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Anayopeletar 1 avtiypagr, anotrixeucn xou dlavour) Tng mopoloas epyaciog, €& ohoxAripou
1) TUARATOC aUTAG, Yiot EUTOEO oxomd. Emtpéneton 1 avatinmor, anodhxeuon xou dlovoun
Y10l OXOTO 1) XEEOOOXOTUNO, EXTOUOEUTIXAG 1) EPELYNTIXAC PUOTE, UTO TNV TpolndleoT vor avo-
(PEPETOL 1) TUNYT| TEOEAEUGTC o Vo dtaTneeitar To ooy pRvuua. Epwthuata mou agopoly 1N
YPNon NS EpYAolag Yo XEEOOOKOTIXG OXOTO TEETEL VoL ameUIUVOVTOL TIPog Tov ouyypeapéa. Ot
amOPELS AL TOL CUUTEQAOUOTA TTIOU TEQLEYOVTUL OE QUTO TO EYYEAUPO EXPEALOLY TOV GUYYPUPE
xou OeV TEETEL VoL epunveudel Tt avTimpoowrelouy Ti¢ enlonueg Yéoelg Tou Edvixod Metodfiou
ITohuteyvelou.



ITeoiAnyn

Tov tehevtalo evdpion yedvo 1 avipwrdtnto doxiudletar and tov COVID-19 (COronaVIrus
Disease of 2019) o onoioc ogeileton otov 16 SARS-CoV-2 (severe acute respiratory syndrome
coronavirus 2) xou urnopel va tpoxaréoel Bopid voonom xon ducAettoupyio apxetmy avlpwrivey
0pYAVWY, UE XATOL0UE amd ToUg acVeVElS TEAX Vo xatadyouy. Topd tn dnulovpylo xon evpeia
xenon Twv euBohiny avd tnv ugHio, dev €yel emteuydel To amapAlTNTO TOGOGTO AVOGiag TOU
TAnduopol MOTE Vo TEPUATIOTEL 1) BlddooT TNg vocou. Amd tnv apyr| TG movonuiog 1 cuyvn
OlEVEQYELXL DAY VWO TIXWY test ot yeydha Turuata Tou TAnduopol SwdpoapatiCel xooploTind
EOAO GTOV TEELOPIOUO TNE OlaoTopds. 207600, ol 800 o dudedopéveg uédodol aviyvevorg,
1 poplox?y uédodog avdhuong xou 1 Toyela aviyveuoTr Tou avTLYOVoU Tou LoU, OmoutolV Yeovo
xot UPNAG (60TOG ATMOTEADYTOG TEOYOTEDN OTNY €CETACT HEYSAWY TANIUCULIOXGY TUNUATODY.
Emunpoociétng, n petodvnon mdavoy xpououdteny o doueg Uyelag Yo Tr OlEVEQYELX TwY test
eumepLEYEL Tov %ivBuvo BlaoTopds Tou . H mapodoa Simhmuatiny epyacta e€etdlet uio dapo-
cetiny| uédodo aviyvevorng tou COVID-19 7 onola Bev xaTavah@VeEL YPOVO %ot TOPOUS Xl OEV
amoutel TN petaxivnon tou e€etalduevou oe xdmota dout| vyeloc. H cuyxexpwévn uédodog ex-
ueToAAeVETOL Tor TAoveEXTAUaTo TNG Minyavixric Mdinone xon cuyxexpuléva Twv MUVEAXTIXOY
Nevpwvixdv Awtionv yio tnv aviyveuorn tou COVID-19 péow apyeionv fyou Briya mtou xoto-
YEAUPOVTUL UE TO UXEOPMVO TOU XIVNTOU TNAEPMVOL TOU YENOTN 1) HECK XUTOLUG OLUdXTUAXTG
epappoyfc. To ev Aoyw opyelo petatpénovion o exdveg xou divovial we elcodog ot xdmota
aEYLTEXTOVIXH LUVEAXTIXGY Neupomvix®yv Axtinmy 1 omolo exmoudeletor yior TV Tadlvounon
toug oe COVID-19 xou 6yt COVID-19.

Mo ané Tic Poaocindtepeg npoxirioeg tng aviyvevong tou COVID-19 pyéow fywv Briya €yxeiton
07O YEYOVOS OTL 0 Briyog amotehel clunTOU Yo TANUOEN LTEX®Y TAdRCEWY Un OYETXOY
ue tov COVID-19. Emniéov, ta dldéotua olvola Bedouévwy dev elvol 1GoppoTnuéva, UE Ta
oelypata tou COVID-19 va elvon onuovtind Avydtepa and to unoroima. Toutdypova, to cOvola
oedouévey eivor crowd-sourced, Snhady) o xdie yprotne nyoyeapel Eva delyua By o xdmoia
eQappoYY) dnAwvovtag €dv vooel 1) oyt and COVID-19. Qotdoo, 1 yeron tEétowou eldoug de-
OOMEVWY GE GUVBUNCUO Ue TNV TdavotnTa un opdric OHAWONG OYETIXd Ye TN vOomon 1| Oyt Tou
yefotn ané COVID-19, xadotodv 10 GUYXEXPIUEVO TEOBATUO AmalTnTXO, UE Tal OElYUOTA TTOU
ToEEYovToL Vo elvor Tdovdg NyNnTnd apyelar YaUNAAS TOOTNTAC, EVE TAUTOYPOVA 1) TATPOPoRid
OYETXA PE TO €QV 0 Yehotng elvan Yetixdg otov COVID-19 e umopel va emPefonwiel. T
auTO TOV AOYO dnutovpyelton 1 avdyxn BlEEElVNOTNG DlaPOEWY HEYODWY, UEYLTEXTOVIXMY XAl GU-
VOAOY 0ed0UEVKY. Tt Ty enthuon tou TpofAfuatog epupudo TXE 1 UEVOBOE BLUC TUHVEOVUUEVNC
emxpwong xou ouyxexptuévo wior 5-fold cross validation npocéyyion, Soxudlovtag dopope-
TIX0UE GUVOUAOUOUEC GUVORGWY DEBOUEVMLY o apyLTeEXTOVIX®Y. ['tot TNV e&dheudn Twv apvnTxdy
EMUTTOOEWY TNG AVICOPEOTEAG TWY OEBOUEVWY EQUEUOCTAXE 1) PéYodog cuRhOYIXAS Hdinong,
ensemble learning, n omola cuvdudlel Tic TEOBAEDEIC HOVTENDY EXTIAUBEVUEVWY UE BLUPORETIXG.
UTOGUYOAX EVOS GUVOROUL BEGOUEVWY. Aedouévou 6Tt ot apyttextovixéc Bahde Mdinong amou-
100V UeYdho A0 SedouEvwY eEETACTNXE 1) EXTUUBEVUCT| TOUC UE TOMNATASL SLUPOPETING GUVORX
0edOPEVWY, TO OTIOl0 TIPOGEPEPE Xo To LYNAGTERY amoTEAEOUATY, UE TNV axpifBeiar Tou povTélou
Vo pTAvEL TO 71.60%. To amoteréopato auTd EmBELordvVouY TN BUVUTOTNTA vy VEUCTC TOU
COVID-19 péow apyciwy fAyou Briye, emBeformvoviag TauTtdypova T duvatoTnTa Yenong tng
Mrnyovixic Mddnong v tnv aviyveuorn xon dAAGY aoVEVELDY TOU aVUTVEUCTIXOU GUO THUO-
TOG, YEYOVOC ToU Yol UTOPOUGE VoL DLUdEUUATIOEL XATUAUTIXG POAO GTNY Ty UTERY UVTYIETWTLON
HEAAOVTIXGV TOVONULOV.

Aé€erc KXelda

Aviyvevon tou COVID-19, Tolwounon Biijya, Badid Mnyovixy Mdinon, Avdivon Hyov,
Avéduon Ewodvag, Yuvehuxd Nevpwvixd Aixtuo, XLulloywd; Mddnon, Ipo-exmoudeuuéva
uovtéha, Mnyovixr) Mdéidnor, [lovonuio.






Abstract

COVID-19 (COronaVIrus Disease of 2019), caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), has been challenging humanity for the past one and a half
year. It can cause severe illness and dysfunction in multiple human organs, with many
patients finally passing away. Although vaccines have been released and are widely used
around the globe, the essential amount of immunity in order for the COVID-19 transmis-
sion between people to terminate, has not been reached yet. Ever since the beginning of
this pandemic, the frequent testing of large portions of the population played a determi-
nant role in the containment of the spread. However, the two widely used testing methods,
Nucleic Acid Amplification Tests (NAATs) and antigen tests are time and fund consuming,
obstructing the screening process of large groups of people. Moreover, the transmission of
possible cases to health structures involves the risk of contaminating both the personnel
and the rest of the patients. The current thesis examines a different screening method,
which is both time and cost efficient and does not require the transportation of individu-
als to health facilities. The method used, leverages the success of Machine Learning and
especially Convolutional Neural Networks (CNNs) for the detection of COVID-19 through
cough samples recorded by the mobile phone of the user or a web application. The cough
samples collected are converted to images and fed into a CNN architecture which is trained
to classify them between COVID-19 and non-COVID-19.

One of the main challenges of COVID-19 cough classification lies in the fact that cough
is a symptom of multiple non-COVID-19 related medical conditions. Moreover, the high
imbalance of the available datasets, with the COVID-19 samples being significantly less
than the non-COVID-19 samples and the fact that the datasets are crowd-sourced, are two
important factors making the current task demanding. That is due to the entailed difficulty
of using non clean data, with a ground truth based on the declarations of the users. More
specifically, the samples provided by each user may contain sounds of low quality, while
the validity of the information relative to the user being positive or negative to COVID-
19 cannot be confirmed. To that end, different methods, architectures and datasets were
examined. A 5-fold cross validation approach was used examining different combinations
of datasets and architectures. In order to deal with the imbalanced nature of the data, an
ensemble learning method was implemented. Since Deep Learning architectures are data
"hungry", training them with multiple datasets was also examined, providing the highest
classification results with an accuracy of 71.60%. The obtained results certify the ability
of detecting COVID-19 infection through cough sounds, but more importantly the ability
of using Machine Learning for the diagnosis of respiratory diseases. This could play a
determining role in the quicker containment of future pandemics.

Keywords

COVID-19 Screening, Cough Classification, Deep Learning, Audio Analysis, Image Analy-
sis, Convolutional Neural Networks (CNNs), Ensemble Learning, Pre-trained Models, Ma-
chine Learning, Pandemics.
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Ertetapévn llepiAnyn

COVID-19

Tov teheutaio evduion ypdvo ohdxhnen 1 veniiog eyel €plel avTétwnn ye plo PETUBOTIXN
acVévern, Ty COVID-19 (COronaVIrus Disease of 2019), n onola ogetheton otov 16 SARS-
CoV-2 o Yo avapépeton xan wg Covid yio Adyoug euxohlac. Méypol T oTiywr) Tng oLYYEUpnc
€youv xatarypopel 225.680.357 emPBeBarwuéva xpolouata xou 4.644.740 Vdvatol, clupwvo ue
tov [ayxdouo Opyavioud YTyelag (IIOT) [1]. O npidrog Hdvatog avagpépdnxe otic 11 Tavova-
olou 2020 xar 0 SARS-CoV-2 avoxmpiydnxe oe navonuio and tov IIOT otig 11 Moptiou 2020

2].

Ou meploobTeEpOL amd TOUC HOAUGHEVOUS amtd TOV L& avlp®ToUS avTHIETOTILouY Yo 1) UéTeLa
OVOTVEUG TIXT) VOOT|OT) X0l AVUEEOVOLY Ywelc va yeetaotoly x| Yepaneio. (2otéc0, Tohol
popelc Tou 10V uTopel Vo voorioouv cofapd xou va ypeewo o0y wtey| tepidoidm. Tlapdio mou
TOL GTOUN UE UTIOXELUEVO YOO UOTA, OTIG YPOVIES UVITVEUC TWES TN OELS, XOEOLOYYELUXES TTo-
Ufoelg, SwBhTn o xapxivo, xodmg xon oL Auawuévol, elvon ETEETEl oTNY avdmTuln coBapny
CUUTTWUAT®Y, dTouo amd xdie nhuaxt) oudda utopel va vooricouy colapd ¥ xou var Teddvouy.

Meédodot petddoonc

H petddoon tou COVID-19 umopet vo yivel ye mouxiloug tpomouc. dotdco, 1 xOeta uédodog
0Ldd00Ng TOL Elvol UEGK GTAYOVIDIWY TOU EXXEIVOVTOL OO T1 OTOUATIXY) XUk T1) PWVIXY| XOLAOTT-
Toe ToU aoVEVOUC xoi peTABIdoVTUL XUplwg YEow TNG opAlag, Tng avamvorg, Tou Briyo xou Tou
gptepviopatoc. H pdbhuvern mporyuatonoleiton UEGK TG EIGTVOTG LOAUCUEVKDY GTUYOVLBIWY 1| G-
HoTdlwY 1) MECW TNG AUECNC ETAUPNS TOUG UE TAL MATLAL XAk T1) G TOUOTIXY| XAl PLVIXT) XOLAOTNTOL EVOC
atopou. O 16¢ petadideton Yetald avipwnwy mou Beloxovtal o XoVTv Enagy|, o andcTaoT
nepinou evég petpou. Iopdha awtd, Tor GToryOVIOLL TOU LOU UTOPOUY VoL HETAPEQVOUY XL OF |UE-
YOUAOTEPES ATMOC TUOELS OF TEPLTTWOELS CUVWO TIOUOU 1] ECWTERIXMY YOPWY Y0l XaAd agploud.
Auté ouyfaivel B16TL oL AvipwToL TEVOLY Vo TUPUUEVOLY Yid LEYAADTEQO YEOVIXO BLAC TN OF
TETOLOUG Y(WPEOUS, TEOXUAWVTAS TNV TUPUUOVY] TV LOAUCUEVKY COUTIOWY 0TV ATUOCHIUEY
yio ueYoAUTERN Yeoviny| OwWpexeta. H Euueom emagpn pe tov 16 umopel enlong va mpoxahéoel
HOAuvVoT 1 oTtola TEUYUUTOTOLELTAL UTd LOAUCUEVA OV TIXELPEVH ToL OTtolo €Y OVTUL OE ETAQPN UE
TO OTOUY, TN MOTN 1) To YdTLoL LnpovTind efval xou To YEYOVOS OTL 0 LO¢ unopel vor yetadovel
xou amd dropa T omota 8ev eppavilouy cuumtopata. Ta polvouéva droya telvouy va eivon o
HETUO0TIXE AYO TEWV EUQUVICOUY GUUTTMUATY, EVE GGOL YOGOUY Buptd Umopoly Vo UETABMGOLY
TOV 16 Yo UEYOADTERO Ypovixd Btdotnua [3].



LUUTTOUOTA X0l LOXQOYPOVIEC ETUTTWOELS

To mo cuvnhouéva ouuntouoate Tou COVID-19 nepthaufBdvouy mupetod, Enpd Briya, xolpoon,
Elkeun yelong 1 6ogenong, eve xdmola AYOTECO LY VA EiVaL O TOVOXEPUNOG, O TOVORUIOG
1 Sudppota xou ot tovol. H cofopr| voonor cuvodeleton and CUUTTOUNTA OTwS duoxolla oTny
avamvor| 1 duomvola, Tovog 1| ieon oto otidog, anwAcio opatag 1) xivnong. To cuuntouoTa
epgaviCovtan 2-14 nuépeg PETE TNV T UE TOV L& xal xaTd PEGO bpo TEpiTou oTIC H-6 NuépeC.
Trdpyouy TEQITTHOOEIC OTOV ToL CUUTTOUAT DlATNEoVVTAL Yid TEQLOCOTERO and 3 €B00UAOES,
T600 ot dToua Tou voonoay Bupld 600 xou ot dtoua pe o cupntopata. Hapdio mou ta mo
oLV U1 CUUTTOUATO TOU TUEUUEVOLY YIaL UEYAAO YPOVIXG BIAC TN Elvart 1) X0UEAGT), 1) BUCTVOLY
X0l Ol TTOVOL, O XOPWVOLOS UTopel Vo Tpoxahéoel BuoAeltoupyia ot Bidpopa LwTixd Gpyave OTWS
TNV X0EdLd, ToUC TVEUHOVES Xau Tov eyxépaio [4], [5], [6].

Mérpa mpoAndne xou Tpoctactog

Kdmowo amd tor onuovtixdtepa pétpa npootaciog xatd tou COVID-19 cuvolilovtar axohotdwe:

* Trenon anoctdocwy. H trpnon andotacng UeyollTepnc Tou EVOC UETEOU, TOCO Ao
droua mou eupavilouvy THAVE CUUTTOUATA XOPWVOIOD, OGO X0 ATO PUVOUEVIXE UYLH
dropo (miovol acuuntwuatixol Gopeic)

* H ypron npoctateutiny|g tpin|g UEoXaG OE TEQLTTMOOELS OTOU 1) THENOT) TV ATAUpA{TNTWY
ATOCTACEWY OEV Elvol EPIXTY, AAAL XAl OF ECMTEPLXOUS YOPEOUC.

* H amoguyr| cuvwoTiopol, TopaTeTUUEVNG ETAPHAG UE AN ATOU XAl OAVETOEXMS AEQLLOYE-
VOV ECWTEQUMY YOPWV.

* O Toxminde xodoploddc TRV YEQPUOY UE CATOUVL XaL VERO 1) UE OAXOOAOUY O OVTIONTTIXG
OtaAbuoTaL.

* O eyPohaoudec. O eyPolacude amotehel To povadixd LoyUEd UECO TEPLOPLOUOY TNG Ola-
OTORAS TOU 100 X0l TOV OLaPOpwY UETUARIEEWY TOL.

ITépa amd Tor Tpocwmixd Yetpa TpocTactag mou uropel va AdBel To xdie drtouo, ol xufepvrioeig
avd TOV xOGUO, EYOLY EQUEUOCEL TANIMEN HETEMY Yo TOV TEQLOPLOUO TNG BLUCTIORAS GTNY XOL-
voTNTaL DTNV oy 1) TNE Tavdnuiog ot teplocbTepES xUPEpV|oELC egdppocay xadolxd lockdowns
VIO TEANOVTAS TIG TEQLOGOTERES DPUOC TNELOTNTES, TOCO OE ECWTEPLXOUC OCO XAl OF

eEnTEPUOUE YWEOLSG. AN TEOCTATEUTIXG PETEO TOU EQPUPUOC TNXAY v BLUC TAUNTA ATOTE-
AoV UETAED GAAGY 1) amary OREUCT) XUXAOPORIAS XoTd TG BEadtvES 1) Xall ATOYEVUTIVES WPES,
1 OOy OPEVCT) UETOXIVIONG OO VOIS OE VOUO, 1) amopaiTnTn emSeln apvnTixol anoTehéoua-
TOG OLY VWO TV EEETACEWY 1| TOTOTONTXXO) €UBOAAGUOD YIoL TN CUUMETOY Y| OF OLAPOPES



OPAUC TNELOTNTES X0 1) UTOYREWTIXY| YPHOT UAOXIG O EOWTERLXOLUS ywpeous. Emmiéov, n ano-
HOVWOT XPOUOUATMY X0l 1) AV VEUGT) TWV ETOPOY TOUS EQUOUOLETOL amd TOUS dpUOBLOUS POpES
¢ exdotoTe xUPBEpvnong and Ty opyn TN movonuiog, dwadpauatiCovtag onuavtind pdlo oTov
TEQLOPLOUO TG,

Hpohndn xon Yepamela

Hopohn tny mAndoea Yepaneutindy pedodny mou €youv @upuocTel and Tig apyE€g TNG Tovor-
ulag, dev eyel Poedel axoua cuyxexpiuévn Yepamela Yo T0 x0pwvoid. (26T0C0, ATOTEAECUTIXS
euPoAia oL BNUOLEYAUNXAY OO TNV ETUC TAHOVIXT XOWOTNTA X TAEovV Peloxovton ot eupela
XUXAOQORLa, GUVBEGUOUY XUTOALTIXG GTNY €£000 amd TNV Tavonulo.

To mpchto palind mpdypauua eyBoiiacuol Eextvnoe 1o Aexéufoelo Tou 2020 xou u€ypl Tipa €yt
epPohactel To 42.41% touv Thnduouol Tou Thavrtn pe Touldytotov pio 860, ue to 30.25% va
etvon TAApwS epPollacuévo (7).

Médodol aviyveuonc

H aviyveuon 660 10 BuvaTdY TEPLOGOTERMY XPOLCUATLY X0pwVOoiol elivan xadoplotixnc onuaciog
yioe Ty taryeto €€odo amd Ty movonuia. O dvo mo SLadedoPEVoL TEOTOL BLdy VoS Tou Lol efval 1
uoplaxr) u€dodog avdhuong xou 1) Taryelor aviyveuor Tou avtiyévou tou tov. Ot dvo autéc uédodot
YENOWOTOOUVTAL Yol T Oy Veor TEEYOUCUS UOAUVOTNE amd TOV O Xl TEUYUATOTOL00VTOL
ouMéyovtac defypata omd T pvixt| fi/xon otopatixr xothdtnto Tou acdevoic. ‘Ooov agopd
TOL TECT AVTLYOVOU, UTH UTopoly Vo TparyUatotoindoly 1660 Ge epYaoTNELIXES BouES, OGO %ot
ond tov (Bto tov acevi|, To emovopaloueva "self-tests", ue ta anotedéoparta vo eivor Stardéotua
evtog 15-30 Aemtwv. Iopdro mou autd ta xahotd plar apxeTd eUxohn xou yeryopen uédodo
otdyvewone tou COVID-19, elvar neplocdtepo emppeny| oTn U aviy VeuoT Tou 100 GE HOAUCUEVO
acVeVY| cUYXELTIXS UE TN poploxh] LEV0BO avdALOTG TOU OTIEVLYL ETLOTEEPEL AoVIAOUEVA RV TIXO
amotéleoyo (8], [9)].

Kivnteo tn¢ dimhwuatixrc

Kotd tn didpxeta tne movdonuiog 1o custhAuata Uyelog TOAAGY Yop®y dEYTNXay avuTERBAN-
TEC TUECELS, ME TO UYELOVOUIXO TROCWTIXO Vo XaTo3dAAeL unepdvipnnee mpoomdieeg. Autod
(o Td TNV LY VNAETNOT X TNV AMOPOVKGOT TavOY XeououdTev, Véuo ullotng onuaciag.
Emunpociétng, xovolpleg YETUAAGEES TOU 100 TOV X0 TOUY TO UETAOOTING, BUCYEQUVOVTOC
NV TpooTdUEld anoTEOTAG VEWY xUUdTWY TN Tovdnulag. H duvatdtrta xadnuepvol ehéyyou
HEYdAoL pépoug Tou TANYucuo) o Wovixd ohdxANEou Tou TANYuoUOL plag YOEaS, Yo UTopo-
Uoe va amodetyVel mopdyovtog xatoAuTixAg onuaciog yio TNy €€odo and Ty mavonuio. ‘Omwe



TEOUVAPEQUNXE, HEYEL OTLYUAC BLO EIBT) DLty VWO TGV TECT YENOWOTO0VTAL EUPERG. (26T6G0,
1 Slelorywyr) ueydhou apripol TETolwy TeoT elvan ypovoBopa xat oxetfr. AlagopeTinég uédodot
Mryovinic Mdinong €youv telel oe epapuoyt|, ue otéyo v eniiuor Tou mpoavapep¥éviog
npoBhiuaroc [10], [11], [12], [13].

H ouveyrc adinon tng mocotntag xon tou €doug Twv Sladéotuny Sedouévwy Ue TNV Tdpodo
WV YeOVwY, 0dAynoe otny evpela yeron e Mnyavixrie Mdinong oe didpopeg mTuyég Tng
XU NUEEVOTNTOG, XIS ot o€ CNTAUNTH OYETXE UE TNV UYELaL.

‘Ocov agopd tov meplopioud tou COVID-19, 1 egapuoyy| uedddwy Mrnyovixric Mddnong €xyel
eletaotel oe Bddog. O axtvoypapicg xou ol a&ovixég Touoypapiec Vopaxog yenoonololvTo
ELUPEWS ATO TOUG EWOXOUE Yol TNV aviyVELUGT) TOU oV, xoig PECE aUTGY YivovTon gupovy| T
YOEaXTNELOTIXG oy Blapoporotoy éva acvevi| e COVID-19 and évav aclevr pe xdmolov
d\ho tomo mveupoviac [10], [14], [15], [16], [17], [18], [19], [20], [21], [11]. Emniéov, unopel
va mpofhegiel n coPapdTnTa TNG voonong xat 1 avdyxrn elcaywyng ot Movdda Evtatidg
Ocpaneioc (MEO) [22], [23], [24], [25].

Hapdhn tnv axpBeta Ty mpoavapepdéviny uedddwyv otny aviyveuorn tou COVID-19, anatodv
N QUOXT| TaEoucia ToL acUeVH| 1) Tou THaVO) XEOVOUATOC GE XAmoto Bopn) UYELNS WOTE VoL UTto-
eéoel va deloy Vel 1 exdotote e€étaon. Extoc and tov anartoluevo ypdvo xou Ty mpocTdieia
Tou TEENEL Vo xaTaBAnUel yia Tn Bievépyeta TEToou EldoUg ECETACEWY, Elval GMUOVTIXT XoL 1)
ATOQLYT| BLIOTIORAS TOL 100 UECL ETAPROY EVOE TIAVOU %poUOUATOC TOCO UE TO UYELOVOUIXO
TEOCKTUIXG TNE BOUNE, 600 Xou PE Toug uTdhoitoug acevelc. Emmiéov, de umopel va Yewpniet
OEDOMEVN 1) BUVITOTNTA OAWY TV XPUTMY VoL TOREYOUY GTOUS TOALTEC TOUE To amopaitnTo TAHYoC
OLY VWO TV EEETAOEWY, 0UTE XAl TO YEYOVOS OTL 0 xdle ToAlTng €yel Tn duvatdTNTo €0XO-
ANG xou dueong mpodoPacng oe mopoyég vyetag. Kotd cuvenea, pla toyelor xan dwpeedv uédodog
aviyveuong tou o0, 1 omola Yo elvor dtard€oiun o OAOUS UECK LAG EQUOUOYYIS, DLUDXTUAXTC
1) 070 xwNTd TNAEQPWVO, Yo umopolioe va dadpauatioet xooplo Tid POAO GTOV TEQLOPLOUS TNG
Tovonuiag.

Bihoypoagunr| avooxomnon

Lopgwva e €peuveg mou €youv mpayuatortomndel, o COVID-19 unopel va aviyveuldel péow twv
ovamveLo TV Aywv. Ta teheutaio ypodvia €yel xataypopel alldhoyn Tedodog oTNY aviyveuon
OVATVELO TV THIHOEWY PECK TETOWWY Nywv. Kdmoeg and Tic yedddoug mou egapuolovion
ETUXEVTPOVOVTAL GTNY ECAYWYT] YOUQOXTNELO TIXWY AT ToL My NTXE SelypoTa, €V O GAReC yiveTon
UETUTEOTY| TOU 10U GE EXOVIL ACLOTIOLOVTOS TNV UTOTEAECUATIXOTNTO TV MUVEAXTXOY Neu-
eV Axtiny otny Tadvounorn emodvey. TIandopa yeketov €yetl tporyuatonoiniel oyetixd
UE TNV OTEXOVIOT TOU HYOU WS EXOVO X0l Ol PETooYNUaTiopol mou €youy peretniel yetald
Ay Tepthopfdvouy toug e€nc: aopotoypapruata o xhigaxa mel ¥ Mel-spectrograms,
Continuous Wavelet Transform (CWT), Short Time Fourier Transform (STFT), Mel Fre-
quency Cepstral Coefficient (MFCC), Constant Q-Transform (CQT) ot Hybrid Constant



Q-Transform (HCQT) [26], [27], [28], [29], [30], [31], [32], [33], [34], [35]. ‘Ocov agopd o O
OLYXEXPLEVO TEOPBATUO TNE TaEvVOUNonS Ny wv Brya, Sldgopec TeooeYYIoES €Y0UV TaPOUGCLa-
otel Ye TOAEC amd aUTEC VoL ETAEYOUV T1) UETUTEOTY| TOU 1)Y0OU OE ExOVaA yia TNy adlomolnon
TV DUVEAX TGV Neupmvix®dv Aixtiwy xot Twv VPNAGY ETBOCEWMY TOU UTOEOLY VoL ETULTUYOUV.
Tétow tpoPAfjuarta tepthoau3dvouy 1660 TNy aviyveuon Mywy Brya avdueca o dhhoug Tepybol-
AoVTXOUE H0ug, 660 xou TNV Tadvounon fywy Briya oe didpopec xatnyopieg mou oyetilovto
ue avamveuo Tixég Tadnoelg. O UETAoYNUATIOUOS TV YWV Briyo O EXOVHL OTIC TEQITTMOOELS
yefone Xuvehxtixwy Nevpwvixev Atiwy, €yel mpaypoatonondel e didpopous TeoTOUS Ot
omofot cuunepthaufBdvouy Yetall dAiwy toug STFT, Mel-spectrograms, MFCC xo RASTA-PLP
[36], [37], [38], [39], [40], [41], [42], [43], [44]. H anoxtnieion yvdon oyetxd Ue Tn UETUTRPOTH
TOU 1Y0U OF EXOVOL X0k PE TNV aviyveuoT) xon Ta&vounon fywv Briya, €xel epuplooTel yior
oudyvewon tou COVID-19. H mieiomeplo twv pedodnmv expetodiedeton TNy emtuyio Twv Muve-
XTIV Nevpwvixey Axtiny xaL Tng UETAQopds Hdinomg, YenoULoTOLOVTISC TROEXTUOEUNEVA
Bodid Nevpwvixd Aixtuo. XTIC TEQIGOOTEPES TEQITTMOOELS Y PNOLOTOLOUVTOL H6OVO opyEiol iy ou
Briya, eV UTEEYOLY EPELVES GTIC OTIOLES BOXIUAG TNXE EMTALOV 1) Y10 oy ElwV Y)ou avamvong
xa otAlog, amodEYOOVTOG OTL X0 AUTOL OL YOl TIEPLEYOUY UEXETTH) TANEOYOPLN CYETIXN UE TOV
16 [12], [45], [46], [47], [48], [49], [13], [50], [51].

2LTOYOC TNC OLTAWUTIXAC €pYaoioC

Y16y0¢ Tng Tapovcag dimhwuatxhc epyaotaug etvar 1 tapousioon plag uedddou aviyveuong tou
COVID-19, avoibovtag apyelor fiyou Brya xou yenowonowwvtag povieha Botide Mnyovixhc
Mérinone.

Hymrind Xruorta

O 7yoc onuovpyeiton amd TN BaTdpaln TwWV cwUATISIWY evog péoou Buddoorg, OTwe elvat o
afpoc. H Satdpaln tov coyatdioy yetapépetal, puéow Tou pécou B1ddoong, amd Tov To-
um6 oTov 6éxtrn. Tmdpyouv BLaPopa YoPUXTNEIC TIXE TOU 1YOU Ta OTold TPOCPEPOLY YPNOUIES
TANEOQYOPIEC Yol TO EXACTOTE OYUo. XTNV ToEoUCH DIMAWUATIXY epyacio yenoiuorot dnxay
YAEUXTNELOTIXE TOU GLVBLALOLY To TEd{o Tou YEdVoL xal TG ouyvotntag. H mieiodmelo au-
OV TV yapoxtnelo Tixwy Bactleton otov STFT xou 1 anewdvion Toug wg eixdvo ovoudleTo
paopotoyedenua. Ot ToOTOL ATEOVIONS TOU Y 0U OE EOVA TIOL YeNotuoTolUNXay eivol ovo-
wootd ot e€rc: Short Time Fourier Transform, Mel Spectrograms, Constant-Q Transform
xaor Hybrid Constant-Q Transform .



My ovind) Mddnon

H Mnyoviey Ménon mpoomodel vor pundel Tov 1pémo Aettoupylag Tou avlpdmvou eYXEPIAoU,
0 0mol0¢ UTOTEAELTAL UG VEVPOVES TOU ETXOW®VOUY UETAEY TOUC UE GTOYO TN UETABOCT TNG
TAneogopiac. Me ouolo 1pomo, évar Nevpwvind Aixtuo amoteheiton omd VEVPGVES oL omoiot
ETUXOWVWVOUY YETUED TOUG, UE OTOYO TNY AMOXTNON YVOOTS Yo TNV ENtAucT xdmotou TeoBAruo-
t0¢. To mpwta otddlar Twv Nevpwvixwy Awtiwy tpocdlopilovton T dexaetio Tou 1940, dmou
TOEOUCLAC TNXE TO TEWTO UTOAOYLOTIXO UOVTEAO €VOC Veupmva. Kdmolo amd ta onuavtixdtepa
onueto-otaduol yio TNV avdnTun Tou €V AGYW Topgd avapépovTon oTov Tivaxa 1.

Avtxelyevo Xpovoloyla | Yuyypageic

Ewoaywyr oo veupwvixd dixtua 1943 McCulloch and Pitts [52]
Hopovotaor tou perceptron 1959 Rosenblatt [53]
Hopousioon tou "Adaline” 1960 Widrow and Hoff [54]
Modnuatixée amodeilelg yio T perceptrons 1969 Minsky and Papert [55]
Avto-opyavoiuevol ydptec (SOM) 1982 Kohonen [56]

Aixtua Hopfield 1982 Hopfield [57]

Ewaywyr oto CNNs 1989 LeCun et al. [58]

To xahOtepo amoteéopota 6To Slorywvioudé ILSVRC2012 | 2012 Krizhevsky et al. [59]

[Tivaxag 1: H e&éMén tne teyvnthc vonuooivng

H cuveynic adinomn tng mocotnTag Tmv SLtEctuwy SEGOUEVKY TUREYEL TN BUVATOTNTO ONULOUE-
Yiog xou exnaideuong povterwy Mnyavixrc Mddnong yio tnv unootiplen g AMng aropdocewy
ttpixol mepleyopévou. Iho cuyxexpiéva, éva povtého Mnyoavixric Mddnong to omolo Yo Eyel
EXTOUOEVTEL O TEPACTIO GYXO BEBOUEVWY, ONUAVTIXG TEplocdTEPA amd auTd Ue Tor omolo Yo
EpYOTAV OF ETOPT EVOC ETUC TAULOVOS XOUTA T1) OLIEXEL TNG XUPLEQPAS TOU, UTOREL VoL X3veL Tpo-
Bréeic oL omoleg Bev emnpedlovTon amd e€wYEVElS TopdyovTeg Tou Yo utopoloay Vo ETNEEICOLY
evay dvipwno. Emouéveg, tétota povtéha Mnyovixric Mdnong urnopolv va yenoiuonolobvto
UTOG TNELXTIXG Y1t TN APT) ATOPACEWY LTEXAS PUOEWS XAl TN UELWGT] TOU BLory VOO o) GQdh-
HOTOC GTO EALYLOTO.

YUVEMXTIHA Nsupwvmd Alxtua

To Luvehutind Nevpwvixd Alxtua amoteholy éva ToAD onuavtind tufua tne Teyvntric Non-
noouvng xar g Mnyavinric Mddnong. Xenowonowolvton eupéwe ot mpofAfuata Takvounong
EMOVWY xou EQapuolouy Ty emPBAenouevn udinon. H ewdomolde dapopd toug amd tar undrotna
elon Nevpwvindyv Autdwy €yxeiton 0To YEYovog OTL BEyovTaL EIXOVES WS £l00B0 o £QupU6LouY
o€ AUTEC TNV TEAEN TG CUVEAENC UE xdmoto pikteo. H cuvéh&n evdc muphva w yeyédoug m xn
ue plo ewodva f(z,y) divetaw amd tov toNo:



a b

(w*f)(x,y): Z Zw(s,t)f(x—s,y—t) (1)

s=—a s=—b

20voha AeOOUEVLY

Yy mopodoo Simhwpatiny| epyacio yenotdomotunxay tela dlopopeTnd cOvola BEBOUEVLY, 1
X0 UTOGUVORN TOUC, OTWE TTAUPOLGLELOVTOL 0XONOUIWE ETLYPOUUATIXG:

* YUvoho bedopévmv tou Cambridge
* YOvoho 6edopévwy COUGHVID

* Y0volo dedopévwy Tou Coswara

To alvoho dedouévwy tou Cambridge mepiéyet apyela By xon avamvoric t6oo and Lyl dtoua,
660 xou amé dropa polucuéva and Tov COVID-19. Xenowonoudnxay uévo o dtodéctua apyeia
By, ex twv omolwy to 31.0% (124 delyyoata) avixer o yeHoTES Blay VWOUEVOUS UE TOV L, EVEO
0 undrotno 69.0% (276 Selyparta) avixer oe vylelc yproTec.

Avapopxd ue to obvoro dedouévwy COUGHVID, autd cuvolind mepiéyel 27,550 apyeta vyou,
ex Twv omolwv uovo ta 15,125 delypota mepleyouv apyelo Briya, Aoyw xoxhc ToldTnTaC TEpLE-
YOUEVOL OE XdmoLa amd To Ny oyeapnueva detypota. IIAnpogoplec oyetind pe Tov av o yerotng
eyl 1) 0ev €xel pohuviel amd To 16 divovton povo ota 10,819 apyeia, ta omolo amoterody xou Ta
detyuarto Tou pmopolv va yenoyloromdoly 6o ev Aoyw TedBAnue. Ané to cbvoro twv 10,819
derypdtwy, 699 (6.46%) avixouv ot yeHoTeS oL SNAGVoUY OTL €youy uokuviel omd tov 16, Ue
o umohona 10,120 Betyparta (93.54%) vor avixouy oe vyeic yeRotec. Emniéov, 2,804 apyeio
ex Twv 15,125 mou mepiéyouv Briya, éyouv eletactel xan Tadvouniel and ewixols we TEOg TN
HOAUVOT) 1) Oyl TOL YENOTN UTO TOV LO. XE AUTO TO UTOCUVOAO TwV BEBOPEVWY, 553 delyuota
(19.72%) avixouv ot yprotec mou €youv wohuviel amd tov 16, eved o undhowra 2,251 (80.28%)
aviprouv ot uytelc yprotee. o v enthuon Tou TEofAfuaTog BoXPdGTNXE TOGO TO GUVORIXO
TAY0C TV apyElwY, OGO XaL TO TUAUN TWV BELYUATWY Tou €Youy e€eTac TEl Amd XATOLOV ELOLXO.

‘Ocov agopd to chvolo dedopévwy tou Coswara, auTtod TEPLEYEL EVVEN OLUPORETIXOUE OVUTVEU-
o T00C H)YOUS, EX TMV OTOIWY YENOLHOTOLVVTOL HOVO oL 8U0 Tou Teptéyouy fyous Brya (cough
heavy, cough shallow). H xotavopr; twv derypdtwy ond yenotec ue COVID-19 xou vyteic
Yefotee elvon oyedoy Bl oo 600 UTOGUVOAA, UE TO TE®TO Vo Teptéyel 1,438 delypota omod
vyteic yerotee (93.32%) xon 103 and dropa pe xopwvoid (6,68%), eved to deltepo meptéyet
1436 detypara and vyl dropa (93.31%) xou 103 and yperotec pe xopwvoid (6.69%).



Apyrtextovinég Luvextixmyv Nevpwvixov Axtimy Tou yenotdoTol-

Umeo

Anuovpyhinxay xon SoxyddoTrnxay Telo Uixed cUVEAXTIXG ixTud, 1) BopT TwWV OTolwY TaUPOU-
owdleton ota oyfuata 1 - 3. Emmiéov, Soxiudotnxoay xar 101 UTHEYOVTA TEO-EXTOUSEVUEVY
Hovtéla oto cUvolo Oedouévewy tou ImageNet, to omolo ovopacTxd eivon ta: ResNet-50,
DenseNet-201 xot Xception.
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Input
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1x1 output
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Médoodol Tou EQOOUOCTIHAY

Egapuéotnxay teeig dagopetinéc uédodol yio Ty entluon tou TeoPfAfuaTtog aviyveuong tou
COVID-19 ané apycta viyou Briya.

Yy mp®1r, T0 eXJOTOTE YOVTEAD eXToUdEVETAL OE Eval amd To Blardéaiuo GUVOA BEBOUEVWY
epappolovtag T pédodo duc Taupoluevng emxbpwone. Tao dedouéva ywpeilovtow oe 5 TUAUo-
ToL UE TO xodéval ex TwV omolwv vo arotelel axpBag pla popd To GUVOho allohbYNOTG (test
set), eve To undlotma 4 Turuato amoaptiCouy T oUVoha eXTA(BEUCTG XaL ETIXVPWONG UE TO
TEMOTO VoL AmOTEAE(TOL oo 3 TUAMATA TOU GUVOAOU TKV BEBOUEVGY Xt T delTepo amod 1. Kotd
TNV exnaidevon TwY HoVTEA®Y e@oapudoTnxe xou 1 pédodoc Synthetic Minority Oversampling
Technique (SMOTE) yto v xatanoAéunon tou tpofAnuatoc EAAeUYnE BeBopévey amd yeHoTes
UE x0pwVold. O TpdToC BlaryweloUo) TV BEBOPEVLY TaEOVCLALETUL GTO oY 4.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 2 Fold 3 Fold 4 Fold 5 - Split 1
Fold 1 Fold 3 Fold 5 Fold 4 - Split 2
Fold 1 Fold 4 Fold 5 Fold 2 - Split 3
Fold 2 Fold 3 Fold 5 Fold 1 - Split 4
Fold 1 Fold 2 Fold 4 Fold 3 - Split 5
Train Set Validation Test Set
Set

Yyua 4: Topoustaon tne pedoddou dlaotawpoluevng emxdpwong

Y oeltepn pédodo epupudleTton 1 TEYVIXY TNG OLAROYIX G Uddnong, ue otdyo tnv e€dieudn
TV OPYNTIXWY CUVETELDY TNG OVIOOPEOTIAS TGV BEBOUEVKY OTO AMOTEAECUATA TNG TOEVOUNOTS.
H {Suo apyitextovinr exnandeleton 500 1) TEGOEPLS PORES, AVIAOY A UE TO YPTOULOTOLOUUEVO GUVO-
A0 BEBOPEVKY %O TO TOGOGTO BELYUATWY TOU avAXoLV GE XAl piot €x Twv 5V0 xAdoewy, covid
xou Oyl-covid, e SapopeTtind unocivoha derypdtony. To tehixd anotéhecya anotehel cUVOUO-
oU6 TV TEOBAEDENMY TwV HOVTEAWY YLol To OElyHOTA TOU TEQIEYOVTOL GTO GUVORO A€LONGYTON.
O BLory wptopog TV BEBOUEVGY Yol TNV EXTUBEUCT) TWV HOVIEAWY, OTNV TERITTWON YPHONG TEC-
oY PoVTEAWY, Tapouctdletar oto oy 5. H ev Adyw uédodoc ouvdudletar ue tn uédodo
OLOLO TUUPOVHMEVNG ETXVPMOTS TOU TERLYRAPNUE TRONYOUUEVKS, UE 0TOY0 TNy emPeBaiwon tng
EYHUPOTNTOS TWV AUBAVOUEVODY ATOTEAECUATWY.

Téhog, DOXUAOTNXE 1) EXTUDEUCT) TWV TEWWY, HOT UTUOYOVIWY, TRO-EXTAUOEUMEVWY UOVTEAWY
OV TEOAVAPEQUTMAY, UE TRl DLUPOPETIXG GUVOAN BEBOUEVW™Y, Ta BUO UTOGUVOAXL TOU GUVOAOU

9



Annotated subset of

COUGHVID dataset
Validation Set Train Set Test Set
20% 60% 20%
COVID samples 25% of 25% of 25% of 25% of
non-COVID non-COVID non-COVID non-COVID

samples  samples samples  samples

CNN Architecture CNN Architecture CNN Architecture CNN Architecture

Yo 5 Atayoplonos v 8ebouéveny Yo T uédodo cUANOYIXAC udinong xal i To oOVOLO
oedopévy COUGHVID mou €yel allohoyniel and toug etdixole

Tou Coswara xat o unocivoro tou COUGHVID mou éyel alioloyniel and toug eldixols. X
OUVEYELDL TO LOVTEND aUTH exmtadeVETOL Xou aglohoyeiton aTo ovolo Bedouévwy tou Cambridge,
YENOWOTOLOVTUS TN UEV0B0 GUANOYIXNC UdNoTG 0 GUVBLUCUO UE T UEV0BO BIUCTAVREOVUEVNC
emx0PWONG, OTKS AUTEC TEPLYEdPNXaY TeoNYOoLUEVLS. H ev Aoyw draduacia exnaldevong yia
Vv apyttextovixt) ResNet-50, n omolo uéow doxuumv napatnefinxe ot ebvan 1 xotahhnhdtepn
EX TOV TELOV YL TO CUYXEXPWEVO TEOBANUA, TapouatdleTon avahuTixd oTo oy rjua 6.
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Train Set .
Validation Set

4 " Train using

80% SMOTE

20%

Coswara cough heavy

. .
.

ResNet50
pre-trained on
imagenet +

new classification
head

Train Set ‘.
« Test Set o .
. Validation Set .  ResNet50
* pre-trained on
0 » imagenet,
60% " coswara
7 cough heavy
20% 204 and shallow
and COUGHVID

Cambridge dataset

This splitis
achieved using
5 fold cross validation }
method

Y

annotated by
experts + new
classification head

Classification Results

For each one of the 5 different dataset splits

training, validation and testing is done

using the ensemble method with 2 models

Train Set
Validation Set
ResNet50 Train using
pre-trained on 4 #
imagenet and SMOTE 80%
coswara
cough heavy + 20%
new classification
head
Coswara cough shallow
Train Set
Validation Set
ResNet50 Train using A "
pre-trained on SMOTE 80%
imagenet,
coswara
cough heavy 20%
and shallow +
new classification
head COUGHVID annotated by experts

Calculation of average metric values

“*~..., acquired from the 5 different trainings

. of the ensemble model

.

Classification results
from the ensemble method
are acquired
for each of the 5 different splits

Yyfua 6: Teprypapr tng uedddou exnaldeuone Tou mpo-exnoudeuyévou poviéhou ResNet-50 ue

TOMATAS GOVORAL BEBOUEVLV
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Amcwupo()pevn smx()pcocm

H pédodoc tneg dractaupoluevne emxdpwone yenotonot\inxe yio Ty exnaideuor tévie Uo-
VIEAWY, TV TEUOV XUVOURLWY HOVTEA®Y o dnutoupy iTxay, xoog xat 600 TEO-EXTUOEUHEVGLY
oto ImageNet pyovtéhwy, twv ResNet-50 xar DenseNet-201. To mopandve povtéia
EXTAUOEVTNXAY X0l AELONOYHOTHAY YENOHLOTIOIOVTOC 5 BLoPORETINE GOVOAA BEGOUEVWY, Tor 500
uTOGUYOAX TOU Guvbrou Tou Coswara, To clvoho dedoueveyy COUGHVID xo 1o unocivoro
TOU TOL TEPLEYEL LOVO ToL Oebyportar Tou atohoyHUmxay amd xdmolov ewdind, xodog xot To GUvoro
6edouévewy tou Cambridge. O yetooynuatiopol Twv opyelwy Hyou GE EXOVA TOL EPURUOC TT-
xay o€ ouTh TNy Tepintwon eivar o HCQT xau ta gacpotoypoagpruata Mel. Topatnpeiton 6t 1
eV AOY® péV0BOC BEV ETITUYYAVEL AMOBEXTEC EMULOOCELS, UE TIC TWESC OAWY TWV UETEIXWY Vo Efvol
oyxeTwd younhéc. H uetpur precision Aopfdver e€oupetind younhéc TWESC ol omoleg, Topolo
TOL UETAUBIANOVTOL AEXETA AVAAOY O UE TO YENOLLOTOLOVUEVO GUVOAO BEBOUEVLY, BEV TLdOLY Vi
elvon WLadtepa younheg o dAeg g tepintroelc. Eminpooictng, evilagepouoa eltvon 1 mapatron-
on 61 o Movtého 1 moapouctdlet Ti¢ xahITERES ETBOTEL GYEGGY GE GAOUC TOUG GUVOUIGUOUS
OLVOAOU BEBOUEVWV X0l UETACYNUATIOUOU TOU 10U OE EIXOVa. LTovV Tivoxa 2 tapouctdlovTo
ToL XOADTEQO ATMOTEAEGUOTA Yol XAOE GUVOAO BEBOUEVMY X0t YLt XAVE UETACY NUATIOUO.

3Ovolo } , / , Accuracy Sensitivity Precision AUC Specificity

BeBopviy Metaoynuatiopds  Movtého %) %) %) %) (%)

Coswara cough heavy HCQT Movtého 1 | 67.10 57.09 11.44  65.80 67.80
Mel spectrograms Movtého 1 72.48 50.83 12.01 64.34 76.05

Coswara cough shallow HCQT Movtéro 1 | 74.15 41.86 11.69  64.27 76.48
Mel spectrograms Movtého 1 71.16 46.79 11.16  64.26 72.93

HCQT Movtého 1 | 55.16 42.33 6.33 49.08 56.05

COUGHVID Mel spectrograms Movtélo 1 | 52.52 57.94 7.74 55.97 52.14

COUGHVID HCQT Movtéro 1 | 50.16 62.01 22,51 55.37 47.24

pe afloréynon and toug ewdixols  Mel spectrograms  Movtého 1 | 54.48 47.79 21.31  51.63 56.13
Cambridge HCQT Movtéro 1 | 62.75 53.82 40.23  63.85 63.93

Mel spectrograms Movtélo 2 | 63.75 57.82 42.41  64.28 64.66

Table 2: Ot tipéc twv YeTp®Y Yior TIC XAhOTERES EMBOOELS YENOWOTOWWVTOS T Pédodo oo Tou-
eolUEVNC EMXVPWOTG

Medodog cuiloyixhc udinong

H uédodog tng curhoyuhc udinong epapuoctnxe o 500 chvola BEBOPEVKY, To GOVOLO BedO-
uéveyy COUGHVID rou €yel a€lohoyniel amd toug edole xat To ohvolo dedopévey Tou Cam-
bridge. To cOvola owtd emhéyoviar SLOTL Tor HOVTEND TOL EXTAUBELTAXOY Xot aEtoAOY UMYy
o€ auTd, onuelwoay oyeTxd uPNAdTERES EMBOCEIC 0TV TEoNYoUUEVN pédodo. Egopudctnray
TEGOEPLC DLUPOPETIXOL TEOTOL UETAUTEOTNS TOU Tyou o€ exdva, o HCQT, ta goacuatoypopriuota
mel, o CQT xou o STFT. Hopotnpeitan erdylotn addnon twy BEATIOTWY EMBOCEWY OUYXEL-
TG Pe TNV TporyoLuevn pEVodo, avelapTATWS TOU YENOULOTOLOUUEVOU GUVOROU BECOUEVMV.
To anoteréoyata TG TAEVOUNONE TOU LOVTENOU UE TIC XUAUTERES ETBOOELS Yo xdde cUVOrO
OEDOMEVLY XalL Yol xdE UETUOY NUATIONO, TopouctdlovTal GToV Ttivaxo 3.
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Y0volo , o Accuracy Sensitivity Precision AUC Specificity
Bebopéviov Metaoynuatiopdée  Movtého %) (%) %) %) %)
HCQT DenseNet 55.39 53.51 22.74 57.10 55.84
COUGHVID Mel spectrograms Movtého 2 53.18 52.98 21.82 54.86 53.23
e a€lohbyYMon amd Toug edixolg CQT Movtého 1 57.99 50.83 23.81 57.29 59.75
STFT Movtého 2 | 51.84 55.17 20.05 54.09 51.09
HCQT Movtélo 2 | 62.55 55.66 4190 63.68 63.05
Cambridge Mel spectrograms Movtého 1 60.80 54.82 39.96  61.06 60.83
CQT Movtédo 1 |  60.05 51.77 38.92 59.16 61.30
STFT Movtédo 1 | 59.50 64.35 43.79  63.60 57.64

Table 3: Ot tipéc TV PETEXOY Yio TIC XANOTERES ETUBOCELS YENOLOTOLWVTOS TN UEV0B0 GUANOYL-
x\g uddnong

[Tohamhy| exnofocuon tng apyttextovinric ResNet-50 ypnowotol-
WVTOC 4 OLPOPETINE GOVOAX DEDOUEVKY

H molamh exnaideuct) Tpo-exToUOEVUEVOY UEYITEXTOVIXMY UE OLUPORETIXG GUVONN DEDOUEVLY
onueiwoe atohoyr Behtiwon TwY TWOY TOV UETEXOY Yo To poviého ResNet-50, ye tig e-
TWOOCELS TOU EMTUYYAvVOVTOL Vo EEMEEVOLY TIC BEATIOTEC EMBOOELS TWY TEOAVAPEQVEVTWY UE-
Vo0wv. Tpoyuatomot{inxe TANUOEA BOXUMY Xol GUVBLUCUMOY PE TIC 0U0 UPNAOTERES ETIOOCELS
VoL ETLTUY YdvovTon amd TNV extaldeucT) Tou poviehou yenotonoiwvtog tov HCQT xou o qo-
opatoypaphuato mel. O tiwée twv petpmy tadvounong yio Toug 800 autols cUYBUUCUOUS
Topouctdlovtal oTov Tivaxa 4.

, | Accuracy Sensitivity Precision AUC Specificity
MeTacynuationog (%) (%) (%) (%) (%)
HCQT 71.03 66.58 52.18 73.44 71.51
Mel spectrograms | 71.60 62.92 57.21 69.92 74.78

Table 4: Ou tipéc Twv peTExXdY Yo TiC XaAOTERES EMBOOELS Ypnotuonotdvtag T uédodo ToAhamhig
exnafdevong Tou ResNet-50

LUUTEQOUTL

Y16y0¢ TNg mapovoag Simhwuatixic epyaotag etvon 1 avdmTudn plog pedodou Badidic Mnyovinrc
Méinong ywr tnv aviyveuorn tou COVID-19. Aoxipdotnxe oo cuvOrwy BEBOUEVHY, Ta
omola mepLEyoL apyeta Hyou Briya T6co amd dtopa Qopeic TOU X0pPWVOIOL, 6G0 o amd UYLA
droua. Eatiog tne avicoppomiog twv Stadéoiumy BEBOUEVKY, Ol ETIBOCELS TOU OTUELUTHIY
YETNOWOTOLOVTUS VA LOVO GUVEMXTIXO HOVTEAD BEV fTay apXETA xahéC yia va Yewpniel To yo-
vTého aut6 odtémoto. Me otéyo T Bedtinon TwV anoTeAeoUdTLwY ToVOUNoNS, SOXUAC TNXE
1 EQUEUOYY) TNG CLALOYIXAS Wdinong, yia 0o amd ta dardéotua cUvoha dedouévwy. 26T600,
1 Behtiwon g enldoong Twy YOVTEAWY OEV HTAV 0pXETH OGOTE Vo Yewpniolyv allomoTa yia
Vv entluon Tou ev Aoyw mpofAfjuatos. Télog, o cuYBLAOUOS TV TaEUTdVe UEVOBWY YE TNV
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TolhamhY| exmaldeuon tng apyttextovinric ResNet-50 ue dopopetind ohvola Bedouévwy, enépe-
e a&tohoyn adinon oto anoteléopata e Tadwounong ue v axplBeto vor ptédver to 71.03%
oty mepintwon yeRone tou petaoynuotiopod HCQT xou to 71.60% otnv nepintwon yenong
WV Qaopatoypapnudtwy mel. Ané oo yvwpeiloupe, auth eivon 1 TEHOTH Qopd ToL
yenowornoteiton o petaoynuatiopog HCQT oe mpdPinuo tadvounong fywy Briye. Ta amote-
Aeoparta autd emPBelarvouy T duvatdtnta e Mnyovixnic Mddnong vo amoteAéoel oucLlac o
apwY6 otny emo TN e lotpuic. Eva tétolo epyaheio xatiotéd to cuyvod 1| xon xadnuepvo
OLY VWO TG €Aeyyo OAou tou TAnducpol Yo oV HOAUVOT| OO TOV X0PWVOLO, GUECO %ot
undevixol xé6ctouc. Emmiéov, aviicToryol akyderduol umopoly va yenotuoroindoly ylo Tnv
aviyveuon TolAwy doUEVELDY TOU AVATVEUG TIXOU GUG TANTOC, EVEM 1) ETLO TNUOVIXY| XOLVOTNTA
Yo ebvon xaAOTEPA TROETOWAGUEVT] YId TNV UVTYETOTLON Wlag UEANOVTIXTS TorvONplag.

14






Contents

1 Introduction 23
1.1 COVID-19 . . . . e e e e e e e e e e 23
1.1.1 Transmissionmethods . . .. ... ... ... ... .......... 23

1.1.2 COVID-19 symptoms and long-term consequences . . . ... ... . 24

1.1.3 Contamination prevention . . . . . . . . . . .. ... ... .. 25

1.1.4 Treatments and vaccine . . . . . . ... .. ..., 25

1.1.5 Testingmethods . ... ... ... ... . ... ... ... . ..... 28

1.1.6 General statistics . . . . . . . . .. ... e 28

1.2 Motivation . . . . . . . . L e e e e e e e e e e 28
1.3 Literature review . . . . . . .. oL e e e e e e e e 30
1.3.1 Audiotoimageconversion. . . . . . . . .. .. ... .. 31

1.3.2 Cough classification . .. ... ... ... ... ... ......... 32

1.3.3 COVID-19 classification using cough samples . . . . ... ... ... 34

1.4 ScopeofThesis . . .. ... . . . . e 36

2 Theoretical Background 38
2.1 Audiosignals . . . . . . ... e e e e 38
2.1.1 Audiofeatures . . . . .. ... . ... 38

2.1.2 Audio to image transformations . . . . . . ... ... ... ... 39

2.2 MachineLearning . . . . . . . . . . . . . e e 41



2.2.1 The evolution of Artificial Intelligence and Machine Learning . ... 41

2.2.2 Convolutional Neural Networks . . . . . ... ... ... ....... 44
2.2.3 Machine Learning and Medicine . .. ... ... ........... 46
2.3 Metrics used for classification assessment. . . . . . ... ... ... ... .. 47
Deep Learning Methods for the detection of COVID-19 50
3.1 Datasets . . . . . ... e e e e e e e e e 50
3.1.1 Cambridgedataset . . . . . . ... .. .. ... 50
3.1.2 COUGHVID dataset. . . . . . . . v v v v vttt et et oo 53
3.1.3 Coswaradataset . . . . . . . . ... 58
3.2 CNN architecturesused . . . . . . . . . .. it 60
3.2.1 Modell . .. .. . . . e 61
3.22 Model2 . . ... .. . e 62
3.23 Model3 . . ... . .. e 62
3.24 ResNetmodel . . . ... ... ... ... ... .. . .. . . ... 63
3.2.5 DenseNetmodel .. ... ... .. ... ... ... ... ... ... 63
3.2.6 Xceptionmodel . . . . ... ... ... 64
3.3 Implemented Methods . . . .. ... ... ... . ... ... ..., 64
3.3.1 5-fold crossvalidation . ... ... .. ... ... ... ....... 64
3.3.2 Ensemblemethod . ... ........ ... . . ... . ..., 67

3.3.3 Multiple trainings of ResNet architecture with different cough datasets 68

Results 73
4.1 5-fold cross validation method using one single model . . ... .. ... .. 73
4.2 5-fold cross validation method using ensemble models . . . . ... ... .. 77
4.3 Multiple training of ResNet-50 architecture using 4 different datasets . . . . 78

17



4.4 Summary of the acquired classificationresults . . . . . ... ... ... ...

5 Conclusion and future research
5.1 Conclusion . . . . . . . . . e s

5.2 Future Research . . . . . . . . . . . . . s

18



List of Figures

1.1

1.2

1.3

1.4

1.5

2.1

2.2

2.3
2.4
2.5

2.6

3.1

3.2

3.3
3.4

3.5

3.6

Statistics about the progress of vaccinations in certain regions [7] . . . . . . 26
Heat map showing the number of vaccine doses given around the globe [60] 27

Heat map showing the number of fully vaccinated people around the globe

[60] . . e e e 27
Heat map showing the confirmed cases around the globe . . . . . . ... .. 29
COVID-19 age statistics for Greece [61] . . . . ... ... ... ... .... 29
An example of a cough waveform . . . ... ... ... ... ......... 39
The components of aneuron [62] . . . . . . . .. ... ... .. ....... 42
The structure of aneuron . . . . . . . ... ... ... e 43
An example of an ANN architecture . . . . . ... ... ... ... ...... 43
An example of a fundamental CNN architecture . . . . . ... ... ..... 46
An explanation of the AUC-ROC curve [63] . ... ... ........... 49
Distribution of cough and breath samples in the different categories . . . . . 51
Number of samples in each category for the Cambridge dataset . . ... .. 52
Metadata statistics for the COUGHVID dataset . . . . . ... ... ... ... 54
Metadata statistics for the cough samples of the COUGHVID dataset . . . . . 55
Distribution of Covid and non-Covid samples for the COUGHVID dataset . . 55
Annotations of samples as covid and non-covid by each expert . . . . . . .. 56

19



3.7 Number of samples with other audible respiratory diseases as annotated by

theexperts . . . . . . . . . e 56
3.8 Distribution of covid and non-covid samples in the annotated subset of the

COUGHVID dataset . . . . . . . . v v vttt e i et e e e e e e e 57
3.9 The health status distribution of the samples in the Coswara dataset . . . . . 58
3.10 The samples per age distribution for the Coswara dataset . . . . .. ... .. 59
3.11 Metadata statistics for the Coswaradataset. . . . . . ... ... ....... 60
3.12 Statistics about the Coswara cough heavy and shallow datasets . . ... .. 61
3.13 The architectureof Model 1 . . . . . ... . ... ... ... . ........ 62
3.14 The architectureof Model 2 . . . . . .. .. ... ... ... ... ...... 62
3.15 The architectureof Model 3 . . . . . . . . ... ... ... ... ... ... 63
3.16 Examples of converting audiotoimage . . . . . . . ... ... ... ..... 65
3.17 Description of the 5-fold cross validation data split . . .. ... ....... 65
3.18 Synthetic Minority Oversampling Technique (SMOTE) . . ... ... .. .. 66

3.19 Dataset split for the ensemble method using the annotated COUGHVID dataset 68

3.20 Assignment of data samples in each one of the ensemble models when using
the annotated COUGHVID dataset . . . . . ... ... .. .......... 69

3.21 Dataset split for the ensemble method using the Cambridge dataset . . . . . 70

3.22 Description of the steps followed in the method described in section 3.3.3 . 71

4.1 Comparison of the best results acquired by each method . .. ... ... .. 84

20



List of Tables

1.1 Information about some of the mostly spread variants [64] . . . . . ... .. 28
2.1 The evolution of Artificial Intelligence . . . .. ... ... .. ........ 44
4.1 Performance metrics for the Coswara Cough Heavy dataset . . . . ... ... 74
4.2 Performance metrics for the Coswara Cough Shallow dataset . . . . . .. .. 74
4.3 Performance metrics for the COUGHVID dataset . . . . . .. ... ...... 75
4.4 Performance metrics for the annotated COUGHVID dataset . . . . . .. ... 76
4.5 Performance metrics for the Cambridge dataset . . . . ... ... ...... 76

4.6 Performance metrics for the annotated COUGHVID dataset in the ensemble
method . . . . . . .. e e 78

4.7 Performance metrics for the Cambridge dataset in the ensemble method . . 79
4.8 Performance metrics using the HCQT and different combinations of datasets 80

4.9 Performance metrics using Mel Spectrograms and testing the model on the

annotated COUGHVID dataset . . . . . . . .. ... ... ..., 80
4.10 Performance metrics using HCQT transformation in all datasets . . . . . .. 80
4.11 Performance metrics using Mel Spectrograms in all datasets . . . . ... .. 81
4.12 Performance metrics using the STFT in all datasets . . . .. ... ...... 82

4.13 Performance metrics using HCQT transform with the DenseNet and the
Xceptionmodel . . . . . . . ... 82

4.14 Performance metrics using the HCQT, the ResNet-50 architecture and mul-
tiple values for label smoothing . . . . . .. ... ... .. ... ... .... 83

21



4.15 Summarised results (*Four datasets refer to Coswara cough heavy, Coswara
cough shallow, annotated COUGHVID and Cambridge datasets) . . .. . ..

22



Chapter 1

Introduction

1.1 COVID-19

The last one and a half year, the world has come up against a contagious disease known as
COVID-19 (COronaVIrus Disease of 2019), caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). COVID-19 is also going to be referred to as Covid for simplic-
ity throughout the rest of this thesis. At the time of writing there have been 225,680,357
confirmed cases of COVID-19 and 4,644,740 deaths, reported to the World Health Orga-
nization (WHO) [1]. In 31 December 2019 the government of Wuhan, China, confirmed
cases of "viral pneumonia" in Wuhan and nine days later WHO reported the determination
that the outbreak is caused by a novel coronavirus. In 11 January 2020 the first death was
reported and SARS-CoV-2 was declared as a pandemic by the WHO in 11 March 2020 [2].

Most of the infected people experience mild or moderate respiratory illness and recover
without being in need of any special treatment. However, many contaminated individuals
may experience severe illness and require medical assistance. Although people with un-
derlying medical conditions, such as chronic respiratory disease, cardiovascular disease,
diabetes and cancer as well as elderly people, are prone to developing serious illness, any
age group can sustain severe ailment which can even cause death.

1.1.1 Transmission methods

COVID-19 can be transmitted among people in various ways. The main mean of transmis-
sion is air particles which are produced by the mouth and nose of an infected individual
and can spread through speaking, breathing, coughing, sneezing and more. The size of
these particles can range from larger respiratory droplets to smaller aerosols and can re-
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main in the air for up to three hours [65].

A person can be infected when contaminated droplets or aerosols are inhaled or come in
direct contact with the person’s nasal and oral cavity, or eyes. The virus spreads between
people who are in close contact, approximately 1 metre or less, but can also traverse to
larger distances in the case of crowded or poorly ventilated indoor spaces. This is due to
the fact that people tend to stay for longer periods of time in such places and the particles
containing the virus remain in the air for longer or are transmitted for longer distances.
Circuitous contact can also cause contamination. This can be due to infected objects com-
ing into direct or indirect (through the hands) contact with the mouth, nose or eyes. The
virus can spread from contaminated people regardless of whether they are symptomatic
or asymptomatic. Individuals tend to be more contagious shortly before developing symp-
toms, while people with severe symptoms can infect others for longer periods of time [3].
The virus viability in different surfaces has been examined by Van Doremalen et al. [65].
Viable virus was detected on plastic and stainless steel objects 72 hours after the applica-
tion, while it did not survive for more than 4 hours on copper and for more than 24 hours
on cardboard.

1.1.2 COVID-19 symptoms and long-term consequences

The most common COVID-19 symptoms include fever, cough, tiredness and loss of taste
or smell, with some of the less common ones being headache, aches and pains, sore throat
and diarrhoea. Serious COVID-19 symptoms include difficulty in breathing or shortness
of breath, loss of speech or mobility, confusion and chest pain. Symptoms may appear
2-14 days after contamination, with the average time interval being 5-6 days. The SARS-
CoV-2 virus can infect a lot of different cells and systems of the body, with the mostly
affected parts being the upper respiratory tract (sinuses, nose, and throat) and the lower
respiratory tract (windpipe and lungs) [66]. Symptoms existing for more than 3 weeks
are described as post-acute COVID-19 syndrome and except for patients who experienced
severe illness, it also affects patients who have had mild or moderate symptoms. Although
the most common remaining symptoms are fatigue, dyspnea, joint pain and chest pain, the
dysfunction of other organs has also been reported, including the heart, the lungs and the
brain. Myocardial injury and thromboembolic disease has been recorded in patients who
experienced severe illness. As for the long-term, lung related consequences of COVID-
19, studies indicate that even 3 months after discharge, patients could have persistent
symptoms, radiological and lung function abnormalities. The most common dysfunctions
related to the brain are namely anosmia, ageusia and headache, but other diseases, such as
stroke, impairment of consciousness, seizure, and encephalopathy, have also been reported

[4], [5], [6].
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1.1.3 Contamination prevention

Plenty of personal preventive measures against COVID-19 can be implemented with some
of the most valuable being listed below:

* Social distancing. Keeping a distance greater than 1 meter, both from people ex-
periencing possible COVID-19 symptoms but also from healthy individuals (possible
asymptomatic carriers)

* Wearing a facial covering when physical distance cannot be kept, or when being in
an indoor place

* Avoiding poorly ventilated, indoor locations, crowded places and prolonged contact
with others

* Frequently cleaning of hands with soap and water or alcohol-based sanitizer

* Vaccination. Vaccination is the only powerful measure of protection against the
spreading of the virus and its mutations.

Except for the protection each individual can take, the governments throughout the globe
have implemented various preventive measures in order for the pandemic to be contained.
At the outbreak of the pandemic most governments implemented lockdowns, ceasing many
indoor and outdoor activities. Other preventive measures applied consist of traffic ban-
ning during evening or night hours, prohibition on transportation between different cities,
obligatory usage of masks in indoor and outdoor locations, mandatory demonstration of
negative COVID-19 testing results or of the vaccination certificate in order to be allowed to
travel and many others. Also, quarantining COVID-19 patients and tracking their contacts
is of high importance and has been used by the competent institutions of each government
ever since the beginning of the pandemic.

1.1.4 Treatments and vaccine

Although many therapeutic strategies have been tried to defeat the pandemic, there is
no specific treatment up to now. However, scientists have managed to create effective
vaccines giving rise to hopes for a quick exiting from the pandemic. Four vaccines pro-
duced by different companies, Pfizer/BioNTech, Moderna, AstraZeneca and Johnson &
Johnson/Janssen Pharmaceuticals have been approved by the European Medicines Agency
(EMA) and belong to either one of the two available types of vaccine, mRNA and aden-
ovirus. The mRNA types of vaccines contain a part of the "instructions" from SARS-CoV-2
allowing the body cells to create a protein which is unique to the virus. The foreign pro-
teins are detected by the immune system, which produces antibodies and immune cells to
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defend it and as a consequence natural defences against COVID-19 infection are created.
The Pfizer/BioNTech and the Moderna vaccine implement this technology, while the other
two vaccines implement the adenovirus technology. All of the aforementioned vaccines re-
quire two doses per person except for the Johnson & Johnson vaccine for which only one
dose is required [67]. However, a "commemorative" third dose is scheduled to be given at
least to certain social groups that are in greater danger of suffering from COVID-19.

The first mass vaccination program started in December 2020 and by the time of writing
and according to [7], 42.41% of the world population has received at least one dose of
a COVID-19 vaccine, with 30.25% being fully vaccinated. As for Europe, 55.31% of the
population is at least partly vaccinated, with 50.23% being fully vaccinated. Moreover,
62.53% of the United States population has been vaccinated with at least one dose, while
53.31% has been fully vaccinated. Lastly, 60.76% of the Greek population has been at
least partly vaccinated, with 56.61% being fully vaccinated. These statistics are also de-
picted in figure 1.1. By the time of writing a total of 5.79 billion vaccine doses have been
administered.

M Share of people fully vaccinated against COVID-19 [l Share of people only partly vaccinated against COVID-19

United States

0% 10% 20% 30% 40% 50% 60%

Figure 1.1: Statistics about the progress of vaccinations in certain regions [7]

General statistics about the progress of vaccinations around the world are shown in figures
1.2 and 1.3.

Vaccination is the only method of containing the pandemic and preventing the spread of
new and often more contagious virus variants and mutations. By the time of writing, sev-
eral different variants have been circulating around the globe. Variants Beta, Gamma and
Delta constitute the VOC or Variants of Concern, since clear evidence indicating significant
increase of transmissibility and severity and a decrease of immunity, is available. The VOI
or Variants of Interest are comprised of variants for which evidence for possibly significant
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Figure 1.2: Heat map showing the number of vaccine doses given around the globe [60]
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Figure 1.3: Heat map showing the number of fully vaccinated people around the globe [60]

increase of transmissibility and severity and a decrease of immunity is available. Two of
them are the Mu and Lambda variants. More detailed information for these variants is
provided in table 1.1 [64].
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Country first detected Year and month Evidence for impact Evidence for impact Evidence for impact
WHO label . . A . . .
(community) first detected on transmissibility on immunity on severity

Beta South Africa September 2020 Yes Yes Yes
VOC | Gamma Brazil December 2020 Yes Yes Yes

Delta India December 2020 Yes Yes Yes
VoI Mu Colombia January 2021 Yes Yes -

Lambda Peru December 2020 - Yes

Table 1.1: Information about some of the mostly spread variants [64]

1.1.5 Testing methods

The ability of detecting COVID-19 infection is of high importance for the containment of
spreading. The most prevalent and reliable testing methods are namely: Nucleic Acid Am-
plification Tests (NAATs) and antigen tests. Both of them are viral tests used for discovering
current infection and are performed by collecting nasopharyngeal and/or oropharyngeal
specimens from the patient. NAATs are viral diagnostic tests for SARS-CoV-2, detecting
genetic material and more specifically the RNA sequences which comprise the genetic ma-
terial of the virus. One of the most commonly used methods for a NAAT is the Reverse
Transcription Polymerase Chain Reaction (RT-PCR). As for the antigen tests, these are im-
munoassays that detect the presence of a specific viral antigen, implying current viral in-
fection. The currently approved antigen tests include laboratory-based tests and self-tests,
with the results being returned in approximately 15-30 minutes, rendering them a quick
and easy screening method. However, they are generally less sensitive than NAATs which
are unlikely to return a false negative result [8], [9].

1.1.6 General statistics

As mentioned previously, by the time of writing there have been 225,680,357 confirmed
cases and 4,644,740 deaths caused by COVID-19 around the globe [2]. A total of 57.58
million confirmed cases and 1.20 million deaths have been reported in Europe, 41.54
million cases and 666,607 deaths in the United States and 622,761 cases and 14,311
deaths in Greece. A heat map presenting the total cases reported since January 22, 2020
is provided in figure 1.4, while statistics related to the age distribution of cases and losses,
for those with a known and confirmed age, in Greece are depicted in figure 1.5 [60].

1.2 Motivation

During the COVID-19 pandemic, the health systems of many countries received unprece-
dented pressure with the hospitals’ personnel exerting themselves, making the tracing and
isolation of possible COVID-19 cases an issue of paramount importance. Moreover, new

28



0 3,000 30,000 300,000 3 million 30 million
No data | 1,000 ‘ 10,000 100,000 | 1 million 10 million 100 million
[ | [ I

Figure 1.4: Heat map showing the confirmed cases around the globe
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Figure 1.5: COVID-19 age statistics for Greece [61]

virus mutations and variants render COVID-19 more transmissible, making the prevention
of new pandemic waves very difficult. The ability of daily testing large amounts of popu-
lation and ideally the whole population of a country, could be a game changing parameter
for the outcome of the pandemic. Currently, two types of viral tests are being used to
detect COVID-19: Nucleic Acid Amplification Tests (NAATs) and antigen tests. However,
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conducting the large amount of tests needed, is neither time nor cost efficient. In order
to deal with this problem, different methods of diagnosing COVID-19 infection using Ma-
chine Learning (ML) techniques, have been proposed in recent studies [10], [11], [12],
[13].

As the amount and type of available data displays increase during the past years, Machine
Learning is widely being used in many aspects of everyday life and is already being imple-
mented in various health related subjects. It is a quick and low cost way of providing high
accuracy results, requiring minimum effort both by the user and the doctors.

With regard to COVID-19 controlling, the usage of Machine Learning algorithms has been
thoroughly examined. A review of the usage of Artificial Intelligence in Medical Imaging
Informatics as well as a systematic review of Artificial Intelligence models utilized for
screening, diagnosis and prognosis of COVID-19 has been created [68], [69]. Radiology
examination using chest X-ray images is being used by health care experts for the diagnosis
of COVID-19. To that end, deep learning approaches have been used for the detection
of COVID-19 from X-ray images [10], [14], [15], [16], [17], [18], [19], [20]. Chest
computed tomography (CT) images are another mean of diagnosing COVID-19, since they
show characteristics that differentiate a patient with COVID-19 from a patient with other
types of pneumonia. Machine Learning algorithms for the diagnosis of COVID-19 using
CT-images have also been developed [11], [21]. Moreover, Machine Learning approaches
have been implemented for predicting the severity of illness and the need for Intensive
Care Unit (ICU) admission of patients with COVID-19 [22], [23], [24], [25].

Although the approaches described above can accurately diagnose COVID-19, they require
the physical presence of a possible case to a clinical facility, in order for the chest X-ray or
the CT scan to be conducted. Apart from the time and effort needed for this to be done,
the prevention of the spreading of the virus by needless interactions with the personnel
and other patients is of the highest importance. Moreover, it cannot be taken for granted
that all countries can provide their citizens with the required amount of testing or that all
citizens have easy access to health benefits. Therefore, a quick and free screening method,
available to everyone through their smartphones or via web applications, could conduct
a very important role in the containment of the pandemic, due to the accessibility and
simplicity of such a testing method, as well as the reduction of unnecessary contacts of
possibly infected individuals with others.

1.3 Literature review

Research has shown that COVID-19 can be detected from lung sounds and in the recent
years, considerable progress has been made regarding the utilization of respiratory sounds
for the detection of diseases, using Machine Learning techniques. Some of the meth-
ods used, focus on the extraction of characteristics from the sound samples, while others
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choose to convert audio to image and leverage the effectiveness of Convolutional Neural
Networks (CNNs) in image classification tasks.

1.3.1 Audio to image conversion

Multiple methods of converting audio to image have been employed in research studies.
Salamon and Bello [26] implemented the log-scaled Mel spectrogram representation of
audio signals in environmental sound classification tasks. Sounds belonging to 10 environ-
mental sound categories which are namely: air conditioner, car horn, children playing, dog
bark, drilling, engine idling, gun shot, jackhammer, siren and street music (UrbanSound8K
dataset) were converted to mel spectrograms and used to train a deep CNN architecture.
The proposed architecture reached a mean accuracy of 73.0%, but the usage of audio data
augmentations increased this value to 79%. Kiskin et al. [27] implemented a less popular
conversion of sound to image, the Continuous Wavelet Transform (CWT), in two tasks:
the detection of mosquitoes and the classification of bird species. The study focuses on
the mosquito detection and shows that a robust model can be used to other similar clas-
sification tasks with minimal alterations. A performance comparison between Short Time
Fourier Transform (STFT), Mel Frequency Cepstral Coefficient (MFCC) and CWT, among
other, is conducted with the CWT outperforming both STFT and MFCC with the first one
achieving f1-score of 91.3% and the other two achieving scores of 88.3% and 89.5% re-
spectively, with regard to the mosquito detection task. As for the bird species classification
task, the combination of the CNN architecture proposed with the CWT outperforms any
other experimentation, reaching an fl-score of 92.5%. The usage of CWT has also been
examined in other audio related tasks and specifically in the fundamental heart sounds
classification task. The scalograms produced by CWT were used to train a CNN architec-
ture, reaching an accuracy of 86.0% when distinguishing between the first and second
heart sound [28]. A comparison of different audio to image conversions has also been
proposed by Huzaifah [29], where the two environmental sounds datasets ESC-50 and
UrbanSound8K and four different approaches to time-frequency representation, i.e. the
STFT with both linear and mel-scales, the constant-Q transform (CQT) and the CWT were
examined. Three of the four transformations, linear-STFT, Mel-STFT and CQT, performed
similarly on both datasets. However, especially for the UrbanSound8K dataset, CWT’s per-
formance was lower and closer to MFCC'’s. Lidy and Schindler [30] examined the usage of
CQT for the task of classifying acoustic scenes and urban sound scapes, employing a CNN
architecture. A comparison between the Mel-transform and CQT is conducted, with the
latter outperforming the first one by achieving an accuracy of 80.25% in contrary to the
76.55% accuracy reached when using the Mel-transform. Environmental sound classifica-
tion using Deep CNN structures, trained with Mel-spectrograms and transfer learning, has
also been examined by Mushtaq et al. [31]. Three datasets are utilised, ESC-10, ESC-50
and Us8k, two CNN architectures and two data augmentation techniques. The first aug-
mentation technique used is the traditional one, where new data is created by applying
image transformations such as rotating, flipping, zooming and other. The second one, is
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the proposed augmentation technique where new audio samples are created using tech-
niques such as positive and negative pitch shift, slow and fast time stretches and silence
trimming. The audio samples are converted to Mel spectrograms to be used with the CNN
architectures. In the case of using the CNN models created, the highest accuracy (95.50%)
is achieved for the ESC-10 dataset using the proposed augmentation technique, while in
the case of using transfer learning techniques the highest accuracy is achieved for the
Us8K dataset (99.497%), using the ResNet-152 architecture and the proposed augmenta-
tion technique. Sharan and Moir [32] examined time-frequency image representations of
sound signals related to an audio surveillance application. A new feature, based on image
texture analysis, is proposed and is referred to as the Spectrogram Image Texture Feature
(SITF). This feature was observed to be more noise robust than other features applied
which are the MFFCs, the Gammatone Cepstral Coefficients (GTCCs), the Spectrogram
Image Feature (SIF) and a variation of it with reduced feature dimension referred to as
RSIF. Moreover, a gammatone filter-based image, referred to as cochleagram image, was
used instead of the spectrogram image for feature extraction, improving the classification
accuracy. Cochleagram images have also been utilised for an acoustic event recognition
task, using a database comprised of 50 sound classes [33]. Four time-frequency audio
representations are examined: the conventional spectrogram, the smoothed spectrogram
which is acquired by applying moving average to the spectrogram along the frequency
domain, the mel spectrogram and the cochleagram image. The accuracy acquired when
using each of the aforementioned representations with a CNN architecture is: 93.46%,
96.34%, 95.35% and 98.03% respectively, with the cochleagram time-frequency represen-
tation outperforming the rest. Typical spectrogram audio representations have also been
examined in [34]. The DCASE 2016 acoustic scene classification challenge data was uti-
lized for the exploration of the acoustic scene classification task, using a CNN architecture
and four different ways of representing sound as image: mel-scaled, logarithmically scaled
and linearly scaled filterbank spectrograms as well as Stabilized Auditory Image (SAI) fea-
tures. Lastly, a novel audio to image conversion has been utilized, in combination with
CNN architectures, for the examination of the acoustic scene classification task. Wang
et al. [35] examined the usage of CQT, Hybrid Constant-Q Transform (HCQT) as well as
MFCCs, log-mel energies and its HPSS. The system proposed is evaluated on the DCASE
2019 challenge and it is observed that HCQT outperforms CQT for different CNN architec-
tures and ensemble models, reaching an accuracy of 77.5% when combined with ensemble
methods.

1.3.2 Cough classification

As for the more specific task of cough classification, Amoh and Odame [36] approached
the cough detection task using two different Deep Learning methods: image analysis us-
ing a CNN and sequence-to-sequence labelling approach using a Recurrent Neural Net-
work (RNN). As for the visual recognition problem, a LeNet-5 inspired CNN architecture,
with a smaller number of neurons in each layer, was used combined with the Short Time
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Fourier Transform (STFT) of the audio samples to detect cough events. However, since
audio signals do not have a fixed size, like image data do, a pre-segmentation step was
implemented to ensure the elimination of this problem. A database consisting of various
respiratory sounds such as breathing, reading and coughing was created and it was ob-
served that the CNN provided overall higher accuracy (89.7%) than the RNN. In some
of their previous work, J. Amoh and K. Odame [37] presented a wearable acoustic sen-
sor that records the person’s respiratory sounds combined with a CNN, for the detection
of cough. A pre-processing step was also implemented where some preliminary features
were extracted and a frame admission process was implemented in order for irrelevant
data to be excluded. Spectral segments, created with STFT, were then fed into a CNN
offering a classification sensitivity of 95.1% and a specificity of 99.5%. Due to their popu-
larity, CNNs have been used in similar tasks but with different ways of acquiring an image
from an audio. Bales et al. [38] used CNN models to initially detect cough sounds be-
tween other environmental sounds and then the existence of bronchitis, bronchiolitis and
pertussis. The image-frequency representation of the audio signals was obtained using the
Mel-spectrograms which were then converted to gray-scale and inputted to the developed
CNN architecture. The accuracy reached for the cough detection task equals 89.05%, with
the overall accuracy for the cough classification task being 89.60%. Another approach to
cough sounds classification is made by Aykanat et al. [39] where both CNN models and
classical Support Vector Machines (SVMs) are tested. A total of 17,930 lung sounds from
1,630 individuals were collected using an electronic stethoscope. Mel Frequency Cepstral
Coefficients features are inputted in an SVM, while spectrogram images using STFT are
fed into a CNN model, to classify respiratory sounds into different categories based on
four different tasks: healthy versus pathological classification, rale, rhonchus and normal
audio classification, singular respiratory audio type classification and sound type classifi-
cation. The CNN and SVM performances were extremely close in all four tasks with the
accuracy being 86.0% for both classifiers in the first task and 76.0% for the CNN classifier
which outperformed the SVM (75.0%) in the second task. As for the third and fourth task,
the performances of the two classifiers were the same, with the accuracy reached being
80.0% and 62.0% respectively. In addition to the aforementioned studies, Miranda et al.
[40] compared the performance of STFT, Mel Frequency Cepstral Coefficients (MFCC) and
Mel-scaled filter banks (MFB) using Deep Neural Networks (DNN), CNNs and long-short
term models in the cough detection problem, concluding that considering each cough
sample as a single input feature, using longer analysis windows and utilizing the STFT and
MFB, in contradiction to the MFCC, improves the classifier’s performance. Bardou et al.
[41] approached the lung sounds classification problem by training three classifiers (sup-
port vector machines, k-nearest neighbour, and Gaussian mixture models) using MFCC
coefficients, as well as by experimenting with CNN models and utilizing local binary pat-
tern (LBP) features extracted from the spectrograms. More specifically, these techniques
were used to classify respiratory sounds to 7 different classes which are namely the fol-
lowing: normal, coarse crackle, fine crackle, monophonic wheeze, polyphonic wheeze,
squawk and stridor, showing CNN’s performance was better than this of the classifiers us-
ing handcrafted features. Moreover, Barata et al. [42] contributed to the mobile cough
detection task by showing that the mean of recording plays a very important role for the
model’s performance and implemented both a CNN and an ensemble based model, in or-
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der for the cross-device deviance to be reduced. Mel spectrograms were inputted into the
CNN and the ensemble models, with the classification results indicating that the different
quality recordings acquired from various devices plays an important role in the model’s
performance. The mean accuracies achieved range between [85.9%, 90.9%]. Hui-Hui
Wang et al. [43] examined 5 different audio to image representations combined with a
CNN architecture for dealing with the cough detection task. Experiments were performed
on 70,000 audio samples from 26 patients. The methods used to convert the audio signals
to images are namely: the original spectrum, the RASTA-PLP power spectrum, the RASTA-
PLP cepstrum, the 12th order PLP power spectrum without RASTA and the 12th order PLP
cepstrum without RASTA. The average accuracy achieved in each case is 93.8%, 99.65%,
89.56%, 93.92%, 93.02% respectively, with the RASTA-PLP spectrum outperforming the
rest of the methods. Lastly, the advance made in the cough classification task is not only
utilized in human cough sounds. Yin et al. [44] leverage the success of CNN architectures
on the cough detection task and propose a classification algorithm for a respiratory disease
alarm system inside a pig farm. More specifically, a fine-tuned AlexNet model, combined
with STFT spectrogram images of pig cough sounds recorded in field situations, is used.
The overall accuracy reached equals 95.6%, with the cough accuracy being 96.8% and the
f1-score 96.4%.

1.3.3 COVID-19 classification using cough samples

The knowledge acquired by studies on respiratory sound classification tasks, gave rise
to Machine Learning approaches using respiratory sound samples for the containment of
the COVID-19 pandemic. Imran et al. [12] examined the differential pathomorphological
alternations caused by COVID-19, relative to other cough causing medical conditions. A
simple mobile app called AI4COVID-19 that collects a sound, detects the existence of cough
and classifies it as COVID or non-COVID case, is created. The data used was collected from
COVID-19, pertussis and bronchitis patients and healthy people. For the cough detection
task, the mel-spectrograms of the sound signal are passed into the CNN based classifier.
For the final decision, regarding the existence of COVID-19 infection, to be taken, a com-
bination of three parallel classifiers was implemented. A Deep Transfer Learning-based
multi-class classifier, a classical Machine Learning-based multi-class classifier and a Deep
Transfer Learning-based binary class classifier were used, with their outcomes being passed
into a mediator. More specifically, the input of the first and last, out of the three aforemen-
tioned, classifier was acquired by computing the Mel-spectrograms of the cough samples,
while the input of the second classifier was acquired using MFCC and Principle Compo-
nents Analysis (PCA) based feature extraction. The overall accuracy for each of the three
classifiers respectively is: 92.64%, 88.76%, 92.85%. Another approach to the COVID-
19 classification task is made by Brown et al. [45], where three different tasks regarding
COVID-19 classification were examined, creating and using a crowdsourced dataset con-
taining breath and cough sounds. The first task focuses on samples from users who have
declared they tested positive for COVID-19 and users who have not declared a positive
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test and have a clean medical history. The second task uses samples from users who
have tested positive and have cough as a symptom and healthy users, while the third
task focuses on distinguishing users who have tested positive in COVID-19 having cough
as a symptom, from users who have not tested positive and have reported asthma as a
pre-existing medical condition. Logistic Regression is used with handcrafted features and
with features automatically extracted by VGGish, giving AUC values of about 80%. Clas-
sification of forced cough sounds can also be achieved by inputting their transformation
with Mel Frequency Cepstral Coefficients to a combination of 3 pre-trained ResNet50’s as
shown in [46]. More specifically, a Poisson biomarker layer was combined with three pre-
trained ResNet50 models in parallel. The first ResNet50 model was trained to distinguish
the word "Them" from other words using an audiobook dataset containing approximately
1,000 hours of speech [47]. The second model was trained to learn sentiment features on
a dataset including actors that intonate in 8 emotional states which are namely: neutral,
calm, happy, sad, angry, fearful, disgust and surprised [48]. The last ResNet50 was trained
to distinguish the spoken language of the person coughing (English or Spanish) on the
cough dataset used, after taking into consideration only the metadata referring to the spo-
ken language of the person. Classification results provided by the pre-trained models are
higher than the ones acquired using not pre-trained ResNet50 models, reaching a sensitiv-
ity of 98.5%, a specificity of 94.2% and an AUC value of 97.0%. Moreover, the approach
of Chaudhari et al. [49] has proven that the usage of an ensemble model combining Mel
Frequency Cepstral Coefficients, Mel spectrograms and a label denoting the presence of
respiratory diseases can provide a robust model, independent of the dataset used. The
dataset employed consists of cough audio samples recorded with smartphones and more
specifically, the proposed deep neural network architecture was trained on the Coswara
and COUGHVID dataset containing 1,543 and 20,072 cough samples respectively. In order
to obtain a more robust evaluation of the model’s performance, two additional datasets
(Virufy Latin American Crowdsourced Test Dataset and Virufy South Asian Clinical Test
Datasets) consisting of data labelled using COVID-19 PCR results, were utilized. The re-
sults prove that the model constructed is robust enough for the change of the evaluation
dataset to not significantly impact the performance. The highest accuracy is reached when
using the Coswara and COUGHVID datasets and equals 77.1%, with the Virufy crowd-
sourced dataset achieving an accuracy of 72.1%. A combination of models has also been
tested by Schuller et al. [13]. Spectrograms derived from raw breath and cough audio,
contained in the dataset provided by [45], are inputted into a CNN architecture consisting
of two branches, one for each of the two respiratory sound types available. The learned
features of the two models are combined using fully connected layers in order for the final
classification to be made. The best AUC score achieved is 80.7%, while an observation that
breathing sounds could contain more COVID-19 information and thus provide slightly bet-
ter results compared to cough sounds, was made. Other research studies utilizing cough,
breath and speech sounds for the diagnosis of COVID-19 include the work of Pahar and
Niesler [50] where two datasets, Coswara and ComParE, containing audio samples of the
aforementioned categories were used, considering seven different classifiers: Logistic Re-
gression (LR), Support Vector Machines (SVM), Multilayer Perceptrons (MLP), K-Nearest
Neighbour (KNN), CNNs, Long Short-Term Memory (LSTM), RNNs and a residual based
network (Resnet-50). Pre-processing was also implemented to remove periods of silence
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in the signal. It is concluded that all three audio types can be used to successfully de-
tect COVID-19, with the cough sounds carrying more COVID-19 information and reaching
an AUC value of 93.0%, followed by the breath samples with an AUC of 92.0% and the
speech segments with an AUC of 91.0%. Another approach to the COVID-19 diagnosis
using respiratory sounds task is made by Bagad et al. [51], where the ResNet-18 was used
as the base of their CNN architecture and was pre-trained on three open source cough
datasets. The first one is the FreeSound Database 2018, containing 11,073 audio files
belonging to 41 possible categories with 273 of them being cough samples [70]. The sec-
ond one is the Flusense dataset where 11,687 samples of various categories were used,
with 2,486 of them being cough samples [71]. Finally, Coswara dataset was also used
containing 2,034 cough sounds and 7,115 non-cough sounds [72]. The data were split in
train and validation sets and the model was trained to predict the presence or the absence
of cough in an audio sample. This model was then used with a Covid dataset created,
which was labelled using RT-PCR test results, containing 3,117 cough samples from 1,039
individuals, showing that pre-training improves the mean value of AUC by 17%. The log-
scaled mel-spectrograms constitute the input of the model. Moreover, label smoothing is
implemented on the final task, which is the COVID-19 classification task, since although
the labels are obtained by RT-PCR testing results, this test is not completely accurate and
hence the ground truth of the problem should not be based solely on that. The highest
AUC value achieved using pre-trained models reaches 68.0%.

1.4 Scope of Thesis

One of the most challenging aspects of facing this pandemic, is the rapid and horizontal
screening of citizens for possible COVID-19 positive cases. The current thesis presents a
Deep Learning approach for the detection of COVID-19 positive cases using cough sound
samples. More specifically, cough sound samples are converted to images, which are fed
into Convolutional Neural Network (CNN) architectures that classify the sample to a Covid
or non-Covid case. CNNs are widely used in image classification problems showing very
promising results. A typical example is the state-of-the-art accuracy that has been achieved
on the ImageNet task using the ResNet-152 model where the errors made during predic-
tions were less than these made by a human [73]. On that end, we leverage the success of
CNNs in image classification tasks and deal with the COVID-19 screening problem as such.

The structure followed in the current thesis is described below:

Chapter 2: Theoretical background regarding the audio signal characteristics, time-frequency
representations of audio, Machine Learning (evolution and utilization in medical applica-
tions), classification metrics used for the assessment of the produced results.

Chapter 3: Analysis of the datasets, the architectures and the methods used.

Chapter 4: Presentation of the results obtained by implementing the methods described
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in Chapter 3.

Chapter 5: Conclusions obtained and possible future research.

37



Chapter 2

Theoretical Background

2.1 Audio signals

Sound is created by the perturbation of a transmission medium’s particles, such as air.
The vibration of the particles propagates through the medium, from the transmitter to the
receivers, as a mechanical wave. The waveform is one of the most common representations
of sound and it provides information about the particles’ displacement over the time. As
shown in Figure 2.1, the y-axis represents the displacements, with the amplitude being the
maximum displacement, while the x-axis provides time information. The wave’s amplitude
is an important characteristic, since it can be related to the sound’s loudness, intensity and
the energy transmitted. On the other hand, the time axis provides information about the
period and frequency of a signal, which can either be periodic or aperiodic. However,
frequency is an objective measure of sound’s change over time and is perceived by humans
logarithmically. This peculiarity of frequency perception is described by the "pitch". Apart
from the information acquired from the amplitude and the frequency of a sound signal, the
energy transferred via a sound wave can provide important characteristics of a particular
audio signal. More specifically, sound power is used to provide information about the
rate of energy transferring, while sound intensity about the sound power per unit area,
with the intensity level of a sound being in logarithmic scale and measured in decibels
(dB). Although a sound signal could be a simple sinusoidal, most of everyday sounds are
complex signals composed of a superposition of sinusoidals, the harmonic partials.

2.1.1 Audio features

Audio features describe different characteristics and aspects of a sound and can be classi-
fied based on the Signal Domain in the following categories among others: Time domain
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Figure 2.1: An example of a cough waveform

features, Frequency domain features, Cepstral domain features, Time-Frequency domain
features [74]. Time domain features, such as Zero Crossing Rate (ZCR), provide infor-
mation about the changes of the signal’s amplitude over time, whereas frequency domain
features are acquired by applying the Fourier Transform on the audio signal and supply
information about its frequency components. However, time-frequency domain features
are the ones of the highest interest since they provide combined knowledge of both time
and frequency characteristics of an audio signal. Most time-frequency representations of a
signal are based on the Short Time Fourier Transform and enable the visualization of the
signal as a heat map known as spectrogram.

2.1.2 Audio to image transformations
Short Time Fourier Transform (STFT)

Short Time Fourier Transform is one of the most common methods used to depict audio sig-
nals. The signal is divided into smaller segments, where Discrete Fourier Transform (DFT)
is applied and the Fourier spectrum of each specific segment is acquired. STFT provides
information about the frequency variance over time, whereas DFT about the frequency
over the whole time interval of the signal. The STFT of a segment is given by [75]:

~
[y

Xsrrrlm,n] =Y z[k]g[k — m]e />™k/T (2.1)
0

e
Il

39



where x[k] denotes the signal, g[k] a windowing function and L the number of samples in
each segment.

Mel Spectrograms

Humans do not perceive frequencies linearly but in a logarithmic scale. Although the dif-
ference between two pairs of sounds, with the first one containing sounds of 500 and 1000
Hz and the second one of 7500 and 8000 Hz, equals 500 Hz in both cases, the difference
between the second pair of sounds is almost not noticeable. The Mel Scale (named after
the word melody) is the result of transforming the frequency scale and constitutes a per-
ceptual scale of pitches, which are judged by listeners to be equal in distance from one
another [76]. One of the most commonly used formulas to convert f Hz into m mel is
given by [77]:

f
=2 I+ -— 2.2
m 59510910( + 700) ( )

As a result, Mel Spectrograms differ from regular spectrograms in the representation of
the frequency, which in this case is achieved using the Mel scale.

Constant-Q Transform (CQT)

CQT is a transform widely used with music audio signals, since it resembles the human
auditory system and was introduced by [78]. The purpose of CQT is to overcome the
resolution problems interrelated with the DFT. To that end, the ratio of the frequency to
the filter bandwidth, known as quality factor, is constant:

Q=f/6 (2.3)

showing the need for the resolution, or bandwidth, to vary as the frequencies also vary.
Assuming that K different filters are used, their window lengths are given by

L 20

N =55 = %

where f, denotes the center frequency of the k th filter, f, the sampling frequency and ¢ f
the width of the k th filter. Since }]:—k equals the number of samples processed per cycle at
frequency fi, Q equals the number of cycles processed at the central frequency f;. The
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window function used can be denoted as W{n, k], since its length is determined by N|[k],
although its shape is the same for all frequency components. As a result, the CQT of the &
th spectral component is given by:

1 Nlk]—1 orom
X[k] = N ; Wk, nz[n]e NG (2.5)

A high time-resolution is observed at high frequencies and a high frequency-resolution at
low frequency bins.

Hybrid Constant-Q Transform (HCQT)

Hybrid Constant-Q Transform is a variation of CQT and has been mainly used in Acoustic
Scene Classification tasks [35], [79]. HCQT results from two CQTs with different resolu-
tions, aiming at solving the high-frequency bins issue of the CQT. Assuming that the frame
shift contains L samples in the time domain and selecting the k. th filter where:

Nlk.] = 2L (2.6)

the frequencies higher than f,_ are treated as high frequencies and the rest as low frequen-
cies. For the high frequency part, the STFT spectrogram is filtered by the filter bank of the
high frequency part of CQT, while for the low frequency part the standard CQT is used.

2.2 Machine Learning

2.2.1 The evolution of Artificial Intelligence and Machine Learning

Machine Learning is the ability of a computer program to improve automatically using
new data. As stated by Mitchell [80], a machine learns with respect to a particular task
T, performance metric P, and type of experience E, if the system reliably improves its
performance P at task T, following experience E. Machine learning can be divided into the
following general categories: Supervised Learning, Unsupervised Learning, Competitive
Learning and Reinforcement Learning. Artificial Neural Networks (ANNSs), ever since their
early history, have drawn inspiration from the human brain and have been based on the
fact that it executes calculations very differently compared to that of a common computer.
What makes the human brain fast and efficient is its complexity and non linearity. The

41



building blocks of the brain are the neurons, which are organised in such a manner so
that certain calculations, for example face recognition, can be executed impressively fast.
The human nervous system is a network of 10! neurons, where each of them receives and
transmits information. Some of the neuron’s main elements are the soma, the dendrites
and the axon. The dendrites collect information from other neurons and send it to the
soma, while the axon transmits this information to other neurons, as seen in figure 2.2
[62]. The key to the success of the human brain in operations where even the fastest
computers cannot cope with, springs from experience. Brains, even from very young ages,
have the ability to create their own behavioral rules through the experience acquired, an
action tightly connected to the goal of ML models which is not other than learning. The
brain’s capabilities have motivated scientists to imitate it through ANNs [81].
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Figure 2.2: The components of a neuron [62]

According to Khan [82] an ANN, or a Neural Network, consists of an input and an output
layer of neurons between which, one or several hidden layers of neurons exist. Neurons
are the fundamental processing units of an ANN and their in-between connections are
associated with a value called weight. Figure 2.4 shows an ANN with the input layer,
a hidden layer and the output layer. The structure of a single neuron can be seen in
figure 2.3.

The initial stages of Neural Networks can be specified around 1940s with McCulloch and

Pitts [52] presenting the first computational model of a neuron. In 1960 Widrow and Hoff
[54] created "Adaline", Adaptive linear neuron, a single-layer neural network, based on
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Figure 2.4: An example of an ANN architecture

[52] but differing from it in the learning phase during which the weights are adapted.
Around the same era, two research works [53], [83] that presented perceptrons, con-
stituted another important milestone. Perceptrons’ innovation lies in the mathematical
proof that they always converge to a solution, if the problem is linearly separable. How-
ever, Minsky and Papert [55] questioned Rosenblatt’s aforementioned work, something of
great impact on the Al history, since it discouraged scientists from further research. It
was in the 1980’s when progress started happening again, with important examples being

43



the work of Kohonen [56] and Hopfield [57] with the first one proposing Self-organizing
maps (SOMs), or Kohonen maps and the second one proposing the Hopfield network, a
form of recurrent neural network. One of the first research studies implementing a CNN
belongs to LeCun et al. [58], proposing a CNN to identify handwritten postal codes. How-
ever, wide usage of CNNs emerged in 2012, after the remarkable classification results on
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC2012 [84]) achieved by
Krizhevsky et al. [59] and the CNN proposed, named AlexNet.

Some of the cornerstones of artificial intelligence and its evolution over the years can be
seen in table 2.1

Subject Year | Authors

Introduction to Neural Networks 1943 | McCulloch and Pitts [52]
The perceptron 1959 | Rosenblatt [53]
Adaptive pattern classification machine "Adaline" | 1960 | Widrow and Hoff [54]
Mathematical proofs about perceptrons 1969 | Minsky and Papert [55]
Self-Organizing Map (SOM) 1982 | Kohonen [56]

Hopfield Networks 1982 | Hopfield [57]
Introduction to CNNs 1989 | LeCun et al. [58]

Best results in ILSVRC2012 2012 | Krizhevsky et al. [59]

Table 2.1: The evolution of Artificial Intelligence

2.2.2 Convolutional Neural Networks

Convolutional Neural Networks constitute one of the most important advances of Artificial
Intelligence and Machine Learning. They are widely used in image classification tasks and
implement supervised learning, where each input value is associated with an output value
or target. The aim of this type of Neural Networks is to reduce the overall classification
error, in order for the model to be reliable. As stated by Gonzalez and Woods [85], a
fundamental difference between CNNs and other Neural Networks is the type of expected
input, which for a CNN must be 2D arrays, making them highly suitable for tasks related
to images. The main operation differentiating CNNs from other NNs is the convolution, a
sum of multiplications. The convolution of a kernel w of size m x n with an image f(z,y)
is given by:

(U)*f)(ﬂ?,y): Z ZU)(S,t)f(SC—S,y—t) (27)

s=—a s=—b

The kernel slides over all spatial locations of the image in order for all the elements of the
2D array representing the image, to participate in the operation. A bias is added to every
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value coming from the convolution of the kernel with each part of the image and the final
result is passed through an activation function to acquire one simple value. These values
resulting from all the convolutions of the kernel with the image, create a new 2D array, the
feature map, which constitutes the input of the following layers. The operations described
above are conducted by the cornerstone of a CNN, the convolutional layer.

Other layers typically used in CNNs are the pooling layers. Their goal is reducing the
spatial dimensions of the feature maps. Consequently, the number of parameters to learn
and the computational effort needed by the network decrease. These layers summarise the
features of a region of the feature map at which they are applied. The new, summarised
features become the input of the following layers. Pooling is conducted in small regions of
the feature map, usually 2 x 2 areas, while the pooling method can vary, with the two most
common methods being max-pooling and average pooling. Max-pooling is conducted by
sliding a max filter of size m x n over all values of the feature map and keeping only the
maximum of the values contained in the m x n patch of the feature map, on which the filter
is applied. Average pooling works in the same way as max-pooling, but differing from it
on the value being kept. In this case, the average of the values belonging to each patch is
kept.

A common problem related to machine learning is overfitting. A model is overfitting when
it learns how to efficiently classify the training data but cannot reach such high perfor-
mance on the evaluation data. The dropout layers are introduced to deal with this prob-
lem, by randomly setting input units to O following a specific rate.

The final goal of a CNN is the classification of the images according to the task. This
can be achieved by inputting the final extracted features into a classifier which consists of
fully connected layers, with the conversion of the 2D feature maps acquired to a 1D vector
being essential, in order for the features extracted to be inputted in the fully connected
layers. The input of a fully connected layer is passed through the activation function used,
in order for the output to be acquired. These basic operations executed during a CNN’s
training are schematically shown in figure 2.5.

As already mentioned, an activation function is needed for the output of a convolutional
or a fully connected layer to be acquired. The activation function of a node defines its
output, given a specific input. The Rectified Linear Unit (ReLU) activation function is one
of the mostly used activation functions in a convolutional layer and is the one used in the
models implemented in the current thesis. ReLU is defined by:

f(x) = max(0,z) (2.8)

Hence the output is the same as the input, if it is positive, otherwise it equals 0. The
activation function used for the output layer of the proposed architectures is the sigmoid
function, since the task examined is a binary classification task, which is given by:
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1 + exp(—x) (2.9)

sigmoid(x)

The implementation of the CNN architectures utilized in the current thesis is achieved
using TensorFlow [86], an open source library widely used in ML and Keras [87], a deep
learning API written in Python.
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Figure 2.5: An example of a fundamental CNN architecture

2.2.3 Machine Learning and Medicine

Many computer-based algorithms used in medicine are sets of rules encoding knowledge
on a specific topic. These rules are implemented in order for decisions, such as the most
suitable medicine for a case, to be made. Nonetheless, the continuous rise in the available
health care data has provided the opportunity to create and train machine learning mod-
els for the assistance of medical decisions in multiple different fields. Machine Learning
approaches problems in a human like manner, by processing the available information and
learning rules stemming from the data. The main difference between human and machine
learning is the data needed in order for the ability of diagnosing a medical condition to
be acquired. The human brain is able to learn and recognise patterns using very little
data, in contradiction to a machine that requires tremendous amounts of data to reach
acceptable performance levels with the quantity and quality of it playing a decisive role.
However, a machine that can be trained on thousands or millions of data will eventually
be able to recognise diseases or classify X-rays and CT-scans depending on the patient’s
condition, in opposition to a physician who will not even be able to see such an amount of
data throughout his or her career. Nevertheless, great amounts of data are useless without
a suitable pre-processing and the right algorithms. As this field of science evolves and the
available data improves in quality and quantity, machine learning algorithms could reach
better results and lower error rates than trained experts, since they will have been exposed
to extremely larger amounts of data with the predictions made being independent of other
factors affecting a human’s decision, such as fatigue or else exogenous conditions.

According to the Institute of Medicine, diagnosis error is likely to occur in the care of every
patient during his or her life, with possibly disastrous consequences [88]. To that end, the

46



best utilization of the available data and technologies, would prevent such mistakes on the
maximum possible degree. Although machine learning models can be trained to diagnose
diseases or suggest treatments with extremely high accuracy, errors are always likely to
occur and the model’s suggestion should be examined by an expert. Thus, machines should
be used as a supportive mean, making suggestions about tests that could be conducted,
questions that could be asked to a patient, as well as the relevant possible health conditions
[89], [90], [91], [92], [93].

2.3 Metrics used for classification assessment

There are four important values produced during predicting the class in which the evalua-
tion samples belong and these are the number of true positive (TP) and true negative (TN)
predictions as well as the number of false positive (FP) and false negative (FN) predictions.
These values are used to calculate different classification metrics. Some of these metrics
used in the current thesis to assess the performance of each model in combination with
the dataset examined, are namely: accuracy, sensitivity, precision and specificity. Accuracy
is the ratio of the number of correct predictions to the number of total predictions made
and can be calculated using the following formula:

TP +TN
A - 2.10
Y = TPy TN+ FP+ FN (2.10)

However, accuracy, solely used, is not a good indicator of a model’s performance when
the dataset used is imbalanced, as it is in the task examined. This is due to the fact that
predicting all the samples as non-Covid could produce very high accuracy results, but by
using a model that has not acquired any knowledge on the problem it is required to solve.
In health related tasks, a metric that is highly indicative of a model’s performance is the
Sensitivity, or Recall, which is calculated by formula:

TP

Sensitivity provides information about the number of positive (covid) samples correctly
predicted as positive, out of the total number of samples belonging to the positive class.
Another metric used is the Precision metric which calculates the number of correct pre-
dictions of samples belonging to the positive class out of the total number of samples
predicted to belong to this class and is calculated using the following formula:

TP
Precision = 7_'P—|——F1P (212)
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In contrast with Precision, Sensitivity is a metric of higher importance, since predicting
a covid sample as non-covid can cause more undesirable consequences than predicting a
non-covid sample as covid. Another metric used to assess the performance of a model
is Specificity, which is calculated using formula 2.13 and is indicative of the number of
negative (non-covid) samples predicted correctly by the classifier.

TN
Speci ficity = TN+ FP (2.13)

Lastly, the Area Under the Curve (AUC) metric is also calculated. The AUC-ROC curve
(Area Under the Curve of Receiver Characteristic Operator) is a probability curve which
plots the True Positive Rate (TPR) against the False Positive Rate (FPR) at various threshold
values, with the Area Under the Curve (AUC) value measuring the ability of a classifier to
distinguish between the positive and negative class. The TPR equals the sensitivity value,
while the FPR can be calculated using formula 2.14 and depicts the percentage of the
negative class that was incorrectly classified.

. FP e
False Positive Rate = TN FP 1 — Speci ficity (2.19)

In the ideal situation where the model can completely distinguish between the two classes,
the value of the AUC equals 1.0 and the AUC-ROC curve is given by figure 2.6(a). However,
when the model cannot fully distinguish the two classes, the value of the AUC metric would
range between [0.0,1.0). The higher the AUC value, the higher the possibility of the model
distinguishing between the two classes. For instance, an AUC value of 0.7 means that the
chance of the model distinguishing the two classes equals 70%. The AUC-ROC curve in
such a situation can be seen in figure 2.6(b). In the worst possible situation where the
model cannot distinguish between the two classes, the AUC value would equal 0.5 and the
relative AUC-ROC curve is presented in figure 2.6(c). Lastly, when the AUC value equals
0.0 the model predicts all the positive samples as negatives and vice versa, with the relative
AUC-ROC curve being depicted in figure 2.6(d).
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Figure 2.6: An explanation of the AUC-ROC curve [63]
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Chapter 3

Deep Learning Methods for the
detection of COVID-19

3.1 Datasets

Three different datasets or subsets of them containing respiratory sounds from Covid and
non-Covid users have been used.

3.1.1 Cambridge dataset

The Cambridge dataset is a crowd-sourced dataset containing breath and cough sounds
recorded via an android and a web application [45]. The dataset is shared with us under a
data-sharing agreement and contains breath and cough audio samples from users declaring
to belong in one of the following categories: healthy with no symptoms, healthy with
cough as a symptom, tested positive in Covid-19 with cough as a symptom, tested positive
in Covid-19 but do not have cough as a symptom and users with asthma reporting to have
cough. The specific distribution of the samples in each of the different users’ categories, as
well as the recording method used (android or web), is shown in figure 3.1.

Only three of the above categories were used. More specifically, cough samples from
healthy users without any symptoms, recorded either through the android or the web ap-
plication comprised the non-Covid samples used, while cough samples from users declar-
ing to have tested positive in COVID-19 that may or may not have had cough as a symptom
and have been recorded either via the android or the web application, comprise the Covid
samples used. The part of the dataset used, contains 141 Covid samples acquired from 66
different users and 298 non-Covid samples acquired from 220 different users. No other
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metadata such as the age or the gender of the user have been shared.

Each of the samples given is associated with a unique user ID, whether it has been recorded
through the android or the web application. No user has recorded more than one samples
using the web application. However, some users gave more than one sample using the
android application, providing the ability to track possible changes in their physical health.
These users will be referred to as "returning users". As far as the three android categories
used are concerned, none of the returning users’ condition changed in the new audio
recordings. From the total 247 android users, 30 recorded samples more than once. Each
sample is accompanied by a unix timestamp in milliseconds, providing information about
the exact date and time at which it was recorded. These timestamps are used for tracking
the time interval between samples provided by the same user. Nevertheless, some of the
returning users recorded their samples in less than 24 hours after the previous recording.
These samples were considered to not offer any new information about the user’s condition
and were not included. In total, 40 samples were not used, creating a new distribution
of the covid and non-covid samples in each category, shown in figures 3.2(a) and 3.2(b).
More specifically, concerning the audio files recorded via android, 12 audio samples from
users tested positive but without cough as a symptom, 5 samples from users who tested
positive and had cough as a symptom and 22 audio samples from healthy users without
symptoms were not included in the classification task, because of the time interval between
them and the previous or the following recording being smaller than 24 hours. The total
number of Covid samples used, regardless the mean of recording and the existence of
cough as a symptom, are 124 with the total number of non-Covid samples being 276 as
shown in figure 3.2(c).
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3.1.2 COUGHVID dataset

The COUGHVID dataset [94] is another crowd-sourced dataset containing cough audio
samples recorded through a web application. The version of the dataset used in the current
thesis contains 27,550 cough samples, each from a different user. Metadata information
about each user recording a cough sample is also provided. More specifically, information
about the geographical coordinates, the age, the gender and the respiratory condition of
the user, is collected. Moreover, the users can self-report information about their health
status as COVID-19, symptomatic, i.e. declaring they have symptoms but no diagnosis,
and healthy. Not all metadata information was given by all users. Only 55.24% (15,218
samples) of the users have provided age information with the average age being 36.8
years. The frequency of audio samples based on the user’s age is shown in figure 3.3(e).
From the total available samples, 58.89% (16,224 samples) contain information about the
gender, the user’s respiratory condition and the existence of fever or muscle pain. The
same amount of samples are accompanied by health status information. More details
about the distribution of the samples in each of the aforementioned categories are shown
in figures 3.3(a)- 3.3(d).

Since crowd-sourced data can contain samples of poor quality, a classifier that provides the
probability with which a given audio sample contains cough is also shared. Moreover, the
results of the classifier for each of the shared audio samples is contained in the metadata
information. A probability threshold of 0.8 is used, as suggested by Orlandic et al. [94], in
order for audio samples that do not contain cough to be excluded in the maximum possible
extent. Out of the total 27,550 samples 54.9% (15,125 samples) are considered to contain
cough according to the aforementioned cough classifier. Some metadata statistics have
been calculated only for the samples classified as cough samples. The user’s age was given
in 10,291 samples (68.04% of the total cough samples), with the average age being 36.44
years. Information about the gender, the user’s respiratory condition, the existence of
fever or muscle pain and the health status was included in 10,819 samples (71.53% of the
total cough samples). The distribution of the cough samples according to the metadata
information is shown in figures 3.4(a)- 3.4(d). Due to the fact that 10,819 samples, out of
the 15,125 cough samples, contain status information as it has been declared by the user,
these are the samples that can be used and they are classified as Covid or non-Covid based
on the user defined health status. As shown in figure 3.5 this dataset contains 699 Covid
samples and 10,120 non-Covid samples, considering as non-Covid samples those deriving
from users declaring to be either healthy or symptomatic, but without a diagnosis.

Apart from the publication of the crowd-sourced data and metadata information about
them, some of these samples were annotated by four expert physicians to improve the
quality of the dataset. Each expert annotated 1,000 samples. The total number of samples
annotated by at least one expert amounts to 2,804, with expert 1 and expert 2 having
annotated 802 samples, expert 3, 796 samples and expert 4, 803 samples with 129 of
these samples being annotated by all four experts. Figure 3.6 shows the distribution of
samples in the two classes as labelled by each expert.
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Figure 3.3: Metadata statistics for the COUGHVID dataset

An interesting observation on the experts’ annotation is the fact that 621 samples have
been labelled as samples from users infected by COVID-19 by at least one expert, 26 sam-
ples by at least two experts, 2 samples by at least three experts, while no sample has been
labelled as a COVID-19 sample by all experts. This shows a high discordance between the
four experts, confirming the difficulty existing in the classification of a cough sample as
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Covid or non-Covid. Figure 3.7 presents the number of samples annotated as Covid that
have also been labelled with some other audible respiratory condition by at least one ex-
pert. It is observed that most of the Covid samples do not present any audible respiratory
condition.
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There occur 124 contradictions between the experts’ annotations as they can be seen by
the different labels given to the same sample when annotated by more than one expert. To
that end, in order to classify a sample in the covid or the non-covid class, the agreement of
each expert’s annotations with the status given by the user was calculated. When a sample
is annotated by more than one experts and the labels given are not the same, the sample
is classified in the class indicated by the expert with the higher rate of agreement with the
status given by the users. As shown in figure 3.8 this subset of the COUGHVID dataset
contains 553 covid samples and 2,251 non-covid samples.
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Although the annotated dataset is noticeably smaller than the original dataset, it is less
imbalanced.
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3.1.3 Coswara dataset

The Coswara dataset [72] is an open access dataset containing cough, breath and speech
sounds both from healthy and from COVID-19 infected users. It contains two types of
cough sounds, heavy and shallow, two types of breath sounds, shallow and deep, sus-
tained vowel phonation and two types of one to twenty digit counting, normal and fast
paced. Each user provided 9 different audio samples, but for the purposes of the current
thesis only the two types of cough sounds, heavy and shallow, have been used as separate
datasets. Each audio sample is accompanied by metadata information including the age,
the gender, the location, the current health status of the user, as well as information about
the presence of co-morbidity. All audio files have been manually assessed, with regard
to the quality of the audio sample and the category it belongs to, by 13 annotators with
each file being annotated once. Each of the 9 categories contains 1,569 samples and their
distribution in the possible health status (healthy, no respiratory illness exposed, not iden-
tified respiratory illness, positive mild, positive moderate, positive asymptomatic and fully
recovered) is shown in figure 3.9. The samples with a status in one of the three categories
i.e. positive mild, positive moderate and positive asymptomatic are classified as Covid,
with the rest of the samples being classified as non-Covid.

Healthy 1.59%
(25 samples)
1.08%
(17 samples)
0.83%
(13 samples)

78.9%
(1238 samples)

ully recovered

POSITIVE asymptomatic

5.8% POSITIVE moderate
J 0

(91 samples)

POSITIVE mild
5.1%

(80 samples)
6.69%

(105 samples) Not identified respiratory illness

No respiratopry illness exposed

Figure 3.9: The health status distribution of the samples in the Coswara dataset

As for the metadata provided, the user’s age was given in all available samples, with the
average age being 33.22 years. The frequency of audio recordings based on the age of the
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user is shown in figure 3.10.
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Figure 3.10: The samples per age distribution for the Coswara dataset

As for the gender distribution, 1,175 samples belong to male users and 395 to female.
Moreover, 81 users declare to have diabetes as a pre-existing condition, 62 users declare
to have asthma, 96 users declare hypertension, 3 users reported having a chronic lung
disease and 7 users declared having ischaemic heart disease as a pre-existing condition.
As for the symptoms reported, 118 users declared cough as a symptom, 3 users declared
diarrhoea, 24 users reported breathing difficulties, 56 users declared sore throat, 66 users
reported fever, 34 users fatigue, 36 users muscle pain and 26 users reported loss of smell
as a symptom. Last but not least, 113 users declared to be smokers, 5 users reported
having pneumonia and 88 users a cold. Out of the total 1,569 different samples available,
information about the Covid test status is provided only in 156 of them, with 26 users
declaring to have been tested positive, 44 users declaring having been tested negative
and 86 users declaring to not have taken a test. Although some users have declared to
be returning users, i.e. having previously recorded samples, a unique ID is assigned to
each sample making the recognition of samples deriving from the same user impossible.
However, the users that have denoted to be returning users are only 40 (2.55% of the total
number of users). The above information is schematically presented in figures 3.11(a)-
3.11(d).

Due to some files containing bad audio quality, 1,541 cough-heavy samples and 1,539
cough-shallow samples are used. From the total of 1,541 cough-heavy samples, 103 of
them are Covid samples (6.68%) with the other 1,438 being non-Covid samples (93.32%).
As for the distribution of cough-shallow samples in the Covid and non-Covid classes, 103
of them belong to the Covid class (6.69%) and the other 1,436 samples (93.31%) belong
to the non-Covid class. These can also be seen in figures 3.12(a) and 3.12(b).
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Figure 3.11: Metadata statistics for the Coswara dataset

3.2 CNN architectures used

Six CNN architectures were used in total, with three of them being small CNN models
created for the current task and the rest being already existing pre-trained models. The
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Figure 3.12: Statistics about the Coswara cough heavy and shallow datasets

three CNN architectures created, will be referred to as Model 1, Model 2 and Model 3, as
detailed in subsections 3.2.1, 3.2.2 and 3.2.3 respectively. As for the pre-trained models,
ResNet-50, DenseNet-201 and Xception were examined, since they account for three of the
highest accuracy scoring models on the ImageNet classification task.

3.2.1 Model 1

Model 1 consists of two convolutional layers, each one containing 16 nodes, with the ker-
nel used in the first one being 9 x 3 and in the second one being 5 x 3. The activation
function used in both convolutional layers is the Rectified Linear Unit (ReLU). Each convo-
lutional layer is followed by a max-pooling layer, with a pooling window of size 2 x 2 and
an equal stride and a dropout layer with a dropout rate of 0.2. These layers are followed
by a flatten layer, a dropout layer with a dropout rate equal to 0.4 and a dense layer with
one node and sigmoid activation function. The Adam optimiser is used with a learning rate
of 0.0001 and the loss function used is the binary cross entropy. This model constitutes
a variation of the architecture utilized by Amoh and Odame [36] for a cough detection
related task. This architecture is schematically described in figure 3.13.
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Figure 3.13: The architecture of Model 1

3.2.2 Model 2

Model 2 consists of three convolutional layers. The first one contains 4 nodes, using a
kernel of size 5 x 5 and ReLU activation function. It is followed by a dropout layer with
a dropout rate equal to 0.3 and an average pooling layer with the size of the pooling
window and the stride being 2 x 2. These three layers are repeated and the difference
between the second and the first convolutional layer lies in the number of nodes which
equals 16. The third convolutional layer contains 32 nodes, with the kernel size being
5 x 5 and the activation function used being ReLU. It is followed by a dropout layer with
a dropout rate of 0.3, a flattening layer, a dropout layer with a dropout rate equal to
0.5 and the dense layer containing one node and using sigmoid activation function. The
Adam optimiser is used with a learning rate of 0.0001 and the binary cross entropy loss. A
schematic illustration of Model 2 can be found in figure 3.14.
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Figure 3.14: The architecture of Model 2

3.2.3 Model 3

Model 3 differs from Model 2 in the configuration of the parameters. More specifically, the
differences lie in the following parameters: No dropout layers are used and the number of
nodes used in the first convolutional layer equals 10, with a 7 x 7 kernel size. The nodes
used in the second convolutional layer are 30 with the size of the kernel being set to 5 x 5.
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In the third convolutional layer, the number of nodes used equal 100, with a kernel of size
3 x 3. The RMSprop optimiser is used with a learning rate of 0.001 and the discounting
factor for the gradient being 0.4. Moreover, the loss function used is mean squared error.
The modifications in the above parameters are a result of implementing hyper-parameter
optimisation in Model 2 using the annotated COUGHVID dataset transformed with HCQT.
The model is also depicted in figure 3.15.

100@19x19

Input 10@94x94 300@43x43 30@21x21

1@100x100

10@47x47

Covid/Non-Covid

- Ix1
/) Output
A\Y
\

Flatten
Convolution (7x7) Average Pooling (2x2)

Convolution(5x5)
Average Pooling(2x2)

Figure 3.15: The architecture of Model 3

3.2.4 ResNet model

The ResNet architecture implements residual learning and won the 1st place on the ILSVRC
2015 classification task [95]. The current thesis utilizes the ResNet-50 architecture which
has been widely used in cough classification tasks [31] and especially in Covid related tasks
achieving remarkable results [46], [50]. The initial weights used are the ones acquired
when training the model on the ImageNet dataset. A classification head consisting of a
dropout layer with a dropout rate equal to 0.5, a global average pooling layer and a dense
layer with sigmoid activation function, is added to the convolutional base of the model.
The Adam optimiser is used with a learning rate of 0.0001 and the binary cross entropy
loss.

3.2.5 DenseNet model

The Dense Convolutional Network (DenseNet) was introduced by Huang et al. [96] and
its innovation lies in the fact that each layer is connected to every other layer in a feed-

forward fashion. A traditional convolutional network with L layers has L connections
while DenseNet has L(LTH) connections. The DenseNet-201 architecture is implemented in

the current thesis. The initial weights used are the ones acquired when training the model
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on the ImageNet dataset. The classification head of the model is replaced by a dropout
layer with dropout rate equal to 0.5, a global average pooling layer and a dense layer with
sigmoid activation function. The Adam optimiser is used with a learning rate of 0.0001
and the binary cross entropy loss.

3.2.6 Xception model

Xception is a deep CNN architecture inspired by Inception [97]. However, the Inception
modules have been replaced with depthwise seperable convolutions, achieving slightly bet-
ter performances than InceptionV3 architecture on the ImageNet dataset [98]. The initial
weights used are the ones acquired when training the model on the ImageNet dataset. A
classification head consisting of a dropout layer with dropout rate equal to 0.5, a global
average pooling layer and a dense layer with sigmoid activation function is added to the
convolutional base of the model. The Adam optimiser is used with a learning rate of
0.0001 and the binary cross entropy loss.

3.3 Implemented Methods

The aforementioned datasets, or subsets of them, have been used to train and test multi-
ple CNN architectures. The general method followed is a 5-fold cross validation method,
experimenting with different CNN architectures and combinations of them, amalgamat-
ing them with different datasets and audio to image transformations. The audio samples
are initially converted to images using one of the four transformations described in sec-
tion 2.1.2. The obtained images are then used as the dataset and the following methods
described are implemented on them. An example of a cough audio sample from a Covid
infected individual and from a healthy individual, converted using all four transformations
described, is presented in figure 3.16(a) and 3.16(b) respectively.

3.3.1 5-fold cross validation

In this method, the dataset is divided in 5 different folds, each one containing approxi-
mately 1/5 of the dataset’s samples. Each one of the five folds is used as a test set exactly
one time, while the four remaining folds comprise the train and validation set. The train
set contains three folds while the validation set is comprised of one fold, creating a 60%-
20%-20% split for the train, validation and test set respectively, as shown in figure 3.17.
Each fold is also used as a validation set exactly once, reassuring that all the data will be
used precisely one time in the validation and the test set.
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(a) Conversion of a cough sample from a COVID- (b) Conversion of a cough sample from a healthy in-
19 infected individual with cough symptoms using dividual without any symptoms using multiple trans-
multiple transformations formations

Figure 3.16: Examples of converting audio to image

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 2 Fold 3 Fold 4 Fold 5 - Split 1
Fold 1 Fold 3 Fold 5 Fold 4 - Split 2
Fold 1 Fold 4 Fold 5 Fold 2 - Split 3
Fold 2 Fold 3 Fold 5 Fold 1 - Split 4
Fold 1 Fold 2 Fold 4 Fold 3 - Split 5
Train Set Validation Test Set
Set

Figure 3.17: Description of the 5-fold cross validation data split

During training, Synthetic Minority Oversampling Technique (SMOTE) is applied for deal-
ing with the under representation of the minority class. SMOTE is an over-sampling tech-
nique that has been used in cough classification tasks for dealing with imbalanced datasets
[99]. It has also been implemented in Covid related, image classification tasks as well as
cough classification tasks using CNN architectures [100], [50]. SMOTE over-samples the
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minority class by creating synthetic examples. These are samples created along the line
segments that join some or all of the k£ nearest neighbours. The neighbours to be used are
randomly chosen from the &k nearest neighbours of a sample, depending on the amount of
oversampling required in the minority class [101]. The creation of synthetic samples using
SMOTE is schematically depicted in figure 3.18. The SMOTE class from the imbalanced-
learn library [102] is employed, with the number of nearest neighbours used to construct
synthetic samples being set to 5 and the random state used to control the randomization
of the algorithm being set to 42.

. . . Majority class samples
. Minority class samples
. _|_ Synthetic minority class samples

Figure 3.18: Synthetic Minority Oversampling Technique (SMOTE)

The Hybrid Constant-Q Transform was implemented in all datasets, with the sampling
rate being equal to the initial sampling rate of the signal, the number of samples between
successive CQT columns being set to 512, while the window function used is Hann window.
Moreover, the Mel Spectrograms were also examined and the conversion of the audio
samples was conducted, with the sampling rate being equal to the signal’s initial sampling
rate. In order for these audio transformations to be obtained, Librosa, a Python package
for music and audio analysis was used [103]. The three CNNs created, as well as the
ResNet-50 and the DenseNet-201 architectures, were tested. Since the available datasets
are imbalanced, an ensemble method is also examined and is explained in detail in section
3.3.2.
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3.3.2 Ensemble method

Due to the nature of the problem, the available datasets are highly imbalanced with the
vast majority of the samples belonging to the non-Covid class. As a consequence, it can
be difficult for a model to become able to distinguish between the two classes, rendering
itself inappropriate for the specific task. However, ensemble methods have been widely
used with imbalanced data, showing promising results in enhancing a model’s performance
[104], [105]. The ensemble method was implemented for the subset of the COUGHVID
dataset that contains only annotated cough samples and for the Cambridge dataset. Four
different audio to image conversions were applied in this method and they namely are:
HCQT, Mel Spectrograms, CQT and STFT. The configuration of the first two is the same
as the one described in section 3.3.1. As for the CQT transform, the sampling rate is
equal to the initial sampling rate of the signal, the number of samples between successive
CQT columns is set to 512, while the window function used is Hann window. The STFT
transformation is obtained by setting the n_ f ft parameter, which denotes the length of the
windowed signal after padding with zeros, to 2048 with the window function used being
the Hann window. All of the aforementioned transformations were acquired using Librosa
[103]. In order for the validity of the acquired classification results to be ascertained, the
ensemble method is combined with the 5-fold cross validation method described in section
3.3.1. To that end, the separation of the train set used in the ensemble method refers to
the train set regarding a particular split out of the 5 different dataset splits used.

Ensemble method for the annotated COUGHVID dataset

Since the percentage of Covid samples in the annotated COUGHVID dataset equals 19.72%
of the total samples with the non-Covid samples constituting the other 80.28%, the ensem-
ble model consists of four models, in order for the train samples to be almost equally dis-
tributed between the two classes. The same CNN architecture is used four separate times,
trained using a different part of the dataset each time. The validation and test set are
preserved the same. Testing each of the four models using the same test set provides four
probability outputs for each one of the test samples. The average of these four probabilities
acquired is used as the classification probability for the corresponding test sample. This
probability is converted to the final prediction referring to this sample using a probability
threshold set to 0.5. Samples with probability greater than or equal to the threshold are
classified as Covid and the ones with a probability smaller than the threshold as non-Covid.
The splitting of the dataset for the current case is schematically depicted in figure 3.19.

The CNN architecture, depicted as a "black box" in figure 3.19, is the same for the four
models. The difference between these four models lies in the dataset used for their train-
ing. Each model is trained on 1/4 of the non-Covid samples and on all of the Covid samples
belonging to the train set, as it results from the initial split of the dataset. The assignment
of data samples to each model can also be seen in figure 3.20.
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samples

samples  samples  samples

CNN Architecture ~ CNN Architecture ~ CNN Architecture =~ CNN Architecture
Figure 3.19: Dataset split for the ensemble method using the annotated COUGHVID dataset

Ensemble method for the Cambridge dataset

The ensemble method when using the Cambridge dataset follows the exact same principles
described regarding the annotated COUGHVID dataset, but uses two CNN architectures
instead of four. That is because the Covid class contains 31.0% of the total samples and the
non-Covid the other 69.0%, so splitting the negative samples into two equally sized subsets
and combining them with the positive samples would provide a balanced train set. More
specifically, two probability outputs are provided for each one of the test samples. The
average of these two probabilities acquired is used as the classification probability for the
corresponding test sample. This probability is converted to the final prediction referring to
this sample using a probability threshold set to 0.5. Samples with probability greater than
or equal to the threshold are classified as Covid and the ones with a probability smaller
than the threshold as non-Covid. The splitting of the Cambridge dataset is schematically
depicted in figure 3.21.

3.3.3 Multiple trainings of ResNet architecture with different cough
datasets

Four different datasets are used in this method and are namely the following: Coswara
cough heavy, Coswara cough shallow, annotated by experts subset of COUGHVID dataset
and Cambridge dataset. As previously stated, the Coswara cough heavy dataset contains
1,541 samples, with 103 of them being Covid samples (6.68%) and the other 1,438 be-
ing non-Covid samples (93.32%). The Coswara cough shallow dataset contains 1,539
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Figure 3.20: Assignment of data samples in each one of the ensemble models when using the
annotated COUGHVID dataset

samples, 103 of which are Covid samples (6.69%) and the other 1,436 are non-Covid
samples (93.31%). The annotated by the experts subset of COUGHVID dataset contains
2,804 cough samples in total, 553 of which are Covid samples (19.72%) and 2,251 are
non-Covid samples (80.28%). The Cambridge dataset contains 400 samples in total, with
124 of them being Covid samples (31.0%) and the other 276 being non-Covid samples
(69.0%).

Three pre-existing, Deep Learning architectures, ResNet-50, DenseNet-201 and Xception,
have been examined and the reason for choosing to examine this method using deep,
already existing CNN architectures, lies in the fact that they are provably able to achieve
significant classification results. Throughout the majority of experimentations the ResNet-
50 model is used and the following pipeline is implemented during training: The model is
trained on the four aforementioned datasets. It is initially trained using the Coswara cough
heavy dataset, initializing the weights with the ones acquired by pre-training the model on
ImageNet. The dataset is split into train and validation set with the separation rate being
80%-20%. During training Synthetic Minority Oversampling Technique (SMOTE) is used,
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Figure 3.21: Dataset split for the ensemble method using the Cambridge dataset

in order for the train set to become balanced and contain the same number of Covid and
non-Covid samples. The ResNet-50 model trained on the Coswara cough heavy dataset
is then trained on the Coswara cough shallow dataset using the exact same method of
training, that being using 80% of the dataset as the train set and the other 20% as the
validation set and implementing SMOTE during training to balance the train set. The
new model, resulting from training the pre-trained on ImageNet ResNet-50 model with
the Coswara cough heavy and shallow dataset, is then trained using the subset of the
COUGHVID dataset containing only samples that have been annotated by experts. The
same, previously described, training method is also followed with this dataset. The model
acquired by training ResNet-50 with the three aforementioned datasets is then used with
the Cambridge dataset. The 5-fold cross validation method is combined with the ensemble
method. The dataset is divided into 5 folds, with 3 folds being used as the train set, 1
fold as the validation set and 1 fold as the test set. Each fold is used as the test and
the validation set exactly once. As for the ensemble method, two of the aforementioned
ResNet-50 models are used, in order for the train set to become balanced and reduce
the negative effects of an imbalanced dataset in the classification results, as described in
section 3.3.2. The steps used in order for the final classification results to be obtained,
are schematically shown in 3.22. This combination of datasets and architectures is mostly
examined, because it provided the higher classification results.

In the first three trainings of ResNet-50, the convolutional base of the model is trained
for 20 epochs. A classification head consisting of a dropout layer with a dropout rate
equal to 0.5, a global average pooling layer and a dense layer with sigmoid activation
function, is added to the convolutional base. Different trials have been made as for the
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Figure 3.22: Description of the steps followed in the method described in section 3.3.3

number of epochs used for the last training of the model using the Cambridge dataset.
Moreover, three different audio to image transformations, HCQT, Mel Spectrograms and
STFT, were used. In all cases, all datasets used for training the ResNet-50 have been
converted using the same transformation, either the HCQT, the Mel Spectrograms or the
STFT. The optimiser used is Adam optimiser and the learning rate is set to 0.0001. The
loss function used is Binary Cross Entropy loss and the label _smoothing parameter is set to
0.4. Label smoothing is a regularisation technique which introduces noise for the labels.
When this parameter is larger than O, the loss is computed between the predicted labels
and a smoothed version of the true labels. As a result, it prevents the model from making
very confident predictions during training, which could lead to bad generalisation.

The initial choice of this specific method and the idea of training the same model with
many different task-related datasets stems from the fact that the ResNet-50 architecture is
a deep, data "hungry" architecture and although it is pre-trained on ImageNet, a dataset
containing more than 14 million images, these do not display audio samples and hence the
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model does not have any previous knowledge on an audio related image classification task.
However, pre-training it on three relevant to the task datasets offers a better initialisation
of the model’s weights, enabling it to effectively learn features of the fourth dataset and
provide better testing results. Similar approaches to Covid classification tasks, analysing
respiratory audio samples using CNN architectures, have shown very promising results
and confirm the observation made that a ResNet architecture pre-trained on audio sam-
ples can provide very promising results in such a classification task. Researchers from MIT
combined a Poisson biomarker layer with three pre-trained ResNet-50 models in parallel.
The first ResNet-50 model was trained to distinguish the word "Them" from other words
using LibriSpeech, an audiobook dataset containing approximately 1,000 hours of speech
[47]. The second model was trained to learn sentiment features on the RAVDESS speech
dataset, a dataset including actors that intonate in 8 emotional states which are namely:
neutral, calm, happy, sad, angry, fearful, disgust and surprised [48]. The last ResNet-50
was trained to distinguish the spoken language of the person coughing (English or Span-
ish) on the cough dataset used, after taking into consideration only the metadata referring
to the spoken language of the person. The classification results provided by the pre-trained
models are higher than the ones acquired using not pre-trained ResNet-50 models [46].
Bagad et al. [51] used ResNet-18 as the base of their CNN architecture, pre-training it on
three open source cough datasets. The first one is the FreeSound Database 2018, contain-
ing 11,073 audio files belonging to 41 possible categories with 273 of them being cough
samples [70]. The second one is the Flusense dataset where 11,687 samples of various
categories were used, with 2,486 of them being cough samples [71]. Finally, Coswara
dataset was also used containing 2,034 cough sounds and 7,115 non-cough sounds [72].
The data were split in train and validation sets and the model was trained to predict the
presence or the absence of cough in an audio sample. This model was then used with a
Covid dataset created, containing 3,117 cough samples from 1,039 individuals, showing
that pre-training improves the mean value of AUC by 17%.
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Chapter 4

Results

The results presented have been acquired using a batch size of 32, with the shape of the
input images being equal to (100, 100, 3).

4.1 5-fold cross validation method using one single model

The initial results obtained concern the 5-fold cross validation method. Five different
datasets were examined using this method, as they are enumerated below.

1. Coswara cough heavy dataset

2. Coswara cough shallow dataset

3. COUGHVID dataset

4. The annotated by an expert subset of COUGHVID dataset
5. The Cambridge dataset

The classification results acquired by training the 5 models described in sections 3.2.1-
3.2.5 with each of the 5 different datasets, after transforming audio to image using both
the HCQT and the Mel Spectrograms, are presented in tables 4.1-4.5. The results using
these two audio to image conversions are chosen, since it was observed that they generally
provide higher values for the classification metrics than other transformations examined.
The values of the metrics presented have been acquired by training each model for 30
epochs. The model providing the highest values for the classification metrics, per transfor-
mation and dataset has been highlighted.
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. Accuracy Sensitivity Precision AUC Specificity
Transformation | Model (%) (%) (%) (%) (%)
Model 1 67.10 57.09 11.44  65.80 67.80
Model 2 73.46 48.42 12.50  67.17 75.25
HCQT Model 3 90.01 7.82 12.13  54.79 95.90
DenseNet | 92.86 3.91 25.71 56.83 99.24
ResNet 29.55 78.10 7.28 53.01 26.12
Model 1 72.48 50.83 12.01 64.34 74.05
Model 2 75.59 46.82 13.04  63.54 77.67
Mel Model 3 86.70 19.65 16.29  58.57 91.52
DenseNet | 92.28 2.86 11.67  55.10 98.68
ResNet 53.10 57.49 7.90 59.23 52.79

Table 4.1: Performance metrics for the Coswara Cough Heavy dataset

It is observed that Model 1 achieves the highest values for the classification metrics, al-
though the precision is extremely low. This indicates that most of the samples predicted as
positive, did not belong to the positive class, i.e. the number of TPs is low and the number
of FPs is high. Moreover, the sensitivity value is also low, ranging from 2.86% to 57.49%
depending on the model and the transformation used, indicating that the models cannot
predict the positive (covid) class correctly.

Transformation | Model Accuracy Sensitivity Precision AUC Specificity

(%) (%) (%) (%) (%)
Model 1 74.15 41.86 11.69 64.27 76.48
Model 2 68.88 45.71 10.12 64.05 70.54
HCQT Model 3 89.99 7.71 12.11 54.32 95.89
DenseNet 92.79 1.90 4.00 58.04 99.30
ResNet 34.20 73.81 7.19 54.53 31.35

Model 1 71.16 46.79 11.16  64.26 72.93
Model 2 71.61 42.70 10.35  64.17 73.68

Mel Model 3 89.28 7.90 9.30 53.94 95.13
DenseNet | 91.82 8.81 40.21 60.01 97.78
ResNet 49.30 57.19 9.06 61.46 48.74

Table 4.2: Performance metrics for the Coswara Cough Shallow dataset

The results acquired using the Coswara cough-shallow dataset are very similar to the ones
obtained when using the Coswara cough-heavy dataset, an anticipated observation taking
into consideration the fact that the two datasets contain cough samples from the same
users with the only difference being the type of cough recorded. Model 1 once again pro-
vides the highest classification results for this dataset. Comparing the best results obtained
using the HCQT in both datasets, the accuracy and specificity show an increase of 7-9%,
while the sensitivity presents a decrease of 16% when using the cough shallow samples
with the precision remaining invariable. Therefore, in the case of using the HCQT, Model
1 seems to be better at predicting the positive class when trained on cough-heavy samples,
while it achieves a higher specificity and overall accuracy when trained with cough-shallow
samples, indicating the ability of the model to predict the negative class more efficiently.

74



As for the case of using the Mel spectrograms, the differences in the results acquired from
Model 1 and for the two datasets are minor.

. Accuracy Sensitivity Precision AUC Specificity
Transformation | Model %) %) %) %) %)
Model 1 55.16 42.33 6.33 49.08 56.05
Model 2 50.52 47.90 6.15 50.68 50.70
HCQT Model 3 80.40 16.57 6.05 52.00 84.80
DenseNet | 91.79 4.30 13.18  54.65 97.84
ResNet 6.84 99.57 6.46 50.41 0.43
Model 1 52.52 57.94 7.74 55.97 52.14
Model 2 49.04 55.04 6.85 53.58 48.62
Mel Model 3 85.46 11.00 9.75 56.39 90.60
DenseNet | 91.95 3.43 10.60  55.71 98.06
ResNet 56.50 20.00 3.75 51.30 80.00

Table 4.3: Performance metrics for the COUGHVID dataset

Compared to the previously presented results regarding the two subsets of the Coswara
dataset, the values of the classification metrics acquired when using the COUGHVID dataset
are even lower. This confirms the fact that the quantity of the data and the distribution
of samples in the two classes are not the only factors affecting the classification ability of
a model, since the COUGHVID dataset contains a lot more samples with their distribution
between Covid and non-Covid being almost the same as the one in the other two datasets,
i.e. approximately 6% of the data belongs to the Covid class with the other 94% belonging
to the non-Covid class. Although the value of most of the measured metrics is low, the
best performances are obtained by Models 1 and 2 when using the HCQT and by Model 1
when using the Mel Spectrograms. Comparing Models 1 and 2 in the occasion of HCQT,
their difference lies in the accuracy, sensitivity and specificity values, with Model 1 achiev-
ing a slightly higher accuracy and specificity and thus predicting the negative class better
than Model 2 which reaches moderately higher sensitivity values and therefore predicts
the positive class marginally better. As for the ResNet and DenseNet architectures used,
either the sensitivity or the precision, or both, in most cases are significantly lower than
the ones provided by the rest of the architectures, indicating that the model has not been
trained well and the predictions made are random, classifying almost all samples either as
Covid or as non-Covid. It is observed that Model 1, trained with the Mel spectrograms of
the audio samples, outperforms the rest of the models independently of the transformation
used with regard to the COUGHVID dataset.

In comparison to the datasets previously examined, the annotated COUGHVID dataset
achieves a noticeable increase in the precision’s values, which are twice the ones reached
when using the Coswara cough-heavy and shallow datasets and approximately three times
bigger than the values achieved when training with all of the samples of the COUGHVID
dataset. The values of the rest of the metrics are kept at relatively the same levels in most
cases. The best performance is achieved by Model 1, independently of the transformation
used. A noticeably higher sensitivity value is reached when implementing the HCQT trans-
form, with the model being able to predict the positive class more efficiently. However,
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Accuracy Sensitivity Precision AUC Specificity
(%) (%) (%) (%) (%)
Model 1 50.16 62.01 22,51 55.37 47.24
Model 2 60.04 41.02 22.30 5391 64.69
HCQT Model 3 74.25 12.65 22.35 52.78 89.38
DenseNet | 70.68 19.50 22.26  53.86 83.23
ResNet 20.68 99.64 19.87  50.21 1.29
Model 1 54.48 47.79 21.31 51.63 56.13
Model 2 52.21 46.84 19.35  49.88 53.53

Transformation Model

Mel Model 3 71.30 15.53 20.95 52.03 85.00
DenseNet | 76.07 10.68 22.05 53.38 92.14
ResNet 22.00 96.92 19.81 49.57 3.60

Table 4.4: Performance metrics for the annotated COUGHVID dataset

the model achieves slightly higher accuracy and specificity values when employing Mel
Spectrograms, indicating an ability to predict the negative class slightly better.

Accuracy Sensitivity Precision AUC Specificity
(%) (%) (%) (%) (%)

Model 1 62.75 53.82 40.23  63.85 63.93

Model 2 61.75 55.76 39.98 61.97 61.97

Transformation Model

HCQT Model 3 66.00 35.67 43.70 64.47 77.96
DenseNet 47.50 87.74 36.18 65.22 29.93
ResNet 69.00 0.0 0.0 43.82 100.00

Model 1 62.00 55.51 40.66  63.57 63.47
Model 2 63.75 57.82 42.41 64.28 64.66

Mel Model 3 67.75 41.93 42.77  65.81 76.91
DenseNet | 57.22 83.57 40.86 67.17 45.33
ResNet 52.80 40.00 11.87  49.43 60.00

Table 4.5: Performance metrics for the Cambridge dataset

As for the Cambridge dataset, when using the HCQT transform the higher classification
results are acquired by Model 1, while Model 2 outperforms the rest of the models when
trained using Mel Spectrograms. Although the values of the metrics do not generally
indicate a large increase, the precision value is almost twice the respective value when
training the models using the annotated COUGHVID dataset and is the highest acquired
so far.

It is observed that Model 1 and 2 highly outperform the rest of the models independently
of the dataset used. The very low values in the classification metrics can be justified by
the high rate of imbalance between the two classes. This can be explained by the slightly
better results provided by the annotated COUGHVID and the Cambridge datasets, which
are the less unbalanced of the five, with the last one achieving precision values two times
larger than the ones achieved using the annotated COUGHVID dataset. Another factor
that complicates the examined task is the existence of bad audio quality samples, as well
as the fact that the data is labelled based on the user’s declarations, so the ground truth
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of the problem is not solid. An interesting observation are the classification results of
the ResNet-50 and DenseNet-201 models which are pre-trained on the ImageNet dataset.
In most cases, the sensitivity and precision of these models are significantly lower than
the ones provided by the rest of the architectures, whereas in some of the experiments,
the sensitivity value is extremely high with the rest of the metrics taking extremely low
values. In both situations, this behaviour indicates that the model has not been trained
well and the predictions made are random, classifying almost all samples either as Covid
or as non-Covid. Since these two pre-trained models have achieved very promising results
in other image classification tasks, the most possible reason for them not being trained
well, is the fact that the datasets they are trained on are not large enough for such deep
CNN architectures to become able to generalise well on unseen data.

4.2 5-fold cross validation method using ensemble mod-
els

Since the imbalance of the data plays a very important role on the ability of the model to
learn how to distinguish between the two classes, the ensemble method is implemented in
order for the negative results of this imbalance to be abated. The ensemble method was
implemented on the two datasets providing better results, which as previously mentioned
are the annotated COUGHVID dataset and the Cambridge dataset. The results obtained
from this method are presented in tables 4.6 and 4.7. More image to audio transforma-
tions were examined in this subsection, in search for the most suitable one for the task
addressed. More specifically, apart from the Mel Spectrograms and the HCQT, the CQT
and STFT transforms are also examined. The model achieving the highest classification
results for each dataset and transformation is highlighted.

It is observed that the values acquired by all models and transforms used are more consis-
tent in comparison to the ones obtained using one single model, with the general perfor-
mance of the best models being slightly better in the ensemble method. When implement-
ing the HCQT transform, the DenseNet model outperforms the rest. Model 2 achieves the
highest results when trained with Mel Spectrograms and STFT spectrograms, while Model
1 in the case of CQT. The overall best results for the ensemble method using the annotated
COUGHVID dataset are acquired using the CQT transform and Model 1. Although, a small
increase in the classification metrics is generally observed using the ensemble method with
the annotated COUGHVID dataset and Models 1 and 2, remarkable is the change observed
in the classification metrics of the rest of the models with the values obtained showing a
more consistent form, compared to these acquired by the previous method.

As for the implementation of the ensemble method using the Cambridge dataset, Model 1

provided the best results both when using the Mel Spectrograms and the STFT, Model 2
outperforms the rest of the models when using the HCQT, while Models 1 and 2 provide the
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Transformation Model Accuracy Sensitivity Precision AUC Specificity

(%) (%) (%) (%) (%)
Model 1 56.52 47.73 22.15 55.19 58.68
Model 2 53.70 55.18 22.49 55.25 53.34
HCQT Model 3 52.25 45.92 19.67 50.96 53.80
DenseNet 55.39 53.51 22.74 57.10 55.84
ResNet 52.36 54.60 21.89 56.40 51.81
Model 1 57.10 47.19 22.18 55.20 59.53
Model 2 53.18 52.98 21.82 54.86 53.23
Mel Model 3 51.78 52.64 21.09 53.70 51.58
DenseNet 57.73 48.11 22.99 56.62 60.10

ResNet 61.74 32.59 20.30  53.30 68.88
Model 1 57.99 50.83 23.81 57.29 59.75
Model 2 56.88 52.99 23.63  56.65 57.84

CQT Model 3 53.79 49.53 21.21 52.74 54.83
DenseNet 54.10 56.39 22.91 57.20 53.53

ResNet 36.94 72.28 19.84 51.30 28.22

Model 1 49.70 51.42 18.62 53.16 49.32

Model 2 51.84 55.17 20.05 54.09 51.09

STFT Model 3 51.50 43.98 17.40 48.51 53.18
DenseNet 52.88 50.41 19.44 54.14 53.43

ResNet 52.29 50.52 19.29 51.55 52.70

Table 4.6: Performance metrics for the annotated COUGHVID dataset in the ensemble method

best values for the classification metrics when employing the CQT transform. The results
acquired by the ensemble method are almost the same with these obtained when using one
single model architecture and the 5-fold cross validation training method. This behaviour
can be explained by taking into consideration the fact that the Cambridge dataset is not as
imbalanced as the rest. Nevertheless, the ResNet model is still not able to generalise well
in the test set. Although a generally remarkable increase in the value of the classification
metrics has been achieved by all models when implementing the ensemble method, the
classification results are still neither noteworthy nor reliable.

4.3 Multiple training of ResNet-50 architecture using 4
different datasets

The method described in section 3.3.3 leverages the availability of multiple different datasets,
taking into consideration the large amount of data needed for a Deep Convolutional Neural
Network to be trained. The pre-trained on ImageNet ResNet-50 architecture is trained us-
ing the Coswara Cough Heavy, Coswara Cough Shallow, annotated COUGHVID and Cam-
bridge datasets as explained in section 3.3.3. In the first three trainings, the model is
trained for 20 epochs. The number of training epochs used for the final training of the
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Accuracy Sensitivity Precision AUC Specificity
(%) (%) (%) (%) (%)

Model 1 60.30 54.68 40.07  61.49 60.57

Model 2 62.55 55.66 4190 63.68 63.05

Transformation Model

HCQT Model 3 62.30 48.71 42.02 63.29 67.01
DenseNet 49.17 79.73 34.44 61.08 35.89
ResNet 56.52 25.71 8.77 47.31 70.16

Model 1 60.80 54.82 39.96 61.06 60.83
Model 2 60.04 53.15 38.72  58.16 60.52

Mel Model 3 57.30 44.93 34.42 56.06 61.19
DenseNet | 55.79 68.34 40.95 66.07 51.20
ResNet 54.31 60.00 22.31 51.63 40.00

Model 1 60.05 51.77 38.92 59.16 61.30
Model 2 59.28 53.99 38.73 62.75 59.27

CQT Model 3 61.30 43.27 40.88 59.86 66.87
DenseNet 56.19 67.92 37.59 61.22 50.33
ResNet 45.47 39.17 7.90 45.66 60.00

Model 1 59.50 64.35 43.79  63.60 57.64
Model 2 56.56 52.55 36.70  60.63 58.29

STFT Model 3 55.78 52.41 34.71 57.44 55.57
DenseNet 67.42 58.51 47.92 69.78 70.94
ResNet 58.27 17.14 2.31 50.28 85.40

Table 4.7: Performance metrics for the Cambridge dataset in the ensemble method

model, using the Cambridge dataset, varies. The outcome of these trials is presented in
tables 4.10 and 4.11. However, the final choice of datasets to be used for pre-training
the ResNet-50 model was decided after trials conducted using different combinations of
datasets as they are presented in table 4.8. More specifically, table 4.8 contains the results
of initially training the ResNet-50 architecture for 20 epochs using either the Coswara
cough heavy dataset or the Coswara cough heavy and shallow datasets and then training
and testing the pre-trained model using the Cambridge dataset, utilizing the HCQT trans-
form for all of the different trainings of the model. Table 4.9 contains the results acquired
by training the pre-trained on ImageNet ResNet-50 architecture on the Coswara cough
heavy, Coswara cough shallow and Cambridge datasets for 20 epochs and finally training
and testing it, using four ensemble models as described in section 3.3.2, on the annotated
COUGHUVID dataset, using the Mel-Spectrograms of the audio samples contained in these
datasets.

As it can be observed, the classification results in the case of training the model with
less datasets are noticeably lower than these obtained when training it using all available
datasets. This behaviour confirms the knowledge that such Deep CNN architectures require
large amounts of data in order to get efficiently trained. Moreover, changing the order
with which the datasets are used to train the model, i.e. using the annotated COUGHVID
dataset for the final training and the testing of the model, remarkably decreases the model’s
performance. To that end, most of the experimentation was conducted using all four of
the datasets and in the order previously described, as it is presented in tables 4.10, 4.11
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Accuracy Sensitivity Precision AUC Specificity

Datasets used Epochs %) %) %) %) %)
Coswara cough heavy 25 33.38 95.00 30.61 50.84 6.44
and 50 35.65 93.27 31.11 61.42 10.95
Cambridge 100 64.56 57.17 44.97 64.78 67.36
Coswara cough heavy-shallow 25 68.63 46.36 47.18 67.34 77.32
and 50 65.09 52.52 43.70 67.33 69.48
Cambridge 100 67.52 53.35 46.00 65.56 73.64

Table 4.8: Performance metrics using the HCQT and different combinations of datasets

Accuracy Sensitivity Precision AUC Specificity

Epochs | o) %) %) ) (%)
25 54.96 52.25 22.43 54.33 55.63
50 53.32 54.04 22.05 55.09 53.14

Table 4.9: Performance metrics using Mel Spectrograms and testing the model on the anno-
tated COUGHVID dataset

Epochs Accuracy Sensitivity Precision AUC Specificity

(%) (%) (%) (%) (%)
10 71.25 45.35 49.73 72.58 81.53
15 71.53 52.62 51.46 72.09 78.03

20 69.55 54.76 51.80  73.65 74.69
25 71.03 66.58 52.18 73.44 71.51
28 68.75 59.63 48.34  70.45 71.40
30 65.75 61.23 4496  70.14 66.51
35 70.84 63.71 52.38 72.95 72.50
50 69.06 63.03 50.69  73.42 70.86
150 67.58 63.98 49.59  73.50 69.24
200 68.83 60.00 51.27  72.72 72.98

Table 4.10: Performance metrics using HCQT transformation in all datasets

and in the rest of the section.

The best classification results provided for each one of the transformations are boldly
marked. A significant increase in all metric values is accomplished, with an accuracy of
71.03%, a sensitivity of 66.58%, a precision of 52.18%, an AUC value of 73.44% and a
specificity of 71.51% in the case of transforming the audio samples using the HCQT. When
using the Mel Spectrograms as inputs to the model, the highest results achieved provide
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Accuracy Sensitivity Precision AUC  Specificity

Epochs |~ /) %) @) %) (%)
15 73.03 48.01 62.91 69.13 83.92
20 72.29 54.26 590.13 70.12 79.94
25 70.35 60.49 55.14 68.98 74.36
30 71.37 61.14 57.98 68.60 75.36
35 70.05 59.43 54.19 69.96 74.26

40 69.28 58.45 52.38  69.53 73.52
50 71.60 62.92 57.21  69.92 74.78
60 70.02 59.60 52.63 69.84 73.94
70 71.30 60.68 56.37 69.44 75.50
80 70.05 59.15 53.17  68.99 74.28
100 69.35 60.23 52.97  68.84 72.89
150 71.28 56.28 55.84  69.67 76.32

Table 4.11: Performance metrics using Mel Spectrograms in all datasets

an accuracy of 71.60%, a sensitivity of 62.92%, a precision of 57.21%, an AUC of 69.92%
and a specificity of 74.78%. Although a small decrease in the AUC and sensitivity values
is observed in the case of using Mel Spectrograms, a small increase in the precision and
specificity values is noticed, with the precision reaching the highest value achieved com-
pared to all the other trials made. The number of epochs for which the model is trained
plays an important role to its performance on unseen data. In the case of using HCQT,
when training the model on the final stage a smaller number of epochs provides higher
classification results. As for the case of using the Mel spectrograms, the best performance
is again acquired when training the model for a relatively small number of epochs.

Since the STFT reached the highest performance when utilized with the Cambridge dataset
and the ensemble method, it was also examined in the current method. The ResNet-50
model was trained for 20 epochs using the Coswara cough heavy dataset, then for 20
epochs using the Coswara cough shallow dataset, then trained for 20 epochs utilizing the
annotated COUGHVID dataset and lastly it was trained and tested using the Cambridge
dataset. All samples in these datasets were represented as images using the STFT. How-
ever, the values of the metrics acquired from the trials made were not as high as the
ones obtained when using the HCQT or the Mel spectrograms, rendering the STFT image-
frequency representation unsuitable for this combination of datasets and architecture. The
results obtained from the aforementioned experiments can be seen in table 4.12.

Another interesting observation in respect to the CNN architecture used, is that two other

pre-trained Deep CNN architectures, DenseNet-201 and Xception, which were also exam-
ined, provided appreciably lower classification results. These results are presented in table
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Accuracy Sensitivity Precision AUC Specificity
(%) (%) (%) (%) (%)

25 67.50 43.82 49.83 64.92 77.75

50 58.75 56.48 39.57 65.71 59.21

100 58.75 54.11 38.33  64.90 60.36

Epochs

Table 4.12: Performance metrics using the STFT in all datasets

4.13 and confirm the wide usage of ResNet architectures in cough related classification
tasks.

Accuracy Sensitivity Precision AUC Specificity

Model Epochs (%) (%) %) (%) (%)
15 64.66 48.80 45.11 63.33 71.88
DenseNet-201 25 66.99 55.74 48.05 66.96 71.92

50 59.88 37.88 34.09 59.22 69.46
15 66.92 48.38 46.31  66.68 75.10
Xception 25 66.39 59.48 47.00 69.44 69.19
50 62.19 56.40 41.36  68.19 65.39

Table 4.13: Performance metrics using HCQT transform with the DenseNet and the Xception
model

The label smoothing parameter is set to 0.4, regarding all of the aforementioned experi-
ments. However, more values for the label smoothing parameter were examined, in order
for the most appropriate one to be found. The HCQT was used for all of the datasets,
in combination with the ResNet-50 architecture. Different rates of label smoothing were
examined and the metrics acquired from these trials are presented in table 4.14. It is
observed that other rates of label smoothing provide lower values for the classification
metrics compared, to the ones presented in table 4.10, rendering themselves inappropri-
ate for the current task.

The number of epochs for which the model is trained, throughout all of the experiments

made when implementing the current method, was chosen by observing the model’s be-
haviour and the performance achieved after each trial.
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Label Epoch Accuracy Sensitivity Precision AUC Specificity
Smoothing Rate Lo | (%) (%) (%) (%) (%)

0.0 25 66.10 49.91 45.52 65.80 72.20
0.9 25 67.38 55.31 49.97 67.87 72.50

' 50 66.83 53.50 47.48 67.76 72.48
0.5 25 68.02 52.54 48.52 69.69 74.64
0.6 25 69.32 49.52 52.01 68.11 77.91

) 50 68.11 50.48 49.88 69.82 75.73
0.9 25 63.86 54.70 43.84 67.31 67.79

’ 40 65.92 56.58 46.87 66.19 69.95

Table 4.14: Performance metrics using the HCQT, the ResNet-50 architecture and multiple
values for label smoothing

4.4 Summary of the acquired classification results

A summary of the best classification results acquired by each of the three methods and for
each dataset is presented in table 4.15. It is observed that Model 1 generally performs bet-
ter independently of the transform used. Moreover, the final method implemented, reaches
adequate performance levels when ResNet-50 model is trained with Coswara cough heavy,
Coswara cough shallow, annotated COUGHVID and Cambridge datasets following the or-
der with which they are mentioned.

Accuracy Sensitivity Precision AUC Specificity
Method Dataset Transform Model %) %) %) (%) %)

Coswara cough heavy HCQT Model 1 67.10 57.09 11.44  65.80 67.80
5-fold cross validation Coswara cough shallow  HCQT Model 1 74.15 41.86 11.69  64.27 76.48
using one CNN model COUGHVID Mel Model 1 52.52 57.94 7.74 55.97 52.14
Annotated COUGHVID HCQT Model 1 50.16 62.01 22.51 55.37 47.24
Cambridge Mel Model 2 63.75 57.82 42.41 64.28 64.66
5-fold cross validation ~ Annotated COUGHVID CQT Model 1 57.99 50.83 23.81 57.29 59.75
using ensemble models Cambridge STFT Model 1 59.50 64.35 43.79  63.60 57.64
Multiple trainings of Four datasets* HCQT ResNet-50 | 71.03 66.58 52.18 73.44 71.51
ResNet-50 model Four datasets* Mel ResNet-50 | 71.60 62.92 57.21  69.92 74.78

Table 4.15: Summarised results (*Four datasets refer to Coswara cough heavy, Coswara cough
shallow, annotated COUGHVID and Cambridge datasets)

The fluctuation of the values of the five examined metrics when using the three different
methods, for the best result acquired from each, is depicted in figure 4.1. The results pre-
sented for the first method are obtained by training Model 2 using the Cambridge dataset
and Mel spectrograms, while the results presented for the second method are acquired by
training Model 1, using the Cambridge dataset and STFT. The results presented for the
final method are the ones obtained using the HCQT.

To the best of our knowledge, this is the first time that the HCQT is utilized in a cough
classification task and especially in a COVID-19 detection task.
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Figure 4.1: Comparison of the best results acquired by each method
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Chapter 5

Conclusion and future research

5.1 Conclusion

The goal of the current thesis is the development of a Deep Learning method for the screen-
ing of COVID-19. Different datasets containing cough samples from healthy and COVID-19
infected individuals, multiple audio to image conversions, various CNN architectures and
different methods of implementing them have been examined, trying multiple possible
values for each of the model’s parameters and the training parameters.

Due to the imbalanced nature of the problem and the available datasets, a single CNN
model cannot provide reliable results for the task in question. The best classification results
using one single CNN architecture and the 5-fold cross validation method were provided
by training Model 2 using the Cambridge dataset, with the audio samples being converted
into Mel Spectrograms. This combination reached an accuracy value of 63.75%, sensitivity
of 57.82%, precision of 42.41%, an AUC value of 64.28% and a specificity of 64.66%.
Due to the high imbalance of most of the available datasets, an ensemble method was
also implemented as a means of reducing the negative impact of this data feature. This
method was tested with the two datasets providing slightly better results when used for
training one single CNN model. These are the annotated COUGHVID dataset and the
Cambridge dataset, with the best performance achieved reaching an accuracy of 57.99%,
a sensitivity of 50.83%, a precision of 23.81%, an AUC of 57.29% and a specificity of
59.75% when training Model 1 using the CQT transform for the annotated COUGHVID
dataset. As for the Cambridge dataset, the best performance was attained when training
Model 2 using the HCQT transform, where an accuracy of 62.55%, a sensitivity of 55.66%,
a precision of 41.90%, an AUC of 63.68% and a specificity of 63.05% were achieved during
testing. Nonetheless, these results cannot be reliable and thus these models cannot be used
to effectively detect COVID-19. To that end, multiple combinations of architectures and
datasets were examined.
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The combination of ensemble learning and multiple trainings of a pre-trained Deep CNN
architecture, ResNet-50, introduced impressive improvement in the values of the examined
classification metrics reaching an accuracy of 71.60% when using the Mel-spectrograms
and an accuracy of 71.03% when using the HCQT. More specifically, in the case of using the
HCQT transformation, the best results were acquired by training the model for 25 epochs,
when using the Cambridge dataset, providing an accuracy score of 71.03%, a sensitivity
of 66.58%, a precision of 52.18%, an AUC of 73.44% and a specificity of 71.51%. When
using the Mel Spectrograms, the best results were obtained by training the model for 50
epochs, when using the Cambridge dataset. This provided an accuracy score of 71.60%, a
sensitivity of 62.92% a precision of 57.21%, an AUC of 69.92% and a specificity of 74.78%.
To the best of our knowledge, it is the first time that the HCQT transform is utilized for
a cough classification task. The results acquired using this method, which combines four
different datasets, are significantly better than the ones obtained when using the same
model but solely one of these datasets. Moreover, two different pre-trained models were
also examined using the exact same method and replacing the ResNet-50 model with either
the DenseNet-201 or the Xception model. However, the obtained results are worse, with
the DenseNet-201 model achieving an accuracy score of 66.99%, a sensitivity of 55.74%,
a precision of 48.05%, an AUC of 66.96% and a specificity of 71.92% and the Xception
model achieving an accuracy of 66.39%, a sensitivity of 59.48%, a precision of 47.00%, an
AUC of 69.44% and a specificity of 69.19%.

These results prove the ability of Machine Learning to decisively assist Medicine in multiple
domains and especially in the diagnosis of diseases. Except for the speed of testing possible
COVID-19 cases when using such methods, the biggest asset is the ease of access to free
testing by the vast majority of the public. Although such methods were not available at
the beginning of the pandemic, partly due to the absence of data, their novelty could now
be availed aiming for a sooner exit from the pandemic. Moreover, they could be widely
used in the diagnosis and classification of other respiratory illnesses, while the research
community is now better prepared for future pandemic outbreaks.

5.2 Future Research

Future research could include the analysis and examination of other respiratory sounds,
such as breathing and speaking, since they could also provide valuable information about
the health status of the user. Various features extracted from different types of respiratory
sounds and combinations of them, when used to train a CNN architecture, could possibly
increase its performance. This is due to the fact that a Deep Learning architecture can
extract multiple features from each respiratory sound analysed and use them to arrive at
better classification results, leveraging the ability of CNN architectures to learn discrimi-
native spectro-temporal patterns.

Moreover, for users infected with COVID-19, re-sampling every one or two days, for a
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specific time interval or for as long as they are infected, could provide valuable information
about the deterioration or the improvement of the user’s health status. Except for that,
supplying a model with samples of the same user, but from different phases of the illness
would contribute to the better understanding of COVID-19, independently of the phase of
the user’s illness or its severity. Thus, this could result to a more robust model, achieving
highly reliable classification outcomes.

The obtained results could also be noticeably improved by involving more and higher
quality data. Datasets with more samples and especially more Covid samples, labelled by
experts with respect to the quality and with the label related to the health status of the
user being assigned by using the results of PCR testing, could possibly lead to much better
classification results since the ground truth on which the model will be trained would be
more reliable.
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