motion and the standard deviation values denoting actual error fluctuations
indicating precision of motion).

Analysing more in detail the performance of the proposed IMP approach, as presented
in Tables 6.1 and 6.2, it can be observed that the maximum RMSE value for the radius
(r), both in the stationary and in the deforming scenarios, is 0.45 cm, while the maximum
RMSE value for the polar angle (6) is 1.42x10~2 rad in the combined path of the stationary
experiment with R=11cm (resulting in 0.16 cm geodesic distance error). It is evident that
the planned paths follow the requirements of the tasks, with millimeter accuracy, both in
terms of the relative radial distance and the geodesic distance. Evaluating comparatively
the RMSE results between the stationary and the deforming scenarios, it is clear that
the changes both in radial and geodesic distances during the evolution of the deformation
are effectively compensated. The orientation error « of the planned motion with respect
to the ground truth has the largest value of 3.05 x 10~2rad (or 1.75°) in the circular
deforming interactive task (in the case of the higher frequency of 0.5 Hz), maintaining
perpendicular orientation to the hemispherical model’s surface. The errors in azimuthal
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angle (¢) are indicative of the projection accuracy of each interactive task into the Physical
space, including its timing constraints. The largest RMS error recorded for the planned
motion is 2.99 x 1072 rad in the circular path deforming experiment, resulting in 0.33 cm
geodesic distance error (estimated for Ryax). It is evident that the timing constraints of
the task are respected when using the proposed IMP framework. The larger values of ¢
in standard deviation comparing to the other position accuracy metrics derive from the
large steps of the ISO convention followed in this analysis.

Using the planned motion at each time step, the robot is able to execute all the inter-
active tasks with a precision which is subject to its kinematic and joint control constraints.
The implemented stiffness controller, described in Section 4.2.2, has proven convergence
in the desired position for non-contact scenarios. However, the choice of its gains di-
rectly affect the robot’s precision. More specifically, the quantitative analysis presented
in Tables 6.1 and 6.2 shows that the maximum RMSE value for the radial motion (r)
(for all stationary and deforming scenarios) is 1.15cm (recorded in the meridian station-
ary condition) and the maximum RMSE value for the polar angle (6) is 4.73 x 10~2 rad
(recorded in the meridian deforming scenario), resulting in 0.52 cm geodesic distance er-
ror. An important observation is that the robot exhibits similar behavior both in the
stationary and the deforming scenarios, managing to compensate for a deformation of
different frequencies between the spherical radius values Ryax and Ryi,. The orientation
error § of the robot motion relative to the ground truth has the largest RMSE value of
7.63 x10~2rad (or 4.37°) in the circular deforming interactive task, deriving mainly from
the robot kinematic constraints due to its 5 DoF structure. The maximum robot RMS
error in azimuthal angle (¢) is 6.45 x 10~2rad (or 0.71 cm in geodesic), which shows that
the robot motion exhibits larger deviations in tracking the interactive tasks with respect
to the planned motion, which was expected. Nevertheless, robot execution errors remain
within acceptable margins (particularly considering the hardware limitations of the robot
manipulator used in these experiments), while the performance is in any case consistent
(with no significant differences) in both stationary and deforming conditions, when using
the proposed IMP approach, which constitutes an important conclusive outcome of the
experimental study in this Section.

Analysing further the planning accuracy of our previous approach (Chapter 3) in a
scene without occlusion (indicated as DVP in Tin Tables 6.1 and 6.2), it is evident from
the different error metrics shown in the Tables that the visual noise inserted by the camera
reduces significantly the motion planning accuracy. More specifically, for the radial dis-
tance (), the largest errors are observed in the deforming scenarios (with the maximum
RMSE value of 1.25cm observed in the high frequency circular scenario). For the polar
() and azimuthal (¢) angles, which are characteristic values for the geodesic distances,
the maximum errors are 8.09 x 10~2 rad (geodesic 0.89 cm) and 10.57 x 10~2rad (geodesic
1.16 cm), respectively. The position planning inaccuracies occur due to depth estimation
noise especially at the edge of the object despite the accurate results of the segmentation
algorithm. In terms of orientation («), the maximum error is 9.65 x 10~2rad (5.53°). The
overall planning performance of a direct vision-based algorithm shows that it is suitable
for applications in which the visual occlusion of the surface is low and the accuracy re-
quirements reduced. In case of larger visual occlusion of the object’s surface by the motion
of the robot (a condition denoted as DVPO in Tables 6.1 and 6.2), the planning accuracy
is further reduced as shown by the quantitative results for the respective error metrics
presented in the Tables.

In this case, the maximum RMS error values obtained for the radial distance (r), the
polar angle () and the azimuthal angle (¢), are: 2.81cm, 13.3x1072 rad (geodesic 1.46 cm)
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Figure 6.6: Evolution of the Ground Truth (red), the Planned (blue) and the Robot motion
(green), during the execution of the meridian path in deforming scenario, expressed in (a)
polar angle 6 representation which is indicative for the geodesic distance preservation from
the pole of the hemispherical model and (b) radius r representation which is indicative
for the perpendicular relative distance preservation from the surface of the hemispherical
model. The orange line is the planned motion with direct transformation from the Static
Canonical Space to the Physical Space. This planning strategy fails to follow the geodesic
distance changes occurring in the object’s surface.

and 74.2 x 1072 rad (geodesic 8.16 cm), respectively. These high error values are in fact at
least an order of magnitude larger than the ones obtained with the IMP approach. This
result clearly reveals that a direct vision-based algorithm (based on local processing of raw
depth data) indeed fails to properly plan the required interactive tasks, as opposed to the
interactive mesh-based motion planning framework proposed in Chapter 4, which is able
to accurately plan the required trajectories on a deformable surface even in the presence
of large and persistent occlusions (in our case, induced by the robot continuously moving
in front of the object surface in the scene).

In Figures 6.6 - 6.8 the evolution of the ground truth (red), the planned (blue) and
the robot motion (green) expressed in polar angle and radius during the execution of each
path in deforming scenario is graphically presented. In this graphical representation it
is apparent that the planned motion manages to follow the desired task expressed in the
ground truth graph. The executed robot motion error varies during the execution of the
task showing how the kinematic constraints affect its motion. However, in polar angle
representation of Fig. 6.6a, 6.7a and 6.8a the result (in orange color) of the proposed
interactive framework without the use of Dynamic Canonical Space is plotted. The direct
transformation from the Static Canonical Space to the Physical Space does not take into
account the geodesic distance changes occurring in the surface of a deforming object,
using the geodesic information captured at the time instance it was created. Thus, it
fails to fulfill the geodesic distance requirements set in the interactive tasks, which is more
evident in the circular path Fig. 6.7a and random path 6.8a. This comparison exhibits the
necessity of Dynamic Canonical Space in the planning of interactive tasks for deformable
objects in case geodesic distance requirements are set.

In order to further evaluate the motion planning accuracy of our system, we measure
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Figure 6.7: Evolution of the Ground Truth (red), the Planned (blue) and the Robot motion
(green), during the execution of the circular path in deforming scenario, expressed in (a)
polar angle 6 representation which is indicative for the geodesic distance preservation from
the pole of the hemispherical model and (b) radius r representation which is indicative
for the perpendicular relative distance preservation from the surface of the hemispherical
model. The orange line is the planned motion with direct transformation from the Static
Canonical Space to the Physical Space. This planning strategy fails to follow the geodesic
distance changes occurring in the object’s surface.
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Figure 6.8: Evolution of the Ground Truth (red), the Planned (blue) and the Robot motion
(green), during the execution of the circular path in deforming scenario, expressed in (a)
polar angle 6 representation which is indicative for the geodesic distance preservation from
the pole of the hemispherical model and (b) radius r representation which is indicative
for the perpendicular relative distance preservation from the surface of the hemispherical
model. The orange line is the planned motion with direct transformation from the Static
Canonical Space to the Physical Space. This planning strategy fails to follow the geodesic
distance changes occurring in the object’s surface.

quantitatively the ability of the proposed framework to track a physical point on the surface
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Figure 6.9: Tracking of a physical point on the surface of a deformable object. The
tracking accuracy is measured with the Ascension TrakStar ATC3DGT magnetic tracker
with millimeter accuracy.

of a deformable object, during the same periodic deformation scenario. In this experiment,
we follow a slightly different planning strategy, in which we make use of transformation ¢
from the SCS to the Physical Space, in order to preserve the geodesic distances and track
the same physical point on the object’s surface. Error measurements in this experiment are
realized with the use of a magnetic tracking device (an Ascension TrakStar ATC3DGT
magnetic tracker), which can provide position measurements with an accuracy of one
millimeter. In particular, one of the magnetic tracker probes is placed on the object surface
and the other probe is attached on the robot’s end-effector, as depicted in Fig. 6.9. Table
6.3 presents the results obtained regarding the relative position between the two probes
along each axis of the tracker reference frame, for two object deformation frequencies. It
should be pointed out here that the mean value is highly dependent on the initialization
bias of each experiment (i.e. the placement of the magnetic probe on the object and the
relative pose of the robot), whereas the standard deviation value characterises the motion
precision thus revealing the actual position tracking performance achieved during the
deformation experiments. More specifically, the maximum tracking deviation of the robot

Table 6.3: Physical point tracking errors presented along the axes of the Physical Space.
The tracking error is calculated as the relative position between the magnetic tracker’s
probe attached on the deformable model and the tracker’s probe attached on the robot’s
end-effector.

Tracker experiment x (cm) y (cm) z (cm)
f=0.25 Hz 2.716£0.05 0.74£0.13 3.58=+0.31
f=0.5Hz 3.17+0.13 041+£0.11 4.064+0.41

Data presented as mean and standard deviation of the error values.
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is 0.13cm along z, 0.13cm along y and 0.41cm along z, confirming the sub-centimeter
accuracy performance of the proposed framework. Larger tracking deviation values along
the z axis compared to x and y axes, are observed due to the placement of the probe near
the pole of the hemispherical object, whose major motion direction, caused by the object’s
deformation is along the z axis. Similarly to the performance assessment results presented
above, the robot motion is affected by its kinematic constraints and stiffness controller
gains.

6.3.2 Interactive Motion Demonstration

In the previous experiments, the accuracy of the proposed framework was evaluated by
planning several paths in SCS and projecting the trajectories to the Physical space, over
the surface of the target object, during real-time execution of the motion. In this section,
we alm at evaluating the framework in a different context, that of motion programming by
human demonstration. Our goal here is to showcase that the proposed framework can be
effectively applied in such a context and is particularly suitable for planning (by means of
human demonstration) robot manipulation tasks that involve interaction with the surface
of a (potentially deformable) object.

For this purpose, we recall that, as shown in Section 4.3, each transformation (between
SCS, DCS, and Physical space) is invertible; hence, using the proposed approach, inter-
active tasks performed on the surface of a stationary object can be transformed back to
SCS during the demonstration process, as depicted in Fig. 6.10. To handle interactive
trajectories which lie over or under the surface (that is, involving or not physical contact
with the object during task execution), an algorithm is implemented which projects the
trajectory points at each time frame on the surface of the object, using shaded normals
combined with the notion of active triangle described in Section 4.3. The continuity of
the demonstration trajectories ensures that, at each time frame, the motion evolves on
the same active triangle or is transferred on one of its neighbors, thus reducing the search
area during execution of the algorithm.

Following this process, the demonstrated task is thus recorded (and eventually en-
coded, for generalisation purposes) in SCS. By applying the proposed IMP approach, the
trajectory can then be properly reproduced in real time and interactively at any deforma-
tion state of the target object, respecting both the time and spatial constraints (vertical
and geodesic distances) of the demonstrated task. In this experiment particularly, a com-
plex motion is demonstrated over the surface of the hemispherical model, with radius
R=11cm. In order to evaluate the accuracy of the trajectory recorded in SCS, the mo-
tion was reproduced from SCS and transformed back to Physical space. The reproduced
motion was compared to the demonstrated one, as shown in Fig. 6.11, illustrating that
the demonstrated path is actually reproduced quite accurately back on the physical space,
using the proposed IMP framework. Specifically, the maximum planning errors, obtained
for the whole duration of motion, were measured to be: 0.37cm along x, 0.42 cm along y
and 0.26 cm along z direction.

Using spherical coordinates, as described in the experiments of the previous Section,
we further measured quantitatively the motion reproduction accuracy in a stationary sce-
nario, for a hemispherical model of radius R =10cm, as well as in a deforming scenario
with two different deformation frequencies (f = 0.25Hz and f = 0.5Hz). The obtained
results are shown in Table 6.4, where the maximum values observed for the motion plan-
ning RMS errors are: 0.25cm error for the radius r, 1.57 x 10~2rad and 1.51 x 10~ ?rad
(0.16 cm geodesic) for the polar () and azimuthal (¢) angles, respectively (showing in
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fact similar millimeter accuracy performance as in the simpler trajectories of the previ-
ous experiments). The robot executes the reproduced trajectory relative to the target
object surface, with an accuracy which is comparable to the performance achieved in the
experiments of the previous section, as revealed from the values of Table 6.4.

Table 6.4: Motion reproduction errors of the demonstrated interactive trajectory, ex-
pressed in spherical coordinates (r,0,¢), for the whole duration of motion (RMSE =+
standard deviation of the error values). The motion planning errors of the proposed ap-
proach (denoted as IMP) are distinguished from the robot execution errors (evaluated on
the trajectory actually executed by the robotic manipulator, denoted as Robot).

Demonstration Stationary Deforming
Trajectory R = 10cm f=025Hz f=005Hz
r IMP  0.23(£0.04) 0.25(=£0.05) 0.25 (£0.05)
(cm) Robot 0.92(40.27) 1.06 (£1.11) 0.99 (+£0.88)
0 IMP  1.55(%£0.79) 1.57(£0.89) 1.55(£0.84)
(radx1072) Robot 5.17(4£3.70) 8.64 (£6.02) 8.19 (£7.29)
o) IMP  1.28(+1.25) 1.51(£1.70) 1.49 (£1.49)
(radx1072) Robot 7.61(£4.92) 14.77(49.39) 14.39 (£10.37)

Data presented as RMSE (+ standard deviation of the error value).

The results also show consistent performance both for the stationary and the deforming
scenarios, highlighting again the capacity of the proposed approach to compensate for the

(a) Demonstration (b) Physical Space (c) Static Canonical Space

Figure 6.10: The interactive trajectory demonstration and transformation procedure pro-
cedure. Left: The user is shown to move the robot over the surface of a hemispherical
deformable model, in a stationary instance with radius R = 1lcm , from the system’s
camera perspective. Middle: Visualization of the interactive trajectory with black line as
recorded in the Physical space. At each time step the point of the trajectory is associated
with the closest underlying triangle and using the proposed framework it is transformed
to the Static Canonical Space. Right: Visualization of the interactive trajectory with
black line transformed in the Static Canonical Space.
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Figure 6.11: Evolution over time of the Demonstrated Motion (blue) in the 3D Physical
Space, compared to the reproduced motion over a stationary hemispherical model (with
the same radius R=11cm for both motions).

dynamic motions induced by the deformation of the target object surface. Furthermore,
the sub-millimeter standard deviation values observed for the motion planning errors along
the radial direction (IMP error values for r), which are achieved even in the deforming
scenario, show a reliable motion reproduction precision throughout the duration of the
motion, demonstrating again an excellent interactive and real-time motion compensation
capacity. Therefore, it can be concluded that, by applying the proposed IMP framework, a
demonstrated robot manipulation task (consisting of a motion relative to a surface) can be
effectively recorded and properly reproduced, interactively coping with any deformation
state of the target object.

6.3.3 Contact Force Regulation

The previous series of experiments allowed for a thorough evaluation of motion planning
accuracy for non-contact interactive tasks. The goal of this last experiment, presented in
this Chapter, is to evaluate the ability of the proposed framework to regulate the contact
forces during the execution of tasks that involve physical contact with the deformable
object. For this purpose, an ATI Mini-40 F/T sensor is attached to the robot’s end-
effector, measuring the contact forces along the direction vertical to the object’s surface,
as depicted in Fig. 6.12. As a reminder, planning of a contact task in our approach, as
has been explained in Section 4.3, is implemented indirectly through an active stiffness
controller, by setting the normal offset d to negative values (thus instructing in fact the
robot to move below the object’s surface, as shown in Fig. 6.12).

More specifically, in this experiment, a contact task is specified such that the reference
orientation remains vertical to the surface, while the normal offset linearly decreases until
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a minimum value of d = —6cm (meaning that the tip of the robot, starting from initial
contact, will start pushing on the deformable surface with a reference force that is linearly
increasing). However, as it has already been mentioned in Section 6.2 describing the
experimental setup, the deformation of the object is controlled by periodically inflating
and deflating a balloon. Hence, the physical properties of the deformable model will
change for different spherical radius values, since the amount of air in the balloon is
different. Therefore, in order to explore the physical properties of the object, we start by
applying the previously specified contact task in a stationary scenario for two different
spherical radius values, Ryax = 11 cm and Ry, = 10cm, as shown with dashed blue and
red lines in Fig. 6.13. Several gain values for the active stiffness controller were tested and a
representative behaviour is shown in the graphs for relative gain value k = 1 (Fig. 6.13 top)
and k = 1.8 (Fig. 6.13 bottom). The coupled dynamic behavior is linear, confirming the
expected ideal spring behaviour of the controller, described in Section 4.2.2. Consequently,
straight lines were fitted for data presentation clarity in Fig. 6.13, to illustrate the stiffness
slope margins corresponding to the two different spherical radius values.

The specified contact task was then implemented with the same controller gains, in
a scenario involving a periodic deformation of the object with a spherical radius varying
between the values of: Rpax = 11cm and Ry, = 10 cm. Two different deformation rates
were tested, 0.25 Hz and 0.5 Hz, and the obtained results are depicted with the green line
plots in Fig. 6.13a and Fig. 6.13b, respectively. It is evident that the proposed interac-
tion framework is able to compensate for the object deformation and maintain continuous
contact with the object surface throughout the task, without applying excessive forces

ATI Mini-40
F/T Sensor

Figure 6.12: Measurement of contact forces along the vertical direction (red arrow) to
the object’s surface with an ATT Mini-40 F/T sensor. The planning of a contact task is
implemented in our approach by setting the normal offset d to negative values, instructing
the robot to move below the object’s surface.
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along the vertical direction. More specifically, the applied force oscillates between the
expected values (as measured for Ryax and Ry, ), maintaining a quasi-static equilibrium
during dynamic interaction while following the linear spring-like behaviour of the station-
ary scenario. This behaviour is apparently achieved by means of an accurate and reactive
adaptation to the changes occurring due to object deformation.

Concluding, the interactive planning framework, which is based on visual object seg-
mentation, FEM deformation tracking and mesh parameterization techniques, uses the
barycentric coordinates of the mesh’s triangles, in order to establish bijective transforma-
tions between a part of the object’s surface and its planar parameterized versions (static
and dynamic). With the use of these spatial transformations in combination with the pre-
processing steps, we are able to reactively plan interactive trajectories with high accuracy
despite the visual occlusions occurring by the robot’s motion. In the conducted experi-
mental validation with a periodically deforming hemispherical model, millimeter planning
accuracy was observed for three different trajectories, showing superior performance with
respect to our previous perception-based planning approach. The accuracy in tracking a
physical point on the object’s surface was also tested objectively with a motion tracking
device, confirming the high precision performance. It is obvious that the system’s ac-
curacy is highly dependent on the performance of the algorithms used as preprocessing
steps. Hence the choice and development of visual object segmentation, physics based
deformation tracking and mesh parameterization algorithms is important and application
dependent.

Additionally, it was shown experimentally that the proposed approach can be used for
demonstration of interactive motion tasks by a human expert, in an undeformed state of
the object and properly projected and saved in the Static Canonical Space. The demon-
strated actions can be reproduced precisely even when the object undergoes deformation,
exemplifying how a robotic system equipped with the proposed approach can work col-
laboratively with the user and enhance his/her ability to interact with the surface of a
deformable object. Moreover, the performance of the proposed framework was further
evaluated with the execution of interactive tasks in continuous contact with the surface of
the object, measuring the exerted contact forces with a f/t sensor mounted on the robot.
The interactive adaptation of the reference pose (through the offset values) within the
proposed IMP framework, can properly regulate the contact forces within the specified
range of values; a result which would not have been feasible by a straightforward im-
plementation of a stiffness controller on a dynamically deforming surface (in which case,
forces variations would largely exceed the specified range of values and might even result
in complete failure during such interactive task scenarios). Therefore, by applying the
proposed mesh-based framework, it is possible to accurately control interactive path fol-
lowing tasks on the surface of a dynamically deforming object, while also being able to
properly regulate contact forces.
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Figure 6.13: Measurement of contact forces along the vertical direction to the object’s
surface for a range of normal offset d. A contact task is planned such that the reference
orientation is vertical to the surface and the normal offset is linearly decreased until the 6
cm value, for the stationary scenario for hemispherical radius Ry,q; = 11cm and Ry =
10em (dashed blue and red lines respectively) and for the deforming scenario (green solid
line) with deformation rate of 0,25Hz (left) & 0,5Hz (right). Several gain values for the
stiffness controller were tested and a representative behaviour is shown for relative gain
value k =1 top) and k = 1.8 (bottom).



Chapter 7

Conclusions & Future Work

The research focus of this thesis is the development of reactive motion planning methods
for robotic manipulators in assistive tasks involving human-robot physical interaction. In
the context of design and development of a whole body bathing robot, the role of human
- robot physical interaction in the bathing process is highly important both from system
safety and from user acceptance perspective. The main challenge of such an interactive
behavior is to adapt human-friendly washing actions to the deforming (due to random
or systematic motion) body parts of the user. Another goal is to employ appropriate
learning strategies in order to analyze and learn proper washing actions from professional
caregivers incorporating their expertise into the robotic behavior. Accurate tracking of
the demonstrated actions and on-line adaptation to a real washing scenario requires full
cognition of the user by the system in order to achieve avoidance either of obstacle areas
on user’s body parts (such as injuries) and on-line adaptation of the motion’s properties
according to user’s preferences. Contact forces are included among the user’s preferences
during the execution of physical interaction tasks. However, the integration of a force
sensor in the soft-robotic structure and humid environment of a bathing robot is technically
not feasible. Hence, robotic control techniques without the use of force feedback are
required for proper execution of contact tasks, such as wiping.

7.1 Summary of Main Contributions

The contribution of this thesis spans a wide spectrum of research on interactive motion
planning with emphasis on planning tasks on the surface of deformable objects, such as
the human body parts. In particular several motion planning methodologies for robotic
manipulators in interaction with their environment were investigated both analytic and
learning based, while proposing reactive motion planning methodologies with novel contri-
butions comparing with the current state of the art. The main contributions and outcomes
of this thesis are summarized below:

e Development of a perception-based motion planning algorithm, which uses the visual
feedback from a depth camera and the corresponding scene perception information,
in order to adapt predefined, time scalable trajectories on curved and deformable
surfaces, such as the human body parts, and at the same time avoid the interaction
with obstacle areas, such as injuries.

e The developed algorithm was tested both in lab conditions and in a real clinical
environment with elderly users in both dry and humid conditions.
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A clinical validation study conducted on the ability of elderly users to tele-operate
the robot without direct visual contact and complete a washing task with the motion
adaptation assistance of the developed algorithm and without it. The majority of the
users found the tele-operation without motion adaptation assistance very difficult
and the operation of the system with it satisfying.

Proper washing actions from professional caregivers were recorded with the use of
optical motion trackers systems (Vicon), analyzed and decomposed into primitive
actions appropriate for robotic execution.

Deployment of an integrated system based on DMP approach, which can learn and
encode the demonstrated actions, imitating the human washing actions. The learned
motions can then be adapted to the user’s body parts compensating their motion
or deformation and their execution parameters can be on-line modified in order to
meet the user’s requirements.

An alternative LfD method was proposed based on Navigation functions, in order
to capture the way an expert clinical carer executes the bathing activities by means
of constructing repulsive potential fields (“virtual obstacles”). The bathing trajec-
tories demonstration is realized in 3D space and are transformed to a 2D spatially
normalized space by establishing appropriate transformations. In this space, a set
of virtual obstacles is calculated so that the trajectory produced by the NF based
planner resembles the demonstrated human trajectories.

An efficient mesh-based integrated motion planning framework was proposed to ef-
fectively and accurately control a robotic manipulator when executing interactive
tasks on the surface of a deformable object. The proposed framework integrates
3D visual object segmentation and on-line deformation modeling with real-time mo-
tion planning and interaction control. The core of the system is based on FEM
deformation tracking and efficient local mesh parameterization techniques, and uses
barycentric coordinates defined on the mesh triangles to establish bijective transfor-
mations between the deformable part of an object surface and its planar (static and
dynamic) parameterized versions.

The combination of these spatial transformations with the preprocessing (visual per-
ception and deformation modeling) steps, allows for reactive planning of interactive
trajectories with high accuracy, even under large and persistent visual occlusions
(such as those caused by the presence of the robot manipulator in the visual scene).

In the conducted experimental evaluation study with a periodically deforming hemi-
spherical model, millimeter accuracy was achieved for motion planning at all condi-
tions with three different trajectories tested, clearly showing superior performance as
compared to the direct vision-based approach. The accuracy in tracking a physical
point on the surface of a deforming object was also assessed objectively with a motion
tracking device, confirming high precision performance. It is obvious, however, that
the system accuracy is highly dependent on the performance of the algorithms used
as preprocessing steps. Hence the choice and development of visual object segmen-
tation, physics based deformation tracking and mesh parameterization algorithms is
important and application dependent.

It was also shown experimentally that the proposed IMP approach can also be effec-
tively applied in the context of motion programming by human demonstration. It
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was showcased that demonstration of an interactive motion task can be performed
by a human expert in an undeformed state of the object, and this interactive motion
relative to the target object surface can be properly projected and recorded in the
Static Canonical Space. The demonstrated actions can then be reproduced precisely
even when the object undergoes deformation, exemplifying how a robotic system
equipped with the proposed IMP approach can work collaboratively with the user
and eventually enhance his/her ability to perform tasks involving interaction with
the surface of a deformable object.

e The performance of the proposed framework was also further evaluated with the
execution of interactive tasks in continuous physical contact with the deformable
surface of an object (by measuring the exerted contact forces with a f/t sensor
mounted on the robot). It was shown experimentally that the proposed integrated
framework manages to compensate for the object deformation and to maintain con-
tinuous contact with the target surface, while exerting contact forces that remain
within a specified range of values. It can thus be concluded that, by employing the
proposed integrated IMP framework, it is possible to accurately control interactive
path tracking tasks on the surface of a dynamically deforming object, while also
being able to effectively regulate contact forces.

7.2 Future Research Directions

Robotic assistants which conduct interactive tasks with the environment is an open re-
search field. There are many research topics that have to be addressed, in order for the
robotic manipulators to achieve safe and smooth physical interaction especially with the
human body and ameliorate the daily lives of senior citizens facing mobility and/or cog-
nitive impairments. Possible future research could move towards three main directions,
considering more complex interactive applications with deformable environment and de-
velopment of robot-centric learning algorithms, transferring the required motion skills
directly to the robot’s actuation. More specifically:

e A comparative study on different learning from demonstration techniques would il-
lustrate the performance of each one in multiple interactive scenarios. The learning
of primitive action relatively to the environment could produce interaction primi-
tives, which will encode both the motion and impedance parameters of the desired
task.

e Towards the evolution of soft robotic technology, the development of appropriate
learning approaches for direct skill transferring from human or other bio-inspired
systems would increase the operability of soft robots in a larger variety of applica-
tions.

e The execution of interactive trajectories in continuous contact with a deformable
object requires the exploration of impedance robot control schemes with integration
of force measurements into the control loop and the deformation modeling, mak-
ing the physical interaction as smooth as possible taking into account the imposed
constraints. Such a task would also involve more complex contact wrench regula-
tion in multiple directions, which combine both the manipulator’s and the object
deformation dynamics.
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e The robotic interaction with the surface of more complex shaped objects should be
examined, in order to generalize to more complex real-life scenarios.

e Further research can be conducted on the ability of the mesh based framework
to directly control the object’s shape and deformation or to estimate the object’s
physical parameters by planning appropriately the robot’s motion.

e Due to the computational efficiency of the spatial transformation calculation on
the mesh structure, the proposed framework can be easily extended to planning
the motion of multiple robots or a robotic hand with multiple fingers for accurate
grasping actions.
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Support Vector Regression
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System Usability Scale
Genetic Algorithm

167

Apootnpiotnrec Kadnuepwvotnrog
Metaoevoplaxd Epwtnuatordylo
Teywto Nevpwvind Aixtuo
Yuvehtind Nevpwvixd Aixtuo
Yuvehutixég Mnyavée I16Lag

Bodd Yuvehwtind Abxtua
EnoavahauBavouevo Nevpixd Aixtuo
Avvoixé Mneullové Aixtuo
Koxxavou Ipastvou Mmhe Béddoug
Avvauixéc Hpowtoyevele Kwvroeg
AIIK ye aAlaryr) CUVTETOYUEVKDY
Avvopde Kavovixornoinuévog Xopog
Ytatixog Kavovixomoinuévoe Xwpog
Aavuopatixyy Mnyavh TrootieiEng
Haawdpounor Atavuopatony YTrootneing
A)dnhenidpoor Avpdonov-Pounot
Teyvohoyiec Emxowwviov ITAnpogopiog
Boajpol Exeuieplog

Mdinon and Enideiln

Mi&n Movtéhwy I'xdoug
[TaAwvdpounon Movtéhwy I'ndoug
HoAwdpounon Medddou I'ndoug
Kpugpd Mopxofiavod Movtéro
‘Eleyyoc HpofAentixod Moviéhou
Yuvapthoeg [Thorynong

Ivotitotto Teyvohroyiog Koaphopoing
Méloc Eratneiou Aroofeotrpa
Médodoc Aloxpiteyv Ltolyeiewy
Auxtpitog Exdetinog Xdptng
Movdda Métpnone Adpaveiog

KM uoxa Xpnotixdtnrog Yuothuatog
Fevetxoc Ahyopriuoc






Appendix B

List of Publications

B.1 Publications in Peer-reviewed International Journals

J1 Athanasios C. Dometios, You Zhou, Xanthi S. Papageorgiou, Costas S. Tzafes-
tas and Tamim Asfour, ”Vision-Based Online Adaptation of Motion Primitives to
Dynamic Surfaces: Application to an Interactive Robotic Wiping Task,” in IEEE
Robotics and Automation Letters, vol. 3, no. 3, pp. 1410-1417, July 2018, doi:
10.1109/LRA.2018.2800031.

J2 Athanasia Zlatintsi, Athanasios C. Dometios, Nikos Kardaris, Isidoros Rodomagoulakis,
Petros Koutras, Xanthi Papageorgiou, Petros Maragos, Costas S. Tzafestas, Pana-
giotis Vartholomeos, Klaus Hauer, Christian Werner, Roberta Annicchiarico, Maria
G. Lombardi, Fulvia Adriano, Tamim Asfour, Andrea M. Sabatini, Cecilia Laschi,
Mateo Cianchetti, Alp Giiler, Iasonas Kokkinos, Barbara Klein, Rafa Lépez, I-
Support: A robotic platform of an assistive bathing robot for the elderly population,
Robotics and Autonomous Systems, Volume 126, 2020, 103451, ISSN 0921-8890,
https://doi.org/10.1016/j.robot.2020.103451.

J3 Christian Werner, Athanasios C. Dometios, Costas S. Tzafestas, Petros Maragos,
Jirgen M. Bauer, Klaus Hauer (2020) Evaluating the task effectiveness and user
satisfaction with different operation modes of an assistive bathing robot in older
adults, Assistive Technology, DOI: 10.1080/10400435.2020.1755744

J4 Athanasios C. Dometios, Costas S. Tzafestas “Interaction Control of a Robotic
Manipulator with the Surface of Deformable Object” IEEE Transactions on Robotics
(submitted)

B.2 Publications in Peer-reviewed International Conferences

C1 Xanthi S. Papageorgiou, George P. Moustris, Vassilis Pitsikalis, Georgia Chalvatzaki,
Athanasios Dometios, Nikolaos Kardaris, Costas S. Tzafestas, Petros Maragos,
”User-Oriented Cognitive Interaction and Control for an Intelligent Robotic Walker”,
Workshop of the 2015 7th International Conference on Social Robotics, ”Improving
the quality of life in the elderly using robotic assistive technology: benefits, limita-
tions, and challenges”, 26 - 30 October 2015, Paris, France.

C2 Costas S. Tzafestas, Xanthi S. Papageorgiou, George P. Moustris, Georgia Chal-
vatzaki, Athanasios Dometios, ” User-Oriented Human-Robot Interaction for an

169



C3

C4

Ch

C6

c7

C8

C9

C9

Intelligent Walking Assistant Robotic Device”, Workshop of the 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Invited Session: ” Cog-
nitive Mobility Assistance Robots: Scientific Advances and Perspectives”, Hamburg,
Germany, September 28 - October 02, 2015.

George Moustris, Athanasios C. Dometios, Costas S. Tzafestas, ”"User Front-
Following Behaviour for a Mobility Assistance Robot: A Kinematic Control Ap-
proach. Proceedings of the 8th International Conference on Integrated Modeling
and Analysis in Applied Control and Automation, Bergeggi, Italy, September 21 -
23, 2015 (Best Paper Award).

Athanasios C. Dometios, Xanthi S. Papageorgiou, Costas S. Tzafestas, Pana-
giotis Vartholomeos, ”Towards ICT-supported bath robots: Control architecture
description and localized perception of user for robot motion planning,” 2016 24th
Mediterranean Conference on Control and Automation (MED), Athens, 2016, pp.
713-718, doi: 10.1109/MED.2016.7535954.

Xanthi S. Papageorgiou, Georgia Chalvatzaki, Athanasios C. Dometios, Costas
S. Tzafestas, and Petros Maragos. 2017. Intelligent Assistive Robotic Systems
for the elderly: Two real-life use cases. In Proceedings of the 10th International
Conference on PErvasive Technologies Related to Assistive Environments (PETRA
'17). Association for Computing Machinery, New York, NY, USA, 360-365.

DOI:https://doi.org/10.1145/3056540.3076184

Athanasios C. Dometios, Xanthi S. Papageorgiou, Antonis Arvanitakis, Costas
S. Tzafestas and Petros Maragos, ”Real-time end-effector motion behavior plan-
ning approach using on-line point-cloud data towards a user adaptive assistive bath
robot,” 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Vancouver, BC, 2017, pp. 5031-5036, doi: 10.1109/IR0OS.2017.8206387.

Athanasios C Dometios, Antigoni Tsiami, Antonis Arvanitakis, Panagiotis Gi-
annoulis, Xanthi S Papageorgiou, Costas S Tzafestas, Petros Maragos ” Integrated
Speech-based Perception System for User Adaptive Robot Motion Planning in As-
sistive Bath Scenarios.” Multi-Learn workshop of European Conference on Signal
Processing EUSIPCO, Kos, 2017.

Athanasia Zlatintsi, Isidoros Rodomagoulakis, Petros Koutras, Athanasios Dome-
tios, Vasilis Pitsikalis, Costas Tzafestas, Petros Maragos, ” Multimodal Signal Pro-
cessing and Learning Aspects of Human-Robot Interaction for an Assistive Bathing
Robot,” 2018 IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), Calgary, AB, 2018, pp. 3171-3175, doi: 10.1109/ICASSP.2018.8461568.

Xanthi S. Papageorgiou, Georgia Chalvatzaki, Athanasios C. Dometios, Costas
S. Tzafestas. “Human-centered service robotic systems for assisted living,” In Proc.
International Conference on Robotics in Alpe-Adria Danube Region 2018 (RAAD
2018), Jun 6 (pp. 132-140), Springer.

Xanthi S. Papageorgiou, Georgia Chalvatzaki, Athanasios C. Dometios, Costas
S. Tzafestas. “Human-centered service robotic systems for assisted living,” In Proc.
International Conference on Robotics in Alpe-Adria Danube Region 2018 (RAAD
2018), Jun 6 (pp. 132-140), Springer.

170



C10 Moustris George, Nikolaos Kardaris, Antigoni Tsiami, Georgia Chalvatzaki, Petros

C11

Koutras, Athanasios C. Dometios, Paris Oikonomou et al. The i-Walk Assistive
Robot: a Multimodal Intelligent Robotic Rollator Providing Cognitive and Mobility
Assistance to the Elderly and Motor-Impaired. 13th International Workshop on
Human-Friendly Robotics (HFR 2020) October 22-23, 2020, Innsbruck.

Xanthi S. Papageorgiou, Athanasios C. Dometios, Costas S. Tzafestas “Towards
a User Adaptive Assistive Robot: Learning from Demonstration Using Navigation
Functions” 2021 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS) (Under Review)

171






