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Abstract

Data processing has become a hot topic lately, as large volumes of data that need to be analyzed
are produced every minute. The transition to the big data era was made easier with the commercial rise
of cloud computing, and the use of massively parallel processing frameworks like Apache Spark for its
processing in a parallel and distributed manner. Query optimization is a traditional DBMS optimization
problem, where the query optimizer selects the optimal way to execute a query. Cloud computing
features like its pricing policy led us to tackle query optimization in cloud environments as a multi-
objective optimization problem, considering the objectives of execution time and monetary cost.

In this thesis, we propose a baseline query optimizer system architecture for efficient and multi-
objective query optimization in a cloud-like environment. Components of this system are implemented,
and it is used as a basis in our experiments.

Working with Apache Spark allows us to benefit from parallel processing and gain useful
insights about processing big data in a distributed, cloud-like environment. However, trying to solve
multi-objective query optimization problems using Spark comes with a significant limitation, as the
optimizer of Spark SQL, Catalyst, is mostly based on heuristics and not cost based estimations. As a
result, it is difficult to consider alternative query plans to compare and apply query optimization
techniques that have been successfully used in relational databases.

To overcome this limitation, we reimplemented a state of the art cost model for Spark SQL

from scratch to provide theoretical estimations for the costs of alternative query execution plans. Its
accuracy is evaluated with large scale experiments, and an additional formula is presented and
integrated into the cost model that gives an estimation for the monetary cost of a query plan in Amazon
EC2, based on its execution time and computing resources used. The cost model and the formula allow
us to provide solutions for multi-objective query optimization problems.
After implementing a baseline query optimization system, we move to integrate a state of the art query
optimization technique, multi-objective parametric query optimization in our contribution and observe
its relevance, as it is an optimization technique evaluated in a relational database. In this technique, a
query is modeled as a function of a set of parameters, which must be sensitive factors for the
optimization objectives.

KeyWords

Query Optimization, Cloud computing, multi-objective optimization, parametric optimization,
massively parallel processing frameworks, cost model, serverless computing, Apache Spark, Spark
SQL, Catalyst, HDFS, Apache Hive
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H enelepyacio dedopévov €xet eEehybel oe éva préyov {ftnpa ta televtaio ypovia, kabmg
TePAOTIEG TOGOTNTEG dedopEVEVY TToV YpNnlovv enetepyaciog Tapayovrol kadnuepwvd. H petdfacn otnv
emoy"| tov Big Data dievkoAOvOnKe pe TNV EUTOPIKT] AVATTUEN TOV VITOAOYIGTIKOV VEPOVG, KOL T XPTOT|
nmepParloviav TapdAining eneepyaciog 6mmg to Apache Spark yio v eneéepyacio tov dedopévaov
He TOpAAANA0 Kot kotovepnuévo tpémo. H PBeltictomoinon gpotnudtov sival éva Topadoctoko
TpoPAnpa Bertiotonoinong tov Pdoewv dedopévev, 6mov o PeATicTonom TG KaAeitol vo eTAEEEL TO
BEATIOTO TAGVO EKTEAEOMC Y10 £VO. OEDOUEVO EPATNUA. XAPOUKTNPICTIKG TOL VTOAOYIGTIKOD VEPOLG
Omwg To poviéha ypéwong mov Owbétel yw T YpNon TV TOP®V TOL, HAG 0dNyolv GTO VA
avTueTOmicovpe T PeAtiotonoinon epoTNUdTOV ®¢ v TPOPANUO UE TOAAATAG KPUTHPLd,
Aappdvovtag vToyn 1o ¥POVO EKTEAEONC KOl TO KOGTOG GE YPNUOTO TV OPOPETIKAOV TAGV®V
EKTELEOTG.

3 OMAMUOTIKY €Pyaciot OuTH, TPOTEIVOLUE Wiot TPOTLMN OPYLTEKTOVIKY Y10, EVOV
BeAtictomonth £pOTNUATOV OV B0 SOVAEVEL OMOTEAECUATIKA KOl UE TOAAOTAG KPUTNPlo 6€ éva
ePPAALOV LTOAOYIGTIKOV VEPOLG. MEPT TOL GLGTILATOG CLTOV VAOTO BN KAV, EVA YpTGLULOTOONKE
Kot oV Ao enaAnfevong KATOLOV Ao To TEWPAUATA LOC.

AovAgvovtag pe 1o Apache Spark pmopodpe va emoeeAnfovpe amd TV TOPAAANAN
eneepyaoio Kol VO, OTOKOUIGOVUE YPNGILO GUUTEPACUATO Y10, TNV eneéepyacio LeYAAmV dESOUEVOV
o€ €va KaTaveUnpévo TePIBAAAOV, TOPOUO0 LE TIG TAATPOPLES TOV VIOAOYIGTIKOV VEQOLS. Oumc, 1
enilvon mpoPAnudtov PehticTonoinong epMTNUATOV UE TOAALUTAG KPLTHPLO YPNCLOTOLOVING TO
Spark éyetl pia onuovtikn dvekoria, kabhg o PedtioTorontig tov Spark SQL, o Catalyst, Asitovpysi
Kupiog pe Paorn KATOOLE KOVOVES PEATIOTOTOINONG KOl O)L TAPEXOVTOS EKTIUMUEVES TILES XPOVOL
EKTELEGTC YO TOL OLOLPOPETIKG, TAGVO, EKTEAEONC. QG AmOTEAEG LA, ElvaL SVGKOAO Vo AAPOVIE VTTOWYT KoL
Vo GouyKpivovue Ol0QOPETIKA TAGVE eKTELEONG Kol va gpapudcovue pe emrvyio uedddovg
BeAtiotomoinong mov £yovv ypnoiponom el oe oyxectokés PAoelg dedoUEV@OV.

IMo vo avTIPeETOTIGOVIE TN CLUYKEKPIUEVT] TPOKATOT] VAOTIOGAUE atd TNV 0Py VA VITAPYOV

TPOTLTO LOVTELO KOGTOAOYNOTG Yo TV Spark SQL, pe to omolo Ba pmopovie va Tap€yovpe EKTIUNGEL
Yo T0 ¥pOVo ekTédeonS SlopopeTik®V TAdvey. H axpifeia tov emoindeutnie pe moivapiOua kot
peydio mepapaTa, eVved Tpotdinie Kot 110N 610 LOVTELD KOGTOAOYNONG Kal £VOG TOTOC IOV TAPEYEL
EKTIUNOELG Y100 TO KOOTOG KABE TAAVOL eKTEAECONG G YPNUOATO OV TO EKTEAOVOUUE GTNV TAOTPOPUA
Amazon EC2, pe fdon 1o ypdvo eKTéAecNS TOV Kol TOVG VITOAOYIGTIKOVG TOPOVE TTOL Ypnotponotel. To
HOVTELO KOOTOAOYNONG Moll pe TOvV TOMO ovTO MHOG EMITPEMOLV va. ADCOVUE TPOPANuOTO
BedtioTtomoinong pe moALOTAGL KpiThpla 6€ pio TAATPOpUO TapdAANANG encéepyaciag.
2 OULVEYEW., TPOYWPAULE otV €vialn o©To CUGTNUO HOG oG GAANG TPOTLTNG TEXVIKNG
Bedtiotomoinong epOINUATOV, 1TNG TOPOUETPIKNG PeEATIOTONOINGNG TOALOTAGY  KpiTnpimv.
EmaAnBevovpe v a&lomotion Kot TV o0t ¢ TEXVIKNG 610 mepPdAlov extédeonc uaog, kabmg
elvar pia teyvikn Tov £xel yproonotn el povo o oyeciokég Paoelg dedopévav. Me tnv TeyvIKY| avTh,
TO EPOTNUATO, LOVIEAOTOIOVVTIOL G GUVOPTNGCELG EVOG OplOUOy TOPOUETP®VY, TOV TPEMEL VO Elval
evaicOntol mapdyovteg 66OV aPopd To KPLTHPLo BEATIGTOTOINGNC HaG.

A€Eerc Kheond

Bektiotomoinon epotudtov, Ymoloylotikd vEEog, Beltictomoinom pe moAAOmAG  KpuThpla,
[Moapapetpikn Peitiotomoinom, IlepiPdrrov Iapdiining emeepyocioc, Movtého K0GTOAOYNONG,
Ymohoyiotikd Movtéro Serverless, Apache Spark, Spark SQL, Catalyst, Apache Spark, HDFS, Apache
Hive






Evyoaprotisg

Apyid 0o 0eha va euxaploTHo® TOAD TOVG 600 EMPAETOVTIEG TNG SUTAMUOATIKNAG OV, TOV K.
D’Orazio yw tov ypdvo kot v kabodynon mov pov mapeiye amd tmv FaAdio ko’ o6An
SlapKe TV TEAELTOIMY Unvov, kot v K. Koavtepé yio v kabodnynon kot ompiEn ot
OOVAELD OV TTAVTOL LLE EVAV YEVIKOTEPO EPEVVITIKO TPOCAVATOMGLO.

Eniong, Ba n0ela va evyapiotiom ond Kapoldg AoV Toug GIAOVG LoV TOL NTOV SITA LoV
oAa ovth T Ypdvio, pe pia wWwaitepn pvela oto mopedkt g [Hatpog mov pov €dwoe v
EVEPYELD TTOV YPELOLOLOVY OTA TEAEVTOLN KO TTIO SVOKOAN GTASLN TNG EPYOGING LLOV.

Téhog, B NOeXa va EVYOPIOTACH OO KAPSLAS TNV OIKOYEVELD, IOV, TOVG YOVEIG OV KOl TNV
adEAPN LOV, YL TNV OUEPLGTN GTHPIEN TOVS KB’ OAn TN SIUPKELD TOV GTOVOMV OV Kot O)L
povo.
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Extevig llgpiinyn

Ewcaymyn

Yxkomog Epyaciog

O oKOTOG TNG GLYKEKPLUEVNC EpYAciag Eival 1 TPOTOOT Yo £V PEATIOTOTOMTH EPOTNUATOV
o0 omoiog Oo Aettovpyel v and pio apyrtektovikn tomov Cloud, emtvyydvoviog amoTeAeoaTIKN
BedticTomoinon pe TOAAATAG KPLTHpLaL.

Epgvvntiko popinpa

Onmg vTodNA®VEL Kot 0 TITAOG, TO EPELVNTIKO TPOPAN O TNE Epyaciag eival 1 PeitioTomoinon
gpotnudtov (query optimization). ITw ovykekpyéva, N Pedtiotonoinon epoTUATOV givar M
dtdtkacio EMAOYNG €vOg PEATIOTOL TAGVOL EKTEAEGNC €VOG EPMTNUATOC UE Pdon T dtabéoiueg
EMAOYEG TTOL UTOPOVV VO YIVOUV GTO S1APOPO ETUEPOVG OTASIO TNG EKTEAEGNC TOV EPMOTHUATOG.
AcyoindnKope pe to TPOPANHe avTd AapPivovTag ETITAEOV VITOWYT TOVG SIPEGLOVS VTTOAOYIOTIKOVG
TOPOLVE TTOL £xovpe o€ pia mhaTeopua cloud, n TocdTTa Kot 10 UéEYEHOC TV 0ToimY UITOPOVV VoL ExovV
LEYOAN EMpPPON oTO KPLTHpLo. BEATIOTOTOINONG.

Kabodg 10 mepipddhov evaoyoinong upag civar to Cloud, mpooapuolopacte ota
YOPOKTNPLOTIKA TOV Kot vrootnpilovue 0Tt | fEATIOTONOINGT EPOTNUATOV GE TETO10 TEPIPAAAOV OeV
umopel va Avbel w¢ éva mpoPAnua evog povo kpurmpiov Pedtictomoinong, kabdc 1 TILOAOYNON TOv
VIApYEL otV KABe mAateopua Yo Tapdderypo, odnyel oty Vmapén evog GAAOV TOAD GNUAVTIKOD
Kpunpiov PEATIOTOTOINGNG, TOV YPNUATIKOV KOGTOVG. L€ GUTN TNV TEPIMTMOT], TO TPOPANUA pag ivan
dvo kpumpiov, kabdg avalntovue yia Evav copPifacud o onoiog eEacpaiilet pikpo ypovo ektéreong
Kot yapnAd KOGTOG. XVVEM®MS, TO TPOPANUA Ue TO 0omoio acyoloduoote givar 1 PeAtiotonoinon
ePOTNUATOV TOAOTADV Kprtnpinv og teptdilov Cloud.

Xpnoues ‘Evvoleg

Cloud & Serverless

To vmoloyotikd vépog (Cloud computing) avaeépetor oty Kot omoitnon €voikioon
VTOAOYIGTIKDY TOP®V HEC® TOV Oladtktoov. Tétorol mopor pmopei va givor CPUS, gévumnpetéc,
amoONKeLTIKOC YDpog, N Pdoelg dedopévmv, Ol OMOI0L EMTPEMOVY GTOVG YPNOTEG OAAN KOl OTIC
0PYOVMGELG TTOL TO YPNGLLOTOLOVV VO EMKEVIP®OOVV GTO L0 OVCIACTIKA KOUUATLO TG OOVAELHG TOVG,
EAOYLOTOTOLMVTOG To KadNKovTa kot To kK6otog Tov IT, kabd¢ 10 otioio evoc ocvoethiuatog (CPUS,
YDPOG amobNKeEVOTG), OEV APOPd TAEOV QVTOVG.

Abo amd ta o onpovTikd yapaxkmmplotikd tov Cloud, sivon i peydin gveléio/edaotikdTta
TOV, KaODC Kot TO LOVTELO TANPOUNG HE BAOM TN XPTIOT TOV LANPESIOV TOV.
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H glaoctikémra tov Cloud eivor moAd onuavtiky yio tov ypnotn, kabog ot d1dpopot
TOpOVVTINPEGIEG LTOPOVV pe amdAVTN gveMEla va evolklaoTobv 1) va amelevfepwBolv, avédvovtag 1|
UEWDVOVTOG TO UEYEDOG KOl TNV TOCOTNTA TOVG, OVOAOYO HE TIC OVAYKEG TOL ¥PNOTN, N TO POPTO
gpyaciog piog EQaproyng Tov.

Oocov apopd T0 HOVTELD TANP®UNG, 1| SVVOTOTNTO VO TANPMVOVTOL Ol TOpot o€ pia short-term
Baon (m.y. o1 eme&epyacTég avd MPa, 0 ¥OPOg amodnkevong avd pépa), Kol vo ehgvbepdvovtal oOtav
dev ypeldlovrtal mo, onpaivel OTL 01 XPNOTEG LTOPOLV VO YATOGOUV GNUAVTIKE ££000 VTTOSOUMV, EVAD
o1 Tépoyot propoHv va PEATIGTOTOW|GOVY T YPOVOSPOLOAGYNOT| TOV TOPMV TOV TPOCGPEPOLV.

To Cloud d106étet 3 poviéha vanpecumv. Apyikd, vdpyet to Infrastructure as a service (laaS),
T0 01010 £)E1 TIG 1d16¢ TOPOYEC e Eva data center, divovtag T SuvaTdTNTO GTOVS XPNOTES VA VOIKIALOVY
Kot vo, Stoyepilovtal VTOAOYIGTIKOVE TOPOLS, OMOONKEVLTIKO YMPO, K.O. UE TI UOPQN EKOVIKOV
unxavov. EmmAéov, to Platform as a service (PaaS) mapéyet pia oAokAnpmpévn mhateoppo Le epyoreio
yuo TV avémToén kot ) Swxeipion epappoymv. Tékog, To Software as a service (SaaS) mopéyel 6Tovg
YPNOTEG pia EQoppoy™, TNV omoia dayepileton TANPOC 0 TAPOYOG TG TAATEOPUOG Saas, kol otV
omoia 0 ypNotng Exel mpdcPaon pécm evog APl kot evog mepinynty| 16ToL.

Ta (61 Tov Cloud diakpivovtor g dNpodc1o, 1B1OTIKO, Kot VEPISIKO, avaioya e 10 Eminedo
TPOGPAGILOTNTOG TOL £XOVV GTO KOWO.

Mia mpdopatn €EMEN Tov Cloud, ivor to Serverless. Ot serverless mhatpdpueg emtpémovy
0€ TPOYPOUUATICTES VO YPAPOLY TOV KMOLKO, TOVS GE AVTEG, KOL 1] TAUTPOPLLO VO, TOV EKTEAEL LE OGOVG
nopovg yperalovtat. Ot TpoypapoTIoTEG dEV YpelaleTol va £X0VV KPATHGEL 0mtd TPV KATOL0VE TOPOLG,
001E va. YoV GTHOEL Evav 1Ko Tovg Sserver (€€ ov kot to serverless), evod to yeyovog Ot ypemvovial
povo yuo. Toug TOPOVS OV YPNGULOTOLOVVTOL OTAV EKTEAEITOL O KAOJIKAG TOVS, LTOONADVEL OTL TO
OLKOVOULKA OQEAT] LTOPOLV VO givatl onuovtikd. To HovTELD LANPESLOY TOV TEPTYPAPTNKE OVOUALETOL
Function as a service (FaaS), kot givat cvtd Tov cuViB®S avaeepopooTe OTav WAdpE Yo Serverless.
Y10 HovTELO aVTo, 01 YPNOTES YPAPOLY TOV KMAKA TOVG 6€ Hopen cuvaptioewv (functions), ot onoieg
elvar Kot o1 povadeg ektéleonc.

[Mopd ta onuovTicd opéAn Tov (Amhd 6T XPNOT, OIKOVOUIKO, EAUGTIKT XPNOoN), EXEL KoL KATO0
OTMUOVTIKO LEIOVEKTALOTA, TOV OEV TOL E£YOVV EMTPEYEL OKOUN VO QTAGEL TIG EMOOGELS oV Oa
unopovoe. Kamoo and avtd givar 1 pkpn didpketa (ong tov cuvoptioswv (oto AWS Lambda [26]
dgv vmootNnpiloviol CLVOPTAGEIS OV JAPKOVV TV amd 15 Aemtd). Akourn, ol GUVOPTNGCELS deV
UIOPOoHV VO, ETKOWVOVOUV UETAED TOVG VD 08V VITOGTNPIlovTal aKOUN KOAN ETEPOYEVELS TTOPOL, LE TIG
neplocdTeEPeg FaaS mAateiopes va emTpETOLY GTOVG PN OTES v Ypnotponotovy CPU kot pio tocotnTa
RAM. TToAAég mpoomabEeIEg £XOVV YIVEL Y10 VO AVTILETOTIGTOVV T Ta pelovekTnato. Mio atoioyn
dovAeld eiva to Pocket [21], mov éytice mve oto Apache Crail [19].

Awyeipion Meydrov Agdopévov

Ta, peydio dedouéva eivar Evag tepaoTiog dYKog dES0UEVMV TOV 0TT0i0 OV UTOPOVLLE VA
OLXEPIOTOVE LE TOPAOOCIOKOVS TPOTOVG, ). OYECIOKEG PAcelg dedopévav. OpilovTal ¢
0TOL0GONTOTE PUEYANOG OYKOC SEGOUEVMV OV €xEL Ta EENG YOPUKTNPIOTIKA:

e Volume(0ykog): moAd peydin mocotnTa dedopévev
o Velocity(toydmra): ToAD peydAn tayxdtnto Topaymyng 6e60uéveoy
e Variety(mowkidia): peydin kot evpeia wowkiho dedopéEvmv

O gpappoyég Tov ypnoyomolovy big data £yovv, OmwG gival AoyKd, HEYOAEG ATOLTHOELS O
vroAoyiotikovg mopove. To Cloud givat Wavikd yia n dloygipton Tovg, AOYm TG EAACTIKOTNTOG TOV
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OAAG KOt TNG TILOAOYNONG TOV. AVAAOYQ UE TNV EPUPLOYT, O YPNOTNG TPETEL VA, TAPEL ATOPAGELS V1oL
10 oL Ba amoBnKevoEL Ta dedopéva Tov, Tmg Ba Ta dayeprotel Kot Tog o Ta enelepyaotel.

Datanodes

Rack 2

Ewova 1. Apyrtextovikn HDFS

To Apache Hadoop mepirapfaver pio cuAdoyn amd epyoleio Aoyioukon yia tn dwoyeipion
UEYOANG TOGOTNTOG dEdOUEVOV 0 GUUTAEY AT VToAoYloTdV (clusters). [lepthappdvel To koppdtt
g amodnkevong, o HDFS, kot to xoppdrt tng ene&epyasiog, to MapReduce. To HDFS gtvon éva
KoTOvEUNUEVO GOOTNIO ap)Ei®mV, TOV gyyvaTal aflomiotr amobnkevor ueydiony dedouévov. To
HDEFS anoteleiton amod Evav master kOpfo, mov dwoyxepiletor 1o cuoTpa opyelov Kot Kpatdet Tnv
tomofeaio Tov kKabe data block, kabm¢ Kot ToAVAP1OHoVE KOUPoLG dedopévav (datanodes), dmov ta
dedopéva, amobnkevovtar e tn popen blocks. To MapReduce givar pio vroloyiotikn doun yio
eneepyacio peydAmv GUVOL®MY OES0UEV®V HE EVOV TOPAAANAO Kot KATavEUNUEVO aAYOp1OL0 oE Eval
GOUTAEY O VTTOAOYIGTAOV.

To Apache Spark givat pia doun avaivong yio ene€epyacio dedopévaov peyaing KAipokog,
avtiotoryo pe to MapReduce. Eivor pio katavepnpuévn vmoAoy1oTikn doun mov 0nme Kot To
MapReduce yopilet Tic diepyacieg oe KOUPOLG £pYATES, OLMG Ol EMOOCELS TOV VAL ONUUVTIKA
KkaAvTeEpES, KaBmg ypnoomolei RAM yia vo amoOnkedel dedouéva oty cache kot va ta
eneepydletal evd 01 EPUPLOYEG KON TPEYOLY, amoONKEVOVTAG TO EVOLAUESO OTOTEAECUATA HiOG
dlepyociag otn Lvnun, Kot amoeevyovtog £Totl Ty entmiéov kabvotépnon and tic 1/0 diepyacieg oto
HDFS. Gewpeiton mAéov pio kadbteprn evailoktikn omd to MapReduce, aAld sivon ko pio TpoTom
pocHnkn oto otkoovotnue Tov Hadoop, kabag £xetl amdrvtn cvpPatomra pe to HDFS aArd kot To
Apache Hive. O mupfjvag tov Spark givon to Spark Core, mov amotelel TV TPOYPOUUATIOTIKT
dlemaen Tov Spark, evd vrdpyet kor to Spark SQL, mov eivan éva cuotatikd Tov Spark wov
Aertovpyel mévo and to Spark Core, kot eio1yaye ta DataFrames, mov eival n opydvoon piog
KataveuUnuévn cLALOYNG dedopévav og othies. AmoteAel v SQL diemapn tov Spark kot
vrooTNPilel Sounpéva Kot nu-dounpuéva dedopéva.

Beltiotomoinon Epotnpartov
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Muocape yia tn dwoyeipton peydiov dykov dedopévov o meptpdirov cloud. Ta cuotipota
dwyeipiong dedopévav ympilovial oTig oyectokés facelg dedopévav, aAld kot 6t NoSQL mov
yewpilovtar kdOe gidovg dedopéva aveEapTnTmg dounc. AKoOuUN Kt €16t OUMC, ot o ToAAES NoSQL
Baoceig éxovv ko SQL diemapn, yio S1EVKOAVVOT TV YPNOTAOV.

O yAdooeg epomuatov (6nwg 1 SQL) ypnoipomoodviot Yo va Kavouv KANGELS og Paoelg
OESOUEV@OV Y10 AVAYVOOT|, EIGAYMYT, EVUEP@OT 1 dtaypoen dedopévav. H eneéepyacia epotnudtoy
glval amod TIC To onpavTIKEG dlepyacieg mov cuufaivovy og pia fdor, 6oL VYN0 ETUTESOD
gpompata petappdlovtal og low level exppaoei. [lepthappdvel téooepa fpota, TNV CUVTOKTIKY
avAALGT TOL EPOTIHLOTOC, TN UETAPPOCT) TOV GE VA OEVIPO AOYIKDV EKQPACE®V, TNV PEATIOTOTOINON
TOV UE AMOTEAEGHA VA OEVIPO PEATIOTOV PLCIKMY EKPPAGEMV, Kol TEAOG TV EKTEAECT KOl
emoAndsvon Tov epotiratoc. Epdc pog evolagépet to tpito otddlo, e Pertiotonoinong.

H xhacown Beltiotonoinomn epotnudtov, TEpIAapPAvel TV GOYKPLOT TOV SLOQOPETIKOV
QLOIK®V TAAVOV eKTEAEOTG Le BAon éva KplTnplo PeAticTomoinong, mov cuvimg etvat o ypdvog
exTéleong ToL epoThpatoc. H emtloyn tov PéATioTov TAGvoL givan £va, amantnTikd TpoBANUa
BeAtiotomoinong [87]. To ochvoro tev mbavodv TAdveov ektéleong tepthapupdvetl Tnv e£€tacn OAmv
TOV THAVOV TPOT®V OTOKTNONG TOV dES0UEVOV (TANpNG GapmoT Tivaka, avaltnon evpetnpiov),
KaOd¢ Kot OA®V TV TOUVOV TpdTOV cLVEVOOTG 2 TIVaK®VY (sort merge join, hash join) kot tov
OTOPAUCEMY YPOVOTPOYPOUUOTIGHOD (TT.). GEPA TOV GUVEVAGEWDV).

H Peitiotomoinom, 1 0AM®G LETATPOT TOL AOYIKOD TAGVOL GE £VO. PLGIKO, UTOPEL Vo, Yivel
elte pe ) ypnon kavovav (rule-based), ite pe Pdon 1o KOGTOG TNG KABE emMA0YTg (cost-based). Xtn
0gvTEPT MEPIMTOOT, TOV UITOPEL VAL LG SDGEL TTO COGTES EMAOYEG OTaV YiveTal mOTA, YpelalopacTe
éva povtéro kooToroyNong (cost model), mov gival o mopHvag evog Peltictomomnty epotnudteyv. Ta
LOVTELD KOGTOAOYNONG omoTeAovVTAL otd 2 pépn. To mpmdTo glvar To Aoy, Tov givar vrevhuvvo Yo
TNV EKTIUNGN TOL OYKOV TOV SESOUEVOV TOL EUTAEKOVTOL GE [io AEITOVpYia, TO omoio Kot eEapTdTon
uévo amd ta dedopéva, mov Ppickovral otn fdon. To devtepo uépog givar vredvHLVO Yo TNV eKTiunom
TOV KOGTOVG TMV SLOPOPETIKGV OAYOPIOU®V TOL PHTOPOVV VA YPNGLLOTO BBV Yo TV EKTEAECT] TOV
EPMOTHUOTOC.

Mia yvoot texvikn PeATIOTONOMNONG EPOTNUAT®V, EIVAL )| TAPOUETPIKT PEATIGTOMOINGT
epotuatov (ITE), mov viobetei pia dtapopetikn Tpocéyyion 610 Tw¢ povielomoteitat Eva TAGVo
EKTELEOTC. ZVYKEKPLIUEVD, KAOE TAGVO eKTELEGNC EVOC EpMTNATOC GLoYETICETOL e pio GuVapTNON
k6oTOVG C: Rn—> R avrti ywo pio otafepn| Tipn C, EKTPOCOTDVTOG TO KOGTOG EVOC TAUVOL EKTEAECT|G
®¢ 1o cLVAPTNON N TAPAUETPOV, TOV 0TIV OL TIHEG deV gival akdun YVmotés. Ot TapapeTpol oty
IE pmopel va etvon yio mapdderypo n emAe&yuotnto evog kotnyopnuatog (predicate selectivity), 1 o
drabéoipog yopog amobnrkevong. O otdyog g I1E eivar 1 edpeomn evog PEATIOTOV TAAVOL EKTEAECTG
v KGO Thavo cuVILAGUO TOV TIUOV TV Tapauétpov. Eva onuavtiko mieovéktnua g I1E, sivor
oT1 1 BertioTonoinon cupPaivel TPV TNV EKTEAECT] TOL EPMTAUOATOG, LE ATOTEAEGO, VOL LNV DTTAPYEL
APOVOG PEATIOTOTOINGN G KOTA T SIAPKELD TNG EKTEAECNG TOV EPOTHUATOG, TAPA LOVO OVTIOTOLYION
TOV EPMTNUATOS GE VAV GLUVOVAGUO TOPAUETPOV, KOl ETIA0YN TOL BEATIOTOL TAGVOL TTOV £)EL
VTOAOYIGTEL TPV TNV EKTELEGT] TOV EPOTNHHOTOG.

"Eva mopadetypo feATIGTOTOMTN EpOTNUATOV, TOV 07010 Oa ¥P1GILOTOUGOVLE KOL GT
ouvvéyela, eivar o Catalyst, o Bedtictomomntrg tng Spark SQL. Agttovpyel katd fdon pe kavoveg yio
N PeATioTONOINGT], OVTAG TOPAAANAN EXEKTAGLULOG KOl EXLTPETOVTOS TIV TPOGHNKN VE®V KAVOV®V.
Kamoteg emroyég yivovron pe faon exTUNGES KOGTOVG (TT.). 1 EMA0YT TV join), Top’ OA 0VTH TO
yeyovog 0Tt mapapével kupimg rule based Bswpeitan pelovéktnpa, o onoio 0dnynoe tov Baldacci ko
tov Golfarelli va Tapovcidcovy Eva povtého kootordynong yio tnv Spark SQL [3], ue okomd va givan
TO TP®TO Prina Yo vo, petatpomnei o Catalyst og évav cost based fedtiotomom .
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Beltiotomoinoen moAhami®v KpLrTnpilmV

H Bektiotomoinon moAhamldv kpumpiov teptiappavel tpofinpoto 6mov ano@dcels Tpénet
va TapBodv pe Péomn Topamdve oo [io CLVOPTHGELS GTOYOL TOL TPEMEL VA BeATioToTonfovy
Tavtdypova. OTav ol GLVAPTNGELS GTOHYOL etval avTIEATIKES (ONAadT 1] aDENGN TOL EVHG LELDVEL TO
GANO TY.), OEV LILAPYEL LOVODIKT ADGT, TAPA EVOL GHVOLO 0O PEATIOTEG ADGELC, YVIOOTESG KO MG
BéAtioteg katd Pareto.

Y10 mep1BdAirov cloud, To omoio kot pog evolapépet, ta 2 factkd TpofAnpoTo
BedtioTomoinong mollamimv kputnpiov, eival 1 feAtioTonoinon epmTnudtoy, kot 1 Bedtictonoinon
TPV, TOL TEPIAAUPAVEL TNV PEATIOTOTOINGN TNG KATAVOUTG KO TOL YPOVOTPOYPOULATICUOD TMV
nopav og pia mAateopua Cloud.

Ocov agopd tn fertiotonoinomn epmTNUATOV, TOVL EIVOL KOL TO EPEVVITIKO TPOPANUA TOV LOg
amocyoAEl, og pia mapdAAnAN (m.y. [aaS) mhateoppa, avt copPaivel og e€ng. O yprotng vroPdiiet
TO EPMTNUO TOL GE ia YADGGo VYNAoD emmédov (1t.y. SQL). To epdTnua Aappdvetot omd Toug
master KOUPovg Tov SIKTVOL, Kot 0 PEATIGTOTOMTNS VIOAOYILEL £va AVOAVTIKO TAAVO EKTEAECT|G Y10
10 EPpOTNUA HE Bdon éva HLOVTELO KOGTOAOYNGNC, KOl TO ATOGUVOETEL GE VITOEPWTLOTA, TO. OTTOL0L
avaBétovtal 6Tovg KOUPoLE epyatec Le Pdor kdmolo kpitiplo e&lcopponnong tov eoptov. O kabe
epYATNG VIOAOYILEL TO VTOEPMTNLLO TOV Kol EMOTPEPEL TO OMOTELEG U 6TOV master. O master evvel
OA0L TOL VTTOATOTEAEG LT, KO TTOPAYEL TNV ATAVTIOT TOL EPMTAIOTOC,

H Beltiotomoinon epotnuitov moAlov kpumpiov (IIB), eivar pio yevikevon e KAAGGIKNG
BedticTomoinong EpOTNUATOV, KOl AVOTOPIOTH KAOE TAAVO EKTEAECTC EPMTNLOATOG LLE EVOV TIVOKQ
KOGTOVG C € Rn , TOV TEPLYPAPEL TO KOGTOG TOL TAGVOL eKTéEAEONC UE Pdion kabepio amd TIg PETPIKES
BeAtiotomoinong. O otdyog ¢ [1B elvar n evpeom evdc cuvorov amd Pértiorta katd [Tapéto TAdvay,
Y10 TOL OTToial KOvEVa Ogv givorl KOADTEPO amd T VITOAOUTA [E fACT) OAA TO KPLTHPLo PEATIOTOTOINONG.

Parameter values;
user preferences

4
Query; N pvieTal Plan | Plan Result

parameters set  |selection plan
N N
Preprocessing time Run time

Ewova 2. H Aoyum g [I1B.

To 2014, o Trummer ka1 o Koch napovciacav v mapapuetpikn PeAtictonoinon epotuiToy
noAlamAdv kpitnpiov (ITIB) [1], tov NTov pia tpocmdfeila yevikevong Tov TPOPANUATOG
BeAtioTtomoinong avtov, cuvovaloviag vrapyovoeg texvikee g 1B kot g I1E.

Ymv [I1B 10 k66T0¢ £vOG TAAVOL EKTELECTG OVOTOPIGTOTOL (OC Li0, SLVUCUATIKT GUVAPTNOT)
C: R™— R™, houfdvovtog £tot vrdyn ToMATAES TapapeTpovs, aALd Kot TOANOTAG KptThpLo
BeAtiotomoinong. O atoyog ¢ IIB givon  mapaywyn evdg cuvorov and Bértiota Katd [Tapéto
TAdva yuo k6B Thavo cuvovaoud mapapétpmv. Onmg kot otny I1E, 6ha ta TAdva extéheonc
VTOA0YILOVTOL KOl GUYKPIVOVTOL TPV TNV EKTEAEGT TOV EPWTUATOC.
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IIpotaon

Y10Y0¢ 0VTNG TNG EPYACiag ivar kot 1 TPOTACT UiNG PYITEKTOVIKNG Y10 OTOTEAECLOTIKT KO
ToALOTAGV KpiLtnpimv BedtioTonoinon epotnudtov o tepiPdriov Cloud. H mpotevdpevn
OPYLTEKTOVIKY HOg TopaTifeTon oty axdAovdn ewova.

SpQF’h(Z SQL T \

Catalyst Optimizer Technique IVE
(MQ, MPQ) pata Warehouse (Querying)

Cost Model

, T < o ‘
a spark’ ™~

Execution Engine

YARN (Cluster Resource Management) ‘

FlDFS(\MH 1-"0‘}‘

Ewoéva 3. TIpotevopevn apyLteKToviKT.

Apyikd, yio 10 TEPOUATIKO OKELOG TNG EpYaciag pag yprolporomcape to Grid 5000, pio
EVLEMKTY KOl LEYAANG KATHAKOG TAATOOPLA Y10 £pEVVA GE OAOVE TOVE TOUEIG TNE EMGTHUNG TOV
vroAoyiot®v. Tn ypnoonomoape ota TpoTLT Hiog TAATEOpuag laaS, kdbe popd evowidlovtog
TOVG TOPOVG TOL YPELOLOUACTOV Y10 TO TELPEAUOTO LLOC.

INoa 1o koupdrt g amodnkevong, ypnoponomoape to HDFS kot giyope to dedopéva pog
arofnkevpéva o éva otabepd aplBud omd KouPovg 6edopévev, doTe va enmeeAnBodue and v
KATOVEUNUEVT] OGN TOV, TNV TOYLTNTA Kal TNV aglomiotio tov. ['a o koppdtt g eneéepyaciog Twv
dedopévav ypnoomomoape to Apache Spark, pie Tovg executors Tov Vo, €ivoil 1 EKTEAEGTIKN LOVEASA
NG OPYLTEKTOVIKNG Hoc. Avdioya pe Tov apBpo tov Spark executors mov Oélovpe va
YPTOLOTO|COVLE Y1 TV EKTELEST] TOL EPMOTNLLOTOS, YPNOLUOTOLOVUE TOV 1010 aplBud KOUPmV Yio
VTOAOYIGUO (L KGBe executor vo avatifetal o€ dlapopeTiko koo tov cluster pag). Oiot o
executors £ouv Ta 1010 YapaKINPLOTIKA, OTOTE 1) TPpoovapepbeica dadikacia sival TapoUOoLN LE TNV
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gvolkioon Kamolwv Topwv and pio mTAateopua 0tmg 11 Amazon EC2. Qg Bdon dedopévav,
ypnowonomcape mivakeg tov Apache Hive, kaOdg kot v SQL diemapn tov Spark, Spark SQL, ywa
VO TPOYUATOTOLOVUE EPOTHUOTO 0T PACT HOGC.

Ocov agopd tn Bertiotonoinon epotnudtov, 1 emtioyn g Spark SQL odnyel og pia
TpoKAnon. Onwg mpoavagépape, o fedtiotomointng g, Catalyst, £xel kdmola onpavTKd
petovektnuato, kabmg Asttovpyel katd faon pe kovoveg (rule based). ' avtd to Adyo, 1
OPYLTEKTOVIKT OV TTpoTeivove Ba ypMGILOTOLEL TO LOVTELO KOGTOAOYNONG TToL £xel Tpotafel yio v
Spark SQL [3], ®ote va maipvel amo@acelc OmOTEAECUOTIKA KOl LE EKTIUNGELS KOGTOVS, KOt Y10, VO
umopel va Aappavet veoyn oAa o mlava TAdva extéheons. O oTtdY0G LG Eival Vo EIGAYOVE TEXKEG
BeAticTomoinong molAamidVv kpitnpimv Tov £xovv ypnoiponomBel pe emituyio o oyeclakés fAcELg
dedopévav, og pia mapaAAnAn TAatedpua 6mmg ival to Spark.

XP1NOLOTOIDVTOG TO LOVTEAO QUTO LG EMTPEMEL VOL TPOTEIVOVLLE £VOL GVGTNHLA OTTOL 1)
BeAtictomoinon cvpPaivel LOVO LE EKTIUNGELS KOGTOVGS, Y10 TO YPOVO EKTEAEONG TOV EPOTNUATMV.
Oumg 6Tmg TpoavapépapLE, ERAG LaG EVOLUPEPEL ) BEATIOTOTOINGT) TOALOTAGDY KPITNPI®V, 0TOTE
Tpoteivovpe Kot Evav TOTO Y10 TOV DTOAOYICUO KAT® EKTIUNGT TOL YPNUATIKOD KOGTOLG KABE TAGVOL
extéleongc, pe Paon tuég amd 1o Amazon EC2. To opapa pog teptiapupavet Evav 0EAKTO
BedtioTomoNT EPMTNUATOV, IKOVO VO GUVOVAGEL OPOPETIKEG TEYVIKEC PeATioTomoinong. Eival
wKavos va epapuocel toco 11B, 6co kot [I1B. Oempolie g ovtd eivor piktd pe T0 HovTELD
KOGTOAOYNGNG 7OV YPTCULOTOLIOVE, KOl TO ETAANOEVOVLE Y10 GUYKEKPIUEVO EPOTNUATO,
vroAoyifovtog Kot cuykpivovtog OAM To GYETIKA TAGVO EKTEAEGTC.

O1 GLVEIGPOPEG HOG TPOG TNV KOTELHVUVGT VAOTOINGNG TNG TPOTEWVOUEVIC UPYLITEKTOVIKNG,
elvar o1 akdrovbec:

*  AVOKOTOOKELT TOV HOVTEAOL KOGTOAOYNOTG Yo T Spark SQL amd to undév, dote va
UTOPECOVLLE VO, XPTCLLOTOGOLUE Evay cost based BedtioTomointr epoTnudtev. Apov
VAOTOGALE TO LOVTELD, YPEIACTNKOV TEPAUOTO LEYOANG KATUOKOG KO TOAAEG GUYKPIGELC
e TEWPOLOTIKES TIUES amd To Spark, yia va eroinBevtel | a&omotio Tov.

o [Ipoteivape Evav TOTO Yo TNV EKTIUNGCT) TOV XPNUATIKOD KOGTOVE TOV EPOTNUAT®V TG Spark
SQL, ue Bdomn v tiworoynon tov Amazon EC2. H moAvkprrnploxn uon TV tpofAnudtov
BedticTomoinong o€ mapdAANAL GUGTHUATO ETAANOEVTNKE Ao TN dnpovpyia PEATIGTOV
katd [Tapéto TAdvov.

o Eopopuocape TopapeTpikn PEATIOTONOMGN EPOTUATOV GE TEPITAOKE, EPOTHLOTO,
YPNOUYLOTOIDVTOC TO LOVTELO KOGTOAOYNONG LOG Y10 TNV TOPAY®YN Kot GOYKPIGT) OA®V TV
OYETIKOV TAAVOV. ZTO TEAOG, £vo aOVoAO amd PélTiota katd [Tapéto mAdva mapdyetal.

Ylomoinon ko Igwpapatikny) Exaiq0gvon povrérlov kootoroynong

Spark SQL Cost DB Statistics and
Grammar <«
& Catalyst Model Cluster Parameters
L Parser : )
: = Y
saL Physical GPSJ Grammar SQL Query
Query Plan Derivation Cost

Ewoéva 4. Asttovpyio LoviéAov KOGTOAGYNOTG.
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H mtpdtn cuvelspopd ¢ epyaciog avtng ival 1 VAOTOINGT TOL HOVTEAOD KOGTOAGYNOT|G Yo
v Spark SQL mov mpotdbnke amd tovg Baldacci xan Golfarelli. Onwg npoavagépape, n Spark SQL
Baciletar otov Catalyst, o omoiog foacileton o Kavoveg KUPImG, 0V Kol KAVEL KOl KATOEG ETAOYEC e
Baon 1o k6cTOoC. O TOpaKdT® Tivakeg cuVOWILEL TIG OUOLOTNTES KoL TIG SLUPOPEG TV UOVTEAWDY
KootohdyNong (Tov Catalyst kot Tov Baldaccei)

Catalyst Optimizer Baldacci SQL Cost Model

Tomor Epompdtov Oha GPSJ(no UNION ALL,
OUTER JOIN)
Emloyn joins pe Bdon k66T0g & &

ZVAAOYH OTOTICTIKOV amd TIVOKEG Kl [ o
oTNAES

Aopfdaver  vmoéyn  mapapétpovg  Tov [ M
cluster

Baoileton oTIg EMOO0ELS ov [ %
GUOTNLOTOC KOl TOL OIKTOOV.

R Q] &1 <

Avodvtikdég  vroroyiopog  extipmong [ X
KOGTOVG.

IMivaxag 1. Zoykpion povtéhov kootordynong kot Catalyst

TPC-H QUERY 3

SELECT |_orderkey, o_orderdate, o_shippriority, sum(l_extprice)

FROM customer, orders, lineitem

WHERE ¢ _mktsegment = ‘BUILDING’ AND c_custkey = o _custkey AND | orderkey = o _orderkey
AND o _orderdate < date ‘1995-03-15" AND [ _shipdate > date ‘1995-03-15"

GROUP BY |_orderkey, 0_orderdate, 0_shippriority

GB(NS5, {I_orderkey, o_orderdate,
o_shippriority, |_extendedprice},
{l orderkey, o_orderdate,o_shippriority},F)

SJ(N3, N4,|_orderkey=0o_orderkey,
{l_orderkey, o_orderdate, o_shippriority,
|_extendedprice}, {I_orderkey,
o_orderdate,o_shippriority},F)

SJ(N1, c_custkey=0_custkey, N2,
{o_orderkey, o_orderdate,
o_shippriority}, {}, F)

SC(lineitem, |_shipdate >‘1995-
03-15', {I_orderkey,
|_extendedprice}, { }, F)

SC(orders, o_orderdate<'1995-03-
15", {o_orderkey, o_custkey,
o_orderdate, o_shippriority}, { }, F)

SC(customers, c_mktsegment =
'BUILDING', {c_custkey}, {}, F)

Ewoéva 5. ITAdvo ektéheonc ot Lopen SEVIpov
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211 GLVEYELWD, OTMG PAIVETAL GTIV EIKOVA TO TAAVO EKTEAEOTG VOGS QUETNY avamapicTaToL GTN
LOPPR SEVTPOL, OTOV 01 KOWPOL OmOTELOVV TIG EVEPYELES TOV TTPEMEL VO Yivouv. H avaivtikn ektipnon
TOV YPOVOL EKTEAEGNC EPYETOL E TO GOPOIGHA TOV EMUEPOVG XPOVMV EKTEAEGNC TOV KAOE KOUPOV.

Ao viomomOnKe To LOVTELO KOGTOAOYNONG, AKOAOVONGE 1 TEPAUATIKY TOV EXAANOgVOT
ue Baon ddpopovg mapdyovies. H emainfevon mpaypatoroindnke cuykpivovtag Tig EKTIUNGELG TOL
LOVTELOL KOGTOADYNONG, L 0ANOwvES Telpapatikés Twég amd to Spark. EnaAnfevcapue to povtého
KOGTOAIYNONG MG TTPOG 2 TOPAUETPOVS, TNV akpiPela TG exTiumong, Kot v emtuyio g mpdPieymg
(660v apopd 10 PEXTIGTO TAGVO EKTELEGNC). APYIKA, AGYOANONKOUE LE TNV akpiPelo TNG EKTIUMONC
KO TPOYLATOTOMGOLE To 0KOAoLOa TTelpdpaTa.

Query Execution time for different join sizes
N =8, E =4, EC =4, DF = 100
B Spark Experiments [ Cost Model Estimation

125
100
75
50

25

Execution time (sec)

J(Nation, J(Orders, J(Region, J(Part, J(Orders,
Region) Customer) Lineitem) Partsupp) Lineitem)

Number of executors

Ewova 6. Xpovor ektéleong yia S1apopeTikon peyEfoug joins
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Query Execution time for different TPC-H queries
N =8, E =4 EC=4, DF =100

B spark Experiments [ Cost Model Estimation
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Ewova 7. Xpovor ektéleong Yo S1opOpPETIKE EPMTALOTAL.

Query Execution Time for different # of Spark executors
N =8 EC=4, DF =100

B Spark Experiments [l Cost Model Estimations
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Ewova 8. Xpovor extéleong yia dtapopetikd aptfud Spark Executors
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Query Execution Time for different # of executor cores
N=8, E=7, DF =100

B Spark Experiment [l Cost Model Estimations
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Execution time (sec)
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Number of executor cores

Ewova 9. Xpovor ektédeong ya drapopetikod aptBud Spark Executor cores

Query Execution time for different data factors
N=8 E=4 EC=4
B Spark Experiments [l Cost Model Estimations
125

100
75
50

25

Execution time (sec)

DF=10 DF=50 DF=100

Number of executors

Ewova 10. Xpovor Exktéheong yio dtopopetikd péyehog dataset

To apywd copmépacua eivat TG T0 PovTEAo Tapovotalet pia agtoonueintn axpifela, evod ot
onoteg amoxAicelg Ppiokovron péca ota Opta mov et Bécet o Baldacci (20%). Avakpifeteg emiong
UTOPEL VO OPEIAOVTOL KOl GE GTOYOCTIKOTITA, KATOWOV TOPUYOVTIOV, OTMG TTY, 1) TOOTNTA HETAd0ONS
670 dikTvo. EmmAéov, HeAeTdVTAG LELOVOUEVO TEPITTOGELG AVUKPIPELNG, TAPATNPNCALE TOS TO
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HOVTELO KOOGTOAOYNGOTG TEIVEL KATO1EC POPES VO KAVEL AGTOYEG OAMOPACEIC OTAY VTTOAOYILEL TOV ¥POVO
ektéleonc Tmv broadcast joins, VIEPEKTIUDVTOS TOV YPOVO TOV XPELALOVTaL.

¥ cvvéyetn enainfevoape v axpifela tov tpoPfréyemv, cLYKPIVOVTOG dLOPOPETIKA
TAGVO, oo To 1610 EPOTILOTA.

Query 2 - Execution time for different query plans
N=8, E=4 EC=4 DF =100

B Spark Experiments [l Cost Model Estimations
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Ewova 11. Alagpopetikd mhdva ektéleong yio to Query 2.

Query 3 - Execution time for different query plans
N=8, E=4 EC=4 DF=100

B Spark Experiments [l Cost Model Estimations
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Ewcova 12. Awapopetikd TAGva ektéleong yo To query 3
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Join(Customer, Orders)
N=8E=4,EC=4, DF =100

B Spark Experiments [l Cost Model Estimations
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Ewova 13. O Catalyst kéver Aaboc.

Ao 116 000 TEPIMTMGELS TOL dglyvove £0(, TO povtélo pog Ppickel 1o PEXTIoTO TAGVO 0T
pio kot to yével oplaxd ot devtepn. [lap’ola avtd, eivol avepd Tmg akoAlovdel Tic TaoElg
BeAtiototnTOg, Ko givan oyetikd axpiféc. Tty ewova 13, frénovpe ko pia Eexabaprn wepintwon
AGBog emdoyng Tov Catalyst, Tnv omoia To povtédo pog Uropel Kot TpoPAETEL ETITLYMG, TPOTEIVOVTOG
T0 6MGTO TAGVO EKTELECTG.

Xpnpuotiko K0670g
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Query 3 - QET per Application Configuration
N =8, EC =4, DF = 100
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Ewova 14. Kaidtepog xpdvog ektéleong yio. dtopopetiko aptOpo Spark Executors.

¥ cuvéyela, Oa elcdyovpe 10 dgbTEPO KPITNPLO PEATIOTOTOINGNG, TO ¥PNUATIKO KOGTOG. ¢
Baon Twoloynong emiéyovue T TWwEC tov Amazon EC2. O tomog mov mpoteivovue Kot
¥PMNooTolovpe givar 0 akdiovbog:

Cost = E * QET (seconds) * cost($/hour)/3600
Omov E givar o apBpog twv executors, koar QET o ypovog extédeons tov epothipatos. Me Aiya Adya,

GTNV TEPITTMOOT UG TO, KPLTHPLY £Y0VV YECT avaA0yiag. XPpNOILOTOI®VTAG TOV TOTO VIToAoyilove T0
KOGTOG TV TAGV®V EKTELEONG, KO TOL OTTIKOTOOVE o€ évo, Pareto front.
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Pareto Front
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Ewova 15. Zovoro Bértiotov katd [Tapéto TAdvmv.

Onwg paivetal kot omd TV ekoVa, EYoVUE 3 S10POPETIKEG EMAOYEG TAAVMV EKTEAEGNC, TO

KkaBéva ex TV omoiv pag divel évav dtapopetikd cupPifacpd petadd Tmv 6vo {ntovpévev.

SUVETMG, KATUPEPULE VOL ADGOVLLE ETTVYMG VO TPOPANUC BEATIOTOTOINGNC EPOTHLOTOC TOAAOTAGDY

Kpunpiov, o€ pio TopdAnin miateopua 6mwg to Spark.

Ylomoinon kon erai0cvon IIBB

H televtaia cuvelopopd TG SIMAGUOTIKNAG EVOL 1] EQOPLOYT TNG TUPAUETPIKNG
BeAtictomoinong epotnudtov. ['a va to methyovpe avtd, Opicape MO TAPAUETPOVS TV
eMAEEIOTNTO KATOLWV O T KATNYOPTLOTO EVOG EPMTAHHUOTOC,

O dapopég otnv enainbevon mov giyape amd Tov Trummer topatifevtal 6Tov Tivako

TOPUKAT®:
H dwn| pog vAomoinon H viomoinon tov Trummer
Eion epompdrov GPSJ(no UNION  ALL, [ Oha X
OUTER JOIN, EQUI JOINS)
Entloyn epotnudtov | TPC-H Benchmark Tuyaio yevwitpia X
Ymoloyiopog k66toug | ABpoioo, VITOTAGV®OV ABpoiopa vToTAGV®Y 4
TAOVOL
Kpupu Xpovog extédeong, ypnuoticd | Xpovog  extédeong, ypnUatiko | o
BeAtioTomoinong KOGTOC KOOTOC

35




[Hopapetpot Enelypomra Ente&puomta katyopnudrtov 4
KOTNYOPNUATOV

Tpomor npdcPaong oe | 1 (ITAqpng clpmon mivaka) 2(ITAqpng odpwon, avalntnon | X
dedopéva gvupetnpiov)

Awbéowa €idn joins | 2 (Shuffle Hash, Broadcast) 2(Single node, shuffle hash)

Béon kootoAdymong | Amazon EC2 general purpose | Amazon EC2 general purpose | o
medium instance medium instance

Emloyn cvotipatog | Spark  SQL  +  povtédo [ Benchmark ypappévo og java | ¥
KOGTOAOYNONG application, pe cost model

[Mivakog 2. Atpopéc vAomoinong

EmniéEape va mtapovsidcovpe v Pertiotonoinon tov akdAovdov epoTHHATOS, OOV LE
yoralio Kot kitpvo givor To KaTnyopHpote TV onoimv 1 emAEEILOTNTA vl 0L TAPAUETPOL LOC.

TPC-H QUERY 3

SELECT I_orderkey, o_orderdate, o_shippriority, sum(l_extprice)

FROM customer, orders, lineitem

WHERE ¢ _mktsegment = ‘BUILDING’ AND c_custkey = o_custkey AND [ _orderkey = o_orderkey
AND o_orderdate < date ‘1995-03-15' AND | shipdate > date‘1995-03-15" AND c_custkey <15000000
GROUP BY |_orderkey, o_orderdate, o_shippriority

O ydpog mapapétpov mov B ypnoonomoovpe eivar o P1 = [0.1,0.2,0.4,0.6,0.8,1], P2 =
[0.5,0.3], 6mov P1 eivar o kitpvo katnyopnua kot P2 to yardlio. Oa Adpovpe vdyn Ol o GYETIKG
TAdvo exktédeong, yio 3 dapopetikég pvbuicelg Tov Spark, pe 2, 4, kot 8 executors.

Mia yn@lokn ongikdévion Tov YHOPoL TOV TUPOUETP®VY Hog elvar 1) akdAoVO).

Parameter Space
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Ewova 16. Xdpog [Mapapérpaov

To v Tepintmon Tov EPOMTAUATOS TOV TAPOVGIAGALE, VIAPYOLV 4 S1aPoPETIKOl GLVLOGHOT jOINS
(n oepd oL TpémEL vau yivouy Ta. 2 jOins givat Tpo@ovig 0moTe AaUBAVOVLE VITOYN UOVO TO EIB0G TOL
join).

PL1: Join Types -> Shuffle Join, Shuffle Join

PL2: Join Types -> Broadcast Join, Broadcast Join

PL3: Join Types -> Shuffle Join, Broadcast Join

PL4: Join Types -> Broadcast Join, Shuffle Join

TINo ¢ 3 dgpopetikéc pvbuicelg tov Spark, o dodue TIC EKTIUNOELS TOVL HOVTIEAOL
KOGTOAOYNONG HaG, Yo Kabéva ek TV 4 avTdV TAGV®YV, GE OAO TOV YMDPO TOV TOPUUETPOV LOC.

E=2, EC=4
P1/P2 |03 05
PLAN |PL1 |PL2 PL3 PL4 PL1
0.1 210.5 1984 [2080 |211.9
0.2 211.1 199.0 | 2086 |212.9
0.4 212.4 201.6 |[2100 |2146
0.6 213.7 2048 |211.2 |216.6
08 215.0 209.1 |[2129 |2185
1.0 216.4 2142 | 2144 | 2204
E=4, EC=4
P1/P2 |03 05
PLAN |PL1 |PL2 PL3 PL4 PL1 PL2 PL3 PL4
0.1 1275 1235 | 1268 |128.0 124.1 126.9
0.2 127.9 1239 1271|1285 124.7 127.3
0.4 1285 1251|1277 |1294 126.8 128.2
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IMivaxag 3. Xpovog extéleonc yia dtopopetikd mAdva kot dtopopetikég pvbuicelg Spark

Onwg @aivetar, 1 ovuneppopd g Spark SQL upetogépeton emrtuydg 6t0 HOVTELO
Kootorloynong. Oco peyaddvel  emde&pudtnTa evog KoTnyopnuatoc, ta mhdvo pe shuffle join teivovv
va Tpotipumvtat omd avtd pe broadcast join, mov sivar éva 1davikd join udvo 6tav o évag ek Tav 2
TVOK®V TOV EVAOVETOL EIVOL TOAD LIKPOG.

Eivai povepd mmg kabe cuvovaoudg TopapuéTpoy 00nyel 6€ d1apopeTikong cuuPipaciods doov
aPOPA TNV EKTEAECT] TOV EPOTHHATOS. AKoAovBovV 2 Pareto Fronts amd tov xdpo TV TopapéTpmy Hog.
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Pareto Front at X6 (1.0, 0.3)

@ Pareto Optimal Plans @ Pruned Plans
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Ewodva 17. Pareto front oto X6

O ovvdvaopog X6 sivar plo evdlapépovoa mepimtmon, Kabmg givar 1 pHovadikn amnd Tovg
GLVOLOGHOVG TOPAUETPOV OTTOL Ta 3 BéATioTa TAGVE eKTELEOTG, Elval OAO KOl SLUPOPETIKA PLGIKA

TAGVa EKTEAEOT|C, ONANDT TEPILOUPBAVOLY SLPOPETIKOVG GLUVEVOCHOVG JOINS.

Pareto Front at X4 (0.6, 0.3)

@ Pareto Optimal Plans @ Pruned Plans
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Ewovo 18. Pareto front oto X4
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Y& aut Vv mepintoon, éva and to 3 Péltiota mAdva (Yo kabe pvuBuon tov Spark), eivol
YEWPOTEPO amd €va, dALO TOGO OGOV aPOopd TO YPNUOTIKO KOGTOS, OGO Kol OGOV apopd TO XPOVO
extéheonc. Qg amotéAecpia, 0gv CLUTEPIAUUPAVETOL GTO GUVOAO TV PEATIOT®V Katd Pareto midvov
(to cvumepLdfope oV £1KOVO e KOKKIVO).

Younepdopota

"Eva mpogavég cupmépacio amd ovtd 10 GHVOAO TEWPAUATOV givorl OTL TAPALETPOL OTMG 1
EMAEEIUOTITO KOTNYOPTULATOV UTOPEL VO £XOVV LEYAAN EMPPOT| OGOV ALPOPE TO TOLO0 TAAVO
extéheong etvan BEATIOTO. AT excel ko mépa, deiEape TG 1 GLYKEKPLUEVT TEXVIKY PeATioTOMOINGNG,
1 omoia w¢ Tdpa elye emainBevtel povo o oyeclaKkéc Pacelg dedouévav, pmopel va emextadel Kot va
ypnoomroindel e emruyio oe TAATEOPUES TAPAAANANG eneéepyaciag 0mmg To Spark, Bonddvtag Tov
xpNoTn vo en®@einBel amd onpavtiky eEotkovounon xpovov, Liag Kot 1 dtodtkacio g
BedtioTomOINGNC TPUYUATOTOLEITAL TPV TNV EKTEAECT] KATOLOL EPMTAIOTOC,

40



41



Chapter 1

1.Introduction

1.1 Aim of thesis

The aim of this thesis is the proposal of a query optimizer operating on a cloud-like architecture,
for efficient and multi-objective query optimization.

The query optimization problem is tackled and techniques for solving the problem are discussed
and evaluated. The proposed architecture for the query optimizer was based on tools of the Hadoop
ecosystem for data storage and processing, alongside the Grid ‘5000 platform for deployment of
computing and storage resources, which enabled us to operate humerous complex and time-consuming
experiments in the form of SQL queries. The system was used and evaluated with large scale
experiments, alongside implementation of components of the query optimizer like its cost model, and
multiple optimization techniques.

1.2 Problem definition

As implied by the title, the optimization problem discussed in this thesis is query optimization.
More specifically, query optimization is the process of selecting an optimal way to execute a query
based on the available operators that can be applied on database data. We tackled query optimization
also with regards to the available computing resources of a cloud environment, the amount and size of
which can have a huge impact on our optimization objectives. Query optimization can become a very
challenging optimization problem when we deal with more complex queries than, for example, typical
SELECT attribute FROM TABLE table statements. Operations like table joins, aggregations and
generalized projections can result in an almost infinite number of available query execution plans,
making it difficult for the query optimizer to find the optimal plan and very time-consuming to compare
all available plans.

As our problem setting involves a Cloud environment, we adapt to its features and state that
query optimization in the cloud cannot be solved as a single-objective problem, as the pricing of each
platform makes monetary cost an equally important optimization goal in most cases. Therefore, we
argue that query optimization in the cloud should be at least bi-objective.

In short, we define our optimization problem as multi-objective query optimization in the cloud.

1.3 Motivation

The motivation of this thesis came from reading state of the art works on query optimization
and multi-objective optimization problems in general, as well as actually using data processing
frameworks like Apache Spark. Reading and experimenting led me to try to answer and explore research
guestions, like the following:
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e How can a query be efficiently and accurately optimized in a Cloud environment?

e How can query optimization be improved in a system like Apache Spark?

e How can a query optimizer cost model be implemented and evaluated?

e From how many different perspectives can a query be optimized in such an environment?

e What parameters of a query have a high influence when it comes to query execution time and
other optimization objectives?

e What are the challenges of switching from a cloud to a serverless environment and how does
this affect query optimization?

1.4 Thesis Text Structure

The text of the thesis is organized as follows. Chapter 2 introduces the cloud computing
landscape, with special reference to serverless architecture. Chapter 3 gives an overview of the tools
used for big data management in a Cloud environment, many of which are used in our contribution, like
Apache Spark and HDFS. Then, query optimization which is the optimization problem of the thesis is
introduced and discussed and the text follows with a link between query optimization and cloud
environments, by discussing optimization problems that occur in the cloud. An overview of problems
and state of the art solutions is given, and it is argued that the nature of the cloud implies that query
optimization in such an environment should be multi-objective.

After describing the state of the art in the research domain, the next chapter includes our vision
for a flexible multi-objective query optimizer operating in the Cloud, followed by our proposal of a
baseline system architecture which will be used in our experiments to provide proof of concept for our
contributions, which are also described.

One of the main contributions of this thesis is the reconstruction of a proposed cost model for
Spark SQL [3], and Chapter 8 is dedicated to the description of this implementation. Chapter 9 includes
the large-scale experimental evaluation we conducted for the cost model, and also introduces a second
objective to our optimization process, which is monetary cost. At that point, we managed to solve multi-
objective query optimization problems in a cloud-like environment. The next chapter goes one step
further to apply multi-objective parametric query optimization on selected queries, which is a novel
technique proposed in 2014 [1], that had not been evaluated in such an environment before.

After presenting and discussing all our experimental results, future research routes and
contributions are discussed based on the thesis outcome, and general conclusions are produced.
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Chapter 2

2.Cloud Computing & Serverless

2.1 Cloud computing

2.1.1 Introduction

Cloud computing refers to the on demand delivery of computing services through the internet.
These services consist of tools, applications and resources. The ability to rent computing resources like
servers, storage, databases or networking enables individuals and organizations to concentrate on more
essential tasks of their work and minimize up-front IT infrastructure costs, as computation and storage
responsibilities are abstracted from their local terminals.

The term cloud was used as a metaphor for the internet, implying that the specifics of how the
endpoints of a network are linked are not necessary to understand the diagram. The cloud metaphor was
first used for virtualized services by Andy Hertzfeld in 1994 to describe the universe of "places" that
mobile agents in the Telescript environment could go: "The beauty of Telescript,” says Andy, "is that
now, instead of just having a device to program, we now have the entire Cloud out there, where a single
program can go and travel to many different sources of information and create a sort of a virtual service.

Cloud computing technologies emerged thanks to the evolution of virtualization, which is the
logical division of resources on physical servers across virtual machines (VMs) [5]. The first cloud
computing platforms, like Amazon EC2 [6] and Google Cloud Platform [7], leveraged virtualization
and used VMs to share large clusters of servers across their clients. Virtualization provides cloud
systems with the agility required to speed up IT operations and reduce cost, by increasing utilization of
resources. Cloud computing resources (hardware and software) are distributed and stored in multiple
locations, each one being a data center.

2.1.2 Characteristics

Cloud computing offers some exciting new aspects and features. The National Institute of
Standards and Technology's definition of cloud computing summed up its essential characteristics in
the following five: [4]

e On-demand self-service: Cloud users can provision their services automatically and on demand.

As a result, there is no need for users to plan far ahead for provisioning, who can instantly rent
and lease the services they want.
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e Broad network access: The capabilities the cloud offers are available over the network and
accessed through standard mechanisms that promote use by heterogeneous thin or thick client
platforms (e.g., mobile phones, tablets, laptops, and workstations).

e Resource pooling: The provider's computing resources are pooled to serve different consumer
needs using a multi-tenant model, with different physical and virtual resources dynamically
assigned and reassigned according to consumer demand.

e Rapid elasticity: Elasticity is one of the most important cloud characteristics, as resources can
be elastically provisioned and released, in some cases automatically, to scale rapidly up and
down to meet workload demands.

e Measured service: Cloud systems automatically control and optimize resource use by
leveraging a metering capability at some level of abstraction appropriate to the type of service
(e.g., storage, processing, bandwidth, and active user accounts). Resource usage can be
monitored, controlled, and reported, providing transparency for both the provider and consumer
of the utilized service.

In addition to these features, the cloud can provide significant economic benefits to its users, due to a
pricing policy commonly applied:

e Pay for use pricing: The ability to pay for the used resources on a short-term basis (e.g.
processors by the hour, cloud storage by the day) and release them when they are no longer
needed, means that users can have significant cost savings, and providers can optimize the
scheduling of their resources.

The elasticity the cloud offers, alongside its pricing policy make it a very attractive choice for companies
and individuals, as they are freed from the task of buying and maintaining the resources that they will
need to use, need not to worry about overprovisioning or underprovisioning of resources, and can also
securely manage their data which can be stored remotely and securely alongside data centers.

2.1.3 Service Models

Cloud providers offer their "services" according to different models, which offer varying levels
of abstraction. The three most common service models are the following:

e Infrastructure as a service (laaS): laaS provides the same capabilities as data centers (except for
their actual maintenance). Users can rent and manage data center infrastructures like compute
and storage services in the form of virtual machines (VMs). 1aaS provides the virtualization,
storage, network, and servers needed, while users are responsible for managing applications,
data, runtime, middleware and operating system.

e Platform as a service (PaaS): PaaS provides hardware and software tools for the user to build

and manage a customized application. It is mostly targeted for developers who want to focus
on their application without having to provision the operating system or the PaaS software itself.
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Software as a service (SaaS): SaaS delivers web applications to its users, which are fully
managed by the SaaS vendor. Users typically access the application through an APl and a web
browser, and do not need to install it locally.

Figure 1 highlights the different levels of abstractions each service model offers, showing with light
blue the responsibilities of the user in each service model, and with dark blue what is managed by the
cloud provider.

On Premises Platform

Application
Data
Runtime
Middleware
O/S

Virtualization

Runtime
Middleware
0/S

Virtualization

Virtualization

Server Server Server

Storage Storage

Network

Storage

Network

Network

Figure 1. Cloud service models [113]

2.1.4 Cloud Computing Types

There are three main cloud computing deployment types:

Private clouds: private clouds are internal data centers, of businesses or other organizations not
available to the general public and large enough to be able to benefit from the cloud computing
advantages discussed in this thesis. It is a popular choice among big businesses as it offers
enhanced security and increased control.

Public clouds: public clouds are the ones available to the general public in a pay for use or even
in a free of charge manner, with the service sold being referred to as utility computing. Security
concerns are higher in public clouds, as services are shared by multiple customers. The
elasticity and the pay for use pricing model make it ideal for small and medium businesses, as
well as for individual users. Today, the most notable public cloud providers are the big tech
companies, with platforms such as Amazon Web Services (AWS), Microsoft Azure, Google
Cloud and IBM Cloud dominating the cloud market.

Hybrid clouds: hybrid clouds are a mixture of a public cloud and a private environment, offering
the benefits of both deployment models.

Other cloud deployment types worth mentioning are community clouds and virtual private clouds:
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e Community cloud shares infrastructure between several organizations from a specific
community with common concerns and interests (security, jurisdiction, etc.). The costs are
spread over fewer users than a public cloud (but more than a private cloud), so the full cost
savings potential of the cloud is not realized.

e Avirtual private cloud (VPC) is an on-demand configurable pool of shared resources allocated
within a public cloud environment. Although located inside a public cloud environment, it
provides isolation between the different users of the platform and its resources.
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» Chapter 247
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Figure 2. Cloud Deployment Types
2.1.5 Opportunities and use cases

Cloud computing development offers a lot of opportunities. It has resulted in increased parallel
processing, scalability, accessibility, high level of security and also integration with heterogeneous data
storages. It has resulted in significant cost savings in hardware, storage facilities or other utilities.

Cloud scales on-demand to support all types of workloads, providing resources and services for
uninterrupted data management and making it a useful tool for storage and mining of big data [2].
Apart from data analytics, it is also widely used for storage and backup by a lot of different industries
(medical, finance) [41,42], and its data replication factor makes it ideal for disaster recovery.

Apart from its applications in the industry and the database community, cloud computing is
omnipresent in our everyday lives. It is used for all kinds of activities, from safe storage of photos in
Dropbox, to music streaming in Spotify, writing code and training machine learning models in Google
Colab or processing text and photos on an online editor.

2.2 Serverless Computing

2.2.1 Introduction

Recently, the cloud evolved with the emergence of serverless computing platforms. Serverless
computing offerings include platforms in the cloud, where developers can simply upload their code,
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and the platform executes it for them at any scale. Developers are not concerned about provisioning, or
operating a real server (where the term “serverless” originates), and the fact that they are charged only
for computing resources used when their code is invoked, enables them to benefit even more from fine-
grained billing, as they will never have to pay for idle resources.

With serverless, virtualization moved one step ahead. After VMs virtualized physical hardware
and containers virtualized the operating system itself, serverless platforms virtualized the runtime or the
process itself, allowing multiple isolated functions (or lambdas) to share the same runtime. Figure 3
illustrates these varying virtualization abstraction levels.

Serverless started to attract more attention when Amazon launched AWS Lambda in 2014 [26]
Since then, interest is growing. A notable proof of the recent serverless popularity came from Google
search trends, which showed that queries for the term “serverless” recently surpassed the historic peak
of popularity of the phrase “MapReduce”. [14]

Today, most public cloud vendors have already introduced serverless. Significant examples are
the platforms of big-tech companies, like AWS Lambda [26],Microsoft Azure Cloud Functions [28]
and Google Cloud Functions [27]. Furthermore, promising open source serverless platforms [29]-[32]
have emerged, tackling numerous serverless limitations and research problems. Their performance is
evaluated in an overview work [11]. These platforms shape the current serverless landscape, with the
future looking promising and away from servers [5],[14],[15]. Its advantages will be further discussed
in $2.2.3.

However, current serverless offerings present significant limitations that do not allow the full
potential of serverless to be reached. These limitations are discussed in section $2.2.4, with section
$2.2.5 providing an overview of recent research works that aim to provide workarounds to these
limitations.

(1) no sharing (2) virtual machines (3) containers (4) lambdas
app app app app app app app
runtime runtime |runtime runtime [runtime runtime:
0S5 0S5
0S 0S 0s
VM VM
HW H/W HW H/W

Figure 3. Evolution of virtualization

2.2.2 Service Models

The current serverless ecosystem consists of Function as a service (FaaS) and backend as a
service (BaaS) platforms.

e Function as a service (FaaS): FaaS platforms are code execution environments where
developers write applications in the form of functions and execute them using cloud compute
and storage resources. Programmers can write in high-level languages such as Python or Java.
These functions are stateless and its execution time is of limited duration, often a few minutes.
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Users are charged at fine-grained time units, typically per hundreds of milliseconds of code
execution.

e Backend as aservice (BaaS): The term serverless has become synonymous with Faa$S platforms
today, however FaaS platforms are only one part of the serverless landscape, the other half
being BaaS. In comparison to FaaS which aims to provide a general-purpose code execution
environment, BaaS platforms often serve specific use cases. They consist of BaaS storage
platforms, database platforms and compute platforms. Storage platforms allow users to scale
their storage, like Amazon S3 [33] (which predates FaaS platforms), and bill them only for the
space they use and the amount of reads and writes they perform. As FaasS platforms are stateless,
it is common to use BaaS to store state in a serverless environment. BaaS database platforms
ease structured data storage and provide richer query semantics. Compute platforms include
Amazon Athena [34], Google BigQuery [35] and Azure Stream Analytics [36] which are
tailored for analytic workloads

In this chapter we will mainly discuss FaaS. The following sections describe the advantages and
disadvantages of FaaS

2.2.3 Advantages and use cases

Numerous contributions have evaluated FaaS naming its main pros and cons. [5,14,15,16,17].
Its main advantages are the following:

e Easy to use: with FaaS platforms, programmers need not worry about anything else than their
code, with management issues handled by the cloud provider

e Cost benefits: the cost savings for its users can be significant thanks to fine-grained billing.
Users will only pay for the resources they use and the duration that they use them, in contrast
to the server-centric model where users reserve resources regardless of whether they will use
them.

e Demand-driven execution: serverless platforms are constantly allocating and deallocating
resources for an application based on its workload demands. Thus, the task of scaling of
resources does not concern the user anymore, while the provider can more efficiently provide
and share his/her resources among its users.

A scenario illustrative of FaaS advantages is one of a web application (common serverless use
case) written in a FaaS platform, where a website contains an interactive element linked with a backend
API call that triggers a function in the backend. The operation of such an application will be entirely
event-driven, with resources being allocated only when a user interacts with the element and a function
needs them to execute. If the website has a lot of traffic more resources will be allocated automatically
to meet the execution needs, and if it has zero traffic no resources will be allocated (autoscaling). The
pay-for-use policy will mean that a FaaS user will never sustain and pay for idle resources.

In a 2018 survey in the serverless community, the popularity of different serverless use cases
was analysed. As expected, serving of backend APIs in web applications came out on top, while data
processing operations like ETL is the second most popular use case.
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Figure 4. Popular serverless use cases

2.2.4 Limitations

The advantages and the prospects of serverless might be significant, however today’s FaaS
offerings come with significant limitations, which do not allow it to reach its rich potential.lts main
limitations are the following:

e Short function lifespan: Functions have a very short lifespan and after they terminate, their state
is lost. In AWS Lambda, this limit is 15 minutes.

e Function communication: Perhaps the more significant FaaS limitation is that functions cannot
directly communicate with each other. As a result, exchange of state and intermediate data is
not an easy task.

e Cold starts: Instantly starting many functions comes with a significant startup delay

e Resource Heterogeneity: Serverless lacks resource heterogeneity. FaaS offerings today only
allow users to provision a time slice of a CPU hyperthread and some amount of RAM. There is

no API or mechanism to access specialized hardware like GPUs, FPGAS etc.

e Security Issues: Security is also an open issue in serverless. Existing platforms present some
vulnerabilities due to increased co-residency, as well as higher leak probability because of
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increased network communication. This happens because data is disaggregated from functions
and stored in a serverless data store.

A research team from UC Berkeley [14] states that these limitations mean that at the moment,
FaaS is attractive only for a limited number of tasks such as massively parallel applications which
exploit its autoscaling character and its functions need not communicate with each other, function
orchestration and interactive data analytics.

2.2.5 FaaS v laaS

The concept of the FaaS service model sounds more similar to laaS from the 3 traditional cloud
service models, but there is a key difference. In laaS, the developer selects resources from a pool of
available options, rents them for the time he needs them, and if his needs change during the process, he
can rent more, or release some of his resources. In FaaS, the cloud provider takes care of this process.
FaaS is autoscaling, and has a pay-for-what-you-use charging policy.

Serverless might be gaining ground, however at the moment the areas where FaaS performs
better and overcomes traditional, VM-based laaS are still limited. In the Lambada contribution [23],
Muller et al. compare laaS and FaaS in a Data Analytics task, highlighting the cost gain by sporadic
resource use alongside the ability to service analytic queries, as the advantages of FaaS over laas. They
go on to pinpoint interactive queries on cold data as a great fit for FaaS. Jiang et al. [38] implemented
LambdaML, a platform enabling a fair comparison between FaaS and laaS on ML training tasks,
concluding that serverless is the best choice for models with reduced communication that quickly
converge. They conclude that although FaaS can prove much faster than laaS, it can never be much
cheaper.

2.2.6 Existing Work

The significant limitations of serverless has led to a lot of research work, aiming to overcome
these limitations with some promising contributions.

Communication between functions has been perhaps the hottest issue from the above. An
obvious alternative involves communication through BaaS storage like Amazon S3 [23][25], which will
come with a higher latency without heuristics, and also raises some security issues. Other works include
an ephemeral data layer [20], like Pocket [21], which presents an ephemeral data store that automatically
scales to meet the demands of serverless applications. This was achieved by the use of Apache Crail
[39], an 1/O architecture tailored to best integrate fast networking and storage hardware into distributed
data processing platforms, taking full advantage of modern hardware capabilities. Another route was
followed by Boxer [22], which enabled direct function-to-function communication in existing public
cloud infrastructure, through a conventional TCP/IP network stack.

Cloudburst [24] is a completely new FaaS platform that achieves logical disaggregation and
physical colocation of computation and state, and in contrast with other works, allows programs written
in traditional programming languages to keep a consistent state across function compositions.
Cloudburst achieves this via a combination of an autoscaling key-value store (providing state sharing
and overlay routing) and mutable caches co-located with function executors (providing data locality).
The system is built on top of Anna [40], a low latency autoscaling key-value store implemented by the
same research team (UC Berkeley).
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Lambada [23] presented an interesting workaround for the “cold start" problem, by parallelizing
the worker invocation process. They achieved this by implementing a structure where after the first set
of workers is invoked, a second generation follows as each worker invokes a number of other workers,
until the scaling process is completed. That way startup latency is significantly reduced.

2.3 Conclusion

In this chapter, an overview of the cloud and serverless computing landscape was presented,
with the pros and cons of each, and discussion on state of the art platforms and works on both systems.
In the next chapter, we will explain why the cloud can be a good fit for big data handling, and introduce
tools and frameworks used.
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Chapter 3

3.Big Data Processing in the Cloud

3.1 Introduction

In the previous chapter, we mentioned that the Cloud can be a useful tool for storage and
processing of big data. In this chapter we are going to introduce big data and present some state of the
art frameworks that are used for its storage and processing. The distributed data storage and large scale
parallel processing that can be achieved with these frameworks makes them the backbone of modern
Cloud platforms. The number of frameworks used in big data is very large, so the chapter will focus on
a subset of those that leverage massively parallel processing and are based on the MapReduce paradigm
and Hadoop ecosystem.

3.1.1 Big Data

Big data is a field that deals with very large datasets, whose storage, processing and analysis
cannot easily be done with the use of relational databases. Big data can be better described by the
following three characteristics, also known as “The 3 Vs of Big Data” [47]:

1. Volume: when considering big data, the quantity of generated and stored data is very large,
usually more than a few TBs. As a result, it requires significant computing resources for the
data to be processed and stored

2. Variety: an important characteristic of big data is heterogeneity, meaning that the type and
nature of data can range from structured, semi-structured or even unstructured data collected
via numerous different sources.

3. Velocity: the speed of data generation and processing of big data is very high, and their
processing in real time is important, as it will then enable even faster data flow.

Apart from these 3 characteristics, there are some extra “Vs” that are sometimes included to
describe Big Data, making the number of “Vs” 5 or 6. One of them is veracity, which refers to the
reliability and quality of data, indicating that Big Data does not just have to be large, but it also requires
reliability in order to reach valuable conclusions by analyzing it. VValue is another characteristic, which
refers to the importance of the output gained by big data processing. Finally, variability is another big
data characteristic, which refers to the variety of the data, alongside the transformations that occur
during its processing, sometimes resulting in the changing of the data format.
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Figure 5. Five “Vs” of big data [48]

We mentioned three different data formats:

Structured data: structured data is the easiest data to handle, as it is tabular data represented by
columns and rows in a database. Data of this form is stored in relational databases.
Semi-structured data: semi-structured data is not organized like structured data, but it has a
basic structure. Semi-structured data consist of data stored in JSON files and key-value stores.
Unstructured data: Unstructured data is the main focus of big data processing, as it is data not
organised in a pre-defined data model. Video and audio files, raw text files, as well as binary
files are regarded as unstructured data.

3.1.2 Big Data Processing in the Cloud

Big Data characteristics mean that big data applications have significant requirements in

resources. Some features of the Cloud, like elasticity and pay for use pricing, make it a suitable place
to run Big Data applications [2,49]. Depending on the application requirements, the data architect has
to make some important decisions:

Storage: Big data volume and velocity means that applications require large and scalable
storage space. Cloud offers elastic storage resources on demand and reduces IT costs in many
use cases. Therefore, the data architect has to find a suitable cloud provider considering pricing,
scalability and availability.

Database: Big data variety implies that each application might have different types of data to
handle. Depending on the form of the data (mainly whether it is structured or not), the data
architect must select an appropriate database management system, either relational, or NoSQL.
In $3.3.1 the two different management systems will be compared.
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e Data processing: Big data volume makes its processing a demanding procedure, in order to
obtain its value. Furthermore, its velocity makes real time data processing essential in certain
applications. Therefore, the data architect needs to use an appropriate data processing
framework in order to process big data with high speed and if needed, in real time.

In the following subsections, state of the art frameworks that are used for storage ($3.2),
database management ($3.3) and processing ($3.4) of big data will be presented. These frameworks are
used by the world’s largest tech companies. The reader will also be introduced to the Hadoop ecosystem.

3.2 Big Data Storage

3.2.1 Apache Hadoop Distributed File System (HDFS)
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Figure 6. HDFS Architecture [64]

Apache Hadoop [50] consists of a collection of software tools to handle massive amounts of
data in computer clusters. Hadoop consists of a storage part, HDFS, and a processing part, the
MapReduce programming model, which will be discussed in $3.4. HDFS is a distributed and scalable
file system, providing redundant and reliable massive data storage. It usually consists of a single master
node (namenode), which manages the filesystem and has the metadata and the location of each data
block, and a cluster of nodes for storage (datanodes), where data is stored in the form of blocks. (Figure
6). Itis able to store very large files and datasets (in the range of terabytes) and achieves fault tolerance
and reliability by replicating the data across different nodes. Its nature makes it ideal for storing big
data. It is inspired by the Google File System paper [59], which aided Doug Cutting to develop an open-

57



source implementation of its Map-Reduce framework, and he named it Hadoop, after his son’s toy
elephant. Hadoop is widely used by big companies, and it is estimated that more than half of the Fortune
50 companies are using it. In 2010, Facebook had claimed to have the biggest Hadoop cluster in the
world, with 21 PB of data distributed across 2000 nodes [60].

3.3 Big Data Databases

3.3.1 NoSQL and SQL
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Figure 7. SQL and NoSQL databases [65]

SQL is the most widely used language for data management. It is a useful tool for relational
database management systems (RDBMS), or for stream processing in relational data stream
management systems (RDSMS). It is state of the art in handling structured data where the relations
between the data tables are known, and it is based on relational algebra. RDBMSs has been a popular
choice for storing data in databases since the 1980s. With the emergence of big data however, RDBMSs
have started losing ground, as their relational nature can prove a significant limitation. Unstructured or
semi-structured data need to be structured first in order to be added to an RDBMS. Moreover, when the
volume of data grows, relations between data can become very complicated. Finally, RDBMSs cannot
cope with data being generated in a high velocity, as it is designed for steady data retention, making it
problematic and expensive when rapid data growth occurs. The inability of an RDBMS to operate well
with data of high volume,variety and velocity makes it a bad alternative for big data management.

The aforementioned limitations led to a rise in popularity of NoSQL databases, which are
purpose built databases for specific data models, and provide flexible schemas. NoSQL databases can
ingest large volumes of data at low cost. NoSQL databases are schema-free so the data does not have
to be structured, and it can be collected in the database and be structured later. NoSQL as a result
supports all forms of data (structured, semi-structured, unstructured), making it a good fit for handling
a good variety of data files, like videos or text files. NoSQL databases are also scalable, as they are
designed to scale out by using distributed clusters of hardware. This enables them to provide high
availability and fault tolerance when handling large volumes of data. NoSQL databases consist of:
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1. Key-value stores: A key-value store is a hash table where a unique ID (key), points to a specific
element (value).

2. Column-family stores: Similar to key-value stores, but in this case keys point to a specific row,
not element. Columns are organised in column families.

3. Document store: Each key points to a certain document, which is a specific collection of data.

4. Graph store: Data is organised in a graph model, which can be used in parallel by several nodes.

In the following 2 subsections, 2 state of the art NoSQL databases will be presented that are
widely used in the industry. They are just a few of the available solutions for database management,
based on the MapReduce paradigm.

3.3.2 Apache Cassandra

Apache Cassandra [52] is a widely used, distributed NoSQL database management system. It
is designed to handle large volumes of data across clusters, offering high availability and no single point
of failure. Data replication across nodes provides fault tolerance and low latency across the cluster. Data
is modeled in column families consisting of columns and organised by row keys. Cassandra comes with
a query language (CQL), a simple alternative interface to SQL and it is also compatible with the Hadoop
ecosystem, offering MapReduce and Apache Hive support.

Originally developed by Facebook, it was open sourced in 2009 [45] and is now managed by
the Apache foundation and used by Netflix, Twitter, Reddit and Cisco, among other companies handling
big data. [61]

3.3.3 Apache HBase

Apache HBase [53] is another open source, distributed NoSQL database management system,
modeled after Google’s BigTable. It is part of the Hadoop ecosystem and it runs on top of HDFS,
providing a fault-tolerant way of storing large quantities of sparse data. HBase data model organises
data in tables having cells organised by row keys and column families. Each cell contains a value and
a timestamp. Timestamps make HBase a consistent database, making it a CP system according to the
CAP theorem. [46]

3.4 Big Data Processing Frameworks

3.4.1 Apache Hadoop MapReduce

Apache Hadoop MapReduce (MR) [57] is a computing framework for processing and
generating big data sets with a parallel, distributed algorithm on a cluster. It is the core of the Hadoop
data analysis framework.

MapReduce processing depends on two steps:

e Map: In the map procedure filtering and sorting of data from database tables is carried out.

After the map stage, the processing results are passed to the Reduce stage.
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e Reduce: In the reduce phase, a summary operation is performed, where aggregation functions
are calculated and data is grouped.

MapReduce runs its tasks in parallel, managing communication and data transfer between its
datanodes and providing redundancy and fault tolerance. However, due to the number of MR operations
on HDFS (calculations, backup, download/upload, shuffling), disk I/0 and data movements can create
significant overheads. As a result, MR is gradually replaced by Spark and Flink for more data-intensive
and interactive applications, and is now mainly used for offline data processing.

3.4.2 Apache Spark

Apache Spark [51] is a unified analytics engine for large scale data processing. It is an open
source Apache project, which was developed in UC Berkeley in 2009. It is a distributed computing
framework, which much like MapReduce splits up large tasks across different worker nodes. However,
it can perform much faster as it uses RAM to cache and process data while applications are running,
which enables it to store the intermediate results of a task in memory and avoid the extra HDFS 1/O
latency. Its “memory” feature makes it a good fit for iterative algorithms and applications like data
mining and machine learning. Its architectural foundation lies in the resilient distributed dataset (RDD),
a read-only multiset of data items distributed over a cluster of machines. Spark has different types of
computing modes, like interactive queries, or stream processing. Spark is considered as a better
alternative to MapReduce, however it is also considered a state of the art module to Hadoop, thanks to
its compatibility with HDFS and Apache Hive (see $3.5).

Spark Core is the heart of the framework, and it consists of an application programming
interface which offers functionalities of distributed task dispatching, scheduling and basic 1/0
functionalities.

Spark SQL is a component that can be used on top of Spark Core which introduced DataFrames
which is a data abstraction over RDDs where a distributed collection of data is organized into named
columns. It provides support for structured and semi-structured data.

Spark Streaming is another Spark component that uses Spark Core's scheduling capability to
perform streaming analytics. It receives data in small batches and performs RDD transformations on
them.

3.4.3 Apache Flink

Apache Flink [56] is an open-source stream-based distributed data processing framework. Its
core component is a dataflow streaming execution engine, similar to Spark Streaming. Flink provides
quality memory management and can also prove very fast, as it allows iterative processing to execute
solely on one node, without having to process each step independently on the cluster. Flink works really
well when repeated passes need to be made on the same data values, which makes it ideal for machine
learning use cases.

3.4.4 Apache Storm

Apache Storm [55] is another open source distributed computing framework, tailored for real-
time big data processing. It is a scalable and fault-tolerant framework, and its use cases include real
time analytics, online machine learning, continuous computation, distributed RPC and ETL.
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Storm became open source after being acquired by Twitter in 2011 [43] which still uses it for
real-time data processing. With the emergence of Spark and Flink, Storm use has significantly
decreased, it remains however a reliable choice for real-time data analysis.

3.5 Other Hadoop tools
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Figure 8. Architecture of the Hadoop ecosystem [62]

In this subsection, two more tools of the Hadoop ecosystem that will be addressed later in the
thesis will be described briefly. Figure 8 shows how the different frameworks discussed in this chapter
are connected. The figure shows, from the bottom moving up, the storage layer, resource management
layer and application layer.

3.5.1 Apache Yarn

Yarn [58], also known as Yet Another Resource Negotiator is another component of the Hadoop
ecosystem that works as a large-scale, distributed operating system for big data applications. It is
responsible for the resource management and job scheduling to meet application needs. In a system
architecture, it is located between HDFS and the processing engines used to run applications.

3.5.2 Apache Hive

Apache Hive [54] is a data warehouse software project built on top of Apache Hadoop,
providing data query and analysis via an SQL-like interface. It can query data stored in various
databases and file systems that integrate with Hadoop. It uses various SQL optimizations like partition
pruning or predicate pushdown, enabling it to process more raw data in bulk than Spark SQL or CQL.

It was developed by Facebook, and is now used by many companies like Netflix and the
Financial Industry Regulatory Authority (FINRA) [63].
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3.6 Conclusion

In this chapter an overview of state of the art systems for handling big data was given. In the
next chapter, a particular database optimization challenge will be presented, query optimization. In
chapter 5, query optimization will also be tackled with regards to the optimization goals of a cloud
environment.
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Chapter 4

4.Query Optimization

4.1 Query Processing
4.1.1 Introduction - Query Processing Steps

In the previous chapter, we talked about handling large datasets in a cloud environment.
Database management systems are classified into relational databases which model data in a structured
way and use SQL for writing and querying data, and non-relational databases (NoSQL) which handle
all types of data and use different query languages, although most popular NoSQL databases have SQL -
like interfaces.

Query languages are computer languages used to make queries in databases and information
systems. A database query is a request to insert or access data from a database to read it, update it, or
delete it. Query processing is one of the most important processes happening in a DBMS, where high-
level queries are translated into low-level expressions.
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engine
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output
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Steps in query processing
Figure 9. Query Processing Steps in an RDBMS [66]

After a user submits a high-level query language (in our case we mainly discuss SQL) query, its
processing consists of five essential steps [67]:
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1. Parsing: In the parsing phase, the submitted query is checked for syntax errors, based on the
query language grammar. The parser verifies the attributes’ and tables’ names and creates a
‘parse-tree’, a syntax tree for the query.

2. Translation: If the query is parsed successfully, the translation phase transforms the query from
SQL (high-level), to relational algebra instructions that indicate the operations that must be
performed on the data in order to solve the query (e.g. selection, project, join). The output of
this step is a tree containing all the logical operations that need to be applied for the processing
of the query (logical tree).

3. Optimization: After the first steps, the translated relational query is given as an input to the
query optimizer. The optimizer uses statistics and data collected from the database for each
table and attribute to generate one or more query execution plans for a query, each of which
may be a mechanism used to run a query. A query execution plan specifies the execution order
for the operations described in the algebraic tree, as well as the operators used. The most
efficient query execution plan is selected and used to run the query, usually based on a cost
model. The output of this step is a query plan in the form of a tree containing all the physical
operators needed to process the query (physical tree), which is later sent to the execution engine.

4. Evaluation/Execution: The query execution plan returned by the optimizer is executed by the
query evaluation/execution engine, and the answer to the query is returned.

4.2 Query Optimization & Techniques

4.2.1 Introduction - Classical Query Optimization (CQ)

In this subsection we will focus on query optimization, one of the most challenging tasks during
query processing.

Query Optimizer

@ Query Plan 1 Query Plan 2 @ Query Plan 3

Figure 10. Query Optimizer

Classical query optimization assumes that query plans are compared according to one single
cost metric, usually execution time, and that the cost of each query plan can be calculated without
uncertainty. Given a query, there are multiple query plans that can be used for its execution, and
selection of an optimal query plan is a challenging optimization problem [87]. For example, finding the
optimal join order in a query, which is a task of query optimization, is an NP-complete problem.

The set of possible query execution plans is formed by examining all possible data access paths
(e.g. index access, full table scan), as well as all possible join techniques (e.g. merge join, hash join)
and scheduling decisions (e.g. join order) for the operators used. By applying some operators on the
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logical plan returned by the parser, a physical execution plan is produced. The query plan search space
can become almost infinitely large for SQL queries of high complexity. A query optimizer can either
use rules to select a query plan, or cost functions. Today, most query optimizers are cost-based, as rule-
based estimations are usually less accurate.

4.2.2 Rule based query optimization

In rule based query optimization (RBO), the conversion of the logical plan to a physical plan is
based on rules. For instance, the selection of join operators can depend on the size of the smallest table
joined, and vary from shuffle join to replicated join in a distributed system scenario, if it surpasses a
size threshold. Although RBO is not preferred in modern optimizers, there are cases where rule based
choices can be of use. For instance, in the case of nested queries, a rule-based approach based on a
query graph model might not consider all the range of possible query plans, but can prove useful in that
use case for reducing the optimization overhead of using an algorithm to examine the space of
alternative plans. A well known optimizer that still remains mostly rule based is Catalyst [3], the
optimizer module of Spark SQL, which will be discussed in $4.4.5.

4.2.3 Cost Based Query optimization

In cost based query optimization (CBO), costs are used to estimate the runtime cost of executing
a query, in terms of the number of 1/O operations required, CPU path length, amount of disk buffer
space, disk storage service time, and other factors which provide an accurate estimation of the query
execution time, which is the most common optimization objective.

The choice of an execution plan is the result of numerous factors, such as table and attributes
statistics, database and system characteristics, cost formulas, and algorithms to cope with the big
number of possible execution plans. There is a tradeoff between the amount of time spent looking for
the best query plan and the quality of the choice, so in cases where the space of alternative plans is very
big, exhaustive evaluation of query plans will probably result in high latency. A common technique in
CBO is cardinality estimation, where the optimizer takes into account table cardinalities and estimations
for the selectivity of predicates, to calculate the cardinality reduction after each operation. The
translation of cardinalities into cost estimation is achieved through the use of cost functions, which are
specified in the most important component of cost based optimizers, the cost model.

4.2.4 Cost Models

Database cost models are the core of query optimizers. They consist of two parts, the logical
and the physical one. [83] The logical part is responsible for estimating the data volumes involved in
the operations. It depends only on the data stored in the database, the query operators, and the order in
which they will be executed. It is independent from the choice of algorithm and implementation to carry
each operation (e.g. selection of join operator). The physical part is provided with the estimated data
volumes from the logical plans, and is responsible for estimating the cost of different algorithms and
implementations for each operation. The optimizer uses this information and executes the query
accordingly..
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4.3 Parametric Query Optimization (PQ)

Parametric Query Optimization (PQ) [69] takes a different approach in how the cost of a query
plan is modeled. It associates each query plan with a cost function ¢: R™—> R instead of a constant
value c, representing the cost of a query plan as a function of n parameters, whose value is not yet
known at optimization time. PQ parameters may represent selectivity of predicates, or the amount of
available buffer space at query execution time [1]. The optimization goal is to find a plan set that
contains an optimal query plan for each possible combination of parameter values. The main advantage
of PQ over CQ, is that query optimization, which can prove a computationally expensive operation, is
avoided at runtime and it happens in a pre-processing phase. After the parameters of a query are
specified, query optimization simply involves the selection of the relevant plan from the aforementioned
plan set.

One branch of PQ algorithms decomposes a PQ problem into a set of non-parametric CQ
problems. This approach has the advantage that an existing query optimizer for CQ can be used for PQ
with only small changes to the optimizer’s code. Such PQ approaches are called non-intrusive. [70]
Many non-intrusive approaches to PQ are based on parameter space decomposition [70,71,72], where
they repeatedly use a standard optimizer to generate optimal plans for fixed parameter values, thus
decomposing the parameter space into different regions where a single plan is optimal for each region.
Another branch of PQ algorithms [70] is based on dynamic programming, like the CQ algorithm by
Selinger [67]. They use several data structures and corresponding manipulation functions. loannidis et
al. [69] use randomized algorithms for PQ, which cannot offer worst-case guarantees on generating
complete plan sets.

4.4 Query Optimizers

In this subsection, an overview of the evolution of query optimizers will be presented, based on a
relevant tutorial paper [79].

4.4.1 EXODUS

The EXODUS optimizer [75] marked the beginning of an era for rule based query optimizers.
Its architecture was based on code generation from declarative rules of logical and physical algebra,
and it introduced the division of a query optimizer into independent modular components.

4.4.2 \Jolcano

The Volcano work followed [76], and it combined improved extensibility with an efficient
search engine based on dynamic programming and memorization. Extensibility was achieved by
generating optimizer source code from data model specifications and by modeling costs as well as
logical and physical properties into abstract data types. Effectiveness was achieved by permitting
exhaustive search, which will be pruned when the user chooses it. Efficiency was achieved by
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combining dynamic programming with directed search based on physical properties, introducing a new
search algorithm called directed dynamic programming. The choice when and how to use heuristic
transformations or cost-based optimization is not prescribed or "wired in."

Volcano was regarded as a very good fit for object-oriented and scientific database systems.

4.4.3 Cascades

Cascades [77] leveraged Volcano advantages (modularity, extensibility, dynamic
programming) [76], offering a number of new features in order to overcome its limitations. First of all,
modeling of predicates and other operations as part of query and plan algebra was introduced. Specific
operators could now be both logical and physical, appearing both in the optimizer input and output.
Moreover, new operators like sorting and merging exploration were inserted as normal operators, being
inserted into the execution plan based on rules. In Volcano, they were special operators not appearing
in rules.

4.4.4 Calcite
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Figure 11. Apache Calcite
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Building on ideas from Cascade, Apache Calcite [78] is a foundational software framework that
provides query processing, optimization, and query language support to many popular open-source data
processing systems over heterogeneous data sources. Its main component consists of a modular and
extensible query optimizer. It is currently the most widely adopted optimizer for big-data analytics in
the Hadoop ecosystem, as it has been adopted by Apache Hive [54].

One of the main advantages of the Calcite optimizer is that each of its components is pluggable
and extensible. Users can add relational operators, rules, cost models and statistics.In addition, Calcite
supports multiple planning engines. As a result, the optimization can be broken down into phases
handled by different optimization engines depending on which one is best suited for the stage. Calcite
also provides an adapter for Apache Cassandra [52].

4.4.5 Catalyst
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Figure 12. Catalyst Architecture

In the core of Spark SQL lies the Catalyst optimizer, which uses many rules to optimize queries
for efficient execution, while being extendable and allowing new rules to be added easily, if needed.
These rules are applied to a data structure called a tree, the main data type in this optimizer. Before a
query is executed, it passes through four phases of the catalyst optimizer. These phases are
analysis(parsing), logical optimization, which is done on the analyzed logical plan; physical planning,
during which physical operators are applied to the optimized logical plan; and code generation, in which
the physical plan is converted into Java bytecode to run on each node of the cluster.

Spark SQL can also be used to execute queries over multiple data sources as in Calcite.
However, although the Catalyst optimizer in Spark SQL also attempts to minimize query execution
cost, it lacks the dynamic programming approach used by Calcite and risks falling into local minima
[78].

4.4.5.1 Cost Model for Spark SQL

The fact that Catalyst still relies on a rule-based optimizer (although it makes some cost-based
choices when choosing the join algorithms) is considered a significant limitation which led Baldacci et
al. to introduce a cost model for Spark SQL [3], covering the class of GPSJ (Generalized Projection/
Selection/Join) queries and allowing an accurate prediction of the cost of each query to be made. A
GPSJ query is a query composed only of joins, selection predicates and aggregations. As the authors
described it, it is a first step towards turning Catalyst into a fully cost-based optimizer and to compare
the execution cost of different physical plans even when adaptive execution is considered. Their cost
model will be discussed in more detail in Chapter 7, where we will also reconstruct it and evaluate its
accuracy.

In another recent work [80], an algorithm was implemented to reduce unnecessary memory
consumption and overhead during the shuffling process of Catalyst.
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4.5 Other Query Optimization directions
4.5.1 Multi-query Optimization

In the previous subsections, the definitions and techniques presented concern single-query
optimization, where queries are optimized one at time. A different approach is multi-query
optimization, which has the task of generating an optimal combined execution plan for a collection of
multiple queries [85][86]. Compared to single-query optimization, multi-query optimization can exploit
commonalities between queries, for example by computing common query sub-expressions once and
reusing them, or by sharing scans of relations from disk and the cache.

4.5.2 Query Re-optimization

When describing query processing steps in $4.1, we showed that the standard approach includes
optimization happening before execution. The optimizer combines statistics and cost models to yield
an optimal plan, and execution happens instantly after that. However, when the complexity of queries
increases, the quality of the choice degrades, as finding the optimal plan is very time-consuming. This
problem is tackled by query re-optimization [87], which involves progressively optimizing the query,
executing parts of the plan at a time, and continuously optimizing the plan after each part is executed,
in the light of new information. As a result, plan quality increases and the optimization overhead
decreases.

4.6 Conclusion

In this chapter, an analytical description of the query optimization process was given, as well
as examples of techniques and optimizers. Until now, when we were talking about query optimization
we were assuming that it had one objective, which usually is, or depends on query execution time. In
the next chapter, we will see in detail how query optimization can have multiple objectives, and explore
techniques and related work using multi-objective query optimization in a cloud environment, which
will be the core of our proposal.
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Chapter 5

5.Multiobjective Optimization

5.1 Introduction

Multi-objective optimization (MOO) is an area of multiple criteria decision making that
concerns mathematical optimization problems involving more than one objective function that need to
be optimized simultaneously. MOO has applications in many fields of science like engineering,
economics and logistics where optimal decisions need to be taken in the presence of trade-offs between
two or more conflicting objectives. When the objective functions are conflicting, no single solution
simultaneously optimizes each objective, and solutions are called nondominated, or Pareto optimal. The
number of Pareto optimal solutions that can be considered equally good can be very big. In this chapter,
we will focus on MOO problems concerning data management.

5.2 MOO Definitions

5.2.1 Mathematical Definition - Pareto Front

A

Pareto front
(Non-dominated
solutions)

Ji
Figure 13. Pareto Front
In mathematical terms, a multi-objective optimization problem can be formulated as:
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min( fi (£), f2(2),. .., fr(Z))

st.x e X,

where k is the number of objectives and the set X is the feasible set of decision vectors. A solution x*
(and its output f(x *)) is called Pareto optimal if there does not exist another solution that dominates

it. The boundary defined by the set of all points mapped from the Pareto optimal set (Fig.13) is called
the Pareto front or Pareto frontier.

Therefore, the Pareto front is a set of nondominated solutions, chosen as optimal, where no
objective can be improved without sacrificing at least one other objective. On the other hand a solution
x is referred to as dominated by another solution x* if, and only if, x is equally good or better than x*
with respect to all objectives.

5.2.2 MOO Types

There usually exist numerous Pareto optimal solutions for MOO problems, so solving such a
problem is not as straightforward as it is for single-objective optimization problems. Solving MOO
problems can be done in different ways. Some methods convert the MOO problem to a single-objective
one. These methods are called scalarized. Other methods have the goal of approximating a
representative set of Pareto optimal solutions, each one providing a different trade-off between the
objectives. [107]

In some cases decision making plays an important role in the solution, as solving an MOO
problem requires finding a single Pareto optimal solution that best meets the decision maker’s
preferences.

MOO problems can be tackled with methods belonging in four different classes: [88]

e No preference methods belong in the only class where no decision making is involved. The
goal is to find a relevant set of Pareto optimal solutions providing different trade-offs.

e In a priori methods, the decision maker has provided his objectives and then a solution best
satisfying these preferences is found.

e A posteriori methods combine the two aforementioned techniques, as a representative set of
Pareto optimal solutions is first found, and then it is up to the decision maker to select one of
them.

e In interactive methods, the decision maker iteratively searches for his/her preferred solutions.
In each iteration he/she is presented with a set of Pareto optimal solutions, and then gives
feedback to the system, as to how the solutions could be improved. Then, new Pareto optimal
solutions are produced based on the information provided by the decision maker. This way, the
DM learns about the feasibility of his/her preferences and concentrates only on relevant
solutions. It is up to the decision maker to stop the search and pick a solution.

5.3 Optimization Problems in the Cloud

5.3.1 Introduction

73



Some of the unique characteristics of the cloud, like the pay-as-you-go pricing scheme and the
elasticity it provides, create numerous optimization opportunities. Most of them involve laaS platforms,
where the different resource allocation options mean that one combination of resources will be better
than another, depending on user objectives. When considering data management, query processing and
resource management are two procedures containing optimization problems that have been tackled a
lot from the research community. We will first describe them and then explore how they can be solved
in a multiobjective environment.

5.3.2 Query Optimization

Query optimization in databases was discussed in chapter 4. When considering query
processing in a cloud environment, it has to be taken into account that in most cases, a distributed data
management system is used, like Cassandra or HTable [52][53]. Furthermore, optimization in laaS
requires considering more factors than in a traditional cluster, like future resource availability, release
of resources etc. In laaS, a query is processed like this: a user submits a query in a high level language,
like SQL. This query is submitted and received from the master nodes. The optimizer then calculates a
detailed query execution plan (QEP) for the query based on a cost model and decomposes it into sub-
queries which are assigned to worker nodes based on some load balancing criterion. Each worker
evaluates its sub-query and returns the results to the master. The master merges all the sub-results and
produces the answer to the query.

5.3.3 Resource Allocation, Task Scheduling

When it comes to resource management, laaS platforms come with a pool of available resources
which can be rented by their users to execute their tasks. The optimization problem that arises is broken
into two sub-problems:

e Resource allocation: The resource configuration a user chooses for her application from the
alternatives the cloud vendor provides will determine how efficiently the application will be
executed. Overprovisioning or underprovisioning for a specific task could result in higher
monetary costs, or lower execution time respectively.

e Task Scheduling: Scheduling tasks to available resources is a difficult optimization problem,
due to the infinite space of alternative schedules.

5.4 MOO Goals

The aforementioned optimization problems can be tackled either as single objective
optimization problems (SOO), or multi-objective optimization problems (MOQO).In SOO problems, the
goal is to find the solution that minimizes or maximizes a certain metric (eg. QEP with minimum
monetary cost in query optimization). In MOO, more than one metric is considered, and the optimal
solution involves a tradeoff between the two. The different optimization goals can be the following:

e Execution time: In query and resource optimization, execution time usually translates to query
execution time. In most research MOO works, it is the primal optimization objective. The aim
is to maintain low execution time without ignoring other objectives.
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e Monetary cost: Monetary cost is an equally important factor in optimization problems in the
cloud. Resources are rented based on a pricing model and depending on the user's budget
constraints, cost can be traded off other objectives [95][94][103][112].

e Energy Consumption: An optimisation metric closely related to monetary cost (monetary cost
is dependent on the energy cost of the resources rented) is energy consumption. While users
mostly aim to reduce latency and cost, cloud providers yearn for reducing the energy
consumption in their data centers, which is one of the major costs in the cloud service
environment. [99][101]

e Result Precision: Accuracy is another optimization goal, sometimes more important than cost.
For instance in services where crucial decisions have to be taken quickly (e.g. a hospital with a
medical patient dataset), there is no room for inaccurate results. In these cases, execution time
can be traded off against result precision, aiming to have high accuracy and low latency. [1][92]

5.5 Multi-objective Query Optimization

5.5.1 Multi-objective Query Optimization (MQ)

Multi-objective Query Optimization (MQ) generalizes the CQ optimization model and
associates each query execution plan with a cost vector ¢ & R™which describes the cost of the plan
according to multiple cost metrics. The optimization goal is to find a set of Pareto-optimal query plans,
meaning that for a given query plan in the Pareto front, no other plan has better cost according to all the
optimization metrics at the same time.

MQ algorithms have to compare the different plans according to n cost metrics. The
optimization goal here is to find a plan that represents the best tradeoff between the conflicting metrics,
with user preferences taken into account. The Selinger single-objective CQ algorithm [67] has been
generalized to MQ [89]. In this work, plans are compared according to multiple cost metrics during
pruning and non Pareto-optimal plans are discarded.

Other MQ algorithms are tailored for specific cost metrics or user preferences [90],[91],[92].
Some of them support multiple metrics if the query cost can be represented as a weighted sum over the
cost of its sub-plans. Another branch of MQ algorithms separates multi-objective optimization from
join ordering. For example, they produce a time-optimal join tree first and configure operators within it
according to the other cost metrics later. Algorithms for multi-objective data flow optimization [93] are
not applicable to query optimization with join reordering.

5.5.2 Multi-objective Parametric Query Optimization (MPQ)

In 2014, Trummer and Koch presented multi-objective parametric query optimization [1],
which was an attempt to generalize the database query optimization problem by combining and
generalizing multi-objective query optimization (MQ) and parametric query optimization (PQ).
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Figure 14. Query Optimization Variants

In MPQ, the cost of a query plan is represented as a vector-valued function ¢ : R™> R™. This
allows to model multiple parameters as well as multiple cost metrics, thus combining MQ and PQ cost
functions (Figure 14). As in PQ, a parameter in MPQ may represent any quantity that influences the
cost of query plans and is unknown at optimization time. The objective of MPQ is to generate a complete
set of relevant plans, containing a plan p= for each possible plan p and each point in the parameter space
x such that p* has at most the same cost as p at x according to each cost metric. In other words, the
objective is to find a Pareto front for all points in the parameter space. All relevant query plans are
generated in advance (like in PQ), and no query optimization is required at runtime. Although MPQ
combines MQ and PQ, it is impossible to use MQ or PQ algorithms in MPQ, as MQ algorithms do not
support parameters and PQ algorithms do not support multiple cost metrics.
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Figure 15. MPQ Context

Let p1 and p2 be two query plans that produce the same result. Plan p1 dominates plan p2 in
all points of the parameter space in which p1 has at most the same cost as p2 according to each cost
metric. The function Dom(p1, p2) € X yields the parameter space region where pl dominates p2:
Dom(pl, p2) = {x € X|Vm € M: c™(pl, x) < c™(p2, X)}, where c(p,X) is the cost function
for plan p
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P € P(Q) is a Pareto plan set (PPS) iff it contains for each possible plan p* € P(Q) and each
parameter vector x € X at least one plan plan that dominates px for x:
Vpx € P(Q) Vx € X Idp € P: x € Dom(p, p*)

An MPQ problem is defined by a query Q, a parameter space X, and a set of cost metrics M.
Any Pareto Plan Set for Q is a solution to the MPQ problem.

Trummer & Koch also introduced the first 2 MPQ algorithms, the first being the Relevance
Region Pruning Algorithm (RRPA) for MPQ, which associates each query plan with a relevance
region(RR) in the parameter space, which is used to detect irrelevant plans. The algorithm is generic
for different types of cost functions and runs exhaustively.

The second algorithm presented was PWL-RRPA, where data structures were used to represent
cost functions and relevance regions (RR). Relevange region of a query plan is the set of parameter
combinations for each a given plan is relevant. It is a specialized version of RRPA for piecewise linear
(PWL) cost functions. PWL-RRPA was evaluated in Postgres, using two optimization metrics
(execution time and monetary cost). Standard formulas were used to estimate join time; monetary cost
was estimated according to the pricing system of Amazon EC2.

5.6 MOO Techniques

In order to respond to the optimization problems we discussed in $5.3, a lot of other MOO
techniques have been used, either providing the user with a Pareto optimal query plan/front based on
his preferred trade-off (in query optimization), or responding with a front of Pareto optimal cluster
configuration (in resource optimization). We present these techniques here, alongside the challenges
they are tackling and their optimization metrics, all implemented for cloud computing applications and
scenarios:

e Weighted Sum Model: With the use of a weighted sum model (WS), a multi-objective
optimization problem is transformed into a single objective one, by distributing the weight of
every objective [94,96]. It calculates the optimal plan for a number of weight distributions, and
returns a Pareto plan set (PPS). A disadvantage of WS techniques is the poor coverage of the
Pareto frontier, which makes it difficult to find the optimal tradeoff for our objectives. [97]

e MOO Algorithms: Another common choice is a mathematical programming-based model
where an algorithm is implemented and run repeatedly. After each loop, a Pareto optimal
solution is produced. This algorithm can be exhaustive [1][93], linear programming-based [98],
probabilistic [93], greedy [93], or incremental, meaning that they avoid regenerating query
plans when being invoked several times for the same query. [99]

e Evolutionary Algorithms: Evolutionary multi-objective optimization (EMO) algorithms are
another popular approach for calculating Pareto optimal solutions. Non-dominated Sorting
Genetic Algorithm-11 (NSGA-II) is probably the most popular choice [100,101] or basis for
new algorithms [102,103], with interesting alternatives having considered particle swarm
optimization [104], simulated annealing [106],and ant colony optimization [105]. The fact that
genetic algorithms calculate entire sets of solutions make it possible for the entire Pareto front
to be approximated. However, in some cases the convergence of the algorithm (and
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consequently the Pareto optimality of the solution set) cannot be guaranteed and measured.
[107]

e Machine Learning: Some works on scheduling have also benefited from recent machine
learning techniques like based modeling approaches, which can automatically learn a predictive
model for each of the objectives from the behavior of user tasks [95]. Artificial Neural
Networks (ANN) have also been used to predict the resources needed based on estimated
completion time and energy consumption. [101] Reinforcement learning techniques have also
been hot in MOO query optimization works, especially when tackling query re-optimization.
[108,109]

Most of the works studied in this section tackle the optimization dipole between query latency
and monetary cost, however there have also been multi-objective optimization works aiming to reduce
energy consumption alongside latency [101,99], and also works mentioning result precision in their use
case scenarios [1], or having error percentage constraints alongside time constraints. [92]

The target environment of most research works is laaS platforms. However, there have also
emerged works studying scheduling in FaaS environments [100], and more are expected to appear in
the future, as Serverless is steadily gaining ground in the Cloud landscape.

Finally, the majority of the research works have been evaluated in a bi-objective way, having
two optimization metrics. However, some of the works are by nature many-objective, having used up
to 9 optimization metrics. [89]

5.7 Existing Cloud MOO Works

In the previous section, we presented different MOO techniques used in works tailored for cloud
computing applications. In this section, we present some exemplary systems using the presented
techniques as well as the use cases that they support:

e Weighted Sum Model: Normalized Weighted Sum Model (NWSM) [94,96] is a user-interactive
multi-objective query optimization strategy based on a modified weighted sum model and is
used to achieve MOO in a mobile-cloud database environment, able to take into account 3 cost
objectives: query latency, monetary cost, and mobile device energy consumption. By using
NWSA, the user assigns weights of importance to each of the 3 objectives, which are multiplied
with the different metric costs to produce the final cost estimation of a query execution plan
(QEP). In the end, the QEP with the lowest score is selected and executed.

e MOO Algorithms: In $5.5.2 we introduced multi-objective parametric query optimization [6]
where an exhaustive algorithm which executes before query run time for every combination of
a number of parameters (size of tables, type of joins) to cover the space of query execution
plans, taking into account multiple objectives. Real life applications of this technique involve
querying Cloud databases with a time-money tradeoff, or executing embedded SQL queries
with a time-result precision tradeoff. In another work concerning dataflow schedule
optimization in the Cloud [93], several greedy, probabilistic, and exhaustive optimization
algorithms are used to explore the space of alternative schedules, before choosing an optimal
one based on a time-money tradeoff. More recently, Kllapi et al. [98] tackled dataflow
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optimization with index interleaving algorithms aiming to utilise idle slots in the dataflow
execution schedule and build indexes in parallel, without extra delay or cost.

Evolutionary Algorithms: Christoforou et al. [100] proposed a new resource management
approach in a FaaS platform, based on intelligent techniques and genetic algorithms. Three
different algorithms were used to find a set of near-optimal solutions to the MOO problem.
These solutions could be of use for developers going serverless looking to select an efficient
resource allocation scheme. The results were promising, although works on scheduling in FaaS
environments are not very common yet [111]. In another MOO work aiming to reduce energy
consumption and makespan, [101] the DVFS technique is used to reduce energy consumption,
which enables the VMs to run at different blends of frequencies and voltages. The MOO is
solved with the help of NSGA-II for energy consumption and latency. Finally, Artificial Neural
Networks were also used in the genetic algorithms optimization procedure to predict the
available resources based on task characteristics.

Machine Learning: Song et al. tackled the MOO cloud problem by building an optimizer using
a novel approach [95] to incrementally transform a MOO problem to a set of constrained
optimization (CO) problems which can be solved individually. The coverage (of the Pareto
frontier) and efficiency challenges are met by the use of different Progressive Frontier (PF)
algorithms, which were also implemented in a Spark workload. The optimizer also used recent
ML modeling approaches to learn a predictive model for each MO objective based on the
runtime behavior of a user task, with no requirement of using a query plan. Evaluation showed
that the optimizer can outperform state-of-the-art optimizers, like Ottertune. Handaoui et al.
introduced ReLeaSER [109], a reinforcement learning strategy for optimizing the utilization
and allocation of ephemeral resources in the cloud, with regards to the SLA. A dynamic safety
margin is set for each resource metric. The RL strategy learns from prediction errors and
improves the height of the safety margins. As a result, SLA violation penalties are reduced, and
Cloud providers can increase potential savings.

Cost Models: Karampaglis et al. [112] introduced the first proposal for a bi-objective query cost
model suitable for queries executed over a multi-cloud environment. It successfully provides
estimates of both the expected running time and the monetary cost associated with a query. The
cost model can also be applied to DAG data flows, apart from QEPs, which make it easily
extensible.

5.8 Serverless for MOO

Multi-objective query and resource optimization have been the basis of numerous research

works, which will be analysed in the following sections. The majority of these works are based on laaS
platforms where the user's decisions on resources are by themselves an optimization problem.

As FaaS built on some of the cloud's existing advantages, its unique characteristics would

provide some optimization opportunities if it was selected as an execution environment for MO query
and resource optimization. Some of them are:

Even more cost, energy savings: Serverless characteristics means that tackling MOO problems
in FaaS creates more optimization opportunities in regards to monetary cost and energy
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consumption. Users will pay less, as they will only pay when their code (e.g. a query) is actually
executed and never for idle resources. Cloud providers will save energy by allocating their
resources in an event-driven way, and will also benefit economically as the fact that their
resources are released when idle is a big step for optimization of resource allocation and
scheduling.

Handling of massively parallel tasks: Massively parallel applications are a good fit for
serverless platforms, as they exploit serverless autoscaling character, and requests need not
communicate with each other. When considering data management and querying in the cloud,
distributed database queries using distributed set processing can be a good fit, as their tasks can
be parallelized and almost no data shipping between serverless functions will be required.

Response to interactive analytics: Serverless can also be a good fit for data intensive
applications like interactive analytics, and subsequently is suitable for optimizing interactive
queries [23].

However, the limitations of serverless mentioned in chapter 2 means that the serverless paradigm also
comes with significant obstacles, concerning MOO in data management scenarios:

Data Shuffling: Data shuffling is an essential part in distributed query processing, being the
most commonly used communication pattern to transfer data across stages. In serverless, as
direct communication and data transfer between functions is difficult and its stateless compute
units have no local storage, intermediate data between stages needs to be stored in storage
systems like Amazon S3, and accessing it each time comes with an extra overhead increasing
latency and cost. Slow data shuffling is a big obstacle for query execution, and limits query
optimization opportunities.

Lack of control over resources: FaaS platforms are easy to use, as users only have to worry
about their application and code. However, the fact that they have no control over computing
resources and task scheduling means that the optimization challenges they offer are also
abstracted by the users and rely on FaaS vendors methods.

Short term tasks only: Serverless functions have a short lifespan. In AWS Lambda [26], this
limit is 15 minutes. As a result, they cannot be used for long-running tasks like complex
analytical queries, limiting even more the queries that can leverage the serverless paradigm.

Security Issues: Security is also an open issue in serverless. Existing platforms present some
vulnerabilities due to increased co-residency, as well as higher leak probability because of
increased network communication. This happens because data is disaggregated from functions
and stored in a serverless data store.

In conclusion, serverless might be gaining ground, however at the moment the areas where

FaaS performs better and overcomes traditional, VM-based laa$S are still limited. Multi-objective query
and resource optimization in laaS has been a hot research topic with numerous contributions.

80



5.9 Conclusion

In this chapter, multi-objective optimization was defined and numerous interesting works
concerning multi-objective query and resource optimization were presented. In the following chapter,
our vision of a state of the art architecture for a query optimizer will be presented, with regards to some
of the works presented here, and in chapter 7 we will give an analytic description of our proposal.

81



82



Chapter 6

6.Proposal - System architecture

6.1 Vision - From Cloud to Serverless

In this chapter, we will propose an architecture for efficient and multi-objective query

processing in the cloud. Firstly, we will present our vision of an architecture for efficient data processing
in the cloud, with its core being a multi-objective and flexible query optimizer, which can be broken
down in four objectives:

Tackle query optimization problems efficiently in a cloud environment, with respects to its
unique characteristics. As a result, we tackle the optimization problem with multiple
optimization objectives, related to the use of computing and storage resources on demand.
These objectives may include query execution time, monetary cost, energy consumption.

Generalize query optimization in the cloud, by combining state of the art optimization methods
(discussed in Chapters 4 and 5), and adapting them in a massively parallel environment, in
contrast with relational DBMSs, which had been their primary use case environment until now.

Explore the opportunities offered by a fast emerging subset of the cloud, FaaS platforms. No
serverless query optimizer has yet been implemented. Serverless NoSQL databases like
Amazon DynamoDB may use indexing for optimizations [110], however they operate without
a query optimizer. Couchbase [12] recently introduced one of the first cost-based optimizers
for NoSQL document databases [13] but does not operate serverlessly. We aim to simulate a
serverless environment and evaluate the opportunities and challenges that occur in regards to
multi-objective query optimization.

Come up with a generic and flexible optimizer solution, not limited to a certain technique or
implementation system, but being able to take into account different optimization objectives,
different optimization techniques, and even different query execution environments (e.g. Cloud
provider, Cloud federations, Serverless provider).

In the following subsections, we will propose an architecture for data and query processing,

including the implementation of certain parts of the aforementioned query optimizer, in the direction of
the described vision. In the following chapters we will also present our actual contribution and
experimentally evaluate its proof of concept.

6.2 Proposed System Components
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In this section we will present the components of the proposed system architecture, alongside
examples of frameworks and platforms that could be used for its implementation. Our main focus when
envisioning the system involved traditional laaS cloud platforms, however we took many decisions
based on serverless features, to enable extensibility to different platforms.

6.2.1 Deployment

Figure 16. Grid ‘5000

The core of our proposed system architecture will be Grid ‘5000, a large-scale and flexible
platform for experiment-driven research in all areas of computer science with a focus on parallel and
distributed computing, including Cloud, HPC and Big Data and Al. Our computing and storage
resources will be deployed through Grid ‘5000 where numerous cores and computing nodes are
available and grouped in homogeneous clusters, featuring various technologies (e.g. PMEM, GPU,
SSD). We will use Grid 5000 in the manner of a cloud laaS platform, each time renting the resources
we are going to need for our experiments.

6.2.2 Storage

In the cloud computing system we envision, data will be stored in a distributed data store, with
a constant number of nodes used for storage. We also aim to logically disaggregate computation and
storage, like in the Serverless paradigm, but without necessarily preventing physical colocation. [14].
Storage and computation resources can scale independently, providing the system with the necessary
flexibility introduced in serverless, and colocation can increase performance.

In our proposed system, data is stored in a constant number of datanodes inside an HDFS
filesystem. Logical disaggregation is achieved by separating the process of scaling resources for storage
and computation. Physical colocation is achieved by initializing our computational units in the same
nodes used for data storage. We deploy the number of nodes we want through Grid ‘5000, and we
choose HDFS to store them in order to benefit from its distributed nature, speed and resiliency through
replication. It is also the main framework used for storage by most big tech companies offering cloud
services.

6.2.3 Computation

As we mentioned before, deployed resources will be used both for computing and for storage
purposes. We envision a system where running an application would come with automatic allocation
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and deallocation of a number of nodes for computation specified by the user. As this is difficult to
implement on a deployment platform like Grid ‘5000, we rented a number of nodes and each time used
as many as we wanted for computation, assuming that our vision can be extended to a cloud platform
where the first step of renting all the possible nodes for computation beforehand would be avoided.
With the use of Apache Yarn, the Hadoop ecosystem resource scheduler, the executors are initialized
in different nodes of our cluster.

6.2.4 Data Processing

The big data processing framework of our proposed architecture is Apache Spark, with Spark
executors being the computational unit of our architecture. Depending on the number of Spark
executors we want to use for the execution of a query, we utilize the same number of nodes for
computation (each executor allocated in a different node). All the Spark executors have the same
characteristics (e.g. vcores), so the described process is similar to allocating a number of instances
with the same characteristics in a platform like Amazon EC2.

We chose Spark as our data processing framework due to its distributed and massively
parallel features, its compatibility with HDFS, its SQL interface which we used, and its wide adoption
in industry.

6.2.5 DBMS

For database management, we store our dataset tables as Hive tables in Apache Hive, the data
warehouse introduced in chapter 3. We use Spark for processing, and its SQL interface, Spark SQL,
to query our data. Thanks to our choice to store our data as Hive tables, SparkSQL can use the
HiveMetastore to get the metadata of the data stored in HDFS. This metadata enables SparkSQL to do
better optimization of the queries that it executes, with Spark being the query processor.

6.2.6 Query Optimization

As we use Spark SQL for querying our data, query optimization inevitably relies on Spark
SQL optimizer, the Catalyst, introduced in chapter 4.

6.2.6.1 Cost Model

One of Catalyst’s main limitations is that it remains largely rule-based, having a very simple
cost model covering only specific operations on data. This is why a cost model for Catalyst was
recently proposed [3]. Our vision includes integrating multi-objective optimization techniques that
have successfully been used in RDBMSs, into Spark which is a parallel processing framework. To be
able to use a fully cost-based optimizer without leaving Spark, we propose a system using the
proposed cost model for query optimization. To support our proposal, we reimplemented the cost
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model, by coding it in a Python script. In the next chapter we will further describe how we
reimplemented it, and in Chapter 9 we will experimentally evaluate it.

6.2.6.2 Multi-objective optimizer

Using the aforementioned cost model allows us to propose a system where optimization
becomes fully cost based, and we will be using an optimizer accurately estimating the execution time
of alternative query plans, selecting the optimal one. However, our envisioned system is not limited to
single-objective optimization, therefore we will also propose a formula for estimating the monetary
cost of a query plan in our architecture, basing our estimations on the hourly cost of using Amazon
EC2 generic medium instance. This will allow us to use a bi-objective cost model, enabling us to
tackle MQ problems.

6.2.6.3 MPQ

In chapter 5 we presented MQ, and also introduced another set of multi-objective query
optimization problems, MPQ, where each query is defined as a function of parameters. MPQ is a
technique that can prove much faster than MQ, as the fact that the query optimization process happens
before runtime in a preprocessing time, means there is zero optimization overhead during runtime.
However, it is challenging to address MPQ problems accurately, as the parameters picked have to be
sensitive, and also an exhaustive estimation of the cost of all relevant plans has to be done in the
preprocessing step, in order for the selection of the Pareto-optimal plans to be relevant. MPQ also
requires all the queries received as input to obey to a certain template (e.g. being of the form SELECT
* FROM TABLE t WHERE pred, with pred being the only varying parameter of the query).

Our proposed optimizer is a flexible one, aiming to use different optimization methods. It is
able to consider MPQ, alongside traditional MQ. We propose and argue that this is possible with the
cost model we are using, and evaluate it for certain queries using a script calculating and comparing
all relevant query plans. In our proposed optimizer architecture, the decision maker will have the
choice of using MQ or MPQ, depending on his use case.

6.2.7 Serverless

In $6.1, we mentioned the vision of a first serverless query optimizer, which can alternate
between different execution environments, in our case being cloud or serverless. Our contribution will
not include any serverless components, however our system architecture and the use of the Hadoop
ecosystem makes it easily extensible, and leaves the door open for validating it in a serverless
environment in the future. In chapter 2 we mentioned Pocket [21], an ephemeral data store for
serverless data analytics. This contribution leveraged Apache Crail [39], an I/O architecture tailored to
best integrate fast networking and storage hardware into distributed data processing platforms, in
order to deal with communication between functions. Crail has also been the core of Spark-10 [19], a
fast distributed storage system, containing two 1/0 plugins: a shuffle engine and a broadcast module.
Both plugins inherit all the benefits of Crail such as very high performance (throughput and latency)
and multi-tiering (e.g., DRAM and flash).

86



/ f \ \MAP /. f \ REDUCE
/AP / AH \

= H »-#7 m:; |\ '

NN T~ f / \\\ ’
Persistent \\\ // Ephemeral \ N/ (v d & / SHEE
Data Store ™ f e f Data Store
\\\ / Data Store

Figure 17. Apache Crail

Using Spark-10 enables us to simulate a serverless-like environment, as the data sharing
limitation is controlled by Apache Crail, the compute and storage services are disaggregated, and the
resources used for computation are able to scale up and down on demand. Therefore, by using Apache
Crail as an ephemeral data layer and basing the monetary cost estimations of a query plan on values
for example from Amazon S3, which is a BaaS platform, we can show proof of concept for multi-
objective query optimization in a serverless platform. As we discussed in Chapter 2, depending on the
application, choice of laaS or FaaS as an execution environment might be more efficient. A generic
query optimizer could also allow the user to select the execution environment, and execute his/her
application in a Cloud (e.g. EC2), or Serverless (e.g. Lambda) environment.

6.3 System Architecture

Visualized, our proposed system architecture can be summed up in the following figure.
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Figure 18. Proposed system architecture

In short, a user submits a query written in SQL. The query is parsed and translated by the
Spark SQL optimizer. The optimizer uses the reimplemented cost model to select the optimal physical
execution plan. Then, the user gets to choose how many Spark executors he will allocate for the
execution of the query. Selection of many executors will mean the execution is quick, but more costly,
whereas a low number of executors will mean slower but cheaper execution. After the application
configuration is specified, YARN schedules the tasks that have to be done, and allocates resources for
each executor to operate. After the execution environment has been set up, physical operations
described in the physical plan are applied to the data. Data is stored in the form of Hive tables, which
are stored in HDFS.

If we aimed one step further and implemented the more generic query optimizer, which could

alternate between a cloud and serverless environment, Crail would be integrated in our system as an
in-between layer on top of HDFS and under Spark, as shown in the figure below.
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Figure 19. Integrating Crail into our architecture

This addition to our architecture, apart from enabling us to consider the serverless factor,
would also speed up execution, as it provides significant optimizations in the way local and remote
storage resources are used in a high-speed network deployment. The whole architecture would look
like this:

89



Spqﬁzz SQL Input Query :

Catalyst Optimizer Technique IVE
(MQ, MPQ) pata Warehouse (Querying)

Cost Model

~ Spark™ b

Execution Engine

‘ YARN (Cluster Resource Management

‘ CRALIL Store

HDFS (Storag: | |

Figure 20. Proposed Architecture with Crail

6.4 Contributions

Our contributions towards implementing the proposed system include the following:

e Re-implementation of the aforementioned Spark SQL cost model, in order to work with a
fully cost based query optimizer. As reconstructing the cost model was a challenging job and
required large scale experiments and comparisons in Spark, we will describe our
implementation in detail in the following chapter and validate it in Chapter 8.

e A formula for estimating the monetary cost of Spark SQL queries, based on the pricing
scheme of Amazon EC2. The multi-objective nature of the query optimization problems in the
described system was validated by the creation of Pareto fronts for given queries.

e We applied parametric query optimization on complex queries. We created scripts, operating
on top of our cost model to run the preprocessing step needed and exhaustively compare all
relevant query plans. In the end, a Pareto Plan Set of optimal plans is produced. By doing so,
we aimed to prove that parametric query optimization does not have to be limited to query
optimization in relational databases, and evaluated this with illustrative examples (Chapter 9).
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6.5 Conclusion

This chapter described our proposed architecture for a query optimizer framework, and also
listed the contributions that we made for this purpose. In the next chapters, the contributions are
described in detail and validated.

The experimental part of our thesis consisted of six steps. First, we implemented from scratch
the state of the art Spark SQL cost model($7.2) [3]. Then, we evaluated the estimation and prediction
accuracy of the cost model with experiments on a large scale cluster using Spark (Chapter 8). The
next step was to introduce a second objective, monetary cost and present a formula to estimate each
query execution plan cost based on the Amazon EC2 pricing scheme ($8.2). After those steps, we
have an operational multiobjective cost model, and proceed to integrate and validate MPQ (Chapter
9).
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Chapter 7

7.Cost Model Implementation

7.1 Introduction and Motivation
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Figure 21. Description of Cost Model process

In this section, our first contribution is described, which is the aforementioned Spark SQL cost
model, which we implemented in a Python script. Its key components will be presented, alongside parts
of our code. Its differences with the existing Spark SQL optimizer, Catalyst, and its cost model will be
presented to show why we preferred it and finally, challenges that occurred during its implementation
will be noted. The next chapter contains the experimental evaluation of the cost model.

Before describing the cost model, it is relevant to state our motivation for its use. We mentioned
that we aim to achieve multi-objective query optimization, by using different techniques in a Cloud-
like environment, with Spark being the data processing framework. In order to do this and use such
techniques, we need to be able to produce all relevant query plans for a given query and compare them
for all optimization goals. This is impossible to do with the Spark SQL optimizer, which only uses a
very basic cost model and each time deterministically produces one query plan, without it being able to
provide full estimations for the execution time of a query. The cost model is necessary to be able to
consider and evaluate which one of these plans is optimal, by exhaustively comparing all relevant plans
and producing a set of Pareto optimal plans. Thus, we decided to reimplement Baldacci and Golfarelli’s
Spark SQL cost model which we regarded as a very promising contribution, being able to estimate the
actual execution time of a query with about 20 percent error. Moreover, Spark is a flexible and easily
extensible and configurable framework, which allows us to produce more query plans, apart from the
one selected as optimal, which will prove very useful in the experimental evaluation of the cost model.

It is important to note that the contribution is not independent from Catalyst, but can be used to
improve it, if integrated in the optimizer itself. Our re-implementation of the cost model helped us
provide theoretical estimations for different query plans with high accuracy, but as we implemented a
cost model and not a whole optimizer, optimization has to be done manually, if the query plan that is
considered optimal by the cost model, can also be produced in Spark SQL. Integration of the cost model
in the Catalyst is left as a future plan, like shown in the figure. However, proof of the potential
improvements it can offer is provided.
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7.2 Cost Model and Catalyst

As we mentioned in Chapter 5, Spark SQL’s core is Catalyst, its extensible query optimizer.
Although it makes some cost-based choices, it is mainly a rule based optimizer with a very simple cost
model. Catalyst collects tables and columns statistics for optimization, but it can only make cost
estimations for specific subparts of the query execution, like join selection. The Spark SQL cost model
that was discussed in the previous chapter provides more than Catalyst when it comes to estimating the
execution time for a query execution plan, as highlighted by the table below.

Catalyst Optimizer Baldacci SQL Cost Model

Query types ALL GPSJ(no  UNION  ALL,
OUTER JOIN)

Cost based join selection & &

Tables & Columns statistics & &

Considers cluster parameters X &

Based on system disk & network | % 4

performance

Analytic estimation of QET X &

Table 1. Comparison of Catalyst and Spark SQL Cost Model

First of all, the cost model only covers the class of Generalized Projection, Selection, Join
(GPSJ) queries, which are a subset of SQL queries, as use of operators like UNION ALL or OUTER
JOIN are not supported. Furthermore, it benefits from statistics collected from the database tables and
table columns like the Catalyst. Apart from that, it bases its cost estimations on cluster parameters like
the disk access time and the network throughput of the system, while also considering CPU times for
data serialization and compression are also considered. Finally, it also takes into account parameters of
each Spark application that may influence query execution time, which include the number of Spark
executors and number of cores within each executor.

The cost model is capable of analytically estimating the execution time of the five essential
RDD transformations that may occur in Spark SQL GPSJ queries:

e Table scan (SC): The table is fully scanned.

e Table scan & broadcast (SB): The smallest table involved in a broadcast joined has to
be broadcast before the join operation occurs

e Shuffle hash join (SJ): This join strategy involves moving data with the same value of
join key in the same executor node.
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e Broadcast hash join (BJ): Also known as map-side join. In this join strategy, a copy of
one of the join relations is sent to all the worker nodes, to save shuffling costs. It is
useful in cases where a large relation is joined with a smaller one.

e Group by (GB)

Estimation of the aforementioned RDD transformation costs is enabled by calculating each
action’s subtasks, like time needed to read, write, shuffle and broadcast data. A physical query execution
plan consists of several RDD transformations, and it can be represented as a tree whose nodes apply
operations to one or more input tables. The Figure below shows a possible physical query execution
plan for the following query, which contains 3 joins.

TPC-H QUERY 3

SELECT I_orderkey, o_orderdate, o_shippriority, sum(l_extprice)

FROM customer, orders, lineitem

WHERE ¢ _mktsegment = ‘BUILDING’ AND c_custkey = o_custkey AND [ orderkey = o _orderkey
AND o _orderdate < date‘1995-03-15" AND [_shipdate > date ‘1995-03-15"

GROUP BY |_orderkey, 0_orderdate, o_shippriority

GB(N5, {I_orderkey, o_orderdate,
o_shippriority, |_extendedprice},
{l orderkey, o_orderdate,o_shippriority},F)

SJ(N3, N4,|_orderkey=o0_orderkey,
{I_orderkey, o_orderdate, o_shippriority,
|_extendedprice}, {|_orderkey,
o_orderdate,o_shippriority},F)

SJ(N1, c_custkey=0_custkey, N2,
{o_orderkey, o_orderdate,
o_shippriority}, {}, F)

SC(lineitem, |_shipdate >'1995-
03-15", {I_orderkey,
|_extendedprice}, { }, F)

SC(orders, o_orderdate<'1995-03-
15", {o_orderkey, o_custkey,
o_orderdate, o_shippriority}, { }, F)

SC(customers, c_mktsegment =
'BUILDING', {c_custkey}, {}, F)

Figure 22. Query execution plan in the form of a tree.

As we can see in the figure, scan operations are always leaf nodes in the execution tree, as they
deal with the physical storage where the tables are located. Join operations are inner nodes of the tree,
and group by, if present, will be the last action to be carried out, that is why it will be located in the root
of the tree. The full cost of the query execution plan is calculated by summing up the time needed to
execute each node of the tree.

7.3 Implementation

7.3.1 Configuration Parameters
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We implemented the cost model on a Python script, using the formulas described in the paper
for each one of the five RDD transformations, which will be included below. We tuned the model by
using the relevant aforementioned cluster, application and dataset characteristics.

For our experiments and estimations we used the TPC-H benchmark dataset [10], scaled to
10,50 and 100GBs. TPC-H is a decision support benchmark that consists of business-oriented queries
and concurrent data modifications. It illustrates decision support systems examining large volumes of
data, includes high complexity queries, and answers critical business gquestions.

We repeated experiments in clusters of different sizes, of 4, 6 and 8 nodes with the same system
characteristics, in order to have a homogeneous environment. In all the experiments, HDFS replication
factor was 3 (rf=3).

In order for the cost model to be tuned, certain parameters needed to be known, which we will
define here:

IntraRSpeed
ExtraRSpeed

ShB = 200
sCmp 0.6
fCmp 1
hSel 1

Figure 23. Cluster and Application Parameters

Nodes (N): overall number of nodes composing the cluster. In our case, it is also the number of HDFS
datanodes where our dataset is stored

Cores (C): number of CPU cores available on each node. In our case C=16 as we worked with nodes
having 2 CPUs Intel Xeon E5-2630 v3 and 8 cores/CPU.

Data factor (DF): size of the TPC-H dataset used in a specific experiment. The value of this variable
is translated to the total size of the dataset used in GBs.

rf (Redundancy factor): HDFS redundancy factor, the amount of times data is replicated across our
cluster
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def dr(P):
A = [450,450,340,220,195,170,140,115,100,90,85,80]
if P>9:
return 75/4
return A[P]/4

- dw(P):

A = [106, 106, 81, 59, 46, 37, 30, 24, 20, 18, 17]
if P>9:
return 15/4

return A[P]/4

Figure 24. Disk read and write throughput values
Disk read throughput (6r): disk read throughput as a function of concurrent processes.
Disk write throughput (6w): disk write throughput as a function of concurrent processes

Network throughput between nodes (pi): network throughput between nodes as a function of
concurrent processes.

7.3.1.1 System Characteristics Calculation

In order to obtain the disk read and write throughput, the dd command was used, a Linux
command which monitors the reading and writing performance of a Linux disk device. The commands
used and the results can be seen below for the same test in the cluster we used and in my local PC.
These results are valid for the systems used when no other processes are running.

Write test with DD

$ dd if=/dev/zero of=benchfile bs=4k count=200000 && sync; rm benchfile
Local (PC) results : 399 MB/s, 481 MB/s, 277 MB/s

Cluster (Grid ‘5000) results : 106 MB/s, 105 MB/s, 106 MB/s, 106 MB/s

Read test with DD

$ dd if=/dev/zero of=/dev/null && sync

Local (PC) results : 598 MB/s, 575 MB/s, 610 MB/s

Cluster (Grid ‘5000) results : 447 MB/s, 452 MB/s, 451 MB/s, 457 MB/s

The actual values used in the cost model are significantly smaller, as CPU times for data
serialization/deserialization and compression in Spark are taken into account by the cost model. By
applying some tests to calculate the overhead of these operations for data of a certain size, we make the
assumption that the disk read and write throughput, when serialization and compression is taken into
account, is 25% of the values calculated with dd.

As for the average network throughput, it was calculated using the linux command iperf3,

which is used for performing real-time network throughput measurements. It is a powerful tool for
testing the maximum achievable bandwidth in IP networks. We ran the command simultaneously on
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two nodes, one being the server and one the client, sent 10 GBs of data from one node to another, and
calculated the network throughput to be around 9.42 Ghps.

7.3.1.2 Application and Data Parameters

Apart from the cluster parameters, which are constant for each set of experiments, each Spark
application is configured with a different number of:
Executors (E): the number of worker processes in charge of running individual tasks in a given Spark
job. They run on worker nodes, in our case in HDFS datanodes. The executors are in charge of carrying
out the operations on data.
Executor cores (EC): number of cores for each executor allocated to Spark application

250

00000 * DF,

": 800000 * DF,
10000 * DF,
150000 * DF,

500000 * DF,

": 6001215 * DF

Figure 25. Dataset characteristics
Finally, some additional characteristics of the dataset needed to be collected, such as table and
attribute size, cardinality, and number of table partitions. We obtained these characteristics by running

specific queries to obtain the size and cardinalities of tables and attributes in Spark, and some of its
values can be shown in the figure above..

7.3.2 Cost Model Basic Bricks
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- Read(size,X):
if X == 'L':
return max(ReadTL(size),TransTL(size))
if X == 'R":
Ie max (ReadTR(size) ,TransTR(size))

if X C
return max(ReadTC(size),TransTC(size))

" Write(size):
return (size * sCmp)/dw(EC)

"~ SRead(size):
return max(ReadT(size),TransT(size))

- CollectT(size):
return size/(Psr(E+1) * pi(EC))
- DistributeT(size):
return size/(Psr(E+1) * pi(1))
" Broadcast(size):
return CollectT(size) + DistributeT(size)

Figure 26. Python functions estimating cost of basic operations on data

Before going deeper in the cost model, deconstructing the internals of a Spark application is
necessary. First of all, data is distributed across the cluster in a set of Resilient Distributed Datasets
(RDDs). Each RDD is a collection of immutable and distributed elements, named partitions, that can
be processed in parallel. These partitions can either come from a storage (in our case HDFS) or be the
result of a previous operation ( held in application memory).

Spark operators are classified in Transformations and Actions. Transformations are carried out
in-memory on each RDD partition, whereas actions either return a result to the driver, or imply a
shuffling to combine data distributed in different RDD partitions. Tasks are distributed over the cluster
and executed in parallel. Given a SQL query, Catalyst is responsible for translating it into a set of jobs.
Precisely modeling Spark actions and transformations would be very challenging, so the cost model
focuses on a set of basic bricks that determine transformations and actions cost. for which it provides
cost estimates. These basic bricks are the following four:

e Read: the time needed to read an amount of data. As Spark applies locality principles, it loads
RDD partitions from the "closest" available position. As a result, reading time varies depending
on the location of the RDD partition, which can either be the local disk, the disk of another
node in the same rack, or the disk of a node in another rack. In our case, we did not experiment
with nodes located in different racks.

e Write: the time needed to write an amount of data in memory. Apart from the disk write
throughput, write latency also depends on the number of executor cores, as more executor cores
usually speed up the time needed for an executor to write to the disk.

e Shuffle Read: the time needed to read a data bucket and transmit it to the executor which will
handle it. When performing a shuffle read, Spark generates #SB tasks which are in charge of
processing the #SB buckets previously created during the shuffle write phase (e.g. the result of
a shuffle join). The reading of a data bucket and its transmission to the executor, happen in
pipeline, so the loading time is computed as the maximum of the times needed to carry out the
two operations
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e Broadcast: The time needed to collect and distribute (broadcast) the partitions of an RDD to
the available executors for further processing.

Implementations of these functions in our Python script can be shown in the figure above
(Figure 26), although not all sub functions involved are shown.

7.3.3 RDD Transformations

Spark provides a rich set of operators to manipulate RDDs. Five Spark RDD transformations
can be applied to GPSJ queries, which we mentioned in $8.2 (Table scan (SC), table scan and broadcast
(SB), shuffle join (SJ), broadcast join (BJ), and group by(GB)). A Backus-Naur representation of the
grammar of GPSJ queries in regards to these five RDD transformations can be shown below (Figure ).

<GPSJ>:=<Expr> | <GB(<Expr>)>

<Expr> :=<SJ(<Expr>,<Expri>,F)> | <Expri> |
<BJ(<Expr2>,<Expr3>,F)>

<Expri1> ::=<SC(<Table>,F)>

<Expr2> ::=<SB(<Table>)>

<Expr3> ::=<SC(<Table>,T)> | <SJ(<Expr>,<Expr1>,T)>
| <BJ(<Expr2>,<Expr3>,T)>

<Table> ::={pipe-separeted set of database tables}

Figure 27. Backus-Naur representation of the grammar of GPSJ queries [83]

Consequently, our cost model can provide estimates for these 5 RDD transformations, by using
the basic bricks described in the previous subsection. Each RDD transformation is modeled as a
function, which receives a data table as an input, as well as the table’s cardinality size and partitions, as
well as any filtering and selection predicates. It returns the time needed to execute the transformation,
the columns of the table returned, the cardinality and the size of the table, as well as the number of
partitions of the output. To achieve this, we also implemented functions that return the cardinality
reduction of a join or a projection based on the formulas described in the original paper.

tablel, cardl, sizel, partitionsl =

s, [card["Orders"], size["Orders"],part_no["Orders"]], [["o_orderdate","le",1,predicate,3,15]],

rderdate", "o shippriority"]1, []1,0)
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Figure 28. Series of RDD operations using our cost model script

Running the transformations included in the physical plan of a query using our script, looks
like the figure above (Figure 28). The query plan of the figure is the one shown in the physical tree in
$8.2 for query 3 of the TPC-H benchmark. To obtain the execution time of the query plan, we just have
to add the execution time of each RDD transformation included in it.

7.4 Conclusion

This chapter described in detail the cost model that we reimplemented, providing insights on
its architecture and screenshots of the code that we wrote to implement it. After implementing it and
successfully providing some query execution time estimations that made sense, we had to test it by
comparing its estimations for a given query physical plan, with the actual execution time of running this
query plan in Spark SQL. The experimental evaluation of the cost model will be described in detail in
the following chapter.

101



102



Chapter 8

8.Cost Model Evaluation

8.1 Experimental Setup & Assumptions

Spark Spark
Yarn Hadoop MR
HDFS HDFS HDFS
(a) Standalone {b) Over Yarn {c) Spark in
MR (SIMR)

Figure 29. Different Spark Architectures

We conducted our experiments using Apache Spark’s SQL component, in an architecture
similar to b from Figure 29. Before we present our experimental results, it is important to note the
assumptions that our cost model does, and the assumptions that we made in our experimental process.
First of all, the cost model is not generic, as it only covers the class of GPSJ queries. Furthermore, data
in the TPC-H datasets is uniformly distributed, so our cost model makes the assumption of uniform data
distribution, for example when estimating the selectivity of a predicate. Finally, we assumed that each
node of the cluster can host one Spark executor, and we did not experiment with multiple executors co-
located in one node. This assumption was taken from the serverless paradigm, where each function
invoked is independent and not co-located with each other. This assumption also highlights the
parallelization benefits offered by adding more nodes for computation in a cluster. Finally, the results
shown in some diagrams might be the mean execution time of several queries, however each query is
executed independently as the cost model simulates single-query optimization and not multi-query
optimization. Multi-query execution might be more relevant in real life use cases, where queries happen
on hot data and caching improves mean execution time. However, the status quo in query optimizer
cost models is to assume that every query starts with a cold cache [8], which is what Baldacci &
Golfarelli cost model does too. Assuming that data is read from disk and not from memory might not
be relevant in general and lead to inaccurate cost estimations in some cases, however this will not be
addressed in this contribution.

Finally, in our experiments we observed a Spark-Yarn overhead, which is the time needed for
Yarn to set up the cluster and allocate resources to each Spark executor. We calculated the overhead by
running some queries of negligible complexity, and found it to be around 21 seconds. We tuned the
experimental results with the cost model estimations by removing 21 seconds from each experimental
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value. We did this so that we can focus on the “clean” query execution time, and observe patterns, as
well as error estimations better.

Apart from that overhead, we also assume that we excluded any exogenous factors affecting
the cluster performance. As the clusters of Grid5000 are used by many students every day, we conducted
most of our experiments at night in a cluster with very low network traffic, which we validated with the
use of the command oarstat, which informs us of how many users have rented resources in this cluster.

A query optimizer cost model can be evaluated in two ways. One way is to evaluate the accuracy
of execution time estimations ($8.2.1), to validate that for a given query plan, the cost model makes an
accurate calculation. The other way is to judge it solely by its prediction, and selection of query plan.
In other words, produce all relevant execution plans for a query and evaluate experimentally that the
fastest plan the cost model shows is actually the fastest one ($8.2.2), regardless of how accurate the
execution time value is by itself.

8.2 Cost Model Experimental Evaluation
8.2.1 Estimation Accuracy

As we mentioned before, the implemented cost model covers the class of GPSJ queries. In our
first experiments, we wanted to observe the impact of join relation sizes in the execution time. For this
experiment, we used a default cluster size of 8 nodes (N=8), a default number of 4 Spark executors, as
well as 4 executor cores (EC=4) and a TPC-H dataset of data factor 100 (100GBs). The tables used
were the following:

Region 0.5KB

Nation 2KB

Customer 2.4 GB

Part 25GB

Partsupp 12 GB

Orders 17 GB

Lineitem 77 GB
Table 2. TPC-H Table Sizes

We first considered a join between the two smallest tables, which would obviously have
negligible execution time. However, it helped us calculate the overhead caused by Spark and Yarn while
the Spark driver negotiates resources with Yarn. We also considered two “medium” joins, between
tables Part and Partsupp, and Orders and Customer. These joins include one table with similar size (2.4
and 2.5 GBs), and another which is 5 GBs bigger in the case of Orders being used. This helped us gain
conclusions regarding the effect of increasing the size of one table in a join on execution time. Finally,
we considered 2 joins with the bigger table Lineitem. In one case, we joined it with the smallest possible
table, Region, in a classic broadcast join case, and in the second case we joined it with the largest
available table, Orders, to observe the highs that the execution time would reach. In the two joins where
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Region is involved, the query plan chosen by Catalyst involves a broadcast join, and in all other cases
it involves a Shuffle Hash Join. This allowed us to evaluate accuracy for query plans containing both
types of joins.

Query Execution time for different join sizes
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Figure 30. Execution times for different join sizes

The first observation from this set of experiments is that the cost model is not inaccurate. The
mean error percentage of these experiments is 16.1%, which is within the upper bound of 20%, which
is the average error percentage of the cost model calculated in the paper.

The next observation is that there is an obvious dependence between the join size (sum of table
sizes involved) and the execution time. To clarify this, we decided to run the same join experiment for
different data factors, to observe if we can measure the impact of the table size. In these experiments,
we used the two biggest tables with 3 different data factors (DF=10,50,100).

Orders 1.7,8.5,17 GB

Lineitem 7.7,38.5,77 GB
Table 3. Experiment tables sizes.
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Figure 30. Execution times for different join sizesFigure 30. Execution times for different join sizes
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Figure 31. Join Query Execution times for different data factors

After this experiment, it is quite obvious that join size has a linear relation to execution time.
For every more GB that has to be joined, around 1 seconds of overhead is added. However, we should
note that this mainly applies to shuffle hash joins, as if one table is very small, broadcasting it might
save significant time and break this linear relation. Accuracy comparisons between different execution
plans for the same query will be more thoroughly tackled in the following subsection. The error
percentage in these experiments is 14.2%, remaining in acceptable levels. We observe that as the join
size increases, our cost model tends to slightly overestimate the execution time of the query. Basically,
the cost model assumes an absolute data factor execution time linear dependence (equal to ExecTime =
DF * 1.18 for this specific query and environment), whereas the experiments show that although the
trend is similar, doubling the data factor does not exactly double execution time.

A possible explanation is that there is some constant overhead in some Spark action or
transformation whose influence is less when the execution time of this action increases. After all, we
mentioned in the previous chapter that not all components of each RDD transformation are calculated
by the cost model, but only some key operations (the basic bricks of the cost model), so this
simplification probably slightly affects accuracy. This overestimation probably happens in the cost
estimation of joins. After the following experiments, we will isolate the parts of the cost model and
evaluate their behaviour in comparison to Spark experiments.

After observing the impact of the join sizes, our next experiments involved some high
complexity queries coming from the TPC-H benchmark. We chose 4 queries for our experiments,
Queries 2,3,5 and 10. Our choice was mostly based on the structure of the queries, as all of them are
gueries involving a number of joins, tackle different tables from the dataset, and their optimal execution
plan differs. 3 of the 4 queries involve a group by operation, so we will get to evaluate this part of the
cost model. Query 3 is a great baseline query involving 3 tables and 2 join operations, easily
reconfigurable in terms of selectivity of its predicates. Query 10 is like an extended Query 3 considering
one more join which is better operated with a broadcast join, and also enables a comparison between
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the 2. Finally, Query 5 is the most complex query, involving 5 different join operations, considering 6
different tables from the dataset. This query will enable us to test the cost model when it comes to
estimating the cost of a query with multiple stages (12 for this query). This is necessary as cardinality
and size reductions have to be accurately calculated by the cost model so that it remains accurate in
later stages of the query. Query 2 considers 4 tables of the dataset which are relatively small, favoring
the broadcast option in many cases, while it also involves a nested query. Although nested queries are
not taken into account by the cost model, we calculate its cost independently and add it to the remaining
query costs of query 2. In conclusion, these 4 queries have a combination of features that covers small
and big numbers of tables and joins, include group by operations, and also have tables of varying sizes
favoring different join operators and query plans.

Apart from its query features, they all answer certain business questions from the TPC-H
dataset, and can be considered for real life scenarios. This is their description taken from the TPC-H
manual:

e Minimum Cost Supplier Query (Q2) This query finds which supplier should be selected to place
an order for a given part in a given region.

e Shipping Priority Query (Q3): This query retrieves the 10 unshipped orders with the highest
value.

e Local Supplier Volume Query (Q5) This query lists the revenue volume done through local
suppliers.

e Returned Item Reporting Query (Q10) The query identifies customers who might be having
problems with the parts that are shipped to them.

Query Execution time for different TPC-H queries
N =8, E =4, EC =4, DF = 100

B Spark Experiments [l Cost Model Estimation

200
_ 150
Q
[
e
£ 100
<
o
3 50
[
>
L

0

Query 2 Query 3 Query 5 Query 10

Number of executors
Figure 32. Query Execution times for different TPC-H Queries

The performance of the cost model estimations is ranked positive once more, with the average
error percentage being only 7.7%. There is not a specific pattern behind the accuracy of the cost model
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for this experiment. For 3 of the 4 queries the estimation is very close to the experimental value, but for
Query 10, there is a 20% overestimation. Query 10 includes the biggest tables of the TPC-H dataset and
4 join operations respectively.

Before moving on to our experiments, we analyze query 10 and compare each RDD
transformation execution time with the cost model estimation, to see where the overestimation

happened.
# of execution step | Cost Model Estimation | Experimental Value
1.SC(ORDERS) 22 sec 22 sec
2.SC(CUSTOMER) | 7 sec 4 sec
3.5J(1,2) 4.5 sec 4 sec
4.SC(LINEITEM) 97 sec 87 sec
5.5J(3,4) 6.6 sec 5.4 sec
6.SB(NATION) ~0 sec ~0 sec
7.BJ(5,6) 15.7 sec 2 sec
8.GB() 3.8 sec 1sec
Total 155 sec 123 sec

Table 4. Step by step execution times of Query 10

From this table we notice that the main inaccuracies of the cost model come in stages 4 and 7,
with 7 being the most significant one, as in general SC operations tend to be accurate. By going deeper
in the cost model, we realize that this inaccuracy has to do with an overestimation of the size of the
table produced by the join in stage 5, that leads to the broadcast join taking more time than expected.
Later on in this chapter, we will examine if this inaccuracy is generalized in other cases and draw further
conclusions.

Our next experiments aimed at observing the cost model behaviour for a varying number of
Spark executors (E), in a 8-datanode cluster(N=8) and with a default value of 4 executor cores(EC=4).
The values shown are the mean execution time of the 4 TPC-H queries we are examining, each one ran
3 times.

108



Query Execution Time for different # of Spark executors
N =8, EC=4, DF =100
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Figure 33. Query Execution times for different number of Spark executors.

The mean error percentage of this experiment was 12.3%, also within the bounds of Baldacci
and Golfarelli’s experiments. It is also worth noting that they conducted a similar experiment in their
work which we show below, in order to compare our performance with theirs. The et(q) line is the
estimated execution time from the cost model, and the t(q) line is the actual execution time from their
experiments. For their experiment, they used a 7-datanode cluster (N=7), 4 spark executor cores (EC=4),
and the same TPC-H data factor (DF = 100).
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Figure 34. Query Execution times for different number of Spark executors from original paper.

The comparison of the two diagrams shows a similar error percentage, but also some
differences. The values of their experiment are double from ours, as they ran different queries and as
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they state, they used some TPC-H queries as their basis to construct even more complex queries. As a
result, it is no surprise that the mean execution value is higher.

Moreover, their cost model tends to overestimate the execution time, at least for low numbers
of executors, from 1 to 4. Our cost model’s behaviour is different, as it underestimates the execution
time for E=1, overestimates for medium E values (2-4), and then for the biggest E values starts
underestimating the execution time. This difference in behaviour also partly has to do with the selection
of queries, as from the previous experiment where we tackled each query independently, we observed
that for more complex joins (involving many and big tables and joins), our cost model slightly
overestimates too. If we emphasized on these queries the behaviour would be more similar to theirs. As
for the reason behind the differences, a cause could be the divergence between the real disk read and
write throughput, as well as the network throughput, as it is obviously impossible to estimate and predict
these values with complete accuracy, especially when multiple processes are involved and their value
is not constant in each experiment. Finally, differences in theoretical and experimental values for
varying E values also arise due to the imperfections of the cost model. As we mentioned before, it has
a 20% error percentage and by observing the experimental values of the cost model authors’, we see
that the cost model is more accurate for E=4,5,6, which are the best choices for their 7 datanode cluster,
when it comes to achieving the lowest execution time. Therefore, their cost model seems to be better
tuned for optimal cluster configurations, and less accurate for “worse” configurations (e.g. with only 1
executor), where the behaviour is also more unpredictable. The cost model seems to assume a constant
rate of execution time reduction each time that an executor is added, while the experimental values
show that for few executors, adding one has a significant impact, and for 5 and more executors the
decrease rate is much lower.

Our follow-up experiment observed the impact of varying the executor cores in a 8-datanode
cluster, this time with a default value of 7 executors (E=7).

Query Execution Time for different # of executor cores
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Figure 35. Query Execution times for different number of Spark executor cores

The error percentage in this experiment is higher than the previous ones (27.9%), however it is
due to the first two experiments, for 1 and 2 executor cores. Without taking them into account, the error
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percentage is 10.4%. Before we make our conclusions, we include again the same experiment conducted
by the cost model authors. Same as before, they used a cluster with N=8 and a default value of 6
executors (E=6), whereas we used 7. The same dataset is used.
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Figure 36. Query Execution times for different number of Spark executor cores from original paper

The first conclusion from the comparison is the same as before, that their experimental values
are slightly higher than ours, little less than double. The explanation here is quite different, and has to
do with the use of 7 executors. As we also observed in the previous experiment, our cost model
underestimates the execution time for a high number of executors, failing to take into account that for
many computational resources (executors and cores), HDFS I/O throughput worsens, and the additional
overhead results in higher execution times. As a result, after 5 executor cores, a saturation is observed
and adding more cores does not result in lower execution time. Slight errors in system features might
also have an impact in the inaccuracies observed, and once more, the absolute values are different
because the queries considered are different.

Apart from that, the general behaviour this time is similar, with our cost model underestimating
the execution time for low EC values, and then stabilising from C=5 and more, and in the end even
overestimating a little. Our experimental values are also very similar, with the optimal choice for EC
being 7.

In the next experiment, we examined again the impact of the data factor, this time for the TPC-
H queries, and for a configuration with default values N=8,E=4,EC=4, for the TPC-H support
benchmark dataset scaled to 10, 50 and 100 GBs.
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Figure 37. Query Execution times for different data factors.

The results confirm our previous conclusions, with the data size having a linear relation with
the execution time. The inaccuracies of the cost model seem to be related with some
overhead/optimization in some Spark RDD transformation/action that occurs during joins which it does
not take into account. Its estimates are 100% linear, with each 10GBs added to the dataset resulting in
12 seconds of extra execution time.

8.2.2 Prediction Accuracy

IIn this subsection, the prediction accuracy of the cost model is evaluated when it comes to
which query execution plan has the lowest execution time for a given query. The cost model can give
estimates for 2 different scan RDD operation types (simple scan, scan & broadcast) and join types
(shuffle hash join, broadcast join). However, the scan types are dependent on the join types (there is no
point in scanning and broadcasting a table if no broadcast join is performed after), so for each join there
are 2 different strategies, resulting in 2 different cost models. For a query with n join operations, the
cost model can examine 2™ possible join combinations and (n-1)! possible join orderings.

In order to evaluate the prediction accuracy of the query, it is necessary to be able to produce
different physical plans for a given query in Spark. We achieved this by disabling broadcast joins in
cases we wanted to produce Shuffle join-only queries, wusing the command
spark.conf.set("'spark.sgl.autoBroadcastJoinThreshold","-1"), by varying the broadcast join threshold of
Spark SQL using the command spark.conf.set("spark.sgl.autoBroadcastJoinThreshold"”, 102400000),
for example, to set it at 100 MBs. Finally, we also wused the command
spark.conf.set("spark.sgl.join.preferSortMergeJoin”, False) to force Spark to prefer Shuffle hash joins
over sort merge joins.

Before making our comparisons, it is important to have in mind each join’s best uses. When a
broadcast join is used, it joins the two tables by first broadcasting the smaller one to all workers, and
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then evaluating the join criteria with the executor’s partition of the other table. It is a very good option
for cases where a small table is joined with a bigger one, as broadcast joins require minimal data
shuffling. Above a table size, however, bottlenecks in network and memory usage tend to make it a
non-reliable choice, in comparison with shuffle-based joins. Shuffle joins, on the other hand, aim to
gather the same keys from both tables in the same partition, and then hash the smallest table and perform
a hash join within the partition. Shuffle Hash Join’s performance is the best when the data is distributed
evenly with the key you are joining and you have an adequate number of keys for parallelism.

With that in mind, we will first examine some specific use cases where the one join operator is
the obvious choice. In the first case, with a join of a very big table (77GB) with a very small one (1
KB), where broadcast join is the obvious choice, and then with a join of two big tables (77GB & 17
GB) where choosing a broadcast join would result in huge overheads.
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Figure 38. Query Execution times for different query plans in trivial broadcast join case.

113



Join Execution time for different query plans 2
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Figure 39. Query Execution times for different query plans in trivial shuffle join case.

The cost model makes the correct prediction in both cases. In the first case, broadcasting the
small table saves time from the shuffling phase and is significantly slower than the shuffle join operator.
In the second case, broadcasting a 17GB table to every executor is an overkill compared to shuffle
joining, which is observed by the cost model estimation. There is no experimental value in the broadcast
join case as Spark does not allow a table of more than a specific size to be broadcasted, due to network
costs. In conclusion, the cost model makes correct decisions in trivial cases.

Our next step consisted of evaluating different query plans for TPC-H queries, to evaluate the
cost model’s prediction. We present here 2 cases, of queries 2,3, and 5.
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Query 2 - Execution time for different query plans
N=8, E=4 EC=4 DF =100
B Spark Experiments [l Cost Model Estimations
50

40
30
20

10

Execution time (sec)

3 Broadcast Joins 1 Shuffle Join & 2 Broadcast Joins 3 Shuffle Joins

Number of executors
Figure 40. Query Execution times for different query 2 query plans.

Query 2 involves a nested query with 3 joins of very small size, which are all operated with a
broadcast join. Outside the nested query, query 2 consists of 3 more joins. The optimal execution plan
is to operate the 1st join with a shuffle join operator, and the following 2 with broadcast joins, as due to
filtering and projections the size of the RDD has been reduced significantly, and the size of the one
table in the joins is quite small. As shown from the experimental values, forcing a shuffle join for all
operations results in slightly worse execution time, whereas operating all joins with a broadcast operator
is also a good enough execution plan. The cost model gives equally good estimates for the two best
execution plans. It is worth noting that in the case of this query, the time differences between the query
plans are not significant. However, even like this, the cost model makes a correct prediction. In
our next experiment, we produced all relevant plans for query 3 using the cost model.
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Query 3 - Execution time for different query plans
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Figure 41. Query Execution times for different query 3 query plans.

The best option experimentally was the use of 2 shuffle joins, as the tables included in the join
operations are not very small, with the first join containing tables of 17 GBs and 1.2 GBs, and the
second containing a 77GB one and the output of the first join, which is estimated to be around 100 MBs.
Once more, the missing experimental values could not be produced, as Spark would not broadcast the
2nd table, due to its size. for the two query plans missing. The cost model correctly points two the two
optimal plans with lower values than the other two. It chooses the 2nd best query plan, preferring a
broadcast join for the 1st join, however once more the difference between the two optimal plans is very
small.

Finally, we will show cases where our cost model can successfully predict the optimal query
plan, which is not selected by Catalyst. In the figure in the following figure, Catalyst chooses a query
plan performing a shuffle hash join, as the smaller table transmitted is above its threshold for broadcast
joining a table (which is by default 10 MBs).
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Figure 42. Execution times for specific join query - Catalyst makes wrong choice

We can see that broadcast joining results in significantly faster execution time, and although
the cost model does not estimate this significance accurately, it predicts correctly that broadcast join
will be the optimal choice. As a result, this is a case where using the cost model manually to evaluate
which query plan is the best and then forcing Spark to produce this plan, would result in saving time.
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Figure 43. Execution times for specific join query - Catalyst makes very wrong choice
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In this figure, we see another case where Catalyst makes a very bad choice concerning the join
operator, as it predictably picks a Shuffle Hash join (smaller table above 10 MB threshold), whereas
picking a broadcast join would result in less than half of the execution time achieved by broadcast
joining. This happens due to the gain of not shuffling the bigger table and focusing only on the broadcast
of the smaller one, which is slightly above the Spark threshold for broadcast joins.

The cost model is able to predict that broadcast join is a better choice, however it definitely
underestimates the benefits gained from this choice. The reason behind this has to do with the estimation
of the time needed for scanning the bigger table, Lineitem. In the case of the cost model, the times for
scanning the two tables are the same, as the GPSJ grammar presented in the previous chapter obeys.
This phase requires fetching the table from HDFS, to retrieve the RDD partitions and send them to the
executors needed to process them. In the case of our cluster, avoidance of the shuffling phase of the
bigger table, as well as co-location of data with the executors in some cases eliminated the execution
time. The cost model is able to spot the difference in the execution time of the join operation, however
the high constant time estimated for scanning the two tables (around 90 seconds), does not leave much
room for optimization. The architecture of the cost model is incapable of understanding the
optimizations that are inherited from the latter to the first stages in cases like this.

Apart from join selection, the cost model is able to accurately estimate the best order of joins
to be performed in the query. However, in the TPC-H queries the join order is optimized beforehand,
and we did not conduct large scale experiments to evaluate its accuracy when it comes to join orderings.
However, the fact that it is accurate in estimating the in-between stages sizes and cardinalities of the
tables means that it works well in principle, avoiding big joins.

In conclusion, our implementation of the cost model is accurate in many cases, when it comes
to selecting a join strategy. It makes correct decisions for trivial cases, and even in more complex queries
itis able to spot the trend offered by different query plans, although not always picking the optimal one.
Furthermore, there are cases like the latter where it strongly overestimates the execution time of a query
plan, usually involving broadcast joins. Importantly, it is also able to spot cases where the Catalyst
makes wrong query plan selection, proving that its integration in Spark can be a relevant step for turning
the Catalyst into a fully cost-based optimizer.

8.3 Monetary cost calculation

After implementing the cost model which provides an estimate for the query execution time, it
is necessary to calculate its monetary cost, to be able to consider multiobjective optimization.

Our assumption of one worker per node, as well as the highest parallelization offered by more
nodes for storage and execution, means that different numbers of executors in the Spark application will
come with different best-case scenarios for running a query. In the following diagram, we show the best
execution time achieved by our experiments, in each one of the 3 different numbers of executors (with
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2,4, and 8 nodes), when running query 3.
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Figure 44. Best execution time for different application configurations

For the pricing of the query plans, Trummer and Koch used the Amazon EC2 pricing system
when evaluating MPQ, so we will do the same [9]. Although the prices have changed since 2014, our
contribution is up to date. Each Spark executor using EC executor cores, is similar to a vCPU instance
with a similar number of cores. From the list of available instances on Amazon EC2, we select the
generic medium instance al.medium, a single 8-core CPU instance with 2 GB of RAM, and it will be
the only one used in our estimations, as we assume use of homogeneous resources.

By observing the Spark & Yarn execution logs, we noticed that all the executors involved in
the Spark applications are set up with insignificant time delay after query execution begins, and are
terminated at the end of the query. Therefore, it is a fair assumption to make that each executor is used
for a runtime equal to the runtime of the query. With this assumption in mind, we generated the
following formula for estimating the monetary cost of running a single query in Spark, using the
Amazon EC2 cloud environment and al.medium instances:

Cost = E * QET (seconds) * cost($/hour)/3600

with QET being the query execution time, cost being the hourly cost of using al.medium (0.02553%),
and E being the number of executors.

For the 3 execution plans in the diagram above, their cost is calculated as follows:

e Cost 1: 2*0.0255 * 268/3600 = 0.0037$ (2*al.medium, 2 vCPUs)
e Cost 2: 4*0.0255 * 149/3600 = 0.0042$ (4*al.medium, 4 vCPUs)
e Cost 3: 8*0.0255 * 113/3600 = 0.0064$ (8*al.medium, 8 vCPUs)
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By observing the monetary cost values, we can see that we have a Pareto front for a multi-
objective resource optimization problem, as no cluster configuration results in a query cost that is worse
both in means of execution time, and money. The Pareto front is visualised below:
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Figure 45. Pareto Front of the optimal query plans

Therefore, the combination of the cost model and the monetary cost estimation formula is able
to achieve MQ, and provide a Pareto-front with optimal query plans, offering different tradeoffs
between execution time and monetary cost, when run in a hypothetical cloud environment like Amazon
EC2.

8.4 Conclusions

After evaluating the cost model experimentally, it proved to be a good first step for cost based
estimation of query plans’ execution time in Spark SQL. The implemented cost model has room for
improvement, but is within the error percentage limits of Baldacci and Golfarelli, showing that its
reimplementation is valid. After evaluating its estimation and prediction accuracy, we went on to
provide a formula for monetary cost estimation of a query plan, and we proved that using the cost model,
we can achieve multi-objective query optimization and scheduling of executors in a Massively Parallel
Processing environment.
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Chapter 9

9.MPQ Evaluation

9.1 Introduction

In the last section, we validated our implementation of Baldacci and Golfarelli’s cost model [3]
and produced a formula for estimating the monetary cost of a query plan based on its runtime and
application characteristics. In this section, we will use the cost model and the formula as a basis to apply
a form of Trummer’s generic algorithm to a different form of the MPQ problem. By doing this, we aim
to tackle a scenario of an MPQ problem in the cloud from another perspective, without a relational
DBMS but using an MPP framework. With the use of such a framework (Spark), we simulate the setting
of a cloud environment. With our experiments we aim to show that MPQ algorithms can be applied in
this different setting, highlight the advantages of using MPQ, and also prove that query optimization
depends on several query characteristics.

9.1.1 Parameters and Objectives

As we mentioned before, MPQ problems model a query optimization problem by taking into
account multiple parameters of the query as well as multiple optimization goals. In their original paper,
Trummer & Koch mentioned two example scenarios where MPQ problems occur. One of them involved
a cloud computing setting, with optimization goals being execution time and monetary cost, and the
parameters being the selectivity of a number of query predicates. In a second scenario, embedded SQL
queries were tackled, with optimization goals being execution time and result precision, and the
parameter being the available buffer size at runtime.

An example of an MPQ problem similar to the first scenario is shown in the figure below (Fig.
), where we have an SQL query template of the form:

SELECT * FROM Table WHERE P1 AND P2
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Figure 46: Two parameter combinations, each yields a set of Pareto-optimal plans [1]

In this case, the parameters are the selectivities of predicates P1 and P2. As we can see from
the figure, different values for the selectivities of the query predicates lead to different plans being
Pareto-optimal, as well as different values for the two metrics of each query plan. After the query
parameters are specified, users can select a trade-off, realized by an alternative query plan from the
relevant Pareto front. All relevant query plans (Pareto-optimal somewhere in the parameter space) have
been calculated and compared in terms of both optimization goals in a preprocessing step.

Our evaluation scenario will be similar to the aforementioned one, consisting of two
optimization goals (query execution time and monetary cost), as well as a varying number of
parameters, each one being the selectivity of a query predicate.

9.1.2 Validation Differences

There are some significant differences in the architectures and the assumptions between our
validation of an MPQ algorithm, and the validation route followed in the original paper. Some of them
are highlighted in the following table.

Our Evaluation Original MPQ paper Evaluation
Query types GPSJ(ho UNION  ALL, | ALL ) 4
OUTER JOIN, EQUI JOINS)
Query selection TPC-H Benchmark Randomly Generated X
Plan cost calculation [ Sum  of sub  plans | Sum of sub plans | «
(independence) (independence)
Join Estimation | Standard Standard &
Formulas
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Optimization Execution time, monetary cost | Execution time, monetary cost &
Obijectives

Parameters Predicate Selectivities Predicate Selectivities &

Available Scan Types | 1 (Full scan) 2(Full scan, index seek) X

Available Join Types | 2 (Shuffle Hash, Broadcast) 2(Single node, shuffle hash)

Pricing basis Amazon EC2 general purpose | Amazon EC2 general purpose | o
medium instance medium instance

System Choice Chapter 9 Cost Model & | Benchmark written as Java | ¥
Spark SQL Catalyst application with cost model

Table 5. Validation differences between our and the original MPQ algorithms

As one can see there are some similarities in the validation process, and also some differences.
For example, in the original paper, for the evaluation of the MPQ algorithms, 2 scan types were
considered for data tables, a full scan and an index seek. In our case, we use the only one available in
Spark, which is a full scan.

The most important difference, however, has to do with the implementation system, with
Trummer and Koch creating a benchmark which compares all relevant plans for randomly generated
queries with desired parameter characteristics. The comparison is done based on estimations for the
execution time and monetary cost of each query plan. These estimations are based on characteristics of
the query like the number of I/O operations needed, the number of bytes transmitted in the network (for
the execution time), and the hourly cost of the Amazon EC2 general purpose medium instance (for the
monetary cost).

In our case, the basis was once more queries from the TPC-H benchmark. An important
difference has to do with the algorithm used to produce the Pareto Plan Set, as our assumption that our
two optimization objectives are dependent changes the approach. This will be more thoroughly
discussed in $9.3.

9.2 Parameter Space

In MPQ problems, it is necessary that the parameter value domain is known in advance. In this
chapter, we will analyze Query 3 from the TPC-H benchmark, with an additional predicate. We chose
query 3 as it is a query including only 2 joins and 3 tables, making it audience friendly. Moreover, it
was a query where sensitivity of the selectivities of the predicates was high, and can work as an
illustrative example.

Apart from this, it can work as a real life scenario for a shipping company. It is a query that
retrieves the shipping priority and potential revenue of the orders having the largest revenue among
those that have not yet been shipped. In a very big company where thousands of orders arrive each day,
exhaustively examining all relevant query plans each time can lead to significant optimization overhead.
In that case, it would be useful to calculate in a preprocessing step all relevant query plans for a number
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of query templates, so that query optimization overhead is avoided. As a result, decisions will be taken
more quickly. The form of query 3 we are using is the following:

TPC-H QUERY 3

SELECT |_orderkey, o_orderdate, o_shippriority, sum(l_extprice)

FROM customer, orders, lineitem

WHERE c¢_mktsegment = ‘BUILDING’ AND c_custkey = 0_custkey AND |_orderkey = o_orderkey
AND o_orderdate < date ‘1995-03-15' AND |_shipdate > date ‘1995-03-15" AND c_custkey <15000000
GROUP BY |_orderkey, o_orderdate, o_shippriority

The parameter space we will consider is P1 = [0.1,0.2,0.4,0.6,0.8,1], P2 = [0.5,0.3], with P1
being the selectivity of the query predicate in yellow and P2 being the selectivity of the query predicate
in light blue. P1 filters the percentage of customers to be considered for the query, which can make
sense if customers are classified in different types. P2 filters the order date before which an unshipped
order was sent which also makes sense as a predicate, as older orders are of higher priority. For each
parameter combination, we will examine all possible query plans, for 3 different application
configurations (E=2,E=4,E=8), assuming that there are 3 different options of using resources in an laaS
platform (like Amazon EC2) to execute the query. All relevant query plans for a query involve every
possible combination of join order, scan operator (we only have one) and join operator being applied.
In this example query, we examined 18 query plans for each parameter combination and application
configuration, totaling 648 query plan checks.

The parameter space can be visualized in a 2D figure as follows.

Parameter Space
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Figure 47. Parameter Space of our experiments

9.3 MPQ Algorithm - Pareto optimality

9.3.1 Algorithm
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Our MPQ algorithm will be a more simple version of the two MPQ algorithms Trummer and
Koch presented in their original paper. This is due to the assumption that we make, that monetary cost
is dependent, among other factors, on execution time. This means that for a specific application
configuration and parameter combination, there exists a single optimal physical plan. As a result, there
does not exist a tradeoff between different physical plans, but between different application
configurations, as using more executors for a query reduces runtime and increases the monetary cost.
Therefore, for each parameter combination, if we examine N different application configurations, we
only have to compare the N query plans, and prune those that are not Pareto-optimal. As a result, a
different MPQ problem is tackled which enables the algorithm to be logically split in two step, the first
one being single-objective and the second one multi-objective. This allows us to significantly reduce
its execution time, by avoiding exhaustive comparisons of the relevance regions of all possible query
plans:

e In the first step, for all parameter combinations and for each application configuration, all
relevant query plans are produced and compared according to a single metric, query execution
time. For each parameter combination and each application configuration, the algorithm yields
a single optimal query plan (the fastest).

e Inthe second step, Algorithm 1 from the original MPQ paper is used to compare the remaining
query plans according to their monetary cost and execution time, and calculate the relevance
region of each plan. The output of the algorithm is a Pareto Plan Set, which contains all query
plans with a non-empty relevance region.. Relevange region of a query plan is the set of
parameter combinations for each a given plan is relevant, as we defined it in chapter 9.

The difference in the MPQ problem that we tackle is that the main choice the user has to make
is not primarily influenced by the query physical plan. Basically, he chooses the system in which his
query will be executed. Therefore, we take an approach to MPQ similar to 1aaS (or FaaS) scheduling
optimization problems, to better evaluate its use in cloud use cases.

9.3.2 Results

For the query and the parameter space we introduced in $10.2.1, 648 query plans were checked.
In this section, we will present the results of the algorithm. Firstly, the algorithm iteratively checks all
plans for all possible join orders. The table involved in the query are the following:

Customer 24 GB

Orders 17 GB

Lineitem 77 GB
Table 6. Table sizes

The query involves 2 joins. In the default case, Customer is joined with Orders, and the join
product is joined with the bigger table Lineitem. Changing the order of these joins is possible, however
it is obviously a bad choice, as joining the bigger tables first will result in a very big first join. This is
proven from the cost model too, as the mean execution time for joining orders and lineitem first, is
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double than joining customer and orders first. In conclusion, the default join order is the optimal, and
our algorithm prunes all plans with the worse one.

When the query plan involves broadcast joins, there is theoretically the choice of which table
to broadcast. However, it is obvious that the join table has to be the smallest one, so our algorithm also
prunes those plans. This leaves us with 1 join order, 4 different join combinations and 3 different
application configurations for each parameter combination. In the table below, we will consider only
these plans and not the ones we mentioned above (different join order, different broadcast choices), in
order to save space and highlight the most interesting comparisons.

We will define the physical plans with each join combination as follows:

PL1: Join Types -> Shuffle Join, Shuffle Join

PL2: Join Types -> Broadcast Join, Broadcast Join
PL3: Join Types -> Shuffle Join, Broadcast Join
PL4: Join Types -> Broadcast Join, Shuffle Join

We will show the results of the algorithm, which are no other than the estimation times of our
cost model for each parameter configuration, application configuration, and physical plan. In each case,
we have highlighted the fastest query plan with green.

E=2, EC=4
P1/P2 |03 05
PLAN |PL1 |PL2 PL3 PL4 PL1
0.1 210.5 1984 [2080 |211.9
0.2 211.1 199.0 | 2086 |212.9
0.4 212.4 201.6 [2100 |2146
0.6 213.7 2048 |211.2 |216.6
08 215.0 209.1 |212.9 |2185
1.0 216.4 2142 | 2144 | 2204

E=4, EC=4
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P1/P2 |0.3 0.5
PLAN | PL1 PL1
0.1 127.5 128.0
0.2 127.9 128.5
0.4 128.5 129.4
0.6 129.0 130.2
0.8 129.7 131.1
1.0 130.3 132.0
E=8EC=4
P1/P2 0.3 0.5

Table 7. Execution time of different query plans for 3 different application configurations

It is easy to see that varying the selectivity of the predicates, as well as changing the number of
Spark executors has a significant impact on the optimality of the plans.
The relevance regions of the 4 physical plans are the following:
E=2 EC=4
RR(PL1) =1]
RR(PL2) =
[(0.1,0.3),(0.1,0.5),(0.2,0.3),(0.2,0.5),(0.4,0.3),(0.4,0.5),(0.6,0.3),(0.6,0.5),(0.8,0.3),(1.0,0.3)]
RR(PL3) =]
RR(PL4) =[(0.8,0.5),(1.0,0.5)]

128



E=4 EC=4

RR(PL1) =[]

RR(PL2) = [(0.1,0.3),(0.1,0.5),(0.2,0.3),(0.2,0.5),(0.4,0.3),(0.4,0.5),(0.6,0.3),(0.6,0.5),(0.8,0.3)]
RR(PL3) =[]

RR(PL4) = [(0.8,0.5),(1.0,0.3),(1.0,0.5)]

E=8 EC=4

RR(PL1) = [(1.0,0.3),(1.0,0.5)]

RR(PL2) = [(0.1,0.3),(0.1,0.5),(0.2,0.3),(0.2,0.5),(0.4,0.3),(0.4,0.5),(0.6,0.3)]
RR(PL3) =[]

RR(PL4) = [(0.6,0.5),(0.8,0.3),(0.8,0.5)]

A lot of conclusions can be made from these relevant regions. First of all, PL3's relevance
region is empty. PL3 included a shuffle hash join first and a broadcast hash join second. However, for
the parameter combinations examined, the size of the smallest table in the first table is always less than
the size of the smallest table on the second join. As a result, it is obvious that broadcast join will be a
better fit for the first join, so excluding it from the first and including it in the second will never be
optimal. Furthermore, the regions show that the lower the selectivity of each predicate and the number
of executors, the more fit broadcast join is for the concerned join. This makes sense as lower selectivity
will mean the join inputs will be of lower cardinality and size, making it more preferable to broadcast
the smaller one. Less executors also make broadcast joins preferable, as the smaller table will have to
be broadcasted to less nodes, so less data will be transmitted through the network.

Finally, we can also observe a pattern, which shows that going from 0 to 1 selectivity, the
optimal plan sequence is PL2 -> PL4 -> PL1. This is a logical conclusion, as in the PL2 broadcast joins
all relations and PL1 shuffle joins all relations, with PL4 acting as an intermediate where the smaller
join is performed with a broadcast join operator and the bigger one with a shuffle join operator.

Although the validation of the cost model was included in the last chapter, we also include the
results from the same set of experiments for E=4 and EC=4 and half of the parameter combinations
performed in Spark SQL, to see if the same pattern will appear..

E =4 EC =4 (Spark SQL)

P1/P2 |0.5

PLAN | PL1 PL2 PL4

0.1 125.6 |122.1 125.7

0.2 127.3 | 1248 125.2

0.4 128.2 | 1248 125.0

0.6 128.3 126.3

0.8 128.7 | N/A 129.1

1.0 129.2 | N/A
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Table 8. Spark experimental values for different query plans.

As it seems, the behaviour observed in Spark SQL is captured by the cost model. As the
selectivity increases, PL2 is replaced by PL4 as optimal, and with 100% selectivity PL1 is the optimal
one. Wherever the cost model picks a different plan, we mark it with red. Above a table size, Spark
does not proceed to broadcast the table as it considers it an overkill. This constraint is not taken into
account by our cost model which continues to give estimations no matter the size, and that’s why it fails
the [0.6,0.5] prediction. Similarly, in the case of [1.0,0.5], the cost model seems to underestimate the
overhead of broadcasting customer table. We will not further analyze the cost model as this was
thoroughly done in the last chapter, but included this table to show that the process was repeated with
experiments in Spark, which showed similar behaviour.

Apart from these observations, it is obvious that each parameter combination provides different

trade-offs for query execution. We will now present some of the results of the second part of our
algorithm, where each parameter combination yields a set of Pareto optimal plans.

Pareto Front at X6 (1.0, 0.3)
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Figure 48. Pareto Front at X6

First, we visualised the Pareto Front for the parameter combination (1.0, 0.3). It is an interesting
case, as it is the only one from the combinations examined where 3 different physical query plans are
Pareto Optimal. With red we have also included some non-optimal Pareto plans which were pruned by
our algorithm, to illustrate the difference in time and cost.
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Pareto Front at X4 (0.6, 0.3)
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Figure 49. Pareto Front at X4

In this parameter combination (0.6,0.3), we only included the three plans that are optimal for
each Spark application configuration. We included this case as it is one where the optimal plan of the
configuration with E=4, is dominated by the plan with E = 8, and as a result, it is pruned. The reason
this happens has to do with the speedup that 8 executors can offer, in comparison to 4. It is very
significant and in this case, the execution time of PL2, E=8 is less than half of the runtime of PL2, E=4.
This scenario, with the plan using 4 Spark executors being dominated by the plan using 8 Spark
executors happens in numerous cases from the ones we examined.
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Pareto Front at X10 (0.6, 0.5)
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Figure 50. Pareto Front at X10

For each one of the 12 parameter combinations, a different set of Pareto optimal query plans is
produced. We will not include the remaining 9 ones for space reasons.

9.4 Conclusions

The obvious conclusions of this set of experiments include that factors such as parameter
selectivity can have a huge influence on which query plan is the optimal from the available ones. In
cases of large scale data processing, optimization time can prove to be very time consuming as the
number of available plans is very large. MPQ happens before runtime, and pays off by avoiding runtime
query optimization. We presented a scenario with a shipping company querying its dataset to find
unshipped orders with the highest revenue. We argued that it can be a scenario where decisions must
be taken quickly and is a good fit for MPQ, as the company can benefit from avoiding query
optimization time. We tackled MPQ in a different data management setting, using a MPP instead of a
relational DBMS and showed its proof of concept.

We used the selectivity of 2 join predicates as a parameter and performed the preprocessing
step ourselves, producing the necessary Pareto Plan sets, with the Spark SQL cost model presented in
Chapters 8 and 9. We also evaluated this process with experiments in Spark SQL, which confirmed that
the choices guided by the Pareto Plan Set are relevant. With this we showed that optimization problems
can be tackled as MPQ problems in the cloud, and users can benefit from MPQ algorithms.
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Our evaluation was less complex than the one in the original MPQ paper, but could be extended
in the future, for example by considering optimizations presented in Hadoop++ [18] to make index seek
techniques available in Spark and significantly alter the query optimization landscape and trends shown.
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Chapter 10

10.Conclusion, Future Work

10.1 Summary and Conclusions

Query Optimizatiox

Multi-objective bn-relational DBMS
Optimization

Problems

Query Optimization

Thesis area of interest
Figure 51. Thesis Research Area

In this thesis, the research area of multi-objective query optimization was studied, with
emphasis on non-relational databases (Figure). Massively parallel processing frameworks (like Apache
Spark) based on the MapReduce paradigm, commonly used in big data processing, was the non-
relational alternative considered. In the thesis we proposed an architecture for a hybrid query optimizer
operating in an environment like the aforementioned, able to alternate between two state of the art multi-
objective query optimization techniques (MQ and MPQ).

As both of these techniques require exhaustive comparisons of alternative query plans, and
MPQ has only been evaluated in a RDBMS-like environment, in order to integrate them in Apache
Spark a state of the art cost model was required, as the optimizer of Spark SQL comes with significant
limitations, and is not fully cost based.

Our first contribution was the reimplementation of a state of the art theoretical cost model for
Spark SQL, which would enable us to compare the alternative plans based on their execution time. We
conducted large scale experiments on Spark to evaluate the cost model estimation and prediction
accuracy. The evaluation showed that the cost model operates with an error percentage within the
bounds mentioned in the original paper of the cost model, so we were able to use the cost model to
apply the query optimization techniques we wanted.
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Before we applied the optimization techniques, it was necessary to provide a cost model for a
second optimization objective, which in our case was monetary cost of the query plan, a very important
factor when working in a cloud computing platform. Thus, our second contribution was to extend the
cost model to provide an estimate for the monetary cost of a query plan, based on its execution time and
the pricing scheme of Amazon EC2.

Our next step was to define the optimization opportunities in our execution environment.
Similar to an laaS cloud platform, where renting more computational resources speeds up the execution
of an application but increases its monetary cost, Spark configuration settings include number of
executors allocated for the execution of a given query, as well as number of cores included in each
executor. We repeatedly ran queries for different application configurations (different numbers of
executors and cores), used the cost model to find an optimal query plan for each configuration, and then
compared the optimal plans, and generated a Pareto front. In conclusion, we successfully modeled query
optimization in Spark as an a posteriori multi-objective query optimization problem, by applying MQ.

The next part of our contribution involved integrating MPQ to this system. We modeled queries
as parametric functions, with the parameters being selectivities of query predicates, and proved that
query execution times are actually highly dependent on these parameters, with different values resulting
in different query plans. We then used our cost model to apply (multi-objective) parametric query
optimization, and successfully produced the relevant Pareto Plan Sets, evaluating this optimization
technique in a different environment, with an alternative version of the optimization problem, and also
described in detail the algorithm we used to solve the MPQ problem, which is a variant of one of the
original two MPQ algorithms implemented by Trummer and Koch.

10.2 Future Work

There are many different research routes that can be followed to build on the contributions and
experiments conducted in this thesis. First of all, the cost model that we reimplemented proved that it
can be accurate and make better choices than Spark in certain cases. This cost model has only been
described theoretically and has been evaluated outside Spark. As a result, integrating this cost model in
Spark SQL Catalyst (which is possible as it is an extensible optimizer), and turning it into a fully cost-
based query optimizer, although challenging, would be a very important contribution and significantly
improve Spark SQL performance. To do this would also require conducting even more experiments in
Spark, and to carefully observe cases of misestimations and inaccuracies, to see if we can further
optimize it before integrating into the Catalyst.

When it comes to multi-objective optimization, in this work we considered two optimization
metrics, query execution time and monetary cost. In the future, it is our goal to consider even more cost
metrics, like energy consumption and result precision. We also aim to introduce another optimization
goal, data security.

Security of data is essential in an era when every person and organization stores terrabytes of
confidential data in the cloud. Optimizing a query plan in terms of security could be introduced by
including two or more different filesystem storage options, like storing our data in HDFS, or in a
blockchain file system, like IPFS. An execution plan with the data stored in IPFS will provide more
security, while definitely being more expensive. Modeling security is an additional challenge as it is not
a countable metric, so each filesystem type could be assigned a constant security value ranging from 0
to 1. A query execution plan accessing data over HDFS would have an average security value (eg 0.5),
whereas if the data were in IPFS, the security value could be higher (eg 0.8), leaving the door open for
including more filesystems in the future.
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Resource heterogeneity is also an issue that could be addressed in the future, as in our work we
assumed use of heterogeneous resources (the medium instance of Amazon EC2). However, Amazon
EC2 is also a system providing specialized computing resources like GPUs [81] and FPGAs [84]. Thus,
addressing query optimization in an heterogenous cluster would be a topic of interest.

Finally, the final contribution of the thesis, MPQ evaluation is examined as to possible further
developments. MPQ algorithms have the significant advantage of having no query optimization
overhead, as optimization is carried out in a preprocessing step. Its disadvantage might be an amount
of inaccuracy, when the parameter space is not dense enough and the optimizer does not make optimal
choices for the values in between of the parameter combinations taken into account. In the future, we
aim to make a detailed comparison between MQ and MPQ, and observe whether the MPQ benefits are
that significant. This comparison could happen in an actual web application operating over a cloud
platform and using the proposed optimizer architecture.

We also aim to more extensively evaluate MPQ algorithms in different operation environments,
involving more complex decision making (e.g. more scan, join types), and creating a large benchmark
to evaluate our results and gain more insights about MPQ benefits in a cloud environment, similar to
Trummer and Koch evaluation method.

In our thesis, we regularly mentioned serverless computing, but it did not play an essential part
in our experimental part, as apart from certain assumptions that gave our architecture some features
similar to serverless, as well as improvements on them (e.g. logical disaggregation and physical
colocation of storage and compute resources), we did not consider a serverless architecture. In the
future, we aim to integrate Apache Crail into our system to observe its impact, and possibly implement
the proposed hybrid optimizer system, where the optimizer could pick the optimization environment of
its choice (Cloud or Serverless). This would enable us to simulate the first ever serverless query
optimizer and make an in depth analysis of the challenges and opportunities offered by query
optimization in a serverless environment.
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