NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
DIVISION OF COMPUTER SCIENCE

Managing Evolution in Web Data through Complex
Changes

PhD Thesis

of
Theodora Galani

Electrical and Computer Engineer
National Technical University of Athens (2010)

Athens, November 2021

EGNIKO METZOBIO ITIOAYTEXNEIO

>XOAH HAEKTPOAOI'ON MHXANIKQN KAI MHXANIKOQN YIIOAOTI'IETQN
TOMEAX TEXNOAOTI'TAY ITIAHPOOOPIKHE KAI YIIOAOI'TETQN

Avayeipron EEEMENC o Agdopéva Totov pe T Xpnon

YovleTtov ALhay®v

Adaxtoptkr] Atatpifn

ms

Ocoonpag N'ardvy

Authopatovyov Hiektpordyov Mnyovikoh & Mrnyoavikov YmoAoyiotdv
EBvucod Metodfrov TToAvteyveiov (2010)

Yoppovievtiki) Emrponn : 1. Baciieiov

B. Kavtepe
I. Ztavpaxag

EykpiOnke and v entapein egetactikn emrponn v 2* Noguppiov 2021.

lodvvng Bactieiov Boouukn Kavtepé

Opot. Kabnynmge E.M.IL Enw. KaOnymtpuo E.MLIL

Anpreprog Toovpdicog Movayudtng Bactieuddng

Avarmh. Kafnynmge E.M.IL Koadnyntmg av. loavvivov
T'empylog Xtéipov

Avori. Kabnynmg E.M.IL

Abnva, Noéupprog 2021

Lodvvng Zradpaxag
Epsuvnmc A E.K. Abnvé

I'ewpyrog Mamactepavitog
Epsuvnmg B E.K. AGnva

Theodora Galani
Electrical and Computer Engineer, PhD, N.T.U.A.

© 2021 — All rights reserved

Ozoompa I'oiavny
Awaxtop Hiextpordyog Mnyovikdg kot Mnyovikdg Ymoroyiotov E.MLIL

© 2021 — All rights reserved

Amayopevetal 1 avTypagt], amobnKevon Kol SVOuUT TNG TOPOVGAS £pyaciog, €€
0AOKAN POV 1 TUNUATOG OVTYG, Y0 EUTOPIKO oKOTO. Emrpéneton | avatimmon, amobnikevon
Kot Ol0VOUN Yot GKOTO LN KEPOOGKOMIKO, EKTOUOEVTIKNG 1| EPEVVNTIKNG PVLONG, VIO TNV
npodmodhecn Vo avaPEpeTOL 1 Ty TPOEAELONG Kot v dlatnpeital T0 TopdV UNVOULOL.
Epomuota mov agopodv t ypfion g epyaciog yio kKePOOCKOMKO GKOTMO TPEMEL VO
amevhHVOVTOL TPOG TOV GLYYPAPEQ.

H éyxpion g 6waktopikng dwtpPig and v Avotoamn XZxoAn HAektpordywv
Mnyovikeov kot Mnyavikov Ymoloywotov tov E. M. ITloAvteyxveiov dev vmodnidver
amodoy” TV YVOU®V Tov cuyypoeéa (N. 5343/1932, Apbpo 202).

Abstract

The increasing amount of information published on the web poses new challenges for data
management. A central issue concerns evolution management. Data published on the web frequently
change, as errors may need to be fixed or new knowledge has to be incorporated. Data consumers
need to know what changed among versions, as well as how and why. Revisiting past data snapshots
and versions may not be enough for tracking and understanding the semantics of data evolution.
Such an activity may require a search that moves backwards and forwards in time, spread across
disparate parts of a database, and perform complex queries on the semantics of the changes that
modified the data, a task which may be even more intensive for large datasets. In our view, for
understanding data evolution changes should be treated as first-class-citizens. This means that
human-readable, semantically rich changes are supported, along with any relations between them.
Treating changes as first-class-citizens poses several challenges regarding modeling, defining,
detecting and querying changes. In this thesis, we study these directions and work upon two basic
standards for web data: RDF and XML.

First, we propose our approach on modeling, defining and detecting changes in the context of
RDF(S) knowledge bases. Overall, the proposed approach offers expressiveness and flexibility in
terms of evolution interpretation. The proposed complex changes provide additional information for
interpreting past data, via capturing relations between changes and allowing interpreting evolution in

multiple ways.

Specifically, we proposed modeling and supporting simple and complex changes, as well as any
relations among them, for interpreting evolution on RDF(S) knowledge-bases. Simple changes are
fine-grained and application/data-agnostic changes, while complex changes are coarse-grained and
application/data-specific changes. Furthermore, we formally defined an intuitive, user-friendly
language, based on change semantics for defining complex changes. We formally defined the
language syntax, via EBNF specification, as well as the language semantics. Moreover, we
presented a detection algorithm for the proposed complex change definition language. The dynamics
model followed is to detect changes between dataset versions. Therefore, the ultimate goal of
defining complex changes is identifying complex change instances between dataset versions, via the

complex change detection process. Also, the correctness of the proposed implementation with

respect to the language semantics is presented. Finally, we extensively evaluated the proposed
approach both qualitatively and experimentally. The qualitative evaluation showed the added value
of our approach compared to related works. The experimental evaluation showed the complex
change language expressiveness and the detection performance. The proposed language is proven to
be adequate in expressing useful changes and facilitating user in analyzing evolution. The response
time of the detection process is examined in terms of increasing dataset size. The experimental

evaluation is performed over both artificial and real data, proving the effectiveness of our approach.

Second, we propose a query language for querying both data versions and change structures in the
context of semistructured XML data. This work builds upon evo-graph, a model that captures

evolving data along with changes, and evoXML, an XML representation of evo-graph.

Specifically, we formally defined evo-path, an XPath extension for performing time-aware and
change-aware queries on evo-graph. Evo-path allows querying both data history and change
structure in a uniform way, supporting temporal, evolution and causality queries. We presented the
evo-path syntax, we defined evo-path formal semantics and we presented an implementation based
on a formal translation of evo-path into equivalent XPath expressions over evoXML. Also, we
implemented and experimentaly evaluated the basic concepts of evo-graph in the C2D framework,
using XML technologies. The space efficiency of evoXML is examined for various configurations,
as well as the performance of the reduction process, the process for generating a snapshot holding

under a specific time instance from evo-graph.

Keywords: change modeling, change definition language, change detection, RDF(S), querying data
evolution, XML, XPath

ii

Mepiinyn

O aw&avopevog GyKog TANPOPOPLOY TOV ONLOGIELOVTOL GTO JAOTKTVO dNUIOVPYEL VEEG TPOKANGELC
v T dwoeipion dedouévav. ‘Eva kevipikd {ftnpa apopd tn dtayeipion g e&éMéng. Ta dedopéva
7OV OMUOGIEVOVTOL GTOV 16TO GLYVE aAAdlovv, kabme Thavd cEdiuato evOEyeTol Vo TPETEL VA,
dopbmbovv N va evoopotmdel véa yvaorn. Ot ypnoteg Tov dedouévav mpénel vo, yvopilovy @
oA oEe peto&y TV ekddoEmVY, KAOMC Kol ¢ KOl prati. TOVERMC, 1) OVAYKN Y10 TN OTHPNOT TOV

EKOOGEMV OEGOUEVMV KOl TOV TPOGOLOPICUO TOV GAAXYDV YIVETOL ELPOVIG.

SuyKekpuéva, 1 eTaveEETaoT TPONYOOUEVOV GTIYOTVTIOV KOl EKOOGEDV dEGOUEVOV UTOPEL VO UnV
elval apkeT) yw TNV TAPOKOAOLONON Kol KATtavonon NG onupacloloyiag g eEEMENg TtV
dedopévav. Mo tétola dpactnpldtTa Umopel vor amattel po avalntnon Tov Kiveital Tpog o Tiow
KOl TTPOG TOL EUTPOG OTO YPOVO, EEATAMVETAL GE SLUPOPETIKE PLEPT HiaG Pdong dedopévav Kat eKTelel
GUVOETO EPOTNLLOTO GYETIKA LE TN ONUAGIOAOYIO T®V GALOY®DV TOV TPOTOTOINGOV TO, OEOOUEVA, L0
gpyocio Tov popel va eivol oKOUN O OTATNTIKY Y. peYdAa cbvora dedopévav. Mo Tumikiy
TPOGEYYION Yoo TN Olayelpon TV aAAay®V €ival 0 VTOAOYIGHOS TOV Ol0QPOPAOV UETOED TOV
ekdocewv dedopévav (Berners-Lee and Connolly (2004) [4]; Volkel et al. (2005) [59]; Franconi et
al. (2010) [21]; Zeginis et al. (2011) [65]; Noy and Musen (2002) [43]; Klein (2004) [33]; Marian et
al. (2001) [38]; Cobena et al. (2002) [17]; Wang et al. (2003) [61]). Qotdoo, avty N TPOcEYYion
odnyel o€ M PNYOVIOTIKY OVOTOPAGTACYT] TOV OAAOY®V 7oL Ogv mapéyel Kapio dwocOntikn
epunVveio oxeTKd e T onpacioloyia Tov oAlaydv 1 Thavav oyéoemv petad toug. Emopévmg, n
wpobeon N 1 outio prog oAAayng dev pmopel vo amotun®bel, Kol o GNUAVTIKA TO YEYovog OTL pua

oAdoyn umopet va etvol Pépog oG LEYOADTEPNG OAAOYNG GE £VOL GOVOAO SESOUEVOV.

Kotd v dmoyn| pog, yw v katavonon g e&éMéng tov dedopévav ol aAlayég Bo mpémel va
AVTILETOTLOVTOL ©OC TS TAlHS Tolites. Avtd onuoivel 0Tl katovontés amd tov avlpwmo,
onuaotoloyika mlovoles oAlayéc vmootnpifovror, pall pe toyov oyéoeic petad tovg. H
OVTILETAOTION TOV CAAAYDV ®G TPAOTNG TAENG ToAiteg OLTEL OPKETEG TPOKANGCELS OYETIKA UE TN

HOVTEAOTOINGN, TOV OPIGUO, TOV EVIOTIOUO KOL TNV ETEPWDTHOH OANAYDV.

Ocov apopd ot povredloroinon oldaywv, ot ahhayég Bo mpénel va povieAomomBody g ovtoTTeS

TOL JATNPOVV OHUACLOLOYIKG KOl douika YopakTnplotikd. [Ipog avtv v katevBuvon, dvo Pacikd

iii

{nmuota Tpémetl vo, AneBovv vIoyN: o faluos Aewrouépelas TV AANAYOV KOl 1) ofUaTIoA0Yio, TV
oAoydv. Ocov agopd 10 Pabud Aemtopuépelag, ol Aemrouepeic OAAAYEG £XOVV TO TAEOVEKTNUO, VO
TEPLYPAPOVV OEUEMAKES OAAAYEG, EVD Ol GOVOTTIKES GANAYEC TTOPEYOLY TEPIGGOTEPT] GNUACIOAOYIN
KO TEPLEKTIKOTNTO, OUAOOTOIDVTAG TIC OepeMakés alAayéc oe Aoykég povadec. Ocov apopd ™
OTUOGIOA0YIO, Ol GAAAYEG TTOV AYVOODY THY EKGOTOTE EPOPUOYH KL OEOOUEVA TTEPTYPUPOVYV UETAPOAEG
IOV EVOEXETOL VO, EUPOVIGTOVV GE VO GUYKEKPUYEVO LOVTEAD OVOTOPAOTACNG, EVG Ol AAAAYEC TTOV
EIVOL OUYKEKPIUEVES VIO, TNV EKAOTOTE EPOPUOYH KOL OEOOUEVO. OVATUPLOTOVV UETOPOAEG 7OV
kaBopilovtal omd tov ypnotn Ko Talptdlovy oe cuykekpyuéve oevaplo ypnone. To povtédo
oAoydv mov Oa mpémel vo, akolovdeitol mpémel va givol 0G0 TO SLUVOTOV TIO ELEAKTO Kol

EKPPOOTIKO.

Ocov apopd 6tov opiouo aliaydv, n vrootpién aliaymv mov kabopilovial and Tov ypnotn gival
amopaittn mtpodmodeon yioo oAhayég TOL APOPOVV GLYKEKPIUEVEC EQPAPUOYEG/OESOUEVD, O OTTOIEC
eumAoLTILOVY oNUOVTIKA TV epunveia ¢ eEéMEng. EmmAéov, emrpémovionl molhamiég epunveieg
™G e£EMENG G oL GVYKEKPLUEVT EQAPLOYN 1) GOVOLO OEBOUEVMV, BEGOUEVOL OTL OL ETUEANTEC T OL
YPNOTEC TV SEOOUEVOV UTTOPEL VO, EVOLOPEPOVTAL Y10 SIAPOPETIKA TUNpaTe, TG eEEMENG 1| var Exovv
SLOPOPETIKN KATAVONGT Y10 LETAPOAEC TTOL €yovV epapuootel. Emiong, n vrootpién aAlaymv mwov
kaBopilovtar amd tov ypNnotn KabloTd TOVC OPIOUOVE TV CAAAYDV EMOVOYPNGULOTOU|CLLLOVG,
O1ELKOAVVOVTOG TEPOUTEP® TN O10OKAGIN OPICHOD VEOV OALOYDV. X€ OUTH TNV TEPITTOON, M
lEPOPYLKN SopT Tov dnpuovpyeiton Kabdg pia adloyn ytiletor Tave o€ AALEC KATAOEIKVIEL OYECELS
kot e€aptioelg peta&d toug. Ilpog avtiv v kotebBouvon, amorteitol (o 01K YAGGGO Yo Tov

0pIoUO TOV OAAAYDV.

Ocov agopd otov eviomioud ailaydv, Oonmg NON ocvintinke, WO TVTKN TPOGEYYISN YL TO
Yepwoud Tov oAdoymv petatd Tov ekd0cemV cLVOAOL Oedopévev glval 0 VTOAOYIGUOS TV
dwpopmdv peTaEL Tovg. Opolwg, kaBdg véeg €kOOGELS OEOOUEVAOV KLUKAOPOPOUV TEPLOIK,
OTUYUIOTLTTO. KOTOVONTAOV Ond TOV GvOpPOTO, ONUACIOAOYIKA TAOVGL®V OAAAYDV UTOpoOV Vva
evtomioTobv pHeTa&h Tovg. Edwd, ywo v mepintomon pog €01KNG YAMGGOS Yo TOV OpIoUd TV
oAoydv, Bo mpémer va depevvnBel mOG ovtoi Ot opwopol TOV GAAAYDV pmopovV Vo
¥pPNoyomombody yio TV TAPoKOAoVONCN oyeTiIK®V pETOPOADV pHeTaED ekdOoE®V Oedopévmv.
Emopévemg, ot katdAiniot oAyopiBotl Yo ToV EVIOMIGUO GTIYUIOTUTIOV OAAXYDV O TPAOTNG TAENS

TOAMTEG LETAED £KOOGEWMV dedoUEVAV Ba Tpémet va diepevvnBovv.

Ocov apopd otV emepwThon aALoydv, EREPMTAGELS TOL APOPOLV TNV EEMEN dedopévav umopodv
emiong va mopEyouv TANpoPopia GYETIKA e Tov TPOmOo mov dAha&av ta dedopéva. Extog and ta
ypovikd epomuata [26][49] mov emioTpépovy ekdOCES 16TOPIKMY SeOUEVOV, dedopEVOD OTL OL

OAAOYEG LOVTEAOTOLOUVTOL (G TTPAOTNG TAENG TOAiTEG, PUTOpoVV emiong va a&lomombodv ota TAaiclo

iv

enepOToE®V. [00aviKd, EMEp®MTAGEIC TOL aPopovV TNV EEMEN dedopévav Ba pénel va Pacilovtot
1000 o€ dedopéva 660 kal o aAlayEG. Ot aAlayEG, OTMG KoL TO SEGOUEVE, LITOPOVY VO EUPOVICTODV
OTO COUO UI0G EMEPDTNONG YO VO EKPPACOLY oVOVOETEG GUVONKEG, OMMOC TO YEYOVOG OTL Uid
ovtOTTa £XEL TPOTOTOINOEL LE GUYKEKPIUEVO TPOTO, 1] LITOPOVYV VOl EMIGTPAPOVY OO TNV EXEPAOTNGON
TPOKEWWEVOL VO ovaKkTnOoOLV €maKPIPdg TO GTIYUOTUO, TOV CAAAYOV TOL €YOVV EMNPEACEL
ovykekpéva dedouéva. Ilpoc avtyv v Kotevbuveorn, évo HOVTELO TOL KATAYPAPEL TOGO TIC
EKOOGEIC 0E0OUEVOV OGO Kot TIG OAAAYEG glval amapaitnTn Tpoimdheon yio TNV EKQPACT| TETOI®V
gpomuatov. Eniong, 0o tpénetl va diepevvnOel pio YAOGGO ETEPOTICEDV [LE GUYKEKPIUEVO OOUIKA

oTolyEla Y10 va, LTTOoTNPLYOOLY TOGO YPOVIKEC GUVONKES OGO KOl GUVONKES TTOV APOPOVV TIG OAANYES.

Yy mopodoo datpiPr), peAETduE TIC TOPOTAVO Katevbivoelg kol gpyalOpacTte TAV®D GE 0VO

Baoikd mpotua yio dedopévae otov 1616 T0 RDF [34] ko to XML [7].

Ot kotevOHVGEIS T™C LOVTELOTTOINGNC, OPICUOV KOl EVIOMICUOD aAlOydV Exovv peletnOel oto
m\oiclo 1ov Pdoewv yvoocewv RDF(S). Ov puébodor mov mpoteivope Kot 10 OmOTEAECUATO, 7TOV

napdydnkov dnpociedOnkoy oto [23], evd oto [22] kat [24] dnpociedTnKoy TpOTap)IKES EPYOTIES.

2VYKEKPIUEVA, TPOTEIVALE TN LOVTIEAOTOINGCT KOl TNV VROSTAPIEN AMADY Kol cOVOET®V GAAAYDV,
KaBmg Kot TuxdV oyécemv petalld toug, Yo v epunveia g e£EMENg o Paoelc yvooemv RDFE(S).
O1 amhéc ardayéc elval Aemntopepeic aAAAYES Kol ayvoouV TIV €KACGTOTE EPOPLOYN Kol dedouéva,
TPAYLLO TOVL onpaivel 0Tt dev mepthapuPdvouy dAec aAAayEC KoL 1) oMUacloloyio Tovg Taptalet e
10 povtého oedopévaov RDF. Ov cOvBetec arlayéc eivar cvvomtikég aArayég moOv a@opovv TNV
EKAOTOTE EQPAPLOYN Kot dedopéva, TPdypa Tov onpaivel 6Tt EMOEKVOOLY OOUN KOl GTLOGLOAOY oL
KatdAMAN yio kéBe cvykekpyévn eeappoyn N ovvolo dedopévov. Av Kot 1 poviglomoinon
oAoydv Katavontdv omd tov dvBpmmo, PéEcw BepeMmOdY dALOYDV Kol OLOOOTOMNGEDY QVTOV
eEetaletan ot Pproypapio (Klein (2004) [33]; Stojanovic (2004) [57]; Papavasileiou et al. (2013)
[45]; Roussakis et al. (2015) [53]), evd airou (Plessers, De Troyer and Casteleyn (2007) [47];
Roussakis et al. (2015) [53]) Bewpodv emiong aAlayéc opilopeveg amd Tov ¥pNoTH, Ol GYECELS Kot O

e€aptnoelg peta&y ouvheT@v oAhaydv dev VTOoTNPILOVTUL GTIG VIAPYOVCES TPOCEYYIGELS.

Emmiéov, opicape tomikd pio dwoncOntikny, @k mpog to ¥pNotn YA®ood, Paciopévn ot
ONUOGLOA0YIO TOV OALAYDV Y10 TOV OPIoUO GUVOET®OV OAAXYDV. ZVYKEKPLEVA, OPIGALE TUTIKA TO
GUVTOKTIKO TNG YADGGAS, LEc® TG mpodtaypapns EBNF, kafdg kot tn onpocioroyia g yAdoowS.
Olec o1 évvoleg G YAooog Tapouotdloviol AemTopep®S Kol apKETE Topodetylato eneEnyovv
auTEG TS £vvoleg. Ev yével, o1 ouvbeteg adhayég opilovtal pécw potifov mhveo and amiéq aAlayss

Kot 0N opiopéveg ohvOeTeg aAAayEG.

Emmpocheta, mopovcidoope Evav oAyoplOHo EVTOMICUOD GTIYUOTOTOV OAACY®DV Yo TNV
TPOTEWOUEVT YADGGH OpIoHoD cOvleTmv aAhaydv. To duvapukd Loviélo Tov akolovbeital apopd
OTOV EVTOTIGUO OAAOYDV PETAED TOV EKOOCEMV EVOG GLUVOLOV dedouévav. Emopévag, o anmtepog
GTOY0G TOL OPIGUOD GHVOETOV AALAYDV EIVOAL O EVTIOTIGOG GTIYHOTOI®V GUVOETOV aAlayDV petalnd
TV €K0OCEMV dedOUEVOV, UEGM TNG dl0dIKAGIiag EvIomIGUOL cvvletmv aAlaydv. Tlapovsidlovpe
AETTOUEPMG TOV OAYOPIOUO EVTOTIGIOV, KaODS KoL TNV 0pOITNTO TOV TPOTEWVOUEVOL OAyOopibuov og

oYECN UE TN GNUACIOA0YIO TNG YAMGGAG,

H zmpotewvouevn mpocéyyion a&loAoyndnke ektevdg TOGO TOLOTIKG OGO KOl TEPOUATIKG. XTNV
ootk a&loldynon, N TPOGEYYIoN UOG GLYKPIvETOl UE CUVOQES epyacieq g mpo¢ Pacikd
YOPOKTNPIOTIKG Kot katd wéoo ovtd vrootnpilovtal, oeiyvovtag v mpootéuevn afio m™¢
TPOGEYYIONG Hog. XNV melpopatikny afloloynon, e&etdletor n eKEPACTIKOTNTO TG YADGGOS
oplopod cbvletwv aAloydv kal 1 emidoon Tov olyopifuov evtomiouov. A&oloysitar ghv Ta
TPOTEWOUEVA, YOPOUKTNPIGTIKA TNG YADOoOS lvol EmTOPKN Yo TNV EKQPOCT Y¥PNCILOV OAALYDV Kot
O 01 oOVOeTEG OAAYEG dlEvKOADIVOVY TOV ¥pNoTn oty avaivon g e&éMénc. Eriong, o ypdvog
amokplong ¢ dwdikaciog evromopuov e€etdletor og oyéon ue v avénon tov peyébovg tov
ouvoAov dedopévav. H a&loddynon mpayupatonoleital 1660 o€ teYvNTd 0G0 KOl GE TPAYLATIKA

dedopéva, amodEIKVOOVTOS TNV OTOTEAEGLLATIKOTNTO TNG TPOGEYYIONG LOGC.

2YUVOMK(, T TPOTEWOWUEVN TPOCEYYION TPOCOEPEL EKPPACTIKOTNTO Kot gveMéion g mpog Tnv
epunvelo g e&éMEng. H mpotewvdpevn povtedonoinon ocdvletmv adlaydv mopéyel mpocheteg
TAnpopopieg yio v gpunveio mapelBoviiKdv dedopévay, emTpEREL TNV epunveia g eEEMENG pe
TOAAQTAOVG TPOTOVS, EVA 1| OMOTVTIMGT GYEGEMV UETAED oOVOET@V oAAaydV etvan éva emmAéov

YOPOKTNPIGTIKO TOV EUTAOVTILEL TNV EKQPACTIKOTNTA TOV GUVOET®V OAAXYDV.

H xatebBvvon g emepdmong arlaydv €xetl peketnBei oto Ao TV NUSOUNUEVOV dedOUEVOV
XML. H mpocéyyion mov npoteivope Paoileton oto evo-graph [55], éva poviého mov katoypdeet
eeMoodpueva dedopéva pali pe tig alhoyég, kot to eVOXML [56], po XML avomapdotoon Tov evo-
graph. A&iCel va onueiwdei 611 610 evo-graph ot oALayEG LOVTELOTOLOVVTOL XPNCULOTOIDVTAG OTAES
(exel ovopdlovton Poaoucég) kot ovvBeteg arhayéc. Ot péBodot mov mpotetvape dnpooctebnkav 6o

[25], evd o TpdTn a&lohdynon oyeTikd pe To evo-graph dnuooievdnke oto [44].

Yuykekpéva, opicape tomkd tnv evo-path, po eméktaon g XPath [51] yuo v ektéleon
enepowoe®V Pacel Tov xpdvov kot Twv odlaydv oto evo-graph. H Evo-path emitpémer v
EMEPDTNON TOGO TOV 1GTOPIKOL TOV OEdOUEVMDY OGO Kol TG SOUNG TOV OAANY®V LE EVIOIO TPOTO,
EKUETAAAELOUEV TIG OAAOYEG, AVOKTMVTOG Kol VO GUOYETILOVTOG dedopéva OV SLOQOPETIKA gival

doyeta peTaEL TOVG. YTmootnpllovion epwTiuoTo. Ypovikd, epWTHUOTO. €CEAENS KOL EPWTHUOTA

vi

ouniotnrag. Tapovcidcae To GUVTAKTIKO TNG eVO-path, opicajle TUTIKA Tr GNUACIOAOYi TNG EVO-
path Kot Topovcidoape o vAoroinon mov PacileTol e pio TVTIKY UETAPpacT Tng evo-path oe

16odvvopeg ekppdoelc XPath mive oto evoXML.

Télog, vAOTOMGOE KOl 0EIOAOYNCOLE TEWPAUATIKG TIC PaCTKES EVVOleg TOV evo-graph oto mlaioio
«C2D», ypnowonowdvtog teyvoroyieg XML. Xvykekpiuéva, a&lOAOYHGAUE TNV OTOS0TIKOTNTO, GE
y®po tov evoXML yia didpopeg meputtooels. ALloloyncape exiong TV €midoom TG diadikaciog
TOPOYWYNS EVOS OTIYUIOTOTOD TOV OVTIGTOLEL GE L0 GUYKEKPILEVT] YPOVIKT OTyun omd 10 evo-
graph, og oyéon pe to péyebog tov apyeiov evoXML. H a&lohdynon mov npoyuatorombnke £deiée
TOLOL TOPAYOVTEG oL Yapoktnpilovv to, dedouéva emmpedlovv to uéyebog tov evoXML kot ™

dwdkacio Topaymyng vOC GTLYULOTLTOV.

Aé€erg Khewornd: povtelomoinon oAloaydv, yA®Goo opiopod OAAOY®OV, EVTOTICUOS OAAOYDV,

RDF(S), enepimon eEeMoocduevov dedouévmv, XML, XPath

vii

viii

Acknowledgements

I would like to wholeheartedly thank my supervisor Prof. Yannis Vassiliou for his continuous
support and encouragement. | also appreciate the contributions of Dr. Yannis Stavrakas and Dr.
George Papastefanatos throughout our collaboration. I would like also to thank Assistant Prof.

Verena Kantere for serving as a member of my advisory committee.

I would like to thank Prof. Timos Sellis for being my supervisor at the early years of my PhD studies

and later for being a member of my advisory committee.

I would like to thank Associate Prof. Dimitrios Tsoumakos, Prof. Panos Vassiliadis and Associate

Prof. Georgios Stamou for serving as members of my examination committee.

I would like to thank the anonymous reviewers of the publications stemming from this thesis, who

helped me shape this work with their valuable comments.

I also thank the Special Account for Research Funding (E.L.K.E.) of N.T.U.A for supporting me

with a scholarship for my PhD studies.

Lastly, I would like to thank my family, and especially my sister Mary, for their love, support and

encouragement during all the years of my studies.

ix

Table of Contents

AADSTFACT ...ttt i
L0018 N PP PP PR PPRP iii
ACKNOWIBAGEMENTS ...ttt sb ettt e e nneennne s iX
TaDIE OF CONTENTS ...ttt ne e Xi
LIST OF FIQUIES ...ttt ettt ettt XV
TS 0 N o] [USSR XVii
Chapter 1 - INTrOGUCTIONviiiieitii ettt 1
IR O |V [0 V7 L o o USSR 1
1.2, CONIIBULIONS ..viiiiie ittt e e et e e e b e e snbaeesneeeennaeeans 3
130 THeSIS OULIINGoiiiieii e 5
Chapter 2 - Related WOTKooiiiiiii s 7
2.1. Modeling and Detecting Changes in Knowledge Bases............ccccveevvveiiieeiineesnnennn 7
2.1.1. Machine-readable Changes ..o 7
2.1.2. Human-readable Changes...........cocveiiii e 11
2.2. Modeling and Querying Evolution in Semistructured Datacccoceevvveeiineenne, 16
2.2.1. Version-based apProaChiesccvveiiriiiie e 16
2.2.2. Temporal APPrOACNEScoiiee it 19
2.2.3. Other apPPrOACHEScccviieiiie et e e enees 22
Chapter 3 - Defining and Detecting Complex Changes on RDF(S) Knowledge Bases........... 25
3.1l INEFOAUCTION .ttt 25
3.2, Motivating EXample........ccoeiiiiiii s 27
3.3. Simple and Complex changes on RDF(S) Knowledge Basescccccevvevveeenen. 30
3.4. A Language for Defining Complex Changescccccveevieiiiiee e 33
3.4.1. B Y15 OSSPSR 33
3.4.2. SBIMANTICS. ...ttt bbbttt 37
3.4.2.1. Baseline Algebra and SEMaNtiCS..........cccveiiiiiiiieiiiiee e 38
3.4.2.2. Extended Algebra and SEMANLICSccceeviiiiiiiiieiiie e 41
3.4.3. HHustrative EXamPIES........ooi i 43
3.5, Complex Change DeteCtiON............oeiiiieiiiieiiee ettt 45

Xi

3.5.1. ALGOTTTNM L 46

3.5.2. RDF(S) Change Representation............ccocverieiiienienie e 47
3.5.3. SPARQL QUENY GENEIALIONveiiiieiiieeciiee et e st e e se e eeesee e seae e e e snaee e 48
3.5.4. Change INStance GENEratioNc.evvieiieiiiiiie et 53
3.5.5. Complex Change Detection COrteCINESS......vvivvveviieeiiee e e see e e esiee e 55
3.6, EVAIUALION.eiiiiieic e 57
3.6.1. Qualitative EVAIUATION.........c..ooiiiiiiee e 58
3.6.2. Experimental EValUationccccooiiiiiiiiie e 59
3.6.2.1. Implementation, datasets and SELLINGScueivrriiriieiierie e 59
3.6.2.2. LanQUAQE EXPIrESSIVENESS. .. .ccureteeiurietiesireasteesteesseeaseesteessaeaseasseesneeseesseensneas 61
3.6.2.3. DeteCtion PerfOrManCEccuiiiiiiieiie ettt 66
3.6.2.4, RESUILS SUMIMAIY ...ttt ettt sbe e 69
Chapter 4 - Querying Data Versions and Change Structures on XML Data...........c...ccec...... 71
o N 101 0o (1§ o o USSR 71
4.2, Motivating EXamPIe........coiiiiiiiiie i 73
4.3. Preliminaries: Modeling Data Versions and Changes on Evo-Graph..................... 74
4.4, EVOPath QUErY LanQUAQE.......cccueeiiiieeiiei et e ciee e st e ste et e e ste e stve e stve e naaesnree e 79
4.4.1.) 17 G SRS PR P 79
4.4.2. EXAMPIE QUETIES .. .eieiiiii ettt ettt e e tre e et e e sra e e naaee s 81
4.4.3. SBIMANTICS. ...ttt 82
4.4.4, IMPIEMENTALIONciviei e 84
4.5. Evaluating the C2D FrameWOorKcccccciuveiiieeiiii e 87
451, The C2D FrameWOIK........cccuiiiiiiiiiiiieiiiiieie st 87
4.5.2. EVAIUALION ...t 88
4.5.2.1. EXperimental SEiNGcccoiiiiiiiieie e 88
4.5.2.2. RESUILS ...ttt 89
Chapter 5 - Conclusions and FUtUre WOrKccooviiiieiiiic e 93
5.1, TheSiS CONCIUSIONSccuviiiiiiiiiiiiiiii e 93
5.2. FULUIE WOTK. ...t 94
BIDHOGIapNY ... e 97
| I e o o0 T] T T TP PUPPUTPPPPY 101
Annex A: Simple Changes in RDF(S) Knowledge Basesccccovveiiiiiiiie i 103

Xii

Annex B: Complex Change

Annex C: Curriculum Vitae

Definition Examples in RDF(S) Knowledge Bases.................

xiii

Xiv

List of Figures

Figure 1 Sample part of DBpedia ontology, initial version (Vi) and version after

MOGITICALIONS (Vaf) «nvnvineinit it e, 28
Figure 2 Hierarchy of detected simple and complex change instances (in grey and white fill
respectively) for the sample part of DBpedia ontology presented in Figure 1 29
Figure 3 Outline of the proposed RDF(S) change representationcceuen... 48
Figure 4 Snap-models of diabetes classification before (left) and after (right) revision and
the relevant evo-graph (Middle) ... 74
Figure 5 Effect of snap change operations on the evo-graphccoooiiiiinin. 77
Figure 6 C2D framework basic flow OVErvIiewcoviiiiiiiiiiiiieee 88
Figure 7 evoXML size (a), (b), accumulative snapshot size (c) and current snapshot
reduction time (d) per version for various configurationscooeveiiiininininnn 89

XV

Xvi

List of Tables

Table 1 The EBNF specification of the complex change definition language..............ccocooevnenirenne. 35
Table 2 SPARQL query for the detection of complex change Add_Academic_Professional............... 53
Table 3 Qualitative comparison of this approach with related WOork............c.ccoovveiineiniiincincieieens 59
Table 4 EVOGEN generated GataSELS.ccuiiueiiiiiiieie ettt e 60
Table 5 DBPEdia GALASELScoveiveieieiieie ettt et ettt et et 61
Table 6 Categories and characteristics of the defined complex changes on EvoGen data 63
Table 7 Number of complex change instances per category detected in EvoGen generated datasets .. 64
Table 8 Categories and characteristics of the defined complex changes on DBpedia data 64
Table 9 Number of complex change instances per category detected in DBpedia datasets 65
Table 10 Number of complex change instances per level in hierarchy per EvoGen and DBpedia dataset
... 65
Table 11 Total detection time (seconds), number of added triples and number of detected complex
changes instances for each EvoGen generated datasetlccccvvveieiiresieciese s s 68
Table 12 Total detection time (seconds), number of added triples and number of detected complex
changes instances per complex change category for each EvoGen generated datasetcccon...e. 68
Table 13 Total detection time (seconds), number of added triples and number of detected complex
changes instances for each DBpedia datasetccccevieririne i 69
Table 14 Total detection time (seconds), number of added triples and number of detected complex
changes instances per complex change category for each DBpedia datasetccocooveivienirniinennnne 69
Table 15 EVOXML fOr tiMe INSTANCE Lovciiiiiieieiiiii ettt st st s 78
Table 16 Formal Semantics of EVO-Path ... s 83
Table 17 Evo-Path to XPath transIation ... s 84

Xvii

Xviii

Chapter 1

Introduction

1.1. Motivation

The increasing amount of information published on the web poses new challenges for data
management. A central issue concerns evolution management. Data published on the web
frequently change, as errors may need to be fixed or new knowledge has to be incorporated.
Data consumers need to know what changed among versions, as well as how and why. Thus,

the need for maintaining data versions and identifying changes becomes evident.

In particular, revisiting past data snapshots and versions may not be enough for tracking and
understanding the semantics of data evolution. Such an activity may require a search that
moves backwards and forwards in time, spread across disparate parts of a database, and
perform complex queries on the semantics of the changes that modified the data, a task which
may be even more intensive for large datasets. A typical approach for handling changes is
computing diffs between dataset versions (Berners-Lee and Connolly (2004) [4]; Volkel et al.
(2005) [59]; Franconi et al. (2010) [21]; Zeginis et al. (2011) [65]; Noy and Musen (2002)
[43]; Klein (2004) [33]; Marian et al. (2001) [38]; Cobena et al. (2002) [17]; Wang et al.
(2003) [61]). However, this approach leads to a machine-readable representation of changes
that does not provide any intuition about change semantics or possible relations between
them. Therefore, the intention or the cause of a change cannot be captured, and more

importantly the fact that a change may be part of a larger change in a dataset.

In our view, for understanding data evolution changes should be treated as first-class-citizens.
This means that human-readable, semantically rich changes are supported, along with any
relations between them. Treating changes as first-class-citizens poses several challenges

regarding modeling, defining, detecting and querying changes.

Modeling changes. Changes should be modeled as entities that retain semantic and structural
characteristics. Towards this direction, two basic issues must be taken into consideration:
granularity of changes and semantics of changes. As for granularity, fine-grained changes
have the advantage of describing primitive changes, while coarse-grained changes provide
more semantics and conciseness by grouping primitive changes into logical units. As for
semantics, application/data-agnostic changes describe modifications that may appear in a
specific representation model, while application/data-specific changes represent user-defined
changes that suit on specific use-case scenarios. The change model to be followed should be

as much flexible and expressive as possible.

Defining changes. Supporting user-defined changes is a prerequisite for application/data-
specific changes, which significantly enrich evolution interpretation. Even more, multiple
interpretations of evolution on a specific application or dataset are allowed, since data
curators or consumers may be interested in different parts of evolution or have different
understanding on applied modifications. Also, supporting user-defined changes makes their
definitions reusable, further facilitating the process of defining new changes. In this case, the
hierarchical structure created while a change is built on top of others demonstrates relations
and dependencies among them. Towards this direction, a dedicated language for defining

changes is needed.

Detecting changes. As already discussed a typical approach for handling changes among
versions is computing diffs between them. Similarly, as new dataset versions are periodically
released, instances of human-readable and semantic rich changes may be detected between
them. Especially, in case of a dedicated language for defining changes, it should be
investigated how these change definitions may be used for tracking relevant modifications
between versions. Therefore, appropriate algorithms for detecting change instances as first-

class-citizens among dataset versions should be investigated.

Querying changes. Querying data evolution may also provide insights on how data changed.
Apart from temporal queries [26][49] that return historical data versions, since changes are
modeled as first-class-citizens, they can be also exploited in terms of querying. ldeally,
querying data evolution should be based on data as much as on changes. Changes, like data,
can appear in the query body to express complex conditions, like the fact that an entity has
been modified in a specific manner, or can be returned by the query in order to retrieve
explicit change instances that may have affected specific data. Towards this direction, a

model that captures both data versions and changes is a prerequisite in order to express such

queries. Also, a query language with specific constructs to support both temporal and change
based conditions should be investigated.

1.2. Contributions

In this thesis, we study the above directions and work upon two basic standards for web data:
RDF [34] and XML [7]. The contributions of this thesis are summarized below.

The directions of modeling, defining and detecting changes have been studied in the context
of RDF(S) knowledge bases. The methods that we proposed and the results obtained were
published in [23], while in [22] and [24] a preliminary and a visionary work were published

respectively.

1. We proposed modeling and supporting simple and complex changes, as well as any
relations among them, for interpreting evolution on RDF(S) knowledge-bases. Simple
changes are fine-grained and application/data-agnostic changes, meaning that they do
not comprise of other changes and their semantics suit to the RDF data model.
Complex changes are coarse-grained and application/data-specific changes, meaning
that they demonstrate structure and semantics suitable to each specific application or
dataset. Although modeling human-readable changes via primitive changes and
groupings of them is considered in literature (Klein (2004) [33]; Stojanovic (2004)
[57]; Papavasileiou et al. (2013) [45]; Roussakis et al. (2015) [53]), while others
(Plessers, De Troyer and Casteleyn (2007) [47]; Roussakis et al. (2015) [53]) consider
user-defined changes as well, relations and dependencies among complex changes are

not supported in any of the already existing approaches.

2. We formally defined an intuitive, user-friendly language, based on change semantics
for defining complex changes. Specifically, we formally defined the language syntax,
via EBNF specification, as well as the language semantics. All language concepts are
presented in detail and several examples illustrate these concepts. Overall, complex
changes are defined via patterns over simple changes and already defined complex

changes.

3. We presented a detection algorithm for the proposed complex change definition
language. The dynamics model followed is to detect changes between dataset

versions. Therefore, the ultimate goal of defining complex changes is identifying

complex change instances between dataset versions, via the complex change
detection process. We present in detail the detection algorithm, as well as the
correctness of the proposed implementation with respect to the language semantics.

4. We extensively evaluated the proposed approach both qualitatively and
experimentally. In qualitative evaluation, our approach is compared to related works
regarding basic features and characteristics they support, showing the added value of
our approach. In experimental evaluation, complex change language expressiveness
and detection performance are examined. It is evaluated whether the proposed
structures are adequate in expressing useful changes and how complex changes
facilitate user in analyzing evolution. Also, the response time of the detection process
is examined in terms of increasing dataset size. The evaluation is performed over both

artificial and real data, proving the effectiveness of our approach.

Overall, the proposed approach offers expressiveness and flexibility in terms of evolution
interpretation. The proposed modeling of complex changes provides additional information
for interpreting past data, allows interpreting evolution in multiple ways, while capturing
relations among complex changes is an additional feature that enriches the complex changes'

expressivity.

The direction of querying changes has been studied in the context of semistructured XML
data. The approach that we proposed builds upon previous work done in [55][56], regarding
evo-graph, a model that captures evolving data along with changes, and evoXML, an XML
representation of evo-graph. It is worth noting that in evo-graph changes are modeled using
simple (there named as basic) and complex changes. The methods that we proposed were

published in [25], while some first evaluations regarding evo-graph were published in [44].

5. We formally defined evo-path, an XPath [51] extension for performing time-aware
and change-aware queries on evo-graph. Evo-path allows querying both data history
and change structure in a uniform way, taking advantage of changes in order to
retrieve and relate data that are otherwise irrelevant to each other. Temporal,
evolution and causality queries are supported. We presented the evo-path syntax, we
defined evo-path formal semantics and we presented an implementation based on a

formal translation of evo-path into equivalent XPath expressions over evoXML.

6. We implemented and experimentally evaluated the basic concepts of evo-graph in the

C2D framework, using XML technologies. Specifically, we evaluated the space

efficiency of evoXML for various configurations. We also evaluated the performance
of the reduction process, the process for generating a snapshot holding under a
specific time instance from evo-graph, with respect to the size of the evoXML file.
The evaluation performed indicated which factors that characterize the data affect the
evoXML size and the reduction process.

1.3. Thesis Outline

The remainder of this thesis is structured as follows: Chapter 2 presents the related work
which is categorized in two main pillars: modeling and detecting changes in knowledge bases,
and modeling and querying data evolution in semistructured data. Chapter 3 presents our
work in defining and detecting complex changes in RDF(S) knowledge bases. Specifically,
we present: the proposed simple and complex changes concepts, the formal specification of
our complex change definition language, the relevant detection algorithm and the details of
the evaluation performed. Chapter 4 presents our work in querying evolving data and changes
in XML. Specifically, evo-path syntax, semantics and implementation are presented, as well
as our first experiments on evo-graph. Chapter 5 concludes this thesis and presents future

research steps.

Chapter 2

Related Work

2.1. Modeling and Detecting Changes in Knowledge Bases

2.1.1. Machine-readable changes

A number of works focus on computing the differences between knowledge bases in terms of
insertions and deletions, which are not concise neither intuitive. They focus on machine-

readable changes and some of them introduce useful properties for the proposed deltas.

In Berners-Lee and Connolly (2004) [4] the problem of comparing two RDF graphs,
generating a set of differences, and updating a graph from a set of differences is discussed.
Generating differences between RDF graphs is straightforward when all nodes are named: the
delta between the RDF graphs is a pair of insertions and deletions. When not all nodes are
named, finding the largest common sub-graphs becomes a case of the graph isomorphism
problem. However, in a wide set of practical cases, one can efficiently generate a delta. When
named and unnamed nodes are mixed, but none of the unnamed nodes is very far from a
named node, the unnamed nodes can be identified by being in context with a named node, via
a path, so that differences are expressed by giving this local context and the related changes.
Furthermore, the authors propose an update ontology for representing differences between
RDF graphs, in terms of insertions and deletions. A patch file format provides a way to
uniquely identify what changed, as well as whether it was added or subtracted. Also, two
forms of difference information are discussed: the context-sensitive “weak” deltas and the
context-free “strong” deltas. A weak delta gives enough information to apply it to exactly the
graph it was computed from, but a strong delta specifies the changes in a context independent
manner. One advantage of a strong delta is that one can take a delta from any true knowledge
base change and apply it to a subset knowledge base, and the result will be true. Strong deltas
eliminate the possible failure of a patch to find the appropriate points in the RDF graph at
which to apply the changes. The proposed methodology for generating strong deltas applies

only on graphs which are well-labeled directly with URIs or indirectly with functional

properties or inverse functional properties.

In Volkel et al. (2005) [59] an RDF-centric versioning approach and a relevant
implementation called SemVersion are presented. SemVersion provides structural and
semantic versioning for RDF models and RDF based ontology languages, like RDFS. Two
algorithms for generating diffs are proposed, together with an RDF representation for the
diffs, while the implemented system supports several operations (like commit, branch, merge,
etc.) inspired by the well-known versioning system in the developer community CVS.
Regarding the diff algorithms, the first one is for computing a structural diff as a triple-set-
based difference between two models. Two triple sets, of added and removed statements, are
computed. A speciality of RDF is the usage of blank nodes, adding complexity to the diff
computation. If a user commits a new model and later requests a diff, the system cannot tell
whether two blank nodes are equal or different. They have by definition no globally unique
identifier. Blank node enrichment is proposed to overcome this problem by uniquely
identifying blank nodes. It creates an “enriched model™ from a normal model by introducing a
new property, whose value plays the role of an inverse functional property like in OWL.
Blank nodes should only have one such property value assigned. This unique URI makes
them globally addressable, while they remain formally blank nodes in the RDF model. All
existing RDF semantics are still valid. The second diff algorithm is for computing a semantic
diff, given an RDF based ontology language. In this case, the semantically inferred triples are
also taken into account while computing the diff. Thus, a language specific reasoner or rules
should be available for the calculation. Regarding the representation of RDF diffs, the
following approach is proposed: a triple is made addressable by reification, sets of triples are
represented as rdfs:Bags, leading to a trivial triple set ontology. A full RDF diff contains a
triple set of added and a triple set of removed statements, and additionally the blank node

enrichment statements have to be added.

In Franconi et al. (2010) [21], the scenario considered is where a knowledge base (expressed
in some logical formalism) might evolve over time and thus different versions have to be
maintained, while users of the knowledge base should be able to access, not only any specific
version, but also the differences between two given versions of the knowledge base. To
address this problem a general semantic framework is proposed. The notion of semantic
difference between knowledge bases plays a central role. The proposed approach, is
applicable to a large class of logic-based knowledge representation languages. While
restricting to finitely generated propositional logics, it is shown that the semantic framework

can be represented syntactically in a particular kind of normal form (ordered complete

conjunctive normal form). This is followed by a generalization, where similar results can be
obtained for any syntactic representation (in a finitely generated propositional logic) of the
semantic framework. Although the methodology focuses on propositional logic knowledge
bases, it can be extended to more expressive languages, such as description logics. Regarding
the proposed semantic diff, a number of desired properties are examined. First, the semantic
diff highlights the differences in terms of the logical meaning between two knowledge bases.
Therefore, although two (propositional) knowledge bases may be syntactically different, if
they convey exactly the same meaning (they are logically equivalent), there should be no
semantic difference between them. Second, in order to avoid redundancy and to comply with
the principle of minimal change, the sentences to be added should be contained in the new
version and similarly sentences to be removed should be contained in the previous version.
Third, the semantic diff should provide an ‘undo’ operation when moving from one version of
a knowledge base to another, so that one is able to roll back any modification performed.
Finally, a unique semantic diff is associated with any two knowledge bases. Regarding the
overall framework, the scenario examined is when there are n versions of a knowledge base
that need to be stored and a core knowledge base. In order to be able to access any version of
the knowledge base, it is sufficient to store the core knowledge base and the semantic diff
among the core and each version. The core knowledge base may be selected not to be one of
the versions, it can be the ‘average’ of the versions, i.e. a representation minimizing the
overall semantic diff of the core to each of the knowledge bases. Alternatively, several

reasons are discussed to consider one of the versions as the core knowledge base.

In Zeginis et al. (2011) [65], several issues on computing deltas over RDF(S) knowledge
bases are discussed. Five RDF(S) differential functions are presented, which take into account
inferred knowledge and return sets of change operations (add / delete). Namely, explicit (Ae),
closure (Ac), dense (Ad), dense & closure (Adc), and explicit & dense (Aed) differential
function are presented. Ae returns the set difference over the explicitly asserted triples, while
Ac returns the set difference by also taking into account the inferred triples. In order to focus
on small sized deltas, Ad, Adc and Aed are introduced. Assuming knowledge bases K and K',
Ad contains add operations for those triples which are explicit in K’ and do not belong to the
closure of K, and delete operations for those triples which are explicit in K and do not belong
to the closure of K'. Ad produces the smallest in size set of change operations, but can be
applied to transform K to K’ only under certain conditions. For this reason, Adc and Aed are
considered. Adc resembles to Ad regarding additions and to Ac regarding deletions, while Aed
resembles to Ae regarding additions and to Ad regarding deletions. For the proposed deltas
containment, size and computational complexity are examined. Regarding change operations,

triple addition and deletion are considered in order to transform one knowledge base to

another, while two approaches are proposed regarding their semantics: one plain set-theoretic
(Up) and another that involves inference and redundancy elimination (Uir). Under Up
semantics, only the explicitly defined triples are taken into account while inferred ones are
ignored. Under Uir semantics, change operations incur also side-effects such as redundancy
elimination and knowledge preservation: the updated knowledge base will not contain any
explicit triple which can be inferred, while preserves as much of the knowledge expressed in
the former base as possible. Also, several useful properties of RDF(S) deltas are discussed:
semantic identity, non redundancy, reversibility and composition. Semantic identity defines
that a delta reports an empty result if its operands are semantically equivalent. Non-
redundancy defines that the execution of a delta results in a knowledge base that is always
redundancy-free. Reversibility of a delta is a useful property for moving forward and
backward across versions. Composition allows composing a number of consecutive deltas and
then executing the operations of the composed delta, instead of having to execute each
particular delta. Another introduced notion is the correctness of a differential function -
change operation semantics pair. It ensures that for any two knowledge bases K and K,
starting from K and applying the computed delta via the change operation semantics, the
result knowledge base is equivalent to K'. A study on which combinations of differential
functions and change operation semantics can be employed to correctly transform a source to
a target RDF(S) knowledge base is presented. Finally, the computing time and size of the
produced deltas over real and synthetic RDF(S) knowledge bases are experimentally
investigated, as well as the impact of the inferential potential of the knowledge base. In this

work blank nodes and relevant issues are not examined.

In Noy and Musen (2002) [43] a fixed point algorithm named PROMPTDIFF for detecting
ontology change is proposed. It consists of two parts: (1) an extensible set of heuristic
matchers and (2) a fixed-point algorithm to combine the results of the matchers to produce a
structural diff between two versions. The output of the PROMPTDIFF algorithm is a table
which bases on a structural diff, which describes the components of the ontology that have
changed from one version to another, and also provides more detailed information on how the
components have changed. It is stated whether each component was added, deleted, split,
merged, or none of the above, and which is the mapping level of each mapped components,
defining whether they are different enough from each other to warrant the user’s attention. A
mapping level may be unchanged, isomorphic, or changed. Each matcher employs a small
number of structural properties of the ontologies to produce matches. The fixed-point step
invokes the matchers repeatedly, feeding the results of one matcher into the others, until they
produce no more changes in the diff. PROMPTDIFF uses a dependency table to determine the

order in which it executes the matchers. It keeps a stack of matchers it still needs to run. It

10

starts by putting the matchers that do not affect any other matchers at the bottom of the stack
and matchers that are not affected by other matchers at the top. Then it executes matcher M at
the top of the stack. If M produced changes in the PROMPTDIFF table, the algorithm adds to
the stack all the matchers that depend on M, removing duplicates. It runs until the stack is
empty. The performance of the algorithm has been evaluated and it correctly identifies 96%
of the matches in ontology versions from large projects. Notice that the use of heuristics
introduces uncertainty to results. Finally, the knowledge model that is used is compatible with
the Open Knowledge Base Connectivity protocol, but the methodology can be applied on
other representation formalisms such as RDFS and DAML+OIL.

2.1.2. Human-readable changes

Other works focus on supporting human-readable changes, which are usually distinguished
between simple and composite/complex. Some of them propose predefined lists of changes,

while others user defined changes.

In Klein (2004) [33], an extension of Noy and Musen (2002) [43] is presented for detecting
some of the proposed basic and composite changes. First, the four elements of the proposed
framework are presented, as well as how they can interact to solve particular problems: (1) An
ontology of basic changes is presented, constituted by a set of operations that can be used to
build an ontology in a specific language. The proposed basic changes are generated taking
into account the meta model of an ontology language. Namely OWL and OKBC are
considered. In this way the generated set of changes is complete with respect to the possible
ontology modifications. Every possible change is specified by add and delete operations for
each element of the knowledge model, while modify operation is also considered. (2) The
notion of complex changes is proposed, where a complex change is composed of multiple
basic operations, incorporating some additional knowledge about the change. Two dimensions
are used to distinguish between different types of complex operations. On one hand, there is a
distinction between atomic and composite operations, on the other hand there is a distinction
between simple and rich operations. Composite operations provide a mechanism for grouping
a number of basic operations that together constitute a logical entity. Atomic operations are
operations that cannot be subdivided into smaller operations. Rich changes are changes that
incorporate information about the implication of the operation on the logical model of the
ontology. For example, a rich change might specify that the range of a property is enlarged.
To identify such changes, the logical theory of the ontology has to be queried. In contrast,

simple changes can be detected by analyzing the structure only. (3) The notion of a

11

transformation set is also presented, which is a set of change operations that specify how a
version can be transformed into another. (4) Also, a template for the specification of the
relation between different ontology versions is presented. It is worth noting that an RDF-
based syntax is discussed. Regarding the extensions to the PROMPTDIFF tool (Noy and
Musen (2002) [43]), the first extension uses the mappings produced by PROMPTDIFF as a
basis for producing a transformation set, while the second extension is able to detect some
composite changes and presents these in a conveniently arranged way to the user. The
extended tool uses different visual clues in order to improve the visualization of ontology
changes. Finally, another system, OntoView, is also discussed. OntoView implements a
comparison mechanism for RDF-based ontologies producing a transformation set. Ontologies
are compared at a structural level and additions, deletions and definition changes are
distinguished. The algorithm starts with an ontology that is represented in RDF. It first parses
a textual representation of the ontology into RDF triples, in order to find the changes in the
data model instead of the textual representation, and search for added and deleted statements.
Then, it groups the statements into individual class and property definitions of the ontology.
The changes in the sets of statements that form these definitions can be analyzed to detect the

basic changes from the change ontology, and further aggregated into complex changes.

In Stojanovic (2004) [57] a taxonomy of changes is proposed which comprises of elementary,
composite and complex changes, forming a predefined set of changes. Composite changes
group elementary changes which appear in the same neighborhood and are generalized by
complex changes. Ontology evolution and change semantics have been studied in terms of
ontology consistency maintenance. In this work, each change is applied together with a
number of generated changes that ensure the ontology consistency. In these terms, the
requirements of an ontology evolution management system are outlined, together with an
evolution process that satisfies them. Furthermore, the proposed single ontology evolution
approach has been extended in order to take into account multiple interdependent ontologies
in the context change propagation. Also, a usage-driven approach for change discovery has
been presented, where user query and browsing history of an ontology-based application is
exploited for the continual adaptation of the ontology to user's needs. The solutions presented
have been implemented for KAON ontology. This approach follows an opposite direction on
how changes are used, since they are captured as they are applied on the ontology rather than

after version generation.
In Plessers, De Troyer and Casteleyn (2007) [47], the Change Definition Language (CDL) is
proposed for defining and detecting changes over a version log using temporal queries. The

change detection approach presented is in the context of an ontology evolution framework for

12

OWL DL ontologies. The framework allows ontology engineers to request and apply changes
to the ontology they manage, assuring that the ontology and its depending artifacts remain
consistent after changes have been applied. The change detection mechanism allows
generating a detailed overview of changes that have occurred based on a set of change
definitions, while different users may have their own set of change definitions allowing
different overviews of the changes and different levels of abstraction. The presented notion of
version log keeps track of all the different versions of all concepts ever defined in an
ontology, starting from their creation, modifications, until the eventual retirement. Whenever
an ontology concept is modified, the version log is updated by creating a new version for the
affected concept. CDL allows users to define the meaning of changes in a formal and
declarative way. Its syntax is presented in terms of EBNF specification, its semantics are
formally defined, and several examples are provided. CDL is based on temporal logic and
thus changes are specified in terms of conditions that must hold before and after the appliance
of the change (pre-/post-conditions). Together with the version log, the CDL provides the
foundation of the change detection approach. The change definitions expressed in the CDL
are evaluated as temporal queries on a version log. The outcome is a collection of occurrences
of the change definitions. It is worth noting that past tense operators are employed in CDL,
expressing cases like 'some time in the past', 'always in the past', 'since’, ‘previous time', and
‘after’. Also, the temporal logic supports two different views on the timeline of a version log.
The first view considers the complete timeline as it takes the history of the whole ontology
into account, while the second only considers the part of the timeline that belongs to the
history of a particular concept. In order to reflect and apply both views, tense operators have
been extended by introducing parameterized versions. The approach has been validated by

developing two prototype extensions for the Protege ontology editor.

In Auer and Herre (2007) [3] a framework for supporting evolution in RDF knowledge bases
is discussed. The approach works on the basis of atomic changes, basically additions or
deletions of statements to or from an RDF graph. Such atomic changes are aggregated to
compound changes, resulting in a hierarchy of changes, thus facilitating the human reviewing
process on various levels of detail. These derived compound changes may be annotated with
meta-information, such as the user executing the change or the time when the change
occurred. A simple OWL ontology capturing such information is presented. Also, these
compound changes can be classified as ontology evolution patterns. Ontology evolution
patterns in conjunction with appropriate data migration algorithms enable the automatic
migration of instance data in distributed environments. Thus, the evolution of ontologies with

regard to higher conceptual levels than the one of statements is allowed. Examples of data

13

migration algorithms are given. However, neither a detection process, nor a specific language

of changes is defined.

In Papavasileiou et al. (2013) [45], a set of predefined high-level changes for RDF(S)
knowledge bases (KBs) and an algorithm for their detection are proposed. The presented
change language allows the formulation of concise and intuitive deltas. In total 132 changes
are defined at the level of RDF(S) constructs, capturing addition, deletion, renaming, move in
the hierarchy, change of domain/range etc., that the various constructs (classes, properties
etc.) of an RDF(S) KB can undergo. Both basic (i.e., fine-grained changes on individual RDF
graph nodes or edges) and composite high-level changes (coarse-grained changes affecting
several nodes and/or edges) are considered, while another separate category named heuristic
changes is considered too, whose detection conditions require the existence of mappings
among data version entities. It is worth noting that operations considered capture changes at
both ontology (schema) and instance (data) levels. A set of desired features related to the
detection and application semantics of the language of changes is presented. These features
are related to both human and machine interpretability. Therefore, the proposed language of
changes is guaranteed to (a) be intuitive and capture as accurately as possible the perception
and intent of editors regarding the performed changes, (b) be able to handle (describe) any
possible change in a unique manner, and, (c) have well-defined formal and consistent
detection and application semantics. It is worth noting that the proposed changes verify the
properties of completeness and unambiguity, for guaranteeing that every added / deleted triple
is consumed by one detected high-level change and that detected high-level changes are not
overlapping, respectively. Therefore, any possible change encountered in curated KBs
expressed in RDF(S) can be efficiently and deterministically detected in an automated way.
Moreover, a change detection algorithm, which is sound and complete with respect to the
presented language, is defined. Its correctness and complexity have been studied. Also, the
appropriate semantics for executing the deltas expressed in the proposed language of changes
are presented, in order to move backwards and forwards in a multi-version repository, using
only the corresponding deltas. Finally, the effectiveness and efficiency of the presented
algorithms have been experimentally evaluated using real ontologies from the cultural,

bioinformatics and entertainment domains.

In Roussakis et al. (2015) [53], an extension of Papavasileiou et al. (2013) [45] is proposed,
providing a more generic change definition framework, based on SPARQL [31] queries. The
authors acknowledge that different uses (or users) of the data may require a different set of
changes being reported, since the importance and frequency of changes vary in different

application domains. For this reason, the proposed framework supports both simple and

14

complex changes. Simple changes are meant to capture fine-grained types of evolution. They
are defined at design time and should meet the formal requirements of completeness and
unambiguity, which guarantee that the detection process is well-behaved as defined in
Papavasileiou et al. (2013) [45]. Complex changes are meant to capture more coarse-grained,
changes that are useful for the application at hand. This allows a customized behavior of the
change detection process, depending on the actual needs of the application. Complex changes
are totally dynamic and defined at run-time. Therefore, it is unrealistic to assume that they
will guarantee completeness or unambiguity. As a consequence, in order to avoid any non-
determinism in the detection process, complex changes are associated with a priority level. In
this way, complex changes may not share common parts or conflict each other. The detection
process is based on SPARQL queries (one per defined change) that are provided to the
algorithm as configuration parameters. As a result, the core detection algorithm is agnostic to
the set of simple or complex changes used, allowing new changes to be defined. Furthermore,
to support analysis of the evolution process, an ontology of changes, which allows the
persistent representation of the detected changes, is presented. This, in a multi-version
repository, allows queries that refer uniformly to both the data and its evolution. The
framework has been evaluated experimentally, based on 3 real RDF datasets of different sizes
to study the number of simple and complex changes that usually occur in real-world settings,
and provide an analysis of their types. Moreover, the evaluation results of the efficiency of the
change detection process are presented and the effect of the size of the compared versions and

the number of detected changes in the performance of the algorithm are quantified.

In Singh et al. (2018) [54], DELTA-LD approach is presented. Changes are detected and
classified between two versions of a linked dataset. The basic contribution is proposing a
classification to distinctly identify the resources that have has both their IRI and
representation changed and the resources that have had only their IRl changed. The former
case is modeled as a renew change, while the latter as a move change, while create, remove,
update changes are may also be detected. It is worth noting that an automatic method for
selecting resource properties to identify the same resource with different IRIs and similar
representation in different versions has been presented. A relevant change model for
representing detected changes has also been presented, where a changed resource is
accompanied with its added/deleted triples. The accuracy of the proposed approach has been
measured and a case study for the automatic repair of broken interlinks using the changes
detected by DELTA-LD has been presented.

Finally, Troullinou et al. (2016) [58] focuses on providing metrics for analyzing evolution

rather than calculating change entities. This approach aims at giving a high-level overview of

15

the change process by identifying the most important changes in the ontology. It does not
propose specific changes or their detection, but instead considers different metrics of "change
intensity”. Metrics that take into account the changes that affected each class and its
neighborhood are considered, relying on the added and deleted triples among versions. Also,
metrics that take into account ontological information related to the importance and
connectivity of each class in the different versions are considered. This approach allows
understanding the intent (rather than the actions) of the editor and provides a better focusing

of the curator analyzing the changes.

2.2. Modeling and Querying Evolution in Semistructured

Data

2.2.1. Version-based approaches

Version based approaches mainly focus on aspects regarding managing, storing and querying

XML document versions, as well as detecting changes between them.

In Marian et al. (2001) [38], a change-centric method for managing versions in XML data is
presented. The authors employ a diff algorithm for detecting changes between two
consecutive versions of an XML document. Changes are then represented based on completed
deltas and persistent identifiers. Completed deltas are deltas containing additional information
and thus can be inverted and composed. Also, the notions of edit scripts and simple deltas are
presented, where an edit script is formed as a sequence of specific operations, while a delta is
formed as a set of specific operations, avoiding to specify an order of execution as in an edit
script. Furthermore, a physical storage policy is proposed, based on storing the current version
of the document, a map to handle persistent identifiers and a single XML document
containing all forward complete deltas. Based on complete deltas, forward deltas (by pruning
of the complete deltas) and backward deltas (by inversion and pruning) can be projected,
while backward deltas can be used to reconstruct old versions. Also, since completed deltas
are more space consuming than simple deltas, compression methods are examined to reduce

redundant storage. Finally, a GUI to display changes to the user is provided.
A similar approach is introduced in Chien, Tsotras and Zaniolo (2001) [13], where instead of

edit scripts and deltas calculations, a referenced-based versioning scheme that preserves the

logical structure of an evolving document via object references is presented. In this scheme,

16

new versions hold only the elements that are different from the previous version, whereas a
reference is used for pointing to the unchanged elements of past versions. Specifically, each
maximum unchanged element (i.e., an element which itself is unchanged but its parent node is
changed) is represented by a reference record, referring to the logical location of that
unchanged element in the previous version. Additionally, the effectiveness of the proposed
approach in supporting queries in the document history and evolution, in addition to the usual
content-based queries on version instances, is evaluated. For this, a query taxonomy is
presented: (1) temporal selection queries, for retrieving a particular version or successive
versions, (2) document evolution and historical queries, focusing on changes between
successive versions, (3) structural projection queries, for selecting parts of a document, being
a key ingredient for temporal selection or history queries, (4) content-based selection queries,
for retrieving all versions that qualify the predicates in the “where” clause. Efficient
algorithms for supporting temporal selection (view materialization), structural projection and
content-based selection queries are presented, as well as for querying the document evolution
history. The proposed representation is shown to be efficient at the transport level, where
XML documents are exchanged between remote parties. Finally, the effectiveness of the
proposed scheme at the storage level is demonstrated. A usefulness-based page management
policy is defined, adapted from transaction-time databases, to ensure efficient temporal

clustering between versions.

In Chien et al. (2001) [15], a version management scheme named SPaR is presented, for
efficiently storing, retrieving and querying multiversion XML documents. The approach
presented is based on durable node numbers and timestamps on the elements of XML
documents, to preserve the structure and the history of the document during its evolution. The
durable node ids can be used as stable references in indexing the elements and allow the
decomposition of the documents in several linked files. The problem of full version
reconstruction was studied, while indexing and clustering strategies that assure efficient
support for complex queries in the content and document evolution are also examined. A page
clustering technique is used to trade off storage efficiency and retrieval efficiency and

optimize the overall performance.

In Chien et al. (2002) [16], the authors examine the problem of supporting efficiently complex
queries on multiversioned XML documents. For this, they expand SPaR scheme and
investigate physical realizations for it. Different storage and indexing strategies are examined
so as to optimize SPaR’s implementation. The presented methodologies build on the
observation that evaluating complex version queries mainly depends on the efficiency of

evaluating partial version retrieval queries, which retrieve a specific segment of an individual

17

version instead of the whole version. Specifically, complex path expression queries can be
reduced to partial version retrieval queries. Retrieving a segment for a single-versioned XML
document is efficient since the target elements are clustered on secondary store by their
logical order, but this might not be the case for a multiversion document. For a multiversion
document, a segment of a later version may have its elements physically scattered in different
pages due to version updates. The authors investigate three indexing schemes to evaluate
partial version retrieval in this environment: single multiversion B-Tree, UBCC with a
multiversion B-Tree, and UBCC with a multiversion R-Tree, where UBCC is a clustering

mechanism standing for Usefulness Based Copy Control.

In Gergatsoulis and Stavrakas (2003) [27], the authors propose Multidimensional XML
(MXML), an extension of XML that uses context information to express time and models
multifaceted documents. Also, it is demonstrated how MXML can represent a set of basic

change operations on XML documents and their corresponding schema.

Several approaches, focus mainly on the detection and less on the representation of the
changes between two documents. In Wang et al. (2003) [61], X-Diff algorithm is presented,
an effective algorithm on unordered trees that integrates key XML structure characteristics
with standard tree-to-tree correction techniques. In Cobena et al. (2002) [17], a linear time
diff algorithm for XML data is proposed, which matches unchanged sub-trees between the old
and new version. The proposed algorithm was used in the Xyleme project, while it can also be
used for HTML documents by XML-izing them. In Leonardi et al. (2005) [36] an XML
enabled change detection system, Xandy, is presented. It detects structural and content
changes by converting unordered XML documents into relational tuples and using SQL
queries. This approach has better scalability compared to X-Diff and comparable quality. In
Leonardi and Bhowmick (2005) [35], a relational approach is presented, named Helios, to
detect changes in unordered XML documents. The delta quality produced is comparable to
Xandy, while for large datasets it is faster than Xandy and X-Diff. Finally, in Chawathe et al.
(1996) [12] change detection was studied in the context of hierarchically structured
information. The change detection problem was defined as the problem of finding a
“minimum-cost edit script” that transforms one data tree to another, while efficient algorithms

for computing such an edit script were presented.

18

2.2.2. Temporal approaches

Typically, temporal approaches enrich data elements with temporal attributes for holding time
and extend accordingly query syntax with conditions on the time validity of data.

In Grandi (2004) [29], an annotated bibliography dealing with temporal and evolution aspects
in the World Wide Web is presented.

In Amagasa, Yoshikawa and Uemura (2000) [1], a logical data model for representing
histories of XML documents is proposed. This model is based on the XPath data model, and
extends it in some points: (1) edges have a label that represent their valid time, (2) string-
value of text and attribute nodes are modelled as virtual nodes, and (3) text and attribute
nodes can contain multiple string-value nodes. Using the proposed data model, it is easy to
compute a past state of XML documents, by recursively pruning edges that are not available
at specified time and by removing labels from edges. Also, operations based on extending the
DOM API are investigated, so that the proposed data model can be implemented.
Furthermore, two alternative approaches to the physical implementation of the model are
presented, so that data represented in the model are translated to XML documents. The first
implementation, named full, is for implementing the data model to XML documents as they
are, and the second, named simplified, is for implementing the data model retaining the
original form of XML documents. For both implementations, tags and attributes are used in
order to represent temporal information. Finally, temporal queries may be evaluated by taking
a snapshot of the XML document and then querying it using a non-temporal query language,

while a query language specialized in the proposed temporal XML documents is not provided.

In Rizzolo and Vaisman (2008) [49], the problem of modelling and implementing temporal
data in XML is addressed. A data model for tracking historical information in an XML
document and for recovering the state of the document as of any given time is proposed. The
temporal constraints imposed by the data model are studied, and algorithms for validating a
temporal XML document against these constraints are presented, along with methods for
fixing inconsistent documents. In the presented model transaction time is used, and
containment edges are labelled with temporal intervals. In addition, different ways of
mapping the abstract representation into a temporal XML document are discussed.
Furthermore, TXPath is introduced, a temporal XML query language that extends XPath 2.0.
Both its syntax and semantics are presented. In the second part of the paper, an approach for
summarizing and indexing temporal XML documents is presented. In particular it is shown

that by indexing continuous paths, i.e., paths that are valid continuously during a certain

19

interval in a temporal XML graph, the query performance is dramatically increased. To
achieve this, a new class of summaries is introduced, denoted TSummary, that adds the time
dimension to the well-known path summarization schemes. Within this framework, two new
summaries are presented: LCP and Interval summaries. The indexing scheme Templndex
integrates these summaries with additional data structures. A query processing strategy based
on Templndex is presented, as well as a type of ancestor-descendant encoding, denoted
temporal interval encoding. A persistent implementation of Templndex is also presented, and
a comparison against a system based on a non-temporal path index, and one based on DOM.
Finally, a language for updates is sketched, and it is shown that the cost of updating the index

is compatible with real-world requirements.

In Gao and Snodgrass (2003) [26], a temporal XML query language, zXQuery, is presented.
The authors add valid time support to XQuery by minimally extending the syntax and
semantics of XQuery. The goal is to move the complexity of handling time from the
user/application code into the zXQuery processor. It is worth noting that the approach may
also apply to transaction time queries. zXQuery utilizes the data model of XQuery. The few
reserved words added to XQuery indicate three different kinds of valid time queries.
Representational queries have the same semantics with XQuery, ensuring that XQuery is
upward compatible with XQuery. To write such queries, users have to know the
representation of the timestamps and treat the timestamp as a common element or attribute.
New syntax for current and sequenced queries makes these queries easier to write. A current
query asks for the information about the current state. Sequenced queries are applied
independently at each point in time. To implement £XQuery the stratum approach is adopted,
in which a stratum accepts zXQuery expressions and maps each to a semantically equivalent
conventional XQuery expression. The XQuery expression is passed to an XQuery engine.
Once the XQuery engine obtains the result, the stratum possibly performs some additional
processing and returns the result to the user. The advantage of this approach is that it exploits
the existing technigues in an XQuery engine, such as the query optimization and query
evaluation, while at the same time it does not depend on a particular XQuery engine. The
paper focuses on how to perform this mapping, in particular, on mapping sequenced queries,
which are by far the most challenging. The central issue of supporting sequenced queries (in
any query language) is time-slicing the input data while retaining period timestamping.
Timestamps are distributed throughout an XML document, complicating the temporal slicing.
In those terms, authors propose four optimizations of the initial maximally-fragmented time-
slicing approach: selected node slicing, copy-based per-expression slicing, in-place per-
expression slicing, and idiomatic slicing, each of which reduces the number of constant

periods over which the query is evaluated.

20

In Wang and Zaniolo (2003) [62], the authors present techniques for managing multiversion
documents and supporting temporal queries on such documents. The proposed approach
consists of a temporally grouped data model, for representing the successive versions of a
document as an XML document, named V-Document. Using XML query languages, such as
XQuery, complex queries on the content of a particular version can be expressed, as well as
on the temporal evolution of the document elements and their contents. Also, the paper
discusses the advantages of applying the proposed scheme to XML-published relational data.
Finally, efficient implementations of the approach are discussed. In Wang and Zaniolo (2008)
[63], the authors further extend and elaborate on the concepts presented in Wang and Zaniolo
(2003) [62]. In these terms, a number of case studies are performed, the XChronicler tool is
presented, a tool for building V-Documents from the successive versions of arbitrary XML

documents, and techniques for the efficient storage and retrieval are discussed.

In Moon et al. (2008) [41], the authors work on the problem of managing the history of
database information. Specifically, they propose PRIMA system, which employees two key
technologies: The first is a method for publishing the history of a relational database in XML,
whereby the evolution of the schema and its underlying database are given a unified
representation. This temporally grouped representation makes it easy to formulate
sophisticated historical queries on any given schema version using standard XQuery. For this,
authors build upon and extend previous work presented in Wang and Zaniolo (2003) [62].
The second key technology is that schema evolution is transparent to the user. A user writes
queries against the current schema, while retrieving the data from one or more schema
versions. The system then performs the labour-intensive and error-prone task of rewriting
such queries into equivalent ones for the appropriate versions of the schema. This feature is
particularly important for historical queries spanning over different schema versions. For
realizing this feature in PRIMA, Schema Modification Operators (SMQOs) are introduced, to
represent the mappings between successive schema versions, and an XML integrity constraint
language (XIC), to efficiently rewrite the queries using the constraints established by the

SMOs. The scalability of the approach has been also tested.

In Dyreson (2001) [19], the TTXPath data model and query language are sketched. TTXPath
extends XPath with support for transaction time. To construct the TTXPath data model,
snapshots of an XML document are obtained over time. The shapshots are then merged and
transaction times are associated with each edge and node. The TTXPath query language

extends XPath with temporal axes to enable a query to access past or future states, and with

21

constructs to extract and compare times. TTXPath maximally reuses XPath and is fully
backwards-compatible with XPath.

2.2.3. Other approaches

An early work is presented in Chawathe, Abiteboul and Widom (1999) [11]. The authors
propose a model for representing changes in semistructured data and a language for querying
over these changes. The starting point of this work is the Object Exchange Model (OEM), a
simple graph-based data model, with objects as nodes and object-subobject relationships
represented by labelled arcs. The basic change operations proposed in this graph-based model
are node insertion, update of node values, and addition and removal of labelled arcs (node
deletion is implicit by unreachability). The proposed change representation model is named
DOEM (for Delta-OEM) and uses annotations on the nodes and arcs of an OEM graph to
represent changes. Intuitively, the set of annotations on a node or arc represents the history of
that node or arc. Representing changes directly as annotations on the affected data, instead of
indirectly computing changes as the difference between database states, is an important
feature of this approach. For querying over changes, a language based on the Lorel language
for querying semistructured data is presented, called Chorel (for Change Lorel). Specifically,
the authors extend the concept of Lorel path expressions in order to allow references to the
annotations in a DOEM database, resulting in an intuitive and convenient language for
expressing change queries in semistructured data. Overall, the user can retrieve information
related to the history of nodes and edges, exploiting the change annotations. The
implementation of DOEM and Chorel uses a method that encodes DOEM databases as OEM
databases and translates Chorel queries into equivalent Lorel queries over the OEM encoding.
This scheme has the benefit that there is no need to build from scratch yet another database
system. Additionally, the authors present extensions that permit snapshot-based access in the
proposed change-based data model. Finally, as an important first application of DOEM and
Chorel, a query subscription service that permits users to subscribe to changes in

semistructured data was designed and implemented.

In Buneman et al. (2004) [10], the problem of archiving and management of curated databases
is addressed in terms of XML and semistructured data. The developed archiving technique is
efficient in its use of space and preserves the continuity of elements through versions of the
database. The approach uses timestamps, and all versions of the data are merged into one
hierarchy where an element appearing in multiple versions is stored only once along with a

timestamp. By identifying the semantic continuity of elements and merging them into one

22

data structure, the proposed technique is capable of providing meaningful change descriptions
and allows to easily answer certain temporal queries such as retrieval of any specific version
from the archive and finding the history of an element. This is in contrast with approaches
that store a sequence of deltas where such operations may require undoing a large number of
changes or significant reasoning with the deltas.

In Buneman, Chapman and Cheney (2006) [9], the authors deal with provenance in curated
databases. Provenance information concerns the creation, attribution, or version history of
data, and in terms of scientific databases it is crucial for assessing data integrity and scientific
value. The authors propose and evaluate a practical approach to provenance tracking for data
copied manually among databases. It is assumed that all of the user’s actions in constructing a
target database are captured as a sequence of insert, delete, copy, and paste actions by a
provenance-aware application for browsing and editing databases. As the user copies, inserts,
or deletes data in her local database T, provenance links are stored in an auxiliary provenance
database P. These links relate data locations in T with locations in previous versions of T or in
external source databases S. They can be used to review the process used to construct the data
in T. In addition, if T is also being archived, the provenance links can provide further detail
about how each version of T relates to the next. An implementation of this technique is
presented and the experiments show that although the overhead of a naive approach is fairly

high, it can be decreased to an acceptable level using simple optimizations.

23

24

Chapter 3

Defining and Detecting Complex Changes on
RDF(S) Knowledge Bases

3.1. Introduction

Data published on the web frequently change, as errors may need to be fixed or new
knowledge has to be incorporated. As new dataset versions are periodically released, data

consumers need to know what changed among versions, as well as how and why.

In this context, we focus on interpreting evolution on RDF(S) knowledge-bases. The
Resource Description Framework (RDF) [34] is a recommendation of the World Wide Web
Consortium (W3C). In essence, RDF is a graph data model that supports modeling facts about
entities in a simple triple format consisting of a subject, a predicate and an object, leading to
rich and descriptive directed graphs with semantically labelled edges. Graph nodes represent
entities that are identified uniquely by Uniform Resource Identifiers (URISs), this way defining
a basis amongst remote agents to publish inherently interlinked datasets (Linked Open Data,
LOD). The RDF Schema (RDF(S)) [8] is also a W3C recommendation, that constitutes a
simple language that can be used to define a vocabulary (i.e. terms) to be used in an RDF
graph. Taxonomies defined in RDF(S) can be used to do some basic inference. The standard
recommendation for querying RDF data is SPARQL [31], a graph query language established

around the specific features of the RDF model.

In literature, several works (Berners-Lee and Connolly (2004) [4]; Volkel et al. (2005) [59];
Franconi et al. (2010) [21]; Zeginis et al. (2011) [65]; Noy and Musen (2002) [43]; Klein
(2004) [33]) have been presented for modeling changes in terms of diffs. These approaches
lead to a machine-readable representation of changes based on triple additions and deletions
and do not provide any intuition about change semantics or possible relations between them.

Therefore, the intention or the cause of a change cannot be captured, and more importantly

25

the fact that a change may be part of a larger change in a dataset. An ideal approach would
compute human-readable, semantically rich changes along with any relations between them.

We argue that for understanding data evolution, changes should be treated as first-class-
citizens. Modeling changes should involve fine-grained and application/data-agnostic
changes, meaning that they do not comprise of other changes and their semantics suit to the
RDF data model, as well as coarse-grained and application/data-specific changes, meaning
that they demonstrate structure and semantics suitable to each specific application or dataset.
The former changes are named simple changes, while the latter are named complex changes,

and are defined on top of simple changes.

Modeling complex changes as user-defined is a prerequisite for being application/data-
specific. Even more, this allows multiple interpretations of evolution on a specific application
or dataset, since data curators or consumers may be interested in different parts of evolution
or have different understanding on the applied modifications. Also, modeling complex
changes as user-defined makes their definitions reusable, further facilitating the process of
defining new changes. In addition, the hierarchical structure created while a change is built on
top of others demonstrates relations and dependencies among them. A complex change may
be part of another, may be modeled as a specification or generalization of another, or may
cause another. However, complex changes may share common parts without being defined as
nested, but having overlaps, providing supplementary interpretation of evolution. Towards
this direction, a dedicated language for defining complex changes and a relevant detection
algorithm is needed, in order to facilitate the precise modeling and reusability of changes. As
a result of the detection process change instances are computed, and then can be queried via

standard languages for further analyzing evolution.

In literature, several works (Klein (2004) [33]; Stojanovic (2004) [57]; Plessers, De Troyer
and Casteleyn (2007) [47]; Auer and Herre (2007) [3]; Papavasileiou et al. (2013) [45];
Roussakis et al. (2015) [53]; Singh et al. (2018) [54]) focus on human-readable changes.
Modeling human-readable changes via primitive changes and groupings of them is also
considered by Klein (2004) [33], Stojanovic (2004) [57], Papavasileiou et al. (2013) [45] and
Roussakis et al. (2015) [53], while Plessers, De Troyer and Casteleyn (2007) [47] and
Roussakis et al. (2015) [53] consider user-defined changes as well. However, relations and
dependencies among complex changes are not supported in any of the already existing
approaches. Furthermore, we propose a dedicated language based on change semantics for

defining complex changes and a relevant detection algorithm.

26

Overall, the proposed approach offers expressiveness and flexibility in terms of evolution
interpretation. The proposed modeling of complex changes provides additional information
for interpreting past data, allows interpreting evolution in multiple ways, while capturing
relations among complex changes via nesting or overlaps is an additional feature that enriches
the complex changes' expressivity. The Chapter main contributions are the following:

o modeling and supporting simple and complex changes, as well as relations among them

e providing an intuitive, user-friendly language based on change semantics for defining
complex changes via patterns over simple changes and already defined complex changes,

e providing a detection algorithm for the proposed complex change definition language,

o extensively evaluating the proposed approach both qualitatively and experimentally.

The Chapter outline is as follows: Section 3.2 presents a motivating example of this work.
Section 3.3 presents the basic concepts and definitions on simple and complex changes.
Section 3.4 presents the syntax, semantics and several examples of the proposed language for
defining complex changes. Section 3.5 presents in detail the detection algorithm, the process
for identifying complex change instances among dataset versions. Section 3.6 presents the

qualitative and experimental evaluation performed.

3.2. Motivating Example

Consider a sample part of DBpedia® ontology with information about persons and universities,
as in Figure 1. Figure 1 left depicts the initial version (V,.s) and right the version after
modifications (V). A DBpedia user would like to track the entities that are added between
versions and specifically to know which are the added persons that work in academia. Each
person may have several descriptive properties, like name, birthDate and deathDate, and may
be further enriched with descriptive properties related to professional affairs, like employer,
title, activeYearsStartYear and activeYearsEndYear. In Figure 1 right, the addition of
"Margery Claire Carlson" entity along with its descriptive properties is depicted. It is an entity
of type person, with one employer, the "Northwestern University", which is of type
university. Computing the diff between these two versions, as a set of added/deleted triples,
totally misses capturing change semantics, as well as possible dependencies among changes.
Instead, Figure 2 depicts an intuitive and descriptive representation of how data changed, with
focus on the user's interest and needs. Each node represents a change instance detected

between the aforementioned versions. Change instances on leaf nodes (in grey) are fine-

! https://www.dbpedia.org/

27

foafname
‘Margery Claire Carlson"@e

- i - rdttype "
; dbo title Professor of Botany'@e
i dbo-birhDate 25
. . »(78921121
- | 3 OCeaEE > 085-07-05
rdftype ! rdfype acti
. dbo:activeYearsStartve
, Q:aciverears A (030 s doYes
iversi dboactiveYearsEndYe
Universi O-aClve rearsen a£ 958Msd.gyea

Vbef Vaf

Figure 1 Sample part of DBpedia ontology, initial version (V) and version after modifications (V .¢).

grained and application/data-agnostic. Each one corresponds to an added or deleted triple and
has a suitable name and descriptive parameters. They are simple change instances. The rest
change instances (in white) are coarse-grained and application/data-specific, demonstrating
structure and semantics suitable to the specific scenario of tracking persons that work in
academia. The hierarchical structure indicates that a change instance is on top of others,
demonstrating relations and dependencies among changes. They are complex change

instances.

Consider the change instances Add_Person and Add Name in Figure 2. They are
specializations of the application/data-agnostic ~ Add _Type_To_Individual and
Add_Property_Instance respectively. The same holds for all similar change instances
regarding descriptive properties. Add_Person with_Details instance contains Add_Person,
Add_Name, Add_BirthDate and Add_DeathDate instances, grouping the added person entity
with a number of added descriptive properties with personal information. Note that, in
general, Add_BirthDate and Add_DeathDate may not always be present, since they represent
information that may be missing or in case of death date inappropriate. Add Professional
builds on top of Add_Person_with_Details, as further descriptive properties with professional
life related information are added. Therefore, Add_Professional instance is a specialization of
Add_Person_with_Details, where the added person (dbpedia:Margery C. Carlson) has at
least one employer (dbpedia:Northwestern University). The change instances Add_Title,
Add_ActiveYearsStartYear and Add_ActiveYearsEndYear represent secondary changes that
may happen when adding a professional. Finally, Add_Academic_Professional further
specializes Add_Professional and is defined on top of it, modeling the case where all the

employers of the added professional are universities.

28

|Add_Academic_Professional{dbpedia:Margery_C._Carlson,
{dbpediaNorthwestern_University})

[Pdd_Emplo‘,er(dbpedla.margew_c _Carlson,
dbpedia:Norhwestarn Universi

“Professor of Botany"@en, 1930 "ysd.gYear, 1958 sd.gYear)

)

Add_Person_with_Details (dbpedia:Margery_C._Carlson,
“Margery Claire Carlson"@en, 1892-11-21, 1985-07-05)

—

[Add_Perscn{dbpedia:Margery_C._Carlson)]

N
E’ddf?rafess ionalidbpedia:Margery_C__Carlson, {dbpedia:Northwestern_Universityj,

’Addmeperlyﬁlnstance(dbpedla:lvhrgeryﬁC;Canson,‘
L dbo:employer, dbpedia:Northwestern_University)

Add_Title(dbpedia:Margery_C._Carlson,]
“Professor of Botany"@en}

(Add_Property_Ins tance(dbpedla:lvhrgeryﬁC.ﬁCaﬂsonf'
dbolitle, "Professor of Bolany"@en)

[Add_Name(dbpedia:Margery_C_Carlson,
“Margery Claire Carison”@en)

[Add_ActiveYears Starfyear(dbpedia-Margery_C_Carison]
1930vysd:gYear)

‘Add_BirthDate(dbpedia:Margery_C._Carlson,] [Add_DethDate(dbpedia:lvhrgery_C._Cansun.]
1892-11-21) 1085-07-05)

(Add_Property_Ins tance(dbpedla:lvhrgeryﬁC.ﬁCaﬂsonf'
L dbo:acliveYears StartYear, 1930 xsd.qYear] J
Add_ActiveYearsEndYear(dbpedia Margeryfc.fcarlson,]
1958~ysd:gYear)

rdd_TYDG_TU_lﬂdeUHl[dDDEdla MEFDEW_C-_CENSUH.“ 'AddfPrcperlyﬁlnslance(dbped\a:Margerny.ﬁCansun‘]
L dbo Person) J foatname. "Margery Claire Carlson”@en)

'Add_F‘roper\y_lnstaﬂce(dbpedia:Margery_C._CaHsoﬂ." "Mdmepeﬂyflnstance(dbpema:Margerny;Carlscn,'
L dbo-birthDate, 1892-11-21) J L dbo:deathDate. 1985-07-05)

'Add_Pruperly_Iﬂstance(dDpedla:lvhrgery_C._Canson."
dbo:activeYears EndYear, 1958xsd.qYear)

Figure 2 Hierarchy of detected simple and complex change instances (in grey and white fill

respectively) for the sample part of DBpedia ontology presented in Figure 1.

A DBpedia user may spend a lot of time and effort querying the respective diff and processing
results, attempting to approximate the representation of Figure 2 and conclude what changed
and how. Even if he is equipped with a set of predefined human-readable changes and a
relevant detection algorithm, changes like Add_Academic_Professional that capture specific
evolution scenarios could not be recorded. Instead, assuming a two-level representation of
changes via simple and complex changes would balance the needs. On the one hand, simple
changes offer a first layer of primitive changes following the RDF data model. Each added or
deleted triple is mapped to a specific simple change. On the other hand, complex changes
offer a second layer of user-defined changes, grouping other changes into logical units. In this
way, application/data-specific changes, dependencies between them and multiple
interpretations of evolution can be captured. Additionally, a dedicated intuitive language for
defining complex changes would facilitate the process. A complex change can be uniquely
identified via a name, can be described by a set of parameters and defined as a pattern
comprised of simple changes, other already defined complex changes and constraints guiding
which change instances are grouped in order to form a new complex change instance.
Complex change definitions may constitute a registry of reusable components/patterns that
can be used for defining new dependent changes. Finally, the representation of the detected
complex change instances as RDF data allows querying the relations and dependencies among
changes via SPARQL [31] and the demonstration of change hierarchy by any graph
visualization tool for RDF data (Antoniazzi and Viola (2018) [2]).

29

3.3. Simple and Complex changes on RDF(S) Knowledge

Bases

Modeling changes as first class citizens involves taking into account granularity and
semantics of changes. Granularity poses the question of having fine-grained or coarse-grained
changes. Fine-grained changes have the advantage of describing primitive changes, while
coarse-grained changes provide semantics and conciseness by grouping primitive changes in
logical units. Semantics poses the question of having application/data-agnostic or -specific
changes. Application/data-agnostic changes describe modifications that appear in a specific
model, constituting a fixed set of generic changes. Application/data-specific changes suit

specific use-cases and may be user-defined, allowing multiple interpretations of evolution.

As a result, changes are distinguished between simple and complex changes. Simple changes
constitute a fixed set of fine-grained, application/data-agnostic changes. Complex changes are
coarse-grained, user-defined, application/data-specific changes providing richer semantics on

how data changed. This section provides definitions regarding simple and complex changes.

Definition 1: A simple change s is a tuple (n, P), where:
e n is the name of s, which must be unique.

o P isthe list of descriptive parameters of s, where each one has a unigque hame within s.

For simple changes we rely on Papavasileiou et al. (2013) [45]. Annex | summarizes the
simple changes considered. They are additions, deletions and terminological changes

(rename, split, merge) of RDF(S) entities (classes, properties, individuals).

Simple changes verify completeness and unambiguity properties, constituting a first layer of
human-readable changes. These properties were introduced in Papavasileiou et al. (2013) [45]
and guarantee that simple change detection process exhibits a sound and deterministic
behavior. Simple change detection is performed over a layer of "low-level" changes
constituted by triple additions and deletions among dataset versions. Essentially, what is
needed to be guaranteed is that each change that a dataset underwent is properly captured by
one, and only one, simple change. Thus, low-level changes are "assigned" to simple changes,
so that they are partitioned into simple changes. Completeness and unambiguity dictate that
this partitioning is perfect. In a nutshell: Completeness guarantees that all low-level changes

are associated with at least one simple change, making the reported delta complete (not

30

missing any change). Unambiguity guarantees that no race conditions emerge between simple
changes attempting to be detected over the same low-level change. The combination of these
properties guarantees that the delta is produced in a complete and deterministic manner.
Further details on completeness and unambiguity can be found in Papavasileiou et al. (2013)
[45] and Roussakis et al. (2015) [53].

As already stated, simple changes are fine-grained, i.e. they cannot be decomposed in more
granular changes. This holds for additions and deletions, but not for terminological changes,
as they can be expressed as additions and deletions plus extra conditions. For example, a class
rename can be considered as an add class plus a delete class, which have the same
"neighborhood" (properties, connections to classes). However, they are preferred to be simple
changes in order to distinguish at simple change level real additions or deletions from virtual

ones representing terminological changes. Thus, simple changes' set is not minimal.

Definition 2: A complex change c is a quadruple (n, P, D, F), where:

e nis the name of ¢, which must be unique and different from the simple change names.

o P is the list of descriptive parameters of ¢, where each one has a unique name within c.

e D is the set of simple (Ds) and complex changes (D.) that ¢ comprises of, where D =
DcUDs, Do NDg=@and D # @.

e F is the set of constraints (F.) that changes in D verify and bindings (Fg) specifying the
parameters in P, where F = F. U Fg and F. N Fz = @. Constraints are on changes (F£*") or

change parameters (FY“"), where F, = FE* U FP*" and FE* n EP*" = @.

A complex change is defined in terms of simple or other complex changes verifying
constraints. Constraints specialize its meaning and are divided into those defined on changes
and those on change parameters. Bindings specify complex change parameter values. Section

3.4 includes the details regarding the specific types of constraints and bindings.

Note that Definitions 1 and 2 actually define a class of simple and complex changes
respectively and not the concrete changes. The terms simple change and complex change will

be used as a shorthand for any concrete simple/complex change in the respective class.
The ultimate goal of supporting simple and complex changes is detecting actual instances

between dataset versions. The detection process leads into instantiating change parameters

with values, indicating that specific data elements are affected by a change. Definitions 3 and

31

4 define simple and complex change instances. Figure 2 presents simple and complex change

instance examples.

Definition 3: A simple change instance of a simple change (n, P), is a tuple (n, V) where V is

an instantiation of the parameters P.

Definition 4: A complex change instance of a complex change (n, P, D, F), is a tuple (n,V)

where V is an instantiation of the parameters P.

For simple change detection we rely on Papavasileiou et al. (2013) [45]. For complex change
detection an appropriate algorithm is presented in Section 3.5. Definition 5 defines when a
complex change instance is detected. Definitions 6 and 7 define possible relations among

change instances, reflecting the relations and dependencies between changes.

Definition 5: Let ¢ = (n, P, D, F) be a complex change and V., V45 two dataset versions. A
complex change instance ¢; = (n,V) is detected if: (1) for all changes in D instances are
detected between Vj,r and V¢, forming D;, such that constraints in F are verified on D;,

Vper and Vg, (2) bindings in F are applied on D; forming V, and (3) D; is maximal.

The set of change instances D; corresponding to c; verifies the complex change c.

Definition 6: Let ¢; be an instance of complex change ¢ and D; the corresponding set of

change instances verifying c. ¢; contains the change instances in D;.

Containment property is transitive: if complex change instance c; contains complex change

instance c; and c¢; contains change instance c in turn, then it also holds that c; contains cy.

Definition 7: Let ¢; and ¢; be two complex change instances, where ¢; does not contain c;
and vice versa. They are overlapping if they both contain at least one common simple or

complex change instance.

Overall, complex change instances may form a hierarchy due to containment and overlaps. As

an example consider complex change instances in Figure 2.

Note that the dynamics model followed, detecting changes between versions, propagates

some limitations to our approach. First, the order in which changes actually occurred cannot

32

be captured, since version-based approaches are agnostic of time between versions.
Additionally, if one triple is deleted and then added back between two dataset versions, then
this change cannot be traced, since change detection identifies the triple in both versions. In
the same context, complex change detection is performed between two successive versions;
thus complex changes spanning across multiple successive versions are not captured. In these
cases, following a careful and guided version issuing policy would minimize change loss.
Finally, in this work we ignore blank nodes that can be avoided when data are published
according to the linked open data paradigm.

3.4. A Language for Defining Complex Changes

This section presents an intuitive, user-friendly language based on change semantics for
defining complex changes. Complex change definitions are used for detecting respective
instances among dataset versions. In Section 3.4.1 the language syntax is provided, by means
of EBNF specification, as well as details regarding the supported concepts. In Section 3.4.2
the language semantics are formally defined. In Section 3.4.3 a number of examples are

discussed.

3.4.1. Syntax

Table 1 presents the EBNF specification of the proposed language.

Complex change definition, heading and body. A complex change definition is composed by a
heading and a body. The heading contains a unique name and a list of descriptive parameters.
The body contains the change list, as well as optionally the filter list and the binding list. The
change list defines the changes that the complex change comprises of, as well as the
cardinality each one may have. The filter list defines filter expressions with constraints that
the changes in the change list should verify. The binding list defines how complex change
descriptive parameters are evaluated. A complex change definition is nested if complex

changes appear in its change list.

Parameters. Change parameters may be categorized based on two criteria: (1) the type of

values they may evaluate, (2) whether they may evaluate into empty value.

Based on the first criterion, parameters are distinguished into those that evaluate into type set

and those that evaluate into scalar values. In order to distinguish these parameter types,

33

parameters evaluating into scalar values start with a lowercase letter, while those evaluating

into sets with an uppercase letter.

Based on the second criterion, parameters are distinguished into those that may evaluate into
an empty value and those that always should have a non-empty value. In order to distinguish
these parameter types, parameters that may evaluate into an empty value have an "OPT"
suffix (denoting optional). Also, they are referred as optional. Thus, a complex change may

be defined to be tolerant in partially performed changes in lower levels in change hierarchy.

Cardinality constraints. They determine whether a change in the change list may group
multiple instances. Specifically, they determine that there might be zero, one or multiple
instances of a specific change to be contained into respective complex change instances. The
default cardinality is one. Therefore, when no notation is defined, cardinality one is inferred.
Also, the following notations hold: "+" for at least one change instance, "?" for zero or one,

"*" for zero or more. Note that cardinality constraints are constraints on changes.

A change (in the change list) is mandatory in case of cardinality one or "+". A change is
optional in case of cardinality "?" or "*". In case of an optional change, if no instance is
detected, the respective complex change can be still detected. Thus, a complex change may be

defined to be flexible and tolerant in partially performed modifications of minor significance.

Filter expressions. They determine constraints that the parameters of the changes included in

the change list should verify. They are distinguished into primitive and composite.

Primitive filter expressions cannot break down into simpler ones. There are four types of
constraints that form primitive filter expressions: (1) testing value constraints, (2) relational
constraints, (3) pre/post-conditions, (4) functions. Also, these types of constraints may be
augmented via guantified expressions. Primitive filter expressions are also distinguished into
unary and binary, based on whether they involve one or two change parameters. It is worth
noting that in terms of this work, a parameter that may evaluate into an empty value may be
involved only on unary filters. While the nature of binary filters is to interconnect changes, if
they involve such parameters the connection among changes will not be always established (if

the parameter evaluates into an empty value). This contradicts the binary filter's goal.

Composite filter expressions are formed when combining primitive filter expressions via

boolean operators. Specifically, logical AND, OR, NOT may be used.

34

Table 1 The EBNF specification of the complex change definition language

Complex Change Definition, Heading, Body, Parameters

1 complex-change-definition = 'CREATE COMPLEX CHANGE' heading '{'
body 7}77;7 ;

2 heading = name '(' parameter-list ') ' ;

3 parameter-list = identifier (', ' identifier} ;

4 body = change-list ['; ' filter-list] ['; ' binding-list] ;,

5 name = STRING ;

6 didentifier = id-scalar | id-set ;

7 did-scalar = id-scalar-nonempty | id-scalar-empty

8 id-set = id-set-nonempty | id-set-empty /

9 id-scalar-empty = LOWERCASE LETTER {LETTER|DIGIT} 'OPT' ;
10 id-set-empty = CAPITAL LETTER {(LETTER|DIGIT} 'OPT' ;

11 id-scalar-nonempty = LOWERCASE LETTER {LETTER|DIGIT} ;

12 id-set-nonempty = CAPITAL LETTER {LETTER|DIGIT} ;,

Change List, Cardinalities

13 change-list = 'CHANGE LIST' change {', ' change} ;

14 change = change-heading [cardinality]

15 change-heading = change-name '(' parameter-list ')' ;

16 change-name = name | NAMES OF SUPPORTED SIMPLE CHANGES ;

17 cardinality = '+'|'2"|"'*"'

Filter List

18 filter-list = 'FILTER LIST' or-filter-expr {', ' or-filter-expr} ;,
19 or-filter-expr = and-filter-expr {'||' and-filter-expr} ;

20 and-filter-expr = neg-filter-expr {'&&' neg-filter-expr} ;,
21 neg-filter-expr = ['!'] filter-expr ;
22 filter-expr = bracketed-expr | expr ;

23 bracketed-expr = '(' or-filter-expr ') ' ;

24 expr = unary-expr | binary-expr ;

25 unary-expr = [quantification-1] unary-constr ;

26 binary-expr = [quantification-2] binary-constr ;

27 quantification-1 = 'for' ('each'| 'some'| 'none’') id-scalar-nonempty
'in' id-set ':';

28 unary-constr = test-val-constr | pre-post-constr-1 | fun-constr-1;

29 test-val-constr = test-val-scalar-1 | test-val-scalar-2 | test-
val-set ;

30 test-val-scalar-1 = id-scalar bin-op-scalar-1 value ;

31 test-val-scalar-2 = id-scalar bin-op-scalar-2 set ;

32 test-val-set = id-set bin-op-set set

33 pre-post-constr-1 = (('(' id-scalar ', ' URI ', ' value ")') |
('('" URI ', ' id-scalar ', ' value ')') | ('(" URI ', ' URI ', ' id-
scalar '")')) ['inferred'] ('in' | 'not in') ('Vbef' | 'Vatf') ;,

34 fun-constr-1 = name '(' (identifier | (identifier ', ' constant)

| (constant ', ' identifier)) ")' ,

35 quantification-2 = 'for' ('each'|'some'| 'none') id-scalar-nonempty
'in' id-set-nonempty ':' ['for' ('each'|'some'| 'none') id-scalar-
nonempty 'in' id-set-nonempty ': '],

36 binary-constr = rel-constr | pre-post-constr-2 | fun-constr-2 ;

37 rel-constr = rel-scalar-1 | rel-scalar-2 | rel-set ;

38 rel-scalar-1 = id-scalar-nonempty bin-op-scalar-1 id-scalar-
nonempty,

39 rel-scalar-2 = id-scalar-nonempty bin-op-scalar-2 id-set-nonempty,
40 rel-set = id-set-nonempty bin-op-set id-set-nonempty /,

41 pre-post-constr-2 = (('(' id-scalar-nonempty ', ' URI ', ' id-
scalar-nonempty ') ') | ('(' id-scalar-nonempty ', ' id-scalar-
nonempty ', ' value ')') | ('('" URI ', ' id-scalar-nonempty ', ' id-
scalar-nonempty ') ')) ['inferred'] ('in' | 'not in') ('Vbef' |
'vat') ;

42 fun-constr-2 = name '(' (id-scalar-nonempty | id-set-nonempty) ',
" (id-scalar-nonempty | id-set-nonempty) ') ' ;

35

43 bin-op-scalar-1 =0 =T > I It) =T,

44 bin-op-scalar-2 'in' | 'not in' ;

45 bin-op-set = '=' | '!='" | 'subSet' | 'properSubset' | 'superSet'
| 'properSuperset ',

46 constant = set | value ;

47 set = '"{' value-list '} ' ;

48 value-list = value {', ' value} ;

49 value = URI | LITERAL ,

Binding List

50 binding-list = 'BINDING LIST' binding {', ' binding}
51 binding = (id-scalar 'as' id-scalar)| (id-set 'as' id-
set) | (aggregate 'as' id-set);,

52 aggregate = 'union(' identifier ') ' ;

Testing value constraints. Testing value constraints limit a parameter value against a given
constant. They are actually unary filters. Their form is presented in Table 1, lines 29-32. The
supported binary operators are the typical ones, as presented in Table 1, lines 43-45. They
may be on scalar parameters (=,!=,>,<,>=,<=), on set parameters (=,!=,> as
properSuperset, C as properSubset, 2 as superSet, € as subSet), or may involve both

scalar and set parameters (€ as in, € as not in).

Relational constraints. Relational constraints involve two change parameters defining how
changes are connected. They are actually binary filters. Their form is presented in Table 1,
lines 37-40. The supported binary operators are the same with the ones used in testing value

constraints, as presented in Table 1, lines 43-45.

Pre-/Post-conditions. Pre-/post-conditions define how parameters are related in the version
before (Vpr) or after (V,f) the change. They state whether a triple must or must not exist in
the version before or after and whether a triple may be inferred. In case of inference, a flag
"inferred" is used. These constraints may be unary or binary depending on the number of

change parameters they involve. Their form is presented in Table 1, lines 33 and 41.

Functions. Function constraints involve predefined functions of boolean return type. As an
example, consider common functions on strings, like checking whether a string contains
another given string. These constraints may be unary or binary depending on the number of

change parameters they involve. Their form is presented in Table 1, lines 34 and 42.

Quantified expressions. Quantified expressions allow to write conditions on elements of set
parameters. Thus, quantification augments primitive filters on scalar parameters so they
evaluate into elements of set parameters. They may have one of the following forms: (1)
v,3,2}x eX:f(x), 2 {v3,2}x €eX:f(x,y), () {v,3,2}x €X:{Vv,3,4}y €

36

Y: f(x,y), where f(x) and f(x,y) are primitive constraints on parameters evaluating into
scalar values. Their syntax is presented in Table 1, lines 25-27 and 35.

Bindings. Parameter bindings determine how complex change descriptive parameters are
evaluated. In its simplest form, a binding assigns the identifier on the left to the identifier on
the right, via operator as. In this way, it is defined that the identifier on the right, which
represents a complex change parameter, equals the identifier on the left, which represents the
parameter value of a change in its change list. This type of binding may be omitted and thus
inferred by repeating each descriptive parameter into the respective contained changes and
constraints. Moreover, a binding assigns the result of the aggregate function union over an
identifier to another identifier (on the right), via operator as. In this way, it is defined that the
second identifier, which represents a complex change parameter, equals the union of the
parameter values of a change with cardinality "+" or "*", whose parameter is passed as an
argument in the aggregate function union. Obviously, the complex change parameters that are
evaluated with the latter form are of type set. A binding that involves the union aggregate
function is useful in case of changes with cardinality "+" or "*". The syntax is presented in
Table 1, lines 50-52.

3.4.2. Semantics

The proposed language is essentially a pattern-matching language. The body of a complex
change definition constitutes a change pattern expression (or a change pattern), while the
head indicates how to construct a complex change instance. The body is matched against a set
of change instances I, between two dataset versions, V. and V,, to obtain a set of bindings
for the variables in the body, and then based on the head these bindings are used to produce
the actual change instance. Note that, we say that the generated complex change instance
contains the change instances in I that correspond to the respective bindings. The semantics
definition is influenced by SPARQL semantics definition as in Perez, Arenas and Gutierrez
(2009) [46] and Kaminski, Kostylev and Cuenca Grau (2017) [32], but adapted to our

language needs.

A change (simple or complex) is a tuple (n, ;*), where n is the change name and ;" is a list
of variables (scalar or set), out of which one is a change variable and the rest are descriptive
variables. With respect to Definitions 1 and 2, the change variable represents the change
identifier s and c respectively, the descriptive variables represent the change parameters P,

while for complex changes the heading is considered. A change instance (simple or complex)

37

is a tuple (n, V"), where n is the change name and V;* is a list of values (scalar or set) serving
as instantiations of the respective variables. Additionally, consider the existence of an infinite
set V, of possible values, scalar or set, (V, = V4" y Vet) and an infinite set V. of

variables, scalar or set, including optional variables, (V. = V,s¢alar y y;set) disjoint from V.

3.4.2.1. Baseline Algebra and Semantics

Change Pattern Expression. While the formal syntax of the proposed language was
presented in Section 3.4.1, in order to define the semantics an algebraic formalization is
followed. The binary operators AND, OPT (i.e. optional) and FILTER are used. AND is used
for concatenating mandatory changes, i.e. those with cardinality 1 or "+", while OPT is used
for optional changes, i.e. those with cardinality "?" or "*", in both cases instead of comma
symbol (",") in formal syntax. FILTER is used for filter expressions. A change pattern
expression is defined recursively as follows:

(1) A change (n, ;*), where ;™ c V4., is a change pattern (primitive change pattern).

(2) If P is a primitive change pattern and R is a built-in filter expression, then the expression
(P FILTER R) is a change pattern (filter primitive change pattern).

(3) If P, and P, are change patterns, then the expression (P; AND P,) is a change pattern
(conjunction change pattern).

(4) If P, is a change pattern and P, is a primitive change pattern or a filter primitive change
pattern, then the expression (P, OPT P,) is a change pattern (optional change pattern). If P;
is a change pattern and P, is an optional change pattern P, = (P, OPT Pg) where P, and Py
are primitive change patterns or filter primitive change patterns or optional change patterns
similar to P,, then (P, OPT P,) is a change pattern (optional change pattern).

(5) If P is a change pattern and R is a built-in filter expression, then the expression

(P FILTER R) is a change pattern (filter change pattern).

In case 4, nested optional change patterns may be defined based on primitive change patterns
and filter primitive change patterns. In this case an optional change is dependent to another
optional change, which in turn is dependent to another, and so on, ending up to a mandatory
change which is part of a change pattern. This pattern of optional changes is named optional
change path. Overall, it is not meaningful to define a complex change comprising of optional

changes only and each optional change is meaningful in the context of another change.

38

In cases 2 and 5, a built-in filter expression is constructed using elements of the set V; U 1/,
logical connectives (—,A,V), several symbols and constraints as described in Section 3.4.1,
evaluating into a boolean value. Formally, the built-in filter expressions below are considered:
(1) If x,y eyscalar x y gyset, v e ygealar v e yset then the following are built-in
filter expressions:

- Equality symbol (=). x = v, X =V, x =y, X =Y are built-in filter expressions.

- Inequality symbols (>, <, >=,<=,2,¢,2,5,!=).x > v, XDV, x >y, X DY are built-in
filter expressions, and similar holds for the rest of the symbols.

- Existential symbols (€,¢). x eV, x € V,x € Y, x & Y are built-in filter expressions.

- Pre-/post-conditions. t € Vper, t & Vper, t € Vop, t & Vgp are built-in filter expressions,
where t is a tuple from {({v € V;*°497|isIRI(v)} U V;5°¥ar) x ({v € V44T |isIRI(v)} U
Vrscalar) % (Vlscalar U Vrscalar)} — {yscalar y yscalar o yscalar) - Similar expressions are
defined while taking into consideration the inferred tuples in V;.r and V,; as well. In these
cases, Inf (Vyer) and Inf(V, ;) datasets include explicitly those tuples.

- Functions. fun(x), fun(x,v), fun(v,x) and fun(x,y), with return type boolean are built-
in filter expressions. Similar expressions are defined with variables of type set and set values.
- Quantified expressions. Vx € X: f(x), 3x € X: f(x), Ax € X: f(x), Vx € X: f(x,y), Ix €
Xif(x,y),ax € X:f(x,y), Vx e X:Vy eY:f(x,y),Vx€X:Ay € Y: f(x,y), Ix € X: Iy €
Y:f(x,y), Ax € X: Ay € Y: f(x,y) are built-in filter expressions, where f(x) and f(x,y)
may be any of the aforementioned built-in expressions on parameters evaluating into scalar
values.

Note that, an optional variable (xOPT, XOPT) may be involved only on unary filters.

(2) If R, and R, are built-in filter expressions, then (=R;), (R; V R;) and (R, A R,) are built-

in filter expressions.

Mappings and Set of Mappings. Let P be a change pattern expression, R be a built-in filter
expression and t be a tuple. var(P) denotes the set of variables occuring in P, var(R) in R,

and var(t) in t.

In order to define the semantics, the following terminology has to be introduced. A mapping
uc from V. to V; is a partial function u. : V. — V. Abusing the notation, for a primitive
change pattern ¢ we denote by u.(c) the change instance obtained by replacing the variables
in ¢ according to p.. The domain of u., denoted by dom(u,), is a subset of . where u, is
defined. Two mappings u.; and u., are compatible when for all x € dom(uz1) N dom(uc,),
it is the case that u.,(x) = pe,(x), i.e. when u.q U e, is also a mapping. Intuitively, u., and

U, are compatible if p., can be extended with u., to obtain a new mapping, and vice versa.

39

Two mappings with disjoint domains are always compatible, and empty mapping ¢ (i.e. the

mapping with empty domain) is compatible with any other mapping.

Notice that u. is defined over ;. and its set of destination is V;, which include variables and
values of both scalar and set type respectively. This allows variables of type scalar/set to
evaluate into a scalar/set value. Furthermore, in case of optional variables, they may also
evaluate into an empty value (@). Finally, u. allows the evaluation of both change and

descriptive variables.

Let Q, and Q, be sets of mappings. The join of, union of and difference between Q; and Q,
are defined bellow. Based on these operators, the left-outer join is defined.

Q1 ™ Qp = {perUptealpter € Qo) piez € Q; and peq, e, are compatible mappings}

QU Q; ={ulu € Qqoru€Qy}

Q1 \ Q, ={u€Qforall u’ € Q,,uand u' are not compatible mappings}

Q,0, = (Q; ® Q) U Q) \ Q)

Semantics Definition. Based on the above, the semantics of change pattern expressions can
be defined as a function [-]; which takes as input a change pattern expression and returns a set

of mappings.

Definition 8. The evaluation of a change pattern P over a set of change instances I, denoted
by [P1,, is defined recursively as follows.

(1) If P is a primitive change pattern c, then [P]; = {u.|dom(u,) = var(c) and u.(c) € I}.
(2) If P is (P, AND P,), then [P]; = [P,]; » [P,],.

(3) If P is (P, OPT Py), then [P],; = [P,], > [P,],.

The semantics of filter expressions goes as follows. Given a mapping u. and a built-in filter
expression R, u. satisfies R denoted by . E R, if:

(D Risx =v,x € dom(u.) and u.(x) = v.

QRisX=V,X edom(u.) and u.(X) = V.

@) Risx =y, x € dom(uc), y € dom(u) and u(x) = p (y).
@ARisX=Y,Xedom(u.),Y € dom(u.) and u.(X) = u.(Y).

For the inequality symbols (>, <, >=,<=,D,c,2,C,! =) similar definitions hold.

B)Risx €eV,x € dom(u.) and u.(x) € V.

B)Risx €Y, x € dom(u.), Y € dom(u.) and u.(x) € u.(Y).

For the rest of existential symbols (&) similar definitions hold.

40

(7) R is tE€Vpy, Vx€var(t) x €dom(u:) and tlyxevar(o):pu,x) € Vpes, Where
tlvxevar(e): u (x) rePresents the tuple ¢ where each of its variables x is substituted by . (x).
(8) R is t&Vyey, Vx€var(t) x€dom(u:) and tlyxepar): u.(x) & Voer, Where
tlvxevar(): u () TEPresents the tuple t where each of its variables x is substituted by . (x).
For the rest of pre-/post-conditions (t € Vur,t € V,r and with inference) similar definitions
hold.

(9) R is fun(x), x € dom(u,) and fun(u.(x)) is true.

For the rest of functions (fun(x,v), fun(v,x), fun(x,y), and with variables of type set and
set values) similar definitions hold.

(10)RisVx € X: f(x), X € dom(u,) and Vv € u.(X) f(v) is true.

(1) Risdx € X: f(x), X € dom(u.) and v € u.(X) f(v) is true.

(12) RisAx € X: f(x), X € dom(u.) and Vv € u.(X) f(v) is false.

(13)RisVx € X: f(x,y), X € dom(u.), y € dom(u.) and Vv € u.(X) f(v, ,uc(y)) is true.
(14)Risax e X: f(x,y), X € dom(u.),y € dom(u,) and v € u.(X) f(v, ,uc(y)) is true.
(15)RisAx € X: f(x,y), X € dom(u.), y € dom(u.) and Vv € u.(X) f(v, ,uc(y)) is false.
For the rest of quantified expressions (Vx € X:Vy € Y: f(x,y), Vx € X: Ay € Y: f(x,y),
dx € X:y € Y:f(x,y), Ax € X: Ay € Y: f(x,y)) similar definitions hold.

(16) R is f(xOPT), where f may be any of the aforementioned built-in unary expressions on
a scalar variable, xOPT € dom(u.) and u.(xOPT) =@, or xOPT € dom(u,) and
1. (xOPT) # @ and f(u.(xOPT)) is true. Similar holds for an optional variable of type set
(XOPT).

(17) R is (=R,), R, is a built-in filter expression, and it is not the case that u, F R;.

(18) R is (R, V R,), R, and R, are built-in filter expressions, and u. = R; or u, E R,.

(19) R is (R; AR,), R, and R, are built-in filter expressions, and u. = R; and u. E R,.

Definition 9. Given a set of change instances I and a filter expression (P FILTER R),
[(P FILTER R)]; = {u. € [P];|uc = R}.

3.4.2.2. Extended Algebra and Semantics

In order to formally define the binding construct of a complex change definition and multiple
cardinality ("+", "*"), the presented algebra has to be extended with assignment and
aggregation constructs. For this, the semantics of a change pattern should depend on a set of
change instances I as well as on a mapping u., called environment. The semantics of the

extended change pattern expressions can be defined as a function [-]f,‘c which takes as input an

41

extended change pattern expression and returns a set of mappings. The environment
evaluation [P]ﬁ‘c of a change pattern P over a set of change instances I with respect to a
mapping u. is defined the same as [P]; when u. = @. Therefore, for the change patterns
defined in Section 3.4.2.1 [P], = [P]°.

Extend Operator. First, the Extend operator is presented, which captures the complex change
assignment construct, providing the algebraic means of assigning an expression to a variable.
Note that in terms of the proposed complex change language, the expression might be a
variable or the result of an aggregation function. Therefore, the algebra is extended so that:

Extend(x, E, P) is a change pattern, where x is a variable not in var(P), E is an expression

and P is a change pattern.

Definition 10. The evaluation of a change pattern Extend(x, E,P) given a set of change

instances I and an environment v is defined as follows:

[Extend(x,E,P)]} = {uchlé € [P]}, e = ue U {x = [EHLC}}'

Intuitively, Extend assigns to variable x the evaluation of E in each solution mapping of P

and the set of change instances 1.

Group and Aggregate. Next, aggregation in terms of complex change definitions is
formalized. The notion of groups is introduced: a group induces a partitioning of a change
pattern's solution mappings into equivalence classes, each of which is determined by a key
obtained from the evaluation of a list of variables. The list of variables for a complex change
comprises of: (1) the change variables of changes it consists of with cardinality 1 or "?", since
one respective instance is considered, and (2) the descriptive variables that are used in
assignments without aggregation and correspond (only) to changes with cardinality "+" or
" since even if multiple instances are considered, all of them should have a common value
on these variables. If the list of variables is empty, then one group is assumed with all change

pattern's solution mappings.

Definition 11. A v,-list is a list of values in V;. The evaluation [Vrg]fc of a variable list V7 =

(Vy1, ..., V) Over a set of change instances I with respect to a mapping u. is the v;-list

([vrl]yc: oy [vrn]ilc>-

42

Definition 12. A group is a construct T' = Group(V,9,P), where V7 is a list of variables and
P a change pattern. The evaluation [I]; of a group T = Group(V,, P) over a set of change
instances I is a partial function from v;-lists to sets of mappings, that is defined for all v,;-lists

Key = [Vrg];tc with p. € [P]; as follows:

[T]; (Key) = {icluc € [PD;, [V71)° = Key).

Notice that the evaluation of groups is not dependent on environments, while the evaluation

of v;-lists it is.

Similar to aggregate functions proposed in standard query languages, union aggregate
function allows to compute a single value for each group of solution mappings. Specifically, it
calculates a set value for each group of solution mappings, based on the evaluation of a
specific variable v, over the solution mappings of each group. Suppose A be a set of

mappings of variable v, to values in V;, then: union(A) = Uy, —veafvi}:

The aggregate construct is defined below, as a construct which computes a set value for each

group, by means of union aggregate function.

Definition 13. An aggregate is a construct of the form A = Aggregate(v,, union,T'), where
v, is a variable, union is an aggregate function and T' = Group(Vrg,P) is a group. The
evaluation [[A], of an aggregate A = Aggregate(v,, union,T') over a set of change instances

I is a partial function from v;-lists to values such that for each Key in the domain of [I'],,

[A];(Key) = union({[v,1{|uc € [T1;(Key)}).

3.4.3. lllustrative Examples

Examples 1-5 present complex change definitions regarding the changes discussed in Figure 1
on part of the DBpedia ontology. Examples 6-8 further elaborate on concepts of the proposed

language and are based on the DBpedia ontology as well.

Example 1. Add_Person models the case where a new individual of type person is added. It is
a specialization of simple change Add Type To Individual, where the type equals to
dbo:Person via a testing value constraint over parameter type. No binding is defined, as it is
inferred by repeating the complex change parameter as parameter on the change in change

list. Besides Add_Property_Instance no cardinality is defined as cardinality one is inferred.

43

CREATE COMPLEX CHANGE Add_Person(id) {
CHANGE LIST Add Type To Individual (id, type) ;
FILTER LIST type=dbo:Person ; } ;

Example 2. Add_Name models the case where a new name property with value n is assigned
to a person id. It is a specialization of simple change Add_Property_Instance, where the
property equals to foaf:name via a testing value constraint over parameter prop. Bindings and
cardinality are as in example 1. Similar definitions can be defined for all properties on person.

CREATE COMPLEX CHANGE Add Name (id, n) {
CHANGE LIST Add Property Instance(id, prop, n) ;
FILTER LIST prop=foaf:name ; } ;

Example 3. Add_Person_with_Details models the case where a new person id is added with a
number of descriptive properties assigned. Properties birth date and death date are optional,
specifically zero or one property instance may be assigned to each person as defined by "?",

since this information may be missing or death date may not be appropriate.

CREATE COMPLEX CHANGE Add_Person_with_DetailS(id, n, bD, dD) {
CHANGE LIST Add Person(id), Add Name (id, n), Add BirthbDate(id, bD) ?,
Add DeathDate(id, dD) 2 ; } ;

Example 4. Add_Professional is a specialization of Add_Person_with_Details and thus it is
defined on top. It models the case where an added person is assigned several properties
related to its professional activity, like employers, title, the start year and end year when being
active. Since multiple employers may appear, cardinality "+" is used besides Add_Employer.
Title, start year and end year may be missing, and thus cardinality "?" is used besides relevant
changes, indicating zero or one instance. Parameter E holds all employers that the added

person is connected with. This is defined with a union aggregate function in the binding list.

CREATE COMPLEX CHANGE Add Professional (id, E, t, sY, e¥Y) {

CHANGE LIST Add Person with Details(id, n, bD, dD), Add Employer(id,
e) +, Add Title(id, t) ?, Add ActiveYearsStartYear(id, sY) ?,

Add ActiveYearsEndYear (id, eY) ? ;

BINDING LIST union(e) as E ; } ;

Example 5. Add_Academic_Professional is a specialization of Add_Professional and thus it is
defined on top. It models the case where the added professional works only in academia. This

is defined by a post-condition constraint on E using quantification.

CREATE COMPLEX CHANGE AddiAcademiciProfeSSional(id, E) {
CHANGE LIST Add Professional (id, E, t, sY, eY) ;
FILTER LIST for each e in E : (e,rdf:type,dbo:University) in VvVaf ; }

’

Example 6. Add_Professionals_withCommon_Employers is built on top of Add_Professional.

It identifies all the added professionals that have the same employers, i.e. groups all the

44

Add_Professional change instances with the same value in parameter E. This is denoted by
cardinality "+" besides Add_Professional change, while at the same time complex change
parameter E equals the respective Add_Professional change parameter. Also, | holds all the
professionals with the same employers E. This is defined by the union aggregate in the
binding list. Notice, that if for example parameter t was also a complex change parameter,
then the grouping would be the professionals with same employers E and title t.

CREATE COMPLEX CHANGE Add Professionals withCommon Employers (I, E) {
CHANGE LIST Add_ Professional (id, E, t, sY, eY) + ;
BINDING LIST union(id) as I ; } ;

Example 7. Add_Organization_with_ChildOrganisations models the case where a new
organization is added together with its child-organizations, which may be more than one
(cardinality "+"). This change is used in example 8. Changes Add_Organization and
Add_ChildOrganization are defined similar to Add_Person and Add_Name respectively.

CREATE COMPLEX CHANGE Add_Organisation_withChildOrganiSations(id, C) {
CHANGE LIST Add Organisation(id), Add ChildOrganisation (id, chId) + ;
BINDING LIST union(chId) as C ; } ;

Example 8. Add_Organisation_Hierarchy models the case where a new organization is added
together with any child-organizations, which in turn may have their child-organizations,
forming overall a hierarchical structure with four levels. The notion of optional change path
may be used in order to model the addition of such hierarchies, where in some cases may be
complete while in others partial, since elements lower in the hierarchy may not appear. Here,
one Add_Organization_with_ChildOrganisations is defined as mandatory change and two
more as optional changes with cardinality "*", since zero, one or more organizations with
child-organizations may be added lower in the hierarchy. The relational constraints (operator

in) are used in the filter list to define the dependencies and connections among changes.

CREATE COMPLEX CHANGE Add Organisation Hierachy(idl, L2, L3, L4) {
CHANGE LIST Add Organisation withChildOrganisations (idl, C2),

Add Organisation withChildOrganisations (id2, C3) *,

Add Organisation withChildOrganisations (id3, C4) * ;

FILTER LIST id2 in C2, id3 in C3 ;

BINDING LIST C2 as L2, union(C3) as L3, union(C4) as L4 ; } ;

3.5. Complex Change Detection

Complex change detection is the process of identifying complex change instances. It requires
as input a set of simple change instances detected between two dataset versions (S;), the
dataset versions (before V,.r and after V, ;) and the complex change definitions that will be
evaluated for detecting respective instances (C). For implementing the proposed language, we

translate it into an already implemented language. As this approach concerns RDF data, we

45

choose to rely on SPARQL, which provides similar capabilities to the proposed language.
Accordingly, simple and complex change instances, as well as dataset versions are encoded as
RDF(S) data. Section 3.5.1 presents the complex change detection algorithm, Section 3.5.2
how change instances are represented in RDF(S), Section 3.5.3 the translation process for
generating SPARQL queries, Section 3.5.4 the change instance generation process and
Section 3.5.5 the correctness of the proposed implementation with respect to the language

semantics.

3.5.1. Algorithm

The presented complex change detection algorithm, Algorithm 1, involves two steps: the first

step handles nested definitions, the second produces complex change instances.

Algorithm 1: Complex Change Detection

Input: A set of complex changes (, a dataset version before V., and
after Vg, a set of simple change instances §;

Output: A set of complex changes instances [of C

1 IT<{};

2 queue Q « postOrderDfs(C) ;//complex changes sorted based on
dependencies

3 while !Q.isEmpty() do

4 ¢ « Q.dequeue() ;

5 query(—CreateQuery(D(c),F(c)) ;

6 resultSet<—exec(query,Si,I,Vbef,Vaf) ;

7 I, « createlnstances(resultSet, F£(c)) ;
8

9

1

I <1Vl ; //report instances
end while

0 return [;

As for the first step, suppose a complex change ¢ whose definition is based on a set of
complex changes (D. # ©). The detection of ¢ instances depends on detecting the instances of
each complex change in D, and therefore follows their detection. Note that mutually
dependent complex changes are not supported. In general, complex change definitions
constitute a directed acyclic graph, where nodes represent changes and edges dependencies
between them. An edge departing from a complex change c¢ arrives at changes in D,
according to its definition. Thus, detection follows a post-order depth-first scheme on the
induced dependency graph by complex change definitions. This is stated in line 2 of
Algorithm 1. postOrderDfs function call runs over the set of complex changes C identifying
the dependencies among changes, returning a queue Q of all changes in C, where the order of

elements defines the order in which they have to be detected.

46

As for the second step, for each complex change c in @Q, instances are computed (lines 3-10).
The main idea is that each complex change definition is translated into a SPARQL query plus
a post process for computing respective complex change instances based on the query result.
Simple and complex change instances as well as dataset versions are encoded as RDF(S) data,
so that the constructed SPARQL queries are applied on them. Therefore, for each complex
change an appropriate SPARQL query is created via createQuery function call (line 5). The
query is executed on the detected change instances and dataset versions (line 6), in order to
select change instances that verify the defined constraints. The query results are further
elaborated through createlnstances function call (line 7), so that selected changes are grouped
based on cardinality. Computed instances are added into the set of instances to be reported I
(line 8, initialized in line 1) and become available for the detection of dependent complex

changes. Finally, the set of detected complex change instances I is returned (line 10).

3.5.2. RDF(S) Change Representation

The proposed schema describes the specification of each change and the instances under this
schema describe the detected change instances. It actually forms a change vocabulary, with a
dedicated namespace <http://dblab.ece.ntua.gr/change#> and prefix <ch>. The classes,

properties and individuals are described below in detail.

Classes. A class for simple changes (ch:Simple_Change) and a class for complex changes
(ch:Complex_Change) is used. Both are subclasses of a generic class for all changes
(ch:Change). Also, for each simple change defined in Annex | a respective class is defined:
ch:Add_Type To_lIndividual, ch:Add_Property_Instance, etc. In total there are 38 classes for
the simple changes, which are all subclasses of ch:Simple_Change class. Similarly, for each
defined complex change in a set of complex changes C a class is defined, following the
naming pattern <namespace>:<complex change name>, where a data-specific namespace is
considered in line with the application domain of the complex changes. These classes are all
subclasses of ch:Complex_Change class. For example, dbo:Add_Academic_Professional is a

class for one of the complex changes defined in the running example.

Properties. For each descriptive parameter of a simple change, a property is considered and is
named based on the simple change name and its index in the descriptive parameter list. The
naming pattern is ch:<simple change name>_p<parameter index>. For each property, the
domain is the respective simple change class and the range matches the value type it

represents in the definition. For example, the simple change Add_Type_To_Individual(a, b)

47

has two properties defined: the first is ch:Add_Type_To_Individual_pl with domain
ch:Add_Type_To_Individual and range rdfs:Resource, and the second s
ch:Add_Type_To_lIndividual_p2 with the same domain and range rdfs:Class. Similarly, for
each descriptive parameter of a complex change a property is defined, where the naming
pattern, domain and range are defined alike the simple changes.

Additionally, the property ch:contains is employed for modeling explicitly the containment
relationship between change instances. The domain is ch:Complex_Change and the range is

ch:Change, as only complex change instances may contain simple/complex change instances.

Instances. The instances of the defined schema are simple and complex change instances that
are detected between two dataset versions. They are actually instances of the defined classes

and are attributed with the defined properties.

Figure 3 presents an outline of the structure of the proposed RDF(S) schema. Two simple
change classes and two complex change classes are presented indicatively, as well as a

complex instance of Add_Academic_Professional presented in the running example.

ch:Change

ch:Complex_Change

[dbo:ﬁdd_ﬁcadem ic_Professio nal]

ch:Add_Professional

ch:Simple_Change

[ch:Md_Type_To_I ndivid ual]

Instances ch:contains

AddAcademicProfi

]ch:Add Academic_Professional p1’J
dbpedia:Margery_C_Carlson
a e J

dbpedia:Northwestern_Uni\.ersity}

ch:Add_Academic_Frofessional_p2 j\

Figure 3 Outline of the proposed RDF(S) change representation.

3.5.3. SPARQL Query Generation

Algorithm 2 presents the process of generating a SPARQL query q, given a complex change
c. This involves the generation of a SELECT clause (lines 2-6), a FROM clause (line 7), a
WHERE clause (lines 8-17, 24-69), an ORDER BY clause (lines 18-21), and their
concatenation into the query string g (line 22), which is finally returned (line 23). Note that

prefix definitions should be defined, while omitted for simplicity.

48

SELECT Clause. Since the generated query is used for calculating complex change instances,
it has to return: (1) the values to be assigned in the complex change descriptive parameters,
(2) the change instances that are to be contained by the newly detected complex change
instance. Thus, SELECT clause includes: (1) variables for the descriptive parameters (P) of
the complex change as defined in the change heading statement (lines 3-4), (2) variables for
identifying each change in the change list statement (lines 5-6). If ¢ includes bindings, they
are considered when specifying the variables for descriptive parameters via getBindParameter

function call: each parameter p is substituted by the identifier used for its evaluation.

FROM Clause. The FROM clause includes two named graphs: S; holding simple change

instances and | holding complex change instances that are already computed (line 7).

WHERE Clause. Overall, the WHERE clause includes a graph pattern with: (1) triple patterns
corresponding to the changes in the change list statement, (2) appropriate statements for the
filters defined in the filter list statement. As for (1), the triple patterns that correspond for each
change follow the RDF(S) representation defined in Section 3.5.2 and are generated via
getTriplePattern function (lines 49-64). getTriplePattern requires as input a change d and a set
of filters. Recall that a change parameter may be defined as optional (i.e., evaluating into
empty value). The relevant triple pattern includes an optional graph pattern for this parameter,
while unary filters on it are considered within the optional pattern (lines 51, 59-63). As for
(2), each filter type is mapped to an appropriate SPARQL FILTER statement or subquery via
getFilterPattern function (lines 65-69). getFilterPattern requires as input a filter f. and the
changes over which the filter applies. Testing value, relational and functional constraints, as

well as pre-/post-conditions on scalar parameters are similar to built-in SPARQL constraints.

However, triple patterns corresponding to changes and filters must be structured in an
appropriate manner due to composite filter expressions and cardinality constraints. Recall that
filters may be combined into logical expressions using logical AND, OR, NOT. In this case,
the equivalent DNF (disjunctive normal form) of the expression is computed (line 9). Each
conjunction is a combination of filters that should be satisfied by the changes in the change
list. Therefore, the WHERE clause is formed as the union of graph patterns where each
includes the appropriate triple patterns for changes plus one of the possible combination of
filters (lines 10-17). Each such graph pattern is generated by a getPattern function call (lines
11, 14), where getPattern function (lines 24-37) together with getOptionalPattern (lines 38-

48), for handling optional changes, orchestrate the process.

49

As for getPattern function, it requires as input a change ¢ and a set of filters constituting a
filter conjunction. First, the mandatory (cardinality 1 or "+") and optional (cardinality "?" or
"*") changes are identified (lines 25-26). Second, the triple pattern for each mandatory change
is generated (lines 27-28) via getTriplePattern function call, as well as the pattern for each
unary or binary filter on mandatory changes (lines 29-34) via getFilterPattern function call.
Notice that the getFilterPattern function call has as input the filter f. and the changes that its
parameters are on, generated by the getChanges function call. Next, the triple patterns for
optional changes are considered (lines 35-36), starting from those that are directly connected
via a filter f. to mandatory changes (line 36), generated by getOptionalPattern function call
(line 36). Finally, getPattern function returns the generated pattern (line 37).

As for getOptionalPattern function, it is a recursive function that generates a SPARQL
optional statement, which may contain nested SPARQL optional statements, following the
dependencies between optional changes, ultimately forming optional change paths (see
Section 3.4.2.1). getOptionalPattern requires as input, an optional change d, a set of filters
(filterConjunction), a set of changes of previous iteration (parentChanges, that d is
dependent) and a set of optional changes (optionalChanges). First, the triple pattern for the
optional change d is generated into a SPARQL optional statement (line 38). Second, for each
filter f., that is unary with its parameter on d or binary with its parameters on d and
parentChanges, a triple pattern is generated within the SPARQL optional statement via a
getFilterPattern function call (lines 39-44). Next, it is examined if there are optional changes
d' dependent on d and for each such change getOptionalPattern function is recursively called,
resulting in the generation of a nested SPARQL optional statement (lines 45-46). Finally, the

optional pattern is completed (line 47) and then returned (line 48).

ORDER BY Clause. Complex change detection is a two step process, where the second step is
change instance generation based on the SPARQL query results. In order to facilitate this step
it is necessary to have the query results in order, so that results that are to be grouped into one
complex change instance are positioned nearby in the query result set. Thus, an ORDER BY
clause (lines 18-21) is considered with: (1) grouping variables except from those representing
set parameters, (2) change variables for each change in the change list statement. Based on
the semantics presented in Section 3.4.2.2, grouping variables are the ones in variable list,
which defines the groups, and are further discussed in Section 3.5.4. The variables
representing set parameters are excluded, because set values "span™ among multiple lines in

the result set. In order to be computed, ordering based on all change variables is needed.

50

Algorithm 2: SPARQL Query Generation

Input: A complex change c¢=(nP,D,F) (where F::FmeJEfmﬂUFb, FEA is a
set of cardinality constraints, Ffar filter constraints, Fz bindings),
a named graph of simple change instances §;, a named graph of complex
change instances I, a named graph of the version before V., and a
named graph with the version after Vg

Output: A SPARQL query ¢q

1 q&<"

2 selectClause < "SELECT " ;

3 for each p in P do

4 selectClause « selectClause +"?" + getBindParameter(p, Fg) ; end for

5 for each d in D do

6 selectClause « selectClause +"?"+d ; end for

7 fromClause « " FROM <"+ S;+"> FROM <"+I[1+">" ;

8 whereClause <« " WHERE {" ;

9 danilterExprean(FCpar) ; // compute equivalent DNF expression

10 if (dnfFilterExpr is a filterConjunction) do // generate a triple pattern
11 getPattern(c,dnfFilterExpr) ;

12 else // generate a union of triple patterns

13 for each filterConjunction; in dnfFilterExpr do

14 whereClause « whereClause + "{" + getPattern(c, filterConjunction;) +"}" ;

15 if (dnfFilterExpr.size() > i) do whereClause « whereClause +" UNION" ;
end if end for

16 end if

17 whereClause < whereClause +"}" ;

18 orderByClause < " ORDER BY" ;

19 for each d in D do orderByClause « orderByClause +"?"+d ; end for
20 for each p in P do

21 if ((isIninferredBinding(p, F) V isInBindingWithoutAggregation(p, Fz)) A
isOnlyOnChangesWithCardinality + Or * (p, D, Ff*") A evaluatesintoScalar(p)) do
orderByClause < orderByClause+"?"+p ; end if end for

22 q « selectClause + fromClause + whereClause + orderByClause ;

23 return q ;

getPattern(c, filterConjunction)

24 pattern < "" ;

25 mandatoryChanges < getMandatoryChanges(D, FE*") ;

26 optionalChanges < getOptionalChanges(D,Ff*") ;

27 for each d in mandatoryChanges do

28 pattern < pattern + getTriplePattern(d, filterConjunction) ; end for

29 for each f; € filterConjunction do

30 if (isUnary(f;) AisOnChanges(f;, mandatoryChanges)) do

31 pattern « pattern + getFilterPattern(fC,getChanges(fC,mandatoryChanges)) ;
32 else if (isBinary(f;) AisOnChanges(f;, mandatoryChanges)) do

33 pattern « pattern + getFilterPattern(fC,getChanges(fC,mandatoryChanges)) ;
34 end if end for

35 for each d in optionalChanges do // generate optional pattern

36 if 3f; € filterConjunction s.t.isOnChanges(f,,d, mandatoryChanges) do pattern «

pattern + getOptionalPattern(d, filterConjunction, mandatoryChanges, optionalChanges)
; end if end for

37 return pattern ;

getOptionalPattern(d, filterConjunction, parentChanges,optionalChanges)
38 optionalPattern « " OPTIONAL{" + getTriplePattern(d, filterConjunction) ;
39 for each f; € filterConjunction do

40 if (isUnary(f;) AisOnChanges(f;,{d})) do

41 optionalPattern « optionalPattern + getFilterPattern(f;,{d}) :

51

42 else if (isBinary(f;) AisOnChanges(f,,d,parentChanges)) do

43 optionalPattern < optionalPattern + getFilterPattern(fC,getChanges(fC, {d}u
parentChanges)) ;

44 end if end for

45 for each d' in optionalChanges do // generate nested optional pattern
46 if 3f; € filterConjunction s.t.isOnChanges(f,,d',{d}) do optionalPattern «
optionalPattern + getOptionalPatthern(d’, filterConjunction, {d}, optionalChanges) ; end
if end for

47 optionalPattern < optionalPattern +"}" ;

48 return optionalPattern ;

getTriplePattern(d, filters) // where d = (namegy, P,;)

49 triplePattern « "?"+d +"rdf:type" +"" + predicate +":" + name, +";" ; //
change type

50 nonEmptyParameters « getNonEmptyParameters(P;) ;

51 emptyParameters « getEmptyParameters(P;) ;

52 for each p; € nonEmptyParameters do // change parameters with non-
empty values

53 triplePattern « triplePattern+"ch:" + name; +" p"+i+"?"+p; ;

54 if (nonEmptyParameters.size() > i) do

55 triplePattern « triplePattern+";" ;

56 else

57 triplePattern « triplePattern+"." ;

58 end if end for

59 for each p; € emptyParameters do // optional change parameters, with
empty values

60 triplePattern « triplePattern+ " OPTIONAL{?"+d + " ch:"+ name; +" p"+i +
P

61 for each f; € filters s.t.isOnChangeParameter(f.,d,p;) do // unary filters
62 triplePattern « triplePattern + getFilterPattern(f;,{d}) ; end for

63 triplePattern « triplePattern+"}" ; end for

64 return triplePattern ;

getFilterPattern(f., changes) // f. is mapped to appropriate statement

65 testing value constraint on scalar parameter — SPARQL FILTER statement

66 relational constraint on scalar parameters — SPARQL FILTER statement

67 pre/post — condition on scalar parameters — FILTER EXISTS/NOT EXISTS on Vyer [V
68 function constraint = SPARQL built — in functions are considered

69 constraints on set parameters or quantification - SPARQL sub — queries and MINUS

As an example, consider the complex change Add_Academic_Professional defined in Section
3.4.3, example 5. Table 2 presents the SPARQL query for the detection of this complex
change. In the SELECT clause notice the query variable corresponding to change's identifier
(?c_1) and the query variables corresponding to the complex change's descriptive parameters
(?id, ?E). In the FROM clause, the named graph S; holds the simple change instances and the
named graph I holds the complex change instances. In the WHERE clause, notice the triple
pattern for the Add_Professional change defined in change list. For the post-condition an
appropriate SPARQL filter expression is considered evaluating over the named graph holding
Vag. Since it involves quantification, it is implemented via MINUS and a nested query.

Finally, notice the ORDER BY clause which involves the contained change identifier.

52

Table 2 SPARQL query for the detection of complex change Add_Academic_Professional

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX ch: <http://dblab.ece.ntua.gr/change#>
SELECT ?2c_1 2id ?E
FROM <S;> FROM <I>
WHERE{?c_1 rdf:type dbo:Add Professional; ch:Add Professional pl ?id;
ch:Add Professional p2 ?E; ch:Add Professional p3 ?t;
ch:Add Professional p4 ?sY; ch:Add Professional p5 ?eY.
MINUS{ SELECT 2?c_1
WHERE{?c_1 rdf:type dbo:Add Professional;
ch:Add Professional p2 ?e.
FILTER NOT EXISTS {
GRAPH ?g { ?e rdf:type dbo:University. }
FILTER (?g=<Vaf>) } } }
} ORDER BY ?c 1

3.5.4. Change Instance Generation

In order to generate change instances, the SPARQL query result set is read line-by-line and
the lines that share the same values in the grouping variables are used to form a new complex
change instance. The new complex change instance contains the change instances bound to
the change variables and it is described by the values bound to the variables of the descriptive

parameters, that correspond to the result set lines to be grouped.

Grouping variables indicate the groups that have to be defined over the result set. Based on
the semantics presented in Section 3.4.2.2, they actually form the variable list for group
construct and comprise of: (1) the change variables of changes with cardinality 1 or "?" and
(2) the descriptive variables that are used in assignments without aggregation and correspond
(only) to changes with cardinality "+" or "*". The result set lines that share common values in

the grouping variables are used to generate a new complex change instance.

For example, consider the complex change Add_Academic_Professional presented in Section
3.4.3, example 5 and the respective SPARQL query in Table 2. Add Professional has
cardinality one and there are not any complex change descriptive parameters coming only
from changes with cardinality "+" or "*" used in bindings without aggregation. Thus, ?c_1 is
the grouping variable. As another example, consider the complex change Add_Professionals_
withCommon_Employers presented in Section 3.4.3, example 6. Add_Professional has

cardinality "+" and the complex change descriptive parameter E is repeated (only) on it

53

implying an inferred binding without aggregation. Given an appropriately generated SPARQL
query, variable ?E (corresponding to parameter E) is the grouping variable.

Algorithm 3 presents the process of generating complex change instances. Grouping variables
may involve scalar and set parameters. Thus, while iterating the result set the grouping
variables of type set have to be calculated. For this reason, ordering variables are used: the
variables over which the result set has been ordered (as in Section 4.5.3 ORDER BY clause).

Algorithm 3: Complex Change Instance Generation for grouping
variables corresponding to scalar and set parameters

Input: A result set rs of a SPARQL query of complex change ¢, the set
of grouping variables P of ¢

Output: A set of complex changes instances [, of ¢

I.<{} ;

currOrdervals < {} ;// ordering variable values

prevOrdervals < {} ;// ordering variable values of previous iteration
currPvals < {} ; // grouping variable values

prevPvals < {} ; // grouping variable values of previous iteration
gi < createNewGroup() ; // group of change instances and descriptive
variables to be used in complex change instance generation

7 while rs.hasNext() do

8 r«rs.next() ;

9 prevOrdervals « currOrdervals ;

10 currOrdervals < getOrdervals(r,P) ; // calculate current order values
11 if (currOrdervals = prevOrdervals) do

12 currPvals < updatePvals(currPvals,r) ; // r forms the current grouping
values

13 g; « updateGroup(c;,r) ; // r forms the current g;

14 else

15 I, < updatel (g;, currPvals,I.) ; // g; 's computation is completed, the
relevant ¢; has to be updated / formed in I, based on g;

16 currPvals « createNewPvals(r,P) ; // r forms the new current currPvals
17 g; < createNewGroup(r) ; // r forms the new current g;

18 end if

19 if (!rs.hasNext()) do

20 I, «< updatel (g;,currPvals,I,) ; // update I, for the last iteration

21 end if

22 end while

23 return I, ;

updatel .(g;, currPvals,I,)

24 if (existinstanceWith_currPvals(l,, currPvals)) do // there is a complex
change instance with the same grouping values

25 ¢; « getinstanceWith_currPvals(l,, currPvals) ;

26 .« 1.\ {¢} : // exclude ¢

27 ¢; < updatelnstance(c;, g;) ; // update the instance with change
instances and descriptive variables in g; of the current iteration

28 I, <1, U{¢} ; // add updated c;

29 else

30 ¢; « createNewlInstance(g;) ; // ¢; forms a new complex change instance
31 I, «<1.U{¢} ; // add the newly created ¢

32 end if

33 return I, ;

o U W N

54

The result set is iterated and each time a new line is read, the values of the ordering variables
are calculated: the current values (currOrdervals) and previous values (prevOrdervals,
the values of previous iteration - line) (lines 7-10). If they are equal, the current grouping
variable values have to be updated (currPvals), so that variables corresponding to set
parameters can be computed (line 12). Accordingly, a variable holding the currently grouped
data is updated (g;) (line 13): it holds change instances and descriptive values that are
considered in a complex change instance (c;). Otherwise, the current grouping variables
(currPvals) computation has finished. This is ensured by having the query result set in order.
The appropriate complex change instance (c;) in the result (1) has to be updated (line 15) via
function updatel.. The currently read result set line (r) is to be used to form new current
grouping variable values (currPvals) and new current group data (g;) (lines 16-17). If the
result set has been read, the lastly computed grouping variable values and group data should
be used to update the appropriate complex change instance of the result (I.) (lines 19-21).

Finally, the set of all computed complex change instances is returned (line 23).

Regarding the function updatel.: it takes as input a set of grouping variable values
(currPvals) and the respective grouped data (g;), and returns the updated result (1.). If there
is already a complex change instance (c;) with the same grouping variable values
(currPvals) in the result (I.), then the grouped data (g;) have to be included within it (lines
24-28). Otherwise, a new complex change instance is created and added in the result (I.)

(lines 29-32). Finally, the set of all computed complex change instances is returned (line 33).

3.5.5. Complex Change Detection Correctness

Below we prove the correctness of the detection algorithm in Section 3.5 with respect to
complex change language semantics. First, a subset of the proposed language is proven to
have equivalent semantics to a subset of SPARQL. SPARQL semantics are defined in Perez,
Arenas and Gutierrez (2009) [46] and Kaminski, Kostylev and Cuenca Grau (2017) [32].
Next, augmenting with the rest features, semantics are implemented by applying Algorithm 3

to the result mappings of a SPARQL graph pattern.

Step 1. Consider the subset of the proposed complex change language which involves only
changes with cardinalities one and "?", scalar parameters and filter expressions on scalar
parameters. Complex change semantics are defined given a set of change instances I/ and
SPARQL semantics given an RDF graph D. Let D contain the RDF representation of I based

on the vocabulary presented in Section 3.5.2.

55

(1) The abstract syntax of the proposed language is by definition equivalent to the one
proposed for SPARQL in Perez, Arenas and Gutierrez (2009) [46], assuming that a graph
pattern involves triples for changes, except that: (a) UNION operator is not considered, (b) the
right operand of OPT shall be a graph pattern corresponding to a primitive change pattern, or
a filter primitive change pattern, or an optional change pattern involving only primitive
change patterns, filter primitive change patterns or optional change patterns with these types
of operands, (c) the right operand of OPT may be a triple that involves an optional variable
xOPT (recall, if xOPT € dom(u.) then u.(xOPT) =@ or u.(xOPT) # @). All complex
change language's built-in filter expressions are SPARQL built-in filter expressions as well.
For a complete SPARQL feature list see Harris S. and Seaborne A. (2013) [31].

(2) The semantics of the proposed language are by definition equal to SPARQL semantics as
in Perez, Arenas and Gutierrez (2009) [46] for the syntax in (1), since they are made up of
semantically equivalent operators applied on equivalent data in the same sequence.

Algorithm 3 (grouping variables are the change variables) materializes the change instances,
performing a trivial grouping, where each SPARQL result mapping forms a trivial group and
a new complex change instance. Overall, [change pattern]; =

Algorithm3([graph pattern]p).

Step 2. Augment step 1 with set parameters. Consider a change pattern with a set variable X
and a set of mappings u., £2.. Since SPARQL does not support this feature, the graph pattern
corresponding to the change pattern involves a scalar variable x corresponding to X.
Evaluating the graph pattern results in a set of mappings u, 2. It holds that dom(u,) — {X} =
dom(u) — {x}. Based on step 1, for each u. € 2, there is a u € 2 such that u.(y) = u(y)
where y € dom(u,.) — {X}. Based on pu. definition for a set parameter u.(X) =
Uj=1,..n #i(x), considering all u; where u.(y) = p;(y) Vy € dom(u.) — {X} or simply Vy €
dom(u.) — {X} and y is a change variable. Optional set variables are handled similarly.
Therefore, the complex change semantics equal SPARQL semantics for step 1 plus Algorithm
3 for implementing set variable semantics: [change pattern]; =

Algorithm3([graph pattern]p).

Step 3. Augment step 2 with filter expressions on set parameters. These expressions are not
SPARQL built-in expressions. Thus, each such expression R is mapped to an equivalent R’ in
SPARQL, based on built-in features (FILTER EXIST/NOT EXIST, MINUS and subqueries).
The exact mapping for each one filter expression into SPARQL is not discussed in further
detail. Also, R may combine primitive filter expressions with logical connectives. In this case,

there is always an equivalent DNF expression DNF(R) =R; VR,V ..VR,. Since,

56

[PFILTERR]; ={u € [Pl;lu e R} ={u e [P];lue Ry VR,V ..VR,} and
[P FILTERR,]; = {u € [Pl;lu = Ry}, ... [PFILTERR,]; = {u € [Pl;lu e R,}, it is
implied that [P FILTER R]; = [P FILTER R,]; U ..U [P FILTER R,];. Thus, P FILTER R
can be mapped in SPARQL to the union of all graph patterns where each comprises of P and
Ri.

Overall, the complex change semantics are equal to the semantics of an equivalent SPARQL
graph pattern plus Algorithm 3 for implementing the semantics of set variables (as in step 2).

Again, [change pattern]; = Algorithm3([equivalent graph pattern]p).

Step 4. Augment step 3 with cardinalities "+" and "*" and with union aggregation function.
The change pattern is in extended form, including groups and aggregation. In Definition 12, a
group I' = Group(V,?,P) is defined over a change pattern P and a list of variables V7
(grouping variables). In Definition 13, an aggregate is a construct of the form A =
Aggregate(v,,union,I") where v, is a variable over which union aggregate function is
performed for each group I'. Based on previous steps, P is mapped to a SPARQL graph
pattern P’, such that [P]; = Algorithm3([P']p) (3). Groups and aggregation computation is
based on variables in V7, which is by definition a superset of the variables used by Algorithm
3in (3), since in previous steps the grouping variables are the change variables. Thus, [A]; =
Algorithm3([P'],) and grouping variables are those in V9. Union aggregation function is
implemented by Algorithm 3, also implementing set variable semantics for computing set

grouping variables.

3.6. Evaluation

The proposed approach has been evaluated qualitatively and experimentally. In qualitative
evaluation, our approach is compared to the related work discussed in Chapter 2, Section 2.1.
In experimental evaluation, complex change language expressiveness and detection
performance are examined. It is evaluated whether the proposed structures are adequate in
expressing useful changes and how complex changes facilitate user in analyzing evolution.
Also, the response time of the detection process is examined in terms of increasing dataset

size.

57

3.6.1. Qualitative Evaluation

Our approach focuses on human readable changes. Similar to Klein (2004) [33], Stojanovic
(2004) [57], Papavasileiou et al. (2013) [45] and Roussakis et al. (2015) [53] we assume
primitive changes, as simple changes, and groupings of them, as complex changes. Instead of
providing a predefined list of complex changes, we support user-defined complex changes in
order to capture richer semantics and multiple interpretations of evolution, as Plessers, De
Troyer and Casteleyn (2007) [47] and Roussakis et al. (2015) [53]. In our approach, a
dedicated complex change definition language is formally defined, so that complex changes
are defined via patterns, and an appropriate detection algorithm is proposed. Instead, Plessers,
De Troyer and Casteleyn (2007) [47] relies on temporal queries and Roussakis et al. (2015)
[53] on SPARQL in order to define and detect changes. On top of this, we support relations
and dependencies among complex changes, so that complex changes may share common

parts.

The closest relevant works to the proposed approach are Papavasileiou et al. (2013) [45] and
Roussakis et al. (2015) [53]. The proposed notion of complex changes resembles to the
"composite changes" presented in Papavasileiou et al. (2013) [45] in their ultimate goal in
grouping changes into logical units. But, complex changes are user defined and may be
related to each other, providing richer semantics and flexibility. In Roussakis et al. (2015)
[53] the notion of complex changes as user defined is also stated. There, the proposed changes
may not share common parts but instead are given a prioritization. However, prioritization
possibly leads to the loss of part of the evolution interpretation, when two changes are
identified simultaneously over a data element. On the contrary, by allowing interdependencies
among complex changes all possible interpretations are maintained. Towards this direction, a
complex change may be defined on top of another. In this case, the process of defining new
complex changes is facilitated by reusing already defined patterns. Also, in Roussakis et al.
(2015) [53] the complex changes are defined via SPARQL queries. However, for supporting
the reusability of changes, each change pattern should be given a specific name and
descriptive properties. In addition, it may be needed to define explicitly how a complex
change groups possible multiple appearances (instances) of changes in its definition, either by
following the underlying data structure or the current understanding on modeling evolution.
Although SPARQL is powerful in defining patterns over RDF data, it does not provide such
capabilities. Thus, a dedicated language for defining complex changes and a relevant

detection algorithm are needed.

58

Table 3 summarizes the qualitative comparison of our approach with the most significant
works on high-level changes. It is examined whether predefined or user-defined changes are
supported, if a detection algorithm is presented and the data model each approach focuses on.

For works that support user-defined changes, several features are further examined.

Table 3 Qualitative comparison of this approach with related work

User- User-Defined Changes Features
Predefined . . Relations . Detection
Changes Defined Dedicated among Cardlnqllty/ Algorithm Data Model
Changes Language Changes Grouping
Klein (2004) [33] X - - X OWL/OKBC
Stojanovic (2004) «) i (cha-lnge KAON
[57] application)
X
Fit;;sers Gt &L () - X (temporal logic - - X OWL DL
based)
Papavasileiou et al
(2013) [45] X - - X RDF(S)
Rousakis et al. '
X X SPARQL - - X RDF(S
(i) 1= (querie(sg) ©
This approach X X X X X X RDF(S)

3.6.2. Experimental Evaluation

3.6.2.1. Implementation, datasets and settings

The complex change definition language and the detection process are implemented in a Java
application. In order to implement the language parser JavaCC?, a parser generator for Java, is
employed. In order to store the RDF(S) representations of changes and change instances and
run SPARQL queries for complex change detection Openlink Virtuoso® is employed. The

implementation is done in Java version 8 and Openlink Virtuoso version 7.

In order to test the proposed approach, dataset versions and the respective simple changes,
capturing the modifications between them, are required. The evaluation is performed over
both artificial and real data. Artificial data are generated by the tool EvoGen*, while DBpedia®
dataset versions are considered for real data. As for the system settings, a 6-core CPU and 16
GB RAM machine running Ubuntu (version 16.04) has been used in order to host both

Virtuoso server and the application.

2 https://javacc.org/

3 https://virtuoso.openlinksw.com/

4 https://github.com/mmeimaris/EvoGen
S https://wiki.dbpedia.org/

59

EvoGen is a tool for generating synthetic evolving RDF datasets, abstracting several
characteristics of the process (Meimaris (2016) [39]; Meimaris and Papastefanatos (2016)
[40]). It extends the Lehigh University Benchmark (LUBM) generator (Guo et al. (2005)
[30]), a Java based synthetic data generator, which features an ontology for the university
domain called Univ-Bench. An OWL® version of the Univ-Bench ontology’ is available in
OWL Lite®,

In this evaluation, only data changes are employed. Also, the current version of EvoGen
generates changes that include only additions. It creates a log with the changes between
consecutive versions, following the simple changes paradigm that the proposed complex

changes rely on. As a result, complex changes for this experiment involve only additions.

Table 4 presents the sizes of the RDF datasets generated with EvoGen. The sizes of the
simple changes log between two consecutive versions are presented, in terms of number of
triples and number of simple change instances. Also, the sizes of the version before and

version after, in terms of number of triples, are presented.

Regarding DBpedia data, three previous DBpedia releases have been considered: versions
2016-10, 2016-04 and 2015-10. Specifically, parts of the English DBpedia datasets are
considered, namely the instance types and mapping based objects. First, the detection of
simple changes took place among dataset versions, and then a humber of complex changes
were defined on top involving both additions and deletions. The complex changes defined

focus on data changes. Table 5 presents the sizes of the RDF datasets of DBpedia data.

Table 4 EvoGen generated datasets

Dataset Simple Chgnge Log Simple Chapge Log Version _Before Version_ After
(# of triples) (# of change instances) (# of triples) (# of triples)
DO 212.178 53.072 99.761 150.836
D1 473.955 118.550 220.840 334.829
D2 1.489.892 372.667 690.550 1.048.536
D3 8.246.486 2.062.693 3.778.293 5.759.845
D4 27.882.797 6.974.311 12.753.945 19.454.837
D5 41.465.290 10.371.705 19.013.429 28.978.776
D6 83.041.295 20.771.095 37.990.459 57.948.069

& https://www.w3.0rg/TR/2012/REC-owl2-overview-20121211/
7 http://swat.cse.lehigh.edu/onto/univ-bench.owl
8 https://www.w3.0rg/TR/owl-features/

60

Table 5 DBpedia datasets

Simple Change | Simple Change Log | Version Version Version Version
Dataset Log (# of change Before Before After After
(# of triples) instances) Name (# of triples) Name (# of triples)
AO 9.198.606 2.449.083 2015-10 22.841.862 2016-04 23.401.677
Al 29.911.620 7.755.452 2016-04 23.401.677 2016-10 23.896.605

3.6.2.2. Language expressiveness

In order to evaluate the expressiveness of the proposed language several complex changes
have been defined for the data generated with EvoGen and for the DBpedia data. The Univ-
Bench ontology and the DBpedia schema have been studied in order to identify classes,
descriptive properties and how data are connected. In order to define complex changes that
are as realistic as possible the process below was followed, identifying six cases of possible

complex changes, based on common sense and domain characteristics.

1. Class instance additions/deletions: For each class instance addition/deletion a descriptive
change should be reported based on the dataset domain. Therefore, a complex change with a
descriptive name of each class is defined, being actually a rename of the respective simple

change. For example, Add_Person instead of Add_Type To_Individual.

2. Property instance additions/deletions: Similarly, for each property instance addition/
deletion, a complex change with a descriptive name of the property is defined. This is a

rename of the respective simple change, Add_Property Instance/Delete_Property_Instance.

Notice that complex changes of cases 1 and 2 may form a first level of complex changes over
the simple changes of a dataset, where each simple change is mapped to a complex change

with a more descriptive name based on the specific domain.

3. Groupings around added/deleted class instance URIs: Typically, a class instance addition/
deletion is accompanied with its property instances additions/deletions. Therefore, a complex
change may be defined for grouping these changes altogether. Properties' cardinality should
be considered accordingly: multiple instances of properties should be grouped altogether,
while optional properties are allowed. Thus, added/deleted properties around a class instance
URI are grouped into a complex change together with the added/deleted class instance. These
complex changes are defined on top of the complex changes described in cases 1 and 2. For
example, Add_Person_with_Details may group Add_Person along with all its added

descriptive properties (name, birth date, death date, etc).

61

4. Batch additions/deletions: Complex changes of case 3 may appear in batches. In such case,
they may share common values in some of their properties. Therefore, they can be further
grouped based on these values. For example, Add_Professionals_withCommon_Employers
groups all Add_Professional for those having the same employers.

5. Specializations: Data and domain specific changes may be important in certain scenarios.
Such changes may be captured by further combining the complex changes described in
previous cases via relational filters, testing value filters, pre-/post-conditions, and optional
cardinalities. For example, Add_Academic_Professional specializes Add_Professional where

the added professional works only in academia, which is specified by a post-condition.

6. Updates: A property value update can be modeled as an addition plus a deletion of the
specific property over a specific class instance URI. These complex changes are defined on

top of the complex changes described in case 2.

Regarding the data generated with EvoGen, 65 complex changes have been defined following
the above process. The changes involve only additions, due to the characteristics of the
current version of EvoGen as already discussed. Table 6 summarizes the characteristics of the
defined complex changes in terms of the features of the proposed language. The complex
changes have been grouped into twelve categories, where each one has specific: change list
size, cardinalities on changes in the change list, grouping variables' type, as well as filter types
employed. Nested complex changes are defined, and the level of each change in the complex
change hierarchy is stated: complex changes in level | are defined on top of simple changes
only, in level 1l on top of complex changes in level I, and in level 11l on top of changes in
level Il. Table 6 shows that all proposed features have been used. The number of complex

change definitions per category is presented, as well as per language characteristic.

Category C1 involves class instance and property instance addition renames (cases 1 and 2).
Testing value constraints are used for identifying class and property types. Categories C2-C7
involve groupings around added class instance URIs (case 3). Relational filters are used and
appropriate cardinalities are defined based on the data model. Categories C8-C9 involve
groupings based on common property values (case 4), on scalar/set parameters respectively.
Categories C10-C12 involve specializations (case 5). Pre-/post-conditions and relational
filters are combined with quantification, since they involve set parameters. In C12 optional

change paths are defined. Complex changes form three levels over simple changes.

62

Table 6 Categories and characteristics of the defined complex changes on EvoGen data

Change List Size Cardinality (C\;/;??apbllne% Filter
® (# of changes) (type) (type) S
S type) =
< =
g |28 5 2
— X =2 o=
> [2E = S 2 5
< £ & - S Joost- | S| 8 &
S | 88 <=3 |a6]|=7]1]2]+ scalar | set | TEStng | S | presfpost- | Sf & =
it value | = | condition | €| =
© L s @
3+ 3 3
C1 30 X X X |
C2 3 X X X 11
C3 1 X X X 1
C4 4 X X X I
C5 5 X X X X X 11
C6 1 X X | x X 1
C7 2 X X | X X 11
C8 7 X X X 11
C9 1 X X X 11
C10 4 X X X X X X 11
Cl1 3 X X X X 11
C12 4 X X | X X X 1
Aol | oo | 53 | o | 10 [57]7]17 20 | 1| 30 |20 7 71 65
changes

Table 7 presents the number of complex change instances detected in each EvoGen generated
dataset per complex change category. Change instances of all categories appear in all datasets,
proving the effectiveness of the proposed methodology. Also, given an increasing dataset size
the number of detected complex change instances increases too. Notice that the number of
change instances in C1 for each dataset is very close to the number of simple change instances
presented in Table 4. This is because C1 involves changes defined as in case 1 and 2, forming
a first level of complex changes serving as renames of simple changes. The total number of
change instances in C2-C7 for each dataset is significantly smaller than the number of change
instances in C1. This is because C2-C7 involve changes defined on top of C1 grouping
property changes around class instance URIs (as in case 3). These changes form a second
level of complex changes which compresses the changes of first level. The number of change
instances in C8-C11 for each dataset is even smaller, since those changes further group or
specialize changes in C2-C7. C12 offers an alternative way of grouping some of the changes
in C1. Table 10 presents the number of complex change instances per level in the change
hierarchy, quantifying the size of each level. It is worth noting that the number of complex
change instances in level I covers the 99.9% of the simple change instances, while in level |1
covers the 93% of the complex change instances in level I, and in level I11 up to 45% of the

complex change instances in level 11. The smaller number of complex change instances of

63

Table 7 Number of complex change instances per category detected in EvoGen generated datasets

c1 c2 c3 c4 c5 C6 c7 c8 C9 c10 cl1 c12
DO 52.999 2.054 960 327 1.509 3.994 2.267 2.222 1.087 313 248 10.158
DL | 118387 4611 2.160 745 3.499 8.743 5.141 4.020 2513 726 571 22.260
D2 | 372150 14.733 6.880 2.364 11.037 27.004 16.316 9.853 7.801 2.318 1.803 69.294
D3 | 2.059.836 81.767 38.080 13.091 61.296 148.765 90.515 47.224 43.050 12912 | 9.950 382.150
D4 | 6.964.680 | 275.488 | 128.400 | 43.912 | 205.993 506.734 | 304.876 | 153.159 | 143.868 | 43.371 | 33.432 | 1.299.058
D5 | 10.357.352 | 410.568 | 191.360 | 65.309 | 305.474 755204 | 451.961 | 226.342 | 213.460 | 64.485 | 49.725 | 1.934.000
D6 | 20742372 | 821.895 | 382960 | 130.665 | 611.034 | 1.513.220 | 905.170 | 450.645 | 426.893 | 128.926 | 78.744 | 3.876.042
level Il contained in a complex change instance of level 11l is due to the fact that level Il

changes also involves specializations of level Il changes. Overall, the resulting complex

change instances reduce the effort of analyzing the data evolution as the user can easily zoom-

in/-out on evolution detail by navigating on different levels of the complex change hierarchy.

Regarding the DBpedia data, 177 complex changes have been defined following the

aforementioned process. Complex changes of add type, symmetric changes of delete type and

update changes were defined. Table 8 summarizes the characteristics of the defined complex

changes based on the proposed language features. The complex changes have been grouped

into eleven categories, based on similar characteristics to the ones used for EvoGen data.

Table 8 Categories and characteristics of the defined complex changes on DBpedia data

Change List - Grouping .
o Size CHES;SS)“W (variables (';;/I;:r) %
= (# of changes) type) 5
(%) < wn
L ey 52
5 S = §|l ¢
g |Es | E| 5| 55
S S8l <=3 |ae6| 1 [2] + | * |scatar| set | 9| S| | €=
o value | = E| =
o© Ll | ©
* 2| 2
Ci 94 X X X |
Cii 4 X X X | X 11
Ciii 6 X X X X X 1
Civ 12 X X X 11
Cv 2 X X X| X X X 1
Cvi 8 X X X | x X X 1
Cvii 4 X X X X X 1
Cviii 29 X X X 1
Cix 4 X X X | x X X 1
Cx 12 X X X X 11
Cxi 2 X X X X X | X 11
total
177 163 14 165 | 2] 34| 16 26 12 106 59 | 18 | 177
changes

Category Ci involves class instance and property instance addition and deletion renames

(cases 1 and 2). Categories Ciii, Cv, Cvi and Cix involve groupings around added or deleted

64

class instance URIs (case 3). Category Civ involves groupings based on common property
values (case 4). Categories Cii, Cvii, Cx and Cxi involve specializations (case 5). In Cvii
optional change paths are defined. Category Cviii involves update changes (case 6). Complex
changes form three levels over simple changes.

Table 9 presents the number of complex change instances detected in each DBpedia dataset
per complex change category. Again, change instances of all categories appear in datasets and
as the dataset size increases, the number of detected complex change instances increases too.
Recall that changes in Ci form a first level of complex changes serving as renames of simple
changes. The number of change instances in Ci for each dataset reaches the 60% of the
number of simple change instances presented in Table 5. Although the DBpedia schema is
very large and diverse, the changes defined in Ci span across the most frequently changed
parts of the datasets. The total number of change instances in Ciii, Cv, Cvi and Cix is smaller
related to Ci, because they are defined on top of Ci forming a second level of changes and
grouping property changes around class instance URIs (as in case 3), for the most frequently
added/deleted entities. Also, several update operations (Cviii) appear in the examined
datasets. The total number of the change instances in Civ, Cii, Cvii, Cx and Cxi which form a
third level in the change hierarchy is even smaller, since they further group changes of the
second level or specialize their meaning narrowing down the reported changes. Table 10
presents the number of complex change instances per change hierarchy level. It is worth
noting that the number of complex change instances in level | covers the 60% of the simple
change instances, while in level Il covers up to the 68% of the complex change instances in
level 1, and in level 11l covers up to the 10% of the complex change instances in level 1l. The
relatively low number of complex change instances of level Il contained in a complex change
instance of level 11l is due to the fact that level 11l changes are mostly specializations of level
Il changes. Similar to EvoGen results, the complex change hierarchy facilitates the user in

analyzing the data evolution.

Table 9 Number of complex change instances per category detected in DBpedia datasets

Ci Cii Ciii Civ | Cv Cvi Cvii Cuviii Cix Cx Cxi
AO | 1.464.340 | 38 | 50.181 | 571 | 179 | 9.757 | 3.178 | 62.050 57.227 | 2.364 | 5.076
Al | 4.708.482 | 370 | 90.708 | 915 | 327 | 19.584 | 4.956 | 1.313.776 | 104.687 | 4.431 | 10.218

Table 10 Number of complex change instances per level in hierarchy per EvoGen and DBpedia dataset

EvoGen DBpedia
DO D1 D2 D3 D4 D5 D6 AO Al
Level | | 52.999 | 118.387 | 372.150 | 2.059.836 | 6.964.680 | 10.357.352 | 20.742.372 | 1.464.340 | 4.708.482
Level Il | 19.760 | 43.660 | 136.591 | 754.368 | 2.558.468 | 3.808.402 | 7.629.952 | 182.572 | 1.534.038
Level Il | 5379 | 11.329 | 32.812 | 174.432 | 579.823 859.486 1.696.242 8.049 15.934

65

Annex B demonstrates some of the complex change definitions for the EvoGen generated
data and the DBpedia data, as defined in terms of the experimental evaluation.

3.6.2.3. Detection performance

In order to evaluate the detection process performance, the detection time has been measured
for the datasets generated with EvoGen with an input of 65 complex changes and for the
DBpedia datasets with an input of 177 complex changes. As already stated, in order to store
and query the datasets for complex change detection Openlink Virtuoso is used. Particularly,
for each dataset, each simple change log, version before and version after are stored in a
separate named graph. A dedicated named graph is employed for the complex change
instances, which is gradually enriched with the complex change instances that are detected
while the detection process progresses. The detection of each complex change relies on the

already generated simple and complex change instances.

The detection time can split in four parts based on the detection algorithm presented: (1)
parse time for computing the order of detection of the complex changes and parsing each
definition, (2) query execution time for running each generated SPARQL query against the
simple and complex change instances graphs, (3) instance generation time for parsing the
query result set for computing instances and serialize them in a file, (4) load instance time for
loading the generated instances stored in file into the complex change instances graph. The
parse time is minor and thus omitted, since this process is performed in memory. Overall, the
total detection time is presented, as well as the rest three parts as percentages of it. The

number of added triples and respective complex change instances are presented as well.

It is worth noting that due to nested complex change definitions, all complex changes are not
detected over the same initial dataset, since as the detection process progresses the complex
change named graph increases in size. The detection process has been also evaluated in a
slightly different setting: Each specific complex change has a dedicated named graph, so that
only its respective instances are stored in it. In such a case each query generated for the
detection process can rely only on the particular named graphs holding the minimum set of
change instances required for the detection. In this setting, the results in detection time were
similar to the ones presented and in some cases worse. This is mainly due to the larger load
times observed. The query times were in some cases improved and the instance generation

times were the same (as expected) since the algorithm does not change at this point.

66

Table 11 presents the total detection time for each EvoGen generated dataset DO-D6. This is
the time needed to run the detection process for all the 65 complex changes. It also presents
the total number of detected complex change instances and the total number of respective
triples. It can be observed that as the dataset size increases the detection time increases too. In
smaller datasets (D0-D2) the query execution time is dominant in the detection time, while in
larger datasets (D3-D6) all three parts of the detection time contribute almost evenly.

Table 12 presents the total detection time per complex change category for each EvoGen
generated dataset DO-D6, based on the categories presented in Section 3.6.2.2. It also presents
the total number of added triples and detected complex change instances in each category.
The differences in the characteristics among categories possibly affect only the query
execution time. For example, in categories C4, C7 and C12 (involving complex changes with
a bigger number of changes in their change list) and for small datasets tend to appear the
higher query execution times. The instance generation time and load time are expected to be
affected by the query result set size, i.e. the number of complex change instances appeared.
Therefore, as the dataset size and the number of detected complex change instances increase,
the instance generation time and load time increase accordingly. Also, notice that category C1
plays a rather dominant role in the total detection time, since despite of the simplicity of the

change definitions, a large number of instances (up to 20,7M) are detected.

Table 13 presents the total detection time for each DBpedia dataset AO-Al. This is the time
needed to run the detection process for all the 177 complex changes. It also presents the total
number of detected complex change instances and the total number of respective triples.
Again, the detection time is bigger for bigger datasets. Also, the load time is rather dominant
in the detection time. This is mainly due to the significantly large number of change instances
in category Ci, as shown in Table 14 below. Taking into consideration the rest categories
only, query execution time is also significant, while instance generation time is rather low in

categories with rather sparse change instances (for example Cii, Cv).

Table 14 presents the total detection time per complex change category for each DBpedia
dataset AO-A1 based on the categories presented in Section 3.6.2.2. It also presents the total
number of added triples and detected complex change instances in each category. The higher
detection time appears in category Ci, since it involves a significantly larger number of
instances compared to all other changes. Overall, the instance generation time and load time

increases as the number of detected complex change instances increases too.

67

Table 11 Total detection time (seconds), number of added triples and number of detected complex

changes instances for each EvoGen generated dataset

D Query Exec Instance Gen Load Detection Added Change
ataset : . : ; .
Time Time Time Time Triples Instances

DO 92,2% 2,4% 5,4% 192,3 472.293 78.138
D1 85,1% 4,7% 10,2% 2159 1.050.692 173.376
D2 75,4% 8,5% 16,0% 351,1 3.292.481 541.553
D3 45,8% 21,1% 33,1% 737,3 18.209.825 2.988.636
D4 36,9% 27,8% 35,3% 2.144,8 61.616.525 10.102.971
D5 30,5% 30,4% 39,1% 2.717,3 91.635.866 15.025.240
D6 29,9% 30,1% 39,9% 5.583,1 183.408.890 | 30.068.566

Table 12 Total detection time (seconds), number of added triples and number of detected complex

changes instances per complex change category for each EvoGen generated dataset

ery Instance . Detection . Change ery Instance . Detection 5 Change
ExS:Ti;ua Gen Time Lt g e [ﬂstanias ExS:Ti;:uE Gen Time et TS i [nstanies
Category C1 Category C7
DO 55,0% 15.5% 295% 16.7 202394| 52999|D0 £6.2% 28% 10,9% 45 35115 2267
D1 44.9% 17.3% 37.3% 27.0 452148 118387|D1 68.4% 6,0% 25,6% 69 79439 5141
D2 322% 223% 45.5% 549 1421303 372.150|D2 59.6% 124% 279% 12,9 252286/ 16316
D3 301% 255% 44.4% 2321 7867126 2.059836|D3 34.5% 221% 43.4% 372 1400235 90515
D4 21.9% 30,6% 475% 795.9 26599310 6.964.680|D4 40.8% 24.T% 345% 123.4] 4.716.410| 304.876
D5 16.1% 34.6% 493% 933.8 39555006 10357352|D5 35.0% 24.9% 40,1% 1763 6991135 451961
D6 24.0% 30.4% 45.T% 1091,9| 79215578 20742372|D6 452% 21.7% 332% 4016 14.002 744/ 905170
Category C2 Category C8
DO 24.T% 13.8% 61.5% 0.4 10270 2054|D0 25,6% 185% 55.9% 07 14.787 2222
D1 30.7% 14.8% 54,5% 1.0 23.055 4611|D1 38.1% 20,8% 41.1% 19 31514 4.020]
D2 21.0% 15.2% 63.3% 33 73.665 14.733|D2 27.3% 255% 472% 53 93.620 9853
D3 23.9% 21.4% 54.T% 11.7 408 835 $1.767|D3 22.9% 34.2% 42.9% 23.6 506709/ 47224
D4 313% 19.2% 49.5% 320 1377440 275.488|D4 23.8% 43.5% 32.7% 607 1.692 807 153159
D5 26.8% 22.0% 512% 5.7 2052840 410.568|D5 18.6% 44.8% 36,6% 100.4] 2509925 226342
D6 26.0% 24.0% 50,0% 992 4110459 821.895|D6 15.2% 525% 323% 2141 5.018 940| 450645
Category C3 Category C9
DO 85.1% 2.6% 123% 1,3| 10560 960[D0 £.8% 712% 20,1% 06 5.776] 1.087
D1 71.0% 5.0% 24.0% 18 23.760 2.160|D1 7.9% 713% 20.8% 15 13.476 2513
D2 463% 12.9% 40,8% 3.7 75.680 6.880|D2 6.6% 751% 183% 44 42146 7301
D3 44.9% 19.0% 36,1% 14.9 418 880 38.080|D3 17.7% T1.T% 14.6% 23.4 234173 43.050
D4 255% 28.7% 45.8% 37.0 1.412.400 128 400(D4 58% 83.9% 10.2% 73.0 785423 143 868
D5 209% 30.2% 48.9% 46,8 2.104.960 191.360(D5 7.0% 752% 17.8% 120.7] 1164599 213.460
D6 222% 33.9% 44.0% 9l,l| 4212560 382 .960|D6 44% 56.8% 38.8% 3201 2330050 426893
Category C4 Category C10
DO 99.9% 0,1% 0.1% 154.1 6425 327|D0 43.8% 13.7% 42.5% 03 4213 313
D1 99.7% 0.1% 02% 154 4| 14.607 745|D1 64.3% 103% 249% 12 11282 726
D2 99.3% 0.1% 0,5% 219.4 46404 2364|D2 39.2% 22.9% 37.9% 26 36918 2318
D3 95.9% 0.7% 34% 1954 257185 13.091|D3 233% 272% 49.6% 12,0 213938 12912
D4 923% 34% 44% 3105 862366 43.912|D4 53.8% 19.9% 264% 415 725331 43371
D5 89.9% 3.9% 62% 281.1 1282 555 65.309|D5 55.9% 20.7% 23.5% 63.7 1077589 64.485
D6 75.0% £.2% 168% 2237 2565557 130.665(D6 358% 36.8% 274% 96,0 2158 640 128 926
Category C5 Category C11
DO 25.8% 272% 47.0% 0.6 11824 1509(D0 59.0% 10.7% 303% 02 1.607 248
D1 40.1% 22.1% 37.3% 1.7 27.439 3499|D1 63.7% 123% 23.9% 04 3721 571
D2 30,1% 24,1% 45.8% 4.7 86321 11.037|D2 474% 151% 37.5% 1.0 11.708 1.303
D3 235% 29.5% 47.0% 188 480158 61.296|D3 278% 21.1% 51.1% 41 64.667 9950
D4 24.3% 43.5% 31.7% 54.6 1.612.359 205.993|D4 51.2% 26.5% 222% 27.7 217455 33.432
D5 22.4% 39.0% 38.7% 78.1 2392209 305.474|D5 47.6% 22.0% 304% 288 323282 49.725
D6 21.6% 43.3% 35,1% 143 9| 4.785 690 611.034|D6 42.1% 223% 355% 444 511,696 78744
Category C6 Category C12
DO 55.2% T8% 37.0% 29 45574 3994|D0 69.1% 65% 24.4% 10.1 123.748 10158
D1 39.5% 15.5% 45,0% 43 99589 £743|D1 51.9% 13.6% 34.6% 14,0 270,662 22260
D2 283% 23.8% 47.9% 8.6 307778 27.004|D2 39.9% 20.6% 39.5% 302 £44.652) 69294
D3 213% 273% 51.4% 40,6 1696073 148.765(D3 274% 27.8% 44.8% 123.7] 4,661 846/ 382,150
D4 30.8% 28.5% 40.3% 144.1 5776 808 506.734|D4 33.5% 28 4% 38.1% 4445 15838416 1299058
D5 26.4% 28.1% 45.5% 204.1 8609346 755204|D5 30.5% 28.6% 40.9% 6318 23572.420| 1934000
D6 31.6% 27.0% 413% 4274 17.250.720| 1513220|D6 35.5% 25.9% 38.6% 14298 47246256| 3876042

68

Table 13 Total detection time (seconds), number

changes instances for each DBpedia dataset

of added triples and number of detected complex

D Query Exec Instance Gen Load Detection Added Complex Change
ataset : . : ; .
Time Time Time Time Triples Instances
A0 26,4% 24,0% 49,7% 578,9 6.636.996 1.654.961
Al 16,7% 27,0% 56,3% 1390,3 27.374.997 6.258.454

Table 14 Total detection time (seconds), number of added triples and number of detected complex

changes instances per complex change category for each DBpedia dataset

uery Exec| Instance 3 Detection 3 Complex Change ery Exec| Instance " Detection : Complex Change
¢ Tfme Gen Time Loz Tnz Time Sl e It};stances B QuTi-me Gen Time Lomi T Time Sl e | h}')lstancs i

Category Ci Category Cvii

AD] 161% | 259% | SBO% | 4023 | 5408640 | 1464340 [a0] 72m] am] m3om] 1,2] 9543 | 3.178

Al| BE% | 782% | 630% | 8919 | 1794672 | g8z (a1 zesm| 12w siowm| 09| 14878 | 4.956
Category Cii Category Cii

A0 7a6%] 0% 254%] 03] 190 | 38 [a0] eamm] wax] 25a%] 59,2] 372300 | 62050

Al] 52,7 51% 42.7% 03] 1850 | 370 [at] mom| nex| a6 3165] 7mB2e56 | 1313776
Category Ciii Category Cix

A mEE| 267% 494%) 255] 251007 | s0181 [A0] agm] sam] araxm] 32,3 332471 | 57227

Al 1s9%) 3w s5L9% 378 asasoz | o008 |al| zemm| o] sosx| 472| 581603 | 104.687
Category Civ Category Cx

A0[a0 125%] a7a%| a0] 17257 | 571 [a0] ensm] zam[37| 2,6 7092 | 2364

Al 97% 114%] 789%] 93] 33z70 | 15 [al] miam| sam[esam| 2,0 13293 | 4431
Category Cv Category Cxi

AD[847 18%] 13,9%] 0,5] 1279 | 179 |a0] wax]| zam] s0ax] a5 65204 | 5.076

Al] 3n0,5%] 1,9%] 17,6%] 0,7] 2176 | 327 [at] 173%] 300 sz 63| 121248 | 10.218
Category Cvi

A0[a6 4% 371%] 165%] a64] 169.993 | 9.757

Al| 799% as@m] 243 775] 3m3e | 19.584

3.6.2.4. Results summary

Overall, the detection times presented are considered acceptable since change detection is
rather an off-line process executed upon version creation. It can be stated that as the dataset
size increases, the number of detected change instances as well as the detection time increase
too. Actually, the detection time is highly dependent on the number of instances that appear in
the dataset. This can be verified by comparing in terms of total detection time the results of
the experiment on EvoGen generated datasets with the results of the experiment on DBpedia
datasets which are similar in size (D3-D4, A0-Al). The number of complex changes to be
detected seems to have minor effect in the detection performance, since while in EvoGen 65
changes were used and in DBpedia 177 changes, the detection time is proportional to the
number of detected change instances. Also, the complex change definitions' complexity has
minor impact. In conclusion, the performance of complex change detection process is highly
dependent on the dataset size over which detection is performed and the number of instances
that appear in dataset, while it may be affected by the complex change definitions complexity.
In terms of detection process performance it is not possible to compare directly this work with
the closest relevant works, Papavasileiou et al. (2013) [45] and Roussakis et al. (2015) [53],
since the experimentation settings (datasets size, number of change instances, change

definitions complexity) and the testing environments are diverse.

69

70

Chapter 4

Querying Data Versions and Change Structures
on XML Data

4.1. Introduction

Apart from identifying human readable and semantically rich changes among dataset
versions, querying data evolution may also provide insights on how data changed. In our
view, querying evolution should be based on data as much as on changes. If changes are
modeled as first-class-citizens, they can be exploited in terms of querying as well. Changes,
like data, can appear in the query body to express complex conditions, like the fact that an
entity has been modified in a specific manner, or can be returned by the query in order to
retrieve explicit change instances that may have affected specific data. A model that captures
both data versions and changes is a prerequisite in order to express such queries, while a
query language with specific constructs to support both temporal and change based conditions

is needed.

In these terms, in previous work (Stavrakas and Papastefanatos (2010) [55]), a graph model
for capturing evolving data and changes, hamed evo-graph, is proposed. In evo-graph changes
are complex objects operating on data, exhibiting structural, semantic, and temporal
characteristics and they are explicitly modeled as first class citizens distinguised into basic
and complex changes. These properties allow querying evolution on both data and change
structure, using temporal- and change-based conditions. Change-centric modelling can

provide additional information on what, why, and how data evolved.

On the contrary, several works in literature, like Rizzolo and Vaisman (2008) [49], Gao and
Snodgrass (2003) [26], Wang and Zaniolo (2003) [62], that are classified as temporal
approaches do not provide any support on querying the changes among data versions, since

the notion of changes is not captured explicitly. In other related works, like Marian et al.

71

(2001) [38] or Chien, Tsotras and Zaniolo (2001) [13], that are classified as version-based
approaches change related queries may be supported, but no specific query language is
introduced and only a set of basic change operations is considered. Also, the notion of time is

not considered.

Additionally, in previous work (Stavrakas and Papastefanatos (2011) [56]) an XML
representation for evo-graph, named evoXML, is proposed. The Extensible Markup Language
(XML) [7] is a simple text-based format for exchanging data on the Web. XML documents
are made up of units, named entities, which form a tree structure, and may have attributes and
text content. XQuery [52] is the standard query language for querying XML data, building
upon XPath [51], a language based on path expressions to navigate through an XML

document and select data nodes. The XML, XQuery and XPath are W3C recommendations.

Building upon previous work, we formally define evo-path, an XPath (Robie, Dyck and
Spiegel (2017) [51]) extension for performing time-aware and change-aware queries on evo-
graph. Evo-path allows querying both data history and change structure in a uniform way,
taking advantage of changes in order to retrieve and relate data that are otherwise irrelevant to
each other. Temporal, evolution and causality queries are supported. Also, we implemented
and experimentally evaluated the basic concepts of evo-graph in the C2D framework, using
XML technologies. The Chapter main contributions are the following:
e formalizing evo-path syntax,
e defining evo-path formal semantics,
e presenting evo-path implementation based on a formal translation of evo-path into
equivalent XPath expressions over evoXML,
e evaluating the C2D framework in terms of the space efficiency of evoXML and the
performance of the reduction process, the process for generating a snapshot holding

under a specific time instance from evo-graph.

The Chapter outline is as follows: Section 4.2 presents a motivating example of this work.
Section 4.3 presents previous work on evo-graph, evoXML, basic and complex changes.
Section 4.4 formally defines evo-path, presenting evo-path syntax, semantics, implementation
and illustrative examples. Section 4.5 presents the C2D framework and the evaluation

performed.

72

4.2. Motivating Example

Consider an example taken from Biology, the revision in the classification of diabetes, which
was caused by a better understanding of insulin (National research council (2005) [42]).
Initially, diabetes was classified according to the age of the patient, as juvenile or adult onset.
As the role of insulin became clearer two more subcategories were added: insulin dependent
and non-insulin dependent. All juvenile cases of diabetes are insulin dependent, while adult

onset may be either insulin dependent or non-insulin dependent.

In Figure 4, the leftmost image depicts a tree representation of the initial diabetes
classification, while the rightmost image the revised diabetes classification. Supposing that a
scientist examines the revised classification, she may realize that diabetes categories are not
as expected. She would like to know:

e Which may be the previous structure of categories?

e Which changes are responsible for the reorganization of diabetes categories?

e What are the previous versions of the data nodes that changed due to the

reorganization of diabetes categories?

The first question corresponds to a temporal query, on the history of data nodes. The second
to an evolution query, on the changes applied on data nodes. The third question corresponds

to a causality query, on the relationships between change nodes and data nodes.

However, these representations are not informative on which parts of the data evolved and
how, which changes led from one version to another, or what changes were applied on which
parts of data. Recording change operations in a log or computing deltas between successive
versions do not solve the problem. As a result, answering such questions may require complex
queries in different parts of a database, a task which may be even more intensive for large
datasets. The need for tracing past changes and data lineage is evident in a wide range of web

information management domains.

The middle image in Figure 4 depicts the representation of the revision in the diabetes
classification from the graph of Figure 4 left to right in evo-graph. In evo-graph, both data and
changes are uniformly represented: data versions are represented in circular nodes, while
changes in triangular nodes, and both are organized in hierarchical structure. Change nodes
connect with the data versions they affect and they are annotated with temporal information.

As a result, evo-graph may support queries that refer on data versions as well as on changes.

73

Initial
Diabetes
Classification

Diabetes
Diabetes

Classification

Diabetes, -
Diabetes e
classification 3 K
Evo-Graph Ciitvonit Diabetes @
o

reduction 5\\ reduction categories

for T=start for T=now
age age

cal P cat
insulin “non Insulin = onset"
“juvenile” “adult onset” > " “adult onsel” ‘adult onset’
‘juvenile’ @ dependent” luvenile dependent”

uvenile
L depandent adult onset adult onset dapsnient

Figure 4 Snap-models of diabetes classification before (left) and after (right) revision and the relevant

evo-graph (middle).

4.3. Preliminaries: Modeling Data Versions and Changes on
Evo-Graph

Based on Stavrakas and Papastefanatos (2010, 2011) [55] and [56] we present the following

preliminary concepts.

Snap-model. In terms of this work, we assume that data is represented by a rooted, node-
labeled, leaf-valued tree called snap-model. A snap-model S (V, E) consists of a set of nodes
V, divided into complex and atomic, with atomic being the tree leaves, and a set of directed

edges E. At any time instance, snap-model undergoes arbitrary changes.

Evo-graph. An evo-graph G is a graph-based model that captures all the instances of an
evolving snap-model across time, together with the changes responsible for the transitions. It
consists of the following components:

e Data nodes, divided into complex and atomic: Vp = Vp°UVp?

e Data edges, departing from every complex data node, Epc (Vb®x V).

e Change nodes, representing change events. They are depicted as triangles to
distinguish from circular data nodes. They are divided into complex and atomic
(denoting basic change operations): V¢ = Vc*UVc?

e Change edges, connecting every complex change node to the (complex or atomic)

change nodes it contains: Ecc (Vc®x Vo).

74

e Evolution edges, connecting each change node with two data nodes, the version
before and after the change: Eec (Vox Vex Vp).

e rp € Vp is the data root, with the property that there exists a path formed by data
edges from rp to every other data node in Vp.

e rc € V¢ is the change root, with the property that there exists a path formed by
change edges from rc to every other change node in Vc.

Intuitively, evo-graph consists of a data graph, holding the data versions, and a tree of
changes, which interconnect via evolution edges. Consequently, it has two roots: the data

root, rp, and the change root, rc.

Moreover, change nodes are annotated with timestamps denoting the time instance each
change occurred. Although valid time may be considered, we rely on transaction time,
assuming a linear time domain constituted by consecutive discrete values and two special
time instances: O for the beginning of time and now for the current time. Also, the timestamp
of each complex change equals the timestamp of its most recently occurred child change,

since a complex change occurs when all of its constituent changes have been occurred.

In evo-graph, timestamps are used for determining the validity timespan of all data nodes and
data edges. Evo-graph can then be reduced to a snap-model holding under a specified time

instance through the reduction process [55].

As an evo-graph example consider the middle image in Figure 4, representing the revision in
the diabetes classification from the graph of Figure 4 left to right. The revision process is
denoted by the complex change reorg_diab _cat (node &21) composed by 5 basic snap
changes (in the order they occurred): clone (node &8), add (node &11), remove (node &13),
create (node &15), and create (node &18). Note the use of evolution edges; in the case of add
the evolution edge is annotated with the timestamp 2 and connects node &3 (initial version)
with node &10 (version after adding the child node &6). Node &10 is still a child of node &2,
but for simplicity the relevant edge is omitted. The reduction of the evo-graph for T=start (i.e.
0) results in the snap-model of the leftmost image of Figure 4, while for T=now in the snap-

model of the rightmost image of Figure 4.

Basic and Complex Changes. The following basic change operations may be applied on a

snap-model (snap changes for short):

75

e create(v", v, label, value). Creates a new atomic node v with a given label and value
and connects it with its parent node vP. If v° is an atomic node, it becomes complex.

e add(v, v). Adds the edge (v°, v) to E, effectively adding v as a child node of v°. The
nodes V7, v must already exist in V. If V" is an atomic node, it becomes complex.

e remove(v", v). Removes the edge (vF, v) from E. If v has no other incoming edges, it is
removed from V. If V" has no other children, it becomes an atomic node with the
default value (empty string).

e update(v, newValue). Updates the value of an atomic node v to newValue.

e clone(VP, vsouree, yelone) - Creates a new data node ve'°"® with the same label/value as
viouree and a deep copy of the subtree under v as a subtree under the node ve'oe,
The node vP must be a parent of v°"®, The edge (v°, v¥'°™) is added to E, making veone

a sibling of v¥Uree,

The above definitions describe the effect of each snap change to the current snap-model.
These changes leave the snap-model in any possible consistent state. Note that the effect of
the clone snap-change is to create a deep copy of a subtree under the same parent node.
Although clone can be expressed as a sequence of other snap changes, it is chosen to be a
basic operation. The reason is that deep copy is difficult to express using successive create
operations, while at the same time it is an essential operation for expressing complex changes

like move-to, and copy-to.

Figure 5 depicts how each snap change is captured in evo-graph [44]. Figure 5 depicts three
images for each snap change: the leftmost shows the initial snap-model before the change, the
rightmost shows the current snap-model after the snap change, and the middle image shows
the evo-graph fragment encompassing both snapshots, together with the change. Notice that
on evo-graph, each snhap change evolves the node it applies on into a new version which

actually captures its effect.

A complex change applied on a node of a snap-model is a sequence of basic and other
complex change operations that are applied on the node itself or/and its descendants,
formulating semantically coherent sequences. Applying a complex change on a snap-model

involves the application of each constituent change in the order they appear.

76

snap-model evo-graph Snap model snap-model evo-graph snap-model
T=start T=2 T=start T=12 T=12

A
Effect of snap changes @
on evo-graph reducuon reductlan reduction
—
forT start B forT 2 = for T=start
B @

add (&2, &4) at T=12
create (&2, &4,D,9) at T=2

snap-model evo-graph snap-model
T=start 7=3 T=3

A

snap-model evo-graph del snap-model evo-graph snap model
T=start T8 sne_\r;i-éwo 3 T=start T=5 A

reduction

for T=3

A

reducuon
g
+—
for T=start
B
() ‘

update (&2, 10) at T=5

remove (&2, &4) at T=8 clone (&3, &4, &2) at T=3

Figure 5 Effect of snap change operations on the evo-graph.

A complex change example is reorg_diab_cat applied on categories node of Figure 4 leftmost
image. On evo-graph reorg_diab_cat evolves node &2 into &20. The definition is given

below:

reorg-diab-cat (&2) {

clone (&4, &6, &9)

add (&3, &6)

remove (&4, &6)

create (&3, &16, 'type', 'insulin dependent')
create (&4, &19, 'type', 'non insulin dependent')

EvoXML. In Stavrakas and Papastefanatos (2011) [56] an XML representation of evo-graph,
named evoXML, is presented. evoXML encodes evo-graph in a top-down non-replicated
approach. Non-replicated means that XML references are used to connect the parent nodes to
a common child element. Top-down means that common children are pointed to by their

parents via references.

In evoXML special-purpose elements and attributes are used with the namespace evo. The
evo-graph data root and change root are mapped to the elements evo:DataRoot and
evo:ChangeRoot respectively. Each element is tagged with the label of the respective
node and has an attribute evo: id whose value is the respective node id in the evo-graph.

The values of atomic data nodes are the content of the respective elements, while atomic

77

Table 15 EvoXML for time instance 1

9999

1 <evo:evoXML xmlns=

2 xmlns:evo="http://web.imis.athena-innovation.gr/projects/c2d”’>
3 <evo:DataRoot evo:id="dataroot”>

4 <Diabetes evo:id="1" evo:ts="0" evo:te="now">

5 <categories evo:id="2" evo:ts="0" evo:te="now">

6 <cat evo:1d="3" evo:ts="0" evo:te="now">

7 <age evo:1d="5" evo:ts="0" evo:te="now">

8
9

juvenile

</age>
10 </cat>
11 <cat evo:id="4" evo:ts="0" evo:te="0">
12 <age evo:1d="6" evo:ts="0" evo:te="now">
13 adult onset
14 </age>
15 </cat>
16 <cat evo:id="7” evo:ts="1” evo:te=""now" evo:previous="4">
17 <age evo:ref="6"/>
18 <age evo0:id="9" evo:ts="1" evo:te=""now'>
19 adult onset
20 </age>
21 </cat>

22 </categories>

23 </Diabetes>

24 </evo:DataRoot>

25 <evo:ChangeRoot evo:id="changeroot”>

26 <clone evo:id="8” evo:tt="1" evo:before="4" evo:after="7"/>
27 </evo:ChangeRoot>

28 </evo.evoXML>

change nodes are empty elements. A change edge between two change nodes is captured as
the parent-child relationship of the corresponding elements. The same holds for data edges.
However, if a child node is pointed to by multiple parent versions, the element corresponding
to the child node is contained in the oldest parent element, while subsequent parent versions
contain “clone” elements of the child. The “clone” elements are empty elements that point to
the “original” child element via the special-purpose attribute evo: ref. An evolution edge
(v1, ¢, Vo) is represented via evo:before and evo:after attributes on the element
corresponding to the change node c¢. They reference the elements that represent vi and v;
respectively. Also, the attribute evo:previous is used in the element representing v, to
reference the element representing vi. Thus, the previous version of an element is spotted
directly without having to refer to the evo:before attribute of the corresponding change
element. Finally, the attribute evo:tt records the timestamp of a change node, and the
attributes evo:ts and evo:te the beginning and the end of the validity timespan of a

data node (both are inclusive).

For example, Table 15 (above) presents the evoXML for time instance 1 of the evo-graph in

Figure 4, including only the clone operation (node &8, lines 16-21, 26). Notice that the edge

78

from node &7 to node &6 (denoting that &6 remains a child of the next version of &4) is
represented via the evoXML reference evo:ref in line 17, which points to the element in line
12. Also, notice the change node &8 in line 26. Overall, observe that the XML representation
is additive with respect to evo-graph operations: as the evo-graph evolves, only additions of
new elements are performed in the corresponding evoXML document.

4.4. EvoPath Query Language

4.4.1. Syntax

Similar to XPath, evo-path uses path expressions to move through and select data nodes. In
addition, evo-path allows the navigation through change nodes on evo-graph. Consequently,
there are two types of path expressions in evo-path: data path and change path expressions.
Also, several predicates are supported to express conditions on evo-graph temporal properties

and evolution edges.

Data path expressions start from the data root of evo-graph and return data nodes. Similar to

XPath, they are written as a sequence of location steps separated by “/” characters and

shortcuts can be used as in the two equivalent evo-paths below:

/child::A/descendant-or-self::node()/
child::B/child::*[position()=1]

/A//B/*[1]

Change path expressions start from the change root of evo-graph and return change nodes.
They have the same syntax as data path expressions, but are enclosed in square brackets:

</location stepl/../location stepN>

Temporal predicates are introduced in evo-path in order to express temporal conditions on the

evo-graph nodes. The following types are employed:
1) On data node timespan:

[ts() operator (t 1, t 2)],wherets() evaluates to the validity timespan of the
context data node, operator may be [not] (in | contains | meets |
equals) covering the standard operations between sets, allowing the use of not in front of

any of the operators,and t 1, t 2 are specified timestamps defining a timespan.

79

[ts() operator t],wherets () evaluates to the validity timespan of the context data
node, operator may be [not] covers, and t is a specified timestamp, for the case

where a specified timestamp exists or not in the validity timespan.

2) On data node timespan start time:

[tstart() operator t], where tstart () evaluates to the start of the validity
timespan of the context data node, operator maybe (> | >= | = | < | <=),and t

is a specified timestamp.

3) On data node timespan end time:

[tend () operator t], where tend () evaluates to the end of the validity timespan of

the context data node (operator and t asincase 2).

4) On change node timestamp:

[tt() operator t],wherett () evaluates to the timestamp of the context change node

(operator and t asin case 2).

Evolution predicates are used to assert the existence of evolution edges at specific points in
the graph. They combine a data path expression with a change path expression and vice versa,
implying that the specified data are affected by the specified change. Their general form is:

5) data path expr [evo-filter (<change path expr>)]

6) <change path expr [evo-filter (data path expr)]>

where evo-filter may be one of: evo-before(), evo-after() and evo-

both ().

Each evo-filter evaluates into true or false, in case there is or not an evolution edge
involving the data or change node in context. evo-before () and evo-after () refer on
a specific side of the evolution edge, while evo-both () on both sides. In case 5 evo-

before () and evo-after () validate whether the data node in context holds before and

80

after respectively the application of the change being represented by the change node in
context. evo-both () validates whether the data node holds either before or after the
change. In case 6 evo-before () and evo-after () validate whether the change node in
context represents the change before and after which the data node in context holds
respectively. evo-both () validates whether the change node represents the change either

before or after which the data node holds.

4.4.2. Example Queries

The evo-path examples refer to and are evaluated on the evo-graph of Figure 4 regarding
diabetes.

1) Temporal queries - Querying the history of data elements: Suppose that a scientist
examines the current diabetes snapshot and realizes that the categories structure is not as

expected. She wants to retrieve the previous versions of data node &20.

//Diabetes/categories[ts () not covers 'now'] (01)

This is a data path expression with a temporal predicate that evaluates false for the current
version of categories and true for every other version. It returns node &2 with timespan
[0, 5].

2) Evolution queries - Querying changes applied on data elements: The scientist observes the
creation of several new nodes under the categories node. She wants to know the complex
changes that contain a relevant create operation, to check if create was part of a larger

modification.

<//* [evo-both (//Diabetes//*)]
[.//create [evo-both(//Diabetes/categories/cat)]]> (Q2)

This is a change path expression. The first predicate is an evolution predicate for returning all
the change nodes that are applied to Diabetes node or any of its descendants. The second
predicate dictates that only changes with a create descendant applied on a cat object can
be returned. It returns node &21 with timestamp 6, i.e. the complex change

reorg diab cat, affecting data node &2 and resulting into data node &20.

81

The scientist can now retrieve all the changes associated with reorg diab cat, in order

to understand its full effect.

<//reorg diab cat/*> (Q3)

This change path expression returns the change nodes &8, &11, &13, &15 and &18.

3) Causality queries - Querying relationships between change and data elements: Realizing
that the modifications on diabetes categories are related to the complex change &21
reorg diab cat, the scientist decides to check all the previous versions of the data nodes

affected by reorg diab cat and its descendant changes.

//* [evo-before(<//reorg diab cat//*>)] (Q4)

The data path expression returns all data nodes being connected through evolution edges with
a reorg diab cat change node (&21) or one of its descendant change nodes, specifically
those before each change due to evo-before (). The nodes &3 with timespan [0, 1], &4
[0, 0], &7 [1, 2], &10 [2, 3] and &12 [3, 4] are returned. The scientist now realizes the

sequence of data evolution.

4.4.3. Semantics

In XPath, the meaning of a path expression is the sequence of nodes, at the end of each path,
that matches the expression. In evo-path, the meaning of a data path expression is a sequence
of (data-node, interval) pairs such that the data-node has been at the end of a matching data
path continuously during that interval. The interval is the validity timespan of the data-node.
In evo-path, the meaning of a change path expression is a sequence of (change-node, instance,
data-node-before, data-node-after) tuples such that the change-node is at the end of a
matching change path at the specific instance and it references the data-node-before and the
data-node-after the change. The instance is the timestamp (transaction time) when the change

was applied on the data-node-before, leading to the data-node-after.

For specifying the evo-path semantics the formal XPath semantics introduced by Wadler
(1999) [60] have been adapted. The meaning of an XPath expression is specified with respect
to a context node. For a data path expression, this is extended to a context pair of a data-node

and a time interval. For a change path expression, its meaning is specified with respect to a

82

context tuple of a change-node, a time instance, a data-node before and data-node after the
change. For the data part, four semantic functions are defined: S, Q, Qr and Qy. Slplx
denotes the sequence of pairs (data-node, interval) selected by pattern p when x is the context
pair. It may also denote a sequence of values. The boolean expression Q[q]lx denotes whether
or not the qualifier g is satisfied when the context pair (data-node, interval) is x. The boolean
expression Qr[gr]x denotes whether or not a temporal condition gy is satisfied, while the

boolean expression Qx[qz]x denotes whether or not an evolution condition g is satisfied.

For the change part, four similar semantic functions are defined: S, Q., Q.r and Q.¢. S.[plx
denotes the sequence of tuples (change-node, instance, data-node-before, data-node-after)
selected by pattern p when x is the context tuple. It may also denote a sequence of values. The
boolean expression Q.[qlx denotes whether or not the qualifier g is satisfied when the
context tuple (change-node, instance, data-node-before, data-node-after) is x. The boolean
expression Q.rlgrlx denotes whether or not a temporal condition g is satisfied, while the
boolean expression Q.5 [qz]x denotes whether or not an evolution condition g is satisfied. In

Table 16 the formal semantics of the most common evo-path constructs are presented.

For the data root and change root it holds: The validity timespan of the data root is by
definition [0,now], as it is always valid in time. The timestamp of the change root is by
definition 0, the data-node-before and data-node-after are undefined (@), as it does not

represent an actual change.

Table 16 Formal Semantics of Evo-Path

S[/prlx = SlpldataRoot(x);

St/ /plx = {x2|x1 € subnodes(dataRoot(x)),x2 € SIIp]]xl};

Slp1/p.lx = {(vy, I, n)| (vy, 1) € Spyllx, (vy, 1) € Slp,1(vy, 1)},
Slp.//p.lx = {x3]x; € SIpi]lx, x, € subnodes(x,), x5 € Sp,lx,};

Slplqllx = {(v,DI(w,D) € Slplx, Qlql(v,D};

Snlx = {(v, D|isElement(v), child(x) = (v,I), name(v) = n};

SltstartQllx = {slx = (v,1),1 = [s,el};

SltendOlx = {elx = (v,1),1 = [s,el};

Slplgrllx = {(w, DI(v, D) € Slplx, QrlqrI(v, D};

Slancestor :: plx = {x,|x; € prenodes(x), x, € S[plx,};

Qllp = slx = {(v,DI(w,) € Slplx, value(v) = s} # @;

Qlplx = {x,1x, € Slplx} # @;

Qrlts() in (ty, t)1x = {xlx = W, [tstare: tenal), tstare = iy tena < 2} # @5
Qrlts() contains (t;,t)x = {x|x = v, [tsrare tenal)s tstare < tistena = t2} # 0;
Qrlts() meets (t1,t)Ix = {xIx = W, [tstares tenal) [Estares tenal N [E1,t2] # B} # 0;
Qrlts() equals (t;,t)]x = {x|x = W, [tstares tenal)s tstare = tistena = t2} # 0;
Qrlts() covers tlx = {xlx = W, [tsrare tonal)r t = torarer t < tonat * O;
Qrltstart() operator tlx = {x|x = (v, [tstare) tenal)s tstare OPETAtOT t} # @;
Qrltend() operator t]x = {x|x = W, [tstare tena)) tena OPETAtOT t} #+ B;
Qrlevo — before({change_path_expr))]x =

{xlx = (v,D), (v, i,v,v,) € S.[{change_path_expr)r.,v = v,} # 0;

83

Qrllevo — after({change_path_expr))]x =

{xlx = (v, D), (w,,i,vp,v,) € S [{change_path_expr)]r.,v = v,} # ©;
Qrllevo — both({change_path_expr))]x =

{xlx = (v, D), (v,,i,vp,v,) € S [{change_path_expr)lr.,v =v, V v =v,} * @;
S [{/p)x = Sc[plchangeRoot (x);

S/ /p)x = {x2|x1 € subnodes,(changeRoot(x)),x, € S, [[p]]xl};

S Up1/p2)x = {x,1x; € Sclpilx, x, € ScIp,lx4}:

S p1//p2x = {x3]lx; € S.[p.]x, x, € subnodes,(x;),x; € S [p,1x,};
SclplaDx = {(ve, i, vy, vl (e, &, vy, v0) € Sc[plx, Qclql(ve, i, vy, va)}:

S nlx = {(v.,i,vp, vy)lisElement(v,),child,(x) = (v,,i,vp, v,), name(v,) = n};
S MttQlx = {ilx = (ve, i, vp,v)};

Sc [[(p [CITD]]x = {(vc' i' Vb, va)l(vc' i' Ub» va) € SC [[p]]x' QCT[[qT]] (UC' i' Vb, va)};
S.[{ancestor :: p)lx = {x,|x, € prenodes.(x),x, € S [plx,};

Q.:lp = slx = {(v.,i,v,, vl (W, i,vp,v,) € S [plx, value(v) = s} # @;

Q. Iplx = {x;1]x, € S.[plx} # @;

Q.rltt() operator tlx = {x|x = (v,,i,v,,v,),i operator t} + @;

Q.sllevo — before(data_path_expr)]x =

{xlx = (v, i,v,,v,), W, 1) € Sldata_path_exprlry,v = v,} #+ 0;

Q.slevo — after(data_path_expr)]x =

{xlx = (v, i,v,,v,), W, 1) € Sldata_path_exprlry,v = v,} # ©;

Q.gllevo — both(data_path_expr)]x =

{xlx = (v, i,v,,v,), W, 1) € Sldata_path_exprlry,v =v, V v =1v,} + @;

Where:

subnodes(y) = {(v,I)|there exists a data path from y to v and I is the validity timespan of v}
prenodes(y) =

{(v,D|there exists a data path from v toy and I is the validity timespan of v},
dataRoot(x) is the (dataRoot, [0,now]) pair where dataRoot is the root of the graph in which data —
node exists and x is a (data — node, interval) pair, r; = (dataRoot, [0,now]),
child(x) =

{(v,Dl|there exists a data path of length 1 from x to v and I is the validity timespan of v}
subnodes,(y) =

{(v,, i,vp,v,)|there exists a change path from y to v, and i is the timestamp of v,}
prenodes, (y) =

{(v,, i, vy, v,)|there exists a change path from v, to y and i is the validity timespan of v,},
changeRoot(x) is the (changeRoot, 0, ®, ®) tuple where changeRoot is the root of the graph in which
change — node exists and x is a (change — node, instance, data — node — before, data — node —
after) tuple, r, = (changeRoot, 0, @, 0),
child.(x) =
{(v,,i,vy,,v,)|there exists a change path of length 1 from x to v, and i is the timestamp of v,}

4.4.4. Implementation

In order to implement evo-path, each valid evo-path expression is translated into an equivalent

XPath expression over evoXML. Table 17 summarizes the translation rules.

Table 17 Evo-Path to XPath translation

Evo-Path | XPath
A. Data and Change Path Expressions
data path expr doc ("evoXML.xml") /evo:evoXML/evo:DataRoot/mapped data path
B B expr B -
<change path expr> doc ("evoXML.xml") /evo:evoXML/evo:ChangeRoot/mapped change
path expr

84

B. Temporal Predicates

[ts() in (t 1, t 2)], where [@evo:ts>= t 1 and (if @evo:te='now' then false() else

t2€eN @evo:te<= t 2)]

[ts() contains (t 1, t 2)], [@evo:ts<= t 1 and

where t 2 €N (1f @evo:te="'now' then true() else @evo:te>= t 2)]

[ts() meets (t 1, t 2)], [if Qevo:te='now' then (Revo:ts>= t 1 and @evo:ts<= t_2)

where t 2 €N else((Qevo:ts>= t 1 and @evo:ts<= t 2) or
(devo:te>= t 1 and Qevo:te<= t 2))]

[ts() equals (t 1, t 2)], [Gevo:ts = t 1 and (if @evo:te='now' then false() else

where t 2€N B B @evo:te = t 2)]

[ts() in (t 1, 'now')] [@evo:ts>= t 1]

[ts() contains (t 1, 'now')] | [@evo:ts<=t_1 and @evo:te='now']

[ts () meets (£ 1, "now')] [1f @evo:te="'now' then true() else (@evo:ts>=t 1 or
RQevo:te>=t 1)]

[ts() equals (t 1, 'now')] [Gevo:ts = t 1 and @evo:te='now']

[ts() covers t], where t€N [@Gevo:ts<= t and (if @evo:te='now' then true() else
@Qevo:te>= t)]

[ts() covers 'now'] [@evo:te="now']

[tstart () operator t], [@evo:ts operator t]

where t€N

[tend() > t], where t€N [if @evo:te="'now' then true() else (@evo:te> t]

[tend () >= t], where t€N [if Qevo:te="now' then true() else (@evo:te>= t]

[tend() = t], where t€N [1f Q@evo:te="'now' then false() else (@evo:te = t]

[tend() < t], where t€N [1f @evo:te='now' then false () else Qevo:te< t]

[tend() <= t], where t€N [if Qevo:te="now' then false() else (Revo:te<= t]

[tend () = '"now'] [@Gevo:te="now']

[tend ()< 'now'] [@Gevo:te!="now']

[tend ()<= 'now'] [true ()]

[tt () operator t], where teN | [devo:tt operator t]

C. Evolution Predicates

data path expr
[evo-
before (<change path expr>)]

doc ("evoXML.xml") /evo:evoXML/evo:
@evo:id=

doc ("evoXML.xml") /evo:

pr/@evo:before]

DataRoot/data path expr|

evoXML/evo:ChangeRoot/change path ex

data path expr
[evo-
after (<change path expr>)]

doc ("evoXML.xml") /evo:evoXML/evo:DataRoot/data path expr]|
@evo:id=
doc ("evoXML.xml") /evo:

pr/@evo:after]

evoXML/evo:ChangeRoot/change path ex

data path expr
[evo-
both (<change path expr>)]

doc ("evoXML.xml") /evo:evoXML/evo:DataRoot/data path expr]
@evo:id=

doc ("evoXML.xml") /evo:

pr/Q@evo:before or
@evo:id=

doc ("evoXML.xml") /evo:

pr/@evo:after]

evoXML/evo:ChangeRoot/change path ex

evoXML/evo:ChangeRoot/change path ex

<change path expr

[evo-filter(data path expr)]>where evo-filter is

evo-before or evo-

after or evo-both are defined symmetrically

D. Plain Data Path Expressions

1 |/p /plRevo:id]
2 /plposition predicate] /pl(@evo:id and position predicate) or
(Qevo:id=/p[position predicate]/@evo:ref)]

3 | /pllp2 op value] /pllRevo:id and p2 op value] |
/pl[@evo:1id and p2/Q@evo:ref=/pl[p2 op value]/p2/Q@evo:id]

4 /pl(p2 op value]/p3 (/pll@evo:id and p2 op valuel] |
/pll@evo:id and p2/@evo:ref=/pl[p2 op valuel]/p2/@evo:1id] |
/pl[p3/Q@evo:id=/pl[p2 op value]/p3/@evo:ref])/p3[QRevo:id]

85

Each data/change path expression (case A) is evaluated starting from the data/change root.
Each temporal predicate (case B) is mapped to an XPath predicate over evoXML attributes
evo:ts, evo:te and evo: tt. Each evolution predicate (case C) is mapped to an XPath
predicate over the evoXML attributes evo:before orfand evo:after. These attributes
appear on change elements and should be equal to evo:id attribute of data elements.
Moreover, recall that evoXML encodes evo-graph in a top-down non-replicated approach
(Stavrakas and Papastefanatos (2011) [56]): if a child node is pointed to by multiple parent
versions, the element corresponding to the child node is contained in the oldest parent element,
while subsequent parent versions contain “"clone” elements of the child. These are empty
elements pointing to the "original™ child element via evo:ref attribute. This feature is
handled while translating a data path expression to an equivalent XPath expression (case D).
The returned nodes of a data path expression should be the "original” ones, i.e. those with an
evo:id attribute (rule 1). Similar holds for predicates that are used to find a specific node,
e.g. based on position (rule 2). For predicates that are used to find a node that contains a
specific value, the returned nodes should be the "original” ones and the contained value should
be checked in an "original” child node. However, the node in context may have either an
"original” or a "clone" child node. In the latter case, the "clone" child node is used to access the
pointed "original” one. Thus, in rule 3 two cases are identified: p1 is an "original" node and
contains the "original” node p2 with value, or p1 is an "original” node and contains the
"clone™" node p2 pointing to an "original” node with value. This is extended in rule 4 with an
additional location step. For p3 a third case is identified: p1 is an "original" node which
contains the "original" node p2 with value and the "clone" node p3, which is used to access
the "original” pointed node p3. The case of having p1 as "original" node and p2 and p3 as
"clone" nodes is not identified, since it eventually ends up to one of the rest cases. Finally, note
that XPath predicates on other node types, like attributes, are not considered, since in evoXML

evolving data are represented on element nodes.

Below, we show the XPath expressions for the Section 4.4.2 evo-path queries, generated
following the translation rules. For simplicity evo namespace is omitted. evoXML.xml

contains the evoXML representation of evo-graph in Figure 4.

(01) 1let S$d:=doc ("evoXML.xml")/evo:evoXML/evo:DataRoot
return $d//Diabetes/categories|[@evo:te!="now']
(Q2) 1let S$d:=doc("evoXML.xml")/evo:evoXML/evo:DataRoot,
Sc:=doc ("evoXML.xml") /evo:evoXML/evo:ChangeRoot
return $c//*[Qevo:before=$d//Diabetes//*/QRevo:id or
@evo:after=$d//Diabetes//*/QRevo:id]

86

[.//evo:create[@evo:before=
$d//Diabetes/categories/cat/@evo:id or

@evo:after=
$d//Diabetes/categories/cat/QRevo:id]]

(Q3) let S$Sc:=doc("evoXML.xml")/evo:evoXML/evo:ChangeRoot
return $c//reorg diab cat/*
(Q4) 1let Sd:=doc("evoXML.xml")/evo:evoXML/evo:DataRoot,
Sc:=doc ("evoXML.xml") /evo:evoXML/evo:ChangeRoot
return $d//*[Qevo:id=$c//reorg diab cat//*/Cevo:before]

4.5. Evaluating the C2D Framework

45.1. The C2D Framework

The C2D (standing for Complex Changes in Data evolution) framework captures the concepts
presented on evo-graph, snap-model and evo-path using XML technologies. Currently, the
basic concepts of evo-graph and snap-model have been implemented into the framework.
C2D has been developed in Java, on top of Berkeley DB XML®, an embedded XML database

used to manage the evoXML representation of evo-graphs.

The basic flow implemented in C2D is the following: Changes applied on the snap-model are
fed into a process that populates the evo-graph, which is constructed step-by-step as changes
are accommodated on it. The process details are presented in [44]. A shap change is always
applied on the current snap-model, which is also represented in XML in C2D. Note that, the
current snap-model is actually produced as a reduction of the evo-graph for the time instance
T=now. In C2D the reduction process, as presented in [55], is also implemented. This flow is
depicted in Figure 6. The top layer in Figure 6 is the view layer, where changes are launched.
The purpose of the logical model layer is to guide the translation processes between the view
layer and the storage representation layer, where changes actually take place. Change
operations on the evo-graph are implemented as XML update operations on the corresponding

evoXML, using XQuery Update [50] insert expressions.

9 http://www.oracle.com/technetwork/ database/berkeleydb/overview/index.html

87

VIEW
snap- e nsgas sy ARV

VAN map

reduce

=5 LOGICAL
SR <+ - - evo MODEL
changes
ﬂlranskxm
STORAGE
e
apply /update

Figure 6 C2D framework basic flow overview.

4.5.2. Evaluation

4.5.2.1. Experimental Setting

The goal of the experimental evaluation was to examine how evo-graph depends on a number
of factors that characterize the data. We first examined the space efficiency of evoXML for
various configurations, regarding: the structure of the initial XML tree, the type of shap
changes, and the selectivity of the elements. We also examined the performance of the

reduction process with respect to the size of the evoXML file.

Experiments were performed over synthetic XML data, on a PC with Intel Core 2 CPU 2.26
GHz, and 4.00 GB of RAM. The initial XML file was generated with Xmlgener®® synthetic
XML data generator and contained about 10° elements, over which 10* snap changes were
sequentially applied as XQuery Update [50] statements. A new version was assumed after
every 1000 changes; therefore 10 successive versions have been created for each setting. We
recorded the size (in terms of the number of XML elements) of each “snap” version, and the
size of the evoXML file at the same instance. Furthermore, we examined the performance of

the reduction process for the current snapshot (T=now), and the initial snapshot (T=0).

Regarding the structure of the initial data, we used two XML files with the same number of
elements: (a) one corresponding to a snap-model with a “deep” tree structure (denoted si)
with five levels and elements having a fan-out of 10, and (b) a file with a “broad” tree
structure (denoted s2) with only two levels and elements with a fan-out of about 330 elements.

We have applied three sets of snap changes: (a) equal percentage for all changes except clone

10 https://code.google.com/archive/p/xmligener/

88

260
240

elements (thousands)
e e e NN
S B B o © 3 N
8 8 &8 8 8 8 3

(denoted t1), (b) 80% update and 20% create and remove (denoted t;), and (c) equal
percentage for all changes including clone (denoted ts). Finally, concerning elements
selectivity, changes have been applied either on all elements (denoted n;) or on a fixed set of
pre-selected elements so that each element is affected by 5 changes on average per version
(denoted ny).

We have examined the following combinations of the above parameters: (tin:), (tan1), (t2n),
and (tzn,) for each of s1, So. tins captures the typical case when random changes are uniformly
applied on all elements. tsn: is similar to tin;, but it also includes clone. We have separately
examined the clone operation, as it may arbitrarily result in the addition of a large amount of
data. ton; captures the case where most (80%) change operations are update on random leaf
elements, and only 20% are create or remove. Finally, ton; is like the previous case except that

changes are concentrated on a pre-selected fixed set of elements.

Intuitively, we expect that the size of the evoXML depends on the number of snap changes
performed. We also expect that it depends on the average fan-out of the snap-model, while it
remains insensitive to its average height. This is due to the way that each snap change

operation is implemented on the evo-graph.

45.2.2. Results

In Figure 7 (a) and (b) we present the evoXML sizes per version. Subsequently, we discuss

how this size is affected by the aforementioned configurations parameters.

12

1400 zcc. snapshot size/ version

(s2)

evoXML size/ version (s1) evoXMLsize/ version (s2)

1

reductiontime / version (s% X

2.600 /

_1.200

—13,nl

10

—t3nl

3.0l

/
—-n g XA

—1t3,nl

[y
o
S
S

2.100

— —t2,n2

— =tz

N S
-===12.nl

AN

— —t2,n2

/.

800

1.600

600

seconds

1.100

elements (thousands

400

elements (thousands)

=2
=1
S

200

N oW s Ol o~

=
o
S

0

0123456782910 0123456782910 0123456782910
(@) (b) (© (d)

Figure 7 evoXML size (a), (b), accumulative snapshot size (c) and current snapshot reduction time (d)
per version for various configurations.

File structure. For all configurations, better space efficiency is achieved for s;. For smaller

fan-outs (s1), the evoXML has a smoother increase in size than for large fan-outs (s2). A snap

89

0123456782910

change occurring on an element adds evo:ref elements for all of its children (i.e. fan-out) that
are still valid in the new version. Hence, the increase in the evoXML size is relative to the

average fan-out.

Type of changes. t, outperforms t; and t;. The majority of changes in t; are update, which have
a smaller impact on the evoXML size. Again, the key point is the number of new elements
that each change adds. Observe from Figure 5 that all changes add at least two new elements:
one evolved data element and one change element. update adds only these two elements,
whereas create and add insert one additional element for the new child, plus evo:ref elements
for its siblings. remove results in inserting evo:ref elements in the evoXML for all the siblings
of the removed element. Finally, clone adds a variable number of elements according to the
height and average fan-out of the subtree that is cloned. On the other hand, the percentage of
create and remove in t; is higher. In ts, the use of clone further increases the file size by

creating a deep copy of the subtree of the elements on which it is applied.

Selectivity of elements. Applying changes randomly on all elements (n:) seems to have a
smoother impact on the increase of the file size (e.g., compare t2n; and tzn, for each of s,).
This is due to the fact that changes are uniformly distributed over all the elements. On the
other hand, the increase is higher when changes are targeting a fixed set of elements (n.).
Changes in ton; are sequentially applied on the same elements, i.e., create is applied on the
same elements, increasing the number of their children and thus the number of evo:ref

elements to be inserted when a subsequent create occurs on the same element.

Overall, the evoXML size depends almost linearly on the number of the snap changes applied,
given that the average fan-out is constant. Moreover, the increase rate of the evoXML size is
proportional to the average fan-out of its elements. This is more evident in tzn; for s;, where
the average fan-out of the elements sustaining changes increases significantly per version,
resulting in a boost in the evoXML size, whereas in s, the fan out increase rate is much

smoother.

In Figure 7 (c) we present the accumulative size of the snapshots produced per version. This
approach can be considered as an alternative to evoXML. We only depict the series for s, as
s1 shows a similar trend. The accumulative size of all snapshots per version is significantly
bigger than the evoXML size, for all runs over s;. The same holds for all configurations of s;,
except for tsn; where many evo:ref elements are added in the evoXML file. Note that the
overlap of the series is due to the small variance in the accumulative snapshot size between

configurations.

90

Regarding the performance of the reduction algorithm, we have measured the time the
reduction process takes for producing the current and the initial snapshots. The results for the
current snapshot for s, are shown in Figure 7 (d), where the mark signs are the recorded time
values, and the series are the trends for each configuration. A safe conclusion is that the
reduction time depends mostly on the evoXML size. For small file sizes, the reduction
performs the same for all versions. In addition, the increase rates in time are similar for both
the current and the initial snapshot, for both s: and s,. Therefore, the time instance parameter

of the reduction process does not affect the reduction performance.

Concluding, both space and time efficiency are mostly affected by the average fan-out, which
deteriorates as more changes are applied. That is mainly because of the evo:ref elements that
are added for all children of an element that “evolves”. Still, our approach is much more

efficient than retaining separately every different version.

91

92

Chapter 5

Conclusions and Future Work

5.1. Thesis Conclusions

In this thesis, we have presented novel methods and experimental results that focus on
modeling, defining, detecting and querying changes on web data. In the proposed approaches,
changes are treated as first class citizens, meaning that they are human-readable, semantically
rich changes that demonstrate structure. Therefore, they can play a dominant role in

interpreting and understanding evolution.

Based on these concepts our research has been conducted in two pillars: Modeling, defining
and detecting changes has been studied in the context of RDF(S) knowledge bases. Querying
changes has been studied in the context of XML data, building upon previous work done

regarding evo-graph, a model that captures evolving data along with changes.

Specifically, we proposed modeling and supporting simple and complex changes, as well as
any relations among them, for interpreting evolution on RDF(S) knowledge-bases. Simple
changes are fine-grained and application/data-agnostic changes, while complex changes are
coarse-grained and application/data-specific changes, demonstrating structure and rich
semantics suitable to each specific application or dataset. Complex changes are user defined
changes so that they can capture application/data-specific modifications. Also, they are
defined as patterns over simple changes and already defined complex changes. Towards this
direction, we proposed an intuitive, user-friendly language, based on change semantics for
defining complex changes. We formally defined the language syntax and semantics.
Furthermore, the ultimate goal for defining complex changes is to identify actual complex
change instances between dataset versions. Therefore, we presented a detection algorithm for
the proposed complex change definition language, as well as the correctness of the proposed

implementation with respect to the language semantics.

93

The proposed approach has been extensively evaluated qualitatively and experimentally. The
gualitative evaluation demonstrates the added value of our approach in comparison to the
related work, regarding the basic features and characteristics. The experimental evaluation
examines the complex change language expressiveness and the detection performance. It is
evaluated whether the proposed structures are adequate in expressing useful changes and how
complex changes facilitate user in understanding and analyzing evolution. Also, the response
time of the detection process is examined in terms of increasing dataset size. The evaluation is

performed over both artificial and real data, proving the effectiveness of our approach.

Overall, the proposed approach offers expressiveness and flexibility in terms of evolution
interpretation, since complex changes provide additional information for interpreting past
data, allow interpreting evolution in multiple ways, while capturing relations between

complex changes is an additional feature that enriches the complex changes' expressivity.

Regarding querying changes, we formally defined evo-path, an XPath extension for
performing time-aware and change-aware queries on evo-graph. Evo-path allows querying
both data history and change structure in a uniform way, supporting temporal, evolution and
causality queries. We presented the evo-path syntax, we defined evo-path formal semantics
and we presented an implementation based on a formal translation of evo-path into equivalent

XPath expressions over evoXML, the XML representation of evo-graph.

Additionaly, the basic concepts of evo-graph were implemented in the C2D framework, using
XML technologies, and experimentally evaluated. The space efficiency of evoXML for
various configurations is evaluated. Also, the performance of the reduction process, the
process for generating a snapshot holding under a specific time instance from evo-graph, is
evaluated with respect to the size of the evoXML file. The evaluation performed indicated

which factors that characterize the data affect the evoXML size and the reduction process.

5.2. Future Work

While conducting the above research, apart from the contributions made and the results

already presented, we came up with open issues, which can form the basis for future work.

Regarding our work on defining and detecting complex changes on RDF(S) knowledge bases,

a tool for the automatic generation of a proposed set of complex change definitions may be

94

investigated. This tool may further facilitate the process of defining complex changes over a
specific dataset.

Towards this direction, a naive approach may be to define some common patterns of changes
that may appear in any RDF(S) dataset. Thus, given a specific dataset schema, a number of
complex changes may be defined automatically following specific rules and heuristics. The
proposed complex changes can be named based on the dataset concepts and the intuition of
each change. These complex changes may involve rather structural groupings and may model
modifications like add, delete, update and move. Therefore, the proposed complex changes
may be additions/deletions/updates of class or property instances, moves of property
instances, or groupings of added/deleted classes with relevant added/deleted descriptive
properties. The data curator or consumer can model hew complex changes capturing scenarios

and semantics that fit specific data and application use cases on top of them.

Additionally, it may be worth investigating how the automatic generation and proposal of
complex change definitions over dataset versions can be based on more advanced methods
and procedures than rules or heuristics. This may involve mining structures by comparing and

analyzing different versions and snapshots, or ideally identifying unexpected changes.

In this regard, recent works on data structure evolution may be useful. More broadly, our
work can be related to approaches capable of capturing the evolution of knowledge graphs,
while not aiming to model changes or interpret evolution. In Maillot and Bobed (2018) [37],
structural similarity measure is proposed. It is based on the detection of common structural
regularities between two RDF graphs, leveraging the data mining approach KRIMP. Bobed et
al. (2020) [5] rely on this work, focusing on a data-driven assessment of structural evolution
in RDF graphs. They propose two new similarity measures, which identify outdated updates
and updates that alter the heterogeneity of the structural patterns w.r.t. the last snapshot. In
Gonzalez and Hogan (2018) [28], authors propose an approach to compute a data-driven
schema from knowledge graphs, inspired from formal concept analysis (FCA), producing a
lattice of characteristic sets. The extracted schema is used to summarize dataset dynamics and

predict future changes.

Regarding our work on querying data versions and change structures via evo-path on evo-
graph, it is worth focusing on further experimenting and evaluating the proposed approach in
terms of query language expressiveness and implementation efficiency. In addition,

experimenting on real data may contribute in evaluating the effectiveness of the approach.

95

Also, another research direction is to investigate prospective optimizations. Towards this
direction, it may be useful to take into consideration the effect of evo:ref elements in the
evoXML and consequently in the query translation. It may be interesting to work on encoding
evo:ref elements and overall compress the evoXML file.

Overall, evolution management may be considered as a special case of the data integration
and exchange problems [18], where the involved models are different versions of the same
dataset. Therefore, several formalization issues that appear in data integration and exchange,
like information preservation, query preservation, monotonicy and containment, can be

examined in the evolution context as well.

96

Bibliography

[1] Amagasa, T., Yoshikawa, M., Uemura, S. (2000). A data model for temporal XML
documents. In DEXA.

[2] Antoniazzi, F., and Viola, F. (2018). RDF graph visualization tools: A survey. In 23rd
Conference of Open Innovations Association (FRUCT).

[3] Auer, S., and Herre, H. (2007). A versioning and evolution framework for RDF
knowledge bases. In Perspectives of Systems Informatics.

[4] Berners-Lee, T., Connolly, D. (2004). Delta: An ontology for the distribution of
differences between RDF graphs. http://www.w3.org/Designlssues/Diff (version: 2006-05-
12).

[5] Bobed, C., Maillot, P., Cellier, P., Ferré, S. (2020). Data-driven assessment of structural
evolution of RDF graphs. In Semantic Web Journal 11(5): 831-853.

[6] Brahmia, Z., Hamrouni, H., Bouaziz, R. (2020). XML data manipulation in conventional
and temporal XML databases: A survey. In Computer Science Review Journal 36: 100231.

[7] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Yergeau, F. (2008, November
26). Extensible Markup Language (XML) 1.0. W3C Recommendation.
https://www.w3.org/TR/xml/. (accessed 3 October 2021)

[8] Brickley, D., Guha, R. V. (2014, February 25). RDF Schema 1.1. W3C

Recommendation. https://www.w3.org/TR/rdf-schema/. (accessed 3 October 2021)

[9] Buneman, P., Chapman, A.P., Cheney, J. (2006). Provenance management in curated
databases. In SIGMOD.

[10] Buneman, P., Khanna, S., Tajima, K., Tan, W.C. (2004). Archiving scientific data. In
ACM Transactions on Database Systems 29(1): 2-42.

[11] Chawathe, S., Abiteboul, S., Widom, J. (1999). Managing historical semistructured data.
In Theory and Practice of Object Systems 5(3): 143-162.

[12] Chawathe, S., Rajaraman, A., Garcia-Molina, H., Widom J. (1996). Change detection in
hierarchically structured information. In SIGMOD.

[13] Chien, S-Y., Tsotras, V. J., Zaniolo, C. (2001). Efficient management of multiversion
documents by object referencing. In VLDB.

[14] Chien, S. Y., Tsotras, V. J., Zaniolo, C. (2002). Efficient schemes for managing
multiversion XML document. In VLDB Journal 11(4): 332-353.

[15] Chien, S-Y., Tsotras, V. J., Zaniolo, C., Zhang, D. (2001). Storing and querying
multiversion XML documents using durable node numbers. In WISE.

[16] Chien, S. Y., Tsotras, V. J., Zaniolo, C., Zhang, D. (2002). Efficient complex query

support for multiversion XML documents. In EDBT.

97

https://www.w3.org/TR/xml/
https://www.w3.org/TR/rdf-schema/

[17] Cobena, G., Abiteboul, S., Marian, A. (2002). Detecting changes in XML documents. In
ICDE.

[18] Doan, A., Halevy, A., Ives, Z. (2012). Principles of Data Integration. Morgan Kaufmann.
[19] Dyreson, C.E. (2001). Observing transaction-time semantics with TTXPath. In WISE.
[20] Faisal, S., Sarwar, M. (2014). Temporal and multi-versioned XML documents: A survey.
In Information Processing and Management 50(1): 113-131.

[21] Franconi, E., Meyer, T., Varzinczak. I. (2010). Semantic diff as the basis for knowledge
base versioning. In NMR.

[22] Galani, T., Papastefanatos, G., Stavrakas, Y. (2016). A language for defining and
detecting interrelated complex changes on RDF(S) knowledge bases. In ICEIS.

[23] Galani, T., Papastefanatos, G., Stavrakas, Y., Vassiliou, Y. (2021). Defining and
detecting complex changes on RDF(S) knowledge bases. In Journal on Data Semantics.
https://doi.org/10.1007/s13740-021-00136-9

[24] Galani, T., Stavrakas, Y., Papastefanatos, G., Flouris, G. (2015). Supporting complex
changes in RDF(S) knowledge bases. In MEPDaW-15 (with ESWC).

[25] Galani, T., Stavrakas, Y., Papastefanatos, G., Vassiliou, Y. (2021). Evo-Path: Querying

data evolution through complex changes. In DATA.

[26] Gao, D., Snodgrass, R. T. (2003). Temporal slicing in the evaluation of XML queries. In
VLDB.

[27] Gergatsoulis, M., Stavrakas, Y. (2003). Representing changes in XML documents using
dimensions. In International XML Database Symposium.

[28] Gonzalez, L., Hogan, A. (2018). Modeling dynamics in semantic web knowledge graphs
with formal concept analysis. In WWW.

[29] Grandi, F. (2004). Introducing an annotated bibliography on temporal and evolution
aspects in the World Wide Web. In SIGMOD Records.

[30] Guo, Y., Pan, Z., Heflin, J. (2005). LUBM: A benchmark for OWL knowledge base
systems. In Journal of Web Semantics 3(2-3): 158-182.

[31] Harris, S., Seaborne, A. (2013, March 21). SPARQL 1.1 Query Language. W3C
Recommendation. https://www.w3.org/TR/spargl11-query/. (accessed 3 October 2021)

[32] Kaminski, M., Kostylev, E. V., Cuenca Grau, B. (2017). Query nesting, assignment, and
aggregation in SPARQL 1.1. In ACM Transactions on Database Systems 42(3): 17:1-17:46.
[33] Klein, M. (2004). Change management for distributed ontologies. Ph.D. thesis, Vrije
University.

[34] Klyne, G., Carroll, J. J., McBride, B. (2014, February 25). RDF 1.1 Concepts and
Abstract Syntax. W3C Recommendation. https://www.w3.org/TR/rdf11-concepts/. (accessed
3 October 2021)

98

https://doi.org/10.1007/s13740-021-00136-9
https://dblp.uni-trier.de/db/journals/ws/ws3.html#GuoPH05
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/rdf11-concepts/

[35] Leonardi, E., Bhowmick, S. S. (2005). Detecting changes on unordered XML documents
using relational databases: A schema conscious approach. In CIKM.

[36] Leonardi, E., Bhowmick, S. S., Madria, S. (2005). Xandy: Detecting changes on large
unordered XML documents using relational databases. In DASFAA.

[37] Maillot, P., Bobed, C. (2018). Measuring structural similarity between RDF graphs. In
SIGAPP.

[38] Marian, A., Abiteboul, S., Cobena, G., Mignet, L. (2001). Change-centric management
of versions in an XML warehouse. In VLDB.

[39] Meimaris, M. (2016). EvoGen: a generator for synthetic versioned RDF. In EDBT/ICDT
Workshops.

[40] Meimaris, M., Papastefanatos, G. (2016). The EvoGen benchmark suite for evolving
RDF data. In MEPDaW/LDQ in ESWC.

[41] Moon, H.J., Curino, C., Deutsch, A., Hou, C.Y., Zaniolo, C. (2008). Managing and
querying transaction-time databases under schema evolution. In VLDB.

[42] National research council - Committee on Frontiers at the Interface of Computing and
Biology (2005). Catalyzing inquiry at the interface of computing and biology. Edited by J. C.
Wooley, H. S. Lin., National Academies Press.

[43] Noy, N.F., Musen, M. (2002). PromptDiff: A fixed-point algorithm for comparing
ontology versions. In AAAI.

[44] Papastefanatos, G., Stavrakas, Y., Galani, T. (2013). Capturing the history and change
structure of evolving data. In DBKDA.

[45] Papavasileiou, V., Flouris, G., Fundulaki, I., Kotzinos, D., Christophides, V. (2013).
High-level change detection in RDF(S) KBs. In ACM Transactions on Database Systems
38(1): 1:1-1:42.

[46] Perez, J., Arenas, M., Gutierrez, C. (2009). Semantics and complexity of SPARQL. In
ACM Transactions on Database Systems 34(3): 16:1-16:45.

[47] Plessers, P., De Troyer, O., Casteleyn, S. (2007). Understanding ontology evolution: A
change detection approach. In Journal of Web Semantics 5(1): 39-49.

[48] Regino, A. G., dos Reis, J. C., Bonacin, R., Morshed, A., Sellis, T. (2021). Link
maintenance for integrity in linked open data evolution: Literature survey and open
challenges. In Semantic Web 12(3): 517-541.

[49] Rizzolo, F., Vaisman, A. A. (2008). Temporal XML: modeling, indexing, and query
processing. In VLDB Journal 17(5): 1179-1212.

[50] Robie, J., Chamberlin, D., Dyck, M., Florescu, D., Melton, J., Simeon, J. (2011, March
17). XQuery Update Facility 1.0. W3C Recommendation. https://www.w3.org/TR/xquery-

update-10/. (accessed 3 October 2021).

99

https://www.w3.org/TR/xquery-update-10/
https://www.w3.org/TR/xquery-update-10/

[51] Robie, J., Dyck, M., Spiegel, J. (2017, March 21). XML Path Language (XPath) 3.1.
W3C Recommendation. https://www.w3.0rg/TR/2017/REC-xpath-31-20170321/. (accessed 3
October 2021)

[52] Robie, J., Dyck, M., Spiegel, J. (2017, March 21). XQuery 3.1: An XML Query
Language. W3C Recommendation. https://www.w3.0rg/TR/2017/REC-xpath-31-20170321/.
(accessed 3 October 2021)

[53] Roussakis, Y., Chrysakis, I., Stefanidis, K., Flouris, G., Stavrakas, Y. (2015). A flexible
framework for understanding the dynamics of evolving RDF datasets. In ISWC.

[54] Singh, A., Brennan, R., O’Sullivan, D. (2018). DELTA-LD: A change detection
approach for linked datasets. In MEPDAW in ESWC.

[55] Stavrakas, Y., Papastefanatos, G. (2010). Supporting complex changes in evolving

interrelated web databanks. In CooplS.

[56] Stavrakas, Y., Papastefanatos, G. (2011). Using structured changes for elucidating data
evolution. In DaLi (with ICDE).

[57] Stojanovic, L. (2004). Methods and tools for ontology evolution. Ph.D. thesis, University
of Karlsruhe.

[58] Troullinou, G., Roussakis, G., Kondylakis, H., Stefanidis, K., Flouris, G. (2016).
Understanding ontology evolution beyond deltas. In MEPDAW in EDBT/ICDT.

[59] Volkel, M., Winkler, W., Sure, Y., Kruk, S., Synak, M. (2005). SemVersion: A
versioning system for RDF and ontologies. In ESWC.

[60] Wadler, P. (1999). A formal semantics of patterns in XSLT. In Markup Technologies.
[61] Wang, Y., DeWitt, D. J., Cai, J. (2003). X-Diff: An effective change detection algorithm
for XML documents. In ICDE.

[62] Wang, F., Zaniolo, C. (2003). Temporal queries in XML document archives and web
warehouses. In TIME.

[63] Wang, F., Zaniolo, C. (2008). Temporal queries and version management for XML
document archives. In Data and Knowledge Engineering 65(2): 304-324.

[64] Zablith, F., Antoniou, G., d’Aquin, M., Flouris, G., Kondylakis, H., Motta, E.,
Plexousakis, D., Sabou, M. (2004). Ontology evolution: A process centric survey. In The
Knowledge Engineering Review 30(1): 45-75.

[65] Zeginis, D., Tzitzikas, Y., Christophides, V. (2011). On computing deltas of RDF/S
knowledge bases. In ACM Transactions on the Web 5(3): 14:1-14:36.

100

https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://www.w3.org/TR/2017/REC-xpath-31-20170321/

I'\ooodpr

causality query
change instance
change modeling
change definition
change detection
coarse-grained change

complex change

data/application-agnostic change
data/application-specific change

data evolution

data / dataset version
diff

evolution query
fine-grained change
first class citizen
framework

granularity
human-readable change
knowledge base
machine-readable change
pattern

query

guerying changes
reduction process
semistructured data
simple change
snapshot

temporal query

EPOTNUO AITIOTNTOG
OTLYUOTUTTO OAAOYNG
povtelomoinon oAloydv
0pIoUOC ALY DV
EVTOTIOUOC OAACLY DV
GUVOTITIKY aAAOYT|

ovvletn aAiayn

OAAOYT TTOV AYVOEL TNV EKAGTOTE EQOAPUOYN KOl OEOOUEVAL

oAoyn mov &lvol CUYKEKPWEVT YO TNV EKAGTOTE

EQUPLOYN Kot dESOUEVDL
eEEMEN dedopévav

£Kd00T1 6E0UEVMV / GUVOAOD BESOUEVIOV

dpopd

epOTNUO EEEMENC

AEmTOUEPNG ALY

TPAOTNG TAENS TOAITNG

mAaiclo

Babuog Aemtopépetag

oAdayn KoTovont omd Tov avlpwro
Baon yvooemv

LUNYOVIGTIKT aAAoyn

portipfo

EMEPMTNON / EPOTNLLA

EMEPMTNON OAAAYDV

dudkacio Tapaymyng GTyOTLTOV
nuwounpéva dedopéva

amAf oAloyn

oTydTLTO

YPOVIKO EPDTLLOL

101

102

Annex A: Simple Changes in RDF(S)

Knowledge Bases

Add_Type Class(a)

Add object a of type rdfs:Class.

Delete Type Class(a)

Delete object a of type rdfs:Class.

Rename_Class(a)

Rename class a to b.

Merge Classes(A, b)

Merge classes contained in A into b.

Merge_Classes_Into_Existing(A,b)

Merge classes in Ainto b, beA.

Split_Class(a,B)

Split class a into classes contained in B.

Split_Class_Into_Existing(a,B)

Split class a into classes in B, aB.

Add_Type Property(a)

Add object a of type rdf:property.

Delete Type Property(a)

Delete object a of type rdf.property.

Rename_Property(a,b)

Rename property a to b.

Merge Properties(A,b)

Merge properties contained in A into b.

Merge_Properties_Into_Existing(A, b)

Merge Ainto b, beA.

Split_Property(a,B)

Split property a into properties contained in B.

Split_Property_Into_Existing(a,B)

Split a into properties in B, aeB.

Add_Type_Individual(a)

Add object a of type rdfs:Resource.

Delete_Type_Individual(a)

Delete object a of type rdfs:Resource.

Merge Individuals(A,b)

Merge individuals contained in A into b.

Merge_Individuals_Into_Existing(A,b)

Merge Ainto b, beA.

Split_Individual(a,B)

Split individual a into individuals in B.

Split_Individual_Into_Existing(a,B)

Split a into individuals in B, aB.

Add_Superclass(a,b)

Parent b of class a is added.

Delete Superclass(a,b)

Parent b of class a is deleted.

Add_Superproperty(a,b)

Parent b of property a is added.

Delete Superproperty(a,b)

Parent b of property a is deleted.

Add Type To Individual(a,b)

Type b of individual a is added.

Delete Type From_Individual(a,b)

Type b of individual a is deleted.

Add Property Instance (al,a2,b)

Add property instance of property b.

Delete Property Instance(al,a2,b)

Delete instance of property b.

Add_Domain(a,b)

Domain b of property a is added.

Delete Domain(a,b)

Domain b of property a is deleted.

Add_Range(a,b)

Range b of property a is added.

Delete Range(a,b)

Range b of property a is deleted.

Add_Comment(a,b)

Comment b of object a is added.

Delete Comment(a,b)

Comment b of object a is deleted.

Change Comment(u,a,b)

Change comment of resource u froma to b.

Add Label(a,b)

Label b of object a is added.

Delete Label(a,b)

Label b of object a is deleted.

Change_Label(u,a,b)

Change label of resource u froma to b.

103

104

Annex B: Complex Change Definition Examples
In RDF(S) Knowledge Bases

Below, we demonstrate some of the complex change definitions for the EvoGen generated
data and the DBpedia data, as defined for the experimental evaluation of the complex change
definition language for RDF(S) knowledge bases presented in Chapter 3, Section 3.6.2.2.

1. Class instance additions/deletions

a. EvoGen

CREATE COMPLEX CHANGE Add UnderGrad Student (id) {
CHANGE LIST Add Type To Individual(id, type) ;
FILTER LIST type=ub:UndergraduateStudent ; } ;

b. DBpedia

CREATE COMPLEX CHANGE Add SoccerPlayer (id) {
CHANGE LIST Add Type To Individual (id, type) ;
FILTER LIST type=dbo:SoccerPlayer ; } ;

CREATE COMPLEX CHANGE Delete SoccerPlayer (id) {
CHANGE LIST Delete Type From Individual (id, type) ;
FILTER LIST type=dbo:SoccerPlayer ; } ;

2. Property instance additions/deletions

a. EvoGen

CREATE COMPLEX CHANGE Add Name (id, name) {
CHANGE LIST Add Property Instance(id, prop, name) ;
FILTER LIST prop=ub:name ; } ;

b. DBpedia

CREATE COMPLEX CHANGE Add Team(id, chId) {
CHANGE LIST Add Property Instance(id, prop, chId) ;
FILTER LIST prop=dbo:team ; } ;

CREATE COMPLEX CHANGE Delete Team(id, chId) {
CHANGE LIST Delete Property Instance(id, prop, chId) ;
FILTER LIST prop=dbo:team ; } ;

3. Groupings around added/deleted class instance URIs

a. EvoGen

CREATE COMPLEX CHANGE Add UnderGrad Student Profile(id, name,
univ, email, tel, adv) {
CHANGE LIST Add UnderGrad Student(id), Add Name (id, name),

Add _Studing University (id, univ), Add Email (id, email),
Add Telephone(id, tel), Add Advisor(id, adv) ? ; } ;

105

b. DBpedia

CREATE COMPLEX CHANGE Add SoccerPlayer with Details (id, ChIdl,
ChId2, ChId3, ChId4, ChId5) {

CHANGE LIST Add SoccerPlayer (id), Add CareerStationProp(id,
chIdl)+, Add Team(id, chId2)*, Add BirthPlace(id, chId3)™*,
Add Position(id, chId4)*, Add DeathPlace (id, chIdb)* ;

BINDING LIST union(chIdl) as ChIdl, union(chId2) as ChId2,
union(chId3) as ChId3, union(chId4) as ChId4, union(chId5) as
ChId5 ; } ;

CREATE COMPLEX CHANGE Delete SoccerPlayer with Details(id,
ChIdl, ChId2, ChId3, ChId4, ChId5) {

CHANGE LIST Delete SoccerPlayer (id),

Delete CareerStationProp(id, chIdl)+, Delete Team(id, chId2)~*,
Delete BirthPlace(id, chId3)*, Delete Position(id, chId4)*,
Delete DeathPlace(id, chId5)* ;

BINDING LIST union(chIdl) as ChIdl, union(chId2) as ChId2z,
union (chId3) as ChId3, union(chId4) as ChId4, union(chId5) as
ChId5 ; } ;

4. Batch additions/deletions

a. EvoGen

Add UnderGrad Students withCommon Advisor (Ids, adv) {
CHANGE LIST Add UnderGrad Student Profile(id, name, univ,
email, tel, adv) + ;
BINDING LIST union(id) as Ids ; } ;

b. DBpedia

CREATE COMPLEX CHANGE
Add SoccerPlayers withCommonPositions (Ids, ChId4) {

CHANGE LIST Add SoccerPlayer with Details(id, ChIdl, ChId2,
ChId3, ChId4, ChId5) + ;

BINDING LIST union(id) as Ids ; } ;

CREATE COMPLEX CHANGE

Delete SoccerPlayers withCommonPositions (Ids, ChId4) {
CHANGE LIST Delete SoccerPlayer with Details(id, ChIdl,
ChId2, ChId3, ChId4, ChId5) + ;

BINDING LIST union(id) as Ids ; } ;

5. Specializations

a. EvoGen

CREATE COMPLEX CHANGE Add Lecturer withWebAndGradCourses (id,
Courses) {

CHANGE LIST Add Lecturer Courses(id, Courses) ;

FILTER LIST for some w in Courses : (w, rdf:type,

ub:WebCourse) in Vaf, for some gc in Courses : (gc, rdf:type,

ub:GraduateCourse) in Vaf ; } ;

b. DBpedia

106

CREATE COMPLEX CHANGE Add SoccerPlayer withTeamIceland(id) {
CHANGE LIST Add SoccerPlayer with Details(id, ChIdl, ChIdz,
ChId3, ChId4, ChId5) ;
FILTER LIST for some c¢ in ChId2
c=<http://dbpedia.org/resource/Iceland national football team>
F I

CREATE COMPLEX CHANGE Delete SoccerPlayer withTeamIceland(id)
{

CHANGE LIST Delete SoccerPlayer with Details(id, ChIdl,
ChId2, ChId3, ChId4, ChId5) ;

FILTER LIST for some c¢ in ChId2
c=<http://dbpedia.org/resource/Iceland national football team>
S

6. Updates
b. DBpedia

CREATE COMPLEX CHANGE Update Team(id, chIdl, chId2) {
CHANGE LIST Add Team(id, chIdl), Delete Team(id, chId2) ; } ;

107

108

Annex C: Curriculum Vitae

PERSONAL INFORMATION

Theodora Galani

Knowledge and Database Systems Laboratory
School of Electrical and Computer Engineering
National Technical University of Athens

Iroon Polytechniou 9, Politechnioupoli Zographou
157 80 Athens, Hellas

Phone: (+30) 210 772 1402

Email Address: theodora@dblab.ece.ntua.gr

EDUCATION

2010 - 2021 PhD candidate.
National Technical University of Athens.
School of Electrical and Computer Engineering.
Knowledge and Database Systems Laboratory.
Thesis: Managing Evolution in Web Data through Complex Changes.
Supervisor: Professor Yannis Vassiliou.
Average grade of attended courses: 9.83/10 (Excellent)

2005 - 2010 National Technical University of Athens.
Diploma, School of Electrical and Computer Engineering.
Major: Computer Science.
Average grade: 8.02/10 (Very Good, top 14%)
Diploma Thesis: Development of a Proportional-Integral-Differential
Algorithm for the control of glucose concentration in patients with
Type 1 Diabetes Mellitus. Supervisor: Professor K. S. Nikita.Grade:10.

2005 Graduated from 1st High School of Aegina
Final grade: 19.6/20 (Excellent)

RESEARCH INTERESTS

data evolution, change management, web data.

PUBLICATIONS

Theodora Galani, George Papastefanatos, Yannis Stavrakas, Yannis Vassiliou (2021).
Defining and detecting complex changes on RDF(S) knowledge bases. In Journal on Data
Semantics. https://doi.org/10.1007/s13740-021-00136-9

Theodora Galani, George Papastefanatos, Yannis Stavrakas, Yannis Vassiliou (2021). Evo-
Path: Querying Data Evolution through Complex Changes. In10th International Conference
on Data Science, Technology and Applications.

Theodora Galani, George Papastefanatos, Yannis Stavrakas (2016). A Language for Defining
and Detecting Interrelated Complex Changes on RDF(S) Knowledge Bases. In 18th
International Conference on Enterprise Information Systems.

Theodora Galani, Yannis Stavrakas, George Papastefanatos, Giorgos Flouris.

Supporting Complex Changes in RDF(S) Knowledge Bases (2015). In 1st International
Workshop on Managing the Evolution and Preservation of the Data Web.

109

http://dblp.uni-trier.de/pers/hd/s/Stavrakas:Yannis
http://dblp.uni-trier.de/pers/hd/p/Papastefanatos:George
http://dblp.uni-trier.de/pers/hd/f/Flouris:Giorgos

Marios Meimaris, George Papastefanatos, Christos Pateritsas, Theodora Galani, Yannis
Stavrakas (2015). A Framework for Managing Evolving Information Resources on the Data
Web. CoRR abs/1504.06451.

Marios Meimaris, George Papastefanatos, Christos Pateritsas, Theodora Galani, Yannis
Stavrakas (2014). Towards a Framework for Managing Evolving Information Resources on
the Data Web. In 1st International Workshop on Dataset Profiling & Federated Search for
Linked Data.

George Papastefanatos, Yannis Stavrakas, and Theodora Galani. Capturing the History and
Change Structure of Evolving Data (2013). In 5th International Conference on Advances in
Databases, Knowledge, and Data Applications. Best Paper Award.

FOREIGN LANGUAGES

English Certificate of Proficiency in English (CPE) — University of Cambridge.
French Diplome d’ Etudes en Langue Francaise (DELF) ler degré (IFA).

WORKING EXPERIENCE

Jun. 2017-today Software engineer, Al Labs, EXUS LTD
Development and Technical Lead in European projects.
Technologies: Java, SpringBoot, ReactJs, MySql/Postgres/MongoDB

Oct. 2015-Mar.2016 Research assistant, Information Management Systems Institute (IMSI),
Athena RC.
EU-FP7 European Project Diachron.
Technologies: RDF(S), SPARQL, Virtuoso, Jena, Java.

Sept. 2014-Sept.2015 Research assistant, Information Management Systems Institute (IMSI),
Athena RC.
Research Project EICOS, Thales Program.
Technologies: XML, XPath/XQuery, Oracle Berkeley DB XML, Java.

TEACHING EXPERIENCE

2011 - 2017 Teaching assistant, School of Electrical and Computer Engineering,
National Technical University of Athens.
Course: Databases.
Instructors: Ass. Professor V. Kantere (2017-2018), Professor N.
Koziris (2016-2017), Professor Y. Vassiliou (2013-2016), Professors
Y. Vassiliou and Timos Sellis (2011-2013).

TECHNICAL SKILLS

» Java/SpringBoot, ReactJs/Javascript, HTML/CSS

» Sgl, MySql, Postgres

« Windows, Linux, Ubuntu

. RDF(S), OWL, SPARQL, Jena, Virtuoso

» XML/XPath/XQuery, Oracle Berkeley DB XML

. IntelliJ IDEA, Visual Studio Code, Eclipse, Microsoft Office & Visio, Matlab

HONOURS AND AWARDS

» Scholarships from the Special Account for Research Grants (ELKE NTUA) for
graduate studies (July 2011-June 2014).

» Scholarships from the Institute of Communication and Computer Systems (ICCS) for
doctoral research (October-December 2010, October-November 2011, January-April 2013,

110

http://dblp.uni-trier.de/pers/hd/m/Meimaris:Marios
http://dblp.uni-trier.de/pers/hd/p/Papastefanatos:George
http://dblp.uni-trier.de/pers/hd/p/Pateritsas:Christos
http://dblp.uni-trier.de/pers/hd/s/Stavrakas:Yannis
http://dblp.uni-trier.de/pers/hd/s/Stavrakas:Yannis
http://dblp.uni-trier.de/db/journals/corr/corr1504.html#MeimarisPPGS15

January-April 2014, January-May 2015, October 2015-April 2016, October 2016-June
2017).

» Member of the Technical Chamber of Greece (TEE).

» Achievement award from Eurobank EFG for being accepted at university (2005).

* Scholarship award for outstanding performance from the “Ath. Gkikas” foundation
(Aegina City, 2005).

» Achievement awards for secondary school years 1999-2005, for excellent school
performance.

CONFERENCES

July 2021 Speaker in DATA Conference, Online Streaming.

September 2016 Sub-reviewer in MEDI Conference, Almeria, Spain.

April 2016 Speaker in ICEIS Conference, Rome, Italy.

March 2014 Staff member in EDBT/ICDT Conference, Athens, Greece.

March 2014 Participant in EDF Conference, Athens, Greece.

July 2013 Sub-reviewer in DATA Conference, Reykjavik, Iceland.

June 2011 Staff member in ACM SIGMOD/PODS Conference. Athens, Greece.

111

112

