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Abstract

This dissertation focuses on the analysis and design of content placement approaches in com-
plex networked systems, i.e., cyber and cyber-physical networks, via efficient monitoring and
inference of its constituents’ interplay. Despite the fact that the types of networks under
examination exhibit diverse and distinctive features, the proposed methods share a common
objective, namely the utilization of minimal amount of resources in order to track, infer
or predict the explicit and implicit interactions among the entities of a network, which are
governed by complex constraints. Inspired by methodologies employed to solve problems of
coverage in physical networks, such as Wireless Sensor Networks (WSNs), this thesis extends,
through Social Network Analysis (SNA), the notion of coverage in cyber and cyber-physical
networks. Problems of information tracking and inference, along with influence maximiza-
tion and content allocation are mapped to covering and packing problems of combinatorial
optimization, which are known to be NP-hard. To address the former, heuristic approaches
as well as algorithms with provable approximation guarantees are designed and analysed.

The concept of coverage is introduced in WSNs as an important metric, which measures
how well the network monitors a region of interest. In this thesis, the problem of computing
a minimal amount of WSN resources to monitor an obstructed field of interest is formulated
as a topology control problem. A framework based on computational geometry is introduced
and two algorithms, a centralized and a distributed one, adjust the sensors’ sensing ranges in
order to maximize the ratio of covered area to consumed energy, while ensuring a minimum
coverage percentage.

Monitoring in cyber networks, such as Online Social Networks (OSNs) is the process of
tracking the users’ interactions, as captured by the information flow. In networks of billions
of users, it is of great significance to reduce the resources required to infer the developing
diffusion dynamics. The problem of finding a minimal set of monitoring nodes is mapped
to finding a maximal independent set. A greedy approach is developed for its solution,
followed by a graph coloring scheme that enables information tracking and a statistical
learning technique, which infers the information diffusion graph.

Approaches of monitoring or inference of information propagation can be integrated

into Recommendation Systems (RSs). These RSs are known as Information Diffusion Aware
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Recommendation Systems (IDARS). This dissertation treats information diffusion aware rec-
ommendations as a content allocation problem with user coverage constraints. An IDARS is
designed to find a subset of users to assign them various types of content, such that eventu-
ally every user achieves a coverage goal, i.e., all users in the network receive, via information
dissemination, at least a minimum number of recommendations, while the total relevance of
users to the recommended items is maximized. This is translated to a generalization of the
Minimum Weighted Set Cover Problem and a greedy approximation algorithm is proposed
for its solution.

In Mobile Social Networks (MSNs) and platforms of streaming services the information
on users’ features is frequently acquired by RSs. This information along with the users’
mobility patterns are exploited to derive local communities and encourage collaboration in
content sharing. According to the users’ physical and social ties and by acknowledging the
impact of recommendations in users’ content requests, the problem of content placement at
edge caching networks and content sharing via Device-to-Device (D2D) communication is
investigated under various objectives. At first, allocating items to a physical network, i.e., a
caching network, is mapped to a problem of cache hit ratio maximization and the solution
is approximated by a dynamic programming based approach. Next, content allocation is
studied in a cyber-physical network formed by a caching network and a platform of streaming
services. In particular, D2D-based opportunistic offloading is studied jointly with cache-
aware recommendations. Multiple criteria based on user mobility patterns are proposed to
determine the user equipment participating in the offloading. Expressing the user Quality of
Experience (QoE) as a function of user-content relevance and its expected delivery delay, the
problem of caching and recommendations is treated as a user QoE maximization problem. It
is addressed by a framework that solves sequentially the problems of minimum delay content
delivery, content placement in caches and cache-aware recommendations, ensuring that each

user will be recommended of highly preferred content with minimum delivery delay.

Keywords: Complex Network Analysis, Information Diffusion, Monitoring, Inference,

Recommender Systems, Socio-aware Content Allocation, Mobile Edge Caching.
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Ilepirndn

H moapoloo dudaxtopixr] SLoTELBY) EMLXEVTPWVETAL GTNV OVAAUCY XL TO GYESLIOUO TEYVIXOV
avddeone mepieyopévou oe alvieta Bixtua, PECK TNG AMOBOTIXAG ToEUXOAOUUINCNC XoU TOU
oupnepacol T Aettovpylog twv cuoTaTxdy tous pepyv. Ilupd to yeyovoc ét ov ee-
Taléuevol TUTOL dXTOWY TAPOLCLALOLY ETEPOYEVY] YUPUXTNELOTIXA, Ol TPOTEWVOUEVES LEYodoL
avamTOoooVToL GE €Val X0Wv6 TAaiolo oL UTayopelEl TNV EAAYLOTOTOINGT TWV YENOWLOTOL0U-
HEVWY TOpwY Yiot TNV apaxololinom, v tedPiedn B 10 CUUTERAOUS TLWV AAANAETLOPICEWY
HETAED TV OVTOTHTWY Tou T cuVoToly. Me évavopa v avdntuln yedodoloyldy yio TNy
eniluon mpofnudtey xdAudne oe dixtua TOu PUOKOY YGEOV, OTKS aVTd TwV Aclpuatwy
Awodntipev (AAA), 1 évvour e xdhudme enaveletdleton péow e Avdhuone Kowwvixv
AxtOnv xou enextelvetar 6 GAAOUC TOTOUC BIXTUMY OTKS Tol BiXTUA TOL XUPBEEVOYOEOL Ko
Vde won tar xuPepvo - puowd dixtua (KPA). TTpofAAuate Ly viAATNONG %ol CUUTERACHOU TNS
duddoong TAnpogopiog, ueyiotonolnong enpporc, avdleons TEpLEYOUEVOU GTOUC YENOTES NAEX-
TEOVLXMY XL XWVNTOV UECKY XOWWVIXAC DXTLMONG XaddC Xl TEOCWELVAC AnoUXELCTC AU-
100 ot dxpa Tou dxtdou avuotoyilovton ot Yvwotd NP-dvoxohra (NP-hard) mpoliuota
xdAudme xou cuoxevaotog, i Ty enthuon Twv omolwy, BlatundvovTaL, avahdoVTaL Xl ELOA-
0y0oUVTaL €L TPOCOUOLCEMY, EVRETIXOL XL TPooeEYYLoTIXOl olydprduoL.

H évvoua g xdhung cuvavtdton ota AcUpuata Aixtuo AleUnTrieny K¢ oNRavTXT UETEXT
yiot Ty aZlohdynon e anddooic Toug atny mapoxoholinan/xataypaph GUoXKOY 1) TepIBo-
AOVTIXOY GUVITXGY oE Wia TTEpLoy T eVOLopEpovTog. Acitoupyixol xou evepyeloxol teploptopol
TWV AUoUNTAROY XIS Xl YEWUETELXES IBLUTEPOTNTES TWY TEPLOY WY EVOLUPEROVTOS GUVLGTOUY
onuavTXég tpoxirioel otn Bedtiotonoinon tng anodoong twv AAA. AauBdvovtog urodn Toug
TOEOTEVE TEPLOPLOUOUE, DUTUTOVETOL €val TAdiolo yiot T BEATIOTN Xdhudn un xupTiv Teplo-
ywv ano AAA, to onola cuyxpotolvTon and oucUnTrhees Ue petoBodidpeveg oxtiveg alodnong.
To npotewvoyevo mhaiolo emAveL Eva TpdPAnua eAEyyou Tomoroyiag ye oTéyo T pUIUoN TeY
axtivev alodnong Twv awoInThRenY Yio TNV EAAYLOTOTOMNOT TNE EVERYELIXAC XUTAVIAWCTNE TOU
dixtbou. Aonowdvtae yedddouc e umohoylo e Yewpetplag, dVo dminotor alybprdpot,
EVOC OLYXEVTPWTIXOC XalL EVOC XATAVEUNUEVOS, GTOYEVOUY OTY) UEYLOTOTONGT TOU AGYOU TNG
AOUAUTITOUEVNC EMLPAVELNG TPOC TO aVT(OTOLYO EVERYELIXO XOGTOS, UG TOV TEPLOPLOUS TNG Bla-

THenone evéc eNdyloTouv T0G0GTOU XGALYNG TNS TERLOY TG EVOLAPEROVTOG.
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H vyvnhdrnomn oe dixtua Tou xUBEEVOYMEOU XAl CUYXEXPUIEV GTO NAEXTEOVIXY UECA XOLV-
wvng dxtdwaong, avagépeton ot diadixacio TS mopoxolotiInoNnc-tapaTiENoNS TWV AAAT-
AETUBEACEWY TV YENOTWY, OTWE ALTEC AMOTUTOVOVTAL UECH Omd TNV avToAhay TAnpogoploc.
Ye dixtua mou anoptiovton and Sioexatopudplo ¥eRoTes e Towiha YopoxTnelo Txd, xplvetol
anapafTnTn 1 avETTUEN PEVOBONOYLDY TEOGBLOPIOHOY TV TORWY YLo ATOBOTIXY TapaTHeNoN
TRV IANAETUOPACEWY X0 CUPTERAOUOU TWV UNYAVIOUOY Biddoong TAnpogoplac. XNy tapodoa
datelPr), 0 TPOGdLOPLOUOS TWY TOPWY AvTIIETOTILETAL (¢ TEOBANUA EVPECNE EVOC PEYIO TIXOU
aveZdpTNTOU GUVOROL XOUBWY Xt Evag eupeTIXOS ahYOEIHOC BlaTUTVETOL Yot TNV ETiALGT)
tou. H mapoxorolinen tng mAnpogoplonic dSudboone mpaypatomoleiton Ue €vol oyfua yeo-
HATIOMOU aXUOY OE YRAPOUS EVW, YLl TO GUUTERAUOUS TNG SUVOXNAC TNE, OVOTTUCOETOL WLdl
TEYVIXY OTATIOTIXAC Uadnome.

Teyvixéc oupnepaopob 1 TedBAedne tTne TAnpopoploxic diddoons Uropoly va evowpatwioly
070 GUC TAYATA CUGTAGEWY (2X) TOU AELTOLEYOVY OE TAUTPOPUES XOWWVIXTS dixTiwong. Autd
elval YVWOoTd ¢ CUSTAUTH CUCTACEWY e eTtlyvwon tne ddyuone Tinpogopiac (BXEAIL).
H avtohhayn tAnpogoploc petal twv yenotov oflonoteitar and éva LXEAIL ¢ emxovpndg
UNYOVIoHOS cuoTdoewy. Yo autd to npiopa, 1 oloTaoN TeplEYOPEVOL GTOUC YPNoTeS HECWY
AOWVLVIXTE BIXTOWOTNE BLATUTOVETAL ¢ TROBANU TEOCBLOPIGHOV EVOE GUVOROL YENTTHOV YLoL TNV
avéieor tepleyopévou Ue TpdTo (OOTE VoL HeYLoTonolelton, HEow TNS TANEOQOopLIXNC BLdyuong, 1
GUVOAXT| oyeTxdTNTA YENOTN-TepleYopévou oTo dixtuo, e€aoparilovtac mopdAAnia yior xdde
xenotn, évav ehdyloto apldud mpotdoewy. Autd avtiotolylletan o éva Yvwotd NP-hard
TpoBANUa xdALME oE Ypdpoug Yio To 0Tolo AvVaTTUGGETAL o avahDETOL VEWENTIXG EVOC TPOTE-
YYLOTIXOS ahybprduoc.

Me Bdon Tig TROTWACES TV XPNOTOV OE MEPLEYOUEVO, 0TS oUTEC EEAYOVTOL XL Dlaop-
(PAOVOVTAL oo T CUGTAUAT CUGTAoEWY, e&etdleTon 1 avdldeor mepleyopévou e dixTud GTo
(PUOLXO YWPO. DUYXEXQWEVA, UEAETATAL 1) TEOCWELVTY ATOUNXEUCY) TIEPIEYOUEVOU GTA GXEOL TOU
OTOOoU, 1 TUEEBOGT) TOU GTOUC YENOTES XIVNTWOV PECWY XOWOWIXAG BIXTVKONG 1) TAATPOPUMY
TEPLEYOUEVOU POTC XAl O BLoOLRUoOC TOU PETUEY TV YeNoToy péow Tng ancudelug emxol-
voviog Tov “éEunvwy” guoxeuwy toug. T'ia tov xadoplopd Twy oyéoewy TWV YENoTWY eEETd-
Covton mépo amd TIC TPOTUNOELS TOUS, 1) VECT TOUSC 6TO PUGLXS Y(DPO Xl Ol TEYVLXOL TEpLoptopol
TV CUGXEVGY Toug. Bdoel autdy, BlatumddvovTal xplthiplo ETLAOY G GUGXEUMY YLo TEOCWELVN

anodixevon mepleyopévou. XN cuvéyela eEetdletar 1 TonoYETNON TEPLEYOUEVOU OTAL dXpa



Tou BTOoU ¢ TEOBANUA PeYLIoTOTONONE TOL AdYOoU eusToylag TNG TEOCWELVTE anoVrxevoTC.
Auto exgppdletar ¢ éva YVOoTO TEOBANUA GUOKEVAGTHS Xt ETLADETOL UE Lol TROGEYYLOTIXT)
uédodo duvouLxol TEOYEUUUATIONOU.

Télog, navddeon nepleyopévou ueletdton o€ xUBEEVO-PuUOLX dixTUN WS BLEBIAo TUTo TEOBAT-
ot xdAudng, pe TNV TedTn SidoTaoT Vo apopd ot dixtua Tou oynuatilovial 6To QUOLXS YWEO
xo TN devTepn oE dixtua Tou XUPBEpVoYOEoU. Avayvwpelloviac Ty eidpaoT TwV cLCTACEWY
TN BOEPKOY) TV TEOTNOEWY €VOC YENHOTN, 1] TOTOVETNOY MEQLEYOUEVOL OTA Gxpa TOU
dutbou avtipetoileton and xovold YE TNV TEAYUATOTOMOY CUGTACE®Y 6TOUS YPHOTES XIVN-
TOV PECWY XOWOVIXNC BIXTOWONS. 3TN QuoixY) BIAoTAOT), EPELVATHL 1) TER(MTWON NS TEpL-
OTACLOXNG EXPOPTWONS BEBOUEVOV GE GUGKEVES XENOTWY. LTNY MeRINTWor auTy, oL YeHoTeg
elvon Blatedetuévol va Teplévouy €va eDAOYO0 YPOoVIXS BLACTNHA E6C GTOU GUVAVTACOLY XATOoLL
oLOXELY) ToL €YElL AmOUNXEUUEVO TEOTEWVOUEVO TEQLEYOUEVO. Xx0TOG elvan 1) ueyioTomolnom
NC MoLOTNTOC TG eunelploc Toug, M omolo exPedleTol ¢ GUVEETNON TNE OYETXOTNTAC TOUG
OTO TPOTELVOUEVO TIEPLEYOUEVO X0l TOU AVUUEVOUEVOU YpoVou Tapddootc tou. To mhalolo mou
avoantiooetal emAleL Bladoyxd To TeoBARUaTa TOU EAGYLOTOU YEOVOU TopddooTC Teple)opé-
VOoU, NS avaeone TeEpLEYOUEVOL OTIC TPOCWPELVEC UVAHUES XOL TV CUCTAGEWY OTOUS YENOTES.
Méow autol egaocpariletar nwg xdde yehotne Vo AdBel, otov eAdyloto duvatd ypdvo, éva

CLYXEXPWEVO apldud CUCTICEWY PE TIEPLEYOUEVO TNG TEOTIUNCHS TOU.

Ag€eic - KAswdid: Avéhuon Tovdetwv Auctioy, Awddoon tinpogopiog, Houpaxohotinoy,
Yuunepoaopde, Xuothgata Yuotdoewy, Avadeon Ilepieyopévou, Ilpocwpvi Anodrixevon ota

Axpa tou Awctbou.
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Extetopévn neplAndn ota eAAnvixd

H toyelo avdmtudn vEwy UTOBORMY XIVITWV SIXTOGY XAl TEYVOAOYLWOV AOYLOUIXOU €Y 0UV 0B1YY-
OEL GTO OYNUATIOUO TOMOTAOXWY, SLUCUVOESEUEVWY UG TNUATWY, To OTtolal TPOCPEEOLY ToLxiAeg
unnpeoiec. O aprdudc TV atdu®yY TOU CUPPETEYOLY X0t OAANAETUSPOVY e TéTol GUC THUATA
auEdvetan Slopxde, mapdyovtac dedouéva eEateeTinol 6YXoU, Tou EENEPVOUY TNV UTOAOYIO TIXT
BUVATOTNTA TWV CUYYPOVWY TEYVIXGY avdAvong xan eneepyaociac. H mopoloa Sidoxtopuxr
OLTELPT| ETUXEVTRPOVETOL GTO GYESLIOUS TEYVIXWY avdleong mepieyouévou oe cuvieta dixtua,
H€ow NS AmoBOTIXAC TTAPUXOAOVUNGNE Xol TOU GUUTERACHOU TNG AELTOURYIUS TWV CUC TATIXWY
Toug peptdv. llopd to yeyovdg ot ou e€etalduevol TONOL SXTOWY TAUPOLGLAlOUY ETEROYEVT
YOPOXTNELO TXE, OL TPOTEWVOUEVES HEVODBOL avanTOCOCOVTOL OE €Val XOLVO TAXLGLO TOU UTAY OpeVEL
TNV ENAYLICTOTOMGT TWY YENOULOTOLOUUEVRY TIOPWY YLoL TNV TapoxoAoldnaT, Ty npoBiedn 1
TO GUUTERACHS TWV OAANAETORACEWY UETAED TRV OVTOTATWY TOU T cUVIoToLY. Me évauouoa
v enihuon TteoBAnudtwy xdAudng oe puoxd dixtua, drwe auTtd Twv Aclpuatny Alcdnthiewy
(AAA), n évvola tne xdAudne enaveZetdleton péow e Avdhuone Lovietwy Awmtiony xou ene-
ntelveton o€ dAAOUE TUTOUC BIXTUWY, OTWE Ta S{XTU TOL XUBEEVOYWEOUV XIS xoL T XUPBEEVO -
puowd dixtua (KPA). TTpofAfuoto tyynhdtnone o cupnepaoiol tne diddoong TAnpogopiac,
peYLoTOTONONG EMEEOTGC, AVADECTC TEQIEYOUEVOL GTOUC YPNOTEC NAEXTEOVIXWV XU XIVNTOV
HECKY XOWVWVIXNC BIXTUWONG X ol TEOoowEVAS amodixeuons autod GTa dxpa TOU di-
xtov avtiotoyiloviar oe NP-dvoxoha (NP-hard) npoBifuota xdhudme xou cuoxevaocios, yia
v enthuon Ty onolwy, Sltutdvovtal, avallovton xat adloAoYoUVTL HECHL TPOCOUOUNCEWY,
gupeTIXol Xl TPOCEYYIGTIXOL oAy OELIUOL.

Y10 Kegdhawo 1 nopoucidlovton ta xivntea xou 1 ouufolr tne napoloog dlatplhc otny
un6 peAéTn epeuvnTiny Teploy ). Eniong, nopatideton plo ohvtoun neplypaptr) tng Sounc tng.

Y10 Kegpdhowo 2 datunevoviar oplogol twv Paoucdv evvoldv e Ocewploc papn-



HATWY xou YETPXXOY TG Avdivong Lovietwv Auxtinv, 6twg o Padudg xéuBou, to wéco
UR%O¢ HOVOTATION, 0 GUVTEAECTAC opadonoinong, 1 xevtpxdtnta Boduod xou eyydTnTaC Xa-
B¢ wou 1 evdlopeonr] xevipxdtnta.  Ou yetpés awtég amoteAoly ta Boaowd otolyela yio
™V avdhuon tov eéetaldpevey TEoBANUdTLY xodne xol Twv YEYOBOAOYLOV TOU AVITTOGGOV-
o yia Ty enthuoy) toug. Eniong, yiveton avopopd oTic mo yapaxtnelo Tixég dopée cuvleTwy
B-xTV®V oL cuVAYTOVTIL 6TY dtatEBY), oTic WOTNTES Toug, dTwe autéc Tpoadlopilovta and
Tig YeTpéc Avduone Liovietwv Axtdwy cuurnepthouBavouévmy tne xevipdtntag Poduold
O EYYUTNTAC, TNG EVOLUUETIXNS XEVTPIXOTNTOC, TOU CUVTIEAECTY] OHABOTOINONE Xl TOU EALYL-
GTOU UAXOUG LOVOTIATION, X3¢ Xl 6TO avTIGTOLYO PadNUATIXG TOUC LOVTERD. LUYXEXPWIEVA,
TEPLYPAPOVTAL Ol IBLOTNTEC XYoL T TLO OVTITPOOWTEUTIXA UOVTENN TWV OYECLUXDY OIXTOWY
uxpoV-x60Uou xal eheVepnc-xhipoxag, To onola YENoLLOTOLVVTAL YIol VO AVITHEAC THCOLY Ta
nhextpovixd péoa xowwvixic dixtiwone. Télog, avalbovTol To YapaxTNELoTIXd Tou Tuyolou
YEWUETEWO YRAPOU, WS xUPLHEYOU LOVTEAOU TOV YWEIX®Y BIXTO®Y, To ontolo emMAEYETOL OTNY
TEOVOA YLOL TNV AVATUPAC TAUOT) TV EEETALOUEVRY PUOLXMY BIXTOWY.

Y10 Kegdhowo 3, e€etdleton 10 pdPinua tne anodotixnic napoxoholinone/xataypaphc
ouUBavTLY and puoxd dixtua xou cuyxexpiuéva, and Actpuata Aixtua Alodnthieny (AAA).
‘Eva AAA anotelelton and éva 6OVORO evepyeloxd AUTOVOUWY XOUBwY ToU TapaTnEoly Xol
XATAYPAPOUY TIC HETAUBOAEC OTIC PuUOIXEC 1 TepBolhoVTIXES GUVITXEC TIOU ETUXEATOUY GE WLd
neployn evdlagépovroc. Aaufdvovtag unddn toug Aettoupyols (emxotvovia, aiodnon) xou
evepyetaxols (Sudpxeta Lwhc unatoplac) Teploplotole Twv ateINThemY, xadoe xot TNy Urapsn
AVPTOV aBLAPAVOY EYTODIWY EVTOS TN TEPLOYTC EVOLUPELOVTOC, DIATUTMVETHL €Vl TAXLCLO Yot
™ BEAToTn XxdhLPn un xueT®V Teploywy and AAA, ta omola cuyxpotolvtal and ac¥nTieEg
e petaBariopeveg axtivee alodnonc.

H nepioyn evoiagépovtog opileton vor elvor (Lol TETROY wViXT TEELOY T TOL ETNESOU, EVIOE TNG
omolag To EUTODLAL AVATOPIO TOVINL WG UN-0AANAOETUXAAUTTOUEVA xUETd ToAvywva. H tomo-
Vétnon Twv eunodiny elval anotéheoua pag otoyac e dladixaciog mou e€acpolilel twe Ta
teleutaior Bev mopdyouv o Slopéplon e meploy e evdlagépovtog. H xdhudn and to AAA
emiyelpeitan oty eheliepn omd eunddio meploy Y| 1) omolo avaPEPETAL WS TEPLOY T UTO Xdhu.
To cbvoho Twv acUNThewy yoviehomoleital and €va GUVOAO GMUEIY TOU AVAXOLY GTNV UTO
xdhugm meproy. H 9éomn toue xadopileton amd pla Siwvupind otoyaotixd Stadixooio.

Foe tnv xdhudm tov aointhieny, yenowomoleltar To duadixd Yoviého Bloxou cUUPLVA



ue to omolo €vag oauoUnTipag xoAUTTEL Ot Tl oMuela TG UTd xdAudr eployfic Tou Beloxo-
vl oty Topn Tou Bloxou ye xévipo Tov awodnThpa xou oxtiva v axtiva alodnong tou
awoUNTARY, Xl TOU TOAUY®OYOU opatdTNTac Tou atodnthpa. Metd tnv tomodétnoy Toug, ot
aodntrpeg mopapévouy otatixol, ue uetaBariouevr oxtiva alodnone mou AauBdvel duoxpltég
Tég xou otadepr| oxtivar emixowvwviog, 1 omolo SlooppiveTan TEpaaTiXd oty evotnta [3.3.5]
vou éyel T 2.5 Qopéc peyalbtepn tne péylotng axtivag alolnong npoxeévou vo e&oo@ahile-
TOL AOUPTTWTIXE 1) CUVEXTIXOTHTA TOL dixTlov emxowvwvias. Aedouévng tne otadephc axtivag
ETUNOLVWVIOC, GUVETIEC X0 TOU G TAIEPOU ETLXOWVWVIAXOU XOGTOUS, 1) XATAVAAWOY) EVEQYELNS TOU
duxtbou avgdveton pe v adinom e oxtivag aiotnone twv aodnthewmy. Tty xatavdhwon
evépyelog, uoVeTelton To TETPAY VXS ovTého Tou diveton ané th oyéon (3.3).

To npotewvéuevo mhaioto emhiel éva TEdBANUA EAEYYOL ToToloylag Ye oTéyo 11 ehduion
TV axtivev aioinong Ty aoInThpwy Yol TNV EAYLOTONOINON TN EVERYELUXNE XATAVIAWOOTG
Tou dixthou. AZlonowwvtac uedddoug xou EVVOLEC TNC UTOAOYLOTIXAC YEWUETElOC, OIS QUTH
Tou Tedlou opatéTNTaC ToU exgpedleton otn oyéon (3.4), Bvo dmhnotol ahyderduol, évog xe-
VTPOTIOLNUEVOC X0l EVUC XATAVEUNUEVOC, EMBLOXOUY T UEYLOTOTOINGT TOU AOYOU TNS XAAUTTO-
HEVNC EMLPAVELIC TPOG TO AVTIOTOLYO EVERYELUXO XOGTOC, UTO TOV TEPLOPLORO TN SLathenong
EVOC EAGYLOTOU TOCOGTOU XFALPNG TNG TEPLOYNE EVOLUPEPOVTOC, OTwe aUTd expedletal oTr
oyéon (B.8).

Yy evotnta TEQLYPAPETOL O CUYXEVTPWTIXOS ahyoplduog, o (Jeudoxmddlxasg Tou
omnolov, napatidetor oV exdVA IMpdxerton yior évay emavoknnind ohydprduo mou, op-
Yxd, Bewpel pndeviny| oxtiva alodnong yio xdde cuointrpa. e xdde enavdindr tou emhéyel va
awgroel xotd wo otadepr tocotTa Ar Ty oxtival Tou e N TR TOL GNUELIVEL TO UEYARDTERO
Aovo ad€nong e xGAVYNG Un XUAVUUEVNE TEploy S TEOS TNV AdENCT TNE EVERYELXNS XOTOVIA-
wong mou empépet  avinomn Ar g wctivog Tov aodnTtipa (3.12). O Adyog autée npoodiopile-
tou amé 1 petpend (B.6). O ahydprduog tepuotiler dtav emteuydel éva ehdyloto TOC0GTE
xdhuhng g und xdAum Teploy .

By evomrof3.3.4 avoletan 0 xotaveunuévog ahybprdpog xou o avtiotolyog Peudoxddxag
Blvetol oTNV Eodva @ O olybpripoc autde déyetar we GpLoUo Evay YPAPo eE0pTHOEWY UE
x6uBouc Toug ouoUntripeg, oL omolol avanTicooUY oxuY HETAEY TOUG OTAV 1) TOUH TV Tedlwy
0pATOTNTAC TOUG TAPAYEL Vol Un xEVe GUVORO. XTOV XATAVEUNUEVO olybprlduo, xdlde xou-

Bog¢ uetofBdiher aveEdptnta Ty axtiva afodnorc Tou, emec 6Tou To GloTNUA cUYXAVEL oE Ui



avddeon oxtivwy. Xe xdde emavdindn tou ahyopldupou, xdie xéuBog vroroyilel To nococtd
NS TEPLOPLOUEVNE TeptuéTpou alodnotfic Tou mou diveton and tov tono (3.13)) xou to omolo xa-
Yop{letor and 1o Tpéyov medlo opatdTNTAC TOL ToL diveton and TN oyéom , T EUnOdLL
xat To 60vopo TNe TEployc EVOLOpEROVTOS. LT cLVEYELX, xdUe xOpfoc ouyxplvel, Yo adEnom
e axtivac tou xatd Ar, tov mpoxUmtovta Aoyo tne adénong tne xdhudne un xahuupévng
neployfc mpog Ty avtiotolyn alénon e evepYeLloxic XUTAVAAWONS, HE Tov avtioTolyo Adyo
TOV YELTOVWY Tov. Avdueoa oe avtole, exelivog pe ) ueyohltepn Tiun emhéyeton var auERoet
v axtivo alodnorc tou xatd Ar. ‘Otav t0 T0600Td TNE TEPLOPLOPEVN S TEPIUETEOL aioUnong
Eemepdoel yio eNdyiotyn npoxadoplopévn Tiwn, T6Tte 0 x6PPoc mael vo peToBdAAEL TV axTiva
alodnorc Tou.

O xevtpomoinuévos xon 0 XoTaveunuévog ahydptdpog avokiovtar xou a&lohoyoluvton HEaw
TROCOUOLCEWY GTNY EVOTNTA O yetpixéc mou yernoiwonolodvton Yo TNV aglohdynom
e enfdoorc Toug elval To TOGOCTO TNC GUVOAXTE XUTAVAAWGCTG EVERYELNS TOU BIVETAL OO TOV
ToTo xan 1 u€om axtiva alodnone twv aiectntipwy. To aroteréopata Tou TEoXONTOLY
avadEYOOUV TNV OMOTEAECUATIXOTNTA TWY TEOTEWVOUEVWY GYNUdTLY otny xdhudrn tou 90%
xon 95% TNg mepLOYAC UTH XEALYN Xou TNV UTEROY T TOUC WS TPOS TNV EVERYELNXT XUTAVAAWOT)
€vavTl amholoTepwY oYMUdTwy avddeone axtivov alodnong.

Y10 Kegdhowo 4, n évvola e xdAudne emextelvetor oe nhextpovixd dixtua xou ou-
YHEXPWIEVOL OTA NAEXTEOVIXE U€oa xowvwwixng Bixtiwong. O dpog tng yvnAdinong elodye-
Ton Yo vor teplypdiber T Sodixacia T mapoohobinong-topdtEnong TwY dAANAETIOPAoEWY
TOV YENOTOV UECKY XOWVOVIXNG SIXTOWONG, OTWE AUTEC OMOTUTWVOVTAL and TNV UETAED TOUg
avtodhoyy) Thnpogoplag. Xto TAalolo owTd, avamTtOCoETOL Eval aAYopLIUXG Oy A Yiol TNV
ENYLOTOTOMNOT) TWY TORKY OV ATAUTOUVTOL TEOXEWEVOL Vo eTiteuydel 1) amodoTuxr napathenom
NG SLEBEAONG TV YENOTWY XL XAT' ENEXTUCY TOU GUUTEQUOUOD TV UNYUVICUOY BLddoong
TAneogopiag ot Eval UEGO XOWVMVIXAC BIXTLWONC.

Apyixd, 0 Tpoodloplonds Twy TépwY, dNAUDY TV YENOTWY Y TOUC 0Ttoloug To GUCTNUA
EXEL YVWON TNE dpacTNELOTNTAE Toug, ol omofol Yo avagépovtan we xéufol und emthenon, a-
vipetonileton o¢ éva npoBinua edpeons €vog EAAyLOTOU UEYLOTXOD aveEdpTnTou GUVOAOU
eVOC YpApou ot Evag eLpeTnde ahyoprdupoc (ahydprduoc|l)) Swatundveta Yo Ty enilucy Tou.
O ahydprduog tadivouel oe @divovoa celpd Badpod xouBou Ghoug Toug xépPoug Tou duethou

xou emAéyel Sladoyixd vo eVidEel 6To GUVOAO TV XOUPwY UTO EmTAENCN TOV XOUPo UE TO



peyorlTepo Badud, Tou onolou 1) YELTOVLE eV TEQLEYEL XOVEVAY XOUPBo UTO ETLTHENOT.

Axoloudel 1 Blatdnwon Tou povtéhou TG pepAc xataypaphc TS TAnpogoptaxic Sud-
B00NC UECW EVOC GYAUNTOC YPWHATIOLOU axUwy ot Ypdpous tou Baotleton oto eyw-dixtua
TV x6uPuv vnd emthenon. Buyxexpwéva, xdde xouBoc vnd emthenon avtiototyiletu o
éva yphua, Ue To onoto ypwuatilovto ot tpooxeipeves axpée tou. Io pio oxur| mou dev elvan
npooxelyevn oe xo6ufo und emitrenom, anodldetan elte €va VEo ypdua, lte xdmolo undpyov
xewua, opxel To TeEAeLTAO Vo elvol BIAPOPETIXG amd AUTA TWV UTOAOITOV UXUWY TIOU TEOCKEV-
Tol GTOUS XOUBOUS TOU GUVBEOVTOL e TNV UTO e€étaoT axpr]. Me tov tpdno autd emtuyydveton
1) AVATOEAO TUOT) BLAPOPWY ETUTEDNV IBLWTIXOTNTAC OE EVOL UEGO XOWWVIXHAS BIXTUMOTC.

INo ™ povtelonolnon tng mAnpogoplaxtic diddoong, Yenowonoleltar Evae ouepOANTTOC
Tuyatog TMEPIMATOC OTO YPAPO NG TANEOPOPLIXTC BABOoTE, 0 OTolog CUVIGTY éva TaEdY oV
UTOY AN TOU dpyxo Yedpou Twy Yenotwy. O mbavétntee petdBacng tou Tuyalou mepl-
notou divovra oméd 1 oyéon (1), Eriomg, dwrturndvovion pepolnmtixol Tuyador mepinotol
ue uepoindla mou Baciletor oty Euxdelbio anéotaon petalld twv xoulnv X0l 0TV XE-
vrpudtnto eyyotntog ([£.3), umoloyiouévec oo Yedyo diddoone Thnpogoplac. Kdde nepiratog
avamaplo Td TN SLddooT uiag xAdone mhnpogoplag mou diéneton and SopopeTint dSuvayixy| e€d-
mhwong oto dixtuvo. Kdbe gopd mou pio xAdorn mhnpogoplag, éotw I; @tdvel oe xdnolo xéuo
UTd ETULTAENGT, 0T Sk, oPRVEL va {}Voc o1 popeh wac tpumhétas (I;, ¢, q), omou ¢ elvou m
YoV oTiyun mou 1 tAnpogopla I; @tdvel otov x6uPo s, xat ¢ 1 oxohoudio TWV YEOUATLY
TWV axPoV Tou difhde 1 TANpogopia €wg OTOU QPTACEL GTOV XOUBO UTO ETUTHENON Sj.

I to oupnepaoud e SLdyuone Twy xAdoewv Thnpogopliag, avantiooetal yia pedodoroylo
mou oLVBLALeEL TEXVIXEC omoVodEOUNCNE Kol CTATIOTXAC Wdinong. Ocewpdvtac to {yvog
(I, t, q) xou Eexvadvtog and 1o TEAeUTao Ypodua Tne oxohoudiac ¢, Tou avTloToLyEl oE ot oxun
Tpooxelpevn oTov x6pfo und emithenoT S, xdVe yewua aviiototyileton, Ye Bdon tn dopr Tou
aEYol BIXTOOU TV YENOTWY, O Wla oxuh Tou dxtbou didyuong Thnpogopiag. e moAkég
TEQPLTTWOELS, 0 axp31ic ocuunepaoudg e omotodpdunon elvon adivaTog, OTwe oTny TepinTwo
oL 1) SLddoom wog xhdone TAnpopopiog Eexwvd and Evay x6UPo Tou Sev avixel 6To GUVORO TWV
uTé eTLTHENOT XOUPWY Xou QTAVEL, o€ pio Lovdda Tou ypdvou, ot éva xéufo und emthenon (éva
TapddeLYUo TéTolog Tep(mTtwone nopatideton oTNny xdva ) o TV avTWETAOTLON QUTOY
TOV TEPLTTOOEMY, SLATUTOVETAL EVol oY Uol oTaTloTixhe udinone Paotlouevo otn cuyvotnta

nou dlaoy{leton wior o) and v und e€étaon xhdon Thnpogoplac. H oyetind cuyvétnta



dudoylong wag axpnc xan 1 avtiotolyn xevipwdtnta tou oyetiletar Ye TN cuyvoTnTa deLng
e xAdone mhnpogoplac o éva xouPo, unoloyilovtow and toug ToOTOUC ol o-
viloTolya. Bdoel auttdv Twv UETEIXOY, TO TEOTEWOUEVO O NI ETAEYEL Amd TO GUVORO TWV
uToPNELLY axpdY, SNAUDY TO GUVORO TKV UXUMY TOL 0EYLX00 YEAPOU TOU TPOCXEWVTAUL OTOV
eZetalbuevo xoufBo und enlBredn, Ty axyn Ye ™ yeyahltepn ouyvétnta Sdoylong and tnv
ouyxexpWévn xAdor tineogoplac. To oyfua autd cuyxplvetar pe wio TdavoTixs TEX VXY OToU
Yiot TO CUUTEPAOUS TN Bddoong, emAéyeTol xde popd Tuyala xou ouoldpopa wio oY) amd
TO GUVOAO TOV LTOPHPLOY OXUDY.

To mhaioclo aflohoyelton PESw TEOCOUOLOOEWY e GUVIETIXG (oYEoLONd Xan Ywexd) xou
TEAYHOTIXG. BIxTUa PE YEN\OT TWV UETEIXWY TN oxplBelag xou avdxhnong mou agpopoly 1660
OTO aPYX6 U1 XATEVTUVOUEVO BIXTUO TWV YENOTWY 600 Xal 6TO XATELYUVOUEVO BixTUO TNg
diddoome mhnpogoptac. O petpués divovtan améd tic oyéoec ([L6), (L7), (£3), (£9). Ta
TOEOY OUEVOL OO TEAEGUOLTA ETULONUOLVOLY TNV ENBRUOT TWV YAPAXTNELOTIXDY, OTWC 1) XUTAVOUT
Tou Baduol xéuBou xan o AP0 TV LoVOTaTLOY Pfxoug 2 xa 3 petald xéuBwv und eniBiedn),
mou mapouctdlouy ol e€etaldpevol TOTOL BIXTVWY, xadMdE oL TNV ENEVEPYELN TOU EYYEVOUG
npofAiuatog e “naywuévne exxivionc” otny enldoon Tou oyfuaTog oTATIOTIXAS Udinong.

Yy evétnta oElOTOLOVTAS TAAOL OTWE TO TMUPATEVL Yol TNV LYVNAATNON XL TO
ocuuTEPAoUd NG TANEOYOopELaXAC Sldboone ot péoa xovwvixre dixtiworng, oyedidleton éva
cLOTNUA CUCTACE®Y. To GUC THUATH CUGTICERY TIOL EVOOUNTWVOUY TEYVIXES CUUTERUCUOD TNG
Oudyuong Thneogoplag elvor YVWoTd (¢ CUC THUNTA CUCTACEWY UE ETLY VWO TNE TANROQOELIXNS
diddoone (EXEIIA). Trb autd to nploya, 1 6U0 TN TERLEYOUEVOU OTOUS YPNOTES UECWYV XOL-
VOVXTNG BIXTOMOGTE BIITUTOVETOL (¢ TEOBANUA TROGBLOPIGUOU EVOC GUVOROL YENOTWY YLl TNV
avdleon TEPLEYOUEVOU UE TPOTO WOTE VoL UEYLo TOTOLETL, UEGw TNG TANPOPOpLAXAS BLdyuong, 1
GUVOMXT] GYETIXOTNTA YPHOTN-TEPLEYOUEVOL GTO BixTuo, eacpaiilovtag mapdAAnAa, Yo xdie
oo, évay eAdyloto aprdud mpotdoewy.

e plal TAATPOPUA XOWWVIXHC BIXTUWONG, TOU avamaploTdtal and éva Ypdgo e xouBoug
Toug YENOTEC Xal OXUEC TIOU LTOBNAWVOUV TN PETAED TOUC cuoyETion, xau Yapoxtneileton
WS YPAPOS CUGTAUATOS, Ol TEOTACELS YLoL VEO TEPLEYOUEVO TEOYUATOTOLO0VTOL UE BVO Uy avi-
opoUC: TOV UECO UNYAVIOUO TWV GUCTACEWY, 6Tou éva ooTNUA CUCTICEWY TEOTEVEL €-
EATOUIXEVUEVO TIEPLEYOUEVO GE XGVE YpNoTn Ue BAoT TIC TEOTWACELS TOU XUl OVOPERETAL (G

avdleot) TEPLEYOUEVOL OTO YEHOTN, XU TOV EUUECO UNyovioud TNne avialioyhic TAnpogoplag



HETAED TV YENOTOY OTKC TEOXVUTTEL amd TS CAANAETSpdoELS Toug oTny Thatpopua. Ot ahhn-
Aemidpdoelc TV YeNoTeV eEupTdvTol TG00 and TNV ETEpoY| Tou doxel 0 évag YpRotne otov
dhho 660 xa and TO TEPLEYOUEVO TOU AVTUAAGCOETOL 0TO B{XTUO. AUTEC ATOTUTVOVTOL GTOUG
avtiotoyoue yedpoue emppoic, ol onolol dnuovpyolvtal unohoyilovtog, yia xdde avtixel-
uevo/mepleydpevo, 1o ollémioto clvolo xdde ypRotn, dNAadH To GUVOAO TWY YENOTHOVY oL
onolot Yo AGBouv YvmoTn Yol TO GUYXEXPLEVO avTixelpevo dtav autd avotedel otov und e&é-
taon yerot and to LXEIIA. To afiémioto chvolo evdc yehotn yio €vol avTXENEVO TIOU
optleton amd ™ oyéon umohoyileton pe o teyviny Serypatoindioc Monte Carlo. H
oLVaeL evOg allOTETOU GLVOAOU Ue Evar avTixelpevo oplleton vo elvon to ddpoioua tng avtio-
TOLYNC CLVAPELIS TV YPNOTGHY TOU To oLVIGTOUY ot LTohoyiletan amd tov tomo (4.12).

To npdBinua tne avadeone nepteyopévou ot Yprotes AauPdvovtog unédn Ty duvauixh e
TAnpogoptaxiic diddoone avtiotoryiletar oe éva NP-80oxolo mpoiiua xdhudne oe ypdgpouc,
YVvwotd we Awpépion Kahbppoatoc Zuvérou Eldyiotov Bépoue (AKXEB). Tuyxexpwéva,
éyovtac to 6Ovoho Ohwv Twv duvatdy avodéoewy (L14), wa dopépion autod o xhdoeic
, xodeplor omd Tic omoleg mepthopfdvel Ohec TIC BuvaTEC avardEoEl OVTIXELUEVMDY TIOU
apopoLY GE EVaL YENOTY, TNV OXOYEVELN TV AELOTIOTWY CUVOAWY xdde yerotn yia xdde a-
vruelpevo ([£.16), o x60t0c Tne avdeone x&de avtixeyévou oe xde yeriotn ([.17), o otéy0q
Tou npoPAfuartoc elvon va Beedel éva —xdhuppo ehdylotou Bdpou, dnhadn, wia cUAAOYY and
oUVORAL TN OWOYEVELS AfLOTLOTWY GUVOAWY Tou €xouv adpoloTixd TOo UXPOTERO XOO0TOC,
¢tol wote xdde ypRotne va AduPdvel elte dueoa -péow twv cuotdoewy-, elte éuueca -péow
e Sudyuone tAneogopiog- Touldytotov £ dwpopeTnd avtixeipeva. To teleutaio exppedleton
TUTULXA amd TN OYEDT . To xéotoc e avdieone nepteyopévou oe éva yenotn opileto
vo efvo To avTloTpoPo TNg CUVAYELXS ToL avTioTolyou a€LOTLGTOU GUVOROL.

Apyxd, to mpéfinua AKEEB Swtundveton we mpdBAnuo gn yeopuxod oxépolou Tpo-
YEOUUUATIONOD PE avTxelpevixt) ouvdptnom T ouvdetnon (4:20). O un yeopuxée neptoplopée
([21)), ypopuxonoteiton xou exgppdleton pe Toug mepoptopois ([4.28), (4.29). To véo npdBinua
Yoouuxol Tpoypoppatiopol emhbeTon pe tn wédodo Bertiotonoinong Alauepliopoi-$edyuotoq.
To neéPinua AKYXEB emlbeton eniong pe tov dninoto akyderduo CoveR tou onolou o eu-
BOUDOINOC TUPEYETOL OTNV EXOVAL @ X0l Yl TOV OTolo amOBEVIETOL OTNY EVOTNTA @
e N mopayouevn Aoon npooeyyilet ) Bédtiotn xatd O(% - H(A)). Ta A, agopolv oo

uéytoto xaw eAdyloto Badud evoc ypdpou avuotolywe, pe H(A) va eivar o A oppovixdc



uéoog. e xdde emavdhndm, Exovtog To avtioTolyo GOVOAD TWV BUVATHOY AVOUECENY, O dA-
véprdpoc CoveR emhéyel and tnyv owoyévela olOmOTWY GUVORWY v avddeon mou
peylotonolel to Adyo Tou Xx66TOUC TOU AfLOTUOTOU GUVOROU TPOC TO GYETIXG PEYEVHC TOou,
omwe exgpdletan otn oyéon ([£30). To oyetnd péyedoc Tou o€émoTOL GUVEAOL, dNhodY
T0 TARYOC TWV XENoThY Tou dev éyouv exteVel oe TpoONYOLPEVY eravdANndT Tou akyopiduou
6T0 LTS EEETOUOT] TEPLEYOUEVO, AELTOUPYEL WG HETPXY TNG XOAUTTIXAG BUVATOTNTAG (oG OtV
Yeone. Xenowwornowwdvrog auth ) peteixt], o CoveR npodyel tigc avaldéoeig nepleyouévou mou
TEOXANOVY HEYEAT BLdyuon w¢ meog To TARY0C TwV XeNotoy e adpototxd LPNAY cuvdpelo
TV TEAEUTUUWY OTO TEPLEYOUEVO.

H entdoorn tou CoveR epeuvdton Y€ow TEOCOUOLOCEWY GE CUVIETIXG Xou TTEAYUoTiXd Oe-
Souéva oty evotnra[f.4.5 O CoveR aZloloyeiton we mpog T GUVORXT CUVAEGELL TIOU ONUELD-
VOUV oL avol€aElC Tou, TO omolo oe CLYBLAUCUS PE TO PECO CPLdUd AUECWLV XU EUPECHYV
CUCTAOEWY AVTAVOXAL TNV TOOTNTA TN EUTELRlUC TOU YEHOTN %ol TNV AmoBOTIXOTNTO TOU
oLCTHUATOE oLoTAoEwWY. O opltudg TWV JUECKWY CUCTICEWY TOCOTIXOTOLEl TOUC TOPOUC TOU
BOmAVAOVTOL A0 TO GUCTNUA, EVEH TO TARYOC TV EUUECKY CUCTACEWY EVOL EVOELXTIXG TOU
Barduot adlomoinone tne duvaxic e ddyuone TAnpogopioc and 1o cUCTNUA CUGTACEMV.
Mo e&loou onpoavtiny yetpuxn eivon avth tne xdhudne, 1 omolo opileton va elvon o pécoc apt-
Vudc duecwy xaL EUUECKY CUOTICEWY TOL Aoufdvel évoc Yprhotne tne mAat@opuoc. Me 1
petper) auty egetdleton o TANEOPOELIXOS PdETOC TV YeNoT®y. ‘Onwe mopouoldletal oTig
edveg o CoveR dev unepPaivel Tic 2.6 - £ CUCTACELC DLUPOPETIXMY AVTIXEWEVWY ovdL
xerotn. Télog, uiodeTodvtan oL UETEIXES TNG XOUVOTOULINC XAl TNG ETEPOYEVELNS TWV CUOTACEWY
nou optlovton oTig , .

To anotehéoyato TwV Tpocopoldoewy enifeBaidvouy v utepoyn tou CoveR évavti evog
dAhou eupeTixol akyopiduou cuoTdoewy Pe eniyvemon g TANEoPoplaxhc BLddoomg, YVWoTol
wc DifRec xodde xou evde mopadootaxol cuothuatog cuotdoewy. Ou avodéoec tou CoveR
ouxplvovton Ue T avodéoelc Tou TpoxUTTouy and TNV enthuon Tou aviloTolyou meofBAfua-
TOC axépouoL TPOYEUUUATIoNOV ue TN uédodo Alaueplopnol-Pedyuotoc emfBefouidvovtac Ty
ToldTNTA TNE AboNE Tou ot To TPORABLOUS TOU W TEOG TO YEOVO EXTENECTC.

Y10 Keg@dhowo 5, yehetdhvton mpoAfuorta avddeong nepleyopévou oe dxTua ToL QUoLXoL
XWEOU, OTWS T XYNTA BixTua TEOocWELVHC amodixeucng TEpLEYOUEVOL Xon XUBEEVO-QUOLXE

BixTLA TOL CLYXEOTOUVTAL AT LIVNTY BIXTUA TEOCWELVTE ATOVINHEVCTC TIEPLEYOUEVOU %Ol XAV TA



Hé€oa XoVWVIXAC BIXTUMONG 1) TAATPOPUES TEPLEYOUEVOL PONC.

H teyvoloylo tTng mpoowplvAc anoUfxeuong TEQLEYOUEVOL OTA GXpd TOU BIXTUOL YENol-
pornotel eEUTNEETNTEC TEOXEWWEVOU VoL PEREL DNUOPIAES TIEPLEYOUEVO TLO XOVTA GTO YEhHoTH,
HELOVOVTOS ONUOVTIXG TNV Xorduo TEENOT and dxpo-0e-dxp0 Xl T CLUUPOENOT TOU XEVTELXOU
dtOou Tou cuverdyeTol onpavTixy) Behtinon oty todtnta Tng euneploc Tou yerjotn. To
TepleyOuEvo propel va amodnxeutel ota dxpa tou duxtdou (m.y., wixpol, femto, pico otadpol
Bdome) oAAG xou O CUOXEVEC YENOTWY, 0L OTolES GUYXPOTOVY, cdpolo Tixd, évar ano¥nueuTid
YOPO HEYEANG YWENTIXOTNTOC Xl WXEOV XOGTOUG TOU GE GUVDBUOCHO UE TNV BuvaTdTNTA TNG
arevdeiog petald Toug emxovmviog (Ywelc dNAady T xerion Tne unodourc Tou dxThou xvNTHC
emxoveviog), xahoto Ty Teoowpelv anodxeucT) TEPLEYOUEVOU TILo AmodOTLXA.

Yy evotnra 5.4} e€etdleton n avddeon nepleyopévou yio tpocwewvi anodfxeuon oe éva
BixTUO 0TO PUOLXS Y PO oL CUYXEOTE(TAL amd éva oTotud Bdong Ye BuvaTdTNTA AmoVAxEVOTG
dedouévev xou and “EEUNVEC” GUOXEVEC TOU AVXOUV OE YENOTEC EVOS UECOU XOLVWVIXAC Ol-
A©TOWONC 1} TAATQOPUAC UE TEQIEYOUEVO OIS, GTNY ontola £xouv TEdGPUCT UECW TWV CUOXEVMY
TOUG. LT CUVEYELN, UEAETATOL 1) TUPABOCT) TOU TEQLEYOUEVOU GTOUG YPNOTEC XATOTILY CYETIXOU
UTAULATOS Xol O BLUUOLEAOUOE TOU UETAED TWY YPNoToY Uéow g anculdelag emxolvwviog Twy
GUGXELMY TOUC.

Ot oyéoeic Twv ypnotoy exgedlovta ot 600 eninedo. Xto Nhextpovind enlnedo, oL oyEatlq
xardopilovtan and TiC TEOTNTELS TWY XPNOTMY OE TEPLEYOUEVO TIOU SLaxLVELTOL GTNY TAXTPOOU,
eV 6To Quod emtinedo and TN VEom TOUC 6TO PUOLXO YWEO. Ol GYECELS AUTES AVOTOPIGTWVTOL
HE Evay Ypdpo opoloTNTAS o Evay Yedpo Tonoveaiag avtioTolya, 6Twg Palvovton GTNV EXdVaL
To clvoho tev x6uPrv eivar xo1vd yio Toug U0 Ypdpoug xou Loviehonolel To uToalvolo
TWV YENOTOV TNE TAXTPOpUaS ToL Bploxovtal otny und eE€Taon TEPLOYT) TOL YWEOU.

To cbotnuo cUGTACEWY oL AelToupYel GTNY TAATPORUN EEAYEL TIC TEOTIUNTELS TWV YENOTHOY
OE OVTIXE(UEVO TTOU OVAXOUV GE €vay XATOAOYO TEPLEYOUEVOU, xou U Bdon autég, unohoyilel
TNY OUOLOTATA TWV YENOTOV. XTO YRAPO opoLtoTNTAS, 500 x6uBol cUVBEoVTAL UE oY) OTay 1|
opoldTNTé Toug, Tou npoodlopileton pe pio petpxh 6nwe T ., Jaccard, Cosine [2], Eenepvd
ulo tpoxardoptopévn Tiun. Lot younAih Ty xotw@Alod, o Yed(pog OUoLOTNTIS YIVETOL Lo TUXVOGQ
Xl GUVOEEL YpPNoTeG TOU eV €xouv PEYSAN emxdAudn ota avTixelpeva e Tpotiunohc Toug.
Kéde x6pfoc oto ypdpo tonodeoiog yopoxtnelleton and plo anotehecyotiny] axtiva Tou Ho-

viehomolel TNV PEYLOTN amdoTAOoY, 0TNY onola évag YpNotng unopel va HeTadMoeL 1) vor AdPBel



dedopéva. Avo xdufol cuvdEovTon YE ULol axur oto Yedpo Tornodeaiuc dtav o évag Pelioxeton
EVTOC TNG AMOTEAECHATIXNG oxXTivag Tou dhhou xou avtiotpoga. Ot yeitovixol xoufol Tou ypd-
pou tonoveciog Unopolv va avtahhdEouy dedouéva pe aneulelag eTXOVOVIO TWV GUGXELHY
toug. H toyuy] Tou ypdyou opoldtntac ye to ypdpo tomodesiauc mapdyel To YpdPpo TOU CUCTH-
HATOS, O OTOLOG AVATUPLE TA OYETELS YPNOTAV PE Ywe EYYOTNTA X0 XOLVES TEOTWNOELS OF
TEPLEYOUEVO.

Yto mhaoo e adEnone e amodoTIXOTNTIC TNS TEOOCWELVAS ATOVAXEVCTC TEPLEYOUEVOL
ota dxpo Tou dixtdou, oflonoteltar €va Yépoc Tou e€omhiopol twv yenotoyv. H emdoyy| tou
eZomhiopol AauBdvel unoYn TG0 TNV OUOLOTNTA Xou THY EYYUTNTO TWV XPNOTOY 0G0 Xou To
TEYVIXG YUPUXTNPEIOTIXG TWY GUOXELWY Tous. Apyixd, 0 Ypdpoc tou cuoTHuatog dopepile-
TOL OE OMAOES YENOTOV PECH UMO TOV EVIOMIOUO XOLVOTHTWY WUE WL TEYVIXY) YEYLOTOTOMONG
e aplpwtdntoag. XTn cuvéyel, oe xdide xoVOTNTA, €vo UTOGUVONO TWV YPNOT®Y TOU TNV
CLVIGTOUV EMAEYETOL YO GUUUETOYY) OTNV TEocwELVY| anodrixeucy), Bdoel 80o oynudtwv. To
TEOTO oY\ EMAEYEL UE XPLTHELO TNV XAUAUTTIXY IXAVOTNTA TV XOUPwY OV xovotnta,
6nwe auth exgpdletan and tn oyxéon (5.2). To diapopetind péyedog xou 1 TUXVETNTA TOV
XOWVOTATOV TOU TEOXUTTOUV PE TNV TEYVIXY NG oplpwTdTNTag, O CUVOUNOUO UE TNV TE-
PLOPLOUEVY]) YWENTIXOTNTA TNE UWVAUNG TWV GUOXELRY, Aaufdvovton utddn oto deltepo oyfua
emhoyfc eZomhiopol, oto omolo dortundveton 1 uetpxt| (5.5)), n onota unoBiBser Toug xdufouc
HE pixpn) ywentixdtnTa xou peydho PBadud, eved mpoPiBdlet Toug xouPoug mou yopoxtneilovral
and peydho Podud evioc TNC XOWVOTNTAC XAl 1) YWENTIXOTNTA TNG UVAUNG Toug e€aopolilel TNy
anodrxeuon evog eAGLoTOU TARTOUC AVTIXEEVWY oVE YELTOVIXS YENOTN OTNV XOWVOTNTA.

T v tonodétnon nepleyouévou ota dxpo tou dxtlou (otadude Bdong) xaw otov emt-
Aeypévo eomhioud Twv Yenotoy, Aopfdvetor unddrn 1660 To PEYEDOG TV AVTIXEWWEVKDY TOU
XATUAOYOU, 1) YWENTIXOTNTA TWY CUGXEUMOY UVAUNG 000 %ot 1 o€iol TV aVTLXEWEVLY Yol
toug yproteg. H ofio tov aviixewévewy npocdloplleton and uor cuvdptnon weélelog (5.14)
mov Bacileton otn oyeTXOTNTA TWV YEeNoT®y pe ta terevtala. To mpdéfinua e avddeong
TEPLEYOUEVOU BLATUTIVETOL WG TROBATUN UEYLOTOTOMOTE TOL AdYOUL uc ToY oG TG TPOCWELVHS
anorxevong xow avuotoryileton o éva yvwoté NP-8oxoho (NP-Hard) npdfBinua
ouoxevociog, To onofo emAbeTon dradoyixd, yia xdde Sadéoiun uviun, ye to mthoioio CAUSE
(0 Yevdoxdduxds Tou apatideter oy exdva[5.4) mou Baoileton ot wa npocey Yo TL WEYOdO

BUVOELXO) TEOYEAUUUATIGHOV.
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H enidoon tou miausiov CAUSE o€iohoyeiton péow npocouotdoeny oe cUVIETNG ywptxd
dixtuo oty evotnTa Meletdton melpopatind 1 eniBpaoT CUYXEXPWEVGDY YopUXTNEL-
OTIXWY TOU TOU SXTUOU TWY YPNOTWY, TOU XATUAOGYOU TWV AVTIXEWEVWY Xl TOU BixTOOU
TPOCWELVNG amoYixeuong nepleyodévou ato AdYo euctoylag, Onwe to péyedog Tou BixTvoUL
TOV XPNOTWOY, TO UEYETOC TOU XATIAGYOU TOU TEQLEYOUEVOU, 1) YWENTXOTNTA TNG UVAUNS TOU
otoduo0 Bdone xou Tou eE0TMOUOY TWY XENOTMY, TO TARUOC TV ATNUETWY avd XeHoTN XaL TO
HOVTERO TV autndtwy. To aTAUOTo TRV YENOTOV SLOLOPPHVOVTAL OT6 VO VIETEPUIVIO TIXO
xou évo mdovotind oyfua, to onolo Baoilovion ot OYETIXOTNTA AVTIXEWEVOU-YEROTY), OTKS
QUTH EXTUATOL ot TO GLOTNUA CUCTACEWY. To amoTEAEGUATI AVABELXVIOUY T GUVELG(QOPE TOU
EMAEYUEVOU EEOTAOPOY TWY YPNOTOV OTNY ATOBOTIXATERT TROCWELVY AMOUAXELOY) TEPLEYOUE-
vou xau Ty unepoyy) Tou CAUSE évavti evdg Paool oyfuatog anoxAelo Tixrig anotixeuong
TEPLEYOPEVOL GTA Ao TOU dLxThou.

Xy evotnta N avdideon nepleouévou YeAETdTOL O XUPBEEVO-QUOIXE BixTud WS Blo-
dldotato TEdBANUA XFAVPNC, HE TNV TEWTY SLAC TUOT VoL APOEd OTO QUOLXS YWEO XaL TN deUTERT
GTOV %UBEEVOYGPO.

Y10 guowd eninedo, 1 mpoowpelv) anodixeucy) Tepleyouévou oe €va eTEpOYEVES BixTUO
mou ouyxpotelton and €va xevipixd otadud Bdone xan pxeolc otaduolc Bdong, epeuvdTal
TOUTOYEOVA UE TNV TEPLOTACLOXT EXPOETWOT| dedopuévwy o e€omhioud YenoTtov, oL omolol xi-
vouvton Ue éva ouyxexpévo YotiBo oe uia meploy) evilagépovtog xt €youv tpdoPoocy oty
TAATQOpUA HEGL TOL BiXTUOL XIVNTHS ETXOVWViNG. X to xUPBepvo-eninedo, 1 xUTAVOUT| TEQLE Y OUE-
vou e€etdleTal »S TEOBANUA PLIAXOV-TPOC-TO-B(XTUO CUGTICEWY GTOUE XPHOTES TNG TAATPOR-
pog Ue Bdomn T TPOTWNCES TOUC XL TNV andcTacY Toug amd Ty tonodesia mou elvor amo-
Ynxeuu€vo 1o mEplEyOUévo. 3%omog elvol 1) ETAOYT EVOS UTOGUVOAOU TOU eE0TAGUOU TWV
YENOTWV Yo TEPLO TUCLOXT) EXPOPTWGT| SESOUEVELV XU OO XOLYOU TROCKELVY| ano¥rixeuon xou
U0 TUOY) TEPLEYOUEVOU UE GTOYO TN UEYLOTOTONCT TN TOLOTNTOSC TNS EUTELRIAC TV YENOTOV.

Mépog tou mepleouévou Tou TapdyeTon oTNY TAXTPOpUN amodnxedeTol GTOUS Pixeolg O Ta-
Ypolg Bdong, mou elvan eE0TAOUEVOL YE UVAUES BLpORETIXNC YWENTIXOTNTAS, Xl OE €V TEPL-
oploUévo optiud and TG CUGKEUES TV XIVOUUEVLY Yenotwv. Ou yeroteg elvon diatedelévol
VoL TEPUEVOLY €val DAOYO YPOVIXS BLEACTNUL, £0E GTOU CUVAVTACOUY XATOL CUGXEUT TOU GUU-
HETEYEL OTNY TEOCWELVY| ATOUAXEVCT| TEPLEYOUEVOL Xl EYEL ATOUVNXEVUEVO XATOLO TPOTEWVOUEVO

oe autolg TepLeyouevo. ‘Otav o avextde ypdvog avopovic mapéhdet, ol yeroteg Aaudvouv to

11



TEPLEYOUEVO Ao TO Baond dixtuo péow Tou xevTpol otaduol Bdorng.

To yovtého tng xivnong Twv YenoT®V JLOUOPPWVETOL OTNY EVOTNTA we e&ng: Ou
XENOTEC xvoLvToL PECO TNV TEPLOYY) EVOLAPEPOVTOC YE TPOTO WOTE To TANYOC TwWV CGUVO-
vToe®Y Toug va divetar amd wior opoyev avéMEn Poisson, ue Swopopetixn T évtaong avd
Cebyog. T Aoyoug Bixauou Slopolpacpol tou mepieyouévou, oe xdie cuvdvtnomn yetadd dvo
Xenotov, unopel vo mapadovel uévo €va avTixelpevo mou elvon amoInxeupévo ot UVAUY EVOCQ
ex twv dVo avtioTolywy cuoxeumv. Adyw tne avéhéne Poisson, o ypdvoc petald dlo dado-
YOV ouvavtioewy evog (edyoug yenotdv axolovlel extetiny xotavoun. LUVERDS, Yo U
UNOEVIXY CLVEETNOY EVTAONG, O AVAUEVOUEVOS YPOVOS UETOED BU0 SLaboy XV cUVAVTAGEWY,
TIOL EQUNVEVETAL 0G ovaevopevn xaduotépnon yiot T Mdn evie nepieyopévou, Yo diveton amd
T0 avtioTpoo TN évtaonc Tou cuyxexpiévou Levyoug (5.15)).

Me avtiotolyo Tp6T0 LOVTEAOTOLOUVTAL Ol CUCYETICELS TWY YPNOTHOV UE TOUS UiXpoUS O Ta-
Yuole Bdone oty evotnta ME TN Blapopd Twe 1 T TS évtaone oplleton var elvon
WXpOTEPY OE OyéoT YE TNV avTioTolyr evdg LebYoue YenoT®y, TEOXEWEVOU Vo avTixatonteile-
ToL TO PEYAADTEPO BLAOTNUA Topaovig EVOC YeRoTh VIO TNg Teploy g XEAUPNE EVOC Wixpol
ototpol Bdone. To mAfloc Twv anodoTxdy cuvavTAcewy, dNAadH TwV cUVAVTACEWY Tou Yo
€YOLUV W ATMOTEAECUA TNV ETUTLUYY TOEAdOCT TEpLEOUEVOL, divetol amd Tov TUTO yiot
Cebyn xenot®y xou omd Tov TUTo yio Lebym and yperoteg xou pixpole otodpole Bdong.
Ko otic 800 nepintddoelg, 1o tAfdog Tev amodoTtixdy cuvavtioewy xotoplletol and tov avextd
XEeOVo avaovic, To TAAB0C TV AVTIXEWEVKY TIOU UToEoLY Vo avtodloydoly oe ula cuvdvtnon),
N YWENTXOTNTA TNE Lo eEETaoT Uvhung, TN Sudexela Tou Slao THUATOE Tapaxohotinong xou
To péyedog tne Motag Twv cuotdoewy xdle ypRot.

H emhovy; tou e€omhiogol twv yenotdv mou Yo oflomoinldel yio Ty meploTaotoxy ex-
pbpTwon dedouévwy, Baoiletar 0T0 TARYOC TWV ATOBOTIXWY GUVAVTACEWY TWV YENOTWY X0l
BLATUTAOVETOL (S TEOBATUO EVEECTC EVOC GLUVOROL XdALYNEG eldyloTou Bdpoug xou tpoxadopl-
opévne mhndudtnrag. Buyxexpuéva, oty evéra [5.5.5.1] emyeipeitan, pe évay dninoto ok
Y6pLipo, N eVpeaT EVHE UTOGLYONOU TKV YENOTWY To omolo o) Yo Toupéyet, oe 660 T0 duvatd
ueyohiTepo aptiud yeRotoy, tpbdcPuct ot mepleyduevo mou Beioxeton anodnxevpévo oe e€o-
TAoud yenotdyv, P) da eacpolilel eEl60ppOTNUEVO QORTO AUTNUETWY GTOUC YEHOTES TOU
vohoBAVOLY TNV TEPLO TACLOXT) EXPORTHOY) TIEPLEYOUEVOU.

H nowbtnta e euneplac tou yerotn exgedleton otn oyéon (5.21) we xuptde cuvduaoudie
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NG TOLOTNTOC TWV TMUPEYOUEVWY CUOTICEWY Xl TNG moldtntag tng umneeoioc. H moidtnta
TWV CUCTAoEWY Yot €va Yeotn opileton vo efvol Wiar Ypopixy) cLvVApTNoY TS OYETIXOTNTAC
T0u 070 TPoTEWSPEVO Tepeyduevo (5.19). H mowdtnta e unnpeeotog (5.20) opileton v o
GUVEETNOT TOU AVOUEVOUEVOU YPOVOU THEdBOCTC TOU TPOTELVOUEVOU TEQLEYOUEVOU, O OTOlOg
xardopileton omd TNV XYNTIXOTNTO TWV YENOTOV.

To mpéfBinua g and xotvold anolhxeuons xo cUOTUONG TEPLEYOUEVOL exppdleton oTN
oyéon w¢ TEéBANUA peyloTonolnong tng eunclpiog Tou yerotn. To mpdBAnua autd €xel
anodetydel oto [3] nwe avixer otnv xhdon twv NP-d0oxohwy tpoBinudtwy. Ta tyv enilvot
Tou avortbooetal To mAatolo MD mou emihdel Bladoyxd T LUTOTEOBAAUATI TOU EALYLGTOU
YXEOVOU TUEEBOONC TEQLEYOUEVOL, TNG TPOCWELVIG ATOUNXEVOTC TIEPLEYOUEVOU OTIC UVAUES Xl
TWV OLOTICEWY 0TOUG YphHotes. Méow autold elaopariletar twe xdie ypRotne Yo Adfet, otov
EAAYLOTO BUVATO YEOVO, Eva CUYXEXPWEVO aptdiud CUCTACEWY UE TEQIEYOUEVO TNE TEOTIUNONS
Tou.

To mpéBAnuo Tou EAIYLOTOL YEOVOU TUPAS0OYC TEPLEYOUEVOU BLUTUTIOVETOL W TEOBATUL
Yeouxol Tpoypauuotiopol To omolo exgedleton ané tn oyéon (5.35), o omolo avalntd,
yioo xdde ypeNoTn, TIC CUCYETIOEI TOU YE CUOXEVEC TROCWEIVIE anolixeuone mou Tou e&a-
opoMlouy, 6ToV EAGYLIOTO SuVATO YEOVO, TNV TUEEBOoT, TOLAAYLOTOV €VOE EAGYLOTOU apLd-
ot avtixewévewy (5.36). Ttn ouvéyew, n Tonodénom mepieyouévou oTIC UvFuES Yiveton pe
wor enavohnrTind pédodo mou ypenowonoel Tt ouvdptnon yenowédtntoc (5.38). Me autd,
unohoy(letar, yior xdde Suvaty avddeorn aviixelévou oe PvAun, o otodopévos PEcog Tng
OYETWOTNTAC TOU OVTIXEWEVOU GTOUG YPNOTEC TOU GUOYETILOVTOL UE TN CUYXEXPUIEVY UVAUT).
H pédodog, oe xdde emavdindn, emhéyel tnv avddeon ye v udnidtepn tur yenowdtntag.
Téhog, N GUAXT-TPOC-T0-8(XTUO MOTo GUGTAGEWY EVOS XPHOT SLUUORPWVETAL UE TNV TEOT XN
Tiepleyouévou ou Peioxeton anodnxevpévo oTiC UVAUES PE TIC omtoleg o TeAeutalog cuayetileton
%ol yiot To omolo napouctdlel uPnAY tpotiunon.

H enidoon tou mhawciou MD epeuvdtan uéow mpooouoldoewy oe cuvleTind dixtua oTny
evotnta[5.5.8f To mhaioio MD aglohoyeiton we TROg TUC THIES TOU ETUTUYYAVEL GTIC XAVOVIXO-
TONUEVESC PETEIXEG TNG TTOLOTNTOG TWV CUOTACEWY , g moldtnTog g unneeciog (5.40)
xon g motdtnTag Tne epnelplog (9.41). To mapaydueve amoteAéopoto cLYXEIVOVTOL UE VT
e npooeyylotxfic petédou JCR nov datundveton oto [3], 1 onola Paciletor otny eZavtin-

T avalitnon Moewy 6To TeoBANnU TNe and xotvol TPocKELVHG amolhxeuone xa cUGTACNG
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nepteyouévou. To MD mhaicio, mapd Tou 6Tl oNUeLdVEL AiYo YauNAOTERT TOLOTNTA CUOTACEWY,
pafvetar va avtiotadpilel xavonomtixd tnv mowdtnTa TS AUone Ue To Ypdvo eExXTENEONC, O
onolog, 6mwe goiveton otov ivoxa 5.1} Sev Zenepvd ta My deutepdhenta, oe avtideon pe v
JCR pédodo mov, yio dixtua yeydhou yeyédoue, Eemepvd tic 8 nuépec.

Y10 Kegdhawo 6, cuvodilovian to oupnepdopota tne Statpnc, avadeiviovtas Ty
VoY XOULOTNTA TNS AVTWETOTLONGS TwV EEETALOPEVKY TEOBANUATOY XS Xt TNV amod0TIXOTNTA
TV uedodohoydy mou avantiydnxav yio Ty enflucy) toug. Télog, yiveton avagopd ot
avolytd gpeuvnTxd Ypato mou Yo punopodoav Vo anOTEAECOUV TPOEXTACELS TNG TAPOVCOS
dratpPrc.  Autd opyavdvovtaw oe BUo Vepotixols dEoveg mou €youv onueio avapopds TG
TEYVOAOYIEC TG TPOOCWEIVAC aTOUAXEUCTC TEplEOUEVOL ot dxpa Tou dixthou. O mpdTog
dEovac apopd o dLdBoon N SNPOPLAOUE TEQLEYOUEVOL PETL PLAXDV-TIPOG-TO-OXTLO GUOTY-
HATOV CUGTACEWY TOU €Y0UV eNlyVwoT Tou YoTBou evalhayng TwV YenoToy HETAE) TwV Ol-
(©T0OwV oToepnc xou XVNTAC emxowvwviag. O debtepog dEovag agopd oTn WEAETH TN YEPO-
Anloc Twv ueddduv neploTaclaxnc eEXPOETWONS SEBOUEVLV XAl TWY QIAXMV-TEOC-TO-BIXTUO
CUCTAOEWY.

Ta tedeutaior ypdvia ONOEVOL oL TEPLOGOTEROL YPNOTEC €Y0UV TEOGPUOT, G TAATPOPUES UE
TEPLEYOUEVO pOoNC amd TLC xvNTéS Toug ocuoxevée (m.y., Youtube, Cinobo, Mubi) [4], evé to
HeYahUTERO PEPOC NS %VNoNe 6TO XEVTES BIXTUO OPEINETAL OE CUTTUATA TV YENOTWY YL TO
(B0 mepleyduevo (dNUoPLAé TEPLEXOUEVO), 1) TP ToL oTolou TPoXaAEl onuavTixd PdETOo
070 xevtpnd dixtuo [B]. Tty anogdption twy Lebiewy Tou xevTpxol dxthou xat T pelwon
TOU XOOTOUC TOEEBOCTC TOU TEPLEYOUEVOL, TO TEPLEYOUEVO aUTSH amodnxedeTol GTol dXpa TOU
dixtdou, Y., o€ xevipolc otaduolc Bdone, wxpolc/femto/pico otaduoic Bdone xarddde xou
oe eZomMopd yenotwy [6].

‘Onwe avagépeton 6To xe@dhoto B oTic Teplocdtepeg TAUTPOPUES TEPIEYOUEVOU PONC AEL-
TOLEYOUV GUC THUOTO GUGTAGEWY TOU o€ 0LV EEUTOUXEVUEVES TPOTATELS TEQLEYOUEVOU GTOUG
xerotee. Ilpdogateg epeuvnuinég epyaoieg avadexvbouy tn Y€on Tou Tepleyouévou ot Mota
TWV CUOTACEWY KOS ONUAVTLXG TOEAYOVTA SLIOPPWONE TWY TEOTUHCEMY, XAl XAT  ETEXTACT),
TV UTNUATLY TV Xenotov [7 8]. Ot pihxéc-tpoc-to-dixtuo custdoeic Tpowdoly To Tepleyd-
HEVO UE UXpOTEPO XOOTOC Topddoome, Totoetdvias To o PnAd otn Mota Twv cLoTAoEWY
[9]. Ipbxerton v To mEpE)OUEVO oL PploxeTton omoUNXELUEVO XOVTd 0TO YPHoTN, To omolo,

xotd wdplo Aéyo, ebvan dnuognéc [10]. H ouyxexpwwévn ovadidtaln twyv AMoTtdy, 6tav yive-

14



TOL UE XELTHPLO TO OO TOC TUPABOOTC TOU MEQIEYOUEVOU, EYEL WS ATOTEAECUA O YEHOTNG VA
hofBdver BLapopeTinés oo TACELS avdhoya PE TO BiXTUO Y€k Tou omolou €xel TpdoBaon oTny
mhatpdpua: Aedouévou dTL T0 X660 TUPABOCNE U TEOCWELVE, ATOUVNXEVUEVOU TIERLEY OUEVOU
péow tou BixtlouL xINTHE emxowvwviag eivon onuavtxd vdpnidtepo and to avtioTolyo péow
Tou dixtuou oTadepric TNAEPWVINC, TO dNUOPIAEC TEPLEYOUEVO avopéveTon var elvon xuplopyo
GTIC OUCTAGELS IOV YIvovTol TaY 0 XeHoTNg €xel TedolucT oTny TAaTPdpu HEGW TOU BxTOOU
xvnTAC emxovwviog. Xtny mepintwon auti, ol YproTeC Tou evOlaPELOVTOL Yial ENixaLpo U
onpogikéc mepleyduevo, elte de Yo €youv xaddhou TpbdoBact ot AT HECW TWV CUCTICERY 1|
T0 Un dnuogihéc mepieyopevo Yo Peloxetan TOAD younhd oty Moto Twv cucTdoe®y Tous. Autd
Vo emLpépel apvNTIXd avTiXTUTO OTNY TOLOTNTA TNG EUTELRlag TOUG.

H yvdon tou yotifou evodhoyhc uetalld twv dixtiny otadepric xow xivnThe emxoveviog,
unopel va aglomoindel and to clOTNUN CUCTACEWY Yia TNV Blddoo entixoupou Urn dnuoEioig
TEEPLEYOUEVOU GTOUG YEHOTES UE EAGYLOTO x6G T0¢ Tapddoone. To npdPBAnua tne yeyiotonoinong
e Sddoong enixatpou U BNUOPLAOVUC TEQIEYOUEVOL PECL QPUMXOV-TIPOG-TO-B(XTUO GUOTY-
HATOV CUGTACEWY TIOU €YUV ENYVWON TNG EVOANAYAC TNC CUVBESNC TV YENOTWV UETAED
ototepod xou xivntod Bixthou, unopel vo avtidetwnio tel wg tpolAnua Béktiotou eréyyou yia
TNV XOTUVOUY, TEPLEYOMEVOU EVTOC cuyxexpuévou ypovixol opllovta [I1], émou 1 Bdboon
Tou un dnuoehole Tepleyopévou unopel va avanopootadel ye to emdnuioloyixd poviého SI
[12, 13] pe touc eunadeic xépPouc, dnhadr Toug xdpPouc Tou dev €xouv extedel otny Thnpo-
oplo oxouy), Vo HETUTEETOVTAL, HECW TV CUCTICEWY, GE YOoAUCHEVOUC xOuBouc, Ue PEYHAO
x60710¢, 6Tay auTéd cupfaiver xatd T Sdpxelo GUVEESTC 0TO BIXTUO XLVN-TAS XoU UE UXPOTERO
%x6070¢, OTav 1 pOALuveT cuuPaivel xotd TN olveon oTo dixTuo cToeEVC EMIXOVWVING.

To nopandve {itnua uropel va Yewpndel we wa tpocéyyion e€acpdhiong dixoung/auepdin-
NS TEoINoNE TEPLEYOUEVOL Omd TA PLAXG-TPOC-TO-OIXTUO GUOTAUATO GUGTACEWY, aveEdp-
™t TG dnuoguhiag tou teleutaiou. H évvoia tng auepoindiog umopel va oplotel ye Sia-
(popeTIXOUC TEOTOUE avdAoYd Ye TO eEETAlOUEVO GUOTNUA X0 TIC EUTAEXOUEVES OVTOTNTEG.

Ané n oxomd tng cuvepyaTXrE TEOCWELVHE amoVxeuoS ot EEOTAIOUS YENOTAOVY UE ATEU-
Velog emxowwvia, oto [14], 1 apepohndio hoyiletoa we wa petpnh) e toneg duvatdTnrog oautdv
VoL €y0UV TPOoBaoY) OE MEQIEYOUEVO TOU TAPAYETOL OFE €Vl XWVNTO UEGO XOWWVIXAS DLXTOWOTC.
Yo [I5], n opeporndia oyetiletan e v e€looppdTnon Tou PEETOU OE Eval ETEPOYEVES BiXTUO

TPOCWELVTE amo¥rixevone.
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{dc mpog TiC ouoTdoelg, N opepohndla unopel vo oploTel oE GY€om UE TIC TEOTWNOELS TWY
XENoTOY o€ mepLeyGUEVO, To omolo ot BiBhoypapia avapépetar ¢ x-apepoindio (apepohndia
xatavohot) [16] xou oe oyéon Ue Tov ndpoyo-dnuioupYd TOU TEPLEYOUEVOU TTOL ELVOL YVWOTH
o¢ -apepohndia [I7]. Xto xn-ayepdbinnta cuothuata cvotdoewy (18,19, 20] 2], n apepondia
APOEY TOGO GTOUC XATAVUAWTES OO0 ol OTOUS TOPOYOUS TOU TEQLEYOUEVOU XOL Ol CUCTAGELS
OLILOPPOVOVTAL UE TEOTO (OOTE VO LXAVOTIOLOUVTAL Xou Tal V0 Uépn.

Yuvdudlovtag Tic SLpopeTinés évvolee e opepohndlag, to mpéBAnua e amd xovou
TPocwpELVrg amotixeuons xol o0oTAONE TEQLEYOUEVOL OE ETEPOYEVY dixTua mou avamtUYInxe
otny evotnta [5.5] xau Siotundxdnxe g mpdfhnua Pehtiotonoinong e TowdtnTag e epnelplog

TOU YeNoTY, Unopel var ueAetniel UTS UL GELEE TEQLOPLOWMY TTOU APOEOUV GTO THPUXYTW:

o TNy e€L60pEOTNOTY TOU POPTOU GTLC BLAPOPES CUGKEVES TOU GUUHETEYOLY GTNY TEOCWELVY
anotxeuan, pe BAom Ta TEXVIXE YoRUXTNELOTIXE TOUS, OTWE 1) YWENTIXOTNTO GE UVAUT, N
XxaToVdAwoT evépyelag, 1 didpxeta Lwhc tne unotaplac (otny nepintwmorn tou e€onhiopod

TWV YENOTOV),

o TNV X3AUdM TV Yenotov ue mepleybuevo (x-opepoindio), Snhady, TV eaopdhion twe
xdde yprnotne o AauPdvel Touldytotov évay ehdyloTo apidud amd avTIXelUeva, UE [Lo

eAGYLOTN TOLOTNTA PETADOONC,

o TV x8Audm Ty avuxewévey (t-auepoindia), dnhadr, Ty eacpdhion nwe éva uTo-
GUVOAO TV AVTIXEIUEVWV TOU xoTohOYOoU, o tpoTtadel oe €vay eNdyLoTo aptdud YenoToy,

ME Uiat EAGYLOTY TOLOTNTA UETABOONG.

To npdPAnua BeAtiotomoinone g moldTNToC TNE EUTELplag TOU YpNoTn UE TOuC VEOUC TEQLO-
ptopolc pnopel va dlatunwidel oto mhalolo evoc xvnTol Y€cou XovwVixhc dixTiwone, 6To onolo
7 Sddoom TAnpogoploc Teoyuotonolelton elte dueca, yéoo and Tig cuaTdoel, elte éupeoca, péow
NS AAANAETBEAONC TV XENOTMY GTO QUOIXO YOEO 1) GTOV XUBEEVOYKPEO, UE TNV TEAEUTAlL Vo
EMTEENEL TNV ToYUTERT BLUCTIORA TNE TANEOPORIAS, BLULOLPOVOVTAS ATOTEAECUATING TIC TTEO-
TWACE TWV YENOTWY, AUEAVOVTAS OUWS TOV xVBUVO TN TANEOQORLIXNE UTERPORTHGNE TOUC.
Tnd autd to nploya, 1600 1 TOTOVETNOY TEPLEYOUEVOU OTIC UVAUES OGO XoU Ol PLMXEG-TIPOC-
T0-8ixTU0 cuCTdoEL Vo TIEETEL VoL GYEBLUGTOVY PE ENYVOGT TNG SUVOIXAE TNS AAANAETBpoIoNG

TWV YPNOTWY OF YWELXO XAl O NAEXTEOVLXO eNinedo.
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Chapter 1

Introduction

1.1 Motivation and contributions

The rapid expansion of network infrastructures, user equipment and software technologies
have resulted in the development of heterogeneous, interconnected systems as the ones in
Fig. which offer various and often diverse services. In the last decade, the number of
users participating and interacting with such systems has grown significantly. This interplay
produces data whose volume is exceeding the computational scales offered by the state-of-the
art processing algorithms [22]. Therefore, it is necessary to develop new methodologies in
order to deal with the anticipated large scale of operation. This thesis focuses on the design
of socio-aware content allocation approaches in complex networks via efficient monitoring in
terms of utilizing only a small amount of resources to track and infer the explicit and implicit
interactions between its entities. Inspired by methodologies used to address problems of
coverage in physical networks, such as Wireless Sensor Networks (WSNs), this work extends
the notion of coverage in cyber as well as cyber-physical networks and treats problems of
information diffusion tracking and inference along with influence maximization and content
allocation as combinatorial optimization problems of covering and packing, which are proved
to be NP-hard. To solve these problems, heuristic approaches are designed, as well as efficient
algorithms with provable approximation guarantees.

The key contributions of this dissertation are highlighted in Fig[I.2] and can be summa-

rized as follows:
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Figure 1.1: An example of a heterogeneous cyber-physical network.

o Coverage is introduced in Wireless Sensor Networks as an important metric, which
measures how well the network monitors a region of interest. The problem of utilizing
a minimal amount of resources in a WSN in order to monitor an obstructed field of
interest is formulated as a topology control problem. Assuming that the devices have
the ability to modify their sensing ranges dynamically, the objective is to maximize
the area covered by randomly dispersed sensors, while reducing their sensing range
as much as possible, resulting in low energy consumption, in the presence of convex

opaque obstacles. A framework capitalizing on the notion of the visibility polygon
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Monitoring in physical networks
Application network: WSN
Obijective: Coverage of Rol with minimal resource utilization

\ 4

Monitoring in cyber networks
Application network: OSN
Objective: Tracking of information dissemination with minimal resources

2

Inference in cyber networks
Application network: OSN
Obijective: Infer information diffusion process

\ 4

Content allocation in cyber networks
Appplication network: OSN
Objective: Information diffusion-aware recommendations

2

Content allocation in physical networks
Application network: HetNet
Objective: Socio-aware Mobile Edge Caching

V¥

Content allocation in cyber-physical networks
Application network: HetNet - MSN
Objective: Socic-aware Mobile Edge Caching and cache-aware recommendations

pS /’

Figure 1.2: Considered systems, addressed problems and key contributions.

is introduced and two algorithms, a centralized and a distributed one are proposed.
The algorithms aim to maximize the ratio of covered area to consumed energy, while
ensuring a minimum coverage percentage. Analysis and simulation results indicate
that the proposed schemes achieve energy-efficient coverage, outperforming the plain

assignment of maximum sensing range across the network.

Monitoring in cyber networks, such as Online Social Networks (OSNs), is defined
as the process of tracking the interactions among network entities, expressed by the
information flow. It is thus of great significance to determine a minimum set of nodes
in an social graph that have to be monitored in order to infer its diffusion dynamics.
The set of monitoring nodes chosen to recover the information propagation graph, in

terms of who influences whom in the OSN, is referred to as the monitoring cover of a
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social graph. Finding a monitoring cover is treated as a problem of finding a maximal
independent set. A greedy methodology is introduced for its solution, followed by
a graph coloring scheme and a statistical learning technique for the inference of the

information diffusion graph.

The knowledge on the spreading dynamics of an OSN can be incorporated to a
Recommender System (RS) through monitoring or inference of information propa-
gation. These RSs are known as Information Diffusion Aware Recommendation Sys-
tems (IDARS). Information diffusion awareness increases the diversity of recommended
items by avoiding redundant recommendations, which users are expected to attain via
their connections in the OSN. The problem of information diffusion aware recommen-
dations is studied from the viewpoint of user coverage. An IDARS is designed to
utilize minimal amounts of resources in order to allocate content that best matches
user preferences and respect their tolerance to information, in terms of one’s capacity
for distinct items. This recommendation problem is mapped to the Minimum Weighted
¢-Cover problem, which is a generalization of the well-studied Minimum Weighted Set
Cover Problem. An /f-cover is defined as a set of assignments to users who maximize
both the spread of recommendations and the total user-to-item relevance, so that each
user in the network is covered by at least £ items. In order to solve the ¢-Coverage
problem (find an ¢-cover for the OSN), a greedy algorithm is proposed, which is proved
to be an O(%H (A))-approximation for the ¢-Coverage problem, where A, J are the
maximum and minimum degree of the network, respectively, and H(A) is the A"

harmonic number.

In Mobile Social Networks (MSNs) and platforms of streaming services, information on
users’ features is acquired by Recommendation Systems. This information is exploited
to derive communities and encourage user collaboration in local content sharing. By
considering the case where content and network providers form one entity, two types
of relationships between the users of a MSN are assumed, physical and social ones.
Based on the former, Mobile Edge Caching (MEC) is treated as a content allocation
problem in physical networks. In particular, the problem under examination is the one

of limited utilization of User Equipment (UE) for Base Station (BS) assisted caching
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and content sharing through Device-to-Device (D2D) communication. By combining
the concepts of monitoring and coverage as presented in physical and cyber networks
respectively, content allocation in UE caches is perceived as a two-dimensional problem
of content coverage. The first dimension is the physical distance that measures the
proximity of users’ devices, leading to physical ties. The second dimension refers to
the users’ social ties, determined by their similarity in content preference, which is
predicted by a Recommender System that operates in the network. The problem
of UE assisted caching and content sharing via D2D communication is divided into
two subproblems. Initially, the selection of the assisting caches (i.e., UE caches) is
translated to a problem of community detection and influence maximization based
on user similarity and proximity. Then, the problem of allocating items to caches,
with respect to user preferences and UE limited capacity, is mapped to the multiple
knapsack problem. A dynamic programming based approach is employed to acquire

an approximation of the solution that maximizes the cache hit ratio.

Mobile Edge Caching and recommendations in MSNs or platforms of streaming ser-
vices are treated as content allocation procedures in the physical and the cyber level
respectively. The objective of increasing user engagement to the streaming platforms
or MSNs via recommendations, while minimizing the cost associated to the content
delivery is examined in the case of opportunistic offloading via D2D communication
in a heterogeneous network of small cells and mobile users. Users may wait for a
tolerable amount of time (the “hand-off delay”) in order to consume recommended
content cached in an encountering device. Based on the users’ mobility pattern, a
coverage-inspired approach is developed for the selection of UEs that will serve as
helper caches. This approach balances the distribution of the recommended content’s
requests to UEs who can provide in aggregate cached content to most of the network
users. Expressing the user QoE as a function of user-content relevance and its ex-
pected delivery delay, the problem of joint caching and recommendations is expressed
as a user QoE maximization problem. It is addressed by a framework that solves
sequentially the subproblems of minimum delay content delivery, content caching and
cache-aware recommendations, ensuring that each user will be recommended of highly

preferred content with minimum delivery delay.
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1.2 Outline

The dissertation is organized as follows:

Chapter 2 reviews the fundamental concepts and structures that emerge in the study
and analysis of Complex Networks (CNs) and will be useful in the context of this thesis.

Chapter 3 describes the notion of monitoring in physical Networks and presents a
topology control approach to address the problem of Minimum Variable Radii Sensor Cover
in planar obstructed regions.

Chapter 4 introduces techniques of monitoring, information tracking and content allo-
cation in cyber networks. In particular, an approach of Information Diffusion inference by
monitoring the users’ interactions in Online Social Networks and a scheme of Information-
Diffusion-Aware Recommendations to the users of an OSN are analytically presented.

Chapter 5 focuses on methodologies of content placement in physical and cyber-physical
Networks. By acknowledging the impact of recommendations in users’ content requests, the
problem of content placement at heterogeneous caching networks and content sharing via
Device-to-Device (D2D) communication is investigated under various objectives.

Chapter 6 concludes this dissertation with an overview of the study and a summary of
the research results. It also discusses perspectives of information dissemination and content

allocation in physical, cyber and cyber-physical networks for future research.
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Chapter 2

Theoretical background on complex

networks

This Chapter initially provides a background on Graph Theory, which is the main math-
ematical tool to describe the fundamentals of network structure and dynamics. It then
reviews the most prominent evaluation metrics of Complex and Social Network Analysis as
well as the most characteristic types of emerging network structures along with the models
of their development and formation, which will be used to represent the complex networks

under examination.

Definition 1. (Complex networks) A Complex network is one that exhibits emergent behav-

1ors that cannot be predicted a priori from known properties of the network’s constituents.

The above definition found in [23], focuses on the characterization of networks as complex
in terms of the observed behaviors of its constituents, which may be diverse within the same
domain (e.g., social networks), or surprisingly similar across diverse domains (e.g., virus
propagation in human networks). The field of complex networks covers a wide range of
network types that vary in many aspects of their structure, operation and application scope,
due to which several classifications emerge [23]. In this thesis, the complex networks are
segregated into physical, cyber and cyber-physical networks. The most prominent metrics of
SNA will be employed to develop and evaluate methodologies of topology control, inference
of diffusion processes and content allocation to Wireless Sensor Networks, Online Social

Networks and Mobile Social Networks, as typical examples of the aforementioned classes.
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2.1 Graph theory fundamentals

An undirected graph G(V, E) consists of a pair of finite and nonempty set V = V(G) of
|[V| = n points, referred to as vertices, with a set of |E| unordered pairs (i,7), i,j € V of
distinct points of V', referred to as edges. If an edge e = (3, j) exists, we say that ¢ and j are
adjacent vertices and vertex 7 and edge e are incident with each other. Two distinct edges
e, f incident to a common vertex are called adjacent edges.

A directed graph or digraph consists of directed edges, therefore the pair (i, j) is ordered,
visualized by an arrow beginning from node ¢ and pointing to node j. Contrary to the
undirected graph, the edges (i,7) and (j,4) are different and the existence of one of these
does not imply the existence of the other.

A graph G’ = (V',E’) is a subgraph of G = (V| E) and it is denoted by G’ C G, if
V''CcV and E' C E. If G’ contains all the edges of G that join the vertices in V’, then G’
is called the induced subgraph and it is denoted by G[V']. If V! = V| then G’ is called the
spanning subgraph of G.

A graph G = (V, E) (directed or indirected) is weighted, if a measurable quantity,
denoted by w and defined as weight, is assigned to each edge in E, w: E — R.

The order |G| of G is the number of vertices |G| = |V(G)|, and the size of G, denoted
by e(G) is the number of edges in G, i.e., e(G) = |E(G)|. The open neighborhood of a
node i € V(G) denoted by N(4) is the set of all vertices of G that are adjacent to ¢, whereas
the closed neighborhood of vertex 4, denoted by N[i], is the set of vertices adjacent to 4,
including ¢ itself. The degree of a vertex i, d(i), in an undirected graph, is the number
of edges that have as one of their endpoints the vertex ¢. In directed graphs, each node is
characterized by two degrees, the in-degree d"(i), which is equal to the number of edges
pointing to node 4, and the out-degree d°“(i), which is equal to the number of edges starting
from node 1.

The adjacency matrix A = [a;;] of a graph is defined as a 0 — 1 element matrix, where
a;; = 1 if the edge (i, ) exists, otherwise a;; = 0. Thus, the adjacency matrix of a graph
contains all the information about its connectivity. If the graph is undirected, the adjacency
matrix is symmetric. Similarly to the adjacency matrix, the weight matrix W = [w;;] is

defined, where w;; is the weight of the edge (¢, j).
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A walk of a graph G is an alternating sequence of vertices and edges, starting and ending
with vertices in which each edge is incident with the two vertices preceding and following it
in the given sequence. The walk wug,e1, U1, ..., Up—1, €n, Uy, is referred to as a ug — u, walk
and it is closed if ug = u,,, otherwise it is open. If the edges of a walk are distinct, then it
is called a trail. If the vertices of a walk are distinct, therefore, its edges are also distinct,
the walk is called a path. A cycle is a closed walk with distinct vertices and it is denoted
by C,. The C3 graph is called a triangle. The length of a walk is equal to the number of
the traversed edges in the network.

Covering, also referred to as coloring, is an important concept in Graph Theory. In
the problem of inference of diffusion processes presented in section it is required to
distinguish the vertices of a graph in disjoint sets where the nodes that belong to the same
set are non-neighboring. These disjoint sets may be represented by different color classes so
that the color of each class is assigned to the vertices/edges of a network so that adjacent
vertices/edges have different colors. The maximal number of colors in a vertex coloring is
defined as chromatic number x(G) and the minimal number of colors in an edge coloring is
defined as edge-chromatic number x'(G). An n—coloring of a graph uses n colors, therefore,
it partitions the vertex set V into n color classes. A graph is n—colorable if x(G) < n and
n—chromatic if x(G) = n. For the edge-chromatic number it holds that x'(G) > A(G),
where A(G) denotes the maximal network degree.

In order to study the dynamic or the stochastic behavior of networks, random graphs
are employed. Two basic and closely related models of Random Graphs are encountered in
the literature, the Erdés-Rényi graph denoted by G(n, M) or G and the Gilbert graph
denoted by G(n,p), where n is the cardinality of the set of vertices V, [23]. The space
G(n, M) consists of all (Aj\g) graphs of n nodes and M edges, where N = (g) All the graphs
of this space have equal probability to be selected. Due to the assignment of a probability
measure to the graphs, the graph space becomes a probability space. The probability that

Gy is precisely a fixed graph H with n vertices and M edges is:

Pu(Gu) = (Aj\;)_l, (2.1)

where each of the m edges of H have to be selected and none of the n — M edges are allowed
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to be selected. The space G(n,p) is defined for probability 0 < p < 1. An element of this
space is a graph of n nodes and edges that are selected independently with probability p,
for all possible edges. Similarly to the G(n, M) model, the probability of a fixed graph with

n nodes and m edges is

pr(L—p)N T (2.2)

The expected number of edges in G(n,p) is (;’)p and by the law of large numbers, any
graph in G(n,p) will almost surely have approximately that many edges, provided that the
expected number of edges tends to infinity. In this case, it has been proven that G(n, M)

n

and G(n,p) are practically, in many cases, interchangeable with M = (2) p.

The distribution of the node degree in G(n,p) is binomial (Fig. :

P(deg(u) = k) = (” N l)pm _pni (23)

Since for n — oo and np =constant it holds that

(np)ke—np

P(deg(u) = k) — x ,

which is a Poisson distribution with parameter np.

A Random Geometric Graph (RGG), denoted as G(N, ), is a spatial network constructed
by randomly placing N nodes in a metric space, according to a specified probability distri-
bution. Two nodes of G are connected by an edge if and only if their distance is smaller
than a certain neighborhood radius, r. The Wireless Sensor Networks in Section [3.3] as well

as the Mobile Social Networks in Section [5.4] are modeled as RGGs.

2.2 Complex and Social Network Analysis metrics and

features

2.2.1 Degree distribution

The degree of a node represents the neighboring relations between the node itself and the

nodes interacting directly with it. The node degree distribution describes cumulatively
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measures of direct neighboring relations among the nodes of a network. The node degree
may depend on the Euclidean distance of nodes, as in the previously mentioned RGGs. In
general, the neighboring relations are determined by different factors, therefore the degree
distribution is derived by non-distance based metrics. The degree distribution may have
a deterministic or probabilistic form according to the application domain of the networks
examined. In networks where neighborhood relations do not vary, the degree distribution
is the full spectrum of node degree values, whereas in networks of varying neighborhood
relations where node connectivity is stochastically defined, the degree distribution P(k) is
the probability that a node has k neighbors. In undirected networks, a single degree dis-
tribution characterizes the whole network, whereas in directed networks, two distributions
are required, one for the in-degree and one for the out-degree of the nodes, so that neigh-
boring information is provided for both directions of the flow in the network. The degree
distribution is characteristic of a network topology. For example, the degree distributions
of the Online Social Networks examined in Chapter [d] are characterized by heavy tails in
the plot of node degree-number of nodes, which highlights the fact that a large number of

nodes have small degree.

2.2.2 Average path length

The average path length is a network-wide defined metric, as opposed to node degree, which
is a node-specific metric. It is defined as the average of the shortest path lengths between all
pairs of nodes in the network. The computation of the average path length is a centralized
operation, since one has to obtain all possible node pairs in the network, then compute
the length of the shortest path for each pair and average over all pairs. Most frequently,
the considered metric space is the discrete graph space, where distance between nodes is
measured in hops, thus the length of the shortest path for a pair of nodes equals to the least

possible number of the edges separating them.

2.2.3 Clustering coefficient

The clustering coefficient characterizes the structure of a network both locally and globally
by expressing the extent of the triadic closure process in the network, which occurs when

two neighbors of a node become themselves neighbors. A high clustering coefficient implies
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significant participation of the triadic closure in the evolution of the network. The local
clustering coefficient C; of node ¢ is a measure of direct connectivity between the neighbors

of i
number of edges between the neighbors of ¢

C; = -. 2.5
number of all possible edges between the neighbors of i (25)

The network local clustering coefficient is the average over all network nodes NV,

1N
Cnet = N Zl Cz (26)
The network global clustering coefficient is

o >, number of edges between the neighbors of 4
G

- >, number of all possible edges between the neighbors of ¢’

2.2.4 Centrality measures

The centrality metric of a node is a measure of its importance in terms of network structure,
operation or applications, based on which various centrality definitions have been employed
in social and communication networks. A network-wide version of centrality metric can
also be defined. It characterizes the expected significance of each node in the network
on average. The metrics foremost employed in this thesis are the degree, closeness and
betweenness centrality.

Degree centrality quantifies the potential of a node to manage the information flow
in the network through popularity and it is commonly a linear function of the value of
node degree. The network degree centrality is a linear function of the average node degree.
Assuming that A = [a;;] is the adjacency matrix of a network topology, the degree centrality

of node k is

Cp(k) = ai. (2.8)
=1

To obtain a measure that is independent of network size, the relative degree centrality

is introduced as
n
D i1 @ik

1o (2.9)

Cp(k) =

Closeness centrality, otherwise referred to as proximity or path based centrality, iden-

tifies the most spatially important nodes of a network, hence it is dependent on the consid-
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ered distance metric which, in this thesis, is that of hop count. The definition of closeness
centrality is based on the distance of each node from the rest of the network nodes. A node
has high closeness centrality, thus it is central in terms of proximity, if it is relatively close
to most of the network nodes. The distance between two nodes i, j is denoted by d(i, j) and
it is defined to be the length of the shortest path from ¢ to j in a given network topology.

The closeness centrality of node k is

1

Cp(k) = =——, (2.10
Sy :
and the relative closeness centrality of node k is
-1
Ch(k) = = (2.11)

Z?:l d(i, k) .

Closeness centrality exhibits quantitative problems when a network is disconnected (shortest
paths have infinite values) or its connectivity changes dynamically.

Betweenness centrality is based, similarly to closeness centrality, to the notion of
geodesics (shortest paths) and quantifies the frequency with which a node participates in the
geodesics connecting other pairs of vertices in the underlying network topology. Additionally,
it does not suffer from the previously mentioned computational problem in intermittently
connected networks. In order to compute the betweenness centrality of a node k, one has
to compute at first its partial betweenness. Given an unordered pair of vertices {i,j} where

i # j # k, the partial betweenness b;;(k) of node k with respect to the pair (4, j) is

bij(k) = gz;f]k) (2.12)

The overall betweenness centrality of vertex k is then computed by the sum of its partial

betweennesses for all the unordered pairs of vertices i # j # k:

Op(k) = Z zn: by (k), (2.13)

i#j#k i<j

where n is the number of vertices in the graph. A major drawback of this metric is the

requirement of computing all the shortest paths in a given network topology for each node
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which is computationally demanding, especially in large scale networks. To address this

issue, approximation methods are employed, some of which can be found in [23].

2.3 Distinctive structure of complex networks

The term network structure reflects all the properties of the network related to the degree
of the nodes, the distance between node pairs, the connectivity, the clustering coefficient,
etc. The structures of complex networks employed in this dissertation are the small-world
(SW) and the scale-free (SF) networks, which belong to the class of relational graphs and
are considered the most appropriate for representing the structure and evolution of Online
Social Networks. Contrary to spatial graphs, where the network is embedded in a metric
space and the connected node pairs are selected according to a predefined distance threshold,
relational graphs represent systems of interactions where any two nodes may possibly become

neighbors.

2.3.1 Small-world networks

A small-world network refers to a growing graph whose average path length increases pro-
portionally to the logarithm of the number of network nodes. It lies between a regular graph
(i.e., a graph where each node connects only to close neighbors in a specific manner) and a
random graph which results in exhibiting high clustering coefficient and short average path
length. In terms of its corresponding random graph, a small-world graph can be defined as

follows:

Definition 2. (small-world graphs) A small-world graph is a graph with n-vertices and
average degree k that exhibits L &~ Lygndom(n, k), but v > YVrandom = %, where Lyandom
and Yrandom are the average path length and the clustering coefficient correspondingly of the

random graph with n vertices and average degree k.

The mathematical model employed for the formation of small-world graphs in this thesis
is the one of Watts and Strogatz, otherwise referred to as S-model, which starts from the
ordered structure of a ring lattice with each node having k neighbors and rewires edges

randomly, denoted as shortcuts, with increasing probability 5 up to the point that a random

30



graph’s topology is achieved. Parameter 8 controls the degree of randomness of the graph
since it dictates the transformation of the initial regular lattice to a random graph with
asymptotically known properties. Each value of 5 corresponds to a different type of graph
structure, from totally ordered graphs to small-world graphs and finally to totally random

graphs, providing a graph structure continuum from regularity to randomness.

Smiadl-worid Random

Increasing randomness

Figure 2.1: The S-model of Watts-Strogatz [I].

2.3.2 Scale-free networks

The concept of “scale-free” captures the lack of scale in the degree distribution of complex
networks with different node groups exhibiting differences in scaling of their node degree.
The degree distribution of random networks follows a Poisson distribution, as presented
in Fig. 22| which means that the probability of a node to have k connections decreases
exponentially for large k, therefore it is extremely rare to find nodes having significantly
more or fewer links than the average. However, as confirmed by small-world networks,
complex networks present more complicated features regarding structure due to the way
their nodes are interconnected as well as their interactions as the network evolves. The
formation of new connections is dependent to the existing ones which results in imbalanced
degree of the network nodes.

The typical evolution of complex networks is based on two mechanisms not considered
by the random graph model. The first one is growth which indicates that the newly added
network nodes tend to make links with the existing ones. The second mechanism is known
as preferential attachment and it describes the tendency of newly added nodes to connect to

existing ones with probability proportional to the popularity of the latter. This implies that
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the probability of a new node linking to existing ones is not uniform but it is higher for the
nodes displaying larger connectivity or degree, creating two extreme groups, one of few high
degree nodes referred to as hubs, and one including the rest of the nodes which exhibit low
degree (Fig. [2.2]). Preferential attachment is mostly considered to be linear with respect to
node degree. In scale-free networks, the mechanisms of growth and preferential attachment
are reflected by the power-law distribution, namely, the probability that a vertex connects
with k other vertices is following a model such as P(k) = k7 with the exponent v € [2.1,4]

as shown in real world experiments [24].

(a) i(b) (c)

nodes

L

degree degree degree

Figure 2.2: Examples of degree distributions for (a) small-world (heavy tailed), (b) scale-
free (power-law) and (c) Random networks (Poisson). Topologies of 100 nodes are generated
using the models of (a) Watts-Strogatz with g = 0.2, (b) Barabasi-Albert with £ = 4 and
(¢) Erdos-Renyi with M = 700.

The most popular model of networks’ evolution dynamics in terms of network elements
addition/deletion is the one of Barabasi and Albert which, contrary to the small-world model
of Watts and Strogatz, does not enhance an existing topology with particular features but
constructs one by combining the mechanisms of growth and preferential attachment. These

two principles are shown by continuum theory to lead to power-law degree distributions [23].
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2.3.2.1 Preferential attachment

The linear preferential attachment is defined with respect to parameter x;, which in this
thesis represents the node degree. It is the procedure of choosing a node with probability

proportional to the value of x; expressed, in the general case, as follows:
Ma;) = S0 ‘ (2.14)

where f(z;) is an increasing function of the quantity x;. The sum at the denominator spans

all network nodes.

2.3.2.2 Barabasi-Albert algorithm (BA)

In the BA model, the time is considered slotted. The initiating network consists of mg
nodes. At time slot ¢, each newcomer node is linked to the network through m connections
with m existing nodes (injective link-node mapping) selected according to the preferential

attachment rule. At the end of time slot ¢, the network size is equal to N; = mg + t.
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Chapter 3

Monitoring in physical networks

3.1 Wireless Sensor Networks

The growth in micro-electro-mechanical systems technology and wireless communications
has facilitated the design of low-cost, low-power, small-sized inter-connected devices, which
form a Wireless Sensor Network. A large number of sensor nodes are often densely de-
ployed in a deterministic or random manner and are organized into a multi-hop wireless
network. Each sensor may consist of sensing, processing, storage and communication units.
The sensing unit of each sensor node acquires information from the physical surroundings
such as temperature, pressure, etc., which is stored in its storage component. The sensor’s
processing unit realizes simple computations on the sensed data, while the communication
unit transmits the processed data to intermediate nodes and controls the packets across
the network. Wireless Sensor Networks are developed in a wide range of application fields
such as healthcare, home automation, environment, security and transportation [25]. The
basic functionality of a WSN is to monitor the region in which its sensors are deployed,
referred to as Region of Interest (Rol), generate the data corresponding to the monitored
events and find a path for the data to reach the designated data sink. Coverage and Con-
nectivity are considered important evaluation metrics of Quality-of-Service (QoS) in the
WSNs, which reflect how well the network monitors a Region of Interest and whether the
detected /aggregated information can be forwarded successfully.

Due to the sensors’ resource constraints (limited battery capacity), nodes are prone to
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failures, which in turn result in frequent changes in the network topology. The design and
analysis of efficient coverage schemes, where connectivity is guaranteed, energy consump-
tion is minimized and network lifetime is prolonged, are currently very important research

directions [26].

3.1.1 Fundamental concepts of WSNs

Deployment strategy. Sensor deployment can be deterministic or random. In determinis-
tic deployment, each sensor is placed at predetermined coordinates in order for the network
to achieve a high level of target monitoring, low energy consumption and prolonged lifetime.
In harsh environments, such as disaster regions, where deterministic deployment may be
infeasible, sensor nodes are distributed within the field stochastically (e.g., air-dropped).
This may result in a partition of the Rol to densely and sparsely monitored regions, which
in turn leads to lower performance compared to the deterministically deployed network. The
Rol may be convex or non-convex (corresponding to the existence of obstacles).

WSN types. A WSN is characterized as homogeneous or heterogeneous based on its
sensor types. In a homogeneous WSN; all sensor nodes are identical in terms of battery power
and hardware complexity (sensing range, communication range, processing capability). A
heterogeneous WSN consists of two or more different types of nodes with different battery
power and functionality, where usually, the set of more powerful nodes, known as cluster
heads, are employed to receive and process data from less powerful nodes.

Sensing model. The simplest model is the binary disc sensing model [27] according
to which a sensor is able to monitor events or sense the environment only within its sensing
range. In this model, the sensing range of a node is determined within a circular disc of
radius rg, referred to as sensing radius. Assuming that sensor s; is deployed at point (z;,y;),
the probability that point p = (z,y) is covered by s; equals to 1, if d(s;,p) < rs, where

d(s;,p) is the Euclidean distance between sensor s; and point p,

17 d(siap) < Ts,
0, otherwise.

In the probabilistic sensing model [27], the probability of an event at point p to be
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detected by sensor s; decreases as the Euclidean distance between them increases. This is

formally expressed as follows:

Oa Ts + Te g d(Siap)7
Pp(si) =4 e ri—re <d(si,p) < Ts+Te, (3.2)
17 Ts —Te Z d(S“p)

where a = d(s;,p) — (rs — Te), Te < rs is a measure of the uncertainty in sensor monitoring,
while A and § are parameters that measure the monitoring probability when a target is at
location [rs — re,rs + 7).

Communication model. In the binary disk communication model [2§], which
is the one employed in this thesis, a node s; is able to communicate only up to a certain
threshold distance from itself, which is referred to as communication radius and is denoted
by 7.(s;). Sensors can have different communication ranges depending on their transmission
power levels. Sensors si, sp are able to communicate with each other if the Euclidean dis-
tance between them is less than or equal to the minimum of their communication radii, thus
d(si,sj) <min{r.(s;),rc(s;)}. More complex communication models that capture physical
characteristics of a wireless channel (e.g., multi-path fading, interference, etc.) or the de-
ployment environment are presented in [29]. The connectivity of a WSN requires that any
active node is within the communication range of one or more active nodes, such that all
active nodes form a communication backbone.

WSN model. A graph theoretic model is typically employed to represent WSNs. In
particular, the structure of Random Geometric Graphs resembles the topological structure
of randomly deployed sensor networks [30]. A WSN is modeled by a Random Geometric
Graph G(V, E,r), where V is the set of sensors and r is a predetermined threshold distance
between the nodes that determines the set of network edges E. The induced communication
graph of G is denoted by G. = (V, E., r.), where r. is the vector of sensors’ communication
radii for which it holds that re(¢) < r, Vi € V and E. C E is the set of edges such that an
edge exists between any two nodes if their Euclidean distance is less than the communication
radius r.. The network formed by the induced communication graph is said to be connected
if every pair of nodes is connected by a path in G..

Sensor mobility. In a stationary sensor network the location of a node is determined
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at the initial configuration and remains fixed over time after deployment. Mobile nodes may
change their position depending on the objective of the WSN. Mobile nodes have all the
features of fixed nodes (e.g., collect and process data, transmit and receive messages), but
it is the mobility feature that enhances network performance by addressing coverage issues
(e.g., densify the network in sparsely monitored regions) and connectivity maintenance that
may arise after deployment.

Coverage schemes. According to the type of targets monitored by the WSN, coverage
can be classified into area, target and barrier coverage. Area or blanket coverage refers to
the monitoring of an entire region. Either full or partial coverage of the region is required
according to the nature of the application. In target coverage, the objective is to surveil
a fixed number of targets, referred to as Points of Interest (Pol), within a given region.
The notion of barrier coverage concerns the detection of penetration through the region of
interest, also referred to as intruder detection. Contrary to blanket coverage, target and
barrier coverage do not require the whole Rol to be covered by sensors, thus, the cost of
sensor deployment is significantly reduced.

Classification of coverage algorithms. Most of the available works on coverage in
WSNs can be segregated in centralized and distributed. Centralized approaches require that
a single node collects information transmitted by all nodes of the network, which results in
high communication cost. Distributed algorithms allow each node to make independent
decisions based on the information exchanged with its one-hop neighborhood. Even though
distributed approaches exhibit an increase in the overall processing cost, communication

cost is reduced compared to the centralized approaches.

3.2 Coverage problems in Wireless Sensor Networks

Recently, research works aim to optimize either individually or jointly the number of ac-
tive nodes, coverage, energy efficiency, communication overhead, fault tolerance, scalability
and lifetime of WSNs. Challenges in area coverage and connectivity are presented from the
perspective of energy consumption and focus on optimal deployment and topology control.
Coverage is investigated in conjunction to connectivity, since coverage without connectivity

provides no guarantee that the data will arrive at the designated sink, while connectivity
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without coverage results in unmonitored regions, referred to as coverage holes, in the Region
of Interest. In [31] a sufficient condition for a covered network is provided to imply connec-
tivity in convex regions. It is proved that if a convex region is completely covered by a set
of nodes with sensing radius rs and communication radius r., the induced communication
graph is connected when 7. > 2 - rs. In other words, if r. > 2 - rg, the configuration that

guarantees coverage will also ensure connectivity for the network.

3.2.1 Deployment approaches

Energy conservation in WSNs is closely related to the design of deployment schemes, which
compute the minimum number of nodes to be placed in the Rol while ensuring coverage and
connectivity.

Virtual Force based approaches. When random deployment is applied, sensors
may be concentrated to certain parts of the Rol resulting in coverage holes. Virtual Force
Algorithm (VFA) is a mobile sensor redeployment strategy, which enhances coverage after
the initial configuration. The VFA method was inspired by the potential field theory used
to avoid obstacles in mobile robot movement [32]. Sensors, a priori known obstacles and
preferential areas in the Rol are modeled as attractive or repulsive virtual points. According
to the desired distances among sensors, a threshold value determines the repulsive and
attractive forces to which each sensor is subjected, e.g., when two nodes are closer than
the predetermined threshold, the force is in repulsive pattern, intending to separate them.
Obstacles and preferential areas also exert forces to sensors. The movement of each sensor is
determined by the summation of the force vectors. VFA is a centralized approach in which
the sink node calculates the new positions and the direction of movement for each sensor
node. A distributed VFA-based algorithm is presented in [33] whose objective is, based on
the coordinate’s information of the nodes and their neighbors, to redeploy the sensors to
ensure coverage and connectivity, while minimizing the redeployment energy cost per node
in terms of travelled distance. The VFA concept is also extended in [34] to consider the
connectivity maintenance of a network with arbitrary sensor communication/sensing ranges
or node densities where there is no knowledge of the field layout. The goal is to maximize
sensing coverage and guarantee connectivity, in a distributed manner, at the cost of a small

moving distance. Even though centralized schemes are computationally demanding for the
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sink node, distributed schemes consume more energy per node, which results in shorter
network lifetime.

Computational geometry based approaches. Computational geometry is a re-
search area focused on the systematic study of algorithms and data structures for geometric
objects, such as points, line segments and polygons, aiming to exact algorithms that are
asymptotically fast, [35]. Voronoi diagram and its dual, Delaunay triangulation, are the
most popular computational geometry methods used in WSNs. The Voronoi diagram is a
method of partitioning the Region of Interest into a number of polygonal regions based on
the distance between sensor nodes. Each node occupies only one polygon, where all the in-
terior points are closer to it than to any other sensor. Delaunay triangulation is constructed
by connecting every two adjacent points of the Voronoi diagram whose polygons share a
common edge. The vector-based (VEC), the Voronoi-based (VOR) and the Minimax al-
gorithm address coverage hole problems in a distributed manner [36]. VEC is inspired by
electromagnetic particles and it removes sensor nodes from a densely covered area by ex-
erting a repulsive force between them, namely, a virtual force pushes the sensors away from
each other if there is a coverage hole in either of their Voronoi Polygons, while VOR pulls
sensor nodes to the sparsely monitored area. Similarly to VOR, but with a lower limit on
the maximum movement of nodes, the Minimax algorithm reduces coverage holes by pulling
sensor nodes closer to coverage gaps.

Grid based approaches. Deterministic placement of sensors is provided by grid-based
approaches [37]. Nodes’ positions are fixed according to a regular grid pattern such as a
triangular, square or hexagonal grid. The monitoring area is divided into small grids and
the location of sensor nodes is specified by the employed algorithm to be in the grid center or
grid vertices. Within the scope of fire detection, a grid-based approach that aims to prolong
network lifetime and achieve full area coverage by minimizing the utilization of sensors, is
discussed in [38]. Grid deployment is compared to triangular and strip deployment and
it is shown to outperform the former when the number of nodes is considered a critical
issue. A virtual square grid-based coverage algorithm for WSN is introduced in [39], where
each sensor node divides its sensing range into virtual square grids. If all the virtual grids
of a sensor are covered by neighboring nodes, the sensor under examination is considered

redundant and sleep scheduling is applied, leading to low energy consumption while at the
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same time the active nodes guarantee coverage and connectivity in the whole network.

3.2.2 Topology Control approaches

In randomly deployed static WSNs, sensors are usually placed densely, thus, significant en-
ergy savings may be achieved by exploiting node redundancy in the network. This is realized
by either adjusting the sensing range of the wireless nodes in order to reduce coverage over-
laps or by dynamically managing the node duty cycles, with some nodes being scheduled to
enter a power saving mode, while the remaining active nodes provide continuous monitor-
ing of the Rol. Both approaches fall under the scope of Topology Control [40]. Therefore,
one has to compute the minimum number of active nodes and also, in the case of varying
sensing radii, determine the corresponding sensing ranges that ensure sufficient coverage
and connectivity with a minimum total energy cost. This problem, which is referred to as
variable radii connected sensor cover problem (VRCSC), is studied for WSNs de-
ployed in regular regions, that is, regions that can be described by a bottom left corner and
a top right corner, in [41] [42] with methods based on Computational Geometry and in [43]
with a multi-objective genetic algorithm approach. A greedy centralized and a distributed
scheme, using the concepts of Voronoi diagram and Relative Neighbor Graph, are proposed
in [4I] for the assignment of sensing and transmission radii and for the sleep scheduling
of sensors such that coverage and connectivity are ensured. The presented algorithms are
designed to take into consideration non-circular sensing and transmission ranges caused by
noise properties and irregularity in radio propagation respectively. Furthermore, in [42], a
distributed algorithm with one hop approximation of Delaunay triangulation is developed
for sensing radii assignments with minimal energy consumption and energy balancing. A
common assumption is that the deployment area is free of obstacles. However, in practical
scenarios, obstacles can prevent transmission and/or coverage. Such physical limitations,
if not properly considered, may introduce several burdens in the development, provisioning
and effectiveness of various services required for the realization of a monitored environment
[44, 45], [46] [47]. In the following section, the problem of the minimum variable radii con-
nected sensor cover is analyzed in a non convex region where the lack of convexity is due to
the presence of arbitrary shaped, convex opaque obstacles. The impact of obstacles on the

coverage and the connectivity of a WSN is studied with heuristic methods, which avoid the
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high computational cost of constrained Voronoi tessellation and Delaunay triangulation.

3.3 The problem of Minimum Variable Radii Sensor
Cover in obstructed network regions

In this thesis, the problem of minimum variable radii connected sensor cover, which is de-
scribed in section becomes more complex as it is studied in irregular (i.e., obstructed)
regions. Due to the presence of obstacles, connectivity cannot be ensured as in [31I]. These
environments represent typical cases of realistic WSNs and Internet of Things (IoT) deploy-
ments. Assuming the devices have the capability to modify their sensing ranges, the area
covered by randomly dispersed sensors has to be maximized, while reducing the sensing en-
ergy consumption as much as possible despite the presence of convex obstacles. To address
this problem, a framework capitalizing on the notion of the visibility polygon is introduced
and two algorithms are proposed, a centralized (and a randomized version thereof) and a
distributed one. The algorithms aim to maximize the ratio of covered area to consumed
energy, while ensuring a minimum coverage percentage. The presented schemes solve a vari-
ation of the original problem of VRCSC, which is referred to as the minimum variable radii
partial sensor cover, outperforming the plain assignment of maximum sensing range across

the network.

3.3.1 WSN model

A WSN is deployed over the region of interest, denoted as F', which without loss of generality
is assumed to be a square of side Lo, i.e., F = [0, Lo]?> C R2. F contains arbitrary convex
opaque obstacles and sensor nodes. The set of obstacles O = {O;} is modeled as a set of
non-overlapping, convex polygons in region F, as shown in Fig. [3:] Both the size and
the number of obstacles are predetermined so that O cannot be a partition of F. The
term coverable region F, will be used for the region F' without the obstacles, which has an
irregular shape. The objective is to minimize the sensing energy while covering F, up to a
given percentage of the maximally covered area of the sensor network, i.e., the area covered
when all deployed sensors employ the maximum sensing range, which is referred to as feasible

coverable region F!. F! is determined by the surrounding obstacles, the node locations and
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the boundary of the coverable region. It should be noted that in principle, covering all F,
might not be possible, i.e., the coverage of F may not correspond to the coverage of F,, due
to the random deployment of sensor positions.

The set of sensors S = {sy, ..., s, } is modeled by a set of points P = {py, pa, ..., pn} with
P C F,. Since the random deployment scheme is a commonly used assumption for WSNs
[48], sensors are distributed within the coverable region stochastically and independently
according to a Binomial Point Process [49]. The binary disk model is used for the calculation
of coverage [48], in which a point in F is covered by a sensor s;, if and only if it lies within
the disk of center s; and radius r; and there is line-of-sight from s;. The presence of opaque
obstacles blocks line-of-sight in certain subsets of the region, leading to non-convex sensing

patterns.

Q ..t :“

iﬂ‘ -,
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Figure 3.1: Illustration of the obstructed region of interest with the randomly deployed
sensors. The sensors are represented by the black dots of different size, which model the
inhomogeneity in the network. The obstacles are modeled by the blue convex shapes.

Once dispersed, sensors are assumed to remain static with adjustable homogeneous sens-
ing range r € [0, 7maz] (topology control enabled). Their transmission range r; remains
fixed and it should be properly determined to ensure network connectivity. Furthermore,
r¢ is associated with the maximum sensing range. In this problem, since the presence of
obstacles results in a partial coverage of a non-convex area, the condition of r; > 2rpax
proposed in [50] is adopted, where 7,4, is the maximum sensing range. The evaluation

results in section indicate that setting the transmission range to r; = 2.5ryax in highly
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obstructed networks with more than 150 nodes results in the majority of sensors (> 95%)
being connected.

Considering constant transmission range, thus constant communication cost, it is as-
sumed that energy consumption increases with higher sensing radius r and it is proportional
to a power of r [41]. The quadratic model that has been extensively used in the literature, is
adopted [51]. For sensor s;, the energy consumption is defined as ¢; - r?, where ¢; is a sensing
constant, and the total energy consumption is the sum of individual consumptions [43],

defined as

Energy(r) = Zcir?. (3.3)

A power saving technique is proposed through the adjustment of sensing ranges
r=(r1,r2,..,.7y) € D,

where D = [0, rmax]™ C R™ is the space of valid sensing radii assignments. The proposed
technique reduces coverage overlaps, while maintaining a predefined coverage goal given by

a threshold value.

3.3.2 Analysis of the Minimum Variable Radii Partial Sensor Cover

problem
3.3.2.1 Fundamental concepts

The Visibility Polygon [52] of a node i, depicted in an example in Fig. , is denoted as
VP, and corresponds to the set of points v € F' such that the line (v, p;) does not intersect
any obstacle. It contains all the points that are in line-of-sight from node 3.

The Field of Vision of node i, shown in Fig. [3.2p, is defined as
FOV,; :=VP;NDISK(p;, "maz), (3.4)

and describes the maximal set of points a node covers when it is set to its maximum sensing
radius 7max-

The Current Field of Vision of sensor i with sensing radius r; (recall that nodes have
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variable radius) is

CFOV,(r;) := FOV; N DISK (p;,r;). (3.5)

The Reduced Field of Vision of a node i, which depends on the current assignment r,

describes the field of vision covered solely by node i, and is defined as
RFOV;i(r) := FOV; \ | JCFOV;(r)). (3.6)
i#]

The Total Coverage TC(r) := |J; CFOV;(r;) represents the set of all the points covered
by at least one node for a particular radii assignment. The area covered in assignment r is

defined as Covered(r) := m(TC(r)), where m(-) is the Lebesque measure of a set [53].

V RFOV,
/Increme nt Area

/

© DISK(s:. n,)’/ /

CFOV;

N Vo

(a) (b)

Obstacle Here

Figure 3.2: Illustration of the basic structures. (a) Visibility Polygon of a sensor (bold
boundary outline), (b) Current Field of Vision, Reduced Field of Vision and obstacle area
(the latter depicted as white space).

3.3.2.2 Maximizing the coverage-to-energy ratio

To solve the problem of finding an assignment of sensing radii, which has high area coverage
and low energy consumption, formulations and solutions that maximize the ratio of covered
area to consumed energy are formulated. Specifically, the initial objective is defined as
finding the assignment, which yields the maximum ratio of the Covered area to the Energy
consumption in a particular assignment r, requiring that a specified coverage threshold T is

achieved. Formally:

Covered(r)}
argmax{ ————— ¢, 3.7
regsgD { Energy(r) 7
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where the feasible set S is defined as follows:

Covered(r) ; > T}. (3.8)

S {r < Covered(rmax

Maximizing this ratio is not trivial. The optimization problem (3.7)) is non-convex and
Covered is a function determined by the obstacles and the sensors. Therefore, in the fol-
lowing, a modified formulation is presented, which subsequently is shown to be equivalent

with the original one within a specific area of interest, i.e., set of assignments.

3.3.2.3 Minimizing the energy

The alternative approach focuses on the minimization of the energy of the radii assignment
with the coverage requirements of the Expression (3.8), considering the feasible set S. This

leads to the following formulation:

arg min { Energy(r)} . (3.9)
reSCD

The energy consumption function, Energy, is monotonically increasing. That is, for the
component-wise inequality of r1,rs denoted as ry < ra, r1 # ro, Energy(ry) < Energy(rs).
Specifically, consider a point r in the interior intS. Such point has the property that there
is an open n-ball, centered at r that is fully contained in the set S. It suffices to take a point
r' =r —¢, with € = 0, thus v’ < r = Energy(r’) < Energy(r).

Therefore, the minimum cannot be achieved in the interior intS, and the search can be
restricted in a subset of the boundary 0S, denoted by S, which is called the frontier and it
is defined as S := ¢l(dS \ D) C 88, where cl(-) denotes the closure of a set [53].

The set S is related to the set S of the assignments that achieve T% of the maximum
possible coverage (T-assignments):

S:{rep‘ccomed(r)):T}. (3.10)

overed(Tmax

In the case of partial coverage (T' < 1), S = S since for every T-assignment there
is always at least one sensor that will result in greater coverage by increasing its sensing

radius. In the case of maximum coverage (T = 1), it holds that S C S. This is because the
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maximum coverage can be achieved with r < rpay, i.€., Imax € S and rpax ¢ S. This is
clarified in Fig. [3:3h, where the overlaps in sensors’ maximum sensing range indicate that

complete coverage of the rectangle area (adjacent to the blue obstacle) can be obtained by

sensing radii smaller than the one illustrated.

| I OBSTACLE

Late Growth

Early Growth
(a) (b)

Figure 3.3: (a) An example of maximum coverage achieved by r < r,,q., (b) An example
of the overlap of two sensing disks, where radius decrease is performed by the Greedy
Centralized Algorithm.

3.3.2.4 Relationship between the two formulations

For a point r in the constrained set S, it holds that Covered(r) = T - Covered(rmax). The
right hand side expression is constant, and as a result, C'overed is constant in that set. This

leads to:

argmax{cfwed@} :argmax{wonswnt)} (3.11)
res | Energy(r) res  \ Energy(r)
= argmin { Energy(r)},
reS

which shows that the two problems are equivalent in the set S. In the following sections,

two heuristic methods are proposed to address both (3.7) and (3.9).

3.3.3 Greedy centralized algorithm

To solve the above problem, a greedy centralized algorithm is presented (Figl3.5)) that iterates
until the required percentage of coverage is achieved, or once exceeded. At iteration ¢, sensor

s; is chosen to increase its radius by Ar, if the latter has the largest ratio of increased area
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per increased energy defined as:

R(i.p) = MRFOVIE) \ RFOVi(x))

12
Energy(r’) — Energy(r) (3.12)

where r' = r + e; min{r; + Ar, rmax} considering nodes for which r’ # r. The element e;
is the i*" vector of the standard basis of the n-dimensional Euclidean space. If nodes s;, 5§
at iteration ¢ have equal ratios R(i,t) = R(j,t) = Rmax, the algorithm selects one of them
arbitrarily (R(i,t) corresponds to incrementRatio(i)).

It is noted that nodes are selected based on the value of the uncovered area per additional
energy requirements ratio in the ring defined by r; and r; + Ar. If the FOV of a node
is partitioned in several such rings, each ring can be assigned a quality measure based
on the ratio in the corresponding region. This is visualized in Fig. [3.4 The quality of
each ring in FOV; is constant, whereas the quality of the rings in RFQOV; varies with the
development of the algorithm’s assignment. Sensors with rings that initially delivered a
good ratio of area per energy, can deteriorate over iterations that include redundant nodes
or, more frequently, nodes with already unfavorable ratios. To mitigate this, the radius of
the node is stochastically reduced with the least ratio of decreased area per decreased energy

over a change of Ar at each iteration (see Fig. 3.3p).

FOV, RFOV,

Figure 3.4: Two instances of FOV; (left) and RFOV; (right) partitioned in 3 rings. Green
color indicates a large ratio of area per energy in the region defined by the corresponding
ring, whereas Red color indicates a small ratio. White spaces are due to obstacles and the
operation of neighboring sensors.
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Greedy Centralized Algorithm
Input: Set of obstacles O, set of sensor points P, Coverage threshold T'.
Output: Radii assignment r.

1: Initialization: r = 0.

2: function GreedyAssignment (O, P,T)

3: while CoverageFraction(r) < T do

4: S = argmax,y, {incrementRatio(i)}

5. 1 = selectRandom(S,1)

6: 1, =min{r; + Ar, "}

7. if BernoulliTrial(p) is successful then
8: S = argmin,y, {decrementRatio(i)}
9: i = selectRandom(S,1)

10: r; = max{r; — Ar,0}

11:  end if

12: end while

Figure 3.5: Greedy centralized algorithm for the variable radii connected sensor cover prob-
lem.

3.3.4 Greedy distributed algorithm

Furthermore, a distributed scheme is proposed, where each node acts in an independent

manner, modifying its radius, until the whole system converges to a sensing radii assignment.

3.3.4.1 Dependency graph

The graph of dependencies encapsulates the inter-dependence of nodes for the cooperative
coverage of the coverable region F!. The dependency graph, G = (V,£), is the undirected

intersection graph of the sets {FOV;}, that is, a graph in which

{'Ui,’Uj} €5<:)FOVZH}'OVJ i’é@

Thus, in this graph, an edge indicates that the two adjacent vertices cover common parts of
the region of interest, and as such, they will have to communicate with each other to decide

locally for their sensing radius increase.

3.3.4.2 Local convergence criterion

An emerging issue with the distributed algorithm is to determine a criterion for a node
to stop modifying its radius so that a sufficient overall coverage is achieved. For this, an

extension of the general result for full coverage found in [54] is implemented. At each
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iteration, a node will compute the percentage of its restricted sensing perimeter, defined as
the length of its sensing circumference O(CFOV;), which is restricted by each neighboring

sensor’s CFOV;, its k surrounding obstacles Oy, and the boundary of the region of interest:

length(CCIRC;)

PCOV; = , (3.13)
length (mcrovi))
where
CCIRC; = d(CFOV;) N (( U c;ovj) U (U ok) U ]-"c> . (3.14)
J#i k

If the percentage of its restricted sensing perimeter is larger than or equal to a prede-
termined limit ¢, the node will stop altering its radius. This criterion results in varying
percentages of coverage for a constant £, but according to the results in [54] the variance of
the finally achieved coverage percentage is expected to decrease as the network size increases.

The algorithm iterates until all nodes satisfy the local convergence criterion. At each
iteration, nodes that fail the local convergence criterion, evaluate their neighborhood in the
dependency graph. Each of these nodes compares its ratio to those of its neighbors, and if it
is among the nodes with the greatest increment Ratio, it is included in the set of sensors that
will increase their radii concurrently by Ar. The pseudocode for this scheme is provided in

Fig. 3.6

3.3.5 Evaluation of the centralized and distributed algorithms

The performance evaluation of the proposed schemes is achieved via modeling and simu-
lation. For this purpose, typical metrics that have been used in similar evaluations are
employed, namely the average sensing radius (also used in [42]), and the energy consump-

tion ratio defined as:

ConsumRatio(R) := Energy(R)

= 3.15
Energy(Rmax) ( )

The performance of a randomized version of the Greedy Centralized Algorithm denoted
by Check-c-R, is also examined. This version may address scalability issues of the Greedy
Centralized Algorithm. At each iteration of Check-c-R, only a subset S’ of the set of sensors
S are candidates for radius increase, with |S’| = ¢. The set S’ is chosen uniformly at ran-

dom among all the possible subsets of cardinality ¢. Consequently, the Greedy Centralized
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Greedy Distributed Algorithm
Input: Set of obstacles O, set of sensor points P, sensing perimeter limit [.
Output: Radii assignment R.

1: Initialization: R = 0.

2: function GreedyDistributedAssignment (O, P, 1)

3: while Change of R in the last iteration do

4:  SetTolncrease =)

5:  for i from 1 to N do

6 if PCOV; > then

7: Continue

8 end if

9: if i€ argmax;e(,esupi) {incrementRatio(j)} then
10: SetTolIncrease = SetTolncrease U {i}

11: end if

12: nei = Neighborhood(G,i)

13:  end for

14:  SetToZero = FindRedundantNodes(Sensors)
15:  IncreaseEachInSetBy(SetTolncrease,Ar)

16:  SetZeroEachInSet(SetToZero)

17: end while

Figure 3.6: Greedy distributed algorithm for the variable radii connected sensor cover prob-
lem.
Algorithm can be derived by Check-c-R, for ¢ = |S|.

The simulation parameters are: Ly = 10m, rypax = 1m, Ar = T"% = 0.2m. The sensing
constant is set ¢; = 1. Unless otherwise stated, the number of obstacles considered is 40 and
the number of nodes is assumed 200. The obstacles are generated from a convex hull of 7

points dropped uniformly at random inside a unit square.

3.3.5.1 Energy consumption ratio

In Fig. a comparison among the three aforementioned alternatives (Greedy Central-
ized: Check-all-R, Check-c-R, and Distributed) is presented with respect to the metric
ConsumRatio for two different scenarios of targeted coverage, i.e., 90% and 95%. At first
the effect of network size on energy consumption is examined. It should be noted that the
coverage percentage in the distributed algorithm is a random variable. To enable a fair com-
parison with the centralized approaches, the Restricted Sensing Perimeter limit is chosen
to induce a percentage of area coverage of an average value close to the targeted coverage
(= 91% and =~ 94%), as presented in Fig. [3.8

It can be observed that for all algorithms, as the number of sensors increases, the con-
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Figure 3.7: Comparison of Average Energy Consumption Ratio for the three algorithms.
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Figure 3.8: Average Coverage for different values of the Restricted Sensing Perimeter
(PCOV) in the Greedy Distributed Algorithm.

sumption ratio decreases, leading to more efficient radii assignments. This is reasonable,
since when more sensors exist, a smaller sensing range will be required for each sensor, in
order for the same percentage coverage to be achieved. This leads to greater energy effi-
ciency. A smaller required coverage percentage, i.e. 90% as opposed to 95%, leads to similar
results, as it is not required for some nodes to increase their sensing radii more than the rest
in order to cover stringently obscured areas.

Fig. [3:9) compares the average consumption ratio for varying number of obstacles. The
distributed approach behaves similarly to the randomized centralized for a small number of

obstacles and similarly to the greedy centralized for more obstacles. This is due to their
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fundamental operation. In the greedy centralized, the sensing radius assignment depends
on the area between the increment rings. As the number of obstacles increases, less options
are left in this area. On the contrary, in the distributed algorithm, the decision depends on
the restricted sensing perimeter, which is a function of the obstacles, the boundary of the
region and other sensors. The boundary and other sensors have a fixed contribution to the
restricted sensing perimeter, due to their specific shape. In this case, the restricted sensing
perimeter can obtain a value greater than the current sensing circle. The greater the number
of obstacles around a sensor, the greater the value of the restricted sensing radius will be
(due to the shape of the obstacles), and each sensor will stop faster increasing its sensing

range, leading to an assignment with smaller radii overall.

0.22
—@— Check-All-0.95
—m— Check-R-0.95
o —&— Distributed-0.95
=1 0.21
&
g . T - -3
g N
£ L3
Z 0.2 ™,
5 ™
o e \\
@ E‘“‘x \\
z e ™,
g o019 — | N
* — ___\_‘_‘__:.__h.
e

10 20 30 40 a0

Number of Obstacles

Figure 3.9: Comparison of Average Energy Consumption Ratio for different number of
obstacles (results averaged over 50 topologies).

3.3.5.2 Average sensing radius

Additional characteristics of the behavior of the distributed algorithm are presented in Table
and Fig. Specifically, Table [3.1] lists the Average Coverage (AvgCov), the standard
deviation of the Coverage (CovStd), the Average Sensing Radius (AvgRad) and the number
of iterations required for convergence (Iters).

The results are in accordance with the previous ones. Furthermore, it can be verified
that for the distributed algorithm the standard deviation of the coverage percentage is small,

indicating that despite its stochastic nature, the outcome of the scheme has a good eventual
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Table 3.1: Performance indices for the Distributed Algorithm
I Perimeter Coverage 78% |

Nodes AvgCov CovStd AvgRad Iters
100 0.94 0.0145 0.455 32.8
150 0.94 0.0129 0.353 35.9
200 0.942 0.0277 0.292 39.1
250 0.941 0.0387 0.253 41.3
300 0.950 0.0241 0.229 43.8

Perimeter Coverage 70%

Nodes AvgCov CovStd AvgRad Iters

100 0.906 0.0314 0.426 30.1
150 0.910 0.0134 0.333 33.4
200 0.920 0.0147 0.280 36.5
250 0.915 0.0227 0.244 38.6
300 0.914 0.0353 0.219 41.2

—@— Check-All-0.95
& & Check-10R-0.95
, —@— Distributed-0.95
0.4 \N —— Distributed-0.90

0.3

Average Sensing Radius

0.2
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Number of Sensor Nodes
Figure 3.10: Comparison of Average Sensing Radius for different network sizes.

behavior. Fig. [3.11] presents the average sensing radius for varying number of obstacles,

which are in accord with the results in Fig. |3.9

3.3.5.3 Network connectivity

The connectivity of various deployments is investigated to verify that information exchange
is possible. Connectivity depends on the number of nodes per unit area and the number
of obstacles, which are considered of constant size. In Fig. [3:12] the connectivity of the

simulated topologies is shown, varying from a moderately obstructed environment with
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Figure 3.11: Comparison of Average Sensing Radius for different number of obstacles (results
averaged over 50 topologies).

10 obstacles, to a heavily obstructed environment with 50 obstacles. The comparison is
between a communication radius r, = 1, equal to the maximum sensing range Tmax, and

Ty = 2.9 Tmax = 2.9.
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Figure 3.12: Average Size of Giant Connected Component (results averaged over 50 topolo-
gies).

In the vertical axis, the size of the largest component (Giant Connected Component) as
a fraction of the total nodes is presented. The results indicate that a communication range

of r = 1 is insufficient to provide a giant component that contains the majority of nodes.
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Contrary to the previous case, for r; > 2, even the most obstructed networks are very well
connected for sufficiently dense deployments — one example is the case of 200 nodes, in which
an average of 96.1% of the nodes are included in the giant component.

The approaches presented in [3.3] monitor efficiently an irregular region of interest by
solving a problem of coverage under complex constraints in a Wireless Sensor Network. In
Chapter [4] the notion of monitoring and coverage is extended, via Social Network Analysis,

in cyber networks.
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Chapter 4

Monitoring of information diffusion
and socio-aware content allocation in

cyber networks

4.1 Information diffusion in Online Social Networks

A definition of information diffusion in social networks is given in [55] as follows:

Definition 3. Information diffusion is defined as the process by which information is com-

municated through certain channels among the users of a social network.

The main factors influencing information diffusion are the network structure (node den-
sity, centrality, clustering, connectivity), the strength of ties (frequency of interactions,
strength of influence) [56, 67] and its temporal dynamics, namely, how the diffusion rate
evolves over time. Research works in information diffusion address three main categories
of problems: detection of popular topics, inference/prediction of the diffusion network and
identifying the most important nodes in a diffusion process, which is closely related to the

problem of influence estimation and maximization [58].
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4.1.1 Detection and prediction of popular topics

For the detection of popular topics in OSNs, most methods in the literature are based on
finding unusual term frequencies in information sharing [59]. In [60] a state machine is used
to model the arrival times of documents in a stream in order to identify bursts, that is, topics
that grow in intensity for a period of time and then fade away, under the assumption that
all documents belong to the same thematic category. In [61] a method of tracking units of
information in terms of short distinctive phrases, referred to as memes, is developed through
clustering textual variants of memes. The method is applied to real data and the results
show that the news cycle in social media exhibits a persistent temporal pattern of growing
and decaying popularity around the point of peak intensity. An approach that predicts
the topics of great popularity in the near future is developed in [62]. A tendency indicator
used in technical analysis of stocks, known as MACD (i.e. Moving Average Convergence
Divergence) is adapted to identify bursty topics determined by keywords in social media.
The objective of the improved MACD indicator is to turn two trend-following indicators, a
short and a longer period moving average of keywords, into a momentum oscillator. The
trend momentum is calculated by subtracting the long from the short moving average. When
the value of the trend momentum changes from negative to positive, the topic is becoming
popular, whereas the level of popularity is decreasing when the value changes from positive

to negative.

4.1.2 Inference and prediction of influence networks

The second category includes methods of finding, via prediction or inference, who influ-
enced/infected whom, namely, the paths through which information propagates. Informa-
tion diffusion models can be coarsely classified to explanatory and predictive [59].

The goal of explanatory models is to infer the underlying network over which infor-
mation propagates, given the times users learn a piece of information. Correlations between
the users’ infection times are studied in [63] in order to infer the underlying network over
which contagions spread. Assuming a static network topology and that activated nodes
transmit the contagion to each of its neighbors independently with some probability, the

propagation probability between two nodes decreases with the difference of their activation
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times. An iterative algorithm based on submodular function optimization is designed to find
the spreading cascade that maximizes the likelihood of the observed data. An extension of
this algorithm, which considers dynamic networks that change over time is introduced in
[64], where the diffusion process is modelled as a spatially discrete network of continuous,
conditionally independent temporal processes that occur at different rates. The likelihood of
a node infecting another node at a given time is modeled via a probability density function
depending on pairwise activation times and transmission rates. The proposed method infers
the structure of the diffusion graph and the transmission rates between pairs of nodes by
formulating a convex maximum likelihood problem, which is solved with stochastic gradient
descent. In [65], the diffusion inference problem is treated as a problem of recommenda-
tions. Given the information cascade, which is modeled as a sequence of tuples (user id,
timestamp of infection) as well as users’ historical data, the behavioral features of the users
are derived, that is, their relevance on different topics, as well as textual features of their
exchanged messages. By considering the propagated information as an item for recommen-
dation, the previously described features are exploited by a Recurrent Neural Network to
solve the recommendation problem and infer the users’ diffusion relationship.

Based on the fact that the dissemination data observed in an OSN is limited due to
privacy restrictions, an explanatory model of information diffusion is introduced in section
The issue of partially observed information cascades is addressed by focusing on the
structural properties of an OSN in order to determine a monitoring cover, that is, a minimum
set of nodes that one has to monitor (e.g., users with public profiles, who also tend to be very
popular in the network) in order to infer different content and diffusion dynamics that spread
concurrently and independently across a network. Edge coloring and statistical learning are
then applied to trace the corresponding diffusion paths.

In contrast to explanatory models, predictive models aim to predict the outcome
of a specific diffusion process based on temporal or spatial network characteristics [59].
Widely used predictive graph-based models of information diffusion are the sender-oriented
Independent Cascade (IC) probabilistic model and receiver-oriented Linear Threshold (LT)
model. In the IC model, node u at time t becomes active (receives information from the
diffusion process) and has one single chance of activating each inactive neighbor v at time

t+1, with a probability p,,. The process continues until no more activations can take place.
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The LT model is the most popular of the threshold models used in studying diffusion in
networks. In this model, a threshold value or a set of threshold values are used to determine
ranges of values where the behavior predicted by the model changes significantly. Each edge
(u,v) of the network is affiliated with a weight w,,, and each node v has a threshold ¢,.
Node v is activated if the fraction of its active neighbors exceeds t, [55].

The explanatory model employed in this dissertation, is the one of Random Walks. Given
a graph and a starting node, one of its neighbors is selected at random to serve as a new
starting point for a random neighbor selection. The sequence of points created by repeating
the described random process is referred to as random walk on a graph [66]. Random
walks are one of the most fundamental types of stochastic processes and are widely used to
model information diffusion and interactions among entities in networks of various structures.
They can be distinguished to three main types: discrete-time random walks, node-centric
continuous-time random walks and edge-centric continuous-time random walks [67]. In
section several discrete-time random walks with non-adaptive walkers are employed to
model the information sharing between the users of an OSN.

Non-graph based models of information propagation, as opposed to the graph based
models, do not assume the existence of a specific graph structure and are mostly based on
epidemic spread processes. In epidemics transmission, users are infected with a virus while
others are susceptible to it. The virus can spread from infected to susceptible users, in a
similar way that information diffuses from communicators to recipients. Therefore, users
are classified into several classes and the variation in the amount of users of each class, due
to state transitions, is studied. The epidemic models are expressed by differential equations
and the most representative deterministic models are the SI (Susceptible-Infected), SIS
(Susceptible-Infected-Susceptible) and STR (Susceptible-Infected-Removed) [12], [13]. In the
ST and SIS models [68], susceptible users switch to class I with a fixed probability. SI.S
additionally assumes that the users in I may switch to S with a fixed probability. In the

case of STR, the users in I permanently switch to the R class.

4.1.3 Identify influential users

Social influence is described in [69] as follows:
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Definition 4. Given two individuals u,v in a social network, u influences or exerts power

over v, that is, u may change the opinion of v in a direct or indirect way.

From the viewpoint of information diffusion, influence can be defined as the importance of
each user in propagating information. Finding the most influential spreaders of information
in an OSN is of great importance since it ensures efficiency in the process of information shar-
ing, including recommendations. The most important features for measuring user influence
are based on network structure, user interactions and user attributes. Centrality measures
including degree, closeness, betweenness, eigenvector and Katz centrality [70] are conceived
as evaluation metrics for characterizing the influence of network nodes with respect to the
overall network structure. For instance, influential users of recommender systems operating
in an OSN can be considered the ones who exhibit high similarity to a great portion of users,
having at the same time high out-degree in the social network [TT].

The problem of selecting the & most influential nodes of a network is known as Influence
Maximization and was first presented in [72] as an algorithmic technique for viral market-
ing. It was then formulated in [73] as a discrete optimization problem that was proved to be
NP-hard and by using an analysis framework based on submodular functions, a greedy strat-
egy with approximation guarantees was presented. Apart from this greedy strategy, many
heuristic and hybrid algorithms have been introduced to address the influence maximization
problem in static and dynamic networks [74] [75]. In this dissertation, a problem closely re-
lated to influence maximization is addressed from the viewpoint of recommendations where
the information sharing between the users of an OSN is taken into consideration. These
are known as Social Recommender Systems and the problem addressed in section [14] is
the one of item-user relevance maximization under user complex constraints. The proposed
methodology is designed to select item-user tuples, that is, a set of items for assignment to
a set of OSN users with susceptibility to information overload so that the network’s total

relevance to the former is maximized through inferred users interactions.
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4.2 Sensing and monitoring of information diffusion in
Online Social Networks

As discussed in section inferring an influence network is a complex problem of promi-
nent importance. Considering that sensing and monitoring information diffusion in OSNs
typically requires significant sensing resources, an inference approach for an information
diffusion process through efficient monitoring is proposed and analyzed in this thesis. In-
formation is considered to belong to different classes and it is characterized by different
spreading dynamics based on its popularity. The designed framework utilizes social net-
work analysis metrics in order to reduce the sensing resources that would be required in an
otherwise exhaustive monitoring approach, while employing statistical learning and prob-
abilistic inference for maintaining the accuracy of information tracking, whenever needed.
An edge coloring scheme is defined, based on which it is possible to keep track of informa-
tion diffusion. The information is assumed to spread in the network according to various
biased random walks that represent the dynamics of the considered classes of information.
Statistical learning is employed for the inference of those cases where backtracking leads
to multiple potential choices for information paths. The operation and efficacy of this ap-
proach is demonstrated in characteristic online social networks, such as distributed wireless
(spatial) and scale-free (relational) topologies, and conclusions are drawn on the impact of

topology on information spreading.

4.2.1 Models of the OSN and the diffusion process

In a platform of social networking, users form social bonds and interact by sharing infor-
mation. An information class is defined as the cumulative information content that spreads
according to the same mechanism over the platform. Examples include all information re-
garding a specific sport, news on politics, seasonal advertisements, etc., [76, [57]. Before the
diffusion mechanism is explained in detail in subsectionfd.2.1.2} the considered communica-

tion network model is presented. The notation employed in this section is summarized in

Table [4.1]

61



Table 4.1: Notation table for the problem of information diffusion monitoring.
Symbol \ Interpretation

G(V,E) | Physical connectivity graph
v; Node v; € G
n Number of nodes n = |V| of the physical topology
A Adjacency matrix A = [aj;]
G'(V,E') | Diffusion graph
T Delaunay triangulation
I Set of information classes I = {I, I, I3, I}
I; Information class ¢
d(v;) Node degree of v;
o Set of colors C' = {C1,Cy,...,Ci}
ci Colori e C
S Set of sensors
S; Sensor s; € S
L Size of square deployment region for RGG
R Transmission radius of RGG
d Clustering parameter of SF' network
q; Sequence of colored edges traversed j
G, 1-ego network of node s;

4.2.1.1 OSN model

Graph G(V, E) is a representation model for the physical interconnection of an OSN, where
V is the set of nodes, |V| = n, and E the set of links between pairs of nodes. Two repre-
sentative physical interconnection topologies are considered, one of the Random Geometric
Graph (RGQG) type representing spatial networks, and one of scale-free (SF) type being
representative of relational networks [23]. The RGG is a proper model for distributed mo-
bile devices that form ad-hoc networks and necessarily have to rely on multihop routing of
the information exchanged [23| [77], while SF is more representative of wired information
network topologies forming in online social networks.

The n x n matrix A = [ay], with a; ; € {0,1} for 4,5 = 1, ...,n is the adjacency matrix
of physical topology G, where a;; = 1 whenever link (4, j) exists and zero otherwise. The
physical network is considered undirected, and thus, a;; = a;;,Vi,j. G represents the
interconnection of physical devices that constitute the communication substrate for the
exchange of information.

For the RGG, the network is assumed to be deployed over a square region of side L.
Each node of the RGG is considered to have a transmission radius R, dictated by a specific

maximum transmission power, selected uniformly for all nodes. Thus, a common R is
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employed by all user devices [77]. Transmission effects at the physical layer are not taken
into account. They could be implicitly considered via an “effective radius” multiplicative
factor, cumulatively modeling all such effects [78]. Also, the retransmission effects at the
medium access layer that emerge during MAC frame exchange between neighboring nodes
are not considered. Such retransmissions could have some effect on the temporal evolution of
the information spreading process over the analyzed network. When retransmissions occur,
the typically employed TCP protocol at the Network layer will ensure the correct exchange
of information, with some additional delay. The eventual outcome reduces to a delayed
information propagation effect, which does not fundamentally differ from the one studied,
apart from a delay offset factor. Since this factor is small and almost uniform across all
transmission links in the network, it can be disregarded without harming analysis.

The SF topology is characterized by parameter d, denoting the d connections each new-
comer node creates with d pre-existing nodes of the initial network using the preferential
attachment rule. Such process is employed for deriving the final SF topology [23]. The

higher d is, the more clustered the SF network will be.

4.2.1.2 Information diffusion model

The considered information diffusion process assumes a set of I, |I| = m, classes of in-
formation spreading over the network, denoted as I, Is, ..., I,,. For simplicity, m = 4 is
considered, but extension to more classes of information is straightforward. The classes of
information are assumed to be spreading in parallel over a spanning subgraph G’ = (V, E’)
of G, |E’| < |E| and E’' C E. This means that the flow of information does not necessarily
follow the whole of the physical graph, but most frequently, it employs a subgraph of it.
This is due to the fact that information diffusion is fundamentally a probabilistic process
[57, [79]. This subgraph is referred to as diffusion graph.

In the case of the spatial network (RGG), the corresponding diffusion network is obtained
through a “thinning” process that maintains the original properties of the communication
network. This can be achieved by a Delaunay triangulation T' = (V, Er) of the vertex set
of G [35], where E' = Er N E, an example of which is shown in Fig. The diffusion
subgraph obtained through this process will be a planar graph [35], which is a rather desired

property for this case of RGG communication networks, since planarity ensures that users
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of small distance in the initial topology (distance between nodes represents the strength of
social ties between users) are connected. In the case of the relational network (Barabasi-
Albert model of SF networks [23]), the corresponding diffusion network is obtained by a
conditioned deterministic preferential pruning of edges: In order to preserve the scale-free
properties of the initial network in the diffusion network, where the former is parametrized by
a number d, which is the number of each newcomer’s connections with d pre-existing nodes
[23], the network of parameter £ is used as a basis for filtering out edges that are incident
to minimum degree vertices as follows: The nodes of both networks are sorted in order of
increasing degree value and for each ordered pair the difference between their corresponding
degree values is computed. For positive resulting values and in the case where the network
remains connected, the edges incident to nodes of minimum degree are successively removed.
This results in a network where the degree centrality of its nodes inherits both the degree

distribution of the initial and the employed basis d, and follows a power-law distribution, as

shown in Fig.
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Figure 4.1: Initial network and its corresponding diffusion graph. (a)Random Geometric
physical graph: |V| = 100, |E| = 845, R = 250m. (b)Random Geometric diffusion graph:
|V| =100, |E| = 271.

Each information class is assumed to spread independently over the diffusion network
according to a biased random walk [80], each with a different bias. Random walks have
been extensively used as sufficient models for information diffusion [67, 80, 8I]. Also, for

each class a seed node v € V' is chosen uniformly at random across the network, to serve the
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Figure 4.2: Degree centrality of the scale-free diffusion network resulting from preferential
pruning of edges of the initial scale-free topology.

role of information seed in the diffusion process. Each biased random walk corresponds to

a different information class as follows.

Information class I;: The first information class is considered to be an unbiased random
walk, which will also serve as a benchmark diffusion model. Thus, according to I;, at each

time a node informs one of its neighbors in the diffusion network with equal probability.

€]

The transition probability matrix of this information class is given by 71 = [p;;’], where
1/d(vi), wv; € E'
1 i)y A
Py = (4.1)
0, otherwise,

n
Y~ ajj; is the degree centrality of node v; of G'.

i=1

and d(v;)

Information class Is: The second class is considered as a shortest distance biased random

walk with transition matrix Tp = [pg)}, where
d(vi,vg) ! '
viv; € E
d(vi,v;)~- 1’ L)
P = 2ouseny, 40100 (4.2)
0, otherwise,
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where N is the neighborhood of v; in G’ and d(v;, v;) is the Euclidean distance between v;

and v;.

Information class I3: The third class is considered as a closeness centrality-biased ran-

dom walk with transition matrix 75 = [pgj?)], where
Co,
——, vy, eF
Ch,
pgj) _ ] 2eny, O (4.3)
0, otherwise,

where C,; is the closeness centrality of v; in G'.
Time is considered slotted, so that the information diffusion process proceeds in discrete

time steps over G'.

4.2.2 Information diffusion sensing and inference

As discussed above, all information classes start spreading at the same time independently
through an edge-colored network. Information spreading over the network is tracked through
a subset of the initial network’s nodes, which are considered to have sensing capabilities.
Each time that an information class I; hits a sensor node sg, it leaves a trace in the form
of a set of triples (I;,¢,q), where t is the time at which I; hits s; and ¢ is the sequence of
colors of the edges traversed between two successive hits to sensor nodes from class I;. The
diffusion inference is performed via backtracking, which operates as follows. For a trace in
sensor node sy, starting from the last element of the color sequence ¢, which corresponds to
an edge incident to s; and using 2 different inference methods discussed below, each color is

mapped with respect to the physical network’s structure to an edge of the diffusion network.

4.2.2.1 Sensor placement

The sensor placement scheme takes into account the degree centrality, i.e., node degree. The
corresponding pseudocode is provided in Algorithm [I} The algorithm begins by sorting all
nodes according to their degree centrality in a descending order. The highest ranked node
is chosen as the first sensor-monitor node. Then each of the remaining ordered nodes is

sequentially added to the set of monitors as long as its neighborhood does not include any
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of the already designated monitor nodes. This problem is equivalent to finding a minimum

maximal independent set of the network [82].

Algorithm 1: Degree-based Monitor Placement

Input: Network Topology G(V, E)
Output: A subset of nodes S C V as sensors
1 Sort all nodes v; € V,i =1,..N, where N = |V, in order of decreasing degree
centrality score. Obtain V as V' = {v; = v3 = ... = vy}, where “ = 7 indicates the
ordering of decreasing degree centrality score.
2 Initialize the set of sensors: S = {0};
3 Insert the node with the highest degree to S: S = {v1};
4 fori=2:N do

5 if N,, NS =0, N, is the neighborhood of node u;, then
6 | S+ Su{u};

7 else

8 L return S;

4.2.2.2 Edge coloring

In order to perform efficient information diffusion inference via backtracking, a scheme that
takes into account the structural properties of the physical graph G colors its edges. Since
most of the times the existing OSNs are characterized by massive sizes, an efficient and
usable coloring scheme that can be easily implemented is needed [83]. Algorithm [2| provides
the corresponding pseudocode.

The presented approach capitalizes on the observation that a large-scale network can
be partitioned into local subnetworks defined by the ego-networks of nodes [84], and thus,
develop an ego-network-based edge-coloring scheme. Assuming there exist |S| sensor nodes,
C = {c1,¢c2,...,¢/g} colors are considered. For each sensor s;, i = 1,2,..[S], its l-ego
network G, is constructed and all edges incident to s; are assigned the color ¢;. The number
of required colors is reduced by assigning the same color to edges that belong to disjoint
ego-networks. For each edge that color reuse cannot be applied, a new color is assigned,
which is also added to set C. The last two steps of color-reuse and new-color-assignment
are repeated for the remaining edges until all edges of the network are colored.

Fig. {3 provides a quantitative idea of the average number of monitors and colors deter-
mined by the proposed scheme for information sensing and path backtracking. Furthermore,

Fig. [£.4) provides tangible examples of the coloring and monitoring schemes for two specific
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Algorithm 2: Ego-network-based Edge Coloring
Input: Network Topology G(V, E) and sensors S = {s1,...,5/g} CV
Output: Edge-Colored Network G(V, E,¢), ¢: E — C is a mapping from edges to
colors

1 Initialize the set of colors with |S| colors: C' = {c1, ..., ¢/g|}-
2 fori=1:|5|do

3 Find the 1-ego network of sensor s; : G, (Vs,, Es,);

4 for all edges s;u; € E,; do

5 c(siug) = ¢i;

6 Cs, = {ei}; Cs, is the set of the colors for the edges of s; ego-network.
7 for each edge uw € E : c(uw) = 0; do

8 Compute the set G, of the ego-networks Gy, ,7 = 1,...,|S| to which the vertices
u and w belong.
9 Compute its corresponding set of colors Cy,, C C;
10 Compute the set of allowed colors for the edge uw : C!,,, = C'\ Chuuw;
1 | if ¢, # 0 then

12 Assign at random an element of CJ, to uw: c(uw) = Cyp
13 Cuw & Cyw U {Cuw};

14 if cyw N{c1,.., ¢} = 0 then

15 | C+ CU{cuw};

16 else

17 L return C;

18 else

19 Assign a new color to uw: c(uw) = Cyuw;

20 Cuw < Cuw U {cuw};

21 C <+ CU{cuw};

instances of a random geometric and a scale-free graph, respectively.

By observation of the panels in Fig. [£4] it can be deduced that the average path length
between pairs of monitors is expected to be greater in RGG topologies and lower for SF, owe
to the power-law degree distribution of the latter where monitor-hub nodes provide short
distances to many other nodes. However, this does not mean that the average number of
sensors required reduces as well. The fact that there are many nodes with very low degree,
not properly covered by the initially chosen as monitors node-hubs means that additional
sensors are required. This is verified by Fig. [4.3|(a), where it is observed that the average
number of sensors in RGG topologies (with constant radius R and in square region of side
L) is independent of the increase in the number of nodes, whereas in SF topologies, the
number of sensors increases linearly to the number of nodes (20% of the nodes).

Due to the power-law structure of the SF topology, noticeable diversity in the coloring

of edges is observed between the RGG and SF topologies. Almost half of the edges of SF
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Figure 4.3: Average values of monitor nodes, colors and edges of physical and diffusion
networks determined by the edge coloring approach. In panels (a) and (c) the results refer
to physical topologies for both RGG and SF. Panel (b) depicts the numbers of colors and
edges in the y-axis, as noted in the legend.

are incident to sensor nodes, thus inheriting the color defined by the sensor’s ego-network
they belong to. Also, color reuse cannot be applied in SF networks at the same extent as in
RGG, since most sensors’ ego-networks are not disjoint as in the case of RGG networks that
are characterized by a distributed topology. The latter, combined with the aforementioned

observations affect the inference processes in a way that will be discussed in the following.

4.2.2.3 Proposed inference mechanism

In the event that information of class I; begins from a non-sensor node and immediately

(in one hop) hits a sensor (monitor), a case depicted in Fig. [4.5(i) with blue color, it is
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Figure 4.4: Examples of coloring and monitoring schemes. (a) An edge-colored Random
Geometric network with sensors (red squares). |V| =100, |E| = 845, R = 250m, |S| = 12,
|C| = 344. (b) An edge-colored scale-free network with sensors (red squares). |V| = 100,
|E| = 496, minimum-degree-parameter d = 6, |S| = 13, |C| = 304.

impossible to infer accurately the traversed edge, since all adjacent edges will have the same
color. To address this scenario, statistical learning is employed, based on the frequencies of

the edges’ traversal by information class I;. The relative frequencies are defined as follows:

# of times syv; was traversed

fsl'Ui = (44)

. )
ZUjGNsl # of times s;v; was traversed

where N, = {v; : sjv; € E, } is the set of neighbors of sensor node s;. In case where
fsivi = fs1v;, @ frequency-oriented centrality metric is defined for the 1-hop neighbors of

monitor sq, as

Cfui = Z fvivj7 (45)

V€N,
with N,, = {v; : vjv; € E,,} and E,, being the set of edges of node’s v; ego-network.
According to the latter, the edge that is incident to s; and the node with the highest C'y,
is selected.

In some cases mentioned above, the information obtained by a color sequence is insuffi-

cient for an injective mapping from colors to edges. For these, two methods are employed:

e Deterministic: Statistical learning of the edges’ use frequencies.

From the set of candidate edges, the algorithm chooses the one that is most frequently
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Figure 4.5: Cases of ambiguous color sequences of length 1, 2 and 3.

traversed by the corresponding information class, until the time the sequence is mon-

itored.

e Probabilistic: An edge is selected at random from the candidate set with uniform

distribution.

From the set of candidate edges E.qndidate = {siuj}, where s; is a monitoring node

and u; € V;,, each candidate edge is selected with probability ﬁ

Learning is needed in some cases where the coloring sequence is of length two. Such cases
are shown in Fig. ii), including one edge traversed twice, two edges between two monitors
and two edges connecting a non-monitor node to a monitor one. The latter, denoted as the
triangle case, may arise in sequences of length greater than two, as depicted in Fig. iii)
for the simple case of sequences of length three, which correspond to traversal of edges that
form cycle paths in the physical topology. At this point, it is noted that the cases of length
two are the toughest to infer, even with learning, as will be shown in section [£:2.3] As the
number of such cases increases, the accuracy of the proposed approach will slightly decrease,
rendering them a determining factor for its performance.

The aforementioned cases of length 3 can emerge as sub-patterns in sequences of greater
lengths consisting of multiples of 3 colors including the depicted traversed triangle structures.

An example of such a sequence regards the topology in Fig. [4.5(iii)(b), where the edge
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between the two neighbors of monitor node can be potentially traversed repeatedly before

eventually visiting the monitor again.

4.2.3 Evaluation results of information diffusion inference

The described information inference approach is evaluated over synthetic and real networks
and the corresponding evaluation results are presented below. At first, definitions are pro-
vided regarding the evaluation measures employed and then the obtained results are ana-

lyzed.

4.2.3.1 Evaluation metrics

Two measures are used for the inference methods’ performance evaluation, widely used in
information retrieval: precision and recall [85]. These measures are employed to quantify
the performance both at the level of network structure (physical topology) and at the flow
level (diffusion network) of interactions among nodes.

A sequence of colors g; corresponds to a set of edges E,, of the diffusion network (which
is undirected). The corresponding inferred edges are denoted as E(h Precision is then
defined as the fraction of inferred edges, which are present in the diffusion network and
recall as the fraction of edges of the diffusion network, which are inferred.

At the level of network structure (physical topology), precision and recall are expressed

as follows:
E, NE,
Precisionsyrycture = |qﬂ7q%|, (4.6)
|Eg,
E, NE,,
Recall spructure = |¢117ql. (4.7)
EQi |

In order to present the formulas of precision and recall at the interaction flow-level
(diffusion topology), the interactions’ flow is represented by a set of ordered directed edges
E[i’ , where |E£_ | = k, k is the length of ¢; and Eq[j respectively. At interactions’ flow level the
two features examined are the edges’ direction and the number of times an edge is traversed,
as it is inferred by the color sequence ¢;. Therefore, precision and recall at the interaction

flow-level are expressed as follows:
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4.2.3.2 Evaluation over synthetic networks

Evaluation results are presented for two cases. The first regards scenarios where monitoring
stops when all the random walks reach all sensors (denoted as hitting time scenarios), while
the second regards scenarios where monitoring stops at the cover time of all random walks,
namely when all random walks cover the whole network (denoted as cover time scenarios).

The results of the two inference methods are applied in both spatial and relational
networks. Fig. presents the recall scores at the interaction level (information diffusion)
for spatial (RGG) networks with respect to devices increasing their transmission radius,

corresponding to networks of increasing densities.
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Figure 4.6: Recall at interactions’-level in RGG: (a) Hitting time scenarios (b) Cover time
scenarios.

The corresponding scores for the precision metric computed at the interaction level of
the analyzed spatial (RGG) types of networks are shown in Fig. H By comparing Figs.
[4.6) and [£7] a general trend can be deduced, namely that the proposed learning increases
the accuracy of the inference scheme for these types of networks.

Similar results are presented in Figs. (.8 and [L.9] Both precision and recall at the

73



0.735 T 0.735 T
0.731 B 0.73
-
0.725¢. = - s T 1 0.725
_______ el ===
3 ST atialeiuius <
S 0721 -7 P, S 072
@ Ey - S— D @
8 - — p 8
& 0.7154 B 3 & 0.715¢
E .- ; 3
3 onp .- ] ¢ on
2 b ’ 2
2 0705 1 2 0.705¢
8 ¢ 8
5} ‘ 5}
£ 07r A —©— =100 with learning | g orp-~ —@— n=100 with leamning] |
A (4 =—©— n=200 with learning L =6 n=200 with learning
0.6951 % =&~ n=300 with learning |1 0.695 P - n=300 with learning |
A ’ = ® = n=100 w/o learning e = ® =n=100 w/o learning
0.6% = ® = n=200 w/o learning |1 0691 ,“ = ® =n=200 w/o learning |1
~ ® - n=300 w/o learning [ 4 = ® = n=300 w/o learning
0.685 L 0.685 L
250 300 350 250 300 350
transmission radius R transmission radius R
(a) (b)

Figure 4.7: Precision at interactions’-level in RGG:

time scenarios.
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Figure 4.8: Recall at structure-level in RGG: (a) Hitting time scenarios (b) Cover time
scenarios.

physical (network structure) level follow the same trends, namely both metrics increase in
general as learning is applied, signifying better accuracy. However, it should be noted that
in some cases the differences between the learning and probabilistic scheme are asymptotic,
indicating that for some practical scenarios the simple probabilistic approach may be more
suitable. Such cases are the ones where most of the employed sequences are of length 2
(or sequences including such patterns, as explained before), for which inference is tougher
and less accurate. Another factor in favor of the probabilistic scheme is the cold-start

problem experienced in the learning mechanism: When the first monitored sequences of

colors cannot provide an injective mapping to edges (ambiguous cases of length 2 and 3, as
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Figure 4.9: Precision at structure-level in RGG: (a) Hitting time scenarios (b) Cover time
scenarios.

discussed above), there is no sufficient information for inference.
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Figure 4.10: Recall at interactions’-level in SF: (a) Hitting time scenarios (b) Cover time
scenarios.

Figs. [£10] and 11| present the recall and precision scores at the interactions level
(diffusion graph) respectively, for scale-free topologies and for both hitting and cover time
scenarios. Two main observations can be made: Contrary to RGG, the performance of
learning at hitting and cover time remains constant and probabilistic inference is slightly
more accurate in the case of topologies with small number of nodes and high minimum
degree parameter d. The first observation can be attributed to the emerging hub nodes of

the network (most of which become sensors due to the sensor placement scheme applied):
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Figure 4.11: Precision at interactions’-level in SF:

(a) Hitting time scenarios (b) Cover time

scenarios.
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Figure 4.12: Recall at structure-level in SF: (a) Hitting time scenarios (b) Cover time

scenarios.

A sensor node may reach another sensor in 2 hops through a node belonging to a relatively
large set of intermediate nodes (whose non-sensor neighbors have degree values close to
the minimum degree parameter of the diffusion network), which belong to both sensors’
neighborhoods. In addition to the former, due to the diffusion mechanisms applied, 52% of
the monitored sequences in SF topologies are of length 2 or 3, thus inference with learning
relies on 48% of the sequences (whereas in diffusion in RGG, 33% of the sequences are of
length 2 or 3). This means that the learning approach, will fail in more cases, leading to a
decrease of accuracy. Since the number of edges increases sublinearly to the nodes’ increase,

the performance of inference with learning improves at sparser topologies (of minimum
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Figure 4.13: Precision at structure-level in SF: (a) Hitting time scenarios (b) Cover time
scenarios.

degree parameter d=6 and |V| = 300), slightly exceeding the performance of the probabilistic
scheme.

Figs. [{.12 and provide the corresponding results on recall and precision regarding
the physical network (structure-level) inference of scale-free topologies. Similar trends as
those explained for Figs. and can be observed, namely that the performance of
learning remains constant, and that probabilistic inference is slightly more accurate in the

case of topologies with small number of nodes and high minimum degree parameter d.

4.2.3.3 Evaluation over real datasets

The performance of the proposed approach is investigated by tracking information diffu-
sion in realistic conditions, using the popular Higgs Twitter Dataset [86], which consists of
five directed networks (social, retweet, mention, reply, and activity network). The graph
G,(V, E,) represents the physical network, i.e., the network of social relationships among
twitter users and it is a subnetwork of the social network of the dataset with |V| = 6,943,
where V' is the set of nodes with the greatest number of interactions in the social network
and FE, is the set of directed edges between these nodes. From the activity network, only the
retweet category of interactions between the nodes of V' is selected to construct the diffusion
network G4 = (V, E4). The fact that E, D Ey is not straightforward. A twitter user u
who does not follow v, therefore (v,u) does not exist in the physical network, may retweet

v through one of their common connections, Thus, the edge (v,u) may exist in the diffusion
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network. The latter should be added to the physical network so as to model the potential of
information sharing between the two users. Also, the relationship |E,| > |Eq|, is consistent
with the assumption of the diffusion network being modeled as a spanning subgraph of the
physical network. The direction of links in both networks is reversed in order to model

properly the information flow.

Physical and diffusion network. Table [£.2] provides cumulatively the features of the
physical and diffusion network obtained from the Higgs Twitter Dataset that is employed
for evaluation.

Table 4.2: Elements of the physical and diffusion network obtained from the Higgs Twitter
Dataset.

Physical network features H Diffusion network features
Feature Value Feature Value
Number of Nodes 6,943 Number of Nodes 6,943
Number of Edges 223,006 Number of Edges 28,769

Number of Monitors 2,429 Number of interactions | 41,522
Number of Colors 55,669

Monitor placement. Applying the methodology on a directed network entails a revision
in the monitor placement methodology, which considers both the in-degree and out-degree
of the nodes. It is desired that the nodes selected as monitors receive a lot of information,
but at the same time they also forward significant amounts of information. Thus, nodes
with high values of in- and out-degree become the best candidates for monitoring, followed

by the ones with high in-degree and low out-degree.

Information classes. Even though the topic included in the dataset (information) is
unique, different classes of the diffused information are assumed based on its dynamics.
The dataset provides only the observed actions of users, e.g., for users uy, us,usz: u; — us
and us — ug (user uz retweets user us who retweeted uq). Taking into consideration the
timestamps of retweets and meeting the condition that both wus, u3 do not interact with other
users in the time period defined by the timestamps, it is concluded that the information
flow is u; — wg — ug. These sequential interactions will define an information class. The

above criteria lead to the inference of 37,977 information classes. The large number of
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Table 4.3: Evaluation of inference over real datasets.
] Color sequences’ length, number, precision and recall

Length of sequences | Number of sequences | Precision Recall
1 21092 0.0653 0.0653
2 1091 0.9743 0.9743
3 130 1 1
4 14 1 1
5 4 1 1
] Monitorable interactions: 22.331 I Number of information classes: 37.977 ‘

classes is justified by the nature of retweeting as explained above (retweets between non-
followers/followers without knowledge of the intermediary), which results in the creation of
information classes containing sequences of unary length. As shown in Table [£:3] this is the

most frequent type of information class we derive from this dataset.

Evaluation of inference. Due to the large number of information classes, the small num-
ber of interactions that each monitor node records (on average 9 interactions/monitor) and
the unary length of the majority of the color sequences (leading to the cold start problem),
statistical learning on the edges’ use frequencies cannot be applied. Thus, only the proba-
bilistic inference approach on interactions’ flow level is examined and evaluated, since the
network is directed. The results are cumulatively presented in Table

As presented in subsectiorff:2.2.3] for the color sequences of unary length, where infor-
mation begins from a non-sensor node and immediately (in one hop) hits a sensor, it is
impossible to infer accurately the traversed edge. This is due to the coloring scheme which
dictates the same color to the sensor’s adjacent edges. However, even in these cases, perfor-
mance is slightly improved compared to the corresponding one employing a purely proba-
bilistic inference approach. On the contrary, the accuracy score of our inference scheme is, as
expected, very high in the remaining sequences of greater length, signifying its effectiveness
in realistic scenarios as well.

Monitoring the interplay of a small amount of OSN users can therefore result in an
accurate inference of the diffusion network. The knowledge of users’ interactions in terms of
the diffusion dynamics, that is, socio-awareness, can be integrated to a Recommender System
operating over the OSN in order to increase users’ engagement to the platform, since, as

claimed in [87], recommendations from friends are preferred compared to recommendations
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generated by designated systems. In such systems, which will be described in detail in section
[4:3] information diffusion can be considered an auxiliary mechanism for recommendations in
order to reduce the promotional cost of redundant items by which the Recommender System

is encumbered.

4.3 Socio-aware Recommender Systems

A cumulative definition of a recommendation problem is given in [88] and it is based on the

notion of utility function denoting the usefulness of an item for a user.

Definition 5. (Recommendation Problem) Given a user uw € U, where U is the set of
all users, and an item i € I, where I is the set of all recommendable items, let f(u,i)
be a wutility function that measures the usefulness of item i to user u, f : U x I — R,
where R is a totally ordered set of non-negative real numbers or integers. The goal of the
recommendation problem is to find for each user w € U the item i’ € I over all items
in I that maximizes the expected utility for this specific user uw, namely an item such that

Vu € U : i), = argmax f(u,1).
€T

The two fundamental entities of a RS, i.e., the users and the items, form two distinct
spaces, the user space and the item space respectively. The features in the user and item
space are typically represented by the components of associated feature vectors, namely the
user feature vector and the item feature vector. The utility function measures the value
that an item has for a user, in the form of a user rating. User ratings are defined on a
subset of space U x I, and thus, the objective of a recommendation problem is to predict
the missing values of f in the corresponding user-item utility matrix [88]. In contrast to this
rating-based approach, other approaches denoted as preference-based techniques formulate
the recommendation problem with the objective to predict the users’ relative preference
ordering between items, as implied by past rating values.

Recommender systems are quite diverse in terms of their function, varying in terms of
their application domain, the knowledge used and the computational model adopted [89].
For this reason, several classifications emerge, with the model of numerical user ratings
for items to be the most widely accepted for computing recommendations. According to

this model, given explicit or implicit user feedback, a learning algorithm is applied to filter
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the user’s attributes and predict personalized recommendation options. Regarding this
approach, recommendation techniques can be classified into two broad categories: content-
based and collaborative filtering. A Content-based RS aims at recommending items similar to
items that a user has already chosen, while collaborative-filtering approaches, locate first a
user with features similar to the user for which a recommendation is searched, and select some
items among the ones that the similar user selected, providing them as recommendations to
the first user [71I]. Both of these approaches have several limitations, a summary of which
can be found in [90, OI]. In general, a content-based system is highly dependent on the
availability of the descriptive data. In addition, it is susceptible to over-specialization and
exhibits the users’ cold-start problem [88], which also appears as a main drawback along with
sparsity and scalability issues in collaborative systems. Furthermore, collaborative-filtering
systems fail to categorize users who have common preferences with more than one group
of similar users, which may result in inaccurate recommendations, a problem known as the
gray sheep problem [92].

The Recommendation Systems [91], 93] that are based on the bilateral relation between
RS and Social Networks (SN) are referred to as Social Recommender Systems (SRSs). By
leveraging the properties and features of the entities that constitute the network, as quan-
tified by appropriate SNA metrics, they produce more accurate and efficient results. Con-
trary to traditional recommendation systems, SRSs take into consideration different relations
among users, e.g., in the form of trust [90, [91], which is defined as the subjective expectation
of one’s future behavior [94]), or influence, using either structural analysis (location-based
SNA) or behavioral analysis (interaction-based SNA) [95]. The correlation between rat-
ings and social structure of recommendations is obtained by quantifying the above features.
This results in the definition of new, social-based similarity measures, which alleviate the
problems of sparsity and cold-start [96]. Trust relationships increase RS coverage when the
application of traditional similarity measures is impossible (e.g., Pearson correlation coeffi-
cient can only be applied to users with high overlap in items’ ratings [97]), while users with
no previous ratings may receive accurate recommendations by connecting to a “trusted” or
“influential” user of the network [98].

An aspect of socio-awareness that can be exploited for improving the performance of

RSs is information diffusion, or features of this process as it evolves over a social network of
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users. These systems are known as Information Diffusion Aware Recommendation Systems
(IDARS). The integration of the sharing mechanism of information in recommender tech-
niques may tackle key problems of previous recommendation systems, such as the long-tail
effect and information overload. It can also increase system efficiency in big data environ-
ments by combining the similarity-based predictions of traditional recommendation methods
with the social-based predictions developed for the information propagation mechanisms.

Approaches on information diffusion-aware RS can be segregated into two categories
according to the incorporation of the diffusion mechanism in recommender systems. An
issue which comes as a consequence of the power-law distribution of product sales in online
commerce, such as Amazon and Netflix [99], is the long-tail problem: Although a small set of
products are extremely popular (e.g., hits/blockbusters), the less common products (niche
products) exceed in aggregate the market share of the former [99, [T00]. Therefore, it is
essential for a RS to provide suggestions of long-tail products. This serves not only retailers,
who experience greater profit from sales of otherwise unpopular items, but also individuals,
who have access to more diverse products, which in turn increases their engagement to the
online platforms.

Until now, due to data sparsity, RS weakly enhance item diversity. From the perspective
of information diffusion, estimating users’ influence and inferring how influence propagates
in the network, may address the long-tail problem in RS, as follows: Recommending long-
tail items to the most influential users of the network leads to the wide adoption of the
former through the diffusion mechanism. In [I01], a collaborative innovation diffusion-aware
recommendation mechanism is proposed to improve novel knowledge sharing (innovation
diffusion) between the users of a corporate portal, where 80% of the total traffic comes from
2% of unique pages. Recommendation of long-tail information to a portal user v who visits
a page p is obtained based on the browsing behavior, during a specific time period, of a
small portion of users (reference users) who are the first to access page p before user u. The
preferences of the reference users and user’s v browsing history are conjoined and evaluated
with the metrics of precision and long-tail precision, which is defined as a measure of the
novelty of webpages, and then sorted in order to suggest to user u the highest ranked ones.

The second category includes the methodologies that tackle the problem of information

overload [102]. The exponential growth of information in online systems accompanied by
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the limited processing ability of users, impacts decision-making and increases the need for
mechanisms of relevant information retrieval and delivery. Traditional RSs handle this
problem by filtering large volume of generated data according to users’ similar preferences,
disregarding users’ social relations in a network. From this point of view, different models
of information diffusion serve either as an alternative [103], or an extension [104] [105] [106]
of the filtering mechanism in RS, adding social criteria (influence, trust, homophily) in
recommendations.

In [104] the correlation between information diffusion modelling and collaborative fil-
tering is highlighted with a joint ranking-oriented model of recommendations, where it is
assumed that both mechanisms make predictions of users’ preferences from a different per-
spective. Using a latent factor model and assuming that users are highly influenced by their
friends, the latent factor of user u who adopts item ¢ will be very close to the ones who
have adopted item 7 in the past. The predicting score of ratings is computed by taking into
consideration users’ similarity and the linear combination of several temporal and structural
features of information cascades. In [I05] the IDARS DifRec uses a graph-based model
of recommended items’ expected diffusion in a network to predict conflicting suggestions
between RS and social diffusion. Redundant suggestions, namely, information that users
will eventually receive through the activity of their friends in the OSN (e.g., likes, shares,
retweets) are withheld in order to optimize recommendations in terms of the overall items-
users relevance score and avoid information overload. This optimization problem is mapped
to the Maximum Weighted Independent Set problem, which is proved to be NP-hard and it is
addressed by a heuristic greedy algorithm. Although DifRec marks a step towards address-
ing the problem of information overload by reducing significantly the amount of duplicate
recommendations, there are some aspects of information diffusion not considered, which
may lead to users refraining from any activity or even lose interest for the OSN platform.
For instance, the recommendation of many different products may ruin a user’s decision
making. Also, being targeted by multiple recommendations of the same item can eventually
lead to frustration [I07]. The difference in tolerance displayed by each user to repetitive
advertisements of the same item or towards the promotion of different items is taken into
account when allocating content in the form of recommendations in [I06]. Furthermore,

methodologies that minimize redundant recommendations may consume a large amount of
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resources from the recommendation engine, which can be critical in platforms with millions
or billions of users. This is a key issue investigated insection [£.4] Realizing the significance
of monitoring and tracking of information propagation in efficient recommendations, the in-
formation diffusion inference scheme proposed insection [£.2]is exploited to design an IDARS.
By integrating the predicted information sharing to recommendations, minimal amounts of
resources are utilized to place content that best match user preferences and respect their

tolerance to information.

4.4 Efficient socio-aware recommendations under com-
plex user constraints

As discussed in section [I.3] both explanatory and predictive modeling approaches of infor-
mation diffusion are employed in IDARS to enhance their performance. Inspired by this and
from the viewpoint of coverage, the mechanism of direct content assignments of the RS is
combined with the one of indirect recommendations, driven by the information flow in the
OSN, in order to provide an f-cover of assignments to the network. An f-cover is defined
as a set of assignments to users who maximize both the spread of recommendations and
the total user-to-item relevance, so that each user in the network is covered (recommended
either directly or indirectly) by at least ¢ items. The parameter ¢ is chosen to be a moderate
number of items that respects the users’ limited ability for information filtering and decision
making [108]. Recommendations from the perspective of coverage are mostly item-oriented
and typically, not adopting socio-awareness. In [109] [IT10], the problem of recommendations
is related to the Maximum Coverage Problem. In [I09], users are distinguished to differ-
ent types according to their preferences to items, where preferences can vary over time. A
multi-armed bandit method is used to compute the set of items to satisfy all different types
of users, whereas in [I10] a greedy algorithm is designed to obtain a list of K products that
maximize the probability of purchase in e-commerce sites. Closer to the notion of coverage
used in the approach proposed in this dissertation, but from an item-centric viewpoint, in
[17], an item is considered to be d-covered if it is recommended to at least d users and the
trade-off between item coverage and accuracy of recommendations is studied. Nevertheless,

the aforementioned approach overlooks the social features of users and their susceptibility
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to information overload. This dissertation fills in this gap by designing an iterative greedy
algorithm for socio-aware recommendations based on the covering ability of a user, which
is conceived as an alternative concept of influence and it is determined by her structural
(degree centrality) and behavioral features (similarity between users in terms of user-to-item

relevance).

4.4.1 Model of the OSN and the influence network
4.4.1.1 Online Social Network

An OSN is modeled as a directed labeled graph G(V, E,wy ), which will be referred to
as system graph, with a set of users V' = {uy,...,u,}, and a set of edges F representing
the relations between individuals. Edge (ui,u2) € E dictates that user uy follows user
u1, so that information is flowing from u; to us. Users in V will be recommended items
from the set I = {iy,...,4x} through two different mechanisms, a direct one, where items
are recommended to users by the IDARS, and an indirect, where users recommend items
to one another through information sharing. The term assignment is only used for direct
recommendations. The influence of a node u € V to its neighbors in G, is represented by
Wy, so that wy = {wy }uev. For each user u € V' and each item i € I the relevance of item

i to user u is denoted as 7.

4.4.1.2 Influence network

User interactions in the OSN regarding who influences whom, are captured by item-specific
influence graphs as a result of the predictive diffusion model proposed in [I05]. For item i
the probabilistic graph Gg) = (V, E,p") is defined in order to compute the Reliable Sets of
its nodes: Consider a direct recommendation of item ¢ to user u. The Reliable Set of u € V'
associated with 7, Rq(j), is defined as the set of user’s v one-hop or multiple-hops neighbors,
who are expected to be indirectly recommended of item i via u. The probabilistic graph’s
edge probabilities are based on the fact that the influence graph cannot be the same for all
items: a high influence score in a pair of users in the system graph does not imply that users’
preference is similar for all items, thus, the probability graph should be item-dependent. For

this, the edge probabilities of G(Ff) are computed based on the influence between users and
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the item-to-user relevance r, ;, which results in item-determined Reliable Sets. The edge
probabilities are:

P (u,v) =1y wy, Y(u,v) € E. (4.10)

A Monte Carlo-based simulation method is employed to compute the Reliable Sets. It
is applied separately, for each probabilistic graph, to each of its nodes. In particular, for
item ¢, the input of the Monte Carlo algorithm is a node w and the probabilistic graph
Gg) = (V, E,p"). Then, in each iteration ¢, a graph G®) = (V, E®) is produced. After all
the necessary (user-specified) iterations have been completed, all nodes that are reachable
from node v in more than a (user-specific) fraction of iterations, are included in its Reliable
Set R,(f). The influence graph of item 4, Ggf) = (V, E™), is produced by joining the Reliable
Sets of all the nodes of the network. An edge is added between each node u and each of the
corresponding nodes that lie in R,(f). The closed Reliable Set of u for item 4, which is the
Reliable Set of u for 4 that includes u, (for simplicity reasons, throughout the dissertation,

the term Reliable Set refers to the closed Reliable Set) is therefore formally defined as:

RW = {u}u U Zp. (4.11)

(u,2)€E®

Then, for item ¢, the relevance score E, ; of the set Rq(f) is defined as the sum of the

i
relevance scores r ;, Vz € Rg):

Ev,i: Z T2 (412)

Table [£.4) summarizes the basic notation employed in the conidered system of OSN and

the influence network model presented in section [f.4.1]

4.4.2 IDARS problem statement and analysis

In [I05], the problem under examination is the one of allocating (i.e., recommending directly)
at most £ items to each user so that the total relevance score of the network is maximized.
This is realized by taking into consideration the underlying information diffusion process,
meaning that an item cannot be directly recommended to neighboring nodes in the influ-
ence graph. In this dissertation, the items’ allocation problem is investigated by relaxing

this restriction, in order to achieve efficient (using less resources) diffusion of items in the
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Table 4.4: Notation employed in the problem of information diffusion aware recommenda-
tions

Parameter H Interpretation ‘
G The graph representing the OSN (system graph)
V ={u1,...,un} || Nodes of graph G, denote users of the OSN
E Edges of graph G, directed, denote follow relationships
Wy Influence of user u € V to its neighbors
I={i1,....i%} Set of items available for recommendation in the OSN
Tui Relevance score of item 7 € I to user u € V'
Gg)(V, B, p®) Probabilistic weighted graph
p@ (u,v) Weight of the edge (u,v) in Gg)
Ggf ) Influence graph of item i produced from G,
has the same nodes as G
E® Edges of influence graph G’
Ry Reliable set of user u € V' (inc. u) associated with i
By Relevance score of Rq(f) when recommending
itemi €l touseru eV
e Sf)) The cost of assigning item ¢ € I to user u € V
Ni(fl)(u) The set of in-neighbors of user u
U Universe of all possible assignments u;
F Family of all the reliable sets Rl(f)
U; Class of all possible assignments to user u;
H;; Inter-user diversity for users u;, u;
N Novelty
Grev Bipartite graph of users and books
G, Real social network
Gy The largest component of G,
Nego(u) Set of users reachable from v in 1 or 2 hops in Gy
rt(u,b) Normalized rating of user u to book b
d(u,v) Length of the shortest path between v and v in Gy

network under a specific coverage objective, where each user should be covered by at least
£ out of k total items. This corresponds to a generalization of the Minimum Weighted Set
Cover Problem, called the Minimum Weighted Partition Set Cover Problem [I1I]. In the
unweighted version of this problem, the input is a set system (A, B), where A = {ay, ...,an}
and B = {By, Ba, ..., Bi,,} is a collection of subsets of A. Also, r subsets C1, ..., C;. of A and
r integers di, ..., d, are considered. The goal is to find a sub-collection B’ C B such that,

for ¢ = 1,...,r, the number of elements from C; covered by B’ is at least d;, that is

U pna

DeB’

>d;, Yi=1,..,r (4.13)
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A special case of the Minimum Weighted Partition Set Cover Problem, called Minimum
Weighted ¢-Cover, is formulated, where the subsets C;, ¢ = 1,...,r, form a partition of A
and d; = ¢, Vi = 1,...,r. In particular, the universe of n X k elements:

2)

ulV) ugL

S = {ugl),u?),...,u(lk),..., " ,...,u(k)}, (4.14)

(@)

is considered to be the set of all possible assignments of items in I to users in V', with u;

indicating the assignment of item ¢ to user u;. The classes

k
U= ™, j=1,.m, (4.15)
m=1
form a partition of S and they represent all the candidate assignments of items to a specific
user. Likewise, a family of n x k subsets of S,

F= {R(l) R®)

wy wy ot

k 1 k
SRP L RY LRI (4.16)

y Py e Sy,

is considered. This models the eventual outcomes of the diffusion process. The set Rq(fj)
represents the recommendations obtained by assigning item ¢ to user u;. Item ¢ will reach
the neighbors of u; in Ggf ) as determined by the corresponding Reliable Set.

The cost of recommendations is a function associated with F defined as ¢ : F — R with

¢(RW

1

At this point, it should be noted that the choice of the cost function depends on the
objective(s) that the RS aims to meet. In the case examined, the problem of recommen-
dations is treated as an assignment problem on influence graphs with coverage constraints.
This leads to modeling the recommendation cost as the cost of assignments, that is, the cost
of direct recommendations. It is assumed that indirect recommendations, namely, the ones
realized by users’ information sharing, have zero cost from the recommender system’s per-
spective, since the diffusion of an item does not require the involvement of the recommender
system (it happens due to the users’ interplay and thus does not use any of the resources
of the recommender system). The assignment cost of item i to user u, c(RSfj)), is defined

as a function of the relevance score of the neighbors of w in the influence graph of i. Thus,
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the cost of assigning item ¢ to user u is determined by both the influence of node u over her
neighbors and their relevance to item i.
The goal is to find a minimum weighted /-cover, that is, a collection of subsets F/ C F

bearing the minimum total cost such that for e € F’

>0 Vi=1,..,n. (4.18)

U eﬁUj

ecF’

By stating that the network is ¢-covered by items means that each user received at least ¢
different items, equivalently, each user is ¢-covered. Eventually, this means that removing
an assignment from the network will result in some users receiving less than ¢ items.

The ¢-Coverage Problem presented above can be formulated as a Nonlinear Integer Pro-
gramming Problem due to nonlinear constraints. Let X be a matrix of zeros and ones with

element z;; representing the direct assignment of item ¢ to user u;. In particular:

1, if Rq(fj) is in the ¢-cover,
Tij = (4.19)

0, otherwise.

The problem of finding a collection of ¢ different items per user that minimizes the total

cost of recommendations in the network, is formulated as follows:

P1:
arg min Z Wij - Tij, (4.20)
,] 'L,J
subject to:
i

where w;; = C(R,(fj)) is the cost of assigning item 7 to u; and

; if Z Tig > 1,
f(xij) — k:quR,(J,z (422)

0, otherwise.

Constraint (4.21)) ensures that each user will receive recommendations of at least ¢ dif-

ferent items. The mapping f(x;;) captures the recommendation of item 4 to user u;. Its
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value is set equal to 1 if the item was received either directly from the IDARS or indirectly

from one or multiple sources, and zero otherwise.

We formulate an Integer Linear Program (ILP) equivalent to P1 in order to apply an

LP-based Branch and Bound method for its solution. Thus, constraint (4.21)) is linearized

and two new constraints (4.28), (4.29) are added. These are necessary when the integer

restrictions are relaxed. The non-linear mapping f(x;;) is relaxed by introducing a new

binary variable y;;, which is defined as follows:

Z?:l Lir )‘7(“?

Yij = )
Z =1 A’I‘_]

)

Dot wiT)V("Zj) =

Yij < - ~— +0.9,
S A
where
) 1, ifu; € R(i)
@ _ ) WS
Ay =

0, otherwise.

Hence, the corresponding ILP is formulated as:
P2:

argmin E Wij * Tij,
N

subject to:

Syt Vi=1,..m,
7
Zl‘i]‘ Z E,
iJ

inj S & V] = ]., N

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

Constraint (4.28) ensures that at least ¢ direct assignments in total are made by the

Recommender System, whereas constraint (4.29) sets an upper bound to the number of

direct assignments per user.
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4.4.3 Greedy Algorithm: CoveR

Due to the fact that it is computationally difficult to produce optimal results by solving the
problem P1 described in section [£:4.2] the implementation of an approximation algorithm
that produces results close to the optimal solution, in terms of the total defined cost of
recommendations, is justified. A greedy algorithm is adopted for the Minimum Weighted
{-Cover Problem. Let X; be the set of all possible assignments at the beginning of iteration
t, with X; = S, since no assignments of items to users have been made yet. In iteration ¢,
the algorithm selects a user to assign an item, that is, the set from F that minimizes the

ratio: 4 4
w, Vue Vi el (4.30)
IRY N X,|
An important distinction between the ¢-Coverage and the Minimum Weighted Partition Set
Cover problem should be underlined: In the ¢-Coverage, the cost of a set R,(f ) is determined
by the relevance score of its elements. Nevertheless, the relevance score of an item-user pair
that appears in more than one of the selected sets should contribute to the total cost once,
no matter how many times user u was exposed to i (the relevance score r,, ; is included at
most once in the total relevance score). Thus, the proposed method should penalize the
assignments that cause duplicate recommendations to users. CoveR addresses this issue by
assuming that every set RS’ has an initial covering ability |R1(f)| of cost C(pr) and the
covering ability of the set at iteration ¢t equals to |ngZ N X¢|. By selecting the set with the
lowest ratio in Eq. , the method shows preference to sets of low cost that are also
capable of covering large parts of the network. Intuitively, CoveR endorses the assignment
of items to users that have substantial influence to uncovered users, while minimizing the
total cost of recommendations, so that every user acquires at least ¢ items. A pseudocode

for the algorithm is provided in Fig. .14

CoveR, operates as follows: Having computed the cost of each possible assignment, the
algorithm picks the set RSj ) that minimizes the ratio in Eq. . Then, jo) is included
in /| which denotes the set of recommendations that are carried out by the RS. It should

) or none. All the

be noted that each class U; has either one element in common with Ry
classes of non-empty intersection with R are checked to see whether they are f-covered.

Consider v() € R and the class associated with v, U, = UF_v@ . If U, is not ¢-covered
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(line 12 in pseudocode), only v@ is removed from X, thus the candidate assignments for
the next iteration are X; 1 = X; \ v If class U, is ¢-covered (line 10 in pseudocode), the
algorithm removes from X; all the elements of this class, so that the associated user will not
be highly preferred for assignments in future iterations. In this case, X411 = X¢ \ Ui?:lv(i).
The algorithm terminates when X; = (.

Algorithm CoveR

Inputs: The family F of sets {RS} )}’felv, the relevance score r, ;, Vu,i, the universe of

assignments, S, the classes U; = Ui?:lu;i), Vs = 1,...,n and ¢, the minimum number of
items to be recommended to a user.

Outputs: A binary matrix, M = [m]xv) of item-user rec-
ommendations, the set of assignments F’, the total Relevance Score,
Score.

1: Initialization: X < S is the set of candidate assignments, m;, = 0, Vi € I, Yu € V,
F' =, Score = 0.

2: foreachueV,7€1 do

3: Eu,i = Z Tv,i

vERgf)
(1) 1
C( ul ) = 1+Ey
4: end for
5. while X # () do
. @)y, p(» . .
6:  Select the set Rq(fj) that minimizes the ratio % and has non-empty intersection

with X. If two or more sets have the same ratio, pick one uniformly at random.
7 F =F'U R'E}j)
8: for each v € Rq(fj) do

9: Miy = 1

10: if > ,c;miy > £ then

11: X =X U 0 % remove all the elements of the class associated with user v
12: else

13: X =X v % remove only v among the elements in user’s v class

14: end if

15:  end for
16: end while
17: for each m;, € M do

18:  if m;, == 1 then

19: Score = Score 41y ;
20: end if

21: end for

Figure 4.14: Algorithm CoveR: Greedy algorithm for recommendations, ensuring that the
network is ¢-covered by recommendations.
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4.4.4 Approximation ratio of CoveR

The performance of Cover is analyzed in terms of the cost of the produced assignments.
In order to formally define how close the solution of CoveR is to the optimal solution, an
approximation guarantee is provided. The approximation ratio sets an upper bound on the

deviation of a solution generated by CoveR from the optimal solution.

Proposition 4.4.1

CoveR approximates the £-Coverage Problem with performance ratio satisfying

ree A
Cgreedy S H(), (4.31)

copt

where § = mingeq, deg® (u) +1 and A = max,cq, deg® (u) + 1 denote the minimum
and mazimum out-degree of the influence graph G, when self-edges are added to all of its

nodes, thus the minimum and mazximum cardinality of the sets in F correspondingly.

Proof. Let {(i1,uj,), (i2,uj,), ..., (is,u;,)} be the tuples of indices of the sets that the op-
timal solution uses to form an /¢-cover of S with the minimum cost cop¢. To simplify the
notation, the sets of this ¢-cover are denoted by {Oy,...,O4} and their corresponding costs
by {01,...,0s}, where copt = 01 + ... + 0. Without loss of generality [I12], the sets are

assumed to be disjoint and that the following equality holds:

S

> 0. =t-n, (4.32)

=1

which means that the optimal /-cover manages to cover each class U;, i = 1,...,n with £
items. Thus, exactly ¢ items are recommended to each user.

Let {(41, uj, ), (42,5 ), -, (im, uj,, )} be the tuples of indices of the sets from F that the
solution of CoveR uses to form an ¢-cover of S with cost cgpeeay. For simplicity purposes, the
sets of this ¢-cover are denoted by {Ry, ..., R, } and their corresponding costs by {r1,...,7m},
where ¢greedy = T1+...+7m. It is assumed that in iteration 4,7 € {0, ..., m—1}, the algorithm
chooses the set of index 3.

At the end of iteration ¢ of the greedy algorithm, let Z; denote the set of the remaining
elements in uncovered classes and z; to be the number of elements that remain to be selected

by CoveR for all the classes to be ¢-covered. It should be highlighted that |Z;| > z; at every
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iteration. In every iteration (¢ + 1), CoveR selects the tuple of indices (4, u;) that minimizes

the ratio

Tt41 - |Rt+1|

) 4.33
|Rt+1 M Ztl ( )

Hence, the minimum ratio set that is greedily picked at iteration (¢41) must have a ratio that

is at most the minimum among the sets of the optimal solution after iteration ¢. Formally,

Tt41 - ‘Rt+1| < Og * |Ow|

< Ve e{l,...,s}: 0, NZ; #0. 4.34
|Ris1 N Z| ~ |00 Zy { } 7 (4.34)
All fractions of the form

OTH, Vo e {l,..,s}, Yk, € {1,..,|O04]} (4.35)

are considered. These fractions model, for each set O,, x = 1,..., s, all its possible contribu-
tions in coverage (a set may cover from 1 to |O,| elements at iteration t). Due to Eq. 7
there are zgp = £ - n fractions in total, since there are |O,| fractions for each = € {1,...,s}.
The fractions are sorted in non-increasing order f; > fo > ... > f,,. Then, from Lemma 1

in [I12], the following inequality holds:

Tt41 - |Rt+1|

< f.,,vte{0,...,m—1}. 4.36
R 2] <f { } (4.36)

Consequently, from Lemma 2 in [I12], it holds that:

1 [Ri| 4 o4 T - |Rin| < 01 - |O1] - H(|O1]) + ... 4 05 - |Os| - H(|O4)), (4.37)

where H (i) = 1+...4 1, is the i"" harmonic number. The term |O;|- H(|O;]) is the sum of all
possible contributions in coverage, from 1 to |O;| elements, of the set O;. The minimum and
maximum out-degree of the influence graph G,, are denoted by § = min,cq, deg® (u)+1
and A = maxyeq, deg® (u) + 1, correspondingly. Likewise, in the case of item-specific
influence graphs, the minimum and maximum out-degree of nodes among all the influence
graphs are selected. In § and A the degree values are increased by 1, thus, a self-edge is
added in every vertex of the influence graph in order to model the minimum and maximum

cardinality of the sets in F = {Ry, ..., R, }. Combining the above with inequality (4.37)) and
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the facts that

|R;| > 6, Vie{l,..,m}, (4.38)
05| - H(|O;) < A-H(A), Vie{l,..,s}, (4.39)

the following holds:

ri 04 ..+ 7m0 <R+ ..+ 7m |Rn| <
01+ |01] - H(|O1]) + ... + 05 - |Os] - H(|Os]) < (4.40)

o1 A-H(A) + ...+ 05 - A H(A).

By the transitivity property, from inequality (4.40)), the following is obtained:

(ri4..+rm)-0<(o14+..+0s) - A-H(A). (4.41)

Therefore, it holds that:

| >

Cyreedy < : H(A) - Copt - (442)

4.4.5 FEvaluation of CoveR

The evaluation of CoveR’s performance is realized via modeling and simulation, in terms of
various metrics. The obtained results are compared with the ones produced by DifRec and
a baseline Recommender System, which provides to every user the ¢ items of her highest
relevance without taking into consideration the users’ interactions (it is therefore diffusion
unaware). The results of CoveR are also compared with the ones of an LP-based Branch and
Bound (BnB) method [113] applied to the Integer Linear Problem (Problem P2) described
in section £.4.2] The networks used for the experimental evaluation are both synthetic
and real. Synthetic networks are modeled by scale-free (SF) and small-world (SW) graphs,
which are the most appropriate for representing the structure and evolution of the typically
observed social networks [23] [114]. The results are averaged over 25 distinct topologies for
each configuration presented in Table The user-item relevance r,,; follows a uniform

distribution between 0 and 1.
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The performance of CoveR is evaluated by measuring the total relevance score, which,
combined with the average number of direct and indirect recommendations, reflects the
quality of users’ experience and the system’s efficiency to recommendations. The number of
direct and indirect recommendations models the resources consumed by the recommender
system and the extent of the exploitation of the diffusion process by the RS, respectively.
Another important metric employed is coverage, which is defined in terms of the average
number of items recommended to each user. Coverage quantifies the impact of diffusion
awareness in recommendations by measuring the informational burden on users. Small values
of coverage (but above the coverage goal) imply the absence of information overload to the
network, therefore, greater user satisfaction and engagement to the platform. Additional
metrics for assessing CoveR’s performance are novelty and inter-user diversity [I15], as
well as the global diversity of recommendations, which is defined as the average number of
recommended items in the network.

The following figures display the results that correspond to £ = 5, as the most indicative
ones. It should also be noted that in all the stacked bar plots, both primary bars and
sub-bars start from y = 0, in the vertical axis y.

By the results presented in the following subsections, it is evident that the BnB method
yields results very close to the ones produced by CoveR, validating its theoretically-obtained
performance results. It should also be mentioned that the search for the optimal solution
via BnB, oftentimes and especially when the search space increases (e.g., in networks with
300 nodes and beyond), is time consuming, so the results presented are the feasible solutions

achieved by BnB.

Table 4.5: Summary of Experimental Options and Choices for CoveR
’ Parameters H Available Options ‘

# Users || 100 | 200 300

# Items 20 40 100

C1]2]3] 5

Network type SF SW

4.4.5.1 Results on synthetic networks

Efficiency of recommendations. The notion of efficiency in RSs is introduced with

respect to the achieved relevance score combined with the number of direct and indirect
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recommendations. An efficient approach will manage to make few assignments, thus, few
direct recommendations, however of great impact in terms of relevance score, by highly
exploiting the users’ interplay that is translated to many indirect recommendations. CoveR
can be more efficient than DifRec in that sense, as shown by the values of the average
relevance score per assignment, which is presented in Table [£.6] This is due to a major
difference in the mechanism of assignments: As opposed to CoveR, in DifRec, in order
to avoid redundant recommendations, it is forbidden for any two neighboring nodes to be

directly recommended of the same item, which may result in coverage failures, as shown in

Fig.

27
- 12.36 ns 11.36

100

b1

21

Network size
200

-15

-15

300

-1z

Mumber of items

Figure 4.15: Average number of users who did not receive recommendations in SF networks
of varying size for /=5 with DifRec. Similar results are observed in SW networks.

Relaxing this constraint in CoveR, allows balancing the exploitation of the behavioral
features (information diffusion) with the structural characteristics (users’ social ties) of the
network. Especially in networks of highly skewed degree distribution (SF topologies), which
models the extreme heterogeneity of users in terms of influence (users may be classified to
highly influential or insignificantly influential), CoveR’s assignments that are equal to 18%
of those made by DifRec (Fig. lead to a major diffusion effect (Fig. . In turn, this
results in a high total relevance score depicted in Fig. [£.I8] outperforming DifRec. Even
when heterogeneity smoothens, as represented by the degree distribution of SW networks,
meaning that influencers of multiple scales are present in the OSN, CoveR achieves diffu-
sion results comparable to DifRec (Fig. with approximately 25% of DifRec’s direct

recommendations (Fig. [4.20)). These are also reflected in the relevance score, as well as
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the relevance score per assignment, in Fig. [£:2I) and Table [£.6] respectively. Regarding the
baseline model, the results in Table [£.7] show that it achieves the highest relevance scores
in both scale-free and small-world topologies. This is anticipated, as in the baseline ap-
proach, each node is simply recommended of its top ¢ preferred items. This demands |V - ¢
direct assignments from the information-unaware recommender system, contrary to CoveR,
which makes less than |V| assignments in all the examined cases, outperforming the former
in terms of the average relevance score per assignment (Table . This further results in
each user, u, to receive a great number of indirect recommendations (Table , at least
- MNier Ni(,?(u)|, where Ni(fl)(u) is the set of in-neighbors of u for item ¢. This amount of
recommendation probes is also reflected in the number of items per user that takes values
in the interval [3.6 - ¢,13.1 - ¢], which are significantly larger than CoveR or DifRec, and it
is likely to ruin the decision making process of a user [102] and therefore, her engagement
to the platform. Furthermore, it is observed that the number of indirect recommendations
in CoveR is independent of the available number of items, implying a more steady and
predictable performance in different settings, as the diffusion process is not disrupted by
either a possible abundance or lack of items. All of the above suggest that CoveR is able
to produce efficient recommendations, meaning that a few targeted assignments of items
spread throughout the network and all users end up with recommendations of high overall

relevance.
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Figure 4.16: Average number of direct recommendations in SF networks of varying size for
(=5 with CoveR, DifRec and Branch and Bound.

Coverage of network and recommendation diversity. CoveR sets the lower bound in
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Figure 4.17: Average number of indirect recommendations in SF networks of varying size
for =5 with CoveR, DifRec and Branch and Bound.
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Figure 4.18: Relevance Score of recommendations in SF networks of varying size for ¢=5
with CoveR, DifRec and Branch and Bound.

recommendations equal to ¢, namely, it ensures that at least ¢ items will be recommended
to each user of the network, either directly or indirectly. On the contrary, DifRec fails to
make recommendations to approximately 10% of the users in both SF and SW networks
(as shown in Fig. . In the examined topologies, CoveR also bounds from above the
number of recommendations per user to 2.6 - ¢, as validated by Figs. and For
moderate values of ¢, this is a manageable amount of information for a user to process [I16].
In DifRec the upper bound seems to be topology-dependent reaching 3.66-¢ in SW networks
(Fig. . Moreover, the BnB method also provides a solution that manages to assign at
least ¢ items per user, which is anticipated due to constraint of the ILP problem P2

in section
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Table 4.6: Average relevance score per assignment with CoveR, DifRec and Baseline Rec-
ommender System

CoveR DifRec Baseline
(users,items) | SF | SW | SF | SW | SF | SW
(100,20) 4.78 | 7.65 | 0.61 | 1.63 | 1.66 | 1.79
(100,40) 5.67 | 9.39 | 0.66 | 1.92 | 2.78 | 3.45
(100,100) 6.92 | 11.23 | 0.66 | 2.32 | 4.17 | 6.67
(200,20) 498 | 498 | 0.59 | 1.59 | 1.72 | 1.79
(200,40) 6.05 | 5.98 | 0.63 | 1.87 | 3.12 | 3.33
(200,100) 6.98 | 6.99 | 0.64 | 2.22 | 5.26 | 6.67
(300,20) 5.34 | 5.06 | 0.59 | 1.56 | 1.75 | 1.79
(300,40) | 6.44 | 6.07 | 0.61 | 1.84 | 3.22 | 3.23
(300,100) 8.02 | 6.93 | 0.62 | 2.17 | 5.88 | 6.67
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Figure 4.19: Average number of indirect recommendations in SW networks of varying size
for /=5 with CoveR and DifRec.

In addition to achieving the ¢-coverage of the network, i.e., leaving no user with less than
{ recommendations, CoveR also manages to recommend various different items across the
OSN. This is an important aspect of any recommender system, as it affects both the users
who wish to be recommended of a variety of items of their preference, and the retailers who
wish to see their products advertised and gaining revenue. Figs. and present the
number of different items that were recommended at least once in the network for SF and
SW topologies, respectively. From these plots, it is observed that CoveR manages to assign
numerous items throughout the network, oftentimes the majority of the ones available, en-
suring diversity in recommendations. This capability of CoveR is further stressed by the
fact that it is achieved by making significantly less assignments to users than DifRec, as it
can be verified by Figs. [£.16] and [£.20] that display the direct recommendations performed

in each experimental scenario. In this way, CoveR constitutes a less intrusive solution for
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Figure 4.20: Average number of direct recommendations in SW networks of varying size for
{=5 with CoveR and DifRec.
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Figure 4.21: Relevance Score of recommendations in SW networks of varying size for ¢=5
with CoveR and DifRec.

IDARS but competitively effective from the viewpoint of diverse recommendations. This is
also confirmed by the values of inter-user diversity and novelty [I15], presented in Fig.
Given users u; and u;, the corresponding inter-user diversity is given by the difference be-
tween the top-I places of their recommendation lists, as measured by the Hamming distance

Hijl

Hy(l)=1- QZJ (4.43)

where @;;(l) is the number of common items in the top-l places of the recommendation

lists of u; and uj;. Given the top-l items’ recommendation lists, Q., Yu € V, novelty, IV, is
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Table 4.7: Summary of Results in a baseline Recommender System

items/user | relevance score indirect recs

(users,items) | SF SW SF SW SF SW
(100,20) 18.22 | 18.98 | 837.68 | 900.35 | 4660.8 15179
(100,40) 29.91 | 35.55 | 1389.91 | 1699.09 | 4660.8 15179
(100,100) 43.36 | 68.95 | 2050.68 | 3327.79 | 4660.8 15179
(200,20) 18.73 | 18.79 | 1730.22 | 1785.87 | 15032.6 | 41931.8
(200,40) 34.08 | 34.64 | 3120.90 | 3294.45 | 15032.6 | 41931.8
(200,100) 57.41 | 70.18 | 5252.47 | 6636.98 | 15032.6 | 41931.8
(300,20) 18.67 | 18.52 | 2612.71 | 2677.78 | 29311.8 | 72059.8
(300,40) 35.04 | 33.28 | 4810.30 | 4795.98 | 29311.8 | 72059.8
(300,100) 65.72 | 68.09 | 8893.19 | 9689.11 | 29311.8 | 72059.8
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Figure 4.22: Average number of items-per-user for users who received more than ¢=5 rec-
ommendations in SF networks of varying size with CoveR, DifRec and Branch and Bound.

defined as follows:

1
Nzl—mz > K, (4.44)

ueV i€Qy
where K; is the ranking of item ¢ when items are arranged in increasing order of relevance

to the corresponding user.

4.4.5.2 Results on a real network

In order to demonstrate the applicability of CoveR in real world scenarios, the LibraryThings
dataset [I17, [118], is employed. Users of the platform can form friendships and review book
titles, also awarding them star ratings, ranging from 0 to 5 stars. This dataset can be

employed in the evaluation of an IDARS system. In order to obtain the influence graph that
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Figure 4.23: Average number of items-per-user for users who received more than ¢=5 rec-
ommendations in SW networks of varying size with CoveR, DifRec and Branch and Bound.
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Figure 4.24: Average number of recommended items in SF networks of varying size for ¢{=5
with Cover and DifRec.

is necessary for the operation of both CoveR and Difrec, the following procedure is executed:
First, the dataset is cleaned of any review entries that did not contain star ratings. Then,
a bipartite graph is formed. The graph contains books and users and its edges are formed
by connecting each user with her reviewed books. The largest connected component, graph
G e, 1s identified and the top k books (i.e., the k books having the most reviews) are found.
Moreover, the social network, GG, denoting the friendships among users, is formed. In the
next step, an undirected graph is created by joining those users that have reviewed the
same book and are also neighbors in the social graph. Once again, the largest connected
component, Gy, is identified. Regarding the relevance scores for each user-book pair, the

star ratings are used. If a user has explicitly rated a book, its relevance score is equal to
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Figure 4.25: Average number of recommended items in SW networks of varying size for /=5
with Cover and DifRec.
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Figure 4.26: Average novelty and inter-user (iu) diversity in SF and SW Networks with
CoveR and DifRec.

its normalized rating in [0, 1]. If user u has not reviewed book b, the set of nodes who have
rated b and are reachable from u in either one or two hops in Gy, denoted as Nego(u), are

detected and the relevance score of user u to book b, is given by the formula:

1 rt(v,b)
Tub =177 N ) 4.45
[Nego(u)] vego(u) d(u, v) (4.45)
where rt(v,b) is the normalized rating of user v for book b and d(u,v) is the shortest path
length between nodes u,v. Also, for every node v that lies in Nego(u) and assists in the
calculation of the relevance score, a directed edge is assumed to join them starting from the

more popular (i.e., the one with the highest degree in Gy) and ending to the less popular
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one. In this way, the directed influence graph is computed.

In this experiment, an influence graph containing 1,322 nodes and 27,601 edges is used
as input to CoveR and Difrec. The value K of DifRec and the target value ¢ of coverage
in CoveR, are set equal to 5. Among the books in the platform, the top 50 reviewed books
are selected. The relevance scores are obtained by the procedure described earlier and are
considered to reflect the preference of the users to these books. The results are summarized
in Table [£.8] It can be seen from this table, that although the relevance score achieved by
DifRec is higher than the one achieved by CoveR, DifRec’s direct recommendations surpass
more than 400% those of CoveR, while achieving only about 39% higher total relevance score.
The ratio of relevance score per direct recommendation is significantly higher for CoveR than
DifRec. This highlights the suitability of CoveR for covering completely the real network
with at least ¢ recommendations per user, while achieving significantly large relevance score
by relying heavily on the information diffusion happening in the social network, indicated
by the number of indirect recommendations that are higher in the case of CoveR. Finally,
from the items per user ratio it is derived that CoveR manages to not only achieve a better
ratio of relevance score per direct recommendation (assignment), but also keep the number
of distinct items per user close to the ¢ parameter. This indicates the accurate identification
of the subset of users for direct recommendations that result in the coverage of the network

with at least £ items per user, without overloading the users.

Table 4.8: Average relevance score per assignment with CoveR and DifRec in the Real
Network.

Direct | Indirect | relevance | rel. score/ | items/

Recs. Recs. score dir.recs. user
CoveR 787 27003 4224.05 5.34 8.16
DifRec | 3613 13259 5884.63 1.63 13.81

The fact that online social networks and platforms of streaming services are mostly
accessed by users via their mobile devices, a recommender system such as CoveR may exploit,
besides the knowledge on users’ interactions and preferences, users’ mobility pattern in order
to derive local communities and encourage collaboration in content sharing at the physical
world. According to the users’ physical and social ties and by acknowledging the impact of
recommendations in users’ requests for content, the problem of content placement at edge

caching networks as well as content sharing via Device-to-Device (D2D) communication is
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investigated under various objectives in chapter [5}
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Chapter 5

Socio-aware content allocation in

physical and cyber-physical networks

This chapter focuses on methodologies for content placement in physical networks, such as
mobile edge caching networks and cyber-physical networks, which are formed by mobile

social networks or platforms of streaming services and mobile edge caching networks.

5.1 Mobile Edge Caching

Various bandwidth-craving applications, mostly live and on-demand video streaming, have
lately become widespread. Most of the Internet’s traffic is streaming-related [I19], and the
corresponding content is accessed from wireless/mobile devices [4]. Mobile Edge Caching
(MEC) is a technology that utilizes edge servers as cache nodes to store popular content
closer to the user. This has emerged as a promising solution for solving several of the
associated challenges, e.g., achieving small end-to-end delay [120], avoiding core network
congestion [121], improving user Quality of Experience (QoE) [122], etc., which can further
aid in decongesting backhaul links of the communication network [6]. In MEC, content
requests are issued by User Equipments (UEs) and the requested content is delivered by one
of the cache-enabled edge nodes. A caching scheme can be proactive or reactive depending
on whether the caching decision is realized before or after a request for content is made.

Proactive caching of popular content is suggested in [123] to alleviate backhaul congestion by
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avoiding duplicate data transfers and in [124] to improve user QoE. Also, proactive caching
can leverage network information, such as users’ content preferences, social features and
mobility patterns in order to improve caching efficiency. In general, the caching problem
can be divided into the selection of the caching locations (i.e., where to cache) and the
placement of content to caches (i.e., what to cache).

Caching Location. Content can be cached at Macro Base Stations (BSs), Small Base
Stations (SBSs), Femto Base Stations (FBSs), Pico Base Stations (PBSs) and UEs. In the
case of UE caching, also known as Device-to-Device (D2D) caching, UEs provide cumula-
tively a large low-cost cache space [125]. The D2D communication paradigm [I126] promotes
offloading content requests from the main network, where a device can store content and
share it with its neighboring devices, if requested. The BS usually monitors the caching
status of each UE and directs requests so that they can be satisfied by cache-enabled de-
vices. In [127], mobile caching via D2D connectivity is compared to local caching at the
radio access network edge and the results show that in dense networks, D2D caching may
serve more user requests through cache-assisted D2D communication, whereas edge caching
issues higher cache hits because of the great capacity of storage units in Small Base Stations
(SBSs). Regarding larger topologies, the peer-to-peer caching policy in [I28] ensures the
delivery of content throughout a country even when the ability to connect to the Internet
is rather limited. The knowledge on users’ interactions and social features can also be ex-
ploited in order to serve requests locally and disseminate content via D2D communication
[129].

Content placement. The design of a content placement strategy requires awareness of
content popularity and size, the locations of existing replicas in the caching topology, user
preferences and mobility patterns. It can be formulated under various objectives including
cache hit ratio maximization [I30], which is defined as the ratio of the number of the re-
quested cached files over the total number of cached files, traffic offloading maximization
[131], enhancement of user QoE [132], content delivery delay minimization [I33], energy ef-
ficiency [I34]. The effect of user mobility on content placement is investigated in [132] [135].
In [135], the problem of encoded content allocation is studied in a femto caching network
with mobile users and a distributed approximation algorithm minimizes the probability of

using the main base station for content delivery. An extension of this is proposed in [132]

108



with a mobility-aware content allocation strategy in D2D caching networks, where helper
caches are not fixed as in [I35]. Content placement is treated as a problem of monotone
submodular maximization over a matroid constraint and a greedy approximation algorithm
is designed for its solution. In section 5.5 the users’ mobility pattern is leveraged to derive
the topology of a heterogeneous caching network (HetNet) [I36] consisting of a BS, SBSs
and UEs, based on which a fraction of the UEs is selected to assist in caching. The content
stored in the cache-enabled devices should be delivered to the users within a given deadline,

otherwise, it is retrieved by the core network via the BS.

5.2 Mobile Social Networks

Mobile Social Networks (MSNs) are considered the intersection of mobile communication
networks with online social networks and belong to the category of cyber-physical networks.
MSNs are defined as heterogeneous networks formed by the interactions of individuals with
similar interests or objectives through their mobile devices (smartphones, tablets) within
virtual communities [I37]. Mobile applications leverage users’ features, behaviors and ties
acquired by online social networks to create native communities and encourage users’ collab-
oration. On the other hand, online social networks exploit mobile features and accessibility
to enrich their knowledge on users’ social relationships and to empower the concept of real-
time web [138], respectively.

Due to the evolution of mobile devices, which are currently equipped with sensing mod-
ules (cameras, accelerometers, etc.), global position system receiver (GPS) and multiple
wireless interfaces (4G and 5G cellular, WiFi, WiFi Direct, Bluetooth), traditional social
networks are extended with location awareness and automatic processing of sensed data
[139]. Moreover, multiple radios enable the formation of opportunistic networks, where users
exchange information in an ad-hoc manner (i.e., wireless mobile ad-hoc networks). Based on
the exploited network infrastructures, MSNs may be classified to web-based, decentralized
and hybrid, which is a combination of the former. Web-based MSNs are mostly depen-
dent on centralized communication structures (WiFi and cellular) with the most prominent
paradigm to be the online social networking platforms accessed through mobile browsers and

smartphone applications (e.g., Facebook, Twitter, Foursquare, etc.). On the contrary, De-
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centralized MSNs are primarily based on opportunistic networks formed by users who share
information using wireless technologies such as WiFi-Direct and Bluetooth. Even though
opportunistic networks are characterized by unstable topologies with sparse connections
or even disconnected components, their main advantage is that they can be used for data
transmission when this cannot be realized via the centralized structure (e.g., in the subway).
Users of a hybrid MSN, which is the most recent trend, can access information from the
content provider via a centralized server and share data by forming opportunistic networks
where they communicate directly with each other without connecting to the network infras-
tructure. Data dissemination is determined by several factors including users’ mobility and
social features (popularity, similarity, trust, willingness to share content, etc.). Therefore,
identifying influential users to assign content to, along with grouping users of similar inter-
ests via community detection are deemed crucial in order to disseminate content efficiently
in the MSN [140].

The inherent proximity-driven sharing ability of mobile devices and the delay-tolerant
nature of many cellular contents make offloading cellular traffic produced in MSNs a promis-
ing way to alleviate the traffic load at the backhaul [I41] without upgrading the cellular
network, which is considered an expensive solution of low financial return [142]. Oppor-
tunistic traffic offloading leverages the opportunistic network formed by mobile devices in
order to offload traffic data. In opportunistic offloading some mobile users cache cellular
contents (e.g., videos, movies) that are expected to be requested by other users from the
core network and share these contents with encountering mobile users via opportunistic
device-to-device communication. Since there is no stable path among mobile users, content
delivery heavily depends on the mobility of users. Proper incentives can make users will-
ing to experience a tolerable delay in order to consume cellular contents, and to assist in
their storing and forwarding [143] [144]. Current research studies focus on storing popular
content in geographical floating circles [I45] or fixed user equipment [5] [146], so that future
queries can be served without requiring communication via cellular links. In section[5.5] this
problem, combined with mobility-aware content caching in heterogeneous cache networks is
investigated from the perspective of recommendations and content dissemination via D2D

communication between the users of a MSN.
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5.3 Mobile Edge Caching and recommendations in Mo-

bile Social Networks

Recently, the interplay between mobile edge caching and recommendations is of great re-
search interest. On the one hand, caching at the edge may improve the streaming experience
of the user and release important network resources for the operator. On the other hand,
user demands are significantly affected by the Recommender Systems operating on MSNs
and platforms of streaming services [I0], which in turn determine the caching policies. Both
the content access cost, such as the delay experienced for the content delivery, as well as the
quality of recommendations, are important factors for the users’ engagement to the platform.
The recent tendency of Content Providers partnering with Internet Service Providers in or-
der to form their own Content Delivery Networks, such as Netflix Open Connect [147], allows
to jointly handle content caching and recommendations towards optimizing user QoE. The
impact of recommendations on user content requests is investigated in [7], where YouTube’s
caching efficiency is increased by shaping the video demands of its users through recom-
mendations with a reordering of viewers’ related lists so that cached content is presented
above non-cached content. Following up this line of research, in [8], the impact of the rec-
ommendation position on the performance of cache-aware recommendations is examined in
the case of sequential content requests, where consecutive requests are not independent and
are modeled by a Markovian traversal model of the content catalogue [I48], which resem-
bles PageRank manipulation [149]. The idea of optimizing caching policies by taking into
account recommendations is also investigated under a generic network setting in [I50] where
network and content provider collaboration is not required. The CABaRet algorithm pro-
posed in [I50] leverages available information provided by a RS, and returns cache-aware
recommendations. Measurements over the YouTube service show that CABaRet increases
the cache hit ratio significantly. The trade-off between caching efficiency and quality of
recommendations is studied in [9], [I51] and [3]. The objective in [9] is to maximize the
cache hit rate by forming user demands towards cached content via recommendations. This
is achieved by a heuristic algorithm which first places content in caches driven by user pref-
erences and then makes recommendations that promote the cached content. This is further

examined by taking into account the associations of mobile users to a caching network of
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SBSs with limited service capacity in [I51], where a methodology is developed to maximize
the cache hit rate while guaranteeing a minimum quality of service and quality of recom-
mendations for the users of the Content Provider (CP) platform. In [3], the joint problem
of content allocation in caches and recommendations is studied as a problem of QoE max-
imization and a polynomial-time algorithm with approximation guarantees is proposed for
its solution. This problem, under the same objective is further investigated in section [5.5]
from the viewpoint of user mobility, delivery delay tolerance and D2D caching, whereas the
methodology developed in section leverages unilaterally the information of users’ social
bonds and content preferences as predicted by an RS, in order to satisfy their actual content
requests in a heterogeneous caching network, rather than shaping user demands in order to
be served by limited resources.

In the following section, proactive caching is studied as a socio-aware content allocation
problem in mobile networks to which users are connected in order to consume content
generated in Mobile Social Networks and platforms of streaming services. The BS caching
approach assisted by UEs is related to the approaches in [129, [152] 153]. The problem
under examination is the one of cooperative, socio-aware caching at individual devices that
serve as cache nodes from which other nodes acquire data. In [I29], a proactive caching
mechanism is proposed that capitalizes on the spatial and social features of network users.
Using metrics derived from Social Network Analysis, a set of influential users is selected to
participate in content caching, in order for this to be diffused to their social connections via
D2D communications. In [I52], the problem of fair cooperative caching is studied in Mobile
Social Networks. Cache nodes are selected based on an overlapping neighborhood centrality
measure and a heuristic algorithm is designed to derive the caching scheme. Also, in [153],
historical data of downloaded content is used to predict users’ future content requests based
on which the former are organized into classes of similar users. The caching approach
presented in section [5.4] combines the above to develop a cache node selection scheme. It
relies on the predictive model of a Recommendation Engine to derive similarities between
users. The similarity among users determines a partition of the network into homogeneous
in taste and geographically close users and the problem of cache node selection is addressed

independently in each resulting group based on user social features.
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5.4 CAUSE: A base station caching scheme aided by
user equipment

The problem of limited utilization of User Equipment (UE) for Base Station (BS) assisted
caching and content sharing through D2D communication is addressed by splitting it into
two subproblems. The first determines the number of assisting UE caches according to user
similarity and proximity, while the second allocates items for caching in BS and UE so that
the cache hit ratio is maximized. Finding the number of assisting UE caches is mapped
to a community detection problem, while item placement is formulated as a cache hit ra-
tio maximization problem, which corresponds to the NP-hardMultiple Knapsack Problem.
A two-step algorithm, referred to as CAUSE, solves the standard Knapsack Problem suc-
cessively for every available cache, using a Dynamic Programming based approach. The
performance of CAUSE is evaluated through simulation and analysis over synthetic net-
works. The obtained results indicate that BS caching assisted by UE can be beneficial in
terms of the cache hit ratio, for both users and wireless network operators, outperforming
a vanilla scheme in which the only cache between a user and the core network is the Base
Station’s cache.

By exploiting features from Complex Network Analysis [23], users are grouped in com-
munities via clustering, based on their common preferences and location, so that popular
content for the users in each community is stored in selected devices and it is then dis-
tributed via D2D communication to the rest of the users in this community. Extending
content caching at users’ devices with D2D communication can result in a higher cache hit
ratio. With the D2D communication cache sharing and by using communities of users with
similar interests, additional content requests can be satisfied locally for the less popular
content in general, which however can be quite desired within a specific community. This

way the BS caching can still serve the requests for the content of broader interest.
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5.4.1 Model of content catalogue and user network
5.4.1.1 Similarity graph

A similarity graph H(V, Ep) is considered with V' = {uy, ..., u, } being the users of an online
platform (e.g., an Mobile Social Network, a streaming platform, etc.). A Recommender
System that operates on this platform, aims to recommend to users v € V items from the
set I = {iy,..,i}. Items can be any type of multimedia content or information data. The
preference of user u for item i is predicted by the RS and expressed with a request probability
p(i,u), while a similarity measure (e.g., the Jaccard or Cosine similarity, etc.) [2] is used to
derive users of similar preferences.

The edges in Ey connect the users that have a similarity score above a certain threshold.
This threshold can be specified according to the specific application and controls the density
of the similarity graph with low values resulting in dense graphs, whereas high thresholds
result in sparser graphs, in which two users are unlikely to be considered similar if they do

not have identical taste in items.

5.4.1.2 System cache memories

Each item 4 € I has a finite size M; € [0,1]. This is a normalized measure of the item’s
actual size, usually measured in Megabytes. Each cell has a BS with a cache of capacity
cps € Ryg. Furthermore, a user may employ, if selected and is willing to, a smaller cache
of limited capacity cyg in her User Equipment (UE, e.g., a smart device) for which it holds

that cyg < c¢pg. In the following, one cell with a single BS is considered.

5.4.1.3 Location-based graph

Every user u € V has an effective radius Rp that denotes the maximum distance at which
she can transmit or receive data (e.g., messages, videos, etc.). At any given time, each
user belongs to a single cell, which means that she is associated with a BS, communicating
with it directly in order to access items that are stored in its cache. Also, it is assumed
that nodes lying in each other’s radius are able to exchange content directly through D2D
communication. At any given time, these nodes and their radii form a graph L(V, EL, Rp).

An edge (u,v) € Ey, exists if d(u,v) < Rp, where d(u,v) is the Euclidean distance between
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nodes u and v. In order to model the resulting network in the following simulations, since
every node has the same effective radius, a Random Geometric Graph (RGG) is employed

to model users’ devices and their connections. A similar approach is adopted in [I54].

5.4.1.4 System graph

The similarity graph H, is obtained by evaluating metrics on the underlying online platform.
The location-based graph L, is a snapshot of the D2D network formed in the cell at a given
time. Their intersection results in the System Graph G(V, E) with E = EgNEy. The edges
of this graph denote the connections of the users that are closely related in terms of item
preferences and whose physical proximity allows D2D communication. An example of the

employed system model is displayed in Fig.

A
Similarity. " )
graphH —

Lénqa'linn—
based~—__ "
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Figure 5.1: The system graph G obtained as G = H N L from the similarity graph H and
the location-based graph L.

5.4.1.5 User requests model

In the above model, the users request items available through the online platform. Based
on the assumed prediction model of user demands made by the RS, each item-user pair is
assigned a request probability p(i,u). Two models of recommendations-driven user requests
are examined, a deterministic and a probabilistic one. In the deterministic model, the
sequence of requests made by user u follows the decreasing order of p(i,u) for i € I. In
the probabilistic method, user u chooses at random the items that will be requested with
a probability proportionate to p(i,u) for every item 4. This is achieved by applying fitness

proportionate selection with the fitness of each item ¢ being the probability p(i,u). Also,
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equivalently to [9], the global utility of item i is expressed as:

Ugli) = 3 plis ). (5.1)

ueV
5.4.2 The problem of BS caching assisted by UE

By exploiting users’ information provided by the RS, one may predict their future behavior
in terms of requested content and thus optimize caching efficiency, as quantified by cache
hit ratio. Caching efficiency may be further increased by D2D caching. The problem of BS
caching assisted by UE can be divided into two subproblems. The first is to determine the
number of assisting caches (UE caches) required, based on users’ similarity and proximity.
The second problem is to allocate the items in both BS and UE caches so that the cache hit

ratio is maximized.

5.4.2.1 Selection of assisting UE caches

The problem of finding the number of UE caches is mapped to a problem of graph partition-
ing and coverage. Detecting communities in the system graph is equivalent to identifying
groups of users who are similar and geographically close. It should be noted that the terms
community and cluster are used interchangeably throughout this section. A partition of
the network is obtained by detecting communities with a modularity maximization method
[155]. A high value of modularity indicates a good community structure, thus, the partition
corresponding to the maximum value of modularity on a graph is expected to be of good
quality.

Degree-based UE selection with m CHs per cluster. Assuming that the outcome of
modularity maximization is a set of k clusters A = {4, ..., A}, the number of users who
will be delegated content for caching within each cluster, referred to as ClusterHeads (CHs),
is set to m € N5 with m < min;(]A4;]), where |A;| is the number of users in cluster A;.
Thus, the number of UE caches will be m - k. The UE cache selection scheme takes into
account the degree centrality of the nodes in the subgraphs defined by the clusters. At first,
all users of cluster A € A are sorted according to their degree centrality in descending order.
The node of highest degree is chosen as the first UE cache. Then, until m UE caches are

selected in the cluster, the user with the highest covering ability in the community, that is,
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the user with the highest number of non-common neighbors to the already selected CHs, is
chosen as the next UE cache in A, expressed as:

argmax Nu;|A]\ ( U Nluj|A]), (5.2)

u; EANACH u;EACH

where A“H is the set of UE caches in community A, A°H C A, and N|u;|A] is the closed
neighborhood of w; in cluster A, that is, the set of one-hop neighbors of u; in A, including
u;. An illustrative example is shown in Fig. for the case of m = 1.
Degree and capacity-based UE selection with varying number of CHs per cluster.
Due to the resolution limit of modularity maximization, communities may differ significantly
in size. Depending on the size of each community, a different number of UE should be
selected for content caching so that the majority of network users are covered with cached
content, that is, they can have access to content cached in UE. As in the previous UE
selection method, assuming that the outcome of modularity maximization is a set of k
clusters A = {A;,..., A}, [p-|Ai|] is specified to be the number of CHs in cluster A;,
where |A;| is the number of users in community A;. Parameter p € [0,1] is determined
through simulations to ensure that CHs cover most of the users in their community, i.e.,
they are connected, in aggregate, to most of the users in their community. This UE cache
selection method takes into account both the nodes’ degree centrality in the respective
communities’ subgraphs, and their storage capacity ¢;, j = 1,...|V|. A centrality measure is
defined to give prominence to CHs with a good ratio of capacity to degree, while achieving
low overlap between their neighborhoods in the corresponding community. Let A; be the
community under examination and Cjy, to be the set of its CHs. Community A; forms the
network G4, (Va,, E4,), with E4, to be the set of edges between the users in Vy,. Given the
average weight M of items in the content catalogue, the average number of items that can

be assigned for caching to u; is equal to
(5.3)

The closed free neighborhood of u; in community A;, is the set of the neighbors of u; in
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community A;, who are not connected to any other CHs of A;, denoted by

Npluj|A;] = {ug : (uk,uj) € Ea,, (ug,a) € Ea,, Ya € Ca,}.

The average number of items per user in Np[u;|A;] is

Cj

_ (5.4)
[N [us]Ad|
The centrality of node u; is defined as:
€ — T, iflb_#gub,
f(uj) — J INF[u;[A;]l INF[u;[A;]] (55)
0, otherwise.

The lower and upper bounds (b, ub are determined by the UE capacities and the density of
the networks under examination. The centrality metric f rewards users of high degree, when
the average number of items per user in the closed free neighborhood of u; is at least Ib and
less than or equal to ub. Also, it penalizes small degree and large capacity, i.e., users who
have few or no neighbors in their community. Then, the iterative scheme for CH selection
in a cluster is formulated as follows: For community A;, while the number of CHs does not
exceed the predetermined threshold [p-|A4;|], the scheme selects among the users in A},
which is the subset of users in A; with non-zero centrality values, the user who maximizes
f, ie.,

arg max f(u;). (5.6)

uj€A;
Each time a CH is selected, the centrality scores for the rest of the candidate users in the

corresponding community are recalculated.

5.4.2.2 Item allocation in BS and UE caches

Based on the preferences of users to items, the items should be allocated in both BS and
UE caches to maximize the cache hit ratio. Let X be a (m -k + 1) x || matrix of zeros and

ones to represent the items stored in caches, with the elements in the first row of X, (z1;);
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Figure 5.2: Partition of a network into clusters with one CH per cluster. For simplicity
reasons, the edges between communities are ommited.

to represent the items cached in the BS. In particular:

1, if item ¢ is cached in C.,
Tep = (57)

0, otherwise,

where C = {C1, ..., Cy.r+1} is the set of caches with C; = Cgg, C2 = Clipyry Crnk1 =
cmk.
An element of the |I| x |V] matrix of user requests R, as predicted by the RS is expressed

as

p(i,u), if item 4 is requested by user w,
Tiu = (58)

0, otherwise,

and the |V| x |C| matrix A of adjacencies between users and caches, given by the solution

of the CH selection problem, with

1, if user u is connected to cache C.,

0, otherwise.

The problem of finding a collection of different items to store in caches that maximizes the
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cache hit ratio is formulated as follows:

mkt1 V] 11|

Hl)é(lX Z Z Z Tei* Tiu )\uca (510)

c=1 u=1i=1

subject to:
m-k+1
o ome <1, Vi=1,.,1|, (5.11)
c=1
7]
Zﬁﬂu - M; < cps, (5.12)
i=1
11|
iji'Mi <cygp Vi=2,..m-k+1. (513)
i=1

Constraint ensures that there is no overlap between the items stored in different caches,
namely, an item may belong to at most one cache. Constraints , capture the
cache storage capacity limit of BS and UE respectively.

This problem corresponds to the Multiple Knapsack Problem [I56], which is a generaliza-
tion of the standard Knapsack Problem (KP) from a single knapsack to m - k + 1 knapsacks
with different capacities (BS cache, UE caches). The objective is to assign each item to
at most one of the knapsacks such that none of the capacity constraints are violated and
the total profit of the items stored into knapsacks is maximized. The Multiple Knapsack
Problem is known to be NP-hard[I56], thus a heuristic is employed for the item allocation

problem in BS and UE caches. The overall operation of this approach is presented in Fig.

B3

5.4.2.3 Greedy algorithm CAUSE

A two-step algorithm is proposed in order to allocate items to caches with respect to user
preferences. The algorithm is referred to as CAUSE and its pseudocode is presented in
Fig. CAUSE solves the standard Knapsack Problem successively for every available
cache as follows: At first, given the items’ global utility, Uy, content is stored in the BS
cache by applying the Dynamic Programming algorithm presented in [I57] (§8.2) to acquire
an 1 — ¢, € > 0 approximation of the optimal solution of the KP. The second step of the

algorithm is the placement of items in UEs. For this, a local utility, U;, of the uncached
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items is computed. This utility function models the importance/popularity of items in the
community-defined neighborhood of CHs. Therefore, the local utility of item ¢, determined

by CH w that belongs to community A, is given by the expression:

Ul(iau?A) = Z p<i?v>7 (514)

vEN [u|A]

where N[u|A] is the closed neighborhood of user v in community A. For each UE cache, based
on the corresponding local utilities of items, we use the Dynamic Programming algorithm

to obtain the corresponding item placement.

In each community
START ‘ select CHs ]
i \ 4

CAUSE for allocating

Input graphs H, L items to BS and CHs

= g caches
\ 4
4 Y \ 2
Form System Graph

G by intersecting Users perform

L H,L ) requests

,, |
Apply Modularity
[ Maximization on G END

Figure 5.3: A flowchart of the overall framework.

5.4.3 Evaluation results for CAUSE
5.4.3.1 Simulation methodology

The performance of the proposed algorithm CAUSE is evaluated based on the metric of cache
hit ratio achieved when the users of the system request items. The behavior of CAUSE is
examined for both models of deterministic and probabilistic user requests, with respect to
various parameters, namely the network size, the content catalogue size, the cache size of
the BS and the CHs, the number of requests per user and the number of CHs determined
by the degree-based approach. CAUSE is compared with a vanilla scheme in which the only

cache between a user and the core network is the BS’s cache.
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Algorithm CAUSE
Input: Matrix R of request probabilities, set of caches C, set of clusters A, matrix A of
adjacencies between users and caches.
Output: Binary matrix X of content placement z.;, where c is the index of a cache and
iel.
1: for i € I do
2. Compute global utility U, (i) from (5.1)).
3: end for
4: Use Dynamic Programming Approximation Algorithm (DPAA) to compute the set of
items Igg to store in Cpg.
5: for i € Igg do
6: TBS,i = 1
7: end for
8 I =1\1Ipg
9: C=C~Cgg
10: for A € A do
11:  for u € A that corresponds to cache C,, € C do

12: for i € I do

13: Compute local utility U;(i,u, A) from .

14: end for

15: Use DPAA to compute the set of items I,, to store in C,,.
16: for i € I, do

17: Ty =1

18: end for

19: I=1\1,

20: C=C-(C,

21: end for
22: A=A A
23: end for

Figure 5.4: Algorithm CAUSE.

Synthetic datasets are used to model item and user similarity. The content catalogue’s
size is assigned values from the set {500, 750, 1000, 1250, 1500}. Each item 4 of the catalogue
has finite size, M;, which follows a uniform distribution in [0,1]. Both the size of the
BS cache, cpg and the size of UE caches, cyp, are proportional to the average size of
items, M, with cpgs = M -y, y € {27.5,35,42.5,50,57.5,65,72.5} and cyg = M - 2, z €
{6,9,12,15,18,21}, where y and z are indicative values for the number of items stored in BS
and UE caches respectively. The networks used for the experimental setup are modeled by
weighted Random Geometric Graphs (RGG) of size |V| = {100, 150, 200, 250, 300, 350, 400},
to model the users’ spatial features. The weights are selected uniformly at random in [0, 1]
and model the similarity of users. Edge pruning is applied to RGG to create the system

graph based on a similarity threshold. A moderate value is chosen for this threshold, in
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order to preserve 50% of the number of edges of the initial graph to the system graph. The
cases of placing one and two CHs to each community of the system graph are examined.
The results are averaged over 25 topologies for each configuration. Unless otherwise stated,
the default values of the employed parameters in the simulations are: |V| = 100, |I| = 500,
cgs =40 -M, cyp =6- M.

In section [5.4.1.5] a deterministic and a probabilistic model of user requests are intro-
duced. Based on these models, each user will make R demands for content. Consider a user
u who belongs in community A, requesting item i. There are three possible ways for u to
acquire 4: (a) The item is stored in BS cache, therefore, a cache hit is recorded for BS cache,
(b) the item is stored in the cache of user’s u neighboring CH, thus, a cache hit is recorded
for the corresponding CH cache and (c) the requested item is not cached and it will be
retrieved by the core network. This is recorded as a cache miss. The simulation terminates
when all users complete their requests. In the simulations, the number of requests per user,
R, takes values from the set {2,5,8,11,14, 17,20, 23, 26,29}, whereas the default value is set
to 5.

In the following section the impact of various network features to the achieved cache hit
ratio is investigated. Each feature is examined separately under the existence of one and

two CHs, while keeping the rest of the parameters at their default values.

5.4.3.2 Simulation results for CAUSE

Impact of network size, |V| and catalogue size, |I|. Figs. show that a great
percentage of users’ content demands are satisfied locally either by BS or UE caches, in
both the deterministic and probabilistic schemes of requests. As expected, the deterministic
scheme yields a higher cache hit ratio (Figs. , since the design of content
placement is based on the most preferred items for every user, as predicted by the RS. It is
also noticed that the overall cache hit ratio increases in small sized networks, where caches
satisfy less requests. Equivalently, there is a small decrease in the overall cache hit ratio
as the content catalogue size increases, namely, more items are available for the users, as
depicted in Figs. [5.7 and [5.8]  This is because user requests become highly diverse for
the caches to handle. The importance of UE assisting caching is evident when selecting an

additional CH in each community, which results in a 4 — 6% increase in the total cache hit
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Figure 5.5: Cache hit ratio of systems in networks of varying size, with one CH per commu-
nity.
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Figure 5.6: Cache hit ratio of systems in networks of varying size, with two CHs per com-
munity.

ratio. This is due to the fact that the second CH serves the users who were neither connected
to the first CH, nor they could find the content of their preference cached elsewhere.
Impact of the number of requests per user, R. As depicted in Figs. [5.9] and [5.10]
when the number of requests per user increases, there is an expected decrease in the achieved
cache hit ratio. Despite this fact, CAUSE manages to improve this ratio both in the case of
deterministic and probabilistic requests.

This improvement is even more noticeable in the presence of two clusterheads that suc-
ceed at providing more user requests with the appropriate content. The results presented
may serve as a good indicator of pinpointing the best time to reorganize the caches in the

system in order to achieve high cache hit ratios. In greater detail, it is observed that when
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Figure 5.7: Cache hit ratio of systems with content catalogues of varying size, with one CH
per community in the network.
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Figure 5.8: Cache hit ratio of systems with content catalogues of varying size, with two CHs
per community in the network.

the number of requests per user is low (i.e., less than 10) the deterministic scheme is able
to satisfy more than 50% of the total requests. If the cache is reorganized (i.e., rerunning
CAUSE) every 8 requests made per user, then high cache hit ratios will be noted. The in-
crease though would be at the expense of frequent communication and data exchange with
the core network, which is a time-consuming solution. On the other hand, a solution could
be the increase of the BS cache storage capacity, thus, an investment in hardware by the
owner of the network. Therefore, the need for balance between cache sizes and frequency of
reorganization of the cache memories of UEs and the BS is deemed crucial for the overall
satisfaction of the users.

Impact of Base Station cache size, cgg. The BS cache size is defined in terms of
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Figure 5.9: Cache hit ratio of systems with varying number of requests per user, with one
CH per community in the network.
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Figure 5.10: Cache hit ratio of systems with varying number of requests per user, with one
CH per community in the network.

the expected number of items contained. Keeping all the other parameters at their default
values and by changing the size of the BS’s cache, it is noticed in Figures [5.11] and [5.12] that

by increasing the cache memory of the BS there is an increase in the overall cache hit ratio.

This is expected, as larger caches allow for more items to be stored into them and give
the chance for more cache hits at user requests, both on the deterministic and probabilistic
request models. Concerning CAUSE’s performance, it outperforms the simple vanilla scheme
with no UE caching, albeit this improvement decreases as the BS’s cache size increases. This
is expected because the users will first request the item from the BS and if the BS fails to

retrieve it, they will search for it in the UE cache. When the size of BS cache is large, the
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Figure 5.11: Cache hit ratio of systems with BS caches of varying size, with one CH per
community in the network.
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Figure 5.12: Cache hit ratio of systems with BS caches of varying size, with two CHs per
community in the network.

UEs end up serving less requests, yet, large cache memories are not a viable solution as they
require significant financial investment from the network owner. Thus, there is always an
incentive for supplementary caching in order to keep the data exchange focused on the edge
rather than the core network.
Impact of Clusterhead cache size, cyp. Similarly to the BS cache size, the CH cache
size is determined by the expected number of stored items. The averaged results of the
performed simulations are presented in Figures [5.13] and

The increase in the CH’s cache leads to more cache hits, due to the CH’s enhanced
capability of serving user requests that the BS is incapable of satisfying. As the CH’s cache

size increases, the benefit of applying UE caching versus a simpler approach is more evident
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Figure 5.13: Cache hit ratio of systems with CH caches of varying size, with one CH per
community in the network.
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Figure 5.14: Cache hit ratio of systems with CH caches of varying size, with two CHs per
community in the network.

regardless of the request model (deterministic or probabilistic). This difference is even more
evident when there exist two CHs in every detected community. This result highlights the
benefits of opting to cache more content in the network edge through the involvement of
the users’ smart devices. Of course, the allocated memory should not interfere or affect
significantly other processes running on the device. Moreover, there must exist proper
incentives for the user to willingly participate in this scheme (e.g., reduced cost for the
periods when she assumes the role of CH, etc).

The contribution of the assisting UE caches to the efficiency of a caching strategy is
highlighted through simulation results in the cases where two CHs exist in every community.

In the default setup, the users having access to the first UE cache of their community, are
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approximately 59.4% of the total users, while those having access to the second UE cache
are 46.9%, leading to around 90% of total users with access to at least one UE cache, since
some of them are connected to both UE caches. Thus, by only setting two UE caches per
community users are adequately connected for niche content sharing.

Taking into account the impact of recommendations in users’ content demands, in the
following section, the UE contribution in efficient MEC and content dissemination is further

investigated from the perspective of user mobility and delay tolerance in content delivery.

5.5 Opportunistic offloading at the network edge and
recommendations in MSNs

In a HetNet with small cells and UEs which offload traffic from the core network by storing
and delivering data via D2D communication [I58], users’ mobility pattern can be exploited:
(a) to derive for each user, the expected waiting time to encounter cache-enabled devices and
(b) to determine a subset of the UEs that will cache content and participate in the offloading.
Expressing the user QoE as a function of user-content relevance and its expected delivery
delay, the joint problem of content placement in caching networks and recommendations
in MSNs is formulated as a user QoE maximization problem, which is known to be NP-
hard[I59]. In order to address it, a heuristic algorithm that focuses on the content delivery
delay is proposed and evaluated through simulation over synthetic datasets. The obtained
results are presented in section [5.5.8] and are compared with a state-of-the-art polynomial-
time approximation algorithm and show that the proposed algorithm balances efficiently the

trade-off between the quality of the solution and the execution time.

5.5.1 Model of caches and content
5.5.1.1 Heterogeneous caching network

The HetNet under examination consists of a BS, k SBSs S = {s1,..s;} and n mobile users
with smart devices (UEs), U = {uy, ..., u, } with transmission ranges r4(BS) > r¢(s) > r:(u)
with 7,(s;) = r(s), Vs; € S and r(u;) = r¢(u), Yu; € U. All UEs can communicate with the

BS, while a UE can communicate with an SBS, if in range. Also, a UE may communicate

129



with another UE in a D2D fashion in order to share cached content.

5.5.1.2 Content Catalogue

The content catalogue is modeled by the set I = {iy,...,4,,} of m items with size z;. The
items’ popularity is assumed to be known. It may be estimated by the Recommender System

operating on the platform. The relevance of user u to content 7 is given by r : {UxI} — [0, 1].

5.5.1.3 Cache memories

Each SBS is equipped with some storage capacity where content is cached in order to avoid
backhaul congestion. UE have also some storage capacity cap : {S,U} — R. The capacity
of each user u € U is less than that of a SBS, cap(s) >> cap(u), Vs € S, Vu € U. Given the

average size of an item z and the cache capacity of every user u, cap(u), the average number of

items that can be stored in every user’s cache can be computed as k(u) = L%@J . Content is
stored at a predefined number of UEs. This number is specified by the network operator, who
gives a reward to the UEs participating in content offloading via D2D communication, which

will be referred to as Cluster Heads (CHs). The set of CHs is denoted by C = {c1, ..., ¢4}

5.5.1.4 Recommendation lists

Platforms of streaming services, such as Spotify and Youtube, employ Recommender Systems
(RSs) to help its users decide on the consumption of the available content. Each user u € U,
who enters the platform, views a list of recommended content I'(u), where I' : U — Ip
is a set-valued function and Ir is the family of the subsets of I with cardinality I. The
recommendation list that results in the maximum aggregated relevance score for every user

is denoted as T'p(u).

5.5.2 Model of users mobility
5.5.2.1 Contact rate between users

The meeting events between (v,u), Vv,u € U are given by a Poisson process with rate
As(v,u). The meeting rates are drawn from an arbitrary probability distribution. It is

assumed, for the sake of fairness in content sharing, that in a meeting event between u and v,
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u will receive only one content from v, even if the meeting duration is long. Also, the expected
inter-contact time coincides with the expected delay experienced by u in order to get content
from v. The inter-contact distribution is exponential with rate As;(v,u). Therefore, the
expected inter-contact time for (v, u) will be m when Ag(v,u) # 0. Assuming that not
all contacts between (v,u) lead to successful content exchange (e.g., battery depletion of
a device), the expected delay will be greater than the expected inter-contact time. Given
that the probability of successful content exchange is pg, the number of successful meetings
follows a Poisson distribution with rate Ay, = As(v,u) - ps. Therefore, the expected waiting

time for successful content exchange between (v, u), when Ay, = As(v,u) - ps # 0 will be

1 1

Avu As (U,u)-ps :

5.5.2.2 Expected delivery delay

The function of the expected delivery delay is defined as f : {UxBS,U xS, UxU} — R. For
every pair of users (v,u) Yv,u € U, in the case of A\, = 0, the expected delay experienced
for content exchange is set to be f(v,u) = oco. If A, > 0, the expected delay is defined as

follows.

1 .
Tow? lfl}#u,

flv,u) = (5.15)

0, if v =u.
5.5.2.3 Expected number of efficient meetings between users

Considering the expected time between successful content exchange for each pair of users
as the expected delay between users v and wu, one can estimate the number of times two
users will meet during the examined period of duration 7. A non-symmetrical matrix

M = (myy) € NIUIXIUT can be computed as follows:

min{k(v)a L)‘UUTJJ}’ lf f(’U, u) < TS?
Myu = § min{k(v),l}, if v =u, (5.16)

0, otherwise.

Matrix M contains the expected number of efficient content exchanges between two nodes

(since one content is delivered during a meeting) that will result in successful delivery of a
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content with tolerable delay, namely, for expected delay that is less than T;. Therefore, the
element m,,, gives the number of times that user v can deliver non replicated content to user
u, which depends on the storage capacity of v, the number of meetings between (v, u) and
the size of u’s recommendation list. For example, if u is recommended of [ = 6 items and
user v can store on average k(v) = 3 items and meets 8 times user u during the time period
under examination, the efficient meetings of v with v are m, ,, = min{3, 8,6} = 3, since user
u can be delivered of all the items stored in v within the time duration of 3 meetings (one

item per meeting).

5.5.2.4 Contact rates between users and SBSs

The meeting events for the pair (s,u), Vu € U, Vs € S are also given by a Poisson process
with rate A\gy < Ayy- It is assumed that during a meeting event between s and w, u may
receive more than one item from s, since user u will spend more time on average within

an SBSs’ transmission range, due to the fact that r;(s) > r:(v). The expected number of

items delivered to w during her meeting with s is equal to ng = L%J Therefore, the delay

experienced for the delivery of ng items is

1 _
o if g =0,

f(s,u) = (5.17)

oo, otherwise.

5.5.2.5 Expected number of efficient meetings between users and SBSs

Equivalently to my.,, ms, represents the number of efficient meetings of (s,u) for content

exchange and it is defined as follows.

min{[5), [(AW 7], LT, if f(s,u) < T,
Mgy = (5.18)

0, otherwise.

Therefore, |S| rows are added to matrix M to include the expected number of meetings

between users and SBSs.
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5.5.3 Opportunistic offloading of user requests

Content is delivered to the users in U from the CHs via D2D communication, the SBSs and
the core network through the BS. An opportunistic offloading model [I58] is assumed, where
u € U can wait for an amount of time, let Ty, until she moves within range of a CH or a
SBS in order to retrieve content i € I'(u) from the corresponding caches. If ¢ is stored in
more than one caches, user u will retrieve it from the one of lowest delivery delay. If time
T, is reached, the operator delivers the content directly through the BS. For this, the delay

experienced for the delivery of i to u by the BS is set to 7.

5.5.4 User Quality of Experience
5.5.4.1 Quality of Recommendations (QoR)

As in [3], the QoR of user u € U is considered to be a function of her relevance to the items

of the recommendation list I'(u):
¢u,T(w),r) = > r(u,i). (5.19)

5.5.4.2 Quality of Service (QoS)

The QoS of user u is considered a function of the expected tolerable delay experienced by
her in order to access the content of her recommendation list. It is the deviation of the
total expected waiting time of w from the total maximum tolerable waiting time |I'(u)|T5.
A higher deviation indicates a better QoS. For user u, H, = {h € {C U S} : mp, > 0} is
the set of caches to which u is connected for efficient content exchanges. In the case where
content 7 is not cached anywhere in the set H,,, thus it will be delivered to u by the BS with
delay T, the extended set H} = {H, U BS} is defined. Its elements are sorted in increasing
order of tolerable delay. Therefore, the last element in H; will be the BS. The QoS of user

u is defined as

|H| j—1
U(u, £,T(w), Hy, Q) = > (T = f((Duru) > lHu —w(y)ui)] CW(j)uis (5.20)

j=1 i€l (u) Lr=1
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where f((j)u,u) is the tolerable delay experienced by u for content delivered by the j-th
element of H}. The binary variable W(j),i indicates whether item 4 can be delivered via the
element in the j-th position of H]. The product [H]V;ll(l — Ww),i) | "W). ensures that the
cache of lowest delay containing item ¢ in Hi will be selected for the delivery of item ¢ to u.
The QoS of a user who receives the content of her recommendation list from the BS will be

equal to 0.

5.5.4.3 Quality of Experience (QoE)

The QoE of user u is defined as a convex combination of the QoR and the QoS.

Qu, T(u), 7, f, Hy, Q) = atp(u, f,T(u), Hy, Q) + (1 — a)d(u, T(u),7), (5.21)

where a € [0, 1] is a parameter indicating the trade-off of the QoR and the QoS. In case of
a = 0, the users are willing to wait for at most T in order to consume their favorite content.
In case of a = 1, the users are willing to consume less relevant content in order to experience

minimum delivery delay.

5.5.5 Formulation of the joint caching and recommendations pro-

blem

The problem of content caching and recommendations in heterogeneous networks is divided
into two subproblems. The first problem concerns the selection of UEs that will assist in
the opportunistic offloading, and the second deals jointly with the allocation of content to

caches and the recommendations to users in order to maximize their QoE.

5.5.5.1 Mobility-aware clusterhead selection

The mobility-aware CH selection method, which will be referred to as CH-cover, selects UEs
who act as local relays on behalf of the network operator. These devices should provide
in aggregate cached content to most of the network users, while balancing the number
of recommended content requests that each one will serve. The operator is considered
to provide appropriate incentives to the selected UEs since offloading raises high battery

consumption as well as storage and security issues.
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For the selection of CHs, the binary matrix of efficient meetings is expressed as B =

(buy) € [0,1]"*" with u,v € U with elements

1, if my, >0,
by = (5.22)

0, otherwise.

This means that b,,, = 1 if u meets v with expected delay less than T,. Given the matrices
B and M, the goal is to find the vector x of size n with its elements x,, u = 1,...,n to be

defined as follows.

1, ifwuisa CH,
Ty = (5.23)

0, otherwise.

arg max Z Z Ty, * Maoyw, (5.24)

uelU velU
subject to:

Y zu=g, (5.25)

uelU
Z Ly buv Z 17 Vv € Ua (526)
uelU
Z Ty  Myy < ¢ YueU, (5.27)
velU

where ¢ € (Miny Y, ey Tu - Muw, MATy Yy ey T - Mouw)-
The objective is to find the set C of g users (constraint (5.25)) who will maximize the number
of efficient content exchanges so that all the network users can access cached content from
at least one CH (constraint ) and the load of efficient content exchanges is balanced
between CHs. Balancing is determined by the parameter ¢ (constraint ) For small
contact rates or small values of g, the problem may be infeasible. In that case, constraint
is dropped and a set of g CHs is computed to cover maximally the set of the users.
We create a directed weighted graph G(U, E,w) with (u,v) € E, if by, = 1. The
corresponding weight is w(u,v) = my,. Then, finding the set of ¢ CHs can be mapped to

the problem of finding a minimum weighted dominating set (or partial dominating set in the
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case of infeasibility) of cardinality ¢ for graph G, which is reduced to the minimum weighted
set cover (or weighted partial set cover respectively) problem as follows:
Let A = {N,}ucv be a family of sets with N, to be the set associated with u that

consists of its one-hop neighbors. Each set has a value that is equal to

W(N,) = Z w(u,v). (5.28)

VEN,,

At first, the family of candidate sets for the set cover is defined as F := A. The sets N, € A
for which it holds that » ., W(Ny) > ¢, ¢ = P, where P, is the g-th percentile of W, are
deleted from F. For the sets in the family F, an iterative method is applied, which greedily

picks at iteration ¢ the set N, that minimizes the ratio

1
|Us N N |- W(N,)’

(5.29)

where U, is the set of uncovered elements of U at time ¢. For ¢ = 0 it holds that Uy := U.
The node u is added to the set of CHs C. The procedure terminates at time ¢ at which

Us=0ort =g.

e If Uy = 0 and ¥’ < g, the elements that belong to C are removed from F and the

iterative method is repeated.

o Ift' = gand Uy # 0, C is a minimum weighted partial set cover of U.

5.5.6 The QoE problem formulation

Given the set of caches (i.e., CHs and SBSs) to which user is connected for efficient delivery
of recommended content, the objective is to maximize the total QoE of the network. For this,
it is required to determine the users’ recommendation lists T'(u) uw € U, namely, the user-
item |U| x |I] binary matrix I' = (7,;), where v,,; = 1 if i € T'(u) and the (|C|+|S|+1) x |I|
binary matrix @ = (wj;) of the items’ placement. The last row of Q concerns the items that
can be delivered from the core network via the BS, thus, its entries are all equal to 1. The

problem is formulated as follows:
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arg max > Qu,T(w), 7, f, Huy ), (5.30)

uelU
subject to:
1|
Y wi k() Vi=1,..,1C+]5sl, (5.31)
i=1
1]
> wicrsini = 1, (5.32)
i=1
||
Z%u‘ =1, Yuel. (5.33)
i=1

Constraint depicts the capacity limits of the network caches, while constraint
ensures that all the items can be delivered from the core network via the BS. Constraint
sets the size of the users’ recommendation lists.

This problem is equivalent to the QoE problem with equal-sized content constraints
presented in [3], which is proved to be NP-hard[I33] and for which a greedy algorithm
with approximation guarantees is designed. Even though the proposed approach provides
a %—approximation for the QoE problem, it is based on an exhaustive evaluation of all
the possible solutions. In order to avoid this, the problem is decomposed into a content
placement problem in a network of heterogeneous caches and a network-friendly content
allocation problem in the users of a MSN. For this, a heuristic approach is designed to

balance the quality of the provided solution and the execution time.

5.5.7 Maximizing QoR in a minimum delay topology

At first, the QoE problem is solved for ¢ = 1. In this case, the problem becomes a max-
imization problem of users’ QoS and it is solved by computing a minimum delay network
topology that captures cache-user connectivity. Based on this, items are placed to caches in
order to maximize the users’ QoR via cache-aware recommendations. Given the matrix M of

efficient meetings and the corresponding sets HJ, Vu € U, as well as the (|C|+|S|+1) x |U]
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matrix A = (a;,) with the elements

1, ifief{ceC:me >0U{BS},
Qiw =y ng, ifi€{se€S:mg >0}, (5.34)

0, otherwise.
The objective is to find the (|C|+ |S| 4+ 1) x |U| matrix E = (e;,,) of minimum delay for

the delivery of at least | contents per user. The problem is formulated as an Integer Linear

Programming Problem as follows.

arg min Z fi,u) - e, (5.35)
B ieH)
subject to:
Z Qi * € > 1, Yu €U, (5.36)
ieH}
T €{0,1,..,mp}, Vie HJ, (5.37)

where m;,, = and f(i,u) = T, if i refers to the BS.

By solving the above optimization problem, each user will have access to at least [ items
with minimum expected delivery delay. Given matrix E, one may proceed sequentially to
the placement of content to the network caches and the computation of the users’ recommen-
dation lists. The proposed framework is referred to as Minimum Delay (MD) framework
and consists of the MDCP algorithm for content placement and the MDR algorithm for
recommendations.

Content Placement. Each CH and SBS A will cache different items based on the expected
minimum-delay efficient content exchanges with the users v € Ny, = {v € U : apyep, > 0}
and their relevance score on items, r. The utility of each item for a cache device h € {CUS},
O(h,1i), is computed as a weighted average of the relevance scores of u € Np,, promoting the

more frequent contacts.
> uen,, Whulhur (U, 1)

ZuEN;L AhuChu

O(h,i) = (5.38)

Namely, the more items a user accesses from a cache memory, the higher impact her
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preferences will have on the content placement in this cache. The procedure is described in

Algorithm MDCP (Algorithm 3)).

Algorithm 3: Algorithm MDCP (Minimum Delay Content Placement)

oA W=

(=)

Input: Matrices A and E, relevance scores r(u,i), i € I, u € U.
Output: Matrix of content placement €.
I'«+1
while 3h € {C' U S} not full do
for h € {C U S} not full do
for i € I’ with wp; # 1 do
L L Compute O(h, 1)

argmax, ;) O(h, 1)
Whir = 1
| ' '\ {7’}

Recommendations. The list I'(u), Yu € U is created by assigning to u at most apnyeny

stored in h € N,, = {h € H] : apyepn, > 0}, which are of highest relevance to her. The cache

memories in IV, have been previously sorted in ascending order of content delivery delay.

The procedure is described in Algorithm MDR (Algorithm [4)).

Algorithm 4: Algorithm MDR (Minimum Delay Recommendations)

FOT- NS T NI I

®

10

Input: Minimum delay network G,,(Vy, Ep,, Wy, ), matrix of content placement €2,
relevance scores r(u,i), 1 € I, u € U.
Output: Matrix of recommendations I
for w € U do
Create the items’ list Iy(u) = {i € I : i is cached in h € N, }
Sort h € N, in ascending order of content delivery delay.
iterator =0
for h € N, do
while iterator < apyep, do
argmax  r(u,?)

€Ty (u):iwy =1

Yui? = 1

T (u) = Tp(u) N A{i'}

tterator = iterator + 1

5.5.8 Evaluation of the MD framework

The MD framework is evaluated in terms of the achieved QoR, QoS and QoE scores. The

obtained solutions are compared with the ones produced by the method proposed in [3],

which will be referred to as JCR, for variable number of users |V| = {100, 200, 300, 400, 500}
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and content catalogues of items |I| = {300, 1000} with size z; = 1, Vi € I. The relevance of
items to users is drawn uniformly at random from the interval [0, 1]. The UEs have storage
capacity k(u) € {2,3,4}, u € U. The number of SBSs is set to |S| = 5. All SBSs have
memories of capacity k(s) € [5,10] C N, Vs € S. The number of items that a user can get
from an SBS during a single meeting is set equal to ngy = 3. Every user-user pair meets with
rate chosen uniformly at random in the interval [0.01, 0.4], while every user-SBS pair meets
with rate chosen uniformly at random in the interval [0.001,0.15]. The number of CHs g is
equal to 5% of the users’ number. The size of the user recommendation list is set to [ = 5.
The maximum tolerable delay is Ts = 10. The time of observation begins at t = 0 and the
examined time period is At =1[-Ts+ 1 = 51, indicating just over the maximum amount of
time for a user to retrieve all of her recommendations from the BS.

The metric n-QoR is used as a measure of the deviation of the obtained QoR from the
optimal QoR achieved by the recommendation lists of the whole network and it is defined

as follows:

1 QoR(u)
n-QoR = — S oMY 5.39
|U| % QoRmaw(u) ( )

For user u, QoR(u) is calculated based on Eq. (5.19) and divided by QoRq. (), which is
the QoR score of u achieved when I'(u) = T'y(u). These scores are averaged across the whole
network of users.

The metric n-QoS is given by the expression

(5.40)

1 QoS (u)
n—QoS—mg T

S

where for every user u € U the achieved QoS score, computed by Eq. , is divided by
the maximum total delay that would be experienced if every content recommended to u was
retrieved from the BS. The n-QoS is the result of the averaging process across all the users.

Finally, for evaluating the QoE, the metric n-QoFE is employed, which is given by the
expression:

n-QoE = n-QoR + n-QoS. (5.41)
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5.5.8.1 Caching location

The fraction of recommended content retrieved by different locations is depicted in Fig. [5.15]
for the MD approach and in Fig. [5.16] for the JCR approach. The MD approach utilizes
more the SBSs by recommending to users more frequently content stored in their caches
rather than content cached in CHs as depicted in Fig. where at most 46% of the
recommended content will be delivered via the CHs. This is explained by the fact that
following the MD approach, the devices that determine the users’ recommendation lists are
the ones which deliver content at the minimum delay. Also, in the case of SBSs, it holds
that during a single meeting of user u with SBS s, I'(u) can be filled with up to ng = 3
items stored in s in contrast to the case of CHs, where only one content can be obtained
during a meeting. Even though both methods increase the use of the CHs for the delivery
of recommended content as the network size increases, in the JCR method, the CHs are
utilized in greater extent delivering 57.8% of the recommended content to the network of
500 users, which may degrade the caching performance of the network, since, frequent D2D
transmissions result in higher energy consumption and reduce significantly the CHs limited

lifetime.

10

B CH W SE5 W BS

i

(100,5,5) (200,10,5) (300,15,5) (400,20,5) (500,25,5)
(Network size, CHs, 5B5s)

= =2 =
. o (=]
L

Fraction of delivered requests

[=]
%)

Figure 5.15: Location for the items recommended by the MD approach.

5.5.8.2 n-QoR, n-QoS and n-QoE scores

In Fig. the MD and JCR approaches are compared in terms of their achieved n-QoR,

n-QoS and n-QoFE scores for a content catalogue of 300 items. It is observed that the
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Figure 5.16: Location for the items recommended by the JCR approach.

achieved n-QoR for the MD approach is lower than that achieved by JCR in all the examined
cases. This is expected since MD’s objective is to compute recommendation lists of minimum
delay. The results on the n-QoS for these methods are of similar quality. Regarding the
JCR method, the execution time is quite high, as depicted in Table 5.1} contrary to MD,

which is just a few seconds. Thus, the small loss in the n-QoFE of MD is justifiable.

25
*x n-0oR JCR mm n-0oR MD
+ n-Qo5JCR B n-0o5 MD
2.0 A @ n-QoEJCR mm n-0oE MD

(100,5,5) (200,10,5) (300,15,5) 400,20,5) (500,25,5)
(Metwork size, CHs, 5B5s)

Figure 5.17: n-QoR, n-QoS and n-QoFE scores for the MD and JCR methods.
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Table 5.1: Execution time (sec) of MD and JCR approaches
Network Setup || MD JCR
(100,5,5) || 1.02 8278.30
( ) || 2.59 | 39684.54
( ) 4.59 | 162617.48
(400,20,5) || 7.17 | 346948.55
(500,25,5) || 13.34 | 757482.49
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Chapter 6

Conclusion

6.1 Summary of results

Chapters [3] ] and [5] presented research progress on several coverage problems in complex
networks, which more specifically focus on network monitoring, tracking and inference of
information dissemination and socio-aware content allocation, under various constraints.
The application domains included physical (Wireless Sensor Networks), cyber (Online Social
Networks) and cyber-physical networks (Mobile Social Networks and Mobile Edge Caching
Networks).

In physical networks, such as WSNs, coverage is considered an important performance
metric, which reflects how well the network monitors a field of interest. Coverage can be
measured in different ways depending on the application. In the case considered in sectionf3]
sensors monitor an entire area. Assuming the sensors have the ability to modify their
sensing ranges dynamically, the objective was to maximize the area covered by randomly
dispersed sensors, while reducing their sensing range as much as possible, resulting in low
energy consumption, despite the presence of convex opaque obstacles. This problem was
addressed with a framework that capitalized on the notion of the visibility polygon. Two
algorithms were designed, a centralized and a distributed one in order to maximize the
ratio of covered area to consumed energy, while ensuring a minimum coverage percentage.
Simulation results showed that these schemes maintain high coverage percentages of the

feasible coverable region, that is, the area covered by the deployed sensors when operating
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at maximum sensing range, while significantly reducing the associated sensing energy.

Monitoring in Online Social Networks is the process of tracking users’ interplay as cap-
tured by information sharing. Understanding the flow of information in an OSN plays an
important role in social network applications, including recommendations. In networks of
billions of users, a great deal of resources is required to infer its diffusion dynamics. In-
spired by the notion of coverage in WSNs, in sectionf4.2] a monitoring cover of an OSN is
determined, that is, a minimum set of nodes in a social graph, whose activity has to be
monitored in order to recover the information propagation graph, in terms of who influences
whom in the OSN. Finding a monitoring cover was treated as a variation of the Minimum
Vertex Cover problem and a greedy methodology was introduced for its solution, followed by
a graph coloring and two backtracking schemes, a deterministic and a probabilistic one, for
the inference of the information diffusion graph. The operation and efficacy of the proposed
framework was demonstrated in real and synthetic online social networks, such as distributed
wireless (spatial) and scale-free (relational) topologies, and conclusions were drawn about
the impact of topology on the information spreading inference, with probabilistic inference
being more accurate in the case of sparser topologies with small number of nodes and high
minimum degree.

Knowledge on the spread dynamics of information was integrated to recommendations
in OSNs to increase the diversity of the recommended content and avoid redundancy in
suggestions of items that users may attain through the activity of their connections in
the OSN. Motivated by the design of IDARS for accurate and efficient recommendations
with respect to the limited cognitive capacity of its users, in sectionfd.4] the problem of
content allocation to users was studied from a user coverage perspective. An IDARS was
designed to utilize minimal amounts of resources for recommendations that best match user
preferences and respect their capacity to information. This recommendations problem was
formulated as one of computing a Minimum Weighted ¢-Cover, which is a generalization of
the well-studied Minimum Weighted Set Cover Problem. An ¢-cover was defined as a set of
assignments to users who maximize both the spread of recommendations and the total user-
to-item relevance, so that each user in the network is covered by at least ¢ items. In order
to solve the ¢-Coverage problem (find an ¢-cover for the OSN), greedy algorithm CoveR, was

proposed and proved to be an O(%H (A))-approximation for the ¢-Coverage problem, where
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A, 0 are the maximum and minimum degree of the network respectively and H(A) is the
A" harmonic number. CoveR’s performance was evaluated through extensive simulations
on both synthetic and real networks. The obtained results indicated that the quality of its
solution is comparable to the one obtained by the Branch and Bound method, while at the
same time outperformed other state-of-the-art information diffusion-aware recommendation
heuristics.

Finally, socio-aware content allocation was studied in cyber and cyber-physical networks
in Chapter The information on users’ features, as acquired by RSs operating in Mo-
bile Social Networks (MSNs) and platforms of streaming services, along with the users’
mobility patterns were leveraged to derive local communities of users and encourage their
collaboration in local content sharing. According to their physical and social ties and by
acknowledging the impact of recommendations in content requests, the problem of con-
tent placement at heterogeneous caching networks and content sharing via Device-to-Device
(D2D) communication was investigated under various objectives.

In section5.4] allocating items to a physical network, i.e., a caching network of BS and
UEs, was formulated as a cache hit ratio maximization problem and the solution was ap-
proximated by a dynamic programming based approach. The obtained results highlighted
the contribution of D2D caching in the network’s caching efficiency. This was further inves-
tigated in sectionf5.5] from the perspective of user mobility and delay tolerance in content
delivery via a D2D-based opportunistic offloading scheme, which was studied jointly with
cache-aware recommendations. Content placement was aimed in two dimensions, the phys-
ical dimension, determined by the caching network and the cyber dimension determined by
the users of the platform where the RS operates. Multiple criteria based on users’ mobility
patterns were proposed to determine the user equipment participating in the offloading.

Expressing the user QoE as a function of user-content relevance and its expected delivery
delay, the joint problem of caching and recommendations was treated as a user QoE maxi-
mization problem and it was addressed by the MD framework that solved sequentially the
problems of (a) finding the minimum delay content delivery network, (b) content placement
in cache-enabled devices and (c¢) cache-aware recommendations, ensuring that each user will
be recommended of highly preferred content with minimum delivery delay. The results of

the MD framework were compared with a state-of-the-art polynomial-time approximation
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algorithm and showed that MD balances efficiently the trade-off between the quality of the

solution and the execution time.

6.2 Insights for future research

As discussed in Chapter [5) content services, the majority of which employ RSs to allocate
content to its users, are responsible for most of the mobile traffic. This is why network-
friendly recommendations, such as the cache-aware recommendations analyzed in Sections
are considered a promising solution for improving the caching efficiency as well as
the quality/cost of content delivery [160].

Following up current research works claiming that the recommendation position of con-
tent affects user demands [7), 8], methodologies of network-friendly recommendations in
MSNs and platforms of streaming services (Youtube, Netflix) reorder, for each user, her
personalized list of recommended content so that cached content at the network edge is
presented above the corresponding non-cached content [9]. This may result in users view-
ing items in different order or even viewing different items (e.g., the posts’ order of their
newsfeed in facebook/twitter, their list of video recommendations in Youtube) when they
access the platform through a fixed connection, compared to the items viewed via a mobile
connection, driven by the availability of the content in the corresponding network caches
and the associated access cost, which seems to be greater in mobile networks. For example,
the backhaul connection for Small Base Stations is often wireless, which makes the delivery
of non-cached content costly, since backhaul transmission to a SBS is required.

In order to reduce backhaul accesses, popular content is cached at the mobile edge
servers and, due to cache-awareness, it is strongly promoted in recommendations. On the
other hand, niche content, which refers to the information which is not widely popular [161],
due to the limited storage resources of the cache-enabled servers, is highly unlikely to be
cached at the mobile edge servers within a timeliness-preserving time frame. Awareness of
the switching pattern of users connection from a fixed to a mobile network and vice-versa,
may be leveraged to facilitate the diffusion of niche content in dynamic networks formed
by users’ network switching. Network switching-aware recommendations can be formulated

as an optimal control problem of content allocation over a given time horizon such as the
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one in [II], where the information diffusion process is modeled as a Susceptible-Infected
epidemic and the recruitment of susceptible nodes to the infected class is used to speed up
the dissemination process.

Another important issue in the joint caching-recommendations paradigm is the one of
fairness, which can be defined in several ways depending on the system and its involved
entities.

From the perspective of D2D cooperative caching, in [I4] the fairness of individuals
is captured as a measure of users’ equal opportunity to access MSN data. In [15], fairness
is investigated in terms of load balancing in a caching network of heterogeneous peer edge
devices. Caching is considered fair if less content is stored in cache-enabled nodes with fewer
resources.

From the viewpoint of recommendations, fairness can be defined with respect to user
preferences, which in the literature is referred to as c-fairness (consumer-fairness) [I6] and
the provider, which is known as p-fairness [I7]. In cp-fairness aware RSs, fairness is provided
to both consumers and providers creating recommendations lists that satisfy criteria for all
the network entities [I8] [19] 20, 21]. In [I60] different measures of fairness are defined in
order to study the extent of unfairness in network-friendly recommendations with respect
to content producers.

Combining the different notions of fairness, the joint D2D caching-recommendations
problem can be formulated as a content allocation problem in a cyber-physical network of
caches and users with multiple complex constraints concerning: (a) load balancing for the
selection of the UEs for content caching based on the devices’ capabilities (e.g., limited
storage capacity, battery life) and users’ social/behavioral features, such as influence, trust
and willingness to share content, for example, users with large cache memories who are not
willing to share content should not make good candidates for content caching and forwarding
(b) user coverage in content placement, that is, ensuring that every user has access to at least
a specific number of items of high relevance and good streaming quality, (¢) item coverage in
content placement and recommendations, i.e., every content should be recommended to at
least a miminum cardinality set of users with small access/delivery cost (smaller cost when
cached to an edge server close to the user).

These fairness-driven criteria can become much more complex to satisfy in an information-
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diffusion aware setup, where the direct assignment of a content to a specific user can make
it available for consumption to other users with whom he/she is opportunistically or socially
(via the MSN) connected and affect their decision making or even shape their future content

demands as in [I48].
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