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Abstract 

 

 

 

The increasing amount of information published on the web poses new challenges for data 

management. A central issue concerns evolution management. Data published on the web frequently 

change, as errors may need to be fixed or new knowledge has to be incorporated. Data consumers 

need to know what changed among versions, as well as how and why. Revisiting past data snapshots 

and versions may not be enough for tracking and understanding the semantics of data evolution. 

Such an activity may require a search that moves backwards and forwards in time, spread across 

disparate parts of a database, and perform complex queries on the semantics of the changes that 

modified the data, a task which may be even more intensive for large datasets. In our view, for 

understanding data evolution changes should be treated as first-class-citizens. This means that 

human-readable, semantically rich changes are supported, along with any relations between them. 

Treating changes as first-class-citizens poses several challenges regarding modeling, defining, 

detecting and querying changes. In this thesis, we study these directions and work upon two basic 

standards for web data: RDF and XML.  

 

First, we propose our approach on modeling, defining and detecting changes in the context of 

RDF(S) knowledge bases. Overall, the proposed approach offers expressiveness and flexibility in 

terms of evolution interpretation. The proposed complex changes provide additional information for 

interpreting past data, via capturing relations between changes and allowing interpreting evolution in 

multiple ways.  

 

Specifically, we proposed modeling and supporting simple and complex changes, as well as any 

relations among them, for interpreting evolution on RDF(S) knowledge-bases. Simple changes are 

fine-grained and application/data-agnostic changes, while complex changes are coarse-grained and 

application/data-specific changes. Furthermore, we formally defined an intuitive, user-friendly 

language, based on change semantics for defining complex changes. We formally defined the 

language syntax, via EBNF specification, as well as the language semantics. Moreover, we 

presented a detection algorithm for the proposed complex change definition language. The dynamics 

model followed is to detect changes between dataset versions. Therefore, the ultimate goal of 

defining complex changes is identifying complex change instances between dataset versions, via the 

complex change detection process. Also, the correctness of the proposed implementation with 
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respect to the language semantics is presented. Finally, we extensively evaluated the proposed 

approach both qualitatively and experimentally. The qualitative evaluation showed the added value 

of our approach compared to related works. The experimental evaluation showed the complex 

change language expressiveness and the detection performance. The proposed language is proven to 

be adequate in expressing useful changes and facilitating user in analyzing evolution. The response 

time of the detection process is examined in terms of increasing dataset size. The experimental 

evaluation is performed over both artificial and real data, proving the effectiveness of our approach. 

 

Second, we propose a query language for querying both data versions and change structures in the 

context of semistructured XML data. This work builds upon evo-graph, a model that captures 

evolving data along with changes, and evoXML, an XML representation of evo-graph.  

 

Specifically, we formally defined evo-path, an XPath extension for performing time-aware and 

change-aware queries on evo-graph. Evo-path allows querying both data history and change 

structure in a uniform way, supporting temporal, evolution and causality queries. We presented the 

evo-path syntax, we defined evo-path formal semantics and we presented an implementation based 

on a formal translation of evo-path into equivalent XPath expressions over evoXML. Also, we 

implemented and experimentaly evaluated the basic concepts of evo-graph in the C2D framework, 

using XML technologies. The space efficiency of evoXML is examined for various configurations, 

as well as the performance of the reduction process, the process for generating a snapshot holding 

under a specific time instance from evo-graph. 

 

 

 

Keywords: change modeling, change definition language, change detection, RDF(S), querying data 

evolution, XML, XPath 
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Περίληψη 

 

 

 

Ο αυξανόμενος όγκος πληροφοριών που δημοσιεύονται στο διαδίκτυο δημιουργεί νέες προκλήσεις 

για τη διαχείριση δεδομένων. Ένα κεντρικό ζήτημα αφορά τη διαχείριση της εξέλιξης. Τα δεδομένα 

που δημοσιεύονται στον ιστό συχνά αλλάζουν, καθώς πιθανά σφάλματα ενδέχεται να πρέπει να 

διορθωθούν ή να ενσωματωθεί νέα γνώση. Οι χρήστες των δεδομένων πρέπει να γνωρίζουν τί 

άλλαξε μεταξύ των εκδόσεων, καθώς και πώς και γιατί. Συνεπώς, η ανάγκη για τη διατήρηση των 

εκδόσεων δεδομένων και τον προσδιορισμό των αλλαγών γίνεται εμφανής. 

 

Συγκεκριμένα, η επανεξέταση προηγούμενων στιγμιότυπων και εκδόσεων δεδομένων μπορεί να μην 

είναι αρκετή για την παρακολούθηση και κατανόηση της σημασιολογίας της εξέλιξης των 

δεδομένων. Μια τέτοια δραστηριότητα μπορεί να απαιτεί μια αναζήτηση που κινείται προς τα πίσω 

και προς τα εμπρός στο χρόνο, εξαπλώνεται σε διαφορετικά μέρη μιας βάσης δεδομένων και εκτελεί 

σύνθετα ερωτήματα σχετικά με τη σημασιολογία των αλλαγών που τροποποίησαν τα δεδομένα, μια 

εργασία που μπορεί να είναι ακόμη πιο απαιτητική για μεγάλα σύνολα δεδομένων. Μια τυπική 

προσέγγιση για τη διαχείριση των αλλαγών είναι ο υπολογισμός των διαφορών μεταξύ των 

εκδόσεων δεδομένων (Berners-Lee and Connolly (2004) [4]; Volkel et al. (2005) [59]; Franconi et 

al. (2010) [21]; Zeginis et al. (2011) [65]; Noy and Musen (2002) [43]; Klein (2004) [33]; Marian et 

al. (2001) [38]; Cobena et al. (2002) [17]; Wang et al. (2003) [61]). Ωστόσο, αυτή η προσέγγιση 

οδηγεί σε μια μηχανιστική αναπαράσταση των αλλαγών που δεν παρέχει καμία διαισθητική 

ερμηνεία σχετικά με τη σημασιολογία των αλλαγών ή πιθανών σχέσεων μεταξύ τους. Επομένως, η 

πρόθεση ή η αιτία μιας αλλαγής δεν μπορεί να αποτυπωθεί, και πιο σημαντικά το γεγονός ότι μια 

αλλαγή μπορεί να είναι μέρος μιας μεγαλύτερης αλλαγής σε ένα σύνολο δεδομένων. 

 

Κατά την άποψή μας, για την κατανόηση της εξέλιξης των δεδομένων οι αλλαγές θα πρέπει να 

αντιμετωπίζονται ως πρώτης τάξης πολίτες. Αυτό σημαίνει ότι κατανοητές από τον άνθρωπο, 

σημασιολογικά πλούσιες αλλαγές υποστηρίζονται, μαζί με τυχόν σχέσεις μεταξύ τους. Η 

αντιμετώπιση των αλλαγών ως πρώτης τάξης πολίτες θέτει αρκετές προκλήσεις σχετικά με τη 

μοντελοποίηση, τον ορισμό, τον εντοπισμό και την επερώτηση αλλαγών. 

 

Όσον αφορά στη μοντελοποίηση αλλαγών, οι αλλαγές θα πρέπει να μοντελοποιηθούν ως οντότητες 

που διατηρούν σημασιολογικά και δομικά χαρακτηριστικά. Προς αυτήν την κατεύθυνση, δύο βασικά 
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ζητήματα πρέπει να ληφθούν υπόψη: ο βαθμός λεπτομέρειας των αλλαγών και η σημασιολογία των 

αλλαγών. Όσον αφορά το βαθμό λεπτομέρειας, οι λεπτομερείς αλλαγές έχουν το πλεονέκτημα να 

περιγράφουν θεμελιακές αλλαγές, ενώ οι συνοπτικές αλλαγές παρέχουν περισσότερη σημασιολογία 

και περιεκτικότητα, ομαδοποιώντας τις θεμελιακές αλλαγές σε λογικές μονάδες. Όσον αφορά τη 

σημασιολογία, οι αλλαγές που αγνοούν την εκάστοτε εφαρμογή και δεδομένα περιγράφουν μεταβολές 

που ενδέχεται να εμφανιστούν σε ένα συγκεκριμένο μοντέλο αναπαράστασης, ενώ οι αλλαγές που 

είναι συγκεκριμένες για την εκάστοτε εφαρμογή και δεδομένα αναπαριστούν μεταβολές που 

καθορίζονται από τον χρήστη και ταιριάζουν σε συγκεκριμένα σενάρια χρήσης. Το μοντέλο 

αλλαγών που θα πρέπει να ακολουθείται πρέπει να είναι όσο το δυνατόν πιο ευέλικτο και 

εκφραστικό. 

 

Όσον αφορά στον ορισμό αλλαγών, η υποστήριξη αλλαγών που καθορίζονται από τον χρήστη είναι 

απαραίτητη προϋπόθεση για αλλαγές που αφορούν συγκεκριμένες εφαρμογές/δεδομένα, οι οποίες 

εμπλουτίζουν σημαντικά την ερμηνεία της εξέλιξης. Επιπλέον, επιτρέπονται πολλαπλές ερμηνείες 

της εξέλιξης σε μια συγκεκριμένη εφαρμογή ή σύνολο δεδομένων, δεδομένου ότι οι επιμελητές ή οι 

χρήστες των δεδομένων μπορεί να ενδιαφέρονται για διαφορετικά τμήματα της εξέλιξης ή να έχουν 

διαφορετική κατανόηση για μεταβολές που έχουν εφαρμοστεί. Επίσης, η υποστήριξη αλλαγών που 

καθορίζονται από τον χρήστη καθιστά τους ορισμούς των αλλαγών επαναχρησιμοποιήσιμους, 

διευκολύνοντας περαιτέρω τη διαδικασία ορισμού νέων αλλαγών. Σε αυτή την περίπτωση, η 

ιεραρχική δομή που δημιουργείται καθώς μια αλλαγή χτίζεται πάνω σε άλλες καταδεικνύει σχέσεις 

και εξαρτήσεις μεταξύ τους. Προς αυτήν την κατεύθυνση, απαιτείται μια ειδική γλώσσα για τον 

ορισμό των αλλαγών. 

 

Όσον αφορά στον εντοπισμό αλλαγών, όπως ήδη συζητήθηκε, μια τυπική προσέγγιση για το 

χειρισμό των αλλαγών μεταξύ των εκδόσεων συνόλου δεδομένων είναι ο υπολογισμός των 

διαφορών μεταξύ τους. Ομοίως, καθώς νέες εκδόσεις δεδομένων κυκλοφορούν περιοδικά, 

στιγμιότυπα κατανοητών από τον άνθρωπο, σημασιολογικά πλούσιων αλλαγών μπορούν να 

εντοπιστούν μεταξύ τους. Ειδικά, για την περίπτωση μιας ειδικής γλώσσας για τον ορισμό των 

αλλαγών, θα πρέπει να διερευνηθεί πώς αυτοί οι ορισμοί των αλλαγών μπορούν να 

χρησιμοποιηθούν για την παρακολούθηση σχετικών μεταβολών μεταξύ εκδόσεων δεδομένων. 

Επομένως, οι κατάλληλοι αλγόριθμοι για τον εντοπισμό στιγμιότυπων αλλαγών ως πρώτης τάξης 

πολίτες μεταξύ εκδόσεων δεδομένων θα πρέπει να διερευνηθούν. 

 

Όσον αφορά στην επερώτηση αλλαγών, επερωτήσεις που αφορούν την εξέλιξη δεδομένων μπορούν 

επίσης να παρέχουν πληροφορία σχετικά με τον τρόπο που άλλαξαν τα δεδομένα. Εκτός από τα 

χρονικά ερωτήματα [26][49] που επιστρέφουν εκδόσεις ιστορικών δεδομένων, δεδομένου ότι οι 

αλλαγές μοντελοποιούνται ως πρώτης τάξης πολίτες, μπορούν επίσης να αξιοποιηθούν στα πλαίσια 
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επερωτήσεων. Ιδανικά, επερωτήσεις που αφορούν την εξέλιξη δεδομένων θα πρέπει να βασίζονται 

τόσο σε δεδομένα όσο και σε αλλαγές. Οι αλλαγές, όπως και τα δεδομένα, μπορούν να εμφανιστούν 

στο σώμα μιας επερώτησης για να εκφράσουν σύνθετες συνθήκες, όπως το γεγονός ότι μια 

οντότητα έχει τροποποιηθεί με συγκεκριμένο τρόπο, ή μπορούν να επιστραφούν από την επερώτηση 

προκειμένου να ανακτηθούν επακριβώς τα στιγμιότυπα των αλλαγών που έχουν επηρεάσει 

συγκεκριμένα δεδομένα. Προς αυτήν την κατεύθυνση, ένα μοντέλο που καταγράφει τόσο τις 

εκδόσεις δεδομένων όσο και τις αλλαγές είναι απαραίτητη προϋπόθεση για την έκφραση τέτοιων 

ερωτημάτων. Επίσης, θα πρέπει να διερευνηθεί μια γλώσσα επερωτήσεων με συγκεκριμένα δομικά 

στοιχεία για να υποστηριχθούν τόσο χρονικές συνθήκες όσο και συνθήκες που αφορούν τις αλλαγές. 

 

Στην παρούσα διατριβή, μελετάμε τις παραπάνω κατευθύνσεις και εργαζόμαστε πάνω σε δύο 

βασικά πρότυπα για δεδομένα στον ιστό: το RDF [34] και το XML [7].  

 

Οι κατευθύνσεις της μοντελοποίησης, ορισμού και εντοπισμού αλλαγών έχουν μελετηθεί στο 

πλαίσιο των βάσεων γνώσεων RDF(S). Οι μέθοδοι που προτείναμε και τα αποτελέσματα που 

παράχθηκαν δημοσιεύθηκαν στο [23], ενώ στο [22] και [24] δημοσιεύτηκαν πρωταρχικές εργασίες. 

 

Συγκεκριμένα, προτείναμε τη μοντελοποίηση και την υποστήριξη απλών και σύνθετων αλλαγών, 

καθώς και τυχόν σχέσεων μεταξύ τους, για την ερμηνεία της εξέλιξης σε βάσεις γνώσεων RDF(S). 

Οι απλές αλλαγές είναι λεπτομερείς αλλαγές και αγνοούν την εκάστοτε εφαρμογή και δεδομένα, 

πράγμα που σημαίνει ότι δεν περιλαμβάνουν άλλες αλλαγές και η σημασιολογία τους ταιριάζει με 

το μοντέλο δεδομένων RDF. Οι σύνθετες αλλαγές είναι συνοπτικές αλλαγές που αφορούν την 

εκάστοτε εφαρμογή και δεδομένα, πράγμα που σημαίνει ότι επιδεικνύουν δομή και σημασιολογία 

κατάλληλη για κάθε συγκεκριμένη εφαρμογή ή σύνολο δεδομένων. Αν και η μοντελοποίηση 

αλλαγών κατανοητών από τον άνθρωπο, μέσω θεμελιωδών αλλαγών και ομαδοποιήσεων αυτών 

εξετάζεται στη βιβλιογραφία (Klein (2004) [33]; Stojanovic (2004) [57]; Papavasileiou et al. (2013) 

[45]; Roussakis et al. (2015) [53]), ενώ άλλοι (Plessers, De Troyer and Casteleyn (2007) [47]; 

Roussakis et al. (2015) [53]) θεωρούν επίσης αλλαγές οριζόμενες από τον χρήστη, οι σχέσεις και οι 

εξαρτήσεις μεταξύ σύνθετων αλλαγών δεν υποστηρίζονται στις υπάρχουσες προσεγγίσεις. 

 

Επιπλέον, ορίσαμε τυπικά μια διαισθητική, φιλική προς το χρήστη γλώσσα, βασισμένη στη 

σημασιολογία των αλλαγών για τον ορισμό σύνθετων αλλαγών. Συγκεκριμένα, ορίσαμε τυπικά το 

συντακτικό της γλώσσας, μέσω της προδιαγραφής EBNF, καθώς και τη σημασιολογία της γλώσσας. 

Όλες οι έννοιες της γλώσσας παρουσιάζονται λεπτομερώς και αρκετά παραδείγματα επεξηγούν 

αυτές τις έννοιες. Εν γένει, οι σύνθετες αλλαγές ορίζονται μέσω μοτίβων πάνω από απλές αλλαγές 

και ήδη ορισμένες σύνθετες αλλαγές. 
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Επιπρόσθετα, παρουσιάσαμε έναν αλγόριθμο εντοπισμού στιγμιοτύπων αλλαγών για την 

προτεινόμενη γλώσσα ορισμού σύνθετων αλλαγών. Το δυναμικό μοντέλο που ακολουθείται αφορά 

στον εντοπισμό αλλαγών μεταξύ των εκδόσεων ενός συνόλου δεδομένων. Επομένως, ο απώτερος 

στόχος του ορισμού σύνθετων αλλαγών είναι ο εντοπισμός στιγμιοτύπων σύνθετων αλλαγών μεταξύ 

των εκδόσεων δεδομένων, μέσω της διαδικασίας εντοπισμού σύνθετων αλλαγών. Παρουσιάζουμε 

λεπτομερώς τον αλγόριθμο εντοπισμού, καθώς και την ορθότητα του προτεινόμενου αλγορίθμου σε 

σχέση με τη σημασιολογία της γλώσσας. 

 

Η προτεινόμενη προσέγγιση αξιολογήθηκε εκτενώς τόσο ποιοτικά όσο και πειραματικά. Στην 

ποιοτική αξιολόγηση, η προσέγγισή μας συγκρίνεται με συναφείς εργασίες ως προς βασικά 

χαρακτηριστικά και κατά πόσο αυτά υποστηρίζονται, δείχνοντας την προστιθέμενη αξία της 

προσέγγισής μας. Στην πειραματική αξιολόγηση, εξετάζεται η εκφραστικότητα της γλώσσας 

ορισμού σύνθετων αλλαγών και η επίδοση του αλγορίθμου εντοπισμού. Αξιολογείται εάν τα 

προτεινόμενα χαρακτηριστικά της γλώσσας είναι επαρκή για την έκφραση χρήσιμων αλλαγών και 

πώς οι σύνθετες αλλαγές διευκολύνουν τον χρήστη στην ανάλυση της εξέλιξης. Επίσης, ο χρόνος 

απόκρισης της διαδικασίας εντοπισμού εξετάζεται σε σχέση με την αύξηση του μεγέθους του 

συνόλου δεδομένων. Η αξιολόγηση πραγματοποιείται τόσο σε τεχνητά όσο και σε πραγματικά 

δεδομένα, αποδεικνύοντας την αποτελεσματικότητα της προσέγγισής μας. 

 

Συνολικά, η προτεινόμενη προσέγγιση προσφέρει εκφραστικότητα και ευελιξία ως προς την 

ερμηνεία της εξέλιξης. Η προτεινόμενη μοντελοποίηση σύνθετων αλλαγών παρέχει πρόσθετες 

πληροφορίες για την ερμηνεία παρελθοντικών δεδομένων, επιτρέπει την ερμηνεία της εξέλιξης με 

πολλαπλούς τρόπους, ενώ η αποτύπωση σχέσεων μεταξύ σύνθετων αλλαγών είναι ένα επιπλέον 

χαρακτηριστικό που εμπλουτίζει την εκφραστικότητα των σύνθετων αλλαγών. 

 

Η κατεύθυνση της επερώτησης αλλαγών έχει μελετηθεί στο πλαίσιο των ημιδομημένων δεδομένων 

XML. Η προσέγγιση που προτείναμε βασίζεται στο evo-graph [55], ένα μοντέλο που καταγράφει 

εξελισσόμενα δεδομένα μαζί με τις αλλαγές, και το evoXML [56], μια XML αναπαράσταση του evo-

graph. Αξίζει να σημειωθεί ότι στο evo-graph οι αλλαγές μοντελοποιούνται χρησιμοποιώντας απλές 

(εκεί ονομάζονται βασικές) και σύνθετες αλλαγές. Οι μέθοδοι που προτείναμε δημοσιεύθηκαν στο 

[25], ενώ μια πρώτη αξιολόγηση σχετικά με το evo-graph δημοσιεύθηκε στο [44]. 

 

Συγκεκριμένα, ορίσαμε τυπικά την evo-path, μια επέκταση της XPath [51] για την εκτέλεση 

επερωτήσεων βάσει του χρόνου και των αλλαγών στο evo-graph. Η Evo-path επιτρέπει την 

επερώτηση τόσο του ιστορικού των δεδομένων όσο και της δομής των αλλαγών με ενιαίο τρόπο, 

εκμεταλλευόμενη τις αλλαγές, ανακτώντας και να συσχετίζοντας δεδομένα που διαφορετικά είναι 

άσχετα μεταξύ τους. Υποστηρίζονται ερωτήματα χρονικά, ερωτήματα εξέλιξης και ερωτήματα 
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αιτιότητας. Παρουσιάσαμε το συντακτικό της evo-path, ορίσαμε τυπικά τη σημασιολογία της evo-

path και παρουσιάσαμε μια υλοποίηση που βασίζεται σε μια τυπική μετάφραση της evo-path σε 

ισοδύναμες εκφράσεις XPath πάνω στο evoXML. 

 

Τέλος, υλοποιήσαμε και αξιολογήσαμε πειραματικά τις βασικές έννοιες του evo-graph στο πλαίσιο 

«C2D», χρησιμοποιώντας τεχνολογίες XML. Συγκεκριμένα, αξιολογήσαμε την αποδοτικότητα σε 

χώρο του evoXML για διάφορες περιπτώσεις. Αξιολογήσαμε επίσης την επίδοση της διαδικασίας 

παραγωγής ενός στιγμιότυπου που αντιστοιχεί σε μια συγκεκριμένη χρονική στιγμή από το evo-

graph, σε σχέση με το μέγεθος του αρχείου evoXML. Η αξιολόγηση που πραγματοποιήθηκε έδειξε 

ποιοι παράγοντες που χαρακτηρίζουν τα δεδομένα επηρεάζουν το μέγεθος του evoXML και τη 

διαδικασία παραγωγής ενός στιγμιότυπου. 

 

 

 

Λέξεις Κλειδιά: μοντελοποίηση αλλαγών, γλώσσα ορισμού αλλαγών, εντοπισμός αλλαγών, 

RDF(S), επερώτηση εξελισσόμενων δεδομένων, XML, XPath 
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Chapter 1 

 

Introduction 

 

1.1. Motivation 

The increasing amount of information published on the web poses new challenges for data 

management. A central issue concerns evolution management. Data published on the web 

frequently change, as errors may need to be fixed or new knowledge has to be incorporated. 

Data consumers need to know what changed among versions, as well as how and why. Thus, 

the need for maintaining data versions and identifying changes becomes evident.  

 

In particular, revisiting past data snapshots and versions may not be enough for tracking and 

understanding the semantics of data evolution. Such an activity may require a search that 

moves backwards and forwards in time, spread across disparate parts of a database, and 

perform complex queries on the semantics of the changes that modified the data, a task which 

may be even more intensive for large datasets. A typical approach for handling changes is 

computing diffs between dataset versions (Berners-Lee and Connolly (2004) [4]; Volkel et al. 

(2005) [59]; Franconi et al. (2010) [21]; Zeginis et al. (2011) [65]; Noy and Musen (2002) 

[43]; Klein (2004) [33]; Marian et al. (2001) [38]; Cobena et al. (2002) [17]; Wang et al. 

(2003) [61]). However, this approach leads to a machine-readable representation of changes 

that does not provide any intuition about change semantics or possible relations between 

them. Therefore, the intention or the cause of a change cannot be captured, and more 

importantly the fact that a change may be part of a larger change in a dataset.  

 

In our view, for understanding data evolution changes should be treated as first-class-citizens. 

This means that human-readable, semantically rich changes are supported, along with any 

relations between them. Treating changes as first-class-citizens poses several challenges 

regarding modeling, defining, detecting and querying changes. 
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Modeling changes. Changes should be modeled as entities that retain semantic and structural 

characteristics. Towards this direction, two basic issues must be taken into consideration: 

granularity of changes and semantics of changes. As for granularity, fine-grained changes 

have the advantage of describing primitive changes, while coarse-grained changes provide 

more semantics and conciseness by grouping primitive changes into logical units. As for 

semantics, application/data-agnostic changes describe modifications that may appear in a 

specific representation model, while application/data-specific changes represent user-defined 

changes that suit on specific use-case scenarios. The change model to be followed should be 

as much flexible and expressive as possible. 

 

Defining changes. Supporting user-defined changes is a prerequisite for application/data-

specific changes, which significantly enrich evolution interpretation. Even more, multiple 

interpretations of evolution on a specific application or dataset are allowed, since data 

curators or consumers may be interested in different parts of evolution or have different 

understanding on applied modifications. Also, supporting user-defined changes makes their 

definitions reusable, further facilitating the process of defining new changes. In this case, the 

hierarchical structure created while a change is built on top of others demonstrates relations 

and dependencies among them. Towards this direction, a dedicated language for defining 

changes is needed.  

 

Detecting changes. As already discussed a typical approach for handling changes among 

versions is computing diffs between them. Similarly, as new dataset versions are periodically 

released, instances of human-readable and semantic rich changes may be detected between 

them. Especially, in case of a dedicated language for defining changes, it should be 

investigated how these change definitions may be used for tracking relevant modifications 

between versions. Therefore, appropriate algorithms for detecting change instances as first-

class-citizens among dataset versions should be investigated. 

 

Querying changes. Querying data evolution may also provide insights on how data changed. 

Apart from temporal queries [26][49] that return historical data versions, since changes are 

modeled as first-class-citizens, they can be also exploited in terms of querying. Ideally, 

querying data evolution should be based on data as much as on changes. Changes, like data, 

can appear in the query body to express complex conditions, like the fact that an entity has 

been modified in a specific manner, or can be returned by the query in order to retrieve 

explicit change instances that may have affected specific data. Towards this direction, a 

model that captures both data versions and changes is a prerequisite in order to express such 
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queries. Also, a query language with specific constructs to support both temporal and change 

based conditions should be investigated.  

 

1.2. Contributions 

In this thesis, we study the above directions and work upon two basic standards for web data: 

RDF [34] and XML [7]. The contributions of this thesis are summarized below.  

 

The directions of modeling, defining and detecting changes have been studied in the context 

of RDF(S) knowledge bases. The methods that we proposed and the results obtained were 

published in [23], while in [22] and [24] a preliminary and a visionary work were published 

respectively.  

 

1. We proposed modeling and supporting simple and complex changes, as well as any 

relations among them, for interpreting evolution on RDF(S) knowledge-bases. Simple 

changes are fine-grained and application/data-agnostic changes, meaning that they do 

not comprise of other changes and their semantics suit to the RDF data model. 

Complex changes are coarse-grained and application/data-specific changes, meaning 

that they demonstrate structure and semantics suitable to each specific application or 

dataset. Although modeling human-readable changes via primitive changes and 

groupings of them is considered in literature (Klein (2004) [33]; Stojanovic (2004) 

[57]; Papavasileiou et al. (2013) [45]; Roussakis et al. (2015) [53]), while others 

(Plessers, De Troyer and Casteleyn (2007) [47]; Roussakis et al. (2015) [53]) consider 

user-defined changes as well, relations and dependencies among complex changes are 

not supported in any of the already existing approaches. 

 

2. We formally defined an intuitive, user-friendly language, based on change semantics 

for defining complex changes. Specifically, we formally defined the language syntax, 

via EBNF specification, as well as the language semantics. All language concepts are 

presented in detail and several examples illustrate these concepts. Overall, complex 

changes are defined via patterns over simple changes and already defined complex 

changes.  

 

3. We presented a detection algorithm for the proposed complex change definition 

language. The dynamics model followed is to detect changes between dataset 

versions. Therefore, the ultimate goal of defining complex changes is identifying 
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complex change instances between dataset versions, via the complex change 

detection process. We present in detail the detection algorithm, as well as the 

correctness of the proposed implementation with respect to the language semantics. 

 

4. We extensively evaluated the proposed approach both qualitatively and 

experimentally. In qualitative evaluation, our approach is compared to related works 

regarding basic features and characteristics they support, showing the added value of 

our approach. In experimental evaluation, complex change language expressiveness 

and detection performance are examined. It is evaluated whether the proposed 

structures are adequate in expressing useful changes and how complex changes 

facilitate user in analyzing evolution. Also, the response time of the detection process 

is examined in terms of increasing dataset size. The evaluation is performed over both 

artificial and real data, proving the effectiveness of our approach. 

 

Overall, the proposed approach offers expressiveness and flexibility in terms of evolution 

interpretation. The proposed modeling of complex changes provides additional information 

for interpreting past data, allows interpreting evolution in multiple ways, while capturing 

relations among complex changes is an additional feature that enriches the complex changes' 

expressivity. 

 

The direction of querying changes has been studied in the context of semistructured XML 

data. The approach that we proposed builds upon previous work done in [55][56], regarding 

evo-graph, a model that captures evolving data along with changes, and evoXML, an XML 

representation of evo-graph. It is worth noting that in evo-graph changes are modeled using 

simple (there named as basic) and complex changes. The methods that we proposed were 

published in [25], while some first evaluations regarding evo-graph were published in [44]. 

 

5. We formally defined evo-path, an XPath [51] extension for performing time-aware 

and change-aware queries on evo-graph. Evo-path allows querying both data history 

and change structure in a uniform way, taking advantage of changes in order to 

retrieve and relate data that are otherwise irrelevant to each other. Temporal, 

evolution and causality queries are supported. We presented the evo-path syntax, we 

defined evo-path formal semantics and we presented an implementation based on a 

formal translation of evo-path into equivalent XPath expressions over evoXML. 

 

6. We implemented and experimentally evaluated the basic concepts of evo-graph in the 

C2D framework, using XML technologies. Specifically, we evaluated the space 
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efficiency of evoXML for various configurations. We also evaluated the performance 

of the reduction process, the process for generating a snapshot holding under a 

specific time instance from evo-graph, with respect to the size of the evoXML file. 

The evaluation performed indicated which factors that characterize the data affect the 

evoXML size and the reduction process. 

 

1.3. Thesis Outline 

The remainder of this thesis is structured as follows: Chapter 2 presents the related work 

which is categorized in two main pillars: modeling and detecting changes in knowledge bases, 

and modeling and querying data evolution in semistructured data. Chapter 3 presents our 

work in defining and detecting complex changes in RDF(S) knowledge bases. Specifically, 

we present: the proposed simple and complex changes concepts, the formal specification of 

our complex change definition language, the relevant detection algorithm and the details of 

the evaluation performed. Chapter 4 presents our work in querying evolving data and changes 

in XML. Specifically, evo-path syntax, semantics and implementation are presented, as well 

as our first experiments on evo-graph. Chapter 5 concludes this thesis and presents future 

research steps. 
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Chapter 2 

 

Related Work 

 

2.1. Modeling and Detecting Changes in Knowledge Bases 

2.1.1. Machine-readable changes 

A number of works focus on computing the differences between knowledge bases in terms of 

insertions and deletions, which are not concise neither intuitive. They focus on machine-

readable changes and some of them introduce useful properties for the proposed deltas. 

 

In Berners-Lee and Connolly (2004) [4] the problem of comparing two RDF graphs, 

generating a set of differences, and updating a graph from a set of differences is discussed. 

Generating differences between RDF graphs is straightforward when all nodes are named: the 

delta between the RDF graphs is a pair of insertions and deletions. When not all nodes are 

named, finding the largest common sub-graphs becomes a case of the graph isomorphism 

problem. However, in a wide set of practical cases, one can efficiently generate a delta. When 

named and unnamed nodes are mixed, but none of the unnamed nodes is very far from a 

named node, the unnamed nodes can be identified by being in context with a named node, via 

a path, so that differences are expressed by giving this local context and the related changes. 

Furthermore, the authors propose an update ontology for representing differences between 

RDF graphs, in terms of insertions and deletions. A patch file format provides a way to 

uniquely identify what changed, as well as whether it was added or subtracted. Also, two 

forms of difference information are discussed: the context-sensitive “weak” deltas and the 

context-free “strong” deltas. A weak delta gives enough information to apply it to exactly the 

graph it was computed from, but a strong delta specifies the changes in a context independent 

manner. One advantage of a strong delta is that one can take a delta from any true knowledge 

base change and apply it to a subset knowledge base, and the result will be true. Strong deltas 

eliminate the possible failure of a patch to find the appropriate points in the RDF graph at 

which to apply the changes. The proposed methodology for generating strong deltas applies 
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only on graphs which are well-labeled directly with URIs or indirectly with functional 

properties or inverse functional properties. 

 

In Volkel et al. (2005) [59] an RDF-centric versioning approach and a relevant 

implementation called SemVersion are presented. SemVersion provides structural and 

semantic versioning for RDF models and RDF based ontology languages, like RDFS. Two 

algorithms for generating diffs are proposed, together with an RDF representation for the 

diffs, while the implemented system supports several operations (like commit, branch, merge, 

etc.) inspired by the well-known versioning system in the developer community CVS. 

Regarding the diff algorithms, the first one is for computing a structural diff as a triple-set-

based difference between two models. Two triple sets, of added and removed statements, are 

computed. A speciality of RDF is the usage of blank nodes, adding complexity to the diff 

computation. If a user commits a new model and later requests a diff, the system cannot tell 

whether two blank nodes are equal or different. They have by definition no globally unique 

identifier. Blank node enrichment is proposed to overcome this problem by uniquely 

identifying blank nodes. It creates an "enriched model" from a normal model by introducing a 

new property, whose value plays the role of an inverse functional property like in OWL. 

Blank nodes should only have one such property value assigned. This unique URI makes 

them globally addressable, while they remain formally blank nodes in the RDF model. All 

existing RDF semantics are still valid. The second diff algorithm is for computing a semantic 

diff, given an RDF based ontology language. In this case, the semantically inferred triples are 

also taken into account while computing the diff. Thus, a language specific reasoner or rules 

should be available for the calculation. Regarding the representation of RDF diffs, the 

following approach is proposed: a triple is made addressable by reification, sets of triples are 

represented as rdfs:Bags, leading to a trivial triple set ontology. A full RDF diff contains a 

triple set of added and a triple set of removed statements, and additionally the blank node 

enrichment statements have to be added. 

 

In Franconi et al. (2010) [21], the scenario considered is where a knowledge base (expressed 

in some logical formalism) might evolve over time and thus different versions have to be 

maintained, while users of the knowledge base should be able to access, not only any specific 

version, but also the differences between two given versions of the knowledge base. To 

address this problem a general semantic framework is proposed. The notion of semantic 

difference between knowledge bases plays a central role. The proposed approach, is 

applicable to a large class of logic-based knowledge representation languages. While 

restricting to finitely generated propositional logics, it is shown that the semantic framework 

can be represented syntactically in a particular kind of normal form (ordered complete 
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conjunctive normal form). This is followed by a generalization, where similar results can be 

obtained for any syntactic representation (in a finitely generated propositional logic) of the 

semantic framework. Although the methodology focuses on propositional logic knowledge 

bases, it can be extended to more expressive languages, such as description logics. Regarding 

the proposed semantic diff, a number of desired properties are examined. First, the semantic 

diff highlights the differences in terms of the logical meaning between two knowledge bases. 

Therefore, although two (propositional) knowledge bases may be syntactically different, if 

they convey exactly the same meaning (they are logically equivalent), there should be no 

semantic difference between them. Second, in order to avoid redundancy and to comply with 

the principle of minimal change, the sentences to be added should be contained in the new 

version and similarly sentences to be removed should be contained in the previous version. 

Third, the semantic diff should provide an ‘undo’ operation when moving from one version of 

a knowledge base to another, so that one is able to roll back any modification performed. 

Finally, a unique semantic diff is associated with any two knowledge bases. Regarding the 

overall framework, the scenario examined is when there are n versions of a knowledge base 

that need to be stored and a core knowledge base. In order to be able to access any version of 

the knowledge base, it is sufficient to store the core knowledge base and the semantic diff 

among the core and each version. The core knowledge base may be selected not to be one of 

the versions, it can be the ‘average’ of the versions, i.e. a representation minimizing the 

overall semantic diff of the core to each of the knowledge bases. Alternatively, several 

reasons are discussed to consider one of the versions as the core knowledge base. 

 

In Zeginis et al. (2011) [65], several issues on computing deltas over RDF(S) knowledge 

bases are discussed. Five RDF(S) differential functions are presented, which take into account 

inferred knowledge and return sets of change operations (add / delete). Namely, explicit (Δe), 

closure (Δc), dense (Δd), dense & closure (Δdc), and explicit & dense (Δed) differential 

function are presented. Δe returns the set difference over the explicitly asserted triples, while 

Δc returns the set difference by also taking into account the inferred triples. In order to focus 

on small sized deltas, Δd, Δdc and Δed are introduced. Assuming knowledge bases K and K', 

Δd contains add operations for those triples which are explicit in K′ and do not belong to the 

closure of K, and delete operations for those triples which are explicit in K and do not belong 

to the closure of K′. Δd produces the smallest in size set of change operations, but can be 

applied to transform K to K′ only under certain conditions. For this reason, Δdc and Δed are 

considered. Δdc resembles to Δd regarding additions and to Δc regarding deletions, while Δed 

resembles to Δe regarding additions and to Δd regarding deletions. For the proposed deltas 

containment, size and computational complexity are examined. Regarding change operations, 

triple addition and deletion are considered in order to transform one knowledge base to 
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another, while two approaches are proposed regarding their semantics: one plain set-theoretic 

(Up) and another that involves inference and redundancy elimination (Uir). Under Up 

semantics, only the explicitly defined triples are taken into account while inferred ones are 

ignored. Under Uir semantics, change operations incur also side-effects such as redundancy 

elimination and knowledge preservation: the updated knowledge base will not contain any 

explicit triple which can be inferred, while preserves as much of the knowledge expressed in 

the former base as possible. Also, several useful properties of RDF(S) deltas are discussed: 

semantic identity, non redundancy, reversibility and composition. Semantic identity defines 

that a delta reports an empty result if its operands are semantically equivalent. Non-

redundancy defines that the execution of a delta results in a knowledge base that is always 

redundancy-free. Reversibility of a delta is a useful property for moving forward and 

backward across versions. Composition allows composing a number of consecutive deltas and 

then executing the operations of the composed delta, instead of having to execute each 

particular delta. Another introduced notion is the correctness of a differential function - 

change operation semantics pair. It ensures that for any two knowledge bases K and K', 

starting from K and applying the computed delta via the change operation semantics, the 

result knowledge base is equivalent to K'. A study on which combinations of differential 

functions and change operation semantics can be employed to correctly transform a source to 

a target RDF(S) knowledge base is presented. Finally, the computing time and size of the 

produced deltas over real and synthetic RDF(S) knowledge bases are experimentally 

investigated, as well as the impact of the inferential potential of the knowledge base. In this 

work blank nodes and relevant issues are not examined. 

 

In Noy and Musen (2002) [43] a fixed point algorithm named PROMPTDIFF for detecting 

ontology change is proposed. It consists of two parts: (1) an extensible set of heuristic 

matchers and (2) a fixed-point algorithm to combine the results of the matchers to produce a 

structural diff between two versions. The output of the PROMPTDIFF algorithm is a table 

which bases on a structural diff, which describes the components of the ontology that have 

changed from one version to another, and also provides more detailed information on how the 

components have changed. It is stated whether each component was added, deleted, split, 

merged, or none of the above, and which is the mapping level of each mapped components, 

defining whether they are different enough from each other to warrant the user’s attention. A 

mapping level may be unchanged, isomorphic, or changed. Each matcher employs a small 

number of structural properties of the ontologies to produce matches. The fixed-point step 

invokes the matchers repeatedly, feeding the results of one matcher into the others, until they 

produce no more changes in the diff. PROMPTDIFF uses a dependency table to determine the 

order in which it executes the matchers. It keeps a stack of matchers it still needs to run. It 
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starts by putting the matchers that do not affect any other matchers at the bottom of the stack 

and matchers that are not affected by other matchers at the top. Then it executes matcher M at 

the top of the stack. If M produced changes in the PROMPTDIFF table, the algorithm adds to 

the stack all the matchers that depend on M, removing duplicates. It runs until the stack is 

empty. The performance of the algorithm has been evaluated and it correctly identifies 96% 

of the matches in ontology versions from large projects. Notice that the use of heuristics 

introduces uncertainty to results. Finally, the knowledge model that is used is compatible with 

the Open Knowledge Base Connectivity protocol, but the methodology can be applied on 

other representation formalisms such as RDFS and DAML+OIL. 

 

2.1.2. Human-readable changes 

Other works focus on supporting human-readable changes, which are usually distinguished 

between simple and composite/complex. Some of them propose predefined lists of changes, 

while others user defined changes.  

 

In Klein (2004) [33], an extension of Noy and Musen (2002) [43] is presented for detecting 

some of the proposed basic and composite changes. First, the four elements of the proposed 

framework are presented, as well as how they can interact to solve particular problems: (1) An 

ontology of basic changes is presented, constituted by a set of operations that can be used to 

build an ontology in a specific language. The proposed basic changes are generated taking 

into account the meta model of an ontology language. Namely OWL and OKBC are 

considered. In this way the generated set of changes is complete with respect to the possible 

ontology modifications. Every possible change is specified by add and delete operations for 

each element of the knowledge model, while modify operation is also considered. (2) The 

notion of complex changes is proposed, where a complex change is composed of multiple 

basic operations, incorporating some additional knowledge about the change. Two dimensions 

are used to distinguish between different types of complex operations. On one hand, there is a 

distinction between atomic and composite operations, on the other hand there is a distinction 

between simple and rich operations. Composite operations provide a mechanism for grouping 

a number of basic operations that together constitute a logical entity. Atomic operations are 

operations that cannot be subdivided into smaller operations. Rich changes are changes that 

incorporate information about the implication of the operation on the logical model of the 

ontology. For example, a rich change might specify that the range of a property is enlarged. 

To identify such changes, the logical theory of the ontology has to be queried. In contrast, 

simple changes can be detected by analyzing the structure only. (3) The notion of a 
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transformation set is also presented, which is a set of change operations that specify how a 

version can be transformed into another. (4) Also, a template for the specification of the 

relation between different ontology versions is presented. It is worth noting that an RDF-

based syntax is discussed. Regarding the extensions to the PROMPTDIFF tool (Noy and 

Musen (2002) [43]), the first extension uses the mappings produced by PROMPTDIFF as a 

basis for producing a transformation set, while the second extension is able to detect some 

composite changes and presents these in a conveniently arranged way to the user. The 

extended tool uses different visual clues in order to improve the visualization of ontology 

changes. Finally, another system, OntoView, is also discussed. OntoView implements a 

comparison mechanism for RDF-based ontologies producing a transformation set. Ontologies 

are compared at a structural level and additions, deletions and definition changes are 

distinguished. The algorithm starts with an ontology that is represented in RDF. It first parses 

a textual representation of the ontology into RDF triples, in order to find the changes in the 

data model instead of the textual representation, and search for added and deleted statements. 

Then, it groups the statements into individual class and property definitions of the ontology. 

The changes in the sets of statements that form these definitions can be analyzed to detect the 

basic changes from the change ontology, and further aggregated into complex changes. 

 

In Stojanovic (2004) [57] a taxonomy of changes is proposed which comprises of elementary, 

composite and complex changes, forming a predefined set of changes. Composite changes 

group elementary changes which appear in the same neighborhood and are generalized by 

complex changes. Ontology evolution and change semantics have been studied in terms of 

ontology consistency maintenance. In this work, each change is applied together with a 

number of generated changes that ensure the ontology consistency. In these terms, the 

requirements of an ontology evolution management system are outlined, together with an 

evolution process that satisfies them. Furthermore, the proposed single ontology evolution 

approach has been extended in order to take into account multiple interdependent ontologies 

in the context change propagation. Also, a usage-driven approach for change discovery has 

been presented, where user query and browsing history of an ontology-based application is 

exploited for the continual adaptation of the ontology to user's needs. The solutions presented 

have been implemented for KAON ontology. This approach follows an opposite direction on 

how changes are used, since they are captured as they are applied on the ontology rather than 

after version generation. 

 

In Plessers, De Troyer and Casteleyn (2007) [47], the Change Definition Language (CDL) is 

proposed for defining and detecting changes over a version log using temporal queries. The 

change detection approach presented is in the context of an ontology evolution framework for 
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OWL DL ontologies. The framework allows ontology engineers to request and apply changes 

to the ontology they manage, assuring that the ontology and its depending artifacts remain 

consistent after changes have been applied. The change detection mechanism allows 

generating a detailed overview of changes that have occurred based on a set of change 

definitions, while different users may have their own set of change definitions allowing 

different overviews of the changes and different levels of abstraction. The presented notion of 

version log keeps track of all the different versions of all concepts ever defined in an 

ontology, starting from their creation, modifications, until the eventual retirement. Whenever 

an ontology concept is modified, the version log is updated by creating a new version for the 

affected concept. CDL allows users to define the meaning of changes in a formal and 

declarative way. Its syntax is presented in terms of EBNF specification, its semantics are 

formally defined, and several examples are provided. CDL is based on temporal logic and 

thus changes are specified in terms of conditions that must hold before and after the appliance 

of the change (pre-/post-conditions). Together with the version log, the CDL provides the 

foundation of the change detection approach. The change definitions expressed in the CDL 

are evaluated as temporal queries on a version log. The outcome is a collection of occurrences 

of the change definitions. It is worth noting that past tense operators are employed in CDL, 

expressing cases like 'some time in the past', 'always in the past', 'since', 'previous time', and 

'after'. Also, the temporal logic supports two different views on the timeline of a version log. 

The first view considers the complete timeline as it takes the history of the whole ontology 

into account, while the second only considers the part of the timeline that belongs to the 

history of a particular concept. In order to reflect and apply both views, tense operators have 

been extended by introducing parameterized versions. The approach has been validated by 

developing two prototype extensions for the Protege ontology editor. 

 

In Auer and Herre (2007) [3] a framework for supporting evolution in RDF knowledge bases 

is discussed. The approach works on the basis of atomic changes, basically additions or 

deletions of statements to or from an RDF graph. Such atomic changes are aggregated to 

compound changes, resulting in a hierarchy of changes, thus facilitating the human reviewing 

process on various levels of detail. These derived compound changes may be annotated with 

meta-information, such as the user executing the change or the time when the change 

occurred. A simple OWL ontology capturing such information is presented. Also, these 

compound changes can be classified as ontology evolution patterns. Ontology evolution 

patterns in conjunction with appropriate data migration algorithms enable the automatic 

migration of instance data in distributed environments. Thus, the evolution of ontologies with 

regard to higher conceptual levels than the one of statements is allowed. Examples of data 
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migration algorithms are given. However, neither a detection process, nor a specific language 

of changes is defined. 

 

In Papavasileiou et al. (2013) [45], a set of predefined high-level changes for RDF(S) 

knowledge bases (KBs) and an algorithm for their detection are proposed. The presented 

change language allows the formulation of concise and intuitive deltas. In total 132 changes 

are defined at the level of RDF(S) constructs, capturing addition, deletion, renaming, move in 

the hierarchy, change of domain/range etc., that the various constructs (classes, properties 

etc.) of an RDF(S) KB can undergo. Both basic (i.e., fine-grained changes on individual RDF 

graph nodes or edges) and composite high-level changes (coarse-grained changes affecting 

several nodes and/or edges) are considered, while another separate category named heuristic 

changes is considered too, whose detection conditions require the existence of mappings 

among data version entities. It is worth noting that operations considered capture changes at 

both ontology (schema) and instance (data) levels. A set of desired features related to the 

detection and application semantics of the language of changes is presented. These features 

are related to both human and machine interpretability. Therefore, the proposed language of 

changes is guaranteed to (a) be intuitive and capture as accurately as possible the perception 

and intent of editors regarding the performed changes, (b) be able to handle (describe) any 

possible change in a unique manner, and, (c) have well-defined formal and consistent 

detection and application semantics. It is worth noting that the proposed changes verify the 

properties of completeness and unambiguity, for guaranteeing that every added / deleted triple 

is consumed by one detected high-level change and that detected high-level changes are not 

overlapping, respectively. Therefore, any possible change encountered in curated KBs 

expressed in RDF(S) can be efficiently and deterministically detected in an automated way. 

Moreover, a change detection algorithm, which is sound and complete with respect to the 

presented language, is defined. Its correctness and complexity have been studied. Also, the 

appropriate semantics for executing the deltas expressed in the proposed language of changes 

are presented, in order to move backwards and forwards in a multi-version repository, using 

only the corresponding deltas. Finally, the effectiveness and efficiency of the presented 

algorithms have been experimentally evaluated using real ontologies from the cultural, 

bioinformatics and entertainment domains.  

 

In Roussakis et al. (2015) [53], an extension of Papavasileiou et al. (2013) [45] is proposed, 

providing a more generic change definition framework, based on SPARQL [31] queries. The 

authors acknowledge that different uses (or users) of the data may require a different set of 

changes being reported, since the importance and frequency of changes vary in different 

application domains. For this reason, the proposed framework supports both simple and 
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complex changes. Simple changes are meant to capture fine-grained types of evolution. They 

are defined at design time and should meet the formal requirements of completeness and 

unambiguity, which guarantee that the detection process is well-behaved as defined in 

Papavasileiou et al. (2013) [45]. Complex changes are meant to capture more coarse-grained, 

changes that are useful for the application at hand. This allows a customized behavior of the 

change detection process, depending on the actual needs of the application. Complex changes 

are totally dynamic and defined at run-time. Therefore, it is unrealistic to assume that they 

will guarantee completeness or unambiguity. As a consequence, in order to avoid any non-

determinism in the detection process, complex changes are associated with a priority level. In 

this way, complex changes may not share common parts or conflict each other. The detection 

process is based on SPARQL queries (one per defined change) that are provided to the 

algorithm as configuration parameters. As a result, the core detection algorithm is agnostic to 

the set of simple or complex changes used, allowing new changes to be defined. Furthermore, 

to support analysis of the evolution process, an ontology of changes, which allows the 

persistent representation of the detected changes, is presented. This, in a multi-version 

repository, allows queries that refer uniformly to both the data and its evolution. The 

framework has been evaluated experimentally, based on 3 real RDF datasets of different sizes 

to study the number of simple and complex changes that usually occur in real-world settings, 

and provide an analysis of their types. Moreover, the evaluation results of the efficiency of the 

change detection process are presented and the effect of the size of the compared versions and 

the number of detected changes in the performance of the algorithm are quantified.  

 

In Singh et al. (2018) [54], DELTA-LD approach is presented. Changes are detected and 

classified between two versions of a linked dataset. The basic contribution is proposing a 

classification to distinctly identify the resources that have has both their IRI and 

representation changed and the resources that have had only their IRI changed. The former 

case is modeled as a renew change, while the latter as a move change, while create, remove, 

update changes are may also be detected. It is worth noting that an automatic method for 

selecting resource properties to identify the same resource with different IRIs and similar 

representation in different versions has been presented. A relevant change model for 

representing detected changes has also been presented, where a changed resource is 

accompanied with its added/deleted triples. The accuracy of the proposed approach has been 

measured and a case study for the automatic repair of broken interlinks using the changes 

detected by DELTA-LD has been presented. 

 

Finally, Troullinou et al. (2016) [58] focuses on providing metrics for analyzing evolution 

rather than calculating change entities. This approach aims at giving a high-level overview of 
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the change process by identifying the most important changes in the ontology. It does not 

propose specific changes or their detection, but instead considers different metrics of "change 

intensity". Metrics that take into account the changes that affected each class and its 

neighborhood are considered, relying on the added and deleted triples among versions. Also, 

metrics that take into account ontological information related to the importance and 

connectivity of each class in the different versions are considered. This approach allows 

understanding the intent (rather than the actions) of the editor and provides a better focusing 

of the curator analyzing the changes. 

 

2.2. Modeling and Querying Evolution in Semistructured 

Data 

2.2.1. Version-based approaches 

Version based approaches mainly focus on aspects regarding managing, storing and querying 

XML document versions, as well as detecting changes between them. 

 

In Marian et al. (2001) [38], a change-centric method for managing versions in XML data is 

presented. The authors employ a diff algorithm for detecting changes between two 

consecutive versions of an XML document. Changes are then represented based on completed 

deltas and persistent identifiers. Completed deltas are deltas containing additional information 

and thus can be inverted and composed. Also, the notions of edit scripts and simple deltas are 

presented, where an edit script is formed as a sequence of specific operations, while a delta is 

formed as a set of specific operations, avoiding to specify an order of execution as in an edit 

script. Furthermore, a physical storage policy is proposed, based on storing the current version 

of the document, a map to handle persistent identifiers and a single XML document 

containing all forward complete deltas. Based on complete deltas, forward deltas (by pruning 

of the complete deltas) and backward deltas (by inversion and pruning) can be projected, 

while backward deltas can be used to reconstruct old versions. Also, since completed deltas 

are more space consuming than simple deltas, compression methods are examined to reduce 

redundant storage. Finally, a GUI to display changes to the user is provided. 

 

A similar approach is introduced in Chien, Tsotras and Zaniolo (2001) [13], where instead of 

edit scripts and deltas calculations, a referenced-based versioning scheme that preserves the 

logical structure of an evolving document via object references is presented. In this scheme, 
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new versions hold only the elements that are different from the previous version, whereas a 

reference is used for pointing to the unchanged elements of past versions. Specifically, each 

maximum unchanged element (i.e., an element which itself is unchanged but its parent node is 

changed) is represented by a reference record, referring to the logical location of that 

unchanged element in the previous version. Additionally, the effectiveness of the proposed 

approach in supporting queries in the document history and evolution, in addition to the usual 

content-based queries on version instances, is evaluated. For this, a query taxonomy is 

presented: (1) temporal selection queries, for retrieving a particular version or successive 

versions, (2) document evolution and historical queries, focusing on changes between 

successive versions, (3) structural projection queries, for selecting parts of a document, being 

a key ingredient for temporal selection or history queries, (4) content-based selection queries, 

for retrieving all versions that qualify the predicates in the “where” clause. Efficient 

algorithms for supporting temporal selection (view materialization), structural projection and 

content-based selection queries are presented, as well as for querying the document evolution 

history. The proposed representation is shown to be efficient at the transport level, where 

XML documents are exchanged between remote parties. Finally, the effectiveness of the 

proposed scheme at the storage level is demonstrated. A usefulness-based page management 

policy is defined, adapted from transaction-time databases, to ensure efficient temporal 

clustering between versions. 

 

In Chien et al. (2001) [15], a version management scheme named SPaR is presented, for 

efficiently storing, retrieving and querying multiversion XML documents. The approach 

presented is based on durable node numbers and timestamps on the elements of XML 

documents, to preserve the structure and the history of the document during its evolution. The 

durable node ids can be used as stable references in indexing the elements and allow the 

decomposition of the documents in several linked files. The problem of full version 

reconstruction was studied, while indexing and clustering strategies that assure efficient 

support for complex queries in the content and document evolution are also examined. A page 

clustering technique is used to trade off storage efficiency and retrieval efficiency and 

optimize the overall performance. 

 

In Chien et al. (2002) [16], the authors examine the problem of supporting efficiently complex 

queries on multiversioned XML documents. For this, they expand SPaR scheme and 

investigate physical realizations for it. Different storage and indexing strategies are examined 

so as to optimize SPaR’s implementation. The presented methodologies build on the 

observation that evaluating complex version queries mainly depends on the efficiency of 

evaluating partial version retrieval queries, which retrieve a specific segment of an individual 
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version instead of the whole version. Specifically, complex path expression queries can be 

reduced to partial version retrieval queries. Retrieving a segment for a single-versioned XML 

document is efficient since the target elements are clustered on secondary store by their 

logical order, but this might not be the case for a multiversion document. For a multiversion 

document, a segment of a later version may have its elements physically scattered in different 

pages due to version updates. The authors investigate three indexing schemes to evaluate 

partial version retrieval in this environment: single multiversion B-Tree, UBCC with a 

multiversion B-Tree, and UBCC with a multiversion R-Tree, where UBCC is a clustering 

mechanism standing for Usefulness Based Copy Control.  

 

In Gergatsoulis and Stavrakas (2003) [27], the authors propose Multidimensional XML 

(MXML), an extension of XML that uses context information to express time and models 

multifaceted documents. Also, it is demonstrated how MXML can represent a set of basic 

change operations on XML documents and their corresponding schema. 

 

Several approaches, focus mainly on the detection and less on the representation of the 

changes between two documents. In Wang et al. (2003) [61], X-Diff algorithm is presented, 

an effective algorithm on unordered trees that integrates key XML structure characteristics 

with standard tree-to-tree correction techniques. In Cobena et al. (2002) [17], a linear time 

diff algorithm for XML data is proposed, which matches unchanged sub-trees between the old 

and new version. The proposed algorithm was used in the Xyleme project, while it can also be 

used for HTML documents by XML-izing them. In Leonardi et al. (2005) [36] an XML 

enabled change detection system, Xandy, is presented. It detects structural and content 

changes by converting unordered XML documents into relational tuples and using SQL 

queries. This approach has better scalability compared to X-Diff and comparable quality. In 

Leonardi and Bhowmick (2005) [35], a relational approach is presented, named Helios, to 

detect changes in unordered XML documents. The delta quality produced is comparable to 

Xandy, while for large datasets it is faster than Xandy and X-Diff. Finally, in Chawathe et al. 

(1996) [12] change detection was studied in the context of hierarchically structured 

information. The change detection problem was defined as the problem of finding a 

“minimum-cost edit script” that transforms one data tree to another, while efficient algorithms 

for computing such an edit script were presented. 
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2.2.2. Temporal approaches 

Typically, temporal approaches enrich data elements with temporal attributes for holding time 

and extend accordingly query syntax with conditions on the time validity of data. 

 

In Grandi (2004) [29], an annotated bibliography dealing with temporal and evolution aspects 

in the World Wide Web is presented. 

 

In Amagasa, Yoshikawa and Uemura (2000) [1], a logical data model for representing 

histories of XML documents is proposed. This model is based on the XPath data model, and 

extends it in some points: (1) edges have a label that represent their valid time, (2) string-

value of text and attribute nodes are modelled as virtual nodes, and (3) text and attribute 

nodes can contain multiple string-value nodes. Using the proposed data model, it is easy to 

compute a past state of XML documents, by recursively pruning edges that are not available 

at specified time and by removing labels from edges. Also, operations based on extending the 

DOM API are investigated, so that the proposed data model can be implemented. 

Furthermore, two alternative approaches to the physical implementation of the model are 

presented, so that data represented in the model are translated to XML documents. The first 

implementation, named full, is for implementing the data model to XML documents as they 

are, and the second, named simplified, is for implementing the data model retaining the 

original form of XML documents. For both implementations, tags and attributes are used in 

order to represent temporal information. Finally, temporal queries may be evaluated by taking 

a snapshot of the XML document and then querying it using a non-temporal query language, 

while a query language specialized in the proposed temporal XML documents is not provided. 

 

In Rizzolo and Vaisman (2008) [49], the problem of modelling and implementing temporal 

data in XML is addressed. A data model for tracking historical information in an XML 

document and for recovering the state of the document as of any given time is proposed. The 

temporal constraints imposed by the data model are studied, and algorithms for validating a 

temporal XML document against these constraints are presented, along with methods for 

fixing inconsistent documents. In the presented model transaction time is used, and 

containment edges are labelled with temporal intervals. In addition, different ways of 

mapping the abstract representation into a temporal XML document are discussed. 

Furthermore, TXPath is introduced, a temporal XML query language that extends XPath 2.0. 

Both its syntax and semantics are presented. In the second part of the paper, an approach for 

summarizing and indexing temporal XML documents is presented. In particular it is shown 

that by indexing continuous paths, i.e., paths that are valid continuously during a certain 



 

 20 

interval in a temporal XML graph, the query performance is dramatically increased. To 

achieve this, a new class of summaries is introduced, denoted TSummary, that adds the time 

dimension to the well-known path summarization schemes. Within this framework, two new 

summaries are presented: LCP and Interval summaries. The indexing scheme TempIndex 

integrates these summaries with additional data structures. A query processing strategy based 

on TempIndex is presented, as well as a type of ancestor-descendant encoding, denoted 

temporal interval encoding. A persistent implementation of TempIndex is also presented, and 

a comparison against a system based on a non-temporal path index, and one based on DOM. 

Finally, a language for updates is sketched, and it is shown that the cost of updating the index 

is compatible with real-world requirements. 

 

In Gao and Snodgrass (2003) [26], a temporal XML query language, τXQuery, is presented. 

The authors add valid time support to XQuery by minimally extending the syntax and 

semantics of XQuery. The goal is to move the complexity of handling time from the 

user/application code into the τXQuery processor. It is worth noting that the approach may 

also apply to transaction time queries. τXQuery utilizes the data model of XQuery. The few 

reserved words added to XQuery indicate three different kinds of valid time queries. 

Representational queries have the same semantics with XQuery, ensuring that τXQuery is 

upward compatible with XQuery. To write such queries, users have to know the 

representation of the timestamps and treat the timestamp as a common element or attribute. 

New syntax for current and sequenced queries makes these queries easier to write. A current 

query asks for the information about the current state. Sequenced queries are applied 

independently at each point in time. To implement τXQuery the stratum approach is adopted, 

in which a stratum accepts τXQuery expressions and maps each to a semantically equivalent 

conventional XQuery expression. The XQuery expression is passed to an XQuery engine. 

Once the XQuery engine obtains the result, the stratum possibly performs some additional 

processing and returns the result to the user. The advantage of this approach is that it exploits 

the existing techniques in an XQuery engine, such as the query optimization and query 

evaluation, while at the same time it does not depend on a particular XQuery engine. The 

paper focuses on how to perform this mapping, in particular, on mapping sequenced queries, 

which are by far the most challenging. The central issue of supporting sequenced queries (in 

any query language) is time-slicing the input data while retaining period timestamping. 

Timestamps are distributed throughout an XML document, complicating the temporal slicing. 

In those terms, authors propose four optimizations of the initial maximally-fragmented time-

slicing approach: selected node slicing, copy-based per-expression slicing, in-place per-

expression slicing, and idiomatic slicing, each of which reduces the number of constant 

periods over which the query is evaluated. 
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In Wang and Zaniolo (2003) [62], the authors present techniques for managing multiversion 

documents and supporting temporal queries on such documents. The proposed approach 

consists of a temporally grouped data model, for representing the successive versions of a 

document as an XML document, named V-Document. Using XML query languages, such as 

XQuery, complex queries on the content of a particular version can be expressed, as well as 

on the temporal evolution of the document elements and their contents. Also, the paper 

discusses the advantages of applying the proposed scheme to XML-published relational data. 

Finally, efficient implementations of the approach are discussed. In Wang and Zaniolo (2008) 

[63], the authors further extend and elaborate on the concepts presented in Wang and Zaniolo 

(2003) [62]. In these terms, a number of case studies are performed, the XChronicler tool is 

presented, a tool for building V-Documents from the successive versions of arbitrary XML 

documents, and techniques for the efficient storage and retrieval are discussed. 

 

In Moon et al. (2008) [41], the authors work on the problem of managing the history of 

database information. Specifically, they propose PRIMA system, which employees two key 

technologies: The first is a method for publishing the history of a relational database in XML, 

whereby the evolution of the schema and its underlying database are given a unified 

representation. This temporally grouped representation makes it easy to formulate 

sophisticated historical queries on any given schema version using standard XQuery. For this, 

authors build upon and extend previous work presented in Wang and Zaniolo (2003) [62]. 

The second key technology is that schema evolution is transparent to the user. A user writes 

queries against the current schema, while retrieving the data from one or more schema 

versions. The system then performs the labour-intensive and error-prone task of rewriting 

such queries into equivalent ones for the appropriate versions of the schema. This feature is 

particularly important for historical queries spanning over different schema versions. For 

realizing this feature in PRIMA, Schema Modification Operators (SMOs) are introduced, to 

represent the mappings between successive schema versions, and an XML integrity constraint 

language (XIC), to efficiently rewrite the queries using the constraints established by the 

SMOs. The scalability of the approach has been also tested. 

 

In Dyreson (2001) [19], the TTXPath data model and query language are sketched. TTXPath 

extends XPath with support for transaction time. To construct the TTXPath data model, 

snapshots of an XML document are obtained over time. The snapshots are then merged and 

transaction times are associated with each edge and node. The TTXPath query language 

extends XPath with temporal axes to enable a query to access past or future states, and with 
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constructs to extract and compare times. TTXPath maximally reuses XPath and is fully 

backwards-compatible with XPath. 

 

2.2.3. Other approaches 

An early work is presented in Chawathe, Abiteboul and Widom (1999) [11]. The authors 

propose a model for representing changes in semistructured data and a language for querying 

over these changes. The starting point of this work is the Object Exchange Model (OEM), a 

simple graph-based data model, with objects as nodes and object-subobject relationships 

represented by labelled arcs. The basic change operations proposed in this graph-based model 

are node insertion, update of node values, and addition and removal of labelled arcs (node 

deletion is implicit by unreachability). The proposed change representation model is named 

DOEM (for Delta-OEM) and uses annotations on the nodes and arcs of an OEM graph to 

represent changes. Intuitively, the set of annotations on a node or arc represents the history of 

that node or arc. Representing changes directly as annotations on the affected data, instead of 

indirectly computing changes as the difference between database states, is an important 

feature of this approach. For querying over changes, a language based on the Lorel language 

for querying semistructured data is presented, called Chorel (for Change Lorel). Specifically, 

the authors extend the concept of Lorel path expressions in order to allow references to the 

annotations in a DOEM database, resulting in an intuitive and convenient language for 

expressing change queries in semistructured data. Overall, the user can retrieve information 

related to the history of nodes and edges, exploiting the change annotations. The 

implementation of DOEM and Chorel uses a method that encodes DOEM databases as OEM 

databases and translates Chorel queries into equivalent Lorel queries over the OEM encoding. 

This scheme has the benefit that there is no need to build from scratch yet another database 

system. Additionally, the authors present extensions that permit snapshot-based access in the 

proposed change-based data model. Finally, as an important first application of DOEM and 

Chorel, a query subscription service that permits users to subscribe to changes in 

semistructured data was designed and implemented. 

 

In Buneman et al. (2004) [10], the problem of archiving and management of curated databases 

is addressed in terms of XML and semistructured data. The developed archiving technique is 

efficient in its use of space and preserves the continuity of elements through versions of the 

database. The approach uses timestamps, and all versions of the data are merged into one 

hierarchy where an element appearing in multiple versions is stored only once along with a 

timestamp. By identifying the semantic continuity of elements and merging them into one 
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data structure, the proposed technique is capable of providing meaningful change descriptions 

and allows to easily answer certain temporal queries such as retrieval of any specific version 

from the archive and finding the history of an element. This is in contrast with approaches 

that store a sequence of deltas where such operations may require undoing a large number of 

changes or significant reasoning with the deltas. 

 

In Buneman, Chapman and Cheney (2006) [9], the authors deal with provenance in curated 

databases. Provenance information concerns the creation, attribution, or version history of 

data, and in terms of scientific databases it is crucial for assessing data integrity and scientific 

value. The authors propose and evaluate a practical approach to provenance tracking for data 

copied manually among databases. It is assumed that all of the user’s actions in constructing a 

target database are captured as a sequence of insert, delete, copy, and paste actions by a 

provenance-aware application for browsing and editing databases. As the user copies, inserts, 

or deletes data in her local database T, provenance links are stored in an auxiliary provenance 

database P. These links relate data locations in T with locations in previous versions of T or in 

external source databases S. They can be used to review the process used to construct the data 

in T. In addition, if T is also being archived, the provenance links can provide further detail 

about how each version of T relates to the next. An implementation of this technique is 

presented and the experiments show that although the overhead of a naive approach is fairly 

high, it can be decreased to an acceptable level using simple optimizations.  

 

 

  



 

 24 

  



 

 25 

Chapter 3 

 

Defining and Detecting Complex Changes on 

RDF(S) Knowledge Bases 

 

3.1. Introduction 

Data published on the web frequently change, as errors may need to be fixed or new 

knowledge has to be incorporated. As new dataset versions are periodically released, data 

consumers need to know what changed among versions, as well as how and why. 

 

In this context, we focus on interpreting evolution on RDF(S) knowledge-bases. The 

Resource Description Framework (RDF) [34] is a recommendation of the World Wide Web 

Consortium (W3C). In essence, RDF is a graph data model that supports modeling facts about 

entities in a simple triple format consisting of a subject, a predicate and an object, leading to 

rich and descriptive directed graphs with semantically labelled edges. Graph nodes represent 

entities that are identified uniquely by Uniform Resource Identifiers (URIs), this way defining 

a basis amongst remote agents to publish inherently interlinked datasets (Linked Open Data, 

LOD). The RDF Schema (RDF(S)) [8] is also a W3C recommendation, that constitutes a 

simple language that can be used to define a vocabulary (i.e. terms) to be used in an RDF 

graph. Taxonomies defined in RDF(S) can be used to do some basic inference. The standard 

recommendation for querying RDF data is SPARQL [31], a graph query language established 

around the specific features of the RDF model.  

 

In literature, several works (Berners-Lee and Connolly (2004) [4]; Volkel et al. (2005) [59]; 

Franconi et al. (2010) [21]; Zeginis et al. (2011) [65]; Noy and Musen (2002) [43]; Klein 

(2004) [33]) have been presented for modeling changes in terms of diffs. These approaches 

lead to a machine-readable representation of changes based on triple additions and deletions 

and do not provide any intuition about change semantics or possible relations between them. 

Therefore, the intention or the cause of a change cannot be captured, and more importantly 
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the fact that a change may be part of a larger change in a dataset. An ideal approach would 

compute human-readable, semantically rich changes along with any relations between them. 

 

We argue that for understanding data evolution, changes should be treated as first-class-

citizens. Modeling changes should involve fine-grained and application/data-agnostic 

changes, meaning that they do not comprise of other changes and their semantics suit to the 

RDF data model, as well as coarse-grained and application/data-specific changes, meaning 

that they demonstrate structure and semantics suitable to each specific application or dataset. 

The former changes are named simple changes, while the latter are named complex changes, 

and are defined on top of simple changes.  

 

Modeling complex changes as user-defined is a prerequisite for being application/data-

specific. Even more, this allows multiple interpretations of evolution on a specific application 

or dataset, since data curators or consumers may be interested in different parts of evolution 

or have different understanding on the applied modifications. Also, modeling complex 

changes as user-defined makes their definitions reusable, further facilitating the process of 

defining new changes. In addition, the hierarchical structure created while a change is built on 

top of others demonstrates relations and dependencies among them. A complex change may 

be part of another, may be modeled as a specification or generalization of another, or may 

cause another. However, complex changes may share common parts without being defined as 

nested, but having overlaps, providing supplementary interpretation of evolution. Towards 

this direction, a dedicated language for defining complex changes and a relevant detection 

algorithm is needed, in order to facilitate the precise modeling and reusability of changes. As 

a result of the detection process change instances are computed, and then can be queried via 

standard languages for further analyzing evolution. 

 

In literature, several works (Klein (2004) [33]; Stojanovic (2004) [57]; Plessers, De Troyer 

and Casteleyn (2007) [47]; Auer and Herre (2007) [3]; Papavasileiou et al. (2013) [45]; 

Roussakis et al. (2015) [53]; Singh et al. (2018) [54]) focus on human-readable changes. 

Modeling human-readable changes via primitive changes and groupings of them is also 

considered by Klein (2004) [33], Stojanovic (2004) [57], Papavasileiou et al. (2013) [45] and 

Roussakis et al. (2015) [53], while Plessers, De Troyer and Casteleyn (2007) [47] and 

Roussakis et al. (2015) [53] consider user-defined changes as well. However, relations and 

dependencies among complex changes are not supported in any of the already existing 

approaches. Furthermore, we propose a dedicated language based on change semantics for 

defining complex changes and a relevant detection algorithm.  
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Overall, the proposed approach offers expressiveness and flexibility in terms of evolution 

interpretation. The proposed modeling of complex changes provides additional information 

for interpreting past data, allows interpreting evolution in multiple ways, while capturing 

relations among complex changes via nesting or overlaps is an additional feature that enriches 

the complex changes' expressivity. The Chapter main contributions are the following:  

• modeling and supporting simple and complex changes, as well as relations among them 

• providing an intuitive, user-friendly language based on change semantics for defining 

complex changes via patterns over simple changes and already defined complex changes,  

• providing a detection algorithm for the proposed complex change definition language, 

• extensively evaluating the proposed approach both qualitatively and experimentally. 

 

The Chapter outline is as follows: Section 3.2 presents a motivating example of this work. 

Section 3.3 presents the basic concepts and definitions on simple and complex changes. 

Section 3.4 presents the syntax, semantics and several examples of the proposed language for 

defining complex changes. Section 3.5 presents in detail the detection algorithm, the process 

for identifying complex change instances among dataset versions. Section 3.6 presents the 

qualitative and experimental evaluation performed.  

 

3.2. Motivating Example 

Consider a sample part of DBpedia1 ontology with information about persons and universities, 

as in Figure 1. Figure 1 left depicts the initial version (𝑉𝑏𝑒𝑓) and right the version after 

modifications (𝑉𝑎𝑓). A DBpedia user would like to track the entities that are added between 

versions and specifically to know which are the added persons that work in academia. Each 

person may have several descriptive properties, like name, birthDate and deathDate, and may 

be further enriched with descriptive properties related to professional affairs, like employer, 

title, activeYearsStartYear and activeYearsEndYear. In Figure 1 right, the addition of 

"Margery Claire Carlson" entity along with its descriptive properties is depicted. It is an entity 

of type person, with one employer, the "Northwestern University", which is of type 

university. Computing the diff between these two versions, as a set of added/deleted triples, 

totally misses capturing change semantics, as well as possible dependencies among changes. 

Instead, Figure 2 depicts an intuitive and descriptive representation of how data changed, with 

focus on the user's interest and needs. Each node represents a change instance detected 

between the aforementioned versions. Change instances on leaf nodes (in grey) are fine- 

                                                   
1 https://www.dbpedia.org/ 
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Figure 1 Sample part of DBpedia ontology, initial version (𝑉𝑏𝑒𝑓) and version after modifications (𝑉𝑎𝑓).  

 

grained and application/data-agnostic. Each one corresponds to an added or deleted triple and 

has a suitable name and descriptive parameters. They are simple change instances. The rest 

change instances (in white) are coarse-grained and application/data-specific, demonstrating 

structure and semantics suitable to the specific scenario of tracking persons that work in 

academia. The hierarchical structure indicates that a change instance is on top of others, 

demonstrating relations and dependencies among changes. They are complex change 

instances. 

 

Consider the change instances Add_Person and Add_Name in Figure 2. They are 

specializations of the application/data-agnostic Add_Type_To_Individual and 

Add_Property_Instance respectively. The same holds for all similar change instances 

regarding descriptive properties. Add_Person_with_Details instance contains Add_Person, 

Add_Name, Add_BirthDate and Add_DeathDate instances, grouping the added person entity 

with a number of added descriptive properties with personal information. Note that, in 

general, Add_BirthDate and Add_DeathDate may not always be present, since they represent 

information that may be missing or in case of death date inappropriate. Add_Professional 

builds on top of Add_Person_with_Details, as further descriptive properties with professional 

life related information are added. Therefore, Add_Professional instance is a specialization of 

Add_Person_with_Details, where the added person (dbpedia:Margery_C._Carlson) has at 

least one employer (dbpedia:Northwestern_University). The change instances Add_Title, 

Add_ActiveYearsStartYear and Add_ActiveYearsEndYear represent secondary changes that 

may happen when adding a professional. Finally, Add_Academic_Professional further 

specializes Add_Professional and is defined on top of it, modeling the case where all the 

employers of the added professional are universities. 
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Figure 2 Hierarchy of detected simple and complex change instances (in grey and white fill 

respectively) for the sample part of DBpedia ontology presented in Figure 1. 

 

A DBpedia user may spend a lot of time and effort querying the respective diff and processing 

results, attempting to approximate the representation of Figure 2 and conclude what changed 

and how. Even if he is equipped with a set of predefined human-readable changes and a 

relevant detection algorithm, changes like Add_Academic_Professional that capture specific 

evolution scenarios could not be recorded. Instead, assuming a two-level representation of 

changes via simple and complex changes would balance the needs. On the one hand, simple 

changes offer a first layer of primitive changes following the RDF data model. Each added or 

deleted triple is mapped to a specific simple change. On the other hand, complex changes 

offer a second layer of user-defined changes, grouping other changes into logical units. In this 

way, application/data-specific changes, dependencies between them and multiple 

interpretations of evolution can be captured. Additionally, a dedicated intuitive language for 

defining complex changes would facilitate the process. A complex change can be uniquely 

identified via a name, can be described by a set of parameters and defined as a pattern 

comprised of simple changes, other already defined complex changes and constraints guiding 

which change instances are grouped in order to form a new complex change instance. 

Complex change definitions may constitute a registry of reusable components/patterns that 

can be used for defining new dependent changes. Finally, the representation of the detected 

complex change instances as RDF data allows querying the relations and dependencies among 

changes via SPARQL [31] and the demonstration of change hierarchy by any graph 

visualization tool for RDF data (Antoniazzi and Viola (2018) [2]).   

 



 

 30 

3.3. Simple and Complex changes on RDF(S) Knowledge 

Bases 

Modeling changes as first class citizens involves taking into account granularity and 

semantics of changes. Granularity poses the question of having fine-grained or coarse-grained 

changes. Fine-grained changes have the advantage of describing primitive changes, while 

coarse-grained changes provide semantics and conciseness by grouping primitive changes in 

logical units. Semantics poses the question of having application/data-agnostic or -specific 

changes. Application/data-agnostic changes describe modifications that appear in a specific 

model, constituting a fixed set of generic changes. Application/data-specific changes suit 

specific use-cases and may be user-defined, allowing multiple interpretations of evolution. 

 

As a result, changes are distinguished between simple and complex changes. Simple changes 

constitute a fixed set of fine-grained, application/data-agnostic changes. Complex changes are 

coarse-grained, user-defined, application/data-specific changes providing richer semantics on 

how data changed. This section provides definitions regarding simple and complex changes. 

 

Definition 1: A simple change s is a tuple (𝑛, 𝑃), where:  

• 𝑛 is the name of 𝑠, which must be unique. 

• 𝑃 is the list of descriptive parameters of 𝑠, where each one has a unique name within 𝑠.  

 

For simple changes we rely on Papavasileiou et al. (2013) [45]. Annex I summarizes the 

simple changes considered. They are additions, deletions and terminological changes 

(rename, split, merge) of RDF(S) entities (classes, properties, individuals). 

 

Simple changes verify completeness and unambiguity properties, constituting a first layer of 

human-readable changes. These properties were introduced in Papavasileiou et al. (2013) [45] 

and guarantee that simple change detection process exhibits a sound and deterministic 

behavior. Simple change detection is performed over a layer of "low-level" changes 

constituted by triple additions and deletions among dataset versions. Essentially, what is 

needed to be guaranteed is that each change that a dataset underwent is properly captured by 

one, and only one, simple change. Thus, low-level changes are "assigned" to simple changes, 

so that they are partitioned into simple changes. Completeness and unambiguity dictate that 

this partitioning is perfect. In a nutshell: Completeness guarantees that all low-level changes 

are associated with at least one simple change, making the reported delta complete (not 
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missing any change). Unambiguity guarantees that no race conditions emerge between simple 

changes attempting to be detected over the same low-level change. The combination of these 

properties guarantees that the delta is produced in a complete and deterministic manner. 

Further details on completeness and unambiguity can be found in Papavasileiou et al. (2013) 

[45] and Roussakis et al. (2015) [53]. 

 

As already stated, simple changes are fine-grained, i.e. they cannot be decomposed in more 

granular changes. This holds for additions and deletions, but not for terminological changes, 

as they can be expressed as additions and deletions plus extra conditions. For example, a class 

rename can be considered as an add class plus a delete class, which have the same 

"neighborhood" (properties, connections to classes). However, they are preferred to be simple 

changes in order to distinguish at simple change level real additions or deletions from virtual 

ones representing terminological changes. Thus, simple changes' set is not minimal.  

 

Definition 2: A complex change 𝑐 is a quadruple (𝑛, 𝑃, 𝐷, 𝐹), where: 

• 𝑛 is the name of 𝑐, which must be unique and different from the simple change names. 

• 𝑃 is the list of descriptive parameters of 𝑐, where each one has a unique name within 𝑐. 

• 𝐷 is the set of simple (𝐷𝑆) and complex changes (𝐷𝐶) that 𝑐 comprises of, where 𝐷 =

𝐷𝐶 ∪ 𝐷𝑆, 𝐷𝐶 ∩ 𝐷𝑆 = ∅ and 𝐷 ≠ ∅. 

• 𝐹 is the set of constraints (𝐹𝐶) that changes in 𝐷 verify and bindings (𝐹𝐵) specifying the 

parameters in 𝑃, where 𝐹 = 𝐹𝐶 ∪ 𝐹𝐵 and 𝐹𝐶 ∩ 𝐹𝐵 = ∅. Constraints are on changes (𝐹𝐶
𝑐𝑎𝑟) or 

change parameters (𝐹𝐶
𝑝𝑎𝑟

), where 𝐹𝐶 = 𝐹𝐶
𝑐𝑎𝑟 ∪ 𝐹𝐶

𝑝𝑎𝑟
 and 𝐹𝐶

𝑐𝑎𝑟 ∩ 𝐹𝐶
𝑝𝑎𝑟 = ∅.  

 

A complex change is defined in terms of simple or other complex changes verifying 

constraints. Constraints specialize its meaning and are divided into those defined on changes 

and those on change parameters. Bindings specify complex change parameter values. Section 

3.4 includes the details regarding the specific types of constraints and bindings. 

 

Note that Definitions 1 and 2 actually define a class of simple and complex changes 

respectively and not the concrete changes. The terms simple change and complex change will 

be used as a shorthand for any concrete simple/complex change in the respective class. 

 

The ultimate goal of supporting simple and complex changes is detecting actual instances 

between dataset versions. The detection process leads into instantiating change parameters 

with values, indicating that specific data elements are affected by a change. Definitions 3 and 
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4 define simple and complex change instances. Figure 2 presents simple and complex change 

instance examples. 

 

Definition 3: A simple change instance of a simple change (𝑛, 𝑃), is a tuple (𝑛, 𝑉) where 𝑉 is 

an instantiation of the parameters 𝑃. 

 

Definition 4: A complex change instance of a complex change (𝑛, 𝑃, 𝐷, 𝐹), is a tuple (𝑛, 𝑉) 

where 𝑉 is an instantiation of the parameters 𝑃. 

 

For simple change detection we rely on Papavasileiou et al. (2013) [45]. For complex change 

detection an appropriate algorithm is presented in Section 3.5. Definition 5 defines when a 

complex change instance is detected. Definitions 6 and 7 define possible relations among 

change instances, reflecting the relations and dependencies between changes. 

 

Definition 5: Let 𝑐 = (𝑛, 𝑃, 𝐷, 𝐹) be a complex change and 𝑉𝑏𝑒𝑓, 𝑉𝑎𝑓 two dataset versions. A 

complex change instance 𝑐𝑖 = (𝑛, 𝑉) is detected if: (1) for all changes in 𝐷 instances are 

detected between 𝑉𝑏𝑒𝑓 and 𝑉𝑎𝑓, forming 𝐷𝑖, such that constraints in 𝐹𝐶  are verified on 𝐷𝑖, 

𝑉𝑏𝑒𝑓 and 𝑉𝑎𝑓, (2) bindings in 𝐹𝐵 are applied on 𝐷𝑖 forming 𝑉, and (3) 𝐷𝑖  is maximal. 

 

The set of change instances 𝐷𝑖 corresponding to 𝑐𝑖 verifies the complex change 𝑐. 

 

Definition 6: Let 𝑐𝑖 be an instance of complex change 𝑐 and 𝐷𝑖 the corresponding set of 

change instances verifying 𝑐. 𝑐𝑖 contains the change instances in 𝐷𝑖.  

 

Containment property is transitive: if complex change instance 𝑐𝑖 contains complex change 

instance 𝑐𝑗  and 𝑐𝑗  contains change instance 𝑐𝑘 in turn, then it also holds that 𝑐𝑖 contains 𝑐𝑘. 

 

Definition 7: Let 𝑐𝑖 and 𝑐𝑖
′ be two complex change instances, where 𝑐𝑖 does not contain 𝑐𝑖

′ 

and vice versa. They are overlapping if they both contain at least one common simple or 

complex change instance. 

 

Overall, complex change instances may form a hierarchy due to containment and overlaps. As 

an example consider complex change instances in Figure 2. 

 

Note that the dynamics model followed, detecting changes between versions, propagates 

some limitations to our approach. First, the order in which changes actually occurred cannot 
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be captured, since version-based approaches are agnostic of time between versions. 

Additionally, if one triple is deleted and then added back between two dataset versions, then 

this change cannot be traced, since change detection identifies the triple in both versions. In 

the same context, complex change detection is performed between two successive versions; 

thus complex changes spanning across multiple successive versions are not captured. In these 

cases, following a careful and guided version issuing policy would minimize change loss. 

Finally, in this work we ignore blank nodes that can be avoided when data are published 

according to the linked open data paradigm. 

 

3.4. A Language for Defining Complex Changes 

This section presents an intuitive, user-friendly language based on change semantics for 

defining complex changes. Complex change definitions are used for detecting respective 

instances among dataset versions. In Section 3.4.1 the language syntax is provided, by means 

of EBNF specification, as well as details regarding the supported concepts. In Section 3.4.2 

the language semantics are formally defined. In Section 3.4.3 a number of examples are 

discussed. 

 

3.4.1. Syntax 

Table 1 presents the EBNF specification of the proposed language.  

 

Complex change definition, heading and body. A complex change definition is composed by a 

heading and a body. The heading contains a unique name and a list of descriptive parameters. 

The body contains the change list, as well as optionally the filter list and the binding list. The 

change list defines the changes that the complex change comprises of, as well as the 

cardinality each one may have. The filter list defines filter expressions with constraints that 

the changes in the change list should verify. The binding list defines how complex change 

descriptive parameters are evaluated. A complex change definition is nested if complex 

changes appear in its change list.  

 

Parameters. Change parameters may be categorized based on two criteria: (1) the type of 

values they may evaluate, (2) whether they may evaluate into empty value. 

 

Based on the first criterion, parameters are distinguished into those that evaluate into type set 

and those that evaluate into scalar values. In order to distinguish these parameter types, 
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parameters evaluating into scalar values start with a lowercase letter, while those evaluating 

into sets with an uppercase letter. 

 

Based on the second criterion, parameters are distinguished into those that may evaluate into 

an empty value and those that always should have a non-empty value. In order to distinguish 

these parameter types, parameters that may evaluate into an empty value have an "OPT" 

suffix (denoting optional). Also, they are referred as optional. Thus, a complex change may 

be defined to be tolerant in partially performed changes in lower levels in change hierarchy. 

 

Cardinality constraints. They determine whether a change in the change list may group 

multiple instances. Specifically, they determine that there might be zero, one or multiple 

instances of a specific change to be contained into respective complex change instances. The 

default cardinality is one. Therefore, when no notation is defined, cardinality one is inferred. 

Also, the following notations hold: "+" for at least one change instance, "?" for zero or one, 

"*" for zero or more. Note that cardinality constraints are constraints on changes. 

 

A change (in the change list) is mandatory in case of cardinality one or "+". A change is 

optional in case of cardinality "?" or "*". In case of an optional change, if no instance is 

detected, the respective complex change can be still detected. Thus, a complex change may be 

defined to be flexible and tolerant in partially performed modifications of minor significance. 

 

Filter expressions. They determine constraints that the parameters of the changes included in 

the change list should verify. They are distinguished into primitive and composite. 

 

Primitive filter expressions cannot break down into simpler ones. There are four types of 

constraints that form primitive filter expressions: (1) testing value constraints, (2) relational 

constraints, (3) pre/post-conditions, (4) functions. Also, these types of constraints may be 

augmented via quantified expressions. Primitive filter expressions are also distinguished into 

unary and binary, based on whether they involve one or two change parameters. It is worth 

noting that in terms of this work, a parameter that may evaluate into an empty value may be 

involved only on unary filters. While the nature of binary filters is to interconnect changes, if 

they involve such parameters the connection among changes will not be always established (if 

the parameter evaluates into an empty value). This contradicts the binary filter's goal. 

 

Composite filter expressions are formed when combining primitive filter expressions via 

boolean operators. Specifically, logical AND, OR, NOT may be used. 
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Table 1 The EBNF specification of the complex change definition language 

Complex Change Definition, Heading, Body, Parameters 

1  complex-change-definition = 'CREATE COMPLEX CHANGE' heading '{' 

body '}'';' ; 

2  heading = name '(' parameter-list ')' ; 

3  parameter-list = identifier {', ' identifier} ; 

4  body = change-list ['; ' filter-list] ['; ' binding-list] ; 

5  name = STRING ; 

6  identifier = id-scalar | id-set ; 

7  id-scalar = id-scalar-nonempty | id-scalar-empty ; 

8  id-set = id-set-nonempty | id-set-empty ; 

9  id-scalar-empty = LOWERCASE_LETTER {LETTER|DIGIT} 'OPT' ; 

10 id-set-empty = CAPITAL_LETTER  {LETTER|DIGIT} 'OPT' ; 

11 id-scalar-nonempty = LOWERCASE_LETTER {LETTER|DIGIT} ; 

12 id-set-nonempty = CAPITAL_LETTER  {LETTER|DIGIT} ; 

Change List, Cardinalities 

13 change-list = 'CHANGE LIST' change {', ' change} ; 

14 change = change-heading [cardinality] ; 

15 change-heading = change-name '(' parameter-list ')' ; 

16 change-name = name | NAMES OF SUPPORTED SIMPLE CHANGES ; 

17 cardinality = '+'|'?'|'*' ; 

Filter List 

18 filter-list = 'FILTER LIST' or-filter-expr {', ' or-filter-expr} ; 

19 or-filter-expr = and-filter-expr {'||' and-filter-expr} ; 

20 and-filter-expr = neg-filter-expr {'&&' neg-filter-expr} ; 

21 neg-filter-expr = ['!'] filter-expr ; 

22 filter-expr = bracketed-expr | expr ; 

23 bracketed-expr = '(' or-filter-expr ')' ; 

24 expr = unary-expr | binary-expr ; 

25 unary-expr = [quantification-1] unary-constr ; 

26 binary-expr = [quantification-2] binary-constr ; 

27 quantification-1 = 'for' ('each'|'some'|'none') id-scalar-nonempty 

'in' id-set ':'; 

28 unary-constr = test-val-constr | pre-post-constr-1 | fun-constr-1; 

29 test-val-constr = test-val-scalar-1 | test-val-scalar-2 | test-

val-set ; 

30 test-val-scalar-1 = id-scalar bin-op-scalar-1 value ; 

31 test-val-scalar-2 = id-scalar bin-op-scalar-2 set ; 

32 test-val-set = id-set bin-op-set set ; 

33 pre-post-constr-1 = ( ('(' id-scalar ', ' URI ', ' value ')') | 

('(' URI ', ' id-scalar ', ' value ')') | ('(' URI ', ' URI ', ' id-

scalar ')') ) ['inferred'] ('in' | 'not in') ('Vbef' | 'Vaf') ; 

34 fun-constr-1 = name '(' ( identifier | (identifier ', ' constant) 

| (constant ', ' identifier) ) ')' ; 

35 quantification-2 = 'for' ('each'|'some'|'none') id-scalar-nonempty 

'in' id-set-nonempty ':' ['for' ('each'|'some'|'none') id-scalar-

nonempty 'in' id-set-nonempty ':']; 

36 binary-constr = rel-constr | pre-post-constr-2 | fun-constr-2 ; 

37 rel-constr = rel-scalar-1 | rel-scalar-2 | rel-set ; 

38 rel-scalar-1 = id-scalar-nonempty bin-op-scalar-1 id-scalar-

nonempty; 

39 rel-scalar-2 = id-scalar-nonempty bin-op-scalar-2 id-set-nonempty; 

40 rel-set = id-set-nonempty bin-op-set id-set-nonempty ; 

41 pre-post-constr-2 = ( ('(' id-scalar-nonempty ', ' URI ', ' id-

scalar-nonempty ')') | ('(' id-scalar-nonempty ', ' id-scalar-

nonempty ', ' value ')') | ('(' URI ', ' id-scalar-nonempty ', ' id-

scalar-nonempty ')') ) ['inferred'] ('in' | 'not in') ('Vbef' | 

'Vaf') ; 

42 fun-constr-2 = name '(' (id-scalar-nonempty | id-set-nonempty) ', 

' (id-scalar-nonempty | id-set-nonempty) ')' ; 
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43 bin-op-scalar-1 = '=' | '!=' | '>' | '<' | '>=' | '<=' ; 

44 bin-op-scalar-2 = 'in' | 'not in' ; 

45 bin-op-set = '=' | '!=' | 'subSet' | 'properSubset' | 'superSet' 

|'properSuperset'; 

46 constant = set | value ; 

47 set = '{' value-list '}' ; 

48 value-list = value {', ' value} ; 

49 value = URI | LITERAL ; 

Binding List 

50 binding-list = 'BINDING LIST' binding {', ' binding} ; 

51 binding = (id-scalar 'as' id-scalar)|(id-set 'as' id-

set)|(aggregate 'as' id-set); 

52 aggregate = 'union(' identifier ')' ; 

 

Testing value constraints. Testing value constraints limit a parameter value against a given 

constant. They are actually unary filters. Their form is presented in Table 1, lines 29-32. The 

supported binary operators are the typical ones, as presented in Table 1, lines 43-45. They 

may be on scalar parameters (=, ! =, >, <, >=, <=), on set parameters (=, ! =, ⊃ as 

𝑝𝑟𝑜𝑝𝑒𝑟𝑆𝑢𝑝𝑒𝑟𝑠𝑒𝑡, ⊂ as 𝑝𝑟𝑜𝑝𝑒𝑟𝑆𝑢𝑏𝑠𝑒𝑡, ⊇ as 𝑠𝑢𝑝𝑒𝑟𝑆𝑒𝑡, ⊆ as 𝑠𝑢𝑏𝑆𝑒𝑡), or may involve both 

scalar and set parameters (∈ as 𝑖𝑛, ∉ as 𝑛𝑜𝑡 𝑖𝑛). 

 

Relational constraints. Relational constraints involve two change parameters defining how 

changes are connected. They are actually binary filters. Their form is presented in Table 1, 

lines 37-40. The supported binary operators are the same with the ones used in testing value 

constraints, as presented in Table 1, lines 43-45. 

 

Pre-/Post-conditions. Pre-/post-conditions define how parameters are related in the version 

before (𝑉𝑏𝑒𝑓) or after (𝑉𝑎𝑓) the change. They state whether a triple must or must not exist in 

the version before or after and whether a triple may be inferred. In case of inference, a flag 

"inferred" is used. These constraints may be unary or binary depending on the number of 

change parameters they involve. Their form is presented in Table 1, lines 33 and 41. 

 

Functions. Function constraints involve predefined functions of boolean return type. As an 

example, consider common functions on strings, like checking whether a string contains 

another given string. These constraints may be unary or binary depending on the number of 

change parameters they involve. Their form is presented in Table 1, lines 34 and 42. 

 

Quantified expressions. Quantified expressions allow to write conditions on elements of set 

parameters. Thus, quantification augments primitive filters on scalar parameters so they 

evaluate into elements of set parameters. They may have one of the following forms: (1) 

{∀, ∃, ∄} 𝑥 ∈ 𝑋: 𝑓(𝑥), (2) {∀, ∃, ∄} 𝑥 ∈ 𝑋: 𝑓(𝑥, 𝑦), (3) {∀, ∃, ∄} 𝑥 ∈ 𝑋: {∀, ∃, ∄} 𝑦 ∈
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 𝑌: 𝑓(𝑥, 𝑦), where 𝑓(𝑥) and 𝑓(𝑥, 𝑦) are primitive constraints on parameters evaluating into 

scalar values. Their syntax is presented in Table 1, lines 25-27 and 35. 

 

Bindings. Parameter bindings determine how complex change descriptive parameters are 

evaluated. In its simplest form, a binding assigns the identifier on the left to the identifier on 

the right, via operator as. In this way, it is defined that the identifier on the right, which 

represents a complex change parameter, equals the identifier on the left, which represents the 

parameter value of a change in its change list. This type of binding may be omitted and thus 

inferred by repeating each descriptive parameter into the respective contained changes and 

constraints. Moreover, a binding assigns the result of the aggregate function union over an 

identifier to another identifier (on the right), via operator as. In this way, it is defined that the 

second identifier, which represents a complex change parameter, equals the union of the 

parameter values of a change with cardinality "+" or "*", whose parameter is passed as an 

argument in the aggregate function union. Obviously, the complex change parameters that are 

evaluated with the latter form are of type set. A binding that involves the union aggregate 

function is useful in case of changes with cardinality "+" or "*". The syntax is presented in 

Table 1, lines 50-52. 

 

3.4.2. Semantics 

The proposed language is essentially a pattern-matching language. The body of a complex 

change definition constitutes a change pattern expression (or a change pattern), while the 

head indicates how to construct a complex change instance. The body is matched against a set 

of change instances 𝐼, between two dataset versions, 𝑉𝑏𝑒𝑓 and 𝑉𝑎𝑓, to obtain a set of bindings 

for the variables in the body, and then based on the head these bindings are used to produce 

the actual change instance. Note that, we say that the generated complex change instance 

contains the change instances in 𝛪 that correspond to the respective bindings. The semantics 

definition is influenced by SPARQL semantics definition as in Perez, Arenas and Gutierrez 

(2009) [46] and Kaminski, Kostylev and Cuenca Grau (2017) [32], but adapted to our 

language needs. 

 

A change (simple or complex) is a tuple (𝑛, 𝑉𝑟
𝑛), where 𝑛 is the change name and 𝑉𝑟

𝑛 is a list 

of variables (scalar or set), out of which one is a change variable and the rest are descriptive 

variables. With respect to Definitions 1 and 2, the change variable represents the change 

identifier 𝑠 and 𝑐 respectively, the descriptive variables represent the change parameters 𝑃, 

while for complex changes the heading is considered. A change instance (simple or complex) 
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is a tuple (𝑛, 𝑉𝑙
𝑛), where 𝑛 is the change name and 𝑉𝑙

𝑛 is a list of values (scalar or set) serving 

as instantiations of the respective variables. Additionally, consider the existence of an infinite 

set 𝑉𝑙 of possible values, scalar or set, (𝑉𝑙 = 𝑉𝑙
𝑠𝑐𝑎𝑙𝑎𝑟 ∪ 𝑉𝑙

𝑠𝑒𝑡) and an infinite set 𝑉𝑟  of 

variables, scalar or set, including optional variables, (𝑉𝑟 = 𝑉𝑟
𝑠𝑐𝑎𝑙𝑎𝑟 ∪ 𝑉𝑟

𝑠𝑒𝑡) disjoint from 𝑉𝑙. 

 

3.4.2.1. Baseline Algebra and Semantics 

Change Pattern Expression. While the formal syntax of the proposed language was 

presented in Section 3.4.1, in order to define the semantics an algebraic formalization is 

followed. The binary operators AND, OPT (i.e. optional) and FILTER are used. AND is used 

for concatenating mandatory changes, i.e. those with cardinality 1 or "+", while OPT is used 

for optional changes, i.e. those with cardinality "?" or "*", in both cases instead of comma 

symbol (",") in formal syntax. FILTER is used for filter expressions. A change pattern 

expression is defined recursively as follows: 

(1) A change (𝑛, 𝑉𝑟
𝑛), where 𝑉𝑟

𝑛 ⊂ 𝑉𝑟 , is a change pattern (primitive change pattern). 

(2) If 𝑃 is a primitive change pattern and 𝑅 is a built-in filter expression, then the expression 

(𝑃 𝐹𝐼𝐿𝑇𝐸𝑅 𝑅) is a change pattern (filter primitive change pattern). 

(3) If 𝑃1 and 𝑃2 are change patterns, then the expression (𝑃1 𝐴𝑁𝐷 𝑃2) is a change pattern 

(conjunction change pattern). 

(4) If 𝑃1 is a change pattern and 𝑃2 is a primitive change pattern or a filter primitive change 

pattern, then the expression (𝑃1 𝑂𝑃𝑇 𝑃2) is a change pattern (optional change pattern). If 𝑃1 

is a change pattern and 𝑃2 is an optional change pattern 𝑃2 = (𝑃𝐴 𝑂𝑃𝑇 𝑃𝐵) where 𝑃𝐴 and 𝑃𝐵 

are primitive change patterns or filter primitive change patterns or optional change patterns 

similar to 𝑃2, then (𝑃1 𝑂𝑃𝑇 𝑃2) is a change pattern (optional change pattern). 

(5) If 𝑃 is a change pattern and 𝑅 is a built-in filter expression, then the expression 

(𝑃 𝐹𝐼𝐿𝑇𝐸𝑅 𝑅) is a change pattern (filter change pattern). 

 

In case 4, nested optional change patterns may be defined based on primitive change patterns 

and filter primitive change patterns. In this case an optional change is dependent to another 

optional change, which in turn is dependent to another, and so on, ending up to a mandatory 

change which is part of a change pattern. This pattern of optional changes is named optional 

change path. Overall, it is not meaningful to define a complex change comprising of optional 

changes only and each optional change is meaningful in the context of another change.  
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In cases 2 and 5, a built-in filter expression is constructed using elements of the set 𝑉𝑙 ∪ 𝑉𝑟, 

logical connectives (¬,∧,∨), several symbols and constraints as described in Section 3.4.1, 

evaluating into a boolean value. Formally, the built-in filter expressions below are considered: 

(1) If 𝑥, 𝑦 ∈ 𝑉𝑟
𝑠𝑐𝑎𝑙𝑎𝑟 , 𝑋, 𝑌 ∈ 𝑉𝑟

𝑠𝑒𝑡 , 𝑣 ∈ 𝑉𝑙
𝑠𝑐𝑎𝑙𝑎𝑟 , 𝑉 ∈ 𝑉𝑙

𝑠𝑒𝑡 then the following are built-in 

filter expressions:  

- Equality symbol (=). 𝑥 = 𝑣, 𝑋 = 𝑉, 𝑥 = 𝑦, 𝑋 = 𝑌 are built-in filter expressions. 

- Inequality symbols (>, <, >=, <=, ⊃, ⊂, ⊇, ⊆, ! =). 𝑥 > 𝑣, 𝑋 ⊃ 𝑉, 𝑥 > 𝑦, 𝑋 ⊃ 𝑌 are built-in 

filter expressions, and similar holds for the rest of the symbols. 

- Existential symbols (∈, ∉). 𝑥 ∈ 𝑉, 𝑥 ∉ 𝑉, 𝑥 ∈ 𝑌, 𝑥 ∉ 𝑌 are built-in filter expressions. 

- Pre-/post-conditions. 𝑡 ∈ 𝑉𝑏𝑒𝑓, 𝑡 ∉ 𝑉𝑏𝑒𝑓, 𝑡 ∈ 𝑉𝑎𝑓, 𝑡 ∉ 𝑉𝑎𝑓 are built-in filter expressions, 

where 𝑡 is a tuple from {({𝑣 ∈ 𝑉𝑙
𝑠𝑐𝑎𝑙𝑎𝑟|𝑖𝑠𝐼𝑅𝐼(𝑣)} ∪ 𝑉𝑟

𝑠𝑐𝑎𝑙𝑎𝑟) × ({𝑣 ∈ 𝑉𝑙
𝑠𝑐𝑎𝑙𝑎𝑟|𝑖𝑠𝐼𝑅𝐼(𝑣)} ∪

𝑉𝑟
𝑠𝑐𝑎𝑙𝑎𝑟) × (𝑉𝑙

𝑠𝑐𝑎𝑙𝑎𝑟 ∪ 𝑉𝑟
𝑠𝑐𝑎𝑙𝑎𝑟)} − {𝑉𝑟

𝑠𝑐𝑎𝑙𝑎𝑟 × 𝑉𝑟
𝑠𝑐𝑎𝑙𝑎𝑟 × 𝑉𝑟

𝑠𝑐𝑎𝑙𝑎𝑟}. Similar expressions are 

defined while taking into consideration the inferred tuples in 𝑉𝑏𝑒𝑓 and 𝑉𝑎𝑓 as well. In these 

cases, 𝐼𝑛𝑓(𝑉𝑏𝑒𝑓) and 𝐼𝑛𝑓(𝑉𝑎𝑓) datasets include explicitly those tuples. 

- Functions. 𝑓𝑢𝑛(𝑥), 𝑓𝑢𝑛(𝑥, 𝑣), 𝑓𝑢𝑛(𝑣, 𝑥) and 𝑓𝑢𝑛(𝑥, 𝑦), with return type boolean are built-

in filter expressions. Similar expressions are defined with variables of type set and set values. 

- Quantified expressions. ∀𝑥 ∈ 𝑋: 𝑓(𝑥), ∃𝑥 ∈ 𝑋: 𝑓(𝑥), ∄𝑥 ∈ 𝑋: 𝑓(𝑥), ∀𝑥 ∈ 𝑋: 𝑓(𝑥, 𝑦), ∃𝑥 ∈

𝑋: 𝑓(𝑥, 𝑦), ∄𝑥 ∈ 𝑋: 𝑓(𝑥, 𝑦), ∀𝑥 ∈ 𝑋: ∀𝑦 ∈ 𝑌: 𝑓(𝑥, 𝑦), ∀𝑥 ∈ 𝑋: ∃𝑦 ∈ 𝑌: 𝑓(𝑥, 𝑦), ∃𝑥 ∈ 𝑋: ∃𝑦 ∈

𝑌: 𝑓(𝑥, 𝑦), ∄𝑥 ∈ 𝑋: ∄𝑦 ∈ 𝑌: 𝑓(𝑥, 𝑦) are built-in filter expressions, where 𝑓(𝑥) and 𝑓(𝑥, 𝑦) 

may be any of the aforementioned built-in expressions on parameters evaluating into scalar 

values. 

Note that, an optional variable (𝑥𝑂𝑃𝑇, 𝑋𝑂𝑃𝑇) may be involved only on unary filters.  

(2) If 𝑅1 and 𝑅2 are built-in filter expressions, then (¬𝑅1), (𝑅1 ∨ 𝑅2) and (𝑅1 ∧ 𝑅2) are built-

in filter expressions. 

 

Mappings and Set of Mappings. Let 𝑃 be a change pattern expression, 𝑅 be a built-in filter 

expression and 𝑡 be a tuple. 𝑣𝑎𝑟(𝑃) denotes the set of variables occuring in 𝑃, 𝑣𝑎𝑟(𝑅) in 𝑅, 

and 𝑣𝑎𝑟(𝑡) in 𝑡. 

 

In order to define the semantics, the following terminology has to be introduced. A mapping 

𝜇𝑐 from 𝑉𝑟  to 𝑉𝑙 is a partial function 𝜇𝑐 ∶  𝑉𝑟  → 𝑉𝑙. Abusing the notation, for a primitive 

change pattern 𝑐 we denote by 𝜇𝑐(𝑐) the change instance obtained by replacing the variables 

in 𝑐 according to 𝜇𝑐. The domain of 𝜇𝑐, denoted by 𝑑𝑜𝑚(𝜇𝑐), is a subset of 𝑉𝑟  where 𝜇𝑐 is 

defined. Two mappings 𝜇𝑐1 and 𝜇𝑐2 are compatible when for all 𝑥 ∈ 𝑑𝑜𝑚(𝜇𝑐1) ∩ 𝑑𝑜𝑚(𝜇𝑐2), 

it is the case that 𝜇𝑐1(𝑥) = 𝜇𝑐2(𝑥), i.e. when 𝜇𝑐1 ∪ 𝜇𝑐2 is also a mapping. Intuitively, 𝜇𝑐1 and 

𝜇𝑐2 are compatible if 𝜇𝑐1 can be extended with 𝜇𝑐2 to obtain a new mapping, and vice versa. 
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Two mappings with disjoint domains are always compatible, and empty mapping 𝜇𝑐∅ (i.e. the 

mapping with empty domain) is compatible with any other mapping.  

 

Notice that 𝜇𝑐 is defined over 𝑉𝑟  and its set of destination is 𝑉𝑙, which include variables and 

values of both scalar and set type respectively. This allows variables of type scalar/set to 

evaluate into a scalar/set value. Furthermore, in case of optional variables, they may also 

evaluate into an empty value (∅). Finally, 𝜇𝑐 allows the evaluation of both change and 

descriptive variables. 

 

Let Ω1 and Ω2 be sets of mappings. The join of, union of and difference between Ω1 and Ω2 

are defined bellow. Based on these operators, the left-outer join is defined. 

Ω1 ⋈ Ω2 = {𝜇𝑐1⋃𝜇𝑐2|𝜇𝑐1 ∈ Ω1, 𝜇𝑐2 ∈ Ω2 and 𝜇𝑐1, 𝜇𝑐2 𝑎𝑟𝑒 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠}  

Ω1 ∪ Ω2 = {𝜇|𝜇 ∈ Ω1 or 𝜇 ∈ Ω2}  

Ω1 ∖ Ω2 = {𝜇 ∈ Ω1| for all 𝜇′ ∈ Ω2, 𝜇 𝑎𝑛𝑑 𝜇′ 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠}  

Ω1 ⟕ Ω2 = (Ω1 ⋈ Ω2) ∪ (Ω1 ∖ Ω2)  

 

Semantics Definition. Based on the above, the semantics of change pattern expressions can 

be defined as a function ⟦∙⟧𝐼 which takes as input a change pattern expression and returns a set 

of mappings.  

 

Definition 8. The evaluation of a change pattern 𝑃 over a set of change instances 𝐼, denoted 

by ⟦𝑃⟧𝐼, is defined recursively as follows. 

(1) If 𝑃 is a primitive change pattern 𝑐, then ⟦𝑃⟧𝐼 = {𝜇𝑐|𝑑𝑜𝑚(𝜇𝑐) = 𝑣𝑎𝑟(𝑐) 𝑎𝑛𝑑 𝜇𝑐(𝑐) ∈ 𝐼}. 

(2) If 𝑃 is (𝑃1 𝐴𝑁𝐷 𝑃2), then ⟦𝑃⟧𝐼 = ⟦𝑃1⟧𝐼 ⋈ ⟦𝑃2⟧𝐼. 

(3) If 𝑃 is (𝑃1 𝑂𝑃𝑇 𝑃2), then ⟦𝑃⟧𝐼 = ⟦𝑃1⟧𝐼  ⟕ ⟦𝑃2⟧𝐼. 

 

The semantics of filter expressions goes as follows. Given a mapping 𝜇𝑐 and a built-in filter 

expression 𝑅, 𝜇𝑐 satisfies 𝑅 denoted by 𝜇𝑐 ⊨ 𝑅, if: 

(1) 𝑅 is 𝑥 = 𝑣, 𝑥 ∈ 𝑑𝑜𝑚(𝜇𝑐) and 𝜇𝑐(𝑥) = 𝑣. 

(2) 𝑅 is 𝑋 = 𝑉, 𝑋 ∈ 𝑑𝑜𝑚(𝜇𝑐) and 𝜇𝑐(𝑋) = 𝑉. 

(3) 𝑅 is 𝑥 = 𝑦, 𝑥 ∈ 𝑑𝑜𝑚(𝜇𝑐), 𝑦 ∈ 𝑑𝑜𝑚(𝜇𝑐) and 𝜇𝑐(𝑥) = 𝜇𝑐(𝑦). 

(4) 𝑅 is 𝑋 = 𝑌, 𝑋 ∈ 𝑑𝑜𝑚(𝜇𝑐), 𝑌 ∈ 𝑑𝑜𝑚(𝜇𝑐) and 𝜇𝑐(𝑋) = 𝜇𝑐(𝑌). 

For the inequality symbols (>, <, >=, <=, ⊃, ⊂, ⊇, ⊆, ! =) similar definitions hold. 

(5) 𝑅 is 𝑥 ∈ 𝑉, 𝑥 ∈ 𝑑𝑜𝑚(𝜇𝑐) and 𝜇𝑐(𝑥) ∈ 𝑉. 

(6) 𝑅 is 𝑥 ∈ 𝑌, 𝑥 ∈ 𝑑𝑜𝑚(𝜇𝑐), 𝑌 ∈ 𝑑𝑜𝑚(𝜇𝑐) and 𝜇𝑐(𝑥) ∈ 𝜇𝑐(𝑌). 

For the rest of existential symbols (∉) similar definitions hold. 
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(7) 𝑅 is 𝑡 ∈ 𝑉𝑏𝑒𝑓, ∀𝑥 ∈ 𝑣𝑎𝑟(𝑡) 𝑥 ∈ 𝑑𝑜𝑚(𝜇𝑐) and 𝑡|∀𝑥∈𝑣𝑎𝑟(𝑡): 𝜇𝑐(𝑥) ∈ 𝑉𝑏𝑒𝑓, where 

𝑡|∀𝑥∈𝑣𝑎𝑟(𝑡): 𝜇𝑐(𝑥) represents the tuple 𝑡 where each of its variables 𝑥 is substituted by 𝜇𝑐(𝑥).  

(8) 𝑅 is 𝑡 ∉ 𝑉𝑏𝑒𝑓, ∀𝑥 ∈ 𝑣𝑎𝑟(𝑡) 𝑥 ∈ 𝑑𝑜𝑚(𝜇𝑐) and 𝑡|∀𝑥∈𝑣𝑎𝑟(𝑡): 𝜇𝑐(𝑥) ∉ 𝑉𝑏𝑒𝑓, where 

𝑡|∀𝑥∈𝑣𝑎𝑟(𝑡): 𝜇𝑐(𝑥) represents the tuple 𝑡 where each of its variables 𝑥 is substituted by 𝜇𝑐(𝑥). 

For the rest of pre-/post-conditions (𝑡 ∈ 𝑉𝑎𝑓 , 𝑡 ∉ 𝑉𝑎𝑓 and with inference) similar definitions 

hold. 

(9) 𝑅 is 𝑓𝑢𝑛(𝑥), 𝑥 ∈ 𝑑𝑜𝑚(𝜇𝑐) and 𝑓𝑢𝑛(𝜇𝑐(𝑥)) is true. 

For the rest of functions (𝑓𝑢𝑛(𝑥, 𝑣), 𝑓𝑢𝑛(𝑣, 𝑥), 𝑓𝑢𝑛(𝑥, 𝑦), and with variables of type set and 

set values) similar definitions hold. 

(10) 𝑅 is ∀𝑥 ∈ 𝑋: 𝑓(𝑥), 𝑋 ∈ 𝑑𝑜𝑚(𝜇𝑐) and ∀𝑣 ∈ 𝜇𝑐(𝑋) 𝑓(𝑣) is true. 

(11) 𝑅 is ∃𝑥 ∈ 𝑋: 𝑓(𝑥), 𝑋 ∈ 𝑑𝑜𝑚(𝜇𝑐) and ∃𝑣 ∈ 𝜇𝑐(𝑋) 𝑓(𝑣) is true. 

(12) 𝑅 is ∄𝑥 ∈ 𝑋: 𝑓(𝑥), 𝑋 ∈ 𝑑𝑜𝑚(𝜇𝑐) and ∀𝑣 ∈ 𝜇𝑐(𝑋) 𝑓(𝑣) is false. 

(13) 𝑅 is ∀𝑥 ∈ 𝑋: 𝑓(𝑥, 𝑦), 𝑋 ∈ 𝑑𝑜𝑚(𝜇𝑐), 𝑦 ∈ 𝑑𝑜𝑚(𝜇𝑐) and ∀𝑣 ∈ 𝜇𝑐(𝑋) 𝑓(𝑣, 𝜇𝑐(𝑦)) is true. 

(14) 𝑅 is ∃𝑥 ∈ 𝑋: 𝑓(𝑥, 𝑦), 𝑋 ∈ 𝑑𝑜𝑚(𝜇𝑐), 𝑦 ∈ 𝑑𝑜𝑚(𝜇𝑐) and ∃𝑣 ∈ 𝜇𝑐(𝑋) 𝑓(𝑣, 𝜇𝑐(𝑦)) is true. 

(15) 𝑅 is ∄𝑥 ∈ 𝑋: 𝑓(𝑥, 𝑦), 𝑋 ∈ 𝑑𝑜𝑚(𝜇𝑐), 𝑦 ∈ 𝑑𝑜𝑚(𝜇𝑐) and ∀𝑣 ∈ 𝜇𝑐(𝑋) 𝑓(𝑣, 𝜇𝑐(𝑦)) is false. 

For the rest of quantified expressions (∀𝑥 ∈ 𝑋: ∀𝑦 ∈ 𝑌: 𝑓(𝑥, 𝑦), ∀𝑥 ∈ 𝑋: ∃𝑦 ∈ 𝑌: 𝑓(𝑥, 𝑦), 

∃𝑥 ∈ 𝑋: ∃𝑦 ∈ 𝑌: 𝑓(𝑥, 𝑦), ∄𝑥 ∈ 𝑋: ∄𝑦 ∈ 𝑌: 𝑓(𝑥, 𝑦)) similar definitions hold. 

(16) 𝑅 is 𝑓(𝑥𝑂𝑃𝑇), where 𝑓 may be any of the aforementioned built-in unary expressions on 

a scalar variable, 𝑥𝑂𝑃𝑇 ∈ 𝑑𝑜𝑚(𝜇𝑐) and 𝜇𝑐(𝑥𝑂𝑃𝑇) = ∅, or 𝑥𝑂𝑃𝑇 ∈ 𝑑𝑜𝑚(𝜇𝑐) and 

𝜇𝑐(𝑥𝑂𝑃𝑇) ≠ ∅ and 𝑓(𝜇𝑐(𝑥𝑂𝑃𝑇)) is true. Similar holds for an optional variable of type set 

(𝑋𝑂𝑃𝑇). 

(17) 𝑅 is (¬𝑅1), 𝑅1 is a built-in filter expression, and it is not the case that 𝜇𝑐 ⊨ 𝑅1. 

(18) 𝑅 is (𝑅1 ∨ 𝑅2), 𝑅1 and 𝑅2 are built-in filter expressions, and 𝜇𝑐 ⊨ 𝑅1 or 𝜇𝑐 ⊨ 𝑅2. 

(19) 𝑅 is (𝑅1 ∧ 𝑅2), 𝑅1 and 𝑅2 are built-in filter expressions, and 𝜇𝑐 ⊨ 𝑅1 and 𝜇𝑐 ⊨ 𝑅2. 

 

Definition 9. Given a set of change instances 𝐼 and a filter expression (𝑃 𝐹𝐼𝐿𝑇𝐸𝑅 𝑅), 

⟦(𝑃 𝐹𝐼𝐿𝑇𝐸𝑅 𝑅)⟧𝐼 = {𝜇𝑐 ∈ ⟦𝑃⟧𝐼|𝜇𝑐 ⊨ 𝑅}. 

 

3.4.2.2. Extended Algebra and Semantics 

In order to formally define the binding construct of a complex change definition and multiple 

cardinality ("+", "*"), the presented algebra has to be extended with assignment and 

aggregation constructs. For this, the semantics of a change pattern should depend on a set of 

change instances 𝐼 as well as on a mapping 𝜇𝑐, called environment. The semantics of the 

extended change pattern expressions can be defined as a function [∙]𝐼
𝜇𝑐  which takes as input an 
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extended change pattern expression and returns a set of mappings. The environment 

evaluation [𝑃]𝐼
𝜇𝑐  of a change pattern 𝑃 over a set of change instances 𝐼 with respect to a 

mapping 𝜇𝑐 is defined the same as ⟦𝑃⟧𝐼 when 𝜇𝑐 = ∅. Therefore, for the change patterns 

defined in Section 3.4.2.1 ⟦𝑃⟧𝐼 = [𝑃]𝐼
∅. 

 

Extend Operator. First, the Extend operator is presented, which captures the complex change 

assignment construct, providing the algebraic means of assigning an expression to a variable. 

Note that in terms of the proposed complex change language, the expression might be a 

variable or the result of an aggregation function. Therefore, the algebra is extended so that:  

𝐸𝑥𝑡𝑒𝑛𝑑(𝑥, 𝐸, 𝑃) is a change pattern, where 𝑥 is a variable not in 𝑣𝑎𝑟(𝑃), 𝐸 is an expression 

and 𝑃 is a change pattern. 

 

Definition 10. The evaluation of a change pattern 𝐸𝑥𝑡𝑒𝑛𝑑(𝑥, 𝐸, 𝑃) given a set of change 

instances 𝐼 and an environment 𝑣 is defined as follows: 

[𝐸𝑥𝑡𝑒𝑛𝑑(𝑥, 𝐸, 𝑃)]𝐼
𝑣 = {𝜇𝑐|𝜇𝑐

′ ∈ [𝑃]𝐼
𝑣 , 𝜇𝑐 = 𝜇𝑐

′ ∪ {𝑥 ↦ [𝐸]𝐼
𝜇𝑐

′

}}. 

 

Intuitively, 𝐸𝑥𝑡𝑒𝑛𝑑 assigns to variable 𝑥 the evaluation of 𝐸 in each solution mapping of 𝑃 

and the set of change instances 𝐼. 

 

Group and Aggregate. Next, aggregation in terms of complex change definitions is 

formalized. The notion of groups is introduced: a group induces a partitioning of a change 

pattern's solution mappings into equivalence classes, each of which is determined by a key 

obtained from the evaluation of a list of variables. The list of variables for a complex change 

comprises of: (1) the change variables of changes it consists of with cardinality 1 or "?", since 

one respective instance is considered, and (2) the descriptive variables that are used in 

assignments without aggregation and correspond (only) to changes with cardinality "+" or 

"*", since even if multiple instances are considered, all of them should have a common value 

on these variables. If the list of variables is empty, then one group is assumed with all change 

pattern's solution mappings. 

 

Definition 11. A 𝑣𝑙-list is a list of values in 𝑉𝑙. The evaluation [𝑉𝑟
𝑔]

𝐼

𝜇𝑐
 of a variable list 𝑉𝑟

𝑔
=

〈𝑣𝑟1, … , 𝑣𝑟𝑛〉 over a set of change instances 𝐼 with respect to a mapping 𝜇𝑐 is the 𝑣𝑙-list 

〈[𝑣𝑟1]𝐼
𝜇𝑐 , … , [𝑣𝑟𝑛]𝐼

𝜇𝑐〉. 
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Definition 12. A group is a construct Γ = 𝐺𝑟𝑜𝑢𝑝(𝑉𝑟
𝑔

, 𝑃), where 𝑉𝑟
𝑔

 is a list of variables and 

𝑃 a change pattern. The evaluation ⟦Γ⟧𝐼 of a group Γ = 𝐺𝑟𝑜𝑢𝑝(𝑉𝑟
𝑔

, 𝑃) over a set of change 

instances 𝐼 is a partial function from 𝑣𝑙-lists to sets of mappings, that is defined for all 𝑣𝑙-lists 

𝐾𝑒𝑦 = [𝑉𝑟
𝑔

]
𝐼

𝜇𝑐
 with 𝜇𝑐 ∈ ⟦𝑃⟧𝐼 as follows: 

⟦Γ⟧𝐼(𝐾𝑒𝑦) = {𝜇𝑐|𝜇𝑐 ∈ ⟦𝑃⟧𝐼 , [𝑉𝑟
𝑔

]
𝐼

𝜇𝑐
= 𝐾𝑒𝑦}. 

 

Notice that the evaluation of groups is not dependent on environments, while the evaluation 

of 𝑣𝑙-lists it is. 

 

Similar to aggregate functions proposed in standard query languages, union aggregate 

function allows to compute a single value for each group of solution mappings. Specifically, it 

calculates a set value for each group of solution mappings, based on the evaluation of a 

specific variable 𝑣𝑟  over the solution mappings of each group. Suppose Λ be a set of 

mappings of variable 𝑣𝑟  to values in 𝑉𝑙, then: 𝑢𝑛𝑖𝑜𝑛(Λ) = ⋃∀{𝑣𝑟⟼𝑣𝑙}∈Λ{𝑣𝑙}. 

 

The aggregate construct is defined below, as a construct which computes a set value for each 

group, by means of union aggregate function. 

 

Definition 13. An aggregate is a construct of the form 𝐴 = 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(𝑣𝑟 , 𝑢𝑛𝑖𝑜𝑛, Γ), where 

𝑣𝑟  is a variable, 𝑢𝑛𝑖𝑜𝑛 is an aggregate function and Γ = 𝐺𝑟𝑜𝑢𝑝(𝑉𝑟
𝑔

, 𝑃) is a group. The 

evaluation ⟦𝐴⟧𝐼 of an aggregate 𝐴 = 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(𝑣𝑟 , 𝑢𝑛𝑖𝑜𝑛, Γ) over a set of change instances 

𝐼 is a partial function from 𝑣𝑙-lists to values such that for each 𝐾𝑒𝑦 in the domain of ⟦Γ⟧𝐼, 

⟦𝐴⟧𝐼(𝐾𝑒𝑦) = 𝑢𝑛𝑖𝑜𝑛({[𝑣𝑟]𝐼
𝜇𝑐|𝜇𝑐 ∈ ⟦Γ⟧𝐼(𝐾𝑒𝑦)}). 

 

3.4.3. Illustrative Examples 

Examples 1-5 present complex change definitions regarding the changes discussed in Figure 1 

on part of the DBpedia ontology. Examples 6-8 further elaborate on concepts of the proposed 

language and are based on the DBpedia ontology as well. 

 

Example 1. Add_Person models the case where a new individual of type person is added. It is 

a specialization of simple change Add_Type_To_Individual, where the type equals to 

dbo:Person via a testing value constraint over parameter type. No binding is defined, as it is 

inferred by repeating the complex change parameter as parameter on the change in change 

list. Besides Add_Property_Instance no cardinality is defined as cardinality one is inferred. 



 

 44 

CREATE COMPLEX CHANGE Add_Person(id) {  

CHANGE LIST Add_Type_To_Individual(id, type) ;  

FILTER LIST type=dbo:Person ; } ; 

 

Example 2. Add_Name models the case where a new name property with value n is assigned 

to a person id. It is a specialization of simple change Add_Property_Instance, where the 

property equals to foaf:name via a testing value constraint over parameter prop. Bindings and 

cardinality are as in example 1. Similar definitions can be defined for all properties on person. 

 

CREATE COMPLEX CHANGE Add_Name(id, n) {  

CHANGE LIST Add_Property_Instance(id, prop, n) ;  

FILTER LIST prop=foaf:name ; } ; 

 

Example 3. Add_Person_with_Details models the case where a new person id is added with a 

number of descriptive properties assigned. Properties birth date and death date are optional, 

specifically zero or one property instance may be assigned to each person as defined by "?", 

since this information may be missing or death date may not be appropriate.  

CREATE COMPLEX CHANGE Add_Person_with_Details(id, n, bD, dD) {  

CHANGE LIST Add_Person(id), Add_Name(id, n), Add_BirthDate(id, bD) ?, 

Add_DeathDate(id, dD) ? ; } ; 

 

Example 4. Add_Professional is a specialization of Add_Person_with_Details and thus it is 

defined on top. It models the case where an added person is assigned several properties 

related to its professional activity, like employers, title, the start year and end year when being 

active. Since multiple employers may appear, cardinality "+" is used besides Add_Employer. 

Title, start year and end year may be missing, and thus cardinality "?" is used besides relevant 

changes, indicating zero or one instance. Parameter E holds all employers that the added 

person is connected with. This is defined with a union aggregate function in the binding list. 

CREATE COMPLEX CHANGE Add_Professional(id, E, t, sY, eY) {  

CHANGE LIST Add_Person_with_Details(id, n, bD, dD), Add_Employer(id, 

e) +, Add_Title(id, t) ?, Add_ActiveYearsStartYear(id, sY) ?, 

Add_ActiveYearsEndYear(id, eY) ? ;  

BINDING LIST union(e) as E ; } ; 

 

Example 5. Add_Academic_Professional is a specialization of Add_Professional and thus it is 

defined on top. It models the case where the added professional works only in academia. This 

is defined by a post-condition constraint on E using quantification. 

CREATE COMPLEX CHANGE Add_Academic_Professional(id, E) {  

CHANGE LIST Add_Professional(id, E, t, sY, eY) ;  

FILTER LIST for each e in E : (e,rdf:type,dbo:University) in Vaf ; } 

; 

 

Example 6. Add_Professionals_withCommon_Employers is built on top of Add_Professional. 

It identifies all the added professionals that have the same employers, i.e. groups all the 
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Add_Professional change instances with the same value in parameter E. This is denoted by 

cardinality "+" besides Add_Professional change, while at the same time complex change 

parameter E equals the respective Add_Professional change parameter. Also, I holds all the 

professionals with the same employers E. This is defined by the union aggregate in the 

binding list. Notice, that if for example parameter t was also a complex change parameter, 

then the grouping would be the professionals with same employers E and title t. 

CREATE COMPLEX CHANGE Add_Professionals_withCommon_Employers(I, E) {  

CHANGE LIST Add_Professional(id, E, t, sY, eY) + ;  

BINDING LIST union(id) as I ; } ; 

 

Example 7. Add_Organization_with_ChildOrganisations models the case where a new 

organization is added together with its child-organizations, which may be more than one 

(cardinality "+"). This change is used in example 8. Changes Add_Organization and 

Add_ChildOrganization are defined similar to Add_Person and Add_Name respectively. 

CREATE COMPLEX CHANGE Add_Organisation_withChildOrganisations(id, C){  

CHANGE LIST Add_Organisation(id), Add_ChildOrganisation(id, chId) + ; 

BINDING LIST union(chId) as C ; } ; 

 

Example 8. Add_Organisation_Hierarchy models the case where a new organization is added 

together with any child-organizations, which in turn may have their child-organizations, 

forming overall a hierarchical structure with four levels. The notion of optional change path 

may be used in order to model the addition of such hierarchies, where in some cases may be 

complete while in others partial, since elements lower in the hierarchy may not appear. Here, 

one Add_Organization_with_ChildOrganisations is defined as mandatory change and two 

more as optional changes with cardinality "*", since zero, one or more organizations with 

child-organizations may be added lower in the hierarchy. The relational constraints (operator 

in) are used in the filter list to define the dependencies and connections among changes.  

CREATE COMPLEX CHANGE Add_Organisation_Hierachy(id1, L2, L3, L4) {  

CHANGE LIST Add_Organisation_withChildOrganisations(id1, C2), 

Add_Organisation_withChildOrganisations(id2, C3) *, 

Add_Organisation_withChildOrganisations(id3, C4) * ;  

FILTER LIST id2 in C2, id3 in C3 ;  

BINDING LIST C2 as L2, union(C3) as L3, union(C4) as L4 ; } ; 

 

3.5. Complex Change Detection 

Complex change detection is the process of identifying complex change instances. It requires 

as input a set of simple change instances detected between two dataset versions (𝑆𝑖), the 

dataset versions (before 𝑉𝑏𝑒𝑓 and after 𝑉𝑎𝑓) and the complex change definitions that will be 

evaluated for detecting respective instances (𝐶). For implementing the proposed language, we 

translate it into an already implemented language. As this approach concerns RDF data, we 
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choose to rely on SPARQL, which provides similar capabilities to the proposed language. 

Accordingly, simple and complex change instances, as well as dataset versions are encoded as 

RDF(S) data. Section 3.5.1 presents the complex change detection algorithm, Section 3.5.2 

how change instances are represented in RDF(S), Section 3.5.3 the translation process for 

generating SPARQL queries, Section 3.5.4 the change instance generation process and 

Section 3.5.5 the correctness of the proposed implementation with respect to the language 

semantics. 

 

3.5.1. Algorithm 

The presented complex change detection algorithm, Algorithm 1, involves two steps: the first 

step handles nested definitions, the second produces complex change instances.  

 

Algorithm 1: Complex Change Detection 

Input: A set of complex changes 𝐶, a dataset version before 𝑉𝑏𝑒𝑓 and 

after 𝑉𝑎𝑓, a set of simple change instances 𝑆𝑖 

Output: A set of complex changes instances 𝐼 of 𝐶 

1  𝐼 ← { } ; 
2  queue 𝑄 ← 𝑝𝑜𝑠𝑡𝑂𝑟𝑑𝑒𝑟𝐷𝑓𝑠(𝐶) ;//complex changes sorted based on 
dependencies 

3  while !𝑄. 𝑖𝑠𝐸𝑚𝑝𝑡𝑦( ) do  
4   𝑐 ← 𝑄. 𝑑𝑒𝑞𝑢𝑒𝑢𝑒( ) ; 

5   𝑞𝑢𝑒𝑟𝑦 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝑄𝑢𝑒𝑟𝑦(𝐷(𝑐), 𝐹(𝑐)) ; 

6   𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡 ← 𝑒𝑥𝑒𝑐(𝑞𝑢𝑒𝑟𝑦, 𝑆𝑖 , 𝐼, 𝑉𝑏𝑒𝑓 , 𝑉𝑎𝑓) ; 

7   𝐼𝑐 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠(𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡, 𝐹𝐶
𝑐𝑎𝑟(𝑐)) ; 

8   𝐼 ← 𝐼 ∪ 𝐼𝑐 ; //report instances 

9  end while  

10 return 𝐼 ; 

 

As for the first step, suppose a complex change 𝑐 whose definition is based on a set of 

complex changes (𝐷𝐶 ≠ ∅). The detection of 𝑐 instances depends on detecting the instances of 

each complex change in 𝐷𝐶  and therefore follows their detection. Note that mutually 

dependent complex changes are not supported. In general, complex change definitions 

constitute a directed acyclic graph, where nodes represent changes and edges dependencies 

between them. An edge departing from a complex change 𝑐 arrives at changes in 𝐷𝐶  

according to its definition. Thus, detection follows a post-order depth-first scheme on the 

induced dependency graph by complex change definitions. This is stated in line 2 of 

Algorithm 1. postOrderDfs function call runs over the set of complex changes 𝐶 identifying 

the dependencies among changes, returning a queue 𝑄 of all changes in 𝐶, where the order of 

elements defines the order in which they have to be detected. 
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As for the second step, for each complex change 𝑐 in 𝑄, instances are computed (lines 3-10). 

The main idea is that each complex change definition is translated into a SPARQL query plus 

a post process for computing respective complex change instances based on the query result. 

Simple and complex change instances as well as dataset versions are encoded as RDF(S) data, 

so that the constructed SPARQL queries are applied on them. Therefore, for each complex 

change an appropriate SPARQL query is created via createQuery function call (line 5). The 

query is executed on the detected change instances and dataset versions (line 6), in order to 

select change instances that verify the defined constraints. The query results are further 

elaborated through createInstances function call (line 7), so that selected changes are grouped 

based on cardinality. Computed instances are added into the set of instances to be reported 𝐼 

(line 8, initialized in line 1) and become available for the detection of dependent complex 

changes. Finally, the set of detected complex change instances 𝐼 is returned (line 10). 

 

3.5.2. RDF(S) Change Representation 

The proposed schema describes the specification of each change and the instances under this 

schema describe the detected change instances. It actually forms a change vocabulary, with a 

dedicated namespace <http://dblab.ece.ntua.gr/change#> and prefix <ch>. The classes, 

properties and individuals are described below in detail. 

 

Classes. A class for simple changes (ch:Simple_Change) and a class for complex changes 

(ch:Complex_Change) is used. Both are subclasses of a generic class for all changes 

(ch:Change). Also, for each simple change defined in Annex I a respective class is defined: 

ch:Add_Type_To_Individual, ch:Add_Property_Instance, etc. In total there are 38 classes for 

the simple changes, which are all subclasses of ch:Simple_Change class. Similarly, for each 

defined complex change in a set of complex changes 𝐶 a class is defined, following the 

naming pattern <namespace>:<complex change name>, where a data-specific namespace is 

considered in line with the application domain of the complex changes. These classes are all 

subclasses of ch:Complex_Change class. For example, dbo:Add_Academic_Professional is a 

class for one of the complex changes defined in the running example.  

 

Properties. For each descriptive parameter of a simple change, a property is considered and is 

named based on the simple change name and its index in the descriptive parameter list. The 

naming pattern is ch:<simple change name>_p<parameter index>. For each property, the 

domain is the respective simple change class and the range matches the value type it 

represents in the definition. For example, the simple change Add_Type_To_Individual(a, b) 
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has two properties defined: the first is ch:Add_Type_To_Individual_p1 with domain 

ch:Add_Type_To_Individual and range rdfs:Resource, and the second is 

ch:Add_Type_To_Individual_p2 with the same domain and range rdfs:Class. Similarly, for 

each descriptive parameter of a complex change a property is defined, where the naming 

pattern, domain and range are defined alike the simple changes.  

 

Additionally, the property ch:contains is employed for modeling explicitly the containment 

relationship between change instances. The domain is ch:Complex_Change and the range is 

ch:Change, as only complex change instances may contain simple/complex change instances. 

 

Instances. The instances of the defined schema are simple and complex change instances that 

are detected between two dataset versions. They are actually instances of the defined classes 

and are attributed with the defined properties. 

 

Figure 3 presents an outline of the structure of the proposed RDF(S) schema. Two simple 

change classes and two complex change classes are presented indicatively, as well as a 

complex instance of Add_Academic_Professional presented in the running example. 

 

 

Figure 3 Outline of the proposed RDF(S) change representation. 

3.5.3. SPARQL Query Generation 

Algorithm 2 presents the process of generating a SPARQL query 𝑞, given a complex change 

𝑐. This involves the generation of a SELECT clause (lines 2-6), a FROM clause (line 7), a 

WHERE clause (lines 8-17, 24-69), an ORDER BY clause (lines 18-21), and their 

concatenation into the query string 𝑞 (line 22), which is finally returned (line 23). Note that 

prefix definitions should be defined, while omitted for simplicity. 



 

 49 

SELECT Clause. Since the generated query is used for calculating complex change instances, 

it has to return: (1) the values to be assigned in the complex change descriptive parameters, 

(2) the change instances that are to be contained by the newly detected complex change 

instance. Thus, SELECT clause includes: (1) variables for the descriptive parameters (𝑃) of 

the complex change as defined in the change heading statement (lines 3-4), (2) variables for 

identifying each change in the change list statement (lines 5-6). If 𝑐 includes bindings, they 

are considered when specifying the variables for descriptive parameters via getBindParameter 

function call: each parameter 𝑝 is substituted by the identifier used for its evaluation.  

 

FROM Clause. The FROM clause includes two named graphs: Si holding simple change 

instances and I holding complex change instances that are already computed (line 7). 

 

WHERE Clause. Overall, the WHERE clause includes a graph pattern with: (1) triple patterns 

corresponding to the changes in the change list statement, (2) appropriate statements for the 

filters defined in the filter list statement. As for (1), the triple patterns that correspond for each 

change follow the RDF(S) representation defined in Section 3.5.2 and are generated via 

getTriplePattern function (lines 49-64). getTriplePattern requires as input a change 𝑑 and a set 

of 𝑓𝑖𝑙𝑡𝑒𝑟𝑠. Recall that a change parameter may be defined as optional (i.e., evaluating into 

empty value). The relevant triple pattern includes an optional graph pattern for this parameter, 

while unary filters on it are considered within the optional pattern (lines 51, 59-63). As for 

(2), each filter type is mapped to an appropriate SPARQL FILTER statement or subquery via 

getFilterPattern function (lines 65-69). getFilterPattern requires as input a filter 𝑓𝑐 and the 

𝑐ℎ𝑎𝑛𝑔𝑒𝑠 over which the filter applies. Testing value, relational and functional constraints, as 

well as pre-/post-conditions on scalar parameters are similar to built-in SPARQL constraints. 

 

However, triple patterns corresponding to changes and filters must be structured in an 

appropriate manner due to composite filter expressions and cardinality constraints. Recall that 

filters may be combined into logical expressions using logical AND, OR, NOT. In this case, 

the equivalent DNF (disjunctive normal form) of the expression is computed (line 9). Each 

conjunction is a combination of filters that should be satisfied by the changes in the change 

list. Therefore, the WHERE clause is formed as the union of graph patterns where each 

includes the appropriate triple patterns for changes plus one of the possible combination of 

filters (lines 10-17). Each such graph pattern is generated by a getPattern function call (lines 

11, 14), where getPattern function (lines 24-37) together with getOptionalPattern (lines 38-

48), for handling optional changes, orchestrate the process.  
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As for getPattern function, it requires as input a change 𝑐 and a set of filters constituting a 

filter conjunction. First, the mandatory (cardinality 1 or "+") and optional (cardinality "?" or 

"*") changes are identified (lines 25-26). Second, the triple pattern for each mandatory change 

is generated (lines 27-28) via getTriplePattern function call, as well as the pattern for each 

unary or binary filter on mandatory changes (lines 29-34) via getFilterPattern function call. 

Notice that the getFilterPattern function call has as input the filter 𝑓𝑐 and the changes that its 

parameters are on, generated by the getChanges function call. Next, the triple patterns for 

optional changes are considered (lines 35-36), starting from those that are directly connected 

via a filter 𝑓𝑐 to mandatory changes (line 36), generated by getOptionalPattern function call 

(line 36). Finally, getPattern function returns the generated pattern (line 37).  

 

As for getOptionalPattern function, it is a recursive function that generates a SPARQL 

optional statement, which may contain nested SPARQL optional statements, following the 

dependencies between optional changes, ultimately forming optional change paths (see 

Section 3.4.2.1). getOptionalPattern requires as input, an optional change 𝑑, a set of filters 

(𝑓𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛), a set of changes of previous iteration (𝑝𝑎𝑟𝑒𝑛𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑠, that 𝑑 is 

dependent) and a set of optional changes (𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝐶ℎ𝑎𝑛𝑔𝑒𝑠). First, the triple pattern for the 

optional change 𝑑 is generated into a SPARQL optional statement (line 38). Second, for each 

filter 𝑓𝑐, that is unary with its parameter on 𝑑 or binary with its parameters on 𝑑 and 

𝑝𝑎𝑟𝑒𝑛𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑠, a triple pattern is generated within the SPARQL optional statement via a 

getFilterPattern function call (lines 39-44). Next, it is examined if there are optional changes 

𝑑′ dependent on 𝑑 and for each such change getOptionalPattern function is recursively called, 

resulting in the generation of a nested SPARQL optional statement (lines 45-46). Finally, the 

optional pattern is completed (line 47) and then returned (line 48). 

 

ORDER BY Clause. Complex change detection is a two step process, where the second step is 

change instance generation based on the SPARQL query results. In order to facilitate this step 

it is necessary to have the query results in order, so that results that are to be grouped into one 

complex change instance are positioned nearby in the query result set. Thus, an ORDER BY 

clause (lines 18-21) is considered with: (1) grouping variables except from those representing 

set parameters, (2) change variables for each change in the change list statement. Based on 

the semantics presented in Section 3.4.2.2, grouping variables are the ones in variable list, 

which defines the groups, and are further discussed in Section 3.5.4. The variables 

representing set parameters are excluded, because set values "span" among multiple lines in 

the result set. In order to be computed, ordering based on all change variables is needed.  
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Algorithm 2: SPARQL Query Generation 

Input: A complex change 𝑐 = (𝑛, 𝑃, 𝐷, 𝐹) (where 𝐹 = 𝐹𝐶
𝑐𝑎𝑟 ∪ 𝐹𝐶

𝑝𝑎𝑟
∪ 𝐹𝐵, 𝐹𝐶

𝑐𝑎𝑟 is a 

set of cardinality constraints, 𝐹𝐶
𝑝𝑎𝑟

 filter constraints, 𝐹𝐵 bindings), 

a named graph of simple change instances 𝑆𝑖, a named graph of complex 

change instances 𝐼, a named graph of the version before 𝑉𝑏𝑒𝑓, and a 

named graph with the version after 𝑉𝑎𝑓 

Output: A SPARQL query 𝑞 
1  𝑞 ← "" ; 

2  𝑠𝑒𝑙𝑒𝑐𝑡𝐶𝑙𝑎𝑢𝑠𝑒 ← "𝑆𝐸𝐿𝐸𝐶𝑇 " ; 
3  for each 𝑝 in 𝑃 do  
4   𝑠𝑒𝑙𝑒𝑐𝑡𝐶𝑙𝑎𝑢𝑠𝑒 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝐶𝑙𝑎𝑢𝑠𝑒 + " ? " + 𝑔𝑒𝑡𝐵𝑖𝑛𝑑𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(𝑝, 𝐹𝐵) ; end for 
5  for each 𝑑 in 𝐷 do  
6   𝑠𝑒𝑙𝑒𝑐𝑡𝐶𝑙𝑎𝑢𝑠𝑒 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝐶𝑙𝑎𝑢𝑠𝑒 + " ? " + 𝑑 ; end for 
7  𝑓𝑟𝑜𝑚𝐶𝑙𝑎𝑢𝑠𝑒 ← " 𝐹𝑅𝑂𝑀 < " + 𝑆𝑖 + " >  𝐹𝑅𝑂𝑀 < " + 𝐼 + " > " ; 
8  𝑤ℎ𝑒𝑟𝑒𝐶𝑙𝑎𝑢𝑠𝑒 ← " 𝑊𝐻𝐸𝑅𝐸 {" ; 

9  𝑑𝑛𝑓𝐹𝑖𝑙𝑡𝑒𝑟𝐸𝑥𝑝𝑟 ← 𝐷𝑛𝑓(𝐹𝐶
𝑝𝑎𝑟

) ; // compute equivalent DNF expression 

10 if (𝑑𝑛𝑓𝐹𝑖𝑙𝑡𝑒𝑟𝐸𝑥𝑝𝑟 𝑖𝑠 𝑎 𝑓𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛) do // generate a triple pattern 
11  𝑔𝑒𝑡𝑃𝑎𝑡𝑡𝑒𝑟𝑛(𝑐, 𝑑𝑛𝑓𝐹𝑖𝑙𝑡𝑒𝑟𝐸𝑥𝑝𝑟) ;  
12 else // generate a union of triple patterns 

13  for each 𝑓𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖 in 𝑑𝑛𝑓𝐹𝑖𝑙𝑡𝑒𝑟𝐸𝑥𝑝𝑟 do 
14   𝑤ℎ𝑒𝑟𝑒𝐶𝑙𝑎𝑢𝑠𝑒 ← 𝑤ℎ𝑒𝑟𝑒𝐶𝑙𝑎𝑢𝑠𝑒 + "{" + 𝑔𝑒𝑡𝑃𝑎𝑡𝑡𝑒𝑟𝑛(𝑐, 𝑓𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖) + "}" ; 
15   if (𝑑𝑛𝑓𝐹𝑖𝑙𝑡𝑒𝑟𝐸𝑥𝑝𝑟. 𝑠𝑖𝑧𝑒( ) > 𝑖) do 𝑤ℎ𝑒𝑟𝑒𝐶𝑙𝑎𝑢𝑠𝑒 ← 𝑤ℎ𝑒𝑟𝑒𝐶𝑙𝑎𝑢𝑠𝑒 + " 𝑈𝑁𝐼𝑂𝑁 " ; 
end if end for 

16 end if 

17 𝑤ℎ𝑒𝑟𝑒𝐶𝑙𝑎𝑢𝑠𝑒 ← 𝑤ℎ𝑒𝑟𝑒𝐶𝑙𝑎𝑢𝑠𝑒 + "}" ; 
18 𝑜𝑟𝑑𝑒𝑟𝐵𝑦𝐶𝑙𝑎𝑢𝑠𝑒 ← " 𝑂𝑅𝐷𝐸𝑅 𝐵𝑌" ; 
19 for each 𝑑 in 𝐷 do 𝑜𝑟𝑑𝑒𝑟𝐵𝑦𝐶𝑙𝑎𝑢𝑠𝑒 ← 𝑜𝑟𝑑𝑒𝑟𝐵𝑦𝐶𝑙𝑎𝑢𝑠𝑒 + " ? " + 𝑑 ; end for 
20 for each 𝑝 in 𝑃 do  

21  if ((𝑖𝑠𝐼𝑛𝐼𝑛𝑓𝑒𝑟𝑟𝑒𝑑𝐵𝑖𝑛𝑑𝑖𝑛𝑔(𝑝, 𝐹𝐵) ∨ 𝑖𝑠𝐼𝑛𝐵𝑖𝑛𝑑𝑖𝑛𝑔𝑊𝑖𝑡ℎ𝑜𝑢𝑡𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛(𝑝, 𝐹𝐵)) ∧ 

𝑖𝑠𝑂𝑛𝑙𝑦𝑂𝑛𝐶ℎ𝑎𝑛𝑔𝑒𝑠𝑊𝑖𝑡ℎ𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 + 𝑂𝑟 ∗ (𝑝, 𝐷, 𝐹𝐶
𝑐𝑎𝑟) ∧ 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑠𝐼𝑛𝑡𝑜𝑆𝑐𝑎𝑙𝑎𝑟(𝑝)) do 

𝑜𝑟𝑑𝑒𝑟𝐵𝑦𝐶𝑙𝑎𝑢𝑠𝑒 ← 𝑜𝑟𝑑𝑒𝑟𝐵𝑦𝐶𝑙𝑎𝑢𝑠𝑒 + " ? " + 𝑝 ; end if end for 
22 𝑞 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝐶𝑙𝑎𝑢𝑠𝑒 + 𝑓𝑟𝑜𝑚𝐶𝑙𝑎𝑢𝑠𝑒 + 𝑤ℎ𝑒𝑟𝑒𝐶𝑙𝑎𝑢𝑠𝑒 + 𝑜𝑟𝑑𝑒𝑟𝐵𝑦𝐶𝑙𝑎𝑢𝑠𝑒 ; 
23 return 𝑞 ; 
𝒈𝒆𝒕𝑷𝒂𝒕𝒕𝒆𝒓𝒏(𝒄, 𝒇𝒊𝒍𝒕𝒆𝒓𝑪𝒐𝒏𝒋𝒖𝒏𝒄𝒕𝒊𝒐𝒏)  
24 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ← "" ; 
25 𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦𝐶ℎ𝑎𝑛𝑔𝑒𝑠 ← 𝑔𝑒𝑡𝑀𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦𝐶ℎ𝑎𝑛𝑔𝑒𝑠(𝐷, 𝐹𝐶

𝑐𝑎𝑟) ; 
26 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝐶ℎ𝑎𝑛𝑔𝑒𝑠 ← 𝑔𝑒𝑡𝑂𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝐶ℎ𝑎𝑛𝑔𝑒𝑠(𝐷, 𝐹𝐶

𝑐𝑎𝑟) ; 
27 for each 𝑑 in 𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦𝐶ℎ𝑎𝑛𝑔𝑒𝑠 do 
28  𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ← 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 + 𝑔𝑒𝑡𝑇𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛(𝑑, 𝑓𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛) ; end for 
29 for each 𝑓𝐶 ∈ 𝑓𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 do 

30  if (𝑖𝑠𝑈𝑛𝑎𝑟𝑦(𝑓𝐶) ∧ 𝑖𝑠𝑂𝑛𝐶ℎ𝑎𝑛𝑔𝑒𝑠(𝑓𝐶 , 𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦𝐶ℎ𝑎𝑛𝑔𝑒𝑠)) do 

31   𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ← 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 + 𝑔𝑒𝑡𝐹𝑖𝑙𝑡𝑒𝑟𝑃𝑎𝑡𝑡𝑒𝑟𝑛(𝑓𝐶 , 𝑔𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑠(𝑓𝐶 , 𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦𝐶ℎ𝑎𝑛𝑔𝑒𝑠)) ; 

32  else if (𝑖𝑠𝐵𝑖𝑛𝑎𝑟𝑦(𝑓𝐶) ∧ 𝑖𝑠𝑂𝑛𝐶ℎ𝑎𝑛𝑔𝑒𝑠(𝑓𝐶 , 𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦𝐶ℎ𝑎𝑛𝑔𝑒𝑠)) do 

33   𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ← 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 + 𝑔𝑒𝑡𝐹𝑖𝑙𝑡𝑒𝑟𝑃𝑎𝑡𝑡𝑒𝑟𝑛(𝑓𝐶 , 𝑔𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑠(𝑓𝐶 , 𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦𝐶ℎ𝑎𝑛𝑔𝑒𝑠)) ; 
34  end if end for 

35 for each 𝑑 in 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝐶ℎ𝑎𝑛𝑔𝑒𝑠 do // generate optional pattern 
36  if ∃𝑓𝐶 ∈ 𝑓𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑠. 𝑡. 𝑖𝑠𝑂𝑛𝐶ℎ𝑎𝑛𝑔𝑒𝑠(𝑓𝑐 , 𝑑, 𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦𝐶ℎ𝑎𝑛𝑔𝑒𝑠) do 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ←
𝑝𝑎𝑡𝑡𝑒𝑟𝑛 + 𝑔𝑒𝑡𝑂𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛(𝑑, 𝑓𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦𝐶ℎ𝑎𝑛𝑔𝑒𝑠, 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝐶ℎ𝑎𝑛𝑔𝑒𝑠) 
; end if end for 

37 return 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ; 
𝒈𝒆𝒕𝑶𝒑𝒕𝒊𝒐𝒏𝒂𝒍𝑷𝒂𝒕𝒕𝒆𝒓𝒏(𝒅, 𝒇𝒊𝒍𝒕𝒆𝒓𝑪𝒐𝒏𝒋𝒖𝒏𝒄𝒕𝒊𝒐𝒏, 𝒑𝒂𝒓𝒆𝒏𝒕𝑪𝒉𝒂𝒏𝒈𝒆𝒔, 𝒐𝒑𝒕𝒊𝒐𝒏𝒂𝒍𝑪𝒉𝒂𝒏𝒈𝒆𝒔)  
38 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ← " 𝑂𝑃𝑇𝐼𝑂𝑁𝐴𝐿{" + 𝑔𝑒𝑡𝑇𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛(𝑑, 𝑓𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛) ; 
39 for each 𝑓𝐶 ∈ 𝑓𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 do 

40  if (𝑖𝑠𝑈𝑛𝑎𝑟𝑦(𝑓𝐶) ∧ 𝑖𝑠𝑂𝑛𝐶ℎ𝑎𝑛𝑔𝑒𝑠(𝑓𝐶 , {𝑑})) do 

41   𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ← 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛 + 𝑔𝑒𝑡𝐹𝑖𝑙𝑡𝑒𝑟𝑃𝑎𝑡𝑡𝑒𝑟𝑛(𝑓𝐶 , {𝑑}) ; 
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42  else if (𝑖𝑠𝐵𝑖𝑛𝑎𝑟𝑦(𝑓𝐶) ∧ 𝑖𝑠𝑂𝑛𝐶ℎ𝑎𝑛𝑔𝑒𝑠(𝑓𝐶 , 𝑑, 𝑝𝑎𝑟𝑒𝑛𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑠)) do 

43   𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ← 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛 + 𝑔𝑒𝑡𝐹𝑖𝑙𝑡𝑒𝑟𝑃𝑎𝑡𝑡𝑒𝑟𝑛(𝑓𝐶 , 𝑔𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑠(𝑓𝐶 , {𝑑} ∪

𝑝𝑎𝑟𝑒𝑛𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑠)) ; 
44  end if end for 

45 for each 𝑑′ in 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝐶ℎ𝑎𝑛𝑔𝑒𝑠 do // generate nested optional pattern 
46  if ∃𝑓𝐶 ∈ 𝑓𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑠. 𝑡. 𝑖𝑠𝑂𝑛𝐶ℎ𝑎𝑛𝑔𝑒𝑠(𝑓𝑐 , 𝑑′, {𝑑}) do 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ←
𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛 + 𝑔𝑒𝑡𝑂𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝑃𝑎𝑡𝑡ℎ𝑒𝑟𝑛(𝑑′, 𝑓𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛, {𝑑}, 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝐶ℎ𝑎𝑛𝑔𝑒𝑠) ; end 
if end for 

47 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ← 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛 + "}" ; 
48 return 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ; 
𝒈𝒆𝒕𝑻𝒓𝒊𝒑𝒍𝒆𝑷𝒂𝒕𝒕𝒆𝒓𝒏(𝒅, 𝒇𝒊𝒍𝒕𝒆𝒓𝒔) // where 𝑑 = (𝑛𝑎𝑚𝑒𝑑 , 𝑃𝑑) 
49 𝑡𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ← " ? " + 𝑑 + " 𝑟𝑑𝑓: 𝑡𝑦𝑝𝑒" + " " + 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 + ": " + 𝑛𝑎𝑚𝑒𝑑 + "; " ; // 
change type 

50 𝑛𝑜𝑛𝐸𝑚𝑝𝑡𝑦𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ← 𝑔𝑒𝑡𝑁𝑜𝑛𝐸𝑚𝑝𝑡𝑦𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(𝑃𝑑) ; 
51 𝑒𝑚𝑝𝑡𝑦𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ← 𝑔𝑒𝑡𝐸𝑚𝑝𝑡𝑦𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(𝑃𝑑) ; 
52 for each 𝑝𝑖 ∈ 𝑛𝑜𝑛𝐸𝑚𝑝𝑡𝑦𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 do // change parameters with non-
empty values 

53  𝑡𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ← 𝑡𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛 + " 𝑐ℎ: " + 𝑛𝑎𝑚𝑒𝑑 + "_𝑝" + 𝑖 + " ? " + 𝑝𝑖 ; 

54  if (𝑛𝑜𝑛𝐸𝑚𝑝𝑡𝑦𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠. 𝑠𝑖𝑧𝑒( ) > 𝑖) do  
55   𝑡𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ← 𝑡𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛 + "; " ; 
56  else 

57   𝑡𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ← 𝑡𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛 + ". " ; 
58  end if end for 

59 for each 𝑝𝑖 ∈ 𝑒𝑚𝑝𝑡𝑦𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 do // optional change parameters, with 
empty values  

60  𝑡𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ← 𝑡𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛 + " 𝑂𝑃𝑇𝐼𝑂𝑁𝐴𝐿{ ? " + 𝑑 + " 𝑐ℎ: " + 𝑛𝑎𝑚𝑒𝑑 + "_𝑝" + 𝑖 +
" ? " + 𝑝𝑖 ; 

61  for each 𝑓𝐶 ∈ 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 𝑠. 𝑡. 𝑖𝑠𝑂𝑛𝐶ℎ𝑎𝑛𝑔𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(𝑓𝑐 , 𝑑, 𝑝𝑖) do // unary filters 

62   𝑡𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ← 𝑡𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛 + 𝑔𝑒𝑡𝐹𝑖𝑙𝑡𝑒𝑟𝑃𝑎𝑡𝑡𝑒𝑟𝑛(𝑓𝐶 , {𝑑}) ; end for 
63  𝑡𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ← 𝑡𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛 + "}" ; end for 
64 return 𝑡𝑟𝑖𝑝𝑙𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛 ; 
𝒈𝒆𝒕𝑭𝒊𝒍𝒕𝒆𝒓𝑷𝒂𝒕𝒕𝒆𝒓𝒏(𝒇𝑪, 𝒄𝒉𝒂𝒏𝒈𝒆𝒔) // 𝑓𝐶 is mapped to appropriate statement 

65 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑜𝑛 𝑠𝑐𝑎𝑙𝑎𝑟 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 →  𝑆𝑃𝐴𝑅𝑄𝐿 𝐹𝐼𝐿𝑇𝐸𝑅 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 
66 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑜𝑛 𝑠𝑐𝑎𝑙𝑎𝑟 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 →  𝑆𝑃𝐴𝑅𝑄𝐿 𝐹𝐼𝐿𝑇𝐸𝑅 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 
67 𝑝𝑟𝑒/𝑝𝑜𝑠𝑡 − 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑜𝑛 𝑠𝑐𝑎𝑙𝑎𝑟 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 → 𝐹𝐼𝐿𝑇𝐸𝑅 𝐸𝑋𝐼𝑆𝑇𝑆/𝑁𝑂𝑇 𝐸𝑋𝐼𝑆𝑇𝑆 𝑜𝑛 𝑉𝑏𝑒𝑓/𝑉𝑎𝑓 

68 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 →  𝑆𝑃𝐴𝑅𝑄𝐿 𝑏𝑢𝑖𝑙𝑡 − 𝑖𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 
69 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑜𝑛 𝑠𝑒𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑜𝑟 𝑞𝑢𝑎𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 →  𝑆𝑃𝐴𝑅𝑄𝐿 𝑠𝑢𝑏 − 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 𝑎𝑛𝑑 𝑀𝐼𝑁𝑈𝑆 

 

As an example, consider the complex change Add_Academic_Professional defined in Section 

3.4.3, example 5. Table 2 presents the SPARQL query for the detection of this complex 

change. In the SELECT clause notice the query variable corresponding to change's identifier 

(?c_1) and the query variables corresponding to the complex change's descriptive parameters 

(?id, ?E). In the FROM clause, the named graph 𝑆𝑖 holds the simple change instances and the 

named graph 𝐼 holds the complex change instances. In the WHERE clause, notice the triple 

pattern for the Add_Professional change defined in change list. For the post-condition an 

appropriate SPARQL filter expression is considered evaluating over the named graph holding 

𝑉𝑎𝑓. Since it involves quantification, it is implemented via MINUS and a nested query. 

Finally, notice the ORDER BY clause which involves the contained change identifier. 
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Table 2 SPARQL query for the detection of complex change Add_Academic_Professional 

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

PREFIX dbo: <http://dbpedia.org/ontology/> 

PREFIX ch:  <http://dblab.ece.ntua.gr/change#> 

SELECT ?c_1 ?id ?E 

FROM <Si> FROM <I> 

WHERE{?c_1 rdf:type dbo:Add_Professional; ch:Add_Professional_p1 ?id; 

           ch:Add_Professional_p2 ?E; ch:Add_Professional_p3 ?t; 

           ch:Add_Professional_p4 ?sY; ch:Add_Professional_p5 ?eY.  

   MINUS{ SELECT ?c_1 

          WHERE{?c_1 rdf:type dbo:Add_Professional; 

                     ch:Add_Professional_p2 ?e.  

                FILTER NOT EXISTS { 

                       GRAPH ?g { ?e rdf:type dbo:University. } 

                       FILTER (?g=<Vaf>) } } }  

} ORDER BY ?c_1 

 

3.5.4. Change Instance Generation 

In order to generate change instances, the SPARQL query result set is read line-by-line and 

the lines that share the same values in the grouping variables are used to form a new complex 

change instance. The new complex change instance contains the change instances bound to 

the change variables and it is described by the values bound to the variables of the descriptive 

parameters, that correspond to the result set lines to be grouped.  

 

Grouping variables indicate the groups that have to be defined over the result set. Based on 

the semantics presented in Section 3.4.2.2, they actually form the variable list for group 

construct and comprise of: (1) the change variables of changes with cardinality 1 or "?" and 

(2) the descriptive variables that are used in assignments without aggregation and correspond 

(only) to changes with cardinality "+" or "*". The result set lines that share common values in 

the grouping variables are used to generate a new complex change instance.  

 

For example, consider the complex change Add_Academic_Professional presented in Section 

3.4.3, example 5 and the respective SPARQL query in Table 2. Add_Professional has 

cardinality one and there are not any complex change descriptive parameters coming only 

from changes with cardinality "+" or "*" used in bindings without aggregation. Thus, ?c_1 is 

the grouping variable. As another example, consider the complex change Add_Professionals_ 

withCommon_Employers presented in Section 3.4.3, example 6. Add_Professional has 

cardinality "+" and the complex change descriptive parameter E is repeated (only) on it 
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implying an inferred binding without aggregation. Given an appropriately generated SPARQL 

query, variable ?E (corresponding to parameter E) is the grouping variable. 

 

Algorithm 3 presents the process of generating complex change instances. Grouping variables 

may involve scalar and set parameters. Thus, while iterating the result set the grouping 

variables of type set have to be calculated. For this reason, ordering variables are used: the 

variables over which the result set has been ordered (as in Section 4.5.3 ORDER BY clause). 

 

Algorithm 3: Complex Change Instance Generation for grouping 

variables corresponding to scalar and set parameters 

Input: A result set rs of a SPARQL query of complex change 𝑐, the set 
of grouping variables 𝑃 of 𝑐 
Output: A set of complex changes instances 𝐼𝑐 of 𝑐 
1  𝐼𝑐 ← { } ; 
2  𝑐𝑢𝑟𝑟𝑂𝑟𝑑𝑒𝑟𝑣𝑎𝑙𝑠 ← { } ;// ordering variable values 
3  𝑝𝑟𝑒𝑣𝑂𝑟𝑑𝑒𝑟𝑣𝑎𝑙𝑠 ← { } ;// ordering variable values of previous iteration 
4  𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠 ← { } ; // grouping variable values 

5  𝑝𝑟𝑒𝑣𝑃𝑣𝑎𝑙𝑠 ← { } ; // grouping variable values of previous iteration 
6  𝑔𝑖 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝑁𝑒𝑤𝐺𝑟𝑜𝑢𝑝() ; // group of change instances and descriptive 
variables to be used in complex change instance generation 

7  while rs. ℎ𝑎𝑠𝑁𝑒𝑥𝑡( ) do  
8   𝑟 ← 𝑟𝑠. 𝑛𝑒𝑥𝑡( ) ; 
9   𝑝𝑟𝑒𝑣𝑂𝑟𝑑𝑒𝑟𝑣𝑎𝑙𝑠 ← 𝑐𝑢𝑟𝑟𝑂𝑟𝑑𝑒𝑟𝑣𝑎𝑙𝑠 ; 
10  𝑐𝑢𝑟𝑟𝑂𝑟𝑑𝑒𝑟𝑣𝑎𝑙𝑠 ← 𝑔𝑒𝑡𝑂𝑟𝑑𝑒𝑟𝑣𝑎𝑙𝑠(𝑟, 𝑃) ; // calculate current order values 
11  if (𝑐𝑢𝑟𝑟𝑂𝑟𝑑𝑒𝑟𝑣𝑎𝑙𝑠 = 𝑝𝑟𝑒𝑣𝑂𝑟𝑑𝑒𝑟𝑣𝑎𝑙𝑠) do 
12   𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝑃𝑣𝑎𝑙𝑠(𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠, 𝑟) ; // 𝑟 forms the current grouping 
values 

13   𝑔𝑖 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝐺𝑟𝑜𝑢𝑝(𝑐𝑖 , 𝑟) ; // 𝑟 forms the current 𝑔𝑖 

14  else 

15   𝐼𝑐 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝐼𝑐(𝑔𝑖 , 𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠, 𝐼𝑐) ; // 𝑔𝑖 's computation is completed, the 

relevant 𝑐𝑖 has to be updated / formed in 𝐼𝑐 based on 𝑔𝑖 

16   𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝑁𝑒𝑤𝑃𝑣𝑎𝑙𝑠( 𝑟, 𝑃) ; // 𝑟 forms the new current 𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠 
17   𝑔𝑖 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝑁𝑒𝑤𝐺𝑟𝑜𝑢𝑝(𝑟) ; // r forms the new current 𝑔𝑖 

18  end if 

19  if (! 𝑟𝑠. ℎ𝑎𝑠𝑁𝑒𝑥𝑡()) do 
20   𝐼𝑐 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝐼𝑐(𝑔𝑖 , 𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠, 𝐼𝑐) ; // update 𝐼𝑐 for the last iteration 

21  end if 

22 end while  

23 return 𝐼𝑐 ; 

𝒖𝒑𝒅𝒂𝒕𝒆𝑰𝒄(𝒈𝒊, 𝒄𝒖𝒓𝒓𝑷𝒗𝒂𝒍𝒔, 𝑰𝒄)  
24 if (𝑒𝑥𝑖𝑠𝑡𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑊𝑖𝑡ℎ_𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠(𝐼𝑐, 𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠)) do // there is a complex 
change instance with the same grouping values 

25  𝑐𝑖 ← 𝑔𝑒𝑡𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑊𝑖𝑡ℎ_𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠(𝐼𝑐, 𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠) ; 
26  𝐼𝑐 ← 𝐼𝑐   \  {𝑐𝑖} ; // exclude 𝑐𝑖 

27  𝑐𝑖 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝑐𝑖 , 𝑔𝑖) ; // update the instance with change 
instances and descriptive variables in 𝑔𝑖 of the current iteration  

28  𝐼𝑐 ← 𝐼𝑐 ∪ {𝑐𝑖} ; // add updated 𝑐𝑖 

29 else 

30  𝑐𝑖 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝑁𝑒𝑤𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝑔𝑖) ; // 𝑔𝑖 forms a new complex change instance 

31  𝐼𝑐 ← 𝐼𝑐 ∪ {𝑐𝑖} ; // add the newly created 𝑐𝑖 

32 end if 

33 return 𝐼𝑐 ; 
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The result set is iterated and each time a new line is read, the values of the ordering variables 

are calculated: the current values (𝑐𝑢𝑟𝑟𝑂𝑟𝑑𝑒𝑟𝑣𝑎𝑙𝑠) and previous values (𝑝𝑟𝑒𝑣𝑂𝑟𝑑𝑒𝑟𝑣𝑎𝑙𝑠, 

the values of previous iteration - line) (lines 7-10). If they are equal, the current grouping 

variable values have to be updated (𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠), so that variables corresponding to set 

parameters can be computed (line 12). Accordingly, a variable holding the currently grouped 

data is updated (𝑔𝑖) (line 13): it holds change instances and descriptive values that are 

considered in a complex change instance (𝑐𝑖). Otherwise, the current grouping variables 

(𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠) computation has finished. This is ensured by having the query result set in order. 

The appropriate complex change instance (𝑐𝑖) in the result (𝐼𝑐) has to be updated (line 15) via 

function 𝑢𝑝𝑑𝑎𝑡𝑒𝐼𝑐. The currently read result set line (𝑟) is to be used to form new current 

grouping variable values (𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠) and new current group data (𝑔𝑖) (lines 16-17). If the 

result set has been read, the lastly computed grouping variable values and group data should 

be used to update the appropriate complex change instance of the result (𝐼𝑐) (lines 19-21). 

Finally, the set of all computed complex change instances is returned (line 23).  

 

Regarding the function 𝑢𝑝𝑑𝑎𝑡𝑒𝐼𝑐: it takes as input a set of grouping variable values 

(𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠) and the respective grouped data (𝑔𝑖), and returns the updated result (𝐼𝑐). If there 

is already a complex change instance (𝑐𝑖) with the same grouping variable values 

(𝑐𝑢𝑟𝑟𝑃𝑣𝑎𝑙𝑠) in the result (𝐼𝑐), then the grouped data (𝑔𝑖) have to be included within it (lines 

24-28). Otherwise, a new complex change instance is created and added in the result (𝐼𝑐) 

(lines 29-32). Finally, the set of all computed complex change instances is returned (line 33). 

 

3.5.5. Complex Change Detection Correctness 

Below we prove the correctness of the detection algorithm in Section 3.5 with respect to 

complex change language semantics. First, a subset of the proposed language is proven to 

have equivalent semantics to a subset of SPARQL. SPARQL semantics are defined in Perez, 

Arenas and Gutierrez (2009) [46] and Kaminski, Kostylev and Cuenca Grau (2017) [32]. 

Next, augmenting with the rest features, semantics are implemented by applying Algorithm 3 

to the result mappings of a SPARQL graph pattern. 

 

Step 1. Consider the subset of the proposed complex change language which involves only 

changes with cardinalities one and "?", scalar parameters and filter expressions on scalar 

parameters. Complex change semantics are defined given a set of change instances 𝐼 and 

SPARQL semantics given an RDF graph 𝐷. Let 𝐷 contain the RDF representation of 𝐼 based 

on the vocabulary presented in Section 3.5.2. 



 

 56 

(1) The abstract syntax of the proposed language is by definition equivalent to the one 

proposed for SPARQL in Perez, Arenas and Gutierrez (2009) [46], assuming that a graph 

pattern involves triples for changes, except that: (a) UNION operator is not considered, (b) the 

right operand of OPT shall be a graph pattern corresponding to a primitive change pattern, or 

a filter primitive change pattern, or an optional change pattern involving only primitive 

change patterns, filter primitive change patterns or optional change patterns with these types 

of operands, (c) the right operand of OPT may be a triple that involves an optional variable 

𝑥𝑂𝑃𝑇 (recall, if 𝑥𝑂𝑃𝑇 ∈ 𝑑𝑜𝑚(𝜇𝑐) then 𝜇𝑐(𝑥𝑂𝑃𝑇) = ∅ or 𝜇𝑐(𝑥𝑂𝑃𝑇) ≠ ∅). All complex 

change language's built-in filter expressions are SPARQL built-in filter expressions as well. 

For a complete SPARQL feature list see Harris S. and Seaborne A. (2013) [31]. 

(2) The semantics of the proposed language are by definition equal to SPARQL semantics as 

in Perez, Arenas and Gutierrez (2009) [46] for the syntax in (1), since they are made up of 

semantically equivalent operators applied on equivalent data in the same sequence.  

Algorithm 3 (grouping variables are the change variables) materializes the change instances, 

performing a trivial grouping, where each SPARQL result mapping forms a trivial group and 

a new complex change instance. Overall, ⟦𝑐ℎ𝑎𝑛𝑔𝑒 𝑝𝑎𝑡𝑡𝑒𝑟𝑛⟧𝐼 =

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚3(⟦𝑔𝑟𝑎𝑝ℎ 𝑝𝑎𝑡𝑡𝑒𝑟𝑛⟧𝐷). 

 

Step 2. Augment step 1 with set parameters. Consider a change pattern with a set variable 𝑋 

and a set of mappings 𝜇𝑐, 𝛺𝑐 . Since SPARQL does not support this feature, the graph pattern 

corresponding to the change pattern involves a scalar variable 𝑥 corresponding to 𝑋. 

Evaluating the graph pattern results in a set of mappings 𝜇, 𝛺. It holds that 𝑑𝑜𝑚(𝜇𝑐) − {𝑋} =

𝑑𝑜𝑚(𝜇) − {𝑥}. Based on step 1, for each 𝜇𝑐 ∈ 𝛺𝑐 there is a 𝜇 ∈ 𝛺 such that 𝜇𝑐(𝑦) = 𝜇(𝑦) 

where 𝑦 ∈ 𝑑𝑜𝑚(𝜇𝑐) − {𝑋}. Based on 𝜇𝑐 definition for a set parameter 𝜇𝑐(𝑋) =

∪𝑖=1,…,𝑛 𝜇𝑖(𝑥), considering all 𝜇𝑖 where 𝜇𝑐(𝑦) = 𝜇𝑖(𝑦) ∀𝑦 ∈ 𝑑𝑜𝑚(𝜇𝑐) − {𝑋} or simply ∀𝑦 ∈

𝑑𝑜𝑚(𝜇𝑐) − {𝑋} and 𝑦 is a change variable. Optional set variables are handled similarly. 

Therefore, the complex change semantics equal SPARQL semantics for step 1 plus Algorithm 

3 for implementing set variable semantics: ⟦𝑐ℎ𝑎𝑛𝑔𝑒 𝑝𝑎𝑡𝑡𝑒𝑟𝑛⟧𝐼 =

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚3(⟦𝑔𝑟𝑎𝑝ℎ 𝑝𝑎𝑡𝑡𝑒𝑟𝑛⟧𝐷).  

 

Step 3. Augment step 2 with filter expressions on set parameters. These expressions are not 

SPARQL built-in expressions. Thus, each such expression 𝑅 is mapped to an equivalent 𝑅′ in 

SPARQL, based on built-in features (FILTER EXIST/NOT EXIST, MINUS and subqueries). 

The exact mapping for each one filter expression into SPARQL is not discussed in further 

detail. Also, 𝑅 may combine primitive filter expressions with logical connectives. In this case, 

there is always an equivalent DNF expression 𝐷𝑁𝐹(𝑅) = 𝑅1 ∨ 𝑅2 ∨ … ∨ 𝑅𝑛 . Since, 
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⟦𝑃 𝐹𝐼𝐿𝑇𝐸𝑅 𝑅⟧𝐼 = {𝜇 ∈ ⟦𝑃⟧𝐼|𝜇 ⊨ 𝑅} = {𝜇 ∈ ⟦𝑃⟧𝐼|𝜇 ⊨ 𝑅1 ∨ 𝑅2 ∨ … ∨ 𝑅𝑛} and 

⟦𝑃 𝐹𝐼𝐿𝑇𝐸𝑅 𝑅1⟧𝐼 = {𝜇 ∈ ⟦𝑃⟧𝐼|𝜇 ⊨ 𝑅1}, ..., ⟦𝑃 𝐹𝐼𝐿𝑇𝐸𝑅 𝑅𝑛⟧𝐼 = {𝜇 ∈ ⟦𝑃⟧𝐼|𝜇 ⊨ 𝑅𝑛}, it is 

implied that ⟦𝑃 𝐹𝐼𝐿𝑇𝐸𝑅 𝑅⟧𝐼 = ⟦𝑃 𝐹𝐼𝐿𝑇𝐸𝑅 𝑅1⟧𝐼 ∪ … ∪ ⟦𝑃 𝐹𝐼𝐿𝑇𝐸𝑅 𝑅𝑛⟧𝐼. Thus, 𝑃 𝐹𝐼𝐿𝑇𝐸𝑅 𝑅 

can be mapped in SPARQL to the union of all graph patterns where each comprises of 𝑃 and 

𝑅𝑖. 

Overall, the complex change semantics are equal to the semantics of an equivalent SPARQL 

graph pattern plus Algorithm 3 for implementing the semantics of set variables (as in step 2). 

Again, ⟦𝑐ℎ𝑎𝑛𝑔𝑒 𝑝𝑎𝑡𝑡𝑒𝑟𝑛⟧𝐼 = 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚3(⟦𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑔𝑟𝑎𝑝ℎ 𝑝𝑎𝑡𝑡𝑒𝑟𝑛⟧𝐷). 

 

Step 4. Augment step 3 with cardinalities "+" and "*" and with union aggregation function. 

The change pattern is in extended form, including groups and aggregation. In Definition 12, a 

group 𝛤 = 𝐺𝑟𝑜𝑢𝑝(𝑉𝑟
𝑔

, 𝑃) is defined over a change pattern 𝑃 and a list of variables 𝑉𝑟
𝑔

 

(grouping variables). In Definition 13, an aggregate is a construct of the form 𝐴 =

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(𝑣𝑟 , 𝑢𝑛𝑖𝑜𝑛, 𝛤) where 𝑣𝑟  is a variable over which 𝑢𝑛𝑖𝑜𝑛 aggregate function is 

performed for each group 𝛤. Based on previous steps, 𝑃 is mapped to a SPARQL graph 

pattern 𝑃′, such that ⟦𝑃⟧𝐼 = 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚3(⟦𝑃′⟧𝐷) (3). Groups and aggregation computation is 

based on variables in 𝑉𝑟
𝑔

, which is by definition a superset of the variables used by Algorithm 

3 in (3), since in previous steps the grouping variables are the change variables. Thus, ⟦𝐴⟧𝐼 =

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚3(⟦𝑃′⟧𝐷) and grouping variables are those in 𝑉𝑟
𝑔

. Union aggregation function is 

implemented by Algorithm 3, also implementing set variable semantics for computing set 

grouping variables. 

 

3.6. Evaluation 

The proposed approach has been evaluated qualitatively and experimentally. In qualitative 

evaluation, our approach is compared to the related work discussed in Chapter 2, Section 2.1. 

In experimental evaluation, complex change language expressiveness and detection 

performance are examined. It is evaluated whether the proposed structures are adequate in 

expressing useful changes and how complex changes facilitate user in analyzing evolution. 

Also, the response time of the detection process is examined in terms of increasing dataset 

size.  
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3.6.1. Qualitative Evaluation 

Our approach focuses on human readable changes. Similar to Klein (2004) [33], Stojanovic 

(2004) [57], Papavasileiou et al. (2013) [45] and Roussakis et al. (2015) [53] we assume 

primitive changes, as simple changes, and groupings of them, as complex changes. Instead of 

providing a predefined list of complex changes, we support user-defined complex changes in 

order to capture richer semantics and multiple interpretations of evolution, as Plessers, De 

Troyer and Casteleyn (2007) [47] and Roussakis et al. (2015) [53]. In our approach, a 

dedicated complex change definition language is formally defined, so that complex changes 

are defined via patterns, and an appropriate detection algorithm is proposed. Instead, Plessers, 

De Troyer and Casteleyn (2007) [47] relies on temporal queries and Roussakis et al. (2015) 

[53] on SPARQL in order to define and detect changes. On top of this, we support relations 

and dependencies among complex changes, so that complex changes may share common 

parts. 

 

The closest relevant works to the proposed approach are Papavasileiou et al. (2013) [45] and 

Roussakis et al. (2015) [53]. The proposed notion of complex changes resembles to the 

"composite changes" presented in Papavasileiou et al. (2013) [45] in their ultimate goal in 

grouping changes into logical units. But, complex changes are user defined and may be 

related to each other, providing richer semantics and flexibility. In Roussakis et al. (2015) 

[53] the notion of complex changes as user defined is also stated. There, the proposed changes 

may not share common parts but instead are given a prioritization. However, prioritization 

possibly leads to the loss of part of the evolution interpretation, when two changes are 

identified simultaneously over a data element. On the contrary, by allowing interdependencies 

among complex changes all possible interpretations are maintained. Towards this direction, a 

complex change may be defined on top of another. In this case, the process of defining new 

complex changes is facilitated by reusing already defined patterns. Also, in Roussakis et al. 

(2015) [53] the complex changes are defined via SPARQL queries. However, for supporting 

the reusability of changes, each change pattern should be given a specific name and 

descriptive properties. In addition, it may be needed to define explicitly how a complex 

change groups possible multiple appearances (instances) of changes in its definition, either by 

following the underlying data structure or the current understanding on modeling evolution. 

Although SPARQL is powerful in defining patterns over RDF data, it does not provide such 

capabilities. Thus, a dedicated language for defining complex changes and a relevant 

detection algorithm are needed. 
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Table 3 summarizes the qualitative comparison of our approach with the most significant 

works on high-level changes. It is examined whether predefined or user-defined changes are 

supported, if a detection algorithm is presented and the data model each approach focuses on. 

For works that support user-defined changes, several features are further examined.  

 

Table 3 Qualitative comparison of this approach with related work 

 
Predefined 

Changes 

User-

Defined 

Changes 

User-Defined Changes Features 

Detection 

Algorithm 
Data Model Dedicated 

Language 

Relations 

among 

Changes 

Cardinality/ 

Grouping 

Klein (2004) [33] x - - x OWL/OKBC 

Stojanovic (2004) 

[57] 
x - - 

- 

(change 

application) 

KAON 

Plessers et al (2007) 

[47] 
- x 

x 

(temporal logic 

based) 

- - x OWL DL 

Papavasileiou et al 

(2013) [45] 
x - - x RDF(S) 

Rousakis et al. 

(2015) [53] 
x x 

- 
(SPARQL 

queries) 

- - x RDF(S) 

This approach x x x x x x RDF(S) 

 

3.6.2. Experimental Evaluation 

3.6.2.1. Implementation, datasets and settings 

The complex change definition language and the detection process are implemented in a Java 

application. In order to implement the language parser JavaCC2, a parser generator for Java, is 

employed. In order to store the RDF(S) representations of changes and change instances and 

run SPARQL queries for complex change detection Openlink Virtuoso3 is employed. The 

implementation is done in Java version 8 and Openlink Virtuoso version 7. 

 

In order to test the proposed approach, dataset versions and the respective simple changes, 

capturing the modifications between them, are required. The evaluation is performed over 

both artificial and real data. Artificial data are generated by the tool EvoGen4, while DBpedia5 

dataset versions are considered for real data. As for the system settings, a 6-core CPU and 16 

GB RAM machine running Ubuntu (version 16.04) has been used in order to host both 

Virtuoso server and the application. 

                                                   
2 https://javacc.org/ 
3 https://virtuoso.openlinksw.com/ 
4 https://github.com/mmeimaris/EvoGen 
5 https://wiki.dbpedia.org/ 
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EvoGen is a tool for generating synthetic evolving RDF datasets, abstracting several 

characteristics of the process (Meimaris (2016) [39]; Meimaris and Papastefanatos (2016) 

[40]). It extends the Lehigh University Benchmark (LUBM) generator (Guo et al. (2005) 

[30]), a Java based synthetic data generator, which features an ontology for the university 

domain called Univ-Bench. An OWL6 version of the Univ-Bench ontology7 is available in 

OWL Lite8. 

 

In this evaluation, only data changes are employed. Also, the current version of EvoGen 

generates changes that include only additions. It creates a log with the changes between 

consecutive versions, following the simple changes paradigm that the proposed complex 

changes rely on. As a result, complex changes for this experiment involve only additions.  

 

Table 4 presents the sizes of the RDF datasets generated with EvoGen. The sizes of the 

simple changes log between two consecutive versions are presented, in terms of number of 

triples and number of simple change instances. Also, the sizes of the version before and 

version after, in terms of number of triples, are presented. 

 

Regarding DBpedia data, three previous DBpedia releases have been considered: versions 

2016-10, 2016-04 and 2015-10. Specifically, parts of the English DBpedia datasets are 

considered, namely the instance types and mapping based objects. First, the detection of 

simple changes took place among dataset versions, and then a number of complex changes 

were defined on top involving both additions and deletions. The complex changes defined 

focus on data changes. Table 5 presents the sizes of the RDF datasets of DBpedia data. 

 

Table 4 EvoGen generated datasets 

Dataset 
Simple Change Log 

(# of triples) 

Simple Change Log 

(# of change instances) 

Version Before  

(# of triples) 

Version After  

(# of triples) 

D0 212.178 53.072 99.761 150.836 

D1 473.955 118.550 220.840 334.829 

D2 1.489.892 372.667 690.550 1.048.536 

D3 8.246.486 2.062.693 3.778.293 5.759.845 

D4 27.882.797 6.974.311 12.753.945 19.454.837 

D5 41.465.290 10.371.705 19.013.429 28.978.776 

D6 83.041.295 20.771.095 37.990.459 57.948.069 

 

 

 

                                                   
6 https://www.w3.org/TR/2012/REC-owl2-overview-20121211/ 
7 http://swat.cse.lehigh.edu/onto/univ-bench.owl 
8 https://www.w3.org/TR/owl-features/ 
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Table 5 DBpedia datasets 

Dataset 

Simple Change 

Log 

(# of triples) 

Simple Change Log 

(# of change 

instances) 

Version 

Before 

Name 

Version 

Before  

(# of triples) 

Version 

After 

Name 

Version 

After  

(# of triples) 

Δ0 9.198.606 2.449.083 2015-10 22.841.862 2016-04 23.401.677 

Δ1 29.911.620 7.755.452 2016-04 23.401.677 2016-10 23.896.605 

 

3.6.2.2. Language expressiveness 

In order to evaluate the expressiveness of the proposed language several complex changes 

have been defined for the data generated with EvoGen and for the DBpedia data. The Univ-

Bench ontology and the DBpedia schema have been studied in order to identify classes, 

descriptive properties and how data are connected. In order to define complex changes that 

are as realistic as possible the process below was followed, identifying six cases of possible 

complex changes, based on common sense and domain characteristics.  

 

1. Class instance additions/deletions: For each class instance addition/deletion a descriptive 

change should be reported based on the dataset domain. Therefore, a complex change with a 

descriptive name of each class is defined, being actually a rename of the respective simple 

change. For example, Add_Person instead of Add_Type_To_Individual. 

 

2. Property instance additions/deletions: Similarly, for each property instance addition/ 

deletion, a complex change with a descriptive name of the property is defined. This is a 

rename of the respective simple change, Add_Property_Instance/Delete_Property_Instance. 

 

Notice that complex changes of cases 1 and 2 may form a first level of complex changes over 

the simple changes of a dataset, where each simple change is mapped to a complex change 

with a more descriptive name based on the specific domain. 

 

3. Groupings around added/deleted class instance URIs: Typically, a class instance addition/ 

deletion is accompanied with its property instances additions/deletions. Therefore, a complex 

change may be defined for grouping these changes altogether. Properties' cardinality should 

be considered accordingly: multiple instances of properties should be grouped altogether, 

while optional properties are allowed. Thus, added/deleted properties around a class instance 

URI are grouped into a complex change together with the added/deleted class instance. These 

complex changes are defined on top of the complex changes described in cases 1 and 2. For 

example, Add_Person_with_Details may group Add_Person along with all its added 

descriptive properties (name, birth date, death date, etc). 
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4. Batch additions/deletions: Complex changes of case 3 may appear in batches. In such case, 

they may share common values in some of their properties. Therefore, they can be further 

grouped based on these values. For example, Add_Professionals_withCommon_Employers 

groups all Add_Professional for those having the same employers. 

 

5. Specializations: Data and domain specific changes may be important in certain scenarios. 

Such changes may be captured by further combining the complex changes described in 

previous cases via relational filters, testing value filters, pre-/post-conditions, and optional 

cardinalities. For example, Add_Academic_Professional specializes Add_Professional where 

the added professional works only in academia, which is specified by a post-condition. 

 

6. Updates: A property value update can be modeled as an addition plus a deletion of the 

specific property over a specific class instance URI. These complex changes are defined on 

top of the complex changes described in case 2. 

 

Regarding the data generated with EvoGen, 65 complex changes have been defined following 

the above process. The changes involve only additions, due to the characteristics of the 

current version of EvoGen as already discussed. Table 6 summarizes the characteristics of the 

defined complex changes in terms of the features of the proposed language. The complex 

changes have been grouped into twelve categories, where each one has specific: change list 

size, cardinalities on changes in the change list, grouping variables' type, as well as filter types 

employed. Nested complex changes are defined, and the level of each change in the complex 

change hierarchy is stated: complex changes in level I are defined on top of simple changes 

only, in level II on top of complex changes in level I, and in level III on top of changes in 

level II. Table 6 shows that all proposed features have been used. The number of complex 

change definitions per category is presented, as well as per language characteristic. 

 

Category C1 involves class instance and property instance addition renames (cases 1 and 2). 

Testing value constraints are used for identifying class and property types. Categories C2-C7 

involve groupings around added class instance URIs (case 3). Relational filters are used and 

appropriate cardinalities are defined based on the data model. Categories C8-C9 involve 

groupings based on common property values (case 4), on scalar/set parameters respectively. 

Categories C10-C12 involve specializations (case 5). Pre-/post-conditions and relational 

filters are combined with quantification, since they involve set parameters. In C12 optional 

change paths are defined. Complex changes form three levels over simple changes. 
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Table 6 Categories and characteristics of the defined complex changes on EvoGen data 
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C1 30 x   x      x    I 

C2 3 x   x       x   II 

C3 1  x  x       x   II 

C4 4   x x       x   II 

C5 5 x   x  x  x   x   III 

C6 1  x  x x      x   II 

C7 2   x x x      x   II 

C8 7 x     x  x      III 

C9 1 x     x   x     III 

C10 4 x   x  x  x   x  x III 

C11 3 x   x        x x III 

C12 4   x x x  x x    x  II 

# total 
changes 

65 53 2 10 57 7 17 4 20 1 30 20 7 7 65 

 

Table 7 presents the number of complex change instances detected in each EvoGen generated 

dataset per complex change category. Change instances of all categories appear in all datasets, 

proving the effectiveness of the proposed methodology. Also, given an increasing dataset size 

the number of detected complex change instances increases too. Notice that the number of 

change instances in C1 for each dataset is very close to the number of simple change instances 

presented in Table 4. This is because C1 involves changes defined as in case 1 and 2, forming 

a first level of complex changes serving as renames of simple changes. The total number of 

change instances in C2-C7 for each dataset is significantly smaller than the number of change 

instances in C1. This is because C2-C7 involve changes defined on top of C1 grouping 

property changes around class instance URIs (as in case 3). These changes form a second 

level of complex changes which compresses the changes of first level. The number of change 

instances in C8-C11 for each dataset is even smaller, since those changes further group or 

specialize changes in C2-C7. C12 offers an alternative way of grouping some of the changes 

in C1. Table 10 presents the number of complex change instances per level in the change 

hierarchy, quantifying the size of each level. It is worth noting that the number of complex 

change instances in level I covers the 99.9% of the simple change instances, while in level II 

covers the 93% of the complex change instances in level I, and in level III up to 45% of the 

complex change instances in level II. The smaller number of complex change instances of  
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Table 7 Number of complex change instances per category detected in EvoGen generated datasets  

  C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

D0 52.999   2.054    960    327 1.509    3.994    2.267    2.222    1.087    313    248     10.158    

D1 118.387   4.611    2.160    745 3.499  8.743    5.141    4.020    2.513    726    571     22.260    

D2 372.150   14.733    6.880    2.364 11.037     27.004    16.316    9.853    7.801    2.318    1.803     69.294    

D3 2.059.836   81.767    38.080    13.091 61.296     148.765    90.515    47.224    43.050    12.912    9.950     382.150    

D4 6.964.680   275.488    128.400    43.912 205.993     506.734    304.876    153.159    143.868    43.371    33.432     1.299.058    

D5 10.357.352   410.568    191.360    65.309 305.474     755.204    451.961    226.342    213.460    64.485    49.725     1.934.000    

D6  20.742.372   821.895    382.960    130.665 611.034     1.513.220    905.170    450.645    426.893    128.926    78.744     3.876.042    

 

level II contained in a complex change instance of level III is due to the fact that level III 

changes also involves specializations of level II changes. Overall, the resulting complex 

change instances reduce the effort of analyzing the data evolution as the user can easily zoom-

in/-out on evolution detail by navigating on different levels of the complex change hierarchy. 

 

Regarding the DBpedia data, 177 complex changes have been defined following the 

aforementioned process. Complex changes of add type, symmetric changes of delete type and 

update changes were defined. Table 8 summarizes the characteristics of the defined complex 

changes based on the proposed language features. The complex changes have been grouped 

into eleven categories, based on similar characteristics to the ones used for EvoGen data. 

 

Table 8 Categories and characteristics of the defined complex changes on DBpedia data 

C
at

eg
o

ri
es

 

#
 o

f 
co

m
p
le

x
 c

h
an

g
e 

d
ef

in
it

io
n

s 

Change List 

Size 

(# of changes) 

Cardinality 

(type) 

Grouping 

(variables 

type) 

Filter 

(type) 

le
v
el

 i
n
 c

o
m

p
le

x
 c

h
an

g
e 

h
ie

ra
rc

h
y
 

<=3 4-6 1 ? + * scalar set 
testing  

value 

re
la

ti
o

n
al

 

q
u

an
ti

fi
ca

ti
o
n
 

Ci 94 x  x      x   I 

Cii 4 x  x       x x III 

Ciii 6 x  x  x  x   x  II 

Civ 12 x    x   x    III 

Cv 2  x x x x  x   x  II 

Cvi 8  x x  x x x   x  II 

Cvii 4  x x   x x   x  II 

Cviii 29 x  x       x  II 

Cix 4 x  x  x x x   x  II 

Cx 12 x  x      x  x III 

Cxi 2 x  x  x  x   x x III 

# total 

changes 
177 163 14 165 2 34 16 26 12 106 59 18 177 

 

Category Ci involves class instance and property instance addition and deletion renames 

(cases 1 and 2). Categories Ciii, Cv, Cvi and Cix involve groupings around added or deleted 
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class instance URIs (case 3). Category Civ involves groupings based on common property 

values (case 4). Categories Cii, Cvii, Cx and Cxi involve specializations (case 5). In Cvii 

optional change paths are defined. Category Cviii involves update changes (case 6). Complex 

changes form three levels over simple changes. 

 

Table 9 presents the number of complex change instances detected in each DBpedia dataset 

per complex change category. Again, change instances of all categories appear in datasets and 

as the dataset size increases, the number of detected complex change instances increases too. 

Recall that changes in Ci form a first level of complex changes serving as renames of simple 

changes. The number of change instances in Ci for each dataset reaches the 60% of the 

number of simple change instances presented in Table 5. Although the DBpedia schema is 

very large and diverse, the changes defined in Ci span across the most frequently changed 

parts of the datasets. The total number of change instances in Ciii, Cv, Cvi and Cix is smaller 

related to Ci, because they are defined on top of Ci forming a second level of changes and 

grouping property changes around class instance URIs (as in case 3), for the most frequently 

added/deleted entities. Also, several update operations (Cviii) appear in the examined 

datasets. The total number of the change instances in Civ, Cii, Cvii, Cx and Cxi which form a 

third level in the change hierarchy is even smaller, since they further group changes of the 

second level or specialize their meaning narrowing down the reported changes. Table 10 

presents the number of complex change instances per change hierarchy level. It is worth 

noting that the number of complex change instances in level I covers the 60% of the simple 

change instances, while in level II covers up to the 68% of the complex change instances in 

level I, and in level III covers up to the 10% of the complex change instances in level II. The 

relatively low number of complex change instances of level II contained in a complex change 

instance of level III is due to the fact that level III changes are mostly specializations of level 

II changes. Similar to EvoGen results, the complex change hierarchy facilitates the user in 

analyzing the data evolution. 

 

Table 9 Number of complex change instances per category detected in DBpedia datasets 

  Ci Cii Ciii Civ Cv Cvi Cvii Cviii Cix Cx Cxi 

Δ0 1.464.340  38  50.181  571  179  9.757  3.178  62.050  57.227  2.364  5.076  

Δ1 4.708.482  370  90.708  915  327  19.584  4.956  1.313.776  104.687  4.431  10.218  

 

Table 10 Number of complex change instances per level in hierarchy per EvoGen and DBpedia dataset 

  EvoGen DBpedia 

  D0 D1 D2 D3 D4 D5 D6 Δ0 Δ1 

Level I 52.999    118.387    372.150    2.059.836    6.964.680    10.357.352    20.742.372    1.464.340  4.708.482  

Level II 19.760     43.660    136.591     754.368    2.558.468     3.808.402     7.629.952    182.572  1.534.038  

Level III  5.379     11.329     32.812     174.432     579.823     859.486     1.696.242    8.049  15.934  
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Annex B demonstrates some of the complex change definitions for the EvoGen generated 

data and the DBpedia data, as defined in terms of the experimental evaluation. 

 

3.6.2.3. Detection performance 

In order to evaluate the detection process performance, the detection time has been measured 

for the datasets generated with EvoGen with an input of 65 complex changes and for the 

DBpedia datasets with an input of 177 complex changes. As already stated, in order to store 

and query the datasets for complex change detection Openlink Virtuoso is used. Particularly, 

for each dataset, each simple change log, version before and version after are stored in a 

separate named graph. A dedicated named graph is employed for the complex change 

instances, which is gradually enriched with the complex change instances that are detected 

while the detection process progresses. The detection of each complex change relies on the 

already generated simple and complex change instances. 

 

The detection time can split in four parts based on the detection algorithm presented: (1) 

parse time for computing the order of detection of the complex changes and parsing each 

definition, (2) query execution time for running each generated SPARQL query against the 

simple and complex change instances graphs, (3) instance generation time for parsing the 

query result set for computing instances and serialize them in a file, (4) load instance time for 

loading the generated instances stored in file into the complex change instances graph. The 

parse time is minor and thus omitted, since this process is performed in memory. Overall, the 

total detection time is presented, as well as the rest three parts as percentages of it. The 

number of added triples and respective complex change instances are presented as well. 

 

It is worth noting that due to nested complex change definitions, all complex changes are not 

detected over the same initial dataset, since as the detection process progresses the complex 

change named graph increases in size. The detection process has been also evaluated in a 

slightly different setting: Each specific complex change has a dedicated named graph, so that 

only its respective instances are stored in it. In such a case each query generated for the 

detection process can rely only on the particular named graphs holding the minimum set of 

change instances required for the detection. In this setting, the results in detection time were 

similar to the ones presented and in some cases worse. This is mainly due to the larger load 

times observed. The query times were in some cases improved and the instance generation 

times were the same (as expected) since the algorithm does not change at this point.  
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Table 11 presents the total detection time for each EvoGen generated dataset D0-D6. This is 

the time needed to run the detection process for all the 65 complex changes. It also presents 

the total number of detected complex change instances and the total number of respective 

triples. It can be observed that as the dataset size increases the detection time increases too. In 

smaller datasets (D0-D2) the query execution time is dominant in the detection time, while in 

larger datasets (D3-D6) all three parts of the detection time contribute almost evenly.  

 

Table 12 presents the total detection time per complex change category for each EvoGen 

generated dataset D0-D6, based on the categories presented in Section 3.6.2.2. It also presents 

the total number of added triples and detected complex change instances in each category. 

The differences in the characteristics among categories possibly affect only the query 

execution time. For example, in categories C4, C7 and C12 (involving complex changes with 

a bigger number of changes in their change list) and for small datasets tend to appear the 

higher query execution times. The instance generation time and load time are expected to be 

affected by the query result set size, i.e. the number of complex change instances appeared. 

Therefore, as the dataset size and the number of detected complex change instances increase, 

the instance generation time and load time increase accordingly. Also, notice that category C1 

plays a rather dominant role in the total detection time, since despite of the simplicity of the 

change definitions, a large number of instances (up to 20,7M) are detected. 

 

Table 13 presents the total detection time for each DBpedia dataset Δ0-Δ1. This is the time 

needed to run the detection process for all the 177 complex changes. It also presents the total 

number of detected complex change instances and the total number of respective triples. 

Again, the detection time is bigger for bigger datasets. Also, the load time is rather dominant 

in the detection time. This is mainly due to the significantly large number of change instances 

in category Ci, as shown in Table 14 below. Taking into consideration the rest categories 

only, query execution time is also significant, while instance generation time is rather low in 

categories with rather sparse change instances (for example Cii, Cv). 

 

Table 14 presents the total detection time per complex change category for each DBpedia 

dataset Δ0-Δ1 based on the categories presented in Section 3.6.2.2. It also presents the total 

number of added triples and detected complex change instances in each category. The higher 

detection time appears in category Ci, since it involves a significantly larger number of 

instances compared to all other changes. Overall, the instance generation time and load time 

increases as the number of detected complex change instances increases too. 
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Table 11 Total detection time (seconds), number of added triples and number of detected complex 

changes instances for each EvoGen generated dataset 

Dataset 
Query Exec 

Time  

Instance Gen 

Time  

Load 

Time  

Detection 

Time 

Added 

Triples  

Change 

Instances  

D0 92,2% 2,4% 5,4% 192,3 472.293  78.138  

D1 85,1% 4,7% 10,2% 215,9 1.050.692  173.376  

D2 75,4% 8,5% 16,0% 351,1 3.292.481  541.553  

D3 45,8% 21,1% 33,1% 737,3 18.209.825  2.988.636  

D4 36,9% 27,8% 35,3% 2.144,8 61.616.525  10.102.971  

D5 30,5% 30,4% 39,1% 2.717,3 91.635.866  15.025.240  

D6 29,9% 30,1% 39,9% 5.583,1 183.408.890  30.068.566  

 

Table 12 Total detection time (seconds), number of added triples and number of detected complex 

changes instances per complex change category for each EvoGen generated dataset 
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Table 13 Total detection time (seconds), number of added triples and number of detected complex 

changes instances for each DBpedia dataset 

Dataset 
Query Exec 

Time 

Instance Gen 

Time 

Load 

Time 

Detection 

Time 

Added 

Triples 

Complex Change 

Instances 

Δ0 26,4% 24,0% 49,7% 578,9 6.636.996 1.654.961 

Δ1 16,7% 27,0% 56,3% 1390,3 27.374.997 6.258.454 

 

Table 14 Total detection time (seconds), number of added triples and number of detected complex 

changes instances per complex change category for each DBpedia dataset 

 

 

3.6.2.4. Results summary 

Overall, the detection times presented are considered acceptable since change detection is 

rather an off-line process executed upon version creation. It can be stated that as the dataset 

size increases, the number of detected change instances as well as the detection time increase 

too. Actually, the detection time is highly dependent on the number of instances that appear in 

the dataset. This can be verified by comparing in terms of total detection time the results of 

the experiment on EvoGen generated datasets with the results of the experiment on DBpedia 

datasets which are similar in size (D3-D4, Δ0-Δ1). The number of complex changes to be 

detected seems to have minor effect in the detection performance, since while in EvoGen 65 

changes were used and in DBpedia 177 changes, the detection time is proportional to the 

number of detected change instances. Also, the complex change definitions' complexity has 

minor impact. In conclusion, the performance of complex change detection process is highly 

dependent on the dataset size over which detection is performed and the number of instances 

that appear in dataset, while it may be affected by the complex change definitions complexity. 

In terms of detection process performance it is not possible to compare directly this work with 

the closest relevant works, Papavasileiou et al. (2013) [45] and Roussakis et al. (2015) [53], 

since the experimentation settings (datasets size, number of change instances, change 

definitions complexity) and the testing environments are diverse.  
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Chapter 4 

 

Querying Data Versions and Change Structures 

on XML Data 

 

4.1. Introduction 

Apart from identifying human readable and semantically rich changes among dataset 

versions, querying data evolution may also provide insights on how data changed. In our 

view, querying evolution should be based on data as much as on changes. If changes are 

modeled as first-class-citizens, they can be exploited in terms of querying as well. Changes, 

like data, can appear in the query body to express complex conditions, like the fact that an 

entity has been modified in a specific manner, or can be returned by the query in order to 

retrieve explicit change instances that may have affected specific data. A model that captures 

both data versions and changes is a prerequisite in order to express such queries, while a 

query language with specific constructs to support both temporal and change based conditions 

is needed. 

 

In these terms, in previous work (Stavrakas and Papastefanatos (2010) [55]), a graph model 

for capturing evolving data and changes, named evo-graph, is proposed. In evo-graph changes 

are complex objects operating on data, exhibiting structural, semantic, and temporal 

characteristics and they are explicitly modeled as first class citizens distinguised into basic 

and complex changes. These properties allow querying evolution on both data and change 

structure, using temporal- and change-based conditions. Change-centric modelling can 

provide additional information on what, why, and how data evolved.  

 

On the contrary, several works in literature, like Rizzolo and Vaisman (2008) [49], Gao and 

Snodgrass (2003) [26], Wang and Zaniolo (2003) [62], that are classified as temporal 

approaches do not provide any support on querying the changes among data versions, since 

the notion of changes is not captured explicitly. In other related works, like Marian et al. 
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(2001) [38] or Chien, Tsotras and Zaniolo (2001) [13], that are classified as version-based 

approaches change related queries may be supported, but no specific query language is 

introduced and only a set of basic change operations is considered. Also, the notion of time is 

not considered. 

 

Additionally, in previous work (Stavrakas and Papastefanatos (2011) [56]) an XML 

representation for evo-graph, named evoXML, is proposed. The Extensible Markup Language 

(XML) [7] is a simple text-based format for exchanging data on the Web. XML documents 

are made up of units, named entities, which form a tree structure, and may have attributes and 

text content. XQuery [52] is the standard query language for querying XML data, building 

upon XPath [51], a language based on path expressions to navigate through an XML 

document and select data nodes. The XML, XQuery and XPath are W3C recommendations. 

 

Building upon previous work, we formally define evo-path, an XPath (Robie, Dyck and 

Spiegel (2017) [51]) extension for performing time-aware and change-aware queries on evo-

graph. Evo-path allows querying both data history and change structure in a uniform way, 

taking advantage of changes in order to retrieve and relate data that are otherwise irrelevant to 

each other. Temporal, evolution and causality queries are supported. Also, we implemented 

and experimentally evaluated the basic concepts of evo-graph in the C2D framework, using 

XML technologies. The Chapter main contributions are the following:  

• formalizing evo-path syntax, 

• defining evo-path formal semantics, 

• presenting evo-path implementation based on a formal translation of evo-path into 

equivalent XPath expressions over evoXML, 

• evaluating the C2D framework in terms of the space efficiency of evoXML and the 

performance of the reduction process, the process for generating a snapshot holding 

under a specific time instance from evo-graph. 

 

The Chapter outline is as follows: Section 4.2 presents a motivating example of this work. 

Section 4.3 presents previous work on evo-graph, evoXML, basic and complex changes. 

Section 4.4 formally defines evo-path, presenting evo-path syntax, semantics, implementation 

and illustrative examples. Section 4.5 presents the C2D framework and the evaluation 

performed. 
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4.2. Motivating Example 

Consider an example taken from Biology, the revision in the classification of diabetes, which 

was caused by a better understanding of insulin (National research council (2005) [42]). 

Initially, diabetes was classified according to the age of the patient, as juvenile or adult onset. 

As the role of insulin became clearer two more subcategories were added: insulin dependent 

and non-insulin dependent. All juvenile cases of diabetes are insulin dependent, while adult 

onset may be either insulin dependent or non-insulin dependent.  

 

In Figure 4, the leftmost image depicts a tree representation of the initial diabetes 

classification, while the rightmost image the revised diabetes classification. Supposing that a 

scientist examines the revised classification, she may realize that diabetes categories are not 

as expected. She would like to know: 

• Which may be the previous structure of categories? 

• Which changes are responsible for the reorganization of diabetes categories?  

• What are the previous versions of the data nodes that changed due to the 

reorganization of diabetes categories? 

 

The first question corresponds to a temporal query, on the history of  data nodes. The second 

to an evolution query, on the changes applied on data nodes. The third question corresponds 

to a causality query, on the relationships between change nodes and data nodes. 

 

However, these representations are not informative on which parts of the data evolved and 

how, which changes led from one version to another, or what changes were applied on which 

parts of data. Recording change operations in a log or computing deltas between successive 

versions do not solve the problem. As a result, answering such questions may require complex 

queries in different parts of a database, a task which may be even more intensive for large 

datasets. The need for tracing past changes and data lineage is evident in a wide range of web 

information management domains. 

 

The middle image in Figure 4 depicts the representation of the revision in the diabetes 

classification from the graph of Figure 4 left to right in evo-graph. In evo-graph, both data and 

changes are uniformly represented: data versions are represented in circular nodes, while 

changes in triangular nodes, and both are organized in hierarchical structure. Change nodes 

connect with the data versions they affect and they are annotated with temporal information. 

As a result, evo-graph may support queries that refer on data versions as well as on changes. 
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Figure 4 Snap-models of diabetes classification before (left) and after (right) revision and the relevant 

evo-graph (middle). 

 

4.3. Preliminaries: Modeling Data Versions and Changes on 

Evo-Graph 

Based on Stavrakas and Papastefanatos (2010, 2011) [55] and [56] we present the following 

preliminary concepts. 

 

Snap-model. In terms of this work, we assume that data is represented by a rooted, node-

labeled, leaf-valued tree called snap-model. A snap-model S (V, E) consists of a set of nodes 

V, divided into complex and atomic, with atomic being the tree leaves, and a set of directed 

edges E. At any time instance, snap-model undergoes arbitrary changes. 

 

Evo-graph. An evo-graph G is a graph-based model that captures all the instances of an 

evolving snap-model across time, together with the changes responsible for the transitions. It 

consists of the following components:  

• Data nodes, divided into complex and atomic: VD = VD
cVD

a. 

• Data edges, departing from every complex data node, ED (VD
c VD).  

• Change nodes, representing change events. They are depicted as triangles to 

distinguish from circular data nodes. They are divided into complex and atomic 

(denoting basic change operations): VC = VC
cVC

a. 

• Change edges, connecting every complex change node to the (complex or atomic) 

change nodes it contains: EC (VC
c VC).  
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• Evolution edges, connecting each change node with two data nodes, the version 

before and after the change: EE (VD VC VD). 

• rD ∈ VD is the data root, with the property that there exists a path formed by data 

edges from rD to every other data node in VD.  

• rC ∈ VC is the change root, with the property that there exists a path formed by 

change edges from rC to every other change node in VC.  

 

Intuitively, evo-graph consists of a data graph, holding the data versions, and a tree of 

changes, which interconnect via evolution edges. Consequently, it has two roots: the data 

root, rD, and the change root, rC.  

 

Moreover, change nodes are annotated with timestamps denoting the time instance each 

change occurred. Although valid time may be considered, we rely on transaction time, 

assuming a linear time domain constituted by consecutive discrete values and two special 

time instances: 0 for the beginning of time and now for the current time. Also, the timestamp 

of each complex change equals the timestamp of its most recently occurred child change, 

since a complex change occurs when all of its constituent changes have been occurred. 

 

In evo-graph, timestamps are used for determining the validity timespan of all data nodes and 

data edges. Evo-graph can then be reduced to a snap-model holding under a specified time 

instance through the reduction process [55]. 

 

As an evo-graph example consider the middle image in Figure 4, representing the revision in 

the diabetes classification from the graph of Figure 4 left to right. The revision process is 

denoted by the complex change reorg_diab_cat (node &21) composed by 5 basic snap 

changes (in the order they occurred): clone (node &8), add (node &11), remove (node &13), 

create (node &15), and create (node &18). Note the use of evolution edges; in the case of add 

the evolution edge is annotated with the timestamp 2 and connects node &3 (initial version) 

with node &10 (version after adding the child node &6). Node &10 is still a child of node &2, 

but for simplicity the relevant edge is omitted. The reduction of the evo-graph for T=start (i.e. 

0) results in the snap-model of the leftmost image of Figure 4, while for T=now in the snap-

model of the rightmost image of Figure 4. 

 

Basic and Complex Changes. The following basic change operations may be applied on a 

snap-model (snap changes for short):  
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• create(vP, v, label, value). Creates a new atomic node v with a given label and value 

and connects it with its parent node vP. If vP is an atomic node, it becomes complex. 

• add(vP, v). Adds the edge (vP, v) to E, effectively adding v as a child node of vP. The 

nodes vP, v must already exist in V. If vP is an atomic node, it becomes complex. 

• remove(vP, v). Removes the edge (vP, v) from E. If v has no other incoming edges, it is 

removed from V. If vP has no other children, it becomes an atomic node with the 

default value (empty string). 

• update(v, newValue). Updates the value of an atomic node v to newValue. 

• clone(vP, vsource, vclone). Creates a new data node vclone with the same label/value as 

vsource, and a deep copy of the subtree under vsource as a subtree under the node vclone. 

The node vP must be a parent of vsource. The edge (vP, vclone) is added to E, making vclone 

a sibling of vsource. 

 

The above definitions describe the effect of each snap change to the current snap-model. 

These changes leave the snap-model in any possible consistent state. Note that the effect of 

the clone snap-change is to create a deep copy of a subtree under the same parent node. 

Although clone can be expressed as a sequence of other snap changes, it is chosen to be a 

basic operation. The reason is that deep copy is difficult to express using successive create 

operations, while at the same time it is an essential operation for expressing complex changes 

like move-to, and copy-to. 

 

Figure 5 depicts how each snap change is captured in evo-graph [44]. Figure 5 depicts three 

images for each snap change: the leftmost shows the initial snap-model before the change, the 

rightmost shows the current snap-model after the snap change, and the middle image shows 

the evo-graph fragment encompassing both snapshots, together with the change. Notice that 

on evo-graph, each snap change evolves the node it applies on into a new version which 

actually captures its effect. 

 

A complex change applied on a node of a snap-model is a sequence of basic and other 

complex change operations that are applied on the node itself or/and its descendants, 

formulating semantically coherent sequences. Applying a complex change on a snap-model 

involves the application of each constituent change in the order they appear. 
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Figure 5 Effect of snap change operations on the evo-graph. 

 

A complex change example is reorg_diab_cat applied on categories node of Figure 4 leftmost 

image. On evo-graph reorg_diab_cat evolves node &2 into &20. The definition is given 

below: 

reorg-diab-cat (&2) { 

 clone (&4, &6, &9) 

 add (&3, &6) 

 remove (&4, &6)  

 create (&3, &16, 'type', 'insulin dependent')  

 create (&4, &19, 'type', 'non insulin dependent') 

} 

 

EvoXML. In Stavrakas and Papastefanatos (2011) [56] an XML representation of evo-graph, 

named evoXML, is presented. evoXML encodes evo-graph in a top-down non-replicated 

approach. Non-replicated means that XML references are used to connect the parent nodes to 

a common child element. Top-down means that common children are pointed to by their 

parents via references.  

 

In evoXML special-purpose elements and attributes are used with the namespace evo. The 

evo-graph data root and change root are mapped to the elements evo:DataRoot and 

evo:ChangeRoot respectively. Each element is tagged with the label of the respective 

node and has an attribute evo:id whose value is the respective node id in the evo-graph. 

The values of atomic data nodes are the content of the respective elements, while atomic  
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Table 15 EvoXML for time instance 1 

1 

2 

3 

4 
5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 
16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 
28 

<evo:evoXML xmlns=””  

                          xmlns:evo=”http://web.imis.athena-innovation.gr/projects/c2d”> 

 <evo:DataRoot evo:id=”dataroot”> 

  <Diabetes evo:id=”1” evo:ts="0" evo:te="now"> 
    <categories evo:id=”2” evo:ts="0" evo:te="now"> 

      <cat evo:id=”3” evo:ts="0" evo:te="now"> 

        <age evo:id=”5” evo:ts="0" evo:te="now"> 

          juvenile 

        </age> 

      </cat> 

      <cat evo:id=”4” evo:ts="0" evo:te="0"> 

        <age evo:id=”6” evo:ts="0" evo:te="now"> 

          adult onset 

        </age> 

      </cat> 
      <cat evo:id=”7” evo:ts=”1” evo:te="now" evo:previous=”4”> 

        <age evo:ref=”6”/> 

        <age evo:id=”9” evo:ts=”1” evo:te="now"> 

          adult onset 

        </age> 

      </cat> 

    </categories> 

  </Diabetes> 

 </evo:DataRoot> 

 <evo:ChangeRoot evo:id=”changeroot”> 

  <clone evo:id=”8” evo:tt=”1” evo:before=”4”  evo:after=”7”/> 

 </evo:ChangeRoot> 
</evo:evoXML> 

 

change nodes are empty elements. A change edge between two change nodes is captured as 

the parent-child relationship of the corresponding elements. The same holds for data edges. 

However, if a child node is pointed to by multiple parent versions, the element corresponding 

to the child node is contained in the oldest parent element, while subsequent parent versions 

contain “clone” elements of the child. The “clone” elements are empty elements that point to 

the “original” child element via the special-purpose attribute evo:ref. An evolution edge 

(v1, c, v2) is represented via evo:before and evo:after attributes on the element 

corresponding to the change node c. They reference the elements that represent v1 and v2 

respectively. Also, the attribute evo:previous is used in the element representing v2 to 

reference the element representing v1. Thus, the previous version of an element is spotted 

directly without having to refer to the evo:before attribute of the corresponding change 

element. Finally, the attribute evo:tt records the timestamp of a change node, and the 

attributes evo:ts and evo:te the beginning and the end of the validity timespan of a 

data node (both are inclusive).  

 

For example, Table 15 (above) presents the evoXML for time instance 1 of the evo-graph in 

Figure 4, including only the clone operation (node &8, lines 16-21, 26). Notice that the edge 
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from node &7 to node &6 (denoting that &6 remains a child of the next version of &4) is 

represented via the evoXML reference evo:ref in line 17, which points to the element in line 

12. Also, notice the change node &8 in line 26. Overall, observe that the XML representation 

is additive with respect to evo-graph operations: as the evo-graph evolves, only additions of 

new elements are performed in the corresponding evoXML document. 

 

4.4. EvoPath Query Language 

4.4.1. Syntax 

Similar to XPath, evo-path uses path expressions to move through and select data nodes. In 

addition, evo-path allows the navigation through change nodes on evo-graph. Consequently, 

there are two types of path expressions in evo-path: data path and change path expressions. 

Also, several predicates are supported to express conditions on evo-graph temporal properties 

and evolution edges. 

 

Data path expressions start from the data root of evo-graph and return data nodes. Similar to 

XPath, they are written as a sequence of location steps separated by “/” characters and 

shortcuts can be used as in the two equivalent evo-paths below: 

/child::A/descendant-or-self::node()/ 

  child::B/child::*[position()=1] 

/A//B/*[1] 

 

Change path expressions start from the change root of evo-graph and return change nodes. 

They have the same syntax as data path expressions, but are enclosed in square brackets: 

</location_step1/…/location_stepN> 

 

Temporal predicates are introduced in evo-path in order to express temporal conditions on the 

evo-graph nodes. The following types are employed: 

 

1) On data node timespan:  

 

[ts() operator (t_1, t_2)], where ts() evaluates to the validity timespan of the 

context data node, operator may be [not] (in | contains |  meets | 

equals) covering the standard operations between sets, allowing the use of not in front of 

any of the operators, and t_1, t_2 are specified timestamps defining a timespan.  
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[ts() operator t], where ts() evaluates to the validity timespan of the context data 

node, operator may be [not] covers, and t is a specified timestamp, for the case 

where a specified timestamp exists or not in the validity timespan. 

 

2) On data node timespan start time: 

 

[tstart() operator t], where tstart() evaluates to the start of the validity 

timespan of the context data node, operator may be (> | >= |  = | < | <=), and t 

is a specified timestamp. 

 

3) On data node timespan end time: 

 

[tend() operator t], where tend() evaluates to the end of the validity timespan of 

the context data node (operator and t as in case 2). 

 

4) On change node timestamp: 

 

[tt() operator t], where tt() evaluates to the timestamp of the context change node 

(operator and t as in case 2). 

 

Evolution predicates are used to assert the existence of evolution edges at specific points in 

the graph. They combine a data path expression with a change path expression and vice versa, 

implying that the specified data are affected by the specified change. Their general form is: 

 

5) data_path_expr [evo-filter(<change_path_expr>)] 

 

6) <change_path_expr [evo-filter(data_path_expr)]> 

 

where evo-filter may be one of: evo-before(), evo-after() and evo-

both(). 

 

Each evo-filter evaluates into true or false, in case there is or not an evolution edge 

involving the data or change node in context. evo-before() and evo-after() refer on 

a specific side of the evolution edge, while evo-both() on both sides. In case 5 evo-

before() and evo-after() validate whether the data node in context holds before and 
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after respectively the application of the change being represented by the change node in 

context. evo-both() validates whether the data node holds either before or after the 

change. In case 6 evo-before() and evo-after() validate whether the change node in 

context represents the change before and after which the data node in context holds 

respectively. evo-both() validates whether the change node represents the change either 

before or after which the data node holds. 

 

4.4.2. Example Queries 

The evo-path examples refer to and are evaluated on the evo-graph of Figure 4 regarding 

diabetes. 

 

1) Temporal queries - Querying the history of data elements: Suppose that a scientist 

examines the current diabetes snapshot and realizes that the categories structure is not as 

expected. She wants to retrieve the previous versions of data node &20.  

 

//Diabetes/categories[ts() not covers 'now']    (Q1) 

 

This is a data path expression with a temporal predicate that evaluates false for the current 

version of categories and true for every other version. It returns node &2 with timespan 

[0, 5]. 

 

2) Evolution queries - Querying changes applied on data elements: The scientist observes the 

creation of several new nodes under the categories node. She wants to know the complex 

changes that contain a relevant create operation, to check if create was part of a larger 

modification. 

 

<//* [evo-both(//Diabetes//*)] 

     [.//create [evo-both(//Diabetes/categories/cat)]]>   (Q2) 

 

This is a change path expression. The first predicate is an evolution predicate for returning all 

the change nodes that are applied to Diabetes node or any of its descendants. The second 

predicate dictates that only changes with a create descendant applied on a cat object can 

be returned. It returns node &21 with timestamp 6, i.e. the complex change 

reorg_diab_cat, affecting data node &2 and resulting into data node &20. 
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The scientist can now retrieve all the changes associated with reorg_diab_cat, in order 

to understand its full effect. 

 

<//reorg_diab_cat/*>   (Q3) 

 

This change path expression returns the change nodes &8, &11, &13, &15 and &18. 

 

3) Causality queries - Querying relationships between change and data elements: Realizing 

that the modifications on diabetes categories are related to the complex change &21 

reorg_diab_cat, the scientist decides to check all the previous versions of the data nodes 

affected by reorg_diab_cat and its descendant changes. 

 

//* [evo-before(<//reorg_diab_cat//*>)]   (Q4) 

 

The data path expression returns all data nodes being connected through evolution edges with 

a reorg_diab_cat change node (&21) or one of its descendant change nodes, specifically 

those before each change due to evo-before(). The nodes &3 with timespan [0, 1], &4 

[0, 0], &7 [1, 2], &10 [2, 3] and &12 [3, 4] are returned. The scientist now realizes the 

sequence of data evolution. 

 

4.4.3. Semantics 

In XPath, the meaning of a path expression is the sequence of nodes, at the end of each path, 

that matches the expression. In evo-path, the meaning of a data path expression is a sequence 

of (data-node, interval) pairs such that the data-node has been at the end of a matching data 

path continuously during that interval. The interval is the validity timespan of the data-node. 

In evo-path, the meaning of a change path expression is a sequence of (change-node, instance, 

data-node-before, data-node-after) tuples such that the change-node is at the end of a 

matching change path at the specific instance and it references the data-node-before and the 

data-node-after the change. The instance is the timestamp (transaction time) when the change 

was applied on the data-node-before, leading to the data-node-after. 

 

For specifying the evo-path semantics the formal XPath semantics introduced by Wadler 

(1999) [60] have been adapted. The meaning of an XPath expression is specified with respect 

to a context node. For a data path expression, this is extended to a context pair of a data-node 

and a time interval. For a change path expression, its meaning is specified with respect to a 
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context tuple of a change-node, a time instance, a data-node before and data-node after the 

change. For the data part, four semantic functions are defined: 𝑆, 𝑄, 𝑄𝑇 and 𝑄𝐸. 𝑆⟦𝑝⟧𝑥 

denotes the sequence of pairs (data-node, interval) selected by pattern 𝑝 when 𝑥 is the context 

pair. It may also denote a sequence of values. The boolean expression 𝑄⟦𝑞⟧𝑥 denotes whether 

or not the qualifier 𝑞 is satisfied when the context pair (data-node, interval) is 𝑥. The boolean 

expression 𝑄𝑇⟦𝑞𝑇⟧𝑥 denotes whether or not a temporal condition 𝑞𝑇 is satisfied, while the 

boolean expression 𝑄𝐸⟦𝑞𝐸⟧𝑥 denotes whether or not an evolution condition 𝑞𝐸 is satisfied. 

 

For the change part, four similar semantic functions are defined: 𝑆𝑐, 𝑄𝑐, 𝑄𝑐𝑇 and 𝑄𝑐𝐸. 𝑆𝑐⟦𝑝⟧𝑥 

denotes the sequence of tuples (change-node, instance, data-node-before, data-node-after) 

selected by pattern 𝑝 when 𝑥 is the context tuple. It may also denote a sequence of values. The 

boolean expression 𝑄𝑐⟦𝑞⟧𝑥 denotes whether or not the qualifier 𝑞 is satisfied when the 

context tuple (change-node, instance, data-node-before, data-node-after) is 𝑥. The boolean 

expression 𝑄𝑐𝑇⟦𝑞𝑇⟧𝑥 denotes whether or not a temporal condition 𝑞𝑇 is satisfied, while the 

boolean expression 𝑄𝑐𝐸⟦𝑞𝐸⟧𝑥 denotes whether or not an evolution condition 𝑞𝐸 is satisfied. In 

Table 16 the formal semantics of the most common evo-path constructs are presented. 

 

For the data root and change root it holds: The validity timespan of the data root is by 

definition [0, now], as it is always valid in time. The timestamp of the change root is by 

definition 0, the data-node-before and data-node-after are undefined (∅), as it does not 

represent an actual change. 

 

Table 16 Formal Semantics of Evo-Path 

𝑆⟦/𝑝⟧𝑥 = 𝑆⟦𝑝⟧𝑑𝑎𝑡𝑎𝑅𝑜𝑜𝑡(𝑥); 

𝑆⟦//𝑝⟧𝑥 =  {𝑥2|𝑥1 ∈ 𝑠𝑢𝑏𝑛𝑜𝑑𝑒𝑠(𝑑𝑎𝑡𝑎𝑅𝑜𝑜𝑡(𝑥)), 𝑥2 ∈ 𝑆⟦𝑝⟧𝑥1}; 

𝑆⟦𝑝1/𝑝2⟧𝑥 =  {(𝑣2, 𝐼1 ∩ 𝐼2)|(𝑣1, 𝐼1) ∈ 𝑆⟦𝑝1⟧𝑥, (𝑣2, 𝐼2) ∈ 𝑆⟦𝑝2⟧(𝑣1, 𝐼1)}; 

𝑆⟦𝑝1//𝑝2⟧𝑥 =  {𝑥3|𝑥1 ∈ 𝑆⟦𝑝1⟧𝑥, 𝑥2 ∈ 𝑠𝑢𝑏𝑛𝑜𝑑𝑒𝑠(𝑥1), 𝑥3 ∈ 𝑆⟦𝑝2⟧𝑥2}; 

𝑆⟦𝑝[𝑞]⟧𝑥 =  {(𝑣, 𝐼)|(𝑣, 𝐼) ∈ 𝑆⟦𝑝⟧𝑥, 𝑄⟦𝑞⟧(𝑣, 𝐼)}; 

𝑆⟦𝑛⟧𝑥 =  {(𝑣, 𝐼)|𝑖𝑠𝐸𝑙𝑒𝑚𝑒𝑛𝑡(𝑣), 𝑐ℎ𝑖𝑙𝑑(𝑥) = (𝑣, 𝐼), 𝑛𝑎𝑚𝑒(𝑣) = 𝑛}; 

𝑆⟦𝑡𝑠𝑡𝑎𝑟𝑡()⟧𝑥 =  {𝑠|𝑥 = (𝑣, 𝐼), 𝐼 = [𝑠, 𝑒]}; 

𝑆⟦𝑡𝑒𝑛𝑑()⟧𝑥 =  {𝑒|𝑥 = (𝑣, 𝐼), 𝐼 = [𝑠, 𝑒]}; 

𝑆⟦𝑝[𝑞𝑇]⟧𝑥 =  {(𝑣, 𝐼)|(𝑣, 𝐼) ∈ 𝑆⟦𝑝⟧𝑥, 𝑄𝑇⟦𝑞𝑇⟧(𝑣, 𝐼)}; 

𝑆⟦𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟 ∶∶ 𝑝⟧𝑥 =  {𝑥2|𝑥1 ∈ 𝑝𝑟𝑒𝑛𝑜𝑑𝑒𝑠(𝑥), 𝑥2 ∈ 𝑆⟦𝑝⟧𝑥1}; 

𝑄⟦𝑝 = 𝑠⟧𝑥 =  {(𝑣, 𝐼)|(𝑣, 𝐼) ∈ 𝑆⟦𝑝⟧𝑥, 𝑣𝑎𝑙𝑢𝑒(𝑣) = 𝑠} ≠ ∅; 

𝑄⟦𝑝⟧𝑥 =  {𝑥1|𝑥1 ∈ 𝑆⟦𝑝⟧𝑥} ≠ ∅; 

𝑄𝑇⟦𝑡𝑠( ) 𝑖𝑛 (𝑡1, 𝑡2)⟧𝑥 =  {𝑥|𝑥 = (𝑣, [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑]), 𝑡𝑠𝑡𝑎𝑟𝑡 ≥ 𝑡1, 𝑡𝑒𝑛𝑑 ≤ 𝑡2} ≠ ∅; 

𝑄𝑇⟦𝑡𝑠( ) 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑡1, 𝑡2)⟧𝑥 =  {𝑥|𝑥 = (𝑣, [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑]), 𝑡𝑠𝑡𝑎𝑟𝑡 ≤ 𝑡1, 𝑡𝑒𝑛𝑑 ≥ 𝑡2} ≠ ∅; 

𝑄𝑇⟦𝑡𝑠( ) 𝑚𝑒𝑒𝑡𝑠 (𝑡1, 𝑡2)⟧𝑥 =  {𝑥|𝑥 = (𝑣, [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑]), [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑] ∩ [𝑡1, 𝑡2] ≠ ∅} ≠ ∅; 

𝑄𝑇⟦𝑡𝑠( ) 𝑒𝑞𝑢𝑎𝑙𝑠 (𝑡1, 𝑡2)⟧𝑥 =  {𝑥|𝑥 = (𝑣, [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑]), 𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡1, 𝑡𝑒𝑛𝑑 = 𝑡2} ≠ ∅; 

𝑄𝑇⟦𝑡𝑠( ) 𝑐𝑜𝑣𝑒𝑟𝑠 𝑡⟧𝑥 =  {𝑥|𝑥 = (𝑣, [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑]), 𝑡 ≥ 𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡 ≤ 𝑡𝑒𝑛𝑑} ≠ ∅; 

𝑄𝑇⟦𝑡𝑠𝑡𝑎𝑟𝑡( ) 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑡⟧𝑥 =  {𝑥|𝑥 = (𝑣, [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑]), 𝑡𝑠𝑡𝑎𝑟𝑡  𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑡} ≠ ∅; 

𝑄𝑇⟦𝑡𝑒𝑛𝑑( ) 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑡⟧𝑥 =  {𝑥|𝑥 = (𝑣, [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑]), 𝑡𝑒𝑛𝑑  𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑡} ≠ ∅; 

𝑄𝐸⟦𝑒𝑣𝑜 − 𝑏𝑒𝑓𝑜𝑟𝑒(〈𝑐ℎ𝑎𝑛𝑔𝑒_𝑝𝑎𝑡ℎ_𝑒𝑥𝑝𝑟〉)⟧𝑥 =
{𝑥|𝑥 = (𝑣, 𝐼), (𝑣𝑐 , 𝑖, 𝑣𝑏 , 𝑣𝑎) ∈ 𝑆𝑐⟦〈𝑐ℎ𝑎𝑛𝑔𝑒_𝑝𝑎𝑡ℎ_𝑒𝑥𝑝𝑟〉⟧𝑟𝑐 , 𝑣 = 𝑣𝑏} ≠ ∅; 



 

 84 

𝑄𝐸⟦𝑒𝑣𝑜 − 𝑎𝑓𝑡𝑒𝑟(〈𝑐ℎ𝑎𝑛𝑔𝑒_𝑝𝑎𝑡ℎ_𝑒𝑥𝑝𝑟〉)⟧𝑥 =
{𝑥|𝑥 = (𝑣, 𝐼), (𝑣𝑐 , 𝑖, 𝑣𝑏 , 𝑣𝑎) ∈ 𝑆𝑐⟦〈𝑐ℎ𝑎𝑛𝑔𝑒_𝑝𝑎𝑡ℎ_𝑒𝑥𝑝𝑟〉⟧𝑟𝑐 , 𝑣 = 𝑣𝑎} ≠ ∅; 

𝑄𝐸⟦𝑒𝑣𝑜 − 𝑏𝑜𝑡ℎ(〈𝑐ℎ𝑎𝑛𝑔𝑒_𝑝𝑎𝑡ℎ_𝑒𝑥𝑝𝑟〉)⟧𝑥 =
{𝑥|𝑥 = (𝑣, 𝐼), (𝑣𝑐 , 𝑖, 𝑣𝑏 , 𝑣𝑎) ∈ 𝑆𝑐⟦〈𝑐ℎ𝑎𝑛𝑔𝑒_𝑝𝑎𝑡ℎ_𝑒𝑥𝑝𝑟〉⟧𝑟𝑐 , 𝑣 = 𝑣𝑎  ∨  𝑣 = 𝑣𝑏} ≠ ∅; 

𝑆𝑐⟦〈/𝑝〉⟧𝑥 = 𝑆𝑐⟦𝑝⟧𝑐ℎ𝑎𝑛𝑔𝑒𝑅𝑜𝑜𝑡(𝑥);  
𝑆𝑐⟦〈//𝑝〉⟧𝑥 =  {𝑥2|𝑥1 ∈ 𝑠𝑢𝑏𝑛𝑜𝑑𝑒𝑠𝑐(𝑐ℎ𝑎𝑛𝑔𝑒𝑅𝑜𝑜𝑡(𝑥)), 𝑥2 ∈ 𝑆𝑐⟦𝑝⟧𝑥1}; 

𝑆𝑐⟦〈𝑝1/𝑝2〉⟧𝑥 =  {𝑥2|𝑥1 ∈ 𝑆𝑐⟦𝑝1⟧𝑥, 𝑥2 ∈ 𝑆𝑐⟦𝑝2⟧𝑥1}; 

𝑆𝑐⟦〈𝑝1//𝑝2〉⟧𝑥 =  {𝑥3|𝑥1 ∈ 𝑆𝑐⟦𝑝1⟧𝑥, 𝑥2 ∈ 𝑠𝑢𝑏𝑛𝑜𝑑𝑒𝑠𝑐(𝑥1), 𝑥3 ∈ 𝑆𝑐⟦𝑝2⟧𝑥2}; 

𝑆𝑐⟦〈𝑝[𝑞]〉⟧𝑥 =  {(𝑣𝑐 , 𝑖, 𝑣𝑏 , 𝑣𝑎)|(𝑣𝑐, 𝑖, 𝑣𝑏 , 𝑣𝑎) ∈ 𝑆𝑐⟦𝑝⟧𝑥, 𝑄𝑐⟦𝑞⟧(𝑣𝑐, 𝑖, 𝑣𝑏 , 𝑣𝑎)}; 

𝑆𝑐⟦𝑛⟧𝑥 =  {(𝑣𝑐 , 𝑖, 𝑣𝑏 , 𝑣𝑎)|𝑖𝑠𝐸𝑙𝑒𝑚𝑒𝑛𝑡(𝑣𝑐), 𝑐ℎ𝑖𝑙𝑑𝑐 (𝑥) = (𝑣𝑐 , 𝑖, 𝑣𝑏 , 𝑣𝑎), 𝑛𝑎𝑚𝑒(𝑣𝑐) = 𝑛}; 

𝑆𝑐⟦𝑡𝑡()⟧𝑥 =  {𝑖|𝑥 = (𝑣𝑐 , 𝑖, 𝑣𝑏 , 𝑣𝑎)}; 

𝑆𝑐⟦〈𝑝[𝑞𝑇]〉⟧𝑥 =  {(𝑣𝑐 , 𝑖, 𝑣𝑏 , 𝑣𝑎)|(𝑣𝑐, 𝑖, 𝑣𝑏 , 𝑣𝑎) ∈ 𝑆𝑐⟦𝑝⟧𝑥, 𝑄𝑐 𝑇
⟦𝑞𝑇⟧(𝑣𝑐 , 𝑖, 𝑣𝑏 , 𝑣𝑎)}; 

𝑆𝑐⟦〈𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟 ∶∶ 𝑝〉⟧𝑥 =  {𝑥2|𝑥1 ∈ 𝑝𝑟𝑒𝑛𝑜𝑑𝑒𝑠𝑐(𝑥), 𝑥2 ∈ 𝑆𝑐⟦𝑝⟧𝑥1}; 

𝑄𝑐⟦𝑝 = 𝑠⟧𝑥 =  {(𝑣𝑐 , 𝑖, 𝑣𝑏 , 𝑣𝑎)|(𝑣𝑐, 𝑖, 𝑣𝑏 , 𝑣𝑎) ∈ 𝑆𝑐⟦𝑝⟧𝑥, 𝑣𝑎𝑙𝑢𝑒(𝑣) = 𝑠} ≠ ∅; 

𝑄𝑐⟦𝑝⟧𝑥 =  {𝑥1|𝑥1 ∈ 𝑆𝑐⟦𝑝⟧𝑥} ≠ ∅; 

𝑄𝑐𝑇⟦𝑡𝑡( ) 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑡⟧𝑥 =  {𝑥|𝑥 = (𝑣𝑐 , 𝑖, 𝑣𝑏 , 𝑣𝑎), 𝑖 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑡} ≠ ∅; 

𝑄𝑐𝐸⟦𝑒𝑣𝑜 − 𝑏𝑒𝑓𝑜𝑟𝑒(𝑑𝑎𝑡𝑎_𝑝𝑎𝑡ℎ_𝑒𝑥𝑝𝑟)⟧𝑥 =
{𝑥|𝑥 = (𝑣𝑐, 𝑖, 𝑣𝑏 , 𝑣𝑎), (𝑣, 𝐼) ∈ 𝑆⟦𝑑𝑎𝑡𝑎_𝑝𝑎𝑡ℎ_𝑒𝑥𝑝𝑟⟧𝑟𝑑 , 𝑣 = 𝑣𝑏} ≠ ∅; 

𝑄𝑐𝐸⟦𝑒𝑣𝑜 − 𝑎𝑓𝑡𝑒𝑟(𝑑𝑎𝑡𝑎_𝑝𝑎𝑡ℎ_𝑒𝑥𝑝𝑟)⟧𝑥 =  
{𝑥|𝑥 = (𝑣𝑐, 𝑖, 𝑣𝑏 , 𝑣𝑎), (𝑣, 𝐼) ∈ 𝑆⟦𝑑𝑎𝑡𝑎_𝑝𝑎𝑡ℎ_𝑒𝑥𝑝𝑟⟧𝑟𝑑 , 𝑣 = 𝑣𝑎} ≠ ∅; 

 𝑄𝑐𝐸⟦𝑒𝑣𝑜 − 𝑏𝑜𝑡ℎ(𝑑𝑎𝑡𝑎_𝑝𝑎𝑡ℎ_𝑒𝑥𝑝𝑟)⟧𝑥 = 
{𝑥|𝑥 = (𝑣𝑐, 𝑖, 𝑣𝑏 , 𝑣𝑎), (𝑣, 𝐼) ∈ 𝑆⟦𝑑𝑎𝑡𝑎_𝑝𝑎𝑡ℎ_𝑒𝑥𝑝𝑟⟧𝑟𝑑 , 𝑣 = 𝑣𝑎  ∨  𝑣 = 𝑣𝑏} ≠ ∅; 

 

   Where:  

𝑠𝑢𝑏𝑛𝑜𝑑𝑒𝑠(𝑦) = {(𝑣, 𝐼)|𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎 𝑑𝑎𝑡𝑎 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑦 𝑡𝑜 𝑣 𝑎𝑛𝑑 𝐼 𝑖𝑠 𝑡ℎ𝑒 𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦 𝑡𝑖𝑚𝑒𝑠𝑝𝑎𝑛 𝑜𝑓 𝑣}  

𝑝𝑟𝑒𝑛𝑜𝑑𝑒𝑠(𝑦) =  

     {(𝑣, 𝐼)|𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎 𝑑𝑎𝑡𝑎 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑣 𝑡𝑜 𝑦 𝑎𝑛𝑑 𝐼 𝑖𝑠 𝑡ℎ𝑒 𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦 𝑡𝑖𝑚𝑒𝑠𝑝𝑎𝑛 𝑜𝑓 𝑣}, 

𝑑𝑎𝑡𝑎𝑅𝑜𝑜𝑡(𝑥) is the (𝑑𝑎𝑡𝑎𝑅𝑜𝑜𝑡, [0, 𝑛𝑜𝑤]) pair where 𝑑𝑎𝑡𝑎𝑅𝑜𝑜𝑡 is the root of the graph in which 𝑑𝑎𝑡𝑎 −
𝑛𝑜𝑑𝑒 exists and 𝑥 is a (𝑑𝑎𝑡𝑎 − 𝑛𝑜𝑑𝑒, 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) pair, 𝑟𝑑 = (𝑑𝑎𝑡𝑎𝑅𝑜𝑜𝑡, [0, 𝑛𝑜𝑤]), 

𝑐ℎ𝑖𝑙𝑑(𝑥) =  

     {(𝑣, 𝐼)|𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎 𝑑𝑎𝑡𝑎 𝑝𝑎𝑡ℎ 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 1 𝑓𝑟𝑜𝑚 𝑥 𝑡𝑜 𝑣 𝑎𝑛𝑑 𝐼 𝑖𝑠 𝑡ℎ𝑒 𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦 𝑡𝑖𝑚𝑒𝑠𝑝𝑎𝑛 𝑜𝑓 𝑣}  

𝑠𝑢𝑏𝑛𝑜𝑑𝑒𝑠𝑐(𝑦) =  

     {(𝑣𝑐, 𝑖, 𝑣𝑏 , 𝑣𝑎)|𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎 𝑐ℎ𝑎𝑛𝑔𝑒 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑦 𝑡𝑜 𝑣𝑐  𝑎𝑛𝑑 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 𝑜𝑓 𝑣𝑐}  
𝑝𝑟𝑒𝑛𝑜𝑑𝑒𝑠𝑐(𝑦) =  

     {(𝑣𝑐, 𝑖, 𝑣𝑏 , 𝑣𝑎)|𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎 𝑐ℎ𝑎𝑛𝑔𝑒 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑣𝑐  𝑡𝑜 𝑦 𝑎𝑛𝑑 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦 𝑡𝑖𝑚𝑒𝑠𝑝𝑎𝑛 𝑜𝑓 𝑣𝑐}, 
𝑐ℎ𝑎𝑛𝑔𝑒𝑅𝑜𝑜𝑡(𝑥) is the (𝑐ℎ𝑎𝑛𝑔𝑒𝑅𝑜𝑜𝑡, 0, ∅, ∅) tuple where 𝑐ℎ𝑎𝑛𝑔𝑒𝑅𝑜𝑜𝑡 is the root of the graph in which 

𝑐ℎ𝑎𝑛𝑔𝑒 − 𝑛𝑜𝑑𝑒 exists and 𝑥 is a (𝑐ℎ𝑎𝑛𝑔𝑒 − 𝑛𝑜𝑑𝑒, 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒, 𝑑𝑎𝑡𝑎 − 𝑛𝑜𝑑𝑒 − 𝑏𝑒𝑓𝑜𝑟𝑒, 𝑑𝑎𝑡𝑎 − 𝑛𝑜𝑑𝑒 −
𝑎𝑓𝑡𝑒𝑟) tuple, 𝑟𝑐 = (𝑐ℎ𝑎𝑛𝑔𝑒𝑅𝑜𝑜𝑡, 0, ∅, ∅), 

𝑐ℎ𝑖𝑙𝑑𝑐(𝑥) =  
{(𝑣𝑐 , 𝑖, 𝑣𝑏 , 𝑣𝑎)|𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎 𝑐ℎ𝑎𝑛𝑔𝑒 𝑝𝑎𝑡ℎ 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 1 𝑓𝑟𝑜𝑚 𝑥 𝑡𝑜 𝑣𝑐 𝑎𝑛𝑑 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 𝑜𝑓 𝑣𝑐}  
 

 

4.4.4. Implementation 

In order to implement evo-path, each valid evo-path expression is translated into an equivalent 

XPath expression over evoXML. Table 17 summarizes the translation rules.  

 

Table 17 Evo-Path to XPath translation 

Evo-Path XPath 

A. Data and Change Path Expressions 

data_path_expr doc("evoXML.xml")/evo:evoXML/evo:DataRoot/mapped_data_path

_expr 

<change_path_expr> doc("evoXML.xml")/evo:evoXML/evo:ChangeRoot/mapped_change_

path_expr 
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B. Temporal Predicates 

[ts() in (t_1, t_2)], where 

𝑡_2 ∈ ℕ 

[@evo:ts>= t_1 and (if @evo:te='now' then false() else 

@evo:te<= t_2)] 

[ts() contains (t_1, t_2)], 

where 𝑡_2 ∈ ℕ 

[@evo:ts<= t_1 and  

 (if @evo:te='now' then true() else @evo:te>= t_2)] 

[ts() meets (t_1, t_2)], 

where 𝑡_2 ∈ ℕ 

[if @evo:te='now' then (@evo:ts>= t_1 and @evo:ts<= t_2) 

 else((@evo:ts>= t_1 and @evo:ts<= t_2) or  

(@evo:te>= t_1 and @evo:te<= t_2))] 

[ts() equals (t_1, t_2)], 

where 𝑡_2 ∈ ℕ 

[@evo:ts = t_1 and (if @evo:te='now' then false() else 

@evo:te = t_2)] 

[ts() in (t_1, 'now')] [@evo:ts>= t_1] 

[ts() contains (t_1, 'now')] [@evo:ts<=t_1 and @evo:te='now'] 

[ts() meets (t_1, 'now')] [if @evo:te='now' then true() else (@evo:ts>=t_1 or 

@evo:te>=t_1)] 

[ts() equals (t_1, 'now')] [@evo:ts = t_1 and @evo:te='now'] 

[ts() covers t], where 𝑡 ∈ ℕ [@evo:ts<= t and (if @evo:te='now' then true() else 

@evo:te>= t)] 

[ts() covers 'now'] [@evo:te='now'] 

[tstart() operator t], 

where 𝑡 ∈ ℕ 

[@evo:ts operator t] 

[tend() > t], where 𝑡 ∈ ℕ [if @evo:te='now' then true() else @evo:te> t] 

[tend() >= t], where 𝑡 ∈ ℕ [if @evo:te='now' then true() else @evo:te>= t] 

[tend() = t], where 𝑡 ∈ ℕ [if @evo:te='now' then false() else @evo:te = t] 

[tend() < t], where 𝑡 ∈ ℕ [if @evo:te='now' then false() else @evo:te< t] 

[tend() <= t], where 𝑡 ∈ ℕ [if @evo:te='now' then false() else @evo:te<= t] 

[tend() = 'now'] [@evo:te='now'] 

[tend()< 'now'] [@evo:te!='now'] 

[tend()<= 'now'] [true()] 

[tt() operator t], where 𝑡 ∈ ℕ [@evo:tt operator t] 

C. Evolution Predicates 

data_path_expr 

 [evo-

before(<change_path_expr>)] 

doc("evoXML.xml")/evo:evoXML/evo:DataRoot/data_path_expr[ 

  @evo:id= 

doc("evoXML.xml")/evo:evoXML/evo:ChangeRoot/change_path_ex

pr/@evo:before] 

data_path_expr 

 [evo-

after(<change_path_expr>)] 

doc("evoXML.xml")/evo:evoXML/evo:DataRoot/data_path_expr[ 

  @evo:id= 

doc("evoXML.xml")/evo:evoXML/evo:ChangeRoot/change_path_ex

pr/@evo:after] 

data_path_expr 

 [evo-

both(<change_path_expr>)] 

doc("evoXML.xml")/evo:evoXML/evo:DataRoot/data_path_expr[ 

  @evo:id= 

doc("evoXML.xml")/evo:evoXML/evo:ChangeRoot/change_path_ex

pr/@evo:before or 

  @evo:id= 

doc("evoXML.xml")/evo:evoXML/evo:ChangeRoot/change_path_ex

pr/@evo:after] 

<change_path_expr [evo-filter(data_path_expr)]>where evo-filter is evo-before or evo-

after or evo-both are defined symmetrically 

D. Plain Data Path Expressions 

1 /p /p[@evo:id] 

2 /p[position predicate] /p[(@evo:id and position predicate) or 

   (@evo:id=/p[position predicate]/@evo:ref)] 

3 /p1[p2 op value] /p1[@evo:id and p2 op value] | 

/p1[@evo:id and p2/@evo:ref=/p1[p2 op value]/p2/@evo:id] 

4 /p1[p2 op value]/p3 (/p1[@evo:id and p2 op value] | 

/p1[@evo:id and p2/@evo:ref=/p1[p2 op value]/p2/@evo:id] | 

/p1[p3/@evo:id=/p1[p2 op value]/p3/@evo:ref])/p3[@evo:id] 
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Each data/change path expression (case A) is evaluated starting from the data/change root. 

Each temporal predicate (case B) is mapped to an XPath predicate over evoXML attributes 

evo:ts, evo:te and evo:tt. Each evolution predicate (case C) is mapped to an XPath 

predicate over the evoXML attributes evo:before or/and evo:after. These attributes 

appear on change elements and should be equal to evo:id attribute of data elements. 

Moreover, recall that evoXML encodes evo-graph in a top-down non-replicated approach 

(Stavrakas and Papastefanatos (2011) [56]): if a child node is pointed to by multiple parent 

versions, the element corresponding to the child node is contained in the oldest parent element, 

while subsequent parent versions contain "clone" elements of the child. These are empty 

elements pointing to the "original" child element via evo:ref attribute. This feature is 

handled while translating a data path expression to an equivalent XPath expression (case D). 

The returned nodes of a data path expression should be the "original" ones, i.e. those with an 

evo:id attribute (rule 1). Similar holds for predicates that are used to find a specific node, 

e.g. based on position (rule 2). For predicates that are used to find a node that contains a 

specific value, the returned nodes should be the "original" ones and the contained value should 

be checked in an "original" child node. However, the node in context may have either an 

"original" or a "clone" child node. In the latter case, the "clone" child node is used to access the 

pointed "original" one. Thus, in rule 3 two cases are identified: p1 is an "original" node and 

contains the "original" node p2 with value, or p1 is an "original" node and contains the 

"clone" node p2 pointing to an "original" node with value. This is extended in rule 4 with an 

additional location step. For p3 a third case is identified: p1 is an "original" node which 

contains the "original" node p2 with value and the "clone" node p3, which is used to access 

the "original" pointed node p3. The case of having p1 as "original" node and p2 and p3 as 

"clone" nodes is not identified, since it eventually ends up to one of the rest cases. Finally, note 

that XPath predicates on other node types, like attributes, are not considered, since in evoXML 

evolving data are represented on element nodes.  

 

Below, we show the XPath expressions for the Section 4.4.2 evo-path queries, generated 

following the translation rules. For simplicity evo namespace is omitted. evoXML.xml 

contains the evoXML representation of evo-graph in Figure 4. 

 

(Q1) let $d:=doc("evoXML.xml")/evo:evoXML/evo:DataRoot 

return $d//Diabetes/categories[@evo:te!='now'] 

(Q2) let $d:=doc("evoXML.xml")/evo:evoXML/evo:DataRoot, 

    $c:=doc("evoXML.xml")/evo:evoXML/evo:ChangeRoot 

return $c//*[@evo:before=$d//Diabetes//*/@evo:id or 

             @evo:after=$d//Diabetes//*/@evo:id] 
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   [ .//evo:create[@evo:before=                

$d//Diabetes/categories/cat/@evo:id or                   

                   @evo:after=        

$d//Diabetes/categories/cat/@evo:id] ] 

(Q3) let $c:=doc("evoXML.xml")/evo:evoXML/evo:ChangeRoot 

return $c//reorg_diab_cat/* 

(Q4) let $d:=doc("evoXML.xml")/evo:evoXML/evo:DataRoot, 

    $c:=doc("evoXML.xml")/evo:evoXML/evo:ChangeRoot 

return $d//*[@evo:id=$c//reorg_diab_cat//*/@evo:before] 

 

4.5. Evaluating the C2D Framework  

4.5.1. The C2D Framework 

The C2D (standing for Complex Changes in Data evolution) framework captures the concepts 

presented on evo-graph, snap-model and evo-path using XML technologies. Currently, the 

basic concepts of evo-graph and snap-model have been implemented into the framework. 

C2D has been developed in Java, on top of Berkeley DB XML9, an embedded XML database 

used to manage the evoXML representation of evo-graphs.  

 

The basic flow implemented in C2D is the following: Changes applied on the snap-model are 

fed into a process that populates the evo-graph, which is constructed step-by-step as changes 

are accommodated on it. The process details are presented in [44]. A snap change is always 

applied on the current snap-model, which is also represented in XML in C2D. Note that, the 

current snap-model is actually produced as a reduction of the evo-graph for the time instance 

T=now. In C2D the reduction process, as presented in [55], is also implemented. This flow is 

depicted in Figure 6. The top layer in Figure 6 is the view layer, where changes are launched. 

The purpose of the logical model layer is to guide the translation processes between the view 

layer and the storage representation layer, where changes actually take place. Change 

operations on the evo-graph are implemented as XML update operations on the corresponding 

evoXML, using XQuery Update [50] insert expressions.  

 

                                                   
9 http://www.oracle.com/technetwork/ database/berkeleydb/overview/index.html 
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Figure 6 C2D framework basic flow overview. 

 

4.5.2. Evaluation 

4.5.2.1. Experimental Setting 

The goal of the experimental evaluation was to examine how evo-graph depends on a number 

of factors that characterize the data. We first examined the space efficiency of evoXML for 

various configurations, regarding: the structure of the initial XML tree, the type of snap 

changes, and the selectivity of the elements. We also examined the performance of the 

reduction process with respect to the size of the evoXML file. 

 

Experiments were performed over synthetic XML data, on a PC with Intel Core 2 CPU 2.26 

GHz, and 4.00 GB of RAM. The initial XML file was generated with Xmlgener10 synthetic 

XML data generator and contained about 105 elements, over which 104 snap changes were 

sequentially applied as XQuery Update [50] statements. A new version was assumed after 

every 1000 changes; therefore 10 successive versions have been created for each setting. We 

recorded the size (in terms of the number of XML elements) of each “snap” version, and the 

size of the evoXML file at the same instance. Furthermore, we examined the performance of 

the reduction process for the current snapshot (T=now), and the initial snapshot (T=0). 

 

Regarding the structure of the initial data, we used two XML files with the same number of 

elements: (a) one corresponding to a snap-model with a “deep” tree structure (denoted s1) 

with five levels and elements having a fan-out of 10, and (b) a file with a “broad” tree 

structure (denoted s2) with only two levels and elements with a fan-out of about 330 elements. 

We have applied three sets of snap changes: (a) equal percentage for all changes except clone 

                                                   
10 https://code.google.com/archive/p/xmlgener/ 
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(denoted t1), (b) 80% update and 20% create and remove (denoted t2), and (c) equal 

percentage for all changes including clone (denoted t3). Finally, concerning elements 

selectivity, changes have been applied either on all elements (denoted n1) or on a fixed set of 

pre-selected elements so that each element is affected by 5 changes on average per version 

(denoted n2). 

 

We have examined the following combinations of the above parameters: (t1n1), (t3n1), (t2n1), 

and (t2n2) for each of s1, s2. t1n1 captures the typical case when random changes are uniformly 

applied on all elements. t3n1 is similar to t1n1, but it also includes clone. We have separately 

examined the clone operation, as it may arbitrarily result in the addition of a large amount of 

data. t2n1 captures the case where most (80%) change operations are update on random leaf 

elements, and only 20% are create or remove. Finally, t2n2 is like the previous case except that 

changes are concentrated on a pre-selected fixed set of elements. 

 

Intuitively, we expect that the size of the evoXML depends on the number of snap changes 

performed. We also expect that it depends on the average fan-out of the snap-model, while it 

remains insensitive to its average height. This is due to the way that each snap change 

operation is implemented on the evo-graph. 

 

4.5.2.2. Results 

In Figure 7 (a) and (b) we present the evoXML sizes per version. Subsequently, we discuss 

how this size is affected by the aforementioned configurations parameters. 

 

    

(a) (b) (c) (d) 

Figure 7 evoXML size (a), (b), accumulative snapshot size (c) and current snapshot reduction time (d) 

per version for various configurations. 

 

File structure. For all configurations, better space efficiency is achieved for s1. For smaller 

fan-outs (s1), the evoXML has a smoother increase in size than for large fan-outs (s2). A snap 
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change occurring on an element adds evo:ref elements for all of its children (i.e. fan-out) that 

are still valid in the new version. Hence, the increase in the evoXML size is relative to the 

average fan-out. 

 

Type of changes. t2 outperforms t1 and t3. The majority of changes in t2 are update, which have 

a smaller impact on the evoXML size. Again, the key point is the number of new elements 

that each change adds. Observe from Figure 5 that all changes add at least two new elements: 

one evolved data element and one change element. update adds only these two elements, 

whereas create and add insert one additional element for the new child, plus evo:ref elements 

for its siblings. remove results in inserting evo:ref elements in the evoXML for all the siblings 

of the removed element. Finally, clone adds a variable number of elements according to the 

height and average fan-out of the subtree that is cloned. On the other hand, the percentage of 

create and remove in t1 is higher. In t3, the use of clone further increases the file size by 

creating a deep copy of the subtree of the elements on which it is applied. 

 

Selectivity of elements. Applying changes randomly on all elements (n1) seems to have a 

smoother impact on the increase of the file size (e.g., compare t2n1 and t2n2 for each of s1, s2). 

This is due to the fact that changes are uniformly distributed over all the elements. On the 

other hand, the increase is higher when changes are targeting a fixed set of elements (n2). 

Changes in t2n2 are sequentially applied on the same elements, i.e., create is applied on the 

same elements, increasing the number of their children and thus the number of evo:ref 

elements to be inserted when a subsequent create occurs on the same element. 

 

Overall, the evoXML size depends almost linearly on the number of the snap changes applied, 

given that the average fan-out is constant. Moreover, the increase rate of the evoXML size is 

proportional to the average fan-out of its elements. This is more evident in t2n2 for s1, where 

the average fan-out of the elements sustaining changes increases significantly per version, 

resulting in a boost in the evoXML size, whereas in s2 the fan out increase rate is much 

smoother. 

 

In Figure 7 (c) we present the accumulative size of the snapshots produced per version. This 

approach can be considered as an alternative to evoXML. We only depict the series for s2, as 

s1 shows a similar trend. The accumulative size of all snapshots per version is significantly 

bigger than the evoXML size, for all runs over s1. The same holds for all configurations of s2, 

except for t3n1 where many evo:ref elements are added in the evoXML file. Note that the 

overlap of the series is due to the small variance in the accumulative snapshot size between 

configurations. 
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Regarding the performance of the reduction algorithm, we have measured the time the 

reduction process takes for producing the current and the initial snapshots. The results for the 

current snapshot for s2 are shown in Figure 7 (d), where the mark signs are the recorded time 

values, and the series are the trends for each configuration. A safe conclusion is that the 

reduction time depends mostly on the evoXML size. For small file sizes, the reduction 

performs the same for all versions. In addition, the increase rates in time are similar for both 

the current and the initial snapshot, for both s1 and s2. Therefore, the time instance parameter 

of the reduction process does not affect the reduction performance. 

 

Concluding, both space and time efficiency are mostly affected by the average fan-out, which 

deteriorates as more changes are applied. That is mainly because of the evo:ref elements that 

are added for all children of an element that “evolves”. Still, our approach is much more 

efficient than retaining separately every different version.  



 

 92 

  



 

 93 

Chapter 5 

 

Conclusions and Future Work 

 

5.1. Thesis Conclusions 

In this thesis, we have presented novel methods and experimental results that focus on 

modeling, defining, detecting and querying changes on web data. In the proposed approaches, 

changes are treated as first class citizens, meaning that they are human-readable, semantically 

rich changes that demonstrate structure. Therefore, they can play a dominant role in 

interpreting and understanding evolution. 

 

Based on these concepts our research has been conducted in two pillars: Modeling, defining 

and detecting changes has been studied in the context of RDF(S) knowledge bases. Querying 

changes has been studied in the context of XML data, building upon previous work done 

regarding evo-graph, a model that captures evolving data along with changes. 

 

Specifically, we proposed modeling and supporting simple and complex changes, as well as 

any relations among them, for interpreting evolution on RDF(S) knowledge-bases. Simple 

changes are fine-grained and application/data-agnostic changes, while complex changes are 

coarse-grained and application/data-specific changes, demonstrating structure and rich 

semantics suitable to each specific application or dataset. Complex changes are user defined 

changes so that they can capture application/data-specific modifications. Also, they are 

defined as patterns over simple changes and already defined complex changes. Towards this 

direction, we proposed an intuitive, user-friendly language, based on change semantics for 

defining complex changes. We formally defined the language syntax and semantics. 

Furthermore, the ultimate goal for defining complex changes is to identify actual complex 

change instances between dataset versions. Therefore, we presented a detection algorithm for 

the proposed complex change definition language, as well as the correctness of the proposed 

implementation with respect to the language semantics. 
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The proposed approach has been extensively evaluated qualitatively and experimentally. The 

qualitative evaluation demonstrates the added value of our approach in comparison to the 

related work, regarding the basic features and characteristics. The experimental evaluation 

examines the complex change language expressiveness and the detection performance. It is 

evaluated whether the proposed structures are adequate in expressing useful changes and how 

complex changes facilitate user in understanding and analyzing evolution. Also, the response 

time of the detection process is examined in terms of increasing dataset size. The evaluation is 

performed over both artificial and real data, proving the effectiveness of our approach.  

 

Overall, the proposed approach offers expressiveness and flexibility in terms of evolution 

interpretation, since complex changes provide additional information for interpreting past 

data, allow interpreting evolution in multiple ways, while capturing relations between 

complex changes is an additional feature that enriches the complex changes' expressivity. 

 

Regarding querying changes, we formally defined evo-path, an XPath extension for 

performing time-aware and change-aware queries on evo-graph. Evo-path allows querying 

both data history and change structure in a uniform way, supporting temporal, evolution and 

causality queries. We presented the evo-path syntax, we defined evo-path formal semantics 

and we presented an implementation based on a formal translation of evo-path into equivalent 

XPath expressions over evoXML, the XML representation of evo-graph. 

 

Additionaly, the basic concepts of evo-graph were implemented in the C2D framework, using 

XML technologies, and experimentally evaluated. The space efficiency of evoXML for 

various configurations is evaluated. Also, the performance of the reduction process, the 

process for generating a snapshot holding under a specific time instance from evo-graph, is 

evaluated with respect to the size of the evoXML file. The evaluation performed indicated 

which factors that characterize the data affect the evoXML size and the reduction process. 

 

5.2. Future Work 

While conducting the above research, apart from the contributions made and the results 

already presented, we came up with open issues, which can form the basis for future work. 

 

Regarding our work on defining and detecting complex changes on RDF(S) knowledge bases, 

a tool for the automatic generation of a proposed set of complex change definitions may be 
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investigated. This tool may further facilitate the process of defining complex changes over a 

specific dataset. 

 

Towards this direction, a naïve approach may be to define some common patterns of changes 

that may appear in any RDF(S) dataset. Thus, given a specific dataset schema, a number of 

complex changes may be defined automatically following specific rules and heuristics. The 

proposed complex changes can be named based on the dataset concepts and the intuition of 

each change. These complex changes may involve rather structural groupings and may model 

modifications like add, delete, update and move. Therefore, the proposed complex changes 

may be additions/deletions/updates of class or property instances, moves of property 

instances, or groupings of added/deleted classes with relevant added/deleted descriptive 

properties. The data curator or consumer can model new complex changes capturing scenarios 

and semantics that fit specific data and application use cases on top of them. 

 

Additionally, it may be worth investigating how the automatic generation and proposal of 

complex change definitions over dataset versions can be based on more advanced methods 

and procedures than rules or heuristics. This may involve mining structures by comparing and 

analyzing different versions and snapshots, or ideally identifying unexpected changes.  

 

In this regard, recent works on data structure evolution may be useful. More broadly, our 

work can be related to approaches capable of capturing the evolution of knowledge graphs, 

while not aiming to model changes or interpret evolution. In Maillot and Bobed (2018) [37], 

structural similarity measure is proposed. It is based on the detection of common structural 

regularities between two RDF graphs, leveraging the data mining approach KRIMP. Bobed et 

al. (2020) [5] rely on this work, focusing on a data-driven assessment of structural evolution 

in RDF graphs. They propose two new similarity measures, which identify outdated updates 

and updates that alter the heterogeneity of the structural patterns w.r.t. the last snapshot. In 

Gonzalez and Hogan (2018) [28], authors propose an approach to compute a data-driven 

schema from knowledge graphs, inspired from formal concept analysis (FCA), producing a 

lattice of characteristic sets. The extracted schema is used to summarize dataset dynamics and 

predict future changes. 

 

Regarding our work on querying data versions and change structures via evo-path on evo-

graph, it is worth focusing on further experimenting and evaluating the proposed approach in 

terms of query language expressiveness and implementation efficiency. In addition, 

experimenting on real data may contribute in evaluating the effectiveness of the approach.  
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Also, another research direction is to investigate prospective optimizations. Towards this 

direction, it may be useful to take into consideration the effect of evo:ref elements in the 

evoXML and consequently in the query translation. It may be interesting to work on encoding 

evo:ref elements and overall compress the evoXML file. 

 

Overall, evolution management may be considered as a special case of the data integration 

and exchange problems [18], where the involved models are different versions of the same 

dataset. Therefore, several formalization issues that appear in data integration and exchange, 

like information preservation, query preservation, monotonicy and containment, can be 

examined in the evolution context as well.  
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Γλωσσάρι 

causality query ερώτημα αιτιότητας 

change instance στιγμιότυπο αλλαγής 

change modeling μοντελοποίηση αλλαγών 

change definition ορισμός αλλαγών 

change detection εντοπισμός αλλαγών 

coarse-grained change συνοπτική αλλαγή 

complex change σύνθετη αλλαγή 

data/application-agnostic change αλλαγή που αγνοεί την εκάστοτε εφαρμογή και δεδομένα 

data/application-specific change αλλαγή που είναι συγκεκριμένη για την εκάστοτε 

εφαρμογή και δεδομένα 

data evolution εξέλιξη δεδομένων 

data / dataset version έκδοση δεδομένων / συνόλου δεδομένων 

diff διαφορά 

evolution query ερώτημα εξέλιξης 

fine-grained change λεπτομερής αλλαγή 

first class citizen πρώτης τάξης πολίτης 

framework πλαίσιο 

granularity βαθμός λεπτομέρειας 

human-readable change αλλαγή κατανοητή από τον άνθρωπο 

knowledge base βάση γνώσεων 

machine-readable change μηχανιστική αλλαγή 

pattern μοτίβο 

query επερώτηση / ερώτημα 

querying changes επερώτηση αλλαγών 

reduction process διαδικασία παραγωγής στιγμιότυπου 

semistructured data ημιδομημένα δεδομένα 

simple change απλή αλλαγή 

snapshot στιγμιότυπο 

temporal query χρονικό ερώτημα 
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Annex A: Simple Changes in RDF(S) 

Knowledge Bases 

Add_Type_Class(a) Add object a of type rdfs:Class. 

Delete_Type_Class(a) Delete object a of type rdfs:Class. 

Rename_Class(a) Rename class a to b. 

Merge_Classes(A, b) Merge classes contained in A into b. 

Merge_Classes_Into_Existing(A,b) Merge classes in A into b, bA. 

Split_Class(a,B) Split class a into classes contained in B. 

Split_Class_Into_Existing(a,B) Split class a into classes in B, aB. 

Add_Type_Property(a) Add object a of type rdf:property. 

Delete_Type_Property(a) Delete object a of type rdf:property. 

Rename_Property(a,b) Rename property a to b. 

Merge_Properties(A,b) Merge properties contained in A into b. 

Merge_Properties_Into_Existing(A, b) Merge A into b, bA. 

Split_Property(a,B) Split property a into properties contained in B. 

Split_Property_Into_Existing(a,B) Split a into properties in B, aB. 

Add_Type_Individual(a) Add object a of type rdfs:Resource. 

Delete_Type_Individual(a) Delete object a of type rdfs:Resource. 

Merge_Individuals(A,b) Merge individuals contained in A into b. 

Merge_Individuals_Into_Existing(A,b) Merge A into b, bA. 

Split_Individual(a,B) Split individual a into individuals in B. 

Split_Individual_Into_Existing(a,B) Split a into individuals in B, aB. 

Add_Superclass(a,b) Parent b of class a is added. 

Delete_Superclass(a,b) Parent b of class a is deleted. 

Add_Superproperty(a,b) Parent b of property a is added. 

Delete_Superproperty(a,b) Parent b of property a is deleted. 

Add_Type_To_Individual(a,b) Type b of individual a is added. 

Delete_Type_From_Individual(a,b) Type b of individual a is deleted. 

Add_Property_Instance (a1,a2,b) Add property instance of property b. 

Delete_Property_Instance(a1,a2,b) Delete instance of property b. 

Add_Domain(a,b) Domain b of property a is added. 

Delete_Domain(a,b) Domain b of property a is deleted. 

Add_Range(a,b) Range b of property a is added. 

Delete_Range(a,b) Range b of property a is deleted. 

Add_Comment(a,b) Comment b of object a is added. 

Delete_Comment(a,b) Comment b of object a is deleted. 

Change_Comment(u,a,b) Change comment of resource u from a to b. 

Add_Label(a,b) Label b of object a is added. 

Delete_Label(a,b) Label b of object a is deleted. 

Change_Label(u,a,b) Change label of resource u from a to b. 
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Annex B: Complex Change Definition Examples 

in RDF(S) Knowledge Bases 

Below, we demonstrate some of the complex change definitions for the EvoGen generated 

data and the DBpedia data, as defined for the experimental evaluation of the complex change 

definition language for RDF(S) knowledge bases presented in Chapter 3, Section 3.6.2.2. 

 

1. Class instance additions/deletions 

a. EvoGen 

CREATE COMPLEX CHANGE Add_UnderGrad_Student(id) { 

 CHANGE LIST Add_Type_To_Individual(id, type) ; 

 FILTER LIST type=ub:UndergraduateStudent ; } ; 

b. DBpedia 

CREATE COMPLEX CHANGE Add_SoccerPlayer(id) { 

 CHANGE LIST Add_Type_To_Individual(id, type) ; 

 FILTER LIST type=dbo:SoccerPlayer ; } ; 

 

CREATE COMPLEX CHANGE Delete_SoccerPlayer(id) { 

 CHANGE LIST Delete_Type_From_Individual(id, type) ; 

 FILTER LIST type=dbo:SoccerPlayer ; } ; 

 

2. Property instance additions/deletions 

a. EvoGen 

CREATE COMPLEX CHANGE Add_Name(id, name) { 

 CHANGE LIST Add_Property_Instance(id, prop, name) ; 

 FILTER LIST prop=ub:name ; } ; 

b. DBpedia 

CREATE COMPLEX CHANGE Add_Team(id, chId) { 

 CHANGE LIST Add_Property_Instance(id, prop, chId) ; 

 FILTER LIST prop=dbo:team ; } ; 

 

CREATE COMPLEX CHANGE Delete_Team(id, chId) { 

 CHANGE LIST Delete_Property_Instance(id, prop, chId) ; 

 FILTER LIST prop=dbo:team ; } ; 

 

3. Groupings around added/deleted class instance URIs 

a. EvoGen 

CREATE COMPLEX CHANGE Add_UnderGrad_Student_Profile(id, name, 

univ, email, tel, adv) { 

 CHANGE LIST Add_UnderGrad_Student(id), Add_Name(id, name), 

Add_Studing_University(id, univ), Add_Email(id, email), 

Add_Telephone(id, tel), Add_Advisor(id, adv) ? ; } ; 
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b. DBpedia 

CREATE COMPLEX CHANGE Add_SoccerPlayer_with_Details(id, ChId1, 

ChId2, ChId3, ChId4, ChId5) { 

 CHANGE LIST Add_SoccerPlayer(id), Add_CareerStationProp(id, 

chId1)+, Add_Team(id, chId2)*, Add_BirthPlace(id, chId3)*, 

Add_Position(id, chId4)*, Add_DeathPlace(id, chId5)* ; 

 BINDING LIST union(chId1) as ChId1, union(chId2) as ChId2, 

union(chId3) as ChId3, union(chId4) as ChId4, union(chId5) as 

ChId5 ; } ; 

 

CREATE COMPLEX CHANGE Delete_SoccerPlayer_with_Details(id, 

ChId1, ChId2, ChId3, ChId4, ChId5) { 

 CHANGE LIST Delete_SoccerPlayer(id), 

Delete_CareerStationProp(id, chId1)+, Delete_Team(id, chId2)*, 

Delete_BirthPlace(id, chId3)*, Delete_Position(id, chId4)*, 

Delete_DeathPlace(id, chId5)* ; 

 BINDING LIST union(chId1) as ChId1, union(chId2) as ChId2, 

union(chId3) as ChId3, union(chId4) as ChId4, union(chId5) as 

ChId5 ; } ; 

 

4. Batch additions/deletions 

a. EvoGen 

Add_UnderGrad_Students_withCommon_Advisor(Ids, adv) { 

 CHANGE LIST Add_UnderGrad_Student_Profile(id, name, univ, 

email, tel, adv) + ; 

 BINDING LIST union(id) as Ids ; } ; 

b. DBpedia 

CREATE COMPLEX CHANGE 

Add_SoccerPlayers_withCommonPositions(Ids, ChId4) { 

 CHANGE LIST Add_SoccerPlayer_with_Details(id, ChId1, ChId2, 

ChId3, ChId4, ChId5) + ; 

 BINDING LIST union(id) as Ids ; } ; 

 

CREATE COMPLEX CHANGE 

Delete_SoccerPlayers_withCommonPositions(Ids, ChId4) { 

 CHANGE LIST Delete_SoccerPlayer_with_Details(id, ChId1, 

ChId2, ChId3, ChId4, ChId5) + ; 

 BINDING LIST union(id) as Ids ; } ; 

 

5. Specializations 

a. EvoGen 

CREATE COMPLEX CHANGE Add_Lecturer_withWebAndGradCourses(id, 

Courses) { 

 CHANGE LIST Add_Lecturer_Courses(id, Courses) ; 

 FILTER LIST for some w in Courses : (w, rdf:type, 

ub:WebCourse) in Vaf, for some gc in Courses : (gc, rdf:type, 

ub:GraduateCourse) in Vaf ; } ; 

b. DBpedia 
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CREATE COMPLEX CHANGE Add_SoccerPlayer_withTeamIceland(id) { 

 CHANGE LIST Add_SoccerPlayer_with_Details(id, ChId1, ChId2, 

ChId3, ChId4, ChId5) ; 

 FILTER LIST for some c in ChId2 : 

c=<http://dbpedia.org/resource/Iceland_national_football_team> 

; } ; 

 

CREATE COMPLEX CHANGE Delete_SoccerPlayer_withTeamIceland(id) 

{ 

 CHANGE LIST Delete_SoccerPlayer_with_Details(id, ChId1, 

ChId2, ChId3, ChId4, ChId5) ; 

 FILTER LIST for some c in ChId2 : 

c=<http://dbpedia.org/resource/Iceland_national_football_team> 

; } ; 

 

6. Updates 

b. DBpedia 

CREATE COMPLEX CHANGE Update_Team(id, chId1, chId2) { 

 CHANGE LIST Add_Team(id, chId1), Delete_Team(id, chId2) ; } ; 
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