

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

DIVISION OF COMPUTER SCIENCE

Managing Evolution in Web Data through Complex

Changes

PhD Thesis

of

 Theodora Galani

Electrical and Computer Engineer

National Technical University of Athens (2010)

Athens, November 2021

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

Διαχείριση Εξέλιξης σε Δεδομένα Ιστού με τη Χρήση

Σύνθετων Αλλαγών

Διδακτορική Διατριβή

της

Θεοδώρας Γαλάνη

Διπλωματούχου Ηλεκτρολόγου Μηχανικού & Μηχανικού Υπολογιστών

Εθνικού Μετσόβιου Πολυτεχνείου (2010)

Συμβουλευτική Επιτροπή : Ι. Βασιλείου

 Β. Καντερέ

 Ι. Σταύρακας

Εγκρίθηκε από την επταμελή εξεταστική επιτροπή την 2α Νοεμβρίου 2021.

Ιωάννης Βασιλείου Βασιλική Καντερέ Ιωάννης Σταύρακας

Ομοτ. Καθηγητής Ε.Μ.Π. Επικ. Καθηγήτρια Ε.Μ.Π. Ερευνητής Α Ε.Κ. Αθηνά

Δημήτριος Τσουμάκος Παναγιώτης Βασιλειάδης Γεώργιος Παπαστεφανάτος

Αναπλ. Καθηγητής Ε.Μ.Π. Καθηγητής Παν. Ιωαννίνων Ερευνητής Β Ε.Κ. Αθηνά

 Γεώργιος Στάμου

 Αναπλ. Καθηγητής Ε.Μ.Π.

Αθήνα, Νοέμβριος 2021

. . .

Theodora Galani

Electrical and Computer Engineer, PhD, N.T.U.A.

© 2021 – All rights reserved

. . .

Θεοδώρα Γαλάνη

Διδάκτωρ Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

© 2021 – All rights reserved

 Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ

ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση

και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την

προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα.

Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να

απευθύνονται προς τον συγγραφέα.

 Η έγκριση της διδακτορικής διατριβής από την Ανώτατη Σχολή Ηλεκτρολόγων

Μηχανικών και Μηχανικών Υπολογιστών του Ε. Μ. Πολυτεχνείου δεν υποδηλώνει

αποδοχή των γνωμών του συγγραφέα (Ν. 5343/1932, Άρθρο 202).

 i

Abstract

The increasing amount of information published on the web poses new challenges for data

management. A central issue concerns evolution management. Data published on the web frequently

change, as errors may need to be fixed or new knowledge has to be incorporated. Data consumers

need to know what changed among versions, as well as how and why. Revisiting past data snapshots

and versions may not be enough for tracking and understanding the semantics of data evolution.

Such an activity may require a search that moves backwards and forwards in time, spread across

disparate parts of a database, and perform complex queries on the semantics of the changes that

modified the data, a task which may be even more intensive for large datasets. In our view, for

understanding data evolution changes should be treated as first-class-citizens. This means that

human-readable, semantically rich changes are supported, along with any relations between them.

Treating changes as first-class-citizens poses several challenges regarding modeling, defining,

detecting and querying changes. In this thesis, we study these directions and work upon two basic

standards for web data: RDF and XML.

First, we propose our approach on modeling, defining and detecting changes in the context of

RDF(S) knowledge bases. Overall, the proposed approach offers expressiveness and flexibility in

terms of evolution interpretation. The proposed complex changes provide additional information for

interpreting past data, via capturing relations between changes and allowing interpreting evolution in

multiple ways.

Specifically, we proposed modeling and supporting simple and complex changes, as well as any

relations among them, for interpreting evolution on RDF(S) knowledge-bases. Simple changes are

fine-grained and application/data-agnostic changes, while complex changes are coarse-grained and

application/data-specific changes. Furthermore, we formally defined an intuitive, user-friendly

language, based on change semantics for defining complex changes. We formally defined the

language syntax, via EBNF specification, as well as the language semantics. Moreover, we

presented a detection algorithm for the proposed complex change definition language. The dynamics

model followed is to detect changes between dataset versions. Therefore, the ultimate goal of

defining complex changes is identifying complex change instances between dataset versions, via the

complex change detection process. Also, the correctness of the proposed implementation with

 ii

respect to the language semantics is presented. Finally, we extensively evaluated the proposed

approach both qualitatively and experimentally. The qualitative evaluation showed the added value

of our approach compared to related works. The experimental evaluation showed the complex

change language expressiveness and the detection performance. The proposed language is proven to

be adequate in expressing useful changes and facilitating user in analyzing evolution. The response

time of the detection process is examined in terms of increasing dataset size. The experimental

evaluation is performed over both artificial and real data, proving the effectiveness of our approach.

Second, we propose a query language for querying both data versions and change structures in the

context of semistructured XML data. This work builds upon evo-graph, a model that captures

evolving data along with changes, and evoXML, an XML representation of evo-graph.

Specifically, we formally defined evo-path, an XPath extension for performing time-aware and

change-aware queries on evo-graph. Evo-path allows querying both data history and change

structure in a uniform way, supporting temporal, evolution and causality queries. We presented the

evo-path syntax, we defined evo-path formal semantics and we presented an implementation based

on a formal translation of evo-path into equivalent XPath expressions over evoXML. Also, we

implemented and experimentaly evaluated the basic concepts of evo-graph in the C2D framework,

using XML technologies. The space efficiency of evoXML is examined for various configurations,

as well as the performance of the reduction process, the process for generating a snapshot holding

under a specific time instance from evo-graph.

Keywords: change modeling, change definition language, change detection, RDF(S), querying data

evolution, XML, XPath

 iii

Περίληψη

Ο αυξανόμενος όγκος πληροφοριών που δημοσιεύονται στο διαδίκτυο δημιουργεί νέες προκλήσεις

για τη διαχείριση δεδομένων. Ένα κεντρικό ζήτημα αφορά τη διαχείριση της εξέλιξης. Τα δεδομένα

που δημοσιεύονται στον ιστό συχνά αλλάζουν, καθώς πιθανά σφάλματα ενδέχεται να πρέπει να

διορθωθούν ή να ενσωματωθεί νέα γνώση. Οι χρήστες των δεδομένων πρέπει να γνωρίζουν τί

άλλαξε μεταξύ των εκδόσεων, καθώς και πώς και γιατί. Συνεπώς, η ανάγκη για τη διατήρηση των

εκδόσεων δεδομένων και τον προσδιορισμό των αλλαγών γίνεται εμφανής.

Συγκεκριμένα, η επανεξέταση προηγούμενων στιγμιότυπων και εκδόσεων δεδομένων μπορεί να μην

είναι αρκετή για την παρακολούθηση και κατανόηση της σημασιολογίας της εξέλιξης των

δεδομένων. Μια τέτοια δραστηριότητα μπορεί να απαιτεί μια αναζήτηση που κινείται προς τα πίσω

και προς τα εμπρός στο χρόνο, εξαπλώνεται σε διαφορετικά μέρη μιας βάσης δεδομένων και εκτελεί

σύνθετα ερωτήματα σχετικά με τη σημασιολογία των αλλαγών που τροποποίησαν τα δεδομένα, μια

εργασία που μπορεί να είναι ακόμη πιο απαιτητική για μεγάλα σύνολα δεδομένων. Μια τυπική

προσέγγιση για τη διαχείριση των αλλαγών είναι ο υπολογισμός των διαφορών μεταξύ των

εκδόσεων δεδομένων (Berners-Lee and Connolly (2004) [4]; Volkel et al. (2005) [59]; Franconi et

al. (2010) [21]; Zeginis et al. (2011) [65]; Noy and Musen (2002) [43]; Klein (2004) [33]; Marian et

al. (2001) [38]; Cobena et al. (2002) [17]; Wang et al. (2003) [61]). Ωστόσο, αυτή η προσέγγιση

οδηγεί σε μια μηχανιστική αναπαράσταση των αλλαγών που δεν παρέχει καμία διαισθητική

ερμηνεία σχετικά με τη σημασιολογία των αλλαγών ή πιθανών σχέσεων μεταξύ τους. Επομένως, η

πρόθεση ή η αιτία μιας αλλαγής δεν μπορεί να αποτυπωθεί, και πιο σημαντικά το γεγονός ότι μια

αλλαγή μπορεί να είναι μέρος μιας μεγαλύτερης αλλαγής σε ένα σύνολο δεδομένων.

Κατά την άποψή μας, για την κατανόηση της εξέλιξης των δεδομένων οι αλλαγές θα πρέπει να

αντιμετωπίζονται ως πρώτης τάξης πολίτες. Αυτό σημαίνει ότι κατανοητές από τον άνθρωπο,

σημασιολογικά πλούσιες αλλαγές υποστηρίζονται, μαζί με τυχόν σχέσεις μεταξύ τους. Η

αντιμετώπιση των αλλαγών ως πρώτης τάξης πολίτες θέτει αρκετές προκλήσεις σχετικά με τη

μοντελοποίηση, τον ορισμό, τον εντοπισμό και την επερώτηση αλλαγών.

Όσον αφορά στη μοντελοποίηση αλλαγών, οι αλλαγές θα πρέπει να μοντελοποιηθούν ως οντότητες

που διατηρούν σημασιολογικά και δομικά χαρακτηριστικά. Προς αυτήν την κατεύθυνση, δύο βασικά

 iv

ζητήματα πρέπει να ληφθούν υπόψη: ο βαθμός λεπτομέρειας των αλλαγών και η σημασιολογία των

αλλαγών. Όσον αφορά το βαθμό λεπτομέρειας, οι λεπτομερείς αλλαγές έχουν το πλεονέκτημα να

περιγράφουν θεμελιακές αλλαγές, ενώ οι συνοπτικές αλλαγές παρέχουν περισσότερη σημασιολογία

και περιεκτικότητα, ομαδοποιώντας τις θεμελιακές αλλαγές σε λογικές μονάδες. Όσον αφορά τη

σημασιολογία, οι αλλαγές που αγνοούν την εκάστοτε εφαρμογή και δεδομένα περιγράφουν μεταβολές

που ενδέχεται να εμφανιστούν σε ένα συγκεκριμένο μοντέλο αναπαράστασης, ενώ οι αλλαγές που

είναι συγκεκριμένες για την εκάστοτε εφαρμογή και δεδομένα αναπαριστούν μεταβολές που

καθορίζονται από τον χρήστη και ταιριάζουν σε συγκεκριμένα σενάρια χρήσης. Το μοντέλο

αλλαγών που θα πρέπει να ακολουθείται πρέπει να είναι όσο το δυνατόν πιο ευέλικτο και

εκφραστικό.

Όσον αφορά στον ορισμό αλλαγών, η υποστήριξη αλλαγών που καθορίζονται από τον χρήστη είναι

απαραίτητη προϋπόθεση για αλλαγές που αφορούν συγκεκριμένες εφαρμογές/δεδομένα, οι οποίες

εμπλουτίζουν σημαντικά την ερμηνεία της εξέλιξης. Επιπλέον, επιτρέπονται πολλαπλές ερμηνείες

της εξέλιξης σε μια συγκεκριμένη εφαρμογή ή σύνολο δεδομένων, δεδομένου ότι οι επιμελητές ή οι

χρήστες των δεδομένων μπορεί να ενδιαφέρονται για διαφορετικά τμήματα της εξέλιξης ή να έχουν

διαφορετική κατανόηση για μεταβολές που έχουν εφαρμοστεί. Επίσης, η υποστήριξη αλλαγών που

καθορίζονται από τον χρήστη καθιστά τους ορισμούς των αλλαγών επαναχρησιμοποιήσιμους,

διευκολύνοντας περαιτέρω τη διαδικασία ορισμού νέων αλλαγών. Σε αυτή την περίπτωση, η

ιεραρχική δομή που δημιουργείται καθώς μια αλλαγή χτίζεται πάνω σε άλλες καταδεικνύει σχέσεις

και εξαρτήσεις μεταξύ τους. Προς αυτήν την κατεύθυνση, απαιτείται μια ειδική γλώσσα για τον

ορισμό των αλλαγών.

Όσον αφορά στον εντοπισμό αλλαγών, όπως ήδη συζητήθηκε, μια τυπική προσέγγιση για το

χειρισμό των αλλαγών μεταξύ των εκδόσεων συνόλου δεδομένων είναι ο υπολογισμός των

διαφορών μεταξύ τους. Ομοίως, καθώς νέες εκδόσεις δεδομένων κυκλοφορούν περιοδικά,

στιγμιότυπα κατανοητών από τον άνθρωπο, σημασιολογικά πλούσιων αλλαγών μπορούν να

εντοπιστούν μεταξύ τους. Ειδικά, για την περίπτωση μιας ειδικής γλώσσας για τον ορισμό των

αλλαγών, θα πρέπει να διερευνηθεί πώς αυτοί οι ορισμοί των αλλαγών μπορούν να

χρησιμοποιηθούν για την παρακολούθηση σχετικών μεταβολών μεταξύ εκδόσεων δεδομένων.

Επομένως, οι κατάλληλοι αλγόριθμοι για τον εντοπισμό στιγμιότυπων αλλαγών ως πρώτης τάξης

πολίτες μεταξύ εκδόσεων δεδομένων θα πρέπει να διερευνηθούν.

Όσον αφορά στην επερώτηση αλλαγών, επερωτήσεις που αφορούν την εξέλιξη δεδομένων μπορούν

επίσης να παρέχουν πληροφορία σχετικά με τον τρόπο που άλλαξαν τα δεδομένα. Εκτός από τα

χρονικά ερωτήματα [26][49] που επιστρέφουν εκδόσεις ιστορικών δεδομένων, δεδομένου ότι οι

αλλαγές μοντελοποιούνται ως πρώτης τάξης πολίτες, μπορούν επίσης να αξιοποιηθούν στα πλαίσια

 v

επερωτήσεων. Ιδανικά, επερωτήσεις που αφορούν την εξέλιξη δεδομένων θα πρέπει να βασίζονται

τόσο σε δεδομένα όσο και σε αλλαγές. Οι αλλαγές, όπως και τα δεδομένα, μπορούν να εμφανιστούν

στο σώμα μιας επερώτησης για να εκφράσουν σύνθετες συνθήκες, όπως το γεγονός ότι μια

οντότητα έχει τροποποιηθεί με συγκεκριμένο τρόπο, ή μπορούν να επιστραφούν από την επερώτηση

προκειμένου να ανακτηθούν επακριβώς τα στιγμιότυπα των αλλαγών που έχουν επηρεάσει

συγκεκριμένα δεδομένα. Προς αυτήν την κατεύθυνση, ένα μοντέλο που καταγράφει τόσο τις

εκδόσεις δεδομένων όσο και τις αλλαγές είναι απαραίτητη προϋπόθεση για την έκφραση τέτοιων

ερωτημάτων. Επίσης, θα πρέπει να διερευνηθεί μια γλώσσα επερωτήσεων με συγκεκριμένα δομικά

στοιχεία για να υποστηριχθούν τόσο χρονικές συνθήκες όσο και συνθήκες που αφορούν τις αλλαγές.

Στην παρούσα διατριβή, μελετάμε τις παραπάνω κατευθύνσεις και εργαζόμαστε πάνω σε δύο

βασικά πρότυπα για δεδομένα στον ιστό: το RDF [34] και το XML [7].

Οι κατευθύνσεις της μοντελοποίησης, ορισμού και εντοπισμού αλλαγών έχουν μελετηθεί στο

πλαίσιο των βάσεων γνώσεων RDF(S). Οι μέθοδοι που προτείναμε και τα αποτελέσματα που

παράχθηκαν δημοσιεύθηκαν στο [23], ενώ στο [22] και [24] δημοσιεύτηκαν πρωταρχικές εργασίες.

Συγκεκριμένα, προτείναμε τη μοντελοποίηση και την υποστήριξη απλών και σύνθετων αλλαγών,

καθώς και τυχόν σχέσεων μεταξύ τους, για την ερμηνεία της εξέλιξης σε βάσεις γνώσεων RDF(S).

Οι απλές αλλαγές είναι λεπτομερείς αλλαγές και αγνοούν την εκάστοτε εφαρμογή και δεδομένα,

πράγμα που σημαίνει ότι δεν περιλαμβάνουν άλλες αλλαγές και η σημασιολογία τους ταιριάζει με

το μοντέλο δεδομένων RDF. Οι σύνθετες αλλαγές είναι συνοπτικές αλλαγές που αφορούν την

εκάστοτε εφαρμογή και δεδομένα, πράγμα που σημαίνει ότι επιδεικνύουν δομή και σημασιολογία

κατάλληλη για κάθε συγκεκριμένη εφαρμογή ή σύνολο δεδομένων. Αν και η μοντελοποίηση

αλλαγών κατανοητών από τον άνθρωπο, μέσω θεμελιωδών αλλαγών και ομαδοποιήσεων αυτών

εξετάζεται στη βιβλιογραφία (Klein (2004) [33]; Stojanovic (2004) [57]; Papavasileiou et al. (2013)

[45]; Roussakis et al. (2015) [53]), ενώ άλλοι (Plessers, De Troyer and Casteleyn (2007) [47];

Roussakis et al. (2015) [53]) θεωρούν επίσης αλλαγές οριζόμενες από τον χρήστη, οι σχέσεις και οι

εξαρτήσεις μεταξύ σύνθετων αλλαγών δεν υποστηρίζονται στις υπάρχουσες προσεγγίσεις.

Επιπλέον, ορίσαμε τυπικά μια διαισθητική, φιλική προς το χρήστη γλώσσα, βασισμένη στη

σημασιολογία των αλλαγών για τον ορισμό σύνθετων αλλαγών. Συγκεκριμένα, ορίσαμε τυπικά το

συντακτικό της γλώσσας, μέσω της προδιαγραφής EBNF, καθώς και τη σημασιολογία της γλώσσας.

Όλες οι έννοιες της γλώσσας παρουσιάζονται λεπτομερώς και αρκετά παραδείγματα επεξηγούν

αυτές τις έννοιες. Εν γένει, οι σύνθετες αλλαγές ορίζονται μέσω μοτίβων πάνω από απλές αλλαγές

και ήδη ορισμένες σύνθετες αλλαγές.

 vi

Επιπρόσθετα, παρουσιάσαμε έναν αλγόριθμο εντοπισμού στιγμιοτύπων αλλαγών για την

προτεινόμενη γλώσσα ορισμού σύνθετων αλλαγών. Το δυναμικό μοντέλο που ακολουθείται αφορά

στον εντοπισμό αλλαγών μεταξύ των εκδόσεων ενός συνόλου δεδομένων. Επομένως, ο απώτερος

στόχος του ορισμού σύνθετων αλλαγών είναι ο εντοπισμός στιγμιοτύπων σύνθετων αλλαγών μεταξύ

των εκδόσεων δεδομένων, μέσω της διαδικασίας εντοπισμού σύνθετων αλλαγών. Παρουσιάζουμε

λεπτομερώς τον αλγόριθμο εντοπισμού, καθώς και την ορθότητα του προτεινόμενου αλγορίθμου σε

σχέση με τη σημασιολογία της γλώσσας.

Η προτεινόμενη προσέγγιση αξιολογήθηκε εκτενώς τόσο ποιοτικά όσο και πειραματικά. Στην

ποιοτική αξιολόγηση, η προσέγγισή μας συγκρίνεται με συναφείς εργασίες ως προς βασικά

χαρακτηριστικά και κατά πόσο αυτά υποστηρίζονται, δείχνοντας την προστιθέμενη αξία της

προσέγγισής μας. Στην πειραματική αξιολόγηση, εξετάζεται η εκφραστικότητα της γλώσσας

ορισμού σύνθετων αλλαγών και η επίδοση του αλγορίθμου εντοπισμού. Αξιολογείται εάν τα

προτεινόμενα χαρακτηριστικά της γλώσσας είναι επαρκή για την έκφραση χρήσιμων αλλαγών και

πώς οι σύνθετες αλλαγές διευκολύνουν τον χρήστη στην ανάλυση της εξέλιξης. Επίσης, ο χρόνος

απόκρισης της διαδικασίας εντοπισμού εξετάζεται σε σχέση με την αύξηση του μεγέθους του

συνόλου δεδομένων. Η αξιολόγηση πραγματοποιείται τόσο σε τεχνητά όσο και σε πραγματικά

δεδομένα, αποδεικνύοντας την αποτελεσματικότητα της προσέγγισής μας.

Συνολικά, η προτεινόμενη προσέγγιση προσφέρει εκφραστικότητα και ευελιξία ως προς την

ερμηνεία της εξέλιξης. Η προτεινόμενη μοντελοποίηση σύνθετων αλλαγών παρέχει πρόσθετες

πληροφορίες για την ερμηνεία παρελθοντικών δεδομένων, επιτρέπει την ερμηνεία της εξέλιξης με

πολλαπλούς τρόπους, ενώ η αποτύπωση σχέσεων μεταξύ σύνθετων αλλαγών είναι ένα επιπλέον

χαρακτηριστικό που εμπλουτίζει την εκφραστικότητα των σύνθετων αλλαγών.

Η κατεύθυνση της επερώτησης αλλαγών έχει μελετηθεί στο πλαίσιο των ημιδομημένων δεδομένων

XML. Η προσέγγιση που προτείναμε βασίζεται στο evo-graph [55], ένα μοντέλο που καταγράφει

εξελισσόμενα δεδομένα μαζί με τις αλλαγές, και το evoXML [56], μια XML αναπαράσταση του evo-

graph. Αξίζει να σημειωθεί ότι στο evo-graph οι αλλαγές μοντελοποιούνται χρησιμοποιώντας απλές

(εκεί ονομάζονται βασικές) και σύνθετες αλλαγές. Οι μέθοδοι που προτείναμε δημοσιεύθηκαν στο

[25], ενώ μια πρώτη αξιολόγηση σχετικά με το evo-graph δημοσιεύθηκε στο [44].

Συγκεκριμένα, ορίσαμε τυπικά την evo-path, μια επέκταση της XPath [51] για την εκτέλεση

επερωτήσεων βάσει του χρόνου και των αλλαγών στο evo-graph. Η Evo-path επιτρέπει την

επερώτηση τόσο του ιστορικού των δεδομένων όσο και της δομής των αλλαγών με ενιαίο τρόπο,

εκμεταλλευόμενη τις αλλαγές, ανακτώντας και να συσχετίζοντας δεδομένα που διαφορετικά είναι

άσχετα μεταξύ τους. Υποστηρίζονται ερωτήματα χρονικά, ερωτήματα εξέλιξης και ερωτήματα

 vii

αιτιότητας. Παρουσιάσαμε το συντακτικό της evo-path, ορίσαμε τυπικά τη σημασιολογία της evo-

path και παρουσιάσαμε μια υλοποίηση που βασίζεται σε μια τυπική μετάφραση της evo-path σε

ισοδύναμες εκφράσεις XPath πάνω στο evoXML.

Τέλος, υλοποιήσαμε και αξιολογήσαμε πειραματικά τις βασικές έννοιες του evo-graph στο πλαίσιο

«C2D», χρησιμοποιώντας τεχνολογίες XML. Συγκεκριμένα, αξιολογήσαμε την αποδοτικότητα σε

χώρο του evoXML για διάφορες περιπτώσεις. Αξιολογήσαμε επίσης την επίδοση της διαδικασίας

παραγωγής ενός στιγμιότυπου που αντιστοιχεί σε μια συγκεκριμένη χρονική στιγμή από το evo-

graph, σε σχέση με το μέγεθος του αρχείου evoXML. Η αξιολόγηση που πραγματοποιήθηκε έδειξε

ποιοι παράγοντες που χαρακτηρίζουν τα δεδομένα επηρεάζουν το μέγεθος του evoXML και τη

διαδικασία παραγωγής ενός στιγμιότυπου.

Λέξεις Κλειδιά: μοντελοποίηση αλλαγών, γλώσσα ορισμού αλλαγών, εντοπισμός αλλαγών,

RDF(S), επερώτηση εξελισσόμενων δεδομένων, XML, XPath

 viii

 ix

Acknowledgements

I would like to wholeheartedly thank my supervisor Prof. Yannis Vassiliou for his continuous

support and encouragement. I also appreciate the contributions of Dr. Yannis Stavrakas and Dr.

George Papastefanatos throughout our collaboration. I would like also to thank Assistant Prof.

Verena Kantere for serving as a member of my advisory committee.

I would like to thank Prof. Timos Sellis for being my supervisor at the early years of my PhD studies

and later for being a member of my advisory committee.

I would like to thank Associate Prof. Dimitrios Tsoumakos, Prof. Panos Vassiliadis and Associate

Prof. Georgios Stamou for serving as members of my examination committee.

I would like to thank the anonymous reviewers of the publications stemming from this thesis, who

helped me shape this work with their valuable comments.

I also thank the Special Account for Research Funding (E.L.K.E.) of N.T.U.A for supporting me

with a scholarship for my PhD studies.

Lastly, I would like to thank my family, and especially my sister Mary, for their love, support and

encouragement during all the years of my studies.

 x

 xi

Table of Contents

Abstract ... i

Περίληψη ... iii

Acknowledgements .. ix

Table of Contents ... xi

List of Figures ... xv

List of Tables .. xvii

Chapter 1 - Introduction .. 1

1.1. Motivation ... 1

1.2. Contributions ... 3

1.3. Thesis Outline .. 5

Chapter 2 - Related Work .. 7

2.1. Modeling and Detecting Changes in Knowledge Bases... 7

2.1.1. Machine-readable changes ... 7

2.1.2. Human-readable changes .. 11

2.2. Modeling and Querying Evolution in Semistructured Data 16

2.2.1. Version-based approaches .. 16

2.2.2. Temporal approaches ... 19

2.2.3. Other approaches ... 22

Chapter 3 - Defining and Detecting Complex Changes on RDF(S) Knowledge Bases 25

3.1. Introduction ... 25

3.2. Motivating Example ... 27

3.3. Simple and Complex changes on RDF(S) Knowledge Bases 30

3.4. A Language for Defining Complex Changes .. 33

3.4.1. Syntax .. 33

3.4.2. Semantics ... 37

3.4.2.1. Baseline Algebra and Semantics ... 38

3.4.2.2. Extended Algebra and Semantics ... 41

3.4.3. Illustrative Examples .. 43

3.5. Complex Change Detection .. 45

 xii

3.5.1. Algorithm .. 46

3.5.2. RDF(S) Change Representation .. 47

3.5.3. SPARQL Query Generation ... 48

3.5.4. Change Instance Generation ... 53

3.5.5. Complex Change Detection Correctness ... 55

3.6. Evaluation.. 57

3.6.1. Qualitative Evaluation .. 58

3.6.2. Experimental Evaluation .. 59

3.6.2.1. Implementation, datasets and settings ... 59

3.6.2.2. Language expressiveness .. 61

3.6.2.3. Detection performance ... 66

3.6.2.4. Results summary .. 69

Chapter 4 - Querying Data Versions and Change Structures on XML Data 71

4.1. Introduction ... 71

4.2. Motivating Example ... 73

4.3. Preliminaries: Modeling Data Versions and Changes on Evo-Graph 74

4.4. EvoPath Query Language ... 79

4.4.1. Syntax .. 79

4.4.2. Example Queries .. 81

4.4.3. Semantics ... 82

4.4.4. Implementation .. 84

4.5. Evaluating the C2D Framework ... 87

4.5.1. The C2D Framework .. 87

4.5.2. Evaluation .. 88

4.5.2.1. Experimental Setting .. 88

4.5.2.2. Results ... 89

Chapter 5 - Conclusions and Future Work ... 93

5.1. Thesis Conclusions .. 93

5.2. Future Work... 94

Bibliography ... 97

Γλωσσάρι .. 101

Annex A: Simple Changes in RDF(S) Knowledge Bases ... 103

 xiii

Annex B: Complex Change Definition Examples in RDF(S) Knowledge Bases 105

Annex C: Curriculum Vitae ... 109

 xiv

 xv

List of Figures

Figure 1 Sample part of DBpedia ontology, initial version (Vbef) and version after

modifications (Vaf) ………………………………………………………………………... 28

Figure 2 Hierarchy of detected simple and complex change instances (in grey and white fill

respectively) for the sample part of DBpedia ontology presented in Figure 1 ..………...... 29

Figure 3 Outline of the proposed RDF(S) change representation ...……………………… 48

Figure 4 Snap-models of diabetes classification before (left) and after (right) revision and
the relevant evo-graph (middle) ...………………………………………………………… 74

Figure 5 Effect of snap change operations on the evo-graph ...……………………………77

Figure 6 C2D framework basic flow overview ...………………………………………….88

Figure 7 evoXML size (a), (b), accumulative snapshot size (c) and current snapshot
reduction time (d) per version for various configurations ..………………………………..89

 xvi

 xvii

List of Tables

Table 1 The EBNF specification of the complex change definition language....................................... 35

Table 2 SPARQL query for the detection of complex change Add_Academic_Professional............... 53

Table 3 Qualitative comparison of this approach with related work.. 59

Table 4 EvoGen generated datasets.. 60

Table 5 DBpedia datasets .. 61

Table 6 Categories and characteristics of the defined complex changes on EvoGen data 63

Table 7 Number of complex change instances per category detected in EvoGen generated datasets .. 64

Table 8 Categories and characteristics of the defined complex changes on DBpedia data 64

Table 9 Number of complex change instances per category detected in DBpedia datasets 65

Table 10 Number of complex change instances per level in hierarchy per EvoGen and DBpedia dataset
... 65

Table 11 Total detection time (seconds), number of added triples and number of detected complex
changes instances for each EvoGen generated dataset ... 68

Table 12 Total detection time (seconds), number of added triples and number of detected complex

changes instances per complex change category for each EvoGen generated dataset 68

Table 13 Total detection time (seconds), number of added triples and number of detected complex

changes instances for each DBpedia dataset .. 69

Table 14 Total detection time (seconds), number of added triples and number of detected complex

changes instances per complex change category for each DBpedia dataset .. 69

Table 15 EvoXML for time instance 1 .. 78

Table 16 Formal Semantics of Evo-Path ... 83

Table 17 Evo-Path to XPath translation .. 84

 xviii

 1

Chapter 1

Introduction

1.1. Motivation

The increasing amount of information published on the web poses new challenges for data

management. A central issue concerns evolution management. Data published on the web

frequently change, as errors may need to be fixed or new knowledge has to be incorporated.

Data consumers need to know what changed among versions, as well as how and why. Thus,

the need for maintaining data versions and identifying changes becomes evident.

In particular, revisiting past data snapshots and versions may not be enough for tracking and

understanding the semantics of data evolution. Such an activity may require a search that

moves backwards and forwards in time, spread across disparate parts of a database, and

perform complex queries on the semantics of the changes that modified the data, a task which

may be even more intensive for large datasets. A typical approach for handling changes is

computing diffs between dataset versions (Berners-Lee and Connolly (2004) [4]; Volkel et al.

(2005) [59]; Franconi et al. (2010) [21]; Zeginis et al. (2011) [65]; Noy and Musen (2002)

[43]; Klein (2004) [33]; Marian et al. (2001) [38]; Cobena et al. (2002) [17]; Wang et al.

(2003) [61]). However, this approach leads to a machine-readable representation of changes

that does not provide any intuition about change semantics or possible relations between

them. Therefore, the intention or the cause of a change cannot be captured, and more

importantly the fact that a change may be part of a larger change in a dataset.

In our view, for understanding data evolution changes should be treated as first-class-citizens.

This means that human-readable, semantically rich changes are supported, along with any

relations between them. Treating changes as first-class-citizens poses several challenges

regarding modeling, defining, detecting and querying changes.

 2

Modeling changes. Changes should be modeled as entities that retain semantic and structural

characteristics. Towards this direction, two basic issues must be taken into consideration:

granularity of changes and semantics of changes. As for granularity, fine-grained changes

have the advantage of describing primitive changes, while coarse-grained changes provide

more semantics and conciseness by grouping primitive changes into logical units. As for

semantics, application/data-agnostic changes describe modifications that may appear in a

specific representation model, while application/data-specific changes represent user-defined

changes that suit on specific use-case scenarios. The change model to be followed should be

as much flexible and expressive as possible.

Defining changes. Supporting user-defined changes is a prerequisite for application/data-

specific changes, which significantly enrich evolution interpretation. Even more, multiple

interpretations of evolution on a specific application or dataset are allowed, since data

curators or consumers may be interested in different parts of evolution or have different

understanding on applied modifications. Also, supporting user-defined changes makes their

definitions reusable, further facilitating the process of defining new changes. In this case, the

hierarchical structure created while a change is built on top of others demonstrates relations

and dependencies among them. Towards this direction, a dedicated language for defining

changes is needed.

Detecting changes. As already discussed a typical approach for handling changes among

versions is computing diffs between them. Similarly, as new dataset versions are periodically

released, instances of human-readable and semantic rich changes may be detected between

them. Especially, in case of a dedicated language for defining changes, it should be

investigated how these change definitions may be used for tracking relevant modifications

between versions. Therefore, appropriate algorithms for detecting change instances as first-

class-citizens among dataset versions should be investigated.

Querying changes. Querying data evolution may also provide insights on how data changed.

Apart from temporal queries [26][49] that return historical data versions, since changes are

modeled as first-class-citizens, they can be also exploited in terms of querying. Ideally,

querying data evolution should be based on data as much as on changes. Changes, like data,

can appear in the query body to express complex conditions, like the fact that an entity has

been modified in a specific manner, or can be returned by the query in order to retrieve

explicit change instances that may have affected specific data. Towards this direction, a

model that captures both data versions and changes is a prerequisite in order to express such

 3

queries. Also, a query language with specific constructs to support both temporal and change

based conditions should be investigated.

1.2. Contributions

In this thesis, we study the above directions and work upon two basic standards for web data:

RDF [34] and XML [7]. The contributions of this thesis are summarized below.

The directions of modeling, defining and detecting changes have been studied in the context

of RDF(S) knowledge bases. The methods that we proposed and the results obtained were

published in [23], while in [22] and [24] a preliminary and a visionary work were published

respectively.

1. We proposed modeling and supporting simple and complex changes, as well as any

relations among them, for interpreting evolution on RDF(S) knowledge-bases. Simple

changes are fine-grained and application/data-agnostic changes, meaning that they do

not comprise of other changes and their semantics suit to the RDF data model.

Complex changes are coarse-grained and application/data-specific changes, meaning

that they demonstrate structure and semantics suitable to each specific application or

dataset. Although modeling human-readable changes via primitive changes and

groupings of them is considered in literature (Klein (2004) [33]; Stojanovic (2004)

[57]; Papavasileiou et al. (2013) [45]; Roussakis et al. (2015) [53]), while others

(Plessers, De Troyer and Casteleyn (2007) [47]; Roussakis et al. (2015) [53]) consider

user-defined changes as well, relations and dependencies among complex changes are

not supported in any of the already existing approaches.

2. We formally defined an intuitive, user-friendly language, based on change semantics

for defining complex changes. Specifically, we formally defined the language syntax,

via EBNF specification, as well as the language semantics. All language concepts are

presented in detail and several examples illustrate these concepts. Overall, complex

changes are defined via patterns over simple changes and already defined complex

changes.

3. We presented a detection algorithm for the proposed complex change definition

language. The dynamics model followed is to detect changes between dataset

versions. Therefore, the ultimate goal of defining complex changes is identifying

 4

complex change instances between dataset versions, via the complex change

detection process. We present in detail the detection algorithm, as well as the

correctness of the proposed implementation with respect to the language semantics.

4. We extensively evaluated the proposed approach both qualitatively and

experimentally. In qualitative evaluation, our approach is compared to related works

regarding basic features and characteristics they support, showing the added value of

our approach. In experimental evaluation, complex change language expressiveness

and detection performance are examined. It is evaluated whether the proposed

structures are adequate in expressing useful changes and how complex changes

facilitate user in analyzing evolution. Also, the response time of the detection process

is examined in terms of increasing dataset size. The evaluation is performed over both

artificial and real data, proving the effectiveness of our approach.

Overall, the proposed approach offers expressiveness and flexibility in terms of evolution

interpretation. The proposed modeling of complex changes provides additional information

for interpreting past data, allows interpreting evolution in multiple ways, while capturing

relations among complex changes is an additional feature that enriches the complex changes'

expressivity.

The direction of querying changes has been studied in the context of semistructured XML

data. The approach that we proposed builds upon previous work done in [55][56], regarding

evo-graph, a model that captures evolving data along with changes, and evoXML, an XML

representation of evo-graph. It is worth noting that in evo-graph changes are modeled using

simple (there named as basic) and complex changes. The methods that we proposed were

published in [25], while some first evaluations regarding evo-graph were published in [44].

5. We formally defined evo-path, an XPath [51] extension for performing time-aware

and change-aware queries on evo-graph. Evo-path allows querying both data history

and change structure in a uniform way, taking advantage of changes in order to

retrieve and relate data that are otherwise irrelevant to each other. Temporal,

evolution and causality queries are supported. We presented the evo-path syntax, we

defined evo-path formal semantics and we presented an implementation based on a

formal translation of evo-path into equivalent XPath expressions over evoXML.

6. We implemented and experimentally evaluated the basic concepts of evo-graph in the

C2D framework, using XML technologies. Specifically, we evaluated the space

 5

efficiency of evoXML for various configurations. We also evaluated the performance

of the reduction process, the process for generating a snapshot holding under a

specific time instance from evo-graph, with respect to the size of the evoXML file.

The evaluation performed indicated which factors that characterize the data affect the

evoXML size and the reduction process.

1.3. Thesis Outline

The remainder of this thesis is structured as follows: Chapter 2 presents the related work

which is categorized in two main pillars: modeling and detecting changes in knowledge bases,

and modeling and querying data evolution in semistructured data. Chapter 3 presents our

work in defining and detecting complex changes in RDF(S) knowledge bases. Specifically,

we present: the proposed simple and complex changes concepts, the formal specification of

our complex change definition language, the relevant detection algorithm and the details of

the evaluation performed. Chapter 4 presents our work in querying evolving data and changes

in XML. Specifically, evo-path syntax, semantics and implementation are presented, as well

as our first experiments on evo-graph. Chapter 5 concludes this thesis and presents future

research steps.

 6

 7

Chapter 2

Related Work

2.1. Modeling and Detecting Changes in Knowledge Bases

2.1.1. Machine-readable changes

A number of works focus on computing the differences between knowledge bases in terms of

insertions and deletions, which are not concise neither intuitive. They focus on machine-

readable changes and some of them introduce useful properties for the proposed deltas.

In Berners-Lee and Connolly (2004) [4] the problem of comparing two RDF graphs,

generating a set of differences, and updating a graph from a set of differences is discussed.

Generating differences between RDF graphs is straightforward when all nodes are named: the

delta between the RDF graphs is a pair of insertions and deletions. When not all nodes are

named, finding the largest common sub-graphs becomes a case of the graph isomorphism

problem. However, in a wide set of practical cases, one can efficiently generate a delta. When

named and unnamed nodes are mixed, but none of the unnamed nodes is very far from a

named node, the unnamed nodes can be identified by being in context with a named node, via

a path, so that differences are expressed by giving this local context and the related changes.

Furthermore, the authors propose an update ontology for representing differences between

RDF graphs, in terms of insertions and deletions. A patch file format provides a way to

uniquely identify what changed, as well as whether it was added or subtracted. Also, two

forms of difference information are discussed: the context-sensitive “weak” deltas and the

context-free “strong” deltas. A weak delta gives enough information to apply it to exactly the

graph it was computed from, but a strong delta specifies the changes in a context independent

manner. One advantage of a strong delta is that one can take a delta from any true knowledge

base change and apply it to a subset knowledge base, and the result will be true. Strong deltas

eliminate the possible failure of a patch to find the appropriate points in the RDF graph at

which to apply the changes. The proposed methodology for generating strong deltas applies

 8

only on graphs which are well-labeled directly with URIs or indirectly with functional

properties or inverse functional properties.

In Volkel et al. (2005) [59] an RDF-centric versioning approach and a relevant

implementation called SemVersion are presented. SemVersion provides structural and

semantic versioning for RDF models and RDF based ontology languages, like RDFS. Two

algorithms for generating diffs are proposed, together with an RDF representation for the

diffs, while the implemented system supports several operations (like commit, branch, merge,

etc.) inspired by the well-known versioning system in the developer community CVS.

Regarding the diff algorithms, the first one is for computing a structural diff as a triple-set-

based difference between two models. Two triple sets, of added and removed statements, are

computed. A speciality of RDF is the usage of blank nodes, adding complexity to the diff

computation. If a user commits a new model and later requests a diff, the system cannot tell

whether two blank nodes are equal or different. They have by definition no globally unique

identifier. Blank node enrichment is proposed to overcome this problem by uniquely

identifying blank nodes. It creates an "enriched model" from a normal model by introducing a

new property, whose value plays the role of an inverse functional property like in OWL.

Blank nodes should only have one such property value assigned. This unique URI makes

them globally addressable, while they remain formally blank nodes in the RDF model. All

existing RDF semantics are still valid. The second diff algorithm is for computing a semantic

diff, given an RDF based ontology language. In this case, the semantically inferred triples are

also taken into account while computing the diff. Thus, a language specific reasoner or rules

should be available for the calculation. Regarding the representation of RDF diffs, the

following approach is proposed: a triple is made addressable by reification, sets of triples are

represented as rdfs:Bags, leading to a trivial triple set ontology. A full RDF diff contains a

triple set of added and a triple set of removed statements, and additionally the blank node

enrichment statements have to be added.

In Franconi et al. (2010) [21], the scenario considered is where a knowledge base (expressed

in some logical formalism) might evolve over time and thus different versions have to be

maintained, while users of the knowledge base should be able to access, not only any specific

version, but also the differences between two given versions of the knowledge base. To

address this problem a general semantic framework is proposed. The notion of semantic

difference between knowledge bases plays a central role. The proposed approach, is

applicable to a large class of logic-based knowledge representation languages. While

restricting to finitely generated propositional logics, it is shown that the semantic framework

can be represented syntactically in a particular kind of normal form (ordered complete

 9

conjunctive normal form). This is followed by a generalization, where similar results can be

obtained for any syntactic representation (in a finitely generated propositional logic) of the

semantic framework. Although the methodology focuses on propositional logic knowledge

bases, it can be extended to more expressive languages, such as description logics. Regarding

the proposed semantic diff, a number of desired properties are examined. First, the semantic

diff highlights the differences in terms of the logical meaning between two knowledge bases.

Therefore, although two (propositional) knowledge bases may be syntactically different, if

they convey exactly the same meaning (they are logically equivalent), there should be no

semantic difference between them. Second, in order to avoid redundancy and to comply with

the principle of minimal change, the sentences to be added should be contained in the new

version and similarly sentences to be removed should be contained in the previous version.

Third, the semantic diff should provide an ‘undo’ operation when moving from one version of

a knowledge base to another, so that one is able to roll back any modification performed.

Finally, a unique semantic diff is associated with any two knowledge bases. Regarding the

overall framework, the scenario examined is when there are n versions of a knowledge base

that need to be stored and a core knowledge base. In order to be able to access any version of

the knowledge base, it is sufficient to store the core knowledge base and the semantic diff

among the core and each version. The core knowledge base may be selected not to be one of

the versions, it can be the ‘average’ of the versions, i.e. a representation minimizing the

overall semantic diff of the core to each of the knowledge bases. Alternatively, several

reasons are discussed to consider one of the versions as the core knowledge base.

In Zeginis et al. (2011) [65], several issues on computing deltas over RDF(S) knowledge

bases are discussed. Five RDF(S) differential functions are presented, which take into account

inferred knowledge and return sets of change operations (add / delete). Namely, explicit (Δe),

closure (Δc), dense (Δd), dense & closure (Δdc), and explicit & dense (Δed) differential

function are presented. Δe returns the set difference over the explicitly asserted triples, while

Δc returns the set difference by also taking into account the inferred triples. In order to focus

on small sized deltas, Δd, Δdc and Δed are introduced. Assuming knowledge bases K and K',

Δd contains add operations for those triples which are explicit in K′ and do not belong to the

closure of K, and delete operations for those triples which are explicit in K and do not belong

to the closure of K′. Δd produces the smallest in size set of change operations, but can be

applied to transform K to K′ only under certain conditions. For this reason, Δdc and Δed are

considered. Δdc resembles to Δd regarding additions and to Δc regarding deletions, while Δed

resembles to Δe regarding additions and to Δd regarding deletions. For the proposed deltas

containment, size and computational complexity are examined. Regarding change operations,

triple addition and deletion are considered in order to transform one knowledge base to

 10

another, while two approaches are proposed regarding their semantics: one plain set-theoretic

(Up) and another that involves inference and redundancy elimination (Uir). Under Up

semantics, only the explicitly defined triples are taken into account while inferred ones are

ignored. Under Uir semantics, change operations incur also side-effects such as redundancy

elimination and knowledge preservation: the updated knowledge base will not contain any

explicit triple which can be inferred, while preserves as much of the knowledge expressed in

the former base as possible. Also, several useful properties of RDF(S) deltas are discussed:

semantic identity, non redundancy, reversibility and composition. Semantic identity defines

that a delta reports an empty result if its operands are semantically equivalent. Non-

redundancy defines that the execution of a delta results in a knowledge base that is always

redundancy-free. Reversibility of a delta is a useful property for moving forward and

backward across versions. Composition allows composing a number of consecutive deltas and

then executing the operations of the composed delta, instead of having to execute each

particular delta. Another introduced notion is the correctness of a differential function -

change operation semantics pair. It ensures that for any two knowledge bases K and K',

starting from K and applying the computed delta via the change operation semantics, the

result knowledge base is equivalent to K'. A study on which combinations of differential

functions and change operation semantics can be employed to correctly transform a source to

a target RDF(S) knowledge base is presented. Finally, the computing time and size of the

produced deltas over real and synthetic RDF(S) knowledge bases are experimentally

investigated, as well as the impact of the inferential potential of the knowledge base. In this

work blank nodes and relevant issues are not examined.

In Noy and Musen (2002) [43] a fixed point algorithm named PROMPTDIFF for detecting

ontology change is proposed. It consists of two parts: (1) an extensible set of heuristic

matchers and (2) a fixed-point algorithm to combine the results of the matchers to produce a

structural diff between two versions. The output of the PROMPTDIFF algorithm is a table

which bases on a structural diff, which describes the components of the ontology that have

changed from one version to another, and also provides more detailed information on how the

components have changed. It is stated whether each component was added, deleted, split,

merged, or none of the above, and which is the mapping level of each mapped components,

defining whether they are different enough from each other to warrant the user’s attention. A

mapping level may be unchanged, isomorphic, or changed. Each matcher employs a small

number of structural properties of the ontologies to produce matches. The fixed-point step

invokes the matchers repeatedly, feeding the results of one matcher into the others, until they

produce no more changes in the diff. PROMPTDIFF uses a dependency table to determine the

order in which it executes the matchers. It keeps a stack of matchers it still needs to run. It

 11

starts by putting the matchers that do not affect any other matchers at the bottom of the stack

and matchers that are not affected by other matchers at the top. Then it executes matcher M at

the top of the stack. If M produced changes in the PROMPTDIFF table, the algorithm adds to

the stack all the matchers that depend on M, removing duplicates. It runs until the stack is

empty. The performance of the algorithm has been evaluated and it correctly identifies 96%

of the matches in ontology versions from large projects. Notice that the use of heuristics

introduces uncertainty to results. Finally, the knowledge model that is used is compatible with

the Open Knowledge Base Connectivity protocol, but the methodology can be applied on

other representation formalisms such as RDFS and DAML+OIL.

2.1.2. Human-readable changes

Other works focus on supporting human-readable changes, which are usually distinguished

between simple and composite/complex. Some of them propose predefined lists of changes,

while others user defined changes.

In Klein (2004) [33], an extension of Noy and Musen (2002) [43] is presented for detecting

some of the proposed basic and composite changes. First, the four elements of the proposed

framework are presented, as well as how they can interact to solve particular problems: (1) An

ontology of basic changes is presented, constituted by a set of operations that can be used to

build an ontology in a specific language. The proposed basic changes are generated taking

into account the meta model of an ontology language. Namely OWL and OKBC are

considered. In this way the generated set of changes is complete with respect to the possible

ontology modifications. Every possible change is specified by add and delete operations for

each element of the knowledge model, while modify operation is also considered. (2) The

notion of complex changes is proposed, where a complex change is composed of multiple

basic operations, incorporating some additional knowledge about the change. Two dimensions

are used to distinguish between different types of complex operations. On one hand, there is a

distinction between atomic and composite operations, on the other hand there is a distinction

between simple and rich operations. Composite operations provide a mechanism for grouping

a number of basic operations that together constitute a logical entity. Atomic operations are

operations that cannot be subdivided into smaller operations. Rich changes are changes that

incorporate information about the implication of the operation on the logical model of the

ontology. For example, a rich change might specify that the range of a property is enlarged.

To identify such changes, the logical theory of the ontology has to be queried. In contrast,

simple changes can be detected by analyzing the structure only. (3) The notion of a

 12

transformation set is also presented, which is a set of change operations that specify how a

version can be transformed into another. (4) Also, a template for the specification of the

relation between different ontology versions is presented. It is worth noting that an RDF-

based syntax is discussed. Regarding the extensions to the PROMPTDIFF tool (Noy and

Musen (2002) [43]), the first extension uses the mappings produced by PROMPTDIFF as a

basis for producing a transformation set, while the second extension is able to detect some

composite changes and presents these in a conveniently arranged way to the user. The

extended tool uses different visual clues in order to improve the visualization of ontology

changes. Finally, another system, OntoView, is also discussed. OntoView implements a

comparison mechanism for RDF-based ontologies producing a transformation set. Ontologies

are compared at a structural level and additions, deletions and definition changes are

distinguished. The algorithm starts with an ontology that is represented in RDF. It first parses

a textual representation of the ontology into RDF triples, in order to find the changes in the

data model instead of the textual representation, and search for added and deleted statements.

Then, it groups the statements into individual class and property definitions of the ontology.

The changes in the sets of statements that form these definitions can be analyzed to detect the

basic changes from the change ontology, and further aggregated into complex changes.

In Stojanovic (2004) [57] a taxonomy of changes is proposed which comprises of elementary,

composite and complex changes, forming a predefined set of changes. Composite changes

group elementary changes which appear in the same neighborhood and are generalized by

complex changes. Ontology evolution and change semantics have been studied in terms of

ontology consistency maintenance. In this work, each change is applied together with a

number of generated changes that ensure the ontology consistency. In these terms, the

requirements of an ontology evolution management system are outlined, together with an

evolution process that satisfies them. Furthermore, the proposed single ontology evolution

approach has been extended in order to take into account multiple interdependent ontologies

in the context change propagation. Also, a usage-driven approach for change discovery has

been presented, where user query and browsing history of an ontology-based application is

exploited for the continual adaptation of the ontology to user's needs. The solutions presented

have been implemented for KAON ontology. This approach follows an opposite direction on

how changes are used, since they are captured as they are applied on the ontology rather than

after version generation.

In Plessers, De Troyer and Casteleyn (2007) [47], the Change Definition Language (CDL) is

proposed for defining and detecting changes over a version log using temporal queries. The

change detection approach presented is in the context of an ontology evolution framework for

 13

OWL DL ontologies. The framework allows ontology engineers to request and apply changes

to the ontology they manage, assuring that the ontology and its depending artifacts remain

consistent after changes have been applied. The change detection mechanism allows

generating a detailed overview of changes that have occurred based on a set of change

definitions, while different users may have their own set of change definitions allowing

different overviews of the changes and different levels of abstraction. The presented notion of

version log keeps track of all the different versions of all concepts ever defined in an

ontology, starting from their creation, modifications, until the eventual retirement. Whenever

an ontology concept is modified, the version log is updated by creating a new version for the

affected concept. CDL allows users to define the meaning of changes in a formal and

declarative way. Its syntax is presented in terms of EBNF specification, its semantics are

formally defined, and several examples are provided. CDL is based on temporal logic and

thus changes are specified in terms of conditions that must hold before and after the appliance

of the change (pre-/post-conditions). Together with the version log, the CDL provides the

foundation of the change detection approach. The change definitions expressed in the CDL

are evaluated as temporal queries on a version log. The outcome is a collection of occurrences

of the change definitions. It is worth noting that past tense operators are employed in CDL,

expressing cases like 'some time in the past', 'always in the past', 'since', 'previous time', and

'after'. Also, the temporal logic supports two different views on the timeline of a version log.

The first view considers the complete timeline as it takes the history of the whole ontology

into account, while the second only considers the part of the timeline that belongs to the

history of a particular concept. In order to reflect and apply both views, tense operators have

been extended by introducing parameterized versions. The approach has been validated by

developing two prototype extensions for the Protege ontology editor.

In Auer and Herre (2007) [3] a framework for supporting evolution in RDF knowledge bases

is discussed. The approach works on the basis of atomic changes, basically additions or

deletions of statements to or from an RDF graph. Such atomic changes are aggregated to

compound changes, resulting in a hierarchy of changes, thus facilitating the human reviewing

process on various levels of detail. These derived compound changes may be annotated with

meta-information, such as the user executing the change or the time when the change

occurred. A simple OWL ontology capturing such information is presented. Also, these

compound changes can be classified as ontology evolution patterns. Ontology evolution

patterns in conjunction with appropriate data migration algorithms enable the automatic

migration of instance data in distributed environments. Thus, the evolution of ontologies with

regard to higher conceptual levels than the one of statements is allowed. Examples of data

 14

migration algorithms are given. However, neither a detection process, nor a specific language

of changes is defined.

In Papavasileiou et al. (2013) [45], a set of predefined high-level changes for RDF(S)

knowledge bases (KBs) and an algorithm for their detection are proposed. The presented

change language allows the formulation of concise and intuitive deltas. In total 132 changes

are defined at the level of RDF(S) constructs, capturing addition, deletion, renaming, move in

the hierarchy, change of domain/range etc., that the various constructs (classes, properties

etc.) of an RDF(S) KB can undergo. Both basic (i.e., fine-grained changes on individual RDF

graph nodes or edges) and composite high-level changes (coarse-grained changes affecting

several nodes and/or edges) are considered, while another separate category named heuristic

changes is considered too, whose detection conditions require the existence of mappings

among data version entities. It is worth noting that operations considered capture changes at

both ontology (schema) and instance (data) levels. A set of desired features related to the

detection and application semantics of the language of changes is presented. These features

are related to both human and machine interpretability. Therefore, the proposed language of

changes is guaranteed to (a) be intuitive and capture as accurately as possible the perception

and intent of editors regarding the performed changes, (b) be able to handle (describe) any

possible change in a unique manner, and, (c) have well-defined formal and consistent

detection and application semantics. It is worth noting that the proposed changes verify the

properties of completeness and unambiguity, for guaranteeing that every added / deleted triple

is consumed by one detected high-level change and that detected high-level changes are not

overlapping, respectively. Therefore, any possible change encountered in curated KBs

expressed in RDF(S) can be efficiently and deterministically detected in an automated way.

Moreover, a change detection algorithm, which is sound and complete with respect to the

presented language, is defined. Its correctness and complexity have been studied. Also, the

appropriate semantics for executing the deltas expressed in the proposed language of changes

are presented, in order to move backwards and forwards in a multi-version repository, using

only the corresponding deltas. Finally, the effectiveness and efficiency of the presented

algorithms have been experimentally evaluated using real ontologies from the cultural,

bioinformatics and entertainment domains.

In Roussakis et al. (2015) [53], an extension of Papavasileiou et al. (2013) [45] is proposed,

providing a more generic change definition framework, based on SPARQL [31] queries. The

authors acknowledge that different uses (or users) of the data may require a different set of

changes being reported, since the importance and frequency of changes vary in different

application domains. For this reason, the proposed framework supports both simple and

 15

complex changes. Simple changes are meant to capture fine-grained types of evolution. They

are defined at design time and should meet the formal requirements of completeness and

unambiguity, which guarantee that the detection process is well-behaved as defined in

Papavasileiou et al. (2013) [45]. Complex changes are meant to capture more coarse-grained,

changes that are useful for the application at hand. This allows a customized behavior of the

change detection process, depending on the actual needs of the application. Complex changes

are totally dynamic and defined at run-time. Therefore, it is unrealistic to assume that they

will guarantee completeness or unambiguity. As a consequence, in order to avoid any non-

determinism in the detection process, complex changes are associated with a priority level. In

this way, complex changes may not share common parts or conflict each other. The detection

process is based on SPARQL queries (one per defined change) that are provided to the

algorithm as configuration parameters. As a result, the core detection algorithm is agnostic to

the set of simple or complex changes used, allowing new changes to be defined. Furthermore,

to support analysis of the evolution process, an ontology of changes, which allows the

persistent representation of the detected changes, is presented. This, in a multi-version

repository, allows queries that refer uniformly to both the data and its evolution. The

framework has been evaluated experimentally, based on 3 real RDF datasets of different sizes

to study the number of simple and complex changes that usually occur in real-world settings,

and provide an analysis of their types. Moreover, the evaluation results of the efficiency of the

change detection process are presented and the effect of the size of the compared versions and

the number of detected changes in the performance of the algorithm are quantified.

In Singh et al. (2018) [54], DELTA-LD approach is presented. Changes are detected and

classified between two versions of a linked dataset. The basic contribution is proposing a

classification to distinctly identify the resources that have has both their IRI and

representation changed and the resources that have had only their IRI changed. The former

case is modeled as a renew change, while the latter as a move change, while create, remove,

update changes are may also be detected. It is worth noting that an automatic method for

selecting resource properties to identify the same resource with different IRIs and similar

representation in different versions has been presented. A relevant change model for

representing detected changes has also been presented, where a changed resource is

accompanied with its added/deleted triples. The accuracy of the proposed approach has been

measured and a case study for the automatic repair of broken interlinks using the changes

detected by DELTA-LD has been presented.

Finally, Troullinou et al. (2016) [58] focuses on providing metrics for analyzing evolution

rather than calculating change entities. This approach aims at giving a high-level overview of

 16

the change process by identifying the most important changes in the ontology. It does not

propose specific changes or their detection, but instead considers different metrics of "change

intensity". Metrics that take into account the changes that affected each class and its

neighborhood are considered, relying on the added and deleted triples among versions. Also,

metrics that take into account ontological information related to the importance and

connectivity of each class in the different versions are considered. This approach allows

understanding the intent (rather than the actions) of the editor and provides a better focusing

of the curator analyzing the changes.

2.2. Modeling and Querying Evolution in Semistructured

Data

2.2.1. Version-based approaches

Version based approaches mainly focus on aspects regarding managing, storing and querying

XML document versions, as well as detecting changes between them.

In Marian et al. (2001) [38], a change-centric method for managing versions in XML data is

presented. The authors employ a diff algorithm for detecting changes between two

consecutive versions of an XML document. Changes are then represented based on completed

deltas and persistent identifiers. Completed deltas are deltas containing additional information

and thus can be inverted and composed. Also, the notions of edit scripts and simple deltas are

presented, where an edit script is formed as a sequence of specific operations, while a delta is

formed as a set of specific operations, avoiding to specify an order of execution as in an edit

script. Furthermore, a physical storage policy is proposed, based on storing the current version

of the document, a map to handle persistent identifiers and a single XML document

containing all forward complete deltas. Based on complete deltas, forward deltas (by pruning

of the complete deltas) and backward deltas (by inversion and pruning) can be projected,

while backward deltas can be used to reconstruct old versions. Also, since completed deltas

are more space consuming than simple deltas, compression methods are examined to reduce

redundant storage. Finally, a GUI to display changes to the user is provided.

A similar approach is introduced in Chien, Tsotras and Zaniolo (2001) [13], where instead of

edit scripts and deltas calculations, a referenced-based versioning scheme that preserves the

logical structure of an evolving document via object references is presented. In this scheme,

 17

new versions hold only the elements that are different from the previous version, whereas a

reference is used for pointing to the unchanged elements of past versions. Specifically, each

maximum unchanged element (i.e., an element which itself is unchanged but its parent node is

changed) is represented by a reference record, referring to the logical location of that

unchanged element in the previous version. Additionally, the effectiveness of the proposed

approach in supporting queries in the document history and evolution, in addition to the usual

content-based queries on version instances, is evaluated. For this, a query taxonomy is

presented: (1) temporal selection queries, for retrieving a particular version or successive

versions, (2) document evolution and historical queries, focusing on changes between

successive versions, (3) structural projection queries, for selecting parts of a document, being

a key ingredient for temporal selection or history queries, (4) content-based selection queries,

for retrieving all versions that qualify the predicates in the “where” clause. Efficient

algorithms for supporting temporal selection (view materialization), structural projection and

content-based selection queries are presented, as well as for querying the document evolution

history. The proposed representation is shown to be efficient at the transport level, where

XML documents are exchanged between remote parties. Finally, the effectiveness of the

proposed scheme at the storage level is demonstrated. A usefulness-based page management

policy is defined, adapted from transaction-time databases, to ensure efficient temporal

clustering between versions.

In Chien et al. (2001) [15], a version management scheme named SPaR is presented, for

efficiently storing, retrieving and querying multiversion XML documents. The approach

presented is based on durable node numbers and timestamps on the elements of XML

documents, to preserve the structure and the history of the document during its evolution. The

durable node ids can be used as stable references in indexing the elements and allow the

decomposition of the documents in several linked files. The problem of full version

reconstruction was studied, while indexing and clustering strategies that assure efficient

support for complex queries in the content and document evolution are also examined. A page

clustering technique is used to trade off storage efficiency and retrieval efficiency and

optimize the overall performance.

In Chien et al. (2002) [16], the authors examine the problem of supporting efficiently complex

queries on multiversioned XML documents. For this, they expand SPaR scheme and

investigate physical realizations for it. Different storage and indexing strategies are examined

so as to optimize SPaR’s implementation. The presented methodologies build on the

observation that evaluating complex version queries mainly depends on the efficiency of

evaluating partial version retrieval queries, which retrieve a specific segment of an individual

 18

version instead of the whole version. Specifically, complex path expression queries can be

reduced to partial version retrieval queries. Retrieving a segment for a single-versioned XML

document is efficient since the target elements are clustered on secondary store by their

logical order, but this might not be the case for a multiversion document. For a multiversion

document, a segment of a later version may have its elements physically scattered in different

pages due to version updates. The authors investigate three indexing schemes to evaluate

partial version retrieval in this environment: single multiversion B-Tree, UBCC with a

multiversion B-Tree, and UBCC with a multiversion R-Tree, where UBCC is a clustering

mechanism standing for Usefulness Based Copy Control.

In Gergatsoulis and Stavrakas (2003) [27], the authors propose Multidimensional XML

(MXML), an extension of XML that uses context information to express time and models

multifaceted documents. Also, it is demonstrated how MXML can represent a set of basic

change operations on XML documents and their corresponding schema.

Several approaches, focus mainly on the detection and less on the representation of the

changes between two documents. In Wang et al. (2003) [61], X-Diff algorithm is presented,

an effective algorithm on unordered trees that integrates key XML structure characteristics

with standard tree-to-tree correction techniques. In Cobena et al. (2002) [17], a linear time

diff algorithm for XML data is proposed, which matches unchanged sub-trees between the old

and new version. The proposed algorithm was used in the Xyleme project, while it can also be

used for HTML documents by XML-izing them. In Leonardi et al. (2005) [36] an XML

enabled change detection system, Xandy, is presented. It detects structural and content

changes by converting unordered XML documents into relational tuples and using SQL

queries. This approach has better scalability compared to X-Diff and comparable quality. In

Leonardi and Bhowmick (2005) [35], a relational approach is presented, named Helios, to

detect changes in unordered XML documents. The delta quality produced is comparable to

Xandy, while for large datasets it is faster than Xandy and X-Diff. Finally, in Chawathe et al.

(1996) [12] change detection was studied in the context of hierarchically structured

information. The change detection problem was defined as the problem of finding a

“minimum-cost edit script” that transforms one data tree to another, while efficient algorithms

for computing such an edit script were presented.

 19

2.2.2. Temporal approaches

Typically, temporal approaches enrich data elements with temporal attributes for holding time

and extend accordingly query syntax with conditions on the time validity of data.

In Grandi (2004) [29], an annotated bibliography dealing with temporal and evolution aspects

in the World Wide Web is presented.

In Amagasa, Yoshikawa and Uemura (2000) [1], a logical data model for representing

histories of XML documents is proposed. This model is based on the XPath data model, and

extends it in some points: (1) edges have a label that represent their valid time, (2) string-

value of text and attribute nodes are modelled as virtual nodes, and (3) text and attribute

nodes can contain multiple string-value nodes. Using the proposed data model, it is easy to

compute a past state of XML documents, by recursively pruning edges that are not available

at specified time and by removing labels from edges. Also, operations based on extending the

DOM API are investigated, so that the proposed data model can be implemented.

Furthermore, two alternative approaches to the physical implementation of the model are

presented, so that data represented in the model are translated to XML documents. The first

implementation, named full, is for implementing the data model to XML documents as they

are, and the second, named simplified, is for implementing the data model retaining the

original form of XML documents. For both implementations, tags and attributes are used in

order to represent temporal information. Finally, temporal queries may be evaluated by taking

a snapshot of the XML document and then querying it using a non-temporal query language,

while a query language specialized in the proposed temporal XML documents is not provided.

In Rizzolo and Vaisman (2008) [49], the problem of modelling and implementing temporal

data in XML is addressed. A data model for tracking historical information in an XML

document and for recovering the state of the document as of any given time is proposed. The

temporal constraints imposed by the data model are studied, and algorithms for validating a

temporal XML document against these constraints are presented, along with methods for

fixing inconsistent documents. In the presented model transaction time is used, and

containment edges are labelled with temporal intervals. In addition, different ways of

mapping the abstract representation into a temporal XML document are discussed.

Furthermore, TXPath is introduced, a temporal XML query language that extends XPath 2.0.

Both its syntax and semantics are presented. In the second part of the paper, an approach for

summarizing and indexing temporal XML documents is presented. In particular it is shown

that by indexing continuous paths, i.e., paths that are valid continuously during a certain

 20

interval in a temporal XML graph, the query performance is dramatically increased. To

achieve this, a new class of summaries is introduced, denoted TSummary, that adds the time

dimension to the well-known path summarization schemes. Within this framework, two new

summaries are presented: LCP and Interval summaries. The indexing scheme TempIndex

integrates these summaries with additional data structures. A query processing strategy based

on TempIndex is presented, as well as a type of ancestor-descendant encoding, denoted

temporal interval encoding. A persistent implementation of TempIndex is also presented, and

a comparison against a system based on a non-temporal path index, and one based on DOM.

Finally, a language for updates is sketched, and it is shown that the cost of updating the index

is compatible with real-world requirements.

In Gao and Snodgrass (2003) [26], a temporal XML query language, τXQuery, is presented.

The authors add valid time support to XQuery by minimally extending the syntax and

semantics of XQuery. The goal is to move the complexity of handling time from the

user/application code into the τXQuery processor. It is worth noting that the approach may

also apply to transaction time queries. τXQuery utilizes the data model of XQuery. The few

reserved words added to XQuery indicate three different kinds of valid time queries.

Representational queries have the same semantics with XQuery, ensuring that τXQuery is

upward compatible with XQuery. To write such queries, users have to know the

representation of the timestamps and treat the timestamp as a common element or attribute.

New syntax for current and sequenced queries makes these queries easier to write. A current

query asks for the information about the current state. Sequenced queries are applied

independently at each point in time. To implement τXQuery the stratum approach is adopted,

in which a stratum accepts τXQuery expressions and maps each to a semantically equivalent

conventional XQuery expression. The XQuery expression is passed to an XQuery engine.

Once the XQuery engine obtains the result, the stratum possibly performs some additional

processing and returns the result to the user. The advantage of this approach is that it exploits

the existing techniques in an XQuery engine, such as the query optimization and query

evaluation, while at the same time it does not depend on a particular XQuery engine. The

paper focuses on how to perform this mapping, in particular, on mapping sequenced queries,

which are by far the most challenging. The central issue of supporting sequenced queries (in

any query language) is time-slicing the input data while retaining period timestamping.

Timestamps are distributed throughout an XML document, complicating the temporal slicing.

In those terms, authors propose four optimizations of the initial maximally-fragmented time-

slicing approach: selected node slicing, copy-based per-expression slicing, in-place per-

expression slicing, and idiomatic slicing, each of which reduces the number of constant

periods over which the query is evaluated.

 21

In Wang and Zaniolo (2003) [62], the authors present techniques for managing multiversion

documents and supporting temporal queries on such documents. The proposed approach

consists of a temporally grouped data model, for representing the successive versions of a

document as an XML document, named V-Document. Using XML query languages, such as

XQuery, complex queries on the content of a particular version can be expressed, as well as

on the temporal evolution of the document elements and their contents. Also, the paper

discusses the advantages of applying the proposed scheme to XML-published relational data.

Finally, efficient implementations of the approach are discussed. In Wang and Zaniolo (2008)

[63], the authors further extend and elaborate on the concepts presented in Wang and Zaniolo

(2003) [62]. In these terms, a number of case studies are performed, the XChronicler tool is

presented, a tool for building V-Documents from the successive versions of arbitrary XML

documents, and techniques for the efficient storage and retrieval are discussed.

In Moon et al. (2008) [41], the authors work on the problem of managing the history of

database information. Specifically, they propose PRIMA system, which employees two key

technologies: The first is a method for publishing the history of a relational database in XML,

whereby the evolution of the schema and its underlying database are given a unified

representation. This temporally grouped representation makes it easy to formulate

sophisticated historical queries on any given schema version using standard XQuery. For this,

authors build upon and extend previous work presented in Wang and Zaniolo (2003) [62].

The second key technology is that schema evolution is transparent to the user. A user writes

queries against the current schema, while retrieving the data from one or more schema

versions. The system then performs the labour-intensive and error-prone task of rewriting

such queries into equivalent ones for the appropriate versions of the schema. This feature is

particularly important for historical queries spanning over different schema versions. For

realizing this feature in PRIMA, Schema Modification Operators (SMOs) are introduced, to

represent the mappings between successive schema versions, and an XML integrity constraint

language (XIC), to efficiently rewrite the queries using the constraints established by the

SMOs. The scalability of the approach has been also tested.

In Dyreson (2001) [19], the TTXPath data model and query language are sketched. TTXPath

extends XPath with support for transaction time. To construct the TTXPath data model,

snapshots of an XML document are obtained over time. The snapshots are then merged and

transaction times are associated with each edge and node. The TTXPath query language

extends XPath with temporal axes to enable a query to access past or future states, and with

 22

constructs to extract and compare times. TTXPath maximally reuses XPath and is fully

backwards-compatible with XPath.

2.2.3. Other approaches

An early work is presented in Chawathe, Abiteboul and Widom (1999) [11]. The authors

propose a model for representing changes in semistructured data and a language for querying

over these changes. The starting point of this work is the Object Exchange Model (OEM), a

simple graph-based data model, with objects as nodes and object-subobject relationships

represented by labelled arcs. The basic change operations proposed in this graph-based model

are node insertion, update of node values, and addition and removal of labelled arcs (node

deletion is implicit by unreachability). The proposed change representation model is named

DOEM (for Delta-OEM) and uses annotations on the nodes and arcs of an OEM graph to

represent changes. Intuitively, the set of annotations on a node or arc represents the history of

that node or arc. Representing changes directly as annotations on the affected data, instead of

indirectly computing changes as the difference between database states, is an important

feature of this approach. For querying over changes, a language based on the Lorel language

for querying semistructured data is presented, called Chorel (for Change Lorel). Specifically,

the authors extend the concept of Lorel path expressions in order to allow references to the

annotations in a DOEM database, resulting in an intuitive and convenient language for

expressing change queries in semistructured data. Overall, the user can retrieve information

related to the history of nodes and edges, exploiting the change annotations. The

implementation of DOEM and Chorel uses a method that encodes DOEM databases as OEM

databases and translates Chorel queries into equivalent Lorel queries over the OEM encoding.

This scheme has the benefit that there is no need to build from scratch yet another database

system. Additionally, the authors present extensions that permit snapshot-based access in the

proposed change-based data model. Finally, as an important first application of DOEM and

Chorel, a query subscription service that permits users to subscribe to changes in

semistructured data was designed and implemented.

In Buneman et al. (2004) [10], the problem of archiving and management of curated databases

is addressed in terms of XML and semistructured data. The developed archiving technique is

efficient in its use of space and preserves the continuity of elements through versions of the

database. The approach uses timestamps, and all versions of the data are merged into one

hierarchy where an element appearing in multiple versions is stored only once along with a

timestamp. By identifying the semantic continuity of elements and merging them into one

 23

data structure, the proposed technique is capable of providing meaningful change descriptions

and allows to easily answer certain temporal queries such as retrieval of any specific version

from the archive and finding the history of an element. This is in contrast with approaches

that store a sequence of deltas where such operations may require undoing a large number of

changes or significant reasoning with the deltas.

In Buneman, Chapman and Cheney (2006) [9], the authors deal with provenance in curated

databases. Provenance information concerns the creation, attribution, or version history of

data, and in terms of scientific databases it is crucial for assessing data integrity and scientific

value. The authors propose and evaluate a practical approach to provenance tracking for data

copied manually among databases. It is assumed that all of the user’s actions in constructing a

target database are captured as a sequence of insert, delete, copy, and paste actions by a

provenance-aware application for browsing and editing databases. As the user copies, inserts,

or deletes data in her local database T, provenance links are stored in an auxiliary provenance

database P. These links relate data locations in T with locations in previous versions of T or in

external source databases S. They can be used to review the process used to construct the data

in T. In addition, if T is also being archived, the provenance links can provide further detail

about how each version of T relates to the next. An implementation of this technique is

presented and the experiments show that although the overhead of a naive approach is fairly

high, it can be decreased to an acceptable level using simple optimizations.

 24

 25

Chapter 3

Defining and Detecting Complex Changes on

RDF(S) Knowledge Bases

3.1. Introduction

Data published on the web frequently change, as errors may need to be fixed or new

knowledge has to be incorporated. As new dataset versions are periodically released, data

consumers need to know what changed among versions, as well as how and why.

In this context, we focus on interpreting evolution on RDF(S) knowledge-bases. The

Resource Description Framework (RDF) [34] is a recommendation of the World Wide Web

Consortium (W3C). In essence, RDF is a graph data model that supports modeling facts about

entities in a simple triple format consisting of a subject, a predicate and an object, leading to

rich and descriptive directed graphs with semantically labelled edges. Graph nodes represent

entities that are identified uniquely by Uniform Resource Identifiers (URIs), this way defining

a basis amongst remote agents to publish inherently interlinked datasets (Linked Open Data,

LOD). The RDF Schema (RDF(S)) [8] is also a W3C recommendation, that constitutes a

simple language that can be used to define a vocabulary (i.e. terms) to be used in an RDF

graph. Taxonomies defined in RDF(S) can be used to do some basic inference. The standard

recommendation for querying RDF data is SPARQL [31], a graph query language established

around the specific features of the RDF model.

In literature, several works (Berners-Lee and Connolly (2004) [4]; Volkel et al. (2005) [59];

Franconi et al. (2010) [21]; Zeginis et al. (2011) [65]; Noy and Musen (2002) [43]; Klein

(2004) [33]) have been presented for modeling changes in terms of diffs. These approaches

lead to a machine-readable representation of changes based on triple additions and deletions

and do not provide any intuition about change semantics or possible relations between them.

Therefore, the intention or the cause of a change cannot be captured, and more importantly

 26

the fact that a change may be part of a larger change in a dataset. An ideal approach would

compute human-readable, semantically rich changes along with any relations between them.

We argue that for understanding data evolution, changes should be treated as first-class-

citizens. Modeling changes should involve fine-grained and application/data-agnostic

changes, meaning that they do not comprise of other changes and their semantics suit to the

RDF data model, as well as coarse-grained and application/data-specific changes, meaning

that they demonstrate structure and semantics suitable to each specific application or dataset.

The former changes are named simple changes, while the latter are named complex changes,

and are defined on top of simple changes.

Modeling complex changes as user-defined is a prerequisite for being application/data-

specific. Even more, this allows multiple interpretations of evolution on a specific application

or dataset, since data curators or consumers may be interested in different parts of evolution

or have different understanding on the applied modifications. Also, modeling complex

changes as user-defined makes their definitions reusable, further facilitating the process of

defining new changes. In addition, the hierarchical structure created while a change is built on

top of others demonstrates relations and dependencies among them. A complex change may

be part of another, may be modeled as a specification or generalization of another, or may

cause another. However, complex changes may share common parts without being defined as

nested, but having overlaps, providing supplementary interpretation of evolution. Towards

this direction, a dedicated language for defining complex changes and a relevant detection

algorithm is needed, in order to facilitate the precise modeling and reusability of changes. As

a result of the detection process change instances are computed, and then can be queried via

standard languages for further analyzing evolution.

In literature, several works (Klein (2004) [33]; Stojanovic (2004) [57]; Plessers, De Troyer

and Casteleyn (2007) [47]; Auer and Herre (2007) [3]; Papavasileiou et al. (2013) [45];

Roussakis et al. (2015) [53]; Singh et al. (2018) [54]) focus on human-readable changes.

Modeling human-readable changes via primitive changes and groupings of them is also

considered by Klein (2004) [33], Stojanovic (2004) [57], Papavasileiou et al. (2013) [45] and

Roussakis et al. (2015) [53], while Plessers, De Troyer and Casteleyn (2007) [47] and

Roussakis et al. (2015) [53] consider user-defined changes as well. However, relations and

dependencies among complex changes are not supported in any of the already existing

approaches. Furthermore, we propose a dedicated language based on change semantics for

defining complex changes and a relevant detection algorithm.

 27

Overall, the proposed approach offers expressiveness and flexibility in terms of evolution

interpretation. The proposed modeling of complex changes provides additional information

for interpreting past data, allows interpreting evolution in multiple ways, while capturing

relations among complex changes via nesting or overlaps is an additional feature that enriches

the complex changes' expressivity. The Chapter main contributions are the following:

• modeling and supporting simple and complex changes, as well as relations among them

• providing an intuitive, user-friendly language based on change semantics for defining

complex changes via patterns over simple changes and already defined complex changes,

• providing a detection algorithm for the proposed complex change definition language,

• extensively evaluating the proposed approach both qualitatively and experimentally.

The Chapter outline is as follows: Section 3.2 presents a motivating example of this work.

Section 3.3 presents the basic concepts and definitions on simple and complex changes.

Section 3.4 presents the syntax, semantics and several examples of the proposed language for

defining complex changes. Section 3.5 presents in detail the detection algorithm, the process

for identifying complex change instances among dataset versions. Section 3.6 presents the

qualitative and experimental evaluation performed.

3.2. Motivating Example

Consider a sample part of DBpedia1 ontology with information about persons and universities,

as in Figure 1. Figure 1 left depicts the initial version (𝑉𝑏𝑒𝑓) and right the version after

modifications (𝑉𝑎𝑓). A DBpedia user would like to track the entities that are added between

versions and specifically to know which are the added persons that work in academia. Each

person may have several descriptive properties, like name, birthDate and deathDate, and may

be further enriched with descriptive properties related to professional affairs, like employer,

title, activeYearsStartYear and activeYearsEndYear. In Figure 1 right, the addition of

"Margery Claire Carlson" entity along with its descriptive properties is depicted. It is an entity

of type person, with one employer, the "Northwestern University", which is of type

university. Computing the diff between these two versions, as a set of added/deleted triples,

totally misses capturing change semantics, as well as possible dependencies among changes.

Instead, Figure 2 depicts an intuitive and descriptive representation of how data changed, with

focus on the user's interest and needs. Each node represents a change instance detected

between the aforementioned versions. Change instances on leaf nodes (in grey) are fine-

1 https://www.dbpedia.org/

 28

Figure 1 Sample part of DBpedia ontology, initial version (𝑉𝑏𝑒𝑓) and version after modifications (𝑉𝑎𝑓).

grained and application/data-agnostic. Each one corresponds to an added or deleted triple and

has a suitable name and descriptive parameters. They are simple change instances. The rest

change instances (in white) are coarse-grained and application/data-specific, demonstrating

structure and semantics suitable to the specific scenario of tracking persons that work in

academia. The hierarchical structure indicates that a change instance is on top of others,

demonstrating relations and dependencies among changes. They are complex change

instances.

Consider the change instances Add_Person and Add_Name in Figure 2. They are

specializations of the application/data-agnostic Add_Type_To_Individual and

Add_Property_Instance respectively. The same holds for all similar change instances

regarding descriptive properties. Add_Person_with_Details instance contains Add_Person,

Add_Name, Add_BirthDate and Add_DeathDate instances, grouping the added person entity

with a number of added descriptive properties with personal information. Note that, in

general, Add_BirthDate and Add_DeathDate may not always be present, since they represent

information that may be missing or in case of death date inappropriate. Add_Professional

builds on top of Add_Person_with_Details, as further descriptive properties with professional

life related information are added. Therefore, Add_Professional instance is a specialization of

Add_Person_with_Details, where the added person (dbpedia:Margery_C._Carlson) has at

least one employer (dbpedia:Northwestern_University). The change instances Add_Title,

Add_ActiveYearsStartYear and Add_ActiveYearsEndYear represent secondary changes that

may happen when adding a professional. Finally, Add_Academic_Professional further

specializes Add_Professional and is defined on top of it, modeling the case where all the

employers of the added professional are universities.

 29

Figure 2 Hierarchy of detected simple and complex change instances (in grey and white fill

respectively) for the sample part of DBpedia ontology presented in Figure 1.

A DBpedia user may spend a lot of time and effort querying the respective diff and processing

results, attempting to approximate the representation of Figure 2 and conclude what changed

and how. Even if he is equipped with a set of predefined human-readable changes and a

relevant detection algorithm, changes like Add_Academic_Professional that capture specific

evolution scenarios could not be recorded. Instead, assuming a two-level representation of

changes via simple and complex changes would balance the needs. On the one hand, simple

changes offer a first layer of primitive changes following the RDF data model. Each added or

deleted triple is mapped to a specific simple change. On the other hand, complex changes

offer a second layer of user-defined changes, grouping other changes into logical units. In this

way, application/data-specific changes, dependencies between them and multiple

interpretations of evolution can be captured. Additionally, a dedicated intuitive language for

defining complex changes would facilitate the process. A complex change can be uniquely

identified via a name, can be described by a set of parameters and defined as a pattern

comprised of simple changes, other already defined complex changes and constraints guiding

which change instances are grouped in order to form a new complex change instance.

Complex change definitions may constitute a registry of reusable components/patterns that

can be used for defining new dependent changes. Finally, the representation of the detected

complex change instances as RDF data allows querying the relations and dependencies among

changes via SPARQL [31] and the demonstration of change hierarchy by any graph

visualization tool for RDF data (Antoniazzi and Viola (2018) [2]).

 30

3.3. Simple and Complex changes on RDF(S) Knowledge

Bases

Modeling changes as first class citizens involves taking into account granularity and

semantics of changes. Granularity poses the question of having fine-grained or coarse-grained

changes. Fine-grained changes have the advantage of describing primitive changes, while

coarse-grained changes provide semantics and conciseness by grouping primitive changes in

logical units. Semantics poses the question of having application/data-agnostic or -specific

changes. Application/data-agnostic changes describe modifications that appear in a specific

model, constituting a fixed set of generic changes. Application/data-specific changes suit

specific use-cases and may be user-defined, allowing multiple interpretations of evolution.

As a result, changes are distinguished between simple and complex changes. Simple changes

constitute a fixed set of fine-grained, application/data-agnostic changes. Complex changes are

coarse-grained, user-defined, application/data-specific changes providing richer semantics on

how data changed. This section provides definitions regarding simple and complex changes.

Definition 1: A simple change s is a tuple (𝑛, 𝑃), where:

• 𝑛 is the name of 𝑠, which must be unique.

• 𝑃 is the list of descriptive parameters of 𝑠, where each one has a unique name within 𝑠.

For simple changes we rely on Papavasileiou et al. (2013) [45]. Annex I summarizes the

simple changes considered. They are additions, deletions and terminological changes

(rename, split, merge) of RDF(S) entities (classes, properties, individuals).

Simple changes verify completeness and unambiguity properties, constituting a first layer of

human-readable changes. These properties were introduced in Papavasileiou et al. (2013) [45]

and guarantee that simple change detection process exhibits a sound and deterministic

behavior. Simple change detection is performed over a layer of "low-level" changes

constituted by triple additions and deletions among dataset versions. Essentially, what is

needed to be guaranteed is that each change that a dataset underwent is properly captured by

one, and only one, simple change. Thus, low-level changes are "assigned" to simple changes,

so that they are partitioned into simple changes. Completeness and unambiguity dictate that

this partitioning is perfect. In a nutshell: Completeness guarantees that all low-level changes

are associated with at least one simple change, making the reported delta complete (not

 31

missing any change). Unambiguity guarantees that no race conditions emerge between simple

changes attempting to be detected over the same low-level change. The combination of these

properties guarantees that the delta is produced in a complete and deterministic manner.

Further details on completeness and unambiguity can be found in Papavasileiou et al. (2013)

[45] and Roussakis et al. (2015) [53].

As already stated, simple changes are fine-grained, i.e. they cannot be decomposed in more

granular changes. This holds for additions and deletions, but not for terminological changes,

as they can be expressed as additions and deletions plus extra conditions. For example, a class

rename can be considered as an add class plus a delete class, which have the same

"neighborhood" (properties, connections to classes). However, they are preferred to be simple

changes in order to distinguish at simple change level real additions or deletions from virtual

ones representing terminological changes. Thus, simple changes' set is not minimal.

Definition 2: A complex change 𝑐 is a quadruple (𝑛, 𝑃, 𝐷, 𝐹), where:

• 𝑛 is the name of 𝑐, which must be unique and different from the simple change names.

• 𝑃 is the list of descriptive parameters of 𝑐, where each one has a unique name within 𝑐.

• 𝐷 is the set of simple (𝐷𝑆) and complex changes (𝐷𝐶) that 𝑐 comprises of, where 𝐷 =

𝐷𝐶 ∪ 𝐷𝑆, 𝐷𝐶 ∩ 𝐷𝑆 = ∅ and 𝐷 ≠ ∅.

• 𝐹 is the set of constraints (𝐹𝐶) that changes in 𝐷 verify and bindings (𝐹𝐵) specifying the

parameters in 𝑃, where 𝐹 = 𝐹𝐶 ∪ 𝐹𝐵 and 𝐹𝐶 ∩ 𝐹𝐵 = ∅. Constraints are on changes (𝐹𝐶
𝑐𝑎𝑟) or

change parameters (𝐹𝐶
𝑝𝑎𝑟

), where 𝐹𝐶 = 𝐹𝐶
𝑐𝑎𝑟 ∪ 𝐹𝐶

𝑝𝑎𝑟
 and 𝐹𝐶

𝑐𝑎𝑟 ∩ 𝐹𝐶
𝑝𝑎𝑟 = ∅.

A complex change is defined in terms of simple or other complex changes verifying

constraints. Constraints specialize its meaning and are divided into those defined on changes

and those on change parameters. Bindings specify complex change parameter values. Section

3.4 includes the details regarding the specific types of constraints and bindings.

Note that Definitions 1 and 2 actually define a class of simple and complex changes

respectively and not the concrete changes. The terms simple change and complex change will

be used as a shorthand for any concrete simple/complex change in the respective class.

The ultimate goal of supporting simple and complex changes is detecting actual instances

between dataset versions. The detection process leads into instantiating change parameters

with values, indicating that specific data elements are affected by a change. Definitions 3 and

 32

4 define simple and complex change instances. Figure 2 presents simple and complex change

instance examples.

Definition 3: A simple change instance of a simple change (𝑛, 𝑃), is a tuple (𝑛, 𝑉) where 𝑉 is

an instantiation of the parameters 𝑃.

Definition 4: A complex change instance of a complex change (𝑛, 𝑃, 𝐷, 𝐹), is a tuple (𝑛, 𝑉)

where 𝑉 is an instantiation of the parameters 𝑃.

For simple change detection we rely on Papavasileiou et al. (2013) [45]. For complex change

detection an appropriate algorithm is presented in Section 3.5. Definition 5 defines when a

complex change instance is detected. Definitions 6 and 7 define possible relations among

change instances, reflecting the relations and dependencies between changes.

Definition 5: Let 𝑐 = (𝑛, 𝑃, 𝐷, 𝐹) be a complex change and 𝑉𝑏𝑒𝑓, 𝑉𝑎𝑓 two dataset versions. A

complex change instance 𝑐𝑖 = (𝑛, 𝑉) is detected if: (1) for all changes in 𝐷 instances are

detected between 𝑉𝑏𝑒𝑓 and 𝑉𝑎𝑓, forming 𝐷𝑖, such that constraints in 𝐹𝐶 are verified on 𝐷𝑖,

𝑉𝑏𝑒𝑓 and 𝑉𝑎𝑓, (2) bindings in 𝐹𝐵 are applied on 𝐷𝑖 forming 𝑉, and (3) 𝐷𝑖 is maximal.

The set of change instances 𝐷𝑖 corresponding to 𝑐𝑖 verifies the complex change 𝑐.

Definition 6: Let 𝑐𝑖 be an instance of complex change 𝑐 and 𝐷𝑖 the corresponding set of

change instances verifying 𝑐. 𝑐𝑖 contains the change instances in 𝐷𝑖.

Containment property is transitive: if complex change instance 𝑐𝑖 contains complex change

instance 𝑐𝑗 and 𝑐𝑗 contains change instance 𝑐𝑘 in turn, then it also holds that 𝑐𝑖 contains 𝑐𝑘.

Definition 7: Let 𝑐𝑖 and 𝑐𝑖
′ be two complex change instances, where 𝑐𝑖 does not contain 𝑐𝑖

′

and vice versa. They are overlapping if they both contain at least one common simple or

complex change instance.

Overall, complex change instances may form a hierarchy due to containment and overlaps. As

an example consider complex change instances in Figure 2.

Note that the dynamics model followed, detecting changes between versions, propagates

some limitations to our approach. First, the order in which changes actually occurred cannot

 33

be captured, since version-based approaches are agnostic of time between versions.

Additionally, if one triple is deleted and then added back between two dataset versions, then

this change cannot be traced, since change detection identifies the triple in both versions. In

the same context, complex change detection is performed between two successive versions;

thus complex changes spanning across multiple successive versions are not captured. In these

cases, following a careful and guided version issuing policy would minimize change loss.

Finally, in this work we ignore blank nodes that can be avoided when data are published

according to the linked open data paradigm.

3.4. A Language for Defining Complex Changes

This section presents an intuitive, user-friendly language based on change semantics for

defining complex changes. Complex change definitions are used for detecting respective

instances among dataset versions. In Section 3.4.1 the language syntax is provided, by means

of EBNF specification, as well as details regarding the supported concepts. In Section 3.4.2

the language semantics are formally defined. In Section 3.4.3 a number of examples are

discussed.

3.4.1. Syntax

Table 1 presents the EBNF specification of the proposed language.

Complex change definition, heading and body. A complex change definition is composed by a

heading and a body. The heading contains a unique name and a list of descriptive parameters.

The body contains the change list, as well as optionally the filter list and the binding list. The

change list defines the changes that the complex change comprises of, as well as the

cardinality each one may have. The filter list defines filter expressions with constraints that

the changes in the change list should verify. The binding list defines how complex change

descriptive parameters are evaluated. A complex change definition is nested if complex

changes appear in its change list.

Parameters. Change parameters may be categorized based on two criteria: (1) the type of

values they may evaluate, (2) whether they may evaluate into empty value.

Based on the first criterion, parameters are distinguished into those that evaluate into type set

and those that evaluate into scalar values. In order to distinguish these parameter types,

 34

parameters evaluating into scalar values start with a lowercase letter, while those evaluating

into sets with an uppercase letter.

Based on the second criterion, parameters are distinguished into those that may evaluate into

an empty value and those that always should have a non-empty value. In order to distinguish

these parameter types, parameters that may evaluate into an empty value have an "OPT"

suffix (denoting optional). Also, they are referred as optional. Thus, a complex change may

be defined to be tolerant in partially performed changes in lower levels in change hierarchy.

Cardinality constraints. They determine whether a change in the change list may group

multiple instances. Specifically, they determine that there might be zero, one or multiple

instances of a specific change to be contained into respective complex change instances. The

default cardinality is one. Therefore, when no notation is defined, cardinality one is inferred.

Also, the following notations hold: "+" for at least one change instance, "?" for zero or one,

"*" for zero or more. Note that cardinality constraints are constraints on changes.

A change (in the change list) is mandatory in case of cardinality one or "+". A change is

optional in case of cardinality "?" or "*". In case of an optional change, if no instance is

detected, the respective complex change can be still detected. Thus, a complex change may be

defined to be flexible and tolerant in partially performed modifications of minor significance.

Filter expressions. They determine constraints that the parameters of the changes included in

the change list should verify. They are distinguished into primitive and composite.

Primitive filter expressions cannot break down into simpler ones. There are four types of

constraints that form primitive filter expressions: (1) testing value constraints, (2) relational

constraints, (3) pre/post-conditions, (4) functions. Also, these types of constraints may be

augmented via quantified expressions. Primitive filter expressions are also distinguished into

unary and binary, based on whether they involve one or two change parameters. It is worth

noting that in terms of this work, a parameter that may evaluate into an empty value may be

involved only on unary filters. While the nature of binary filters is to interconnect changes, if

they involve such parameters the connection among changes will not be always established (if

the parameter evaluates into an empty value). This contradicts the binary filter's goal.

Composite filter expressions are formed when combining primitive filter expressions via

boolean operators. Specifically, logical AND, OR, NOT may be used.

 35

Table 1 The EBNF specification of the complex change definition language

Complex Change Definition, Heading, Body, Parameters

1 complex-change-definition = 'CREATE COMPLEX CHANGE' heading '{'

body '}'';' ;

2 heading = name '(' parameter-list ')' ;

3 parameter-list = identifier {', ' identifier} ;

4 body = change-list ['; ' filter-list] ['; ' binding-list] ;

5 name = STRING ;

6 identifier = id-scalar | id-set ;

7 id-scalar = id-scalar-nonempty | id-scalar-empty ;

8 id-set = id-set-nonempty | id-set-empty ;

9 id-scalar-empty = LOWERCASE_LETTER {LETTER|DIGIT} 'OPT' ;

10 id-set-empty = CAPITAL_LETTER {LETTER|DIGIT} 'OPT' ;

11 id-scalar-nonempty = LOWERCASE_LETTER {LETTER|DIGIT} ;

12 id-set-nonempty = CAPITAL_LETTER {LETTER|DIGIT} ;

Change List, Cardinalities

13 change-list = 'CHANGE LIST' change {', ' change} ;

14 change = change-heading [cardinality] ;

15 change-heading = change-name '(' parameter-list ')' ;

16 change-name = name | NAMES OF SUPPORTED SIMPLE CHANGES ;

17 cardinality = '+'|'?'|'*' ;

Filter List

18 filter-list = 'FILTER LIST' or-filter-expr {', ' or-filter-expr} ;

19 or-filter-expr = and-filter-expr {'||' and-filter-expr} ;

20 and-filter-expr = neg-filter-expr {'&&' neg-filter-expr} ;

21 neg-filter-expr = ['!'] filter-expr ;

22 filter-expr = bracketed-expr | expr ;

23 bracketed-expr = '(' or-filter-expr ')' ;

24 expr = unary-expr | binary-expr ;

25 unary-expr = [quantification-1] unary-constr ;

26 binary-expr = [quantification-2] binary-constr ;

27 quantification-1 = 'for' ('each'|'some'|'none') id-scalar-nonempty

'in' id-set ':';

28 unary-constr = test-val-constr | pre-post-constr-1 | fun-constr-1;

29 test-val-constr = test-val-scalar-1 | test-val-scalar-2 | test-

val-set ;

30 test-val-scalar-1 = id-scalar bin-op-scalar-1 value ;

31 test-val-scalar-2 = id-scalar bin-op-scalar-2 set ;

32 test-val-set = id-set bin-op-set set ;

33 pre-post-constr-1 = (('(' id-scalar ', ' URI ', ' value ')') |

('(' URI ', ' id-scalar ', ' value ')') | ('(' URI ', ' URI ', ' id-

scalar ')')) ['inferred'] ('in' | 'not in') ('Vbef' | 'Vaf') ;

34 fun-constr-1 = name '(' (identifier | (identifier ', ' constant)

| (constant ', ' identifier)) ')' ;

35 quantification-2 = 'for' ('each'|'some'|'none') id-scalar-nonempty

'in' id-set-nonempty ':' ['for' ('each'|'some'|'none') id-scalar-

nonempty 'in' id-set-nonempty ':'];

36 binary-constr = rel-constr | pre-post-constr-2 | fun-constr-2 ;

37 rel-constr = rel-scalar-1 | rel-scalar-2 | rel-set ;

38 rel-scalar-1 = id-scalar-nonempty bin-op-scalar-1 id-scalar-

nonempty;

39 rel-scalar-2 = id-scalar-nonempty bin-op-scalar-2 id-set-nonempty;

40 rel-set = id-set-nonempty bin-op-set id-set-nonempty ;

41 pre-post-constr-2 = (('(' id-scalar-nonempty ', ' URI ', ' id-

scalar-nonempty ')') | ('(' id-scalar-nonempty ', ' id-scalar-

nonempty ', ' value ')') | ('(' URI ', ' id-scalar-nonempty ', ' id-

scalar-nonempty ')')) ['inferred'] ('in' | 'not in') ('Vbef' |

'Vaf') ;

42 fun-constr-2 = name '(' (id-scalar-nonempty | id-set-nonempty) ',

' (id-scalar-nonempty | id-set-nonempty) ')' ;

 36

43 bin-op-scalar-1 = '=' | '!=' | '>' | '<' | '>=' | '<=' ;

44 bin-op-scalar-2 = 'in' | 'not in' ;

45 bin-op-set = '=' | '!=' | 'subSet' | 'properSubset' | 'superSet'

|'properSuperset';

46 constant = set | value ;

47 set = '{' value-list '}' ;

48 value-list = value {', ' value} ;

49 value = URI | LITERAL ;

Binding List

50 binding-list = 'BINDING LIST' binding {', ' binding} ;

51 binding = (id-scalar 'as' id-scalar)|(id-set 'as' id-

set)|(aggregate 'as' id-set);

52 aggregate = 'union(' identifier ')' ;

Testing value constraints. Testing value constraints limit a parameter value against a given

constant. They are actually unary filters. Their form is presented in Table 1, lines 29-32. The

supported binary operators are the typical ones, as presented in Table 1, lines 43-45. They

may be on scalar parameters (=, ! =, >, <, >=, <=), on set parameters (=, ! =, ⊃ as

𝑝𝑟𝑜𝑝𝑒𝑟𝑆𝑢𝑝𝑒𝑟𝑠𝑒𝑡, ⊂ as 𝑝𝑟𝑜𝑝𝑒𝑟𝑆𝑢𝑏𝑠𝑒𝑡, ⊇ as 𝑠𝑢𝑝𝑒𝑟𝑆𝑒𝑡, ⊆ as 𝑠𝑢𝑏𝑆𝑒𝑡), or may involve both

scalar and set parameters (∈ as 𝑖𝑛, ∉ as 𝑛𝑜𝑡 𝑖𝑛).

Relational constraints. Relational constraints involve two change parameters defining how

changes are connected. They are actually binary filters. Their form is presented in Table 1,

lines 37-40. The supported binary operators are the same with the ones used in testing value

constraints, as presented in Table 1, lines 43-45.

Pre-/Post-conditions. Pre-/post-conditions define how parameters are related in the version

before (𝑉𝑏𝑒𝑓) or after (𝑉𝑎𝑓) the change. They state whether a triple must or must not exist in

the version before or after and whether a triple may be inferred. In case of inference, a flag

"inferred" is used. These constraints may be unary or binary depending on the number of

change parameters they involve. Their form is presented in Table 1, lines 33 and 41.

Functions. Function constraints involve predefined functions of boolean return type. As an

example, consider common functions on strings, like checking whether a string contains

another given string. These constraints may be unary or binary depending on the number of

change parameters they involve. Their form is presented in Table 1, lines 34 and 42.

Quantified expressions. Quantified expressions allow to write conditions on elements of set

parameters. Thus, quantification augments primitive filters on scalar parameters so they

evaluate into elements of set parameters. They may have one of the following forms: (1)

{∀, ∃, ∄} 𝑥 ∈ 𝑋: 𝑓(𝑥), (2) {∀, ∃, ∄} 𝑥 ∈ 𝑋: 𝑓(𝑥, 𝑦), (3) {∀, ∃, ∄} 𝑥 ∈ 𝑋: {∀, ∃, ∄} 𝑦 ∈

 37

 𝑌: 𝑓(𝑥, 𝑦), where 𝑓(𝑥) and 𝑓(𝑥, 𝑦) are primitive constraints on parameters evaluating into

scalar values. Their syntax is presented in Table 1, lines 25-27 and 35.

Bindings. Parameter bindings determine how complex change descriptive parameters are

evaluated. In its simplest form, a binding assigns the identifier on the left to the identifier on

the right, via operator as. In this way, it is defined that the identifier on the right, which

represents a complex change parameter, equals the identifier on the left, which represents the

parameter value of a change in its change list. This type of binding may be omitted and thus

inferred by repeating each descriptive parameter into the respective contained changes and

constraints. Moreover, a binding assigns the result of the aggregate function union over an

identifier to another identifier (on the right), via operator as. In this way, it is defined that the

second identifier, which represents a complex change parameter, equals the union of the

parameter values of a change with cardinality "+" or "*", whose parameter is passed as an

argument in the aggregate function union. Obviously, the complex change parameters that are

evaluated with the latter form are of type set. A binding that involves the union aggregate

function is useful in case of changes with cardinality "+" or "*". The syntax is presented in

Table 1, lines 50-52.

3.4.2. Semantics

The proposed language is essentially a pattern-matching language. The body of a complex

change definition constitutes a change pattern expression (or a change pattern), while the

head indicates how to construct a complex change instance. The body is matched against a set

of change instances 𝐼, between two dataset versions, 𝑉𝑏𝑒𝑓 and 𝑉𝑎𝑓, to obtain a set of bindings

for the variables in the body, and then based on the head these bindings are used to produce

the actual change instance. Note that, we say that the generated complex change instance

contains the change instances in 𝛪 that correspond to the respective bindings. The semantics

definition is influenced by SPARQL semantics definition as in Perez, Arenas and Gutierrez

(2009) [46] and Kaminski, Kostylev and Cuenca Grau (2017) [32], but adapted to our

language needs.

A change (simple or complex) is a tuple (𝑛, 𝑉𝑟
𝑛), where 𝑛 is the change name and 𝑉𝑟

𝑛 is a list

of variables (scalar or set), out of which one is a change variable and the rest are descriptive

variables. With respect to Definitions 1 and 2, the change variable represents the change

identifier 𝑠 and 𝑐 respectively, the descriptive variables represent the change parameters 𝑃,

while for complex changes the heading is considered. A change instance (simple or complex)

 38

is a tuple (𝑛, 𝑉𝑙
𝑛), where 𝑛 is the change name and 𝑉𝑙

𝑛 is a list of values (scalar or set) serving

as instantiations of the respective variables. Additionally, consider the existence of an infinite

set 𝑉𝑙 of possible values, scalar or set, (𝑉𝑙 = 𝑉𝑙
𝑠𝑐𝑎𝑙𝑎𝑟 ∪ 𝑉𝑙

𝑠𝑒𝑡) and an infinite set 𝑉𝑟 of

variables, scalar or set, including optional variables, (𝑉𝑟 = 𝑉𝑟
𝑠𝑐𝑎𝑙𝑎𝑟 ∪ 𝑉𝑟

𝑠𝑒𝑡) disjoint from 𝑉𝑙.

3.4.2.1. Baseline Algebra and Semantics

Change Pattern Expression. While the formal syntax of the proposed language was

presented in Section 3.4.1, in order to define the semantics an algebraic formalization is

followed. The binary operators AND, OPT (i.e. optional) and FILTER are used. AND is used

for concatenating mandatory changes, i.e. those with cardinality 1 or "+", while OPT is used

for optional changes, i.e. those with cardinality "?" or "*", in both cases instead of comma

symbol (",") in formal syntax. FILTER is used for filter expressions. A change pattern

expression is defined recursively as follows:

(1) A change (𝑛, 𝑉𝑟
𝑛), where 𝑉𝑟

𝑛 ⊂ 𝑉𝑟 , is a change pattern (primitive change pattern).

(2) If 𝑃 is a primitive change pattern and 𝑅 is a built-in filter expression, then the expression

(𝑃 𝐹𝐼𝐿𝑇𝐸𝑅 𝑅) is a change pattern (filter primitive change pattern).

(3) If 𝑃1 and 𝑃2 are change patterns, then the expression (𝑃1 𝐴𝑁𝐷 𝑃2) is a change pattern

(conjunction change pattern).

(4) If 𝑃1 is a change pattern and 𝑃2 is a primitive change pattern or a filter primitive change

pattern, then the expression (𝑃1 𝑂𝑃𝑇 𝑃2) is a change pattern (optional change pattern). If 𝑃1

is a change pattern and 𝑃2 is an optional change pattern 𝑃2 = (𝑃𝐴 𝑂𝑃𝑇 𝑃𝐵) where 𝑃𝐴 and 𝑃𝐵

are primitive change patterns or filter primitive change patterns or optional change patterns

similar to 𝑃2, then (𝑃1 𝑂𝑃𝑇 𝑃2) is a change pattern (optional change pattern).

(5) If 𝑃 is a change pattern and 𝑅 is a built-in filter expression, then the expression

(𝑃 𝐹𝐼𝐿𝑇𝐸𝑅 𝑅) is a change pattern (filter change pattern).

In case 4, nested optional change patterns may be defined based on primitive change patterns

and filter primitive change patterns. In this case an optional change is dependent to another

optional change, which in turn is dependent to another, and so on, ending up to a mandatory

change which is part of a change pattern. This pattern of optional changes is named optional

change path. Overall, it is not meaningful to define a complex change comprising of optional

changes only and each optional change is meaningful in the context of another change.

 39

In cases 2 and 5, a built-in filter expression is constructed using elements of the set 𝑉𝑙 ∪ 𝑉𝑟,

logical connectives (¬,∧,∨), several symbols and constraints as described in Section 3.4.1,

evaluating into a boolean value. Formally, the built-in filter expressions below are considered:

(1) If 𝑥, 𝑦 ∈ 𝑉𝑟
𝑠𝑐𝑎𝑙𝑎𝑟 , 𝑋, 𝑌 ∈ 𝑉𝑟

𝑠𝑒𝑡 , 𝑣 ∈ 𝑉𝑙
𝑠𝑐𝑎𝑙𝑎𝑟 , 𝑉 ∈ 𝑉𝑙

𝑠𝑒𝑡 then the following are built-in

filter expressions:

- Equality symbol (=). 𝑥 = 𝑣, 𝑋 = 𝑉, 𝑥 = 𝑦, 𝑋 = 𝑌 are built-in filter expressions.

- Inequality symbols (>, <, >=, <=, ⊃, ⊂, ⊇, ⊆, ! =). 𝑥 > 𝑣, 𝑋 ⊃ 𝑉, 𝑥 > 𝑦, 𝑋 ⊃ 𝑌 are built-in

filter expressions, and similar holds for the rest of the symbols.

- Existential symbols (∈, ∉). 𝑥 ∈ 𝑉, 𝑥 ∉ 𝑉, 𝑥 ∈ 𝑌, 𝑥 ∉ 𝑌 are built-in filter expressions.

- Pre-/post-conditions. 𝑡 ∈ 𝑉𝑏𝑒𝑓, 𝑡 ∉ 𝑉𝑏𝑒𝑓, 𝑡 ∈ 𝑉𝑎𝑓, 𝑡 ∉ 𝑉𝑎𝑓 are built-in filter expressions,

where 𝑡 is a tuple from {({𝑣 ∈ 𝑉𝑙
𝑠𝑐𝑎𝑙𝑎𝑟|𝑖𝑠𝐼𝑅𝐼(𝑣)} ∪ 𝑉𝑟

𝑠𝑐𝑎𝑙𝑎𝑟) × ({𝑣 ∈ 𝑉𝑙
𝑠𝑐𝑎𝑙𝑎𝑟|𝑖𝑠𝐼𝑅𝐼(𝑣)} ∪

𝑉𝑟
𝑠𝑐𝑎𝑙𝑎𝑟) × (𝑉𝑙

𝑠𝑐𝑎𝑙𝑎𝑟 ∪ 𝑉𝑟
𝑠𝑐𝑎𝑙𝑎𝑟)} − {𝑉𝑟

𝑠𝑐𝑎𝑙𝑎𝑟 × 𝑉𝑟
𝑠𝑐𝑎𝑙𝑎𝑟 × 𝑉𝑟

𝑠𝑐𝑎𝑙𝑎𝑟}. Similar expressions are

defined while taking into consideration the inferred tuples in 𝑉𝑏𝑒𝑓 and 𝑉𝑎𝑓 as well. In these

cases, 𝐼𝑛𝑓(𝑉𝑏𝑒𝑓) and 𝐼𝑛𝑓(𝑉𝑎𝑓) datasets include explicitly those tuples.

- Functions. 𝑓𝑢𝑛(𝑥), 𝑓𝑢𝑛(𝑥, 𝑣), 𝑓𝑢𝑛(𝑣, 𝑥) and 𝑓𝑢𝑛(𝑥, 𝑦), with return type boolean are built-

in filter expressions. Similar expressions are defined with variables of type set and set values.

- Quantified expressions. ∀𝑥 ∈ 𝑋: 𝑓(𝑥), ∃𝑥 ∈ 𝑋: 𝑓(𝑥), ∄𝑥 ∈ 𝑋: 𝑓(𝑥), ∀𝑥 ∈ 𝑋: 𝑓(𝑥, 𝑦), ∃𝑥 ∈

𝑋: 𝑓(𝑥, 𝑦), ∄𝑥 ∈ 𝑋: 𝑓(𝑥, 𝑦), ∀𝑥 ∈ 𝑋: ∀𝑦 ∈ 𝑌: 𝑓(𝑥, 𝑦), ∀𝑥 ∈ 𝑋: ∃𝑦 ∈ 𝑌: 𝑓(𝑥, 𝑦), ∃𝑥 ∈ 𝑋: ∃𝑦 ∈

𝑌: 𝑓(𝑥, 𝑦), ∄𝑥 ∈ 𝑋: ∄𝑦 ∈ 𝑌: 𝑓(𝑥, 𝑦) are built-in filter expressions, where 𝑓(𝑥) and 𝑓(𝑥, 𝑦)

may be any of the aforementioned built-in expressions on parameters evaluating into scalar

values.

Note that, an optional variable (𝑥𝑂𝑃𝑇, 𝑋𝑂𝑃𝑇) may be involved only on unary filters.

(2) If 𝑅1 and 𝑅2 are built-in filter expressions, then (¬𝑅1), (𝑅1 ∨ 𝑅2) and (𝑅1 ∧ 𝑅2) are built-

in filter expressions.

Mappings and Set of Mappings. Let 𝑃 be a change pattern expression, 𝑅 be a built-in filter

expression and 𝑡 be a tuple. 𝑣𝑎𝑟(𝑃) denotes the set of variables occuring in 𝑃, 𝑣𝑎𝑟(𝑅) in 𝑅,

and 𝑣𝑎𝑟(𝑡) in 𝑡.

In order to define the semantics, the following terminology has to be introduced. A mapping

𝜇𝑐 from 𝑉𝑟 to 𝑉𝑙 is a partial function 𝜇𝑐 ∶ 𝑉𝑟 → 𝑉𝑙. Abusing the notation, for a primitive

change pattern 𝑐 we denote by 𝜇𝑐(𝑐) the change instance obtained by replacing the variables

in 𝑐 according to 𝜇𝑐. The domain of 𝜇𝑐, denoted by 𝑑𝑜𝑚(𝜇𝑐), is a subset of 𝑉𝑟 where 𝜇𝑐 is

defined. Two mappings 𝜇𝑐1 and 𝜇𝑐2 are compatible when for all 𝑥 ∈ 𝑑𝑜𝑚(𝜇𝑐1) ∩ 𝑑𝑜𝑚(𝜇𝑐2),

it is the case that 𝜇𝑐1(𝑥) = 𝜇𝑐2(𝑥), i.e. when 𝜇𝑐1 ∪ 𝜇𝑐2 is also a mapping. Intuitively, 𝜇𝑐1 and

𝜇𝑐2 are compatible if 𝜇𝑐1 can be extended with 𝜇𝑐2 to obtain a new mapping, and vice versa.

 40

Two mappings with disjoint domains are always compatible, and empty mapping 𝜇𝑐∅ (i.e. the

mapping with empty domain) is compatible with any other mapping.

Notice that 𝜇𝑐 is defined over 𝑉𝑟 and its set of destination is 𝑉𝑙, which include variables and

values of both scalar and set type respectively. This allows variables of type scalar/set to

evaluate into a scalar/set value. Furthermore, in case of optional variables, they may also

evaluate into an empty value (∅). Finally, 𝜇𝑐 allows the evaluation of both change and

descriptive variables.

Let Ω1 and Ω2 be sets of mappings. The join of, union of and difference between Ω1 and Ω2

are defined bellow. Based on these operators, the left-outer join is defined.

Ω1 ⋈ Ω2 = {𝜇𝑐1⋃𝜇𝑐2|𝜇𝑐1 ∈ Ω1, 𝜇𝑐2 ∈ Ω2 and 𝜇𝑐1, 𝜇𝑐2 𝑎𝑟𝑒 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠}

Ω1 ∪ Ω2 = {𝜇|𝜇 ∈ Ω1 or 𝜇 ∈ Ω2}

Ω1 ∖ Ω2 = {𝜇 ∈ Ω1| for all 𝜇′ ∈ Ω2, 𝜇 𝑎𝑛𝑑 𝜇′ 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠}

Ω1 ⟕ Ω2 = (Ω1 ⋈ Ω2) ∪ (Ω1 ∖ Ω2)

Semantics Definition. Based on the above, the semantics of change pattern expressions can

be defined as a function ⟦∙⟧𝐼 which takes as input a change pattern expression and returns a set

of mappings.

Definition 8. The evaluation of a change pattern 𝑃 over a set of change instances 𝐼, denoted

by ⟦𝑃⟧𝐼, is defined recursively as follows.

(1) If 𝑃 is a primitive change pattern 𝑐, then ⟦𝑃⟧𝐼 = {𝜇𝑐|𝑑𝑜𝑚(𝜇𝑐) = 𝑣𝑎𝑟(𝑐) 𝑎𝑛𝑑 𝜇𝑐(𝑐) ∈ 𝐼}.

(2) If 𝑃 is (𝑃1 𝐴𝑁𝐷 𝑃2), then ⟦𝑃⟧𝐼 = ⟦𝑃1⟧𝐼 ⋈ ⟦𝑃2⟧𝐼.

(3) If 𝑃 is (𝑃1 𝑂𝑃𝑇 𝑃2), then ⟦𝑃⟧𝐼 = ⟦𝑃1⟧𝐼 ⟕ ⟦𝑃2⟧𝐼.

The semantics of filter expressions goes as follows. Given a mapping 𝜇𝑐 and a built-in filter

expression 𝑅, 𝜇𝑐 satisfies 𝑅 denoted by 𝜇𝑐 ⊨ 𝑅, if:

(1) 𝑅 is 𝑥 = 𝑣, 𝑥 ∈ 𝑑𝑜𝑚(𝜇𝑐) and 𝜇𝑐(𝑥) = 𝑣.

(2) 𝑅 is 𝑋 = 𝑉, 𝑋 ∈ 𝑑𝑜𝑚(𝜇𝑐) and 𝜇𝑐(𝑋) = 𝑉.

(3) 𝑅 is 𝑥 = 𝑦, 𝑥 ∈ 𝑑𝑜𝑚(𝜇𝑐), 𝑦 ∈ 𝑑𝑜𝑚(𝜇𝑐) and 𝜇𝑐(𝑥) = 𝜇𝑐(𝑦).

(4) 𝑅 is 𝑋 = 𝑌, 𝑋 ∈ 𝑑𝑜𝑚(𝜇𝑐), 𝑌 ∈ 𝑑𝑜𝑚(𝜇𝑐) and 𝜇𝑐(𝑋) = 𝜇𝑐(𝑌).

For the inequality symbols (>, <, >=, <=, ⊃, ⊂, ⊇, ⊆, ! =) similar definitions hold.

(5) 𝑅 is 𝑥 ∈ 𝑉, 𝑥 ∈ 𝑑𝑜𝑚(𝜇𝑐) and 𝜇𝑐(𝑥) ∈ 𝑉.

(6) 𝑅 is 𝑥 ∈ 𝑌, 𝑥 ∈ 𝑑𝑜𝑚(𝜇𝑐), 𝑌 ∈ 𝑑𝑜𝑚(𝜇𝑐) and 𝜇𝑐(𝑥) ∈ 𝜇𝑐(𝑌).

For the rest of existential symbols (∉) similar definitions hold.

 41

(7) 𝑅 is 𝑡 ∈ 𝑉𝑏𝑒𝑓, ∀𝑥 ∈ 𝑣𝑎𝑟(𝑡) 𝑥 ∈ 𝑑𝑜𝑚(𝜇𝑐) and 𝑡|∀𝑥∈𝑣𝑎𝑟(𝑡): 𝜇𝑐(𝑥) ∈ 𝑉𝑏𝑒𝑓, where

𝑡|∀𝑥∈𝑣𝑎𝑟(𝑡): 𝜇𝑐(𝑥) represents the tuple 𝑡 where each of its variables 𝑥 is substituted by 𝜇𝑐(𝑥).

(8) 𝑅 is 𝑡 ∉ 𝑉𝑏𝑒𝑓, ∀𝑥 ∈ 𝑣𝑎𝑟(𝑡) 𝑥 ∈ 𝑑𝑜𝑚(𝜇𝑐) and 𝑡|∀𝑥∈𝑣𝑎𝑟(𝑡): 𝜇𝑐(𝑥) ∉ 𝑉𝑏𝑒𝑓, where

𝑡|∀𝑥∈𝑣𝑎𝑟(𝑡): 𝜇𝑐(𝑥) represents the tuple 𝑡 where each of its variables 𝑥 is substituted by 𝜇𝑐(𝑥).

For the rest of pre-/post-conditions (𝑡 ∈ 𝑉𝑎𝑓 , 𝑡 ∉ 𝑉𝑎𝑓 and with inference) similar definitions

hold.

(9) 𝑅 is 𝑓𝑢𝑛(𝑥), 𝑥 ∈ 𝑑𝑜𝑚(𝜇𝑐) and 𝑓𝑢𝑛(𝜇𝑐(𝑥)) is true.

For the rest of functions (𝑓𝑢𝑛(𝑥, 𝑣), 𝑓𝑢𝑛(𝑣, 𝑥), 𝑓𝑢𝑛(𝑥, 𝑦), and with variables of type set and

set values) similar definitions hold.

(10) 𝑅 is ∀𝑥 ∈ 𝑋: 𝑓(𝑥), 𝑋 ∈ 𝑑𝑜𝑚(𝜇𝑐) and ∀𝑣 ∈ 𝜇𝑐(𝑋) 𝑓(𝑣) is true.

(11) 𝑅 is ∃𝑥 ∈ 𝑋: 𝑓(𝑥), 𝑋 ∈ 𝑑𝑜𝑚(𝜇𝑐) and ∃𝑣 ∈ 𝜇𝑐(𝑋) 𝑓(𝑣) is true.

(12) 𝑅 is ∄𝑥 ∈ 𝑋: 𝑓(𝑥), 𝑋 ∈ 𝑑𝑜𝑚(𝜇𝑐) and ∀𝑣 ∈ 𝜇𝑐(𝑋) 𝑓(𝑣) is false.

(13) 𝑅 is ∀𝑥 ∈ 𝑋: 𝑓(𝑥, 𝑦), 𝑋 ∈ 𝑑𝑜𝑚(𝜇𝑐), 𝑦 ∈ 𝑑𝑜𝑚(𝜇𝑐) and ∀𝑣 ∈ 𝜇𝑐(𝑋) 𝑓(𝑣, 𝜇𝑐(𝑦)) is true.

(14) 𝑅 is ∃𝑥 ∈ 𝑋: 𝑓(𝑥, 𝑦), 𝑋 ∈ 𝑑𝑜𝑚(𝜇𝑐), 𝑦 ∈ 𝑑𝑜𝑚(𝜇𝑐) and ∃𝑣 ∈ 𝜇𝑐(𝑋) 𝑓(𝑣, 𝜇𝑐(𝑦)) is true.

(15) 𝑅 is ∄𝑥 ∈ 𝑋: 𝑓(𝑥, 𝑦), 𝑋 ∈ 𝑑𝑜𝑚(𝜇𝑐), 𝑦 ∈ 𝑑𝑜𝑚(𝜇𝑐) and ∀𝑣 ∈ 𝜇𝑐(𝑋) 𝑓(𝑣, 𝜇𝑐(𝑦)) is false.

For the rest of quantified expressions (∀𝑥 ∈ 𝑋: ∀𝑦 ∈ 𝑌: 𝑓(𝑥, 𝑦), ∀𝑥 ∈ 𝑋: ∃𝑦 ∈ 𝑌: 𝑓(𝑥, 𝑦),

∃𝑥 ∈ 𝑋: ∃𝑦 ∈ 𝑌: 𝑓(𝑥, 𝑦), ∄𝑥 ∈ 𝑋: ∄𝑦 ∈ 𝑌: 𝑓(𝑥, 𝑦)) similar definitions hold.

(16) 𝑅 is 𝑓(𝑥𝑂𝑃𝑇), where 𝑓 may be any of the aforementioned built-in unary expressions on

a scalar variable, 𝑥𝑂𝑃𝑇 ∈ 𝑑𝑜𝑚(𝜇𝑐) and 𝜇𝑐(𝑥𝑂𝑃𝑇) = ∅, or 𝑥𝑂𝑃𝑇 ∈ 𝑑𝑜𝑚(𝜇𝑐) and

𝜇𝑐(𝑥𝑂𝑃𝑇) ≠ ∅ and 𝑓(𝜇𝑐(𝑥𝑂𝑃𝑇)) is true. Similar holds for an optional variable of type set

(𝑋𝑂𝑃𝑇).

(17) 𝑅 is (¬𝑅1), 𝑅1 is a built-in filter expression, and it is not the case that 𝜇𝑐 ⊨ 𝑅1.

(18) 𝑅 is (𝑅1 ∨ 𝑅2), 𝑅1 and 𝑅2 are built-in filter expressions, and 𝜇𝑐 ⊨ 𝑅1 or 𝜇𝑐 ⊨ 𝑅2.

(19) 𝑅 is (𝑅1 ∧ 𝑅2), 𝑅1 and 𝑅2 are built-in filter expressions, and 𝜇𝑐 ⊨ 𝑅1 and 𝜇𝑐 ⊨ 𝑅2.

Definition 9. Given a set of change instances 𝐼 and a filter expression (𝑃 𝐹𝐼𝐿𝑇𝐸𝑅 𝑅),

⟦(𝑃 𝐹𝐼𝐿𝑇𝐸𝑅 𝑅)⟧𝐼 = {𝜇𝑐 ∈ ⟦𝑃⟧𝐼|𝜇𝑐 ⊨ 𝑅}.

3.4.2.2. Extended Algebra and Semantics

In order to formally define the binding construct of a complex change definition and multiple

cardinality ("+", "*"), the presented algebra has to be extended with assignment and

aggregation constructs. For this, the semantics of a change pattern should depend on a set of

change instances 𝐼 as well as on a mapping 𝜇𝑐, called environment. The semantics of the

extended change pattern expressions can be defined as a function [∙]𝐼
𝜇𝑐 which takes as input an

 42

extended change pattern expression and returns a set of mappings. The environment

evaluation [𝑃]𝐼
𝜇𝑐 of a change pattern 𝑃 over a set of change instances 𝐼 with respect to a

mapping 𝜇𝑐 is defined the same as ⟦𝑃⟧𝐼 when 𝜇𝑐 = ∅. Therefore, for the change patterns

defined in Section 3.4.2.1 ⟦𝑃⟧𝐼 = [𝑃]𝐼
∅.

Extend Operator. First, the Extend operator is presented, which captures the complex change

assignment construct, providing the algebraic means of assigning an expression to a variable.

Note that in terms of the proposed complex change language, the expression might be a

variable or the result of an aggregation function. Therefore, the algebra is extended so that:

𝐸𝑥𝑡𝑒𝑛𝑑(𝑥, 𝐸, 𝑃) is a change pattern, where 𝑥 is a variable not in 𝑣𝑎𝑟(𝑃), 𝐸 is an expression

and 𝑃 is a change pattern.

Definition 10. The evaluation of a change pattern 𝐸𝑥𝑡𝑒𝑛𝑑(𝑥, 𝐸, 𝑃) given a set of change

instances 𝐼 and an environment 𝑣 is defined as follows:

[𝐸𝑥𝑡𝑒𝑛𝑑(𝑥, 𝐸, 𝑃)]𝐼
𝑣 = {𝜇𝑐|𝜇𝑐

′ ∈ [𝑃]𝐼
𝑣 , 𝜇𝑐 = 𝜇𝑐

′ ∪ {𝑥 ↦ [𝐸]𝐼
𝜇𝑐

′

}}.

Intuitively, 𝐸𝑥𝑡𝑒𝑛𝑑 assigns to variable 𝑥 the evaluation of 𝐸 in each solution mapping of 𝑃

and the set of change instances 𝐼.

Group and Aggregate. Next, aggregation in terms of complex change definitions is

formalized. The notion of groups is introduced: a group induces a partitioning of a change

pattern's solution mappings into equivalence classes, each of which is determined by a key

obtained from the evaluation of a list of variables. The list of variables for a complex change

comprises of: (1) the change variables of changes it consists of with cardinality 1 or "?", since

one respective instance is considered, and (2) the descriptive variables that are used in

assignments without aggregation and correspond (only) to changes with cardinality "+" or

"*", since even if multiple instances are considered, all of them should have a common value

on these variables. If the list of variables is empty, then one group is assumed with all change

pattern's solution mappings.

Definition 11. A 𝑣𝑙-list is a list of values in 𝑉𝑙. The evaluation [𝑉𝑟
𝑔]

𝐼

𝜇𝑐
 of a variable list 𝑉𝑟

𝑔
=

〈𝑣𝑟1, … , 𝑣𝑟𝑛〉 over a set of change instances 𝐼 with respect to a mapping 𝜇𝑐 is the 𝑣𝑙-list

〈[𝑣𝑟1]𝐼
𝜇𝑐 , … , [𝑣𝑟𝑛]𝐼

𝜇𝑐〉.

 43

Definition 12. A group is a construct Γ = 𝐺𝑟𝑜𝑢𝑝(𝑉𝑟
𝑔

, 𝑃), where 𝑉𝑟
𝑔

 is a list of variables and

𝑃 a change pattern. The evaluation ⟦Γ⟧𝐼 of a group Γ = 𝐺𝑟𝑜𝑢𝑝(𝑉𝑟
𝑔

, 𝑃) over a set of change

instances 𝐼 is a partial function from 𝑣𝑙-lists to sets of mappings, that is defined for all 𝑣𝑙-lists

𝐾𝑒𝑦 = [𝑉𝑟
𝑔

]
𝐼

𝜇𝑐
 with 𝜇𝑐 ∈ ⟦𝑃⟧𝐼 as follows:

⟦Γ⟧𝐼(𝐾𝑒𝑦) = {𝜇𝑐|𝜇𝑐 ∈ ⟦𝑃⟧𝐼 , [𝑉𝑟
𝑔

]
𝐼

𝜇𝑐
= 𝐾𝑒𝑦}.

Notice that the evaluation of groups is not dependent on environments, while the evaluation

of 𝑣𝑙-lists it is.

Similar to aggregate functions proposed in standard query languages, union aggregate

function allows to compute a single value for each group of solution mappings. Specifically, it

calculates a set value for each group of solution mappings, based on the evaluation of a

specific variable 𝑣𝑟 over the solution mappings of each group. Suppose Λ be a set of

mappings of variable 𝑣𝑟 to values in 𝑉𝑙, then: 𝑢𝑛𝑖𝑜𝑛(Λ) = ⋃∀{𝑣𝑟⟼𝑣𝑙}∈Λ{𝑣𝑙}.

The aggregate construct is defined below, as a construct which computes a set value for each

group, by means of union aggregate function.

Definition 13. An aggregate is a construct of the form 𝐴 = 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(𝑣𝑟 , 𝑢𝑛𝑖𝑜𝑛, Γ), where

𝑣𝑟 is a variable, 𝑢𝑛𝑖𝑜𝑛 is an aggregate function and Γ = 𝐺𝑟𝑜𝑢𝑝(𝑉𝑟
𝑔

, 𝑃) is a group. The

evaluation ⟦𝐴⟧𝐼 of an aggregate 𝐴 = 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(𝑣𝑟 , 𝑢𝑛𝑖𝑜𝑛, Γ) over a set of change instances

𝐼 is a partial function from 𝑣𝑙-lists to values such that for each 𝐾𝑒𝑦 in the domain of ⟦Γ⟧𝐼,

⟦𝐴⟧𝐼(𝐾𝑒𝑦) = 𝑢𝑛𝑖𝑜𝑛({[𝑣𝑟]𝐼
𝜇𝑐|𝜇𝑐 ∈ ⟦Γ⟧𝐼(𝐾𝑒𝑦)}).

3.4.3. Illustrative Examples

Examples 1-5 present complex change definitions regarding the changes discussed in Figure 1

on part of the DBpedia ontology. Examples 6-8 further elaborate on concepts of the proposed

language and are based on the DBpedia ontology as well.

Example 1. Add_Person models the case where a new individual of type person is added. It is

a specialization of simple change Add_Type_To_Individual, where the type equals to

dbo:Person via a testing value constraint over parameter type. No binding is defined, as it is

inferred by repeating the complex change parameter as parameter on the change in change

list. Besides Add_Property_Instance no cardinality is defined as cardinality one is inferred.

 44

CREATE COMPLEX CHANGE Add_Person(id) {

CHANGE LIST Add_Type_To_Individual(id, type) ;

FILTER LIST type=dbo:Person ; } ;

Example 2. Add_Name models the case where a new name property with value n is assigned

to a person id. It is a specialization of simple change Add_Property_Instance, where the

property equals to foaf:name via a testing value constraint over parameter prop. Bindings and

cardinality are as in example 1. Similar definitions can be defined for all properties on person.

CREATE COMPLEX CHANGE Add_Name(id, n) {

CHANGE LIST Add_Property_Instance(id, prop, n) ;

FILTER LIST prop=foaf:name ; } ;

Example 3. Add_Person_with_Details models the case where a new person id is added with a

number of descriptive properties assigned. Properties birth date and death date are optional,

specifically zero or one property instance may be assigned to each person as defined by "?",

since this information may be missing or death date may not be appropriate.

CREATE COMPLEX CHANGE Add_Person_with_Details(id, n, bD, dD) {

CHANGE LIST Add_Person(id), Add_Name(id, n), Add_BirthDate(id, bD) ?,

Add_DeathDate(id, dD) ? ; } ;

Example 4. Add_Professional is a specialization of Add_Person_with_Details and thus it is

defined on top. It models the case where an added person is assigned several properties

related to its professional activity, like employers, title, the start year and end year when being

active. Since multiple employers may appear, cardinality "+" is used besides Add_Employer.

Title, start year and end year may be missing, and thus cardinality "?" is used besides relevant

changes, indicating zero or one instance. Parameter E holds all employers that the added

person is connected with. This is defined with a union aggregate function in the binding list.

CREATE COMPLEX CHANGE Add_Professional(id, E, t, sY, eY) {

CHANGE LIST Add_Person_with_Details(id, n, bD, dD), Add_Employer(id,

e) +, Add_Title(id, t) ?, Add_ActiveYearsStartYear(id, sY) ?,

Add_ActiveYearsEndYear(id, eY) ? ;

BINDING LIST union(e) as E ; } ;

Example 5. Add_Academic_Professional is a specialization of Add_Professional and thus it is

defined on top. It models the case where the added professional works only in academia. This

is defined by a post-condition constraint on E using quantification.

CREATE COMPLEX CHANGE Add_Academic_Professional(id, E) {

CHANGE LIST Add_Professional(id, E, t, sY, eY) ;

FILTER LIST for each e in E : (e,rdf:type,dbo:University) in Vaf ; }

;

Example 6. Add_Professionals_withCommon_Employers is built on top of Add_Professional.

It identifies all the added professionals that have the same employers, i.e. groups all the

 45

Add_Professional change instances with the same value in parameter E. This is denoted by

cardinality "+" besides Add_Professional change, while at the same time complex change

parameter E equals the respective Add_Professional change parameter. Also, I holds all the

professionals with the same employers E. This is defined by the union aggregate in the

binding list. Notice, that if for example parameter t was also a complex change parameter,

then the grouping would be the professionals with same employers E and title t.

CREATE COMPLEX CHANGE Add_Professionals_withCommon_Employers(I, E) {

CHANGE LIST Add_Professional(id, E, t, sY, eY) + ;

BINDING LIST union(id) as I ; } ;

Example 7. Add_Organization_with_ChildOrganisations models the case where a new

organization is added together with its child-organizations, which may be more than one

(cardinality "+"). This change is used in example 8. Changes Add_Organization and

Add_ChildOrganization are defined similar to Add_Person and Add_Name respectively.

CREATE COMPLEX CHANGE Add_Organisation_withChildOrganisations(id, C){

CHANGE LIST Add_Organisation(id), Add_ChildOrganisation(id, chId) + ;

BINDING LIST union(chId) as C ; } ;

Example 8. Add_Organisation_Hierarchy models the case where a new organization is added

together with any child-organizations, which in turn may have their child-organizations,

forming overall a hierarchical structure with four levels. The notion of optional change path

may be used in order to model the addition of such hierarchies, where in some cases may be

complete while in others partial, since elements lower in the hierarchy may not appear. Here,

one Add_Organization_with_ChildOrganisations is defined as mandatory change and two

more as optional changes with cardinality "*", since zero, one or more organizations with

child-organizations may be added lower in the hierarchy. The relational constraints (operator

in) are used in the filter list to define the dependencies and connections among changes.

CREATE COMPLEX CHANGE Add_Organisation_Hierachy(id1, L2, L3, L4) {

CHANGE LIST Add_Organisation_withChildOrganisations(id1, C2),

Add_Organisation_withChildOrganisations(id2, C3) *,

Add_Organisation_withChildOrganisations(id3, C4) * ;

FILTER LIST id2 in C2, id3 in C3 ;

BINDING LIST C2 as L2, union(C3) as L3, union(C4) as L4 ; } ;

3.5. Complex Change Detection

Complex change detection is the process of identifying complex change instances. It requires

as input a set of simple change instances detected between two dataset versions (𝑆𝑖), the

dataset versions (before 𝑉𝑏𝑒𝑓 and after 𝑉𝑎𝑓) and the complex change definitions that will be

evaluated for detecting respective instances (𝐶). For implementing the proposed language, we

translate it into an already implemented language. As this approach concerns RDF data, we

 46

choose to rely on SPARQL, which provides similar capabilities to the proposed language.

Accordingly, simple and complex change instances, as well as dataset versions are encoded as

RDF(S) data. Section 3.5.1 presents the complex change detection algorithm, Section 3.5.2

how change instances are represented in RDF(S), Section 3.5.3 the translation process for

generating SPARQL queries, Section 3.5.4 the change instance generation process and

Section 3.5.5 the correctness of the proposed implementation with respect to the language

semantics.

3.5.1. Algorithm

The presented complex change detection algorithm, Algorithm 1, involves two steps: the first

step handles nested definitions, the second produces complex change instances.

Algorithm 1: Complex Change Detection

Input: A set of complex changes 𝐶, a dataset version before 𝑉𝑏𝑒𝑓 and

after 𝑉𝑎𝑓, a set of simple change instances 𝑆𝑖

Output: A set of complex changes instances 𝐼 of 𝐶

1 𝐼 ← { } ;
2 queue 𝑄 ← 𝑝𝑜𝑠𝑡𝑂𝑟𝑑𝑒𝑟𝐷𝑓𝑠(𝐶) ;//complex changes sorted based on
dependencies

3 while !𝑄. 𝑖𝑠𝐸𝑚𝑝𝑡𝑦() do
4 𝑐 ← 𝑄. 𝑑𝑒𝑞𝑢𝑒𝑢𝑒() ;

5 𝑞𝑢𝑒𝑟𝑦 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝑄𝑢𝑒𝑟𝑦(𝐷(𝑐), 𝐹(𝑐)) ;

6 𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡 ← 𝑒𝑥𝑒𝑐(𝑞𝑢𝑒𝑟𝑦, 𝑆𝑖 , 𝐼, 𝑉𝑏𝑒𝑓 , 𝑉𝑎𝑓) ;

7 𝐼𝑐 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠(𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡, 𝐹𝐶
𝑐𝑎𝑟(𝑐)) ;

8 𝐼 ← 𝐼 ∪ 𝐼𝑐 ; //report instances

9 end while

10 return 𝐼 ;

As for the first step, suppose a complex change 𝑐 whose definition is based on a set of

complex changes (𝐷𝐶 ≠ ∅). The detection of 𝑐 instances depends on detecting the instances of

each complex change in 𝐷𝐶 and therefore follows their detection. Note that mutually

dependent complex changes are not supported. In general, complex change definitions

constitute a directed acyclic graph, where nodes represent changes and edges dependencies

between them. An edge departing from a complex change 𝑐 arrives at changes in 𝐷𝐶

according to its definition. Thus, detection follows a post-order depth-first scheme on the

induced dependency graph by complex change definitions. This is stated in line 2 of

Algorithm 1. postOrderDfs function call runs over the set of complex changes 𝐶 identifying

the dependencies among changes, returning a queue 𝑄 of all changes in 𝐶, where the order of

elements defines the order in which they have to be detected.

 47

As for the second step, for each complex change 𝑐 in 𝑄, instances are computed (lines 3-10).

The main idea is that each complex change definition is translated into a SPARQL query plus

a post process for computing respective complex change instances based on the query result.

Simple and complex change instances as well as dataset versions are encoded as RDF(S) data,

so that the constructed SPARQL queries are applied on them. Therefore, for each complex

change an appropriate SPARQL query is created via createQuery function call (line 5). The

query is executed on the detected change instances and dataset versions (line 6), in order to

select change instances that verify the defined constraints. The query results are further

elaborated through createInstances function call (line 7), so that selected changes are grouped

based on cardinality. Computed instances are added into the set of instances to be reported 𝐼

(line 8, initialized in line 1) and become available for the detection of dependent complex

changes. Finally, the set of detected complex change instances 𝐼 is returned (line 10).

3.5.2. RDF(S) Change Representation

The proposed schema describes the specification of each change and the instances under this

schema describe the detected change instances. It actually forms a change vocabulary, with a

dedicated namespace <http://dblab.ece.ntua.gr/change#> and prefix <ch>. The classes,

properties and individuals are described below in detail.

Classes. A class for simple changes (ch:Simple_Change) and a class for complex changes

(ch:Complex_Change) is used. Both are subclasses of a generic class for all changes

(ch:Change). Also, for each simple change defined in Annex I a respective class is defined:

ch:Add_Type_To_Individual, ch:Add_Property_Instance, etc. In total there are 38 classes for

the simple changes, which are all subclasses of ch:Simple_Change class. Similarly, for each

defined complex change in a set of complex changes 𝐶 a class is defined, following the

naming pattern <namespace>:<complex change name>, where a data-specific namespace is

considered in line with the application domain of the complex changes. These classes are all

subclasses of ch:Complex_Change class. For example, dbo:Add_Academic_Professional is a

class for one of the complex changes defined in the running example.

Properties. For each descriptive parameter of a simple change, a property is considered and is

named based on the simple change name and its index in the descriptive parameter list. The

naming pattern is ch:<simple change name>_p<parameter index>. For each property, the

domain is the respective simple change class and the range matches the value type it

represents in the definition. For example, the simple change Add_Type_To_Individual(a, b)

 48

has two properties defined: the first is ch:Add_Type_To_Individual_p1 with domain

ch:Add_Type_To_Individual and range rdfs:Resource, and the second is

ch:Add_Type_To_Individual_p2 with the same domain and range rdfs:Class. Similarly, for

each descriptive parameter of a complex change a property is defined, where the naming

pattern, domain and range are defined alike the simple changes.

Additionally, the property ch:contains is employed for modeling explicitly the containment

relationship between change instances. The domain is ch:Complex_Change and the range is

ch:Change, as only complex change instances may contain simple/complex change instances.

Instances. The instances of the defined schema are simple and complex change instances that

are detected between two dataset versions. They are actually instances of the defined classes

and are attributed with the defined properties.

Figure 3 presents an outline of the structure of the proposed RDF(S) schema. Two simple

change classes and two complex change classes are presented indicatively, as well as a

complex instance of Add_Academic_Professional presented in the running example.

Figure 3 Outline of the proposed RDF(S) change representation.

3.5.3. SPARQL Query Generation

Algorithm 2 presents the process of generating a SPARQL query 𝑞, given a complex change

𝑐. This involves the generation of a SELECT clause (lines 2-6), a FROM clause (line 7), a

WHERE clause (lines 8-17, 24-69), an ORDER BY clause (lines 18-21), and their

concatenation into the query string 𝑞 (line 22), which is finally returned (line 23). Note that

prefix definitions should be defined, while omitted for simplicity.

 49

SELECT Clause. Since the generated query is used for calculating complex change instances,

it has to return: (1) the values to be assigned in the complex change descriptive parameters,

(2) the change instances that are to be contained by the newly detected complex change

instance. Thus, SELECT clause includes: (1) variables for the descriptive parameters (𝑃) of

the complex change as defined in the change heading statement (lines 3-4), (2) variables for

identifying each change in the change list statement (lines 5-6). If 𝑐 includes bindings, they

are considered when specifying the variables for descriptive parameters via getBindParameter

function call: each parameter 𝑝 is substituted by the identifier used for its evaluation.

FROM Clause. The FROM clause includes two named graphs: Si holding simple change

instances and I holding complex change instances that are already computed (line 7).

WHERE Clause. Overall, the WHERE clause includes a graph pattern with: (1) triple patterns

corresponding to the changes in the change list statement, (2) appropriate statements for the

filters defined in the filter list statement. As for (1), the triple patterns that correspond for each

change follow the RDF(S) representation defined in Section 3.5.2 and are generated via

getTriplePattern function (lines 49-64). getTriplePattern requires as input a change 𝑑 and a set

of 𝑓𝑖𝑙𝑡𝑒𝑟𝑠. Recall that a change parameter may be defined as optional (i.e., evaluating into

empty value). The relevant triple pattern includes an optional graph pattern for this parameter,

while unary filters on it are considered within the optional pattern (lines 51, 59-63). As for

(2), each filter type is mapped to an appropriate SPARQL FILTER statement or subquery via

getFilterPattern function (lines 65-69). getFilterPattern requires as input a filter 𝑓𝑐 and the

𝑐ℎ𝑎𝑛𝑔𝑒𝑠 over which the filter applies. Testing value, relational and functional constraints, as

well as pre-/post-conditions on scalar parameters are similar to built-in SPARQL constraints.

However, triple patterns corresponding to changes and filters must be structured in an

appropriate manner due to composite filter expressions and cardinality constraints. Recall that

filters may be combined into logical expressions using logical AND, OR, NOT. In this case,

the equivalent DNF (disjunctive normal form) of the expression is computed (line 9). Each

conjunction is a combination of filters that should be satisfied by the changes in the change

list. Therefore, the WHERE clause is formed as the union of graph patterns where each

includes the appropriate triple patterns for changes plus one of the possible combination of

filters (lines 10-17). Each such graph pattern is generated by a getPattern function call (lines

11, 14), where getPattern function (lines 24-37) together with getOptionalPattern (lines 38-

48), for handling optional changes, orchestrate the process.

 50

As for getPattern function, it requires as input a change 𝑐 and a set of filters constituting a

filter conjunction. First, the mandatory (cardinality 1 or "+") and optional (cardinality "?" or

"*") changes are identified (lines 25-26). Second, the triple pattern for each mandatory change

is generated (lines 27-28) via getTriplePattern function call, as well as the pattern for each

unary or binary filter on mandatory changes (lines 29-34) via getFilterPattern function call.

Notice that the getFilterPattern function call has as input the filter 𝑓𝑐 and the changes that its

parameters are on, generated by the getChanges function call. Next, the triple patterns for

optional changes are considered (lines 35-36), starting from those that are directly connected

via a filter 𝑓𝑐 to mandatory changes (line 36), generated by getOptionalPattern function call

(line 36). Finally, getPattern function returns the generated pattern (line 37).

As for getOptionalPattern function, it is a recursive function that generates a SPARQL

optional statement, which may contain nested SPARQL optional statements, following the

dependencies between optional changes, ultimately forming optional change paths (see

Section 3.4.2.1). getOptionalPattern requires as input, an optional change 𝑑, a set of filters

(𝑓𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛), a set of changes of previous iteration (𝑝𝑎𝑟𝑒𝑛𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑠, that 𝑑 is

dependent) and a set of optional changes (𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝐶ℎ𝑎𝑛𝑔𝑒𝑠). First, the triple pattern for the

optional change 𝑑 is generated into a SPARQL optional statement (line 38). Second, for each

filter 𝑓𝑐, that is unary with its parameter on 𝑑 or binary with its parameters on 𝑑 and

𝑝𝑎𝑟𝑒𝑛𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑠, a triple pattern is generated within the SPARQL optional statement via a

getFilterPattern function call (lines 39-44). Next, it is examined if there are optional changes

𝑑′ dependent on 𝑑 and for each such change getOptionalPattern function is recursively called,

resulting in the generation of a nested SPARQL optional statement (lines 45-46). Finally, the

optional pattern is completed (line 47) and then returned (line 48).

ORDER BY Clause. Complex change detection is a two step process, where the second step is

change instance generation based on the SPARQL query results. In order to facilitate this step

it is necessary to have the query results in order, so that results that are to be grouped into one

complex change instance are positioned nearby in the query result set. Thus, an ORDER BY

clause (lines 18-21) is considered with: (1) grouping variables except from those representing

set parameters, (2) change variables for each change in the change list statement. Based on

the semantics presented in Section 3.4.2.2, grouping variables are the ones in variable list,

which defines the groups, and are further discussed in Section 3.5.4. The variables

representing set parameters are excluded, because set values "span" among multiple lines in

the result set. In order to be computed, ordering based on all change variables is needed.

 51

Algorithm 2: SPARQL Query Generation

Input: A complex change 𝑐 = (𝑛, 𝑃, 𝐷, 𝐹) (where 𝐹 = 𝐹𝐶
𝑐𝑎𝑟 ∪ 𝐹𝐶

𝑝𝑎𝑟
∪ 𝐹𝐵, 𝐹𝐶

𝑐𝑎𝑟 is a

set of cardinality constraints, 𝐹𝐶
𝑝𝑎𝑟

 filter constraints, 𝐹𝐵 bindings),

a named graph of simple change instances 𝑆𝑖, a named graph of complex

change instances 𝐼, a named graph of the version before 𝑉𝑏𝑒𝑓, and a

named graph with the version after 𝑉𝑎𝑓

Output: A SPARQL query 𝑞
1 𝑞 ← "" ;

2 𝑠𝑒𝑙𝑒𝑐𝑡𝐶𝑙𝑎𝑢𝑠𝑒 ← "𝑆𝐸𝐿𝐸𝐶𝑇 " ;
3 for each 𝑝 in 𝑃 do
4 𝑠𝑒𝑙𝑒𝑐𝑡𝐶𝑙𝑎𝑢𝑠𝑒 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝐶𝑙𝑎𝑢𝑠𝑒 + " ? " + 𝑔𝑒𝑡𝐵𝑖𝑛𝑑𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(𝑝, 𝐹𝐵) ; end for
5 for each 𝑑 in 𝐷 do
6 𝑠𝑒𝑙𝑒𝑐𝑡𝐶𝑙𝑎𝑢𝑠𝑒 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝐶𝑙𝑎𝑢𝑠𝑒 + " ? " + 𝑑 ; end for
7 𝑓𝑟𝑜𝑚𝐶𝑙𝑎𝑢𝑠𝑒 ← " 𝐹𝑅𝑂𝑀 < " + 𝑆𝑖 + " > 𝐹𝑅𝑂𝑀 < " + 𝐼 + " > " ;
8 𝑤ℎ𝑒𝑟𝑒𝐶𝑙𝑎𝑢𝑠𝑒 ← " 𝑊𝐻𝐸𝑅𝐸 {" ;

9 𝑑𝑛𝑓𝐹𝑖𝑙𝑡𝑒𝑟𝐸𝑥𝑝𝑟 ← 𝐷𝑛𝑓(𝐹𝐶
𝑝𝑎𝑟

) ; // compute equivalent DNF expression

10 if (𝑑𝑛𝑓𝐹𝑖𝑙𝑡𝑒𝑟𝐸𝑥𝑝𝑟 𝑖𝑠 𝑎 𝑓𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛) do // generate a triple pattern
11 𝑔𝑒𝑡𝑃𝑎𝑡𝑡𝑒𝑟𝑛(𝑐, 𝑑𝑛𝑓𝐹𝑖𝑙𝑡𝑒𝑟𝐸𝑥𝑝𝑟) ;
12 else // generate a union of triple patterns

13 for each 𝑓𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖 in 𝑑𝑛𝑓𝐹𝑖𝑙𝑡𝑒𝑟𝐸𝑥𝑝𝑟 do
14 𝑤ℎ𝑒𝑟𝑒𝐶𝑙𝑎𝑢𝑠𝑒 ← 𝑤ℎ𝑒𝑟𝑒𝐶𝑙𝑎𝑢𝑠𝑒 + "{" + 𝑔𝑒𝑡𝑃𝑎𝑡𝑡𝑒𝑟𝑛(𝑐, 𝑓𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖) + "}" ;
15 if (𝑑𝑛𝑓𝐹𝑖𝑙𝑡𝑒𝑟𝐸𝑥𝑝𝑟. 𝑠𝑖𝑧𝑒() > 𝑖) do 𝑤ℎ𝑒𝑟𝑒𝐶𝑙𝑎𝑢𝑠𝑒 ← 𝑤ℎ𝑒𝑟𝑒𝐶𝑙𝑎𝑢𝑠𝑒 + " 𝑈𝑁𝐼𝑂𝑁 " ;
end if end for

16 end if

17 𝑤ℎ𝑒𝑟𝑒𝐶𝑙𝑎𝑢𝑠𝑒 ← 𝑤ℎ𝑒𝑟𝑒𝐶𝑙𝑎𝑢𝑠𝑒 + "}" ;
18 𝑜𝑟𝑑𝑒𝑟𝐵𝑦𝐶𝑙𝑎𝑢𝑠𝑒 ← " 𝑂𝑅𝐷𝐸𝑅 𝐵𝑌" ;
19 for each 𝑑 in 𝐷 do 𝑜𝑟𝑑𝑒𝑟𝐵𝑦𝐶𝑙𝑎𝑢𝑠𝑒 ← 𝑜𝑟𝑑𝑒𝑟𝐵𝑦𝐶𝑙𝑎𝑢𝑠𝑒 + " ? " + 𝑑 ; end for
20 for each 𝑝 in 𝑃 do

21 if ((𝑖𝑠𝐼𝑛𝐼𝑛𝑓𝑒𝑟𝑟𝑒𝑑𝐵𝑖𝑛𝑑𝑖𝑛𝑔(𝑝, 𝐹𝐵) ∨ 𝑖𝑠𝐼𝑛𝐵𝑖𝑛𝑑𝑖𝑛𝑔𝑊𝑖𝑡ℎ𝑜𝑢𝑡𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛(𝑝, 𝐹𝐵)) ∧

𝑖𝑠𝑂𝑛𝑙𝑦𝑂𝑛𝐶ℎ𝑎𝑛𝑔𝑒𝑠𝑊𝑖𝑡ℎ𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 + 𝑂𝑟 ∗ (𝑝, 𝐷, 𝐹𝐶
𝑐𝑎𝑟) ∧ 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑠𝐼𝑛𝑡𝑜𝑆𝑐𝑎𝑙𝑎𝑟(𝑝)) do

𝑜𝑟𝑑𝑒𝑟𝐵𝑦𝐶𝑙𝑎𝑢𝑠𝑒 ← 𝑜𝑟𝑑𝑒𝑟𝐵𝑦𝐶𝑙𝑎𝑢𝑠𝑒 + " ? " + 𝑝 ; end if end for
22 𝑞 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝐶𝑙𝑎𝑢𝑠𝑒 + 𝑓𝑟𝑜𝑚𝐶𝑙𝑎𝑢𝑠𝑒 + 𝑤ℎ𝑒𝑟𝑒𝐶𝑙𝑎𝑢𝑠𝑒 + 𝑜𝑟𝑑𝑒𝑟𝐵𝑦𝐶𝑙𝑎𝑢𝑠𝑒 ;
23 return 𝑞 ;
𝒈𝒆𝒕𝑷𝒂𝒕𝒕𝒆𝒓𝒏(𝒄, 𝒇𝒊𝒍𝒕𝒆𝒓𝑪𝒐𝒏𝒋𝒖𝒏𝒄𝒕𝒊𝒐𝒏)
24 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ← "" ;
25 𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦𝐶ℎ𝑎𝑛𝑔𝑒𝑠 ← 𝑔𝑒𝑡𝑀𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦𝐶ℎ𝑎𝑛𝑔𝑒𝑠(𝐷, 𝐹𝐶

𝑐𝑎𝑟) ;
26 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝐶ℎ𝑎𝑛𝑔𝑒𝑠 ← 𝑔𝑒𝑡𝑂𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝐶ℎ𝑎𝑛𝑔𝑒𝑠(𝐷, 𝐹𝐶

𝑐𝑎𝑟) ;
27 for each 𝑑 in 𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦𝐶ℎ𝑎𝑛𝑔𝑒𝑠 do
28 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ← 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 + 𝑔𝑒𝑡𝑇𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛(𝑑, 𝑓𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛) ; end for
29 for each 𝑓𝐶 ∈ 𝑓𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 do

30 if (𝑖𝑠𝑈𝑛𝑎𝑟𝑦(𝑓𝐶) ∧ 𝑖𝑠𝑂𝑛𝐶ℎ𝑎𝑛𝑔𝑒𝑠(𝑓𝐶 , 𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦𝐶ℎ𝑎𝑛𝑔𝑒𝑠)) do

31 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ← 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 + 𝑔𝑒𝑡𝐹𝑖𝑙𝑡𝑒𝑟𝑃𝑎𝑡𝑡𝑒𝑟𝑛(𝑓𝐶 , 𝑔𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑠(𝑓𝐶 , 𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦𝐶ℎ𝑎𝑛𝑔𝑒𝑠)) ;

32 else if (𝑖𝑠𝐵𝑖𝑛𝑎𝑟𝑦(𝑓𝐶) ∧ 𝑖𝑠𝑂𝑛𝐶ℎ𝑎𝑛𝑔𝑒𝑠(𝑓𝐶 , 𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦𝐶ℎ𝑎𝑛𝑔𝑒𝑠)) do

33 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ← 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 + 𝑔𝑒𝑡𝐹𝑖𝑙𝑡𝑒𝑟𝑃𝑎𝑡𝑡𝑒𝑟𝑛(𝑓𝐶 , 𝑔𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑠(𝑓𝐶 , 𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦𝐶ℎ𝑎𝑛𝑔𝑒𝑠)) ;
34 end if end for

35 for each 𝑑 in 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝐶ℎ𝑎𝑛𝑔𝑒𝑠 do // generate optional pattern
36 if ∃𝑓𝐶 ∈ 𝑓𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑠. 𝑡. 𝑖𝑠𝑂𝑛𝐶ℎ𝑎𝑛𝑔𝑒𝑠(𝑓𝑐 , 𝑑, 𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦𝐶ℎ𝑎𝑛𝑔𝑒𝑠) do 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ←
𝑝𝑎𝑡𝑡𝑒𝑟𝑛 + 𝑔𝑒𝑡𝑂𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛(𝑑, 𝑓𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦𝐶ℎ𝑎𝑛𝑔𝑒𝑠, 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝐶ℎ𝑎𝑛𝑔𝑒𝑠)
; end if end for

37 return 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ;
𝒈𝒆𝒕𝑶𝒑𝒕𝒊𝒐𝒏𝒂𝒍𝑷𝒂𝒕𝒕𝒆𝒓𝒏(𝒅, 𝒇𝒊𝒍𝒕𝒆𝒓𝑪𝒐𝒏𝒋𝒖𝒏𝒄𝒕𝒊𝒐𝒏, 𝒑𝒂𝒓𝒆𝒏𝒕𝑪𝒉𝒂𝒏𝒈𝒆𝒔, 𝒐𝒑𝒕𝒊𝒐𝒏𝒂𝒍𝑪𝒉𝒂𝒏𝒈𝒆𝒔)
38 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ← " 𝑂𝑃𝑇𝐼𝑂𝑁𝐴𝐿{" + 𝑔𝑒𝑡𝑇𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛(𝑑, 𝑓𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛) ;
39 for each 𝑓𝐶 ∈ 𝑓𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 do

40 if (𝑖𝑠𝑈𝑛𝑎𝑟𝑦(𝑓𝐶) ∧ 𝑖𝑠𝑂𝑛𝐶ℎ𝑎𝑛𝑔𝑒𝑠(𝑓𝐶 , {𝑑})) do

41 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ← 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛 + 𝑔𝑒𝑡𝐹𝑖𝑙𝑡𝑒𝑟𝑃𝑎𝑡𝑡𝑒𝑟𝑛(𝑓𝐶 , {𝑑}) ;

 52

42 else if (𝑖𝑠𝐵𝑖𝑛𝑎𝑟𝑦(𝑓𝐶) ∧ 𝑖𝑠𝑂𝑛𝐶ℎ𝑎𝑛𝑔𝑒𝑠(𝑓𝐶 , 𝑑, 𝑝𝑎𝑟𝑒𝑛𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑠)) do

43 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ← 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛 + 𝑔𝑒𝑡𝐹𝑖𝑙𝑡𝑒𝑟𝑃𝑎𝑡𝑡𝑒𝑟𝑛(𝑓𝐶 , 𝑔𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑠(𝑓𝐶 , {𝑑} ∪

𝑝𝑎𝑟𝑒𝑛𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑠)) ;
44 end if end for

45 for each 𝑑′ in 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝐶ℎ𝑎𝑛𝑔𝑒𝑠 do // generate nested optional pattern
46 if ∃𝑓𝐶 ∈ 𝑓𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑠. 𝑡. 𝑖𝑠𝑂𝑛𝐶ℎ𝑎𝑛𝑔𝑒𝑠(𝑓𝑐 , 𝑑′, {𝑑}) do 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ←
𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛 + 𝑔𝑒𝑡𝑂𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝑃𝑎𝑡𝑡ℎ𝑒𝑟𝑛(𝑑′, 𝑓𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛, {𝑑}, 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝐶ℎ𝑎𝑛𝑔𝑒𝑠) ; end
if end for

47 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ← 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛 + "}" ;
48 return 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ;
𝒈𝒆𝒕𝑻𝒓𝒊𝒑𝒍𝒆𝑷𝒂𝒕𝒕𝒆𝒓𝒏(𝒅, 𝒇𝒊𝒍𝒕𝒆𝒓𝒔) // where 𝑑 = (𝑛𝑎𝑚𝑒𝑑 , 𝑃𝑑)
49 𝑡𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ← " ? " + 𝑑 + " 𝑟𝑑𝑓: 𝑡𝑦𝑝𝑒" + " " + 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 + ": " + 𝑛𝑎𝑚𝑒𝑑 + "; " ; //
change type

50 𝑛𝑜𝑛𝐸𝑚𝑝𝑡𝑦𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ← 𝑔𝑒𝑡𝑁𝑜𝑛𝐸𝑚𝑝𝑡𝑦𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(𝑃𝑑) ;
51 𝑒𝑚𝑝𝑡𝑦𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ← 𝑔𝑒𝑡𝐸𝑚𝑝𝑡𝑦𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(𝑃𝑑) ;
52 for each 𝑝𝑖 ∈ 𝑛𝑜𝑛𝐸𝑚𝑝𝑡𝑦𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 do // change parameters with non-
empty values

53 𝑡𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ← 𝑡𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛 + " 𝑐ℎ: " + 𝑛𝑎𝑚𝑒𝑑 + "_𝑝" + 𝑖 + " ? " + 𝑝𝑖 ;

54 if (𝑛𝑜𝑛𝐸𝑚𝑝𝑡𝑦𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠. 𝑠𝑖𝑧𝑒() > 𝑖) do
55 𝑡𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ← 𝑡𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛 + "; " ;
56 else

57 𝑡𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ← 𝑡𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛 + ". " ;
58 end if end for

59 for each 𝑝𝑖 ∈ 𝑒𝑚𝑝𝑡𝑦𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 do // optional change parameters, with
empty values

60 𝑡𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ← 𝑡𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛 + " 𝑂𝑃𝑇𝐼𝑂𝑁𝐴𝐿{ ? " + 𝑑 + " 𝑐ℎ: " + 𝑛𝑎𝑚𝑒𝑑 + "_𝑝" + 𝑖 +
" ? " + 𝑝𝑖 ;

61 for each 𝑓𝐶 ∈ 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 𝑠. 𝑡. 𝑖𝑠𝑂𝑛𝐶ℎ𝑎𝑛𝑔𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(𝑓𝑐 , 𝑑, 𝑝𝑖) do // unary filters

62 𝑡𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ← 𝑡𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛 + 𝑔𝑒𝑡𝐹𝑖𝑙𝑡𝑒𝑟𝑃𝑎𝑡𝑡𝑒𝑟𝑛(𝑓𝐶 , {𝑑}) ; end for
63 𝑡𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ← 𝑡𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛 + "}" ; end for
64 return 𝑡𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ;
𝒈𝒆𝒕𝑭𝒊𝒍𝒕𝒆𝒓𝑷𝒂𝒕𝒕𝒆𝒓𝒏(𝒇𝑪, 𝒄𝒉𝒂𝒏𝒈𝒆𝒔) // 𝑓𝐶 is mapped to appropriate statement

65 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑜𝑛 𝑠𝑐𝑎𝑙𝑎𝑟 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 → 𝑆𝑃𝐴𝑅𝑄𝐿 𝐹𝐼𝐿𝑇𝐸𝑅 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡
66 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑜𝑛 𝑠𝑐𝑎𝑙𝑎𝑟 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 → 𝑆𝑃𝐴𝑅𝑄𝐿 𝐹𝐼𝐿𝑇𝐸𝑅 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡
67 𝑝𝑟𝑒/𝑝𝑜𝑠𝑡 − 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑜𝑛 𝑠𝑐𝑎𝑙𝑎𝑟 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 → 𝐹𝐼𝐿𝑇𝐸𝑅 𝐸𝑋𝐼𝑆𝑇𝑆/𝑁𝑂𝑇 𝐸𝑋𝐼𝑆𝑇𝑆 𝑜𝑛 𝑉𝑏𝑒𝑓/𝑉𝑎𝑓

68 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 → 𝑆𝑃𝐴𝑅𝑄𝐿 𝑏𝑢𝑖𝑙𝑡 − 𝑖𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑
69 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑜𝑛 𝑠𝑒𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑜𝑟 𝑞𝑢𝑎𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 → 𝑆𝑃𝐴𝑅𝑄𝐿 𝑠𝑢𝑏 − 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 𝑎𝑛𝑑 𝑀𝐼𝑁𝑈𝑆

As an example, consider the complex change Add_Academic_Professional defined in Section

3.4.3, example 5. Table 2 presents the SPARQL query for the detection of this complex

change. In the SELECT clause notice the query variable corresponding to change's identifier

(?c_1) and the query variables corresponding to the complex change's descriptive parameters

(?id, ?E). In the FROM clause, the named graph 𝑆𝑖 holds the simple change instances and the

named graph 𝐼 holds the complex change instances. In the WHERE clause, notice the triple

pattern for the Add_Professional change defined in change list. For the post-condition an

appropriate SPARQL filter expression is considered evaluating over the named graph holding

𝑉𝑎𝑓. Since it involves quantification, it is implemented via MINUS and a nested query.

Finally, notice the ORDER BY clause which involves the contained change identifier.

 53

Table 2 SPARQL query for the detection of complex change Add_Academic_Professional

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX ch: <http://dblab.ece.ntua.gr/change#>

SELECT ?c_1 ?id ?E

FROM <Si> FROM <I>

WHERE{?c_1 rdf:type dbo:Add_Professional; ch:Add_Professional_p1 ?id;

 ch:Add_Professional_p2 ?E; ch:Add_Professional_p3 ?t;

 ch:Add_Professional_p4 ?sY; ch:Add_Professional_p5 ?eY.

 MINUS{ SELECT ?c_1

 WHERE{?c_1 rdf:type dbo:Add_Professional;

 ch:Add_Professional_p2 ?e.

 FILTER NOT EXISTS {

 GRAPH ?g { ?e rdf:type dbo:University. }

 FILTER (?g=<Vaf>) } } }

} ORDER BY ?c_1

3.5.4. Change Instance Generation

In order to generate change instances, the SPARQL query result set is read line-by-line and

the lines that share the same values in the grouping variables are used to form a new complex

change instance. The new complex change instance contains the change instances bound to

the change variables and it is described by the values bound to the variables of the descriptive

parameters, that correspond to the result set lines to be grouped.

Grouping variables indicate the groups that have to be defined over the result set. Based on

the semantics presented in Section 3.4.2.2, they actually form the variable list for group

construct and comprise of: (1) the change variables of changes with cardinality 1 or "?" and

(2) the descriptive variables that are used in assignments without aggregation and correspond

(only) to changes with cardinality "+" or "*". The result set lines that share common values in

the grouping variables are used to generate a new complex change instance.

For example, consider the complex change Add_Academic_Professional presented in Section

3.4.3, example 5 and the respective SPARQL query in Table 2. Add_Professional has

cardinality one and there are not any complex change descriptive parameters coming only

from changes with cardinality "+" or "*" used in bindings without aggregation. Thus, ?c_1 is

the grouping variable. As another example, consider the complex change Add_Professionals_

withCommon_Employers presented in Section 3.4.3, example 6. Add_Professional has

cardinality "+" and the complex change descriptive parameter E is repeated (only) on it

 54

implying an inferred binding without aggregation. Given an appropriately generated SPARQL

query, variable ?E (corresponding to parameter E) is the grouping variable.

Algorithm 3 presents the process of generating complex change instances. Grouping variables

may involve scalar and set parameters. Thus, while iterating the result set the grouping

variables of type set have to be calculated. For this reason, ordering variables are used: the

variables over which the result set has been ordered (as in Section 4.5.3 ORDER BY clause).

Algorithm 3: Complex Change Instance Generation for grouping

variables corresponding to scalar and set parameters

Input: A result set rs of a SPARQL query of complex change 𝑐, the set
of grouping variables 𝑃 of 𝑐
Output: A set of complex changes instances 𝐼𝑐 of 𝑐
1 𝐼𝑐 ← { } ;
2 𝑐𝑢𝑟𝑟𝑂𝑟𝑑𝑒𝑟𝑣𝑎𝑙𝑠 ← { } ;// ordering variable values
3 𝑝𝑟𝑒𝑣𝑂𝑟𝑑𝑒𝑟𝑣𝑎𝑙𝑠 ← { } ;// ordering variable values of previous iteration
4 𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠 ← { } ; // grouping variable values

5 𝑝𝑟𝑒𝑣𝑃𝑣𝑎𝑙𝑠 ← { } ; // grouping variable values of previous iteration
6 𝑔𝑖 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝑁𝑒𝑤𝐺𝑟𝑜𝑢𝑝() ; // group of change instances and descriptive
variables to be used in complex change instance generation

7 while rs. ℎ𝑎𝑠𝑁𝑒𝑥𝑡() do
8 𝑟 ← 𝑟𝑠. 𝑛𝑒𝑥𝑡() ;
9 𝑝𝑟𝑒𝑣𝑂𝑟𝑑𝑒𝑟𝑣𝑎𝑙𝑠 ← 𝑐𝑢𝑟𝑟𝑂𝑟𝑑𝑒𝑟𝑣𝑎𝑙𝑠 ;
10 𝑐𝑢𝑟𝑟𝑂𝑟𝑑𝑒𝑟𝑣𝑎𝑙𝑠 ← 𝑔𝑒𝑡𝑂𝑟𝑑𝑒𝑟𝑣𝑎𝑙𝑠(𝑟, 𝑃) ; // calculate current order values
11 if (𝑐𝑢𝑟𝑟𝑂𝑟𝑑𝑒𝑟𝑣𝑎𝑙𝑠 = 𝑝𝑟𝑒𝑣𝑂𝑟𝑑𝑒𝑟𝑣𝑎𝑙𝑠) do
12 𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝑃𝑣𝑎𝑙𝑠(𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠, 𝑟) ; // 𝑟 forms the current grouping
values

13 𝑔𝑖 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝐺𝑟𝑜𝑢𝑝(𝑐𝑖 , 𝑟) ; // 𝑟 forms the current 𝑔𝑖

14 else

15 𝐼𝑐 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝐼𝑐(𝑔𝑖 , 𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠, 𝐼𝑐) ; // 𝑔𝑖 's computation is completed, the

relevant 𝑐𝑖 has to be updated / formed in 𝐼𝑐 based on 𝑔𝑖

16 𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝑁𝑒𝑤𝑃𝑣𝑎𝑙𝑠(𝑟, 𝑃) ; // 𝑟 forms the new current 𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠
17 𝑔𝑖 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝑁𝑒𝑤𝐺𝑟𝑜𝑢𝑝(𝑟) ; // r forms the new current 𝑔𝑖

18 end if

19 if (! 𝑟𝑠. ℎ𝑎𝑠𝑁𝑒𝑥𝑡()) do
20 𝐼𝑐 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝐼𝑐(𝑔𝑖 , 𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠, 𝐼𝑐) ; // update 𝐼𝑐 for the last iteration

21 end if

22 end while

23 return 𝐼𝑐 ;

𝒖𝒑𝒅𝒂𝒕𝒆𝑰𝒄(𝒈𝒊, 𝒄𝒖𝒓𝒓𝑷𝒗𝒂𝒍𝒔, 𝑰𝒄)
24 if (𝑒𝑥𝑖𝑠𝑡𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑊𝑖𝑡ℎ_𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠(𝐼𝑐, 𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠)) do // there is a complex
change instance with the same grouping values

25 𝑐𝑖 ← 𝑔𝑒𝑡𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑊𝑖𝑡ℎ_𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠(𝐼𝑐, 𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠) ;
26 𝐼𝑐 ← 𝐼𝑐 \ {𝑐𝑖} ; // exclude 𝑐𝑖

27 𝑐𝑖 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝑐𝑖 , 𝑔𝑖) ; // update the instance with change
instances and descriptive variables in 𝑔𝑖 of the current iteration

28 𝐼𝑐 ← 𝐼𝑐 ∪ {𝑐𝑖} ; // add updated 𝑐𝑖

29 else

30 𝑐𝑖 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝑁𝑒𝑤𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝑔𝑖) ; // 𝑔𝑖 forms a new complex change instance

31 𝐼𝑐 ← 𝐼𝑐 ∪ {𝑐𝑖} ; // add the newly created 𝑐𝑖

32 end if

33 return 𝐼𝑐 ;

 55

The result set is iterated and each time a new line is read, the values of the ordering variables

are calculated: the current values (𝑐𝑢𝑟𝑟𝑂𝑟𝑑𝑒𝑟𝑣𝑎𝑙𝑠) and previous values (𝑝𝑟𝑒𝑣𝑂𝑟𝑑𝑒𝑟𝑣𝑎𝑙𝑠,

the values of previous iteration - line) (lines 7-10). If they are equal, the current grouping

variable values have to be updated (𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠), so that variables corresponding to set

parameters can be computed (line 12). Accordingly, a variable holding the currently grouped

data is updated (𝑔𝑖) (line 13): it holds change instances and descriptive values that are

considered in a complex change instance (𝑐𝑖). Otherwise, the current grouping variables

(𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠) computation has finished. This is ensured by having the query result set in order.

The appropriate complex change instance (𝑐𝑖) in the result (𝐼𝑐) has to be updated (line 15) via

function 𝑢𝑝𝑑𝑎𝑡𝑒𝐼𝑐. The currently read result set line (𝑟) is to be used to form new current

grouping variable values (𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠) and new current group data (𝑔𝑖) (lines 16-17). If the

result set has been read, the lastly computed grouping variable values and group data should

be used to update the appropriate complex change instance of the result (𝐼𝑐) (lines 19-21).

Finally, the set of all computed complex change instances is returned (line 23).

Regarding the function 𝑢𝑝𝑑𝑎𝑡𝑒𝐼𝑐: it takes as input a set of grouping variable values

(𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠) and the respective grouped data (𝑔𝑖), and returns the updated result (𝐼𝑐). If there

is already a complex change instance (𝑐𝑖) with the same grouping variable values

(𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠) in the result (𝐼𝑐), then the grouped data (𝑔𝑖) have to be included within it (lines

24-28). Otherwise, a new complex change instance is created and added in the result (𝐼𝑐)

(lines 29-32). Finally, the set of all computed complex change instances is returned (line 33).

3.5.5. Complex Change Detection Correctness

Below we prove the correctness of the detection algorithm in Section 3.5 with respect to

complex change language semantics. First, a subset of the proposed language is proven to

have equivalent semantics to a subset of SPARQL. SPARQL semantics are defined in Perez,

Arenas and Gutierrez (2009) [46] and Kaminski, Kostylev and Cuenca Grau (2017) [32].

Next, augmenting with the rest features, semantics are implemented by applying Algorithm 3

to the result mappings of a SPARQL graph pattern.

Step 1. Consider the subset of the proposed complex change language which involves only

changes with cardinalities one and "?", scalar parameters and filter expressions on scalar

parameters. Complex change semantics are defined given a set of change instances 𝐼 and

SPARQL semantics given an RDF graph 𝐷. Let 𝐷 contain the RDF representation of 𝐼 based

on the vocabulary presented in Section 3.5.2.

 56

(1) The abstract syntax of the proposed language is by definition equivalent to the one

proposed for SPARQL in Perez, Arenas and Gutierrez (2009) [46], assuming that a graph

pattern involves triples for changes, except that: (a) UNION operator is not considered, (b) the

right operand of OPT shall be a graph pattern corresponding to a primitive change pattern, or

a filter primitive change pattern, or an optional change pattern involving only primitive

change patterns, filter primitive change patterns or optional change patterns with these types

of operands, (c) the right operand of OPT may be a triple that involves an optional variable

𝑥𝑂𝑃𝑇 (recall, if 𝑥𝑂𝑃𝑇 ∈ 𝑑𝑜𝑚(𝜇𝑐) then 𝜇𝑐(𝑥𝑂𝑃𝑇) = ∅ or 𝜇𝑐(𝑥𝑂𝑃𝑇) ≠ ∅). All complex

change language's built-in filter expressions are SPARQL built-in filter expressions as well.

For a complete SPARQL feature list see Harris S. and Seaborne A. (2013) [31].

(2) The semantics of the proposed language are by definition equal to SPARQL semantics as

in Perez, Arenas and Gutierrez (2009) [46] for the syntax in (1), since they are made up of

semantically equivalent operators applied on equivalent data in the same sequence.

Algorithm 3 (grouping variables are the change variables) materializes the change instances,

performing a trivial grouping, where each SPARQL result mapping forms a trivial group and

a new complex change instance. Overall, ⟦𝑐ℎ𝑎𝑛𝑔𝑒 𝑝𝑎𝑡𝑡𝑒𝑟𝑛⟧𝐼 =

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚3(⟦𝑔𝑟𝑎𝑝ℎ 𝑝𝑎𝑡𝑡𝑒𝑟𝑛⟧𝐷).

Step 2. Augment step 1 with set parameters. Consider a change pattern with a set variable 𝑋

and a set of mappings 𝜇𝑐, 𝛺𝑐 . Since SPARQL does not support this feature, the graph pattern

corresponding to the change pattern involves a scalar variable 𝑥 corresponding to 𝑋.

Evaluating the graph pattern results in a set of mappings 𝜇, 𝛺. It holds that 𝑑𝑜𝑚(𝜇𝑐) − {𝑋} =

𝑑𝑜𝑚(𝜇) − {𝑥}. Based on step 1, for each 𝜇𝑐 ∈ 𝛺𝑐 there is a 𝜇 ∈ 𝛺 such that 𝜇𝑐(𝑦) = 𝜇(𝑦)

where 𝑦 ∈ 𝑑𝑜𝑚(𝜇𝑐) − {𝑋}. Based on 𝜇𝑐 definition for a set parameter 𝜇𝑐(𝑋) =

∪𝑖=1,…,𝑛 𝜇𝑖(𝑥), considering all 𝜇𝑖 where 𝜇𝑐(𝑦) = 𝜇𝑖(𝑦) ∀𝑦 ∈ 𝑑𝑜𝑚(𝜇𝑐) − {𝑋} or simply ∀𝑦 ∈

𝑑𝑜𝑚(𝜇𝑐) − {𝑋} and 𝑦 is a change variable. Optional set variables are handled similarly.

Therefore, the complex change semantics equal SPARQL semantics for step 1 plus Algorithm

3 for implementing set variable semantics: ⟦𝑐ℎ𝑎𝑛𝑔𝑒 𝑝𝑎𝑡𝑡𝑒𝑟𝑛⟧𝐼 =

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚3(⟦𝑔𝑟𝑎𝑝ℎ 𝑝𝑎𝑡𝑡𝑒𝑟𝑛⟧𝐷).

Step 3. Augment step 2 with filter expressions on set parameters. These expressions are not

SPARQL built-in expressions. Thus, each such expression 𝑅 is mapped to an equivalent 𝑅′ in

SPARQL, based on built-in features (FILTER EXIST/NOT EXIST, MINUS and subqueries).

The exact mapping for each one filter expression into SPARQL is not discussed in further

detail. Also, 𝑅 may combine primitive filter expressions with logical connectives. In this case,

there is always an equivalent DNF expression 𝐷𝑁𝐹(𝑅) = 𝑅1 ∨ 𝑅2 ∨ … ∨ 𝑅𝑛 . Since,

 57

⟦𝑃 𝐹𝐼𝐿𝑇𝐸𝑅 𝑅⟧𝐼 = {𝜇 ∈ ⟦𝑃⟧𝐼|𝜇 ⊨ 𝑅} = {𝜇 ∈ ⟦𝑃⟧𝐼|𝜇 ⊨ 𝑅1 ∨ 𝑅2 ∨ … ∨ 𝑅𝑛} and

⟦𝑃 𝐹𝐼𝐿𝑇𝐸𝑅 𝑅1⟧𝐼 = {𝜇 ∈ ⟦𝑃⟧𝐼|𝜇 ⊨ 𝑅1}, ..., ⟦𝑃 𝐹𝐼𝐿𝑇𝐸𝑅 𝑅𝑛⟧𝐼 = {𝜇 ∈ ⟦𝑃⟧𝐼|𝜇 ⊨ 𝑅𝑛}, it is

implied that ⟦𝑃 𝐹𝐼𝐿𝑇𝐸𝑅 𝑅⟧𝐼 = ⟦𝑃 𝐹𝐼𝐿𝑇𝐸𝑅 𝑅1⟧𝐼 ∪ … ∪ ⟦𝑃 𝐹𝐼𝐿𝑇𝐸𝑅 𝑅𝑛⟧𝐼. Thus, 𝑃 𝐹𝐼𝐿𝑇𝐸𝑅 𝑅

can be mapped in SPARQL to the union of all graph patterns where each comprises of 𝑃 and

𝑅𝑖.

Overall, the complex change semantics are equal to the semantics of an equivalent SPARQL

graph pattern plus Algorithm 3 for implementing the semantics of set variables (as in step 2).

Again, ⟦𝑐ℎ𝑎𝑛𝑔𝑒 𝑝𝑎𝑡𝑡𝑒𝑟𝑛⟧𝐼 = 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚3(⟦𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑔𝑟𝑎𝑝ℎ 𝑝𝑎𝑡𝑡𝑒𝑟𝑛⟧𝐷).

Step 4. Augment step 3 with cardinalities "+" and "*" and with union aggregation function.

The change pattern is in extended form, including groups and aggregation. In Definition 12, a

group 𝛤 = 𝐺𝑟𝑜𝑢𝑝(𝑉𝑟
𝑔

, 𝑃) is defined over a change pattern 𝑃 and a list of variables 𝑉𝑟
𝑔

(grouping variables). In Definition 13, an aggregate is a construct of the form 𝐴 =

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(𝑣𝑟 , 𝑢𝑛𝑖𝑜𝑛, 𝛤) where 𝑣𝑟 is a variable over which 𝑢𝑛𝑖𝑜𝑛 aggregate function is

performed for each group 𝛤. Based on previous steps, 𝑃 is mapped to a SPARQL graph

pattern 𝑃′, such that ⟦𝑃⟧𝐼 = 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚3(⟦𝑃′⟧𝐷) (3). Groups and aggregation computation is

based on variables in 𝑉𝑟
𝑔

, which is by definition a superset of the variables used by Algorithm

3 in (3), since in previous steps the grouping variables are the change variables. Thus, ⟦𝐴⟧𝐼 =

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚3(⟦𝑃′⟧𝐷) and grouping variables are those in 𝑉𝑟
𝑔

. Union aggregation function is

implemented by Algorithm 3, also implementing set variable semantics for computing set

grouping variables.

3.6. Evaluation

The proposed approach has been evaluated qualitatively and experimentally. In qualitative

evaluation, our approach is compared to the related work discussed in Chapter 2, Section 2.1.

In experimental evaluation, complex change language expressiveness and detection

performance are examined. It is evaluated whether the proposed structures are adequate in

expressing useful changes and how complex changes facilitate user in analyzing evolution.

Also, the response time of the detection process is examined in terms of increasing dataset

size.

 58

3.6.1. Qualitative Evaluation

Our approach focuses on human readable changes. Similar to Klein (2004) [33], Stojanovic

(2004) [57], Papavasileiou et al. (2013) [45] and Roussakis et al. (2015) [53] we assume

primitive changes, as simple changes, and groupings of them, as complex changes. Instead of

providing a predefined list of complex changes, we support user-defined complex changes in

order to capture richer semantics and multiple interpretations of evolution, as Plessers, De

Troyer and Casteleyn (2007) [47] and Roussakis et al. (2015) [53]. In our approach, a

dedicated complex change definition language is formally defined, so that complex changes

are defined via patterns, and an appropriate detection algorithm is proposed. Instead, Plessers,

De Troyer and Casteleyn (2007) [47] relies on temporal queries and Roussakis et al. (2015)

[53] on SPARQL in order to define and detect changes. On top of this, we support relations

and dependencies among complex changes, so that complex changes may share common

parts.

The closest relevant works to the proposed approach are Papavasileiou et al. (2013) [45] and

Roussakis et al. (2015) [53]. The proposed notion of complex changes resembles to the

"composite changes" presented in Papavasileiou et al. (2013) [45] in their ultimate goal in

grouping changes into logical units. But, complex changes are user defined and may be

related to each other, providing richer semantics and flexibility. In Roussakis et al. (2015)

[53] the notion of complex changes as user defined is also stated. There, the proposed changes

may not share common parts but instead are given a prioritization. However, prioritization

possibly leads to the loss of part of the evolution interpretation, when two changes are

identified simultaneously over a data element. On the contrary, by allowing interdependencies

among complex changes all possible interpretations are maintained. Towards this direction, a

complex change may be defined on top of another. In this case, the process of defining new

complex changes is facilitated by reusing already defined patterns. Also, in Roussakis et al.

(2015) [53] the complex changes are defined via SPARQL queries. However, for supporting

the reusability of changes, each change pattern should be given a specific name and

descriptive properties. In addition, it may be needed to define explicitly how a complex

change groups possible multiple appearances (instances) of changes in its definition, either by

following the underlying data structure or the current understanding on modeling evolution.

Although SPARQL is powerful in defining patterns over RDF data, it does not provide such

capabilities. Thus, a dedicated language for defining complex changes and a relevant

detection algorithm are needed.

 59

Table 3 summarizes the qualitative comparison of our approach with the most significant

works on high-level changes. It is examined whether predefined or user-defined changes are

supported, if a detection algorithm is presented and the data model each approach focuses on.

For works that support user-defined changes, several features are further examined.

Table 3 Qualitative comparison of this approach with related work

Predefined

Changes

User-

Defined

Changes

User-Defined Changes Features

Detection

Algorithm
Data Model Dedicated

Language

Relations

among

Changes

Cardinality/

Grouping

Klein (2004) [33] x - - x OWL/OKBC

Stojanovic (2004)

[57]
x - -

-

(change

application)

KAON

Plessers et al (2007)

[47]
- x

x

(temporal logic

based)

- - x OWL DL

Papavasileiou et al

(2013) [45]
x - - x RDF(S)

Rousakis et al.

(2015) [53]
x x

-
(SPARQL

queries)

- - x RDF(S)

This approach x x x x x x RDF(S)

3.6.2. Experimental Evaluation

3.6.2.1. Implementation, datasets and settings

The complex change definition language and the detection process are implemented in a Java

application. In order to implement the language parser JavaCC2, a parser generator for Java, is

employed. In order to store the RDF(S) representations of changes and change instances and

run SPARQL queries for complex change detection Openlink Virtuoso3 is employed. The

implementation is done in Java version 8 and Openlink Virtuoso version 7.

In order to test the proposed approach, dataset versions and the respective simple changes,

capturing the modifications between them, are required. The evaluation is performed over

both artificial and real data. Artificial data are generated by the tool EvoGen4, while DBpedia5

dataset versions are considered for real data. As for the system settings, a 6-core CPU and 16

GB RAM machine running Ubuntu (version 16.04) has been used in order to host both

Virtuoso server and the application.

2 https://javacc.org/
3 https://virtuoso.openlinksw.com/
4 https://github.com/mmeimaris/EvoGen
5 https://wiki.dbpedia.org/

 60

EvoGen is a tool for generating synthetic evolving RDF datasets, abstracting several

characteristics of the process (Meimaris (2016) [39]; Meimaris and Papastefanatos (2016)

[40]). It extends the Lehigh University Benchmark (LUBM) generator (Guo et al. (2005)

[30]), a Java based synthetic data generator, which features an ontology for the university

domain called Univ-Bench. An OWL6 version of the Univ-Bench ontology7 is available in

OWL Lite8.

In this evaluation, only data changes are employed. Also, the current version of EvoGen

generates changes that include only additions. It creates a log with the changes between

consecutive versions, following the simple changes paradigm that the proposed complex

changes rely on. As a result, complex changes for this experiment involve only additions.

Table 4 presents the sizes of the RDF datasets generated with EvoGen. The sizes of the

simple changes log between two consecutive versions are presented, in terms of number of

triples and number of simple change instances. Also, the sizes of the version before and

version after, in terms of number of triples, are presented.

Regarding DBpedia data, three previous DBpedia releases have been considered: versions

2016-10, 2016-04 and 2015-10. Specifically, parts of the English DBpedia datasets are

considered, namely the instance types and mapping based objects. First, the detection of

simple changes took place among dataset versions, and then a number of complex changes

were defined on top involving both additions and deletions. The complex changes defined

focus on data changes. Table 5 presents the sizes of the RDF datasets of DBpedia data.

Table 4 EvoGen generated datasets

Dataset
Simple Change Log

(# of triples)

Simple Change Log

(# of change instances)

Version Before

(# of triples)

Version After

(# of triples)

D0 212.178 53.072 99.761 150.836

D1 473.955 118.550 220.840 334.829

D2 1.489.892 372.667 690.550 1.048.536

D3 8.246.486 2.062.693 3.778.293 5.759.845

D4 27.882.797 6.974.311 12.753.945 19.454.837

D5 41.465.290 10.371.705 19.013.429 28.978.776

D6 83.041.295 20.771.095 37.990.459 57.948.069

6 https://www.w3.org/TR/2012/REC-owl2-overview-20121211/
7 http://swat.cse.lehigh.edu/onto/univ-bench.owl
8 https://www.w3.org/TR/owl-features/

 61

Table 5 DBpedia datasets

Dataset

Simple Change

Log

(# of triples)

Simple Change Log

(# of change

instances)

Version

Before

Name

Version

Before

(# of triples)

Version

After

Name

Version

After

(# of triples)

Δ0 9.198.606 2.449.083 2015-10 22.841.862 2016-04 23.401.677

Δ1 29.911.620 7.755.452 2016-04 23.401.677 2016-10 23.896.605

3.6.2.2. Language expressiveness

In order to evaluate the expressiveness of the proposed language several complex changes

have been defined for the data generated with EvoGen and for the DBpedia data. The Univ-

Bench ontology and the DBpedia schema have been studied in order to identify classes,

descriptive properties and how data are connected. In order to define complex changes that

are as realistic as possible the process below was followed, identifying six cases of possible

complex changes, based on common sense and domain characteristics.

1. Class instance additions/deletions: For each class instance addition/deletion a descriptive

change should be reported based on the dataset domain. Therefore, a complex change with a

descriptive name of each class is defined, being actually a rename of the respective simple

change. For example, Add_Person instead of Add_Type_To_Individual.

2. Property instance additions/deletions: Similarly, for each property instance addition/

deletion, a complex change with a descriptive name of the property is defined. This is a

rename of the respective simple change, Add_Property_Instance/Delete_Property_Instance.

Notice that complex changes of cases 1 and 2 may form a first level of complex changes over

the simple changes of a dataset, where each simple change is mapped to a complex change

with a more descriptive name based on the specific domain.

3. Groupings around added/deleted class instance URIs: Typically, a class instance addition/

deletion is accompanied with its property instances additions/deletions. Therefore, a complex

change may be defined for grouping these changes altogether. Properties' cardinality should

be considered accordingly: multiple instances of properties should be grouped altogether,

while optional properties are allowed. Thus, added/deleted properties around a class instance

URI are grouped into a complex change together with the added/deleted class instance. These

complex changes are defined on top of the complex changes described in cases 1 and 2. For

example, Add_Person_with_Details may group Add_Person along with all its added

descriptive properties (name, birth date, death date, etc).

 62

4. Batch additions/deletions: Complex changes of case 3 may appear in batches. In such case,

they may share common values in some of their properties. Therefore, they can be further

grouped based on these values. For example, Add_Professionals_withCommon_Employers

groups all Add_Professional for those having the same employers.

5. Specializations: Data and domain specific changes may be important in certain scenarios.

Such changes may be captured by further combining the complex changes described in

previous cases via relational filters, testing value filters, pre-/post-conditions, and optional

cardinalities. For example, Add_Academic_Professional specializes Add_Professional where

the added professional works only in academia, which is specified by a post-condition.

6. Updates: A property value update can be modeled as an addition plus a deletion of the

specific property over a specific class instance URI. These complex changes are defined on

top of the complex changes described in case 2.

Regarding the data generated with EvoGen, 65 complex changes have been defined following

the above process. The changes involve only additions, due to the characteristics of the

current version of EvoGen as already discussed. Table 6 summarizes the characteristics of the

defined complex changes in terms of the features of the proposed language. The complex

changes have been grouped into twelve categories, where each one has specific: change list

size, cardinalities on changes in the change list, grouping variables' type, as well as filter types

employed. Nested complex changes are defined, and the level of each change in the complex

change hierarchy is stated: complex changes in level I are defined on top of simple changes

only, in level II on top of complex changes in level I, and in level III on top of changes in

level II. Table 6 shows that all proposed features have been used. The number of complex

change definitions per category is presented, as well as per language characteristic.

Category C1 involves class instance and property instance addition renames (cases 1 and 2).

Testing value constraints are used for identifying class and property types. Categories C2-C7

involve groupings around added class instance URIs (case 3). Relational filters are used and

appropriate cardinalities are defined based on the data model. Categories C8-C9 involve

groupings based on common property values (case 4), on scalar/set parameters respectively.

Categories C10-C12 involve specializations (case 5). Pre-/post-conditions and relational

filters are combined with quantification, since they involve set parameters. In C12 optional

change paths are defined. Complex changes form three levels over simple changes.

 63

Table 6 Categories and characteristics of the defined complex changes on EvoGen data
C

at
eg

o
ri

es

#
 o

f
co

m
p
le

x
 c

h
an

g
e

d
ef

in
it

io
n
s

Change List Size

(# of changes)

Cardinality

(type)

Grouping

(variables

type)

Filter

(type)

le
v
el

 i
n
 c

o
m

p
le

x
 c

h
an

g
e

h
ie

ra
rc

h
y

<=3 4-6 =>7 1 ? + * scalar set
testing

value

re
la

ti
o
n
al

pre-/post-

condition

q
u
an

ti
fi

ca
ti

o
n

C1 30 x x x I

C2 3 x x x II

C3 1 x x x II

C4 4 x x x II

C5 5 x x x x x III

C6 1 x x x x II

C7 2 x x x x II

C8 7 x x x III

C9 1 x x x III

C10 4 x x x x x x III

C11 3 x x x x III

C12 4 x x x x x x II

total
changes

65 53 2 10 57 7 17 4 20 1 30 20 7 7 65

Table 7 presents the number of complex change instances detected in each EvoGen generated

dataset per complex change category. Change instances of all categories appear in all datasets,

proving the effectiveness of the proposed methodology. Also, given an increasing dataset size

the number of detected complex change instances increases too. Notice that the number of

change instances in C1 for each dataset is very close to the number of simple change instances

presented in Table 4. This is because C1 involves changes defined as in case 1 and 2, forming

a first level of complex changes serving as renames of simple changes. The total number of

change instances in C2-C7 for each dataset is significantly smaller than the number of change

instances in C1. This is because C2-C7 involve changes defined on top of C1 grouping

property changes around class instance URIs (as in case 3). These changes form a second

level of complex changes which compresses the changes of first level. The number of change

instances in C8-C11 for each dataset is even smaller, since those changes further group or

specialize changes in C2-C7. C12 offers an alternative way of grouping some of the changes

in C1. Table 10 presents the number of complex change instances per level in the change

hierarchy, quantifying the size of each level. It is worth noting that the number of complex

change instances in level I covers the 99.9% of the simple change instances, while in level II

covers the 93% of the complex change instances in level I, and in level III up to 45% of the

complex change instances in level II. The smaller number of complex change instances of

 64

Table 7 Number of complex change instances per category detected in EvoGen generated datasets

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

D0 52.999 2.054 960 327 1.509 3.994 2.267 2.222 1.087 313 248 10.158

D1 118.387 4.611 2.160 745 3.499 8.743 5.141 4.020 2.513 726 571 22.260

D2 372.150 14.733 6.880 2.364 11.037 27.004 16.316 9.853 7.801 2.318 1.803 69.294

D3 2.059.836 81.767 38.080 13.091 61.296 148.765 90.515 47.224 43.050 12.912 9.950 382.150

D4 6.964.680 275.488 128.400 43.912 205.993 506.734 304.876 153.159 143.868 43.371 33.432 1.299.058

D5 10.357.352 410.568 191.360 65.309 305.474 755.204 451.961 226.342 213.460 64.485 49.725 1.934.000

D6 20.742.372 821.895 382.960 130.665 611.034 1.513.220 905.170 450.645 426.893 128.926 78.744 3.876.042

level II contained in a complex change instance of level III is due to the fact that level III

changes also involves specializations of level II changes. Overall, the resulting complex

change instances reduce the effort of analyzing the data evolution as the user can easily zoom-

in/-out on evolution detail by navigating on different levels of the complex change hierarchy.

Regarding the DBpedia data, 177 complex changes have been defined following the

aforementioned process. Complex changes of add type, symmetric changes of delete type and

update changes were defined. Table 8 summarizes the characteristics of the defined complex

changes based on the proposed language features. The complex changes have been grouped

into eleven categories, based on similar characteristics to the ones used for EvoGen data.

Table 8 Categories and characteristics of the defined complex changes on DBpedia data

C
at

eg
o

ri
es

#
 o

f
co

m
p
le

x
 c

h
an

g
e

d
ef

in
it

io
n

s

Change List

Size

(# of changes)

Cardinality

(type)

Grouping

(variables

type)

Filter

(type)

le
v
el

 i
n
 c

o
m

p
le

x
 c

h
an

g
e

h
ie

ra
rc

h
y

<=3 4-6 1 ? + * scalar set
testing

value

re
la

ti
o

n
al

q
u

an
ti

fi
ca

ti
o
n

Ci 94 x x x I

Cii 4 x x x x III

Ciii 6 x x x x x II

Civ 12 x x x III

Cv 2 x x x x x x II

Cvi 8 x x x x x x II

Cvii 4 x x x x x II

Cviii 29 x x x II

Cix 4 x x x x x x II

Cx 12 x x x x III

Cxi 2 x x x x x x III

total

changes
177 163 14 165 2 34 16 26 12 106 59 18 177

Category Ci involves class instance and property instance addition and deletion renames

(cases 1 and 2). Categories Ciii, Cv, Cvi and Cix involve groupings around added or deleted

 65

class instance URIs (case 3). Category Civ involves groupings based on common property

values (case 4). Categories Cii, Cvii, Cx and Cxi involve specializations (case 5). In Cvii

optional change paths are defined. Category Cviii involves update changes (case 6). Complex

changes form three levels over simple changes.

Table 9 presents the number of complex change instances detected in each DBpedia dataset

per complex change category. Again, change instances of all categories appear in datasets and

as the dataset size increases, the number of detected complex change instances increases too.

Recall that changes in Ci form a first level of complex changes serving as renames of simple

changes. The number of change instances in Ci for each dataset reaches the 60% of the

number of simple change instances presented in Table 5. Although the DBpedia schema is

very large and diverse, the changes defined in Ci span across the most frequently changed

parts of the datasets. The total number of change instances in Ciii, Cv, Cvi and Cix is smaller

related to Ci, because they are defined on top of Ci forming a second level of changes and

grouping property changes around class instance URIs (as in case 3), for the most frequently

added/deleted entities. Also, several update operations (Cviii) appear in the examined

datasets. The total number of the change instances in Civ, Cii, Cvii, Cx and Cxi which form a

third level in the change hierarchy is even smaller, since they further group changes of the

second level or specialize their meaning narrowing down the reported changes. Table 10

presents the number of complex change instances per change hierarchy level. It is worth

noting that the number of complex change instances in level I covers the 60% of the simple

change instances, while in level II covers up to the 68% of the complex change instances in

level I, and in level III covers up to the 10% of the complex change instances in level II. The

relatively low number of complex change instances of level II contained in a complex change

instance of level III is due to the fact that level III changes are mostly specializations of level

II changes. Similar to EvoGen results, the complex change hierarchy facilitates the user in

analyzing the data evolution.

Table 9 Number of complex change instances per category detected in DBpedia datasets

 Ci Cii Ciii Civ Cv Cvi Cvii Cviii Cix Cx Cxi

Δ0 1.464.340 38 50.181 571 179 9.757 3.178 62.050 57.227 2.364 5.076

Δ1 4.708.482 370 90.708 915 327 19.584 4.956 1.313.776 104.687 4.431 10.218

Table 10 Number of complex change instances per level in hierarchy per EvoGen and DBpedia dataset

 EvoGen DBpedia

 D0 D1 D2 D3 D4 D5 D6 Δ0 Δ1

Level I 52.999 118.387 372.150 2.059.836 6.964.680 10.357.352 20.742.372 1.464.340 4.708.482

Level II 19.760 43.660 136.591 754.368 2.558.468 3.808.402 7.629.952 182.572 1.534.038

Level III 5.379 11.329 32.812 174.432 579.823 859.486 1.696.242 8.049 15.934

 66

Annex B demonstrates some of the complex change definitions for the EvoGen generated

data and the DBpedia data, as defined in terms of the experimental evaluation.

3.6.2.3. Detection performance

In order to evaluate the detection process performance, the detection time has been measured

for the datasets generated with EvoGen with an input of 65 complex changes and for the

DBpedia datasets with an input of 177 complex changes. As already stated, in order to store

and query the datasets for complex change detection Openlink Virtuoso is used. Particularly,

for each dataset, each simple change log, version before and version after are stored in a

separate named graph. A dedicated named graph is employed for the complex change

instances, which is gradually enriched with the complex change instances that are detected

while the detection process progresses. The detection of each complex change relies on the

already generated simple and complex change instances.

The detection time can split in four parts based on the detection algorithm presented: (1)

parse time for computing the order of detection of the complex changes and parsing each

definition, (2) query execution time for running each generated SPARQL query against the

simple and complex change instances graphs, (3) instance generation time for parsing the

query result set for computing instances and serialize them in a file, (4) load instance time for

loading the generated instances stored in file into the complex change instances graph. The

parse time is minor and thus omitted, since this process is performed in memory. Overall, the

total detection time is presented, as well as the rest three parts as percentages of it. The

number of added triples and respective complex change instances are presented as well.

It is worth noting that due to nested complex change definitions, all complex changes are not

detected over the same initial dataset, since as the detection process progresses the complex

change named graph increases in size. The detection process has been also evaluated in a

slightly different setting: Each specific complex change has a dedicated named graph, so that

only its respective instances are stored in it. In such a case each query generated for the

detection process can rely only on the particular named graphs holding the minimum set of

change instances required for the detection. In this setting, the results in detection time were

similar to the ones presented and in some cases worse. This is mainly due to the larger load

times observed. The query times were in some cases improved and the instance generation

times were the same (as expected) since the algorithm does not change at this point.

 67

Table 11 presents the total detection time for each EvoGen generated dataset D0-D6. This is

the time needed to run the detection process for all the 65 complex changes. It also presents

the total number of detected complex change instances and the total number of respective

triples. It can be observed that as the dataset size increases the detection time increases too. In

smaller datasets (D0-D2) the query execution time is dominant in the detection time, while in

larger datasets (D3-D6) all three parts of the detection time contribute almost evenly.

Table 12 presents the total detection time per complex change category for each EvoGen

generated dataset D0-D6, based on the categories presented in Section 3.6.2.2. It also presents

the total number of added triples and detected complex change instances in each category.

The differences in the characteristics among categories possibly affect only the query

execution time. For example, in categories C4, C7 and C12 (involving complex changes with

a bigger number of changes in their change list) and for small datasets tend to appear the

higher query execution times. The instance generation time and load time are expected to be

affected by the query result set size, i.e. the number of complex change instances appeared.

Therefore, as the dataset size and the number of detected complex change instances increase,

the instance generation time and load time increase accordingly. Also, notice that category C1

plays a rather dominant role in the total detection time, since despite of the simplicity of the

change definitions, a large number of instances (up to 20,7M) are detected.

Table 13 presents the total detection time for each DBpedia dataset Δ0-Δ1. This is the time

needed to run the detection process for all the 177 complex changes. It also presents the total

number of detected complex change instances and the total number of respective triples.

Again, the detection time is bigger for bigger datasets. Also, the load time is rather dominant

in the detection time. This is mainly due to the significantly large number of change instances

in category Ci, as shown in Table 14 below. Taking into consideration the rest categories

only, query execution time is also significant, while instance generation time is rather low in

categories with rather sparse change instances (for example Cii, Cv).

Table 14 presents the total detection time per complex change category for each DBpedia

dataset Δ0-Δ1 based on the categories presented in Section 3.6.2.2. It also presents the total

number of added triples and detected complex change instances in each category. The higher

detection time appears in category Ci, since it involves a significantly larger number of

instances compared to all other changes. Overall, the instance generation time and load time

increases as the number of detected complex change instances increases too.

 68

Table 11 Total detection time (seconds), number of added triples and number of detected complex

changes instances for each EvoGen generated dataset

Dataset
Query Exec

Time

Instance Gen

Time

Load

Time

Detection

Time

Added

Triples

Change

Instances

D0 92,2% 2,4% 5,4% 192,3 472.293 78.138

D1 85,1% 4,7% 10,2% 215,9 1.050.692 173.376

D2 75,4% 8,5% 16,0% 351,1 3.292.481 541.553

D3 45,8% 21,1% 33,1% 737,3 18.209.825 2.988.636

D4 36,9% 27,8% 35,3% 2.144,8 61.616.525 10.102.971

D5 30,5% 30,4% 39,1% 2.717,3 91.635.866 15.025.240

D6 29,9% 30,1% 39,9% 5.583,1 183.408.890 30.068.566

Table 12 Total detection time (seconds), number of added triples and number of detected complex

changes instances per complex change category for each EvoGen generated dataset

 69

Table 13 Total detection time (seconds), number of added triples and number of detected complex

changes instances for each DBpedia dataset

Dataset
Query Exec

Time

Instance Gen

Time

Load

Time

Detection

Time

Added

Triples

Complex Change

Instances

Δ0 26,4% 24,0% 49,7% 578,9 6.636.996 1.654.961

Δ1 16,7% 27,0% 56,3% 1390,3 27.374.997 6.258.454

Table 14 Total detection time (seconds), number of added triples and number of detected complex

changes instances per complex change category for each DBpedia dataset

3.6.2.4. Results summary

Overall, the detection times presented are considered acceptable since change detection is

rather an off-line process executed upon version creation. It can be stated that as the dataset

size increases, the number of detected change instances as well as the detection time increase

too. Actually, the detection time is highly dependent on the number of instances that appear in

the dataset. This can be verified by comparing in terms of total detection time the results of

the experiment on EvoGen generated datasets with the results of the experiment on DBpedia

datasets which are similar in size (D3-D4, Δ0-Δ1). The number of complex changes to be

detected seems to have minor effect in the detection performance, since while in EvoGen 65

changes were used and in DBpedia 177 changes, the detection time is proportional to the

number of detected change instances. Also, the complex change definitions' complexity has

minor impact. In conclusion, the performance of complex change detection process is highly

dependent on the dataset size over which detection is performed and the number of instances

that appear in dataset, while it may be affected by the complex change definitions complexity.

In terms of detection process performance it is not possible to compare directly this work with

the closest relevant works, Papavasileiou et al. (2013) [45] and Roussakis et al. (2015) [53],

since the experimentation settings (datasets size, number of change instances, change

definitions complexity) and the testing environments are diverse.

 70

 71

Chapter 4

Querying Data Versions and Change Structures

on XML Data

4.1. Introduction

Apart from identifying human readable and semantically rich changes among dataset

versions, querying data evolution may also provide insights on how data changed. In our

view, querying evolution should be based on data as much as on changes. If changes are

modeled as first-class-citizens, they can be exploited in terms of querying as well. Changes,

like data, can appear in the query body to express complex conditions, like the fact that an

entity has been modified in a specific manner, or can be returned by the query in order to

retrieve explicit change instances that may have affected specific data. A model that captures

both data versions and changes is a prerequisite in order to express such queries, while a

query language with specific constructs to support both temporal and change based conditions

is needed.

In these terms, in previous work (Stavrakas and Papastefanatos (2010) [55]), a graph model

for capturing evolving data and changes, named evo-graph, is proposed. In evo-graph changes

are complex objects operating on data, exhibiting structural, semantic, and temporal

characteristics and they are explicitly modeled as first class citizens distinguised into basic

and complex changes. These properties allow querying evolution on both data and change

structure, using temporal- and change-based conditions. Change-centric modelling can

provide additional information on what, why, and how data evolved.

On the contrary, several works in literature, like Rizzolo and Vaisman (2008) [49], Gao and

Snodgrass (2003) [26], Wang and Zaniolo (2003) [62], that are classified as temporal

approaches do not provide any support on querying the changes among data versions, since

the notion of changes is not captured explicitly. In other related works, like Marian et al.

 72

(2001) [38] or Chien, Tsotras and Zaniolo (2001) [13], that are classified as version-based

approaches change related queries may be supported, but no specific query language is

introduced and only a set of basic change operations is considered. Also, the notion of time is

not considered.

Additionally, in previous work (Stavrakas and Papastefanatos (2011) [56]) an XML

representation for evo-graph, named evoXML, is proposed. The Extensible Markup Language

(XML) [7] is a simple text-based format for exchanging data on the Web. XML documents

are made up of units, named entities, which form a tree structure, and may have attributes and

text content. XQuery [52] is the standard query language for querying XML data, building

upon XPath [51], a language based on path expressions to navigate through an XML

document and select data nodes. The XML, XQuery and XPath are W3C recommendations.

Building upon previous work, we formally define evo-path, an XPath (Robie, Dyck and

Spiegel (2017) [51]) extension for performing time-aware and change-aware queries on evo-

graph. Evo-path allows querying both data history and change structure in a uniform way,

taking advantage of changes in order to retrieve and relate data that are otherwise irrelevant to

each other. Temporal, evolution and causality queries are supported. Also, we implemented

and experimentally evaluated the basic concepts of evo-graph in the C2D framework, using

XML technologies. The Chapter main contributions are the following:

• formalizing evo-path syntax,

• defining evo-path formal semantics,

• presenting evo-path implementation based on a formal translation of evo-path into

equivalent XPath expressions over evoXML,

• evaluating the C2D framework in terms of the space efficiency of evoXML and the

performance of the reduction process, the process for generating a snapshot holding

under a specific time instance from evo-graph.

The Chapter outline is as follows: Section 4.2 presents a motivating example of this work.

Section 4.3 presents previous work on evo-graph, evoXML, basic and complex changes.

Section 4.4 formally defines evo-path, presenting evo-path syntax, semantics, implementation

and illustrative examples. Section 4.5 presents the C2D framework and the evaluation

performed.

 73

4.2. Motivating Example

Consider an example taken from Biology, the revision in the classification of diabetes, which

was caused by a better understanding of insulin (National research council (2005) [42]).

Initially, diabetes was classified according to the age of the patient, as juvenile or adult onset.

As the role of insulin became clearer two more subcategories were added: insulin dependent

and non-insulin dependent. All juvenile cases of diabetes are insulin dependent, while adult

onset may be either insulin dependent or non-insulin dependent.

In Figure 4, the leftmost image depicts a tree representation of the initial diabetes

classification, while the rightmost image the revised diabetes classification. Supposing that a

scientist examines the revised classification, she may realize that diabetes categories are not

as expected. She would like to know:

• Which may be the previous structure of categories?

• Which changes are responsible for the reorganization of diabetes categories?

• What are the previous versions of the data nodes that changed due to the

reorganization of diabetes categories?

The first question corresponds to a temporal query, on the history of data nodes. The second

to an evolution query, on the changes applied on data nodes. The third question corresponds

to a causality query, on the relationships between change nodes and data nodes.

However, these representations are not informative on which parts of the data evolved and

how, which changes led from one version to another, or what changes were applied on which

parts of data. Recording change operations in a log or computing deltas between successive

versions do not solve the problem. As a result, answering such questions may require complex

queries in different parts of a database, a task which may be even more intensive for large

datasets. The need for tracing past changes and data lineage is evident in a wide range of web

information management domains.

The middle image in Figure 4 depicts the representation of the revision in the diabetes

classification from the graph of Figure 4 left to right in evo-graph. In evo-graph, both data and

changes are uniformly represented: data versions are represented in circular nodes, while

changes in triangular nodes, and both are organized in hierarchical structure. Change nodes

connect with the data versions they affect and they are annotated with temporal information.

As a result, evo-graph may support queries that refer on data versions as well as on changes.

 74

Figure 4 Snap-models of diabetes classification before (left) and after (right) revision and the relevant

evo-graph (middle).

4.3. Preliminaries: Modeling Data Versions and Changes on

Evo-Graph

Based on Stavrakas and Papastefanatos (2010, 2011) [55] and [56] we present the following

preliminary concepts.

Snap-model. In terms of this work, we assume that data is represented by a rooted, node-

labeled, leaf-valued tree called snap-model. A snap-model S (V, E) consists of a set of nodes

V, divided into complex and atomic, with atomic being the tree leaves, and a set of directed

edges E. At any time instance, snap-model undergoes arbitrary changes.

Evo-graph. An evo-graph G is a graph-based model that captures all the instances of an

evolving snap-model across time, together with the changes responsible for the transitions. It

consists of the following components:

• Data nodes, divided into complex and atomic: VD = VD
cVD

a.

• Data edges, departing from every complex data node, ED (VD
c VD).

• Change nodes, representing change events. They are depicted as triangles to

distinguish from circular data nodes. They are divided into complex and atomic

(denoting basic change operations): VC = VC
cVC

a.

• Change edges, connecting every complex change node to the (complex or atomic)

change nodes it contains: EC (VC
c VC).

 75

• Evolution edges, connecting each change node with two data nodes, the version

before and after the change: EE (VD VC VD).

• rD ∈ VD is the data root, with the property that there exists a path formed by data

edges from rD to every other data node in VD.

• rC ∈ VC is the change root, with the property that there exists a path formed by

change edges from rC to every other change node in VC.

Intuitively, evo-graph consists of a data graph, holding the data versions, and a tree of

changes, which interconnect via evolution edges. Consequently, it has two roots: the data

root, rD, and the change root, rC.

Moreover, change nodes are annotated with timestamps denoting the time instance each

change occurred. Although valid time may be considered, we rely on transaction time,

assuming a linear time domain constituted by consecutive discrete values and two special

time instances: 0 for the beginning of time and now for the current time. Also, the timestamp

of each complex change equals the timestamp of its most recently occurred child change,

since a complex change occurs when all of its constituent changes have been occurred.

In evo-graph, timestamps are used for determining the validity timespan of all data nodes and

data edges. Evo-graph can then be reduced to a snap-model holding under a specified time

instance through the reduction process [55].

As an evo-graph example consider the middle image in Figure 4, representing the revision in

the diabetes classification from the graph of Figure 4 left to right. The revision process is

denoted by the complex change reorg_diab_cat (node &21) composed by 5 basic snap

changes (in the order they occurred): clone (node &8), add (node &11), remove (node &13),

create (node &15), and create (node &18). Note the use of evolution edges; in the case of add

the evolution edge is annotated with the timestamp 2 and connects node &3 (initial version)

with node &10 (version after adding the child node &6). Node &10 is still a child of node &2,

but for simplicity the relevant edge is omitted. The reduction of the evo-graph for T=start (i.e.

0) results in the snap-model of the leftmost image of Figure 4, while for T=now in the snap-

model of the rightmost image of Figure 4.

Basic and Complex Changes. The following basic change operations may be applied on a

snap-model (snap changes for short):

 76

• create(vP, v, label, value). Creates a new atomic node v with a given label and value

and connects it with its parent node vP. If vP is an atomic node, it becomes complex.

• add(vP, v). Adds the edge (vP, v) to E, effectively adding v as a child node of vP. The

nodes vP, v must already exist in V. If vP is an atomic node, it becomes complex.

• remove(vP, v). Removes the edge (vP, v) from E. If v has no other incoming edges, it is

removed from V. If vP has no other children, it becomes an atomic node with the

default value (empty string).

• update(v, newValue). Updates the value of an atomic node v to newValue.

• clone(vP, vsource, vclone). Creates a new data node vclone with the same label/value as

vsource, and a deep copy of the subtree under vsource as a subtree under the node vclone.

The node vP must be a parent of vsource. The edge (vP, vclone) is added to E, making vclone

a sibling of vsource.

The above definitions describe the effect of each snap change to the current snap-model.

These changes leave the snap-model in any possible consistent state. Note that the effect of

the clone snap-change is to create a deep copy of a subtree under the same parent node.

Although clone can be expressed as a sequence of other snap changes, it is chosen to be a

basic operation. The reason is that deep copy is difficult to express using successive create

operations, while at the same time it is an essential operation for expressing complex changes

like move-to, and copy-to.

Figure 5 depicts how each snap change is captured in evo-graph [44]. Figure 5 depicts three

images for each snap change: the leftmost shows the initial snap-model before the change, the

rightmost shows the current snap-model after the snap change, and the middle image shows

the evo-graph fragment encompassing both snapshots, together with the change. Notice that

on evo-graph, each snap change evolves the node it applies on into a new version which

actually captures its effect.

A complex change applied on a node of a snap-model is a sequence of basic and other

complex change operations that are applied on the node itself or/and its descendants,

formulating semantically coherent sequences. Applying a complex change on a snap-model

involves the application of each constituent change in the order they appear.

 77

Figure 5 Effect of snap change operations on the evo-graph.

A complex change example is reorg_diab_cat applied on categories node of Figure 4 leftmost

image. On evo-graph reorg_diab_cat evolves node &2 into &20. The definition is given

below:

reorg-diab-cat (&2) {

 clone (&4, &6, &9)

 add (&3, &6)

 remove (&4, &6)

 create (&3, &16, 'type', 'insulin dependent')

 create (&4, &19, 'type', 'non insulin dependent')

}

EvoXML. In Stavrakas and Papastefanatos (2011) [56] an XML representation of evo-graph,

named evoXML, is presented. evoXML encodes evo-graph in a top-down non-replicated

approach. Non-replicated means that XML references are used to connect the parent nodes to

a common child element. Top-down means that common children are pointed to by their

parents via references.

In evoXML special-purpose elements and attributes are used with the namespace evo. The

evo-graph data root and change root are mapped to the elements evo:DataRoot and

evo:ChangeRoot respectively. Each element is tagged with the label of the respective

node and has an attribute evo:id whose value is the respective node id in the evo-graph.

The values of atomic data nodes are the content of the respective elements, while atomic

...
D

D

...

...

C

B

remove (&2, &4) at T=8

B

A
&1

&2

snap-graph

T=start
snap-graph

T=8

&3
D

&4

B

A
&1

&5

C

&3

evo-graph

T=8

B

A &1

&2

C

&3
D

&4

8

remove

&5

&4

...

...

...

C

B

create (&2, &4, D, 9) at T=2

B

A
&1

&2

snap-graph

T=start
snap-graph

T=2

&3

B

A
&1

&5

C

&3

evo-graph

T=2

A &1

C

&3

D

&4

2

create

&6

&5

&4

99

D

...

...

C

B

add (&2, &4) at T=12

B

A
&1

&2

snap-graph

T=start
snap-graph

T=12

&3
D

&4

B

A
&1

&5

C

&3

evo-graph

T=12

B

A &1

&2

C

&3
D

&4

12

add

&6

&5

&4

...

...

...

B 5

update (&2, 10) at T=5

A

update

&1

&2

5

snap-graph

T=start

B

A
&1

&3

10

snap-graph

T=5

B

&1

&2

5

&4

B

&3

10

evo-graph

T=5

C

...

C

B

clone (&3, &4, &2) at T=3

B

A
&1

&2

snap-graph

T=start
snap-graph

T=3

&3

B

A
&1

&5

C

&3

evo-graph

T=3

B

A &1

&2

C

&3

C

&4

3

clone

&6

&5

&4

...

Effect of snap changes

 on evo-graph reduction

for T=start

B &2

reduction

for T=2

reduction

for T=start

reduction

for T=12

reduction

for T=start

reduction

for T=5

reduction

for T=start

reduction

for T=3

reduction

for T=start

reduction

for T=8
&6

snap-model
 T=start

snap-model
 T=start

snap-model
 T=start

snap-model
 T=start

snap-model
 T=start

snap-model
 T=2

snap-model
 T=12

snap-model
 T=8

snap-model
 T=5

snap-model
 T=3

 78

Table 15 EvoXML for time instance 1

1

2

3

4
5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

21

22

23

24

25

26

27
28

<evo:evoXML xmlns=””

 xmlns:evo=”http://web.imis.athena-innovation.gr/projects/c2d”>

 <evo:DataRoot evo:id=”dataroot”>

 <Diabetes evo:id=”1” evo:ts="0" evo:te="now">
 <categories evo:id=”2” evo:ts="0" evo:te="now">

 <cat evo:id=”3” evo:ts="0" evo:te="now">

 <age evo:id=”5” evo:ts="0" evo:te="now">

 juvenile

 </age>

 </cat>

 <cat evo:id=”4” evo:ts="0" evo:te="0">

 <age evo:id=”6” evo:ts="0" evo:te="now">

 adult onset

 </age>

 </cat>
 <cat evo:id=”7” evo:ts=”1” evo:te="now" evo:previous=”4”>

 <age evo:ref=”6”/>

 <age evo:id=”9” evo:ts=”1” evo:te="now">

 adult onset

 </age>

 </cat>

 </categories>

 </Diabetes>

 </evo:DataRoot>

 <evo:ChangeRoot evo:id=”changeroot”>

 <clone evo:id=”8” evo:tt=”1” evo:before=”4” evo:after=”7”/>

 </evo:ChangeRoot>
</evo:evoXML>

change nodes are empty elements. A change edge between two change nodes is captured as

the parent-child relationship of the corresponding elements. The same holds for data edges.

However, if a child node is pointed to by multiple parent versions, the element corresponding

to the child node is contained in the oldest parent element, while subsequent parent versions

contain “clone” elements of the child. The “clone” elements are empty elements that point to

the “original” child element via the special-purpose attribute evo:ref. An evolution edge

(v1, c, v2) is represented via evo:before and evo:after attributes on the element

corresponding to the change node c. They reference the elements that represent v1 and v2

respectively. Also, the attribute evo:previous is used in the element representing v2 to

reference the element representing v1. Thus, the previous version of an element is spotted

directly without having to refer to the evo:before attribute of the corresponding change

element. Finally, the attribute evo:tt records the timestamp of a change node, and the

attributes evo:ts and evo:te the beginning and the end of the validity timespan of a

data node (both are inclusive).

For example, Table 15 (above) presents the evoXML for time instance 1 of the evo-graph in

Figure 4, including only the clone operation (node &8, lines 16-21, 26). Notice that the edge

 79

from node &7 to node &6 (denoting that &6 remains a child of the next version of &4) is

represented via the evoXML reference evo:ref in line 17, which points to the element in line

12. Also, notice the change node &8 in line 26. Overall, observe that the XML representation

is additive with respect to evo-graph operations: as the evo-graph evolves, only additions of

new elements are performed in the corresponding evoXML document.

4.4. EvoPath Query Language

4.4.1. Syntax

Similar to XPath, evo-path uses path expressions to move through and select data nodes. In

addition, evo-path allows the navigation through change nodes on evo-graph. Consequently,

there are two types of path expressions in evo-path: data path and change path expressions.

Also, several predicates are supported to express conditions on evo-graph temporal properties

and evolution edges.

Data path expressions start from the data root of evo-graph and return data nodes. Similar to

XPath, they are written as a sequence of location steps separated by “/” characters and

shortcuts can be used as in the two equivalent evo-paths below:

/child::A/descendant-or-self::node()/

 child::B/child::*[position()=1]

/A//B/*[1]

Change path expressions start from the change root of evo-graph and return change nodes.

They have the same syntax as data path expressions, but are enclosed in square brackets:

</location_step1/…/location_stepN>

Temporal predicates are introduced in evo-path in order to express temporal conditions on the

evo-graph nodes. The following types are employed:

1) On data node timespan:

[ts() operator (t_1, t_2)], where ts() evaluates to the validity timespan of the

context data node, operator may be [not] (in | contains | meets |

equals) covering the standard operations between sets, allowing the use of not in front of

any of the operators, and t_1, t_2 are specified timestamps defining a timespan.

 80

[ts() operator t], where ts() evaluates to the validity timespan of the context data

node, operator may be [not] covers, and t is a specified timestamp, for the case

where a specified timestamp exists or not in the validity timespan.

2) On data node timespan start time:

[tstart() operator t], where tstart() evaluates to the start of the validity

timespan of the context data node, operator may be (> | >= | = | < | <=), and t

is a specified timestamp.

3) On data node timespan end time:

[tend() operator t], where tend() evaluates to the end of the validity timespan of

the context data node (operator and t as in case 2).

4) On change node timestamp:

[tt() operator t], where tt() evaluates to the timestamp of the context change node

(operator and t as in case 2).

Evolution predicates are used to assert the existence of evolution edges at specific points in

the graph. They combine a data path expression with a change path expression and vice versa,

implying that the specified data are affected by the specified change. Their general form is:

5) data_path_expr [evo-filter(<change_path_expr>)]

6) <change_path_expr [evo-filter(data_path_expr)]>

where evo-filter may be one of: evo-before(), evo-after() and evo-

both().

Each evo-filter evaluates into true or false, in case there is or not an evolution edge

involving the data or change node in context. evo-before() and evo-after() refer on

a specific side of the evolution edge, while evo-both() on both sides. In case 5 evo-

before() and evo-after() validate whether the data node in context holds before and

 81

after respectively the application of the change being represented by the change node in

context. evo-both() validates whether the data node holds either before or after the

change. In case 6 evo-before() and evo-after() validate whether the change node in

context represents the change before and after which the data node in context holds

respectively. evo-both() validates whether the change node represents the change either

before or after which the data node holds.

4.4.2. Example Queries

The evo-path examples refer to and are evaluated on the evo-graph of Figure 4 regarding

diabetes.

1) Temporal queries - Querying the history of data elements: Suppose that a scientist

examines the current diabetes snapshot and realizes that the categories structure is not as

expected. She wants to retrieve the previous versions of data node &20.

//Diabetes/categories[ts() not covers 'now'] (Q1)

This is a data path expression with a temporal predicate that evaluates false for the current

version of categories and true for every other version. It returns node &2 with timespan

[0, 5].

2) Evolution queries - Querying changes applied on data elements: The scientist observes the

creation of several new nodes under the categories node. She wants to know the complex

changes that contain a relevant create operation, to check if create was part of a larger

modification.

<//* [evo-both(//Diabetes//*)]

 [.//create [evo-both(//Diabetes/categories/cat)]]> (Q2)

This is a change path expression. The first predicate is an evolution predicate for returning all

the change nodes that are applied to Diabetes node or any of its descendants. The second

predicate dictates that only changes with a create descendant applied on a cat object can

be returned. It returns node &21 with timestamp 6, i.e. the complex change

reorg_diab_cat, affecting data node &2 and resulting into data node &20.

 82

The scientist can now retrieve all the changes associated with reorg_diab_cat, in order

to understand its full effect.

<//reorg_diab_cat/*> (Q3)

This change path expression returns the change nodes &8, &11, &13, &15 and &18.

3) Causality queries - Querying relationships between change and data elements: Realizing

that the modifications on diabetes categories are related to the complex change &21

reorg_diab_cat, the scientist decides to check all the previous versions of the data nodes

affected by reorg_diab_cat and its descendant changes.

//* [evo-before(<//reorg_diab_cat//*>)] (Q4)

The data path expression returns all data nodes being connected through evolution edges with

a reorg_diab_cat change node (&21) or one of its descendant change nodes, specifically

those before each change due to evo-before(). The nodes &3 with timespan [0, 1], &4

[0, 0], &7 [1, 2], &10 [2, 3] and &12 [3, 4] are returned. The scientist now realizes the

sequence of data evolution.

4.4.3. Semantics

In XPath, the meaning of a path expression is the sequence of nodes, at the end of each path,

that matches the expression. In evo-path, the meaning of a data path expression is a sequence

of (data-node, interval) pairs such that the data-node has been at the end of a matching data

path continuously during that interval. The interval is the validity timespan of the data-node.

In evo-path, the meaning of a change path expression is a sequence of (change-node, instance,

data-node-before, data-node-after) tuples such that the change-node is at the end of a

matching change path at the specific instance and it references the data-node-before and the

data-node-after the change. The instance is the timestamp (transaction time) when the change

was applied on the data-node-before, leading to the data-node-after.

For specifying the evo-path semantics the formal XPath semantics introduced by Wadler

(1999) [60] have been adapted. The meaning of an XPath expression is specified with respect

to a context node. For a data path expression, this is extended to a context pair of a data-node

and a time interval. For a change path expression, its meaning is specified with respect to a

 83

context tuple of a change-node, a time instance, a data-node before and data-node after the

change. For the data part, four semantic functions are defined: 𝑆, 𝑄, 𝑄𝑇 and 𝑄𝐸. 𝑆⟦𝑝⟧𝑥

denotes the sequence of pairs (data-node, interval) selected by pattern 𝑝 when 𝑥 is the context

pair. It may also denote a sequence of values. The boolean expression 𝑄⟦𝑞⟧𝑥 denotes whether

or not the qualifier 𝑞 is satisfied when the context pair (data-node, interval) is 𝑥. The boolean

expression 𝑄𝑇⟦𝑞𝑇⟧𝑥 denotes whether or not a temporal condition 𝑞𝑇 is satisfied, while the

boolean expression 𝑄𝐸⟦𝑞𝐸⟧𝑥 denotes whether or not an evolution condition 𝑞𝐸 is satisfied.

For the change part, four similar semantic functions are defined: 𝑆𝑐, 𝑄𝑐, 𝑄𝑐𝑇 and 𝑄𝑐𝐸. 𝑆𝑐⟦𝑝⟧𝑥

denotes the sequence of tuples (change-node, instance, data-node-before, data-node-after)

selected by pattern 𝑝 when 𝑥 is the context tuple. It may also denote a sequence of values. The

boolean expression 𝑄𝑐⟦𝑞⟧𝑥 denotes whether or not the qualifier 𝑞 is satisfied when the

context tuple (change-node, instance, data-node-before, data-node-after) is 𝑥. The boolean

expression 𝑄𝑐𝑇⟦𝑞𝑇⟧𝑥 denotes whether or not a temporal condition 𝑞𝑇 is satisfied, while the

boolean expression 𝑄𝑐𝐸⟦𝑞𝐸⟧𝑥 denotes whether or not an evolution condition 𝑞𝐸 is satisfied. In

Table 16 the formal semantics of the most common evo-path constructs are presented.

For the data root and change root it holds: The validity timespan of the data root is by

definition [0, now], as it is always valid in time. The timestamp of the change root is by

definition 0, the data-node-before and data-node-after are undefined (∅), as it does not

represent an actual change.

Table 16 Formal Semantics of Evo-Path

𝑆⟦/𝑝⟧𝑥 = 𝑆⟦𝑝⟧𝑑𝑎𝑡𝑎𝑅𝑜𝑜𝑡(𝑥);

𝑆⟦//𝑝⟧𝑥 = {𝑥2|𝑥1 ∈ 𝑠𝑢𝑏𝑛𝑜𝑑𝑒𝑠(𝑑𝑎𝑡𝑎𝑅𝑜𝑜𝑡(𝑥)), 𝑥2 ∈ 𝑆⟦𝑝⟧𝑥1};

𝑆⟦𝑝1/𝑝2⟧𝑥 = {(𝑣2, 𝐼1 ∩ 𝐼2)|(𝑣1, 𝐼1) ∈ 𝑆⟦𝑝1⟧𝑥, (𝑣2, 𝐼2) ∈ 𝑆⟦𝑝2⟧(𝑣1, 𝐼1)};

𝑆⟦𝑝1//𝑝2⟧𝑥 = {𝑥3|𝑥1 ∈ 𝑆⟦𝑝1⟧𝑥, 𝑥2 ∈ 𝑠𝑢𝑏𝑛𝑜𝑑𝑒𝑠(𝑥1), 𝑥3 ∈ 𝑆⟦𝑝2⟧𝑥2};

𝑆⟦𝑝[𝑞]⟧𝑥 = {(𝑣, 𝐼)|(𝑣, 𝐼) ∈ 𝑆⟦𝑝⟧𝑥, 𝑄⟦𝑞⟧(𝑣, 𝐼)};

𝑆⟦𝑛⟧𝑥 = {(𝑣, 𝐼)|𝑖𝑠𝐸𝑙𝑒𝑚𝑒𝑛𝑡(𝑣), 𝑐ℎ𝑖𝑙𝑑(𝑥) = (𝑣, 𝐼), 𝑛𝑎𝑚𝑒(𝑣) = 𝑛};

𝑆⟦𝑡𝑠𝑡𝑎𝑟𝑡()⟧𝑥 = {𝑠|𝑥 = (𝑣, 𝐼), 𝐼 = [𝑠, 𝑒]};

𝑆⟦𝑡𝑒𝑛𝑑()⟧𝑥 = {𝑒|𝑥 = (𝑣, 𝐼), 𝐼 = [𝑠, 𝑒]};

𝑆⟦𝑝[𝑞𝑇]⟧𝑥 = {(𝑣, 𝐼)|(𝑣, 𝐼) ∈ 𝑆⟦𝑝⟧𝑥, 𝑄𝑇⟦𝑞𝑇⟧(𝑣, 𝐼)};

𝑆⟦𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟 ∶∶ 𝑝⟧𝑥 = {𝑥2|𝑥1 ∈ 𝑝𝑟𝑒𝑛𝑜𝑑𝑒𝑠(𝑥), 𝑥2 ∈ 𝑆⟦𝑝⟧𝑥1};

𝑄⟦𝑝 = 𝑠⟧𝑥 = {(𝑣, 𝐼)|(𝑣, 𝐼) ∈ 𝑆⟦𝑝⟧𝑥, 𝑣𝑎𝑙𝑢𝑒(𝑣) = 𝑠} ≠ ∅;

𝑄⟦𝑝⟧𝑥 = {𝑥1|𝑥1 ∈ 𝑆⟦𝑝⟧𝑥} ≠ ∅;

𝑄𝑇⟦𝑡𝑠() 𝑖𝑛 (𝑡1, 𝑡2)⟧𝑥 = {𝑥|𝑥 = (𝑣, [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑]), 𝑡𝑠𝑡𝑎𝑟𝑡 ≥ 𝑡1, 𝑡𝑒𝑛𝑑 ≤ 𝑡2} ≠ ∅;

𝑄𝑇⟦𝑡𝑠() 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑡1, 𝑡2)⟧𝑥 = {𝑥|𝑥 = (𝑣, [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑]), 𝑡𝑠𝑡𝑎𝑟𝑡 ≤ 𝑡1, 𝑡𝑒𝑛𝑑 ≥ 𝑡2} ≠ ∅;

𝑄𝑇⟦𝑡𝑠() 𝑚𝑒𝑒𝑡𝑠 (𝑡1, 𝑡2)⟧𝑥 = {𝑥|𝑥 = (𝑣, [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑]), [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑] ∩ [𝑡1, 𝑡2] ≠ ∅} ≠ ∅;

𝑄𝑇⟦𝑡𝑠() 𝑒𝑞𝑢𝑎𝑙𝑠 (𝑡1, 𝑡2)⟧𝑥 = {𝑥|𝑥 = (𝑣, [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑]), 𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡1, 𝑡𝑒𝑛𝑑 = 𝑡2} ≠ ∅;

𝑄𝑇⟦𝑡𝑠() 𝑐𝑜𝑣𝑒𝑟𝑠 𝑡⟧𝑥 = {𝑥|𝑥 = (𝑣, [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑]), 𝑡 ≥ 𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡 ≤ 𝑡𝑒𝑛𝑑} ≠ ∅;

𝑄𝑇⟦𝑡𝑠𝑡𝑎𝑟𝑡() 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑡⟧𝑥 = {𝑥|𝑥 = (𝑣, [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑]), 𝑡𝑠𝑡𝑎𝑟𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑡} ≠ ∅;

𝑄𝑇⟦𝑡𝑒𝑛𝑑() 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑡⟧𝑥 = {𝑥|𝑥 = (𝑣, [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑]), 𝑡𝑒𝑛𝑑 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑡} ≠ ∅;

𝑄𝐸⟦𝑒𝑣𝑜 − 𝑏𝑒𝑓𝑜𝑟𝑒(〈𝑐ℎ𝑎𝑛𝑔𝑒_𝑝𝑎𝑡ℎ_𝑒𝑥𝑝𝑟〉)⟧𝑥 =
{𝑥|𝑥 = (𝑣, 𝐼), (𝑣𝑐 , 𝑖, 𝑣𝑏 , 𝑣𝑎) ∈ 𝑆𝑐⟦〈𝑐ℎ𝑎𝑛𝑔𝑒_𝑝𝑎𝑡ℎ_𝑒𝑥𝑝𝑟〉⟧𝑟𝑐 , 𝑣 = 𝑣𝑏} ≠ ∅;

 84

𝑄𝐸⟦𝑒𝑣𝑜 − 𝑎𝑓𝑡𝑒𝑟(〈𝑐ℎ𝑎𝑛𝑔𝑒_𝑝𝑎𝑡ℎ_𝑒𝑥𝑝𝑟〉)⟧𝑥 =
{𝑥|𝑥 = (𝑣, 𝐼), (𝑣𝑐 , 𝑖, 𝑣𝑏 , 𝑣𝑎) ∈ 𝑆𝑐⟦〈𝑐ℎ𝑎𝑛𝑔𝑒_𝑝𝑎𝑡ℎ_𝑒𝑥𝑝𝑟〉⟧𝑟𝑐 , 𝑣 = 𝑣𝑎} ≠ ∅;

𝑄𝐸⟦𝑒𝑣𝑜 − 𝑏𝑜𝑡ℎ(〈𝑐ℎ𝑎𝑛𝑔𝑒_𝑝𝑎𝑡ℎ_𝑒𝑥𝑝𝑟〉)⟧𝑥 =
{𝑥|𝑥 = (𝑣, 𝐼), (𝑣𝑐 , 𝑖, 𝑣𝑏 , 𝑣𝑎) ∈ 𝑆𝑐⟦〈𝑐ℎ𝑎𝑛𝑔𝑒_𝑝𝑎𝑡ℎ_𝑒𝑥𝑝𝑟〉⟧𝑟𝑐 , 𝑣 = 𝑣𝑎 ∨ 𝑣 = 𝑣𝑏} ≠ ∅;

𝑆𝑐⟦〈/𝑝〉⟧𝑥 = 𝑆𝑐⟦𝑝⟧𝑐ℎ𝑎𝑛𝑔𝑒𝑅𝑜𝑜𝑡(𝑥);
𝑆𝑐⟦〈//𝑝〉⟧𝑥 = {𝑥2|𝑥1 ∈ 𝑠𝑢𝑏𝑛𝑜𝑑𝑒𝑠𝑐(𝑐ℎ𝑎𝑛𝑔𝑒𝑅𝑜𝑜𝑡(𝑥)), 𝑥2 ∈ 𝑆𝑐⟦𝑝⟧𝑥1};

𝑆𝑐⟦〈𝑝1/𝑝2〉⟧𝑥 = {𝑥2|𝑥1 ∈ 𝑆𝑐⟦𝑝1⟧𝑥, 𝑥2 ∈ 𝑆𝑐⟦𝑝2⟧𝑥1};

𝑆𝑐⟦〈𝑝1//𝑝2〉⟧𝑥 = {𝑥3|𝑥1 ∈ 𝑆𝑐⟦𝑝1⟧𝑥, 𝑥2 ∈ 𝑠𝑢𝑏𝑛𝑜𝑑𝑒𝑠𝑐(𝑥1), 𝑥3 ∈ 𝑆𝑐⟦𝑝2⟧𝑥2};

𝑆𝑐⟦〈𝑝[𝑞]〉⟧𝑥 = {(𝑣𝑐 , 𝑖, 𝑣𝑏 , 𝑣𝑎)|(𝑣𝑐, 𝑖, 𝑣𝑏 , 𝑣𝑎) ∈ 𝑆𝑐⟦𝑝⟧𝑥, 𝑄𝑐⟦𝑞⟧(𝑣𝑐, 𝑖, 𝑣𝑏 , 𝑣𝑎)};

𝑆𝑐⟦𝑛⟧𝑥 = {(𝑣𝑐 , 𝑖, 𝑣𝑏 , 𝑣𝑎)|𝑖𝑠𝐸𝑙𝑒𝑚𝑒𝑛𝑡(𝑣𝑐), 𝑐ℎ𝑖𝑙𝑑𝑐 (𝑥) = (𝑣𝑐 , 𝑖, 𝑣𝑏 , 𝑣𝑎), 𝑛𝑎𝑚𝑒(𝑣𝑐) = 𝑛};

𝑆𝑐⟦𝑡𝑡()⟧𝑥 = {𝑖|𝑥 = (𝑣𝑐 , 𝑖, 𝑣𝑏 , 𝑣𝑎)};

𝑆𝑐⟦〈𝑝[𝑞𝑇]〉⟧𝑥 = {(𝑣𝑐 , 𝑖, 𝑣𝑏 , 𝑣𝑎)|(𝑣𝑐, 𝑖, 𝑣𝑏 , 𝑣𝑎) ∈ 𝑆𝑐⟦𝑝⟧𝑥, 𝑄𝑐 𝑇
⟦𝑞𝑇⟧(𝑣𝑐 , 𝑖, 𝑣𝑏 , 𝑣𝑎)};

𝑆𝑐⟦〈𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟 ∶∶ 𝑝〉⟧𝑥 = {𝑥2|𝑥1 ∈ 𝑝𝑟𝑒𝑛𝑜𝑑𝑒𝑠𝑐(𝑥), 𝑥2 ∈ 𝑆𝑐⟦𝑝⟧𝑥1};

𝑄𝑐⟦𝑝 = 𝑠⟧𝑥 = {(𝑣𝑐 , 𝑖, 𝑣𝑏 , 𝑣𝑎)|(𝑣𝑐, 𝑖, 𝑣𝑏 , 𝑣𝑎) ∈ 𝑆𝑐⟦𝑝⟧𝑥, 𝑣𝑎𝑙𝑢𝑒(𝑣) = 𝑠} ≠ ∅;

𝑄𝑐⟦𝑝⟧𝑥 = {𝑥1|𝑥1 ∈ 𝑆𝑐⟦𝑝⟧𝑥} ≠ ∅;

𝑄𝑐𝑇⟦𝑡𝑡() 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑡⟧𝑥 = {𝑥|𝑥 = (𝑣𝑐 , 𝑖, 𝑣𝑏 , 𝑣𝑎), 𝑖 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑡} ≠ ∅;

𝑄𝑐𝐸⟦𝑒𝑣𝑜 − 𝑏𝑒𝑓𝑜𝑟𝑒(𝑑𝑎𝑡𝑎_𝑝𝑎𝑡ℎ_𝑒𝑥𝑝𝑟)⟧𝑥 =
{𝑥|𝑥 = (𝑣𝑐, 𝑖, 𝑣𝑏 , 𝑣𝑎), (𝑣, 𝐼) ∈ 𝑆⟦𝑑𝑎𝑡𝑎_𝑝𝑎𝑡ℎ_𝑒𝑥𝑝𝑟⟧𝑟𝑑 , 𝑣 = 𝑣𝑏} ≠ ∅;

𝑄𝑐𝐸⟦𝑒𝑣𝑜 − 𝑎𝑓𝑡𝑒𝑟(𝑑𝑎𝑡𝑎_𝑝𝑎𝑡ℎ_𝑒𝑥𝑝𝑟)⟧𝑥 =
{𝑥|𝑥 = (𝑣𝑐, 𝑖, 𝑣𝑏 , 𝑣𝑎), (𝑣, 𝐼) ∈ 𝑆⟦𝑑𝑎𝑡𝑎_𝑝𝑎𝑡ℎ_𝑒𝑥𝑝𝑟⟧𝑟𝑑 , 𝑣 = 𝑣𝑎} ≠ ∅;

 𝑄𝑐𝐸⟦𝑒𝑣𝑜 − 𝑏𝑜𝑡ℎ(𝑑𝑎𝑡𝑎_𝑝𝑎𝑡ℎ_𝑒𝑥𝑝𝑟)⟧𝑥 =
{𝑥|𝑥 = (𝑣𝑐, 𝑖, 𝑣𝑏 , 𝑣𝑎), (𝑣, 𝐼) ∈ 𝑆⟦𝑑𝑎𝑡𝑎_𝑝𝑎𝑡ℎ_𝑒𝑥𝑝𝑟⟧𝑟𝑑 , 𝑣 = 𝑣𝑎 ∨ 𝑣 = 𝑣𝑏} ≠ ∅;

 Where:

𝑠𝑢𝑏𝑛𝑜𝑑𝑒𝑠(𝑦) = {(𝑣, 𝐼)|𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎 𝑑𝑎𝑡𝑎 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑦 𝑡𝑜 𝑣 𝑎𝑛𝑑 𝐼 𝑖𝑠 𝑡ℎ𝑒 𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦 𝑡𝑖𝑚𝑒𝑠𝑝𝑎𝑛 𝑜𝑓 𝑣}

𝑝𝑟𝑒𝑛𝑜𝑑𝑒𝑠(𝑦) =

 {(𝑣, 𝐼)|𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎 𝑑𝑎𝑡𝑎 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑣 𝑡𝑜 𝑦 𝑎𝑛𝑑 𝐼 𝑖𝑠 𝑡ℎ𝑒 𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦 𝑡𝑖𝑚𝑒𝑠𝑝𝑎𝑛 𝑜𝑓 𝑣},

𝑑𝑎𝑡𝑎𝑅𝑜𝑜𝑡(𝑥) is the (𝑑𝑎𝑡𝑎𝑅𝑜𝑜𝑡, [0, 𝑛𝑜𝑤]) pair where 𝑑𝑎𝑡𝑎𝑅𝑜𝑜𝑡 is the root of the graph in which 𝑑𝑎𝑡𝑎 −
𝑛𝑜𝑑𝑒 exists and 𝑥 is a (𝑑𝑎𝑡𝑎 − 𝑛𝑜𝑑𝑒, 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) pair, 𝑟𝑑 = (𝑑𝑎𝑡𝑎𝑅𝑜𝑜𝑡, [0, 𝑛𝑜𝑤]),

𝑐ℎ𝑖𝑙𝑑(𝑥) =

 {(𝑣, 𝐼)|𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎 𝑑𝑎𝑡𝑎 𝑝𝑎𝑡ℎ 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 1 𝑓𝑟𝑜𝑚 𝑥 𝑡𝑜 𝑣 𝑎𝑛𝑑 𝐼 𝑖𝑠 𝑡ℎ𝑒 𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦 𝑡𝑖𝑚𝑒𝑠𝑝𝑎𝑛 𝑜𝑓 𝑣}

𝑠𝑢𝑏𝑛𝑜𝑑𝑒𝑠𝑐(𝑦) =

 {(𝑣𝑐, 𝑖, 𝑣𝑏 , 𝑣𝑎)|𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎 𝑐ℎ𝑎𝑛𝑔𝑒 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑦 𝑡𝑜 𝑣𝑐 𝑎𝑛𝑑 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 𝑜𝑓 𝑣𝑐}
𝑝𝑟𝑒𝑛𝑜𝑑𝑒𝑠𝑐(𝑦) =

 {(𝑣𝑐, 𝑖, 𝑣𝑏 , 𝑣𝑎)|𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎 𝑐ℎ𝑎𝑛𝑔𝑒 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑣𝑐 𝑡𝑜 𝑦 𝑎𝑛𝑑 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦 𝑡𝑖𝑚𝑒𝑠𝑝𝑎𝑛 𝑜𝑓 𝑣𝑐},
𝑐ℎ𝑎𝑛𝑔𝑒𝑅𝑜𝑜𝑡(𝑥) is the (𝑐ℎ𝑎𝑛𝑔𝑒𝑅𝑜𝑜𝑡, 0, ∅, ∅) tuple where 𝑐ℎ𝑎𝑛𝑔𝑒𝑅𝑜𝑜𝑡 is the root of the graph in which

𝑐ℎ𝑎𝑛𝑔𝑒 − 𝑛𝑜𝑑𝑒 exists and 𝑥 is a (𝑐ℎ𝑎𝑛𝑔𝑒 − 𝑛𝑜𝑑𝑒, 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒, 𝑑𝑎𝑡𝑎 − 𝑛𝑜𝑑𝑒 − 𝑏𝑒𝑓𝑜𝑟𝑒, 𝑑𝑎𝑡𝑎 − 𝑛𝑜𝑑𝑒 −
𝑎𝑓𝑡𝑒𝑟) tuple, 𝑟𝑐 = (𝑐ℎ𝑎𝑛𝑔𝑒𝑅𝑜𝑜𝑡, 0, ∅, ∅),

𝑐ℎ𝑖𝑙𝑑𝑐(𝑥) =
{(𝑣𝑐 , 𝑖, 𝑣𝑏 , 𝑣𝑎)|𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎 𝑐ℎ𝑎𝑛𝑔𝑒 𝑝𝑎𝑡ℎ 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 1 𝑓𝑟𝑜𝑚 𝑥 𝑡𝑜 𝑣𝑐 𝑎𝑛𝑑 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 𝑜𝑓 𝑣𝑐}

4.4.4. Implementation

In order to implement evo-path, each valid evo-path expression is translated into an equivalent

XPath expression over evoXML. Table 17 summarizes the translation rules.

Table 17 Evo-Path to XPath translation

Evo-Path XPath

A. Data and Change Path Expressions

data_path_expr doc("evoXML.xml")/evo:evoXML/evo:DataRoot/mapped_data_path

_expr

<change_path_expr> doc("evoXML.xml")/evo:evoXML/evo:ChangeRoot/mapped_change_

path_expr

 85

B. Temporal Predicates

[ts() in (t_1, t_2)], where

𝑡_2 ∈ ℕ

[@evo:ts>= t_1 and (if @evo:te='now' then false() else

@evo:te<= t_2)]

[ts() contains (t_1, t_2)],

where 𝑡_2 ∈ ℕ

[@evo:ts<= t_1 and

 (if @evo:te='now' then true() else @evo:te>= t_2)]

[ts() meets (t_1, t_2)],

where 𝑡_2 ∈ ℕ

[if @evo:te='now' then (@evo:ts>= t_1 and @evo:ts<= t_2)

 else((@evo:ts>= t_1 and @evo:ts<= t_2) or

(@evo:te>= t_1 and @evo:te<= t_2))]

[ts() equals (t_1, t_2)],

where 𝑡_2 ∈ ℕ

[@evo:ts = t_1 and (if @evo:te='now' then false() else

@evo:te = t_2)]

[ts() in (t_1, 'now')] [@evo:ts>= t_1]

[ts() contains (t_1, 'now')] [@evo:ts<=t_1 and @evo:te='now']

[ts() meets (t_1, 'now')] [if @evo:te='now' then true() else (@evo:ts>=t_1 or

@evo:te>=t_1)]

[ts() equals (t_1, 'now')] [@evo:ts = t_1 and @evo:te='now']

[ts() covers t], where 𝑡 ∈ ℕ [@evo:ts<= t and (if @evo:te='now' then true() else

@evo:te>= t)]

[ts() covers 'now'] [@evo:te='now']

[tstart() operator t],

where 𝑡 ∈ ℕ

[@evo:ts operator t]

[tend() > t], where 𝑡 ∈ ℕ [if @evo:te='now' then true() else @evo:te> t]

[tend() >= t], where 𝑡 ∈ ℕ [if @evo:te='now' then true() else @evo:te>= t]

[tend() = t], where 𝑡 ∈ ℕ [if @evo:te='now' then false() else @evo:te = t]

[tend() < t], where 𝑡 ∈ ℕ [if @evo:te='now' then false() else @evo:te< t]

[tend() <= t], where 𝑡 ∈ ℕ [if @evo:te='now' then false() else @evo:te<= t]

[tend() = 'now'] [@evo:te='now']

[tend()< 'now'] [@evo:te!='now']

[tend()<= 'now'] [true()]

[tt() operator t], where 𝑡 ∈ ℕ [@evo:tt operator t]

C. Evolution Predicates

data_path_expr

 [evo-

before(<change_path_expr>)]

doc("evoXML.xml")/evo:evoXML/evo:DataRoot/data_path_expr[

 @evo:id=

doc("evoXML.xml")/evo:evoXML/evo:ChangeRoot/change_path_ex

pr/@evo:before]

data_path_expr

 [evo-

after(<change_path_expr>)]

doc("evoXML.xml")/evo:evoXML/evo:DataRoot/data_path_expr[

 @evo:id=

doc("evoXML.xml")/evo:evoXML/evo:ChangeRoot/change_path_ex

pr/@evo:after]

data_path_expr

 [evo-

both(<change_path_expr>)]

doc("evoXML.xml")/evo:evoXML/evo:DataRoot/data_path_expr[

 @evo:id=

doc("evoXML.xml")/evo:evoXML/evo:ChangeRoot/change_path_ex

pr/@evo:before or

 @evo:id=

doc("evoXML.xml")/evo:evoXML/evo:ChangeRoot/change_path_ex

pr/@evo:after]

<change_path_expr [evo-filter(data_path_expr)]>where evo-filter is evo-before or evo-

after or evo-both are defined symmetrically

D. Plain Data Path Expressions

1 /p /p[@evo:id]

2 /p[position predicate] /p[(@evo:id and position predicate) or

 (@evo:id=/p[position predicate]/@evo:ref)]

3 /p1[p2 op value] /p1[@evo:id and p2 op value] |

/p1[@evo:id and p2/@evo:ref=/p1[p2 op value]/p2/@evo:id]

4 /p1[p2 op value]/p3 (/p1[@evo:id and p2 op value] |

/p1[@evo:id and p2/@evo:ref=/p1[p2 op value]/p2/@evo:id] |

/p1[p3/@evo:id=/p1[p2 op value]/p3/@evo:ref])/p3[@evo:id]

 86

Each data/change path expression (case A) is evaluated starting from the data/change root.

Each temporal predicate (case B) is mapped to an XPath predicate over evoXML attributes

evo:ts, evo:te and evo:tt. Each evolution predicate (case C) is mapped to an XPath

predicate over the evoXML attributes evo:before or/and evo:after. These attributes

appear on change elements and should be equal to evo:id attribute of data elements.

Moreover, recall that evoXML encodes evo-graph in a top-down non-replicated approach

(Stavrakas and Papastefanatos (2011) [56]): if a child node is pointed to by multiple parent

versions, the element corresponding to the child node is contained in the oldest parent element,

while subsequent parent versions contain "clone" elements of the child. These are empty

elements pointing to the "original" child element via evo:ref attribute. This feature is

handled while translating a data path expression to an equivalent XPath expression (case D).

The returned nodes of a data path expression should be the "original" ones, i.e. those with an

evo:id attribute (rule 1). Similar holds for predicates that are used to find a specific node,

e.g. based on position (rule 2). For predicates that are used to find a node that contains a

specific value, the returned nodes should be the "original" ones and the contained value should

be checked in an "original" child node. However, the node in context may have either an

"original" or a "clone" child node. In the latter case, the "clone" child node is used to access the

pointed "original" one. Thus, in rule 3 two cases are identified: p1 is an "original" node and

contains the "original" node p2 with value, or p1 is an "original" node and contains the

"clone" node p2 pointing to an "original" node with value. This is extended in rule 4 with an

additional location step. For p3 a third case is identified: p1 is an "original" node which

contains the "original" node p2 with value and the "clone" node p3, which is used to access

the "original" pointed node p3. The case of having p1 as "original" node and p2 and p3 as

"clone" nodes is not identified, since it eventually ends up to one of the rest cases. Finally, note

that XPath predicates on other node types, like attributes, are not considered, since in evoXML

evolving data are represented on element nodes.

Below, we show the XPath expressions for the Section 4.4.2 evo-path queries, generated

following the translation rules. For simplicity evo namespace is omitted. evoXML.xml

contains the evoXML representation of evo-graph in Figure 4.

(Q1) let $d:=doc("evoXML.xml")/evo:evoXML/evo:DataRoot

return $d//Diabetes/categories[@evo:te!='now']

(Q2) let $d:=doc("evoXML.xml")/evo:evoXML/evo:DataRoot,

 $c:=doc("evoXML.xml")/evo:evoXML/evo:ChangeRoot

return $c//*[@evo:before=$d//Diabetes//*/@evo:id or

 @evo:after=$d//Diabetes//*/@evo:id]

 87

 [.//evo:create[@evo:before=

$d//Diabetes/categories/cat/@evo:id or

 @evo:after=

$d//Diabetes/categories/cat/@evo:id]]

(Q3) let $c:=doc("evoXML.xml")/evo:evoXML/evo:ChangeRoot

return $c//reorg_diab_cat/*

(Q4) let $d:=doc("evoXML.xml")/evo:evoXML/evo:DataRoot,

 $c:=doc("evoXML.xml")/evo:evoXML/evo:ChangeRoot

return $d//*[@evo:id=$c//reorg_diab_cat//*/@evo:before]

4.5. Evaluating the C2D Framework

4.5.1. The C2D Framework

The C2D (standing for Complex Changes in Data evolution) framework captures the concepts

presented on evo-graph, snap-model and evo-path using XML technologies. Currently, the

basic concepts of evo-graph and snap-model have been implemented into the framework.

C2D has been developed in Java, on top of Berkeley DB XML9, an embedded XML database

used to manage the evoXML representation of evo-graphs.

The basic flow implemented in C2D is the following: Changes applied on the snap-model are

fed into a process that populates the evo-graph, which is constructed step-by-step as changes

are accommodated on it. The process details are presented in [44]. A snap change is always

applied on the current snap-model, which is also represented in XML in C2D. Note that, the

current snap-model is actually produced as a reduction of the evo-graph for the time instance

T=now. In C2D the reduction process, as presented in [55], is also implemented. This flow is

depicted in Figure 6. The top layer in Figure 6 is the view layer, where changes are launched.

The purpose of the logical model layer is to guide the translation processes between the view

layer and the storage representation layer, where changes actually take place. Change

operations on the evo-graph are implemented as XML update operations on the corresponding

evoXML, using XQuery Update [50] insert expressions.

9 http://www.oracle.com/technetwork/ database/berkeleydb/overview/index.html

 88

Figure 6 C2D framework basic flow overview.

4.5.2. Evaluation

4.5.2.1. Experimental Setting

The goal of the experimental evaluation was to examine how evo-graph depends on a number

of factors that characterize the data. We first examined the space efficiency of evoXML for

various configurations, regarding: the structure of the initial XML tree, the type of snap

changes, and the selectivity of the elements. We also examined the performance of the

reduction process with respect to the size of the evoXML file.

Experiments were performed over synthetic XML data, on a PC with Intel Core 2 CPU 2.26

GHz, and 4.00 GB of RAM. The initial XML file was generated with Xmlgener10 synthetic

XML data generator and contained about 105 elements, over which 104 snap changes were

sequentially applied as XQuery Update [50] statements. A new version was assumed after

every 1000 changes; therefore 10 successive versions have been created for each setting. We

recorded the size (in terms of the number of XML elements) of each “snap” version, and the

size of the evoXML file at the same instance. Furthermore, we examined the performance of

the reduction process for the current snapshot (T=now), and the initial snapshot (T=0).

Regarding the structure of the initial data, we used two XML files with the same number of

elements: (a) one corresponding to a snap-model with a “deep” tree structure (denoted s1)

with five levels and elements having a fan-out of 10, and (b) a file with a “broad” tree

structure (denoted s2) with only two levels and elements with a fan-out of about 330 elements.

We have applied three sets of snap changes: (a) equal percentage for all changes except clone

10 https://code.google.com/archive/p/xmlgener/

 89

(denoted t1), (b) 80% update and 20% create and remove (denoted t2), and (c) equal

percentage for all changes including clone (denoted t3). Finally, concerning elements

selectivity, changes have been applied either on all elements (denoted n1) or on a fixed set of

pre-selected elements so that each element is affected by 5 changes on average per version

(denoted n2).

We have examined the following combinations of the above parameters: (t1n1), (t3n1), (t2n1),

and (t2n2) for each of s1, s2. t1n1 captures the typical case when random changes are uniformly

applied on all elements. t3n1 is similar to t1n1, but it also includes clone. We have separately

examined the clone operation, as it may arbitrarily result in the addition of a large amount of

data. t2n1 captures the case where most (80%) change operations are update on random leaf

elements, and only 20% are create or remove. Finally, t2n2 is like the previous case except that

changes are concentrated on a pre-selected fixed set of elements.

Intuitively, we expect that the size of the evoXML depends on the number of snap changes

performed. We also expect that it depends on the average fan-out of the snap-model, while it

remains insensitive to its average height. This is due to the way that each snap change

operation is implemented on the evo-graph.

4.5.2.2. Results

In Figure 7 (a) and (b) we present the evoXML sizes per version. Subsequently, we discuss

how this size is affected by the aforementioned configurations parameters.

(a) (b) (c) (d)

Figure 7 evoXML size (a), (b), accumulative snapshot size (c) and current snapshot reduction time (d)

per version for various configurations.

File structure. For all configurations, better space efficiency is achieved for s1. For smaller

fan-outs (s1), the evoXML has a smoother increase in size than for large fan-outs (s2). A snap

100

120

140

160

180

200

220

240

260

0 1 2 3 4 5 6 7 8 9 10

evoXML size / version (s1)

t3, n1

t2, n2

t1, n1

t2, n1

e
le

m
e
n
ts

(t
h
o
u

s
a
n
d

s
)

100

600

1.100

1.600

2.100

2.600

0 1 2 3 4 5 6 7 8 9 10

evoXML size / version (s2)

t3, n1
t2, n2
t1, n1
t2, n1

e
le

m
e
n
ts

(t
h
o
u

sa
n
d

s)

0

200

400

600

800

1.000

1.200

1.400

0 1 2 3 4 5 6 7 8 9 10

acc. snapshot size / version

(s2)

t3,n1

t2, n2

t1,n1

t2,n1

e
le

m
e
n
ts

(t
h
o
u

sa
n
d

s)

2

3

4

5

6

7

8

9

10

11

12

0 1 2 3 4 5 6 7 8 9 10

reduction time / version (s2)

t3, n1
t2, n2
t1, n1
t2, n1

se
c
o
n
d

s

 90

change occurring on an element adds evo:ref elements for all of its children (i.e. fan-out) that

are still valid in the new version. Hence, the increase in the evoXML size is relative to the

average fan-out.

Type of changes. t2 outperforms t1 and t3. The majority of changes in t2 are update, which have

a smaller impact on the evoXML size. Again, the key point is the number of new elements

that each change adds. Observe from Figure 5 that all changes add at least two new elements:

one evolved data element and one change element. update adds only these two elements,

whereas create and add insert one additional element for the new child, plus evo:ref elements

for its siblings. remove results in inserting evo:ref elements in the evoXML for all the siblings

of the removed element. Finally, clone adds a variable number of elements according to the

height and average fan-out of the subtree that is cloned. On the other hand, the percentage of

create and remove in t1 is higher. In t3, the use of clone further increases the file size by

creating a deep copy of the subtree of the elements on which it is applied.

Selectivity of elements. Applying changes randomly on all elements (n1) seems to have a

smoother impact on the increase of the file size (e.g., compare t2n1 and t2n2 for each of s1, s2).

This is due to the fact that changes are uniformly distributed over all the elements. On the

other hand, the increase is higher when changes are targeting a fixed set of elements (n2).

Changes in t2n2 are sequentially applied on the same elements, i.e., create is applied on the

same elements, increasing the number of their children and thus the number of evo:ref

elements to be inserted when a subsequent create occurs on the same element.

Overall, the evoXML size depends almost linearly on the number of the snap changes applied,

given that the average fan-out is constant. Moreover, the increase rate of the evoXML size is

proportional to the average fan-out of its elements. This is more evident in t2n2 for s1, where

the average fan-out of the elements sustaining changes increases significantly per version,

resulting in a boost in the evoXML size, whereas in s2 the fan out increase rate is much

smoother.

In Figure 7 (c) we present the accumulative size of the snapshots produced per version. This

approach can be considered as an alternative to evoXML. We only depict the series for s2, as

s1 shows a similar trend. The accumulative size of all snapshots per version is significantly

bigger than the evoXML size, for all runs over s1. The same holds for all configurations of s2,

except for t3n1 where many evo:ref elements are added in the evoXML file. Note that the

overlap of the series is due to the small variance in the accumulative snapshot size between

configurations.

 91

Regarding the performance of the reduction algorithm, we have measured the time the

reduction process takes for producing the current and the initial snapshots. The results for the

current snapshot for s2 are shown in Figure 7 (d), where the mark signs are the recorded time

values, and the series are the trends for each configuration. A safe conclusion is that the

reduction time depends mostly on the evoXML size. For small file sizes, the reduction

performs the same for all versions. In addition, the increase rates in time are similar for both

the current and the initial snapshot, for both s1 and s2. Therefore, the time instance parameter

of the reduction process does not affect the reduction performance.

Concluding, both space and time efficiency are mostly affected by the average fan-out, which

deteriorates as more changes are applied. That is mainly because of the evo:ref elements that

are added for all children of an element that “evolves”. Still, our approach is much more

efficient than retaining separately every different version.

 92

 93

Chapter 5

Conclusions and Future Work

5.1. Thesis Conclusions

In this thesis, we have presented novel methods and experimental results that focus on

modeling, defining, detecting and querying changes on web data. In the proposed approaches,

changes are treated as first class citizens, meaning that they are human-readable, semantically

rich changes that demonstrate structure. Therefore, they can play a dominant role in

interpreting and understanding evolution.

Based on these concepts our research has been conducted in two pillars: Modeling, defining

and detecting changes has been studied in the context of RDF(S) knowledge bases. Querying

changes has been studied in the context of XML data, building upon previous work done

regarding evo-graph, a model that captures evolving data along with changes.

Specifically, we proposed modeling and supporting simple and complex changes, as well as

any relations among them, for interpreting evolution on RDF(S) knowledge-bases. Simple

changes are fine-grained and application/data-agnostic changes, while complex changes are

coarse-grained and application/data-specific changes, demonstrating structure and rich

semantics suitable to each specific application or dataset. Complex changes are user defined

changes so that they can capture application/data-specific modifications. Also, they are

defined as patterns over simple changes and already defined complex changes. Towards this

direction, we proposed an intuitive, user-friendly language, based on change semantics for

defining complex changes. We formally defined the language syntax and semantics.

Furthermore, the ultimate goal for defining complex changes is to identify actual complex

change instances between dataset versions. Therefore, we presented a detection algorithm for

the proposed complex change definition language, as well as the correctness of the proposed

implementation with respect to the language semantics.

 94

The proposed approach has been extensively evaluated qualitatively and experimentally. The

qualitative evaluation demonstrates the added value of our approach in comparison to the

related work, regarding the basic features and characteristics. The experimental evaluation

examines the complex change language expressiveness and the detection performance. It is

evaluated whether the proposed structures are adequate in expressing useful changes and how

complex changes facilitate user in understanding and analyzing evolution. Also, the response

time of the detection process is examined in terms of increasing dataset size. The evaluation is

performed over both artificial and real data, proving the effectiveness of our approach.

Overall, the proposed approach offers expressiveness and flexibility in terms of evolution

interpretation, since complex changes provide additional information for interpreting past

data, allow interpreting evolution in multiple ways, while capturing relations between

complex changes is an additional feature that enriches the complex changes' expressivity.

Regarding querying changes, we formally defined evo-path, an XPath extension for

performing time-aware and change-aware queries on evo-graph. Evo-path allows querying

both data history and change structure in a uniform way, supporting temporal, evolution and

causality queries. We presented the evo-path syntax, we defined evo-path formal semantics

and we presented an implementation based on a formal translation of evo-path into equivalent

XPath expressions over evoXML, the XML representation of evo-graph.

Additionaly, the basic concepts of evo-graph were implemented in the C2D framework, using

XML technologies, and experimentally evaluated. The space efficiency of evoXML for

various configurations is evaluated. Also, the performance of the reduction process, the

process for generating a snapshot holding under a specific time instance from evo-graph, is

evaluated with respect to the size of the evoXML file. The evaluation performed indicated

which factors that characterize the data affect the evoXML size and the reduction process.

5.2. Future Work

While conducting the above research, apart from the contributions made and the results

already presented, we came up with open issues, which can form the basis for future work.

Regarding our work on defining and detecting complex changes on RDF(S) knowledge bases,

a tool for the automatic generation of a proposed set of complex change definitions may be

 95

investigated. This tool may further facilitate the process of defining complex changes over a

specific dataset.

Towards this direction, a naïve approach may be to define some common patterns of changes

that may appear in any RDF(S) dataset. Thus, given a specific dataset schema, a number of

complex changes may be defined automatically following specific rules and heuristics. The

proposed complex changes can be named based on the dataset concepts and the intuition of

each change. These complex changes may involve rather structural groupings and may model

modifications like add, delete, update and move. Therefore, the proposed complex changes

may be additions/deletions/updates of class or property instances, moves of property

instances, or groupings of added/deleted classes with relevant added/deleted descriptive

properties. The data curator or consumer can model new complex changes capturing scenarios

and semantics that fit specific data and application use cases on top of them.

Additionally, it may be worth investigating how the automatic generation and proposal of

complex change definitions over dataset versions can be based on more advanced methods

and procedures than rules or heuristics. This may involve mining structures by comparing and

analyzing different versions and snapshots, or ideally identifying unexpected changes.

In this regard, recent works on data structure evolution may be useful. More broadly, our

work can be related to approaches capable of capturing the evolution of knowledge graphs,

while not aiming to model changes or interpret evolution. In Maillot and Bobed (2018) [37],

structural similarity measure is proposed. It is based on the detection of common structural

regularities between two RDF graphs, leveraging the data mining approach KRIMP. Bobed et

al. (2020) [5] rely on this work, focusing on a data-driven assessment of structural evolution

in RDF graphs. They propose two new similarity measures, which identify outdated updates

and updates that alter the heterogeneity of the structural patterns w.r.t. the last snapshot. In

Gonzalez and Hogan (2018) [28], authors propose an approach to compute a data-driven

schema from knowledge graphs, inspired from formal concept analysis (FCA), producing a

lattice of characteristic sets. The extracted schema is used to summarize dataset dynamics and

predict future changes.

Regarding our work on querying data versions and change structures via evo-path on evo-

graph, it is worth focusing on further experimenting and evaluating the proposed approach in

terms of query language expressiveness and implementation efficiency. In addition,

experimenting on real data may contribute in evaluating the effectiveness of the approach.

 96

Also, another research direction is to investigate prospective optimizations. Towards this

direction, it may be useful to take into consideration the effect of evo:ref elements in the

evoXML and consequently in the query translation. It may be interesting to work on encoding

evo:ref elements and overall compress the evoXML file.

Overall, evolution management may be considered as a special case of the data integration

and exchange problems [18], where the involved models are different versions of the same

dataset. Therefore, several formalization issues that appear in data integration and exchange,

like information preservation, query preservation, monotonicy and containment, can be

examined in the evolution context as well.

 97

Bibliography

[1] Amagasa, T., Yoshikawa, M., Uemura, S. (2000). A data model for temporal XML

documents. In DEXA.

[2] Antoniazzi, F., and Viola, F. (2018). RDF graph visualization tools: A survey. In 23rd

Conference of Open Innovations Association (FRUCT).

[3] Auer, S., and Herre, H. (2007). A versioning and evolution framework for RDF

knowledge bases. In Perspectives of Systems Informatics.

[4] Berners-Lee, Τ., Connolly, D. (2004). Delta: An ontology for the distribution of

differences between RDF graphs. http://www.w3.org/DesignIssues/Diff (version: 2006-05-

12).

[5] Bobed, C., Maillot, P., Cellier, P., Ferré, S. (2020). Data-driven assessment of structural

evolution of RDF graphs. In Semantic Web Journal 11(5): 831-853.

[6] Brahmia, Z., Hamrouni, H., Bouaziz, R. (2020). XML data manipulation in conventional

and temporal XML databases: A survey. In Computer Science Review Journal 36: 100231.

[7] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Yergeau, F. (2008, November

26). Extensible Markup Language (XML) 1.0. W3C Recommendation.

https://www.w3.org/TR/xml/. (accessed 3 October 2021)

[8] Brickley, D., Guha, R. V. (2014, February 25). RDF Schema 1.1. W3C

Recommendation. https://www.w3.org/TR/rdf-schema/. (accessed 3 October 2021)

[9] Buneman, P., Chapman, Α.P., Cheney, J. (2006). Provenance management in curated

databases. In SIGMOD.

[10] Buneman, P., Khanna, S., Tajima, K., Tan, W.C. (2004). Archiving scientific data. In

ACM Transactions on Database Systems 29(1): 2-42.

[11] Chawathe, S., Abiteboul, S., Widom, J. (1999). Managing historical semistructured data.

In Theory and Practice of Object Systems 5(3): 143-162.

[12] Chawathe, S., Rajaraman, A., Garcia-Molina, H., Widom J. (1996). Change detection in

hierarchically structured information. In SIGMOD.

[13] Chien, S-Y., Tsotras, V. J., Zaniolo, C. (2001). Efficient management of multiversion

documents by object referencing. In VLDB.

[14] Chien, S. Y., Tsotras, V. J., Zaniolo, C. (2002). Efficient schemes for managing

multiversion XML document. In VLDB Journal 11(4): 332-353.

[15] Chien, S-Y., Tsotras, V. J., Zaniolo, C., Zhang, D. (2001). Storing and querying

multiversion XML documents using durable node numbers. In WISE.

[16] Chien, S. Y., Tsotras, V. J., Zaniolo, C., Zhang, D. (2002). Efficient complex query

support for multiversion XML documents. In EDBT.

https://www.w3.org/TR/xml/
https://www.w3.org/TR/rdf-schema/

 98

[17] Cobena, G., Abiteboul, S., Marian, A. (2002). Detecting changes in XML documents. In

ICDE.

[18] Doan, A., Halevy, A., Ives, Z. (2012). Principles of Data Integration. Morgan Kaufmann.

[19] Dyreson, C.E. (2001). Observing transaction-time semantics with TTXPath. In WISE.

[20] Faisal, S., Sarwar, M. (2014). Temporal and multi-versioned XML documents: A survey.

In Information Processing and Management 50(1): 113-131.

[21] Franconi, E., Meyer, T., Varzinczak. I. (2010). Semantic diff as the basis for knowledge

base versioning. In NMR.

[22] Galani, T., Papastefanatos, G., Stavrakas, Y. (2016). A language for defining and

detecting interrelated complex changes on RDF(S) knowledge bases. In ICEIS.

[23] Galani, T., Papastefanatos, G., Stavrakas, Y., Vassiliou, Y. (2021). Defining and

detecting complex changes on RDF(S) knowledge bases. In Journal on Data Semantics.

https://doi.org/10.1007/s13740-021-00136-9

[24] Galani, T., Stavrakas, Y., Papastefanatos, G., Flouris, G. (2015). Supporting complex

changes in RDF(S) knowledge bases. In MEPDaW-15 (with ESWC).

[25] Galani, T., Stavrakas, Y., Papastefanatos, G., Vassiliou, Y. (2021). Evo-Path: Querying

data evolution through complex changes. In DATA.

[26] Gao, D., Snodgrass, R. T. (2003). Temporal slicing in the evaluation of XML queries. In

VLDB.

[27] Gergatsoulis, M., Stavrakas, Y. (2003). Representing changes in XML documents using

dimensions. In International XML Database Symposium.

[28] Gonzalez, L., Hogan, A. (2018). Modeling dynamics in semantic web knowledge graphs

with formal concept analysis. In WWW.

[29] Grandi, F. (2004). Introducing an annotated bibliography on temporal and evolution

aspects in the World Wide Web. In SIGMOD Records.

[30] Guo, Y., Pan, Z., Heflin, J. (2005). LUBM: A benchmark for OWL knowledge base

systems. In Journal of Web Semantics 3(2-3): 158-182.

[31] Harris, S., Seaborne, A. (2013, March 21). SPARQL 1.1 Query Language. W3C

Recommendation. https://www.w3.org/TR/sparql11-query/. (accessed 3 October 2021)

[32] Kaminski, M., Kostylev, E. V., Cuenca Grau, B. (2017). Query nesting, assignment, and

aggregation in SPARQL 1.1. In ACM Transactions on Database Systems 42(3): 17:1-17:46.

[33] Klein, M. (2004). Change management for distributed ontologies. Ph.D. thesis, Vrije

University.

[34] Klyne, G., Carroll, J. J., McBride, B. (2014, February 25). RDF 1.1 Concepts and

Abstract Syntax. W3C Recommendation. https://www.w3.org/TR/rdf11-concepts/. (accessed

3 October 2021)

https://doi.org/10.1007/s13740-021-00136-9
https://dblp.uni-trier.de/db/journals/ws/ws3.html#GuoPH05
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/rdf11-concepts/

 99

[35] Leonardi, E., Bhowmick, S. S. (2005). Detecting changes on unordered XML documents

using relational databases: A schema conscious approach. In CIKM.

[36] Leonardi, E., Bhowmick, S. S., Madria, S. (2005). Xandy: Detecting changes on large

unordered XML documents using relational databases. In DASFAA.

[37] Maillot, P., Bobed, C. (2018). Measuring structural similarity between RDF graphs. In

SIGAPP.

[38] Marian, A., Abiteboul, S., Cobena, G., Mignet, L. (2001). Change-centric management

of versions in an XML warehouse. In VLDB.

[39] Meimaris, M. (2016). EvoGen: a generator for synthetic versioned RDF. In EDBT/ICDT

Workshops.

[40] Meimaris, M., Papastefanatos, G. (2016). The EvoGen benchmark suite for evolving

RDF data. In MEPDaW/LDQ in ESWC.

[41] Moon, H.J., Curino, C., Deutsch, A., Hou, C.Y., Zaniolo, C. (2008). Managing and

querying transaction-time databases under schema evolution. In VLDB.

[42] National research council - Committee on Frontiers at the Interface of Computing and

Biology (2005). Catalyzing inquiry at the interface of computing and biology. Edited by J. C.

Wooley, H. S. Lin., National Academies Press.

[43] Noy, N.F., Musen, M. (2002). PromptDiff: A fixed-point algorithm for comparing

ontology versions. In AAAI.

[44] Papastefanatos, G., Stavrakas, Y., Galani, T. (2013). Capturing the history and change

structure of evolving data. In DBKDA.

[45] Papavasileiou, V., Flouris, G., Fundulaki, I., Kotzinos, D., Christophides, V. (2013).

High-level change detection in RDF(S) KBs. In ACM Transactions on Database Systems

38(1): 1:1-1:42.

[46] Perez, J., Arenas, M., Gutierrez, C. (2009). Semantics and complexity of SPARQL. In

ACM Transactions on Database Systems 34(3): 16:1-16:45.

[47] Plessers, P., De Troyer, O., Casteleyn, S. (2007). Understanding ontology evolution: A

change detection approach. In Journal of Web Semantics 5(1): 39-49.

[48] Regino, A. G., dos Reis, J. C., Bonacin, R., Morshed, A., Sellis, T. (2021). Link

maintenance for integrity in linked open data evolution: Literature survey and open

challenges. In Semantic Web 12(3): 517-541.

[49] Rizzolo, F., Vaisman, A. A. (2008). Temporal XML: modeling, indexing, and query

processing. In VLDB Journal 17(5): 1179-1212.

[50] Robie, J., Chamberlin, D., Dyck, M., Florescu, D., Melton, J., Simeon, J. (2011, March

17). XQuery Update Facility 1.0. W3C Recommendation. https://www.w3.org/TR/xquery-

update-10/. (accessed 3 October 2021).

https://www.w3.org/TR/xquery-update-10/
https://www.w3.org/TR/xquery-update-10/

 100

[51] Robie, J., Dyck, M., Spiegel, J. (2017, March 21). XML Path Language (XPath) 3.1.

W3C Recommendation. https://www.w3.org/TR/2017/REC-xpath-31-20170321/. (accessed 3

October 2021)

[52] Robie, J., Dyck, M., Spiegel, J. (2017, March 21). XQuery 3.1: An XML Query

Language. W3C Recommendation. https://www.w3.org/TR/2017/REC-xpath-31-20170321/.

(accessed 3 October 2021)

[53] Roussakis, Y., Chrysakis, I., Stefanidis, K., Flouris, G., Stavrakas, Y. (2015). A flexible

framework for understanding the dynamics of evolving RDF datasets. In ISWC.

[54] Singh, A., Brennan, R., O’Sullivan, D. (2018). DELTA-LD: A change detection

approach for linked datasets. In MEPDAW in ESWC.

[55] Stavrakas, Y., Papastefanatos, G. (2010). Supporting complex changes in evolving

interrelated web databanks. In CoopIS.

[56] Stavrakas, Y., Papastefanatos, G. (2011). Using structured changes for elucidating data

evolution. In DaLi (with ICDE).

[57] Stojanovic, L. (2004). Methods and tools for ontology evolution. Ph.D. thesis, University

of Karlsruhe.

[58] Troullinou, G., Roussakis, G., Kondylakis, H., Stefanidis, K., Flouris, G. (2016).

Understanding ontology evolution beyond deltas. In MEPDAW in EDBT/ICDT.

[59] Volkel, M., Winkler, W., Sure, Y., Kruk, S., Synak, M. (2005). SemVersion: A

versioning system for RDF and ontologies. In ESWC.

[60] Wadler, P. (1999). A formal semantics of patterns in XSLT. In Markup Technologies.

[61] Wang, Y., DeWitt, D. J., Cai, J. (2003). X-Diff: An effective change detection algorithm

for XML documents. In ICDE.

[62] Wang, F., Zaniolo, C. (2003). Temporal queries in XML document archives and web

warehouses. In TIME.

[63] Wang, F., Zaniolo, C. (2008). Temporal queries and version management for XML

document archives. In Data and Knowledge Engineering 65(2): 304-324.

[64] Zablith, F., Antoniou, G., d’Aquin, M., Flouris, G., Kondylakis, H., Motta, E.,

Plexousakis, D., Sabou, M. (2004). Ontology evolution: A process centric survey. In The

Knowledge Engineering Review 30(1): 45-75.

[65] Zeginis, D., Tzitzikas, Y., Christophides, V. (2011). On computing deltas of RDF/S

knowledge bases. In ACM Transactions on the Web 5(3): 14:1-14:36.

https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://www.w3.org/TR/2017/REC-xpath-31-20170321/

 101

Γλωσσάρι

causality query ερώτημα αιτιότητας

change instance στιγμιότυπο αλλαγής

change modeling μοντελοποίηση αλλαγών

change definition ορισμός αλλαγών

change detection εντοπισμός αλλαγών

coarse-grained change συνοπτική αλλαγή

complex change σύνθετη αλλαγή

data/application-agnostic change αλλαγή που αγνοεί την εκάστοτε εφαρμογή και δεδομένα

data/application-specific change αλλαγή που είναι συγκεκριμένη για την εκάστοτε

εφαρμογή και δεδομένα

data evolution εξέλιξη δεδομένων

data / dataset version έκδοση δεδομένων / συνόλου δεδομένων

diff διαφορά

evolution query ερώτημα εξέλιξης

fine-grained change λεπτομερής αλλαγή

first class citizen πρώτης τάξης πολίτης

framework πλαίσιο

granularity βαθμός λεπτομέρειας

human-readable change αλλαγή κατανοητή από τον άνθρωπο

knowledge base βάση γνώσεων

machine-readable change μηχανιστική αλλαγή

pattern μοτίβο

query επερώτηση / ερώτημα

querying changes επερώτηση αλλαγών

reduction process διαδικασία παραγωγής στιγμιότυπου

semistructured data ημιδομημένα δεδομένα

simple change απλή αλλαγή

snapshot στιγμιότυπο

temporal query χρονικό ερώτημα

 102

 103

Annex A: Simple Changes in RDF(S)

Knowledge Bases

Add_Type_Class(a) Add object a of type rdfs:Class.

Delete_Type_Class(a) Delete object a of type rdfs:Class.

Rename_Class(a) Rename class a to b.

Merge_Classes(A, b) Merge classes contained in A into b.

Merge_Classes_Into_Existing(A,b) Merge classes in A into b, bA.

Split_Class(a,B) Split class a into classes contained in B.

Split_Class_Into_Existing(a,B) Split class a into classes in B, aB.

Add_Type_Property(a) Add object a of type rdf:property.

Delete_Type_Property(a) Delete object a of type rdf:property.

Rename_Property(a,b) Rename property a to b.

Merge_Properties(A,b) Merge properties contained in A into b.

Merge_Properties_Into_Existing(A, b) Merge A into b, bA.

Split_Property(a,B) Split property a into properties contained in B.

Split_Property_Into_Existing(a,B) Split a into properties in B, aB.

Add_Type_Individual(a) Add object a of type rdfs:Resource.

Delete_Type_Individual(a) Delete object a of type rdfs:Resource.

Merge_Individuals(A,b) Merge individuals contained in A into b.

Merge_Individuals_Into_Existing(A,b) Merge A into b, bA.

Split_Individual(a,B) Split individual a into individuals in B.

Split_Individual_Into_Existing(a,B) Split a into individuals in B, aB.

Add_Superclass(a,b) Parent b of class a is added.

Delete_Superclass(a,b) Parent b of class a is deleted.

Add_Superproperty(a,b) Parent b of property a is added.

Delete_Superproperty(a,b) Parent b of property a is deleted.

Add_Type_To_Individual(a,b) Type b of individual a is added.

Delete_Type_From_Individual(a,b) Type b of individual a is deleted.

Add_Property_Instance (a1,a2,b) Add property instance of property b.

Delete_Property_Instance(a1,a2,b) Delete instance of property b.

Add_Domain(a,b) Domain b of property a is added.

Delete_Domain(a,b) Domain b of property a is deleted.

Add_Range(a,b) Range b of property a is added.

Delete_Range(a,b) Range b of property a is deleted.

Add_Comment(a,b) Comment b of object a is added.

Delete_Comment(a,b) Comment b of object a is deleted.

Change_Comment(u,a,b) Change comment of resource u from a to b.

Add_Label(a,b) Label b of object a is added.

Delete_Label(a,b) Label b of object a is deleted.

Change_Label(u,a,b) Change label of resource u from a to b.

 104

 105

Annex B: Complex Change Definition Examples

in RDF(S) Knowledge Bases

Below, we demonstrate some of the complex change definitions for the EvoGen generated

data and the DBpedia data, as defined for the experimental evaluation of the complex change

definition language for RDF(S) knowledge bases presented in Chapter 3, Section 3.6.2.2.

1. Class instance additions/deletions

a. EvoGen

CREATE COMPLEX CHANGE Add_UnderGrad_Student(id) {

 CHANGE LIST Add_Type_To_Individual(id, type) ;

 FILTER LIST type=ub:UndergraduateStudent ; } ;

b. DBpedia

CREATE COMPLEX CHANGE Add_SoccerPlayer(id) {

 CHANGE LIST Add_Type_To_Individual(id, type) ;

 FILTER LIST type=dbo:SoccerPlayer ; } ;

CREATE COMPLEX CHANGE Delete_SoccerPlayer(id) {

 CHANGE LIST Delete_Type_From_Individual(id, type) ;

 FILTER LIST type=dbo:SoccerPlayer ; } ;

2. Property instance additions/deletions

a. EvoGen

CREATE COMPLEX CHANGE Add_Name(id, name) {

 CHANGE LIST Add_Property_Instance(id, prop, name) ;

 FILTER LIST prop=ub:name ; } ;

b. DBpedia

CREATE COMPLEX CHANGE Add_Team(id, chId) {

 CHANGE LIST Add_Property_Instance(id, prop, chId) ;

 FILTER LIST prop=dbo:team ; } ;

CREATE COMPLEX CHANGE Delete_Team(id, chId) {

 CHANGE LIST Delete_Property_Instance(id, prop, chId) ;

 FILTER LIST prop=dbo:team ; } ;

3. Groupings around added/deleted class instance URIs

a. EvoGen

CREATE COMPLEX CHANGE Add_UnderGrad_Student_Profile(id, name,

univ, email, tel, adv) {

 CHANGE LIST Add_UnderGrad_Student(id), Add_Name(id, name),

Add_Studing_University(id, univ), Add_Email(id, email),

Add_Telephone(id, tel), Add_Advisor(id, adv) ? ; } ;

 106

b. DBpedia

CREATE COMPLEX CHANGE Add_SoccerPlayer_with_Details(id, ChId1,

ChId2, ChId3, ChId4, ChId5) {

 CHANGE LIST Add_SoccerPlayer(id), Add_CareerStationProp(id,

chId1)+, Add_Team(id, chId2)*, Add_BirthPlace(id, chId3)*,

Add_Position(id, chId4)*, Add_DeathPlace(id, chId5)* ;

 BINDING LIST union(chId1) as ChId1, union(chId2) as ChId2,

union(chId3) as ChId3, union(chId4) as ChId4, union(chId5) as

ChId5 ; } ;

CREATE COMPLEX CHANGE Delete_SoccerPlayer_with_Details(id,

ChId1, ChId2, ChId3, ChId4, ChId5) {

 CHANGE LIST Delete_SoccerPlayer(id),

Delete_CareerStationProp(id, chId1)+, Delete_Team(id, chId2)*,

Delete_BirthPlace(id, chId3)*, Delete_Position(id, chId4)*,

Delete_DeathPlace(id, chId5)* ;

 BINDING LIST union(chId1) as ChId1, union(chId2) as ChId2,

union(chId3) as ChId3, union(chId4) as ChId4, union(chId5) as

ChId5 ; } ;

4. Batch additions/deletions

a. EvoGen

Add_UnderGrad_Students_withCommon_Advisor(Ids, adv) {

 CHANGE LIST Add_UnderGrad_Student_Profile(id, name, univ,

email, tel, adv) + ;

 BINDING LIST union(id) as Ids ; } ;

b. DBpedia

CREATE COMPLEX CHANGE

Add_SoccerPlayers_withCommonPositions(Ids, ChId4) {

 CHANGE LIST Add_SoccerPlayer_with_Details(id, ChId1, ChId2,

ChId3, ChId4, ChId5) + ;

 BINDING LIST union(id) as Ids ; } ;

CREATE COMPLEX CHANGE

Delete_SoccerPlayers_withCommonPositions(Ids, ChId4) {

 CHANGE LIST Delete_SoccerPlayer_with_Details(id, ChId1,

ChId2, ChId3, ChId4, ChId5) + ;

 BINDING LIST union(id) as Ids ; } ;

5. Specializations

a. EvoGen

CREATE COMPLEX CHANGE Add_Lecturer_withWebAndGradCourses(id,

Courses) {

 CHANGE LIST Add_Lecturer_Courses(id, Courses) ;

 FILTER LIST for some w in Courses : (w, rdf:type,

ub:WebCourse) in Vaf, for some gc in Courses : (gc, rdf:type,

ub:GraduateCourse) in Vaf ; } ;

b. DBpedia

 107

CREATE COMPLEX CHANGE Add_SoccerPlayer_withTeamIceland(id) {

 CHANGE LIST Add_SoccerPlayer_with_Details(id, ChId1, ChId2,

ChId3, ChId4, ChId5) ;

 FILTER LIST for some c in ChId2 :

c=<http://dbpedia.org/resource/Iceland_national_football_team>

; } ;

CREATE COMPLEX CHANGE Delete_SoccerPlayer_withTeamIceland(id)

{

 CHANGE LIST Delete_SoccerPlayer_with_Details(id, ChId1,

ChId2, ChId3, ChId4, ChId5) ;

 FILTER LIST for some c in ChId2 :

c=<http://dbpedia.org/resource/Iceland_national_football_team>

; } ;

6. Updates

b. DBpedia

CREATE COMPLEX CHANGE Update_Team(id, chId1, chId2) {

 CHANGE LIST Add_Team(id, chId1), Delete_Team(id, chId2) ; } ;

 108

 109

Annex C: Curriculum Vitae

PERSONAL INFORMATION

Theodora Galani

Knowledge and Database Systems Laboratory
School of Electrical and Computer Engineering

National Technical University of Athens

Iroon Polytechniou 9, Politechnioupoli Zographou
157 80 Athens, Hellas

Phone: (+30) 210 772 1402

Email Address: theodora@dblab.ece.ntua.gr

EDUCATION

2010 - 2021 PhD candidate.

 National Technical University of Athens.

 School of Electrical and Computer Engineering.
 Knowledge and Database Systems Laboratory.

 Thesis: Managing Evolution in Web Data through Complex Changes.

 Supervisor: Professor Yannis Vassiliou.
 Average grade of attended courses: 9.83/10 (Excellent)

2005 - 2010 National Technical University of Athens.
 Diploma, School of Electrical and Computer Engineering.

 Major: Computer Science.

 Average grade: 8.02/10 (Very Good, top 14%)

 Diploma Thesis: Development of a Proportional-Integral-Differential
Algorithm for the control of glucose concentration in patients with

Type 1 Diabetes Mellitus. Supervisor: Professor K. S. Nikita.Grade:10.

2005 Graduated from 1st High School of Aegina

 Final grade: 19.6/20 (Excellent)

RESEARCH INTERESTS

data evolution, change management, web data.

PUBLICATIONS

Theodora Galani, George Papastefanatos, Yannis Stavrakas, Yannis Vassiliou (2021).

Defining and detecting complex changes on RDF(S) knowledge bases. In Journal on Data
Semantics. https://doi.org/10.1007/s13740-021-00136-9

Theodora Galani, George Papastefanatos, Yannis Stavrakas, Yannis Vassiliou (2021). Evo-
Path: Querying Data Evolution through Complex Changes. In10th International Conference

on Data Science, Technology and Applications.

Theodora Galani, George Papastefanatos, Yannis Stavrakas (2016). A Language for Defining

and Detecting Interrelated Complex Changes on RDF(S) Knowledge Bases. In 18th

International Conference on Enterprise Information Systems.

Theodora Galani, Yannis Stavrakas, George Papastefanatos, Giorgos Flouris.

Supporting Complex Changes in RDF(S) Knowledge Bases (2015). In 1st International

Workshop on Managing the Evolution and Preservation of the Data Web.

http://dblp.uni-trier.de/pers/hd/s/Stavrakas:Yannis
http://dblp.uni-trier.de/pers/hd/p/Papastefanatos:George
http://dblp.uni-trier.de/pers/hd/f/Flouris:Giorgos

 110

Marios Meimaris, George Papastefanatos, Christos Pateritsas, Theodora Galani, Yannis
Stavrakas (2015). A Framework for Managing Evolving Information Resources on the Data

Web. CoRR abs/1504.06451.

Marios Meimaris, George Papastefanatos, Christos Pateritsas, Theodora Galani, Yannis

Stavrakas (2014). Towards a Framework for Managing Evolving Information Resources on

the Data Web. In 1st International Workshop on Dataset Profiling & Federated Search for

Linked Data.

George Papastefanatos, Yannis Stavrakas, and Theodora Galani. Capturing the History and

Change Structure of Evolving Data (2013). In 5th International Conference on Advances in
Databases, Knowledge, and Data Applications. Best Paper Award.

FOREIGN LANGUAGES

English Certificate of Proficiency in English (CPE) – University of Cambridge.
French Diplôme d’ Études en Langue Française (DELF) 1er degré (IFA).

WORKΙNG EXPERIENCE

Jun. 2017-today Software engineer, AI Labs, EXUS LTD

 Development and Technical Lead in European projects.
 Technologies: Java, SpringBoot, ReactJs, MySql/Postgres/MongoDB

Oct. 2015-Mar.2016 Research assistant, Information Management Systems Institute (IMSI),
Athena RC.

 EU-FP7 European Project Diachron.

 Technologies: RDF(S), SPARQL, Virtuoso, Jena, Java.

Sept. 2014-Sept.2015 Research assistant, Information Management Systems Institute (IMSI),

Athena RC.

 Research Project EICOS, Thales Program.
 Technologies: XML, XPath/XQuery, Oracle Berkeley DB XML, Java.

TEACHING EXPERIENCE

2011 - 2017 Teaching assistant, School of Electrical and Computer Engineering,

National Technical University of Athens.
 Course: Databases.

Instructors: Ass. Professor V. Kantere (2017-2018), Professor N.

Koziris (2016-2017), Professor Y. Vassiliou (2013-2016), Professors
Y. Vassiliou and Timos Sellis (2011-2013).

TECHNICAL SKILLS

• Java/SpringBoot, ReactJs/Javascript, HTML/CSS

• Sql, MySql, Postgres
• Windows, Linux, Ubuntu

• RDF(S), OWL, SPARQL, Jena, Virtuoso

• XML/XPath/XQuery, Oracle Berkeley DB XML
• IntelliJ IDEA, Visual Studio Code, Eclipse, Microsoft Office & Visio, Matlab

HONOURS AND AWARDS

• Scholarships from the Special Account for Research Grants (ELKE NTUA) for

graduate studies (July 2011-June 2014).
• Scholarships from the Institute of Communication and Computer Systems (ICCS) for

doctoral research (October-December 2010, October-November 2011, January-April 2013,

http://dblp.uni-trier.de/pers/hd/m/Meimaris:Marios
http://dblp.uni-trier.de/pers/hd/p/Papastefanatos:George
http://dblp.uni-trier.de/pers/hd/p/Pateritsas:Christos
http://dblp.uni-trier.de/pers/hd/s/Stavrakas:Yannis
http://dblp.uni-trier.de/pers/hd/s/Stavrakas:Yannis
http://dblp.uni-trier.de/db/journals/corr/corr1504.html#MeimarisPPGS15

 111

January-April 2014, January-May 2015, October 2015-April 2016, October 2016-June
2017).

• Member of the Technical Chamber of Greece (TEE).

• Achievement award from Eurobank EFG for being accepted at university (2005).
• Scholarship award for outstanding performance from the “Ath. Gkikas” foundation

(Aegina City, 2005).

• Achievement awards for secondary school years 1999-2005, for excellent school

performance.

CONFERENCES

July 2021 Speaker in DATA Conference, Online Streaming.

September 2016 Sub-reviewer in MEDI Conference, Almeria, Spain.
April 2016 Speaker in ICEIS Conference, Rome, Italy.

March 2014 Staff member in EDBT/ICDT Conference, Athens, Greece.

March 2014 Participant in EDF Conference, Athens, Greece.
July 2013 Sub-reviewer in DATA Conference, Reykjavik, Iceland.

June 2011 Staff member in ACM SIGMOD/PODS Conference. Athens, Greece.

 112

